
-
\square
-

$S \mathbb{T} P \mathrm{P} \mathbb{E} \mathrm{M} \mathbb{N} \mathrm{N}$

ENCYCLOPAEDIA BRIT, ANJNIC.A,

 OR, A
D I C T I O N A R Y

 OF
ARTS, SGIENGES,

AND

MISCELLANEOUS LITERATURE.

IN TWO VOLUMES.
Illuftrated with Fifty Copperplates.

By GEORGE GLEIG, LL.D. F.R.S. Edin.

NON IGNORO, QU尼 BONA SINT, FIERI MELIORA POSSE DOCTRINA, ET QUfe NON OPTIMA, aliquo modo acui tamen, et corrigi posse._-Cicero.

> VOL. I.

THE SECOND EDITION, WITH IMPROVEMENTS.

© Tinburgh :

PRINTED FOR THOMSON BONAR, PARLIAMENT-SQUARE:
BY YOHN BEOTFN, ANCHOR CLOSE, EDINBURGH.

$$
1803
$$

[Enteron in ofationtr ixam.]

TO THIE KI.VG.

SIR,
IT proceeds from no vain confidence in my own abilities, that I presume to solicit for this Work the Protection of a Monarch, who is not more exalted in station, than be is distinguisbed, among the Potentates of the Earth, by bis Taste in Literature, and bis Patronage of Science and the Arts.

IN conducting to its conclusion the Encyclopedia Britannica, I am conscious only of baving been uniformly influenced by a sincere desire to do Fustice to those Principles of Religion, Morality, and Social Order, of which the Maintenance constitutes the Glory of Your Majesty's Reign, and will, I trust, record Your Name to the latest Posterity, as the Guardian of the Laws and Liberties of Europe.

THE French Encyclopedic Jas been accused, and justly accufed, of having disseminated, far and wide, the seeds of Anarchy and Atheism. If the Encyclomedia Britannica shall, in any degree, counteract the tendency of that pestiferous Work, even these two Volumens will not be wholly unworthy of Your Majesty's Patronage; and the Approbation of my Sovereign, added to the consciousness of my own upright intentions, will, to me, be an ample reward for the many years of labour which I have employed on them, and on the Volumes to which they are Supplementary. I am,

$S I R$,
 Your Majesty's Most faithful Subject,

 And most devoted Servant,
Engyclopedia Britannica:

A B E

$\underset{\text { Aberration }}{\text { Abacifcus }} \underset{A}{ }$BACISCUS, in architecture, the fame with A. bacus; for which, fee Encyclopedia.
Aberration. ABATIS, or Abattis, is, in inilitary language, the name of a kind of retrenchment made of felled trees. When the emergency is fudden, the trees are merely laid lengthwife befide each other, with their branches pointed towards the enemy, to prevent his approach, whilf the trunks ferve as a breaftwork before thofe by whom the abatis is raifed. When the abatis is meant for the defence of a pafs or entrance, the boughs of the trees are generally ftripped of their leaves and pointed; the trunks are planted in the ground; and the boughs are interwoven with each other. It is needlefs to add, that the clofer the trees are laid or planted together, the more fecure is the defence which they afford; and if, when they are planted, a fmall ditch be dug towards the enemy, and the earth thrown up properly againft the lower part of the abaiis, it will be very difficult to pafs it if well defended.-Simes's Military Guide.

ABBREVIATION of fractions, in arithmetic and algebra, is the reducing of them to lower terms; which is done by dividing the numerator and denominator by fome number or quantity which will divide both without leaving a remainder of either.

ABERRATION, in optics (in Encycl.), refers the reader to the article Oprics, $n^{\circ} 17,136,173$. It mould have referred him to Optics, $\mathrm{n}^{2} 17$, and $25 \mathrm{I}-$ 256.

Aberration of the Vifual Ray, is a phenomenon, of which, though fome account of it has been given in the Encyclopædia (fee Aberration, in aftronomy; and the article Astronony, no 337.), one of the moft candid of our correfpondents requires a fuller explanation. If fich an explanation be requifite to him, it muft be much more fo to many others; and we know not where to find, or how to devife, one which would be more fatisfactory, or more familiar, than the following by Dr Hutton.
"This effect (fay ne) may be explained and familiarized by the motion of a line parallel to itfelf, much after the manner that the compofition and refolution of furces are explained. If light have a progreflive motion, let the proportion of its velocity to that of the Hate II. earth in her orbit be as the line BC to the line AC; gig. I. then, by the compofition of thefe two motions, the particle of light will feem to deferibe the line BA or DC, b. Suppl. Voz. I. Part I.

A B S

inftead of its real courfe $B C$; and will appcar in the Aberration direction $A B$ or $C D$, inftead of its true direction $C B$. So that if AB reprefent a tube, carried with a parallel motion by an obferver along the line $A C$, in the time that a particle of light would move over the fpace BC, the different places of the tube being $\mathrm{AB}, a b, c d, \mathrm{CD}$; and when the eye, or end of the tube, is at A, let a particle of light enter the other end at B; then when the tube is at $a b$, the particle of light will be at e exactly in the axis of the tube; and when the tube is at cd , the particle of light will arrive at f, till in the axis of the tube; and, laftly, when the tube arrives at CD, the particle of light will arrive at the eye or point C, and confequently will appear to come in the direction DC of the tube, inftea che true direction BC: and fo on, one particle fuc ..ding another, and forming a continued ftream or ray of light in the apparent direction DC. So that the apparent angle made by the ray of light with the line AE is the angle DCE, inftead of the true angle BCE ; and the difference BCD , or $A B C$, is thequantity of the aberration."

Aberration of the Planets, is equal to their geocentric motion, or, in other words, to the fpace which each appears to move as feen from the earth, during the time that light employs in paffing from the planet to the eye of the obferver. Thus the fun's aberration in longitude is conftantly $20^{\prime \prime}$, that being the fpace actually moved by the earth, but apparently by the fun in 8 minutes and 7 feconds, the time in which light paftes from the fun to the earth. If then the diftance of any planet from the earth be known, the time which light employs in paffing from the planet to the earth muft likewife be known; for as the diftance of the fun is to the diftance of the planet, fo is 8 minutes and 7 feconds to that time; and the planet's geocentric motion in that time is its aberration, whether it be in longitude, latitude, right afcenfion, or declination. See Astrono. my in this Suppement.

ABOAB, ceffes levied, in India, under different denominations, beyond the flandard rent.

ABSCISS, Abscisse, or Abfcifo, is a part cut off from a Atraight line, and terminated at fome certain point by an ordinate to a curve; as $\triangle P$ (fig. 2.) , or BP (fig. 3.) The abfcifs may commence cither at the vertex of the curve, or at any other fixed point ; and it may be taken either upon the axis or upon the dia-
\qquad $\underbrace{\text { Abrcifs. }}$ Plate le

Abforption, meter of the curve, or upon any other hine drawn in a $\underbrace{\text { Abfurdunt }}$ given pofition. Hence there are on the fame given line or diameter an infinite number of variable abfeifes, terminated all at one end hy the fame fixed point. In the common parabola (fig. 4.), each ordinate PQ has but one abfeils $A \mathrm{P}^{\prime}$. la the ellipfe or circle (fig. 2.), the ordinate has two abfcifes lying on the oppofite fides of it. In general, to cach ordinate a line of the fecond kind, or a curve of the firlt kind, may have two abfeiffes; a line of the third order, three; a line of the fousth order, four; and fo on.

ABSORPTION, in Anatomy and Physiology, has been tuficiently ceplained under thefe articles in the Encyelopxdia; but there is another abforbing power poffeffed by diferent fubftances, which is worthy of attention, becaufe it is only by our knowledge of it that we can adapt our clothing to the various climates of the earth. The power to which we allude is that of different fubitances; fuch as wool, cotton, filk, and linen, to abforb or attract moitture from the atmofphere. On this fubject the reader will find fome very inftructive experiments detailed (in Encycl.), where perhaps he may not have looked for them, under the title Flanel.

ABSURDUM, a term macie ufe of by mathematicians when they demonfrate any truth, by fowing that its contrary is impoffible, or involves an abfurdity. Thus Euclid demonftrates the truth of the fourth propofition of the firft book of his Elements, by Showing that its contrary implies this obvious abfurdity-" that two Itraight lines may inclofe a fpace."

This mode of demonftration is called reductio ad ab. furdum, and is every whit as conclutive as the direct method; becaufe the contrary of every falfehood mult be truth, and of every truth, falfehood.

The young geometrician, however, does not, we believe, feel himfelf fo perfectly fatisfied with a demonItration of this kind, as with thofe which, proceeding from a ferv \{elf.evident truths, conduets him dircetly, by neceffary confequences, to the truth of the propolition to be proved. The realon is, that he has not yct learned to diftinguih accurately between the words falfe and impoffuli, different and contrary. Many different affertions may be made relating to the fame thing, and yet be all true or all falfe; but it is impoffible to make two afiertions directly contrary to each other, of which the one hall not be true and the other falfe. Thus, " fnow is white," "fnow is cold," are different atertions relating to the fame thing, and both true; as, "fnow is black," "fnow is red," are both falfe: but let it he remembered, that of the firft and fecond, and of the third and fourth of thefe affertions, neither is directly contrary to the other; nor is any one of them, abitractly confidered, impo/fible, or fuch as a blind man, who had never felt nor heard of fnow, might not believe upon ordinary teftimony. But were all the men in Europe to tell a native of the interior parts of Africa that fnow is a thing at once rubite and not white, cold and not cold, the woolly-headed favage would know as well as the molt fagacious philofopher, that of thefe contrary affertions the one mufl be true and the other muft be falfe. Juit fo it is with refpect to Euclia's fourth propolition. Had he proved its truth by fhowing that its contrary involves this propofition, that " the diagonal of a fquare is commenfurate with its fide," the Akilful geometrician would indeed have admitted the demonftration, becaufe
he knows well that the diagonal of a \{quare is not com. Accelerate menfurate with its lide; but the tyro in geometry would have been no wifer than before. He knew from the beginning, that the propofition and its contrary camot both he tuae; but which of them is true, and which falfe, fuch a denonflration could not have taught hiur, becaufe he is ignorant of the incommenfurability of the diagonal and fide of a fquare. No man, however, is ignorant, that two Itraight lines cannot inclofe a fpace; and fince Euclid hows that the contrary of his propofition implies this abfurdity, no man of common fenfe can entertain a doubt but that the propolition itfelf mult be true.

ACCELERATED Motion. $\}$ Sce(Encycl.)Ac-
Accelerating enrce. Sceleration; and Mechanics, Seet. VI.-and (this Supplement) Dynamics.

ACTION is a term which has been fufficiently explained in the Encyclopredia; but fince that article was written, queftions have been agitated refpecting agents, agency, and arion, which, as they have employed fone of the molt eminent philofophers of the age, and are conneeted with the dearefl interefts of man, are certainly entitled to notice in this place.

It is the opinion of Dr Reid, and we have adopted it (fee Metaphysics, n° rog, Sic. Encycl.), that no being can be an agent, or perform an action, in the proper fenfe of the word, which does not poffefs, in fome destree, the powers of will and undertanding. If this opinion be juft, it is obvious, that what are called the powers of nature, fuch as impulfe, attraGion, repulfion, claficity, \& \& . are not, ftrictly feaking, poavers or caufes, but the effects of the agency of fome active and intelligent being; and that phyfical caxfis, to make ufe of common language, are nothing more than lazes or rules, according to which the. $\begin{gathered}\text { gent } \\ \text { produces the effect. }\end{gathered}$
This doctrine has been controverted by a writer whofe acutenefs is equalled only by his virtues; and we flall confider fome of his objections to it in another place (fee Cause): but a queftion of a different kind talls under our prefent confideration; and perhaps the anfwer which we muft give to it, may go far to remove the objections to which we allude.
Can an agent operate where, either by itfelf or by an inftrumest, it is not prefent? We think not ; becaufe agency, or the exertion of power, muft be the agency of fomething. The conilitution of the humanmind compels us to attribute every action to fome being; but if a being could act in one place from which it is abfent, it might do the fame in a fecond, in a third, and in all places; and thus we hould have action without an agent : for to be abfent from all places is a plirafe of the fame import as not to exift. But if a living and intelligent being cannot act but where it is either immediately or inftrumentally prefent, much lefs furely can we attribute events of any kind to the agency of an abfent and iuanimated body. Yet it has been faid, that "we have every reafon, which the nature of the fubjeet and of our own faculties can admit of, to believe, that there are among things inanimate fuch relations, that they may be mutually caufes or principles of change to one another, without any exertion of pozver, or any operation of an agent, ftrictly fo called. Such relations, for aught that we know, may take place among bodies at great diftances from one another, as well as among

Action. bodies really or feemingly in actual contact ; and they may vary both in decree and in kind, according to the diftances between the bodies."

That any thing thonld we a canfe or plinciple of change to another, without the exertion of power or the operation of an apent, appears to us a palpable contradiction; and we could as eatily conceive any two fides of a triangle, to be not greater that the third fise, as reconeile fuch a propofition to that faculty of our minds by which we diftinguilla truth from falfellood. When we fee one body the apparent canfe of change in another body, we cannot poffibly entertain a doubt of the cxertion of pozecr; but whether that puwer be in the body apparently producing the change, or in a diftinct agent, is a queftion to which an aufwer will not fo readily be found. Thiat it is in a difinet agent, we are ftrongly inclined to believe, not only by the received doctrine concerning the inertia of matter, which, though it lias been frequently controverted, we have never feen difproved, but much more by conlidering the import of an obfervation frequently introduced to prove the direct contrary of our helie६. "We cannot be charged (fays the writer whom we have jult quoted) with maintaining the abfurdity, that there may be an efiect without a caufe, when we refer the fall of a ftone to the ground, and the ebbing and flowing of the fea, to the influence of the earth on the fone, and of the fun and moon on the ocean, according to the principle of general gravitation."

We admit the truth of this obfervation, provided the influence of the fun and moon on the ocean be polfible; but, to us at leaft, it appears impoffible, and is certainly inconceiveable. The influence of the fun and moon can here mean nothing but the action or operation of the fun and moon; but if thefe two bodies be inanimate, they camot aft at all, in the proper fenfe of the word; and whatever they be, it is obvious that they cannot act immertiately on an object at fuch a diltance from them as the carth and the ocean. li they be the agents, they muft operate by an intrument, as we do when moving objects to which our hands cannot reach; but as it has beell fhewn elfewhere (iee Metaphysics, n° 199. and Optics, $n^{\circ} 63$. Encycl.), that neither air nor æther, nor any other material inftrument which has yet been thought of, is fufficient to account for the phenomena of attraction and repultion, it is furely much more rational to conclude, that the chbing and flowing of the fea are produced, not by the influence of the. fun and moon, but by the power of fome diftinct agent or agents.

What thofe agents are, we pretend not to fay. If the Supreme Being himfelf be the immediate author of every change which takes place in the corporeal world, it is obvious that he acts by fixed rulcs, of which many are apparent to the moft heedlefs obferver, whilt the difcovery of others is referved for the reward of the judicious application of the faculties which he has given us. If he employs inferior agents to carry on the great operations of nature, it is furely not difficult to conceive that the powers of thofe agents which were derived from him, may by him be reftrained within certain limits, and their exercife regulated by determined laws, in fuch a manner as to make them produce the greateft benefit to the whole creation. Nor let it-be thourght an objection to this theory, that the changes

$3] \quad \mathrm{A}$ E R

which take place among bodies at great difances from ench other, vary both in degree and in kind according to the diftances; for this variation, which we acknow. ledge to be a fact, appears to us wholly unaccountable upon ally other liypothefis than that which attributes the difurent changes to agents diftinct fium the bodies themfelves. Did we perceive all the particles of matter, at all diftances, tunding towards each other by a fixed law, we might be led to confider mutual attraction as an efentict property of that fubfance, and think no more of inquiring into its caufe, than we think of inquiring into the caufe of extenfion. But when we find that the fame particles, which at one diftance feem to attraf each other, are at a different diftance kept afuader by a power of repulfion, which no force, with which we are acquainted, is ahle to overcome, we cannot attribute the principle or caufe of thefe changes to brnte matter, but muft refer it to fome othor agent exerting puwer according to a fixed law.

It is the fafhion at prefent to defpife all metaphyfical inquiries as abftrufe and ufelefs: and on this account we doubt not but fome of our readers will turn away from this difquifition with affected difguft, whilit the pethlant and unthinking chemit, proud of poffeffing the fecrets of his fcience, will deem it fuperfluous to inquire after any other natural agents than thofe of which he has been accuftomed to talk. But with the utmoft refpect for the difcoveries made by modern chemifts, which we acknowledge to be both numerous and inportant, we beg leave to obferve, that though thefe gentlemen have brought to light many events and operations of nature formerly unknown, and have fhown that thofe operations are carried on by eftablifhed laws, none of them can fay with certainty that he has difcovered a fingle agent. The moft enlightened of them indeed pretend not to have difcovered in one department of fcience more than Newton difcovered in another; for they well know that agents and agency cannot he fubjected to any kind of plyyfical experiments. Our very notions of thefe things are derived wholly from our own confcioufnefs and reflection; and when it is confidered what dreadful confequences have in another country refulted from that pretended philofophy which excludes the agency of mind from the univerfe, it is furely time to iniquire whether our confcioufnefs and reflection do not lead us to refer real agency to mind alone. Let this be our apology both to the real and to the affected enemies of metaphyfics for endea. vouring to draw theirattention to the prefent queftion. It is a queftion of the utmoft importance, as well to fcience as to religion: and if the laws of luman thought decide it, as we have endeavoured to fhow that they do, we may without hefitation affirm, that the impious phi. lofophy of France can never gain ground but among men incapable of patient thinking.

ADAMAS, a name given, in aftrology, to the moon.

EOLUS, in mechanics, a fmall machine invented by Mr Tidd for refrefhing or changing the air in rooms when it becomes too hot or otherwife unfit for refpiration. The roolus is fo contrived as to fupply the place of a fquare of glafs in the window, where it works, with very little noife, like the fails of a wind-mill or a fmoke-jack.

AEROLOGY is a branch of fcience which was de-

A F G [4]
 A F G

Afghans. cording to the principles which were then generally admitted by chemits. Subfequent experiments, however, lave fhown, that fome of thole principles are erroneous, and of courfe that fome of the opinions advanced in the article Aerology are inconfiftent with facts. Thefe opinions mult be corrected; but inftead of fwelling this volume with a new article Aerology, we apprehend that it will be more acceptable to our fcientific readers to refer them for thofe corrections to the article CHF. mISTRY in this Sufplement.

AFGHANS, are a people in India who inhabit a province of Cabul or Cabulistan (fee Encycl.), and have always been connected with the kingdoms of Perfia and Hinduftan. They boaft of being defcended of Sand the firft king of Ifracl; of whofe advancement to the royal dignity they give an account which deviates not very widely from the tuth. They fay indeed, that sheir great anceftor was raifed from the rank of a fhepherd, not for any princely qualities which he poffeffed, but becaufe his itature was cxactly equal to the length of a rod whicis the angel Gabrid had given to the prophet Samuel as the meafure of the fature of him whom God had deftinerl to fill the throne of Ifrael.

Saul, whofe defcent, according to fome of them, was of Judalt, and according to others of Benjamin, had, they fay, two fons, Berkia and Irmia, who ferved David, and was beloved by himi The fons of Berkia and Irmia were Afghan and Usbec, who, curing the reigris of David and Solomon, diflinguifhed themfelves, the one for his corporcal frength, and the other for his learning. So great incleed w as the ftrength of Afybon, that we are told it fruck terror even isto demons and genii.

This hero ufed frequently to make exeurfions to the mountains, where his progeny, after his death, eftablifhed themfelves, lived in a fate of independence, built forts, and exterminated infidels. When the felect of creatures (the appellation which this people give to Mabomet) appeared upon earth, his fame reached the Afghans, who fought him in multitudes under their leaders Kbalid and Abdul Refpid, fons of Walid; and the prophet honouring them with this rcception"Come, O Muluc, or Kiugs!" they aflumed the title of Melic, which they retain to this day.

The hiftory, from which this abftract is taken, gives a long and unintertfing detail of the exploits of the Afghans, and of their zeal in overthrowing the temples of idols. It boafts of the following monarehs of their sace who have fat upon the throne of Dcbli: Sultan Behlole, Afgban Lodi, Sultan Sricandfr, Sultan Irbahim, Shir Shah, Islam Shah, Adil Shah Sur. It alfo numbers the following kings of Gaur defcended of the Afghan chiefs: Solaiman Sbab Gurzani, Beyazid Shab, and Kutb Sbab; befides whom, their nation, we are told, has produced many conquerors of provinces. The Afghans are fometimes called Solaimani, either becaufe they were formerly the fubjects of Solomon king of Ifrael, or becanfe they inhabit the mountans of Solomon. They are likewife called PAtans, a name derived from the Hindi verb Paitna" to rufh," which was given to them by one of the Sultans whom they ferved, in confequence of the alacrity with which they had attacked and conquered his enemies. The province which they occupy at prefent was for.
merly called Rob; and hence is derived the name of the Robillas. The city which was eftablifhed in it by the Afghans was called by the Paikwoer or Paifber, and is now the name of the whole dillrict. The fects of the Afghans are very numerous; of which the principal are, Lodi, Lobouni, Sur, Serzuani, Tiufufzihi, Bangilh, Dilazaui, Khetti, Yafin, Kail, and Beloje. They are Mufulmans, partly of the Sunni, and partly of the Sbiek perfuafion.

Though they are great boafters, as we have feen, of the antiguity of their origin, and the reputation of their race, other Mufulmans reject their claim, and confider them as of modern, and even of bafe, extraction.

This is probably a calumny; for it feems inconfiftent with their attention to the purity of their defcent-an attention which would hardly be paid by a people not convinced of their own antiquity. They are divided into four claffes. The firt is the pure clafs, confifting of thofe whofe fathers and mothers were Afybans. The fecond clafs confills of thofe whofe fathers were Afghans and mothers of another nation. The third clafs contains thofe whofe mothers were Afghans and fathers of another mation. The fourth clafs is compofed of the children of women whofe mothers were Afgbans and fathers and huibands of a different nation. Perfons who do not belong to one of thele claffes are not called Afghans.

This people have at all times diftinguinhed themfelves by their courage, both fingly and unitedly, as primcipals and auxiliaries. They have conquered for their own prinecs and for forcigners, and have always been confidered as the main ftrength of the army in which they ferved. As they have been applauded for virtues, they have alfo been repruached for vices, laving fometimes been guilty of treachery, and of acting the bafe part even of affaffias.

Such is the account of the Afghans publifhed in the fecond volume of the A fratic Kefearches. It was tranflated from a Perfian abridgment of a book written in the Pumto language, and called The Secrets of the Afghans, and communicated by Henry Vanfittart, Efq; to Sir William Jones, then prefident of the Afiatic Socicty. Their claim to a defcent from Saul king of Ifrael, whom they call Melic Talut, is probably of not a very ancient date; for the introduction of the angel Gabriel with his rod, gives to the whole ftory the air of one of thofe many fictions which Mahomet horrowed from the later rabbins. Sir William Jones, however, though he furely gave no credit to this fable, feems to have had no doubt but the Afghans are defcendants of Ifrael. "We learn (fays he) from Esdras, that the ten tribes, after a wandering journey, came to a coun. try called Aifareth, where we may fuppofe they fettled : now the Afghans are faid by the beft Perfian hif: torians to be defcended from the fires. They have traditions among themfelves of fuch a defcent ; and it is even afferted, that their families are ditinguifhed by the names of 7 fruif tribes, althougb fince their converfion to J/am, they fudioufly conceal their origin from all whom they admit not to their fecrets. The Pufbo language, of which I have feen a dictionary, haz a manifeft refemblarice to the Cbaldaick; and a conf.derable diftrict under their dominion is called Hazaretho or Hazaret, which might eafily have been changed into the word ufed by EsDras. Ifrongly recommend an inquiry into the literature and hitory of the Afgbans."

A L M

[

It is to co-operate with this accomplifhed fcholar that we have inferted into our Work this fhort account - of that fingular people; and it is with pleafure that, upon the authority of Mr Vanfittart, we can add, that a very particular account of the Afshans has been written by the late Hafiz Rahmat Kban, a chief of the Robillals, from which fuch of our readers as are oriental fcholars may derive much curious information.

ALBATEGNI, an Arabic prince of Batan in Mefopotamia, was a celebrated afronomer, about the year of Chrift 880, as appears by his obfervations. He is alio called Mubammed ben Gieler Albatani, Mahoonet the fon of Geber, and Mubamedes Araicenfis. He made aftronomical obfervations at Antioch, and at Racah or Aracta, a town of Chaldea, which fome authors call a town of Syria or of Mefopotamia. He is highly fpoken of by Dr Halley, as vir admirandi acuminis, ac in adminiffrandis olfervationibus cacrcitalif1rnus.

Finding that the tables of Ptolemy were inperfect, he computed new ones, which were long ufed as the beft among the Arabs: thefe were adapted to the meridian of Aracta or Racah. Albategni compofed in A rabic a work under the title of The Science of the Stars, compriling all parts of aftronomy, according to his own obfervations and thofe of Polemy. This work, tranflated into I atin by Plato of 'Tibur, was publifhed at Nuremberg in 1537, with fume additions and demonftratious of Regiomuntanus; and the fame was reprinted at Bologna in 1645, with this author's notes. Dr Halley detected many faults in thefe editions.Phil. Tranf. for $1693, \mathrm{~N}^{0} 204$.

In this work Albategni gives the motion of the fun's apogee fince Ptolemy's time, as well as the motion of the ftars, which he makes one degree in 70 years. He made the longitude of the firt flar of Aries to be 18° 2^{\prime}; and the obliquity of the ecliptic $23^{\circ} 35^{\prime}$. And upon Albategni's obfervations were founded the Alphonfine tables of the moon's motions; as is obferved by Nic. Muler, in the Tab. Frifice, p. $24^{8 .}$

ALDERAIMIN, a far of the third magnitude, in the right floulder of the conftellation Cepheus.

ALfragan, Alfergani, or Fargani, a celehrated Arabic aftronomer, who flourifhed about the year 800 . He was fo called from the place of his nativity, Fergan, in Sogdiana, now called Maracanda, or Samarcand, anciently a part of Bactria. He is alfo called Abmed (or Mubanned) ben-Cothair, or Katir. He wrote the Elements of Aftronomy in 30 chapters or fections. In this work the author chiefly follows Ptolemy, uing the fame hypothefrs, and the fame terms, and frequently citing lim: Of Alfragan's work there are three Latin tranflations, of which the laft and beft was made by Golius, profeffor of mathematics and oriental languages in the univerfity of Leyden. This tranflation, which was publifhed in 1669 , after the death of Golius, is acconpanied with the Arabic text, and with many learned notes on the firf nine chapters, which would undoubtedly have been carried to the end, harl the tranflator lived to complete his plan.
ALGORAB, a fixed ftar of the third magnitude, in the right wing of the confellation Corvus.

ALHAZEN, ail Arahian aftronomer, who flourifhed in Spain about the beginuing of the 12 th century. See A stronomy, no 6. Encycl.

ALMAMON, was a philofupher and aftronomer,

$5]$ A L

who, in the heginning of the 9 th century, afcended the Almamon, throne of the caliphs of Bagdat. He was the fon of Aloe. Harun Al-Rafhid, and grandfon of Almanfor. His
name is otherwife written Mamon, Almaon, .llmamun, Alamoun, or Al-Maimon. Having been educated with great care, and with a love for the liberal fciences, he applied himfelf to cultivate and encourage them in his own country. For this purpofe he requefted the Greek empcrors to fupply him with fuch books on philofophy as they had among them; and he collected fiilful interpreters to tranflate them into the Arabic language. He alfo encouraged his fubjects to fludy them; frequenting the meetings of the learned, and affiting at their exercifes and deliberations. He caufed Ptolemy's Almagef to be tranflated in 827 , by Ifaac Ben-honain, and Thabet Ben-korah, according to Herbelot, but, according to others, by Sergius, and Alhazen the fon of Jofeph. In his reign, and doubtlefs by his encouragement, an aftronomer of Bagdat, named Habafh, coinpofed three fets of aftronomical tables.

Almanoon limfelf made many aftronomical obfervations, and determined the obliquity of the ecliptic to be then $23^{\circ} 33^{\prime}$ (or $23^{\circ} 33^{\prime}$ in fome manuferipts), but Voffius fays $23^{\circ} 51^{\prime}$ or $23^{\circ} 34^{\prime}$. He alfo caufed fkilful obfervers to procure proper inftruments to be made, and to exercife themfelves in attronomical obfervations; which they did accordingly at Shemafi in the province of Bagdat, and upon Mount Cafius near Damus.

Under the aufpices of Almamon alfo a degree of the meridian was meafured on the plains of Sinjar or Sindgiar (or, according to fome, Fingar), upon the horders. of the Red Sea; by which the degree was found io contain $56 \frac{2}{3}$ miles, of 4005 coudees each, the coudee being a foot and a half : but it is not known what foot is here meant, whether the Roman, the Alexandrian, or fome other. Riccioli makes this meafure of the degree amount to 81 ancient Roman miles, which, value anfwers to 62,046 French toifes; a quantity more than the true value of the degree by almoft one.third. Finally, Almamon revived the fciences in the Eaft to fuch a degree, that many learned men were found, not only in his own time, but after him, in a country where the fludy of the fciences had been long forgotten. This learned king died near Tarfus in Cilicia, by having eaten too freely of fome dates, on lis retura from a mi.litary expedition, in the year 8.33 .

ALOE dicho roma, in botany, called by the Dutch: Kooker-boom or Quiver Iree, is a native of the fouthernparts of Africa, and feens to be a fpecies of the Agave or American aloe (fee Agave, Encycl.) It is thus Caferibed by Le Vaillant in his New Travels into the Interior Parts of Africa: "The aloe dichotoma rifes" to the lueight of 25 or 30 feet; its trunk is fmooth, and the hark white. When young, and the trumk not more than four or five feet long, it terminates with a, fingle tuft of leaves, which, like thofe of the ananas, fpread and form a crown, from the midn of which all its flowers iffue. As it grows older, it pulfes out latcral branches, perfectly regular and fymmetrical, each of which has at its extremity a crown fimilar to that of the young plant. The kooker-boom thrives much better on mauutains than in the plain. Inftead of long ronts penetrating dcep int o the earth, like thofe of other trees, it has but a very flight one by which it is fixed: to the foil. Accordingly, three inches of mould are: fufficient.

A I. P

Alre. fufficient in cnable it to grow unon the very rocks, and Aphorfus attan itsumoft beruty; but its root is fo feeble a fupport, that I could thow duwn the larged with a fingle kick of my foot. 'The hordes un the went make their quivers of the trunk of this tree when young, whence is derived the name givent it by the planters."

It beconace not us, fitting in our chamber, to controvert a fact in natural hiftory, of the reality of which we never had an opportumity of judging ; nor would it be proper, on account of our owin fecpticifm, to fupprefs the narrative of a traveller, who corrects the narratives of former travellers in terms which nothing fhould have dictated but the confcioufnefs of his own invariable veracity. let we hope to be pardoned for expreffing our furprife that, in any part of the world, trees fhould be found in great numbers 25 or 30 fect high, and thooting out many branches, which have yet fo loofe a hold of the ground, that the largeft of them may be thrown down by the fingle kick of a man's foot." 'l he reader's furprife will probably equal our's, when he is informed that the author faw one of thefe trecs of which the trunk was ten feet four inches in circumference, whilft its hanches overihadowed a face of more than 100 feet in dianseter! This tree he affures that he could have kicked over. The country, according to his account, is not exempted from ftorms. He is himfelf a Fronch philofupher. What a pity then is it that he did not explain to thofe, who have not had the benefit of beirg enlightened in that fchool, upon what principle of mechanics or flatics the tree could refilt the violence of the elements till it arrived at fu enormous a fize?
\LPHONSUS X. king of Leon and Caftile (fee
noycl.) This prince underftond attronomy, philofophy, and hiftory, as if he had been only a man of letters: and compofed books upon the motions of the heavens, and on the hiftory of Spain, which are highly commended. "What can be more furprifing (fays Mariana), than that a prince, educated in a camp, and inardling arms from his childhood, firould have fuch a knowldge of the ftars, of philofophy, and the tranfactions of the world, as men of leifure can farcely acquire in their retirements? There are extant fome books of Alphonfus on the motions of the ftars, and the hiftory of Spain, written with great fkill and ineredible care." In his aftronomical purfuits he difcovered that the tables of Ptolemy were full of errors; and thence he conceived the firt of any the refolution of correct. ing them. For this purpore, about the year 1240, and during the life of his fatlier, he affembled at Tuledo the moft fkilful aftronomers of his time, Chrittians, Moors, and Jexs, when a plan was formed for conftructing new tables. This tan was accomplifhed about 125 2, the firft year of his reign; the tables being drawn up chiefly by the fiill and pains of Rabbi lluac Hazan, a learned Jew, and the work called the Alphonfine Tables, ia lronour of the prince, who was at valt expences concerning them. He dixed the epoch of the tables to the 3oth of May 1252 , being the day of his accelfion to the thronc. They were printed for the firtt time in 1483 , at Venice, by Radtoldt, who excelled in printing at that time. This edition is extremely rare: there are nthers of $1492,1521,1545, \mathrm{Sic}$.

In the Encycloprdia it is faid, that the charge of impiety brouglit againft this prince was unjuf. This vas fail too confidently, becaufe we know not of any
direct proof of his innocence. All that has been faid Alphont for him by D. Hutton, one of his abled apolegills, anounts to nothing more than a high degree of prubability that the charge was carried by much too far. The charge it \{els was, that Alphonius affirmed, "that if he lad becn of God's privy-cenncil when he made the world, he would have advifec him better." Mariann, howewer, fays only in general, that Alphonfus was fo bold as to blame the works of Providence, and the conftruction of our bodies; and he fays that this flory concerning him refted only upon a vulgar tradition. The Jefuit's words are curious: "Emanuel, the nucle of Sanchez (the fon of Alphonfus), in his own name, and in the nanie of other nobles, deprived 11 phoufus of his kingdom by a public fentence; which that prince merited, for daring feverely and boldly to cenfure the works of Divine Providence, and the conftruction of the human body, as tradition fays he did. Heaven moft jufly punifhed the folly of his tongue." 'Though the lilence of fuch an hiftorian as Mariana, in regard to Ptolemy's fyftem, ought to be of fome weight, yet we cannot think it improbable, that if Alphonfus did pais fo bold a cenfure on any part of the univerfe, it was on the celeftial fphere, and meant to glance upon the contrivers and fuppurters of that fyftem. For, tefides that he fudied nothing more, it is certain that at that time aftronomers explained the motions of the heavens by intricate and confufed hypothefes, which did no honour to God, nor anywile anfwered the idea of an able workman. So that, from confidering the multitude of Spheres compofing the fyftem of Ptolemy. and thofe aumeroas eccentric cycles and epicycles witla which it is embarraffed, if we fuppofe Alphonfus to have faid, "that if God had afked his advice when he made the world, he would have given him better counfel," the boldnefs and impiety of the cenfure will be greatly diminifhed.

Such is the apology made by Dr Hutton for this royal attronomer of Spain; and we hope, for the honour of feience, that it is well founded. Still it leaves Al. phonfus guilty of great irreverence of language, which is to us wholly unaccountable, if it be really true that he read the Bible fourteen times. We have feen impiety indeed break out lately from very eminent aftronomers of a neighbouring nation; but thefe men read not the Bible, nor any thing elfe, but the dreams of the eternal fleepers.

ALTERNATE angees. See Geometry (Encycl.), Part I. 35 .

Alternate Ratio, or Proportion, is the ratin of the one antecedent to the other, or of one confequent.to the other, in any proportion, in which the quantities are of the fame kind. So if $A: B:: C: D$, then alternately, or by alternation $\mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{D}$.

ALTI'LUDE, Parallax of, is an areh of a vertical circle, by which the true altitude, obferved at the centre of the earth, exceeds that which is obferved on the furface. See Parallax (Encycl.) and Astronомх.(Süppl.)

Alsitude of the Nonagefimal, is the altitude of the goth degree of the ecliptic, counted upon it from where it cuts the horizon, or of the middle or higheft point of it which is above, the horizon, at any time; and is equal to the angle made by the ecliptic and horizon where they interfect at that time.

Altitude

A L U [7] A L U

Alutiqude of the Cone of the Earti's or Mioon's Shadow, the height of the fladow of the body made by the fun, and meafured from the centre of the horiy. To find it fay, As the tangent of the angle of the fun's apparent femidiameter is to radius; fo is 1 to a fourth proportional, which will be the leeight of the fhadow in femidiameters of the body.

ALUM is a falt fo ufuful in commerece and the arts, that the knowledge of its component parts, and of the beft method of preparing it, muft be of imporsance. In the article Chemistry (Encycl.), the opinions which were then held refpecting its compolition, and the pracsice which was generally followed in its preparation, have been detailed at full length; but fome of thefe opinions have fuce been controverted, and if they be erroneous, it muft be expedient to vary in fome degree the mode of preparation. In particular, the opinion that it is merely an excels of acid which prevents the formation of alum by evaporation of the ley, has been shown to be falfe by Citizen I'auquelin, who contends, of courfe, that the addition of putrid urine to the ley is a very bad practice.

This eminent chemift had long fufpected, that the cryftallization of alum is not prevented by an excefs of acid, and that pot-afh is not of ufe fimply to faturate this acid, but to perform an office of more importance. ' Γ o bring his fufpicions to the teft of experiment, he diffolved very pure Alumine in fulphuric acid of equal purity, and evaporated the fulution to drynefs, for the purpole of expelling the fuperabuudant acid. He then rediffolved the dry and pulverulent refidue in water, and reduced the folution to different degrees of fpecific gravity, with a view to feize the point moft favourable to cryfallization ; but with every poffible precaution he could obtain nothing but a magma (fee Magma), formed of faline plates, without confiflence or folidity. 'This fulution, however, though it conftantly refufed to afford cryftallized alum alone, afforded it immediately by the addition of a few drops of the folution of pot-afh; and as he had employed thefe two fubftances in the requifite proportion, the reft of the folution, to the very end, afforded pure alum, without any mixture of fulphat of potafh.

Into another portion of the fame folution of pure alumine, he dropped the fame quantity of carbonat of foda as he had added of that of pot-afh to the former; but mo cryftallization was formed, even by the help of evaporation, nor did lime and barytes poduce any better effect. But if the common opinion that pot-alh, in the formation of alum, is of ufe only to abftract the excels of acid, be true, foda; lime, barytes, and all the fubftances which by a more powerful force would take this acid from alum, ought to give the fame refult. Another argument prefented itfelf, which feemed decifive: If the alkalies, pot-afh, and ammoniac, do nothing more than unite to the fuperabundant acid of the alum, the fulphats of pot-afh and of ammoniac ought not to occafion any change in pure alum in its acidulated fate; whereas if thefe alkalies enter as a conftituent part into the alum, and are neceffary to its exiftence,
they ought to produce the lame chens as pure pot-anh or :mmoniac. He therefore added to a ihird portion of the folution of fuluhat of aiumine beforementioned foare crops of the foluion of fulphat of pot-ant; immediately upos which octahedral cryilals of alum were formcd. The furphat of ammoniac prefented the fame effeet.

This refult gave fill greater confirmation to his firf notions, though it did not yet afford a demonflration perfectly without objefion; for it might have lappencd that the two falts he made ufe of might deternine the cryitallization of the alum, fimply by at forbing the fuperfluous acid, of which they are very greedy; but to determine this poffible fact, he mixed in the uncryftallizable folution of aluninc forme fulphat of pot-afh with excefs of acid, and obtained a cryftailization no lefs abundant than with the neutral fulphat of pot.afl.

This laf experiment leaves therefore no doubt with regard to the influence and mode of action of pot-afh and ammoniac in the fabrication of alum ; and this action is ftill more ftrongly confirmed by the examination of the alums whichthave becn formed by the procufles above iclated; for in this manner it is proved that they contain confiderable quantities of the fulphats of pot. afl and ammoniac.

Thefe experiments led M. Vinquelin to an examination of the different alems of commerce, of which he found not one that did not afford fulphat of pot-ah, or of ammoniac, or of both. Iis methods of analyfis are very accurate; but to detail then at length would fwell this article to little purpofe. To fuch of our readers as are not chemitts they would hardly be intelligible ; and the experienced chemit will devife methods of analyfes for himfelf. It inay be proper, however, to obferve, that M. Vauquelin proved, to his own fatisfaction, that the fulphat of pot-af, or of ammoniac, is neceffary to render alum capable of being precipitated by, its earth, or to caufe it to pafs, as it were, to the earthy fate (A). He proved hikewife, that fuch aluminous waters as do not contain pot-afh, may remain, as long as may be defired, on their materials, without being faturated with too great a quantity of carth, or fufiering alum to precipitate.

From the whole of his experiments our author drew the following conclufions, which he confiders as of inportance to the arts, to chemiftry, and to natural hithory.

1. It is not, at leaft in the greateft number of circumflances, the excefs of acid which impedes the cryftallization of alum, but it is the want of pot-afh or ammonide : For it is difficult to imagine that the fulphuric acid could remain difengaged after fo long remaining upon alumine in a flate of extreme divifion, and always fuperabundant. It is true that the aluminous waters redden the vegetable tinctures; but this property is not owing to a difengaged acid. This portion of acid is a conitituent part of thefe waters; and it appears to have more affiuity with the neutral fulphat of alumine than with a new quantity of this earth at the teniperature of the atmofphere.
2. The fulphat of pot-afh may be ufed, as well as pure pot.afh, to caufe the cryftallization of alum. It

A L U

A $^{\text {¹UM1. }}$
even has the advantage over the latter falt, becaufe if the aluminous waters do not really contain a difengaged acid, the pot-afh, in its combination, will precipitate a portion of alumine, and diminifh the product of the bailing; whercas the fulphat of pot-arh does not produce the fame effect; but if the lixiviums contain difengaged acid, which mult rery feldom be the cafe, it is not converted into alum by the lulplat of potaifh, and is loft with regard to the product. Our author there fore is of opinion, that when the waters rea!ly contain an excefs of acid, or a very oxided [ulphat of iron, the ule of pot-ath is preferable to that of the fulphat of pot-afh. But when economy is an object, that in mairy places it would be profitable to ufe the fulpliat of pot-aflr ; becaufe it is a falt indirectly produced in many manufactories, where of courfe it may be obtained for nothing. In particular, the refidues of the diftillation of aquafortis by the fulphuric acid would be excellent for this operation, and much preferable to putrid urine, becaufe this flaid always contains phofphoric falts, which decompofe a portion of the fulphat of alumine, and confiderably diminifh the product.
3. Alumine cannut be ufed in the treatment of mother waters, as Bergman propofes. This earth is incapable of favouring the cryftallization of alum, hefides which, it decompoles a portion of alum by the affitance of ebullition; in which circumftance it feizes the acid neceffary to its folution, and precipitates it in the form of that powder which is called alum faturated with its earth.
4. Many alum ores muft naturally contain pot-afh, becaufe perfect alum is often obtained from the firft eryftallization of new alum waters without the addition of this alkali. It is true that an objection may be made with regard to the wood ufed in calcining thefe ores, which may be fuppofed to have furnifhed the alkali; but it is not probable that the fmall quantity of wood empluyed, in comparifon to the quantity of ore and the alum it affords, could fupply enough of potalh for the cryftallization.
5. All the earths and ftones which have given, or fhall hereafter afford, by analy fis with the fulphuric acid, perfect alum without addition of pot-afh, muft contain this alkali naturally. For it is well proved, that alum cannot exift without pot-afh or ammoniac; and as there is lit:le probability that this lait fould be found combined in earths or ftones, unlefs perhaps in very rare cafes, we may almoft conftantly be affured, when alum is obtained from any of thefe fubftances, that its formation was effected by pot-afh. The quantity of alum will immediately fhow in what proportion this alkali exifted in the fubitances analyfed.
6. The alum of commerce ought not to be confidered as a fimple falt, but as a combination in the fate of a triple and fometimes quadruple falt of fulphat of alumine, fulphat of pot-afh, or of ammoniac. Among thefe lalt we may diltinguifh two fpecies; the one without excefs of acid, infoluble in water and infipid, being what is improperly called alum faturated with its own earth; and the other, which contains an excefs of acid foluble in water, very fapid and aftringent, is the common alum.

There is likewife a pure fulphat of alumine, very aftringent, very difficult of cryftallization, in the form sf brilliant pearl-coloured plates without conliftence,
and which cannot be rendered infoluble by the addition of a new quantity of its bafe. Thes laft fale may with the greatelt propriety be called the fulphat of alumine.
7. It follows from the comparative analyfis, and the knowledge acquired refpecting the different ftates of the conbination of alumine with the fulphuric acid united at the fame time with other bafes, that we mult diftinguifh feven ftates in this combination, and that it is neceffary to exprefs them according to the rules of the methodical nomenclature. Here follow the feries, the nature, and the names of thefe feven fulphats of alumine
x. Sulphat of alumine, or the artificial combination of fulphuric acid and alumine. This falt is aftringent: it cryitallizes in laminæ or flexible leaves, foluhle in wa. ter. It has never been defcribed nor named by che. mits. 2. Acid fulphat of alumine is the furegoing falt, with excels of acid, from which it differs by reddening blue vegetable colours. It is eafily made by diffolving that falt in the fulphuric acid, but it is not eafy to convert this into the neutral fulphat of alumine but by boiling it a long time with its earth. This falt, like the firft, has not been deferibed. 3. Saturated fulphat of alumine and of pot-anh is the alum of the chemits faturated with its earth. It is pulverulent, infipid, infoluble, not cryftallizable, and is eafily converted into true alum by the addition of fulphuric acid. 4. The acid fulphat of alumine and of pot-aft greatly refembles common alum, and is eafily prepared chemically ; but M. Vauquelin found no alum but that of La Tolfa, which is exactly of the fame nature with it. 5. The acid fulphat of alumine and of ammoniac has all the properties of alum, and may be ufed for the fame purpoles; but though it is eafily made in the laboratories, our author never found it pure in commerce. 6. The acid fulphat of alumine, pot-afh, and ammoniac. It is remarkable enough, fays M. Vauquelin, that this thould be the nature of the alum molt frequently made in the arts, and that to exprefs its combination fo many words fhould be neceffary. This, however, may be avoided, by referving the name of alum to this fubftance, which will be fufficient to diftinguifh it perfectly. 7. The acidulous fulphat of alumine and of pot.afh, our author lays, he is lefs acquainted with than with the preceding feries. The name by which he characterizes it was fuggefted to him, and he thinks it proper, becaufe by adding to the folution a \{mall quantity of pot-a/h more than is neceffary to obtain octahedral eryftals, it manifeltly pafles to the cubic form.

From thefe deductions, the phyfician, the chemif, and the manufacturer, with whom the ufes of alum are greatly multiplied, will hereafter poffefs a knowledge of the fubftance they employ, and may appreciate its effects on the animal economy, and ot her bodies to which it is fo frequently applied. See Annales de Cbimie, xxii. 258, and Nicholfon's Fournal, Vol. I. p 318, \&c.

ALUMINE, one of the fimple earths: See Che. mistry in this Supplement.

AMICABLE numbers have been defined, and the firft pair of them given in the Encyclopredia. The fccond pair of amicable numbers are $\$ 7296$ and 18416 ; and the third pair are $936258+$ and 9437056 .
Dr_{r} Hutton informs us, that thefe three pairs of amicable numbers, with the properties from which they re-

A M S [9] A M S

 and the fum of its aliquot parts will be the other. and the fum of its aliquot parts will be the other. That is, if a be put $=$ the number 2 , and n fome That is, if a be put $=$ the number 2 , and n fome integer number, fuch that $3 a^{n}-1$, and $6 a^{n}-1$, and integer number, fuch that $3 a^{n}-1$, and $6 a^{n}-1$, and $18 a^{2}-1$ be all three prime numbers; then is $18 a^{2 n}-1$ $18 a^{2}-1$ be all three prime numbers; then is $18 a^{2 n}-1$ $\times 2 a^{n}$ one of the amicable numbers; and the fum of its $\times 2 a^{n}$ one of the amicable numbers; and the fum of its aliquot parts is the other. aliquot parts is the other.

 AMSTERDAM and St Paul, are two iflands in

 AMSTERDAM and St Paul, are two iflands in the South Sea, lying in the fame degree of longitude, the South Sea, lying in the fame degree of longitude, and generally confounded with each other. The Dutch and generally confounded with each other. The Dutch navigators have given the name of Amflerdam to the navigators have given the name of Amflerdam to the northern, and of St Paul to the fouthern illand, and northern, and of St Paul to the fouthern illand, and Captain Cook conforms to that appellation. Moft Captain Cook conforms to that appellation. Moft other Englifh navigators, and particularly Meffrs Cox other Englifh navigators, and particularly Meffrs Cox and Mortimer, with Sir George Staunton, reverfe the and Mortimer, with Sir George Staunton, reverfe the names, calling the fouthern inand Amfterdam, and the names, calling the fouthern inand Amfterdam, and the other St Paul. At this fouthern ifland the Lion man of war ftopped on her voyage to China with Lord Ma. cartney, the late ambaffador to the court of Pekin, which gave an opportunity to the men of fcience in the train of the ambaffador to examine the ifland with more flill and attention than probably it had ever been exa. mined before.
 Dr Gillan, who was appointed phyfician to the embafly, as well for his knowledge of chemiftry as for his medical fkill , is confident that the ifland of Amfterdam is the product of fubterraneous fire, as it bears in every part of it evident marks of volcanic eruption. "On the weft and fouth-weft fides (fays he) there are four fmall cones regularly formed, with craters in their centres, in which the lava and other volcanic fubftances have every appearance of recent formation. The heat continues fill fo great, and fuch a quantity of elaftic vapours iffues through numberlefs crevices, that there can be no doubt of their having been very lately in a flate of eruption. In a thermometer placed upon the furface, the quickfilver rofe conftantly to 180 degrees, and when funk a little into the athes, it advanced to 212 degrees. It certainly would have rifen ftill higher; but the fcale being graduated only to the point of boiling water, and the length of the tube proportioned to that extent, the thermometer was immediately withdrawn, left the increafing expanfion of the quickfilver hould
 Suppl. Vol. I. Part I.

\section*{

\section*{

}
\qquad

Amter- the vapour iffues forth with violence, and in fome parts copioufly. This mud is fo hot, that a gentleman who
inadvertently flepped into it had his foot feverely fcalded by it. The fanec caufes which have prevented vegetation on this fpot, have had the fame effect on the four cones recently thrown up. Their furfaces are covered with athes only; nor is there the lealt appearance even of inofs on the furrounding lava, for the production of which there does not appear to have elapfed a fufficient length of time fince the cones were formed: but this is not the cafe with the lava of the great primary crater; for in thofe parts of it where the edges are more perpendicular, and where eonfequently the mouldering decompofed earth, having no bafis to fupport it, flides down the fides of the rock, pretty long mofs was generally fourd growing upon it. All the fprings or refervoirs of hot water, except one only, were brackifh. One fpring derives its fource from the high ground and ridges of the crater. The water in it, inItead of bniling upwards through the fones and mud, as in the other fprings, flows downward with a confiderable velocity, in a fmall collected flream. Its temperature has been found not to exceed 112 degrces. The hand could be ealily kept in it for a confiderable time. It is a pretty ttrong chalybeate. The fides of the rock whence it iffues, and of the cavity into which it falls, are incruted with ochre depofited from it.
"When the great crater is viewed from the high ground, it appears to have been originally a perfect circle, but to have been encroached upon by the fea on the eaftern fide, where the flood tide ftrikes violently. The rocks of lava which formed the edge of the crater on that fide have fallen down. The depth of the water in the crater is about 170 feet, rendering the whole height of the crater, from the bottom to its upper ridge, nearly if not quite 900 feet. The lofty rocks forming this ridge are the highert parts of the inand, which feems to have been originally produced by the melted lava flowing down on all fides from hence. Thus there is a gradual flope from the edges of the crater to the fea; and the lava, though very irregular, and lying in mixed ruin and confufion immediately around the crater, affurmes a more uniforan appearanee at fome diftance, layer refting regularly upon layer, with a gradual declivity the whole way down to the fea. This difpofition of the layers is particularly obfervable in the wefl fide, where they lappen to terminate in an ahrupt precipiee. 'lhe eruptions that took place at different periods'appear here diftinctly marked by the different layers that are found with regular divifions between them; the glafly lava being undermoft, the compact next, the cellular lava next above, over it the volcanic afhes and lighter fubitances, and a layer of vegetable mould co"ering the whole."

The ifland appears indeed in fuch a ftate of volcanic inflammation, that from the fhips decks at night were obferved, upon the heights of the inand, feveral fires ifluing out of the crevices of the earth, unore confiderable, hut in other refpects refembling fomewhat the nightly flames at Pietra Mala, in the mountains between Florence and Bologna, or thofe near Bradley in Lan. calhire, occafioned by fome of the coal-pits lazing taken fire. In the day nothing more than fmoke could be perceived.

The length of the ifland from north to fouth is up-
wards of fuur miles, its breadth from ealt to wert about two miles and a half, and its circumference eleven miles, comprehending a furface of about eight fquare miles, or 5120 acres, almoft the whole of which is covered with a fertile foil. 'The ifland is inacceffible except on the eaft fide, where the great crater forms a hartour, the entrance to which is decerening annually, and might by the aid of art be made fit for the paffage of large fhips. The tides run in and out at the rate of three miles an hour, and rife perpendicularly eight or nine feet on the full and change of the moon; a northerly wind making the higheit tide. The water is eight or ten fathoms deep elofe to the edge of the crater; and in the bafon formed by the erater itfelf, the variation of the compais was found to be nineteen degrees and fifty minutes weftward of the north pole.

On the inland, which has no native inhabitants, were found three Frenclimen and two natives of England, who at the end of the American war had emigrated to Buttor. The whole tive had come laft from the Ine of France in the Indian Ocean, and had been left on the ifland of Amfterdam, aloout five months before the arrival of the Lion, for the purpofe of procuring a cargo of 25,000 feal-finins for the Canton market, which, as they had already procured 8000 , they hoped to complete in about ten months more. The veffel which brought them from the Ifle of France was gone to Nootka Sound, with a view of bringing a quantity of fea-otter fkins to China; and afterwards of calling for the cargo of feal-1kins at this place, to be carried to China likewife; proceediug thus alternately to Nootka and Amfterdam inland as long as the owners fhould find their account in it.

The feals, whofe fkins are thus an article of commerce, are found here in greater numbers in the fummer than in the winter, when they generally keep in deep water, and under the weeds, which fhelter them from the inclemency of the weather. In the fummer months they come aihore, fometimes in droves of 800 or 1000 at a time, out of which about 100 are deftroyed, that number being as many as five men can fkin and peg down to dry in the courfe of a day. Little of the oil which thefe animals might 〔urnifh is collected, for want of cafks to put it in ; part of the beft is boiled, and ferves thofe people inflead of butter. The feal of Amfterdam is the ploca urfina of Limmens. The female weighs ufually from 70 to 120 pounds, and is from three to five feet in length, but the male is confiderably larger. In general they are not fhy: fometimes they plunge into the water inflantly upon any one's approach, but at other times remain fteadily on the rocks, bark, and rear themfelves up in a menaeing pofture ; but the blow of a flick upon the nofe feemed fufficient to difpatch them. As the ikins alone were the objects wanted, the earcafes were left on the ground to putrefy at leifure, ftrewed in fuch numbers as to render it difficult to avoid trading on them in walking along. The people thus employed were remarkable for the fqualor and filth of their perfons, clothes, and dwelling ; yet none of them feemed defirous of leaving the place before the bufiaefs they came upon fhould be completed. One of them, an Englifman, who had been a confiderable time upon the ifland on a former adventure, gave but an unfavourable account of the weather during the winter months, which are always
boifterous,
boifterous, with hail and frow; but in funmer he acknowledged it to be very fine.

The fea fupplies this ifland with great varieties of excellent fifh, partictilarly a kind of cod, which was equally relifhed whether freh or falted. Cray filh were in fuch abundance on the bar acrofs the entrance into the crater, that at low water they might be taken with the hand; and at the anchorage of the fhips, when bafkets, in which were proper baits, were let down into. the fea, they were in a few minutes drawn up filled with cray fifh. This circumflance is the more extraordinary, that in the fame place were found abundance of Tharks and dog fifh of uncommon fize, which are known to be fo voracious and fuch enemies to all other fifh. The bafon of the crater abounds with tench, bream, and perch ; and the perfon who with a hook and line has caught any of thefe fifh in the cold water of the bafon, nay with a llight motion of his hand let them drop into the adjoining hot \{pring already men. tioned, in which they will be boiled and rendered fit for cating in the face of fifteen minutes. This was often practifed by the gentlemen of the embafly, and furnifhed them at once with a fingular amufement and a highly relined repalt.

Of all the birds which frequent this ifland, fo extraordinary in its origin, formation, and appearance, not one is common to the fame degree of latitude in the northern hemifphere. Of the larger kind were feveral fpecies of the albat, ofs; on examining one of which, diftinguifhed by the name of exulans, it was found, that in? ead of having only the rudiments of a tongue, as naturalifts generally fuppofe, it had one equalling half the length of the bill. Another large bird is likewife common here, called the great black potrel, or procellaria equinortialis of Linneus. It is the determined enemy of the albatrofs, as well as of the blue petrel of Ampterdam, or procellaria forfleri. This blue petrel, which is about the fize of a pigeon, confitutes the principal food of the feal catchers on the ifland. During the day-time they hide themfelves in the gronnd, in order to efcape, if poffible, their deftroyer the black petrel. At night they come abroad, and thence are termed niglit birds by the people at Amfterdam ; but being fond of flocking to any light, they fall into another finare laid for them by the feal-catchers, who kindle torches to attract them, and then kill them in muli."udes. The prettief of the feathered tribe, inhabiting or vifiting Anifterdam, is the filver bird, or Rerna birundo, about the fize of a large fwallow or fwift, with a forked or fwallow tail. 'The bill and legs are of a bright crimfon colour, the belly white, and the back and wings of a bluifh afh colour. This bird fubfifts chiefly on finall fifh, which it picks up as they are fwimming over the furface of the water.

This fingular ifland lies in $3^{3 n}+2^{\prime}$ S. Lat. and in $76^{\circ} 54^{\prime}$ E. Long. from Greenwich. St Paul's, or the illand lying in fight and to the northward, differed in appearance matcrially from Amfterdam. It prefented no very high land, or any rifing in a conic form ; and feemed to be overfpread with fhrubs or trees of a middling fize. It was faid to abound with frefh water, but to have no good anchorage near it, nor any place of eafy landing.-Sir George Staunton's Account of an Embafly to the Emperor of Clina.

ANACLASTIC curves, a name given by M. de Nairan to certain apparent curves formed at the bot-
tom of a veftel full of water, to an eyc placed in the Amphora air ; or the vault of the heavens, feen by refraction through the atmofplicre.
\therefore NAPHIORA, in aftrology, the fecond houfe, or that part of the heavens which is 30 degrces from the horofcope. 'The term anaphora is alfo fometimes appplied promifcuoufly to fome of the fucceeding houfes, as the 5 th, the 8th, and the rith. In this fenfe ana. plora is the fame as epanaphora, and tlands oppofed to cataphora.

ANASTROUS signs, in aftronomy, a name given to the duodecatemoria, or the twelve portions of the ecliptic, which the figns poffeffed anciently, but have fince deferted by the preceffion of the equinox.

ANCHOR of a smp, is an inftrument which, as it is commonly made, has been fufficiently defcribed in the Encyclopædia. An improvement, however, has been propofed on its conftruction by Mr James Stuard of the parifh of St Anne, Middlefex, who obtained a patent for his invention, dated Feb. ${ }_{1} 796$.

The whole of this invention contilts in making the anchor with one fluke or arm inftead of two, and contriving to load that fluke or arm in fuch a manner as to make it always fall the right way. With this view M_{1} Stuard would have the thank of the anchor made very fhort, that it may cant the more when fufpended by the cable; and he would have the arm and it made of bars in one length, that there may be no fhoot or joining in the whole inftrument. The bend of the fhank and arm he would have romnded, and not angular as in the common anchor; and on this bend he would have a fmall fhackle, or two plates with a fmall bolt between them, for the buoy-rope to be made faft to. Inttead of wood, he propofes for the flock of the anchor a bar of wrought iron, loaded or covered at the ends with knobs of caft iron; and he would have the palm of the fluke or arm either to be compofed entirely of call iron, or to be a caft iron thell filled with lead. This weight of the palm, the fhortnefs of the fhank, and the itructure of the ftock, will no doubt make the anchor fall the right way; which, having no upper fluke, will never be tripped by the cable taking hold of it on the fhip's fwinging, nor will it prove fo dangerous as the common anchor to fuch veffels as may liappen to ground by it.

ANDERSON (Alexander), an eminent mathematician, was born at A berdeen towards the end of the s 6th century. Where he was educated, or under what mafters, we have not learned; probably he ftudied the belles lettres and philofophy in the univerfity of his native city, and, as was the practice in that age of all who could afford it, went afterwards abroad for the cultivation of other branches of fciencc. But wherever he may have fludied, his progrefs in fcience mult have been rapid; for, early in the 17 th century, we find him profeffor of mathematics in the univerfity of Paris, where he publifhed feveral ingenious works; and among others, 1. Supplementun Apollonii Redivivi; five analy. fis problematis baifenus defiderati ad Apollonii Pergai doctrinam weps vusswv, a Marino Ghetaldo Patritio Rugulin? bujufque, non ita pridem reflitutam. In qua exhibetur inschanice equalitatum tertii gradus five folidarum, in quibus magnitudo omnino data, aquatur bomogenea fub altero tan. tum coefficiente ignoto. Huic fubnexa efl variorunt problematum pracice, Paris, 1612 , in 4 to.-2. A17 ionoria: Pro Zetetico Apolloniani problematis a fo jam pridem edito in

A $\mathrm{NH} \quad\left[\begin{array}{ll}\mathrm{I}\end{array}\right] \quad \mathrm{A} N \mathrm{~T}$

Anderfin, fupplemento Apollonii Redivivi, Ald clariffrmum et orna$\underbrace{\text { Anhinga. } 1 i f \text { finum virum Marinum Gbetaldum Patritium Ragufinum. }}$ In qua ad ea que oliter mihi perflinuxit Ghetaldus refpondetur, et analytices clarius detegilur. Paris, 1615, in 4to.-3. Francijci ITet, Fontenacenfis de Equationum Recognitione et Emendatione Traflatus duo, with a dedication, preface, and appendix, by himfelf. Paris, 1615, in 4 to.-4. Vieta's Angulares Setiones; to which be added demonflrations of his own. Our profeffor was coufin-german to Mr David Anderfon of Finhhaugh, a gentleman who alfo pofferfed a fingular turn for mathematical knowledge. This mathematical genius was hereditary in the family of the Anderfons; and from them it feems to have been tranfinitted to their defcendants of the name of Gregory, who have for fo many generations been eminent in Scotland as profeflors either of mathematics, or, more lately, of the theory and practice of phyfic. The daughter of the David Anderfon juft mentioned, was the mother of the celelrated James Gregory, inventor of the reflecting telefrope; and obferving in her fon, while yet a child, a ftrong propenfity to mathematical ftudies, fhe inftructed him in the elements of that fcience herfelf. From the fame lady defcended the late Dr Reid of Glafgow, who was not lefs eminent for his knowledge of mathematics than for his writings as a metaphyfician.

The precife dates of Alexander Anderfon's birth and death, we have not learned either from Dempfler, Mackenzie, or Dr Hutton, who feems to have ufed evcry endeavour to procure information; nor are fuch of his relations as we have had an opportunity of confulting, fo well acquainted with his private hiftory as we expected to find them.

ANHINGA, in ornithology, a fpecies of the pelicanus, confits of four known varieties: two peculiar to America, one to Senegal, and the fourth to the region about the Cape of Good Hope. This laft is thus defcribed by Le Vaillant in his New Travels into the In. terior Parts of Africa.
"The denomination of Slange-Hals-Voogel, given to it by the Hottentots, characterifes the anhinga in a very fimple and accurate manner. Buffon, who was fruck with the conformation peculiar to birds of this kind, has delineated them by a fimilar expreffion.
Prate III. 'The anhinga (fays he) exhibits a reptile grafted on the body of a bird.' Indeed there is no perfon who, upon feeing the head and neck orily of an anhinga, while the reft of the body is hid among the foliage of the tree on which it is perched, would not take it for one of thofe ferpents accuftomed to climb and refide in trees; and the miftake is fo much the eafier, as all its tortuous motions fingularly favour the illufion. In whatever fituation the anhinga may be feen, whether perched on a tree, fwimming in the water, or flying in the air, the moft apparent and remarkable part of its body is fure to be its long and flender neck, which is continually agitated by an ofcillatory motion, unlefs in its fight, when it becomes immoveahle and extended, and forms with its tail a perfeclly ftraight and horizontal line.
" The true place which nature feems to have affigned to the anhingas, in the numerous clafs of the palmipedes, is exacly between the cormorant and the grebe. They partake indeed equally of both thefe genera of birds, having the fraight flender bill and the long ueek
of the latter; while they approach the former by the conformity of their feet, the four toes of which are joined by a fingle menbrane. They partake alfo of the cormorant by their flight; having like it the wings larger and fitter for the purpofe than thofe of the grebe, which are fhort and weak. The tail of the anlinga is extremely long; a characterittic very fingular and remarkable in a water fowl, and which ought, it would feen, to render them totally diftinct from diving birds, which in general have little or no tail. By this trait they approach fill nearer to the cormorants; for tho ${ }^{\circ}$ the tails of the latter are fhorter, the tails of both have a great refemblance to each other, fince their quills are equally tlrong, elaftic, and properto form a rudder when thefe fowls fwim through the water in purfuit of fifh, which conflitute their principal nourifment. When the anhinga feizes a fifh, he fwailows it entire if it be fmall enough, and if ton large he carries it off to a rock or the ftump of a tree, and fixing it under one of his feet, tears it to picces with his bill.
"Though water is the favourite element of this bird, it builds its neft and rears its young on rocks and trees; but it takes great care to place them in fuch a manner, that it can precipitate them into a river as foon as they are able to fwim, or the fafety of the little family may require it."

The male anhinga differs from the female, which is fmaller, in having the whole under part of the body, from the breaft to the root of the tail, of a beautiful black, while the latter has the fame parts of a yellow ifabella colour. It has alfo, on each fide of its neck, a white ftripe, which extends from the eye to the middle of its length, and interfects a reddifh ground. A very fingular characteriftic, common to all the anhingas, is that of having the feathers of the tail deeply itriated, and as it were ribbed. It is a very fagacious bird, efpecially when furprifed fwimming; for its head is the only part which it expofes above the water; and if the fportiman once mifs that part, the anhinga plunges out of fight entirely, and never more fhows itfelf but at very great diftances, and then no longer at a time than is abfolutely neceffary for breathing.

Antecedental calculus. See Calculus in this supplement.

ANTES, in architecture, fmall pilafres placed at the corners of buildings. *

ANTICS, in architedure, figures of men and anio mals placed as ornaments to buildings.

ANTICUM, in architecture, a porch; alfo that part of a temple which lies between the body of the temple and the portico, and is therefore called the outer temple.

AnTimeter, or Reflecting Sector, an inftrument invented by Mr William Garrard, for the purpofe of meafuring angles, particularly fmall ones, with a greater degree of accuracy than can be done by Hadley's quadrant or by the fextant.

The frame of this iuftrument is fimilar to that of Hadley's quadrant, having twa radii, a limb, and braces; but with this difference, that the further radius is produced upwards of four inches beyond the centre of motion of the index; and the great fpeculum, or what is called the index-glafs in Hadley's quadrant, being placed there, is called the upper centre. In this inftrument there is no provilion for the back obfervations

$\mathrm{A} N \mathrm{~T} \quad\left[\begin{array}{ll}\mathrm{I}\end{array}\right] \quad \mathrm{A} P$ E

antimeter. The horizon-glafs is like that in Hadley's quadrant ; there are two fight vanes, to fuit two different fituations of the large fpeculum or object glafs: thefe vanes are adapted to receive a fmall telefifope. On the centre of the index, where the index glafs of Hadley's quadrant is fixed, is a brafs or bell-metal femicircle, two inches in diameter, and one-cighth of an inch thick: this femicircle is fcrewed faft to the index, in fuch a manner that the axis of the index is a tangent to it. On the upper centre are two circular brafs plates, which revolve concentrically, either together or feparately. The under plate has a lever, or part perpendicular to the plane of the inflrument, projecting downwards, a little beyond the lower centre: this lever is acted upon by the femicircular plate at the lower centre, to which it is always kept clofe by a fpring on the other fide. In the upper of the above mentioned circular plates are two circular perfurations or flits, through one of which a fcrew takes into the head of the inftrument, and through the other a ferew takes into the lower moveable plate. The large fpeculum is faftened to the upper plate; and by the above mentioned ferews the pofition of this glafs may be altered. A circular plate is fixed to the lower centre by three pillars: in its centre is a nut to admit a ferew; Dy which the plate carrying the large fpeculum may be fartened here occafionally.

The fate on the limb is divided into 45 equal parts or degrees, and not into half degrees, as is the cafe in Hadley's quadrant, by reafon of the double reflection. Thefe divifions are numbered in a retrograde order; zero being at the extremity of the further radius. AI. though the limb contains 45 degrees, yet the greatet angle which can be meafured, the large fpeculum \mathbf{e} maining fixed to the circular plate, is $10^{\circ} 18^{\prime} 21^{\prime \prime} .8$; the diftance between the two centres being four inches, and the radius of the femicircle one inch. Agreeable to thefe dimenfions, the inventor has given a table exbibiting the value of each primary divifion on the limb; be hath alfo given a more ample table, adapred to a diftance between the centres of three times the radius of the femicircle, which he fays lath been found the moft convenient in practice. If an angle greater than $10^{\circ} 18^{\prime}$ is wanted, it may be meafured by the method of anticipation, as the inventor calls it, which is as follows: Let the ferew which faltens the two circular plates on the upper centre be made faft, and loofen the frew which faftens the upper circular plate to the inftrument : Now adjuft the glaffes by the ufual method; bring forward the index to any given divifion on the limb, and make it faft; alfo falten the forew which was before loofe, and loofen the other fcrew; then bring the index to zero, and proceed as before.

The inventor gives the following directions for ad. jufting and ufing the inflrument.

The firft thing to be attended to is, to fet the hori-zon-glafs perpendicular to the plane of the inftrument, which is performed as follows: Hold the inftrument with its plane perpendicular to the horizon, and look over backwards into the glafs and beyond it. If the limb of the infrument appears in a right line with its reflection, the glafs is upright; but if it does not appear fo, loofen or tighten the little fcrew on the foot of the glafs until it be adjufted: Then with the inftrument, as in taking an altitude, look through the fight vane or telefcope at fome diflant object, with the index fixed
in any intended fituation the two ferews at the upper Antiparalcentre being loofe, turn the glafs about till the fame object appears nearly in the fame part of the horizonglafs : Next hold it in a horizontal pofition, and adjutt the object-glafs or large fpeculum with the ferews which are behind and before, on the foot of it, till the object and its reflection are feen in the fame horizontal line. Laftly, with the inftrument upright, turn the tangent-fcrew belonging to the horizon-glafs at the back of the inftrument, until there be a perfect coincidence of the uhject and its reflection that way, and the adjuftments are complete.
ANTIPARALLELS, in geometry, are thofe lines which make equal angles with two other lines, buz contrariwife; that is, calling the former pair the firft and fecond lines, and the latter pair the third and fourth lines, if the angle made by the firt and third lines be equal to the angle made by the fecond and fourth, and contrariwife the angle made by the firft and fourth equal to the angle made by the fecond and third; then each pair of lines are antiparallels with refpect to each other, viz. the firt and fecond, and the third and tuurth. So, if $A B$ and $A C$ be any two lines, and FC and FE be two others, cutting them f 0 ,
that the angle B is equal to the angle E,
and the angle C is equal to the angle D;
then BC and DE are antiparallels with refpeet to AB and AC; alfo thefe latter are antiparallels with regard to the two former. It is a property of thefe lines, that each pair cuts the other into proportional fegments, taking them aiternately,
viz. $\mathrm{AB}: \mathrm{AC}:=\mathrm{AE}: \mathrm{AD}:: \mathrm{DB}: \mathrm{EC}$, and $\mathrm{FE}: \mathrm{FC}:: \mathrm{FB}: \mathrm{FD}:: \mathrm{DE}: \mathrm{BC}$.
APERTURE, in optics, has been defined in the Encyclopxdia, but no rule was given there for finding a jult aperture. As much depends upon this circumflance, our optical readers will be pleafed with the following practical rule given by Dr Hutton in his Mathematical Dictionary. "Apply feveral circles of dark paper, of various fizes, upon the face of the glafs, from the breadth of a fraw to fuch as leave only a fimall hole in the glafs; and with each of thele, feparately, view fome diftant object, as the moon, fars, \&c. then that aperture is to be chofen tlrough which they appear the mott ditinctly.
"Huyghens firft found the ufe of apertures to conduce much to the perfection of telefcopes; and he found by experience (Diopt. prop. 56.), that the beft aperture for an object-glafs, for exainple of 30 feet, is to be determined by this proportion, as 30 to 3 , fo is the fquare root of \mathfrak{j}° times the diflance of the focus of any lens to its proper aperture : and that the focal diftances of the eye.glaffes are proportioned to the apertures. And M. Auzout fays he fonnd, by experience, that the apertures of telefoopes ought to be nearly in the fub-duplicate ratio of their lengths. It has alfo been found by experience, that object-glaftes will admit of greater apertures, if the tubes be blacked within fide, and their paffage furnifhed with wooden rungs.
"It is to be noted, that the greater or lefs aperture of an object-glafs, does not increale or dimminh the vifible area of the object; all that is eflected by this is the admittance of more or fewer rass, and co. fequently the more or lefs bright the ajpearance uf ilic object. But the largenefs of the aperture or focal diftance caufes

Apocatar- the irreşularity of its refractions. Jicnce, in viowing tafis Vemus through a telefope, a mich lofs aperture is to If. Arch. be ufed than for the moon, or Jupiter, or Saturn, be- caule her light is fo Lright and glaring. And this circumblance fomewhat invalidates and diflurbs Azout's proportion, as is fhown by Dr Hook, Phil. 'I'ranf. N° 4."

APOCAT'ASTASIS, or, as it fhould be written, ^pokatastasis, is a Greek word employed in the language of aftronomers, to denote the period of a planet, or the time it takes to return to that point of the zodiac whence it fet out.

APOTOME, is a term employed by Euclid to denote the difference between two lines or quantities which are only commenfurable in power. Such is the difference between 1 and $\sqrt{ } 2$, or the difference between the fide of a fquare and its diagonal. The doctrine of apotomes in lines, as delivered by this ancient mathematician in the tenth book of his Elements, is a very curious fubject, and has always heen admired by fuch as underfood it. The fint algebraical writers in Europe, fuch as Lueas de Burgo, Cardan, Tartalea, Stifelins, Sce. employed a confiderable portion of their works on an algebraical expofition of that which led them to the doctrine of furd quantities.

APPARENT conjunction of the planets, is when a right line, fuppoled to be drawn through their centres, paffes through the eye of the fpectator, and not through the centre of the earth. And, in general, the apparent coujunction of any objects, is when they appear or are placed in the fame right line with the eye.

Apparent Diameter of a planet or other heavenly body, is not the real length of the diameter of that body, but the angle which it fubtends at the eye, or under which it appears.

Apparent Diftance, is that whieh we judge an object to be from us when feen afar off; and which is almoft always very different from the true diftanee.

Apparent Figure, is the figure or flape under which an object appears when viewed at a diftance; and is often very different from the true figure. Thus a Itraight line, viewed at a diftanee, may appear but as a point ; a furface, as a line; and a folid, as a furface.

Apparent Motion, is either that motion which we perceive in a diftant body that moves, the eye at the fame time being either in motion or at rell ; or that motion which an object at reft feems to have, while the eye itfelf only is in motion.

Apparent Place of a Planet, \&ue. in aftronomy, is that point in the furface of the fphere of the world where the eentre of the luminary appears from the furface of the earth.

APPARITLON, in aftronomy, denotes a far's or other luminary's beeoming vilible, which before was hid. So, the heliaeal riling, is rather an apparition than a proper riling.

ARCI, in building, is an artful difpofition and ad-
Arch de-
fined.
in need of hade from the fun than of thelter from the isclemency of the weather. A very fmall addition to the flade of the woods ferved then for a dwelling Sticks laid acrofs from tree to tree, and covered with Hitory o brufhwood and leaves, formed the firlt houfes in thoferure condelightful regions. As population and the arts impro nected wi ved, thefe huts were gradually refined into commodious ${ }^{\text {arches. }}$ dwellings. The materials were the fame, but more artfully put together. At lait agriculture led the inhabitants out of the woods into the opell country. The connection between the inhabitazut and the foil became now more conftant and more interefting. The wifh to preferve this connection was natural, and fixed efta blifhments followed of eourle. Durable buildings were more defirable than thofe temporary and perifhable cottages - flone was fubflituted for timber.

But as thefe improved habitations were gradual refinements on the primitive hut, traces of its conflruc. tion remained, even when the choice of more durable materials made it in fome mealure inconveoient. Thus it happened, that while a plain building, inteoded for accommodation only, confifted of walls, pierced with the neceffary doors and windows, an ornamented building had, fuperadded to thefe effentials, columns, with the whole apparatus of entablature, borrowed from the wooden building, of which they had been effential parts, gradually rendered more fuitable to the purpofes of accommodation and elegance.

This view of ornamental architecture will go far to Origin of account for fome of the more general differences of na- Greek artional flyle which may be obferved in different parts of chitecture the world. The Greeks borrowed many of their atts from their A fiatic neighbours, who had cultivated them long before. It is highly probable that architecture travelled from Perfia into Grecee. In the ruins of SluThan, Perfepolis, or 'Thilminar, are to be feen the firt models of every thing that dittinguifhes the Grecian architectnres. 'There is no doubt, we fuppofe, among the learned, as to the great priority of thefe nomuments to any thing that remains in Greece; efpecially if we take into account the tombs on the monntains, which have every appearance of greater antiquity than the remains of Perfepolis. In thofe tombs we fee the whole ordonnance of column and entablature, jult as they begran to deviate from their firft and neceffary forms in the wooden buildings. We have the architrave, frize, and corniche; the far-projecting mutules of the Tufcan and Doric orders; the modillions no lefs diftinct; the rudiments of the Ionie capital; the Corinthian capital in perfection, pointing out the very origin of this onlament, viz. a number of long gracefnlleaves tied round the head of the column with a fillet (a cuftum which we know to lave been common in their temples and banqueting rooms). Where the dillance between the enlumns is great, fo that each had to fuppoit a weight too great for one tree, we fee the columus cluftered or fluted, Se. In thort, we fee every thing of the Grecian architecture but the floped roof or pediment; a thing not wanted in a country where it hardly ever rains.

The ancient Egyptian architecture feems to be a re- Ezyption finement on the hut built of clay or unburnt bricks mixed with ftraw; every thing is maffive, clumfy, and timid; fmall intercolumnations, and hardly any projections.

The Arabian arehitecture feems a refinement on the Arabians tent. A mofque is like a little camp, confifting of "a and

A R C $\quad\left[\begin{array}{ll}15\end{array}\right] \quad$ A R C

number of little bell tents, Atuck clofe together round a great one. A caravanferay is a court furrounded by a zow of fuch tents, each having its own deome. The Greek church of St Sophia at Conflantinople has imitated this in fome degree; and the copies from it, which have been multiplied in Ruffia as the facred form for a Chriftian church, have adhered to the origcinal model of cluftered tents in the Arictelt manner. We are fometimes difpofed to think that the painted glafs (a falhion brought from the Ealt) was in imitation of the painted hangings of the Arabs.

The Chinefe architecture is an evident imitation of a wooden building. Sir Geo. Staunton fays, that the fingular form of their roofs is a profeffed imitation of the cover of a fquare tent.

In the fone-buildings of the Greeks, the roofs were imitations of the wooden ones; hence the lintels, llying corniches, ceilings in compartments, \&c.

The pediment of the Greeks feems to have fuggeited the greatelt improvement in the art of building. In erecting their fmall houfes, they could hardly fail to obferve occalionally, that when two rafters were laid together, from the oppofite walls, they would, by leaning Pate 1. on each other, give mutual fupports as in fig. 1. Nor is it unlikely that fuch a fituation of fones as is reprefented in fig. 2. wonld not unfrequently occur by accident to mafons. This could hardly fail of exciting a little attention and reflection. It was a pretty obvious reflection, that the ftones A and C, by overhanging, leaned againt the intermediate fone \mathbf{B}, and gave it fome fupport, and that B cannot get down without thrufting afide A and C, or the piers which fupport them. 'This was an approach to the theory of an arch; and if this be combined with the obfervation of fig. 1 . we get the difpofition reprefented in fig. 3. having a perpendicular joint in the middle, and the principle of the arch is completed. Obferve that this is quite different from the principle of the arrangement in fig. 2. In that figure the ftones act as wedges, and one camot get down without thrufting the reft afide; the fame principle obtains in fig. 4. confifting of five arch Iones; but in fig. 3 . the ftones B and C fupport each other by their mutual preffure (independent of their own weight), arifing from the tendency of each lateral pair to fall outwards from the pier. This is the principle of the arch, and woild fupport the key-ltone of fig. 4 . although each of its joints were perpendicular, by rea. fon of the great friction arifing from the horizontal thruft exerted by the adjoining tlones.

This was a moft important difcovery in the art of building; for now a building of any width may be roofed with fone.

We are difpofed to give the Greeks the merit of this difcovery; for we obferve arches in the moft ancient buildings of Greece, fuch as the temple of the fun at Athens, and of Apollo at Didymos; not indeed as roofs to any apartment, nor as parts of the ornamental defign, but concealed in the walls, covering drains or other neceffary openings; and we have not found any real arches in any monuments of ancient Perfia or E. gypt. Sir John Chardin fpeaks of numerous and extenfive fubterranean paffages at Tchilminar, built of the moft exquifite mafonry, the joints fo exact, and the ftones fo beautifully dreffed, that they look like one continued piece of :polifhed marble : but he nowhere
fays that they are arched; a circumfance which we think he would nint have omitted-no arelied door or uindow is to be feen. Indeed one of the tombs is faid to be arch-roofed, but it is all of one folid rock. No trace of an arch is to be feen in the ruins of ancient Egypt; even a wide room is covered with a fingle block of fone. In the pyramids, indeed, there are two gralleries, whofe roofs condifl of many pieces; but their conftruction puts it beyond doubt that the builder did not know what an arch was: for it is cuvered in the manner reprefented in fig. 5. where cvery projecting piece is more than balanced behind, fo that the whole awkward mafs could have food on two pillars. 'The Grecks therefore feem entitled to the honour of the invention. The arched dome, however, feemsto have arifen in Etruria, and originated in all probability from the employment of the augurs, whofe bufneefs it was to obferve the flight of birds. Their flations for this purpole were templit, fo called a templando, "on the fummits of hills." "ro fhelter fuch a perfon from the weather, and at the fame time allow him a full profpect of the country around him, no building was fo proper as a dome fet on columns; which accordingly is the figure of a temple in the moft ancient monuments of that country. We do not recollect a building of this kind in Greece except that called the Lantbern of Demoflbenes, which is of very late date, whereas they abounded in Italy. In the later monuments and coins of Italy or of Rome, we commonly find the Etrufcan dome and the Greeian temple combined; and the famous pantheon was of this form, even in its moft ancient fate.

It does not appear that the arch was confidered as a part of the ornamentrl architecture of the Greeks during the time of their independency. It is even doubtful whether it was employed in roofing their temples. In none of the ancient buildings where the roof is gone, ean there be leen any rubbifh of the vanlt, or mark of the fpring of the arch. It is not unfrequent, however, after the Roman conquefts, and may be feen in Athens, Delos, Palmyra, Balbek, and other places. It is very frequent in the magnificent buildings of Rume; fuch as the Colifeum, the baths of Dioclefian, and the triumphal arches, where its form is evidently made the object of attention. But its chief employment was in bridges and aqueducts; and it is in thofe works that its immenfe utility is the moft confpicuous: For by this happy contrivance a caual or a road may be carried acrofs any ftream, where it would be almoft impofilible to crect piers fufficiently near to each other for carrying lintels. Arches have becal executed 130 feet wide, and their execution demonftrates that they maj be made four times as wide.

As fuch ftupendous arches are the greateft perform- Difficulty ances of the mafonic art, fo they are the noft difficul: of contruca and delicate. When we reflect on the immenfe quan- ting it. tity of materials thus fufpended in the air, and compare this with the fmall cohefion which the firmeft cement can give to a building, we flall be convinced that it is not by the force of the cement that they are kept together: they fand faft only in confequence ot the proper balance of all their parts. Therefore, in order to erect them with a well-founded confidence of their durability, this balance fhould be well underftood and judiciounly employed. We doubt not but that this was underfood in fome degree by the engineers of antiqui-

A R C $[16] \quad$ A R C

stech ty ; but they have left us none of their knowledire.

They mult have had a great deal of mechanical know.

11
3hill an 1 mylte-ies of the Dio. ny fiacs. ledge befure they could erect the magnificent and beautiful buildings whofe ruins ftill enchant the world ; but they kept it among themfelves. We know that the Diony fiacs of Ionia were a great corporation of arcliitects and engineers, who undertook, and even monopolized, the building of temples, Itadiums, and theatres, precifely as the fratemity of mafons in the middle ages monopolized the building of cathedrals and conventual churches. Indeed the Dionyfiacs refembled the myftical fraternity now called free mafons in many important particulars. They allowed no Itrangers to interfere in their employment; they recognifed each other by figns and tokens; they profeffed certain myfterious doctrines, under the tuition and tutelage of Bacchus, to whom they built a magniticent temple at Teos, where they celebrated his mytteries as folemn feltivals; and they called all other men profane, becaufe not adinitted to thefe riyfteries. But their chief mylteries and moft important fecrets feem tu he their mechanical and mathematical feiences, or all that academical knowledge which forms the regular education of a civil engineer. We know that the temples of the gods and the theatres required an immenfe apparatus of machinery for the celebration of fome of their myfteries; and that the Dionyliacs contracked for thofe jubs, even at far diftant places, where they had not the privilege of building the edifice which was to contain them. This is the molt likely way of explaining the very fmall quantity of me. clanical knowledge that is to be met with in the writings of the ancients. Even Vitruvius does not appear to have been of the fraternity, and feaks of the Greek architects in terms of refpect next to veneration. The Collegium Murariorum, or incorporation of mafoas at Rome, does not feen to have thared the fecrets of the Iz Dionyfiacs.

The art of buiding arches un. derfonod in the rniddie ages

The art of building arches has been moft affiduoufly cultivated by the affociated builders of the middle ages of the Chriftian church, both Saracens and Chriftians, and they feem to have indulged in it with fondnefs: they multiplied and combined arelies without end, placing them in every poffible fituation.

Having fudied this branch of the art of building with fo much attention, they were able to erect the moft magnificent buildings with materials which a 13 Greek or Ruman architect could have made little or Berter than no ufe of. There is infinitely more fcientific fikill difby the played in a Gothic cathedral than in all the buildings Gomans. of Greece and Rome. Indeed thefe laft exhibit very little knowledge of the mutual balance of arches, and are full of grofs blunders in this refpect; nor could they have refifted the thuck of time fo long, had they not been almoft folid maffes of fone, with no more cai4 vity than was indifpenfably neceffary.
Defect of Anthemius and Ifidorus, whom the Emperor Jutithe chur h nian had felected as the molt eminent architects of of St Sophia Grecce for building the celebrated church of St Sophia
leen the magnificent vaultings of the temple of Mars thie Avenger, and the temple of Peace at Rume, the thonts of which are withftood by two maffes of folid wall, which join the fide walls of the temple at right angles, and extend fidewife to a great diftance. It was evident that the walls of the temple could not yield to the preffure of the vaulting without pulhing thefe immeare buttreffes along their foundations. He therefore placed four buttrefles to aid his piers. They are almoll folid maffes of ftone, extending at leaft 9 n feet from the piers to the north and to the fouth, forming as it were the fide walls of the crofs. They effectually fecured them from the thrufts of the two great arches of the nave which fupport the dome; but there was no fuch pro. vifion againft the puth of the great north and fouth arches. Anthemius trufted for this to the half dome, which covered the femicircular eaft end of the church, and uccupied the whole ealtern arch of the great dome. But when the dome was finifted, and had ftood a few months, it pufhed the two eaftern piers with their buttreffes from the perpendicular, making them lean to the ealtward, and the dome and half dome fell in. Ifidorus, who fucceeded to the charge on the death of Anthemius, ftrengthened the piers on the eaft fide, by filling up fome hollows, and again raifed the dome. But things gave way before it was clofed; and while they were building in one part it was falling in in another. The pillars and walls of the eaftern femicircular end were much fhattered by this time. Ifidorus fecing that they could give no refiftance to the pull which was fo evideatly directed that way, erected fome clumfy buttreffes on the eaft wall of the fquare which furrounded the whole Greek crofs, and was roofed in with it, forming a fort of cloifter round the whole. Thele buttreffes, fpanning over this cloifter, leaned againft the piers of the dome, and thus oppofed the thrufts of the great north and fouth arches. The dome was now turned for the third time, and many contrivances were adopted for making it extremely light. It was made offenfively flat ; and, except the ribs, it was roofed with pumice fone; but, notwithftanding thefe precautions, the arches fettled fo as to alarm the architects, and they made all fure by filling up the whole from top to bottom with arcades in three tlories. 'i'he loweft arcade was very lofty, fupported by four noble marble columns, and thus preferved, in fome meafure, the church in the form of a Greek crofs. The ftory above formed a gallery for the women, and had fix columns in front, fo that they did not bear fair on thofe below. The third ftory was a dead wall filling up the arch, and pierced with three rows of fmall ill-fhaped windows. In this unworkmanlike fhape it has tood till now, and is the oldefl church in the world; but it is an ugly mifhapen mafs, more refembling an overgrown potter's kiln, furrounded with furnaces pieced and patched, than a magnificent temple. We have been thus particular in our account of it, becaufe this hiftory of the building fhows that the ancient architects had acquired no diltinct notions of the action of arches. Almolt any mafon of our time would know, that as the fouth arch would puin the pier to the eaftward, while the eaft arch purhed it to the fouthward, the buttrefs which was to withdand thefe thruits mult not be placed on the fouth fide of the pier, but on the fouth-eall fide, or that there mult be an eaftern as well Such as ar as a fouthern buttrels. No fuch blunders are to be feen in a Goth

A R C $\quad\left[\begin{array}{lll}{[7]} & A R C\end{array}\right.$

Arcls. in a Gothle eathedral. Some of them appear, to a carelefs fpectator, to be very maffive and clumiy; but when judiciounly examined, they will be found very bold and light, being pierced in every direction by arcades, and the walls are divided into cells like a honeycomb, fo that they are very ftiff, while they are very light.

About the middle, or rather towards the end, of laft century, when the Newtonian mathenatics opened the road to true mechanical fcience, the conftruction of archesengroffed the attention of the firlt mathematicians. r Hooke's The firft hint of a principle that we have met with is principle of Dr Hooke's affertion, that the figure into which a chain or rope, perfectly flexible, will arrange itfelf when fufpended from two hooks, is, when inverted, the proper form for an arch compored of fones of uniform weight. This he affirmed on the fame principle which is made ufe of in the Encyclopædia Britamica in the article Roof, § 25. viz, that the figure which a flexible feftoon of heavy budies alfumes, when fufpended from two points, is, when inverted, the proper form for an arch of the fame bodies, touching each other in the fame points; becaufe the forces with which they mutually prefs on each other in this laft cafe, are equal and oppofite to the forces with which they pull at each other in the cafe of fufpenfion.

This principle is Atrictly juft, and may be extended to every cafe which can be propofed. We recollect feeing it propofed, in very general terms, in the St James's Chronicle in $\mathbf{1 7 5 9}$, when plans were forming for Blackfriar's Bridge in London; and fince it is perhaps equal, in practical utility, to the moft elaborate inveftigations of the mathematicians, our readers will not be difpleafed with a more particular account of it in this place.

Let ABC (fig. 6.) be a parcel of magnets of any fize and fhape, and let us fuppofe that they adhere with great force by any points of contad. They will compore fuch a flexible feftoon as we have been fpeaking of, if fufpended from the points A and C. If this figure be inverted, preferving the fame points of contact, they will remain in equilibrio. It will indeed be that kind of equilibrium which will admit of no difturbance, and which may be called a tottering equilibrium. If the form be altered in the fmalleft degree, by varying the points of contact (which indeed are puints in the figure of equililration), the magnets will no more recover their former polition than a needle, which we had made to ftand on its point, will regain its perpendicular pofition after it has been difturbed.

But if we fuppofe planes $d e, f g$, bi, Sxc. drawn, that the points of mutual contact a, b, c, each bifecting the angle formed by the lines that unite the adjoining contacts (f g, for example, bifecting the angle formed by $a b, b c)$, and if we fuppofe that the pieces are changed for others of the fame weights, but having flat fides, which meet in the planes $d_{c}, f g, b i, \& c$. it is evident that we fhall have an arch of equilibration, and that the arch will have fome flability, or will bear a little change of form without tumbling down: for it is plain that the equilibrium of the original feftoon obtained only in the points a, b, c, of contact, where the preffures were perpendicular to the touching furfaces; therefore if the curve a, b, c, ftill paffes through the touching furfaces perpendicularly, the conditions that are required for equilibrium ftill obtain. The cafe is quite fimilar to that of the ftability of a body relting on a horizontal

Suppl. Vol. I. Part I.
plane. If the perpendicular through the centre of gra. vity falls within the bafe of the bbdy, it will not only Itand, but will require fome force to pufh it over. In the original felloon, if a fmall weight be added in any part, it will change the form of the curve of equilibra. tion a little, by changing the points of mutual contact. This new curve will gradually feparate from the former curve as it recedes from A or C. In like manner, when the feitoon is fet up as an arch, if a fmall weight be laid on any part of it, it will bring the whole to the ground, becaufe the fhifting of the points of contact. will be juft the contrary to what it fhould be to fuit the new curve of equilibration. But if the fame weight be laid on the fame part of the arch now conftructed with flat joints, it will be fuftained, if the new curve of equilibration ftill paffes through the touching furfaces.

Thefe conclufions, which are very ubviounly deducible from the principle of the fefloon, thew us, without any further difcuffion, that the longer the joints are, the greater will be the ftability of the arch, or that it will require a greater force to break it down. Therefore it is of the greateft importance to have the arch ftones as long as economy will permit ; and this was the great ufe of the ribs and other apparent ornaments in the Gothic architeeture. The great projections of thofe ribs augmented their ftiffnefs, and enabled them to fupport the unadorned copartments of the roof, compofed of very fmall Itones, feldom above fix inches thick. Many old bridges are ftill remaining, which are frengthened in the fame way by ribs.

Having thus explained, in a very familiar manner, the itability of an arch, we proceed to give the fame popular account of the general application of the principle.

Suppofe it to be required to afcertain the form of an And ap. arch which fhall have the fpan AB (fig. 7.), and the plied. height F8, and which hall have a road-way of the dimenfions $C D E$ above it. Let the figure ACDEB be inverted, fo as to form a figure $A \subset d e B$. Let a chain of uniform thicknefs be fufpended from the points A and B, and let it be of fuch a length that its lower point will hang at, or rather a little below, f, correfponding to F . Divide AB into a number of equal parts, in the points $1,2,3,\{x c$. and draw vertical lines, cutting the chain in the correfponding points $1,2,3$, \&c. Now take pieces of another chain, and hang them on at the points $1,2,3, \& c$. of the chain Af B. 'This will alter the form of the curve. Cut or trim thefe pieces of chain, till their lower ends all coincide with the inverted road-way $c d e$. The greater lengths that are hung on in the vicinity of A and B will pull down thefe points of the chain, and caufe the middle point f (which is lefs loaded) to rife a little, and will bring it near to its proper height.

It is plain that this procefs will produce an arch of perfect equilibration; but fome farther confiderations are neceffary for making it exactly fuit our purpofe. It is an arch of equilibration for a bridge, that is fo luaded that the weight of the arch-ftones is to the weight of the matter with which the haunches and crown are loaded, as the weight of the chain $\mathrm{A} f \mathrm{~B}$ is to the fum of the weights of all the little bits of chaiu very nearly. But this proportion is not known beforehand ; we muft therefore proceed in the following manner: Adapt to the curve produced in this way a thick-

$\mathrm{A} R \mathrm{C} \quad\left[\begin{array}{lll}{[18}\end{array}\right] \quad \mathrm{A} R \mathrm{C}$

Arch. nefsof thearch-flones as great as are thought fufficient to enfure flability; then compute the weight of the arch ftones, and the weight of the gravcl or rubhifh with which the haunches are to be filled up to the road-way. If the proportion of thefe two weights be the fame with the proportion of the weights of chain, we may reft fatisfied with the curve now found; but if different, we can eafily ealculate how much muit be added equal to, or taken from, each appended bit of ehain, in order to make the two proportions equal. Having altered the appended pieces aceordingly, we fhall get a new curve, which may perhaps require a very finall trimming of the bits of chain to make them fit the road-way. 'This curve will be infinitely near to the curve wanted.

We have pratifed this method for an arch of 63 feet fpan and 23 feet height, the arch-ftones of which were only two feet nine inches long. It was to be loaded with gravel and fhivers. We made a previons computation, on the fuppofition that the arch was to be nearly elliptical. The diftance between the points 1,2,3, \&ce. were adjufted, fo as to determine the proportion of the weights of chain agrceable to the fuppo. fition. The surve differed confiderably from an ellipfe, making a confiderable angle with the vertieles at the fpring of the areh. The real proportion of the weights of chain, when all was trimmed fo as to fuit the roadway, was confiderably different from what was expected. It was adjulted. The adjuftment made very little change in the curve. It would not have changed it two inches in any part of the real arch. When the procefs was completed, we contructed the curve mathematically. It did not differ fenfibly from this meehanical confruction. This was very agreeable information ; for it fhewed us that the firft curve, formed by about two hours labour, on a fuppofition confiderably different from the truth, would liave been fufficiently exact for the purpofe, being in no place three inches from the accurate curve, and therefore far within the joints of the intended areh-flones. Therefore this procefs, which any intelligent mafon, though ignorant of mathematieal fcience, may go through with little troulle, will give a very proper form for an arch fub.
more in detail. This theory aims at fuch an adjuft. ment of the pofition of the arel-ftones to the load on every part of the arcls, that all thall remain in cquilibrio, although the joints be perfectly polifhed, and with Tricoy out any cerment. The whole may be reduced to two this riainproblems. The firft is to determine the vertical pref-ciple. fure or load on every point of a line of a given form, which will put that line in equilibrio. The fecond is to determine the form of a curve which flall loe in equilibrio when loaded in its different points, aceording to any given law.

The whole theory is deducible from $\oint 27$. of the artiele Roof. The fundamental propustion in that fection fates the propurtions bet ween the various preflures or thrufts which are exerted at the angles of an afiemblage of beams or other pieces of folid heavy matter, freely noveable about thofe angles, as fo many joints, but retaining their pofition by the equilibrium of thofe prefures. It is there demonflrated, "that the thruft at any angle, if ellimated in a horizontal direction, is the fame lhroughout, and may he reprefented by any horizontalline BT̆, fig.8. (Roofs, fig. 10 Pl.CCCCXL); and that if a vertical line QTS be drawn through T, the thruf exerted at any angle D by the piece CD , in its own direction, will then be reprefented by BR, drawn parallel to CD ; and in like manner, that the thruft in the direction ED is reprefented by BS, \&.e.; and, lafly, that the vertical thruits or loads, at each angle $\mathrm{B}, \mathrm{C}, \mathrm{D}$, by which all thefe others preflures are excited, are reprefented by the portions QC, CR, RS, of the vertical intercepted by thofe lines; that is, all thefe preflures are to the uniform horizontal thruit as the lines which reprefent them are to BT. The horizontal thruft, therefore, is a very proper unit, with which we may compare all the others. Its magnitude is eafily deduced from the fame propofition; for QS is the fum of all the vertical preflures of the angles, and therefore reprefents the weight of the whole affemblage. Therefore as QS is to BT, fo is the weight of the whole to the horizontal thruft.

To accommodate this theory to the conftruction of accomma curvilineal arch vault, let us firt fuppofe the vault to datcd to the be polygonal, compofed of the cords of the elementary cion of an arches. Let AVE (fig. 9.) be a curvilineal arch, of arch vaul, which V is the vertex, and $V X$ the vertical axis, which we fhall confider as the axis or abfeiffa of the curve, while any horizontal line, fueh as HK, is an ordinate to the curve. A bout any point C of the curve as a centre deferibe a circle $B L D$, cuttirg the curve in B and D. Draw the equal cords CB, CD. Draw alfo the horizontal line CF, cutting the circle in F . Deferibe a circle BCDQ paffing through $\mathrm{B}, \mathrm{C}, \mathrm{D}$. Its centre O will let in a line COQ, which bilects the angle BCD ; and $\mathrm{C} d$, which tunches this circle in C , will bifect the angle $l \mathrm{C} d$, formed by the equal cords BC, CD. Draw CLP perpendicular to $c b$, and DP perpendieular to CD , meeting $C L$ in P. Throurh L draw the tangent GLM, meeting $C D$ in G, and the vertical line CM in M. Draw the tangent F a, cutting the cords BC, CD, in b and d, and the tangent to the circle BCDQ in c. Lafly, draw d N parallel to $b c$.

From what is demonitrated in § 27. of the article Roof, it appears, that if $B C, C D$ be two pieces of an equilibrated heavy polygon, and if CF reprefent the horizontal thruft in cvery angle of the polygon, $\mathrm{C} d$ and C 6 will feverally reprefent the thrufts exerted by the picces DC, BC, and that $b d$, or CN , will reprefent the sweight lying on the angle BCD , by which thofe thrufts are balanced.

As the reader may not have the article Roof at hand, this equilibrium may be recalled to his remembrance in the following manner: Produce $d \mathrm{C}$ to 0 , fo that Co may be cqual to $\mathrm{C} d$. Draw $b n$ to the vertical parallel to $d \mathrm{~B}$, and join $n o$. It is evident that $b n o \mathrm{C}$ is a parallclogram, and that $n \mathrm{C}(=b d)=\mathrm{CN}$. Now the thruf or fupport of the piece BC is exerted in the direction $C b$, while that of $D C$ is exerted in the direction Co. Thefe two thrufts are equivalent to the thrut in the diagonal C_{n}; and it is with this com. pound thruft that the load or vertical preffure CN is in immediate equilibrium.

Becaufe $\angle C L$, NCF, are right angles, and FCL is common to both, the angles $b \mathrm{CF}$ and MCL are cqual. Therefore the right angled triangles $\angle C F$ and MCL are fimilar. And fince CF is equal to CL, $c b$ is equal to CM. It is cvident that the triangles GCM and $d \mathrm{CN}$ are fimilar. Therefore $\mathrm{CG}: \mathrm{C} d=\mathrm{CM}: \mathrm{CN}$, $=\mathrm{C} b: \mathrm{CN}$. Therefore we have $\mathrm{CN}=\frac{\mathrm{C} b \times \mathrm{C} d}{\mathrm{CG}}$. But becaule CDP and CLG are right angles, and therefore equal, and the angle GCP is common to the two triangles GCL, PCD , and CD is equal to CL , we have CG equal to CP . Therefore $\mathrm{CN}=\frac{\mathrm{C} b \times \mathrm{C} d}{\mathrm{CP}}$. Alfo, fince CDP is a right angle, DP meets the diameter in Q, the oppofite point of the circumference, and the angle DQC is equal to $\mathrm{DC} d$, or $\mathrm{DC} b$ (hecaufe $b \mathrm{C} d$ is bifected by the tangent), that is, to PCQ (becaufe the right angles $b \mathrm{CP}, c \mathrm{DO}$ are equal, and $c \mathrm{DP}$ is common). Therefore PQ is equal to PC ; and if PO be drawn perpendicular to CO , it will bifect it, and O is the centre of the circle BCDDB .
Now let the points B and I) continually approach to C (by diminining the radius of the fmall circle), and ultimately coincide with it. It is evident that the circle $B C D Q$ is ultimately thie equicurve circle, and that PC ultimately coincides with OC, the radius of curvature: Alfo $\mathrm{C} b \times \mathrm{C} d$ becomes ultimately $\mathrm{C} c^{2}$. Therefore CN , the vertical load on any point of a curve of equilibration, is $=\frac{\mathrm{C} c^{2}}{\mathrm{Rad} \text {. Curv. }}$

It is farther evident, that CF is to $\mathrm{C} c$ as radius to the fecant of the elevation of the tangent above the horizon. Therefore we have the load on any point of the curve always proportional to $\frac{\text { Sec. }{ }^{2} \text { Elev. }}{\text { Rad. Curv. }}$

This load on every elementary arch of the wall is commonly a quantity of folid matter incumbent on that element of the curve, and prefing it vertically; and it may be conceived as made up of a number of heavy lines ftanding vertically on it. Thus, if the element E_{e} of the curve were lying horizontally, a little parallelogram REer Itanding perpendicularly on it, would reprefent its load. But as this element E_{e} has a floping pofition, it is plain that, in order to have the fame quantity of heary matter preffing it vertically, the height of the parallelogram muft be increafed till it meets in $\varepsilon \rho$, the line R_{f} drawn parallel to the tangent EG. It is evident that the angle RE_{ρ} is equal to the
angle AEG. Therefore we have $E R: E_{p}=$ Rad. : Sec. Elev.
If therefore the arch is kept in equilibrio by the vertical preflure of a wall, we mult have the height of the wall above any point proportional to $\frac{\text { Sec. }{ }^{3} \text { Elev. }}{\text { Rad. of Curv. }}$

Cor. I. If OS be drawn perpendicular to the verti- Corollarics. cal CS, CS will be half the vertical cord of the equicurve circle. 'The angle OCS is equal to $c \mathrm{CF}$, that is, to the angle of elevation. Therefore $1:$ Scc. Elev. $=C S: C O$, and the fecant of elevation may be expref. fed by $\frac{\mathrm{CO}}{\mathrm{CS}^{2}}$, and its cube by $\frac{\mathrm{CO}^{3}}{\mathrm{CS}^{3}}$. Thereforethe lacight. of wall is propertional to $\frac{\mathrm{CO}^{3}}{\mathrm{CS}^{3} \times \mathrm{CO}^{2}}$, or to $\frac{\mathrm{CO}^{2}}{\mathrm{CS}^{3}}$, or $\frac{\mathrm{CO}^{2}}{\mathrm{CS}^{2} \times \mathrm{CS}}$, or to $\frac{\text { Scc. }{ }^{2} \text { of Elev. }}{\text { Vcrt. Cord of Curv. }}$
Cor. II. If we make the arch $\mathrm{VC}=z$, the abfcifas $\mathrm{VH}=x$, the ordinate $\mathrm{HC}=y$, the radius of $\mathrm{fuli} \mathrm{CO}=r$, and the $\frac{1}{2}$ vertical cord $\mathrm{CS}=s$, the height of wall pref. fing on any point is proportional to $\frac{\dot{z}^{3}}{y^{3} r}$; or to $\frac{\dot{z}^{2}}{\dot{y}^{2} s}$, or $\frac{x^{2}+\dot{y}^{2}}{\dot{y}^{2} s}$. Therefore, when the equation of the curve is given, and the height of wall on any one point of it is alfo given, we can determine it for any other point : for the equation of the curve will always give us the relation of \dot{z}, \dot{x}, and \dot{y}, and the value of r or s. This may be illuftrated by an example or two. For this purpofe it will generally be moof convenient to affume the height above the vertex V for the unit of computation. The thicknefs of the arch at the crown is commonly determined by other circumilances. At the vertex the tangent to the arch is horizontal, and therefore the cube of the fecant is unity or 1 . Call the height of wall, at the crown, H , and let the radius of curvature in that point be R , and its half cord R (it being then coincident with the radius), and the height on any other point b. We have $\frac{1}{\mathrm{R}}: \frac{\dot{z}^{3}}{y^{3} r}=\mathrm{H}: b$, and $b=\mathrm{H} \times \frac{\dot{z}^{3}}{\dot{y}^{3}}$ $\times \frac{\mathrm{R}}{r}$. The other furmula gives $b=\mathrm{H} \times \frac{\dot{\partial}^{3}}{\dot{y}^{2}} \times \frac{\mathrm{R}}{s}$.

Examp. I. Suppofe the arch to be a legment of a lilutrated circle, as in fig. 10. where AE is the diameter, and O by exanthe centre. In this arch the curvature is the fame ples. throughout, or $\frac{R}{r}=1$. Therefore $b=H \times \frac{\dot{z}^{3}}{\dot{y}^{3}}$, or $=\mathrm{H} \times$ Cube Sec. Elev.
This gives a very fimple calculus. To the logarithm of H add thrice the logarithm of the fecant of elevation, The fum is the logarithm of b.

It gives alfo a very fimple conftruction. Draw the verticalCS, cutting the horizontal diameter in S. Draw ST, cutting the radius OC perpendicularly in T. Draw the horizontal line $\mathrm{T} z$, cutting the vertical in z. Join zo. Make $\mathrm{C} u=\mathrm{V} v$, and draw $u x$ parallel to zo. $\mathrm{C} c$ mult be made $=\mathrm{C} x$. The demonltration is evident.

It is very eafy to fee that if CV is an arch of 60°, and $V v$ is $\frac{7}{7}$ th of VC, the points v and c will be on a level ; for the fecant of $C V$ is twice CO , and therefore C_{c} is 8 times $\mathrm{V} v$, which is $\frac{\Gamma}{7}$ th of VH.

A $\mathrm{R} \quad \mathrm{C}$

The dotted line vigof is drawn according to this calculus or conftruction. It falls confiderably below the horizontal line in the neighbourhood of c; and then, paffing very obliquely chrough c, it rifes rapidly in an unmeafurable height, becaufe the vertical line through A is its antymptote. This mult evidently be the cafe with every cuive which fprings at right angles with a horizontal line.

It is plain that if η, V be greater, all the other ordinates of the curve $v g c f$, refling on the circumference AVE, will be greater in the fame proportion, and the curve will cut the horizontal line drawn through v in fome point nearer to v than c is. Hence it appears that a circular arch cammot be put in equilihrio by building on it itp to a horizontal line, whatever be its fpan, or whatever be the thickuefs at the crown. We have feen that when this thicknefs is only $\frac{1}{1 \pi}$ th of the radius, an arch of 120 degrees will be too much loaded at the flanks. This thicknefs is much too fmall for a bridge, being only $\left.\frac{1}{2}\right\}^{\frac{1}{3}}$ th of the fpan CM, whereas it frould have been almint double of this, to bear the inequalities of weight that may occafionally be on it. When the crown is made fill thinner, the outline is fill more depreffed before it rifes again. There is therefore a certain fpan, with a correfponding thicknefs at the crown, which will deviate leaft of all from a horizontal line. This is an arch of about 54 degrees, the thicknefs at the crown being ahout one-fourth of the fpan, which is extravagantly great. It appears in general, therefore, that the circle is not a curve fuited to the purpofes of a bridge or an arcade, which requires an outline nearly horizontal.

Examp.2. Let the curve be a parabola AVE (fig. II.), of which V is the vertex, and DG the directrix. Draw the dianeters DCF, GVN, the tangents CK, VP, and the ordinates VF and CN. It is well known that GV is to DC as VP^{2} to CK^{2}, or as CN^{2} to CK^{2}. Alfo 2 GV is the radius of the ofculating circle at V, and 2 DC is one-half of the vertical cord of the ofculating circle at C . Therefore $\mathrm{CN}^{2}: \mathrm{CK}^{2}$ (or $\dot{y}^{2}: \dot{z}^{2}$) $=\mathrm{R}: s$, and $s=\frac{\dot{z}^{2}}{\dot{y}^{2}} \mathrm{R}$. But $\mathrm{C} c$, or $b=\mathrm{H} \times \frac{\dot{z}^{2} \mathrm{R}}{y^{2} \mathrm{~S}}$. Therefore $h=H \times \frac{\dot{z}^{2}}{y^{2} \frac{z^{2}}{y^{2}} R},=H \times \frac{\dot{z}^{2} R}{z^{2} R},=H$. Therefore $\mathrm{C} c=v \mathrm{~V}$.

It follows from this inveftigation, that the back or extrados of a parabolic arch of equilibration muft be parallel to the arch or foffit itfelf; or that the thicknefs of the arch, eftimated in a vertical direction, mult be equal throughout ; or that the extrados is the fame parabola with the fofit or intrados.

We have felected thefe two examples merely for the fimplicity and perficunty of the folutions, which have been effected by means of elementary geometry only, inftead of employing the analytical value of the radius of the ofculatory circle, viz. $\frac{z^{3}}{y \dot{x}-x \ddot{y}}$, which would have involved us at leat in the elements of fecond fluxions. We have allo preferred fimplicity to elegance in the inveltigation, becaufe we wifh to infruct the practical engineet, who may not be a proficient in the higher mathematics.

The converfe of the problem, namely, to find the form of the arch when the figure of the back of it is given, is the moft ufual queftion of the two, at leatt in cafes which me mof cafes which are molt important and mint difficult. Of form of an thefe perhaps bridges are the clief. Here the neceffi-arch when ty of a road-way, of eafy and regular afcent, confines the figure us to an outline nearly horizontal, to which the curve ${ }_{i}$, given. of the arch mult be adapted. This is the moft difficult problem of the two; and we doubt whether it can be folved without emplnying infinite approximating feriefes intead of accurate values.

Let a ve (fig. 12.) be the intended outline or extradlos of the arch AVE , and let $q \mathrm{Q}$ be the common axis of both curves. From c and C , the correfponding points, draw the ordinates $c h, \mathrm{CH}$. Let the thicknels $v \mathrm{~V}$ at the top be a, the abfcifa $v b$ be $=\dot{u}$, and VH $=x$, and let the equal ordinates $c h, \mathrm{CH}$ be y, and the arch VC be z.

Then, by the general theorem, $c \mathrm{C}=\frac{z^{3}}{r y^{3}}, r$ being the radius of curvature. This, by the common rules, is $=\frac{\dot{z}^{3}}{\dot{y} \ddot{x}-x \ddot{y}}$. This gives us $c \mathrm{C} \doteqdot \frac{\dot{y} \ddot{x}-\dot{x} \ddot{y}}{y^{3}}$, or $=\frac{y \ddot{x}-\dot{x} y}{y^{3}} \times \mathrm{C}$; where C is a conftant quantity, found by taking the real value of $c \mathrm{C}$ in V , the vertex of the curve. But it is evident that it is allo $=a+\pi$
$-u$. Therefore $a+x-u=\frac{\dot{y} \ddot{x}-\dot{x} \ddot{y}}{y^{3}} \times \mathrm{C}^{\prime},=\frac{\mathrm{C}}{\dot{y}}$ \times fluxion of $\frac{x}{y}$.

If we now fubflitute the true value of u (which is given, becaufe the extradus is fuppofed to be of a known form), expreffed in terms of y, the refulting equation will contain nothing but x and y, with their firt and fecond fluxions, aud known quantities. From this equation the relation of x and y mult be found by fuchmethods as feem beft adapted to the equation of the extrados.

Fortunately the procefs is more fimple and ealy in the moft common and ufeful cafe than we fhould expect from this general rule. We mean the cafe where the extradus is a ftraight line, efpecially when this is horizontal. In this cafe u is equal to o.
Example. To find the form of the balanced arch AVE (fig. 13.), having the horizontal line $c v$ for its Plate 11 . extrados.

Keeping the fame notation, we have $u=0$, and therefore $a+x=\frac{\mathrm{C}}{y} \times$ fluxion of $\frac{x}{y}$.
Affume $\dot{y}=\frac{\dot{x}}{v}$; then $\frac{\dot{x}}{y}=v$, and $\frac{\mathrm{C}}{\dot{y}} \times$ fluxion of $\frac{\dot{x}}{\dot{y}}$, $=\frac{C v \dot{v}}{x}$, that is $a+x=\frac{C v \dot{v}}{\dot{x}}$. Therefore $a \dot{x}+x \dot{x}$ $=\mathrm{C} v \dot{v}$; and by taking the fluents, we have $2 a x+x^{2}$ $=C v^{2} ;$ and $v=\sqrt{\frac{2 a x+x^{2}}{C}}$. Confequently, $y=\frac{\sqrt{ } C \dot{x}}{\sqrt{2} a \times x^{2}}\left(\right.$ being $\left.=\frac{\dot{x}}{v}\right)$. Taking the fluent of this, we have $y=\downarrow \mathrm{C} \times \mathrm{L}\left(2 a x+2 x^{2}\right.$

$A \quad R \quad C \quad\left[\begin{array}{lll}2 I\end{array}\right] \quad A R C$

Arch. $+2 \sqrt{\left.2 a x+x^{2}\right)}$. But at the vertex, where $x=0$, we have $y=\sqrt{ } \mathrm{C} \times \mathrm{I} .(2 a)$. The corrected fluent is therefore $y=\sqrt{ } \mathrm{C} \times \mathrm{L} \frac{a+x+\sqrt{2 a x+x^{2}}}{2}$.

It only remains to find the constant quantity C. This we readily obtain by felecting forme point of the extrados where the values of x and y are given by par. ticular circumfances of the cafe. Thus, when the Span $2 s$ and height b of the arch are given, we have $s=\sqrt{ } \times \times \mathrm{L}\left(\frac{a+b+\sqrt{2 a b+b^{2}}}{a}\right)$, and confequently $\sqrt{ } C=\frac{s}{L\left(a+b+\sqrt{\frac{2 a b+b^{2}}{a}}\right)}$. Therefore the general value of $y=s \times \frac{\mathrm{L}\left(\frac{a+x+\sqrt{2 a x+x^{2}}}{a}\right)}{\mathrm{L}\left(\frac{a+b+\sqrt{2 a b+b^{2}}}{a}\right)}$ $=\frac{s}{\mathrm{~L} \frac{a+b+\sqrt{2 a b+b^{2}}}{a}} \times \mathrm{L} \frac{a+x+\sqrt{2 a x+x^{2}}}{a}$.

As an example of the ufe of this formula, we fubjoin a table calculated by Dr Hutton of Woolwich for an arch, the fran of which is 100 feet, and the height 40 ; which are nearly the dimenfions of the middle arch of Blackfriars Bridge in London.

y	x	y	x	y	x
0	6,005	21	10,381	36	21,774
2	6,035	22	10,858	37	22,948
4	6,144	23	11,368	38	24,190
6	6,324	24	11,911	39	25,505
8	6,580	25	12,489	40	26,894
10	6,914	26	13,106	41	28,364
12	$7,3,30$	27	13,761	42	29,919
13	7,571	28	14,457	43	31,563
14	7,834	29	15,196	44	33,299
15	8,120	30	15,980	45	35,135
16	8,430	31	16,811	46	37,075
17	8,766	32	17,693	47	39,126
18	9,168	33	18,627	48	41,293
19	9,517	34	19,617	49	43,581
20	9,934	35	20,665	50	46,000

The figure for this proposition is exactly drawn according to there dimenfions, that the reader may judge of it as an object of fight. It is by no means deficient in gracefuinefs, and is abundantly roomy for the paffage of craft ; fo that no objection can be offered againft its being adopted on account of its mechanical excellency.

The reader will perhaps be furprifed thar we have made no mention of the celebrated Catenarian curve, which is commonly fid to be the beft form for an arch; but a little reflection will convince him, that although it is the only form for an arch confilting of ftones of equal weight, and touching each other only in fingle points, it cannot fuit an arch which mut be filled up in the haunches, in order to form a road-way. He will -be more furprifed to hear, after this, that there is a certain thickness at the crown, which will put the Ca tenaria in equilibrio, even with a horizontal road-way;
but this thicknefs is fo great as to make it unfit for a bridge, being fuck that the preffure at the vertex is

Arch, equal to the horizontal thruft. This would have been about 37 feet in the middle arch of Blackfriars Bridge. The only fituation, therefore, in which the Catenarian form would be proper, is an arcade carrying a height of dead wall; but in this fituation it would be very un. graceful, Without troubling the reader with the inveftigation, it is fufficient to inform him that in a Ca. tenarian arch of equilibration the abfciffa VH is to the abfciffa $v b$ in the constant ratio of the horizontal thrust to its excels above the preffure on the vertex.

This much will ferve, we hope, to give the reader a inutility of clear notion of this celebrated theory of the equilibrium the cumof arches, one of the mot delicate and important apply- mon theory cations of mathematical faience. Volumes have been oration. written on the fubject, and it fill occupies the atendion of mechanicians. But we beg leave to fay, with great deference to the eminent perfons who have profecured this theory, that their fpeculations have been of little fervice, and are little attended to by the practitioner. Nay, we may add, that Sir Chriftopher iVren, perhaps the molt accomplithed architect that Europe has feed, feems to have thought it of little value : for, among the fragments which have been preferved of his Studies, there are to be feed forme iniperfect difiertations on this very fubject, in which he takes no notice of this theory, and confiders the balance of arches in quite auother way. Thefe are collected by the author of the account of Sir Chriftopher Wren's family. This man's great fagacity, and his great experience in building, and, fill more his experience in the repairs of old and crazy fabrics, had flews him many things very inconfiftent with this theory, which appears fo specious and fafe: The general facts which occur in the failure of old arches are highly inftructive, and deferve the mot carefula attention of the engineer; for it is in this fate that their defects, and the process of nature in their deftructimon, are molt diffincly feed. We venture to affirm, that a very great majority of there facts are irreconcileable to the theory. The way in which circular arches commonly fail, is by the finking of the crown and the rising of the flanks. It will be found by calculation, that in molt of the cafes it ought to have been jut the contrary. But the cleareft proof is, that arches very rarely fail where their load differs mot remarkably from that which this theory allows. Semicircular arches have flood the power of ages, as may be feed in the bridges of ancient Rome, and in the numerous arcades which the ancient inhabitants have erected. Now all arches which faring perpendicularly from the horizontal line, require, by this theory, a load of infinite height ; and, even to a confiderable diftance from the fringing of the arch, the load neceffary for the theoretical equilibrim is many times greater than what is ever laid on thole parts; yet a failure in the immediate neighbourhood of the firing of an arch is a moil rare phenomenon, if it ever was observed. Here is a mot remarkable deviation from the theory; for, as is already obferved, the load is frequently not the fourth part of what the theory requires.

Many other facts might be adduced which thew great deviations from the legitimate refults from the theory. We hope to be excused, therefore, by the mathematiclans for doubting of the juftnefs of this theory. We

A R G [22] A R C

Arch. do not think it erroneous, but defective, leaving out circumfances which we apprehend to be of great imfortance; and we imanine that the defects of the theory have arilen from the very anxiety of the mechanicians to make it perfect. 'The arch-itones are fuppofed to be perfectly fmooth or polithed, and not to be connect. ed by any cement, and therefore to fuitain each other merely by the equilibium of their vertical preffure. The thcory enfures this equilibrium, and this only, leaving unnoticed any other caufes of mutual action.

The authors who have written on the fubject fay exprefsly, that an atch which thus fuftains itfelf muft be ftronger than another which would not ; becaufe when, in imagination, we fuppofe both to acquire connection by cement, the firft preferses the influence of this connection unimpaired; whereas in the other, part of the cohefion is walted in counteracting the tendency of fome parts to break off from the reft by their want of equilibrium. This is a very fpecious argument, and would be juft, if the forces which are mutually exerted between the parts of the arch in its fettled ftate were merely vertical preflures, or, where different, were inconfiderable in comparifon with thofe which are really attended to in the conftruction.

But this is by no means the cafe. The forms which the ufes for which arches are erected oblige us to adopt, and the loads laid on the different points of the arch, frequently deviate conliderably from what are neeeffary for the cquilibrium of vertical preflures. The varying load on a bridge, when a great wagon paffes along it, fometimes bears a very fenfible proportion to the weight of that point of the arch on which it refts. It is even very doubtful whether the preffures which are occafioned by the weight of the ftuff employed for filling up the flanks really act in a vertical direction, and in the proportion which is fuppofed. We are pretty certain that this is not the cafe with fand, gravel, fat mould, and many fubftances in very general ufe for this purpofe. When this is the cafe, the preffures fuftained by the different parts of the arch are often very inconfiftent with the theory-a part of the arch is overloaded, and tends to fall in, but is prevented by the cement. This part of the arch therefore acts on the remoter parts by the intervention of the parts between, employing thofe intermediate parts as a kind of levers to break the arch in a remote part, juft as a lintel would be broken. We apprehend that a mathematician would be puzzled how to explain the flability of an arch cut out of a folid and uniform mafs of rock. His theory confiders the mutual thrufts of the arch ftones as in the direction of the tangents to the arch. Why fo? becaufe he fuppofes that all his polifhed joints are perpendicular to thofe tangents. But in the prefent cafe he has no exifting joints; and there feems to be nothing to direct his imagination in the affumption of joints, which, however, are abfolutely neceflary for employing his theory, becaufe, without a fuppofition of this kind, there feems no conceiving any mutual abutment of the arch ftones. Afk a common, but intelligent, mafon what notion he forms of fuch an arch? We apprehend that He will confider it as no arch, but as a lintel, which may be broken like a wooden lintel, and which refifts entirely by its cohefron. He will not readily conceive that, by cutting the under fide of a fone lintel into an arched form, and thus taking away more than half of
its fulffanee, he has changed its nature of a lintel, ol given it any additional ftrength. Nor would there be any change made in the way in which fuch a mafs of ftone would refift heing broken down, if nothing were done but forming the under fide into an arch. If the lintel he folaid on the piers that it can be broken without its parts purhing the piers afide (which will be the cafe if it lies on the piers with horizontal joints), it will break like any other lintel; but if the joints are directed downwards, and converging to a point within the arch, the broken ftone (fuppofe it broken at the crowa by an overload in that part) cannot be prefled down without forcing the piers outwards. Now, in this mode of acting, the mind cannot trace any thing of the ftatical equilibrium that-we have proceeded on in the foregoing theory. The two parts of the broken lintel feem to pufh the piers afide in the fame manner that two rafters pulh outwards the walls of a houle, when their feet are not held together by a tie-beam. If the piers cannot be pufhed afide (as when the arch abuts on two folid rocks), nothing can prefs down the crowr which does not crufh the fone.

This conclufion will be ftrietly true if the arch is of fuch a form that a ftraight line drawn from the crown to the pier lies wholly within the folid mafonry. Thus if the vault confift of two Atraight fones, as in fig. r. or if it confilt of feveral fones, as in fig. 14. difpofed in two Atraight lines, no weight laid on the crown can deftroy it in any other way but by cruming it to pow. der.

But when itraight lines cannot be drawn from the When it overloaded part to the firm abutments through the fo. to be calle lid mafonry, and when the cohefion of the parts is not of the bui able to withltand the tranfverfe ftrains, we muft call the der. principles of equilibrium to our aid; and in order to employ them with Cafety, we nuft confider how they are modified by the excitement of the cohering forces.

The coliefion of the ftones with each other by cement or otherwife, has, in almof every fituation, a bad effect. It enables an overload at the crown to break the arch near the haunches, caufing thofe parts to rile, and then to fpread outwards, juft as a Manfarde or Kirb roof would do if the trufs beam which connects the heads of the lower rafters were fawn through. This can be prevented only by loading that part more than is requifite for equilibrium. It would be prudent to do this to a certain degree, becaufe it is by this cohefion that the crown always becomes the weakelt part of the arch, and fuffers more by any occafional load.

We expect that it will be faid in anfwer to all this, that the cohefion given by the ftrongeft cement that we can employ, nay, the cohefion of the ftone itfelf, is a mere nothing in comparifon with the enormous thrults that are in a flate of continual exertion in the different parts of an arch. This is very true; but there is anuther force which produces the fame effect, and which increafes nearly in the proportion that thofe thruts increafe, becaufe it arifes from them. This is the friction of the ftones on each other. In dry freettone this friction confiderably exceeds one half of the mutual preffure. The reflecting reader will fee that this produces the fame effect, in the cafe under confideration, that cohefion would do; for while the arch is in the act of failing, the mutual preffure of the arch-ftones is acting with full force, and thus produces a friction more than adequate

A R C $\left[\begin{array}{lll}23\end{array}\right] \quad$ A R C

adequate to all the effects we have been fpeaking of.

When thefe circumftances are confidered, we imagine that it will appear that an arch, when expofed to a great overload on the crown (or indeed on any part), divides, of itfelf, into a number of parts, each of which contains as many arch-ftones as can be pierced (fo to fpeak) by one fraight line, and that it may then be confidered as nearly in the fame fituation with a polygonal arch of long ftones butting on each other like fo many beams in a Norman roof (fee Roof, n° 49.), but without their braces and ties. It tends to break at all thofe angles; and it is not fufficiently refifted there, becaufe the materials with which the flanks are filled up have fo little colhefion, that the angle feels no load except what is immediately above it; whereas it fhould be immerliately loaded with all the weight which is diffufed over the adjoining fide of the polygon. This will be the cafe, even though the curvilineal arch be perfectly equilibrated. We recollect fome circumftances in the failure of a confiderable arch, which may be worth mentioning. It had been built of an exceedingly foft and friable ftone, and the arch ftones were too thort. About a fortnight before it fell, chips were obferved to be dropping off from the joints of the archftones about ten feet on each fide of the middle, and alfo from another place on one fide of the arch, about twent: fect from its middle. The mafons in the neighbourhood prognofticated its fpeedy downfal, and faid that it would feparate in thofe places where the chips were breaking off. At length it fell; but it firft fplit in the middle, and about 15 or 16 feet on each fidc, and alfo at the very fpringing of the arch. Immediately before the fall a thivering or crackling noife was heard, and a great many chips dropped down from the middle between the two places from whence they had dropped a fortnight before. The joints opened above at thofe new places above two inches, and in the middle of the arch the joints opened below, and in about five minutes after this the whole came down. Even this movement was plainly diftinguifhable into two parts. The crown funk a little, and the haunches rofe very fenfibly, and in this ftate it hung for about half a minute. The arch ftones of the crown were hanging by their upper corners. When thefe fplintered off, the whole fell down.

We apprehend that the procedure of nature was fomewhat in this manner. Straight lines can be drawn within the arch-ftones from A (fig. 15.) to B and D, and from thofe points to C and E. Each of the portions ED, DA, AB, BC, refift as if they were of one ftone, compoling a polygonal vault EDABC. When this is overloaded at A, A can defcend in no other way than by puthing the angles B and D outwards, caufing the portions $B C, D E$, to turn round C and E. This motion mult raife the points B and D , and caufe the arch-ftones to prefs on each other at their inner joints b and d. This produced the copious fplintering at thofe joints immediately preceding the total downfal. The fplintering which happened a fortnight before arofe from this circumftance, that the lines $A B$ and $A D$, along which the preffure of the overload was propagated, were tangents to the foffit of the arch in the points F, H, and G, and therefore the ftrain lay all on thofe corners of the arch-fones, and fplintered a little
from off them till the whole took a firmer bed. The fubfequent phenomena are evident confequences of this diftribution and modification of prelfure, and can liardly be explained in any other way; at leaft no: on the theoretical principles already fot forth: for in this bridge the loads at B and D were very confderably greater than what the equilibrium required; and we think that the firt noferved fplintering at H, F, and G, was molt inftuctive, thowing that thiere was an cx. traordinary preffure at the inner joints in thofe places, which cannot be explained by the ufual theory.

Not fatisfied with this fingle obfervation, after this way of explaining it occurred to us, and not being able to find any fimilar fact on record, the writer of this article got fome fmall models of arches executed in chalk, and fubjected them to many trials, in hopes of collecting fome general laws of the internal workings of arch. es which finally produce their downfal. He had the pleafure of obferving the above mentioned circumftances take place very regularly and uniformly, when he overloaded the models at A. The arch always broke at fome place B confiderably beyond another point F, where the firt chipping had been obferved. This is a method of trial that deferves the attention both of the fpeculatif and the practitioner.

If thefe reftections are any thing like a juft account of the procedure of nature in the failure of an arch, it is evident that the ingenious mathematical theory of equilibrated arches is of little value to the engineer. We ventured to fay as much already, and we refted a good deal on the authority of Sir Chriftopher Wren. He was a good mathematician, and delighted.in the application of this fecence to the arts. He was a celebrated architedt; and his reports on the various works committed to his charge, fhow that he was in the continual habit of making this application. Several fpecimens remain of his own methods of applying them. The roof of the theatre of Oxford, the roof of the cupola of St Paul's, and in particular the mould on which he turned the inner dome of that cathedral, are proofs of his having ftudied this theory moll attentively. He flourifhed at the very time that it occupied the attention of the greatelt mechanicians of Europe; but there is nothing to be found among his papers which fhows that he had paid much regard to it. On the contrary, when he has occafion to deliver his opinion for the inftruction of others, and to explain to the Dean and Chapter of Wefminfter his operations in repairing that collegiate church, this great architect confiders an arch juft as a fenfible and fagacious mafon would do, and very much in the way that we have juft now been treat ing it: (See Account of the Family of Wren, p. 356, \&c.) Supported therefore by fuch authority, we would recommend this way of confidering an arch to the ftudy of the mathematician; and we would defire the experienced mafon to think of the moft efficacious-methods for refilting this tendency of arches to rife in the flanks, Unfortunately there feems to be no precife principle to point out the place where this tendency is moft remarkable.

We are therefore highly pleafed with the ingenious contrivance of Mr Mylne, the archited of Blackfriars Bridge in London, by which he determines this point with precifion, by making it impolfible for the overloaded arch to fring in any other place. Having thes confined.

A R C.

confined the failure to a particular fyot, he with equal art oppofes a refiftance which he helieves to be furficient; and the prefent condition of that noble brilge, which does not in any place thow the fmalleft change
 on this work as the lirtt, or at lealt the fecond, fpecimen of maforic ingenuity that is to be feen in the world, we ianagine that our readers will be pleafed with a particular account of its nooft remarkable circumfances.
The fpank: (fig. 16.) of the middle arch is 100 feet, and its heirht UV is 40 , and the thicknefs KV of the crown is fix feet feven inches. Its form is nearly elliptical ; the part $A V Z$ being an arch of a circle whofe centre is C , and radius 56 feet, and the iwo lateral portions $\mathrm{A} \leqslant \mathrm{B}$ and Z a E heing arches defcribed with a radius of 35 feet nearly. The thicknets of the pier at $a b$ is 19 feet. The thicknefs of the arch increafes from the crown V to Y , where it is eight or nine feet. All the arch-ftones have their joints directed to the centres of their curvature. The joints are all joggled, having a cubic foot of hard ftone let half way into each. By this contrivance the joints camot nide, nor can any weight laid on the crown ever teeak the arch in that part, if the piers do not yield; for a ftraight line from the middle of KV to the middle of the joint YI is contained within the folid mafonry, and does not even come near the inner joints of the archftones. Therefore the whole refitts like one tone, and can be broken ouly by crofhing it. The joint at Z is very nearly perpendicular to a line YF drawn to the outer edge of the foundation of the pier. By this it was intended to take off all tendency of the preffure on the joint $d \mathrm{Z}$ to overfet the pier; for if we fuppofe, according to the theory of equilibration, that this preflure is neceffarily exerted perpendicularly to the joint, its direction paffes through the fulcrum at F, round which it is thought that the pier mult turn in the act of overfetting. This precaution was adopted in order to make the arch quite independent of the adjoining arches; fo that although any of them fhould fall, this arch fhould run no rifk.

Srill farther to fecure the independence of the arch, the foilowing couftruction was practifed to unite it into one mafs, which fhould rife altogether. All below the Tine $a b$ is built of large blocks of Portland fone, dovetailed with found oak. Four places in each courfe are interrupted by equal blocks of a lard flone called Kintifl rag, funk half way in each courfe. Thefe act as joggles, breaking the courfes, and preventing them from fliding laterally.

The portion a Y of the arch is joggled like the upper part. The interiur part is filled up with large blocks of Kentifh rag, forming a kind of cuurfed rubble-work, the courfes tending to the centres of the arch. The under corner of each arch-ftone projects over the one below it. By this form it takes fatt hold of the rubblework hehind it. Above this rubble there is conftructed the inverted arch $I \varepsilon G$ of Portland fone. This arch fhares the preffure of the two adjoining arches, along with the arch-ftones in $Y a$ and in $G b$. Thus all tend together to comprefs and keep down the rubble-work in the heart of this part of the pier. This is a yery ufeful precaution ; for it often happens, that when the ceutres of the arches are Atruck, before the piers are
buitt up to their intended height, the thruft of the arches iqueezes the rubble-work horizontally, after the mortar las let, but before it has dried and acyuired its utmolt hardnefs. Its bond is broken by this mution, and it is fqueezed up, and never acquires its furmer firmuefs. This is effectually prevented by the preffure exerted by the back of the invert:d arch.

Above this counter arch is another mafs of courfed rubble, and all is covered by a horizontal courie of large blocks of Portland ftone, butting againft the back of the arch-fone ZI and its correfponding one in the adjoining arch. This courte connects the feet of the two arches, preferves the rubble-work from too great compreffion, and protects it from roking water. This laft circumftance is inportant; for if the water which falls on the road way is not'carried off in pipes, it loaks through the gravel or other rubbin, refts on the nortar, and keeps it continually wet and ioft. It cannot efcape through the joints of good mafonry, and therefore fills up this part like a funnel.

Suppofing the adjoining arch fallen, and all tumbled off that is nut withheld by its fituation, there will fill remain in the pier a mafs of about 3500 tous. The weight of the portion VY is about 2000 tons. The directions of the thrufts RY and YF are fuch, that it would require a load of 4500 tons on VY to overturn the pier round F. This exceeds VY by 2500 tons; a weight incomparably greater than any that can ever be laid on it.
Such is the ingenious contruction of Mr Mylnc. It evidently proceeds on the principles recommended above ; principles which have occurred to his experieuce and fagacious mind during the conrfe of his extentive practice. We have feen attempts by other engineers to withfland the horizontal thrufts of the arch by means of counter arches inferted in the fame manner as here, but extending much farther over the main arch; but they did not appear to be well calculated for producing this effect. A counter arch fpringing from any point between Y and V has no tendency to hinder that point from rifing by the finking of the crown; and fuch a counter arch will not refift the preciely horizontal thruft fo well as the ftraight courfe of Mr Mylne.

THE great incorporation of architects who built the Origia o cathedrals of Eurupe departed entirely from the fyles the Gorb of ancient Greece and Rome, and introduced another, in which arcades made the principal part. Not finding in every place quarries from which blocks could he raifed in abundance of fufficient fize for forming the farproiecting corniches of the Greek orders, they relinquilhed thofe proportions, and adopted a fyle of ornament which required no fuch projections : and having fubflituted arches for the horizontal architrave or liatel, they were now able to erect buildings of valt extent with fpacious openings, and all this with very fmall pieces of ftone. The form which had been adopted for a Chriftian temple necafioned many interfections of vaultings, and nultiplied the arches exceedingly. Conftant practice gave opportunities of giving every poffible variety of thefe interlections, and taught the art of balancing arch againlt arch in every variety of fituation. An art fo multifarious, and fo much out of the road of ordinary thought, cculd not but become an object of fond fudy to the architects molt eminent for ingenuity

A R C Becoming thus the dupes of their
nuity and invention. Becoming thus the dupes of their own ingenuity, they were fond of difplaying it even wheu not neceffary. At lalt arches became their principal ornament, and a wall or ceiling was not thonght dreft. ed out as it fhould be till filled full of mock arches, crofling and butting on each other in every direction. In this procefs in their ceilings they found that the pro. jecting mouldings, which we now call the Gothic tracery, formed the chief fupports of the roofs. The plane furfaces included between thofe ribs were commonly vaulted with very fmall fones, feldom exceeding fix or eight inches in thicknefs. This tracery therefore was not a random ornament. Every rih had a pofition and direction that was not only proper, but even neceflary. Habituated to this fcientific arrangement of the mouldings, they did not deviate from it when they ornamented a fmootl furface with mock arches; and in none of the highly ornamented ancient buildings will we find any falfe pofitions. This is by no means the cafe in many of the modern imitations of Gothic architecture, even by our beft architects. Ignorant of the directing principle, or not attending to it, in their ftucco work, they pleafe the unkilled eye with pretty radiated figures; but in thefe we frequently fee fuch abutments of mouldings as would infallibly break the arches, if thefe mouldings were really performing their ancient office, and fupporting a vaulting of confiderable extent. Nay, this began even before the Gothic ftyle was finally abandoned. Several inftances are to be found in the highly enriched vaultings of New College, and Chrift Church in Oxford, in St George's Chapel at Windfor, and Henry the VIl's Chapel in Weitminfter.

We call the middle ages rude and barbarous; but there was furely much knowledge in thofe who could execute fuch magnificent and difficult works. The working drafts which were neceffary for fuch varictics of oblique interfections mult have required confiderable 13ill, and would at prefent occupy many very expenfive volumes of mafons jezuels and carpenters manuals, and the like. All this knowledge was kept a profound fecret by the corporation, and on its breaking up we had all to learn again.

There is no appearance, however, that thofe architeCts had ftudied the theory of equilibrated arches.

- They had adopted an arch which was very ftrong, and permitted confiderable irregularities of preffure-we inean the pointed arch. The very deep mouldings with which it was ornamented, made the arch ftones very long in proportion to the fpan of the arch. But they had ftudied the mutual thruft of arches on each other with great care ; and they contrived to make every invention for this purpofe become an ornament, fo that the eye required it as a neceffary part of the building. Thus we frequently fee fmall buildings having buitreffes at the fides. Thefe are neceflary in a large vaulted building, for withftanding the ontward thruft of the vaulting; but they are ufelefs when we have a flat ceiling within. Pinnacles on the heads of the buttrefles are now confidered as ornaments; but originally they were put there to increafe the weight of the buttrefs: even the great tower, in the centre of a cathedral, which now conftitutes its great ornament, is a load almoft indifpenfably necelfary, for enabling the four principal columns to withftand the combined thruft of the silles, of the nave, and tranfepts. In fhort, the more

A R C

clofely we examine the ornaments of this architecture, the more fall we perceive that they are effential parts, or derived from them by imitation: and the more we confider the whole ftyle of it, the more clearly do we fee that it is all deduced from the relim for areades, illdulged in the extreme, and puihed to the limit of polfibility of execution.

There is another fpecies of arch which muf not be Dome or overlooked, namely, the DOME or CUPOLA, with all its cuivala varicties, which include even the pyramidal fteeple or fpire.

It is evident that the erection of a dome is allo a fcientific art, proceeding on the principles of equilibration, and that thefe principles admit and require the fame or fimilar modifications, in confequence of the cohefion and friction of the materials. At firft fight, too, a dome appears a more difficult piece of work than a plain arch; but when we obferve potters kilns and glafshoufe domes and cones of valt extent, erected by ordinary bricklayers, and with materials valtly inferior in fize to what can be employed in common arches of equal extent, we muft conclude that the circumftance of curvature in the horizontal direction, or the abutment of a circular bafe, gives fome alfitance to the artift. Of this we have complete demonftration in the cafe of the cone. We know that a vaulting in the form of a pent roof could not be exccuted to any confiderable extent, and would be extremely hazardous, even in the fmallelt dimenfions; while a cone of the greateft magnitude can he raifed with very fmall fones, provided only that we prevent the bottom from flying out, by a hoop, or any fimilar contrivance. And when we think a little of the of eatier matter, we fee plainly, that if the horizontal fection be confrucperfectly round, and the joints be all directed to the tion than axis, they all equally endeavour to nide inwards, while arch. no reafon can be offered why any individual ftone fhould prevail. They are all wedges, and operate only as wedges. When we confider any fingle courle, therefore, we fee that it cannot fall in, even though it may be part of a curve which could not fland as a common arch; nay, we fee that a dome may be conitructed having the convexity of the curve, by the revolution of which it is formed, turned towards the axis, fo that the outline is concave. We thall afterwards find that this is a ftronger dome by far than if the convexity were outwards, as in a common arch. We fee allo that a cone may be loaded on the top with the greateft weight, without the fmalleft danger of forcing it down, fo long as the bottom courfe is firmly kept from buriling outwards. 'The ftone lanthern on the top of St Paul's cathedral in London weighs feveral hundred tons, and is carried by a brick cone of eighteen inches thick, with perfeet fafery, as long as the bottom courfe is prevented from burthing outwards. The reafon is evident: The preflure on the top is propagated along the cone in the direction of the flant fide; and, fo far from having any tendency to break it in any part, it tends rather to prevent its being broken by any irregnlar prefo fure from foreign caufes.

For the fame reafons the ofarol pyran 34 form the fpires of Gothic architecture, are abundantly fruction of firm, although very thin. The fides of the fire of ocyagonal Salibury cathedral are not cight inches thick after the byramidz. octagon is fully formed. It is proper, however, to di-

[^0]
A R. C [26] A R C

Arch. rect the joints to the axis of the pyramid, and to make the courting joints perpendicular to the flant fide, becaufe the projectiar mouldings which run along the angles are the abutments on which the whole pannel depends. A confaderable art is neceflary for fupporting thofe pannels or fides of the octagon which fpring from the angles of the fquare tower. This is dane by begiuning a very narrow pointed arch on the fquare tower at a great diltance below the top; fo that the legs of the arch being very long, a flaight line may be drawn from the top of the keyllone of the arch through the whole architones of the legs. By this difpofition the thrufts arifing from the weight of thefe four pannels are made to meet on the maffive mafonry in the middle of the fides of the tower, at a great diftance below the fpringing of the fpire. This part, being loaded with the great mafs of perpendicular wall, is fully able to withitand the horizontal thruft from the legs of thofe arches. In many fpires thefe thruats are fill farther refifted by iron bars which crofs the tower, and are hooked into pieces of brafs firmly bedded in the mafoary of 38 the lides.
Examples There is much nice balancing of this kind to be obof fuch con-ferved in the highly ornamented open fpires; fuch as thofe of Brufels, Mechlin, Antwerp, \&c. We have not many of this fort in Britain. In thofe of great magnitude, the judicious eye will difcover that parts, which a common fpectator would confider as mere ornaments, are neceffary for completing the balance of the whole. Tall pinnacles, nay, even pillars carrying entablatures and pinnacles, are to be feen flanding on the middle of the flender leg of an arch. On examiation, we find that this is neceffary, to prevent the arch from fpringing upwards in that place by the preffure at the crown. The fteeple of the cathedral of Mechlin was the moft elaborate piece of architecture in this talle in the world, and was really a wonder; but it was not calculated to withftand a bombardment, which dellroyed it in 1578 .

Such frequent examples of irregular and whimfical buildings of this kind, fhow that great liberties may be taken with the principle of equilihration without rik, if we take care to ficure the bafe from being thruft outwards. This nay always be done by hoops, which ean be concealed in the mafonry; whereas, in common arches, thefe ties would be vilible, and would offeud the eje.

It is now time to attend to the primciple of equilibrium, as it operates in a fimple circular dome, and to determine the thickuefs of the vaulting when the curve is given, or the curve when the thicknefs is given.
Phate II. Therefore, let B 6 A (fig. 17.) be the curve which pro-
change, becaufe the weight of each courfe is fuperadded to that of the portion above it, to complete tle preflure on the courfe belor. Through B draw the vertical line $B C G$, meeting $B b$, produced in C. We may take $b c$ to prefs the preflure of all that is above it, propagated in this direction to the joint KL. We may alfo fuppole the weight of the courfe HL united in \dot{b}, and acking on the vertical. Let it be reprefented by $b l \cdot$. If we form the parallelogram b FGC, the diagonal $b G$ will reprefent the direction and intenfity of the whole preffure on the joint KL. Thas it appears that this preflure is continually changing its lirection, and that the line, which will always coincide with it, muft be a curve concave downward. If this be precifely the curve of the dome, it will be an equilibrated vanlting; but fo far from being the ftrongett form, it is the weakeft, and it is the linit to an infinity of others, which are all ftronger than it. This will appear evident, if we fuppofe that $l G$ does not coincide with the curve A $b \mathrm{~B}$, but paffes without it. As we fuppofe the archflones to be exceedingly thin from infide to outfide, it is, plain that this dome cannot Itand, and that the weight of the upper part will prefs it down, and fpring the vault ing nutwards at the joiut KL. But let us fuppofe, on the other hand, that b G falls within the curviliteal element $b \mathrm{~B}$. This evidently tends to pufh the arch-ttone inward, towards the axis, and would caufe it to llide in, fince the joints are fuppofed perfectly fmooth and flipping. But fince this takes place equally in every tone of this course, they muft all abut on each other in the vertical joints, fqueezing thems firmly together. 'Therefore, refolving the thruft $b \mathrm{G}$ into two, one of which is perpendicular to the joint Kl_{1}, and the other parallel to it, we fee that this lait thruft is withilood by the vertical joints all around, and there remains only the thruit in the direction of the curve. Such a dome mult therefore be firmer than an equilibrated donse, and cannot be fo eafily broken by overloading the upper part. When the curve is concave upwards, as in the lower part of the figure, the line $b \mathrm{C}$ always falls below $b \mathrm{~B}$, and the point C below B. When the curve is concave downwards, as in the upper part of the Ggure, $b \mathrm{C}$ ' paffes above, or without $b \mathrm{~B}$. The curvature may be fo abrupt, that even $b^{\prime} G^{\prime}$ fhall pafs without ℓB, and the point G^{\prime} is above B^{\prime}. It is alfo evident that the force which thus binds the ftones of a horizontal courfe: together, by pufhing them towards the axis, will be greater in flat domes than in thofe that are more convex; that it will lee ftill greater in a cone; and greater ftill in a curve whofe conversty is turned inwards: for in this latt cafe the line $b \mathbf{G}$ will deviate mull remarkably from the curve. Such a dome will ftand (having polithed joints) if the curve (prings from the bafe with any elevation, however fmall; nay, fince the friction of two pieces of ftone is not lefs than half of their inutual preffure, fuch a dome will ftand, although the tangent to the curve at the bottom fhould be horizontal, provided that the horizontal thruft be double the weight of the dome, which may eafily be the cafe if it do not rife high.

Thus we fee that the ftability of a dome depends on Difierent very different principles from that of a common arch, from tha and is in general much greater. It differs alfo in ano- of a com ther very important circumftance, viz. that it may be open in the middle: for the uppermalt courfe, by tend-

A $R \quad C$

Arels. the donie ter confiderably exceeds 3000 tons, and they occafion StPaul's. a horizontal thruit which is nearly half this quantity, the elevation of the cone being about 60°. This being diftributed round the circumference, occafions a ftrain on the hoop $=\frac{-7}{2 \times 22}$ of the thruft, or nearly 238 tons. A fquare inch of the worlt iron, if well forged, will carry 25 tons with perfect fafety; therefure a hoop of 7 inches broad and $1 \frac{1}{2}$ inches thick will completely fecure this circle from burfting ontwards. It is, however; much more completely fecured; for befides a loop at the bafe of very nearly thefe dimenfions, there are hoops in different courfes of the cone which bind it into one mafs, and caufe it to prefs on the piers in a direction exactly vertical. The only thrufts which the piers fuftain are thofe from the arches of the body of the church and the tranfepts. Thefe are moft judicinully directed to the entering angles of the building, and are there refilted with infuperable force by the whole lengths of the walls, and by four folid mafles of mafonry in the corners. Whoever confiders with attention and judgment the plan of this cathedral, will fee that the thruits of thefe arches, and of the dome, are incomparably better balanced thau in St Peter's church at Rome. But to return from this fort of digreffion.

We have feen that if $b \mathrm{G}$, the thruft compounded of the thruft $b \mathrm{C}$, exerted by all the courfes above HILK, and if the force $b \mathrm{~F}$, or the weight of that courfe, be everywhere coincident with $b \mathrm{~B}$, the element of the curve, we fhall have an equilibrated dome; if it falls within it, we have a dome which will bear a greater load; and if it falls without it, the dome will break at the joint. We muft endeavour to get analytical expreffions of thefe conditions. Therefore draw the ordinates $b \delta b \prime, \mathrm{BDB}^{\prime \prime}, \mathrm{C} d \mathrm{C}^{\prime \prime}$. Let the tangents at b and $b^{\prime \prime}$ meet the axis in M, and make MO, MP, each equal to
ing equally in every patt to flide in toward the axis, preffes all together in the vertical joints, and acts on the next courfe like the key tone of a common arch. Theefore an arch of equilibration, which is the weakeft of all, may be open in the middle, and carry at top another building, fuch as a lauthern, if its weight glo not exceed that of the circular fegment of the dome that is omitted. A greater load than this would indeed break the dome, by canting it to fpring up in fome of the lower courles ; but this luad may be increaled if the curve is flatter than the curve of equilibration : and any load whatever, which will not crufh the fones to powder, may be fet on a truncate cone, or on a dome formed by a curve that is convex toward the axis; provided ahways that the foundation be effectually prevented froms tying out, cither by a hoop, or by a fuffieient mafs of folid pier on which it is fet. We have mentioned the many failures which happened to the dome of St Sophia in Conitantinople. We imagine that the thrult of the great dome, bending the eattern arch outward as foon as the pier began to yield, dell royed the half done which was leaning on it, and thus, almoft in an inftant, took away the eaftern abutment. We think that this might have been prevented without any change in the injudicinus plan, if the dome had been hooped with iron, as was pract fed by Michael Augelo in the vattly nuore ponderons dome of St Peter's at Rome, and by Sir Chriftopher Wren in the cone and the immer

A R C

 $\underbrace{\text { Arch. }}$ fince ftability requires that we have $\frac{d y \dot{x} \sqrt{x^{2}+y^{2}}}{x}$ greater than $\int d y \sqrt{i^{2}+\dot{y}^{2}}$, we learn that the upper part of the dome mult not be made very heavy. This, by diminifing the proportion of $b \mathrm{~F}$ tol $b \mathrm{C}$, diminifhes the angle $c b \mathrm{G}$, and may fet the poiut G above B , which vill iufallibly fpriag the dome in that place. We fee here alfo, that the algebraic analy fis expreffes that peculianty of dome-vaulting, that the weight of the upper part inay even be fuppreffed.The fluent of the equation $\frac{d y \sqrt{x^{2}+\dot{y}^{2}}}{\int d y \sqrt{\dot{x}^{2}+y^{2}}}=\frac{\ddot{x}}{\dot{x}}+\frac{i}{t}$ is moft eafily found. It is $\mathrm{L} \int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}=\mathrm{L} \dot{x}+$ $\mathrm{L} t$, where L is the hyperbolic logarithm of the quartity annexed to it. If we confider y as conftant, and correct the fluent fo as to make it nothing at the vertex, it may be expreffed thus, $\mathrm{L} \int d y \sqrt{x^{2}+y^{2}}-\mathrm{L} a=\mathrm{L} \dot{x}$ $-\mathrm{L} \dot{y}+\mathrm{L}$. This gives us $\mathrm{L} \frac{\int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}}{a}=\mathrm{L} \frac{\dot{y}}{\dot{y}}$, and therefore $\int \frac{\int y \sqrt{\dot{x}^{2}+\dot{y}^{2}}}{a}=t \frac{\dot{x}}{y}$.

This laft equation will eafly give 13 the depth of vaulting, or thicknefs d of the arch, when the curve is given. For its fluxion is $\frac{d y \sqrt{x^{2}+y^{2}}}{a}=\frac{i \dot{i}+\dot{t}}{\dot{y}}$, and $d=\frac{a i x+a t \ddot{x}}{y \dot{y} \sqrt{x^{2}+y z}}$, which is all expreffed in known quantities : for we may put in place of z any power or function of x or of y, and thus convert the expreffion into another, which will till be applicable to all ferts of curves.

Intead of the fecond member $\frac{\ddot{x}}{\dot{x}}+\frac{i}{t}$, we might em. ploy $\frac{\underline{p}}{\dot{x}}$, where p is fome number greater than unity. This will evidently give a dome having flability; becaufe the original formula $\frac{d y \dot{x} \sqrt{\int d y \sqrt{x^{2}+\dot{y}^{2}}}}{\sqrt[\dot{x}^{2}]{ }{ }^{2}}$ will then be greater than \ddot{x}. This will give $d=\frac{p a \dot{x}^{p}-\mathrm{r}_{x}}{y \dot{y}^{p} \sqrt{\dot{x}^{2}+y^{2}}}$. Each of thefe forms has its advantages when applied to particular cafes. Each of them alfo gives $d=\frac{a x}{y \dot{y} \sqrt{x^{2}+y^{2}}}$ when the curvature is fuch as is in precife equilibrium. And, lafly, if d be conftant, that is, if the vaulting be of uniform thicknefs, we obtain the form of the curve, becaufe then the relation of \ddot{x} to \dot{x} and to y is given.

The chief ufe of this analyfis is to difcover what curves are improper for domes, or what portions of given curves may be employed with fafety. Domes are generally built for ornament; and we fee that there is great room for indulging our fancy in the choice. Allcurves which are corcave outwards will give domes of great firmnefs: They are alfo beautiful. The Gothic
dome, whafe outline is an undulated curve, may be made abundantly firm, efpecially if the upper part be convex and the lower concave outwards.

The chief difficulty in the cafe of this analy fis arifes from the necelfity of exprefing the weight of the incuenbent part, or $/ d y \sqrt{a^{2}+y^{2}}$. This requires the meafurement of the conoidal furface, which, in moit cafes, caia be had only by approximation hy means of infunte feriefes. We cannot expect that the generality of practical builders are familiar with this branch of mathematics, and therefore will not engage in it here; but content ourfelves with giving fuch inilances as can be underfood by fuch as have that moderate mathematical knowledge which every man fhould poffefs who takes the name of engineer.

The furface of any circular portion of a fphere is very eafily had, being equal to the circle defcribed with a radius equal to the chord of half the arch. This radius is evidently $=\sqrt{\dot{x}^{2}+y^{2}}$.

In order to difcover what portion of a hemifphere may be employed (for it is evident that we cannot employ the whole) when the thicknefs of the vaulting is uniform, we nay recur to the equation or formula $d y \dot{x} \sqrt{\dot{x}^{2}-\dot{y}^{2}}=\int d y \sqrt{\dot{x}^{2}+y^{2}}$. Let a be the radius of the hemifphere. We have $\dot{x}=\frac{a y \dot{y}}{\sqrt{a^{2}-y^{2}}}$, and \dot{x} $=\left.\frac{a^{2} \dot{y}^{2}}{a^{2}-y}\right|^{\frac{3}{2}}$. Subflituting thefe values in the formula, we obtain the equation $y^{2} \sqrt{a^{2}-y^{2}}=\int \frac{a^{2} y y}{\sqrt{a^{2}-y^{2}}}$. We eafily obtain the fluent of the fecond member $=a^{3}-$ $a^{2} \sqrt{a^{2}-y^{2}}$, and $y=a \sqrt{-\frac{1}{3}+\sqrt{\frac{5}{3}}}$. Therefore if the radius of the iphere be one, the half breadtly of the dome muft not exceed $\sqrt{-\frac{1}{2}+\sqrt{\frac{5}{3}}}$, or 0,786 , and the height will be 618. The arch from the vertex is about $\$ 1^{\circ} 49^{\prime}$. Much more of the hemifphere cannot ftand, even though aided by the cement, and by the friction of the conrfing joints. This laft circumftance, by giving connection to the upper parts, caufes the whole to prefs more vertically on the courfe beluw, and thus diminifhes the outward thruft; but it at the fanc time diminifies the mutual abutment of the vertical joints, which is a great caufe of firmnefs in the vauliing. A Gothic dome, of which the upper part is a portion of a fphere not exceeding 45° from the vertex, and the lower part is concave outwards, will be very flrong, and not ungraceful.
But the public tafte has long rejected this form, and Dome of ${ }^{43}$ feems rather to felect more elevated domes than this por. St Peerer' tion of a fphere; becaufe a dome, when feen from a ${ }^{\text {at Rome }}$ fmall diftance, always appears flatter than it really is. The dome of St Peter's is nearly an ellipioid externally, of which the longer axis is perpendicular to the horizon. It is very ingenioufly conftructed. It fprings from the bafe perpendicularly, and is very thick in this part. After riling ahout 50 feet, the vaulting leparates into two thin vaultings, which gradually feparate from each other. Thefe tivo fhells are connected together by thin partitions, which are very artificially dovetailed in both, and thus form a covering which is extremely Alif, while it is very light. Its great flifnefs was neceffary for enabling the crown of the dome to carry the elegant fone lanthern
lanthern with fafety. It is a wonderful performance, and has not its equal in the world; but it is an enormous load in comparifon with the dome of St Paul's, and this even indcperndent of the dilference of fize. If they were of equal dimenfions, it would be at leaft five times as heavy, and is not fo firmby its gravity ; but as it is connected in cvery part by iron bars (lodged in the folid mafonry, and well fecured from the weat her by having lead melted all round them), it bills fair to laft for ages, if the foundations do not fail.
If a circle be deferibed round a centre placed anyPlate II. wherc in the tranfverfe axis AC (fig. 18. N^{\prime} I.) of an cllipfe, fo as to touch the ellipfe in the extremities B, b, of an ordinate, it will touch it interually, and the circular arch $\mathrm{B} a b$ will he wholly within the elliptical arch 13A 6 . Therefore, if an elliptical and a fpherical vaulting fpring from the fame bafe, at the fame angle with the horizon, the fpherical vaulting will be withia the elliptical, will be flatter and lighter, and therefore the weight of the next courfe below will bear a greater proportion to the thrut in the direction of the curve; therefore the fpherical vaulting will have more flability. On the contrary, and for fimilar reafons, an oblate clliptical vaulting is preferable to a fpherical vaulting fpringing with the fame inclination to the horizon. (Fig. 18. $\mathrm{N}^{\circ} 2$).

Perfuaded, that what has been faid on the fubject convinces the reader that a vaulting ferfectly equilibrated throughout is by no means the bell form, provided that the bafe is fecured from feparating, we think it unneceffary to give the inveltigation of that form, which has a confiderable intricacy; and fhall content ourfetves with merely giving its dimenfons. The thicknefs is fuppofed uniform. The numbers in the firtt column of the table exprefs the portion of the axis counted from the vertex, and thofe of the fecond column are the lengths of the ordinatcs.

AD	DB	AD	DB	AD	DB
0,4	102	610,4	1080	2990	1560
3,4	200	744	1140	3442	$16=0$
11,4	300	$0-4$	1200	3972	1640
26,6	400	1100	1260	4432	1670
52,4	500	1336	1320	4952	1700
91,4	600	1522	1360	5336	1720
146,8	700	1738	1400	5756	1740
223,4	800	$198+$	1440	6214	1760
326,6	900	2270	1480	6714	1780
465,4	1000	2602	1520	7260	1800

The curve delineated in fig. 19 . is formed according to thefe dimenfions, and appears deftitute of gracefulnefs; becaufe its curvature changes abruptly at a little diftance from the vertex, fo that it has fume appearance of being made up of different curves pieced together. But if the middle be occupied by a lanthern of equal, or of fmaller weight, this defect will ceafe, and the whole will be elegant, nearly refembling the exterior donie of St Paul's in Londone

29] A R C
hemifphere, and may be broken off at any horizontal courfe, and then a fimilar or a greater portion of a fmaller fphere may fpring from this courfe as a bafe. It alfo bears being interfected by cylindrical vaultings in every direction, and the interfections arc exact circles, and alvays have a pleating effect. It alfo frings inntt gracefully from the heads of finall piers, or from the corners of rooms of any poly gonal thape; and the arches formed by its interfections with the walls are always circular and graceful, forming very handfome fpandrels in every pofition. For thefe reafons sir Chriltopher W^{T} ren employed it in all his vaultings, and he has exhibited many beautiful varicties in the tranfepts and the aines of St Paul's, which are highly worthy of the obfervation of architects. Nothing can be more graceful than the vaultings at the ends of the north and fouth tranfepts, efpecially as finifhed off in the fine infide riew publifhed by Gwynn and Wale.

We conclude this article with obferving, that the Effeets of connection of the parts, arifing from cement and from cemicnt and friction, has a great effect, on dome-vaulting. In the frictiun in fame way as in common arches and cylindrical vaulting, irg. it enables an overload on one place to breax the dome in a diftant place. But the refifance to this effect is much greater in dome-vaulting, becaufe it operates all round the overluaded part. Hence it happens that domes are much lefs shattered by partial violence, fuch as the falling of a bomb or the likc. Large holes may be broken in them without much affecting the relt; but, on the other hand, it greatly diminiflics the frength which foould be derived from the mutnal preflure in the vertical joints. Friction prevents the fliding in of the arch ftones which produces this mutual prefluee in the vertical joints, except in the very highett courfes, and even there it greatly diminithes it. Thefe caufes make a great change in the form which gives the greatelt firength ; and as their laws of action are but very imperfectly underfood as yet, it is perhaps impoffible, in the prefent flate of our knowledge, to determine this form with tolerable precifion. Ife fee plainty, how: ever, that it allows a greater deviation from the hef form than the other kind of vaulting, and domes may be made to rife perpendicular to the horizon at the bafe, although of no great thicknefs; a thing which numb not be attempted in a plane arch. The inmeufe addition of Atrength which may be derived from hooping, largely compenfates tor all defects; and there 1 o. hardly any bounds to the extent to which a very thia dome-vaulting may be carried, when it is hooped or framed in the direction of the harizontal cou?s. The roof of the Halle du Bled at Faris is but a foot thick, and its diameter is more than 200, yet it appears to have abundant ftrength. It is, on the whole, a noble fpecimen of architceture.

We muft not conclude this article withòut taking The icom notice of that magnificent and elegant arch which hasb idice at been erefted in caft iron at Weremouth, near Sunder: Sunderlans land, in the county of Durham. The inventor and ar. detcribed. chiteet is Rowland Burdon, Efq; one of the reprefentatives of that county in the prefent Parliament.

This arch is a fegment of a circie whofe diametcr is about 444 feet. The fpani or cord of the arch is 236 feet, and its verfed fine or fpring is 34 feet. It fprings at the elevation of 60 feet from the furface of the ri-

$A \quad \mathrm{C}$

Arch. Per at luw water, fo that veffels of 200 or perhaps 320 tons burden may pais under it in the middle of the ftream, and even 50 feet on each fide of it.

The fweep of the arch conlits of a feries of frames of caft iron, which butt on each other, in the fame manner as the vouffurs of a llone arch. One of thefe frames or blocks (as we fhall call them in future) is replate IV. prefented in fig. 1. as feen in front. It is caft in one piece; and confilts of three pieces or arms $B C, B C, B C$, the middle one of which is two feet long, the upper being fomewhat more, and the lower fomewhat lefs, becaufe their extremities are bounded by the radius drawn from the centre of the arch. Thefe arms are four inches fquare, and are connected by other pieces KL, of fuch length that the whole length of the block is five feet in the direction of the radius. Each arm has a flat groove on each fide, which is expreffed by the darker fhaditig, three inches broad and three-fonths of an inch deep. A fection of this block, through the middle of $K L$, is reprefented by the light-fladed part BBB , in which the grooves are more diftinctly perceived. Thefe grooves are intended for receiving flat bars of malleable iron, which are employed for connecting the different blocks with each other. Fig. 2 repiefents two blocks united in this manner. For this purpofe each arm nas two quare bolt-holes. The ends of the arms being nicely trimmed off, fo that the three ends butt equally clofe on the ends of the next bluck; and the bars of hammered iron being alfo nicely fitted to their groove., fo as to fill them completely, and have their bolt holes exactly correfponding to thofe in the blocks, they are put together in fuch a manner that the joints or meetings of the malleable bars may fall on the middle between the bolt-holes in the arms. Flat headed bolts of wrought iron are then put through, and keys or forelocks are driven thro' the bolt-tails, and thus all is firmly wedged together, binding each arm between two bars of wrought iron. Thefe bars are of fuch length as to comect feveral blocks.

In this manner a feries of about 125 blocks are joinced tugether, fo as to form the precife curve that is intended. This feries may be called a rib, and it ftands in a vertical plane. The arch confifts of fix of thefe ribs, difant from each other five feet. Thefe ribs are connected together fo as to form an arch of 32 feet in breadth, in the following manaer:

Fig. 3. reprefers one of the bridles or crofs pieces which conneet the diflerent ribs, as it appears when viewed from below. It is a hollow pipe of caft iron, four inches in diameter, and has at each end two projecting thoulders, picreed with a bolt hole nea: their extremities, fo that the difance between the bolt-holes in the fhoulders of one end is equal to the diftance between the holes in the arms of the blocks, or the holes in the wrouglit iron bars. In the middle of the upper and of the under fide of each end may be obferved a fquare prominence, more liglitly fhaded than the reft. Thefe projections alfo advance a little beyond the flat of the fhoulders, forming between them a fhenlow notch, about an inch deep, which receives the iron of the arms, where they butt on each other, and thus gives an additional firmnefs to the joint. The manner in which the arms are thus grafped by thefe notches in the bridles is more diftinctly feen in fig. 2. at the letter H in the middle of the upper rail.

$01 \quad A \quad R \quad C$

The rib having been all trimmed and put together, Ars fo as to form the cxast curve, the bolts are all taken out, and the horizontal bridles are then fee on in their places, and the bolts are again put in and made faft by the forelocks. The holis now pais through the fhonl. ders of the brides, through the wrought iron bars, and through the caft iron arm that is between them, and the forelocks bind all faft together. The manner in which this connection is completed is diltinctly feen in fig. 2. which fhews in perfpective a double block in front, and a fingle block behind it. The butting joints of the two front blocks are at the letters $\mathrm{E}, \mathrm{E}, \mathrm{E}$; the holes in the fhoulders of the horizontal crofs pieces are at H .

This conftruction is beautifully fimple and very judi-Its concions. A valt addition of ftrength and of ftiffnefs is itructior procured by lodging the wrought iron hars in grooves fimple a formed in the caft iron rails; and for this purpofe it is of ${ }^{j u d u c i o u l}$ great importance to make the wrought iron bars fill the grooses completely, and even to be fo tight as to require the force of the forelucks to drav them home to the bottom of the grooves. There can be no doubt but that this atch is able to withitand an enormous preffure, as longr as the abutments from which it fprings do not yield. Of this there is hardly any rifk, becaule they are maffes of rock, faced with about four or five yards (in fome places only) of folid block mafonry. The mutual thrulls of the frames are all in the direction of the rails, fo that no part bears any tranfverfe ftrain. We can hardly conceive any force that can overconce the ftrength of thofe arms by preffure or crufhing them. The manner in which the frames are connected into one rib, effectually fecures the butting joints from nipping; and the accuracy with which the whole can be exceuted, fecures us againft any warping or deviation of a rib from the vertical plane.

But when we confider the prodigious fpan of this arch, and reflect that it is only five feet thick, it fhould feem that the moft perfect equilibration is indifpenfably neceffary. It is but like a film, and muit be fo fupple that an overload on any part mult have great tendency to bend it, and to caufe it to rife in a diftant part ; and this effect is increafed by the very firmnefs with which the whole ficks together. Tlie overloaded part acts on a ditant part, tending to break it with all the energy of a long lever. This can be provented only by means of the fiffinefs of the diftant part. It is very true, the arch cannot break in the extrados except by tearing afnuder the wrought iron bars which conneet the blocks along the upper rail, and each of thefe requires more than a hundred tons to tear it afunder ; yet an overload of five tons on any rib at its middle will produce this frain at twenty fee! from the fides, fuppofing the fides held firm in their pofition. It were defirahle therefore that fomething were done to ftiffen the arch at the fides, by the manner of filling up the fpandrels, or fpace between the arch and the roatway. This is filled up in a manner that is extremely Thougl light and pleafing to the eye, namely, by large caft ironone par circles, which touch the extrados of the arch and touch cular $c:$ the road-way. The road-way relts on them as on fo ble, pet many hoops, while they reft on the back of the arch, provem: and alfo touch each other laterally. We cannot think that this contributes to the ftrength of the arch; for thele hoops will be eafly comprefled at the points of

A R C [3 F$] \quad$ A R C

th, contact, and, changing their flape, will oppofe very little refiltance. We think that this part of the arch might have been greatly ftiffened and ftrengthened, by connecting it with the road-way by trufed frames, in the fame way that a judicious carpenter would have framed a roof. If a frong caft iron pillar had been made to reft on the arch at about 20 feet from the impolt, and been placed in the direction of a radius, the top of this pillar might have been connected by a diagonal hat of wrought iron with the impoft of the arcin, and with the crown of the arch by another ttring or bar of the fame materials. Thefe two ties would caufe the radial pillar to prefs ftrongly on the back of the arch, and they muft be turn afunder before it could bend in that place in the fmalleft degree. Supjofing them of the fame dimenfions as the bars in the arms, their pofition would give them near ten times the force for refilting the ftrain produced hy an ovcrload on the crown.
This beautiful arch contains only 260 tons of iron, of which about 55 are wrought iron. The fuperftructure is of wood, planked over a-top. This floor is covered with a coating of chalk and tar, on which is laid the materials for the carriage road, confilting of marle, lime ftone, and gravel, with fnot-ways of flag ftones at the fides. The weight of the whole did not exceed a thoufand tons; whereas the lighteft fone arch which could have been erected would have weighed fifteen thoufand. It was turned on a very light but Afff feaffolding, mof judiciouly conlructed for the prefervation of its form, and for allowing an uninterrupted paffage for the numerous hips and fmall craft which frequent the bufy harbour of Sunderland. The mode of framing the arch was fo fimple and eafy, that it was put up in ten days ! without an accident; and whea all was finifhed, and the fcaffolding removed, the arch did not fenfibly change its form. The whole work was executed in three years, and coll about L. 26,000.

ARCHI L'ECTURE is an art of fo much inportance, and capable of fo many embellifhments, as to have employed the attention and talents of men of fcience in almolt every age, and in every country. It is generally thought to have been carried to the utmoft perfection among the Greeks and Romans; and it has been the aim of the moft eminent architects of modern times to imitate with fidelity the buildings of thofe accomplifhed nations. There is, however, another fpecies of architecture, which was introduced into Europe in the middle ages, and is of fuch a nature as to Atrike every unprejudiced obferver with admiration and aftonifhment. The architecture to which we allude has been called, perhaps with little propristy,

Gothic Archifecture. It is that which is to be viewed in all our ancient cathedrals, and in other large buildings which have been erected from the middle of the 32 th to the beginning of the 16 th century. That fuch edifices have been conftrueted on principles of fcience, has been hewn elfewhere (fee Roof, Encycl. and $\mathrm{Arch}_{\text {, }}$ in this Suppl.): but a queftion ftill prefents itfelf to the inquilitive mind, "How came fuch ftructures to be thought of by a people whom we are accuftomed to call
ignorant and barbarous?", This queltion has occupied the attention of many ingenious men, who have attributed the Gothic flyle of building, fome to neceffity, and others to an imitation of the works of nature. That, where materials are bad, larger edifices can be erected in the Gothic than in the Grecian Ityle, has been made fufficiently evident in the articles to which we have referred; and that necefiity is the parent of invention, is an adage which has been too long received to be now called in queftion. But whence came the peculiarities of the Gothic ornaments in building, the pointed arch, and the double row of clntered pillars compofed of flender thafts, which, reacling from the ground almoit to the roof of the building, are there ipread out in all directions, forming the ribs or groins of a vaulted roof?

The mof fatisfactory folution of this queftion which we have feen, is in a memoir publifhed in the fourth volume of the Tranfactions of the Royal Society of Edinburgh, by Sir James Hall, Bart. with whofe permiffion the following abitract is laid before our readers.
"Although the connection between beauty and utility be ftill involved in fuch obfcurity, that we are muable to decide concerning the univerfality of that connection, of one thing we are certain, that, in a work intended to anfwer fome ufeful purpofe, whatever vifibly counteracts that purpofe always occafions deformity. Hence it is, that, even where ornament is principally intended, the oltenfibly ufeful object of the work, if it have any fuch, mutt be provided for, in the firft place, in preference to every other confideration.
"But in mofl ufeful works, fome parts occur, the mape of which is quite indifferent with refpect to the propofed utility, and which, therefore, the artift is at liberty to execute as he pleafes : a liberty which has opened a wide field to the tafle and invention of ingenious men of every age and country, who have turned their attention to the compofition of ornaments; and whofe exertions have been more or lefs influeaced by the Itate of civilization ia which they lived. It would feem, however, if we may judge by thofe various efforts, that little has been ciltected liy mere human ingenuity ; fince we fee that recourfe has becu lad, almolt univerfally, to nature, the great and legitinate fource of beauty; and that ornament lias been attained by the imitation of objects, to which fae has given a determinate and characteriltic form.
"Where the materials employed are themfelves porfeffed of variety and elegance, the attainment of this object requires little or no alteration of their natural forms. Thus cups are made of fhells, of cocoa-nuts, or of ottrich eggs; the character and beauty of which depend upon the natural form of the materials: and in the cafe of the bottles ufed by the Roman Catholic pitgrams, an example occurs of an utenfil, in which the natural form has undergone little or no variation, fince it confifts of the hard- out ward fkin of a gourd, of the fame fhape in which it grew upon the plant (A). This laft clafs of. forms has been introduced, by imitation, into works conipofed
(A) "Even in this cafe, however, the natural form undergoes a certain degree of modification, by the device employed to produce the neck of the bottle. The fruit, while fmall and tender, is furrounded with a ftring, which remaining during its growth, prevents the part, thus bound, from fwelling with the reft."

A R C $\quad\left[\begin{array}{lll}32 & 1 & \text { A R C }\end{array}\right.$

Archiec- compofed of thapelefs materials. Thus we have filver ture. cups in the form of thofe made of fhells, and fruit-difhes
of foneware in the form of bafkets.
"As itone is not naturally poffefted of any peculiar Shape, and as the ufeful object propoled, by flructures formed of it, may be accomplifled in various ways, very great latitude is left to the invention of the artift. We fie, accordingly, that in every country where much refinement bas been introduced, great pains have been beltowed in ornamenting flone buildings with figures reprefenting various natural objects; whillt the build ing itfelf has been execonted in imitation of a fructure, compofed of materials which naturally poffefs a determinate and charaferillie form. Such was the method followed hy the architects of ancient Greece, who confirueted temples, and other public edifices, in insitation of a ruttic falric, compofed of fquare beams, fupported upon round poits or llems of trees, and who derived the numerous ornaments of that beautiful ftyle from circumfances which would naturally take place in fuch a fructure.
"A faint and diftant refemblance, however, of the original, has generally been found to anfwer all the end propofed by the imitation ; a refemblance, which may fometimes be traced in the general diftribution of the edifice, fometimes in its minute parts, and not unfrequently in both.
" Jut the forms of nature thus introduced have been freatly modified by thofe of mafonry. For though Atone is by nature fhapelefs, yet, in the courle of practice, many peculiar forms have been long eftablifhed, and currently employed, in working it ; fuch as ftraight lines, plain furfaces, fquare angles, and various mouldings tufed to foften the effect of abrupt terminations: a! ! of which, originating in motives of mechanical convenieuce, and of fimple ornament, had, in very early times, been appropriated to mafonry, and confidered as effential in every finifted work of fone; fo that, when the imitation of nature was introduced, thefe mafonic - forms ftill maintained their ground, and, being blended with the forms of nature, the two claffes reciprocally modified each other.
" This combination of art with nature, of which we fee the moll perfect example in the Corinthian capital, produces what are called architectonic forms, in which the varicty of nature, being fubjected to the regularity of art, the work acquires that peculiar character which, in a natural object, we contider as offenfive, under the name of formality; but which, in architecture, we admire as a beauty, under the name of fymmetry: thus, we reprobate the formality of an avenue, and praife the fymeretry of a colomade.
"Such is the nature of architectonic imitation; a device which probably originated in accident, but to which architecture is indebted for its highef attainments."

As the fone edifices of ancient Greece were conflructed in imitation of a wooden fabric, compofed of fquare beams laid at right angles on round pofts or flems of trees, Sir James concrives that the Gothic fabrics with pointed arches have been executed in imitation of a rultic dwelling, conftructed in the following manmer : Suppofe a fet of round pofts driven firmly into the ground in two oppofite rows, the interval between the neighbouring polts in the fame row being
equal to that between the rows, and each po! being Architec. raifed above the ground to a heighte equal to three of thofe intervals; then a fet of long and Aexible rods of willow being applied to each polt, let them be thrult into the ground at its bafe, and bound to it by two tyings, one near the ground, and another at two-thirds of its height ; the rods being left loofe from this laft point upwards, and free to be moved in any direction. Let thrce rods be connected with each outlide corner polt, and five with each of the others, and let their po. dition he fuch as to cover the infide of the pult, fo that when feen from between the rows the lower part of each poft fhall be concealed from the view, and prefent the appearance of a bundle of rods (ig r)

Things being thus difpofed, the fleceton of a thatehed roof may be formed by means of the loofe ends of the rods. A rod from one of the poits being fo bent as to meet a fimilar one from the poft immediately oppofice to $i t$, in the middle of the fpace between them, let the two rods be made to crofs each other, and let them he bound together at their croffing (fig. 2.), and we fhall have the exact form of the Gothic arch The fame being done with each pair of oppofite polts, and a fet of prointed arches being formed, let them be connected together by means of a ftraight pole laid upon the furks of the croffing rods, and bound to each of them, as in fig. 3 : then let a loofe rod be brought from each of any two contiguous pofts in the fame row, fo as to form a pointed arch, fimilar to that juft deferibed, and nearly of the fame height. This being done with every two contiguous polts (fig. 4.), and a new fet of pointed arches being thus produced, itanding oppotite to each otber in pairs, let each pair be bound by a horizontal pole lying on the oppolite forks, and croffing the longitudinal pole defcribed above.
"Two of the rods of each corner poft, and three of thofe of each of the others, being thus dilpofed of, we have one of each corner poft and two of each middle' poit ftill to employ, which is done as follows: A pair of thefe unoccupied rods being brought from any two pofts which Itand diagonally to each other, and made to meet in the middle, not as in the firlt cafe croffing in an angle, but lide by fide, forming a femicircle, and joined together after the manner of a hoop; and the fame being done with every pair of diagonal pofts (fig. 5.), the whole rods will have been employed.
"In this manner a frame would be conftricted fit to fupport thatch or other covering; and fuch a one has probably been often ufed. It would feem, however, that, for the fake of frength, the number of rods has heen increafed in each cluter, by the introduction, between every two of them, of an additional rod, which rifing with them io the roof, fill continues its middle pofition, as they fpread afunder, and meets the horizontal pole at an intermediate point. This is flown in fig. 6. which is drawn with its covering of thatch; and, from the imitation of a dwelling fo conitructed, we may eafily trace the three leading characteriftics of Gothic. architecture, the pointed arch, the cluftered column, and the branching roof, as exhibited in fig. 7."

Upon the fame principles Sir James Hall, with much ingenuity, accounts for the peculiar forms of the Gothic door, the Gothic window, and the pointed fpire: but it is not our intention to fuperlede the neceflity of having recourfe to his memoir, but to excite the defire

A K I [33] A R T

of our reaciers to perufe as well that paper as a larger work which he promifes on the fame fubject, and in which we doubt not but they will find both entertainment and inftruction. We fhall conclude this article, therefore, with an experimental proof of the juftnefs of his hypothefis.

In the greater part of our late attempts at Gothic architecture, it is allowed by every man of tafte that we have failed. The failure is to be accounted for by the buildings having been conftructed upon no confiftent principle, applicable to every part of them, but upon a fervile copying of ancient edifices, of which the ftructure was little underfood by the copiers. Sir James Hall, however, by applying his theory to practice, has conflructed a building in this ftyle, which has far furpaffed, he fays, his own expectation, and has certainly gained the approbation of every man of tafle and feience by whom we have had occafion to hear it mentioned. "A fet of pofts of afl, about three inches in diameter, were placed in two rows, four feet afunder, and at the interval of four feet in the rows; then a number of flender and tapcring willow rods, ten feet in length, were applied to the pofts, and, in the manner which we have defcribed, formed into a frame, which being covered with thatch, produced a very fubflantial roof, under which a perfon can walk with eafe.
"This little flructure exhibits, in miniature, all the characteriftic features of the Gothic ftyl . It is in the form of a crofs, with a nave, a cloir, and a north and fouth tranfept. The thatch, being fo difpofed on the frame as not to hide the rods of which it is compofed, they reprefent accurately the pointed and femicircular arches, and all the other peculiarities of a groined roof."

ARCTUS, a name given by the Greeks to two conftellations of the northern hemifphere, thy the Latins called Ursa MIajor and Minor, and by ws the Greater and Lefer Bear.

Binary ARITHMETIC. See Binart Aritbmetic, Encycl.
Duodecimal Arithmettc, is that which proceeds from 12 to 12 , or by a continual fubdivifion according to 12 . This is greatly ufed by moft artificers in calculating the quantity of their work; as bricklayers, carpenters, painters, tilers, \&c.

Harmonical irithmetic, is fo much of the doetrine of numbers as relates to the making the comparifons, reductions, \&c. of mufical intervals.

Arifhmetic of infinites, is the method of fumming up a feries of numbers, of which the number of terns is infinite. This method was firll invented by Dr Wallis, as appears by his treatife on that fubject; where he fhows its ufes in geometry, in finding the areas of fuperficies, the contents of folids, \&c. But the method of fluxions, which is a kind of univerfal arithmetic of infinities, performs all thefe more eafily, as well as a great many other things, which the former will not reach.

Logifical Arithmetic, a mame fometimes employed for the arithmetic of fexagefimal fractions, ufed in aftronomical computations. Shakerly, in his Tabule Britannica, has a table of logarithms adapted to fexagefiinal fractions, which he calls logifical logarithms: and the expeditious arithmetic, ohtained by means of them, he calls logifica! arilhmetic. The terin logifical arithSuppl, Vol, I. Part I.
metic, however, or lugific, has been ufed by Vieta and Arithmetic others for the rules of computations in algebra.

Political Arifhameic. See Polifical Arithmetic, Artedi. Encycl.
Sexagefimal Arithmetic. See Arithmetic (hij.) Encycl.

Tetrafic Arishmetic, is that in which only the four characters $0,1,2,3$, are ufed. A treatife of this kind of arithmetic is extant by Erhard or Echard Weigel. But both this and binary arithmetic are little better than curiofities, efpecially will regard to practice; as all numbers are much more compendioufly and conveniently expreffed by the common decuple fcale.

Univerfal Arithazetc, is the name given by Newton to the fcience of algebra; of which lie left at Cambridge an excellenc treatife, being the text-book drawn up for the ufe of his lectures, while he was profeffor of mathematics in that univerfity.

ARITHMETICAL COMPLEMENT, of a logarithm, is what the logarithm wants of 1000000 , \&c. and the eafieft way to find it is, beginning at the left hand, to fubtract every figure from 9 , and the laft from 10.

ARTEDI (John), was born in the year 1705, in the province of Angermania, in Sweden. From nature he inherited an ardent paffion for all branches of natural hiftory, but he excelled mott in that branch of it which is termed itchthyology. In 1724 he went to fludy at the univerfity of Upfal, where fome years afterwards he gained the friendhip of the immortal Linnxus, who narrates the principal events of his life in the following animated terms.
" In 1728 (fays Linnxus) I came from Lund to Upfal. I wifhed to devote myfelf to medicine. I inquired who, at that univerfity, excelled moit for his knowledge: every one named Artedi. I was impatient to fee hin. I found him pale, and in great diftrefs for the lofs of his father, with his thin hair neglected. He refembled the portrait of Ray the naturalift. His judgment was ripe, his thoughts profound, his manners fimple, his virtues antique. The converfation turned upon fones, plants, animals. I was enchanted with his obfervations, equally ingenious and new ; for at the very firft he was not afraid to communicate them to me with the utmoft franknefs. I defired his friendhip, he afked mine. From that moment we formed a friendflup; which we cultivated with the greateft ardour for feven months at Upfal. I was his belt friend, and I never had any who was more dear to me. How fivect was that intimacy! With what pleafure did we fee it increafe from day to day! The difference, even of our characters, was ufeful to us. His mind was more fevere, more attentive; he cbferved more flowly, and with greater care. A noble emulation animated us. As I defpaired of ever becoming as well inftructed in chemill ry as he, I abandoned it; he alfio ceafed to ttudy botany with the fame ardour, to which I had devoted myfelf in a particular manner. We continued thus to ftudy different branches of feience; and when one of us excelled the other, he acknowledged him for his mafter. We difputed the palm in ichthyology; but foon I was forced to yield, and I abandoned that part of natural hiftory to him, as well as the amphibia. I fucceeded better than he in the knowkedge of birds and E
infects,

A R T [34] A R T

Artesi. infects, and he no longer tried to excel in thefe branches. We marched together as equals in lithology, and the hiftory of quadrupeds. When one of us made an obfervation, he communicated it to the other: fcarce a day paffed in which one did not learn from the other fome new and interefting particular. Thus emulation excited our induftry, and muttial a!fifance aided our efforts. In fpite of the diftance of our lodgings, we faw éach other every day. At laft I fet out for Lapland; he went to London. He bequeathed to me his manu. fcripts and his books.
"In 1735 I went to Leyden, where I found Artedi. I recounted my adventures; he communicated his to tne. He was not rich, and therefore was unable to be at the expence of taking his degrees in phyfic. I recommended lim to Seba, who engaged him to publifh his work on fifhes. Artedi went to join him at Amiterdam.
"Scarcely had I finifhed my Fundamenta Botanica. I communicated it to him; he let me fee his Pbilofophia Ichtbyologica He propofed to finifh as quickly as poffible the work of Seba, and to put the latt hand to it. He fhowed me all his manufcripts which I had not feen. I was preffed in point of time, and began to be impatient as being detained fo long. Alas! if I bad known this was the laft time I fhould fee him, how fhould I have prolonged it!
"Some days after, as he returned to fup with Seba, the night being dark, he fell into the canal. Nobody perceived it, and he perifhed. Thus died, by water,
this great ichthyclogit, who had cever delighted in that element."

Of the works of this eminent naturalit there have been two editiens, of which the former was publifhed by Linnæus in 173^{8}, and the latter by Dr Walbaum of Lubeck, in the years 1789,1789 , and 1792 . This edition, which is by much the mof valuable, is in three volumes 4 to ; of which the firf contains the hifory of the fcience of ichthyology, commencing feveral yeare before the Chriftian era, and coming down to the prefent timcs. The fecond prefents in the reader the Pbilofophia Ichthyologica of Artedi, improved by Wal. baum, who was benefited by the writings of Alonro, Camper, Kxtfeuter, and others. Here alfo are added tables containing the fyftem of fifhes by Ray, Dale, Schaeffir, Linneus, Gowan, Scopola, Kilein, and Gronovius. The third volume, which completes the collection of Artedi's works, contains the technical definitions of the fcience. After the generic and individua! characters come the names and Latin phrafes of Artedi; the fynonymes of the bef naturalifts; the vulgar names in Erglifh, German, Swedifh, Rulian, Danifh, Norwegian, Dutch, and Samojed; the feafon and the countries where every kind is found, their varieties, their defcription, and obfervations. The modern difcoveries, even to our own times, are added; fo that in this part is collected the obfervations of Gronovius, Brunich, Penant, Fortter, Klen, Bloch, Gmelin, Haf. felquit, Brouffonet, Lefke, Buifh, Linneus, and other great examiners of nature.

$\begin{array}{lllllllll}A & S & T & R & O & N & O & M & Y\end{array}$

IS a fcience which has been cultivated from the earlieft ages, and is converfant about the moit fubline objects of inquiry which can employ the mind of man. it has accordingly been treated at great length in the Eneycloprdia Britannica; but, in the opinion of fome of the mort judicious readers of that work, the compiler of the fyfem which is there delivered has failed in his attempt to give a perfpicuous and connected view of the fcience in its prefent thate of improvement. This defect it is our duty to remedy. Our object, therefore, in this fupplementary article, will be to bring into one point of view the phyfical fcience which may be derived from the conideration of the celeftial motions; that is, to deduce from the general laws of thofe motions the inferences with refpect to their fuppofed caufes, which confitute the philofophy of the aftronmer.

The caufes of all phenomens are not only inferred from the phenomena, but are characterifed by them; and we can form no notion of their nature but what we conceive as competent to the phenomena themfelves. The altronomical phenomena are aflumed to be the motions of the bochief, whicls we call the fun, the planets, the comens, \&c. The notion which we exprefs by the word body in the prefent cafe, is fuppofed to be the fame with that which we form of other objects around us, to which we give the fame name; fuch as fones, fticks, the bodies of animals, \&c. Therefore the notion which we have of the caufes of the celeftial motions mult be the fame with that which we have of the caules of motion
in thofe more familiar bodies. All men feem to have Metaphoriagreed in giving the name yozces, or moving forces, cal ufe of to the caules of thofe familiar motions. This is a fi- the teras gurative or metaphorical tern. The true and original forte. meaning of it is, the exertion whicls we are confcious of making when we ourfelves put other bodies in motion. Force, when ufed without figure, always fignifies the exertion of a livis g and acting thing. We are more interefted in thofe productions of motion than in any other, and our recollections of them are more numerous. Hence it has happened that we ufe the fame term to exprefs the caufe of bodily motion in general, and fay that a magnet has force, that a fpring lias furce, that a moving body has force.

Our own force is always exerted by the intervention of our own body; and we find that the fame exertion by which we move a ftone, enables us to move another man; therefore we conceive his body to refemble a ftone in this refpect, and that it alfo requires the exertion of force to put it in motion. But when we reflect on our employment of force for producing motion in a body, we find ourfelves puzzled how to account for the motion of our own bodies. Here we perceive no intervening exertion but that of willing to do it; yet w ϵ find that we cannot move it as we pleafe. We alfo find that a greater motion requires a greater exertion. It is therefore to this exertion that the reflecting man reftrains the term force; and he acknowledges that every other ufe of it is metaphorical, and that it is a refern-
blance in the ultinate effect alone which difpofes us to employ the term in fach cafes: but we find no great inconvenience in the want of another term.

We farther find, that our exertion is neceffary, not only for producing motion where there was none before, but alfo for producing any change of motion; and accurate obfervation fhews us, that the fane force is required for changing a motion by any given quantity, as for producing that quantity where there was none before.

Lafly, we are confcious of exerting force when we refift the exerted force of another; and that an exertion, perfectly fimilar to this, will prevent fome very faniliar tendencies to motion in the bodies around us: thus an exertion is neceffary for carrying a weight, that is, for preventing the fall of that weight.

All thefe refemblances betwen the effects of our forcible exertions and the changes of motion which accompany the meeting, and fometimes the mere vicinity of other bodies, juftify us in the ufe of this figurative language. The refemblance is found to be the more perfect as we obferve it with more care, and, in fhort, appears to be without exceptio. Bodies are therefore faid to al on each other, to refif each other, to refifl a change of motion, \&c.

Therefore, wherever we obferve a change of motion, we infer the exiftence and exertion of a changing force; and we infer the direction of that exertion from the direction of the change; and the quantity of the exertion, or intenfity of the force, from the quantity of the change.

The ftudy of the caufes of the celeftial motions is therefore hardly different from the fludy of the motions themfelves; fince the agency, the kind, and the degree of the moving force, are immediate inferences from the exifence, the kind, and the quantity of the change of motion.
${ }^{3}{ }^{3}$ Our notion of a moving power is that of a power our notion which produces notion, that is, a fucceffive change of power. place. Contimuation of the motion produced is therefore involved in the very notion of the production of motion; therefure the continued agency of the moving power, or of any power, is not neceffary for the continuation of the motion. Motion is confidered as a flate or condition of the body; there is not any exertion of power therefore in the continnation of mation: But every change is indicative of a changing caufe; and when the change is the fane, in all its circumfances, the caufe is neceflarily conceived to be the fame, or equal.

The condition of a body, in refpect of motion, can differ from that of another equal body only in its direction and in its velocity. If the directions are the fame, the difference of conditions can only be in the difference of velocity. One body has a determination, by which it would defcribe ten feet uniformly in a fecond, if nothing changed this determination; the other has a detcrmination, by which it would defcribe twenty $3{ }^{4}$ Meaire of feet in a fecoand. Each of thefe determinations arc fuprefpect. Therefore thefe determinations are the only meafures of thefe two forces; that is, moving forces are conceived by us as having the proportion of the velocities which they produce in a body by aeting in a manner perfectly fimilar.

We can conceive a force ading equally or unequally. If we fuppofe it to act equally or uniformly, we fuppofe that in equal times it produces equal eflects; that is, cqual determinations, or equal changes of ietermina. tion. We have no other notion of equaliey or uniformity of action. Thercfore it mult produce equal angmentations or diminutions of velocity in equal times; theref ore it muft produce an uniformly accelerated or retarded motion. Unifornly accelerated or retarded mo- Accelera. tion is, therefore, the mark of uniform or unvaried ace tet mution tion. In fuch a motion, the changes of velocity are the mark of proportional to the times from the beginniag of the ace action ; tion; and if the motion has begun from reft, the whole acquired velocities are proportional to the tincs from the beginuing of the motion. In this carie, the ipaces deferibed are as the fquares of the times from the beginning of the motion; and thus we arrive at an oftenfible mark of the unvaried action ot a moving force, viz. fpaces increafing in the duplicate ratio of the times: for fpace and time are all that we can imenediately obferve in any motion that is continually varying; the velocity or determination is only an inference, on the fuppofition that the motion continues unchanged for fome time, or that all action ceafes for fome time.

This abftract realoning is perfectly agreeable to every phenomenon that we can ubferve with ditinctnefs. Thus we cannot, or at leaft we do not, conceive the weight of a hody to vary iss action during the fall. We confider this weight as the caufe of the tall-as the moving force-and we conceive it to act uniformly. And, in fact, a hody falling freely, defcribes fpaces which are proportional, not to the times, but to the fquares of the times, and the fall is a motion unitomly accelerated. In like manner, the motion of a body rifing in the air, in oplofition to gravity, is uniformly retarded.
This kind of motion alfo gives us a certain meafure And givcs of the acquired velocity, aithough there is not, in fact, areafure any fpace obferved to be uniformly deferibed during on the acany time whatever. In this motion we know that the qu recity. final determination, produced by the accumulated or continued action of the unvaried forec, is fuch that the body would defcribe uniformly twice the fpace which it has defcribed with the accelerated motion.
And it is by this method that we obtain the funpleft meafure of any moving force, and can compare it with another. If we obferve that by the action of one furce (known to be uniform by the lpaces being proportional to the fquares of the times) ten feet have been defcribed in a fecond, and that by the uniform action of another force eighty feet are defcribed in two feconds, we know that the laft force is double of the firft : for in the fecond motion, 80 feet were deferibed in two feconds, and therefore 20 feet of this were defcribed in the firt fecond (becaufe the motion is unifornly accelerated; and at the end of a fecond, the firt body had a determination by which it would defcribe 20 feet uniformly in a fecond; and the fecond body had acquired a determination by which it would have defcribed 40 feet unifurunly in the next fecond, lad not the moving force continued to act on it, and made it really defcribe 60 feet with an atcelerated mution.
Becaufe halves have the fame proportions with the units of which they are the halves, it is plain that we may take the fpaces, delcrited in equal times with mo-
tions uniformly accelerated, as meafures of the forces which have produced thole motions. The velocitics generated are, however, the belt meafures.
When the actions of forces are not uniform, it is the velocity more difficult to learn what is the meafure of the veloproduced by action not unifurm. city produced by their accumulated action. But it can be determined with equal accuracy; that is, we can determine what is the velocity which swould bave been produced hy the uniform action of the force during the fane time, and therefore we obtain a meafure of the force. Mathematicians are farther able to demonftrate, that if forces vary their continued action in any manner whatever, the proportion of the fpaces deferibed by two bodies in equal times approaches nearer and nearer to the proportion of the fpaces which they would defcribe in thofe times by the uniform action of the forces, as the times themfelves are fmaller; and therefore whenever we can point out the ultimate ratio of the fpaces de. feribed in equal times, thefe times being diminifhed without end, we obtain the ratio of the forces.

Motions may be changed, not only in quantity, by acceleration or retardation, but alfo in direction, by deflecting a body from its former direction. When a Plate VI. body, moving uniformly in the direction $A B$ (fig. 1.), has its motion changed in the point B, and, inftead of deferibing BC uniformly in the next moment with the former velocity, defcribes BD uniformly in that moment, it is plain that the motion BD will be the fame, whether the body had begun to move in A, or in F, or in G, or in B, provided only that its determination to move, or its velocity, be the fame in all thofe points. Complete the parallelogram BCDE. It is well known, that if one force act on the body which would make it BE, the body will defcribe BD. Hence we learn, that when a body has the motion BC changed into the motion BD, it las been acted on in the point B by a force which would have caufed a body at relt in B to deferibe BE. Thus we can difcover the intenfity and direction of the tranfverfe force which produces any deflection from the former direction. In general, the force is that which would have produced in a body at reft that motion BE, which, when compounded with the former motion BC , produces the new motion BD .

Thefe two principles, viz. ift, that forces are proportional to the velocities which they produce in the fame circumftances, and, 2 d , the compofition of motion or forces, will ferve for all the phyfical inveltigations in aftronomy. All the celeftial motions are curvilineal, and therefore are inflances of continual deflection, and of the continual action of tranfverfe or deflecting forces. We muft therefore endeavour to obtain a general meafure of fuch continual deflecting forces.
Meafure of Let two bodies A and a (fig. 2.) defcribe in the fame thefe furces time the arches $A C, a c$ of two circles. They are deobtained. fected from the tangents $\mathrm{AB}, a b$. Let us fuppofe that the direction of the deflecting forces is known to be that of the chords AE, $a \varepsilon$ of thefe circles. Let thefe be called the deflective chords. Draw CB, cb parallel to $\mathrm{AE}, a \varepsilon$, and $\mathrm{CD}, c d$ parallel to $\mathrm{AB}, a b$. Join $\mathrm{AC}, a c, \mathrm{CE}$, and $c e$. It is plain that the angle $B A C$ is equal to the angle CEA in the alternate feg. ment. Thercfore $A C D$ is alfo equal to it ; and, becaufe the angle $C A D$ is common to the two triangles CAD and EAC, thefe two triangles are fimilar, and
$A D: A C=A C: A E$, and $A D=\frac{A C^{2}}{A E}$. For fimilar reafons $a d=\frac{a c^{2}}{a e}, \quad$ But $A D$ and $a d$ are refpec. tively equal to BC and $b c$. Therefore $\mathrm{BC}=\frac{A C^{2}}{A E}$, and $b c=\frac{a c^{2}}{a \varepsilon} . \quad$ Therefore $\mathrm{BC}: b c=\frac{\mathrm{AC}}{\mathrm{AE}}: \frac{a c^{2}}{a \varepsilon}$, or $\mathrm{BC}: b c=\mathrm{AC} \times a c: a c^{2} \times \mathrm{AE}$. But BC and $b c$ being refpectively equal to AD and $a d$, are equal to the fpaces through which the deflecting forces would have impelled the bodies from a fate of reft in the time of deferibing the arches $\mathrm{AC}, a c$. Therefore, when thefe times are diminifhed without end, the ultimate ratio of AD and $a d$ is the ratio of the forces which deflect the bodies in the points A and a. But it is evident that the ultimate ratio of AC to ac is the ratio of the velocity in the point A to the velocity in the point $a ;$ becaufe thefe arches are fuppofed to be deferibed in the fame or equal times. Therefore the deflecting forces, by which bodies are made to defcribe arches of circles, are to each other as the fquares of the velocities directly, and as the def. Stive cords of thole circles inverfely. This ratio may be expreffed fymbolically thus, $\mathrm{F}: f=\frac{\mathrm{V}^{3}}{\mathrm{C}}: \frac{v^{2}}{c}$; or thus, in a proportional equation, $f \doteqdot \frac{v^{2}}{c}$.

It is eafy to fee that in this laft formula f expreffes directly the line $b c$, or the fpace through which the body is actually made to deviate from rectilineal motion in the time of defcribing the arch ac. It is a third proportional to $a c$ the deflective chord, and $a c$ the arch of the circumference defcribed in a fmall moment of time. This is the meafure afforded immediately by obfervation. We have obferved the arch AC that is deferibed, and know the direction and the length of $A E$ from fome circumftances of the cafe. The formula which comes to us, when treating this queftion by the help of fluxions, is $f=\frac{2 v^{2}}{c}$. This is perhaps a more proper expreffion of the phyfical fact; for it expreffes twice the line $b c$, or the meafure of the velocity which the deflecting force would have generated in the body by acting on it during the time of its defcribing the arch $a c$. But it is indifferent which meafure we take, pro. vided we always take the fame meafure. The firt mathematicians, however, have committed miftakes by mix. ing them.

The planets, however, do not deferibe circles: but all the curves which can be defcribed by the action of finite deflecting forces are of fuch a nature, that we can deferibe a circle through any point, having the fame tangent, and the fame curvature which the planetary curve has in that point, and which therefore ultimately coalefces with it. This being the cafe, it is plain that the planet, while paffing through a point of the curve, and defcribing an indefinitely fmall arch of it, is in the fame condition as if deferibing the coincident arch of the equicurve circle. Hence we obtain this moft general propofition, that the tranfoerfe force by which a planet is made to defcribe any curve, is direaly as the fquare of its velocity, and inverfely as the deflecive chord of the equicurve circle.

Farther: The velocity of a body in any point A
(fg. 2.) of the curve, is equal to that which the deflective force in that point would generate in the body by acting uniformly on it along AF, one-fourth part of the deflective cord AE of the equicurve circle. It is the fame which the body would acquire at F, aftcr a uniformly accelerated motion along AF.

For it is certain that there is fome length AF, fuch that the velecity acquired at F is the fame with the velocity in the point A of the curve. Draw FG parallcl to the tangent, and jnin AG. Make the arch ACI $=2 \mathrm{AF}$. Then, becaufe the fpace deferibed with a uniformly accelerated motion is one half of the fpace which would be uniformly defcribed with the final velocity, the arch ACI would be uniformly defcribed with the velocity which the hody has at A in the time that AF is deferibed with the uniformly accelerated inotion; and the arch $A B$ will be to the arch $A I$ as the time of defcribing $A B$ to that of defcribing AI; that is, as the time of falling through $A D$ to that of falling through AF. But the motion along AF being uniformly accelerated, the fpaces are as the fquares of the times. Therefore $A D$ is to $A F$ as the fquare of the arch AC to the fquare of the arch AI. But AD is to AF as the fquare of the chord AC is to the fquare of the chord AG. Therefore the arch AC is to the chard AC as the arch AI is to the chord AG. But the arch and chord AC are ultimately in the ratio of equality. Therefore the chord AG is equal to the arch AI. Therefore AG is double of AF. But becaufe the triangles FAG and GAE are fimilar, AF is to AG as $A G$ to AE; and therefore AE is double of AG and quadruple of $A F$. Therefore the velocity at A in the curve is that which would be produced by the unifurm impulfe of the deflecting furce along the fourth part of the deffective chord of the equicurve circle.
Thefe two affections or properties of curvilineal motions arc of the moft extenfive ufe, and give an eatier folution of moft queftions than we obtain by the more ufual methods, and deferve to be kept in remembrance by fuch as engage much in the, difcuffion of queftions of this kind.

Thus the inveftigation of the forces which regulate the planetary motions is reduced to the tafk of difcovering the velocity of the planet in the different points of its orbit, and the curvature in thofe points, and the pofition of the deflective chords.

The phy fical fcience of aftronomy muft confift in the difcovery of the general laws which can be affirmed with refpect to the exertion of thofe forces, whether with refpect to their direction or the intenfity of their action. If the mechanician can do more than this, and fhow that every motion that is obferved is an immediate or remote confequence of thofe general laws, he will have completed the fcience, and explained every appearance.

This has accordingly been done by Sir Ifaac Newton and his followers. Sir Iface Newton has difcovered the general laws which regulate the exertions of thofe forces which produce the planetary motions, by reafoning from general phenomena which had been obferved with a certain precifion before his time; and has alfo hown that certain confiderable deviations from the generality which he fuppofed to be perfect were neceffary confequences of the very univerfality of the phyfical law, although the phenomenon was not fo_{0} general as was at firft imagined. Fe has gone farther, and has pointed out fome other.
minute deviations which mutt refult from the phyfical law, but which the art of obfervation was not then fufficiently advanced to difcover in the phenomena. This excited the efforts of men of fcience to inprove the art of aftronomical obfervation ; and not only have the intimations of Newtm been verified by modern obfervation, ${ }_{\text {ers }} \mathrm{His}^{\mathrm{H}}$ but other deviations have heen difcovered, and, in procefs of time, have allio been fhown to be confequences of the fame gencral law of agency: Aud, at this prefent day, there is not a fingle anomaly of the planetary motions which has not been fhown to be a modification of one general law which regulates the action; and therefore characterifes the nature of that fingle force which actuates the whole fytem of the fun, and his attending planets and comets.

It was a moft fortunate circumftance that the conflitution of the folar fyflem was fuch that the deviations from the general law are not very confiderable. The cafe might have been far otherwife, although the law, or nature of the planetary force, were the fame, and the fyltem had heen equally harmonious and beautiful. Had two or three of the planets been vaftly larger than they are, it would have been extremely dificult to difcover any laws of their motion fufficiently general to have led to the fufpicion or the difcovery of the univerfal law of action, or the feccific circumitance in the planetary force which diftinguifhes it from all others, and characteriles its nature. But the three laws of the phanetary motions difcovered by liepler were fo nearly true, at leaft with refpect to the primary planets, that the deviations could not be obferved, and they were thought to te exact. It was on the fuppofition that they were exact, that Newton affirmed that they were only modifications of one law fill more general, nay univerfal.

We fhall follow in order the fleps of this inveltigation.

Sir Ifaac Newton took it for. granted, that the fun $7{ }^{1}{ }^{1} 4$ and planets confitted of inater which refembled thofe by whilh bodies which we daily handle, at leaft in refpect of they prow their mubility; and that the forces which agitate ceeded. them, confidered merely as moving forces, but without confidering or attending to their mode of operation, were to be inferred, both as to their direction and as to their intenfity, from the changes of mution which were afcribed to their agency. He firfe endeavoured to difcover the diregion of that tranfuerfe force by which the planets are made to difcover curve lines, Kepler's firit law furnifhed him with ansple means for this difcovery. Kepler had difcovered, that the right line joining the fun aud any planet defcribed areas proportional to the fimes. Newton demontrated, that if a body was fo carried round a fixed point fituated in the plane of its motion, that the right line joining it with that point defcribed areas proportional to the times, the force which deflected it from an uniform rectilineal motion was continually directed to that fixed puint. This makes the 2d propofition of his immortal work The Mathematical Principles of Natural Pbilofoppy, and it is given in the article Astronomy of the Encycluprdia Britannica, $\oint 260$.

Hence Sir Ifaac Newton inferred, that the primary planets were retained in their orbits by a furce continually directed to the fun; and, becaufe Kepler's law. of motion was alifo obferved by the fecundary plakets
in their revolutions round their refpective primary flasets, this inference was extended to them.
Centripetal From the circumfarice that the planetary deflecting force. forces in the different points of the orbit are always directed toward one point as to a centre, they have been 16 called centripetal forces.
Velocity of From this propolition may be deduced a corollary apla; et in which eftablifhes a general law of the motion of any the cifferent prints of i:s orbit. planet in the different parts of its orbit, namely, that the velocity which a planet has in the different poiuts of its path are in ierfuly proportional to the perpendiculars drawn from the fun on the tangents to the orbit in thofe points refpectively. For, let $\mathrm{AB}, a b$ (fig. 3.) be two arches (extremely finall), defcribed in equal times, thefe arches mult be ultimately proportional to the relocities with which they are defcribéd. Let $S P, S p$ be perpendicular to the tangents $A P, a p$. The triangles ASB, a S b are equal, becaufe equal areas are defcribed by the radii vegores $S A, S a$, in equal times: but in equal triangles, the hafes $\mathrm{AB}, a b$, are reciprocally as their heights $\mathrm{SP}, \mathrm{S} p$, or $\mathrm{AB}: a b=\mathrm{S} p: \mathrm{SP}$.

This corollary gives us another expreffion of the ratio of the centripetal forces in different poit.ts A and a of a curve. We faw by a former propofition, that the force at A (fig. 2.) is to the force at a as $\mathrm{AC}^{2} \times a e$ to $a c^{2} \times \mathrm{A}$ E, which we may exprefs thus: $\mathrm{F}: f=\mathrm{V}^{2}$ $X_{c}: v^{2} \times C$. If we exprefs the perpendiculars $S P, S p$ (in fig. 3.) by the fymbols P, p, we have $\mathrm{V}^{2}: v^{2}=p^{2}: \mathrm{P}^{2}$, and therefore $\mathrm{F}: f=p^{2} \times c: \mathrm{P}^{2} \times \mathrm{C}$. The centripetal forces in different points of an orbit are in the ratio compounded of the inverfe duplicate ratio of the perpendiculars drawn to the tangents in thofe points from the centre of forces, and the inverye ratio of the deflecive chords of the equicurve circles.

We are now in a condition to determine the law of action of the centripetal force by which a planct is retained in its orbit round the fun, or the relation which fubfifts between the intenfity of its action and the diftance of the planet from the fun : for we know the elliptical figure of the orbit, and we can draw a tangent to it in any point, and a perpendicular from the fun to that tangent.

Kepler's fecond law or obfervation of the planetary motions was, that each primary planet defcribed an ellipfe, baving the fun in one focus. It is eafy to thow, even without any knowledge of the geometrical properties of the ellipfe, what is the proportion of the intenfities of the deflecting force at the aphelion and perihelion (fee fig. 4.) At thofe two points of the orbit, the motion of the planet is at right angles to the liue joining it with the fun. Therefore, fince the areas defcribed in equal times are equal, the arches deferibed in equal times muft be inverfely at the diftances from the fun ; or the velocities mult be inverfely as the diftances from the fun. But the curvature in the aphelion and periletion is the fame; and therefore the diameters of the equicurve circles in thofe points are equal. But thofe diameters are, in this particular cafs, what we called the deflective chords. Therefore, calling the aphelion and perihelion ditlances D and d, the velocities in the aphelion and perihelion V and ε, let the common deflective chord be C . Then we have $\mathrm{F}: f=\mathrm{V}^{2} \times \mathrm{C}: v^{2} \times \mathrm{C}$, $=\mathrm{V}^{2}: v^{2},=d^{2}: \mathrm{D}^{2}$. That is, the forces which deflect the planet in the aphelion and perihelion are inverfely as the fquares of the diftances from the fun. A

$\mathrm{N} \quad \mathrm{O} \quad \mathrm{M}$.

perfon almoft ipnorant of mathematics may fee the trutia of this by looking into a table of natural verfed fines. He w:ll ublerve, that the verfed fine of one degree is quadruple the veried fine of half a degree, and fixteen times the ve:fed fine of a quarter of a degree; in fhort, that the verfed fines of fmall arches are in the proportion of the fquares of the arches. Now fince the arches defcribed in equal times are inverfely as the diftances, their verfed fines are inverfely as the fquares of the diftances. But thefe verfed fines are the fpaces through which the centripetal forces at the aphelion and perihelion deflect the planet from the tangent. Therefore, ε ec.

Thus we have found, that in the aphelion and purihelion the centripetal force acts with an intenfity that is proportional to the fouares of the diftances inverfely. As thefe are the extreme fituations of a planet, and as the proportion of the aphelion and perihelion diftances are coufiderably diffarent in the different planets, and yet this law of action is obferved in them all, it is reafonable to imagine that it holds true, not in thofe fituations only, but in every intermediate fituation. But a conjecture, however probable, is not fufficient, when we aim at accurate fcience, and it is neceffary to examine whether this law of action is really obferved in every point of the elliptical orbit.
For th:s purpofe it is neceffary to mention fome geo- Demonfremetrical properties of the ellipfe. Therefure let ADBE ted with re(fig. 4.) be the elliptical orbit of a planet or comet, fpes to the having the fun in the focus S. Let $A B$ be the tranf-earth, verfe axis, and DE the conjugate axis, and C the centre. Let P be any point of the ellipfe. Draw PS through the focus. Draw the tangent PN, and SN from the focus, perpendicular to PN. Draw PQ perpendicular to $P N$, meeting the tranfverfe axis in Q. Draw $Q O$ parallel to PN, meeting PS in O. Alfo draw QR perpendicular to PS . Bifect PO in T.

It is demonftrated in the treatifes of conic fections. that PO is one half of the chord of the equicurve or ofculating circle drawn through the point P. Therefore PO is one half of the deflective chord of the planetary orbit. It is alfo demonftrated, that $P R$ is one half of the parameter or latus refum of the tranfverfe axis AB , or that it is the third proportional to $A C$ and DC. Therefore PR or D_{r} is of the fame conftant magnitude, in whatever pari of the circumference the point P is taken.

It is evident that the triangles NSP, RPQ, and QPO, are all fimilar, by reafon of the parallels PN, QO, and the right angles SNP, PRQ, PQO. Therefore we have $P R: P Q=P Q: P O$. Therefore $P R: P O$ $=\mathrm{PR}^{2}: \mathrm{PQ}^{2},=\mathrm{SN}^{2}: \mathrm{SP}^{2}$. Thercfore $\mathrm{PK} \times \mathrm{SP}^{2}$ $=\mathrm{O} \times \mathrm{SN}^{\frac{1}{2}}$. But the latus regum L is equal to twice PR, and the deflective chord C is equal to twice PO. Therefore $L \times S P^{2}=\mathrm{C} \times \mathrm{SN}^{2}$. But we have feen, that when a curve is defcribed by nieans of a centripetal force, fo that areas are defcribed proportional to the times, and therefore the velocities are feciprocally proportional to the perpendiculars drawn from the centre of forces to the tangents, the forces are inverfely proportional to $\mathrm{C} \times \mathrm{SN}^{2}$. Therefore, in the elliptical motion of the planets, the forces are inverfely proportional to $\mathrm{L} \times \mathrm{SP}^{2}$; and fince L is a conftant quantity, the centripetal forces are inverfely proportional to SP 2, or to the fquares of the difances from the fun.

Thus it appears that, with refpect to any individual planet, the centripetal force which continually deflects it from the tangent to its orbit diminifhes in the inverfe
$d \mathrm{~S}, s \mathrm{~S}$. It is well known that DS is half of the chord of the equicurve circle at D , and therefore D$)$ is one fourth patt of it. It has been demonftrated, that the velocity in any point 1) of a curve, deferibed by means of a deflecting force, is that which the foree in that point would communicate to it by uniformly impelling it along the fourth part of the detiective chord, that is, along I) \%. But if a borly revulved round S in a cirele DFG, its velocity in that cirele would be that which the defeeting force would communicate to it by uniformly impelling it along one-fourth of the diameter, that is, along D t. Therefore the planct, if projected in the direction D d, with the velocity which it has in the point D of the ellipfe, would defcribe the circle DFG by the action of the centripetal force. Farther, it would defcribe it in the fame time that it deforibes the ellipfe; for becaufe the velucities are equal, the areas DSid, DS of are defcibed in the fame time. But the bafes I$) d, \mathrm{D} s$ being equal, thefe areas are as their heights $\mathrm{S} n$ (or CD), and SD (or CA). But becaufe the diameter of the circle is equal to $A B$, the area of the whole ellipfe is to the area of the circle as $C D$ is to CA; that is, as the area $\mathrm{DS} d$ to the area DS s deferibed in the fame time. Therefore the elliptical and circular areas are fimilar portions of the ellipfe and circle; and therefore the times of deferibing them are fimilar portions of the whole revolutious in the ellipfe. and in the circle. Therefore thefe revolutions are per. formed in equal times.

And thus it follows, that if all the planets and comets were projected, when at their mean diftances from the fun, perpendicularly to the radii velores, they would defcribe circles round the fun, and the fquares of their periodic times wonld be proportional to the eubes of their mean diflances from the fun, as Kepler las obferved; and therefore the centripetal forces would be inverfely as the fquares of their diftances from the fun.
They are not different forces therefore which retain All the piathe different planets in their refpective orbits, but one nets reainforce, acting by the fame law upon them all. We may ed in their either conceive it as an attractive force, exerted by the orbits by fun, or as a tendency in each planct; nay, nothingone and the linders us from conceiving it as a force external, both fame force, to fun and planets, impelling them towards the fun. It may be the impulfe of a ftream of fluid moving continually towards the fun. Sir Iface Newton did not concern himfelf with this queftion, but contented himfelf with the difcovery of the law according to which its action was exerted. The lteps of this inveltigation fhewed him, that a body, projected in any direction whatever, and with any velocity whatever, and fubjected to the action of a force directed to the fun, and inverfely proportional to the fquare of the diftance from the fun, will neceflarily defcribe a conic fection, having the fun in the focus. This will be a parabola, if the velocity of projection be that which the centripetal force in that place would communicate to the body by acting on it uniformly along a line equal to half its diflance from the fun. If the velocity be greater than this, the path willbe a hyperbola; if the velocity be lefs than this, the path will be an elliptical orbit, in which the body will revolve for ever round the fun.

The 3d Keplerean law is alfo obferved in the revolutions of the fatellites of Jupiter, Saturn, and the lately

$\begin{array}{lllllllll}\text { A } & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{O} & \mathrm{N} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

difcovered planet; and we muft infer from it, that they are retained in their orbits round their refpective primary planets, by forces whofe intenlity decreafes according to the fame law of the diftances. Alfo the elliptical motion of the moon round the earth, fhews that the force by which the is retained in her orbit varies in the fame proportion of the diftances. But when we compare the motion of a fatellite of Jupiter with that of one of the fatellites of the other two planets, we find that the proportion does not hold. We thall find that, at equal diftances from Jupiter and Saturn, the force toward Jupiter is almof thrice as great as the furce toward Saturn. We fhall allo find that the force toward Jupiter is three hundred times greater than the force which retains the moon in its elliptical orbit round the carth, when acting at the fame diftance.

Since a force directed to the fun, and inverfely as the fquare of the diftance, is thus found to pervade all the planetary orbits, it is highly improbable that it will not affect the fecondary planets alfo. The moon accompanies the earth in its motion round the fun. It may appear fufficient for this purpole, that the moon be retained in its orbit by a force directed to the earth. Were the moon connected with the earth by a rope or chain, this would be true ; for the earth could get no motion without dragging the moon along with it : but it is quite otherwife with bodies moving in free fpace, without any material connections. When a body that is moving uniformly in a ftraight line is accompanied by another which defcribes around it areas proportional to the times, the force which continually deflects this fa-

22
The fatel lites of al the planets rubjected 10 this folar ation. tellite is always directed to the noving central body. This is eafily feen; for whatever be the mutual action of two bodies, and their relative motions in confequence of this action, if the fame velocity be impreffed at once on buth bodies in the fame direction, their mutual actions and relative motions will be the fame as they would have been without this common impulfe. Thus every thing is done in a flip that is failing feadily in the fame manner as if fhe were at reft. If therefore the moon be obferved to defcribe areas round the carth, which are precifely proportional to the times, while the earth moves in an orbit round the fun, we mult infer that the moon receives, in every inftant, an, impulfe the fame in every refpect with what the earth receives at the fame inftant; or that the moon is acted on by a force paral. lel to the earth's diftance from the fun, and proportional to the fquare of that diftance inverfely. Now this is very nearly true of the lunar motions; and we muft infer that the moon is fubjected to this fular àction, or this tendency to the fun. The fame muft be affirmed of the fatellites of the other planets.

But a furce inverfely proportional to the fquare of the eath's diltance from the fun is not what the univertality of the law requires: It muft be inverfely as the tquare of the moon's diftance from the fun; and it mutt not be parallei to the earth's diftance from the fun, but mult be directed toward the fun; and therefore, in the quadratures, it muft converge to the earth's radius vector. Therefore, fince a furce laving the above mentioned conditions will allow the defcription of areas round the earth exactly proportional to the times, a force acting on the moon, inverfely proportional to the fquare of her diftance from the fun, and directed exactly to the fun, is incompatible with the accurate ellipti-
cal motion round the earth. At new moon, her ten. dency to the fun exceeds the earth's tendency to him, and this excefs will diminifh her tendency to the earth, Hor cir he moon's will retire a little from the earth. At full moon, the motion earth's tendency to the fun exceeds the moon's tendency to him, and the earth will feparate a little from the moon, fo that the relative orbit will again be lefs incurvated. In the quadratures, the impulfe on the moon is indeed equal to that on the earth, but not parallel, and tends to make the moon approach the earth, and increafe the curvature of her orbit. In other fituations of the moon, this want of equality and parallelifm of the forces acting on the earth and moon, muft produce other difturbances of the regular elliptical motion.

Newton faw this at once; and, to his great delight, he faw that the great deviations from regular motion, which laad been difcovered by Ptolemy and T'ycho Brahé, called the Annual Equation, the Variation, and the Evection, were fuch as moft obvioufly refulted from the regular influence of the fun on the moon. The firt deviation from the regular elliptical motion is occafioned by the increafe of the fun's difturbing force as the earth approaches the perihelion; and it enlarges the lunar orbit, by diminifhing the tendency to the earth, and in. creafes the periodic time. The fecond arifes from the direction of the difturbing force, by which it accelerates the moon's angular motion in the fecond and fourth quadrants of her orbit, and rctards it in the firft and third. The laft affects the eccentricity of the orbit, by changing the ratio of the whole or conpound tendency of the moon to the earth in her perigee and apogee. This fuecefs incited him to an accurate examination of the confequences of this influence. It is the boaft of May becal this difcovery of the law of the planetary deflections, culated that all its effects may be calculated with the utmof with preprecifion. The part of the moon's deflection toward the fun, which is neither equal nor parallel to the fimultaneous deflection of the earth, may be feparated from the part which is equal and parallel to it, and it may be called the fun's difturbing force. Its proportion to the moon's deflection towards the earth may be accurately afcertained, and its inclination to the line of the moon's motion in every point of her orbit may be pointed out. This being done, the accumulated effect of this difturbing force after any given time, however variable, both in direction and intenfity during this time, may be determined by the 39 th and other propofitions of the firft hook of the Mathematical Principles of Natural Philofophy. And thus may the moon's motion, when fo difturbed, be determined and compared with her motion really obferved.

All this has been done by Sir Iface Newton with the moft altonifhing addrefs and fagacity, fua mathefi facen preferente, partly in the Principia, and partly in his Luve Theoria. This inveltigation, whether we confider the complete originality of the whale procefs, or the ingenuity of the method, or the fagacity in fecing and clearly difriminating the different circumftances of the queftion, or the wonderful fertility of refource, or the new and molt refined mathematical principles and methods that he employed-muft ever be confidered as the moft brilliant fpecimen of human invention and reafoning that ever was exhibited to the world.

In this inveftigation Newton not only determined the quantity,
quantity, the period, and the ehanges of thofe inequalities, which had been fo confiderable and remarkable as to be obferved by former aftronomers, and this with an exactnefs far furpaffing what eould ever be attained by mere obfervation; but he alfo pointed out feveral other periodical inequalities, which were too fmall, and too much implicated with the reft, ever to bc difcovered or to be feparated from them. We do not fay that lie completed the theory of the lunar motions; but he pointed out the methods of invefligation, and he furnifhed all the means of profecuting it, by giving the world the elements of a new fpeeies of mathematies, without which it would have been in vain to attempt it. Both this new mathematies, and the methods of applying it to fueh queftions, have heen affiduoufly ftudied and improved by the great mathematieians of this century ; and the lunar theory has been carried to fueh a degree of perfection, that we can compute her place in the heavens for any paft age without deviating above one minute of a degree from the actual obferfation.

There is one empirical equation of the moon's motion which the comparifon of ancient and modern eclipfes obliges the aftronomers to employ, without being able to deduee it, like the reft, a priori, from the theory of an univerfal force inverfely proportional to the fquare of the diftance. It has therefore been confidered as a fumbling block in the Newtonian philofoply. This is what is called the fecular equation of the moon's mean motion. The mean motion is dedueed from a comparifon of diftant obfervations. The time between them, being divided by the number of intervening revolutions, gives the average time of one revolution, or the mean lunar period. When the ancient Chaldean obfervations are compared with thofe of Hipparchus, we obtain a certain period; when thofe of Hipparehus are compared with fome in the gth eentury, we obtain a period fomewhat fhorter; when the laft are compared with thofe of Tycho Brahé, we obtain one ftill fiorter; and when Brahés are compared with thofe of our day, we obtain the fhortelt period of all-and thus the moon's mean motion appears to accelerate continually; and the accelerations appear to be in the duplicate ratio of the times. The acceleration for the century which ended in 1700 is about 9 feconds of a degree; that is to fay, the whole motion of the moon during the ryth century mult be increafed 9 feconds, in order to obtain its motion during the 18 th ; and as much mult be taken from it, or added to the eomputed longitude, to obtain its motion during the 16 th; and the double of this muft be taken from the motion during the 16 th, to obtain its motion during the 15 th, \&ec. Or it will be fufficient to ealculate the moon's mean longitude for any time paft or to come by the fecular motion which obtains in the prefent century, and then to add to this longitude the product of 9 feconds, multiplied by the fquare of the number of centuries whieh intervene. Thus having found the mean longitude for the year 1200, add 9 feconds, multiplied by 36 , for fix centuries. By this method we fhall make our salculation agree with the moft ancient and all intermediate obfervations. If we neglect this correction, we fhall differ more than a degree from the Chaldean obfervations of the moon's place in the heavens.

The mathematicians having fucceeded fo completely in deducing all the obferved inequalities of the planeta.

Suppl. Vol. I. Part. I.
ry motions, from the fingle principle, that the deftecting forees diminifhed in the inverfe duplicate ratio of the diftances, were fretted by this exeption, the reality of which they could not conteft. Many opinions were formed about its caufe. Some have attempted to deduce it from the action of the planets on the moon: others have deduced it from the oblate form of the earth, and the tranflation of the ocean by the tides; uthers have fuppofed it owing to the reliftance of the ether in the celettial fpaces; and others have imaginerd that the action of the deflecting foree requires time for its propagation to a diftance: But their deductions have been proved unfatisfactory, and have by no means the precifion and evidence that have been attained in the other queftions of phyfical altronomy. At latt M. de la Place, of the Royal Aeademy of Seiences at Paris, has happily fucceeded, and deduced the fecular equation of the moon from the Newtonian law of planetary deflection. It is produced in the following manner:

Suppofe the moon revolving round the earth undi- Deduced fturbed by any defection toward the fun, and that the from the time of lier revolution is exactly afeertained. Now let Newtonian the influence of the fun be added. This diminifhes her law of pla. tendency to the earth in oppofition and eonjunction, netary de and increafes it in the quadratures: but the diminutions exceed the augmentations both in quantity and duration ; and the excefs is equivalent to $\frac{1}{T^{\prime}}$ th of her tendency to the earth. Therefore this diminifhed tenden. cy cannot retain the moon in the fame orbit; the muft retire farther from the earth, and deferibe an orbit which is lefs ineurvated by $\frac{1}{3}$ th part; and the muft employ a longer time in a revolution. The period therefore which we ohferve, is not that which would have obtained had the moon been influenced by the earth alone. We thould not have known that her natural period was inereafed, had the difturbing influence of the fun remained unchanged; but this varies in the inverfe triplicate ratio of the earth's diftance from the fun, and is therefore greater in our winter, when the earth is nearer to the fun. This is the fource of the annual equation, by which the lunar period in January is made to exceed that in July nearly 24 minutes. The angular veloeity of the moon is diminifhed in general $\frac{1}{7}$, and this numerical coefficient varies in the inverfe ratio of the cube of the earth's diftance from the fun. If we expand this inverfe cube of the earth's diflance into a feries arranged aceording to the fines and cofines of the earth's mean motion, making the earth's mean diflance unity, we fhall find that the feries contains a term equal to $\frac{3}{4}$ of the fquare of the eccentricity of the earth's orbit. Therefore the expreflion of the diminution of the moun's angular velocity coatains a term equal to $\frac{1}{7} \frac{1}{9}$ of this velocity, multiplied by $\frac{3}{2}$ of the fquare of the earth's eecentricity ; or equal to the product of the fquare of the eccentricity, multiplied by the moon's angular velocity, and divided by 119,33 ($\frac{2}{3}$ of 179). Did this eecentricity remain conftant, this product would alfo be conftant, and would ftill be confounded with the general diminution, making a conflant part of it: but the eccentricity of the earth's orbit is known to diminifh, and its diminution is the refult of the univerfality of the Newtonian law of the planetary deflections. Although this diminution is exceedingly fmall, its effect on the Junar motion becomes fenfible by aceumulation in the courfe of ages. The eccentricity diminifing, the dimi-

A $\quad \mathrm{S} \quad \mathrm{T} \quad \mathrm{R} \quad \mathrm{O} \quad \mathrm{N}$ O M Y.

nution of the moon's angular motion mult alfo diminifh, that is, the angular motion muft increafe.

During the 18 th century, the fquare of the earth's eccentricity has diminithed 0,0000015325 , the mean diftance from the fun being $=1$. This has increafed the angular motion of the moon in that time 0,00000001285 . As this angmentation is gradual, we nult multiply the angular motion during the century by the half of this quantity, in order to obtaio its accumulated effect. '1'his will be found to be $9^{\prime \prime}$ very uearly, which exceeds that deduced, from a molt careful comparifon of the motion of the lall two centuries, only by a fraction of a fccond!

As long as the diminution of the fquare of the eccentricity of the earth's orbit can be fuppofed proportional to the time, this effect will be as the fquares of the times. When this theory is compared with obfersations, the coincidence is wonderful indeed. The effect on the moon's motion is periodical, as the change of the folar eccentricity is, and its period includes millions of years. Its effect on the moon's longitude will amount to feveral degrees before the fecular acceleration clange to a retardation.

Thofe who are not familiar with the difquifitions of modern analylis, may conceive this queltion in the folluwing manner.

Let the length of a lunar period be computed for the earth's diftance fro:n the fun for évery day of the year. Add them into one fum, and divide this by their number, the quctient will be the mean lunar period. This will he found to be greater than the arithmetical medium between the greateft and the lealt. Then fuppofe the eccentricity of the earth's orbit to be greater, and make the fame computation. The average period will be found Alll greater, while the medium between the greateft and lealt periods will hardly differ from the former. Something very like this may be obferved withont any calculation, in a cale very fimilar. The angular velocity of the fun is inverfely as the fquare of his dillance. Look into the folar tables, and the greateft diurnal motion will be found $3673^{\prime \prime}$, and the leaft $3433^{\prime \prime}$. The mean of thefe is $3553^{\prime \prime}$, but the medium of the whole is $354^{\prime \prime}$. Now make a fimilar obfervation in tables of the motion of the playict Mars, whofe eccentricity is much greater. We fhall find that the medium between the greateft and lealt exceeds the true

Thus has the patient and affiduous cultivation of the Newtonian difcoveries explained every phenomenon, and enabled us to forefee changes in them which no examination of the palt appearances, unaffifted by this theory, could have pointed nut, and which mult have exceed. ingly embarraffed future aftronomers This great but dimple law of deflection reprefents every phenomenon of the fyftem in the moft minute circumftances. Far from fearing that future experience may overturn this law, we may reft affured that it will only confirm it more and more; and we may confide in its moft remote
confequences as if they were actually obferved.
$2 S$
Reciprocal deflection the moon to the earth, and of the planets to the fun, of the earth are accumpanied by an equal and oppofite deflection of and moon, and of the fun and pla. nets,
the earth to the moon, and of the lun to the planets.
The tendency of the earth to the moon is plainly indicated by the rife of the waters of the ocean under the
moon, and on the oppofite fide of the earth. Sir Iface Newton tried what fhould be the refult of a tendency of the water to the moon. His inveltigation of this quefo tion was very fimilar to that in his lunar theory. We may conceive the moon to be one of many millions of particles of a fluid, occupying a globe as big as the lunar orbit. Each will feel a fimilar ditturbing force, which will diminith its tendency to the earth in the neighbourhood of the place of conjunction and oppofition, and will increafe it in the neighbourhood of the quadratures. They cannot therefore remain in equilibrio in their \{pherical form; they mult fink in the qua. dratures, and rife in the conjunction and oppolition, till their greater height compenfates for the diminifhed weight of each particle. In like manner, the waters of the ocean mult fink on thofe parts of the earth where the moon is feen in the horizon, and mult rife in thofe which have the moon in the zenith or nauir. All thefe effects are not only to be feen in general, but they may all be calculated, and the very form pointed out which the furface of the ocean mult affume; and thus a tendency of every particle of the occan to the moon, in. verfely proportional to the fquare of its diftance from it, gives us a theory of the ebbing and flowing of the fca. This is delivered in fufficient detail in the article Tide of the Encyclopædia Britannica, and therefore need not be infifted on in this place. The fime inference mult be drawn from the preceffion of the equ:noxes produced by the action of the noon on the protuberant matter of our equatorial regions. See Precession in the Encycl.

But the mutual tendency of the earth and moon is And by di clearly feen in a phenomenon that is much more fimple. ferert con If we compute the fun's place in the heavens, on the putations fuppofition that the earth defcribes areas proportional to the times, we fiall find it to agree with obfervation at every new and full moun: But at the firfl quarter the fun will be obferved about 9 feconds too much advanced to the eaftward; and at the laft quarter he will be as much to the weft ward of his calculated place. In all intermediate pofitions, the deviation of the obferved from the computed place of the fun will be 9 feconds, multiplied by the line of the mon's dittance from conjunction or oppofition, In frort, the appearances will be the fame as if it were not the earth which defcribed areas proportional to the times round the fun, but that a point, lying between the earth and moon, and very near the earth's furface, were defcribing the ellipfe round the fun, while the earth and moon revolve round this point in the courfe of a lunation, having the point always in the line between them, in the fame manner as if they were on the extremities of a rod which turns ronnd this point, while the point itfelf revolves round the fun.

This then is the fact with refpect to the motions: and the earth in a month defcribes an orbit round this common centre of the earth and muon. It cannut do this unlefs it be continually deflected from the tangent to this orbit ; therefore it is continually deflected toward the moon : and the momentuin of this deflection, that is, its quantity of motion, is the fame with that of the moon's deflection, becaufe their difances from the common centre are as their quantities of matter inverfely.

Appearances perfectly fimilar to thefe oblige us to affirm
affirm that the fun is continually deffected toward the planets. Affronomical inflruments, and the art of obferving, have been prodigioufly improved fince Sir Ifac Newton's time ; and the moft ferupulons attention has been paid to the fun's motion, becaufe it is to his place in the univerfe that continual refercnce is made in computing the place of all the planets. He is fuppofed at reft in the common focus of all their orbits; and the obferved ditance of a planet from the fun is always confidered as the radius queitor. If this be not the cafe, the orbital motions contained in our tables are not the abfolute motions of the planets, nor the deffections from the tangents the real deflections from abfolute rectilineal motion; and therefore the forces are not fuch as we in. fer from thofe miftaken deflections. Accordingly Sir Ifaac Newton, induced by certain metaphyfical confiderations, affumed it as a law of motion, that every action of a body A on another body B , is accompanied by an equal and contrary action of B on A . We do not fee the propriety of this affertion as a anctaphyfical axiom. It is perfectly conceivable that a picce of iron will always approach a magnet when in its neighbour. hood; but we do not fee that this chliges us to affert, that therefore the magnet will allo approach the iron. Thofe who explain the phenomena of magnetifm by the impulfe of a fluid, muft certainly grant that there is no metaphyfical neceffity for another ftrean of fluid impelling the magnet toward the iron. And accordingly this, and the fimilar reciprocity in the phenomena of clectricity, have alzvays been confidered as deductions of experimental philofophy; yet we obferve the fame reciprocity in all the actions of fublunary bodies; and Newton's third law of motion is received as true, and admitted as a principle of reafoning. But we apprehend that it was hafly in this great philofopher, and unlike his fcrupulous caution, to extend it to the planetary nutions. He did, however. extend it, and afferted, that as each planet was deflected toward the fun, the fun was equally (in refpect of monientum) deflected toward each planet, and that his real motion was the compofition of all thofe fimultaneous deflections. He afferted that there was a certain point round which the fun and his attending planets revolved; and that the orbit of a planet, which our meafurements determined by continual reference to the fun as to a fixed body, was nut the true orbit, but conlifted of the contemporaneous orbits of that planet and of the fun round this fixed point. Any litile fector of the apparent orbit was greater than the correfponding fector of the planet's true orbit in abfolute fpace, and the apparent motion was compcunded of the true motion of the planet, and the oppofite to the true motion of the fun. After a mofl ingenious and refined inveftigation, he fhewed that, notwithftanding this great difference of the Keplerean laws from the truth, the inference, with refpect to the law of planetary deflection, is juft, and that not only the apparent deflections are in the inverfe duplicate ratio of the diftances from the fun, but that the real deflections vary in the fame ratio of the dilances from the fixed point, and alfo from the fun; for he fhewed that the diftances from the fun were in a conItant ratio to the diftances from this point. He fhewed alfo that the fame forces which produced the contemporaneous revolution of a planet and the fun round the centre of the fyitem, would produce a revolution of
the planet in a fimilar orbit round the fun (fuppoied to be held faft in his place) at the fame diftance which really obtains between then, with this fole difierence, that the periorlic time will be longer, in the fubduplicate ratio of the quantity of matter in the fun to the quantity of matter of the fun and planet together. A. reas will be defcribed proportional to the tines, and the orbit will be elliptical; but the ratio of the fquares of the periodic times will not be the fame with the ratio of the cubes of the diffances, unlefs all the planets are equal.

Thus was the attention of aftronomers directed in a number of apparent irregularities in the motion of the earth, which muft refult from this derangement of the fun, which they had imagined to remain fledfaft in his place. They were told what to expect, and on what pofitions of the planets the kind and quantity of every irregularity depended. This was a muft inviting field of obfervation to a curious fpeculatift; but it required the niceft and moft expenive inflruments, and an uninterrupted feries of long continued ohfervations, fufficiont to occupy the whole of a man's time. Fortunately the accurate determination of the folar and lunar motions were of the utmot importance, nay, indifpenfatly neceffary for folving the famous problem of the longitude of a fhip at fea : and thus the demands of commercial Europe came in aid of philofophical curiofity, and occafoned the erection of obfervatories, firft at Greenwich, and foon after at Paris and other places, with eftablifhents for aftronomers, who fhould carefully watch the motions of the fun and moon, not neglecting the other planets.
The fortunate refult of all this folicitude has been the confirmed complete eftablifhment of the Newtonian conjecture (for ly obfervafo we muft fill think it), and the verification ol New- ${ }^{\text {ton. }}$ ton's affertion, that action was accompanied, through the whole folar fyftem, by an equal and contrary re. action. All the inequalitics of the folar motion predicted by Newton have been obferved, although they are frequently fo complicated that they could never have been detected, had not the Newtomian theory directed us when to find any of them pretty clear of complication, and how to afcertain the accumulated refult of them all in any flate of combination.

But in the courfe of this attention to the motions of the fun and moon, the planets came in for a fhare, and confiderable deviations were found, from the fuppofition that all their deflections were directed to the fun, and were in the inverfe duplicate ratio of their diffances. The nice obfervation fhewed, that the period of Jupiter was formewhat fhorter than Kepler's law required.
A flight reflection fhewed that this was no inconfiftency; becaule the common centre of the conjuined orbits of the fun and Jupiter was fenfibly diftant from the centre of the fun, namely, about the 1 rocth part of the radius vetior; and therefore the real deflection was about a 2200 th part lefs than was fuppofed. It was now plain that the diftances to which the Keplerean law muft be applied, are the diflances, not from the fun, but from the fixed point round which the fun and planets revolve. This dificerence was too fmall to be obferved in Kepler's time; but the feeming error is only a confirmation of the Newtonian philofophy.

But there are other irregularities which cannot be explained in this manner. The planetary orbits change
their pofition: their aphelia adrance, their nodes recedc, their inclination to each other vary. The mean inotions of Saturn and Jupiter are fubject to confiderable
34 changes, which are periodical.

1) flection Sir Ifaac Newton had no fooner difcovered the uniof the pla- verfality and reciprocity of the deflections of the planets to wards each wher. nets and the fun, than he alio fufpected that they were diately more ohained a general notion of what thould be the may be conceived in this way.
Let S (lig. 5.) reprefent the fun, E the carth, and I Jupiter, deferibing conceritric orbits round the centre of the fyttem. Make JS : EA $=\mathrm{EI}^{2}: \mathrm{SI}^{2}$. Then, if IS be taken to reprefent the deflection of the fun toward Jupiter, EA will reprefent the deflection of the Earth to Jupiter. Draw EB equal and parallel to SL, 35 and complete the parallelogram EBAD. ED will refult of fuch prefent the difturbing force of Jupiter. It inay be remutual ac- folved into EF, perpendicular to ES, and EG in the dition. rection of SE. By the firlt of thefe the earth's angu-
lar motion round the fun is affected, and by the fecond its deflection toward him is diminifhed or increafed.

In confequence of this firtt part of the difturbing force, the angular motion is increafed, while the earth approaches from quadrature to conjunction with Jupiter (which is the cafe reprefented in the figure), and is diminifhed from the time that Jupicer is in oppofition till the earth is again in quadrature, weftward of his oppofition. The earth is then accelerated till Jupiter is in conjunction with the fun; after which it is retarded till the earth is again in quadrature.

The eartl's tendency to the fun is diminithed while Jupiter is in the neighbourhood of his oppofition or conjunction, and increafed while he is in the neighbourhood of his flationary pofitions. Jupiter being about 1000 times lefs than the fun, and 5 times more remote, IS mult be confidered as reprefenting ${ }_{2} \frac{1}{50} 00^{\text {th }}$ th of the earth's deflection to the fun, and the forces ED and EG are to be meafured on this fcale.
In confequence of this change in the earth's tendency to the fun, the aphelion fometimes advances by the diminution, and fometimes retreats by the angmentation. It advances when Jupiter chances to be in oppofition when the earth is in its aphelion; becaufe this diminution of its deflection towards the fun makes it later before its path is brought from forming an obtufe angle with the radius vegor, to form a right angle with it. Becaufe the earth's tendency to the fun is, on the whole, more diminifhed by the difturbing force of Jupiter than it is increafed, the aphelion of the earth's orbit advances on the whole.

In like manner the aphelia of the irferior planets advance by the difturbing forces of the fuperior: but the aphelion of a fuperior planet retreats; for thefe reafons, and becaufe Jupiter and Saturn are larger and more powerful than the inferior planets, the aphelia of them all advance while that of Saturn retreats.

In confequence of the fame difturbing forces, the node of the difturbed planet retreats on the orbit of the difturbing planet ; therefore they all retreat on the ecliptic, except that of Jupiter, which advances by retreating on the orbit of Saturn, from which it fuffers the greateft difturbance. This is owing to the particular poition of the nodes and the inclinations of the orbits.

The inclination of a planetary orbit increafes while the planct approaclies the node, and diminithes white the planet retires from it.
M. de la Place has completed this deduction of the a feculia planetary inequalities, by explaining a pecnliarity in the rity exinotions of Jupiter and Saturn, which has long employ-platied in ed the attention of aftromomers. The accelerations and of Jupicer retardations of the planetary motions depend, as has and Saturn. been fhewn, on their configurations, or the relative quarters of the heavens in which they are. Thofe of Mercary, Vcuns, the Earth, and Mars, arifing from their mutual dcflections; and their more remarkable deflections to the great planets Jupiter and Saturn, nearly compenfate each other, and no traces of them remain after a few revolutions : but the pofitions of the aphelia of Saturn and Jupitcr are fuch, that the retardations of Saturn fenfibly exceed the accelerations, and the anomaliftic period of Saturn increafes almoft a day every century : on the contrary, that of Jupiter diminifhes. M. de lat Place fhews, that this proceeds from the pofition of the aphelia, and the almoft perfect commenfurability of their revolutions ; five revolutions of Jupiter making 21,675 days, while two revolutions of Saturn make 21,538 , differing only 137 days.

Suppofing this relation to be exact, the theory fhews that the mitual action of thefe planets muft produce mutual accelerations and retardations of their mean motions, and afcertains the periods and limits of the fecular cquations thence arifing. Thefe periods include feveral centuries. Again, becaufe this relation is not precife, but the odd days nearly divide the periods already found, there mult arife an equation of this fecular equation, of which the period is immenfely longer, and the maximum very minute. He fhews that this retardation of Saturn is now at its maximum, and is diminifhing again, and will, in the courfe of years, change to an acceleration.

This inveftigation of the fmall inequalities is the nof intricate problem in mechanical philofophy, and has been completed only by very flow degrees, by the arduous efforts of the greatef mathematicians, of whom M. de la Grange is the moft eminent. Some of his general refults are very remarkable.

He demonftrates, that fince the planets move in one direction, in orbits nearly circular, no mutual dilturbances make any permanent change in the mean dittances and mean periods of the planets, and that the periodic changes are confined within very narrow limits. The orbits can never deviate fenfibly from circles. None orcillation of them ever has been or will be a comet moving in aof the plavery eccentric orbit. The ecliptic will hever coincide netary fyfwith the equator, nor change its inclination above two ${ }^{\text {t }}$ degrees. In fhort, the folar planetary fyftem ofcillates, as it were, round a medium flate, from which it never fwerves very far.

This theory of the planetary inequalities, founded on the univerfal law of mutual deflection, has given to our tables a precifion, and a coincidence with obfervation, that furpaffes all expectation, and infures the legitimacy of the theory. The inequalities are moft fenfible in the motions of Jupiter and Saturn; and thefe prefent themfelves in fuch a complicated flate, and their periods are fo long, that ages were neceflary for difcuvering them by mere obfervation. In this refpect, therefore, the theory has outflripped the obfervations on which it is foundcd.
founded. It is very remarkable, that the periods which the Indians affign to thefe two planets, and which appeared fo inaccurate that they hurt the credit of the fcience of thofe ancient aftronomers, are now found precifely fuch as mut have obtained about three thoufand years before the Cheiftian era; and thus they give an authenticity to that ancient aftronomy. The periods which any nation of aftronomers affign to thofe two planets would afford no contemptible mean for determining the age in which it was oblerved.

The following circumftance is remarkable : Suppofe Jupiter and Saturn in conjunction in the firt degree of Aries; twenty years after, it will happen in Sagittarius; and after another twenty years, it will happen in Leo. It will continue in thefe three figus for 200 years. In the next 200 it will happen in Taurus, Capricoruus, and Virgo; in the next 200 years, it will happen in Gemini, Aquarius, and Libra; and in the next 200 years, it will happen in Cancer, Pifees, and Scorpio: then all begins again in Aries. It is highly probable that thefe remarkable periods of the oppolitions of Jupiter and Saturn, progrefive for 40 years, and ofcillating during 160 more, occafioned the aftrological divifoon of the heavens into the four trigons, of fire, air, earth, and water. Thefe relations of the figns, which compofe a trigon, point out the repetitions of the chief irregularities of the folar fyltem.
M. de la Place obferves (in 1796), that the laft difcovered planet gives evident marks of the action of the reft ; and that when there are computed and taken into the account of its bygone motions, they put it beyond doubt that it was feen by Flamitead in 1690 , by Mayer in $17 ; 6$, and by Monnier in 1769 .

We have hitherto overlooked the comets in our ac. count of the mintual difturbances of the folar fyftem. Their number is very great, and they go to all quarters of the univerfe : but we may conclude, from the wonderful regularity of the planetary motions, when all their own mutual actions are take into account, that the quantity of matter in the comets is very inconfiderable. They remain but a fhort time in the neighbourhood of the planets, and they pafs them with great rapidity. Some of them have come very near to Jupiter, but left no trace of their action in the motions of his fatellites. They doubtlefs contribute, in general, to make the apfides of the planetary orbits advance.

On the other hand, the comets may be confiderably affected by the planets. The very important plienomenon of the return of the comet of 1682 , which was to decide whether they were revolving planets deferibing ellipfes, or bodies which came but once into the planetary regions, and then retired for ever, caufed the aftronomers to confider this matter with great care. Halley had fhewn, in a rough way, that this comet muft have been confiderably affected by Jupiter. Their motion near the aphelion muft be fo very flow, that a very fmall change of velocity or direction, while in the planetary regions, muft confiderably affect their periods. Halley thought that the action of Jupiter might change it haif a year. Mr Clairaut, by confidering the difturbing forces of Jupiter and Saturn through the whole revolution, fhewed that the period then running would exceed the former nearly two years (618 days), and affigned the middle of A pril 1759 for the time of its perihelion. It really paffed its perihelion on the 12 th of March. This
was a wonderful precifion, when we reflect that the comet had been feen but a very few days in its fomer apparitions.

A comet obferved by Mr Profperin and others in 1771 las greatly puzzled the aftronomers. Its motions appear to have been extremely irregular, and it certainly came fo near Jupiter, that his momentary influence was at leaft equal to the fun's. It has not been recognifed fince that time, although there is a great probability that it is continually among the planets.

It is by no means impoffible, nor highly improbable, Cor.fethat in the courfe of ages, a comet may actually meet quence of z one of the planets. The effect of fuch a concourfe muft wnet and be dreadful; a change of the axis of dimmal rotation planet muft refult from it, and the fea muft defert its former bed and owerflow the new equatorial regions. The fhock and the deluge muft deftroy all the works of man, and molt of the race. The remainder, reduced to mifery, muft long ftruggle for exittence, and all remembrance of former arts and events muft be loft, and every thing mufl be invented anew. There are not wanting traces of fuch devaftations in this globe: ftrata and things are now found on mountain tops which were certainly at the bottom of the ocean in former times; remains of tropical animals and plants are now dug up in the circumpolar regions. Tempora mutantur, at nos mutamur in illis.

It is plain, that when we know the direction and the intenfity of the difturbing force, we can tell what will be the accumulated effect of its action for any time. The direction is eafly determined by means of the difance : but how fhall we determine the intenfity ? Since we fee that the whole waters of the ocean are defiected toward the moon, and have fuch probable evidence that planetary deflection is mutual ; it follows that the moons is deflected towards every drop of water, and that a!l the matter in one body is deflected towards all the matter in another body; and therefore that the deflection towards the fun or a planet is greater or lefs in proportion to its quantity of matter. Newton indeed thought it unreafonable to fuppofe that a planct was deflected to the centre of the fun, which had no diftin. guifhing phydical property; and thought it more probable that the deflection of a planet to the fun was the accumulated deflection of every particle in the planct to every particle in the fun. But he was too fcrupulous to take this for granted. He therefore endeavoured to difcover what would be the fenfible deflection of one fphere to another, when each confifted of matter, every particle of which was deflected to every particle of the other with an intenfity inverfely proportional to the fquare of the diftance from it. liy help of a moft bean. 「end ${ }^{43}$ tiful and fimple procefs, he difcoveres, that the ten of fibericab. dency of a particle of matter to a fpherical furface, fheil, ories $*$.. or folid, of uniform denlity at equal diftanees from the war. each centre, was the faine as if all the particles in the tu - realy \circ the face, fhell, or folid, were mited in its centre : her:ce it quas:ity of legitimately followed, that the mutual tendency of fphe ma:ter, and rical furfaces, fhells, or folids, was proportional to the neriely ins quantities of matter in the attracting body, and inverfe-ce the dily as the fquare of the difance of their centres ; and ia ce of thus the law of attraction, competent to every particle their cert. of planetary matter, was the fame with that which was ${ }^{\text {t }}$ obferved among fpherical bodies conlifii.g wi fuch matter. And it is remarkable, that the inverfe duplicate ra-

$\begin{array}{lllllllll}\text { A } & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{O} & \mathrm{N} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

tio of the ditances is the only law that will hind, both with refpeet to fingle particles and to globes compofed of fuch particles. Ile alfo demonthated, that a particle placed within a flere was not affected by all the fhell, which was more dittant than it felf from the centre, being equally attraeted on every fide, and that it tended toward the centre of a homogenous fphere, on the furface of which it was placed, with a force proportional to its dittance from the centre.

Newton faw a cafe in which it was poffible to difcover whether the tendency of the matter of which the planets confilted was directed to a mathematical centre void of any phyfical properties, or whether it was the refult of its united tendency to all the matter of the planet. He demontrated that if the earth confilted of matter which tended to the centre, it behoved it to affume the form of an elliptical fpheroid, in confcquence of the centrifugal force arifing from its diurnal motion, and that the polar axis mut be to its equatorial diameter as 577 to 578 ; but if every particle tends to every other particle in the inverfe duplicate ratio of the diftance from it, the form mult fill be elliptical, but more protuberant, and the polar axis muft be to the equatorial diameter as 230 to 23^{1}. Then only will a column of water from the pole to the centre balance a column from the equator to the centre. He alfo thewed what fhould be the vibrations of pendulums in different latitudes, on both fuppofitions. Mathematicians were eager therefore to make thofe experiments on pendulums, and to determine the figure of the earth by the meafurement of degrees of the meridian in different latitudes. The refult of their endeavours has been decidedly in favours of the mutual tendency of all matter. This has been farther confirmed by the obfervations of the mathematicians who meafured the degrees of the meridian in Peru, and by Dr Mafkelyne in Britain, who found that a pendulum fufpended in the neigbourhood of a great and folid mountain, fenfihly deviated from the
net. If the quantity in the Earth be confidered as the unit, we have,

Thus we fee that the fun is incomparably bigger than any planet, having more than a thoufand times as much matter as Jupiter, the mof mafly of them all. There is a confiderable uncertainty, however, in the proportion to the fun, becaufe we do not know his diftance nearer than within sot th part. The proportions of the relt to each other are more accurate. The quantuties of matter in Mercury and Mars can only be gueffed at : the quantity in Mercury may be called $0, r$, and Mars may be callcd 0,12 . Venus is fuppofed nearly equal to the Earth. This is concluded from the effect which the produces on the preceflion of the equinoxes and the equation of the fun's motion. The moon is fuppoled to be about risth of the earth, from the effeet me produces on the tides and the preceffion of the equinoxes, compared with thofe produced by the fun.

When thefe quantities of matter are introduced into Sun's place the computation of the planetary inequalities, and the and the intenfity of the difturbing forces affumed accordingly, plan t dethe refults of the computations tally fo exactly with ob-termined fervation, that we can now determine the fun's placeexatiy. for any moment within two or three feconds of a degree, and are certain of the tranfit of a planet within one beat of the clock!

> Jan dulios nulla saligine pragravat error; Queis fuperum penetrare domos atque ardua cali Scandere fublimis genii conceffit acumen.

Halley.

Sir Ifaac Newton haviug already made the great dif. covery of an univerfal and mutual deflection of all the matter in the folar fyitem, was one day fpeculating on this fubject, and comparing it with other deflections which he ublerved amung bodies, fuch as magnets, \&c. He confidered terreftrial gravity as a force of this kind. By the weight of terreftrial bodies they kept united with the earth. By its weight was the water of the p ogrife of ocean formed into a fphere. This force extended, with- Newton's out any remarkable diminution, to the tops of the high-difovery of eft mountains. Might it not reach much farther? May it not operate even at the diflance of the moon? In the fame manner that the planetary force deflects the moon from the tangent to her orbit, and caufes her to deferibe an ellipfe, the weight of a cannon ball deflects it from the line of its direction, and makes it deferibe a parabola. What if the deflecting force which incurvates her patli towards the earth be the fumple weight of the moon? If the weight of a body be the fame with the general planetary force, it will diminifh as the fquare of its diftance from the earth increaies. Therefore, faid he to himfelf, fince the diftance of the moon from the centre of the earth is about 50 times greater than the diftance of the flone which I throw from my hand, and which is deflected i feet in one fecond, the weight of this tlone, if taken up to the height of the moon, fhould be reduced to the 2500 h part, and fhould there deflect $\left.\frac{5}{5}\right)^{2}$ th of 16 feet in a fecond; and the moon thould
deflect

A S T R O N O M

deflect as much from the tangent in a fecond. Having the dimenfions, as he thought, of the meon's orbit, he immediately computed the moon's deffection in a fecond ; but he found it confiderably different from what he withed it to be. He therefore concluded that the planetary force was not the weight of the planet. For fome years he thought no more of it : but one day, in the Royal Society, he beard an account rearl of meafurements of a degree of the meridian, which fhewed him that the radius of the earth and the diftance of the moon were very different trom what he had believed them to be. When he went home he repeated his computation, and found, that the deflection of a ftone was to the fimultaneous deflection of the moon as the fuuare of the moon's diftance from the centre of the earth to the fquare of the flone's diftance. Therefore the moon is deflected by its weight ; and the fall of a ftone is juft a particular inftance of the exertion of the univerfal plavetary force. This computation was but roughly made at firit ; but it was this coincidence that excited the philofopher to a more attentive review of the whole fubject. When every circumilance which can affect the refult is taken into account, the coincidence is found to be moft accurate. The fall of the ftone is not the full effect of its weight ; for it is diminifhed by the rotation of the earth round its axis: It is allo diminifhed by the weight of the air which it difplaces: It is alfo diminifhed by its tendency to the moon. On the other hand, the mon does not revolve round the earth, but round a common centre of the earth and moon, and its period is about $r^{\frac{3}{2}}$ th fhorter than if it revolved round the earth; and the moon's deflection is affected by the fun's difturbing force. But all thefe corrections can be accurately made, and the ratio of the full weight of the flone to the full deflection of the moon afeertained. This has been done.

Terreftrial gravity therefore, or that power by which bodies fall or prefs on their fupports, is only a particu. lar inflance of that general tendency by which the planets are retained in their orbits. Bodies may be faid to gravitate when they give indications of their heing gravis or heavy, that is, when they fall or prefs on their fupports; therefore the planets may be faid to gravitate when they give fimilar indications of the fame tendency by their curvelineal motions. The general fact, that the budies of the folar fyftem are mutually deflected toward each other, may be expreffed by the verbal noun gravitation. Gravitation does not exprefs a quality, but an event, a deflection, or a preffure.
'The weight of a terreftrial body, or its preffure on its fupport, is the eficet of the accumulated gravitation of all its particles; for bodies of every kind of matter fall equally fatt. This has been afcertained with the utmoft accuracy by Sir Ifaac Newton, by comparing the vihrations of pendulums made of every kind of matter. Therefore their united gravitation is proportional to their quantity of matter; and we have concluded, that every at om of terreftrial matter is heavy, and equally heavy. We extend this conclufion to the fun and planets, and fay, that the obferved gravitation of a planet is the united gravitation of every particle. Therefore Sir Ifaac Newton inferred, from a collected virw of all the phenomena, that all matter gravitates to all matter with a force in the inverfe duplicate ratio of the diftance.

But we do not think that this inference is abfolutely.
certain. We acknowledse that the experiments on pendulums, confifing of a vaft variety of terrellrial mat. ter, all of which performed their ofcillations in cqual times, demonftrate that the acceleration of gravity on thofe pendulums was proportional to their quantities of matter, and that equal gravitation may be affirmed of all terreftrial matter.

The elliptical motion of 3 planet is full proof that the accelerating power of its gravity varies in the inverfe duplicate ratio of the dittance; and the proportionality of the fquares of the periods to the cubes of the diftances, flews that the whole gravitations of the planets vary by the fame law. But this third obfervation of Kepler might have been the fame, although the gravitation of a particle of matier in Jupiter had been equal to that of a particle of terreftial matier, provided that all the matter in Jupiter did not gravitate. If $\sum^{\frac{3}{5}} \frac{1}{5}$ th of Jupiter had been fuch gravitating matter, his deflection from the tangent of his orbit would have been the fame as at prefent, and the time of his revolution would have been what we obferve. In order that the third law of Kepler may hold true of the planetary motions, no more is required than that the accumulated gravitation of the planet be proportional to its quantity of matter, and thus the matter which docs not gravitate will be compenfated by the fuperior gravitation of the reft.

But becaufe we have no authority for faying that there is matter which gravitates differently from the rcft, or which does not gravitate, we are intitled to fuppofe that gravity operates alike on all matter.

And this is the ultimatum of the Newtonian phtlo. Which is fophy, that the folar fyftem confifs of bodies compofed the ultima= of matter, every particle of which is, in fact, contioutlly tum. I his deflected by its weight toward every other particle in the thilofoply. fyftem; and that this deflection, or actual deviation, or actual preffure, tending to deviation from uniform rectilineal motion, is in the iuverfe duplicate ratio of the diflance.

This doetrine has been called the fyltem of univerfal Objections gravitation; and it has been blamed as introducing an to the law unphilofophical principle into fcience. Gravitation is of gravitafaid to he an occult quality; and therefore as unht for founded. the explanation of plenoniena as any of the occult qualities of Ariftotle. But this reproach is unfounded; gravitation does not exprefs any quality whatever, but a miatter of fact, an event, an actual deflection, or an actual preffure, producing an ackual deflection of the body prefied. Thele are not occult, but matters of continual obfervation. True, indeed, Newton does not deny, although he dues not pulitively fay, that this deflection, preffure, or gravitation, is an effect having a caufe. Gravity is faid to be this caufe. Gravity is the being gravis or beavy, and gravitation is the giving indications of being beavy. Heavinefs therefure is the word which exprefles gravitas, and our notion of the caufe of the μ lanetary defections is the fame with our notion of heavinefs. This may be inditinet and unfatisfactory to a mind faftidiouny curious; but nothing can be more familiar. The planet is deflected, becaufe it is heavy. We are fuppofed to explain the fall of a ftone through water very fatisfactorily, and without having recourfe to any occult quality, when we fay that it is heavier than the water; and we explain the rife of a piece of cork, when wefay that it is not fo heavy as the water.

A \quad S \quad T R \quad O $\quad \mathrm{N}$ O \quad M Y.

The explanations of the mutual actions of the planets are equally fatisfactory, founded on the fame principles, and equally free from all fophiftry or employment of occult caufes. The weight of a body is not its heavinefs, hut the effect of its heavinefs. It is a gravitation, an actual preffure, indicated by its balancing the fuppofed heavinefs of anotleer body, or by its balancing the known elaflicity of a fpring, or hy balancing any other natural power. It is fimilar to the preffure which a magnet exerts on a piece of iron. This may perhaps be produced by the impulfe of a fream of fluid; fo cem ourfelves with this queftion. We gain a molt extenfive and important knowledge by our knowledge of this univerfal law ; for we can now explain every phe- nomenon, by pointing out how it is contained in this law; and we can predict the whole events of the folar fyftem with unerring exactnels. This fhould fatisfy the molt inquifitive mind.

But, nitimur in vetitum, femper cupimufque negala. There feems to be a fatal and ruinous difpolition in the human mind, a fort of priapifin of the underllanding, that is irritated by every interdict of natural imperfection. We would take a microfcope to look at light ; we would know what knowing is, and we would wigh heavinefs.

Alt who are acquainted with the writings of Ariftotle have fome notion of his whimfical opinions on this fubject. He imagines that the planets are conducted in their orbits by a fort of intelligences, orxep $\Psi u \chi \propto 1$, which animate the orbs that wheel them round. Although this crude conception met with no favour in later times, another, not more reafonable, was maintained by Leib. nitz, who called every particle of matter a monad, and gave it a perception of its fituation in the univerfe, of its diflance and direction from every other, and a power and will to move itfelf in conformity to this fituation, by certain contant laws. This or $\begin{aligned} & \text { epp } \Psi u \chi^{n} \text { in the Mo- }\end{aligned}$ nad is nothing but an aukward fubftitute for the principle of gravitation, which the learned intifted that Newton placed in every particle of matter as an innate power, and which they reprobated as unphilofophical. But in what refpect this perception and active propenfity is better, we do not perceive. It is more com. flex, and involves every notion that is reprehenfible in the other; and it offers no better explanation of the phenomena.

But Newton is equally anxious with other philofopleers not to alcribe gravity to matter as an iunate inherent property. In a letter to Dr Bently, he earneltly requefts him not to charge him with fuch an abfurd opinion. It is an avowed principle, that nothing can aid on any thing that is at a diftance; and this is confidered as an intuitive axiom. But it is furely very obfeure; for we cannot obtain, or at lealt convey, clear notions of the terms in which it is expreffed. The word aft is entirely figurative, horrowed from animal exertions; it is therefore unlike the expreffion of any thing intitled to the appellation of intuitive. If we try to exprefs it without figure, we find our confidence in its certainty greatly diminifhed. Should we fay that the condition of a body A cannot depend on another body B that is at diftance from it, we believe that no perfon will fay that he makes this aftertion from perceiving the abfurdity of the contrary propofition. In the demonftration,
as it is ealled, of the perfeverance of a body in a ftate of reft, the only argument that is offered is, that no eaule can be affigned why it fhould move in one direction rather than in another: but fould any one fay that another body is near it, to the right hand, and that this is a fufficient reafon for its moting that way, we know no method by which this affertion can be fhewn to be falfe.

Such, however, has been the uniform opinion of pluilofophers. Nibil movelur (fays Leibnitz) nift a contigua et moto. The celebrated mathematician Euler having difcovered, as he thought, the production of a preflure, like gravity, from motion, fays, " as motion may arife from preffing powers, fo we have feen that prefling powers may arife from motion. We fee that both exitt in the univerfe. It is the bulinefs of a philofopher to difcover, by reafon and obfervation, which is the origin of the other. It is incompatible with reafon that bodies fhould be poffeffed of inherent tendencies; mucle more that powers fhould exif independently. Farther, that philofopher muft be reckoned to have affigned the true caufes of phenomena, who demonftrates that they arife from motion; for motion, once exifting, mult be preferved for ever. In the prefent infance (a certain whimfical fact of a ball running round the infide of a hoop) we fee how a prefling power may be derived from motion ; but we cannot fee how powers can exert themfelves, or be preferved, without motion. Whercfore we nay conclude that gravity, and all other powers, are derived from motion; and it is our bufinefs to inveftigate from what motions of what bodies each obferved power derives its origin."

Accordingly many attempts have been made to trace the planetary deflections to their origin in the motion of fome impelling matter; but thefe attempts could not be fuccelsful, becaufe they are all built on hypothefes. It has been affumed, that there is a matter diffufed through the celettial fpaces; that this matter is ia motion, and by its impulfe moves the planets: but the only reafon that can be given for the exiftence of this matter is the difficulty we find in explaining the planetary deflections without it. Even if the legitimate confequences of this hypothefis were confftent with the phenomena, we have not advanced in our knowledge, nor obtained any explanation. We have only learned, that the appearances are fuch as would have obtained had fuch a matter exifted and acted in this manner. The obferved laws of the phenomena are as extenfive as thofe of the hypothefis; therefore it teaches us nothing but what we knew without it.

But this is not all that can be faid againlt thofe at-Inconfifter tempts; their legitimate confequences are inconflent with cy of fome the phenomena. By legitimate confequences we mean of thefe as the laws of motion. Thefe mull be admitted, and are the pheno admitted, by the philofopher who attempts to explain mena the planctary motions by impulfe. It would be ridicu. lous to fuppofe a matter to fill the heavens, having laws of impulfe different from thofe that are obferved by common matter, and which laws mult be contrived fo as to anfwer the purpofe. It would be more limple at once to affign thofe pro re nata laws to the planets themfelves.

Yet fuch was the explanation which the celebrated Defcartes offered by his hypothefis of vortices, in which the planets were immerfed and whirled round the fun.

It is aftonifhing that fo crude a conception ever obtain. ed any partifans; yet it long maintained its authority, and fill has zealous defenders. Till Sir Ifaac Newton faw the indifpenfable neceffity of mathematical inveftigation in every queltion of matter in motion, no perfon had taken the trouble of giving any thing like a ditinct defcription of thofe vortices, the circumftances of their motion, and the manner of their action; all determined with that precifion that is required in the explanation: for this muft always be kept in mind, that we want an explanation of the precife motions which bave been obferved, and which will enable us to predict thofe which are yet to happen. Men were contented with fome vague notion of a fort of limilarity between the effects of fuch vortices and the planetary motions in a few general circumftances; and were neither at the trouble to confider how thele motions were produced, nor how far they tallied with the phenomena. Their account of things was only fit for carelefs chat, but unworthy of the at. tention of a naturaliil. But fince this explanation came from a perfon defervedly very eminent, it was refpected by Newton, and he honoured it with a ferious examination. It is to this examination alone that we are indebted for all the knowledge that we have of the conftitution of a fluid vortex, of the motions of which it is fufceptible, of the manner in which it' can be produced, the laws of its circulation, and the effects which it can produce. We have this account in Sir Ifaac Newton's Principles of Natural Philofophy; and it contains many very curious and interefting particulars, which have been found of great fervice in other branches of mechanical philofophy. But the refult of the examina. tion was fatal to the hypothefis; fhewing that the motions which were poffible in the vortices, and the effects which they mult produce, are quite incompatible with the appearances in the heavens. We do not know one perfon who has acquired any reputation as a mechanician that now attempts to defend it; nor do we know of any other perfon befides Newton who has attempted to explain mathematically how the circulation of a fluid can produce the revolution of a planet, if we except Mr
55 Leibnitz, the celebrated rival of the Britifh philofopher. Ifpothefis This gentleman publifhed in the Leipfic Revievv in Lelbnitz. 168 g , three years after the publication of the Principia, an attempt to explain the elliptical motion of the planets, and the defcription of areas proportional to the times, by the impulfe of a vortex. It muft not be paffed over in this place, becaufe it acquired great authority in Germany, and many of that country fill affirm that Ieibuitz is the difcoverer of the law of planetary gravitation, and of the mechanical conftitution of the folar syftem. We cannot help thinking this explanation the inoft faulty of any, and a moft difingenuous plagiarifm from the writings of Newton.

Mr Leibnitz fuppofes a fluid, circulating round the fun in fuch a manner that the velocity of circulation in every part is inverfely as its diftance from the fun. ($N . B$. Newton had hewn that fuch a circulation was poffible, and that it was the only one which conld be generated in a fluid by an action proceeding from the centre). Leibnitz calls this harmonical circulation. He fuppofes that the planet adopts this circulation in every part of its elliptical orbit, obeying without any refiftance the motion of this fluid. He does not afcribe this to the impulfe of the fluid, faying exprefsly that the pla-
net follows its motion, non ahrepta taminy fed tranquillio ter quifi natante The planet therefore has no tendency to perfevere in its former flate of motion. Why therefore does it not follow this larmonic motion exactly, and defcribe a circle tranquilliter natans? This is owing, fays Leibuitz, to its centrifugal force, by which it perfeveres in a fate of rectilineal motion. It has no tendency to preferve its former velocity, but it perfeveres in its former direction. The planet therefore is not like common matter, and has laws of notion peculiar to itfelf; it was needlefs therefore to employ any impulfe to explain its motions. But to proceed: "ih his centrifugal force mult be counteracted in every point of the orbit. Leibnitz therefore fuppofes that it is alfo urged toward the centre by a folicitation like gravity or attraction. He calls it the paracentric force. He computes what mul be its intenfity in different parts of the orbit, in order to produce an elliptical motion, and he finds that it muft be inverfely as the fquare of the diftance from the centre (for this reafon he is frequently quoted by Bernoulli, Wolff, and others, as the difcoverer of the law of gravitation). But Leibnitz arrives at this refult by means of feveral mathematical blunders, either arifing from his ignorance at that time of fluxionary geometry, or from his perceiving that an accurate procedure would lead him to a conclufion which he did not with : for we have feen (and the demonitration is adopted by Leibnitz in all his pofterior writings of this kind), that if the ordinary laws of motion are obfcrved, a body, actuated by this paracentric force alone, will defcribe an ellipfe, performing both its motion of harmonic circulation, and its motion of approach to and recefs from the centre, without farther help. Therefore, if the harmonic circulation is produced by a vortex, a force inverfely as the fquare of the diftance from the centre, combined with the harmonic circulation, will produce a motion entirely different from the elliptical. It is demonftrated, that the furce which is neceffacy for defcribing circles at different dittances, with the angular velocity of the different parts of the orbit, is not in the inverfe duplicate, but in the inverfe triplicate, ratio of the diftances. This muft have been the nature of his paracentric force, in order to counteract the centrifugal force arifing f:om the harmonic circulation. There fore Leibnitz has net arrived at his conclufion by juf Difingenuireafoniner, nor can be faid to have difcovered by julty of the fays, Video banc propofitionem innotuifle viro celibervimo Ifaaco Nerviono, licet non polfim judicare quomodo ad eam pervenerit. This is reatly fomewhat like impudence. The Principia were publithed in 1686 . They were re. viewed at Leipfic, and the Review publihed in 168%. Leilnitz was at that time the principal manager of that Review. When Newton publimed, Leibnitz was living at Ianover, and a copy was fent him within two months of its publication, by Nicholas Facio, long before the Review. The language of the Review has feveral fingularities, which are frequent in Leibuitz's own compofition; and few doubt of its being his wri. ting. Befides, this propofition in the Prinripia had been given to the Royal Society Ceveral years before, and was in the records before 1684 . Thefe were all feen by Leibnitz when in England, being lent him by his friend Collins.
We think that the opinion which a candid perfon mult form of the whole is, that Leibnitz knew the pro-

$\begin{array}{lllllllll}\text { A } & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{O} & \mathrm{N} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

pofition, and attempted to demonftrate it in a way that would make it pafs for his own difcovery ; or that he only knew the enunciation, without modertanding the principles. His larmonic circulation is a clumfy way of explaining the proportionality of areas to the times; and even this circulation is borrowed from Newton's differtation on the Cartelian rortices, which is alfo conrained in the Leiphic Review above mentioned. Leibaite was by this time a competitor with Newton for the honour of inventing the fluxjonary mathematies, and was not guiltlefs of acts of difingenuity in afferting his claim. He publifhed at the fame time, in the fame Review, an almot unintelligible differtation on the refiftance of 四uids, which, when examined by one who has learned the fubject hy reading the Principia of Newton, affords an enigmatical defcription of the very theory publifhed by Newton, as a neceflary part of his great work.

But befides all the above objections to Leibnitz's theory of elliptical motion, we may afk, What is this paracentric furce? He calls it like gravity. This is precifely Newton's docirine. But Leibnitz fuppofes this alfo to be the impulfe of a fluid. It would have been enough had he explained the action of this fluid, without the other circulating harmonically. He defers this explanation, however, to another opportunity. It muft have very fingular properties: it muft impel the planet without difturbing the other fluid, or being difturbed by it. He alfo defers to another opportunity the explaining how the fquares of the periodic times of different planets are proportional to the cubes of the mean diftances; for this is quite incompatille with the harmonic circulation of his vortex. This would make the fquares of the periods proportional to the diftances. He has performed neither of thefe promifes. Several years after this he made a correction of one of his mathematical blunders, by which he deftroyed the whole of his demonftration. In thort, the whole is fuch a heap of obfcure, vague, inconfiflent affumptions, and fo replete with mathematical errors, that it is aftonifhing that he had the ignorance or the effrontery to publinh it. reputation. M. le Sage of Geneva fuppoles, that there paffes through every point of the univerfe a ftream of fluid, in every direction, with aflonifhing velocity. He fuppofes that, in the denfeft bodies, the vacuity is incomparably more bulky than the folid matter; fo that a folid body fomewhat refembles a piece of wire cagework. The quantity of fluid which paffes throngh will be incomparably greater than that of the intercepted fluid; but the impulfe of the intercepted nnid will be fenfibly proportional to the quantity of folid matter of the body. A fingle body will be equally impelled in cvery direction, and will not be moved; but another body will intercept fome fluid. Each will intercept fome from the other ; and the impulfe on B, that is intercepted by A, will be nearly proportional to the matier in A, and inverfely proportional to the fquare of its diftance from B; and thus the t wo bodies will ap. pear to tend toward each other by the law of gravitation.
M. le Sage publifloed this in a work called Climie Mechunique, and read lectures on this doctrine for many years in Geneva and Paris to crowded audiences. It is alo publithed by Mr Prevoft in the Lerlin Memoirs,
under the name of Lucrece Netutonien; and there are many who confider it as a good explanation of gravita. tion: for our part, we think it inconceivable. The motions of the planets, with undiminifhed velocity, for more than four thoufand years, appears incompatible with the impelling power of this fluid, be its relocity what it will. The abfolute precifion of the law of gravitation, which does not fhew the fmalleft error during that time, is incompatible with an impulfe which cannot be exactly proportional to the quantity of matter, nor to the reciprocal of the fquare of the diftance, nor the fame on a body moving with the rapidity of the comet of 1680 in its peribelion, as on the planet Saturn, whofe motion is almolt incomparably hower. What is the origin of the motion of this fluid? Why does it not deftroy itfelf by mutual impulfe, lince it is continually paling through every point? \&c.

We have already obferved that Newton expreffed the Ether of 58 fame anxiety to aroid the fuppofition of action among Newton bodies at a diftance. He alfo feemed to thow fome diff-folves no pofition to account for gravitation by the action of a difficulcontigroous fluid. This is the fubterfige fo much recurred to by precipitate fpeculatilts, by the name of the ether of Sir IJaac Newton. He fuppofes it highly claftic, and much rarer in the pores of bodies, and in their vicinity, than at a diftance; therefore exceedingly rare in the fun, and denfer as we recede from him. Being lighly elaftic, and repelled by all bodies, it muft impel them to that fide on which it is mof rare; therefore it mut impel them toward the fun. This is enough of its general contitution to enable us to judge of its fitnefs for Newton's purpole. It is wholly unfit; for fince it is fluid, unequally denfe and elaftic, its particles are not in contact. Particles that are elallic, and in a ftate of compreffion, and in contact, cannot be fluid; they mult be like fo many blown bladders compreffed in a box; therefore they are not in contact; therefore they are clattic by mutual repulfion; that is, by acting on each other at a diftance. It is indifferent whether this diftance is a million of miles, or the millionth part of a hair's breadth; therefore this fluid does not free Newton from the fuppolition which he wifhes to avoid. Nay, it can be demonftrated, that in order to form a fluid which thall vary in denfity from the fun to the extremity of the folar fyftem, there muft be a mutual repulfoon extending to that difance. This is introducing millions of millions of the very difficulties which Newton wifhed to avoid; for each particle prefents the fame difficulty with a planet.

We would now afk thefe atomical philofophers, why they have, in all ages, been fo anxious to trace the celeftial motions to the effects of impulfe? They imagine that they have a clear perception of the communication of motion by impulfe, while their perception of the production of it in any other way is obfcure. Secing, in a very numerous and familiar collection of facts, that motion is communicated by impulfe, they think that it is communicated in no other way, and that impulfe is the only moving power in nature.

But is it true that our notion of impulfe is more clear Our notio than that of gravitation? Its being more familiar is no of impulfe argument. A caufe may be real, though it has exerted that of ofel itfelf hut ence fince the beginning of time. In no cafe vitation. do we perceive the exertion of the caufe; we only perceive the change of motion. The conflitution of our
mind makes us confider this as an effect, indicating a caufe which is inlierent in that body which we always fee aflociated with that change. Granting that our perception of the perfeverance of matter in its thate of motion is intuitive, it by no means follows that the body A in motion mult move the body B by ftriking it. The moment it Arikes B, all the metaphylical arguments for A's continuance in motion are at an end, and they are not in the leaft affected by the fuppofition that A and B fhould continue at reft after the ftroke; and we may defy any perfon to give an argument which will prove that B will be moved; nay, the very exiltence of B may, for any thing we know to the contrary, be a fufficient reafon for the ceflation of the motion of A. The production of motion in B, by the impulfe of A, mult therefore fland on the fame foundation with every other production of motion. It indicates a moving power in A; but this inherent power feems to have no dependence on the motion of A : (See what is contained in $n^{\circ} 81$. of the article Physics, and $n 67$. of Ortics of the Encycl.) We fee there a motion produced in B without impulfe, and taken from A, limilar in every refpect to every cale of impulfe; and we fee that the motion of A is necelfary for producing fuch a motion in B as is obferved in all cafes of impulte, merely in order that the moving power, which is inherent in A, whether it be in reft or in motion, may act du. ring a fufficient time. Our confidence in the communication of motion, in the cale mentioned there, is derived entirely from experience, which inlorms us that A poffeftes a moving power totally different from impulfe. Our belief of the impelling power of matter therefore does not neceflarily flow from our intnitive knowledge of the perfeverance of matter, although it gives us the knowledge of this perfeverance. It is like a mathematical demontration, a road to the difcovery of the property of figure, but not the caufe of that property. The impullion of matter is neerely a fact, like its gravitation, and we know no more of the one than of the other.

It is not a clearer perception, therefore, which has procured this preference of impulfion as the ultimate explanation of motion, and has given rife to all the foolif hypothefes of planetary vortices, ethers, animal fpirits, nervous fluids, and many other crude contrivances for explaining the abflrufe phenomena of nature.

Nor does it deferve any preference on account of its greater familiarity. Juft the contrary; for one fact of undoubted impulfe, we fee millions where no impulfe is obferved. Confider the motion produced by the explofion of gunpowder. Where is the original impulfe? Suppofe the impulfe of the firlt 「park of fire to be immenfe, how comes it that a greater impulfe is produced by a greate: quantity of gunpowder, a greater quantity of quiefcent matter? The ultimate impulfe on the bullet fhould be lefs on this account. Here are plain exertions of moving powers, which are not reducible to im pulfe. Confider alfo the facts in animal motion. Refleet alfo, that there has been more motion, withont any obferved impulfe, produced in the waters of a river fince the beginning of the world, than by all the impulfe that man has ever obferved. Add to thefe, all the motions in magnetifm, electricity, \&c. Impulfe is therefore a phenomenon which is comparatively rare.

Have we ever obferved motion communicated by pure
impulfe, without the action of forces at a diflance? This appears to us very doubtful. Every une acquaint. ed with Newton's difcoveries in optics will grant, that the colours which appear between two object.glaffes of long telelcopes, when they are preffed tugether, demonftrate that the glaffes do not touch cach other, except in the place where there is a black fpot. It requires more than a thoufand pounds to prodnce a fquare inch of this fpot. Therefore every cominunication of motion betwecn two pieces of glafs, which can be pro. duced by one of them ftrizing the other, is produced withoutimpulfe, unlefs theirmutual preffure has exceeded 1000 pounds on the fquare inch of the parts which act on each other. Nay, fince we fee that a black fpot ap. pears on the top of a foap bubble, in the middle of the coloured rings, we learn that there is a certain thicknefs at which light ceafes to be vifibly reflected; therefore the black fpot between the glafles dues not prove that they touch in that part; therefore we cunnot fay that any force whatever ean make them touch. 'The ultimate repulfion may be infuperable. If this be the cafe, the production of motion by impulle is, in cvery inflance, like the production of motion between the magnets in $n^{\circ} 81$. of the article Puysices in the Encycl. and is of the fame kind with the production of motion by gravity.

Therefore no explanation of gravitation can be de- Inturvening rived from any hypothefis whatever of intervening fluids: fuids n ulf They only fubftitute millions of bodies for one, and itill ti, culties. tiffio leave the action e difanti the fame dificulty as bofore. It is not in the leaft neceffary that we fhali be able to conceive how a particle of matter can be influenced by another at a diflance; if we have difcovered in every inflance the precife degree and drection of the effect of this influence, we have made a moft important addition to our knowledge of nature ; and vur fuccefs in the cafe of the power of gravity fhould make us affidu: ous in our endeavours to difcover, from the phenomena, the laws which regulate the other actions e diflanti; which obfervation is daily dinding out. A knowledge equally accurate of the law of magnetic and electric action may enable us to give theories of magnetifin and electricity equally exact with the Newtonian theory of gravitation.

Having, we hope, evinced the truth of this theory, by following ou: the invelligations to which Newton was gradually led, we might proceed to contider, in order, the complicated and fubordinate phenomena which depend on it. The lunar and planetary inequalities are the fubjects that naturally come firf in our way; but they lave already been explained in all the detail that this concife account will admit, as they occurred to Newton as telts of the truth of his conjecture. If the law be fuch as he fufpected, its confequences muft be fo and fo; if the celeftial motions do not agree with them, the law mut be rejected. We fhall not repeat any thing therefore on this head, but confine our obfervations to fuch applications of the theory of univerfal gravitation, as newly difcovered objects, or the improvement of aftronomical obfervation and of fluxionary analyfis, have enabled us to make fince the time of Newton.

The fubferviency of the eclipfes of Jupiter's fatellites to geography and navigation had occafioned their mutiuns to be very carefully obferved, ever tince thefe ufes of them were firlt fuggefted by Galileo, and their
theory is as far advanced as that of the primary plancts. It has peculiar difficulties. Being very near to Jupiter, the great deviation of his lighe from perfect fphericity makes the relation between their diflances from his centre and their gravitations toward it valtly complicated. But this only excited the mathematicians fo much the more to improve their analy fis; and they faw, in this little fyllem of Juuter and his attendants, an epitome of the tolar fiftem, where the great rapidity of the motions mult bring about in a hort time every yariety of configuration or relative pofition, and thus give us an example of thofe mutual dinlurbances of the primary planets, which require thoufands of years for the difcovery of their periods and limits. We have derived
caufe their mutual actions will diftribute this equation as it did the original error.

This curious refult came into view only by degrees, as analyfis improved and the mathematicians were ena. bled to manage more complicated formulas, including more terms of the intinite ferefes that were employed to exprefs the different quantities. It is to M. de la Grange that we are indebted for the completion of the difcovery of the permanency of the fytem in a flate very little different from what obtains in any period of its exiftence. Although this required all the knowledge and addrefs of this great mathematician, in the management of the molt complicated analyfis, the evidence of its truth may be perccived by any perfon acquainted with the mere elements of fluxionary geometry. The law of the compolition of forces enables us to exprefs every action of the mutual forces of the fun and planets by the fines and colines of circular arches, which increafe with an uniform motion, like the perpetual lapre of time. The nature of the circle fhows, that the variations of the hues and colines are proportional to the colines and fines of the fame arches. The variations of their fquares, cubes, or other powers, are proportional to the fines or colines of the doubles or triples, or other multiples of the fame arches. Therefore fince the infinite feriefes which exprefs thofe actions of forces, and their variations, include only fines and cofines, with their powers and fluxions, it follows, that all accumulated forces, and variations of forces, and variations of varjations, through infinite orders, are till expreffible by repeated fums of fines or cofines, correfponding to arches which are generated by going round and round the circle. The analyft know's that thefe quantities become alternately pofitive and negative; and therefore, in whatever way they are compounded by addition of themfelves, or their nultiples, or both, we mut always arrive at a period after which they will be repeated with all their intemediate variations. It may be extremely difficult, it may be impolitile, in our prefent fate of maihematical bnouledge, to afcertain all thofe periods. It has required all the efforts of all the geniufes of Europe to manage the formulas which include terms containing the fourth and fifth powers of the eccentricities of the planetary orbits. Therefore the periods which we have already determined, and the limits to which the inequa. lities expreffed by fecular equations arrive, are ftill fub. jected to fmaller corrcetions of incomparably longer periods, which arife from the terms neglected in our formulas. But the correction arifing from any neglected term has a period and a limit; and thus it will happen that the fyftem works itfelf into a flate of permasency, containing many intervening apparent anomalies, The elliptical motion of the earth contains an anomaly or deviation from uniform circular motion; the action of Jupiter produces a deviation from this elliptical motion, which has a period depending on the configuration of the three bodies; Saturn introduces a deviation from this motion, which has alfo a period; and fo on.

There is another accurate adjuftment of motions which has attracted attention, as a thing in the higheft degree improbable, in events wholly independent on each other. This is the exact coincidence of the period of the moon's revolution round the earth with that of her rotation round her own axis. The ellipticity or oval fhape of the moon differs fo infenfibly from a fphere,
that if the original rotation had differed confiderably from the period of revolution, the pendular tendency to the earth could never have operated a change: but if the difference between thofe two motions was fo fmall that the pendular tendency to the line joining the centres of the earth and moon was able to overcome it after fome time, the pole of the lunar fpheroid would deviate a little from the line joining the earth and monn, and then be brought back to it with an accelcrated motion; would pafs it as far on the other fide, and then return again, vibrating perpetually to each fide of the mean polition of the radius vellor. The extent of this vibration would depend on the original difference between the motion of rotation and the mean motion of revolution. This difference muft have been very fmall, becaufe this pendular vibration is not fenfible from the earth. The obferved libration of the moon is precifely what arifes from the inequality of her orbital motion. For the fame reafons, the effects of the fecular equations of the moon (which would, in the courfe of ages, have brought her whole furface into our view, had her rotation teen ftrictly uniform) are counteracted by her pendular tendency, which has a force fufficient to alter her rotation by nearly the fame flow and infeafible changes that obtain in her mean motions. The fame caufes alfo preferve the nodes of her equator and of her orbit in the fame points of the ecliptic. The complete demonftration of this is perhaps the moft delicate and elegant fpecimen that has been given of the modern analyfis. We owe it to M. de la Grange : and he makes it appear that the figure of the moon is not that which a fluid fphere would acquire by its gravitation to the earth; it myit te the effect of a more confiderable el. lipticity, or internal inequality of denlity.

This pemanency of the fyitem, within very narrow limits of deviation from its prefent tate, depends entirely on the law of planetary defcetion. Had it been directly or inverfely as the diftance, the deviations would have been fuch as to have quickly rendered it wholly unfit for its prefent purpofes. They would have been very great, had the planetary orbits differed much from circles; nay, had fome of them moved in the oppofite direction. 'Ihe felection of this law, and this form of the orhits, ftrikes the mind of a Newton, and indeed any heart poffeffed of fenlibility to moral or intellectual excellence, as a mark of wifdom prompted by benevolence. But De la Place and others, infected with the Theophobia Gallica engendered by our licentious defires, are eager to point it out as a mark of fatalifin. They fay that it is cffential to all qualities that are diffuled from a centre to diminifh in the inverfe duplicate ratio of the diftance. But this is falle, and very falfe: it is a mere geometrical conception. We indeed fay, that the denfity of illumination decreafes in this proportion ; but who fays that this is a quality? Whether it be confidered as the emiffion of luminous corpufcles, or an undulation of an clattic fluid, itis not a quality emanating from a centre: and even in this eftimation, it feems gratuitous, whether we fhall confider the bafe of the luminous pyramid, or its whole contents, as the expreffion of the quantity. Nay, if all qualities muft diminifh at this rate, all action e difnnti mult do the fame; for when the dittances bear any great proportion to the diameters of the particles, their action deviates infenfibly from this law, and is perceived only by the accumula.
tion of its effects after a long time. It is only thus that the efiects of the oblate figure of Jupiter are perceived in the motion of his fatellites. 'The boafted found philofophy, which fees fatal neceflity where the mof fuccefsful fuden:s of nature faw moral excellence, has derived very little credit or title to the name of $z u t f d o m$, by letting loofe all thofe propenfities of the human heart which are effentially deftructive of focial happinefs. Thefe propenfities were always known to lurk in the 6_{4} heart of man; and thofe furely were the wifelt who and evinboured to keep them in check by the influence of moral dom of the principles, and particularly by cherifhing that difpofition Creator. of the human heart which prompts us to fee contrivance wherever we fee nice and refined adjuftment of means to ends; and, from the admirable beauty of the folur fy fem, to cry out,
"Thefe are thy glorious works, Parent of good!
"Almighty, thine this univerfal frame,
"Thus wond'rous fair; thyfelf how wond'rous then!
" Unfpeakable, who fitt'it above thefe heavens,
"To us invilible, or dimly feen
"In thefe thy loweit works; yet thefe dcclare
"Thy goodnefs beyond thought, and poreer divine." Par. Lofl, b. v.
"But wandering oft, with brute unconfcious gazc,
"Man marks not Thee, marks not the mighty hand
"That, ever bufy, wheels the lilent fpheres."
Thomson.
The mof important addition (in a plitofophical view) that has been made to aftronomical fcience fince the difcovery of the aberration of light and the nutation of the earth's axis, is that of the rotation of Saturn's ring. 65 The ring itfelf is an object quite fingular ; and when it Satmin's was difcovered that all the bodies which had any imne- ritg. diate comnection with a planet were heavy, or gravita. ted toward that planet, it became an interefting queftion, what was the nature of this ring? what fupported this inmenfe arch of heavy matter without its refting on the planet; what maintains it in perpetual concentricity with the body of Saturn, and maintains its furface in one invariable pofition?

The theory of univerfal gravitation tells ws what things are poffible in the folar fyitem; and our conjectures about the nature of this ring mutt always be regulated by the circumftance of-its gravitation to the planet. Philofophers had at frift fupnofed it to be a luminous atmofphere, thrown out into that form by the great centrifugal force arifing from a rotation; but its well defned edge, and, in particular, its being two very narrow rings, extremely near each other, yet perfectly feparate, rendered this opinion of its confitution more improbable.

Có
Dr Herfchel's difcovery of brighter fpots on its fur- Difivery face, and that thofe fpots were permanent during the of Dr Her whole time of his obfervation, feems to make it more i,ng tont. probable that the parts of the ring have a folicl connection. Mr Herfchel has difcovered, by the help of thofe fpots, that the ring turns round its axis, and that this axis is alfo the axis of Saturn's rotation. The time of rotation is roh. $3 \frac{1^{\prime \prime}}{\frac{1}{\prime}}$. But the other circumttances are not narrated with the precilion fufficient for an accurate comparifon with the theory of gravity. He informs us, that the radii of the four edges of the ring are $590,751,774,330$, of a certain feale, and that the
angle fubtended by the ring at the mean diftance from the earth is $46_{3}^{2 \prime \prime}$: Therefore its elongation is $233^{\frac{1}{1}}$. The clongation of the fecond Cafinian fatellite is $56^{\prime \prime}$, and its revolution is.2d. $17 \mathrm{~h} .44^{\prime}$. 'This hould give, by the third law of Kicpler, $17 \mathrm{~h} .10^{\prime}$ for the revolution of the outer edge of the ring, or rather of an atom of that edge, in order that it may maintain itfelf ia equilibrio. The fame calculation applied to the outer edge of the inner ring gives about $13^{\text {h. }} 3^{6}$ ' ; and we obtain 1th. 16^{\prime} for the inner edge of this ring. Such varieties are inconfiltent with the permanent appearance of a fpot. We may fuppofe the ring to be a luminous fluid or sapour, eacl? particle of which maintains its fituation by he law of pl.netary revolution. In fuch a flate, it would confift of concentric flrata, revolving more flowly as they were more remote from the planet, like the concentric Arata of a vortex, and therefore having a relative motion incompatible with the permanency of any fpot. Befides, the rotation obferved by Herfchel is too rapid even for the innermoft part of the ring. We think therefore that it cunfifts of cohering matter, and of confiderable tenacity, at leaft equal to that of a very clammy fuid, fuch as melted glafs.

We can tell the figure which a fluid ring muft have, fo that it may maintain its furm by the mutual gravitation of its particles to each other, and their gravitation to the planet. Suppofe it cut by a meridian. It may be in equilibrio if the fection is an ellipfe, of which the longer avis is directed to the centre of the planet, and very imall in comparifon with its ditance from the centre of the planet, and having the revolution of its middle round Saturn, fuch as agrees with the Keplerean law. Thefe circuintances are not very confiftent with the dimenfions of Saturn's imner ring. The diftance between the middle of its breadth and the centre of Saturu is 970 , and its breadth is 161 , nearly one-fourth of the diftance from the centre of Saturn. De la Place fays, that the revolution of the inner ring obferved by Herfchel is very nearly that required by Kepler's law: but we cannot fee the grounds of this affertion. The above comparifons with the fecond Caffinian fatellite fhows the contrary. The elongation of that fatellite is taken from Bradley's obfervations, as is alfu its periodic time. A ring of detached particles revolving in 1 ch . $32 \frac{{ }^{\frac{1}{x}}}{}$ muft be of much finaller diameter tban even the inner edge of Saturn's ring. Indeed the quantity of matter in it might be fuch as to increafe the gravitation confiderably; but this would be feen by its difturbing the feventh and fixth fatellites, which are exceedingly near it. We cannot help thinking therefore that it cunfifts of matter which has very confiderable tenacity. An equatorial zone of matter, tenacious like melted glafs, and whirled brikly round, might be thrown off, and, retaining its great velocity, would ftretch out while whirling, enlarging in diameter and diminifhing in thicknefs or breadth, or both, till the centrifugal force was balanced by the united force of gravity and tenacity. We find that the equilibrium will not be fenfibly difurb. ed by confiderable deviations, fuch as unequal breadth, or even want of flatnefs. Such inequalities appear on this ring at the time of its difparition, when its edge is turned to the fun or to us. The appearances of its different fides are then confiderably different.

Such a ring or rings muft have an ofcillatory motion zound the centre of Saturn, in confequeace of their mu-
tual action, and the action of the fun, and their own irregularities: but there will be a certain pofition which they have a tendency to maintain, and to which they will be brought back, after deviating from it, by the ellipticity of Saturn, which is very grear. The fun will occalion a nutation of Saturn's axis and a preceffion of his equinuxes, and this will drag alung with it buth the rings and the neighbouring fatellites.

The atmofphere which furrounds a whirling planet cannot have all its parts circulating according to the third law of Kepler. The mutual attrition of the planet, and of the different ftrata, arifing from their different velucities, muft accelerate the flowly moving ftrata, and retard the rapid, till all acquire a velocity proportional ty their diftance from the axis of rotation; and this will be fuch that the momentum of rotation of the planet and its atmofphere remains always the fame. It will fwell out at the equator, and link at the poles, till the centrifugal force at the equator balances the weight of a fuperficial particle. - The greatelt ratio which the equatorial diameter can acquire to the polar axis is that of four to three, unlefs a cohefive force keeps the particles united, fo that it conflitutes a liquid, and not an elaftic fluid like air ; and an elaftic fluid cannot form an at mofphcre bounded in its dimenfions, unlefs there be a certain rarity which takes away all elafticity. If the equator fwellis beyond the dimenfion which makes the gravitation balance the centrifugal force, it muft immediately diffipate.

If we fuppofe that the atmofpbere has extended to this limit, and then condenfes by cold, or any chemical or other caufe different from gravity, its rotation neceffarily augments, preferring its former momentum, and the limit will approach the axis ; becaufe a greater velocity produces a greater centrifugal force, and requires a greater gravitation to balance it. Such an atmofphere And or may therefore defert, in fucceffion, zones of its own matter in the plane of its equator, and leave them revolving in the form of rings. It is not ualikely that the rings of Saturn may have been furnifhed in this very way; and the zones having acquired a common velocity in their different ftrata, will preferve it ; and they are fufceptible of irregularities ariling from lacal caufes at the time of their feparation, which may afford permanent fpots.

We think that the rotation of Saturn's ring affords fome hopes of deciding a very important queftion about nifla the the-nature of light. If light be the prupagation of means of elaftic undulations, its velocity depends entirely on the difcoveri elafticity and denfity of the fluid: but if it be the emif. of lighe fron of corpufcies, their velocity may be affected by other caufes. The velocity of Saturn's ring is $\frac{5}{6} \frac{2}{3}$ of that of the earth in its orbit, and therefore about $\frac{1}{10000}$ of the velocity of light. The weftern extremity (to us in the northern regions) is moving from us, and the eaftern is moving tuward us. If light, by which we fee it, be reflected like an elattic ball from an claftic body, there will be an excefs in the velocity of the light by which we fee the eafteru limh above the velocity of the light by which we fee the weftern limb. This excefs will be $\frac{5}{5} \frac{1}{50}$ of the mean velocity of light. This fhould be difcovered by a difference in the refraction of the two lights. If an acromatic prifm could be made to refract fourteen degrees, and if Saturn be viewed through a telefcope with this prifm placed before it, there fhould

be a change of flape amounting to fixteen feconds; if the axis of the prifm be parallel to the longer axis of the ring, it will dittort it prodigioully, and give it an oblique pofition.

A fimilar effeet will he produced by placing the prifin between the eye-glafs and the inage in the focus of the object-glafs.

Our expectation is founded on this unqueftionable principle in dynamics, that when a particle of light paffes through the active ftratum of a tranfparent body which refrachs light toward the perpendicular, the addition made to the fquare of its velocity hy the refracting forces is equal to the fquare of the velocity which thofe forces would communicate to a parsicle at reft on the firface of this refracting Itratum of the tranfparent body. Therefore if the velocity of the incident light be increafed, the ratio of the fine of ineidence to the fine of refraction will he diminifhed. It is confonant to common fenfe, that when the incident light has a greater velocity, it paffes more rapidly through the attracting ftratum, and a fmaller addition is made to the velocity. When the velocity of the incident light is 10000 times greater than that of the earth's annual motion, the fine of incidence is to the fine of refraction in glafs as 20 to 3^{1}, or as 10000 to 15500. If this be increafed $\frac{25^{\prime} \sigma \overline{0}}{}$, making it 10004, the ratio will be that of $1000+$ to 15502,62, or of 10000 to 15496,4 . The difference between the refractions of the light from the eaftern and weftern extremities of the ring will be, to all fenfe, the fame, if the velocity of the one be diminifhed to 999^{ℓ}, and the other increafed to 10002.

We may juft add here, by the way, that the action of another body may confiderably change the conftitution of this atnoofphere. Thus, fuppofing that the moon had originally an atmofphere, the limit will be that diftance from the moon where the centrifugal force, ariing from the moon's rotation, added to the gravitation to the earth, balances the gravitation to the moon. If the moon be $\frac{1}{5} \pi^{t h}$ of the earth, this limit will be about $\frac{T}{\bar{D}}$ th of the moon's diftance from the earth. If at this diftance the elafticity of the atmofphere is not annihilated by its rarefaction, it will be all taken off by the earth, and accumulate round it. This may be the reafon why we fee no atmofphere about the moon.

What has beenf faid in the article Tide (Encycl.), will explain the trade-winds on the earth and in Jupiter and Saturn. On the earth they arc increafed by the expanfion of the air by heat. This caufes it to rife
in the parts warmed by the fun, and flow ofi towald the poles, where it is again covied and col:denfed. The under ftratum of colder and denfer air is continually flowing in from the poles. 'I'his having lefs relocity of circulation than the equatorial parts of the earth, muft have a relative motion contrary to that of the earth, or from eaft to weft, and this muth angment the current produced by gravitation.

Thus we fee that all the mechanical phenomena of the folar fyftem, whether relating to the revolutions round the varions centres of gravitation, or to the figure of the planets and the ofcillations of the fluids which cover them, or to the rotations sound their refpectire axes-are neceffary confequences of one rimple principle of a gravitation in every particle, decreafing in the reciprocal duplicate ratio of the diftance. We fee that All the methis, combined with a primitive projection, will produce phen me me every mution that we obferve. It was not neceflary, as phanome of the Copernicus inagined, to imprefs three motions on the folar fy fo carth: one, by which it was made to revolve round the fem fow fun, a fecond, eaufing it to turn round an axis inclined from one to that of its orbit ; and a third, by which this axis de-ciplc. fcribed that conic furface which forms the preceffion of the equinaxes. One inpulfe, not pafing through the centre of the earth, nur in the plane of the ecliptic, will .produce the two firtt motions, and the protuberant matter produced by the rutation will generate the third motion, by the tendency of its parts to the other heavenly bodies. Without this principle, the clliptic motion of the planets and comets, their various inequalities, fecular or perindical, thofe of the moon and of the fatellites of Jupiter, the preceffion of the equinoxes, the nutation of the earth's axis, the figure of the earth, the undulations of its ocean-all would have been imperfectly known, as matters of fact, wholly diferent from each other, and folitary and unconnected. It is truly deferving admiration, that fuch an immenfe variety of important phenomena fluw fo palyably from one principlon of fueh fimplicity, and fuch univerfality, that no phenometion is now left out unexplained, and predicted with a certainty almoft equal to actual obfervation.

> Que toties animos veterum torferc fophoram,
> Quf que fobolas bodie rauco certamine rexant,
> Obvia confpicimus, nubem pellente Mathefi.
> Surgite mortales, terrenas mititite curas, Atque binc celigene vires dignoffite mentis,
> A pecudum vilia longe lateque remoti.

A S T ftars, in an aftrological fcheme of the heavens. tion or collection of ftars in the heavens.

ASTROTHEMATA, the places or pofitions of the
ASTROTHESIA, is ufed by fome for a confella-
-ASTRUM, or Astron, a conftellation or affemblage of flars: in which fenfe it is diftinguifhed from Afer, which denotes a fingle far. Some apply the term, in a more particular fenfe, to the Great Dog, or rather to the large bright ftar in his mouth.

ASYMMETRY, the want of proportion, otherwife

A S Y

called incommenfurability, or the relation of two quanti- Afymp. ties which have no common meafure, as between I and $\sqrt{2}$, or the fide and diaronal of a fquare.

ASYMPTOTES (fee Encyrl.). are, by fome, diflinguifhed into various orders. The afymptote is faid to be of the firft order, when it coincides with the bafe of the curvilinear figure; of the fecond order, when it is a right line parallel to the bafe; of the third urder, when it is a right line oblique to the bafe; of the fourth order, when it is the common parabola, having its

A U T [56] A U T

Atar axis perpendicular to the bafe; and, in general, of the A $n+2$ order, when it is a parabola whofe ordinate is always as the n power of the bafe. The alymptute is ublique to the bafe, when the ratio of the firt fluxion of the ordinate to the fluxion of the bafe approaches to an affgable ratio, as its-limit ; but it is parallel to the baie, or coincides with it, when this limit is not affignable.

ATTAR of roses. See Roses, Otter of, both in the Encyclopxdia and in this Supplement.

AVANT foss, or litils of the Counterycarp, in fortification, is a wet ditch furrounding the counterfcarp on the outer fide, next to the country, at the foot of the glacis. It would not be proper to have fuch a ditch if it could be laid dry, as it would then ferve as a lodgment for the enemy.

AUBIGNE. Sce Stuart in this Supplement.
AUMIL, in Bengal, a native collectur or manager of a ditrict on the part of government.

AUTENIQUA, a large and beautiful country in Africa, lyng to the eaft of the Cape of Good Hope, and inhabited, part of it, by Dutch colonifts. The word Auteniqua fignifies, in the Hottentot language, "s a man loaded with honey:" a name which is not improperly given to the country, lince, as you enter it from the Cape, you cannot proceed a ftep without feeing a thoufand fwarms of bees. The flowers on which they feed fpring up in myriads; and your attention is engaged, and your courfe fufpended, by the mixed odouts which exhale from them, by their colours and variety, and by the pure cool air which you breathe. Nature has made thefe enchanting regions like fairy land. The calyxes of all the flowers abound with excellent juices, from which the bees extract the honey that they everywhere depofite in hollow rocks and trees.

This country was vifited in 1782 by M. Vaillant, who calls it the moll delightful region in the univerfe; and fays, that, as he approached it, he beheld, from the top of a very high mountain, an immenfe valley, adorn. ed with agreeable hills, variegated in an infinite numbet of hapes, and extending in an undulating manner as far as the fea; whilt enamelled meads, and the molt heautiful paftures, ftill added to the magnificent fcene. It abounds with fmall rivulets, which, flowing down from the mountains, run into the fea throngh an hundred different channels. The water of thefe rivulets has the colour of Madeira wine, and a ferruginous tafte; but our traveller did not examine whether this tafte and colour proceed from their flowing through fome mine in their paffage, or from the routs and leaves of trees which they carry along with them.

The whole of Auteniqua, from the chain of mountains which divides it from the country of that race of Hottentots called Gonaquas to the fea, is inhabited by feveral planters, who rear a number of cattle, make butter, cut down timber, and collect honey; all of which they tranfport to the Cape : but it appears that they make not the mont of their fituation. "Can it be believed (fays M. Vaillant), that the disectors of the Company, for their own ufe, fhould order fhips to be fent every year from Amferdam, loaded with planks and boards of every kind, whilft in this country there are immenfe forefts, and the moft beautiful trees in the world? This abfurdity, however, is not at all aftonifhing. The Company gratuitouly furnifhes the gover-
nor and all the officers with whatever wood they have Auceniqu
occation for; and it is delivered to them at their houfes occation for; and it is delivered to them at their houfes without any expence. The governor therefore has no perfonal interct to extend his views to this part of the adminitration, and to abolifh an abufe fo prejudicial to the colony."

But the colonifts themfelves muft be a very indolent and Itupid kind of people; fince, if our traveller deferves credit, they neglect advantages with which the perfonal interelt of the governor camot poffibly interfere. 'I was filled with indignation (fays M. Vaillant) to fee people, who lave wood within their reach, employ it in commerce, and not have the courage to build for themfelves habitable houfes. They live in wretched hovels, conflructed of wicker-work, dauhed over with clay; the fkin of a buffalo, fixed at the tuur coruers to as many ftakes, ferves them for a bed; and the door, which is at the fame time a window, is hut by a mat ; while two or three mutilated chairs, a few pieces of plauk, a kind of table, and a pitiful box of two feet fquare, form all the furniture of thefe colonial habitations. Thus is the picture of the moft profound mifery contrafted with the charms of this terreftrial pa. radife; for the beauties of thefe regions extend even beyond Auteniqua. The people, however, though their houfes be bad, live well. They have game and falt-water fifh in abundance; and enjuy exclufively, over all the other cantons of thele colonies, the advantage of having, for the whole year without interruption, vegetables of every kind in their gardens. For this they are indebted to the excellence of the foil, and to its being naturally watered by fmall treams, which crofs each other in a thoufand different directions, and, as one may fay, lay the four feafons under contribution to fertilize Auteniqua. Thefe freams, which frequently overflow their banks, but never dry up, proceed from a caufe well known; the high mountains towards the eaft, which are covered with forefts, fop the clouds and the foge carried from the fea, and this occafions very abundant rains."

In thefe mountainous regions, which, as well as the plain, our author comprehends under the denomination of Suteniqua, there are multitudes of elephants, buffaloes, pauthers, hyenas, and antelopes of every fpecies; and all thefe animals are hunted and killed by the natives, as well for food as for the protection of their flocks and herds from fuch of them as are beafts of prey. Our author has eaten the lleh of every one of them except the hyena; and declares, that the foot of an elephant, baked after the Hottentot manner, is one of the molt delicious morfels that he ever talted. He gives directions for hunting them all ; but warns his readers from attacking elephants when he finds them in droves, for then, he fays, they are invincible. He even thinks it exceedingly dangerous for one man, however well armed, to attack a fingle elephant in the plain. The buffalo he defcribes, contrary to moft other travellers, as a timid animal, which never relifts till his fituation becomes defperate; and he thinks that there would be no difficulty in training him, if caught when a calf, to the yoke like the bullocks of Europe.

The-kites and vultures of this country, ou: traveller reprefents as in the higheit degree voracious and fiecee, infomuch that it is hardly pollible to fright them from their prey. He had on one occafion killed two butfaloes, which

A U T
 57] A U T

ureniqu3. which he ordcred to be cut into wery finall pieces, that they might be more eafily falted, and expofed afterwards to the air and the fun. His wagons, as well as the bufhes and trees which furrounded him and his people, were loaded with the bloody fragments of thefe two animals, and they had begun their operation of falting; but on a fudden, while they were not expecting it, they found thenfelves attacked by flights of kites and vultures, which, without exhibiting the leaft fymptoms of fear, perched in the midt of them. The kites were above all the moft impudent. They feized upon the morifls of flefh, and even contended furioufly with his people. "When they had each carricd away (fays he) a pretty large piece, they retired to fome branch, at the diftance of ten paces from us, and devoured it hefore our eyes. Though we tired our fufees they were not frightened, but returned inceflantly to the charge; fo that finding our powder watted in vain, we refolved to keep them off with large pules until our provifions fhould be quite dry. This manceuve, which for a lung time haraffed my people, did not prevent us from being pluadered without mercy; but had we not employed it, nothing would have remained to us of our two buffaloes."

This battle with the kites took place on the confines of the Dutch fettements; but when M. Vaillant had with difficulty paffed over the mountains which bound them, the profpects became more magnificent, the foil feemed to be more fruitful and rich, nature appeared to be nore majeftic and grand, and the lofty mountains prefented on all fides more charming and delightful points of view than any that he had ever before met with. Thefe fcenes, contrafted with the dry and parched fields of the Cape, made him exclaim, he fays, in ectlacy," What! fhall thefe fuperb regions be eternally inhabited by tigers and lions? What fpeculator, with the fordid view only of ettablifhing a kind of centre for commerce, could have preferred the flormy Table Bay to the numberlefs roads and commodious harbours which are to be found on the eaftern coafts of Africa? Thus (continues he) was I reflecting within myfelf, whilt I was climbing the mountain, and forming vain wifhes for the conqueft of this beautiful country, which the indolent policy of the European nations will perhaps never gratify.'

If his defcription of its beauties and fertility be not greatly exaggerated, it is indeed wonderful that either the Dutch or fome other maritime power of Europe has not long ago taken poffeffion of it. After he had paffed the mountain, one could not, he fays, choofe a more agreeable or advantageous fpot than that upon which he then was for eftablifning a thriving colony. The fea advances through an opening of about a thoufand paces in breadth, and penetrates into the country to the diftance of more than two leagues and a half. The bafon which it forms is more than a league in extent (he does not fay whether in breadth or in circumference); and the whole coatt, both on the right and the left, is bordered with rocks, which intercept all communication with it. The land is watered by limpid and refrefhing ftreams, whicb flow down on all fides from the eaftern mountains; and thefe mountains, crowned with majeftic woods, extending as far as the bafon, and winding sound it with a number of finuofities, exhibit a hunSuppl. Vol. I. Part I.
dred groves, which are naturally variegated, and cach Auteniqua. more agreeable than another.

The author proceeding forwards about two days journey, arrived at a bay known to mavigators by the name of the Bay of Asoa, hut called by the colonifts Blettenberg's Bay, from its laving been vifited fome time before by a Governor Blettenberg, who orderd his name, together with the year aud day of lis arrival, to be engraven on a fone column. This bay is a little beyond the limits of the country called Auteniqua; but it is not foreign from the purpofe of this article to infert in this place our traveller's account of it, and of the country around it.

The bay itfelf, he fays, is very fpacious, and has a fufficient depth of water for the largen veffels. The anchoring ground is fure, and boats can fail to a heautiful part of the thore, which is not confined by the rocks, as they are all there detached from one another. By advancing a league along the coaft, the crews would arrive at the mouth of a contiderable river called the Queur-Boom, where they would find water. Refrehiments might be procured from the inhatitants of the environs; and the bay would fupply them with excellent fifn, with which it abounds.

This bay is one of thofe places wlecre government might eftablifh warehoufes and repofitories for timber ; and it is for this reafon that we have introduced it to notice in this article. The forelts around it, fays M. Vaillant, are everywhere magnificent, and the trees could be more eafily cut down than any where elfe; for it is not to fteep mountains that one muft go for wood, as at Auteniqua; it is here ready at hand; and during the fine monfoon might be tranfported to the Cape with little trouble and no rilk. The inexhauftible and fertile lands in the neighbourhood of the bay, if once cultivated, would produce alundant crops, and draw together a great number of intelligent planters, on account of the ready communication which they would have with the Cape. In a word, the Company, continues he, have notling to do fo much for their own intereft as to form here a proper effablifhnent. To the general profits of fuch an intitution, would be added thofe of individuals, which could not fail to be of great importance. They might, for example, cut down a certain tree called Jinking zoood, and export it to Europe, where it would undoubtedly be foon preferited to mahogany and every other kind of wood employed by catbinet makers.

The Hottentots, who in fcattered leaals inhabit this delightful country, our author defcribes as a faithful, gentle, and rather timid race. He affirms that they have no religious impreffions whatever, nor any notion of fuperior powers who govern the world. But this, if not a wilful falfehood dictated by the philofophy of France, is probably a miftake arifing from his fcanty knowledge of their language, and total ignorance of the meaning of their religious ceremonies. His great mafter, as well as the mafter of his fect, Lucretius, might have taught him, that fear, if not a better principle, will generate the notion of fuperior beings in the minds of favages ; and from fear, by his own account, the inhabitants of Auteniqua are far from being free. He likewife affirms, and feems to confider it as much to their credit, that this race of gentle bcings, fo far from being H

Automa. a prey to the paffion of jealouly (as other travellers have reprefented the Huttertots in general), are fo chliging, as to lend their wives to travellers who vilit them, and that they actually accommodated his Hottentots in this way. Auteniqua, as laid down in M. Vaillant's map, lies between $33^{\circ} 30^{\circ}$ and $34^{\circ} 50^{\prime}$ of fouth latitude, and between 25° and $23^{\circ} 40^{\prime}$ of eatt longitude; and lis rout through the comery was from louth-welt to north-eaft, or nearly fo.

AUTOMATON. Under this title and that of Androides full credit was allowed in the Encyclopedia Britannica to the ftory of M. de Kempel's mechanical chefs-player, and a detail at fome length was given of the feats of that figure, as woll as of fome other furprifing automata. No man more readily admits the powers of the fkilful mochanician than the witer of this mort atticle; but having many years ago detected the inpofition which u as practifed on the public in fone parts of Scotland by a circumforaneous monntebank, who exhibited a figure apparet.tly capable of writing a certain number of words, he has ever fince fufpected impofture in all antomata which appear to have the power of waryins their motions according to circumflances. With refpect to the chopsplayer, there is now fufficient evidence that his fufpicions were well founded.

In the defcription of this figure (Encycl. Vol. I. p. 787.), " it is faid that the automaton could not play unlefs M. de Kempel or his fubflitute was near it to direct its moves. A fmall box during the game was frequently confulted by the exhibiter ; and herein confifted the fecret, which he faid he could in a moment communicate." The fecret was indeed fimple: "A well taught boy, very thin and fmall of his age, was concealed in this box almof immediately under the chefs-board, and agitated the whole machine." This we learn from Thomas Collinfon, Efq; who was let in-
to the fecret at Drefdan by a gentleman of rank and ta- Autnama leats, named Fofph Freidrick Fitybere, by whom the vilality and foul of the chefs-playing figure had fome time before been completcly difcuvered. Mr Collinfon, finding that Dr Iluttun lad given the fame credit with us to the rality of mechanical chers-playing, undeceived lis friend, by communicating the difoovery of Freyhere in a letter, which the Doctor has with great propriety publithed in the Addenda to his Mathematical Dictonary, Mr Collinfon adels, and we doult not with truth, that, "even after this abatement of its being frictly an automaton, much ingenuity remains to the contriver." This was in fome degree true of the mechanifm of the writing figure, of which the compiler of this article detected the bungling impofture of the two exhibiters. The figure itfelf, with all the principles of its motion, were very ingenioully confructed; but the two men who exhibited it were ignorant and awk. ward, and could not conceal from a fcrutinizing eye, that the automaton wrote fumetimes well and fometimes ill, and never wrote at all when they were both prefent to the company. It was by infifting upon feeing them both together, and threatening to expole the clieat to the whole town, that the prefent writer prevailed upon him who appeared to be the principal exhibiter, to confefs in private that his companion was concealed behind a fereen, and to how how, from thence, he directed the movements of the figure.

Conjugate A XIS, or Second Axis, in the ellipfe and hyperbola, is the diameter paffing through the centre, and perpendicular to the tranfverfe axis; and is the horteft of all the conjugate diameters.

Tranfverfe Axis, in the ellipfe and hyperbola, is the diameter pafling through the two foci and the two principal vertices of the figure. In the hyperbola it is the horteft diameter, but in the ellipfe it is the longeft.

B.

BAHRDT (Dr Carl Eriedirich) was fo dceply concerned in a combination of philofophers formed, as they faid, for the advancement of fcience and virtue, that an account of his life mult be interefting, if it were only to fhow the effects of this philofophic culture on his own morals. We trut therefore that our readers will be pleafed, perhaps improved, by the following narrative, taken from documents the mont authentic, by a * See Pro-man* whofe communications on other fubjects do crefeftor Robi- dit to this volume.
fon of Edinhurgh's Proofs of a Conjpiracy againf ail! the Religions unil Govern ments of E_{u-} sufe.

Carl Friedirich Bahrdt was, in 174 t, born at Leipfig, where his father, then a parifh minifler, and afterwards profeffor of theology, died in 1775 . It is natural to fuppofe that fuch a parent would be at due pains to inftil into the mind of his fon the principles of piety, virtue, and patriotifm, which is indeed a branch of virtue; but if f_{o}, he lived to fee that his labour had been
in vain. While yet at college, where the courfe of his ftudies was calculated to fit him for the important of fice of preaching the gofpel, the young man enlifted as a huffar in the Pruffian fervice; but being bought off, he returned to the univerfity, where, in 1761 , he was admitted to the degree of M. A. Soon afterwards he became catechift in his father's church, was a popular preacher, and in 1765 publifhed fermons, and fome controverfial writings, which evinced that he poffeffed both learning and genius. Neither learning nor genius, however, nor both united, could attach him to the caufe of virtue, or make him obferve even the common rules of decorum ; for immediately after this publication he began to indulge in conviviality, and to give fcope to his refentments in anonymous pafquinades, in the higheft degree bitter and offenfive. From the fhafts of his malice no perfon was fafe. Profeflors, magiftrates,

B A H

Balurdt. and clergyman, had indeed his chief notice; but he condefcended occafionally to attack fludents, and fpared not even lis own comrades or his friends.

Whilf he was thus labouring to make enemies of all to whom he was known, unfortunately, for his own character, his temperament was what the atomical philofo. phers (who can explain every thing by ethers and vibrations) call fanguine; and he was, as he himfelf acknowledged, a paffionate admirer of the ladies. Coming home from his midnight revels, he frequently met in his way a young girl neatly dreffed in a rofe.coloured filk jacket and train, and a coflly fable bonnet ; and one evening, after having, as he fays, indulged freely in fome old Rhenifh, he faw her home to her lodgings. Some time after this interview, the miftrefs of the houfe (a Madam Godichufky) came into his room, and faid that the poor maiden whom he had debauched was pregnant. This was a misfortune zuhich be could not belp; but as it would ruin his character if known, he gave to the old lady a bond for 200 dahiers (about L. 40 Iterling), to be paid by inftalments of twenty-five, to keep the matter fecret. "The girl (he fays) was fonfible and good; and as her converfation, for which he had already paid, was agresable, he did not difcontinue his acquaintance."

It could not be fuppofed that fuch vifits, by a clergyman, would pafs unobferved, however cantiouny made, in the midil of a town, of which the inhabitants had been the indifcriminate objects of his fatire; and he could hardly be furprifed when told by a friend, that one Bel , a magitrate whom he had lampooned, was accquainted with the whole affair, and would bring it into a court of juftice, unlefs the bond was immediately retired.

This bond was the only evidence which could be produced againft Bahrdt, but it was fufficient to blaft his character in Leipfig, and muft therefore by any means be removed out of the way. To accomplifh this, however, was a matter of fome difficulty; for neither he nor his friend could raife the money. In this dilemma they fell upon a contrivance worthy of themfelves. They invited Madam Godfchufky to mect them in another houfe to receive the 200 dahlers due to her by Bahrdt; but when the was uhered into the room, and found no perfon waiting for her but Bahrdt's friend, fhe could not be prevailed upon to produce the bond till the money flould be put into her hands, together with a prefent to herfelf. The Gentleman tried to intimidate her. He drew his fword ; flowed her how men fence; made pufhes at the wall and then at her: but finding that the conld not be frightened out of her fenfes, he threw away his fivord, and endeavoured to take the bond from her by force. It was fome time before he prevailed; but at lat getting the paper out of her pocket, he tore it in pieces, opened the door of a clofet in which Bahrdt was concealed, and faid, "There, you b-; there is the honourable fellow whom you and your whore have bullied ; but it is with me you have now to do, and you know that I can bring you to the gallows."

Balirdt, from whofe memoirs of himfelf this fory is taken, admits that there was a great fquabble on the occafion; but he went home, coinforting himfelf with the belief that he flould now have no farther trouble from Madam Godfchulky or her girl. He chanced, however, to be niitaken. The magifrate Bel had fome
how been made acquainted with this nefarious tranfaction, and brought it into court on the day that our hero was to make fone very reverend appearance at church. The cafe of Bahrdt was now hopelefs ; for after fome unfuccefsful attempts of his poor father to fave him, he was obliged to give in his gown and band, and to quit Leipfig.

To a parent the public difgrace of a child is one of the fevereft calamities to which human nature is liable; but for this calamity the father of Bahode mult have been long prepared, as his fon appears to have been renarkably undutiful. Of this we have one nemorable inflance recorded by himfelf. His father, he fays, was fevere, and his own temperament lafty, fo that he fumetimes forgot himfelf. "One day (continues he) I laid a loaded piftol on the table, and told him that he fhould meet with that if he went on fo; but I was then only seventeen!’"

On his being obliged to leave the place of his nativity, the friends of Bahrdt, and in particular Semler, an eminent theological writer, who had formed a very favourable opinion of his talents, were affiduous in their endeavours to procure an eftablifhment for him elfewhere; but his high opinion of himfelf, his impetuous and precipitant temper, and that fatirical habit which he lad fo freely indulged in his outlet in life, inade their endeavours long ineffectual. At laft he got a profefforthip at Erlangen, then at Erfurth, and in 1771 at Gieffen. But in each of thefe places he was no fooner fettled than he got into difputes with his colleagues and with the eftablifhed church; for he was a ftrenuous partizan of the innowations then attempted to be made in the doctrines of Chrillianity. In his publications, which were generally anonymous, he did not truft to rational difcuffion alone, but had recourde to ridicule and perfonal anecdotes, and indulged in the moft cutting farcafms and grofs fcurrility.

His love for convivial company continuing, his income was infufficient for the craving demand. Finding therefore that anecdote and flander always procured readers, and poffelfing a wonderful activity and facility in writing, he never ceafed from publifhing lampoons and fatires, in which he fpared nether friends nor foes. But it was impoflible to prevent thefe publications from being traced to their author; and his avowed theological writings being fuch as could not be fuffered in a profellor of divinity, the hult of enemies which he had been at fo much pains to raife againle himielf, were furnifhed with fufficient grounds for fubjecting his conduct to legal cognizance ; even the very fudents at Gieften were flocked at fome of his liberties.

The confequence of all this was, that, after much wrangling in the church judicatories, he was juft about to be difmiffed from his profefforfhip, when he got an invitation to Marfehlins in Switzerland to fuperintend an academy.

To Marfchlins he went about the year 1776 , and began his new career by forming the feminary after the model of an academy which had fome time before been fet up in the principality of Anhalt Deflau by one Bafedow, a man of talents and learning, who gave to it the appellation of philanthropine. The plan of this academy was very different from thofe of the univerfities; for its author profeffed to confider languages, fciences, and the ornamental exercifes, as mere acceffo-

Bahrd: ries, his aim being to form the young mind to the love of mankind and of virtue, by a courfe of moral education certainly fpecious, and apparently unexceptionable. To make this novel inflitution the more extenfively ufeful, the rules by which the education was to be conducted were framed in fuch a manner as, it was thought, would remove from the minds of Catholics, Lutherans, and Calvinits, all uneafinefs refpecting the faith of their children, as it related to thofe particular tenets which feparated them into different communions. It was even propofed to banill from the philanthropine all poffitive religion whatever, and to inftruct the youth edseated there in the principles only of natural, or, as it was called, pbilofophical religion.

This plan was peculiarly fuited to Bahrdt's tafte, becaufe it left him at liberty to introduce into his academy any fyttem of religious or irreligious opinions that he pleafed; a liberty of which he refolved to avail himfelf, and, though now a doctor in theology, to outltuip, in licentioufnefs, even the founder of the philanthropine, who was not in orders. By meditating on the workings of his own mind, he had by this time formed his theory of human nature, which was indeed very fimple. "The leading propenfities of the human mind (he fays) are thrce ; infinctive liberty, inftinctive activity, and inftinctive love." By thefe expreffions we fuppofe he means, "innate love of liberty, inftinct prompting to action, and the fexual appetite:" and he immediately adds, that "if a man is obftructed in the gratilication of any of thefe propenfities, he fuffers an injury. The bufinefs therefore of a good education is to teach us how they are to be gratified in the highell degree."

That fueh an edueation would be approved of by the uncorrupted natives of Switzerland was hardly to be expected; and Bahrdt foon found his fituation at Marfehlins as uncomfortable as it had been at Gieffen. "The Grifons (he fays) were a ftrong inftance of the immenfe importance of education. They knew nothing but their handicrafts; and their minds were as coarfe as their perfons." He quarrelled with them all, and was obliged to abfcond after lying fome time in prifon.

From Marfchlins he went to Durkheim, a town in the Palatinate, where his father had heen minilter, and where his literary talents were well known. After fome little time lie got an affociation formed for erecting and fupporting a Pbilantbropine or houfe of education. A large fund was collected; and he was enabled to travel into Holland and England to engage pupils, and was furnithed with proper reeommendations.
in London he gained the friendihip of a clergyman, whom lie reprefents as a perfon in the higheft degree accomplifhed. "With found judgment (fays Bahrdt), great genins, and correct tafte, he was perfectly a man of the world. He was my friend, and the only perfon who warmly interefted himfelf for my inflitution. 'Co his earneft and repeated recommendations I owe all the pupils that I got in England, and many moft refpectable comections; fur he was univerfally efteemed as a man of learning and of the moft unblemifhed character. He was my friend, my conductor, and I may fay my preferver; for when I had not bread for two days, he took me to his houfe, and fupplied all my wants."

For fo much kindnefs the reader doubtlefs fuppofes that the heart of Balirdt overflowed with gratitude; but if fuch be his opinion, he is a Atranger to the prin-
ciples of thofe who have on the continent of Europe Batrd:. afloeiated for the purpofe of enlightening the world. This amiable man, whofe character is here fo juftly drawn, was afterwards depieted by the monfter whom he had faved from perifhing by hunger, as a wretch loft to all fenfe of thame and decency, as an apoftate from the Chriftian faith, and as a notorious frequenter of the London brothels! Furtunately he was able to vindicate his character completely from this flanderows abufe, and to convict Bahrdt of having publifhed what could not poflibly le true.

This ungrateful liar returned from England, and carried into execution his plan of the Philanthropine. 'The cafle of Count Leining Hartzburgh at Heidefheim, having gardens, park, and every handrome accommodation, had been fitted up for it ; and in 1778 it was confeerated by a folemn religious feftival. But his old misfortunes purfued him. He had indeed no colleagues with whom he could quarrel ; but his avozved publications became every day more obnoxious; and when any of his ononymous pieces had a great run, he could not fo far fifle his vanity as to conceal that he was the author. Of thefe pieces fome were fhocking to decency, and others fo horribly injurious to the characters of the moft refpectable men in the ftate, that he was continually under the correction of the courts of juftice. It was hardly poffible for a man of letters to be in his company, and not fuffer by it ; for it was his conftant practice to attribute every ftep which he took towards atheifm, to the force of the arguments urged by fome of his friends.

To be his friend, or to obtain his applaufe, was indeed fo great a misfortune, that when the reader fees any perfon celebrated by Dr Bahrdt, in the beginning of a book, for found fenfe, profound judgment, accurate reafoning, or praifed for acts of friendfhip to himfelf, he may be aflured, that before the clofe of the book this man thall be reprefented as having in private converfation convinced the author, that fome doctrine, cherifhed and venerated by all Chrittians, is a piece of knavifh fuperftition.

Dr Bahrdt had married, while at Gieffen, a woman with a fmall fortune: but fuch a ftranger was he to the, delicacies of wedded love, fo lont indeed to all fenfe of deceney, that he contrived one day to entice his wife naked into the bath in the garden of his Philanthropine, where, in the water, he, being alfo naked, toyed with. her in the fight of all his pupils. It was his boaft that he held his opinions independent of all mankind, and was indifferent whether they procured him praife or reproach ; but it appears from this fact, that he was equally regardlefs of the praife or cenfure which might be attached to his actions; for furely the groffelt hog that ever before him battened in the Epieurean fty would not have prefented fuch an exhibition to boys.

The confequence of all this was, that he was obliged to fly from Heidefheim, leaving his fureties in the Plio. lanthropine to pay about 14,000 dahlers, befides debts without number to his friends. He was imprifoned at Dienheim ; but being foon releafed, he fettled at Halle, where he funk to be the keeper of a tavern and billiardtable. His houfe became of courfe the refort and the bane of the ftudents in the univerfity, and he was obliged to leave the city. He had fomehow got money fufficient to purchafe a little vueyard, pleafantly fitua-

B A H [$6:]$ B A H

Bahrdt. ted in the neighbourhood. This he fitted up with every accommodation that could invite the fuctents, and called it Babrelt's Rube (Bahrdt's repofe) ; where he lived for two years, directing the operations of a fecret fociety called the German Union, for routing dut Superstitionand Prejudices, and for advan. cing true Christianity.

With Bahrdt's qualifications for advancing the inte. refts of gemuine Cliritianity, the Chriftian reader is already fufficiently acequainted; but he will not wonder at his appointment to this high office, when he is informed that the German Union is nothing more than a fpawn of the fecret fociety of Illuminati (fee leluminati in this Supplement) ; and that its object is to abolifh the religion of the golpel, and to teach in its flead the fatalifm of the Stoics. With this view Chriftianity is confidered in the union as a myftical fociety, and its Diviue Founder as the grand mafter of a lodge! The apoftles Peter, James, John, and Andrew, were the elect, brethren of the third degree, and initiated into all the myfteries. The remaining apoflles were only of the fecond degree; and the feventy-two, of the frrf: a degree into which ordinary Chriftians may be adnitted, and prepared for farther advancement. The great myftery is, that J—— C ——as a naturalis J , and taught the doctrine of a fupreme mind, the fpectator but not the governor of the world.

To propagate thefe impious and abfurd notions, Bahrdt publithed many books of the molt antichritian tendency, and fome of them calculated to make their readers fhake off all moral obligation. But the labours of the fociety were not confined to religion: it inculeated on its members the mof dangerous maxims of civil conduct: for, as we learn from Bahrdt himfeif, the objects at which the Union aimed were-Advancement of fience - a general intereft and concern for arts and learn-ing-excitement of talents-check of fcribbling-good edu-cation-liberty-ecuality - bojpilality-delivery of many from misfortunes-urion of the learnceland at lajl-perhaps-Amen.

What the meaning of this enigmatical conclufion is we can only guefs; and we agree with the real philofopher from whom we have taken this account, that our conjectures cannot be favonrable. Bahrdt was a villain, and could be affociated only with villains, whofe affairs he managed with the help of an old man, who lived at bed and board in his honfe for about fix fhillings a-week, and difcharged the office of fecretary to the Union.

When he liad toiled in this caufe near two years, fome of the feerets of the Union tranfpired; his former conduet and his conftant imprudence made him fufpected ; his affociated friends lodged informations againft him; his papers were feized; and he himfelf was fent so prifon, tirft at Halle and then at Magdtburgh. After fomething more than a year's confinement, he was fet at liberty, and returned to his Rube, not, alas ! to live at eafe, or to exhibit fymptoms of repentance, but to lie down on a fick-bed, where, after many months fuffering of increafing pain, he died on the 23d of April 1793, the noft wretched and loathfone victim of unbridled fenfuality.

Such were the fruits of the German Union, and of that illumination which was to refine the heart of man, and bring to maturity the feeds of native virtue, which are choaked in the heart by fupertitiou and defpotifm.
D. Balirdt affected to be the enlightener and reformer Bahrit. of the world ; and affirmed that all the evils of life originated from defpotiim and fupertition. "In rain (fays he) do we complain of the inefleacy of religion. All pofitive religion is founded on injutice. No prince has a right to preforibe or fanction any fuch fyitem; nor would he do it, were not the priefts the firmett pillars of his tyranny, and fuperftition the ftrungeft fetters for his fubjects. He dares nut how Religion as the is, pure and undcfiled- The would charn the cyes and the hearts of mankind, would immediately produce true mo. rality, would open the eyes of frecborn man, would teach him what are his rights and who are his oppreffors, and princes would vanifh from the face of the earth."
'Therefore, without troubling ourfelves with the truth or falfehood of his religion of nature, and affuming it as an indifputable point, that D_{1} Bahrdt has feen it in this natural and fo effective purity, it is furely a very pertinent queftion, "Whether has the fight produced on his mind an effect fo far fuperior tos the acknowledged faintnefs of the impreflion of Cliritianity on the bulk of mankind, that it will be prudent to adopt the plan of the German Union, and at once pat aa end to the dirifions which fo mnfortunately alienate the minds of profeffigg Chritians from each other "" The account here given of Dr Bahrdt's life feems to decide the queftion.

But it will he faid that we have only related fo many inftances of the quarrels of priefts and their flavifh adherents with Dr Bahrdt. Let us vicw him in his ordinary conduct, not as the champion and martyr of illumination, but as an ordinary citizen, a hufband, a father, a friend, a teacher of youth, a clergyman.

When Dr Bahrdt was a parihh-miniter, and prefident of fome inferior ecclefrallical diftrict, he was empowered to take off the cenfures of the church from a young woman who had born a baftard child. By violence he again reduced her to the fame condition, and efcaped eenfure by the poor ginl's dying of a fever before her pregnancy was far advanced, or even legally document ed. On the night of the folemn farce of confecrating his Philanthropine, he debauched the maid-fervant, who bore twins, and gave him up for the father. The thing was not judicially proved, hut was afterwards made fufficiently cvident by letters found among his papers, and publifhed by one of his friends in the Union. Having fupported thefe infants, in a pitiful manner, for little more than a year, he caufed them to be taken away from their mother, during night, fome time in the month of Fehruary 1780 ; and they were found expofed, the onte at Ufstein, and the other at Worms, many miles diflant from cach other, and almoft frozen to death.

So much for the purity of his morals and his religion, as he appears in the character of a father and of a clergyman. His decency as a hutband, and his gratitude to his friend, we lave already feen; and we flatl now fee his kindncfs and ficlelity. After wafting the greateft part of his wife's little fortune, he was fo provoked becaule her brother would not give him up the remainder, amounting to abont L . In O , that he ever afterwards treated her with the greateft cruelty, and exhibited her to contempt and ridicule in two infamous novels. At Halle he brought a miftrefs into the houfe, and committed to her the care of his family, confining his wife and daughter to their own.
apartment:

B A I [62] B A I

Birlo, aparment; and the lant thing which he did was to Bully. fend for a bookfeller, who had publihed fome of his vileft pieces, and, without a thought of his injured wife, reconmend his ftrumpet and ber children to his protec. tion.
"Think not, indignant reader (fays Arbuthnot), that this man's life is uflufs to mortals." It fhows in a ftoung light the talfity of all his declamations in favour of his fo moch prated natural religion and univerfal kindnefs and humanity. No man of the patte writes with more perfuafive energy, and, though his petulance and precipitant felf-conceit load lim frequently aftray, no man has occafionally put all the arguments of thefe shilufophers in a clearer light; yet we fee that all is talle and hollow. He is a vile hypocrite, and the real aim of all his writiogs is to make money, by foftering the fonfual propenfities of human nature, although he fees and teels that the completion of the plan of the German Union would be an event more deftructive and lamentable than any that can be pointed out in the anno?s of fuperftition. We will not fay that all the partifans of illunination are loges of the fly of Epicuras like this wretch ; and it would be extremely unjult to conhider his vices as the effects of his illumination. He was fenfual, ungrateful, and profane, before he was ad. ritted into the order of the Illuminati; but had the views of that order been fuch as were held out to the world at large, its fagacious founder would not have initiated a wretch fo notorioufly profligate as Dr Bahrdt. Their views, howtver, being to govern mankind thro' the medium of their fenfual appetites, and to reign in heil, rather than ferve in heaven, they could not have emploved a better inftrument. Dr Bahrdt was a true cifciple of illumination : and though his turch was inade of the coarfett materials, and ferved only to difcover iights of woe, the horrid glare darted into every corner, rouling hundreds of filthy vermin, and directing their Alight to the rotten carrion, where they conld beft deFofite their puifon and their eggs. Whilt the more decent members of the Union laboured to pervert the refined part of mankind by declamations on the rights of man and the bleflings of liberty, Bahrdt addreffed himfelf to readers of all defcriptions, and affailed at once the inagination and the appetites. He taught them, that religion is an impolture ; that morality is convenience ; and, with hafphemy peculiar to himfelf, that he and his order, by their licentious doctrines, were to complete the flan and aim of $\mathrm{J}-\mathrm{C}-$.

BAILLY (Jean-Sylvian), who made fuch a figure during the firf years of the French revolution, was born at Paris on the 15 th of September 1736 , of a family which had been diftinguifhed painters during four fucceffive generations. He was bred to the fame profeffion, but fhowed an early tafte for poetry and the belles lettres. Chancing, however, to bccome acquainted with the geometer La Caille, this circumftance decided his genius, and he thenceforth devoted himfelf to the cultivation of fcience. He calculated the orbit of the comet of 1759 ; and on the 29 tli of January 1763 was received into the Acadeny of Sciences. In that year he publifhed an ufeful and laborious compilation, being the reduction of the obfervations made by La Caille in 1760 and 1761 , on the zodiacal flars. He likewife beman to confider the theory of Jupiter's fatellites, and, in the competition for this prize queftion of 1764 , had a
formidable rival in La Grange, who ahready promifed to become the firft mathematician in Europe. The refults of his inveltigations were collected into a treatife p:blihed in : 765 , containing alfo the hitory of that part of aftronomy. In 177 r he gave a moft curious and important memoir on the light of the fatellites, and introduced a degree of accuracy till then unknown in the obfervations of their eclipfes.

His fludies were not confined to the abitract fciences; for he cultivated letters with fuccefs. His cloges of Charles V. of Corneille, of Leibuitz, of Moliere, and afterward thofe of Cook, La Caille, and Greffet, were much admired. His eloquence pointed him out as a proper perfon to fill the charge, vacant in 1771, of fecretary to the Academy of Sciences; and, under the patronage of Buffon, he flood candidate for that enviable place. He failed: but it was the high birth and promiting talents of the young Condorcet, joined to the active influence of D'Alembert, that carried the prize.

In 1775 appeared the firt volume of the Hittory of Aftronomy, which indeed ftrews the path of fcience with flowers, and in every refpect is a moft valuable work-full of animated defeription, of luminous narrative, and interefing detail. His very peculiar ideas concerning the early flate of Upper Afia gave rife to an ingenious correfpondence and difcuftion with the veteran philofnpher Voltaire, the fubitance of which foon appeared in two volumes, intitled, "Letters on the Origin of Sciences," and "Letters on the Atlantide of Plato." If insagination ftoone forth in thefe effays, erudition was no lefs confpictuous in a great work compofed in the years 1781 and 1782 , on the fables and religious creeds of antiquity; which ftill exifts in manufeript, and the publication of which would affuredly extend the fame of its author, and gratify the learned world. Ifis opinions on fome points happening to coincide with the theories of Buffon, he contracted with that celebrated naturalift a clofe friendfhip, which was diffolved by Bailly's uncourtly oppufition to the election of the Abbé Maury into the Academie Françaife. Of that academy he had been chofen fecretary in 1784 ; and he was admitted, in the following year, into the Academy of Infcriptions and Belles Lettres; the only infance, fince Fontenelle, of the fame perfon being at once a member of all the three academies. In the mean time, the other volumes of the Hiftory of Altronomy ficceffively appeared, and that capital work was completed in 17.8 by the Hiftory of the Indian and Oriental Aftronomy ; a production of fingular acutenefs, refearch, and nice calculation.

In 1784 he made an elegant report to the Academy of Sciences on the animal magnetifm of Mefmer; and in 1786 another report, which difplays the judgment and lommanity of its author, on a project for a new botel-tice or infirmary.

We now approach the eventful period which fummoned Bailly from his retirement, to enter on a political carcer, that was full of difficulty and danger, and for which his habits and Itudies appear not to have fitted him. Fle had feen, as others faw, the defects of the oid govermnent of France. His heart panted for civil and ecclefant:cal liberty; but unfortunately, like many other philofuphers borth in his own country and in this, he had fermed istions of that bleffing which experience fhould have taught him can never be realifed among be-

B A I $\quad 63] \quad B A A N$

Bailly. irgs fo imperfect as the bulk of mankind. When the Itates-general were fummoned to meet, he was on the 26th of A pril 1789 nominated feeretary by the electors of Paris, and then appointed one of the deputies. He was chofen prefident of the Tiers Etat; and when that chamber was conftituted the National Affembly, he continued in the chair, and concurred in all the levelling decress which laid the foundation of the prelent mifery of his country, as well of mont other countrics if Europe.

After the taking of the Baftile, when the king was removed to Paris on the 15 th of July, Bailly was called by public aeclamation to the head of that city, with the title of Mayor. In his feveral functions he acted with integrity, cnurage, and moderation. He reached the fummit of glory :-but how mutable, alas! is human grandeur! That middle courfe of conduct, the aurea mediocritas, at which virtue aims, is fitted to pleafe neither of the contending parties in the midit of revolutions; and fueh proved the ruin of Bailly. His popularity began to decline, and was at length changed into inveterate enmity by an unfortunate accident. On the 17th of July 1791, the populace having collected tumultuoufly to demand the abolition of monarchy, Bailly was ordered by the National Affembly to difperfe the mob. He was obliged to proceed to the Champ-de-Mars at the rifk of his life; and, in fpite of all his exertions and forbearance, fome fhots were fired by the foldiery. It was no longer defirable to hold his perilous charge, and on the 16 th of November following he give way to the afcending reputation of Petion. The impaired fate of his health, too, rendered it expedient to retire from the focus of turbulence. He fpent the year 1792 and part of 1793 in travelling through different provinees of. France. During this period he wrote memoirs of the events which he had witneffed, and in which he had often been a principal actor. Thefe come down only to the $2 d$ of October 1789 , but would make a large quarto volume; and L.a Lande, from whofe Eloge de Bailly this article is taken, gives us hopes that the manufeript will be publifhed. He was advifed by his friends to withdraw from France, but he chofe rather, like Soerates, to fubmit to the injuftice and ingratitude of his country. At the nod of a vulgar tyrant he was arrefted, fummarily condemned by a fanguinary tribunal, and on the 15 th of November 1793 was delivered over to appeafe the vengeance of an incenfed and indiferiminate populace. His fufferings were ftudiounly protracted, but he bore them with the calmnefs and magnanimity of a fage. Nature recoils at the recital of fuch barbarities.

In 1787 M . Bailly married the widow of one who had been during 25 years his intimate friend; a woman more qualified by her age and condition to infpire refpect than the palion of love. He was tall in his perfon, of a ferious deportment, and joined firmnefs to fenfibility. Never did philofopher diltinguifh himfelf in fo many different lines, nor acquire fuch deferved reputation in them all. His difntereltednefs was pure and unaffected; and during his magitracy he fpent a part of his fortune in relieving the wants of the poor. His virtue remained as untainted in his various public flations as in the fweet retirement of domellic life.

Such is the encomium paffed upon this philofopher and fatefman by no lefs a man than the celebrated af.
tronomer M. de la Lande; but to thofe who are not infected with the mania of freedom, it will doubtlefs appear greatly exaggerated. That M. Bailly was a man of eminence in the republic of letters, is known to all the learned of Europe; that in his political conduct he meant to promote the good of his country, it would certainly le prefumptuons in us to deny; and that he fuffered unjully, is incontrovertible: But let it be remembered that he fuffered in athorin, which he cxerted all his abilities to raife; and that he fet an example of injuftice, when he concurred in the degradation of the privileged orders, and in the violent cunfifation of the property of the church.

BALIOI, (John), the competitor with Bruce for the crown of Scotland, was not (as he is faid to have been in the Encyclopadia) the brother of King AlexAnder, but the great grandion of David Earl of Huntington, third fon of King David I.

BALLISTIC Pendulum, an ingenious machine invented by Benjamin Robins, for afcertaining the valocity of military projectiles, and confequently the force of fired gunpowder. It confits of a large block of wood, annexed to the end of a frong iron ftem, having a crofs fteel axis at the other end, placed horizontally, about which the whole vibrates together like the pendulum of a cloek. The machine being at reft, a piece \&utton: of ordnance is pointed ftraight towards the wooden Dheiozaryo block or ball of this penduhm, and then difcharged: the confequence is this - the ball difcharged from the gun Itrikes and enters the block, and caufes the pendulum to vibrate more or lefs according to the velocity of the projectile or the force of the blow ; and by ubfaving the extent of the vibration, the furce of that blow becomes known, or the greatelt velocity with which the block is moved out of its place, and confequently the velocity of the projectile itfelf which flruck the blow and urged the pendulum.

BANKA (fee Banca, Encycl.) is noted thtoughon: A fia for its tin mincs. It lies oppolite to the river Palambang, in the inand of Sumacia, on which the fovireign of Banka, poffeffor alfo of the tervitory of Palamhang, keeps his conftant relidence. This prince maintains his authority over his own fubjects, and his independence of the neighbouring fovereigns, chithy by the afiftance of the Duteh, who have a fettlement and troof, at Palambang, and enjoy the benefit of a contract with the king of Banka for the tin which his fubjects procure from that inland. Such at lealt was the cafe in I79.3, when Lord Macartney touched at Banka on his way to China. At that period the fovereign eompelled lis inbjeits, and probahly does fo at prefent, to deliver the tin to him at a low price, and fold it to the Duteh at a fnsall advance, purfuant to lis contract. Thofe miners, from long practice, have arrived at great perfcction in redueing the ore into metal, employing wood as fuel in theit furnaces, and not foffle coal, or coak, which is feldonn in. free from fulphur as not to affect the malleability of the metal. It is fometimes preferred therefore to Enropeas tin at the Canton market; and the profit upon it to the Dutch company was, at the period mentioned abose, fuppofed to have long been nut lefs than L. 150,000 0 year. Into whofe hands this trade has now fallen we know not ; probably it is in a great degree neglected.

BANTAM, the eapital of a kingdum of the fame name in the ifland of Java, is, in the Eincyclopedia, faid

Bantam to be a large town with a good harbour and fortilied calle Sir George Staunton, however, who vilited Baar tam fince that article was publifhed, gives a very diffe- rent accornt botlo of the town and of its harbour. Once indeed it was a place of confiderable confeguence, being the great mart for pepper and other fpices, whence they were diftributed to the rell of the world 'The chief factory of the Englifin as well as Dutch Eaft India Company was fettled there. 'The merchants of Arabia and Hindotan reforted to it. Its fovereigns were fo defirous of encouraging trade, by giving fecurity to foreirn merchants againt the violent and revengeful difpotition of the matives, that the crime of murder was never pardoned when committed againft a ftranger, but might be commuted by a foreignce for a fine to the relations of the deceafed. This place flourifhed for a conliderable time; but the Dutch having conquered the neighbouring province of Jacatra, where they fince have built Ba tavia, and transfened their principal bulinefs to it, and the Ens!ifh having removed to Hindoftan and China, and trade in other refpects having taken a new courfe, Dantam was reduced to a poor remnant of its former opulence and importance. Other circumftances have accelerated its decline. The bay is fo choaked up with daily accuffions of new earth wafhed down from the mountains, as well as by coral fhoals extending a confiderable way to the eatlward, that it is inacceffible at prefent to veffels of burden ; even the party who werit there from the Lion, the fhip which carried Lord Macartney to China, was ubliged to remove from her pinnace into a canoe, in order to reach the town. With the trade of Bantam the power of its fovereign declined. In his wars with other princes of Java he ealled in the affiftance of the Dutch; and from that period he became in fact their captive. He refides in a palace built in the European flyle, with a fort garrifoned by a detachment from Batavia, of which the commander takes his orders not from the king of Bantam, but from a Dutch chief or governor, who lives in another fort adjoining the town, and nearer to the fea-fide. His Bantamefe majefly is allowed, however, to maintain a body of native troops, and has feveral fmall armed veffels, by means of which be maintains authority over fome parts of the fouth of Sumatra. His fubjects are obliged to feli to him all the pepper they raife in either inand, at a low price, which he is under contract with the Dutch to deliver to them at a fmall advance, and much under the marketable value of that commodity. The prefent king joins the fpiritual to the temporal power, and is high prieft of the religion of Mahomet ; with which be mingles, indeed, fome of the rites and fuperititions of the aboriginal inhabitants of Java; adoring, for infance, the great banyan, or Indian fig-tree, which is likewife held facred in Hindoftan, and under which religious rites might be conveniently perfurmed; in like manner, as all affairs of thate are actually tranf. acted by the Bantamefe under fome fladowing tree by moon-light. To complete the ruin of Bantam, a fire fome time ago deftroyed molt of the houles, and few have been fince rebuilt.

BANYAN-tpee. See Ficus, Encyel.

British BARILIA, is the name given by Mr James King of Newcaitle upon Tyne, to a material invented by him to fupply the place of Spanifh barilla in the making of crown window-glafs, broad window-glafs,
and glafs.bottles, as alfo in the manufacturing of foap Earilla, and alum. For thefe purpofes he affirmed that it an- Birthelemi. fwerca much better than any other material then in ufe ; and in confequence of that afirmation he obtained a patent ior his invention, dated March 4. 178 -.

Though we can hardly allow to this invention all the merit clamed for it by its fond anthor, yet as it may be of whe to different manufacturers, we thatl lay before our readers hiș method of making the Britih barilla. It is as follows: "Take a certain quantity of athes obtained by burning the loppings or branches of aht, oak, beech, elm, alder, or any other kind of green wood or bramble: Take an equal quantity of the afhes obtained by burning the green vegetables known by the name of fern, brecon, bean and pea-flraw, whins, common field and high-way thiftles, the falks of rape or muftardfeed, or the bent or rufhes that grow by the fea-hore." Though we know not in what qualities the afthes obtained from the former fubtances differ from thofe obtained from the latter, the author, as if the difference was very great, directs thefe equal quantities to be mixed together, lifted through a fine fieve, and laid upon a boarded floor, where a quantity of foapers wafte-afles, equal to the whole compound mafs, is to be added to it, and well mixed with it by means of a fhovel or other inftrument. To this mixture of vegetable afhes and foapers wafte-afhes is to be added a quantity of line quick-lime, in the proportion of one hundred weight to twelve hundred of the blended ahhes, and the lime and afhes are to be well mixed together. After this the whole is to be put into an iron pan, into which is to be poured a quantity of fea-water fufficient, fays the author, to diffolve the afhes and lime; and the whole is to be ftirred with an iron rake till it incorporate. This being done, a coal fire is to be lighted up under the pan, and kept burning for two days and two nights without intermiffion, additional quantities of fea-water being conftantly fupplied to impregnate the materials with faline matter fufficient for calcination in a reverberating furnace or calcar. In this calcar the faline mais, which was boiled in the pan, is by intenfe heat to be diffolved, and kept in a ftate of fulion for the fpace of an hour ; during which time the volatile part flies off, and leaves remaining a fixed alkaline falt, which, cuoled in iron pans, is the Britifin barilla, and has the appearance of Spanifh barilla. See Barilla, Encycl.

BARTHELEMI (Jean Jacques), the Neftor of French literature, was a man to eminent for his knowledge of antiquities, that every claffical reader nuft be interefted in his fate. He was born, we believe, at Pa. ris about the latter end of the year 1715 ; and being clucated for the ferviee of the church, he became prior of Courcay, keeper of the medals and antiques in the French king's cabinet, and in 1747 was elected a member of the Academy of Inferipitions. From that period his life was wholly devoted to letters; and in recurding the principal events of it, we can only enumerate, in their order, his various publications.

A differtation of his on the river Pactolus was read ${ }_{1748}$ (IIIfl. de l'Acad. X. 29.) ; Reflections on a Medal of Xerxes, King of Arfamata (Mcm. de l'Acad. XXXVII. 17 I.), found, or faid to be found, by Fourmont in the temple of Apollo Anycleus (XXXIX. 129.) ; Effay on Numifmatic Palæography, ib. 223 ; Differtation on two Samaritan Medals of Antigonus

King

King of Judea, ib. 257 ; Remarks on fome Infcriptions publifhed by diferent authors, XI.V. 99 ; Differtation on Arabic Coins, ib. 143 ; by which it appears that the Mohammedan princes copied the leeads of Greek and Roman ones on the: coins, and gave Arabic infcriptions of their own names on the reverfe. On the Ancicmt Nplabet and Language of Palmyra, ib. 179 ; on the Ancient Monuments of Rome, the refult of a tour in Italy to collect med lals for the royal cabinet, to which he added 300, KLLIX. 151 ; on fome Phoenician Mo. numents, and the Alphabets formed from them, LIII. 23. The charneters on the written mountains, which he here cites, have been proved of no value; and he itlufrates the conformity between the Pheenician and the Egyptian characters from the latter on the bandages of the mummies. Esplanation of the Mofaic Pavement of the 'Temple of Prentie, ib. 149; of which there have been fur engravings fince its firf difcovery in 1650 , and which Barthelemi refers to the voyage of Adrian into Egypt. It may be of that date, but there is no reafon to fuppofe that it reprefents any thing more than an Egyptian landfcape. The form of letters determines the date in the judgment of the learned Abbé. On the Relations of the Egyptian, Phonician, and Greek Languages, LVI1. 3^{83}; on fome Medals publifhed by different autbors, LIX. 270; Explanation of an Infcription under a Bas-relief in the Bilhop of Carpentras's Library, ${ }^{176}{ }_{7}^{7}$, ib. 365 ; on the Number of Pieces reprefented in one Day on the Theatre at Athens, LXXII. 286; three Comedies, as many Tragedies, a Satire, and a Petite Piece; Renarks on fome medals of the Emperor Antoninus ftruck in Egypt, LXXX. 484. 1775 (A).

His interpretation of the I'heenician infeription at Malta, LIII. 23, was controverted by our learned linguift, Mr Swinton, in Philof. Traufact. L.IV. art. xxii. p. 119; in farther remarks, ib. art. lxx. p. 393.

In 1792 he publifhed a differtation on an ancient Greek infription, containing an account of expences of the public fealts under the archontate of Glaucippus, 410 years before Chrift.

The intimate acquaintance which he had cultivated with claffical antiquity, enabled him, in the clofe of a long life, to compofe that clocf d" auvere, the "Travels of the Younger Anacharfis into Greece" in the middle of the fourth century before the vulgariera. In reprefenting the curiolity of a Scythian favage (for we cannot confider in any other light the man who put mufic and the exceffes of the table on the fame level he takes oecafion to interweave very curious and inftructive details on the laws, religion, manners, cuftoms, and general fpirit, of a great nation, as well as its progrefs in arts and fciences. The epoch which he has clrofen is that of letters and arts, combining the age of Pericles with that of Alexander, the revolution which changed the appearance of Greece, and foon after overturned the empire of Perfia. The introduction comprehends the 1250 years elapfed from the age of Cecrops to the fuppofed era of A nacharfis, in two intervals; the firte reaching to the commencenient of the Olympiads, the fecond to the capture of Athens by the Lacedemonians. The

Suppl. Vol. I. Part I.
hitory of the Athenians commences about 150 years after the firt Olympiad, including the age of Solon, or that of legination ; that of Themiftocles and Ariflides, or that of glory, of luxury, and arts. In the fecond, fpeaking of war, his offervation, that "the example of one nation, that prefers death to Davery, is too importaut and too inftructive to be paffed in filence," fhould have preferved him from the harrors of a long confinement in an advaticed age, from which he was delivercd only to die. But arts, fciences, and literature, are alike forgotten and overwhelmed in France. In the third interval, fpeaking of the corruption of manners introduced by Pericles to fupport his power, he has this obfervation, applicable to every flate: "Corrupted morals are not reftored but by the lofs of liberty, which brings that poverty inconfiftent with foftnefs, and iufeparable from abtemioufnefs, if not that rigid priuciple of a healthy mind, which is properly called virtue." In this period, though the arts were encouraged, philofophy was neglected.

In this diverffied uadertaking, where the picture of ancient Greece, in its minutelt parts, both of public and private ufe, is brought before our eyes, the Ablé is frequently more brilliant than folid, and occafionally lofes the fublance of a reflection in purfuit of fomething i:s. genious to add to it. The plans, views, and maps, are executed with great fpirit and accuracy by Mr. Barber, a young man of very promifing talents: and to the charts many ufeful tables are added. The beauties of the clafics are diffufed in a very pleafing manner, and interfperfed with anecdutes little known.

Such was the man whom the French government detained in prifon for months, and releafed on the fall of Robefpierre. As he concurred in the revolution, we know of no caufe for his imprifonment but the mildnefs of his difpofition, and the jealoufy of that tyrant, which purfued, with relentlefs cruelty, every man fufpected of being a friend to peace. Of the perfecution of Barthelemi, in the extremity of old age, the convention itfelf feemed to be afhamed; for it unanimounty voted him a penfion as fome recompence for his fufferings. But, alas! the recompence came too late: the old man lived but a few months after his liberation, having died at Paris on the $4^{\text {th }}$ of May 1795 ; and the day after the following tribute was paid to his memory by Duffauls, in the national convention:
"Leginators, your liberality conferred honour on the latter days of the life of our refpectable fellow citizen, Barthelemi. Our fucceffors, I have no doubt, will confecrate his memory fu foon as the period fixed by the law fuall permit them. May his old friend, however, he permitted, in a few words, to point out the rare qualities of that Neftor of French literature? It might, perhaps, be fufficient to tell you, as Xenophon faid with fo much fimplicity of one of his moft illuftrious contemporaries, that Barthelemi was an excellent man in all refpects. In fact, thofe who knew him were at a lofs which to admire moft-his immortal Anacharfis, or his own life. His policy confifted in goodnefs; his fcience was an immenfe treafure of every thing that could purify the morals, perfeet the taffe, render man I. more

Barthe.
1 mmi .
\qquad

[^1]
B A T $\left[\begin{array}{lll}60\end{array}\right] \quad \mathrm{B}$ A \quad T

Barthelemi more dear to man, and contributc to the fplendour of
Bat. his country. A fingle trait will convince you of the mildnefs of his philanthropic mind: 'Why is it not permitted (he often faid) to a mortal to bequeath profo perity to his fellow-creatures?' After having been overwhelmed with the favours of fortune, which came unexpectedly and unfought, he became poor ; yet his character, far from finking under the preffure, acquired new refpect ; and he proved that poverty, fupported with dignity, is not lefs honourable than wealth accompanied with benevolence. Perfecuted, as all virtuous and enlightened citizens were, he carried with him to the dungeon of that tyranny which you have fo glorioully deftroyed, the conftancy and ferenity of Socrates. It was there that the venerable old man offered to his companions in misfortune the magnificent fpectacle of a good man flruggling with adverfity. I have faid that he was rich ; but let us not forget that he was not rich at the expence of the unfortunate, and that he adopted all the branches of his numerous family. The republic has gained by that family good citizens, who ferve her in the molt ufeful and brilliant manner. Barthelemi felt that the period of his diffolution was approaching; yet though exhautted by long fatigue, and bending beneath the weight of 80 years, his fenlibility was fill vigorous, and your juft decrees made the clofing fcene of his life happy. When he heard that you were endeavouring to repair the ills under which fo many thoufand innocent men laboured, he lifted up his hands to heaven, and exclaimed, "Glory to God-honour to the national convention-I have lived long enough!' In the prefent pofture of affairs, the country demands all your at. tention. I fhall therefore confine myfelf to requeft the favour due to the manes of the illuftrious Barthelemi . One of his nephews, I do not mean your refpectable ambaffador at Bafle, but the citizen Courcey, has, for 25 years, difcharged all the duties of a fon to his uncle, and for a long time has performed the functions of keeper of the medals and antiqquities of the national cabinet. I move, that the citizen Courcey be appointed to that office, which he has already proved himfelf fo worthy to fill."

Whatever became of this motion, which was referred to the committee of public inftruction, the cruelty of the government purfued the family; and the late banifhment of his other nephew by the directory, of which lie was a member, furpafles, if poffible, the injuttice of Robefpierre to the uncle. But their crimes were the fame: both Barthelemis were men of mild difpofitions and friends to peace.

BARYTES, one of the earths. See Chemistry in this Supplement, Part I. Chap. iv.

BASTER, the name given by the Dutch at the Cape of Good Hope to the offspring of a white man and Huttentot woman.

BAT, an aninal which has been defcribed under its generic name Vesprrtilelo in the Encycl. but fince that article was written, we have met with an account of a new fpecies, fo very fingular, that, if the veracity of our author can be depended on, it is well intitled to a place here. 'This fpecies was difcovered in the country of the Nimiquas, in the interior of Africa, by M. Vaillant, during the courfe of his fecond travels, and is by him called the oreillar bat. To this title it bas indeed a very good claim; for it has, he fays, four
ears, or at leaft the external part of four ears, each Datavia. car being double; the outer fold, which ferves as a covering to the inner, is very ample, being two inches eight lines liigh, and nearly as broad when flretched out. On the nofe allo a membrane fands erect, one inch four lises in height, which migltt be taken for another car, as it has exactly the Thape of one. This membrane, as well as the ears and wings of the animal, are of a rulty red, paler below than above. The body is only three inches long, and is covered with very fine greyih hair. Its width, from the tip of one wing to that of the other, is eight inches. The reader will pardon me, fays our author, for inferting thefe trifling details of meafurement, of which I am not more fond than himfelf; but they appeared to me neceffary here, to convey an accurate idea of the extraordinary length of the ears of this animal, which are certainly larger in proportion than thofe of any other we are acquainted with, fince they are only four lines, or the third part of an inel, fhorter than the body itfelf.

13ATAVIA, the capital of the Dutch fettlements in the Ealt Indies, has been already defcribed under the article Java in the Encyclopredia. The following account of it, however, as well as of the country around it, and the manners and cuftoms of its various inhabitants, as they prefented themfelves to Sir George Staunton in March 1793, will probably prove acceptable to many of our readers.

The city of Batavia, including the fuburbs, confifts of near eight thoufand houfes, inhabited by Dutch, Chinefe, and natives of Java. The houfes of the Chi. nefe are low, and crammed with people. The Dutch houfes are well buitt, clean, and Spacious, and their conftruction for the moft part well fuited to the climate. The doors and windows are wide and lofty. The ground floors are covered with flags of marble, which being fprinkled frequently with water, give a pleafant coolnefs to the apartment ; but a confiderable propurtion of thofe was untenanted, which denoted a declining fettlement. Among other circumftances which announced the fame, were thofe of the Company's veffels lying ufelefs in the road, for want of cargoes to fill, or men to navigate them; no hhips of war to protect their commerce, even againft pirates who attacked their veffels fometimes in the fight of Batavia road; an invafion threatened from the Ine of France; the place in no condition of defence, particularly againit an enemy lefs affected by the climate than Europeans; fometimes as many of the troops in hofpitals as fit for duty ; commiflioners expected from Holland to reform abufes. Such a commiffion, implying a general fufpicion, could not be welcome; nor was it quite certain whether, in fome minds, its arrival, or that of the enemy, was deprecated the moft cordially.

The fortifications of Batavia, though a place of fo much importance, were not, when Sir George faw them, fuch as would be deemed formidable in Europe; but when the difficulties were confidered of forcing the pdfage of the river, or of landing troops on other parts of the ifland, it might perhaps be thought of greater ftrength than it would at the firlt view have credit for. The defences of the river were the water fort, fituated at its entrance, having mounted or difmounted fourteen guns and two howitzers. It confifted of a parapet, originally well conftructed, retained

Batavia. by a wall; but the parapet was much neglected, and the wall nearly deftroyed by the conftant working of the fea. This fort was protected on the land fide by a noxious fwamp, and towards the fea, on the northweft, by extenfive flats, over which even hoats could nut pafs. The only good approach was that hy the channel, which it fees and defends. The next work upon the river was on the weft Shore, about a quarter of a mile from the water fort. It is a battery mounting feven guns, bearing down the river. Oppofite to this was a battery of fix gums, facing the river, and two to the ealtward. This formed one flank of a line that occupied the low land to the nortli-eaft of the town. The line was a low breaft-work of earth, that was fcarcely difcoverable. The canals which interfect the town joined the great canal or river, at the diftance of half a mile from the entrance. Below the junction a boom was laid of wood, armed with iron fpikes. A little above was the caftle, a regular fquare fort, but without ravelins or other outworks. It had two guns mounted on each flank, and two, or fometimes tliree, on each face: they were not en barbette, nor properly en cembrafure, but in a fituation between both, having both their difadvantages without the advantage of cither. The wall was of mafonry, about 24 feet high. It had no ditel, but a canal furrounded it at fome diftance. It had no cordon. The length of the exterior fide of the work was about 700 feet. The town is rectangular, three quarters of a mile long, and half a mile broad, inclofed by a wall of about 20 feet in height. Small projections were conftructed, of various forms, at intervals of about 350 feet. Thefe generally mounted three guns each. It was alfo furrounded by a canal, having feveral fluices. At fhort diftances from the town, three or four fmall Itar forts of earth were erected in particular paftes, perhaps for defence againft the inhabitants of the illand.

The eftablifhment of regular troops was $\mathbf{2} 200$ Euro. peans, of whom 300 were to be artillery, the reft infantry. But as it was found impoffible, on account of the clinate, to keep the number complete, recourfe was had to the natives, of whom 500 were employed; fo that the eftablifhment of European regulars was reduced to 700. There were alfo 300 volunteers of the town, who were formed into two companies, but they were not difciplined. Their regulars were very numerous, confifting of enrolled natives of Java, who were never embodied, and of Chinefe, of whom the Dutch were fo jealous as to arm them with lances only. Much dependence was not to be placed on the exertions of either of thefe bodies in favour of the Dutch; and as they lofe many of their European troops every year, their eftablifhment appeared too finall for any effectual reliftance. The chief protection of their ill-manned veffels lying here, mult be from the fortified illand of On. ruft, well fituated to command the channel that affords the principal paflage into the road. The work upon that ifland was of a pentagonal form ; its baltions were fmall and low, not more than 12 feet the ligheft, and not always connected by curtains. A few batteries were lately conflucted on the outfide of this work, that bore towards the fea. On thefe and on the baftions about 40 guns were mounted in different directions. South of thefe was another inand, at the diftance of a few hundred yards, on which two batteries, mounting together 12 guns, had been lately erected.

The cafte is built of coral rock, brought from fome of the adjoining iffands, compoled of that material ; and has the advantage of a fortilication of brick, in which cannon ball is apt to bury itfelf without fureading fplinters or fhattering the wall. A part of the town wall is built of lava, which is of a dark blue colour, of a very hard denfe texture, emits a metallic found, and refembles very much fome of the lava of Vefuvius. It is brought from the mountains in the centre of Java, where a crater is ftill fmoking. No ftone of any kind is to be found for many miles behind the city of Batavia. Marble and granite are brought thither from China, in veffels belonging to that country, commonly called jumks, which generally fail for Batavia from the ports of the provinces of Canton and Fokien, on the fouthern and fouth-eall coalts of that empire, Jaden chiefly with tea, porcelain, and filks.

The chief protection of Batavia againt the attacks of a foreign enemy, arifes from the havoc which it is well known the climate would make amongtt European troops. This was acknowledged to Lord Macartney by fome of the Dutcli officers themfelves, and even by one of the counfellors of the Indies. Such indeed is the climate, that there have been very few examples of ftrangers remaining long in Batavia without being attacked by fever, which is the general denonination in that place for illnefs of every kind. Europeans foon after their arrival firtt become languid and feeble, and in a few weeks, or even in a few days, are taken ferioufly ill. The diforder at firlt is commonly a tertian ague, which after two or three paroxyfins becomes a double tertian, and then a continued remittent, that frequently carries off the patient in a Mort time. Many fall victims to the fecond or third fit; but in thefe cafes a conflant delirium, and a great determination of the blood to the brain, accompany the other fymptoms. In fome it hegins in a quotidian form, with regular intermiffions for a day or two; and then becomes a continued remittent, attended with the fame fatal confequences as the former. Of the Europeans of all claffes who come to fettle at Batavia, it is fuppofed that not half the number always furvives the year. The place refembles in that refpect a field of hattle or a town befieged. The frequency of deaths renders familiar the mention of them, and little figns are flewn of emotion or furprife on hear. ing that the companion of yefterday is to-day no more. It is probable, female Europeans fuffer lefs at Batavia than the men. The former feldom expofe themfelves to the heat of the fun, make frequent ufe of the cold bath, and live more temperately than the other fex.

But it is not to thofe who have lately arrived from Europe that this havoc is wholly confined. The great. eft number of the Dutch fettlers, even thofe who had refided long in the country, appeared wan, weak, and languid, as if labouring with the "difeafe of death." Their place of refidence, indeed, is fituated in the midit of fwamps and flagnated pools, from whence they are every morning faluted with "a congregation of foul and pettilential vapours," whenever the fea breeze fets in, and blows over this morafs. The meridian tun raifes from the fhallow and muddy canals, with which the town is interfected, deleterious miafmata into the air ; and the trees, with which the guays and ftreets are crowded, emit noxious exhalations in the night.

The general reputation of the unhealthinefs of BataI 2
via

B A T

Batavia. sia is indeed fuch as to deter even Dutchneen, who ean refide at home with any comfort, from coming to it, notwithftanding the temptation of fortunes to be quickly amaffed in it. From this circumfance it happens, that offees and profeffiotis are often neceffarily entruft. ed to perfons little qualified to fill them. One of the clergymen, and the principal phyfician of the place, were buth faid to have originally been barbers. The United Provinces furnifh even few military recruits. The rett are chiefly Germans, many of whom are faid to have been kidnapped into the fervice. TThough nominally permitted, after a certain length of tinke, to return home, they are in fact compelled to enlift for a longer time, the pay being too fcanty to allow them to fave enough to defray the experice of their paffage to Europe. The goverument is accufed of the barbarous policy of intercepting all correfpondence between thofe people and thcir mother country; by which means they are deprived of the confolation of hearing from their friends, as well as of the chance of receiving fuch af. fiftance as might enable them to get home.

Difficult, however, as it is, on account of the climate, to reeruit the army, fuch is the defire of accumulating wealth in a foreign land, that it draws annually great numbers of Chinefe as well as of Duteh to Batavia. Buth indeed belong generally to the humbler claf. fes of life, and are bred in fimilar habits of induttry in their own country; but the different circumflances that attend them after their arrival in Batavia put an end to any further refemblance between then. The Chinefe have there no way of getting forward but by the continuance of their former exertions in a place where they are more liberally rewarded, and by a ftrict economy in the prefervation of their gains. They have no chance of advancing by favour, nor are public offices open to their ambition; but they apply to every induftrious occupation, and obtain whatever either care or labour can accomplith. They become in town retailers, clerks, and agents; in the country they are farmers, and are the principal cultivators of the fugar-cane. They do at length acquire fortunes, which they value by the time and labour required to earn them. So gradual an acquiftion makes no change in their difpolition or mode of life. Their induftry is not diminilhed, nor their health impaired. The Dutch, on the contrary, who are fent out by the Company to adminifter their affairs in Afia, become foon fenfible that they have the power, wealth, and poffeffions of the country at their difpofal. They who furvive mount quickly into offices that are lucrative, and not to them laborious. They rife to the dignity of governor general and counfellors of the Indies, is the members of the Datavian government are called. Their influence likewife enables them to fpecuiate in trade with valt advantage. The drudgery and detail of bufinefs are readily undertaken by the Churefe; while their principals find it difficult, under fuch new circumftances, to retain their former habits, or to refift a propenfity to indolence and voluptuoufnefs, though often attended with the facrifice of health, if not of life. Convivial pleafures, among others, are frequently carried to excefs.

In feveral houfes of note thronghout the fettlement, the table is fpread in the morning at an early hour: befide tea, coffee, and chocolate, fifh and flefh are ferved for breakfatt which is no fooaer over than Madeira,
claret, gin, Dutch fmall beer, and Englifh porter, are laid out in the portico befure the door of the great hall, and pipes and tohacco prefented to every guelt, and a bright brafs jar placed before him to receive the phlegin which the tubacco frequently draws forth. This occupation continues fometimes with little interruption till. near dinner time, which is about ane o'clock in the afternoon. It is not very uncommon for one man to drink a bottle of wine in this mamer before dinner; and thofe who hare a predilection for the liquor of their own country fwallow feveral buttles of Dutch fmall beer, which they are told dilutes their blood, and affords plenty of fluids for a free perfpiration. Inmediately before dinner, two men ीlaves go round with Madeira wine, of which each of the company takes a humper as a tonic or whetter of the appetite. Then follow three females, one with a filver jar containing water, fometimes rofe-water, to wath; a fecond with a filver bafon and low cover of the fame metal, pierced with holes, to receive the water after being ufed; and the third with iowels for \cdot wiping the hands. During dinner a band of mufic plays at a little diftance: the muficians are all flaves, and pains are taken to inftruct them. A confiderable number of female flaves attend at table, which is covered with a great variety of difhes; but little is received, cxcept liquors, into flomachs already cloyed. Coffee immediately follows dinner. The 24 hours are here divided, as to the manner of living, into two days and two nights; for each perfon retires, foon after drinking coftee, to a bed, which confits of a mattrafs, bollter, pillow, and chintz counterpane, but no fleets; and puts on lis night drefs, or mulin cap and loofe lung cotton gown. If a bachelor, which is the cafe of much the greateft number, a fentale flave attends to fan him while he fleeps. About fix they rife, drefs, drink tea, take an airing in their carriarges, and form parties to fpend the evening together to a late hour. The morning meetings conlift generally of men, the ladies feldom. choofing to appear till evening.

Few of thefe are natives of Europe, but many are defcended from Dutch fettlers here, and are educated with fome care. The fcatures and outlines of theirfaces are European; but the complexion, character. and mode of life, approach more to thofe of the native inhabitants of Java. A pale languor overfpreads the countenance, and not the leaft tint of rofe is feen in any cheek. While in their own houfes they drefs like their flaves, with a long red checkered cotton gown defcending to the ankles, with large wide fleeves. They wear no head-drefs, but plait their hair, and faften it with ia filver bodkin on the top of the head, like the country girls in feveral cantons of Switzerland. The colour of their hair is almolt univerfally black ; they anoint it with the oil of the cocoa nut, and adorn it with chaplets of flowers. When they go abroad to pay vifits, or to take an airing in their carriages, and particularly when they go to their evening parties, they drefs magnificently, in gold and fiiver fangled mullin robs, with a profufion of jewels in their hair, which, however, is. worn without powder. They never attempt to mould or regulate the Shape by any fancied idea of elegance, or any ftandard of fafhion; and confequently furmed 2 ffriking contraft with fuch few ladies as were lately ar. rived from Holland, who had powdered hair and fair complexions, had contracted their waits with ftays,

B A i' $\quad[69] \quad B A A$

$\underbrace{\text { Sutavia. }}$ wore large head-dreftes and hoops, anci pricvered in the early care of forcing back the elbows, chin, and fhoul. ders. Every native lady is conftantly attended by a female flave handromely habited, who, as foon as her miAtrefs is fented, fits at her feet before her, on the floor, holding in ler hands her miftrefs's gruld or filver box, divided into compartments, to contain arecan nut, cardamom feeds, pepper, tobacco, and llacked lime; all which, mixed tugether ir due proportions, and rolled within a leaf of betel, conflitute a maficatory of a very pungent talte, and in general ufe. When in the public aflemblies the ladies find the heat difagreeable, they retire to free themfelves frotn their cofly but inconvenient habits, and return without ceremony in a more light and lnofe attire, when they are fcarcely recognizable by itrangers. The gentlemen follow the example; and throwing off their heavy and formal dreffes, appear in white jackets, fometimes indeed adorned with diamond buttons. The elderly gentlemen quit their periwigs for nightcaps. Except in thefe moments the members of this government have always combined their perfonal gratification with the eaftern Policy of ftriking awe into vulgar minds, by the aflumption of exterior and exclulive diflinctions. They alone, for inflance, appear abroad in crimfon velvet. Their carriages are ditinguifhed by peculiar ornaments. When met by others, the latter muft flop and pay homage to the former. One of the gates of the city is opened only to let them pafs. They certainly fucceed in fupporting abfolute fway over a valt fuperiority in number of the defcendants of the original inhabitants of the country, as well as of the flaves imported into it, and of the Chinefe attracted to it by the hope of gain; thofe clafles, though healthy, active, and as if quite at home, readily obeying a few emaciated Europeans. Such is the confequence of dominion once acquired; the prevalence of the mind over mere bodily exertions, and the effect of the combination of power againft divided ftrength.

The native Javanefe are in general too remote from civilization to have any wants that ate not eafly fatisfied in a warm and fertile climate. No attrmpt is made to enflave their perfons; and they find the government of the Dutch lefs vexatious than that of others, who divide fome thare of the fuvereignty of the illand with them. The fultan of Mataran rules to the eaf, the emperor of Java in the centre, and the king of Bantam to the weft; while the coaft and effective power almoft entirely belong to Holland. Thofe other fovereigns are defeended from foreigners alio; being Arabians, who imported the Mahometan religion into Java, and acquired the dominion of the country; a few inhabitants in the mountains excepted, who have preferved their independence and their faith, and among other articles that of the tranfmigration of fouls. According to the Dutch accounts, nothing can be more tyrannic than thofe Mahometan rulers. The Emperor is faid to maintain his authority by an army of many thoufand men difperfed throughout his tertitories, betide a numerous female guard about his perfon. Thefe military la. dies are trained, it feems, to arms, without neglecting thofe accomplifhments which may occafion a change in the occupation of fome among them, rendering them the companions, inftead of being the attendants, of his Imperial majefty. This fingular inftitution may owe its origin to the facility of obtaining recruits, if it be
true, as the fame accounts pretend, that tlie number of. Breavia. female births exceeds vury confuciably that of males in Java.

Moft of the haves are imported into it from Celebes and other eaftern inlands. They do not form a cosps, o: have any bond of union: nor is the general conduet of their owners, towads them calculated to aggravate the misfortune of being the property of cthers. They are not forced to exceffive labour. They have fusficient fultenance; but many of the nales anong them, who had fomerly perhaps led an independent life till made captives in their wars, have been found to take offence againft their mafters upon very flight occafon:s, and to wreak their vengeance by aflathation. The apprehenfion of fuch an event is among the motives for preferring at liatavia female flaves for every ufe to which they can be applied; fo that the nomber jurchafed of them much exceeds that of the other fex. The flaves when determined on revenge often fwallow, for the purpofe of acquiring artificial courage, an extraordinary dofe of opium, and foon becoming frantic as well as defperate, not only fab the objects of their hate, but fally forth to attack in like manner every perfon they mect, till felf-prefervation renders it nectfary to deftroy them. They are faid in that fate to be ruming a muck; and infances of it are not more common among flaves than among free natives of the country, who, in the anguif for lofing their money, effects, and fometimes their fa. milies, at gaming, to which they are vielently addicted, or under the preflure of fome other pafion or misfortune, have recourfe to the fane remedy, with the fame fatal effects.

In the country round Bativid the eye locks in vain for the common animals and vegetables which it had been daily accuftomed to meet in Europe. The moft familiar bird about the houfe of the ambaffador's hoft was the crown bird, as it was called at Batavia, which was not, however, the ardea pavonina of Linneus, but the columba crifata, having wothing except its creft in common with the former. The fame gentleman had alfo at his country-houfe fome large cafowary birds, which, though long in his poffeffor, and having the appearance of tamencfs, fometines betrayed the fiercenefs of their nature, attacking with their Itrons bill thofe who approachel tuo near them. The vegetation of the country is likewife new. Eirn the parterres in the gardens are borlered, inflead of boxwood, by the Arabian jeflamine, of which the fragrant llowers adorn the pagudas of Hindollan. The Dutch, who are fo fond of gardens in Holland, have trasferred that talle, where it can certainly be cultivated with more fuccefs, and indulge it to a great cxtent at their honfes a little way from the city of Batavia; but fill within that fenny diftrict, concerning which an intelligent gentleman upon the fnot ufed the flrong expreffion, that the air was peftilential and the water poifonous. Yet the country is everywhere fo verdant, gay, ard fertile; it is interfperfed with fuch magnificent houfes, gardens, avenues, canals, and draw-bridges; and is fo formed in every refpect to pleafe, could health be preferved in it-that a youth coming juft from fea, and enraptured with the beauty of every object he faw around him, but inindful of the danger there to life, could not help exclaiming, "what an excellent habitation it would be for immortals!"

The moft tolerable feafon here is from March or A.

Patasis. pril to November; when the rains begin, and laft the o'clock in the morning, and continues till four or five in the afternonn. It becomes then calm till feven or cight, when the land breeze commences, and contintes at intervals till day-break, followed by a calm for the remaining hours of the 24. Fahrenheit's thermometer was, in Batavia road, during the Lion's remaining there, from 86° tu 88°, and in the town from 88° to 92°; but its variations by no means correfponded to the fenfations produced by the heat on the human frame; the latter being tempered by any motion of the air, which circumftance has little effect upon the thernometer. Nor are the animal fufferings here from heat to be meafured by its intenfenefs at any given moment of the day, but by its perfifing through the night ; when, inRead of diminithing, as it does in colder countries, fometimes 20 degrces, it leeeps generally here within four or five of what it attains in the fhade, when the fun is at its higheit elevation.

The native Javanefe derive, however, one advantage at leatl from an atmofphere not fubject to the vicififitudes of temperature experienced in the northern parts of Europe, where difeafes of the teeth are cliefly prevalent ; as they are here entirely exempt from fuch complaints. Their habit of living chiefty on vegetable food, and of abitaining from fermented liquors, no doubt contributes to this exemption; yet fuch is the caprice of talte, that jet black is the favourite colour and ftandard of beauty for the tecth amongit them, comparing to monkeys thofe who keep them of the natural colour. They accordingly take care to paint, of the deepeft hlack, all their teeth, except the wo middle ones, which they cover with gold leaf. Whenever the paint or gilding is worn off, they are as attentive to replace it on the proper teeth, as the belles of Europe are to purify and whiten theirs.

We have mentioned the rich vegetation of the country and the gardens which the Dutch have planted. In. thefe gardens or orchards they cultivate the nutmeg, the clove, the camplor, and the cinnamon trees, together with the pepper plant, which, creeping like a vine, is fupported on a living tree. It is a fpecies of the pepper plant that affords the leaf called letel, chewed fo univerfally by the fouthern Afratics, and ferving for the inclofure of a few flices or bits of the areca, from thence erroneoufly called the betel nut. The areca nut tree is among the fmallef of the tribe of palms, but comes next in beauty to the mountain cabbage tree of the Weft Indies, the latter differing chiefly in its fize and amazing height from the areca nut tree, the diameter of whofe jointed trunk feldon exceeds four inches, or height 12 feet. But the fymmetry of each is perfect ; the columns of a temple cannot be more regular than the trunk, iwhich rifes without a branch, while the broad and fpreading leaves which crown the top form the ornamented capital. The areca nut, when dried, has fome fimilitude in form and tafte to the common nutmeg, but is of a lefs fize.

It would have been very extraordinary, and very culpable, in Sir Genrge Staunton, and Dr Gillan phyfician to the embaffy, if they had not, when on the fpot, in. quired into the truth of Foerfcl's account of the upas or poifon tree of Java (fee Porson Tree of Fava, Encycl.) But the moft minute inquiries were made re-
fpecting it ; and the refult of them was, that no fuch tree is known at Batavia, and certainly does not exift where Focrfch has planted it. It is indeed a common opinion at Batavia, that there exifts in that country a vegetable poifon, which, rubbed on the daggers of the Javanefe, renders the flighteft wound incurable; though fome European practitioners have of late afferted that they had cured perfons flahbed by thofe weapons, but not without having taken the precaution of keeping the wound long open, and procuring a fuppuration. One of the keepers of the medical garden at Eatavia affured Dr Gillan, that a tree diftilling a poifonous juice was in that collection, but that its qualities were kept fecret from moit people in the fettlement, left the knowledge of them fhould find its way to the flaves, who might be tempted to make an ill ufe of it. In the fame medical garden, containing it feems hurtful as well as grateful fubttances, is found alfo the plant from whence is made the celebrated gout remedy, or moxa of Javan, mentioned in the works of Sir William Templ, and defcribed in the Encyclopædia under the titles of Arte-misia-and Moxa.

The whole country abounds with efculent fruits, and, amonft others, with the mangolleen, which is ripe in March, and is confidered as the moft delicious of all fruits (fee Garcinia, Encycl.) Pine apples are in Java planted not in gardens, but in large fields; and are carried like turneps in heaps upon carts to market, and fold for confiderably lefs than a penny each, where money is cheaper than in England. It was a common practice to clean fwords, or other inftruments of fteel or iron, by running them through pine apples, as containing the ftrongeft and cheapeft acid for diffolving the ruit that covered them. Sugar fold for about five-pence a pound. All forts of provilions were cheap, and the fhips crews fed on frefh meat every day.
The ferpents and noxious reptiles in Java have been mentioned elfewhere ; but Sir George Staunton affures us, that not many accidents happen from them. Among the pagan Javanefe, the crocodile, he fays, is an object not only of fear, hut alfo of religious veneration, to which offerings are made as to a deity. When a Javanefe feels himfelf difeafed, he will fometimes build a kind of coop, and fill it with fuch eatables as he thinks moft agreeable to the crocodiles. He places the coop upon the bank of the river or canal, in the perfect confidence that, by the means of fuch offerings, he will get rid of his complaints; and perfuaded, that if any perfon could prove fo wicked as to take away thofe riands, fuch perfon would draw upon himfelf the malady for the cure of which the offering was made. According to Sir George Staunton, Batavia road lies in $6^{\circ} 10^{\prime}$ fouth lat. and $106^{\circ} 51^{\prime}$ eaft long. from Greenwich.

BEER is a liquor fo palatable to the natives of Britain, and, when properly made, fo wholefome, efpecially in long voyages at fea, that Mr 'Thornton of Eaft Smithfield obtained a patent, dated April 15. 1778, for inventing a method of reducing malt and hops to an effence or extract, from which beer may be made anywhere, either at fea or in diftant countries. Though we do not perceive any great degree of ingenuity difplayed in this invention, yet as the account of it is fhort, we fhall lay it before our readers.

His method then of preparing an effence or extract of malt and hops is, by the tranfmitted heat of compreffed

B E E
 [71] B E H

Beetle. preffed vapour of boiling water, and a proper apparatus for that purpofe. This apparatus may be made of iron, tin, or copper : it contifts of a boiler of any dimenfions, a double veffel, and conducting tubes. The donble veffel confifts of one veffel placed within another, and fitted tight at their rims. The upper veffel forms the upper part of the under veffel, and contains the liquor to be evaporated. The under veffel is everywhere inclofed eacept at an aperture communicating with the boiler, and at another aperture communicating with the conducting tubes; and is conftructed fo as not to allow any part of the vapour condenfed into drops within it to efcape, except back again into the hoiler: it is not fo cxtenfive as to act as a common refrigeratory, and yet is capacious enough to prevent the liquor boiling over. The aperture communicating with the boiler is large enough to freely adnit the vapour from the boiler into the under veffel; and the aperture communicating with the conducting tubes is of a proper fize to allow of the vapour in the under veffel being compreffed, to a degree capable of tranfmitting to the liquor to be evaporated a proper heat, and at the fame time to ferve as a paffage for more heat than is neceffary to keep up that degree of compreffion. The conducting tubes are to convey this fuperfluous heat or vapour, to be ufed for farther purpofes, or immediately out of the build. ing.

BEETLE, an infect defcribed in the Encycloprdia under the name given to it by naturalifts, Scarabeus. Since that aticle was publifhed, we have met with an account of a nondefcript \{pecies, which is furninhed with very fingular armour for its own defence. It was brought to M. Vaillant in the interior parts of Africa by a Nimiqua woman, and is by him called a fuperb beetle, not to be found in any cabinet of Europe. "While I was examining this beautiful infect (fays he) with attention, I felt my face fuddenly wetted by a cauftic liquor, of a very ftreng alkaline fmell. The fprinkling was accompanied by a fort of explofion, loud enough to be heard at fome diftance. Unfortunately fome of the liquor entered one of my eyes, and occafioned fuch infupportahle pain, that I thought I hould have loft the fight of it. I was obliged to keep it covered for feveral days, and bathe it from time to time with milk. In every part of my face that the alkaline liquor had touched, I felt the pain of a burn; and everywhere the flin changed to a deep brown, which wore out only by degrees and a long time after. This will not be \{urprifing to many, who already are acquainted with the fame property in feveral infects of the fame genus; for inftance, in that beautiful golden green bupreftis, which is fo common in our kitchen gardens in Europe: but as the infect of which I am here fpeaking is much larger, and inhabits a very hot country, it is natural that the effect produced by it fhould be more itriking; tho, the liquor which our golden bupreftis ejects at its enemy
occafions a very fenfible fmart, and its fmell is confiderably pungent."

The naturalifts Dorci and Olivier have given, in their Entomology, the figure of this African infect, which our author communicated to them, hut they have given it erroncoully. The human face, obfervable on its anterior corcelet in their ligure, does not exitt in nature ; but M. Vailhnt having given no figure of it himfelf, we cannot gratify our readers with a corredt reprefentation.

BEGAH, a land meafure in Bengal, about one-third of an Englifh acre.

BEHADER (Valiant), a title of honour conferred by the Mogul emperors upon either Mahomedans or Hindoos, and placed after their name or other title.

BEHEM (Martin), though hitherto little talked of, was one of the molt enterprifing men that ever lived, and deferves to have his name tranfinitted with reverence to the latelt pofterity. Born at Nuremberg, an Imperial city in the circle of Franconia, of a noble family not yet extinct, he had the bett education which the darknefs of that age would permit him to have ; and the ftudies to which from his infancy he was moft addicted, were thole of geography, aftronomy, and navigation. As he advanced in life, he often thought of the exiftence of the antipodes and of a weftern continent, of which he was ambitious to make the difeovery.

Filled with this great idea, in 1459 he paid a vifit to Ifabella, daughter of John I. King of Portugal, at that time regent of the duchy of Burgundy and Flan. ders; and laving informed her of his defigns, he procured a veflel, in which, failing weftward, he was the firit European who is known to lave landed on the inand of Fayal. He there eftablifhed in 1460 a colony of Flemings, whofe defcendants yet exift in the Azores, which were for fome time called the Flemih Iflands. This circumfance is proved, not only by the writings of contemporary authors, but alfo by the manuferipts preferved in the records of Nuremberg; from the Latin of which the following is tranflated: "Martin Behem tendered his fervicts to the daughter of John king of Lufitania, who reigned after the death of Philip of Burgundy, furnamed the Good; and from her procured a thip, by means of which, having failed beyoud all the then known limits of the Weitern Ocean, he was the firft who in the memory of man difcovered the ifand of Fayal, abounding with beech trees, which the people of Lufitania call faye; whence it derived its name. Atter this he difcovered the neighbouring illands, called by one general name the Azores, from the multitude of hawks which build their nefts there (for the Lufitanians ufe this term for hawks, and the French too ufe the word eflos or efores in their purfuit of this gane) ; and left colonies of the Flemilh on them, when they began to be called Flemifh Iflands (A)."

Behen. After having obtained from the regent a grant of Fayal, and relided there about twenty years, Behem applied in $\mathrm{I}_{4} 8_{4}$ (eirht years before Columbus's expedition) to John lI. King of Portugal, to procure the means of undertaking a great expedition towards the fouth weft. This prince grave him fome flips, with which he difcovered that part of America which is now called Brazil ; and he even failed to the Straits of Ma. gellon, or to the country of fome favage tribes whom he cailed Patagonians, from the extremities of their bodies being cuvered with a Akin more like a bear's paws than human honds and feet.

A fact fo lit:le known, and apparently fo derogatory to the fame of Columbus, ought not to be admitted without fufficient proof; but the proofs which have been urged in fupport of its authenticity are fuch as cannot be controwicted. They are not only the letters of Behem himfelf, written in 1486 , and prefersed in the archives of Nuremberg, but likewife the public records of that city ; in which we read that "Martin Behcon, traverfing the Atlantic Ocean for feveral years, examined the American iflands, and difcovered the frait whieh bears the name of Magellan before either Chriftopher Columbus or Mageltan failed thofe feas; whence he mathematically de.ineated, on a geographical chart, for the king of Lufitania, the fituation of the coalt around every part of that famous and renowned flrait long before Magellan thought of his expedition."

This wonderful difeovery has not efcaped the notice of contemporary writers. The following palfage is tranfated from the Latin chronicle of Hart man Schedl: "In the year 1485 , Jolm II. King of Portugal, a man of a magnanimous fpirit, furnifhed fome galleys with provilions, and fent them to the fouthward, beyond the Straits of Gibraltar. He gave the command of this fquadron to James Canus, a Portuguefe, and Martin Behem, a German of Nuremberg in Upper Germauy, defeended of the family of Bouna: a man very well acquainted with the fituation of the glohe; bleffed with a conllitution able to bear the fatigues of the fea; and who, by actual experiments and long failing, liad made himfelf perfectly mafter with regard to the longitudes and latitudes of Ptolemy in the wef. Thefe two, by the bounty of Heaven, coaiting along the Southern Ocean, and having eroffed the equator, got into the other hemifphere, where, faciug to the eaftward, their fhaduws projected towards the fouth and right hand. Thus, by their induftry, they have opened to us another world hitherto unknown, and for many years attempted by none but the Genoefe, and by them in vain. Having finifhed this cruize in the fpace of 26 months, they returned to Portugal with the lofs of many of their feamen by the vioknce of the elimate."

Befides this evidence of the firf difcovery of America having been made by Belsem, we find the following particulars in the remarks made by Petrus Mateus on the canon law, two years before the expedition of Culumbus: "Primio navigationes, \&ce. The firft Chritian voyages to the newly difeovered inlinds became frequent under the reign of Henry, fon of John, king of Lutitania. After his death Alphonfus V. profecuted the defign; and John, who fucceeded him, followed the plan of Alphonfus, by the affiftanee of Martin Behem, a very fkilful navigator; fo that in a flort time the name of Lufitania became famous over the whole world."

Cellarius, one of the moft learned men of his aje, fays Behem. exprefsly, "Béaumens non modo, \&c. Baxhm did nut think it enough to furvey the inand of Fayal, whieh he firt difcovercd, or the other adjacent illands which the Lulitanians call A vores, and we, after the example of Iuchm's companions, eall Fhemifh illands, but advanced ftill farther and farther fouth, until he arrived at the remotelt ftrait, throngh which Ferdinand Mischlan, following his track, afterwards failed, and callod it after lis own name."

All thefe quotations, which cannot be thought tedious, fince they ferve to prove a fact almoft unk nown. feem to demonftrate, that the firl difeovery of America is due to the Portuguefe and not to the Spaniards; and that the chief merit belongs to a German aftronomer. The expedition of Ferdinand Magellan, which did not take place before the year 1519 , arofe from the following fortunate circumftance: This perfon, being in the apartinent of the king of Portugal, faw there a clart of the coaft of America drawa by Behem, and at once conceived the bold project of following the Iteps of this great navigator. Jerome Benzon, who publifhed a defcription of America in 1550, fpeaks of this chart; ; eupy of which, fent by Behem himfelf, is preferved in the archives of Nuremberg. The celebrated aftronomer Riccioli, though an Italian, yet does not feem willing to give his countryman the honour of this important difcovery. In his Geographia Reformata, book iii. p. 90 . he fays, "Chriftopher Columbus never thought of an expedition to the Weft Indies until his arrival in the ifland of Madcira, where, amuling himfelf in forming and delineating geographical charts, he obtained information from Martin Liohm, or, as the Spaniards fay, from Atphonfus Sanches de Huelva, a pitot, who had chanced to fall in with the illand afterwards called Dominica." And in another place: "Let Bochm and Columbus have each their praife; they were both excellent navigators; but Columbus would never have thought of his expedition to America, had nut Buhm gors there before him. His name is not fo mach celebrated as that of Columbus, Americus, or Margellan, although he is fuperior to them all."

That Behenz rendered fome very inportant ferviees to the crown of Portugal, is put beyond all controverfy by the recompence beftuwed on him by King John ; of which the following account has been given to the public from the archives of Nuremberg. "In the year 148 ;, on the 18th of Feb. in Portugal, in the city of Allafavas, and in the chutch of St Salvador, after the mafs, Martin Behern of Nuremberg was made a knight, by the hands of the moft puiffant Lord John II. King of Portugal, Algarve, Africa, and Guinea; and his chicf fquire was the king himfelf, who put the fword in his belt ; and the Duke of Begia was his fecond fquire, who put on his right fpur; and his third fquire was Count Chriftopher de MHa, the king's eoufin, who put on his left fpur; and his fourth fquire was Count Martini Marbarinis, who put on his iron helmet ; and the king himfelf gave him the blow on the fhoutder, which was done in the prefence of all the princes, lords, and knights of the kingdom; and he efpoufed the daughter of a great lord, in confideration of the important ferviees he had perforned; and he was made governor of the inand of Fayal.".

Ihefe marks of diftinction, conferred on a ftranger, could

B E H $[73]$ B E H

could not be meant as a recompence for the difcovery of the Azores, which was made twenty years before, but as a reward for the difcovery of Congo, frum whence the Chevalier Behem had brought gold and different kinds of precious wares. This difeovery made much greater imprefion than that of a weitern world made at the fame time, but which neither increafed the wealth of the royal treafury, nor fatisfied the avarice of the merchants.

In 1492 the Chevalier Behem, crowned with honours and riches, undertook: a journey to Nuremberg, to vifit his native country and his family. He there made a terrettrial glube, which is looked on as a mafterpiece for that time, and which is till prcferved in the liturary of that city. The ontline of his difcoveries may there be feen, under the name of weftern lands; and from their fituation it cannot be donbted that they are the prefent coatts of Brazil, and the envirous of the Straits of Magchlan. This globe was made in the fame year that Columbus fit out on his expedition; therefore it is inpoffible that Behen could have profited by the works of that navigator, who befides went a much more northerly courfe.
After having performed feveral other interefing voyages, the Chevalier Behem died at Litbon in July 1506 , regretted by every one, but leaving helind him no other work than the globe and chatt which we have jult been fpeaking of. The globe is made from the writings of Ptolenyy, Pliny, Strabu, and efpecially from the account of Mark Paul the Ventian, a celebrated traveller of the I 3 th century; and of John Mandeville, an Englifhman, who, about the middle of the $14^{\text {th }}$ century, publifhed an account of a journey of 33 years in Africa and Afia. He has alfo added the important difcoveries made by limfelf on the coadts of Africa and America.

From thefe circumftantial accounts, bit very lately hrought to light, there can be little doubt, we think, but that America whas difcovered by Martin Behem. Dr Robertfon is indeed of a different opinion: but great as we willingly acknowledge his authority to be, we may differ from him withont prefumption, fince he had it not in his power to confult the German documents to which we have appealed, and has himfelf advanced facts not eafily to be reconciled to his own opinion. He allows that Behem was very intimate with Chrifopher Columbus; that he was the greatef geographer of his time, and fcholar of the celebrated John Mïller, or Regiomontanus; that he had difcovered, in ${ }^{1} 483$, the kingdom of Congo, upon the coatt of Africa; that he made a globe which Magellan made ufe of; that he drew a map at Nuremberg, containing the particulars of his difcoveries; and that he placed in this clart land which is found to be in the latitude of Guiana. He adds indeed, without proof, that this land was a fabulous ifland ; but if authentic records are to give place to bare affertion, there is an end of all hiftorical evidence. If Behem took for an ifland the firt land which he difcovered, it was a mitake furely not fo grofs as to furnifh grounds for queftioning his veracity, or for withholding from him for ever that juftice which has been fo long delayed.

But this very delay will by fome be thought a powerSuppl. Vol. I. Part I.
ful objecrion to the truth of Behem's claim to the difcovery of America; for if it was really difcovered by him, why did not he leave behind him fome writing to contirm the difcovery to himfelf? and why did not the court of Portugal, fo jealuus of the difeovery of the new workl, protell aganit the exclulive cham of the Spaniards?

To thefe objections we may reply, that, however plaufible they may at firft appear, they do not in the finalleft degree invalidate the pofitive evidence which we have urged for the Chevalier Behem's being the real difcoverer of the new world; for it would furely be very abfurd to oppofe the diffcully of affigning motives for certain actions performed at a remote period, to the reality of other actions for which we have the teltimony of a cloud of contemporary witneffes. Suppoling it were true, therefore, that Beliem had left behind him no writing claiming to himfelf the difcovery of any part of the continent of America, the only inference which could be drawn from his filence would be, cither that he was a man of great modefly, or that his mind was intent only on the acquifition of knowledge to himfelf, without feeling the ufual impulfe to communicate that knowledge to others. But it is not true that he has left behind him no claim of this difcovery to himfelf. The letters to which we have appealed, and which are preferved in the archives of Nuremberg, together with the globe and map, which he certainly made, furnifh as complete a confirmation of his claim as could have been furnifhed by the mot elegant account of his voyages.

For the filence of the Portuguefe, many reafons might be affigned. The difcoveries of Columbus were made fo much farther north than thofe of Behem, that, in an age when geographical knowledge was fo very limited, both Spaniards and Portuguefe might very naturally believe that the country difcovered by the former of thefe mavigators liad no connection with that difcovered by the latter. At any rate, the Portuguefe, whofe difcoveries proceeded frons avarice, were fatisfied with feraping together gold wheeever they could find it; and finding it in Africa, they thought not of fearching for it in a more diftant region, till the fuccefs of the Spaniards fhewed them their mititake.

One thing more is worthy of attention. The long ftay of Columbus at Madeira makes his interview with Behem more than prohable. It is impuffible that he fhould have neglected fecing a man fo interefting, and who could give lim every kind of iuformation for the execution of the plan which he had formed. The mariners who accompanied the Chevalier Behem might alfo lave fpread reports at Madeira and the Azores concerning the difcovery of which they had been witneffes. What ought to confirm us in this is, that Mariana fays himfelf (book xxvi. chap. iii.), that a certain veffel guing to Africa, was thrown by a gale of wind upon certain unknown lands; and that the failors at their return to Madeira had communicated to Chriftopher Columbus the circumftances of their royage. All authors agree that this learned man had fome information refpecting the weftern fhores; but they fpeak in a very vague manner. The expedition of the Chevalier Behem explains the myftery (B).

$$
\mathrm{K}
$$

BEREANS,

(B) For the greater part of this memoir we are indebted to M. Otto's paper on the difcovery of America, publifhed

B E R [74$]$ B E R

Bereans. BEREANS, in ancient church hiftory, the inhabitants of Berea. They are hichly commended in Scripture for their ready reception of the goljel, upon a fai and impartial examination of its agreement with the Old Teftament prophecies. Sopater, a Berean, atteuded the apoftle Panl to Afta. Acts xvii. 10-13, and $x x$. 4 .

Bereans, in modern church hiftory, a fect of Iroteflant diffenters from the church of Scotland, who take their title from, and profefs to follow, the example of the ancient Bereans, in building their fyftem of faith and practice upon the Scriptures alone, withont regard to any human authority whatever.

The Bereans agree with the great major ity of Chriftians, both Protellants and Catholics, refpecting the doctrine of the 'l'rinity, which they hold as a fundamental article of the Chriltian faith ; and they alfo agree in a great meafure with the profefled principles of buth our eftablified churches refpecting predestination and election, thongh they allege that thefe doctrines are not confiftently taught in either clurch. But they differ from the majority of all fects of Chritians in various other important particulars. Such as,

1. Refpecting our knowledge of the Deity. Upon this fubject, they fay that the majority of profeffed Chritians thumble at the very threfhold of revelation; and, by admitting the doctrine of natural religion, natural confcience, natural notices, \&ce. not founded upon revelation, or derived from it by tradition, they give up the calfe of Chriftianity at once to the iufidels; who may juflly argue, as Mr Paine in fact does in his Age of Reafon, that there is no occalion for any revelation or word of God, if man can difcover his nature and perfections from his works alone. But this, the Bereans argue, is beyond the natural powers of human reafon; and therefore our knowledge of God is from revelation alone; and that without revelation man would never have entertained an idea of his exiftence.
2. With regard to faith in Chrit, and alturance of folvation through his merits, they differ from almoft all other fects whatfoever. Thefe they reckon infeparable, or rather the fame ; becaufe, they argue, God hath exprefsly declared, "He that believeth fhall be faved;" and therefore it is not only abfurd, but impious, and in a manner calling God a liar, for a man to fay, "I beTieve the Gofpel, hut bave doubts neverthelefs of my own falvation." With regard to the various diftinctions and definitions that have been given of different kinds of faith, they argue, that "there is nothing incomprehenfible or obfcure in the meaning of this word as ufed in Scripture; but that as faith, when applied to human teftimony, fignifies neither more nor lefs than the mere fimple belief of that teltimony as true, upon the authority of the teltifier: fo, when applied to the teftimony of God, it fignifies precifely the belief of his teftimony, and refting upon his veracity alone, without any kind of collateral fupport from concurrence of any other evidence or teftimony whatever." And they infif, that as this faith is the gift of God alone, fo the perfon to whom it is given is as confcious of poffeffing it, as the being to whom God gives life is of being alive; and
therefore he entertains no doubts cither of his faith or Bereans. his confequent falvation through the merits of Chrift, who died and rofe again for that purpufe. In a word, they argue, that the Gofpel wond not be what it is hek forth to be. "glad tidings of great joy", it it did not briug full perfonal afturance of eternal falvation to the believer: which affurance, they infit, " is the prefent infallible privilege and portion of every individual heliever of the Gofpel." Thefe definitions of faith, and its infeparable concomitant affurance, they prove by a variety of texts, which our room permits us not to quote.
3. Confiftently with the above definition of faith, they fay, that the fin agrainf the Holy Ghoft, which has alarmed and puzzled fo many in all ages, is nothing elfe but unbelief; and that the expreffion, that " it fhall not be forgiven, neither in this avorld nor that which is to cume," means only, that a perfon dying in iufidelity would not be forgiven, ncither under the former difpenfation by Mofes (the then prefent difpenfation, kingdom, or government of God), nor under the Gofpel difpenfation, which, in refpect of the Mofaic, was a kind of future world or kingdom to come.
4. The Bereans interpret a great part of the Old Teltament prophecies, aud in particular the whole of the Pialms, excepting fuch as are merely hiftorical or laudatory, to be typical or prophetical of Jefus Chrift, his fufferings, atonement, mediation, and kingdom: and they efteem it a grofs perverfion of thefe Pfalms and prophecies to apply them to the experiences of private Chrittians. In proof of this, they not only urge the words of the apoltle, that "no prophecy is of any private interpretation," but they infif that the whole of the quotations from the ancient prophecies in the New Teftament, and particularly thofe from the Pfalms, are exprefsly applied to Chrift. In this opinion many other claffes of Proteftants agree with them.
5. Of the abfolute all-fuperintending fovereigaty of the Almighty, the Bereans entertain the highell ideas, as well as of the uninterrupted exertion thereof over all works in heaven, earth, and hell, however unfearchable by his creatures. " A God without election (they argue), or choice in all his works, is a god without ex-iftence-a mere idol-a non-entity. And to deny God's, election, purpofe, and exprefs will in all his works, is to make him inferior to ourfelves." For farther particulars refpecting the Berean doctrines, we mult refer the reader to the works of Meffrs Barclay, Nicol, Brook fhank, \&c.

The Bereans firft aflembled as a feparate fociety of Origin, Chritiats in the city of Edinburgh in autumn 1773, and foon after in the parifh of Fettercairn. The opponents of the Berean doctrines allege, that this new fyftem of faith would never have been heard of, had not Mr Barclay, the founder of it, been difappointed of a fettlement in the church of Scotland. A refpectable clergyman of the eftablifhed church has even hinted fomething to this purpofe in Sir John Sinclair's Statiftical Account, Vol. IX. p. 599. But the Bereans, in anfwer to this charge, appeal not only to Mr Barclay's doctrine,
publifhed firt in the fecond volume of the American Tranfactions, and afterwards by Nicholion in No IL and: 1II. of his Journal.

B E R [75 1 B E R

doctrine, uniformly preached in the church of Fettercairn, and many other places in that neighbourhood, for fourteen years before that benefice becane vacant ; but likewife to two different treatifes, containing the fame doctrines, publifhed by him about ten or twelve years before that period. They admit, indeed, that, previous to May 1773, when the general affembly, by futtaining the king's prefentation in favour of Mr Foote, excluded Mr Barclay from fucceeding to the church of Fettercairn (notwithftanding the almoft unanimous defire of the pariftioners), the Bereans had not left the eftablifhed church, or attempted to erect themfelves in. to a ditinct focicty ; but they adr, that this was by no ineans neceffary on their part, until by the affembly's decifion they were in danger of being not only deprived of his inftructions, but of being fcattered as heep without a fhepherd. And they add, that it was Mr Barclay's open and public avowal, both from the pulpit and the prefs, of thofe peculiar fentiments which now diftinguifh the Bereans, that was the firft and principal, if not the only, caufe of the oppofition fet on foot againft his fettlement in Fettercairn.

Having thus given a concife view of the origin and dittinguifhing doctrines of Bereanifm, it only remains to mention a few particulars relative to the practice of the Bereans as a Chriftian fociety. Infant baptifm they confider as a divine ordinance inflituted in the room of circumcifion ; and they think it abfurd to fuppofe that infants, who all agree are admiffible to the kingdom of God in heaven, fhould severthelefs be incapable of being admitted into His vifible church on earth. They commemorate the Lord's fupper in general once amonth ; but as the words of the inftitution fix no particular period, they fometimes celebrate it oftener, and fometimes at more diftant periods, as may fuit their general convenience. In obferving this ordinance, they follow the primitive apoltolic plan, without any previous days of fatting or preparation; as they apprehend that fuch human inflitutions only tend to make an idol of the ordinance, and to lead people to entertain erroneous ideas of its fuperior folemnity and importance. Equal and univerfal holinefs in all manner of converfation, they recommend at all times, as well as at the table of the Lord. They meet every Lord's day for the purpofe of preaching, praying, and exhortation to love and good works. With regard to the admiffion and exclufion of members, their method is very fimple. When any perfon, after hearing the Berean doctrines, profeffes his belief and affurance of the truths of the Gofpel, and defires to be admitted into their communion, he is cheerfully received upon his profeffion, whatever may have been his former manner of life. But if fuch an one fhould afterwards draw back from lis good profeffion or practice, they firt admonifh him; and if that has no effect, they leave him to himfelf. They do not think that they have auy power to deliver up a backfliding brother to Satan. That text and other fimilar pallages, fuch as, "Whatfoever ye fhall bind on earth thall be bound in heaven,'" \&c. they confider as reftricted to the apoitles and to the infpired teftimony alone, and not to be extended to any church on earth, or any number of churches or of Chriftians, whetlier deciding by a majority of votes or by unanimous voices. Neither do they think themfelves authorifed, as a Chriftian church, to enquire into each others political opinions, any more
than to examine into each others notions of philofopiy. They both recommend and practife, as Chritian duties, fubiniffion to lawful authority ; but they do not think that a man, by becoming a Chrillian, or joining their fociety, is under any obligation, by the rules of the Gofpel, to renounce his rights of private judgment upon matters of public or private importance. Upon all fuch fubjects they allow each other to think and act as each may fee it his duty. And they require nothing more of their members than a uniform and fteady pro. feffion of the apoitolic faith, and a fuitable walk and converfation. With regard to feet-wahing and the like practices, which fume other fects of Chrittians confider as duties, the Bereans are of opinion that they are by no means obligatory. They argue, that the example given by our Saviour of wahing the feet of his difciples was not an inftitution of an ordinance, but merely a familiar inftance, taken from the cultom of the country, and adopted by our Lord on that occation, to teach his followers that they ought at all times to be ready to perform even the meaneit offices of kindnefs to each other.

It may not be improper to add to the above delinea. Prefent tion of the principles and practice of the Bereans, that ${ }^{\text {thate. }}$ their doctrine has found converts in various places of Scotland, England, and America; and that they have congregations in Edinburgh, Glafgow, Pailley, Stirling, Crieff, Dundee, Arbroath, Montrofe, Fettercairn, Aberdeen, and other towns in Scotland; as well as in Inondon and various places in England; not to add Pennfylvania, the Carulinas, and other States in America.

The above account of the doctrines, origin, practice, and prefent fate of this fociety, has been given to us by the founder himfelf.

BERKENHOUT (Dr Juhn), was about the year 1730 born at Leeds in Yorkfhire, and educated at the grammar-fchool in that town, His father, who was a merchant, and a native of Holland, intended him for trade; and with that view fent him at an early age to Germany, in order to learn foreign languages. After continuing a few years in that country, he made the tour of Europe in company with one or more Englith noblement. On their return to Germany they vifited Berlin, where Mr Berkenhout met with a near relation of his father's, the Baron de Bielfeldt, a nobleman then in high eftimation with Frederick the Great king of Pruffia; dittinguifhed as one of the founders of the Royal A. cademy of Sciences at Berlin, and univerfally known as a politician and a man of letters. With this relation our young traveller fixed his ahode for fome time; and, regardlefs of his original deftination, became a cadet in a Prufian regiment of foot. He foon obtained an en. fign's commiffion, and in the fpace of a few years was advanced to the rank of captain. He quitted the Pruffian fervice on the declaration of war between England and France in 1756, and was honoured with the command of a company in the fervice of his native country. When peace was concluded in 1760 , not choofing, we fuppofe, to lead a life of inactivity on half-pay, he went down to Edinburgh, and conimenced ftudent of phyfic. During his refidence at that univerfity, he publithed his Clavis Anglica Lingua Botanicx ; a book of great utility to all ftudents of botany.

Having continued fome years at Edinburgh, Mr Ber-

Eerca:le,
Berketi-
hous.

Berken kenhout went to the univerfity of Legalen, where he hout. was admitted to the degree of M.D. in the year 1765.

On this occafion he publifhed a thelis, intitled, Differtatio medica inauguralis de Podagra, which he dedicated to his relation Baron de Bielfeldt. Returning to England, Dr Berkenhout fettled at Meworth in Middlefex, and foon after publifhed his Pbarmacoprin Medici, the third edition of which was printed in 1782 . In 1778 he was fent by government with the commiffioners to America. Neither the commiffioners nor their fecretary were fuffered by the congrefs to proceed further than New York. Dr Berkenhout, however, found means to penetrate as far as Philadelphia, where the congrefs was then affembled. He appears to have remained in that city for fome time without moleflation: but at lat they began to fufpect that he was fent by Lord North for the purpofe of tampering with fome of their leading members. The Doctor was immediately feized and committed to prifon.

How long he remained a ftate prifoner, or by what means he obtained his liberty, we are not informed; but we find from the public prints, that he rejoined the commiffioners at New York, and returned with them to England. For this temporary facrifice of the emolnments of his profeflion, and in confideration of his having, in the fervice of his fovereign, commitied himfelf to the mercy of a congrefs of enraged republicans, he obtained a penfion.

Many years previous to this event, Dr Berkenhout had publifhed his Outlines of the Natural Hifory of Great Britain and Ireland, in three volumes 12 mo ; a work which eftablifhed his reputation as a naturalif. In the year 1773 he wrote a pamphlet, intitled, An Effuy on the Bite of a Mad Dog, in wubich the Clain to Infullibility of the Principal Prefervative Remedies againg the Hydrophobia is examined. This pamphlet is inferibed to Sir George Baker, and deferves to be univerfally read.
In the year following Dr Berkenhout publifhed his Symptomatology; a book which is too univerfally known to require any recominendation.
At the beginning of the year 1788 he publifhed a work, intitled, Firfl Lines of the Theory and Praaice of Pbilofoplical Chemiffry, which he dedicated to Mr Eden, now Lurd Auckland, who had been une of the cummifioners whom he accompanied to America:

Thefe, we believe, are the Doctor's principal publications in the line of his profeffion; but he wrote on many other fubjeets with equal ability. His tranflation of Count Teffin's Letters, which was his firft publication, and dedicated to the prefent king when prince of Wales, cvinces his knowledge of the Swedifh language, and Chews him to have been a good poet. His Efay on Ways and Mcans, proves him to have been better acquainted with the fyftem of taxation than moft other men who have written on the fubject. His biographical powers appear in his Biographia Litcraria; and in all his works are fulficient proofs of his claffical learning, and that the Italian, French, German, and Dutch languages, were familiar to him. He poffefled likewife a very confiderable degree of mathematical fcience, which he acquired in the courfe of his military fudies; and to thofe more fulid attainments he is faid to have added no fmall kill in the fine arts of painting and mufic. This eminent man, who, for the variety and promptitude of
his knowledge, has been compared to the Admirable Bernoallis Crichton, died on the 3 d of April 1791.
BERNOULLI (John), a celebrated mathematician, was horn at Bafil the 7 th of Augutt 1667 . His father intended him for trade ; but his own inclination was at firft for the belles lettres, which, however, like his brother James, whofe life is given in the Encyclo. pxdia, he left for mathematics. He laboured with his brother to difcover the method ufed by Leibnitz, in his effays on the differential calculus, and gave the firft principles of the integral calculus. Our author, with Meffrs Huygens and I.eibnitz, is faid to have been the fint who gave the folution of the problem propofed by James Bernoulli, concerning the catenary, or curve formed by a chain fufpeuded by its two extremities. But for more on this fubject, fee $A_{r c h}$ in this Supplement.

John Bernoulli had the degree of doctor of phyfic at Batil, and two years afterward was named profeffor of mathematics in the univerfity of Groningen. It was here that he difcovered the mercurial phofphorus, or luminous barometer; and where he refolved the problem propofed by his brother concerning ifoperimetricals.

On the death of his brother James, the profeffor at Bafil, our author returned to his native country, againft the preffing invitations of the magiftrates of Utrecht to come to that city, and of the univerfity of Groningen, who wifhed to retain him. The Academic Sevate of Bafil foon appointed him to fucceed his brother, without affembling competitors, and contrary to the eftablifhed practice; an appointment which he held during his whole life.

In 1714 was publifhed his treatife on the manage. ment of fhips; and in 1730 his memoir on the elliptical figure of the planets gained the prize of the Academy of Sciences. The fame Academy alfo divided the prize for their queftion concerning the inclination of the planetary orhits, between our author and his fon Daniel. See Bernoulli (Daniel), Encycl.

John Bernoulli was a member of moft of the academies of Europe, and rectived as a foreign affociate of that of Paris in 1699. After a long life fpent in conftant fudy and improvement of all the branches of the mathematics, he died full of honours, the ift of January $174^{8,}$ in the 81 thear of his age. Of five fons which he had, three purfued the fame fciences with himfelf. One of thefe died before him ; the two others, Nicolas and Daniel, he lived to fee become eminent, and much refpected in the fame fciences.

The writings of this great man were difperfed throughthe periodical memoirs of feveral academies, as well as in many feparate treatifes. And the whole of them were carefully collected and publifhed at Laufanne and Geneva, 174^{2}, in 4 vols 4 to. He was of undoubted eminence; but even in fcience he was a hafty man, ánd certainly envious of the fame of Newton.

BETELGUESE, a fixed flar of the firf magnitude, in the right fhoulder of Orion.
BEZOUT (Stephen), a celebrated French mathematician, member of the Academies of Sciences and the Marine, and examiner of the guards of the marine and of the eleves of artillery, was born at Nemours the 3 Ift of March 5730 . In the courfe of his fudies he met with fome books of geometry, which gave him a tafte for that fcience; and the Eloges of Fontenelle, fhewed him the honours attendant on talents and the

Bezout love of the fciences. His father in vain oppofed the frong attachment of young Bezout to the mathematical fciences. April 8. 1758, he was named adjoint. mechanician in the French Academy of Sciences; having before that fent them two ingenius memoirs on the integral calculus, and given other proofs of his proficiency in mathematics. In 1763, he was named to the new office of examincr to the marine, and appointcd to compofe a fyftem of mathematics for their ufe; and in 1768, on the death of M. Camus, he fucceeded as examiner of the artillery eleves.
Bezout fixed his attention more particularly to the refolution of algebraic equations; and he firft foumd out the folution of a particular clafs of equations of all degrees. This method, different from all former ones, was general for the cubic and biquadratic equations, and jult becane particular only at thufe of the 5 th degree. Upon this work our author laboured from 1762 till 1779, when be publifhed it. He compofed two courfes of mathematics; the one for the marine, the other for the artillery. The foundation of thefe two works was the fame; the applications only being differtnt, according to the two different objects: thefe courfes have every where been held in great eltimation. In his office of examiner he difcharged the duties with great attention, care, and tendernefs. A trait of his juttice and zeal is remarkable in the following inflance: During an examination which he held at Toulon, he was told that two of the pupils could not be prefent, being confined by the fmall-pox: he himfelf had never had that difeafe, and he was greatly afraid of it; but as he knew that if he did not fee thefe two young men, it would much impede their im. provement, he ventured to their bed-fides to examine them, and was happy to find them fo deferving of the bazard into which he put himfelf for their benefit.

Mr Bezout lived in this employment for feveral years, beloved of his family and friends, and refpected by all, enjoying the fruits and the credit of his labours. But the trouble and fatigues of his offices, with fome perfonal chagrimes, had reduced his frength and conflitution; he was attacked by a maiignant fever, of which he died Sept. 27. 1783 , in the $54^{\text {th }}$ year of his age, regretted by his family, his friends, the young fudents, and by all his acquaintance in general.

The baoks publifhed by him were: 1. Courfe of Mathematics for the ufe of the Marine, with a Treatife on Navigation, 6 vols in 8 vo , Paris, 1764. 2. Courfe of Mathematics for the Corps of Artillery, 4 vols in 8vo, 1770. 3. General Theory of Algebraic Equations, 1779.

His papers printed in the volumes of the Memoirs of the Academy of Sciences are: 1. On curves, whofe rectification depends on a given quantity, in the volume for 1758. 2. On feveral claffes of equations that admit of an algebraic folution, 1762. 3. Firft volume of a courfe of mathematics, 1764. 4. On certain equations, \&c. 1764. 5. General refolution of all equations, 1765 . 6. Second volume of a cuurfe of mathematics, 1765. 7. Third volume of the fame, 1766 . 8. Fourth volume of the fame, 1767. 9. Intergration of differentials, \&c. vol. 3. Sav. Etr. 10. Experiments on cold, 1777.

BINOMIAL, a quantity confifting of two terms or members, connected by either of the figns + and - . Sec Algebra, def. 9. Encyct.

Impolfible or Imaginary Binomiat, is a binomial which
has one of its terms an impolible or an imaginary quan. Binomial tity; as $a+\sqrt{ }-b$. preffed by a binomial quantity, as the curve whofe ordinate is $x^{3} \times\left. b \overline{d x}\right|^{c}$. Stirjing, Method. Dif. p. 5^{8}. Binomets Lime, or Surd, is that in which at leath one of the parts is a furd. Euclid, in the tenth book of his Elements, enumerates fix kinds of binomial lines or furds, viz.

$$
\begin{aligned}
& \text { Firf binomial } 3+\sqrt{ } \text {, } \\
& \text { 2d binomial } \sqrt{ } 18+4, \\
& \text { 3d binomial } \sqrt{ } 24+\sqrt{ } 18 \text {, } \\
& \text { 4th binomial } 4+\sqrt{ } \text {, } \\
& \text { 5th binomial } \sqrt{ } 6+2, \\
& \text { Gih binomial } \sqrt{ } 6+\sqrt{ } 2
\end{aligned}
$$

Binomlal Theorem. See Algebra, Chap. Vij. Sect. iii. (Encycl. Vol. I.) ; and Infinite Siries, (Vul. XVII.) The reader who wifhes for a fuller acconnt of this famous theorem, may find it in Dr Hutton's Mathematical Tracts, Vol. I.

BIRD-catching, is an art which, as it is practifed by means of bird lime, nets, decoys, \&ce, has been fufficiently explained in the Encyclopredia. But there is another method of catching birds alive, by means of a fufee or mufket, which was invented by M. Vaillant during his travels in Africa, and is fufficiently ingenious to deferve a place here. It is as follows:

Put a fmaller or larger quantity of powder into your fufee according as circumftances may require. Immediately above the powder place the end of a candle of fufficient thicknefs, ramming it well down ; and then fill the barrel with water up to the mouth. When at a froper difance you fire a mufket thus loaded at a bird, you will only fun it by watering and moittening its feathers; and if you be alert, you may eafily, lay hold of it hefore it have time to fpoil its plumage by fluttering. Our author admits, that in his firft attempts he often put ton much powder, or ton thick a piece of candle into his fulee, or fired at too fhort a diftance; anf when any one of thefe miftakes was committed, he generally found the candle entirc in the animal's belly : but after a fhort apprenticefip he acquired fufficient Akill to adjuft matters fo as that the water impelled by the powder went directly to the mark, whilf the talluw being lighter than the water fell hort of it. If this method be indeed practicable (for not being fportfinen we have not made trial of it), it may on many occafions aid the refearches of the ornithologift.

Birds-Nefls, in cookery. Sce Encycl. and Cap and Butron in this suppl.

BLACK (Jofeph, M. D.), who has been ftyled the father of pneamatic chemiftry, and who, in that dcpartment of fcience, had certainly no fuperior, was born at Bourdeaux in France, in the year 1728 . His father was a native of Ireland, but went to Bourdeaux to carry on the bufinefs of a wine-merchant; though with what fuccefs be carried it on we have not learned. Where young Black reccived his claffical education we know not; but at an early period of life he was fent to the Univerfity of Glafgow, and ftrongly recommended to Dr Cullen, who advifed him to ftudy phyfic, and undertook, with that ardour which characterifed his mind, to render him every fervice in his pawer.

At that period Cullen read lectures on chemiftry in the College of Glafgow with great and deferved applaufe; plaufe: and Black beconing onc of his favourite pupils, was allowed the free ufe of his laboratory, and affited hin in his experiments; by which means he acquired a decided talte for this branch of natural philofophy. In 1557 he took the degree of doctor of phyfic in the univerlity of Edinburgh. where he had ftudied for fome time; and the choice which he made in regard to the fubject of his inangural dilfertation gave a proot of his attachment to chemical purfuits. It was De bumore acido a cilis orio et mugnefia alba. The principles of the doctrine which lee brought forward in this thefis he afteru ards fully explained in a paper read the next year before a fociety in Edinburgh, and publifhed in the fecond volume of Effays Pbyfical and Literary, 1756; containing experiments on magnefia alba, quick-lime, and alkaline fubtances. In this paper, by an ingenious and philofophical feries of refearches, he evidently proved the exiltence of an aerial fluid, which he called fixed air, the preferce of which gave mildnefs, and its abfence caufticity, to allalies and calcareous earths. This noble difoovery certainly paved the way to all that important knowledge refpecting acrial bodies which has done fo much honour to the names of a Cavendif, a Priettley, and a I avoifier, and which have made chemical philorophy afume an entirely new form.
lin the year 1756, on the removal of Dr Cullen to Edinburgh, Dr Black became profeffor of medicine and lecturer on chemiftry in the univerfity of Glafgow. Next year he enriched the fcience of chemiftry with the curious doctrine of latent beat, in which he explained, in what has been hitherto reckoned a clear and fatisfactory manner, the connection of heat with fluidity, the phenomena of freezing and boiling, and the manner in which they affect the thermometer. Thefe difcoveries, the refult of great natural fagacity and experimental frill, certainly laid the foundation of all thofe important facts relating to this part of chemitity which were itterwards brought to light by feveral of the moft eminent philufophers of the prefent period, and would alone be fufficient to give celebrity to the name of Black. His reputation indeed was now raifed fo high, that a vacancy having taken place in the chemical chair of Edinburgh, by the removal of Dr Cullen, in 1765 , to another department, Dr Black was looked up to as the only man capable of furtaining, in this branch of fcience, the fuperiority which that celebrated fchool of medicine had acquired in all others. He was therefore elected to fucceed Cullen, and for many years difcharged the dutics of the office with univerfal approbation, being inuch admired for the care, perfpicuity, and elegance, with which he commmicated inftruction in his lectures, and his neatnefs and accuracy in performing experiments. Very complete manufcript copies of his lectures were taken by many of his itudents, particularly in the early part of his teaching, when they contained a great deal of matter then little known to the chemical world; and thefe copies, read with avidity by the lovers of this fcience, have greatly contributed to fecure to him the honour of thofe difcoveries, and that original mode of reafoning, which he fcarcely ever made public in any other form. His lectures have lately been revifed by his friend Dr Robifon of Edinburgh; and, enriched with many valuable notes by that genuine philofopher, are now in the prefs, and will speedily be publifhed.

Aftet his election to the chemical chair, Dr Black publithed nothing but a paper on the Effect of Boiling upon Water, in difpoling it to freeze more readily, printed in the fixty-fifth volume of the Philofophical Tranf. actions for 1774 ; and an Analyfis of the Water of fome Hut Springs in Iceland, in the Philofophical Tranfac. tions of Edinburgh for 179 t . 'The latter contains fome obfervations, highly interelling to the cliemilt, on the formation of the filiceous fone depofited ly thefe wonderful fprings ; and has lang been confidered as a model of neatncts and accuracy in the analyfis of mineral waters. Jwo of his letters on chemical fubjects have been publifhed by Crell and Lavoilier.

Dr Blach was long a Atrenuous oppofer of the new theories in chemiltry; but he at length became an avewed convert to the principles of the French chemitts, and did not hefitate to make amends by his applaufe for his former oppofition. He never diltinguihed himfelf as a practical phylician. His manners were fimple, his temper cold and referved, and his habits of life adapted to his own convenience. He was never married; and died fuddenly, in his fixty-fecond year, on the 6th of December 1799 , his health having been in a declining ftate for fome time before. He was a member of the Royal Societies of London and Edinhurgh, and of the Imperial Academy of Sciences at St Peterfburgh; and by the intereft of Lavoilier he was chofen one of the eight foreign members of the Academy of Sciences of Paris, when that academy was Royal, and when a philofopher of Britain could be a member of it without incurring difgrace.

By thofe who knew Dr Black intimately, and are capable of forming an eltimate of the powers of his mind, he is believed to have been capable of becoming in chemiftry what Newton was in mechanical philofophy; but an unconquerable indolence, though it could not prevent him ficm doing his duty as profeffor, reftrained bim not only from employing, as he might have done, his admirable talents in enlarging the boundaries of feience, but even from afferting his claim to difcoveries which were certainly his. Of thefe we hope to have fome account from his friend the editor of lis lectures.

BLACKLOCK (Dr Thomas) deferves, on fo many accounts, to have the principal incidents of his life recorded in this work, that to omit fuch an article from our lift of biographical fketches would be unpardonable negligence. We cannot, however, propofe to write of him any thing which has not been written before, by an author who has repeatedly appeared before the public, and on each appearance has gained poffeffion of the public heart. We flall therefore content ourfelves with inferting in this place a fhort abridgment of the elegant account of the life and writings of Dr Blacklock, which was prefixed to that edition of his works which was publithed in 1793 ; and if we thus lelfen our own labour, we are confcious that we thall at the fame time increafe the pleafure of our readers.

Thomas Blacklock was in 1721 born at Anan, in the county of Dumfries in Scotland, but his parents were natives of the bordering county of Cumberland; fo that, though a native of Scotland, his defeent was Englifh His father was a bricklayer, and his mother the daughter of a confiderable dealer in cattle. Both were refpectable in their characters, and poffeffed, tho'

B L A

Blasklack. moving in an humble fpliere, a confiderable degree of knowledge and urbanity. Their fon was not quite fix months old when he loft his eye-fight in the fmall-pox, which rendered him as complete a ftranger to the vifille world as if lie lad beea blind from the home of his birth. It rendered him likewife incapable of learning any of the mechanical arts; and therefore his father kept him at home, and with the affiftance of fome friends foftered that iucliuation which, at a very early period, he fhewed for books. This was done by reading to him firft the fimple fort of publications which are commonly put into the hands of children, and then feveral of our belt authors, fuch as Milton, Spencer, Prior, Pope, and Addifon. His companions, whom his early gentlenefs and kindnefs of difpofition, as well as their compaffion for his misfortune, frongly attached to him, were very affiduous in their good offices, in reading to inftruct and amufe him. By their affiflance he acquired fome knowledge of the Latin tongne, but he never was at a grammar-fchool till at a more advanced period of life. Poetry was event then his favourite reading; and he found an enthufialtic delight in the works of the heft Englifh poets, and in thofe of his countryman Allan Ramfay. Even at an age fo early as twelve he began to write poems, one of which is preferved in the collection that was publifhed after his death, and is not perhaps inferior to any of the premature compofitions of boys affifted by the beft education, which are only recalled into notice by the future fame of their authors.

He had attained the age of ninetern when his father was killed by the accidental fall of a malt-kiln belong. ing to his fon-in-law. This lofs, heavy to any one at that early age, would have been, however, to a young man poffefling the ordinary means of fupport, and the ordinary advantages of education, comparatively light; but to him-thus fuddenly deprived of that fupport on which his youth had leaned-deftitute almoft of every refource which indultry affords to thofe who have the bleflings of fight - with a body feeble and delicate from nature, and a mind congenially fufeeptible - it was not furprifing that this blow was doubly fevere, and threw on his fpirits that defpondent gloom to which he then gave way in the following pathetic lines, and which fometimes overclouded them in the fublequent period of his life :
"Dejecting profpect! foon the haplefs hour
"May come; perliaps this moment it impends,
"Which drives me forth to penury and cold,
"Naked, and beat by all the ftorms of heav'n,
"Friendlefs and guidelefs to explore my way;
" 'rill on cold earth this poor unfhelter'd head
" Reclining, vainly from the ruthlefs blaft
"Refpite I beg, and in the fhock expire."
He lived with his mother for about a year after his father's deatl, and began to be diltinguifhed as a young man of uncommon parts and genius. Thefe were at that time unaffifted by learning; the circumftances of his family affording him no better education than the fmattering of Latin which his companions had taught him, and the pernfal and recollection of the few Englifh authors which they, or his father in the intervals of his profeffional labours, had read to him. . Poetry, however, though it attains its higheft perfection in a cultivated \{oil, grows perhaps as luxuriantly in a wild one. To

\%9]
 B 1 A

poctry, as we have before mentioned, he was devoted Blacklock. from lis earlieft days; and about this time feveral of his poctical productions began to be handed about, which confiderably enlarged the circle of his friends and acequantance. Some of his compolitions being Mhewn to Dr Stevenfon, an eminent phyfician of Edinburgh, who was ácideritally at Dumfrics on a profef. fional vifit, that genteinan formed the benevolent defign of carrying him to the Scotch metropolis, and giving to his natural endowments the affitance of a claffical edu. cation. He came to Edinburgh in the year $17+1$, and was enrolled a ftudent of divinity in the univerfity there, though at that time without any particular view of entering into the church. In that univerfity he continued his fudies under the patronage of Dr Steventon till the year 1745 , when he retired to Dumfries, and retided in the houfe of Mr M•Murdo, who had married his filter, during the whole time of the civil war, which then raged in the country, and particularly difurbed the tranquillity of the metropolis. When peace was refored to the nation, he returned to the univerity, and purfued his ftudies for tix years longer. During this lat refidence in Eainburgh, be obtained, among other literary acquaintance, that of the celebrated David Hump, who attached himfelf warmly to Mr Blacklock's interefts, and was afterwards particularly ufeful to him in the publication of the 4 to edition of his Poems, which came out by fubfeription in London in the year 1756. Previoufly to this, two editions in 8vo lad been publifhed at Edinburgh, the firit in 1746 , and the fecond in 1754.

In the courfe of his education at Edinburgh, he acquired a proficiency in the learned languages, and hecame more a mater of the French tongue than was then common in that city. For this laft acquitition lee was chicfly indebted to the focial intercourfe to which he had the good fortune to bee admitted in the houfe of Provoft Alexander, who had married a native of France. At the univerlity he attained a knowledge of the va. rious branches of philofophy and theology, to which his courfe of ftudy naturally led, and acquired at the fame time a confiderable fund of learning and information in thofe various departneents of feience and belles lettres, from which his want of fight dil not abiolutely preclude him.

In 1757, he began a courfe of fudy, with a view to give lectures in oratory to young gentlemen intended for the bar or the pulpit. On this occafion he wrote to Mr Hume, informed him of his plan, and requelled his affiltance in the profecution of it. But Mr Hurre doubting the probability of its fuecefs, he abandoned the project; and then, for the firt time, adopted the decided intention of going into the church of Scotland. After applying clofely for a conliderable time to the ftudy of theology, he paffed the ufual trials it the prefbytery of Dumfries, and was by that prebytery licenfed a preacher of the golpel in the year 1759. As a preach. er he obtained high reputation, and was fond of comipofng fermons, of which he has left fome volumes in manufcript, as alfo a Trentife on Morals.

The tenor of his occupations, as well as the bent of his mind and difpofitione, during this period of his life, will appear in the following plain and unftudied account, contained in a letter from a gentleman, who was then his moft intinate and conflant companion, the Rev. Mr

B i. A [So $] \quad B \perp A$

Black!nck. Jamefon, formerly minifter of the Epifeopal chapel at Dumfrics, afterwards of the Englifh congregation at Dantzic, and who lately relided, and perhaps j et refides, at Newcaftle upon Tyne.
"His manner of life (fays that gentleman) was fo uniform, that the hiftory of it during one day, or one weck, is the hiftory of it during the feven years that our perfonal interccurfe lafted. Reading, mufic, walk. ing, converfing, and difputing on various topies, in theolugy, thics, \&ic. employed almof every hour of our time. It was pleafant to hear him engaged in a dif. pute, for no man could keep his temper better than he always did on fuch occafions. I have !nown him frequently very warmly engaged for hours together, but never could obferve one angry word to fall from him. Whatever his antagonift might fay, be always kept his temper. :Semper paratus et refellere fine pertinacia, ot refili fine iracundia.' He was, however, extremely fenfible to what he thought ill ufage, and equally fo whether it regarded himfelf or liis triends. But his refentment was always confined to a few fatirical verfes, which were generally burnt foon after.
"I have frequently admired with what rcadinefs and rapidity he could fometimes make verfes. I have known him dictate from thirty to forty verfes, and by no means bad ones, as faft as I could write them; but the moment he was at a lofs for a rhime or a verfe to his liking, he flopt altogether, and could very feldom lse induced to finifis what he had begun with fo much ar. dour."

This account fufficiently marks that cager fenfibility, chatened at the fame time with uncommon gentlenefs of tenper, which characterifed Dr Blaeklock, and which indeed it was impollible to be at all in his company without perceiving. In the fcience of mind, this is that divition of it which perhaps one would peculiarly appropriate to poetry, at leaft to all thofe lighter fpecies which rather depend on quicknefs of feeling, and the ready conception of pleafing images, than on the happy arrangement of parts, or the fkilful cunftruction of a whole, which are effential to the higher departments of the poetical art. The firft kind of talent is like thofe warm and light foils which produce their annual crops in fuch abundance; the latl, like that deeper and firmer mould on which the roots of eternal forells are fixed. Of the firit we have feen many happy inftances in that fex which is fuppofed lefs capable of fludy or thought; from the lait is drawn that mafculine fublimity of genius which could build an Iliad or a Paradife Loft.

Dr Blacklock could never dictate till he food up; and as his blindrefs made walking about without affiftance inconvenient or dangerous to him, he fell infenfibly into a vibratory furt of motion of lis body, which incrcafed as he warmed with his fubject, and was pleafed with the conceptions of his mind. This motion at laft became habitual to him; and though he could fometimes reftrain it when on ceremony, or on any public appearance, fuch as preaching, he felt a certain uneatinefis from the effort, and always returned to it when he could without impropriety. This appearance he deferibes in a flort poem, in which he gives a ludicrous picture of himfelf; a picture indeed, of which, though the outlines are true, the general effect is greatly overcharged. Though his features were hurt by the dif-
cafe which deprived him of fight, there was a cettain B'atkionk. placid exp reflion in his comntenance, which marked the bencrolence of his heart, and was ealculated to procure to him individual attachanents and general regard.

1:a 1 -62 he married Mifs Earah Johnton, daughter of Mr Jofeph Johufton furgcon in Dumfies; a cunnection which formed the great folace and likffing of his future life, and gave him, with all the tendernefs of a wife, all the zealous care of a guardian and a friend. This event took place a few days befure his being ordaised miniter of the town and parifh of Kircudbright, in confequence of a prefentation from the crown, wbtained for him by the carl of Selkirk, a benevolent nobleman, whom Mír Blacklock's fituation and genius had interelted in his behalf. But the inhabitants of the parifh, whether from that violent averfion to patronage, which was then fo univerfal in the fouthern parts of Scotland, from fome political difputes which at that time fubfifted between them and his noble patron, or from thofe prejudices which fome of them might naturally enough eatertain againft a paftor deprived of fight, or perliaps from all thefe caufes united, were fo extremely difinclined to receive him as their mintifter, that after a legal difpute of nearly two years, it was thought expedient by his friends, as it lad always been wifhed by himfelf, to compromife the matter, by refigning his right to the living, and accepting a moderate annuity in its flead. With this flender provifion he removed in $176+$ to Ediaburgh ; and to make up by his indultry a more comfurtable and decent fubfiftence, he adopted the plan of receiving a certain number of young gentlemen as boarders into bis houfe, whofe fudies in languages and philofophy he might, if neceffary, affift. In this fituation he continued till the year 1787, when be found his time of life and tate of health required a degree of quiet and repofe, which induced him to difcontinue the receiving of boarders. In 1767 the degree of doctor in divinity was conferred on him by the univerif. ty and Marifchal college of Aberdeen.

In the occupation which he thus exercifed for fo many years of his life, no teacher was perhaps ever more agreeable to his pupils, nor mafter of a family to its inmates, than Dr Blacklock. The gentlenefs of his manners, the benignity of his difpofition, and that warm intereft in the happinefs of others which led him fo conflantly to promote it, were qualities that could not fail to procure him the luve and regard of the young people committed to his charge; while the fuciety; which efteem and refpect for his character and his genius often affembled at his houfe, afforded them an advantage rarely to be found in eftablifluments of a fimilar kind.

In this mixed fociety he appeared to forget the privation of fight, and the melanchuly which it might at other times produce in lis mind. He cutercd, wirh the cheerful playfulnefs of a young man, into all the fyrightIy narrative, the fporfful fancy, and the humorous jeft that rofe around him. Next to converfation, mulic was perhaps the fource of his greateft delight; for he not only relifhed it highly, but was limfelf a tolerable performer on feveral infruments, particularly the flute. He generally carried in his pocket a fmall flageolet, on which he played his favourite tunes; and was not difpleafed when afked in company to play or to fing them; a natural feeling for a blind man, who thus adds a feene to the drama of his fociety.
ack!ock. Of the happinefs of others, however, we are incompetent judges. Companionflip and fympathy bring forth thufe gay colours of mirth and cheerfulnefs which they put on for a while, to cover perhaps that fadnefs which we have no opportunity of witueffing. Of a blind man's condition we are particularly liatle to form a miftaken eftimate; we give him credit for all thofe gleans of delight which fuciety affords him, without placing to their full account thofe dreary moments of dark fome folitude to which the fufpenfion of that fociety condemns hin. Dr Blacklock had from nature a contitution delicate and nervons, and his mind, as is almof always the cafe, was in a great degree fubject to the indifpofition of his body. He frequently complained of a lownefs and depreffion of fpirits, which neither the attentions of his friends, nor the unceafing care of a moft affectionate wife, were able entirely to remove. The imagination we are fo apt to envy and aumire ferves but to irritate this diforder of the mind; and that fancy in whofe creation we fo much delight, can draw, from fources unknown to common men, fubjects of difguft, difquietude, and aftiction. Some of his later poems exprefs a chagrin, though not of an ungentle fort, at the fuppofed failure of his imaginative powers, or at the falidioufnefs of modern times, which he defpaired to pleafe.
"Such were his effurts, fuch his cold reward,
"Whom once thy partial tongue.pronounc'd a bard ;
"Excurfive, on the gentle gales of fpring,
"He rov'd, whill favour imp'd his timid wing;
"Exhaufted genius now no more infpires,
"But mourns abortive hopes, and faded fires;
" The fhort-liv'd wreath, which once his temples grac'd,
" Fades at the fickly breath of fqueamifh tafte;
"Whilit darker days his fainting flames immure
"In cheerlefs gloom and winter premature."
Thefe lines are, however, no proof of "exhaufted genius," or "faded fires." "A Abortive hopes," indeed, mult be the lot of all who, like Dr Blacklock, reach the period of old age. In early youth the heart of every one is a poet; it creates a ferne of imagised happinefs and delufive hopes; it clothes the world in the bright colours of its own fancy; it refines what is coarfe, it exalts what is nean; it fees nothing hut difintereft. ednefs in friendfhip; it promifes eterual fidelity in love. Even on the diftreffes of its fituation it can throw a certain romantic fhade of melancholy that leaves a man fad, but does not make him unhappy. But at a more advanced age, "the fairy vilions fade," and he fuffers moft deeply who has indulged threm the mott.

About the time that thefe verfes were written, Dr Blacklock was, for the firlt time, afflicted with what to him nuft have been peculiarly diftrefsful. He became oceafionally fubject to deafnefs, which, though be feldom felt it in any great degree, was fufficient, in his fituation, to whom the fenfe of hearing was almoft the only channel of communication with the external world, to caufe very lively uneafinefs. Amidtt thefe indifpofitions of body, however, and difquietudes of mind, the gentlenefs of his temper never forfook hin, and he felt all that refignation and confidence in the Supreme Being which his earlieft and his lateit life equally acknowledged. In fummer 1791 he was feized with a feverifh diforder, which at firlt feemed of a light, and never rofe to a very violent kind; but a frame fo little robuit as

Suppl. Vol. I. Part I.
his was not able to refift it, and after about a week's illnefs it carried him off on the 7 th day of July 1791 . His wife furvives him, to feel, amidf the heavy affiction of his lofs, that melancholy confolation which is derived from the remembrance of his virtues.
The writiugs of Dr Blacklock confifted principally of poems, which were publifhed in 4 to in the year 5793 ; and to that edition was added, An EVFay on the Education of the Blind, tranflated from the Fiench of M. Hany. But befides his avowed works, we have reafon to believe that he was the author of many articles in the fecond edition of the Encycloperdia Britannica, though we cannot fay with certainty what thofe articles were. If our memory does not deceive us, we have been informed that the preface to that edition was furnifhed ly him ; and we have elfewhere attributed to him, on the beft authority, the article BLind, and the Notes to the article Music: but he undoubtedly contributed much more to the work, and was one of the principal guides of the proprietors.

BLAIR (Dr Hugh), was born in Edinburgh, on the 7 th day of April 1718 . His father, Joln Blair, a refpectable merchant in that city, was a defcendant of the ancient family of Blair in Airmire, and grandfon of the famous Mr Robert Blair miniter of St Andrew's, chaplain to Charles I. and one of the moft zealous and diftinguifhed clergymen of the period in which he lived. This worthy man, though firmly attached to the caufe of freedom, and to the Prefoyterian form of church goverument, and though actively engaged in all the meafures adopted for their fupport ; yet, by his fteady, temperate conduct, commanded the refpect even of his opponents. In preference to all the other ecclefiattical leaders of the covenanting party, he was felected by the king hinfelf to fill an office which, fron the circumflances of the tinie, gave frequent accefs to the royal perfon; "becaufe (faid his majefty) that man is pious, prudent, learnci, and of a meek and moderate calnn temper." His talents feem to have defcended as an inheritance to his pofterity. For of the two fons who furvived him, David, the eldeft, was a clergyman of eminence in Edinburgh, father to Mr Robert Blair mivifter of Athelftonford, the celebrated author of the puem intitled The Grave; and grandfather to his majefty's folicitor general for Scotland, whofe mafculine eluquence and profound knowledge of law have, in the public eftimation, placed him indifputably at the head of the Scottifh bar. From his youngett fon Hugh, who engaged in bufinefs as a merchant, and had the honour to fill a high ftation in the magiftracy of Edinburgh, fprung the learned clergyman who is the fubject of this narrative.

The views of Dr Blair, from his earlieft youth, werc turned towards the charch; and his education received a fuitable direction. After the ufiual grammatical courfe at fchool, he entered the humanity clafs in the univerfity of Edinburgh in October 1730, and fpent eleven years at that celebrated feminary, affiduoufly employed in the literary and fcientific ftudies prefcribed by the church of Scotland to all who are to become candidates for her licence to preach the gofpel. During this important period, he was diftinguifted among his companions both for diligence and proficiency; and obtained from the profeffors under whom he fudied repeated teftimonies of approbation. One of them deL
ferves

Blair. Ferves to be mentioned particularly, becaufe, in his own opinion, it determined the bent of his genius towards polite literature. An effiy Rug rou $\times \alpha \lambda s_{\mathrm{s}}$ or, On the Beautiful, written by him when a fludent of logic in the ufual courfe of academical exercifes, had the good fortune to attract the notice of profeffir Stevenfon, and, with circumflances honourable to the anthor, was appointed io he read in pmblic at the conclufion of the term or fuffion. This mark of ditinction made a deep impreffion on his mind; and the elfay which merited it he ever after recollected with partial affection, and preferved to the day of his death as the firt earneft of his fame.

At this time Dr Blair commenced a method of fudy which contributed much to the accuracy and extent of his knowledge, and which he continued to practife occafionally even after his reputation was fully eftablifhed. It confifted in making abftraets of the moot important works which lee read, and in digefting them according to the train of his own thoughts. Hifory, in particular, he refulved to fludy in this manuer; and, in concert with fome of his yeuthful affociates, he conll ructed a very comprehenfive fcheme of chronological tahles, for receiving into its proper place every important fact that fhould occur. The fcheme devifed by this young ftudent for his own private ufe was afterwards improved, filled up, and given to the public by his learned friend Dr John Blair, prehendary of Wettminfter, in his valuable work, "The Chronology and Hiftory of the World."

In the year ${ }^{17} 739, \mathrm{Dr}$ Blair took his degree of A.M. On that occafion he printed and defended a thefis, D_{e} Fundamentis et Obligatione Legis Natura, which contains a fhort but mafterly difcuffion of this important fubject, and exhibits in elegant Latin an outline of the moral principles which lave been fince more fully unfolded and illuftrated in his Sermons.

The univerfity of Edinburgh, about this period, numbered among her pupils many young men who were foon to make a diftinguifhed figure in the civil, the ecclefiaftical, and the literary hiftory of their country. With moft of them Dr Blair entcred into habits of intimate connection, which no future competition or jealoufy occurred to interrupt, which held them united through life in their views of public good, and which had the moft beneficial influence on their own improvement, on the progrefs of elegance and tafte among their contemporaries, and on the general interelts of the community to which they belonged.

On the completion of his academical courfe, he underwent the cuftomary trials before the prefbytery of Edinburgh, and received from that venerable body a licence to preach the Gofpel on the 21 ft of October 1743. His pullic life now commenced with very favourable profpects. The reputation which he brought from the univerfity was fully juftified by his firt appearances in the pulpit; and, in a few months, the fame of his eloquence procured for him a prefentation to the parifh of Coleffic in Fife, where he was ordained to the office of the holy miniftry on the 23 d of September 1742 . But he was not permitted to remain long in this rural retreat. A vacancy in the fecond charge of the Canongate, a fuburb of Edinburgh, furnifhed to his friends an opportunity of recalling him to a flation more fuited to his talents. And, though one of the moft popular and eloquent clergymen in the church was placed in com-
petition with him, a great inajority of the electors de. cided in favour of this young orator, and reftored him in July 1743 to the bounds of his native city.

In this ftation Dr Blair continued eleven years, dif. charging with great fidelity and fuccefs the various duties of the partoral office. His difcourfes from the pulpit in particular attracted univerfal admiration. They were compofed with uncommon eare; and, occupying a middle place between the dry metapliy fical difculfion of one clafs of preachers, and the loofe incolerent declamation of another, they blended together, in the happieft manner, the light of argument with the warmth of exhortation, and exhibited captivating fpecimens of what had hitherto been rarely heard in Scotland, the polifhed, well-compacted, and regular didactic oration.

In confequence of a call from the town-council and general-feffion of Edinburgh, he was tranflated from the Canongate to Lady Yefter's, one of the city churches, on the 11th of October 1754: and on the 15 th day of June 1758, he was promoted to the High Church of Edinhurgh, the moft important ecclefialtical charge in Scotland. To this charge he was raifed at the requett of the Lords of Council and Seffion, and of the other diftinguifhed official characters who have their feats in that church. And the uniform prudence, ability, and fuccefs, which, for a period of nore that forty years, accompanied all his minifterial labours in that confpicuous and difficult Ilation, fufficiently evince the wifdom of their choice.

Hitherto his attention feems to have been devoted almof exclufively to the attainment of profeffional excellence, and to the regular difcharge of his parochial duties. No production of his pen had yet been given to the world by bimfelf, except two fermons preached on particular occafions; fome tranflations, in verfe, of paf. fages of Scripture for the pfalmody of the church; and a few articles in the Edinburgh Review; a publica. tion begun in 1755, and conducted for a fhort time by fome of the ablell men in the kingdom. But ftanding as he now did at the head of his profeffion, and releafed by the labour of former years from the drudgery of weekly preparation for the pulpit, he began to think ferioully on a plan for teaching to others that art which had contributed fo much to the eftablifhment of his own fame. With this view, he communicated to his friends a fcheme of lectures on compofition; and having obtained the approbation of the univcrfity, he began to read them in the college on the inth of December 1759. To this undertaking the brought all the qualifications requifite for executing it well; and along with them a weight of reputation, which could not fail to give effect to the leffons he mould deliver. For, befides the teftimony given to his talents by his fucceffive promotions in the church, the univerfity of St Andrew's, moved chiefly by the merit of his eloquence, had in June 1757 conferred on him the degree of D. D. a literary honour which at that time was very rare in Scot. land. Accordingly his firft courfe of lectures was well attended, and received with great applaufe. The patrons of the univerfity, convinced that they would form a valuable addition to the fyltem of education, agreed in the following fummer to inllitute a rhetorical clafs, under his direction, as a permanent part of their academical eftahlifhment : and on the 7 th of April 1762, his Majefty was graciounly pleafed " to erect and endow a

Blair. profeflorfhip of rhetoric and belles lettres in the univerfity of Edinburgh ; and to appoint Dr Blair, in confideration of his approved qualifications, regius profeffor thereof, with a falary of L. 70 ." The lechures which he read as profefior of rhetoric, he publifhed in 1783 , when he retired from the labours of the office; and the general voice of the public has pronounced then to be a moft judicious, elegant, and comprehenfive fyltem of rules for forming the fyle and cultivating the tafte of youth.

About the time in which he was occupied in laying the foundations of this ufeful inflitution, he had an opportunity of conferring another important obligation on the literary world, by the part which he acted in refcuing from oblivion the poems of Offian. It was by the folicitation of Dr Blair and Mr John Home, that Mr Macpherfon was induced to publifh his Fragments of Ancient Poetry; and their patronage was of effential fervice in procuring the fubfcription which enabled him to undertake his tour through the Highlands for collecting the materials of Fingal, and of thofe other delightful productions which bear the name of Oflian. To thefe productions Dr Blair applied the teft of genuine criticifm; and foon after their publication gave an eftimate of their merits in a Differtation, which, for beanty of language, delicacy of talte, and acutenefs of critical invertigation, has few parallels. It was printed in $: 763$, and fpread the reputation of its author throughout Europe.
The great objects of his literary ambition being now attained, his talents were for many years confecrated lulely to the important and peculiar employments of his Itation. It was not till the year 1777 that he could be induced to favour the woild with a volume of the Sermons which had fo long furnifhed inftruction and delight to his own congregation. But this volume being well received, the public approbation encouraged him to proceed: four other volunies followed at different intervals, the laft of which was publifhed after his death; and all of them experienced a degree of fuccefs of which few publications can hoaft. They circulated rapidly and widely wherever the Englifh tongue extends; they were foon tranflated into almoft all the languages of Europe ; and his prefent Majefty, with that wife attention to the interefts of religion and literature which diftinguikes his reign, was gracioully pleafed to judge them worthy of a public reward. By a royal mandate to the Exchequer in Scotland, dated July 25 th. 1780, a penfion of L. 200 a-year was conferrcd on their author, which continued unaltered till his death.

In that department of his profeffional duty which regarded the government of the church, Dr Blair was Iteadily attached to the caule of moderation. From diffidence, and perhaps from a certain degree of inaptitude for extemporary fpeaking, he took a lefs public part in the contefls of ecclefiatical politics than fome of his contemporaries; and, from the fame caufes, he never would confent to become moderator of the General Affembly of the Church of Scotland. But his influence among his brethren was extenfive: his opinior, gruided by that found uprightnefs of judgment, which formed the predominant feature of his intellectual character, had been always held in high refpect by the frieuds with whom he acted; and, for many of the laft
years of his life, it was reccived by them almot as a Blair. law. The great leading principle in which they ordially concurred with him, and which ditected all th-ir meafures, was to preferve the church, on the me fide. from a flavifh, corrupting dependance on the civil power; and, on the other, from a greater infufion of democratical influence than is compatible with good order, and the eftallifhed conflitution of the country.

The reputation which he acquired in the difcharge of his public duties, was well fullained by the great refpectability of his private character. Deriving from family affociations a ftrong fenfe of clerical decorum, feeling on his heart deep impreffions of religious and moral obligation, and guided in his interconrfe with the world by the fame correct and delicate tafte which appeared in his writings, be was eminently dillinguifhed through life by the prudence, purity, and dignified propriety of his conduct. His mind, by conflitution and culture, was admirably formed for enjoying lappinefs. Well balanced in itfelf by the nice proportion and adjuftenent of its faculties, it did not inclive him to any of thofe eccentricities, either of opinion or of action, which are teo often the lot of genius:--free from all tincture of envy, it delighted cordially in the profperity and fame of his companions: fenfible to the eflimation in which he himfelf was held, it difpofed him to dwell at times on the thought of his fuccefs with a fatisfaction which he did not affect to conceal : inaceeffible alike to gloomy and to peevifi impreffions, it was always malter of its own movements, and ready, in an uncommon degree, to take an ackive and pleating interell in every thing, whether important or trifing, that happened to become for the moment the object of his attention. This habit of mind, tempered with the moft unfufpecting iimplicity, and united to emiuent talents and inflexible integrity, while it fecured to the latt his own relith of life, was wonderfully calculated to endear him to his friends, and to render him an invaluable momber of any fociety to which he belonged. Accordingly there have been few men more univerfally refpected by thofe who knew him, mure fincerely efteemed in the circle of his acquaintance, or more tenderly belowed by thofe who enjoyed the bleffing of his private and domettic counection.

In April 1748, he married his coulin Katharine Bannatine, daughter of the Rev. James Bannatine, oue of the minitters of Edinburgh. By her he had a fon who died in infancy, and a daughter who lived to her twenty-firft year, the pride of her parents, and adorned with all the accomplithments that became her age and fex. Mrs Blair herielf, a woman of great good fenfe and fpirit, was alfo taken from him a few years before his dealh, after the had fhared with the tenderell affection in all his fortunes, and contributed near half a century to his happinefs and comfort.

Dr Blair had been naturally of a feeble conftitution of body; but as he grew up his conllitution acquired greater firmnefs and vigour. Though liable to occafional attacks from fome of the flarpelt and molt paino ful difeafes that aflict the human frame, he enjoyed a general ftate of good health; and, through habitual cheerfulnefs, temperance, and care, furvived the ufual term of human life.- For fome years he had felt himfelf unequal to the fatigue of initructing his very large congregation from the pulpit ; and, under the imprefion

B L E [δ_{4}] B L E

Blair, which this feeling produced, he has been heard at times to fay with a figh, " that he was left almoft the laft of his contemporaries." Yit be continued to the end in the regular difcharge of all his other official duties, and particularly in griving advice to the afficted, who, from different quarters of the kingdom, folicited his correfpondence. His laft fummer was devoted to the preparation of the laft volume of his fermons; and, in the courfe of it, he exhibited a viguur of underflanding and capacity of exertion cqual to that of his belt days. He began the winter pleafed with himfelf on account of the completion of this work; and his friends were flattered with the hope that he might live to enjoy the accelfon of emolument and fame which he expected it would bring. But the feeds of a mortal difeafe were lurking unperceived within him. On the 24 th of December 1820, he complained of a pain in his bowels, which, during that and the following day, gave him but little uneafinefs; and he received as ufual the vifits of his friends. On the afternoon of the 26 th, the fymptoms became violent and alarming:-he felt that he was approaching the end of his appointed courfe: and retaining to the laft moment the full poffeffion of his mental faculties, he expired on the morning of the 27 th, with the compofure and hope which become a Chritian paftor.

The lamentation for his death was univerfal and deep through the city which he had fo long inftructed and adorned. Its magiltrates, participating in the general grief, appointed his church to be put in mourning ; and his colleague in it, Dr Finlayfon, from whom this ac-

- Biair's

Sermons,
vol. v. count of lis life is borrowed*, preached his funeral fermon, in which his character is drawn in a matterly manner, though with the almoft unavoidable partiality of friendihip.

If we, who know Dr Blair only in his writings, might prefume to eftimate his intellectual character, we should fay that he poffefled a found judgment rather than what could be called a vigorous mind; that he had more tafte than genius; and that he taught fuccefsfully, as far as it can be taught, the art of poetry, though he could not himfelf have been a poet. His moral character was amiable and refpectable, though he feems, even from a hint dropt by his biographer, to have been in a fight degree tinctured with vanity. But this was furely a venial weaknefs; for where is the head that would be wholly unaffected by the fumes of incenfe burnt before it for fifty years?

BLEACHING. Since the article Dleashing in the Incyclopxdia was written, very great improvernents have been introduced into the art. Of thefe improvements we fhall proceed to give an account.

Difcovery

 of the osymuriatic acil.Mr Scheele of Sweden difcovered the oxy-muriatic acid, or dephlogifticated muriatic acid, as he called it, about the year 1774, and foon after obferved its effects on vegetable colours. His method of procuring it was as follows: In a fand-bath is to be placed a glafs retort, in which muriatic acid has been poured upon manganefe; to this fmall receivers are to be adapted capable of containing about twelve ounces each, into which is to be poured about two drachms of water, without any other lute than a flip of llotting-paper about the neck of the retort. In about a quarter of an hour a yellow air is perceived in the receiver, which is to be taken off. If the paper has been properly applied, the
air rufhes out forcibly; the receiver muft be quickly Blaching, flopped, and another applied. Thus many receivers may be filled with the dephlogifticated muriatic acid; but it is neceffary to place the retort in fuch a manner that the drops which rife into its neck may be able to fall back. The water ferves to retain the vapours of the acid. "I ufe (fays he) many receivers, that I may not be obliged to repeat a fimilar diftillation for every experiment. It is not proper to employ large ones, becaufe every time they are opened a great part of the acid is diffipated in the air. What I fubmitted to examination with this dephlogifticated muriatic acid was placed in the neek of the receiver, which I had ftopped. The cork was turned yellow as by aquafortis. I'aper tinged with turnfol became almolt white; all red, blue, and yellow flowers, as alfo green plancs, turned yellow in a fhort time, and the water in the receiver was chauged intu pure but weak muriatic acid. Neither alkalis nor acids were able to reftore the colours of the flowers, or of the plants."
M. Berthollet, in 1785 , proved that this acid was compoled of muriatic acid combined with oxygen; and that when it had deprived vegetable matters of their co. lour, it was reduced to the ftate of common muriatic acid ; that is, it had loft the oxygen with which it was united. This oxygen had combined with the colour- les applica. ing particles of the vegetable matter, and had rendered tion to them coluurlefs. After making thefe obfervations, it bleachisg. occurred to him that the oxy-muriatic acid might produce the fame effect upon thofe particles which give colour to thread and cloth, and which it is the object of bleaching to deftroy. "At firft (fayshe) I made ufe Ann. de of water highly impregnated with this acid; and 1 re-Chim. If. newed it when it was exhaufted, until the thread or ${ }^{158 .}$ cloth appeared white; but I foon perceived that they were confiderably weakened, and that they were entirely lofing their folidity. I then weakened the liquor a little, and I fucceeded in bleaching cloth withont damaging it. But it feeedily became yellow by keeping, efpecially if it was warmed, or pafted through an alkaline ley. I reflected upon the circumitances of common bleaching, and I endeavoured to imitate its procefs, becaufe I thought the oxygenated muriatic acid might act in the fame manncr as the expofition of the cloth in the meadows, which alone does not futfice, but which appears only to difpofe the colouring parts of the cloth to be diffolved by the alkali of the ley. I examined dew, not only that which falls from the atmofphere, but alfo that which comes from the noctmrnal tranfpiration of plants; and I obferved that both of them were impregnated with oxygen, fufficiently to deftroy the colour of paper flightly tinged with turnfol.
"I therefore employed leys, and the action of oxygenated muriatic acid, alternately, and I then obtained a permanent white ; and as, at the finifhing of the common bleaching, the cloth is paffed through four milk, or through fulphuric acid diluted with a very large quantity of water, I allo tried paffing the cloth through a very dilute folution of fulphuric acid, and I obferved that the white was thereby rendered more clear. As foon as I made ufe of the leys intermediately, I found that it was not neceffary to employ a concentrated liquor, or to let the cloth, at every immerfion, remain long therein: by this I avoided two inconveniences, which would have rendered this procefs impoffible to
eaching. be practifed in the large way. The finR is the fuffocating odour of the liquor, which it would be very incon. wenient, and even dangerous, to refpire for any length of time, and which has difcouraged many perfons who tried to ufe it ; the fecond is, the danger of weakening the cloth. 1 now alfo left off mixing any alkali with the oxygenated muriatic acid, as I had prastifed in the greateft part of my firt trials.
"This is nearly the flate in which my experiments were, when I made fome trials in the prefence of the celebrated Mr Watt. A fingle view fufficed for a philofopher whofe genius has been exercifed fo long upon the arts. In a flort time Mr Watt wrote to me from England, that even in the firit operation lie had bleached five hundred pieces of cloth at Mr Grigor's, who has a large bleaching-ground at Glafgow, and who continues to make ufe of the new procefs. In the mean time M. Bonjour, who lad hitherto affited me in my experiments, and who joins great fagacity to a moft extended knowledge of chemiltry, aflociated himfelf with Mr Conftant, at Valenciennes, in order to form an eftablifmment in that city."
M. Caillau made a great number of experiments at Paris refpecting this new mode of bleaching; but the greateft part of thefe experiments was made upon cotton, which is more eafy to bleach, and does not require leys to often or fo frong as flax or hemp. He alfo went to St Quentin, to perform the operation upon the cloth of that country; but he found that all the cloths, which he had bleached to the fatisfaction of the manufacturers, became again of a reddifh colour when they were expofed to a common ley, or even when they were left for fome time in a warchoufe. Several fimilar complaints were made by other perfons; and M. Berthollet himfelf had obferved the fame thing in his own experiments. M. Bonjour, however, and M. Welter, affirmed that the cloth which they had bleached preferved its co. lour perfectly. M. Berthollet foon found, that the imperfection in his bleaching was owing to the manner in which he had ufed the leys. "I had contented insfelf (fays he), in thofe trials on fmall pieces which 1 made in my laboratory, to pour the hot alkaline folution into a veffel where I placed the pieces: it there became cool very rapidly, and therefore did not act with fufficient power; but when I let thefe pieces remain in the liquor, which I kept nearly in a boiling heat during the fpace of two or three hours, they were then no longer fubject to the above mentioned defects: it was therefore merely the weaknefs of the leys which had occafioned the accidents which were experienced by Meffrs Caillau, Décroifille, and myfelf. It is neceflary that the colour of the cloth fhould not be changed by the laft ley, and this is the fureft mark that the bleaching is finithed; neverthelefs, after this laft action of the ley, it is proper to put the cloth, for a few moments, in the bleaching liquor.
"After this laft immerfion, it is necefflary to plunge the cloth in four milk, or in water acidulated with fulphuric acid. I do not know the moft convenient proportion of fulphuric acid; but it appeared to me that we might fuccefsfully, and without danger, make ufe of one part, in weight, of this acid to fifty of water. We muft keep the cloths during about half an hour in this liquor warmed; after which it is proper to fqueeze them well, and plange them directly into common wa.
ter ; for if the evaporation frould take place, the ful. Bleaching. pluric acid, becoming thereby concentrated, would corrode then. The cloths being then well waflod, require only to be dricd and dreffed in the ordinary manner, according to their different forts.
"It is of the utmolt importance to take care that the water is not too itrongly impregnated with the fulphuric acid.
"The bleaching of cotton cloth is much eafier and fhorter ; two leys, or at molt three, and as many immerfions in the bleaching liquor, are fufficient for them. As they are bleached fo eatily, it is advantageous, when there are flaxen, heinpen, and cotton cluths, to be bleached, to referve for the cotton the liguors which have been previoully weakened by the clutis of flax or hemp; for it is cconomical to exlanatt the lifuors as much as poffible, and thufe which are confiderably weakened fill fuffice for the cotton, although they have fcarcely any action upon hemp or flax.
"Thiread, in the common way of bleaching, is attended with a far greater number of difficulties than cloth; becaufe of the immenfe number of furfaces which it is neceflary to prefent fucceffively to the action of the atmofphere. Sone part of thefe difficulties occur in bleaching with the oxygenated muriatic acid; neverthelefs, in the end, it is more advantageous with refpect to thread than with refpect to cloth. M. Welter has form. ed at Lifle, with two partners, an eftablihmment for bleaching thread, with great fuccefs, and he has already begun fome others. He has found that ten or twelve leys, and as many immerfions, are required for fom forts of thread; and, that the thread may be furround: ed with the liquor, it is neceffary to place it, quite loofely, in a bafket, which permits the liquor to penetrate to all its furfaces; when the liquor is nuch weak. ened, it is ftill fit to be ufed for the bleaching of cotton.
"I had, in the begiming of my experiments, tried whether the vapour would not be preferable to the oxygenated muriatic acid in a liquid flate, and I obferved that it bleached with greater quicknefs; but, whatever precautions I employed, it appeared to me that a confiderable lofs of it took place; that thote parts of the cloths which were the moll expufed to it were fubject to be weakened; and that it was more difficult to obtain an equal whitenefs thronghout.
is To prevent all the accidents which may refult from the liquor acting with too great power, it is important to have a means of meafuring its forcc. M. Décroilille thought of uling, for that purpofe, a folution of indigo in folphuric acid. He takes one part of indigo, reduced into fine powder, and cighteen parts of concentrated fulphuric acid; this mixture is put into a matrafs, which is kept, during fome hours, in a waterbath; when the folution is finifled, it is diluted with a thoufand parts of water. "To try the power of the oxygenated muriatic acid, one meafure of this folution is put into a graduated glafs tube, and fome of the liquor is gradually added to it, until the colour of the indigo is deftroyed. We mutt firt determine how many meafures of a liquor, the goodnefs of which has been afcertained by experiments made upon cloth, are neceffary to deftray the colour of one meafure of the folution of indigo, and this number will ferve to eftimate the refpective frength of all the liquors which it may be ne-

B L E [86] B L E

Feachine. culdary to compare with it. Mr Watt employs, in the - fame manner, a folution of cochineal."
${ }^{3}$ Method if M. Berthollet recommended the following method mweturing of procuring the oxy-muriatic acid: "If we have good the acid to oxide of manganefe, formed in fimall cryftals, and conbleaching. aining but litle extrancous mater, the proportions of the fubilances to be fubmitted to diftillation are the following: Six ounces of calx of manganefe reduced to fowder; one pound of common falt, alfo reduced to powder ; twelve ounces of concentrated fulphuric acid, or oil of vitriol; from ten to twelve ounces of water.
"When thefe materichs are prepared, we muft carefully mix the oxide of manganefe with the common falt, and introduce the mixture into the diftilling veffel pla. ced upon a fand bath: we muft then pour upon it the fulphuric acid, previoully diluted (and of which the heat occafioned by its mixture with water is diffipated), and immediately apply to the mouth of the matrafs the tube which is to conduet the gas into the intermediate vef-Eal.- It mult not be forgot, that in this operation the lutes require particular attention.
"The lize of the veffels flould be fueh, that the diftilling matrafs may be about one-thind empty; and, for the quantity above mentioned, the tub thould hold 100 quarts of water ; there flould alfo be an empty fipace of about 10 quarts, in order that when the gas lodges intelf in the cavities intended to receive it, the water taay have a free fpace to rife in.
"Before the commencement of the operation, the pneumatic tub mult be filled with water. The mixture being made, the gas, which very foon begins to difengage itfelf, drives out the atmofpherical air which is in the apparatus; when it is judged that the atmoipheric air has pafled into the cavities, it is to be drawn off by means of a bent tube, which is to be introduced fucceffively under each cavity : to drive out the water which has entered into the tule, this lalt is to be foreibly blowi into. The operation is then fuffered to go on without fire until it is perceived that the bubbles come over but flowly: then a little fire is to be applied, which is not to be laftily increafed at the beginning, but may be gradually augmented, fo that at the end of the operation the matter may be brought to a boiling Hlate. It is known to be nearly finifhed when the tube by which the gas is difengaged, and the intermediate veflel, become hot. When the gas is difengaged only in a fmall quantity, the fire may be withdrawn; and when the diftiling veffel retains but a gentle warmth, it is to be unluted, and warm water is to be poured nono the refidue, that it may remain in folution, and thereby be more eafly poured out.
" The operation is longer or fhorter according to the quantity of materials: with that above mentioned, it fhould lall five or fix hours; it is proper not to haflen it, that a larger quantity of gas may be drawn off. A fingle perfon is able to manage feveral diftillations at the fame time ; to each of which may be given much larger quantities of materials than thofe which have been pointed out.
"The intermediate veffel by degrces becomes filled with a liquor, which is pure, though weak, muriatic acid; neverthelets, we may perform the operation feveral times without extracting it : but when it is fuppofed that there is not fufficient empty fpace, this acid is to be drawn off by means of a fyphon, abd, when
we have collected a fufficient quantity of it, it may be Bieaching fubllituted for the mixture of vitriolic acid and common falt in the operation we have defcribed, if we have no other ufe to make of it. That there may pafs but a fmall quantity of muriatic acid, not oxygenated, the firft tube ought to form a right angle, or even an obtufe one, with the body matrals.
"During the operation, the agitator mult be from time to time put in motion, to favour the abforption of the gas by the water; when it is finifhed, the liquor is of a proper ftrength to ufe in bleaching; or: we may put a lefs quantity of water in the tub, and then dilute the liquor according to the proportion already mentioned.
" In this ftate of concentration, although the liquor has a pretty ftrong odour, it neverthelefs is not hurtful, nor even very unpleafant, to thofe who ufe it : it is, however, proper to conduct it into the troughs where the cloths are placed by means of wooden canals, which are to be comected with the faufet or tube which is at the lower part of the tub."-The following is a defcription of the apparatus:
ABCD is a reverberatory furnace, having, on a line Plate VII with B, many fimall openings in its circumference, to fig. 1. ferve as chimneys; within which, upon a fand-lath a, is placed a matrafs b, the neck of which ttands out above the furnace, running through the opening D; which is to be clofed with clay. The nouth F, of the neck of the matrafs, is clofed by a cork G, through the middle of which paffes a tube H , which forms a communieation between the infide of the matrafs b, and the intermediate veffel K , where it alfo paffes through a cork I , which clofes one of the three openings of that veffel. The corks G and I ought to be prepared before-hand, and well fitted to each end of the tube of communication H, which is to be fo difpofed that it may be fitted in immediately after the mixture is made in the matrafs.

The intermediate veffel K is about an eighth part full of water; into it is plunged the tube of fafety L, to prevent danger from regurgitation. This tube ought to be fo high, that the weight of the water which enters into it, by the preffure of the gas, may be great enough to caufe the gas to pafs into the pneumatic tul NOP, by the tube of communication M , which is planged therein, and reaches to the bottom, where it is bent horizontally, fo that the gas may be emitted under the firft of the three wooden, or (if they can be procured) ftoneware, cavities, or reccivers, which are placed in the infide of the tub, one above the other. O is a handle which ferves to turn the agitator E , the movement of which facilitates the combination of the gas with the water. ${ }^{1}$ is a fpigot and faufet to draw off the liquor.

It is neceflary to prepare the cloth by leaving it to Method foak for 24 hours in water, or, which is better, in fome bleaching old ley. Afterwards it flould be fubmitted to the action of one or two good leys; becaufe all the colouring. part which may be extracted by the leys would elfe, without any advantage, confume a part of that liquor, which it is important to be as fparing of as ponfible. After this, the cloth is to be carefully wahed; then it is to be placed in the troughs, without any part being preffed or confined, in fuch a manner that it may be thoroughly impregnated with the liquor which is to

B L E

Britain, and is now almoft univerfal among bleachers, Bleachins: A great many changes have been made in the procefs; one of the moit important of which is fubtituting lead velfels for wooder ones, which, betides weakening its action exceedingly, were very foon dettroyed by the acid. We believe, too, that the blachers very generally add fome alkali to the acid, notwithitanding the Atrong objections which Mr liertholiet has made to that manuer of bleaching.

This method of Lleaching has been found to anfwer remarkably well: the only objection that has been marle to it is, that the eloth is apt to be weakened. And this, no doubt, mult be the eafe, if care be not taken to prevent the acid from being too much concentrated: but we have little doubt that, with a fuficient degree of caution, it will prove as fafe as any other whatever ; and, in point of expedition, there cannot furcly be any comparifon drawn betwecn the old mode of bleaching and the new.

It remains for us now to confider whether the new-Tt cory of difcoveries in ehenifltry do not throw fome rays of light liteaching. upon the theory of bleaching; for it is ouly hy perfecting the theory that we can advance with certainty in our practical improvements.

It has been already obferved, in the article Bleaching (Encycl.), that cloth, atter being bleached, was a good deal lighter than it had been before that operation: It follows, therefore, that it mult have been deprived of fometling during the bleaching. Cloth bleached by means of the oxy-muriatic acid likewife undergoes a lofs of weight ; fo that, in all probability, both modes act in precifely the fame manner.

If raw linen or thread be boiled in a folution of cauftic alkali, properly diluted, it gives out fomething which tinges the ley of a deep brown, and at the fame time the alkali lofes its caufticity. If the linen be boiled in another fimilar folution, it communicates the fane eo. lour, and evell a third may be flightijs tinged ; but af. ter this, alkalies, unlefs fo much roncentrated as to in. jure, the texture of the cloth, have no effect on it whatever. If the linen be now plunged into oxy-rithriatic acid, properly prepared, and allowed to remain till it begins to become wlite, and then plunged into an alkaline ley, the alkali lofes its caufticity, and af, fumes the fane deep colour that the firt ley did. Hore, theit, we have two alkaline folutions; the one faturated with colouring matter before the action of the oxy-muriatic acid on the linen, the other after it. When thefe folutions are faturated with an acid, a yellow culoured precipitate is oltained, which when dried afurnes the appearance of a black powder. Precifly the fane dubftance is obtained from both folutions. This coluuring matter is alnof infoluble in water. Pure or cauftic potafs diffolves about double its own weight of it ; carbonat of potafs nut fo much.

Hence we fee the ufe of aikilies in bleaching. The: coluring matter is not foluble in water, but part of it is foluble in alkali. However, after the allaali has exhaufted all its power, the linew is not white: coloming matter therefure exifs in it, which alkalies cannot act upon. But after being planged in oxy mariatic acid, it. allo becomes foluble in acids. Here, then, is the wie of that acid in bleaching-it communicates fomethiag to the colouring matter which renders.it foluble in alkali. This fomething, we have already feen, is oxygen. It

B L E

Bleaching. follows, therefore, that before the greater part of the colouring matter of linen can be extracted by alkalies, it mult be combined with oxygen. It is in producing this combination that the ufe of the expofure to the fun and air confifs; and it is becaufe the oxy-muriatic acid produces it almot infantaneouny, that the new mode of bleaching is fo much more expeditious than the old.

If into the alkaline folution of the colouring matter lime-water be poured, there takes place a copious precipitate, which confifts of the lime and colouring matter combined. Lime, therefore, has a flronger affinity for the colouring matter than alkali has; and as thic compound of lime and the colouring matter is not very foluble in water, lime-water might be ufed to deprive the alkaline ley of the colouring matter which it lias imbibed; after which it might be ufed again. Care, however, muft be taken, that no lime-water remains in the ley; otherwife it might precipitate and fix the colouring matter on the linen, after which it would be ve6 ry difficult to remove it.

Nature of the colouring matter of linen.

From an alkaline ley, faturated with the colouring matter of linen yarn, Mr Kirwan, by means of muriatic acid, precipitated the colouring matter. He found it to poftefs the following properties: When fuffered to dry for fome time on a filter, it aflumed a dark green coTrifh Tranf. lour, and felt fomewhat clammy like moift clay. "I r789. took (fays he) a fmall portion of it, and added it to 60 times its weight of boiling water, but not a particle of it was diftolved. The remainder I dried in a fand heat; it then aftumed a fhining black colour, became more brittle, but internally remained of a greenifh yellow, and weighed one ounce and a half.
"By treating eight quarts more of the faturated ley in the fame manner, I obtained a further quantity of the greenifh depofite; on which I made the following experiments:
"s itt, Having digefted a portion of it in rectified fpirit of wine, it communicated to it a reddifh hue, and wafs in a great meafure diffolved: but by the affulion of dillilled water the fulution became milky, and a white depofite was gradually formed; the black matter diffulved in the fame manner.
" 2 dly, Neither the green nor the black matter was foluble ia oil of turpentime or linfeed oil by a long-continued digeftion.
" 3dly, The black matter being placed on a red lout iron, burned with a yellow flame and a black fmoke, leaving a coaly reliduum.
" 4 thly, The green matter being put into the vitriolic, marine, and nitrous acids, communicated a brownith tinge to the two former, and a greenifh to the lat. ter, but did not feem in the lealt diminifhed.
"Hence it appears, that the matter extracted by alkalies from linen yarn is a peculiar fort of refin, different from pure refins only by its infolubility in effential oils, and in this refpect refembling lacs. 1 now proceed to examine the power of the different alkalies on this fubftance. Eight grains of it being digelled in a folution of cryftallized mineral alkali, faturated in the temperature of 60°, inftantly communicated to the folution a dark brown colour; two meafures (each of which would contain II pennyweights of water) did not entirely diffolve this fubftance. Two meafures of the mild vegetable alkali diffulved the whole.
"One meafure of caultic mineral alkali, whofe fpeci- Bleaching. fic gravity was 1,053 , diffolved nearly the whole, leaving only a white reliduun.
"One meafure of cauftic vegetable alkali, whofe fpecific gravity was 1,039 , diffolved the whole.
"One incafure of liver of fulphur, whofe fpecific gravity was 1,170 , diffolved the whole.
"One ineafure of cautic volatile alkali diffolved alfo a portion of this matter."

The colouring matter of cotton is much more foluble in alkali than that of linen; hence the greater facility with which cotton is bleached.

From thefe obfervations, the great importance of alkalies in bleaching, and the neceflity of regulating the frength, and afcertaining the purity, of the leys made ule of, mult be apparent. Manufacturers, therefore, lie under very great obligations to Mr Kirwan, who hats lately examined the alkaline matters ufed in bleaching with his ufual accuracy and abilities. The refult of his experiments was as follows:

Table of the quantity of mere alkali in 100 Avoirdupois Iribs Tronj pounds of the following fulfances. 1789.

When linen is allowed to remain for fome time in oxy-muriatic acid, it becomes white. It is evident, then, that when the colouring matter of linen is fatnrated with oxygen, it becomes colourlefs: But linen bleached in this manner very foon becomes yellow, efpecially when expoled to heat. Berthollet, to whofe ingenious experiments and obfervations we are indebted for the greater part of the above remarks, has given the fol. lowing explanation of the caufe of this change: He diftilled the colouring matter of linen, and obtained a thick uil, a little ammonia, and ${ }_{5}^{2} \pi \overline{0}$ of carbon remain. ed behind. The oil contained carbon ; and he furpofed that carhonic acid gas, and carbonated hydrogen gas, were difengaged. He concluded in confequence, that one-third of this colouring matter was carbon. The other ingredient in the oil was hydrogen; for Lavoilier has proved that vil is compofed of oxygen and hydrogen. The colouring matter of linen, then, is compofed principally of carbon and hydrogen.

Oxygen combines with hydrogen at a lower temperature than it does with carhon; for if a confiderable quantity of oxy-muriatic acid be mixed with a folution of fugar (a fubitance which confifts chiefly of carbon and hydrogen), and the liquor be evaporated, there remains behind little elfe than carbon, the hydrogen having combined with oxygen and formed water, which had paffed off in the form of vapour. Now, whenever a quantity of hydrogen is feparated from a body prin-

B L E [89] B L E

Bleaching. cipally compofed of hydrogen and carbon, that body aflumes a brown or yellow colour, becaufe the carbon becomes predominant; and this colour becomes the deeper the greater the proportion of the carbon is, compared to that of the hydrogen; and at laft, when nothing but carbon remains, it becomes quite black.

It is probable, then, that when the oxy-muriatic acid renders linen white, a quantity of oxygen has combined with the colouring particles; but that this oxygen gradually enters into a combination with the hydrogen, and forms water which parfes off; that then the carbon becomes predominant, and the linen in confequence affumes a yellow colour*.

The farre method does not fucceed in bleaching wool and filk which anfwers for linen and cotton. One would be difpofed to think that thefe fubflances are 1 bleached rather by lofing oxygen than by abforbing it. Wool, for inftance, is rendered white very quickly when expofed to the fumes of fulphurons acid, which we know has a flong affinity for oxygen, and foon fattrrates itfelf with it. But what paffes during the whitening of animal matters has never yet been properly inquired into, though it would nut only greatly elucidate bleaching, but dyyeing likewife, and throw much light upon iome of the obfcureft parts of chemiftry. A great improvement, however, has lately been made by M. Baumé in the manner of bleaching tilk. Of this improvement we fhall proceed to give an account \dagger.

Before the filk is wound off the cocons in which the filk worms are enclofed, it is neceffary to kill the infects, otherwife they would in all probability eat thro' it and dellroy it. This is commonly done by expofing the cocons, properly wrapped up, for two hours to the heat of about 158 degrees of Falrenhcit in an oven; after which they are kept for a certain time in a mafs to preferve their lieat, and effectually deftroy fuch of the infects as might have efcaped the power of the oven. The effect of this procefs is, that the filk is hardened, and is more difficult to wind off than before. Hence the product of filk is lefs by one ninth part in quantity, and inferior in quality to what might have been obtained by winding off without this previous baking. M. Baumé, not only from thefe views, but likewife becaufe the filk which has not been baked proves fufceptible of a greater luftre, was induced to deftroy the chryfalis by fipirit of wine. For this purpofe he difpoles them in a wooden box in a ftratum fix inches deep: upen each fquare foot half a pint of fpirit of wine is to be frinkled with a fmall watering-pot made for that purpofe. The liquid is to be equally diftributed, but it is not neceffary that all the cocons fhould be wetted. They are then to be mixed by hand. In the next place another ftratum is to be formed over the firt, nearly of the fame depth, which is to be fprinkled and treated as before. By this method of proceeding, the box becomes filled, and muit then be covered, and left for 24 hours; during which time they become fontaneoufly heated to about 100 degrees, and the vapour of the fpirit of wine eserts itfelf with wonderful activiiy. After this treatment they mult be fpread out to dry, which happens in a fhort time, and is abfolutely neceffary previous to winding off.

The fpirit of wine to be ufed in this operation ought to be of the fpecific gravity .847 , at the temperature of 55 degrees. It is of the greateft importance to ufe that

[^2]fpirit only which has been kept in veffels of glafs, of Bleacling: timned copper, or of pure tin. Leaden veffels are abfolutely to be-rejected; wooden vefiels tinge the fpirit, whicl gives the filk a degree of colour of confiderable permanency, and very inimical to the bleaching procefs.

The filk is wound off upon a reel, while the cocons are kept immerfod in water almoll builing. Upon this part of the procefs M. Baumé remarks, 1. That the dead cocons mult be feparated. Thefe are known by the brown or black fpots on their furface. 2. That well water, which on accoumt of its clearnefs is almult univerfally ufed in the filk manufactories, moflly contains nitre, and is extremely prejudicial to the bleaching procefs. The prefence of nitrous acid gives a yellow colour, which refifts bleaching and even fcouring; he therefore recommends river-water. 3. In fume countries a fmall quantity of alum is ufed. Neither this nor any other faline fubtance is of the leaft advantage to the colour, beauty, or quality of the filk.

At the four places of contact of the tilk upon the reel, all the threads ftick together. It is abfolutcly neceffary that this fhould be remedied. The method confifts in foaking the filk in a fufficiont quantity of warm water, at about 90 degrees, for about two hours; a ater which the threads are to he feparated by opering the hanks upon a pin, and lightly rubbing the parts which cohere. When the lilk is dry, it is to be loofely folded in its original form, and is ready for bleaching.
The filk while wet is foft, and part of its gummy matter is in fuch a ftate, that its thrcads would readily adhere, if wrung while warm for the purpofe of clearing it of the water. After fuch improper treatment there would be no other remcdy than to foak it again in warm water.
The apparatus for bleaching the filk confifts of a ftone-ware veffel, nearly of a conical form, capable of holding about 12 gallons, having a large opening at the one end, and a fmaller of about an incla diameter at the other end. Common pottery cannot be ufed in this operation, becaufe it is foon rendered unferviceable by the action of the muriatic acid, and the ftonc-ware itfelf is not very durable. This veffel muft be carefuliy examined, to afcertain that it does not leak in the Cighltelt degree; after which the infide is to be rubhed with a pumice.ftune, to clear it of afperities which might break the threads. A cover of the fame material is to be fitted on by grinding; and the fmaller aperture, which in the ufe is the loweft, is to be clofed with a good cork, in the middle of which is thruft a fmall glafs tube about a quarter of an inch in diameter; this is likewife ftopped with a cork, excepting at the time when it is required to draw off the liquid contents of the jar. A fmall perforated falle bottom is placed within the veffel, to prevent this tube from being obftructed.

Six pounds of yellow raw filk are to be difpofed in the earthen pot ; upon this is to be poured a mixture, previoufly made, of 48 pounds of fipit of wine of the fpecific gravity .867 , with 12 ounces of very pure marine acid, abfolutely exempt from all prefence of nitrous acid, and of the fpecific gravity 1.114. The pot is then to be covered, and the whole left in digeftion till the following day, or until the liquor, which at firft affumes a fine green colour, fhall begin to affume that of a dufky brown.

The acidulated fpirit is then to be drawn off, clean
M
fpirit

BL E

[

Blear hing. Spirit of wine poured upon the fill, and drawn of repeatedly until it paffes colourlefs. The folk is then furfred to drain without firing it. In this fate it is ready for a fecond infufion.

Forty -eight pounds of Spirit of wine, acidulated with 12 ounces of marine acid, are now to be poured on the folk, and the whole fuffered to remain for 24 hours or longer, until the fill becomes perfectly white. The time required for this fecoad infufion is commonly longor than for the firft: it fumetimes amounts to two, three, or even fix days, according to circumflances, particularly the temperature and the nature of the fill. Silk which las been in the oven is in general more ditficult to bleach.

When the fill has thus obtained its utmof degree of whiteness, the acidulated fpirit is to be drawn off into a feparate veltel. This fluid is but lightly coloured, and may be unfed again in the firft infufion of other yellow fill, with the addition of fix ounces more of marine acid. The receiving veffel is to be removed, and anothen clean veffel fubftituted in its place. 'The fink is then Sprinkled with clean fpirit, and oecafionally prefied down with the hand. As foo as the fpirit of wine comes off absolutely colourlefs, a third infufion is to be made by pouring upon the fill 48 pounds of the pure fpirit without acid, which is to remain till the following day: it is then to be drawn off, and referved for wafting other fill after the frt infufion.

After the fill has been left to drain, and affords no more Spirit, it fill retains its own weight of that fluid. This is recovered by fprinkling the folk with a foal quantity of very clear river-water at a time. While the water applies itfelf and fubfides along the folk, it drives the Spirit of wine before it, fo that the firft persons which flow from the tube are fearcely diminifhed in ftrength. The addition of water is to be continued until nothing but mere water comes off below.

In this fituation the fill is found to be well bleached, but fill retains a portion of marine acid fufficient to render it harih to the touch, and after a time brittle. It mut be washed off with water. The belt method is to put the fill loofely into a coarfe woollen bag, which is to be fecured loofely in another cloth like a fall bed or pillow, then placed in a hafket, and left in a running Cream for five or fix hours; but where the convenience of a ftream is wanting, the earthen pot containing the folk is to be covered with a cloth, and water pumped through it for five or fix hours, or until that which ifSues from the lower aperture gives no red colour to the tincture of turnfol. At this period the lower opening is to be clofed, and the veffel filled with water, which mull be changed once or twice in 24 hours.

Though the mineral acids are the molt powerful and deftructive of all faline fubftances, yet they may be applied to fills when diluted with Spirit of wine in very confiderable does. In trials made to afcertain the maximum, two ounces of marine acid were added to one pound of fpirit of wine, without altering the fill. Two drams of marine acid cause a very perceptible alteration in one pound of ilk.

Spirit of wine which has been mixed with nitrous acid cannot be used in bleaching, even though afterwards rectified upon an alkali, because it til retains a portion of nitrous gas. Pure fpirit of wine without acid extracts a fine yellow colour from fils, which does
not feparate for years, even though expofed to the fun's Bleaching. light. Yellow fils exposed to the fun, lofes its colour in a hort time. The acidulated first which has been ufed in the infufion of silk, is changed by exposure to the fun, but not in fuch a manner as to be rendered fit for ufe a fecond time. In order to obtain a beautiful white colour, it is effential that the ilk fhould be inmerfed in a large quantity of the fluid, especially at the firft infufion. Without this management it would become neceflary to make three infutions in the acidulated spirit. When the firft infusion is well managed, the fill will have loft all its yellow colour, and become condiderably white, at the fame time that the liquor will have begun to change colour a little. As long as it continues of a fine green, it is certain that it has not exlaufted its whole action upon the fill. The duration of this firn infusion may be longer or fhorter, without inconvenience, according to the temperature. When the temperature is at 77° of Fahrenheit, the firft infufin is often made in 10 or 12 hours. In fall experimints the heat of the atmofphere may be fupplied by the water hath; in which cafe all the infufions are eafill made in the course of a day.

When the firlt infufion is finifhed, and the liquor drawn off, the filk appears greenifh: the fubfequent wafhings in fpirit of wine clear it of the liquor it retained. This sprinkling gould be made with the watering pot, otherwife the quantity poured will be great. er, and the management more watteful. I

Pieces of gauze and entire garments of fill have been fuccefsfully bleached in this way.

The fineft natural white fils are rendered infinitely whiter by this process. Spirit of wine alone has the property of depriving yellow fill of its colour, which it brings to the fate of the naturally white fill. In this late the fill is difpofed to acquire a greater degree of brightness by a fingle infufion in the acidulated fpirit. This procefs has its advantages over the other, to which it is also inferior in certain reflects; concerning neither of which the author has entered into any detail.

The colouring matter was found to be a refin per. feetly animalized, affording by diftillation the fame pro. ducts as other animal matters, and the concrete volatile alkali.

Silk whitened by flouring may be dried freely in the air without affecting its luftre. This is not the cafe with the folk bleached in the gum: if it be left at libert to dry in the air, it refembles white flax without any luftre. The beauty of this fill confifts in its shining brilliancy; to fecure which it mut be dried in a fate of tenfion. Mr Baumé has contrived a dimple machine for this purpofe. It confifts of a ftrong fquare frame of wood ftanding upright upon feet : the upper horizontall bar is fix feet long, and has fix iron pins driven through it at equal diftances, fo as to project on each fide for the purpofe of receiving twelve bobbins. The lower horizontal bar is moveable up and down in a morrice, by means of a fcrew at each end: it is furnifhed with fix holes adapted to receive as many pins to correfpond with thole above. The fkains of fill are to be dreffed and arranged upon wooden pins, as they are taken out of the faek from wafting. As foo as there are twelve together, they are to be wrung with a faff: after which the ikains are to be hung one by one upon as many bobbins put upon the upper pins of the fquare

B L E

fatisfactory manner. But the alcolol, every time it is Bleaching. ufed and rectified, becumes clarged with the acid and gas of nitre, which affume the characters of the nitrous anodyne liquor. In this ftate neither diftillations nor repeated rectifications from alkali are fulficient to feparate the nitrous matter from the alcohol. Then it is that the fuccefs of the operator vanifhes, with a degree of rapidity equal to the advances which encouraged his hopes at the commencement.

To purify common fulphuric acid, 100 pounds of it are to be mixed in a large bafon of copper with the fame quantity of river-water, and ftirred with a wooden ipatula. The mixture inftantly becomes heated to the boiling water point, and a great quantity of red vapour is difengaged, which has the fmell of aqua-regia, and arifes from the nitric and muriatic acids. When this mixture is made, it is proper to immerfe the bafon to a fuitable depth in a large veffel of water, to halten the conling. As foon as it is fufficiently cooled, it is to be drawn off into bottles, and left to become clear during feveral days. It is in the next place to be decauted, and conveyed into retorts by a fyphon fumel, and the rectification proceeded upon until it becomes perfectly white. Towards the end of the operation a fmall quantity of fulphur fublimes in the neck of the retort. InAtead of receivers, a fmall glafs cup is placed beneath the aperture of each retort, in order to facilitate the diffipation of the nitric and muriatic acids. When the acid in the retorts is fufficiently cooled, it is poured a fecond time into the copper bafon, and mixed with 100 pounds of river-water, as at firll, and again concentrated in-the retorts till it becomes perfectly clear. The muriatic acid is to be difengaged from common falt by the application of this acid in the ufual manner.

The oxy-muriatic acid is alfo ufed very generally for Bieaching bleaching paper, or rather the ftuff out of which paper ${ }^{\text {paper. }}$ is made. It has been alleged, and we believe with fome truth, that fince this mode of whitening paper was introduced into this country, the ftrength of paper is much inferior to what it was formerly. If this be really the cafe, perhaps it is owing to the nfe of too cuncentrated an acid.

We fhall finifh this article with Mr Chaptal's account of this procefs, who was the firft perfon that introduced it. "Blotting paper (fays he), by heing put into oxygenated muriatic acid, is bleached without fuffering any injury; and rags of coarfe bad cloth, fuch as are ufed in the paper manufactories to make this kind of paper, may be bleached by this acid, and will then furnifh paper of a very fuperior quality. I bleached by it an hundred weight of palte, intended to be made into blotting paper, and the increafe of value in the product was computed at 25 per cent. whereas the expence of the operation, when calculated in the fricteft manner, amounted only to 7 per cent.

* The property poffeffed by this acid, of bleaching Mo'e of paper without injuring its texture, renders it very va- whitening luable for reftoring old books and fnoked prints. The old bouk, latter, when difcoloured to fuch a degree that the fub ject of them could hardly be dittinguilhed, were re-eft blifhed and revived, in fo aftonifhing a manner that they appeared to be new; and old books, foiled by that yellow tinge which time always produces, may be fo contpletely renewed, that one might fuppore them to be jutt come out of the prefs. The fimple immerfion of a

B O A [$\left.9^{2}\right]$ B O N

Bleaching print in oxygenated muriatic acid (leaving it therein a $\|_{\text {Boar. }}$ Boar. longer or a hhorter time, according to the flrength of the liquor) is all that is required for bleaching it ; but when a book is to be bleached, fome farther precau. tions are to be ufed. As it is neceffary that the acid fhould wet every one of the leaves, the book muft be completely fpread open, and then, by letting the boards of the binding relt upon the fides of the veffel, the paper only will be immerfed in the liquor. If any of the leaves tick together they mult be carefully feparated, that all of them may be equally impregnated. The liquor takes a yellow tinge, the paper grows white ; and after two or three hours the book may be taken out of the liquor, and foaked in clean water, which fhould be changed from time to tine, in order to wafh out the acid with which the book is inpreguated, and allo to deprive it of the difagreeable fmell it has contracted.
" The above method, which is the firt I made ufe of, has generally fuccteded pretty well: too often, however, the leaves of my books have had a motley appearance, and fometimes feveral pages were not at all bleached; I was therefore obliged to have recourfe to the following more certain procefs. 1 began by unfewing the books, and reducing them into heets; thefe fheets I placed in divifions made in a leaden veffel, by means of thin Alips of wood, fo that the leaves when laid flat were feparated from each other by very fmall intervals. I then put the acid into the veffel, pouring it againft the fide, that the leaves might not be difturbed; and when the operation was finilhed, I drew off the acid by means of a cock fixed in the bottom of the veffel. I then filled the veffel with clean water, which wafhed the leaves, and took off the finell of the oxygenated acid. They may then be dried, fmoothed, and new bound. In this manner I have reftored many valuable bouks, which had become worthlefs from the bad ftate they were in.
"When I had to bleach prints fo torn to pieces that they confifted only of fragments fitted together, and pafted upon paper, I was afraid I might lufe fome of thefe fragments in the liquor, becaufe they feparate from the paper by the foftening of the patte: in that cafe therefore I took the precaution of enclofing the print in a large cylindrical bottle, which I turned uplide. down, fixing its mouth to that of a veffel in which I bad put a mixture proper for difengaging oxygenated muriatic gas. This gas fills the infide of the bottle, and, acting upon the print, takes off the flains, ink-fpots, \&c. while the fragments remain pafted to the paper, and confequently keep their refpective places."

BLOCKS (Encycl. Plate XCV. fig. 5.) a Reprcfents a fingle block, and b, c, two double ones of different kinds, without Araps; e, f, two double tackle blocks, iron bound, the lower one, f, being fitted with a fwivel; g, a double iron block with a large hook; b, a fmall block; i, a top block; k, a voyal block; l, a clew garnet block; m, the cat block, employed to draw the anchor up to the cat-head. See CAT-Heads, Encycl.

Cape or Large Snouted BOAR, a fpecies of the genus Sus, which, according to M. Vaillant, differs from every known fpecies, and has not been accurately defcribed by any writer of natural hiftory. Buffon, indeed, in the Supplement to his Hiftory of Quadrupeds,
has given a figure of it; but rothing like the head of the animal is difcoverable, fays our author, in that figure, all its characterittics having been omitted by the draughtfinan. M. Vaillant, during his. lalt travels in Pate Vu Africa, foot a monftrous boar of this feccies on the banks of Fifh river, and iit the country of the Greater Nimiouas. He defcribes it in the following terms: Its fnout, inftead of being taper and in the form of a probofcis, is, on tlie contrary, very broad and fquare at the end. It has fmall eyes, at a very little diftance from each other, level with the furface, and near the top of the forehead. On each cheek a very thick cartilaginous Akin projects horizontally, beng about three inches long and as many broad. At firft fight you would be tempted to take thefe excrefcences for the ears ; particularly as the real ears of the animal, ticking as it were to the neck, which is very hort, are partly concealed by an enormous mane, the brifles of which, in colour red, brown, and greyifn, are 16 inches in length on the fhoulders. Directly below thefe falfe ears is a bony protuberance on each fide, projecting nore than an inch, Serving the animal to trike with to the right and left. The boar has, befides, four tulks, of the nature of ivory, two in each jaw : the upper ones are feven or eight inches long; very thick at the bafe, and terminating in an obtufe point, grooved, and rifing perpendicularly as they iffue from the lips: the lower ones are much fmaller, and fo clofe to the upper ones when the mouth is fhut, that they appear as one. The head is a truly hideous object. It is fcarcely lefs fo than that of the hippopotamus, to which at firft view it appears to have a ftriking refemblance. Syftematifts, accultomed to view nature only according to rules eftablifhed by themfelves, will be far from acknowledring this animal to be a boar ; for not to mention its large fnout, it wants incifive teeth in both jaws. Notwith. ftanding its wide muzzle, it ploughs up the earth to feek for roots, on which it feeds. It is very active, though large and bulky; running with fuch fpeed, that the Hottentots give it the name of the runner.

BONNET (Charles), was defcended from a French. family, who being compelled, on account of their religious prirciples, to emigrate from their native country, eftablifhed themfelves at Gencva in the year 1572. His grandfather was advanced to the magittracy in that city, and adorned by his integrity an eminent ftation. His father, who preferred the ftation of a private citizen, paid unremitted attention to the education of his fon, who was born on the $13^{\text {th }}$ of March 1720 ; and Charles, at a very early period, recompenfed his father's affiduity, by the amiablenefs of his difpofition, and the rapid progrefs he made in general literature. When he was about 16 years of age, he applied himfelf, with great eagernefs, to the perufal of Le Spellacle de la Nature; and this work made fuch a deep impreffion on his mind, that it may be faid to have directed the tafte and the ftudies of his future life. What that publication had commenced, was confirmed by the work of L_{c} Pluche; but having accidentally feen the treatife of Reaumur upon infects, he was in a tranfport of joy. He was very impatient to procure the book; hut as the only copy in Geneva belonged to a public library, and as the librarian was reluctant to intrult it in the hands of a youth, it was with the utmoft difficulty that he could obtain his end.

$\mathrm{B} 0 \mathrm{~N} \quad[93] \quad \mathrm{B} \mathrm{O} \mathrm{N}$

By the poffeffion of this treafure, our affiduous youth was enabled to make feveral new and curious experiments, which he communicated to Reaumur himfle; and the high applaufe he gained from fo great a naturalit acided freft vigour to his affiduity.

In compliance with his father's defires, he applied himfelf, though with much reluctance, to the itudy of the law. The works of Burlamaqui pleafed him the moft, on account of the perfpicuous and philofophic manner in which the fubject was treated : the inftitutes of Hcineccius gave him fome courage alfo, as he perceived order and connection; but the Roman law terrified him as the bydra of Lerna. Notwithttanding lis application to thefe authors, he fill continued attached to natural hiftory, and was very active in making experiments. The experiments which demonfratc that tree. lice propagate without copulation, was communicated by Reaumur to the Academy of Sciences; and this circumftance occafioned an epitolary correfpondence between M. Bonnet and that great naturalif. This was doubtlefs very flattering to a youth of twenty years. The letter of Rcaumur was accompanied with a prefent of that very book which he had borrowed witli fo much difficulty two years before.

Animated by fuch diftinguifhed marks of approbation, he diligently employed every moment he could fleal from the ftudy of jurifprudence to the completion of his natural hiftory of the tree loufe ; to experiments on the refpiration of catterpillars and butterflies, which he difcovered to be effected by ftigmata, or lateral pores; to an examination of the conftruction of the trenia or tape-worm; in frequent correfpondence with Reaumur; and in affiting Trembley in his difonveries and publication conceruing millepedes, \&c. Having in the year 1743 obtained the degree of doctor of laws, he relinquifhed a purfuit which ine bad commenced with fo much reluctance. In the fame year he was admitted a fellow of the Royal Society, to which he had communicated a treatife on infects.

Bonnet heing now liberated from his other purfuits, applied himfelf, without intermiffion, to collecting together his experiments and obfervatiuns concerning the tree-loufe and the worm, which he publifhed in 1744 under the title of Infectology. This work acquired deferved approbation from the public, and was honoured by tbe commendation of the celebrated B. de Juflieu. He was reproached, however, in a periodical publication, with having paid too little attention to the delicacy of his readcr; though his patience and accuracy were acknowledged to be deferving of praife. Such unremitted application and labour could not fail of becoming injurious to his health. Inflammations, nervous fever, fore eyes, \&c. compelled him to relinquifh the ufe of the microfcope and the fludy of infeets. This prevention was fo extremely mortifying to a man of his tafte and activity of mind, that he was thrown into a deep melancholy, which could only be fubdued by the refolution infpired by philofophy, and the confolations of religion : thefe gradually roufed him from a dejected ftate of mind. About the end of the year 1746 our philofopher was chofen member of the Literary Inftitu. tion at Bologna, which introduced him to a correfpondence with the famed Zanotti, who may be deemed the Fontenelle of Italy.

In the year 1747 he undertook a very difficult work
on the leaves of flants; which, of ali his publications in natural hiftory, bore the fronget maks of originality, both with refpect to the manner in which his experiments were made, and the difeoveries refulting from them. His extreme attachment to natural hithory gradually led him to a ftedy of a very different nature; \{peculative philofophy now engaged his whole attention. 'The firlt fruits of his meditations in this department was his Effay on PJychology. In this work the principal facts obfervable in human nature, and the confequences refulting from them, are flated in a concife and confpicuous manner. He contemplated man from the firit moment of his exiftence, and purfued the developemer.t of his fenfes and faculties from fimple growth up to intelligence. The work, which was publimed without his name, met with great oppofition, and was criticifed with feverity; but the cenfures were directed more againt his expreflions than his principles; nor were they of fufficient importance to impede the general acceptance of the publication.

His analyfis of the mental faculties was fimply a developement of the ideas contained in the preceding work. It engaged his inceffant attention for the face of five years; nor was it completed before 1759. It is fomewhat fingular that both he and the Abbé de Condillac mould have illultrated their principies by the fuppofition of a ftatue, organized like the homan body, which they conceived to be gradually infpired with a foul, and the progreffive developement of whofe powers they carefully traced. In the year 1760 this work was publined at Copenhagen, by order and at the expence of Frederick V. and it was followed in 1762 by contemplations on organized bodies. In this the author had three principal ohjects before him: the firft was to give a concife view of every thing which appears interefting in natural hiftory, refpecting the origin, developement, and reproduction of organized bodies; the fecond was to confute the two different fyftems founded upon the Epigenefs ; and the third was to explain the fyftem of Germs, indicate the ground upon which it was founded, its comefpondence with facts, and the confequences refulting from it. This work was received with much fatisfaction by natural philofophers. The Academy of Berlin, which had propofed the fame fubject as a prize quettion for 1761 , declared that they confidered the treatife as the offspring of clofe obfervation and profound reafoning; and that the author would have had an indubitable right to the prize, if he had confined his labours to the precife flatement of the queftion. It muft alio be recorded, to the honour of the great Malegerbes, that he reverfed the interdic: which the public cenfor had laid upon this book, un. der the pretext that it contained dangerous principles.

The Contemplation of Nature appeared in 1764. In this work the author firlt enlarged upon the common conceptions entertained concerning the exiftence and perfections of God; and of the order and uniformity obfervable in the univerfe. He next defcends to man, examines the parts of his compofition, and the various capacities with which he is endowed. He next proceeds to the plants; affembles and defcribes the laws of their economy ; and, finally, he examines the infects, indicates the principal circumftances in which they differ from larger animals, and puints out the plitofophical. inferences that may legitimately be deduced from

Bonnet. thefe differences; and he concludes with obfervations refpecting the induitry of infects. This work being of a popular nature, the author fpared no pains in beftowing upon it thofe ornaments of which it was fufceptible. The principles which he thus difcovered and explained, induced him to plan a fyfem of moral philofoply; which, according to his ideas, confifted folely in the obfervance of that relation in which man is placed, refpecting all the beings that furround him. The firft hranch would have comprehended, various means which philofophy and the medical fcience have difoovered for the prevention of difeafe, the prefervation and angmentation of the corporeal powers, and the better exertion of their force: in the fecond, he propofed to fiew, that natural philofophy has a powerful tendeney to embellith and improve our mind, and augment the number of our rational amurements, while it is replete with beneficial effects refpecting the fociety at large. To manifett the iavalidity of opinions, merely hypothetical, he undertook, in the third place, to examine, whe ther there were not truthe within the compars of human knowledge, to which the moft fceptical philofopher muit be compelled to yield his confent, and which might ferve as the bafis of all our reafonings concerning man and his various relations. He then would have direct. ed his attention to a firft caufe, and have manifefted low greatly the idea of a Deity and Supreme Lawgiver favoured the conclufions which reafon had drawn from the aature and properties of things: but it is deeply to be regretted that his health, impaired by in. ceffant labour, would not permit him to complete the defign.

His laft publication was the Palingenefis, which treats of the prior exiftence and future flate of living beings.

Of his publications in natural hiftory, thofe deemed the moft excellent are, his Treatife on the beft Means of Preferving Infects and Fifh in Cabinets of Natural Hiftory ; a Differtation on the Loves of the Plants; fundry pieces on the Experiments of Sfallanzani, concerning the Reproduction of the Head of the Snail; a Differtation on the $P_{i p a}$, or Surinam Tod; and different Treatifes on Bees.

In the year 1783 lie was elected honorary member of the Academy of Sciences at Paris; and of the Academy of Sciences and the Belles Lettres at Berlin.
Much of his time was employed in a very extenfive correfpondence witl fome of the moft celebrated natural philofophers and others. Of this number were Reaumiur, De Geer the Reaumur of Sweden, Du Hamel, nar, learned Haller, the experimental philofopher Spallanzani, Van Swieten, Merian, and that ornament of Switzerland the great Lambert. He entertained, however, the utmoft averfion to controverfy. He thought that no advantage to be obtained by it could compenfate for the lofs of that repofe which he valued, with Newton, as the rem prorfus fublfintialem. He never anfwered remarks that were made to the prejudice of his writings, but left the decifion with the public ; yet, ever ready to acknowledge his errors, he was fincerely thankful to every one who contributed to the perfection of his works. He was ufed to fay that one confeffion, I was in the rurong, is of more value than a thoufand ingenious confutations.

His literary occupations, and the care he was obliged to take of his health, prevented him from travelling.

He delighted in retirement, and every hour was occupied in the improvement of his mind. The laft 25 years of his life were fpent in the fame rural fituation, where he had paffed the greater part of his early days: yet notwithftanding the purfuit of literature was his fupreme delight, he never refufed to fufpend his ftudies, when the good of his country feemed to demand his \{ervices.
He was chofen in 1752 member of the Grand Council in the republic of Geneva : and he affifted regularly at their deliberations till the year 1768 , where he diAtinguifhed hinfelf by his eloquence; his moderation, united with firmaefs; by his good fenfe and peaetration in cafes of difficulty; and by the zeal with which he endeavoured to reclaim his fellow-citizens to that ancient fimplicity of manners which had been fo conducive to the welfare of the ftate, and to the love of virtue, fo effential to the exiftence of genuine liberty. His conduct, in every cafe, was confiftent with his principles. He took no pains to accumulate wealth, but remained fatisfied with a fortuae equal to his moderate wants, and to the exercife of his benevolence. The perfect correfpondence between his extenfive knowledge and virtuous deeds procured him univerfal efteem.

In the year 1788 evident fymptoms of an bydrops petoris manifefted themfelves; and from this time he gradually declined. He futtained his indifpofition with unremitted cheerfulnefs and compofure. After various fluctuations, ufual in that complaint, he died on the 20th of May 1793, in the 73 d year of his age; retain. ing his prefence of mind to the latt moment, adminittering comfort to furrounding friends and relatives, and attempting to alleviate the dittrefs of his difconfolate wife, in whofe arms he expired.

As a demonftration of the high value placed upon his labours and talents by the literati, we have only to remark, that he was member of moft of the learned focieties of Europe.

BOOK-kEEPING, is an art of which the importance is univerfally known; and as commonly practifed, it has been fufficiently explained in the Encycloprdia Britannica. But fince that ariticle was written, a great improvement has been introduced into the art, or rather a new method of book-keeping has been invented by Mr Edward Thomas Jones of the city of Brifol, accountant, who calls it the Englifk Sylem of book-keeping ; and thinks that by it accounts may be more regularly kept, and errors in accounts more eafily detected, than by any other method hitherto known. We are much inclined to be of his opinion; and fhall therefore lay before our redears his defeription of this method, as we find it in the feccification of the patent which was granted to him January 26. 1796.

The Englifb Sy/fem of Book-Keeping requires three hooks, called a day-book or journal, an alphisbet, and a ledger, which muft be raled after the following method, viz. the day book to have three columns on each page, for receiving the amount of the tranfactions; one columa of which to receive the amount of debits and credits, one column to receive the debits only, and one column to receive the credits only; or it may be ruled with only two columns on each page, one column to receive the amount of the debits, and one column to receive the amonat of the credits. There mult alfo be on each page of the day-book four other columns ruled,

two on the left fide next the anount of the debits, and two on the right fide next the amount of the credits, for receiving the letter or mark of polting, and the page of the ledger to which each amount is to be pofted.

The alphabet need not be ruled at all; but inuft contain the name of every account in the ledger, the letter that is annexed to it as a mark of potting, and the page of the ledger.

The ledger mult be ruled with three, four, five, or feven columns on each page, as may he moft agreeable, for receiving the amounts of the different tranfactions entered in the day-book. And the procefs for uling thefe books, or making up books of accounts on this plan, is as follows :

When a perfon enters into trade, whether by himfelf or with copartners, he muft have an account opened with himfelf in the ledger'; entering firt in the daybook, and then to the credit of his account in the ledger, the amount of the property he advances into trade : The account may be headed either with his name only, or elfe called his flock-account.

If you buy goods, give the perfon credit of whom you purchafe; when you fell goods, debit the perfon to whom faid goods are fold. If you pay money, debit the perfon to whom paid, not ouly for what you pay, but alfo for any difcount or abatement he may allow, and give the cafhier credit for the neat amount paid. If you receive money, credit the perfon of whom you receive it, not only for what he pays, but alfo for any difcount or abatement you may allow, and debit the cafhicr for the neat amount received; taking care in thefe entrics to have nothing myfterious or oblcure, but merely a plain narrative of the fact, introducing not one wfelefs word, and avoiding every technical term or phrafe except the words debit and credit, which are full and comprehenfive, and the only terms that are applicable to every tranfaction, and may be affixed to every entry.

But as a liurry of bufnefs will fometimes take place in almoft every counting-houfe, which may caufe the entries to be made to the debit inftead of the credit of an account in the day-book, and to the credit inftead of the debit, Mr Jones has endeavoured as much as poffible to counteract the evil, by having only one column for receiving the amount of every tranfaction, whether debits or credits, at the inftant of makiag the entry; and, for the convenience of feparating the debits from the credits, previous to pofting, which is neceflary to prevent confufion and perplexity, he has two other columns on the fame page; that on the left fide into which the amount of every debit me: It be carefully entered, and that on the right for the amount of the credits, which columns muft be caft up once a month. The column of debits and credits of itfelf forming one amount ; the columu for the debits producing a fecond amount ; and the column of credits a third amount; which fecond and third amounts added together, muft exactly agree with the firft amount, or the work is not done right.

By this means the man of bufinefs may obtain monthly fuch a ftatement of his affairs as will how how much he owes fur that month, and how much is owing to him; and the debits being added together for any given time, with the value of the ftuck of goods on land, will, when the amount of the credit is fubtracted therefrom, hew the profits of the trade.

Our author now proceeds to the procefs of polting:
which begins with opening an account in the ledger with every perfon to whofe debit or credit there has been an entry made in the day-book; affixing to each aecount a letter, which is to be ufed as a mark of pofting. The perfon's name, place of abode, and the folio of the ledger, muft then be entered in the alphabet, with the fame letter prefixed to each name as is affixed to the account in the ledger. Next, the page of the ledger on which each account is opened (and which will be feen in the alphabet) muft be affixed to each amount in the day-book, in the column for that purpofe. The date and amount of each debit muft then be pofted in the columns for receiving it in the ledger, on the left or debit fide of that account to which it relates; entering, as a mark of pofting in the day-book, againft each. amount, the fame letter that is affixed to the account in the ledger, to which faid amount may be pofted. Obferving that the debits of January, Februaiy, March, \&c. muft be pofted into the column for thofe months in the ledger, and the credits mult alfo be pofted in like manner, filling up each account in the centre, at the expiration of every month, with the whole amount of the month's tranfations; thus having, in a fmall fpace, the whole ftatement of each perfon's account for the year; in the columns to the right and left the a. mount feparately of each tranfaction ; and in the centre a monthly ftatement.

Having defcribed the procefs of this method of book. kecping, he thus fhews how to examine bonks kept by this method, fo as to afeertain, to an abfolute certainty, if the ledger be a true reprefcutation of the day-book; i. e. not only if each tranfaction be correctly pofted, as to the amount thereof, but alfo if it be righly entered to the debit or credit of its proper account. This examination differs from the modes that have heretofore been practifed, as well in expedition as in the certain accuracy which attends the procefs; it being only necefary to caft up the columns through the ledger debits and credits, according to the examples given; and the amount of thofe columns, if right, inuit agree with the columns in the day-book for the fame correfponding face of time. Thefe caftings fhould take place once a month; and if the amounts do not agree, the pofting mult then, but not elfe, be called over: and when the time, whether it be one, two, three, or four months, that is allotted to each column of the ledger is expired, the amount of each column thould be put at the bottom of the firf page, and carried forward to the buttom of the next, and fo on to the end of the accounts; taking care that the amount in the day-book, of each month's traulactions, be brought into one grofs amount for the fame time.

But although this procefs mult prove that the ledger contains the whole contents of the day-book, and neither more nor lefs, yet it is not complete withont the mode of afcertaining if each entry be pofted to its righe account ; which may be afcertained by the following method: He has laid down a rule that a-letter, which may be ufed alphabetically in any form or hhape that is agreeable, fhall be affixed to each account in the ledger, and the fame letter prefixed to the names in thic alphabet, thefe letters being ufed as marks of porting, and affixed to each-account in the day-book as it is pofted: it is only neceflary therefore to compare and fee that the letter affixed to each entry in the day-book is the
fame

$\mathrm{B} O \mathrm{~S} \quad\left[9^{5}\right] \quad \mathrm{B} O \quad \mathrm{~S}$

Boot. fame as is prefixed to the fame name in the alphabet; a difference here fhews of courfe an error, or elfe it mult be right.

At the end of the year, or at any other time, when perions balance their accounts, if there be no objections to the profits of the trade appearing in the books, the ftuck of goods on hand at prime colt may be entered in the day book, either the value in one amount, or the particulars fpecified, as may be moft expedient, and an accuunt opened for it in the ledger, to the debit of which it muft be poited. The calting up of the ledger muft then be completed : and when found to agree with the day-book, and the amount placed at the bottom of each column, fubtract the credits from the debits, and it will thew the profit of the trade; unlefs the credits be the greater amount, which will thew a lofs. In taking off the balances of the ledger, one rule mult be obferved, and it cannot be done wrong: As you proceed, firit fee the difference between the whole amounts of the credits and debits on each page for the year, with which the difference of the outflandiug balances of the feveral accounts on each page muft exact. ly agree, or the balances will not be taken right. By this means every page will be proved as you proceed, and the balances of ten thoufand ledgers, on this plan, could not unobfervedly be taken off wrong.

BOSCOVICH (Koger Jofeph), one of the moft eminent mathematicians and philofophers of the prefent age, was bom of virtuous and pious parents, on the 1 ith of May 1711, in the city of Raguia, the capital of a fmall republic of the fame name, lying on the eaftern coaft of the Adriatic Sea. At baptilm, the name of Roger was given him, to which he added that of Jofeph when he received the facrament (A) of confirmation.

He ftudied Latin grammar in the fchools which were tanglit by the Jefuits in his native city. Here it foon appeared that he was endued with fuperior talents for the acquilition of learning. He received knowledge with great facility, and retained it with equal firmnefs. None of his companions more readily perceived the meaning of any precept than he; none more juftly applied general rules to the particular cales contained under them. He enounced his thoughts with great perfpicuity, and came foon to compofe with propriety and elegance. His application was equal to his capacity, and his progrefs was rapid. At the beginning of the 15 th year of his age, he had already gone through the grammar claffes with applaufe, and had ftudied rheturic for fome months. His moral behaviour had likewife been very good: he was refpectful and obedient to lis parents and mafters, affable and obliging to his equals, and exemplary in all the duties of religion. It was nuw time for him to determine what courle he would Ateer through life; nor did he hefitate long in coming to a refolution.

The Jefuit fathers, by teaching the feiences to youth, were very ufeful, and at the fame time had a fine opportunity of obferving their fcholars, and of drawing into their fociety thofe boys who feemed fit for their
purpofe. Soch a fubject as the young Bofcovich could Botcovich. not efcape their attention. They newed him particular kindnefs, to which he was not infenfible. He had an ardent thirft for learning; to advance in which he felt himfelf capable; and he thought he could nowhere have a better opportunity of gratifying this laudable inclination than in their order, in which fo many perfons had thone in the republic of letters. Accordingly, with the confent of his parents, he petitioned to be received among them; and his petition was immediately* granted, becanfe it was defired by thofe to whom it was made.

It was a maxim with the Jefuits to place their mof eminent fubjects at Rome, as it was of impertance for them to make a good figure on that great theatre. Wherefore, as Roger's mafters had formed great expectations of him, they procured his being called to that city; whither he was fent in the year 1725 , and enteled the novicefhip with great alacrity. This no. vice@hip was a fpace of two years, in which the candidate made a trial of his new ftate of life ; and in the mean time his new fuperiors obferved him, and deliberated whether or not they would admit him into their body. During thefe two years, the novice was principally employed in exercifes of piety, in fudying books of Chrittian morality, and in becoming perfectly act quainted with the rules and conftitutions of the order. After thefe two years were paft, the Jefuits were wil. ling to retain Bofcovich, and he was no lefs defirous of remaining with them. He therefore paffed to the fchool of rhetoric.; in which, for two other years under the molt expert mafters of the fociety, young men per. fected themfelves in the arts of writing and fpeaking, which was of fo great confequence to perfons who were deftined to treat fo much with their neightours. Here Bofcovich became perfectly well acquainted with all the claffical authors, and applied with fome predilection to Latin poetry.

After this he removed from the noviciate to the Roman College, in order to itudy philofophy, which he did for three years. In order to underlfand the doctrine of phyfics, it was neceffary to premife the knowledge of the elements of geometry, which is alfo otherwife proper for forming the mind, and for giving to it a true tatte for truth. Here it was that our young philofopher came to be in his true element ; and it now appeared how extremely fit his genius was for this kind of fudy. His mafter, though he was able and expert, inftead of leading him on, was fcarcely able to keep pace with him, and his condifciples were left far behind. He likewire found the application of the mathematics to natural philofophy pleafant and eafy. From all this, before the end of the three years, he had inade a great advancement in pliyfical and mathe. matical knowledge; and his great merit was generally acknowledged by his companions, and well known to his fuperiors. He had already begun to give private lef. fons on mathematics.

According to the ordinary courfe followed by the Jefuits, their young men, after ftudying philofophy;
(A) For this article we are indebted to a dignified clergyman of the church of Rome, who was one of Bofcovich's favourite pupils.

$\mathrm{B} O \mathrm{~S}$ [

Bofcovich. were wont to be employed in teaching Latin and the belles lettres for the fpace of five years, that fo they might become fill hetter acquainted with polite learning, and arrive at the ftudy of theology and the priefhood at a riper age. But as Roger had difcovered extraordinary talents for geometrical ftudies, it was thought by his fuperiors that it would be a pity to detain him from his favourite purfuits in a drudgery for which fo many others were fit enough. He was therefore difpenfed with from teaching thore fchools, and was commanded to commence the Audy of divinity.

During the four years that he applied to that fublime fcience, he fill found fome leifure for geometry and phyfics; and even before that face was ended, he was named profeflor of his beloved inathematics.

He was now placed in an office for which he was fuperlatively fit, and for which he had a particular predilection. Befides having feen all the helt modern productions on mathematical fubjects, he fludied diligently the ancient geonetricians, and from them learned that exact manner of reafoning which is to be obferved in all his works. Although he himfelf perceived eafily the concatenation of mathematical truths, and could follow them into their moft abfrufe receffes, yet he accommodated himfelf with a fatherly condefcenfion to the weaker capacities of his fcholars, and made every demonftration clearly intelligible to them. When he perceived that any of his difciples were capable of advancing fafter than the reft, he himfelf would propofe bis giving them private leffons, that fo they might not lofe their time; or he would propofe to them proper books, with directions how to fudy them by themfelves, being always ready to folve difficulties that might occur to them.

To the end that he might be the more ufeful to his fcholars, he took time from higher purfuits to compofe new elements of arithmetic, algebra, plain and folid geometry, and of plain and fpheric trigonometry ; and although thefe fubjects had been well treated by a great many authors, yet Bofcovich's work will always be efteemed by-good judges as a matterly performance, well adapted to the purpofe for which it was intended. To this he afterwards added a new expofition of conic fections; in which, from one general defnition, he draws, with admirable perfpicuity, all the properties of thofe three moft ufeful curves. He had meditated a com. plete body of pure and mixed mathematics, in which were to be comprehended treatifes on mufic, and on civil and military architecture; but from accomplifhing this he was prevented by other neceffary occupations.

According to the cuftom of fchools, every clafs in the Roman College, towards the end of the fcholaftic year, gave to the public fpecimens of their proficiency. With this view Bufcovich publifhed yearly a differtation on fome interefting phyfico-mathematical fubject. The doetrine of this differtation was defended publicly by fome of his fcholars, affited by their mafter. At thefe literary differtations there was always a numerons concourfe of the moft learned men in Rome. His new opinions in phitlofophy were here rigorouly examined and warmly controverted by perions wcll verfed in phyfical ftudies: but he propofed nothing without fo. lid grounds; he had forefeen all their objections, anfiwered them victorioully, and always cane off with great applaufe and increafe of reputation. He publifh. Suppl. Vol. I. Part I.

97] $\quad \mathrm{B} O \quad \mathrm{~S}$
ed likervife differtations on other occafions; and thefc Bofervich. works, though fmall in fize, are very valuable both for the matter they contan, and alfo for the manner in which it is treated. The principal fubjects of thefe differtations are the following: The fpots in the fun: the tranfit of mercury under the fun ; the geometrical conftruction of fpheric trigonometry; the aurora borealis; a new ufe of the telefcope for the determination of celeftial objects; the figure of the earth ; the argumeats made ufe of hy the anciente to prove the rotundity of the fame; the circles which are called ofculators; the motion of bodies projected in a fpace void of refiftance; the nature of infinities and of infinitely little quantities; the inequality of gravity in different parts of the earth; the annual abcrration of the fixed flars ; the limits of the certainty to which aftronomical obfervations can arrive ; a difculfion on the whole of aftronomy ; the motion of a body attracted by certain forces towards an immoveable centre in fpaces void of reliftance; a mechanical problem on the folid of greatelt attraction; a new method of ufing the obfervation of the phafes in the lunar eclipfes; the cycluid; the lo-. giftic and certain other curve lines; the forces that are called living ; the comets; the flux and reflux of the fea; light; whirlwinds; a demonftration and illuftration of a paflage in Newton concerning the rainbow; the demonftration and illuftration of a method given by Euler, regarding the calculation of fractions; the determination of the orbits of a planet by means of catoptrics, certain conditions of its motions being given; the centre of gravity and that of magnitude ; the atmofphere of the moon; the law of continuity, and the confequences of it in the elements of matter and their forces; the law of the forces that exift in nature; lenfes and dioptrical telefcopes; the perturbation which appears to be caufed mutually by Jupiter and Saturn, and that chiefly about the time of their conjunction; the divilibility of matter and the elements of bodies; the objective micrometer;-befides other fubjects of the like nature, of which he has treated in feparate pieces, or in communications inferted in the tranfactions of literary focieties or academies, he being a member of thofe that are mof famous in Europe., It was in fome of the above-mentioned differtations that Bofcovich made known firft to the world his fentiments concerning the nature of body, which he afterwards digefted into a regular theory, which is juttly become fo famous anong the learned.

Father Noceti, another Jefuit, had compofed two excellent poems on the rainbow and the aurora borealis. Thefe poems were publifined with learned annotations by Bofcovich ; in which, among other things, he with great fagacity difcovers errors in optics into which De Dominis, Kepler, and others, had fallen.

His countryman, Benedict Stay, after having publifhed the philufophy of Defcartes in Latin verfe, attempted the farne with regard to the more modern and more true philofophy, and has executed it with wonderful fuccef f_{3}, to the admiration of all good judges. The two firtt volumes of this elegant and accurate work were publifhed with annotations and fupplements by Bofcovich. Thefe fupplements are fo many fiort differtations on the mult important parts of phyfics and mathematics. Here is to be found a folution of the problem of the centre of ofcillation, to which Huygens

$B \quad \mathrm{O} \quad \mathrm{S}$

pafs from hill to hill with poles and frange maclincs, imagined that they were magicians come among their mountains in feareh of lidden treafures, of which they had fome traditions: and as tempefts of thunder and hail happened about the fame tinse, they fuppofed that thefe calamities were caufed by the forceries of their new vifitants. They therefore infifted that Bofcovich and Maire fould depart ; and it was not eafy to convince them that their operations were harmlefs. In this work there is inferted a defeription of the inftruments made ufe of in determining the extent of the degree of the meridian; and the whole work may be extremely ufeful to practical geometricians and afironomers.

In the year 1757 the republic of Lacca intrufted Bofeovich with the management of an affair which was to them of confiderable importance. Between that republic and the regency of "Tufcany there had arifen a difagreeable difpute concerning the draining of a lake, and the direction to be given to fume waters near the boundaries of the two dlates. The Luechefe fenate chofe our philofopher to treat of this bufinefs on their part. He repaired to the foot, confidered it attentively, and drew up a writing, accompanied with a map, to fhew more clearly what appeared to him moft equitable and moft advantageous for both parties. In order to enforce his reafons the more effectually, it was thought proper that he fhould go to Vienna, where the Emperor Francis I. who was likewife grand duke of Tufeany, refided. He was fo fuccefsful in this negociation, that he obtained every thing that Lucca defired, and at the fame time acquired great efteent at the Imperial court. In proof of this, the Emprefs Queen made his opinion be anked coneerning the ttability of the Cefarean library, and the repairs to be made in it ; which he gave in writing, and it was received with thanks, as being very well grounded.

When he had concluded the affair whieh had brought him to Vienna, he forefaw that, for a month or two, the fnows in the Alps would not allow him to return to Italy. He therefore refolved to employ that time in completing his fyttem of natural philofophy, on which he had been meditating for the fpace of thirteen years. He publifhed his work on that great fubject in the beginning of the year $17 ; 8$, in the above-mentioned eity. We fhall in the end give an account of that celebrated fy\&tem, and here go on with our narration.

On his return to Lucca, he not only met with the approbation of all he lad done for the intereft of the republie; but alfo the fenate, in teftimony of their gratitude, made him prefents, and enrolled him in the number of their nobility, which was the greatef honour they had in their power to confer on him.

He , who was thus ufful to foreigners, could not refufe to be ferviecable to his own country when an occafion of being fo offered itfelf. The Britifh miniftry had been informed, that ihips of war, for the French, had been built and fitted out in the fea-ports of Ragufa, and had fignified their difpleafure on that account. This occafioned uneafinefs to the fenate of Ragufa, as their fubjects are very fea-faring, and much employed in the carrying-trade ; and therefore it would have been inconvenient for them to have eaufed any difguft againtt them in the prineipal maritime power. Their countryman Bofeovich was defired to go to London, in order to fatisfy that coutt on the above-mentioned head.

B O S [99] B O S

B.fenvich. and with this dufire he complied checrfully on many accounts. His fuccelis at London was equal to that at Vienna. He pleaded the caufe of his countrymen effectually there, and that without giving any offence to the French, with whom Ragufa foon after entered into a treaty of commerce.

Bofcovich came to London the more willingly, as he was defirous of converfing with the learned men of Britain. He was received by the prefident and principal members of the Ruyal Society with great refpect; and to that great body he dedicated his poem on the eclipfes of the fun and moon, which was printed on this occafion at Lundon, in the year 1760. '1his is one of his works on which he himfelf put the greatelt value, and it has been much efteemed by the learned. An edition of it was publifhed at Venice the year followicg, and a third at Paris, which is the molt correct : a tranflation of it into French has likewife been publifhed at Paris. In this very elegant Latin poem he gives an exact compend of aftrobony, which ferves as an introduction to the fubject ; he then explains all that belongs to the doctrine of eclipfes, and their ufe in geography; he conliders the phenomena that are obferved in the eclipfes of the fun, and likewife of the moon ; he propofes a theoren, which is his own, concerning the diftribution of light refracted from the atmofphere of the earth by the fhadow of the moon, which happens in the lunar eclipes ; he explains the phenomenon of the reddifh colour which often appears in the moon when the is eclipfed, of which a fufficient explication had not before been given: this the author draws from the fundamental doctrine of Newton's theory concerning light and colours; and hence takes occafion to give a clear idea of the principal confequences of the faid theory. All this is clothed with a beautiful poetical drefs, and is adorned with pleafant epifores, not to mention the learned annotations which are fubjeined. This yoem was compofed, for the moft part, whilt the author was in journeys, or by way of amufement, when he was obliged to wait fur the opportunities of making aftronomical obfervations.

The fellows of the Royal Society invited Bofcovich to accompany fome of their number to America, to obferve the tranfit of Venus, which was to happen in the year 1762 ; but being otherwife engaged, he could not accept of that invitation. He intended, however, by all means to obferve that remarkable phenomenon, and had fixed on Conftantinople as a proper place for doing fo. He was conducted thither in a Venetian man of war, and much honoured by one of the baylos of that republic, who conmanded the veffel ; but, to his great regret, they arrived too late. He returned, by land, in the company of the Ençlifh ambaffador; and a relation of that journey was publifhed in French and afterwards in Italian.

During thefe journeys, Bofcovich's place in the Roman College was well filled by fome of thofe whom he himfelf had trained up in mathematical learning. He was now called by the fenate of Milan to teach mathematics in the univerfity of Pavia, with the offer of a very confiderahle falary. He and his fuperiors thought proper to accede to this propofal, and he was received without being fubjected to any previous examination ; which was always oblerved, excepting in fuch an extraordinary cale, by the decrees of the univerfity. Here
he taught, with great applaufe, for the fpace of fix Bufcowich. years, laving at the fame time the care of the obforva. tory of the Royal College of Brera. Abnut the year J770, the Emprefs Queen made him profeflor of aftronomy and optics in the Palatine fchools of Milan; requiring of him, however, that he fhonld continue to improve the oblervatory of Brera; which, under his direction, became one of the moft perfect in Emrope.

Here he was extremely happy, teaching the feinnces, applying to his favourite ftudies, and converfing and correfponding with men of learning and of polinaed manners; when an event happened which caufed to him the moft fenfible affiction. In the year 1773, the fociety to which he belonged, and to which he liad been from lis youth warmly attached, was, to his great regret and difappointment, abolifhed. They who had been Jefuits were allowed no longer to teach publicly; nor was there any exception made in favour of Bofen. vich, neither (fuch was his humour then) would he have accepted of it, though it had been offered him. Propofals were made to him by feveral perfons of diftinction : and, after fome deliberation, he chofe Paris for his place of abode; to which he was induced by the circumftance of his being intimately acquainted with the prime minitter at that court. He had not been many months at Paris when the univerfity of Pifa fent him an invitation to go thither, in order to profefs aftronomy. But the French minifter, undertanding this, declared to the miniller of Tufcany, that it was the intention of his mott Chriftian majelly to make his dominions agreeable to Bofcovich, by giving him liberal appointments. In fact he was foon naturalized, and two large penfions were beflowed on him : the one as an honourable fupport, to the end that he might profecute his fublime ftudies at his eafe and in afluence; the other as a falary annexed to a new office, created in his favour, under the name of Direlior of Optics for the Sea Service, and with the fole obligation of perfecting the lenfes which are ufed in achromatical telefeopes.

At Paris he remained ten years, applying principally to optics, and much regarded, not only by the molt reafonable men of letters, but likewife by the princes and minitters, both of France and of other nations. But the greateft men are not exempt from being envied. Some of the French were difpleafed that a fureigner fhould appear fuperior to themfelves; others of them could not forget that Bofcovich had difcovered and expofed 1 heir miltakes. The irreligion which prevailed too much among thofe who bore the name of philofophers, was difagreeable to him. Thefe, and other fuch circumftances, made him wearied of Paris, and ice defired to revilit his friends in Italy; for which purpofe he obtained leave of abfence for two years.

The firft place in Italy in which he made any ftay was at Baffano, a town in the territories of Venice. Here, mindful of his obligations, he printed what he had been preparing for the prefs during his fay in France; and this compofes five volumes in large octavo, and is a treafure of optical and aftronomical knowledge. The fubjects treated of in thefe volumes are as follow: A new inftrument for determining the refracting and diverging forces of diaphanous bodies; a demonftration of the falfehood of the Newtonian analogy between light and found; the algebraic formulæ regarding the focufes of lenfes, and their applications for calculating the fpheri-

Bofcovich. city of thofe which are to be ufed in achromatical telefcopes; the corrections to be made in ocular lenfes, and the errors of the fphericity of certain glaffes; the caules which hinder the exact union of the folar rays by means of the great burning glaffes, and the determination of the lofs arifing from it; the method of determining the different velocities of light pafling through different mediums by means of two dioptrical telefcopes, one common, the other of a new kind, containing water between the ohjective glafs and the place of the image ; a new kind of objective micrometers; the defects and inutility of a dioptrical telefcope propofed and made at Paris, which gives two images of the fame object, the one dilect, the other inverfe, with two contrary motions of moveable objects; maffes floating in the atmofphere, as hail of an extraordinary fize, feen on the fun with the telefcope, and refembling fpots; the aftronomical refractions, and various metliods for determining them; various methods for determining the orhits of comets and of the new planct, with copiuns applications of thefe doetrines to other allronumical fubjects, and ftill more generall; to gcometry and to the fcience of calculation; the errors, the rectifications, and the ufe of quadrants, of fextants, of aftronomical fectors, of the meridian line, of telefcopes called the inftruments of tranfits, of the meridian, and of the parallactic machine; the trigonometrical differential formulx, which are of fo much ufe in aftronomy ; the ufe of the micrometical rhombus, extended to whatever oblique pofition; the error arifing from refractions in wing the aftronomical ring for a fundial, and the correction to be made; the appearing and the difappearing of Saturn's ring; the methods of determining the rotation of the fun by means of the fpots, propofed formerly by the author, and now perfected; the greatell exactnefs puffible in determining the length of a pendulum ofillating every fecond of middle time by the comparifon of terreftrial and celeftial gravity ; a compend of aftronomy for the ufe of the marine, containing the elements of the heavenly motions, and of the aftronomical inftruments to be explained to a prince in the courfe of one month; a method for determining the altitude of the poles with the greateft exactnefs, by means of a gnomon alone, where other inftruments are not to be had; the determination of the illuminated edge of the moon to be obferved on the meridian; a method of uting the retrograde return of Venus to the fame longitude, for determining the lefs certain elements of her orbit; a method for correcting the elements of a comet, of which the longitude of the node is given, and the inclination of the orbit has been found nearly; another method for the fame purpofe, and for finding the elliptical orbit, when the parabolic one does not agree with the obfervations; a method for correcting the elements of a planet by three obfervations; the projection of an orbit inclined in the plane of the ecliptic; the projection of an orbit inclined in any other plane; the calculation of the aberration of the ftars, arifing from the fucceflive propagation of light; fome beautiful theorems belonging to triangles, which are of great ufe in aftronomy, reduced to moft fimple demonftrations.

After having feen the impreffion of thefe five volumes finifhed, Bofcovich left Baffano, made an excurfion to Rome, and vifited his old friends there and in other places of Italy. He then took up his abode at Milan, and applied to the revifing of fome of his old works,
and to the comporing of new ones. He fet himfelf par. Bofcovich. ticularly to prepare annotations and fupplements to the remaining two volumes of Stay's Modern Philofophy, which he had not had time to publifi fooner, and which he lived not to publift.

He was happy at Milan in the neighbourhood of Brcra, where was his favourite obfervatory; and in the company of many friends, who were become the more dear to him by his long abfence from them. But he began to confider, with grief, that his two years of ab. fence were drawing to an end. He was very unwilling, to leave Italy and return to France. He thought of applying for a prolongation of his abfence; he thought of making intereft at the Imperial court for fome honourable commiffion, which might be a pretext to him for remaining at Milan : but he was afraid that the propofal of never returning to France might appear indclicate and ungrateful to a nation from which he was re. ceiving confiderable penfions. He apprehonded that thofe perfons at Paris who had before oppofed him, would take occafion to tax him with ingratitude, and that hence his reputation would be tarnimed. Thefe, and other fuch thoughts, occafioned a great perplexity of mind, which was followed by a deep melancholy; and this could not be alleviated by the advice and comfort of his friends, becaufe by degrees he became incapable of hearing reafon, his ideas being quite confufed, and his imagination difordered. To this difagreeable change the ftate of his health perhaps contributed. A gout had been wandering for fome time through his body, and he had caught a fevere cold; nor would he admit of medical affiftance, of which he had always been very diffident. It may alfo be that his long and intenfe application had hurt the organs of the brain, which in fome manner are fubfervient to the ufe of rea. fon as long as the foul is united to the body. Be that as it will, during the laft five months of his life, this great man, who had been fo far fuperior in reafoning to his ordinary fellow-creatures, was much inferior to every one of them who is endued with the right ule of the undertanding. He had indeed fome lucid intervals, and once there were hopes of a recovery; but he foon relapfed, and an impofthnme breaking in his brealt, put an end to his mortal exiftence. He died at Milan on the 13 th of February 1787 , in the 76 th year of his age.

He was tall in flature, of a robuft conflitution, of a pale complexion. His countenance was rather long, and was expreffive of cheerfulnefs and good humour. He was open, fincere, communicative, and benevolent. His friends fometimes regretted that he appeared to be too irritable, and too fenfible of what might feem an affront or neglect, which gave himfelf unneceffary uneafinefs. He was always unftained in his morals, obedient to his fuperiors, and exact in the performance of all Chriftian duties, as became a Catholic prieft, and in the obfervance of the particular rules of his order. His great knowledge of the works of Nature made him enr tertain the higheft admiration of the power and wifdom of their Creator. He faw the neceffity and advantages of a divine revelation, and was fincerely attached to the Chriftian religion; having a fuvereign contempt of the prefumption and foolifh pride of unbelievers, and being fully perfuaded that we cannot make a more noble ufe of our undertanding than by fubjecting it humbly to the authority of the Supreme Being, who knows num.

$\mathrm{B} O$ S $\left[\begin{array}{lll}\text { S }\end{array}\right] \quad \mathrm{B} O \quad$ S

Borcovich. berlefs truths far beyond the utmoll limits of our narrow comprehenfion, and who may juftly require our belicf of any of them that he fees fit to propofe to us.

The death of our philofopher, who truly deferved that name, was heard with regret by the learned through Europe, and more than ordinary refpect has been paid to his memory. At Ragufa funeral exequies
were performed for hinı with great folemnity by order Bnfcovict. of the fonate, who aflifted at them in a bolly; on which occafion an eloquent oration in praife of him was pronounced. By a decree of the fame fenate, a Latill infcription to his honour, engraved on marble, was placed in the principal church of their city. Of this infcrip. tion the following is a copy :

Boscovichir Elogium Ragusie, Marmore Infculptum.
Rogerio. Nicolai. F. Boscovichio, Summi. Ingenii. Viro. Philofopho. Et. Mathematico. Præftantiffimo Scriptori. Operum. Egregiorum
Res. Phyficas. Geometricas. Aftronomicas
Plurimis. Inventis. Suis. Auctas. Continentium
Celebriorum. Europæ. Academiarum. Socio Qui, In. Soc. Jefu. Cum. Effet. Ac. Romx. Mathefim. Profiteretur BenediCto. XIV. Mandante
Multo. Labore. Singulari. Induftria
Dimenfus. Eft. Gradum. Terreftris, Circuli
Boream. Verfus. Per. Pontificiam. Ditionem. Tranfeuntis
Ejufdemque. Ditionis. In. Nova. Tabula. Situs. Omnes. Deferipfit.
Stabilitati. Vaticano. Tholo. Reddundæ
Portubus. Superi. Et. Inferi. Maris. Ad. Juftam. Altitudinem. Redigendis
Reftagnantibus. Per. Campos. Aquis. Emittendis. Commonftravit. Viam
Legatus. A. Lucenfibus. Ad. Francifcum. I. Cæfarem. M. Etruriæ. Ducem.
Ut. Amnes. Ab. Eorum. Agro. Averterentur. Obtinuit
Merito. Ab. Iis. Inter. Patricios. Cooptatus
Mediolarum. Ad. Docendum. Mathematicas. Difciplinas. Evocatus
Braidenfem. Extruxit. Inftruxitque. Servandis. Aftris. Speculam
Deletx. Tum. Societati. Sux. Superfles
Lutetix. Parifiorum. Inter. Gallix. Indigenas. Relatus
Commiflum. Sibi. Perficiundx. In. Ufus. Maritimos. Opticx. Munus. Adcuravit
Ampla. A. Ludovico. XV. Rege. Xmo. Attributa. Penfione
Inter. Hæc. Et. Poefim. Mira. Ubertate. Et. Facilitate: Excoluit
Doctas. Non. Semel. Sufcepit. Per. Europam. Perigrinationes
Multorum. Amicitias. Gratia. Virorum. Principum. Ubique. Floruit
Ubique. Animum. Chriftianarum. Virtutum
Veræque. Religionis. Studiofum. Pre-fe-tulit
Ex. Gallia. Italiam. Revifens. Jam. Senex
Cum. Ibi. In. Elaborandis, Edendifque. Poftremis, Operibus
Plurimum. Contendifiet. Et. Novis. Inchoandis. Ac. Vcteribus, Abfolvendis
Sefe. Adcingeret
In Diuturnum. Incidit. Morbum. Eoque. Obiit. Mediolani
Id. Feb. An. MDCCLXXXVII. Natus. Annos LXXV. Menfes IX. Dies IL.
Huic. Optime. Merito. De. Republica. Civi
Quod. Fidem. Atque. Operam. Suam. Eidem. Sæpe. Probaverit
In. Arduis. Apud. Exteras. Nationes
Bene. Utiliterque. Expediundis. Negotiis
Quodque. Sui. Nominis. Celebritate. Novum. Patrix. Decus. Adtulerit
Pofl. Funebrem. Honorem. In. Hoc. Templo. Cum. Sacro. Et. Laudatione:
Publice. Delatum
Ejufdem. Templi Curatores
Ex. Senatus. Confulto
M. P. P.

This infcription was compofed by his friend and countrymian the celebrated poet Benedict Stay. Zamagna, another of his countrymen, who had likewife been his fellow.jefuit, publifhed a panegyric on him in elegant Latin. A fhort encomium of him is to be found in the Eflratto della Litteratura Europea; and another, in form of a letter, was directed by M. de la Lande to the Parifian journalifts, and by them given to the public. A
more full elogium has been written by M. Fabroni ; and another is to be met with in the journal of Morlena; a third was publifhed at Milan by the Abbate Ricca; and a fourth at Naples by the Dr Julius Bajanonti, of which a fecond edition was made in the year 1790 . Of this laft chiefly ufe has been made here.

But what mult fecure to Bofovich the efteem of por. terity are his works, of the greater part of which we

$\mathrm{B} O \mathrm{~S} \quad[\mathrm{IO2}] \quad \mathrm{B} O \mathrm{~S}$

Bofonvich. have alrcady taken notice. We have mentioned, y. His Elements of Mathematics, with his Treatife on Conic Sections; 2. His many difiertations publifhed during his profefforthip in the Roman college: 3. His account of his Survey of the Pope's Eltate; 4. His 'Theory of Natural Philofophy; 5. His Pomm on the Eclipfes; 6. His tive volumes printed at Baffano.

To thefe we may add his hydrodynamical pieces. He liad made a particular ftudy of the force of running water, and of its effects in rivers; and he was often confulted concerning the beft means to prevent rivers from corroding their banks, and from overflowing the neighbouring plains, which often happens in Italy, where the Alps and Apennines pour down fo many impetuous ftreams. He gave a writing on the damages done by the Tiber at Porto Felice; another on the project of turning the navigation to Rome from Fiumicino to Maccarefe; a third on two torrents in the territory of Perugia; a fourth on the bulwarks on the river Panaro; a fifth on the river Sidone, in the territory of Placentia; a fixth on the entrance into the fea of the Adige. He wrote other fuch works on the bulwarks of the Po; on the harbours of Ancona, of Rimini, of Magna Vacca, and Savona, befides others, almoft all which were printed. He had likewife received a commifion from Clement XIII. to vilit the Pomptin lakes, on the draining of which he drew up his opinion in writing, to which he added further elucidations at the defire of Pius VI. On thefe occafions he fhewed how ufeful philofophy may be to the public; and of this he gave another proof when it was referred entirely to his judgement to determine whether or not the cupola of the cathedral of Milan could bear the weight of a very high fiere, which it was propofed to raife on it, and which was actually erected according to his directions.

His application to abllrule itudies did not hinder him from paying fome attention to what is more pleafant. We have feen that he was a poet: he was alfo well acquainted with hiftory, and particularly with that of the Greeks and Romans, and with their antiquities. He wrote a differtation on ancient villa difcovered in his time upon the Tufculan Hill, and on an ancient dial found there; which difertation was publifhed at Rome in a literary jonrnal. He wrote likewife three letters on the obelifk of Cxfar Augultus, two of which were printed with his own name, and the third under the name of another.

Befides all thele works that were given to the public in his lifetime, many writings of his remained in manufrript in the hands of different perfons, and particularly with his friend M. Gaetani, and many more with Count Michael de Sargo, a Ragufan fenator, who inherited all his papers that were in his own hands at his death. Thefe, it is hoped, have either been already fent to the prefs or will be fo; as nothing came from the perl of Bofeovich which was not ufeful and deferving to fee the light.

It now remains that we give an account of his Theort of Natural Philosophy; and in doing this we flall, in the fir A place, lay before our readers a view of this fyitem. We fhall, in the fecond place, relate, from what principles and by what fteps it was de-
duced. We Thall, thirdly, take notice of the principal Bofonith: objections made to it, and fubjoin the author's anfwers Syltem of to the fame. We fhall, fnaily, hew how happily it may be applied to explain the general properties of mat- Philorophy. Natural ter, as well as the particular qualities of all the clafies of bodies, which have been examined according to what it teaches.

1. In this fyltem, therefore, the whole mafs of matter, View of of which all the bodies of the univerfe are compofed, Bufenvich' confifts of an exceeding great, yet ftill finite number of fyatem of fimple, indivifible, inextended, atoms. Thefe atoms are philofophy endued with repulfive and atlragive forces, which vary and change from the one to the other, according to the diftance between them, in the following manner: In the leaft and innermoft diftances they repcl one another ; and this repulfive force increafes beyond all li. mits as the diffances are diminifhed, and is confequently fufficient for extinguining the greateft welacity, and for preventing the contact of the atoms. In the fenfible diftances, this force is attragive and decreafes, at leaft fenfibly, as the fquares of the diftances increafe, conflituting univerfal gravity, and extending beyond the fphere of the moft diflant comets. Between this innermoft repulfive force and the outermont attractive one, in the infenlible diftances, many varieties and changes of the force, or determination to motion, take place: for the repulfive force decreafes as the diftance increafes. At a certain diftance it comes to vanifh entirely; and, when that diltance is increafed, attraction begins, increafes, becomes lefs, vanifhes; and the diftance becoming greater, the force becomes repulfive, increafes, leffens, and vanifhes as before. Many varieties and changes of this kind happen in the infenfible diftances, fome. times more rapidly, fometimes more flowly, and fometimes one of the forces may come to nothing, and then return back to the fame without pafling to the other. For all this there is full room in the diftances that are infenfible to us, feeing the leaft part of fpace is divifible in infinitum. Befides thefe repulfive and attractive forces, our atoms have that vis inertix which is admitted by almult all modern philofophers. Thefe atoms, endued with thefe forces, conititute the whole fubftance of Bofcovich's fyftem; which, however fimple and fhort it may appear to be, has numberlefs and rery wonderful confequences, as we thall fee afterwards. But, that The whole a more clear idea of the whole theory may be ealily thenry exformed, we thall make ufe of a geometrical Ggure well preffed by accommodated to that purpofe. The right line $\mathrm{C} \mathrm{AC}_{\text {cal curve. }}$ gement is an axis, from which, in the point A, is drawn the plate vi. right line AB at right angles. AB is confidered as an fig. 6. afympote; on each fide of which the two curves, quite limilar and equal, DEFGHIKLMNOPQRSTVU on the one fide, and $D^{\prime} E^{\prime} F^{\prime} G^{\prime}$ on the other, are placed. Now, if ED be fuppofed to be afymptotical, and be extended, it will ttill approach to BA, but will never conse to touch it. This curve ED approaches to the axis $C^{\prime} C$, comes to it in E, cuts it and departs to a certain diftance in F , after which it again approaches the fame axis and cnts it in G. In like manner it forms the arches GHI, IKL, LMN, NOP, PQL. At lat it goes on in $T p s \mathrm{~V}$, which is afymptotical, and approaches to the axis; fo that the diftances from it are in a duplicate reciprocal proportion of the diftances from the right line BA. If from any points of the axis, as from a, b, d, we raife the

B O S [103] B O S

fonvich's perpendiculars ag, $b r, d b$, the fegments of the axis Nytem Natural ulofophy. A a, A b, A d, are called allfiffes, and reprefent the diftances of any two points of matter from one another ; and the perpendiculars $a g, b r, d b$, are called ordinates, and exhibit the repulfive or attractive force, according as it lies on the fame fide with D , or on the other fide of the axis.

Now it is evident that, in this form of the curve line, the ordinate ag will be increafed beyond whatever limits, if the abfeifs A a be leffened likewife beyond whatever linits; that if this abfcifs be increafed to $A b$, the ordinate will be leffened, and will pals into $b r$, which will ftill be leffened as it approaches from b to E , where it will come to nothing ; that then, the axis being increaled to $\mathrm{A} d$, the ordinate will change its direction into $b b$, and, on the oppofite fide, will inereafe at firf to F, then it will decreafe through i i as far as G, where it will again vanifh, and again change its direction in $m n$ to the former; and that, in the fame manner, it will vanifh and cbange its directions in all the fections $1, I, N, P, R$, until the ordinates op, $v s$, become of a conftant direction, and decreafe, at leaft ferfibly, in a reciprocal duplicate proportion of the abfeifles A o, A v. Wherefore, it is manifef, that by fuch a curve are exprefled our forces; at firlt repul/ive and increafing beyond all limits, the diftances being leffened in like manner, and which deereafe, the fame diftances being augmented; then vanifh, change their direction, and become attrative; vanih again, and become repulfive; till at laft, at fenfible diftances, they remain on the fide oppofite to D , and are attracive in a duplicate reciprocai proportion of the diftances.

We may alfo obferve that the ordinates may inereafe or decreafe rapidly, as in $y v, \approx t$, or flowly, as in τx; $z c$; and, confequently, that the furces may increafe or decreafe in like manner. We may add, that the curve may return back without interfeêing, or even touching, the axis, as in f, and may return after having touched the fame axis.

Although this eurve exprefles very clearly the repulfive and attradive forces of our fyltem, yet, at firt fight, it may appear to be a complicated irregular line. But the author hews that his curve is uniform and regular, and may be exprefled by one uniform algebraieal equation; which it will be neceffary for us to confider, in order to give fatisfaction to our readers, and to do jutice to the theory.
Wherefore, from what we have feen, the curve muft have the following fix conditions: $1 / \ell$, It muft be regular and fimple, and not compofed of an aggregate of arches of different curves. $2 d l y$, It is neceffary that it cut the axis $C^{\prime} A C$ in certain given points only, at two equal diftances on each fide $A E^{\prime}, A E, A G, A G$, and fo on. 3dly, That to every abfcifs an ordinate correfpond. 4thly, That if we take equal abfcifes on each fide of A, they have equal ordinates. 5 thly, That the right line AB be an afymptote, the area BAED being afymptotical, and confequentiy infinite. Kibly, That the arches terminated by any two interfections may be varied at pleafure, and recede to any diftance from the axis C'AC, and approach at pleafure to whatever arches of whatever curves, cutting them, touching them, or ofculating them, in any place and manner.

In order to find an algebraical formula expreffing the nature of a curve line that would anfwer all thefe
fix conditions, let us call the ordinate y, the ablcifs x, B.forich's and let it be made $x: x=z$. Then let us take the values Syfiem of of all the abfeifies $A E, A C, A I$, \& c. with the ncera- Natural tive fign, and let the fun of the fquares of all thefe va- $\underbrace{\text { Philofophy, }}$ lues be called a, the fum of the products of every two fquares b, the fum of the products of every three, c, and $f 0$ on ; and let the product of all of them be cailed f, and the number of the fame values m. All this being fuppored, let it be made $\approx^{n}+a \approx^{m-1}+b z^{m-z}$ $+c z^{m-3} \& c+f=1$. If we fuppofe P equal to nothing, it is clear that all the roots of that equation will be real and pofitive; that is, the fouares only of the quantities AE, AG, AI. 太e. which will be the values of \approx; and therefore, as it is $x= \pm \sqrt{ } z$, becaufe it is $x x=z$, it is likewife clear that the values of x will be both $A E, A G, A I$, politive, and $A E^{\prime}, A G^{\prime}$, \&e. negative.

This being done, let any quantity be multiplicd by z, providing it hath no common divifor with P, left x vanifhing, it likewife might wanifh; and having made x an infinitefim of the firt order, it may become an infinitefim of the fame, or of a lower order, as will be whatever formula $z^{r}+z^{r-r}+h z^{r-2} \& c \cdot+!;$ which, being fuppofed equal to o, may have as niany imaginary, and as many and whatever real roots, providing none of them be thole of $A G, \wedge E, A I$, \&c. either pofitive or negative. If then the whole formula be multiplied by z, let this product be called Q.

If we make $P-Q f=0$, this equation will fatisfy the five firft conditions above mentioned; and the value of Q being properly determined, the fixth condition alfo may be cumplied with.

For, in the firit place, feeing the value P and Q are made equal io o, they have no common root, and therefore no common divifor. Hence this equation cannot be reduced to two by divifion; and therefore it is not compofed of two equations, but is timple, and therefore exhibits one fimple continued curve, which is not compoled of any others; which is the firl condition.

Secondly, The curve thus expreffed will cut the axis $C^{\prime} A C$ in all the points E^{\prime}, G, I, sec. and G^{t}, \&e. and in them only : for it will cut that axis only in thufe points in which $y=0$, and in all of them. Morcover, where it will be $y=0$, it will alfo be $Q y=0$; and therefore, becaule of $\mathrm{P}-\mathrm{Q} y=0$, it will be $\mathrm{P}=0$. But this will happen only in thofe puints in which \approx will be one of the roots of the equation $\mathrm{P}=0$; that is, as we have feen above, in the points $\mathrm{E}, \mathrm{G}, \mathrm{I}$, or $\mathrm{E}^{\prime}, \mathrm{G}^{\prime}$, \&e. : wherefore, only in thore points will y vanifh, and the curve cut the axis. Again, that the fanse curve will cut it in all thefe points, is clear from this, that in them all it will be $P=0$. Wherefore it will likewife be $Q y=0$; but it will not be $Q=0$, feeing there is no common root of the equations $\mathrm{P}=0$ and $\mathrm{Q}=0$: it muft therefore be $y=0$, and the curve will cut the axis: and thus the fecond condition is fatisfied.
Befides, whereas it is $\mathrm{P}-\mathrm{Q} x=0$, it will be $y=\frac{P}{Q}$. the ableifs x being, however, determined, we will have a certain determinate quantity for z; and thus P, Q, will be determined, and the only two of the kind. Wherefore y allo will be fole and determined; and therefore to every abfiifs z, one only ordinate y will. correfpond. This is the third condition.

Again, whether $:$ be aflumed pofitive or negative,

$\mathrm{B} O \quad \mathrm{~S}$ [104] B O S

E. fenvich's providing it be of the fame length, ftill the value $\approx=x: x$ S : nem of will be the fame, and therefore the values of both P N.uural dhaloli phy. and Q will be the fame: wherefore y will ftill be the fame. Taking, therefore, equal abfeiffes \approx on both
fides of A, the one politive, the other negative, they will have equal currefponding ordinates. This is the fourth condition.

If x be leffencd beyond all limits, whether it be pofitive or negative, \approx likewife will be leffened beyond all limits, and will become an infinitefim of the fecond order: wherefore, in the value P, all the terms will decreafe in infinitum, except in y, becaufe all the relt befides it are multiplied by z; and thus the value P will he as yet finite. But the value Q, which has the formala invliplied by z, will be leffened in infinitum, and will be an infinitefim of the fecoird order : therefore $\frac{P}{C}$ $=y$ will be angmented in infinitum, fo as to become an i:iffinite of the fecond order. Wherefore the curve will lave the right line AB for an afymptote, and the area BAED will increafe in infnitum: and if the ordinate y 'be affumed politive on the fide $A B$, and exprefs repullive forces, the alymptotic arch ED will lie on the fane fide $A B$. This is the fifth condition.

Now the value Q can be varicd in infinite manners; fo that ftill the conditions for which it was aflumed may be fulfilled; and therefore the arehes of the curve intercepted by the interfections may be varied in infinite manners; fo that the firt five conditions of the curve may be implemented: whence it follows that they may be fo varied that the fixth condition may alfo be anfwered.

For if there be given, however many, and whatever arches of whatever curve, providing they be fuch that they recede always from the alymptote $A B$, and thus no right line parallel to that afymptote cut thefe arches in more than one point, and in them let there be taken as many points as you pleafe, and as near one another ; it will be eafy to affume fuch a value of P, that the curve thall pafs through all thefe points, and the fame may be varied infinitely; fo that ftill the curve will pafs through all the fame points.

Let the number of points affumed be what you pleafe $=r$, and, from every one of fuch points, let right lines Ee drawn parallel to AB , as far as the axis $\mathrm{C}^{\prime} \mathrm{AC}$, which muft be the ordinates of the curve that is fought; and let the ahfeifes from A to the faid ordinates be called $\mathrm{M}^{1}, \mathrm{M}^{2}, \mathrm{M}^{3}$, Sc. and the ordinates ${ }^{\prime} \mathrm{N}^{1}, \mathrm{~N}^{2}, \mathrm{~N}^{3}$, Sc. Let there now be taken a certain quantity $\mathrm{A} z^{r}+\mathrm{Bz}^{r-x}$ $+\mathrm{C} \approx^{r-2}+\mathrm{G} \approx$, and let this quantity be fuppofed equal to R. 'Then let another fuch quantity T be affumed, fo that z vanifhing, whatfoever term of it may vanif, and fo that there be no common divifor of the value of P, and of the value of $R+T$: which may be eafily done, feeing all the divifors of the quantity P are known. Let it now be made $\mathrm{Q}=\mathrm{R}+\mathrm{T}$, and then the equation of the curve will be $\mathrm{P}-\mathrm{R} y-\mathrm{T} y=0$. After this, let there be put in the equation $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$, fucceffively for x, and $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \& \mathrm{c}$. for y; we will have a number of equations equal to r, which will contain the values of $A, B, C, \ldots . G$, each of them of one dimenfion, in number likewife equal to r; and, befides, we will have the given values of $\mathrm{M}_{1}, \mathrm{M}_{2}, \& c . \mathrm{N}_{1}, \mathrm{~N}_{2}$, N_{2}, \&ic. and the arbitrary values which in T are the coefficients of z.

By thefe equations, which are in number r, it will Bofcovic be ealy to determine the values $A, B, C, \ldots . G$, which Syttem are likewife in number r, affuming in the firft equation, Philofora according to the ufual method, the value A, and fubftituting it in all the frllowing equations; by which means the equations will become r-1. Thele, again, by throwing out the value B , will be reduced to r - -2 , and fo on until we come to one only ; in which the ralue Q being determined by means of it, going back, all the preceding values will be determined, one by each cquation.

The values $A, B, C, \ldots . G$, being in this manner determined, in the equation $\mathrm{P}-\mathrm{R} y-\mathrm{T} y=0$, or P Q $y=0$, it is clear that the values $\mathrm{Mr}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$, Sce. being fucceffively put for x, the values of the ordinate y muft fucceffively be $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \&<$. ; and, therefure, that the curve muft pals through thefe given points in thofe given curves; and fill the value Q will have all the preceding conditions. For z being leffened beyond whatever limits, every one of its terms will be leffened beyond whatever limits, feeing all the terms of the value of T are leffened which were thus affumed, and likewife the terms of the value R are leffened, which are all multiplied by z; and, befides this, there will he no common divifor of the quantitics P and Q, feeing there is none of the quantity P and $\mathrm{R}+\mathrm{T}$.

But if t wo of the neareft of the points affumed in the arches of the curves, on the fame fide of the axis, be fuppofed to accede to one another beyond whatever limits; and at laft to coincide, which will be done by making two M equal, and likewife two N equal; then the curve fought will touch the arch of the given curve; and if three fuch points coincide, they will of culate it: nay, as many points as we pleafe may be made to meet together where we pleafe; and thus we may have ofculations of what order we pleafe, and as near one another as we pleafe, the arch of the given curve approaching as we pleafe, and at whatever diffances we pleale, to whatever arches of whatever curves, and yet fill preferving all the fix conditions required for expreffing the law of the repulfive and attractive forces. And whereas the value of T can be varicd in infinite manners, the fame may be done in an infinite number of ways; and therefore a fimple curve, an lwering the given conditions, may be found out in an infinite number of ways. Q.E.F.

What we have faid will, we hope, fatisfy our readers, and efpecially thofe of them who are in the lealt acquainted with high geometry, that Bofcovich's curve is fimple, regular, and uniform; and that therefore the law of repulfive and attractive forces, expreffed by it, is fimple and regular.
II. If this fytem were a mere lypothefis, it would ftill be very ingenious, and, from what we fhall fay afterwards, would ftill be well adapted for explaining the phenomena of nature. But its author is far from looking upon it as an arbitrary fuppofition; he affures us that he was led to it by a chain of ftrict reafoning, from evident principles. We thall now give an abridgenent of that reafoning from his Differtations on the Law of Continuity, and from his Theory of Natural Philofophy.

He tells us, then, that in the cxamination of Leib-P oof of nitz's opinion of the vires vive, he came to confider the theors the collifion of bodies, and took for example two equal bodies. A proceeding with fix degrees of velocity, and B following with the velocity of 12 : after the colli=

Bafeovich's fion, they proceed jointly with the common velocity
system of Narural गhilofopny.
9. Now, in the moment of collifion, it either happens that A paffes abrubtly from the velocity 6 to the velocity 9 , without p ffing through the velocity 7 and 8 , and B paffes from 12 of velocity to 9 , without pafing through II and 10 ; or elfe there mult be fome caufe which accelerates the one and retards the other before they come to contact. In the firft cafe, the law of continuity is broken; in the fecond, immediate contaet of bodies would be rejected. Machaurin faw this difficulty, and mentioned it in his work on Neruton's Difcoveries, 1. r. c. 4. He, not having courage to recede from the common opinion, allowed a breach, in fuch cafes, of the law of continuity ; but Bofcovich maintains the univerfality of the law of continuity; and holds that no bodies touch one another really and mathematically, but only phylically and fenfibly to us.

The lanv of continuity is tbat by which variable quantities, paffing fron one magnitude to another, pafs through all the intermediute magnitudes, without ever alruptly paffing over any of them. This law Bofcovich proves to be univerfal, in the firft place, from induction. Thus we fee that the diflances of two bodies can never be changed without their paffing through all the intermediate diflances. We fee the planets move with different velociries and directions; but in this they ftill obferve the law of continuity. In heavy bodies projected, the velocity decreafes and increafes through all the intermediate velocities: the fane happens with regard to elafticity and magnetifm. No body becomes more or lefs denfe without paffing through the intermediate denfities. The light of the day increafes in the morning and decreales at night through all the intermediate poffible degrees. In a word, if we go through all nature, we fhall fee the law of continuity ftrictly take place, if all things be rightly confidered. It is true, we fometimes make abrupt paflages in our minds; as when we compare the length of one day with that of another immediately following, and fay that the fecond is two or three minutes longer or fhorter than the former, paffing all at once, in our way of fpeaking, round the globe; hut if we take all the longitudes, we fhall find days of all the intermediate lengths. We likewife fometimes confound a quick motion with an inftantaneous one: thus, we are apt to imagine that the ball is thrown abruptly out of the gun ; but, in truth, fome fpace of time is required for the gradual inflammation of the powder, for the rarefaction of the air, and for the conmunication of motion to the ball. In like manner, all the objections made againft the law of continui6 ty may be folved to fatisfaction.

But however flrong this argument from judgment may appear to be, yet Bofcovich goes farther, and maintains, that a bicach of this law, in the proper cales, is metaphyfically impoffible. This argument he draws from the very nature of continuity. It is effential to cuntinuity that, where one part of the thing continued ends and another part begins, the limit be common to both. Thus, when a geometrical line is divided into two, an indivifible point is the common limit to both : thus time is continued; and therefore where one hour ends, another immediately begins, and the common limit is an indivifible inftant. Now, as all variations in variable quantities are made in time, they all partake of its con. tinuity; and hence none of them can haften by an Suppl. Vol. I. Part I.
abrupt paflage from one magnitude to another, without Borcovich's pafing through the intermediate nagnitudes. As we Syftem of cannot pafs from the fixth hour to the ninth without Philoffoplyy paffing through the feventh and eighth; becaufe, if we $\underbrace{\text { Philopfryy. }}$ did, there would be a common linit between the fixth hour and the nimth, which is impoffible: fo likewife you cannot go from the diflance σ to the diftance 9 without paffing through the diltances 7 and 8 ; becaufe, if you did, in the initant of paflage you would be borlh at the diftance 6 and at the diftance 9 , which is inpuffible. In like manner, a body that is condenfed or rareficd cannot pafs from the denfity 6 to the denfity 9 , or vice verfa, without paffing through the denfities 7 and 8 ; hecaufe, in the abrupt paffige, there would he two denfities, 6 and 9 , in the fame inftant. The body mult pafs through all the intermediate denfities. This it may do quickly or flowly, but atill it muft evidently pafs through them all. The like may be faid of all variable quantitics ; and thence we may conclude, that the law of continuity is univerfal.

But, in creation, is there not an inflance of an abrupt Objections paffage from non-exiflence to exiffence? No, there is not ; to chis h.w becaufe before exiftence a being is nothing, and there-anfweredo fore incapable of any ftate. In ereation, a being does not pafs from one ftate to another abruptly ; it paffes over no intermediate ftate: it begins to exift and to have a flate, and exiftence is not divifible. Do we not, at leaft, allow of an abrupt paffage from repulive to attractive forces in our very theory itfelf? We do not. Our repulfive forces diminifh, through all the interme. diate magnitudes, down to nothing; through which, as a limit, they pafs to attraction. In the building of a houfe or fhip, neither of them is augmented abruply; becaufe the additions made to them are eflicted folely by a change of diftances between the parts of which they are compofed : and all the intermediate diflances are gone through. The like may be faid of many other fuch cafes; and till the lav of continuity remains firm and conftant.

Let us now apply this doctrine to the cafe above Impoffibimentioned of the collifion of two bodies. We fay that lify of conthe body B cannot pafs from the velocity 6 to the ve. tween bolocity 9 without paffing through the velocities 6 and $7 ;$ tween bobecaufe if it did, in the moment of contact of the two fuperficies it would have the velocities 6 and 9 . Now a body cannot have two velocities at the fame inflant. For if it had two arfual velocities at the fame time, it would be in two different places at the fame time: if it had two different potential velocities or determinations to a certain velucity, it would be capable of being, after a given time, in two places at once-both which are imponible. It is therefore neceflary that it go through the velocities 7 and 8, and through all the parts of then. What we have faid of the bodies A and B may be faid univerfally of all bodies. Therefore no two bodies in motion can come to immediate contact; but their velocities mult undergo the fucceffive neceffary change before contact. And as the velocity to be extinguifhed may be increafed beyond all limits, an adequate caufe to effect this extinction mult be adnnitted.

This naturally leads us to the interior repulfive forces Repulfive of our fyftem; for the caufe retarding the one body forces and accelerating the other mult be a force, becaufe by this we mean a determination to motion ; and it mult be repulfive, becaufe it acts from the body; and it mult increafe

F () S [106] $] 30 \mathrm{~S}$

Broorich's increafe beyond all linaits, feeing the rclocity of the in- for the effence of a being, as mutt he allowed by all Bufovieh'o

Syftem of curring budies may be increated beyond all limits. It Natural Philofophy. mutt likewife be mutual, becaufe action and reaction are always equal, as may be proved by induction.

From thefe repulive forces Bufcovich deduces the inestenfion of lis atoms: for this repulfion being common to all matter, muit caufe a perfect fimplicity in the firft elements of body. If thefe elements were extended, and confequently compounded of particles of an inferior order, thefe particles might poffibly be feparated, and then they might meet, and an abrupt paffage from one velocity to another might take place, which we have excluded from nature by induction, and by a poofitive argument.

Befides this, by rejecting the extenfion of the firft elements of matter, we get rid at once of all the difficulties arifing from continued extenfion in body, which have always perplexed the philofophers, and have never been fatisfactorily explained. If the elements of mater are extended, each of them may be divided in infinitum, and each part may ftill be divided in infinitum. Can this divilion be actually made by the power of God or not? Can there be one infinite in number greater than another? Can these be a compound without a fimple of the fame kind? Thefe difficulties regard not fpace, which is no real being; but they would regard matter if it had continued extenfion. All thefe perplexities are removed by maintaining, as Bofcovich does, that the firt elements of bodies are perfectly fimple, and therefore inextended (A).

Atractive
zurces.

With regard to the exterior attractive forces of our fythem, there can be no queftion; feeing they conflitute univerfal gravity, the effects of which we fee and feel every day. But between the interior repulfive and exterior attractive forces we muft admit many tranfitions from repulfion to attraction, and from attraction back to repuliion, in infenfible diftances, which are indicated to us hy cohefion, fermentation, evaporation, and other phenomena of nature. And thus we have given, in thort, Bofcovich's proofs of his whole fy ftem.
III. This fytem has been well received by the learnto the fys. ed in Europe, and has contributed much to render its autem anFwered. thor famous; yet many objections againft it have been propofed. Some are flartled at the rejection of all immediate contact between bodies: and indeed Bofcovich is perhaps the firt of mankind who advanced that opinion ; but be allows that bodies approach fo near to one another, as to leave no fenfible ditance between them; and his repulfive forces make the fame impreffion on the nerves of our fenfes as the folid bodies could do. And therefore this opinion of his, however new, is nowife contrary to the teftimony of our fenfes. He only removes a prejudice which was before univerfal.

Some fay, that they cannot even form an idea of an inextended atom, and that Bofcovich reduces all matcer to nothing: but certainly extenfion is not neceffary
for the enfence of a being, as muft he allowed by all Buspovieh',
thofe who hold that fpirits are inextended. Becaufe Syferm of all the bodies that fall under our fenfes are extended, we pazural are ato took upon exteufion as effential to matter : Plilorophy but this error may be corrected by reflection, and an idea of an inextended atom may be formed, by confidering the nature of a mathematical point, which is the limit of any two contiguous parts of a line.
Others again have faid, that if the elements of matter were void of extenfion, there would be no difference between body and firit. But the difference between body and fpirit docs not confift in the having or not having extenfion; but in this, that the atoms of matter are endued with repulfive and attractive forces, : which fpirit has not; and firit has a capacity of thought and volition which bodies have not.

We may here obferve, that anıong the ancients Zenn, and among the moderns Leibnitz, held, that the firft principles of matter are inextended points. But both held this opinion with the inconfiftency, that they maintainet the continued extenfion of bodies, without ever being able to thew how continued extenfion could arife from inextended elements.

It has been objected likewife, that our repulfive and attractive forces are no better than the occult qualities of the Peripatetics. The like objection has been made to Newton's attraction: but the anfwer is eafy. We obferve the effects, and take notice of them : for them we muft admit an adequate caufe, without being able to determine, whether that caufe is an immediate law of the Creator, or fome mediate inftrument that he makes ufe of for that purpofe.

Some are unwilling to give up the idea of motion occafioned by immediate impulfe: but can they fhow a gond reafon why fome diffance may not occafion motion as well as no difance? Thefe are the principal objections that have been made againtt the Bofcovichian fyftem.
IV. Before we proceed to the explication of pheno-Oberva. mena by means of our theory, we mult advert, that in tions with the curve expreffing this theory, the abfciffes denote regard to the diffances between the atoms that are under confi the curse. deration ; the ordinates give the prefent force, and the area bet ween any two of thefe ordinates gives the fquare of the velocity generated between them; the arches are either repulfive or attractive, according as they fall upon the fame fide with the afymptotic curve EG, or on the oppofite fide.

We mult, in the next place, confider the paffages from one fide of the axis to the other. Sometimes the paffage is from repulfion to attraction, at other times from attraction to repulfion. The firft are called limits Limits of of cobefion, becaufe a particle removed from that limit coherion, returns back to it ; becaufe if it is removed to a greater $\& \mathrm{c}$. diftance it is attracted back, and if it is removed nearer it is repelled back. The fecond are called limits of noncobefion;
(A) If a particle of matter is not extended, in what refpect does it differ from a poin of fpace? Says Bofcovich, it is endowed with attractive and repulfive forces. What is this $i t$ before it is thus endowed? Does it then differ from a point of fpace? We can form no notion of any fuch difference. But a point of fpace, confidered as an individual, is diftinguifhed from another individual only by its fituation; it is therefore immovcable, but matter is moveable. Have thefe forces, then, which make matter an object of fenfe, any fubftratum, any thing in which they are inherent as qualities? What are the things which thefe qualities diftinguifh from each other as individuals?
ofcovich's coliffion: becaufe a particle removed thence to a greatirfem of er dittance is repelled fill further, and if removed nearNutural hildrophy. er it is attracted ftill nearer. Of the firft kind are $E, 1, N$; of the fecond are G,L. Likewife, when the curve touches the axis, it may either be an attractive part of the curve, or a repuliive part. Thefe limits may be nearer one another, or farther away; and the limits of cohetion may be Atronger or weaker, according as the forces near them are greater or lefs.

Bofcovich confiders minutely the effects of thefe varieties of limits and forces; firft with regard to two points, then with regard to three and four, demonftrating the great variety of forces that may arife from thefe various combinations, and thewing how from fimple atoms a great variety of bodies may be formed. He particularly proves, that, from the various polition of the atoms, they may either always repel or always attract other atoms, or do neither. Four atoms may form a pyramid, eight may form a cube, and fo on, in regular or irregular figures. Particles of the lowell order may compofe particles of a fecond order, thefe of a third, and fo on. This he exemplifies by a library, in which the letters of the books fhould be compoled of finall points, placed fo near one another as that their diflance could not be perceived without the help of a microfcope. Here the letters will be compofed of points, the words of letters, and all the variety of books on different fubjects, and in different languages, would be compofed of words. In like manner, he fays, his atoms may compofe particles, thefe may compofe others of different orders, of which may be formed various bodies, animal, vegetable, air, fire, water, earth, whole 16 planets, central bodies, the whole univerfe.
efyftens But to be more particular, our author proceeds to fied to apply his fyitem to me:hanics, and demonilrates, with :ount for his ufnal accuracy and originality, what regards the centre of gravity, action and reaction, the collifion of bories, the centre of equilibrium, and of ofcillation. Of thefe fubjects lie treats in the fecond part of his Theoria; to which we mult refer our learned readers, as it cannot be eafily abridged.

In the third part of the \{ame work be proceeds to account for the general properties of matter, beginning
penetra- with impenetralility. This naturally flows from the in terior repulfive forces, which prevent the compenetration of any two points. Befides, as the lealt part of fpace is divifible in infnitum, it is infinitely improbable that any two points fhould ever meet, feeing they have an infinite number of other lines in which they can move, belides the one that would join them. But an apparent compenetration miglit take place, if one body fhould meet another with fo great a velocity as not to give time to the repulfive forces to exert their action. Thus an iron ball may pafs fwiftly near a ftrong magnet, without being fenfibly attracted by it, which it would be if it moved more nowly. Thus a ball from a gun paftes through a piece of wood fo quickly as to make only a paflage for itfelf, without breaking the neighbouring parts, which it would do were its motion more flow. Of this kind of compenetration we have a refemblance in light paffing through pellucid bodies.

Cohefion has never been well accounted for by any philofopher before Bofcovich. From his fyftem it follows naturally, as we have feen in fpeaking of the limits
of coliefion; for when two atoms are phaced in a limit Befcovich: of that kind, they neceffarily collere more or lefs flrong- Sy nem nf ly, according as that limit is fironger or weaker. Fiom Natural the colefion of the atoms arifes the colicfion of com- Phi fophy. pounded particles, and confequently of fenfible.bodies.

From the cohefion of particles arifes the extention of Extenfon, bodies; becaufe there mult always be fpace between the particles. However, it is evident that this extenfion is not formed of a continuity of matter ; though it may appear to be fo to our fenfes, which cannot perceive the fmall intermediate difance between the parts of fome bodies, and much lefs the diftances between the fimple elements of which they are compofed.

Exteufion of bodies involves figuralifity; becaufe every extended body mult be furrounded by fome fuperficies of a certain figure; but the fuperficies of bodies can never be accurately determined, upon account of the inequalities in all furfaces. We take, however, that figure for the true one which the body appears to come nearef. Thus we call the earth a globe, notwithflanding the hills and valleys that are on it.

Under the fame figure, and of the fame magnitude, there may be contained very different quantitics of matter. Hence we come to the confideration of denfity. That body is moft denfe which contains in the fame faace the greatelt number of atoms, and vice verfa.

This denfity may be increafed beyond any given limits by the nearer approach of the atoms to one ano. ther. Hence a body of any given magnitude, however fmall, may come to be divifible beyond any given limits.

Mobility, which is likewife reckoned among the ge- Mobility, neral propert.es of body, is effential to our fyftem, feeing an effential part of it confifts in forces, which are determinations to motion, at leaft in certain diftances.

Univerfal gravity in fenfible difances is likewife a Gravity branch of our theory. On which fubject it may be obferved, that perhaps our curve, after it has extended beyond the fphere of the comets moft diflant from the fun, may depart from its afymptotical nature, and approach to the axis, interfect it, and pals to repulfion. 'This would effectually anfwer the objection made by fome againtt Newton's attraction, when they allege, that, from his opinion, it would follow, that the fixed ftars, and all matter, would be drawn together into one mafs. If fuch a repulfion takes place, it may foon pafs again into attraction, and form limits of cohefron; fo that our fun may be in fuch a limit with regard to the fixed ftars, and our planetary fyftem make only a fmall part of the whole univerfe. And this may fuffice concerning the general propertits of matter.

Let us now defcend to tome particular claffes of bodies, of which fome are fluid, others folid. The parts of tuid bodies are eafily feparated, and eafily moved round one another, becaufe they are fpherical and very homogeneuns ; and hence their forces are directed more to their centres than to owe another, and their motions through one another are lefs obitructed. Detween the particles of fome of them there is very little attraction, as in fiue fand or fmall grains of feed, which approach much to nuidity. The particles of fome nthers of them attract one another fenfibly, as co thore of water, and thill more thofe of mercury. This varicty arifes from the various combinations of the particles themfelves, of which we have already taken nutice. But in air the

Bofenvich's particles repel one another very ftrongly; and bence

Syltem of
Nutural
Philofophy. cones that great rarefaction, when it is not comprefled by an exterual force. Its particles muil be placed in ample limits of repulfion.

Solid bodies are formed of parallclopipeds, fibres, and of irregular figures. This occations a greater cohefion than in fluids, and prevents the mution of the parts round one another; fo that when one part is moved all the reft follow. Of thefe bodies fome are harder, whofe particles are placed in linits which have ftrong repulfive arches within them ; others are fofier, whofe particles have thofe arches of repultion weaker. Some are flexible, the particles of which are placed in limits. that have weak arches of repulfion and attraction on cach fide; and if thofe arches are ीhort, the particles may come to new limits of cohefion, and remain bent : but if the arches are longer, the foriner repulfion and attraction will continue to act, and bring back the body to its former pofition; nay, in doing this with an accelerated velocity, the parts will pafs their former limits, and wibrate backwards and forwards, as may be feen in a bended fpring. Thus elafticity is accounted for.

Vifcous hodics fland in the middle between folid and fluid. Their particles have lefs cohefion than the firtt, and more than the fecond : they Hick to other hodies by an attraction which their particles have from their compofition. In like manner water itfelf fticks to fome bodies, and is repelled by others. All which arifes from the different compofition of the particles, which gives a varicty of refpective forces.

What appears very wonderful in nature, is the compofition of organic bodies. But if we confider that particles may be fo formed, that they may repel fome and attract others, the whole of vegetation, nutrition, and fecretion, may be underflood, and follows from our fyitem. And as one particle may attract another in one part only, and repel it in every other fituation, hence may be gathered the orderly fituation of the particles in many cryftallizations. The great variety of repulfive and attractive forces, or limits of cohefion, of the pofition of atoms, and of combinations of particles, will account for all thefe phenomena.

The clienical operations, which are fo curious in themfelves, and fo ufeful to fociety, are well explained by Bofcovich's fyftem, and ferve as a confirnation of its truth. Of this we fall give fome inftances. When fome folids are thrown into fome liquids, there happens to be a greater attraction between the particles of the folid and of the liquid than there is between the particles of the folid itfelf. Hence the particles of the folid are detached and furromnded by the fluid; this mixture retaining the form of globules, and therefore continuing to be fluid. This is called folution. But when the folid particles are covered to a certain depth, the attractive forces ceafe on account of the different diftances, and no more of the folid is detached. Then the fluid is faid to be faturated. If into this mixture another folid be put, the particles of which attract the fluid more ftrongly, and perhaps at greater diftances than the particles of the former; then the fluid will abandon the former and cleave to the latter, diffolving them, and the particles of the former will fall to the bottom in the form of powder, into which they had been reduced by the folution. This feparation is called frecipitation. Perhaps rain arifes from a precipitation
of this kind, when the aqueous particles are left liy the Bofenvich't air, which is more itrongly attracted by fome other par- Sy:ncm of ticles floating in the atmofphere.

Fluids of the fame fpecific gravity are eafily mixed,$\underbrace{\text { Plilofophs, }}$ and even though the fpecific gravity be different, the particles of the one attract thofe of the other, in fuch a manner that they feem to form one fluid by a kind of folution. Nay, it happens that two fluids mixed together form a folid, becaufe their particles come to be in the limits of cohefinn. They may even occupy lefs fpace than they did before, by being attracted into lefs diftances between their parts.

Fermentation is a neceffary confequence of our fyftem. For when bodies, whofe particles, by the variety of their compofition, are endued with different forces, come to be mixed, there muft arife an agitation of the parts, and an ofcillation among them ; fonetimes greater, fometinjes lefs, according to the nature of the particles. This agitation is 1lopped by the expulfion of fome particles, by the intrufion of others into vacant fpaces, and by the impreffion of external bodies; but always there is a change in what remains, becaufe there is a new difpofition of particles.

Fire condifts in a violent fermentation of fulphure- Fire and ${ }^{30}$ ous matter, efpecially when it mects with the matterfion, \&c. of light in any quantity. This fcrmentation agitates ftrongly the parts of other bodies, feparates them from one another, and often throws them into a fate of fufion; the cohefion between their parts being broken, and they being thrown into a circular motion. In this flate they may be often mixed together, fo as to form one body; they may be again feparated ty the action of the fame fire, which evaporates fome of them fooner, fome later. Hence the art of fmelting metals.

When, in the agitation occafioned by fire, fome of the particles are thrown out into an arch of repulfion, they may fly off and evaporate. Sometimes the whole body may be thrown into a ftrong repulion aud volatilization, or a fudden explufion take place; when, before the particles are near an equilibrium, a fmall force may occafion a great change; as the fodt of a bird may occafion the fall of a great rock, which was before al. moit detached from a mountain. In evaporation, the bodies that remain affume a particular figure, as all falts do; and this upon account of their particles having certain parts only that attract one another, and confequently occafion a particular difpofition. All thefe chemical operations evidently prove that there are in nature repulfive and attractive forces between the particles of bodies at fmall diftances: which greatly confirms our whole fyftem.

Bofcovich holds, that light is an effuviunt, emitted Light. ${ }^{37}$ with great velocity from the luminous bodies by a ftrong repulfion. He explains all the moft remarkable properties of this extroardinary matter according to his own principles, and that with great acutenefs. On this fubject it is obfervable, that Newton faw the neceffity of admitting repulfive forces for the reflexion of light, which extend at fome diftance from the reflecting furface, and therefore refemble the repulfive forces of our theory.

Our author gives likewife a probable explication of ${ }_{\text {Electrici }}^{33}$ eleetricity, according to Franklin's ingenious hypothe-and mag fis, and likewife of magnetifm, deducing the whole of netifnt. the appearances from various attractions and repulfions.

B O S [109] B O S

aporich's He fuppofes that fire and the elcetrical fluid differ only iyftor of in this, that fire is in actual fermentation, and not fo Natural hiluforhy. ${ }^{\text {t }}$ the electrical fluid.
Finally, he explains our bodily fenfations, in which he agrees pretty much with other plinlofophers; excepting in this, that what they attribute to the immediate contact of bodies, or of certain particles emitted from them, he aferibes to attractions and repulfions; which indeed are particularly fit for caufing that motion in our nerves, which is fuppofed to take place in the organs of fenfation, and to be thence communicated to the brain.

It is to be obferved, that although Borcovich maintains that the very firt elements of matter are void of extenfion ; yet he allows, that of thefe elements, combined in a certain manner, may be formed extended particles of various figures, the parts of which may be fo coherent as to be infeparable by any power in nature. By thefe means the opinion of thofe philofophers, who are fo fond of extended particles, may be in fo far gratified. Nay, the Peripatetics may, if they pleafe, adopt Bofcovich's inextended atoms for their IIateria Prima without any inconfiftency; and his repulive and attractive forces may ferve for their fubfantial forms. And as God can make impreffions on our fenfes independently of the atoms, their abfolute accidents may in fome lenfe be admitted. Nor would fome fuch extraordinary exertions of Divine Power favour idealifm in the ordinary courfe of nature.

But what is of more confequence, it is more than probable, that had Newton lived to be acquainted with the Bofcoviehian theory, he would have paid to it a very great regard. This we may conjecture from what he fays in his laft queftion of optics; where, after having mentioned thofe things which might be explained by an attractive force, fucceeded by a repulfive one on a change of the dittances, he adds, "And if all thefe things are fo, then all nature will be very fimple, and confiftent with itfelf, effecting all the great motions of the heavenly bodies by the attraction of gravity, which is mutual between all thofe bodies, and almalt all the lefs motions of its particles by another certain attractive and repulfive force, which is mutual between thofe particles." And a little after, treating of the elementary particles, he fays: "Now it feems that thefe elementary particles not only have in themfelves the vis inertic, and thofe paflive laws of motion which neceffarily arife from that force, but that they likewife perpetually receive a motion from certain active principles; fuch as gravity, and the caufe of fermentation, and of the cohefion of bodies. And I confider thefe principles, not as occult qualities, which are feigned to flow from the fpecific forms of things, but as univerfal laws of nature, by which the things themfelves werc formed. For that truly fuch principles exit, the phenomena of nature fhew, although what may be their caules has not as yet been explained. To affirm that every fpecies of things is endued with Specific occult qualities, by which they have a certain power, is indeed to fay nothing; but to deduce two or three general principles of motion from the phenomena of nature, and then to explain how the properties and action of all corporeal things follow from thofe principles, this truly would be to have made a great advancement in philofophy, although the caufes of thofe principles were not as yet known.

Wherefore 1 do not hefitate to maintain the above faid E ofenvich's principles of motion, feeing they extend widely through Syftem of all mature." Fron this palfare we may fafely conclude, Natural that the great Britifh philufopher would have been $\underbrace{\text { Philofophy, }}$ lighly pleafed, lad he feen a!l nature fo well explained by the one limple law of forces propofed by the Ragufan.

Bofcovich himfelf was fo fully convinced of the truth Compariof his fyllem, that he was wont to make ufe of the fol-fon of this lowing comparifon: When a letter has been written in the key of oceult characters, and we are cndeavouring to decypher a cyp ber. it, we make various fuppolitions of alphalbets; and when we have found one according to which the whole letter comes to lave a reafonable meaning, agreeable to atl the circumftances of time, place, perfons, and things, we can entertain no doubt of our having difcovered the true key of the cypher-fo, faid he, my fyftem explains fo well all the phenomena to which it has been properly applied, that I muft flatter myfelf that I have difcovered the true key of nature.

The being accuftomed to contemplate fo deeply the exiftence univerfe and the materials of which it is compoled, made of God. Bofcovich fee mont clearly the evident neceffity of admitting an all-powerful, intelligent, lelf-exiftent Being, for the creation of thofe materials, and for the arrangement of them into their prefent beautiful form. He was at a lofs to find words ftrong enough to exprefs his furprife, that there fhould be any man, not to fay any one pretending to the name of philofopher, who could be fo deaf as not to hear the voice of nature loudly proclaining its Author from all, even the leaft of its parts. He gives us his fentiments on this, the moft important of all \{ubjects, in the appendix to his Theoria, in which he treats of God and of the faul of man.

There, in the firf place, he fhows the abfurdity of The worid their opinion, who maintain that this world may hate cannor he been the work of chance, the effect of a jumble of felf-the effect of exiftent, felf-moving atoms; becaufe chance is an empty chance; word without a real meaning. Whatever exifts las its determinate canfe, and can only be called fortuitous by us on account of cur ignorance of that caule. Befides this, though the number of atoms compofing this world is finite, yet their poffible combinations are many times infinitcly infinite: for they may be placed in infinite places of an infinite linc ; of thefe lines there is an infinite number in every plane, and of thefe planes there is an infinite number in fpace. Again, thefe points may have an infinite number of velocities in an indinite number of directions. From all this it is evident, that the combinations in which the points of matter may be, is infinite in a high degree, whereas duration can be infinite in only one dimenfion. Hence it is infinitely improbable that ever the prefent combination of things could come out by chance. And this is fo much the more infinitely improbable, becanfe the diforderly, chaotic combinations are infinitely more than the regular ones. The whole of matter might roll about in a blind motion for a boundlefs eternity, without ever being capable to produce one fingle mufhroom.

Moreover, had matter been in motion from all eternity, every atom would have defcribed an infinite line, and then a part of that line would be alfignable at an infinite diflance from the point of fpace in which the atom is at prefent : but an infinite line can never be run over; therefore the atom could never have come to its
prefent.

Eof ovich's prefent place; and theciore the fuppofition is abfurd. Svfenur Nothing fucceffive can be eternal with a paf eternity,

Nat.ral Jhillfordy

39 Nor have exifted front eterwity: though it can continue without end. God alone can be eternal and actually infinite ; but his eternity and infinity are beyond our comprelienfion.

Nether can the world have exitted of itfelf in any thing like to its prefent form from all eternity; for matter is perfectly indifferent to numberlefs fates, and to its prefent ftate it muft be determined. This prefent ftate is perfectly incapable of determining itfelf, becaufe this determination mull be previous to its exiftence. It mult be determined by the preceding ftate, which is alfo incapable of determining itfelf, and for its determination we mutt have recourfe to the flate before. Thus, though we go back to eternity, we fhall ftill fund a nul. lity of determination; now an infinite fum of nothing is rothing: and therefore as the prefent fate of things could have no determination, it could not poffibly exift.

It is therefore evident that there mult be a Determiner extrintic to the material word. This Determiner muft have an infinite knowledge of all the polfible combinations, and an intinite elective creative power to chufe and create freely the combination he pleafed, in that point of eternity that he chofe, with all the numberlefs

80
Atte * utes of G d which appear is the creation.
circumftances that are agreeable to him.
And here what a vaft tield of contemplation is laid open to a philofophic mind! What a truly infinite lnowlecge was requifite to forefee fo many ends, and fo many means requilite for obtaining thofe ends, as are contained in the ereation! Let us confider light, for example, which was to be emitted for fo many ages from fo many luminous bodies, with fo great velocity, fo as , to penetrate fo many mediums with different degrees of reflectibility and refrangibility, with fo many other wonderful qualities; at the fame time, fo many bodies were to be perfectly fitted for reflecting this light in a certain manner, and the animal eye was to be fo formed as to have a picture of vifible objects painted on the bot. tom of it. - How many particular combinations were neceffary for all this? What fhall we fay of the fo many herbs, flowers, trees, and animal bodies, as there are on this our earth? All their kinds and fpecies, all the feries of their individuals, all their parts and particles, were forefeen, intended, and contrived, by one act of the Divine Mind. Again, how wonderful are the heavenly bodies, of what lurprifing magnitude, moving in the moft beautiful order, at an immenfe dittance from one another? 'To fay nothing of the numberlefs creatures that are beyond the reach of the beft telefcope, or below that of the microfcope. He who reftects ever fo little on thefe things, muft neceflarily fee the moft evi dent proofs of an infinite power, wifdom, and providence; and he mult be filled with admiration and awful refpect for the Creator and Ruler of the univerfe.
Nor are we unconcerned fpectators of this grand fcene. God has been pleafed to make us enter deeply into his great plan of ereation. He fingled us out among an infnite number of poffible human beings, in order to call us into exiftence at a fixed period; and he has made a valt number of his creatures contribute to the formation of thefe wonderful machines, our bodies, as likewife to our nourifhment, to our prefervation, to our neceflities, conveniences, and gratifications. Every
moment that we exift, we are enjoying a great number Bofiten, of benefits, exprefsly defigned for us by that Supreme Being. This evidently demands from us the highent degree of gratitude, love, and obedience.

Let us go a ftep ftill farther: Is it not very reafon-Revelation able to fuppofe, that our God, who affords us fo many inftances of his beneficence towards us in the natural ordet, will alfo, out of compaffion to our weaknefs and ignorance, have favoured us with a more full and expli. cit manifeltation of himfelf, of our duties towards him, and of his intentions concerning us? According to Bofcovich and all true philofophers, reafon itfelf alone, and true philofophy, point out to us the probability at leaft of God's having given us a Aill better and furer guide, by whofe direction we may attain to that perfect happinefs which we naturally thinft after, and to which we muft have been defigned by our Maker. This is probable from reafon alone ; and of this great fact we are afcertained by unqueftionable authority.

BOSHMEN have been generally defcribed as a diftinet race of Hottentots, who are enemies to the paftoral life (fee Boshies-MIen, Encycl.) This M. Vaillant affirms to be a miftake; and we think he has complete. ly proved that it is fo. "Thefe infamous wretches (fays he) do not form a particular nation, nor are they a people who have had their origin in the places where they are now found. Bofimen is a name compofed of two Dutch words, which lignify bu/b-men, or men of the woods; and it is under this appellation that the inhabitants of the Cape, and all the Dutch in general, whether in Africa or America, diftinguill thofe malefactors or affaffins who defert from the colonies, in order to efcape punifment. In a word, they are what in the Britifh and French Weft India iflands are called Maroorz Negroes. Thefe Bofmmen, therefore, far from being a diftinct fpecies, are only a promifcuous affemblage of mulattoes, negroes, and maftizos, of every fpecies, and fometimes of Hottentots and bafters (fee Baster, Supplement), who all differing in colour, refemble each other in nothing but in villany. They are land pirates, who live without laws and without difcipline, abandoned to the utmolt mifery and defpair ; bafe deferters, who have no other refources but plundering and crimes. They retire to the fteepeft rocks and the moft inacceffible ca. verns, and there they pafs their lives. From thefe elevated places they command an extenfive profpect over the furrounding plains, lie in wait for the unwary tra. veller and the fcattered flocks, pour down upon them with the velocity of an arrow, and fuddenly falling upon the inhabitants and their cattle, flaughtes them withoht diftinction. Loaded with beoty, and whatever they can carry with them, they then repair to their gloomy caves, which they never quit till, like the lions, hunger again impels them to frefh maflacres. But as treachery always marches with a trembling ftep, and as the prefence of one refolute perfon is fufficient to overawe whole troops of thefe banditti, they earefully fhun thofe plantations where they are certain that the owners themfelves refide. Artifice and cunning, the ufual refources of timid fouls, are the only means which they employ, and the only guides that accompany them in their ex. peditions." - Vaillant's Travels into the Interior Parts of Africa (A).

BOSWELL
(a). Since this article was firlt publifhed, a different account has been given of the Bofbnen or Bojesmans by

$B \cup S \quad[111] \quad B \quad O \quad S$

Bofue'l. BOSWELL (James), known to the learned world as the author of a life of Dr Johnfon and of feveral other valuable works, was born, we believe, at Auchinleck in Airthire, in 1740 . The family from which he fprung was ancient and honourable. At the time of his birth his father was a well employed lawyer at the Scotch bar; but was afterwards raifed to the dignity of Judge, and filled that important ftation with acknowledged learning, probity, and honour. His title was Lord Auchinleck, taken from his family inheritance; and he died in 1782 : on which occafion Dr Johnfon wrote an elegant and inftructive letter to the fubject of this brief memorial; of which we fhall tranferibe a paffage that alludes to fome flight domeltic differences, which did not happen in vain, fince they gave rife to fuch falutary advice:
"Your father's death had every circumftance that could enable you to bear it. It was at a mature age, and it was expected; and as his general life had been pious, his thoughts had, doubtlefs, for many years paft, been turned upon eternity. That you did not find him fenfible muft doubtlefs grieve you; his difpolition towards you was undoubtedly that of a kind, though not of a fond father. Kinduefs, at lealt actual, is in our own power, bot fondnefs is not ; and if, by negligence or imprudence, you had extinguifhed his fundnefs, he could not at will rekindle it. Nothing then remained between you but mutual forgivencfs of each other's faults, and mutual delire of each other's happinefs."

The occalion of this family diffention is unknown to us. It might originate in the diflerence of their political principles, Mr Bofwell being a zealous Tory, and his father, as he reprefents him, a rancorous Whig; or it may have arifen from the celebrated Douglas caufe, which fet many friends at variance in Scotland, and in which, though Lord Auchinleck and his fon took the fame fide, they took it with very different degrees of ardour. The Judge faw not the propritty of illuminating his windows when the caufe was finally decided by the Houfe of Peers; and to compel him to ilhuninate, the advocate got poffeffion of a Chinefe gong, and at the head of a number of young men and boys patrolled the Atreets of Edinburgh, and made a loud and exulting noife at the windows of his father's houfe, where there was no fymptom difplayed of the general joy.

In 1762 Mr Bofwell made his firf journey to London; where, under the aufpices of Dudney the bookfeller, he publithed, "The Cub at Newmarket, a Tale." By the title of Cub he meant to characterife himfelf, as the reader will perceive in the following lines, which we thall give as a fpecimen of the poem:

> Lord Eglintoune, who loves, you know,
> A little dafh of whim; or fo,
> By chance a curions Cub had got,
> On Scotia's mountains newly caught.

During his ftay in London Mr Bofwell was intro. duect to Dr johnfon, with whom it is well known he
continued to live in intinacy from that time till Johnfon's death in 1784 ; and this intimacy procured him the friendfhip of Burke, Goldfmith, sir Jonma Reynolds, and many other men of eminence, who compofed what was called The Cilerary Club. In the latter end of 1765 he hecame acquainted with General Paoli when on his travels; and after his return he publifhed, in 1768 or 1769 , his account of Corfica, with the "Journal of a Tour to that Inland."

Of this work, which gained him fome diftinction in the world, his great friend Johufon writes thus: "Your hiftory is like all other hiftories, but your journal is in a very high degree curious and deliglitful. There is between the hiftory and the journal that difference which there will always be found between notions borrowed from without and notions generated within. Your hiftory was copied from books; your journal rofe out of your own experience and obfervation. You exprefs images which operated Itrongly upon yourfelf, and you have impreffed them with great force upon your readers. I know not wherher I could name any narrative by which curiolity is better excited or better gratio fied."

In 1770 Mr Bofwell, who was then in good practice at the Scotch bar, married an amiable woman, by. whom he had two fons and three daughters, who furvived him. In 1773 he was chofen a member of the Literary Club; and in the autumn of the fame year he vifited the Hebrides in company with his illultrious friend Johnfon; after whofe death he publifhed a very entertaining account of their tour, the places they faw, the characters with whom they converfed, and their own remarks on the different' converiations. To many perfons, both in England and Scotland, this book gave great offence, as it brought before the public the unguarded talk of private focial cireles; but it furcly furnifhed much entertainment, as it exhioited a more faith. ful picture of Hebridian maners than the Britilh public had ever before feen.

In 1784 , when Mr Fox's famous India bill was before Parliament, Mr Bofwell publifhed a " Letter to the People of Scotland on the Prefent State of the Nation;" in which he contends, that no charter would be fafe if that bill fhould pafs into a law ; and more than infinuates, that the principle of it was equally inimical to the liberties of the fubject and to the prerogative of the king. Dr Johnfon teems to have thought of that bill as he did; for having read the letter, he writes to the author his approbation of it in the following words: " I am very much of your opiniun ; and, like you, feel great indignation at the indecency with which the king is every day treated. Your paper contains very confiderable knowledge of the hiftory and of the contitutron, very properly produced and applied.?

In 1,85 , Mr Bofwell quitted the Scntch bar, and went to refide in London, where he continued till the day of his death. Having entered himfelf in one of the inns of court, and ftudied the Englifh law, he became-a barrifter in England: but we liave reafors to believe that

Mr Barrow, who travelled into the interior of Southern Africa in 1797 and 1798 . According to him, they are a difinct race, extremely favage, who neither cultivate the ground nor breed cattle, but fubfif in part on the natural produce of their country, and fupply its deficiency by depredations on the culonits on one fide, and the $=$ neighbouring tribes of people that are more civilized than themfelves, on the other.

Briwell. that his practice there was not fo fucceffful as it had been in his owa country. He enjoyed, hovever, more completcly than he could do in Edinburgh, the converfation of the great, the wife, the witty, and the good; and fuch converfation he always valued above wealth. He frequently vifited his native country, and efpecially Auchinleck, the feat of his anceftors; and foon after his return from one of thofe vifits he was feized with a diforder which proved fatal, on Tueflay the 19 th of May 1795.

Such were the principal events in the life of Mr Bofwell. Of his character, it would be difficult to fay mucb more than he has faid himfelf in his " Journal of a Tour to the Hebrides;" and which may, with fome propricty, be copied here:
"I have given a fietelh of Dr Johnfon. My readers may wifh to know a little of his fellow-traveller. Think, then, of a gentleman of ancient blood; the pride of which was his predominant paffion. He was then in his 33^{d} year, and had been about four years happily married. His inclination was to be a foldier ; but his father, a refpectable Judge, had preffed him into the profeffion of the law. He had travelled a good deal, and feen many varieties of human life. He had thought more than any hody fuppofed, and had a pretty good ftock of general learning and knowledge. He had all Dr Johnfon's principles, with fome degree of relaxation. He had rather too little than too much prudence; and his imagination being lively, he often faid things of which the effect was very diferent from the intention. He refembled fometimes

- The beft good man, with the worft-natur'd mufe.'
"He eannot deny limfelf the vanity of finifhing with the encomium of Dr_{r} Johnfon, whofe friendly partiality to the companion of this tour, reprefents him as one ' whofe acutenefs would help my inquiry, and whofe gaiety of converfation, and civility of manners, are fuf. ficient to counteract the inconveniences of travel, in countries lefs hofpitable than we have paffed.'

Few of Mr Bofwell's friends, we believe, could add mueh to this eandid confeffion. His enemies, if be had any, might dwell upon his failings; but his failings were few, and injurions to no perfon. In his character good nature was predominant He appeared to entertain fentiments of benevolenee to all mankiud, and to be incapable of intentionally injuring a human being. Ifis converfation talents were always pleafing, and often fafcinating. But ean we wonder at this in him who, with a capacity to learn, had been the companion of Johnfon for more than 20 years? His attachment to the Doctor for fo long a periorl, was a meritorious perfeverance in the defire of knowledge. To it the world is indebted for the moit tinifhed picture of an eminent man that ever was executed. We know there are objections to the mode of giving the life of Johufon. It has been thought that ignorance has been wantonly expofed, and the privacy of focial life endangered. We fhall not enter deeply into this queftion. All that we can certainly affirm is, that the work has been read with avidity and pleafure ; and that he who does not wifh to read it again may be fufpected to be deficient in tafte and in temper.

Mr Bufwell has been aecufed of vanity; but when this accufation is brought againft him, it fhould not be
forgotten that he enjoyed advantages which rendered that confpicuous in him from which no man can elaim an exemption. We know not the naan who would not have been vain to poffefs fo much of Dr Johnfon's converfation, and proud to give it to the world, in hopes that he who venerated Johnfon would not be unthankful to his hiographer. From the Doctor, however, he appeared to his friends to have imbibed a portion of melaneholy, of which indeed he complained himfelf during the latt two or three years of his life ; and he flew for relief where perhaps it is beft to be found, to the fociety of the learned and the gay. Here, as he confeffes, he " had rather foo little than too much prudence;" and, with more attaehment to the activity of rural life, he might, probably, have lengthened his days. But as his " belief in revelation was unfhaken," and his religious impreffions deep, and recurring frequently, let us hope that he has now attained that ftate from which imper. fection and calamity are alike excluded.
botany-bay. See Neip Holland, Encyel.; and Neru Soutb W ALes in this Supplement.
BOUGUER (Peter), an eminent mathematician and mechanical philofopher, was born at Croific, in Lower Bretagne, on the Ioth of February 1698. His father John Bouguer, who was likewife a confiderable nathematician, was then profeffor royal of hydrography at that port; and under him young Bouguer ftudied ma. thematics, and the application of them to fhip-building, almoft from the period when he began to fpeak; fo that he was a proficient in thefe feiences before he had reached beyond the years of childhood. He was, however, remored from Croific to the Jefuits eollege at Vannes, where, at 13 years of age, he triumphed, in a public conteft, over a profeffor of mathematies, who had advanced a mathematical propofition erroneou l_{y}. Two years after this he loft his father, whom he was appointed to fucceed in the office of hydrographer, after being publicly examined, and giving the moft complete proof of his being duly qualified to fill the vaeant chair. He was indeed qualified by prudence as well as by fcience; for however furpriling it may be, he filled it both with dignity and with abilities, though then not more than 15 years of age.
In the years 1727, 1729, and 1731, he gained the prizes fucceffively propofed by the Academy of Sciences for effays on the beft way of equipping thips with mafts, on the beft method of obferving at fea the height of the ftars, and on the mofl advantageous way of obferving the declination of the magnetic needle or the variation of the compafs. In 1729 he publifhed an Opprical Effay upon the Gradation of Light, in which he examined the intenfity of light, and determined its degrees of diminution in paffing through different pellucid mediums, and particularly in traverfing the earth's atmolphere. Of this eflay, which was written upon a fubject that till then had not attracted the attention of philofophers, the reader will find fome aceount in the Encyclopadia Britannica, under the title Optics, n° 32, Se.

In 1730 Bouguer was removed from the port of Croific to that of Havre. In 173 s he obtained, in the Academy of Seiences, the place of affociate geometrician, vacant by the promotion of Maupertuis to that of penfioner; and in 1735 he was promoted to the office of pentioner-aftronomer. The fame year he was fent on the commiffion to South America, along with Meffrs Godin,

B O U [113$] \quad B \quad R \quad$ छ

3onguer. Godin, Condamine, and Jeuffieu, to determine the mea fure of the degrees of the meridian, and the figure of the earth. In this painful and troublefome bufinefs of ten years duration, chiefly among the lofty Cordelier mountains, our author, befides attending to the object of the voyage, made many fcientific obfervations; viz. on the effect of the Cordeliers on the polarity of the magnetic needle; on the expanfion and contraction of metals and other fubftances, by the fudden and alternate changes of heat and cold among thofe mountains; and on the refraction of the atmofphere from the tops of the lame, with the fingular phenomenon of the fudden in. creafe of the refraction, when the ftar can be obferved below the line of the level. He likewife afcertained the laws of the denfity of the air at different heights, from obfervations made at different points of thofe enormous mountains; he difcovered that the mountains have an effect upon a pluminet, though he did not affign the quantity of that effect; he found out a method of eftimating the errors committed by navigators in determining their route; gave a new conltruction of the log for meafuring a fhip's way; and made feveral other ufe. ful improvements. M. Bouguer made at different times fome important experiments on the famous reciprocation of the pendulum; he invented in $17+7$ the Hexiometer (fee that article Encycl.) ; and made many difcoveries relating to the intenlity of light (for which fee Oprics-Index, Encycl.) His unremitting application to ftudy undermined his health, and he died on the 15 th of Auguft 1758, in the 6ift year of his age.

Of his works which have been publihed, the chief are, i. The Figure of the Earth, determined by the Obfervations made in South America, 1749, in 4 to. 2. Treatife on Navigation and Pilotage, Paris, 1752, in $4^{\text {to }}$. This work has been abridged by M. La Caille, in one volume 8 vo, 1768 . 3. Treatife on Ships, theil' Conftruction and Motions, in 4 to, 1756 . 4. Optical Treatife on the Gradation of Light, firt in. 1729 , then a new edition in 1760 , in 4 to.

His papers that were inferted in the Memoirs of the Acadeny are very numerous and important : as, in the Memoirs for 17^{26}, comparifon of the force of the folar and lunar light with that of candles; 173:, obfervations on the curvilinear motion of bodies in mediums ; 1732, upon the new curves called the lines of purfuit; 1733 , to determine the fpecies of conoid, to be confructed upon a given bafe which is expofed to the thock of a fluid, fo that the impulfe may be the leat poffible; determination of the orbit of comets; 1734, comparifon of the two laws which the earth and the other pla. nets muft obferve in the figure which gravity caufes them to take; on the curve lines proper to form the arches in domes; $\mathbf{1 7 3 5}$, obfervations on the equinoxes ; on the length of the pendulum ; 1736 , on the length of the pendulum in the torrid zone; on the manner of determining the figure of the earth by the meafure of the degrees of latitude and longitude; 1739, on the aftronomical refractions in the torrid zone; oblervations on the lunar eclipfe of the 8th September 1737 , made at Quito: 1744, fhort account of the voyage to Peru by the members of the Royal Academy of Sciences, to meafure the degrees of the meridian near the equator, and from thence to determine the figure of the earth; 1745, experiments made at Quito and divers other places in the torrid zone, on the expanfion and contraction of metals

Suppl. Vol. I. Part I.
by leat and cold; on the problem of the mafting of Thips; 1746, treatife on fhips, their ftructure and motions; on the impulfe of fluids upon the fore parts of pyramidoids, having their bafe a trapezium; continuation of the fhort account given in 1744 of the voyage to Peru for meafuring the earth; 1747, on a new confruction of the \log, and other inftruments for meafuring the rua of a fhip; 1748, of the dianeters of the larger planets : the new intrument called a beliometer, proper for determiniug them, with obfervations of the fun ; obfervation of the eclipfe of the moon t he 8 th of Augut 1748 ; 1749, fecond memoir on aftronomical refractions, obfeved in the torrid zone, with remarks on the manner of conflructing the tables of them; figure of the earth determined by MM. Bouguer and Condamine, with an abridginent of the expedition to Peru; 1750, ubfervation of the lunar eclipfe of the $13^{\text {th }}$ December 1750 ; 1751 , on the form of bodies moft proper to turn about themfelves, when they are puthed by one of their extremities, or any other point ; on the moon's parallax, with the eftimation of the changes caufed in the parallaxes by the figure of the earth; obfervation of the lunar eclipfe the 2 d of December 1751; 1752, on the operations made by feamen, called correcions; 1753, obfervation of the paffage of Mcrcury over the fun the 6th of May 1753; on the dilatations of the air in the atmofphere; new treatife of navigation, containing the theory and practice of pilotage, or wurhing of thips; 1754, operations, \&c. for diltinguithing, among the different determinations of the degree of the meridian near Paris, that which ought to be preferred ; on the direction which the friag of a plummet takes; folution of the chief problems in the working of hips ; 1755 , on the apparent magnitude of objects ; fecond memoir on the chief problems in the working of Thips ; 1757, account of the treatife on the working of hips; on the means of meafuring the light.

BREAD is fo etfential an article of food that every ufeful method of making it thould be generally known. Much has accordingly been faid on that fubject (Encycl.) under the titles Baking, Bapm, Bread, and Yeast: but, fince the laft of thefe articles was publifhed, we have feen, in Dr Townfon's Travels in Hungary, a method of making bread at Debretzen ; of which, as it may fometimes be adopted with advantage in this coun. try, an account may, with propriety, be inferted here.

In the baking of this bread, a fubttitute is ufed for yeaft, which is thus made: Two good handfuls of hops are boiled in four quarts of water: this is poured upon as much wheaten bran as can be well moitened by it : to this are added four or five pounds of leaven; when this is only warm, the mafs is well worked together to mix the different parts. This mafs is then put in a warm place for 24 hours; and after that, it is divided into fmall pieces about the fize of a hen's egg, or a fmall orange, which are dried by being placed upon a board, and expofed to a dry air, but not to the fun; when dry, they are laid by for ufe, and may be kept half a year. This is the ferment; and it may be ufed in the following manner: For a baking of fix large loaves, fix good handfuls of thefe balls, broken into fragments, are taken and diffolved in feven or eight quarts of warm water. This is poured through a fieve into one end of the bread trougli, and three quarts more of warm water are poured through the fieve after it, and what

B R E

Bread. remains in the fieve is well preffed out. This liquor is mixed up with fo much fluur as to form a mafs of the fize of a large luaf: this is flrewed over with flour; the fieve, with its contents, is put upon it, and then the whole is covered up warm, and left till it has rifen enough, and its furface has begun to erack: this forms the leaven. Then 15 ytuarts of warm water, in which fis handfuls of falt have been diffolved, are poured through the fieve upon it, and the neceflary quantity of flour is alded, and mixed and kneaded with the leaven: this is covered up warm, and left for about an hour. It is then formed into loaves, which are kept in a warn room half an loour ; and after that, they are put in the oven, where they remain two or three hours, according to the fize. The great advantage of this ferment is, that it may be made in great quantities at a time, and kept for ufe. Might it not on this account be uteful on hoard of hlips, and likewife for armies when in the fuld?

Bread, in whatever way it is made, is a dear article; and it may be a defirable wbject to many of our readers to know at what price the baker can afford to fell it. This depends upon the price of wheat, the quantity of flour which the wheat may give, the lofs at the mill, the expence of grinding, and the expence of haking.

Of the price of wheat we can fay nothing with pre. rifion, becaufe it varies according to the goodrefs or badnefs of the crop, and other circumftances; but a bufhel of Effex wheat, Winchefter meature, may be taken, on an average, as weighing 60 lb . Sixty pounds of wheat will yield, exclufive of the lofs in grinding and drefling, $45 \frac{1}{2} \mathrm{lb}$. of that kind of flour which is ealled feconds; which alone is ufed, through the greatelt part of England, for bread, and which makes, indeed, the belt of all bread, though not the whitefl. A peek of this flour, weighing 14 l . will take up between fix and feven pints of water, and give 18 lb . of excellent bread; or a bufhel of flour, weighing 56 lb . will yield 72 lb . of hread. The expence of baking a bufhel of fueh flour is, in Effex and fome other Englifh counties, about ninepence; viz. yeaft, on an average, twopence; falt, before the late tax, one halfpenny; and baking, fixpence.

But feconds is not all that is got frons wheat. A bufhel of to lb . of wheat gives, befides $45 \frac{1}{2} \mathrm{lb}$. of fe. conds, 3 lb . of offal, i. e. of pollards and bran; for the iutmont lefs in grinding and drefling a bufhel of wheat fhould not exceed i pound 8 ounces. The millers, indeed, ufually reckon on two pounds of lofs; but we can fay, with the utmoll confidence, that the actual lofs is rather lefs than we have ftated it. A correfponcent of ours, on whofe accuracy we can depend, weighed, in 1795 , two bufhels, Winchefter meafure, the one of white and the other of red wheat, and found the weight of them both to be 122 lb . This wheat was ground by his own fervants, and it yielded $121 \frac{1}{2} \mathrm{lb}$. of meal, fo that there was here but $\frac{1}{2} \mathrm{lb}$. loft of two bufhcls, or of 122 lb . in grinding. He admits that he fuffered the ftones to turn too clofe, and that the lofs fhould therefore have been fomewhat greater. The meal was dreffed, as the wheat had been ground, under his bwn ege; and every poffible precaution being taken to prevent his heing deceived in the refult, he had of flour, or feconds, $93 \frac{1}{\frac{1}{2}} \mathrm{lb}$. and of bran and pollard $25^{\frac{1}{2}} \mathrm{lb}$. ; fo that he luft, of two buffels, but $2 \frac{1}{3} \mathrm{lb}$. both in grinding and
dreffing. The offal, or bran and pollard, being dreffed Eread. in a bolting mill, yielded as follows:

Sharps	6 lb .0 oz	
Fine pollard	5	8
Coarfe polland	7	8
Broad bian	5	8
	-24	8

There was lof, therefore, in bolting, only one pound; and of the fharps, about three pounds, if fifted, would have been good flour. Indeed were the fharps and fine poliard to be added to the flour, the bread would, perhaps, be better, and more wholefome, than without fuch addition. From thefe data, which we believe to be very aceurate, it will be eafy to calculate, if the price of wheat be given, what thould be the price of flour per buthel and peek, the price of bread per pound, and the quantity of bread that fhould be fold for a fhilling.

It is a fact, however, which fhould be attended to, that loaves are not always of the fame weight, though made of equal quantities of the very fame dough. This was fully afcertained fome years ago at Paris. On a vinlent complaint that the bread was not always of the fame ftandard weight, the bakers of the eity were called before the police officers. They admitted the fact, that loaves, baked at the fame time, and in the fame oven, were feldom, if ever, of the fame weight; but they infifted that they contained, each, the flandard quantity of dough, and that the variety of weight among them mult proceed from fome caufe, which they did not pretend to afcertain. The matter was referred to the Royal Academy of Sciences, which appointed one of its members to fuperintend, for fome days, the whole procefs of baking. This being done, it was found that, of loaves baked in a large oven, thofe were always heavielt which occupied the centre of the oven, and that the bakers were innocent of the crime with which they were clarged. The fact, we think, may eafily be accounted for. Even in an oven there mult be fome condenfation of feam ; and, from the very fhape of the oven, the greateft quantity mult be condenfed towards the centre. Hence the loaves in the centre are neceffarily wetter and heavier than thofe round the circumference, if the plain of the oven has been equaily heated.

BREAD of Rice might oecafionally he of great ufe in many countries during a fcarcity of wheat ; but the method of making it is not generally known. It is indeed impoffible to make bread of the flour of riee, which is harfh and dry like fand or afhes, by treating it in the manner in which wheat-flour is commonly treated; and therefore it has been propofed to mix it with an equal quantity of the flour of rye. But this method of ufing the flour of rice is a very uncertain remedy in cafe of want ; fince we can have no rice-bread if we have not rye. We are taught, however, in the fournal des Sciences, des Lettres, et des Arts, how to make excellent bread from rice alone, by a method which the author of the memoir fays he learned from the natives of A. merica.
Aecording to this method of making the wihed-for bread, the firft thing to he done to the riee is, to reduce it to flour, by grinding it in a mill, or, if we have not a mill, it may be done in the following manner:

Bread, Let a certain quantity of water be heated in a fauceBrewing pan or caldron; when the water is near boiling, let the rice we mean to reduce into flour be thrown into it : the veffel is then to be taken off the fire, and the rice left to foak till the next morning. It will then be found at the bottom of the water, which is to be poured off, and the rice put to drain upon a table placed in an inclined polition. When it is dry, it mult be beat to powder, and paffed through the fineft fieve that can be procured.

When we have brought the rice into flour, we mut take as much of it as may be thought neceflary, and put it into the kneading trough in which bread is generally made. At the fame time we mult lieat fome water in a faucepan or other veffel, and, having thrown into it fome handfuls of rice, we mult let them boil together for fome time: the quantity of rice mult be fuch as to render the water very thick and glutinons. When this glutinous matter is a little cooled, it mult be poured upon the rice-flour, and the whole mult be well kneaded together, adding thereto a little falt, and a proper quantity of leaven. We are then to cover the dough with warm cloths, and to let it Itand that it may rife. During the fermentation, this palte (which, when kneaded, muft have fuch a proportion of flour as to render it pretty firm) becomes fo foft and liquid that it feems impofible it fhould be formed into bread. It is now to be treated as follows:

While the dough is rifing, the oven mult be heated; and, when it is of a proper degree of heat, we mult take a Itewpan of tin, or copper tinned, to which is fixed a handle of fufficient length to reach to the end of the oven. A little water mutt be put into this fewpan, which mult then be filled with the fermented patte, and covered with cabbage or any other large leaves, or with a fieet of paper. When this is done, the ftewpan is to be put into the oven, and puhed forward to the part where it is intended the bread thall be baked; it mult then be quickly turned upfide down. The heat of the oven acts upon the patte in fuch a way as to prevent its fpreading, and keeps it in the form the ftewpan has given it.

In this manner pure rice-bread may be made ; it comes out of the oven of a fine yellow colour, like par. try which has yolk of eggs over it. It is as agreeable to the tafte as to the fight; and may be made ufe of, like wheat-bread, to put into broth, \&c. It muft, however, be obferved, that it lofes its goodnefs very much as it becomes ftale.

It may be bere remarked, that the manner in which Indian corn is ufed in fome countries, for making bread, can only produce (and does in fact produce) very bad dough, and of courfe very bad bread. To employ it advantageoufly, it fhould be treated like rice; and it may then be ufed, not only for making bread, but alfo for paltry.

BlREWING is an art of valt importance, and has accordingly been explained in the Encycloprdia Britannica. A few improvements, however, have been made in the art, which, though not noticed in that Work, feem to be worthy of general attention, and, therefore, to deferve a place in this Supplement. The firft, of which we fhall give an account, is an invention of Mr William Ker of Kerfield, in the county of Tweedale, for the faving of hous, and, at the fame
time, giving to the liquor, whether ale, beer, or porter, Brewinga fuperior flavour and guality.

The fteam which arifes from the boiling enpper is known to be ftrongly impregnated with the effential oil of the hops, in which their flavour conlith. Inflead, therefore, of allowing it to efcape and evaporate, as it does in the common mode of brewing, Mr Ker contrives to preferve and condeufe it, by means of a winding-pipe fixed to the copper, fimilar to the worm of a 11ill, or by a ftraight pipe pafing through cold water, or any other cooling nedium. The oil and water, thus obtained, are returned into the worts when boiled, or the oil, after being feparated from the water, along with which it had been exhaled, is returned into the worts after they are boiled; and the watery part, which, after the oil is feparated, ftill continues impregnated with the aromatic talte and bitter of the hop, is returned into the next copper or boiling-veffel; and for on from one copper or boiling-veffel into another. By this procefs a condiderable part of the hop and favour. which is loft in the ordinary mode of brewing, is preferved: the flavour of the liquor is improved by tle prefervation of the finer parts of the aromatic oil : and the ale and beer are better fecured from any tendency to acidity or putrefaction, and therefore muit be fitter for home confumption and exportation. For this inven. tion, which is certainly fumple, and we think rational, Mr. Ker obtained a patent, dated March 41788.

On the $4^{\text {th }}$ of June : 790, Mr John Long of Longville, in the county of Dublin, Ireland, obtained a patent for an improvement in brewing, refembling, in one particular, this invention of Mr Ker's. 'To his invention, however, he gives the name of an entire new method, in all the effential parts, of brewing good malt liquor ; and therefore, as it comprehends the whole procefs of brewing, we thall lay it before our readers in the words of its author.
" I. For the better extracting from malt, place near a mafh-tun a thallow copper or other veffel that will readily heat; the curb of which to be on a level with the tun, and to contain from two to lix hog fleads, according to the dimenfion of the tun, more or lefs; and, at the lower end of the copper, have a cock from two to five inches diameter, more or lefs, to conduct the heated liquor from the copper into a tube which par. fes down the external part of the tun, and enters it through an aperture about fix inches from the bottom; then forming two revolutions, more or lefs, through the body of the tun, and communicating its heat to the wort as it paffes through the tube; and then, at a convenient diftance from the place it firlt entered, it runs from the tun into a ciftern or tub, fituate as near as convenient to the copper or heating-veffel. In the tub or ciftem is to be placed a pump, for the purpofe of conveying the cooler liquor back to the copper or heat-ing-veflel again; there to receive the heat of 208 degrees, more or lefs (which it will require after the firit half-hour), and then convey it through the maning-t un as before, and in the fame manner, as long as the working brewer or diftiller may think neceflary, to raife the mafling tun to any degree of heat required. By adhering to the foregoing proceds, the finft liquor may, with the greatelt fafety, be let upon the malt from 20 to 30 degrees lower than the prefent practice; by which means it operates with gentlenefs, opens and ex.

B R E [116$] \quad \mathrm{B}$ I I

Brewing. pands the malt and raw corn, and prcpares it for the reception of fharper or warmer liquor, fo as to extract the whole of the facclarine quality from the malt and raw corn. By the foregoing method, the mafling-tun, inttead of lufing its firit heat (which it does by the prefent practice), continues to increafe in heat every moment, by conveying the heated liquor through the tube into the tun; by which means, at the end of two hours, the working brewer or diltiller can have the tun brought to any degree of heat he faall think beft fuited to the different qualities of the madt or raw corn. Perfons who would with to fave expence, may heat their mathing tun at the lide or bottoin by a large piece of metallic fubftance made fire proof, and fixed therein; which, in fome degree, will anfwer the end propofed, but with great trouble and delay.
" 2 . To prevent the wort from receiving a difagreeable flavour while in the under-back, a tube muft be placed at the cock of the mafhing-tun, to receive the wort as it comes off, and convey it to a great ciftern or refrigeratory, which is fupplied with a ftream of water. The wort, paffing through that medium in a spiral tube, foon lofes that heat which fo often proves prejudicial to the brewer and diftiller in warm weather: then pafs it from the tube into a veffel in which pumps are placed, to return the worts into the copper for the purpofe of boiling off. All vetels for receiving the cold wort muft be placed lower than the fource whence the wort comes.
" 3 . As the great object of long boiling the wort is remedied, by my invention of taking the extract from the hops in a feparate manner from the worts, I boil my worts no longer than from 15 to 20 minutes; and, by purfuing that method, I fave much time and fuel, and regulate my lengths accordingly.
" 4. I fleep my hops, the preceding day to which they are to be ufed, in a copper or other veffel, with as mucli fluid, blood-warm, as will cover the hops, where it is to remain over a flow fire at leaft 14 hours, clofe covered; the copper at the tenth hour not to be of a greater heat than 175 degrees, continuing flow until the latt hour. Then I bring the copper gradually to a fimmer or flow buil; in which flate I let it remain about 10 minutes, and then run off the fluid; and this I do at the fame time the firft wort is boiled off, that they may both pafs together through the refrigeratory into the fermentation or working tun. After the foregoing operation, I cover the hops again with other liquor, and bring the copper to boil as foon as convenient, and let it remain in that ftate a confiderable time, until the fecond worts are boiled off. Then I pafs the hop-fluid with the wort, the fame as in the firf intance ; and, if there is a third wort, I boil my hops a third time with fmall worts, and pafs it off as before; by which means I gradually obtain the whole of the effential oil and pleafing bitter from the hops, which is effectually preferved in the beer.
" 5 . To cool worts. When the wort is bailed off, it is conducted from the cock of the copper or boiler into a tube of a proper dimenfion, which paffes the wort from the cock to the large ciftern or refrigerato. ry, and there performs feveral revolutions, in a fpiral manner, through the fame tube; which is immerfed in conftant fupply of cold water, where it lofes the greateft nart of its heat in a fort time, and thence continues a
ftraight courfe through the tube, a little elevated and of a fuitable length, placed in brick-work, until it meets a fmall refrigeratory, fupplied with colder water from a refervoir made for that purpofe at the head of the works; whence a continual ftream runs on the furface of the tube down to the great refrigeratory, cooling the wort as it paffes, in order to enable the working brewer or dittiller to fend it into the backs or workingtuns at whatever degree of heat he fhall think proper. There is no other difference between brewer and diftiller in this procefs, but that the ditiller immediately paffes the ftrong wort from the mafhing.tun to the back, thro' the fame machinery above inferted, and the tubes may be made of lead, or any other metallic fubfance.
"6. To enable me to brew in the warm fummer months, I fink my backs or working-tuns at leaft to a level with the ground, but if deeper the better, and cover them clolely by an arch made of bricks, or other materials, that will totally exclude the atmofpheric air from them. I place them as near as poffible to a fpring or fand-drain, as their depth will naturally draw the water thence, which muft be fo contrived as to pafs or flow round the backs or tuns. I then introduce a large tube, which paffes through the tuns, and keeps the wort feveral degrees lower than can poflibly be done by the prefent practice; by which means 1 can produce a complete fermentation even in the dog-days.
" 7 . In cold or frofty weather, if the tun and backs fhould lofe the firft lieat, intended to carry it through the procefs by the foregoing method, you may convey a fupply of warm or boring water by the tube, which paffes through the body of the backs or tun, communicating its heat, which rifes to any dcgree the working brewer fhall think proper: by purfuing this method, in the coldell feafon, I never want a fermentation."

We regret that we cannot with propricty flate to our readers, under this article, a fummary of Mr Richardfon of Hull's Pbilofopbical Principles of Brewing: for as the author has a new edition of his work in the prefs, it is our duty rather to refer to it, than to quote from a former edition, which contains not his lalt improvements. See Fermentation and Malt, in this Supplement.

BRIDEALE. See Scotale in this Supplement.
BRIDGE. See that article (Encycl.), and ARch in this Supplement. A wooden-bridge, of large fpan, fhould be conftructed on the principles explained under the title Roof (Encyel.) See alfo Centre (Suppl.)

BRINDLEY (James), was born at Tunfted, iu the parifh of Wormhill, Derbyfhire, in 1716 . His father was a fmall frecholder, who diffipated his property in company and field amufements, and neglected his fa. mily. In confequence, young Brindley was left deltitute of even the common rudiments of education, and till the age of 17 was cafually employed in ruttic labours. At that period he bound himfelf apprentice to one Bennet, a mill-wright at Macclesfield, in Chefhire, where his mechanical genius prefently developed itfelf. 'The mafter being frequently abfent, the apprentice was often left for weeks together to finifh pieces of works concerning which he had received no inftruction; and Bennet, on his return, was often greatly aftonifhed to fee improvements in various parts of mechanifm, of which he had no previous conception. It was not long before the millers difcovered Brindley's merits, and pre-

Brindey. ferred him in the execution of their orders to the mafter or any other workman. At the expiration of his fervitude, Bennet being grown into years, he took the management of the bufinefs upon himfelf, and by his fkill and induftry contributed to fupport his old nafter and his family in a comfortable manner.

In procefs of time Brindley fet up as a mill-wright on his own account; and by a number of new and in. genious contrivances greatly improved that branch of mechanies, and acquired a high reputation in the neighbourhood. His fame extending to a wider circle, he was employed, in 1752 , to erect a water-engine at Clifton, in Lancalhire, for the purpofe of draining fome coal mines. Here he gave an eflay of his abilities in a kind of work for which he was afterwards fo much diftinguifhed, driving a tunnel under ground through a rock nearly 600 yards in length, by which water was brought out of the Irwell for the purpofe of turning a wheel fixed 30 feet below the furface of the earth. In 1755 he was employed to exccute the larger wheels for a filk mill at Congleton : and another perfon, who was engaged to make other parts of the machinery, and to luperintend the whole, proving incapable of completing the work, the bufinefs was entirely committed to Brindley; who not only executed the original plan in a mafterly manner, but made the addition of many curious and valuable improvements, as well in the confruction of the engine itfelf, as in the method of making the wheels and pinions belonging to $i t$. About this time, too, the mills for grinding flints in the Staffordfhire potteries received various ufeful improvements from his ingenuity.

In the year 1756 he undertook to erect a fteam engine, upon a new plan, at Newcafle-under-Line; and he was, for a time, very intent upon a variety of contrivances for improving this ufeful piece of mechanifm. But from thefe defigus he was, happily for the public, called away to take the lead in what the event has proved to be a national concern of capital importance - the projecting the fyitem of canal navigation. The Duke of Bridgewater, who had formed his defign of carrying a canal from his coal-works at Worfley to Manchefter, was induced by the reputation of Mr Brindlcy to confult him on the execution of it ; and having the fagacity to perceive, and ftrength of mind to confide in, the original and commanding abilities of this felf-taught genius, he committed to him the management of the arduous undertaking. The nature of this enterprife has already been defcribed (Encycl. vol. IV. p. 8c.) ; it is enough here to mention, that Mr Brindley, from the very firt, adopted thofe leading principles, in the projecting of thefe works, which he ever after adhered to, and in which he has been imitated by all fucceeding artifts. To preferve as much as poffible the level of his cauals, and to avoid the mixture and interference of all natural ftreams, were objects at which he conftantly aimed. To accomplifh thefe, no labour or expence was fpared; and his genius feemed to delight in overcoming all obltacles by the difcovery of new and extraordinary contrivances.

The moft experienced engineers upon former fyttems were amazed and confounded at his projects of aque. duct bridges over navigable rivers, mounds acrofs deep valleys, and fubterraneous tunnels; nor could they believe in the practicability of fome of thefe fchemes till
they faw them effected. In the execution, the idcas Brindicy. he followed were all his own; and the minntell, as well as the greatelt, of the expedients he employed, bore the flamp of origivality. Every man of genius is an enthufaft. Mr Brindley was an enthuffalt in favour of the fuperionty of eanal mavigations above thofe of rivers; and this tuiumph of art over nature led him to view with a fort of contempt the winding flream, in which the lover of rural beauty fo much delights. This fentiment he is faid to lave expreffed in a ilriking manner at an examination before a comnittee of the Houfe of Commons, when, on being afked, after liaving made fome contemptuons remarks relative to rivers, what he conceived they were created for? he anfwered, "to feed navigable canals." A direct rivalry with the navigation of the Irwell and Merfey was the hold enterprize of his firt great canal; and fince the fuccefs of that defign, it has become common, all over the kingdom, to fee canals accompanying, with infulting parallel, the cuurfe of navigable rivers.
After the fuccefsful execution of the Duke of Bridgewater's canal to the Merfey, Mr Brindley was employed in the revived defign of carrying a canal from that river to the Trent, through the counties of Chefter and Stafford. This undertaking commenced in the year 1766 ; and from the great ideas it opened to the mind of its conductor, of a fcheme of inland navigation which fhould connect all the internal parts of England with each other, and with the principal fea-ports, by means of braiches from this main fem, he gave it the emphatieal name of the grond trunk. In executing this, he was called upon to employ all the refources of his invention, on account of the inequality and various nature of the ground to be cut through : in particular, the hill of Harecafte, which was only to be paffed by a tunnel of great length, bored through ftrata of different confiftency, and fome of them mere quickfand, proved to be a moll difficult, as well as expenfive, ohilacle, which, however, he completely furmounted. While this was carrying on, a branch from the grand trunk, to join the Severn near Bewdly, was committed to his management, and was finifhed in ${ }^{1772 \text {. He alfo }}$ executed a canal from Droitwich to the Severn; and he planned the Coventry canal, and for fome time fuperintended its execution; but on account of fome diffeacnce in opinion, he refigned that office. The Chefterfield canal was the lait undertaking of the kind which he conducted, but he only lived to finifh fome miles of it. There was, however, fcarcely any defign of canalnavigation fet on foot in the kingdom, during the latter years of his life, in which he was not confulted, and the plan of which he did not either entirely form, or revife and improve. All thefe it is needlefs to enumerate; but, as an inflance of the vaftnefs of his ideas, it may be mentioned, that on planning a canal from Liverpool to join that of the Duke of Bridgewater at Runcorn, it was part of his intention to carry it, by an aqueduct bridge, acrofs the Merfey, at Runcorn Gap, a place where atide, fometimes rifing fourtcen feet, rufhes with great rapidity through a fudden contraction of the channel. As a mechanic and engineer, he was likewife confulted on other occafions; as with refpect to the draining of the low lands in different parts of Lincolnfhire and the Ine of Ely, and to the cleanfing of the docks of Liverpool from mud. He pointed out 2 . method,

Brindles: method, which has been fuccefsfully praftifed, of building fea-walls withont mortar; and he was the author of a very ingenious improvement of the machine for drawing water out of mines by the contrixance of a lofing and a graining bucket.

The intentity of application which all his various and complicated ennployments required, probably fhortened lis days; as the number of his undertakings, in fome degree, impaired his ufefutuefs. He fell into a kind of chronie fever, which, after continuing fome years, with little intermifion, at length wore out his frame. and put a period to his life on September 27.1772 , in the 56 th y year of his age. He died at Tunhurt, in Staffordfhire, and was buried at New Chapel in the fane county.

In appearance and manners, as well as in acquirement, Mr Brindley was a mere peafant. Unlettered, and rude of fpeech, it was eafier for him to devife means for executing a defign than to communicate his ideas concerning it to others. Formed by nature for the profeffion he affumed, it was there alone that he was in his proper element; and fo occupied was his mind with his bufuefs, that he was incapable of relaxing in any of the common amufements of life. As he had not the ideas of other men to affit him, whenever a point of difficulty in contrivance nccurred, it was his cuftom to retire to his bed, wbere, in perfect folitude, he would lie for one, two, or three days, pondering the matter in his mind till the requinte expedient had prefented itfelf. This is that true infpiration which poets have almoft exelufively arrogated to themfelves, but which men of original genius in every walk are actua. ted by, when, from the operation of the mind acting upon itfelf, without the intrufion of foreign notions, they create and invent.

A remarkably retentive memory was one of the effential qualities which Mr Brindley brought to his mental operations. This enabled hin to esecute all the parts of the moft complex machine in due order, with. out any help of models or drawings, provided he had once accurately fettled the whole plan in his mind. In his calculations of the powers of machines, he followed a plan peculiar to himfelf; but, indeed, the only one he could follow without inftruction in the rules of art. He would work the queftion fome time in his head, and then fet down the refult in figures. Then takiug it up in this fage, he would again proceed by a mental operation to another refult; and thus he would go on by flages till the whole was finifhed, only making ufe of figures to mark the feveral refults of his operations. But though, by the wonderful powers of native genius, he was thus enabled to get over his want of artificial method to a certain degree ; yet there is no doubt that when his concerns became extremely complicated, with accounts of various kinds to keep, and calculations of all forts to form, he could not avoid that perplexity and embarraffment which a readinefs in the proceffes carried on by pen and paper can alone obviate. His eftimates of expence have generally proved wide of reality; and he feems to have been better qualified to be the contriver, than the manager of a great defign. His moral qualities were, however, highly refpectable. He was far above envy and jealoufy, and freely communicated his inprovements to perfons capable of receiving and executing them; taking a liberal fatisfaction in forming a new generation of engineers able to proceed
with the great plans in the fuccefs of which he was fo deeply interefted. His intcgrity and regard to the advantage of his employers were unimpeachable. In fine, the name of Brindley will ever keep a place among that fimall number of mankind who form eras in the art or feience to which they devote themfelves, by a large and durable extenfion of its limits.

BRISSOT (J. P.), acted fo confpicuous a part in the Fiench revolution, that a fair detail of the principal events of his life would undoubtedly be acceptable to all our readers. A fair detail, however, of fuch a life, we belieye it impoffible at prefent to give; for characters like Briffot's are almof always mifreprefented both by their friends and by their enemies; and till the troubles which they have excited, or in which they have been engaged, have long fubfided, the impartial truth is nowhere to be found.

In a fulfome panegyric, under the denomination of The Life of 7. P. Briflot, faid to be written by himfelf, we are told, that he was born January 14. 1754 ; and that his father was a traiteur, or "the keeper of an eating-houfe," but in what place we are not informed. Our author, however, affures us that the old man was in eafy circumtances, and that he employed all the means refulting from them to give to his numerous family a good education. The fubject of this memoir was intended for the bar ; but not relinhing the fludies neceffary to fit him for the profeffion of the law, or, if we choofe to helieve him, having a mind too pure and upright for the ftudy of chicane, he relinquifhed the purfuit after five years of drudgery !

To relieve his wearinefs and difguft, he applied himfelf, he fays, to literature and the fiences. The fludy of the languages was above all others his favourite purfuit. Chance brought him acquainted with two Englifhmen on their travels through France: he learned their language ; and this circumftance, he tells us, decided his fate.
"It was at the commencement of my paffion for that language (continues he) that I made the meta. morphofis of a diphthong in my name which has fince been imputed to me as fo heinous a crime. Born the thirteenth child of my family, and the fecond of my brothers in it, I bore, for the fake of diftinction, according to the cuftom of Beauce, the name of a village in which my father poffeffed fome landed property. This village was called Ouarville, and Ouarville became the name by which I was known in my own country. A fancy flruck me that I would caft an Englifh air upon my name; and accordingly I fubfituted, in the place of the French diphthong ou, the $z v$ of the Englifh, which has precifely the fame found." For this puierile affectation, which was certainly not criminal, he juftifies himfelf by the example of the literati of the 16 th and 17 th centuries, who made no fcruple of Grecifing and Latinifing their appellatives.

Having profecuted his ftudies for two years, he had an application from the Englifh proprietor of a paper then much in circulation, and intitled Le Courier de 1 Europe. This man having drawn upon himfelf an attack from government, felt and yielded to the neceflity of printing his paper at Boulogne-fur-mer. It was his wifh to render it interelting to the French in the department of mifcellaneous intelligence; which he therefore wifhed to fubmit to the fuperintendency and arrangement

B R I

Bifinot. of Briffot, who reprefents himfelf as for fome moments hefitating. The profeffion of a journalift, fubject to a licenfer, was repugnant to his principles; yet it fecured his independence, and put into his power the means of profecuting an inveltigation of conltitutions and of the fciences. After fome ridiculous reafoning from the original ftations of Bayle, Poflel, and Rouffiau, he at laft accepted of the employment, and became enamoured of it, " becaufe (fays he) it enabled me to ferve talents and virtue, and, as it were, to inoculate the French with the principles of the Englifh conflitution.

This employment, however, did not laft for any length of time. The plan of the proprietor of the Courier was overthrown dy adminiftration, and Briffot quitted Boulogne to return to his firf ftudies. Having informed us of this fact, he makes an extravagant pretence to unfullied virtue, and calls upon the inhabitants of the city which he had left to bear witnefs, not only that he had no vices, but that he had not even the feeds of any one of the vices which his adverfaries, it feems, had laid to his charge.
" Doubtlefs (fays he), too eager to publifh my ideas, I conceived that the proper monent had arrived, and I felt an inclination to commence with an important work. Revolting, from the very inftant of my beginning to reflect, againft religious and political tyranny, I folemnly protefted, that thenceforward I would confecrate my whole life to their extirpation. Religious tyranny had fallen under the redoubled frokes of Rouffeau, of Voltaire, of Didernt, and of D'Alembert. It became neceffary to attack the fecond;" and this was a talk which the vanity of Briffot led him to confider as referved for him.

What Voltaire and his friends meant by religions tyranny, and how they conducted their attacks againt it, are matters, alas! too well known to all Europe; and as our author chofe thefe philofophers for his guides, we might infer, without much degree of miftake, what he underftood by political tyranny, and by what means he meditated its extirpation. But he has not left us to make this difcovery by inference.
"It became neceflary (fays he) to break in pieces the political idol, which, under the name of nonarclly, practifed the moft violent defpotifm; but to attack it openly, was to expofe the affailant without the pofititilty of ferving mankind. It was by a fide blow that it was to be wounded moft effectually;" and therefore he refolved to begin his operations by attacking fome of thofe abufes which might be reformed without apparently thaking the authority of the prince.

Our readers, at leaft the fober part of them, will probably think that this mode of attack is not peculiar to Biifot, but that it has been practifed, or attempted to be put in practice, by afpiring demagogues in all ages and countries, who have uniformly begun their career of innovation by exciting the public mind againf thofe abufes in government, of which the exifience cannot wholly be denied. The fubject to which our author thought fit to call the attentiors of his countrymen, was the criminal jurifprudence: a fubject, fays he, which, with the exception of fome particulars that had been fuccefffully invelligated by Beccaria and Servan, no writer had thoroughly confidered in a philofuphical point of view. Thinking himfelf fully equal to this talk, he drew up a general plan; and in the year 1780 publifh-
ed his Theory of Criminal Laws, in two vols 8vo. This
Priftec. work, favnuralbly received by foreigners, applauded by fome journalilts, and pulled to pieces by others, procured lim the friendfhip of the warmeft advocates for human liberty, in whofe opinion the defects of his plan were highly pardonable, on account of the energy confpicuons in his renarks. This publication was foon followed by two difcourfes which gained the prize in 1782 at the academy of Chalons-fur-Marne; the one upon the rcform of the criminal laws, and the other on the reparation due to innocent perfons unjultly acculed.

It is natural to fuppofe that the govermment beheld with an evil eye thefe writings, which, under pretext of dragging into light the abufes of the criminal laws, infinuated dangerous principles on the nature of government in general.

His next work was intitled, A Plilofophical Library of the Criminal Lazus, in 10 vols; the true object of which was to diffeminate in France thofe principles of liberty which guided the Englifh and the Americans in framing and expounding their laws.

But the Itudy of legiflation and politics had not entircly drawn him off from that of other feiences; fuch as chemiltry, phyfics, amatomy, theology, \&c. Thefe he conflantly cultivated with ardour ; but acknowledges that in each be met with obfcurities, and that in every quarter truth cfcaped from his refearches. He therefore fat down to inveftigate the nature of truth, and the proper method of attaining to it in every department of refearch; and the refult of his labours was a kind of novum organum, by which he feems to have expected that Bacon's work would be buried in oblivion; and to this important volume he gave the title of Concerning Truth; or, Thoughts on the Means of attaining Trutb in all the Branclues of Human Knowledge. This volume was meant as nothing more than the introduction to a greater work, in which he propofed to inveltigate what is certuin in knowledge and what doultful, and then to ftrike the balance of the account.

He was prevented, however, from completing his plan, which he regrets exceedingly; for, as he afiirms, with becoming modefly, his work would certainly have amended its readers! But the French government liappened to think otherwife; his aim, which, he fays, was to lead mankind to refeet on their rights, was perceived, and he was accufed to the minitler as a feditious writer. The career of genius was ftopped by the dread of the Baltile; and he was obliged to take refuge in Londun. There it was his wifr to create a unimerfal confederation of the friends of liberly and triath, and to ellablifis a centre of correfpondence and union with the learned and the politicians of Europe. This dark defign, however, was fruftrated by the treachery, as it would appear, of his aflociates, who had bound themfelves, he fays, by the moft facred oaths, to afift him, and had offered to fign articles even with their own lloorl.

Finding himfelf unable to proceed directly to the object which he had in view, he refolved to enfighten bis countrymen gradually, and to begin with exciting their love and admiration of the Englifh conftution. That conftitution, which he had invelligated on the fpot, appeared to him a model for thofe focieties which were defirous of changing their form of government. It was but little known, he fays, in France (the work of D_{e} Lolme being at that time only in. the hands of the learn-

B R I

Bridut. ed); and to make it known was to make it beloved, was to render it delired. But the French minifters llood upon their guard, and it became neceffary to deceive them. He refolved therefore to bring forward a journal written actually in London, and profefling to contain only a defcriprion of the fciences and arts of Englund, whilit the greater part of it was to be occupied in reality by an inveftigation of the Englifb conflituion.

After many difficultics, the miniftry granted a privilege for this journal, being publined in London, to be reprinted in Paris; and it firft appcared in 1784. " In the twelve numbers which have been publifhed (fays the author), the friends of liherty muft have perceived, that if, on the one fide, I endeavoured to inculcate more juft ideas than had hitherto been entertained concerning this celebrated illand; fo, on the other, I refolutely made my advances toward that important end which has perpetually prefided over all my labours, the univerfal emancisulim of mos."

His affairs calling him at this time to Paris, he was arrelled and conveyed to the Baftile on the 12 th of July 1784 . In this conduct of the government' we cannot perceive any thing very tyrannical or arbitrary, fince he confefles, that, in the 16 th page of the firft number of his Journal, he had fuffered the fecret and favourite aim, which always guided his pen, to become difcernible. He was, however, difcharged from prifon on the sth of September, and returned with increafed zeal to his former cmployments.
"This perfecution (fays he), far from extinguifhing the ardour of my wifhes to inculcate the principles of freedom, ferved only to inflame it the more." Accordingly, in 1785 , he publifhed two letters to the Emperor Jofeph II. concerning the right of emigration, and the right of people to revolt. The firit of thefe letters, which, though well known in Germany, were in France fuppreffed by the police, was occafioned by what the author calls the ridiculous and barbarous edict againft emigration ; and the fecond by the punifhment of Horiab the chief of the Walachion infurgents. In this laft letter he lays it down as a maxim, that all people under fuch a government as that of the IV alachians, have from nature a facred righs to revolt, a right which they can and ought to exercife. In the fame fpirit he brought out, in 1786 , his Philofophical Letters on the Hiftory of England, in 2 vols, and A Critical Examination of the Travels of the Marquis de Chatelleux in North A. merica.

The French revolution appearing to him extremely diftant, notwithitanding all his efforts to hatten it, he refolved to leave France for the purpofe of fettling in America. His project received the approbation of fe veral, whofe fentiments were congenial with his own. But as it was thought imprudent to tranfport numerous families to a country fo far off, without thoroughly knowing it, Briffor was engaged to proceed thither, to examine the different places, to ohferve the inhabitants, and to difcover where and in what manner the eftablithment they had propofed might be molt advantageoully fixed. He had fome time before inflituted a fociety at Paris for accomplifhing the aholition of the negro trade, and for foftening the condition of the flaves. At the period of his departure, this fociety confifted of a confiderahle number of diftinguifhed members, and he was commiffioncd to carry the firft fruits of their labours to

America. His thay there, however, was not folong as he was detirous of making it. In the beginning of 1789 he was recalled by the news of the French revolution, which be conceived might probably produce a change in his own meafures and in thofe of his friend. This idca, added to other circumftances, accelerated his return. The fire had blazed ferth in his native country. "Hope (fays he) animated every heart; the mof diftinguifhed champions had engaged in the conteft; I too became defirous to break a lance, and 1 publifhed my Plan of Conduat for the Deputies of the People."

This, and other works of a fimilar kind, of which he loudly boafts the merits, raifed him high in the favour of the republican part of the nation, and he became prefident of his diftrict; where he acted, according to his own account, with great uprightnefs in the municipality, in the firf committee of inquiries, and as an elector. At laft he became a member, firf of the $N a$ tional AJfembly, and, after its diffulution, of the Sanguinary Convention; and by fome means or other got to be the leader of a party called fumetimes the Girondifls, and fometimes the Briffotines. From that period the principal events of his life were involved with the public tranfactions of the nation, of which we have given an account in the Encyclopadia under the title Revolution (fee that article, $\mathrm{n}^{\circ} 101-182$.) The Girondift faction was denounced by the Mountain, and Briffut fuffered by the guiliotine on the 30 th of November 1793. He fell indeed by a very unjuft fentence; but his fall was the natural confequence of that anarchical tyranny under which no man had contributed more than he to fubject his native country.

BROWN (Dr John), author of the Elementa Medicine, \&c. was born in the village of Dunfe, or, as fome fay, Lintlaws, in the county of Berwick, in the year 1735-6. His parents werc of mean condition, but much refpected in the neighbourhood for the integrity of their lives. His father gained his livelihood in the humble capacity of a day-labourer; while his mother contributed her flare towards the fupport of the family hy the profits ariling from a milch cow.

Such were the perfons who, in an obfcure part of the country, gave birth to a fon deftined, at a future period, to make a diftinguifecd figure in the republic of letters; and from whom originated a fyttem of the animal economy, which, whatever be its real merits, has undoubtedly produced a confiderable revolution in the practice of medicine.

At the age of three or four years, young Brown was put to a reading fchool in Dunfe, which he himfelf commemurates as the place rather of his education than of his nativity. Here, under the tuition of an old woman, he very early began to exhibit marks of that ftrength of mind for which he was afterwards fo eminently diftinguifhed. In the flort period of a year he became able to read with facility any part of the Bible, and acquired over his clafs-fellows that fuperiority which he ever after maintained both at fchool and college.

It was almoft immediately after his entrance into this fchool, that his infatiable defire of reading commenced; and fo unremitting was his application, that he is faid never to have been found, even at thofe hours which children much more advanced in life devote to amufement, without a book in his hand.

While he was making this rapid progrefs in the rue diments
diments of literature, he fuffered what muft have appeared to be a very heavy lofs in the death of his father ; but his mother foon afterwards married a worthy man of the fame name, whofe care and attention fupplied the place of a father to her fon. This man being a weaver, defigned to educate his fon-in-law to the fame bufinefs, and began to inftruct him in his art when he was about nine years of age: but the tafte which young Brown had already acquired for letters, made hinn look with difgut on the infipid employment of a weaver. His ftep-father was no tyrant, and his mother was affectionate. They were both proud of the talents which at fo early a period of life had appeared in their fon, and they felt no inclination to Arnggle with the invincible averfion which he expreffed to the bufiners fur which they intended him.

Another circumflance, however, contributed in no fmall degree to make them recal their original refolution. They were both of that fect of religionifts which in Scotland are called Seceders (fee Seceders, Encycl.); and it was fuggefted to them by fome perfons of their own perfuafion, who had remarked the uncommon abilities of the boy, that be might one day prove an able fupport and promoter of their tenets as a preacher. He was accordingly, much to his fatisfaction, taken away from the bufinefs to which he had conceived fuch a diftafte, and fent to the grammar-fchool of Dunfe, which was taught at that time by a gentleman of the name of Cruick hank, eminent for his grammatical knowledge. Here he appears to have fpent fome years with uncommon advantage and happinefs; during which he was efteemed by all the country round as a kind of prodigy. Like Johnfon, and many other men of the highelt celebrity, he united in the fame perfon uneommon powers of mind, with no lefs ftrength of body, as indeed his appearance indicated; and in his youth he enfured his own perfonal importance among his fchoolfellows, by excelling them not lefs in athletic excreifes than in the tafks prefcribed by their mafter. He was particularly fond, when a boy, of practifing the pugilitic art; and indeed until the laft period of his life he was obferved by his friends always to view an exhibition of that kind with peculiar relifh. He alfo prided himfelf much in being a ftout walker; and mentions bis having in one day accomplifhed, when but fifteen years of age, a journey of fifty miles between Berwick-uponT'weed and Morpeth in Northumberland. When farther advanced in life, he travelled on foot from four in the afternoon of one day to two in the afternoon of next day, with the fhort interval of one hour's reft ! But as one of his biographers very jufly cbferves, "we have feen that he could make a more rational ufe of his flrength than merely to flake it againft time and or Bed. Space *."

His early years while at fehool were marked by the moft rigid attachment to his fect. So ftrict indeed were his religious fentiments, if a boy of ten or elevef can be faid to have any fentiments deferving to be called religious, that he would have conceived the holding of any communion with the eftablithed clurch as a kind of profanation. All event, however, happened, fome time between the eleventh and thirteenth years of his age, which produced a total and unexpected revolution in his religious opinions. At a meeting of the provincial lynod of Merfe and Tiviotdale, he was prevailed upon, Suppl. VoL. I. Part I.
though not without manifefling much reluetance, to accompany a party of his fclool-fellows to the parinh church of Dunfe. The confuquence of this tranfgreffion, as he had dreaded, was an immediate fummons to appear before the feflion of the Seceding congregation; to which, through pride, not choofing to attend, in order to preclude a formal expulfion, he voluntarily abjured their tenets, and openly avowed lis apoftacy to the eftablifhment.

All changes in religion which are not the confequence of candid inveltigation are dangerous. He who leaves one fect he knows not why, will quickly abandon, with as little reafon, that to which in a fit of pafion he had haltily joined himfelf. From the monent of his quittiag the communion of the Seceders, Brown's religious ardour fuffered a gradual abatement; and though, to pleafe his mother, he continued to profecute his fudies with a view to the office of a clergyman in the church of Scotland, his opinions became daily more and more lax, and his life of courfe lefs and lefs regular. It was, however, a confiderable time before he admitted, in their full extent, thofe principles of irreligion which he afterwards avowed; for upon his filft perufing the Effays of Mr Hume, though his own zeal was then much cooled, he expreffed great indignation at their dangerous tendency.
At the age of twelve years he had been employed by MrCruick fhank as a kind of uher in the fchool of Dunfe; and that gentleman having declared that his knowledge of the Latin language was equal to his own, his fame as a fcholar was fo fpread over the country, that at the age of thirteen he was intrufted with the education of a gentleman's fon in the neighbourhood, when he quitted the fchool and his beloved mafter. In his new fituation, however, he remained not long. Dr Beddoes conjectures, that to the ftifnefs of pedantry he added the fournefs of a bigot, and was therefore a difagreeable inmate of the family. 'I'hát a boy of thirteen, proud of his talents, and prouder of his learning, fhould have the ftiffnefs of a pedant, is indeed extremely probable; it was the natural confequence of the praife with which he had been honoured by Mr_{r} Cruick fhank : but there is reafon to believe that of his original bigotry few traces now remained. The real caufe of his difmiffion from the family, we are affured, was his pride; and as it muft have been the pride of parts, it confirms the firlt part of Dr Beddoes's conjecture.

It feems he was much difpleafed that, when company were at dinner, he was not defired to remain after the cloth was removed; and yet if he was then only thirteen years of age, it is not cafy to conceive for what purpofe he fhould have flaid. He could not poffibly know much of the world, or of any thing likely to employ the converfation of country gentlenien; and wc cannot help thinking, that the mafter of the houfe would have treated his guefts with rudenefs, had be detained among them a raw boy to liflen to every unguarded expreffion which might cfeape them over their wine. It would appear, however, that he was not unwilling to give the tutor of his fon an opportunity of difplaying his abilities, when furh fubjects were intro. duced as he knew him to have fludied; for a difyute having arifen, one day after Brown lad retired to his own room, concerning the decrees of Drovidence, he fent to requelt his opinions on that alftrufe fubject. By
able him to maintain a family; and in expectation of realiing this profpect, he married, in 1765 , the daughter of a refpectable tradefman in Edinburgh. The diAlinguifhed attention at that time paid him by Dr Cul . len, in whofe family he had become a neceffary perfon, contributed in all probability to Atrengthen his hopes that his lioufe would be filled with proper boarders through the Doctor's recommendation. His fuccefs in this way for fome time anfwered his mof fanguine expectations; and his circumftances at one period were fo flourifhing, that he is faid to have kept a one-horfe chaife.

It was, perhaps, the greateft misfortune that could have befallen Brown, that he poffefed, in a high degree, thofe talents which make a man's company fought after by the gay and the diffipated: He was capable of "fetting the table in a roar." We need not therefore wonder at his frequently neglecting more neceflary purfuits to enjoy the conviviality of the numerous friends who courted his company; or that drinking and diflipation became habitual to him. He was as deficient in point of prudence as he exceiled in genius. His houfe was filled with refpectable boarders; but as he lived ton fplendidly for an income at beft but precarious, he became gradually involved in debt, and his affairs were fill more embarraffed by the burden of a numerous family. Soon after he began to be involved in thefe difficulties, he fuffered an additional lofs in being deprived of the patronage of Dr Cullen, in confequence of a difagreement that had taken place between them. This enmity, which had for fome time before fecretly fubfifted, probably from mutual jealoufy, was at length excited into an open rupture; firf, by Dr Cullen's not exerting his intereft in procuring for Brown the theoretical clair of medicine, then vacant in confequence either of the death or refignation of Dr Alexander Monro Drummond; and, fecondly, by his rejecting, fome time after, Brown's petition for admittance into the Ediuhurgh Philofophical Society.

In 1776 Brown was elected prefident of the Medicat Society; and the fame hunour vas again conferred on him in 1780 . He was led on, in the gradual manner he himielf deferibes in his mafterly preface to the Elementa Medicina, to the difcovery of his new doctrine; which, on dropping all correfpondence with his former friend and benefactor, he now, for the firft time, began to illuftrate in a courfe of public lectures; and in thefe he difplayed equal ingenuity and philofophical profundity. Much about the time of which we now fpeak, he publifhed the firt edition of the Elementa Medicina; a work which certainly proves its author to have been a man of uncommon genius and originality of thought. The circumftances in which this work was compofed reflect great honour on his abilities. He never retired to his Itudy ; but, totally abforbed in his own ideas, wrote with the greateft tranquillity amidt the noife of ten children, occafionally fettling their childifh differences.

In the year 1779, though he had fudied medicine ten or twelve years at the univerfity of Edinburgh, he was prevailed upoa by his friends to take a degree at St Andrews, where he gave a confpicuous proof of his facility in Latin compofition. He wrote a thefis, or inaugural differtation, in the tavern while the cloth was laying for dinner ; and one of his companions, who was
finging

B R O [123] B R O

finging befide him, having uttered a falfe note, or fung ont of time, Mr Brown, in the middle of his writing, ftopped to fhew him how the fong ought to be fung, and then inflantly proceeded in his thelis.

His family having now become fo numerous as to render keeping a boarding-houfe inconvenient, he had already fur fome time given it up, and depended for fupport entirely on his practice as a phyfician and his public lectures. At this time the difputes between the Cullenians and the Brunonians (as the young men now tyled themfelves) were carried on with fuch acrimony on both fides, in the different focieties, that it was not unufual for them to termiuate in duels; and there exifts at this day, on the records of the Medical Society, a law which it was thought expedient to enact, by which a member who challenges another for any thing faid in public debate incurs the penalty of expullion.

Obferving the itudents of medicine frequently to feek initiation into the myfteries of free-malonry, Dr Brown thought their youthful curiofity afforded him a chance of profelytes. In 1784, he inftituted a meeting of that fraternity, and intitled it the Lodge of the Roman Eagle. The bufnefs was conducted in the Latin language, which he fpoke with the fame fluency as Ecotch; and he difplayed much ingenuity in turning into latin all the terms ufed in mafonry.

As the terms on which he lived with his brethren of the faculty were fuch that he, obftinately avoided meeting them even in confultation, we may conclude that his own private practice was but limited. His friends affirmed, perhaps without fufficient proof, that cabals were formed againft him, and every advantage taken of the errors he was led to commit by his own imprudence. After a long ferics of ttruggles, therefore, hoping to meet with that encouragement among the Englifli of which he had been difappointed in his own conntry, he put in practice a plan upon which he had long meditated, and removed in 1786 with part of his family to London. Immediately on his arrival, an incident befel him, which Dr Beddoes fays be has heard the late Mr Murray, bookfeller in Fleet-Atreet, relate as a proof of his fimplicity. The peculiarity of his appearance as he moved along (a fhort fquare figure, with an air of dignity, in a black fuit, which heightened the farlet of his cheeks and nofe) fixed the attention of fome gentlemen in the flreet. They addreffed him in the dialect of his country. His heart, heavy as it mut have been, from the precarioufnefs of his fituation, and diftance from his accuttomed haunts, expanded at thefe agreeable founds. A converfation enfued; and the parties, by common confent, adjuumed to a tavern. Here the ftranger was kindly welcomed to town; and, after the glafs had circulated for a time, fomething was propofed by way of fober amufement-a game at cards, or whatever the Doctor might prefer. The Doctur had been tou civilly treated to demur ; but his purfe was fcantily furnithed, and it was neceffary to quit his new friends in fearch of a fupply. Mr Murray was the perfon to whom he had recourfe: the reader will not wonder that his interference fhould have fpoiled the adventure.

A London fharper, of another denomination, afterwards tried to make advantage by the Doctor. This was an ingenious fpeculator in public medicines. He thought a compofition of the moft powerful Atmulants
might have a run, under the title of Dr Bromut's exs- Brown. citing pill; and, for the privilege of his name, offered him a fum in hand by no means contenptible, as well as a thare of the contingent profits. Poor Brown, needy as he was, fpurned at the propofal.

After this period, his life affords little variety of incident. Like Avicenna, his time fecms to have been \{pent between his literary purfuits and his pleafures. A fplendid manner of living, without an income to fupport it, had become habitual to him: The confequence was, that, from inability to difeharge certain debts be had contracted, he was thrown into the king's bench prifon; from which, however, he was, not long afterwards, releafed by the exertions of a few firm friends, particularly Mr Maddifon of Charing-crofs, a gentleman univerfally refpected for his well-known benevolence. As a proof of the activity he was ftill capable of exerting, it will be fufficient to mention, that he accomplifhed the tranflation of his Elementa, with the addition of the fupplementary notes, within 23 days, having been informed that a tranflation of the fame was about to be publified by another perfon.

Shortly before his death, the ambaffador of the king of Pruffia, in the name of his mafter, made Dr Brown an offer of a fettlement in the court of Berlin; during the negociation of which he was unexpectedly cut off by an apoplexy early in the morning of the 7 th of Oetober 1788 , the day fucceeding that on which he had delivered to a company of thirteen gentlemen the greater part of the introductory lecture to his fecond courfe. At his death, he was between 52 and 53 year of age. His remains were interred in the church-yard of St James's Picadilly; and the only monument left behind him to tranfinit his name to pofterity is his own works; which, wheu perfonal prejudice no longer fhall prevail againtt their ingenious author, cannot fail to procure him all that deferved celebrity which they have already, in part, obtained in the different cauntries of Europe.

In 1787 , he publifhed his st Obfervations," without his name, which be afterwards, however, refers to in the Elements as his own. The "Enquiry," faid to be written by Dr Jones, and which was compofed in as fhort a time as the generality of men would tranferibe a work of its extent, we can affirm, from undoubted authority, to be his production.

This fletch of the life of the unfortunate Dr Brown would be of very little value if not followed by a view of his fyftem ; but to give a complete view of that \int y f_{-} tem would far exceed the limits within which, in a work like this, fuch articles mutt be confined. We trult, therefore, that our readers will be fatisfied with an abitract ; and as we are neither the partifans nor opponents of the Doctor, and not very partial to any medical fyltem whatever, we flall content ourfelves with inferting, in this place, the view which Dr Beddoes has given of Dr Brown's fundamental propolitions in the valuable obfervations which be has prefixed to his edition of the Elements of Mcdicine.
"The varied ftructure of organized beings (fays Dr Beddoes), it is the bufine f_{s} uf anatomy to explain. Confcioufnefs, affifted by common obfcrvation, will diftinguifh animated from inanimate bodies with precifion more than fufficient for all the ends of medicine. The caufe of gravitation has been left unexplored by all pru-
dent

B R O

Brown.
dent philofophers; and brown, avoiding all ufelefs dif. quifition çoncerning the canfe of vitality, confines him. felf to the phenomena which this great moving prin. ciple in nature may be obferved to produce. His mutt general propulitions are ealy of compreheafion.
" I. To every animated being is allotted a certain fortion only of the quality or principle on which the phenomena of life depend. This principle is denominated excitalility.
" 2. The excitability varies in different aninals, and in the fame animal at different times. As it is more intenfe, the animal is more vivacious or more fufceptible of the action of exciting powers.
"3. Exciting powers may be referred to two claffes. 3. External ; as hear, foud, wine, poifons, contagions, the bluod, fecreted fluids, and air. 2. Internal ; as the functions of the body itfelf, mufcular exertion, thinking, emotion, and paftion.
" 4. Life is a forced Aate; if the exciting powers are withdrawn, death enfues as certainly as when the excitability is gone.
" 5. The excitement may be too great, too fmall, or in juft meafure.
" 6. By too great excitement, weaknefs is induced, becaufe the exeitability becomes defective; this is indirea debility: when the exciting powers and fimulants are withheld, weaknefs is induced ; and this is direa debility. Here the excitability is in excefs.
" 7. Every power that acts on the living frame is fimulant, or produces excitement by expending excitability. Thus, although a perfon accuftomed to animal food may grow weak if he lives upon vegetables, fill the vegetable diet can only be confidered as producing an effect, the fame in kind with animals, though inferior in degree. Whatever powers, therefore, we imagine, and however they vary from fuch as are habitually applied to produce due excitement, they can only weaken the fyitem by urging it into too much motion, or fuffering it to fink into langour.
"8. Excitability is feated in the medullary purtion of the nerves, and in the mufcles. As foon as it is anywhere affected, it is immediately affected everywhere; nor is the excitement ever increafed in a part, while it is generally diminifhed in the fyftem ; in other words, different parts can never be in oppoffte flates of excitement.
"I have already fpoken of an illuftration, drawn up by Mr Chriftie from a familiar operation, to facilitate the conception of Brown's fundamental politions. I introduce it here as more likely to anfwer its purpofe than if feparately placed at the end of my preliminary obfervations. -Suppofe a fire to be made in a grate, filled with a kind of fuel not very combultible, and which could only be kept burning by means of a machine containing feveral tubes, placed before it, and conftantly pouring Areams of air into it. Suppofe alfo a pipe to be fixed in the back of the chimney, through which a conltant fupply of frefh fuel was gradually let down into the grate, to repair the watte occafioned by the flame, kept up by the air machine.

- The grate will reprefent the human frame; the fuel in it, the matter of life-the excitability of Dr - Brown, and the fenforial power of Dr Darwin ; the tube behind, fupplying frefh fuel, will denote the power of all living fyftems, conflantly to regenerate or reproduce excitability; while the air machine, of feveral tubes,
$124] \quad \mathrm{B} \quad \mathrm{R}$
denotes the warious fimuli applicd to the excitability of the body; and the flame drawn forth in confequence of that application reprefents life, the product of the exciting powers acting upon the excitability.
- As Dr Brown lias defined life to be a forced fate, it is fitly reprefented by a flame furcibly drawn forth from fuel little difpofed to combuftion, by the conflant application of flreams of air poured into it from the different tubes of a machine. If fome of thefe tubes are luppofed to convey pure or dephlogilticated air, they will denote the highelt clafs of exciting powers, opium, mufk, camphor, fpirits, wine, tohacco, \&c. the diffufible Atimuli of Dr Brown, which bring forth for a time a greater quantity of life than ufual, as the blowiug in of pure air into a fire will temporarily draw forth an uncommon quantity of flame. If others of the tubes be fuppofed to convey common or atmofpheric air, they will reprefent the ordinary exciting powers, or ftimuli, applied to the human frame, fuch as heat, light, air, food, drink, \&c. while fuch as convey impure and inflammable air may be ufed to denote what have formerly been termed fedative powers, fuch as poifons, contagious miafmata, fuul air, \&c.
c The reader will now probably be at no lofs to underftand the feeming paradox of the Brunonian fyftem; that food, drink, and all the powers applied to the body, though they fupport life, yet confume it; for he will fee that the application of thefe powers, though it brings forth life, yet at the fame time it wates the excitability or matter of life, jult as the air blown into the fire brings forth more flame, but waftes the fucl or matter of fire. . This is conformable to the common faying, "the more a fpark is blown, the brighter it burns, and the fooner it is fpent." A Roman poet has given us, without intending it, an excellent illultra= tion of the Brunonian fyftem, when he fays,
" Balnea, vina, Venus, confumunt corpora noflra;
"Sed vitam faciunt balnea, vina, Venus.
"Wine, warmth, and love, our vigour drain;
" Yet wine, warmth, love, our life fuftain."
Or to tranflate it more literally,
" Baths, women, wine, exhauft our frame ;
"But life itfelf is drawn from them."
- Equally eafy will it be to illuftrate the two kiuds of debility, termed diret and indirea, which, according to Brown, are the caufe of all difeafes. If the quan. tity of Atimulus or exciting power is proportioned to the quantity of excitability, that is, if no more excitement is drawn forth than is equal to the quantity of excitability produced, the human frame will be in a ftate of health, juft as the fire will be in a vigorous Ale when no more air is blown in than is fufficient to confume the frefh fupply of fuel conftantly poured down by the tube behind. If a fufficient quantity of fimulus is not applied, or air not blown in, the excitability in the man, and the fuel in the fire, will accumulate, producing direct debility; for the man will become weak, and the fire low. Carried to a certain degrec, they will occafion death to the firt, and extinction to the laft. If, again, an over proportion of Alimulus be applied, or too much air blown in, the excitability will foon be wafted, and the matter of fuel almoll fpent. Hence

Brown. will arife indirect debility, producing the fame weaknefs in the man, and lownefs in the fire, as before, and equally terminating, when carried to a certain degree, in death and extinction.
' As all the difeafes of the body, according to Dr Brown, are occafioned by direct or indirect debility, in confequence of too much or too little ftimuli, fo all the defects of the fire muft arife from direct or indirect lownefs, in confequence of too much or too little air blown into it. As Brown taught that one debility was never to be cured by another, but both by the more judicious application of ftimuli, fo will be found the cafe in treating the defects of the fire. If the fire has become low, or the man weak, by the want of the needful quantity of ftimulus, more mult be applied, but very gently at firft, and increafed by degrets, left a ftrong ftimulus applied to the accumulated excitability should produce death; as in the cafe of a limb berumbed with cold (that is, weakened by the accumulation of its excitability in confequence of the abitraction of the ufual ftimulus of heat), and fuddenly held to the fire, which we know from experience is in danger of mortification ; or as in the cafe of the fire becoming very low by the accumulation of the matter of fucl, when the feeble flame, affaited by a fudden and ftrong blaft of air, would be overpowered and put out, inftear of being nourifhed and increafed. A gain, if the man or the fire have been sendered indirectly weak, by the application of too mucla ftimulus, we are not fuddenly to withdraw the whule, or even a great quantity of the exciting powers or air, for then the weakened life and diminihhed flame might fink entirely; but we are by little and little to diminifh the overplus of fimulus, fo as to enable the excitability, or matter of fuel, gradually to recover its proper proportion. Thus a man who has injured his conflitution by the abufe of fisituous liquors is not fuddenly to be reduced to water alone, as is the practice of fome phyficians, but he is to be treated as the judicious Dr Pitcairn of Edinburgh is faid to have treated a Highland chieftian, who applied to him for advice in this fituation. The Doctor gave him no medicines, and only exacted a promife of him, that he would every day put in as much wax into the wooden gueick, out of which he drank his whifky, as would receive the imprefion of his arms. The wax thus gradually accumulating, diminithed daily the quantity of the whinky, till the whole queich was filled with wax; and the chieftain was thus gradually, and without injury to his conftitution, cured of the habit of drinking fpirits.

- Thefe analogies might be purfued farther; but my object is fulely to furnifh fome general ideas, to prepare the reader for entering more eafily into the Brunonian theory, which I think he will be enabled to do after peruling what I have faid. The great excellence of that theory, as applied, not only to the practice of phyfic, but to the general conduct of the healh, is, that it impreffes on the mind a fenfe of the impropriety and danger of going from one extreme to another. The human frame is capable of enduring great varicties, if time be given it to accommodate itfelf to different flates. All the mifchief is done in the tranfition from one ftate to another. In a fate of lo:s excitement, we are not rafhly to induce a flate of high excitement; nor when elevated to the latter, are we fuldenly to defcend to the former, but ftep by ftep, and as one who from the top ${ }^{\circ}$
of a high tower defcends to the ground. From hafty and violent changes the human frame always fuffers; its particles are torn afunder, its organs injured, the vital principle impaired, and difenfe, often death, is the inevitable confequence.
- I have only to add, that though in this illuftration of the Brunonian fyltem (written feveral years ago), I have fpoken of a tube conftantly pouring in frefh fuel. becaufe I could not otherwife convey to the reader a familiar idea of the power poffeffed by all living fyltems, to renew their excitability when exhaufled ; yet it may be proper to inform the fudent, that Dr Brown fuppofed every living fyftem to have received at the beginning its determinate portion of excitability ; and, therefore, alchough he fpoke of the exhauftion, augmentation, and even renewal of excitability, I do not think it was his intention to induce his pupils to think of it as a kind of fluid fubftance exifting in the animal, and fubject to the law hy which fuch fubftances are governfubject to the law by which fuch fubftances are govern-
ed. According to him, excitability was an unknown fomerwhat, fubject to peculiar laws of its own, and whofe fomerwat, fubject to peculiar laws of its owa, and whinfe
different ftates we were obliged to defcribe (though inaccurately) by terms borrowed from the qualities of material fubllances.'
"The Brunonian fyftem has frequently been charged with promoting intemperance. The objection is ferious; but the view already given of its principles
fhews it to be groundlefs. No writer had infited fo ferious; but the view already given of its principles
fhews it to be groundlefs. No writer had infifted fo much upon the dependence of life on external caufes, or fo ftrungly ftated the inevitable confequences of excefs. And there are no means of promoting morality cefs. And there are no means of promoting morality
upon which we can rely, except the knowledge of ths true relations between man and other beings or bodies. For by this knowledge we are directly led to fhun what For by this knowledge we are directly led to thun what
is hurtful, and purfue what is falutary. And in what elfe does moral conduct, as far it regards the individuat, confift? It may be faid that the author's life difproves the juftuefs of this reprefentation: his life, howewer, the juitness of this reprefentation: hins life, how'cyer,
only fhews the fuperior power of other caufs, and of bad habits in particular; and I am ready to acknowledge the little efficacy of infruction when bad habits are formed. Its great ufe confits in preventing their formation; for which reafon popular inftruction in medicine would contrihute more to the happinefs of the human fpecies, than the complete knowledse of every thing which is attempted to be taughtin in cducation, ats it is conducted at prefent. But though the princepica it is conducted at prefent. But though the pri.ciples
of the fy tem in queftion did not correct the propenfities of its inventor, it does not follows that they tend to produce the faine propenfities in others."
BRUCE (Janes, Efq; F. R. S.), the celebrated BRUCE (Janies, Ef; F. R. S.), the celebrated
Abyfiniaan traveller, was born, ;-30, at Kinnaird houfe, in the parifh of Larbert and contety of Stirling. His defcent by beth parents was ancient and honourable; and of that defcent be was, perhaps, too proud. His grandfather was - Hay, Efq; of Woodcockdale, $1: 1$ the connty of Linlithgow, who, narrying Mifs Bruce, the heirefs of Kinnaird, gave the name of Brace to all his defcendants.
Perhaps this clange of name may have taken place in obedience to the deed by which the eflate of F.innaird was fettled on Mrs Hay's children; but it is a change which, in a country like Scotland, where ar.tiquity of defcent is highly valued, any man would voluntarily have adopted, who had married the heir fo of ledge the little efricacy of infruction when bad hatits

Berwn,
Bruce. $\underbrace{\text { Bruce. }}$
\qquad 1 1

[^3]\qquad
fuch
fuch a fannly. The Bruces of Kinnaird had heen in polfellion of that eftate for three centuries: they were defcended from a younger fon of Rubert de Bruce, the competitor with Baliul for the crown of Scotland. It would readily occur, that the knowledge of luch a defcent would be beft preferved by continuing the name of their great anccilor; and we have reafon to helieve, that the fubject of this memoir was not much delighted when put in mind, as he frequently was, that, though the heir of the line, he was not the male heir of that brauch of the illuftrious family.

As he was allied to royalty by his father and grandmother, through his muther le was related to fome of the molt refpectable families in the kingdom. She was the daughter of Janes Grahan, Efq; of Airth, dean of the faculty of advocates, and jurlge of the high court of admiralty in Scotland, by Marion, daughter of James Hamilton Efq; of Pencaitland; and to a man of our traveller's turn of mind, there can be no doubt but that it mult have affurded much fatisfaction to think, that no family ranks higher in Scotland than thofe of Bruce, Grahan, and Hamilton. In him, however, it was weaknefs to be proud, if indeed he was proud, of family; for the talents beftowed upon lim by nature, or, to fpeak more properly, by nature's God, would have made him great though he had been born on a dunglitl. He would indeed have been, in all probability, much greater than he was, had he not been in poffeffion of the phantom of birth to gratify much of his ambition; for the facility with which he maftered every ftudy in which he engaged, would have carried him quickly to the top of the mot honourable profeffion.

Mr Bruce was inftructed in grammatical learning at the fchool of Harrow on the Hill, in the county of Middlefex, where he gave the noit unequivocal proofs of g nius, and acquired a very confiderable knowledge of the Greek and I.atin languages. It was cultomary with him to perform, not only his own exercifes, but alfo the exercifes of fuch of his companions as were not equal to the takk themfelves. Among thefe was his maternal uncle, who was frequently indebted to his affitance, and, on one occafion, produced a copy of verfes of his compofition, which excited, not only the applaufe, but the admiration of their mafter. Mr Graham, who was but a few months older than Mr Bruce, had, for fome tranfigreffion (we know not what), been punifhed, as boys in the great fclools in England are often punifhed, by having a tafk fet him, which he foon found himfelf unable to perform. His nephew defired him to be under no uneafinefs, promiling to furnifh him with the verfes before the time at which they were to be given in. He was as good as his word; but the mafter of the fohool foon difcovering that they were not the performance of Mr Graham, exelained, that the author of thefe verfes, whoever he was, might apply to himfelf the words of Horace,

-_Sublimi feriam fidera vertice.

While Mr Bruce was at Harrow, and for a year or two after he liad left it, he was of a very delicate frame, and appeared to his friends to be threatened with a confumption. The truth is, that he was uncommonly tall for his age, and felt all the feeblenefs of joints and other bodily weakneffes to which overgrown buys are generally fubject. His father intended him
for the profefion of the law; and, upon his return from Harrow, he was entered into the univerfity of Edinburgh, where he went throngh a regular courfe of fudy to fit him for being enrolled in the body of advocates: but for fome reafon, which we do not perfectly know, he relinquifhed the ftudy of law for the purtints of trade; and, going to London, entered into partnerfhip with a wine merchant of the name of Allen, whofe dangliter he married.

That lady falling into a bad flate of health, Mr Bruce took her abroad, in hopes that travelling would be attended with beneficial effects; but in thefe he was difappointed, as the died within a year after her marriage. He was induced, in order to difpel his grief, to continue his travels; during which his father dying (at Edinburgh, $4^{\text {th }}$ May 1758), the inheritance of his anceltors devolved upon him, and he returned to Britain. Some of his fubfequent tranfactions thall now be related in his own words.
"Every one will remember that period, fo glorious to Britain, the latter end of the miniftry of the late earl of Chatham. I was then returned from a tour through the greatef part of Europe, particularly througb the whole of Spain and Portugal, between whom there was then the appearance of an approaching war.
" I was about to retire to a fmall patrimony I had received from my anceftors, in order to embrace a life of fludy and reflection, nothing more active appearing within my power, when chance threw me unexpectedly into a very fhort and very defultory converfation with Lord Chatham.
"It was a few days after this that Mr Wood, then under-fecretary of ftate, my zealous and fincere friend, informed me that Lord Chatham intended to employ me upon a particular fervice; that, however, I might go down for a few weeks to my own country to fettle ny affairs, but, by all means, to be rcady upon a call. Nothing could be more flattering to me than fuch an offer, when fo young; to be thought wurthy by Joord Chathan of any employment, was doubly a preference. No time was loit on my lide; but jult after receiving orders to return to London, his lordihip had gone to Bath, and refigned his office.
" This difappointment, which was the more fenfible to me that it was the firf I had met with in public life, was promifed to be made up to me by Lord Egremont and Mr George Grenville. The former had been long my friend; but unhappily he was then far gone in a lethargic indifpofition, which threatened, and did very foon put a period to his exiftence. With Lord Egremont's death my expectations vanifhed, Further particulars are unncceffary; but I hope that, at leaft in part, they remain in that breaft where they naturally ought to be, and where I fhall cver think, not to be long forgotten, is to be rewarded.
"S Seven or eight months were paffed in an expenfive and fruitlefs attendance in Loudon, when Lord Halifax was pleafed, not only to propofe, but to plan for me a jourvey of confiderable importance, and which was to take up feveral years. His lordhip faid, that nothing could be more ignoble than, at fuch a time of life, at the height of my reading, health, and activity, I fhould, as it were, turn peafant, and voluntarily bury my felf in obfeurity and idlenefs; that though war was now drawing faft to an end, full as honourable a competition re-
mained among men of fpirit, which houid acquit themfelves beft in the dangerous line of ufeful adventure and difcovery.
"He obferved, that the coaft of Barbary, whieh might be faid to be jult at our door, was yet but partially explored by Dr Shaw, who had only illuftrated (very judicioully indeed) the geographical labours of Sanfon; that neither Dr Shaw nor Saulon had been, or pretended to be, capable of giving the public any detail of the large and magnificent remains of ruined architecture, which they hoth voneh to have feen in great quantities, and of exquifite elegance and perfection, all uver the country. Such had not been their ftudy, yet fuch was really the tafte that was requircd in the prefent times. He wifhed, therefore, that I mould be the firf, in the reign juft now beginning, to fet an example of making large additions to the royal collection ; and he pledged himfelf to be my fupport and patron, and to make good to me, upon this additional merit, the promifes which had been held forth to me by former minilters for other fervices.
"The difcovery of the fource of the Nile was alfo a fubject of thefe converfations, hut it was always mentioned to me with a kind of diffidence, as if to be expected from a more experienced traveller. Whether this was but another way of exciting me to the attempe I thall not fay; hut my heart, in that inftant, did me juftice to fuggeft, that this too was either to be atchieved by me, or to remain as it had done for thefe laft 2000 years, a defiance to all travellers, and an opprobrium to geography.
"Fortune feemed to enter into this fcheme. At the very inftant, Mr Afpinwall, very ervelly and ignominioufty treated by the dey of Algiers, had refigned his confulmip, and Mr Ford a merchant, formerly the dey's aequaintance, was named in his place. Mr Ford was appointed, and, dying a few days after, the confulhip became vacant. Lord Halifax preffed me to accept of this as containing all forts of eonveniences for making the propoled expedition.
"This farourable event finally determined me. I had all my life applied unweariedly, perhaps with more love than talent, to drawing, the pructice of mathematies, and efpecially that part neceflary to aftronomy. The tranfit of Venus was at hand. It was certainly known that it would be vifible once at Algiers, and there was great reafon to expect it might be twiee. I had furnifhed my felf with a large apparatus of inftruments, the completeft of their kind, for the obfervation. In the cloice of thefe, I had been affilted by my friend Admiral Campbell, and Mr Ruffel fecretary to the Turkey Company : every other neceffary had been provided in proportinu. It was a pleafure now to know that it was not from a rock or a wood, but from my own houfe at Algiers, I could deliberately take meafures to place my felf in the lift of men of fcience of all nations, who were then preparing for the fame fcientific purpofe.
"S Thus prepared, I fet out for Italy, through France; and though it was in time of war, and fome ftrong objections had been made to particular palfports, folieited by our government from the French feeretary of flate, Monfieur de Choifeul molt obligingly waved all fuch exceptions with regard to me, and moft politely affured me, in a letter accompanying my paffport, that thofe difficulties did not in any hape regard me, but
that I was perfecty at liberty to pafs through, or remain in, France with thofe that accompanied me, without limiting their number, as thort or as long a time as fhould be agrecable to ine.
"On my arrival at Rome, I rcceived orders to procecd to Naples, there to await his majefty's further commands. Sir Charles Saunders, hlen with a fleet before Cadiz, had orders to vilit Malia before he returned to Eugland. It was faid that the grand-malter of that order had behaved fo improperly to Mr Harvey (afterwarcs Lord Brittol) in the beginning of the war, and fo partially and unjufly between the two nations in the courfe of it, that an explanation on our part was become neceflary. The grand-mafter no foon. er heard of my arrival at Naples, than, gueffing the errand, he fent off Chevalier Mazzini to London, where he at once made his peace and lis compliments to his majelly upon his acceffion to the throne.
"Nothing remained now bat to take poffeffion of my confulhip. I returned, without lofs of time, to Rome, and from thence to Leghorn, where, having embarked on board the Montreal man of war, I proceeded to Algiers.
"While at Naples, I received from flaves, redeemed from the province of Conftantine, accounts of magnificent ruins they had feen while traverfing that country with their mafter the Bey. I faw the ahfolute neceffity there was for affiftance, without which it was impoffible for any one man, however diligent and qualified, to do any thing but bewilder himfelf. All my endeavours, however, had hitherto been unfuccefsful to perfuade any Italian to put himfelf wilfully into the hands of a people conftantly looked upon by them in no better light than pirates. At laft Mr Lumidden, by aceident, heard of a young man who was then ftudying architecture at Rome, a native of Bologna, whofe name was Luigi Balugani. I can appeal to Mr Lumifden as to the extent of this perfon's practice and knowledge, and that he knew very little when firft fent to me. In the twenty months which he faid witl, me at Algiers, hy afliduons application to proper fubjects under my inftruction, he became a very confiderable help to me, and was the only one that ever I made ufe of, or that attended me for a moment, or ever touehed one reprefuntation of architecture in any part of my journey."

Our traveller, when in Spain, had endeavoured to find aceefs to that immenfe collection of Arabic manu. foripts which were perifhing in the duf of the efcurial; but in vain. "All my fuecefs (fays he) in Europe terminated in the aequifition of thofe feve printed Arabic books that I had found in Holland; and thefe were rather biographers than general hillorians, and contained little in point of general information. The ftudy of thefe, lowever, and of Maracci's Koran, had made me a very tolerable Arab; a great field was opening before me in Africa to complete a collection of manufcripts, an opportunity which I did not neglect.
"After a year fpent at Algiers, conftant converfa. tion with the natives while abroad, and with my manufcripts within doors, liad qualified me to appear in any part of the continent without the help of an interpreter. Ludolf had affured his readers, that the knowledge of any oriental language would foon enable them to acquire the Ethiopic; and I needed only the fame number of books to have made my knowledge of that lan-

Srues. -
gurge go hand in hand with my attainments in the A. rabic. My inmediate profpect of fetting out on my journcy to the inland parts of Africa had made me double my diligence; might and day there was no relaxation from thefe fludies, although the acquiring any fingle lanyuage liad never beal with me either an object of time or dificulty."

At Algiers Mr Bruce was detained longer than he expected, in confequence of a difpute with the Dey concerning Mediterranean paffes. This being adjufted, he proceeded to Mahon, and from Mahon to Carthage. He next vifited Tunis and Tripoli, and travelled over the interior parts of thefe flates. At Bengazi, a fmall town on the Mediterranean, he fuffered hipwreck, and with extreme difficulty faved his life, though with the Jurs of all his baggage. He afterwards failed to the ifles of Rhodes and Cyprus, and proceeding to Atia I.finor, travelled through a confiderable part of Syria and Paleftine, vifiting Haffia, Latikea, Aleppo, and Tripoli; near which laft city he was again in imminent danger of perifhing in a river. The ruins of Palmyra and Baalbec were next carefully furveyed and fisetched by hinn ; and his drawings of thefe places are depofited in the king's library at Kew: "the moft magnificent prefent in that line," to uie his own words, "ever made by a fubject to his fovereign."

It is much to be regretted that Mr Bruce publifhed no particuldr account of thefe various journeys; from the nature of the places vifited, and the abilities of the man, much curious and ufeful information might have been expected. Some manufcript accounts of different parts of them are faid to have been left by him, but whether in fuch a ftate as to be fit for publication, we have not learned.

In thefe various travels fome years were paffed; and Mr Bruce now prepared for the grand expedition, the accomplifhment, of which had ever been neareft his heart, the difcovery of the fources of the Nile. In the profecution of that dangerous object, he left Sidon on the 15 th of June 1768, and arrived at Alexandria on the 20th of that month. He proceeded from thence to Cairo, where he continued to the 12 th of December following, when he embarked on the Nile; and in a rery extraordinary boat, called a canja, of which he fays the main-fail yard was about 200 feet in length, he fail ed up that river as far as Syene, vifiting in the courfe cf his voyage the ruins of Thebes, and the place where Memphis once food, now known by the name of Metrabenny. Leaving Kenne on the Nile, 16 th February 1769, he croffed the defert of the Thebaid to Coffeir on the Red Sea, and arrived at Jidda on the 3 d of May. In Arabia Felix he remained, not without making feveral excurfions, till the 3 d of September, when he failed from Loheia, and arrived on the 19 th at Mafuah, where he was detained near two months by the treachery and avarice of the Naybe of that place. It was not till the 15 th of November that he was allowed to quit Arkecko,
near Mafua; and he arrived on the 1 ;th of February 1770 at Gondar, the capital of Abyflinia, where he ingratiated limfelf with the inof confiderable perfons of both fexes belonging to the court. This he accomplifhed by being a phyfician in the city, a foldier in the field, a courtier every where, demeaning himfelf as confcious that he was not unworthy of heing a companion to the firft of their nobility, and the king's gueft, which is there a character, as it was with ealtern nations of old, to which a certain fort of confideration is due. "T'o this I may add (fays he), that, being in the prime of life, of no ungracious figure, having an accidental knack, which is not a trife, of putting on the drefs, and feeaking the language cafily and gracefully, I cultivated, with the uemoft affiduity, the friendfhip of the fair fex, by the moft modeft and refpectful diftant at. tendance and obfequioufnefs in public, abating juft as much of that in private as fuited their humours and inclination;" and jealonfy being a paffion unknown in Abyfinia, he thus acquired from the ladies great fupport at court.
Several months were employed in attendance on the king, and in an unfuccefsful expedition round the lake of Dambea. Towards the end of October Mr Bruce fet out fur the fources of the Nile; at which long defired fpot he arrived on the 14th of November; and his feelings on the accomplifhment of his wifhes cannot better be expreffed than in his own words:
"It is eafier to guefs than to defcribe the fituation of my mind at that moment; flanding in that fpot which had bafled the genius, induftry, and inquiry, of ancients and moderns for the courfe of near 3000 years. Kings lad attempted this difcovery at the head of armies, and each expedition was diftinguithed from the lait only by the difference of the numbers which had perifhed, and agreed alone in the difappointment which had uniformly, and without exception, followed them all. Fame, riches, and honour, had been held out for a feries of ages to every individual of thofe myriads thofe princes commanded, without having produced one man capable of gratifying the curiofity of his \{overeign, or wiping off this flain upon the enterprife and abilities of mankind, or adding this defideratum for the encouragement of geography. Though a mere private Briton, I triumpled here in my own mind over kings and their armies; and every comparifon was leading nearer and nearer to the prefumption, when the place itfelf where I food, the object of my vain glory, fuggefted what depreffed my thort-lived triumphs."

If thefe triumphs were fhort-lived, they were equally ill-founded: for if the fource of the Nile was feen by Mr Bruce, there can be no doubt of its having been likewife feen by the Portuguefe jefuits. Of this we have elfewhere brought forward fufficient proof; and the candid reader, who fhall take the trouble to compare the extract printed at the bottom of this page (A), with our traveller's account of thefe coy fountains, as it Itands
(A) "In the eaflern part of this kingdom, on the declivity of a mountain, whofe defcent is fo eafy that it feems a beautiful plain, is that fource of the Nile which has been fought after at fo much expence of labour, and about which fuch a variety of conjectures hath been formed without fuccefs. This fpring, or rather thefe two fprings, are two holes, each about two feet diameter, a flone's caft diftant from each other. The one is about five feet and an half in depth, at leaft we could not get our plummet farther, perhaps becaufe it was flopped by

B R U

Bruce. Aands in his own book or in our article Nile (Encyrc.), will be convinced that it was ridiculous in Mr Bruce, and is equally ridiculous in his friends, to pretend that he difcovered what had baffed the genius of inquiry for the courfe of near 3000 years.

It was not, however, the confcioufnefs of having been anticipated by the jefuits (for thefe he without ceremony calls a fet of liars), but the profpect of danger to be encountered on his return to Europe, that caft fuch a damp on his prefent enjoyment. "I was but a few minutes (faye he) arrived at the fource of the Nile, through numbertefs dangers and fufferings, the leaft of which would have overwhelmed me, but for the continual gooduefs and protection of Providence; I was, however, but then half through my journey, and all thofe dangers which I had already paffed awaited me again on my return. I found a defpondency gaining ground faft upon me, which blafted the crown of laurels I had too rafhly woven for my felf."

When he returned to reft the night of that difcovery, repofe was fought for in vain. "Melancholy reflections upon my prefent flate, the doubtfulnefs of my return in fafety, were I permitted to make the attempt, and the fears that even this would be refufed, according to the rule obferved in Abyfinia with all travellers who have once entered the kingdom ; the confcioufnefs of the pain that I was then occafioning to many worthy individuals, expecting daily that information concerning my fituation which it was not in my power to give them: fome other thoughts, perhaps fill nearer the heart than thofe, crowded upon my mind, and forbade all approach of fleep.
"I was, at that very moment, in poffeffion of what had for many years been the principal object of my ambition and wifhes; indifference which, from the ufual infirmity of human nature, follows, at leaft for a time, complete enjoyment, had taken place of it. The marfh, and the fountains, upon comparifon with the rife of many of our rivers, became now a trifling object in my fight. I remembered that magnificent feene in my own native country, where the Tweed, Clyde, and Annan, rife in one hill ; three rivers I now thought not inferior to the Nile in beauty, preferable to it in the cultivation of thofe countries through which they flow; fuperior, vaftly fupcrior, to it in the virtues and qualities of the inlabitants, and in the beauty of its flocks, crowding its pallures in peace, without fear or violence from man or beaft. I had feen the rife of the Rhine and Rhone, and the more magnificent fources of the Soane; I began, in my forrow, to treat the inquiry

Suppl. Vol. I. Part I.
[29] B R U
about the fource of the Nile as a violent effort of a dif tempered fancy.

- What's Hecuba to him, or he to Hecuba, "That he flould weep for her?"
Grief and defpundency now rolling upon me like a torrent, relaxed, not refrefled, by unquiet and imperfect fleep, 1 flarted from my bed in the utmof agomy; I went to the door of my tent, every thing was itill; the Nile, at whofe head I ftool, was not capable cither to promote or to interrupt ny flumbers, but the coomers and ferenity of the night braced my nerves, and chafed away thofe phantoms that while in bed had opprefied and tormented me.
"It was true that numerous dangers, hardfhips, and forrows, had befet me through this half of my excurfion; hut it was fill as true, that anether Cuide, more powerful than my own courage, health, or underfanding, if any of them can be called man's own, had uniformly protected me in all that tedious half. I found my confidence not abated, that ftill the fame Guide was able to conduct me to my wifhed fur home. I immediately refuned my former fortitude, coufidered the Nile as indeed no more than rifing from fprings as all other rivers do, but widely differing in this, that it was the palm for 3000 ycars held out to all the nations of the world as a detur dignifimo, which in my cool hours I had thought was worth the attempting at the rifk of my life, which I had long either refolved to lofe, or lay this difcovery a trophy in which I could have no competitor, for the honour of my country, at the feet of my fovereign, whofe fervant I was."

How unwrrthy is this ranting reflection of the greatnefs of mind which Mr Bruce on other occafions unqueftionably difplayed! Had he indeed been the firft European who difcovered thofe pitiful holes from which the Nile is faid to flow, his merit would not have confifted in travelling from Gondar to the village Geefh, and viewing the fountains which are at that village the objects of idolatrons adoration, but in the addrefs with which he contrised to make himfelf the favourite of all the factions which agitated a barbarous and almoft inhuman nation. In managing thofe factions, he was indeed great; but he feems to have valued himfelf more upon looking at three fprings, of which it is far from being certain that they are the fources of the Nile (fee Nile in this Suppl.), and of which two had certainly been examined more than a century before he was born, by different miffionarics from the kingdom of Portugal! This, however, he calls the object of his wifhes;

R
and
roots, for the whole place is full of trees: of the other, which is fomewhat lefs, with a line of ten feet, we could find no bottom, and were affured by the inhabitants that none ever had been found. It is believed here that thefe fprings are the vents of a great fubterraneous lake; and they have this circumftance to favour their upinion, that the ground is always moint, and fo fuft that the water boils up under foot as one walks upon it. Such is the ground round about thefe fountains. At a little diftance to the fouth is a village named Guix (the Geifb of Mr Bruce), through which the way lies to the top of the mountain, whence the traveller difcovers a vaft extent of land, which appears like a deep valley, though the mountain rifes fo imperceptibly, that thofe who go up or down it are fcarce fenfible of any declivity."- Johnfon's Tranflation of Father Lobo's Voyage to AbyJinia, Clap. X.

The only difference between Lobo's and Bruce's account of thefe fountains worthy of notice is, that the formar found but trwo, while the latter found abree holes; but Bruce fays exprefisly, that the holes are partly artificial ; and Lobo's defcription of them indicates the fame thing. It is therefore not improbable that there may now be four or five holes.

$B \quad R \quad U \quad\left[\begin{array}{lll}130\end{array}\right]$
 $13 R \quad U$

Beuce. and having now accomplified it, he bent his thoughts on his return to his native country.

He arrived at Gondar on the 19 th Novemher I770; but found, after repeated folicitations, that it was by no means an eafy tafk tu obtain permiffion to quit Abyffinia. A civil war in the mean time breaking out (no uncommon occurrence in that barbarous country), Ceveral engagements took place between the king's forces and the troops of the relecls, particularly three actions at a place called Serbraxos on the 19 th, $20 t h$, and 23 d of May 1771. In each of them Mr Bruce acted a confiderable part; and for his valiant conduct in the fecond received, as a reward from the king, a chaiu of gold, of $18+$ links, each link weighing $3 \frac{1}{3}_{\frac{3}{2}}$ divts, or fornewhat more than $2 \frac{1}{2} \mathrm{lbs}$. troy in all. At Gondar, after thefe engagements, he again preferred the mof carneft entreaties to be allowed to return home, entreaties which were - long refifted; but his health at laft giving way, from the anxiety of his mind, the king confented to his departure, on condition of his engaging by oath (в) to return to him in the event of his recovery, with as many of his kindred as he could engage to accompany him.

After a rcfidence of nearly two years in that wretch. ed country, Mr_{r} Bruce left Gondar on the 16 th of December 1771, taking the dangerous way of the defert of Nubia, in place of the more eafy road of Mafuah, by which he entered Abyffinia. He was induced to take this route from his knowledge and former experience of the cruel and favage temper of the Naybe of Mafuah. Arriving at Teawa the 21ft March 1772, he had the misfortune to find the Sheklı Fidele of Atbara, the counterpart of the Naybe of Mafuah in every bad quality : by his intrepidity and prudence, however, and by making good ufe of his foreknowledge of an eclipfe of the moon, which happened on the I $7^{\text {th }}$ of April, he was permitted to depart next day, and he arrived at Sennaar on the $2 g t$ th of the fame month.

Mr Bruce was detained upwards of four months at that miferable and inhofpitable place; the inhabitants of which he defcribes in thefe expreffive words: "War and treafon feem to be the only employment of thefe horrid people, whom heaven has feparated by almoft impaffable deferts from the reft of mankind, confining them to an accurfed fpot, feemingly to give them an earneft in time of the only other worfe which he has zeferved to them for an eternal hereafter." This delay was uccafioned by the villany of thofe who had undertaken to fupply him with money; but at laft, by difpofing of 178 links of his gold chain, the well-earned trophy of Serbraxos, he was enabled to make prepara. tion for his dangerous journey through the deferts of Nubia.

He left Sennaar on the 5 th of September, and arrived on the 3d of October at Chendi, which he quitted on the 20th, and travelled through the defert of Gooz, to which village he came on the 26 th of October. On the $9^{\text {th }}$ of November he left Gooz, and entered upon the moft dreadful and dangerous part of bis
journey; the perils attending which he has related with a power of pencil not unworthy of the greatelt malters. All his camels having perithed, Mr Bruce was under the neceffity of abandoning his baggage in the defert, and with the greateft difficulty reached Adouan upon the Nile on the $2 g^{t h}$ of November.

After fome days reft, having procured frefh camels, he returned into the defert, and recovered his baggage, among which is particularly to be remarked a quadrant (of three feet radius) fupplied by Louis XV. from the Military Academy at Marfeilles; by means of which noble inftrument, now depofited in the Mufeum at Kinnaird, Mr_{1} Bruce was enabled with precifion and accuracy to fix the relative fituations of the feveral remote places he vilited.

On the 1oth of January 1773 , after more than four years abfence, he arrived at Cairo, where, by his manly and generous behaviour, he fo won the heart of Mahomet Bey, that he obtained a firman, pernitting the commanders of Englifh veffels belonging to Bombay and Bengal to bring their Mips and merchandife to Suez, a place far preferable in all refpects to Jidda, towhich they were formerly confined. Of this permif. fion, which no European nation could ever before acquire, many Englifh veffels have fince availed themfelves; and it has proved peculiarly ufeful both in public and private difpatches. Such was the worthy conclufion of his memorable journey through the defert ; a journey which, after many hardhips and dangers, terminated in obtaining this great national benefit.

At Cairo Mr Bruce's earthly career had nearly been concluded by a diforder in his leg, occafioned by a worm in the flefh. This accident kept him five weeks in extreme agony; and his health was not re.eftablifhed till a twelvemonth afterwards, at the baths of Porretta in Italy. On his return to Europe, Mr Bruce was received with all the admiration due to fo exalted a character. After paffing fome confiderable time in France, particularly at Montbard, with his friend the Comte de Buffon, by whom he was received with much hofpitality, and is mentioned with great applaufe, he at laft revifited his native country, from which he lad been upwards of twelve years abfent.

It was now expected that he would take the earliett opportunity of giving to the world a narrative of his travels, in which the public curiofity could not but be deeply intereited. But feveral circumflances contributed to delay the publication ; and what thefe were will be beft related in his own words :
" My friends at home gave me up for dead; and as my deatlı mult have happened in circumftances difficult to have been proved, my property became as it were 2 bareditas jacens, without an owner, abandoned in common to thofe whofe original title extended no further than temporary poffeffion.
"A number of law-fuits were the inevitable confequences of this upon my return. To thefe difagreeable avocations, which took up much time, were added others ftill more unfortunate. The relentlefs ague, caught at Bengazi,
(B) With regard to this oath, Mr Bruce fays, that be hopes the difficulty of performing it extinguifhed the fin of breaking it; and that, at any rate, it being merely perfonal, his engagement to return ceafed with the death of the king, of which he received intelligence during his flay at Sennaar.

$B R$ U [13 r$]$

Eruce. Bengazi, maintained its ground, at times, for a fpace of more than 16 years, though every remedy had becn ufed, hut in vain ; and what was worlt of all, a lingering dillemper had ferioully threatened the life of a molt near relation (his fecond wife), which, after nine years conitant alarm, where every duty bound me to attention and attendance, conducted her at laft, in very early life. to her grave."
A midif the anxiety and the diftrefs thus occafioned, Mr Bruce was by no means neglectful of his private affairs. He confiderably improved his landed property, enclofing and cultivating the wafte grounds, and he highly embellifhed his paternal feat, making many additions to the houfe, one in particular of a noble mufeum, filled with the moft precious flores of oriental literature, largc collections of drawings made, and curious articles obtained, during his far extended peregrinations. An excellent ftratum of coal at Kinnaird drew much of his attention: he erected fteam engines of the moft approved conftruction, and placed his coalery on fuch a footing that, at the period of his deceafe, it produced about $z 0001$. a-year.

The termination of fome law-fuits, and of other bufinefs, which had occupied much of his time, having at lergth afforded leifure to Mr Bruce to put his materials in order, his greatly defired and long expected work made its appearance in 1790, in five large quarto volumes, embellifhed with plates and charts. It is unneceflary, and might be tedious, to enter at prefent into any critic or analyfis of this celebrated work. It is univerfally allowed to be replete with much curious and ufeful information ; and to abound in narratives which at once excite our admiration and intereft our feelings. The very fingular and extraordinary picture which it gives of Abyflinian manners, flartled the belief of fome; but thefe manners, though ftrange in the fight of an European, are little more than might be expected in fuch a barbarous country ; and had an enlightened philofopher vifited Scotland in the times of our earlieft monarchs, he might perhaps have witneffed and related feenes, different indeed from what Mr Bruce faw in Abyffinia, but which to us would have feemed equally ftrange.

A more ferious ohjection to the truth of Mr Bruce's narrative was flarted by an anonymous, but able, critic *, in an Edinburgh newfpaper, foon after the publication, from the account of two aftronomical phenomena, which could not poffilly have bappened, as Mr fruce afferts. The firit of thefe is the appearance of -the new moon at Furfhout, during Mr Bruce's ftay in that place, which he mentions to have been from $25^{\text {th }}$ December 1768 to the 7 th of January 1769 ; and on a particular day in that interval afferts, that the new moon was feen by a fakir, and was found by the ephemerides to be three days old; whereas it is certain that the moon changed on the 8 th of January 1769. The other phenomenon appears equally impoffible. At Teawa Mr Bruce fays he terrified the Shekh by foretelling that an eclipfe of the moon was to take place at four afternoon of the 17 th of April 1772 ; that accordingly, foon after that hour, he faw the eclipfe was begun; and when the fhadow was half uver, told the Shekh that in a little time the moon would be totally dirkened. Now, by calculation, it is certain that at Teawa this eclipfe muft have begun at 36 minutes paft four, and the moon
have been totally covered at 33 minutes paft five; while the fun fet there a few minutes paft fix, before which time the moon, then in oppofition, could not have rifen : fo that as the moon rofe totally eclipfed, Mr Bruce could not fee the fladow half over the difk, nor point it out to the Shekl. To thefe objections, which appear unfurmountable, Mr Bruce made no reply, though in converfation he faid he would do it in the fecond edition of his book.

Thefe are mittakes which can hardly be accounted for by attributing them to the inaccuracy of his notes, or indeed to any caufe which we are inclined to name; and perhaps he has fallen into a miftake of the fame kind in his account of the enormous main-fail yard of the canja, in which he failed up the river Nile. To every man who has but dipped into the fcience of mechanics, it is known that a beam of wond :oo feet in length, muft be of proportional thicknefs, or it would fall in pieces by its own weight. This thicknefs mult be greatly increafed, to enable it to bear the ftrain occafioned by a prodigious fail filled with wind; and thofe only who have been at the Nile, and liave feen the canjas, can fay, whether thefe veffels, or indeed any veffels which can be employed on that river, would not be overfet by yards,

> To equal which, the talleft pine Hewn on Norwegian lills, to be the naaft Of fome great admiral, were but a wand.

The language of the work is in general harfh and unpolifhed, though fometimes animated. Too great a difplay of vanity runs through the whole, and the apparent facility with which the traveller gained the moft familiar accefs to the courts, and even to the harams of the fovereigns of the countries through which he paffed, is apt to create in readers fome doubts of the accuracy of the narration. Yet there appears upon the whole fuch an air of manly veracity, and circumitances are mentioned with a minutenefs fo unlike deceit, that thefe doubts are overcome by the general impreffion of truth, which the whole detail irrefiftibly faftens upon the miud. The character of Ras Michael lias often ftruck us, as containing very ftrong internal evidence of its having been taken from nature; for it is fuch a character, at once extraordinary and confiftent, as neither Mr Bruce, nor perhaps any writer fince Shakefpeare, had genius to feign.
The firft impreffion of the book being almoft difpo. fed of, Mr Bruce had ftipulated with an eminent bookfeller in London for a fecond edition to be publifhed, we think in octavo ; and he was bufy in preparing that edition for the prefs when death removed him from this tranfitory flage. On the 26th of April 1794 he entertained fome company at Kinnaird-houfe svith his ufual hofpitality and elegance. A bout cight o'clock in the evening, when his guelts were ready to depart, he was handing one of the ladies down llairs, when, having reached the feventh or eighth f fep fron the botom, his foot lipped, and hc fell down licadlong. He was taken up \{peechlefs; his face, particularly the forehead and temples, being feverely cut and bruifed, and the bones of his hands broken. He continued in a flate of apparent infenfibility for eight or nine hours, and expired on Sunday the 2% th, in the 64 th year of his age.

Mr Bruce's fecond wife, whom he married on the

B R U. [132] B U C

Bruce. 20th May r776, was Mary, eldef daughter of Thomas Dundas, Efq; of Carron-lall, by Lady Janet Maitland, daughter of Charles fixtls Earl of Lauderdale. By that lady, who, after a fevere and lingering indifpofition, died in 1784 , he had three clildren, of whom one fon and one daughter furvive him.

Mr Bruce's perfon was large, his height exceeding fix feet, his bulk being in proportion to lis lecight ; and at the period when he entered on his dangerous expedition, he was equally renarkable for Atrength and for agility. To thofe who never beheld hin, the engraved medallion in the title pages of the firt and third volumes of his Travels will convey fome idea of his features. He excelled in all manly accomplifhments, heing trained to exercife and fatigue of every kind. He was a hardy, practifed, and indefatigable fwimmer ; and his long refidence among the Arabs had given him a more than ordinary facility in managing the horfe. In the ufe of fire-arms he was fo unerring, that in innumerable inftances he never failed to hit the mark; and his dexterity in handling the fear and lance on horfeback was alfo uncommonly great. He was mafter of moft languages; and was fo well fkilled in oriental literature, that he revifed the New Teflament in the Ethiopic, Samaritan, Hebrew, and Syriac, making many ufeful notes and remarks on difficult paffages. He had ap. plied from early youth to mathematics, drawing, and aftronomy, and had aequired fome knowledge of phyfic and furgery. His memory was aftonifhingly retentive, and his mind vigorous. He was dexterous in negociation, a mafter of public bufinefs, and animated with the warmeft zeal for the glory of his king and country. Such, at leaft, is bis own reprefentation of his character; and though an impartial judge would probably make confiderable abatement for the natural bias of a man drawing his own portrait, yet it cannot be denied, that in perfonal accomplifhments Mr Bruce equalled, if not exceeded, moft of his contemporaries.

Thus accomplifhed, he could not but be eminently fitted for an attempt fo full of difficulty and danger as what he called the difcovery of the fources of the Nile: no one who pernfes his account of the expedition, can fail to pay an unfeigned tribute of admiration to his intrepidity, manlinefs, and uncommon dexterity, in extricating himfelf out of fituations the mof dangerons and alarming, in the courfe of his long and hazardous journey; not to mention his conduct during bis refidence in Abyflinia, his behaviour at Mafuah, Teawa, and Sennaar, evinces the mecommon vigour of his mind: but it was chicfly during his paffage through the Nu bian defert, that his fortitude, courage, and prudence, appeared to the greateft advantage. Of his learning and fagacity, his delineation of the courfe of Solomon's fleet from Tarthifh to Ophir, bis aecount of the caufe of the inundations of the Nile, and his comprehenfive view of the Abyfrian hiflory, afford ample proofs. It mult indeed be confefled, that in his account of the inundations of the Nile, as well as in his delineation of the courfe of Solomon's fleet, he has not the merit of originality; but on both thefe occafions be has fated the hypothefis which he maintains with greater clearnefs, and fupported it with more planfible arguments, than any other author whofe writings have fallen into our hands; and it was furely to his honour, that as foon as he learned that his hypothefis refpecting Ophir and

Tarfhilh had been controverted by Dr Doig of Stirling, he earnefly courted the acquaintance of that eminent fcholar.

After his return to his own country, he refided mottly at Kimnaird; and till he became corpulent, fpent much of his time in the various fports of the field, in which he engaged with great ardour. Though ftudions in youth, and at all times a ftranger to intemperance and diffipation, he read but little in his later years; and feemed to find his chief pleafure in converfation, efpecially the converfation of well-informed ladies. In his friendhips he fometimes appeared to be capricions, attaching himfelf to men in whofe heads and hearts no other perfon could perceive a charm for a mind like his. Though in his own deálings he was always juft and honourable, he was too ready to apprehend unfairnefs in others, and to exprefs fuch apprehenfions with undue warmth. To flrangers he was often arrogant, and fometimes infolent; but in his own family he was an affectionate hufband, a kind father, an agreeable entertainer, and to his fervants a mafter perlaps too indul. gent. In converfation, as well as in his writings, he embraced every opportunity of exprefling a deep and lively fenfe of the care of a fuperintending Providence, without which he was convinced that there could be nofafety in human ftrength or human forefight. His belief of the Chrittian religion retted on the furett grounds ; and fuch was his veneration for the facred writings, that fur fone years before his death they feemed to occupy all the time which he gave to ftudy. He read no fermons, however elegant ; and difuaded others from fuch reading. "Read the Bible (faid he), and you will foon perceive the emptinefs of the moft applanded fermons."

Buck-wheat, a fpecies of Polyganum (fec that article Encycl.), was firft introduced into Europe about the end of the 15 th or the beginning of the 16th century. According to fome botanifts, who lived at thatperiod, its native country is the northern parts of Afia, whence it was brought to Germany and France, where, about the year 1587, it was the cummon food of the poor.

A new fpecies of this grain, or, to fpeak perhaps more properly, a variety of this fepecies, has been for fome time known under the name of Siberian buckwheat, which apperrs to have confiderable advantages over the former. It was fent from Tartary to St Peterburgh hy the German botanifs, who travelled thro' that country in the beginning of the prefent century; and it has thence been difperied over all Europe. Linneens received the firt feeds of it in 1737 from Garber the botanift, and defcribed the plant in his Hortus Cliffertionus. After this it was mentioned by Ammann in 1739: but it snuft have been earlier known in Germany; for in 1733 it was growing in the garden of Dr Ehrhart at Memmingen. In Siberia this plant fows itfelf for four or five years by the grains that drop; but at the end of that period the land beeomes fo full of tares that it is choked, and muft be fown afrefh. Even in the economical gardens of Germany, it is propagated in the fame manner; and in that country it is in fome places found growing wild, though it is nowhere cultivated in the neighhourhood. It is not, however, indigenous, otherwife Ehrhart might have raifed it from German feed, which it feems he could not find in 1733°

$\begin{array}{llll}B & \text { U } & \text { [} 33 \text {] }\end{array}$

B U L

Juland. See much curious information coneerning this plant in Profeffor Beckmann's Hiflory of Inventions, and Difioveries.

BULAM, or Bulama, as it is more ufually called, forms part of the Archipelago, or cluiter of inlands, $1 y$ ing on the weftern or windward coalt of Alrica, and known by the name of the Biffuos or BiJagos, which are fuppofed to have been celehrated by the ancients under the appellation of the Hefperides. It is fituated at the mouth of the Rio Grande, in $11^{\circ} \mathrm{N}$. Lat. and $15^{\circ} \mathrm{W}$. Long. from the meridian of London; and is between feventeen and eighteen leagues long, and from four to five broad.

This inand has become an interelling object to the inhabitants of Great Britain, in confequence of its having been purchafed in the year $1 ヶ 92$ by a fociety inftituted for the fame humane purpofes with thofe which gave rife to the Sierra.Leona company (fee SierraLeona, Encyel) The Bulam afluciation was formed towards the latter end of the year 179t; and they were induced to pitch upon that ifland as the moft eligible tract for their intended colony, is confequence of the flattering defeription given of its climate, foil, and harbours, by M. Brue, formerly director-general of the French Áfrican companies.
The gentlemen originally appointed as truftees for managing the concerns of the affociation at home were, Paul Le Mefurier, M. P.; Fames Kirkatrick, Efq; George Hartwell, Efq; Mofes Ximenes, Efq; Sir Fobn Riggs Miller, Bart. and David Scott, Efq. M. P.; and for eftablinhing the colony, and conducting the affairs of the fociety abroad, the following gentlemen were nominated, viz. Mrefrs H. H. Dalrymple, Foin Young, Sir William Haiton, Bart. Fobn Kirg, Pbilip Beaver, Peter Clutterbuck, Nicholas Bayly, Francis Brodie, Charles Drake, Fobn Paiba, Ricbard Huncorne, Robert Dobbins, and 1 fauc Ximenes.

A fum of L. 9000 being quickly fubfcribed for the eftablifhment of the intended colony, this committee failed from Spithead in three flips on the 11th of April 1792; and landing in due time at Bulama, they purchafed that ifland from the kings of Canabar, who claimed it as their property. They purchafed likewife from the kings of Ghinala the neighbouring ifland Areas, and the adjacent land on the continen!; and thefe feveral purchafes being taken poffeftion of in the ufual form, a body of fettlers, confifting of 49 men, 13 women, and 25 children, were left at Bulama under the Superintendence of Mr Beaver, with a temporary fupply of provifions, ftores, plantation-tools, and merchan. dife, for trading with the neighbouring natives. It is from the difpatches of thefe fettlers, after having lived fome time in Bulama, that the following account of the illand was drawn up by Mr Johanfen.
"The climate, on the whole, may be deemed falubrivus, and will become more fo in proportion to the increafe of cultivation. The mornings and evenings are temperate and pleafant ; the middle of the day is hot, but the fine fea breeze which then fets in tends greatly to cool and refrefl the air. The heat of the fun is not either fo exceffive or intolerable as has been generally fuppofed: indeed nature has moft admirably adapted our mechanical and phyfical qualities to the exigencies of different regions; and man, who is the inhabitant of every climate, may, in fome meafure, render himfelf in-
digenous to every foil. Here the only danger arifics Bulam. from too fudden an expofure to the operation of the vertical rays of the fun, or an excefs of habour ; hoth of which the firif fettlers ought noft tudio::fly to avoid.
" It appears from Mr Beaver's obfervations at noor, between the 20th of July 1792, and the 28th of A pril 1793, that the chernometer, when loweft, was at 7+; the medium heat 85 ; and that it never exceeded 96 , except at one time when it rofe to 100 , during a calm that occurred in the interval between the nontheaft breeze in the morning and the fouth. xell in the evening of the 19 th of February 1793. Whe difference between the heat of noon and that of the morning and evening is from 20 to 30 degrees. On the 23 d of Oc tober 1792, hail of the fize of a pin's head fell during two minutes, although not a cloud was to be feen during this phenomenon. The mercury in the thermometer then flood at 85 ; the wind was at north-aft in the morning and fouth-weft in the evening.
" Immediately after fun.fet a dew contantly begins to fall, which induces fome to light a fire in their houfes; they at the fame time put on warmer clothing. There is little or no twilight; and night and day are nearly equal: the earth has therefore time to cool during twelve hours abfence of the fun.
"None of thofe terrible and dettructive hurricanes fo frequently experienced in the Weft Indies are to be met with here. The tornadoes, which arife chiefly from the ealtern point of the compafs, are but of fhort duration, feldon lafting above an hour, and may be readily forefeen fome time previoully to their commencement. They occur at the beginning and clofe of the wet feafon, and are highly beneficial, as they purify the air, and difpel the noxious vapours with which it would otherwife abound.
"The rains fet in about the latter end of May or the beginning of June, and difcontinue in October or November. They do not fall every day, for there is often a confiderable interval of clear weather, during which the atmofphere is beautifully ferene; the fhowers in the firft and laft month occur but feldom, and are far from being violent; while, on the other hand, they fumetimes refemble torrents, more efpecially towards the middle of the feafon. During the whole of this period, Europeans flould, if pofible, coufine themfelves to their habitations, as the rains prove injuriuus to health, morc efpecially if thofe expofed to them neglect to wipe their bodies dry, and to change their clothes inmediately on their return hone. It is deemed prudent alfo not to dirg the earth wntil the expiration of a month after the return of fair weather, as this is contidered to be unhealthy.
"During the continuance of the dry feafon, a dew falls during the night, in fufficient quantity to anfwer all the purpofes of vegetation.
". Every ftranger is generally here, as well as in the Weft Indies, fubject to a fever or feafoning on his arrival. This is not infectious; it proceeds perhaps from an increafed perfpiration and a fudden extenfion of the pores of the human body, in confequence of the heat, by which means it is rendered more liable to imbibe the abundant exhalations that arife from the animal, vegetable, and mineral kingdoms; but even this, flight as it is, might doubtlefs be avoided by means of a proper regimen, and a thort feclufion from the full action of
the open air, more cfpecially at noon, and during the cvening, until tlic climate has been rendered familiar.
"Bulama is admirably adapted for all the purpofes of an extenfive commerce, being not only happily fituated at the mouth of the Rio Grande, but in the vicinity of feveral other navigable rivers; fo that a trade with the internal parts of Africa is thereby greatly facilitated. The landing is remarkably eafy and fafe, there being no furge; the ebb and flow is regular, and there is an increafe of 16 feet of water at fpring tide. The bay oppofite the Great Bulama is adorned with a number of iflands, covered with trees, and forms a molt excellent harbour, fufficiently capacious to contain the whole navy of Great Britain, which might ride there in fafety. The fettlement in general is well fupplied with water. A number of fprings have been lately dif. covered in different places; and befides a draw-well in the fort, which was erected for the defence of the colony, there is a fmall Atream, which runs into EJewlis Bay, near the new fettlement called Hefper Elewfis: this is adinirably fituated for the fupply of fhipping.
"The illand is beautifully furrounded, and interfperfed with woods: lofty fruit and fureft trees, moftly free from underwood and brambles, form a verdant belt, in fome places two or three miles broad, which entirely encircles it, in fuch a manner as to reprefent a plantation artificially formed around a park. Within this the fields are regularly divided by trees, fo as to refemble the hedge-row's in England. The beach has in fone places the appearance of gravel walks; it is fringed with mangrove trees, which forming a line with the high-water mark, dip their branches into the rea, and thus afford nourifhment to the oyfters that often adhere to their extremities.
"Several parts of Bulama have been occafionally cultivated by the neighbouring blacks, though they did not conitantly refide on it.
"The land in general rifes gradually towards the middle of the ifland, where the highelt fpot is from 6o to 100 feet above the level of the fea. The fmall hill on which the fort is fituated is nearly of the fame altitude.
"The foil is abundantly rich and deep; Atones do not here impede the labours of the farmer; and indeed tone have hitherto been difcovered, but a fmall fort, refembling pieces of ore, which are to be met with on the fhore. There are many favannabs or natural mea. dows, fo extenfive that the eye can farcely defery their boundaries. Thefe are admirably adapted for the rearing of tock and feeding of cattle of every kind:
" Cotton, indigo, rice, and coffee, grow fpontaneaully on this coaft; the fugar-cane is indigenous to many parts of Africa, and might be cultivated here by the labour of freemen, in equal perfection, and to much greater advantage, than in the exhautted iflands of the Wett Indies. All kinds of tropical productions, fuch as pine-apples, limes, oranges, grapes, plums, caffada, guava, Indian wheat, the papaw, water-melon, mukmelon, the pumpkin, tamarind, banana; and numbers of other delicious fruits, alco flonrib here. The adjoining territories produce many valuable forts of fpices,
gums, and materials for dyeing : all of which it is but fair to fuppofe, anight be readily cultivated in a kindred climate and a congenial foil.
" The neighbouring feas abound with a variety of fifh, highly agrecable to the palate. The lion, tyger, jackall, \&.c. are natives of the continent; hut in Bulama no animals have been difcovered, the wolf, fume buffaloes, a few elephants, and a fpecies of the deer, ex. . cepted.
"The woods abound with doves, guinea-fowls, and a variety of birds, celebrated for the beauty of their plumage.
"The natives of this part of Africa, like all favages, are entirely under the dominion of their paffions: hence the violence of their attachment to their friends, and the excefs of their refentment againft their enemies. Their notions of property are very obfcure and confufed: they have no idea of any right arifing from occupancy or improvement. What they want, they either receive or take wherever they may happen to meet with it, and they permit others to do the fame. 'They have been taught by experience that the Europeans will not agree to this: againtt them therefore they employ every artifice that it is in the power of cunning to fuggeit.
" The colonifts need not fear any attack on the part of the negroes, provided their own conduct be juft and peaceable: for Mr Beaver, who was indeed admirably calculated by nature and habit for the ftation he occupied, could enfure both fafety and refpect when the fettlers under him were reduced to four white men, although the neighbouring nations knew that he was in poffeffion of commodities, for the acquifition of which many of them had become day-labourers. He often kept from twenty to forty gromittos, or black cultivators in pay, at that very period, at about four or five bars (A) each per month. Thefe are eafy to be procured, to almoft any number that can poffibly be wanted.
" Until a fufficient quantity of ftock and provifions can be raifed in the company's fettlements, the adjacent iflands will furnilh abuudance of cattle, hogs, fowls, \&c. at a very cheap rate. A horfe may be purchafed at Goree for 11. 10s. a bullock may be had from 12 s. to 18 s . fterling : provitions of all kinds are equally reafonable. Honey is alfo to be procured in great plenty, and bees-wax may be rendered an advantageous object of commercial fpeculation.
"In fhort, the acquifition of Bulama, Arcas, and the adjacent territories, prefents the faireft opportunity of furnifhing Europe with many valuable articles that have hitherto been brought from more remote countries, with inuch greater hazard, and at an increafed expence. The intercourfe with England is eafy, fafe, and expeditious; for the voyage may be performed in the fpace of three or four weeks: and by the terms of the firft fubfcription, a fettler on Bulama might purchafe sco acres of land for L. 30 Sterling ; by the terms of the fecond, which we fuppofe are the terms at prefent, he might purchafe on the illands of Bulama and Arcas, or on that part of the adjacent coaft which was ceded to the fociety by the kings of Ghinala, 200 acres for L. 50 fterling.
"The
(A) A bar is about the value of three fhillings and fixpence.

B U N
 135]

anting. "The colonization of Africa opens a noble and extenfive field to nations and to individuals. 'T'o people thofe fertile territories, defpoilerl of their inhabitants by the flave-trade; to rear the productions of the climes between the tropics, by the affiftance of free men; to give ample fope to the induftry and exertions of thofe who may be inclined to remove from Great Britain ; and to extend the commerce and the manufactures of our native country-thefe are fubjects which have excited the attention of the Bulama affociation, and now claim the affiftance of the ingenious, the fupport of the rich, and the concurrence and good wifhes of all."

BUNTING, is a bird which has been defcribed un. der its generic name Emberiza (Encycl.); but there is one fpecies, the orange flouldered lunting of Latham, of which M. Vaillant relates fome particulars certainly not unwortliy of notice in this place.
"The female of this beautiful bird (fays he) has the fimple colvurs of the 0ny-lark, and a hort horizontal tail, like that of almoft all other birds: the male, on the contrary, is wholly black except at the fhoulder of the wing, where there is a large red patch; and his tail is long, ample, and vertical, like that of the common cosk. But this brilliant plumage and fine vertical tail fubfift only during the feafon of love, which continues fix months. This period over, he lays afide his fplendid habiliments, and affumes the more modeft drefs of his mate. The moft extraordinary circumftance is, that the vertical tail alfo changes to a horizontal one, and the male fo exactly refembles the female, that it is not poffible to diflinguin them from each other.
"The female has her turn. When fhe reaches a certain age, and has loft the faculty of propagating the fpecies, the clothes herfelf for the remainder of her days in the garb which the male had temporarily aftumed; her tail, like his at that period, grows long, and, like his allo, from horizontal becomes vertical.
"The birds of this fpecies affociate together, live in a fort of republic, and build their nelts near to each other. The fociety ufually confifts of about fourfcore females; but, whether by a particular law of nature, more females are produced than males, or for any other reafon of which I am ignorant, there are never more than twelve or fifteen males to this number of females, who have them in common."

According to our anthor, this tranimutation is by no means confined to this particular fpecies of bunting. Many females of the feathered creation, when they grow fo old as to ceafe laying eggs, affume the more fplendid colours of the male, which they retain during the remainder of their lives. 'This fact is ftrikingly perceptible in thofe fpecies in which the male and female very much differ in colour, as the golden pheafant of China, for inftance. In fome fpecies, and thofe not a few, the male alone regularly changes his colour, and affumes once in a year the plumage of the female; fo that at a certain period all the birds of that fpecies appear females. "I have in my poffeffion (fays our author) fpecimens of more than fifty of thofe changing fpecies, in all their tranfitions from one hue to another; and the change is fometimes fo great, that a perfon would fuppofe himfelf to fee individuals totally different. A clofet-naturalift, for inftance, fhewed me four birds as fo many different fpecies, and even as nut belonging to the fame genus, with which I was well ac-
quainted, and which I knew to be the fame bird, only of different ages."

Such clanges as thefe, could they be proved to take place occafionally among domeflic fowls, would in fome meafure account for Itrange fories of cocks laying eggs, which we have heard related by perfons whofe general veracity was never queftioned.

BURKE (Edmund), was born in the city of Dublin on the if of January i 730 . His father was an attorney of confiderable knowledge in his profeffion, and of extenfive practice; and the family from which he fprung was ancient aud honourable. He received the rudiments of his claffical education under Abraham Shackleton, a Quaker, who kept a private fchool or academy, as it has been called, at Bellytore, near Carlow, and is faid to have been a very fiilful and fuccefs. ful teacher.

Under the tuition of this mafter, Burke devoted himfelf with great ardour, induftry, and perfeverance, to his ftudies; and manifelled, even from bis boyifh days, a dilinguithed fuperiority over lis contemporaries. He was the pride of his preceptor, who prognollicated every thing great from lis genius, and who was, in return, treated by his illuttrious pupil, for forty years, with refpect and gratitude.

From fchool Burke was fent to Trinity-college, Dublin, where it was afferted by Goldfmith and others his contemporaries, that he difplayed no particular eminence in the performance of his exercifes. Like Swift, he defpifed the logic of the fchools; and like him too, he devoted his time and lis talents to more ufeful purfuits. Juhnfon, though proud of being ant Oxonian, did not much employ bimfelf in academical exercifes; and Dryden and Milton, who Itudied at Cambridge, were neither of them ambitious of college dillinctions. Let not, however, the example of a Burkc, a Johnfon, a Dryden, or a Milton, feduce into by-paths the ordinary fludent; for though great genius cither finds or makes its own way, comnon minds wult be content to purfue the beaten track. Shakefpeare, with very little learning, was the greateft dramatic poet that ever wrote; but how abfurd would it be to infer from this fact, that every illiterate man may excel in dramatic poetry?

Whilit at college Burke applied himfelf witio fuff. cient diligence to thole branches of mathematical and phyfical fcience which are moft fubfervient to the purpo. fes of life; and thougt he neglected the fyllogitic logic of Arifotle, he cultivated the method of induction pointed out by Bacon. Ineunatology, likewife, and ethics, occupied a confiderable portion of his attention; and whillt attending to the acquifition of knowledge, he did not negleft the means of communicating it. He Atudied rhetoric and the art of compofition, as well as logic, phyfics, hiftory, and moral philofophy; and had at an early period of his life, fays Dr Billet, planned a confutation of the metaphyfical theories of Berkeley and Hume.

For fuch a tank as this, we do not think that nature intended him. Through the ever-active mind of Burke ideas feem to have flowed with too great rapidity to permit him to give that patient attention to minute diitinctions, without which it is vain io attempt a cunfutation of the fubtleties of Berkeley and Hume. The ableft antagonift of thefe two plilofoplers was remarkable for patient thinking, and even apparent flownefs of

$B \cup R$

Burke, apprehenfion; and we bave not a doubt, but that if he had poffeffed the rapidity of thought which characterifed Burkc, his confutation of Hume and Berkeley would have heen far from conclufive. It might have becn equal to the Efry on the Nature and Inmutability of Truik, but would not have been what we lind it in The I quiry into the Human Mind on the Principles of Common Sunfe, and in The Effays on the Intellectual and Ahive Porurrs of Man.

A talk much better fuited to Burke's talents than the writing of metaphyfical difquifitions on the fubttratum of body, prefented itfelf to hint in the year 1749, and a tafk which we as likewife more inmediately ufeful. At that period one Lucas, a democratic apothecary, wrote a mimber of very daring papers againit government, and acquired by them as great popularity at Dublin as Mr Wilkes afterwards obtained by his North Briton in London. Burke, though a boy, perceived, almoit intuitively, the pernicious tendency of fuch levelling doctrines, and refolved to counteract it. He wrote Teveral effays in the ftyle of Lucas, imitating it fo exactly as to deceive the public; purfuing his princip's to confequences neceffarily refulting from them, and thewing at the fame time their abfurdity and their darger. Thus was his firft literary effort, like his laft, calculated to guard his country againft anarchical innovations.

Whilf employed in treafuring up knowledge, which at a future period was to command the admiration of liftening fenates, he did not neglect the means neceflary to render himfelf agreeable in the varied intercourfe of private life. To the learning of a fcholar he added the manners of a gentlemath. His company was fought among the gay and the fafhionable, for his pleafing converfation and eafy deportment; as much as among the learned, for the force and brilliancy of his genius, and the extent and depth of his knowledge. But though the object of very general regard in liis native country, he had hardly any profpect of oltaining in it an independent fettlement. He therefore applied, forne time after the publication of his letters expofing the doctrines of Lucas, for the profefforfhip of logic, which had then become vacant in the univerfity of Glafgow : but whether that application was made too late, or that the univerfity was unwilling to receive a ftranger, certain it is that the vacant chair was filled by another, and that Burke was difappointed of an office in which he was eminently qualified to excel. For many years very little attention has been paid in the univerfities of Scotland, perhaps even too little, to the Ariftotelian logic ; and the profeffors, inttead of employing their time in the analyfing of fyllogifms, deliver lectures on rhetoric and the principles of compofition-lectures which no man was more capable of giving than the unfuccefsful candidate for the profefforfhip in Glafgow.

Difappointment of early views has frequently been the means of future advancement. Had Johnfon become malter of the Staflordhire fchool, talents might have been confumed in the tuition of boys which Providence formed for the inftruction of men; and had Burke obtained the profeflorthip of logic in Glafgow, he would have been the moft eloquent lecturer in that univerfity, inftead of the moft brilliant fpeaker in the Britifh fenate : but whether his talents might not have been as ufefully employed in the univerfity as in the fe-
nate, may perhaps be a queftion, though there can be no queltion whether they would have invelted himfelf with an equal blaze of fplendour.

Difappointed in Glafgow, he went to London, where he immediately entered hinifelf of the Temple; and as there is reafon to believe that he was in ftraitened circumftanices, he fubmitted to the drudgery of regularly writing for daily, weekly, and monthly publications, effays on general literature and particular politics. The profits ariing from fuch writings were at firt finall; but they were fo neceffary to their author, that the intenfe application which they required gradually impaired his health, till at laft a dangerous illnefs enfued, when he reforted for medical advice to Dr Nugent, a phyfician whofe fill in his profeffion was equalled only by the benevolence of his heart. The Doctur, confidering that the noife, and various diturbances incidental to chambers, muft retard the recovery of his patient, furnifhed him with apartments in his own houfe, where the attention of every member of the family contribu. ted more than medicines to the reftoration of his health. It was during this period that the amiable manners of Mifs Nugent, the Doctor's daughter, made a deep im. preffion on the heart of Burke; and as the could not be inferfible to fuch merit as his, they felt for each other a mutual attachment, and were married foon after his recovery.

Hitherto his mental powers and acquirements were known in their full extent only to his friends and more intimate companions; but they were now made public in his firft acknowledged work, intitled, A Vindication of Natural Sociefy. The object of this performance was to expofe the dangerous tendency of Lord Bolingbroke's philofophy. By the admirers of that nobleman, his principles were deemed inimical only to revealed religion and national churches, which they would have been glad to fee overturned, provided our civil eftablifhment had been preferved; and to the civil eftablifhment they perceived no danger in the writings of the author of The Patriot King. Mr Burke thought very diffe. rently; and endeavoured to convince them, that if his Lurdihip's philofophy flould become general, it would ultimately dettroy their rank, their confequence, and their property, and involve the church and ftate in one common ruin. In his ironical attack upon artificial fociety, he makes ufe of the fame common place mode of unfair reafoning which his noble antagonift had employed againt religion and religious eftabliflnments. He argues, from the incidental abufes of political fociety, that political fociety muft itfelf be evil ; lie goes over every form of civil polity, pointing out its defects in the moft forcible language; and, in perfect initation of the fceptical philofophy, he pulls them all down, one after another, without propofing any thing in their ftead. So complete is the irony, that to many not acquainted with fuch difquifitions, he would appear to be ferioufly inveighing againt civil government; and we have actually heard fome of the advocates for modern innovation mention this work as a proof how different Mr Burke's opinions in politics once were from what they appear to have been when he wrote his Refletions on the French Revolution.

The truth, however, is, that there is no inconfiftency between The Vindication of Natural Society and the lateft publications of its illuftrious author. At the pe-

B U R

ried when that work was publifhed, infidelity had infected only the higher orders of men, and fuch of the lower as had got the rudiments of a liberal education. Of thefe we believe a fingle individual was not then to be found, who fuppofed that fociety could fubfilt both without grovernment and without religion; and there. fore while they laboured to overturn the church, and to prove that Chriftianity itfelf is an impofture, they all pretended to be zealoufly attachcd to our civil governinent as eftabliflied in king, lords, and commons. Except the clergy of the eftablifhed church, there was no order of men whom they indiccriminately reviled. Hence it was that not Burke only, but Warburton, and almoft every other opponent of Lord Bolingbroke, hegan their defences of revelation, hy thewing the indiffoluble connection between our civil and ecclefiaftical eftablifhments; and all the difierence was, that he did, through the medium of the moft refined irony, the very fame thing which they had done by ferious reafoning.

Soon after his Vindiuation of Natural Society, Burke publifhed A Philofophical Enquiry into the Origin of our Ideas of the Sublime and Beautiful; a work which foon made its author univerfally known and admired, and which has been ftudied by every Englifh reader of tafte. It is therefore needlefs for us to hazard any opinion either of its general merit or its particular defects. In one of the literary journals of that day, Mr Murphy urged objections againft fome of its fundamental principles, which, in our opinion, it would be very difficult to anfiver; whilf Johnfon, who was certainly a fevere judge, confidered it as a model of philofophical criticifm. "We have (faid he) an example of true criticifm in Burke's Effay on the Sublime and Beautiful. There is no great merit in thewing how many plays have ghofts in them, or how this ghoft is better than that; you mult fhew how terror is imprefled on the mind."

In confequence of this manifeftation of Burke's intellectual powers, his acquaintance was courted by men of diftinguifhed talents, and, among others, ly Johnfon and Sir Jofhua Reynolds. The literary club which has been mentioned (Encycl.) in the life of Jonnson, was inftituted for their entertainment and inftruction, and conifited at firft of Johnfon, Burke, Reynolds, Goldfimith, Dr Nugent, Mr Topham, Beauclerk, Sir Johu Hawkins, Mr Chamier, and Mr Bennet Langton, who were all men of letters and general information, though far above the reft ftood Burke and Johnfon. Of Burke indced Johnfon declared, upon all occafions, that he was the greateft man living; whilft Burke, on a very folemn nccafion, faid of Johnfon, "He has made a chafm, which not only nothing can fill up, but wlich nothing has a tendency to fill up. Johnfon is dead. Let us go to the next beft-There is nobody-No man can be faid to put you in mind of Johnfon." Nor was the opinion which thefe two illuttrious men held of each other's powers peculiar to themfelves alone: all the members of the club obferved, that in colloquial talents they were nearly matched, and that Johnfon never difcourfed with fuch animation and energy as when his powers were called forth by thofe of Burke.

Some years before the inflitution of this club, Burke, who had devoted much of his time to the ftudy of hittory and politics, propofed to Mr Dodfley, an cminent bookfeller, a plan of an Annual Register of the ci-

[^4]vil, political, and literary tranfactions of the times; and Buk. the propofal being acceded to, the work was begun and carried on for many years, either by Burke hinifll, or under his immediate infpection. It bears inded internal marks of his genius, his leaming, and his candour, being by much the mofl elcgant and impartial periodical hiftory which has perhaps appeared in any age or nation. Even when the heat of oppofition made him, in his fpeeches, fometimes mifreprefent the conduct of adminitlration, the Annual Regiller, under his management, continued to render juftice to all parties.

He fill continued to write occafionally political ef. fays for other publications than the Annual Regiter; and forme of thefe eflays in the Public Advertifer having attracted the notice of the Marquis of Rockingham, that nobleman fought the acquaintance of their author. It was in the year 1765 that the firf interview took place between them ; and the Marquis, who was then at the head of the treafury, offering to make Burke his own fecretary, the offer was readily accepted. On this occafion he gave a remarkable proof of difintereitedness and delicatc integrity. Through the influence of Mr Hanilton, known by the appellation of Single Speech Hamilton, and long fufpected to be the author of y_{u-} nius's Letters, he had fome time before obtained a penfion of L. 300 a-year on the Irifh eftablifhment; but this penfion he now thought it incumbent upon him to refign, becaufe he had connected himfelf with a party oppofite in many things to the party whofe meafures were fupported by his friend.

During the Rockingham adminiftration he was chofen member of Parliament for the borough of Wendover in the county of Bucks; and he prepared himfelf for becoming a public fpeaker, by ttudying, fill more clofely than he had yet done, hiftory, poetry, and philofophy; and by foring his mind with facts, images, reafonings, and fentiments. He paid great attention like. wife to parliamentary ufage ; and was at much pains to become acquainted with old records, patents, and precedents, fo as to reader himfelf complete maller of the bufinefs of office. That he might communicate without embarraffment the knowledge which he had thus laborioully acquired, he frequented, with many other men of eminence, the Robin Hood Socicty, where he practifed the replies and contentions of eloquence; and to acquire a graceful action, with the proper management of his voice, he was a very diligent obferver of Garrick in Drury-Lane theatre. He procured his feat in 1765, and in the enfuing feffion delivered his maiden fpeech; which was fuch a difplay of eloquence as excited the admiration of the Houfe, and drew very high praife from its moft diltinguifhed member Mr Pitt, af. terwards Earl of Chatham.

The principal objects which engaged the attention of the Rockingham adminiftration were the ferments in America, which was then in a flate little flort of rebellion, on account of the famous famp-act. Parliament was divided in opinion refpecting that meafure. Whild Mr Grenville and his party (under whofe aufpices the itamp-act had paffed into a law) were for enforcing obedience to it by coercive meafures, Mr Pitt and his followers denied that the parliament of Great Britain had a right to tax the Americans; and the marquis of Rockinghan, who was hardly able to carry any meafure is oppofition to both thele parties, had to con-

Burke. fider, on this occafion, whofe fentiments he would adupt. By the advice, it is faid, of Mr Burke, he chofe a iniddle courle between the two oppofite extremes. To gratify the Americans, he repealed the Atamp-act; and to vindicate the honour of Britain, he got a law paffed declaratory of her right to legillate for America in taxation as in every other calc.

This meafure, whoever was its au:hor, was certainly not the offspring either of wifdem or vigour. If the mother-country had a right to legilite in all cafes for America, obedience to the ttamp-act fhould cortainly bave been enforced; and the minittry which relinquifhcd an acknowledged right, to gratify the factious difpofition of dillant colonies, was obvioully unfit to guide the helm of a great empire. Lord Rockingham and his friends were accordingly difmiffed from offee; and a new adminiftration was formed under the aufpices of Mr Pitt, now created earl of Chatham.

Burke, in the mean time, wrote in defence of the party with which he was connceted; and affumed great credit to it for compofing the diftractions of the Britifh empire by the repeal of the American ftamp-act, whillt the conftitutional fuperiority of Great Britain was preferved by the a\&t for fecuring the dependence of the colonies. After defending his friends, he proceeds to attack thofe who had fucceeded them in office. Of Lord Chatham he fays-"He has once more deign. ed to take the reins of government into his own hand, and will, no doubt, drive with his wonted fpeed, and raife a deal of duft around him. His horfes are all matched to his mind; but as fome of them are young and fkittifh, it is faid he has adopted the new contrivance lately exhibited by Sir Francis Delaval on Weftminfter bridge : whenever they' begin to fnort and tofs up their heads, he touches the fpring, throws them loofe, and away they go, leaving his lord/hip fafe and fong, and as much at his eafe as if he fat on a woolpack."

The letter, of which this is an extract, was printed in the Public Advertifer; and is faid to have contributed, in no fmall degrec, to leffen the popularity of the illuftrious ftatefman againft whom it was written. The miniftry, indeed, which he had formed, confifted of very heterogeneous materials, and was not heartily approved of by the nation. It therefore foon fell in pieces by its own difcord, and Lord Chatham retired in difguft.

The parliament being diffolved in 1768 , Burke was re-elected for Wendover, and took his feat, when the houfe met, in November. The duke of Grafton was now prime minifter, and was oppofed by two powerful parties in parliament ; that of the marquis of Rockingham, and that of which Mr Grenville was coufidered as the leader. Thefe two parties, however, differed widely betheen themfelves. Mr Greaville had pub: lifhed a pamphlet, intitled, The Prefent State of the Na tion; in which he very ably vindicated his own meafures, and of courfe condemned the meafures of thofe who had fucceeded him; and Burke replied to him, with greater eloquence, but perhaps with lefs of argument, in a tract, intitled, Olfervations on the Prefent State of the Nation, in which he makes a very high panegyric on his own patron, and the connections of the party, and animadverts with cutting feverity on their fucceffors in office.

About this period commenced the natlonal frenzy which was excited by the expulfon of Wilkes from the houle of commons, for having printed and publifbed a feditious liliel, and three obfcene and impious libels. In the controverfy to which this tranfaction gave rife, Burke and Johnfon took oppofite fides. Johnfon, in his Falfe Alarm, contends, with great ability, that the expulfion of a member from the houfe of commons for the commiffion of a crime, amounts to a difqualification of that member from fitting in the parliament from which he is expelled; whillt Burke, though he difapproved of the conduct of Wilkes as much as his friend, laboured to prove, that nothing but an act of the legiflature can difqualify any perfon from fitting in parliameut who is regularly chofen, by a majority of electors, to fill a vacant feat. It does not appear that this difference of opinion produced the fmalleft abatement of mutual re. gard between him and Johnfon. They both attended the weclily cluh, and were as much pleafed with each other as formerly.

The proceedings of the Grafton adminiftration, refpecting Wilkes and other fubjects, gave rife to the celebrated Letters of Funius. That thofe compolitions were, in clearnefs, neatnefs, and precition of flyle, infinitely fuperior to perhaps every other feries of newfpaper invectives, has never been controverted; and that they difplay a vaft extent of hiftorical and political information, is known to all who are not themfelves ftrangers to the hiftory of this kingdom. Unclaimed by any author, and fuperior to the productions of moft authors, they have been given to Burke, to his brother Richard, a man likewife of very bright talents, to Mr Hamilton, and to Lord George Germaine. We fhould hardly helitate to adopt the opinion of thofe who a. fribe them to Burke, had he not difavowed them to his friend Johnfon. "I fhould have believed Burke to be Junius (faid Johnfon), becaufe I know no man but Burke who is capable of writing thefe letters; but Eurke fpontaneoyly denied it to me. The cafe would have been different had I afked him if he was the author. A man may think lie has a right to deny when fo queftioned as to an anonymous publication." The difference between the ftyle of thefe letters and that of Burke's acknowledged writings, would have had no weight with us; becaufe fuch was his command of language, that he could affume, and occafionally did affume, any ftyle which he chofe to imitate. He had already fo clofely initated the very different Atyles of Lucas and Bolingbroke as to deceive the public; and what was to hinder him from initating the flyle of Lord George Germaine, which certainly has a Atrong refemblance to that of Junius? We think, however, with Johnfon, that his Spontaneous difavozval of there letters ought to be held as fufficient proof that he was not their author.

Burke had now gotten a very pleafant villa near Beaconsfield in Buckinghamfhire; and being one of the freeholders of the county, he drew up a petition to the king, complaining of the conduct of the houfe of commons refpecting the Middlefex election, and praying for a diffolution of the parliament. The petition, though cxplicit and firm, was temperate and decorous, and as unlike to one on the fame fubject from the livery of London, as the principles of a moderate Whig are to thofe of a turbulent democrate.

About this period he flated very clearly his own political principles in a pamphlet intitled, "Thoughts on the Caufes of the Prefent Difcontents;" and his plan for removing thefe difcontents had not a grain of democracy in its compofition. He propofed to place the government in the lands of an open ariftocracy of talents, virtue, property, and rank, combined together on avowed principles, and fupported by the approbation and confidence of the people; and the arittocracy which he thought fitteft for this great truft, was a combination of thofe Whig fanities which had moft powerfully fupported the revolution and confequent eftablifhments. He expreffed, in ftrong terms, his difapprobation of any change in the conftitution and duration of parliament ; and declared himfelf as averfe from an adminiftration which fhould have no other fupport than popular favour, as from one brought forward merely by the influence of the court.

In this plan there is not that wifdom or liberality which might have been expected from a man of Burke's cultivated mind and extenfive reading. The Whigs, when in power, had been as venal as the Tories; and the imprifonment of Lord Oxford, the banilhment of Atterbury bihop of Rochefter, and the refolution of the houfe of commons to fit for feven years, when it had been chofen by its conftituents for no more than three, were certainly greater violations of the conflitution than the difqualitication of Wilkes, or any other meafure that had been carried by the court during the adminiftrations of Grenville and the duke of Grafton. Burke fhewed himfelf in this publication to be indeed no republican ; but every fentence of it breathed the fpirit of party.

Lord North was now prime minifter; and in order to tranquillize America, he propofed, in the beginning of his adminiftration, to repeal the olmoxious laws of his predeceffors in office, and to referve the duty on tea merely to maintain the authority of parliament. The confequences of this conduct we have detailed eliewhere (fee Britain, Encyl.); and they are too well known to all our readers. The part which Burke acted during his adminiftration will not, in our opinion, admit of any plaufible defence. It was not indeed the part of a democrate, but of a man determined to oppofe every meafure of thofe in power. In the beginning of the contefl, he certainly difplayed more wifdom and patriotifm than the minifter ; for, without entering direetly into the queftion, Whether the mother country had or had not a right to tax the colonies? he contented himfelf with warning the houfe againlt dangerous innovations. "The Amcricans (faid he) have been very ferviceable to Britain under the old fyitem : dn not, therefore, let us enter rafhly upon new meafures. Our commercial interefts have been hitherto greatly promoted by our friendly intercourfe with the colonies; do not let us endanger poffeffion for contingeney; do not let us fubftitute untried theories for a fyltem experimentally afcertained to be ufeful."

This was undoubtedly found reafoning, and everyway becoming a lover of his country : but his continued oppofition to governmerit, after all Europe had leagued againf Great Britain, was a conduct which will admit of no vindication, and for which the only poffible apology muft be found in that ardour of temper which made his friend Hamilton fay, on another occafion,
"Whatever opinion Burke, from any motive, fupports, fo ductile is his imagination, that he foon conceives it to be right." In his moft violent oppofition, however, though his expreffions were often extravagant and indecent, he never for a moment gave his fupport to the metapliyfical doctrine of the impreforiptible rights of man, or to the actual innovations which fome meant to introduce on the bafis of that doctrine. His upright mind was indeed fufficiently guarded againft thefe novelties by what he had obferved in France during the year 1772. Whilt he remained in that country, his literary and political eminence madc him courted by all the anti monarchical and infidel plilofophers of the time: and in the religious feepticifm and political theorics of Voltaire, Helvetius, Rouffeau, and D'Alembert, he faw, even at that period, the probable overthrow of religion and government. His fentiments on this fubject he took occalion, immediately on his return, to communicate to the houfe of commons; and to point out the confpiracy of atheifm to the watchful poliey of every government. He profeffed that he was not over-fond of calling in the aid of the fecular arm to fupprefs doc. trines and opinions; but he recommended a grand alliance among all believers againft thofe minifters of rebellious darknefs, who were endeavouring to thake all the works of God eftablifhed in beauty and in order.

The American war, proving unfuecefsful, though Great Britain never made a more glorious ftand, Lord North and his friends retired from office; and, in February 1782, a new miniftry was formed, at the head of which was placed the marquis of Rockingham; Lord Shelburne and Mr Fox were the fecretaries of ftate ; and Mr Burke, who was appointed pay-maiter to the forces, exulted, rather childifhly, in the houfe of commons, on the happinefs which was to accrue, loth to the king and to the people, from the able and upright conduct of the new nitifters. The time in which the greater part of them continued in office was too fhort to permit thein to do either much good or much evil.

On the ift of July the marquis of Rockingham died; and the earl of Shelburne being placed at the liead of the treafury, Fox and Burke refigned in difgut, and, to the aftonifhment of the nation, formed the famous coalition with Lord North, whofe meafures they had fo long, and fo vehemently oppofed. In the coalition of North and Burke there would lave been nothing wonderful. In the intercourfe of private life, thefe two flatefmen had always met on terms of friendfhip and mutual regard; they had the fame ideas of the excellence of the confitution, and the fame averfion to innovation under the name of reform; even their Audies and amufements were very fimilar, being both men of tafte and claffical learning; and though Burke oppofed the taxation of America by the Britifh parliament, his oppofition proceeded rather from motives of prudence and expediency than from any fettled conviction that the meafure was unconflitutional. But the political enmity of Fox and North bad proceeded, not only to perfonal abufe, but to profeffions of mutual abhorrence; and perhaps there was hardly an unprejudiced perfon in the kingdom who enteriained not fufpicions, that the unexpected union of fuch enemies was cemented by a principle lefs pure than patriotifm.
Mr Pitt was now chancellor of the exchequer; and when he announced to the houfe of commons the peace

$B \cup R$

Burfe. which was concluded in January 1783, he found the terms on which it had been made feverely condemued by North, Fox, Burke, and all their friends. The cenfure paffed on it by Lord North and his followers was perfactly confitent with their furmer conduct, and with the opinions which they hat uniformly naintained; but it was with no goond grace that Fux and Burke, who lad offered an uncunditional peace to the Dutch, and fo frequently popoled to recognize the independence of America, condemned the peace which had been concluded by Lord Shelburne. On this, as on many other occalions, they acted, not as enlightened politicians, but as the rancorous leaders of a party.

In confecuence of a vote of cenfure pafled by the commons, the minifers refigned their employments, and were fucceeded by the duke of Portland, Lord North, Mr Fox, Mr Burke, and their friends. Eurke had his former enployment of payinatler to the forces; Lord North and Mr Fox were fecretaries of fate, and the duke of Portland was firft lord of the treafury. To many perfons this miniftry had the appearance of greater fleregth than any that had governed the kiugdom fince the time of Sir Robert Walpole; but its duration was not longer than that of the preceding. On the 18 th of November, Mr Fox introduced his famous India-bill, into the merits of which it is foreign from our purpofe to enter: fuffice it to fay, that after being ftrongly fupported by Burke, and ably oppofed by Pitt and Dundas, it paffed the houfe of commons by a very great majority ; but was lon in the houfe of peers, and viewed by the king in fuch a light, that he determined on an entire clange of adminitration.

Mr Pitt was now placed at the head of the treafury, where he has remained ever fince (r 800), not withfanding the villent and powerful oppofition which he met with at firt from Nurth and Fox and their coalefced friends: the woice of the nation has been on his fide; and that voice will always drown the bellowings of patriotifm.

The principal events in which Burke fignalized himfclf, fince the year 1784 , were the trial of Hafings, the deliberations of the houfe on the propofed regeney during the lamented illnefs of the king, and the French revolution ; and on each of thefe occalions he difplayed talents which aftonifhed the nation. He bas, indeed, been feverely blamed for the pertinacity with which he profecuted Mr Haltings, and his conduct has been attributed to very unworthy motives; hut of this there is neither proof nor probability. The temperament of his mind was fuch, that, into whatever meafure be entered, he entered with a degree of ardour of which cooler heads can hardly form a conception. Burke was but one member of a committee which found, or thought it found, evidences of the guilt of Haftings ; and, in forming his opinion, it is little likely that he thould have been biaffed by intereft or refentment, whofe delicate fenfe of rectitude would not permit him to retain a penfion when he could no longer fupport the party of that friend who had obtained it for him.

When the eftablifhment of a regency was thought neceflary, he took the part, as it was called, of the Prince of Wales, in oppofition to the plan propofed by Lord Thurlow and the minifter; and we doubt not but he was actuated by the pureft principles: but the language which he ufed in the houfe was vehement,
and fore of his expreffions were highly indecent. Our regard for his menory makes us wifh to forget them.

Suon after the recovery of the king, the attention of Burke was attracted to the moft momentous event of mollern times;-an evcnt which has convulfed all Europe, and of which, from the very firf, his fagacity forefaw the cunfequences. Many of his friends in Parliament, as well as numbers of wife and good men out of it , augured, from the meeting of the fates-general of France, great benefit tu that nation, of which the government was confidered as defyotic and oppreffive ; and fome were fanguinc enough to prognofticate a new and lappy order of things to all the nations connected with France, when its government fhould become more frec. Burke thought very differently: He was well acquainted with the gemius of the French people, and with the primciples of thufe plilofophers, as they called themelves, by whom a total revolution in clurch and ftate had long been projected; and from the commencement of their career in the conftituent affembly, when they eftablifhed, as the foundation of all legal government, the metaphyfical doctrine of the riglots of man, he predicted that torrent of anarchy and ireligion which they have fince attempted to pour over all Europe. Fux and fome of the other leading men in oppofition affected to confider this as a vain fear; and a coolnefs took place bet ween them and Burke, though they ftill acted together in Parliament. At laft, perceiving the French doctrines of liberty and equality, and atheifm, fyreading through this nation, not only among thofe who had talents for fuch difquifitions, but in clubs and facieties, of which the members could be no judges of metaphyfical reafonings, he expreffed his apprehenfion of the confequences in the houfe of commons. This brought on a violent altercation between him and Fox, who was fupported by Sheridan; and a rupture tools place between thefe old friends which was never healed. He no more attended the meetings of the oppofition members; and in 1;90 he publifhed his celebrated $R e-$ fedions in the Frencl, Requlution.

By the friends of government this work was admired as the moft feafonable, as well as one of the ablef, defences of the Britifa conflitution that ever was written; whill Fox and his friends, with the great body of Englifh dififenters, though they admitted it to be the offfpring of uncummon genius, affected to confider it as declamatory rather than argumentative, and as inconfirtent with the principles which its author had hitherto uniformly maintained. Many anfivers were written to it ; of which the moft confpicuous were Vindicia Gallices by Mr Mac Intofh, and The Rights of Man by Thomas Paine. To thefe Burke deigned nut to make a direct reply. He vindieated his general principles, as well as fome of his particular reafonings, in A Letter to a Memler of the National Alfembly; and he very completely evinced the confiftency of his principles in his Appeal from the Nerw to the Old Whigs.

Of this great work, for great it undoubtedly is, the merits as well as the demerits have been much exaggerated; and fome have made it a queftion, Whether it has on the whole been productive of good or harm? By the enemies of the author, it is reprefented as having given rife to the fpirit of difcontent, by exciting fuch writers as Paine and his adherents, who, but for the provocation given by The Refoenions, might have remained

$B \cup R$

Burke. remained in filence and obfenrity. This was from the firlt a very improbable fuppofition ; for the fpirit of democracy has at all times been reftlefs: but fince the appearance of Profeffor Robifon's Proofs of a Confpiracy, and Barrel's Hiflory of 7 acobinifm, it mull be known to every reader to be a fuppofition contrary to fact. The confpirators were bufy long before Burke wrote his Reflegions ; and the friends of order and religion are his debtors, for having fo forcibly roufed them from their number, and put them on their guard. With refpect to compolition, it is certainly neither fo energetic nor fo argunentative as the political tracts of Johnfon, to which fome have affected to confider it as fuperior : but it is more poetical, gives fcope for a greater difplay of the knowledge of human nature; and, being written on a more interefling fubject, it has had a much greater number of readers than thofe unrivalled pieces of political controverfy.

Burke being now affociated with Mr Pitt, continued to write from time to time memorials and remarks on the flate of France, and the alliauce that was formed againft the new order of things in that diftracted country, of which fome have been publifhed fince his death ; and having refolved to quit the buftle of public life as foon as the trial of Mr Haftings fhould be concluded, he vacated his feat when that gentleman was acquitted, and retired to his villa at Beaconsfield, where, on the 2d of Augult 1594, he met with a heavy domeftic lofs in the death of his only fon. In the beginning of the fame year he had loft his brother Riclard, whom he tenderly loved: but though this reiterated ftroke of death deeply affected him, it never relaxed the vigour of his mind, nor leffened the intereft which he took in the public weal.

In this retreat, while he was labouring for the good of all around him, he was difturbed by a very unpronoked attack upon his character by fome diftinguithed fpeakers in the houfe of Peers. Soon after the death of his fon the king was graciontly pleafed to beflow a penfion on him and Mrs Burke ; and this thofe noble lords were pleafed to repreferst as the reward of what they termed the change of his principles and the defertion of his friends. The injullice of this charge muft be obvious to every impartial mind, fince the penfion was given after he had retired from parliament, and could not by his eloquence either fupport the minillry or gall the oppofition. He was not a man to fubmit tamely tu fuch an infult. He publifhed a letter on the occafion, addrelled to a noble lord (Earl Fitzwilliam), in which he repels the attack on his character, and retaliates on thofe by whom it was made, in terms of fuch eloquent and keen farcafm, as will be read with admiration as long as the language of the letter fhall be underfood.

Burke having employed every efort which benevolence and wifdom could devife to ftimulate civilized governments to unite in oppolition to the impiety and anarchy of France, laboured likewife in private to rclieve thofe who had fuffered exile and profeription from the direful fyllem. Through his infuence a fchool was eflablifhed in his neighbourhood for the education of thufe whofe parents, for their adherence to principle, were rendered unable to afford to their children uffful inftruction ; and that fchool, which on his deathbed he recommended to Mr Pitt, continues to Aourifh under his. powerful protection.

When the appearance of melioration in the principles and government of France induced our fovereign to make overtures of peace to the French directory, Burke refumed his pen; and in a feries of letters, intitled, Thoughts on the Propset of a Regicide Pcace, difplayed a force of genius which is certainly not furpaffed, and perhaps not equalled, even in his far-famed Keflections on the French Revolution. This was his laft work, and was confidered by himfelf as in its nature teflamentary.

From the beginning of June 1797 his health rapidly declined; but his underfanding exerted itfelf with undiminifhed force and uncontracted range ; and his dif. pofitions retained all their amiable fiveetnefs. On the 7 th of July, when the French revolntion was mentioned, he fpoke with pleafure of the confcious rectitude of his own intentions in what he had done and written refpect. ing it ; entreated thofe about him to believe, that if any unguarded expreffion of his on the fubject had offended any of his former friends, no offence was by him in. tended ; and lie declared his unfeigned forgivenefs of all who had on account of his writings, or for any other caufe, endeavoured to do him an injury. On the day following he defired to be carried to another room; and whilf one of his friends, anfifted by fome fervants, was complying with his requeft, Mr Burke faintly uttering, "God blefs you," fell back and expired in the 68th year of his age.

From this detail, we truft that our readers are already fufficiently acquainted with his general character. In genius, varicty of knowledge, and readinefs of expreffion, Jolinfon alone of all his contemporaries could be confidered as his rival ; and, like that great man, he took every opportunity, efpecially during his lalt illnefs, to declare his unfhaken belief of the Chrittian religion, his veneration for fincere Cluriftians of all perfuafions, and his own preference of the church of England. Of the worfhip of that church he had indeed through the whole of his life been a regular and devout attendant; and the tears which the pour, in the neighbourhood of his villa, fhed at his funeral, "gave fufficient evidence that his faith had been productive of charity. In his public conduct, the irritability of his temper, and the ardou: of his imagination, fometimes hurricd him into thie $\epsilon \ddot{\chi}$ ceffes of a mere party-man; but we believe that his great religious and political principles never varied. He has himfelf characterifed his public conduct in the conclufion of his Reflections on the French Revolution, when he fays, that "they come from one who has been no tool of power, no flatierer of greatnef3, and who in his lat acts does not with to befie the tenor of his life; from une who wifhes to preferve confitency, but who would preferve confiftency hy varying his means to fecure the unity of his end ; and when the equipoife of the veffel in which he fails may be endangered by overluading it upon one fide, is defirous of carrying the Small weight of his.reafons to that which may preferve the equipoife."

BURNET (James, Efi:), better known by the ritle of Lord Manbadio, clefcended from an ancient fu. mily in the county of Mearns in Scotland. He wasthe eldeft fon of Arthur Burnet, Efq; of Minnoddo, whers he was burn in the year 1714. After paling through the ufual courfe of fehool education, le profecuted his fludies at the univerfities of Aberdeen, Edinburgh, an!

B U R [142] 13 U IR

Burnet. Leyden, with diftinguihed reputation. He was admitted an advocate in 1737 ; and on the 12 ih of February 1767 , he was raifed to the bench, by the title of Loid Monboddo, in the room of Lord Milton, appointed a judge the $4^{\text {th }}$ of June 1742 , and who had fucceeded Sir John Lauder of Fountainhall, admitted November 1. 1689 ; fo that he was only the third judge in fucceffion fince the revolution.
Before his promotion to the bench, he had married Mifs Farquharfon, a very amiable woman, by whom he had a fon and two daughters; whom, without regarding the difference of climate, he reared as the children of ancient Greece were reared.

From early youth Lord Monboddo's application to literary and juridical fudies was feverely diligent. Between clafical literature and the law of Scotland, there exifts a frong connection, arifing from the adoption of the forms and maxims of the civil law of the Romans, by the ancient leginators and judges of Scotland. Accordingly, while Mr Burnet rofe into reputation as a lawyer, he at the fame time improved into profound erudition that knowledge of the Greek and Roman authors which he had acquired at fchoul and the univerfity; and his partiality to the Greek language could not fail to be ftreugthened by his frequent converfations with Dr Blackwell, the celebrated profeffor of that language in the Marifchal College and Univerfity of Aberdeen.

His favourite fudies, however, were not fuffered to interfere with his duty as a judge. In his native county, his integrity as Sheriff will be long remembered; and during the whole time that he was a Lord of Sef. fion, he difcharged the duties of his high office with an affidnity, a patience, a clear intelligence, and inflexible rectitude, which did honour to the court of which he was a judge. Like others, he was liable to error; but neither the awe of power, the blandifhments of fattery, nor even compaffion for diftrefs, could turn Lord Monboddo afide from what he believed to be the courfe of juftice.

Several of the judges of the court of feffion were at that period ambitious of mining among philofophers and men of tafte; and Lord Kames's Elements of Criticij/m is a work which will be long read, and always admired. It was not, however, admired by Lord Monboddo ; and he determined to vindicate the fuperiority of the ancients over the moderns, as well in philofoplyy as in belles lettres. With this view he publifhed, in 1773, the firft volume of his Origin and Progress of Language; which was perufed with mingled fentiments of refpect and indignation. It was better received in England than in his own country; and notwithftanding the ridicule brought upon him by his belief in the exiftence of mermen, and men withs tails, the author felt himfelf fufficiently encouraged to complete his plan in five volumes.

Having, as he thought, vindicated Grecian literature, he was induced to undertake another great work in defence of Grecian philofoply, againtt the ftill more arrogant claims, as he deemed them, of Bacon and Newton, with their followers. With this view, he publifhed, at different times, and in fix volumes 4 to, a work intitled Ancient Metaphyfics, fraught, it muft be confeffed, with much erudition, much good fenfe, and, ftrange as the combination may feem, with much abfurdity. In
the preface to the firf volume, he declares open war Burnet. againft all modern writers of philofophy, except Mr Harris, who was an adorer of the ancients like himfelf, Mr Baxter, and Dr Cudworth. He acknowledges Baxter's. book on the Immateriality of the Soul to be a truly valuable work ; and fays of Cudworth's Intelleciual Sylem, that he agrees with it throughout. There is indeed fuch a coincidence of notions in the Intellecual Syfem and the Civient Mctaphyfics, that an ill-matured critic might be tempted to Lifpect, that every thing valuable in the latter was borrowed from the former.

The Ancient Metaphyfics had few admirers in Scotland; but it procured for its author, from a feholar of Oxford, we think Mr Huntingford, the title of arxos Aptolnitans. His Lordhip continued to cultivate what he called Greek philefophy, and to attend his judicial duties, with indefatigable diligence till within a few days of his death, which happened at his houfe in Edinburgh, on the 26th of May 1799, at the advanced age of 85 .

His private life was fpent in the practice of all the focial virtues, and in the enjoyment of much domertic felicity. Although rigidly temperate in his habits of life, lee, however, delighted much in the convivial fociety of his friends; and among thefe he could number almoft all the moft eminent of thofe who were ditinguifhed in Scotland for virtue, literature, or genuine elegance of converfation and manners. His fon, a very promifing boy, in whofe education he took great delight, was fnatched away from his affections by a premature death. But when it was too late for forrow and anxiety to avail, the afflicted father ftifled the emotions of nature in his breaft, and wound up the energies of his foul to the firmeft tone of foical furtitude. He was, in like manner, bereaved of his excellent lady, the object of his deareft tendernefs; and he endured the lof3 with a fimilar firmnefs, fitted to do honour either to philofophy or to religion. In addition to his office as a judge in the court of feffion, an offer was made to him of a feat in the court of jufticiary. But though the emoluments of the office would have made a convenient addition to his income, he refufed to accept it, left its bufinefs fhould too much detach him from the purfuit of his favourite §udies.

The vacations of the court of feffion afforded him fufficient leifure to retire every year, in fpring and in autumn, to the country; and he ufed then to drefs in a ftyle of timplicity, as if he had been only a plain farmer ; and to live among the people uyon his eftate with all the kind familiarity and attention of an aged father among his grown-up children. Although the eftate, from the old leafes, did not afford an income of more three or four hundred pounds a-year, he would never raife the rents upon his old tenants, nor difplace an old tenant, for the fake of any augnentation of emolument offered by a richer or more enterprifing ftranger. In imitation of the rural economy of fome of the ancients, whom he chiefly admired, he accounted population the true wealth of an eftate, and was defirous of no other improvement of his lands, than that of having the number of perfons that fhould refide upon them, and be fuftained by their produce, fuperior to that of the population of any equal portion of the lands of his neighbours.

It was at Monboddo that he had the pleafure of receiving Dr Samuel Johnfon, with his friend James Bofwell, at the time when thefe two gentlemen were upon

Burnet. upon their well-known Tour through the Highlands of Scotland. Johnfon admired nothing in literature fo much as the difplay of a keen difcrimination of luumau character, a jutt apprelsention of the principles of moral action, and that vigorous common fenfe which is the molt happily applicable to the ordinary conduct of life. Monhoddo delighted in the refinements, the fubtleties, the abotractions, the affectations, of literature; and, in comparifon with thefe, defpifed the grofinefs of modern tafte and of common affairs. Johmfon thought learning and feience to be little valuable, except fo far as they could be made fubfervient to the purpofes of living ufefully and happily with the world upon its own terms. Monboddo's favourite fcience taught him to look down with contempt upon all fublunary, and efpecially upon all modern things; and to fit life to literature and philofoply, not literature and philofoply to life. Jaines Bofwell, therefore, in carrying Jolufon to vifit Monbuddo, probably thought of pitting them one againtt another, as two game cocks, and promifed himfelf much fport from the colloquial conteft which he expected to enfue between them. But Monboddo was too hofpitable and courteous to enter into keen contention with a ftranger in his own houfe. There was rouch talk between them, but no angry consroverfy, no exafperation of that dilike for each other's well-known peculiarities with which they had met. Johnfon, it is true, ftill continued to think Lord Monboddo what he called a prig in literature ; and Monboddo to cenfure Johnfon for allowing the moderns, in fome things, to furpafs the ancients.

Lord Monboddo ufed frequently to vifit London, to which he was allured by the opportunity that great metropolis affords of enjoying the converfation of a vaft number of men of profound erudition. A journey to the capital became a favourite amufement of his periods of vacation from the bufinefs of the court to which he belonged; and, for a time, he made this journcy once a-year. A carriage, a vehicle that was not in common ufe among the ancients, he confidered as an engine of effeminacy and Ioth, which it was difgracefu! for a man to make ufe of in travelling. To be dragged at the tail of a horfe, inltead of mounting upon his back, feemed, in his eyes, to be a truly ludicrous degradation of the genuine dignity of human nature. In all his journeys, therefore, between Edinburgh and London, be was wont to ride on horfeback, with a fingle fervant attending him. He continued this practice, without finding it too fatiguing for his ftrength, till he was up. wards of eighty years of age. Within a few years of his death, on his return from a laft vifit, which he made on purpofe to take leave of all his old friends in London, he hecame exceedingly ill upon the road, and was unable to proceed; and had he not been overtaken by a Scotch friend, who prevailed upon him to travel the remainder of the way in a carriage, he might perhaps have aetually perifhed by the way-fide, or breathed his laft in fome dirty inn.

In London, his vifits were exceedingly acceptable to all his friends, whether of the literary or falhionable world. He delighted to fhew himfelf at court ; and the king is faid to have taken a pleafure in converfing with the old man with a diftinguifhing notice that could not but be very flattering to him. He ufed to mingle, with great fatisfaction, with the learned and the inge.
nious, at the houfe of Mrs Montague. However, after the death of his friend Mr Harris, he found a very fenfible diminution of the pleafure he had been wont to enjoy in the focicty of Loudon.

A conftitution of body, naturally framed to wear well and latt long, was Arengthened to Lord Munboddo by exercife, guarded by temperance, and by a tenor of mind too firm to be deeply broken in upon by thele paffions which coafame the principles of life. In the conntry he always ufed much the excreifes of walking in the open air and of riding. The cold bath was a meaus of preferving the health, to which he lad recourle in all feafons, aunid every feverity of the weather, and under every inconvenience of indifpofition or bufinefs, with a perfeverance invincible. He was accuitomed, alike in winter and in fummer, to rife at a very early hour in the morning, and, without lofs of time, to betake hmfelf to fludy or wholefome exercife. It is faid that he even found the ufe of what he called the air bath, or the practice of occafionally walking about, for fome minutes, naked, in a room filled with frefh and cool air, to be highly falutary. In a word, if his pecu. liarities were ftriking, his virtues, and learning, and ta. lents, were equally friking; and, taken altogether, he mult be confidered as a great and a good man.

BURNS (Robert), was a native of Airfhire, one of the weftern counties of Scotland. He was the fon of humble parents ; and his father paffed through life in the condition of a hired labourer, or of a fmall farmer. Even in this fituation, however, it was not hard for bim to fend his children to the parifh-felrool, to receive the ordinary inftruction in reading, writing, arithmetic, and the principles of religion. By this courfe of education young Robert profited to a degree that might have encouraged his friends to deftine him to one of the liberal profeffions, had not his father's poverty made it neceffary to remove him from fchool, as foon as he had grown up, to earn for himfelf the means of fupport as a hired ploughboy or thepherd.

The expence of education in the parih-fchonls of Scotland is fo fmall, that hardly any parents who are able to labour want the means of giving to their chddren at lealt fuch education as young Burns received. From the fpring labuurs of a plougliboy, from the fummer employment of a fhepherd, the peafant-youth often returns for a few months, eagerly to purfue his education at the parifh-fchool.

It was fo with Burns: he returned from labour to learning, and from learning went again to labour, till his mind began to open to the charms of tafte and knowledge; till he began to feel a paffion for books, and for the fubjects of books, which was to give a colour to the whule thread of his future life. On nature he foon began to gaze with new difcernment and with new enthufiafm : his mind's eye upened to perceive af. fecting beauty and fublimity, where, by the mere grofs peafant, there was nought to be feen but water, eartb, and ky -but aoimals, plants, and foul.

What might perhaps fir!t contribute to difpofe his mind to poetical efforts, is one particular in the devo. tional piety of the Scottifh peafantry ; it is ftill common for them to make their children get by heart the Pfalms of David, in that verfion of homely rhymes which is ufed in their churches. In the morning and in the evening of every day, or at leaft on the evening

B UR

Burns. of every Saturday and Sunday, thefe Pfalms are fung in folenn family devotion, a chapter of the Bible is sead, and extemporary prayer is fervently uttered. The whole books of the Sacred Scriptures are thus continually in the hands of almon every peafant. And it is impoffite that there fhould not be occalionally fome fouls among them, awakened to the divine emotions of genius by that rich affernblage which thofe bouks prefent, of almof all llat is interefling in incidents, or picturefque in imagery, or affectingly fuhlime or tender in fentinents and charater. It is impoffible that thofe sude rhymes, and the fiunple artlefs mufic with which they are accompanied, floould not occafionally excite fome ear to a fond perception of the melody of verfe. 'That Burns had felt thefe inpulfes, will appear undeniahly certain to whoever fhall carefully perufe his Cottar's Saturday's Night; ; or fhall remark, with nice obfervation, the various fragments of Seripture fentiment, of Scripture imagery, of Scripture language, which are fattered throughout his works.

Still more interefting to the young peafantry are thofe ancient ballads of love and war, of which a great number are, in the fouth of Scotland, yct popularly known, and often fung by the ruftic maid or matron at lier fpinning-wheel. They are liftened to with ravifhed ears by old and young. Their rude melody; that mingled euriofity and awe which are naturally excited by the very idea of their antiquity; the exquifitely tender and natural complaints foinetimes poured forth in thens; the gallant deeds of knightly heroifm, which they fometimes celebrate ; their wild tales of demons, ghofts, and fairies, in whofe exiftence fupertition alone has believed; the manners which they reprefent; the obfolete, yet picturefque and expreffive, language in which they are often clothed-give them wonderful power to tranfport every imagination, and to agitate every heart. To the foul of Burns they were like a happy breeze touching the wires of an Eolian harp, and calling forth the moft ravifhing melody.

Befide all this, the Gentle Shepherd, and the other poems of Allan Ramfay, have long been highly popular in Scotland. They fell early into the hands of Burns; and while the fond applaufe which they received drew his emulation, they prefented to him likewife treafures of phrafeology and models of verification. He got aequainted at the fame time with the poetry of Robert Fergufon, written chiefly in the Scottifh dialect, and exhibiting many fpecimens of uncomnon poetical excellence. The Seafons of Thomfon too, the Grave of Blair, the far-famed Elegy of Gray, the Paradife Lott of Milton, perhaps the Minftrel of Beattie, were fo commonly read, even among thofe with whom Burns wonld naturally affociate, that poetical curiofity, although even lefs ardent than his, could in fuch circumftances have little difficulty in procuring them.

With frech means to give his imagination a poetical bias, and to favour the culture of his tafte and genius, Burns gradually became a poet. He was not, however, one of thofe forward children who, from a mittaken impulfe, begin prematurely to write and to rhyme, and hence never attain to excellence. Converfing familiarly for a long while with the works of thofe poets who were known to him; contemplating the afpect of nature in a diftrict which exhibits an uncommon affen-
blage of the beautiful and the ruggediy grand, of the cultivated and the wild; looking upon human life with an eye quick and keen, to remark as well the inronger and leading, as the nieer and fubordinate, features of character ; to difriminate the generous, the honourable, the manly, in conduct, from the ridiculous, the bafe, and the mean-he was ditinguifhed anoong his fellows for extraordinary intelligence, good fenfe, and penetration, long before others, or perlaps even himfelf, fufpected him to be capable of writing verfes. His mind was mature, and well fored with fuch knowledge as lay within his fearelı: he had made himfelt mater of powers of language, fuperior to thofe of almoft any foriner writer in the Scottif dialeet, before he conceived the idea of furpaffing Ramfay and Fergufon.
Hitherto he had converfed intinately ooly with peafants on his own level; but having got admiffion into the fraternity of free mafons, he had the fortune, whether good or bad, to attract in the iodges the notice of gentlemen better qualified than his more youthful companions to call forth the powers of his mind, and to fhow him that he was indeed a poet. A mafonic fong, a fatirical epigram, a rhyming epifle to a friend, attempted with fuccefs, tallght him to know his own powers, and gave him confidence to try tafks more arduous, and which fhould command ftill higher burts of applaufe.

The annual celebration of the facrament of the Lord's Supper, in the rural parifhes of Scotland, has much in it of thofe old popilh feltivals, in which fuperfition, traffic, and amufement, ufed to be ftrangely intermingled. Burns faw, and feized in it one of the happieft of all fubjects, to afford fcope for the difplay of that frong and piercing fagacity by which he could almolt intuitively diftinguin the reafonable from the abfurd, and the becocoming from the ridiculous; of that picturefque power of fancy, which enabled him to reprefent fcenes, and perfons, and groupes, and looks, attitude, and geftures, in a manner alinoft as lively and impreffive, even in words, as if all the artifices and energies of the pencil had been employed; of that knowledge which he had neceffarily acquired of the manners, palfions, and prejudices of the ruftics around him, of whatever was ridiculous, no lefs than of whatever was affectingly beautiful in rural life.

A thoufand prejudices of Popifh, and perhaps too of ruder Pagan fupertition, have from time immemorial been conmected in the minds of the Scottifh peafantry, with the annual recurrence of the Eve of the Feftival of all the Saints or Halloween. Thefe were all intimately known to Burns, and had made a powerful impreffion upon his imagination and feelings. He chofe them for the fubject of a poem, and produced a piece which is almolt to frenzy the delight of thofe who are beft acquainted with its fubject; and which will not fail to preferve the memory of the prejudices and ufages which it defribes, when they fhall perhaps have ceafed to give one merry evening in the year to the cottage firefide.

The fimple joys, the honeft love, the fincere friendfhip, the ardent devotion of the cottage; whatever in the more folemn part of the ruftic's lite is humble and artlefs, without being inean or unfeemly-or tender and dignified, without alpiring to ftilted grandeur-or to unnatural, bufkined pathos, had deeply impreffed the imagination

Eurns. imagination of the rifing poet; had, in fome fort, wrought itfelf into the very texture of the fibres of his foul. He tried to exprefs in verfe what he mot tenderly felt, what he moft enthufiattically imagined; and produced the Cottar's Saturday Night.

Thefe pieces, the true effufions of genins, informed by reading and obfervation, and prompted by its own native ardour, as well as by friendly applaufe, were foon handed about among the motk difcerning of Burns's acquaintance; and were by every new reader perufed, and reperufed, with an eagernefs of delight and approbation which would not fuffer their author long to withhold them from the prefs. A fubfeription was propofed, was earneitly promoted by fome gentlemen, who were glad to intereft themfelves in behalf of fuch fignal poetical merit; was foon crowded with the names of a confiderable number of the inhabitants of Airhire, who in the proffered purchafe fought not lefs to gratify their own paffion for Scottifh poefy, than to encourage the wonderful ploughman. At Kilmarnock were the poems of Burns for the firlt time printed. The whole edition was quickly diftributed over the country.

It is hardly poflible to exprefs with what eager admiration and delight they were every where received.They eminently poffeffed all thofe qualities which the moft invariably contribute to render any literary work quickly and permanently popular. They were written in a phrafeology, of which all the powers were univerfally felt ; and which being at once antique, familiar, and now rarely written, was hence fitted to ferve all the dignified and picturefque ufes of poetry, without making it unintelligible. The imagery, the fentiments, were at once faithfully natural, and irrefiftibly impreffive and interefting. Thofe topics of fatire and fcandal in which the ruftic delights; that humorous imitation of character, and that witty aftociation of ideas familiar and ftriking, yet not naturally allied to one another, which has foree to thake his fides with laughter; thofe fancies of fupertition, at which he flill wonders and trembles; thofe affecting fentiments and images of troe religion, which are at once dear and awful to his heart -were all reprefented by Burns with all a poet's magic power. Old and young, high and low, grave and gay, learned or ignorant, all were alike delighted, agitated, tranfported.

In the mean time, fome few copies of thefe fafcinating poems found their way to Edinburgh; and having been read to Dr Blacklock, they obtained his warmett approbation. In the beginning of the winter $1786-7$ Burns went to Edinburgh, where he was received by - Dr Blacklock with the moft flattering kinduefs, and introduced to every man of generofity and talte among that good man's friends. Multitudes now vied with each other in patronizing the ruftic poet. Thofe who poffefled at once true tafte and ardent philanthropy were foon earneftly united in his praife: they who were difpofed to favour any good thing belonging to Scotland, purely becaufe it was Scottiih, gladly joined the cry; thofe who had hearts and underftanding to he charmed, withont knowing why, when they faw their native cuftoms, manuers, and language, tnade the fub. jects and the materials of poefy, could not fupprefs that :voice of feeling which ftruggled to declare itfelf for Burns: for the diffipared, the lieentious, the malignant -wits, andithe freethinkers, he was fo unfortunate as to miSuppl. Voz. I. Part. I.
have fatire, and obfeenity, and ridicule of thinga facred, fuflicient to eaptivate their fancies; even for the pions he had paflages in which the infpired language of devotion might feem to come mended from his pen.

Thus did Burns, ere he had been many weeks in F:dinborgh, find himfelf the object of univerfal curiofity, favour, admiration, and fondnefs. He was lought after, courted with attentions the moft refpectful and affiduous, feafted, flattered, careffed, treated by all ranks as the firlt boalt of his country, whom it was fearcely poffible to honour and reward to a degree equal to his merits. In comparifon with the general favour whicl now promifed to more than crown his moft fanguine hopes, it could hardly be called praife at all whicl he had obtained in Airfhire.

In this pofture of our poet's affairs a new edition of his poems was earneftly called for. He fold the copyright for one hundred pounds; but his friends at the fame time fuggefted, and actively promoted, a fubfeription for an edition, to be publified for the bencfit of the author, ere the bookfeller's right fhould commence. Thofe gentlemen who lad formerly entertained the publie of Edinburgh with the periodical publication of the papers of the Mirror, laving again combined their talents in producing the Lounger, were at this time about to conclude this laft feries of papers; yet before the Lounger relinquithed his pen, he dedicated a number to a commendatory criticifm of the poems of the Airflire bard.

The fubfeription-papers were rapidly filled; and it was fuppofed that the poet night derive from the fubfcription and the fale of his copy-right a clear profit of at leaft 700 pounds.

The converfation of even the mof eminent authors is often found to be fo unequal to the fame of their writings, that he who reads with admiration can liften with none but fentiments of the moft profound contempt. But the couverfation of Burns was, in comparifon with the formal and exterior circumftances of lis education, perhaps even more wonderful than his poetry. He affected no foft air or graceful motions of politenefs, which might have ill accorded with the ruttic plainnefs of his native manners. Confcious fuperiority of inis.d tauglit him to aflociate with the great, the learned, and the gay, without being overawed into any fuch baihfulnefs as might lave made hini confufed in thouglit, or hefitating in clocution. He poffefled withal an extraordinary fhare of plain common lenfe or mother-wit, whieh prevented hiin from obtruding upon perfons, of whatever rank with whom he was admitted to converfe, any of thofe eflufions of vanity, envy, or felf conceit, in which authors are exceedingly apt to indulge, who have lived remote from the general practice of life, and whofe minds have been almoll exclufively confoned to contem. plate their own fludies and their own works. In converfation he difplayed a fort of intuitive quieknefs and rectitude of judgment upon every fubject that arofe. The fenfibility of his leart, and the vivacity of his fancy, gave a rich coluring to whatever rafoning he was difpofed to advance; and his languageim converfation was not at all lefs happy than in lis writings. For thefe reafons, thofe who lad mot and converfed with him onee, were pleafed to meet and to converfe with him again and again.

For fome time be convarfed only with the virtuous, ' '
$\xrightarrow{\text { Burrs. }}$

B U R [146] B U R

Burns. the learned, and the wife; and the purity of his morals remained uncontaminated. But, alas! he fell, as others have fallen in funilar circumftances. He fuffered himfelf to be furrounded hy a race of miferable beings, who were proud to tell that they had been in company with Burns, and had feen Burns as loole and as foolifh as themfelves. He was not yet irrecoverably loft to temperance and moderation; but he was already almoft too much captivated with their wanton revels, to be ever more won back to a faithful attachment to their more fober charms. He now alio began to contract fomething of new arrogance in converfation. Accuftomed to be amoag his favourite affociates what is vulgarly but expreffively called the cock of the company, he could farcely refrain from indulging in fimilar freedom and dictatorial decifion of talk, cyen in the prefence of perfons who could lefs patiently endure his prefumption.

The fubfcription-edition of his poems, in the mean time, appeared; and althongh not enlarged beyond that which came from the Kilinarnock prels by any new pieces of eminent merit, did not fail to give entire fatisfaction to the fubfcribers. He was now to clofe accounts with his bookfeller and his printer, to retire to the country with his profits in his pocket, and to fix upon a plan for his future life. He talked loudly of independence of fpirit and fimplicity of manners, and boalted his refolution to return to the plough ; yet ftill he lingered in Edinhurgh, week after week, and month after month, perhaps expecting that one or other of his nohle patrons might procure him fome permanent and competent annual income, which frould fet him above all neceffity of future exertions to earn for himfelf the means of fubfiftence; perhaps uncoufciounly reluciant to quit the pleafures of that voluptuous town-life to which he luad for fome time too willingly accuftomed himfelf. An accidental diflocation or fracture of an aim or a leg confining him for fome weeks to his apartment, left him during this time leifure for ferious reflection; and he determined to retire from the town without longer delay. None of all his patrons interpofed to divert hin from his purpofe of returning to the plough, by the offer of any fmall penfion, or any finecure place of moderate emolument, fuch as might have given him competence without withdrawing him from his poetical ftudies. It feemed to be forgotten that a ploughnan thus exalted into a man of letters was unfitted for his former toils, without being regularly qualified to enter the career of any new profeftion; and that it became incumbent upon thofe patrons who had called him from the plough, not merely to make him their companion in the hour of riot, not fimply to fill his purfe with gold for a few tranfient expences, but to fecure him as far as was poffible from being ever overwhelmed in diftrefs in confequence of the favour which they had fhown him, and of the habits of life into which they had feduced him. Perhaps indeed the fame delufion of fancy betrayed both Burns and his patrons into the miftaken idea, that, after all which had paffed, it was Aill poffible for him to deturn in cheerful content to the homely joys and fimple toils of undiffipated rural life.

In this temper of Burns's mind, in this ttate of his fortune, a farm and the excile were the objects upon which his choice ultinntely fixed fot future employment and fupport. By the furgeon who attended him during
his illuefs, he was recommended with effeet to the commiflioners of excife; and Patrick Millar, E.fq. of Dalfwinton, deceived, like Burns himfelf and Burns's other friends, iuto an idea that the poet and excifeman might yet be refpectable and happy as a farmer, generoufly propofed to ettablith him in a farm, upon conditions of leafe which prudence and induftry might eafily render exceedingly advantagcous. Burus eagerly accepted the offers of this benevolent patron. Two of the poet's friends from Airfhire were invited to furvey that farm in Dumfriesfhire which Mr Millar offered. A leafe was granted to the poetical farmer at that annual rent which his own friends declared that the due cultivation of his farm night eatily enable him to pay. What yet remained of the profits of his publication was iaid out in the purchale of farm-ftock; and Mr Millar might, for fome fhort time, pleafe himfelf with the perfuafion that he had approved himfelf the liberal patron of genius; had acquired a goud tenant upon his eftate; and had placed a deferving man in the very fituation in which alone he himfelf defired to be placed, in order to be liappy to his wifhes.

Burns, with his Jane, whom he now married, took up their refidence upon his farm. The neighbouring farmers and gentlemen, pleafed to obtain for an inmate among them the poet by whole works they had been delighted, kindly fought his company, and invited him to their houfes. He found an inexpreffible charm in fitting down befide his wife, at his own firefide; in wandering over his own grounds; in once more putting his hand to the fpade and the plough ; in forming his enclofures, and managing his cattle. For fome months he felt almoft all that felicity which fancy had taught him to expect in his new fituation. He had been for a time idle; but his mufcles were not yet unbraced for rural tuil. He now feemed to find a joy in being the hufband of the miftrefs of his affections, in feeing himfelf the father of her children, fuch as might promife to attach him for ever to that modeft, humble, and domeftic life, in which alone he could hope to be permanently happy. Even his engagements in the fervice of the excife did not, at the very firt, threaten neceffarily to debafe him by affociation with the mean, the grofs, and the profligate, to contaminate the poet, or to ruin the farmer.

But it could not be : it was not poffible for Burns now to affume that fobernefs of fancy and paffions, that fedatenefs of feeling, thofe habits of earneft attention togrofs and vulgar cares, without which fuccefs in his new fituation was not to be expected. A thou\{and difficultics were to be encountered and overcome, much money was to be expended, much weary toil was to be exercifed, before his farm could be brought into a fate of cultivation in which its produce might enrich the occupier. This was not a profpect encouraging to a man who had never loved lahour, and who was at this time certainly not at all difpofed to enter into agriculture with the enthufiafm of a projector. The bufinefs of the excife too, as he began to be more and more employed in it, difracted his mind from the care of his farm, led him into grofs and vulgar fuciety, and expofed him to many unavoidable temptations to drunken exseefs, fuch as he had no longer fufficient fortitude to refift. Amidit the anxieties, diftractions, and feducements which thus arole to him, bome became infenfibly lefs and lefs plea-

Burns. fing ; even the endearments of his Jane's affection began to tofe their hold on his heart ; he became every day lefs and lefs unwilling to forget in riot thofe gathering forrows which he knew not to fubdue.

Mr Millar and fome others of his friends would glad. Iy have exerted an influence over his mind which might lave preferved him in this fituation of his affairs, equally from defpondency and from diflipation; but Burns's temper fpurned all controul from his fuperiors in fortune. He refented, as an arrogant encroachment upon his independence, that tenor of conduct by which Mr Millar wifhed to turn him from diffolute conviviality, to that fleady attention to the bufinefs of his farm, without which it was impoffible to thrive in it. His crofles and difappointments drove him every day more and more into diffipation; and this diffipation tended to enhance whatever was difagreeable and perplexing in the flate of his affairs. He funk, by degrees, into the boon companion of mere excifemen; and alinolt every drumken fellow, who was willing to fpend his money lavihly in the alehoufe, could cafily command the company of Burns. The care of his farm was thus neglected ; wafte and lofes wholly confumed his little capital; he refigned his leafe into the hands of his landlord; and retired, with his family, to the town of Dumfrics, determining to depend entirely for the means of future fupport upon his income as an excife-officer.

Yet during this unfortunate period of his life, which pafted between his departure from Edinburgh to fettle in Dumfriesfhire, and his leaving the country, in order to take up his refidence in the town of Dumfries, the energy and activity of his intellectual powers appeared to have been not at all impaired. In a collection of Scottifh fongs, which were publined (the words with the mufic) by Mr Jolnfon, engraver in Edinburgh, in 4 vols 8 ro, Burns, in many inflances, acconumodated new verfes to the old tunes with admirable felicity and fkill. He affitted in the temporary inflitution of a fmall fubfeription library, for the ute of a number of the well. difpofed peafants in his neighbourhood. IJe readily aided, and by his knowledge of genuine Scottifh phrafeol. y and manners greatly enlightened, the antiquarian refearches of the late ingenious Captain Grofe. He fill carried on an epiftolary còrrefpondence, fometimes gay, fportive, humorous, but always enlivened by bright flathes of genius, with a number of his old friends, and on a very wide diverfity of topics. At times, as it fhould feem from his writings of this period, lic relected, with inexpreffible heart-bitternefs, on the high hopes from which he had fallen; on the errors of moral conduct iuto which he had been hurried by the ardour of his foul, and in fome meafure by the very generofity of his nature; on the difgrace and wretchednefs into which he faw himfelf rapidly finking; on the forrow with which his mifonduct oppreffed the heart of his Jane; on the want and deftitute mifery in which it feemed probable that he muft leave her and their infants; nor amidft thefe agonizing reflections did he fail to look, with an indignation half invidious, half contemptuous, on thofe who, with moral habits not more excellent than his, with powers of intellect far inferior, yet balked in the fun- fhine of fortune, and were loaded with the wealth and honours of the world, while his follies could not obtain pardon, nor his wants an honourable fupply. His wit became from this time more
gloomily farcaftic ; and his converfation and writings began to affume fomething of a tone of mifanthropical malignity, by which they had not been before, in any eminent degree, diftinguifhed. But with all thefe failings, he was thill that exalted mind which had raifed iffelf above the depreffion of its original condition: with all the energy of the lion, pawing to fet free his hinder limbs from the yet cncunbering earth, he ftill appeared not lcfs tban archangel ruined!

His morals were not mended by his removal from the country. In Dumfries his diffipation became ftill more deeply labitual; he was here more expofed than in the country to be folicited to fhare the riot of the diffolute and the idle : foolifh young men flocked eagerly about him, and from time to time preffed him to drink with them, that they might enjoy his wicked wit. The Caledonian Club, too, and the Dumfrieshire and Galloway Hunt, had occafional meetings in Dumfries after Burns went to refide there, and the poet was of courfe invited to thare their conviviality, and hefitated not to accept the invitation.

In the intervals between his different fits of intemperance, he fuffered till the keenefl anguifh of remorfe, and horribly afllietive forefight. His Jane ftill behaved with a degree of maternal and conjugal tendernefs and prudence, which made him feel more litterly the evil of his mifconduct, although they could not rechaim him. At laft crippled, emaciated, having the very power of animation wafted by difeafe, quite broken-hearted by the fenfe of lis errors, and of the hopclefs miferies in which he faw himfelf and his family depreffed; with. his foul till tremblingly alive to the feafe of fhame, and to the love of virtue; yet even in the laft feeblenefs, and amid the latt agonies of expiring life, yielding readily to any temptation that offered the femblance of in. temperate enjoyment, he died at Dumfries, in the fummer of 1796 , while he was yet three or four years under the age of forty, furnifhing a melancholy proof of the danger of fuddenly elevating even the greateft mind above its original level.

After his death, it quickly appeared that his failings had not effaced from the minds of his more refpectable acquaintance either the regard which had once been won by his focial qualities, or the reverence due to his intellectual talents. The circumftanees of want in which he left his family were noticed by the gentlemen of Dumfries with earneft commiferation. His funeral was celebrated by the care of his friends with a decent folemnity, and wath a numerous attendance of mourners, fufficiently honourable to his memory. Several copies of verfes were inferted in different newfpapers upon the occafion of his death. A contribution, by fubfeription, was propofed, for the purpofe of raifing a fmall fund, for the decent fupport of his widow, and the education of his infant children.

From the preceding detail of the particulars of this poet's life, the reader will naturally and juttly infer him to have been an honefl, proud, warm-hearted man; of high paltions and found underftandiug, and a vigorous and excurfive imagination. He was never known to defcend to any act of deliberate meannefs. In Dumfries he retained many refpectable friends even to the laft ; and it may be doubted whether any poet of the prefent age has exercifed a greater power over the minds of his readers. Burns has not failed to command

B U T [148] B U T

Surram onc remarkable fort of homage, fuch as is never paid pooter, Butter. but to great original genius; a crowd of poetallers ftarted up to imitate him, by writing verfes as he had
done in the Scottifh dialect ; but, 0 imitatores! fervum pecus! To write rugged rhimes, in antiquated phrafe, is not to imitate the poetry of Burns.

BURRAMPOOTER. See Sandpu, Encyel.
BUTTEER is a fubtance fo well known, that it is needlefs to give bucre any definition of it; but as it is, in this country at leatt, 10 general an article of food, that the proper methods of making and curing it have engaged the attention of fome of our ableft writers on agrieulture, in addition to what has been faid on thefe fubjers under the titles Butter and Dairy (Encyel.) our readers will probably be pleafed with the following metlod of euring it, which is practifed by fome farmers in the parioh of Udney, in the county of Aberdeen, and gives to their butter a great fuperiority above that of their neighbours.

Take two parts of the beft common falt, one part of fursar, and one part of faltpetre; beat them up together, and blend the whole completely. Take one cunce of this compofition for every 16 ounces of butter, work it well into the mafs, and clofe it up for ufe.

Dr James Anderfon, from whofe View of the Agriculture of the County of Aberdeen this receipt is taken, fays, that he knows of no fimple improvement in economies greater than this is, when compared with the ufual inode of euring butter by means of common falt alone. "I have feen (continues he) the experiment fairly made, of one part of the butter made at one time being thus cured, and the other part cured with falt alone: the difference was inconccivable. I hould fuppole that, in any open market, the one would iell for 30 per cent. more than the other. The butter cured
with the mixturc appears of a rich marrowy confitence and fine colour, and never acquires a brittle hardnefs nor taftes falt; the other is comparatively hard and brittle, approaching more nearly to the appearance of tallow, and is much falter to the tafte. I have ate butter eured with the above compofition that had been kept three years, and it was as fweet as at firf ; but it mult be noted, that butter thus cured requires to ftand three weeks or a month before it is begun to be ufed. If it be fooner opened, the falts are not fufficiently blended with it ; and fometimes the eoolnefs of the nitre will then be perceived, which totally difappears afterwards."

The following oblervations refpecting the proper method of keeping both milk and butter are by the fame author, and we truft may prove ufeful. Speaking fill of the county of Aberdeen, he fays, "The pernicious practice of keeping milk in leaden veffels, and falting butter in flone jars, begins to gain ground among fome of the fine ladies in this county, as well as elfewhere, from an idea of cleanlinefs. The fact is, it is juft the reverfe of cleanlinefs; for in the hands of a careful perfon nothing ean be more cleanly than wooden difhes, but under the management of a flattern they difcover the fecret which fone difnes indeed do not.
"In return, thefe latter communicate to the butter and the milk, which has been kept in them, a poifonous quality, which inevitably proves deftructive to the human conflitution. To the prevalence of this practice I have no doubt we mult attribute the frequeney of palfies, which begin to prevail fo much in this kingdom; for the well known effect of the poifon of lead is bodily debility, pally-death !"

BYSAK, the firf month of the Bengal year, begine ning in April.

C.

Caffies.

CAFFRES, the inhahitants of Caffraria, are generally confounded with the Hottentots; but, according to M. Vaillant, there is a confiderable difference between the manners, cultoms, and even appearance of thefe two nations.

The Caffres, fays he, are generally taller than the Hottentots, more rohuft, more fierce, and much bolder. Their figure is likewife more agreeable, and their countenances have not that narrownefs at the bottom, nor their cheeks thofe prominences, which are fo difagreeable among the Hottentots. A round figure, a nofe not too flat, a broad forehead, and large eyes, give them an open and lively air; and if prejudice can overlook the colour of the ikin , there are fome Caffre women who, even in Europe, would be accounted pretty. Thefe people do not make their faces ridiculous, by pulling out their eye brows like the Hottentots; they tattoo themlelves much; and particularly their bodies;
their hair, which is frizzled very much, is never greafed, but their bodies are liberally anointed, merely with a view to preferve their vignur and agility.

The men generally beftow more attention on their drefs than the women, and are remarkably fond of beads and eopper rings. The women wear hardly any of the ornaments in which the other favages in Africa take fuch delight. They do not even wear copper bracelets; but their fmall aprons, which are fill fhorter than thofe of the Hottentots, are bordered with a few rows of glafs beads; and in this all their luxury confifts. It would appear that the Caffres are not fo chafte as the Hottentots, becaufe the men do not ufe a jackal to vail what nature teaches other men, even favages, to conceal. A fmall cowl, which cuvers only the glans, inftead of difplaying modefty, feems to announce the greateff indecency. This fmall covering adheres to a thoug, which is faftened round their girdles, merely

C A F

Caffres. that it may not be loft; for a Caffre, if he be not afraid of being hurt or flung by infects, cares vcry little whether his cowl be in its place or not. Our author faw one Caffre who, inftead of a cowl, wore a cafe made of wood, and oruamented with fculpture. 'This was a new. and ridiculous fafhion, which he had borrowed from a nation of black people who lived at a great diftance from Caffraria.

In the hot feafon the Caffres go always naked, and retain nothing but their ornaments. In cold weather they wear krofies made of calves or oxen hides, which reach down to the ground; but whatever the weather be, both fexes go bare-headed, except that they fometimes, though rarely, fix a plume of feathers in their hair.

The Caffre huts are more fpacious and higher than thofe of the Hottentots, and have alfo a more regular form. The frames of them are conftructed of wooden work, well put together, and very folid, being intencled to laft for a long time: for the Caffres, applying to agriculture, which the free Hottentots do not, remain fixed to one fpot, unlefs fomething unexpected interrupt their repofe.

A more perceptible induftry, an acquaintance with fome of the moft neceffary arts of life, a little know. ledge of agriculture, and a few religious dngmas, feem to announce that the Caffes approach mucl nearer to civilization than the Hottentots. They entertain a tolerably exalted idea of the Supreme Being and his power; they believe that the good will be rewarded, and the wicked punifhed, in a future 1late; but they have no notion of creation, which indeed was not admitted by the fages of Greece and Rome. They practife circumcifion, but can give no account of its origin among them, or of the purpofe for which the practice is continued.

Polygamy is ufed among the Caffres; and on the death of a father the male children ánd their mothers thare the fucceffion among them. The girls remain with their mothers without property of any kind until they can procure hurbands. Onc very fingular cuftom of the Caffres is, that they do not, in general, inter their dead, but tranfport them from the krayl to an open ditch, which is common to the whole horde. At this ditch favage animals feed at their leifure on the multitude of carcafes which are heaped together. Funeral honours are due only to kings and the chiefs of each horde, whofe bodies are covered with a heap of ftones collected into the form of a dome.

This nation is governed by a general, clijef, or king, whofe power is very limitcd. He appoints, however, the fubordinate chiefs over the different hordes, and through them communicates his directions or orders. The arms of the Caffre are a club, two feet and a half in length, and where thickeft three inches in diameter, and a plain lance or affagey. He defpiles poifoned arrows, which are fo much ufed by fome of the neighbouring nations; and with his two fimple weapons feeks always to meet his enemy face to face in the field. The Hottentot, on the contrary, concealed under a rock or behind a bufh, deals out deftruction, without being expo. fed to danger. The one is a perfidious tyger, which rufhes treactieroufly on his prey; the other is a generous lion, which, having given warning of his approach,
$149] \quad \mathrm{C}$ A L
makes his attack boldly, and perinhes if he prevail not Caicclus. againf his antagouif.

CALCULUS, in mathematics, denotes a cortain way of performing inveltigations and refolutions, which occur on many occalions, particularly in mechanical philofophy. Thus we fay, the antecedental calculus, the algelraical calculus, the aritlmetical calculus, the differential calculus, the exponential calculus, the fluxional calculus, and the integral calculus. Of by mich the greater part of thefe caleuli fome account bas been given in the Encyclopædia Britannica; but there is one of them, of which no notice has been taken in that work. It is,

The Antecedental Calculus, a geometrical method of reafoning, without any confideration of motion or velocity, applicable to every purpofe to which the much celebrated doctrine of fluxions of the illuftrious Newton has been, or can be, applied. This method was invented by James Glenie, Efq; "in which (he fays) every expreflion is truly and ftrictly geometrical, i. founded on principles frequently made ufe of by the ancient geometers, principles admitted into the very firft elements of geometry, and repeatedly ufed by Euclid himfelf. As it is a branch of general geometrical proportion, or univerfal comparifon, and is derived from an examination of the antêcedents of ratios, having given confequents and a given ftandard of comparifon in the various degrces of augmentation and diminution they undergo by compofition and decompofition, 1 have called it the antecedental calculus. As it is purely geometrical, and perfectly fcientific, I have, fince it firit occurred to me in 1799, always made ufe of it intlead of the fluxionary and differential calculi, which are merely arithmetical. Its principles are totally unconnected with the ideas of motion and time, which, ftrictly feaking, are foreign to pure geometry and abfleact fcience, though, in mixed mathematics and natural inilofophy, they are equally applicable to every invelt Igad. tion, involving the confideration of either with the tios numerical methods juft mentioned. And as mas:y fiech inveftigations require compofitions and decompolitions of ratios, extending greatly beyond the triplicate and fubtriplicate, this calculus in all of them farnithes every expretlion in a ftrítly geometrical form. The ftandards of comparifon in it may be any magnitudis what ever, and are of courfe indefinite and innomeratle; and the confequents of the ratios, comipounded or decom. pounded, may be either equal or unequal, homogericous or heterogeneous. In the fluxionary and dificrentinit methods, on the other hand, 1 , or u:it, is nut only the flandard of comparifon, Eut alfo the confequent of errry ratio compounded ar efecompounded."

This method is deduced immediately from Mr Gitnie's Treatife on the Doctrine of Univerfal Comparifon or General Proportion: And as the limits of the prefent work will not allow us to enter upon this fubject, we therefore refer our readers to the two aibove mentioned treatifes, and to the fourth volume of the Traniactions of the Royal Society of Edinburgh.
We confefs, however, that we do not expect fuch great advantage from the employment of this calculus as the very acute and ingenious author feems to promife from it. The mathematical would is truly indebied to him for the clear and diferiminating view that he las

C A L [150] C. A L

Calculus. taken of the doctrine of univerfal comparifon, and we fay, that the accurate geometcr and metaphyfician may believe it to be perfectly accurate, and in fome refpects new. Notwithftanding the continual occupation of mathematicians with ratios and analogies, their particular objects commonly reftricted their manner of conceiving ratio to fome prefent modification of it. Hence it feems to have happened that their conceptions of it as a magnitude have not been uniform. But Mr Glenie, by avoiding every peculiarity, has at once attributed to it all the meafurable affections of magnitude, addition or fubtraction, multiplication or divifion, and ratio or proportion. He is perhaps the firt who has roundly confidered ratio or proportion as an affection of ratio; and it is chiefly by the employment of this undoubted affection of ratio that he has rendered the geometrical analyfis fo comprehenfive.

But when we view this antecedental calculus, not as a method of expreffing mathematical fcience, but as an art, as a caleulus in fhort, and confider the means which it muft employ, and the notation which mult be ufed, we become lefs fanguine in our hopes of adrantage from it. The notation carnot (we think) be more fimple than that of the fluxionary method, juftly called arithznetical; and if we infift on earrying clear conceptions along with us, we imagine that the arithmetical expofition of our fymbols will generally be the funpler of the two. The fience of the antecedental calculus feems to confift in the attainable perception of all the fimple ratios, whether of masnitudes or ratios, or hoth, which concur to the formation of a compound and complicated ratio. Now this is equally, and more eafily attainable in the fluxionary or other arithmetical method, when the confequent is a fimple magnitude. When it is not, the fame procefs is farther neceffary ia both methods, for getting rid of its complication.

We apprehend that it is a miflake that the geometrical method is more abfiracted than the fluxionary, becaufe the latter fuperadds to the notion of extenfion the notions of time and motion. Thefe notions were introduced by the illuftrious inventor for the demonfiration, but never occupy the thoughts in the ufe of his propofitions. Thefe are gecmetrical truths, no matter how demonftrated; and when duly confidered, involve notling that is omitted in the antecedental calculus. We ceen prefurne to fay, that the complication of thought, in the contemplation of the ratios of ratios, is greater than what will generally arife from the additonal elements, time and motion.

We do not find that any of our mof active mathematicians have availed themfelves of the advantages of this ealculus, nor do we know any fpecimen that has been exhibited of its cminent advantages in mathematical difcuffions. Should it prove more fertile in geometrical expreffions of highly compounded or complicated quantities or elations, we fhould think it a mighity acquifition ; being fully convinced that thefe afford to the memory or imagination an object (we may call it a fenfible picture) which it ean contemplate and remember with incomparably greater clearnefs and fleadinefs than any algebraical formula. We need only appeal to the geometrical expreffions of many fluents, which are to be feen in Newton's lunar theory, in the phyfical tracts of Dr Matthew Stewart, and others who have fhewn a partiality for this method.

It would be very prefumptuous, however, for us to
not derive great advantages from profecuting the very ingenious and recondite fpeculations of Mr Glenie, in his doctrine of univerfal comparifon.
CALENDAR, in chronology. See (Encycl.) KA. lemdar; and Revolution, n° 184.

CALIPPIC PERIOD, in chronulogy, a period of 76 years, chatinually recurring; at every repetition of which, it was fuppofed hy its inventor Calippus, an Athenian aftronomer, that the mean and new full moons would always return to the fame day and hour.

About a century before, the golden number, or cycle of 19 years, had been invented by Meton; which Calippus finding to contain 19 of Nabonaffar's year, 4 days, and $\frac{3,3}{5} \frac{5}{5}$, to avoid fractions he quadrupled it, and fo produced his period of 76 years, or 4 times 19 ; after which he fuppofed all the lunations, \&e. would regularly return to the fame hour. But neither is this exact, as it brings them too late by a whole day in 225 years.

CALLAO, as it is called by its inhabitants, but more generally known to Europeans under the name of Campello, is a fmall ifland, which was vifited by fome of Lord Macartney's fuite on their voyage to Chian. In confequence of that vifit, we have the following defcription of it in Sir George Staunton's Account of the Embaffy.
"It lies oppofite to, and about eight miles to the caftward of, the mouth of a confiderable river on the coaft of Cochin-china, on the banks of which is fituated the town of Fai-foo, a place of fome note, not far from the harbour of Turon. The bearing of the highent peak of Callao from this harbour is about fouth eaft, difance thirty miles. The extreme points of the ifland lie in latitude $15^{\circ} 53^{\prime}$, and $15^{\circ} 57^{\prime}$ north ; the greatert length is from north-weft to fouth-eaft, and is fome what about five miles, and the mean breadth two miles. The only inhabited part is on the fouth-weft coaft, on a flip of ground rifing gently to the eaf, and contained between the bottom of a femilunar bay and the mountains on each fide of it. Thofe mountains, at a diftance, appear as if they formed two ditinct iflands. The fouthern mountain is the higheft, and is about 1500 feet. The lower grounds contain about 200 acres. This fmall but enchanting foot is beautifully divertified with neat houfes, temples, clumps of trees, fmall hillocks fwelling from the plain, and richly decorated with flurubbery and trees of various kinds; among which the elegant areca, rifing like a Corinthian column, is emineutly confpicuous. A rill of clear water, oozing from the mountains, is contrived to be carried along the upper ridges of the vale, from whence it is occafionally conveyed through fluices, for the purpofe of watering the rice grounds, and appeared, thongh then in the dry feafon, fully fufficient for every purpofe for which it could be wanted.
"'The houfes, in general, were clean and decent; a few were built with tone, and covered with tiles. One, prohably the manfion of the chief perfon of the ifland, was enclofed by a fone wall, and the appoach to it was through a gateway between two ftone pillars. The houfe was divided into a number of apartments, of which the arrangement did not feem to want either tafte or convenience. This building food at the head of the principal village, which confifted of about thirty

C A L $[151] \quad$ C A M

Calino. habitations huilt of wood, chiefly the bamboo. Behind the village, and on the fide of the hill, was a cave, acceffible only by one way, throngh an irregular range of rocks. Within the cave, but near its mouth, was a fmall temple, commanding a view of the whole vale. Several other temples were difperfed over the plain, all of which werc open in front, with a culonnade before them of round wonden pillars, painted red and varnifhed. The number of houfes on the ifland fearcely excecded fixty. Behind every houfe, not immediately in the principal village, were enclofures of fugar-cancs, tobacco, and other vegetables, growing in great luxuriance. The mountains were covered with verdure, and feemed well calculated for rearing goats, of which the ifland produced a few.
"Befide the principal bay, there were feveral fandy inlets, with fmall patches of leve! ground behind them. Boats might eafily land in any of thefe inlets; but a communication between them by land appeared to be exceedingly difficult, if not entirely prevented, by the fteep and rugged ridges which feparated them from each other. On this account very fight works, and an cflablifhment of a few men only, would be requifite for the defence of the ifland, a great part of its coalt being imipregnably fortified by nature. The depth of water in the bay and road was fufficient for fhips of any burden, and there was perfect fhelter from every wind except the fouth-weft, to which quarter it was directly open. The fhort diftance, however, from the continent in that direction would always prevent the fea from rifing high, though it might not be fufficiently near to break the force of the wind."
The inhabitants of this ifland are fo exceecingly thy and afraid of ftrangers, that upon the approach of the Englif veffel, they all, except a very few, retired on board their galleys. When the Britih landed, therefore, they found the doors of all the houfes open, with feveral domeftic animals feeding before them, but neither man, woman, nor child within. After fome time, howeier, a perfon was perceived lurking among the neighbouring trees, who, finding he was obferved, came forward with reluctance and evident marks of fear. While he was yet at fome diflance, he fell upon his knees, and touched the ground with his forehead feveral times. On approaching to him, it was noticed that the firt joint of every one of his fingers and toes was wanting, and as if twilted off by violence: it was poffible that he might lave thus been treated by way of punifhment for fome crime, and that he was confidered as the fittelt perfon to be expofed to the fuppofed danger of watching the movenients of the frangers coming aftore. In a little time frme others, hidden in the thickets, finding that no mifchief was fuffered by the firft, ventured out. None of them could underitand the Clinefe interpreter; and not being able to read or write, there was no converfing with them by the medium of the Chinefe characters. .Recourfe was had to hieroglyphics, and sude figures were drawn of the articles which were propofed to be purchafed; and this method fucceeded tolerahly well ; poultry and fruits were brought for fale, for which high prices were given, purpnfely to conciliate the good will of thofe iflanders. The few that werc found grew foon familiar ; and one old man preffingly invited the ftrangers to his houfe, fituated upon an eminence, at a little diftance. On arriving there,
he introduced them to his wife, an old woran, who, after recovering from her altonillment at the fight of figures fo different from thofe the had ever been accuf. tomed to behold, laid, in a neat manner, before them foine fruits, fugar, cakes, and water. On c'eparting from the houre, this decent and holpitable couple made figns to teflify their defire of feeing them again."

The poffeflion of this illand would be of fuch inportance to any European nation who wifhed to trade fecurely with Tungequnand Cochin chisa, that it is faid the French had formerly fome the:ghts of purchafing it. Sir Genrge Staunton, however, is of opinion, that the want of meiter in the font lawefl munfon would render it of little value, without a further fettlement near it upon the main land of Cochin-china: and he thinks, that if a folid eftablifnneat there could be productive of advantage to any European nation, it would neceflarily be fo to Great Britain; becaufe, befide the opening which it would make for the fale of Britin2 manufactures among the people of the country, the Britifl poffeflions in Hindoffan would be fure of a very confiderable demand for their productions.

CAMEL, in navigation, is a machine which has been defcribed with fuflicient accuracy in the Encyclopredia; but the following account of its invention, given by Profefor Beckmann, is perhaps not unworthy of a place in this Supplement.
"In the Zuyder-Zee, oppofite to the mouth of the river Y, about fix miles from the city of Amfterdam, there are two fand banks, between which is a paflage called the Pampus, which is fufficiently deep for fnall fhips, but not for fuch as are large or heavy laden. In 1672 the Dutch contrived, however, to carry their numerous fleet through this paffage, by means of large empty chelts faftened to the bottom of each fhip ; and this contrivance gave rife to the invention of the camel." In the Encyclopadia Britamica its invention is given to the fammus De Wit ; in the German Cyclopedia to Meyer a Dutch engincer of very confiderable eminence; but the Dutch writers, almof unarimoully, afcribe the invention of the camel to a citizen of Amfterdam, who calls himfelf Meeuves Méindertfoun Bakker. "Some make the year of the invention to have been 1688 , and others rógo. Much has been faid of the utility of this invention ; but however bencficial it may be, we have reafon to fuppofe that fuch heavy veffels as fhips of war cannot be raifed up, in fo violent a manner, without fuftaining injury. A fure proof of this is the well known. circumftance mentioned by Mufchenbroek (Introchusio ad Pbillofoph. Nalur.), that the ports of a fhip which had been raifed by the camel could not afterwards be fhut clofely."
CAMELEON, one of the conflellations of the fouthern hemifphere, near the fouth pole, and invifible in our latitude. There are 10 flars narked in this conftellation in Sharp's catalogne.
CAMELOPARDALUS, a new conftllation of. the northern hemifphere, formed by Hevelius, confifting of 32 flars, firit olferved by him. It is fituated between Cepheus, Cafliopeia, Perfeus, the Tiwo Bears, and Draco; and it contains 58 ftars in the Britifh catalogue.

CAMELLIA, in botany (fee Encycl.), is a plant which the Chinefe call Cha-wha, or flower of tea, on account of the refemblance of the one to the other, and
C.mesell. becaufe its petals are fometimes mixed among the teas

-rnto increafe their fragrance. Sir George Staunton, who calls it Cemcilia Sefonfua, faw it flourifling on the fides and very high tops of mountains, where the foil confilled of litue more than fragments of fone, crumbled into as fort of coarle earth by the joint action of the fun and rain. It yiclds, he fays, a nut, from which is expreffed an (fculent of:, cqual to the beit which connes from Florence. On this account, it is cultivated in vaft ahondance ; and is particularly valuable from the facility of its culture in dinnations fit for little elfe.

CAMPEELL (George, D. D.), fo jufly adnired for his metaphy fical acutenefs and various erudition, was, in 1719 , born at Aberdeen, where lis father, the reverend Colin Campbell, was one of the minifters of the effablifhed church. He was educated in his native city ; and, after paffing through the ufual conrfe of academicall learning, he thudied divinity under the Rev. J. Chalmers, profeffor of divinity in Marifchal College. He was, in 17.9, an unfuccefsful candidate for the church of Furdown, though his competitor Mr For1 es was a man of rery flender abilities, and fuppofed to he attached to the conftitution and liturgy of the church of England. It might indeed be that attachment which contributed principally to procure him the living in preference to Mr Canpbell.

The living of Fordown is in the gift of the crown; and it has generally been a rule with his majefty's miwitters, to give fuch livings, when they become vacant, to thofe candidates who are favoured by the majority of land-owners in the parifh. At the era of 1745 , the landowners in forme of the northern and middle counLies of Scotland were more generally attached to the conflitution of the church of England than to that of their own eftablifhment; and fuch was certainly the cafe in the parifh of Fordown.

But whatever was the canfe of Mr Campbell's failure, he failed by a very fmall number, and was not long without an eftablithment. In 1750 , he was prefented, by Sir Thomas Burnet of Leys, to the living of Banchary T'ernan, on the Dee, about twenty miles weft from Aberdeen. From this he was tranflated, or, as the Scotch ecclefiallical phrafe is, tranjported to Aberdeen in 1756, and nominated one of the city minifters, in the rooun of Mr John Biffet deceafed, a puritan of the old fchool, whofe ftrictnefs and pcculiarities are yet remembered by many in that place.

In 1759, on the deceafe of principal Follock, he was chofen principal of the Marifchal college, and fucceeded to the divinity chair in 177I, on Dr Alexander Geyard being tranflated to the profefforfhip of divinity in King's college. Before his fettling in Aberdeen, he married Mifs Grace Farquiaifon, daughter of Mr Farquaranon of Whitehoufe, by whom he had no iffue. 'Ihis amiable woman died about a year before him. They were an uninent pattern of conjugal affection.

From this time he enjoyed a remarkable fhare of grood health and fpirits. He had, all his life, a rooted arerfon to medicine. He got the better of every ailment by a total and rigorous abflinence from all kind of funtenance whatever; and it was not till he was attacked by an alarming illucfs, about two years before his ileath, that he was perfuaded by his friends to call in medical aid. What nature could do, fhe had all along performed well; but her day was over, and fomething of art be-
came neceffary. Then, for the firt time, he owned the utility of medical men, and declared his recantation of the very mean opinion he had formerly entertained of them and their art. A few months before his death, he refigned his offices of principal, profeffor of divinity, and one oi the city miniters, and was in all fucceeded by Dr W. L. Brown. late of Utrecht, a man of diftinguifhed abilitics. Dr Campbell retained all his fa. culties en:ire to the Jaft, and died on the 6th of April 1795, in the 77 th year of his age. His character lias been fo juftly drawn by his facceffor, that we fhall give it to our readers in his words, adding only a circumftance or two, which we have reafon to think will contribute to endear his menory to every liberal and enlightened mind.
" Dr Campbell, as a public teacher, was long admired for the clearnefs and copionfnefs with which he illuitrated the great doctrines and prccepts of religion, and the ftrength and energy with which he enforced them. Intimately perfuaded of the truth and infinite confequence of what relevation teaches, he was ftrongly defirous of carrying the fane conviction to the minds of his hearers, and delivered his difcourfes with that zeal which flows from ftrong impreffions, and that power of perfuation which is the refult of fincerity of heart, combined with clearnefs of underftanding. He was fatisfied, that the more the pure dictates of the gofpel were fludied, the more they would approve themfelves to the mind, and bring forth, in the affections and conduct, all the peaceable fruits of righteonfnefs. The unadulterated dictates of Chriltianity, he was, therefore, only ftudious to recommend and inculcate, and knew perfectly to difcriminate them from the inventions and traditions of men. His chief fudy ever was, to direct belief to the great objects of practice; and, without thefe, he viewed the mof orthodox profeffion as "a founding brafs, and a tinkling cymbal." But, befides the character of a preacher of righteoufnefs, he had alfo that of a teacher of the frience of divinity to fuftain. How adınirably he difcharged this duty, and with what effect he conveyed the loundeft and moft profitable inftruction to the minds of his fcholars, let thofe declare who are now in various congregations of this country, communicating to their fellow Cluitians the fruits of their fludies under fo able and judicious a teacher. Difcarding all attachment to human fyftems, merely confidered as fueh, he tied his faith to the Word of God alone, poffeffed the happieft talent in inveftigating its meaning, and communicated to his hearers the refult of his own inquiries, with a precifion and perfpicuity which brought light out of obfcurity, and rendered clear and fimple what appeared intricate and perplexed. He expofed, without referve, the corruptions which ignorance, craft, and hypocrify, had introduced into religion, and applied his talent for ridicule to the beft of all purpofes, to hold up to contempt the abfurdities with which the purett and fublimeft truths had been loaded.
"Placed at the head of a public feminary of learning, he felt all the importance of fuch a fituation, and uniformly directed his influence to public utility. His enlarged and enlightened inind juftly appreciated the extentive confequence of the education of youth. Hc anticipated all the effects refulting to the great community of mankind, from numbers of young men iffuing,

C A M

Camplell. in regular fucceffion, from the univerfity over which he prefided, and occupying the different departments of focial life.
" His henevolent heart delighted to reprefent to itfelf the ftudents under his direction ufefully and honourably difcharging the refpective duties of their dif. ferent profeflions; and fome of them, perlaps, filling the moft diftinguifhed flations of civil fociety. With thefe profpects before him, he conftantly directed his public conduct to their attainment. He never fuffered his judgment to be warped by prejudice or partiality, or his heart to be feduced by paffion or private intereft. Thofe mean and ignoble motives by which many are actuated in the difcharge of important truffs, approached not his mind. A certain honourable pride, if pride it may be called, diffured an uniform dignity over the whole of his behaviour. He felt the man degraded by the perverfion of public character. His underftanding alfo clearly thewed him even perfonal advantage attached to fuch principles and practice, as he adopted from a fenfe of obligation, and thofe elevated concep. tions of real worth which were fo congenial to his foul. He faw, he experienced, efteem, refpect, and influence, following in the train of integrity and beneficence; but contempt, difgrace, averfion, and complete infignificance, clofely linked to corruption and felfinhuefs. Little minds are feduced and overpowered by felfifh-confiderations, becaufe they have not the capacity to look beyond the prefent advantage, and to extend to the mifery that flands on the other fide of it. The fame circumftance that betrays the perverfity of their hearts, alio evinces the weaknefs of their judgments.
" His reputation as a writer is as extenfive as the prefent intercourfe of letters; not confined to his own country, but fpread through every civilized nation. In his literary purfuits, he aimed not, as is very often the cafe, with men of diftinguifhed literary abilities, merely at eftablifhing his own celebrity, or increafing his fortune; but had chiefly at heart the defence of the great caufe of Religion, or the elucidation of her dictates.
" At an early period he entered the lifts as a champion for Chriftianity againft one of its acutelt opponeuts. He not only triumphantly refuted his arguments, but even conciliated his refpect by the handfome and dexterous manner in which his defence was conducted. While he refuted the infidel, he fpared the man, and exhibited the uncommon rpectacle of a polemical writer poffeffing all the moderation of a Chriftian. But while he defended Chriftianity againft its enemies, he was defirous of contributing his endeavours to increafe, among its profeffors, the knowledge of the facred writings. Accordingly, in the latter part of his life, he favoured the world with a work, the fruit of copious erudition, of unwearied application, for almoft thirty years, and of a clear and comprehenfive judgment. We have only to regret, that the other writings of the New Teflament have not been elucidated by the fame pen that tranflated the Gofpels. Nor were his literary merits confined to theology, and the fludies more immeriately connected with it. Philofophy, and the fine arts, are alfo indebted to his genius and labours; and in him the polite fcholar was eminently joined to the deep and liberal divine.
" Political principles will always be much affected by general character. This was alfo the cafe with Dr Suppl. Vol. I. Part I.

Campbell. In politics, he maintained that moderation Campleid. which is the furelt criterion of truth and rectitude, and was equally diftant from thofe extremes into which men are fo apt to run on great political quellions. He cherimed that patriotifm which confifts in wifhing, and endeavouring to promote the greateft happinefs of his country, and is always fubordinate to univerfal benevolence. Firmly attached to the Britifh conflitution, he was animated with that genuine love of liberty which it infpires and invigorates. He was equally averfe to defpotifm and to popular anarchy ; the two evils into which political parties are fo frequently hurried, to the deftruction of all that is valuable in government. Par-ty-Spirit, of whatever defcription, he confidered as having an unhappy tendency to pervert, to the moft pernicious purpofes, the beft principles of the human mind, and to cluthe the moft iniquitous actions with the moft fpecious appearances. Although tenacious of thofe fen. timents, whether in religion or politics, which he was convinced to be rational and juft, he never fuffered mere difference of opinion to impair his good-will, to obftruct his good nffices, or to cloud the cheerfulnefs of converfation. His own converfation was enlivened by a vein of the moft agreable pleafantry."

So far was he from being influenced by jealoufy, or any portion of that corporation-fpirit which fometimes incites men of undoubted abilities to detract from the merit of every writer who fills not a ftation as confpicuous as their own, that he was loud in his praifes of thofe, whom men of meaner minds would have looked upon with difguft, as upon prefumptuous rivals. This generofity was fully experienced by the writer of the article Miracle, in the Encyclopædia Britannica, who, though he had prefumed to treat the fubject differently from Dr Campbell, received from him fuch a teftimony of approbation of what he had done, as he will hardly look for from any other man in fimilar circumftances.

Among his other qualities, which fo much endeared him to all who had the honour of his acquaintance, D r Campbell poffeffed an uncommon facility of palfing from the graveft to the moft airy fubjects, and from the live. lieft to the graveft, without degrading the one or diminining the pleafure of the other. The infinnities of age abated not the cheerfulnefs of his temper, nor did even the perfuafion of approaching diffolution impair his ferenity.

We cannot conclude this ीnort Netch better than with a lift of his works, in the order in which they were publihed. In i752, he publinhed a Sermon, preached before the Synod of Aberdeen.
1761. A Differtation on Miracles, againit Mr Humc. This treatile is well known to the learned world. He obtained, and defervedly obtained, a very high reputation, not only from the able manner in which he handled the fubject, but from the liberal ftyle in which lie addreffed his antagonitt. It was fpeednly tranfated in. to French, German, and Dutch.
1771. A Sermon before the Society for Propagating Chrittian Knowledge, Edinburgh.

$$
\text { - before tlie Synod of } A \text { berdeen. }
$$

1776. The Philofopliy of Rhetoric, 2 vols 8vo. A work which difcovers a clearnefs of difcernment, and accuracy of obfervation, which juftly entitled him to be ranked among the moft judicious critics. He entered on this inquiry as early as 1750, when a part of the

U work

Camphor. work was compofed. The laws of elegant compofition and criticifm are laid down with great perfpicuity : but the moot valuable part of the work is undoubtedly the theory of evidence, to which we know nothing fuperior, perhaps nothing equal, on the fubject, in our own or any other language. His philofophy, in general, is the plilofophy of Dr Reid; and where he differs from that acute reafoner refpecting alfiradion, and fome other objects of metaphytical difquifition, we think it inpoffible to refufe him the pre-eminence in every thing but flyle.

177\%. A Sermon on the King's Faft-day, on Alle. giance, firft printed in 4 to, and afterwards, at the expence of government, fix thoufand copies were printed in 12 mo , enlarged with notes, and fent to America, when the uuhappy Atruggle had, however, put on appearances which prevented the effect hoped for from this fermon.
1780. An Addrefs to the People of Scotland on the Λ larms which have heen raifed by what is called the Popinh Bill. This is a powerful diffuafive from bigotry, and every fpecies of religious perfecution.
1793. His Magnum Opus. The tranllation of the Gofpels, with Preliminary Differtations, 2 vols 4 to.
1800. Lectures on Ecclefiatical Hiftory, a polthumous work, in 2 vols 8 vo; which, in the opinion of moft people, fhould have been fuppreffed.

Camphor, or Camphire, (fee Encycl.), is, in China, obtained by boiling the brancles, twigs, and leaves, of the Laurus-Camphora in water, upon the furface of which it is found fwimming in the form of an oil, or adhering, in a glatinous form, to a wooden rod, with which the boiling matter is conftantly ftirred. The glutinous mafs is then mixed with clay and lime, and put into an earthen veffel, with another of the fame fize properly luted over it ; the lower veffel being placed over a flow fire, the camphor gradually fublimes thrungh the clay and lime, and aulheres to the fides of the upper veffel, forming a cake of a fhape correfponding to the cavity which received it. It is, however, lefs pure and much weaker than what is difcovered in a folid flate among the fibres of the trunk, as turpentine is found in different forts of pines. In the great, but ill-peopled, ifland of Borneo, and alfo in Japan, the camphor tree is felled for the fole purpofe of finding this coftly drug in fubftance among the fplinters of the trunk, in the fame manner as other trees are felled in Lonifiana merely for collecting the fruit they bear upon their fummits. The Borneo, or Japan camphor, is pure, and fo very ftrong, as reacily to communicate much of its odour and its virtues to other infpiffated oils, which thus pafs for real camphor; and this adulterated drug is fold by Chinefe artifts at a vaftly lower price than they gave themfelves for the genuine fubtance from Borneo or Japan.
Sir George Staunton, from whom we have this account, does not inform us whether the camphor-tree of China, if felled and torn into fplinters, would not produce as large quantities of the drug, and equally pure, as the trees of Borneo and Jajan ; but he affures us, that in China it is never fo torn, being there a large and valuable timber-tree. "It is ufed (fays he) in the beft buildings of every kind, as well as for mafts of veffels, and hears too high a price to allow of any part, except the branclies, being cut up for the fake of the drug."

CANALS of Communication may be of fuch advantage in a commercial or agricultural country, that every attempt to render them more convenient, and lefs expenfive in the confruction, is intitled to public notice. In the Encyclopredia, an account, fufficientity perficuous, is given of the common canals with locks; but in many cafes it is very difficult to provide a fufficient quantity of water for the confumption of a canal where many boats are to pafs. Different attempts have there fore been made, by ingenious men, to fave water in the paffing of boats or lightys from one lock of a canal to another ; and, among thefe, perhaps none is more de-ferving of public favour than the following, by the late Mr James Playfair of Ruffel-freet, architect. We flall flate his invention in his own words.
" The nature and principle of this manner of faving water confift in letting the water which has ferved to raife or fall a boat or barge from the lock, pafs into refervoirs or cifterns, whofe apertures of communication with the lock are upon different levels, and which may be placed or conftructed at the fide or fides of the lock with which they communicate, or in any other contiguous fituation that circuinflances may render eligible; which apertures may be opened or thut at pleafure, fo that the water may pafs from the lock toeeach refervoir of the canal, or from each refervoir to the lock, in the following manner: The water which fills the lock, when a boat is to afcend or defcend, inttead of being paffed immediately into the lower part of the canal, is let pafs into thefe cifterns or refervoirs, upon different levels; then, their communications with the lock being fhut, they remain full until another veffel is wanted to pafs; then, again, the cilterns are emptied into the lock, which is thereby nearly filled, fo that only the remainder which is not filled is fupplied from the higher part of the canal. Each of thefe cifterns muft have a furface not lefs than that of the lock, and mult contain half as much water as is neant to be expended for the paffing of each veffel. The ciftern the moft clevated is placed twice its own depth (meafuring by the aperture, or communicating opering of the cifterns) under the level of the water in the higher part of the canal. The fecond ciftern is placed once its own depth under the firft, and fo on are the others to the lowett; which laft is placed once its own depth above the level of the water in the lower part of the canal. The apertures of the intermediate cifterns, whatever their num. ber may be, mult all be equally divided into different levels; the furface of the water in the one being always on the level of the bottom of the aperture of the ciftern which is immediately ahove. As an example of the manner and rule for conftructing thefe cifterns, fuppofe that a lock is to be contructed twelve feet deep, that is, that the veffel may afcend or defcend twelve feet in paffing. Suppofe the lock fixty feet long and fix feet wide, the quantity of water required to fill the lock, and to pafs a boat, is 4320 cubic feet ; and fup. pofe that, in calculating the quantity of water that can be procured for fupplying the canal, after allowing for wafte, it is found (according to the number of boats that may be expected to pafs) that there will not he above 800 cubic feet for each; then it will be necerfary to fave five-fixths of the whole quantity that in the common cafe would be neceflary : to do which ten cifterns mult be made (the mode of placing which is ex-

C A N [155] C A N

nols preffed in the drawing, fig. I. Plate VII.), each of which muft be one foot deep, or deeper at pleafure, and each muft have a furface of 360 feet fquare, equal to the furface of the lock. The botton of the aperture of the loweft ciftern mult be placed one fout abuve the level of the water in the lower part of the canal, or eleven feet under the level of the liigh water; the fecond ciltern mult be two feet above the level of the low water; the third three feet, and fo on of the others; the bottom of the tenth, or uppermoft ciftern, being ten feet above the low water, and two feet lower than the ligh water; and, as each ciltern mult be twelve inches in depth, the furface of the water in the higher ciftern will be one foot ander the level of the water in the upper part of the casal. The cifterns being thus conftructed, whea the luck is full, and the boat to be let down, the communieations between the lock and the cifterns, which until then have all been flut, are to be opened in the following manuer: firll, the communication with the higher ciltern is opened, which, being at botton two feet under the level of the water in the lock, is filled to the depth of one foot, the sater in the lock defcending one foot alfo at the fame time; that communication is then flut, and the communication between the lock and the fecond ciftern is opened; onc foot more of the water then paffes into that citter! from the lock, and fills it ; the opening is then fhut: the fame is done with the third, fourth, fifth, fixth, feventh, eighth, ninth, and tenth, cilterns, one by one, until they are all filled; and when the tenth, or lowermoit ciftern, is filled, there remains but two feet depth of water in the lock. The communication between the lock and the lower part of the canal is then opened, and the laft two feet depth of water is emptied into the lower part of the canal. By this meaus, it is evident that, inftead of twelve feet depth of water being let defcend into the lower part of the canal, there is only two feet depth that defcends, or one-fixth of the whole; therefore, inftead of 4320 cubic feet being uied, there are only 720 cubic feet ufed: the remainder of the water in the cifterus being ufed as fullows: When another boat is to mount, the fluices being then fhut, and the boat in the lock, the tenth or lowermoft ciftern is emptied into the lock, which it fills one foot; the communication being then fhut, the next lowefl ciftern, or the ninth, is emptied into the lock, which is thereby filled another foot; and fo, in like nanner, all the other ciiterns are emptied one after another, until the higher ciftern being emptied, which fills the tenth foot of water in the lock, there remains but two feet of water to fill, which is done from the upper part of the canal by opening the higher fluice to pafs the boat; by that means, the fame quantity of water defcends from the upper part of the canal into the lock, that in the other cafe defcended from the lock into the lower part of the canal ; fo that, in both cafes, the fame quantity of water is faved, that is, five-fixths of what would be neceffary were there no cifterns. Suppofe again that, upon the fame canal, and immediately after the twelve feet lock, it would be advantageous to conftruct one of eightecn feet ; then, in order not to ufe any greater quantity of water, it will be neceffary to have fixteen cifterns, upon different levels, communicating with the lock in the fame manner. Should, again, a lock of only fix feet be wanted, after that of eighteen, then it
will only be neceffary to have four cifterns on different levels, and fo of any other height of lock. The rule is this: For finding the number and fize of the cillerns, each cittern being the fame in fuperficies with the lock, its depth muil be fuch as to contain one half the quartity of water meant to be ufed in the palfing of one buat. The depth of the lock, divided by the depth neceffiry for fuch a cittern, will give, in all cafts, the whole number of citterns, and two nore: deduct the number two, therefore, from the number which you find by dividing the depth of the loek by the depth of one ciltern, and you have always the number of cifterns required; which are to be placed upon different levels, according to the rule already given. The dbove is the principle and namer of ufing the lock, for faving water in canals, and for enabling engineers to comftruct locks of different depths upon the fame canal, without ufing more water for the deep locks than for the fhallow ones. With regard to the manner of difpofing the ciflerns, the circumftances of the ground, the declivity, \&c. will be the bett guide for the engineer."

But fuppofing a fufficiency of water, or admitting that this method of Mr Playfair's of faving it, where defective, is adequate to his fondeft expectations, Alll, in paffing numerous locks, where the rife is conliderable, the interruption is fo great, that it has often been wifhed that an eligible method of lowering and elevating boats could be devifed, without the affiftance of water-locks. Though this is evidently at firlt view practicable, and feveral different modes of doing it have been fuggefted, fome of which have actually been carried into effect, yet all of thein have been found to be attended with fuch inconvenience as to render an improvement in this refpect fill neceffary.

In China, where water-carriage is more generally practifed than in any kingdom of Europe, boats are raifed and lowered from one canal into another, by fliding thern along an inclined plane: but the contrivances for effecting that purpofe are fo awkward, and fuch a number of hands are required, that it has in general been deemed inexpedient to refort to that mode of practice in Europe. Several devices, that difcover confiderable ingenuity, however, have heen publifhed, with a view to facilitate this operation ; either by rendering the motion up the inclined plane more equable, or producing a power fufficient to move thefe great weights. But none of them bave yet been fo fimple in their conftruction as could be withed, nor have they afforded fatisfaction in practice. For the greater part of them, likewife, patents have been granted; fo that whatever be their value, no engineer could avail himfelf of them without previoully purchafing a licence from the patentee.

The following contrivance for this purpofe is the inyention of James Anderfon, LL. D. whofe knowledge of economics is well known, and of whofe public fpirit there cannot be a doubt. Inftead of applying for a patent, to fecure to himfelf the fruits of his ingenuity, he publifhed, for the good of his countrymen in general, his device, in the View of the Agriculture of the County of Aberdeen, which he drew up for the conlideration of the beard of agriculture. He introduces it to public notice with juftly obferving, that it poffeffes at leaft the merit of fimplicity, in as high a degree, per-
haps,

C A N $\left[\begin{array}{l}\text { 156 }] \quad \text { C A N }\end{array}\right.$

Canals haps, as could be wifhed; and, "in the opinion (fays he) of very good judges of matters of this fort, to whom the plan has been fhewn, it has been deemed fully adequate to the purpofe of raifing and lowering boats of a moderate fize, that is, of 20 tons, or downwards; and it is the opinion of moft men with whom I have converfed, who are beft acquainted with the inland navigations, that a boat of from 10 to 15 tons is better than thofe of a larger fize. When feveral are wanted to be fent at once, they may be affixed to one another, as many as the towing-horfe can conveniently draw. Were boats of this fize adopted, and were all the boats on one canal to be of the fame dimentions, it would prove a great convenience to a country in a flate of beginning improvements; becaufe the expence of fuch a boat would be fo trilling, that every farmer could have one for himfelf, and might of courfe make ufe of it when he plafed by the aid of his own horle, without being obliged to have any dependence on the time that might fuit the convenience of his neighbour ; and if two or more boats were going from the fame neighbourhood, one horfe could ferve the whole.
"You are to fuppofe that fig. 2. (Plate VII.) reprefents a bird's.eye view of this limple apparatus, as feen from above. A is fuppofed to be the upper reach of the canal, and B the lower reach, with the apparatus between the two. This confifts of three divifions; the middle one, extending from C to D , is a folid piece of mafonry, raifed from a firm foundation below the level of the bottom of the fecond reach : this is again divided into five parts, viz. $d d d$, where the wall rifes only to the height of the water in the upper reach, and ec, two pillars, raifed high enough to fupport the pivots of a wheel or pulley g, placed in the pofition there marked.
"The fecond divifion b confifts of a wooden coffer, of the fame depth nearly as the water in the upper reach, and of a fize exaclly fitted to contain one of the boats. This communicates directly with the upper reach, and being upon the fame plane with it, and fo connected with it as to be water-tight, it is evident, from infpection, that nothing can be more eafy than to float a boat into this coffer from the upper reach; the part of the wheel that projects over it being at a fufficient height ahove it, fo as to occafion no fort of interruption.
"Third divifion. At i is reprefented another coffer, precifely of the fame dimenfions with the firtt. But here two fluices, which were open in the former, and only reprefented by dotted lines, are fuppofed to be thut, fo as to cut off all communication between the water in the canal and that in the coffer. As it was impoffible to reprefent this part of the apparatus on fo fmall a fcale, for the fake of illuftration it is reprefented more at large in fig. 5. where A, as before, reprefents the upper reach of the canal, and b one of the coffers. The fluice k goes into two cheeks of wood, joined to the malonry of the dam of the canal, fo as to fit perfectly clofe ; and the nuice f fits equally clofe into cheeks made in the fide of the coffer for that purpofe; between thefe two huices is a fmall fpace 0. The coffer, and this divifion o, are to be fuppofed full of water, and it will be eafy to fee that thefe faices may be let down or drawn up at pleafure with much facility.
"Fig. 6. reprefents a perpendicular fection of thefe parts in the fame direction as in fig. 5. and in which the fame letters reprefent the fame parts.
"Things being thus arranged, you are to fuppofe the coffer b to be fufpended, by means of a chain paffed over the fulley, and balanced by a weight that is fufficient to counterpoife it, fuspended at the oppofite end of the chain. Suppofe, then, that the counterpoife be made fomewhat lighter than the coffer with its contents, and that the line $m n$ (fig. 6.) reprefents a divi. fion between the folid fides of the dam of feparation, which terminates the upper reach and the wooden coffer, which had been clofed only by the preffure of its own weight (being puined a very little from A towards B , beyond its precife perpendicular fwing), and that the joining all round is covered with lifts of cloth put upon it for that purpofe ; it is evident that, fo long as the coffer is fufpended to this height, the joining muft be water-tight ; but no fooner is it lowered down a little than this joining opens, the water in the finall divilion o is allowed to run out, and an entire feparation is made bet ween the fixed dam and this moveable coffer, which may be lowered down at pleafure without lofing any part of the water it contained.
"Suppofe the coffer now perfectly detached, turn to fig. 3 . which reprefents a perpendicular fection of this apparatus, in the direction of the dotted line $p p$ (fig. 2.) In fig. 3. b reprefents an end view of the coffer, indicated by the fame letter as in fig. 2. fulfended by its chain, and now perfectly detached from all other objects, and balanced by a counterpoife i, which is another coffer exactly of the fame fize, as low down as the level of the lower reach. From infpection only, it is evident, that in proportion as the one of thefe weights rifes, the other muft defcend. For the prefent, then, fuppofe that the coffer b is by fome means rendered more weighty than i, it is plain it will defeend while the other rifes; and they will thus continue till b comes down to the level of the lower reach, and i rifes to the level of the higher one:
"Fig. 4. reprefents a fection in the direction $A B$. (fig. 2.), in which the coffer i (feen in both fituations) is fuppoled to have been gradually raifed from the level. of the lower reach B, to that of the higher A, where it now remains ftationary : while the coffer b (which is concealed behind the mafonry) has defcended in the mean time to the level of the lower reach, where it clofes by means of the juncture $r \boldsymbol{s}$, fig. 6. (which juncture is covered with lifts of cloth, as before explained at $m n$, and is of courfe become water-tight), when, by lifting the ीuice t, and the correfponding nuice at the end of the canal, a perfect communication by water is eftablifhed between them. If, then, inftead of water only, this coffer had contained a boat, floated into it from the upper reach, and then lowered down, it is very plain that when thefe fluices were removed, after it had reacled the level of the lower reach, that boat might have been floated out of the coffer with as much facility as it was let into it above. Here then we have a boat taken from the higher into the lower canal ; and, by reverfing this movement, it is very obvious that it might be, with equal eafe, raifed from the lower into the higher one. It now only remains that I thould explain by what means the equilibrium between
there

Canals thefe counterbalancing weights can be deftroyed at pleafure, and the motion of courfe produced.
' 6 It is very evident, that if the two correfponding coffers be precifely of the fame dimenfions, their weight will be exactly the fame when they are both filled to the fame depth of water. It is equally plain, that fhould a boat be floated into either or both of them, whatever its dimenfions or weight may be, fo that it can be contained afluat in the coffer, the weight of the coffer and its contents will continue precifely the fame as when it was filled with water only: hence, then, fuppofing one boat is to be lowered, or one to be raifed at a time, or fuppofing one to be raifed and another lowered at the fame time-they remain perfectly in equilibrium in either place, till it is your pleafure to deftroy that equilibrium. Suppofe, then, for the prefent, that both coffers are loaded with a boat in each, the double fluices both above and below clofed; and fuppofe alfo that a ftop-cock u, in the under edge of the fide of the lower coffer (fig. 4. and 6.), is opened, fome of the water which ferved ta float the boat in the coffer will flow out of it, and confequently that coffer will become lighter than the higher one ; the upper coffer will of courfe defcend, while the other mounts upwards. When a gentle motion has been thus communicated, it may be prevented from accelerating, merely by turning the flop.cock fo as to prevent the lofs of more water, and thus one coffer will continue to afcend, and the other to defcend, till they have affumed their itations refpectively; when, in confequence of a ftop below, and another above, they are rendered ftationary at the level of the refpective canals (A).
"Precifely the fame effect will be produced when the coffers are filled entirely with water.
" It is unneceffary to add more to this explanation, except to oblerve that the fpace for the cofler to defcend into muft be deeper than the bottom of the lower canal, in order to allow a free defeent for the coffer to the requifite depth ; and of confe it will be neceffary to have a fmall conduit to allow the water to get out of it. 'Two or three inches free, below the botton of the canal, is all that would be neceflary.
" Where the height is inconfiderable, there will he no occafion for providing any counterpoife for the chain, as that will give only a fimall addition to the weight of the undermoft coffer, fo as to make it preponderate, in circumftances where the two coffers would otherwife be in perfect equilibrium : but, where the height is confiderable, there will be a neceflity for providing fuch a counterpoife ; as, without it, the chain, by becoming more weighty every foot it defcended, would tend to deftrcy the equilibriun too much, and accelerate the motion to an inconvenient degrec. To guard againft this inconvenience, let a clain of the fame weight, per foot, be appended at the bottom of eaclu coffer, of fuch a length as to reach within a few yards of the ground where the coffer is at its greateft height (fee fig. 3.) ; it will act with its whole weight upon the higheft coffer while in this polition; but, as that gradually defeended, the cbain would reach the ground, and, being there fupported, its weight would be di-
minifhed in proportion to its defcent; while the weight of the chain on the oppofite fide would be augmented in the fame proportion, fo as to counterpoife each other exactly, in every fituation, until the uppermof chain was raifed from the ground. After which it would increafe its weight no more; and, of courfe, would then give the under coffer that preponderance which is neceflary for preferving the machine fteady. The under coffer, when it reached its loweft pofition, would toucli the buttom on its edges, which would then fupport it, and keep every thing in the fame polition, till it was made lighter for the purpofe of afcending.
"What conftitutes one particular excellence of the apparatus here propofed is, that it is not only unlimited ${ }^{\prime}$ as to the extent of the rife or depreflion of which it is fufceptible (for it would not require the expenditure of one drop more water to lower it one hundred feet than one foot); but it would allo be eafy fo to augment the number of pulleys at any one place as to admit of two, threc, four, or any greater number of boats being lowered or elevated at the fame time; fo that let the fucceftion of boats on fuch a canal be nearly as rapid as that of carriages upon a highway, none of them need be delayed one moment to wait an opportunity of paffing : a thing that is totally impracticable where water-locks are employed ; for the inter. courfe, on every canal conftructed with water-locks, is neceffarily limited to a certain degree, beyond which it is impofible to force it.
"For example: fuppofe a hundred boats are following each other, in fuch a rapid fucceffion as to be only half a minute behind each other: By the apparatus here propofed, they would all be elevated precifely as they came; in the other, let it be fuppofed that the lock is fo well conftructed as that it takes no more than five minutes to clofe and open it ; that is, ten minutes in the whule to each boat (for the lock, being ol,ce filled, muft be again emptied before it can receive aus:ther in the fame direction) : at this rate, fix boats ouly could be paffed in an hour, and of courfe it would take fixteen bours and forty minutes to pafs the whole huri. dred; and as the laft boat would reach the lock in the fpace of fifty minutes after the firft, it would be detained fifteen hours and fifty minutes before its turn wonld come to be raifed. 'This is an immenfe detention ; but if a fucceflion of boats, at the fame rate, were to follow continually, they never could pafs at all. In fhort, in a canal contructed with water-locks, not more than fix boats, on an average, can be paffed in an hour, fo thet beyond that extent all commerce muit be fupped; lut, of the plan here propofed, fixty, or fix hundred, might be paffed in an hour if ncceflary, fo as to occation no fort of interruption whatever. Thefe are advautages of a very important nature, and ought not to be werelooked in a commercial country.
"This apparatus might be employed for innumerable other ufes as a moving power, which it would be foreign to our prefent purpofe here to fpecify. Nor does its power admit of any limitation, but that of the ftrength of the chain, and of the coffers whichare :o fupport the weights. All the other parts admit of being.
(A)." It does not feem neceflary to adopt any other contrivance than the above for regulating the motions; but if it thould be found neceflary, it would be eafy to put a ratcl-wheel on the fame axle."

Canary- being made fo immoveably firm as to be capable of fupporting almoft any affignable weight.
" I will not enlarge on the benefits that may be derived from this very fimple apparatus: its eheapnefs, when compared with any other mode of railing and lowering veffels that has ever yet been practifed, is very obvious; the watte of water it would occation is next to nothing; and when it is confidered that a loat might be raifed or lowered lifty feet uearly with the fame eafe as five, it is evident that the interruptions whieh arife from frequent loeks would be avoided, and an immenfe faving be made in the original expence of the canal, and in the annual repairs.
" It is allo evident that an apparatus, ou the fame prineiple, night be eaflly applied for raifing coals or metals from a great depth in mines, wherever a very fmall Itream of water could be commanded, and where the mine was level-free."

CANARY-bird, of which a defeription is given in the Encyclopædia, was not known in Europe till towards the end of the 15 th eentury. Even in 1555 , Bellon, who about that time deferibed all the birds then known, does not fo much as mention it. When it was firft brought from the Canary Iflands, it was fo dear that it could be purchafed only by people of fortune, who were often inuofed upon. It was ealled the fugar-lird, becaufe it was faid to be fond of the fugarcane, and could eat fugar in great abundance. This is rather a fingular circumftance, fugar being to many fowls a pofon. Experiments have thewn that a pigreon, to which four drams of fugar was given, died in four hours ; and that a duck, which had fwalluwed tive drams, did not live feven hours.

In the middle of the laft century eanary-birds began to be bred in Europe; and to this the following circumitance, related by Olina, feems to have given oceafion: "A veffel which, anong other commodities, was carrying a number of eanary birds to Leghorn, was wreeked on the coalt of Italy; and thefe birds being thus fet at liberty, flew to the nearef land, which was the ifland of Elba, where they found the climate fo favourable, that they multiplied, and perhaps would have become domefticated, had they not been caught in fnares; for it appears that the breed of them there has been long deftroyed. Olina fays that the breed foon degenerated; but it is probable that by much the greater part of thefe canary-birds were males, which coupling with birds of the ifland, produced mules, fuch as ane defcribed by Gefner and other naturalits."
"s Various treatifes have been publifhed in different languages, on the manner of breeding thefe birds, and many pcople have made it a trade, by which they have acquired coufiderable gain. It does no diferedit to the induftry of the Tyrolians, that they have carried it to the greateft extent. At Ynut there is a company, who, after the breeding feafon is over, fend out perfons to different parts of Germany and Switzerland to purchafe birds from thofe who breed them. Each perfon brings with him commonly from three to four hundred, which are afterwards carried for fale, not unly through every part of Germany, but alfo to England, Rufia, and even Conftautinople. About fixteen hundred are brought every year to England; where the dealers in them, notwithftanding the confiderable expence they are at, and after carrying them about on their backs, perhaps a
hundred miles, fell them for five fhillings a piece. This trade, hitherto neglected, is now carried on in Schwartzwalde; and at prefent there is a citizen at Guttingen who takes with him every year to England feveral ca-nary-birds and bulhinches (loxin pyrrbula), with the produce of which he purchafes fueh fmall wares as he has occafion for." -Profifor Beckmann's Hijfory of Inven. tions and Difcoveries.

Canary-Seed. See Phalaris, Encycl.- Profeflor Beckmann doubts whether the plant which bears the eanary-fced be the phalaris of the ancients, becaufe that name feems to have been given by Pliny to more than one fpecies of grafs. He thinks it very probable, howcrer, that the plant, which the modern botanifts call phalaris, was firt hrought from the Canary Inands to Spain, where it began to be cultivated, as well as in the fouth of France, as foon as canary birds came into general efteem. At prefent it is cultivated in various places, and forms no inconfiderable branch of trade, particularly in the ifland of Sicily, where it is called Scagiiuold or Scagbiola. Were it not that the grains are not eafly freed from the hufks, this plant might be cultivated for the food of man, for its feeds yield a good kind of meal. The phalaris has by feveral writers been confounded with argol or the lichen rocolla of Linnæus; but they are very different plants. See Lichen Rocolla in this Supplement.

CANDLE, a thing fo univerfally known as to need no particular defeription. Its ufe, however, is fo great, that every information tending to its improvement muft, we thould think, be acceptable to our readers. Of the common method of making candles, whether of wax or of tallow, a fuffieient aceount has been given in the Encyelopædia; but candles of every kind are far from being yet brought to that degree of perfection of which they feem fuiceptible. Thus, for example, the light of a candle, which is fo exceedingly brilliant when fint fnuffed, is very [peedily diminifhed to one half, and is ufually not more than one-fifth or one.fixth, before the uneafinefs of the eye induees us to fnuff it. Hence it follows, that if candles could be made fo as not to require fnuffing, the average quantity of light affurded by the fame quantity of combuttible matter would be more than doubled. It may likewife be worthy of inquiry, fince the eoft and duration of candles are eatily afcertainable, whether more or lefs light is obtained at the fame expence during a given time, by burning a number of fmall eandles inftead of one of greater thicknefs.

To determine this laft point, a method muft be found of meafuring the comparative intentities of light, for which fee Photometer in this Supplerent. With refpect to the defideratum firlt mentioned, we have fome very ingenious obfervations and well-contrived experiments by Mr Nicholfon, in the fecond number of his valuable Journal, which we fhall here infert nearly in the words of their author.

In every proeefs of combuttion the free accefs of air is of the utmoft confequence. When a candle has a very flender wiek, the flame is fmall and of a brilliant white eolour ; if the wick be large, the combuftion is lefs perfect, and the flame brown; and a wiek ftill larger, not only exhibits a brown flame, but the lower internal part appears dark, and is occupied by a portion of volatilized matter, which does not become ignited till it has afcended towards the point. When the wick is

Si.e. either very large or very long, part of this matter efcapes combution, and fhews itfelf in the form of coal or fmoke. The fane things take place in the burning of a lamp; but when the wick of a lamp is once adjutted as to its length, the flame continues nearly in the fame fate for a much longer time than the flame of a candle.
"Upon comparing a candle with a lamp (fays Mr Nicholfon), two very remarkable particulars are immediately feen. In the firft place, the tallow itfelf, which remains in the unfufed ftate, affords a cup or cavity to hold that portion of melted tallow which is ready to flow into the lighted part of the wick. In the fecond place, the combaftion, inftead of being confined, as in the lamp, to a certain determinate portion of the fibrous matter, is carried, by a flow fuccelfion, through the whole length. Hence arifes the greater necellity for frequent fnuffing the candle; and hence alfo the fation of the freezing point of the fat oil becomes of great confequence. For it has been fhewn, that the brilliancy of the flame depends very much on the diameter of the wick being as fmall as poffible; and this requifite will be moft attainable in candles formed of a material that requires a higher degree of heat to fufe it. The wick of a tallow candle muft be made thicker in proportion to the greater fulibility of the material, which would otherwife melt the fides of the cup, and run over in freams. The flame will therefore be yellow, fmoky, and obfcure, excepting for a fhort time immediately after fnuffing. Tallow melts at the gad degree of Fahrenlieit's thermometer; fpermacetiat the 133^{d} degree; the fatty matter formed of flefh, after long imnerfion in water, melts at 127 degrees; the pela of the Chincfe at 145 degrees; bees-wax at 142 degrees; and bleached wax at 155 degrees. Two of thefe materials are well known in the fabrication of candles. Wax in particular does not afford fo brilliant a flame as tallow ; but, on account of its lefs fufibility, the wick can be made fmaller, which not only afiords the advantage of a clear perfect flame, but from its fexibility it is difpofed to turn on one fide, and come in contact with the external air, which completely burns the extrecrity of the wick to white alhes, and thus performs the office of fnuffing. We fee therefore that the important object to fociety of rendering tallow candles equal to thofe of wax, does not at all depend on the combuftibility of the refpective materials, but npon a mechanical advantage in the cup, which is afforded by the inferior degree of fufibility in the wax ; and that, to obtain this valuable object, one of the following effects mult be produced: Either the tallow mult be burned in a lamp, to avoid the gradual progreffion of the flame along the wick; or fome means muth be devifed to enable the candle to fnuff itfelf, as the wax candle does; or, laftly, the tallow itfelf mult be rendered lefs fufible by fome chemical procefs. I have no great reafon to boaft of fuccefs in the endeavour to effect thefe; but my hope is, that the facts and obfervations here prefented may confiderably abridge the labour of others in the fame purfuit.
"The makers of thermometers and other fmall articles with the blow-pipe and lamp, give the preference to tallow inftead of oil, becaufe its combuftion is more complete, and does not blacken the glafs. In this operation the heat of the lamp melts the tallow which is
occafionally brought into its vicinity by the workman. But for the ufual purpofes of illumination, it cannot be fuppofed that a perfon can attend to fupply the combutible mater. Confiderable diffeculties arife in thic project for affording this gradual fupply as it may be wanted. A cylindrical piece of tallow was inferted into a metallic tube, the upper aperture of which was partly clofed by a ring, and the central part occupied by a metallic piece nearly refembling that part of the common lamp which carries the wick. In this apparatus the piece lalt defcribed was intended to anfwer the fame purpofe, and was provided with a fhort wick. The cylinder of tallow was fupported beneath in fuch a manner that the metailic tube and other part of this lamp were left to reft with their whole weight upon the tallow at the ring or contraction of the upper aperture. In this fituation the lamp was lighted. It burned for fome time with a very bright clear flame, which, when compared with that of a candle, poffeffed the advantage of uniform intenfity, and was much fuperior to the ordinary flame of a lamp in its colour, and the perfect ablence of fmell. After fome minutes it began to decay, and very foon afterwards went nut. Upon examination, it was found that the metallic piece which carried the wick had fufed a fufficient quantity of tallow for the fupply during the combultion; that part of this tallow had flowed beneath the ring, and to other remote parts of the apparatus, beyond the influence of the flame; in confequence of which, the tube and the cylinder of tallow were faftened together, and the expected progreffion of fupply perented. It feems probable that, in every lamp for burning confiftent oils, the material ought to be fo difpofed that it may defcend to the flame upon the principle of the fountain refervoir. I thall not here fate the obftacles which prefent themfelves in the profpeet of this conftruction, but fhall difmifs the fubject by remarking, that a contrivance of this nature would be of the greatef public utility.
"The wick of a candle being furrounded by the flame, is nearly in the fituation of a body expoled to deftructive diftillation in a clofe veffel. Fifer loling its volatile products, the carbonaceous reidue rctains its figure, antil, by the defcent of the Amme, the extertal air can have accefs to its upper extremity. But, in this cafe, the requilite cmnbuftion, which might fnuff it, is not effected: for the portion of oil emitted by the long wick is not only too large to be perfectly burned, but alfo canses off much of the heat of the flame while it affumes the elaflic ftate. By this diminifted combuftion and increafed effus: of half-decompofed oil, a portion of coal or foot is depofited on the upper part of the wick, wlich gradually accumulates, aal at lengtls affumes the appearance of a fungus. The candle does not then give inore than one-tenth of the light emitted in its beft flate. Hence it is that a candle of tallow cannot fpontancoully fnufi itfelf. It was not probable that the addition of a fublance containing vital air or oxygen would fupply that principle at the precife period of time required; but as experiment is the teft of every probability of this nature, l foaked a wick of cotton in a folution of nitre, then dried it, and made a candle. When this came to be lighted, nothing remarkable happened for a fhort time; at the expiration of which a decrepitation followed at the lower extremity of the flame, which completely divided the wick whers

Cansle. where the blackened part commences. The whole of the matter in combuftion therefore fell off, and the candle was of courfe inftantly extinguifhed. Whether this would harc happened in all proportions of the falt or conftructions of the candle, I did not try, becaufe the fmell of azot was fufficiently ftrong and unpleafant to forbid the ufe of nitre in the purfuit. From various confiderations, I am difpofed to think that the fpontaneous fnuffing of candles made of tallow, or other fufible materials, will fcarcely be effected but by the difcovery of fome material for the wick which fhall be voluminous enough to abforb the tallow, and at the fame time fufficiently fexible to bend on one fide.
"The molt promifing \{peculation refpecting this moft ufeful article, feems to direct itfelf to the cup which contains the melted tallow. The imperfection of this part has already heen noticed, namely, that it breaks Jown by fufien, and fuffers its fuid contents to efcape. The Chinêfe have a kind of candle about half an inch in diameter, which, in the harbour of Canton, is called a lobchock; but whether the name be Chinefe, or the corruption of fonse European word, I am ignorant. The wick is of cotton, wrapped round a fmall tick or matcly of the bamboo cane. The body of the candle is white tallow; hut the external part, to the thicknefs of perhaps one thintieth of an inch, confilts of a waxy matter coloured red. This covering gives a confiderable degree of folidity to the candle, and prevents its guttering, becaule lefs fuible than the tallow itfelf. I did not obferve that the flick in the middle was either advantageous or the contrary; and as I now write from the recollection of this object at fo remote a period as 25 years ago, I can only conjecture that it might be of advantage in throwing up a lefs quantity of oil into the Rame than would have been conveyed by a wick of cotton fufficiently fout to have occupied its place unfupported in the axis of the candle.
"Many years ago I made a candle in imitation of the lobchock. The expedient to which I had recourfe confifted in adapting the wick in the ufual pewter mould: wax was then poured in, and immediately afterwards poured out: the film of was which adhered to the inner furface of the mould foon became cool, and the candle was completed by filling the mould with tal. low. When it was drawn out, it was found to be cracked longitudinally on its furface, which I attributed to the contraction of the wax, by cooling, being greater than that of the tallow. At prefent I think it equally probable that the cracking might have been occafioned by too fudden cooling of the wax before the tallow was poured in; but other avocations prevented the experiments from being varied and repeated. It is probable that the Chinefe external coating may not be formed of pure hard bleached wax.
"But the mult decifive remedy for the imperfection of this cheapett, and in other refpects beft, material for candles, would urdoubtedly be to diminin its fufibility. Various fulfances may be combincd with tallow, either in the direct or indirect method. In the latter way, by the decompofition of foap, a number of experiments were made by Berthollet, of which an account is inferted in the memoirs of the Acadeny at Paris for the year 1780 , and copied into the 26 th volume of the Fournal de Plyydique. None of thefe point direetly to the prefent object ; befides which, it is probable that
the foap made ufe of by that eminent chemitt was form. Candie. ed not of tallow, but oil. I am not aware of any regular feries of experiments concerning the mutual action of fat oils and other chemical agents, more efpecially fuch as may be directed to this important object of diminifhing its folubility ; for which reafon I fhall mention a few experiments made with this view.
"1. Tallow was melted in a fmall filver veffel. Solid tallow finks in the fluid, and diffolves without any remarkable appearance. 2. Gum fandarach in tears was not diffolved, but emitted bubbles, fwelled up, became brown, emitted fumes, and became crifp or friable. No folution nor improvement of the tallow. 3. Shell-lac fwelled up with bubbles, and was more perfectly fuled than the gum fandarach in the former experiment. When the tallow was poured off, it was thought to congeal rather more fpeedily. The lac did not appear to be altered. 4. Benzoin bubbled without much fwelling, was fufed, and emitted fumes of an agreeable fmell, though not refembling the flowers of benzoin. A flight or partial folution feemed to take place. The benzoin was fofter and of a darker colour than before, and the tallow lefs confiftent. s. Common refin unites very readily with melted tallow, and forms a more fufible compound than the tallow itfelf. 6. Camphor melts eafily in tallow, without altering its appearance. When the tallow is near boiling, camphoric fumes fy off. The compound appeared more fufible than tallow. 7. The acid or flowers of benzoin diffolves in great quantities without any ebullition or commotion. Much fmoke arifes from the compound, which does not fmell like the acid of benzoin. Tallow alone does not fume at a low heat, though it emits a fmell fomething like that of oil olive. When the proportion of the acid was confiderable, fmall needled cryftals appeared as the tem. perature diminifhed. The appearances of feparation are different according to the quantity of acid. The compound has the hardnefs and confiftence of firm foap, and is partially tran\{parent. 8. Vitriolated tartar, nitre, white fugar, cream of tartar, cryftallized borax, and the falt fold in the markets under the name of falt of lemons, but which is fuppofed to be the effential falt of forrel, or vegetahle alkali fuperfaturated with acid of fugar, were refpectively tried without any obvious mutual action or change of properties in the tallow. 9 . Calcined magnefia rendered tallow opaque and turbid, but did not feem to diffolse. Its effect refembled that of lime.
"It is propofed to try the oxygenated acetous acid, or radical vinegar ; the acid of ants, of fugar, of borax, of galls, the tanning principle, the ferous and gelatinous animal matter, the fecula of vegetables, vegetable gluten, bird-lime, and other principles, either by direct or indirect application. The object, in a commercial point of view, is intitled to an extenfive and affiduous inveftigation. Chemifts in general fuppofe the hardnefs or lefs fufibility of wax to arife fron oxygen; and to this object it may perhaps be advantageous to direct a certain portion of the inquiry. The metallic falts and calces are the combinations from wbich this princiole is moft commonly obtained; but the combinations of thefe with fat oils have hitherto afforded little promife of the improvement here fought. The fubject is, however, fo little known, that experiments of the loofeft and moft conjectural kind are by no means to be defpifed."

Thus

Thus far Mr Nicholfon : but it is probable that many of the advantages which he propofes by thefe mixtures might be obtained merely by purifying the tallow, and keeping it in that fate for a long time expoled to the air before it be formed into eandles. It is eertain that tallow is rendered more difficult of fufion by age; and this is the fole reafon that old eandles are lefs apt to run, and therefore more valuable than fuch as have been lately made.

C $\triangle N O N G O E S$, in Bengal, are the regiters of land and hereditary expounders of the ufages of the country. They have their offeers and deputies everywhere; they are not liable to removal ; and all papers attefted by them are received as authentic and decifive in all difputes relative to lands and their buundaries. See Sir Clarles Roufe Boughon's Difirtation on the Landal Property of Bengal.

CAOUTCHOUC, Elastic Gum, or Indian Rubler, is a fubfance of which a pretty full account has been given in the Eneyclopxdia. It has there been likewife oblerved how ufeful it might be, if we could form it into catheters and other fexible inftruments, by diffolving it in a menftruum lefs expenfive, or at leaft more eafily attained, than ether. Since that article was publifhed, we have feen an account of fuch a menftruum in the Anrales de Cbimie, by M. Groffart (Chirly); and of the expence of that mentruum, or the difficulty of procuring it, no complaint will be made, when it is known to be nothing more than very hot water.

The author was led to this difeovery by fome experiments made with ether on caoutchouc ; of which he gives the following account :
"It appeared, even in my firf experiments, that I was attempting too much, and giving my felf ufelefs trouble, in fearching for a manner of completely diffol. تing the clatic gum, fo that it might be again made up in new forms. I then thought that it would be eafier to find out a method, as it were, of foldering it, and of not acling upon it more than might be neceffary to caufe its foftencd parts to reunite. Experience has thewn me, that a ftrong preflure made upon two pieces of eaoutchone (when brought to that ftate of foftnefs) and continued until they are entirely dry, caufed them to contract fo Arong an adhefion, that the piece, being pulled out till it broke, often broke, not at the united part, but by the fide of it.
"By means of ether I immediately fucceeded in making thefe tubes. The method which appears to me to fucceed the belt is, to cut a bottle circularly in a fpirai lip of a few lines in breadth. It is very ealy to cut a bottle in fucl a manner as to form a lingle long fip, and thus unneeeffary joinings are avoided.
"The whole nip is to be plunged into ether until it is fufficiently foftened, which comes to pafs fooner or later according to the quality of the vitriolic ether that is employed. Half an hour frequently fuffices; but I have already obferved, that there is a great diverfity in the manner in which different forts of vitriolic ether act, and of which the caufe is not yet, fo far as I know, determined.
"The nip being taken out, one of the extremities is to be taken hold of and rolled, firft upon itfelf at the bottom of the tube, preffing it ; then the rolling is to be continued, mounting fpirally along the mould, and taking care to lay over and cumprefs with the hand Suppl. Vol. I. Part I.
every edge, one againt the other, fo that there may not be any vacant fpace, and that all the edges may join exactly. The whole then is to be bound hard with a tape of an inch in width, taking eare to turn it the fane way with the flip of elattic gum. The tape is to be tied up with packihread, fo that, by cecry turn of the packthread joining another, an equal prefiure is given to every part: it is then left to dry, and the tube is made.
"The bandage is to be taken off with great care, that none of the outward furfaces, which may have been lodged within the hollows of the tape (of which the caontchouc takes the exact impreffion), may be pulled away. I advile the application of a tape before packthread, becaufe, efpeeially in the thinner tubes, we fhould run the rik of cutting the caoutchouc if the packthread were applied immediately upon it.
"It is eafy to take of the tube of elatie gum which has been formed upon a folid mould of one piece: if the mould be made rather conic, it may be made to nlide off by the fmaller end; at the worit, it is eafily accomplifhed by planging it into hot water; for it is foftened by the heat, and is diftended: without this precaution it would be fometimes difficult to draw it off when dry, becaule, having been applied upon the mould whilt it had its volume augmented by the interpofition of the ether, the parts of the caoutchouc are drawn nearer each other by the evaporation of the interpofed bodies.
"The great affinity between thefe two bodies is feen by the length of time that the odour of the ether remains, notwithfanding the great volatility of the latter, and that the apparent drynefs of the tube feems to thew that there is none remaining; neverthelefs, after a eertain time, the odour difappears entirely. One of thofe tubes, whieh was made with ether after the method here deferibed, does not tetain the leaft trace of the fulvent. It is needlefs to fay that it is eafy to make tubes as thin or as thick as may be judged proper.
"Although the procels that 1 am now deferibing is but very little expenfive, yet I have tried to employ other folvents in lieu of ether, becaufe it is not to be had in every place, and requires particular care in its prefervation. I have employed, with fome fuccefs, the effential oils of lavender and of turpentine: both of them fpeedily dilate the eaoutchoue, and are of no great price. The difagreeable fmell of the oil of turpentine becomes, perhaps, in procefs of time, lefs difagreeable than that of lavender. This lalt is dearer : but the dif. ference is not fo great as it appears at firt ; for we may make fome advantage of the oil of lavender that is employed by the following operation: Upon plunging in. to aleohol the elaftic tube prepared with the oil of la. vender, the alcohol charges itfelf with the oil, and forms a very good lavender water; the fame as would be made by an immediate mixture of oil of lavender with fpirit of wine. Immerfion in this liquor alfo ferves to haften the drying of the caoutchouc inftruments thus made by means of effential oils. I have made tubes with the oils of turpentine and of lavender; both are much fower in evaporating than ether. The oil of turpentine particularly appeared to me always to have a kind of ftiekinefs, and I know not as yet that we have any means whereby to get 〔peedily rid of its fmell.
"Neverthelefs there is a folvent which has not that X incon-

Caont-

 chouc.Cant-
incomenience; it is cheaper, and may calily be procured by every one: this folvent is water. I conceive it will appear ftrange to mention water as a folvent of elaftic gum, that liquid having been always fuppofed to have no action upon it. I myfelf refinted the idea; but reflecting that ether, by being faturated with water, is the better enabled to aet on caoutchouc, and that this gum when plunged into boiling water becomes more tranfparent at the edees, I prefumed that this effect was not due fimply to the dilatation of its vulume by the heat. I thought that, at that temperature, fome action might take place, and that a long continued ebullition might produce mare fenfible effects. I was not difappuinted in my expectations, and one of thofe tubes was prepared without any other Colvent than water and leat. I proceeded in the fame manner as with ether: the elaftic gum dilates but very little in builing water ; it becomes whitih, but recuvers its colour again by drying it in the air and light. It is fufficiently prepared for ufe when it has been a quarter of a. hour in boiling water: by this time its edges are fometimes tranfparent. It is to be turned 「pirally round the monld, in the inanner we defcribed before, and replunged frequently into the boiling water during the time that is employed in forming the tube, to the end that the edges may be difpoled to unite together. When the whole is bound with packthread, it is to be kept fome hours in boiling water; after which it is to be dried, Alll keeping on the binding.
"If we wilh to be more certain that the connection is perfect, the fpiral may be doubled ; but we mult always avoid placing the exterior furfaces of the fips one upon the other, as thofe furfaces are the parts which moft refif the action of folvents. This precaution is lefs neceffary when ether is employed, on account of its great action upon the caoutchuuc.
"It might be feared that the action of water upon caoutchonc would deprive us of the advantages which anight otherwife be expected; but thefe fears will be removed, if we confider that the affinities differ according to the temperatures; that it is only at a very high temperature that water exercifes any fenfible action upon caoutchouc. I can affirm, that at $: 20^{\circ}$ of Reaumur's thermumeter (302° of Fahrenheit) this affinity is not fuch as that the water can give a liquid form to caoutchouc ; and it does not appear that we have any thing to fear in practice from a combination between thefe two bodies, which, though it really is a true folution, does not take place in any fenfible degree but at a high temperature. It is therefore at prefent eafy to inake of raoutchouc whatever inftruments it may be advantageSus to have of a flexible, fupple, and elaftic fubftance, which is inpermeable to water at the temperature of our atmofphere, and refits the action of acids as well as that of molt other folvents. As to the durability of thefe inftruments, few fubltances promife more than this, leecaufe it may be foldered afrefh in a damaged part. Any woven fubftance may be covered with it; it is only required that the fubftance thould be of a nature not to be acted upun during the preparation, either by ether or by boiling water; for thele two agents are thole which appear to me to merit the preference. Artifts will frequently find an advantage in employing ether, as it requires lefs time; fo that a perfon may make, in a fingle day, any tube he may have occafion for. 'l'he
expence of etlier is very little, fince it is needful only to difpufe the caontchouc to adhere; and being brouglit into that tate, the eaoutchouc may be kept in a veflel perfectly well clofed. It would alfo dimiuifh the expence of the ether if, inttead of waming it with a large quantity of water, there fhould be added to it unly as much water as it can take up."

CAP and Burtos, ate two finall iflands, or rather rucks, lying in longitude $105^{\circ} 48^{\prime} 39^{\prime \prime}$ eaft; and in latitude, the former $5^{\circ} 5^{\prime} 3^{\prime \prime}$, the latter $5^{\circ} 49^{\prime}$ fouth. They were vifited by fome of the perfons attending Lond Macartney on his embafly to China; and are thes deferibed by Sir George Staunton.
"At a litcle diftance they might he miftaken for the remains of old cafles, mouldering into heaps of ruins, with tall trees already growing upon the tops; but at a nearer view, they betrayed evident marks of a volcanic origin. Explofions from fubterraneous fires, produce, for the moft part, hills of a regular fhape, and ter. minating in truncated cones; but when from a fubaqueous volcano eruptions are thrown up above the furface of the fea, the materials, falling back into the water, are more irregularly difperfed, and generally leave the fides of the new creation naked and mifhapen, as in the inflance of Amsterdam, and of thofe finaller fputs called, from fome refemblance in thape, the Cap and Button.
"In the Cap were found two caverns, running horizontally into the fide of the rock; and in thefe were a number of thofe birds nefts fo much prized by the Chinefe epicures. They feemed to be compoled of fine fio laments cemented together by a tranfparent vifcous matter, not unlike what is left by the foam of the fea upon ftones alternately covered by the tide, or thofe gelatinous anienal fubftances found floating on every coalt. The nefs adhere to eacil other, and to the fides of the cavern, moftly in rows, without any break or interruption. The birds that build thefe nefts are fmall grey fwallows, nith bellies of a dirty white. They were flying about in confiderable numbers; but they were fo fmall, and their flight fo quick, that they efcaped the Thot fired at them. The fame netts are faid alfo to be found in deep caverns, at the foot of the lightelt mountains in the middle of Java, and at a diftance from the fea, fiom which the birds, it is thought, derive no materials, either for their fuod or the conftruction of their nefts; as it does not appear probable they flould fly, in fearch of either, over the intermediate mountains, which are very high, or againtt the boilterous winds prevailing thereabouts. They feed on infects, which they find hovering over flagnated pools between the mountains, and for catching which their wide opening beaks are particularly adapted. They prepare their nelts from the beft remnants of their fuod. Their greatelt enemy is the kite, who often intercepts them in their paflige to and from the caverns, which are generally furrounded with rocks of grey limeftone or white marble. The nefts are placed in horizontal rows at different depths, from 50 to 500 feet. The colour and value of the nefts depend on the quantity and quality of the infects caught, and perhaps allo on the fituation where they are built. Their value is chiefly determined by the uniform finenefs and delicacy of their texture; thofe that are white and tranfparent being moft efteemed, and fetching often in China their weight in filver.

There

C A P

Cip.
Thefe nefts are a confiderable object of traffic among the Javanefe, and many are employed in it from their infancy. 'The birds having fpent near two months in preparing their nefts, lay each two eggs, which are hatched in about fifteen days. When the young birds become fledged, it is thought time to feize upon their nefts, which is done regularly thrice a-year, and is effected by means of ladders of bamboo and reeds, by which the people defeend into the cavern; but when it is very deep, rope ladders are preferred. This operation is attended with much danger; and feveral break their necks in the attempt. 'The inhabitants of the mountains generally employed in it begin always by facrificing a buffalo; which cuftom is conflantly obferved by the Javanefe on the eve of every extraordinary enterprife. They alfo pronounce fome prayers, anoint thenfelves with fweet fcented oil, and fmoke the entrance of the cavern with gum-benjamin. Near fome of thofe caverns a tutelar goddefs is worhipped, whofe prieft burns incenfe, and lays his protecting hands on every perfon preparing to defcend into the cavern. A flambeau is carefully prepared at the fame time, with a gum which exudes from a tree growing in the vicinity, and is not eafily extinguifhed by fixed air or fubterraneous vapours. The fwallow which builds thofe nefts is defcribed as not having its tail feathers marked with
$163]$ C A R
white fpots, which is a character attributed to it by Cape Linnæus; and it is poffible that there are two fpecies or varieties of the fwallow, whofe nefts are alike valuable." See Birds-Neff, Encycl.

CAPE of Good Hope. Sec Good Hope, both in Encycl. and this Supplement.

CAPITAL of a Bastion, is an imaginary line dividing any work into two equal and fimilar parts ; or a line drawn from the angle of the polygon to the point of the baftion, or from the point of the bation to the middle of the gorge.

CAPRA, or the Shegont, a name given to the ftar Capella, on the left fhoulder of Auriga, and fometimes to the conftellation Capricorn. Some again reprefent Capra as a conftellation in the northern hemifo phere, confitting of three ftars, comprifed between the 45 th and $55^{\text {th }}$ degree of latitude. - The poets fable her to be Amalthea's goat, which fuckled Jupiter in his infancy.

CAPUT Draconis, or Dragon's Head, a name given by fome to a fixed ftar of the firft magnitude, in the head of the conftellation Draco.

CARBON. See Chemistry in this Supplement, Part I. Chap. II. Sect. iii.

CARP. See Cyprinus, both in the Encycl. and in this Suppleatent.

CARPENTRY,

THE art of framing timber for the purpofes of architecture, machinery, and, in general, for all confiderable ftructures.

It is not intended in this arcicle to give a full account of carpentry as a nechanical art, or to defcribe the various ways of exccuting its different works, fuited to the variety of materials employed, the proceffes which mutt be followed for fafhioning and framing them for our purpofes, and the tools which mult be ufed, and the manner in which they mult be handled: This would be an occupation for volumes; and though of great importance, muft be entirely omitted here. Our only aim at prefent will be to deduce, from the principles and laws of mechanics, and the knowledge which experience and judicious inferences from it have given us concerning the ftrengeh of timber, in relation to the ftrain laid on it, fuch maxims of conftruction as will unite economy with ftrength and efficacy.

This object is to be attained by a knowlerlge, 1 tt , of the ftrength of our materials, and of the abfolute ftrain that is to be laid on them; 2 dly , of the modifications of this ftrain, by the place and direction in which it is exerted, and the changes that can be made by a proper difpofition of the parts of our ftructure; and, 3 dly, having difpofed every piece in fuch a manner as to derive the utmoft advantage from its relative frength, we muit know huw to form the joints and other conucetions in fuch a manner as to fecure the advantages derived from this difpofition.

This is, evidently, a brauch of mechanical fcience, which makes carpentry a liveral art, conititutes part of the learning of the Evgineer, and dittinguihes him from the workman. Its importance in all tinses and flates of civil focicty is manifeft and great. In the pre-
fent condition of thefe kingdoms, raifed, by the active ingenuity and energy of our conptrymen, to a pitch of profperity and influence unequalled in the hiftory of the world, a condition which confifts chiefly in the fuperiority of our manufactures, attained by prodigious multiplication of engines of every defeription, and for every fpecies of labour, the Science (fo to term it) of carpentry is of immenfe confequence. We regret therefore exceedingly, that none of our celebrated artifts have done honour to themfelves and their country, by digefting into a body of confecutive doetrines the refults of their great experience, fo as to form a fyftem from which their pupils night derive the firft principles of their education. The many volumes called Complete Instructors, Manuals, Jewels, \&c. take a much humbler light, and content thenfelves with inflructing the mere workman, or fometimes give the ma-fter-builder a few approved forms of roofs and other framings, with the rules for drawing them on paper; and from thence forming the working dranghts which muit guide the faw and the chiffel of the workman. Hardly any of them offer any thing that can be called a principle, applicable to many particular cales, with the rules for this adaptation. We are indebted for the greatef Prinsipally part of our knowledge of this fubject to the labours of iadehted to literary men, chiefty foreigners, who have publiflued in fo eigners the memoirs of the learned academies differtations on ledgeof this different parts of what may be termed the fience of fubjea. carpentry. It is fingular that the members of the Royal Society of London, and even of that eftablifhed and fuplported by the patriotifm of thefe days for the eneouragement of the arts, lave contributed fo litile to the public inftruction in this refpect. We obferve of late fume berinnings of this kind, fucis as the laft part of

CARPENTRY.

Nicholfon's Carpenters and Joiners Assistant, publifhed by J. Taylor, Holborn, 1707. And it is with pleafure that we can fay, that we were told by the editor, that this work was prompted in a great meafure by what has loen delivered in the Encyclopedia Britannica in the articles Roor and Strenget of Materials. It abounds more in important and new obfervations than any look of the kind that we are acquanted with. We again call on fuel as have given a fcientific attention to this fuljegt, and pray that they would render a meritorions fervice to their country by inparting the refult of their refearches. The very limited nature of this work does not allow us to treat the fubject in detail; and we mult confine our obfervatiens to the fundamentel and leading propofitions.

Theory, founded on what.

The theory (fo to term it) of carpentry is founded on two difinct portions of mechanical feience, name1_{y}, a knowledge of the Arains to which framings of timber are expoicd, and a knowledge of their relative Atrength.

We fhall therefore attempt to bring into one point of view the propofitions of mechanical fcience that are more immediately applicable to the art of carpentry, and are to be fuund in various articles of our work, particularly Roof and Strangit of Materials. From thefe propofitions we hope to deduce fuch principles as fhall enable an attentive reader to comprehend dillincily what is to be ained at in franing timber, and how to attain this object with certainty : and we fhall illuftrate and confirm our principles by examples of pieces of carpentry which are acknowledged to be excellent in their kind.
The moft important propofition of general mechanics to the carpenter is that which exlibits the compofition and refolution of forces; and we beg our practical readers to endeavour to form very diflinct coneeptions of it, and to make it very familiar to their mind. When accommodated to their chief purpofes, it may be thus expreffed:

1. If a body, or any part of a body, be at onee preffed in the two directions $A B, A C$ (fig. I), and if the intenfity or force of thofe preflures be in the proportion of thefe two lines, the body is affected in the fame manner as if it were prefled by a fingle force acting in the direction AD, which is the diagonal of the parallelogram ABDC formed by the two lines, and whofe intenfity has the fame proportion to the intenfity of each of the other two that AD has to AB or AC .

Such of our readers as have fludied the laws of motion, know that this is fully demonftrated. We refer them to the article Mechanics, n°. 5 , \&c. where it is treated at fome length. Sueh as wifh for a very accurate view of this propofition, will do well to read the demonftration given by D. Bernoulli, in the firft vo. lume of the Comment. Petropol. and the improvement of this demonltration by D'Alembert in his Opufcles, and in the Conment. Taurinenf. The practitioner in earpentry will get more ufful confidence in the doetrine, if he will thut his book, and verify the theoretical de-

Iy requires the trifling expence of two fmall pulleys and a few yards of whipcord, we hope that none of our practical readers will onit it: They will thank us for this injunction.
2. Let the threads $A d, A F b$, and AE c (fig. 2.), have the weights d, b, and c, appended to them, and let two of the threads be laid over the pulleys F and E . Ey this apparatus the knot A will be drawn in the di. rections $A B, A C$, and $A K$. If the fum of the weights b and c be greater than the fingle weight d, the affemblage will of itfelf fettle in a certain deternined form: if you pull the knot A out of its place, it will always return to it again, and will relt in no other polition. For example, if the three weights are equal, the threads will always make equal angles, of 120 degrees each, round the knot.' If one of the weights be three pounds, another four, and the third five, the angle oppofite to the thread Itretched by five pounds will always be fquare, \&c. When the knot A is thus in equilibrio, we mult infer, that the action of the weight d_{2} in the direction $\mathrm{A} d$, is in direct oppofition to the combined action of b, in the cirection $A B$, and of c, in the direction $A C$. Therefore, if we produce $d A$ to any point D, and take AD to reprefent the magnitude of the force, or preffure exerted by the weight d, the prefliures exerted on A by the weights b and c, in the directions $A B$, $A C$, are in fact equivalent to a preffure acting in the direction $A D$, whofe intenfity we have reprefented by $A D$. If we now meafure off by a fcale on $A F$ and $A E$ the lines $A B$ and $A C$, having the fame proportions to AD that the weights b and c have to the weight d, and if we draw DB and DC , we hall find DC to be equal and parallel to AB , and DB equal and parallel to $A C$; fo that $A D$ is the diagonal of a parallelogram $A B D C$. We thall find this always to be the cafe, whatever are the weights made ufe of; only we muft take eare that the weight which we caufe to act without the intervention of a pulley be lets than the fum of the other two: if any one of the weights exceeds the fum of the other two, it will prevail, and drag them along with it.

Now, lince we know that the weight a would juft. balance an equal weight g, pulling direetly upwards by the intervention of the pulley G_{j}, and fince we fee that it jult balances the weights b and c, acting in the diree. tions $A D, A C$, we mult infer, that the knot A is af. fected in the fame manner by thofe wo weights, or by the fingle weight g; and therefore that two prefures, ating in the diredions, and swith the intenflies, $A B, A C$, are equivalent to a fingle preflure baving the direction and proportion of AD . In like manner, the preffures AB , $A \mathrm{~K}$, are equivalent to $A \mathrm{H}$, which is equal and op. polite to $A C$. Alfo $A K$ and $A C$ are equivalent to AI, which is equal and oppofite to AB.

We fhall confider this combination of preffures a little Confidered more particularly.

Suppofe an upright beam EA (fig. 3.) puhhed in cularly. the direction of its length by a load B, and abutting on the ends of two beams $A C, A D$, which are firmly refilted at their extreme points C and D, which reft on two bloeks, but are nowife joined to them : there two beams can refift no way but in the directions CA, DA; and therefore the preffures which they fuftain from the beam BA are in the directions AC, AD. We wifh to know how much each fuftains? Produce BA to E,
taking $A E$ from a fcale of equal parts, to reprefent the number of tons or pounds by which BA is preffed. D) raw EF and EG parallel to AD and AC; then AF, meafured on the fame feale, will give us the number of pounds by which $A C$ is trained or cruthed, and $A G$ will give the frain on $A D$.

It deferves particular remark here, that the length of AC or AD has no influence on the Arain, arifing from the thruft of BA , while the directions remain the fame. The effects, however, of this ftrain are modified by the length of the piece on which it is exerted. This tt rain conureffes the beam, and will therefore com. prefs a beam of double length twice as much. This may change the form of the affemblage. If AC, for example, be very much fhorter than AD, it will be much lefs compreffed: The line CA will turn about the centre C, while DA will hardly change its pofition ; and the angle $C A D$ will grow more open, the point A linking down. The artit will find it of great confequence to pay a very minute attention to this eircumftance, and to be able to fee clearly the change of Rape which neceffarily refults from thefe mutual itrains. He will fee in this the caufe of failure in many very great works. By thus changing fhape, Atrains are often produced in places where there were none before, and frequently of the very wortt kind, tending to break the beams acrofs.

The dotted lines of this figure fhew another pofition of the beam AD^{\prime}. This makes a prodigious change, not only in the ftrain on AD^{\prime}, but alfo in that on AC . Buth of them are much increafed; AG is almoft doubled, and AF is four times greater than before. This addition was made to the figure, to the w what enormous ftrains may be produced by a very moderate force AE, when it is exerted on a very obtufe angle.

The 4 th and g th tigures will affit the moft miniftruated reader in conceiving how the very fance ftrains AF, AG, are laid on thefe beams, by a weight fimply langing from a billet refling on A, preffing hard on $A 1$, and alfo leaning a little on AC ; or by an upright piece AE, jogrled on the two beams AC, AD, and performing the office of an ordinary king-polt. The leader will thus learn to call off his attention from the means by which the flrains are produced, and learn to confider them abftractedly, merely as flrains, in whatever fituation he finds them, and frem whatever caufe they arife.
We prefume that every reader will perceive, that the proportions of thefe frains will be preeifely the fame if every thing be inverted, and each beam be drawn or pulled in the oppofite direction. In the fame way that we have fubflituted a rope and weight in fig. 4. or a king-poft in fig. 5. for the loaded beam BA of fig. 3. we might have fubttituted the framing of fig. 6 . which is a very ufual practice. In this framing, the batten DA is ftretched by a force AG, and the piece AC is compreffed by a force AF. It is evident that we may employ a rope, or an iron rod hooked on at D, in place of the batten DA, and the ftrains will be the fame as before.

This feemingly fimple matter is fill full of inftruction; and we hope that the well-informed reader will pardon us, though we dwell a little longer on it for the fake of the young artif.

By changing the form of this framing, as in fig. 7. we produce the fame ftrains as in the difpofition repre-
fented by the dotted lines in fig. 3. The flrains on both the battens AD, AC, are now greatly increafed.

The fame confequences refult from an improper change of the pofition of λC. If it is placed as in lig. 8. the tlyains on both are vafly increalied. In flort, the rule is general; that the mure open we make the angle againit which the puih is exerted, the greater are the flrains which are brought on the ttruts or ties which form the fides of the angle.

The reader may not readily conceive the piece AC of fig. 8. as fullaiming a compreffion; for the weight B appears to hang from AC as much as from AD. But his doubts will be eemoved by confidering whether he could employ a rope in place of AC. He cannot: But AD may be exchanged fur a rope. AC is therefore a flrut and not a tic.

In fig. 9. A1) is again a ftrut, butting on the block D , and AC is a tie: and the batten AC may be replaced by a rope. While AD is compreffed by the force $A G, A C$ is fltetched by the force $A F$.

If we give $A C$ the pofition reprefented by the dotted lines, the comprefion of $A 1$) is now $A G^{\prime}$, and the force ftretching $\mathrm{AC}^{\prime \prime}$ is now AF ; both much greater than they were before. This difpofition is analegous to fig. 8. and to the dotted lines in fig. 3. Nor will the young artift have any doubss of AC being on the ftretch, if he confider whether AD can be replaced by a rope. It cannot, but AC^{\prime} may ; and it is thercfore not com. prefled, but fretched.

In fig. 10 . all the three pieces, $A C, A D$, and $A D$, are tics on the fretch. This is the complete inverfion of fig. 3.; and the dotted profition of AC induces the fame changes in the forces $A F^{\prime}, A G^{\prime}$, as in fig. 3 .
Thus have we gone over all the varieties which can happen in the bearings of three pieces on one point. All calculations about the ftrength of carpentry are reduced to this cale: for when more ties or braces meet in a print (a thing that rarcly happens), we reduce them to three, by fubftituting for any two the force which refults from their combination, and then combining this with another ; and fo on.
The young artift mul be particularly careful not to miftake the kind of ftrain that is exerted on any piece of the framing, and fuppofe a pieee to be a brace which is really a tie. It is very eafy to avoid all miftakes in this matter by the following rule, which has no exception.
Take notiee of the direction in which the piece acts Rule for from which the ftrain proceeds. Draw a line in that diftinguifh. direction from the point on which the frain is exerted ; ing the caand let its length (meafured on fome fale of equal preffionand parts) exprefs the magnitude of this action in pounds, extenfion. bundreds, or tuns. From its remote cxtremity draw lines parallel to the pieces on which the tlrain is exerted. The line parallel to one piece will neceffarily cut the other, or its direction produced: If it cut the piece itfelf, that piece is compreffed by the flrain, and it is performing the office of a ftrut or brace: if it cut its direction produced, the piece is fretched, and it is a tie. In fhort, the frains on the pieces AC, AD, are to be eflimated in the direction of the points F and G from the ftrained point A. Thus, in fig. 3. the upright piece BA, loaded with the weight B, preffes the point A in the direction $A E:$ fo does the rope AB in the other figures, or the batten $A B$ in fig. 5 .

In: general, if the fraining piece is within the angle formed by the pieces which are Itrained, the ftrains which they fuftain are of the oppofite kind to that which it exerts. If it be puthing, they are drawing; but if it le within the angle fermed by their directions produced, the ftrains which they fuitain are of the fame kind. All the three are either drawing or preffing. If the ftraining piece lie within the angle formed by one piece and the produced direction of the other, its own itrain, whether compreffion or extenfion, is of the fame kind with that of the moft remote of the other two, and oppolite to that of the neareft. Thus, in fig. 9 . where $A B$ is drawing, the remote piece $A C$ is alfo drawing, while AD is puthing or refilting compreftion.

In all that has been faid on this fubject, we have not fpoken of any joints. In the ealculations with which we are oceupied at prefent, the refitance of joints has no thate ; and we mult not fuppofe that they exert any furce which tends to prevent the angles from changing. The joints are fuppofed perfectly flexible, or to be like compats joints; the pin of which only keeps the pieces together when one or more of the pieces draws or pulls. The carpenter muft always fuppofe them all compars joints when he ealeulates the thrufts and draughts of the different pieces nf his frames. The ftrains on joints, and their power to produce or balance them, are of a different kind, and require a very different examination.

EAD is alfo very fmall; and this is our multiplicr. In fuch a cafe, the quotient cannot exceed unity.

But it is unueeeflary to confider the ealculation by the tables of fines more particularly. The angles are feldom known any otherwife but by drawing the figure of the frame of carpentry. In this caie, we can always obtain the meafures of the ftrains from the fame fcale, with equal accuracy, by drawing the parallelogram AFCG.

Hitherto we have confidered the ftrains excited at Strainspro. A only as they affect the pieces on which they are ex-pagated to erted. But the pieces, in order to fuitain, or be fubject of the pointsort, to, any Atrain, mult be fupported at their ends C and D ; and we may confider them as mere intermediums, by which thefe ftrains are made to act on thofe points of fupport: Therefore AF and AG are alfo meafures of the forces which prefs or pull at C and D. Thus we learn the fupports which mult be found for thefe points. Thefe may be infinitely various. We fhall attend only to fuch as fomehow depend on the framing itfelf.

Such a ftructure as fig. in. very frequently occurs, Action of $\frac{1}{2}$ where a beam BA is ftrongly prefled to the end of an flaining other beam $A D$, which is prevented from yielding, both becaufe it lies on another beam HD, and beeaufe its end D is hindered from fliding back wards. It is indifferent from what this preflue arifes: we have reprefented it as owing to a weight hung on at B, while B is withheld from yielding by a rod or rope hooked to the wall. The beam AD may be fuppofed at full liberty to exert all its preflure on D , as if it were fupported on rollers lodged in the beam HD; hut the loaded beam BA prefles both on the beam AD and on HD. We wifh only to know what ftrain is borne by AD ?

All bodies act on each other in the direction perpendicular to their touching furfaces; therefore the fupport given by HD is in a direction perpendicular to it. We may therefore fupply its place at A by a beam AC, perpendicular to HD , and firmly fupported at C . In this cafe, therefore, we may take AE , as before, to reprefent the preflure exerted hy the loaded beam, and draw EG perpendicular to AD, and EF parallel to it, meeting the perpendicular $A C$ in F. Then $A G$ is the flrain compreffing $A D$, and $A F$ is the preflure on the beam HD.

12
It may be thought, that fince we affume as a prin- The form eiple that the mutual preflures of folid bodies are exert- of the abuted perpendicular to their touching furfaces, this ba- ting joint lance of preffires, in framings of timbers, depends on of no great the directions of their butting joints: but it does not, impe. as will readily appear by confidering the prefent cafe. Let the joint or ahutment of the two pieces BA, AD be mitred, in the ufual manner, in the direction f A $f^{\prime \prime}$. Therefore, if A_{e} be drawn perdendicular to $\mathrm{A} f$, it will be the direction of the actual preffure exerted by the loaded beam BA on the beam AD. But the reaction of AD, in the oppofite direction A t, will not balance the preflure of BA; becaufe it is not in the direction precifely oppofite. BA will therefore fide along the joint, and prefs on the beam HD. AE reprefents the load on the mitre joint A. Draw $\mathrm{E} e$ perpendicular to Ae, and $\mathrm{E} f$ parallel to it. The preffurc $A 己$ will he balanced by the reactions $c A$ and $f A$: or, the preflure AE produces the preffures $\mathrm{A} c$ and $\mathrm{A} f$;
of which Λf murt be refited by the beam HD , and A e by the beam $A D$. The preffure $A f$ not being perpendicular to HD, cannot be fully refitted by it; becaufe (by our affumed principle) it reacts only in a direction perpendicular to its furface. Therefore draw $f \rho, f i$ parallel to HD, and perpendicular to it. The preflure $\mathrm{A} f$ will be refined by HD with the force $p \mathrm{~A}$; but there is sequired another force $i A$, to prevent the beam BA from fipping out wards. This muft be furnined by the reation of the beam DA. - In like manner, the other force A e cannot be fully refifted by the beam AD , or rather by the prop D , acting by the intervention of the beam; for the action of that prop is exerted through the bean in the direction DA. The beam AD, therefore, is preffed to the beam HD by the force $\mathrm{A} e$, as well as by $\mathrm{A} f$. To find what this preffure on HD is, draw e g perpendicular to HD , and eo parallel to it, cutting EG in r. The furces g A and o A will refit, and balance A c.

Thus we fee, that the two forces $\mathrm{A} e$ and $\mathrm{A} f$, which are equivalent to AE , are equivalent alfo to $A p, \mathrm{~A} i$, A o, and $\mathrm{A} g$. But becaufe $\mathrm{A} f$ and $e \mathrm{E}$ are equal and parallel, and E r and $f i$ are alio parallel, as alfo er and $f_{p} p$, it is evident, that if is equal to $r \mathrm{E}$, or to o F , and iA is cqual to $r e$, or to Gg . Therefore the four forces $A g, A o, A p, A i$, are equal to $A G$ and $A F$. Therefore $A G$ is the compreffion of the beam $A D$, or the force prefling it on D , and AF is the force preffing it on the beam HD. The proportion of thefe preffures, therefore, is not affected by the form of the joint.

This remark is important; for mally carpenters think the form and direction of the butting joint of great importance; and even the theorift, by not profecuting the general principle through all its confequences, may be led into an error. The furm of the joint is of no importance, in as far as it affects the flrains in the direction of the beams; but it is offen of great confequence, in refpect to its own firmacfs, and the effiect it may have in hruifing the piece on which it acts, or being crippled by it.

The fame compreffion of $A B$, and the fame thruit on the point D by the intervention of $A 1$, will ohtain, in whatever way the original preflare on the end A is produced. Thus fuppofing that a cord is made faft at A, and pulled in the direction AE, and with the fame force, the beam AD will be equally compreited, and the prop D mult react with the fame force.

But it often happens that the obliquity of the preffure on $A D$, infuad of compreffing it, ftretches it: and we defire to know what tenfion it futains? Of this we have a familiar example in a common roof. Let the two rafters $A C, A D$ (fig. 12.), prets on the tiehearn DC. We may fuppofe the whole weight to prefs vertically on the tidge A, as if a weight B were hung on there. We may reprefent this weight by the portion $A b$ of the vertical or plumb line, intercepted be. tween the ritge and the beam. Thea drawing $l f$ and $b g$ parallel to $A D$ and $A C, A g$ and $A f$ will reprefent the prefliures on AC and AD . Produce AC till CH be equat in $A f$. The point C is forced out in this direqion, and with a force reprefented by this line. As this force is not perpendicularly acruls the beant, it evidenily ftretches it ; and this extending force mut be withilood hy an equal force pulling it in the oppofite direction. This muft arife from a fimilar oblique thrull
of the opppfite rafter on the other end D. We concern ourfelves only with this extenfonn at prefent; but we fee that the cohefion of the beam coes nothing but fupply the balance to the extending forces. It mult ftill be fuppurted externally, that it may rofig, and, by refilting obliquely, be Aretched. The points C and 1) are fupported on the walls, which they profs in the directions CK and DO , parallel to $\mathrm{A} b$. If we draw HK parallel to DC, and II 1 parallel to CI' (that is, to Ab), meeting DC produced in I, it follows from the conspofition of forces, that the point C would be fupported by the two forces KC and IC. In like manner, making $\mathrm{DN}=\mathrm{A} g$, and completing the parallelograns DMNO, the point D would be fupported by the forces OD and MD. If we draw $g o$ and $f k$ parallel to DC, it is plain that they are equal to NO and CK , while $\mathrm{A} o$ and $\mathrm{A} k$ are equal to DO and CK , and $\mathrm{A} b$ is equal to the fum of DO and CK (becaufe it is equal to Ao $+A k$). The weight of the roof is equal to its vertical preffare on the walls.

Thus we fee, that while a preflure on A, in the direction $A b$, produces the frains $A f$ and $A g$, on the pieces AC and AD , it alfo excites a ftrain Cl or DM in the piece DC. And this completes the mechanifm of a frame; for all derive their efficacy from the triangles of which they are compofed, as will appear more clearly as we proceed.

But there is more to be learaed .from this. The External confideration of the frains on the two pieces AD and $A C$, by the action of a force at A, only fhewed thetn as the means of propagating the fame frains in their own direction to the points of fupport. But, by adding the Arains exerted in DC, we fee that the frame becomes an iutermedium, by which exertions may be made on other bodies, in certain directions and proportions; fo that this frane may become part of a nure complicated one, and, as it were, an element of its cuarftituticin. It is worth while tu afcertain the proportion of the preflures CK and DO, which are thus exertud on the walls. The fimilarity of triangles give the lunlowing analogies:

$$
\begin{aligned}
\mathrm{DO}: \mathrm{DM} & =\mathrm{A} b: l \mathrm{D} \\
\mathrm{CI}, \text { or } \mathrm{DM}: \mathrm{CK} & =\mathrm{C} b: \mathrm{A} \\
\text { Therefore DO }: \mathrm{CK} & =\mathrm{C} b: b \mathrm{D} .
\end{aligned}
$$

Or, the prefures on the points C and D , in the direction of the frainind force A b, are reciprocally propartunnal to ahe portions of DC intercepted by Ab.

Alfo, fince $\mathrm{A} b$ is $=D O+\mathrm{CK}$, we have

$$
A b: C K=C \bar{b}+b D(\text { or } C D): b D \text {, and }
$$ $\mathrm{A}: \mathrm{DO}=\mathrm{CD}:\lrcorner \mathrm{C}$.

In Eenetal, any two of the three parallel forces $A b$ DO, ET, are to each other in the reciprocal propirtion of the parts of CD, intercepted betwen their directions and the direction of the third.

And this expluins a aill more important office of the frame ADC. If one of the puints, fuch as I), be fupported, an external power afing at A, in the d'reEuin A b, and with an intenfity which may be nicafured by A b, may be fet in equililio, with anuther deting at C, in the direction CL, oppofite to CK or $\mathrm{A} b$, and with an intenfity reperented by Cli: fur face the pectiare CH is partly withitoorl by the furce IC, or the firmuefo of the beam DC fupported at D , the furce KC will complete the balance. When we do not attend to the fupperit at D, we conceive the force in's to be balanced
by KC , or KC to be balanecd by $\mathrm{A} b$. And, in lize manner, we may neglect the fupport or force acting at A, and confider the force DO as balanced by CK.

Thus our frame becomes a lever, and we are able to trace the interior mechanical procedure which gives it
its efficacy: it is by the intervention of the forces of cohefion, which connect the points to which the external forces are applied with the fupported point or fulcrum, and with each other.

Thefe ftrains or preffures A b, DO, and CK , not being in the directions of the heams, may be called tranf. verfe. We fee that by their means a frame of carpentry may be confidered as a Iolid body: but the example which brought this to our view is too limited for explaining the efficacy which may be given to fuch conflructions. We fhall therefore give a general propofition, which will more diftinctly explain the procedure of nature, and enable us to trace the ftrains as they are propagated through all the parts of the mutt complicated framing, finally producing the exertion of its moft diftant points.

We prefume that the reader is now pretty well habituated to the conception of the Itrains as they are propagated along the lines joining the points of a frame, and we fhall therefore employ a very fimple figure.

Let the ftrong lines ACBD (fig. 13.) reprefent a frame of carpentry. Suppofe that it is pulled at the point A by a foree acting in the direction AE, but that it refls on a fixed point C , and that the other extreme point B is held back by a power which refifts in the direction BF: It is required to determine the proportion of the ftrains excited in its different parts, the proportion of the external preffures at A and B , and the preflure which is produced on the obftacle or fulcrum C ?

It is evident that each of the external forces at A and B tend one way, or to one fide of the frame, and that each would caufe it to turn round C if the other did not prevent it; and that if, notwichftanding their ac. tion, it is turned neither way, the furces in actual exer. tion are in equilibrio by the intervention of the frame. It is no lefs evident that thefe forces concur in preffing the frame on the prop C. Therefore, if the piece CD were away, and if the joints C and D be perfectly flexible, the pieces $\mathrm{C} . \hat{\mathrm{I}}, \mathrm{CB}$ would be turned round the prop C, and the pieces AD, DB would alfo turn with them, and the whole frame change its form. This fhews, by the way, and we defire it to be carefully kept in mind, that the firmnefs or fliffuefs of framing depends entirely on the triangles bounded by beams which are contained in it. An open quadrilateral may always change its flape, the fides revolving round the augles. A quadrilateral may have an infinity of forms, without any change of its fides, by mercly pufhing two oppofite angles towards each other, or drawing them afunder. But when the three fides of a triangle are determined, its fhape is alfo invariably determined ; and if two angles be held faft, the third cannot be moved. It is thus that, by inferting the bar CD , the figure becomes unchangeable; and any attempt to change it by applying a force to an angle A, inmediately excites forces of attraction or repulion between the particies of the fulf which form its fides. Thus it happens, in the prefent iuftance, that a change of fhape is prevented by the bar CD. The power at A preffes its end againft
the prop; and in doing this it puts the bar AD on the ftretch, and alfo the bar DB. Their places might therefore be fupplied by cords or metal wires. Hence it is evident that DC is comprefied, as is alfo AC: and, for the fame reafon, CB is alfo in a thate of compreffion; for either A or B may be confidered as the point that is impelled or witheld. Therefore IDA and DB are ftretched, and are refilting with attractive forees. DC and CB are comprefled, and are refilling with repulfive forces. DB is alfo acting with repulfive forces, heing compreffed in like manner: and thus the fupport of the prop, combined with the firmuefs of DC, puts the frame ADBC into the conlition of the two frames in fig. 8 and fig. 9. Therefore the external force at A is really in equilibrio with an attracting force acting in the direction $A D$, and a repulfive force acting in the direction AK. And fince all the comecting forces are mutual and equal, the point D is pulled or drawn in the direction DA. The condition of the point B is fimilar to that of A , and D is alfo drawn in the direction DB. Thus the point D , being urged by the forces in the directions DA and DB, preffes the beam DC on the prop, and the prop retits in the oppofite direction. Therefore the line DC is the diagonal of the parallelogram, whofe fides have the proportion of the forces which connect D with A and B. This is the principle on which the rell of our inveftigation proceeds. We may take DC as the reprefentation and meafure of their joint effect. Therefore draw CH, CG, parallel to DA, DB. Draw HL, GO, parallel to CA, CB, cutting $A E, B F$ in L and O, and cutting DA, DB in I and M. Complete the parallelograms ILKA, MONB. Then DG and AI are the equal and oppofite forces which connect A and D ; for $\mathrm{GD}=\mathrm{CH}$, $=A \mathrm{I}$. In like manner DH and DM are the forces which connect D and B .

The external force at A is in immediate equilibrio with the combined forces, connecting A with D and with C. AI is one of them: Therefore AK is the other; and AL is the compound force with which the external force at A is in immediate equilibriun. This external force is therefore equal and oppolite ta AL. In like manner, the external force at B is equal and oppofite to BO; and AL is to BO as the external force at A to the external force at B . The prop C refifts with forces equal to thofe which are propagated to it from the points D, A, and C. Therefore it refifts with forces CH, CG, equal and oppofite to DG, DH ; and it refilts the compreffions KA , NB, with. equal and oppofite forces $\mathrm{C} k, \mathrm{C} n$. Draw kl, no parallel to AD, BD, and draw $\mathrm{C} / \mathrm{Q}, \mathrm{C} \circ \mathrm{P}$: It is plain that k CII l is a parallelogram equal to KAIL, and that $\mathrm{C} l$ is equal to A L . In like manner $\mathrm{C} o$ is equal to BO. Now the forces $\mathrm{C} k . \mathrm{CH}$, exerted by the prop, compofe the force $\mathrm{C} l$; and $\mathrm{C} n, \mathrm{CG}$ compole the force C o. Thefe two forces $\mathrm{C} l, \mathrm{C}$ o are equal and parallel to AL and BO ; and therefore they are equal and oppofite to the external forces acting at A and D. But they are (primitively) equal and oppofite to the preffures (or at leat the compounds of the preffures) exerted on the prop, by the forces propagated to C from A, D, and B . Therefore the preffures exerted on the prop are the fame as if the external forces were applied there in the fame directions as they are applied to \mathbf{A} and B . Now if we make CV, CZ equal to $\mathrm{C} l$ and Co ,
and complete the parallelogram CVYZ; it is plain that the force $Y^{\prime} C$ is in equilibrio with $l \mathrm{C}$ and $o \mathrm{C}$. Therefore the preffures at A, C, and B , are fuch as would balance if applied to one point.

Lafly, in order to determine their proportions, draw CS and CR perpendicular to DA and DB. Alfo draw $\mathrm{A} d, B f$ perpendicular to CQ and CP ; and draw $\mathrm{C} g$, C i perpendicular to AE, BF.

The triangles CPR and $\mathrm{BP} f$ are fimilar, laving a common angle P , and a right angle at R and f.

In like nanner the triangles CQS and $\mathrm{AQ} d$ are $\mathrm{fi}-$ milar. Alfo the triangles CHR, CGS are fimilar, by reafon of the equal angles at H and G , and the right angles at R and S. Hence we obtain the following analogies :

$$
\begin{aligned}
& \mathrm{C} 0: \mathrm{CP}=\mathrm{O} n: \mathrm{PB},=\mathrm{CG}: \mathrm{PB} \\
& C P: C R=\quad 1 P B: f B \\
& \mathrm{CR}: \mathrm{CS}=\quad \mathrm{CH}: \mathrm{CG} \\
& \begin{array}{l}
\mathrm{CS}: \mathrm{CQ}= \\
\mathrm{CQ}: \mathrm{C} /=\mathrm{AQ}: \mathrm{K} l=\mathrm{Ad}: \mathrm{AQ}: \mathrm{CH} .
\end{array} \\
& \text { Therefore, by equality, } \\
& \mathrm{C} 0: \mathrm{C} l= \\
& \mathrm{A} d: f \mathrm{~B} \\
& \mathrm{C} g: \mathrm{C} \text { i. }
\end{aligned}
$$

That is, the external fores are reciprocally proportional to the perpendiculars drawn from the prop on the lines of their direction (A):
This propofition (fufficiently general for our purpofe) is fertile in confequences, and furnifhes many ufeful inftructions to the artit. The ftrains LA, OB, CY, that are excited, occur, in many, we may fay in all, framings of carpentry, whether for edifices or engines, and are the fources of their efficacy. It is alfo evident, that the doctrine of the tranfverfe ftrength of timber is contained in this propofition; for every piece of timber may be confidered as an affemblage of parts, connected by forces which aet in the direction of the lines which join the Atrained points on the matter which lies between thofe points, and alfo act on the reft of the matter, exciting thofe 1 ateral forces which produce the inflexibility of the whole. See Strength of Materials, Encycl.
Thus it appears that this propofition contains the principles which direct the artilt to frame the moft powerful levers ; to fecure uprights by Mores or braces, or by ties and ropes; to fecure fcaffoldings for the erection of fpires, and many other moll delicate pro-
Suppl. Vol. 1. Part I.
blems of his art. He alfo learns, from this propofition, how to afcertain the flrains that are produced, without his intention, by pieces which he intended for other offices, and which, by their tranferfe action, put his work in hazard. In fhort, this propofition is the key to the feience of his art.

We would now counfel the artif, after he has made the tracing of the drains and thrults through the varinus parts of a frame familiar to his mind, and evon amufed himfelf with fome complieated fancy framings, to read over with care the articles Streng th of Materials and Roon in the Encyclopedia Britannica. He will now conceive its doctrines much more clearly than when he was contidering them as abttract theories. The mutual action of the woody fibres will now be cafily comprehended, and his confidence in the refults will be greatly increafed.
There is a propofition ($\mathrm{n}^{\circ} 19$. in the article Roor) necifion of which has been called in quettion by feveral very intelli- a tiffuted gent perfors; and they fay that Belidor has demontra- and very ted, in his Science des Ingenieves, that a beam frino imerrant ly fixed at both ends is not twice as ftrong as when fimply lying on the props, and that its frength is in. creafed only in the proportion of 2 to 3 ; and they fupport this deternination by a lift of experiments recited hy Belidor, which agree precifely with it. Belidor alfo fays that Pitot had the fame refult in his experiments. Thefe are refpectable authorities: but Belidor's reafoning is any thing but demonftration ; and his experiments are deferibed in fuch an insperfect man. ner, that we cannot build much on them. It is not faid in what manner the battens were fecured at the ends, any farther than that it was by cbevalets. If by this word is meant a trefsle, we cannot conceive how they were employed; but we fee it fometimes ufed for a wedge or key. If the battens were wedged in the boles, their refiftance to fracture may be made whet we pleafe: they may be loofe, and therefore refit little more than when fimply laid on the props. They may be (and probably were) wedged very fait, and bruifed or crippled.

Our propofition mentioned difinctly the fecurity given to the ends of the beams. 'They were mortifed into remote pofts. Our precife meaning was, that they were fimply kept from rifing by thefe mortifes, but at full liberty to bend up between E and I , and between Y
(a) The learned reader will perceive, that this analogy is precifely the fame with that of forees which are in equilibrio by the intervention of a lever. In fact, this whole frame of carpentry is nothing elfe than a built or framed lever in equilibrio. It is acting in the fame manner as a folid, which oceupies the whole figure compreffed in the frame, or as a body of any fize and fhape whatever that will admit the three points of application A, C, and B . It is always in equilibrio in the cafe firf fated; becaufe the preffure produced at B by a foree applied to A is always fuch as balanees it. The reader may alfo perceive, in this propofition, the analy fis or tracing of thofe internal mechanical forces which are indifpenfably requifite for the functions of a lever. The mechanicians have been extremely puzzled to find a legitimate demonftration of the equilibrium of a lever ever fince the days of Archimedes. Mr Vince has the honour of firf demonftrating, mof ingenioully, the principle affumed by Arehimedes, but without fufficient ground, for bis demonfration : but Mr Vince's demontration is only a putting the mind into that perplexed flate which makes it acknowledge the propofition, but without a clear perception of its truth. The difficulty has proceeded from the aliftract notion of a lever, conceiving it as a mathematical line-inflexible, without reflecting how it is inflexible-for the very fource of this indifpenfable quality furnifhes the mechanical connection between the remote preflures and the fulerum ; and this fupplies the demonfration (without the leaft difficulty) of the defperate cafe of a flraight lcver urged by parallel forces. See Rotation, n ${ }^{\circ}$ II. Encycl.

C ARPENTRY.

Gand K. Our affertion was not made from theory alone (although we think the reafoning incontrovertible), but was agreeable to numerous experiments made in thofe precife circumftances. Had we mortifed the beams firmly into two very flout pofts, which could not be drawn nearer to each other by bending, the beam would have borne a much greater weight, as we have verified by experiment. We hope that the following mode of conceiving this cafe will remove all doubts.

Let LaI be a long beam (fig. 14.) divided into fix equal parts, in the points D, B, A, C, E. Let it be firmily fupported at L., B, C, M. Let it be cut throngh at A, and have compafs-juints at B and C. Let $F B$, GC be two equal uprights, relling on B and C , but without any connection. Let AH be a fimilar and equal piece, to be occafionally applied at the feam A. Now let a thead or wire AGE be extended over the piece GC, and made fait at A, G, and E. Let the fame thing be done on the other fide of A. If a weight be now laid on at A, the wires AFD, AGE will be flrained, and may be broken. In the inflant of fracture we may fuppofe their ftrains to be reprefented by A f and $\mathrm{A} g$. Complete the parallelogram, and $\mathrm{A} a$ is the magnitude of the weight. It is plain that nothing is concerned here but the cohefion of the wires; for the beam is fawed through at A, and its parts are perfectly moveable round B and C .

Inftead of this procefs apply the piece AH below A, and keep it there by training the fame wire BHC over it. Now lay on a weight. It mult prefs down the ends of BA and CA, and caufe the piece AH to frain the wire BHC. In the inttant of fracture of the fame wire, its refiftanse $\mathrm{H} b$ and $\mathrm{H} c$ mult be equal to $\mathrm{A} f$ and A_{g}, and the weight $b \mathrm{H}$ which breaks them mult be equal to $A a$.

Laftly, employ all the threc pieces $\mathrm{FB}, \mathrm{AH}, \mathrm{GC}$, with the fame wire attached as hefore. There can be no doubt tut that the weight which breaks all the four wires mult be $=a A+b$, or twice A a.

The reader camot but fee that the wires perform the very fame office with the fibres of an entire beam LM held faft in the four holes D, B, C, and E, of fome up. right pofts.

In the experiments fur verifying this, by breaking Iender hars of fine deal, we get complete demonfration, by meafuring the curvatures produced in the parts of the beam thus held duwn, and comparing them with the curvature of a beam fimply laid on the props B and C : and there are many curious inferences to be made from thefe obfervations, but we have nut room for them in this place.
We may oblerve, by the way, that we learn from this cafe, that purlins are able to carry twice the load when notched into the rafters that they carry when mortifed into them, which is the moft ufual manner of framing them. So would the binding joifts of floors; but this would double the thicknefs of the flooring. But this method fhould be followed in every poffible cafe, fuch as breaft fummers, lintels over feveral pillars, \&c. Thefe fhould never be cut off and mortifed into the fides of every upright ; numberlefs cafes will occur which. hew the importance of the maxim.

We muft here remark, that the proportion of the fpaces $B C$ and $C M$, or $B C$ and $L B$, has a very fenfible effect on the flrength of the beam BC ; but we have
not yet fatisfied our minds as oo the rationale of this ef. fect. It is undoubtedly connected with the ferpentinc form of the curve of the bea:n before fracture. This fhould be attended to in the conflruction of the fprings of carriages. Thefe are frequently fupported at a middle point (and it is an excellent practice), and there is a certain proportion which will give the eafieft motion to the body of the carriage. We alfo think that it is connected with that deviation from the beft theory obfervable in Buffun's experiments on various lengths of the fame fcantling. The force of the beams diminifhed much more than in the inverfe proportion of their lengths.

We have feen that it depends entirely on the pofition Ti, $\stackrel{2}{ }{ }^{\circ}$ of the pieces in refpect of their points of ultimate fup-general betport, and of the direction of the external force which ter than produces the fraius, whether any particular piece is in fruts. a flate of exteufion or of compreflion. The knowledge of this circumitance may greatly influence us in the choice of the conlruction. In many cafes we may fubftitute flender iron rods for maffive beams, when the piece is to act the part of a tie. But we mult not invert this difpolition; for when a piece of timber acts as a frut, and is in a ftate of compreffion, it is next to certain that it is not equally compreffible in its oppofite fides through the whole length of the piece, and that the compreffing force on the abutting joint is not acting in the moft equable manner all over the joint. A very trifling inequality in either of thefe circumfances (efpecially in the firf) will comprefs the beam more on one fide than on the other. This cannot be without the beam's bending, and becoming concave on that fide on which it is mott compreffed. When this happens, the frame is in danger of being crufhed, and foon going to ruin. It is therefore indifpenfably neceffary to inake ufe of beams in all cafes where ftruts are required of confiderable lengtl2, rather than of metal rods of flende:dimentions, uniets in fituations where we can effectually prevent their hending, as in truffing a girder internally, where a caft iron ftrut may be firmly cafed in it, fo as not to bend in the fnalleft degree. In cafes where the preffures are enormous, as in the very oblique flruts of a centre or arch frame, we muft be particularly cautious to do nothing which can facilitate the compreffion of either fide. No mortifes fhould be cut near to one fide; no lateral preflure, evea the flighteft, fhould be allowed to touch it. We have feen a pillar of fir 12 inches long and one inch in fection, when loaded with three tons, fuap in an intlant when preffed on one fide by 16 pounds, while another bore $4^{\frac{1}{2}}$ tons without hurt, becaufe it was inclofed (loofely) in a flout pipe of iron.

In fuch cafes of enormous compreffion, it is of great importance that the compreffing force bear equally on the whole abutting furfaces. The Gernan carpenters are accuftomed to put a plate of lead over the joint. This prevents, in fome meafure, the penetration of the end fibres. Mr Perronet, the celebrated French architect, formed his abutments into arches of circles, the centre of which was the remote end of the frut. By this contrivance the unavoidable clange of form of the triangle made no partial bearing of either angle of the abutment. This always has a tendency to fplinter off the heel of the beam where it preffes flrongeft. It is a very judicious practice.

When circumftances allowit, we fiould rather eni-
ploy tics than ftruts for fecuring a beam againft lateral itrains. When an upright pillar, fuch as a flag.faff, a matt, or the uprights of a very tall fcaffolding, are to be flored up, the lependence is more certain on thofe braces that are flretched by the ftrain than on thofe which are compreffed. The fcaffolding of the iron bridge near Sunderland had fome ties very judicioully difpofed, and others with lefs judgment.

We fhould proceed to confider the tranfverfe ftrains as they affect the various parts of a frame of carpentry; but we have very little to add to what has been faid already in the article SIRENGTH of Materials (Encycl.), and in the article Roof. What we fhall add in this article will find a place in our occafional remarks on different works. It may, however, be of ufe to recal to the reader's memory the following propofitions.

1. When a beam AB (fig. 15.) is firmly fixed at the end A , and a A fraining force acts perpendicularly to its length at any point B , the Atrain occafioned at any fection C between B and A is proportional to CB , and may therefore be reprefented by the product $\mathrm{W} \times \mathrm{CB}$; that is, by the product of the number of tons. pounds, \&c. which meafure the ftraining force, and the number of feet, incles, \&c. contained in CB. As the loads on a heam are eafily conceived, we fhall fubfitute this for any other ftraining force.
2. If the Atrain or load is uniformly diftributed along any part of the beam lying beyond C (that is, further from A), the frain at C is the fame as if the load were all collected at the middle point of that part ; for that point is the centre of gravity of the load.
3. The frain on any fection D of a beam $A B$ (fig. 16.) refting freely on two props A and B, is $w \times \frac{\mathrm{AD} \times \mathrm{DB}}{\mathrm{AB}}$ (fee Roof, n° 19. and STRENGTH of Materials, $\mathrm{n}^{\circ} 92$, \&c. Encycl.) Therefore,
4. The ftrain on the middle point, by a force applied there, is one fourth of the ftrair which the fame force would produce, if applied to one end of a beam of the fame length, having the other end fixed.
5. The train on any fection C of a beam, refting on two props A and B , occafioned by a force applied perpendicularly to another point D , is proportional to the rectangle of the exterior fegments, or is equal to $w \times \frac{A C \times D B}{A B}$. Therefore

The Atrain at C occafioned by the preffure on D , is the fame with the frain at D noceafioned by the fame pretliure on C .
6. The ftrain on any fection D , necafioned by a load uniformly diffufed over any part EF, is the fame as if the two parts ED, DF of the load were collected at their mildle points e and f. Therefore

The ftrain on any part D, occafioned by a load unifurnly diffributed over the whole beam, is one-half of the itrain that is produced when the fame load is laid on at D ; and

The frain on the middle point C , occafioned by a load uniformly diftributed over the whole beam, is the fame which half that load would produce if laid on at C.
7. A beam fupported at both ends on two props B and C (fig. 14.) will carry twice as much when the ends beyond the props are kept from rifing, as it will carry when it retts loofely on the props.
8. Lafly, the traniverfe Arain on any fection, oceafioned by a force applied obliquely, is diminifted in the proportion of the fine of the angle which the directinn of the force makes with the beam. Thus, if it be inclined to it in an angle of thirty d.egrees, the ftrain is one half of the flrain occafioned by the fame force acting perpendictlarly.

On the other hand, the relative strfngth of a beam, or its power in any particular fection to refit any tranfverfe ftrain, is proportional to the ahfolute cohefion of the fection directly, to the diftance of is centre of effort from the axis of fracture directly, and to the diflance from the ftrained point inverfely.

Thus in a rectangular fection of the beam, of which b is the breadth, d the depth (that is, the dimenfinu in the direction of the ftraining force), meafured in inches, and f the number of pounds which one fquare inch will juf fupport without being torn afunder, we mult have $f \times b \times d^{2}$, proportional to $s v \times \mathrm{CB}$ (fig. 15.). Or, $f \times b \times d^{2}$, multiplied by fome number m, depending on the nature of the timber, mult be equal to $w \times \mathrm{CB}$. Or, in the cafe of the fection C of fig. 16. that is Atrained by the force w applied at D , we muft have $m \times f b d^{2}=w \times \frac{\Lambda C \times D B}{A \bar{B}}$. Thus if the beam is of found oak, m is very nearly $=\frac{1}{9}$ (fee Strengith of Materials, 10116. Encycl.) Therefore we have $\frac{f b d^{2}}{9}$ $=w \times \frac{A C}{A B}$.

Hence we can tell the precife force w which any fection C can jurt refift when that force is applied in any way whatever. For the above-mentioned formula gives $w=\frac{f b d^{2}}{9 \mathrm{CB}}$, for the cafe reprefented by fig 15. But the cafe reprefented in fig. 16. having the ftraining force applied at D , gives the frain at $\mathrm{C}(=v v)=f$ $\times \frac{b d^{2} \times A B}{9 A C \times C B}$.

Example. Let an oak bean, four inches fquare, reit freely on the prnps A and B, feven feet apart, or 81 inches. What weight will it juft fupport at its middle point C, on the fuppofition that a fquare inch rod will juft carry 16,000 pounds, pulling it afunder?

The formula becomes $w=\frac{16000 \times 4 \times 16 \times 84 .}{9 \times 42 \times 42}$.
8601 io: or $z=\frac{860160: 0}{1,876},=5418$ pounds. $9 \times 42 \times 42$ near what was employed in Buffon's experiment, which was 5312 .

Had the ilraining force acted on a point D , half way bet ween C and B , the force fufficient to break the heam at C would be $=\frac{16500 \times 4 \times 16 \times 84}{2 \times 42 \times 21}=10836 \mathrm{ibs}$.

Had the beam been found red fir, we muft have ta. ken $f=10,000$ nearly, and m nearly 8 : for altho: rh fir be lefs cohefive than oak in the proportion of 5 to 8 nearly, it is lefs compreflible, and its axis of frachure is therefore nearer to the concave lide.

Hiving confidered at fufficient length the Atrains of joints. of different kinds which arife from the form of the parts of a frame of carpentry, and the direction of the externa! forces which act on it, whether conlidered as impelling or as fupporting its different parts, we muft
now proceed to confider the means by which this form is to be fecured, and the connections by which thofe ftrains ate excited and communicated.
The juinings practifed in carpentry are almont infinitcly various, and each has adrantuges which make it preferable in fome circumitances. Many varicties are amplojed merely to plafe the eye. We do net concern ourfelves with thefe: Nor fhall we confider thofe which are only employed in comneting fmall works, and can never appear on a great fcale : yet even in fome of thefe, the frill of the carpenter may be difeovered by his choiec: for in all cafes it is wife to make every, even the fmallef, part of his work as floung as the materials will admit. He will be particularly attentive to the changes whieh will neceffarily happen by the flarinking of timber as it dries, and will coulfider what dimenfions of lis framings will be affected by this, and what will not ; and will then difyofe the pieces which are lefs effential to the ftrength of the whole, in fuch a manner that their tendency to fhrink thall be in the fame direction with the flurinking of the whole framing. If he ao otherwife, the feams will widen, and parts will be fplit afunder. He will difpofe his boardings in fuck a manner as to contribute to the flifnefs of the whole, avoiding at the fame time the giving them pofitions which will produce lateral ftrains on trufs beams which bear great preffures; recollecting, that although a lingle board has little foree, yet many united have a great deal, and may frequently perfurm the office of very powerful fruts.
Our limits confine us to the joinings which are moft effential for connecting the parts of a fingle piece of a frame when it cannot be formed of one beam, either for waut of the neceffary thicknefs or length; and the joints for connecting the different fides of a truffed frame.
233 Of building Much ingenuity and contrivance has been beflowed up beams. on the manner of building up a great beam of many thickneffes, and many ingular methods are practifed as great noffrums by different artifts: but when we confider the manner in which the cohefion of the fibres performs its office, we will clearly fee that the fimpleft are equaily effectual with the moft refined, and that they are lefs apt to lead us into falfe notions of the ftrength of the afiemblage. a girder or great lever or a girder, fo that it may act nearly as a lever. ${ }_{2}^{25}$ Joggling to fcaring.
beam of the fame fize of one log-it may either be done by plain joggling, as in fig. 17. A, or by fearfing, as in fig. 17. B or C. If it is to act as a lever, having the gudgeon on the lower fide at C , we believe that moft artifts will prefer the form B and C ; at leaft this has been-the cafe with nine-tenths of thofe to whom we have propofed the queflion. The beft informed on. ly hefitated; but the ordinary artilts were all confident in its fuperiority; and we found their views of the matter very cuincident. They confider the upper piece as grafping the lower in its hooks; and feveral imagined that, by driving the one very tight on the other, the beam would be ftronger than an entire log: but if we attend carefully to the internal procedure in the loaded lever, we fhall find the upper one clearly the ftrongelf. If they are formed of equal logs, the upper one is thicker than the other by the depth of the jog-
gling or fearfing, which we fuppofe to be the fame in Roth; confequently, if the colction of the fibres in the intervals is able to bring the uppermof tilaments into full action, the form A is Atronger than B, in the proportion of the greater diftanee of the upper filaments from the axis of the fracture : this may be greater than the difference of the thickuefs, if the wood is very conpreflible. If the gudgeon be in the middle, the effect, both of the joggles and the fearfings, is confiderably diminilhed; and if it is on the upper fide, the fcarfings act in a very different way. In this fituation, if the loads on the arms are alfo applied to the upper fide, the joggled beam is fill more fuperior to the fearfed one. This will be beft undertood by refolving it in imagination into a truffed frame. But when a gudgeon is thus put on that fide of the lever which grows convex by the flrain, it is ufual to conneet it with the reft by a powerful ftrap, which embraces the beam, and caulus the oppofite point to become the refirting point. This. greatly changes the internal actions of the filaments, and, in fome meafure, brings it into the fame flate as the firt, with the gudgeon below. Were it poffible to have the gudgeon on the upper fide, and to bring the whole into action without a flrap, it would be the ftrongeft of all; becaufe, in general, the refillance to compreffion is greater than to extenfion. In every fituation the joggled beam has the advantage; and it is the eafieft executed.
We may frequently gain a confiderable acceffion of ftrength by this building up of a beam; efpecially if the part which is ftretched by the ftrain be of oak, and the other part be fir. Fir being fo much fuperior to oak as a pillar (if Muffchenbroek's experiments may he confided in), and oak fo much preferable as a tie, this conftruction feems to unite both advantages. But we fhall fee much better methods of making powerful levers, girders, axc. by truffing.
Obferve that the efficacy of both methods depends entirely on the difficulty of caufing the piece between the crofs joints to flide along the timber to which it adheres. Therefore, if this be moderate, it is wrong to make the notches deep; for as foon as they are fo deep that their ends have a force fufficient to puth the fice along the line of junction, nothing is gained by making them deeper; and this requires a greater expenditure of timber.

Scarfings are frequently made oblique, as in fig. 18. but we imagine that this is a bad practice. It begins to yield at the point, where the wood is erippled and fplintered off, or at leaft bruifed out a little: as the preffure inereafes, this part, by fqueezing broader, caufes the folid parts rife to a little upwards, and gives them fume tendency, not only to pufh their antagonills along the bafe, kut even to tear them up a little. For fimilar reafons, we difappruve of the havourite practice of many artifts, to make the angles of their fcarings acute, as in fig. 19. This often caufes the two pieces to tear each other up. The abutments fhould always be perpendicular to the directions of the preffures. Left it fhould be forgotten in its proper place, we may extend this injunction alfo to the abutments of different pieces of a frame, and recommend it to the artifl even to attend to the flhrinking of the timbers by drying. When two timbers abut obliquely, the joint thould be moft
full at the obtufe angle of the end; becaule, by drying, that angle grows more obtufe, and the beam would then be in danger of fplintering off at the acute angle.

It is evident that the niceft work is iudifpenfably neceffary in huilding up a beam. 'Ihe parts mult abut on each other completely, and the fmallett play or void takes away the whole efficacy. It is ufual to give the butting joints a fimall taper to one fide of the beam, fo that they may require moderate blows of a maul to force them in, and the joints may be perfectly clofe when the external furfaces are cven on each fide of the beam. But we muit not exceed in the leait dearree; for a very taper wedge has great force; and if we have driven the picces together by very heavy blows, we leave the whole in a llate of violent thrain, and the abutments are perhaps ready to fplinter off by a finall addition of preffure. This is like too fevere a proof for artillery; which, though not fufficient to burlt the pieces, has weakened them to fuch a degree, that the ftrain of ordinary fervice is fufficient to complete the fracture. The zoorkmen is tempted to exceed in this, becaufe it finooths off and conceals all uneven feams; but he muft be watched. It is not unufual to leave fome abutinents open enough to admit a thin wedge reaching through the beam. Nor is this a bad practice, if the wedge is of materials which is not compreffed by the driving or the ftrain of fervice. Iron would be preferable for this purpofe, and for the joggles, were it not that by its too great hardnefs it cripples the fibres of timber to fome diflance. In confequence of this, it often happens that, in beams which are fubjected to defultory and fudden Atrains (as in the levers of reciprocating engines), the joggles or wedges widen the holes, and work themfelves loofe: Therefore filful engineers never admit them, and indeed as few bolts as poffible, for the fame reafon: but when refilting a fleady or dead pull, they are not fo improper, and are frequently ufed.
Beams are built up not only to increafe their dimenfions in the direction of the ftrain (which we have hitherto called their depth), but alfo to increafe their breadth or the dimenfions perpendienlar to the frain. We fometimes double the breadth of a girder which is thought too weak fur its load, and where we munt not increafe the thicknefs of the flooring. The mall of a great thip of war muft be made bigger athwarthip, as ding of well as fore and aft. This is une of the nicelt pro. blems of the art ; and profeffinnal men are by no means agreed in their opinions about it. We do not prefume to decide; and fhall content ourfelves with exhibiting the different methods.
The moft obvious and natural method is that hewn in fig. 20. It is plain that (independent of the con. nection of crofs bolts, which are ufed in them all when the hearns are fquare) the piece C cannot bend in the direction of the plane of the figure without bending the piece D along with it. This method is much uled in the French navy; but it is undoubtedly imperfect. Hardly any two great trees are of equal quality, and fwell and fhrink alike. If C fhrinks more than D, the feather of C becomes loofe in the groove wrought in D to receive it ; and when the beam bends, the parts can fide on each other like the plates of a coach fpring; and if the bending is in the direction ef, there is nothing to hinder this fliding but the bolts, which fuon work themfelves loofe in the bolt-holes.

Fig. 2r. exhibits anather method. The tro halves 29 of the beam are tabled into each othea in the fameman An ther net as in fig. 17. It is plan that this will not be af method. feeted by the unequal fwelling or fhrinking, becaufe this is infenfible in the direction of the fibres; but when bent in the direction $a b$, the beam is weaker than fig. $2 c$. bent in the direction $e f$. Each half of fig. 20. has, in every part of its length, a thicknefs greater than half the thicknefs of thee beam. It is the enotary in the alternate portions of the halwes of fig. 21. When one of them is bent in the direction AB , it is plain tlat it drags the other with it by means of the crofs butments of its tables, and there can be no longitudinal liding. But unlefs the work is accurately executed, and each hollow completely filled up by the table of the other picce, therewill be a lateral nide along the crof juints fuffient to compenfate for the curvature ; and this will hinder the one from compreffing or Itretching the other in conformity to this curvature.

The imperfection of this methed is fo obvious, that Is 30 it has feldom been practifed: bue it has been combined fection. with the other, as is reprefented in Gig. 22. where the beams are divided alung the middle, and the tables in each half are alternate, and alternate alfo with the tables of the other lialf. 'Thus $1,3,4$, are prominent, and 5,2,6, are deprefled. This conftruction evidently puts a ftop to both fides, and obliges every part of buth pieces to move together. $a b$ and $c d$ thow fections of the built-up beam correfponding to $A B$ and CD.

No more is intended in this practice by any intelligent artift; than the caufing the two pieces to aft together in all their pats, although the ftrains may be uncqually diftributed on them. Thus, in a built-up girder, the binding joints are frequently mortifed into very different parts of the two fides. But many feem to aim at making the beam ftronger than if it were of one picce; and this inconfiderate project has given rife to many whimfical modes of tahlinis and fcarfing, which we need not regard.

The practice in the Britifh lock-vards is fomewhat Britifh difierent from any of thefe incthods. The pieces are method; tabled as in fig 22. But the tables are not thin parallelupipeds, but thin prifms. The two outward joints or vilible feams are flraight lines, and the table n" 1 . rifes gradually to its greatell thicknefs in the axis. In like manner, the hollow 5 for receiving the oppofite table, links gradually from the edge to its greateft depth in the axis. Fig. 23. reprefents a fection of a round piece of timber built up in this way, where the full line EFGH is the fection comefponding to AB of fig. 22 . and the dotted line EGFH is the fection correfponding to CD.

This conftruction, by making the external feam ftraight, leaves no lorgment fur water, and looks much fairer to the eye: but it appears to us that it does not give fuch firm huld when the maft is bent in the direction EH. The exterior parts are molt fretehed and moft compreffed by this bending ; but there is hardly any abutment in the exterior parts of thefe tables. In the very axis, where the abutment is the firmeft, there is little or no difference of extenfion and compreffion.

But this conftruction has an advantage, which we imagine much more than compenfates for thefe imper-
fections, at leaft in the particular cafe of a round maft: it will draw together by booping incomparably hetter than any of the others. If the cavity be made fomewhat too mallow for the prominence of the tables, and if this be done miformly along the whole length, it wili make a fomewhat open feam; and this opening can be regulated with the utmott exactnefs from end to end by the plane. The heart of thofe vaft trunks is very fenfihly fofter than the exterior circles: 'Therefore, when the whole is hooped, and the hoops hard driven, and at conliderable intervals between each fpell - we are confident that all may be compreffed till the feam difappears; and then the whole makes one piece, mucb itronger than if it were an original \log of that fize; becaute the middle has become, by compreffion, as folid as the crull, which was naturally firmer, and refifted father compreffion. We verified this beyond a doubt, by hooping a built itick of a timber which has thi, inequality of firmnefs in a remarkable degree, and it was nearly tuice as frong as another of the fame fize.

Ou: maltmakers are not without their fancies and whins; and the manner in which our mafts and yards are generally built up, is not near fo fimple as fig. 22.: but it confifts of the fame effential parts, acting in the very fame namer, and derives all its efficacy from the principles which are here emploged.

This conftruction is particularly fuited to the fituation and office of a Mip's maft. It has no bolts; or, at leaft, none of any magnitude, or that make very imfortant parts of its conftruction. The moft violent frains perhaps that it is expofed to, is that of twiting, when the lower yards are clofe braced up by the force of many men acting by a long lever. This form refins a twitt with peculiar energy : it is therefore an excellent method for building up a great fhaft for a mill. The way in which they are ufually built up is by reducing a central log to a polygonal prifm, and then filling it up to the intended fize by planing pieces of timber along its fides, either fpiking them down, or cocking them into it by a feather, or joggling them by flips of hard wood funk into the central log and into the flips. N. B. Joggles of elm are fometimes ufed in the middle of the laige tables of mafls; and when funk into the firm wood near the furface, they muft contribute much to the ttrength. But it is very neceffary to employ wood not nuch harder than the pine; otherwife it will foon enlarge its bed, and become loofe; for the timber of thefe large trunks is very foft.

The moft general reafon for piccing a beam is to in creafe its length. This is frequently neceffary, in order to procure tie beans for very wide ronfs. Two pieces mult be fcarfed together.-Numberkefs are the modes of doing this; and almof every mafter carpenter has his favourite noftrum. Some of then are very ingenious: But here, as in other cafes, the mof fimple are commorly the frongef. We do not imagine that any, tls muft ingenious, is equally frong with a tie confifting of two piuces of the fame fcantling laid over each o: her for a certain length, and firmly bolted together. We acknowledge that this will appear an artlefs and clumfy tie-beam; but we only fay that it will be ffronger than any that is more artificially made up of the fame thicknefs of timber. 'This, we imagine, will appear fufficiently certain.

The fimpleft and niofl obvious farfing (after the
one now nentioned) is that reprefented in fig. $24 . n^{\circ}$ r, and 2. If confidered merely as two pieces of wond joined, it is plain that, as a tic, it has but half the Atrength of an cntire piect, fuppofing that the holes (which are the only comnections) are fat in their holes. No 2. requires a bolt in the middle of the fearf to give it that frength : and, in cvery other part, is weaker on one fide or the other.

But the bolts are very apt to hend by the violent ftrain, and require to be ftengthened by uniting their ends by iron plates; in which cafe it is no longer a wooden tie. The form of $n^{0} \mathbf{1}$. is better adapted to the office of a pillar than $n^{\circ} 2$.; efpecially if its ends be formed in the manner thewn in the elevation $n^{\circ} 3$. B_{y} the fally given to the ends, the fearf refifts an effort to bend it in that direction. Befides, the form of n^{9} 2. is unfuitable for a poft ; becaufe the pieces, by fiding on each other by the preffure, are apt to fplinter off the tongue which confines their extremity.

Fig. 25. and 26. exhibit the noft approved form of a fcarf, whether for a tie or for a poft. The key red prefented in the middle is not effentially neceffary; the two pieces might fimply meet fquare there. This form, without a key, needs po holts (although they ftrengthen it greatly) ; but, if worked very true and clofe, and with fquare abutments, will hold together, and will refift bending in any direction. But the key is an ingenious and a very great improvement, and will force the parts together with perfect tightncfs. The fame precaution muft be obferved that we mentioned on another occafion, not to produce a conftant internal frain on the parts by overdriving the key. The form of fig. 25 . is by far the befl; becaufe the triangle of 26 . is much eafier fplintered off by the ftrain, or by the key, than the fquare wood of 25 . It is far preferable for a poft, for the reafon given when fpeaking of fig. 24 . 1^{2} 1. and $n^{\circ} 2$. Both may be formed with a fally at the ends equal to the breadth of the key. In this fhape, fig. 25 . is vaftly well fuited for joining the parts of the long corner pofts of fpires and orher wooden towers. Fig. 25. $11^{\circ} 2$. differs from n^{-1}. only by having three keys. The principle and the longitudinal ftrength are the fame. 'The long fcarf of $n^{\prime} 2$. tightened by the three keys, enables it to refift a bending much better.

None of thefe fcarfed tie-bcams can have more than one-thind of the ftrength of an eutire piece, unlefs with the affitance of iron plates; for if the key he made thinner than one-third, it has lefs than one-third of the fibres to pull by.

We are coufident, therefore, that when the heads of the bolts are connected by plates, the fimple form of fig. 24. $n^{\circ} 1$. is Aronger than thofe more ingenious fcarings. It may be flrengthened againit lateral bending by a little tongue, or by a fally; but it cannot have both.

The ftrongeft of all methods of piecing a tie-beam would be to fet the parts end to end, and grafp them between other pieces on each fide, as in fig. 27. This is what the thip-carpenter calls fiking a beam ; and is a Fining frequent praćtice for occafional repairs. Mr Perronet beam. ufed it for the tie-beams or tretchers, by which he connected the oppolite feet of a centre, which was yielding to its load, and had pufhed afide one of the piers above four inches. Six of thefe not only withttood a Arain of 1800 tons, but, by wedging belind them, he brought
brought the feet of the trufs $2 \frac{3}{2}$ inches nearer. The ftretchers were 14 inches by II of found oak, and could have withitood three times that itrain. Mr Perronet, fearing that the great length of the bolts employed to conneet the beams of thefe Atretchers would expofe them to the rifk of bending, fcarfed the two fide pieces into the middle piece. The fcarfing was of the triangular kind (Trait de Fupiter), and only an inch deep, each face being two feet long, and the bolt paffed through clofe to the angle.

In piecing the pump rods, and other wooden fretchers of great engines, no dependence is had on fcarfing; and the engineer connects every thing by iron ftraps. We doubt the propriety of this, at leaft in cafes where the bulk of the wooden connection is not inconvenient. Thefe obfervations mult fuffice for the methods employed for connecting the parts of a bean ; and we now proceed to confider what are more ufually called the joints of a piece of carpentry.

Where the beams fland fquare with each other, and the flrains are alfo fquare with the beams, and in the plane of the frame, the common murtife and tenon is the moft perfect junction. A pin is generally put through both, in order to keep the pieces united, in oppofition to any force which tends to part them. Every carpenter knows how to bore the liole for this pin, fo that it fhall draw the tenon tight into the mortife, and caufe the fhoulder to butt clofe, and make neat work; and he knows the rink of tearing out the bit of the tenon beyond the pin, if he draw it too much. We may juft obferve, that fquare holes and pins are much preferable to round ones for this purpofe, bringing more of the wood into action, with lefs tendency to fulit it. The ihip carpenters have an iirgenious method of making long wooden bohts, which do not pals completely through, take a very fall hold, though not nicely fitted to their holes, which they mufl not be, left they fhould be crippled in driving. They call it foxtail woulging. They llick into the point of the holt a very thin wedge of hard wood, fo as to project a proper diflance; when this reaches the bottom of the hole by driving the bolt, it fplits the end of it, and fquetzes it hard to the fide. This may be practifed with advantage in carpentry. If the ends of the mortife are widened inwards, and a this wedge be put into the end of the tenon, it will have the fame effect, and make the joint equal to a dovetail. But this rifís the fplitting the piece heyond the fhoulder of the tenon, which viouid he unfightly. This may be avoided as follows: Let the tenon T, fig. 28. have two very thin wedges a and c ftuck in near its angles, projecting equally; at a very fnall diftance within the fe, put in t wo fhorter ones b, d, and more within thefe if neceffary. In driving this tenon, the wedges a and c will take firt, and fplit off a thin fice, which will eafly bend without breaking. The wedges b, d, will act next, and have a fimilar effect, and the others in fucceffion. The thicknefs of all the wedges taken together muft be equal to the enlargement of the mortife toward the hottom.

When the ftrain is tranfverfe to the plane of the two heams, the principles laid down in $n^{9} 85 ; 86$. of the article Strfngit of Materials, will dirtet the artit in placing his mortife. Thus the mortife in a gider for receiving the tenor of a binding joift of a floor hould
be as near the upper fide as poffible, becaule the girder becomes concave on that fide by the Itrain. But as this expofes the tenon of the binding joitt to the rifk of being torn off, we are obliged to mortife farther down. The form (fig. 29.) generally given t1) this joint is extremely judicious. The floping part a ℓ gives a very firm fupport to the additional bearing e,d, without much weakening of the girder. This form fhould be copied in every cafe where the ftrain has a findilar direction.

The joint that moft of all demands the careful atten- Olliquer tion of the artift, is that which connects the ends of mertife ant beams, one of which pufhes the other very obliquely, tenctio putting it into a tate of extenfion. The mof familiar inflance of this is the foot of a rafter prefling on the tie-beam, and thereby drazoing it away from the other wall. When the direction is very oblique (in which cafe the extending ftrain is the greatelt), it is difficult to give the foot of the rafter fuch a hoid of the tiebeam as to bring many of its fibres into the proper ac. tion. There would be little dificulty if we could allow the end of the tie-beam to project to a fmall dif. tance beyond the foot of the rafter: but, indeed, the dimenfions which are given to tie-beams, for other reafons, are always fufficient to give enough of abutment when judicioully employed. Unfortunately this joint is much expofed to failure by the effects of the weather. It is much expofed, and frequently perihes by rot, or becomes fo foft and friable that a very fmall force is fufficient, either for pulling the filaments ont of the tie-beam, or for crufling them together. We are therefore obliged to fecure it with particular attention, and to avail ourfelves of every circumftance of con fruction.

One is naturally difpofed to give the rafter a deep hold by a long tenon; but it has been frequently obferved in old roofs that fuch tenons break off. Fr: quently they are oblerved to tear up the wood that is above them, and puth their way through the end of the tie-Leam. This, in all probahility, arifes from the fin t fagging of the roof, by the conipreffion of the rafters and of the head of the king-polt: The head of the ratiter defeends, the angle with the tie-beam is diminifled by the rafter revolving round its fep in the tie-beam. By this motion the heel or imer angle of the rafter becomes a fulcrum to a very long and powerful lever much loaded. Thise tenon is the other arm, very fhort, and boing ftill frefh, it is therefore very powerful. It therefore forces up the wood that is above it, tearing it ont from betwren the checks of the mortife, and theni punhes it along. Carpenters have therufure given up long tenons, and give to the toe of the tenon a haple which abuts firmly, in the direction of the thruft, on the folid botion of the mortife, which is well fupported on the under fide by the wall-plate. This form has the farther advantage of having no tendency to tear up the end of the mortife. This form is reprefented in hig. 30. The tenon has a fmall portion $a b$ cut perpendicular to the furface of the cie-beam, and the reft $b c$ is perpendicular to the rafter.

But if the tenon is not fufficiently ftrong (and it is not fo ftrong as the rafter, which is thought not to lee ftronger than is neceffary), it will be crufhed, and then the rafter will flade out along the furface of the beam. It is therefore neceffary to call in the aflithese of the
wholc rafter. It is in this diftribution of the ! trais among the various abutting parts that the varieties of joints and their merits chiefly conift. It would be endlefs to deferibe every noftrum, and we fall only mention a few that are mofl generally approved of.

The ain in fig. 31. is to make the abutnents exactly perpendicular to the thruts. It does this very precifely: and the fhare which the tenon and the fhoulder have of the whole may be what we pleare, by the partion of the beam that we notel down. If the wall-plate lie duly befure the heel of the rafter, there is no rifk of firaining the tie acrofs or breaking it, becaufe the thrult is made direct to that point where the beam is fupporttd . The action is the fame as againt the juggle on the lead or loot of a king-poft. We have no doubt but that this is a very effectual joint. It is not, however, much practifed. It is faid that the floping feam at the fhoulder lodges water; but the great reafon feems to be a fecret notion that it weakens the tic-beam. If we conlider the direction in which it acts as a tie, we mult acknowledge that this form takes the beft method for bringing the whole of it into action.

Fig. 32. exhibits a form that is more general, but certainly worfe. What part of the thruft that is not borne hy the tenou acts obliquely on the joint of the fhoulder, and gives the whole a tendency to rife up and slide outward.

The fhoulder juint is fonctimes formed like the dotted line abodefg of fig. 32 . This is much more ayrreable to the true principle, and would be a very perfect method, were it nut that the intervals $b d$ and d f are fo fhort that the little wooden triangles b e d, $d e f$, will be eafily puthed off their bafes $b d, d f$.

Fig. 33. Feems to lave the moft general approbation. It is the joint recommended by Price (page 7.), and copied into all books of carpentry as the true joint for a rafter foot. The vifible floulder-joint is flunh with the upper furface of the tie-bean. The angle of the te:ion at the tie nearly bifects the ubtufe angle formed by the rafter and the beam, and is therefore fomew hat oblique to the thruft. The inner fhoulder $a c$ is nearly perpendicular to $l d$. The lower angle of the tenon is cut off horizontally as at ed. Fig. 34. is a fection of the beam and rafter foot, fhesring the different floulders.

We do not perceive the peculiar merit of this joint. The effect of the three oblique abutments $a b, a c, e d$, is undoubtedly to make the whole bear on the onter end of the mortife, and there is no other part of the tie. beam that makes immediate refiftance. Its only adrantage over a tenon extending in the direction of the thruft is, that it will not tear up the wood above it. Had the iuner fhoulder had the furm eci, laving its face ic perpendicular, it would certainly have acted more powerfully in ftretching many filaments of the ticbeam, and would have had much lefs tendency to furce out the end of the mortife. The little bit $c i$ would have prevented the fliding upwards along ec. At any rate, the joint $a b$ being flofh with the beam, prevents any fenfible abutenent on the fhoulder $a c$.

Fig. 33. n° 2. is a fimpler, and in our opinion a preferable, joint. We obferve it practifed by the mott eminent carpenters for all oblique thrufls; but it furely employs lefs of the cohefion of the tie-beam than might be ufcd without weakening it, at leaft when it is fupported on the other fide by the wall-plate.

Fig. $33 \cdot 1103$. is alfo much practifed by the fint car. penters.

Fig. 35. is propofed by Mr Nichollon (page 65.) as preterable to fig. $33 \cdot 1^{11^{\circ}} 3$. becaufe the abutment of the inner part is better fupported. This is certainly the cafe; but it fuppofes the whole rafter to go to the bot. tom of the focket, and the beam to be thicker than the rafter. Some may think that this will weaken the beam too much, when it is no broader than the rafter is thick; in which cafe they think that it requires a deeper focket than Nicholfon has given it. Perhaps the advantages of Nicholfon's confruction may be had by a joint like fig. 35-n-2.

Whatever is the form of thefe butting joints, great Circumcare thould be taken that all parts bear alike, and the fances to artilt will attend to the magnitude of the different fur- be atend faces. In the general compreffion, the greater furfaces ${ }^{\text {ed }}$ to. will be lefs compreffed, and the fmaller will therefore change moft. When all has fettled, every part fhould be equally clofe. Becaufe great logs are moved with difficulty, it is very troublefome to try the joint frequently to lee how the parts fit ; therefore we muft expeet lefs accuracy in the interior parts. This fhould make us prefer thofe joints whofe efficaey depends chiefIf on the vifible joint.

It appears from all that we have faid on this fubject, that a very fmall part of the cohefion of the tie-beam is fufficient for withtanding the horizontal thruft of a roof, even though very low pitched. If therefore no other ufe is made of the tie-beam, one much flenderer may be ufed, and blocks may be firmly fixed to the ends, on which the rafters might abut, as they do on the juggles on the head and foot of a king-poft. Although a tie-heam has commonly floors or ceilings to carry, and fometimes the workhops and flore-rooms of a theatre, and therefore requires a great fcantling, yet there frequently oceur in machises and engines very oblique flretchers, which have no other office, and are generally made of dimenfions quite inadequate to their lituation, often containing ten times the neceflary quantity of timher. It is therefore of importance to afcertain the moit perfect manner of executing fuch a joint. We have directed the attention to the principles that are really concerned in the effect. In all hazardous cafes, the carpenter calls in the affifance of iron ftraps; and they are frequently neceflary, even in roofs, notwithftanding this fuperabundant frength of thetie-beam. But this is generally owing to bad conftruction of the wooden joint, or to the failure of it by time. Straps will be confidered in their place.

There needs but little to be faid of the joints at a joggle worked out of folid timber; they are not near fo difficult as the laft. When the fize of a log will allow the joggle to receive the whole breadth of the abutting brace, it cught certainly to be made with a fquare fhoulder; or, which is fill better, an areh of a circle, having the other end of the brace for its centre. Indeed this in general will not fenfibly differ frum a ftraight line perpendicular to the brace. By this circular form, the fettling of the roof makes no change in the abutment ; but when there is not fufficient fuff for this, we muft avoid bevel joints at the floulders, becaufe thefe always tend to make the brace flide off. The brace in fig. 36. muft not be joined as at a, but as at b, or fome equivalent manner. Obferve the joints at
the head of the main pufts of Drury Line theatre, firg. D.

When the very oblique action of one fide of a frame of carpentry does not extend but comprefs the piece on which it abuts (as in fig. 11.), there is no difficulty in the joint. Indeed a joining is unnecestary, and it is enough that the pieces abut on each other; and we lave only to take care that the mutual preffure be cqually borne by all the parts, and that it do not produce lateral preflures, which may caufe one of the pieces to flide on the buttire joint. A very flight mortife and tenon is fufficient at the joggle of a king-polt with a rafter or itraining beam. It is beft, in general, to make the butting plain, bileaing the angle furmed by the fides, or elfe perpendicular to one of the pieces. In fig. $35.11^{\circ} 2$. where the ilraining bean ab cannot flip away from the preffure, the joint a is preferable to b, or indeed to any uneven joint, which never fails to produce very unequal preffures on the different parts, by which fome are crippled, uthers are \int_{p} lintered off, \&c.

When it is neceflary to employ iruin itraps for Atrengthening a joint, a confiderable attention is rieceffary, that we may place them properly. The firft thing to be determined is the direction of the flrem. This is learned by the obfervations in the beginning of this article. We nuft then refolve this flrain into a flrain parallel to each piece, and another perpendicular to it. Then the thrap which is to be made faft to any of the pieces mut be fo fixed, that it flall refift in the direction parallel to the piece. Frequently this cannot be done ; but we mult come as near to it as we can. In fuch cafes we mult fuppofe that the affemblage yields a little to the preffures which act on it. We muft examine what change of fhape a fmall yielding will produce. We mult now fee how this will affect, the iron flrap which we have already fuppofed attached to the joint in fome manner that we thought fuitable. This fettling will perhaps drave the pieces away from it, leaving it loofe and unferviceable (this frequently happens to the plates which are put to fecure the obtufe angles of butting timbers, when their bolts are at fome diftance from the angles, efpecially when thefe plates are laid on the infide of the angles); or it may caufe it to comprefs the pieces harder than before; in which cafe it is anfivering our intention. Eut it may be producing crofs ftrains, which may break them; or it may be crippling them. We can ha:dly give any general rules; but the reader will do well to read what is written in $n^{\circ} 36$. and 41 . of the article Roof, Encycl. In $n^{\circ} 36$. he will fee the nature of the ftrap or ftirrup, by which the king-poft carries the tie-beam. The flrap that we obferve mott generally ill placed is that which connects the foot of the rafter with the beam. It only binds down the rafter, but does not act againt its horizontal thruft. It thould be placed farther back on the beam, with a bolt through it, which will allow it to turn round. It fhould embrace the rafter almont horizontally near the foot, and Should be notched fquare with the back of the rafter. Such a conftruction is reprefented in fig. 37. By mo*ing round the eye-bolt, it follows the rafter, and cannot pinch and cripple it, which it always does in its ordinary form. We are of opinion that ftraps which have eye-bolts in the very angles, and allow all motion round them, are of all the moit perfect. A branched Atrap, fuch as may at once bind the king-poft and the two Suppl. Vol. I. Part I.
braces which butt on its foot, will be more fervicable if it have a juint. When a roof warps, thofe branched fraps frequently break the tenous, by aftording a fulcrum in one of their bolts. An attentive and judiciotis artift win confider how the beams will aed on fuch oercafions, and will aroid giving rife to thefe grcat ftrains by levers.-A filful carpenter never employs many flaps, contidering them as auxiliaries forcign to his art and fubject to imperfections in workmanhip which he cannot difcern nor amend. We mull refer the reader to Nicholfon's Carpen fer and Jolner's. Assistant for a more particular acenunt of the various forms of ftirrups, ferewed rods, and other iron work for carrying tie-beams, \&c.

As for thofe that are neceffary for the turning joints of great engines conftructed of timber, they make no part of the art of carpentry.

After having attempted to give a fyftematic view Examples of the principles of framing carpentry, we flall con- of diferent clude, hy giving fome exanples which will iil fitrate and pieces of confirm the foregoing principles.

Fig. 38. is the roof of the clapel of the Royal Hof-Roof of pital at Grcenwich, conftructed by Mr S. Wyau Grennwich
ta he, rhapel.
Scant ing.
AA, Is the tie-beam, 57 feet long, fpanning
51 feet clear - - - 14 by 12
CC, Queen-poits - - - 9×12
D, Braces - - - - $9 \times_{7}$
E, Trufs beam - - - - 10×7
F, Straining piece - - - 6×7
G, Principal rafters - - \quad - 0×7
H, A cambered beam for the platform - 9.7
B, An iron Aring, fupporting the tie-beam $2 \mathrm{~K}_{2}$
The truffes are 7 feet apart, and the whole is covered with lead, the boarding being fupported by horizontal ledgers h, h, of 6 by 4 inches.

This is a beautiful roof, and contains lefs timber than moft of its dimenfions. The parts are all difpofed with great judgment. Perhaps the iron rod is unneceflary ; but it adds great fiffnefs to the whole.

The iron ftraps at the rafter feet would have had more effect if not fo oblique. Thofe at the head of the poits are very effective.

We may obferve, however, that the joints between the Araining beam and its braces are not of the beft kind, and tend to bruife both the fraining beain and the trufs beam above it.
Fig. 39. the roof of St Paul's, Covent Garden, con-St Paul's, Aructed by Mr Wapfhot in 1796.
AA, Tie-beam fpanning 50 feet 2 inches 16.12
B , Queen-port - - - - 9×8
C, Trufs beam - - - . 10×8
D, King-poft (14 at the joggle) - 9×8
E, Brace - - - - $8 \times 7 \frac{1}{2}$
FF, Principal brace (at bottom) - . $10 \times 8 \frac{2}{2}$
HH, Principal rafter (at bottom) - 10×8 :
gg, Studs fupporting the rafter - - 8×8
This roof far excels the original one put up by Inigo Jones. One of its truffes contains 198 feet of timber. One of the old roof had 27.3, but had many inactive timbers, and others ill difyofed. (N.B. The figure which we gave of it in the article Roof, copied from

Z Price,

CARPENTRY.

Price, is very erroneous). The internal trufs FCF is they will ever be quarter loaded. The divifion of the admirably coutrived for fupporting the exterior rafters, without any preffure on the far projecting ends of the tie-beam. The former roof had bent them greatly, fo as to appear ungraceful.

We think that the camber (fix inches) of the tiebeam is rather hirtful; hecanfe, by fettling, the beam lengthens; and this mult be accompanied by a confiderable finking of the roof. This will appear by calculation.

Fig. 40. the roof of Birmingham theatre, conttruct. ed by Mr Geo. Saunders. The fpan is 80 feet clear, and the truffes are 10 feet apart.

A, Is an oak corbel	- -	-		9×5
B, Inner plate -	- -	-		9×9
C, Wall plate	- -	*		8×5
D, Pole plate	- -			7×5
E, Beam	- -	-		15×15
F, Straining beam				12×9
G, Oak king-putt (i)	e fhaft)	-		9×9
H, Oak queen-poft	he fhaft)	-		7×9
I, Principal rafters	- -	-		9×9
K, Common ditto	- -	-	-	$4 \times 2 \frac{1}{2}$
I., Principal braces	-	-		d 6×9
M, Common ditto	-	-		6×9
N, Purlins	- .	-	-	7×5
Q, Straining fill	- -	-	-	$5^{\frac{2}{2} \times 9} \times$

This roof is a fine fpecimen of Britifh carpentry, and is one of the boldeft and lightelt roofs in Europe. The Araining fill Q gives a firm abutment to the principal braces, and the fpace between the pofts is $19 \frac{1}{2}$ feet wide, affording roomy workfhips for the carpenters and other workmen connected with a theatre. The contrivance for taking double hold of the wall, which is very thin, is excellent. There is alfo added a beam (marked R), bolted down to the tie-beams. The intention of this was to prevent the total failure of fo bold a truffing, if any of the tie-beams fhould fail at the end by rot.
Crury Lane Akin to this roof is fig. 41. the roof of Drury Lane theatre.
theatre, 80 feet 3 inches in the clear, and the truffes 15 fcet apart, conftructed by Mr Edward Grey Saunders.

A, Beams	-	-	-	-	10 by 7
B, Rafters	-	-	-	-	7×7
C, King-ports	-	-	-	-	12×7
D, Struts	-	-	-	-	5×7
E, Purlins	-	-	-	-	9×5
G, Pole plates	-	-	-	-	5×5
I, Common rafters	-	5×4			
K, Tie-beam to the main trufs	-	-	15×12		
L, Pofts to ditto	-	-	-	15×12	
M, Prineipal braces to ditto	-	14 and 12×12			
N, Struts	-	-	-	8×12	
P, Straining beams	-	-	-	12×12	

The main beams are truffed in the middle fpace with oak truffes 5 inches fquare. This was neceffary for its width of 32 feet, occupied by the carpenters, painters, \&c. The great fpace between the truffes affords good Atore-rooms, drefling-rooms, \&c.

It is probable that this roof has not its equal in the world for lightnefs, ftiffnefs, and frength. The main trufs is fo judiciouly framed, that each of them will fafely bear a load of near 300 tons; fo it is not likely that
whole into three parts makes the exterior roofings very light. The Atrains are admirably kept from the walls, and the walls are even firmly bound together by the roof. They alfo take off the dead weight from the nain trufs one-third.

The intelligent reader will perceive that all thefe roofs Remarks are on one principle, depending on a trufs of three pieces and a Itraight tie-beam. This is indeed the great principle of a trufs, and is a Atep beyond the roof with two rafters and a king.poit. It admits of much greater variety of forms, and of greater extent. We may fee that even the middle part may be carried to any fpace, and yet be flat at top; for the trufs beam may be fupported in the middle by an inverted kingpoft (of timber, not iron), carried by iron or wooden ties from its extremities: And the fame ties may carry the horizontal tie-beam K ; for till K be torn afunder, or M, M, and P be crippled, nothing can fail.

The roof of St Martin's chureh in the Fields is conftructed on good principles, and every piece properly difpoled. But although its fpan does not exceed 40 feet from column to column, it contains more timber in a trufs than there is in one of Drury-Lane theatre. 'The roof of the chapel at Greenwich, that of St Paul's, Covent Garden, that of Birmingham, and that of Drury Lane theatres, form a feries gradually more perfect. Such fpecimens afford excellent leftons to the artifts. We therefore account them a ufeful prefent to the public.

There is a very ingenious project offered to the pub-Priject by 4^{8} lic by Mr Nicholfon (Carpenter's Alfilant, p. 68.) He Mr Nicho propofes iron rods for king-polts, queen-poits, and all ion. other fituations where beams perform the office of ties. This is in profecution of the notions which we publifh. ed in the article Roof of the Encyct. (fee n $36,37$.) He receives the feet of the braces and ftruts in a focket very well connected with the foot of his iron ling-polt; and he fecures the feet of his queen-poits from being pufhed inwards, by interpofing a ftraining fill. He does not even mortife the foot of his principal rafter in. to the end of the tie-beam, but fets it in a focket like a fhoe, at the end of an iron bar, which is bolted into the tie-beam a good way back. All the parts are formed and difpofed with the precifion of a perfon thoroughly acquainted with the fubject ; and we have not the fmalleft doubt of the fuccefs of the project, and the complete fecurity and durability of his roofs; and we expect to fee many of them executed. We abound in iron, but we mutt fend abroad for building timber. This is therefore a valuable project ; at the fame time, however, let us not over-rate its value. Iron is but about 12 times ftronger than red fr, and is more than 12 times heavier; nor is it cheaper, weight for weight, or ftrength for ftrength.

Our illultrations and examples have been chiefly taken from roofs, becaufe they are the mof familiar inftances of the difficult problems of the art. We could have wifhed for more room even on this fubject. The conAtruction of dome roofs has been (we think) miftaken, and the difficulty is much lefs than is imagined. We mean in refpect of frength; for we grant that the obliquity of the joints, and a general intricacy, increafes the trouble of workmanfhip exceedingly. Another opportunity may perhaps occur for confidering this fubject;

「"̈g. J.

Fig. 2.
(3)

Fig.

$$
\text { Fig. } \%
$$

+

\qquad

$$
5
$$

Fig. 16.

Fig. 13.

Fig． 17

Fio． 18.

ドig． 19

Fig．2：

Fig． 20

Fig．：•

Fig．24．No ？

Fig．27．No． 3

F゙ig． 25
组

Fig：25．N：？

Firs．？6．

Fig 41.

20
30
Fien

Wonden bridges form another clafs equally difficult and important ; but our limits are already overpaifed, and will not admit them. The principle on which they frould all be conftructed, without exception, is that of a trufs, avoiding all lateral bearings on any of the timbers. In the application of this principle, we muft farther remark, that the angles of our truls fhould be as acute as poffible; therefore we fhould make it of as few and as long pieces as we can, taking care to prevent the bending of the trufs heams by bridles, which embrace them, but without preffing them to either fide. When the trufs confifts of many pieces, the angles are very obtufe; and the thrufts increafe nearly in the duplicate proportion of the number of angles. The proper maxims will readily occur to the artitt who confiders with attention the fpecimens of centres or coombs, which we fhall give in the article Centre.

With refpect to the frames of carpentry which occur in engines and great machinew, the varieties are fuch that it would require a volume to treat of them properly. The principles are already laid down; and if the reader be really interefted in the ftudy, he will engage in it with ferioufnefs, and cannot fail of heing inftructed. We recommend to his confideration, as a fpecimen of what may be done in this way, the working beam of Hornblower's fleam-engine (fee STEAM-Engine, n ${ }^{\circ} 84$. Encycl.) When the beam muft act by chains hung from the upper end of arch heads, the framing there given Seems very fcientifically conftructed; at the fame time, we think that a frap of wrought iron, reaching the swhole length of the upper bar (fee the figure), would be vaftly preferable to thofe partial plates which the engineer has put there, for the bolts will foon work loofe.

But when arches are nut neceflary, the form employed by Mr Watt is vaftly preferable, both for fimplicity and for ftrength. It confits of a fiuple beam $A B$ (fig. 42.), having the gudgeon C on the upper fide. The two pifton-rods are attached to wrought iron joints
A and B. Two frong fruts DC, EC reft on the upper fide of the gudgcon, and carry an iicon flining $A D E B$, confifting of three picces, comnected with the ftruts by proper joints of wrought iron. A mure minute defeription is not needed for a clear conception of the principle. No part of this is expofed to a crofs ftrain; even the beam AB might be fawed through at the middle. The iron fring is the only part which is ftretched; for AC, DC, EC, BC, are all in a ftate of compreffion. We have made the angles equal, that all may be as great as poffible, and the preffure on the flruts and frings a minimum. Mr Watt makes them inuch lower, as $\mathrm{A} d e \mathrm{~B}$, or $\mathrm{A} \delta: \mathrm{B}$. But this is for economy, becaufe the Atrength is almolt infuperable. It might be made with wooden frings; but the workmanThip of the joints would more than compenfate the cheapnefs of the materials.

WE offer this article to the public with deference, $\begin{gathered}5 \mathrm{r} \\ \mathrm{F} \\ \text { Concluion. }\end{gathered}$ and we hope for an indulgent reception of our effay on a fubject which is in a manner new, and would require much fudy. We have beftowed our chief attention on the ftrength of the conflruction, becaufe it is here that perfons of the profeffion have the moft fcanty information. We beg them not to confider our obfervations as too refined, and that they will fludy them with care. One principle runs through the whole; and when that is clearly conceived and familiar to the mind, we venture to fay that the practitioner will find it of cafy application, and that he will improve every performance by a continual reference to it.

If this attempt to inftruet our moft valuable and much efteemed artifts fhall appear to meet with their approbation, it may encourage us to engage in the ferious tafk of compofing a fyttem on the fubject. But this is a great work, and will require much time and liberatcontribution of knowledge from the eminent carpenters who do honour to this country by their works.

C A S

CASCABEL, the knob or button of metal behind the breech of a cannon, as a kind of handle by which to elevate and direct the piece; to which fome add the fillet and ogees as far as the bafe-ring.

CASEMATE, or Cazemate, in fortification, a kind of vault or arch of fone-work, in that part of the flank of a baftion next the curtain; ferving as a battery to defend the face of the oppofite baftion, and the moat or ditch.

It is now feldom ufed, becaufe the batteries of the enemy are apt to hury the artillery of the cafemate in the ruins of the vault; befide, the great fmoke made by the difcharge of the cannon renders it intolerable to the men. So that, inftead of the ancient covered cafemates, later engineers have contrived open ones, only guarded by a parapet, \&c.

CASEMATE is alfo ufed for a well with feveral fubterraneous branches, dug in the paffage of the baftion, till the miner is heard at work, and air given to the mine.
CASSINI (James), a celebrated French attronomer, was born at Paris February 18. 1677, being the joung. er fon of Johannes Dominicus Calfini, of whom forse account has been given in the Encycloferdia.

C A S
After his firft fudies in his father's houfe, in which it is not to be fuppofed that mathematics and aftronomy would be neglected, he was fent to ftudy philofophy at the Mazarine college, where the celebrated Varignon was then profeffor of mathematics. From the affitance of this eminent young man Caffini profited fo well, that at 15 years of age he fupported a mathematical thefis with great lonour. At the age of 17 he was admitted a member of the Academy of Sciences; and the fame year he accompanied his father in a journey to Italy, where he affited him in the verification of the meridian at Bologna and other meafurements. On his retura he performed fimilar operations in a journey into Holland, where he difcovered fome errors in the meature of the earth by Snell, the refult of which was communicated tos the Academy in 1702. He made alfo a viGit to England in 1696 , where he was nade a member of the Royal Society. In 1712 he fucceeded lis father as aftronomer royal at the obfervatory of Paris. In 1717 he gave to the Academy his refearches on the diftance of the fixed ftars; in which he thewed that the whole annual orbit, of near $\mathbf{2 0 0}$ millions of miles diameter, is hut as a point in comparifon of that diftance. The fame year he com-

C $\mathrm{A} S \quad[180]$ C A S

Cafini. municated alfo his difcoveries concerning the inclination of the orbits of the fatellites in general, and efpecially of thofe of Saturn's fatellites and ring. In 1725 he undertook to determine the caufe of the moon's libration, by which fhe fhews fometimes a little towards one fide, and fometimes a little on the other, of that half which is commonly behind or hid from our riew.

In 1732 an important queition in aftronomy exercifed the ingenuity of our author. His father had determined, by his obfervations, that the planet Venus revolved about her axis in the fpace of 23 hours; and M. Bianchini had publifhed a work in 1729 , in which he fettled the period of the fame revolution at 24 days 8 hours. From an examination of Bianchini's ohfervations which were upon the fpots in Venus, he difcovered that he had intermitted his obfervations for the fpace of three hours, from which caufe he had probably miftaken new foots for the old ones, and fo had becn led into the miftake. The probability is, that both had fallen into fome miftake, or that they had proceeded on very different principles; for otherwife fuch different refults are wholly unaccountable. Dr Herfchel feems fatistied that the period of the revolution is lefs than Bianchini has made ; but he does not fay what it is, or that it is not much greater than it was furpofed by Caffini. Our author, after he had convicted Bianchini, as he thought, of error, determined the nature and quantity of the acceleration of the motion of Jupiter at half a fecond per year, and of that of the retardation of Saturn at two minutes per year ; that thefe quantities would go on increafing for 2000 years, and then would decreafe again. In 1740 he publifhed his Aftronomical Tables, and his Elements of Aftronomy; very extenfive and accurate works.

Although aftronomy was the principal object of our author's confideration, he did not confine himfelf abfoJutely to that branch, but made occafional excurfions into other fields. We owe alfo to him, for example, Experiments on Electricity, or the Light produced by Badies by Friction; Experiments on the Recoil of Firearms; Refearches on the Rife of the Mercury in the Barometer at different Heights above the Level of the Sea; Reflections on the perfecting of Burning.glafis; and other Memoirs.
The French Aeademy had properly judged, that one of its moft important objects was the meafurement of the earth. In 1669 Picard meafured a little more than a degree of latitude to the north of Paris; but as that extent appeared ton fmall from which to conclude the whole circumference with fufficient accuracy, it was refolved to continue that meafurement on the meridian of Paris to the north and the fouth, through the whole extent of the country. Accordingly, in 1683 , the late M. de la Hire continued that on the north fide of Pa ris, and the oider Caffini that on the fuuth fide. The latter was affifed ia 1700 in the continuation of this operation by his fon our author. The fame work was farther continued by the fame academicians; and, finally, the part left unfinithed by De la Hire in the north was finifled in 1718 by our author, with the late Maraldi, and De la Hire the younger.

Thefe operations produced a confiderable degree of precifion. It appeared alfo, from this meafured extent of fix degrees, that the degrees were of different lengths in different parts of the meridian; and in fuch fort that
our author concluded, in the rolume publithed for 1718 , Cafini. that they decreafed more and more towards the pole, and that therefore the figure of the earth was that of an oblong fpheroid, or having its axis longer than the equatorial diameter. He alfo meafured the perpendicular to the fane meridian, and compared the meafured diftance with the differences of longitude as before determined by the eclipfes of Jupiter's fatellites: whence he concluded that the length of the degrees of longitude was fmaller than it would be on a fphere, and that therefore again the figure of the earth was an oblong fpheroid, contrary to the determination of Newton by the theory of gravity. Though Newton was of all mer the moft averfe from controverfy, the other mathematicians in Britain did not tamely fuhinit to conclufions in direct oppofition to the fundamental doctrine of a philofopher of whofe talents the nation was juftly procd. The confequence was, that the French government fent two different fets of meafurers, the onetomeafure a degree at the equator, the other at the polar circle; and the comparifon of the whole determined the figure to he an oblate fpheroid, contrary to Cafini's determination.

After a long and laborious life, James Calfini died in April 1756, in confequence of a fall, and was fucceeded in the Academy and Obfervatory by the fubject of the following article. He publifhed, A Treatife on the Magnitude and Figure of the Earth; as alfo, The Elements or Theory of the Planets, with Tables; befide an infinite number of papers in the Memoirs of the Academy, from the year 1699 to 1755.

Cassini de Thury (Cefar François), acelebrated French aftronomer, director of the obfervatory, penfioner aftronomer, and member of moft of the learned focieties of Europe, was born at Paris June 17,1714 , being the fecond fon of James Caffini, the fubject of the preceding memoir, whofe occupations and talents he inlerited and fupported with great honour. He received his firft leffons in aftronomy and mathematics from MM. Maraldi and Camus; and made fuch a rapid progrefs, that when he was not more than ten years of age he calculated the phafes of a total eclipfe of the fun. At the age of cighteen he accompanied his father in his two journeys undertaken for drawing the perpendicular to the obfervatory meridian from Strafbourg to Breft. From that time a general chart of France was devifed; for which purpofe it was neceffary to traverfe the country by feveral lines parallel and perpendicular to the meridian of Paris, and our author was charged with the conduct of this bufinefs; in which he was fo fcrupulous as to meafure again what had been meafured by his father. This great work was publifted in 1740 , with a chart fnewing the new meridian of Paris, by two different feries of triangles, paffing along the fea coafts to Bayonne, traverfing the frontiers of Spain to the Mediterranean and Antibes, and thence along the eaftern limits of France to Dunkirk, with parallel and perpendicular lines defcribed at the diftance of 6000 toifes from one another, from fide to fide of the country.

A tour which, in 1741, our author made in Flanders, in the train of the king, gave rife, at his majefty's inftance, to the chart of France ; relative to which Caffini publifhed different works, as well as a great number of the fheets of the chart itfelf. In 1761 he undertook an expedition into Germany, for the purpofe of continuing to Vienna the perpendicular of the Pa.

C A T [18I $] \quad \mathrm{C} A \mathrm{~T}^{\prime}$

Caflini ris meridian; to unite the triangles of the chart of II France with the points taken in Germany ; to pre-
more perfect; but nothing has there been faid of their Catalogues origin, or of the ufes which nitght be made of the oldeit of Bouks. catalogues.

Accurding :o the Profeflor, George Willer, whom fome improperly call Viller, and others Walter, a bookfeller at Augburg, who kept a very large thop, and frequented the Franckfort lairs, lift fell upon the plan of cauling to be printerl, before every fair, a catalogue of all the new books, in which the lize and printers names were marked. L.e Mire, better known under the name of Minæus, fays that eatalognes were frit printed in the year 1554 ; but Labbe (A), Reimann (B), and Heumann (c), who took their information from Le Mire, make the year erroneoully to be $1 ; 64$. Willer's catalugues were printed till the year 1592 by Nicul. Baffus, printer at Franckfort. Other bookfellers, however, mut have foon publifhed catalogues of the like kind, though that of Willer continued a long time to be the principal.

In all thefe catalogues, which are in quarto and not paged, the following order is obferved. The Latin books occupy the firil place, beginning with the Proteltant theological works, perhaps becaufe Willer was a Lutheran; then come the Catholic; and after thefe, books of jurifprudence, medicine, philofophy, poetry, and mulic. The fucond place is afligned to German books, which are arranged in the fame manner.

The bookfellers of Leiplic foou perceived the advan. tage of catalogues, and began not only to reprint thofe of Franckfort, but alfo to enlarge them with inany books which had not been brought to the fairs in that city. Our author had for fome time in lis cuftody, Catalozus univerfalis pro mundinis Francofurtenflus vernalilus, de anno 1600 ; or, A catalogue of all the books on fale in Book-ftreet, Franckfort, and alfo of the boaks publifhed at Leiplic, which have not been brouglit to Franckfort, with the permilion of his higlinefs the elector of Saxony, to thofe new works which have appeared at Leipfic. Pinted at Leiplic by Abraham Lamberg, and to be had at his Thop. On the September catalogue of the fame year, it is faid that it is printed from the Franckfort copy with additions. He found an Imperial privilege for the firlt time on the Franck fort September catalogue of 1616: Cum gratia at privilegio fpecialif. caef. maj. Proflat apul 7 . Krugerum Augufanum.

Reimmann fays, that after Willer's death the catalogue was publifhed by the Leipfic bookfeller Henning Groffe, and by his fon and grandfon. The council of Franckfurt caufed feveal 'regulations to be iffued refpecting catalogues; an account of which may be feen in D. Orth's Treatife on the Imperial Fairs at Franckfort. After the bufinefs of hookielling was drawn from Franckfort to Leipfic, occafioned principally by the reftrictions to which it was fubjected at the former by the cenfors, no more cataloguts were printed there; and the hops in Book-ftreet were gradually converted into taverns (D).
" In the i6th century there were few libraries; and thefe, which did not contain many books, were in monalteries,
(A) Labbe, Bibliotheca Bibliothecarum. Lipfix, i682, 12 mo , p. I12.
(в) Einleitung in die Hilloriam Literariam, i. p. 203.
(c) Confpectus Reip. Litter. c. vi. § 2. p. 316.
(D) Joh. Adolph. Stock, Frankfurter Chronik, p. 77.

C A T
 C A T

Catalopues nafteries, and confifted principally of theological, philoof B.ooks. foplical, and hiftorical works, with a few, however, on
jurifprudence and medicine; while thofe which treated of agriculture, manufatures, and trade, were thought naworthy of the notice of the learned, or of being preferved in large collections. The number of thefe works was, neverthelefs, far from heing incontiderable; and at any rate, nany of them would liave been of great ufe, as they would have ferved to illuftrate the influctive hiftory of the arts. Catalogues which might have given uccafion to inquiries after buoks, that may be fill fomewhere preferved, have fuffered the fate of tomb-ftones, which, being wafted and crumbled to pieces by the deAroying hand of time, become no longer legible. A complete feries of them perhaps is nowhere to be found, at leaft I do not remember (fays the Profeffor) to have ever feen one in any library :"

This lofs, however, he thinks, might be in fome meafure fupplied by the catalogues of Clefs and Draudius; who, by the defire of fome bookfellers, collected together all the catalogues which had been publihed at the different fairs in different years. The work of Clefs has the following title: Unins feculi giufque viroruna litteratorum monumentis tum forontiflimi, lum fertilifimi, ab anno 1500 ad 1602 nundinarum autumnalium inclufive, elcn chus confummatiflomus - defuntus partion ex fingularumn nundinaruin catalogis, partime ex bibliothecis. Auctore Joanne Cleffio, Wineccenfi, Hannoio, philofopho ac medico. By the editor's preface, it appears that the firf edition was publifhed in $\mathbf{1} 592$. The order is almoft the fame as that obferved by Willer in his catalogues.

The work of Draudius, which was printed in feveral quarto volumes for the firf time in 1611, and afterwards in 1625 , is far larger, more complete, and more methodical. Our author, however, confeffes, that he never faw a perfect copy of either edition. This catalogue confifts of three parts; of which the firtt has the title of Bibliotheca claflica, five Catalogus offcinalis, in que finguli fingularum facultatum ac profeffronum libri, qui in quavis fere lingua extant-recenfentur; ufque ad annum 1624 inclufive. Auctore M. Georgio Draudio.It coutains Latin works on theology, jurifprudence, medicine, hiftory, geography, and politics. The copy in the library of the univerfity of Gottingen ends at page 1304, which has, however, a catch-word, that feems to indicate a deficiency.-The fecond part is intitled, Bibliotheca claffica five Catalogus officinalis, in quo philofopplici artiumque alico humaniorum, poetici etiam at mufici libri ufque ad annum $162+$ continentur. This part, containing Latin books alfo, begins at page 1298, and ends with page 1654 , which is followed by an index of all the authors mentioned. - A fmaller volume, of 302 pages, without an index, has for title, Bibliothera exotica, five Catalogus officinalis librorum peregrinis liug uis ufualibus lcripforum. And a third part, forming 759 pages, befides an index of the authors, is called, Bibliotheca librorum Germanicorum claftra; that is, A cataloyue of all the books printed in the German language till the year 1625 .

We have reafon to believe that there are other editions of this catalogue than thofe mentioned by Piofeffor Beckmann; and it might hecome forne prince or great man, for it is not a work for a bookfeller, to compare all the editions together, and publifh a new one more correct than any that is at prefent extant. This
indeed would he an expenfive and not an eafy tak; for Catalcrues our nuthor obferves, that all the oldeft catalogues had of thr Scar:the fame faults as thofe of later date, and that thefe faults have been copied by Draudius. Many books are mentioned which were never printed, and many titles, names, and dates, are given incorrectly ; but Diaudius neverthelefs is well worth the attention of any one who may be inclined to employ his time and ingenuity on the hiftory of literature ; and his work certainly was of ufe to Haller when he compofed his Bibliotbeca.

Caquloguns of the Stars, have ufualls been difpofed, either as collected into certain figures called confellations, or according to their right afcenfions, that is, the order of their paffing over the meridian.

Of the principal catalogues, according to the firt of thefe forms, an account has been given in the Encycloperlia. The firft catalogue, we believe, that was printed in the new or fecond form, according to the order of the right afcenfions, is that of De la Caille, given in his Ephemerides for the ten years between 1755 and 1765 , and printed in 1755 . It contains the right afcenfions and declinations of 307 Itars, adapted to the beginning of the year 175:. In 1757 De la Caille publifhed his Afronomia Fundamenta, containing a catalogue of the right afcenfions and declinations of 398 ftars, likewife adapted to the beginning of 1750 . And in 175_{3}, the year after his death, was publifhed the Calum Auffrale Stelliferum of the fame author; containing a catalogue of the places of $19+2$ fars, all lituated to the fouthward of the tropic of Capricorn, and obferved by him while he was at the Cape of Good Hope in 1751 and 1752 ; their places being alfo adapted to the beginning of 1750. In the fame year was publifhed his Ephemerides for the ten years between 1765 and 1775 ; in the introduction to which are given the places of 515 zodiacal flarg, all deduced from the obfervations of the fame author; the places adapted to the beginning of the year 1765 .
In the Nantical Almanac for 1773 , is given a catalogue of 387 ftars, in right afcenfion, declination, longitude, and latitude, derived from the obfervations of the late celebrated Dr Bradley, and adjufted to the beginning of the year 1760 . This fmall catalogue, and the refults of about 1200 obfervations of the moon, are all that the public have yet feen of the multiplied la. bours of this moft accurate and indefatigable obferver, although he has now (179^{8}) been dead upwards of 38 years.

In 1775 was publifhed a thin volume, intitled Opera Inedita, containing feveral papers of the late Tobias Mayer, and among them a catalogue of the right afcenfions and dectinations of 998 ftars, which may be occulted by the moon and planets; the places being adapted to the beginning of the year 1756 .

At the end of the firft volume of "Aftronomical Obfervations made at the Royal Obfervatory at Green. wich," publihed in 1776 , Dr Mafkelyne, the prefent aftronomer royal, has given a catalogue of the places of 34 principal ftars, in right afcenfion and north polar dittance, adapted to the beginning of the year $17 \% 0$.

Thefe being the refult of feveral years repeated obfervations, made with the utmoft care and the beft inAtruments, it may be prefumed are exceedingly accurate.

In 1782 , M. Bode of Berlin publifhed a very extenfive catalogue of 5058 of the fixed Itars, collected

Catalogues from the obfervations of Flamfteed, Bradley, Hevelius, of the Stars. Mayer, De la Caille, Meffer, Monnier, D'Arqueir, and other aftronomers; all adapted to the beginning of the year 1780; and accumpanied with a celeftial atlas or fet of maps of the conftellations, engraved in a moft delicate and beautiful manner.

To thefe may be added Dr Herfehel's catalogue of double flars, printed in the Phil. Tranf. for 1782 and 1783; Meffier's nebulx and clutters of ftars, publifhed in the Connoifance des Temps for 1784 ; and Herfchel's catalogue of the fame kind, given in the Phil. Tranf. for 1786.

In ${ }_{1} 789 \mathrm{Mr}$ Francis Wollafton publined "A Specimen of a General Aftronomical Catalogue, in Zones of North-polar Diftance, and adapted to January 1. ${ }^{179}=$:" Thefe fars are collected from all the catalogues befnre-mentioned, from that of Hevelius down. wards. This work contains five diftinct eatalogues; viz. Dr Mafkelyne's new catalogue of 36 principal itars; a general catalogue of all the flars, in zones of northpolar diftance; an index to the general catalogue; a catalogue of all the flars, in the order in which they pafs the meridian; and a catalogue of zodiacal ftars, in longitude and latitude.
Finally, in 1792, Dr Zach publifhed at Gotha, Tirbule Motuum Solis ; to which is annexed a new catalogue of the principal fixed flars, from his own obfervations made in the jears $1787,1788,1789,1790$. This catalogue contains the right afcenfions and declinations of 38x principal Atars, adapted to the beginning of the year 1800.-Hulton's Mathematical Didionary.

Befides thefe two methods of forming catalogues of the ftars, Dr Herfehel has conceived a new one, in which the comparative brightnefs of the flars is accurately exprefied. It is long fince aftronomers were firit led to arrange the flars in claffes of different magnitudes by their various degrees of brilliancy or luftre. Brightnefs and fize have at all times been confidered as fynonymons terms ; fo that the brightelt flars have been referred to the clafs comprehending thofe of the firft magnitude; and as the fubfequent orders of fars have been fuppofed to decreafe in luftre, their magnitude has been determined in the fame decreafing progreffion: but the want of fome fixed and fatisfactory ftandard of lultre has been the fource of confiderable confufion and uncertainty in fettling the relative magnitucles of the fars. A flar marked 1.2 m . is fuppofed to be between the firt and fecond magnitude; but 2.1 m . intimates that the far is nearly of the fecond magnitude, and that it partakes fomewhat of the luftre of a far of the firtt order. Such fubdivifions may be of fome ufe in afcertaining ftars of the firtt, fecond, and third clafles; but the expreffions $5 \mathrm{~m}, 5.6 \mathrm{~m}, 6.5 \mathrm{~m}, 6 \mathrm{~m}$, mult be very vague and indefinite. Dr Herfchel oblerves that he has found them fo in fact; and he therefore confiders this metiod of pointing out the different luifte of ftars as a reference to an imaginary flandard. If any dependence could be placed on this method of magnitudes, "it would follow, that no lefs than eleven ftars in the conftellation of the Lion, namely, b $\sigma \sim \xi \mathrm{A} b \subset d 54,48,72$, had all undergone a change in their luftre fince Flamfeed's time: For if the idea of magritudes had been a clear one, our author, who marked 3 I .2 m . and $\gamma 2 \mathrm{~m}$, ought to be underfood to mean that β is larger than γ; but we now find that actually y is larger than β. Every one of the
eleven flars (fays Dr Herfcitel) which I have pointed Catalozurs out may be reduced to the fame contradiction."
The author has pointed out the intances of the in. fufficiency of this method, and of the uncertain conclufions that are deduced from it, in determining the comparative brightnefs of fars found not only in Mr Flimiteed's catalogue, but alfo in the catalogues of other aftronomers. It is fufficiently apparent that the prefent method of exprefling the brightnefs of the flars is very defective. Dr Herichel therefore propofes a different mode, that is more precife and fatisfactory.
"I place each flar (he fays), infteal of giving its magnitude, into a hort feries, constructed upon the order of brightnefs of the nearelt proper flars. For inItance, to exprefs the luftre of D, I fay CDE. By this fhort notation, inflead of referring the ftar D to an imaginary uncertain flandard, I refer it to a precife and determined exifting one. C is a flar that has a greater luftre than D , and E is another of lefs brightnef's than D. Both C and E are neighbouring ftars, chofen in fuch a manner that I may fee them at the fame time with D , and therefore may be able to compare then properly. The loftre of C is in the fame manner afcertained by $B C D$; that of B by ABC ; and alfo the brightnefs of E by DEF; and that of F by EFG.
it That this is the moft natural, as well as the mof effectual way to exprefs the brightnefs of a far, and by that means to detect any change that may happen in its luftre, will appear, when we confider what is requifite to afcertain fuch a change. We can certainly not wifla for a more decifive evidence, than to be affured, by actual infpection, that a certain flar is now no longer more or leis bright than fuch other flars to which it has been formerly compared; provided we are at the fane time affured that thofe other flars remain fill in their former unaltered luftre. But if the far D will no longur ftand in its former order CDE, it mult have undergone a change; and if that order is nuw to be expreffed by CED, the ftar bas loff fome part of its lutire; if, on the contrary, it ought now to be dennted by DCE, its brightnefs mult have had fome addition. Then, if we fhould doubt the flability of C and E, we have recourfe to the orders BCD and DEF, which exprefs their luttre ; or even to $A B C$ and EFG, which continue the feries both ways. Now having before us the feries BCDEF, or if neceflary even the more extended one ABCDEFC , it will be imponible to miflake a change of brightneis in D , when every member of the feries is found in its proper order except D."

In the author's journal or catalogue, in which the order of the luftre of the ftars is fixed, each ftar bears its own proper naine or number, e. g. "t the brightnefs of the ftar δ Leonis may be exprefled by $\beta \delta 1$ Leonis, or better by $94-63-17$ Leonis; thefe leeing the numbers which the three above Itars bear in the Britifl catalogue of fixed flars."

This method of arrangement occurred to Dr Herfchel fo early as the year 1782 ; but he was diverted from the regular purfuit of it by a variety of other oftronomical engagements. After many trials, he propofed, in the Iranfactions of the Royal Society of London for 1796, the plan which appeared to him the moft eligible. It is as follows: - Initead of denoting particnlar flars by letters, he snakes ufe of numbers; ansi in bis choice of the ftars which are to exprefs the lufter

Casalogues of any particular one, he directs his firt view to perfect $\underbrace{\text { of the Scare e equality. When two ftars feem to be fimilar both in }}$ brightnefs and inagnitude, he puts down their numbers togacher, feparated merely by a point, as 30.24 Leonis; but if two flars, which at firft feemed alike in their luftre, appeared on a longer infpection to be different, and the preference flould be always decidedly in favour of the faine flar, he feparates thefe flars by a cumma, thus, 41,94 Leonis. This order mult not be varied; nor can three fuch flars, as $20,40,39$, Libre, admit of a different arrangement. If the flate of the heavens flould be fuch as to require a different order in thefe numbers, we may certainly infer that a clange has taken place in the luttre of one or more of them. When two flars differ very little in brightnefs, but fo that the preference of the one to the other is indifputable, the numbers that exprefs them are feparated by a flort line, as $17-70$ Leonis, or 68-17-70 Leonis. When two ftars differ fo much in brightnefs, that one or two other ftars might be interpofed between them, and fill leave fufficient room for diftinction, they are diftinguihed by a line and comma, thus, -, or by two lines, as 32- 41 Leonis. A greater difference than this is denoted by a broken line, thus - - 29 Bootis. Ou the whole, the author obferves, the marks and diltinctions which he has adopted cannot poffibly be mittaken; "a point denoting equality of luftre; a comma indicating the leaft perceptible difference; a thort line to mark a decided but fmall fuperiurity; a line and comma , or duuble line, to exprefs a confiderable and ftriking excefs of brightnefs; and a broken line to mark any other fuperiority which is to be loaked upon as of 110 ufe in eftimations that arc intended for the purpofe of directing changes."

The difficulties that attend this arrangement are not difguifed; but the importance and utility uf it more than compenfate for the labour which it mult neceflarily require. By a method of this kind, many difcoveries of changeable and periodical ttars might probatly have been made, which have efraped the moft diligent and accurate obfervers. We might then, as the author fuggeils, be enshled to refolve a problem in which we are all immediately concerned.
"Who, for inftance, would not wifh to know what degree of permanency we ought to afcribe to the luftre of our fun? Not only the ftability of our climates, but the very exiftence of the whule animal and vegetable creation itfelf, is involved in the queftion. Where can we hope to reccive information upon this fubject but from aftronomical obfervations? If it be allowed to admit the fimilarity of flars with our fun as a point eftablifhed, how neceffary will it be to take notice of the fate of our neighhouring funs, in order to guefs at that of our own? That lar, which among the multitude we have dignified by the name of fun, tu-morrow may flowly begin to undergo a gradual decay of brightnefs, like β Leonis, α Ceti, α Draconis, \& Ulfæ majoris, and many other diminifhing flars that will be mentioned in my catalugues. It may fuddenly increafe, like the wonderful ftar in the back of Caffiopea's chair, and the no lefs remarkable one in the foot of Serpentarius; or gradually come on like β Geminorum, β Ceti, ζ Sagittarii, and many other increafing ftars, for which I alfo refer 20 my catalogues; and, lafty, it may turn into a periodical one of 25 days duration, as Algol is one of three days,

A Cephei of five, B Lyrx of fix, "Antinoi of feven Caralogues days, and as many others as are of various periuds." of the Stars.
Having thus explained the general principle on which this catalogue is formed, as we find it in the author's firft memoir on the fubject, we muit refer the seader to the Doctor's own account for its particular arrangement; obferving only that the catalogue fuhjoined comprchends nine conflellations, which are arranged in alphabetical order, with the comparative brightne f s of the flars accurately ftated. In a fubfequent paper, publifled in the fame volume, he has completely verified the utility of his method by experience, and flewu that there is no permanent change of luftre in the ftars. In the notes to his firt catalogue he mentioned α Herculis as a periodical thar. By a feries of obfervations on this ftar, compared with \times Ophiuchi, which was moft conveniently fituated fur his purpofe, he has been able not only to confirm this opinion, but to afcertain its period. His obfervations are arranged in a table, by means of which he determines that this flar had gone through four fucceffive changes in an iutcrval of 241 days: and therefore the duration of its period mult be about 6 days and a quarter. This fact concurs with other circumflances in evincing the rotatory motion of the ftars on their axes. "Dark fpots, or large portions of the furface, lefs luminous than the reft, turned alternately in certain directions, either towards or from us, will account for all the phenomena of periodical changes in the luftre of the ftars, fo fatisfactorily, that we certainly need not look out for any other caufe." If it be alledged that the periods in the change of luftre of fome ftars, fuch as Algol, B Lyrx, \& Cephei, and n Antinoi, are fhort, being only $3,5,6$, and 7 days refpectively; while thofe of ${ }_{0}$ Ceti, and of the changeable flar in Hydra, and that in the neck of the Swan, are long, amounting to $33 \mathrm{I}, 394$, and 497 days; and that we cannot afcribe phenomena fo different in their duration to the fame caufe - it inay be anfwered to this objection, that the force of it is fuunded on our linited acquaintance with the ftate of the heavens. To the 7 ftars, the periodical changes of which were before known, we may now add a Herculis, which performs a revolution of its changes in 60 days.
"The flep from the rotation of α Herculis to that of - Ceti is far lefs confiderable than that from the period of Algul to the rotation of α Herculis; and thus a link in the chain is now fupplied, which remores the objection that arofe from the vacancy." The rutation of the fifth fatellite of Saturn is proved by the change obfervable in its light ; and "this variation of light, owing to the alternate expofition of a more or lefs bright hemifphere of this periodical fatellite, plainly indicates that the fimilar phenomenon of a changeable flar arifes from the various luftre of the different parts of its firface, fuccefively turned to us by its rotatory motion."

Befides, we perceive a greater fimilarity between the fun and the flars, by means of the fpots that muft be admitted to exift on their furfaces, as well as on that of the fun.

Dr Herfchel farther obferves, that the flars, befides a rotatory motion on their axes, may have other movements; "fuch as nutations or changes in the inclination of their axes; which, added to bodies much flattened by quick rotatory motions, or furrounded by rings like Saturn, will eafily account for many new phenome-

C A T

Carenaria, na that may then offer themfelves to our extended vicws." Catharine. To this paper is likewife fubjoined a catalogue of nine conflellations; aus the author promifen to give the whole of them in fucceffive fort catalogucs on the fanse plon.

Catenaria, or Catenary Curve. Sce En. cycl. and Arch in this Supplement.

CATHARINE II Emprefs of all the Ruffias, acted fo confpicuous a part on the theatre of the world; poffefted fuch uncommon powers of mind, highly cultivated by feience and literature ; and was fuch a patronefs of fcience and literature in others - that it cannot be deemed foreign from a work of this nature to give fome account of the principal events of her more private life.

Sophia Augusta Frederica, who, upon her marriage to the grandion of Peter the great, affumed the name Catharina Alexievna, was born at Stettin on the 2 d of May 1729. Her father was Chriftian Auguflus, prince of Anhalt Zerbft Dornburg, at that time major general in the Pruffian fervice, commander in chief of the regiments of infantry, and governor of the town and fortrefs of Stettin. Her mother, who was born princefs of Holttein Eutin, was a woman of great parts and beauty, of nearly the fame age with the prince-royal of Pruffia, afterwards Frederic the Great, with whom fie kcpt up a regular correfpondence, and who afterwards contributed to the aggrandifement of her daughter. 'This accomplifhed princefs took upou herfelf the care of educating the young Sophia, whom the brought up in the fimpleft manner, and would not fuffer to exhibit the lea? fymptoms of that pride to which the had fome propenfity from her earliett childhood. The confequence of this falutary reftraint was, that good humour, intelligence, and fipirit, were cven then the Ariking features of her youthful character. Being naturally addicted to reading, to reflection, to learning, and to employment, the was taught the French and other fafhionable languages; and was inftructed to read fuch books chielly as might make her aequainted with hitory and with the principles of fcience; whillt the doctrines of the Lutheran religion were carefully explained to her by a divine, who little thought how foon his illuftrious pupil would embrace another faith.

The Emprefs Elizabeth, who then fwayed the feeptre of Ruffia, had in early life been promifed in marriage to the young prince of Holttein Eutin, brother to the princefs of A nhalt Zerbft ; but at the inftant when the marriage was about to be celcbrated, the prince fell fick arid died. Elizabeth, who loved him to excefs, became inconfolable, and in the bitterncfs of her grief made a vow of celibacy. This vow, though fenfual, and even lafcivious, fhe kept fof far as never publicly to acknowledge any man as a hufloand; and upou her afcending the throne of her anceftors, The called her nephew the Duke of Holftein Gottorp to her court, where he was folemnly proclaimed, when fourteen years of age, Grand Duke, with the tide of Imperial Highnefs, and declared fucceffor to the Emprefs Elizabeth. To fecure the fucceffion in the family of Peter the Great, the Emprefs was very defirous to have her nephew married; and the princefs of Anhalt Zerbft, not ignorant of the tender remembrance which fhe fill preferved for her brother, conceived the idea of placing, by means of it, her daughter on the throne of Ruffia. She communicated her Suppl. Vol. I. Part I.
plan to the king of Pruffia, who not only applauded it, Cuharier, but lent her his affiltance to carry it into execution.

Full of ambitious hopes, thercfore, the princefs repaired with her daughter to St Peterlburg, where the was reccived with friendifhip by Vllizabeth, and where the young Sophia foon made a contiderable imprefion on the mind of the Grand Dukc. As Peter was well made, of a good figure, and, though uneducated, not deftitute of natural talents, the attachment became reciprocal ; and the princefs of Zerbll, throwing herfelf at the feet of the emprefs, alnured her, that the two lovers were attached to each other by a pafion unconquerable ; and, calling to her mind the love which the had herfelf borne to the prince of Holftein, conjured her to promote the happinefs of that prince's niece. The Atratagem fucceeded. The choice of Elizabeth was next day announced to the council and to the foreign minillers; and preparations were made for celcbrating the marriage with a magnificence worthy of the heir of the throne of the Ruifias. In the mean time the Gran 1 Duke was feized with the fmall-pox, from which, tho' he recovered, it was with fuch a change of features, as rendered him, from being enmely, alnott hideous, and converted the love of the young princefs of Anhait, if indeed fhe ever felt for him that pafion, into horror and difgult. She was not, however, of a difpofition to let a disfigured countenance frighten her from a throne. She embraced the Greek religion, changed her name from Sophia Augufta Frederica to Catharina Arexievna, and with the entire approbation of Elizabeth was martied to her nephew the Grand Duke.

For fome time this ill-matched pair lived together, though without love, yet on terms apparently deceut; but a mutual didilike gractually too's place hetween them, which the courtiers quickly difcovered, and were at pains to foment into hatred. Peter was now ugly, and his mind was uninformed. Catharine, if not a beanty, was at leaft a lovely woman, and lighly acconplifhed. She conld find no entertainment in his converfation, and he felt himfelf degraded by her fuperiority. A faction was formed at court, headed by the great chancellor Bett ucheff, to exclude the Grand Duke from the throne, and to place Catharine at the head of affairs ; and to accomplih this end, every art was employed to till the feeble mind of the emprcis with jealouties of her nephew, and with a contempt of his claraquer. He was repre. rented at one time as extremely ambitious, and capable of the moft daring enterprifes, to get immediate poffeffion of the throne; and at another, as a wretch given up to drunkennefs and to every unprincely vice.

The confequence of the firft of thefe aceufations was, that he was kept at a diftance from his aunt, and a Atranger to public affairs; and being wholly unemployed, that time which his education had not fitted hin to fill up with reading, reflection, and rational converiation, hung fo heavy on his mind, that it was no difficult matier for thofe difipated young men, who were placed about him for that very purpure, to initiate him in the habits of drunkennefs, and the other mean practices to which it was pretended he had long been devoted. In fuch a fehool, it was no wonder that he became a proficient in grovelling diffipation; or that, being unpolithed, and even of rude manners, he chofe for his companious fome of the loweft of the people.

Catharine, in the mean time, languifhed for that hap: A a pineis

C A T

Catharine. pinefs which fhe could not find in the fociety of her hufband. She was fond of pleafure ; but it was that comparatively refined pleafure which the had enjoyed at the court of Bcrlin. She loved balls, mufic, and elegant converfation, and could take no fhare in the drunken revels of Peter. Among the young men with whom he was furrounded, his chamberlain Soltikoff was particularly remarked for the elegance of his tafte and the graces of his perfon; and though yet fcarcely more than a boy in years, he was faid to liave obtained the favours of feveral ladies of the court. Suceefs had made him coulfident and ambitious; and his ambition prompted him to afpuire at making a conqueft even of the Grand Duchefs." By fudying her tafte, and contriving to amufe her, he was at latt fucceffful; and obtained from her Imperial Highnefs every favour which he could wifh : but he enjoyed not his fortune with moderation, and his enemies contrived to get him placed in an honourable office at a diffance from the court. He was commiffioned to repair to Stockholm, with the title of Envoy Extraordinary, to notify to the king of Sweden the birth of Paul Petrovitch, of whom the Grand Duch-

- Oct. 1.

1754. efs had jutt been delivered *. The prefumptuous Soltikoff, proud of the employment, fet off with hatte to Sweden, and left it with equal fpeed. But fcarcely had he quitted Stockholm, on the wings of love and ambition, when he was flopped on the road by a courier, who put into his hands an ovder for him to go immediately to Hamburg, and there to relide in the quality of minifter plenipotentiary fron the court of Ruffia.
Catharine for fome time preferved her attachmeat to the exiled chamberlain; but all at once the prefence of a tranger, whom fortune had brought to the court of Ruffia, made her forget the lover whom fhe no loniger faw. This perfon was Staniflans Poniatowliy, the late king of Poland, who firt made his appearance at $\mathrm{St} \mathrm{Pe-}$ terfburg in the train of the Britifh ambaffador, and very quickly gained the affections of the Grand Duchefs. In carrying on this intrigue, the lovers were not fo cautious as to deceive the eyes of the envious courtiers, who reported to the emprefs not only all that they faw, but whatever they fufpected. Elizabeth was incenfed, and commanded Poniatowlky to quit without delay the dominions of Ruflia. The accomplifhed Pole obeyed ; but foon returned clothed with a character which made him in fome degree independent of the emprefs.
The Count de Bruhb, then prime minifter to the king of Poland, faw of what importance it was to his mafter to have a powerful intereft at the court of Ruffia. He was likewife no ftrancer to the paffion which the Grand Duchefs entertained for Poniatowky ; and having got that nobleman decorated with the order of the White Eagle, le fent him back to St Peterburgh in the quality of miniter plenipotentiary from the republic and king of Poland. Nor was this all that Brull did for the two lovers. Feing informed by the chancellor Beflucheff, that the Grand Duke and Grand Duchers were languining in a penury unworthy of their rank, he remitted to Puniatowflky 6000 ducats, to be employed, in fuch a manner as he might judge bell, for lecuring the favour of the prince and his confort. The ambaffador prolited by thefe counfels and benefactions. He was already fure of the Grand Ducheff's heart, an:d he very quickly gained the fayour of her hufbaind. He talked Englifi and German with him ; drank, fmoked,

186] C A T
abufed the French, and extolled the king of Prafia Catharine. with unlimited praife.

The Grand Duchefs was fo blinded by her paffion, that fhe was never without Poniatowfiy in her company. She devoted to him the whole of her time; and the made this intimacy fo littlc a fecret, that public report was loud to her prejudice. In the mean time fle was delivercd of the Princefs Anne \dagger, who lived only fifteen + February months. The Grand Duke was the only perfon about 1758. court who feemed to know nothing of what was paffinis. His whole time was occupied in copying, with fervile affectation, the air, the manners, the tone of the king of Prulfia; and in dreffing a little army at Oranianbaum in the Pruflan uniform. His eyes, however, were at laft opened. Some of the courtiers, from hatred to the chancellor, who countenanced the intrigue between the Grand Duchefs and the Polifh ambaffador, roufed his jealoufy in order to deltroy their enemy. They fucceeded. He forbade his wife to be feen with Ponidtowiky, and prevailed with the emprefs to deprive the chariccllor of his office, and to banith him to an eftate which he had 120 verlts beyoud Mofcow.

Catharine had now to fupport at once the averfon of her hurband, the indignation of the emprefs, the infulting difdain of a court, which a few days before was lavifh of its affiduities and fmiles; and what afflicted her moft of all, the dread of lofing for ever her favourite Poniatow $/ k y$. Her courage, however, did not forfake her. Poniatowlky was indeed recalled, and left Ruffia, after fuffering fome deferved indignities from the Grand Duke, who about this time formed a connection with one of the daughters of the Senator Vorontzofl, brother to the new chancellor. This lady, Elizabeth Romanovna Vorontzoff, was elder fifter to the Princefs Dafhkoff, who acted fo confpicuous a part in the fevolution which fet the crown on the head of Catlarine. She was beautiful, but vain; and poffeffed not either the wit or the underflanding of her fifter.

In the mean time the health of the cmprefs vifibly declining, Catharine was very defirous of being reconciled to her : but the irritated fovereign would liften to no accommodation, except on ternis too humiliating for the haughty Ppirit of the Grand Duchcfs. Catharine, therefore, abfented herfelf Crom court, and afked permifGiou to retire into Germany. This, as fhe had forefeen, was refufed. Elizabeth was too fond of the young Paul Petrovitch to permit the departure of his mother, and thereby expofe him to the danger of being at fome future period dcclared illegitimate. She took the Grand Duchefs again into favour ; and it is thought, that had fhe lived a little longer than the did, the would have excluded Peter from the throne, and declared Paul her immediate fucceffor.

Whilf the emprefs was meditating the aggrandifement of the young prince and his mother, the Grand Duke had conceived a plan for degrading them both. He had refolved, at the moment his annt fhould clofe her eyes, to aflemble his troops, to get himfelf proclaimed emperor, to repudiate the Grand Ducheis, to dechare the young Paul Petrovitch illegitimate, and publicly to marry his miftrefs Elizabeth Romanovna Vorontzoff. We have hewn elfewhere (fee Russia, $\mathrm{n}^{\circ} 72$. Encycl.) how this plan, when almoft ready to be carried into execution, was betrayed to Catharine, who, ever fince her caballing with the Chancellor Beftucheff, had refolved,

Capharine. refolved, by fome means or other, to fnatch the feeptre from the feeble hand of her hubban. At prefent, we believe the was not acquainted with it ; and though the had, fhe could not now have turned it to her advantare, as her party, ever fince the difgrace of Beflucheff; was without a leader of any abilities.

Amid thefe dill ractions, caufed by the profnece of the death of the emprels, and the known hatred of the Grand Duke and Duchefs to each other, Count Panin, preceptor to the young prince, devoted himfelf entirely to Catharine. He wifhed to fee her poffeffed of all the power of the emoire; but he was afraid to proceed to the extrenity to which the propafed to go, and to deprive Petcr of the name of Emperor. He contuived therefore to procure an apparent reconciliation between the Grand Duke and his confort, as well as between him and his aunt Elizabeth; and he had almolt perfuaded the filly prince not to aflume the fovereign power on the death of the emprefs, till he fhould be folemnly invelted with it by a decree of the fenate. Could he ob. tain this point, he knew that the power of Peter would be limited, and the authority Seeured to his wife and his fon. He was, however, difappointed. Catharine herfelf difapproved of this plan, and concurred with the real friends of her hufband in advifing him "to conform to eftablifhed cultom in affuming the reins of empire."

He had hardly received this advice when word was brought him that the Emprefs Elizabeth was dead (A): and the courtiers preffed in crowds about him. He accolted them with dignity, received the oaths of the officers of his guard, and feemed at once to have laid afide his weaknels. In an hour he got on horleback, traverfed the flreets of St Peterfburgh, and ditributed money among the multitude and the foldiers. He had been fo treated by his aunt, that he could not poffibly be grieved at her death ; but in paying the laft duties to her remains, he betrayed no indecent elation. The firf actions of his reign were prudent and patriotic, and fuch as would have done honour to a greater prince. He appeared to be reconeiled to his wife, in whofe company he fpent much of his time ; he recalled from prifon and banifhment 17,000 perfons, fome of them of rank and of great talents, who had been the victims of Elizabeth's jealous timidity ; he permitted the nobility to bear arms or not at their own difcretion, freeing them at the fame time from the extreme fervitude under which they had been held by his immediate predecef. fors; and he abolifhed the fecret committee, an infamous inquifitorial trilumal, which ever fince the reign of the father of Peter the Great had been the chief engine of Ruffian defpotifm.

He neglected, however, one thing; which, among the people over whom he was appointed to reign, would have contributed more to the fecurity of his throne than all the wife and beneficent edicts which he had publifhed. He made no preparations to be crowned at Mofcow. Inftead of complying with this ancient ceremony, and humouring the prejudices of his fuperftitious fubjects, he thought of nuthing but of war with Denmark, and of a perfonal interview with the king of Pruflia in Germany. His admiration of that great monarch hur-
sied him indced into the moft extravagant follice. Not Capharine. contented with giving him peace, and entering into an ofenfive and defenfive alliance with him, he had the meannefs to folicit a commifion in his army, and to accept of the rank of major-general. Of this title he fermed more vain than of that of Emperor of all the Ruf. fias. He conftantly wore the Pruffan uniform; intio. duced annong his troops the Pruftian difcipline, which, though better than their own, was difagreeahle, becaufe it was new, and much more becaufe it was German ; and he raifed his uncle, a man of no military talents, and a foreigner, to the dignity of generalifimo of the Rusfian armics; giving him at the fame time the particular command of the horfe-guards, a body of men which had never before becu under any command but that of the fupreme head of the empire. Nor did his infatuated predilecion for Germany, a country abhorred by the Ruffians, ftop even here: He difbanded the noble guards which had plaecd Elizabeth on the throne, difinifed the horfe-guards from the fervice which they performed at court, and fubftituted his Holftein guards in their place.

Whilt he was thus alienating from himfelf the affections of the army, he contrived to difgutt another order of men, whofe attachment he fhould have laboured above all things to retain. He was at pains to fhew his preference of the Lutheran faith and wor?ip to the doctrines and eeremonies of the Greek church ; he attempted to make fome alterations in the drels of the monks ; he annexed great part of the poffeffions of the church to the domains of the crown; and he banihed the archbifhop of Novogorod, who oppoled thele inno. vations ; and found himfelf obliged fuddenly to recal him.

He had now returned to his former courfcs. Ife fout himfelf up for whole days with his miftrels and drunken companions; he compelled the nobility and ladies of the court to fit in company with buffons and comedians; he infulted cvery fureign minifter but the minitters of Great Britain and Pruffia; and he made no fecret of his intention to repudiate the emprefs, declare Paul Petrovitch illegitimate, and marry the Counters Vorontzoff. Convinced, however, as it would leem, that he could not be a father, he refolved to adopt Prince Ivan, the defcendant of the elder brother of Pe. ter the Great, whom Elizabeth had dethroned and conined in prifon; to declare him his fucceffor; and ro unite him in marriage with the young princefs of Holtein Beck, who was then at St Peterburgh, and whom he cherihhed as his daughter.

This inconfiltent and weak conduct of the emperor turned the attention of all orders of men to the emprefs, who made it her fole employment to gain thofe hearts which he was lofing. Infructed from her infancy in the arts of diffimulation, it was not diffieult for her to affect, in the fight of the multitude, fentiments the moft foreign to her mind. The pupil of the French philofophers put on the air of a bigot to the moft fuperfitious ceremonies of the Greek religion, and treated the minifters of that religion with the profoundeft reverence. And whilt her hufband was getting drunk A a 2
amidt
(A) Chriltmas-day 1761 according to the Ruffian calendar, or the 5 th of January 1762 according to ours.

C A T [188$] \quad$ C A T

Catharine. amidn a rabble of buffocns, and difgnfting ceery perfon of decency who approacled him, the kept her court with a mixture of dignity and affability, which attract. ed to her all who, by capacity, courage, or reputation, were capable of ferving ber.

Correc, however, as her public conduct appeared, her private life was not lefs licentious than formerly. While yet Grand Duchefs, fhe had formed a very tender connection with Giegory Orloff, a man of mean birth, and of no education, but polfeffed at once of perfonal teauty and the mof daring courage. He had an inferior commiffion in the artillery, while his two brothers were common foldiers in the regiments of guards. The intrigue which the carried on with him was known only to one of her women named Catharine Ivanovna; nor dici Olloff himfelf for fome time fufpeet the rank of the lady who fo lavifhly conferred upon him her fave urs in fecret. At laft, finding him intrepid and difcrect, the difcovered lelfelf, unveiled to him all her ambitious def:grns, and eefily prevailed with him and his brothers to enter with zeal into lier confpiracy again? the emperor. Orloff likewife gained over Bibikoff his Fricne, a Lieutenan Paffick, with other officers; and by thcir means eafly feduced fome regiments of the guards. The Princefs Dafkoff was Arongly attached to Catharine, we belicve, from worthy motives, and had frequent meetings with Or!off on the bufinefs of the confpiracy, whthout fufpectir, that he was fo much as known to the emprefs. Count Panin, too, and the Hetman of the Kofacks, were determined to tumble Peter from the throne; but they were not inclined to go all the lengths propofed by Catharine and her two favourites. Hoping to enjoy the actual power of the empire themfelves, thty were for declaring Paul Petrovitch emperor in the room of his father, and conferring upon his mother the name and authority only of regent; while the princefs and Orloff, krowing the fentiments and withes of the emprefs, were refolved to vell her with fovereign power, or to perilh themfelves in the hazardous attempt.

In the meas time the anniverfary of the patron faints of Ruffia was at hand, when Peter had determined, at the conclufion of the felival, to divorce the emprefs, thut her up in prifon, declare her fon illegitimate, and publicly marry his miftrefe. As they who plan a confpiracy are always more vigilant then thofe againft whom it is directed, the friends of Catharine were carefully informed of all that paffed about the emperor, whilft he was kept in total ignorance of their proctedings. It was therefore necellary for them to unite in the fame plan, and to carry it quickly into execution ; for delay or divifions would involve them all in one common ruin. 'The emprefs contrived to bring over the Hetman en. tirely to her views; and the Princefs Dafhkoff, by the facrifice, it has been faid, of lier charms, found little difficulty in reconciling Count Panin to the fame mcafures. They now agreed to feize the Tzar on his arrival at Pe terhoff, an Imperial palace on the tho:e of the Gulf of Cronftedt, where he propofed to celebrate the approaching feftival; and they were waiting impatiently for the moment of action, when all at once.their plot was difcovered.

Paffick, who has. been mentioned among the confpirators, had gained the foldiers of the company of guards in which be was a licuunant ; but one of them, who
thought that his captain was in the fecret, afked that Catharine. officer one evening, When they were to take up arms againft the emperor? The captain, furprifed, had recourfe to difimulation, and eafily drew from the foldier all that he knew of the confpiracy. It was nine o'clock at night. Yaffick was put under arref; but found means to nip into the hands of a man who had heen placed as a fpy over him by the Princefs Dafhkoff, a fcrap of paper containing thefe words, "Proceed to execution this inftant, or we are undone." The man was defired to carry it to the Hetman, by whom he would be handfoncly rewarded; but he hurried with it to the princess, who inflantly communicated the intelligence to the other confpirators. She hericlf put on man's apparel, and haftened to the place where the was accuftomed to meet Orloff and his friends; where the found them, as impatient as herfelf to carry their plot into immediate execution.

During this awful crifis the emprefs was at Peterhoff, at the diflance of 25 verfts from St Peterforgh; and one of the brothers of Gregory Orloff, named A: lexius, undertook to find.her out, whilt he himfelf, with his other brother and Bibikoff his friend, repaired to the barracks for the purpofe of inftructing the foldiers of their party how to act on the fird fignal. Alexius Orloff carried with him a fhort note from the Princefs Dafhkoff, but neglected to deliver it; and the emprefs, being fuddenly roufed from a found heep, was much alarmed, when the faw at the fide of her bed a foldier of whom the kuew nothing. Her alarm was increafed when the ftranger faid, "Your majefty has not a moment to lofe; get ready to follow me ;" and inAtantly difappeared. She rofe, however, and calling her woman Ivanovna, they difguifed themfelves in fuch a manner that they could not be known by the fentinels about the palace ; and the foldier returning, they hurried with him to a coach which was waiting at the garden gate. Orloff took the reins, but drove with fuch fury that the horfes foon fell down; and they were obliged to travel part of the way on foot. They had not, however, gone far, when they met a light country cart; and the who was afoiring to the throne of the greateft empire in the world, was glad to enter the capital of that empire in this humble vebicle.

It was feven in the morning when fhe arrived in St Peteifburgh: and to the foldies, who gathered about her in great numbers, fhe faid, that "her danger had driven her to the neceflity of coming to afk their affit. ance; that the 'rar had intended, that very night, to put her and herfon to death; and that the bad fo great. confidence in their difpofitions, as to put herfelf entirely into their hands." They immediately fhouted, "Long live the emprefs!" And the chaplain of one of the regiments fetching a crucifix, leceived their oaths, of fidelity.

The troaps, however, were not unanimous in this re. volt. Though Gregory Orloff was treafurer of the artillery, and well enough beloved by the foldiers, that corps refufed to follow him until he fhould produce the orders of Villebois their general : and that officer, withheld either by fidelity to the emperor or by fear, pre. fumed to fpeak to Catharine of the obftacles which yet remained for her to furmount; adding, that the ought to have forefien them. She laughtily replied, that "fhe bad not fent for him to alk what hee ought to have foreicen,

C A T [189] C A T

Cathrine. forefeen, but to know how he intended to act." "To of whom 24 received confiderable eftates; and among Catharine. obey your Majefty," returned Villebois; and putting himfelf at the head of his regiment, he immediately joined the confpirators. So ripe indeed were the minds of all men for this revolt, that in the fpace of two hours the emprefs found herfelf furrounded by 2000 warriors, together with great part of the inhabitants of Peterfburgh: and with that numerons train of attendants fhe repaired to the church of Kafan, where the archbinop of Novogorod, fetting the Imperial crown on her head, proclaimed her fovercign of ail the Ruffias, declaring, at the fame time, Faul Petrovitch her fucceffor.

Matters had now procesded by much too far to admit of any compromife between Catharine and her huf. band: but had the infatuated Tzar put his affairs wholly into the hands of Marfhal Munich, that intrepid veteran would have tumbled the emprefs from her throne alinoft as quickly as the had got foffeftion of it. He acted, however, a very different part. Upon receiving intelligence of what had been done at St Peterburgh, he afked indeed the Marfhal's advice, tut fuffered himfelf to te guided by his miftrefs and timid companions. Through their terrors and bis own irrefolution opportunities were loft which could never be recovered; for though his Holftein guards, with tears in their eyes, fwort that they were all ready- to facrifice their lives in his fervice, and though the old Marfnal offered to lead them againit the rebels, faying to the emperor, "I will go before you, and their fwords fhall not seach you till they lave pierced my body," he was perfuaded to treat with the emprefs, to acknowledge his mificonduct, and to offer to fhare with her the fovereign power. At laft he was weak enough to abandon his troops, and to furrender at difcretion to his confort; whofe creatures hurried hin from Oranienbaum to Peterhoff, ftripped him of all his clothes, and, after leaving him for fume time in his flirt, a butt to the outrages of an iufolent foldiery, threw over him an old morning.gown, and thut lim up alone, with a guard at the door of his wretched Panin was fent to him by the emprefs; and after a long confernce, prevailed with him to write and fign a tolemn sefignation of his coown, and a declaration of his utter incapacity to govern fo great an empire.

The revolution was now complete, and Peter fcemed to enjoy fome compofure of mind; but in the evening he was carried a prifoner to Ropfcha, a finall hmperial palace, at the diftance of 20 verts from Peterhoff, where he was murdered on the 17 th of July, juft one week af. ter his depolition. Of the manner of his death different accounts have been given. By fome he is faid to have been poifoned; by others, to have been ftrangled by one of the Orloffs; and a few have thought that he perifhed by the fame neans as Edward II. of England. Whether the emprefs was acceflory to his death is not known; though it is certain, that fo far from making any inquiry after his murderers, fhe aficeted to believe that he had died raturally of the piles!

The firt care of Catharine was to reward thofe who had been the principal actors in the revolt. Panin was made prime minifter ; the Orloffs received the title of Court ; and the favourite Gregory was appointed lieuteluant.general of the Ruffian armies, and knight of the order of St Alexander Nefsky, the fecond order of the empire. Several officers of the guards were promotec,
the foldiers, whom fhe treated with the greateft affability, brandy and heer were liberally diltibuted. The Chancellor Beftucheff, who had been the moft invetcrate enemy of Peter, was recalled from his exite, reftored to his rank of field-marfhal, and had an annual penfon fettled upon him of 20.000 rubles. To the friends of the emperor the behaved with grtat moderation. Prince George, whom he had conflituted Duke of Courland, was indeed obliged to renounce his title; but the adminiftration of Holftein was committed to him, and he ever after ferved the emprefs with zeal and fidelity.

The news of the revolution was foon fpread over Europe; and none of the fovereigns, though they knew by what fleps Catharine had mounted the throne, hefitated for a moment ro acknowledge her title. She was not, however, at perfect eafe in lier own mind; nor was her right recognifed by all her fubjeEts. Though fhe publifhed manifefoes, fetting forth the intentions of the late emperor towards her and her fon, which made refilance neceffary; though in thefe papers fhe attributed her elevation to the wifhes of her people and the providence of God ; and though fhe called upon all who were fincerely attached to the orthodox faith of the Greek church, to confider the fudden death of Peter as the judgment of heaven in favour of the revolution-yet in the diftant provinces no exultations were heard ; both Soldiers and peafants obferved a gloomy filcnce. Even at Mofow, Io great was the difaffection to Catharine'e government, that it was fome time before she could venture to go to that city to be crowned; and fhe found in it at laft fo cold a reception, that fhe very quickly returned to St Peterfburgh.

Nor was this the only caufe of her uneafinefs. The conne乏tion betwcen Orloff and her became vifible, and gave jult off nuce to her other friends. The princefs of Dallikulf firft perceived it; and when the prefumed to. expoftulate with the emprefs on the meannefs and imprudence of her paffion, fhe was banifhed from the court to Mofoow. Count Panin arid the Hetnian faw with indignation that they had dethroned the grandfon of Peter the Great, to aggrandife a rude and low born upfart. Cabals and contpiracies were entered into by high and low, both againit Catharine and againft her favourite; and it required all her abilities and firmnefs; to prefenve at once her throne and her lover. On one occation the hoped to ohtain from the Princefs Dathkoff fufficient proof that Panin and the Hetman of the Kofacks were concerned in a plot which had juft been difcovered; and with this view the wrote to her a letter of four pages, filled with the moit tender epithets and the moft magnificent promifes, conjuring her in the name of their long-ftanding friendfhip, to reveal what the knew of the secent confiracies. With beeoming mag. namity, the princefs replied, "Madam, I have heard nothing; but if I had heard any thing, I fhould take good care how I fpoke of it. What is it you requite of me? That I foould expire upon a fcafold? I am ready to mount it."
Catharine, aefpairing of conquering fuch a fpirit, attempted to attach to her thofe whom fhe dared not to punifh. Some of the inferior confpirators were banithed to Siberia, while Panin and the Fietman, who:n he mofl dreaded, received additional marks of her favour. In the mean time, to gain the affections of the people

C. A T [190] C A T

Catharine. at large, fhe paid the utmoft attention to the adminiftra-- tion of juttice; formed marnifieent eftablithments for the education of the youth of both fexes : founded hof. pitals for orphans, for the fick, and for lying-in women; invited foreiguers of all nations, poffofed of any merit, to fette in different parts of her valt territosies; increafed the naval force of the empire; and gave fuch encouragement to the cultivation of every elegant and ufeful art, that in the fhort fpace of a year and a half from her acceffion to the throne, the national improvement of Ruffa was vilible.

In the good fortune and glory of Catharine, no one rejoiced more fincerely than Count Poniatowiky. He approached towards the confines of Ruffia, and wrote to her in the tendereft tyle of congratulation, requefting nermiffion to pay his refpects to her in the capital of her ewpire. It is not improbable that he flattered himfelf with the hopes that the would give him her hand in merriage, and thus raife him to the throne of the "Tzars; but the had promifed to the Emprofs Elizabeth, that the would never again fee the count ; and to that promife the at prefent adhered. She wrote to him, however, in the molt affectionate terms; and tho, the gave him no encouragement to repair to St Peterf. burgh, fhe affured him that the had other profpects in view for his nggrandir ment, and that he might depend upon her oerpetual ficendimip: and the foon appeared to be as good as her word. On the death of Augutus 1II. fhe raifed her former favourite to the throne of Poland, in oppofition to the wifhes of the coults of Vienna and Verfailles, as well as of a great majority of the Polifh nobles. She defeated the intrigues of the two foreign courts by more filfully condueted intrigucs of lier own; and by pouring her armies inte the repuhlic, fie fo complitely overawed the nuneios, that Poniatowflky was chofen by the unanimous fuffiages of the diet which met for the elcetion of a fovereign; and, on the 7 h of September 1764 , was proclaimed King of Poland and Grand Duke of Lithuania, by the nanie of Staniflaus Augutus.

Whilt the was thus difpofing of foreign kingdoms, The was kept under perpetual dread of being tumbled from the throne of her own valt empire. Her want of title to that throne was now feen by all ranks of her fubjects: the good qualities of Pcter the third were reniembered, and his failings and faults forgotten. His fate was univerfally lamented : and, except the confpirators, who may be faid to have embrued their hands in his blood, there was hardly a Ruffian who did not regret that the fovereignty had paffed from the anciont family of the Tzars to a foreigner, allied only by mar. riage to the blood toyal. Even the confpirators themfelves had loft much of their regard for Catharine. The princefs of Dafhkoff was a fecond time banifhed to Mofcow ; and, to magnify her own importance, the fpoke freely of the means by which the eniprefs, whom fhe accufed of ingratitude, had been raifed to the throne. The inhabirants of Mofcow, who never favoured the ufurpation, were thus made ripe for a revolt. At St Peterburgh, Count Panin felt limfelf unealy under the predominant influence of the favourite, and tried in vain to divert Catharine's affections to a new object. She received a few fecret vifits from a handfome young man, and then appointed him to a lucrative and honourable employment in fome diflant province of the empire;
when Orloff recovered his former afcendency, which Cathains, through bis own carelefnefs he had nearly loft. In this tate of the public mind, confpiracies were very frequent; and as the general object of them was to place on the throue Prince Ivan, who vas again languifhing in the dungeon from which Peter had taken him, the emprefs had given to his guard an order, figned by her own hand, to put that unfortunate prince to death, fhould any attempt be made to liberate him from his prifon. An attempt was made by a very inferior officer, as fome have fuppofed, by the inftructions of Catharine, and her bloody order was inftantly obeyed. The affaffins were rewarded, and promoted in the army; but the officer who attempted to refcue the prince was condemned to dcath, and fuffered unexpectecily the fentence of the law. The brothers and lifters of Ivan, who had been kept in a prifon diffeent from his, were fent to Denmark; and, to provide them with necef. faries fuitable to their rank, the emprefs made them a prefent of 200,000 rubles, and paid annually, to the maintenance of their dignity, a penfiou of thirty thoufand.

The throne of Catlarine was now firmly eftablifhed, by the death or renunciation of every perfon who tras defcended of the imperial family; and the had leifure to turn her thoughts to the aggrandifement of the empire. It was foom feen that this was the object which the had in view when fle raifed Count Poniatowfiky to the throne of Poland, and that fhe was not actuated on that occafion by any remains of her former attachment. We bave elfewhere fhewn (fee Poland, Encycl. $n^{\circ} 9^{8}$ -115) under what protences the invaded the kingdom of him who had formerly been one of her moft favoured lovers, and by what means the annexed great part of it to the territories of Ruffia. But it is not through her wars that in this article we mean to trace her character: It is not as a fovereign and heloine that her life is entitled to a place in a geneal repolitory of atts, fciences, and mifcellaneous literature, but as a patronef3 of art and of fcience, and as the legiflatrix of a valt empire, who emoloyed all her talents and all her power for the civilization of a great part of the human race.

Under the article Russia (Encycl.), we have mentioned the famous code of lurws for a great empire, and the propofed convention of deputies from all the clafes, whicb Catharine and the Princefs Dafhkoff fo arefully employed as means to bring about the revolution which feated the former on the throne. The ftates actually met in the ancient capital of the emaire, and the fovereign's inftructions for framing a new code of laws was read amidlt reiterated burfts of applaufe. All prefent extolled the fagacity, the wifdom, the humanity of the emprefs; but fear and flattery had a greater hare in thefe exclamations than any juft knowledge of the fubject. The deputies of the Samoides alone had the courage to Speak freely. One of them flood up, and, in the name of himfelf and his brethren, faid, "We are a fimple and honeft people. We quictly, tend our reindeer. We are in no want of a new code; but make laws for the Ruffians, our neighbours, that may put a ftop to their depredations." The following fitting ${ }^{3}$ did not pafs fo quietly. A debate about the liberation of the boors was carried on with fuch warmth, that fatal confequences were to be apprehended ; and the deputies were difmiffed to their refpective provinces in

Catharine. the manner which we have elfewhere related. Previous, however, to the diffulution of this affembly, the members were required to fignalize the meeting by fome confpicuous act of gratitude; and, by a general acclamation, the titles of Great, Wisf, Pruofnt, and Mother of the Country, were decreed to the emprefs. With affumed modelty fhe accepted only of the laft, " as the moft benign and glorious recompence for her labours and folicitudes in behalf of a people whom the loved."

For that people fie did indeed labour, and labour mont ufedully. She introduced into the adminiftration of juftice the greitelt reformation of which the half.civilized liate of Ruffia would perhaps admit. She fpared neither trouble nor expence to diffufe over the empire the lightit of fcience, and the benefits of ufeful and eiegant arts; and fhe protected, as far as fie could, the poor fron the opprefinons of the rich. About the middle of 1767 , fhe conceived the idea of fending feveral learned men to travel through the interior of he: valt dominions, to determine the geographical polition of the principal places, to mark their temperature, and to examine into the nature of their fill, their vegetable and mineral productions, and the manners of the people by whom they were inhabited. To this employment fhe appointed Pallas, Gmelin, Euler, and many others of the higheft eminence in the republic of letters; from whofe journals of thefe interetting travels large additions havc been made to the general flock of ufeful knowledge. This furvey of the empirc, and the maps made from it, had Catharine done nothing elfe, would alone have been fufficient to render her name immortal. Well convinced in her owa mind, that it is not fo much by the power of arms, as by prceedence in fcience, that nations obtain a contriculuous place in the annals of the world, with a laudable zeal the enconraged artifs and fcholars of all denominations. She granted new privileges to the two academies of ficiences and the arts ; encouraged fuch of the youth as had behaved well in thefe national inflitutes, to travel for farther improvement over Europe, hy beflowing upon them, for three years, large penfions to defray their expence; and, to remove as mich as poffible the Ruffian prejudice againf all kinds of learniug, fhe granted patents of nobility to thore who, during their education, had conduted themiflves with propriety, and become pioficients in any branch of ufefus or clegant knowledge. Still farther to encourage the fine arts in her dominions, fhe affigned an anuulal fum of 5000 rubles for the tranfation of foreign literary works into the Ruffian languagc.
In the year 1768 , the fmall-pox raged at St Peterf. burgh, and proved fatal to valt numbers of all ranks and of every age. The emprefs was defirous to introduce the pratice of inoculation among her fubjects; and refolved to fet the example by having herfelf and her fon inoculated, With this view, fhe applied for a phyfician from England: and Dr Thomas Dimiddale of Hertford being recommended to her, he repaired with his fon to the capital of Ruffia, where he inoculated firll the emprefs, then the grand duke, and afterwards many of the nobility. The experiment proving fucceffsul, he was created a baron of the empire, appointed aqual counfellor of fate, and phyfician to her imperial majefty, with a penfion of L. 500 fterling a-ycar, to
be paid him in England, befides L. 15,000 which he im. Catharine. mediately rececived. So popular was the emprefs at this period, that, by a decree of the fernate, the anniverfary of her recovery from the fmall pox was enjoined to be celebrated as a religious feflival; and it has eve: fiuce been oblerved as fuch.
She was now engaged in war with the Turks, of which a fufficient account for a work of this nature has been given under the title Turkfy (Encyel); but there wis one tranfaction of her and her friends, of which no mention was made in that article, thought it is of importance to him who would form a juft cettimate of her perfonal character.
We hive noticed the fenfuality of the emprefs Elizabeth. She bore three children to the grand veneur Alexey Gregorievitch Razumolffly, to whom, indeed, fhe is faid to liave been clandeftinely married. Of thefe children the youngeft was a gitl, brought up uncicr the name of Princefs ' Tarrakanof. Prince Radzivil, who has been mentioned in the article Polano (Encych.), irritated at Catharine's cructties to his countrymen, conceived the projeet of plácing the young princeefs on the throne of her ancellor3; and, having gained over the perfons to whom her education was intrulted, he carried her off to Rome as a place of fafety. Catharine, in return, feized his large eltates ; and he and the princecfs were reduced to extreme poverty. Radzivil repaired to Poland in order to iearn what could he done to forward his great enterprife; and fcarcely had he arrived there when an offer was made to rellore to him his poffeffions, upon condition of his carrying his ward to St Peterfourgh. This he refulfed: but had the bafenefs to promife, that he would give himfelf no farther concern about the daughter of Elizabeth ; and he was put in poffefion of all his eltates.
By the inftructions of the emprefs, Alexius OHIoff, who nominally commanded the Ruffian fleet at the Dardanelles, repaired to Rome, got accefs to young Tarrakanoff, and found means to perfiuadc her that all Ruffia was ready to revolt from Catharine, and place her on the throne of her mother. To convince her of his fincerity, he pretended to feel for her the tenderell and mof refpectul paffion ; and the unfurpicious hady was induced to acce?t of him as a hulband. The rufian who had affafininated the grandfon of Peter the Great, did not hefirtate to feduce and betray his grand daughter. Under pretence of having the mariage ceremony performed according to the rites of the Greek church, he fuborned fome fubaltern villains to perfonate priclts and lawyers ; thus combining profanation with impofure againf the unprotected and too confident Tarrakanoff.
Having been treated for fome days, both at Rome and at Leghorn, with all the refpect due to a fovereign, the unfurpesting princeff expreffed a winh to go on board a Ruffian ship of war. This was jult what Orlofi wanted. Attended by a numerous and obfequious train, fhe was rowed from the fhore in a boat with mag. nificent enfigns, hoifted upon the deck of the fhip in a fplendid chair, and immediately handcuffed. In vain did fhe throw herfelf at the feet of her pretended hurband, and coujure him by every thing tendcr which had paffed between them. She was carried down into the hold; the next day the veffel failed for St Peterfburgh; whcre, upon her arrival, the princefs was fhut up in the fortrefs; and what became of her fince was
ferupled not to employ in order to get rid of all pretenders to her throne.

Soon after this fervice rendered to her by Alexius Drioff, the difmiffer his brother Gregory from her favour, aidd conneded her!elf with V, ffiltchikoff, a fub. bientenant of the guards. The fonmer favourite lind inticed become infolent, and, as Catharine thought, ungrateful. He afpircd to noching lefs than the throme. Fiom love to himfelf, and to a fon which fhe had born to him, fhe offered to enter into a fecret marriage ; buc wich this propofal the proud prince (A) was not fatisfied, and hoped that his refufal would impel her to receive him publicly as her hufband and partner in power. He was miftaken. She divetted him of all his employments; but gave him a penfion of 150,000 rubles, a handfome fervice of plate, and an ettate with 6000 peafants upon it: and, thus enriched, he fet out upon a journey through various parts of Europe. He returned, however, much fooner than was expected; the new favourite was handfomely rewarded, and fent to a dif. tance; Orloff w/as reftored to all his offices, and his baleful influence was again felt.

He attempted to perfuade the emprefs to diimifs Panin from the court ; but the grand duke interpofed in behalf of his old preceptor; and, for once, Catharine liftened to the entreaties of her fon. When a dreadful rebellion, under a Kofak of the name of Pugethoff, who pretended to be Peter III. efcaped from his affaffins, was fhaking the throne to its foundation-the influence of Orloff was fuch as to prevent the emprefs, for fone time, from employing her ablet general againft the rehels, becaufe that general was Panin, brother to the minifter. Danger, however, at laft prevailed over the favourite: Panin was fent againft Puget Thoff; the rebellion was crufhed; and Catharine found leifure to give fomething like a legal conflitution to the empire. In that work, the laws and regulations eftablihed for the government of the varions provinces, and for the equitable adminifration of juftice through the whole of her vaft dominions, evinces the greateft wildom and fagacity in their author, as well as a proper regard to the practicable liberties and rights of men. In the capital, fhe eftablifhed the moft perfect police, by which the internal uran. quillity of a great city was, perhaps, ever maintained; and whilft her private condua was far from correct, fhe was acting in the capacity of fovereign, fo as to deferve, indeed, the appellation of Motber of ber people.

To follow her through all her wars and intrigues with foreign courts, would fwell this article to the fize of a volume. Such a narrative, too, belongs rather to the hiftory of Rulfia than to the memoirs of Catharine; in which it is the bufinefs of the biographer to develop the private charater of the woman, rather than to detail the explnits of the fovereign. Her partition of Foland, and afterwards the annihilation of it as an independent republic; her encroachments on the territories of the grand fignior; her formation of the armod neutrality; the influence whicb the maintained over the courts of Sweden and Denmark; 'and the art with which fhe threw the weight of Ruflia fometimes into
the feale of Aufria, and fometimes into that of l'mfia, Catharine. juft as the intcrefts of her own dominions required the one or the other to preponderate - thew how admirably the was qualified to guide the helm of a great empire in all its tramactions with foreign 1ates. We fpank not n^{5} the equity of her proceedings; for it mutt be confeffel, that equity formed no bartier ayaint her ambition; and that the never failed to fubjugate thofe whom the pretended to take under her protection. Her ruling paffion was to enlarge hér own territories, alreaty fo very extenfive; and, for the attainment of that ohje?, the contrived the mot judicious plara, which fhe execuied with vigour. In this part of her conduct, howiver, ße has beeri equalled by other monarchs; but in the zeal and the wifdom with which fhe enslezvoured to introluce anong her half-\{avage fubjects the bleffungs of knowledge and induftry, fue tands unrivalled, except, perhaps, by her predecefin Peter the Great. Of this we need bring no other proof, in addition to what has been already fated, than that the founded in St Peterfburgh alone thirty-one ieminaries, where 6800 children of both fexes were educated at the anmual expence to the government of $754,3.35$ rubles. She fuperintended herfelf the education of her grandelildren, and wrote for them books of inftruction. If it be true, that "every man acquainced with the common principles of human action, will look with veneration on the writer who is at one time combating Locke, and at another making a catechifm for children in their fourth year;" with what veneration hould we look upon the emprefs of liuflia, could we forget the means by which he obtained that elevation from which fhe frequently defcended for a fimilar employment: 'This fhe did, not for her own defcendants aloue, but alfo for the children of others ; of whom the had always a great number in her apartments, who thared in the inftruction given to her grandchildren, and whofe carcfles the returned with extreme complaifance.

Her greateft weaknefs was furely that grofs paffion which her panegyrits have dignified with the name of love; but to fuch an appellation it had no claim, if love be any thing more than a fexual appetite. Befides Gregory Orloff, fhe had not fewer than ten favourites after the death of her hufband; and of thefe fhe feems to have felt a refined affection for none but Lanfkoi, a young Pole of a very ancient family, and of elegant manners, and the famous Potemkin, to whom the is faid fecretly to have given her hand, and who preferved her friendfhip, if not her affection, to the end of his life. To Lanfoi, whofe education had been much neglected. The condefcended to become preceptrix; and, as he made great piogrefs in the acquifition of ufeful knowledge, the admired in him her own creation Po. temkin, though not amiable, deferved her favour for the fidelity and abilities with which he ferved her, both in the council and in the field; and in him, when the had ceafed to look on him with the eyes of love, the refpected the intriguing politician and intrepid commander, who had formed plans for driving the Turks out of Europe, and fetting her on the throne of Byzantium. Fier other favourites had nothing to recommend
(A) She had fome time before obtained for him a patent, creating him a prince of the Roman empire.

Catharine mend them but mafculine beauty and corporeal ftrength. One of them, however, thought it neceffary to have a library in the grand houfe, of which the emprefs, upon receiving him into favour, had made him a prefent; and defired the principal bookfeller to fill his 眫elves. The man anked him what books he would pleafe to have. "You undeiftand that better than I (replied the favourite) ; that is your bufinefs. You know the proper affortments; I have dellined a large room to receive them. Let there be large books at the bottom, and fmaller and fmaller up to the top; that is the way they ftand in the emprefs's library!" In the converlation of fuch men the cultivated mind of Catharine could cn joy no interchange of fentiments.
We know not whether that more than Afiatic mag. nificence, which fhe difplayed on every public occation, fhould be confidered as an inflance of weaknefs or of wifdom. If the delighted in balls, and mafquerades, and fumptuous entertainments, and drefs loaded with jewels, and every kind of fplendid ornament, for their own fakes, fhe betrayed a weaknefs unworthy of that fovereign who held in her hand the balance of Europe, and at whofe nod the greatef powers of Afia trembled: but if fhe introduced fuch fplendor into her court merely to divert the attention of the Ruffians from the means by which the got poffeffion of the throne, and to ween them from their own favage and flovenly manners; even this may perhaps be confidered as one of her molt mafterly ftrokes in politics.

Her ambition was boundlefs; but, if fuch a phrafe may be allowed, it was not always true ambition. When the French republic had eftablifhed itfelf on the ruins of monarchy, and was propagating new theories of government through all Europe, true ambition would furcly have led the autocratrix of the north to unite her forces with thofe of the coalefced powers, in order to crufh the horrid hydra, before its anarchical principles could be introduced among her own barbarous fubjefts. Such would certainly have been the advice of her favourite Potemkin, who longed to lead a Ruffian army into France, even before the murder of the unfortunate Lewis. That general, however, had died in October 1791 ; and when Britain, Auftria, and Pruffa, were leagued againf the new republic, Catharine looked coolly on, in hopes, it is probable, of availing herfelf of their weaknefs, when exhaufted by a long and bloody war. She gave refuge, indeed, in her dominions to many emigrants from France, and fent a fquidion of fhips to co-operate with the navy of England: but in this laft meafure fhe regarded merely her own immediate intereft ; for her crazy fhips were repaired by Britifh carpenters at the expence of the Britih government, and her officers had an opportunity of learuing the evolutions of the Britifh navy. She had likewife other profpects in view when the lent to the allies this flender aid. She meditated a new war with Turkey; and, depending upon meeting with no oppofition, if the fhould not receive affiftance from England and Auftria, he flattered herfelf with accomplifting her darling project of driving the Ottomans out of Europe, and of reigning in Conftantinople. But fhe was difappointed. On the morning of the 9th of November 1796, She was feized with what her principal phyfician judged a fit of apoplexy; and, at io o'clock in the evening of the following day, expired, in the 68th year of her age, leaving Suppl. Vol. I. Part 1.
behind her the character of one of the greateli iove. reigne that ever fwayed a fceptre.

After this long detail of the incidents of her life, it is needlefs to inform the reader that Catharine II. had no religion, and, of courfe, no principles of morality, whieh could induce her in every inftance to do to others as the would have them do to her. She was a profeffed difciple of the French philofophers; by fome of whom the was ridiculed, and by others cheated. The incenfe which fhe paid to the genius of Voltaire did not hinder him from frequently breaking his jefts upon the autocratrix of Ruffia and her fucceflive favourites; and Diderot, whom fhe careffed, fold to her an inimenfe library, when he poffeffed hardly a book, and was obliged to ranfack Germany and France for volumes to enable him to fulfil his bargain. Such is the frieudhip, and fuch the gratitude, which fubfirts among the amiable pupils of nature, and the philantliropic advocates for the rights of man.

CAUDA Capricorni, a fixed ftar of the fourth mag. nitude, in the tail of Capricorn ; called alfo; by the Aıabs, Dineb Algedi; and r by Bayer.

CaUdA Ceti, a fixed flar of the third magnitude ; called alfo, by the Arabs, Dined Kaetos; marked β by Bayer.

Cavda Cygni, a fixed ftar of the fccond magnitude, in the Swan's tail ; called by the Arahs Dineb Adigege; or Eldegiagich; and marked a by Bayer.

CAUDA Delphini, a fixed ftar of the third magnitude, in the tail of the Dolphin; marked; by Bayer.

Cavda Draconis, or Dragon's tail, the moon's fouthern or defcending node.

CAUDA Leonis, a fixed thar of the firt magnitude, in the Lion's tail; called alfo, by the A rabs, Dine., Eleced; ;and marked β by Bayer. It is called alio Lucida Cauda.

Cauda Urfa Majoris, a fixed flar of the third magnitnde, in the tip of the Great Bear's tail ; called alfo, by the Arabs, Alalioth, and Eenenath; and marked n by Bayer.

Cauda Urfe Minoris, a fixed ftar of the third magnitude, at the end of the Le!Ter Bcar's tail; called allo the Pole Star, and, by the Arabs, Alrukabal; and marked \propto by Bayer.

CAUSE has been defined, we think, with accuracy in the Encyclopxdia, and the doctrine flated which we believe to be true. Objections however have been made to that doctrine, of which we have endeavoured to remove fome, under the title Action, in this Supplement; and the doctrine itfelf has been well illuftrated (at leaft fuch is our opinion) in the fupplementary article Astronomr. We have, therefore, very lite to add here on the fubject of caufes, thougla it is the moft important fubject which can employ the mind of inan. What is the relation betweer a phylical caufe and shat which is termed its effect - between leat, for intlance, and the fulion of metals? Is it a nec. Wary connection, or only a conjunction, difcovered by experience to be conflant?

If by neceflary connection be meant that kind of connection of which the contrary cannot be conceived, we do not think that the connection of any phyfical caufe with its effect can be called neceflary. We fee no difficulty it conceiving, that fire, inftead of fufing goll, might fix mercury. This may indeed be impoffible;

Cause, and we might perhaps fee the impoffibility, did we as Center. completely know the nature of fire and of metals, as we know the relations of pure geometry. We know that the three angles of a plain triangle cannot poffibly be either greater or lees than two right angles; for in this comparifon nothing is hid from our mental view. We do not, however, perceive the impoffibility of inercury being fixed, as clay is hardened, by heat : for of beat, and mercury, and clay, we know very little, and that little is the offspring of experience.

But if the connection between' cause and effect be not neceflary, are we not deprived of the means of demonitrating the great fundamental truth of religion? We have nowhere fail, that the connection between cause and effect is not neceflary; but only, that we do not perreive the neceffary connection between what are called physical causes and their effects. That every event is, and mull be, brought about by forme cause or forme gets$c y$, we hold to be a fell evident truth, which no man can deny who underfands the terms in which it is expreffed; but what or where the agency is, we can very Seldom, if ever, know, except when we think of our own voluntary actions. When a change is observed, we cannot doubt of its being produced by fomething : either the thing changed is animated, and has produced the change by its own agency, jut as we move our heads and legs by an act of volition; or if it be inanimated, and of itself incapable of agency, the change has been produced by fomething external, denominated a cause. But all external causes, which are not likewife agents, in the proper fenfe of the word, may be traced, we think, as effects up to forme agency; and therefore, in our opinion, there is no real, ultimate, efficient cause but mind, or that which is endued with power. In proof of this doctrine, if it need any proof, we can only refer to what has been fid elfewhere on our notions of power and of physical conies. See (Encycl.) Metaphysics, n° 109, \& c .- Philosophy and Physics, paffim-and (Suppl.) Action and Astronomy. French name ceinste or cintre, given to the frame from the beer, by which the brick or tone of arched vaulting is supported during its erection, and from which it receives its form and curvature.

It is not our intention to defcribe the variety of conAructions which may be adopted in early fituations, where the a:chcs are final extent, and where fufficent foundation can be had in every part of it for fugporting the frame. In foch cares, the frequency of the props which we can fer up difpenfes with much care; and a frame of very flight timbers, connected together in an ordinary way, will fuffice for carrying the weight, and for keeping it in exact flame. But when the arches have a wide fran, and confequently a very great weight, and when we cannot ft up intermediate pillars, either for want of a foundation in the fofl bottom of a river, or because the are is turned between two lofty piers, as in the dome of a fately cathedral -we are then obiged to reft every thing on the piers themselves; and the framing which is to fiupport our arch before the keytone is ret, mut itself be an arch, depending on the mutual abutment of its beams. One should think that this view of the conftruction of a centre would offer itfell at the firf, naturally derived for the erection it was to affift: but it has not been fo. When intermedi-
mull be furported by fomething analogous to the kingpots of roofs. When this is judiciounty done, the fecurity is abundantly good. But great judgment is neceffary, and a very ferupulous attention to the difpofition of the pieces. It is by no means an eafy matter to difeern whether a beam, which makes a part of our centre, is in a fate of compreffion or in a fate of ex. tenfion. In fame work z of the mott eminent carperters even of this day, we fee pieces confidered as flute (and confiderable dependence had on them in this ca. pacify), while they are certainly performing the office of tie-beams, and should be fecured accordingly. This was the cafe in the boldeft centre (we think) that has been
ate pillars were not employed, it was ufual to frame the mould for the arch with little attention to any thing but its fhape, and then to crofs it and recrofs it in all direc. tions with other pieces of timber, till it was thought fo bound together that it could be lifted in any portion, and, when loaded with any weight, could rot change its nape. The frame was then raifed in a lump, like any solid body of the fame flite, and fit in its place. This is the way fill practifed by many country artills, who, having no clear principles to guide them, do not Atop till they have made a load of timber almost equal to the weight which it is to carry.

But this artless method, betides leading the employer into great expence, is frequently fatal to the undertaker, from the unfkilfulnefs of the confruction. The beans which connect its extremities are made alfo to fupport the middle by means of potts which ret t on them. They are therefore expoled to a tranfverfe or crops efrain, which they are not able to bear. Their number mut therefore be increafed, and this increafes the load. Some of thee crops trains are derived from beams which are
prefled very obliquely, and therefore exert a prodigious prefled very obliquely, and therefore exert a prodigious thrift on their fuppoits. The beams are alpo greatly . weakened by the motiles which are cut in them to receive the tenons of the crofting beams: and thus the whole is exceedingly weak, in proportion to what the fame quantity of timber may te made by a proper diffpofition of its parts.

The principles from which we are to derive this diff. portion are the general mechanical principles of carperpry of ene mechanical principles of carper- riscijlus try, of which we have given forme account in that artiele. Thefe furnish one general rule : When we would give the utmoft Arength poffible to a frame of earpentry, every piece fhould be fo difpofed that it is fubject to no fran but what either pushes or draws it in the direction of its length : and, if we would be indebted to timber alone for the force or ftrength of the centre, we mull refl all on the firft of thefe trains; for when the training force tends to drove a beam out of its place, it mull be held there by a mortife and tenon, which poffefles tut a very trifling force, or by iron straps and bolts. Cafes occur where it may be very difficult to make every train a thrift, and the bet artits admit of ties ; and indeed where we can admit a tie-beam connecting the two feet of our frame, we need lek no better fecurity. But this may fometimes be very inconvenient. When it is the arch of a bridge that we are to fupperit, fuck a tic-beam would totally fopthe paffage of fall craft up and down the river. It would often be in the water, and thus expofed to the molt fatal accidents by frefhes, \&c. Interrupted ties, therefore, mut be employed, whale joint or meetings

Centric. $\underbrace{-}$,

 .

[^5][^6]

C E N

been executed in Europe, that of the bridge of Orleans, by Mr Hupeau. Yet it is evidently of great confequence not to be miftaken in this point ; for when we are miftaken, and the piece is Atretched which we imagine to be comprefted, we not only are deprived of fnme fupport that we expected, but the expected fupport has become an additional load.

To afcertain this noint, we may fuppofe the piers to yield a little to the preffure of the archftone: on the centre frames. The feet, therefore, fly outwards, and the fhape is altered by the finking of the crown. We mull draw our frame anew for this now fate of things, and mult notice what pieces mult be made longer than before. All fuch pieces have been acting the part of tie-beams.

But a centre has ftill another office to futain ; it muit keep the arclr in its form ; that is, while the load on the centre is continuatly increafing, as the nafons lay on more courfes of arch flones, the frame mult not yield and go out of thapc, finking under the weight on the haunches, and rifing in the crown, which is not yet carrying any load. The frame mult not be fupple; and mult derive its flifinefs, not from the clofenefs and frength of its joiuts, which are quite infignificant when fet in compctition with fuch immenfe Arains, but from Atruts or ties, properly difpofed, which hinder any of the angles from changing its amplitude.

It is obvious, from all that has been faid, that the triangles into which this frame of carpentry may be refolved. We have feen that the Arains which one piece produces on two others, with which it meets in nne point, depends on the angles of their interfection ; and that it is greater as an obive angle is more nbtufe, or an acute angle more acute. And this fuggetts to us the general maxim, "to avoid as much as poffible all very obtufe angles." Acute angles, which arc not neceffarily accompanied by ootufe ones, are not fo hurtful; becaufe the ftrain here can never exceed the flraining force; whereas, in the cale of an obtufe angle, it inay furpafs it in any degrce.

Such are the general rules on this fubject. Although fomething of the mutual abutment of timbers, and the fupport derived from it, has been long perceived, and employed by the carpenters in roofing, and allo (doubtlefs) in the forming of contres, yet it is a matter of hiftorical fact, that no general and diftinct views had been taken of it till about the beginning of this century, or a litle earlicr. Fontana has preferved the figure of the frames on which the arches of St Peter's at Rome were turned. The one employed for the dome is con? rueted with very little fkill; and thofe for the arches of the nave and tranfepts, though incomparably fuperior, and of confiderable finmplicity and Arength, are yet far inferior to others which have been employed in later times. It is much to be regretted that no trace remains of the forms employed by the great architeet and confummate mechanician Sir Chriltopher Wren. We foould doubtlefs have feen in them every thing that fcience and great fagacity could fuggeft. We are told, indeed, that his centering for the dome of St Paul's was a wonder of its kind; begun in the air at the height of 160 feet from - the ground, and without making ufe of even a project. ing conniche whereon to reft it.

The carlieft theory of the kind that we have met
with, that is propofed on fcientific principles, and with Center. the expref purpofe of ferving as a leflon, are two een. tres by Mr l'itot of the Acadcmy of Sciences, about the The earlief beginning of this century. As they have confiderable theory, on merit (greatly refembling thofe employed by Michael fcientific Angelo in the nave of St Peter's), and aftord fome good primciples, maxims, we thall give a hort account of them. We crave the excufe of the artits if we Thould employ their terms of art fomewhat aukwardly, not being very familiarly acquainted with them. Indeed, we oblerve very great differences, and even ambiguity, in the terms em1ployed.

What we fhall defcribe under the name of a cenire is (properly Cpeaking) only one frame, trufs, or rib, of a centre. They are fet up in vertical planes, parallel to each other, at the diftance of $5,6,7$, or 8 fect, like the truffes or main couples of a roof. Bridging joits are laid acrofs them.-In fmaller works thefe are laid fparingly, but of confiderable fcantling, and are board. ed over; but for great arches, a bridging joilt is laid for every courfe of archftones, with blockings between to keep them at their proper ditances. The llones are not laid immediately on thefe joifts, but bcams of foft wood are laid along each joift, on which the thone is laid. Thefe beans are afterwards cut out with the chiffcl, in order to feparate the centre from the ring of fones, which muft now fupport each other by their inutual abutment.

The centre is diftinguifhable into two parts, ALLB llluftrated. (fig. r.) ard LDL, which are pretty independent of Plate XIV:. each other, or at leaft act feparately. The horizontal Stretcher LL cuts the femicircle ADB half way between the fpring and the crown of the arch; the arches AL, LD, being 45° each. This fretcher is divided in the fame proportion in the points G and H; that i, GH is one half of LL, and LC, HL, are each onefourth of LL ncarly. Each end is fupported by two Struts, EI, GI, which relt below on a Sole or Bed properly' fupported. 'The interval between the heads of the itruts Gi, HK is filled up by the Straining Beam GH , abutting in a proper manner on the ftruts (fec Carpentry, Supplement). I'he extremities L, L, are united in like manner by butting joints, with the heads of the outer ftruts. The Arch Mouzds AP, BP, are connected with the ftruts by crofs pieces PQ , which we fhall call Bridees, which come inwards on each fide of the ftruts (being double), and are bolted to them. This may be called the lower part of the frame. The upper part confifts of the king poft DR, fupported on each fide by the two flruts or braces ML, ON, mortifed into the polt, and alfo mortifed into the ftretcher, at the paints L, N, where it is fnpported by the ltruts below. The arches LD, LD are connected with the ttruts by the bridles PQ , in the fame manner as below.

There is a great propriety in many parts of this ar. Propricty rangement. The lower parts or haunches of the arch of this arprels very lightly on the centres. Each archltone is ly-rangemont. ing on an inclined plane, and tends to lide down only with its relative weight; that is, its weight is to its tendency to flide down the joint as radius to the fine of elevation of the joint. Now it is only by this tendency to flide down the joint that they prefs on the centering, which in every part of the arch is perpendicular to the joint : But the preffure on the joint, arifing from this caufe, is much le!s than this, by reafon of the friction of

C E N

the joints. A block of dry frceftone will not תide down at all; and thtrefore will not prefs on the centering, if the joint be not elevated 35 degrees at leaft. But the architones are not laid in this manner, by fliding them down along the joint, but are laid on the centres, and flide down their flope, till they touch the blocks on which they are to relt; fo that, in laying the archfones, we are by no means allowed to make the great deduction fom their weight juft now mentioned, and which Mr Couplet preferibes (Mem. Acad. Sciences, 1729). But there is another caufe which diminiftes the preffure on the centres; each block nides down the planks on which it is laid, and preffes on the block below it, in the direction of the tangent to the arch. This preffure is tranfmitted through this block, in the fame direction, no the next, and through it to the third, \&c. In this manner it is plain that, as the arch advances, there is a tangential preffure on the lower archfones, which diminithes their preffare on the frame, and, if fufficiently great, might cven puth them away from it. Mr Couplet has given an analyfis of this preflure, and Thews, that in a femicircular arch of uniform thicknefs none of the arch flones below 30° prefs on the frames. But he (without faying fo) calculates on the fuppofition that the blocks defcend along the circumference of this frame in the fame manner as if it were perfeetly froooth. As this is far from being the eafe, and as the obftructions are to the laft degree varions and irregular, it is quite ufelefs so inftitute any calculation on the fubject. A little reflection will convince the reader, that in this cafe the obftruction arifing from friction $m u / l$ be taken into account, and that it muf not be taken into account in citimating the preflure of each fucceffive conrfe of ftones as they are laid. It is enough that we fee that the prefime of the lower courfes of archtiones on the frame is diminified. Mr Couplet fays, that the whole preffure of. a femicircular arch is but $\frac{4}{9}$ ths of its

By a centre given. We have tried, with a well made wooden moof M. Pi- del (of which the circumference was rubbed with black set's.
lead to render it more ीlippery), whether ony part of the wooden blocks reprefenting the architones were detached from the frame by the tangential preffure of the fuperior blocks; but we could not fay confidently that any were fo detached. We perceived that all kept hold of a thin dip of Chinefe paper (alfo rubbed with black lead) between them and the frame, fo that a fenfible force was required to pull it out. From a combination of circumltances, which would be tedious to relate, we believe that the centres carry more than two thirds of the weight of the arch before the keyftone is fet. In elliptical and lower pitched circular arches, the proportion is ftill greater.

It feems reafonable ecough, therefore, to difpofe the framing in the manner propofed by Pitot, directing the main fupport to the upper mals of the arch, which preffes moft on the frame. We fhall derive aunther advantage from this conltruction, which has not occurred to Mr Pitot.

There is an evident propriety in the manner in which he lias diftributed the fupports of the upper part. The fruts which carry the king poll fpring from thofe points of the ftretcher where it refts on the ftruts below: thus the Atretcher, on which all depends, bears no tranfverfe Arains It is flretched by the ftrut above it, and it is

$196]$
 C E N

compreffed in a fmall degree between the fruts below
Center. it, at lealt by the outer ones. Mr Pitot propofes the Itraining beam GH as a lateral fupport to the flretcher, which may therefore be of two pieces: but although it does augment its ftrength, it does not feem neceffary for it. The Atretcher is abundantly carried by the Itrap, which may and fhould fufpend it from the king poft. The great ufe of the Atraining piece is to give a firm abutment to the inner Itruts, without allowing any lateral Atrain on the ftretcher. $N . B$. Great care mutt be taken to make the hold fufficiently firm and extenfive $b c$ tween the Itretcher and the upper ftrots, fo that its co. hefion to relift the thrufts from thefc ftruts may be much employed.

The only imperfecion that we find in this frame is the lateral Atrains which are brought upon the upper ftruts by the bridles, which certainly tranfmit to them part of the weight of the archftones on the curves. The fpace between the curves and ML fhould alfo have bcen truffed. Mr Pitot's form is, however, extremely ftiff; and the caufing the middle bridle to reach down to the Atretcher, feems to fecure the upper ftuts from all rifk of bending.

This centre gives a very diftinct view of the offices of all the parts, and makes therefore a proper introduction to the general fubject. It is the fimplell that can be in its principle, becaufe all the effential parts are fubjected to one kind of ftrain. The fretcher LL is the only exception, and its extenfion is rather a collateral circumfance than a ftcp in the general fupport.

The examination of the frength of the. frame is ex. T tremely eafy. Mr Pitot gives it for an arch of 60 feet fpan, and fuppoles the archflones 7 feet long, which is a monftrous thicknefs for fo fmall an arch; 4 feet is an abundant allowance, but we fhall abide by his conftruction. He gives the following fcantlings of the parts:

The ring or circumference confifts of pieces of oak 12 inches broad and 6 thick.

The tretcher LL is 12 inches fquare.
The ftraining piece $G H$ is alfo 12 by 12 .
The lower flruts io by 8 .
The king polt 12 by 12.
The upper ftruts 10 by 6 .
The bridles 20 by 8 .
Thefe dimenfions are French, which is about y^{2} th: larger than ours, and the fuperficial dimenfions (by which the fection and the abfolute Itrength is meafured) is almoft $\frac{2}{8}$ th larger than ours. The cubic foot, by which the Itunes are meafured, exceeds ours nearly $\frac{1}{5}$ th. The pound is deficient about $\frac{1}{1}$ th. But lince very nice calculation is neither eafy nor neceffary on this fubject, it is needlefs to depart from the French meafures, which would occafion many fractional parts and a trou. blefome reduction.

The arch is fuppofed to be built of ftone which. weighed 160 pounds per foot. Mr Pitot, by a comple. tation (in which he has committed a miftake), fays, that only $\frac{3}{1} \frac{8}{4}$ the of this weight is carried by the frame. We believe, however, that this is nearer the truth than Mr Couplet's affumption of $\frac{4}{4}$ ths already mentioned.

Mr Pitot farther affimes, that a fquare inch of found oak will carry 8640 pounds. By his language we hould imagine that it will not carry much more: but this is very far below the ftrength of any Britith oak that we have tried; fo far, indeed, that we rather ima-

C E N

gine that he means that this load may be laid on it with krots and other accidental imperfections, he affumes y 200 as the meafure of its abfolute force.

He computes the load on each frame to be 707520 pounds, which he reduces to $\frac{1}{5}$ ths, or 555908 pounds.

The abfolute force of each of the lower ftruts is 576000 (at 7200 per inch), and that of the curves 518400. Mr Pitot, confidering that the curves are kept from bending outwards by the arch-flones which prefs on them, thinks that they may be conlidered as acting precifely as the outer ftruts EI. We have no objection to this fuppofition.
With thefe data we may compute the load which the lower truls can fafely bear by the rule delivered in the article Carpentry. We therefore proceed as follows:

Meafure off by a fcale of equal parts as, at, each 576000 , and add $t v 518400$. Complete the parallelogram $a v x s$, and draw the vertical $x c$, meeting the horizontal line $a \mathrm{C}$ in c. Make $a b$ equal to $c a$. Join $x b$, and completc the parallelogram $a x b y$. It is evident that the diagonal $x y$ will reprefent the load which thefe pieces can carry; for the line $a v$ is the united force of the curve AP and the ftrut IE, and as is the frergth of IG. Thefe two are equivalent to $a x$. $\approx b$ is, in like manner, equivalent to the fupport on the other fide, and $x y$ is the load which will juit balance the two fupports $a x$ and $b x$.

When $x y$ is meafured on the fame fcale, it will be found $=2850000$ pounds. This is more than five times the load which actually lies on the frame. It is thercfore vaftly flronger than is neceffary. Half of each of the linear dimenfions would have been quite fuf. ficient, and the flruts needed only to be 5 inches by 4 . Even this would have carried twice the weight, and would have borne the load really laid on it with perfect fafety.

We proceed to meafure the Arength of the upper part. The force of each Arut is 432000 , and that of the curve is 518400 ; therefore, having drawn Mv parallel to the frut ON , make $\mathrm{M} v=432000$, and M s $=432000+518400$. Complete the parallelogram $\mathrm{M} s r v$. Draw the horizontal line $r k$, cutting the vertical MC in k, and make $k y=M k$. It is plain, from what was done for the lower part, that M_{y} will meafure the load which can be carried by the upper part. This will be found $=1160000$. This is alfo greatly fuperior to the load; but not in fo great a proportion as the other part. The chief part of the load lies on the upper part ; but the chief reafon of the difference is the greater obliquity of the upper ftruts. This hhortens the diagonal My of the parallelogram of forces. Mr Pitot fhould have adverted to this; and inftead of ma. king the upper ftruts more flender than the lower, he fhould have made them ftouter.
The ftrain on the fretcher L.L is not calculated, It is meafured by $r^{\prime} k^{\prime}$, when $\mathrm{M} y$ is the load actually lyfing on the upper part. Lefs than the fixth part of the colefion of the Atretcler is more than fufficient for the.

97] C E N
horizontal thruft; and there is no difficulty of making the foot joints of the fruts abundantly ftrong for the purpofe.

The reader will perceive that the computation juf now given does not ftate the proportions of the Arains adually exerted on the different pieces, but the load on the whole, on the fuppofition that each piece is lubjected to a Atrain proportioned to its Arength. The other calculation is much more complicated, but is not necerfary here.

This centre has a very palpable defect. If the piers nould yield to the load, and the feet of the centre fly out, the lower part will exert a very conliderable ftrain on the ftretcher, tending to break it acrofs between N and L, and on the other fide. HKF of the lower part is firmly bound together, and cannot change its fhape, and will therefore act like a lever, turning round the point F . It will draw the ftrut HK away from its abutment with GH, and the Itretcher will be ftrained acrofs at the place between H and F , where it is bolted with the bridle. This may be refifted in fome degree by an iron ftrap uniting ON and HK ; but there will till be a want of proportional ftrength. Indeed, in an arch of fuch height (a femicircle), there is but little rifk of this yielding of the piers; but it is an im. perfection.
The centre (fig. 2.) is confructed on the fame prin- a centre. ciple precifely for an elliptical arch (A). The calcula- on the fametion of its ftrength is nearly the fame alfo; only the principles two upper ftruts of a fide being parallel, the parallelo- for an ellifpgram Msrv (of fig. 1.) is not needed, and in its fead we meafure off on ON a litie to reprefent twice its Atrength. This comes in place of Mr^{\prime} of fig. I.-N. B. The calculation proceeds on the fuppofition that the flort ftraining piece MM makes but one firn body with the king-polt. Mr Pitot employed this piece (we prefume) to feparate the heads of the ftruts, that their obliquity might be leffened thereby : and this is a good thought; for when the angle formed by the ftruts on each fide is very open, the flrain on them becomes very great.

The ftretcher of this frame is fcarfed in the middle.Suppofe this joint to yield a little, there is a danger of the lower tirut ON lofing its hold, and ceafing tojoin in the fupport: for when the crown finks by the lengthening of the ttretcher, the triangle ORN of fig. 2. will be more diltorted than the fpace above it, and ON will be loofened. But this will not be the cafe when: the finking of the crown arifes from the mere com. preffion of the fruts. Nor will it happen at all in the centre, fig. I. On the contrary, the ftrut ' ON will abutt more firmly by the yielding of the foot of: ML.

The figure of this arch of Mr Pitot's confilts of three arches of circles, each of foo degrees. As it is elegant, it will not be unacceptable to the artift to have a conAruction for this purpofe.
Make $\mathrm{BY}=\mathrm{CD}$, and $\mathrm{CZ}={ }_{2}^{1} \mathrm{CY}$. Defrribe the ${ }_{\text {How to }}^{13}$ femicircle ZたY, and make $\mathrm{ZS}=\mathrm{Z}$ た. S is the centre confleuet of the fide arches, each of 60 degrees. The centre T of flich an
(A) It is the middle arch of the bridge at Lille Adam, of which Mr Pitot had the direction. It is of 80 feet fpan, and rifes 31 feet.

C E N [198 C E N

Center the arch, which unites thefe two, is at the angle of an equilateral triangle STS.

This conftruetion of Mr Pitot's makes a handfome oval, and very near an ellipfis, but lies a little without it. We hall add another of our own, which coincides with the elliple in eight points, and furnimes the artitt, by the way, a rule for drawing an infinite variety of ovals.

Let AB, DE (fig. 2. N^{3} 2.) be the axes of an ellipee, C the centre, and F, f the two foci. Make C b $=C D$, and defcribe a circle $A D$ be pafting through the three given points A, D, and b. It may be demondrated, that if from any point P of the arch $A D$ be drawn a chord PD, and if a line $\mathrm{PR} r$ be drawn, making the angle $\mathrm{DPR}=\mathrm{PDC}$, and meeting the two axes in the points R and r, then R and r will be the centres of circles, which will form a quarter APD of an oval, which bas AB and DE for its two axes.

We want an oval which fhall coincide as much as polfible with an ellipfis? The moft likely method for this is to find the very point P where the elliptis cuts the circle ADbe. The eafieft way for the artit is to defcribe an arch of a circle $a m$, having AU for its radius, and the remote focus f for its centre. 'Thea fet one foot of the compaffes on any point P, and try whetiler the difance PF from the nearef focus F is exactly equal to its dillater $\mathrm{P} m$ from that circle. Shifting the foot of the compaffes from one point of the arch to another, will foon difcover the point. This being found, draw PD , make the angle $\mathrm{DP}_{r}=\mathrm{PD} r$, and R and r are the centres wanted. Then make Cs $=\mathrm{CR}$, and we get the centres for the other fide.

The geometer will not relifh this mechanical conftruction. He may therefore proceed as follows: Draw $\mathrm{D} d$ parallel to A B, cutting the circle in d. Draw ed, cutting $A C$ in N. Draw CG parallel to A e, and make the angle $C G i=A D e$. Bifect $C N$ in O, and join O i. Make $O M, \mathrm{OM}^{\prime}=O i$, and draw MP, MP perpendicular to AB. Thefe ordinates will cut the circle $\mathrm{AD} b e$ in the points P and P^{\prime}, where it is cut by the ellipfe. We leave the demonftration as a geometrical - exercife for the dilettante.

We faid, that this centering of Mr Pitot's relembled the nave of in principle the one employed by Michael Angelo for St Petcr's. the nave and tranfepts of St Peter's church at Rome. Fontana, who has preferved thi a , afcriues the confruction of it to one of the same of Sm Gallo. A Aketch of it is given in fig. 3. It is, however, fo much fuperior, and fo different in principle, from that employed for the cupola, that we cannot think it the invention of the fame perfon. It is, like Pitot's, not only divifible, but really divided into two parts, of which the upper carries by much the greatelt part of the load. The pieces are judicioufly dilpnfed, and every important beam is amply fecured againft all tranfverfe Ițains. Its only fault is a great profufion of Arength. The innermof polygon $a_{g} b b$ is quite fuperfluous, becaufe no Atrain can force in the flruts which reft on the angles. Should the piers yield outwards, this polygon will be loofe, and can do no fervice. Nor is the triangle gib of any ufe, if the king-poft ahove it be ftrapped to the tie-beam and fraining fill. Perhaps the inventor confidered the king. pof as a pillar, and wifned to fecure the tie-beam againit its crofs ftrain. This centering, however, muft be allowed to be very well compofed; and we expect that
the well-informed reader will join us in preferring it to Mr Pitot's, both for limplicity of principle, for fcientific propriety, and for Erength.

There is one confiderable advantage which may be derived from the actual divifion of the trufs into two parts. If the tie-beam LL., inftead of refting on the ttretcher EF, had relted on a row of chocks formed like double wedges, placed above each other, head to point, the upper part of the centering might be fruck independent of the lower, and this might be done gradually, beginning at the outer ends of the fretcher. By this procedure, the joints of the arch-Atones will clofe on the haunches, and widl almot relieve the lower centering, fo that all can be oulled out together. Thus may the arch fettle and confolidate in perfect fafty, without any chance of breaking the bond of the mortar in any part; an accident which frequently happens in great arches. This procedure is peculiarly advifable for low pitched or elliptical arches. But this will be more clearly feen afterwards, when we treat of the internal movements of an arch of mafonry.

This may fuffice for an account of the more fimple conltrustion of truffed centres ; and we proceed to fuch as have a much greater complication of principle. We fhall take for examples fome contructed by Mr Perronet, a very celcbrated French architeet.

Mr Perronet's general maxim of confruction is to Perronet", make the trufs confilt of feveral courfes of feparate truf. naxim of fes, independent (as he thinks) of each other, and thus to employ the joint fupport of them all. In this conftruetion it is not intended to make ufe of one trufs, or part of one trufs, to funport another, as in the former fet, and as is practifed in the roofs of St Paul's church, Covent Garden, and in Drury Lane theatre. Each trufs fpans over the whole ditance of the piers, and would liand alone (having, however, a tottering equilibrium). It conifts of a number of Aruts, fet end to end, and forming a polygon. Thefe truffes are fo arranged, that the angles of one are in the middle of the fides of the next, as when a polygon is infcribed in a circle, and another (of the fane number of fides) is circumferibed by lines which touch the circle in tle angles of the infcribed polygon. By this conftration the angles of the alternate truftes lie in lines pointing towards the centre of the curve. King-polts are therefore placed in this direetion between the adjoining beams of the trufles. Thefe king-pofts confit of two beams, one on each fide of the trufs, and embrace the trufsbeams between them, meeting in the midtle of their thicknefs. The abutting beams are mortifed, half into each half of the ooft. I he other beam, which makes the bafe of the triangle, pafies through the poit, and a Arong, bolt is driven through the joint, and fecti.ed by a key or a nut. In this namuer is the whole united: and it is expected, that when the load is laid on the up. permoft truls, it will all butt together, forcing down the king pofts, and therefore prefling them on the beams of all the inferior truffes, caufing them alfo to abutt on cach other, and thus bear a fhare of the load. Mr Perronet does not affume the invention to himfelf; but fays that it was invented and practifed by Mr Manfard de Sagonne at the great bridge of Moulins. It is much more ancient, and is the work of the celebrated phyfician and architect Ferrault; as may be feen in the collection of machines and inventions of that gentleman publifhed af-

C E N

[199] C E N
ter his death, and alro in the great collection of inven. tions approved of by the Academy of Sciences. It is this which we propofe to examine.

Fig 4. reprefents the centering employed for the bridge of Cravant. The arches are elliptical, of so feet fpan and 25 fect rife. The archfones are four feet thick, and weigh 17^{6} pounds per foot. The truls. beams were from 15 to is feet long, and their fection was 9 inches by 8 . Each lialf of the king pofts was about 7 feet long, and its fection 9 inches by 8 . The whole was of oak. The five truffes were $5^{\frac{1}{2}}$ feet afunder. The whole weight of the arch was $13 ; 000 \mathrm{lbs}$. which we may call 600 tons (it is 55^{8}). This is a' sut 112 tons for each trufs. We mutt allow near 90 tons of this really to prefs the trufs. A great part of this preflure is borne by the four beams which mane the feet of the trufs, coupled in pairs on cach fide. The diagonal of the parallelogram of forces diawn for thefe beams is, to one of the fides, in the proportion of 360 to 285 . Therefore fay, as 360 to 285 ; fo is go to $7 \frac{7}{4}$ tons, the thruft on each foot. The fection of each is $1+f$ inches. We may with the utmolt fafety lay three tons con crery inch for ever. This amounts to 432 tons, which is more than fix times the ftrain really prefing the foot beans in the direction of their length; nay, the upper trufs alone is able to carry much more than its load. The abfolute ftrength of its foot-beam is 216 tons. It is much more advantageoufly placed; for the diagonal of the parallelogram of forces correfponding to its polition is to the fide as 43^{8} to 285 . This gives $5^{8}{ }^{6}{ }^{6}$. tons for the flrain on each foot; which is not much above the fourth part of what it is able to carry for ever. No doubt can thercfore be entertained of the fuperabundant ftrength of this centering. We fee that the upper row of flruts is quite fufficient, and all that is wanted is to procure fliffneis for it ; for it mult be carefully kept in mind, that this upper row is not like an cquilibrated arch. It will be very unequally loaded as the work advances. The haunches of the frame will be fseffed down, and the joints at the crown raifed up. This mutt be refifted.

Here then we may gather, by the way, a ufefulleffon. Let the outer row of flruts be appropriated to the carriage of the load, and let the relt be employed for giving fiffnefs. For this purpofe let the outer row have abundant ltrength. The advantages of this method are confiderable. The pofition of the beams of the exterior row is more advantageous, when (as in this example) the whole is inade to refl on a narrow foot ; for this obliges us to make the lat angle, at leaft of the lower row, more open, which increafes the ftrain on the flrut ; befides, it is next to impoffible to diftribute the comprefing thru!.s among the different row's of the trufs beams; and a beam which, during one period of the mafon work, is acting the patt of a ftrut, in another period is bearing no ftrain but its own weight, and in another it is ftretched as a tie. A third advantage is, that, in a cafe like this, where all refts on a narrow foot, and the lower row of beams are bearing a great part of the thruft, the horizontal thruft on the pier is very great, and may pulh it alide. This is the moft ruinous accident that can haopen. An inch or two of yielding will caufe the crown of the arch to fink prodigioully, and will inftantly derange all the bearings of the abutting beams: but when the lower beams already act as ties,
and :re quite âdequate to their office, we render the frame perfectly fiff or uncnanceable in its form, and Center. take away the horizontal thrult from the piers entirely. This advantage is the more valuable, becaule the very circumflance which obliges us to reft all on a narrow foot, places this foot on the very top of the pier, and makes the horizontal thruit the more dangerous.

But, to proceed in our examination of the centering of Cravant bridge, let us fuppofe that the king pofts are renwod, and that the beams are juined by compals joints. If the pier thall yield in the fmalleft degree, both rows of fruts mun fink; and fince the angles (at leatt the outermoft) of the lower row are more open than thofe of the upper row, the crown of the lower row will fink more than that of the upper.

The angles of the alternate rows muft therefore feparate a little. Now relore the king polts; they prevent inis feparation: Therefore they are fritched; therefore the beains of the lower row are alfo fretched; coufequently they no longer butt on their mortifes, and mutt be held in their places by holts. Thus it appears that, in this kind of fagging, the original diftribution of the load among the different rows of beams is changed, and the upper row becomes loaded beyond our expecta. tion.

If the fagging of the vinole truls proceed only from the compreflion of the timbers, the cafe is different, and we may preferve the original dittribution of mutual abutment more accurately. But in this cafe the ftifferfs of the frame arifes chicfly from crofs flrains. Suppofe that the frame is loaded with architones on each fide up to the poits $\mathrm{HC}, b c$; the angles E and e are preffed down, and the heans EOF, eo F puft up the point F. This cannot rife without bending the beans EOF, eo F; becaufe O and o are held down by the double king pofts, which grafp the beans between them. There is therefore a crofs ftrain on the biams. Obferve alfo, that the triangle EHF does uot preferve its flape by the connection of its joints; for allhough the flut beams are mortifed into the laing oott, they are in very thallow mortifes, rather for fleadying them than for lolding them together. Mr Perronet did not even pin them, thinking that their abutment was very great. The triangle is kept in hape by the bafe EF, which is firmly bolted into the middle poft at 0 . Had thefe interiections not been frongly bolted, we imagine that the centres of fome of Mr Perronet's brilges would have yielded much more than they did; yet fome of them yidd. ed to a degree that our artits would have thought very dangerous. Mr Perronet was obliged to load the crown of the centering with very great weights, increafing them as the work advanced, to prevent the frames from going out of thape: in one arch of 120 fect he laid on 45 tous. Notwithfanding this imperfection, which is perhaps unavoidable, this mode of framing is undoubt. edly very judicious, and perhaps the beft which can be employed withou: depending on iron-work.

Fig. 5. reprefents another, conftructed by Perronet For the for an arch of 90 feet 5 pan and 28 feet rife. The truf-bridge of fes were 7 feet apart, and the arch was $4 \frac{8}{2}$ thick; fo that Nogent, the unreduced load on each frame was very nearly 235 tons. The fcantling of the ftruts was 15 by 12 mehes. The principle is the fame as that of the former. The chief difference is, that in this centre the outer truisbeam of the lower row is not coupled with the middle

C E N
 200 C E N

Center.
row, but kept nearly parallel to the nuter beam of the upper row. This adds greatly to the Arength of the font, and Lakes off much of the horizontal thruit from the pier.

Mr Perronct has Mewn great judgment in cauling the polygon of the inner row of trufs beams gradually to afproach the jolygon of the outer row. By this diffolition, the angles of the inner polygon are more acute than thofe of the outer. A little attention will Shew, that the general fagging of all the polygons will keep the abutments of the lower one nearer, or exaetly, to their original quantity. We mutt indeed except the foot-beam. It is fill too oblique ; and, inftead of con. verging to the foot of the upper row, it Should have diverged from it. Had this been done, this centre is al. molt perfcet in its kind. As it is, it is at lealt fix times ftroneer than was abfulutely neceflary. We thall have occaf!on to refer to this figure on another occafion.

This maxim is better exemplified by Mr Perronet in the centering of the bridge of St Maxence, exhibited in fig. $5 n^{\circ}$ 2. than in that of Nogent, fig. 5. n° 1. But we think that a lorizontal trufs-beam $a b$ thould have been inferted (in a fubordinate manner) berween the king-polts next the crown on each fide. This would prevent the crown from rifing while the haunches only are loaded, without impairing the fine abutments of $c d$, $c d$, when the arch is nearly completed. 'This is an excellent centering, but is not likely to be of much ufe in thefe kingdoms; becaufe the arch itfelf will be confidered as ungraceful and ugly, looking like a huge lin. tel. Perronet fays, that he preferred it to the ellipfe, becanfe it was lighter on the piers, which were thin. Wut the failure of one arch muft be immediately followed by the ruin of all. We know much better methods of lightening the piers.

Fig. 6 reprefents the centering, of the bridge of Neuilly, near Paris, alfo by Perronet. 'The arch has 120 feet fpan, and 30 feet rife, and is 5 feet thick. The frames are 6 feet apart, and each carries an abfolute (that is, not reduced to $\frac{11}{1}$ or to $\frac{4}{9}$) load of 350 tons. The ftrut beams are 17 by 14 inches in fcantling. The king polts are of 15 by 9 each half; and the horizontal bridles, which bind the different frames together in five places, are alfo 15 by 9 each half. There are eight other horizontal binders of 9 inches Iquare.

This is one of the mof remarkable arches in the world; not altogether on account of its width (for there are feveral much wider), buc for the flatnefs at the crown; for about 26 feet on each fide of the middle it was intended to be a portion of a circle of 150 feet radius. An arch (femicircular) of 200 feet fpan might therefore be eafily conftructed, and would be much stronger than this, becaufe its horizontal thruft at the crown would be vaifly greater, and would keep it more firmly united.

The bolts of this centre are differently placed from thofe of the former ; and the change is judicious. Mr Perronet had doubrlefs found by this time, that the ftiffncfs of his framing depended on the tranfverfe ftrength of the beams; and therefore he was careful not to weakenthem by the bolts. But notwithftanding all his care, the framing funk upwardy of 13 inches before the key. ftones were laid; and during the progrefs of the work, the crown rofe and funk, by various fteps, as the loading
was extended along it. When 20 courfes were laid on each fide, and about 16 tons laid on the crown of each frame, it funk about an inch. When 46 courfes were laid, and the crown loaded with 50 tons, it funk about half an incl more. It continued finking as the work advanced; and when the keyflone was fet it had funk ${ }^{13 \frac{1}{4}}$ incles. But this finking was not general ; on the contrary, the frame had rifen greatly at the very haunch. es, fo as to open the upper patt of the joints, many of which gaped an inch; and this opening of the joints gradually extended from the haunches towards the crown, in the neighbourhood of which they opened on the under fide. 'i'his evidently arole from a want of ftifnefs in the frame. But thefe joints clofed again when the centres were ftruck, as will be mentioned afterwards.
a. We have taken particular notice of the movements and twifting of this centre, becaufe we think that they indicate a deficiency, not only of ftiffnefs, but of abutment among the trufs beams. The whole has been too flexible, becaufe the angles are too obtule: This arifes from their multiplicity. When the intercepted arches have fo little curvature, the power of the load to prefs it inward increafes very faft. When the intercepted arch is reduced to one half, this power is more than coubled; and it is alfo doubled when the radius of curvature is doubled. The king pofts thould have been farther apart near the crown, fo that the quantity of arch between them fhould compenfate for its diminifhed curvature.

The power of withftanding any given inequality of load would therefore have been greater, had the centre confifted of fewer pieces, and their angles of meeting been proportionally more acute. The greateft improvement would have been, to place the foot of the lower tier of trufs-beams on the very foot of the pier, and to have alfo feparated it at the head from the relt with a longer king-poft, and thus to have made the diftances of the beams on the king-polts increafe gradually from the crown to the fpring. This would have made all the angles of abutment more acute, and would have produced a greater preffure on all the lower tiers when the frame fagged.

Fig. 7. reprefents the centering of the bridge of Or- ${ }^{20}$ leans. The arch has 100 feet fpan, and rifes 30 , and the arch-ftones are 6 feet long. It is the conftruction of Mr Hupeau, the firf architect of the bridge. It is the boldeft work of the kind that we have feen, and is conftructed on clear principles. The main abutments are few in number. Becaufe the beams of the outer polygon are long, they are very well fupported by flraining beams in the middle; and the ftruts or braces which fupport and butt on them, are made to reft on points carried entirely by ties. The inventor, however, feems to have thought that the angles of the inner polygon were fupported by mutual compreffion, as in the outer polygon. But it is plain that the whole inner polygon may be formed of iron rods. Not but that both polygons may be in a ftate of compreffion (this is very poffible); but the fmallett fagging of the frame will change the proportions of the preflures at the angles of the two polygons. The preffures on the exterior angles will increale, and thofe on the lower or interior angles will diminifh molt rapidly; fo that the abutments in the lower polygon will be next to no:

C EN [201$]$ GEN

Center. thing. Such points could bear very little preffure from the braces which fupport the midale of the long bearings of the upper beams, and their preflures muft be borne chiefly by the joints fupported by the king-polts. The king-pofts would then be in a fate of extenfion. It is difficult, however, to decide what is the precife ftate of the preffure at thefe interior angles.

The hiftory of the erection of this bridge will throw much light on this point, and is very inftructive. Mr Hupeau died before any of the arches were carried farther than a very few of the firt courfes. Mr Perronet fucceeded to the charge, and fmifhed the bridge. As the work advanced, the crown of the frame tofe very much. It was loaded; and it funk as remarkably. This fhewed that the lower polygon was giving very little aid. Mr Perronet then thought the frame too weak, and inferted the long bean DE, making the diagonal of the quadrangle, and very nearly in the direction of the lower beam $a b$, but falling rather below this line. He now found the frame abundantly ftrong. It is evident that the trufs is now changed exceedingly, and confifts of only the two long fides, and the fhort ftraining beam lying horizontally between their heads. The whole centering confifts now of one great trufs a Eeb, and its long fides $a \mathrm{E}, e b$, are truffed up at B and f. Had this fimple idea been made the principle of the conftruction, it would have heen excellent. The angle a DE might have been about 176°, and the polygon D chgemployed only for giving a flight fupport to this great angle, fo as not to allow it to exceed 180°. But Mr Perronet found, that the joint c, at the foot of the poft $\mathrm{E} c$, was about to draw loofe, and he was obliged to bolt loug pieces of timber on each fide of the joint, embracing both beams. Thefe were cvidently acting the fame part as iron ftraps would have done; a complete proof that, whatever may have been the original preflures, there was no abutment now at the point c, and that the beams that met there were not in a fate of compreffion, but were on the fretch. Mr Perronet fays that he put thefe cheeks to the joints to fiffen them. But this was not their office; becaufe the adjoining beanss were not ftruts, but ties, as we have now proved.

We may therefore conclude, that the outer polygon, with the affiftance of the pieces $a b, \mathrm{DE}$, were carrying the whole load. We do not know the diftance hetween the frames; but fuppofing them feven feet apart, and the arch 6 feet thick, and weighing 170 pounds per foot, we learn the load. The beams were 16 inches fquare. If we now calculate what they would bear at the fame very moderate rate allowed to the other centres, we find that the beams $A B$ and $a b$ are not loaded to one-fixth of their Atrength.

We have given this centre as a five example of what carpentry is able to perform, and becaufe, by its fimplicity, it is a fort of text on which the intelligent artift may make many comments. We may fee plainly that, if the lower polygon had been formed of iron rods, firmly bolted into the feet of the king-pofs, it would have maintained its fhape completely. The fervice done by the beam DE was not fo much an increafe of abutment as a difcharge of the weight and of the pull at the joint c. Therefore, in cafes where the fect of the trufs are neceffarily confined to a very narrow fpace, we fhould be careful to make the upper polygon fufficient to carry

Suppl. Vol. I. Part I.
the whole load (fay by doubling its heams), and we Center. may then make the lower polygon of fiender dimenfions, provided we fecure the joints on the king-pufts by iron Araps which embrace a confiderable portion of the tie on each fide of the joint.
We are far from thinking that thefe centres are of all chere the beft kind that could be employed in their fituation; cevere, but they are excellent in their kind: and a carefult end in ftudy of them will teach the artift much of his profeffion. When we have a clear conception of the ftate of frain in which the parts of a frame really are, we know what fhould be done in order to draw all the advantage poffible from our materials. We lave faid in another place, that where we can give our joints fufficient connection (as by fraps and bolts, or by checks or fifhes), it is better to nfe ties than Aruts, becaufe ties never bend.

We do not approve of Mr Perronet's practice of gi. ving his truffes fuch narrow feet. By bringing the foot of the lower polygon farther down, we greatly diminif all the ftrains, and throw more load on the lower polygon : and we do not fee any of Mr Perronet's cenitres where this might not have been done. He feems to affeet a great fpan, to fhew the wonders of his art ; hut our object is to teach how to make the beft centre of a given quantity of materials; and how to make the mott perfect centre, when we are not limited in this refpect, nor in the extent of our fixed points.

We fhall conclude this feries of examples with one Excellence where no fuch affectation takes place. This is the cen of the cerntering of the bridge at Black friars, London. The fpan tre emplityof the arch is 100 feet, and its height from the fpring Blackfriars is about 43. The drawing fig. 8. is fufficiently minutebridge. to convey a diftinet notion of the whole conitruction. We need not he very particular in our ohfervations, af. ter what has been faid on the general principles of conftruction. The leading maxim, in the prefent example, reems to be, that every part of the arch 乃uall be fupported by a fimple trufs of two legs refling, one on each pier. H, H, \&c. are called apron pieces, to ftrengthen the exterior joints and to make the ring as fliff in itfelf as poffible. From the ends of this apron-piece proceed the two legs of each trufs. Thefe legs are 12 inches〔quare: They are not of an entirc piece, but of feveral, meeting in firm abutment. Some of their meetings are fecured by the double king-potts, which grafp them firmly between them, and are held together by bolts. At other interfectinns, the beams appear halved into each other; a practice which cannot but weaken them much, and would endanger their breaking by crofs ftrains, if it were poffible for the frame to change its fhape. But the great breadth of this frame is an effectual fop to any fuch change. The fact was, that no finking or twifling whatever was obferved during the progrefs of the mafon work. Thiree points in a ftraight line were marked on purpufe for this obfervation, and were obferved every day. The arch was more than fix feet thick; and yet the finking of the crown, before fetting the key-ftones, did not amount to one inch.

The centre employs about ore-third more timber than Perronet's great centre in proportion to the fpan of the arch; but the circumference increafes in at greater proportion than this, becaufe it is more tlevated. In every way of making a comparifon of the dimenfiens, Mr Myline's arch employs more timber ; but

Cc

Center: it is beyond all comparifon flronger. The great elevation is partly the reafon of this. But the difpofition of the timbers is alfo much more advantageous, and may be copied even in the low pitched arches of Neuilly. The fimple trufs, reaching from pier to pier for the middle point of the arch, gives the ftrong fupport where it is molt of all warted ; and in the lateral points HI , although one leg of the trufs is very oblique, the other conipenfates for it by its upright pofition.

The chief peculiarity of this centre is to be feen in its bafe. This demands a more particular attention: but we muft frift make fome obfervations on the condition of an arch, as it relts on the centering after the keyfones are all fet, and on the gradual transference of the preflure from the boards of the centering to the joints of the architones.

24 Obfervations on the fla'e of an arch as it refts on the ceutering.

While all the architones lie on the centering, the lower courfes are alfo leaning pretty frongly on each other. But the mortar is hardly comprefled in the joints; and leaft of all in the joints near the crown. Suppofe the arch to be catenarian, or of any other Shape that is perfectly equilibrated : When the centering is gradually withdrawn, all the archfones follow it. Their wedge-like form makes this impoffible, without the middle ones fqueezing the lateral ones afide. This compreffes the mortar between them. As the flones thus come nearer to each other, thofe near the crown mult defcend more than thofe near the haunches, before every fone has leffened its diftance from the next by the fame quantity ; for example, by the hundredth part of an inch. This circumftance alone muft caufe a finking in the crown, and a changf of chape. But the joints near the crown are already more open than thofe near the haunches. This produces a fill greater change of form before all is fettled. Some mafons endeavour to remedy, or at leaft to diminifh, this, by ufing no mortar in the joints near the crown. They lay the flones dry, and even force them together by wedges and blocks laid between the flones on oppofite fides of the crown: They afterwards pour in fine cement. This appears a good practice. Perropet rejects it, becaufe the wedging fometimes breaks the fones. TVe fhould not think this any great harın; becaufe the fracture will make them clofe where they would otherwife lie hollow. But, after all our care, there is ftill a finking of the crown of the arch. By gradually withdrawing the centering, the joints clofe, the archttones begin to butt on each other, and to force afide the lateral courfes. This abutment gradually increafing, the preflure on the haunches of the centering is gradually diminifhed by the mutual abutment, and ceales entirely in that courfe, which is the loweft that formerly preffed it: it then ceales in the courfe above, and then in the third, and fo on. And, in this manner, not only the centering quits the arch, gradually, from the bottom to the top, by its own retiring from it, but the arch alfo quits the centering by cbanging its Jbape. If the centering were now puthed up again, it would touch the arch firft at the crown ; and it mull lift up that part gradually before it come again in contact with the haunches. It is evident, therefore, that an arch, built on a centre of a hape perfectly fuited to equilibration, will not be in equilibrio when the centering is removed. It is therefore neceffary to form the centering in fuch a manner (by raifing the crown), that it fhall leave the arch of
a proper form. This is a very delicate talk, requiring a previous knowledge of the enfuing change of form. This cannot be afcertained by the lielp of any theory we are acquainted with.

But, fuppofe this attained, there is another difficulty: While the work advances, the centering is warped by the load laid on it, and continually increafing on each fite. The firt preffure on the centering forces down the haunches, and raifes the crown. The arch is therefore lefs curved at the haunches than is intended: the joints, however, accommodate themfelves to this form, and are clufe, and filled with mortar. When the mafons approach the middle of the arch, the frame fiaks there, and rifes up at the haunches. This opens all the joints in that place on the upeer lide. By the time that the keytones are fet, this warping has gone farther ; and joints are opened on the zunder fide near the crown. It is true we are here fpeaking rather of an extreme cafe, when the centering is very flexible; but this occurred to Mr Perronet in the two great bridges of Neuilly and of Mantz. In this laft one, the crown funk above a foot before the key was fet, and the joints at the haunches opened above an inch above, while fome neater the crown opened near a quarter of an inch below.

In this condition of things, it is a delicate bufuefs A delicate bufinefs to ftrike the centering. Were it removed in an intlant, all itrike the would probably come down; for the archftones are not centering. yet abutting on each other, and the joints in the middle are open below. Mr Perronet's method appears to us to be very judicious. He began to detach the centering at the very bottom, on each fide equally, where the preffure on the centering is very llight. He cut away the blocks which were inımediately under each archftone. He proceeded gradually upwards in this way with fome fpeed, till all was detached that had been put out of flape by the bending of the centering. This being no longer fupported, funk inward, till it was fopped by the abutment which it found on the archfones near the crown, which were fill refling on their blocks. During part of this procefs, the open joints opened itill more, and looked alarming. This was owing to the removal of the load from the haunches of the centering. This allowed the crown to link fill more, by forcing out the arch flones at the haunches. He now paured fome days; and during this time the two haunehes, now langing in the air, gradually preffed in toward the centering, their outer joints cloling in the meanwhile. The haunches were now prefling pretty hard on the archflones nearer the crown. He then proceeded more flowly, deftroying the blocks and bridgings of thefe upper archftones. As foon as he deftroyed the fupport of one, it immediately yielded to the preffure of the haunch; and if the joint between it and the one adjoining toward the crown happened to be open, whether on the under or the upper lide, it imnediately clofed on it. But in proceeding thus, he found every fone fink a little while it clofed on its neighbour ; and this was like to produce a ragged foffet, which is a deformity. He therefore did not allow them to fink fo much. In the places of the blocks and bridgings which he had cut away, he fet fmall billets, ftanding on their ends, between the centering and the arcbitones. Thefe allowed the pendulous arch to pufl toward the crown without fenlibly defcending; for the billets were pufhed out of the perpendicular, and fome of them tumbled down. Proceed-

C E N

Center, ing in this way, he advanced to the very next courfe to the keyfone on each fide, the joints cloling all the way as he advanced. The laft job was very troublefome; we mean the detaching the three uppermof courfes from the centering : for the whole elafticity of the centering was now trying to unbend, and preffing hard againft them. He found that they were lifted up; for the joints beyond them, which had clofed completely, now opened again below; but this job was finithed in one day, and the centre fprung up two or three inches, and the whole arch funk about fix inches. This was an anxious tine ; for he dreaded the great momentum of fuch a valt mafs of matter. It was hard to fay where it would ftop. He had the pleafure to fee that it fopped very foon, fettling flowly as the mortar was comprefled, and after one or two days fettling no more. This fettling was very confiderable both in the bridge at Nenilly and in that at Mantz. In the former, the finking during the work amounted to $\$ 3$ inches. It funk fix inches more when the blocks and bridgings were taken out, and $\frac{r_{2}}{2}$ when the little ftandards were deftroyed, and $1 \frac{1}{3}$ more next day ; fo that the whole finking of the pendulous arch was $9^{\frac{1}{2}}$ inches, befides what it had funk by the bending and compreffion of the centering.

The crown of the centering was an arch of a circle deferibed with a radius of 150 feet ; but by the finking of the arch its thape was confiderably changed, and about 60 feet of it formed an arch of a circle whofe radius was 244 feet. Hence Mr Perronet infers, that a femicircle of 500 feet fpan may be erectech. It would no doubt be ftronger than this arch, becaufe its greater horizontal thruft would keep the fones firmer tugether. The fuking of the arches at Mantz was not quite fo great, but every thing proceeded in the fame way. It amonnted in all to $20 \frac{1}{8}$ inches, of which 12 inches were owing to the compreffion and bending of the centering.

In fig. 5. n° I. may be obferved an-indication of this procedure of the mafonry. There may be noticed a horizuntal line ac, and a diagonal ab. Thefe are fuppofed to be drawn on the mafonry as it would have flood had the frames not yielded during the building. The dotted line $A b^{\prime} c^{\prime}$ fhews the fhape which it took by the finking of the centering. Thie dotted line on the other fide was actually drawn on the mafonry when the keyfone was fet; and the wavy black line on the fame fide fhews the furm which the dotted line took by the Atriking of the centering. The undulated part of this line cuts its former pofition a little below the middle, going without it below, and falling within it above. This fhews very diftinctly the movement of the whole mafonry, diftinguining the parts that were forced ont and the parts which funk inward.

We prefume that the practical seader will think this acceunt of the internal movements of a ftupendous arch very inftructive and ufeful. As Mr Perronet obferved it to be uniformly the fame in feveral very large arches which he erected, we may conclude that it is the general procefs of nature. We by no means have the confidence in the durability or folidity of his arches which he prudently profeffes to have. We have converfed with fome very experienced mafons, who have alfo erected very great arches, and in very difficult fituations, which have given univerfal fatisfaction; and we have found
them uniformly of opinion, that an arch which has fet. Center. tled to fuch a proportion of its curvature as to change $\underbrace{\text { Ced }}$ the radius from 150 to 244 feet, is in a very hazardous fituation. They think the hazard the greater, becaufe the fpan of the arch is fo great in proportion to its weight (as they exprefs it very emphatically) or its height. 'I'he weight, fay they, of the baunches is too fmall for forcing together the keydtones, which have fareely any wedge-like form to keep then from fiding down. This is very good reafoning, and expreffes very familiar notions. The mechanician would fay, that the horizontal thruft at the crown is too fmall. When we queftioned them about the propriety of Mr Perronet's method of removing the centering, they unanimounly approved of its general principle, but faid that it was very ticklifh indeed in the execution. The cafes which he narrates were new to them. They fhould have almoft defpaired of fuccefs with arches which had gone fo much out of hape by the bending of the centres; becanfe, faid they, the flope of the centering, to a great diftance from the crown, was fo little, that the arch. ftones could not flide outwards along it, to clofe even the under fide of the joints which had opened above the haunches; fo that all the archftones were at too great a diftance from each other; and a great and general fubfiding of the whole was neceffary for bringing them even to touch each other. They had never obferved fuch bendings of the centerings which they had employed, having never allowed themfelves to contract the feet of their truffes into fuch narrow fpaces. They obferved, that nothing but lighters with their matts down can pafs under the truffes, and that the fides muit be fo protected by advanced works from the accidental thock of a loaded boat, that there cannot be left room for more than one. They added, that the bridges of communication, neceffary for the expeditious conducting of the work, made all this fuppofed roominefs ufelefs : befides, the bufinefs can hardly be fo urgent and crowded anywhere, as to make the paffage through every arch indifpenfably necefary. Nor was the inconvenience of this obftruction greatly complained of during the erection of Weftminfter or Blackfriars bridges. Nothing fhould come in competition with the undoulted folidity of the centering and the future arch; and all boafting difplay of talent and ingenuity by an engineer, in the exhibition of the wonders of his art, is mifplaced here.

Thefe appeared to us good reafons for preferring the more cautious, and incomparably more fecure, conitruction of Mr Mylne, in which the breadth given to each bafe of the truffes permitted a much more effective difpofition of the abutting timbers, and alfo enabled the engineer to make it incomparably ftiffer; fo that no change need be apprehended in the joints which have already clofed, and in which the mortar has already taken its fet, and commenced an union that never can be reftored if it be once broken in the fmalleft degree, no not even by greater compreffion.

Here we beg leave to mention our notions of the 27 connection that is formed by mortar compofed of lime neetion or gypfum. We confider it as confifting chiefly, if not that is folely, in a cryRallization of the lime or gypfum and formed water. As much water is taken up as is neceflary for by mortar the formation of the cryftals during their gradual con-\&c, verfion into mild calcareous earth or alabalter, and the reft evaporates. When the free accefs of air is abfoCc 2
lutely

C E N

Center.
lutely prevented, the cryftallization never proceeds to that ftate, even althougl the mortar becomes extremely dry and hard. We had an opportunity of obferving this accidentally, when pafing through Maeftricht in 1770, while they were curting up a mafly revstment of a part of the fortifications more than 300 years old. The moriar between the bricks was harder than the bricks (which were Dutch cliskers, fuch as are now ufed only for the greatet loads) ; but when mixed with water it made it lime water, feemingly as ftrrong as if frefl lime had been ured. We obferwed the fame thing in one fmall part of a huge mals of ancient Roman work near Romney in Kent ; but the reft, and all the very old mortar that we have feen, was in a mild flate, and was generally much harder than what produced any limewater. Now when the mortar in the joints has begen its firlt cryftallization, and is allowed to remain in perfect relt, we are confident that the fublequent cryftals, whether of lime, or of calcareous earth, or of gypfum, will be much larger and ftronger than can ever be produced if they are once broken; and the farther that this cryftallization has been carrjed, that is, the harder that the mortar has become, lefs of it remains to take any new cryftalization. Why fould it be otherwife here than in every other eryflallization that we are ac28 quainted with?
Neceffity of We think therefore that it is of great confequence keeping the to keep the joints in their frift fate if poffible; and joints in their fritt that the frength (as far as it depends on the mortar) their firft fate.

204 C E N

ther. The joints therefore are clofed, but no nore than Center. clofed, and are hanging only by the edges by which they were hanging while the joints were open. The arch, therefore, though apparently clofe and firm, is but loole and tottering. Mr Perronet fays, that lis arches were firm, becaule hardly a flone was obferved to chip or fplinter off at the edges by the fettlement. But he had doae every thing to prevent this, by digging out the mortar from between the headers, to the depth of two inches, with faws made on purpofe. But we are well informed, that before the year if9r (twenty years after the erection) the arches at Neuilly had funk very fenfibly, and that very large fplinters had flewn off in feveral places. It could not be otherwife. The origi- Mr Perronal conftruction was too bold; we may fay needlefsly net's conand oftentatioully bold. A very gentle flope of the fructions roadway, which would not have flackened the mad gal. 100 bold. lop of a ducal carriage, nor fenfibly checked the labo. rions pull of a loaded waggon, and a proper difference in the fize of the arches, would have made this wonderful bridge incomparably ftronger and alfo much more elegant and pleafing to the eye. Indeed, it is far from being as handfome as it might have been. The ellipfe is a moft pleafing figure to every beholder ; but this is concealed as much as poffible, and it is attempted to give the whole the appearance of a tremendus lintel. It has the oppreffive look of danger. It will not be of long duration. The bridge at Mantz is itill more exceptionable, becaufe its piers are tall and flender. If any one of the arches fails, the reft mult fail in a moment. An arch of Blackfriars Bridge might be blown up without difturbing its neighbours.

Mr Perronet mentions another mode of friking the a bad me. centering, which he fays is very ufual in France. Every thod of fecond bridging is cut out. Some time after, every fe. Ariking the cond of the remainder; after this, every fecond of the centre. remainder ; and fo on, till all are removed. This is never practifed in this country, and is certainly a very bad method. It leaves the arch hanging by a number of diftant points; and it is wonderful that any arch can bear this treatment.

Our architects have generally proceeded with extreme caution. Wherever they could, they fupported the centering by intermediate pillars, even when it was a truffed centre, having a tie-beam reaching from fide to lide. The centre was made to reft, nut immediately on thefe pillars but on pieces of imber furmed like acute wed The compillars, but on pieces of timber formed like acute wedges, mon me-
placed in pairs, one above the other, and having the thod 1.7 point of the one on the thick end of the other. Thefe Britain, wedges were well foaped and rubbed with hlack lead, to make them llippery. When the centres are to beftruck, men are ftationed at each pair of the wedges with heavy malls. They are directed to ftrike together on the oppolite wedges. By this operation, the whole centering defcends together; or, when any part of the arch is obferved to have opened its joints on the upper fide, the wedges below that part are flackened. The framing may perhaps bend a little, and allow that part to fubfide. If any part of the arch is obferved to open its joints on the under fide, the wedges below that part are. allowed to tand after the relt have been dackened. By this procefs, the whole comes down gradually, and as flowly as we pleafe, and the defects of every part of the arch may be attended to. Indeed the caution and moderation of our builders have commonly been foch, that

Center. few defeets have been allowed to thew themfelves. We are but little acquainted with joints opening to the extent of two inches, and in fuch a cafe would probably lift every fone of the arch again (B). We liave not employed truffed centerings fo much perhaps as we fhould have done; nor do we fee their advantage (fpeaking as mere builders) over centres fupported all over, and unchangeable in their form. Such centres mutt bend a little, and require loading on the middle to kerp them in mape. Their compreflion and their elalticity, are very troublefome in the flriking of the centres in Mr Perronet's manner. The elafticity is indeed of ufe when the centres are ftruck in the way now defcribed.

Thefe obfervations on the management of the internal movements of a great arch will enable the reader to appreciate all the merit of Mr Mylne's very ingenious conftruction. We proceed therefore to complete our defcription.

The gradual enlargement of the bafe of the piers of Blackfriars bridge enabled the architect to place a feries of five pofts c, c, c, c, c, one on each ftap of the pier ; the ingenious contexture of which made it like one folid block of ftone (fee Aach, Supplement). Thefe thuts were gradually more and more oblique, till the outer one formed an obtufe angle with the lowelt fide of the interior polygon of the trufs. On the top of thefe polls was laid a floping seat or beam D of flout oak, the upper part of which was formed like a zig-zag fearfing. The poits were not perpendicular to the under dide of the feat. The angles next the pier were fomewhat obtufe. Short pieces of wood were placed between the heads of the pofts (but not mortifed into them), to prevent then from nipping back. Each face of the fcarf was covered with a thick and fmooth plate of copper. The feet of the trufs were mortifed into a fimilar piece F, which may be called the sole of the trufs, having its lower fide notched in the fame manner with the upper fide of D, and like it covered with copper. Detween thefe two lay the striking wedge E , the faces of which correfponded exactly with the flant faces of the feat and the fole. The wedge was fo placed, that the correfponding faces touched each other for about half of their length. A block of wood was put in at the broad end or bafe of this wedge, to keep it from nlipping back during the laying the arch-ftones. Its outer end E was hound with iron, and had an iron bolt feveral inches long driven into it. 'The head of this bult was hroad enough to cover the whole wood of the wedge within the iron ferule.

We prefume that the reader, by this time, forefees the ufe of this wedge. It is to be driven in between the fole and the feat (having firit taken out the block at the bafe of the wedge). As it advances into the wider fpaces, the whole trufs muft defeend, and be freed from the arch; but it will require prodigious blows to drive it back. Mr Mylne did not think fo, founding
his expectation on what he faw in the launching of great Center. hips, which flide very eafily on a llope of 10 or 12 degrees. He rather feared, that taking out the block behind would allow the wedge to be punted back at once, fo that the defcent of the trufs would be too rapid. However, to be certain of the operation, he liad prepared an abundant force in a very ingenions manner. A heavy beam of oak, armed at the end with iron, was fufpended from two points of the centre like a battering ram, to be uied in the fame manner. Nothing coulil be more fimple in its ftructure, more powerful in its operation, or more eafy in its maragement. Accordingly the fuccefs was to his wifh. The wedge did not fip back of itfelf; and very moderate blows of the 1 am drove it back with the greatelt eafe. The whole opeiation was over in a very few minutes. The fpectators had fufpected, that the fpace allowed for the reeefs of the wedge was not fufficient for the fettlement of the areh; but the architect trufted to the procautions he: had taken in its conftruction. The reader, by turnims, to the article Arch in this Supplement, will fee that there was only the arch LY which could be expected to fettle: accordingly, the recefs of the wedge was found to be much mote than was neceflary. However, had this not been the cafe, it was only neceffary to take ont the pieces between the pofts below the feat, and then to drive back the heads of the flruts; but this was not needed (we believe) in any of the arches. We are well affured that none of the arches funk an inch and a lualf. The great arch of 100 feet fpan did not fuls one inch at the crown. It could hardly be perceived whether the arch quitted the centering gradually or not, fo fmall had been the changes of fhape:

We have no hefitation in faying, that (if we except The great fome walte of great timber by uncommon joggling) the fuperionty whale of this performance is the mofl perfect of any of the centhat has come to our knowledge. We doubt not but hy him. that feveral have equalled it, or may have excelled it ; but we do not know of them: and we think that the bringing forward fuch performances is no lefs ferviceable to the puolic, than it is honourable to the inventor. Nor do we fuppofe that any views of intereft can be fo powerful as to prevent an ingenious architedt from com. municating to the public fuch honourable fpecimens of his own talents. We fonld be happy to communicate more of this kind; for we confider it as a very import. ant article of practical mechanics, and think that it is of confequence to the nation that it flould be very generally underflood. In every corner of the country bridges are to be built - we have every where good ma. fors, who are fully able to execute any practicable pro. ject, but too little acquainted with principle to invent, or to accommodate even what they know to loeal circumftanees, and are very apt to be duped by appearances of ingenuity, or mifled by erroneous notions of the ftrains which are excited. We profefs more feience,
and
(B) The writer of this article can only fay, that, after much inquiry, he has no information of any arch being received from the builder as fufficient that had fuffered half the change of flape mentioned by Mr Perronet. The arch of Dublin bridge, built by an excellent, but a very private, mafon, Mr Steeven, is 105 feet wide; with only 22 feet of rife. It was erected (but not on a truffed centering) without changing one full inch in its elevation; and when the centering was removed, it funk only $1 \frac{3}{4}$ th inches, aud about half an inch more wheo the parapets were added and the bridge completely finifhed..

C E F [206 1 C E N

 and to treat the fubject with the affiftance of accurate principles: But while we are certain that every circumfance is fufceptible of the moft accurate determination, we mult acknowledge that we have by no means attained an accurate know ledge of all the flrains which are produced and excited in a frame of carpentry, which is fettling and changing its fhape, even though it be not very complicated; far lefs are we poffeffed of a clear view of what happens in a mafs of mafonry in finilar conditions. Therefore, though we fpeak with the ftrong belief of our being right, we fpeak with a fenfe of our fallii. ility, and with great deference to the judgment of eminent and experienced architects and engineers. We fhould contider their free and candid criticifms as the hignell favour ; and we even folicit them, with affurances of thanks, and that we will take fome opportunity, befure the clofe of this work, to acknowledge and correct our mirtakes. We even prefume to hope, that the liberal-minded artift will be pleafed with this opportunity which we give him of increafing the national ftock of knowledge. Let mutual jealoufy and rivalfhip reign in the breafts, and prompt the exertions, of our refflefs neighbours on the continent-let them think that the dignity of man confits in perpetual warfare, in which every individual feels himfelf indebted only to himfetf, freed from all the fweet ties of domeftic partiality, of friendhip, and of patriotic attachment. We hope that the licarts of Britons will long continue to be warmed and forificd by the thoughts of mutual affiftance, mutual co-operation, mutual attachment, and a patriotic preference of their countrymen to all other men. While thefe fentiments are regulated by unfhaken honefty, by canduur, and by Chriftian charity, we flall be fecured from the errors of partial attachments, and yet enjoy all the pleafures of unfophitticated nature. Families will fill be bound tugether by the affectionate ties of blood; and the whole frame of Britif fociety will be in harmony with the bouds which connect the members of each family, by their endlefs croflings and intermixings. In this flate, the fate of focial nature, the man of talents will not lock up all the fruits of his exertions in his own breaft, but will feel a pleafure in imparting them to a fuciety that is dear to him, and on which he depends for all his beft enjoyments. Nothing will hold the good man back when this is in his power, but the virtuous ufe which he can make of his fuperiority in the difcharge of his own little circle of duties. This is alk that is required of true patrivtifm ; and it is not too much to be expected from Britons, who feel a pleafure in viewing their country as the great fchool of the arts, under the patronage of a fovereign who has done more for their improvenent than all the other princes of Europe, and who (we are well affured) is now meditating a plan which mull be highly gratifying to every eminent profeflor of the arts.of thefe together, and fet them in abutment with each other like mighty arch-ftones. We nall clufe this article, therefore, with two or three fpecimens of wonden bridges, difpofed in a feries of progreffive compulition, fo as to ferve as a fort of introduction to the art in general, and furnifn a principle which will enable the intelligent and cautious artift to pufh it with confidence as far as it can go.

The general problem is this. Suppofe that a bridge is to be thrown over the fpace AB (fig. 9.), and that this is too wide for the frength of the fize of timber which is at our conmand ; how may this hean $A B$ be fupported with fufficient effect? There are but two ways in which the middle point C (where the greatelt ftrain is) can be fupported: 1. It may be fufpended by two ropes, iron rods, or wooden ties, DC, EC, made faft to two firm puints, D, E, above it ; or it may reit on the ridge of two rafters $d \mathrm{C}, e \mathrm{C}$, which reft on two firms points d, e, below it 2. It may be fupported by corineeting it with a point fo fupported ; and this connection may be fornied, either by fufpending it from this point, ur by a poit retling on it. Thus it may hang, by means of a rod ur a king-poft $F C$, from the ridge \bar{F} of two rafters AF, BF ; or it may reft on the ftrut $\mathrm{C} f$; whofe lower extrenity f is carried by the ropes, rocis, or wooden ties $\mathrm{A} f, \mathrm{~B} f$.

Whichfoever of thefe methods we employ, it follows, from the principles of carpentry, that the fupport given to the point C is fo much the more powerful, as we make the angle DCE, or $d \mathrm{C}_{\ell}$, or the equivalent angles AFB , or Af B, more acute.

Each of thefe inethods may be fuppofed equally ftrong. Our choice will depend chiefly on the facility of finding the proper points of fupport $\mathrm{D}, \mathrm{E}, d, e$; except in the fecond cafe, where we require no fixed points but A and B. The fimple furms of the firf cale re- The 35 quire a great extent of figure. Very rarely can we fuf- and limpien pend it from points fituated as D and E. It is even nethod f feldom that we have depth enough of bank to allow the conflructfupport of the rafters $d \mathrm{C}, e \mathrm{C}$; but we can always lind bridges. room for the fimple trufs AFB. This therefore is the moft ufually practifed.

In the conitruction, we muft follow the maxims and directions preferibed in the article Carpentry of this volume, and the article Roof of the Encyc!. The beams $F A, F B$ muft be mortifed into $A B$, in the firmett manner, and there fecured with ftraps and holts; and the middle mult hang by a frap attached to the king-poft FC , or to the iron rod that is ufed for a king-polt. No mortiling in the point C mult be empluyed; it is unneceffary, and it is hurtful, becaufe it weakens the beam, and becaufe it ludges water, and foon decays by rot. The beft practice is not to fufpend the beam inmediately by this thrap, but to let it reft, as in fig. 10. on a beam C, which croffes the bridge below, and has its other end fupported in the fame manner by the other trufs.

It is evident that the length of the king-poft has no effect on the fuppurt of C. We may therefore contract every thing, and preferve the fame ftrength of fupport, by finding two points a and b (fig. '1. .) in the banks, at a moderate diftance below A and B, and fetting up the rafters $a \mathrm{~F}, b \mathrm{~F}$, and fufpending C from the fhortened king-poft. In this conftruction, when the beam $A B$ refts on a crofs bearer, as is drawn here, the

Center. ftruts a F, ℓ F are kept elear of it. No conneetion between them is neceffary, and it may be hurtful, by inducing erofs ftrains on buth. It will, however, greatly inereafe the ftiffnefs of the whole. This conftruction may lafely be loaded with ten times the weight that AB can carry alone.
Suppofe this done, and that the fcantling of AB is rit too weak: for earrying the weight which may be brought on that me-on the parts AC, C13. We may now trufs up each :hod. half, as in fig 12. and then the whole will form a handfome bridge, of the fimpleft confruction poffible. The interfections of the feeandary braces with thofe of the main trufs will form a hand-rail of agreeable figure.
We are not confined to the employment of an entire picce AB , nor to a rectilineal form. We may frame the hridge as in lig. 13. and in this forn we diffuade from allowing any comection with the middle points of the main braces. 'This conftruction alfo may be followed till each beam AC and CB is loaded to ten times what it can fafely bear without the fecondary truffing.

There is another way by which a bridge of one bean may be fupported beyond the power of the firft and fimpleft confruction. - This is reprefented in fig. 14. and fig. 15. The trufs beam FG fhould occupy onethird of AB. The advantage of this contrruction is very confiderable. The great elevation of the braces (which is a prineipal element of the ftrength) is preferved, and the braces are greatly fhortened.

This method may be puhed ftill farther, as in fig. 16.

And all thefe methnds may be combined, by joining the confructions of fig. 14. and fig. 15. with that of fig. 16 .

In all of them there is much room for the difplay of fkill, in the proper adjuftment of the feantling of the timber, and the obliquity of the braces to the lengths of the diferent bearings. A very oblique ftrut, or a flender one, will fuffiee for a fnall load, and may often give an opportunity to increafe the general ftrength; while the great timbers and upright fupports are referved for the main preffures. Nothing will improve the compofition fo much as reflecting progreffively. and in the order of thefe examples, on the whole. This alone can preferve the great principle in its fimplicity and full energy.

Thefe confructions are the elements of all that can be done in the art of building wooden bridges, and are is to be found more or lefs obvioufly and diftinctly in all attempts of this kind. We may affert, that the more obvioufly they appear, the more perfect the bridge will be. It is aftonifhing to what extent the principle may be carried. We have feen a bridge of 42 feet fpan formed of two oak truffes, the biggett timber of which did not exceed fix inches fquare, bearing with perfect fteadinefs and fafety a waggon loaded with more than two tons, drawn by four ftout horfes. It was framed as fig. 16. nearly, with the addition of the dotted lines, and was near thirty years old ; protected, however, from the weather by a wooden roof, as many bridges in Germany are.

We recollect another in the neighburhood of Stetrin, which feemed conftructed with great judgment and fpirit. It had a carrriage road in the middle about 20 feet (we think) wide, and on each fide a foot-way about
five fect wide. The fpan was not lefs than 60 fect, and the greatelt fcantling did not appear to exceed 10 inclies by 6 .

This bridge confifted of four truffes, two of which formed the outfide of the bridge, and the nther two made the feparation between the carriage road and the two foot ways. We noticed the conitruction of the truffes very particularly, and found it fimilar to the latt, except in the middlle divifion of the upper trufs, which, being very long, was double truffed, as in fig. 17.

The reader will find in that volume of Leapold's Theatrum Machinarum, which he calls Theatrum Pontificum, many fpecimens of woodetl brilges, which are very frequent in the champain parts of Germany. They are not, in gencral, models of mechanic art ; but the reflect. ing reader. who contiders them carcfully, will pick up here and there fubordinate hints, which are ingenious, and may fometimes be uff ful.

What we have now exhibited are not to be confidered as models of conflruction, but as elementary examples and leffons, for leading the reader fyftematically into a thorough cunception of the fubject.

We cannot quit the fubject without taking notice of $A{ }^{40}$ wonder. a very wonderful bridge at Wittengen in Switzerland, ful bridge fightly deferibed by Mr Coxe (Travels, vol. I. 132.) in SwizzerIt is of a conftruction more fimple fill than the bridges land. we have been deferibing. The fpan is 230 feet, and it rifes only 25. The fketeh (fig. 18.) will make it fulifciently intelligible. ABC is one of two great arches, approaching to a catenarian thape, built up of feven courfes of folid logs of oak, in lengths of 12 or 14 feet, and 16 inches or more in thicknefs. Thefe are all picked of a natural fhape, fuited to the intended curve; fo that the wood is nowhere cut acrofs the grain to trim it into flhape. Thefe logs are kaid above cach other, fo that their abutting joints are alternate, like thofe of a brick wall; and it is indeed a wooden wall, fimply built up, by laying the pieces upon each other, taking care to make the abutting joints as clofe as poffible. They are not faftened together by pins or bolts, or by farfings of any kind. They are, however, held together by iron flraps, which furround them, at the diftance of five feet from each other, where they are faftened by bolts and keys.
Thefe two arches having heen erected (by the help, we prefume, of pillars, or a centering of fome kind), and well butted againtt the rock on each fide, were freed from their fupports, and alluwed to fettle. They are fo placed, that the intended road abc interfects them about the middle of their height. The roadway is fupported by crofs joifts, which reft on a long horizontal fumner beam. This is connected with the arches on each fide by uprights bolted into them. The whole is covered with a roof, which projects over the arches on each fide to deferid them from the weather. Three of the fpaces between thefe uprights have frruts or braces, which give the upper work a fort of trufing in that part.

This confluction is fimple and artlefs; and appears, by the attempt to trufs the ends, to be the performance of a perfon ignorant of principle, who has taken the whole notion from a tlone arch. It is, however, of a ftrength much more than adequate to any load that can be laid on it. Mr Coxe fays, but does not explain how, that it is fo contrived that any part of it can be repair-

C E N [208$]$ C E N

Certe-. Ed independent of the reft. It was the laft work of one THrich Crubenhamen of Tuffen, in the canton of Appenfel, a carpenter withont cducation, but celebrated for feweral works of the fame kind; particularly the bridge oser the Rhine at Schaflanfen, coulitling of two allhes, one of 1,2 and the other of 193 feet fpan, both whine on a finall rock near the middle of the river.

While writug this atticle, we grot an account of a wooden bridse, erected in North America, in which this fimple nution of Grubenhamm's is mightily improsed. The fpan of the arch was faid to exceed 250 feet, and its rife exccedingly fmall. The defcription we got is very general, but fufficient, we think, to make

AA, we caufe the notch afo to take luld, fint at the two points a and o, and then, by continuing to drive the wedge, the fides $a f$, of, of the notch graduaily comprefs the wood of the half beams, and pefs Liem on each other. By continuing to drive the wedge, the matual compreffon of the key and the beam quacezes all together, and the space a fo i is completely filled up. We may fee, from this procefs, that the mutual conpreftion and drawing together of the timber will be greater in propotion as we make the angle aio more promineut, and its correfponding angle afo more deep; always taking care that the key dall be thick enough not to break in the narrow part.

This adjuftment of the keys to the mortife is neceffary on another account. Suppofing the joints to fit each other exactly before driving the wedge, and that the whole fhrinks a little by drying-by this the angle aio wili become more promiment, and the angle afo will become more fhallow ; the joint will upen at a and 0 , aad the mutial comprefture will be at an end.

We may alfo obferve, that this method will not give any additional firmnefs to the abutments of the different lengths employed to piece out the arch-beam; in which $r \in f p e c t$ it differs materially from the other modes of joining timber.

Having fhewn how each beam is pieced together, we muft now fhew how a number of them are united, fo as to compofe an arch of any thicknefs. This is done in the very fame way. The beams have other mortifes worked out of their inner fides, half out of each half of the beam. The ends of the mortifes are formed in the fame way with thofe already defcribed. Long keys BB, CC, (fig. 19.) are made to fit them properly, the notches being placed fo as to keep the bearns at a proper diftance from each other. It is now plain that driving in a long wedge $A A$ will bind all together.

In this manner may an arch be extended to any fpan, and made of any thicknefs of arching. The bridge over Portfmouth river in North America was more than 250 feet in length, and confifted of feveral parallel arches of beams. The inventor (we think that his name is Bludget) faid that he found the ftrength fo great, that he could with perfect confidence make one of four times the fpan.

We admire the ingenuity of this confruction, and think it very effectual for bringing the timhers into firm and uniform abutment; but we imagine that it requires equilibration, becaufe it is extremely flexible. There is nothing to keep it from bending, by an inequality of load, but the tranfverfe ftrength of the beams. The keys and wedges can have very little power to prevent this bending. The diftance between the beams will alfo contribute little or nothing to the fliffnefs; nay, we imagine that a great diftance between them will make the frame more flexible. Could the bears be placed fo near each other that they could be fomehow joggled on each other, the whole would be ftiffer ; but at prefent they will bend like the plates of a coachfpring. But nothing hinders us from adding diagonal pieces to this conftruetion, which will give it any degree of ftiffnefs, and will enable it to bear any inequality of loading. When completed in this manner, we imagine that it will be at leaft equal to any conftruction that has yet been thought of. One advantage it polfeffes that is very precious: Any piece that fails

-

C E N

may be taken out, and rephaced by another, without difturbing the reil, and without the fmalleft rifk. On the whole, we think it a very valuable addition to Britih carpontry. 'The method here pracifed, both for joining the parts of one beam and for framing the different beams together, fuggefts the moft firm and light conftructions for dome-roofs that can be conceived; incomparably fuperior to any that liave yet been erected. The whole may be framed, without a nail or a fpike, into one net-like fhell that cannot even De pulled in pieces. We may perhaps confider this in another article ; at prefent we return to the confideration of truff ed bridges.
When the width of the river exceeds what is thought practicable by a fingle trufs, we muft then combine, either by fimple addition, or by compofition, different truffes together. We compofe a bridge by fiuple addition when we make a frame of carpentry of an unchangeable and proper fhape, to ferve as one of the archftones of a bridge of mafonry. This may eafily be comprehended by looking at fig. 22. Each of the frames A, B, C, D, muft be confidered as a feparate body, and all are fupported by their mutual abutment. The nature of the thing is not changed, although we fuppofe that the rails of the frame \mathbf{B}, inftead of being mortifed into an upright $b^{\prime} b^{\prime}$, unconnected with the frame C , is mortifed into the upright $c c$ of that frame, the direction and intenfity of the mutual preffures of the two frames are the fame in both cafes; accordingly this is a very common form of fmall wooden bridges. It is ufual, indeed, to put diagonal battens into each : but we believe that this is more frequently done to pleafe the eye than to produce an unalterable fhape of each frame.

To an unkilful carpenter this bridge does not feem effentially different from the centering of Mr Hupeau for the bridge of Orleans; and indeed, in many cafes, it requires reflection, and fometimes very minute reflection, to diftinguifh between a conftruction which is only an addition of frame to frame till the width be covered, from a conftruction where one frame works on the adijoining one tranfverfely, pufhing it in one part, and drawing it in another. The ready way for an unlettered artift to form a juft notion of this point, is to examine whether he may faw through the connecting piece $b^{\prime} b^{\prime}$ from one end to the other, and make them two feparate frames. Whenever this cannot be done without that part opening, it is a conftruction by compofition. Some of the beams are on the flretch; and iron ftraps, extending along both pieces, are neceffary for fecuring the joint. The bridge is no longer a piece of mafonry, but a performance of pure carpentry, depending on principles peculiar to that art. Equilibration is neceflary in the firft conftruction; but, in the fecond, any inequality of loading is made ineffectual for hurting the edifice, by means of the flretch that is made to operate on fome other piece. We are of opinion, that this moft fimple employment of the diftinguifhing principle of carpentry, by which the beanss are made to act as ties, will give the moft perfect conftruction of a wide bridge. One polygon alone fhould contain the whole of the abutments; and one other polygon fhould confitt entirely of ties; and the beams which form the radii, connecting the angles of the two polygons, complete the whole. By confring the atten-

[^7]tion to thefe two fimple ohjects, the abutments of the outer polygon, and the joints of the inner one, may be formed in the moft fimple and efficient manner, without any collateral connections and dependencies, which di. vide the attention, increa\{e the complication, and commonly produce unexpected and hurtful ferains. It was for this reafon that we have fo frequently recommended the centering of the Iridge of Orleans. Its uffice will be completely performed by a trufs of the form of fig. 23.; where the polygon A BCDEF, connifing of two layers of bcams (if one is not fufficient), contains the whole abutments, and the other $A b c d e l^{*}$ is nothing but an iron rod. In this conftruetion, the obtufenefs of the angles of the lower polygon is rather an advantage. The braces Gc, G d, which are wanted for truffing the middle of the outer beams, will effectually fe. cure the angles of the exterior polygon againt all ride of change. The reader muft perceive that we have The beft now terminated in the conttruction of the Norman roof. eneral We indeed think it the beft general form, when fome form of a moderate declivity is not an infiperable objection. When wooten this is the cafe, we recommend the general plan of the centering of the bridge of Orleans. We would make the bridge (we fpeak of a great bridge) confift of four truffes; two to ferve as the outfides of the bridgè, and two inner truffes, feparating the carriage-way from the foot-paths. The road hould follow the courfe of the lower polygon, and the main trufs thould form the rails. It might look ftrange; but we are here fpeaking of ftrength; and evident, but not unwieldy, ftrength, once it becomes familiar, is the fureft fource of beauty in all works of this kind.

Centre of Friaion, is that point in the bafe of a body on which it revolves; into which, if the whole furface of the bafc, and the mafs of the body, were collected, and made to revolve about the centre of the bafe of the given body, the angular velocity deftroyed by its friction would be equal to the angular velocity deftroyed in the given body hy its friction in the fame time. See Friction in this Supplement.

Centre of Gyration, is that point in which, if the whole mafs be collected, the fame angular velocity witl be generated in the fame time, by a given force acting at any place, as in the body or fyftem itfelf. This point differs from the centre of ofcillation, in as much as in this latter cafe the motion of the body is produced by the gravity of its own particles; but, in the cafe of the centre of gyration, the body is put in motion by fome other force acting at one place only.

Centre of Cfillation, is that point in the axis or line of fufpenfion of a vibrating body, or fyltem of bodies, in which, if the whole matter or weight be collectcd, the vibrations will till be performed in the fame time, and with the fame angular velocity, as before. Hence, in a compound pendulum, its diltance from the point of fufpenfion is equal to the length of a fimple pendulum whofe of cillations are ifochronal with thofe of the compound onc.

CRntre of Preflure, of a fluid againf a plane, is that point againtt which a force being applied equal and contrary to the whole preffure, it will juft fuftain it, fo as that the body preffed on will not incline to either fide. - This is the fame as the centre of percuffion, fuppoling the axis of motion to be at the interfection of this flane with the furface of the fluid; and the centre D d
of

Centrebz of preffure upon a plane parallel to the borizon, or upon rico any plane where the preffure is uniform, is the fame as Chambere the centre of gravity of that plane.
$\underbrace{\text { Chamere: }}$ CENTROBARICO, the fame as centre of gravity.
CENTROBARIC Method, is a method of determining the quantity of a furface or folid, by means of the generating line or plane and its centre of gravity. The doctrine is chiefly comprifed in this theorem :

Every figure, whether fuperficial or folid, generated by the motion of a line or plane, is equal to the product of the generating magnitude and the path of its centre of gravity, or the line which its centre of gravity defcribes.

CERUSE, or White-lead, is a fubftance fo much ufed in painting, and for other purpofes, that numerois modes have been employed for the preparation of it, Of the moft common of thefe, a fuflecient account has been given in the Encyclopiedia (fee Ceruse, and the fame word Chemistry-Index); hut Lord Dundonald has difcovered a more expeditious and facile method than any of them, which becomes the more ufeful, as the fubtance with which it is effected has been hitherto rejected by the chemical world as a capnt mortuum.

His lordfiip directs common lead to be reduced to a ralx, but not too fine, and to have a proportion of fivefixth parts thereof, intimately mixed with muriat, or folution of potafs. In this ftate, be directs it to be frequently firred, in order to have the new furfaces of the mixture expofed to the carbonic acid of atmofpheric air ; as his lordfip obferves, that the effects of the carbonic acid on the alkali exifting in the prefent flate of the mixture is effentially neceffary, in order to effeet the intended purpofe. In this thate it is to be frequently fprinkled with water, and, after the calk has been long enough iminerfed with the muriat- to be fufficiently o. perated upon, the mariat is to be levigated by common water from the calx, and to be concentrated by evaporation, in order to be made ufe of at a future period with other calx.. The calx is to be afterwards ground, levigated, and dried for ufe.

For this difcovery, his lordhip obtained a patent on. the ISth of Augut 1797; and the fuccefs which has attended the former patents of this fcientific nobleman leads us to conclude, that the prefent difcovery is entitled to the attention of the public.

CHAMBERS (Sir William), the celebrated architeet, was defeended of the ancient family of Chalmers in Scotland, barons of Tartas in France. His grandfather fuffered confiderably in his fortune by fupplying Charles XII. of Sweden with money, \&c. which that monarch repaid in bafe coin. Sir William's father relided feveral years in Sweden to recover his claims; and there Sir Wil. liam was born, and, at eighteen years of age, appointed fupercargo to the Swedifh Eaft India company. From a voyage which he made to China, he brought home the Afiatic ftyle of ornament, in tents, temples, mofques, and pagodas. Thefe ornaments (tlirough the intereft of Lord Bute) he was enabled to apply in the gardens at Kew. Patronifed by the princefs dowager and the king, Mr Chambers had much of the fafmionable oufinefs of the day. Under Burke's reform, he was appointed furveyor general of the board of works. Somerfet-houfe was worth to him at leaft L. 2000 a-year. His Chef d'cuvres arehis \{aircafes, particulaly thofe at Lord Befoorough's;

Lord Gower's, and the Royal and Antiquarian Socic. Chomfer, ties. The terrace behind Somerfet-houfe is a bold ef- Chamactere fort of conception. His deligns for interior arrangements were excellent. EIis Treatife on Civil Architecture alone will immortalize his name. In private life, Sir William was hofpitable, kind, and amiahle. His fon married Mifs Rodney ; Mr Cotton, Mr Imnis, and Mr Harward, married his beautiful daugliters. Having been abftemious in his youth, Sir William's conflitution did not begin to break till he was feventy years of age. For the latt three years, he was kept alive by wine and oxygenated air: and died on the 5 th of March rig6. His celebrity will be lafling in the works which he has left ;-and as he was equally flilled in the theory and practice of the arts which he profeffed, his precepts are as valuable as his works. At his death, he was fellow of the Royal and Antiquarian Societies, treafurer of the Royal Academy, furveyor-general of the board of works, and knight of the Swedifh order of the Polar Star.

CHAMFER, or.Chamferet, an ornament in architecture, confifting of half a fcotia; being a kind of finall furrow or gutter on a coluinn.

Universal CHARACTERS, conld they be introduced, would contribute fo much to the diffulion of ufeful knowledge, that every attempt to make fuch a fcheme fimple and practicable is at leatt intitled to notice. Accordingly, in the Eneyclopadia Britannica, uuder the word Character, a fhort account is given of the principal plans of univerfal characters which had then fallen under our obfervation; but lince that article was publifhed, a new method of writing, by wllich the various nations of the earth may communicate their fentiments to each other, has been propofed by Thomas Northmore, Efq; of Queen-ftreet, Mayfair. It bears fome refemblance to that which we have given from the Journal literaire, 1720 , but it is not the fame; and of the two, Mr Northmore's is perhaps the moft ingenious. The ground-work of the fuperftructure differs not indeed from that of the journalift, being this in both, "That if the fame numerical figure be made to reprefent the fome ruord in the various languages upon earth, an univerfal character is immediately obtained." The only objection which the author or his friends faw to. fuch a plan, originates in the diverfity of idioms ; but, as he truly obferves, every fchoulboy has this difficulty to encounter as often as he conftrues Terence.

Such then was Mr Northmore's original plan : but he foon perceived that it was capable of confiderable im. provement ; for, inftead of ufing a figure for every word, it will be neceffary to apply one only to every ufeful word; and we all know how few words are abfolutely neceffary to the communication of our thoughts. Even. thefe may be much abbreviated by the adoption of certain uniform fixed figns (not amounting to above 20), for the various cafes, numbers, genders, degrees of comparifon, of nouns, tenfes, and moods of verbs, \&c. All words of negation, too, may be expreffed by a prefixed fign. A few inftances will beft explain the author's meaning.

C H A

Characters, "I would then (fays he) exprefs the tenfes, genders, cafes, \&c. in all languages, in fome fuch uniform manner as following :

(1) $5=$	prefent tenfe,	fee,
(2) $\cdot 5=$	perfeat tenfe,	faw,
(3) $: 5=$	perfora participle,	reen,
(4) $5:=$	prefent farticiple,	feeing,
(5) 5 .	future,	will fee,
(6) $5=$	fublamive,	fight,
(7) $5=$	frrfonal jubjantive,	tor
(8) $\overline{6}=$	nominative cafe,	a man,
(9) 6	Senitive,	of a man
(10) $\dddot{6}^{6}=$	clutive,	to a man
(1i) $\widehat{6}=$	feminine,	a woman,
$(12)+6=$	plural,	men,
(13) $7=$	pofitive,	lappy,
(14) $\hat{7}=$	comparative,	happier,
(15) ${ }^{\frac{M}{7}}=$	Superlative,	
$7=$	as above, No. 6.	happinefs,
(16) $-7=$	negation, -	unhappy.

"From the above fpecimen, I fhould find no difficul. ty in comprehending the following fentence, though it were written in the language of the Hottentots:
$9,8, .5,-7, \widehat{6}$. I never fazw a more unbappy woman.
"Thofe languages which do not ufe the pronoun prefixed to the verb, as the Greek and Roman, \&cc. may apply it, in a fmall claracter, fimply to denominate the perfon; thus, intead of $9,8, .5, I$ never fazu; they may write, $8,0.5$, which will fignify that the verb is in the firlt perfon, and will fill have the fame meaning."

Our author feems confident that, according to this fcheme of an univerfal character, about 20 figns, and lefs than 10,000 chofen words (fynonyms being fet afide), would anfwer all the ends propofed; and that foreigners, by referring to their numerical dictionary, would eafily comprehend each other. He proceeds next to thew how appropriate founds may be given to his
figns, and an univerfal living language formed from the Charsctere univerfal cbaraZers.
'To attain this end, he propofes to ditinguifh the ten chemin. muncrals ly ten monofyllabic names of eafy pronounciation, and fuch as may ren without difficulty into ore another. T'o illuftrate his fcheme, however, he calls them, for the prefent, by their common Englifin names; but would pronounce cach number made ufe of by uttering feparately its component parts, after the manner of accountants. Thus let the number $69+3$ reprefent the word borfe, he would not, in the univerfal language, call a horfe fix thoufand nine bundred and forty-three, but fix, nine, four, three, and fo on for all the words of a fentence, making the proper fop at the end of each. In the fanie manner, a diftinct appellation muft be appropriated to each of the prefixed ligns, to be pronounced immediately after the numeral to which it is an appendage. Thus if plu be the appellation or the fign of the plural number, fix, nine, four, three, phu will be borfes.
"Thus (fays our author), I hope it is evident that about 30 or 40 diftinct fyllables are fufficient for the above purpofe; but I am much miftaken if eleven only will not anfwer the fame end. This is to be done by fubftituting the firft 20 or 30 numerals for the figns. and faying, as in algebra, that a term is in the power of fuch a number, which may be expreffed by the fimple word under. Ek. gr. Let 6943 reprefent the word borfe; and fuppofe four to be the fign of the plural number, I would write the word thus, б告告; and pro. nounce it, lix, nine, four, three, in the power of or under four. By thefe means eleven diftinct appellations would be fufficient, and time and ufe would much abbreviate the pronunciation."

To refufe the praife of ingenuity to this contrivance for an univerfal language would be very unjuft; but elocution in this manner would be fo very tedious, that furely the author himfelf, when he thinks more coolly on the fubject, will perceive, that in the living fpeecli its defects would more than balance its advantages. A pangraph, as he calls his univerfal character, would indeed be ufeful, and is certainly practicable; a panleg (if we may form fuch a word) would not be very ufeful, unlefs it were much more perfect than it could be made according to the plan before us.
CHAUSETRAPPES. See Cron's Feet, Encycl.
CHEMIN des Ronds, in fortification, the way of the rounds, or a fpace between the rampart and the low parapet under it, for the rounds to go about it.

CHEMISTRY,

1

Defuition.

I^{s}S a fcience, the object of which is to afccrtain the ingredients that enter into the connpofition of bodics, to exaniue the nature of thefe ingredients, the manner in which they combine, and the properties refulting suom their combination.

As an art, it has been in fome meafure coeval with the human race; for many of the moft important branches of manufactures could not have been conducted without at leaft fome knowledgre of chemical combinations. As a fcience, it can hardly be dated farther back than the middle of the $17^{\text {th }}$ century; but fince that time it has advanced with a rapidity altogether unprecedented in the annals of philofophy. Newton laid its foundation; and fince his days an almoft incredible nuinher of the molt diftinguifhed names in Europe have enlifted under its banners. So rapid has this progrefs been, tlat though the article Chemistry in the Encyclopudia Britarnica was written only about ten years ago, the language and reafoning of chemiftry have been fo great!y improved, and the number of facts have accumulated fo much, that we find ourfelves under the neceffity of tracing over again the very elements of the fcience.
Importance Indeed, if we confider the importance of chemiftry, of chemif we thall not be fo nuch furprifed at the ardour with sry. we thall not be fo nuch furprifed at the ardour with
which it has been cultivated. As a fcience, it is inti- mately conneced with all the phenomena of nature; the caufes of rain, fnow, hail, dew, wind, earthquakes: even the changes of the feafons can never be explored with any chance of fuccefs while we are ignorant of chemiftry; and the vegetation of plants, and fome of the mof important functions of animals, have received all their illuftration from the fame fource. No fudy can give us more exalted ideas of the wifdom and goodnefs of the Great Firf Caufe than this, which fhews us everywbere the moft aftonifing effects produced by the moot fimple though adequate means, and difplays to our view the great care which has everywhere been taken to fecure the conffort and happinefs of every Biving creature. As an art, it is intimately connected with all our manufactures: The glafs-blower, the potter, the fmith, and every other worker in metals, the tanner, the foap-maker, the dyer, the bleacher, are real-
ly practical chemits ; and the mort effential improve. ments have heen introduced into all thefe arts by the progrefs which cheniiftry has made as a fcience. Agriculture can only be improved rationally and certainly by calling in the affifance of chemiftry; and the advantarges which medicine has derived from the fame fource are too obvious to be pointed out.

It i 3 It is evident from the definition of chemiftry that it Arrangemuft confift in a hiffory of the fimple fubftances which ment. enter into the compofition of bodies, in an invefligation of the manner in which thefe fubftances comhine, and in a defcription of the properties of the compounds which they furm. And this is the arrangenent which we mean to parfue; referving to ourfelves, however, the liberty of deviating a little from it, whenever it may appear neceffary for the fake of perfpicuity. All our claffifications are in fact artificial; nature does not know them, and will not fubmit to them. They are ufeful, however, as they enable us to learn a fcience fooner, and to remember it better; but if we mean to derive thefe advantages from them, we mult renounce a rigid adherence to arbitrary definitions, which nature difclaims.

We fhall begin by an account of the fimpleft bodies, and proceed gradually to thofe which are more conspound. By fimple bodies, we do not mean what the ancient philofophers called the elements of bodies, but merer ly fubilances which have not yet heen decompounded. Very poffibly the bodies which we reckon fimple may be real compounds; but till this has actually been proved, we have no right to fuppofe it. Were we acquainted with all the elements of bodies, and with all the combinations of which thefe elements are capable, the fcience of chemiftry would he as perfect as poffible; but at prefent this is very far from being the cafe.
We fhall divide this article into four parts. The firft part fhall treat of thofe bodies which are at prefent confidered as fimple; the fecond, of thofe bodies which are formed by the union of two fimple bodies, and which, for want of a better word we fhall call compound bodies; the third, of thofe bodies which are formed by the union. of two compound bodies; and the fourth, of bodies fuch as they are prefented to us by nature in the mineral, ve. getable, and animal kingdons.

Part I. Of SIMPLE BODIES.

 dies.ALL the bodies which are at prefent reckoned limple, becaule they have never been decompounded, may be reduced into fix claffes.
y. Oxygen,
2. Simple combutibles,
4. Earths,
3. Metals,
5. Caloric,
6. Light.

Thefe fhall form the fubjects of the fix following chapters.

Chap. I. Of Oxygen.

Take a quantity of nitre, or faltpetre, as it is alfo called, and put it into a gun-barrel A (fig. I.), the
touch-hole of which has been previounly clofed up with Method of metal. This barrel is to be bent in fuch a manner, procuring that while the clofe end, in which the nitre lies, is put oxygen into the fire E, the open end may be plunged below the furface of the water, with which the veffel B is filled. At the fame time, the glafs jar D, previoully filled with water, is placed on the fupport C, lying at the bottom of the veffel of water B, fo as to be exactly over the open end of the gun-barrel A. As foon as the nitre becomes hot, it emits a quantity of air, which iffuing from the end of the gun-barrel, afcends to the top of the glafs jar D , and gradually difplaces all the water. The glafs jar D then appears to be empty, but is in fact filled with air. It may then be removed in the follow-

Oxygen. ing manner: Slidc it away a little from the gun-barrel and the fupport, and then dipping any flat difh into the water below it, raife it on it, and bear it away. The difh muft be allowed to retain a quantity of water in it, (fee fig. 2.) Another jar may then be filled with air in the fame manner ; and this procefs may be continued either till the nitre ceafes to give out air, or till as many jarfuls have been obtained as are required. This method of obtaining and confining air was firt invented by Dr Mayow, and afterwards much improved by Dr Hales. All the airs obtained by this or any other procefs, or, to fpeak more properly, all the airs differing from the air of the atmofphere, have, in order to diftinguifh them from ir, been called gafes, and this name we fhall afterwards eniploy.
6
Difcovered
The gas which we have obtained by the above proby Priefter cefs was difcovered by Dr Prieftey on the ift of Auand Scheele. guft 1774, and called by him depblogifficated air. Mr Scheele of Sweden difcovered it in 1775, without any previous knowledge of what Dr Prieftley had done: he gave it the name of empyreal air. Condorcet, fo confpicuous during the French revolution, gave it firlt the name of vital air ; and Mr Lavoifier afterwards called it oxygen gas; a name which is now generally received, and which we fhall adopt.
Oxygen gas may be obtained likewife by the following procefs:
D (in fig. 3.) reprefents a wooden trough, the infide of which is lined with lead or tinned copper. AB is a melf running along the infide of it, about three inches from the top. C is the cavity of the trough, which ought to be a foot deep. It is to be filled with water at leaft an inch above the Thelf AB. In the body of the trough, which may be called the ciftern, the jars deitined to hold gas are to be filled with water, and then to be lifted, and placed inverted upon the thelf at B, with their edges a little over it. This trough, which was invented by Dr Prielley, has been called by the French chemifts the pneumato-chemical, or fimply pneumatic apparatus, and is extremely ufeful in all cxperiments in which gafes are concerned. Into the glafs veffel Eput a quantity of the black oxide (A) of manganefe in powder, and pour over it as mueh of that liquid which in commerce is called oil of vitriol, and in chemiftry fulpburic acid, as will fomewhat mure than cover it. Then infert into the mouth of the veffel the glafs tube F., fo clofely that no air can efcape except through the tube. Thes may be done by covering the joining with a pafte made of wheat-flour and water, or any other lute, as fubflances ufed for fimilar purpofes are called. The end of the tube C is then to be plunged into the pneumatic apparatus D, and the jar G, previoufly filled with water, to be placed over it on the fhelf. The whole apparatus be ing fixed in that fituation, the glafs veffel E is to be heated by means of a lamp or a candle. A great quantity of oxygen gas rufhes along the tub P, and fills the jar G. As foon as the jar is filled, it may be fide to another part of the fluelf, and other jars fubtituted in its place, till as much gas has heen obtained as is wanted.

1. Oxygen gas is colourlefs, and invifible like com.
mon air. Like it too, it is elantic, and capable of in. $\underbrace{\text { Oxygen. }}$ definite expanfion and compreffion.
2. If a lighted taper be let down into a jar of oxgen suppurti gas, it burns with fuch felendor that the eye can fearce-flame, ly bear the glare of light, and at the fance time time produces a much greater heat than when burning in common air. It is well known that a candle put into a well clofed jar, filled with common air, is extinguifhed in a few feconds. This is the cafe alfo with a candle enclofed in oxygen gas ; but it burns much longer in an cqual quantity of that gas than of conmon air.
3. It was proved long ago by Boyle, that animals can. And life. not live without air, and by Mayow that they cannot breathe the fame air for any length of time without fuffocation. Dr Prieftley and feveral other philofophers have thewn us, that animals live much longer in the fame quantity of oxygen gas than of common air. Count Morozzo placed a number of fparrows, one after another, in a glafs bell filled with common air, and in verted over water.
H. M.
The firtt fparrow lived - - $\quad 3.0$
'The fecond -
T
The third - - - 01

He filled the fame glafs with oxygen gas, and re. peated the experiment.
н. M .

He then put in two together; the one died in 20 mi nutes, but the other lived an hour longer.
4. Atmofpherical air contains about 27 parts in the Exith in hundred of oxygen gas. This was firft difenvered by the arnoso Scheele. It has been proved by a great number of ex. Tphere. periments, that no fubftance will burn in common air previounly deprived of all the oxygen gas which it contained; but combuftibles burn with great fplendor in oxygen gas, or in other gafes to which oxygen gas has been added. Oxygen gas then is abfolutely neceffary for combution.
5. It has been proved alfo, by many experiments, that no breathing animal can live for a moment in any air or gas which does not contain oxygen mixed with it. Oxygen gas then is abfolutely neceffary for refpiration.
6. When fubttances are burnt in oxygen gas, or in any other gas containing oxygen, if the air be examined after the cumbution, a great part of the oxygen will he found to have difappeared. If charcoal, for inftance, be burnt in oxygen gas, there will be found, intlead of part of the oxygreit, another very different gas, known by the name of carbonic acid gas. Exactly the fanne thing takes place when air is refpired by animals ; part of the oxygen gas difappears, and its place is occupied hy fub. ftances puffeffed of very different properties. Oxygen
(A) This fuhftance thall be aftervards defcribed. It is now very well known in Dritan, as it is in common ufe with bleachers and feveral other manufacturers,

Oxgzen.

12
Its fivecific gravity. * On Pibo. gifon, feć. i well as the bodies which have been burnt; and the fane

$$
i_{0}
$$

$$
1
$$

gas then undergocs fome ehange during combuftion, as obfervation applies alfo to ref piration (B).
7. The fpecific gravity of oxygen gas, as determined by Mr Kirwan *, is 0,00135 , that of water being 1,2050 , as is always the cafe when fpecific gravity is mentioned abfolutely. It is therefore 740 times lighter than the fame bulk of water. Its weight to atinofpherical air is as 1103 to $1050: 116$ cubic inches of oxygen gas weigh 39,03 grains troy, 116 cubic inches of *3 common air, 35,38 grains.
Affrity ex- 8. Oxygen is capable of combining with a great numplained. ber of bodies, and forming compounds. As the combination of bodies is of the utmoft importance in chemiftry, before proceeding farther we fhall attempt to explaiu it. When common falt is thrown into a veffel of pure water, it melts, and very foon fpreads itfelf through the whole of the liquid, as any one may convince himfelf by the tafte. In this cafe the falt is combined with the water, and cannot afterwards be feparated by filtration or any other method merely mechanical. It may, however, by a very fimple process: Pour into tha fulution a quantity of fyirit of winc, and the whole of the falt iuflantly falls to the bottom.
Why did the falt diffolve in water, and why did it fall to the bottom on pouring in fpirit of wine? Thefe queftions were firft anfwered by Sir Ifaac Newton. There is a certain attraction between the particles of common falt and thofe of water, which caufes them to unite together whenever they are prefented to one another. There is an attraction alfo between the particles of water and of fipirit of wine, which equally difpofes them to unite, and this attraction is greater than that between the water and falt; the water therefore leaves the falt to unite with the fpirit of wine, and the falt being now unfupported, falls to the ground by its gravity. This power, whicl difpufes the particles of different hodies to unite, was called by Newton altradion, hy Bergman, elective attracion, and by many of the German and French chemifts, affriity; and this laft term we flall employ, becaufe the other two are rather general. All fubftances which are capable of combining together arc faid to have an affinity for (c) each other: thofe fubflances, on the coutrary, which do not unite, are faid to have no affinity for each other. Thus there is no affuinity between water and oil. It appears from the inftance of the common falt and firit of wine, that fubftances differ in the degree of their affinity for other fubftances, fince the fpirit of wine difplaced the falt and
united with the water. Spirit of wine therefore has a Oxygen, Atronger affinity for water than common falt has.

In 1719 Geoffroi invented a method of reprefenting the different degrees of afinities in tables, which he called tables of afjinity. His method confilted in placing the fubftances whofe affinities were to be afcertained at the top of a column, and the fubstances with which it united below it, each in the order of its ailinity ; the fubftance which had the frongeft affinity next it, and that which had the weakell fartheft diftant, and fo of the reft. According to this method, the affinity of water for S_{p} irit of wine and common falt would be marked as fulluws :

$$
\begin{aligned}
& \text { Water, } \\
& \frac{\text { Spirit of wine, }}{\text { Common falt. }}
\end{aligned}
$$

This method liss been univerfally adopted, and has contributed very much to the rapid progref's of chemiftry.

We flall proceed therefore to give a table of the af- Affinties of finities of oxygen.

Oxygen,
Carbon,
Zinc,
Iron,
Manganefe,
Hydrogen,
Azot,
Sulphur,
Phofphoras,
Cobatt,
Nickel,
Lead,
Tin,
Plhofphorous acid,
Copper,
Bifinuth,
Antimony,
Mercury,
Silver,
Arfenic,
Sulphurous acid,
Oil,
Nitrous gas,
Gold,
White oxide of arfenic,
Muriatic acid,
Oxide of tid,

White
(B) Mayow had in the laft century made confiderable progrefs towards the difcovery of oxygen gas. He knew that only a part of the air fupported combuftion: This part he called particula igneo-aeres. He knew that this part was contained in nitre: "Pars nitri acrea nihil aliud quam particulx ejus igneo-aerea eft." He adds, "At non eft eftimandum pabulum igneo-aereum ipfum aerem effe, fed tantum partem tjus majus activam fubtilemque. Quippe lucerna vitro inclufa expirat cum tamen copia aeris fatis ampla in codem continetur." He knew alfo that it was this part of the air which was ufful in refpiration. After mentioning feveral experiments to prove this, he adds, "Ex dictis certo conitat animalia refpirando particulas quafdam vitales eafque elaticas ab aere haurire." See his Traiatas quinque Medico-Pbyjici, P. 12. and 106.-He knew alfo that this part of the air was neceffary to combuftion: "Et tamen certo conftat, particulas nitro-aereas non minus quam fulphureas ad ignem confandum neceflareas effe." Ibid, p. 26.
(c) We are not certain that the phrafe affinity for is warranted by claffical authority; we have ventured, however, to ufe it, hecaufe, as the word affinity in this article fignifies a fpecies of attraction, we thought it would be more perfpicuous to put after it the prepofition for, which ufually follows the word attracion, than to or with, which come after affinity when ufed in its ordinary acceptation.

White oxide of lead? Nitrous acid, White oxide of manganefe, Water.
The reafon of this order will appear when we treat of thefe various fubitances.

Giaf. If. Of Simple Combustible Bodies.

15
Five fimple combufti.

Ey comoufiules, we mean fubtances capable of combuftion: and by fimple combulilibes, bodies of that nature which have not yet been decompounded. Thefe are only five in number, Sulphur, Phosphorus, Carbon, Hydrogen, and Azot. Were we to adhere ftrictly to ous definition indeed, we thould add all the metals ; for they are alfo combutible, and have not yet been decompounded: But for the reafons formerly given, we thall venture to deviate a little from ftrict logic, and conlider them atterwards as a dillinct clafs of dubilances.

Sect. I. Of Sulphur.

Sutphur, diftinguithed alfo in Englim by the name of brimpone, was known in the earlielt ages. As it is found native in many parts of the world, it could not fail very foon to attract the attention of mankind. It was ufed by the ancients in medicine, and its fumes were employed in bleaching wool*.

Sulphur is a hard brittle fubftance, commonly of a yellow colour, without any fmell, and of a weak thongh perceptible tafte.

It is a non-conductor of electricity, and of courfe becomes electric by friction.

If a confiderable piece of fulphur be expofed to a fudden though gentle heat, by holding it in the hand, Fourcroy. for inftance, it breaks to pieces with a crackling noife \dagger.

Its fpecific gravity is $\mathrm{I}, 990$.
When heated to the temperature of 185° of Fahrenheit, it melts and becomes very fluid. If the temperature be ftill farther increafed, the fluidity diminifues; but when the fulphur is then carricd from the fire and allowed to cool, it becomes as fluid as ever before it con-

When fulphur is heated to the temperature of 170°, it rifes up in the form of a fine powder, which may be eafily collected in a proper veffel. This powder is call. ed flowers of fulpbur. When fuhftances fly off in this manncr on the application of a moderate heat, they are cailed volatile ; and the procefs itfelf, by which they are raifed, is called roblatilization.

Sulphur undergoes no change by being allowed to remain expoled to the open air.

When thrown into water, it does not melt, as common falt does, but falls to the hottom, and remains there unchanged; it is therefore infoluble in water. If, however, it be poured, white in a flate of fufion, into water, it affumes a red colour, and retains fuch a degree of foftnefs, that it may be kneaded between the fingers;
falt, for inflance, be diffolved in water, and that fluid, by the application of a moderate heat, be made to fly off in the form of flean; or, in other words, if the water be flowly eraporated, the falt will fall to the buttom of the veffel in cubes. Thefe rergular figures are called cryfals. Now fulyhur is capahle of cryftallizing. If it be melted, and is foon as its furface begins to congeal, the lifuid fulplur beneath be joured out, the internal eavity will exhibit long needle-fhaped cryitals of an octahedral figure. This method of cryttallizing fulphur was contived by Rouelle.

When fulphur is heated to the temperature of 302° Converted in the open air, it takes fire fpontancoully, and hurns by combufwith a pale blue flame, and at the farne time emits ation intoas great quautity of fumes of a very frong fuffocating acid. great quantity of fumes of a very flrong fuffocating odour. When heated to the temperature of 570°, or a little higlier, it burns with a bright white fame, and at the fame time emits a valt quantity of fumes. If the heat be continued long enough, the fulphur burns all away without leaving, any afhes or refiduum. If the funes be collected, thcy are found to confit entirely of fulpburic acid. By combuttion, then, fulphur is converted into an acid. This fact was known feveral centuries ago, but no intelligible explanation was given of it till the time of Stah1. That chemiit undertook the tank; and founded on his experiments a theory fo exceeding. ly ingenious, and fupported by fuch a valt number of facts, that it was in a very fhori time adonted with admiration by all the philofophic work, and contributed not a little to raife chemiftry to that rank among the fciences from which the ridiculous pretenfions of the early chemilts had excluded it.

According to Stahl, there is only one fubftance in Stahl's ezonature capable of combultion, which therefore he called planation Phlogiston; and all thofe bodies which can be fet of this. on fire contain lefs or more of it. Combuftion is merely the feparation of this fubttance. Thofe bodies which contain none of it are of courfe incombuftible. All combuitibles, except thofe which confilt of pure phlogifton (if there be any fuch), are compofed of an incombuftile body and phlogifton united together. During combul. tion the phlogitton flies off, and the incombuftible body remains behind. Now when fulphur is burnt, the fubflance which remains is fulphuric acid, an incombufible body. Sulphur therefore is compofed of fulpharic acid and phlogiton.

To eftablih this theory completely, it was neceffary to thew that fulphur could be actually made by combining fulphuric acid and phlogitton; and this alfo Stahl undertook to perform. Sulpbat of potufs is a fubitance compofed of fulphuric acid and potafs (D), and charcoal is a combullible body, and therefore, according to the theory of Stahl, contains phlogition: when burnt, it leaves a very inconfiderable relidumm, and confequently contains hardly any thing elfe than phlogifton. He melted together in a crucible a mixture of folafs and fulphat of potafs, firred into it one-fourth part by weight of pounded charcoal, covered the crucible with another inverted over it, and applied a frong heat to it. He then allowed it to cool, and examined its contents. The charcoal had difappeared, and there only remained in the crucible a mixture of potafs and fulphur combined togcther,
(D) The nature of potafs fhall afterwards be explained. It is the potafb well known in commerce in a fate of. purity.

Sidrlय: together, and of a darker colour than ufual, from the rechidum of the charcoal. Now there were only three fiutanances in the crucible at firft, putafs, fulphuric acid, and charcoal: two of thef: have difappeared, and fulplur has been found in their place. Sulphur then mut hase been formed by the combination of thefe two. But charcoal confilts of phlogitun and a very fmall refidum, which is fill fonnd in the crucille. The fulphur then muft have been formed by the combination of fulphuric acid and phlogiton. This finple and haminons explanation appeared fo fatisfactory, that the compofition of fulplur was long confidered as one of the beft demonflrated truths in chemittry.
There are two fakts, however, which Stahl either did not know or did not fuficiently attend to, neither of which were accounted for by his theory. The firft is, that fulphur will not burn if air he completely exeluded ; the fecond, that fulphuric acid is heavier than the fulphur from which it was produced.

To account for thefe, or facts fimilar to thefe, fuccoeding chemits refined upon the theory of Stahl, deprived his phlogiflon of gravity, and even affigned it a principle of levity. Still, however, the neceffity of the conract of air remained unexplained. At laft Mr Lavoifier, who had already dilinguifed himfelf by the extenfivenefs of his views, the accuracy of his experiments, and the precifion of his reafoning, undertook the examination of this fubject, and his experiments were publifhed in the Memoirs of the Academy of Sciences for 1777. He put a quantity of fulphur into a large glafs veflel filled with air, which he inverted into another veffel containing mercury, and then fet fire to the fulphur by means of a hurning-glafs. It emitted a blue flame, and gave out thick vapours. but was very foon extinguifhed, and could not be again kindled. There was, howeser, a little fulphuric acid formed, which was a good deal heavier than the fulphur which had difappeared ; there was alfo a diminution in the air of the veffel proportional to this increafe of weight. The fulphur, therefore, during its converfion into an acid, mult have abforbed part of the air. He then put a quantity of fulphuret of iron, which confifts of fulphur and iron combined together, into a glafs veffel full of air, which he inverted over water (E). The quantity of air in the veffel continued diminifling for eighteen days, as was evident from the afcent of the water to occupy the fpace which it had left ; but after that period no farther diminution took place. On examining the fulphuret, it was found fomewhat heavier than when firf introduced into the veffel, and the air of the veffel wanted precifely the fame weight. Now this air had loft all its oxygen; all the oxygen of the air in the veffel muft therefore have entered into the fulphuret. Part of the fulphur was converted into fulphuric acid; and as all the refl of the fulphuret was unchanged, the whole of the increafe of weight mutt have been owing to fomething whicls had entered into that part of the fulphur which was converted into acid. This fomething we know was oxygen. Sulphuric acid therefore muft be compofed of fulphur and oxygen; for as the original weight of the whole contents of the veffel remained exactly the
fame, there was not the finalleft reafon to fuppofe that sulphur. any fubtance laad left the fulphur.

It is impofible, then, that fulphur can be compofed of fulpharic acin and plagifton, as Stahl luppofed; fince fulphur itfelf enters as a part into the conipolition of that acid. There muft therefore have been fome want of accuracy in the experiment by which Stahl proved the compolition of fulphur, or at leatt fome fal. lacy in his reafonings; for it is impoffible that two contradictory facts can both be true. Upon examining the potafs and fulphur produced by Stahl's experiment, we find them to be confiderably lighter than the chareoal, fulphuric acid, and potafs originally employed. Something therefore has made its eficape during the applica. tion of the heat. And if the experiment be conducte! in a clofe veffel, with a pneumatic apparatus atta:hed to it, a quantity of gas will be obtained exactly cqual to the weight which the fubftances operated on have loft ; and this weight confiderably exceeds that of all the charcoal employed. This gas is carbonic acid gas, which is compofed of charcoal and oxygen, as will af. terwards appear. We now perceive what paftes in this experiment : Charcoal has a flronger affinity for oxygen at a high temperature than fulphur has. When charcoal therefore is prefented to fuphuric acid in that temperature, the oxygen of the acid combines with it, they fly off in the form of carbouic acid gas, and the fulphur is left behind.

The combution of fulphur, then, is nothing elfe than the act of its combination with oxygen; and, for any thing which we know to the contrary, it is a fimple fubftance.

The affinities of fulphur, according to Bergman, are Affinities on as follows:
Lead,
Tin,
Silver,
Mercury,
Arfenic,
Antimony,
Iron,
Fixed alkalies,
Ammunia,
Barytes,
Lime,
Magnefa,
Phofphorus?
Oils,
Ether,
Alcohol.

Sect. II. Of Phofphorus.

$L_{E T}$ a quantity of bones be burnt, or, as it is term-Production ed in chemiftry, calcined, till they ceafe to fmoke, or of phofphoto give out any odour, and let them afterwards be re- rus. duced to a fine powder. Put this powder into a glafs veffel, and pour fulphuric acid on it by little at a time, till farther additions do not caufe any extrication of air bubbles (F). Dilute the mixture with a good deal of water, agitate it well, and keep it hot for fome hours ; then pais it through a filter. Evaporate the liquid
(E) This experiment was firf made by Scheele, but with a different view. (F) The copious emiffion of air bubbles is called in chemittry effervefcence.

Whof horus flowly till a quantity of white powder falls to the bottom.

$\xrightarrow{\text { +r- }}$

 This powder mult be feparated by filtration and thrown away. The evaporation is then to be refumed; and whenever any white powder appears, the filtration mult be repeated in order to feparate it. Duriag the whole procefs, what remains on the filter mult be wafled with pure water, and this water added to the liquor. The evaporation is to be continued till all the moilture difappears, and nothing but a dry mafs remains. Put this mafs into a crucible, and keep it melted in the fire till it ceafes to exhale fulphereous odours; then pour it out. When cold it alfumes the appearance of a brittle glafs. Pound this gials in a mortar, and mix it with one-rhird by weight of charcoal duft. Put this misture into an earthen ware retort, and apply a receiver containing a little water. Put the retost into a fand bath, and increafe the fire till it becones red hot. A fubftance then pates into the receiver, which has the appearance of melted wax, and which congeals as it falls into the water of the receiver. 'lhis fubitance is phofpharas.It was difcovered by Brandt, a chemit of Hamburgh, about the year 1667 , while he was employed in attempting to extract from human urine a liquid capable of converting filver into gold *.

* Leibnitz, Mclange de Berlin.
+ St.his's
Three Hundred Experimochts.

Kunkel, another German chemift, hearing of the difcovery, was anxious to find out the procefs, and for that purpofe aflociated himfelf with a friend of his named Kraft. But the latter procured the feeret from the difcoverer; and expecting by means of it to acquire a fortune, refufed to give any information to his affociate. Vexed at this treachery, Kunkel refulved to attempt the difcovery himfelf; and though he knew only that phofphorus was obtained from urine, profecuted the inquiry with fo much zeal, that he fucceeded, and has been defervedly confidered as one of the difcovererst.

Boyle likewife difcovered phofphorus. Leibnitz in-- deed afthrons that Kraft taught Buyle the whole pro. cefs, and Kraft declared the fame thing to Stahl. But furely the affertion of a dealer in fecrets, and one who had deceived his own friend, on which the whole of this ftory is fuunded, cannot be put in competition with the affirmation of a man like Boyle, who was one of the honeftef men, as well as greateft philofophers, of his .age ; and he pofitively affures us that he made the difcovery without being previoully acquainted with the procefs \ddagger.

Gahn, a Swedifh chemif, difcovered, in 1769 , that phofphorus was contained in bones $\|$, and Scheele (G) -s very foon after invented a procefs for obtaining it from them. Pholphorús is now generally procured in that nanner. The procefs defcribed in the beginning of this fection is that of the Dijon academicians: it differs from that of Scheele only in a fingle particular.

Phefphorus, when pure, is of a clear, tranfparent,
Its proper- Phefphorus, when pure, is of a clear, tranfparent,
ties. yellowifh colour ; but when kept fome time in water, it
becomes opaque, and then has a great refemblance to Phofphorus white wax. lis confitence is nearly that of wax: it may be cut with a knife or twilled to pieces with the fingers. It is infoluble in water. Its fpecific gravity is 1,714 .

It melts at the temperature of 99°, and even at 67° * Pelletier, it gives ont a white foroke, and is luminous in the dark; fournalde
 can only be prevented from taking fire by keeping it in ${ }^{2 \times x v} \cdot 380$. a very low temperature, or by allowing it to remain always plunged in water. If air be excluded, it cvapurates at 219°, and boils at $554^{\circ}+$. When heated to \dagger Ibid. 38 I . 1220 (H), it burns with a very bright Rame, and gives ${ }^{27}$ out a great quantity of white finoke, which is luminons converted in the dark; at the fame time it enits an odour which tion has fome refemblance to that of garlic. It leaves no refiduum ; but when the white finoke is collected, it is found to be an acid. Stahl confidered this acid as the murjatic (.1). According to him, phofphorus was compoled of muriatic acid and phlogifton, and the comburtion of it was merely the feparation of pliogitton. He even declared, that to make phofphorus, nothing more was neceffary than to combine muriatic acid and phlogifton ; and that this compofition was as eafly accom. plihed as that of fulphur iticlf \ddagger.

Thefe affertions gained implicit credit; and the com-dred Experipofition and nature of phofphorus were confidered as ments. completely underftood, till Margraf of Berlin publifhed his experiments in the year 1743. That great mant, one of thofe illuftrious philofophers who have contributed fo much to the rapid increafe of the feience, diftinguifhed equally fur the ingenuity of his experiments and the clearnefs of his reafoning, attempted to produce phofphorus by combining together phlogiton and muriatic acil ; but though he varied his procels a thoufand ways, prefented the acid in many different ftates, and employed a variety of fubtances to furnith phlogifton, all his attempts failed, and he was obliged to give 20 up the combination as impracticable. On examining Into phofthe acid produced during the combuftion of phofpho-phoric act. rus, he found that its properties were very different from thofe of muriatic acid. It was therefore a diftinct fubftance. The name of phofphoric acid was given to it ; and it was concluded that phofphorus was compofed of this acid united to phlogitton.

But it was obferved in 1772 by Morveau §, that § Digrgf. phofphoric acid was heavier than the phofphorus from Acadern. which it was produced (K) ; and Boyle had long before ${ }^{\text {P. } 253^{\circ}}$ thewn that phofphorus would not burn except when in contact with air. Thefe facts were fufficient to prove the inaccuracy of the theory concerning the compofition of phufphorus; but they remained themfelves unaccounted for, till Lavoifier publifhed thofe celebrated experiments, which threw fo much light on the nature and compofition of acids.

- He exhautted a glafs globe of air by means of an airE. e
pump;
(G) Crcll, in his life of Scheele, informs us that Scheele was himfelf the difcoverer of the fact. This, he fays, clearly appears frum a printed letter of Scheele to Gahn, who was befure looked upon as the difcoverer. See Crell's Annals, Englifh T'ranf. I. if.
(н) Morveau, Encycl. Method. Chimie, art Affinité.-According to Nicholfon at 160°. See his Tranflation of Chaplal.
(1) This acid thall be afterwards defcribed.
(k) The fame oblervation.had been made by Margraf, but no attention was paid to it.
$\underbrace{\text { Plofphorus.pump; and afier weighing it accurately, he filled it }}$ with oxygen gas, and introluced into it 100 grains of phoff!orus. The globe was furnihed with a flopcock, by which oxygen gas could be admitted at pleafure. He fet fire to the phofphoms by means of at Lurning-glafs. 'Ihe comballion was extremely rapid, accompanied by a briglt flawe and much heat. Large guantities of white Grikes astached themfelves to the inner furface of the thefe at lat became fo ahundaut, that notwithllanding, the conflant fupply of oxygen gas, the phofjhorus was extinguifhect. The globe, after being allowed to cool, was again weighed before it was opened. The quantity of oxygen employed duing the experiment was afcertained, and the phofphorus, which itill remained unchanged, accurately weighed. The white flakes, which were nothing the than pure pliofphoric acid, were found exactly equal to the weights of the phofphorus and oxygen, which had difappeared during the proceis. Pholphoric acid therefore nult have been formed by the combination of thefe two bodies; for the abfolute weight of all the fubftances together was the fame before and after the procefs ${ }^{*}$. It is imponible then that phofphorus can be compofed of phofphoric acid and phlogition, as phofphorus itfelf enters into the compofition of that acid (ς).

Thus the combuftion of phofphorus, like that of fulphur, is nothing elfe than its comhination with oxygen; for during the procefs no new fubftance appears except the acid, accompanied indeed with much heat and light.
Fhorphorus Phofphorus combines readily with fulphur, as Marcor bine: graf difcovered during his experiments on phofphorus. with ful- This combination was afterwards examined by Mr Pelphut.

\dagger Pollutier,

letier. The two fubfances are capable of being mixed in different proportions. Seventy-two grains of phofphorus and nine of fulphur, when heated in about four ounces of water, melt with a gentle heat. The compound remains fluid till it be cooled down to 77°, and then becomes folid. Thefe fubftances were combined in the fame manner in the following proportions:

Phofphorus and fulphur may be combined alfo by melting them together without any water; but the combination takes place fo rapidly, that they are apt to ruhh out of the veffel if the heat be not exceedingly moderate + .

Phofphorus is capable of combining alfo with many other bodies : the compounds produced are called phof. phurets.

The affinities of phofphorus have not yet been afecrtained.

Sect. III. Of Carbon.

If a piece of wood be put into a crucible, well covered with fand, and kept red hot for fome time, it is converted intu a black fhining brittle fubllancc, without either tafte or fineil, well known under the name of charcoal. This fubltance contuins always mixed with it feveral earthy and faline particles. When freed from thefe impurities it is called carbon.

Charcoal is infoluble in water. It is not affected (pro-propertics vided that all air be excluded) by the mof violent heat of carben. which can be applied, excepting only that it is rendered much harder.

New-made charcoal abforbs moifture with avidity. When heated to a certain temperature, it abforbs air copioufly. La Metherie plunged a piece of burning charcoal into mercury, in order to extinguifh it, and introduced it immediately after into a glais veffel filled with common air. The charcoal abforbed four times its bulk of air. On plunging the charcoal in water, one-fifth of this air was difengaged. This air, on being examined, was fourd to contain a much fmaller quantity of oxygen than atmofpherical air does. He extinguifhed another piece of charcoal in the fame manner, and then introduced it into a veffel filled with oxygen gas. The quantity of oxygen gas abforbed amounted to eight times the bulk of the charcoal; a fourth part of it was difengaged on plunging the charcoal into water *. It appears from the experiments of Senncbier, * Your. de that charcoal when expofed to the at mofphere ablorbs Pby. $\mathbf{x x x}$.
oxygen gas in preference to azot t, as the other portion 309. of common air is called.
When heated to the temperature of $370^{\circ} \ddagger$, it takes 26 r . fire, and, provided it has been previouny freed from the $t M$ orveas, earths and falts which it generally contains, it burns Encycl. Mfo without leaving any refidunm. If this combuftion be tbod art. performed in clofe veffels filler with oxy gen gas inftead Affrite. of common air, part of the charcoal and oxygen difap-Converted pear, and in their room is found a particular gas exactly into an aequal to then in weight. This gas has the properties cid. of an acid, and is therefore called carbonic acid gas. Mr Lavoifier, to whon we are indebted for this difcovery, afcertained, by a number of very accurate experiments, that this gas was compofed of about 28 parts of carbon and 72 of oxygen $\|$.
$\|$ Mcm: 1

$$
\text { Carbon is fufceptible of cryfallization. In that flate cad. } 178 \mathrm{r},
$$ it is called diamond. The figure of the diamond varies P. 44 S. confiderably; but moft commonly it is a hexagonal prifm surceptiole terminated by a fix-fided pyramid. When pure it is co- of cryflallilourlefs and tranfparent. Its fpecific gravity is fromzation. 3,44 to 3,55 . It is one of the hardeft fubftances in nature ; and as it is not affected by a confiderable heat, it was for many ages confidered as incombultible. Sir Ifaac Newton, obferving that combuftibles refracted light more powerfully than other badies, and that the diamond poffeffed this property in great perfection, fuf- pecteds

Phofphozic acid therefore is compofed of 100 parts phofphorus and 1540 oxygen
pected, from that circumitance, that it was capable of combuttion. This fingular conjecture was verificd in 1694 by the Florentine academicians, in the prefence of Cofmo III. grand duke of Tufcany. By means of a burning-glafs, they deftroyed feveral diamonds. Francis I. emperor of Germany, afterwards witneffed the defruction of feveral more in the heat of a furnace. Thefe experiments were repeated by Rouclle, Macquer, and D^{\prime} Arcet; who proved that the diamond was not merely evaporated, but actually burnt, and that if air was excluded it underwent no change.

No attempt, however, was made to afcertain the product, till Lavoifier undertook a feries of experiments for that purpofe in 1772. He obtained carlonic acid gas. It might be concluded from thefe experiments, that the diamond contains carbon; but it was referved for Mr 'Tennant to flew that it confifted entirely of that fubftance.

Into a tube of gold, having one end clofed and a glafs tube adapted to the other to collect the product, that gentleman put $2 \frac{1}{2}$ grains of diamonds and a quarter of an ounce of nitre (m). This tube was heated flowly; the confequence of which was, that great part of the nitric acid paffed off before the diamond took fire, and by that means almoft the whole of the carbonic acid formed during the combultion of the dianond remained in the potafs, for which it has a flrong affluity. To afcertain the quantity of this carbonic acid, he diffolved the potafs in water, and added to the folution another falt compofed of muriatic acid and lime. Muriatic acid has a flronger affinity for potafs than for lime; it therefore combines with the potafs, and at the fame time the lime and carbonic acid unite and fall to the bottom of the vefill, becaufe they are nearly infoluble in water. He dccanted off the liquor, and put the lime which contained the carbonic acid gas into a glafs globe, having a tube annexed to it. This globe and tube he then filled with mercury, and inverted into a veffel containing the fame fluid. The lime by that means occupied the very top of the tube. It now remained to feparate the carbonic acid from the lime, which nay be done by mixing it with any acid, as almoft every other acid has a fironger affinity for lime than carbonic acid has. Accordingly on introducing muriatic acid, 10,3 ounce meafures of carbonic acid gas, or nearly 9,166 grains, were feparated. But, according to the experiments of Lavoifier, this gas is compofed of 72 parts of oxygen and 28 of carbon; 9,166 grains, therefore contain 2,56 grains of carbon, which is almott precifely the weight of the diamond confumed. It follows, therefore, that it was compofed of pure carbon*: The difficulty of burning the diamond is owing entirely to its harduefs. Meffrs Morveau and Tennant rendered common charcoal fo hard by expofing it for fome time to a violent fire in clofe veflels, that it loft much of its natural tendency to combuftion, and endured even a red heat without catching fire + .

Charcnal poffeffes a number of fingular properties,
which render it of confiderable importanee. It is in- Hydrugen. capable of putrefying or rotting like woorl, and is not therefore liahle to decay through afe. 'This property has been long known. It was cuft,mary among the ancients to char the outfide of thofe flakes which were to be driven into the ground or placed in water, in or. der to preferve the wood from foniling. New-made charcoal, by being rolled up in cloths which have cuntracted a difagreeable odour, effectually deftroys it. It takes away the bad taint from meat brginning to putrefy, by being boiled along with it. It is perhaps the beft teeth powder known. Mr Lowitz of Peterlburgh has fhewn, that it may be ufed with advantage to purify a great variety of fubifances.
Carbon unites with a number of bodics, and forms Carburcts. with them compounds known by the name of carburets.

Its affinities have not yet been afcertained.

Sect. IV. Of Hydrogen.

Pur into a glafs veffel furnifhed with two mouths a 36 quantity of frefh iron filings, quite free from rult. Lute Method of into one of thefe mouths the end of a crooked glafsprocuring tube. Infert the other end of this tube below a glafs hydrogen. jar filled with water, and inverted into a pueumatic apparatus. Then pour upon the iron filings a quantity of fulphuric acid, diluted with twice its own weight of water, and clofe up the mouth of the veffel. Immediately the iron filings and acid effervefce with violence. a valt quantity of gas is produced, which ruthes through the tube and fills the jar. This gas is called bydrogens gas (N).

It was obtained by Dr Mayow and by Dr Hales from various fubftances, and had been known long before in mines under the mame of the fie damp. Mr Cavendifh * was the firlt who examined its properties with *Pbil. attention. They were afterwards more fully inveftiga. Tranf(1766. ted by Priefley, Scheele, and Fontana.
Hydrogen, like air, is invifible and elatic, and ca- Its properpable of indefinite compreffion and dilatation. tics.

Its fpecific gravity differs according to its purity, Kirwan found it $0,00010 \dagger$; Lavoifier $0,050094 \ddagger$, or $+2 n$ Phogifabout twelve times lighter than common air.
All burning fubtlances are immediately extinguifhed \ddagger Lavonficr by being plunged into this gas. It is incapable, there- Afpendixion fore, of fupporting combuttion.
Animals, when they are obliged to breathe it, die almoft inftantaneoufly. Scheele, indeed, found that he could breathe it for fome time without inconvenience $\S ; \$$ Shece on but Fontana, who repeated the experiment, difcovered Fire. that this was owing to the quantity of common air contained in the lungs when he began to breathe; for on expiring as ftrongly as poffible before drawing in the hydrogen gas, he could ouly make three refpirations, and even thefe three produced extreme feeblcuefs and oppreffion about the breaft II.

If a phial be filled with hydrogen gas, and a lighted ${ }^{P L y y . x v .920}$ candle be brought to its mouth, the gas will take fire, and burn gradually till it is all confumed. If hydroE e 2 gen
(m) Nitre is compofed of potafs and ritric acid; and nitric acid contains a great quantity of oxygen, which is eafily feparated by heat. Diamond, when mixed with nitre, burns at a mucl lower heat than by any other procefs.
(N) It was formerly called inffammalle air, and by fome chemifts phlogifon.
$\underbrace{\text { Hydrogen. }}$ gen and oxygen gas be mixed together and kindled, they burn inftantaneoufly, and produce an explotion like grunpowder. The fane effect follows when a mixture of hydrogen gas and atmofpherical air is kindled, but the explefion is lefs viulent. Hydrogen gas will not burn except in contact with oxygen gas, nor will it burn even in contact with oxygen gas, unlefs a red heat be applied to it. If 85 parts by weight of oxygen gas, and 15 of hydrogen gras, be mixed together, and fet on fire in a clofe vefikl, they dilappear,
3^{s}

Compofi-

 and in their place there is found a quantity of water exanly equal to them in wright. This water muft be esmpofed of thefe two gafes; for it did not previoully exift in the veffel, and no other fubltance except the gafes was introduced. Water then is compofed of oxygel and hydrogen; and the combuttion of hydrogen is nothing elfe but the act of its combination with oxygen (o).It had been fuppofed, in confequence of the experiments of Dr Picictley and feveral other philofophers, that when hydrogen gas was allowed to remain in con-
\% Encycl. Metbod. Cbim.i 794. \dagger Ann. d_{e} Clim.i.1g2. \ddagger Four. do
 412. Compoundsted, and carbonated hydrogen gas. if hydrogen gas. exclude every other gas.

$$
1
$$ tace with water, it was gradually decompofed, and converted into another gas; but Mr de Morveau *, Mr Haffenfratz \dagger, and Mr Libes \ddagger, have fhewn that it undergoes no change, provided fufficient care be taken to

Hydrogen gas diffolves fulphur, phofphorus, and carbon. The compounds are called fulpburated, phofphora-

1. Sulphurated hydrogen gas was firf examined with attention by Scheele, who, together with Bergman, difeovered many of its properties. Mr Kirwan likewife publifhed a very valuable paper on the fame fuhject. If equal parts of fulphur and potafs be melted together in a covered crucible, they combine together, and form a compound known by the name of fulphurct of potafs, but formerly called, from its red colour, bepar fulphinis, or liver of fulpbur. When this fubftance is moiftened with water, it gives out a quantity of fulphurated hydrogen gas; henee this gas was at firft called bepatic gas.
int Geugembre enclofed a bit of fulphur in a glafs veffel filled with hydrogen gas, and melted the fulphiur by means of a burning-glats. A quantity of it difappeared, and the hydrogen affuned all the properties of bepatic gas. Hence it follows that this gras is merely fulphur difolvel in hydrogen gas.

The eafieft method of obtaining it is to pour an acid, the muriatic for inftance, on a quantity of the fulphuret reduced to powder. An effervefcence takes place, the gas is extrieated, and may be collected by meaus of a pneumatic apparatus. The theory of this emifion is obvious. The fulphur is gradually converted into fulphurie acid, by decompofing the water, which is always united with acids, and feizing its oxygen: the hydrogen of the water is thus fet at liberty; it affumes the gafeous form, and at the fame time diffolves
part of the remaining fuphour, for which it has a con-Hydrogen. liderable affinity.

The fpecitie gravity of fulphurated hydrogen gas is $0,00135^{*}$; it is to common air as 1106 to 1000 .

It has a very fetid odour, precifely fimilar to that on PLlogifoons, emitted by rotten eggs, which indeed is uwing to the emiffion of the very fame gas.

It is not more refpirable than hydrogen gas. When fet on fire, in contact with oxyren gas, it burns with a light bluc flame, without exploding, and at the fame time a quantity of fulphur is depolised. The comburtion of this gas, then, is merely the union of its hydrogen, and perliaps part of its fulphur, with oxygen.

This gas turns fyrup of viletes to a green colourt. + Fourcroy': It does not feen capable of exifting in atmofpherical Cbernifry, air without decompofition; for the moment it comes into contact with oxygen gas, fulphur is depolited \ddagger.
2. Phof fiphorated hydrogen gas was difeovered by Mr Gengembre in 1783 , and by Mir Kirwan fome tinic after, before he becane acquainted with the experiments of that gentleman. It may be procured by mixing phofphorus with potafs diffolved in water, and applying a boiling heat to the folution. The phofphorus is gradually converted into an acid by decompofing the water, and uniting with is oxygen. The hydrogen affumes the form of a gas, and flies off after difiolving a little of the phofphous. This gas may be collected by means of a pneumatic apparatus.

Phofphorated hydrogen gas has a fmell refembling that of putrid fifth. When mised with oxygen gas or common air, it becomes luminuus; and on the application of the fmalleft heat, it burns with aftonifhing rapidity §. The products are water and phofphoric acid. § Kirveno The combuftion of this gas therefore is nothing elfe than the union of its phofphorus and hydrogen with oxygen, attended by an emiffion of heat and light.
Phofphorated hydrogen gas may alfo be formed by introducing a bit of phofphorus into a jar containing hydrogen gas : but care muft be taken to make this gas as dry as poffible; for its affinity with phofphorus is weakened in proportion to its moifture $\|$.
3. Carbonated hydrogen gas arifes fpontaneoufly in hot weather from narfhes, but always mixed with feveral other gafes. Several fpecies of it have been lately difcovered by the affociated Dutch chemifts Bondt, Dieman, Van Trooftyek, and Lauwerenberg 9 . When Inn. de 75 parts of fulphuric acid and 25 of firit of wine are Chim. xxio mixed together, a gas is extricated which fuffers no al- ${ }^{45}$. teration from fanding over water. Its fpecifie gravity ${ }^{42}$ is $0,0011 \mathrm{I}$, or it is to common air as $9: 9$ to 1000 . It Carbonased has a fetid odour, and burns with a ftrong compact gas. flame. When paffed throingh fulphur it is converted into fulphurated hydrogen gas, and at the fame time a quantity of carbon is depofited in the form of a fine powder; it muft therefore be compofed of earbon and hydrogen gas. When burnt, the product is carbonic
(o) The hiflory of this great difcovery, and the objections which have been made to it, we referve for the chapter which treats of Water, where they will be better underfood than they could be at prefent. This fubftance was called bydrogen by the French chemifts, becaufe it enters into the compofition of water, from wiag zoater, and rwouxt I amborn. Objections have been made to the propriety of the name, into which we fhall not enter. It ought never to be furgotten that Newton had long before, with a fagacity almof greater than human, conjectured, from its great refracting power, that water contained a combuffible fubfance.

Hydrogen. acid gas and water *. By making ether (P) pafs thro' - loit. a red loot glafs tube, another carbonated hydrogen gras was formed, the fecifie gravity of which was $0,00286$. Spirit of wine, paffed in the fame manner, afforded a gas, the fpecific gravity of which was 0,00053 , and which burned with a paler flame than the other two. Thefe gufes were found to contain from 80 to 74 parts of carbon, and from 20 to 26 of lydrogen. The firtt fpecies was found to contain molt carbon, and the lalt Ibid. to contain leaft \dagger.

The affinity of hydrogen gas for thefe three combul-
43
Afinitice of tibles is as follows:
thele gafer.

> Sulplur,
> Carbon,
> Phofphurus (e).

Dr Auftin found, that by repeatedly pafling electric explofions through a fmall quantity of carbonated hydrogen gas, it was permanently dilated to nore than twice its original bulk. He rightly coneluded, that this remarkable expanfion could only be owing to the

44 volition of hydrogen gas. On burning air thus expanded, he found that it required a greater quantity of oxygen than the fame quantity of gas nut dilated by electricity : An addition therefore had been made to the combuttible matter; for the quantity of oxygen neceffary to complete the combuftion of any body, is always proportiunal to the quantity of that body. He concluded from thefe experiments, that he had decompofed the carbon which had bcen diffolved in the hydrogen gas ; and that carbon was compofed of hydrogen and azot (R), fome of which was always found in the veffel after the dilated gas had been burnt by means of oxygen \ddagger. If this conclufion be fairly drawn, we
\ddagger Plit.
Traty. lxxx.mult expunge carbon from the lift of fimple fubitances, 51. and honceforth confider it as a eompound.
45
Examaned,
There was one.circumfance which ought to have prevented Dr Aullin from drawing this conclufon, at leaft till warranted by roore decifive experiments. The quantity of combutible matter had been inereafed. Now, if the expantion of the carbonated hydrogen gas was owing merely to the decompofition of carbon, no fuch increafe ought to have taken place, but rather the contrary; for the carbon, which was itfelf a combultible fubflance, was refolved into two ingredients, hydrogen and azot, only the firft of which burnt on the adjition of oxygen and the application of heat. Dr Auftin's experiments have been lately repeated by Mr William Henry with a great deal of accuracy f. He found that the dilatation which Dr Auftin defcribes actually took place, but that it could not be carried beyond a certain degree, a little more than twice the original
bulk of the gas. Upon butning feprantely by means of oxygen, two cqual portions of canbonated hydrogen gras, one of which had lien expanded bey eleatricity to dunble its uriginal bulk, the other mot, he fonnd that each of them puoluced precifely the fane quantity of carboni= acid sus. Both therefore contained the fanc quantity of carlon ; confequently no carbon had beon decompounderl by the electric thoeks.

Mr Henry then fufpected that the dilatation was ow- And found ing to the water which cevery gas contains in a larger unfuccefsor fnaller quantity. 'Io afcortain this, he endeavonted ful. to deprive the carbonated hydrogen gas of as much water as poffible, by making it pafs over very dry potals, which attracts water with avidity. Gas treated in this manner could only be expanded one fixth of its bulk; but on admitting a drop or two of water, the expanfion went on as ufual. The fubitance decompounded by the electricity, then, was not the carbon, but the water in the carbonated liydrogen gas. Nor is it dificult to fee in what mamer this decompofition is effected. Carbon, at a high temperature, has at greater aftinity for oxygen than hydrogen has; for if the fleam of water be made to pafs over red hot charcual, it is decompoled, and carbonic acid and hydrogen gas are formed. The electric explofion fupplies the proper temperature; the carbon unites with the oxygen of the water, and forms carbonic acid; and the lyddrogen, thus fet at liberty, occafions the dilatation. Carbonic acid gas is abforliced with avidity by water: and when water was admitted into 709 neafures of gas thus dilated, 100 meafures were abforbed; a prouf that carbonic acid gas was actually prefent. As to the azot which Dr Auftin fomd in his dilated gas, it evidently proceeded from the admiffion of fome atmofpheric air, about 73 parts of which in the 100 confit of this gas: for Dr Aultin's gas had ftood long over water; and Drs Priefley and Higgins have fhewn that air in fuch a fituation always becomes impregnated with azot.

The affinities of hydrogen have not yet been afcertained, but perhaps they ate as follows:
hydrogen.

> Oxygen, Curbon, Azot.

Sect. V. Of Azot.

If a quantity of iron filings and fulphur, mixed to- Nithod of gether and moiftened with water, be put into a glafs procuring veffel full of air, it will abforb all the oxygen in the azot. courfe of a few days; but a confiderable refiduum of air flill remains ineaparble of any farther diminution. This refiduum has obtained the appellation of azotic gas.
(p) Ether is a very volatile and fragrant liquid, obtained by mixing fpirit of wine and acids, and diflilling. It Thall be afterwards defcribed.
(e) Sulphur decompofes carbonated hydrogen gas; therefore its affinity is greater than that of carbon. The Dutch chemifts melted phofphorus in carbonated hydrogen gas, but no change was produced; therefore the affinity of phofphorus is inferior to that of carbon.
(R) See next Section. - His theory was, that earbonated hydrogen gas was compofed of hydrogen, and azot, and carbon of azot, and carbonated hydrogen gas, which comes nearly to the fame thing with regard to the elements of carbon. It is fingular enough, that though Dr Auflin would not allow the prefence of carbon in carbonated hydragen gas, he actually decompofed it by melting fulphur in it: the fulphur combined witl the hydrogen gas, and a quantity of carbon was precipitated. This experiment he relates without making any remarks upon it, and feems indeed not to have paid any attention to it.

Azot.
\qquad 44 Dificuvery of 220 .

It was difcorered in 1772 by Dr Rutherford, now prifeffor of botany in the univerlit) of Ldiuburgh (s). Schecte procured it by the above proceds as early as 175^{5}, and proved that it was a dittinct fluid. Mr Lavoifier afterwards proved the fane lhing, without any previous knowledge of Scherle's difcoveries.

The air of the atmolphere contains ahout, 73 pats of aroutic gas; almolt all the reft is oxygen gas. The ealielt method of procuring azotic gas is to put fome fulphuret of potafs into a glafs veftel filled with air, and accuratcly clufed, and then to apply heat to the fulphnret. All the oxygen is atforbed amolt inftantly. This * Nicbot method was firit pcinted out by Morveau*.

Mr lirwan examined the fpecitic gravity of azotic gas ohtained by Scheele's procejs : it was 0,00120: it is thercfore fomewhat lighter than the atmofpheric air ; it is to atmofpheric air as 9^{3}, to $1000+$.

It tinges delicate blue colours nightly with green \ddagger. It is exceedingly noxious to animals; if they are obliged to refpire it, they drup down dead almoft inftantly (τ). No combutible will burn in it. This is the reafon that a candle is extinguifhed in atmofpherical air as foon as the oxygen near it is confumed. Mr Goettling, indeed, publimed, in 1794, that phofphorus fhone, and was converted into phofphuric acid, in pure azotic gras. Were this the cafe, it would not be true that no combulible burns in this gas; for the converfion of Fhofphorus into an acid, and even its fhumg, is an actual though flow combuftion. Mr Goettling's experiments were foon after repeated by Drs Scherer and Jaefer, whofound that plofphorus does nut fhine in azotic g's when it is perfectly pure; and that therefore the gas on which Mr Goettling's experiments were made had contained a mixture of oxygen gas, owing principally to its having been only confised by water. Thefe refults were afterwards confirmed by Profeffor Lampadius and Profeffor Hildebrandt. It is therefore proved beyond a doubt, that phofphorus does not burn in azotic gras, and that whenever it appears to do f_{0}, there is always fome oxygen gas prefent \oint.

Azotic gas is capable of diffolving phofphorus, as has been proved by the experiments of Fourcroy and Vauquelin.
It diffolves alfo a little carbon: for azotic gas obtained from animal fubftances, which contain a great deal of azot, whea confined long in jars, depofites on the
lides of them a black matter which has the properties of carbon *.

Thefe two folutions, the properties of which have not * fourcroy, yet been accurately examined, are called phofphorated Cbim. i. 45 . and carbonated azotic zुas.
Azotic gas is capable of comhuftion. Take a glafs production tube, the diameter of which is about the fixth part of wituic an inch; Thut one of its ends with a cork, throngh the acid. middle of which paffes a fmall wire with a ball of metal at each end. Fill the tube with mercury, and then plunge its open end into a hafon of that fuid. Throw up into the tube as much of a mixture, compofed of 13 parts of azotic and 87 parts of oxygen gas, as will fill 3 inches. Through this gas make, by means of the wire in the cork, a number of electric explotions pais. The volume of gas gradually diminifhes, and in its place there is found a quantity of nitrous acid. This acid, therefore, is compofed of azot and oxygen: and thefe two fubllances are capable of combining, or, which is the fame thing, azotic gas is capable of combuttion in the temperature produced by electricity, which we know to be pretty high. The combultibility of azotic gas, and the natire of the product, was firit difcovered by Mr Cavendifh, and communicated to the Royal Society on the 2d of June $17^{4} 5(\mathrm{u})$.

The affinities of azot are ftill unknown. It has never Attempts yet been decompounded, and mult therefore, in the pre-to decomfent ftate of our knowledge, be confidered as a imple pofe azot fubftance. Dr Priefley, who obtained azotic gas at a very early period of his experiments, conlidered it as a compound of oxygen gas and phlogiton, and for that reafon gave it the name of phlogiflicated air. According to the theory of Stahl, which was then univerfally prevalent, he confidered combultion as merely the feparation of phlogifton from the burning body. To this theory he made the following addition : Phogifton is feparated during combultion by means of chemical affinity : Air (that is, oxygen gas) has a ftrong affinity for phlogiton: Its prefence is neceffary during combution, becanfe it combines with the phlogifton as it feparates from the combutible; and it even contributes by its affinity to produce that feparation: The monent the air has combined with as much phlogifton as it can receive, or, to ufe.a chemical term, the moment it is faturated with phlogifton, combution neceffarily ftops, becaufe no more phlogiton can leave the combut.
(s) See his thefis De Aere Mephitico, publifhed in 1772.-" Sed aer falubris et purus refpiratione animali non modo ex parte fit mephiticus fed et aliam indolis fue nutationem inde patitur. Poftquam enim omnis aer mephiticus (carbonic acid gas) ex eo, ope lixivii cauftici fecretus et abductus fuerit, qui tamen reflat nullo modo falubrior inde evadit; nam quamvis nullam ex aqua calcis precipitationem faciat haud minus quam antea et fammam et qitam extinguit. Page 17.
"Aer qui per carbones ignitos folle adactus fuit, atque deinde ab omni aere mephitico (carbonic acid gas) expurgatus, malignus tamen adhuc reperitur et omnino fimilis eft ei qui refpiratione inquinatur. Immo ab experiment is patet hane folam effe aeris mutationem quæ inflammationi adferibi poteft. Si enim accenditur materies quelibet quæ cx phlogifto et bafi fixa atque fimplici conftat, acr inde natus ne minimam acris meplitici quantitatem in fe continere videtur. Sic aer in quu fulphur aut phofphorus urinæ combutlus fuit, licet maxime malignus, calcem tamen ex aqua minime precipitat. Interdum quidem fi ex phofphoro natus fuerit, nubeculam aqure calcis inducit fed tenuiflimam, nec aeri mephitico attribuendam, fed potius acido illi quod in phofphoro ineft, et quod, ut experimenta docuerunt, hoc fingulari dote pollet." Pagre ig.
(r) Hence the name azot, given it by, the French chemilts, which fignifies deflrutive to life, from α and ζ an.
(u) It is remarkable enough, that the acidity of nitric acid was afcribed by Mayow, in $167 \dot{4}$, to the prefence of oxygen. Indoles cauflica 「piritus nitri (fays he) a particulis ejus isneo-aereis provenit. Tract. p. 19.

Azos. combuftible (v) : Air faturated with phlogifon is azotic gas. This was a very ingenious theory, and, when Dr Prieftley publifhed it, exceedingly plaufible. A great number of the moft eminent chemifts accordingly embraced it: But it was foon after difcovered, that during combultion the quantity of air, inftead of increafing, as it ought to have done, had phlogitton been added to it, actually diminifhed both in volume and weight. There was no proof, therefore, that during combuftion any fubftance whatever combined with air, but rather the contrary. It was difcovered alfo, that a quantity of air combined with the burning fubflance during combuftion, as we have feen was the cafe with fulphur, phofphorus, carbon, and hydrogen; and that this air had the properties of oxygen gas. Thefe difcoveries entirely overthrew the evidence on which Dr Prieftley's theory was founded: accordingly, as no attempt to deconrpound azot has fucceeded, it has been given up by alnoft every chemitt except Dr Prieftley himfelf. Atmufpheric air, as Scheele firlt proved, is compofed of about 27 parts of oxygen and 73 of azotic gas. During combuftion, the oxygen is abftracted and the azotic gas remains behind.

La Metherie made an atiempt to prove that azot was compofed of oxygen and carbon (w). He took a bit of burning charcoal, extinguifhed it in mercury, and then plunged it while hot into oxygen gas. On being plunged into water, one fourth of the gas was difengaged, and part of it was found to confift of azotic gas. From this he concluded that he had formed azotic gas by combining oxygen and carbon: But it was proved by Mr Lavoifier, beyond the poffibility of doubt, that oxygen and carbon form carbonic acid gas. They cannot thien certainly forn azot ; for two cuntradictory facts cannot both be true. There muft then have been fomething overlooked in the experiment. Indeed the experiment itfelf does not. warrant the conclufion which De La Metherie drew from it. He did not afcertain whether the weight of the charcoal was diminifhed; and, befides, there was azot mixed with the oxygen gas which he employed, as he himfelf has informed us: And how was it poffible for him to admit the charcoal into water without, at the fame time, admitting fome atmofpherical air ?

We have now defcribed all the combuftibles which ere at prefent reckoned fimple, except the nutals. We have found, that during combuftion all of them combine with oxygen ; that no part of them is difengaged, no part of them loft :. we have therefore concludded, that the combuftion of thefe fubtances is nothing elfe but the aft of their uniting with oxygen. We have feen, however, that none of them, except phofphorus, was capable of uniting with oxygen at the common, temperature of the atmofphere; that, in order to produce the union, heat was neceffary, and that the degrree of this heat was different for each. Hydrogen required a red heat, and azot.a.ftill greater. We have. feen,
too, that during thefe combinations a guantity of heat and light efcaped. Now, why is heat neceflary for thefe combinations? and whence come the heat and the light which we perceive during the combuttion of thefe bodies? Thefe queftions arc of the higheit importance, and can only be anfivered by a particular inveftigation of the nature and properties of heat and light. This inveftigation we fhall attempt, as foon as we have defcribed the metals and earths, which form the fubject of the two following chapters.

Chaf. Ill. Of Metals.

Metals may be confidered as the great inftruments properties of all our iinprovements: Without thein, many of the of metals. arts and fciences could hardly have exifted. So fenfible were the ancients of their great importance, that they raifed thofe perfuns who firt difcovered the art of working them to the rank of dcities. In chemiftry, they have always filled a confpicuous flation : at one period the whole fcience was confined to them; and it may be faid to have owed its very exiflence to a raģc for making and tranfmuting metals.

1. One of the mont confpicuous properties of the metals is a particular brilliancy which they poffefs, and which has been called the metallic luffre. This procceds from their reflecting much more light than any other body; a property which feems to depend partly on the clofenefs of their texture. This renders them peculiarly proper for mirrors, of which they always form the balis.
2. They are abfolutely opaque, or impervious to light, even after they have been reduced to very thin
 thick, does not permit the fmalleft ray of light to pafs throught it. Gold, however, may be rendered tranf.
 mits light of a lively green colour *. And it is not *Nickot improbable that all the other metals, as Sir Iface Newton fous Nor \Rightarrow fuppofed, would become tranfparent, if they could be on Fourcroge. reduced to a fufficient degree of thinnefs. It is to this opacity that a part of the excellence of the metals, as mirrors, is owing ; their brilliancy alone would not qualify thein for that purpofe.
3. They may be melted by the application of heat, Flfibility. and even then Alill retain their opacity. This property enables us to caft them in moulds, and then to give them any flape we pleafe. In this manner many elegant iron utenfils are formed.
4. Their fpecific gravity is greater than that of any Gravitg. other body hitherto difcovered.
5. They are better conductors of eleciricity than any other body.
6. But one of their moft important properties is Malitabilimalleability; by which is meant the capacity of being ty. extended and flattened when ftruck with a hammer. This property enables us to give the metallic body any form we tbink proper, and thus renders it eafy for us

[^8]\qquad
\qquad
\qquad

\author{

} this property cuntiderably.
7. Awothe property which is alfo wanting in many of the metals, is dugifity; by which we mean the capscity of being drawn out into wire by being foreed through holes of various diameters. This property has by fume been called tenacity; and it doubtlefs depends
upon the tenacity of the vailuus metals.
61
Calcination
8. When expofed to the action of heat and air, moft of the metals lofe their luftre, and are converted into earthy-like powders of different colours and properties, according to the metal and the degree of heat employ ed. Several of the metals even take fire when expufed to a ftrong enough heatp; and after combultion the refidu:m is found to be the very fame earthy like fubftance. If any of thefe calces, as they are called, be mixed with charcoal-powder, and expofed to a ftrong
62 heat in a prope" veffel, it is clanged again to the metal Stahl's the-from which it was produced. From thefe phenomena ory of the Stahl concluded, that metals were compofed of earth compofition and pblogifor. He was of opinion that there was only
of metalo one primitive earth, which not only forred the bafis of all thofe fubitances known by the name of earths, but the batis alfo of :u! the metals. He found, however, that it was inpufible to combine any neere earth with phlorition; and eoacluded, therefore, with Beccher, that there was another principle befides earth and phlugifton, which entered into the compofition of the metals. To this principle Beccher gave the name of mercuria: carth, becaufe, according to him, it exifted molt abundantly in mercury. This principle was fuppofed to be very volatile, and therefore to ly off during calcination: and fome chemifts even afirmed that it might be obtained in the foot of thofe chimneys under which metals have been calcined.
A Ariking defect was foon perceived in this theory. The original metal may again be produced by heating its calk along witle fume other fubitance which eontains phlogitton: now, it the inercurial eartl flies off during combuftion, it cannot be neceflary for the formation of complete metals, for they may be produced without it : if, ofl the contrary, it adheres always to the calx, there is no proof of its exiftence at all. Chemilts, in confequence of thefe obfervations, found themfelves obliged to difcard the mercurial principle altogether, and to conchude that inetals were compofed of earth only, united to phlogiton. But if this be really the cafe, how comes it that thefe two fubftances cannot be united by art? Henkel was the firt who attempted to folve this difficulty. According to him, earth and plilogifton are fubilances of fo oppofite a nature, that it is exceedingly difficult, or rather it has been hitherto inpoffible, for us to commence their union; but after it has been once begun by nature, it is an ealy matter to complete it. No calcination has hitherto deprived the metals of all their phlogifton ; fome tlill adheres to the calces. It is this remainder of phlogillon which renders it fo eafy to reftore them to their metallic fate.
to convert them into the various inftruments for which we have oceation. All metals do not poffeis this property; but it is remarkable that almoft all thofe which were known to the ancients have it. Heat increafes

Were the calcination to be continued long enough to deprive them altogether of plagiton, they would be reduced to the tate of other earths; and then it would be equally dificult to convert them into metals, or, to ufe a chenical tern, to reduce them. Accordingly w: find that the more completely a calx has been calcined, the more difficult is its reduction. This explanation was favourably receivel. But after the characteritic Farther im. properties of the various eart/s had been afcertained, proved and the calces of metals were accurately exannined, it was perceived that the calces differed in many particulars from all the earths, and from one anuther. To call them all the fame fubftance, then, was to go much farther than either experiment or obfervation would warrant, or, tather, it was to declare open war againlt both experiment and obfervation. It was concluded, therefore, that each of the metals was compofed of a peculiar eartly fublance combined with phlogiton. For this great improvement in accuracy, chemillry is chiefly indebted to lergman.

But there were feveral phenomena of calcination Still impere which had all this time been unaccountably overlooked. iect. The calces are all confiderably heavier than the metals from which they are obtained. Boyle had obferved this circumftance, and had afcribed it to a quantity of fire which, according to him, became fixed in the inetal during the procefs*. But fueceeding elemilts paid * Fire and little attention to it, or to the action of air, till Mr Lasfame rueig $b=$ voifier publifized his celebrated experiments on calkina- - . tion, in the Memoirs of the Paris Academy for 1774. He put eight ounces of $t i n$ into a large glafs retort, the point of which was drawn out into a very flender tube to admit of eafy fulion. This retort was heated flowly till the tin began to melt, and then fealed hermetically. This heat was applied to expel fome of the air from the retort : without which precaution it would have expanded and burft the veffel. The returt, which was capable of containing 250 cubic inches, was then weighed aceurately, and placed again upon the fire. The tin 67 foon melted, and a pellicle formed on its top, which Refured by was gradually converted into a grey powder, that funk Lavuifier. by a little agitation to the botton of the liquid metal: in fhort, the tin was partly converted into a calx. This proeefs went on for three hours; after which the caleination itopped, and no farther change could be produced on the metal. The retort was then taken from the fire, and found to be precifely of the fame weight as before the operation. It is evident, then, that no new fubftance had been introduced, and that therefore the increafed weight of calces cannot, as Buyle fuppofed, be owing to the fixation of fire (x).

When the point of the returt was broken, the air rufhed in with a hiffing noife, and the weight of the retort was increafed by ten grains. Ten grains of air, therefore, mutl have entered, and, confequently, precifely that quantity muit have difappeared during the calcination. The metal and its calx being weighed, were found juft ten grains heavier than before: therefure, the air which difappeared was abforbed by the metal : and as that part of the tin which remained in a metallic ftate was unchanged, it is evident that this air
(x) This experiment had been performed by Boyle with the fame fuccefs. He had drawn a wrong conclufion from not attending to the ftate of the air of the veffel. Sharw's Boyle, II. 394.

Metals. air mult have united with the calx. The increafe of weight, then, which metals experience during calcination, is owing to their uniting with air (x). But all the air in the veffel was not abforbed, and yet the calcination would not go on. It is not the whole, then, but fome particular part of the air which unites with the calces of metals. By the fubfequent difcoveries of Prieftey, Schecle, and Lavoifier himfelf, it was afcertained, that the refiduum of the air, after calcination has been performed in it, is always pirre azotic gas: It follows, therefore, that it is only the oxysen which combines with calces; and that a metallic calx is not a fimple fubftance, but a compound. Mr Lavoifier obferved, that the weight of the calx was always equal to that of the metal employed, together with that of the oxygen abforbed. It became a queftion then, Whether metals, during calcination, laft any fubftance, and confequently, whether they contained any phlogiton? Mr Lavoifier accordingly propofed this queftion ; and he anfwered it himfelf by a number of accurate experiments and ingenious obfervations. Metals cannot be calcined excepting in contact with oxygen, and in proportion as they combine with it. Confequently they not only abforb oxygen during their caleination, but that abforption is abfolutely neceffary to their affuming the form of a calx. If the calx of mercury be heated in a retort, to which a pneumatic apparatus is attached, to the temperature of 1200°, it is converted into pure mercury; and, at the fame time, a quantity of oxygen feparates from it in a gafeous form. As this procefs was performed in a clofe veffel, no new fubitance could enter : The calx of mercury, then, was reduced to a metallic tate without phlogiton. The weights of the metal and the oxygen gas are together juif equal to that of the calx ; the calx of mercury, therefore, mult be compofed of mercury and oxygen ; confequently there is no reafon whatever to fuppofe that mercury contains phlogiton. Its calcination is merely the aet of uniting it with oxygen (z). The calces of lead, filver, and gold, may be decompofed exactly in the fame manner ; and Mr Van Marum, by means of his great electrical machine, decompofed alfo thofe of tin, zinc, and antimony, and refolved then into their refpective metals and oxygen *. The fame conclufions, therefore, muft be drawn with refpect to thefe metals. All the metallic calces may be decompofed by prefenting to Suppl. Voz. I. Part I.
then fubtances which have a greater affinity for oxygen than they have. This is the eeafou that charcoalpowder is fo efficacious in reducing then : and if they are mixed with it, and heated in a proper veffel, furnifhed with a pneumatic apparatus, it wil! be cafy to difcover what paffes. During the reduction, a great deal of carbonic aeid gas comes over, which, together with the metal, is equal to the weight of the cals and the charcoal : it mult therefore contain all the ingredients; and we know that carhonic acid gas is compo. fed of carbon and oxygen. During the procefs, then, the oxygen of the calx combined with charcoal and the metal remained behind. It cannot be doubted, therefore, that all the metallic calces are compofed of the entire metals combined with oxygen ; and that calciriation, like combuftion, is merely the aft of this com. bination. All metals, then, in the prefent flate of chemiftry, muft be confidered as fimple fubftances; for they have never yet been decompounded.
The words calce and calcination are evidently impro. Oxide and per, as they convey falfe ideas; we thall therefore af-oxidation, terwards employ, inftead of them, the words oxide and what. oxidation, which were invented by the Freneh chemitts. A metallic oxide fignifies a metal united with oxyger ; and oxidation implies the act of that union.

Metals are capable of uniting with oxygen in different proportions, and, confequently, of forming each of them different oxides. Thefe are diftinguinhed from one another by their colour. One of the oxides of iron, for initance, is of a green colour; it is therefore called the green oxide; the other, which is hrown, is called the brown oxide.

The metals at prefent amount to 2 I ; only II of Number of which were known before the year 1730 . Their names metals. are gold, filver, platinum, mercury, copper, iron, tin, lead, zine, antimony, bifmuth, arfenic, cobalt, nickel, manganefe, tungften, molybdenum, uranium, tellutiun, titanium, chromum.

The firft eight of thefe were formerly called netals by way of eminence, becaufe they are poffeffed cither of mallcability or ductility, or of both properties together; the reft were ealled fenimetals, becaufe they are brittle. But this diftinction is now pretty generally laid :ffide; and, as Bergman obferves, it ouglit to be fo altogether, as it is founded on a falfe hypothefis, and conveys very erroneous ideas to the mind. The firt Ff four
(y) It is remarkable that John Rey, a phyfician of Perigord, had afcribed it to this very caufe as fai hack as the year 1630 : But his writings had excited little attention, and had funk into oblizion, till after his opinion had been inconteftibly proved by Lavoifier. Mayow alfo, in the year 1674, afcribed the increafe of weight to the combination of metals with oxygen. Quippe vix concipi potef (fays he), unde augnentum illud antinomii (calcinati) nifi a particulis nitro-acreis igneifque inter calcinandum ${ }^{1 / X I S}$ procedat. Tract. p. 28. Plane ut an:imenii fxiatio non dam a fulpburis ejus exferni affumptione, quam particulis nitro-aereis, quibus flamma nitri abundat EI iNFISIS provenire videatur. Ibid. p. 29.
(z) This experiment was performed by Mr Bayen in 1774. This philofopher perceived, earlier than Lavoifier, that all mietals did not contain phlogiton. "Ces experiences (fays he) vont nous detromper. Je ne tiendrai plus le langage des difciples de Stahl, qui feront forcés de reftreindre la doctrine fur le phlogiftique, ou d'avouer que les precipités mercurials, dont je parle, ne font pas des chaux metalliques, ou enfin qu'il y a des chaux qui peuvent fe reduire fans le concours du phlogitique. Les experiences que j'ai faites me force de conclure que dans la chaux mercuriale dont je parie, le mercure doit fon etat calcoive, non à la perte du phlogifigie qu'il n'a pas effuyée, mais a fa combinaifon intime avce le fuide elafique, dont le poids ajouté a celui du mercure eft la feconde caufe de l'augmentation de pefanteur qu'on obferve dans les precipités que j'ai foumis a l'examen." Four. de Pby. 1774, pages 288, 295. It was in confequence of hearing Baycu's paper read that Lavoifier was induced to turn his attention to the fubject.
four metals were formerly called noile or perfocil netals, becaufe their oxides are reducible by the mure application of hicat; the next four were imperfia mutals, becaufe their oxides were thought not reducible withont the addition of fome combuttible fubitance; but this diftinction alfo is now very propelly expluded.

Sect. I. Of Gojh.

Gnid feems to have been known from the very heginning of the world. Its pruperties and its fearcity have rendered it nure valuable than any other metal.

It is of an orange red, or reddifin yellow culour, and las no perceptible tate or finell.

No other fubtance can be compared with it in duc. tility and malleability. It may be beaten out into leaves fo thin that one grain of gold will cover $56 \frac{3}{4}$ fquare inches. Thefe leaves are only $\overline{5} \frac{1}{2} 000$ of an inch thick. But the gold leaf with which filver wire is covered has only I' $^{\frac{1}{8}}$ of that thicknefs. An ounce of gold, upon filver wire, is capable of being extended more than 1300 miles in lengtlı.

Its tenacity is fuch, that a gold wire $\frac{\pi}{T}$ of an inch in diameter is capable of fupporting a weight of 500 * Macqurr's pounds without breaking *.

Its hardnefs is $6(\Lambda)$; its fpecific gravity 19,3 . It melts at 32° of Wedgewood's pyrometer (B). When melted, it affumes a bright bluith green colour. It expands in the act of fufion, and confequently contracts while becoming folid more than moft metals; a circumfance which renders it lefs proper for cafting into moulds.
It requires a very violent heat to volatilize it ; it is therefore, to ufe a chemical term, exceedingly fixed. Boyle and Kunkel kept it for fome months in a glafshoufe furnace, and yet it underwent no change : nor did it lofe any perceptible weight, after being expofed for fome hours to the utmoft heat of Mr Parker's lens \dagger.
Miner.i.92.Mr Lavoilier, however, obferved, that a piece of filver, held over gold melted by a fire blown by oxygen gas, which produces a much greater heat than common air, was fenfibly gilts: Part of the metal, then, muft have been volatilized.

After fufion, it is capable of afluming a cryftalline form. Tillet and Mongez cbtained it in fhort quadrangular pyramidal cryftals.
in contact with air, gold abforlos oxygen. But the temperature muft be very hiigh; fo high, indech that hardly any certain method of oxidating gold by heat is known, except by clectricity. When the electic explotion is tranfinitted through gold leaf placed between two phates of glafs, or when a flrong cliarge is made to fall on a gilded furface-in both cafes the metal is oxidated, and aflumes a purple colour. It has been faid allo, that the fanceffeet has been produced by a very violent fine; but few of the iallanees which have becte adduced are well anthenticated.

The other method of oxidating gold is nuch eafier. For this purpofe, equal parts of nitric and muriatic acids are mixed together (c) and poured upou gold: an effervefcence takes place, the gold is gradually dif. folved, and the liquid affumes a yellow colour. It is eafy to fee in what manner this folution is produced. No metal is fuluble in acids till it has been reduced to the thate of ant oxide. There is a ftrong alfuity be tween the oxide of gold and muriatic acid. The nitric arid furnifhes oxygen to the gold, and the muriatic acid diffulves the oxide as it forms. When nitric acid is deprived of the greater fart of its oxygen, it affumes a gafeous form, and is then called nitrous gas. It is the emiffion of this gas which caufes the effervefcence. The oxide of gold may be precipitated from the nitro-muriatic acid by pouring in a little potals diffolved in water, or, which is much better, a little lime; both of which have a flronger affinity fur muriatic acid than the oxide has. This oxide is of a yellow colour.

It is probable that gold is capable of two different degrees of oxidation, and of forming two different oxides, the yellow and the purple: But neither the quantity of oxygen contained in thefe oxides, nor the differences between them, have been accurately afcertained. The oxides of gold may be decompofed in clofe reiTels by the application of heat. The gold remains fixed, and the oxygen aflumes the gafeous form. They may be decompofed, too, by all the fubftances which have a ftronger affinity with oxygen than gold has. The affinities of the oxides of gold, according to Bergman *, * Bergman are as follows:

Muriatic acid,
Nitro-muriatic,
Nitric,
Sulphuric,
Arfenic,
Fluoric,

It is capable of combining with oxygen, and forming an oxide of gold. There are two methods of producing this combination, the application of beat, and folu. tion in acids. When it is expofed to a very violent heat
(A) We have borrowed from Mr Kirwan the method of denoting the different degrees of hardnefs by figures, which we think a great improvement. Thefe figures will be underflood by Mr Kirwan's own explanation, which we here fubjoin.
3. Denotes the hardnefs of chalk.

4, A fuperior laardnefs, but yet what yields to the nail.
5, What will not yield to the nail, but eafily, and without grittinefs, to the knife.
6, That which yields more difficultly to the knife.
7, That which fcarcely yields to the Enife.
8, That which cannot be feraped by a knife, but does not give fire with fteel.
9, That which gives a few feeble fparks with fteel.
10, That which gives plntiful lively fparks. Kirwan's Mineralogy, I. $3^{8 .}$
(в) According to the calculation of the Dijon academicians, it melts at $\mathbf{1 2 9 8 0}$ Fahr.; according to Bergman, at ${ }^{1} 321^{\circ}$:
(c) This mixture, from its property of diffolving gold, was formerly called agua regia (for gold, among the alchymitts, was the king of metals) ; it is now called nitro-muriatic acid.
Tartarous,
Phofphoric,
Sebacic,
Pruflic,
Fixed alkali (D),
Amınonia.

- Guld is not changed either by air or water. It does not feem capable of combining either with fulphur or carbon. Mr Pelleticr combined it with phofphorus, by melting together in a crucible half an ounce of gold 72 and an ounce of phofphoric glafs (E), furrounded with britl. The phofpburet of gold thins produced was brittle, whiter than gold, and had a cryitallized appearance. It was compoled of 23 parts of gold and one *Ann. de of phofphorus *. He formed the lane compound by
Climo i. 71. dropping fniall pieces of phofphorus into gold in fu\dagger Ibid. xiii. fion \dagger.

Gold is alfo capable of combining with mon of the metals. Its affinities are placed, by Bergman, in the fullowing order:
Mercury,
Copper,
Silver,
Lead,
Bifmuth,
Tin,
Antimony,
Iron,
Platinum,
Zinc,
Nickel,
Arfenic,
Cobalt,
Manganefc;
Phofphorus?
Sulphurets of alkalies.
SEct. IT. of Silvor.

Silver appears to have been known almolt as early
 of filver. out either talle or fmell.

It is the moft mallcable and ductile of all metals except gold, and perlaps platinum. It can be reduced to leaves about इठणठठठ of an inch thick, and drawn into wire much finer than a human hair.

Its tenacity is fuch, that a wire of filver, $\frac{1}{\mathbf{T}}$ th of an inch in diameter, is capable of fuftaining 270 pounds \ddagger Macquer's without breaking \ddagger.
Dic.
§ Kirzean.
if Brifor.
Its hardnefs is 6,5 §. Its fpecific gravity, before hammering, is 10,474 ; after hammering, $10,510 \|:$ for it is remarkable that the fpecific gravity of almoft all the metals is increafed by hammering.

It continues melted at 28° Wedgewood (F), but re. - Kirwan's quires a greater heat to bring it to fufion If.

Mineral, ii. The experiments of the French academicians have 107.
proved that it may be volatilized, but that it requires a
Silver. very violeat heat.

When cooled flowly, it affumes a cryflalline form. Tillet and Monge\% obtained it in quadrangular pyramidal cryflals, both infulated and in groups.

Silver may be combined with oxygen, and converted Oxides of into an oxide by expofure to a very violent heat. By this filver. method Junker partly converted it into a glafs; and Macquer, by expofing it 20 times fucceffively to the heat of a porcelain furnace, obtained a gla/s (G) of an olive green colour *. The oxide of filver may alfo be formed * Macguer's by diffolving the metal in an acid, and precipitating it Dia. from its folution by potafs, line, \&c.: for, during its folution, the metal becomes oxidated. Little is known at prefent concerning the oxides of filver, nor whether there be more than two, the llack and the blue. From the experiments of Wenzel and Bergman, it follows, that one oxide of filver is compofed of about 90 parts of metal and 10 of oxygent \dagger. The affinities of the + Kirwar's oxides, according to Bergman, are as follows:

Muriatic acid,
Scbacic,
Oxalic,
Sulphinric,
Saccholactic,
Phofphoric,
Sulphurons,
Nitric,
Arfenic,
Fluoric,
Tartaric,
Citric,
Formic,
Lactic,
Acctous,
Succinic,
Pruffic,
Carbonic,
Ammonia.
When filver is melted with fulphur in a low red heat, Sulphuret it combines with it and forms fulphuret of forer. It is of filver. very difficult to determine the proportion of the ingredients which enter into the compulition of this fubftance, becaufe there is an affinity between filver and its fulphuret, which difpofes them to combine together. The greatefl quantity of fulphur which a given quantity of filver is capable of taking up is, according to Wenzel, ${ }^{153} \ddagger$. Sulphuret of hilver is of a black or \ddagger Ibid. 492 very deep violet colour, brittle, and much more fufible than filver. If fuffieient heat be applied, the fulphur is volatilized, and the metal remains behind in a ftate of purity.

If one ounce of filver, one ounce of phofphoric glafs, Phifphuret and two drams of charcoal, be mixed together, and of filver. heated in a crucible, phofpburel of fllver is formed. It
(D) Have the alkalies any affinity for the yellow oxide? Is not their affinity confined to the purple oxide alone? And does not this oxide act as an acid?
(E) Phofphoric acid evaporated to drynefs, and then fufed.
(F) According to the Dijon academicians, it melts at 1044° Fahr.; according to Bergman, at 1000°.
(G) Metallic oxides, after fufion, are called glafs, becaufe they acquire a good deal of refemblance, in fome particulars, to common glafs.

Silver.
is of a white colour, and appears granulated, or as it were cryftallized. It breaks under the hammer, but may be cut with a knife. It is compofed of four parts of fiver and one of phofphorus. Heat decompofes it by feparating the phofphorus *. Pelletier has obferved, that liver in fufion is capable of combining with more phosphorus than fold fiver: for when phofphuret of filler is formed by projecting phofphorus into melted filler, after the crucible is taken -from the fire a quagtidy of phofphorus is emitted the moment the metal congoals \dagger.

Silver does not sem capable of combining with carbon.

Silver is capable of combining with gold, and forming an alloy (H) compofed of one part of fiver and five of gold. That this is the proportion of the ingredients, was difco:ered by Homberg. He kept equal parts of gold and filer in gentle fusion for a quarter of an hour, and found, on breaking the crucible, two maffes; the uppermoft of which was pure filler, the undermost the whole gold combined with $\frac{1}{f}$ th of filer. Silver, however, may be mixed with gold in almoft any proportion. But there is a great difference between the mixture of two fubitances and their chemical combination. Metals which melt nearly at the fame temperature may be mixed from that very circumfance in any proportion ; but fubfances can combine chemically only in one proportion. This obfervation, which is certainly of imprrtance, was firth made, as far as we know, by Mr
\ddagger Tranfa. zion of Mac cher's Dial
art. Alloy. 78 Becomes tarnished by expofire.
that a quantity of fulphur is constantly formed and ex. haled by living bodies*.
'lie aftiatics of fiver, according to Bergman, are as follows:

$$
\begin{aligned}
& \text { Lead, } \\
& \text { Copper, } \\
& \text { Mercury, } \\
& \text { Bifmuth, } \\
& \text { Tin, } \\
& \text { Gold, } \\
& \text { Antimony, } \\
& \text { Iron, } \\
& \text { Manganese, } \\
& \text { Zinc, } \\
& \text { Arsenic, } \\
& \text { Nickel, } \\
& \text { Platinum, } \\
& \text { Sulphurets of alkalis, } \\
& \text { Sulphur, } \\
& \text { Phofphorus. }
\end{aligned}
$$

Sect. III. Of Platinum.

The metals hitherto defcrihed have been known to mankind from the earlieft ages, and have been always in high eftimation on account of their beauty, scarcity, ductility, and indeftructibility. But platinum, though perhaps inferior to them in none of there qualities, and certainly far fuperior in others, was unknown, as a dill. tinct metal, before the year 175^{2} (1).
so
It has been found only in America, in Chaco in Difcovery Peru, and in the mine of Santa Fe , near Carthagena. of patio The workmen of there mines muff no doubt have been nim. early acquainted with it ; but they feem to have paid very little attention to it. It was unknown in Europe till Mr Wood brought forme of it from Jamaica in 1741. Soon after it was noticed by Don Antonio de Ulloa, a Spanifh mathematician, who had accompanied the French academicians to Peru in their voyage to meas. fare a degree of the meridian. In the year 175^{2} it was examined by Scheffer of Sweden, and difcovered by him to be a new metal, approaching very much to the nature of gold, and therefore called by him aurum
album,
(н) Metals combined together are called alloys or allays.
(1) Father Cortinovis, indeed, has attempted to prove that this metal was the elegrum of the ancients. - See the Chemical Annals of Brugnatelli, 2790 . That the electrum of the ancients was a metal, and a very valuable one, is evident from many of the ancient writers, particularly Homer. The following lines of Claudian are alone fufficient to prove it :

Atria cinsit ebur, trabibus folidatur abenis
Culmen et in celfas furgunt electra columnar. L. I. v. 164.
Pliny gives us an account of it in his Natural Hifory. He informs us that it was a compofition of fiver and gold; and that by candle-light it hone with more fplendor than filer. The ancients made cups, ftatues, and columns of it. Now, had it been our platinum, is it not rather extraordinary that no traces of a metal, which mut have been pretty abundant, fhould be perceptible in any part of the old continent?

As the paffage of Pliny contains the fulleft account of electrum to be found in any ancient author, we fall give it in his own words, that every one may have it in his power to judge whether or not the defcription will apply to the platinum of the moderns.
"Omani auro ineft argentum vario pondere.-Ubicunque quanta argenti portio eft, elegrum vocatur. Scrobes ex reperiuntur in Canalienfi. Fit et cora electrum argento addito. Quod fig quintan portionem exceffit, incudibus non reflitit. Et electro auctoritas, Homero tefte, qui Menelai regiam auro, electro, argento, ebore fulgere tradit. Minerva templum haber Lidos infulx Rhodiorum in quo Helena facravit calicem ex electro.-Electri natara eft ad lucernarum lumina clavius argent fplendere. Quod eft nativum, et venena deprehendit. Namque difcurrunt in calicibus arcus ceeleftibus fimiles cum igneo ftridore, et gemina ration pradicunt." "Lib.xxxiii.caf.ivo

Platinum. allum, white gold. Soon after it was examined by Lewis, Margraf, Macquer and Beaumé, Morveau, Bergman, and many other illuftrious chemifts.
8 I Its properties.

Platinum, when pure, is of a white colour like filver, but not fo bright (k). It has no tafte nor fmell.

It is both ductile and malleable; but the precife degree has not yet been afcertained. It has been drawn into a wire of riso of an inch in diameter. This wire admitted of being flattened, and had more ftrength than
*Hithering a wire of filver or gold of the fame fize *.
It is exceedingly difficult to fufe it. Macquer and Beaumé fucceeded by means of a powerful burningglafs. It melts more eafily when mixed with other fubftances. Its fixity is fill greater than its infufibility. If the ftrongeft fires cannot molt it, much lefs can they volatilize it.
† Kirwon's Its lardnefs is $7,5 \dagger$. Its fpecific gravity, after being Miner. it. hammered, is 23,000 ; fo that it is by far the heavieft 103. body known.

Some of the experiments which have been made on platinum feem to prove that it may be oxidated by the application of a violent heat. The oxide of this metal may be eafily formed by diffolving platinum in nitromuriatic acid, and precipitating it by means of an earth or potafs. The various oxides of platinum have never yet been examined with accuracy. The one at prefent beft known poffeffes, as Mr Berthollet has proved, the properties of an acid.
$82 \quad$ The fulphuret of platinum is unknown.
Phofphuret By mixing together an ounce of platinum, an ounce of plati- of phofphoric glafs, and a dram of powdered charcoal, sum. and applying a heat of about 32° Wedgewood, Mr Pelletier formed a phofplouret of platinum weighing more than an ounce. It was partly in the form of a button, and partly in cubic cryftals. It was covered above by a blackifh glafs. It was of a filver white colour, very brittle, and hard enough to ftrike fire with fteel. When expofed to a fire ftrong enough to melt it, the phof. \ddagger Ann. de phorus was difengaged, and burnt on the furface \ddagger.
Cbim. i. 7r. He found alfo, that when phofphorus was projected on red hot platinum, the metal initantly fufed and formed a phofphuret, As heat expels the phofphorus, Mr Pelletier has propofed this as an eafy method of pu-

Platinum does not feem capable of combining with carbon.

It is not in the leaf affected by the action of water or air.

1. When gold and platinum are expofed to a frong heat, they combine, and form an alloy of a much whiter colour, but nearly as ductile as gold. The proportions of the ingredients are not known. When $\frac{\pi^{\frac{1}{T}} \mathrm{~T}}{}$ only of the alloy is platinum, the gold is fcarcely altered in colour.
2. Whether filver and platinum combine chemically has not yet been properly afcertained. When fufed together (for which a very ftrong heat is neceffary), they form a mixture, not fo ductile as filver, but harder and lefs white. The two metals are feparated by keep-
ing them for fome time in the fate of fufion; the pla- Mercury. tinum finking to the botom from its weight. This circumflance would induce one to fuppofe that there is very little affinity between them.

Sect. IV. Of Mercury.

Mercury, called alfo quickfilver, was known to the ancients, and feems to have been employed by them in gilding.

It is of a white colour, exactly like that of polifhed Proper:ies filver. It has no tafte, but acquires a flight odour when of mercury, rubbed between the hands.

Its fpecific gravity is 13,568 *.

* Briforo

It differs from all other metals in always exiting, at the common temperature of the atmofphere, in a flate of fluidity. It freezes at $-39^{\circ}+$; or, which is the fame + see Maco thing, it ceafes to be a folid, and melts whenever it is ${ }^{\text {nab }}{ }^{\prime}$ Expec, placed in a temperature above -39°. It boils at the Tharf. temperature of 600°.

From the experiments made on frozen mercury in Ruffia, Hudfon's Bay, and Britain, we know that this metal, when folid, is malleable; but the extreme difficulty of examining it in that flate, on account of the lownefs of the temperature, has rendered it hitherto impoffible to afcertain the precife degree either of its inalleability, ductility, or hardnefs.

Mercury is capable of combining with oxygen, and it forms ${ }^{85}$ of forming oxides, differing from each other in the quan-litree oxtity of oxygen which they contain. The oxides of mer-ides; cury, at prefent known, are the black, the yellow, and the red.

1. When mercury is agitated for fome time in con-The black tact with oxygen gas, or atmofpheric air, it is partly uxide, converted into a greyifh black powder, and at the fame time part of the oxygen difappears. This is the black oxide of mercury. It is not known how much oxygen it contains, nor even whether the whole of the mercury which compofes it be actually combined with oxygen.
2. The beft way of forming the yellow oxide is tayellow diffolve mercury, eithex in boiling fulphuric acid or in nxide, cold nitric acid. During its folution, it deprives thefe acids of juf as much oxygen as is neceffary to convert it into a yellow oxide; and if potafs or line be afterwards added to the folution, it precipitates, and may be obtaincd pure by wafhing it with water. It is a bright yellow-coloured powder, which aets very powerfully as an emetic. From the obfervations of Bergmar, it appears that it is compofed of about 96,8 parts of mercury, and 3,2 of oxygent.
3. The red oxide of nercury may be prepared, either Miner. ii. by difilling nitric acid off the metal repeatedly, or by ${ }^{459}{ }_{8 \delta}$ keeping mercury for a long time expofed to a heat fuffi- And red cient to evaporate it while it is in contact with air. oxide. When formed by the firt procefs, it was formerly called red precipitate; when by the laft, precipitate per fe. It is a beautiful red powder, or rather fmall red cry ftals, which have fome efcharotic qualities. When prepared by the fecond procefs, the heat muft not be much bulow $6=0^{\circ}$ nor much above 800°, otherwife no union would taks
place ;
(k) To this colour it owes its name. Plata, in Spanifi, is filver; and platina, little filver, was the name fint given to the metal. Bergman changed that name into platinum, that the Latin names of all the metals might have the fame ternination and gerder. It was, however, firt called platinum by Linnæus.

Nercury. $\xrightarrow[\sim]{ }$ the experiments of Mr Firwan, it appears 10 contain * Kirwan's $9^{2}, 6$ parts of mercury and 7,4 of oxygen*.

Miner. ii. $43 y$.

Their aff.- "The affinities of the oxides of mercury, according to nitics.

Thefe oxides may be decompofed by the application of a heat amounting to 1203°. The oxygen flics off in the fom of gas, and rumning mercury remains behind. Bergman, are as follows:
Scbacic acid,
Muriatic,
Oxalic,
Succinic,
Arfenic,
Phofphoric,
Sulphuric,
Benzoic ($)$?
Saccholactic,
Tartarous,
Citric,
Sulphurous,
Nitric,
Fluoric,
Zoonic (s)?
Acetons,
Boracic,
Prulfic,
Cabonic.

When two parts of mercury and three parts of flowers of, fulphur are triturated for fome time together, or when equal parts of mercury and melted fulphur are mixed together-they combine, and form a black powder, formerly cailed aliaps nimeral', and now black fulphuret of mercury.

When 300 grains of mercury and 63 of fulphur, with a few drops of folution of potafs to moiften them, are triturated for fome time in a porcelain cup by means of a glafs peflle, black oxide of mercury is produced. Add to this 160 grains of potafs, diffolved in ats much water. Heat the vefial containing the ingredients over the flame of a candle, and continue the triquration withont interruption during the leatiug. In proportion as the liquill evaporates, add clear water from time to time, fo that the oxide may be conftantly covered to the depth of near an inch. The trituration muft be continued about two hours; at the end of which time the mixture begins to change from its original black colour to a brown, which ulually happens when a large part of the fluid is evaporated. It then paffes very rapidly to a red. No more water is to be added ; but the trituration is to be continued without interruption. When the mafs has acquired the confiftence of a gelly, the red colour becomes more and more bright, with a: incredible degree of quicknefs. The inflant the colour has acquired its urmoil beauty, the heat muft be withdrawn, otherwife the red palles to a dirty brown. This red powder is the red fulphuret of mercury, called formerly cinnabar, and, when reduced to a fine powder, zernilion (N). The procefs
above defcribed has been lately difoovered by Mr Kir. Mercury, choff, and is by far the limplelk and cheapett mode of forming red fulphuret with which we are atcquainted *. "Nichotifn's Count De Moulin Poufchin has difcovered, that it3 paf- Journ. ii. i. fing to a brown colour may he prevented by taking it from the fire as foon as it has acquired a red colour, and placing it for two or three days in a gentle heat, taking care to add a few drops of water, and to agizate the mixture from time to time. During this expofure, the red colour gradually improves, and at laft becomes excellent. He difcovered alfo, that when this fulphuret is expofed to a ftrong heat, it becomes inftantly brown, and then paffes into a dark violet; when taken from the fire it paffes intantly to a beautiful carmine red \dagger. \dagger Ilid. p. $\%$

The difference between thefe two fulphurets has never yet been afcertained. One would be apt to fufpect at firft that the black fulphuret confifts of the real fulphuret of mercury combined with fulphur; the red, of the -fulphuret of mercury combined with mercury, and that the real fulphuret of mercury was not yet accurately known. But it cannot be doubted that, during the formation of the red fulphuret, according to Kirchoff's piocefs, there is an abforption of oxygen. The phenomena above deferibed point out that aluoft incoritellibly; and we obferved, on attempting to repeat the experiment, that the black fulphuret, during its trituration, enitted fulphurated hydrogen gas. Perhaps, then, the mercury may be oxidated. We fufpected at firf that part of the fulphur might be converted into an acid; but on attempting an alteration of the procefs, in confequence of that fuppofition, we could not fucceed.

The red fulphuret of mercury is found naturally in feveral parts of the world. "It ufed to be prepared by forming a black fulphuret with three parts of fulphur and one of mercury, and then fetting fire to it. Part of the fulphur is burnt, and there remains behind a viu-let-coloured body, which is powdered and put into a glass veffel, to the bottom of which a red heat is applied. A reddifin brown fubtance fublimes, which is red fi:lphuret of nercury; but its colour is not nearly equal to that which is prepared by Kirchoff's procels.

Mr Pelletier, after feveral unfuccefsful attempts to phophare: form phofuhret of mercury, at laft fucceeded by dif-of mercury. tilling a mixture of red oxide of mercury and phofphorus. Part of the phofphorus combined with the uxygen of the oxide, and was converted into an acid; the reft combined with the mercury.

Phofphuret of mercury is of a black colour, of a preity folid confiftence, and capable of being cut with a knife. When expofed to the air, it exhaled vapours of phofphorus \ddagger.

Mercury does not feem capable of combining with ${ }_{122}$ Chim. xiii. carbon.
'lhe combinations of mercury with the other metals Its analo 93 are called amalganns.

1. The analgam of gold forms very readily, becaufe there is a very itrong affinity between the twou metals. If a bit of gold be dipped into mercury, its furface, by combining with mercury, becomes as white as lilver.
(t) Benzoat of mercury is decompofed by fulphuric acid. Tromydorf, Ann. de Chim. xi. 316.
(м) Zoonic acid decompofes the acetite of mercury. Berthollet.
(N) The word vermilion is derived from the French word vermeil, which comes from vermiculus or vermiculum; names given in the middle ages to the kermes or coccus ilicis, well known as a red dye. Vermilion originally fignified the red dye of the kermes. See Beckmann's Hil. of Inventions, ii, 180.

The eafiefl way of forming this amalgam is to throw finall pieces of red hot gold into mercury. The pro. portions of the ingredients are not eafly determined, becaufe the amalgam has an aflinity both for the gold and the metcury ; in confequence of which they appear to combine in any proportion. Muit probably it is compofid of two parts of gold and one of meicury. The combination is formed moft readily in thefe proportions; and if too much mercury be addes, it may be feparated by tiltration. The amalgam is of a white colour, and of the conlillence of tutter* . This amalgam cryfallizes in quadrangular prifms; which cryftals, accurding to the D!jon acadenicians, are compofed of fix parts of netcury and one of gold. It is much uferl in gilding.
2. The amalgan of filver is made in the fame man. ner. It forms dendritical eryflals, which, according to the Dijon academicians, contain cight parts of mercury and one of filver. Gellert was the tirt who remarkel that its fpecitic gravity was greater than that of mercury, though that of filver be lefs.
3. Dr Lewis attempted to form an amalgain of pla. tinum, but hardly fucceeded after a labour which lafted for feveral weeks. Mr Morveau fucceeded by means of heat \dagger. But a much more expeditious method has took a dram of the orange-coloured falt, compofed of oxide of platinum and ammonia (0), and triturated it with an equal weight of mercury in a mortar of chalcedony. In a few minutes the falt became brown, and afterwards acquired a greenifh flase. The matter was reduced to a very fine powder. Another dram of mercury was added, and the trituration continoed: The matter became grey. A third dram of mercury began to form an amalgam; and lix drams made the amalgam perfect. The whole operation farce lathed 20 minuter. Mercury was added till it amounted to nine eimes the weight of the falt, and yet the amalgam continued very tenacious. It was eafily fread out under the peille ; it received the impreffion of the moft delicate feals, and had a very clofe and brilliant grain. 'I'his amalgam is decompofed, and the me:cury paffes to the tlate of black oxide by the fimple contact of feveral of the metals and a great number of animal matters. This eftect \ddagger Ibid. even takes place un rubbing it between the fingers \ddagger.
94. The affinities of mercury, as afcertained by the expeAfinitice.
more early known than any other metal. In the firft ages if the world, before the method of working iron was difcovered, copper was a principal ingredient in all domentic utenfils and inflruments of war. Even during the Trujan war, as we learn from Homer, the combatants had no other armour but what was made of bronze, which is a mixture of copper and in. The word copper is derived from the inland of Cyprus, where it was firft difcovered, or at leaft wrought to any extent, by the Greeks.

Copper is of a pale red colvur with a made of yel-Properties low. Its talte is ftyptic and naufeous; and when rub-of copper. bed it enits a difagrecable fmell. It poffeffes a confiderable degree of malleability, though lefs than filver. Its teuacity is fuch, that a wire of ro of an incls in diameter can futtain a weight of $299 \frac{1}{\ddagger}$ pounds without
breaking*.

* Macgur',

Its hardnefs is $8 \uparrow$. Its fpecific gravity, when not Dia. hammered, is 7,788 ; when wire-drawn, $8,878 \ddagger$. The + Kirwan's fuecific gravity of Japan copper is $9,000 \oint$; that of Miner. ii. Swedih copper, $9,3243 \|$.

It melis at 27° Wedgewood; according to the cal- $\$$ Sir's culation of the Dijon academicians, at 1449° Fahrenheit. Notes on When allowed to conl howly, it affumes a cryftalline ${ }_{\text {Macguer's }}^{\text {Dia }}$ form. The Abbe Mongć, to whom we owe many \|i Eer valuable exjeriments on the cryflallization of metals, ii. 263 . informs us, that thefe crytals are quadrangular pyramids, frequently inferted into one another.

When copper is heated red hot in contact with air, Erown it is foon covered with a brown earthy cruft, which may oxide of be eafily feparated by hammering or by plunging the me- copper. tal into water. If the heat be continued, another fale of the fame kind foon furms; and by continuing the procefs the whole metal may be converted into an earthy like crult, which is ircrely a combination of copper and oxygen, and is therciore called brown owide of copper. It is conpoicd of about $8+$ pats of copper and 16 of exygen *.

When copper is diffolved in fulphuric acid, and pre. Niner. it. cipitated by means of lime, it falls in the form of a blue- ${ }^{45 \%} 97$ coloured powder, which is the llue oaide of copper. If Blue and this oxide of copper be dricel in the open air, it affumes green a green colour, and is thon called the green oxide of cop. oxides. fer. This laft oxide may alfo be produced hy difilling a fufficient quantity of nitric acid off copper. Little fatisfactory is yet known with refpect to thefe oxides; it has not even been afcertained whether the lilue and green be really two different oxides, or whether the difference in colour be owing to fome other caufe. It is probable, however, that the green oxide contains more uxygen than the blue; becaufe the blue oxide affumes a green colour when expofed for fome time to the open air, during which it may be fuppofed to abforb oxygen. An experiment of Fourcroy proves inconteltibly, that the lrown oxide contains lefs. oxygen than the green. He converted the green oxide into the brown by applying lieat; and during the diftillation obtained oxygen gas $\dagger .+$ Fourcroy

The affinities of the oxides of copper, according to iii. 101. Bergman, are as follows:

Pyro-mucons acid \ddagger Oxalic,

Their aff.
nities.
\ddagger Scbricheh
(o) Ammonia is an alkali hereafter to he defcribed. It is often called, in Englifh, harthorno
(P) We fhall have occafion to confider thefe celebrated experiments afterwards.
(c) Thefe two are added from Bergman. Bergman places lead before tin, and zinc before bifmuth. yond the furface. on its furface, the metal becomes partly oxidated. * Kirwan's and 19 of fulphur*.

Miner. ii. Mr Pelletier formed phofphuret of copper by melting 505.

100 Phofiphuret of copper.
\ddagger Ybid. xiii. 3.

5 Sage
101 reddif colour, morc fufible than cold, but lefs ductile. Alloss of The proportions of the ingredients whicb form this alcopper.

When copper is long expofed to the air, its furface becomes covered over with a green cruft, which is green caide of copper. This oxidation never penetrates be-

Copper is not attacked by water at the boiling temperature; but if cold water be allowed to remain long

Sulphur mixes readily with copper. The combination may be furmed by mixing the ingredients together and applying a pretty Atrong heat. Sulphuret of copper is brittle, fofter than copper, of a black colour externally, and within of a leaden grey. It is compofed, according to Kirwan's experiments, of 81 parts of copper
together one ounce of copper, one ounce of phofphoric glafs, and one dram of charcoal. It was of a white colour. On expofure to the air, it loft its luftre and became blackinh. Margraf was the firf perfon that formed this phofphuret. His method was to diftil phofphorus and brown oxide of copper together. It is formed mooft eafily by projecting phofphorus into red hot copper. According to Pelletier, it contains 20

Tartarous,
Muriatic, Sulphuric, Saccholactic, Nitric, Se'acic, Arfenic, Phofphoric, Succinic, Fluoric, Citric, Formic, Lactic, Acetous, Boracic, Pruffic, Carbonic, Fixed alkalies, Ammonia, Fixed oils.
3. Platinum combines readily with copper. The alloy is much more fufible than platinum ; it is ductile, hard, takes a fine polifh, and is not liable to tarnifh. This alloy has been employed with advantage for compofing the mirrors of reflecting telefcopes.
4. The amalgam of copper cannot be formed by fimply mixing that metal with mercury, nor even by the application of heat; becaufe the heat neceffary to melt copper fublimes mercury. Dr Lewis has given us feveral proceffes for forming this amalgam. One of the fimpleft is to triturate mercury with a quantity of common falt and verdigrife; a fubftance compofed of oxide of copper and vinegar. The theory of this procefs is not very obvious.
$102:$
The affinities of copper are, according to Bergman, Itsaffinities as follows:
Gold,
Silver,
Arfenic,
Iron,
Manganefe,
Zinc,
Antimony,
Platinum,
Tin,
Lead,
Nickel,
Bifmuth,
Cobalt,
Mercury,
Sulphuret of alkali,
Sulphur,
Phofphorus.

Sect. VI. Of Iron.

Iron, the moft abundant and moft ufeful of all the Difcovery metals, was neither known fo early, nor wrought fo of iron. eafily, as gold, iilver, and copper. For its difcovery we muft have recourfe to the nations of the eaft, among whom, indeed, almoft all the arts and fciences firlt fprung up. The writings of Mofes (who was born about 1635 years hefore Chrift) furnifh us with the ampleft proof at how early a period it was known in Egypt and Phenicia. He mentions furnaces for working iron ${ }^{*}$, ores from. which it was extracted \dagger; and tells us that fwords \ddagger, knives \oint, axes $\|$, and tools for ${ }_{20}$. cutting fones $\%$, were then made of that metal. How \dagger Ibid, viii. many ages before the birth of Mofes iron mult have9. been difcovered in thefe countries, we may perhaps con- Numb. ceive, if we reflect, that the knowledge of iron was ${ }^{\text {sxxve }}{ }^{16}$. brought over from Phrygia to Greece by the Dactyli*, 17. who lettled in Crete during the reign of Minos I. about || Deut. 143 years before Chrilt; yet during the Trojan war, , viii. s. which happened 200 years after that period, iron was 5 . in fuch high eflimation, that Achilles propofed a ball ${ }^{\text {s. }}$ Hefod, as of it as one of his prizes during the games which he quoted by celebrated in honour of Patroclus (R). At that period Pliny, nore of their weapons were formed of iron. Now if $\mathrm{f}_{\mathrm{c} .57 \text {. vii. }}$ the Greeks in 200 years had made fo little progrefs in an art which they learned from others, how long mult

Imn. it have taken the Egyptians, Phrygians, Chalybes, or whatever nation firft difcovered the art of working iron, to have made that progrefs in it which we find they had done in the days of Moles?
lron, when frefh broken, is of a bluih grey colour. It has a Ityptic talte, and emits a fmell when rubbed.
I_{i} is malleable and ductile in every temperature ; and its matledbility is increated in proportion as the temperature augments. Its tenacity is fuch, that an iron wire ' ${ }^{\prime}$ of of an inch in diameter fuftains a weight of 450

* Mraquer's pounds without breaking *。

Dia.

Formotwo
oxides.
$+A u n . d e$
Chim. xxiii. S5. and Ni cholfon's Fournal, i. 45.3.
\ddagger Mem。 A cad Yar. 1782.

Its hardnefs is fuch, that it may be eafily reduced to powder by the application of a file. Its fpecific gravity is 7,788 . It is infufible in the flrongelt heats hitherto produced.

It is attrakted by the magnet or loadfone, and is itfelf capable of becoming magnetic ; lut it retains this property only for a very fort time.

It is not hardened by being plunged into liquids while hot, nor foftened by being cooled flowly.

Iron combines with oxygen very readily. When kiudled in oxygen gas, it burns with great rapidity and fplendor, and is in this manner converted into an oxide. It is converted into an oxide alfo when furrounded by moift air, or when plunged in water; becaufe it has a ftronger affinity for oxygen than hydrogen has, and is therefore capable of decompofing water.

Mr Prouit has lately proved, that there are only two oxides of iron, the green and the brown or red, and that all the other fuppofed oxides are merely mixtures of thefe two in various proportions \dagger.

The green oxide may be obtained by diffolving iron in fulphuric acid, and then precipitating it by potafs. It is a light, green-coloured, earthy-like fubftance, compofed, as Mr Lavoifier has fhewn, of 27 parts of oxygen, and -3 of iron \ddagger. When this oxide is expofed to the air, it quickly abforbs more oxygen, and is converted into a brown powder, which is the brown oxide. Mr Prout has proved that it contains ς_{2} parts of iron and 43 of oxygen. This oxide is well known under the name of rul of iron, which is generally, how. ever, or perhaps always, combined with carbonic acid
106
The. a affi-
nities.
The affinities of thefe oxides, according to Bergman, are as follows:

Gallic acid?
Oxalic acid,
Tartarous,
Camplioric f,
Sulphuric,
Saccholactic,
Muriatic,
Pyromucous ||,
Nitric,
Sebacic,
Phofphoric,
Arfenic,
Suppl. Voz. I. Part. I.
Fluoric,
Succinic,
Citric,
liornic,
Lactic,
Acctons,
Boracic,
Pruffic,
Carbonic.

Iron unites readily witli filphur. Sulphuet of iron, Sulphurct. formerly called pyries, is found ready formed in many parts of the world. It is not cafy to determine the proportions of its ingredients, becaufe it is capable of combining both with iron and fulphur, and confequent. ly, if there happens to be any excefs of either during its formation, it takes it up. Perhaps the proportions are not far from equal parts of fulphur and of iron. It is of a pale yellow or brownilh colour, and is capable of affuming a cryftalline form. Its feecific gravity is about 4,000 . When placed upon the fire it precipitates; and at a red heat loles its yellow colour, and becomes of an iron grey, excepting its furface, which is of a bright red. It melts at 102° Wedgewood in a covered crucible into a bluih flag, fomewhat porous internally*. When expoled to air and moiture, the * Kirwan's fulphur, as happens in all fulphurets, gradually abforbs Miner.ii. oxygen, and is conyerted into an acid. 76.

If iron filings and fulphur be mixed together, and formed into a pafte with water, the fulphur decompofes the water, and abforbs oxygen fo rapidly, that the mixture takes fire, even though it be buried under ground. This phenonenon was firt difcovered by Homberg; and it is conlidered as affording an explanation of the origin of volcanoes. The native fulphuret of iron has been oblerved more than once to take fire on being fuddenly moiftened with water.

Iron combines readily with phofphorus, and forms phofphus phofphuret of iron; to which Bergman, whu firlt difco-ret, vered it, gave the name of fiderum.

There is a particular kind of iron, known by the name of cold Jort iron, becaufe it is brittle when cold, though it be malleable when hot. Bergman was employed at Upfal in examining the caufe of this proper. ty, while Meyer was occupied at Stetin with the fane inveltigation; and both of them difcovered, nearly at the fame time, that, by means of fulphuric acid, a white powder could be feparated from this kind of iron, whioh by the ufual procefs they converted into a metal of a dark fteel grey, exceedingly brittle, and not very fo. luble in acids. Its fecific gravity was 6,$700 ;$ it was not fo fufible as copper; and when combined with iron rendered it cold joort. Both of them concluded that this fubftance was a new metal ; and Bergnian gave it the name of fiderum. But Klaproth foon after recol. lecting that the falt compofed of phofphoric acid and iron bore a great refemblance to the white powder ob. tained from cold fhort iron, fufpected the prefence of Gg
phofphoric

[^9]Iliad, xxiii. 1. 826. And carbu- Iron ef iron. carluret. Carhuret of iron has been long known and ufed in the arts under the names of plumbago and black lead. It is of a dark iron grey or hlue colour, and has fomething of a metallic luftre. It has a greafy feel, and blackens the fingers, or any other fublance to which it is applied. It is found in many parts of the world, efpecially in England, where it is manufactured into pencils. It is not affected by the molt violent heat as long as air is excluded, nor is it in the leaft altered by fimple expofure to the air, or to water. Its nature was firlt inveltigated by Schesle; who proved, by a very ingenious analyfis, that it could be converted almoft wholly into carbonic acid gas, and that the fmall refiduum was iron. It follows from this analy fis, that it is compofed of carbon and iron; for the carbon, during its combuftion, had been converted into carbonic acid gas. By the fubfequent experiments of Pelletier and other French chemifts, it bas been mewn to confift nearly of nine
phofphoric acid in this new metal. To decide the point, he combined phofphoric acid and iron, and ohtained, by heating it in a crucible along with charcoal towcir (s), a fubtance exactly referibling the new Ghetal. Mejer, when Klaproth communicated to him this difcovery, informed him that he had already fatis. fied himfelf, by a more arcurate examination, that fideram contained phophoric acid. Soon after this Scheele actually decompuled the white powder obtained from cold hort iron, and thereby demonftrated, that it was compoled of phofphoric acid and iron. The fidernm of Bergman, however, is compufed of Fhofphorus and iron, the phofphoric acid being deprived of its oxygen during the reduaion; or it is plofphuret of iron. It may be tormed by funng in a crucible an ounce of phof. phoric glafs, an ounce of iron, and half a dram of charcual powder. It is very bristle, and appears white when broken. When expufed to a ftrong heat, it melts, and the phofphoros is diffipated *. It may be formed alio by melting-ozether equal parts of phofphoric glafs and iron filings. Part of the iron combines with the uxy gen of the phofphoric glafs, and is vitrified; the reft forms the phofphuret, which finks to the bottom of the crucible. It may be formed alfo by dropping fmall bits of pholphorus into iron filings heated red hot \dagger. The proportions of the irgredients of this phofpuret have not yet been determined. parts of carbon to one of iron.

There are a great many varieties of iron, which artits diftinguifh by particular names; but all of them may be reduced under one or other of the three following fates: Wrought iron (or fimply iron), fleel, and cafl or racu iron.

Wrought Iadn is the fubltance which we have been hitherto defcribing. As it has never yet been decompounded, we confider it when pure as a fimple body; but it has feldom or never been found without fome fmall mixture of foreign fubftances. Thefe fubftances are either fome of the other metals, or oxygen, carbon, or phofphorus.

Steel is diftinguifhed from iron by the following properties.
leaft it acguires this property by leing immerfed whie Irn. ignited intir a cold liquid : for this immerfion, thougls it has no cffect upor iron, adds greatly to the larditifs of gleel.

It is brittle, relifts the file, cuts glafs, affords fparks with flint, and retains the magnetic virtue for any length of time.

It lolts this hardnefs by being ignited and cooled very nowly.

It melts at above 130° Wedgewood. It is malleable when red hot, but farcely fo when raifed to a white heat.

It may be hammered out into much thinner plates than iron. It is more fonorous; and its fpecific gravity, when hammered, is greater than that of iron.

By being repeatedly ignited in an open veffel, and hammered, it becomes surought iron *.

Cast Iron is difinguiked by the following pro-jon on perties:

It is fcarcely malleable at any temperature. It is ge- Tranf. nerally fo hard as to refitt the file. It can neither be caft iron. hardened nor foftened as fteel can by ignition and cooling. It is exceedingly brittle. It melts at 130° Wedgewood. It is more fonorous than fteel \dagger.
Caft iron is converted into wrought iron by expofing it for a confiderable time in a furnace to a heat fufficiently ftrong to melt it. During the procefs it is conftantly ftirred by a workman, that every part of it may be equally expofed to the air. In about an hour the hotteft part of the mafs begins to heave and fwell, and to emit a limbent blue flame. This continues nearly an hour; and by that time the converfion is completed. The heaving is evidently produced by the emifion of an elatic fluid \ddagger.
\ddagger Reidoes,
Wrought iron may be converted into fteel by being fbil. Tranf, kept for fome hours in a ftrong red heat, furrounded ${ }^{5} 781$. with charcoal powder in a covered crucible. By this procefs, which is called cementation, the iron gains fome weight.
Thefe different kinds of iron have been long known, Caure of and the converting of them into each other has been thele vapractifed in very remote ages. Nany attempts haverietieso been made to explain the manner in which this converfion is accomplithed. According to Pliny, Ateel owes its peculiar properties chiefly to the water into which it is plunged in order to be cooled $\$$. Beccher fuppofed \& Pliny, that fire was the only agent ; that it entered into the l. xxxiv. 14 . iron, and converted it into feel. Reaumur was the firlt who attended accurately to the procels; and his nume-* rous experiments have certainly coutributed to elucidate. the fubject. He fuppofed that iron was converted into fteel by combining with faline and oily or fulphureous particles, and that thefe were introduced by the fire. But it was the analyfis of Bergman, publifhed in r781, that firt paved the way to the explanation of the nature of thefe different fpecies of iron.

By diffolving in diluted fulphuric acid 100 parts of caft iron, he obtained 40 ounce meafures of hydrogen; from 100 parts of fteel he obtained 48 ounce meafures; and from Ico parts of wrought iron, 50 ounce meafures. Now as the hydrogen is produced by the property which iron has. of decompofing water and uniting with its oxygen, it is evident that the greater the quantity of hydrogen ohtained,

Iron. tained, with the more oxygen does the iron combine. But the quantities of iron were equal; they ought therefore to lave combined with equal quantities of oxygen. But it is evident, from the quantities of hydrogen obtained, that the caft iron received lefs oxygen than either of the other two : caft iron therefore muft cortain already fome oxygen, fince it requires lefs than the other two fpecies in order to be faturated. Here then is one difference between caft iron and the other two kinds; it contains oxygen. Stecl, on the contrary, does not appear to contain any oxygen. The difference between the quantity of hydrogen produced during its folution and that of wrought iron, which contains no oxygen, is exceedingly fmall, and it has been found to diminith in proportion to the purity of the fleel.

From 100 parts of caft iron Bergman obtained 2,2 of plumbago, or I' $_{5}$; from 100 parts of fleel, 0,5 , or $\frac{1}{50}$; and from 100 parts of wrought iron, 0,12 , or So caft iron therefore contains a confiderabie quantity of carbon, fteel a finaller quantity, and wrought iron a very minute portion, which diminifhes according to its purity, and would vanifh altogether if iron could be obtained perfectly pure. Mr Grignon, in his notes on this analyfis, endeavoured to prove that plumbago was not effentially a part of caft iron and fteel, but that it was merely accidentally prefent But Bergman, after confidering his objections, wrote to Morveau on the 18 th November 1783 . "I will acknowledge my miftake whenever Mr Grignon fends me a fingle bit of catt iron or fteel which does not contain plumbago; and I beg of you, my dear friend, to endeavour to difcover fome fuch, and to fend them to me; for if I am wrong, I wifh to be unde* Morveau, ceived as foon as poffible *." This was almoft the laft $E_{n e y d}$. We-action of the illuftrious Bergman. He died a few months zbod. Cbi after at the age of 49 , leaving behind him a mofl brilvie, i. 448. liant reputation, which no man ever more defervedly acquired. His induftry, his indefatigable, his aftonifhing induftry, would alone have contributed much to eftablinh his name; his extenfive knowledge would alone have attracted the attention of philofophers; his ingenuity, penetration, and accurate judgment, would alone have fecured the applaufe; and his candour and love of truth procured him the confidence and the efteem of the world. - But all thefequalities were united in Bergnian, and confpired to form one of the greatelt men and nobleft characters that ever adorned human nature.

The experiments of Bergman were fully confirmed by thofe of Morveau, Vandermonde, Monge, and Berthollet, who have likewife thrown a great deal of additional light on the fubject. From all thefe experiments the following deductions may be made.

Wrought iran is a fimple fubitance, and if perfectly pure would contain nothing but irm.

Steel is iron combined with carbon. The proportion of this laft ingredient has not yet been afcertained; Dr Pearfon fixes it at $\frac{8}{30} 0^{\text {th }}$ part at a medium. Steel, in confequence of its compofition, has been called by fome chemifts carburet of iron; but befure affigning it that name, which has been alfo given to plumhago, it ought to be determined what are the proportions of carbon and iron which faturate each other. Is it the propur-
tion in which thefe two fubfinces exift in feel, or that which forms plumbago? In the firll eafe, plumbago is carhuret of iron combined with carbon; in the fecond, fteel is carburet combined with iron. Or is it fome intermediate proportion? 'I'ill thefe puints be deternined, perhaps it would be better to continue the old names than to rifk the impofing of falfe ones.

Caft iron is iron contaminated with varions foreign fubftances, the proportions of which vary according to. circumftances. Thefe fubftances are chiefly oxide of iron and carbon, and fometimes filica (τ).

Bergman found a quantity of manganefe in the iron and fteel which he examined; but it appears from the experiments of Vauquelin, that his method of deternining the prefence of that metal was not accurate.

Mr Vauquelin * has lately analyfed four kinds of fecl ${ }^{*}$ Your. α_{0}. with great care, and contrived his proceffes with much lines, see ingenuity. The refult of his analylis is as follows: Jownal, i.

1
Second fteel, compofed of $\left\{\begin{array}{l}\text { Carbon, } \\ \text { Silica, } \\ \text { Plufphorus, } \\ \text { Iron, }\end{array} \quad 0,00683,000273\right.$
Third feel, compofed of $\left\{\begin{array}{l}\text { Carbon, }-0,00780 \\ \text { Silica, }-0,00315 \\ \text { Phofphorus, } 0,0079! \\ \text { Iron, }-0,98105\end{array}\right.$
1
Fourth fteel, compofed of $\left\{\begin{array}{l}\text { Carbon, }-0,00631 \\ \text { Silica, }-0,00252 \\ \text { Phofphorus, } \\ \text { Iton, }-0,01520 \\ 0,97597 \\ \hline 1\end{array}\right.$
It cannot be conclucled from thefe experiments that all fteel contains phofphorus and filica; far lefs that thefe fubftances enter neceflarily into the compofition of fteel. This may he the cafe, and former analytes may not have been nice enough to detect it ; but before it can be admitted, it muit be thewn that thefe fubfances are always prefent in theel, and that it lofes its effential propertics when deprived of them.
Iron combines with moft metals.
I. The alloy of gold and iion is very hard, and might, A110 ${ }^{115} 6$ s 5 according to Dr Lewis, who examined it, be empleyedirono with advantage in forming cutting intruments.
2. That iron combines with filver is certain, hut hardly any thing is known about the nature of the compound.
3. Platinum is ufually found alloyed with irom. Dr Lewis did not fucceed in his attempts to unite thefe
Cgz

[^10]
117 plied to no ute.

Nickel,
Cobalt:,
Mangancfe,
Arsenic,
Copper,
Gold,
Silver,
Tin,
Antimony,
Platinum, Bifmurh, Lead, Mercury, Sulphuret of alkali, Carbon? Phosphorus? Sulphur?
Sect. VII. Of Tin.
The Phoenicians were the firth of thole nations which make a figure in ancient liffory that were acquainted
\dagger Fling, 1. A. C. 34 .
\ddagger Numbers, xxxi. 22. 118
Properties of tin:

Itsaffinities. The affinities of iron, according to Bergman, are as follows :
metals by fufion, but he melted together catt iron and platinum. The alloy was exceffively hard, and poffeffed ductility.
4. There is very little affinity between iron and marcury ; they cannot therefore be amalgamated by fipple mixture, even with the affiftance of heat. Vogel affirms that he has produced an amalgam of iron by the following process: Pound one part of iron filings and two parts of alum in a mortar to a fine powder; then pour in two or three parts of mercury, and triturate till the fubltances be thoroughly mixed. Pour on a little water, and continue the trituration for about an hour. If then no particles of iron can be diffinguifled, pour on a little more water to wait out the alum, and then dry the amalgam. If particles of iron be perceptible, the trituration mull be continued till they difappear *.
5. Iron may be united to copper by fufion, but not without considerable difficulty. The alloy has been ap-

Tin unites very readily with oxygen. When heated in contact with air, its furface foo becomes covered with a grey pellicle; when this is taken off, another appears foin after; and in this manner the whole metal may be converted into a dirty grey powder, which is the grey oxide of tin. It is composed, according to Fourcroy, of 90 parts of tin and 10 of oxygen.

When tin is heated red hot in contact with air, it takes fire *, and burns with a very lively white flame, and * Gcoffroy. is gradually fublimed. If the fublimate be examined, it is found to confine of a white powder; it is the white oxide of tin. The white oxide is perhaps never obtained quite pure by this procefs; it feems always to contain a mixture of grey oxide: but it may be obtained pure by pouring nitric acid upon tin, and then drying it. That metal having a much ftronger attraction for oxygen than azoth has, decompofes the acid with the greatelt rapidity, and affumes the appearance of a white powder, which is the wobble oxide. This oxide poffefter many of the properties of an acid, and is therefore often called flannic acid. It feems to confine of about 77 parts of tin and 23 of oxygen t.
\dagger Kirsten's
The affinities of the grey oxide of tin, according $10{ }_{483}{ }^{\text {Miner. }} \mathrm{ii}$. Bergman, are as follows:

Tin combines readily with fulphur. This fulphuret $\frac{12 \text { siphurets, }}{}$ may be formed by fufing the two ingredients together. It is brittle, heavier than tin, and not fo fufible. It is of a bluift colour and lamellated ftructure, and is ca. pable of cryftallizing. According to Bergman, it is compofed of 80 parts of tin and 20 of fulphur ; according to Pelletier, of 85 parts of tin and 15 of fulphur δ. $\$$ Ann, de

Sulphur likewife combines with the white oxide of Chime. xiii. tin, by mixing them together, and applying a gentle ${ }^{28 \%}$.
heat II. This compound has been called aurum myfivum. \|P Pelletier, It is a mats confining of beautiful gold -coloured flakes, $16 i d$. p. 29%. and is ufed as a paint. It is comported of about 40 parts of fulphur and 60 of white oxide of tin. . The procefs f Ibid. $293 *$ for making this fubftance was formerly very complica-
ted. Pelletier frt demonftrated its real compofition, and was hence enabled to make many important impprovements in the manner of manufacturing it *. *See his

Phofphorus is eafily combined with tin, by melting in Memoirs. a crucible equal parts of filings of tin and phofphnric $\begin{gathered}\text { Ann. de } \\ \text { Chin } \\ \text { xii. }\end{gathered}$ graft. Tin has a greater affinity for oxygen than phof- 280 . phorus has. Part of the metal therefore combines with ${ }^{22 I}$
the oxygen of the glafs during the fufion, and fies off in the flate of an oside, and the reft of the tin combines with the phofphorus. The phofphuret of tin may be cut with a knife; it extends under the hammer, but feparates in laminx. When newly cut it has the colour of filver; its filings refemble thofe of lead. When thefe filings are thrown on burning coals, the phofphorus takes fire. 'This phofphuret may likewife be formed by dropping phofphorus gradually into melted tin. According to Pelletier, to whofe experinents we are indebted for the knowledge of all the phofphurets, it is compofed of about 85 parts of tin and 15 of phofphorus*: Margraf alfo formed this phofphuret, but he was ignorant of its compofition.

Tin does not feem capable of combining with carbon. It is capable of combining with moft of the metals.

- I. It mixes readily with gold by fufion; but the proportions in which thefe metals combine chemically are ftill unknown. When one part of tin and twelve of gold are melted together, the alloy is brittle, hard, and bad coloured. Twenty-four parts of gold and one of tin produce a pale coloured alloy, harder than r old, but poffeffed of confiderable ductility. Gold alloyed with no more than $\frac{1}{3}$ th of tin is farcely altered in its properties, according to Mr Alchorne†; but MrTillet, who has lately examined this alloy, found, that whenever it was heated it broke into a number of pieces.

2. The alloy of filver and tin is hardly known. According to Gellert and fucceeding chemills, it is exceedingly brittle.
3. The alloy of platinum and tin is very fubble and brittle, at leaf when thefe metals arc mised in equal \ddagger Dr Lex 's. proportions \ddagger.
4. Mercury difolves tin rery readily, by heing poured on it when melted. This amalgam cryftallizes in the form of cubes, according to Darbenton ; but, according to Sage, in grey brilliant fquare plates, thin towards the edges, and attached to each other fo that the cavities between them are polygonal. It is compofed of three parts of mercury and one of tin. The amalgam of tin is ufed to filver the backs of glafs mirrors.
5. Tin unites very readily with copper, and forms alloys known by the names of bronze and bell-metal. The proportions of the ingredients cannot eafily be affigned, perhaps becaufe the alloy has an affinity both for copper and tin. The feccific gravity of the alloy in all proportions is greater than the mean fpecific gravity of the iwo metals feparately. When the quantity of tin is fuall compared to that of the copper, $\frac{8}{8}$ th for inflance, the alloy is called bronze : it is brittle, yellow, and muclı heavier than copper; much more fufible, and iefs liable to be al. tered by expofure to the air. It was this alloy which the ancients ufed for fharp-edged inftruments before the method of working iron was brought to perfection. The xaxaos of the Grecks, and perhaps the as of the Romans, was nothing elfe. Even their copper coins contain a mixture of tin \oint.
6. Tin feems capable of being united to iron by fufion. That there is an affinity between thefe metals is evident from their adhefion when iron is dipt into melted tin. This is the method of making tinplate.
The affinities of tin, according to Bergman, are as follows:

Zinc,
Mercury,
Cupper,
Antimony,
Gold,
Silver,
Lead,
Iron, Manganefc, Nickel, Arfuice,
Platinum, B:fnuth, Cubalt, Sulphuret of alkali, Oxygen? Sulphur? Phofphorus?

Secr. Vili. Of Lead.

Lead appears to have been very early know. It is mentioned feveral times by Mofes. The ancients feem to have confidered it as nearly related to tin.

Lead is of a bluifh white colour, fomexhat darker properties than tin. When newly melted it is very bright, but of lead. foon becomes tarnifhed by expofiure to the air. It has fcarcely any talte, but emits on friction a peculiar fmell.
It is very malleable, and may be reduced to thin plates by the lammer; but its ductility is vcry im. perfect: a wire of lead \dot{y}^{\prime} th of an inch in diameter is only capable of fupporting a weight of $29^{\frac{1}{7}}$ pounds*. *Murquer's

Its hardnefs is 5 t; its fecific gravity is $11,3523 \ddagger$. Dielion, (e). Its fpecific gravity is not increafed by hanmering, nei- Mingre oi. ther does it hecome harder, as is the cafe with other me-zoz. tals : a proof that the hardnefs which metals alfume un- $\frac{\ddagger}{}$ Brifon. der the hammer is in confequence of an increafeof denfity.

It melts, according to Dr Lewis, at 540° Fahrenheit; according to the Dijon acadenicians, at 549°. When expofed to a violent heat it cvaporates completely.
When cooled flowly, aftur being fufed, it cry fallizes. The Abbé Motgez obtained it in quadrangular pyramids, lying on one of their fides. Each pytamid was compofed as it were of three layers. Pajot obtained it in the form of a polyhedron with 32 fides, furmed by the concourfe of hix quadrangular pyramids \oint.

Lead tlains paper or the fingers of a bluifh black co Four. de lour.
ray.
xגxviii, 53 .
There is a flrong affinity between this metal a:d oxy- 123 gen. When nitric acid is poured upon it, an effervef. fts cxides, cence enfius, owing to the decorppotition of the acil; the lead feizes oxygen from it, and is converted into a white powder, which may be obtained pure by evaporating it to drynefs, and then wafhing it in pure water. This is the zubite oxide of lead. It is compofed of about 95 parts of lead and five of oxygen \|. The affinitics \|f Kiruan's of this oxide are, according to Bergman, as follows: Miver, ii.

Sulphuric acid,
499.

Sebacic,
Saccholactic,
Oxalic,
Arfenic,
Tartarous,
Phofphoric,
Muriatic,
23^{8}
$\underbrace{\text { Lent. }}$

* Mers.

Par. 17S.
and 12 of oxygen *.
The manner in which thefe changes are brought about is evident ; the metal gradually abforbs oxygen from the atmofphere. This has been actually proved by experiment. Thefe oxides (if they really differ in the proportion of oxygen) refemble acids in feveral of their properties. They are very eafily converted into glafs by fufion. Schcele has fhewn that there is alfo a trozen oxide of lead, which contains more oxygen than ret of lead is brittle, of a deep grey colour, and much lefs fufille than lead. Thefe two fubftances are often found naturally combined; the compound is then called galena. Sulphuret of lead is compofed, according to the experiments of Wenzel, of 868 parts of lead and 132 of fulphur \dagger.
\div Kirruan's
ther equal parts of filings of lead and phofphoric glafs, and fufing them in a crucible. It may be cut with a knife, but feparates into plates when hammered. It is of a white filver colour with a flade of blue, but it foon tarnifhes when expofed to the air. This phofphuret may alfo be formed by dropping phof phorus into melted lead. It is compofed of about 12 parts of phof.
\ddagger Fellstier,
Ann. de. Lead combines with moft of the other metals.

1. Little is known concerning the alloy of lead and 114.

128

Benzoic (u) ?
Sulphurous,
Suも̇eric?
Zoonic? $\}\left(v^{\prime}\right)$
Nitric,
Pyromicous (r)?
Pluoric,
Citric,
Formic,
Latic,
Acetous,
Boracic,
Pruffic, Carbonic, Fixed alkali.
When lead is expofed to beat in contact with air, its furface is foon cuvered with a grey pellicle; when this is taken off, another foon forms: and in this manner the whole lead may foon be converted into a dirty grey powder, which feens to be the white oxide mixed with a little lead. When this powder is heated red hut, it affunes a decp yellow colour. This is the yellowe oxide of lead, formerly called mafficot. If the heat be continued, the colour is gradually changed to a beautiful red. This is the red oxide of lead, formerly called minium. It is compofed, as Lavoifier has thewn, of 88 parts of lead
2. The alloy of filver and lead is very fufible, and neither elattic nor fonemous
3. Platinum and lead nuite in a Arong heat : the al. loy is brittle, of a purplifh colour, and foon changes on expofure to the air *.
4. Mercury, when poured upon melted lead, diffulves it readily. The amalgam is white and brilliant, and affumes a folid form. It is capable of cryftallizing. The cryitals are compofed of one part of lead and one and a half of mercury \dagger.
5. Copper and lead combine eafily by fufion; but the cademiciane alloy has not been applied to any ufe.
6. Iron does not unite with lead.
7. Lead and tin may be cumbined by fufion. The alloy in the proportion of two parts of lead and one of tin is more foluble than either of the metals feparately. It is accordingly ufed by plumbers as a folder.

Lead, when taken internally, acts as a poifon. Its Affinitiea affinities, according to Bergman, are as follows :

Gold,
Silver,
Copper,
Mercury,
Bifmuth,
Tin,
Antimony,
Platinum,
Arfenic,
Zinc,
Nickel,
Iron,
Sulphuret of alkali,
Sulphur,
Phofphorus ?
330
The ancients gave to the feven metals laft defcribed Names and (omitting platinum, which they did not know) the names marks of the planets, and denoted each of them by particula given to marks, which reprefented both the planet and the metal. by the anGold was the Sun, and reprefented by \odot. cients.

It feems moft probable that thefe names were firf given to the planets; and that the feven metals, the only ones then known, were fuppofed to have fome relation to the planets or to the gods that inhabited them, as the number of both happened to be the fame. It appears from a paffage in Origen, that thefe names firt arofe among the Perfians (w). Why each particular metal was denominated by a particular planet it is not eafy to fee. Many conjectures have been made, but fearcely any of them are fatisfactory.
(u) Benzoat of lead is decompofed by muriatic acid. Trommjdorf, Ann. de Chim. xi. 317.
(v) Suberic acid decompofes nitrat of lead. Sce Famefon's Mineralogy, p. 166. Zoonic acid produces the fame effect, as Berthollet has uble:rved.
(v) Schrickel places it after the three mineral acids.
(w) Contra Celfum, lib vi. 22.-"Celfus de quibufdam Perfarum myfteriis fermonem facit. Harum rerum, inquit, aliquod reperitur in Perfarum doctrina Mithracifque corum mytteriis veltigium. In illis enim dux caleftes converfiones, alia fellarum fixarum, errantium alia, et animæ per eas tranfitus quodam fymbolo reprefentantur, qiood hujufmodi eft. Scala altas portas habens, in fumma autem octava porta. Prima purtarum plumbea, altera flannea,

Lead.

As to the characters by which thefe metals were expreffed, aftrologers feem to have confidered them as the attributes of the deities of the fame name. The circle in the earlieft periods among the Egyptians was the symbol of divinity and perfection; aud feems with great propriety to have been chofen by them as the character of the fun, efpecially as, when furrounded by fmall ftrokes projecting from its circumference, it may forn fone reprefentation of the emiffion of rays. The femicircle is, in like manner, the image of the moon; the only one of the heavenly bodies that appears under that form to the naked eye. The character b) is fuppofed to reprefent the feythe of Saturn; 2 the thunderbolts of Jupiter; ${ }^{x}$ the lance of Mars, together with his fhield ; of the looking-glafs of Venus; and ϑ of Mercury.

The alchymiifs, however, give a very different account of thefe fymbols. Gold was the noft perfect metal, and was therefore denoted by a circlc. Silver approached neareft it ; but as it was inferior, it was denoted only by a femicircle. In the character ψ the adepts difcovered gold with a filver colour. The crofs at the bottom expreffed the prefence of a myfterious fomething, without which mercury would be filver or gold. This fomething is combined alfo with copper; the poffible change of which into gold is exprefled by the character $\%$. The character σ^{x} declares the like honourable affinity alfo; though the femicircle is applied in a more concealed manner: for, according to the properefmode of writing, the point is wanting at the top, or the upright line ought only to touch the horizontal, and not to interfect it. Philofophical gold is concealed in fteel; and on this account it produces fuch valuable medicines. Oi tin, one half is filver, and the other confints of the unknown fomething; for this reafon the crofs with the half inoon appears in 24 . In lead this fromething is predominant, and a fimilitude is obferved in it to filver. Hence in its character 5 the crofs flands at the top, and the filver character is ouly fufpended on\mathbf{x}_{33} the right hand behind it.
Their real The fact, however, according to Profeffor Beckmann,
origin. origin. from whom moft of the above remarks have been taken, feems to be, that thefe characters are nere abhreviations of the old names of the planets. "The character of * Hiffory of Mars (he obferves*), according to the oldelt mode of
 $\underset{\text { Enronlation, ©ovpos, under which the Greek mathematicians under- }}{\substack{\text { Engif }}}$
iii: 67 .
ftood that deity; or, in other words, the firit letter 0 , with the laft letters placed above it. The character of Jupiter was originally the initial letter of Zevs; and iaz the oldeft manuicripts of the mathematical and aftrological works of Julius Firnicus, the capital Z only is ufed, to which the laft letters was afterwards added at the bottom, to render the ahbreviation more diftinct. The fuppofed looking-glafs of Venus is nothing elfe than the initial letter diftorted a little of the word ware-pos, which was the name of that godlefs. The imaginary fcyt he of Saturn has been gradually formed from the two fuft letters of his nanue $\mathrm{K}_{\mathrm{p} \text { pors, }}$, which tranfcribers, for the fake of difpatcl, made always more convenient for ufe, but at the fame time lefs perceptible. To difcover in the pretended caduceus of Mercury the initial letter of his Greek name Erinsur, one needs only look at the ab. breviations in the oldefl manufcripts, where they will find that the Σ was once written as C; they will remark alfo, that tran!cribers, to diltinguifh this abbreviation from the reft ftill more, placed the C thus Ω, and addied under it the next letter r. If thofe to whom this deduction appears improbable will only take the trouble to look at other Creek abbreviations, they will find many that differ ftill farther from the original letters they exprefs than the prefent character $\%$ from the C and τ united. It is poffible alfo that later tranicribers, to whom the origin of this abbreviation was not known, may have endeavoured to give it a greater refemblance to the caduceas of mercury. In hort, it canmot be denied that many other aftronomical characters are redl fymbols, or a kind of proper hieroglyphics, that reprefent certain attributes or circumftances, like the characters of Aries, Leo, and others quoted by Saumaife."

Sect. IX. Of Zinc.

The ancients were acquainted with a mineral to which they gave the name of Cadmea, from Cadmus, who firlt tanglit the Greeks to ufe it. They knew that when melted with copper it formed brafs; and that when burnt, a white fpongy kind of afhes was volatilifed, ${ }_{137}$ which they ufed in medicine ${ }^{*}$. This mineral. contained Difetve:g a good deal of zinc; and yet there is no proof remain- of zinc. ing that the ancients were acquainted with that me- ${ }^{\text {. }}$ Ptisay, c . z . tal (x). It is frift mentioned in the writings of Aber and 10. tus Magnus, who died in 1280: but whether he had feen it is not.fo clear, as he gives it the name of marcafite of gold, which implies, one would think, that it:

 alteram Veneri, quam referunt, ut ipfi quidem putant, ftanni fplendor et mollities; tertiam Jovi, aheneam illam quidem et folidam : quartam Mercurio, quia Mercurius et ferrum, uterque operum omnium tolerantes, ad mercaturam utiles, laborum patientiffuni. Marti quintam, inæqualem illam et variam propter mixturain. Sextam, quæ argentea ef, lunæ; feptimam auream foli tribuunt, quia folis et lunæ colores hæe duo metalla referunt."

Borrichius fufpects, with a good deal of probability, that the names of the gods in this paffage have been tranfo pofed by tranfcribers, either through ignorance or defign. He arranges them as follows: "Secundam portam faciunt Jovis, comparantes ei flanni flendorem et mollitiem ; tertiam Veneris xratam et folidam; quartam Martis, elt enim laborum patiens, æque ac ferrum, celebratus hominibus; quintam Mercurii propter mifturam inæqualem ac variam, et quia negotiat or eft; fextam Lumer argenteam; feptimam Solis auream." Ol. Lorriclius do ortu et progreflu chemia. Hafnix, 1668,4 to, p. 29.
(x) Grignon indeed fays, that fomething like it was difcovered in the ruins of an ancient Roman city in Clampagne; but the fubltance which he took for it was not examined with any accuracy. It is impofibletherefore to draw any inference whatever from his affertion. Bulletin des fouilles d'une ville Romaine, p. 11 ..
had a yellow colour(γ). The word zine occurs firt in the writings of Paracelfus, whon died in $15 \%^{\prime}$. He informs us very gravely, that it is a metal, and not a metal, and that it confifts chiefly of the athes of copper *. This metal has alfo been called felfer.

Zinc las nuver been found in Europe in a flate of purity, and it was long before a method was difcovered of extrading it from its ore (z). Henkel pointed out one in 1721, and Von Swab obtained it by dittillation in 1742, and Margraf publifhed a procefs in the Berlin

It is of a bluifh white colour, fomewhat lighter than leal. It has neither talte nor fmell.
f Sage.
It hàs fome decree of malleability; for by compref. fion it may be reduced into hin plates \ddagger; but it cannot be drawn out into wire. It is more brittle when hot than when cold.
§ Kirzo n's

Its hardnefs is $6 \$$. Its fpecific gravity, when compreffed, is $7,1908 \|$; in its ufual ftate, 6,862 q. It melts at about 699° Fahrenhcit *.
When allowed to cool flowly, it cryitallizes in fmall bundles of quadrangular prifms, difpofed in all directions. If they are expofed to the air while hot, they aflume a blue changeable colour \dagger.

When ziuc is kept melted in contact with air, it becomes covered with a grey pellicle, which gradually aflumes a gellowih tint. By removing this pellicle from time to time, the whole of the metal may be reduced into a grey powder. This is the grey oxide of zint. 'This oxide is probably compofed of about 8ς parts of zinc and 15 of oxyen \ddagger. When zinc is violently heated, it burns with a bright white flame, and at the fame time a quantity of very light white flakes are fublimed. Thefe flakes are the zubite oxide of sinc, which contains a good deal more oxygen than the grey oxide (A).

Zinc may alfo be oxidated by folution in acids, particularly the aitric acis. Whether the oxide obtained by precipitating zinc from its folution in that acid, or by dittilling that acid off zinc, be really different from the white oxide; has not yet been properly afcertained;
but one would be apt to fufpect, from the experiments mentioned by Mr Kirwan, that it contained a good deal *Mineru! more oxygen *.

The aftinitic; for oxid.s, or rather of the white ${ }^{\text {ii. }} \mathbf{4 9 9}$. oxide of zinc, arc, according to beryman, as follows:

> Oxalic acid,
> Sulphuric,

Pyromucous $\%$,

+ Surickels
Muriatic,
Saceholan: ,
Nitric,
Sebacic,
'Tartaric,
Phefphoric,
Cirric,
Succinic,
Flueric,
Arluic,
Formic,
Lactic,
Acetons,
Boracic,
Pruffic, Carbonic, Anmonia.
There is an alfinity between fuiphur and zinc, as is Sulbhur evident from thefe two fubftances being often found united; but it is very difficult to form the fulphuret of zinc artificially, on accomt of the rapid oxidation and confequent volatilization of the zinc. Morveau, however, fucceeded in forming it.
Zinc may be combined with phofphorus, by dropping Phoiphufmall bits of phofphorus into it while in a ftate of fu-rets, fion. Pelletier, to whom we are indebted for the experiment, added alfo a little refin, to prevent the oxida. tion of the zinc. Phofphuret of zinc is of a white coluur, a metallic fpludidor, but refembles lead more than zinc. It is forecwhat malleable. When hammered or filed, it emits the odour of phofphores. When expofed to a flrong heat, it burns like zinc \ddagger. \ddagger Ann.
$\begin{aligned} & \text { Chim. } \\ & \text { I29. }\end{aligned}$
(y) The paitages in which he mentions it are as follows:-De Mineral. lib. ii. cap. 11. "Marchafita, five marchafida ut quidam dicunt, eft lapis in fubtantia, et habet multas fpecies, quare colorem accipit cujullibet metalli, et fic dicitur narchafita argentea et aurea, et fic dicitur aliis. Metallurn tamen quod colorat cum non di. flilat ab ipfo, fed evapotat in ignea, et fic relinquitur cinis inutilis, et hic lapis notus cit apud alchimicos, et in multis locis veniuntur.

Lils, iii. cap. 10 . "Ns autem invenitur in venis lapidis, et quod eft apud locum qui dicitur Gofelaria eft puriffimum et optinum, et toti fubftantixe lapidis iucorporatum, ita quod totus lapis elt ficut marchalita aurea, et profundatum eit melius ex co quod purius.

Lib. v. cap. 5. "Dicimus igitur quod marchafita duplicem habet in fui creatione fubltantiam, argenti vivi fcilicet mortificati, ct ad fixionem approximantis, et fulphuris adurentis. Ipfam liabere fulphureitatem comperimus manifefta experientia. Nan cun fublinatur, ex illa emanat fubflantia fulphurea manifelta comburens. Et fme fublimatione fimiliter perpenditur illins fulphureitas.
"Nam fi ponatur ad ignitionem, non fufcipit illam priufquam inflammationc fulphuris inflammetur, et ardeat. Ipfan vero argenti vivi fubllantiam manifellatur habere fenfibiliter. Nam albedinems praflat Veneri meri argenti, quemadmodum et ipfum argentum vivum, et colorem in ipfrus fublimatione cxleftium preftarc, et luciditatem manifeltam metallican habere vidimus, quæ certum reddunt artificern Alchimix, illam has fubftantias continere in radice fua."
(z) The real difcoverer of this method appears to have been Dr Ifaac Lawfon. See Pott, III. Diff. 7. and Watfon's Chemical Efays.
(A) Pott obferved, that it was $\frac{{ }^{\frac{1}{0}}}{}$ th heavier than the zinc from which it was obtainerl; and Mr Boyle had long before afcertained the fame fact.--Shaw's Boyle, II. 391, 394 -

This oxide of zinc was well known to the ancients. Diofcorides defcribes the method of preparing it. The zncients called it pompholy:, the early chemilts gave it the name of lana philofophica. Diofcorides compares it to wool, ifiur roivatats apopoioviat, v. 8S. ₹. 35 2.

Phofphorus combincs alfo with the oxide of zine, a compound which Margraf had obtained during his experiments on phofyhorus. When 12 parts of oxide of zine, 12 parts of phofphoric glafs, and two parts of clarcoal powder, are ditililed in an earthen ware retort, and a ftrong heat applied, a metallic fubftance fublimes of a filver-white colour, which, when broken, has a vitreous appearance. This, according to Pelletier, is phofphuret of oxide of zinc. When heated by the blowpipe, the phofphorus burns, and leaves behind a glafs tranfparent while in fufion, but opaque after cooling*.

Zinc alfo combines with earton, and forms carburet of zinc. The French chemits have fhewn that zinc generally contains fome carbon.

Zinc combines with moft of the metals:

1. It mixes with gold in any proportion. The alloy is the whiter and the more brittle the greater duantity of zinc it contains. An alloy, confifting of cqual parts of thefe metals, is very hard and white, receives a fine polifh, and does not tarnifh readily. It has
therefore been propofed by Mr Malouin \dagger as very proper for the fpecula of telefcopes. One part of zinc is faid to deftroy the ductility of 100 parts of gold \ddagger.
2. The alloy of filver and zinc is eafily produced by fufion. It is brittle.
3. Platinum combines very readily with zinc. The

- alloy is brittle, pretty hard, very fufible, and of a bluifh
+ Mem. A.
cad. Par.
$17+2$
\ddagger Kir's Mssquer's
DiEZionary. §Dr Lewis, white colour, not fo clear as that of zinc \oint.

4. Zinc may be combined with mercury by fufion. The amalgam is folid. It cryitallizes when melted and cooled flowly into lamellated hexagonal figures, with cavities between them. They are compofed of one part \#Elemens de of zinc and two and a half of mercury $\|$. It is ufed to Girr. Di- rub on clectrical machines, in order to excite electrijon, t. 3. city.
5. Zine combines vcry readily with copper. This alloy, which is called brafs, was known to the ancients. They ufed an ore of zine to form it, which they called cadmia. This alloy was very much valued by the ancients. Dr Watfon has proved that it was to brafs
4 Mancbe- which they gave the name of orichalcum g . Their ces was .Ber Tranf. copper or rather bronze (B). Brafs is compofed of vol, ii. about three parts of copper and one of zinc. It is of a beautiful yellow colour, more fufible than copper, and not fo apt to tarnifh. It is malleable, and fo ductile that it may be drawn out into wire. When the alloy contains three parts of zine and four of copper, it aflumes a colour nearly the fame with gold, hut it is not fo malleable as brafs. It is then called pincbleck, prince's mesal, or Prince Rupert's metal.
6. The alloy of iron and zine has fearcely been examined: but Malouin has fhewn that ziuc may be ufed

Suppl. Vol. I. Part I.
imflal of tin to cover iron plates: a proof that there is Antimony. an atfinity between the two metals ${ }^{\text {* }}$.
7. Tin and zine combine eatiry. The alloy is harder "Maront 1742 . than tin. This alloy is often the principal ingredient in the compound called peruter.
8. Mr Gmelin has fucceeded in forming an alloy of zine and lead by fufion. He put fornc fuet into the mixture, and covered the crucible, in order to prevent the evaporation of the zine. When the riiic exceeded the lead very much, the alloy was malleable, and mucin harder than lead. A mixture of two parts of zinc and one of lead formed an alloy more ductile and harderthan the laft. A mixture of equal parts of zinc and lead formed an alloy differing little in ductility and onlour from lead ; hut it was harder, and more fufceptible of polifh, and much more fonorous. When the mixture contained a fimaller quantity of zine, it Atill approached nearer the ductility and colour of lead, but it continued harder, more fonorous, and fufceptible of polih, till the proportions approached to one of zinc and 16 of lead, when the alloy differed from the laft metal only in being fomewhat hardert.
The affinities of zinc, according to Bergman, are as Chime ix. follows:
Coppcr,
Antimony,
Tin,
Mercury,
Silver,
Gold,
Cobalt,
A frenic,
Platinum,
Bifnuth,
Lead,
Nick
lron,
lron.

Sect. X. Of Antimony.

The ancients were acquainted with an oxide of antimony to which they gave the names of ghew and fibium. Pliny \ddagger informs us that it was found in filver ore; and \ddagger Pliny, 1. we know that at prefent there are filver ores § in which $x \times x \times i i=1,6$. it is contained. It was ufed as an external applieation Kirzurn's to fore eyes; and Pliny gives us the method of preparing Miner. ii. it $\|$. Galen fuppofes that the ripaywoo of Hippocrates \|iliny, ibit was a preparation of antimony; but this wants proof. 142 It does not appear, however, that the ancients confider- Dificuery ed this fubftance as a metal, or that they knew antimo-ny. ny in a fate of purity (c). Who firlt extracted it from its ore we do not know; but Bail Valentinc, a cliemilt of the 16 th eentury, is the firt who deferibes the

Hh
pracefs.
(в) The ancients do not feem to have known accurately the difference between copper, brafs, and bronzc. Hence the confufion obfervable in their names. They confitered brafs as only a more valuable kind of copper, and therefore often ufed the word es indifferently to denote either. It was not till a late period that mines dogills began to make the diftinction. They called copper es cyprium, and afterwards only cyprium, which in procefs of time was converted into cuprum. When thefe changes took place is not known accurately. Pliny wifs cyprium, lib. xxxvi. c. 26. The word cuprum occurs firtt in Spartian, who lived about the year 290. He tays in his life of Caracalla, cancelli ex are vel cufro.
(c) Mr Roux indeed, who at the requett of Count Caylus analyfed an ancient mirror, found it compofeit of copper, lead, and antimony. This would go far to convinee as that the ancicuts linew this metal, provided it could be proved that the nirror was really an ancient one; Lut this point appears to be extremely doubttul.

-

* Fourcroy. It las a feny is of a white colonr, with a hade of grey.
* Scbrickel. pound is often found native: it was formerly called an. timony, and the pure metal was then called regulus of
antimony. Sulphuret of antimony is eafily melted by a Antimony. moderate heat : if the heat be continued, the fulphur fuhlimes, and at the fame time the antimony abforbs oxygen, and is converted into a grey oxide. This fulphuret is compofed of 74 parts of autimony and 26 of fulphur*.
The grey oxide of antimony is alfo capable of combi-iii. 167 Fer, ning with about ró ${ }^{4}$ of fulphur. This compound, by fufion, may be converted into glafs. It was formerly ufed in medicine under the name of glafs of antimony.
When equal parts of antimony and phofphoric glais Ploof phuo are mixed together with a little charcoal powder, and ${ }^{\text {ret, }}$ melted in a crucible, phofphuret of antimony is produced. It is of a white colour, brittle, appears laminated when broken, and at the fracture there appear a number of finall cubic facettes. When melted it emits a green flame, and then fublimes in the form of a white powder. Phofphuret of antimony may likewife be prepared by fufing equal parts of antimony and phofphoric glafs, or by dropping phofphorus into melted antinony \dagger.

\dagger Pelletier

Antimony is capable of combining with moft of the $A n n$. de metals

1. Gold may be alloyed with antimony by fufing ${ }_{147}^{132}$ them together. The antimony is afterwards feparable Alloys, by an intenfe heat. This alloy is little known, and has never been applied to any ufe.
2. The alloy of filver and antimony is brittle, and its fpecific gravity, as Gellert has obferved, is greater than intermediate between the fpecific gravities of the two metals which enter into it.
3. Platinum eafily combines with antimony. The alloy is brittle, and much lighter than platinum \ddagger. The \ddagger Dr Lervis, antimony cannot afterwards be completely feparated by heat.
4. Mercury does not eafily combine with antimony. Mr Gellert fucceeded in amalgamating this metal by putting it into hot mercury, and covering the whole with water.
5. Cupper combines readily with antimony by fufion. The alloy is of a beautiful violet colour, and its fpecific gravity is greater than intermediate $\$$.
6. Iron combines with antimony, and forms a brittle hard alloy, the fpecific gravity of which is lefs than intermediate. The magnetic quality of iron is much more diminifhed by being alloyed with antimony than with any other metal $\|$.
7. The ailoy of tin and antimony is white and brittle; its ipecific gravity is lefs than intermediate π.
8. When equal quantities of lead and antimony are fufed, the alloy is porous and brittle: three parts of lead and one of antimony form a compact alloy, malleable, and much harder than lead: 12 parts of lead and one of antimony form an alloy very malleable, and a goord deal harder than tead: 16 parts of lead and one of antimony form an alloy which does not differ from lead except in hardnefs *. This alloy forms printers types. * Gmelin, - 9. Zinc and antimony form a brittle alloy, the fpeci- Annde fic gravity of which is lefs than intermediate \dagger. The Cbim, wiii alloys of antimony are little known. Gellert is almoft 319. the only perfon who has examined them. It would re- \dagger Gethers. quire a great number of experiments to be able to fix the proportions of their ingredients.

Bifmuth. The affinities of antimony are, according to Berg. $\underbrace{}_{\text {man, as follows : }}$
Iron,
Copper,
Tin,
Lead,
Nickel,
Silver,
Bifmuth,
Z inc,
Gold,
Mlatinum,
Mercury,
Arfenic,
Cubalt,
Sulphuret of arfenic,
Sulphur,
Plofphorus?
T. XI. Of Bifmuth.

The ancients appear to have known nothing of birmuth, nor do we know who difcovered it ; but it is firt mentioned by George Agricola, who was born about 148 the end of the 15 th century.

$\underset{\text { Properties }}{148}$ Bifmuth is of a yellowifh or rcddifh white colour, and

 of bifmuth. almoft deftitute both of tafte and fmell.- Kirwan. It is brittle. Its hardnefs is 6^{*}. Its Specific gra-
\dagger Brifon. vity is $9,8227 \dagger$. It melts at 460° Falrenheit \ddagger.
\ddagger Lewis.
When heated in clofe veffels, it fublines. When allowed to cool flowly after fufion, it cryftallizes.

Bifmuth is not altered by water. When expofed to 149. the air it foon tarnifhes.

Its uxijes, When bifmuth is kept fufed in contact with air, it is gradually oxidated. When heated red hot, it emits a very faiut blue flame, and its oxide evaporates in the form of a yellowifl finoke. When this fmoke is collected, it is found to confift of a brown coloured powder. This is the brozon oxide of lifmuth. It is compored of § Kirwan's about 94 parts of bifinuth and 6 of oxygen §. Bifmuth Miner. ii. decompofes nitric acid with great rapidity, by attracting its oxygen. If the quatity of acid be confiderable, it diffolves the oxide as it forms; but the greater part of it may be precipitated by diluting the acid with water. This precipitate, which is a white powder, is zubite oxide of bifmuth . It is compoled of about 84 parts bifmuth and 16 of oxygen $\|$.

The affinities of the oxides of bifmuth are, according to Bergman, as follows:

Oxalic acid,
Arfenic,
Tattarous, Phofphoric,
Sulphuric,
Sebacic,
Muriatic,
Benzoic (E) ?
Nitric,
Fluoric,
Saccholactic,
Succinic,
Citric,

Formic,
Eifmuth. Lastic, Acetous, Pruffic, Carbonic, Ammonia.
Sulphur combines readily with bifmuth by fufion. sulphuret, The fulphuret of bifnuth is of a bluint grey colour, and cryfallizes into beautiful tetrahedral needles. It is compofed of 85 parts of bifmuth and 15 of fulphur*. "Wenzel,
There appears to be little affuity between bifmuth Kirwan's and phofphorus. Mr Pelletier attempted to produce Mincr. ii. the phofphuret of hifmuth by various methods without ${ }^{492}$. fuccefs. When lie dropped phofphorus, however, into Phofphue bifmuth in fufion, he obtained a fubftance which did not ret, apparently differ from bifmuth, but which, when expofed to the blow-pipe, gave evident figns of containing phofphorus. Phofphurct of bifmuth, according to Pelletier, is compofed of about 96 parts of bifmuth and four of phofphorus \dagger.

Bifmuth combines readily with moft of the metals.

1. Equal parts of bifmuth and gold form a brittle al. ${ }^{130}$ loy, nearly of the famc colour with bifmuth \ddagger.

Alloys,
2. Equal parts of bifmuth and filver form alfo a brittle \ddagger Kir,
alloy, but lefs fo than the laft. The (pecific gravity of Maigurer's both thefe is greater than intermediate g .
§ Ibid.
3. The alloy of bifinuth and platinum is alfo very brittle. When expofed to the air it affumes a purple, violet, or blue colour. The bifmuth may be feparated by heat $\|$.
4. Mercury diffolves bifmuth very eafily. The amalgam is more fluid than pure mercury, and has the property of diffolving lead and rendering it alfo fluid F . It $\$$ Cramero is capable, however, of cryttallizing. The crytals are either octahedrons, larnellated triangles, or hexagons. They are compofed of one part of bifmuth and two of mercury *.

- Cbim. Di.

5. The alloy of copper and bifmuth is not fo red as ${ }^{\text {jon, i. } 3 \text {. }}$ copper.
6. Nothing is known concerning the alloy of iron and bifmuth.
7. Bifmuth and tin unite readily. A fmall portion of bifmuth increafes the brightnefs, hardnefs, and fonoroufnefs of tin : it often therefore enters into the compofition of the compound called perwter. Equal parts of tin and bifmuth form an alloy that melts at 280° : eight parts of tin and one of bifmuth, melt at 390° : two parts of tin and one of bifmuth, at $33^{\circ} \dagger$. fDr Lewiso
8. The alloy of lead and bifmuth is of a dark grey colour, a clofe grain, but very brittle.
9. Bifmuth does not combine with zinc.
10. The alloy of antimony and bifmuth is unknown.

Bifmuth likewife enters into triple compounds with metals: Two parts of lead, three of tin, and five of bifmuth, form an alloy which melts at the heat of boiling water, which is 212°. 153
The affinities of bifmuth, according to Bergman, are And affinias follows:

Lead,
Silver,
Gold,
$\mathrm{H}_{\mathrm{h}} 2$

Mercuř

Mercury, Antimony, Tin, Copper, Platinum, Nickel, Iron, Sulphuret of alkali, Sulphur, Yhofphorus?

Sect XII. Of Arfenic.

THE word arfenic (xerevixov) occurs firft in the works of Diofcorides, and of fome other authors who wrote about the beginaing of the Chrifian era. It denotes in their works the fame fubltance which A riftote had cailed oarsoax ${ }^{n}(\Sigma)$, and his difciple Theophraftus ercurnow, which is a reddith coloured mineral, compofed of arfenic and fulphur, ufed by the ancients in painting, and as a medicine.

The white oxide of arfenir, or what is known in comrrecre by the name of arfenic, is mentioned by Avicenna in the 1Ith century ; but at what period the metal called arferic was firft extracted from that oxide is un. known. Paracelfus feems to have known it. It is mentioned by Scliroeder in his Pharmacopœia publifhed

* Bergman, in 1649^{*}.
ii. 27 S. Arfenic, when pure, is of a bluifh white colour. It is Properties cf arfenic.
+ Kirzean's
Miner. ii.

214.

\ddagger Eergman,
Bi. 278 .
© Ibid. 154
3ts oxider,
4 Habrenian,
Cbing. Ann.
1788 , i .
182. exceedingly brittle. Its hardnefs is $7 \uparrow$. Its fpecific gravity 8,310 \ddagger.

When expofed to the temperature of 354° in clofe veffels it fublimes f, and cryflallizes in regular tetrahedrons.

It is not much altered by water. Boiling water, however, is capable of diffolving, and retaining vo $\frac{1}{\overline{0}} \frac{0}{0}$ th of arfenic ; but that part of the metal is no doubt reduced to the fate of an oxide $\|$.
When arfenic is expofed to the open air, it very foon lofes its luftre, and is gradually converted into a greyif black fubftance by combining with oxygen. This is called the grey oxide of arfenic.

When expofed to a moderate heat in contact with air, it fublimes in the form of a white powder, and at the fame time emits a fmell refembling garlic. If the heat be increafed, it burns with an obfcure bluifh flame. This fublimate is white oxide of arfenic, which is compo-
Kirwan's fed of 93 parts of arfenic and 7 of oxygen it. * Bergman, and in in parts of woiling water *. When this folu.
ii. 278 .

+ Erandt,
ARE. Upfal,

1733.

It is of a fharp acrid tatte, which at laft leaves an impreflion of fweetnefs, and is one of the moll virulent poifons known. It has an alliacious fmell. It is fotion is evaporated, the oxide cryftallizes \dagger. When heated to 283°, it fublinues: if heat be applied in clofe velfels, it becomes pellucid like glafs, but when expofed to the air it foon recovers its former appearance. The fpecific gravity of this glafs is 5,000 ; that of the white
\ddagger Bergman, oxide, $3,706 \ddagger$. This oxide is capable of combining
-3s. 273 .
with molt of the metals, and in general renders them brittle. Its affinities, according to Dergman, are as follows:

Muriatic acids,
Oxalic,
Sulphuric.
Nitric,
Sebacic,
Tartarous,
Phofphoric,
Flueric,
Saccholactic,
Succinic,
Citric,
Formic,
Lactic,
Arfenic,
Acetous,
Pruffic,
Ammonia,
Water,
Alcohol?
Arfenic, or rather the white oxide of arfenic, is capahle of combining with an additional dofe of oxygen. 'The compound produced is arfenic acid, firf difcovered by Scheele, which contains 9^{1} parts of arfenic and 9 of oxygen *.
${ }^{*}$ Bertbollets
Arfenic combines readily with fulphur. When heat Kirraan's is applied to a mixture of white oxide of arfenic and fulphur, the oxide is decompofed, part of the fulphur ${ }_{155}$ combines with its oxygen, and the remainder unites suiphuret, with the reduced metal. The fulphuret of arferic produced by this procefs is of a yellow colour, and was formerly called orpiment. It is compofed, according to Weftrum, of 20 parts of arfenic and 80 of fulphur $T_{\text {. }}$. It is often found native. If a ftronger heat be applied, fo as to melt the fulphuret, it affumes a fcarlet colour, and is much lefs volatile than formerly. This new compound was formerly called realgar. It is compofed, according to Weltrum, of 80 parts of arfenic and 20 of fulphur \ddagger. The difference therefore between it and or- $\$$ Ibia. piment is evident. During the fufion part of the fulphur without doubt fublimes. It might be called red fulphuret of arenic.

Arrenic 156
Arfenic combines readily with phofphorus. The Phofphue phofphuret of arfenic may be formed by dittilling equal ret, parts of its ingredients over a moderate fire. It is black and brilliant, and ought to be preferved in water. It may be formed likewife by putting equal parts of phof= phorus and arfenic into a fufficient quantity of water, and keeping the mixture moderately. het for fome time \oint.
§ Pelletitro.
Arfenic unites with moft metals, and in general ren- Ann. $d=$ ders them more brittle and more fufible.

1. Melted gold takes up rioth of arfenic \|. The al- ${ }^{139}$
loy is brittle and pale.
 loy is brittle.
2. The alloy of platinum and arfenic is brittle and very fufible. It was firf formed by Scheffer. The arfenic may be feparated by heat.
3. The amalgam of arfenic is compofed of five parts of mercury and one of arfenic *.
4. Copper takes up $\frac{5}{6}$ ths of arfenic \dagger. This alloy is +1 Ibid. white;

Part I.

Cobalt white ; and when the quantity of arfenic contained in it is fmall, both ductile and malleable *. It is called

* Gellert. zwhite tombac.

6. Iron is capable of combining with more than its \dagger Bergman, own weight of arfenic \dagger. This alloy is white, brittle, Ann. de e and capable of cryftallizing. It is found native \ddagger.
7. The alloy of tin and arfenic is harder and more fo-
chim xiil.
1 Kirwar's
M:ncr. ii.
8ergman,
Ibid.

II Ibid. bifmuth $x^{\prime}{ }^{\text {th }} \|$.
and affinities. fenic. and dark coloured. as follows: norous than tin, and has nuch refemblance externally to zinc. Tin often contains a fmall quantity of ar-
8. Lead takes up $\frac{1}{\sigma}$ th of arfenic \oint. The alloy is brittle

The affinities of arfenic, according to Bergman, are
Nickel,
Cobal,
Copper,
Iron,
Silver,
Tin,
Gold,
Platinum,
Zinc,
Antimony,
Sulphuret of alkali,
Sulphur,
Phofphorus.

Sect. XIII. Of Cobalt.

A mineral called cobalt (G), of a grey colour, and very heavy, has been ufed in different parts of Europe fince the 15 th century to tinge giafs of a bluc colour. From this mineral Brandt obtained iu 1733 a new me-
Aa. v_{p}. tal, to which he gave the name of cobalt
fal. 173.3. Cobalt is of a white colour, inclining to a bluifh or 159. fleel grey. When pure, it is fomewhat malleable while
*Leontardi. 8,15 (H). It requires for fufion a heat at lealt as great \dagger Kirwan's as calt iron, which melts at 130° Wedgewood. No Miner, ii. heat has been produced great enough to volatalize it \ddagger.

Cobalt, when pure, does not feem to be affected by: air or water.

It is attracted by the magnet.

It is not oxidated by heat without very great difflculty; but it has the property of decompofing nitric $\underbrace{\text { Cos }}_{\text {te }}$ acid, and of attracting oxygen by that means with ftsoxides, great rapidity.

The oxide of cobalt is of fo deep a blue as to appear
black. The oxide procured by heat is compofed of 88
parts of cubalt and 12 of oxygen; that by nitric acid contains about 77 parts of cobalt and 23 of oxygen *. "Kirvean's Its affinities, according to Bergman, ate as follows: Miner. ii. Oxalic acid, 205. 490. Muriatic, Sulphuric, Tartarous, Nitric, Sebacic, Phofphoric, Fluoric, Saccholactic, Succinic, Citric, Formic, Lactic, Acetous, Arfenic, Buracic, Prufic, Carbunic, Ammonia. 8 fis
The fulphuret of cobalt is not formed without difficul. Suly humee, ty. It is fearcely known.
Phofphuret of cobalt may be formed by heating the Phof f hu. metal red hot, and then gradually dropping in fmall bits ${ }^{\text {ret, }}$ of phofphorus. It contains about $\frac{1}{3}$ th of phofphorus. It is white and brittle, and when expofed to the air foon lofes its metallic luftre. The phofphorus is feparated by heat, and the cobalt is at the fame time oxidated. This plofphuret is much more fufible than pure cobalt \dagger.

The combinations of cobalt with other metals have $A_{\pi r r} P_{\text {de }}$ been very little examined into. Cbim. xiii

1. The alloy of gold and cobalt is not known. 134 .
2. Cubalt dues not combine with filver by fufion \ddagger; Alloye but, according to Gellert, the alloy of filver and cobalt Alinyergmen's may he formed : it is brittle and of a grey colour \oint Elier. At-
3. The alloy of platinum and cobait is unbuown. tratt
(c) The word cobult feems to be derived from cobalus, which was the name of a fpirit that, according to the fuperltitious notions of the times, haunted mines, deftroyed the labours of the miners, and often gave them a great deal of unneceffary trouble. The miners probably gave this name to the mineral out of joke, becaufe it thwarted them as much as the fuppofed fpirit, by exciting falfe hopes, and rendering their labour ofte: fruitlefs; for as it was not known at firft to what ufe the mineral could be applied, it was thrown afide as ufelefs. It was once cuftomary in Germany to introduce into the church-fervice a prayer that God would preferve miners and their works from kobalts and fpirits. See Beckmann's Hiffory of Inventions, II. 362 .

Mathefius, in his tenth fermon, where he feaks of cadmia fofflis (probably-cobalt ore), fays, "Ye miners call it kobolt ; the Gernans call the black devil and the old devil's whores and hags, old and black kobel, which, by their witcheraft do injury to people and to their cattle."

Lehmann, Faw, Delaval, and feveral other philofophers, have fuppofed that • finat (oxide of cobalt melted with glafs and pounded) was known to the ancients, and ufed to tinge the beautiful blue glafs fill vifible in fonie of their works; but we learn from Crmelin, who analy fed fome of thefe pieces of glafs, that they owed their blue colour, not to the prefence of cobalt but of iron.

According to Lelman, coball ore was fint ufed to tinge glafs blue by Chriltopher Schurer, a glafs maker at Dlatten, about the year 1540 .
(н) Berg. 11. $23^{1 .}$ According to Briffon, 7,8119.

Nickel. 4. Mercury does not nppear to amalgamate with cobalt.
5. The alloy of copper and cobalt is farcely known.
6. The alloy of iron and cobalt is very hard, and not eafily broken. Cuhalt gencrally contains fome iron, from which it is with great difficulty feparated.
7. The alloy of tin and cobalt is of a light violet colour.
8. Cobalt does not combine with lead by fufion.
9. The alloy of ziuc and cobalt is not formed without difficulty.
30. The alloy of antimony and cobalt is unknown.
11. Cobalt does not conibine with bifmuth by fu-

* Bumbi. fion*.

12. Arfenic combines very readily with cobalt. The alloy is britile, much more fufible, and more eatily oxi\ddagger Bergman, dated than pure cobalt \dagger.
${ }^{\text {iv. }}{ }_{164}$ The affinities of cobalt are as follows:

And affini-
ties.

Iron,
Nickel,
Arfenic,
Copper,
Gold,
Platinum,
Tin,
Antimony,
Zinc,
Sulphuret of alkali,
Sulphur,
Pufphorus?
Sect. XIV. Of Nickel.
A heavy mineral of a red colour is met with in feveral parts of Germany, which bears a ftrong refenblance to an ore of copper; but none of that metal can be extracted from it : for this reafon the Germans called it kupfer nickel (devil's copper). Hierne mentioned it in 1694. Cronftedt was the firft chemift who examined it with accuracy. He concluded from his experiments, which were publifhed in the Stockholm Tranfactions for 1751 and $\mathbf{1 7 5 4}$, that it contained a new metal, to which he gave the name of nickel.

Some chemifts, particularly Mr Sage, affirmed, that it contained no new metal, but merely a compound of various known metals, which could be feparated from each other by the ufual proceffes. Thefe affertions induced Bergman to undertake a very laborious courfe of experiments, in order if poffible to obtain nickel in a ftee of purity: for Cronftedt had not been able to feparate a quantity of arfenic, cobalt, and iron, which adhered to it with much obftinacy. Thefe experiments have been very fully detailed in the article Chemistry, in the Encycl. to which be beg leave to refer. Bergman has fhewn, that nickel poffeffes peculiar properties, and that it can neither be reduced to any other metal, nor formed artificially by any combination of metals. It muft therefore be confidered as a peculiar metal. It may poffibly be a compound, and fo may likewife many other metals; but we muft admit every thing to be a peculiar body which has peculiar properties, and we mult admit every body to be fimple till fome proof be actually produced that it is a compound; otherwife we forfake the road of fcience, and get into the regions of fancy and romance.

Nickel is of a greyin white colour, and when lefs Nickel. pure inclines a litile to red.

It is both ductile and malleable. Its hardnefs is $8 * 166$ Its fpecitic gravity $0,000+$. It requires for fufion a Ite propertomperature at lealt equal to $\mathrm{t} 50^{\circ}$ Wedgewood \ddagger. * Kiresun's

It is powerfully attracted by the maguet, and is even Miner, ii. poffeffed of the property of attracting iron. This in. ${ }^{2318}$. duced Bergman to fuppofe that nickel, when pureft, ii. Bergman, was ltill contaminated with about one-third of iron: 1.231. but as this is the only proof of its containing irom, Klaproth, with reafon, deems it an infufficient one, and confiders attraction by the magnet as a property of nickel \wp.

When expofed to a flrong heat, nickel is oxidated clim. i. nowly. Its oxide is of a brown colour; if impure, it ${ }^{170}{ }^{16}$ is greeni/b. The oxide of nickel, according to Klaproth, $0 .{ }^{167} 7$ is compofed of 77 parts of nickel and 23 of oxygen 9 . 9 Kides, Its affinitics, according to Bergman, are as fullows: Miner. ii.

Oxalic acid, 490.

Muriatic,
Sulphuric,
Tartarous,
Nitric,
Sebacic,
Phofphoric,
Fluoric,
Saccholactic,
Succinic,
Citric,
Formic,
Lactic,
Acetous,
Arfenic,
Boracic, Prufic, Carbonic, Ammonia, Potafs? Soda?
Cronftedt found that nickel combined readily with sulphuret, fulphur by fufion. The fulphuret which he obtained was yellow and hard, with fmall fparkling facets; but the nickel which he employed was impure.

Nickel combines very readily with phofphorus, either 169 by fufing it along with phofphoric glals, or by drop-ret, ping phofphorus into it while red hot. The phofphuret of nickel is of a white colour, and when broke exhibits the appearance of very flender prifins collected together. When heated, the phofphorus burns, and the metal is oxidated. It is compofed of 83 parts of nickel and iy of phofphorus *. The nickel, howcver, on * Pelletier, which this experiment was made, was not pure.

Little is known concerning the alloys of nickel with Chim. siii. other metals. Equal parts of filver and nickel form a ${ }^{135}$. white ductile alloy. Equal parts of copper and nickel Alloys, form a red ductile alloy. The compounds which this metal forms with tin and zinc are brittle. It does not combine with mercury t. It has a very ftrong affinity + Bergman, for iron, cobalt, and arfenic, and is fearcely ever found ii. 23^{1}. except combined with fome of them.
Its affinities, according to Bergman, are as follows : And affaiIron, ties. Cobalt, Arfenic,

Copper,
Gold,
Tin, Antimony,
Platinum, Bifnuth,
Lead,
Silver,
Zinc,
Sulphuret of alkali, Sulphur,
Poprphorus?

Sect. XV. Of Manoanefe.
[771] Difoovery of manganefe.

The dart grey mineral called manganefe, in Latin magnefia (according to Boyle, from its refemblance to the magzet), has been long known and ufed in making glafs. A mine of it was difcovered in England by Mr Boyle. It was long fuppofed to be an ore of iron ; but Port and Cronftedt having demonflrated that it contained very little of that metal, the latter referred it in his Mineralogy to a diltinct order of earths, which he called terre magnefia. Bergman, from its fpecific gravity, and feveral other qualities, fufpected that it was a metallic oxide: he accordingly made feveral attempts to seduce it, but without fuccefs; the whole mafs either affuming the form of fcoria, or yielding only fmall feparate globules attracted by the magnet. This difficulty of fufion led him to fufpect that the metal he was in quett of hore a ftrong analogy to platinum. In the mean time, Dr Gahn, who was making experiments on the fame mineral, actually fucceeded in reducing it by the following procefs: He lined a crucible with charcoal powder moiftencd with water, put into it fome of the mineral formed into a ball by means of oil, then filled up the crucible with charcoal powrler, luted another crucihle over it, and expofed the whole for about an hour to a very intenfe heat. At the bottom of the crucible was found a metallic button, or rather a mumber of fmall metallic globules, equal in weight to one-

* Bergman, third of the mineral employed *. It is eafy to fee by
ii. 211 .

172 Its properties, magnet.

When expofed to the air, it very foon tarnifhes, and aflumes a darker colour, till at lall it becomes black and friable. This change is produced by the abforption of oxygen. It takes place much more rapidly if heat be applied to the metal. The fubftance thus obtained is the black oxide of manganefe. This oxide is found in great abundance in nature, though fcarcely ever in a fate of purity. It is compofed of 75 parts of manganefe and 25 of oxygen $\$$.
§ Bergmcn ii. 225 .

If a quantity of muriatic acid be poured upon this Manganefe. oxide, and heat applied, part of the acid combines with fome of the oxygen of the oxide, and flies off in yellow fumes. The oxide is diffolved in the reft. If potafs be adled to this folution, a white powder is precipitated. This is the subite oxide of manganefe. It contaius, accorting to Bergman, about 80 parts of manganefe and 20 of oxygen. It foon attracts more oxygen when expofed to the air, and is converted into black oxide.
'The affinities of the white oxide, according to Bergman, are as follows :

> Oxalic acid,

Citric,
Phofphoric,
' Γ artarous,
Fluoric,
Muriatic,
Sulphuric,
Nitric, Saccholactic, Succinic, Sebacic, Tartaric, Formic, Lactic, Acetous, Fruffic, Carbonic.
The fulphuret of manganefe is unknown.
Phofphorus may be combined with manganefe by Phofphumelting together equal parts of the metal and of phof.ret, phoric glafs; or by dropping phofphorus upon red hot manganefe. The phofphuret of manganefe is of a white colour, brittle, granulated, difpofed to cryltallize, not altered by expofure to the air, and more fufible than manganefe. When heated, the phofphorus burns and the metal becomes oxidated *.

Manganefe combines readily with carbon by fu-Ann.de fion (1).

Cbim, xiii.
Little is known concerning the alloys of manganefe. ${ }^{137}$ It combines readily with copper. The compound, ac-Carburet, cording to Bergman, is very malleable, its colour is red, ${ }^{176}$ and it fometimes becomes green by age. Gmelin made Alloys, a number of cxperiments to fee whether this alloy could be formed by fuling the black oxide of manganefe along with copper. He partly fucceeded, and propofed to fubltitute this alloy inftead of the alloy of copper and arfenic, which is ufed in the arts \dagger. We believe, how- \dagger Anm. d_{e} ever, that upon trial the new alloy las been found not Chim. i. to anfwer.

Manganefe combines readily with iron; indeed it has fcarcely ever been found quite frce from fome mixture of that metal. It combines alfo very eafily with arfenic and tin, not eafily with zinc, and not at all with mercury \ddagger.

The affinities of manganefe, according to Bergman, iii. 21 I. are as follows:
Copper,
Iron,
Gold,

And affini. ties.

Silver,
(1) Bergman, III. 379.-Sometimes manganefe is very fpeedily oxidated by expofure to the air ; fometimes fcarcely altered by it, as Klaproth and Pelletier have obferved. Mr Kirwan fuppofes that the manganefe which is foon altered contains carbon, and that this is the caufe of the diference. See Miner. II. 288,
-runglien.

Silver,
Tin,
Sulphures of alkali, 1hniphorus?
Carbon ?
The three metals, colalt, nickel, and manyanefe, refemble iron in feveral particulars: Like it, they are magnetic. very hard, and very dificult to fufe: but they differ from it in fpecific gravity, malleability, and in the properties of all their combinations with other fubflances; the oxides, for inftance, of iron, cobalt, nickel, and manganefe, poffefs very different qualities.

Sect. XVI. Of Tungstin.

$1: 8$
Dicicuvery oi zungter.

There is a mineral found in Sweden of an opaque r. white colour and great weight ; from which lalt circumfance it got the name of tungsten, or ponderous fone. Some mineralogits confidered it as an ore of tin, others fuppofed that it contained iton. Scheele analyfed it in 1781 , and found that it was compofed of lime and a peculiar earthy-like fubftance, which he called from its properties tugstic acid. Bergman conjectured that the bafis of this acid was a metal ; and this conjecture was foon after fully confirmed by the experiments of Meffrs D'Elhuyart, who ohtained the fame fubitance from a mineral of a brownifi lolack colour, called by the Germans ruolfram, which is fometimes found in tin mines. This mineral they found to contain $\frac{65}{85}$ of tungitic acid; the reft of it confifted of manganefe, iron, and tin. This acid fubflance they mixed with charcoal powder, and heated violently in a crucible. On epening the crucible after it had cooled they found in it a button of metal, of a dark brown colour, which crumbled to powder between the fingers. On viewing it with a glats, they found it to confif of a congeries of metallic globules, fome of which were as large as a pin-head. The metal thus obtained is called iungsten. The manner in which it was produced is evident; tungftic acid is compofed of oxygen and tungtten: the oxygen combined with the carbon, and left the metal in a fate of purity.
Its Pioper- Tungtten is externally of a brown colour, internally ties. of a fteel gre) *.

Its fpecific gravity is $17,600+$. It is more infufible
$\ddagger \ddagger d^{\circ}$ than manganele \ddagger.

When heat is applied to tungten it is converted into a yellow powder, compofed of 80 parts of tungften
§13. and 20 of oxygen $\$$. This is the yellow oxide of iungsten or tungstic acid.

The fulphuret of tungten is of a bluifh black colour, hard, and capable of cryftallizing.
if Pelldier,
Апп. de
Cbim. xiii.
23%
Phofphorus is capable of combining with tungften $\|$.
Of the alloys of tungten we know nothing, except from the experiments of Elhuyarts, which have been tranfcribed into the article Chemistry in the Encyclo- padia; to which, therefore, we beg leave to refer.

Sect. XVII. Of MolyUdenum.

180
Difenvery
of nolyb. टel:un:.

The Greek word molybdera, and its Latin tranflation plumlago, feem to have been enapioyed by the ancients to denute various oxides of lead; but by the moderns they were applied indiferiminately to all fubftances poffeffed of the following properties: Light, friable, and
foft, of a dark colour and greafy ieel, and which leave Molybdea tlain upon the liagers. Sclieele frit examined thefe num. ininerals with attention. He fomid that two very dif. ferent fublances had been confounded iogether. To one of thele, which is compofed of carbon and iron, and which has been already defcribed; he appropriated the word plumbago ; the uther he called molybdena.

Molydbena is compofed of fcaly particles adhering nightly to each other. Its coluur is bluith, very much refembling that of lead. Scheele analyfed it, and ob. tained fulphur and a whitim powder, which poffeffed the properties of an acid, and which, therefore, he called ncid of nilybdena. Bergman firt fufpected that the balis of this acid was a metal. It was at the requett of Bergman and Scheele that Mr Hielm began the laborious courfe of experiments by which he fucceeded in obtaining a metal from this acid. His method was in form it into a pafte with linfeed oil, and then to apply a very ftrong heat. This procefs he repeated feveral times fucceffively. Klaproth and Pelletier alfo attempted to reduce it, and with equal fuccefs. The metal is molydenum (K).

Molybdenum is externally of a whitih yellow colour, lis proper. but its fracture is a whitih grey.

Hitherto it has only been procured in fmall grains, agglutinated logether in brittle maffes.

Its fpecific gravity is 7,500 . It is almof infufible in our fires.

When expofed to a ftrong heat, it is gradually converted into a whitifh-coloured oxide *. When nitric * Peilither, acid is poured upon it, molybdenum attracts oxygen, and 耳ourr. de is converted into a white oxide, which poffeffes the pro- $\mathcal{P L} / \sqrt{6} 17 \$ 5$. perties of an acid \dagger. This is the molybdic acid.
t thid.
Molybdenam combines readily with fulphur; and the compound has exactly the properties of molybdena, the fubftance which Sicheele decompounded \ddagger. Molybdena \ddagger Ilid. is therefore fulfburct of molybdenum. The reafon that Scheele obtained from it molybdic acid was, that the metal combined with oxygen during his procefs.

Molybdenum is alfo capable of combining with phof. phorus $\$$.
§ Pellctier,
Few of the alloys of this metal have been bitherto Ann. de examined.
$\mathrm{s}^{137 .}$
It feems capable of uniting with gold. The alloy is probably of a white colour li.
$\|$ Ruprecbs,
It combines readily with platinum while in the fate $A n \pi$. $d \varepsilon$ of an oxide. The compound is fulible. Its fpecific ${ }_{8}$ cim, viii. gravity is $20,00 \mathrm{~F}$.

Fitictm,
'Ihe alloys of molybdenum with filver, iron, and cop- Anno de per, are metallic and friable; thofe with lead and tin Cbim. iv. are powders which cannot be fufed*.

* Pellefier,

Fournal de
Pbysique,
There is a mineral found in the George Wagsfort Dec. 17885 . mine at Johann-Georgenfadt in Saxony, partly in a Difcovery pure or unmixed ftate, and partly Aratified with other furanikinds of ftones and earths. The firf variety is of a 1 m . blackifh colour inclining to a dark iron grey, of a moderate fplendor, a clofe texture, and when broken pre. fents a fomewhat uneven, and, in the fmalleft particles, a conchoidal furface. It is quite opaque, tolerably hard, and on being pounded yields a black powder. Its fpecific gravity is about 7,500. The fecond fort is diftinguifhed
(k) This name was given it by Hielm.

Uranium. ditinguifted by a finer black colour, with here and there a reddifl caft; by a ftronger lufte, not unlike that of pitcoal; by an inferior hardnefs; and by a Chadc of green, which tinges its black colour when it is reduced to powder *.

- Klaproth, Crell' $\mathfrak{Y o u r}$ nil, Eng. I'ranf. i. 126°.
mined by the name (L), lad taken it for an of zinc, till the celeb (L, Werner , texture, hardnefs, and fecific gravity, that it was not a blende, placed it among the ores of iron. Afterwards he fufpected that it contained tungsten; and this conjecture was feemingly confirmed by the experiments of fome German mineralogifts, publifhed in the Miners Journal \dagger. But Klaproth, whofe analyfes always difplay the moft confummate fkill, joined with the moft rigid accuracy, examined this mineral about the year 1789, and found that it confited chiefly of fulphur combined with a peculiar metal, to which he gave the name of uranium (M).

Uranium is of a dark grey colour ; internally it is fomewhat inclined to brown \ddagger.

Its malleability is unknown. Its harchefs is abont 6. It requires a fronger heat for fufion than manganefe. Indeed Klaproth only obtained it in very frall conglutinated metallic grains, forming altogether a porous and fyongy mafs.-Its fpecific gravity is 6,440 §.

When expofed fur fome time to a red heat, it fuffers no change. By means of nitric acid, however, it may be converted into a yellow powder. This is the yellow oxide of uranium. This oxide is found native mixed with the mineral above deferibed. Its affinities have not yet been determined.

Uranium is capable of combining with fulphur. The mineral from which Mr Klaproth firft obtained it is a native fulphuret of uranium.

Nothing is known concerning the alloys or affinities of uranium.

Sест. XIX. Of Titanium.

a denfe greyifn mafs, the furface of which was cryftul. Tellarium lized. When diffolved in boiling water, it foon let fall a white powder, weighing abont one-third more than the titanium employed. This is the oxide of titanium. Fifty grains of it were reduced by ignition to 3^{8}. While hot it was yellowifh, but, like oxide of zinc, became white as it cooled. When heated on charcoal, it affumes firtt a rofy red, and afterwards a flate blue colour, and at laft inelts into an imperfect head with a finely ftriated furface. "Mr Klaproth did not fucceed in reducing it to the metallic flate.

Titanium does not feem to have any affinity for ful phur*.

There was a fubftance difcovered by Mr M'Gregor in the valley of Menachan in Cornwall, and hence called menaclanite. Upon this fubtance Mr M'Gregor made a very interefling fet of experiments, which were publifhed in the Journal de Phyfique for 1791. He fufpected it to contain a new metal. From its properties, Mr Kirwan conjectured that it was the fame with titanium \dagger; and this conjecture has been very lately con- + Minsra? firmed by Mr Klaproth, who analy fed menachanite, and ${ }^{\text {ii. }} 331$. found it to be an ore of that netal.

Sect. XX. Of Tcllurium.

Menacha. ite.

In the mountains of Fatzbay, near Zalethna in Tran- Difcovery fylvania, there is a mine called Mariabilf; the ore of of telluriwhich is wrought for the gold that it contains. Mr ${ }^{\text {um. }}$ Muller of Reichenftein examined it in 1782, and fufpected that it contained a new metal; and Bergman, to whom he had fent fome of the ore, was of the fame opinion : but the quantity of the mineral which thefe chemilts had examined was too inconfiderable to enable them to decide with certainty. Klaproth analyfed a larger quantity of it about the year 1797, and found that 1000 parts of it confifted of 72 parts of iron, 2,5 of gold, and 925,5 of a new metal, to which he has
given the name of telluriun (N).

183

Tellurium is of a white colour like tin, approaching Its properfomewhat to the grey colour of lead \ddagger.

It is very brittle and friable. Its fracture is laminated. \ddagger Kliofopophoth, Its fpecific gravity is 6,115 .

It is as eafly melted as lead. When fuffered to cool ${ }^{i .} 78$. quietly and gradually, it readily affomes a cryftallized furface ρ.

When heated by the blowpipe upon charcoal, it burns with a very lively flame of a blue colour, inclining at the edges to green. It is fo volatile as to rife entirely in a whitifh grey finoke; at the fame time it exhales a difagreeable odour like that of radifhes. This fmoke is the zulite oxide of tellurium, which may be formed alfo by diffolving the metal in nitromuriatic acid, and pouring into the faturated folution a quantity of water: 2 white powder precipitates, which is the oxide $\|$. . \| Klapretg

When this oxide is heated for fome time in a retort, it melts, and appears, after cooling, of a yellow fraw colour, having acquired a fort of radiated texture. When

I i
formed
(L) Blende is the name given to ores of zinc.
(m) From Uranus (ougavs), the name given by Mr Bode to the new planct difcovered by Herfchel; which name the German altronomers have adopted. Mr Klaproth called the metal at firit uranite; but he afterwards changed that name for uranium.
(א) Mr Kirwan, in the new edition of his Mineralogy, which was publifhed before Mr Klaproth's experiments were known, gives this metal the name of Sylvanile. - Telluriam exifts in feveral other mines in the fame meuntains.

Tellurium. formed into a pafte with any fat oil, and diftilled in a red heat, brilliant metallic drops are obferved to cover the upper part of the retort, which at intervals fall to the bottom of the veffel, and are immediately replaced by others. After cooling, metallic fixed drops are found adhering to the fides and at the bottom of the veffel ; the remainder of the metal is reduced. Its furface is brilliant and almoft always crytallized. When this oxide is expofed to heat on charcoal, it is reduced

* Klappoto with a rapidity that refembles detonation *.

Tellurium combines with fulphur. The fulphuret of this metal is of a grey colour and radiated flructure.

When placed on red hot clarcoal, the metal burns as
Telluium. well as the fulphur with a blue flame.

Tellurium amalgamates with mercury by fimple tritu-
ration \dagger--The other properties of this metalare unknown. \dagger Ayuller.
A New metal has lately been difcovered by Vauquelin Cbromum. ${ }^{189}$ in the red lead ore of Siberia. It is grey, very hard, brittle, and eafily cryftallizes in fmali necdles \ddagger. He \ddagger Nictolfon? has given it the name of chromum (0).

We have now defcribed all the metals at prefent ${ }^{146}$.
known. The following table will exhibit in one view
their priucipal propertics.

Metais.	Colour.	$\begin{array}{\|l\|} \hline \text { Hard } \\ \text { nef. } \end{array}$	Specific gravity	Fufing Point.	$\begin{array}{\|c\|} \hline \text { Mallea-a- } \\ \text { bility. } \end{array}$	Ducthry	
Gold.	Yellow.	6	19,300	$\left\|\begin{array}{c} 32 \mathrm{~W} .(\mathrm{P}) \\ \mathrm{T} 298 \mathrm{~F} . \end{array}\right\|$	282000	500	
Silver. .	White.	$6 \frac{1}{2}$	10,510	$\begin{aligned} & 28 \mathrm{~W} . \\ & 1044 \mathrm{~F} . \end{aligned}$	160000	270	
Platinum.	White.	$7 \frac{1}{2}$	23,000	$150 \mathrm{~W} . ?$		$\begin{gathered} \text { above } \\ 500 \end{gathered}$	
Mercury.	White.		13,568	-39 F.			
Copper.	Red.	8	8,870	${ }_{1449 \mathrm{~F} .}$		299 ${ }^{\frac{1}{4}}$	
Iron.	Blue-grey.	9	7,788	$\left\|\begin{array}{l} 150 \mathrm{~W} . \\ 20577 \mathrm{~F} . \end{array}\right\|$		450	Magnetic.
Tin.	White.	6	7,299	410 F .	2000	49	
Lead.	Blue-white.	5	I 1, 352	540 F .		$29 \frac{1}{4}$	
Zinc.	White.	6	7,190	700 F .		\bigcirc	
Antimony.	Grey.	$6 \frac{1}{1}$	6,860	700 F .	-	\bigcirc	
Bifmuth.	Yellow-white.	6	9,822	460 F.	-	\bigcirc	
Arfenic.	White.	7	8,310	400 F. ?	\bigcirc	-	
Cobalt.	White.	8	8,150	$\begin{aligned} & 130 \mathrm{~W} . \\ & 17977 \mathrm{~F} . \end{aligned}$			Magnetic.
Nickel.	White.	8	9,000	$\begin{aligned} & 150 \mathrm{~W} \\ & { }_{20577} \mathrm{~F} . \end{aligned}$			Magnetic.
Manganefe.	White.	8	7,000	$\left\|\begin{array}{l} 150 \mathrm{~W} \\ 20577 \\ \mathrm{~F} \end{array}\right\|$	\bigcirc	\bigcirc	Magnetic.
Tungften.	Brown.	6	17,600		\bigcirc	\bigcirc	
Molybdenum	Grey.		7,500		\bigcirc	-	
Uranium.	Grey.	6	6,440				
Titanium.	Red.	9	4,180		0	\bigcirc	
Tellurium.	White.		6,115	540 F .	\bigcirc	\bigcirc	
Chromum.	Grey.				\bigcirc	\bigcirc	

(o) From $\chi \varsigma^{\circ} \mu \alpha$, becaufe it poffefles the property of giving colour to other bodies in a remarkable degree.
(p) W. Wedgewood's pyrometer. F. Fahrenheit's thermometer.

Wie have fcen that ali the metals are capable of combining with oxygen; that almoft every one forms various oxides, containing different quantities of oxygen, and varying in colour and other properties according to the proportion of oxygen which they contain. No part of chemiftry has more engaged the attention of philofophers than the metallic oxides; and yot fuch is the difficulty of the fubject, that fcarcely any part of chemintry is more imperfectly undertood.

We neither know how many oxides every particular metal is capable of forming, nor the manner in which they are formed: neither have the differences between oxides of the fame metallic bafe been inquired into ; though there cannot be a doubt that they differ, not only in their affinities, but in many of their other properties. The white oxide of manganefe, for intance, combines readily with acids, but the bluck is incapable of uniting with any.

Mr Proult, in a very valuable paper which he lately publifhed concerning the oxides of iron*, hints that metals are only capable of two degrees of oxidation, or, which is the fame thing, that only two different oxides can be produced from the fame metal. We think he has proved this completely as far as iron is coucerned; and probably the obfervation holds good with refpect to many other metals. Arfenic, copper, tin, molybdenum, and perhaps even mercury, feem to be capable of only two degrees of oxidation ; but it would require a very numerous and accurate fet of experiments to be able to determine the matter, or even to form a probable conjecture. Analogy is certainly againft the fuppofition ; for it has been demonftrated that fome fubAtances at leaft are capable of combining with three different dofes of oxygen (c), and why may not this be the cafe alfo with the metals?

There is one obfervation, however, which we owe to Mr Proult, the truth of which cannot be doubted, and which is certainly of the higheft importance - that metals are not capable of indefnite degrees of oxidation, but only of a certain number ; and that every particular oxide confifts of a determinate quantity of the metal and of oxygen chemically combined. Iron, for inftance, is not capable, as has been fuppofed, of uniting with oxygen in all the intcrmediate degrees between $\frac{27}{T 00}$ and $\frac{48}{505}$, and confequently of forming 20 or 30 different oxides ; it can only combine with precifely $\frac{27}{200}$ parts, or $\frac{48}{10}$ parts, and with no other proportions; and therefore is only capable of forming two oxides, the green and the brozun. In like manner, every other metal combines with certain proportions of oxygen, and forms either two oxides or more according to its nature. To talk therefore of oxidating a metal indefinitely is not accurate, except it be intended to fignify the combining of part of it with oxygen, while the reft remains in its natural ftate. If iron be oxidated at all, it muft be combined with $\frac{27}{100}$ of oxygen; if it be oxidated more than this, it muft be combined with $\frac{48}{100}$ of oxygen.

We beg leave to add another obfervation, which we confider as of no lefs importance, and which will ferve in fome meafure to modify and explain what has been juft now faid. Oxygen is capable of uniting with me-
tals, or with any other fubftance for which it has an Tellurium. affinity, only in one determinate proportion. Iron, for in. fance, and oxygen can only combine in the proportion of 73 parts of iron and 27 of oxygen. Thefe two iquantities faturate each other, and form a compound which is incapable of receiving into it any more osygen or iron: this compound is the green oxide of iron. How comes it then, it will be afked, that there is another oxide of iron, the brocun oxide, which contains 52 parts of irou and 48 of oxygen, proportions certainly very different from 73 and 27 ? We aufwer, there is an affinity between the green oxide of iron and oxygen; they are capable of combining together, and of faturating each other in the proportion of about 71,5 parts of graen oxide and 28,5 of oxygen ; and the compound which they form is the brown oxide, which of courfe contains 52 parts of iron and 48 of oxygen: Lut then it is not formed by the combination of thefe two fubfances directly, but by the combination of the grcen oxide and oxygen. In like manner, the arlenic acid is not compofed of arfenic and oxygen cumbined directly, but of white oxide of arfenic combined with oxygen. The very fame thing takes place in all the other metals. We cannot at prefent prove the truth of this ubferva. tion in a fatisfactory manner, becaufe it would be neceffary to draw our proofs from combinations which are yet undefcribed; but we will have occation to confider it afterwards.

We have feen that all the metals hitherto tried are capable of combining with fulphur, except gold and titanium; that all of them on which the experiments have been made can be united with phofphorns; and that three of them, iron, zinc, and manganefe, united with carbon; and perhaps many more of them may hereafter be found capable of alfuming the form of carburets.

We have feen, too, that they are capable of uniting with one another and forming alloys. This was long reckoned peculiar to metals, and it is at prefent one of the beft criterions for determining the metallic nature of any fubftance. Much is wanting to render the chemiftry of alloys complete. Many of them have never been examined; and the proportions of almoft all of them are unknown. Neither has any accurate method been yet difcovered of determining the affinities of metals for each other. The order of affinities which we have given for each metal was determined by Bergman ; but he acknowledged himfelf that he wanted the proper data to cufure accuracy.

Chap. IV. Of Earths.

The word earlh, in common language, has two meanings; it fometimes fignifies the globe which we inhabit, and fometimes the mould on which vegetables grow. Chemifts have examined this mould, and have found that it confifts of a variety of fubflances mixed together without order or regularity. The greateft part of it, however, as well as of the flones, which form apparently fo large a proportion of the globe, confilts of a fimall number of bodies, which have a variety of commmon proI i 2
perties.
(a) We fhall fee afterwards that azot is one of thefe.
perties. Thefe bodies chemitts have agreed to clats tosether, and to denesminate carths.
F.very body which poffeffes the following properties is 31 c crith:

1. Infclable in water, or nearly fo; or at leaft becoming infoluble when combined with carbonic acid.
2. Little or no tafte or finell; at leaft when combined with carbonic acid.
3. Incombuftible, and incapable white pure of being aitered by the fire.
4. A fpecific gravity not exceeding 4,9 .
5. When pure, capable of affurning the form of a white powder.

The earths at prefent known amount to ten; the names of which are, litre, magnefia, barytes, ftrontitcs, alumina, filica, jargonia, glucina, yttria, aguftina.

Every one of the ahove characteriftics is not perhaps rigoroufly applicable to each of thefe bodies; but all of them poffers a fufficient number of common propertics to render it ufeful to arrange them under one clafs.

Sect. I. Of Lime.

Ime has been known from the earlieft ages. The ancients employed it in medicine ; it was the chief ingredient in their mortar; and they ufed it as a manure to fertilize their fields.
193
Mechod of procuring lime.

394
Properties
of line. we thould rather fay, that there is no part of the world where it does not exift. It is found pureft in limeftones, and marbles and chalk. None of thefe fubllances, however, is, itrictly fpeaking, line; but they are all capable of becoming lime by a well.known procefs, by keeping them for fome time in a white heat : this procefs is called the burning of lime; the product is denominated quickime. This laft fubftance is what we call lime.

Pure lime is of a white colour, moderately hard, but eafily reduced to a powder.

It has a hot burning tafte, and in fome meafure corrones and deftroys the texture of thofe animal bodies to which it is applied. It has no fmell. Its fpecific gra* Kirwan's vity is $2,3^{*}$.

MSiner. i. s. If water be poured on newly burnt lime, it fwells and falls to pieces, and is foon reduced to a very fine powder. In the mean time, fo much heat is produced, that part of the water flies of in vapour. If the quansity of lime flacked (as this procefs is termed) be great, the heat produced is fufficient to fet fire to combuftibles. In this manner veffels loaded with lime have fometimes been burnt. When great quantities of lime are flacked in a dark place, not only heat, but light alfo is emitted,

+ Your. de as Mr Pelletier has obferved \dagger. When flacked lime is weighed, it is found to be heavier than it was before. This additional weight is owing to the combination of part of the water with the lime; which water may be feparated again by the application of a red heat ; and by this procefs the lime becomes juft what it was before
\ddagger Dr Btach. being flacked \ddagger.
Lime-wa
ter.
\$ Kirwan's
Six hundred parts of water, at the temperature of 60°, diffolve about one part of lime; boiling hot water diffolves about double that quantity $\$$. This folution
Mixer, i. 5 is called lime-water. It is limpid, has an acrid tafte, and changes vegetable blue colours to green. One nunce troy of lime-water contains about one grain of lime.

One thoufand parts of lime are capable of abiorbing, and retaining, at at heat of $600^{\circ}, 228$ parts of water*. Lime has never yet been obtained in the flate of * Lavoijiter. cryitals.

It is incapable of being fufed by the moft violent heat that can be produced in furnaces, or even by the moft powerful burning-glafes.

Lime unites readily with fulphur, and forms fulphuret Sulphuret, of lime. This compound may be obtained by mixing and unflacked lime and flowers of fulphur together, and adding a little water. The heat produced by the flacking of the lime is fufficient to make the fulphur and the lime unite. This fulphuret is of a red colour. When water is poured on it, fulphurated hydrogen gas is enitted. The fulphur is gradually converted into fulphuric acid by uniting with the oxygen of the water, the hydrogen of which flies off in the form of gas, diffolving at the farme time a part of the fulphur.

It is capable alfo of combining with phofphorus. - Phofphuret The phofphuret of lime decompofes water by the affit-of line. ance of a moderate heat, and gives out phofphurated hydrogen gas.

198
Limeftone and chalk, though they are capable of be Caufe of ing converted into lime by burning, poffefs hardly any the diffeof the properties of that active fubflance.' They are rence hetaftelefs, fcarcely foluble in water, and do not percep- tweenlimea tibly act on animal bodies. Now, to what are the new lime, properties of lime owing? What alteration does it un. dergo in the fire ?

It had been long known that limeftone lofes a good deal of weight by being burned or calcined. It was natural to fuppofe, therefore, that fomething was feparated from it during calcination. Accordingly, Van Helmont, Ludovicus, and Macquer, made experiments in fucceffion, in order to difcover what that fonething was; and they concluded from them that it was pure water, which the lime recovered again when expofed to the atmofphere. As the new properties of lime could hardly be afcribed to this lofs, but to fome other caufe, 199 hardly be alcribed to this lofs, but to fome other caule, According
Stall's opinion, like all the other chemical theories of to Stahl; that wonderful man, was generally acceded tu. He fuppofed that the new properties which lime acquired by calcination, were owing entirely to the more minute divifion of its particles by the action of the fire. Boyle indeed had endeavoured to prove, that thefe properties were owing to the fixation of fire in the lime a a theory which was embraced by Newton and illuftrated by Hales, and which Meyer nèw modelled, and explained with fo much ingenuity and acutenefs as to draw the attention of the moft diftinguifhed chemifts. But while Meyer was thus employed in Germany, Dr Black, of Edinburgh, publifhed thofe celebrated experiments which form fo brilliant an era in the hitory of chemiftry.

He firft afcertained that the quantity of water fepa-Explained rated from limeftone during its calcination was not near. by DrBlacko ly equal to the weight which it loft. He concluded in confequence that it muft have lort fomething elfe than mere water. What this could be, he was at firf at a lofs to conceive; but recollecting that Dr Hales had proved, that limefone, during its folution in acids, emitted a great quantity of air, he conjectured that this might probably be what it loft during calcination. He calcined it accordingly, and applied a pneumatic appasatus to receive the product. He found his conjecture

Lime. verified; and that the air and the suater which feparated from the lime, were together precifly equal to the lois of weight which it had fuftained. Lime therefore owes its new properties to the lofs of air ; and limeftone differs from lime merely in being combined with a certain quantity of air: for he found that, by refloring again the farne quantity of air to lime, it was converted into limeftone. This air, becaufe it exifted in lime in a fixed itate, he called fixed air. It was afterwards examined by Dr'Priefley and other philofophers, found to poffefs peculiar properties, and to be that fpecies of gas now known by the name of carbonic acid gas. Lime then is a fimple fubftance, that is to fay, it has never yet been decompounded; and limeftone is compofed of carbonic acid and lime. Heat feparates the carbonic
201 A finities of lime. acid, and leaves the lime in a flate of purity.
The affinities of lime, according to Bergman, are as follows:

$$
\begin{aligned}
& \text { Oxalic acid, } \\
& \text { Suberic (R)? } \\
& \text { Sulphuric, } \\
& \text { Tartarous, } \\
& \text {. Succinic, } \\
& \text { Phofphoric, } \\
& \text { Sacholactic, } \\
& \text { Nitric, } \\
& \text { Muriatic, } \\
& \text { Sebaci, } \\
& \text { Fluoric, } \\
& \text { Arfenic, } \\
& \text { Formic, } \\
& \text { Lactic, } \\
& \text { Citric, } \\
& \text { Benzoic, } \\
& \text { Sulphurous, } \\
& \text { Acetous, } \\
& \text { Boracic, } \\
& \text { Nitrous, } \\
& \text { Carbonic, } \\
& \text { Pruffic, } \\
& \text { Sulphur, } \\
& \text { Phofphorus, } \\
& \text { Water, } \\
& \text { Fixed oil. } \\
& \text { SECT. II. Of Magnefia. }
\end{aligned}
$$

202
Difcovery
of magne-
©a.
years after, Slevogt difcovered that it might be precipitated by potafs from the mother ley (s) of common falt. This powder was generally fuppofed to be lime, till Frederic Hoffman oblerved that it formed very different combinations with other bodies *. But little was * Berghan, known concerning its nature till Dr Black publifhed his io 305 . celebrated experiments in 1755 . Margraf publifhed a differtation on it in 1759, and Berginan another in 1775 , in which he collected the obfervations of thefe two philofophers, and which he enriched alfo with many additions of his own.
As magnefia has never yet been. found native in a Method of flate of purity, it may be prepared in the following procuring manner : Sulphat of magnefia, a falt compofed of this ${ }^{1 \text { t. }}$ earth and fulphuric acid, exifts in fca-water, and in many fprings, particularly fome about Epfom, from which circumftance it was formerly called Epfom falt. This falt is to be diffolved in water, and half its weight of potafs added. The magnefia is immediately precipitated, becaufe potafs has a ftronger affinity for fulphuric acid. It is then to be wafhed with a fufficient quantity of water, and dried.
Magnefia thus obtained is a very foft white powücr, ${ }^{204}$ which has very little tafte, and is totally deflitute of tics. fmell. Its fpecific gravity is about $2,3 \dagger$. + Kirwar's
It is foluble in about 7900 times its own weight of Aliner. i. \& . water at the temperature of $60^{\circ} \ddagger$. \ddagger Ibid.
Even when combined with carbonic acid (for which it has a ftrong affinity) it is capable of abforbing and retaining $\mathrm{I}_{\frac{1}{2}}$ times its own weight of water, without letting go a drop; but on expofure to the air, this water evaporates, though more flowly than it would from liner.

Magnefia has never yet been obtained in a cry fallized form.

It tinges vegetable blues of an exeedingly, fiight green.

It is not melted by the frongeft heat which it has been poffible to apply; but Mr D'Arcet obferved that, in a very high temperature, it became fornewhat agglu. tinated.
When magnefia and fulphur are put into a veffel of water, and kept for fome time expofed to a moderate heat, they combine, and form fulphuret of magnefin: which, aecording to Fourcroy, is capable of crytallizing.

The phofphuret of magnefia has never been examined-
Equal parts of lime and magnefia mixed together, Effect of and expofed by Lavoifier to a very violent heat, did not theat chs melt; neither did they melt when Mr Kirwan placed mixtures them in the temperature of 150° Wedrewood. The of hemeand following Table drawn up by Mr Kirwan from his own magrefis. following T`able, drawn up by Mr Kirwan from his own experiments, fhews the effect of heat on thefe two earths mixed tagether in different proportions.

> Proportions.
(в) The affinity of this acid for lime is inferior to the oxalic, which decompofes the fuberat of lime. \mathcal{F} amefon's Mineral. of Shetland and Arran, p. 168.
(s) The mother ley is the liquid that remains after as much as poffible of any falt has been obtained from it. Common falt, for inflance, is obtained by evaporating fea-water. After as much falt has been extracted from a quantity of lea-water as will cryftallize, there is ftill a portion of liquid remaining. This portion is the mother lev.

Magnefis.

206
Afinities of The affinities of magnefia, according to Bergman, are magnefia. as follows:
Oxalic acid,
Phofphoric,
Sulphuric,
Fluoric,
Sebacic,
Arfenic,
Sacholactic,
Succinic,
Nitric,
Muriatic,
Tartarous,
Citric,
Formic,
Laciic,
Benzoic,
Acetous,
Doracic,
Sulphurous,
Nitrous,
Carbonic,
Pruffic,
Sulphur,
Phofphorus?
Water.
Szct. III. Of Barytes.
${ }^{207}$ A tery heavy mincral is found in Sweden, Germaof barytes.
ny, and Britain, which Margraf confidered as a compound of fulphuric acid and lime. But Scheele and Gahn analyfed it in 1774, and found that it confifted of fulphuric acid combined with a peculiar fpecies of earth. This analyfis was foon after confirmed and extended by Bergman. The earth was at firft called terra ponderofa, beary earth, on account of the great \{pecific gravity of the fubftance from which it was obtained. Morveau called it barote (from axpu; 2, beavy), which Bergman changed into barytes; and this laft term is now univerfally adopted.

Barytes is generally found combinced either with ful. phuric or carbonic acid. From the firtt of thefe compounds, which is by far the nof common, it may be obtained by the following procefs :

Reduce the mineral to a powder and mix it with $2 \frac{1}{2}$ it. its weight of carbonat of foda (T), previoufly deprived of alt its water. Expole the mixture to a red licat for an hour and a half, avoiding fufion, and a double decompofition takes place; the fulphuric acid unites with the foda, while the carbonic acid combines with the barytes. Wah it in a fufficient quantity of water to diffolve the compcund of fulphuric acid and foda, the carbonat of barytes, which is almof infoluble, remains behind. Left it fhould be mixed with fome other earths, which is generally the cafe, boil it for three hours in ten times its weight of ditilled vinegar, the fpecifie gravity of which is 1,033 ; by which the barytes will be diffolved, and likewife the lime and magnefia, if there happen to be any; but every other earth (u) remains antouched. Pour off the fulution, and add to it fulphuric acid as long as any precipitate is formed. This precipitate confints of the whole barytes and the lime (if there be any) combined with fulphuric acid. Wafh it in 50 times its weight of water, and all the lime will be diffolved. There will now remain nothing but barytes combined with fulphuric acid, which may be decornpofed as before by carbonat of foda *. The carbonic *Afrueltire, acid may then be feparated by applying a very violent Ann.de heat \dagger; or, what is better, nitric acid may be poured + Hopec, upon it, which will feparate the carbonic acid and com- Edin? Tranf. bine with the barytes; and then the nitric acid may be iv. 36 . driven of by a moderate heat \ddagger.

Barytes thus obtained i: a light, fpongy, porous bo- and Vauque dy, which may be very eafily reduced to powder. It lin. Ann. de ay, what has a harfh and more cauftic tafte than me; and when 276 . taken into the flomach, proves a muft violent poifon. It has no perceptible fmell.
Its $\mathrm{f}_{\text {pecific gravity has not yet been afcertained. }}$
It imbibes water with a hiffing nuife, but, according to Dr Hope, without fwelling or fplitting as lime does \S. However, when expofed to the air, as Four- $\$$ Fdin. croy and Vauquelin inform us, it efflorefces, cracks, Tranf.ibid. burts, fwells up, heats, and becomes white, by abforbing moifture $\|$.

Cold water difolves ahout z'th part of its weight of 'Lin, itiot barytes, and boiling water more than half its weight. and Nitchiot As the water cools, the barytes is depofited in cryltals, nant, i. 3350 the flape of which varies according to the rapidity with which they have been formed. When moit regular, they are flat hexagonal prifms, having two broad fides, with two intervening narrow ones, and terminated at each end by a four-fided pyramid, which in fome inftances conftitutes the larger part of the cryftal. When formed nowly, they are dittinct and large; but when the water is faturated with barytes, they are depofited rapidly, and are generally more flender and delicate. Then, too, they are attached to one another in fuch a manner as to affume a beautiful foliacious appearance, not unlike the leaf of a fern 9 .
Thefe cryftals are tranfparent and colourlefs, and ap-
pear to be compofed of about 53 parts of water and 47
Barytes. $\underbrace{}_{208}$ 208 Method of obtaning
\qquad 1
\qquad水 -
 :
\qquad
\qquad
 .

Barytec of barytes. When expofed to the heat of boiling water, they undergo the watery fufion, or, which is the fame thing, they melt without loling any of the water which they contain. A Atronger heat makes the water dy off. When expofed to the air, they attract carbonic acid, and crumble into duft. They are foluble in $17 \frac{1}{2}$ parts of water at the temperature of 60°; but boiling water diffolves any quantity whatever: the reafon of which is evident ; at that temperature their own water of cryltallization is fefficient to keep then in folution *.

Water faturated with barytes is called barytic zuater. It has the property of convertirg vegetable blues to a green.

When barytes is expofed to the blowpipe on a piece of charcoal, it fufes, bubbles up, and runs into globules, which quickly penetrate the charcoal + . This is probably in confequence of containing water; for Lavoifier found barytes not affected by the ftrongeft heat which he could produce.

Barytes combines readily with fulphur. The eafieft way of forming fulphuret of barytes is to mix eight parts of fulphat of barytes with one part of pounded charcoal, and to apply a ftrong heat. The charcoal combines with the oxygen of the fulphuric acid, and the compound flies off in the form of carbonic acid gas. There remains behind fulphur combined with barytes. Sulphuret of barytes is foluble in water: It is of a yellow colour. It is capable of cryftallizing; and then affumes a yellowifh white colour \ddagger.

The phofphuret of barytes has not been examined.
No mixture of barytes and lime, nor of barytes and magnefia, is fufible in the ftrongell heat which it has magne fia, is sunble in the
5 Lavojifer,
Acud. Par. The affinities of barytes, according to Bergman, are 1782. as follows:

```
Its affinio
tics,
```

Sulphuric acid,
Oxalic,

Succinic,

Fluoric,
Phorphoric,
Saccholactic,
Suberic (v) ?
Nitric,
Muriatic,
Sebacic,
Citric,
'T'artarous,
Arfenic,
Fluoric,
Lactic,
Benzoic,
Acetous,
Boracic,
Sulphurous,
Nitrous,
Carbonic,
Prufic,
Sulphur,
Phofphorus,
Water,
Fixed oils.

Sect. IV. Of Strontites.

About the year 178 , a mineral was brouglit to pifinvery Ediuburgh, by a dealer in foffils, from the lead mine of of itronStrontian in Argylefhirc, where it is found imbedded cites. in the ore, mixed with feveral other fubltances. It is fometimes trañparent and colourlefs, but generally has a tinge of yellow or grcen. lts harduefs is 5 . Its fpecific gravity varies from 3,4 to 3,726 . Its texture is generally fibrous; and fometimes it is found cryftillized in flender prifmatic colunius of varions lengths *. * Hophe, E.

This mineral was generally confidered as a carbonat dimo Tranf. of barytes; but Dr Crawford having nbferved fome ${ }^{\mathrm{ivo}}+4$. differences between its folution in muriatic acid and that of barytes, mentioned in his treatife on Muriat of Barytes, publithed in 1790 , that it probably contains a new carth, and fent a fpecimen to Mr Kirvan that he might exannine its properties. Dr Hope had alfo fufpected that its bafis differed from barytes; and accordingly he made a fet of experiments on it in 1\%9:, which were read to the Royal Society of Edinburgh in 1792. Thefe experinents fully proved that it contained a feculiar earth. Mr Kirwan likewife analyfed the ftrontian mineral, and drew precifcly the fame conclufions. It has been analyfed alfo by Mr Klaproth of Berlin, and Mr Pelletier of Paris. It confifts of carbonic acid combined with a peculiar earth, to which Dr Hope gave the name of firontites. This appellation we fhall adopt.

The carbonic acid may be feparated by a heat of 140° Wedgewood, and then the ftruntites remains behind + .
\dagger Kirzeon's
Strontites has been found in Argylefthire in Scot. Miner. i. land, near Brifol in England, and in Pennfylvania \ddagger. It ${ }^{332}$ 2. has been found alfo in France and in Sicily. It is of a tif Kapreth, white colour. It has a pungent acrid tafte. When 2139 pounded in a mortar, the powder that rifes is offenfive Its properto the noftrils and lungs \wp. It is not poifonous $\|$. ties.

One hundred and fixty-two parts of water, at the $\begin{aligned} & \text { Hope, ibid, } \\ & \text { Pcllcticre }\end{aligned}$ temperature of $6 c^{\circ}$, diffolve nearly one part of it. The folution is clear and tranfparent, and converts vegetable blues to a green. Hot water diffolves it in much larger quantities; and as it cools the frontites is depofited in colourlefs tranfparent cryit:als. Thefe are in the form of thin quadrangular plates, generally parallelograms, the larget of which feldom exceeds one-fourth of an inch in length. Sometimes their edges are plain, but they oftener confilt of two facets, meeting together and forming an angle like the roof of a houre. Thefe cryftals generally adhere to each other in fuch a manner as to form a thin plate of an inch or more in length and half an inch in breadth. Sometimes they affume a cubic form. They contain about 68 parts in 100 of water. They are foluble in 51,4 parts of water, at the temperature of 60°. Boiling water diffolves nearly half its weight of them. When expofed to the air, they lofe their water, attract carbonic acid, and fall into powder I.

When Arontites is thown into iter, ibid When Arontires is thrown into water, it atracts it I_{d} with a hiffing noife, much heat is produced, and it falls into powder much more rapidly than lime *.

It combines with fulphur either by fufion in a crucible, or by being boiled with it in water. The ful. phures.
silisa.
$\overbrace{\text { I. }}$
214 Its affin:ties.
phuret is of a dark yellowih brown colour. It is foluble in water*.

The affinitics of Atrontites, as afcertained by Dr Hope, are as follows:
$2: 5$
Merthod of
nbtaining
Eilica.

816
Its ifoper.
ties.

+ Kirzon's
AIimr, is ro. It is infoluble in water except when newly precipitated from the liquor filicum, and then one part of it is
末 alid. foluble in 1000 parts of water \ddagger. It has no effect on vegetatle colours.

It is capable of abforbing about one-fourth of its weight of water, without letting any drop from it; but on expofure to the air, the water evaporates very readily $\$$.

Silica may be formed into a pafte with a fmall quantity of water: this pafte lias not the fmalleft ductility, and when dried forms a loofe, friable, and incoherent mafs ||.
Silica is capable of affuming a cryftalline form. Cryftals of it are found in many parts of the world. They are known by the name of rock cryfital. When pure they are tranfparent and colourlefs like glafs : they affume various forms; the moft ufual is a lexagonal prifm, furmounted with hexagonal pyramids on one or both ends, the angles of the prifm correfponding with thofe of the pyramids. Their hardnefs is very great, I Kirwan's amounting to eleven. Their fpecific gravity is 2,653 IT

Sulphuric acid, Oxalic, Tartarous, Fluoric, Nitric, Muriatic, Succinic, Phof phoric, Acetous, Arfenic, Boracic, Carbonic.
Sect. V. Of Silica.
There are two methods of imitating thefe crytals by arr. The firft method was difcovered by Bergman. He diffolved filica in fluoric acid, the only acid in which it is fohble, and allowed the folution to remain undifturbed for two years. A number of cryftals were then found at the hottom of the veftl, moftly of irregular figures, but fome of them cubes with their angles truncated. They were hard, but not to be comparcd in this refpect with rock cryflal *.

The other method was difcovered by accident. Pro-ii. 32. feffor Seigling of Erfurt had prepared a liquor filicum, which was more than ufually diluted with water, and contained a iuperabundance of alkali. It lay undifurbed for eight years in a glafs veffel, the mouth of which was only covered with paper. Happening to look to it by accident, he obferved it to contain a number of cryitals; on which he fent it to Mr Trommfdorff, profeffor of chemiftry at Erfurt, who examined it. The liquor remaining amounted to about two ounces. Its furface was covered by a tranfparent cruft, fo ftrong that the veffel might be inverted without fpilling any of the liquid. At the botton of the veffel were a number of cryftals, which proved on examination to be ful. phat of potafs and carbonat of potafs (w). The cruft on the top confifted partly of carbonat of potafs, partly of cryftallized filica. Thefe laft cryftals had affumed the form of tetrahedral pyramids in groups ; they were perfectly tranfparent, and fo hard that they firuck fire with fleel \dagger.

+ Nichol-
Silica endures the moft violent heat without altera-fon's four, i. tion.

217.

It feems incapable of combining with fulphur or phofphorus.

1. The effect of heat upon lime and filica, mixed in $\mathrm{Effect}{ }^{217}$ of various proportions, will appear from the following ex- heat on periments of Mr Kirwan \ddagger.
mixtures of
lime and
filica;

Proportions.	Heat.	Effect.
$\begin{aligned} & 50 \text { Lime } \\ & 50 \text { Silica } \end{aligned}$	$150^{\circ} \mathrm{Wedg}$.	Melted into a mafs of a white colour, femitranfparent at the edges, and ftriking fire, tho' feebly, withiteel: it was fomewhat between porcelain and enamel.
80 Lime 20 Silica	156	A yellowifh whitc loofe powder.
20 Lime 80 Silica	156	Not inelted, formed a brittle mafs.

2. Equal part of magnefia and filica melt with great Magnefia difficulty into a white enamel wher expofed to the mofl and filica: violent heat which can be produced \oint. They are infu- $\$$ Lavijiker, fible in inferior heats in whatever proportion they are $\begin{aligned} & \text { Mam. Par. } \\ & 1 \geqslant 87, \text { p. }\end{aligned}$ mixed $\|$.

1787, P. 3. The effect of heat on various mixtures of barytes ${ }^{598} 8$ and filica will appear from the following experiments of Baryes and Mr Kirwan ${ }^{9}$.

Silica.

l'ropertions.	Heat.	Effect.
80 Silica 20 Barytes	$155^{\circ} \mathrm{Wedg}$.	A white brittle mas.
75 Silica 20 Barytes	150	A brittle hard mals, femi tranfparent at the edges.
66 Silica 33 Barytes	150	Melted into a hard fome what porous porcelais mals.
50 Silica 50 Barytes	148	A hard mals not melted.
20 Silica 8o Barytcs	148	The edges were melted into a pale greenifh mat. ter between a porcelain and enamel.
25 Silica 75 Barytes	150	Melted into a fomewhat porous porcelain mafs.
33 Silica 66 Barytes	150	Melted into a yellowin and partly greenifh whit porous porcelain.

220
And lime, magnefia, and filica.
4. The effect of heat on mixtures of ftrontites and filica is not known.
5. It follows from the experiments of Achard, that equal parts of lime, magnefia, and filica, may be melted into a greenih-coloured glafs, hard enough to ftrike fire with fteel; that when the magnena exceeds either of the other two, the mixture will not melt; that when the filica exceeds, the mixture feldom melts, only indeed with him in the following proportions; three filica, two lime, one magnefia, which formed a porcelain ; and that when the lime exceeds, the mixture is generally fu-

* Mem. fible *.

Berl. ibit. The affinities of filica are as follows:
and Your. de
Pbyf. xxiv.
225
Affinities
of filica.
222
Method of obtaining alumina.

Dissolve alum in hot water, and add to the folntion potafs as long as any precipitate is formed. " Decant off the fluid part, and wafh the precipitate in a fufficient quantity of water, and then allow it to dry. The fubtance thus obtained is called alumina. Its properties wore firlt afcertained with accuracy by Mar223 graf.
Its proper- Alumina thus obtained is a very white fuongy powries. der, without any fmell or tafte.
† Kirwan's
\dagger Kirwan's Its fpecific gravity is $2,00 \dagger$. It is fearcely foluble in
Siner, i. 9 . water, but may be diffufed through it with great faciwater, but may be diffufed through it with great facility.

Suppl. Vol. I. Part I.

With a fmall quantity of water it forms a very tough ductile pafte, and does not readily mix with more.

In its ufual thate of drynels it is capable of abforbing $2^{\frac{1}{2}}$ times its weight of water, without fuffering any to drop out. It retains this water more obflinately than any of the earths hitherto defcribed. In a freezing cold it contracts more, and parts with more of its water than any other earth ; a circumitance which is of fome importance in agriculture *.

Alumina has never yet been obtained in a cryftallized form. It has no effect whatever on vegetable colours.

The moft intenfe heat does not fufe it, but it has the fingular property of diminilling in bulk in proportion to the intenfity of the fire to which it is expofed. It becomes at the fame time exceedingly hard: Mr Lavoifier rendered it capable of cutting glafs; and Mr Boyle had long before done the fame thing \dagger.

```
\(\dagger\) Sbazv's
```

Wedgewood took advantage of this property of alu. Bryle, iti. mina, and by mean. 3 of it conitructed an initrument for ${ }^{422}$. meafuring high degrees of heat. It confilts of pieces $\mathrm{w}^{224} \mathrm{~m}^{24}$ of clay of a determinate fize, and an apparatus for mea- und gefuring their bulk with accuracy: Onc of thefe picces is thermoneput into the fire, and the temperature is eftimated by ter. the contraction of the piece. For a more complete defcription of this important inftrument, we refer to the article Thermometer in the Encgel.

Alumina is hardly fufceptible of combining with fulphur or phofphorus; but from the experiments of La Grange, it appears to have an affinity for carbon \ddagger. \quad Nichol-

1. The effect of heat on various mixtures of lime and fon's 7 ii. rour. alumina will appear from the following table $\oint: \quad$ ii. ri.

Propartions.	Heat.	Effect.
75 Lime 25 Alumina	$150^{\circ} \mathrm{Wedg}$.	Not melted.
66 Lime 33 Alumina	150	Remained a powder.
33 Lime 66 Alumina	(x)	Melted.
25 Lime 75 Alumina	(x)	Melted.
20 Lime 8o Alumina	(x)	Melted.

2. Magnefia and alumina have no action whatever on Magnefia each other, even when expofed to a heat of 150° Wedge- and aluniwood $\|$. 3. The effect of heat on different mixtures of barytes $\|$ Ibid, i. 5%.
227 and alumina will appear from the following experiments Barytes and of Mr Kirwarn 9 .
alumina;
K k . Proportions. 1 Ibid
(x) Thefe three experiments were made by Ehrman: The heat was produced by directing a frcam of oxygen gas on burning charcoal, and is the moft intenfe which it has been litherto ponfible to prodnce.

Proportions.	Heat.	Effect.
80 Alumina 20 Barytes	150° Wedg.	Scarcely hardened.
75 Alumina 25 Barytes	156	No fign of fufion, a loofe powder.
66 Alumina 33 Barytes	152	As the former.
50 Alumina 50 Barytes	150	As the former.
20 Alumina 8o Barytes	148	Somewhat harder, but no fign of fufion.
25 Alumina 75 Barytes	150	Harder, but no fign of fufion.

4. Nothing is known concerning the effect of heat

Alumina
and filica;

* Kiruant

Min. i. 5 s. on mixtures of itrontites and alumina.
5. Equal parts of alunina and filica harden in the temperature of 160° Wedgewood, but do not fufe *. Achard found them infufible in all proportions in a heat probably little inferior to 150° Wedgewood. Mixtures of thefe two earths in various proportions form clays, but thefe are feldom uncontaminated with fome other ingredients.
${ }^{229}$. 6. From the experiments of Achard, it appears that nefia, and no mixture of lime, magnefia, and alumina, in which the alumina; lime predominates, is vitrifiable, except they be nearly in the proportions of three lime, two magnefia, one alumina; that no mixture in which magnefia predominates will melt in a heat below 166°; that mixtures in which the alumina exceeds are generally fufible, as will appear it Ibid. i. 7 ; from the following table \dagger.

230
Lime, Gilimina;

| 3 Alumina
 2 Lime
 1 Magnefia | A porcelain. |
| :--- | :--- | :--- |
| 3 Alumina
 I Lime
 2 Magnefia | A porcelain. |
| 3 Alumina
 1 Lime
 3 Magnefia | Porous porcelain. |
| 3 Alumina
 2 Lime
 3 Magnefia | Porous porcelain. |
| 3 Alumina
 2 Lime
 2 Magnefia | Porcelain. | ca, and alu- we learn that in mixtures of lime, filica, and alumina u- we learn, that in mixtures of lime, filica, and alumina, when the lime exceeds, the mixture is generally fufible

either into a glafs or a porcelain, according to the pro. Alumina. portions. The only infufible proportions were,
$\xrightarrow{\text { Alnin }}$

2	3	Lime
1	1	Silica
2	2	Alumina.

That if the filica exceeds, the mixture is frequently fufible into an enamel or porcelain, and perhaps a glafs; and that when the alumina exceeds, a porcelain may often be attained, but not a glafs *.

* Ilid. i. 73.

8. As to the mixtures of magnefia, filica, and alumina, ${ }_{231}$ when the magnefia exceeds, no fufion takes place at Magnefir, filica, and 150°. When the filica exceeds, a porcelain may often alumiua; be attained; and three parts filica, two magnefia, and one alumina, formed a glafs. When the alumina exceeds, nothing more than a porcelain can be produced \dagger. \dagger 1bid. i. 72
9. Achard found that equal parts of lime, magnefia, ${ }_{\text {and }}^{232}$ filica, and alumina, melted into a glafs. They fufed al- magn fia, fo in various other proportions, efpecially when the fili-filica, and ca predominated.

The affinities of alumina as as follows :

> Sulphuric acid,
> Nitric,
> Muriatic,
> Oxalic,
> Arfenic,
> Fluoric,
> Sebacic,
> T'artarous,
> Succinic, Saceholactic, Citric, Phofphoric, Formic, Lactic, Benzoic, Acetons, Boracic, Sulphurous, Nitrous, Carbonic, Prufic.

Sect. VII. Of Fargonia.
Among the precious fones which come from the Dificove ${ }^{234}$ ifland of Ceylon, there is one called jargon, which is of jargouia, poffeffed of the following properties.

Its colour is various, grey, greenith white, yellowifh, reddifh brown, and violet. It is often cryftallized, either in right angular quadrangular prifms furmounted with pyramids, or octahedrals confifting of double quadrangular pyramids. It has generally a good deal of luftre, at leatt internally. It is moflly femitranfparent. Its hardnefs is from 10 to 16: Its \{pecific gravity from 4,416 to $4,7 \ddagger$.
\ddagger Ioid. i.
It lofes fcarcely any of its weight in a melting heat ; 333. for Klaproth found that 300 grains, after remaining in it for an hour and a half, were only one-fourth of a grain lighter than at firf §. Neither was it attacked either § Your, de by muriatic or fulphuric acid, even when affifted by heat. Pby. 36 . At laft, by calcining it with a large quantity of foda, ${ }^{180}$ he diffolved it in muriatic acid, and found that 100 parts of it contained 31,5 of filica, five of a mixture of nick-

Ghucina. cl and iron, and 68 of an earth poffeffed of peculiar pro-
235 perties. This earth has been called jargonia.
Its proper- Jargonia lias a ftrong refemblance to alumina, It is tics. of a white colour. Its fecific gravity probably exceeds 4,000.

It differs from alumina in the compounds which it forms with other bodies, in being infoluble in a boiling folution of pure potafs or foda, and in being infulible by heat when mixed with thefe fubftances in a thate of dry.

* Kirruan'snefs*。

Mineral. No more of its propertics are yet known.
i. $\mathrm{P}_{\mathrm{g}} 14$.

236
Difcovery
of glucina.
In the beryl was difcovered, fome time ago by Vauquelin, a new earth, to which he gave the name of glucinn. To ohtain it pure, the beryl, reduced to powder, is to be fufed with thrice its weight of potafō. The mafs is to be diluted with water, diffolved in muriatic acid, and the folution evaporated to drynefs. The refiduum is to be mixed with a large quantity of water, and the whole thrown on a filter. The filica, which conftitutes more than half the weight of the ftone, remains behind; while the glucina and the other earths, combined with muriatic acid, remain in folution. They are to be precipitated by means of carbonat of potafs; the precipitate is to be walhed, and then diffolved in fulphuric acid. When the folution, after potafs has been added to it, has been evaporated to the proper confiftency, alum crytals are gradually formed. When as many of thefe have been obtained as poffible, carbonat of ammonia in excefs is to be poured into the liquid, which is firt to be filtered and then boiled for fome time, when a white powder gradually appears. This powder is glucina. and proper y y of Yterby in Sweden, peculiar ties of y ttria. - from Profelior Gadolin, who firt analyted it, gadolinite. Its colour is black, and its fracture like that of glafs. It is magnetic, and foft enongh to be feratched by a knife, and fometimes even by the nail. In this mineral a new earth has been difcovered by various chemifts, who have agreed to give it the name of yttria. When feparated from the other fubfances with which it is
combined, viz, the oxides of iron and mangarefe, a yitria and little lime, and a conliderable quantity of blica, it has Agutina. the appearance of a fine white powder, and has neither tafte nor finell. It is not melted by the application of heat, has no action on vegretable blucs, and is not foluhle in water. It is likewife infoluble in pure alkalies; but it diffolves readily in carbonat of ammonia. It combines with acids, and forms with them falts, which have a fireet tafte, and at the fame thme a certain degree of autterity.

Trommfdorf has latcly' difcovered in the Saxon bery/Difcovery a new earth, to which he has given the name of Aguli- of agulina. na, becaufe the falts which it forms have little or no tafte. As 'l'rommfdorf's experiments have not hitherto been repeated, the exiftence of this earth mult continue doubtful till the conclufions of the difcoverer be confirmed by other philofophers.

These are all the fimple earths that have yet been Remarkon difcovered; and the firf four of them have a great ma-the earihs. ny common properties. They tinge vegetable blues green, they have a ftrong affinity for carbonic acid, and combine readily with all acids. They have fometimes been called alkaline earths.

None of the earths have been hitherto decompounded, nor has the fmalleft proof ever been brought that they are compounds. We mutt therefore, in the prefent fate of chemiftry, confider them as fimple bodies. Many attempts, indeed, have been made to thew that there was but one earth in nature, and that all others were derived from it. The earth generally made choice of as the fimpleft was filica(y). But none of thefe attempts, notwithftanding the ingenuity of feveral of the authors, has been attended with the fmallet thadow of fuccefs.

We have mentioned formerly, that it was almoft the univerfal opinion of chemifts that metals were compofed of fome of the earths united to phlogiton; but of late an attempt has been made to prove that all the earths are metallic oxides, and that they can actually be reduced to the ftate of metals.

Baron had long ago fufpected that alumina had fomewhat of a metallic nature; and Bergman had been induced, by its great weiglit and feveral other appearances, to conjecture that barytes was a metallic oxide : But the firf chemift who ventured to hint that all earths mighit be metallic oxides was Mr Lavoifier *. * Chemifry, About the year 1790, foon after the publication of Mr. Tran. Eng. Lavoifier's book, Mr Tondi and Profeffor Ruprecht, both of Schemnitz, announced, that they had obtained from barytes, by the application of a ftrong heat, a metal of the colour of iro:t, and attracted by the magnet, which they called borbonium; from magnefia another, which they called aufrum; a third from lime, alfo called auflrum ; and a fourth from alumina, which they denominated apulum. Their method of proceeding was to apply a violent heat to the earths, which were fur rounded with charcoal in a Heffian crucible, and covered with calcined bones in powder.

But their experiments were foon after repeated by Klaproth, Savorefi, and Tikaulki ; and thefe accurate

Kk ${ }_{2}$
chemifts

Caloric.

 +rorne chemifis foon proved, that the pretended metals were all of them phoforurets of iron. The iron, by the violence of the heat, had been extructed from the crucible, and the phofphorus from the bones. The earths therefore miuf till continue a diftinct clafs of bodis: and, as Jliaproth has obfersed, their properties are fo exccedingly different from thofe of metallic oxides, that the fuppofition of their being compofed of the fame ingredients is contrary to every fact, and to every analogy with which we are aequainted.
Chap. V. Of Caloric.

Nothing is more familiar to us than beat; to attempt to define it therefore would be unneceffary. When we liay that a ferfon feds beat, that a jlone is bot, the expreffions caufe no difficulty; every one underfands them perfectly: yet in each of thele propofitions the word heat has a ditinct meaning. In the one, it Gignifies the finfution of heat ; in the other, the cauffe of that fenfation. This ambiguity, though of little confequence in common life, leads unavoidably in philofophical difcuffions to confofion and perplexity. It was to prevent this that the French chemitts made choice of the word caloric to fig. nify the coufe of heat. When I put my hand on a hot ftone, I experience a certain fenfation, which I call the fenfution of leat; the caufe of this fenfation is caloric.

Concerning the nature of caloric, there are two opia nions which have divided philnfophers ever fince they turned their attention to the fubject. Some fuppofe that caloric, like gravity, is merely a property of matter, and that it confifts, fome how or other, in a peculiar vibration of its particles ; others, on the contrary, think that it is a diffinct fubftance. Each of thefe opinions has been fupported by the greatef philofophers; and the obfcurity of the fubject is fuch, that both fides have been able to produce exceedingly plaufible and forcible arguments. The recent difcoveries, however, in
this branch of chemiftry, have rendered the latter opi- Caloric. nion much more probable than the former. Indeed we do not fee how it is pofficie to account for many of the phenomena of nature, unlefs caloric be confidered as a fubftance, as we truft fhall appear from the inveftigation into which we are about to enter. We mean, then, with the generality of modern chemifts, to take it for granted that caloric is a futftance, without pretending to be able to demonitrate the truth of our opinion, but merely becaufe we confider it as infinitely more plaufible than the other. If the receiver of an air-pump, while it contains a thermometer, be fuddenly exhaufted of air, the thermometer finks feveral degrees, and then gradually rifes again to its former height. Now if heat be owing to vibration, how comes it that the fmall quantity of matter remaining in the receiver is firf infuffcient, and afterwards fufficient to maintain the temperature ? Is it not more probable that part of the caloric was carried off with the air, and that it gradually returned through the glafs, which it is capable of pervading, though with difficulty *. When air is let into * See Pi=o an exhaufted receiver, the thermometer, as Lambert firft tet fur b_{c} obferved, rifes feveral degrees. Is not this owing to an Ftu, ch. I. additional quantity of caloric introduced by the air? The thermometer then finks nowly. Is not this becaufe the fuperabundant caloric gradually pervades the glafs and flies off? Taking it for granted then that caloric is a fublance, we proceed to examine its propertis.

1. When bodies become hot, or, which is the fame Caloric ex thing, when caloric enters into them, they expand in pands boevery direction; and this expanfion is proportional to the dies. accumulation of caloric. The firt and moft obvious property of caloric then is the power of expanding bodies. It does not, however, expand all fubftances equally, and we are fill ignorant of the law which it follows. All that can be done therefore is to collect facts till this law be difcovered. A number of thefe may be feen: in the following '「able:

TABLE of the Exfanfion of various Bodies at different Temperatures..

$\begin{aligned} & \text { Tempe- } \\ & \text { sature. } \end{aligned}$	Water *.	Mercury.	Linfeed oilt.	Aicohol *.	Tcmpe- rature.	Water *	Mercury.	Linfeed oilt.	Alcohol *.
30°		-	-	100000	100°	100908	100711,8	-	104162
32	-	100000,0	100000	-	105	-	100762,7		
35	100000	100030,0	-	100267	110	-	100813,6		
40	9.9997	100081,0	-	100539	120	101404	100915,4		
45	100005	100131,9	-	101818	130	-	101017,2		
50	100023	100182,8	-	101105	140	-	101119,0		
55	100053	100253,7	-	101401	150	102017	101220,8		
60	100091	100304,6	-	101688	160	-	101322,6		
65	100141	100355,5	-	101984	167	102753	-		
70	100197	100406,4	-	102281	170	-	101424,4		
75	100261	100457,3	-	102583	180	- 103617	101526,3 101628,0		
80	$10033{ }^{2}$	100508,2	-	102890	190	103617	101628,0 101729,8		
85	100411	100559,1	-	103202 103517	200 212	- 104577			
90	100694	100610,0	- 102560	103517 103840	212 408	104577	101835,0	107250 115160	

* Blagden.
\dagger Newten

TAble of the Expanfion of various Bodies at diferent Temperatures cominued.

* Kirauar.
\dagger De Lur.

Tempe. rature	$\left\lvert\, \begin{aligned} & \text { sulph. } \\ & \text { acid } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Nitric } \\ & \text { acid *. } \end{aligned}\right.$	Glats \dagger :	Air.	Oxygen gas $\$$.	Azotic pas δ.	$\left\|\begin{array}{c} \text { Hydroyen } \\ \text { gas } \$. \end{array}\right\|$	Nitrous gas $\$$.	Carb. acid gas \wp.	Anmmoniacal gas \oint.
32°	-	-	100000	100000	100000	100000	10000	100000	100000	100000
40	-	-	-	101790						
45	-	100005								
50	100149	100149	-	104140						
55	100263	101074	100006	-						
60	100382	101389	-	106560						
65	100615	101767	-	-						
70	$10075{ }^{\text {i }}$	102096	-	108950						
	-		${ }_{100014}$	-	104520	103400	108390	106520	111050	127910
80	-	-	-	III300						
90	-	-	-	I 13590						
100	-	-	100023	-						
110	-	-		117580						
122	-	-	100033	- 12180	124830	121860	122830	117630	130660	184870
130	-	-	-	121870						
	-			126030						
167	-	-	100056	-	190180	176640	$137420+$	144370	173850	35^{8780}
170 100	-	-	- 10006	130090 133970						
212	-	-	100083	134890	$547670 \ddagger$	694120	$139120 \ddagger$	$160290 \ddagger$	200940 \ddagger	$680090 \ddagger$
										(A)

Table of the Expanion of Metals from $3^{2 \circ}$ to $212^{\circ} \dagger$.

	Tin.	ead.	Zinc.	ammered Zinc.	$\begin{aligned} & \text { Zinc } 8 \\ & \text { Tin } \end{aligned}$	$\begin{aligned} & \text { Lead } 2 \\ & \operatorname{Tin} 1 \end{aligned}$	Brafs 2 Zins 1	ter.	Copper 3 $\operatorname{Tin}(B) \mathrm{I}$
32°	120000	120000	120000	120000	120000	120000	120000	120000	120000
212	120298	12034	120355	120373	120323	120301	120247	120274	120218

\dagger Smeaton.
Pbil. Tran, slviii. 612.

- Rimenn-

From
(a) This mark \ddagger implies that, owing to fome inaccuracy in making the experiments, the numbers to which it is attached are not to be depended on.
(B) The metal.whofe expanfion is here given was an alloy compofed of three parts of copper and one of tin. The figures in fome of the preceding columns are to be underftood in the fame manner. Thus in the laft column: but two, the metal confifted of two parts of brafs alloyed with one of zinc.

Caloric.
243
Esceprion.

From this table, it appears tiast the gafes are more expanded by caloric than fluids, and fluids more than folids; and that the expanfion of all bodies hitherto examined, mercory alone excepted, goes on in an increafing feries. "Co the expanding power of caloric there is onc fingular exception: From 30° to 40° Fahrenheit, water, inttead of being expanded, fuffers a remarl:able contraction, as is evident from the following table of its bulk for every degree between 32° and 40°. Bulk.

From 400 it expands like other fubfances on being heated (B).

The expanfion of bodies by caloric has furnifhed us with an inftrument for meafuring the various degrees of it in different fubflances, we mean the thermometer; and as mercury is the only fluid which expands equably, it is obvionfly the only proper one for thermometers. The thermometer uniformly uled in this article is that of Fahrenheit, except when fume other is particularly
mentioned.
2. By means of the thermometer, we learn that there is no body which does not contain coloric, becaufe there is none fo cold that it cannot be made colder: and cooling a body is nothing elfe but abftracting a part of the caloric which it contains.
3. Caloric cannot be confined in any body while thofe in its neighbourhood are colder, but continues to rufl out till every thing is reduced to the fame temperature. This does not proceed from the attraction of the colder bodics, but from the tendency of caloric to exift everywhere in an equal degree of tenfion: For when hot bodies are placed in the exhaufled receiver of tSup le Feu, an air-pump, as we learn from Mr Pictet t, or in the chap. vi. Torricellian vacuum, as Count Rumford has thewn us \ddagger, \ddagger Pbit. the caloric leaves them in the fame manner, tho' more Tranf. flowly, and they are equally reduced to the temperature 1786, part I.
of the furrounding budies. This property has been called the equililitium of ealoric. The only way therefore to confine or accumulate this fubftance in a body, is to furround it with bodies which are hotter than itfelf.
4. The equilibrium of caloric feems evidently to prove
that its particles repel each other. This repulfiun will caufe them when accumulated in any place to fly off in every direction, and to continue to feparate till they are ${ }^{247}$ oppofed by caloric in other bodies of the fame relative cles of calo. denfity with themfelves, which, by repelling them in itsric repel turn, compels them to continue where they are. The each other. caloric in bodies therefore is in what has been called by Mr lietet a ftate of tenfion (c). Its particles are actuated by a force which would make them feparate to an indefinite diftance, were they not confined by the oppufite force of the caloric which furrounds then.". The equilitrium therefore depends on the balancing of two oppofite forces; the repulfion between the particles of caloric in the body, which tends to diminif the ten perature; and the repulfion between the caloric of the body and the furrounding caloric, which tends to raife the temperature. When the firf force is greater than the fecond, as is the cafe when the temperature of a body is higher than that of the furrounding budies, the caloric flies off, and the body becomes culder. When the laft force is fronger than the firt, as is the cafe when a body is colder than thofe which are around it, the particles of its caloric are obliged to approach nearer each other, new caloric enters to occupy the fpace which they had left, and the body becomes hotter. When the two forces are equal, tlie bodies are faid to be of the fame temperature, and no clange takes place *. *See Pic-

It is the action of thefe oppofite forces which nakestat fur $1 /$. the thermometer a meafure of temperature. When ap-Fou, ch. i. plied to any body, it continucs to rife or fall till the caloric in it and in the body to which it is applied are of the fame tenfion, and then it remains ftationary. The thermometer therefore merely indicates that the temperature of the body to which it is applied is equal to its own. It is obvious that, in order to obtain the real temperature of bodies, the thernometer fhould be fo fmall that the quantity of caloric, which enters or leaves it, may not materially affect the refult.

This property of caloric feems to be the caufe of the elaflicity of the gafes, in which, as we fhall thew afterwards, it exilts in great quantities. Perlaps it is the caufe of elafticity in general ; for we have uo demonAtrative evidence that the particles of elaftic bodies repel each other (D), and we are certain that all of them contain caloric. Perhaps alfo it is owing to this repulfive property of caloric that the particles of no body actually touch each other; for the lefs caloric we leave in a body, the nearer its particles approach to one ano. ther. The expanfion of bodies by caloric feems alfo to depend on the fame property. The particles of caloric uniting with thofe of the body, endeavour to drag them along when they recede from each other. The expan-
(B) There was a curious fact concerning dilatation obferved by Mr de Luc. A brafs rod which he ufed as a thermometer became in fummer babitually longer; that is to fay, that after being for fome time lengthened by heat, it did not contract by the application of cold to its old length, but continued fomewhat longer. In winter the contrary phenomenon took place. After being contracted for fome time by cold, it did not return to its old length on the application of heat, but kept fomewhat fhorter. A leaden rod fhewed thefe effects in a greater degree. Glafs bas not this quality. De Luc fufpects that this property is inverfely as the elafticity of bodies. Glafs is perfectly elaftic, and lead is lefs elatic than brafs.- Fourn. de Pbyf. xviii. 369.
(c) The phrafe was firft ufed by Mr Volta.
(D) We acknowledge that feveral philofophers of the firt rank, Æpinus for inftance, and Bofcovich, have fuppofed that the particles of all bodies both attract and repel each other: but we cannot help thioking it rather improbable (if it be polfible) that two fuch oppofite propertics fhould exift together.

Caloric. fion of bodies therefore ought to be inverfely as their cohetion, and directly as the tenfion of the caloric which they contain. This property of caloric feems likewife to afford an explanation of a very curious fact, which was firt, we believe, mentioned by De Lie in his 'Treatife

248
Bodics become lighe. er by being heated, on the Modifications of the Atmofphere, and afterwards afcertained by Dr George Fordyce, that bodies become abfolutely lighter by being heated. He took a glafs glohe three inches in dinmeter, with a fhort neek, and weighing 451 grains; pured into it 1700 grains of water from the New river, London, and then fealed it hermetically. The whole weighed $2150 \frac{1}{2}$ grains at the temperature of 32°. It was put for twenty minutes into a freezing mixture of fnow and falt till fome of it was frozen; it was then, after being wiped firt with a dry linen cloth, next with clean wafled dry leather, immediately weighed, and found to be $\frac{1}{6}$ th of a grain heavier than before. This was repeated exactly in the fame manner five different times. At each, more of the water was frozen and more weight gained. When the whole water was frozen, it was ${ }^{\frac{3}{6}}$ the of a grain heavier than it had been when fluid. A thermometer applied to the globe flood at 10°. When allowed to remain till the thermometer rofe to 32°, it weighed $\frac{2}{2-6}$ ths of a grain more than it did at the fame temperature when fluid. We fhall thew afterwards that ice contains lefs caloric than water of the fame temperature with it. The balance ufed was nice enough to mark río part of a grain ${ }^{*}$. Morveau, too, found, much about the fame time, that water put into veffels hermetically fealed, weighed more when frozen than when fluid \dagger : and Mr Chauffier found, that two pounds of fulphuric acid were three grains heavier when frozen than after they had recovered their fluidity \ddagger. Now, if the particles of caloric repel each other, bodies which contain it in great quantities mult be fomewhat repelled by each other. The more replete therefore that any body is with caloric, the more it will be repelled by the carth, which always contains a great quantity; and this repulfion muft in fome degree counteract its gravitation. This explanation was firft fuggefted, we believe, by Dr Black.

The fame property explains another curious fact dif. covered by Mr Pictet of Geneva, that caloric moves more readily vertically upwards than downwards. He took a tule of tiaplate, two inches in diameter and 44 in length, and enclofed in it a bar of copper four lines in diancter and 33 inches in length, which was placed and fixed exafly in its axis. This tube was exhaufted See M_{a} of air, by means of an air-pump, till the manometer $\$$
nometer in
ftood at the height of four lines. It was inclofed in an this Suppl. other tube of pafteboard, except about two inclies, exactly in the middle, to which place the fun's rays were directed for half an hour by means of a concave mirror. The ends of the copper bar were fooped out into concave hemifpheres; and into each of thefe the bulb of a very fenfible thermometer was fixed. The tube was placed vertically. The higheft thermometer, which we thall call A, rofe to 95°, a hundred and one feconds before the loweft B. The thermometer B rofe no lighl-
er than 95°; but the thermometer A reached $\because=1, \% 5^{\circ}$.
To fee whether this difference was uwing to the thir b-moud mometers, the tube was inverted, and conifquestly the higheft thermometer in the former experimat uas loweft in this. The thermoneter 13 now rofe from 40 to 97,25 in $28: 0^{\prime \prime}$; the thermometer A in $2^{7} 7^{6} 3^{\prime \prime}$, or $47^{\prime \prime}$ fooner than B. It was evidemt from this refuit, that the thermometer A was more fenfible than the ther nometer B by $47^{\prime \prime}$. If this be fubtracted from 10 , the former difierence, it will leave $54^{\prime \prime}$, as the difference refulting from potition. Thefe experiments wete repeased with only this difference, that round the ends of the bar and the bulbs of the thermometers (but withont touching the bulbs) fome folds of oiled paper were wrapped to confine the caloric. The fuperiur thermometer A rofe from 50° to $106,25^{\circ}$ in 34 minntes, which was 93^{\prime} fooner than the inferior B : it rote to $110,75^{\circ}$, the thermometer B only to $106,25^{\circ}$. The tube being reverfed, the thermometer A, which was now luwelt, rofe from 46° to $115,25^{\circ}$ in $40^{\prime} 30^{\prime \prime}$, or forty feconds fooner than the thermometer B . 'This fubtracted from $93^{\prime \prime}$, as formerly, laves $53^{\prime \prime}$ for the difference of fituation. The fuperiur thermometer mounted after the burning-glafs was removed $0,45^{\circ}$, remained ftationary for 80°, and afier five mimutes had only defcended $0,45^{\circ}$: the other did not afcend at all; in one minute it defeend. ed $0,225^{\circ}$, and in $6^{\prime} 8^{\prime}$ it defcended $2,47^{\circ}$. In $22^{\prime} 50^{\prime \prime}$ the inferior defcended $63,725^{\circ}$, the fuperior $6 \mathrm{~J}, 475^{\circ}$ *. *Piges From thefe experiments, it is ubvious that the particles for be Fex, of caloric move fomewhat fafter, and in fomewhat greater quantity, upwards than downwards; owing, doubtlefs, to the repulfive power of the caloric in the earth. The fmall quantity of air that remained in the tube may perhaps be fuppofed fufficient to accomnt for the difference, without allowing any fuch tendency upwards in caloric. But it is evident from the experiments of the Florentine academicians on the fame fulject, with tubes full of air, that even when in great abundance, that fluid hardly affected the riling of the fuperior thermometer : furely then its effect mull be altogether imperceptible when fo little of it renained; and in the third and fourth experiments the oiled paper preventeal any of the heated air from approaching the thermometer.
5. If we take a bar of iron and a picce of Rone of Conducting equal dimenfions, and putting one end of each into the power of fire, apply either thermometers or our hands to the bodies: other, we fhall find the extremity of the iron fenfibly hot long before that of the llone. Caloric thercfore does not μ afs through all bodies with the fame celerity and eafe. The power that bodies have to allow it a paffage through them is called their conducting pozver; thofe that allow it to pafs with facility, are called good condualors; thofe through which it palfes with difficulty, are called bud conduciors; and thofe which do not allow it to pafs at all, nors-conductors.

It is probable that all fulids conduct heat in fome de-of wood gree, at leaft this is the cafe with every one at prefent and chatknown. Wood and charcoal are exceeding bad conductors coal ; of caloric (E). Count Rumford informs us, that a piece
(E) This fact merits the attention of chemifts. It is obvious, that when metallic oxides are furrounded with charcoal powder, their temperature cannot be raifed near fo high as it otherwife would be. It is not unlikely that fome part of the difficulty which has been experienced in attempting to reduce and fufe feveral netallic fubo flances may have been owing to this caufe.
of ice, the velocity of both carrents was accelerated. It diminithed as the liquid cooled; and when it had acquired the temperature of the room, the motion ceafed altozether. This experiment was repeated with linfeed oil, and the refult was precifely the fame. Thefe currents were evidently produced by the particles of the liquid going individually to the lides of the tube, and giving out their caloric. The moment they did f, n, their fpecific gravity being increafed, they fell to the bottom, and of courfe pufhed up the warmer part of the fluid, which was thus forced to afcend along the axis of the tube. Having reached the top of the tube, the particles gave out part of their caloric, became fpecificallyheavier, and tumbled in their turn to the bottom.

As thefe internal motions of fluids can only be difcovered by mixing with them bodies of the fame feecific gravity with themfelves, and as there is hard! \boldsymbol{r} any fubllance of the fame fpecific gravity with water which is not foluble in it, Count Rumford liad recourfe to the following ingenious method of afcertaining whether that fluid alfo followed the fame law. The fpecific gravity of water is increafed confiderably ly diffolving any falt in it; he added, therefore, potafs to water till its fpecific gravity was exactly equal to that of amber, a fubftance but very little heavier than pure water. A number of [mall pieces of amber were then mixed with this folution, and the whole put into a glafs globe with a long neck, which, on being heated and expofed to cool, exhibited exactly the fame phenomena with the other fluids. A clange of temperature, amounting only to a very few degrees, was fufficient to fet the currents a-fowing; and a motion might at any time be produced by applying a hot or a cold body to any part of the veffel. When a hot body was applied, that part of the fluid nearelt it afcenled; but it defcended on the application of a cold body.

If caloric pafs throuch water only by the internalp. 258 motion of its particles, as this experiment feems to the nonprove, it is evident that every thing which embarraffes sonwucting thefe motions muft retard its tranfmiffion: and accord- power of ingly Count Rumford found this to be the cafe. He took a large lintfeed oil thermometer with a copper bulb and glafs tube: the bulb was placed exactly in the centre of a brafs cylinder, fo that there was a void fpace between then all around 0,25175 of an inch thick. The thermometer was kept in its place by means of four wooden pins projecting from the fides and bottom of the cylinder, and by the tube of it paffing through the cork fopper of the cylinder. This cylinder was filled with pure water, then held in melting fnow till the thermometer fell to 32°, and immediately plunged into a veffel of boiling water. The thermometer rofe from 32° to 200° in $5^{\prime 9} 7^{\prime \prime}$. It is obvious that all the caloric which ferved to raife the thermometer mult have made its way through the water in the cylinder. The experiment was repeated exactly in the fame manner; but the water in the cylinder, which amounted to 2276 gr . had 192 gr . of farch boiled in it, which rendered it much lefs fluid. The thermometer now took $1109^{\prime \prime}$ to rife from 32° to 200°. The fame experiment was again repeated with the fame quantity of pure water, having

Cakric. 192 gr . of cifierdown mixed with it, which would merely tend to embarrafs the motion of the particles. A quantity of ftewed apples were alfo in another experiincnt put into the cylinder. The following Tables exhibit the refult of all thefe experiments.

Tinge the Caloric zuas in paffing into the Thermometer.

Tenıperature.	Through the Water and Starch,	Thro the Water and Ei Jerdown.	Through Atewed Apples.	Through Water.
	seconds.	Seconds.	Seconds.	Secoud.
Therm. pofe from 32° tu $2 \mathrm{CO}^{\circ}$ in	1109	949	Ic96:	597
Therm, rofe 80°, vie. Trom SO° to 160°, in	341	269	335	172

Time the Caloric was in pafing out of the Thermoneter.

Tempera- ture.	Through the Water and Starch.	Thro' the Water and Eiderdown.	Through fewed Aplles.	Through 1ure Water.
Thern. fell from 200° to 40° in	154^{8}	1541	$1749 \frac{1}{2}$	1032
Therm.fell 80°, viz. from 160° to 80°, in	468	460	520	277

Now neither the flarch nor the ciderdown could produce any alteration in the water except impeding its internal motions; confequently whatever impedes thefe motions diminifhes the conducting power of water. But this could not happen unlefs every individual particle actually went from the cylinder to the thermometer. Hence it follows that, if liquids be conductors, their conducting power is but fmall when compared with their carrying power.

All liquids, however, are capable of conducting caloric ; for when the fource of heat is applied to their furface, the caloric gradually makes its way downwards, and the temperature of every fratum gradually diminifhes from the furface to the bottom of the liquid. The increafe of temperature in this cafe is not owing to the carrying power of the liquid. By that power caloric may indeed make its way upwards through liquids, but certainly not downwards. Liquids then are conduetors of caloric.

Count Rumford, indeed, has drawn a different conclufion from his experiments. He fised a cake of ice in the bottom of a glafs jar, covered one-fourth inch thick with cold water. Over this was poured gently a confiderable quantity of boiling water. Now if water were a non-conductor, no caloric could pafs through the cold water, and confequently none of the ice would be melted. The melting of the ice, then, was to determine whether water be a conducter or not. In two hours about half the ice was melted. This one would think, at firf fight, a decifive proof that water is a consuctor. But the Count has fallen upon a very ingeniSupp:. Voz. I. Part. I.
ous mathod of accounting for the meiting of the ice, Caloric. without being under the neceffity (as he tells us) of re. nouncing his theory that fluids are non-conductors.

It is well known that the fpecific gravity of water at 40° is a maxımum : if it be either heated above 40°, or cooled down below 40°, its denfity diminifles. Therefore, whenever a particle of water arrives at the temperature of 40°, it will link to the bottom of the veffel. Now as the water next the ice was at 32°, it is evident that whenever any part of the hot water was cooled down to 40°, it would fink, difplace the water at 32°, come into contact with the ice, and of courfe melt it. The Count's ingenuity, never without refources, enabled him to prove completely, that the ice employed in his experiment was actually melted in that manner : for when he covered the ice partially with hips of wood, that part which was fhaded by the wood was not melted ; and when he covered the whole of the ice with a thin plate of tin, having a circular hole in the middle, only the part exactly under the hole was melted. From there facts it certainly may be concluded that the ice was melted by defcending currents of water.

But the point to be afcertained, is not whether there were defcending currents, but whether water be a conductor or not. Now if water be a non.conductor, by what means was the hot water cooled down to 40° ? Not at the furface; for the Count himfelf tells us, that there the temperature was never under 108° : not by the fides of the veffel; for the defcending current in one experiment was exactly in the axis: and it follows irrefiftibly, from the experiment with the flips of wood, that thefe defcending currents fell equally upon every part of the furface of the ice ; which would have been impoffible if thefe currents had been cooled by the fide of the veffel. The hot water, then, muft have been cooled down to 40° by the cold water below it ; confequently it mult have imparted caloric to this cold water. If fo, one particle of water is capable of abforbing caloric from another; that is, water is a conduflor of caloric. After the hot water has ftood an hour over the ice, its temperature was as follows:

At the furface of the ice	40°	
One inch above the ice	80	
Two inches	-	118
Three inches	-	128
Four inches	-	-
Seven inches	-	-
P	130	

How is it pofible to account for this gradual diminution of heat as we approach the ice, if water be a nonconductor? The water, it may be faid, gives out caloric at its furface, falls down, and arranges itfelf according to its fpecific gravity. If fo, how comes it that there is only one degree of difference between the temperature at 4 and at 7 inches above the ice? Thus it appears that the Count's experiment, inftead of demonftrating that water is a nun-conductor, rather favours the common opinion that it is a conductor.

The Count tried whether oil and mercury be con- Mercury ductors in the following manner: When water was fro- and oil prozen in a glafs jar by means of a freezing mixture, Count ved to be Rumford obferved that the ice firft began to be formed conductors. at the fides, and gradually increafed in thicknefs; and that the water on the axis of the veffel, which retained its fluidity longeft, being compreffed by the expanfion of the ice, was forced upwards, and when completely
L. 1
frozen,
frozen, furmed a puinted projection or nipple, which was furretimes half an inch higher than the refl of the ice. Upon ice frozen in this inanner, he poured olive oil, previonfly cooled down to 32°, till it flond at the heightit of three inches alove the ice. The veffel was furronaded as high as the ice with a mixture of pounded ice and water. A folid cylinder of wroughth iron, $1 \frac{1}{7}$ th inch in diameter, and 12 inches long, provided with a hollow cylindrical theath of thick paper, was leeated to the temperature of 210° in hoiling water; and being fudesenly introduced into its fheath, was fufpended from the ceiling of the rrom, and very gradually let down into the cil, until the mididle of the flat furface of the hot iron, which was directly above the point of conical projestion of the ice, was diltant from it only T^{2} ths of an inch. The end of the fheath defcended $\frac{t}{\text { to }}$ th of an inch lower than the end of the hot metallic cylinder. Now it is evident, that if olive oil was a conductor, caloric would pafs down through it from the iron and melt the ice. None of the ice, however, was melted; and when mercury was fubftituted for oil, the refult

- Kunford, was juft the fame * ; confequently it follows that neiF.fay sii. ther oil nor mercury is a conductor of heat.
firti.
chap. 1.
But this experiment is by no means fufficiently delicate to decide the point. If a thermometer be fubftituted initead of the nipple of ice, it always rifes feveral degrets; whence it follows that, even in this cafe, caloric paffes downwards; fo that the experiment is in fast favourable to the fuppofition that oil and mercury are condt:ctors.

Count Rumford therefore has not proved that fluids are non-conductors of caloric; and that they are in truth conductors, the author of this article afcertained in the following manner : The liquid of which the conducting power was to be examined was poured into a glafs veffel till it filled it about half way ; then a hot liquid of lefs feccific gravity was poured over it. Thermometers were placed at the furface, in the centre, and at the botton of the cold liquid ; if thefe rofe, it followed that the liquid was a conduetor, becaure the caloric made its way downwards. For inftance, to examine the conducting power of mercury, a glafs jar was haif filled with that liquid metal, and boiling water then poured over it. The thermometer at the furface hegan inmediately to rife, then the thermoneter at the centre, and lafly that at the bottom. The firft rofe to 118°, :he fecond to 90°, and the third to 86° : the firft reachtd its maximum in 1^{1}, the fecond in 15^{\prime}, the third in 25^{\prime}. The conducting power of water was tried in the fame manner with hot oil poured over it ; and the refult was fimilar.

Fluids, then, as far as experiments have been made, are conducturs of caloric as well as folids; and hence i: follows that caloric is capable of making its way thro' all bodies with which we are acquainted. In this rc. fpect it differs from all other fubblances, even from light, which, as far as we know, canuot make its way through all bodies.

The motion of caloric through bodies is indeed of
others, as we have feen, it moves flowly. When it Caloric: moves through a body with undininilhed velocity, it is faid to be tranfmitted through it ; and when its velocity is prodigionly diminifhed, it is faid to be conducted. Air, and all tranfparent bodies hitherto examined, have the property of tranfmitting caloric through then ; though fome of them, as glafs, do not tranfinit it till after they have combined with a certain proportion of it: and probably no body tranfmits it unlefs a greater quantity enter than is capable of combining with it in the flate in which the body is placed. The phenomena of the tranfmiffion of caloric are exactly fimilar to the tranfmifion of light, and admit of precifly the fame explanation. What Scheele and feveral other cliemifts have called radiant beat, is nothing elfe than tranfmitted caloric; as has been completely proved by Dr Herfchel. Sec Tharnometric Spetirum in this Supplement.
6. If equal quantities of water and of mercury be pla. Specific ca. ced at the fame diftance from a fire, the mercury will lotic of bobecome hot much fooner than the water. After a fuf. dies, wha\%. ficient interval, however, both of them acquire the fame temperature. Now caloric flows intu all bodies while they continue of a lower temperature than thofe around ther, and it flows with equal rapidity into all bodies of the fame conducting powers, as is the cafe with thefe two fluids: But if equal quantities of caloric were conflantly flowing into the mercury and the water, and yet the water took a longer time to become hot than the mercury, it muft require a greater quantity of caloric to raife water to a given temperature than it does to raife mercury. Bodies that require a greater quantity of caloric to raife them to a particular temperature than other bodies require, are faid to have a greater capacity for caloric. That the capacity for caloric is different in different bodies, was firt obferved by Dr Black. Dr Irvine afterwards inveltigated the fubject, and $D_{r}{ }^{*}$ Crawford publifhed a great number of experiments on it in his Treatife on Heat. Profeffor Wilcke of Stockbulm alfo difeuvered tla fame property of bodies. He called the quantity of caloric neceflary to raife the tem-perature of fubtances a given number of degrees, their fpecific caloric ; a term which we fhall alfo employ, hecaufe the phrafe capacity for caloric is liable to a great deal of ambiguity, and has introduced confufion into this fubject (F). If two fubftances of unequal temperatures, as water at 100° and alcohol at 50°, be mixed together, the mixture will be of a temperature dififerentboth from that of the water and the alcohol, the water will become colder and the alcohol hotter : the water will give out caloric to the akcohol till both are reduced: to the fame temperature. Now if it requires juft as much caloric to raife alcohol a certain number of degrees as it dors to raife water the fame number, that is, if the fe two fluids are of the fame feecific caloric, it is evident that the temperature of the mixture will be juft 75°; for as foon as the water has given out 25° of caloric, the alcohol has acquired 25°, confequently hoth will be reduced to the fame temperature, and will remain flationary; but if the fpecific caloric of the water be greater than that of the alcohol, the temperature of the nixture will be higher than 75°; for 25°
(F) The term Jpecific caloric has been ufed in a different fenfe by Seguin. He ufed it for the arbole caloris which a body contains.

Caloric. of caluric in that cafe woud raife alcohol more than 25°. If the fpecific caloric of water be for much greater than that of alcohol, that what raifes water 20° will raife alcohol 30°; then the temperature after mixture will be 80°, becaufe when the water has given out 20°, the aleohol will have rifen 30°, and of courfe both will be of the fame temperaturc. On the contrary, if the fpecific caloric of alcohol were greater than that of water, the temperature of the mixture would be under 75°. If the fame quantity of caluric that raifed alcohol 20° raifed water 30°, then the temperature of the mixture would be 70°. Thus the ratios of the fpecific caloric of bodies may be difcovered by mixing them together
ties. Therefore the volume of ice-cold water is to a quantity of hot water equal in volume to the metal, as the fpecific gravity of the metal to that of the water. Let $\mathrm{M}=$ volunie of cold water, $m=$ volume of hot water, $g=$ \{pecific gravity of the metal, $1=$ fpecitic gravity of water; then $m: M:: 1: g$; hence $m=\frac{M}{g}=$ (M being made $\times 1$) $\frac{1}{5}$. Subflituting this value of m in the formula, $\frac{\mathrm{MC}+m c}{\mathrm{M}+m}=x$, in which $\mathrm{M}=\mathrm{x}$ and $\mathrm{C}=3^{2}, x$ will be $=\frac{32 g+c}{g+1}$. Therefore if the fpecific gravity of the metal be multiplied by 32 , and the temperature of the metal be added, and the fum be divided by the fpecific gravity of the metal +1 , the quotient will exprefs the temperature to which the ice-cold water would be raifed by adding to it a volume of water equal to tlat of the metal, and of the fame temperature with it.
He then calculated how much water at the temperature of the metal it would take to raife the ice-cold water the fame number of degrees which the metal had raifed it. Let the temperature to which the metal had raifed the ice-cold water be $=\mathrm{N}$, if in the formula $\frac{M C+m c}{M+m}=x, x$ be made $=N, M=1, C=32, m$ will be $=\frac{\mathrm{N}-3^{2}}{\mathrm{c}-\mathrm{N}}$. Therefore if from the temperature to which the ice-cold water was raifed by the metal 32 be fubtracted, and if from the temperature of the metal be fubtracted the temperature to which it raifed the water, and the fritt renainder be divided by the laft, the quatient will exprefs the quantity uf water of the temperature of the metal which would have raifed the ice-cold water the fame number of degrees that the metal did.
Now $\frac{N-32}{c-N}$ expreffes the fecific caloric of the metal, that of water being $=1$. For (neglecting the fmall difference occationed by the difference of temperature) the weight and volume of the ice-cold water are to the weight and volume of the hot water as I ta $\frac{\mathrm{N}-32}{\mathrm{c}-\mathrm{N}}$, and the number of particles of water in each are in the fame proportion. But the metal is cqual in weight to the ice.oold water; it muf therefore contain as many particles of matter; therefore the quantity of matter in the metal mult be to that in the hot water as 1 to $\frac{N-32}{1-N}$. But they give out the fame quantity of caloric; which, being divided equally among their particles, gives to each particle a quantity of eatoric inverfely as the bulks of the metal and water; that is, the fpecific caloric of the water is to that of the metal as : to $\frac{N-32}{i-N}(G)$.

We flall now give a fpecimen or two of his experiments, and the calculations founded on them, as above defcribed.

$$
1.12
$$

Gold
(c) We have altered all thefe formulas to make them correfpond with Fahreuheit's thermometer. They are a grond deal fimpler when the experiments are made with Celfus's thermometer, as Mr Wilcke did., In it the freezing point is zero; and confequently inttead of 32 in the formuld, O is always fublituted.

Gord. Specific Gravity 19,040.

Num. ber of experiments.	Temperature of the metal.	Temperacure to which the metal raifed the wates at 32°.	Temper. to which it would have been raifed by a quantity of water equal in weight and heat to the netal.	$\|$Tempera- ture to which would have been raifed by watere. qual in hulk and tenpe- ratureto ihe metal.	$\begin{gathered} \text { Denomina- } \\ \text { or of the } \\ \text { fraction } \\ \frac{N-32}{-N}=\frac{1}{c-N} \\ \frac{c-32}{} \end{gathered}$ che numerahor being 1 .
1	163.4	38,3 ${ }^{\circ}$	$97.7{ }^{\circ}$	38,5550	19,857
2	144,5	37,4	88,25	37, 5^{8}	19,833
3	127,4	36,5	79,7	36,68	20,500
4	118,4	36,05	75,2	36,15	20,333
5	103,1	35,6	65,75	35,42	18,750
6	95	34,45	63.5	35,06	19,000

Mean 19,712
Lead. Specific Gravity it,456.

Nunt- ber of experi ment:	Temperature of the me. ta!.	Tempe rature to whech the me. tal raifed the water at 32°.	Tempera- ture to which the water would have been raifed by a quantity of water equal in weight and heat to the metal.	Tempera ture to which the waterwould have been raifed by water equal in bult and temperature to the me- tal.	Denominator of the fraction $\frac{\frac{1}{c-N}}{N-3^{2}}$
1	186,8	38,3	109,4	44,425	23,571
2	181,40	37,85	106,7	43,473	24,538
3	165,2	37,4	98,6	42,692	23,666
4	163,4	37,4	97.7	42,548	23,333
5	136,4	36,5	84,2	40,344	22,200
6	${ }^{131}$	36,05	81,5	39,947	24,700
7	126,5	36,05	79,25	39,585	22,333
8	107,6	35,15	69,8	38,3,99	23,000
9	94, 1	34,7	63,05	$3^{6,985}$	22,000

Mean 23,515
It is needlefs to add, that the laft column marks, the denominator of the fpecific caloric of the metal, the numerator being always 1 , and the fpecific caloric of water being 1. Thus the fpecific caloric of gold is
$\frac{1}{19,712}$. In exactly the fame manner, and by taking a mean of a number of experiments at different temperatures, did Mr Wilcke afcertain the fpecific caloric of a number of other bodies. Hc afcertained at the fame time, that the fpecific caloric of a body did not vary witlr the temperature, but continued always the fame. This will appear evident from the experiments on gold and lead above exhibited.
264
Crawford,
Next, in point of time, and not inferior in ingenious contrivances to enfure accuracy, were the experiments of Dr Crawford, made by mixing together bodies of different temperatures. Thefe were publifhed in his Treatife on Heat.

Several experiments on the fpecific caloric of bodies were made alio by Lavoifier and De la Place, which, from the well-known accuracy of thefe philofophers, cannot hut be very valuable.

Their method was exceedingly fimple and ingenious;
it was firft fuggefted by De la Place. An inftrument was contrived, to which Lavoifier gave the name of ca. lorimeter. It confifts of three circular veffels nearly infcribed into each other, fo as to form three different apartments, one within the other. Thefe three we thall call the interior, middle, and external cavities. The interior cavity $f f f f$ (fee fection of the inftrument fig. 4.), into which the fubftances fubmitted to experiment ate put, is compofed of a grating or cage of iron wire, fupported by feveral iron bars. Its opening or mouth LM is covered by the lid HG, which is compofed of the fame materials. The middle cavity $b b b b$ is filled with ice. This ice is fupported by the grate $m \mathrm{~m}$, and under the grate is placed a fieve. The external cavity aaaa is alfo filled with ice. We have mentioned already, that no caloric can pafs through ice. It can enter ice, indeed, but it remains in it, and is employed in melting it. The quantity of ice melted, then, is a meafure of the caloric which has entered into the ice. The exterior and middle cavities being filled with ice, all the water is allowed to drain away, and the temperature of the interior cavity to come down to 32°. Then the fubftance, the fpecific caloric of which is to be aicertained, is heated a certain number of degrees, fuppofe to $2 t 2^{\circ}$, and then put into the interior cavity enclofed in a thin veffel. As it cools, it melts the ice in the middle cavity. In proportion as it melts, the water runs through the grate and fieve, and falls through the conical funnel $c c d$ and the tube $x y$ into a veffel placed below to receive it. 'Whe external cavity is filied with ice, in order to prevent the external air from approaching the ice in the middle cavity and melting part of it. The water produced from it is carried off through the pipe ST. The external air ought never to be below 32°, nor above 41°. In the firft cafe, the ice in the middle cavity might be cooled too low; in the laft, a current of air flows through the machine and carries off fome of the caloric. By putting various fubftances at the fame temperature into this machine, and obferving how much ice each of them melted in cooling. down to 323 it was eafy to afcertain the fpecific caloric of each. Thus, if water, in cooling from 212 to 32 , melted one pound of ice, and mercury, 029 of a pound ; the fpecific caloric of water was one, and that of mercury ,029. This appears by far the fimpleft method of making experiments on this fubject; and muft alfo be the moft accurate, provided we can be certain that all the melted fnow flows into the receiver. But from an experiment of Mr Wedgewood, one would. be apt to conclude that this does not happen. He found that the melted ice, fo far from flowing out, actually froze again, and choaked up the paffage.

A table of the fpecific caloric of various bodies was ${ }^{2} 66$ likewife drawn up by Mr Kirwan, and publithed by Ma-wan. gellan in his Treatife on Heat.

From all thefe fources we bave drawn up the follow- Refult of ing table, which exhibits at one view the fpecific calo-thefe experic of thofe bodies on which experiments have hithertoriments. been made.

We have added to it a column, exprefling the fpecific caloric of equal bulks of the fame bodies; which: feems to be a more accurate way of confidering this. fubject, and indeed the only way in which the phrafe capacity for caloric is intelligible. This column was formed by multiplying the feecific caloric of equal weights of the various fubftances into their refpective fpecific gravities.

Table

Budies.	Specific Gravits.	Specific of equal Weighr.	$\left\{\begin{array}{l} \text { c. Caloric } \\ \text { of equal } \\ \text { Volumes. } \end{array}\right.$	Bodies	Specifie Gravity.	Specifie of equal Weight.	Calurie of equal Volumes.	
I. Gases***				III. Solids.				
Hydrogen gas	0,000094	2 1,4000	0,00214	Ice \dagger		0,90co		
Oxygen gas	0,0034	4,7490	0,0064 1 I	Ox-lide with the hair*		0,787		
Conımon air - -	0,00122	1,7900	0,002183	Lungs of a thcep*		0,769		
Carbonic acid gas	0,00183	1,0459	0,00193=	Lean of ox-beef *		0,7400		
Stcam - -		1,55co		Rice * - - -		0,5050		
Azotic gas - -	0,00120	0,7036	0,000952	Horfe beans* -		0,5020		
II. Lievids.				Duit of the pine tree*		0,5000		
				Peafe * -		0,4920		
Water - -	1,0000	1,0000	1,0000	Wheat * - -		0,4770		
Carbonat of ammonia \dagger		1,85		Barley * - -		0,42 10		
Arterial blood*		1,030		Oats* - . -		0,4160		
Cows milk* - -	1,0324	0,9999	1,03:2	Pitcoal * = -		0,2777		
Sulphuret of ammonia \dagger	0,8I8	0,9940	0,8130	Charcoal* - -		0,2631		
Venous blood* - -		0,8928		Clalk * - - -		0,2564		
Solution of brown fugart		0,8600		Ruit of iron* - -		0,2500		
Nitric acid \ddagger - -		0,844		White oxide of antimony				
Sulphat of magnefia I $\}+$				waihed* - -		0,2270		
Water 8 8 \dagger		0,844		Oxide of copper nearly				
Common falt 1$\}$				freed from air * -		0,2272		
Water 8 ${ }^{\text {+ }}$		0,832		Quicklime (c) - -		0,2199		
Nitre 17				Stoneware \dagger - -		0,195		
Water 8$\}^{\ddagger}$.		0,8167		Agate ** - -	2,648	0,195	0,517	
Muriat of ammonia 1$\}+$		0,		Cryftal \ddagger - - -	3,189?	0,1929	0,6151	
Water 1,5\} \dagger				Cinders * - -		0,1923		
Tartar $\quad 1\}+$				Swedith glats** *	2,386	0,187	0,448	
Water 237,3$\} \dagger$		0,765		Ames of cinders**	2,386	0,1885		
Solution of potafs \dagger -	r,346	0,759	1,2216	Sulphur \dagger - -	1,99	0,183	0,3680	
					3,3293	0,174	0,5792	
Water 2,5$\}^{\dagger}$		0,734		Ruft of iron nearly freed	3,32			
				from air* - -		0,1666		
Water 2,9 ${ }^{\text {+ }}$		0,728		White oxide of antimo-				
Oil of olives \dagger -	0,9153	0,710	0,6498	ny ditto ${ }^{*}$ - - .		0,1666		
Ammoniat - -	0.997	0,7080	0,7041	Athes of the elm*		0,1402		
Muriatic acid \dagger - -	1,122	0,6800	0,763	Oxide of zinc nearly free				
Sulphuric acid 47t		0,663		from air* - .		0,1369		
Water $\quad 5\} \pm$		0,663		Iron (d) - -	7,876	0,1264	0,993	
Alum 1 $\}^{\text {W }}$				Brafs (d) - - -	8,358	0,1141	0,971	
Water 4,45$\}+$		c,649		Copper (d) - -	8,784	0,1121	1,027	
				Sheet iron \ddagger - =-		0,1099		
Lime ${ }^{\text {I }}$,		0,0181		Oxide of lead and tin *		0,102		
Nitre 1 $\}+$ - -				Gun-metal \|			0,1100	
Water 3 ${ }^{\text {T }}$ T - -		0,646		White oxide of tin nearly				
Alcohol * -	0,8371	0,6021	0,4993	free from air**		0,0990		
Sulphuric acid fi.	1,840	0,5968	1,120	$\operatorname{Zinc}(d) \quad-\quad-$	7,154	0,0y8 1	0,735	
Nitrous acid \dagger -	1,355	0,576	0,780	Afhes of charcoal*		0,0909		
Linfeed oil \dagger - -	0,9403	0,528	0,4964	Silver** - - -	10,001	0,082	0,833	
Spermaceti oil* -		0,5000		Yellow oxide of lead near-				
Oil of turpentine \dagger	0,9910	0,472	0,4132	ly freed from air *		0,0680		
Vinegar \dagger - -		0,3870	0,3966	Tin (e) - - -	7,380	0,0661	0,444	
Lime 9\}		0,3346		Antimony (d) -	6,107	0,0637	0,390	
Water 16 ${ }^{\text {t }}$		0,334		Gold ** - -	19,040	0,050	0,966	
Mercury 7 - -	13,568	0,3100	4,123	Lead (e)	11,456	0,0424	0,487	
Dittilled vinegar \dagger -		0,1030	0,1039	Bifmuth $^{* *}$ - -	9,86ı	c,043	0,427	

7. If
(н) The fpecific caloric of the fubftances marked * was afcertained by Dr Crawford, thofe marked \dagger by Mr Kirwan, \ddagger by Lavoifier and La Place, ${ }^{* *}$ by Wilcke, $\|$ by Count Rumford. $§$ Is the mean of Crawford, Kirwan, and Lavoifier; 1 mean of Lavoifier and Kirwan; (c) mean of Crawford and Laveifier ; (d) mean of Wilcke and Crawford; (e) mean of Wilcke, Crawford, and Kirwan.

* If a quantity of ics: at a low temperature, fup. profe at 20^{n}, be fulpended in a wamm room, it will become gradually lefs colsl, as may le difcovered by means of a thermomefer, till it reaches the temperature of $\ldots 2^{\circ}$; but thete it llops. 'Ihe ine, however, diffulves llowly ; and at the end of feveral hours, when it is all jull melted, the thermometer flill ftands at 3^{2}. After chis it hegins to rife, and foon reaches the temperapure of the room. Here the ice continues for feveral lours colder than the air around it. Caloric muft then be continually fowing into it ; yet it does not become hotter : it is changed, however, into water. Ice, therefore, is converted into water hy a quantity of caloric uniting with it. This caloric has been called latent caloric, becaufe its prefence is not indicated by the thermometer. It might, perhaps with more propriety, as Profeffor Pistet obferves *, be called caloric of fuidity; for there are other cafes in which caloric exifts in bodies withont railing theit temperature. This very inportant difcovery was made by Dr Black as early as $\mathbf{1 7 5 7}$, and feems to have led the way to all the fubfeguent difonveries in this part of chemiftry, which lave Imof completely changed the appearance of the fcience: for the difcovery that caloric may exif in bodies while the thermoneter cannot indicate its prefence, is one of the ftrongett links in the chain of facts by which the nature of combultion was afcertained.

The caloric which unites with ice, and renders it Auid, appears again during the act of freezing. If a tulantity of water be carried into a room where the temperature is below the freczing point, fuppofe at 20°, ic cools gradually down to 32°; but it becomes no colder rill it is all frozen, which takes up fome time. The moment it is all converted into ice, it begins \therefore grain to cool, and fuon reacles the temperature of the room. In this cafe, the water is furruunded by a -old atmofphere; it muft therefore be giving out caloric conftantly; yet it does not become colder till it is all frozen, that is to fay, till it lias lof all its caloric of fluidity.
I) B Black proved, by a very accurate experiment, that the quantity of caloric of fuidity is fufficient to raife the fame quantity of water 140° :

All folids become fluid by abforbing a quantity of caloric. Landriani proved that this is the cafe with fulphur, alum, nitre, and feveral of the metals \dagger; and it has been found to be the cafe with every fubitance hitherto examined. Fluidity, therefure, is owing to a union between the folid and a certain quantity of caloric.

The late Dr Irvine of Glafgow advanced a theory on this fubject different from that of Dr Black. The fpecific caloric of water being greater than that of ice, it requires a greater quantity of caloric to raife it to a given temperature than it does to raife ice. The caloric does not therefore become latent; it only feems to do fo from the greater fpecific caloric of water. This
theory was zealoufty adepted by Dr Crawfurn. Dr Catoric. Black ohferved wery jufly, that it did not account for the production of fluidity at all. The fpecilic caloric of water is indeed greater than that of ice; but how is the ice convered into water? This is an objection which the advocates for Dr Irvine's, or Dr Crawford's, theory (as it has been improperly called) will no: eafily anfwer. Let us now examine whether this theory accounts for the apparent lofs of calonic. It follows from Mr Kirwan's experimentz, that the fpecific caloric of water is to that of ice as 10 to $9(1)$. Dr Black proved, that as much caloric entered the ice as would have raifed it, had it been water, 140°. Let us 1 uppofe that it would only have raifed the ice 140°; in that cafe the melted ice ought to have been of the tem. perature of 158°, for $10: 9:: 140: 126$; but it was only 32° : Therefore 126° of caloric have difappeared, and cannot be accounted for by the change of fpccific caloric. Nor can the accuracy of Dr Black's experiment be fufpected: it has been repeated in every part of the world, and varied in every poffible way. We cannot doubt, therefore, that caloric unites with fubitances, and caufes them to become fluid, or that there is in fä a caloric of fuidity different from fpecific caloric.

Water alfo is converted into fleam by uniting with ${ }^{2}{ }^{270}$ caloric. Dr Black put an iron veffel, containing fourevaporation. ounces of water at the temperature of 53 ', upon a cattiron table which was red hot. The water rofe to the boiling point in threc minutes; but it did not afterwards become any hotter. It evaporated, however, in 18 minutes; and the lteam was precifely at the temperature of 212°. During the firft three minutes, it received 159° of caloric, and as much muft have been eritering it during every three minutes while the evaporation contimued, as the temperature was always much lower than that of the table. This caloric, inftead of raifing the temperature of the water, was employed in converting it into feam. There is alfo, therefore, a quantity of latent caloric in fteam. It might, as Mr Pictet ohferves, be called, with propriety, caloric of evaporation. This caloric appears again if the feam be condenfed. If it he inade to pafs, for inftance, through a pipe furrounded with cold water, it is condenfed in the pipe, and drops out from it in the form of water. The caloric of the fteam enters into the water around the pipe, and the quantity of it in degrees may be difcovered by the number of degrees which it raifes that water. By an experiment of this kind, it was proved, that the caloric of evaporation would be fufficient to heat water red hot, were it employed only in raing its temperature, inttead of converting it into feam. It is therefore at leaft equal to bo0. Mr Watt thewed afterwards that it was 920°.

Even fpontaneous evaporation, as Dr Black firf obferved, is owing to the fame caufe: and this explains why bodies cool when water is evaporated from their furface;
(1) We do not know how this was afcertained: Not by mixing water and ice furely; becaufe that would be taking for granted the thing to be proved; becaufe it would give a very different refult; and what is fill worfe, the fpecific caloric in that cafe would differ according to the tompcrature and the quantity of water. To give an inflance: Mr Gadelin concludes, from 180 experiments made by mixing hot water and ice, that the fpecific might have obtained feveral other ratios.

Caloric. furface; a fact which lias been long known, and which has been employed in warm countries to diminith the temperature of liquids, and even to convert them into iee (κ). That water is evaporated by uniting with caloric, and not by folution in air, has been proved very completely by De Lue in his 'Treatife on Meteorology.

The evaporation of alcohol, ether, and every other fubltance on which experinents have been made, has been found owing to the fatne caufe. Bodies, therefore, are converted into vapour by uniting with caloric.
8. If caloric, as has been hewn, exits in bodies at the loweft temperature which we are able to procure, and if it exifts in them while the thermometer cannot difcover its prefence-is there any method of afcertaining its ahfolute quantity in bodics? At what degree would a thermometer fland (fuppofing the thermometer capable of meafuring fo low) were the body to which it is applied totally deprived of caloric? or what degree of the thermometer correfponds to the real zero?

The firt perfon (as far as we know), at leaft fince
men began to think accurately on the fubject, who conceived the poffibility of determining this queftion, was ecived the polfibility of determining this queftion, was
Dr Irvine of Glafgow. He invented a theorem, in orDr Irvine of Glaflgow. He invented a theorem, in or- Irvinces der to afcertain the real zero, which has, we know not theorem to for what reafon, been aferibed by feveral writers to Me difover it. Kirwan. He took it for granted (and the fact is proved by all the experiments hitherto made) that the fpecific caloric of bodies continued the fame in every degree of temperature, as long as they remained in the fame flate, that is to fay, as long as they continued cither folid or fluid or in a flate of vapour ; but that the frecific caloric of the fame body while folid was lef3 than while fluid, and lefs while fluil than while in a flate of vapour. He took it for granted, too, that the 140 degrees of caloric which entered ice during its folution without railing its temperature, entered merely in confequence of the increafed fpecinc caluric of the water, and that they were exactly proportional to this increafed fpecific caloric. He took it for granted, likewife, that the fpecific caloric of bodies was proportional
(к) Galen informs us, that the ancient Egyptians were accuftomed to put water previoufly boiled into earthen jars, and expofe them all night on the upper part of their houfes to the air. Before funrife thefe veffels were put into the ground, moitened on the outfide with water, and then furrounded with freh plants; by which means the water was preferved cool during the whble day. Commenl. in lib. vi. Hippoc. de morbis vulgar. 4. 10. p. 396.

By a fimilar procefs, water, in the Eaft ladies, is converted into ice.
The following fingular paflage, which has been pointed out to us by the ingenious Dr Barclay, lecturer on anatomy in Edinburgh, furnihes a ftriking proof that the ancients were led, by a very different method of reafoning, to deduce, from their philofophical theory of the four elements, conclufions concerning the nature of heat not very different from thofe of the moderns.
"Sic enim res fe habet, ut omnia, que alantur et qux crefcant, contineant in fe vin calon is ; fine qua neque ali poffent nee crefeere. Nam omne, quod eft calidum et igneum, cietur et agitur motu fun: quod autem alitur et crefcit, motu quodam utitur certo et æquabili; qui quandiu renanet in nobis, tandiu fenfus et vita remanet : refrigerato autem et extinctu calore, occidinns ipfi et exftinguimur. Quod quidem Cleanthes his etian argumentis docet, quanta vis infit caleris in omni corpore: negat enim ullum effe cibum tann graven, quin is nocteat die concoquatur; cujus etiam in reliquiis ineft calor his quas natura refpuerit. Jain verò venx et arteriz micare non defmunt, quafi quodan igneo motu; aninadverfunque fæpe eft, cùm cor dainantis alicujus evolfum ita mobiliter palpitaret, ut iṇ̂itaretur igneam celeritatem. Omue igitur quod vivit, five animal five terra cditum, ids: vivit propter inclufum in eo calurem. Ex quo intellegi debet, eam caloris naturan, vin labere in fe vitalemper omnen inuadum pertinentem. Atque id facilius cernemus, toto genere hoc igneo, quod tranat omnia, fubtiliùs explicato. Omnes igitur partes mundi (tangam antem maxumas) calore fultæ fultinentur. Quod primùm in: terrena natura perfici puteft. Nam et lapidum conflictu atque tritu elici ignem videmus; et reecnti fofime

- tcrram fümare calenten;

atque etiam ex puteis jugibus aquan caliuam trahi, et id maxumè fieri temporibus hibernis, quàd marna viza ca. leris, terræ contineatur caveruis ; eaque hieme lit dentior ; ob eamque caufam, calorem infitum in teris continear. aretiùs.
"Longa eft oratio, multæque rationes, quibus doceri poffit, omnia, quæ terra concipiat, femina, quxque ipfa es Ce gencrata תirpibus infixa contineat, ea temperatione caloris et orifi et angefeere. Atque aqux etiam admistu,n effe calorem, primum ipfe liquor, tum aque declarat effufio: qua neque conglaciaret frigoribus, neque nive prainaque concreferet, nifi eadem fe admixto calore liquefacta et dilapfadifandert. Itaque et aquilonibus relinuifo que frigorihns durefcit humor: et idenn viciflim mollitur tepefactus et tabefcit calore. Atque etiam maria agitata ventis ita tepefcunt, ut intellegi facile poffit, in tantis illis hunoribus efle inclufum caluren. Nec enima ilte externus et adventicius habendus eft tepor, fed ex intinis naris partibus agitatione excitatus: quod nollris quoque corporibus continget, cùm motu-atque exercitatione recalefcunt. Ipfe verò aër, qui natura eft maxumi frigidus, minime eit expers caloris. Ille veró et inulto quidem calore admixtus elt : ipfe enim oritur ex refpiratione aquarum: earum enims quafi vapor quilam aër liabendus eft. Is autem exiftit mutu ejus caloris, qui aquis coutinctur-. Cuam fimilitudinem cernere poflumus in his aquis, que fifervefunt fubditis ignibus. Jam verò relicpua quarta pars mundi, ea et ipfa tota natura fervida eft, et ceteris naturis omnibus falutaren ingertit et vitalem calorem. Ex quo concluditur, cùm omnes mundi partes fuftineantur calore, mandun ctiam ipfun fimili parique natura in tanta diuturnitate fervari : coque magis, quod iutellegi debet, calidum illud atque igneum ita ia omai fufum effe . natura, ut in eo infit procreandi vis et cauffa gignendi, à quo et animantia omnia, et ea quorum ftirpes terra cla. tinentur, et nafci fit neceffe et augefeere. Cicero de naaura Desrun, lib. ii. e. 9 at ic.
$\underbrace{\text { Caloric to their abfolute celoric, or to all the caloric which exit. }}$ ed in each.

On thefe data he reafoned in the following manner: Let A be a body in a ftate of fluidity ; B the fame budy in a ftate of folidity. If the fpecific caloric of A and of B be known, and if it be known how many degrecs the caloric, difengaged during the change of B into A ,
 en eafy procefs how many degrees all the caloric con. tained in B would raife the temperature of A; and the fum of thefe two numbers will reprefent in degrees the whole quantity of caloric in A : for the quantity of caloric in A nuft be juft equal to the caloric in B, together with what entered into it in paffing from the ftate of B to that of A. Let the 反pecific caloric of A be 6 , that of B 1 ; and let the quantity of caloric difengaged during the change of \mathbf{A} into \mathbf{B} be fufficient to raife the temperature of A 500°. If the fpecific caloric be proportional to the abfolute caloric, it mult contain exactly 6 times as much caloric as B. The 500° which entered into A when it changed its ftate, mult he jult 5 times as great as all the caloric of B; becaufe when added to the caloric of B, it formed the caloric in A, which is juft 6 times as great as the caluric in B. Therefore to difcover the caloric in B , we have only to divide 500 by 5 , or, which is the fame thing, to flate this proportion $6-1: 500:: 1: 100$. The caloric in B, therefore, in this cafe is juit as much as would raife the temperature of $\mathrm{A} 500^{\circ}$. Therefore, if to 100°, the caloric of B , be added 500°, = caloric difengaged in the paffiage of A to B, this will give 600°, = to all the caloric in A. Therefore, in all cafes, the difference between the numbers expreffing the fpecific caloric of the folid and fluid, is to the number expreffing the rpecific caloric of the folid, as the quaxtity of caloric difengaged during the paffage of the fluid into a folid is to the quantity of caloric in the fluid.

Dr Crawford embraced this theorem; and concluded, from a number of experiments made on purpofe to afcertain the fact, that the real zero was $\$ 268^{\circ}$ below o, or 1300^{2} below the freezing point.
This fubject deferves to le confidered with attention. If this theorem in fact furnifhes us with the real zero, it is one of the moft important difcoveries which has ever been made in chemiltry ; but if it proceeds on er. roneous principles, it will only involve us in endlefs mazes of error and abfurdity.

In the firft place, if the real zeso has any meaning at all, it mult lignify the degree to which the thermometer (fuppofing it could be afed) would fink on being applied to a body which contained no heat. It mult therefore be a fixed point; and were the theorem which we are examining well founded, experiments upon every different fubftance, if conducted with accuracy, would lead to the fame refult. Let us fee whether this be the cafe.

From Dr Crawford's experiments, it follows, as we have feen, that the real zero is $1268^{\prime \prime}$ below 0 .

Mr Kirwan, from comparing the fpecific caloric of water and ice, fixed the real zero at 1048° helow 0 .

From the experiments of Lavoifier and La Place on a mixture of water and quicklime, in the proportion of 9 to 16 , it follows, that the real zero is 2736° below o. From their experiments on a mixture of 4 parts of fulphuric acid and 3 parts of water, it follows, that the real zero is $5803,4^{\circ}$ below 0 .

Their experiments on a mixtere of 4 parts of ful.
Caloric. phuric acid and 5 of water, place it at $2073,3^{\circ}$ below 0 .

Their experinzents on $9 \frac{1}{3}$ parts of nitric acid and 1 of lime, place it at $\frac{1889}{-0,01783}$ below $3^{20 \%}$.

* See S_{c} -

Ruin, Ann.
Thefe refults differ from one another fo enormouny, de chim. vii. and the laft of them, which makes the real zero a negative quantity, is fo abrurd, that they are alone fufficient to convince us that the data on which they are founded are not true. Should it be faid that their difference is not owing to any defeet in the theorem, but to inaccuracies in making the experiments - we anfwer, that the theorem itfelf is founded on finilar experiments; and if experiments of this uature, even in the hands of the moft accurate chemilts, cannot be freed from fuch enormous errors, how can we depend on any confe. quences deduced from them? and where, then, is our evidence for the truth of the theorem?

But, farther, there is no proof whatever that the Fpecific caloric of bodies is proportional to their abfolute caloric. The fpecific caloric of iron is greater than that of water, or even azotic gas; yet furely it is very improbable that iron contains nore abfolute caloric than cither of thefe fubfances.

If the feecific caloric of bodies has any meaning at all, it can only be, that the fame quantity of caloric raifes the temperature of one body a greater number of degrees than it does another. When we fay that the specific caloric of A is $=6$, and that of $B=1$, what do we mean, unlefs that the quantity of caloric which raifes $B 6^{\circ}$ raifes A only 1°, or that what raifes $B 60^{\circ}$ or 600°, raifes A only 10° or 100° ? When we fay that the fpecific caloric of water is 10 , and that of ice 9 , do we not mean, that the quautity of caloric which raifes the ice 10° or 100°, raifes water only 9° or 90° ? Yet during the change of ice into water, 140° of caloric enter it without raifing its temperature; a quantity greater than what can be accounted for by the difference of fpecific caloric by 126°. The quantity that difappears, therefore, is not proportional to the difference of fpecific caloric; and therefore any theory which depends on that fuppofition cannot be well founded. When water is converted into fteam, 800° of caloric difappear, yet the fecific caloric of fteam is to that of water, according to Dr Crawford's cwn experiments, only as 155 to 200 : To that no lefs than 283° difappear, which cannot be accounted for according to this theory.

Dr Irvine's theorem, therefore, is infufficient for af-And found certaining the real zero; and hitherto no method hasinfuficient. been difcovered which can folve this problem.
9. If there he no body without caloric, if it exills in Caloric ex different quantities in different borlies, even when theirits in botemperatures are the fame, and while the thermometer dies cannot indicate its prefence-in what flate does it exift in them? We cannot furely fuppofe that it is contained by them juft as water is contained by a veffel of wood or metal, or that they are filled with it in the fame manner that a hollow globe of tinplate perforated with holes is filled with water when it is plunged into a quantity of that liquid ; or that bodies are filied with caloric merely becaufe they are immerfed in an ocean of caloric. Were that the cafe, the fpecific and abfolute caloric of bodies would always be proportional ; and they would of neceffity be inverfely as the fpecific gravity of the refpective bodies; becaufe the lefs the fpecific gravity, the more room would be left for the par. ticles

Caloric. ticles of caloric. But this is by no means the cafc: the fpecific gravity of iron, for inflance, is greater than that of tin, yet the fpecific caloric of iron is more than double that of tin: the fpecific gravity of oxygen gas is greater than that of common air, yet the fpecific caloric of the firft of thefe fubflances is more than three times as great as that of the other. There mut be fomething, therefore, in bodies themfelves quite different from, and unconnected with, the vacuities between their particles, which difpofes fome to admit more caloric than others. And what ean that be but a difpolition in different bodies to unite with a greater or a finaller quantity of caloric, and to retain it with more or lefs firmmefs according to their affaity for it? Dr Black pointed out, long ago, by difcorering latent heat, that caloric unites with bodies; and this feems to be the only real key for minfolding the actions of this extraordinary fubitance. If caloric be matuer, can it be

2,6
In a flate chemical combiriativir.
$2: 77$ Proved to be the cale in liquids, vapours, dellitute of that property which all other matter polof fefles, we mean attraction? And if it poffefles attraction, muft it not combine with thofe bodies that attract it juft as other bodies combine with each other? Muft there not be formed a chemical union between caloric and other fubflances, which can only be broken by chemical means, by prefenting a third body which has a greater affinity either for the caloric or the body to which it is united, than they have for each other?

That it unites chemically with fome bodies, at leaf, cannot be doubted, as we have flewn already, that whenever a folid is converted into a liquid, a quantity of caloric enters, and remains in it ; and that both the fulid and the caloric lofe their characteriftic propertics. This is precifely what takes place in every chemical union. All liquids, therefore, confift of folids combined with caloric. We have feen, too, that liquids are converted into vapours by the very fame procefs. There are therefore, at leaf, two very large clafes of bodies, liquids and vapours, in which we are certain that caloric exifts in a ftate of chemical combination.

There is another clafs of bodies which refembles vapours in almofl all their properties: thefe are the gafes. Like them, they are invifible and elaltic, and capable of indefinite expanfion. Is it not probable, then, that the gafes alfo, as well as the vapours, owe their propertits to caloric? that they alfo confilt of their refpective bafes combined with that fubtile fubflance? 'This probability has been reduced to certanty by an experiment of Lavoifier. By adding two tubes to the calorimeter formerly defcribed, he contrived to make known quantities of air to pafs through the interior cavity, and to fupport combultion. He found, that when a pound of oxygen gas was made to combine in this manner with phofphorus, as much caloric was difengagod as
-Laveifitr, melted $87 \frac{1}{2}$ pounds of ice.*. Now every pound of ice
fi. i.ch. 9 . abforbs as much caloric in the act of melting as is fufficient to raife a pound of water 140°. Therefore the whole caloric difengaged was fufficient to raife a pound of water 12250°. All this could not have come from the phofphorus, becaufe it had been converted into a liquid, and mutt therefore have abforbed inflead of parted with caloric, and becaufe the quantity of caloric dif. engaged in all cafes of combuftion is proportional, not to the comburtible, but to the oxygen abforbed. Oxygen gas, then, is compofed of oxygen and caloric: and if this be the cafe with one gas, why not with all?
Suppl. Vol. I. Part I.

We may conclude, therefore, that the gafes, as well as liquids and vapours, owe their form to the caloric which they contain. The only diference between them and vapours is, that the latter return to their bignid ftate by the mere action of cold; whereas mut of the gafes refift the lowef temperature which it has been pofible to apply. It was uatural to expect, that if caloric combined chemically with hodies, its aff nity would be different for different fubltances, alld that its affinity for fome bodics wonld be fu great that it would not leare then to combine with any other. It was sutural to expect this, becaufe it is the cafe with every other fubftance with which we are acquainted. The difference, then, between the gafes and vapours is not furpriing. The affinity of the former for caloric is not only much greater than that of the latter, but much greater than that of any other fubitances.
It is owing to this flrong affinity between oxygen, And to be hydrogen, and azot and caloric, that they cannot be the caufe in obtained except in a gafeous form: and we fhall deferibe thir ir gafefeveral other fublances afterwards exactly in the fame ous fuim. circumftances. Had we any fubftance poffefted of a greater affinity for caloric than they have, we fhould be able, by prefenting it, to deprive them of their gafeous form. Doubtlefs there is a difference in the affinity between thefe bodies themfelves and caloric; but as all of them are already faturated, this difference cannot be difcovered. If we could obtain them uncombined with ealoric, that is to fay, in a concrete flate, it would be eafy to afcertain this point. Suppofe, for inflance, that hydrogen lad the flrongef affinity for caloric, and that we pofieffed it in a concrete flate - it would be eafy, by prefenting it to the other gafes, to deprive their bafes of the caluric with which they are united, and thus to obtain them alfo uncombined with any other fubfance.

But though we are acquainted with no fubitance that wiso has a greater affinity for caloric than the bafes of the ric erpearis gafes, there are many fubitances which have a greater during affinity for thefe bates than caloric has. When any combunion, fuch fubftance is prefented, the bafe conbines with it, and the caluric is left at liberty. Thus, when phofphorus is prefented to oxygen gas, the phofphorus and oxygen unite together, and the caloric flies off. We are now, therefore, able to anfwer one of the queflions propofed at the end of the fecond chapter, Whence comes the calceic which appears during combution? It is feparated from the oxygen, which leaves it in order to enter into a new combination.

The caloric alfo, which fometimes appears when two And during bodies combine together, is fet at liherty exactly in the many chefame manuer. When fulphuric acid and water, for in- mical comflance, are mixed together, a very confiderable heat is binations produced; a good deal of caloric, therefore, becomes ienfible. In this cafe, the water combines with the acid, and at the fame time lets go the caloric with which it was formerly combined, and becomes denfer. In the fame manner, to give another inflance, when water is poured upon quicklime, a very great quantity of caloric becomes manifell. The water in this cafe combines with the quicklime, and affumes a concrete form, and of courfe lets go the caloric with which it was previoufly united.
10. It is no uncommon thing in nature to obferve why certwo bodies, after combining together, manifelting a taiamixmuch ftronger affinity for a third body than either of dues pro-

Ca'o:ic, them had while feparate. Thus, filver has no perceptible afinity for fulphuric acid, neither has oxygen; but unite them together, and they combine with that acid very readily. A great many inftances of the fame kind might be produced. Were there fubfances, then, which, after conbining tegetlicr, lave a greater affinity for caloric than any of them had while feparate, this nught not to fu:prife us, becnufe the fame phenomicnon is often obferved in other bohies. Now this is actually the cafe with regard to caloric. Mix together, for in. ftance, com:non falt and frow, the mixture inftantly beconies liquid, and fo cold, that it finks the thermometer down to zero. In this cafe, the frow and falt united have a much Itronger affinity for calonic than either of them had while feparate ; they attract it therefore from other bodies with which they happen to be in contact, till they bave obtained a dofe fufficient for their faturation; ar.d this faturation they manifelt by becoming liquid. It is for this reafon that all falts produce cold during their folution in water, when the freezing point of the folution formed is below that of water. All fuch folutions have a llrong affinity for caloric ; they therefore attract it till they are faturated, which appears by their becoming fluid. A number of experiments have been lately made in order to procure artificial cold by means of fuch combinations. The moit complete fet of experiments of that nature with which we are acquainted, is thofe of Mr Walker, publihed in the Philofophical Tranfactions for 1795. We fhall prefent the refult of his expcriments in the following Table:

Tible of Frcezing Mixtures.

Mixtures.		Thermometer finks.
Muriat of ammonia Nitre Water	$\begin{aligned} & 5 \text { parts } \\ & 5 \\ & 16 \end{aligned}$	From 50° to 10°.
Muriat of ammonia Nitre Sulphat of foda Water	$\begin{array}{r} 5 \\ 5 \\ 8 \\ 16 \end{array}$	From 50 to 4.
Nitrat of ammonia Water	$\begin{aligned} & 1 \\ & I \end{aligned}$	From 50 to 4.
Nitrat of ammonia Carbonat of foda Water		From 50 to 7.
Suluhat of foda Diluted nitric acid	3	From 50 to 3.
Sulphat of foda Muriat of ammonia Nitre Diluted nitric acid	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	From 50 to 10.
Sulphat of foda Nitrat of ammonia Diluted nitric acid	$\begin{array}{r} 5 \\ 4 \end{array}$	From 50 to 14.
Phofphat of foda Diluted nitric acid	$\begin{aligned} & 9 \\ & 4 \end{aligned}$	From 50 to 12.

In order to produce thefe effects, the falts employed mult be frefl cryfthlized, and newly reduced to a very five powder. The veffels in which the freezing mixture is made fhould be very thin, and juft large enough to hold it, and the materials fhould be mixed together as quickly as pofiible. The materials to be employed in order to produce great cold ought to be firft reduced to the temperature marked in the table, by placing them in fome of the other freezing mixtures; and then they are to be mixed together in a fimilar freezing mixture. If, for inflance, we wifh to produce a cold $=-46$, the fnow and diluted nitric acid ought to be cooled down to o , by putting the veffel which contains each of them into the 12 th freezing mixture in the above table, before they are mixed together. If a fill greater cold is required, the materials to produce it are to be brought to the proper temperature by being previoufly placed in the fecond freezing misture. This procefs is to be continued till the required degree of cold has been procured *.
11. From the facts already known, we may conclude, ${ }^{\text {Pbilil }}$ Wrourar that the particles of caloric have two properties, that 1795. of repelling each other, and of attracting and being at- 283 tracted by other fubtances. As there is no body in which ones. nature which does not contain caloric, we may fafely tain moors conclude, that there is no body in nature which has not caloric. an affinity for it. When it unites with bodies, though the repulfion of its particles may be overcome by their attraction for the particles of the bedy, and by the at-

Part I.

 CHEMISTRY.Caloric. traction of thee particles for each other-we cannot fuppofe it amihilated: It mutt cherefore be the more powerful the greater the quantity of caloric combined in any body is. Probably, then, there is moft caloric combined with gafes, lefs with fluids, and leaft with folids. It does not follow, however, from this, that the quantity of caloric combined with any body is proportional to the diftance between its particles, becaufe that may depend on other caufes. 'I'hus, though hydrogen gas is much rarer than oxygen gas, it does not fullow that hydrogen is combined with more caloric than oxygen, becaufe the rarity may be owing to the frnallor cohefive force of the particles of hydrogen allowing a fmaller quantity of caloric to produce a greater effect.

If caloric unites only chemically with bodies, there ought to be a certain point of faturation between it and the fubitances with which it combines, becaufe this takes place in all other chemical combinations. Oxygen gas, for inftance, confifts of a certain quantity of oxygen united with caloric. Now if this gas be a chemical compound, the two ingredients ought to faturate each other in fuch a manuer, that no more of either could be admitted. But it cannot be denicd, that more caloric can ftill be added to oxygen gas, for its temperature may be raifed at pleafure as high as we think proper. - This, at firll fight, feems to be an infuperable oljection to the theory, that caloric only combines chemically with bodies. It ought to be remembered, however, that caloric is not fingular in this refpect. There are other bodies in nature, and bodies too which certainly combine with other fubftances only by affinity, which exhibit the very fame phenomenon. Watcr is capable of combining with fulphuric aciu and many other falts almoft in any proportion, at leaft no limits have hitherto been ohferved. Oxygen, too, combines with almoft every body in various proportions: We have feen, that with almoft every metal it forms at leaft two different oxides. Why then may not caloric be capable of mniting in the fame manner? Allowing, therefore, that it were impoffible to explain why bodies are capable of combining with caloric after faturation, this could be no objection to the theory that it only unites chemically with bodies, becaufe the fame phenomenon is exhibited by other bodies which it cannot be doubted combine only by means of affinity.

The manner in which thefe other combinations are formed has heen already hinted, and flall he confidered more fully afterwards; at prefent we fhall only attempt to explain the action of caloric. Let us fuppofe, then, that caloric is prefented to oxygen; that they combine tngether in a certain proportion, and faturate each other. The product of this combination is oxygen gas; a fubSlance poffeffed of properties very different from thofe of caloric or oxygen in a concrete flate; it is incapable of being decompofed by any merely mechanical method, and exhibits all the appearances of a timple fubltance. Let us therefore contider this compound for a moment as a fimple fubftance. May it not ftill have an affinity for caloric? and will it not, in that cafe, unite with it? Oxygen gas and caloric have an alinity for cach other; accordingly when prefented to one another they comhine in a certain proportion, and form a new compound, differing from oxygen gas, properly fo called, in elallicity, fpecific gravity, and feveral other particulars. The affinity, howevcr, between oxygen gas and caloric is much
feebler than that between oxygen and caloric ; for the Chtorice. new compound is eafily Lroken, and the calo:ic abforbed by many other fubitances. We can evell conecive this new compound fill to have an affinity for caloric, to unite with it, and to form another compound, the aninity between the ingredients of which is fill feebier. And in this mamer may the indefinite increafe of temperature be accounted for.

Subftances may be coraceived to be conducturs of ca-Caufe of loric inverfely as their affinity for it . Good conductors the dificmay have very little affinity for caloric ; and for that reot conrcafon it may be eafily farced through them by the re- puwers of pultion of its own particles. But thofe fubftances different which lave a great affinity for caloric, combine with it bodies. the moment it is prefented to them; and confequently it cannot pafs through them. Thus, when it is prefented to ice, the affinity between the two fubflances is fo great, that the caloric unites with the very firt particles of ice which it meets with. The particles behind thefe cannot receive any caloric, except by attracting it from the particles with which it has already combined. But the affinity of one particle of ice for caloric cannot be greater than that of another particle of ice: and the union of two bodies cannot be broken by a force not greater than that which unites them; therefore the caloric cannut pafs from one particle to another. Confequently, fuppofing all the particles to keep their places, no new caloric could enter. Juft as when a piece ot marble is put into fulphuric acid, the crult of fulphat of line which very foon covers it prevents the acid from getting to the particles of marble within. But as foon as a particle of ice unites with caloric, water, the new compound, leaves its flation, and allows the caloric a paffage to the other patticles.
In the fame manner, when caloric is prefented to water, it combines with the outermoft flratum of particles, and forms with them a compound which cannot be decompofed by the other particles of the water, becaufe their affinity for caluric is no greater than that of the particles already united with it. No mure caloric, then, could gain admiffion, were it not that (the fpecific gravity of the new compound being inferior to that of the uncombined water) it immediately changes its place, and allows another fratum of particles to occupy its room. Thefe unite with caloric, and are difplaced in their turn. And in this manuer the procels goes on, till all the particles have combined wirh caloric; or, which is the lame thing, till the whole of the water is heated.
But fuppofing the firt ftratum of particles to remain 287 in their place after their union with caloric, we can How hea: conceive an affinity fill to fubfit between the new com. folifs. pound, thus forned, and caloric. In that cale the new compound, which we fhall call A, wauld combine with an additional dofe of caloric, and form a fecond compound E , differing in feveral' refpeets from the tirft. We can conceive allo the affinity between the firtt compound A and caloric to be inferior to that hetween water and caloric. In that cafe, the fecond ftratum of particles of water would feparate the additional dofe with which the firlt ftratum had united. In this mamer would two flratums of particles combine with caloric. 'The firit Aratum of particles would combine with another dofe of caloric, and form a fecond compound B as before. But this compound could fot now be decompofed by the fecond Rratum of particles,

Caloric. becaufe they had already united with a dofe of caloric ; and therefore their affinity for a new dofe could be no greater than that of the fiffe fratum ol particles. The process of heating could go on no farther. But we can conceive the fecond compound B , into which the firft flratum has entered, Aill to have an affinity for caloric, to combine with a dofe of it, and to form with it a third compound C . We can conceive, at the fame time, the affiaity between the fecond compound E and caloric to be lefs than that between the firt compound A and caloric. In that cafe, the fecond ftratum of particles would take this laft dofe from the firt fratum, and form with it a fecond compound B. The third flratum of particles, which is fill uncombined with caloric, would now attract this new dofe from the fecond ftratum, and combine with it. Aud, fuppofing the caloric ftill flowing towards the water, the firft fratum would again form the third compound C , by uniting with a frefh dofe: this new dofe would be again attracted by the fecond ftratum, and the firlt fratum would again form the third compound C , by uniting witb another dofe of caloric. Thus three ftratums of particles would be combined with caloric; the firft fratum would contain threc dofes, the fecond ftratum two, and the third one. The procefs of heating would again ftop; becaufe now the alfinity of the fecond ftratum is no greater than that of the firft, nor the affinity of the third Ifratum greater than that of the fecond, nor that of the fourth than that of the third. But we can conceive an affinity ftill to fublift between caloric and the third compound C , into which the firft fratum has entered, and this affinity, at the fame time weaker than that between the fecond compound B and caluric. In that cafe they would combine and form a fourth com. poond D. This new dofe would be attracted by the fecond ftratum of particles, which would combine with it and form the third compound C ; the third Itratum would attract it from the fecond, and form with it the fecond compound B ; and the fourth fratum would attract it froms the third, and enter into the firl compound A. The firft fratum would again enter into the fourth compound D ; which would be again decompofed by the fecond fratum; and the compound formed by the fecond ftratum, by the third fratum. The fourth compound 1) would be again formed by the firft Atratun, and again decompofed by the fecond firatum. It would be formed a third time, and could not now be decompofed. Four fratums of particles would now hare combined with caloric: the firlt fratum with four dofes; the fecond, with three dofes; the third, with two; and the fourth, with one. We can conceive this procefs to go on exactly in the fame manner, till all the particles of water have combined with a dofe of caloric. In that cafe, the quantity of caloric combined with every itratum of particles would form a regular decrea. fing feries from that part of the water at which the ca. loric enters to that part which is farthelt diftant from it. The procefs of heating would go on very flowly; and the heat of that part of the water which is farthent diftant from the fource of caloric could never be nearly equal to that of the part which is nearefl to that fource. This feems in fact to be the manner in which all thofe folids are heated which are bad conductors of caloric: in all probability it is the way in which all folids are beated.

That caloric combines with hodies mercly by means Caloric. of affinity, feems at firft fight contrary to fact; for $\underbrace{}_{2 S 8}$ there is no fubftance whatever which may nut be cooled Baties socl indefinitely merely by furrounding it with other bodieseach other which are colder than itfelf. Place a piece of hot iron, eciprucal. for inflance, in cold water, it is very foon cooled downity, to the temperature of that liquid. This feems plain enough; the attrachion of water for caloric is greater than that of iron: but reverfe the experiment ; put hot water within cold iron, and the water is cooled in its turn down to the temperature of the iron: fo that the iron alfo has a greater affinity for caloric, as well as the watcr; which is abfurd.

259
But it ought to be remembered, that caloric not on-And why, ly poffeffes affinity, but that it has another property alfo, of which every other fpecies of matter, except perhaps light, fecins to be deftitute, a repulfion between its own particles. It is neceffary for all organifed bodies, and probably for all bodics, that they fhould poffefs a certain quantity of caloric ; and on this account the greatefl care has been taken to fecure its equal diftribution. This feems to be one ufe at leall of its repulfive power ; a power which is never deftroyed, however clofely caloric is united with other bodies. We have fhewn already, that this power is increafed by diminifhing the quantity of furrounding caloric ; and when thus increafed to a certain degree, it may at laft equal, and even cxcced, the affinity between the caloric and the bodies to which it is united; and in that cafe part of the caloric would neceflarily fly off. It feems to be in this manner tlat bodies reciprocally cool each other, and that they have always a tendency to an equilibrium of temperature. Thus fleam by cold is converted into water, and water into ice. And the affini-ty between bodies and that caloric which is empluyed in regulating the temperature feems to be fo weak, that the repulfion between the particles of caloric eafily overcomes it, and reftores the equilibrium. But the affinity between fome fubitances and caloric is fo great, that no diminution of temperature has been found fufficient to overcome it. This is the cafe, as we have already feen, with oxygen gas.
The fpecific caloric of bodies feems to depend on caufe of two things; their affinity for caloric, and the diftancetic diffobetwcen their particles. For what is temperature but rence in the difpolition of a body to part with caloric? The the fpecifis more caloric a body is difpofed to part with, we call its bodics. temperature the higher; the lefs it parts with when a colder body is applied, its temperature is faid to be the lower. If oxygen gas parts with no caloric to a thermometer which flands at - 10°, we fay its temperature is - 10 ; yet we know that even then it contains, in all probability, much nore caloric than the mercury in the thermometer does. Now the flronger the affinity between any fubflance and caloric, the greater quantity of caloric will be required before the repulfion between its particles is fufficient to overcome this attraction; confequently the more caloric is neceffary to raife it a given number of degrees. And the farther diftant the particles of bodies are, the farther from one another muft the particles of caloric be to which they are united; and confequently the weaker muit be the repulfion between them.
We cannot deny how new this theory of the action of caloric will appear to thofe who have been accultom.

Calor"c. ed to look upon Dr Cranford's opinions on this fubject as fully proved; nor do we pretend that it can be reconciled with thefe opinions. But this, we hope, is nou proof of its falfehood. We think it can he fairly ceduced from Dr Black's doctrine of latent heat: we know, tuo, that Bergman believed caloric capable of combining chemically with bodies: and Morveau has not only embraced the fame opinion, but feems to affirm, that all the combinations into which caloric en. ters are ehemical n. And were this queftion to be decided by authority, we appeal to all the world, whether other three men could be produced to whofe decinons one would more willingly fubmit (1). We don not, however, mean to reft its evidence on aththority; let it be compared with facts, and put to the telt of experiment; and by its correfpondence with thefe let it ttand or fall.
12. Caloric both haftens the folution of falts in water, and increafes the folvent power of the water; for water diffolves a much grcater quantity of alnoft every falt when hot than when culd. The reafon that caloric produces thefe effects is obvious from thofe properties of it which have been deferibed. It haftens folution by putting the particles of the ftuid in motion, and thus bringing all of them in their turn into contact with the falt : for only thofe particles can act as folvents which are in contact with the falt. It increafes the fulvent power of the fluid by combining with it, and forming a compound which has a greater afluity for the falt, and which therefore difolves more of it than the fluid alone would have done. This new compound is deftroyed by cooling ; and then the additional dofe of the falt which had been diffolved is precipitated.
13. We fhould come now to the confideration of the two remaining queftions propofed at the end of the fecond chapter, Why do bodies combine with oxygen at one temperature and not at another? And why is caloric neceffary to produce this union? But as the difficulty of thefe queftions is not inferior to their importance, we fhall delay any attempt to anfwer them till we come which caloric may be obtained in a fenfibie Itate. Thefe methods may be reduced to four ; combuftion, percuffron, friction, and light : the latt of which fhall be confidered afterwards.

We have feen already, that the combution of fimple combufilles and metals is merely their combination with oxygen, during which the oxjgen parts with the caloric with which it was formerly united. Now the very fame thing takes place in other combutions. The combultible unites with oxygen, which at the fame time gives out its ealoric. The change then which the combutible body fuffers is not owing to the action of caloric on it, but to its combining with oxygen. 'The very fame change can be brought about without any of the ufual phenomena which attend combution, fimply by prefenting the oxygen combined with fome other body inftead of caloric. Nitric acid, for inftance, is a body which contains in it a good deal of oxygen : If phofphorus be mixed with this acid, it attracts part
of the oxygen, and, without any of the ufual phenomena which attend combution, is converted into phofphoric acid. Strictly fpeaking, then, combution is nothing elfe but the combination of oxygen with the burning body, and the term might therefore be ufed in every cafe where fuch an mion takes place; and in this fenfe indeed it is now employed by feveral witcrs. But the term combuflion is in common language confined to the ferm Whether it where the oxygen was previoufly combined with calo. place when ric, and where quantity of heat and liglit become fen- oxygen is fible; and perhaps it would be better, in order to prevent ambiguity, never to employ it in any other feufe. We are not yet abfolutely certain that caloric and light may not becone fenfible in other combinations befides thoie into which oxygen enters. There are other fubftances befdes oxygen capable of combining with caloric; for inftance, hydrogen and azot : and unkfs their affinity for caloric be greater than for any other fubftance, they may be capable of combining with other fubftances, and feparating from caloric, at leat the inpoflibility of this has never yet been demonftrated. It is improper, therefore, to appropriate the word combuffion to the combinations of oxygen, till it can be thewn that the phenomena ufnally denoted by that name are never owing to any other caufe. There is even one cafe in which thefc phenomena prefent themfelves, in which we are next to certain that oxygen has no flare. There is an affinity between fulphur and iron, and a high temperature promotes their union. When thefe fubftances are mixed together, and heated till they jut begin to apprar red hot, they combine together, and at the fame time, as the Dutch chemifts firti obferved, a good deal of caloric and light is evolved. The very fane phenomena appear in a vacuum, or in any kind of air whatever. The explanation of them is very fimple and obvious. The fulphur or the iron, or perhaps both, had previounly been combined with a quantity of caloric; and when they united together, this calorie of courfe feparated from them.

The theory of combution adopted by the earlierStahl's the chemifts was very different from the preceding. Stahl, ny f fomas has been already explained, contidered combultion buftion by in every iuftance as owing to the feparation of phlogif-tion fiphloton; and this opinion foon became univerfal. He eon-gifton. fidered phlogition as the fame thing with the element of fire; which was capable both of becoming fixed in bodies, and of exifing in, a thate of liberty. Two of its properties in this latt ftate were heat and light. The heat and the light, then, which became fenfible during combuftion, were nothing elfe, according to Stahl, but two properties of phlogition or the element of fire. Macquer, to whofe illuftrious labours feveral of the mof Improved important branches of chemiftry owe their exitence, by Macwas, we believe, the furt perfon who perceived a fri-quer, king defect in this theory of Stall. Sir Ifaac Newton had proved that light is a body; it was alffurd, therefore, to make it a mere property of pllugifton or the element of fire. Macquer accordingly confidered phlogiton as nothing elfe but light fixed in bodies. This opinion was embraced by a great number of the moit diftin.
(1) The fame opinion has been embraced by Seguin, Pietet, Gadolin, and feveral other philofophers. We did not mention them, becaufe the theory given above differs in a few particulars from theirs. But we have de. rived much infruction from their ingenious writings; and many of the facts. which we have given were abtained from them.
inpurtant difcoveries, and many ingenious inveltigations or lome of the molt difficult parts of clemithry, attempted to anfwer this queftion, and to prove that phlogifton was the fame with hydrogen*. The fub-* in his ject was now brought to a tlate capable of the mott Trat fe on complete decifion. Does hydrogen actually exilt in all Pblos.fons. combultible fubilances ? and is it feparated from them Refuted. during every combuttion? The French chemilts who anfiwered his treatife, thewed that this is by no means the cale ; and that therefore there was no proof whatever of the identity of phlogifon and bydrogen. And Mr Kirwan in confequence, with that candour which dillinguifles fuperior minds, gave up his opinion as un-
tenable.

Mr Lavoifier had already put the queftion, What proot is there of the exiftence of phlogiton at all? There is only this fingle proof, that fubtances after ved combuttion are different from what they formerly were. That this difference takes place is certainly true; but it is owing, not to the feparation of any fubflance, but to the combination of one. It follows, therefore, that there is no proof whatever of the exiftence of any fuch fubitance as phlogiflon in nature; and of courfe we mult conclude that no fuch fubfance exifts (L).
15. It is well known that heat is produced by the percuffion of hard bodies againtt each other. When a piece of iron is fmartly and quickly ftruck with a ham. mer, it becomes red hot ; and the production of fparks by the cullifion of flint and fteel is too familiar a fact to require being mentioned. No heat, however, has ever been obferved to follow the percuffion of liquids, nor of foft bodies which eafily yield to the ftroke.

It has long been known, that hammering increafes Owing the denfity of metals. The fpecifio gravity of iron be-partly to fore bammering is $7,-88$; after being hammered, 7,840 : condenfa that of platinum before hammering is 10,50 ; after it, ${ }^{\text {tion, }}$ 23,00. Now condenfation diminifhes the fuecific caloric of bodies. After one of the clay pieces ufed in Wedgewood's thermometer has been heated to 120°, it is reduced to one half of its former bulk, though it has loft only two grains of its weight, and its fpecific caloric is at the fame time diminifled one third \dagger. But * T. Hedgeo we cannot conceive the fpecific caloric of a body to be wiood, Pbil. diminifhed without its giving out at the fame time Tranf.

301

Produfion of calcric by percuffion, 307 whicli conbuttibles had heen fuffered to burn till they were extinguifhed, had undergone a very remarkable change; for no combultible would afterwards burn in it, and no annimal could breathe it without fuffocation (x). He concluded, as Dr Rutherford had done before him, that this change was owing to phlogiftons ; that the air had combined with that fubtlance; and that air was neceffary to combultion, by attracting the phlogifton, for which it had a ftrong affinity. If fo, phlogiton could not be light any inore than caloric; for if it feparated from the combuftible merely by combining with air, it could not furely difplay itfelf in the form of light. The queftion then re- Crawford, of whofe ingenious experiments on the fpecific caloric of bodies we have already given an account, "ithout attempting to anfwer this queflion, made a confiderable improvement in the theory of combuftion, by fuppofing that the phlogiton of the combullible consbined with the air, and at the fame time feparated the caloric and light with which that fluid had been previoully united. The heat and the light, then, which appeared during combuftion, exifted previoufly in the air. This theory was very different from Stahl's, and certainly a great deal more fatisfactory. But ftill the queftion, What is phlogiton? remained to be anfwered. Mr Kirwan, who had already raifed himfelf to the firt rank among chemical philofophers by many
quantity
(к) Thefe very obfervations had been made almoit a century before by Mayow; but chemitry was then in its infancy; little attention was paid to them, and they had been forgotten.
(L) Mr Lavoilier was therefore the author of what is called the antiphogific theory in chemiftry, or the theory which accounts for the phenomena of chemiftry without the affillance of phlagiton. It has been fo called in oppofition to the theory of Stahl, which explained every thing by means of phlogifon, and which is therefore called the phlorific theory.

Some chemifts have affected to omit Lavoifier's name altogether, when they fyoke of the antiphlogiftic theory. According to them, that theory was founded upon the experiments and difcoveries of other chemifts, and Lavoifier had no other merit but that of bringing it into puhblic notice.

That Mr Lavoifier, virtually at leaft, claimed feveral of the difcoveries of others, we are forry to be under the neceflity of acknowledging ; and that many of the experiments, brought forward to difprove the exiffence of phlogifton, were firft made by others, is known to all the world : but it is equally evident, that the firlt perfon who actually formed the theory was Lavoifier; and furely the merit lies in that. It is not thofe who collect the flones, and the timber, and the mortar, but he who lays the plan, and fhews how to put the materials together, that is in reality the builder of the houfe. Who did not know, as well as Newton, that a flone fell to the ground, and that the planets revolved round the fun? and yet, who but Newton could have formed the theory of gravitation? We would not be underfood to detract any thing from the merit of the other illuftrious philofu. phers who have adorned the prefent age, many of whom are at leaft equal, and fome of them fuperior to Lavoifier: But we are afraid that envy, or fome worfe motive, guided the pen of one at leaft of the moft active and vi1 ulent antagonifts of that illuftrious and unfortunate philofopher. It mult not, however, be concealch, that his theory of combultion is incomplete. See Combustion in this Supplement.

Caloric. quantity of caloric; and we know for certain that caloric is evolved during condrnfation. A thermoneter placed within a condenfer rifes feveral degrees every * Durain, thne air is thrown in *. We can even fee a reafon for Pbil. Tranf.this. When the particles of a body are forced nearer each other, the repuline power of the caloric combined with them is increafed, and confequently a past of it will be apt to fly off. Now, after a bar of iron has been leated by the hammer, it is much harder and brittler than before. It mult then have become denfer, and confequently mult have parted with caloric. It is in additional confrmation of this, that the fame bar cannot be heated a fecond time by percuifion until it las leen expofed for fome time to a red heat. It is too brittle, and flies to pieces under the hammer. Now brittlenefs feems in mofl cafes owing to the abfence of the urual quantity of caloric. Glafs unannealed, or, which is the fame thing, that has been cooled very quickly, is always extremely brittle. When glafs is in a fate of fulion, there is a valt quantity of caloric accumulated in it, the repulfion between the particles of which muft of courfe be very great ; fo great indeed, that they would he difpored to fly off in every direction with inconceivable velocity, were they not confined by an unufually great quantity of caloric in the furrounding bodies: conlequently if this furrounding caloric be removed, the caloric of the glafs flies off at once, and more caloric will leave the glafs than otherwife would leave it, becaufe the velocity of the particles mult be greatly increafed. Probably then the brittlenefs of glafs is owing to the deficiency of caloric; and we can farcely doubt that the brittlenefs of iron is owing to the fame caufe, if we recollect that it is removed by the application of new caloric. Part therefore of the caloric which appears in confequence of percuffion feems to proceed from the body itruck; and this is duubtlefs the reafon why thofe hodies, the denfity of which is not increafed by percuffion, as liquids and foft fubftances, are nut heated at all.
nid partly IVe fay part of the caloric, hecaufe, of ten at leaft, and partly part of is is probably owing to another caufe. By condenfation, as much caloric is evolved as is fuficient tu raife the temperature of fome of the particles of the body high enough to enable it to combine with the oxygen of the atmofphere. The combination actually takes place, and a great quantity of additional caloric is feparated by the decompolition of the gas. That this happens during the collifion of fint and fteel cannot be doubted; for the fparks produced are merely fmall pieces of iron heated red hot by uniting with oxygen during their paffage through the air, as any one may
convince himefelf by actually examining them. Mr Lanc has fhewn that iron produces no fparks in the vacuum of an air-pump; but Mr Kirwan has obferved that they are produced under common fpring water; and we know that iron at a certain temperature is capable of decompoling water.

Caloric.

When quartz, rock-cryltal (M), or other very hard Sparkeeflones, are fruck againt one another they enit fpaks. mited by If they be often made to emit fparks above a fieet of fuartz white paper, there are found upon it a number of finall cinfion. black bodies, not very unlike the eggs of flies. Thefe bodies are hard but friable, and when rubbed on the paper leave a black fain. When viewed with a nicrofcope, they feem to have heen melted. Muriatic acid changes their colour to a green, as it does that of lavas*. Thefe fubltances evidently produced the fparks * Lamanon, by being heated red hot. Lamanon (N) fuppofes that Tourn. de they are particles of quartz combined with oxygen. 1byf. 1785 , Were that the cafe, the phenomenon would be precifely fimilar to that which is produced by the collition of flint and fteel. That they are particles of quartz cannot be doubted; but to fuppofe them combined with oxygen is contrary to all experience: for thefe fones never fhew any difpofition to combine with oxygen cuen when expofed to the mult violeat heat. La Metherie made experiments on purpofe to fee whether Lamanon's opinion was well founded; but they all turned out unfavourable to it. And Mongé afcertained, that the particles defcribed by Lamanon were pure cryltal unaltered, with a quantity of black powder adhering to them. 3^{3} He concludes accordingly, that thefe fraginents had Caufe of been raifed to fo high a temperature during their furf thownfage through the air, that they fet fire to all the minute bodies that cane in their way t. We mult therc- 1 finm. de. fore either fuppofe that all the caloric was produced by Clim, xvi mere condenfation, which is not probable, or acknow. ledge that we cannot explain the plenomenon.
16. Caloric is not only produced by percuffion, but Emilfin alfo by friction. Fires are often kindled by rubbing of ashori= pieces of dry wood fmartly againt one another. It is on friction, well known that heavy loaded carts fonetimes take fire by the friction between the axle-tree and the whecl. ;3s Now in what manner is the caloric evolved or accurnu-Not owing lated by friction? Not by increafug the denfity of the to condenbodies ruhbed againt each other, as happens in cales of ${ }^{\text {fation, }}$ percuffion ; for heat is produced by rubbing foft bodies againit each other, the denfity of which therefore cannot be increafed by that means, as any one may convince himfelf by rubbing his hand finartly againit his coat. It is true, indeed, that heat is not produced by the friction of liquids, but then they are too yiclding
(n) Thefe ftones are compoíed of almoft pure filica.
(N) This ingenious and unfortunate young man, to whom we are indebted for theie facts, fell a viction to his ardour for knowledge. He accompanied La Peroufe in his laft voyage, and was murdered with the molt favage

- crueity, together with La Langle and feveral others, by the natives of the illand of Maouna. When a man of genius, anxious to acquire honef fame, and a man too fo nobly difinterefted as Lamanon, thus falls prematurely before he has attained the object of his wifhes,

> "Cut off from nature's and from glory's courfe!
> "WWhich never mortal was fo fond to run,"
*ho can withhold the tribute of regret and admiration, when they
"Conjecture what he might have proved,
"And think life only wanting to his fame."

Caloric. to be fubje Cted to ftrong friction. It is not owing to
Nor to decreafe of frecific caloric,

* Nichol-
fon's Yourn. ii. 1 c 6. the fpecific caloric of the rubbed hodies decreafing; for Count Rumford found that there was no fenfible decreafe *, nor, if there were a decreafe, would it be fufGcient to account for the valt quantity of heat which is fometimes produced by frictiun.

Count Kumford took a cannon caft folid and rough as it came from the foundery; he caufed its extremity
\dagger Ioid.
310 conbultion; to be cut off, and formed, in that part, a folid cylinder attached to the cannon $7 \frac{3}{3}$ inches in diameter and $9 \mathrm{~T}^{8} \mathrm{i}$ irches long. It remained joined to the reft of the metal hy a fmall cylindrical neck. In this cy linder a hole was bored 3,7 inches in diameter and 7,2 inches in length. Into this hole was put a blunt fteel borer, which by means of horfes was made to rub againft its bottom; at the fame time a fmall hole was made in the cylinder perpendicular to the bore, and ending in the folid part a little beyond the end of the bore. This was for introducing a thermometer to meafure the heat of the cylinder. The cylinder was wrapt round with flannel to keep in the heat. The borer preffed againft the bottom of the hole with a force equal to about $10,000 \mathrm{lb}$. avoirdupois, and the cylinder was turned round at the rate of 32 times in a minute. At the beginning of the experiment the temperature of the cylinder was 60°; at the end of 30 minutes, when it had made 960 revolntions, its temperature was 130°. The quantity of metallic duft or fcales produced by this friction amounted to 837 grains. Now, if we were to fuppofe that all the caloric was evolved from thefe fcales, as they amounted to jutt $\sigma^{\frac{2}{7} 5}$ part of the cylinder, they mult have given out $9+8^{\circ}$ to raife the cyliader 1°, and confequently 66360° to raife it 70° or to 130°, which is certainly incredible \dagger.

Neither is the caloric evolved during friction owing to the combination of oxygen with the bodies themfelves or any part of them. By means of a piece of clock-work, Mr Pietet made fmall cups (fixed on the axis of one of the wheels) to move round with confiderable rapidity, and he made various fubitances rub againft the outfides of thefe cups, while the bulb of a very delicate thermometer placed within them marked the heat produced. The whole machine was of a fize fufficiently imall to be introduced into the reoeiver of an air-pump. By means of this machine a piece of adamantine fpar was made to rub againft a fleci cup in air: Sparks were produced in great abundance during the whole time, but the thermometer did not rife. The fame experinent was repeated in the exhaufted receiver of an air-pump (the manometer flanding at four lines); no fparks were produced, but a kind of phofphoric light was vifible in the dark. The thermoneter did not rife. A piece of brafs being made to rub in the fame manner againft a much fmaller brafs cup in air, the thermometer (which almoft filled the cup) rofe $0,3^{\circ}$, but did not tegin to rife till the friction was over. This thews us that the motion produced in the air carried off the caloric as it was evolved. In the exhaufted receiver it began to rife the moment the friction began, and rofe in all $1,2^{\circ}$. When a bit of wood was made to rub againf the brafs cup in the air, the thermometer rofe $0,7^{\circ}$, and on fubftituting alfo a wonden cup it rofe $2,1^{\circ}$, and in the exhaufted receiver $2,4^{\circ}$, * Piget ar and in air condenfed to $1^{\frac{3}{4}}$ atmofpleres it rofe $0,5^{\circ}$. Io Feu, ch.g. If thefe experiments be not thought conclufive, we have others to relate, which will not leave a doubt that
the heat produced by friction is not conneeted with the Caloric. decompolition of oxygen gas. Count Ruanford contrived, with his ufual ingenuity, to enclofe the cylinder above deferibed in a wooden box filled with water, which effectually excluded all air, as the cylinder itfelf and the borer were furrounded with water, and at the fame time did not impede the motion of the influment. The quantity of water amcunted to $\mathbf{1 8 , 7 7}$ los. avoirdupois, and at the beginning of the experiment was at the temperature of 60°. After the cylinder had revolved for an hour at the rate of 32 times in a minute, the temperature of the water was 107°; in 30 minutes more it was 178°; and in 2 hours and 30 minutes after the experiment began, the water af:ally bailed. According to the computation of Count Rumford, the caloric produced would have been fufficient to heat $26,58 \mathrm{lbs}$. avoirdupois of ice-cold water boiling hot; and it would have required 9 wax candles of a moderate fize, burning with a clear flame all the time the experiment laited, to have produced as much heat. In this experiment all accefs of water into the hole in the cylinder where the friction took place was prevented. But in another experiment, the refult of which was precifely the fame, the water was allowed free accefs *.

* Nicboljon,

The caloric, then, which appears in confequence of ilid. friction, is neither produced by an increafe of the denfity, nor by an alteration in the fpecific caloric of the fubtances compofition of the oxygen of the atmofphere.- Whence explicable.
cont then is it derived? This queltion we are altogether unable to anfwer. We cannot, however, think that the conclufion which Count Rumford is difpofed to draw from his experiments is warranted by the premifes. He fup- This ${ }^{312}$ pofes, that becaufe we cannot explain the manner that proof that caloric is accumulated by friction, there is no fuch fub-caloric is ftance as caloric at all, but that it is merely a peculiar not a body. kind of motion. WTe would beg leave to afk, how the facts mentioned in the former part of this chapter, ma. ny of which were furnifhed by this ingenious philofopher himfelf, and all of which combine to render the exiftence of caloric as a fubttance probable, can be deftroyed and fet afide, merely becaufe there are other phenomena in nature connected with caloric which cannot be accounted for? Were it poffible to prove that the accumulation of caloric by friction is inconpatible with its being a fubllance, in that cafe Count Rumford's conclufion would be a fair one; but this furely has not been done. We are certainly not yet fufficiently acquainted with the laws of the motion of caloric (allowing it to be a fubftance) to be able to affirm with certainty that friction could not caufe it to accumulate in the bodies rubhed. This we know at leaft to be the cafe with electricity. Nohody has been hitherto able to demontrate, in what manner it is accumulated by friction; and yet this has not been thought a fufficient reafon to deny its exiftence.

Indeed there feems to be a very clofe analogy between Analogy caloric and electric matter. Both of them tend to diffufe between themfelves equally, both of them dilate bodies, both of caloric and them fufe metals, and both of them kindle combultible fubftances. Mr Achard has proved, that electricity can be fubftituted for caloric even in thofe cafes where its agency feems peculiarly neceffary ; for he found that, by conftantly fupplying a certain quantity of the electric fluid, eggs could be hatched juit as when they are

Caloric. kept at the temperature of 103°. An accident indeed prevented the chickens from actually coming out ; but they were formed and living, and within two days of burfing their fhell. Electricity has alfo a great deal of influence on the heating and cooling of hodies. Mr Pictet exhauted a glafs globe, the capacity of which was 1200,199 cubic inches, till the manometer within it food at 1,75 lines. In the middle of this globe was fufpended a thermometer which hung from the lop of a glails rod fixed at the bottom of the globe, and going almoft to its top. Oppofite to the bulb of this thermometer two lighted candles were placed, the rays of which, by means of two concave mirrors, were concentrated on the bulb. The candles and the globe were placed on the fame board, which was fupported hy a non-conductor of electricity. Two feet and a half from the globe there was an electrifying machine, which communicated with a brafs ring at the mouth of the globe by mears of a metallic couductor. This machine was kept working during the whale time of the experiment ; and confequently a quantity of electric matter was coaftantly paffing into the glohe, which formed an atmofphere not only within it, but at fome diftance round, as was evident from the imperfect manner in which the candles burned. When the experiment began the thermometer food at $49,8^{\circ}$. It rofe to $70,2^{\circ}$ in $73 z^{\prime \prime}$. The fame experiment was repeated, but no electric matter thrown in ; the thermometer rofe from $49,8^{\circ}$ to $70,2^{\circ}$ in $1050^{\prime \prime}$; fo that the electricity haftened the heating almoft a third. In the firf experiment the thermometer rofe only to $71,3^{\circ}$. but in the fecond it rofe to 77°. This difference was doubtlefs owing to the candles burning better in the fecond than the firf experiment ; for in other two experiments made exactly in the fame manner, the maximum was equal both when there was and was not electric matter prefent. Thefe experiments were repeated with this difference, that the candles were now infulated, by placing their candlefticks in difhes of varnifhed glafs. The thermometer rofe in the electrical vacuum from $52,2^{\circ}$ to $74,7^{\circ}$ in $1050^{\prime \prime}$; in the fimple vacuum in $965^{\prime \prime}$. In the electrical vacuum the thermometer role to 77°; in the fimple vacuum to 86°. It follows from thefe experiments, that when the globe and the candles communicated with each other, electricity hatened the heating of the thermometer; but that when they were infulated leparately, it retarded it *. One would be apt to fufeFcu. ch.6. pect the agency of electricity in the following experiment of Mr Pictet: Into one of the brafs cups fermerly defcribed, a fmall quantity of cotton was put to prevent the bulb of the thermometer from being broken. As the cup turned round, two or three fibres of the cotton rubbed againft the bulb, and without any other friction the thermometer rofe five or fix degrees. A greater quantity of cotton being made to rub againit -Ibid. ch. g. the bulb, the thermonicter rofe is degrees f. iction.

We do not mean to draw any other conclufion from thefe facts, than that electricity is very often concerned in the heating of bodies, and that probably fome fuch agent is employed in accumulating the heat produced by friction. Suppofing that elcetricity is actually a fubSuppl. Vol. I, Part I.
flance, and taking it for granted that it is different from caloric, does it not in all probability comtain caloric as well as all other bodies? Has it not a tendency to accumulate in all bodies on friction, whether conductors or non-conductors? May it not theu be accumulated in thefe bodies which are rubbed aprintt one another? or, if they are good conductors, nay it not pafs through them during the friction in great quantities? May it not part with fome of its caloric to thele bodies, either on account of their greater aflinity or fome other caufe? and may not this be the fource of the caloric which appears during friction?

Chap. VI. of Light.

By means of light bodics are rendered vifible. Light Newe nias has been confidered as a fubtance compofed of imal thei. y of particles moving in ftraight lines from luminous bodies light. with inconceivable rapidity. The difcoveries of Newton eftablined this opinion on the firm bafis of mathematical demonftration; and fince his time it has been generally embraced. Iuyghews, indeed, and Euler, advanced another (o). They confidered light as a fubtile fluid, filling all fpace, which rendered bodies vilible by its undulations. But they fupported their hypothefis rather by Itarting objections to the theory of Newton, than by bringing forward direct proofs. Their objections, even if valid, inftead of eftablifhing their own opinions, would prove only that the phenomena of light are not completely underitood; a truth which no man will refufe to acknowledge, whatever fide of the queftion lie adopts. Newton and his difciples, on the cone trary, have fhewn that the known phenomena of light are inconflfent with the undulations of a fluid, and have brought forward a great number of direct arguments, which it las been impoffible to anfwer, in fupport of their theory. It can hardly be doubted, therefore, that the Newtonian theory of light is the true one.

Dr Bradley, who, by a number of very accurate ex-velocity of periments, and a procefs of reafoning peculiarly ingeni.light. ous, difcovered the aberration of light of the fixcd tars, has fhewn from it that the velocity of light is to that of the earth in its orbit as 10313 to 1 . Light therefore moves at the rate of 195218 iniles in a fecond.

Light, by means of a prilm, may be feparated into Divifible feven rays, differing from cach other in colour; red, imru feven orange, yellow, green, blue, indigo, violet. None of rays, thefe are capable of farther decompofition. Marat, indeed, pretended that he lad reduced them to three; but his experiments are now known to have been merely philofophical frauds.

When light paffes obliquely into a denfer medium, it Differing is refratted towards the perpendicular ; when into a rain refranrer, from the perpendicular. Sir Ifac Newton difco.gibility, vered that the rays differed in their refrangibility in the order in which they have been named, the red being: the leaf, the violet the moft relrangible. Mr Blair has obferved, that the ratios of the refrangihility of the different rays, though not their order, vary fomewhat in different mediums*. ${ }^{*}$ Fdinburg ${ }^{3}$

When light paffes, within a certain diftance of a body, P'il. 1ranf. Nn parallel ai.
(o) Dr Franklin did the fame, without taking any notice of thefe philofophers, of whofe ofinions perhaps he was ignotant. See Tranf. एbilad. III. 5.
$\underbrace{\text { Light. }}$
Infletion, deffection,
parallel to which it is moving, it is bent toseards it ; when it paffes at a greater diftance, it is bent from it. The firt of thefe properties is called inffection, the fecond defecion. Now the rays differ in thefe properties in the order in which they were named; the red being mof, the viulet leaf, inflexible and deflexible. This was fur-

* Trarf.

Pbilod. ii. $+P b i$.
Tranfiti96. 320 And refics ity.
\ddagger Pbil. fame ingenious gentle nanan \ddagger.
Tranf:5796. Thefe properties of light conftitute the fubject of Optics; to which we refer thofe who wifh to fee
them inveftigated. We mention them here becaufe they Oprics; to which we refer thofe who wifh to fee
them inveftigated. We mention them here becaufe they prove that light is acted on by other bodies, that it is prove that light is acted on by other bodies, that it is
fubjected to the laws of attraction, and confequently that it poffeffes gravity.
2. The particles of light fecm alfo, like thofe of caloric, to poffers the property of repelling one another;
at leaR their rapid motion, in all directions, frum lumiloric, to poffefs the property of repelling one another;
at leaR their rapid motion, in all directions, frum lumi-
$3: 1$
Lizhe ca-
pable of entering bodies, pected by David Rittenlooufe *, but was firf demonftrated by the ingenious experiments of Mr Brougham \dagger.
When light falls upun a vilible body, fome of it is reflected back; and the more pulifhed or the whiter any -furface is, the more light it reflects. The rays of light differ alfo in reflexity, the red being the moft, the violet the leant reflexible. This difcovery we owe to the nous bodies, feems to be owing to fome fuch property.
3. Light is capable of entering into bodies, and re--maining in them, and of being afterwards extricated without any alteration. Father Beccaria, and feveral other philofophers, have fhewn us by their experiments, that there are a great many fubftances which become luminous after being expofed to the light. This property was difcovered by carrying them inftantly from the light into a dark place, or by darkening the chamber in which they were expofed. Moft of thefe fubftances, indeed, lofe this property in a very flort time, but they recover it again on being expofed to the light; and this may be repeated as often as we pleaie. We are indebted to Mr Canton for fome very intereftiog experiments on this fubject, and for difcovering a compofition which poffeffes this property in a remarkatle degrec. He calcined fome common nytter fhells in a good coal fire for half an hour, and then pounded and fifted the pureft part of them. Three parts of this powder were mixed with one part of the flowers of fulphur, and rammed into a crucible which was kept red hot for an hour. The brighteft parts of the mixture wew then fcraped off, and kept for ufe in a dry phial well ftopped. When this compofition is expofed for a few feconds to the light, it becomes fufficiently luminous to enable a perfon to diftinguifh the hour on a watch by it. After fome time it ceafes to fhine, but recovers this property on being again expofed to the light. Light then is not only acted upon by other bodies, but it is capable of uniting with them, and afterwards leaving them without any change.

It is well known that light is emitted during combuition; and it has been objected to this conclufion, that thefe bodies are luminous only from a flow and imperceptible combuftion. But furely combuftion cannot be fufpeeted in many of Father Beccaria's experiments, when we refect that one of the bodies on which they were made was his own hand, and that many of the otbers were altogether incombuitible; and the phenomena oblerved by Mr Canton are alfo incompatible with the notion of combuftion. His pyrophorus fhone only in confeguence of being expofed to light, and lort
that property by being kept in the dark. It is not expofure to light which caufes fubtances capable of combultion at the temperature of the atmofphere to become luminous, but expofure to air. If the fame temperature continues, they do not ceafe to mine till they are confumed; and if they ceafe, it is not the application of light, but of caloric, which renders them again luminous: but Canton's pyrophorus, on the contrary, when it had loft its property of thining, did not recover it by the application of heat, except it was accompanied by light. The only effee which heat had was to increafe the leparation of light from the pyrophorus, and of courfe to fhorten the duration of its luminouf nefs. Two glafs globes, hermeticaliy fealed, containing each fome of this pyrophorus, were expofed to the light and carried into a dark room. One of them, on being immerfed in a bafon of boiling water, became much brighter than the other, but in ten minutes it ceafed to give nut light ; the other remained vifible for more than two hours. After having been kept in the dark for two days, they were botli plunged into a bafon of hot water; the pyrophorus which had been in the water furmerly did nut hine, but the other became luminous, and continued to give out light for a confiderable time. Neither of them afterwards thone by the application of hot water; but when hrought near to an iron heated fo as fcarcely to be vifible in the dark, they fuddenly gave out their remaining light, and never fhone more by the fame treatment : but when expofed a fecond time to the light, they exhibited over again precifely the fame phenomena; even a lighted candle and electricity communicated fome light to them. Surely thefe facts are altogether incompatible with combuftion, and fully fufficient to convince us that light alone was the agent, and that it had actually entered into the luminous bodies.

It has been queftioned, indeed, whether the light emitted by pyrophori be the fame with that to which they are expofed. Mr Wilfon has proved, that in many cafes at leaf it is different, and in particular that on many pyrophori the blue rays have a greater effect than any other, and that they caufe an extrication of red light. Mr de Grofter las fhewn the fame thing with regard to the diamond, which is a natural pyrophorus *. Still, however, it cannot be queftioned that * Four. de the luminoufnefs of thefe bodies is owing to expofure Phyf. xx. to light, and that the phenomenon is not connected with ${ }^{270}$. combution.

But light appears capable, not only of entering into And of bebodies, but of combining with them chemically. The ing combiphenomera of the phofphori feem to be inftances of them. this, and a great many facts concur to prove that light enters into the compofition of oxygen gas. When vegetables grow in the light, they give out oxygen gas; but no oxygen is extricated in the dark, even though leat be applied \dagger. From this it is evident, that the fe-t Prieflisy paration of this gas from plants, or perhaps the decom- $\frac{\text { and Ingen }}{\text { boufz }}$ pofition of the water which they contain, depends upon the action of light; and that as this decompofition is chemical, the light to produce it mult either combine with the oxygen or the hydrogen, or at leaft contribute to the combination of fome other fubftance with one or other of them. When the oxides of gold or filver are expofed to light, they are reduced to the metallic ftate \ddagger, \ddagger Sabede and at the fame time a quantity of oxygen gas is extri-

Part I.
Light.
cated *. In this cafe, it is crident that the light mutt cither combine with the oxygen or the metals. If a quantity of nitric acid be expofed for fome time to the light, it becomes ycllow, as is well known, and a quantity of oxygen gas is fom floating on its top. If it be now carried to a dark place, the oxygen is gradually abforbed, and the acid becomes colourlefs. In this cafe, nitric acid is decompofed by means of light, and refolved into milrous acia' and uxygen gas. 'The light muft therefore have combined either wih the nitrous acid or the oxygen. But no change whatever appears to have been produced in the nitrous acid; for if it be obtained in the dark by any other procefs, it has precifely the fame properties. The axygen, on the contrary, is converted into a gas. It is nore probable, then, that the light has combined with the oxygen than with the acid. Hence there is reafon to fufpect that light makes one of the ingredients of oxygen gas. Caloric has already been thewn to make another ingredient.

During combuttion, a quantity of light as well as caloric is almuf always evolved. We muft conclude, therefore, that light makes a part of the compofition either of the combultibles themfelves, or of the oxygen gas with which they unite. We have already flewn that oxygen gas probably contains light; and this probability is confirmed by another fact. Subftances may be combined with oxygen without the emiffion of any light, provided the oxygen be not in the flate of a gas. If phofphorus, for inftance, be put into nitric acid, it attracts oxygen, and is converted into phofphoric acid without the emiffion of any light. Now if the light which appears during combuftion lad been combined with the combuttible, it ought to appear in all cafes when that combultible is united with oxygen, whether the oxygen has previoufly been in the ftate of a gas or not. But as this is not the cafe, we may certainly infer, that the light which appears during combuftion is extricated, not from the combuftible, but from the oxygen gas. And this feems at prefent to be the opinion of the greater number of philofophers.

But we mutt acknowledge, that this conclution is not without its difficulties, and difficulties, too, which, in the prefent flate of chemiftry, it does not feem poffible to furmount.

In the firft place, it is evident, that light may be produced during combuftion, though the oxygen be not in the flate of a gas: For if nitric acid be poured upon oil of turpentine, the oil takes fire, and burns with the greateft rapidity, and a great deal of light is emitted. This combution is occafioned by the oxygen of the acid combining with the ingredients of the oil. It follows, therefore, if the light emitted was previoully combined with the oxygen, that oxygen muft contain light when not in the flate of a gas. Mr Proutt has fhewn that a great variety of fimilar combultions may be produced. But what is very remarkable, by proper caution the very fame combinations may be made to take place without the vifible emiffion of any light. In that cafe they take place very flowly, as happens alfo when phofphorus decompofes nitric acid; fo that the emiffion or non-emiffion of light feems to depend not upon the fate of the oxygen, fo much as upon the rapidity or flownefs of the combination. It is true, indeed, as the late Dr Hutton of Edinburgh obferved, that light may be emitted in thefe flow combinations though it be not
vitible; and this is very probably the cafe: but then the proof is defroyed that light exitts in oxygen gas, from its not appearing duning combinations in which the oxygen did not exif previoully in a gafeous fate.

In the fecond place, the colour of the light emited during combultion differs almoft always according to the combuttible. During the combultion of ploffohorus, tin, and zinc, the light emitted is white: dating that of fulphur and bifmuth, biue. Now if this light were united with the oxygen, why does it not appear always of the fane colour, whatever be the combintible?

In the laft place, the phenomena of phofphori fhew that light is capable of entering into other bodies as well as oxygen gas; and the emiffion of light on the collifion of two fint fones, when no oxygen gas can be dc. compofed, is a proof of the fame kind, which cannot he got over.

In the prefent ftate of chemiftry, therefore, it cannot be concluded, that the light emitted during combuntion does not exill in the combuftibles as well as in the oxygen.
4. Light has the property of heating bodies. All Lighit heats bodies, however, are not heated by it. Thofe which ${ }^{\text {bodies. }}$ are perfectly tranfparent, or which allow all the light to pafs throw them, fuffer no alteration in their temperature. Thus light may be concentrated upon water or glafs without producing any effect. Neither does it produce much change upon thofe bodies (mirrors for inftance) that reflect all or nearly all the light which falls upon them. And the fmallnefs of the alteration of temperature is always proportional to the finenefs of the polifh, or, which is the fame thing, to the quantity of light which is reflected. So that we have reafon to conclude, that if a fubflance could be procured which reflected all the light that fell upon it, the temperature of fuch a fubflance would not be at all affectcd by light falling upon it. Dr Franklin expofed upon fnow pieces of cloth of different colours (white, red, blue, black) to the light of the fun, and found that they funk deeper, and confequently acquired heat, in proportion to the darknefs of their colour. Now it is well known that dark-coloured bodies, even when equally expofed to the light, reflect lefs of it than thofe which are light-coloured. But lince the fame quantity falls upon each, it is evident that dark-coloured bodies mult abforb and retain more of it than thofe which are light-coloured. That fuch an abforption actually takes place is evident from the following experiment. Mr Thomas Wedgewood placed two lumps of luminous or phofphorefcent marble on a piece of iron heated juft under rednefs. One of the lumps of marble which was blackened over gave out no light ; the other gave out a great deal. On being expofed a fecond time in the fame manner, a faint light was feen to proceed froun the clean marble, but none at all could be perceived to come from the other. The black was now wiped off, and both the lumps of marble were again placed on the hot iron: The one that had been blackened gave out juft as little light as the other *. In this cafe, the *Pbir. light which ought to have proceeded from the lunii- Tranf. 1793 nous marble difappeared: it mult therefore have been fopped in its paffage out, and retained by the black paint. Now black fubftances are thofe which abforb the moft light, and they are the bodics which are mot heated by expofure to light. Cavallo obferved, that a
\qquad
l.iglit.

* Pbir.

Irañ1780.
thermometer with its bulb blackened fands higher than one which has its bulb clean, when expufed to the light of the fun, the light of day, or the light of a l.mp *. Mr Pictet made the fane obfervation; and took care to afcertain, that when the two thermometers were allowed to remain for fome time in a dark place, they acquired precifcly the fame height. He obferved, too, that when both thermoneters had been raifed a certain number of degres, the clean one fell a good deal falter than the

+ Surle othirrt. But it is not a fmall degree of heat alone
Feu, ch. 4. which can be produced by means of light. When its rajs are concentrated by a burning-glafs, they are capable of fetting fire to cumbuftibles with eafe, and even of producire: a temperature at leaft as great, if not greater, than what can be procured by the molt violent and befle condusted fires. In order to produce this ef. feat, however, they mult be directed upon fome body capable of abforbing and retaining them; for when they are concentrated upon tranfparent bodies, or upen fluids, incre air for inftance, they produce little or ro effect whatever. We may conclude, therefore, in general, that in all cafes when light produces heat it is abfurber.

5. All bodies become luminous when their temperature is raifed a certain mumber of degrees. No fact is more familiar than this; fo well known indeed is it, that little attention has been paid to it. When a budy becomes luminous by being heated in a fire, it is faid in common language to be red bot. It follows from all the experiments hitherto made, that the temperature at which they become red hed hot is nearly the fame in all bodies.-It feems to be pretty near 800°. A red hot body continues to fhine for fome time after it has been taken from the fire and put into a dark place. Thiw contant acceffion, then, either of light or heat is not neceflary for the fhining of bodies: but if a red hot body be blown upon by a ftrong'current of

Tranf: 19 ig

§ Id. ibid.

 327 Except the gafes. air, it ceafes to thine immediately \ddagger. Confequently the moment the temperature of a body is diminifihed by a certain rumber of degress, it ceafes to be luminous.Whenever a body reaches the proper temperature, it becones luminnds, independent of any contact of air ; for a pieze of iron wire becomes red hiot while immerfed in melted lead \oint.

To this general law there is one remarkable exception. It does not appear that the gafes become lu-
was another opening in this glubular veficl filied with glafs, that one nif hit fee what was going on within. The crucible was put into a fire; and after the fand had becone red hot, the air was blown through the earthen tule by means of the bellows. This air, after pafling thourg the red hut fand, came into the globular veffel. It did not thine; but when a piece of gold wire E was lung at that part of the veffel where the edarthen ware tube entered, it became faintly luminous. A proof, that though the air was not luminous, it had been hot snough to raife other bodies to the fhining tomperature.
6. Thus it appears that light and heat reciprocally produce cach other; that the fixation of light in bodies always pruduces heat, and that the application of a fufficiently frong heat always occafions the extrication of light. Are lieat and light, then, owing to the fame caufe? Does light become caloric merely by being fixed in bodies? and does caloric affume the appearance of light whenever it is extricated from them? In thort, are caloric and light merely names for the fame fubfance, called caloric when it is fixed in budies, and light when in a fate of liberty ?

To thefe queftions it may be anfwered, That if calo. ric and light were one and the fame fubftance, they ought to produce precifely the fame effects. Now this is not the cafe: a black body is not heated fooner by mere caloric than any other, though the contrary takes place when hoth are expofed to the light *. Heat cannot . T. Wedge make growing vegetables exhale oxygen gas, though zoood. Pbil. light does it almoft inftantaneoufly. When oxy-muriatic Tranfiti92 acid (a compound of oxygen and muriatic acid) is expoled to the light, a quantity of oxygen gas flies off, and nothing remains but common muriatic acid. Light then decomprofes this acid; for if you wrap up a bottle in black cloth, fo as to exclude light, and then expore it equally to the fun, no fuch decompofition takes place. Now this decompofition cannot be produced by mere caloric. If the acid be heated, it fimply evaporates without being altered. Chaptal has proved (p), that the rays of light directed on certain parts of glaffes, containing folutions of falts, caufe them to cryftallize in that part in preference to any other \dagger. Thefe obferva- t, Nem, tions have been confirmed and extended by MrDorthes \ddagger. Now caloric produces no fuch effects, nor has the tem. perature any influence on the phenomenon:

Thefe facts are fufficient to thew that light and caloric, even when they have entered into budies, produce different effects, and that therefore they have different properties (α). But if the only difference between them were, that the one is in a fate of liberty, the other in that of combination, the rfoment light entered a body it ought to be no longer light but caloric, and confequently ought to produce precifely the fame effects with caloric: And fince this is not the cale, we are warranted furely to conclude that light and caloric are not the fame, minous even at a much higher temperature. The following ingenious experiment of Mr ${ }^{\mathrm{T}}$. Wedgewood feems to fet the truth of this exception in a very clear point of view. He took an earthen ware tube B (fig. 5 .), bent fo in the middie that it could be funk, and make feveral turns in the large crucible C , which was filled with fand. To one end of this tube was fixed the pair of bellows A; at the other end was the globular veffel D, in which was the parfage F, furnifhed with a valve to allow air to pafs out, but none to enter. There
(p) Petit made the fame obfervations in 1722. See Mlemoirs of the Academy of Sciences for that year, p. 95. and 331 .
(e) We mult acknowledge, however, that the following ingenious experiments of Profeffor Pictet might be adduced, to prove that light and caloric poffefs at leaft one property in common, that of moving in firaight lines.

He placed two concave mirrors of $t \mathrm{in}$, of nine inches focus, at the diftance of twelve feet two inches from one another. In the focus of one of them he placed a ball of iron two inches in diameter, heated fo as not to be

Light. but different fubfiances (R). How then does caloric oc-- cafion the appearance of light, and light that of caloric?

We have feen already, that there is no body in nature which dots not contain caloric; and light has fuch an infuence upon every thing, it produces fuch important changes upon the animal and vegetable kingdoms. it can bee extricated from fuch a valt number of bodies, that in all prokability we may conclude with regard to
it alfo, that it exilts in all, or in almoll all, the bodies in nature. We have no means of afcertaining either the quantity of light or of caloric that exifts in bodies; but if we were to judge from the quantity which appears during combuftion, we muft reckon it very confiderable. Now, may there not exift a repulfion between the particles of caloric and light ? It is not eafy, it leaft, to fee why light flies off during combuftion with fuch rapidity, if this be not the cafe. If fuch a repulfion actually exifts, it will follow that caloric and light cannot be accumulated in the fante body beyond a certain proportion. If the caloric exceed, it will tend to drive off the light ; if the light, on the contrary, happens to prevail, it will difplace the caloric.
If caloric and light actually exill in all bodies, there muft be an affinity between them and all other hodies; and this affinity mult be fo great, as to render ineffectual the repulfion which exitis between light and caloric. Let us fuppofe now, that thefe two fubllances exilt in all bodies in certain proportions, it will follow, that the
more either of caloric or light is added to any body, the flronger muft the repulfion between their particles bccome ; and if the accumulation be fill going on, this repulfion will foon become great enough to balance their afinity for the body in which they exill, and confequently will difpofe them to fly ofl. If caloric, for inflance, be added to a body, whenever the body arrives at a certain temperature it becomes luminous, becaufe part of the light which was formerly combined with it is driven off. This temperature mult depend partly upon the attinity beiween the body and caloric, and partly upon its affinity for light. Pyrophori, for inftance, the affinity between which and light does not feem to be very great, become luminons at a very moderate temperature. This is the cafe with the pyrophorus of Canton. A great many bard bodies become luminous when they are expofed to a moderate heat; fluor, for inftance, carhonat of barytes, (par, fea fhells, and a great many others, which are enumerated by Mr Thomas Wedgwood*. * Pbil.
The fame ingenious gentleman has obferved, that Tranf. gold, filver, copper, and iron, becone luminous when ${ }^{17922}$, p. is heated in times inverfely proportional to their fpecitic calorics \dagger. Now the fpecific calorics of thefe metals y Ibid.
are in the following order: are in the following order:

Iron,
Copper,
Silver,
Gold,

$$
\begin{aligned}
& \text { Guld, } \\
& \text { Silver, } \\
& \text { Copper, } \\
& \text { Iron. }
\end{aligned}
$$

Now the fmaller the fpecific caloric of any body is, the lefs nuult be the quantity of caloric neceflary to raife it a given uumber of degrees; the fooner therefore mult it arrive at the temperature at which it gives out light. It was natural to expect, then, if the emilion of light from a body by the application of heat be owing to the repulfion hetween caloric and light, that thofe bodies fhould become luminous fooneft in which that repulfion increafes with the greateft rapidity; and this we fee is precifely the cafe. The only queftion to be determined before drawing this conclufion is, Whether the fame quantity of oaloric entered all of them? That depends upon their conducting power, which, according to Ingenhoufz, is in the following order :

> Silver,

Gold,
Copper,
Iron.
We fee, then, that this conducting power is nearly in the order in which thefe metals become luminous; fo that the greatelt quantity of caloric would enter thofe which becume foonefl luminous. Now this is juft what ought to happen, provided the expulfion of light from a luminous body, by the application of heat, be owing to the repulfion between thic particles of caloric and light.

The repulfion between the different rays of light and caloric does not feem to be equal ; the repulfion between the blue rays and caluric feems to be greater than tbat between the red rays and caloric; and the repulfion between all the rays and caloric feems to be directly as their refrangibility : accordingly, when heat is applied to a body, the blue rays efcape fooner, and at a lower temperature, than the red rays and others which are moft refrangible. When fulphur, for inftance, is burnt at a low temperature, the colour of the flame is blue; and when examined by the prifm, it is found to confift of the violet, indigo, blue, and fometimes of a fmall quantity of the green rays*; but when this fubfance is burnt at a higli temperature, the colour of the flame is white, all the reys feparating together. When bodies have continued to burn for fome time, they may be fuppofed to have loft the greater part of the moft refrangibie rays; hence the red appearance of bodies, charcoal for in. fance, that have burnt for fome time, the only rays which remain to feparate being the orange, yellow, and red \dagger.

The blue rays feem not only to repel caloric with greater force, but likewife to have a greater affinity for other bodies than the red rays have; for they decompofe the oxide of filver (or rather the muriat of filver) much fooner, and to a greater extent, than the red \ddagger Sennebier, rays \ddagger : hence we fee the reafon why the application of
the bhe rays to Mr . Willon's pyrophori and to the diamond caufes an extrication of red rays.

We have feen already, that the gafes are not heated red liot by the application of heat. It would fullow from this, that the gafes do not contain light: but the contrary is certain ; for light is actually extricated during the combuftion of hydrugen, and muft therefore have exited cither in the oxygen or hydrogen gas, or in buth. Probably therefore the reafon that heat dnes not extricate light from the gales is, that the affinity between their bafes and light is exceedingly frong: it would therefore require a more than ufual teniperature to produce its extrication ; and un account of the great dilatability of thefe gafes, which always tends to diminifh the repulfion hetween the caloric and light, this temperature cannot be applied. It is eafy to fee, upon the Cuppofition that there exifts a repulfion between caloric and light, why the accumulation of light flould produce heat, and why light only occafions heat in thofe bodies that abforb it.

Such is the theory of the caufe of the reciprocal extrication of light and caloric by the application of thefe fubitances refpectively to bodies, which has been propofed by feveral ingenious chemitts (s); and we acknowledge frankly, that it appears to us by far the moft plaufible of all the explanations of this phenomenon with which we are acquainted.

It is not, however, beyond the reach of objections, Objections and objections too, we are afraid, altogether incompa-to which tible with its truth. Were the repulfion between caloric this thenry and light the only caufe of the luminoufnefs of hot bo- is liable. dies, the continual application of heat would furely in time feparate the whole of the light which was combined with the body, and then it would ceafe to be luminous altogether; but we have no reafon to fuppofe that bodies ever ceafe to become luminous by the continued application of heat. Claveus kept melted, and confequently red hot, gold fur months in a furnace; but he does not fay that its luminoufnefs was diminifhed, far lefs deftroyed; and had fuch a remarkable phenomenon taken place, certainly he would not have failed to inform us; but fo far from that, he exprefsly fays that it fuffered no alteration (τ) \oint.
§ Sbane's
Whether light would continue to extricate a great Boyle, iii. deal of caloric during fo long a time, has never been 268 .
tried: but we have no reafon for fuppofing that its power to produce that effect is ever exhaufted; for bodies, after being expofed to the fun for years, and even for ages, are juft as much heated by it as cver. But thefe effects, far from being inexhauftible, ought, according to the theory, to come very feedily to an end. It is certainly probable, then, as other philofophers have fuppofed, that though light and calunic are not preciflly one and the fame fubltance, they are fome how or other intimately connected, and are either compofed of different proportions of the fame ingredients, or the one enters into the compofition of the other.

One

(s) Particularly by Dr Parr, who is faid to be the author of a paper on this fubject, publifhed in the Exeter Memoirs.
(r) A geutleman, to whom we mentioned this objection, obferved, that in the cafe of bodies long expofed to heat, the light which appears to proceed from them, might, in fact, be extricated from the atmofphere by the caloric communicated to it from the heated body. This thought is new and ingenious, and might ealily be put to the telt of experiment. Some of the facts mentioned in the text are rather hoftile to it ; but fhould it prove well founded, it would go far to remove moft of the difficulties in which the theory of light is at prefent involved.

One of the furf theories of this kind (for the opinion of Stahl has been already difcuffed) was formed by Mr Scheele*, one of the moft extraordinary men and greatefl plilofophers that ever exifted. Without the affift. ance of educution or of wealth, his genius burf forth with aftonifhing luftre; and at an age when molt phi. lufophers are only rifing into notice, he had finifhed a carect of difcoveries which have no parallel in the annals of chemiltry. Whoever wifhes to behold ingenuity combined with fimplicity, whoever withes to fee the inexhautlible refources of chemical analy fis, whoever wihhes for a model in chemical refearches-has only to peruhe and to ftudy the works of Scherle (T). After a valt number of experiments, conducted with attonifning ingenuity, he concluded, that caloric was compuled of a certain quantity of onygen combined with phlogillon; that radiant heat, a fuldtance which he fuppofed capable of being propagated in Itraight lines like light, and not capable of combining with air, was compored of oxygen united with a greater quantity of phlogillon, and light of oxygen united with a fill greater quantity. He fuppofed, too, that the difference between the rays depended upon the quantity of phlogiton: the red, according to him, contained the leall; the violet, the molt phlogifton. By fllogifion Mr Scheele fcems to have meant bydrogen. It is needlefs therefore to examine his theory, as it is now known that the combina. tion of hydrogen and oxygen forms not caloric but water (u). The whole fabric therefore has tumbled to the ground; but the importance of the materials will always be admired, and the ruins of the ftructure fhall remain eternal monuments of the genius of the builder.

Mr de Luc, fo well known for his important meteorolgical labours, has advanced another theory t. According to him, light is a body which moves conftantly in flraight lines, with fuch rapidity that its gravitation towards other fubftances bears no fenfible proportion to its motion. Light has the property of combining with another uninown fubitance, and the compound formed is caloric, which poffeffes very different properties from light. Caloric is conftantly deferibing helicoidal curves romud an axis, which accounts for the flowneis of its apparent motion. Light produces or increafes heat, partly by increaling the expanfive power of caloric, and
partly by combining with the unknorun fubfance, and forming new caloric; caloric, on the other hand, is al. ways decompofed when bodies become luminens. This theory is certainly ingenious, and would remove many of the diffenlties which we at prefent labour under in attempting to explain the phenomena of caloric and light. It is, however, liable to uther diffecultics which could wot be cafily furmounted. But it is weedlefs to ex. amine thefe, as the theory itfelf is fupporied by no evidence whatever, and cannot therefore le admitted.

Another theory has been advanced by the late DrHutton's Hutton of Edinburgh (v) ; a man of undoubted genius, theory. but of rather too fpeculative a turn of mind, and who fometimes involved himfelf in difficulties from his very ingenuity. All his writings difplay evident marks of the profound philofopher : they contain much inftruciom; and even his miftakes are not without their ufe: but ubfortunatcly his manner is fo peculiar, that it is fcarcely more difficult to procure the fecrets of fcience from Nature herfelf, than to dig them from the writings of this philofopher. He fuppofes that there are two kinds of matter, gravitating natter and light ; the latt of which wants gravity, and confequently neither poffeffes magnitude (w) nor momentum. Light has the power of being fixcd in bodies; and then it becomes either caloric or phlogifton, which differs in fome particulars from caloric, but in what, the Doctor does not precifely tell us.

Part of this theory we have examined already when we attempted to prove that light and caloric were different fubftances. The other part of the theory feems to involve a contradiction; for how conld light become fixed in a body, unlefs it were attracted by it? and if light poffeffes attraction, it furely cannot be defitute of gravity ; for what is gravity but allracion (x)?

Thus, notwithftanding the ingenuity of the philofophers who have attempted to inveligate this part of chemittry, the connection between light and caloric is dtill unknown. We mult content ourfulwes, therefore, with confidering them at prefent as diflinet fubitances, and leave the folution of the many diffenties which at prefent perplex us to the more happy labours of future inquirers.
(r) This Newton of chemiftry died in 1786 , at the age of 44. His moral chara\&er, according to Mr Er. hart and others, who were the companions of his youth, and Meffrs Gadulin, Efpling, and thofe who knew him in his latter days, was irreproachable and praife worthy. His outward appearance was not exprefive of the great mind which lay conccaled as it were under a veil. He feldom joined in the ufual converfations and amufements of fociety, having as little leifure as inclination to do fo; for what little time he had to fpare from the hurry of his profeffion (an apothecary), was conftantly filled up in the profecution of experinents. It was only when he received vifits from his friends, with whom he could converfe upon his favourite fcience, that he indulged him. felf in a little relaxation. For fuch friends he had a fucere affection, as he had alfo for thofe that lived at a difance, and even for fuch as were not perfonally known to him. He kept up a regular correfpondence with. Meffrs Erhart, Meyer, Kirwan, Crell, and feveral other chemilts. See Crell's Life of Scbeele.
(u) This candid philofopher afterwards acknowledged, that the proofs for the compofition of watcr were complete : but we do not know exactly how he attempted to reconcile his theory of heat with the belief that water was compofed of oxygen and hydrogen ; two opinions which are certainly incompatible.
(v) See his differtations on different fubjects of natural philofophy.
(w) Indeed Dr Hutton refufed this property to gravitating matter alfo; following, in this particular, the theury of the celebrated Bofcovich.
(x) We hope not to be accufed of difputing merely about the meaning of a word, till what is faid on this fubject in the chapter of the prefent article, which treats of Affnity, has been examined,

partil. Of compound bodies.

Water.
TO thole bodies which are compoied of two fimple fubflances combined to rether, for want of a better name we have given the appellation of compound bodies. They may be reduced under five claffes:

$$
\begin{aligned}
& \text { 1. Water, } \\
& \text { 2. Alcohol, Alkalies, } \\
& \text { 3. Ails, }
\end{aligned}
$$

Thefe fhall be the fubject of the five following chapters; and we thall finith this part of the article with fome obferrations on Alfinity.

Chaf. I. Of Water.

Water is a well-known liquid, found in abundance in every part of the world, and ablulutely neceflary for the exiftence of animals and vegetables.

When pure, in which ftate it can be obtained only by difillation, it is tranfparent, and deftitute of colour, talte, and fmell.
weight of swater.

A cubic foot of water, at the temperature of 55°, weighs, according to the experiments of Profeffor Robifon of Edinburgh (fee Specleic Gravity, Encycl.), 298,74 avoirclupois ounces, of 437,5 grains troy each, or ouly 1,26 ounces lefs than 1000 avoirdupois ounces; f_{0} that rain water, at the fame temperature, will weigh pretty nearly 1030 ounces. The fpecific gravity of water is alrays fuppofed $=1,00=$, and it is made the
3.35 meafure of the fpecific gravity of every other body.
ice.
When water is cooled down to 32°, it "aflumes the form of ice. If this procefs goes on very nowly, the ice affumes the form of cryftalline needles, croffing each other at angles either of 60° or $\mathbf{1 2 0}$, as Mr de Mairan has remarked; and it has been often obferved in large cryftals of determinate figures. Ice, while kept at a temperature confiderably below $3^{2^{\circ}}$, is very hard, and nay be pounded into the fineft duft. It is elaftic. Its fpecific gravity is lefs than that of water.

When water is heated to the temperature of 212°, it boils, and is gradually converted into fteam. Steam is an invifible fluid like air, but of a lefs fpecific gravity. It occupies about 1200 times the fpace that water does. Its elafticity is fo great, that it produces the moft violent explofions when confined. It is upon this principle that the Ateam-engine has been conftructed. See Steam and Steam-Engine, Encycl.

The phenomena of boiling are owing entirely to the rapid formation of fteam at the bottom of the veffel. The boiling point of water varies according to the preffure of the atmofphere. In a vacuum water boils at 90°; and when water is confined in Papin's digetter, it may be almoft heated red hot without boiling. The mixture of various falts with water affect its boiling point confiderably.. Mr Achard made a number of cx periments on that fubject. the refult of which may be leen in the following Tables *:

Class I. Salts which do not affer the Boiling Point. Sulphat of copper.

Ceass II. Salts mbich raife the Boiling Point.
A faturated
Lolution of $\left\{\begin{array}{l}\text { Muriat of foda } \\ \text { Sulphat of foda } \\ \text { Sillphat of potafs }\end{array}\right\} \begin{gathered}\text { Raifes the } \\ \text { boiling } \\ \text { point }\end{gathered}\left\{\begin{array}{c}10,35^{\circ} \\ 5,6 \\ 0,9\end{array}\right.$

A faturated
folution of $\left\{\begin{array}{l}\text { Nitrat of potafs } \\ \text { Boracic acid } \\ \text { Cathonat of foda }\end{array}\right\} \begin{aligned} & \text { Raifes the } \\ & \text { builing } \\ & \text { point }\end{aligned}\left\{\begin{array}{l}3,5^{\circ} \\ 2,2 \\ 2,35\end{array}\right.$ Water.
This augmentation varies with the quantity of falt diffolved. In general, it is the greater the nearer the folution approaches to faturation.

Class III. Salts zubich lower the Boiling Point.

Borax, $\left\{\begin{array}{l}\text { In a fmall quautity, lowers the boiling }\end{array}\right.$
Borax, $\left\{\begin{array}{cccc}\text { point }-\quad- & - & 1,350^{\prime \prime} \\ \text { Saturated folution of, } & - & - & 0,22\end{array}\right.$
Sulphat of magnefia, $\left\{\begin{array}{l}\text { In a finall quantity, } \quad 2,+7 \\ \text { Satur }\end{array}\right.$
$\left.\begin{array}{l}\text { Alum, }\left\{\begin{array}{lll}\text { A very fmall quantity of, } & - & - \\ \text { A greater quantity, } \\ \text { A faturated folution of, } & 0,0 \\ \text { Sulphat of lime, } \\ \text { Sulphat of zinc, } \\ \text { Sulphat of iron, } \\ \text { Acetite of lead, }\end{array}\right\} \text { in any proportion, }\end{array}\right\} \begin{aligned} & 0,0 \\ & 2,02 \\ & 0,45 \\ & 0,22 \\ & 1,24\end{aligned}$ Class IV.
ammonia, $\left\{\begin{array}{cc}\text { ing point } \\ \text { Saturated folution of, raifes do. } & 9,4,5\end{array}\right.$
Carbonat \int Small quantity of, lowers do. 0,45
of potafs, $\{$ Saturated folution of, raifes do. it,2
Water was once fuppofed to be incomprefible, but 339 the contrary has been demonitrated by Mr Canton. The comprefAbbé Mongez made a number of experinients, long af- fible. ter that philofopher, on the fame fubject, and obtained fimilar refults.

Water was believed by the ancients to be one of the Opinion four elements of which every other body is compofed ; , ut its and, according to Hippocrates, it was the fubftance nature. which nourithes and lupports plants and animals. That water was an unchangeable element continued to be believed till the time of Van Helmont, who made plants grow for a long time in pure water: From which er periment it was concluded, that water was convertible into all the fubftances found in vegetables.-Mr Buyle having digefted pure water in a glafs veffel hermetically fealed for above a year, obtained a quantity of earthy fcales; and concluded, in confequence, that he had converted it partly into an earth *. He obtained the fame * Sbaw's earth by diftilling water in a tall glafs veffel over a Boyle, iii. flow fire t. Margraf repeated the experiment with the 417 . fame refult, and accurdingly drew the fame conclufion. ${ }^{+16 i d .}$ in But the opinion of thefe philofophers was never very ${ }^{267}$. generally received. The laft perfon who embraced it was probably Mr Wafelton, who publifhed his experiments on the fubject in the Fournal de Pbyyrque for ${ }_{17} 7^{80}$. Mr Lavoifier had proved, as early as 1773 , that the glafs veffels in which the diftillation was performed loft a weight exactly equal to the earth obtained. Hence it follows irrefiftibly, that the appearance of the earth, which was filica, proceeded from the decompofition of the veffels; for glafs contains a large proportion of filica. It has been fince thewn by IIr Priefley, that water always decompofes glafs when applied to its furface for a long time in a high temperature.

Wi: in ze formerly mentioned, that water is compofed of oxygen and hydrogen. This great difcovery has

Water. contributed more penhaps than any other to the adrance-
34^{1} Hithory of the difenvery of its campoliment of the feience of chemiftry, by furnifhing a key for the explanation of a prodigious number of phenomena. The evidence, therefore, on which it refts, and the objections which have been inade to it, deferve to be exainined with peeuliar attention.
"The firt perfon probably who attempted to difeover what was produced by burning hydrogen gas was Seheele. He concluded, thet during the combultion oxygen and hydrogen combined, and that the product was caloric.

In 1776 Macyuer, affited by Sigaud de la Fond, fet fire to a bottle full of hydrogen gas, and placed a fancer above the flame, in order to fee whether any fuliginous fmoke would be produced. The faucer remained perfectly clean; but it was moifened with drops of a clear
Macquer's liquid, which they fond to be pure water *.
Distinary, art. Gas, in.

Next year Buequet and Lavoifier explonded nxygen and hydrogen gas, and made an attempt to difeower what was the product; about the nature of which they lad formed ditferent conicetures. Bucquet had fuppofod that it wuuld be carbonic acid gas; Lavoilier, on the contrary, fufpected that it would be fulphuric or fulphurous acid. What the product was they did not difcover; but they pruved that no carbonic acid gas was formed, and consequently that Nir Buequet's hypothelis ? Mem. rar. was ill founded \dagger.

In the beginning of the year $178 \mathrm{r}, \mathrm{Mr}$ Warltire, at the requelt of Dr Pricllley, fired a mixture of thefe two gafes contained in a copper veffel; and obferved, that after the experiment the weight of the whole was diminifhed. Dr Priellley had previounly, in the prefence of M^{*} Warltire, performed the fame experiment in a glafs veffel. This veffel became moift in the inlide, and was covered with a footy fubstance \ddagger, which Dr Priefley afterwards foppofed to be a part of the mercury ufed in filling the veffel $\$$.

In the fummer of 178 s , Mr Henry Cavendifi, who had been informed of the experiments of Priefley and Warltire, let fire to 500,000 grain meafures of hydrogen gas, mixed with about $2 \frac{1}{2}$ times that quantity of common air. By this procefs he obtained 135 grains of pure water. He alfo exploded 19,500 grain meafures of oxygen gas with 37,000 of hydrogen gas, and obtained 30 grains of water, containing in it a little nitric acil. From thefe experiments he concluded that water uras a compound. - Mr Cavendifh muft therefore be confidered as the real difeoverer of the compofition of water. He was the firft who afcertained that water was produced by firing oxygen and hydrogen gas, and the firtt that drew the proper conclution from that fact. Mr Watt, iadeed, had alfo drawn the proper conclufion from the experiments of Dr Priefley and Mr Warltire, and lad even performed a number of experiments himfelf to afeertain the fact, before Mr Cavendifh had communicated his; but he had been deterred from puhlifhing his theory by fome experiments of Dr Prieftley, | Ifid. lxxw.which appeared contrary to it \|. He has therefore a
clain to the merit of the difcovery ; a claim, however, which does not affect Mr Cavendifh, who knew nothing of the theory and experiments of that ingenious philofopher.

Suppl. Vol. I. Part I.

Meanwhile, in the winter 1481-2, Mr Lavoifier, who
Meanwhile, in the winter 1481.2, Mr Lavoifier, who
harl fufpected that when oxygen and hydrogen gas were exploded, fulphuric or fulphurous acid was produeed, made an experiment in order to alcertain the fact, at which Mr Gingembre affifted. They filled a bottle, rapable of holding fix jints (French), with hydrogen gats, to which they fet fire, and then corked the bottle, atter pouring into it $20 z$. (lirench) of line-water. Through the cork there paffed a copper tube, by means of which a ftream of oxygen gas was introduced to fupport the Alame. Though this experiment was repeated thrce times, and inftead of lime-water a weak folution of alkali and pure water were fubllitued, they could not obferve any product whatever *. This refill athonifhed * Mem. Mr Lavoifier exceedingly: he refolved, therefore, to re- Par. 1781, peat the experiment on a larger feale, and if pofiblep. 470. with more accuracy. Dy means of pipes furnifhed with flop-cocks, he put it in lis power to fupply both gafis as they fhoul! be wanted, that he might be enabled to continue the burning as long as he thought proper.

The experiment was made by Lavoilier and La Place on the 2 th of June 1783 , in the prefence of Meflrs Le Roi, Vandermonde, feveral other acadenicians, and Sir Charles Elagden, who informed them that Mr Cavendifh had already performed it , and that he had obtained water \uparrow. They continued the inflammation till + rbio all their flock of gafes was watted, and obtained about P. 472 . 295 grains of water, which, after the moft rigid examination, appeared to be perfectly pure. From this experiment Lavoilier concluded, that water was compofed of oxygen and hydrogen. Mr Mongé foon after performed the fance experiment, and obtained a fimilar refult: and it was foon after repeated again by Lavoifier and Meufinier on a feale fufficiently large to put the fact beyond doult \ddagger.

The proofs that water is a compound are of two P.474. kinds; it has been actually compofed, and it has been Proofs of decomprfed.

With regard to the compofition of water, we flall fition of relate the celebrated experiment made by Lavoifier and water. Menfnier in the month of February $1 ヶ 85$, in the prefence ${ }_{\text {Experi- }}^{343}$ of a numerous deputation from the academy of fiences, nexent of and fo many other fpectators, that it may he conlidered havoifier as having been performed in public. Every precaution and Meur. was taken to enfure fuccefs. The gafes had been pre- ${ }^{\text {tier. }}$ pared with care, and held for fome time over a folution of potafs, in order to deprive them of any acidity which they might accidentally contain; and before entering into the glafs globe where they were to be burnt, they were made to pafs over newly caleined potafs, to deprive them of the water which they might happen to retain in folution. The hydrogen gas had been obtained by pafing fteam through iron at a white heat ; the oxygen gas was procured from the red oxide of mercury. The combuftion took place in a large glafs globe, into which the gafes were admitted by means of tubes furnifhed with ftop-cocks; and the moft ingenious contrivances were employed to afcertain exactly the quantities of each which were confumed (y). The whole machine is defcribed at large by Mr Meufnier in the Memoirs of the Academy of Sciences for 1782 .

0 。
The
(x) A variety of inflruments have been invented by the French chemifts for that purpofe. Thefe inftruments they have denominated Gazometers.

The quantities of gas employed, after deducting the 4.32 grains of relidumu which were not confumed, were $279+, 76$ grains of oxygen g.s, and 471,125 of hydroEen gas. After taking from thefe 32,25 grains, $=$ the lumidity of which the oxygen gas was deprived by the c.lcined potafs, and 44,25 grains, $=$ the weight which the hydrogen lof by the fame procefs, there remains allogether 3188,4 grains of gas.

The quatity of water ubtained amounted to 3219 grains; the fuecific gravity of which was to dillilled water as 1,0051 to 1. This quantity was 30 grains more than the gas employed. The difference, no doubt, was owing to a finall error in eftimating the weight of the gafes; which indeed it is extremely difficult to avoid, as the weight is altered by the fmalleft diffrence of temperature. This water had a flight fimell, and a tafte fenlibly acid; it reddened flightly blue paper, and effer. vefied with the carbonat of putafs. 115^{2} grains of that water being faturated with potafs, and evaporated to drynefs, left 20 grains of a falt which melted on the fire like nitre. It fullows from this experimert, that the quantity of acid contained in the whele water would not have been quite fufficient to have formed 56 grains of nitre.
'1"he refidum weighed, as kas been already obferved, 432 grains; its volume was equal to 444 grains of noygen gas; it was ciminifled by ritrous gas (2) precifely as gas would be which contained 0,24 parts of oxygen: it rendered lime-water fonewhat turbid, which indicated the prefence of carbonic acid gas.

From the comparifon of the weights, and volumes of the gafes confumed, it was concluded that water confifts of $c, 85$ parts, by weight, of oxygen, and 0,15 of hydrogen.

This experiment was foon after repeated by Mr Le Fevre de Gintalu upon a ftill larger fcale, and in the prefence of a great number of frectators. It continued for no lefs than 12 days, and was performed with the moft rigorous exactnefs of which experiments of that * Fourn. de nature will admit *.

Ply/.1788, The oxygen gas employed, which had been procured p.457. from the black oxide of manganefe, occupied the fpace of $3508 \mathrm{~s}, \mathrm{l}$ cubic inches, and weighed 18298,5 grains.

The hydrogen gas was obtained by diffolving iron in diluted fulphuric acid. Its volume was 7496,7 cubic inches, and its weight 4756,3 grains.

G-airq.
The two gafes therefore amounted to - 23054,8
From which taking the refiduum after combuttion, which amounted to
There remains for the quantity confumed 20223,8 The water found in the glais globe after the combuf. tion amounted to

20139,0 And there were carried off by the refidum In all
$\frac{54.0}{20103,0}$ Which is juft 30 grains lefs than the weight of the gafes which difappeared, or $\sigma^{\frac{3}{5}} \frac{5}{7}$ part of their weight. This difference arofe from the fame difficulties which attended the experiment of Lavoifier. As the errors are on different fides, we are warranted to conclude that this
was the cafe, and that it was not owing to any real dif. Water. ference between the gafes and the product.
'The water was examined in the prefence of Meffrs Lavoifier, Le Roi, Mongé, Berthullet, Bayen, and Pelletier. Its fuecific gravity was to that of dittilled water as $\mathrm{I}, 001025$ to I . It contained no fulphuric nor muriatic acids; yet it had an acid talte, and converted vegetable blues to a red. 6606 grains of it required for faturation 36 grains of carbonat of potafs, and furnifhed by evaporation 26,5 grains of cryftals of nitre. The whole water, therefure, would have required 100,7 grains of carbonat of potafs for faturation.

This water affected lime-water a little; and it was found that the refiduum of the gas contained fome carbonic acid gas. This renluum formed a 19 th part of the volume of the two gafes employed, and an eight of their weight. It contained 462 grains of carbonic acid gas, or about $\frac{1}{6}$ th part ; the reft was azotic gas, with about $\frac{1}{2}$ th of oxygen.

This experiment gave the proportions of oxygen and hydrogen in water as follows:

Oxygen	-
Hydrogen	-

This is fo near the determination of Mr Lavoifier, that it mult be contidered as a very ftrong confirmation of it.

In the year 1790, another fimilar experiment was performed by Seguin, Fourcroy, and Vauquelin, in the Experiprefence of a number of commiffioners appointed by the Seguin, Academy of Sciences. Every precaution was taken to Fourcroy, afcertain the quantity of gas employed with the utmoft quelin. exactnefs, and to exclude all atmofpherical air as completely as poffible.

The hydrogen gas was procured by diffolving zinc in fulphuric acid diluted with 7 parts of water. The oxygen gas was obtained by diltilling oxy-muriat of potafs (A).

The quantity of hydrogen gas employed amounted to 862,178 grains troy. The quantity of oxygen gas amounted to 13475,198 cubic inches (French). Its purity was fuch, that it contained three cubic inches of azotic gas in the 100 . The whole gas, therefore, contained 404,256 cubic inches. There were likewife in the glafs veffel in which the combuftion took place 15 cubic inches (French) of atmofpheric air, which confilted of 11 cubic inches of azotic and four of oxygen gas. So that the whole oxygen gas employed amounted to $13074,9+2$ cubic inches; and it contained befides 415,256 cubic inches of azotic gas. They afcertained by experiment, that a cubic inch of this oxygen gas, thus diluted with $\frac{3}{500}$ of azot, weighed, $40+10$ of a grain troy. Now, according to the experiments of Lavoifier, a cubic inch (French) of azotic gas weighs only ,3646 of a grain troy. Confequently the weight of pure oxygen gas is greater than ,4040; and by calculation they thewed it to amount to, 4051 of a grain troy. The weight of the whole oxygen gas employed, therefore, was 5296,659 grains troy; and that of the azotic gas mixed with it 151,402 grains troy.
(z) This gas thall be afterwards defcribed. It has the property of abforbing almoft inftantaneonfly the oxygen gas with which it comes into contact. It is therefore often ufed, in order to difcover how much oxygen gas exifts in any mixture.
(A) A falt compofed of oxy-muriatic acid and potals.

The combution continued 18 ; hours; and during all that time our philofophers never quitted the laboratory. The flame was exccedingly fmall, and the heat produced by no means great. 'lhis was owing to the very finall itreans of liydrogen, which was conftantly flowing into the veffel.

The water obtained amounted to 5943,798 grains troy, or 12 oz. 7 dwts. and 15,798 grains. It exhibited no mark of acidity, and appeared in every refpect to be pure water. Its fpecilic gravity was to that of diftilled water as 18671 to 18670 ; or nearly as 1,000053 to 1 .

The refiduum of gas in the veffel after combultion amounted to 987 cubic inches (French) ; and on being examined, was found to confilt of the following quantities of gafes :

Now the weight of the whale gafes employed was, - - - 6310,239 gr. troy.
That of the water obtained, and of the refiduum, - - - 6326,263

Or 16,024 grains
more than had been employed. This fmall quantity muft have been owing to common air remaining in the tubes, and other parts of the apparatus, in fpite of all the precautions that were taken to prevent it ; if it did not rather procced from unavoidable errors in their va. luations.

Gr. Troy
The quantity of azotic gas introduced was 151,178
The quantity found in the refiduum was 170,258
There was therefore a furplus of $=\ldots-19,080 \mathrm{gr}$.
As fufficient precautions had been faken to prevent the introduction of carbonic acid gas, the quantity found in the refiduum muft have been formed during the procefs. There muit therefore have been a fmall quantity of carbon introduced. Now zinc often contains carbon, and hydrogen has the property of diffolving carbon: probably, then, the carbon was introduced in this manner. The carbonic acid found in the refiduum amounted to $23,3=6$ grains, which, according to Lavoilier's calculation, is compofed of 8,958 grains of carbon, and 14,348 grains of oxygen.

Subtraking thefe 8,958 grains of carbon, and the , 530 of a grain of hydrogen, which remained in the velfel, from the total of hydrogen introduced, there will remain 852,690 grains for the hydrogen that difoppeared.

Subtrading the $14,34^{8}$ grains of oxygen which entered into the compofition of the carbonic acid, and the refidtum of oxygen, which amounted to 188,37 I grains, the quantity of oxygen that difappeared will anount to 5093,940 grains.

Hydrogen that difappeared, $=852,699$ gr. troy.
Oxygen, - Total, - $\frac{500,1,940}{5946,630}$
Quantity of water obtained,
Which is lefs than the gales
$5943,79^{8}$ confumed by -

$$
\text { 2,8 } 32 \text { grains *. Ann.d: }
$$

Such are the principal experiments upon which the Comm. vin. opinion is founded that water is a compound. Let usazg. examine them, and fee whether they are fufficient to ettablifh that opinion. The circumftances which chiefly claim our attention, and which have been chiefly infilted on, are thefe:

1. The whole of the gales was not confumed. ${ }^{346}$
2. In the refiduum were found feveral fubftancespiections which were not introduced, and which mult thereforepolition of have been formed daring the combuftion.
3. The water ohtained was feldom perfectly pure. minel. It generally contained fome nitric acid.
4. As only part of the gafes were confumed, and as all gafes contain water in them, might not the gas which difappeared have been employed in forming the other fubftances found in the refiduum? and might not the water obtained have been merely what was formerly diffolved in the gafes, and which had been precipitated during the experiment?

That the whole of the gafes was not confumed will not furprife us, if we recollect that it is impulible for that to take place, allowing them to be perfectly pure, except they be mixed in precifely the proper proportions; and not even then, except every particle of them could be raifed to the proper temperature. Now how can this be done in experiments of that nature ?

But how is it poflible to procure a large quantity of gas completely pure? And fuppoling it were poffible, how can every particle of atmofpheric air be excluted? In the latt experiment, notwithittanding every precaution, 15 cubic inches (lirench) were admitted; and there is reafon to believe from the refults, that the quantity was even confiderably greater than this. But if any atmofpheric air be admitted, there mult be a refiduum of azotic gas.

In the firft expcriment, it had been previoufly afcertained that the oxygen gas employed contained r^{\prime} th of azotic, or about 233,05 grains ; and the refiduum contained at moft 329,1 grains, or 96,05 grains more than what had for certain pre-exifted in the gafes.

In the fecond experiment, the azot in the refiduum amounted at moft to $\frac{1}{8} t h$ of the oxygen gas employed. But the oxygen was procured from the black oxide of manganefe, which always yields a quantity of azot as well as of carbonic acid. It has beell afcertained, that the azot, mixed with oxygen gas procured in that man. ner, often exceeds $\frac{1}{8}$ th.

In the third experiment, the agotic gas found in the refiduum amounted to 170,258 grains; and the quantity contained in the gafes before combultion amounted to $151,17^{8}$ grains: the furplus, thercfore, anounted to 19,08 grains.

Now, is it not much more probable that the fe inconfiderahle quantities of azot, which in the laft experiment amounted to no mure than $\frac{1}{3}$ part by veight of the whole gas employed, pre-cxilled in the gafes before the combution began, though their extreme minutenefs prevented them from being difcovered, than that they were formed during the experiment: a fup-
$\mathrm{O}_{2} 2$
pufition
pofition which is directly contradicted by a great number of well efcertained facts.

As to the carbonic acid gas, which in the fecond experiment amounted to z' $^{\frac{1}{8}}$ th of the gafes employed, it was evidently derived foom the manganefe, which al. moft contantly contains it. And when carbonic acid is once mixed with oxygen, it is difficult to feparate it by means of lime-water, except a large quantity be ufed, as Mr Cavendifh tos well obferved. The reafon is, that oxygen gas has the property of diffolving carbonic acid,

- Ann. de

Chim,iii.
91. as Mr IFelter has remarked *. Mr le Fevre de Gineau afcertained by experiment, that 18-0 cubic incles of oxygen gas, which did not affect lime-water, lolt between

+ Ann. de chim. ix. 48.
\dagger Pbil.
Tranf.

1984.

$7{ }^{8}$ th and ${ }^{\prime}$ th of its weight when wafled in milk of fime (B).

In a fecond experiment, he previoufly wafhed the two gafes in milk of lime, and the refidum after combuation contained no carbonic acid gas. In a third experiment he wafhed only the oxygen, and obtained products equally free from carbonic acid. It is certain, then, that the carbonic acid is but an accidental mixture. As to the carbonic acid of the third experiment above related, which amounted only to $\Psi^{\frac{1}{5}}$ 2 part of the gafes employed, the fource of it has been already pointed ont.
As to the nitric acid, the quantity of nitre obtained in Mr Lavoifier's experiment was 56 grains; which, according to Mr Kirwan's calculation, contain 30,156 graius of nitric acid; a quantity condiderably lefs than ${ }_{5}{ }^{\circ} \delta$ th part of the gafes which difappeared. In the fecond experiment, the nitre obtained amounted to 80,7 grains; which, according to Kirwan, contain 43,456 grains of nitric acid, or lefs than $\frac{1}{5} \boldsymbol{y}^{\text {th }}$ th part of the gafes confumed. Now, as nitric acid is compofed of oxygen and azot, both of which were prefent in the veffil, it is cafy to fee how it was produced. And that its pro. duction is merely accidental, and not neceflary, is evident from the laf experiment, in which no nitric acid was formed. It has been afcertained, indeed, that the formation of this acid during thefe experiments is quite arbitrary. 1t never is formed when the combuftion goes on fo flowly as to produce but little heat, as Seguin has afcertained \dagger; becaufe oxygen and azot do not combine except at a high temperature. Nor is it formed even at a high temperature, as Mr Cavendifh has proved \ddagger, except there be a deficiency of hydrogen; becaufe hydrogen has a Aronger affinity for oxygen than azot has.

The quantity of water obtained in the firl experiment was jutt 30 grains more than the weight of the gafes which had difappeared: the water obtained in the fecond was precifely 30 grains lefs than the gafes confumed: and in the third experiment, the difference was only 16 graius. The quantities of gas operated
upon were large; in all of the experiments feveral thoufand grains, and in one of them above 25 thoufand. Now, how is it poffible that the water produced fhould correfpond fo exactly with the gafes confumed (for the differences are fo fmall as not to merit any attention), unlefs the water had becu formed by the combination of thele gales?

Dr Prieftley, howcver, who made a great many experiments on this fubject, deew from them a very different conclufion ; and thought he had proved, that during the combultion the two gafes combined, and that the combination was nitric acid. This theory was adopted, or rather it was fuggelled, by Mr Keir, who has fupported it with a great deal of ingenuity *.

Let Mer's Let us examine thefe experiments of Dr Priefley \dagger, Difionary,
and fee whether they warrant the conclufions he has art. Nitrua, drawn from them. The gafes were exploded in relfels Acil. of copper. He found that tl:e quantity of water ob. + Prail. tained was always lefs than that of the gafes which he Tranf. had ufed. He obtained alfo a confiderable quantity of nitric acid. In the experinent made on the larget quantity of the gafes, and frum which he draws his conclufions, the quantity of liquid obtained amomated to 442 grains. This liquid was examined hy Mr Keir. It was of a green colour, 72 grains of brown oxide of copper were depofited in it, and it contained a folution of nitrat of copper (copper combined with nitric acid). Mr Keir analy fed this liquor: It confitted of pure water and nitrat of copper; and Mr Keir concluded that the nitric acid formed amounted to $\frac{1}{2}$ th of the oxygen gas employed. Mr Berthollet, however, has fhewn that it could not have amounted to more than $\frac{{ }^{\prime}}{4}$ th part $\ddagger \cdot \ddagger A_{\text {nn }} d e$ Let us fuppofe, however, that it amounted to $\frac{\text { 'r }}{} / \mathrm{th}$. A Cbim, iii, quantity of oxygen and hydrogen gas has difappeared : ${ }^{56 .}$ What has become of them? They have combined, fays Dr Priefley, and formed nitric acid. This nitric acid is only $\frac{1}{2} \frac{1}{6}$ th of their weight: Dr Priefley fuppofes, however, that it contains the whole oxygen and hydrogen that exifted in thefe gafes, and that all the reft of the weight of thefe gafes was owing to a quantity of water which they had held in folution. Oxyigen gas, then (for we fhall neglect the hydrogen, which Dr Priefley was not able to bring into view at all), is compofed of one part of oxygen and 19 of water. Where is the proof of this? Dr Priefley informs us, that he afcertained by experiment that half the weight of carbonic acid gas was pure water. Suppofing the experiment accurate (c), what can be concluded from it? Surely to bring it furward in proof, that oxygen gas confilts of $\frac{1}{2} \frac{9}{2}$ th parts, or almont wholly of water, is downright trifing. It is impoflible, therefore, from Dr Priefley's experiments, allowing his fuppofitions and conjectures their utmoll force, to account for the difappearing
(B) Lime mixed with water till it is of the thicknefs of mill, or rather of cream.
(c) He informs us that the carbonat of barytes does not yield its carbonic acid by means of heat (this Dr Hupe has thewn to be a miftake) ; but that, when the vapours of water are paffed over it, the gas is difengaged: and he determines, by the water miffing, how much has combined with the gas. According to him, 60 grains of water enter into the compofition of 147 grains of gas. But, befides affigning too fmall a weight to the gas, he forgot that its temperature was high, and that therefore it was capable of combining with much more water than in its ufual ftate : nor did he afeertain whether more of this water was depofited on the veffels; and yet, by neglecting this precaution, Morveau has fhewn that Mr Kirwan, in a fimilar cesperinent, obtained a refult nine times greater than it ought to have been. Encycl. Metbod. Chim. art. Air.
pearing of the two gales, or the appearance of the water, without admitting that this liquid was artually compofed of oxygen and hydrogen. If we add to this, that no oxygen gas has hitherto (as far as we know at leall) been procured atfolutely free from fome admix. thre of azot, and that his oxygen was always procured cither from red oxide of lead, or from black oxide of mangande, or red oxide of inercury, all of which futhflances yichd a conliderable proportion of azot ; that in one experiment, in which he ohferses that his oxyren was seevpure, as it had been obtained from red oxide of mercury, Me lerthollet (D) afcertained, by actually making the experiment, that part of the qury fame oxide which Dr l'rieltley had employed yielded a gas, 3_{3}^{2} d of which was ar.ot * ; if we add, that it has been proved beyond the polibility of doubt, and to Dr Prießley's own fatisfaction, that nitric acid is compofed of nxyeren and azot - we fhall find it no diffient matter to explain the orizin of that acid in Dr Prieftley's experiments: and if we recollect that in Seguin's experiment, noon a much larger fale indeed than De Priefley's, no nitric acid at all was formed, it will be impofible for us to belicere for a moment that the compound formed by osygen and hydrogen is nitric acid. Thus Dr Prieflley's experiments rather confirm than deftroy the theoiy of the compolition of water. We obtain from them, however, one curious piece of information, that the prefence of copper increafes the quantity of nitric acid formed. This curious fact, with a variety of others of a finular nature, will perhaps afterwards claim our attention ; but at prefent we muft confider another theory which this ptenomenon fuggefted, and which was firft jropofed, we believe, by Mr de la Metherie (E).

Had the French chemifts, it has been faid, employed copper veffels in their experinents, they would have ohtained three times the quantity of nitric acid. This acid, therefore, muft in their experiments have been decompofed, after having been formed, for want of a bafe to combine with ; and the azot which appeared in the refiduum was owing to this decompofition. Hydrogen and oxygen, therefore, do not form water, but azot (F). Let us examine the experiment of Mr Le Fevre by this theory, as the quantity of azot was accurately afcertained. The nitric acid obtained amounted to $4 \hat{3}, 456$ grains; three times that quantity is 130,363 grains, into which 23054 grains of gas were converted; which is impofible. Or even fuppoliner that the decomponition had been going on during the whole experiment, which is directly contrary to Dr Prieflley's experiments, and which there is no reafon whatever to fuppofe, hut every reafon againft-ftill the whole azot amonnted only to $\frac{1}{8}$ th of the quantity of gas employed, allowing this gas
to have contained no azot, which was evidently not the cafe. It appears, then, that this hypothefrs, even if it could be admitted, would be tutally inaldequate to account for the phenomena. But if we were to examine it by Mr Seguin's experiment, its abfurdity would be ftill more glaring. In that experiment the azotic gas amounted to only 19 grains, and the quantity of gas which difappeared was $59+6$ grains: fo that were the hypothefis true, oxyern and hydrogen gas would confitt of one part of oxygen and hydrogen and 312 parts of water ; a fuppofition fo enormoufly abfurd, that it is impoffible for any perfon even to advance it.

It is impoffible, therefore, for the phenomena which attend the combuftion of axygen and hydrogen gas to be accounted for in any way confiftent with common fenfe, except we fuppole that water is formed.

Dut the experiments above related, conclufive as they Decompoo appear, are not the only ones by which this important fition of fret has been afectained. Meffrs Van Trooftuyk and water. Dieman, affited by Mr Cuthbertfon, filled a fmall glafs tube, $\frac{1}{8}$ th of an inch in diameter and 12 inches long, with dililled water. One end of this tube was fealed hermetically; but, at the fame time, a fmall gold wire had been paffed through it. Anotber wire pafied thro" the open end of the tube, and cuuld be fixed at greater or fmaller diltances from the firt wire. By means of thefe wires, they made a great number of clectrical explofions pafs through the water. Bubbles of air appeared at every explolion, and collected at the top of the tube. When electric fparks were paffed throngh this air, it exploded and difappeared almoft completely. It mutt therefore have confilled of a mixture of oxygen and lydrogen gas, and this gas mult have been formed by the decompulition of the water for they had taken care to depaive the water before hand of all its air, and they ufed every precaution to present the acceds of at. mofpherical air; and, belides, the quantity of gas produced did not diminifh, but rather inereafed, by continuing to operate a number of times upon the fame water, which could not have been the cale had it been merely air difolved in water: nor would atmofpherical air have exploded and left only a very limall refiduum, not more than $\frac{8}{8}$ th part. They had taken care alfo to prove that the elictric fpark did not contribute to form hydrogen gas ; for on paling it through fulphu. ric and nitric acids, the product was not hydrogen, but oxyeren gas *.
'Thefe experiments have been fince repeated by Dr Pbyf.xxsv. Pearfon, affitted by Mr Cuthbertion. He produced, 369 . by means of electricity, quantities of gas from water, amounting to 56,5488 cubes of $\frac{1}{7}$ th of an inch each; on nitrous gas being added to which, it fuffered a diminution
(D) Mr Berthollet had fupplied Dr Prieftley with the oxide. He had received two ounces of it from Mr Le Blanc, one of which he fent to Dr Prieftey, and the other he referved.
(E) Another favourite theory of La Metherie was, that gafes themfelves are deftitute of gravity, and that they owe their whole weight to the water with which they are combined: that during combuftion the water of the two gafes is depofited; and that the gafes themflves efcape through the veffel and are loft. He complains. bitterly that this theory had never been noticed by his antagonitts; as if it were neceffary to refute a hypothefis which is not fupported by any proof whatever, and as if it had not been proved that oxygen increafes the weight of metals, and confequently poffeffes gravity.
(F) This, as has been formerly explained, was the original opinion of Dr Prieftley; to which, though he does not explain himfelf fully, he evidently ftill adheres. There is then no difference between lis theory and this. except what relates to the decompofition of the nitric acid.

Alcolo!.
nution of bulk, and nitrous acid appeared to have been formed: It muft therefore have contained oxygei gas. When osyget gas was added to the remainder, and an electric (pask pafled through it, a diminution took place precifely as when uxygen and lydrogen gas are mixed: It muft therefore have contained hydrogen. When an electric fpark was paffed through the gas thus produced from water, the gas difappeared, being no doubit converted into water*.
such are the pronfs by which the compound nature of water is afcertained; and we do not believe that any pliyfical fact whatever can be produced which is fupported by more complete evidence.

But what becomes of the caloric which was previou!y combined with thefe gafes? It paffes through the veffel and is loft, and its weight is tno iuconfiderable to make any fenfible variation in the quantity of the product. If we were to judge from analogy, we would conciude, that the oxygen and hydrogen, while in the fate of gas, are probably fomewhat lighter than after they are condenfed into water; but the difference, if it exifts, can fearcely be fenlible.
Whater is capable of combining with a valt number of fubtances: all hodies, indeed, which are foluble in water form a chemical union with it.

Irs affinity for other bodies is doubtlefs various, tho' we liave no method of afcertaining this difference, except in thofe bodies which have no affinity, or but a very fmall affinity, for each other; and it is only in a few even of thefe that this difference can be afcertained. If muriat of barytes be poured into lime-water, the lime is precipitated, owing, no doubt, to the fuperior affinity of the muriat for water. Several very curious inftances of the affinity of different falts for wa. ter have been mentioned by Mr Quatremere Dijonval. When the folutions of nitrat of lime and nitrat of magnefia in water are mixed together, the nitrat of magneyia is precipitated. Muriat of magnefia is alfo precipitated by muriat of lime, and filphat of magnefia by fulphat of lime: fo that it would feem that the falts which have magnefia for their bafis, have a lefs affinity for water than thofe whofe batis is line \dagger.

Water las the property of diffolving oxygen gas. If a quantity of common air be confined for fume time above water, the whole of the oxygen is ablorbed, and nothing but the azotic gas remains. This fact was firft obferved by Mr Scheele.

Chap. II. Of Alcohol.

Wine has been known from the earlieft ages. The Scriptures inform us, that Noah planted a vineyard and drank wine; and the heathen writers are unanimous in afcribing the invention of this liquor to their earliett kings and heroes. Beer, too, feems to have been difonvered at a very remote period. It was in common ufe in Egypt in the time of Herodotus \ddagger. Tacitus informs us, that it was the drink of the Germans \oint. Whether the ancients had any method of procuring ardent §pirits from thefe or any other liquors, does not appear. The Greeks and Romans feem to lave heen ignorant of ardent fpirits altogether, at leaft we can difcover no traces of any fuch liquor in their writings. But among the northern nations of Europe, intoxicating liquors were in ufe from the earlieft ages. Whather thefe li
quors refembled the beer of the Germans, we do not know. It is certain, at leat, that the method of procusing ardent fyirits by ditillation was known in the dark ages; and it is more than poobable that it was practifed in the north of Europe much earlier. They are inentioned exprefsly by 'I haddrus, Villanovanus, and Lully *. * Berf. thth.

Ardent fpirits, fuch as brandy, for inftance, rum, and ${ }^{\text {art }}$ i. ${ }^{4} 50$ whilky, confitt almoft centirely of three ingredients, wa-mechod of ter, cicchol or fpirit of wine, to which they owe theirprocuri.g Itrength, and a fnall quantity of a peculiar oil, to which it. they ure their Havour.

The alcohol may be feparated from the water by the following procefs. Into the whiky or other ardent fpirit a quantity of potals is to be put, which has juft immediately before been expofed for about half an hour in a crucible to a red heat, in order to deprive it of moifture. Putafs in this ftate has a Atrong attraction for water; it accordingly combines with the water of the fpirit, and the folution of potafs thus formed finks to the bottom of the veffel, and the alcohol, which is lighter, fwims over it, and may eafily be decanted off; or, what is perhaps botter, the folution of putafs may be drawn off from below it by means of a ftop.cock placed at the bottom of the veffel. It is impoffible to fix the quantity of potafs which ought to be afed, becaufe that muft depend en. tirely on the Atrength of the fpirit; but it is of no confequence though the patafs employed be a little more than enough. The alcolol thus obtained contains a little potafs diffolved, which may be feparated by diftilling it in a water bath with a very fmall heat. The alcohol paffes over, and leaves the potafs behind. It is proper not to dillil to drynefs. This procefs is firft mentioned by Lully. Alcohol may be obtained in the fame manner from wine and from beer; which liquids owe their flrength entirely to the quantity of that fubflance which they contain.

Alcohol is a tranfparent liquor, colourlefs like water, its ${ }^{351}$ Alcher a tere properof a pleafant fmell, and a ftrong penctrating agreeableties. tafte.

It is exceedingly fluid, and has never been frozen, though it has been expofed to a cold fo great that the thernomer food at $-69^{\circ}+$.
\dagger At Tus
Its fpecific gravity when pure is about 0,800 . Fon's Bay-
It is exceedingly volatile, boiling at the temperature of 176°; in which heat it affumes the form of an elaftic fluid, capable of refilting the preffure of the at mofphere, but which condenfes again into alcohol when that temperature is reduced. In a vacuum it boils at 56°, and exhibits the fame phenomena: fo that were it not for the preflure of the atmofphere, alcohol would always exift in the form of an elaftie fluid, as tranfparent and invifible as common air. This fuhject was firft examined with attention by Mr Lavoifier \ddagger. The fact, \ddagger Furn, de $P b y .1785$ however, had been known long before.

Alcohol has a ftrong affinity for water, and is mif. cible with it in all proportions. The fpecific gravity of all the different mixtures, in every proportion, and in all the different degrees of temperature, from 32° to 100^{n}, has been lately afeertained with great accuracy by Sir Charles Blagrlen and Mr Gilpin. But as a very full account of thefe intereiting experiments has been given in the Encycloprdia in the article Spirimuous Liquors, we do nut think ourfelves at liberty to repeat it here.

If alcohol be fet on fire, it burns all away with a blue flame without leaving any refiduum. Buerhaave

Alsohol. ohferved, that when the vapour which efcapes during this cumbultion is collceted in proper veffels, it is found to conlift of nothing but water. Junker had made the fame remark: and Dr Black fufpected, from his own obfervations, that the quantity of water obtained, if properly collected, exceeted the weight of the alcohol confumed. This olffervation was confirmed by Lavoifier; who found that the water produced during the combution of alcohol exceeded the alcohol confumed by about $\frac{1}{4}$ th part *.

Differeat opinions were entertained by chemits about the nature of alcohol. Stahl thought that it was compofed of a very light oil, united by means of an acid to a quantity of water. According to Junker, it was compofed of phlogifton, combined with water by means of an acid. Cartheufer, on the other hand, afflirmed, that it contained no acid, and that it was nothing elfe than pure phlogiton and water. But there hypothefes were mere affertions fupported by no proof whatever. Lavoiner was the firt who attempted to analyfe it.

He fet fire to a quantity of alcohol in clofe veffels, by means of the following apparatus: BCDE (fig. 6.) is a veffel of marble filled with mercury. A is a trong glafs veffel placed over it, filled with common air, and capable of containing about 15 pints (Frenel). Into this veffel is put the lamp R filled with alcohol, the weight of which has been exactly determined. On the wick of the lamp is put a fmall particle of phofphorus. The mercury is drawn up by fuctio to the height IH. This glafs communicates by means of the pipe LK with a nother glafs veffel S filled with oxygen gas, and placed over a veffel of water T. This communication may be flaut up at pleafure by means of the Hop-cock M.

Things being thus difpofed, a crooked red-hot iron wire is thruft up through the mercury, and made to touch the phofphorus. This inftantly kindles the wick, and the alcohol borns. As foon as the flame begins to grow dim, the fop-cock is tumed, and a commanication opened between the veffels S and A; a quantity of oxygen gas ruthes in, and tellores the brightnefs of the flame. By repeating this occafionally, the alcohol may be kept burning for fome time. It goes out, however, at laft, notwithitanding the admiffion of oxygen gas.

The refult of this ceperiment, which Mr Lavoifier repeated a great number of tinies, was as follows :

The quantity of alcohol confumed amounted to 76,7083 grains troy.

The oxygen gas confumed amounted to 266,82 cubic inches, and weighed 90,506 grains troy.

The whole weight of the fubitances confumed, therefore, amounted to 167,2143 grains.

After the comburtion, there were found in the glafs veffel 115,41 cubic inches of carbonic acid gras, the weight of which was 78,1192 grains troy. There was likewife found a conliderable quantity of water in the. veffel, but it was not poffible to collect and weigh it. Mr Lavoifier, however, ettinated its weight at 89,0951 grains; as he concluded, with reafon, that the whole of the fubitances employed were ftill in the veffel. Now. the whole contents of the veffel confifted of carbonic acid gas and water; therefore the carbonic acid gas and water together mult be equal to the oxygen gasand alcohol which had been confumed.

But $78, \mathrm{I} 192$ grains of carhonic acid gas contain, Wem. according to Mr Lavoifier's calculation $\dagger, 55,279$ grains r. 178 r . of oxygen : 90,506 grains, however, of oxygen gas had
dilappeared; therefore 35,227 grains mull have been
Alcohel. employed in forming water.
35,227 grains of oxygen gas require, in order to form water, 6,038 grains of hydrogen gas; and the quantity of water formed hy this combination is $+1,265$ grains. But there were found 89,09 ; grains of water in the glafs veffel; therefore 47,83 grains of water muit have exifted ready formed in the alcohol.

It follows from all thefe data, that the 70,7083 grains of alcohol, coufuned during the combution, were compuifed of

$$
\begin{aligned}
& \text { 22,840 Carbon, } \\
& \text { 6,038 Hydrogen, } \\
& 47,830 \text { Water. } \\
& \hline 76,7^{*}
\end{aligned}
$$

* Ment.

Such were the confequences which Mr Lavoilier drew from his analyfis. He acknowledged, however, that there were two fources of uncertainty, which rendered his conclufions not altogether to be depended upun. The firlt was, that he had no method of determining the quantity of alcohol confumed, except by the difference of weight in the lamp befure and after combuftion; and that therefore a quantity might have evaporated without combultion, which, however, would be taken into the fum of the alcolol confumed. But this error could not have been great ; for if a confiderable quantity of alcohol had exifted in the ftate of vapour in the veffel, an explofion would certainly have taken place. The other fource of error was, that the quantity of water was not known by actual weight, but by calculation.
To this we may add, that Mr Lavoilier was not war-Ingredienty ranted to conclude from his experiment, that the water of alcohol. found in the refele, which had not been formed by the oxygen gas ufed, had exifted in the alcohol in the flate of water: he was intitled to conclude from his data, that the ingredients of that water exifted in the alcohol before cumbuftion; but not that they were actually com. bined in the flate of water, becaufe that conibination moght have taken place, and in all probability did partly take place, during the combution. It follows, thete. forc, from Mr Lavoifier's experiments, that alcoho!, fuppofing he ufed it perfectly pure, which is not pro.. bable, is compoled of

$$
\begin{aligned}
& \text { 0:2988 parts carbon, } \\
& 0,18.40 \text { parts hydrogen, } \\
& 0,5172 \text { parts oxygen. } \\
& 1,0000
\end{aligned}
$$

But it gives us no information whatever of the manner in which thefe ingredients are combined. That alcohol contains oxygen, has been proved by a very ingenious fet of experiments performed by Mefirs Fourcroy and Vauquelin. When equal parts of alcohol and fulphuric acid are mixed together, a quantity of calurie is difengraged, fifficient to elevate the temperature of the mix. ture to 190°. Bubbles of air are enitted, the liq:or be: comes turbid, affumes an opal colour, and at the end of a few days a deep red. When examined, the fulphuric acid is found to have fuffered no clange; but the alenhol is decompofed, partly converted into water and part!y into ether, a fubitance whieh we fhall deferibe inme.. diately. Now, it is evident that the alcohol could not have been.converted into water unlefs it had containcel. oxygen *.

When equal parts of fulphuric acid and alcohol are fon's Jeirmixed tegether and heat applied, the mixture boils at ${ }^{\text {nal }, ~ i . ~} 3 y$.-
205°, and a liquide enmat to half the weight of the alcohol comes over into the receiver. This liquid is ether.

Ether is obfcurely hinted at in fome of the older chemical authors, but little attention was paid to it till a paper appeared in the Philofophical Tranfactions for 173c, written by a German, who called himfelf Froberius (G), containing a number of experiments on it.
$3: 6$ In this paper it iirlt received the name of ether.

Tt: prifer-
viv.

Filher is limpid and colourlefs, of a very fragrant freell, ahd a liot pungent tafte. Its fpecific gravity is c,7394. It is exceedingly volatile, boiling in the open air at 88°, and in a vacuum at -20°. Were it not therefore for the preffure of the atmofphere, it would always exill in a gafeous flate. Ether msites with water in the proportion of ten parts of the latter to one of

* Count de

Lauraguais.

357

 Theory of its forma. cion. the former ${ }^{\text {n }}$. It is exceedingly infammable, and, when kindled in the flate of vapour; burns with rapidity, or rather explodes, if it be mixed with oxygen gas.Chemift, entertained various opinions refpecting the nature of ether. Macquer fuppofed that it was merely alcohol deprived by the acid of all its water. But it was generally believed that the acid entered partly into its comporition. Since the nature of acids las become better known, a great number of philufoplaers have fuppofed that ether is neerely alcohol combincd with a quanthty of oxygen furnificed by the acid. The real compofition of this fingular fut jance has been lately afcertaintd by the experiments of Fourcroy and Vauquelin.
"A combination (fay they) of two parts of fulphuric acid and one part of alcohol e'fotees the temperature to 201°, becomes immediate! yof a deep red colour, which changes to black a few days afterwards, and emits a finell perceptibly ethereal.
"When we carefully obferve what happens in the combination of equal parts of alcohol and concentrated Inlphuric acid expofed to the action of caloric in a proper apparatus, the following phenomena are feen:
" ${ }_{1}$. When the teniperature is elevated to 2080 , the fluid boils, and emits a vapour which becomes condenfed by cold into a colourlefs, light, and odorant liquor, which from its properties has received the name of ether. If the operation be properly conducted, no permanent gas is difengaged until about half the alcohol has paffed over in the form of ether. Until this period there paffes abfolutely nothing but ther and a fmall portion of water, without mixture of fulphurous or of carbonic acid.
" 2 . If the receiver be changed as foom as the fulphurous acid manifefls itfelf, it is ubferved that no more ether is formed, but the fweet oil of wine, water, and acetous acid, without the difengagement hitherto of a fingle bubble of carbonic acid gas. When the fulphuric acid conllitutes abour four-fifths of the mafs which renaains in the retort, an inflammable gas is difengared, which has the finell of ether, and burns with a white oily flame. This is what the Dutch chemifts have called carbonated bydrogen gas, or oleffant gas, becaufe when mixed with the oxy-muratic acid it forms oil. At this period the temperature of the fluid contained in the retort is elevated to 230° or 234°.
", 3 . When the fweet oil of wine ceafes to flow, if the receiver be again changed, it is found that nothing more paffes but fulphurous acid, water, carbonic acid gas; and that the refiduum in the retort is a black mafs, confilting for the moft part of fulphuric acid thickened by carbon.
"The feries of phenomena here expofod will jultify the following general inductions:
" 1 . A fmall quantity of ether is formed fpontaneouny, and without the affifance of heat, by the combination of two parts of concentrated fulphuric acid and one part of alcohol.
" 2 . is foon as ether is formed, there is a production of water at the fane time; and while the firft of thefe compofitions takes place, the fulphuric acid undergoes no change in its intimate nature.
" 3. As foon as the fulphurous acid appears, no mure ether is formed, or at leaif very little; but then there paffes the fweet oil of wine, together with water and acetous acid.
" 4. The fiveet oil of wine having ceafed to come over, nothing further is obtained but the fulphurous and carhonic acids, and at laft fulphur, if the diftillation be carried to drynefs.
" The operation of ether is therefore naturally divided iato three perivads : the firft, in which a finall quan. tity of ether and water are formed without the affiftance of heat; the fecond, in which the whole of the ether which can be obtained is difengaged without the accompaniment of fulphurous acid; and the third, in which the fiweet oil of wine, the acetous acid, the fulphurous acid, and the carbonic acid, are afforded. The three Hlages have no circumiftance common to all, but the continual formation of water, which takes place during the whole of the operation.
" The ether which is formed without the affitance of caloric, and the carbon which is feparated without derompofition of the fulphuric acid, prove that this acid acts on alcohol in a manner totally different from what has hitherto been fuppufed. It cannot, in fact, be affirmed, that the acid is altered hy the carbon, becaule daily experience fhews that no fenfible attraction takes place between thefe two hodies in the cold; neither can it be affected by the hydrogen; for in that cafe fulphinrous acid would have been formed, of which it is known that no trace is exhibited during this firft period. We mult therefore have recourfe to another lpecies of action, namely, the powerful attraction exercifed by the fulpluric acid upon water. It is this which determines the union of the principles which exift in the alcohol, and with which the concentrated acid is in contact : but this action is very limited if the acid be frall in quantity; for an equation of affinity is foon eftablifhed, the effect of which is to maintain the mixture in a date of repofe.
"Since it is proved that ether is furmed in the cold by the mixture of any quantities of alcohol and fulphuric acid, it is evident that a mafs of alcolol might be completely changed into ether and vegetable acid by ufing a fufficient abundance of fulphuric acid. It is equally evident that the fulphuric acid would not by this means undergo any othier change than that of being diluted with a certain quantity of water. This oblervation proves that alcolol contains oxygen, becaufe water cannot exift without this frinciple, which muft be afforded by the alcolol only, fince the fulphuric acid fuffers no decompofition.
" We mult not, however, imagine, from thefe facts, that ether is alcohol minus oxygen and hydrogen. Its properties alone would contradict this; for a quantity of carbon proportionally greater than that of the lydrogen

(c) The name was fuppofed to have been feigned.

Alcohol. drogen is at the fame time feparated. It may, in faet,
be conceived that the oxygen, which: in this cafe combines with the hydrogen to form water, not only faturated that hydrogen in the alcohol, but likewife the carbon. So that, inftead of confidering ether as alcohol minus hydrogen and oxygen, we mult, by keeping an account of the precipitated carbon and the fnall quantity of hydrogen contained in the water which is formed, regard it as alcohol plus bydrogen and oxygen.
"The foregoing are the effects produced by a combination of alcohol and fulphuric acid, fpontaneoufly produced withont foreign heat. Let us, in the next place, obferve how this combination is effected when caloric is added. The phenomena are then very different, tho' fome of the refults are the fame.
"In the firft place, we mult obferve, that a combina-
tion of fulphuric acid and alcohol in equal parts does not boil at lefs than 207 degrees of temperature, while that of alcohol alone boils at 176 . Now fnice ebullition docs not take place till the higher temperature, it is clear that the alcolol is retained by the affinity of the fulphuric acid, which fixes it more confiderably. Let us alfo confider that organic bodies, or their immediate products, expofed to a lively brifk heat, without the pofibility of efcaping fpeedily enough from its action, fuffer * partial or total decompofition, according to the degree ₹ partial or total decompolition, according to the degree
of temperature. Alcohol undergoes this lait alteration when paffed through an ignited tube of porcelain. By this fudden decompotition it is converted into water, carbonic acid, and carbon. The reafon, therefore, why alenhol is not decompned when it is fubmitted alone to heat in the ordinary apparatus for diftillation, is, that the temperature at which it rifes in vapours is not capable of effecting the feparation of its princip!es; but pable of effecting the eparation of its princip!es; but dy, the clevated temperature it undergoes, without the poffibility of difengagement from its combination, is fufpolfibility of difengagement from its combination, is fufwhich ether and water are formed, and carbon is depo-
fited. Nothing more therefore happens to the alcohol which ether and water are formed, and carbon is depo-
fited. Nothing more therefore happens to the alcohol in thefe circumftances than what takes place in the difin thefe circumitances than what takes place in the dif-
till oil, acid, and coal, are afforded.
"Hence it may be conccired that the nature of the products of the decompofition of alcohol mutt vary according to the different degrees of heat ; and this explains why at a certain period no more ether is formed
but the fweet oil of wine and acetous acid. In fact, plains why at a certain period no more ether is formed
but the fweet oil of wine and acetous acid. In fact, when the greateft quantity of the alcoliol lias been claanged into ether, the mixture becomes more denfe, and
the heat which it acquires previous to ebullition is more ged into ether, the mixture becomes more denfe, and
the heat which it acquires previous to ebullition is more confiderable. The affinity of the acid for alcohol being increafed, the principles of this acid become fepa-
rated; fo that, on the one hand, its oxygen feizes the rated; fo that, on the one hand, its oxygen feizes the hydrogen, and forms much water, which is gradually
volatilized; while, on the other, the ether retaining a hydrogen, and forms much water, which is gradually
volatilized; while, on the other, the ether retaining a

$\xrightarrow{\text { Al }}$

greater quantity of carbon, with which at that temperature it can rife, afforels the fwect oil of winc. T'his laft ought therefore to be confidered as an ether containing an exeraordinary portion of carbon, which gives it more denfity, lefs rolatility, and a lemon ycllow colour.
"During the formation of the fwect oil of wine, the quantity of carbon which is precipitated is no longer jn the fame proportion as during the formation of cther.
"What we have here flated concerning the namer in which ether is formed by the fimultancous action of the fulphuric acid and heat, appears fo conformable to truth, that nearly the fame effects may be produced ly a cauftic fixed alkali. In this cafe alfo a kind of ether and a fweet oil of wine are volatilized, and coal is precipitated. It is therefore only by fixing the alcohol that the fulphuric acid permits the caloric to operate a fort of decompofition. It may alfo be urged as a proof of this affertion, that the fulphuric acid, which has ferved to make ether as far as the period at which the fweet oil of wine begins to appear, is capable of faturating the fame quantity of alkali as hefore its mixture with the alcohol *".

* Nicho!

Ether may alfo be obtained by means of feveral otherfon's Journo acids. The different liquids thus formed are diftin- ${ }^{\text {i. }} 391$. guifhed by prefixing the name of the acid ufed in the procefs. Thus the ether above defcribed is called fulphuric ether; that obtained by means of nitric "acid, nitric ether, and fo on. There are feveral minute fhades of difference between thefe various ethers, which have not yet been properly inquired into.

Alcohol is capable of diflolving a great many bodies. Subltances A confiderable number of thefe, with the quantities fo. luble, is cxhibited in the following tables.

I. Sulfances diffolved in large शuantities.

Names of the Subflances.	Tempelacure.	$2+0$ parts of alcohol diffolve
Nitrat of cobalt copper alumina magnefia	$54.5{ }^{\circ}$	2.40 parts
	54,5	240
	54,5	240
	180,5	694
Muriat of zincaluminamagnelia	54,5	240
	54,5	240
	180,5	1313
iron -	180,5	240
Actite copper - -	180,5	240
Acetite of lead copper \dagger	113	
Benzoic acid - -	135.5	
Sulphat of magnefia		
Nitrat of zinc decompofed		
iron decompof		

tWibbering,
Pbit. Tranj'
Ixxi. 336 .
II. Sulfances difflved in fmall 乌aantilies.

Names of the Subftarecs.	240 parts of alentiol at the boulng tempe ratuie difluly
Muriat of lime -	240 parts
Nitrat of ammonia -	214
Oxy-muriat of mercury	212
Succinic acid -	177
Acetite of Soda	112
Nitrat of filver -	100
Refined fugar - -	59
Boracic acid - -	48
Nitrat of foda -	23
Acetite of copper -	18
Muriat of ammonia -	17
Arfeniat of potafs - -	9
Acidulated oxalat of potafs	7
Nitrat of potuls .	5
Muriat of potafs -	5
Arferiat of foda -	4
Barytes	
Strontites	
White oxide of arfenic	3
Tartrat of potaf6	1
Phofphorus	
Nitrat of lead * lime *	
Muriat of mercury \dagger Carbonat of ammonia *	

1II. Sulflances infoluble with Alcobol.

| Sugar of milk,
 Borax,
 Tartar, | Sulphat of foda,
 magnefia,
 Alum,
 Sulphat of ammonia,
 lime,
 barytes \ddagger,
 iron (green),
 copper,
 flver,
 mcreury,
 zinc,
 potals, |
| :--- | :--- | | Sulphite of foda, |
| :--- |
| Thartrite of foda and |
| potafs, |
| Nhofphoric acid, |
| mercury, |
| Muriat of lead, |
| filver f, |
| Common falt, |
| Carbonat of prtafs, |
| foda. |

Thele have been chiefly borrowed from tables which Mr de Morveau publifhed in the Fournal de Phyfrque July 1785 , and which were drawn up for the moft part from the experiments defcribed in Wenzel's Treatife on Affinities.
Itsaffinites The affinities of alcohol are very imperfectly known. Thofe ftated by Dergman are as follows:

> Water,
> Ether,
> Volatile oil, Sulphurets of alkalies.

Chap. III. Of Oils.

in Genefiss, and during the time of Abrahan was even ufed in lamps*. The olive was very early cultivated and oil extracted from it in Egypt. Cecrops brought * Gin. zv. it from Sias, a town in Lower Egypt, where it had been cultivated from time immemorial, and taught the Athenians to extract oil from it. In this manner the ufe of oil became known in Europe t. But the Greeks + Herotce feem to have been ignorant of the method of procuring lib. ii 59. light by means of lamps till after the fiege of Troy; and 62 . at leaft Homer never mentions them, and couftantly defcribes his heroes as lighted by torches of wood.

Oils are divided into two claftes, Fixed and Volatile; each of which is dittinguifhed by peculiar properties.
I. The fixed oils, called alfo fot or exprefed oils, ${ }_{3} 6 \mathbf{1}$ are numerons, and are obtained, partly from animals and partly from vegetables, by fimple expreflion. As inflances, we fhall mention whale oil or train oil, obtained from the blubher of the whale; olive oil, obtained from the fruit of the olive ; lintfeed oil and almond oil, obtained from lintfeed and almond kernels. Fixed oils may alfo be obtained from poppy feeds, hemp feeds, beech maft, and many other vegetable fubftances.

All thefe oils differ from each other in feveral particulars, but they alfo poffefs many particulars in common. Whether the oily principle in all the fixed oils is the fame, and whether they owe their differences to accidental ingredients, is not yet completely afcertained, as no proper analyfis has hitherto been made; but it is exceedingly probable, as all the oils hitlierto tried have been found to yield the fame products. In the prefent ftate of our knowledge, it would be ufelefs to give a particular defcription of all the fixed oils, as the differences between them have not even been accurately afcertained. We fhall content ourfelves, therefore, with giving the characters which diftinguifh fixed oils in general, and an analyfis of one oil, by way of fpecimen.

Fixed oils are infoluble in alch which ${ }_{362}$ them from volatile oils. They are alfo infoluble in water. perties.

They have an unctuous feel, are tranfparent while fluid, are deflitute of fmeli, and have a mild infipid kind of tafte.

They are all fufceptible of becoming folid by expofure to a fufficient degree of cold. Olive oil and al. mond oil freeze at $10 \frac{1}{2}$ degrees \ddagger.

They are capable of being converted into vapour by. Cbemifry, heat ; but require for that purpofe a temperature con- Englifh fiderably fuperior to that of builing water. Olive oil Tr_{43}. boils at 600°, and moft of the fixed oils hitherto tried require nearly the fame degree of heat:

When in the fate of vapour they take fire on the approach of an ignited body, and burn with a yellowith white flame. It is upon this principle that candles and lamps burn. The tallow or oil is firft converted into the flate of vapour in the wick; it then takes fire, and fupplies a fufficient quantity of heat to convert more oil into vapour; and this procefs goes on while any oil remains. The wick is neceflary to prefent a fufficient. ly fmall quantity of oil at once for the heat to act upon. If the heat were fufficiently great to keep the whole oil at the temperature of 600°, no wick would be neceffary, as is obvious from oil catching fire fpontaneoully when it has been raifed to that temperature.

Mr Levoifer analyfed olive oil by burning it in pre- 3^{66} Mr Lavoifier analysed olive oil by burning it in pre- Analyis of
cifly tane apparatus as that which he employed for olive onl. analyfing alcobol.

Oils. $\xrightarrow{\sim}$

The quantity of oil confumed amounted to 15,79 grains troy.
The quantity of oxygen gas amounted to $5 \subset, 86 \mathrm{gr}$. troy. The whole amount therefure of the fubitances confumed during the combution is 66,65 grains troy.

The earbonie aeid ubtained amounted to $4 t, 50 \mathrm{gr}$. There was allo a confiderable quantity of water, the weight of which could not be aceurately afeertained : but as the whole of the fubifances confumed were eonverted into carbonic acid gas and water, it is evident that if the weight of the earbonic aeid be fuibtracted from the weight of thefe fubitances, there muft remain preeifely the weight of the water. Mr Lavoifier accordingly coneluded, by caleulation, that the weight of the water was 22,15 grains. Now the quantity of oxygen in 44,50 grains of carbonic aeid gas is $32,0+$ grains, and the oxygen in 22,15 grains of water is 18,82 grains; both of whieh taken tugether amount to 50,86 grains, preeifely the weight of the oxygen gas employed. There does not appear therefore to be any oxygen in olive oil.

The quantity of earbon in 44,50 grains of carbonie acid gas is 12,47 grains; and the quantity of hydrogen in 22,15 grains of water is 3,32 grains; both of which, when taken together, amount to 15,79 grains, which is the weight of the oil confumed.

It follows, therefore, from this analy fis, that 15,79 grains of olive oil are compofed of

12,47 Carbon,
3,3z Hydrogen.
Olive oil therefore is compofed of about
79 Carbon,
21 Hydrogen.

* Mem.

Par. $17^{3} 4$. and Four. de Pby.y. for 3 387, ffuly. di lined from this amylho. Whether they combine directly, and faturate eaeh other in that proportion, as is molt probable -or whether the hydrogen is combined previoufly with a part of the earbon, and that compound combining with a certain quantity of earboni, forms oil, is altogether uncertain. Yet thefe queftions are of the utmof importance; and till the method of folving them be difeovered, we never ean acquire any precife ideas about the conftituent parts of a great number of fubflanees, which, though formed ultimately of the fame ingredients, differ very much in their properties from one

When fixed oils are expofed to the atmofphere, they become thick, aequire a brown colour, and a peculiarly unpleafant fmell : they are then faid to be rancid. When oil is poured upon water, fo as to furna a thin layer on its furface, and is in that manner expofed to the atmofphere, thefe changes are produced much fooner, the oil becomes thicker, and aftumes an appearance very much refemhling wax. Berthollet, who firft examined thefe phenomena with attention, aferibed them to the action of light: but Sennebier obferved, that no fueh change was produced on the oil though ever fo long expofed to the light, provided atmofpherieal air
was excluded; but that it took place on the admifion of oxygen gas, whether the oil was expofed to the liglit or not *. It cannot be doubted, then, that it is owing * Ann. As to the combination of oxygen. All fubdances that are chim, xh eapable of fupplying that prineiple, the metallic oxides ${ }^{3}$). for inttanee, andl feveral of the acide, produce the fame effect upon oils; and it is a known fack, that oil is eapable of redueing many of the metallic oxides to the metallic ftate, and confequently that it has a ftronger afinity for oxygen.

Mr Chaptal has fuppofed that oils become rancid merely becaufe they contain a quantity of mucilage. with which the oxygen combines; and that whon oxygen combines with fixed oils, it produces a different effect, eonverting them into what is called drying oils.

It is certain that oils contaia a quantity of nucilage; but fome elange is evidently produced on the oils themfelves by rancidity; for no a pitation in water is capable of retloring them to their former itate, although water 365 deprives them of their mucilage. Drying oits, io calied Drying oile. becaufe they are capable of drying completely when fpread out, a property which renders them ufful in painting, feem, as Sennebier obferves, to be completely deprived of mueilage; for, in order to render an oil drying, it muft be boiled, which evaporates or deeompofes all the mucilage: they feem alfo to lofe part of their hydrogen \dagger.

Fixed oils are eapable of diffolving fulphur at their \dagger Eertbollet. boiling temperature. The folution is very fetid, owing Fixed nils to a partial decompolition of the oil. Hydrogen gas diffoive ful. flies off, having a quantity of fulphur diffolved in it. phur,
When the folution eools, the fulphur cryitallizes.
Fixed oils diffolve phoipliorus. The folution is lu- And phofminous, from the flow combultion of the phofphorus. phorus.

Fixed oils are capable of combining with many of the metallic oxides. The compounds are called metalic foaps. Several of the oxides are decompofed by being boiled in oils.

Fixed oils combine alfo with the alkaline earths and with alumina. The compounds are called earthy foaps.

The affinities of the vils are as follows:

Lime,
Barytes,
Fixed alkalies,
Magnefia,
Ammonia, Oxide of mereury, Other metalic oxides (1a), Alumina.

Nitric aciत,

Acetous,
Sulphur,
Phofphorus(i).
II. Volatile oils, ealled alfo efential oils, are all Volatio obtained from vegetables. They have a ferong aromad oolso tie fmell, and a pungent acrid tafte. They are fo volatile that they may be dittilled by the heat of boiling water. They are foluble in alcolol, but not in water. They evaporate on the application of heat, without lea. ving any Itain behind them, which is not the eafe witlo the fixed oils. By this teft, aceordingly, it is cafy to difcover whether they have been adulterated with any of the fixed oils. Let a drop of the volatile oil fall upon a fheet of writing paper, aud then apply a gentle P p 2
heat
(н) Their order not well afeertained.
(1) The firft column was afeertained by Berthollet. The laft is to be confidered as uneonnected with the firft. On aceount of the affinity of thefe two claffes of bodies for each other, it has not been polfible to difcover which of them has the greateft affinity for oil.
37^{2} Method of procuring potafs.
the volatile oils.
They are more inflammable than the fixed oils; a quality which they owe to their volatility. As far as experiments have hitherto been made, they feem to contitt of carbon and hydrogen; but nothing is known con. cerning the proportions of thefe ingredients. They thicken when expoled to the air, probably by comhining with oxygen, and form refins (K).

When expoled to cold, or when kept for a long time, fome of them depofite crytals refembling the acid of benzoin (1).

They diffolve fulphur, and form what have been called balfams of fulphur.

They are capable of combining with mott of the fubflances that unite with fixed oils. Their affinities, which certainly difier from thofe of fixed oils, have not yet been properly afcertained.

Chap. IV. Of Alkalies.

37 r
pruperties
SUbstances poffefled of the following properties are called alkalies :

1. Incombuftible.

2. Capable of converting vegetable blues to a green.
3. A hot cauttic tafte.
4. Very foluble in water, even when combined with carbonic acid.
There are three alkalies, potafs, forda, and ammonia. The two firt are called fixed alkalies, becaufe a very violent heat is neceffary to volatilize them; the laft is called volatile alkali, becaufe it very eafly affumes a gafeous form, atd is confequently diffipated by a very moderate degree of heat.

Sect. I. Of Potafs.

heat to it. If it evaporates without leaving any flain upon the paper, the oil is pure; but if it leaves a ttain, it has beell contaminated with fome fixed oil or other.
Volatile oils are very numerous, and differ from one another, in fluidity and weight, in their freezing point, and in feveral other particulars. Little atteation has been paid to the greatelt part of them, becaufe few of them have been found of any ufe. The principal quality for which they are valued is thcir odour. Some of them are obtained by expreffion, as oil of bergamot, lemons, oranges; others by ditillation, as oil of peppermint, thyme, lavender, \&ic. It would be ufeleis, even if it were poffible, to give a particular deliciption of all properly afcenaind.
I_{F} a fufficient quantity of wood be burnt to afhes, and thefe athes be afterwards wathed repeatedly with water till it comes off free from any tatte, and if this liquid be filtrated and evaporated to drynefs, the fubAance which remains behind is polafs; not, however, in a fate of purity, for it is contaminated with feveral other fubflances ; but fufficiently pure to exhibit many
of its properties. In this flate, it occurs in commerce under the name of pota/h. It may be purified conliderably, by putting it in a crucible, keeping it red hot for fome time ; then diffolving it in water, filtrating it, and evaporating it again to drynefs. By tbe following method it may be obtained nearly pure: Mix together equal quantities of nitre and carbon, and put them by little and little into a red hot crucible. They burn with a vivid flame, and leave behiud them a quantity of potafs. This is to be diffolved in water, filtrated, and evaporated to drynefs. Or potafs may be obtained by burning tartar wrapt up in brown paper and placed in a crucible (m).
The potafs procured by thefe laft proceffes is exceedingly white ; it is not, however, quite pure ; fur it is combined with a fubttance which blunts all its properties confiderably. This fubitance is carbonic acid gas; from which it may be feparated by diffoiving it, and mixing with it an equal quantity of lime made into a pafte with water. The lime has a greater affinity for carbunic acid gas, and therefore combines with it ; and the pure putafs remains diffiolved in the water, and may be feparated from the lime by filtrating the mixture This procefs, however, muft be performed in clofe veffels; for there is a little carbonic acid gas in the atmofphere, which would again combine with the potafs if it were allowed to fland expofed to the air.

It is then to be evaporated till a thick pellicle appears on its furface, and afterwards allowed to cool; and all the cryitals which have formed are to be feparated, for they conlilt of foreign falts. The evaporation is then to be continued in an iron pot; and, during the procefs, the pellicle which forms on the furface is to be carefully taken off with an iron fkimmer. When no more pellicle appears, and when the matter ceafes to hoil, it is to be taken off the fire, and muft be conftantly agitated while cooling with an iron fpatula. It is then to be diffolved in double its own weight of cold water. This folution is to be filtered and evaporated in a glafs retort till it begin to depofite regular cryllals. If the mafs coafolidates ever fo little by cooling, a fmall quantity of water is to be added, and it mult he heated again. When a fufficient number of cryftals have been formed, the liquor which fwims over them, and which has affumed a very brown colour, muft be decanted off, and kept in a well-clofed bottle till the brown matter has fubfided, and then it may be evaporated as before, and more cryftals obtained. The cryftals may then be diffolved in pure water. By this procefs, which was invented by Mr Lowitz of Peteriburgh *, potafs may * Nictoljong be obtained in a flate of the greatelt purity. Thei. 16.\% fhape of its cryltals is very different, according to the way in which they have been produced. When allowed to form in the cold, they are octahedrons in groups, and contain 0,43 of water: When formed by evapora-
(x) Refins are concrete vegetable juices; the diftinguifhing property of which is infolubility in water and folubility in alcohol. Common refin, or rofin, from which they derive their name, is one of them; and fealing wax confirts almolt entirely of another.
(1) See a paper by Margueron on this fubject, Ann. de Chim, xxi. 174.
(m) That potafs was known to the ancient Gauls and Germans, cannot be doubted, as they were the inventors of foap, which, Pliny informs us, they compofed of afhes and tallow. Thefe afhes (for he mentions the athes of the beech tree particularly) were nothing elfe but potafs; not, however, in a tate of purity. Plinii, lib. xviii. c. 5 r. The xorix, too, mentioned by Ariltophanes and Plato, appears to have been a ley made of the fame kind of afhes.

Allentics. tion on the fire, they affume the figure of very thin tran\{parent blades of extraordinary nagnitude, which, by an alfemblage of lines croffing each other in prodigious numbers, prefent an aggregate of cells or cavitics, commonly fo very clufe, that the veffel may be inverted with. * Nidalyon, out lofing one drop of the liquid which it contains \dagger.
i. 10

Pure putafs is fo exceedingly corrofive, that when applied to any part of the body, it deltroys it alinott intantaneoufly. On account of this property, it has been called coumfic, and is often ufed by furgeons under the nane of the potential coustry, to open abiceffes, and deftroy ufelefs or hurt ful exerefences. covery of rity, but always combined with carhonic acil, it was the caufe of its caulticiis. long before chenitts undeiftood to what the changes produced upon it by lime were owing. According to fome, it was deprived of a quantity of mucilage, in which it had formerly been eriveloped; while, according to others, it was rendered more active by being more comminuted. At latt, in 5755, Dr Black publifhed the celebrated experiments which we have fo of. ten montioned; in which he proved, by the molt ingenivus and fatisfactory analyfis, that the potafs which the world had confidered as a fimple fubttance, was really a compound, confilting of potafs and carbonic acid ; that lime deprived it of this acid; and that it becane inore active by becoming more fimple.

While Dr Black was thus occupied in Scotiand, Mr Meyer was employed in Germany in the fame refearches; from which, however, he drew very different conelufions, His Effays on Lime appeared in 1764 . Pouring into line-water a folution of potafs (carborat of potafs), he obtained a precipitate, which he found not to differ from limettone. The alkali has therefore deprived the lime of its cauflicity and its active properties; and thefe very properties it had itfelf acquired. From which he concluded, that the caulicity of lime was owing to a particular acid with which it had combined during its calcination. The alkali deprived the lime of this acid, and therefore had a ftronger affinity for it. To this acid he gave the name of acidum pirigue or coufticum. It was, according to him, a fubtile elaltic mixt, analogous to fuiphur, approaching very nearly to the nature of fire, and actually compofed of an acid principle and fire. It was expanfible, compreffible, volatile, aftringent, capable of penetrating ail veffels, and was the caufe of caulticity in lime, alkalies, and metals. This theory was exceedingly ingenious, and it was fup. ported by a valt number of new and important facts. But notwithflanding the reputation and acknowledged genius and merit of its author, it never gained many followers ; becaufe the true theory of caufticity, which had been already publihed by Dr Black, foon became known on the continent ; and, notwithftanding fome oppofition at firft, foon carried conviction into every unprejudiced mind. Even Mr Meyer himfelf readily ack nowledged its truth and importance, though he did not at firt, on that account, give up his own theory.

When potafs is expofed to the action of fire, it firt becomes foft, and melts into a tranfparent liquid at the commencement of ignition.

When expofed to the air, it attracts moifture very faft, and is foon converted into a liquid. It attracts, at the fame time, carbonic acid gas, for which it has a very frong affinity. It is impoffible, then, to keep potafs in a flate of purity, except in very clofe veffels.

It unites readily with fulphur, and forms fulphuret of Alkalies. fotafs. This compound may be formed two ways; either by melting the ingredicurs together, or by boiling sulphuret them in water, and then filtrating the folution. Sul- of potafs phuret of potafs when dry, in which flate it is obtained by the firt procefs, is of a brown colour. It is foluble in water, and very foon attracts moillure.

White dry it.protluces no change upon the air of the atmofphere, as Meffrs Dieman, Van Trooflwyck, Nieuwland, and Bondt, afeertained by experinent *. Anns ds But when moiltened with water, it very foon abforbs Clim. xiv. all the oxygen gas which happens to be in the veffel in 29.0 which it is enclufed, and leaves nothing but azotic gas. This fa@t was firt obferved by Scheele, and induced him to ufe fulphuret of potafs for an eudiometer, or infrument to meafue the quantity of oxygen contained in any given portion of atmofpheric air.

If fulphuret of potais be allowed to renain muitt, and i:s contact with the at moliphere, it is gradually comverted iato fuphat of potafs by the fulphur combining with oxygen, and forming fulphuric acid. At the fame time the fulpburet emits a fetid fmell, which is known to be the odour of fulphurated hydrogen gas. The fulphuret then decompoies the water with which it is mixed. Vcry little fulphurated hydrogen gas, however, is emitted, except an acid (the fulphuric, for inftance) be poured upon the mixture, and then it is given out very copioully. The reafon of this is, that there is an affinity between the potafs and this gas. Accordingly it is retaincd thy the potafs after it is formed. But as the acids have a much frongcr affinity for potafs, as foon as any of them is poured in the gas is obliged to feparate t.
If liquid fulphuret of potafs be kept in clufe veffels, it is not decompofed except in part; lecaufe as foon as the alkali is faturated with the fulphurated hydrogen gas, the action of the fulphur on the water is at an end $\ddagger \cdot \mid$ Toid.
The explanation of the action of this fulphuret on the atmofphere, which the Dutch chemilts above-mentioned give from there data, is as follows:

Sulphuret of potafs decompofes water; fulphurated hydrogen gas is formed, and abforbed by the alkali. This gas has a ftrong affinity for oxygen, which it abforbs from the atmofphere: the hydrogen combines with this oxygen, and forms water; and the fulphur is arain precipitated, or rather left combined with the potais. Water is again decompofed by the attraction of the fulphur fur oxygen; new fulphurated hydrogen gas is again formed; again abforbed; again attracts oxygen gas: and is again deconupufed. And this procers goes on till the whole of the fulphur has combined with oxygen, and confequently till the fulphuret is converted into a fulphat \S.-The ouly part of this theory which § llid. requires confirmation, is the action of fulphurated hydrogen gas on oxygen gas, and the confequent formation of water. And this they have rendered not improbable, by thewing that fulplurated hydrogen gas combined with alkali has the property of abforbing oxygen gas from the atmofphere i|.

Potafs unites with phofphorus by fufion, and forms 305 . a phofphuret of potafs. Little is known concerning phof 376 its properties, except that it produces phofphurated hy- Phofphure drogen gas.
Potafs feems alfo capable of combining with carbon.
Potals does not combine with the metals; but it unites with many of their oxides.

When

Ab: "e:
-rn
When a folution of potafs is twifed upon filica recently procured, it diffolves part of it. As the folutio: conls, it alfumes the appearance of a jelly, even though putvoully diluted with 17 times its own weight

* Pergmat,
ii. 32 .

377
chals.
When equal parts of filica and potafs are melted together, they cumbine and form glafs. A fulftance which, whether we confider its hardnefs, beauty, and tranfparency, its amazing ductility, while hot, or the difficulty of decompofing it, mult be allowed to be one of the molt ufeful compounds ever invented by man.

When the quantity of potafs is double or triple that of the filica, the glafs is foluble in water, and forms what is called liquor filicum.

Potafs feems alfo capable of combining in the fame manner with barytes, lime, magnefla, and alumina; but thefe combinations have never been examined with attention. Lime, however, is often added to the materials for making glafs, and is foppofed to increafe its hardnefs and fulidity.

The metallic oxides have the property of rendering glafs more fufible, and of communicating various colours to it ; they accordingly very often make a part of its compofition. The colours communicated by thefe uxides will appear from the following Table:

Metallic Oxides.
 Colour communicated to Glafs.

Oxide of gold and tin, - Purple.
Silver, - - - Yellow or golden.
Iron, - - Pale green.
Lead, - - Colourlefs.
Zinc, - - White.
Antimony, - Green (N).
Arfenic, - - White.
Cobalt, - - Blue.
Nicktl, - - Blue (o).
Manganefe, - Red.
T'ungtten, - - Colourlefs.
Molyhdenum, - Colourlefs.
Uranium, - - Grey (opaque).
Titanium, - - White (opaque).
Tellurium, - - White.
Chromum, - Green.

Whetlice potafs contains lime is a different qqueftion. Alkalies. Were we to judge from analogy, we thould limppofe, that the four alkaline earths, and the three alkalies, poffefs one common principle. They have a great number of common properties, and perhaps nught to be clafed altogether under the name of alkalies.

That azot enters into the compofition of all thefe bodics, as Fourcroy has conjectured, is far from improbable. One alkali, as we thall foon fee, actually contains azot. But no conclufion can be drawn till future difcoveries have lifted off the veil which at prefent obfructs our view.

The affinities of potals are as follows:
lisaffinities
Sulphuric acid,
Nitric,
Muriatic,
Sebacic,
Fluoric,
Phofphoric,
Oxalic,
Tartarous,
Arfenic,
Succinic,
Citric,
Formic,
Lactic,
Benzoic,
Sulphurous,
Acetous,
Saccholactic,
Buracic,
Nitrous,
Carbonic,
Pruffic,
Oil,
Sulphur, Phoíphorus, Water.
The place of the metallic oxides has not yet been afcertained.

Sect. II. Of Soda.

Soda, called mineral alkali, becaufe it is found in the earth, was known to the ancients under the names of vilpov and nitrum (P). It was long confounded with potafs; and perhaps was never properly diftinguifhed from it till Du Hamel publifhed a paper on the fubject in 1736.

Its properties, while pure, are precifely the fame ${ }^{38 \mathrm{r}}{ }^{38 \mathrm{r}} \mathrm{r}$ with thofe of potafs, excepting only that its affinity for of foda other bodies is not fo frong; it does not, therefore, require any particular defeription. We ought to mention, however, that it differs from potafs in one particular; potafs attracts moifture in the air, but foda parts with it, and when expofed to the atmofphere, foon crumbles down into a dry powder.

It is capable of combining with all the fubftances with which potafs unites; but it forms compounds poffeffed, in general, of very different properties from thofe of the compounds into which potafs enters.
(v) If the glafs be made with foda.
(0) But reddifh if the glafs be formed of foda. Klaproth.
(P) The arpor of the Athenians was evidently the fame fubftance; and fo was the n : of the Hebrews.

Alkalies.
\square
Il is reckoned more proper than potafs for forming glaf's and foap.
Sume ehenilds liave fuppofed that it is compofed of magnefia and azot ; but their proufs are infuficient.

The order of its affinities is the fame with that of potafs.

Sect. III. Of Ammonia.

382 Dif́covery of ammosja.
and the oxy.muriatic acid is ennverted into common muriatic acid. Now the fubftances mixed were ammonia and oxy-muriatic acid, which is compofed of oxygen and muriatic acid; the products were, muriatic acid, ayut, and water, which is compofed of oxygen and hydrogen. The oxygen of the water was furninacd by the asel ; the other products mul have bsen furnine by the ammonia, which ho difappeared. Ammom, therefore, mut be compofed of azot and hydrogen. Mr Berthollet proved, that ammonid was compoled of thefe ingredients by a number of othor experiments. For inftance, if the oxide of copper be heated in contaet with ammoniacal gas, it is refored to the metallie flate; the ammonia difappears, a quantity of water is fomed, and azotic gas is difengraged. It follows from Mr Berthollet's experiments, that ammonia is compofed of 12 I parts of azot and 29 of hydrogen *. According, to Dr Autin, it is *Mem. Par. compofed of 121 parts of a\%ot, and 32 of hydrogent. 1785.

After the campofition of ammonia had been thus af- Tranfig 98. certained, it beeame a queftion of fome confequence, 3×5 Whether it could be formed artificially? Dr Authin ac- Formation condingly mixed hydrogen and azotic gas together in of ammothe proper proportions, and endeavoured to make them ${ }^{\text {nia }}$ combine by the application of heat, by electricity, and by cold; but he found, that white thefe two fubftances were in a gafeous ftate, they conld not be combined by any method which he could devife. It could not be doubted, however, that the combination often takes place when thefe bodies are prefented to each other in a different form. Dr Pricfley \ddagger and Mr Kirwan $\|$ had achu- \ddagger On Air, il. ally produced it, even before its compofition was known. 4 r. Accordingly he found, that when till is moittened with in Hepznitric acid, and after being allowed to digett for a minute or two, a little potafs or lime is added, ammonia is inmediately exhaled δ. In that cafe, the nitric acid and $\$$ Dr Aufo the water which it contains are decompofed; the onycent of each unites with the tin, and reduces it to the fate of an uxide; and at the fame time the hydregen of the water combines with the azot of the acid, and forms anmunia, which is driven off by the ftronger affinity of the patafs or lime. Dr^{-}Auftin fucceeded alfo in toming. am. monia by feveral ather methods. He intioluced into a glafs tube filled with mercury a little azotic gas, and then put into the gas fome in on flings moiftened with water. The iron decompoles the water and combines with its oxygen; and the hydrogen meeting with azot at the moment of its admifion, combines with it, and furms ammonia. 'This experinent thers, that the gafeous tlate of the azot doss not prevent its combination with hydrogen.

Ammonia may be combine:l with fulphur liy nuxing Suluh... together two parts of muriat of ammonia (anmonis of amuccombined with muriatic acid), two parts of linic, and ${ }^{\text {nia. }}$ one part of fulphu, and dittilling ; y yclow liquor is obtained, which contains fulphuret of anmoniz. It is capable of cryftalliziag.

The phofphuret of ammonia is unknown.
Ammonia is capable of combining with feveral of the metallic oxides, particularly copper.

It combines with fixed vils, and forms fors.
The order of its affinities is precifely the fane with that of the fixed alkalies.

Chaf.
(e) We have arlupted this ward, which is Dr Black's, beeaufe we think it preferable to ammoniac or anme. siara, the words propoled and ufed by the French chemitis. denominated acids.
I. When arplied to the tongue they excite that fen-

Perecrties I. When arplied to the tongue
of acidse fation which is called four or acid.
2. They change the blue colours of vegetables to a 2. They clange the blue colours of vegetables to a
red. The vegetable blucs employad for this purpofe are gener, lly tincture of litmus and fyrup of violets or
of radifhes, which have oitained the name of reagents are gener,lly tincture of litmus and fyrup of volets or
of radifhes, which have oitained the name of reagents or $t \mathrm{f}$ /f. If thefe colours have been previoufly converted to a gree.e by alkalics, the acids retore them again.
3. Thes unite with water in almoft any proportion.
4. They conbine with all the alkalies, and moft if the metallic oxides and earths, and form with them thofe compounds which are called ncural falts.

It must be rerpal hed, however, that every acid does not toufdef all theic properties; but all of them poffefs a fulficient number of them to dillinguifh them from other fubftances. And this is the only purpofe which

758 Theories about the acid prinsiple. artificial definition is meant to anfwer.

Paracelfus believed that there was only one acid principie in nature, which communicated tafte and fulubility to the bodies in which it was combined. Deccher embraced the fame opinion; and arlded to it, that this acid principle was a compound of earth and water, which he confidered as two clements. Stahl adopted the theory of Beccher, and endeavoured to prove, that his acid principle was fulphusic acid; of which, according to him, all the other acids were mere compounds. Lut his proofs were only conjecturcs or vague experiments, from which nothing could be deduced. Neverthelefs, his opinion, like every other which he advanced in chemittry, continued to have fupporters for a long time, and was even countenanced by Macquer. At laft its defects began to be perceived; Bergman and Scheele declared openly againft it ; and their difcoveries, together with thofe of the French chemift:, notwithftanding the ill-natured attempts of Monnet to fupport it, demonftrated the falfeliood of both parts of the theory, by fhewing that fulphuric acid did not exift in the other acids, and that it was not compofed of water and earth, but of fulphur and oxygen.

The opinion, however, that acidity is owing to fome principle common to all the falts, was not abandoned. Wallerius, Meyer, and Sage, had advanced different theories in fucceffion about the nature of this principle; but as they were founded rather on conjecture and analogy
3sg than direct proof, they obtained but few advocates. 1.avoifer's At laft Mr Lavoifier, by a number of ingenious and actheory.

Chap. V. Of Acids.

Substances poffeficd of the following properties are curate experiments, proved, that feveral combultible fub. flances when united with oxygen form acids; that a great number of acids contain oxygen; and that when this principle is feparated from them, they lofe their acid properties. He concluded, therefore, that the acidifying principle is oxygen, and that acids are nothing elfe but combuftible futtances combined with oxygen, and differing from one another according to the nature of the combuttible bafe. This conclufion has been con-
firmed by every fubfequent obferration. All the acids hitherto analyfed contain oxygen, one perhaps excepted, the I'rufor acid, which polfeffes properies fo difierent from the reft, that it night, without great impropricty, be placed in a dittinct clafs. It is probable, therefore, that thofe acids which it has not yet been polfible to decompofe corifit of oxygen combined with a comhuftible bafe: but till this analyfis has actually been accomplilhed, the theory of Mr Lavoifier cannot be confidered as completely demonitrated (R).

390
The acids at prefent known amount to abont 39, Lint of the moft of which have been examined within thefe 30 acids years. Their names are as follows:

1. Sulphuric acid,
2. Sulphurous,
3. Nitric, 23. Camphoric,
4. Nitrous, 24. Suberic,
5. Muriatic,
6. Oxy muriatic,
7. Phofphoric,
8. Phofphorous,
9. Boracic,
10. Fluoric,
11. Carbonic,
12. Acetic,

13 Acetous,
14. Oxalic,
15. Tartarous,
16. Citric,
17. Malic,
18. Lactic,
19. Saccholactic,
20. Gallic,

Thefe acids fhall form the fubject of the following fections.

Sect. I. Of Sulphuric Acid.

Sulphur combines with two different quantities of oxygen: with the fmaller quantity it forms fulphurous acids; with the larger fulphuric acid. The lait of thele is the fubjest of the prefent fection.
The ancients were acquainted with fome of the compounds into which fulphuric acid enters; alum, for inftance, and grecn vitriol: but they appear to have becn ignorant of the acid itfelf. It is frift mentioned in the works of Batil Valentine, which were publifhed about the end of the 15 th century.

It was for a long time obtained by diflilling green vitriol, a falt compofed of fulphuric acid and green oxide of iron; hence it was called oil of vitriol, and afterwards viltriolic acid. Another method of obtaining it was by burning fulphur under a glafs bell ; hence it was called alfo oitum Julpburis per campanam. The French chemits in $\mathrm{r}_{7} 8$, when they formed a new chemical nomenclature, gave it the name of fulphuric afid.
At prefent it is generally procured by burning a nethol of mixture of fulphur and nitre in chambers lined withprocuringit. lead. The theory of this procefs requires no explanation. The nitre fupplies a quantity of oxygen to the
(R) This theory has been carried fo far by fome chemifts, that they have confidered it as a conclufive proof that oxygen did not enter into the compofition of a body, if they could thew that the body was not an acid. Thus, according to them, water cannot contain oxygen, becaufe water is not an acid.-But furely no theory, however ingenious and fatisfactory, can for a moment be put in competition with experiment. The ways of Nature are not as our ways, nor her thoughts as our thoughts.

Sulphuric fulphur, and the air of the atmofphere furnifhes the reft.
Acd. The acid thus obtained is not quite pure, containing a
$\underbrace{}_{\text {little potafs, fome lead, and perhaps alfo nitric and ful- }}$ plurous acids. Thefe acids may be driven off by applying for fome time a gentle heat, and afterwards the
393 fulphuric acid itfelf may be diftilled over pure.
Its conpo It appears from an experiment of Mr Berthollet, sent paits. that fulphuric acid contains 63,2 parts of fulphur, and * Mem. $3^{0,8} 8$ of oxysen. He afcertained, in the firlt place*, Far. 1781, that nitre is tutally decompofed by being licated with 232. Jth of filphur. He then mised tugether 288 grains of nitre and 7 : of fulphur; and after expofing them to a fufficient heat, he found 12 grains of fulphur fubli-

+ Mem. nued, and 228 grains of fulphat of potafs t. But the Par. $1^{7} 82$, fum of the ingredients was 360 grains ; confequently 603. 120 grains have been difipated. All this hols mut have been fuffered by the acid of the nitre, for the heat was too finall to Ceparate any of the alkali. According to Mr Kirwan, 288 grains of nitre contain $\mathbf{1 3 2 , 9 6}$ of alkali, and 155,24 of acid. $155,04-120=35,04=$ quantity of oxygen furnifled by the nitue to convert 60 grains of fulphur into acid.
Its proper- Sulphuric acid is a liquid, fomewhat of an oily con-
ties.
tiftence, tranlparent and colourlefs as water, without any fmell, and of a very trong acid tatte. When applied to animal or vegetable fubitances, it very foon deftroys their texture.

It always contains a quantity of water; part of which, however, may be driven off by the application of a moderate heat. 'This is called concentrating the acid. When as much concentrated as poffible, its fecific gravity is 2,000.

It changes all veretable blues to a red, except indigo.
According to Erxleben, it boils at 54°; according

395
 Its cry-

Fuils.

1 Fncyc. MElbod.
Chim. i. 376.
§ Fourn. de
pbyf. xxxi. 473. to Bergman, at 572°.
When expofed to a fufficient degree of cold, it cryftallizes or freezes; and after this has once taken place, it freczes again by the application of a much inferior cold. Moreveau froze it at - 4°; it aflumed the appearance of frozen fnow. After the procefs began it went on in a cold not nearly fo intenfe. The acid melted flowly at 27.5°; but it froze again at the fame temperature, and took five days to melt in the temperature of $43^{\circ} \ddagger$. Chaptal, who manufactured this acid, once ohferved a large glafs veffel full of it cryftallized at the temperature of $4^{9^{\circ}}$. Thefe cryttals were in groups, and confited of flat hexahedral prifms, terminated by a fix fided pyranid. They felt hotter than the furrounding bodies, and melted on heing handled f. Chaptal has obferved, that fulphuric acid, in order to cryflallize, mult not be too concentrated. This obfervation has been extended a good deal further by Mr Keir. He found, that fulphuric acid, of the fpecific gravity of 1,780 , froze at 45°; but if it was either much more Suppl. Vol. I. Part. Il.
or much lefs coneentrated, it required a much greater Su! huric cold for congclation *.

Sulphuric acid has a very frong attraction for water. Flit. Neumann found, that when expofed to the atmofphere Trunf. it attracteal 6,25 times its own weight. Mr Could lxxvii. found, that 180 grains of acid, when expofed to the lart ii. atmofphere, attracted 68 grains of water the fint day, Its affinty 58 the fecond, 39 the third, 23 the fourth, 18 the for water. fifth, and at laft only $5,4,3,4,3$, Ecc. The 28 th day, the augmentation was only half a grain t. 'The \dagger Pbit. affinity therefore between fulpharic acid and water, as Trany. is the cafe in general with other fubftances, becomes weaker the nearer they approach to faturation. He does not fpecify the fpecific gravity of his acid; but as it only attracted 3,166 times its own weight, it could not have been very concenteated.

When fulphuric acid is mixed with water, a great quantity of caloric is evolved. A mixture of equal parts of thele liquids caufes a heat almoft cqual to that of boiling water. Lavoifier and De la Place found, that when $2,625 \mathrm{lbs}$ troy of fulplaric acid, of the fpecific gravity 1,57058 , was mixed with $1,969 \mathrm{lb}$. troy of water, as much caloric was evolved as melted 4,1226 pounds troy of ice, or as much caloric as the acid and water would have given out had they been heated withont mixture to $155,9^{\circ} \ddagger$. This caloric is owing chiefly, 1 Mem. if not folely, to the increafe of denfity in the water; for Par. 1780 . when equal quantities of fulphuric acid and water are mixed together, the fpecific gravity is much grater than the mean; and it has been formerly hewn, that whenever bodies become denfer they give out caloric.

Since there is fuch n frong affinity between fulphu-Strengeh of ric acid and water, and fince the denfity of the mixture fuythuric is different from the mean denfity of the ingredients, it rions denbecomes a problem of the greatef importance to deter-fitics. mine how much of the ftrongett fulphuric acid that can be prepared exitts in any given quantity of fulphuric aeid of inferior fpecific gravity, and which confequently confifts of a determined quautity of this ftrong acid diluted with water.

This problem has been folved by Mr Kirwan \oint. He $\xi_{\text {IFi/B }}$ took fulphuric acid of the fpecific gravity 2,000 , which Trunf. iv. is the ftrongeft that can be procured, for his Itandard, and the point was to determine how much of this fandard acid exifted in a given quantity of acid of inferior denfity.

He concluded, from a number of experiments with fulphuric acid, of the fpecific gravities $1,8846,1,8689$, $1,800^{2,1,7500 \text { (for he could not procure an acid of }}$ the fpecific gravity 2,000 at the temperature of 60°, in which his experiments were performed), that when equal parts of flandard acid and water are mixed, the denfity is increafed by $\frac{3}{75}$ th part of the whole mixture. Then, by applying a formula given hy Mr Poujet (s), he calculated, that the increafe of denfity, on mising

1 Qq different
(s) Mr Poujet undertook the examination of the fpecific gravity of alcohol mixed with different quantities of water. He took for his ftandard alcohol whofe fecitic gravity was 0,8199 , at the temperature of $65,75^{\circ}$. He then formed ten mixtures ; the firlt containing nine meafures of alcohol and one of water, the fecond eight meafures of alcohol and two of water, and foon, till the laft contained only one mearure of alcohol and nine of water. He took care that each of thefe meafures hould contain equal bulks, which he afcertained by weight, obferving that a meafure of water was to a meafure of alcohol as 1 to 0,8199 . Thus 10200 grains of water and 8199 of alcohol formed a mixture containing equal bulks of each. From the fpecilic gravity of each of thefe mixtures he difcovered how much they had diminifhed in bulk in confequence of mixture, by the following method.

Sulphuric different quantities of flandard acid and water, was as Acid. in the fullowing table :

Number of part of water.	Namber ot parts of itan- dard acid.	Augnenta- ton ifdin- fity.
5	95	0,0252
10	90	0,0479
15	85	0,0679
20	80	0,0856
25	75	0,0699
30	70	0,1119
35	65	0,1213
40	60	0,1279
45	55	0,1319
50	50	0,1333

The firlt 50 numbers of the following table were formed by adding thefe augmentations to the fpecific gravity of the above mixture found by calculation, and taking the arithmetical mean for the intermediate quantities. The remaining numbers were forned from actual obfervation. He found by the firf part of the table, that 100 parts of acid, of the fpecific gravity 1,8472, contained 88,5 parts ftandard, confequently

400 grains of this acid contain 354 grains ftandard. He Sulphuric took fix portions of this acid, each containing 400 grains, and added to them as much water as made them contain refpectively $4^{\text { }}, 46,44,42,40,3^{8}$ grains flandard. The quantity of water to be added in order to produce this effect, he found by the following method. Suppofe $x=$ the quantity of water to be added to 400 parts of acid, that the mixture may contain 48 per cent. of ftandard acid. Then $400+x: 354:: 100: 48$, and confequently $x=337,5$. After finding the fpecific gravity of thefe, the half of each was taken out, and as much water added; and thus the fpecific gravities, correfponding to $24,23,22,21,20,19$, were found. Then fix more portions, of 400 grains each, were taken, of the fpecific gravity 1,8393 , and the proper quantity of water added to make them contain 36,34 , 32, 30, 28, 26 per cent. of ftandard. Their fpecific gravities were found, the half of them taken out, and as much water added; and thus the fpecific gravity of 18 , 17,16, i 5,14 , and 13 found. Care was taken, after every addition of water, to allow the ingredient fufficient time to unite.

The laft if numbers were only found by analogy; obferving the feries of decrement of the four laft numbers before them.

Table

Calling A the real fpecific gravity of any of the mixtures; B its fpecific gravity found by calculation, fuppofing no diminution of bulk; n the number of meafures compofing the whole mafs; $n-x$ the number to which it is reduced in confequence of mutual penetration-it is evident, fince the increafe of denfity does not diminifh the weight of the whole mafs, that $n B=\overline{n-x} \times A$. Therefore $x=\frac{A-B}{A} \times n$, or (making $\left.n=1\right)=$ $\frac{A-B}{A} \cdot \frac{A-B}{A}$ is therefore the diminution of volume produced by the mixture.

The following table contains the refult of Mr Poujet's experiments, calculated according to that formula; the whale volume or n being $=1$.

Meafu Water.	res of Alcohel.	Diminution of the whole volume $=1$ by experiment.	By calculation.
1	9	0,0109	0,0103
2	8	0,0187	0,0184
3	7	0,0242	0,0242
4	6	0,0268	0,0276
5	5	0,0288	
6	4	0,0266	0,0276
7	3	0,0207	0,0242
8	2	0,0123	0,0184
9	1	0,0044	0,0103

It is evident, from this table, that the diminution of the bulk of the mixture follows a regular progreflion, It is greatelt when the meafures of water and alcohol are equal, and diminifhes as it approaches both ends of the feries. Mr Poujet accounts for this by conceiving the alcohol to be diffolved in the water, which retains a part of it in its pores, or abforbs it. The quantity abforbed ought to be in the ratio of that of the folvent and of the body diffolved, and each meafure of water will retain a quantity of alcohol proportional to the number of meafures of alcohol in the mixture. Thus in a mixture formed of nine meafures of alcohol and one of water, the water will contain a quantity of alcohol $=9$; in one of eight meafures of alcohol and two of water, the water will contain a quantity of alcohol $=8$. Therefore the diminution of bulk in each mixture is in a ratio compounded of the meafures of alcohol and water which form it; in the above table, as $1 \times 9,2 \times 8,3 \times 7,4 \times 6$, $\& c$. And in general, taking the diminution of bulk when the meafures of both liquids are equal for a conftant quantity, and calling it 6 , calling the number of meafures n, the number of mealures of alcohol x, the increafe of

Table of the Quantity of Standard Sulpburic Acid, Specific Gravily 2,000 in Sulshuric Acid of inferior Dinfity, Temperature 60°.

roo parts, at the fpecifie gravit!	Contain of fan. dard aciu	100 palt., at the fipecific yravity	Contain of ftan. dards acio	1 vo part-, at the feecific gravity	Contain of ftandard acid
2,000	100	1,6217	67	I, 2847	34
1,98;9	99	1,6122	66	1,2757	33
1,9719	98	1,6027	65	1,2668	32
1,9579	97	1,5932	64	1,2589	3 I
1,9439	96	1,5840	63	1,25to	30
1,9299	95	1,5748	62	1,2415	29
1,9168	94	1,5656	61	1,2320	28
t,9041	93	1,5564	60	1,2210	27
1,8914	92	1,5473	59	1,2101	26
1,8787	91	1,5385	58	1,2009	25
1,8660	90	1,5292	57	1,1918	24
1,9542	89	1,5202	56	1,1836	23
1,8424	88	1,5 112	55	1,1746	22
1,8306	87	1,5022	54	1,1678	21
1,8188	86	1,4933	53	1,1614	20
1,8070	85	1,4844	52	I, 1531	19
1,7959	84	1,4755	51	I, 1398	18
1,7849	83	1,4665	50	1,1309	17
1,7738	82	1,4427	49	1,1208	16
1,7629	81	1,4189	48	I, 1129	15
1,7519	80	1,4099	47	1,1011	14
1,7416	79	1,4010	46	1,0955	13
1,7312	78	1,3875	45	1,0896	12
1,7208	77	1,3741	44	1,0833	11
1,7104	76	1,3663	43	1,0780	10
1,7500	75	1,3586	42	1,0725	9
1,6899	74	1,3473	41	1,0666	8
1,6800	73	1,3360	40	1,0610	\%
1,6701	72	1,3254	39	1,0555	6
1,6602	71	I,3149	38	1,0492	5
1,6503	70	1,3102	37	1,04,50	4
1,6407	69	1,3056	36	1,9396	3
1,6312	68	1,2951	35	1,0343	2

But we lave wo reafon to fuppofe that fulphuric acid, Sulphuric at the denfity 2,000 , is frec from all mixture of water; Acid. fo far from that, we know for certain that it contaips a $3 y s$ confiderable proportion; for when it is combined with Quantity other budies, barstes, for inflance, or potafe, there is a of real acil confiderable quantity of water which remains behind, inf futmeng and does not enter into the combination. Now, is it acid. polfible to determine what would be the denfity of fulphuric acid, fuppofing it to be deprived of all water, or at leaft of all water except what is neceffary for its e\%iftence as an acid? or to determine, how much real acid exifts in a given quantity of flandard acid ?

Homberg firf attempted to anfwer this queftion. It was afterwards undertaken by Bergman, and Wenzel, and Wiegleb. They do not inform us of the quantity of water contained in a given weight of acid, but they put it in our power to find it, by informing us how much real acid is neceffary to laturate a given quantity of potafs. Their refpective experiments give the fullowing numbers:

Homberg ufed carbonat of potafs, and did not take into confideration the carbonic acid driven off by the fulphuric. When this is taken in, his number mould be 54 inftead of 38,3 .

Now to difcover the quantity of real acid in any ful. pluric acid mixture, we have only to find out how much potafs it would require for faturation. The difierences between the above refults are fo great, that there was reafon to fufpect their accuracy. Mr Kirwan therefore attempted to afcertain the denfity of pure fulphuric acid by another method, and he rated it at 2,226 . As this method has been already deferibed in the article Chemistry, Encyel. we camot enter upon it herc. At any rate, it would be unneceffary, as many of the principles upon which Mr Kirwan went were erroneous, as Mr Morveau* and Mr Keir \dagger have fufficiently fhewn; $\|_{\text {Encye. }}$ and Mr Kirwan, with his ufual canduur, has accord- Vethod. art, ingly abandoned it, and adopted another method which Afintt. is not liable to the fame exceptions. He diffolved I 523,5 Diaienary,
denfity or diminution of bulk z; we fhall have $c: \approx:: \frac{n}{2} \times \frac{n}{2}: \overline{n-x}, \times x$ and $z=\frac{4 c}{n^{2}} \times \overline{n x-x^{2}}$, or (making $n=1)=4 c x^{2}$.

The diminution of bulk, calculated according to this formula, make the laft column of the above table. They correfpond very well with experiment, while the meafures of alcohol are more than thofe of water, but not when the reverfe is the cafe. This Mr Ponjet thinks is owing to the attraction which exills between the particles of water, and which, when the water is confiderabie compared with the alcohol, refilts the union of the water with the alcohol.

By the formula $\approx=\frac{4 c n x-4 c x^{-2}}{n^{2}}$, the quantity of alcohol of the flandard may be determined in any mix. ture where the alcohol exceeds the water.

Sulthuric grains of pure carbonat of potafs, dried in a red heat, in Acid ditilled water. The whole weighed 4570 grains. He took 360 graing of this mixture, which contained 120 grains of carbenat of potafs, and faturated it with pure fulpliuric acid of the fpecific gravity 1,565, which, according to the above table, contained 61 per cent. of ftandard acild. The acid required for faturating the folution of potafs amounted to 130 grains, and contained therefore 79 of ftandard. The carbonic acid difengated was 34 grains, and confequently the quantity of al kali was $120-3+=86$ grains. The folution being turbid, was diluted with 3238 grains of water. Its fpecific gravity was then 1,013 at the temperature of 60°. The weight of the whole was $369+$ grains. Fortyfive grains of fulphat of potafs (putals combined with fulphuric acid), diffolved in 1017 grains of diftilled water, have the fame fecific gravity at the fame temperature; from whence it follows, that the proportion of falt in each was equal. But in the laft folution the quantity of falt was $\frac{1}{23,6}$ of the whole; therefore the quan. tity of falt in the firft was $\frac{3694}{23,6}=459,52 \mathrm{grs}$. Now of this weight 86 grains were alkali; the remainder, therefore, which amounts to 70,52 grains, muft be acid. But the quantity of ftandard acid employed was 79 grains; of this there were $8 \frac{1}{2}$ grains which did not enter into the combination, and which muft have been pure water: 79 parts of tandard acid, therefore, contain at leaft 8,5 parts of water, and confequently 100 parts of Itandard acid contain 10,75 parts of water. It only remains now to confider how much water fulphat of potafs contains. Mr Kirwan thinks it contains none, becaufe 'it lofes no weight in any degree of heat below ignition, and even when expofed to a red heat for half an hour it hardly loies a grain. This is certainly fufficient to prove, at leaft, that it contains very little water; and confequently we may conclude, with Mr Kirwan, that 100 parts of fulphuric acid, of the fpecific gravity 2,000 , are compofed pretty nearly of 89,25 of pure acid and 10,75 of water. This method ufed by Mr Kirwan is nearly the fame with that propofed by Mr Keir *.
It feems even poffible to obtain fulphuric acid free from all the water that may not be neceffary to its acid flate. When it is procured by diftillation from green vitriol, if the receiver be changed after the procefis has gone on for fome time, a quantity of acid is ubtained in
a folid form, or cryftallized. This, as Morveau has Sulphuric Shewn, is ful hliuric acid deprived of the water with which it is ufually combined. When this glacial acid, as it has been called, is expofed to the air, it rifes in white fumes, and is foon diflipated. This lingular effect is produced by its violent attraction for the water which exitts in atmofpheric air. When thrown into watcr, it feizes it with violcnce; a great deal of caloric is evolved, fufficient, if the quantity of water be not too great, to elevate the whole in vapours *.

Sulphuric acid is capable of decompofing alcohol and oils; and when affifted by heat, it decompofes alfo fome of the metallic oxides which contain the greatef quanof the metallic oxides which contain the greatert quan- ${ }^{3.99}$, 1 oxygen; as red oxide of lead, black oxide of man- Acion ganefe. It decompofes likewife all the fulphurets and this acid phofphurets which have an alkaline or earthy balis.

It oxidates iron, zinc, and manganefe, in the cold. By the afliftance of heat it oxidates filver, mercury, copper, antimuny, bifmuth, arfenic, tin, and tellurium. At a boiling heat it oxidates lead, cobalt, nickel, molybdenum. It does not act upon gold, platinum, tung. ften, nor titanium.

It unites readily with all the alkalies, the alkaline earths, alumina, and jargonia, and with molt of the metallic oxides, and forms falts denominated fulpbats. Thus the combination of fulphuric acid and foda is called fulphat of fora, the compound of fulphuric acid and lime, fulphat of lime, and fo on. It does not act upon filica nor adamanta.

The affinities of fulphuric acid are as follows \dagger : Barytes, Strontites \ddagger, Potafs, Soda, Lime, Magnefia, Ammonia, Alumina, Jargonia §? Oxide of zinc, ———iron,

Method. Clim. i. on other bodies.

[^11]

400
Its affini-
tes.

+ See Berg
man and
Lavoifur.
\ddagger Dr Hope,
Tranf. Edin,
iv.
§ Vauquelin,
Ann. de
Cbim. xxii.

308.

Oxide

Then fince the increafe of denfity does not change the weight of the whole, $\overline{1-x} \times a+b x=$ $\overline{x-4 c x+4 c x^{2}} \times y$.

$$
\begin{aligned}
& \text { Hence } x=0,5-\frac{a-b}{8 c y}+\sqrt{\frac{a-y}{4 c y}+\left(\frac{a-b}{8 c y}-0,5\right)} \\
& \qquad \begin{aligned}
& y=\frac{a-a x+b x}{1-4 c x+\frac{1}{4 c x^{2}}} \\
& \text { And making } a=1, b=0,8199, c=0,0288 \\
& x=0,5-\frac{0,1801}{0,2304 y}+\sqrt{\frac{1-y}{0,115^{2} y}+\left(\frac{0,1801}{0,2304 y}-0,5\right)} \\
& y=\frac{1-0,1801 x}{1-0,1152 x+0,11525^{10}} \quad \text { See Iriß Tranf. III. }
\end{aligned}
\end{aligned}
$$

Part IT.

401 Component prarts of ful-
phurous aphuro tained but be forer oxygen is lefs than what enters into fulphuric acid, has been proved beyond the poffibility of doubt. Neither can it be doubted, though the fad has not been attended to, that in this acid the fulphur and oxygen mutually faturate each other; and that fulphuric acid is nut compofed of fulphur and oxygen, but of fulphurous acid and oxygen. Phofphorus is capable of decompoling fulphuric acid by the affiftance of heat, of feizing a quantity of its oxygen, and converting it into fulphurous acid; but upon fulphurous acid it has no effect * Fourcroy whatever *. The affinity of phofphorus therefore for and V ous oxygen is lefs than that of fulphur; yet it is capable of ģuelin. taking oxygen from fulphuric acid. Is it not evident from this, tbat fulphuric acid is compofed of fulphurous acid and oxygen? and that fulphur has a flronger affinity for oxygen than fulphurous acid has? For if both the acids were compofed directly of fulphur and oxygen, it would follow from experiment, that the affinity of phofphorus for oxygen was both tronger and weaker than that of fulphur; which would be abfurd.

Sulphurous acid lias been known fince the time of Stahl. Scheele firt difcovered the method of obtaining it in quantities; and Dr Prielley firft procured it in a ftate of purity; for Scheele's acid was diffolved in water. procuring it.

Stahl's method of procuring fulphurous acid was to burn fulphur at a low temperature, and expofe to its flames cloth dipped in a folution of putafs. By this method he obtained a combination of potafs and fulphurous acid; for at a low temperature fulphur forms by combuttion only fulphurous acid. On this falt Scheele poured a quantity of tartarous acid, and then applied a gentle heat. The fulphurous acid is in this manner difplaced, becaufe its affinity for potafs is not fo flrong as that of tartarous acid; and it comes over into the receiver diffolved in water. It is now commonly procured by mixing with fulphuric acid oil, greafe, metals, or any other fubflance that has a flronger affinity for oxygen than fulphurous acid, and applying a heat fufficient to dittil over the fulphurous acid as it forms. Mr. Berthollet has found, that fugar is the beft fubtance to employ for this purpofe.

Dr Priefley poured a little oil on fulphuric acid, applied heat, and received the product in a glafs jar filled with mercury. It was fulphurous acid free from all fuperfluous water, and in a gafeous form.

In this flate it is colonrlefs and invifible like common air. It is incapable of maintaining combuftion; nor can animals breathe it without death. It has a ftrong and fuffocating odour. It is this odour which burning fulphur exhales. Its fecific gravity, according to Berg-
man, is $0,0024^{6}$ * ; according to Lavovificr, 0,00251 . Sulphurnus Clonet and Mongé found, that by the application of Acid extrense cold it is converted into a liquid.

* On tutc=

Dr l'riefley difcovered, that when a Alrong heat is ive altrusapplied to this acid in clofe veffels, a quantity ol ful- fion, $\}$. 3. phur is precipitated, and the acid is converted into ful. t Cibemifry, phuric \ddagger. Berthollet obtained the fane refult: but \ddagger Anpendiry Air, Fourcroy and Vanquelin could not fucceed $\$$. ii. 3,30 .
Water abforbs this acid with avidity. According to 5 sivicbotDr Prictley, $1=00$ grains of water, at the temperaturefon's four$54,5^{\prime \prime}$, abforb 39,6 grains of this acid. The fpecilic ${ }^{n a l}, 1,13$. gravity of water faturated with fulphurous acid is $1,04 _\|\cdot\|$ Eerth olld, Water in the ltate of ice abliorbs it very rapidly, and is $d n n$ de
inftantly melted. Water faturated with this acid can clim, ii. be frozen without parting with ally of it. When wa. ${ }^{50}$ ter, which has been faturated with this acid at the freering temperature, is expofed to the heat of $65,25^{\circ}$, it is filled with a valt number of bubbles, which continually increafe and rife to the furface. 'Thefe bubbles are a part of the acid feparating from it. It freezes a few degrees below 32π.

Sulphuric acid abforbs it at zero; but allows great and Yaure

It reddens tincture of turnfol ; but deftroys the co-* ib. d. lour of fyrup of violets.

It is decompofed by hydragen and carbon, and fulphurated hydrogen gas, when affifted by heat \dagger. \dagger Ili $\%$

Oxygen gas gradually converts it into fulphuric acid; but this change does nut take plase unlefs water be prefent.

It does not feem capable of oxidating any of the metals except iron, zinc, and manganefe.

When in the ftate of gas it is abforbed by oils and ether.

When glafs tubes, filled with fulphurous acid in the flate of gas, are expofed to a flrong heat, a quantity of fulphur precipitates, and the refl of the acid is converted into the fulphuric.

It combines with the alkalies, alkaline earths, and lts combialumina, and many of the metallic oxides, and forms neu- nations, tral falts, known by the name of fulpbitcs.

Its affinities, as far as they have been inveltigated, And affinis. are as follows \ddagger :
$\left.\begin{array}{ll}\text { Barytes, } & \begin{array}{l}\text { ties } \\ \text { Lime, } \\ \text { Litid. }\end{array} \\ \text { Potafs, } & \\ \text { Soda, } & \\ \text { Magnefia, } \\ \text { Ammonia, }\end{array}\right\}$

Sect. III. Of Nitric Acid.

There are three different fubftances compofed of azot and oxygen, nilric acid, nitrous acid, and nitrous gas. The firft contains mott oxygen; the latt contains lcalt.

Nitric acid feems to have been firft obtained in a fe-Difcover parate flate by Raymond Lully, who was born at Ma-of nitric 3 jorca in 1235. He, procured it by diftilling a mixturecid. of nitre and clay. Bafil Valentine, who lived in the 15 th century, defcribes the procefs minutely, and calls the acid water of nitre. It was afterwards denomina-

Nitr ${ }^{-1}$
tcî.
4-S
4-5 Nitric acid is gencrally obtained in large manufactoMe tow of ries by dithating a mixture of nitre (r) and clay; but ! 10 uri! g i.
ted eque fortis and jpirit of nitre. The name nitric acid was firl given it in 1787 bv the Frencla chemifts. the acil procured by this phocefs is weak and impure. Chenith eenerally prepare it by diftilling three parts
$40 n$
Dicovery
ot its com porent puts.

* Veges.

Strtics,
ii. 254 , of nitre and one of fulphuric acid in a glafs retort. This methorl was firtt uled by Glauber. When obtained in this manner it contains fome nitrous acid, which may be expelled by the application of a very gentle heat *.

Nitric acid is onc of the molt important inftruments of analyfis which the chemift poffefles; nor is it of inferior confequence when conflatered in a political or commercial view, as it forms one of the moft effential ingredients of gunpowder. Its nature and compofition accurdingly have long occupied the attention of philoiophers. We Gall endeavour to trace the various fteps by which its component paits were difcovered.

As nitre is often produced upon the furface of the earth, and never except in places which have a communication with atmufpheric air, it was natural to Cuppofe that air, or fome part of the air, entered into the compofition of nitric acid. Mayow having obferved, that nitie and atmofpherical air were both poffeffed of the property of giving a red colour to the blood, and that an was deprived of this property by combuntion and refpiration -- concluded, that nitre contained that part of the air which fupported combufion, and nuas neceffary for refiration.

Dr Hales, by applying heat to nitric acid, and what he called IFalton mineral, obtained a quantity of air poffeffed of fingular properties. When atmofpherical air was let into the jar which contained it, a reddifl turbid fume appeared, a quantity of air was abforbed, and the remainder became tranfparent again *. Dr Prieftley difcovered that this air could only be obtained from nitric (u) acid; and therefore called it nitrous air. He found that when this gas was mixed with oxygen gas, nitrous acid was reproduced. Here, then, we find, that oxygen is a part of the nitric acid, and confequently that Mayow's affirmation is verified.

Dr Prieftley, however, explained this fact in a different manner. According to him, nitrous gas is compofed of nitrous acid and phlogifton. When oxygen is added, it reparates this phlogitten, and the acid of courfe is precipitated. This hypothefis was adopted by Macquer and Fontana; and thefe three philofophers endeavoured to fupport it with their ufual ingenuity. But there was one dificulty which they were unable to furmount. When the two gales are mixed in proper proportions, almoft the whole aflumes the form of nitric acid; and the fmall refiduum ($\frac{1}{3}$ th part), in all probability, or rather certainly, depends on fome accidental impurity in the oxygen gas. What then becomes of the oxygen and phlogiton? Dr Prietley fuppofed that they formed carbonic acid gas: but Mr Cavendifh proved, that when proper precautions are ta-

Dr l'rieflcy had procured his nitrous gas by diffolving metals in nitric acid; during the folution of which a great deal of nitrous gits efcapes. He fuppofed that nitrous gas contained phlogition, becaufe the metal was oxidated (and co: fequently, accomling to the then receised theory, mut have loft phlogifon) during its formation. Mr Lavoifier proved that this fuppofition was ill.founded by the following cel:brated experiment * : *ier. To $9+i$ grains of nitric acid (fpecific gravity 1,316) Par.1776, lie added 1104 grains of mercury. During the folution 273,2 34 cubic inches of nitrous gas were produced. Hc then dillilled the falt (oxide of mercury) which had been formed to drynefs. As foon as it became red hot it emitted oxygen gas, and continued to do fo till almot the whole of the mercury was revived: The quantity of oxygen emitted was 287,742 cubic inches. All that had happened, therefore, during the folution of the mercury, was the feparation of the acid into two parts: nitrous gas, which flew off, and oxygen, which united with the metal (x).

Mr Lavoifier concluded, therefore, that the whole of the nitrous gas was derived from the nitric acid; that nitric acid is compofed of oxygen and nitrous gas; and that the proportions are nearly 6_{4} parts by weight of nitrous gas, and 36 of oxygen gas.

But there was one difficulty which Mr Lavoifier acknowledged he could not remove. The quantity of oxygen obtained by decompofing nitric acid was often much greater than what was neceffary to faturate the nitrons gas. Mr De Morveau attempted to account for this; but without fuccefs \dagger. Nitrous gas itfelf was evidently a compound; but the difficulty was to difcover the ingredients. Mr Lavoifier concluded, from an experiment made by decompofing nitre by means of charcoal, that it contained azot: and feveral of Dr Prieftley's experiments led to the fame refult. But what was the other ingredient?

Mr Cavendifh had obferved, while he was making experiments on the compofition of water, that fome nitric acid was formed during the combuftion of oxygen and hydrogen gas, and that its quantity was increafed by adding a little azot to the two gafes before the explo. fion. Hence he concluded that the formation of the acid was owing to the accidental prefence of azotic gas. To verify this conjecture, he paffed an electrical fhock through a quantity of common air enclofed in a glafs tube: the air was diminifhed, and fome nitric acid formed. He repeated the experiment, by mixing together oxygen and azotic gas; and found that when they bore a certain proportion to each other, they were totally convertible into nitric acid. In one experiment, the proportion of azot to oxygen (in bulk) was as 416 to 914 ; in another, as 1920 to $4860 \ddagger$.
Thefe experiments were immediately repeated by Tranf.

Thefe experiments were immediately repeated by Tranf. Meffrs Van Marum and Van Trooftwyk, and with near-1;83. ly the fame refult.

The moit convenient method of performing them is the following: Take a glafs tube, the diameter of wbich
(r) Nitre is compofed of nitric acid and potafs.
(v) Or nitrous acid: for at the period of Dr Priefley's difcovery (1772) they were not accurately diftinguifhed.
(x) We have already mentioned, in a preceding note, that this experiment was firft made by Mr Bayen. See Part I. chap. iii. of this Article.

Nitric which is about the fixth part of an inch, through the Acid. cork that fluts one end of which let a fmall metallic conductor pals with a ball at each end. Fill this tube with mercury, and plunge its open end into a bafon of mercury : then put into it a mixture of 0,13 of azotic and 0,87 of oxygen gas, till it occupies three inches of the tube; and introduce a folution of potafs till it fill half an inch more. Then, by means of the conductor, make electrical explofions (from a very powerful machine) to pafs through the tube till the air is as much diminifhed as poffible. Part of the potafs will be found converted into nitre. Mr Cavendith actually faturated the potals with this acid. Mr Van Marum did not, though a good deal more gas had difappeared than in the experiments of Mr Cavendifh. This difference evidently depends on the quantity of potals contained in a given weight of the folution. The folution which Mr Van Marum ufed was no doubt ftronger than that which Mr Cavendifh employed.

Dr Prieftley had oblerved, feveral years before thefe experiments were made, that atmofpherical air was diminithed by the electric fpark, and that during the diminution the infufion of turnfol became red; but he concluded merely that he had precipitated the acid of the air. Landriani, who thought, on the contrary, that carbonic acid gas was formed, enounced the alteration of lime-water by it as a proof of his opinion. It was to refute this notion that Mr Cavendith undertook his experiments. He has fince that time repeated them with the fame fuccefs *.

It cannot be doubted, then, that nitric acid is compred of azot and oxygen ; for the objections of Dr Prieftley have been confidered while we were treating of water. Confequently nitrous gas mutt alfo be compofed of the fame ingredients. According to Lavoi. fier, nitric acid is compofed of four parts, by weight, of oxygen and one part of azut.

Nitric acid is liquid, colourlefs, and tranfparent; but the affinity between its component parts is fo weak, that the action of light is fufficient to drive oif a part of its oxygen in the form of gas; and thus, by converting it partly into nitrous acid, to make it aftume a yellow colour. Its tailc is exceedingly acid and peculiar. It is very corrofive, and tinges the fkin of a yellow colour, which does not difappear till the epidermis comes off.

It has a flrong affinity for water, and has never yet been obtained except mixed with that liquid. When concentrated, it attracts moifture from the atmofphere, but not fo powerfully as fulphuric acid. It alfo produces heat when mixed with water, owing evidently to, the concentration of the water.

The fpecific gravity of the ftronged nitric acid that can be procured is, according to Rouelle, 1,583 ; but at the temperature of 60°, Mr Kirwats could not pro. cure it fronger than 1,5543 .

Taking this acid for the fandard, Mr Kirwan has calculated how much of it exits in nitric acid of infesior denfity. His determination may be feen in the following Table, which was formed precifely in the fame. manner as that formerly given of the ftrength of fulpharic acid.

$\left\|\begin{array}{c} 100 \text { parts, } \\ \text { at the fic- } \\ \text { cific grat } \\ \text { vity } \end{array}\right\|$	Contain of ftandard aci	$\left\|\begin{array}{c} 100 \text { paris, } \\ \text { at ehe fpe- } \\ \text { cific gras } \\ \text { vity } \end{array}\right\|$	Cuntain of llan durd acid	100 parts, at the fpeciac gravit)	Contain uf Itan. lard acid
1,5543	100	1,4018.	70	1,2 286	44
1,5295	95	1,3975	69	1,2525	43
-1,5183	94	1,3925	68	1,2464	42
1,5070	93	1,3875	67	1,2419	41
1,4957	92	1,3825	66	1,2374	40
1,4844	91	1,3775	65	1,2291	39
1,4731	9°	1,3721	64	1,2209	38
1,4719	89	1,3671	63	1,2180	37
1,4707	88	1,3621	62	1,2152	36
1,4695	87	1,3571	61	1,2033	35
1,4683	86	1,3521	60	1,2015	34
1,4671	85	1,3468	59	1,1963	33
1,4640	84	1,3417	58	1,1911	3^{2}
1,4611	83	1,3366	57	1,1845	31
1,4582	82	1,3315	56	1,1779	30
1,4553	81	1,3264	55	1,1704	29
1,4524	80	1,3212	54	1,1639	28
1,4471	79	1,3160	53	1,1531	27
J,4422	78	1,3108	52	1,1524	26
1,4373	77	1,3056	51	1, 142 ${ }^{1}$	25
1, 4.324	76	1,3004	50	1,1319	24
1,4275	75	1,2911	49	1,1284	23
1,4222	74	1,2812	48	1,1241	22
1,4171	73	1,2795	47	1,1165	21
1,4120	72	1,2779	46	1,111]	20
1,4069	71	1,2687	45	1,1040	19

Now, low much water does nitric acid contain, the denfity of which is 1,5543 ?

Mr Kirwan dried a quantity of cryftallizerl carbonat $\mathrm{a} 4: 8$: of foda in a red heat, and diffolved it in water, in fuch of real acis a proportion, that 367 grains of the folution contained contaired 50,05 of allsali. He faturated 367 grains of this folu-trated nition with 147 grains of nitric acid, the fpecific gravity tric acid. of which was 1,2754 , and which, therefore, by the pre. ceding table, contained $45,7 \mathrm{per}$ cent. of acid ftandard. The carbonic acid driven ofl amouuted to 14 grains. On adding 939 grains of water, the fpecific gravity of the folution, at the temperature of $58,5^{\circ}$, was 1,0401 . By comparing this with a folution of nitrat of foda, of the fame denfity, precifely in the manner deferibed for. merly under fulphuric acid, he found, that the falt con. tained in it amounted to $\frac{1}{16,901}$ of the whole. There was an excefs of acid of about two grains. The weicht of the whole was 1439 grains: The quantity of falt, confequently, was $\frac{14 \hat{39}}{16,901}=85,142$ grains. The quantity of alkali was $50,05-14=36.05$. The quantity of flandard acid employed was 66,7 . Tire whole of which amounted to 102,75 grains; but as only 85,142 grains entered iuto the compofition of the falt, the remaining 17,608 muft have been pure water mixed with the nitric acid. But if 66,7 of 1 landard acid contain 17,608 of water, 100 parts of the fame acid muft contain $26,3^{*}$.

One hundred parts of flandard nitric acil, thercfore, Ziung.is is compofed of 73,62 part of pure nitric acid and 26,38 of water. But as Mr Kirwan las not proved that nitrat of Soda contains no water, perhaps the groportion

Nitric sicid.
\&: :
Its astion
on other bndies,

* Prcuf,

Dijon Acadimicians, and Cornette.
tTromfiorff.
of water may be greater. He has rendered it probable, however, that nitrat of foda contains very little watel.

Nitric acid is decompofed by a great variety of fub. ftances. Wheu poured upon oils, it fets them on fire. This is occafioned by a decompolition buth of the acid and oil. The oxygen of the acid combines with the carbon and with the hydrogen of the oils, and at the fame time lets go a quantity of caloric. Hence we lie that the oxygen which enters into the compofition of the nitric acid ftill contains a great deal of caloric ; a fact which is confirmed by a great number of other phenomena. The combuftion of oils by this acid was firf taken notice of by Borrichius and Slare ; but it is probable that Homberg communjeated it to Slare. In order to fet fire to the fixed oils, it muft be mixed with fome fulphuric acid; the reafon of which leems to be, that thefe oils contain water, which mult be previoußy removed. 'The fulpluric acid combines with this water, and allows the sitric acid, or rather the oil and nitric acid together, to adt. The drying oils do not require any fulphuric acid: they have been boiled, and confequently deprived of all moifture. It fets fire alfo to charcoal, provided it he perfectly dry. 'This fact was firft cbferved by Prouft, and afterwards confirmed by the Dijon academicians. It fets fire alfo to zinc, bifnuth, and tin, if it be poured on them in fufion, and to filings of iron, if they be perfectly dry *. In all thefe cafes the acid is decompoled. Sulphurated liydrogen gas alfo takes fire, and burus with a ftrong flame by means of this acid \dagger.
It is capable of oxidating all the metals except gold, platimum (x), and titanium. It appears, from the experiments of Scheffer, Berginan, Sage, and Tillet, that nitric acid is capable of diffolving (and confequently of

44 Its combi. nations, oxidating) a very minute quantity even of gold.
Nitric acid combines with alkalies, alkaline earths, alumina, and jargonia, and with the oxides of metals, and forms compounds which are called nitrats. It does not act upou lilica nor adananta.
tias.

The order of its aftinities is as follows:

Barytes,
Potafs,
Barytes,
Potafs,
Soda,
Strontites \ddagger,
Lime,
Magnefia,
Ammonid,
Alumina,
Jargonia y?
Metallic oxides, in the fame order as for fulphuric acid.
Water.
而

Sect. IV. Of Nitrous Acid.

If oxygen gas be mixed with nitrous gas, a quantity of red fumes appear, which are readily abforbed by 4 I6 water. Thefe red fumes are sitrous acid. to another veffel containing the fame acid, and expofed cid. to the light, the inverted glafs will become partly full of oxygen gas, and at the fame time part of the nitric acid is converted into nitrous acid *. It follows, from * scbecle. this experiment, that nitrous acid contains lefs oxygen Crell's Anthan nitric acid. Lavoifier has calculated, that it $c^{\prime} m^{n}=A_{s} 1780$ tains fomewhat lefs than three parts of oxygen to one of azot.

Nitrous acid is of a brown or red colour, exceeding. Its properly volatile, and emitting a very fuffocating and feareely thes. tolerable odour. When to this acid, concentrated, a fourth part by weight of water is added, the colour is changed from red to a fine green; and when equal parts of water are added, it becomes blue t. Dr Priet- 1 Bergmano ley obferved, that water impregnated with this acid in the ftate of vapour became firlt blue, then green, and lafly yellow. A green nitrous acid became orange. coloured while hot, and retained a yellow tinge when cold. A blue acid became yellow on being beated in a tube bermetically fealed. An orange-coloured acid, by long keeping, became green, and afterwards of a deep blue ; and when expofed to air, refumed its original colour. Thefe colours feem to depend upon the concentration of the acid.

Dr Priellley found that water abforbed great quantities of this acid in the flate of vapour ; and that winn faturated, its bulk was increafed one-third.

In the flate of vapour, it is abforbed rapidly by oils. Whale oil, by abforbing it, became green, thick, and heavier It gradually decompofed the acid, retained the oxygen, and emitted the azot in the flate of gas \ddagger :

It is abforbed by fulphuric acid, but feemingly with-iii. III. out producing any change; for when water is poured into the mixture, the heat produced expels it in the ufual form of red fumes \wp. 'The only lingular circum- $\$$ Ibid. ftance attending this impregnation is, that it difpolesp.144. the fulphuric acid to cry thallize $\|$. This fact, firt ob- If Ibid. ferved by Dr Prieftley in 1777 (Y), was afterwardsp. 156. confirmed by Mr Cornette.

Nitrous acid appears capable of combining with molt of the bodies with which nitric acid unites. The falts which it forms are called nitrites.

Its affinities have never been accurately examined. Bergman fuppofes them the fame with thole of nitric acid.
(x) Nitre, however, acts upon platinum, as Mr Tennant has proved. Phil. Tranf. 1797. Morveau lad made the fame obfervation in the Elemens de Chimie de l' Acadtmie de Dijon.
(s) Bernhardt, however, relates, in 1765 , that once, when he was ditilling a mixture of ten pounds of nitre with an equal quantity of calcined vitriol, which he had put into a retort, to which was fitted an adapter between the retort and the receiver, which contained a quantity of water-he obferved a confiderable quantity of a white cryftalline falt formed in the adapter, while the liquid acid paffed as ufual into the receiver. This fait was very volatile, fmoked ftrongly when it was expofed to the air, and exhaled a red vapour; it burnt, to a black coal, wood, feathers, or linen, as fulphuric acid does; and where a piece of it fell, it evaporated in form of a blood red vapour, till the whole of it difappeared. Half an ounce of thefe cryftals diffolved in water with fpurting and hifling, like that of a red-hot iron dipped in water, and formed a green nitrous acid. Some of this falt being put into a bottle, which was not well flopped, entirely vanifhed. Thefe cryftals were evidently the fame with Dr Priefley's. See Keir's Diaionsry.

Of Nitrous Gas.

Nirrous gas was firf obtained by Dr Hales, but its properties were difcovered by Dr Prieflley. It may be procured by diffolving metals in nitric or nitivus acid, and catcling the product by means of a pneumatic apparatus.

As nitrous acid is furmed by combining nitrous gas and oxygen, it is cvident that nitrous gas contains lefs oxygen than nitrous acid. According to Lavoifier, it is compofed of two parts of oxygen and one of azot.

Nitrous gas is elaftic, and invilible like conmon air. It extinguifhes light, and inftantly kills all thofe animals that are obliged to breathe it. Its feecific gravi-

- On Pblo- ty, acenrding to Mr Kirwan, is $0,001458^{*}$.

عifor, P. 28. Dr Prieftley found that water was capable of auforb. ing about one-tenth of nitrous gas, and that by the ab-
\& Prifley, forption it acquired an altringent talte \dagger. Water parts with all the nitrous gas it has imbibed on being frozen \ddagger.

Neither phofphorus nor fulphur feem capable of decompofing nitrous gas.
Mr Linck, profeffor at Rofloc, found, that three parts of nitrous gas and two of hydrogen gas, obtained by fulphuric acid and iron, are fcarcely, or not at all, diminifhed when expofed to day-light over water. Common air is not more dminifhed by this admixture kept a long time: but the mixture itfelf of thefe two gafes is diminifhed by the addition of new portions of nitrous gas. Mr Linck concludes, from this obfervation, that part of the oxygen of the nitrous gas combined with the hydrogen and formed water, and that the remaining oxygen and azot formed a mixture fimilar to the air of the atmofphere. Mr Vauquelin had previoufly made the fame obfervation. The affinity of hydrogen, therefore, for oxygen is greater than that of azot $\$$.

Oils imbibe nitrous gas with avidity, and decompofe it.

Nitric acid abforbs a vaft quantity of it, and is by that means converted into nitrous acid. - Sulphuric acid alfo abforbs it.

The moft important property of nitrous gas is that of combining inftantly with oxygen gas, and forming nitrous acid, which is inftantly abforbed by water. This property induced Dr Priefley to ufe nitrous gas as a teft of the purity of common air. He mixed together equal bulks of thefe fubflances, and judged of the purity of the air by the diminution of bulk. The apparatus ufed for this purpofe, which confilts of a graduated tube, has been called a eudiometer. This eudiometer has been greatly improved by Fontana, but it is Rill liable to uncertainty in its application. Perhaps the beft eudiometer is fulphuret of potafs, which, as Morveau has difcovered, abforbs, on the application of heat, the whole oxygen in a given bulk of air almoft inttantaneoufly.

Dr Priefley found that nitrous gas was decompofed by paffing electric explofions through it.

Let us now confider in what manner oxygen and azot are combined in the three fubflances which have been jult defcribed.

It can laardly be conceived that azot is capable of combining with three'different proportions of oxygen, and of being faturated with each: it is furely much more probable, that in nitrous gas the oxygen and azot faturate each other directly and completcly; that nitrous acid is compofed of nitrous gas and oxygen, and Suppl. Vol. I. Part I.
nitric acid of nitrous acid and oxygen. And this fup- Muriatic pofition is confirmed by confidering that the frength Acid. of affinity by which the oxygen is retained in each of thefe fubftances is very different. Sonte fu\}fances, as light, are capable of decompoting nitric acid, by feizing fonce of its oxygen, and of converting it into nitrous acid; but they have no effect whatever upon nitrous acid or nitrous gas. Others, as bifnuth, copper, phofphorus, and fulphur, are capable of decompoling both nitric and nitrous acids, but are incapable of aitering nitrous gas: And others, again, as carbon, zinc, and iron, are capable of decompofing all the three. Every body which is capable of decompofing nitrous acid is capable alfo of decompofing nitric acid; and every body that decompmes nitrous gas is capable alfo of decompoing the other two. But the reverfe of this is not true. The affinity of oxygen, then, for azot, nitrous gas, and nitrous acid, is different: oxygen has a ftronger affinity for azot than it has for nitrous gas, and a Atronger affinity for nitrous gas than for nitrous acid. But if all thefe bodies were direct combinations of azol and oxygen, how could this difference of affinity take place? Is it reafonable to fuppofe that a fubflance has a flronger affinity for one proportion of any other body than for another proportion? or that, if fuch a difference exifted, the Atrongeft aff nity thould not always prevail? Mix together nitric acid and nitrous gas in proper proportions, and the whole mixture is coaverted into nitrous acid: but mix nitrous and nitric acids together, and no change whatever is produced. In the firlt cafe, is it not evident that the affinity of nitrous gas for oxygen is greater than that of nitrous acid; that therefore it decompofes the nitric acid, deprives it of oxygen, and leaves it in the flate of nitrous acid? But, in the fecond cafe, no change can take place, becaufe nitric acid is compofed of nitrous acid and oxygen; and it would be abfurd to fuppofe, that nitrous acid has a Atronger affinity for oxygen than nitrous acid has. But were azot and oxygen capable of uniting in various proportions, why flould not a mixture of nitric and nitrous acids, or of nitrons gas and nitrous acid, form new fubftances? And why are the only fubftances which appear in decompofitions nitrous acid and nitrous gas? Surely thefe reafons are fufficient to fhew us, that thefe bodies are combined in the following manner:
\(\left.$$
\begin{array}{l}\text { Azot and } \\
\left.\begin{array}{l}\text { Oxygen } \\
\text { Nitrous gas }\end{array}
$$\right\}

\left.\begin{array}{l}and oxygen

Nitrous acid

and oxygen

aps there may be even more links in\end{array}\right\}\end{array}\right\}\)| form nitrous acid; |
| :--- |

form nitric acid.

Perhaps there may be even more links in the chain than we are aware of. The dephlogifticated nitrous air of Dr Priefley, which Dieman and Van Trooftwyek have lately proved to be compofed of 37 parts of oxygen and 63 of azot, and of which little nore is known than that it fupports flame, is noxious to animals, abforbed by water, and only obtained by means of fubftances capable of decompofing nitrous gas-pcriaps this air is compofed directly of oxygen and azot, nitrous gas of this air and oxygen, and fo on. There may be even links ftill farther back than that.

Sect. V. Of Muriatic Acid.

Muriatic acid appears to have been known to Bafil Difcuvery Valentine; but Clauber was the fint who extracted it of muridic R r from ${ }^{3 \text { cid. }}$

Muriatic Asid.
from common falt by means of fulphuric acid. Common falt is compofed of inuriatic acid and foch, for which laft fubfanice fulphuric acid has a ftronger affinity. This acid was firl called firit of falt, atterwards * Frommu- marine acid, and now, pretty generally, muriatic acid *.

423
Its properties.
\dagger Prieflicy, ii. 293.
\dagger Iriß Tranfiv. nearly double that of cominon air.

Water abforbs this gas with avidity. T'en grains of water are capable of abforbing ten grains of the gas. The folution thus obtained occupies the fpace of 13,3 grains of water nearly. Hence its fpecific gravity is
δ Kirruan, ${ }^{1,500}$, and the denfity of the pure muriatic acid in it Irifl Tranfo is 3,03 § (A).
vol. iv. As muriatic acid can only be ufed conveniently when diffolved in water, it is of much confequence to know how much pure acid is contained in a given quantity of liquid muriatic acid of any particular denfity.
${ }^{424}$ inty it contained in acids of various denfitics. red ; which gas is muriatic acid in a flate of purity. mon air. It defiroys life and extinguifhes flame. A candle, juft hefo:e it goes out in it, burns with a beau-tiful-green, or tather light blue flame; and the fame flame appears when it is firft lighted again \dagger.

The fpecific gravity of muriatic acid in the flate of gas is, according to Mr Kirwan $\ddagger, 0,002315$, which is Now the fpecific gravity of the pureft muriatic acid that can eafily be procured and preferved, is 1,196 ; it would be needlefs, therefore, to examine the purity of any muriatic acid of fuperior denfity. Mr Kirwan cal-

It is fonetimes prepared by mixing one part of common falt with feven or eight p orts of clay, and ditilling the mixture. The clay, in this inflance, is fuppofed to act chiefly by means of the fulphuric acid which it always contains (z) : But this fubject ftill requires farther elucidation. By thefe procefles, muriatie acid is obtained diffolved in water. Dr Priefley difcovered, that by applying beat to this folution, and receiving the product in veffels filled with mercury, a gas was procuculated that muriatic acid, of the denfity 1,196 , contains $\frac{49}{70 \circ}$ parts of acid of the denfity 1,500 , which he took for the ftandard; then, by means of experiments, he formed the following Table :

roo 1 arts, at the Specific yraviy	Contain of ftandard aciu	llos parts, at the fpe. sific gravity		\|100 parts, a the fpecific gravity	Contain of frandard acid
1,196	49	1,147	37	1,1036	26
1,191	48	1,1414	36	1,0984	25
1,187	47	1,1396	35	1,0942	24
1,183	46	1,1358	34	1,0910	23
1,179	45	1,1320	33	1,0868	22
1,175	$4+$	1,1282	32	1,0826	21
1,171	43	1,1244	31	1,0784	20
1,167	42	1,1206	30	1,0742	19
1,163	41	1,1168	29	1,0630	16
1,159	43	1,1120	28	1,03+5	10
1,155	39	1,1078	27	1,0169	5
1,151	3^{8}				

Muriatic acid (for this folution of the acid in water
is aluays called by that name) is generally of a pale Oxy:muria yellow colour, uwing, a6 Dr Pricfley fuppofed, to fome tic Arid. carthy matter diffolved in it ; but much nore probably to its having abforbed a quantity of oxygen, for which it has a ftrong affinity. Indeed, that this is the caufe appears evidently from Dr Priefley's own obfervations; for it was deftroyed only by thofe bodies which liad a fronger affinity for oxygen. It is very volatile, as might be expected, conitantly emitting white fumes of a peculiar and unpleafant odour.

Muriatic acid is capable, by the affiftance of heat, of ${ }^{425}$ a 2 en oxidating the following metals: Iron, tin, lead, zinc, on other bifmuth, cobalt, nickel, manganefe, antinıony, arfenic. bodies. Several of there, as iron, for inftance, it oxidates even without the alliflance of heat.
At a boiling heat, it oxidates filver and copper. It has no action on gold, platinum, mercury, tungten, moly bdenum, tellurium, titanium. Its action on uranium has not been tried.

In the tate of gas, it appears to decompore alcohol and oils by its affuity for water *.
It is capable of diffolving a little fulphat and fluat \dagger of lime, and arfeniat of mercury.

It combines with the alkalies, alkaline earths, alumina, and jargonia, and with molt of the metallic oxides, and forms nentral falts, known by the name of muriats.
Morveau firft fhewed, that this acid, in the llate of Deftroy gas, neutralized putrid miafmata, and, by that means purrid ni. deftroyed their bad effeets. In I773, the cathedral of ${ }^{\text {aimata. }}$ Dijon was fo infected by putrid exhalations, that it was deferted, after feveral unfucceisful attempts to purify it. Application was made to Mr Morveau to fee whether he knew any method of deftroying thefe exhalations. He poured two pounds of fulphuric acid on fix pounds of common falt, contained in a glafs capfule, which had been placed on a few live coals in the middle of the church. He withdrew precipitately, and shut all the doors. The muriatic acid gas foon filled the whole cathedral, and could even be perceived at the door. After 12 hours, the doors were thrown open, and a current of air made to pafs through to remove the gas. This deftroycd completely every putrid odour \dagger.

The affinities of muriatic acid are as follow :
larytes,
Potafs,
Soda,
Strontites §, § Dr Hoper
Lime,
Magnefia,
Anmonia,
Alumina,
Jargonia $\|$,
Metallic oxides as in fulphuric acid, Water.
\ddagger Your. de
Pby. . i. 43^{6}.
$+27$.
lisaffinities.
|| Vauqgalin,
Ann. de
Cbim. xxii.
205.

Sect. VI. Of O.xy-muriatic Acid.
Put into a glafs retort one part of the black oxide Dificovery of manganefe and three parts of muriatic acid ; place and prepait in a land-bath in fuch a manner that the liquor which oxy-muriarifes up into the neck of the retort may fall back again tic aciid.
(z) Morveau has fhewn, that even alumina contains fulphuric acid, provided a precipitation, on adding muriat of barytes, be a fufficient teft.
(A) For let $\mathrm{D}=$ the denfity of a mixture; m the weight of the denfer ingredient; d its denfity; l the weight of

Oxyanuri- into the reftel; and apply a finall receiver, with a little atic Acid. water in it, luted to the retort merely by a fillet of brown paper. In about a quarter of an hour the receiver will appar filled with a yellow-coloured gas; it is then to be qumoved, and others applied fuccellively till the operation be tinifhed.

This gas is oxy-muriatic acid, firl difcovered by Scheele, while he was making experiments on manganefe, and called by him desblogificated muriatic acid, becaufe he thought it muriatic acid deprived of phlogiton. The French chemitts called it oxygenated muriatic acid, which Dr Pearfon contracted into oxy-muriatic acid; and this latt name we have adopted, becaufe it is fhorter and equally dillinct.

The true theory of the formation and compofition of this acid, which was firlt given by Berthollet, will appear from the following facts: The black oxide of manganefe is, during the procefs, converted into white oxide, and mult therefore have given out a quantity of oxygen. When oxy-muriatic acid difolved in water is prefented to the light in a veftel half cmpty, oxygen gas is difengaged and foats above, and the acid is converted into common muriatic acid: Confequently oxymuriatic acid is compofed of muriatic acid and oxygen. Black oxide of manganefe is compofed of white oxide and oxygen; muriatic acid has a ftronger affinity for oxygen than the white oxide; during the diftillation the black oxide is decompofed, the oxygen combines with muriatic acid, and the product is oxy-muriatic acid gas.

Oxy-muriatic acid gas is of a yellow colour. It fupports Alame, but cannot be breathed without proving noxions. The death of the ingenious and induftrious Pelletier, to whom we have fo often referred, was occafroned by his attempting to relpire it. A confumption was the confequence of this atiempt, which, in a fhort time, proved fatal.

It does not unite readily with water. Scheele found, that after flanding 12 hours over water, $\frac{4}{5}$ ths of the gas were abforbed: the remainder was common air, which no doubt had been contained in the veffel before the operation. Berthollet furrounded feveral bottles containing it with ice: as foon as the water in thefe bottles was faturated, the gas became concrete, and funk to the bottom of the veffels; but the fmalleft heat made it rife in bubbles, and endeavour to efcape in the form of gas*. Weftrum obferved that it became folid when expofed in large veffels to the temperature of 40°; and that then it exhibited a kind of eryftallization \dagger. The . fpecific gravity of water faturated with this gas, at the
temperature of 43^{n}, is 1,093 . Water impregnated Osy-mari. with it has not an acid, but an auftere tafte t, unlike $\underbrace{\text { atic Acid. }}$, that of other acids.

* Bertbollef,

It renders vegretable colaurs whisie, and not red, as Fourno de other acids do; and the colour thus deitroyed can Pby: 1785. ncither be reflored by acids nor alkalies. It has the t Schecle. fame cffects on yclluw wax. If the quantity of vegetable colours to which it is applied be fuficiently great, it is found reduced to the flate of common muriatic acid. Hence it is evident, that it deltroys thefe colours by communicating oxygen. This property has rendered oxy-muriatic acid a very important at icle an bleaching.

Nitrous gas, hydrogen, fulphur, fulphurous acid, and phofphorus, decompofe this acid, by depriving it of its oxygen, and leaving the muriatic acid in a feparate ftate. Thofphorus, however, does not produce this effect fo readily, except when affifted lyy heat *.

When muriatic acid is mixed with nitric acid, the Morvesus compound bas precifely the fmell and the qualitics of thetsod. oxy-muriatic. It can farcely be doubted, therefore, ibarmie, i. that as far as it acts as an acid, different from the mu- ${ }^{25}$. riatic and the nitric, it is nothing elfe but oxy-nturiatic Nirro-nnle acid.

> riatic acid

This mixture of the two acids was formerly called aqua regia; but at prefent it is called by the French chemifts nitro-muriatic acid. It is firft mentioned by Ifaac the Hollander, and feems to lave been known before the murintic acid itfelf. It was prepared by pouring nitric acid on common falt. The nitric acid decompofes the falt, and part of it unites with the muriatic acid thus fet at liberty.

Oxy-muriatic acid oxidates all the metals (except, Its acionn perhaps, titanium) without the affiltance of heat. winher

It decompofes; red fulphuret of mercury, or cimabar, bedies. which neither fulphuric nor nitric acid is able to accomplifh ρ.

All the fubflances placed before muriatic acid in the table of the affinities of oxygen, are capable of decompo. fing this acid. Many of then, when plunged into it while in the ftate of gas, actually take fire. Weftrum obfer. ved, for inftance, that when pieces of wood were plun. ged into this gas, they took lire; that arfenic burned with a blue and green flame; bifmuth, with a lively bluifh flame; nickel, with a whire flame, bordering on yellow; cobalt, with a white flame, approaching to blue; ziac, with a lively white flame; tin, with a feeble bluifh flame; lead, with a fparkling white flame ; copper and iron, with a red flame : that powdered charcoal took fire in it at the temperature of 90°, and that ammonia produced with it a loud detonation $\|$.

$$
\mathrm{Rr}_{2}
$$

an equal bulk of water; and m^{\prime}, d^{\prime}, and l^{\prime}, the fame elements of the rarer: Then $\mathrm{D}=\frac{m+m^{\prime}}{l+l^{\prime}}$. In the above cafe, $m+m^{\prime}=20$, and $l+l=13,3$. Then $\mathrm{D}=\frac{20}{13,3}=1,5$. Now to find the fpecific gravity of the condenfed muriatic acid gas, we have from the above equation $l=\frac{m+m^{\prime}-l^{\prime \prime} \mathrm{D}}{\mathrm{D}}=\frac{5}{1,5}=3,3$; and $d=$ $\frac{m}{l}=\frac{10}{3,3}=3,03$. See Irijo Tranfagions, vol. iv.

This calculation, however, is formed upon the fuppofition that the water fuffers no condenfation at all-a fuppofition certainly contradicted by every analogy, and which, as Mr Keir has C hewn, the experiments mentioned in Mr Kirwan's firft paper are infufficient to prove.

Oxy-muri- With alkalies, earths, and metallic oxides, it is caatic Acid. pable of combining and forming neutral falts, which
\qquad bave been called oxy-mariats.
Itsaffurities. The affinities of this acid, according to Lavoifier, are as follows:

- Vauque
lin, Ann de Cbim. xxij. 208.

The component parts of muriatic acid are fill impats of miriatic acid.
out of the bottle; they were ftrongly inflammable, and Phoffhorle probably, therefore, pure liydrogen gas. The liquor gradually loft its odour of fulphurated hydrogen gas, and after fome days fmelled very much like fagnant rain-water. As the bubbles ceafed to be produced, it recovered its traufparency. On evaporating a fmall quantity of this folution in a watch-glafs to drynefs, a bitter deliquefeent falt was left belind. On this falt a little fulphuric acid was dropped, and paper moiftened with ammonia was held over the glafs; white vapours were immediately formed over the glafs; and confequently fome volatile acid was feparated by the fulphuric acid. Mr Lambe evaporated about eight ounce meafures of the fame liquor, and, as before, dropped a little fulphuric acid on the refiduum; a ftrong effervefcence was excited, very pungent acid fumes arofe, which, from their fmell, were readily known to be mu. riatic. The fame truth was eftablifhed beyond a doubt, by holding a bit of paper moiftened with water, which made the vapours vifible in the form of a grey fmoke; a diftinguifhing characteriftic, as Bergınan has obferved, of the muriatic acid.-When manganefe and mercury were diffolved in fulphurated hydrogen gas, the falts formed gave the fame unequivacal marks of the prefence of muriatic acid *.

Shall we conclude from thele facts, that the bafis of $i b i d$. muriatic acid is fulphurated hydrogen; that muriatic acid is fulphurated hydrogen combined with oxygen ; that this combination takes place during the folution of the iron; and that the efcape of hydrogen is owing to the decompofition of the water?

Sect. VII. Phofphoric Acid.

435
Phosphores is capable of forming combinations Dife very with two different quantities of oxyren; with the larger of phofphe it forms phofphoric; and with the imaller phofphoruus acid.

Phofphoric acid was unknown till after the difcovery of phofphorus. Boyle is perhaps the firft perfon who mentions it: he difcovered it by allowing phofphoras to burn flowly in common air. But Margraf was the firt perfon who examined its properties, and difcovertd it to be a peculiar acid.

It may be procured by expofing phofphorus to a moderate heat : the phofpliorus takes fire, combines with oxygen, and is converted into an acid.

436
It may alfu be prepared by expoling phofphorus Methad of during fome weeks to the ordinary temperature of the preparing is atmofphere, even in winter; when the phofphorus undergocs a flow combuftion, and is gradually changed into a liquid acid. For this purpofe, it is ufual to put fmall pieces of phofphorus on the inclined fide of a glafs funnel, through which the liquor which is formed drops into the bettle placed to receive it. From one ounce of phofphorus about three ounces of acid liquor may be thus prepared, called phofpboric acid by deliquefence.

Scheele has contrived another mode of obtaining the phofphoric
(в) According to Trommdorf, oxy-muriatic acid is incapable of combining with magnefia. Aun. de Chim. xxii. $2: 8$.
(c) This is the order of the affinitics of nitro-muriatic acid. Many facts (fome of which fhall appear afterwards) cuncur to prove that the affinities of the oxy-muriasic acid are the fame, and indeed that they are the fame acids.
(D) Analyfis of the waters of two mineral fprings at Leminton Priors. Manchefler Mimoirs, vol. V. part it.

Phofphoric phofphoric acid from phofphorns without combultion, Acid.

Bergman, nefs is $2,687 \ddagger$, that, of phofphoric acid by deliquer-
\& Morvau. cence 1,417 §. It is capable of cryftallizing; its cryftals are quadrangular prifms terminated by quadrangular pyramids.

Phofphoric acid ohtained by deliquefcence, when mixed with an equal quantity of diflilled water, acquired fo little beat as to raife the thermometer only one degree, as Mr Sage obferved.

Mr Lavoifier raifed Reaimur's thermmeter from 80 to $14^{\circ} \mathrm{nr} 15^{\circ}$ by mixing phofphoric acid boiled to the confiftence of a fyrup, with an equal quantity of water; and from 8° to 32° or 33° when the acid was as thick as turpentine \|.

Phofphuric acid is capable of oxidating iron, tin, lead, zinc, antimony, hifmuth, manganefe. When fufed with feveral of thefe metals, as tin, lead, iron, and zinc, it is converted into phofphorus; a proof that they lave a Atrunger affinity for oxygen.

It docs not act upon gold, platinum, filver, copper, mercury, arfenic, cobalt, nickel. It appears, however, to have fome action on gold in the dry way, as it is called; for when fufed with gold-leaf it afumes a purple colour; a proof that the gold has been oxidated.

It is capable of combining with alkalies, alkaline earths, alumina, and metallic oxides; and of forming falts known by the name of phofphats.

Phofphoric acid, by the affiltance of heat, is capable of decompofing glafs.

Its affinties are as follows: 439
Lime,
Barytes,

Strontites*,	* Hope,
Magnefia,	Tranf. E.
Potals,	sin.iv.

Pots,
Soda,
Ammonia,
Alumina,
Jargonia \uparrow, + V'nuque:
Metallic osides as in fulphuric acid, lin, Ann. de Water.
The Phosphorous Acid is formed when phofpho ${ }^{203 .}$
rus is expofed to a flow fpontancuus combuttion at the phofphotemperature of the atmofphere; but it gradually abforbs rous acid. more oxygen, and is converted into phofphoric acid.

Concerning phofphorous acid nothing of any confequence is at prefent known, except that it contains lefs oxygen than phofphoric acid.

Sect. VIlI. Boracic Meil.
The word lorax firl occurs in the works of Geber, $\mathrm{Br}^{4 \mathrm{I}}$ an Arabian chomift of the oth century. It is a name given to a fpecies of white falt inuch ufed by various artifts. Its ufe in foldering metals appears to lave been known to Agricola.

Burax is found mixed with other fubtances in Thibet. It feems to exift in fome lands adjacent to lakes, from which it is extracted by water, and depolited in thofe lakes; whence in fummer, when the water is thallow, it is extracted and carried of in large lumps. Sometimes the water in thefelakes is admitied into refervoirs, at the bottom of which, when the water is extaled by the fummer's heat, this falt is fuund. - Hence it is carried to the Eatt Indies, where it is in fome meafure purified and crytallized: in this ftate it comes to Europe, and is called tincal. In other parts of Thibet, it feems, by accounts reccived from China, they dig it out of the ground at the depth of about two yards, where they find it in frnall cryftalline mafles, called by the Chinefe mi poun, boui poun, and pin poun; and the earth or ore is called pounsa \ddagger.

Thourh horax has been in common ufe for nearly Minercllyg, three centuries, it was only in 1702 that Homberg, by $1.3 \%^{\circ}$ diftilling a mixture of borax and green vitriol, difcovered nifovery the boracic acid. He called it narcotic or fedative falt, of boracts from a notion of his, that it poffeffed the propertics in.acid. dicated by thele names In his upinion, it was merely a product of the vitriol which he had ufed; but Le. mery the Younger foon after difcovered, that it could likewife be obtained from borax by means of the nitric and muriatic acids. Geoffroi afterwards difcovered,
(E) We have obferved, however, that when very much concentrated it deftroyed the texture of vegetable fub. ftances, paper for inftance, very completely. borax;

* Reufs

De Sale SeSat. I778.
that borax contained foda: and at laft Baron proved, by a nuniber of experiments, that herax was compofed of boracic acid and foda; that it might be reproduced by combining thefe two fubftances-and that therefore the boracie acid was not formed during the decompotition of borax, as former chemiits had innagined, but was a peculiar fubflance which pre-exitted in that falt.

This conctution has been called in queftion by Mr Ca . det *, who affirmed that it was compofed of foda, the vitrifiable carth of copper, another unknown metal, and mu. riatic acid. But this affertion has never been confirmed by a fingle proof; Mr Cadet has only proved that boracic acid fometimes contains copper; and Beaumés experiments are fufficient to convince us that this metal is tacerly accidentally prefent, and that it is probably derived from the veffels employed in cryftallizing borax: That horacic acid generally contains a little of the acid employed to feparate it from the foda, with which it is combined in borax : And that crude borà contains a quantity of earth imperfectly faturated with boracic acid:-All which may be very true; but they are altogether infufficient to prove that boracic acid is not a peculiar fubftance, fince it difplays properties different from every other body.

Meffrs Exfctaquet and Struve have endeavoured, on the other hand, to prove that the phofphoric and boracic acids are the lame. But their experiments meres ly fhew that thefe acids refembie one another in feveral particulars; and though they add confiderably to our knowledye of the properties of the phofphoric acid, they are quite inadequate to eftablifh the principle which thefe chemifts had in view; fince it is not fulficient to prove the identity of the two acids, to fhew us a refernblance in a few particulars, while they differ in many others. Boracic acid muft therefore be confidered as a diftinct fubltance, the component parts of which are entirely unknown.
The eafieft method of procuring boracic acid is the following one: Diffolve borax in hot water, and filter the folution; then add fulphuric acid, by little and little, till the liquor be rather more than faturated. Lay it afide to cool, and a great number of fmall, Ahining, laminated cryftals will form. Thefe are the boracic acid. They are to be wafhed with cold water, and drained upon brown paper.

This acid has a fourifh tane at firt, then makes a bitterith cooling impreffion, and at laft leaves an agreeable fiveetnefs. Its cryflals have fome refemblance to ipermaceti, and it lias the fame kind of feel.

It changes vegetable blues to red; it has no fmell ; but when fulphuric acid is poured on it, a tranfient odour of muk is produced *. 'The air produces no change on it.
According to Reufs, it is foluble in zo parts of cold water, tight parts of warm water, and 2,5 of boiling water. According to Wenzel, 960 grains of builing water difflve $43+$ of this acid. According to Morveau, one pound of boiling water diffolves only 183 grains.

It is exceedingly fixed when not combined with water. When expofed to a violent fire it is converted into a white tranfparent glafs; which, however, is foluble in water, and produces the acid again by evaporation.

Boracic acid is alfo foluble in alcolol; and alcohol containing it burns with a green flame.

Paper dijped into a folution of boracic acid burns with a green flame.

Though mixed with bine powder of ciarco.l, it is neverthelefs capable of vitrification; and with foot it melts into a black bitumen-like mafs, which is, however, foluble in water, and cannot be eafily calcined to aftes, but fublines in part *.
*Keir's
With the affitance of a ditilling heat it difinises in Difionary oils, efpecially in mineral oils; and with thefe it yietls fluid and folid products, which give a green culour to fpirit of wine.

When boracic acid is rubbed with phofphorus, it does not prevent its inflammation; but an carthy yellow matter is left hchind t.

It is hardly capalle of oxidating or diffolving any of ${ }_{4}{ }_{4}$ thid the metals except iron and rine, and perhaps copper. Itsaction

Buracic acid combines with alkaties, alkaline earths, on other and alumina, and moft of the metallic ozides, and furms compounds, which are called lorats.

Its affinities ate as follows:

time, Barytes, Strontites \ddagger, Magnefia, Potafs, Soda, Amınonia, Oxide of zinc, \qquad iron, \qquad lead, - - cobalt, \qquad copper, \qquad nickel, - inercury

Alumina, Jargonia§,
§ $V_{\text {awque }}$ Water,
itn, $A n n$. ob Alcohol.
Sect. IX. Fluoric Acid.
The mineral called fluor or fufible foar, was not pro- Dificuver perly diltinguifhed from other fpars till Margraf pub- of fluoric lifhed a differtation on it in the Berlin Traufactions for acid. 1768. He firt proved that it contained no fulphoric acid, as had heen formerly fuppofed; he then attempted to decompofe it, by mixing together equal quantities of this mineral and fulphuric acid, and diftilling them. Dy this method he obtained a wobile fublimate, which he fuppofed to be the fluor itfelf volatilized by the acid. He oblerved, with aftonifhment, that the glafs ritort was corroded, and even pierced with holes. Nothing more was known concerning fluor till Scheele publified his experiments threc years after; by which be proved that it was compofed chiefly of lime and a particular acid, which has been called fluoric acid.

To obtain it, put eight ounces of finely powdered Method of fluor into a retort, and pour on it an equal quantity of nbtaining fulphuric acid, and lute to the retort, as exactly as pof. it. fible, a receiver containing eight ounces of water. Vapours immediately appear and darken the infide of the veffel : Thefe are the acid in the flate of gas. The diftillation is to be conducted with a very moderate heat, not only to allow the gas to condenfe, but alfo to prevent the fluor itfelf from fubliming. After the pro-

Flunsic cele, a cruft of white earth is found in the recciver, Acid. which has all the properties of filica.

Schecle fuppofed that the filica produced was formed of flooric acid and water, and Bergmon adopted the fame opinion. But Wiegleb and Buccholz flewed, that the quantity of filica was exuetly equal to what the retort loft in weight; and Meyer completed the proof that it was derived from the ghefs, by the follow. ing experiment : He put into each of three equal eylindrical tin reflels a mixture of three oz. of fulphuric acid and one oz. of thuor, which had been pulverized iti a mortar of metal. Into the frit he put one 0% of pounded slafs; into the fecond, the fame quantity of quartz in powder; and into the thin, nothing. Above eath of the reffels he hung a fponge moitened with water; and having covered them, he expofed them to a moderate heat. The fponge in the tivit ey linder was covered with the cruft in half an hour : the fponge in the fecond in two hours; but no cruft was furmed in the third, though it was expofed feveral days. In coufequence of this decifive experiment, Bergman gave up his opinion, and wrote an account of Merer's experiment to Morvenu, who was employed in tranflating his works, to enable him to correct the miftake in his
notes.

Soon after the difcovery of this acid, difficulties and doubts concerning its exiftence as a peculiar acid were ftarted by fome French chemifts, difguifed under the name of Boulanger, and afterwards by Mr Achard and Mr Monnet. To remove thefe objections, Mr Scheele inttituted and publifhed a new fet of experiments; which not only completely eftablifhed the peculiar nature of the fluoric acid, but once more difplayed the unrivalled abilities of the illuftrions difeoverer. 'Thefe important particulars we pais over thus flightly, becaufe they lave 452 been partly treated of alseady in the article Chemistry, Reficed by Encycl. One experiment, however, we cannot omit, act.cele, becaufe it is fufficient of itfelf to deftroy almoft all the objections of his antagonitts, which conlitied in attempting to prove, that the fuoric acid was merely a modification of the acid employed to extract it. We Sall give it in Mr Shecie's own ivurds.
"I neited together (ays he) in a crucible two ounces of finely pulverized fuor fpar with four ounces of potafs. As fuon as they were melted, I poured out the mafs, rubbed it, when it was hecome cold, to a powcer, and extracted the alkali from it again by lixiviation with water. I evaporated the lixivium to drynefs; and threw away the remaining undiflotved yowder (which was only one of the component parts of the fluor, and which diffolved readily, and with effervefcence, in acids) from its folution, in whicl it may be precipitated by fulphuric acid in the form of felenite. (fulphat of lime). Upon a little of the dried alkali, put into a fmall retort, I poured fome fulphuric acid, fitted to it a re. ceiver containing fome water; and even before the retort was become hot, I obferved this water to be covered over with a pellicle of flliceous earth : a certain proof that the alkali had extracted the acid from the fluor during its expofure to the fire with it. Should Mr sichard, agreeably to the opinion which he has adopt-
ed, conclude from this experiment, that the alkali feparated the volatile earth fom ilue llar (v) : flill he muft certainly allow this earth of his to be of an acid nature, fince the alkali is capable of difengaging it from the calcareous earth. - The remaining purtion of the dried alkali I diffolved again in water, and faturated the fupcrfuous alkali with pure nutric acid. After expellingrof from this faturated fulution, by means of heat, the carbonic acid gas, which in fuch cafos is always retain. ed in the liquor, I dropped funce of it into lime-water; whereupon 1 obtained a white precipitate, which was a regenerated fluor. I now diffolved fome oxide of lead in vinegar, and continued to add to the ley, which had been faturated with nitric acid, as much of this folu. tion as was requifite, till all precipitation ceafed. Thus I transferred the fluor acid from the alkali to the oxide of lead. After walhing the precipitate in cold water, and drying it, J drepped upon a finall quantity of it a few drops of fulphuric acid; a frothing up immediately enfued, accompanied with an extrication of fluor acid vapours. But perhaps, in this cafe, the wolatile earth of fluor unitcs with the fulphuric acid, and converts this fixed, or almon fixed acid into acid gas. I can eably make allowance to Dr Prieftly for Leiner inclined to draw fuch a cunclution, funce this celebrated phis lofupher dues not pretend to be a chemill (c). Being defirous of feeing whether heat alone was capable of expelling this acid from the oxide of lead, I put a little of this fluorated oxide into a fmall retort, the receiver to which contained fome water. The oxide was melted; but I could not percsive any acid. The bottom of the retort was moreover quite corroded and diffolved, fo that the whole ran into the fire. Thus the oxide of lead retains this acid in the fire, and will not part with it, unlefs the oxide is combined with fome other fubflance. I therefore rulubed the remainder of ny fluorated oxide of lead with an equal quantity of charcoal powder, and dillilled the mixture in an open fire in a fmall glafs retort, to which was adapted a receiver containing fome water. As foon as the reduction of the oxide of lead took place, the neck of the retort became incrufted with a white fublimate, and a filiceous pellicle appeared upon the water. The fublinate had a four tatte, becaule the filiccous eath of which it confifts is penetrated with fluoric acid; and the acid water in the receiver let fall, on the addition of volatile alkali, a filiccous earth *."

Sorry are we to add, that fince the death of this ad- Crell's mirable man, to ufe the words of Mr Kirwant, a man 222. Fing. as eminent in the chemical as Newton in the mathema- Trann. tical brauch of natural philofophy, Mr Monuet \ddagger has \dagger Aineraloo thought proper to renew his attacks in a Atyle of haugh. $g y$, i. $: 26$. tinefs and acrimony that infpires infinite diiguft. The P/yf. $x \times x_{1}$. falacy of his reafoning is fufficiently expofed by Mr Le- 253 onhardi, in the 6th volume of his late learned edition 453 of Macquer's Dictionary.

Fluoric acid may be ohained in hardi. applying a moderate heat to fulphuric acid and fluor It proper fpar, and receiving the product over mercury.

This gas is the acid in a flate of purity. It is invifible and elaftic like air; it does not maintain combuf.

Huoric
Acid.

Its 356 nite: rather etch, upon glass.

Sect. X. Of Carbonic Acid.

Carbonic acid is compofed of carbon and oxygen. According to Lavoifier's experiments, the proportions are 28 parts of carbon and 72 of oxygen. Mr Proult informs us that there is allow a carbonous acid (H) ; but with this acid we are not at prefent acquainted, and cannot therefore defcribe it.

V Vaugur
din, Ann. de Chin. xxii. 208.
ton, nor can animals breathe it without death. It has a pungent finell, not unlike that of muriatic acid.

It is heavier than common air. It corrodes the fin almost intently. It combines rapidly with water; and if it has been obtained by means of graf veffels, it depolite at the fame time a quantity nf filica.

Water impregnated with this gas loos not freeze at a higher temperature than 23°.

In the late of gas this acid does not act upon nitrous gas nor fulphur Alcohol and ether absorb it, but it does not alter their qualities \dagger.

It is capable of oxidating iron, zinc, copper, and arfenic.
It doss not act upon gold, platinum, filer, mercury, lead? tin, antimony, cobalt.

It combines with alkalies, alkaline earths, and alumina, and metallic oxides, and forms compounds denomimated flats.

It is capable, as we have len, of diffolving filica, which is infoluble in every other acid; accordingly it corrodes glass. This property has induced feveral ingenous men to attempt, by means of it, to engrave, or
\& Dr Hope.
\& Lavoifer. acid.
certain proceffes, and the latter gave to air thus pro- Cart nice duce the name of gas. Boyle called the fe kinds of air artificial airs, and fufpected that they might be different from the air of the atmofphere. Hales afeertained the quantity of air that could be extricated from a great variety of bodies, and hewed that it formed an effential part of their compofition. Dr Black proved, that the fubftances then called lime, magnefia, and alklies, are compounds, confifting of a peculiar species of air, and pure lime, nagnefia, and alkali. "To this feecues of air he gave the name of fixed air, becaufe it exifted in there bodies in a fixed tate. This air or gas was afterwards inveftigated by Dr Priefley, and a great number of its properties afcertained. From there properties Mr Meir* firth concluded that it was an acid; * Keir* and this opinion was foo confirmed by the experiments. Lacquer, of Bergman, Fontana, \&c. Dr Pricfley at firf fur. art. Air. petted that this acid entered as an element into the compofition of atmofpherical air; and Bergman adopting the fame opinion, gave it the name of aerial acid. Mr Bewdly called it mephitic acid, becaufe it could not be refpired without occafioning death; and this name was alfo adopted by Morveau. Mr Keir called it calcareous acid; and at lat Mr Lavoifier, after difcovering its compofition, gave it the name of carbonic acid gas.

The opinions of chemifts concerning the compofition 45^{8} of carbonic acid have undergone as many revolutions as about its its name. Dr Prieftle \dot{y} and Bergman feem at frit to compofihave confidered it as an element; and feveral celebrated ${ }^{\text {ton. }}$ chemifts maintained that it was the acidifying principle. Afterwards it was difcovered that it was a compound, and that oxygen gas was one of its component parts. Upon this difcovery the prevalent opinion of chemitts was, that it confifted of oxygen and phlogition ; and when hydrogen and phlogifton came (according to Mr Kirwan's theory) to fignify the fame thing, it was of courfe maintained that carbonic acid was compofed of oxygen and hydrogen : and though Mr Lavoifier demonltrated that it was formed by the combination of carbon and oxygen, this did not prevent the old theory from being maintained; becaufe carbon was itfelf confidered as a compound, into which a very great quantity of hydrogen entered. But after Mr Lavoifier had demonftrated that the weight of the carbonic acid produce was precifely equal to the carbon and oxygen employed; after Mr Cavendish had difcovered that oxgen and hydrogen when combined did not form carbonit acid, but water -it was no longer poffible to hefttate that this acid was composed of carbon and oxygen. Accordingly all farther difpute about it feems now at an end. At any rate, as we have already examined the objections that have been made to this conclufion, it would be improper to enter upon them here.

If any thing was fill wanting to put this conclu. Itsanalyfisu fin beyond the reach of doubt, it was to decorpound carbonic acid, and thus to exhibit its component parts by analyfis as well as fyathefis. This has been actually done by the ingenious Mr Pennant. Into a tube of glass he introduced a bit of phofphorus and forme
(н) When there are two acids having the fame bale, but containing different quantities of oxygen, they are diftinguithed by their termination. The name of that which contains mot oxygen ends in ic, the other in ours. Thus fulphuric and fulphurous acids, nitric and nitrous, phosphoric and phofphorous, carbonic and carbonous.
carbonic fome carbonat of line. IEe then fealed the tube her. Acid. metically, and applied heat. Phofphat of lime was formed, and a quantity of carbon depofited. Now pholphat of lime is compofed of phofphoric acid and line; and phofphoric acid is compofed of phofphorus and oxygen. The fubltances introduced into the tube were phofphorus, lime, and carbonic acid; and the fubflances found in it were phofphorus, lime, oxygen, and carbon. The carbonic acid, therctore, mutt have been decompofed, and it mutt have contitted of oxygen and carbon. This experiment was repeated by Dr learfon, who afcertained that the weight of the oxygen and carbon were together equal to that of the carbonic acid which had been introduced; and in order to fhew that it was the carbonic acid which had been decompofed, he introduced pure lime and phofphorus; and inftead of obtaining phofphat of lime and carbon, he got nothing but pholphuret of lime. Thefe experiments were alio confirmed by Meffrs Fourcioy, Vauquelin, Sylveltre, and Broigniart (1)*.

* Ann. de

Carbonic acid may be obtained by pouring fulphuric acid upon chalk, and receiving the product in a pneumat ic apparatus.
91.

It is invifible and elaftic like common air. It extinguifhes a candle, and is unfit for refpiration. It has no finell.
Its fpecific gravity is $0,0218 \dagger$; but this varies according to its drynefs or moifture.

It reddens the tincture of turnfole, but no other vegetable colour f.

Atmofpheric air contains about $\frac{{ }^{\frac{2}{3}}}{60}$ part of this gas (k).

Water abforbs it by agitation, or by allowing it to remain long in contact with it. At the temperature of 41° water abforbs its own oulk of this gras. The fpecific gravity of water faturated with it is $1, \operatorname{co15}$. This water, at the temperature of 35°, has little tatte; but if it be left a few hours in the temperature of 88°, it aflumes $\$$ ILid. an agrecable acidity, and a fparkling appearance \oint.

Ice abforbs no carbonic acid; and if water containing it be frozen, the whole feparates in the act of free| Prighley, zing \|.
i. 120. This gas alfo feparates from water at the boiling

- Ibid. temperature 9 .

Alcohol and oil of turpentine abforb double their weight of this gas; olive oil its own bulk. Ether

* Bergman, mixes with it in the ltate of gas*:
ibid.
+ Brupnztelli, N"icbol-f

Phofphorus fufters no change in this gas except it contains a mixture of oxygen gas \dagger. It has an affinity for common air. Berginan left a bottle of it uncorked, and fonnd that in a few days it contained nothing but common air. Common air, indeed, has fo ftrong an affinity for this gas, that it attracts it from water, as Mr
$\ddagger A n n \cdot d e$ Cbim, iii.

Its proper-

ties,

+ Bergman,
$\ddagger 1 b i d$ Welter has obferved \ddagger.

Suppl. Vol. I. Part I.
\qquad

It is abfurbed by red hot charcoal, as Morozzo and I. a Metheric have fhewn.

It is capable of combining with alkalies, alkaline earths, and alumina, and feveral metallic oxides, and of conforming compounds known by the name of carlonats. pounds, It has no athinty for jargonia, according to Klaproth * " Fourno de but, according to Vaquelin, it has \uparrow.
Its alfuities, as arranged by Bergman, are as follows: ${ }_{f}^{1}$
Barytes,
lime,
Strontites f. Strontites \ddagger, $46 \geq$ Potafs, And affiSoda, $\quad \ddagger$ Dr Hope Magnefia, Alumina, Metallic oxides as in fulphuric acid, Oxygen gas f,
$\S M_{r} H_{e}{ }_{e}$ Water, ser. Alcohol.
Sect. XI. Of Acetous Acid.
Acetous acid or vinegar was known many ages before the difcovery of any other acid, thofe only excepted which exift ready formed in veow ables. It is mentioned by Mofes, and indeed fecms to have been in common ufe among the lfraelites and other eallern rations at a very carly period.

The methods of procuring, purifyins, and concentrating this acid, have been already given in the articles Chemistry, Fermentation, and Vivegar, Encycl. and cannot therefore be repeated in this place.

It has been afcertained beyond a doubt, that this acid is compofed of earbon, hydrogen, and oxygen ; but neither the manner in which thefe fubtances are combined, nor their proportions, have been accurately afcertained.

Acetous acid, as commonly prepared, is very fluid, Lowitz. has a pleafant fmell, and an acid tafte. "It reddens ve- method of getable colours. In this flate it is mixcd ${ }^{\text {b }}$ with a great ${ }^{\text {obtaining }}$ proportion of water ; but Mr Lowitz of Peterburg has tous acid. difcovered that it may be obtained in a folid cryttallized form. Of this curious and iuftructive procefs we fhall tranfribe his own account li.
|| Crell's
"I have long been accultomed ((ays he) to prepare fournat, concentrated vinegar by congelation in the following ${ }^{2} 242$. Eng. manner: I freeze a whole barrel of vinegar as much as poffible, then diftil the remaining unftozen vinegar in a water-bath ; by which means I at firft efpecially collect the fpirituous ethereal part; the vinegar, which next comes over, I freeze again as much as poffible, and afterwards purify it, by ditilling it again with three or four pounds of charcoal powder. Thus I never fail to get a very pure, fweet-fmelling, highly concentrated vinegar ; the agrecable odour of which, however, may be S s

Tran 242.

(1) Count Muffin-Pufchin having boiled a folution of carbonat of potafs on purified phofphorus, obtained carbon. This he confidered as an inftance of the decompofition of carbonic acid, and as a confirmation of the experiments related in the text. See Ainn. de Chim. xxv. 105.
(k) At leaft near the furface of the earth. Lamanon, Mongez, and the other unfortunate philofophers who accompanied La Peroufe in his laft voyage, have rendered :t not irrprobable that at great heights the quantity of this gas is much fmaller. They could detect none in the atmofphere at the fummit of the Peak of Teneriffe. See Lamanon's Memoir at the end of La Peroufe's Voyage.

Acetou; Acid.
fill improved by the addition of a proper quantity of the ethereal liquer collected tt the beginning of the firft diftillation, but which mutt be previoufy dephlegmated by two or three rectifications.
"After the diftillation in the water-bath was over, that no vinegar might be loft, I ufed to move the retort, with the charcoal powder which remained in it, to a fand-bath; and thus I obtained, by means of a ftrong fire, a few ounces mure of a reniarkably concentrated vinegar, which was of a yellow colour.
"Having collected abour ten ounces of this concentrated vinegar, I expofed it laft winter in the month of December to a cold equal to - 22^{3}; in which fituation it fhot into cryftals from every part. I let what remained fluid drop away from the cryftals into a bafon placed underneath, firt in the cold air, and afterwards at the window within donrs. There remained in the bottle fnow-white finely folisted cryftals, clofely accumulated one upon the other, and which I at firlt took to be nothing but ice: on placing them upon the warm flove, they diffulved into a fluid which was perfectly as limpid as water, had an uncommonly ttrong, highly pungent, and almoft fuffocating actous fmell, and in the temperature of -37° immediately congealed into a folid white crytallized mafs, refembling camphor.
"After I had oblerved that vinegar in this flate is of fuch an extraordinary ftrength and purity as to he in its highefl degree of perfection, I tonk all poffible pains to find out a method of obtaining all the acetous acid in the flate of glacial vinegar.
"To avoid circumlocution, I hall denote the flrength of each fort of vinegar, which it was neceffary for me to know in my experiments, by degrees, which I afcertain in the following manner: viz. to one drachm of vinegar 1 add, drop by drop, a clear 5olution of equal parts of carbonat of potafs and water, till all at once a cloudinefs or precipitation appears. Although, on the appearance of this fign, the acid is already fuperfaturated with the alkali, yet it feems to me to be a more accurate teft for afcertaining its ftrength than the ceffation of effervefeence; for as the point of faturation approaches, the effervefcence becomes fo irnperceptible, that it is almoft impoffible to determine with precifion when it is really at an end. Now, every five drops of the alkaline folution, which I find it neceffary to add to the vinegar till the precipitation takes place, I reckon as one degree. Thus, for example, if a determinate quantity of vinegar requires 25 drops for that effect, I denote its ftrength by five degrees. This is about the Atrength of good dittilled vinegar.
"I call that vinegar which, in confegrence of its concentration, is capable of cryftallizing in a great degree of cold, cryfallizable vinegar; the cryitals of vinegar, §eparated after the cryftallization is completed from the remaining fluid portion, I call glacial vinegar; and, laftly, to the fluid refiduum I give the name of motherley of vinegar.
"From a great number of experiments, I have found that vinegar muft have at leaft 24 degrees of concentration before it can be brought to cryftallize by expofure to the mod intenfe cold. Vinegar mult be of the ftrength of 42 degrees at leaft, in order to become glacial vinegar; viz. in this flate of concentration it has the property of cryftallizing in a degree of cold not exceeding that in which water begins to freezs.
"I have found that charcoal, on being diffilled with vinegar in a water bath, poffeffes the fillgular and hiitherto unknown property of imbibing a certain quan. tity of the acetous acid in a very concentrated fate, and of retaining it fo ftrongly, that the acid cannot be feparated from it again but by the application of a confiderably greater degree of heat than that of boiling water. Upon this circumflance is founded the new method which I have difcovered of concentrating vine. gar, fo as to obtain all its acid in the pureft ftate, viz. that of a glacial vinegar.
" Let a barrel of vinegar be concentrated by freezing in the manner above defcribed, and let the concentrated vinegar thus obtained, free from all inflammable or fpirituous parts, be put into two retorts: Add to each of them five pounds of good charcoal reduced to a fine powder, and fubject them to diftillation in a water-bath. When no more drops of vinegar come over, put the diftilled liquor into two freh retorts; and after adding five pounds of charcoal powder to each, proceed as before to the diflillation in a water-bath. In the mean while, the two firft returts are to be placed in a fandbath, that, hy means of a brik fire, the cryftallizable vinegar, which is retained in the apparently dry charcoal powder, may be expelled from it. The heat muft bc flrong enough to make the drops follow one another every two feconds; and when, in this degree of heat, 20 feconds intervene between each drop, the vinegar which has been collected mult be removed; for what follows is hardly any thing elfe but mere water. In this matiner about fix ounces and a half of cryftallizable vinegar, which is generally of the flrength of between 36 and 40 degrees, may be collected from each retort. As foon as the diftillation by the water-bath in the two retorts is over, the diltilled liquor is to be poured back again into the firt retorts upon the charcoal powder, which remains in them, and which has been already ufed; and from each of thefe retorts the remaining cryftallizable vinegar (which generally amounts to as much as the firt quantity) is to be abftracted by diftillation in a fand-bath. Thefe operations may be alternately repeated till all the acid of the sinegar which had been concentrated by freezing is converted into cryftallizable vinegar ; or until the difilled liquor, conftantly becoming weaker and weaker at every repetition of the dittillation, comes over at length in the flate of mere water, which, with the above mentioned quantity of charcoal powder, generally happens at the fourth er fifth ditillation. Now, in order 10 obtain the greateit part of the pure acid contained in the cryflallizable vinegar in the form of glacial vinegar, it mult be fet to cryflallize in a great degree of cold; and the motherley mult be afterwards thoroughly drained from the glacial vinegar, by letting it drop from the cryftals, firkt in the cold, and then in the roum before the window. The mother-ley may be rendered further cryftallizable by diftilling it with a little charcoal powder; the weaker part, which comes over firtt, being put afide. But if a perfon wifhes to keep the crytallizable vinegar for other purpofes, and without feparating any glacial vinegar from it, he mult diftil the whole of it again with charcoal powder in a fand-bath.
"I bave found by accurate experiments, that, by means of this curious procefs, ten pounds of vinegar, concentrated by freezing to the goth degree, may be

Actou- made to yield 3^{8} ounces of crytallizable vincgar, from Acid. which 20 ounces of glacial vinegar may be ohtaned.
"What conflitutes the excellence of this method is, that the concentration and purification are effected by one and the fame medium, viz. the charcoal powder ; in confequence of which, buth intentions are fulfilled at the fame time.
"Laft year, after much reflection, I was fo happy as to find out another very effectual method of fepalating the acetous acid from the other fubftances combined with it, fo as to obtain it at once in the flate of a glacial vinegar of the greateft poffible Itrength. The feparating medium which I thouglit of is fulphat of potafs fuperfaturated with fulphuric acid; a falt in which, conformably to my purpofe, the fulphuric acid exifts in a perfectly dry and dephlegomated ftate.
"By means of this falt a lighly concentrated glacial vinegar may be obtained in the following manner:
" Let three parts of acetated foda, prepared with vinegar diftilled over charcoal, and evaporated to perfect dryuefs, be melted in a ftrong heat ; then pour it out, and rub it to a very fine powder. Mix this powder very accurately with eight parts of Cuperfaturated fulphat of potafs that has been previounly well dried, and in like manner reduced to a fine powder; put the whole into a retort, and diftil with a gentle heat, in fuch manner that, along with the drops, fome vapours alfo may be perceived to come out of the neck of the retort; but by no meaus fo that the receiver fhall be filled with thefe vapours. Notwithftanding the moderate heat, the vinegar comes over very faft, and the quantity of glacial vinegar, of the ftrength of 54 degrees, which is thus obtained, amounts to nearly two parts."

Acetous acid is capable of oxidating iron, zine, lead, nickel, tin, copper.

It does not act upon gold, filver, platinum, mercury, bifmuth, cobalt, antimony, arfenic.

It combines with alkalies, alkaline earths, and alumina, and metallic oxides, and forms compounds known by the name of acetites.

Its affinities are as follows:

Bar

Barytes,
Potafs,
Soda,

Strontites?

Lime,
Magnefia,
Ammonia,
Oxide of zinc,
 ?
\qquad

- Iavaifar.
+ Vasquelin,
Ann. de Cbim, xxif. 208.

Sect. Xll. Of Aecic Acid.

If acetite of copper be diftilled, an acid comes over of a mere pungent lmell than acetous acid, capable of cry flallizing, and having a ftronger aflinity for otler bodies than acetoms acid. It is called acciic acid, and is fuppofed to contain a larger proportion of oxygen than actous acid. This additional dole it is fuppofed to receive from the oxide of copper, which during the procefs is reduced to the metallic ftate. It can harily be doubied that the glacial vinegar of Lowitz, defcribed in the preceding fection, is really acetic acid, though it would perhaps be difficult to explain its formation. Its affinities are the fame with thofe of the acetous acid.

Sect. XIII. Of Oxalic Acid.

Sugar, a well-known fubflance extracted from the fugar-cane, appears to have been ufed in the Eaft at a very early period; but it made its way weftward very nowly. As a medicine, it is mentioned by Diolcorides; but it was not in common ufe in Europe till after the 14 th century.

It has been proved that fugar is compofed of oxygen, compofi. carbun, and hydrogen. Lavoifier concluded, from a lung tion of fu. feries of delicate experiments, that it confills of 8 partsgar. of bydrogen, 64 of oxygen, and 28 of carbon.

From lugar, by a particular procefs, an acid has been ${ }^{467}$ obtained called oxalic acid, becaufe it exilts ready form of uxalic ed, as Scheele has proved, in the oxalis acetofella, or acid. wood forrel. At frifl, however, it was called the acid of fugar, or the fuccharine acid.

As the earliett and beft account of the oxalic acid was publinhed by Bergman, he was for a long time reckoned the difcoverer of it; but Mr Ehrhart, one of Scheele's intimate friends, informs us, that the world is indebted for its knowledge of this acid to that illuftrious chemil *, and Hermftadt and Weftrum affign the dif- * E/zeort's covery to the fame authort. The affertions of thefe Marazine gentlemen, who had the beft opportunity of ubtaining for Apotbeaccurate information, are certainly fufficient to eftabiifh caric, 1785 , the fact, that Scheele was the real difcoverer of oxalic Parti. acid.

Bergman gives us the following procefs for obtaining Didionary. this acid. "Put one uunce of white fugar powdered Method of into a tubulated retort, with three ounces of ftrong ni-procuring tric acid, the fpecific gravity of which is to that of it. water as 1,567 . When the colution is over, during which many fumes of the nitrous acid efcape, let a receiver be fitted, and the liquor made to boil, by which abundance of nitrous gas is expelled. When the liquor in the retort acquires a reddifh brown colour, add three ounces more of nitric acid, and continue the builing till the fumes ceafe, and the colour of the liquor vanifhes. Then let the contents of the retort be emp. tied into a wide veffel; and upon cooling, a eryftall:zation will take place of fender, quadrilateral prifms, which are often aflixed to each other at an angle of 45°. Thefe cryftals, colliected and dried on blatting paper, will be found to weigh $1 \frac{3}{2} \mathrm{dr} .19 \mathrm{gr}$. By boiling the remaining lixivium with two ounces of nitric acid in the retort, till the red fumes almolt difappear, and by repeating the cryftallization as before, $\frac{3}{2} \mathrm{dr} .13 \mathrm{gr}$. of folid acid will be obtained. If the procels be repeated S s 2 once
\qquad

$$
4
$$

\qquad
\qquad
\qquad

\qquad
\qquad

Acric
once more upon the refiduun, which has now a gluti nous confiltence, with the fucceffive additions of fmall quantitics of nitric acid, amounting in all to two ounces, a faline brown deliquefeent mafs will be formed, weighing half a dram, of which about a half will be loft by a farther purification. The cryitals obtained thus at different times may be purified b: folution and ergftllization, and by digetting the laft "lixivium with fone nitric acid, and evaporation with the heat of the fun."

By the fame procefs Bergnaan obtained it from gum arabic, alcohol, and honey : Scheele, Hermftadt, Weftrum, Hoffman, $\& c$. from a great varicty of other vegetable productions; and Berthollet from a great number of animal fubftances.

It is of great confequence not to ufe too much nitric acid, otherwife the quantity of oxalic acid will be diminifhed; and if a very great quantity of nitric acid be * Bergman. ufed, no oxalic acid will be obtained at all *. On the contrary, if too fimall a quantity of nitric acid be ufed, the acid obtained will not be the oxalic, but the tartaroust. We think we havé obferved, that a confiderably larger proportion of oxalic acid may be obtained by pouring nitric acid on fugar, and allowing thefe fubtances to act upon each other while cold. When the procefs is conducted in that manner, hardly any thing feparates but nitrous gras.
Its proper- Oxalic acid is capable of eryftallization, or rather it ties.
i. 255. is generally obtained in that flate. Its cryftals are quadrilateral prifms, the ends of which often terminate in ridges \ddagger.

They are foluble in their own weight of boiling water: water at the temperature of $65,7^{\circ}$ diffolves half its weight of them. The fpecific gravity of the folution is $1,0593 \%$. One hundred parts of boiling alcohol diffolve 56 parts of thefe cryftals; but at a mean temperature only 40 parts $\$$. They are not eafily foluble in ether. Fixed and volatile oils difolve them, and they may be again obtained by gentle evaporation. Too violent a heat would fublime the acid itfelf.

Oxalic acid has a very acrid tatte when it is concentrated, but a very agreeable acid tatte when fufficiently diluted with water $\frac{1}{}$.

It changes all regetable blues except indigo to a red. One grain of crytallized acid, diflofved in 1925 grains of water, reddens the blue paper with which fugar loaves are wrapt : one grain of it, diffulved in 3600 grains of water, reddens paper flained with turnfole *. According to Morveau, one part of the cryftallized acid is fufficient to communicate a fenfible acidity to 2633 parts of water \dagger.

Its fixity is fuch, that none of it is fublimed when water containing it in folution is raifed to the boiling temperature.

When this cryftallized acid is expofed to heat in an open veffel, there arifes a finoke from it, which affects difagreeably the nofe and lungs. The refiduuns is a powder of a much whiter colour than the acid had heen. By this procefs it lofes ${ }^{3}$ roths of its weight; but foon recovers them again on expofure to the dir. When diftilled, it firlt lofes its water of eryftallization, then liquifies and becomes brown; a little phlegm paffes over, a white faline crult fublimes, fome part of which paffes into the receiver; but the greatell part of the acid is deftroyed, leaving in the retort a mafs $\frac{{ }_{5}^{1}}{\frac{1}{0}}{ }^{\text {th }}$ th of the whole,
which has an empyreumatic imell, blackens fulphuric Tartarous acil, renders nitric acid yctlow, and diffolves in muria- Acid. tic acid without alteration. That part of the acid which fublimes is unaltered. When this acid is ditilled a fecond time, it gives out a white fmoke, which, condenfing in the receiver, produces a colourlefs uncryftallizable acid, and a dark coloured mattes remains behind*. * Bergman. During all this diftillation a valt quantity of elaftic vapour makes its efcape. From 279 grains of oxalic acid, Bergman obtained 109 cubic inches of gas, half of which was carbonic acid and half hydrogen. Fontana from an ounce of it obtained 430 cubic inches of gas, one-third of which was carbonic acid, the reft hydrogen. From thefe facts, it is evident that oxalic acid is compofed of oxygen, hydrogen, and carbon; but the proportions are ftill unknown.

When nitric acid is frequently diftilled off oxalic acid, acetous acid is produced \dagger. The fulphuric acid, when \dagger Wefrum. concentrated, feems to produce the fame effect. Mu. riatic and acetous acids diffolve oxalic acid, but without altering it \ddagger.
\ddagger Berguan,
Oxalic acid is capable of oxidating lead, copper, iron, tin, bifmuth, nickcl, cobalt, zinc, manganefe.

Its 470
It does not act upon gold, filver, platinum, mercury, on wher

arfenic?

Oxalic acid combines with alkalies, alkaline earths, and alumina, and metallic oxides, and forms falts known by the name of oxalats.

Its affinities, according to Bergman, are as follows:
Lime,
Barytes,
Strontites \wp,
Magnetia,
Potafs,
Soda,
Ammonia,
Alumina,
Jargonia $\|$?
Metallic oxides as in fulphuric acid,
Water,
Alcohol.

471 Its affnities. § Dr Hope, Tranf. Edin, iv.

II "
An.
Anquelin, Clim. xxii. 208.

Sect. XIV. Of Tarlarous Acid.

Tartar, or cream of tartar as it is commonly called dificovery when pure, has occupied the attention of chemifts for of tartarous feveral centurics. Duhamel and Groffe, and after them ${ }^{\text {acid. }}$
Margraf and Rouelle the Younger, proved that it was compofed of an acid united to potafs: but Scheele was the firtt who obtained this acid in a feparate ftate. He communicated his procefs for obtaining it to Retzius, who publifhed it in the Stockholm Iranfactions for 1770. It confited in boiling tartar with lime, and in decompofing the tartrite of lime thus formed by means of fulphuric acid.

This acid, by a gentle evaporation, yiclds cryftals $\mathrm{fo}_{\mathrm{It}} 473$ irregular in their figure, that every chemif who hasties. treated of this fubject has given a different defcription * Bergmano of them. According to Bergman, they generally con. iii. $30 \mathrm{O}^{\circ}$. fitt of divaricating lamellæ *; according to Van Pack- Effent, acidz ell, they aflume ofteneft the form of long pointed $\mathrm{T}_{\text {intari. }}$ prifins \dagger; Spielman and Corvinus \ddagger obtained them in Andecia groups, fome of them lance-fhaped, others needle-form. ${ }^{\text {de }}$ Tartaro, ed, others pyramidal. Murveau ohtained them needle- $\$$ Enctyced. form \wp. They do not experience any change in the air; Cbim. $\mathrm{i}_{\text {. }}$ heat 3^{23}.

Cirric heat decompofes them. In the open fire they turn Acid.
\qquad

* Sergma
ibid and
ii. 465
+ Sniclman ald Corurnus, ibid. \ddagger Hermpacts
and $H^{\prime} c g$. tran?

Bercman, i. 250.
474.

Its asttion on other budics.

47^{6}

Methos of obtaining cirric acid.
| StocKbolm Tranf.

* Schecte,

Crell's Analals, 1788. $\dagger W_{c} f r u m$.
\ddagger Nicbol.
fon's Jourral, ii. 43 .

Chemists have always confidered the juice of oranges and lemons as a peculiar acid. This juice contains a quantity of mucilage and watcr, which render the acid impure, and fubject to fpontaneous decompofition. Mr Georgius took the following method to feparate the mucilage. He filled a bottle entirely with lemon-juice, corked it, and placed it in a cellar: in four years the liquid was become as limpid as water, a quantity of mucilage had fallen to the bottom in the form of flakes, and a thick cruft had formed under the cork. He expofed this acid to a cold of 23°, which froze a great part of the water, and left behind a frong and pretty witheut leaving any other refiduum than a coal, which generally contains a little lime*. In clole veffels, the product is carbonic acid and hydrogen gas t. If the proper quantity of nitric acid be difilled off the cryitals, they are courerted into oxalic acil, and the nitric acid, as ufual, paffes into the nitrous acid \ddagger. Hence it is evident that tartarous acid alfo, like the four former, is compuicd of uxygen, hydrogen, and carbon; but the propurtions are cyually malcertained.

This acid, when in cryfals, diffolves readily in water. Bergman obtained a folution, the fpecific gravity of which was $1,230 \oint$. Morveau obferved, however, that ery itals formed fpontancoufly in a folution, the fpecific gravity of which was $1,08_{4}$.
It has a very fharp acid tafte, and reddens vegetable blues.

Tartarous acid does not oxidate gold, filver, platinum, lead, bifmuth, nor tin, and hardly antimony and nickel.

It combines with alkalies, alkaline earths, and alumina, and metallic oxides, and forms falts known by the name of tartrites.

The order of its affinities is the fame as that given for oxalic acid; except that, according to Lavoifier, the oxide of Glver comes before that of mercury.

Sect. XV. Of Citric Acil.

 pure acid il. It was Schecle, however, that firt pointed out a method of obtaining this acid perfectly pure. He faturated lemon-juice with lime, edulcorated the precipitate, which conlifted of citric acid and lime, feparated the lime from it by diluted fulphuric acid, cleared it from the fulphat of lime by repeated fitrations and evaporation ; then evaporated it to the conliftence of a fyrup, and fet it by in a cool place : a quanticy of cryttals formed, which were pure citric acid I. It exifts ready formed alfo in the juices of the following berries: Faccinium occicoccos, vaccimium vitis idoa, prunus padus, folanum dulcamara, rofa canina*, cherries \dagger.Scheele advifes the ufe of an excefs of fulphuric acid, in order to enfure the ftparation of all the lime; but according to Dizé, this excefs is neceflary for another purpofef. A quantity of mucilage fill adheres to the citric acid in its combination with lime, and fulphuric acid is neceffary to decompofe this mucilage, which, as Fourcroy and Vauquelin have proved, it is capable of doing. His proof of the prefence of mucilage is, that when the folution of citric acid in water, which he had obtained, was fufficiently concentrated by evaporation, it affumed a brown colour, and even became black to.
wards the end of the evaporation. The cry itals alfo were black. By repeated folutions and evaporations, this black mattcr was leparated, and futand to be carbon. Hence he concluded that inucilage had bet n prefent ; for mucilage is compufed of carbon, hydrogen, and oxygen; fulpluric acid caufes the hydrogen and oxygen to combine and form water, and the carbon remains behind. It is not certain, however, as Mr Ni. cholfon remarks very jufly *, that the fulphuric acid * Nibbofono nay not act upon the citric acid itfelf, and that the ${ }^{i b i d}$. carbon may not proceed from the decompofition of it; at leaft the experiments of Mr Dizć are infufficient to prove the contrary. In that eafe the fmaller the excefs of fulphuric acid ufed the better.

The cryfals of citric acid are rhomboidal prifins, the It- preper. fides of which are inclined to each other in angles of ties. ahout 120 and 60 degrees, terminated at each end by four trapezoidal faces, which include the folid angles \dagger. \dagger Dizk, 'They are not altered by expofure to the air.

An ounce of diftilled water, at the temperature of the atmofphere, diffolves one ounce and two drams of cryftallized citric acid; and during the folution the temperature is lowered $29,75^{\circ}$. Boiling water diffolves twice its weight of this acid \ddagger.
| Id itid.
Citric acid has a very acid tafte; it turns vegctable blues to a red.

It is capable of oxidating iron, zinc, tin. It does lis action not act upon gold, filver, platinum, mercury, bifmuth, on other antimony, arfenic.

It combines with alkalies, alkaline earths, and alumina, and metallic oxides, and forms falts known by the name of citrats.

Fire decompofes this acid, converting it into an acidulous phlegm, carbonic acid gas, and carbonated hydrogen gas. Its folution in water is alfo gradually decompofed, if accefs of air be permitted. It is cvident, therefore, that this acid is alfo compofed of oxygen, hy. drogen, and carbon.

Scheele faid that he could not convert it into oxalic acid by means of nitric acid, as he had done feveral other acids; but Weflrum affrms, that this converfion may he effected ; and thinks that Scheele had probably failed from laving ufed too large a quantity of nitric acid, by which he had proceeded beyond the con. verfion into oxalic acid, and had changed the citric acid into vinegar; and in fupport of his opinion, he quotes his own experiments: from which it appeared that, by treating fixty grains of citron acid with diffe. rent quantities of nitric acid, his products were very dif. ferent. Thus with $2 c o$ grains of nitric acid he got 30 grains of oxalic acid; with 300 grains of nitric acid he obtained only 15 grains of the oxalic acid; and with 600 grains of nitric acid no veltige appeared of the oxalic acid. On diltilling the products of thefe experiments, efpecially of the laf, he obtaned vinegar mixed with nitric acid.

The affinities of this acid are as follows \oint :
Lime (L), Barytes, Strontites II, Magnefia, Potafs,

[^12]\qquad
\qquad

[^13]-

Malic

Acis.

7 Lat ojer.
$\div 16$

+Td .

§ Vauquclir.,
Ann de
Cbinn. xxii. 208.

4 So Difivery of malic acid.

Scheele difcovered a peculiar acid in the juices of feveral fiuits, which, becaule it is found mof abundantly in apples, has been called malic acid.
Methot of He ohtained it by the following procefs: Saturate obtaining the juice of apples with potafs, and add to the folution
it.
|I Stoediju
Trartand
Crill's Ane nils for
1955.
af Ibid. acetite of lead till no more precipitation enfues. Wafh the precipitate carefully with a fufficient quantity of water ; then puur upon it diluted fulphuric acid till the mixture has a perfectly acid talte, without any of that fweetnefs which is perceptible as long as any lead remains diffolved in it; then feparate the fulphat of lead, which has precipitated, by filuration, and there remains behind pure malic acid \|.

This acid is contained in the berries of the barberis vulgaris, the fambucus nigra, the pranus fpinofa, the forbus cuucuparia, and the prunuis domeflica \mathbb{T}.

If nitric acid be difilled with an equal quantity of fugar, till the mixture affumes a brown colour (which is a fign that all the nitric acid has been abftrached from it), this fubftance will be found of an acid talte; and after all the oxalic acid which may have been formed is feparated by lime-water, there remains another acid, which may be obtained by the following proceds: Saturate it with lime, and filter the folution; then pour upon it a quantity of alcuhol, and a coagulation takes place. This coagulum is the acid combined with lime. Separate it by filtration, and edulcorate it with frefh alcohol ; then diffolve it in diftilled water, and pour in acetite of lead till no more precipitation enfues. The precipitate is the acid combined with lead, from which it may be feparated by diluted fulphuric acid. It poffeffes all the properties of malic acid *. This acid, therefore, may be obtained from fugar; and it may be converted into oxalic acid, by diftilling off it the pro+ Hermfadt, per quantity of nitric acid + .
Shy. Cbem. This acid bears a ftrong refemblance to the citric, but
${ }_{4} \mathrm{~S}_{2}$
its proper-
ties. differs from it in the following particulars:

1. The citric acid thoots into fine cryftals, but this acid does not cryftallize.
2. The falt formed from the citric acid with lime is almoft infoluble in boiling water; whereas the falt made with malic acid and the fame bafis is readily foluble by boiling water.
3. Malic acid precipitates mercury, lead, and filver, from the nitrous acid, and alfo the folution of gold when
diluted with water; whereas citric acid does not alter any of thefe folutions.
4. Malic acid feems to have a lefs affinity than citric acid for lime; for when a folution of lime in the former acid is hoiled one minute with a falt formed from volatile allali and citric acid, a decompofition takes place, and the latter acid combines with the lime and is precipitated.

The malic acid combines with alkalies, alkaline earths, ${ }^{48} .3$ and alumina, and metallic oxides, and forms falts known notions. by the name of malats.

Its aflinities have not yet been afcertained.

Sect. XVIl. Of Ladic Acid.

If milk be kept for fome time it becomes four. The acid which then appears in it was fift examined by Scheele, and found by him to have peculiar properties. It is called lactic acid. In the whey of milk this acid is mixed with a little curd, fome phofphat of lime, fugar of milk, and mucilage. All thefe muft be feparated before the acid can be examined. Scheele accomplifhed this by the following procefs:

Evaporate a quantity of four whey to an eighth part, Method and then filtrate it: this feparates the cheefy part. Sa-obenonine turate the liquid with lime-water, and the phofphat of iactic acid lime precipitates. Filtrate again, and dilute the liquid with three times its own bulk of water; then let fall into it oxalic acid, drop by drop, to precipitate the lime which it has diffolved from the lime-water : then add a very fmall quantity of lime-water, to fee whether too much oxalic acid has been added. If there has, oxalat of lime immediately precipitates. Evaporate the folution to the confiftence of honey, pour in a fufficient quantity of alcohol, and filtrate again; the acid paffes through diffolved in the alcohol, but the fugar of milk and every other fubfance remains behind. Add to the folution a fmall quantity of water, and diftil with a fmall heat, the alcohol paffes over, and leaves behind the lactic acid diffolved in water ${ }^{*}$.

* Scbeela,

This acid is incapable of cryftallizing: when evapo. St ckbotm, rated to drynefs, it deliquefces again in the air \dagger.

When diftilled, water comes over firft, then a weak acid refembling the tartarous, then an empyreumatic oil 4845 mixed with more of the fame acid, and laftly carbonic ties. acid and hydrogen gas-there remains behind a fnall t lid. quantity of coal \ddagger.

The combinations which this acid forms with alka-tions, lies, earths, and metallic oxides, are called lactats.

Its affinities, according to Bergman, are as follows:

Sect. XVIII. Of Saccholatic Acid.
If a quantity of frefh whey of milk be filtrated and 488 then evaporated by a gentle fire till it is of the conlift- milk. ence of honey, and afterwards allowed to cool, a folid

Saccholac- mals is obtained. If this be difrolved in water, clarified with the white of eggs, filerated, and evaporated to the confiftence of a fyrup, it depofites on cooling a number of brilliant, white, cubic cryitals, which have a fiweet tafte, and for that reafon have been called fugar of milk. Fabricius Bartholet, an Italian, was the firft European who mentioned this fugar. He defcribed it in his E_{n-} cyclopadia Hermetico dogmalica, publifhed at Boulognia in 1619; but it feems to have been known in India long before that period.

After Mr Scheele had obtained oxalic acid from fugar, he wifhed to examine whether the fugar of milk would furnifh the fame product. Upon four ounces of pure fugar of milk, finely powdered, he poured 12 ounces of diluted nitric acid, and put the mixture in a large glafs retort, which he placed in a fand-bath. A violent effervefcence enfuing, he was obliged to remove the retort from the fand-bath till the commotion ceafed. He then continued the diftillation till the mixture became yellow. As no cryftals appeared in the liquor remaining in the retort, after ftanding two days he repeated the diftillation as before, with the addition of eight ounces of nitric acid, and continued the operation till the yellow colour, which had difappeared on addition of the nitrous acid, returned. The liquor in the retort contained a white powder, and when cold was obferved to be thick. Eight ounces of water were added to dilute this liquor, which was then filtrated, by which the white powder was feparated; which being edulcorated and dried, weighed $7 \frac{1}{2} \mathrm{dr}$. The filtrated folution was evaporated to the confiftence of a fyrup, and again fubjected to diftillation, with four ouncers of nitric acid as before; after which, the liquor, when cold, was obferved to contain many fmall, oblong, four cryftals, togetler with fome white powder. This powder being leparated, the liquor was again dittilled with more mitric acid as before; by which means the liquor was sendered capable of yielding cry Itals arair; ; and by one difillation more, with more nitrous acid, the whole of the liquor was converted into cryftals. Thefe cryltals, added together, weighed five drams; and were found, upon trial, to have the properties of the oxalic acid.

Mr Scheele next examined the properties of the white powder, and found it to be an acid of a peculiar nature; he therefore called it the acid of fitgar of milk. It is now called the factbolacic acid.

According to Sclueele, it is foluble in 60 parts of its
with greater difficulty in water, and burning in the fire with a thame. There paffes into the recciver a brown liquid, having fome of this falt diffolved in it : There remains behind a coal *, which Hermotade found to con- : Scbete, tain a finall quantity of lime. Concentrated fulphuricibid. acid ditilled on this falt becomes black, frothes, and decompofes it \dagger.

Mr Herniftadt of Berlin liad made fimilar experiments $49{ }^{2}$ on fugar of milk at the fame time with Scheele, and with Hermfade fimilar refults; but he concluded that the white pow- 2ulempes to der which he obtained was nothing clfe than oxalat of exififence. lime with excefs of acid, as indeed Schecle himfelf did at firlt. After he became acquainted with scheele's conclufions, he publifhed a paper in defence of his own opinion; but his proofs are very far from eflablithing it, or even rendering its truth probable. He acknowledges himfelf, that he has not been able to decompofe this fuppofed falt : he allows that it poffefies properties dittinغt from the oxalic acid; but lie aferibes this difference to the lime which it contains; yet all the lime which he could difcover in 240 grains of this falt was only 20 grains ; and if the alkali which he employed was a carbunat (as it probably was), thefe 20 mult be reduced to II. Now Morveau has flewn, that oxalic acid, containing the fame quantity of lime, exhibits very different properties. Befides, this acid, whatever it is when united with lime, is feparated by the oxalic, and mutt therefore be different from it, as it would be alffurd to fuppofe that an acid could difplace itfelf \ddagger. The fac-1 Morvenu, cholactic acid muft therefore be confidered as a diftinct Eneye. acid, as it poffeffes peculiar properties.

Its compounds with alkalies, earths, and metallic ${ }^{\text {P. } 2910} 402$ oxides, are denominated foccbolats.

Its com.
Its affinities, according to lergman, are as follows: prunds ar.d. Lime, Barytes, Magnefia, Potafs, Soda, Ammonia, Alumina, Jargonia §? §Vanuelion, Metallic oxides as in fulpburic acid, Ann de Water, Cbint, exiio.
208. Alcohol.

Secr. XIX. Of Gallic Acid.

 gall, which grows on fome fpecies of oaks. This fuhflance contains a peculiar acid, called from that circumftance gallic acid, the properties of which were firtt ex. amined with attention by the commifioners of the academy of Dijon ; and the refult of their experiments was publifhed in 1777, in the third volume of their Elements of Chemiltry. In thefe experiments, however, they employed the infufion of galls, in which the acid is combined with the tanning principle (m). It was referved for Scheele to obtain it in a Itate of purity.

He
(m) A fubftance lately difcovered by French chemifts, which exifs alfo in oak-bark, and seery other body which may be fubflituted for that bark in the operation of tanning. It refembles the refins in many properties; but its difinguining property is that of forming with glie a compound infoluble in water. When a little of, the decoction of glue is dropped into an infufion of nut.galls, a white curdy precipitate is inftantly feen : This is the tanning principle combined with glue. The name tanning principle has been applied to it, becaufe tanning: confits in combining this principle with fins, by which they are converted into leather,

Galic Acrd.

* Stockiolm

Tranf:
1756.

4b ${ }^{4}$
obtaining it.

He obferved, in an infuion of galls made with cold water, a fediment, which proved on examination to have a cryftalline form aurl an acid tafte. By letting an infufion of galls remain a long time expofed to the air, and removing now and then the mouldy fkin which formed on its furface, a large quantity of this fediment was obtained; which being edulcorated with cold water, redifolved in hot water, filtrated, and evaporated very Rowly, yielded an acid falt in cryftals as fine as fand*:
There is a fhorter method of obtaining this acid in a ftill purer flate than Scheele obtained it.
Pour fulphuric ether on a quantity of powdered galls, and allow it to remain a few hours; by which time it becomes coloured. Put this tincture into a retort, and difil off the cther with a frall heat. The refiduum poffeffes the colour and brittlenefs of a refin, and has all the characters of Rouelle's refiduous-extract ; it dues not attract moitture from the atmofphere. Difiolve it in its own weight of water, and add fulphuric acid, drop by drop, till the liquor has become of a manifeftly acid taite. It caufes a white precipitate, which becomes coloured, and is immediately redifolved. At the end of fome hours a refinous matter will have precipitated. Decant off the fluid, dilute it with half its weight of water, filtrate andevaporate it to $\frac{3}{1}$ ths in a moderate heat; add pure harytes till the liquer is no longer capable of decompofing muriat of harytes; then filtrate it again ; and on evaporation in a moderate heat fmall white prifmatic cryitals of gallic acid are formed on the
tirr 7. 7

Dizé Four de Pby.
Dec. $1-0$ or
\ddagger Arn. de
Chime xvii. 8.
§ Ibid.
496
Prount's method.

It appears frum the experiments of Deyeux, that the fublance extracted from nut galls by ether does not differ much from the extract by water \ddagger. Prubably, then, the only reafon for eniploying ether is the fmall heat neceflary for evporating it.

Therc is fill another method of obtaining this acid. Diftil nut-galls in a frong heat, a white fuhftance fublincs, which cryftallizes in the form of needles: This is gallic acid. If the ciyfals are impure, they may be purified by a fecond futiination : but the heat muft not be too violent, otherwife the cryftals will melt into a brown maff \oint. This procefs was difcovered by Scheel.

But the moft elegant method of obtaining gallic acid is that of Mr Pronll. When a folution of muriat of tin is pourcd into an iufufion of nut-galls, a copious yellow precipitate is inftanty formed, confinting of the tanning principle, combined with the oxide of tin. After diluting the liquid with a fufficient quantity of water to feparate any portion of this precipitate which the acids might hold in folution, the precipitate is to be feparated by filtration. The liquid contains gallic acid, muriatic acid, and muriat of tin. To feparate the tin, a quantity of fulphurated hydrugen gas is to be mixed with the liquid. Sulphuret of cxide of tin is precipitated under the form of a brown powder. The liquid is then to be expofed for fome days to the light, cover. ed with paper, till the fuperfluous fulphurated hydrogen gas exhales. After this, it is to be evaporated to the proper degree of concentration, and put by to cool. Cryitals of gallic acid are depolited. Thefe are to be feparated by filtration, and wafhed with a little coid water. The evaporation of the reft of the liquid is to

The rallic acid hus abtind he a very an the
The galtic acid thes obtaned has a very acid tafte, and reddens vegetable collours. It is foluble in $1 \frac{1}{1}$ parts of boiling water, and in 12 parts of water at the tem$\underbrace{\begin{array}{c}\text { Gallic } \\ \text { Acid. }\end{array}}$ of boling water, and in 12 parts of water at the tem- 497°
perature of the atmofphere. Alcohol diffolves one-1te properfourth of its weight of this acid at the temperature of tios. the atmofphere. When builing hut it diffolves a quantity equal to its own weight.
When placed upon burning coals, gallic acid takes fire, and at the fame time diffufes a very Atrong odour, which has fomething aromatic in it. When ftrongly heated, it meits, boils, becomes black, is diffipated, and leaves a quantity of charcoal behind it. When diftilled, a quantity of oxygen E_{a} is difengaged, an acid li quor is frund in the receiver, with fome gallic acid not decompofed, and there remains in the retort a quantity of carbon. If what has pafed into the recciver be again diftilled, more oxygen gas is obtained, fume gallic acid ftill fublimes, and a quantity of carbon remains in the retort. By repeated dillillations the whole of the acid may be decompofed. This decompofition may be mure ealily accomplifhed by diftilling repeatedly a folution of gallic acid in water. The products are oxygen gas, charcoal, and an acid liquor.

From thefe experiments, Mr Deyeux, who perform-Its compolio ed them, has concluded, that gallic acid is compofed of tion. oxygen, and a much larger proportion of carbon than enters into the compofition of carbonic acid. But this conclufion is not warranted by the analyfis; for Mr Deyeux did not find that the quantity of oxygen gas and carbon obtained was equal to that of the gallic acid decompofed: and in the acid liquor which came over. there evidently exifted a quantity of water, which doubtlefs was formed during the diftillation. Scheele, by treating gallic acid with nitric acid in the ufnal manner, converted it into oxalic acid. Now it is certain that oxalic acid contains hydrogen as well as carbon. It cannot be doubted, then, that gallic acid is compofed of oxygen, hydrogen, and carbon, in proportions not yet afcertained. But Mr Deyeux has proved, that the quantity of carbon is very great, compared with that of the hiydrogen.
Gallic acid conbines with alkalies, earths, and metallic oxides, and forms compounds known by the name of gallats.
Its affinities have not yet been determined; but oxide of iron feems to have a ftronger affinity for it than for any other fubttance; for gallic acid is capable of taking it from every other acid. In confequence of this property, the infufion of galls is employed to detect the prefence of iron in any liquid. As foon as it is poured in, if iron be prefent, a black or purple colour is produced.

Sect. XX. Of Benzoic acid.

Benzoin or lernjamin (as it is fometimes called) is a Benzoin kind of refin brought from the Eaft Indies ; obtained, according to Dr Dryander, from the flyrax benzoe, a tree which grows in the ifland of Sumatra. This fubflance confifts partly of a peculiar acid, defcribed as long ago as 1608 by Blaife de Vigenere, in his Treatife on Fire and Salt, under the name of fozvers of benzoin, becaufe it was obtained by fublimation. This acid, which is now called the benzoic acid, may be fublimed from benzoin by heat ; or it may be obtained by

Scheele's

Succinis Schecle's procefs, which has been defcribed in the ar$\underbrace{\text { Acid ticie Chemistry, Ency\% }}$
500
Properties
of benzoic acid.

* Morveau

Ency. Mce
thod. Cbim.
i. 44 .

+ Licben-
асіи.
\ddagger IUem。
§Morvenu,
\| Lichen-
Bein.
$\dagger I d$
sor Little is known refpecting its bafe.
Ins combi- It combines with alkalies, carths, and metallic oxides, untions and and forms falts known by the name of benzoats.
affinitics.

affinitics.

\ddagger Vargure
lin, Ann.do
Cbint. xxii. 208.

Benzoic acid has little or none of the peculiar odour which diftinguifhes benzuin. Its tafte is not acid, but fwectifh, and very pungent*. It hardly affects the infufion of violets; but it reddens that of turnfole, efpecially if that infufion be hot + . Heat volatilizes this acid, and makes it give out a ftrong odour, whiclu excites cuughing. When expofed to the heat of the blow-pipe in a filser fpoon, it melts, becomes as fluid as water, and evaporates without taking fire. It only burns when in contact with fame, and then it leaves no refiduam behind. When thrown upon burning coals, it rifes in a white fmoke. When allowed to cool after being melted, it hardens, and a radiated cruft forms on its furface \ddagger.

It fuffers no other alteration in the air than lofing the little of the odour of benzoin which remained to

Cold water diffolves no fenfible quantity of it ; but it is foluble enough in hot water: 480 grains of boiling water diffolve 20 grains of it ; 19 of thefe are depolited, when the water cools, in long, ilender, flat, fea-ther-like cryitals $\|$.

Concentrated fulphuric acid diffolves it without heat or any other change except becoming fomewhat brown: when water is poured into the folution, the benzoic acid feparates and coagulates on the furface without any alteration II. Nitric acid prefents precifely the fame phenomena, aud alfo the fulphurous and nitrous acids. Neither the muriatic, the oxy-muriatic, nor the phofphoric acids diffolve it. The acetons, formic, and febacic acids, when hot, diffolve it precifely as water does; but it cryilallizes again when thefe acids cool *.

Alcohol diffolves it copiounly, and lets it fall on the addition of water \dagger.

Its affinities, from the experiments of Trommflorf, appear to be as follows:

White oxide of arfenic,
Potafs,
Soda,
Ammonia,
Barytes,
Lime,
Magnefia,
Alumina,
Jargonia \ddagger ?
Water,
Alcohol.
XXI. Of Succinic Acid.
$\$$ Boyle abridgred by Sbarw, iii. 369 .

SEct. XXI. Of Succinic Acid.
502
Amber. AMBER is a well-known brown, tranfparent, inflammable body, pretty hard, and fufceptible of polifh, found at fome depth in the earth, and on the fea-coaft of feveral countries. It was in high eftimation among the ancients both as an ornament and a medicine.When this fubftance is diftilled, a volatile falt is obtained, which is mentioned by Agricola under the name of falt of amber; but its nature was long unknown. Boyle was the firft who difcovered that it was an acid§. From fuccinum, the Latin name of amber, this acid has received the appellation of fuccinic acid.

Suppl. Vol.I. Part I.

It is ohtained by the fullowing proceis: Fill a retort Camphoric half way with powdered amber, and cover the powder Acid. witl a quantity of dry fand; lute on a receiver, and 503 ditil in a fand-bath without employing tou much heat. Method of There palfes over lirft an intipid plilegm ; then a weak obeaining acid, which, according to Scheele, is the acetous *; then fuccinic the fuecinic acid attaches itfelf to the neck of the re- acid. the fuccinic acid attaches ittelf to the neck of the re-*Bergman's tort ; and if the diltillation be contimed, there comes Nores on over at latt a thick brown oil, which has an acid talte. Sebeffer.

The fuccinic acid is at firt mixed with a quantity of oil. Perhaps the beft method of purifying it is that recommended by Pott, to diffolve it in hot water, and to put upon the filter a little cotton, previonfly moiftened with oil of amber; this fubftance retains moft of the oil, and allows the folution to pafs clear. The acid is then to be cryftallized by a gentle evaporation. And this procefs is to be repeated till the acid 504 be quite pure. The cryftals are white, fhining, and it, 504 proper. of a foliated triangular prifmatic form : they have an tics, acid tafte, but are not corrolive : they redden tincture of turnfole, but have little effect on that of violets.

They fublime when expufed to a confiderable heat, but not at the heat of a water-bath. In a fand bath they melt, and then fublime and condenfe in the upper part of the veffel ; but the coal which remains fhews that they are partly decompofed \dagger. +

Onc part of this acid diffolves in 96 parts of water at the temperature of 50°, according to Spielmant, in $24: I_{\mathrm{rnf}} \mathrm{Cbem}$. parts at the temperature of 5°, and in 2 parts of water at \S xui. the temperature of 212°, according to Stockar de Neufornf; but the greateft part cryftallizes as the watery De Succia cools. According to Roux, however, it ftill retains more no. of the acid than cold water is capable of diffolving $\|$. Ucisoroen, 240 grains of boiling alcohol diffolve 17701 this acid; ifid. p. 72 . but cryltals again fhoot as the folution cools If.

The combinations of this acid are called fuccinats.
Its component parts are till unknow:n.
Its affinities, according to Morveau, are as follows:
IT Wenzel.
505
Combina:-
tions and
Barytes,
Lime,
Potafs,
Soda,
Ammonia,
Magnefia,
Alumina,
Jargonia * ? *Vague-
Metallic oxides as in fulphuric acid, ${ }^{\text {Cin, }}$ AnA de $^{\circ}$ Water, Alcohol.
affinities.
Sect. XXII. Of Campboric Acid.

CAMphor is a well-known white cryftalline fubflance, $\begin{gathered}\text { 5amphor. }\end{gathered}$ of a ftrong tafte and fmell, obtained from a fpecies of Iaurel in the Eaft Indies; and Mr Proult has hewn that feveral volatile oils contain a confiderable quantity of it \dagger. It is fo volatile, that it cannot be melted in \dagger° Ann. de open veffels, and fo inflammable that it burns even on Cbim. iv. the furface of water. 179.

When campleor is fet on fire in contact with oxygen gas, it burns with a very brilliant flame; much caloric is difengaged, water is formed, the inner furface of the veffel is covered with a black matter, which is undoubtedly carbon, and a quantity of carbonic acid gas is alro produced \ddagger. Hence it follows, that it is compofed of \mid LaGranye, hydrogen and carbon, at leaft principally.
ibid. xxiii.
If ${ }^{153 .}$

Camphoric Acid.

If one part of camphor and fizz parts of pulverifed clay be mixed together, by means of alcohol, in a mortar, the mixture made up into balls, and when dry put jnto a retort, and diftilled by a moderate heat-a quantity of oil comes over, and there remains in the retort a black fubfance, which confitts of the clay intimately mixed with a quantity of carbon. If the fire be not cautioufly managed, a quantity of camphor alfo fublimes. By this procefs camphor is decompounded, and feparated into oil and carbon.
$122,24^{8}$ parts of camphor
produced 45,856 parts of oil
and 30,571 of carbon.
Total 76,427
Lofs 45,825
Carbonated hydrugen gas and carbonic acid were * Ann. de alfo formed *.

Chim. xsiii. The oil obtained has the following properties:
153. It has a fharp cautic tatte, and leaves upon the

Oil of cam_tongue a fenfe of coldnefs. It has an aromatic odour,
pior. approaching to that of thyme or rofemary. Its colour is a colden yellow.

When expofed to the air, it partly evaporates, and there remains a thick brown matter with a fharp bitterifh tafte, which at laft alfo evaporates.

With alkalies, it forms a foap, which poffeffes all the characters of foaps made with volatile oils.

Alcohol diflolves it entirely; and when water is added to the folution it beconses milky, but no precipitate
f. 16id. 159. is produced \dagger.

Thefe properties fhew that this is a volatile oil, and confequently it is probahle that camphor is compofed 108 of volatile oil and carbon.
${ }^{308} \mathbf{3 0 8}$. Mr Koric Marten, by diftilling nitric acid off camphor
acid.
$\$$ Kofegar
\#nn, de Cum-
pbora, \&c.
1785 . eight times fucceffively, obtained an acid in cryftals \ddagger, to which the name of campboric acid has been given.
His experiments have been repeated by Mr Bouillon La Grange. He mixed together 122,284 parts of camplor with $4^{89,1} 36$ parts of nitric acid of the fpecific gravity 1,33, and difilled them. Much nitrous and carbonic acid gas were difengaged, and part of the camphor was fublimed; but part was converted into an acid. He returned the fublimed camphor into the retort, poured on it the fame quantity of nitric acid as at firft, and diftilled again. This procefs lie repeated till the whole camphor was acidified \oint. The quantity of camphoric acid obtained amaunted to $53,49^{8}$. The 309 quantity of nitric acid was 2114.538.
Its proper- Camphoric acid thus obtained is in fnow-white cryties. Koferar fals, of the form of parallelopipedons $\|$.
| Kofegarfals, of the form of parallelopipedons $\|$
Thefe cryfals efforefce in the air ${ }^{\text {I }}$.
TLGGange. Camphoric acid has a flightly acid bitter tafte, and fmell like that of faffron.

It reddens vegetable colours.
It is foluble in 200 parts of cold water, according to Kofegaiten ; in 96 parts of water at the temperature of 60°, according to La Grange. Boiling water dif.

* Kofegay. fulves $\frac{1}{12}$ th of its weight *.
ten.
+ Bouillon
La Grange,
Ann. des
chine sivii. When this acid is placed on ignited coals, it emits a
denfe aromatic fume, and is entirely diffipated. By a gentler heat, it melts, and is fublimed. If it be put into a heated porcelain tube, and oxygen gas be paffed thruugh it, the acid does not undergo any change, but is \{ublimed.

By mere diftillation, it firt melts and then fublimes; by which procels its properties are in fome refpect changed. It no lunger reddens the tincture of turnfole, but acquires a brifk aromatic fmell; its tate becomes lefs penetrating, and it is no longer foluble either in water or the fulphuric and muriatic acids. Heated nitric acid turns it yellow and diffolves it. Alcohol likewife diffolves it ; and if this folution be left in contact with the air of the atmofphere, it cryftallizes.

Camphoric acid does not produce any change in fulphur; alcohol and the mineral acids totally diffolve it; and fo likewife do the volatile and the fat oils.

Camphoric acid does not precipitate lime from limewater. It produces no change on the folution of indigo in fulphuric acid.

510
It forms combinations with the alkalies, earths, and Its combimetallic oxides, which are called camphorats.

Its affinities, as far as afcertained by La Grange, are as follows * :

Lime,
Potafs,
Soda,
Barytes,
Ammonia,
Alumina, Magnena.

Sect. XXIII. Of Suberic Acid.

CORK, a fubflance too well known to require any Difover defcription, is the bark of a tree which bears the fame of fuberic name. By means of nitric acid, Brugnatelli converted acid. it into an acid \dagger, which has been called the fuberic acid, \dagger Crell's from Suber, the Latin name of the cork-tree. Scveral Annal, chemits affirmed that this acid was the oxalic, becaufe ${ }^{1 / 87}$. it poffeffed feveral properties in common with it. Thefe affertions induced Bouillon la Grange to undertake a fet of experiments on fuberic acid. Thefe experiments, which have been publifhed in the 23^{d} volume of the Annales de Cbimie, completely eftabliih the peculiar nature of fuberic acid, by fhewing that it poffenes properties different from thofe of every other acid.

To prepare it, a quantity of found cork grated down Method of fmall is to be put into a retort, fix times its weight of preparing nitric acid of the feccific gravity 1,261 poured upon it. it , and the mixture diftilled by means of a gentle heat. Red vapours are immediately difcharged; the corls fwells up and becomes yellow, and as the diftillation advances, it finks to the bottom, and its furface remains frothy. If that froth does not form properly, it is a proof that fome part of the cork has efeaped the action of the acid. In that cafe, after the diftillation is pretty far advanced, the acid which has paffed into the receiver is to bepoured back into the retort, and the ditillation continued till no more red vapours can be perceived; and then the retort is to be immediately taken out of the fand-bath, otherwife its contenis would become black and adhere to it. While the matter contained in the retort is hot, it is to be poured into a glafs veffel, placed upon a fand-bath over a gentle fire, and conftantly ftirred with a glafs rod. By this means it becomes gradually

Suberic gradually thick. As foon as white vapours, cxciting acid. a tickling in the throat, begin to difengage themfelves, the veffel is removed from the bath, and the mafs continually firred till it is almoft cold.

By this means an orange-coloured mafs is obtained of the confiftence of honcy, of a ftrong and fharp odour while hot, but having a peculiar aromatic fmell when cold.
On this mafs twice its weight of boiling water is to be poured, and heat applied till it hecomes liquid; and then that part of it which is infoluble in water is to be feparated by filtration (N). The filtered liquor becomes muddy ; on cooling it depofites a powdery fediment, and a thin pellicle forms on its furface. The fediment is to be feparated by filtration, and the liquor reduced to a dry mafs by evaporating in a gentle heat. This mafs is fuberic acid. It is fill a little coloured, owing to fome accidental mixture, from which it may be purified either by faturating it with potafs and precipitating it by means of an acid, or by boiling it along with charcoal powder. Suberic acid thus obtained is not cryftallizable, but when precipitated from potafs by an acid, it affumes the
only $\frac{1}{57,6}$ part of its weight of fuberic acid, and if the acid be very pure, only rifth part : boiling water, on the contrary, diffolves half it weight of it.

When expofed to the air, it attracts moifture, efpecially if it be impure.
When expofed to the lighlt of day, it becomes at hatt brown; and this effect is produced much fooner by the direet rays of the fun.

When heated in a matrafs, the acid fublimes, and the infide of the glafs is furrounded with zones of differcnt colours. If the fublination be ftopped at the proper time, the acid is obtaincd on the fides of the veffel in fmall points formed of concentric circles. When expofed to the heat of the blow-pipe on a fpoon of pla. tinum, it firft melts, then becomes pulverulent, and at laft fublines entirely with a fmell refembling that of febacic acid (o).

It is not altered by oxygen gas :- the other acids do not diffolve it completely. Alcohol developes an aromatic odour, and an ether may be obtained by means of this acid.

It converts the blue colour of nitrat of copper to a green ; the fulphat of copper alfo to a geen; green fulphat of iron to a deep yellow; and fulphat of zine to


```
\(\square\)
```

```
            \square
``` form of a powder; when obtained by evaporation it forms thin irregular pellicles.
Its tafte is acid and lightly bitter; and when diffol ved in a fmall quantity of boiling water it acts upon the throat, and excites coughing.

It reddens vegetable blues; and when dropped into a folution of indigo in fulphuric acid (liquid blue, as it is called in this country), it changes the colour of the folution, and renders it green.

Water at the temperature of \(60^{\circ}\) or even \(70^{\circ}\) diffolves
a golden yellow (P).

It has no action either on placinum, gold, or nickel ; Its action but it oxidates filver, mercury, copper, lead, tin, iron, on other bifmuth, arfenic, cobalt, zinc, antimony, manganefe, and molybdenum.

With alkalies, earths, and metallic oxides, it forms compounds known by the name of fuberats.

Its affinities are as follows (\(Q\)):
Tt2 Barytes,
Barytes, \(\begin{gathered}515 \\ \text { Itsaflinities. }\end{gathered}\)
(s) When this fubfance is put into a matrafs, water poured on it, and heat applied, it melts; and when the veffel is taken from the fire and allowed to cool, one part of it, which is of the conliftence of wax, fwims on the furface of the water, and another part precipitates to the bottom of the veffel, and affumes the appearance of a whitifh magma. When this magma is feparated by filtration, and wafhed and dried, a white taftelefs powder is obtained, mixed with ligneous threads, foluble in acids and alkalies.
(o) An acid which hall be afterwards defcribed.
(p) Owing perhaps to the prefence of a little iron in the fulphat.
(Q) The place which the fuberic acid occupies in the affinities of the alkalies, earths, and metallic oxides, as far as this fubject has been inveltigated by Bouillon La Grange, will appear by the following Tables:
Potass.
Sooa.
\begin{tabular}{|c|c|c|c|}
\hline Potass. & Soda. & Barytes. & Lime. \({ }^{\text {a }}\) \\
\hline Sulphuric acid, & Sulphuric acid, & Sulphuric acid, & Oxalic acid, \\
\hline Nitric, & Nitric, & Oxalic, & Sulphuric, \\
\hline Muriatic, & Muriatic, & * *, & * *** \\
\hline Suberic. & Suberic. & Muriatic, & Muriatic, \\
\hline Alumina. & Oxide of Tin. & & Magnesia as lime. \\
\hline \multirow[t]{2}{*}{\({ }_{*}^{\text {Sulphuric acid, }}\)} & \multirow[t]{2}{*}{* * * \({ }_{\text {M }}\) *} & \multirow[t]{2}{*}{Oxide of Silver.} & \\
\hline & & & Oside of Molybienust. \\
\hline \multirow[t]{2}{*}{Oxalic, Suberic.} & \multirow[t]{2}{*}{Suberic.} & * * & Suberic acid. \\
\hline & & Sulphuric, Suberic. & Oxide of Antimony \\
\hline \multirow[t]{2}{*}{Oxide of Mercury.} & ----- & & Oxide of Antimon \\
\hline & & Oride of Copper. & * \\
\hline Sebacic acid, & Muriatic, Suberic. & ** \({ }^{*}\) & Muriatic, Sukeric, \\
\hline Nitric, Suberic. & & Sulphuric, Suberic. & Manganese the fame. \\
\hline
\end{tabular}

* Ann, de

Cbim. xsiii. 42.

516
Itscompofi. tion.
\[
\begin{aligned}
& \text { Barytes, } \\
& \text { lotafs, } \\
& \text { Suda, } \\
& \text { Lime, } \\
& \text { Ammonia, } \\
& \text { Magnefia, } \\
& \text { Alumina: }
\end{aligned}
\]

Mr Bonillon La Grange, to whon we are indehted for all the facts relative to this acid, fuppofes that it is compofed of oxygen, hydrogen, and carbon: but Mr Jamefon, in confequence of the refult of a feries of cxperiments whicl he made on charcoal, has been led to fufpect that it confifts entirely of carbon and oxygen. He found, that by the action of nitric acid upon charcoal, a brown, bitter, deliquefcent mafs was formed, foluble in water, alcohol, and alkalies, and which emitted, particularly when heated, a very fragrant odour. This matter was more or lefs foluble in water according to the time that it had been expofed to the action of the acid. When the nitric acid nled was concentrated, and confiderable in quantity, part of the charcoal was converted into an acid, which pofieffed the characters
of the fuberic \(\dagger\).
Thefe facts are curious, and may extend our knowledge of the nature of vegetable acids, but they are infufficient to prove the abfence of hydrogen in fuberic acid, becaufe charcoal cannot eafily be procured perfectly free from hydrogen, and becaufe feveral of the properties of fuberic acid indicate the prefence of hydrogen in it, its becoming brown, for inftance, when expofed to the light. Mr Jamefon has obferved, that the acid which exits ready formed in peat poffeffes the properties of fuberic acid.

\section*{Sect. XXIV. Of Laccic Acid.}
the children whom he employed to gather it were tempted by its fweetnefs to eat fo much of it as materially to reduce the produce of his crop. Small quantities of this matter were Cent into Europe in 1789 , both in its natural ftate and melted into cakes; and in 1793 Dr Pearfon, at the requeft of Sir Jofeph Banks, undertook a chemical examination of its qualities, and his experiments were publifled in the Philofophical Tranfactions for 1794 .

A piece of white lac, from 3 to 15 grains in weight, Its 318 ald fise is probably produced by each infect. Thefe pieces are of a grey colour, opaque, rough, and roundifh. When of a grey colour, opaque, rough, and roundith. When
white lac was purified by being ftrained through muflin, it was of a brown colour, brittle, hard, and had a bitterifh tafte. It melted in alcohol, and in water of
the temperature of \(145^{\circ}\). In many of its properties it bitterifh tafte. It melted in alcohol, and in water of
the temperature of \({ }^{4} 45^{\circ}\). In many of its properties it refembles bees wax, though it differs in others; and
Dr Pearfon fuppofes that both fubftances are compofed refembles bees wax, though it differs in others; and
Dr Pearfon fuppofes that both fubftances are compofed of the fame ingredients, but in different proportions.

Two thoufand grains of white lac were expofed in fuch a degree of heat as was jult fufficient to melt them. As they grew foft and fluid, there oozed out 550 grains of a reddifh watery liquid, which fmelled
like newly baken bread (s). To this liquid Dr Pearfon 550 grains of a reddifh watery liquid, which fmelled
like newly baken bread (s). To this liquid Dr Pearfon has given the nanse of laccic acid \({ }^{*}\). has given the namie of laccic acid \({ }^{*}\).
It poffeffes the following properties:

It turns paper flained with turnfole to a red colour.
After being filtered, it has a lightly faltifh tafte with bitternefs, but is not at all four.

When heated, it fmells precifely like newly baken hot Prsperties bread.
O. Rauding, it grows fomewhat turbid and aciid.

On flanding, it grows fomewhat turbid, and depofites a fmall quantity of fediment.

Its Specific gravity at the temperature of \(60^{\circ}\) is 1,225.

A little of it having been evaporated till it grew very turbid, afforded on ftanding fmall needle-fhaped cryftals in mucilaginous matter.

Two hundred and fifty grains of it were poured into a very fmall retort and diftilled. As the liquor grew warm, mucilage-like clouds appeared; but as the heat increafed they difappeared again. At the temperature of \(200^{\circ}\), the liquor difilled over very falt : A fmall quantity of extractive matter remained behind. The diftilled liquor while hot fmelled like newly baken bread, and was perfectly tranfparent and yellowifl. A flared of paper ftained with turnfole, which had been put into the receiver, was not reddened; nor did another which had been immerfed in a folution of fulphat of iron, and alfo placed in the receiver, turn to a blue colour upon being moittened with the folution of potafs (T).

About
\begin{tabular}{lll}
Oxide of Iron. & Oxide of Bismuth. & Oxide of Arsenic. \\
Muriatic, & \(*\) & \(*\) \\
Sulphuric, & Nitric acid, \\
Suberic. & Suberic. & Suberic.
\end{tabular}
(R) The Chinefe collect a kind of wax, which they call pe-la, from a coccus, depofited for the purpofe of breeding on feveral fhrubs, and manage it exactly as the Mexicans manage the cochineal infect. It was the knowledge of this that induced Dr Anderfon to attempt to propagate his infect.
(s) The fame liquid appears on preffing the crude lac between the fingers; and we are told, that when newly gathered it is replete with juice.
(\(\tau\)) A proof that the acid was not the pruffic.

Laccic Acid.

About one hundred grains of this riftilled liquid being evaporated till it grew turbid, after being fet by for a night, afforded acicular cryltals, which under a lens appeared in a group not unlike the umbel of parfley. The whole of them did not amount to the guarter of a grain. They tafted only bitterifh.

Another 100 grains being evaporated to drynefs in a very low temperature, a blackifl matter was left behind, which did not entirely difappear on heating the fpoon containing it very hot in the naked fire; but on heating oxalic acid to a much lefs degree, it evaporated and left not a trace behind.

Carbonat of lime diffolved in this dittilled liquid with effervefcence. The folution tafted bitterifh, did not turn paper llained with turufole red, and on adding to it earbonat of potafs a copious precipitation enfued. A little of this folution of lime and of alkali being evaporated to drynels, and the refiduum made red hot, nothing remained but carbonat of lime and carbonat of potals.

This liquid did not render nitrat of lime turhid, but it produced turbidnefs in nitrat and muriat of barytes.

To fue hundred grains of the reddifh-coloured liquor obtained by melting white lae, carbonat of foda was added till the effersefcence ceafed, and the mixture was neutralifed; for which purpofe three grains of the carbonat were neceflary. During this combination a quantity of mucilaginous matter, with a little carbonat of lime, was precipitated. The faturated folution being filtrated and evaporared to the due degree, afforded on ftanding deliquefcent cryfals, which on expofure to fire left only a reliduum of carbonat of foda.

Lime-water being added to this reddifh-coloured liquor produced a light purple turbid appearance; and on ftanding there were clouds juft perceptible.

Sulphuret of lime oceafioned a white precipitation, but no fulphurated inydrogen gas was perceptible by the fmell.

Tincture of galls produced a green precipitation.
Sulphat of iron produced a purplifh colour, but no precipitation; nor was any precipitate formed by the addition firlt of a little vinegar, and then of a little potafs, to the mixture.

Acetite of lead occafioned a reldifh precipitation, wbich rediffulved on adding a little nitric acid.

Nitrat of mercury produced a whitifh turbid liquor.
Oxalic acid produced immediatcly the precipitation of white acicular crytals, owing probably to the prefence of a little lime in the liquid.

Tartrite of potals produced a precipitation not unlike what takes place on adding tartarous acid to tartrite of potafs (u); but it did not diffoive again on adding potals.

Such were the properties of this acid difcovered by Dr Pearfon. lis deftructilility by fire, and its affording carbon, diftinguifh it from all the acids deferibed in this article before the acctous; and its peculiar fmell when heated, its precipitating tartrite of potafs without forming tartar, its bitterifh tafte, and its being con-
verted into vapour at the teniperature of 200\%, diftin- Promuguilh it from all the acids hitherto exannincd *. Sect. XXV. Oj I'yromucous Acid. - Pbil. Proomucous (v) acid is procured by dititling fugar Tranf. 3 . 7 . or any of the fwect juices. As tiny foam very mueh, me hod of the retort fhould be large, and feven-eighths of it empty. Me obtaining A prodigious quantity of carbonic acid and carbouated pyromuhydrogen gas is difengaged: A very thin light coal re-cous acid. mains behind in the retort. Morveau found the glafs of the retort attacked. 'Ilse quantity of fugar diftilled was \(230+\) grains; the coal weighed \(9^{92}\) grains. 'I'here were 428 grains of a brown liquor in the receiver, confilling mottly of an acid phlegm. This rediftilled gave 313 grains of a liquor almott limpid, the fpectic gravity of which was 1,0115 at the temperature of \(77^{\circ}\). It reddened blue paper. This acid may be concentra. ted by freczing, or by combining it with fome bafe, potafs, for inftance, and decompoling the compound by a ftronger acid, as, for example, the fulphuric.

It has a very harp tafte. When expofed to heat in fisproperopen reflels, it evaporates, leaving a brown fpot. Dif-ties, tilled in clole veffels, it lëves charcoal behind it.

It does not dífolve gold as Schrickel and Lemery and feveral other chemifts affirmed.

It does not attack filver nor mercury, nor even their oxides \(\dagger\). It corrodes lead, and forms Ityptic and longt Sobricket. cryftals. Copper forms with it a green folution: With
iron it forms green cryltals; with antimony and zinc greenifh folutions.

The compounds which it forms are called fyromucites. Combina Its affinities, according to Morveau, are as follows: tions, and Potafs, afinitiss. Soda, Barytes, Lime, Magnefia, Ammonia, Alumisa, Jargonia \(\ddagger\) : Metallic uxides as in fuiph. acid, Watcr, \(\ddagger\) Vauquelin, Anno de Cbin. \(x \times x i\), Alcohol. 205.

\section*{Sect. XXVI. Of Pyro-lignous Aciid.}

IT is well known that the fmoke of burning wood is ncthod of exceedingly offenfive to the eyes: And chemifts have obtaining long ago obferved, that an acid might be obtained by pyro-ligdiftilling wood.

It is to Mr Goettling, however, and to the Dijon academicians, who repeated his experiment, that we are indebted for what knowledge we poffers of the peculiar properties of this acid, which, becaufe it is obtained from wood by means of fire, has been called the pyrolignous acid (w). It appears to be the fame from what ever kind of wood it is obtained.

Mr Goettling filled an iron retort with pieces of birch tree bark, and obtained by diftillation a thick, brown, very empyreumatic acid liquor. This liquor he allowed
(v) On this addition, tartar, or acidulated tartrite of potafs, is formed, which precipitates, becaule it is very little foluble in water. The addition of potafs diffolves it again.
(v) Morveau called this acid fyrupous acid.
(w) Goettling called it ligneous acid.
+Vovque-
Lin, Ann. de Cbim, xxii. 208.

\section*{Sect. XXVII. Of Pyro-tartarous Acid.}

An acid may alfo be obtained by diftilling tartar; it is called pyro-tartarous acid.

525
Properties of pyro-tartarous acid.
alluwed to remain at reft for three sonths, and then feparatcd from it a quantity of oil which had rifen to the top. By ditilling this liquer again, and then faturating it with potals, and cuaporating to drynefs, he obtained a bown faline mafs; which, by being rediffolva 3 in watcr, and evaporated, yielded gre yith white cryftals: Thefe cryfals ware compoled of pyro-lignous acid and potafs. He poured upon them, by little and little, a quantity of fulphuric acid; and by applying a gentle heat, the py ro-lignous acid came over in confiderable purity *.

The Dijon academicians obtained this acid from beech wood: hy diftilling 55 ounces, they procured 17 ounces of acid; which, when rectified by a fecond dilillation, was of the fpecific gravity \(1,02083\).

It reddens vegetable colours: when expofed to a Arong heat, it takes fire and is deftroyed. It unites very well with alcohol.

Its compounds are called pyro-lignites.
Its affinitics, as fixed by Mr Eloy Bourfier de Clervaux and Mr de Morveau, are as follows:

\section*{Lime,} Barytes, Potals, Soda, Magnefia, Ammonia, Oxide of zinc,

Alumina, Jargonia \(\dagger\) ?

It has an empyreumatic tafte and odour ; reddens the tincture of turnfole ; but has no effect on that of viulets. Little is known concerning this acid, except that many of its properties are the fame with thofe of the pyro-lignous; and Morveau conjectures that, if properly purified, it would probably be difcovered to be the fame with it.

The compounds which it forms are called pyro-tartrites.

Its affinities are unknown. Morveau fuppofes that they are the fame with thofe of the pyro-lignous acid.

The i8 preceding acids are all (except the lactic and faccholactic) denominated vegetable acids, becaufe
they are obtained from vegetable fubflances. Wre hare Vegetable placed the lactic and faccholactic acids in the fame clafs; becaufe they bear a ftrong refemblance to vegetable acids, and becaufe they are evidently compofed of the fane ingredients with them.

Vegetab!e acids are diftinguifhed from all the acids 529 defcribed in the hegiming of this chapter, by thcir dee by fire. ftructibility by fire.

These is no circumftance in chemiftry which has at. Con erttracted greater attention than the pofibility of convert- ible into ing the various vegetable acids into each other by means of different proceffes. To explain what paffes during thefe procefles, it would be neceffary to know exactly the component parts of every vegetable acid, the manner in which thefe acids are combined, and the affinities which exif between each of their ingredients. This, however, is very far from being the cafe at prefent. Though a valt number of experiments have been made on purpofe to throw light on this very point, the diffculties which were to be encountered have been fo great, that no accurate refults have yet been obtained.

It follows from thefe experiments, that all the vege- inquiry in table acids are compofed, chiefly at leaft, of oxygen, hydrogen, and carbon ; hut that the proportions differ in every individual acid. We fay chiefly, becaufe it has their ingrebeen fufpected from fonse phenomena, that one or two of thefe acids contain befides a little azot. Let us take a view of what is at prefent known of the compofition of thefe acids in their order.
1. As to carbonic acid, its compofition has been afcertained with tolerable accuracy; it confifts of about 28 parts of carbon and 72 of oxygen.
2. By diftilling 7680 grains of acetite of potafs, Dr Higgens obtained the following products *:
\(\qquad\) 3862,994 grains.
Carbonic acid gas, - - 1473,564
Carbonated hydrogen gas, - 1047,6018
Refiduum, confilting of carbon, - 78,0000
Oil, - - - - 180,0000
Water, - . - - 340,0000
Deficiency (x), - - 726,9402
This deficiency Dr Higgens found to be owing to a quantity of water and oil which is carried off by the elaftic fluids, and afterwards depofited by them. He calculated it, in the prefent cafe, at 700 grains of water and \(26,9+02\) grains of oil. Now, fince acetite of potafs is compofed of acetous acid and potafs, and fince the whole of the potafs remained unaltered, it follows that the acetous acid was converted into carbonic acid gas, carbunated hydrogen gas, carbon, oil, and water; all of which are compored of oxygen, hydrogen, and carbon.
Now \(1473,564 \mathrm{gr}\). of carbonic acid gas are compoled of \(1060,966 \mathrm{gr}\). of oxygen, and \(415,598 \mathrm{gr}\). of carbon. 1047,6018 grains of carbonated liydrogen gas, from comparifon of the experiments of Dr Higgens and Lavoifier, may be fuppofed to confift of about 714,6008 grains of carbon, and 333,0010 of hydrogen.

200,9402 grains of oil contain 163,4828 grains of carbon and 43,4574 grains of hydrogen.
1040 grains of water contain 884 graits of oxygen and 156 grains of hydrogen.
(x) For 29,1 grains of oxygen gas had alfo difappeared from the air of the veffels.

Vegetable Therefore 3817,006 grains of acetous acid are comAcids.

\section*{\(\underbrace{-}\)} pofed of \(1944,966-29,1=1915,866\) grains of oxygen, \(53^{2,45^{8}}\) 4 grains of hydrogen, and \(1368,68: 6\) grains of carbon. Confequently 100 parts of acetous acid are compofed of

50,19 oxygen,
13,94 hydrogen,
35,87 carbon.
100,00
Thefe numbers can only be confidered as approxima. tions to the truth; for the ohject of Dr Higgens was not to afcertain the proportions of the ingredients which compofe acetous acid; and therefore his experiments were not conducted with that rigid accuracy which would have been neceffary for that purpofe.

It is extremely probable, that during the acetous fermentation, or the converfion of alcohol into acetous * Hermfadt, acid, a quantity of water is formed *; and it is certain Crell's An- that oxygen is abforbed. It follows from this that rads, 1756. acetous acid contains more carbon and lefs hydrogen than alcohol. Now we have reafon, from Lavoifier's experiments, to believe that alcohol is formed of
\[
\begin{aligned}
& 51,72 \text { oxygen, } \\
& \text { 18,40 hydrogen, } \\
& \text { 29,88 carbon. }
\end{aligned}
\]

Lavoifier fuppofes that this acid contains alfo azot.
3. Acetic acid is fuppofed to confilt of the fame bafe with acetous acid, combined with a larger proportion of oxygen; we would rather fay, that it is acetous acid combined with onygen.
4. When oxalic acid is diflilled with fix times its weight of fulphuric acid, the products are acetous acid, fulphurous acid, carbonic acid gas, and fulphuric acid remains in the retort \(\dagger\). Hence it follows, that oxalic acid contains more carbon than acetous acid; but that it is compofed of the fame ingredients. It has been fuppofed that oxaiic acid is compoled of fugar and oxygen. Now fugar, according to Lavoifier, is compofed of
\[
\begin{array}{lllll}
\text { Hydrogen, } & - & - & - & 8 \\
\text { Oxygen, } & - & - & - & - \\
\text { Carbon, } & - & - & - & 28
\end{array}
\]

Thefe proportions are rather unfavourable to that notion; at lealt if any dependence can be put in the compofition of acetous acid as deduced from the experiments of Dr Higgens.
5. Hermftads diffolved four ounces of tartarous acid in 16 ounces of water, and kept the folution in a veffel covered with paper in a warm place. In three months the tafte of the folution was changed, and the air in the upper part of the veffel was found to be carbonic acid. In fix monthe the folution was converted into acetous acid. It follows from this experiment, that tartarous acid contains more carbon than acctous acid, and that their ingredients are the fame. If any doubts fhould remain, the following experiment is fufficient to renuve them. Weftrum mixed flrong fulphuric acid with tartarous acid; and added manganefe; acetous acid was produced, and a great quantity of carbonic acid gas was difengaged. When nitric acid is diftilled off tartarous acid, it is converted into oxalic acid, as Scheele firft proved. Hence it has been fuppofed by fome, that oxalic acid differs from tartarous merely in contain. ing more oxygen: but this is very far indeed from be-
ing proved. According to Haffenfratz, tartarous acid contains a confiderable quantity of azot.
6. When citrat of lime is allowed to remain in a bottle flightly corked along with a little alcohol, the citric acid is gradually converted into acctous acid *. Stabo. Weftrum converted it into oxalic acid by means of nitric acid.
7. Malic acid was converted into oxalic by means of nitric acid by Scheelc. It has been fuppofed to contain more oxygen than oxalic acid. Some of it is always formed during the common procefs of converting fugar into oxalic acid. Were we to judge from an experiment, which, however, was not performed with fufficient accuracy, we would conclude that the bafe of malic acid is gum ; for by diftilling two parts of weak nitric acid off one part of gum in a very [mall heat, we obtained a quantity of acid more in weight than the gum, which exhibited feveral of the diftinguifhing properties of mahic acid. It was exceedingly light, whitc,
and fpongy, and attracted water very quickly from the perties of matic acid. It was exceedingly light, whitc,
and fpongy, and attracted water very quickly from the atmofphere, and could not afterwards be brought by evaporation to its former flate.
8. Scheele converted lactic acid into acetous by mere expofure to the atmofphere, and found that a quantity of carbonic acid was difengaged. Hence this acid is merely the acetous with a fmaller proportion of carbon.
9. The gallic acid, we have feen, contains more carbon than any of the others.
10. Nothing is known concerning the compofition of
10. Nothing is known concerning the compofition of
the benzoic and fuccinic acids. Hermftadt fays he converted benzoic acid to oxalic by means of nitric acid: but Morveau did not obferye that any change was pro. duced.
11. The bafe of camphoric is probably camplor.

Though thefe eighteen are the only acids which have hitherto been examined with attention, it cannot be doubted that the number of vegetable acids, either exitling naturally, or at leaft capable of bcing formed by art, is confiderably greater. Morveau lias lately afcertained, that the red colours of flowers are owing to acids: This had already been conjectured by Linnæus.

Sect. XXVIII. Of Prific Aicido.
About the beginning of the prefent century, Dief- Difovery bach, a chemit oi Berlin, wifhing to precipitate a folu-nf Pruntan tion of cochineal mixed with a little alum and fulphat blue. of iron, borrowed from Dippel foune potafs, from which that chemitt had difilled feveral times his animal oil. On pouring in the potafs, Diefbach was furprifed to fee, inftead of the red precipitate which he had expected, a
beautiful blue poweler falling to the botton of the veffel. inftead of the red precipitate which he had expected, a
beautiful blue poweler falling to the botton of the veffel. By reflecting on the materials which he had cmployed, By reftecting on the materials whtelh he had cmployed,
he eafily difcovered the method of procuring the blue powder at pleafure \(\dagger\). This powder was called Pru/fan + Stakis
blue, from the place where it was difcovered. It was 300 Expepowder at pleafure \(\dagger\). This powder was caller Pru/fian + Stakis
blue, from the place where it was difcovered. It was 300 Expeannourced in the Berlin Menoirs for 1710 ; but the roments. procefs was concealed, becaufe it had become a lucralive article of commerce. A method of preparing it, Methoi however, was publifhed by Woodward in the Phifofo- Mreparinus phical Tranfactions for : 724 , which he faid he had got it. from one of his friends in Germany. This method was as follows: Detonate together 4 ounces of nitre and as much tartar, in order to procure an extemporancous alkali; then add 4 ounces of dried bullock's blood, mix
\(\qquad\)
 프를

\author{

}
 . \(\underset{\text { ethod of }}{517}\) kati, the
the ingredienta well together, and put them into a crucible covered with a lid, in which there is a fmall hole; calcine with a moderate fire till the blood emits no more fmelse or tlame capable of blackening any white body expofed to it : increafe the fire towards the end, fo that the whole matter contained in the crucible fhall be moderately but fenfibly red. In this flate throw it into two pints of water, and boil it for half an hour. Decant off this water, and continue to pour on more till it come off infipid. Add all thefe liquids together, and boil them down to two pints. Diffolve two ounces of fulplat of iron and eight onnces of alum in two pints of boiling water; mix this with the former liquor while both are hot. An effervefecnce *akes place, and a powder is precipitated of a green colour mised with bluc. Separate this precipitate by filtration, and pour muriatic acid upon it till it becomes of a beautiful blue ; then wafl it with water and dry it.

Different explanations were given of the nature of this precipitate by different chemifts. All of them acknowledged that it contained iron, but to account for the colour was the difficult point. Brown, and Geoffroy, and Neumann, difcovered in fuceeffion, that a great many other animal fubttances befides hlood communicated to alkalies the property of forming Pruffian blue. Maequer undertook an examination of this fubflance, and publifhed the refult of his experiments in the Me-
He obferved that, when alkali is added to a folution of iron in any acid, the iron is precipitated of a yellow colour, sod foluble in acids; but if iron be pre- cipitated from an acid by an alkali prepared as above defcribed, by calcination with blood (which has been called a Pru(fara alkali), it is of a green colour. Acids diffolve only a part of this precipitate, and leave behind an infoluble powder which is of an intenfe blue colomr. The green precipitate therefore is compoled of two dif. ferent fubfances, one of which is Pruflian :lue; the other, as he afcertained by experiment, is the brown or yellow oxide of iron : and the green colour is owing to the mixture of the blue and yellow fubltances. When heat is applied to the infoluble precipitate, its blue colour is deftroyed, and it becomes exacily fimilar to common oxide of iron. It is compofed therefore of iron and fome other fubftance, which heat lias the property of driving off. If this infoluble precipitate be boiled with a very pure alkali, it lufes its blue colour alfo, and at the fame time the alkali aequires the property of precipitating of a blue colour folutions of iron in acids, or it has become precifely the fame with the Prunfian alkali. Pruffian blue, therefore, is compofed of iron and fomething which a pure alkali can feparate from it, fomething which has a greater affinity for alkali than for iron. By boiling a quantity of alkali with Pruffian blue, it may be completely faturated with this fomething, which we fhall call colouring matter, and then it has loft all its alkaline properties. No acid can Separate this coIouring matter from iron after it is once united with it. When iron diffolved in an acid is mixed with an alkali faturated with the colouring matter, a double decompofition takes place, the acid unites with the alkali, and the colouring matter with the iron, and forms Pruffian blue. The reafon that, in the common method of pre. paring Pruflian blue, a quantity of yellow oxide is precipitated, is, that there is not a fufficient quantity of co-
louring matter (for the aikali is neser faturated with it) to faturate all the iron difplaced by the alkali; a part of it therefore is mixed with Prufian hlue. Muriatic acid diffolves this oxide, carries it off, and leaves the blue in a flate of purity. Such were the conclufions which Macquer drew from his experiments; experiments which not only difcovered the compofition of Pruffian blue, but threw a ray of light on the mature of affinities, which has contributed much towards the advancement of that important branch of chenilltry.

The nature of the colouring matter, however, was fill nnknown. Macquer himfelf fuppofed that it was pure phlogifton; but the opinion was untenable. He laad Thewn that it poffeffed the property of forming neutral falts, and therefore Bergman and Morvean fufpected that it was an acid.

Selreele undertook the talk of examining its nature, and publifhed the refult of his experiments in the Stuckholm Tranfactions for 1782 .

He obferved that the Pruffian alkali, after being expofed for fome time to the air, loft the property of forming Pruffian blue; the colouring matter muit the efore have left it.

He put a fmall quantity of it into a large glafs globe, 5.33 corked it up, and kept it fome time; but no changefed by was produced either in the air or the Pruffian alkali. Scheele. Something muft therefore difplace the colouring matter when the alkali is expofed to the open air, which is not prefent in a glafs veffel. Was it carbonic acid gas ? To afcertain this, he put a quantity of Pruflian alkali into a glafs globe filled with that gas, and in 24 hours the alkali was incapable of producing Pruflian blue. It is therefore carbonic acid gas which difplaces the colouring matter. He repeated this experiment with this difference, that he hung in the globe a bit of paper which had been previoufy dipped into a follution of fulphat of iron, and on which he had let fall two drops of an alkaline lixivium, in order to precipitate the iron. This paper was taken out in two hours, and became covered with a fine blue on adding a little muriatic acid. Carbonic acid, then, has the property of feparating the colouring matter from alkali without decompofing it.

He found alfo that other acids produced the fame ef- The colourfect. The colouring matter then may be obtained per-ing natter haps in a feparate fate. He aceordingly made a num. feparated. ber of attempts to procure it, and at lait difeovered the following procefs: He boiled together for fome minutes two ounces of Pruffian blue in powder, one ounce of the red oxide of mercury, and fix ounces of water ; then paffed the whole through a filter, and wathed the retiduum with two ounces of boiling water. The oxide of mereury has a greater affinity for the colouring matter than the oxide of iron; it therefore unites with it, and forms with it a falt foluble in water. The iron remains behind upon the filter, and the liquid is a folution of the colouring matter combined with mercury. He poured this folution upon half an ounce of pure iron-filings, and added at the fame time three grains of fulphuric acid. The iron feparates the oxygen from the mercury, in order to combine with the fulphurie acid; the mercury is precipitated in its metallic ftate, and leaves behind it a quantity of fulphat of iron and of colouring matter diffolved in water, but not combined, as the colouring matter is unable to feparate the iron from the acid *. Anr.de

He then diftilled in a gentle heat ; the colouring mat- Annimie, i.

Prufic ter came over by the time that onc-fourth of the liquor Acid. had pafled into the receiver. It was mixed, however, with a fnall quantity of fulphuric acid; fron which he feparated it hy diftilling a fecond time over a quantity of carbonat of lime. The fulphuric acid combincs with the lime and remains behind, which the colouring matter cannot do, becaufe carbonic acid has a ftronger affinity for lime than it has. Thus he obtained the colouring matter in a flate of purity. formed a very pure Pruffian blue, which he diftiller, and increafed the fire till the veffel became red. The fmall quantity of water which be had put into the receiver contained a portion of the blue colouring matter and of ammonia ; and the air of the rcceiver confifted of azot, carbonic acid gas, and the colouring matter. He concluded from this experiment, that the coluuring matter was compofed of ammonia and carbon. He mixed together equal quantities of pounded charcoal and potafs, put the mixture into a crucible, and kept it red hot for a quarter of an hour: he then added a quantity of fal ammoniac in fmall pieces, which he puftred to the buttom of the melted mixture, kept it in the fire for two minutes till it had ceafed to give out vapours of ammonia, and then threw it into a quantity of water. The folution poffeffed all the properties of the Pruffian alkali. Thus Mr Scheele fucceeded in forming the colouring matter; and it was confidered as proved that it was compofed of ammonia and carbon.

But after the publication of Scheele's experiments, it was difcovered that anmonia irfelf is compofed of azot and hydrogen. It became therefore a queftion, Whether ammonia entered into the compufition of this fubftance, or merely its ingredients? Whether it was compofed of ammonia and carbon, or of azot, hydrogen, and carbon combined in a different mauner? This point has been decided by the following experiments: Mr Clouet made a quantity of ammoniacal gas pafs through a red hot porcelain tube filled with charcoal, and by this procefs formed a quantity of the coluuring matter*. Here the temperature was fo high that the ammonia muft have been decompofed: and the coluuring matter cannot be formed by combining ammonia and charcoal except at a temperature equally high. There is reafon therefore to fuppofe that the ammonia is decompofed. When oxy-muriatic acid is mixed with the colouring matter, it communicates to it a quantity of oxygen, and caufes it in confequence to affume very different properties. When a fixed alkali or lime is added to it in this flate, it is immediately decompofed, and converted into ammonia and carbonic acid gas. The colouring matter in this flate contains all the ingredients neceffary to form thefe two fubflances, namely, azot, hydrogen, carbon, oxygen : but in order to induce the ingredients to form thefe two compounds, the affiflance of an alkali or lime to combine with the carbonic acid is neceffary; juft as fulphur combines more eafily with oxygen when united with an alkali or with iron than when feparate \(\dagger\). isis. i.

The colouring matter, then, which we fhzill heace. forth call the Pruffic acid, is compofed of azot, hydro. gen, and carbon; but the pruportions of thefe ingredicnts have not yet been determined. It is confidered as an acid, though the prefence of oxygen has not been proved, becaufe it has the property of forming neutral falis with the fame bafes as other acids.
l'he Prufic acid is exceedingly volatile, and evident-p:n;erties ly capable of exiting in a gafeous flate. It has a pecu-f Pruffic liar odour, not difagreeable, and which has been com-acid. pared to the flowers of the peach. It has a fweetifh and fomewhat hot tafte, and excites cough*.

It has no affinity for alumina nor for alcohol \(t\).
This fubftance differs exceedingly in its action from all other acids.

It is capable of combining, like them, with earth, its action alkalies, and metallic oxides, and of forming compoundsou other which have been denominated Pruffats. But it entersbodie. much more readily into triple compounds with alkalies or earths, and metallic oxides, than into combinations with earths or alkalies feparately; and though its affinity appears to be greater for alkalies and earths than for metallic oxides, yet when in a free or gafeuus ftate it does not enter into combinations with earths or alkalies without difficulty, and it is feparated from them much more eafily than from metallic oxides. Mere expofure to the light of the fun, or to a heat of \(110^{\circ}\), is fulficient for that purpofe.

Its affinities are fuppofed to be as follows:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{21}{*}{Potafs,
Soda,
Ammonia,
Lime,
Barytes,
Magnelia,
Oxide of zinc,
iron,
manganefe,
cubalt,
nickel,
lead,}} \\
\hline & \\
\hline
\end{tabular}

\footnotetext{
538
ltc affini-
ties.
}
\(\qquad\)
\(\qquad\)

Formic Acid. 545 ing over it.
Methods of There are two methods of obtaining the formic acid, obtaining it. diftillation and lixiviation.

When the firft method is to be employed, the ants are to be wafhed clean, dried with a gentle heat, put into a retort, and diftilled with a moderate heat, graduelJy increafed till all the acid has come over. It is mix. ed with an empyreumatic oil, from which it is feparated by paffing it through a ftrainer previouly moittened with water. By this procefs Meffrs Ardvifion and Oehrn obtained from a pound of ants \(7^{\frac{1}{2}}\) ounces of acid, the fpecinc gravity of which, at the temperature of \(60^{\circ}\),
Difert. on was \(1,0075^{}\). Morveau obtained from 49 ounces of the Alidd of ants 23 ounces of pretty ftrong acid \(\dagger\). Margraf added Ants, 1777, a quantity of water; but it is evident that this ferves in Buldinger's Nezu Magazite for irts. + Encyc. Metlod. i. 6 s. merely to weaken the acid.

When the other method is preferred, the ants are to be wafhed in cold water, put upon a clean linen cloth, and boiling water poured on them repeatedly till it can extract no more acid. The linen is then to be fqueezed, and the feveral liquors nixed and filtrated. This method was firft ufed by Ardvifion and Oehrn : they obtained from a pound of ants an acid liquor which had more fpecific gravity than common vinegar. It is to be purified from the oil which adheres to it by repeated diftillations. After four ditillations the empyreumatic oil fill manifefts its prefence by its fmell, but this fmeli vanimes if the acid be expofed for fome time to the air; a quantity of effential oil, however, ftill remains, which cannot be feparated. The fpecific gravity of the acid \(\ddagger\) Ardvifon thus rectified is \(1,0011 \ddagger\).
und Octrn, Hermftadt employed a third method. He expreffed

\section*{§ Crell's}

Annals, 1784.

342
Its proper.
ties.
|| Ibid. the juice of dry ants, and by this means obtained from 2 lhs. of thefe animals 21 oz .2 dr . of juice, which on diftillation yielded a clear pure acid, equal in Atrength to very concentrated vinegar \(\delta\).

This acid feems to be capable of affuming a gafeous form ; at leaft Hermftadt obferved, that when he put fome of it into a bottle with a giais ftopper, the ftopper was frequently raifed by an elaftic fluid making its efcape, and that after fome days it had loft its fmell \(\|\). When this acid is boiled with nitric acid, a gas is extricated, which renders lime-water turbid, and has a very 1.Avdifon, Pungent odour If.

This acid has a frong but not unpleafant fmell, a cauftic tafte, and when much diluted a pleafant acidity. When * Ibid. moft concentrated, its fpecific gravity is \(1,0453^{*}\).

One part of this acid, mixed with 75 parts of water, gives a faint red to fyrup of violets; mixed with \(43^{\circ}\) parts of water, it reddens paper coloured with turnfole; mixed with 1300 parts of water, it produces no effect \(\dagger\) Morvesu, on the infufion of turnfole \(\dagger\). It mises readily with alp. 62. cohol.

It unites readily with the other acids. When boiled. Selacic with fulphuric acid, it becomes black. White acrid vapours rife when the mixture becomes hot; and when it boils, a gas rifes which unites with difficulty to water and lime-water; the formic acid is again obtained, but its quantity is diminifhed*.
* sbid.

Nitric acid decompofes it altogether; and is itfelf converted into nitrous acid. Muriatic acid does not alter it. Oxy-muriatic acts like nitric acid \(\dagger\).
\(\dagger\) IVid.
Its compounds are called formiats.
542
Its affinities are the fame with thofe given above for its comthe Pruffic acid.

\section*{Sect. XXX. Of Sebacic Acicl.}

Chemists had long fufpected that an acid could be Difcovery obtained from tallow, on account of the acrid uature of of tebacic the fumes whicl it emitted at a high temperature ; but ach. it was M. Grutzmacher who firft demonftrated this acid in a difiertation De Offium Medulla, publimed in \(174^{8} \ddagger\). \(\ddagger\) Leonbarait, Mr Rhodes mentioned it in 1753, and Segner publifhed a differtation on it in 1754 , and Crell examined its properties very fully in two differtations publifhed in the Phil. Tranf. for 1780 and 1782 . It was called at firt acid of fat, and afterwards febacic acid.

It may be procured by heating together a misture of fuet and lime. Sebat of lime is formed, which may be purified by folution in watcr. It is then to be put into a retort, and fulphuric acid poured o:1 it. Schacic acid paffes over on the application of heat.

Sebacic acid has an acid, Tharr, bitterith tatte, and a 544 ver pungent fmell. It reddens tincture of litmus.
Heat caules it to atume a yellow colour.
It oxidates filver, mercury, copper, iron, lead, tin, zinc, antimony, manganefe.

It does not act upon bifmuth, cobalt, nickel. When mixed with nitric acid it diffolves gold.

Its compounds are called Jebats. 545
Its affnities, according to Morveau, are as follows :
Barytes,
Fotafs, Soda, Lime, Ammonia, Alumina, \begin{tabular}{ll}
Targonia \(\oint\), \\
Oxide of zinc, & §rauque- \\
\hline
\end{tabular} \(20 S\).
and affinities.
 - inon
 -_ lead,
 - - tin, cobalt,
 - copper,
 ——— nickel,
 -
 - bifmuth,
 mercury,
 ——— antimony,
 Sect. XXXI. Of Bombyc Acid.

Mr Boissier de Sauvages obferved, that the juice dit \({ }^{56}\) of the filkworm, in the difeafe called in France mufca- of bombre dine, was acid; and Chauffier remarked, that the filk-acid.
worm, after being couverted into a butterly, gives out

Zonnic a liquor which turns vegetable blues to a red. He found, Acid that during the time that the animal was forming its cocon, the acid was depolited in a refervoir near the anus. By means of a pair of fciffars he collected fome which reddened blue paper, united with alkalies with effervefeence, and even attacked the feiffars. He afterwards collected it by infuling the chryfalids in alcohol, which diffolved the acid, but left the impurities un= touched.

This aeid has never been examined with attention; fo that almolt all its properties are unknown.

\section*{Sect. XXXII. Of Zoonic Alcil.}

Mr Berthollet has oltained a peculiar acid by diftilling vegetable and animal fub?tances, to which he has given the name of the zoonic acid*. He procured it by dittilling the gluten of wheat, the yell of beer, buncs, and woullen rags; and concludes, therefore, that it may be produced by the diftillation of all aninal fubftances.

To obtain this aeid pure, lie mixed lime with the diftilled liquid, after having Separated the oil, which it always. contains (for the product of the dittillation of animal fubitances is chiefly oil and carbonat of ammonia.) He boiled this mixture till the carbonat of ammonia was exhaled: he then filtered it, added a little more lime, and boiled it again till the fmell of the am. monia had gone off entirely. The liquor, which now contained only zoonat of line, he filtered again, and then added a little water inpregnated with carbonic acid, in order to precipitate any lime which might happen to be diffolved in the liquid ivithout being combined with the zoonic acid.

After concentrating the zoonat of lime, he mixed it with phofphoric acid, and dittilled it in a retort. At a heat neuly equal to that of boiling water, the zoonic acid palíes over in a tate of purity.

The zoonie acid has an odour like that of meat when frying, and it is actually formed during that procefs. It has an auftere talte.

It gives a red colour to paper tinged with turnfole.
With alkalies and earths it produces falts, which do not appear capable of cryftallizing.

It forms a white precipitate in the folutions of acetite of lead and nitrat of mercury.

Part of the zoonic acid feems to be deftroyed by the action of heat during the diftillation of the zoonat of lime with phofphoric acid: for the liquor, which is in ebuilition, becumes brown, and grows black at the end of the operation ; hence Mr Berthollet concludes that the zoonic acid contains cartun. The zoonat of filver, when kept, becomes gradually brown; hence he concludes that the acid contains hydrogen. Thefe conclufions he draws from a very ingenious theory of his, which has been already deferibed in the article BleachBertbollet, ing in this Supplement \(\dagger\).

The five prceeding acids have obtained the name of animal acids, becaufe they are all obtained from the animal kingdom. It can fearcely be doubted that a more accurate examination of animal fubftances will add confiderably to the number of thefe acids.

\section*{Sect. XXXIII. Of Arfenic Acid.}

Arsenic acid, which was firtt difcovered by Scheele, may be produced by fimply mixing the white oxide of
arfenic with oxy-muriatic acid, and applying a locat fufficient to fublime the muriatie acid. The theory of this operation is evident : the white oxide has a greater affinity for osygen than muriatic acid has; of courfe \(1: 1\) d of it combines with it, and is thus converted into arfenic obtaing acid, and the muriatic acid is ealily fublimed by apply- arfenic 3. ing lieat.

Landriani has informed us, that this acid may be alfo formed by fublining feveral times fuccelfucly the white oxide of arfenic, and taking care every thine to renew the air. 'This procels is equally fimple; the axide combines at a high temperature with the oxygen of the atmofphere.

This acid is exceedingly fixed. When expofed to \(\begin{gathered}55 \mathrm{r} \\ \text { mpoper. }\end{gathered}\) the air it attracts humidity, and at laft becomes li-tices quid. At the temperature of \(60^{\circ}\) it diffolves in twothirds of its weight of water. Its folution may be evaporated to drynefs, and even converted into a glafs, which attracts moitture from the air, and acts powerfully on the crucible.

It is poifonous as well as the white oxide of arfenic*.

When expofed to a red heat, it is partly decompofed * Scbeele and converted into white oxide of arfenic \(\dagger\). \(\dagger 71\).

It does not act upon gold, platinum, filver, mer. cury.

It oxidates copper, iron, lead, tin, zine, bifinuth, antimony, cobalt, nickel, manganefe, and arfenie, and in a very frong heat, mercury and filver.

Aecording to Berthollet's experiments, arfenic acid is compofed of eight parts of white oxide of arfenic and one part of oxygen.

Its conpounds are called arfeniuts.
lts affinities are as follows: Lime,

552
Its contprunds and affinitieso

Jargonia \(\ddagger\) ? Water.
Sect. XXXIV. Of Tungstic Acid.
\(\$\) Yauquelit,
Ann. de
Clim. xxii. 209.

553
Tungstic acid, or oxide of tungften, was furt dif Propertics covered by Scheele; but the acid which he exannined of tungltic was not pure, being compofed, as Mr Luyart has thewn, acid. of nitric acid, ammonia, and tungitic acid. The real acid is infoluble in water, tattelefs, and incapable of turning vegetable blues red till it has been firl rendered

Uu2
foluble

Arrenic Acid. Acid.

Moiyblic scid.

\section*{\(\xrightarrow{+}\)}
folutle by being partly combined with ammonia. It is of a tcautiful yellow colour, which becomes hlue when expofed to the light, or heated violently in clofe veffels. It dues not recuver its yellow colour except by calcination in the open air, and then increafes in weight. When put into muriatic acid along with tin, zinc, or iron, the liguor becomes blue*. 'Treated with acetous acid, it becomes blue. When reduced to a glafs with phofphat of foda, the blue colour appears and difappears according as the blue or yellow part of the flame is directed to it, as happens to manganefe. Probably this blue fubftance is an oxide of tungiten with a fmal-

Ies com
prunds and alfinitses. + Luyarts.
\$Vauquelin, Ann. de Cbim. ysii. 208.

555 Properties of molyb. dic acid.
§ Bergmun. ler quastity of oxygen.
Its compounds are called tungstats.
Its afinities are as follows \(\dagger\) :
\[
\begin{aligned}
& \text { Lime, } \\
& \text { Barytes, } \\
& \text { Magnefia, } \\
& \text { Yotafs, } \\
& \text { Soda, } \\
& \text { Ammonia, } \\
& \text { Alunina, } \\
& \text { Jargonia } \ddagger \text { ? }
\end{aligned}
\]

\section*{Sect. XXXV. Of Molyblic Acid.}

Concrete nolybdic acid, firit difcovered by Scheele, is white, and has an acid but metallic tafte. Its fpecific gravity is 3,75 . It is not altered in the air. When heated in a crucible till it is beginning to melt, it ex- periences no alteration. It remains fixed even in a great fire as long as the crucible is covered; but the moment it is uncovered the acid rifes unaltered in a white fmoke. It diffolves in 570 parts of water. The folution reddens turnfole; nitric acid does not affect it, hut fulphuric and muriatic acids diffolve it by the affifance of heat.

It may be prepared by treating the ore of molybdenum with nitric acid, and wafhing the acid when formed in water.

When cumbined with potafs, it forms a colourlefs falt.

Mixed with filings of tin and muriatic acid, it immediately becomes blue, and precipitates flakes of the fame solour, which difappear after fome time, if an excefs of muriatic acil has been afded, and the liquur affumes a brownifh colour.

With the fulution of nitrat of lead it forms a white precipitate, foluble in nitric acid.

When mixed with a little alcohol and nitric acid, it does not change its colour.

With a folution of nitrat of mercury, or of nitrat of filver, it gives a white flaky precipitate.

With the nitrat of copper it forms a greenifh precipitate.

With folutions of fulphat of zinc, muriat of bifmuth, muriat of antimony, nitrat of nickel, muriats of gold and platinum, it produces white precipitates when thefe folutions do. not contain an excefs of acid.

When melted with borax, it gives it a bluif colour.

Paper dipt in tlis acid becomes in the fun of a beauIf \(T^{r}\) auquelin, tiful blue colour \(\|\).
Ibilgophicut
Magazine,
2. 202.

Its affinities are unknown.

\section*{Sect. XXXVI. Of Chromic Acid.}

In the year 1770, Mr Pallas difcovered in the gold \(\underbrace{}_{56}\) mine of Berefof, near Ekaterimbourg in Siberia, a mi- Analyfis of neral of a red coluur, with a flade of yellow, crytallized the red leas in fmall acute angled quadrangular prifms, fometimes of Siberia, fmooth, fometimes longitudinally freaked, and often hollow. Mr Macquart, profeflor of medicine at Paris, who in 1783 had been fent to the north by the French goverument in order to collect mineralogical infornation, brougltt with him a quantity of tbis mineral, which has been diftinguifhed by the name of red lead ore of Siberia, and in \(17^{89}\) analy led four ounces of it along with Mr Vauquelin. They found it to contain,
\begin{tabular}{l}
Lead \(\quad-\quad 36 \frac{5}{9}\) \\
Oxygen \(-\quad 37\) \\
Iron \(-\quad 24 \frac{5}{9}\) \\
Alumina \(-\quad 2\) \\
\hline \(100 \frac{5}{9}\)
\end{tabular} and a little filver *.

Mr Bindheim of Mofcow analyled it foon after, and Cbim. i. found it to contain,

\author{
Part II.
}

Lead \(\quad-\quad 3^{6 \frac{5}{8}}\)
\begin{tabular}{lc}
Lead & 60 \\
Molybdic acid & 11,66 \\
Nickel & 5,66 \\
Oxide of iron & 1 \\
Air and water & 5 \\
Silica & \(\frac{4,5}{}\) \\
& \\
& 87,82
\end{tabular}
and a little copper and cobalt \(\dagger\).
\(+B e r l\).
Vanquelin examined it again in 1797 , and found Beeb ivo that all the former analyfes were inaccurate.

A hundred parts of this mineral, reduced to a fine powder, were mixed with 300 parts of the faturated carbonat of potafs, and about 4000 parts of water; and this mixture was expofed for an hour to a boiling heat. He obferved, ift, that when thefe matters began to act upon each other there was produced a Atrong effervefcence, which continued a long time; 2d, that the orange colour of the lead became a brick red; 3 d, that at a certain period the whole matter feemed to diffolve; \(4^{\text {th }}\), that in proportion as the effervefcence advanced the matter reappeared under the form of a gramulated powder of a dirty yellow colour; 5 th, that the liquor aflumed a beantiful golden yellow colour. When the effervefcence had entirely fubfided, and appeared to have no longer any action on the fubftances, the liquor was filtered, and the metallic duft collected on the paper. After being wafhed and dried, it weighed no more than 78 parts: the potafs, therefore, had taken from it 22 parts.

He poured upon the 78 parts juft mentioned fome of the nitric acid, diluted in 12 parts of water, which produced a brifk effervefcence. The greater part of the matter was diffolved: the liquor affumed no colour, and there remained unly a fmall quantity of powder of an orange-yellow colour. The liquor of the refiduum was feparated by the help of a fyphon, the mat fer wafhed feveral times, and the wahings united with the firt liquor. This refiduum, dried; weighed no more than 14 parts: from which it follows, that the nitric acid had diffolved 64.

He again mixed thefe 14 parts with 42 parts of the carbonat of potafs and the neceflary quantity of water,
aud

Chromic and then treated them as before, and the phenomena Acid. whe fame. The liquor, after being filtered, was united to the former; and the refiduum, wafhed and dried, weighed no more than two parts, which were ftill red lead, and therefore throwa away.

The two nitric folutions, united and evaporated, produced 92 parts of nitrat of lead, cryfallized in octahedra, perfectly white and tranfparent. Thefe 92 parts of nitrat of lead, diffolved in water, were precipitated by a folution of the fulphat of foda. This produced 81 parts of the fulphat of lead, which were equivalent to 56,68 of metallic Jead.

\section*{And difo \\ very of} chromic acid.

The alkaline liquors were found to contain a falt compofed of potafs combined with a peculiar acid, which Mr Vauquelin afterwards called chromic acid.

There liquors, fubjected to evaporation until a faline pellicle was formed on their furface, produced, on cooling, yellow cryftals; among which there was a carbonat of potafs, not decompofed. Thefe crytals, diffilved in water, and the folution united with the mother-water, the whole was mixed with weak nitric acid until the carbonat of potafs was faturated. The liquor then had a very dark orange-red colour. Being united with a folution of the muriat of tin, newly made, it firf affumed a brown colour, which afterwards became greenin. Mixed with a folution of the nitrat of lead, it im. mediately produced the red lead. Laftly, evaporated fpontaneoufly, it produced ruby-red cryftals, mixed with cryftals of the nitrat of potafs. Ninety-eight paits of this mineral, decompored as above-mentioned, having produced 8: parts of the fulphat of lead, 100 parts would have given 82,65 , which are equivalent to 57,1 of metallic lead. "But admitting, as experiment proves (fays Mr Vanquelin), that 100 parts of lead abforb, in comhining with acids, 12 parts of oxygen, the 57,1 of metallic lead ought to contain in the red lead 6,86 of this principle, and we ought to have for the mineralizing acid 36,4 .
Chrnmic acid crytallizes in the furn of elongated prifms of a ruby colour.

When mixed with filings of tin and the muriatic acid, it becomes at firt yellowifh brown, and afterwards affumes a beautiful green colour.

When mixed with a little alcohol and nitric acid, it inmediately affumes a bluith green colour, which preferves the fame fhade even after deficcation. Ether alone gives it the fame colour.

With a folution of nitrat of mercury, it gives a precipitate of a dark cinnabar colour.

With a folution of nitrat of filver, it gives a precipisate, which, the monent it is formed, appears of a beautiful carmine colour, but beconses purple by expofure to the light. This combination, expofed to the heat of the blow-pipe, melts before the charcoal is inflamed. It affumes a blackifh and metallic appearance. If it be then pulverifed, the powder is fill purpie ; hut after the blue flame of the lamp is brought in contact with this matter, it affumes a green colour, and the filver appears in glubules diffeminated throughout its fubflance.

With nitrat of copper, it gives a chefnut red precipitate.

With the folutions of fulphat of zinc, muriat of bifmuth, muriat of antimony, nitrat of nickel, and muriat of platinum, it produces yellowif precipitates when
thefe folutions do not contain excefs of acid. With Chromic muriat of gold, it produces a greenih precipitate.

When melted with borav or glafs, it communicates to them a beautiful emerald green colour.
Paper impregnated with chromic acil affumes in the light a greenifl colour.

When mixed with muriatic acid, the mixture was capable of diffolving gold like aqua regia; when this mixture of the two acids is diffilled, oxy-muriatic acid is difengaged, and the liquor affumes a very bcautiful green colour.
Sulphuric acid, while cold, produces no effect upon it ; but when warmed, it makes it aflume a bluifh green colour, probably. by favouring the difengagement of oxygen.
When this acid is heated along with charcoal, it is reduced to the metal called chromum. It is therefore compofed of this metal and oxygen. From Vauquelin's experiments, it appears to contain one part of chromum and two parts of oxygen.
Such are the properties of this acid, as far as they have hitherto been difcovered. Vauquelin is the only chemint who has examined it ; and from his memoir the above account has been takea *.

The four laft defcrihed acids are called metallic acidss, \({ }^{\text {II }}\) phile and \(p\) bicas? becaufe they are compofed of metals and oxygen. ther fay of the metallic oxides, are capable of being \({ }^{362}{ }_{55}\). converted into acids by being combined withoxygen. metallic It is certain that this is the cale with platinum; and acicte. Hermftadt, hy difilling nitric acid off tin, converted it into a white mals, foluble in three parts of water, which has been called Alannic aciad \(\dagger\). Several more of + Ann. de. the metallic oxides act the part of acids: But no com- Cbinn. iv, plete fet of experiments on this important fubject has 162. yet appeared.

\section*{Chap. VI. Of Affinity.}

The meaning of the word affnity has been already Importance explained; and it muft appear evident, from the ufe of affinity. which has been made of it in this article, that the confideration of the nature of affinity is the mof important part of chemiftry: While its laws are unknown, chemiftry is not a fcience, but a wildernefs of facts without beauty or regularity : every thing is equally perplexing and incomprehenfible. The clemint, infead of being able to trace the operations of Nature, is lof in an endlefs maze of uncertainty, without a guide to conduct hiin, or a ray of light to illuminate his fteps. It is the knowledge of affinity which difpels the darknefs, remaves the confufion, fhews as the order which fubtifts in all the phenomena of nature, pnints out their dependence on one another, and enables us to direct thein as we think proper, to make them fubfervient to the irrprovement of the arts, and thus to render them the minitters of our comforts and enjoyments.
1. When two bodies are united together by affinity, Ir minites how fmall a portion foever of the.componnd we exa- toclies, paro mine, we flall always find it to contain buth of the in- ticle co pare gredients. From this it is evident, that afinity combines hodies, particle with particle.

By particles we do not mean what philofophers lave called atoms, or the fmalleft parts into which it is \({ }^{\prime}\) poffible to divide taatter; but the fmallert parts which

Aninity, make an integrant of any fubftance. Water, for infance, confifts of oxygen and hydrogen ; but when we Speak of a particle of water, we do not mean the oxygen or the hydrofen feparately, but the fmalleft poffible quantity of thefe combined in fueh a manner as to form water. It is the integrant particies of bodies which are united by affinity. Thus fulphurie aeid is compofed o fulf hur and oxygen combined together; and amnonia, of hydrogen and azot combined in the fane manner. Now whea fulpharic acid and ammonia combine, it is not their elements, fulphur, oxygen, azot, and hydrogen, which unite toget her, particle with particle, but the pastieles of the acid and the alkali as integrants. This is evident ; beeaufe if thefe fubflanees be feparated from tach other by means of a tironger affinity, they are found precifely in the fame Itate as before they entered into combination. - When the fubflances which combine are fimple, the uitimate and in. tegrant particles are the fame: But we are not certain that any of the bodies with which re are aequainted
is fimple, in the frict and proper fenfe of the word.
2. What is this affinity which unites bodies together ? The older chemints thought that all folvents, or frubItanees capable of diffurving others, were compored of particles which had the furm of wedges or hooks; that folution confilted in the inffuration of thefe wedges on hooks between the pasticics of the bodies to be difiosved; and that chenical combination was mercly the linking of tie diffechit particles together hy means of holes in one fet of particles, into which the houks or the wedges of the other fet were thruft. Suchexplanations, ablurd as they mar appear, were faftionable among chemical philofophers till the days of Sir I fase Newton, who firtt aferibed the chemical union of hodies to an attradion between the particles thenfetves. This explanation, after a viokent itrugegle on the part of the ehemits, has been at laft unanimauly adopted.

Affinity, then, is an attradion between the particles of different bodies, by which they are drazun towards one ancther, and kept united. This we take for granted, and confider as a fact, without pretending to explain bozu they eame to be poileffed of this power, er how they exert it ; buth of which are evidently beyond the reach of the human underitanding.

But though we cannot difcover the manner in which affinity acts, we can fee, at leaft, that it follows certain laws, and that tlrey are invariable; for fimilar phenomena always ocecur, wher the cireunflances are the fame. Now what are the laws which offinity follows? There is a fpecies of attraction which matter pulfeffes, called gravitation, the laws of which were invelligated by Sir Iface Newton. Is affinity the fune with gravitation, or does it follow different haws?

Upon a flight view of thefe two attractions, their phenomena appear very different. Gravitation acts at very great diffances; affinity not until the bodies are mixed together: Gravitation acts on the whole mafs; affinity only on the particles: Bodies gravitate to one another directly as their maffes, and inverfely as the fquares of their diftances. But how ean alfinity follow thefe laws, when it does not act till the bodies are ap-
parently in contact ? or fuppofing that it does act, how can they account for the phenomena of affinity? If barytes be prefented to a compound of fulphuric acid and potafs, the acid immediately leaves the alkali and cumbines with the earth: Bu: had gravitation been the only power acting, ought net the barytes to have united with the fulphat of potafs without producing any decompofition?

Thefe friking differences have convinced many phi:lofophers, as they feem to have done Newton himfelf, that gravitation and affinity are different 〔pecies of attraction. Let us not, however, embrace this conelu. fion vaguely, or without affixing a precife meaning to our words.

Gravitation and chemical affinity are faid to be diffe- No ppifitive rent fpecies of attraction. But what is attraction? It prio \({ }^{\text {tat }}\) is merely a gencral faif, or that tendency whick is ob- it in diffeferved among all the portions of matter towards each other, but which exhibits very different appearances under different circumitances. The tendency of matter towards inatter at fonfible diflances is callec! gravitation, and its laws have been completely invelligated; but neither that tendency, nor thefe laws, have been, or can be, fhewn to be effential to the exiftence of matier. Chemical affinity is the tendency of particles towards eaeh other at infenfible diftanees, or when thefe particles are mixed together; and this tendency appears to be regulated by laws different from thofe of gravitation. Like gravitation, it is merely an obferved fact; and however different thefe facts may appear to be, they are probably both brought about by the fame forees. It is indeed true, that gravitation is directly as the maffes of matter, and inverfely as the fquares of the dillances of thefe maffes; while the attraction, which is called chemical affinity, feems to chferve very different rules. But we have fhewn elfewhere (fee Opities, \(\mathrm{n}^{9} 6_{12}-68\), Encycl.; and Boscovich in this Suppl.), that the fame forces repel at one diffanee and attract at another ; and that they may produce all the variaus phenomena of chemical affnity.
The difficuities to be accounted for in chenieal affinities are their intenlity, their different degrees of ftrength, and their being elective, or, whieh is the fame thing, the eapacity which one body has of difplacing another.
How come affinities, it nay be alked, to difier in intenfity? Perhaps we might with propriety refer this querift to the ftudy of Bofeovich's curve; but as our modern chemits are not generally verfant in fuch fludies, we beg leave to ohferve, in this plaer, that we have no proof whatever of abfolute contalt between bodies. On the contrary, it is highly probable, we had almont faid demonftrable, that particles are in every inflance at fome dillance from one another. For, on the fuppofition that two bodies were in actual contact, their attraction for each other would not only be as great as poffible, but as great as the attraction of any other body for either of them could poffily be : Confequently, it neceflarily follows, that, lince bodies chemically combined can be feparated, they are not in actual contact (A); but if they are not in contact, their dillance from one another
(A) Perhaps the following demonfration, which we borrow from the ingenions Mr Broughman, will render

Plate
XVII. this more cvident. In fig. 7. let the body \(A\) have for \(P\) an attraction which at the diftange of \(A P\) is proportional
\(\underbrace{\text { Afinity. another may vary in different cafes, and the force }}\) of alfinity will vary with the diftance. Here then is a reafon why the affinity of different borlies-varies in Atrength. Sulphuric acid, for. inltance, has a Aronger affinity. for barytes than for lime; becaufe when the combinations are formed, the diftance between the acid and barytes is int fo great as that between the acid and lime.

But why do the diftances differ? If aflinity be the fame with gravitation, it mult tend to bring the particles nearer one another: And what then prevents the lime from approaching as atear the acid as the barytes does? We reply, the forure of its particles. This anfwer was firt given to the queltion by Buffon, and it is fully adequate to folve the difficulty. The particles of bodies, indeed, are a great deal too minute for us to difcover their figure by atual infpection ; but the phenomena of crytallization fhew us that this difference actually exits.

The cryitals of every body affume a peculiar figure. Now as thefe crytlals are all formed in the fame manner, and by the fame lav, it is impoffible to conceive any other reafun for their varicty but the difference in the form of the particles which compofe them.

But why does one body difplace another? When a particle of barytes is brought within a certain dittance ot a particle of fulphuric acid and lime combined together, affinity acts and draws them nearer to one another; and the barytes, from its figure, approaches nearer the acid than the lime could, and forms with it a compound, the figure of which is fuch, relatively to that of the lime, that they cannot approach within a fmall enough diftance of each other to counteract the attraction of the earth. Accordingly no compound is formed ; for all that is meant by two particles having formed a compound, is, that their attraction for each other is greater than the attraction of the furrounding bodies for either.

Having thus feen that none of the phenomena of affinity are inconfiltent with their refulting from the for\({ }_{c}\) ces which bring about the phenomena of gravitation, we have a right to conclude, that it is at leaft highly probable, that all the motions of the corporeal world are produced by the fame power which, though not effential to matter, was impreffed upon every atom of it by the Great Creator when he formed this univerfe; and that as the effects of this power are modified according to the fituation of the bodies on which it acts, they are known by the differeat names of gravity, adbefion, cohefion, and affinity.

Gravity is the attraction between bodies fo difant, that the maffes alone influence the refult, and that the
power may be conlidered as placed in the centre of the attracting bodies.

Adhesion fuppofes a difance too finall for our fenfes. It has been demonitrated to be proportional to the number of touching points, which depends upon the figute of the particles that form the bodics.
\(\because\) Conesson taker place only between particles of the fame nature. Thefe, inftad of touching only in one fuperficies, as in adhefion, touch in every point where ther figure will allow contact: confequently the force of cohefion alfo mult depend upon the figure of the particles.

Affivity unites bodies of a different nature, not merely by one fuperficies, as albefion does, but particle to particle, like colajion; and the moft perfect contact is formed that the figure of the particles will admit. Therefure, in this cafe alfo, the intenfity depends upon the bigure of the particles.
3. If we make the attempt, we fhall find that water Saturation 567 will not difalve any quantity of common falt that we explained pleafe. Water which refufes to take up any more is faid to be faturated with falt. Neither can we combine any quatity of potafs with a given portion of fulphuric acid: we may add as much of it as we pleafe, indeed ; but if we evaporate the liquid, in order to obtain the falt in cryltals, we fhall find that only part of the potals has united with the acid, and that the reft has cryftallized feparately. From thefe examples, it mut appear evident, that bodies combine with one another by affinity only.in certain proportions; or, which is the fame thing, that a determinate number of particles of each of the ingredients gocs to the formation of an integrant particle of the compound, and that into this integiant no addino:al particles of either ingredient can be admitted. Let us fuppofe, for initance, that the particles of fulphuric acid are tetrahedrons, and that the particles of potafs are of fuch a form, that one of them can attach itfelf to each of the fides of the acid particle: In that cafe an integrant particle of fulphat of potafs would be compofed of five particles, one of acid and four of alkali; for it is evident, that juit four particles of potafs would combine with every particle of acid, and that the acid would then be faturated, or, which is the fame thing, would be incapable of receiving any more alkaline particles into cumbination with it. Let us fuppofe now, that there is jult as much potafs as faturates the acid ; if nore acid be poured in, it cannot enter into combination with the potafs, becanfe all the potafs is already combined with acid.
Thus it appears evident, from the nature of affinity, that the ingredients in every combination muft mutnally faturate each other, and that no more of either can
tional to PM ; then let P move towards A , fo as to come to the fituation \(\mathrm{P}^{\prime}\), and let the attraction here be \(\mathrm{P}^{\prime} \mathrm{M}^{\prime}\); as it is continual during the motion of P to \(\mathrm{P}^{\prime}, \mathrm{M}^{\prime} \mathrm{M}^{\prime}\) is a curve line. Now in the cafe of the attraction of bodies for one another, PM is lefs than \(\mathrm{P}^{\prime} \mathrm{M}^{\prime}\); and confequently \(\mathrm{MM}^{\prime}\) does not ever return into itfelf, and therefore it muft go ard infonitum, having its arc between \(A B\) and \(A C\), to which it approaches as afymptotes, the abfciffa alvays reprefenting the diftance, and the ordinate the attraction at that diftance. Let \(\mathrm{P}^{\prime}\) now continue its motion to \(\mathrm{P}^{\prime \prime}\), and \(\mathrm{M}^{\prime}\) will move \(\mathrm{M}^{\prime \prime}\); and if \(\mathrm{P}^{\prime \prime}\) meets A , or the bodies come into perfect contact, \(\mathrm{P}^{\prime \prime} \mathrm{M}^{\prime \prime}\) will be infinite; fo that the attraction being changed into cohefion will be infinite, and the bodies infeparable, contrary to univerfal experience; fo that \(P\) can never come nearer to A than a given diflance. Nicholfon's Fournal, I. 555.

Affinty. be admitted into the compound than what is neceflary to prodice this faturation. It foiluws cqually, that there can be ro whion withont faturation, except there be a deficiency in fome one of the infredients: For farpoling that there is a fuffient number of particles of potafs, and that every particle of fulphuric acid requires four of them, as bifore, for faturation, the very fane caufe that produces the mion of one, two, or three paticles of potafs with a particle of acid, mult produce the union of all the four.

Even when there is a deficiency of one of the ingredients, faturation muft equally take place; for thofe paticles of acid that happen to be neareft the alkali inuft till be faturated; becaufe the affinity of all the acid particles for alkali was originally equal, and the difference of the diftance muft give the fuperiority to thofe that are nearelt ; and thofe particles of acid that are once faturated with putafs cannot be deprived of it by any of the other particles, otherwife the affuity of fome particles of fulphuric acid for potafs would be greater than that of others; which is ahfurd.

It will no doubt be objected to all this that there are innumerable infances of additional portions of fome one of the ingredients being received into a compund aflei faturation, and that fome fubftances feem to be equally well faturated with different dofes of another. Osigen, for inftance, combines with azot in three different proportions, and furms nitrous gas, nitrous acid, and nitric acid. The metals, too, form, in the fane manner, different oxides; and a great many inftances of the fame kind occur among the neutial falts.

But it ought to be remembered, that the conclufions againf which thefe objections are urged, are confequences deduced, we think fairly, from a propofition which we confider as demontrated, that affrity is a fpecies of attradion (B). Thefe phenomena cannot therefore be admitted as valid objections, except it can be fhewn that they are really incompatible with thefe conclufions. Now that this is not the cafe, has been fhewn,
clufions, but perfeclly confiltent with them; and confequently they cannot be admitted as of any force.

There is one phenomenon, indeed, which proves, independent of thele cuncluliuns, that thefe combinations are actually formed in the manner we have fuppofed, and which therefore merits particular attention. The phenomena is, that the affinity between the two fimple fubfances is alnigf always greater than that between the compound and any of its ingredients. The affinity, for infance, between azot and oxygen is greater than that between nitrous gas and oxygen; and the affinity between nitrous gas and oxygen greater than that between nitrous aciel and oxygen : For if nitrous gas be mixed with nitric acid, the whole is cunverted into nitrous acid; but no change whatever is produced when nitric and nitrous acids, or nitrous gas and nitrous acid, are mixed : and every fubftance which is capable of decompofing nitrous gas is capable alfo of decompoling nitrous and nitric acids ; but many fubftances are capable of decompofing nitrous and nitric acids which have no effect upon nitrous gas. In the fame manner, the affinity between fulphur and oxygen is greater than that between fulphurous acid and oxygen : for when fulphur is mixed with fulphuric acid, the whole is converted into fulphurous acid; but no change takes place when fulphur and fulphurous acid, or fulphurous and fu!phuric acids are mixed together. A great many inftances of the fame kind might eafily be produced, if thefe were not fufficient to eftablifh the point. This curious fact affords a very trong proof that the bafes, as well as the quantity of oxygen, is different in alriof all the vegetable acids. Did the tartarous, oxalic, and acetous acids, for inflance, confift of the fame bafe with various dofes of oxygen; were the tartarous compofed of the bafe and oxygen; the oxalic, of tartarous acid and oxygen; the acetous, of oxalic acid and oxygen-in that cafe, a mixture of acetous and tartarous acids ought to form oxalic acid: but that this does not happen, any one may convince himfelf by actual experiment.

We do not mean to affirm that this fact, though it is certainly very often true, holds in all cafes; in fome, perhaps, the reverfe may be true, though we do not recollect at prefent any inftance of that kind.
4. Since the affinity of almoft every two bodies for of the each other differs in flength from that between every trength other two, it becomes an important problem to deter-of affinity. mine the flength of every affinity in numbers. The folution of this problem would give a clearnefs and precifion to chemittry equal to that of any other branch of natural philofophy whatever, and enable it to advance with a degree of rapidity hitherto thought unattainable. No wonder, then, that this problem has occupied the attention of fome of the moft eminent philofopbers who have dedicated their time to chemiftry.

If the obfervations formerly made, in order to fhew
(B) Were any farther proof of this propofition required, we would obferve, that cehffion afts as an antagonif to affinity, and may be often rendered fo ftrong as to prevent affirity from acting with efficacy. Thus alumina and jargonia, when fufficiently heated, become infoluble in acids, without undergoing any other alteration than that of an increafe of cohefion by their particles being brought nearer each other; for deftroy this cohefion, and they become as foluble as ever. Now it follows from this, that if cohefion be attruation, fo meft affrity. The experiments of Morveau, to be afterwards mentioned, demonftrate, that adbefion and affinity are produced by the fame caufe: Confequently, if adhefion be attraction, fo muft affinity.

Wenzel fuppofed that the time taken by one body to diffolve another is a meafure of the affinity which fubrifts between them. Put the hypothefis of that ingenious philofopher will not bear the teft of examination; for the time of folution evidently depends upon circumftances unconnected with affinity. The cohefion of the body to be diffolved, and the nature of the compound formed, mult occafion very great differences in the time of folution of different bodies, even on the fuppofition that their affinities were all the fame.

Fourcroy propofed to meafure the affinity of bodies by the difficulty of feparating then after they are combined: but we have no method for meafuring this difficulty. Lavoifier and De la Place, indeed, propofed caloric for this purpofe; but there are many compounds which caloric cannot feparate; and it never produces a feparation except by mcans of its affinity for one or other of the ingredients of the compound. Before caloric, therefore, could be employed as a meafure, it would be neceflary to know exactly the firength of its own affinity for every other fubftance; which is juft a cafe of the problem to be refolved.

Macquer fuppofed that the affinity of bodies for one another was in the compound ratio of the facility of their union and the difficulty of their feparation: But as we are in poffeflion of no method of afcertaining either of thefe, it is evident that this theory, even allowing it to be juft (which it certainly is not), could be of no ufe for affiting us to calculate the force of affinities.
Another method has been propofed by the diftinguifhed philofophical chemift Mr de Morveau (c).

In 1713 Dr Brook Taylor made fome experiments on the adhefion of furfaces; and concluded from them, that the force of adhefion might be determined by the weight neceffary to produce a feparation. But in 1772 , Mefirs La Grange and Cigna, obferving that the furfaces of water and oil adhere together, and taking it for granted that thefe two liquids repel each other, concluded, in confequence, that their adhefion was not owing to attration; and hence inferred, that adbefion, in general, is always owing to the preffure of the atSuppl. Vol. I. Part I.
mofphere. This conclufion induced Morveau to ca: mine the fulbjeas. he found that adhefion was ut of fected by the preffure of the atmofphere ; for it required the fane weight to feparate a difk of glafs (30 lines in diameter) from the furface of mercury in the open ai-, and under an exhaulled receiver. He oberved that the fame difk adhered to water with a force of 258 grains, and to the folution of potafs, though denfer. only with a force of 2.10 . This refult not only proved that adhefion was owing to attraction, but made him conceive the poffibility of applying this method to the calculation of affinities: For the force of adhefion being neceffarily proportional to the points of contact, and this being the cafe alfo with affinity, it is evident that the adhefion and the affinity between the fame fubftances are proportional, and that therefore the knowledge of the one would furnifh us with the ratio of the other.

Struck with this idea, he comitructed cylinders of different metals, perfectly round, an inch in diameter and the fame in thicknefs, and having a fmall ring in their upper furface, by which they might be hung exactly in equilibrium. He fufpended thefe cylinders, one after another, to the heam of a balance; and after counterpoifing them exactly, applied them to a quantity of mercury placed abcat two lines below then, making them flide along its furface, to prevent any air from lodging between them and the mercury. He then marked exactly the weight neceffary to overcome their adhefion, taking care to change the mercury after every experiment. The table of the refults is as follows:

The differences of thefe refults cannot be owing to the preffure of the air, which was the fame in all; nor do they correfpond to the denfities of the metals; nor can they be owing to accidental differences in the polifh of the cylinders, for a plate of rough iron adheres more ftrongly to mercury than one of the fame diameter exquifitely polifhed; -but they follow precifely the order of affinity, and therefore may be confidered as the meafure of the ftrength of the affinity between thefe different metals and mercury. They furninh us alfo with a convincing proof that affinity is atraation, and the fame fpecies of attraction with adbefion; and that therefore, if the one be reducible to gravitation, fo muit the other.
Mr Achard, convinced of the importance of Mr Morveau's obfervations, made a great many experinents on adhcfion, and publifhed the refult of them in 1782 . He Xx proved

Affinity, proved that the force of adhefion was not affected by proved that the force of adhefion was not affected by
alterations in the leeight of the barometer, but that its fore becaune weaker as the heat of the fluid increafed (D) ; and that the temperature remaining the fame, the force of adhecfion increafed in the fame ratio with the furfaces of the adhering bodies. He made ahout 600 experiments on the adheion of different folids and fluids, proved that the force of adhetion did not depend on the denfities of the adhering bodies, nor on the different cohefive force of the fluids; and, after a laborious calculation, concluded that it depended on the figure of the particles of the adhering fluid and folid.

Thefe experiments and calculations of Mr Achard are certainly of importance ; and we would have given them here, had not the objects of them heen fubitances which can furnifh but few data for calculating the force of affinities.

This method of meafuring the force of affinities feems to be an accurate one, and if it could be applied to every cafe of affinity, would, in all probability, enable us to folve the problem which we are now confidering: But, unfortunately, its application is very limited, being confined to thofe cafes alone in which one of the bodies can be prefented in a fluid, and the other in a folid fate. Nor can it be applied indifcriminately to all thofe cafes; for whenever the cohefion of any liquid is much inferior to the force of its adhefion to any folid, the feparation takes place in the particles of the liquid itfelf, and confequently we do not obtain the meafure of its adlucfion to the folid, but of its own cohetion, and that, too, imperfectly. Thus, for inftance, Mr Achard found that fealing-wax adhered to water with a force of 92 grains, and to alcohol only with a force of \(533^{\frac{3}{4} \text { ths }}\); yet we know that fealing-wax has a greater affinity for alcolol than for water; becaufe alcohol difelves it, which water is incapable of doing. The difference in the refult in this inftance was evidently owing to the fmaller cohefion of alcohol. Mr Morveau's method muft therefore be confined to thofe cafes in which the cohefion of the liquid is ftronger than its adhefion to the folid, which nay be known by the furface of the folid not being moittened; and to thofe in which the culefion is not much inferior to the adhefion; for then, it is evident, that the froce of cohefion will be increaled as the force of adhefion. Let us fuppofe, for inftance, that two folids, A and B , are made to adhere to the furface of a liquid, and that A can only form an adhefion with 50 particles of the liquid, whilf \(B\) adheres to 100 ; it is evident that a much fmaller force will deftroy the cohetion of the 50 particles to which id adheres with the refl of the liquid, than what will be required to deftroy the cohefion of the 100 particles united to \(B\) with the fame
Morveau, liquid *.
Ency. Mee The method of Mr Morveau, then, may be applied thod. Chim. with accuracy in both cafes; and when they occur can art. Adbefron. only be determined by experiment. It cannot, however, be applied indifcriminately even then; for unlefs
no gas is extricated when the adhefion takcs place, an accurate judgment cannot be formed of the force of adhefion. When marble (carbonat of lime), for iuftance, is applied to the furface of fulphuric acid, there is an extrication of gas, which very foon deftroys the adhe. fion, and prevents an accurate refult. Were it poffible to employ quicklime inttead of marble, this would be prevented; or if this cannot he accomplifhed, why might not lime be employed, united with fome acid that would not affume a gafeous form, and at the fane time has a weaker affinity than fulphuric acid for lime? Why might not the phofphat of lime, for inftance, be ufed, which may be reduced to a tlate of hardnefs fufficiently great for the purpofe? The extrication of gas, during the application of metals to the furfaces of acids, might be prevented by oxidating their furfaces. It is true, indeed, this conld not be done with all the metals, on account of the nature of the oxide, but it might with feveral ; copper, for inflance, and filver. It cannot be doubted, that by thefe methods, and other contrivances that might be fallen upon, a fufficient number of refults might be obtained to renaler this method of the greateft importance. It is rather furprifing, therefore, that it has never been profecuted.

Mr Kirwan has propofed another method of folving and Kizthe problem. While he was engaged in his experiments wan. on the ftrength of acids, he obferved that the quantity of real acid neceffary to faturate a given quantity of each of the bafes, was inverfely as the affinity between the refpective bafes and the acid; and that the quantity of each of the bafes neceffary to faturate a given quantity of acid was directly as the affinity between the bafe and the acid. Thus 100 grains of each of the acids require more alkali for faturation than lime, and more lime than magnefia, as may be feen in the following table :
\begin{tabular}{lcccccc}
Ioo grains of & Potafs. & Soda. & Lime. Amm. & Mag. Alum. \\
Sulphuric acid & 215 & 165 & 110 & 90 & 80 & 75 \\
Nitric acid & 215 & 165 & 96 & 87 & 75 & 65 \\
Muriatic acid, & 215 & 158 & 89 & 79 & 71 & 55
\end{tabular}

He concluded, therefore, that the affinity between acids and their hafes may be ellimated by the quantity of bafes neceflary for faturation. Thus the affinity between potafs and fulphuric acid is 215 , and that between nitric acid and lime 96 *.

We have mentioned formerly, that the principle on which Mr Kirwan calculated the frength of the acids was founded on a mitake. It mult follow of courfe, therefore, that the numbers which refult from it muft alfo be wrong. This Mr Kirwan has acknowledged, and feems to have given up all thoughts of afcertaining the flrength of affinities by this method. But before it be abandoned altogether we wifh the following obfervations were confidered.

Bergman long ago eftablifhed as a principle, under ath 575 the name of a clemical paradox, that the fironger any remedy thi falt was, the lefs of any other it required for faluration. defects of Thus, according to him, the folid and the fluid be prefented in fuch a flate that

\section*{Part II.}

Atlinty. \(\longrightarrow-\)

100 parts of potafs require 78,5 Sulphuric acid, 64 Nitric, 51,5 Muriatic, 42 Carbonic, 100 parts of foda - - 177 Sulphuric, 135,5 Nitric, 125 Muriatic, 80 Carbonic.
This propolition, which lias been admirably illuttra-
ted by Morveau*, evidently refolves itfelf into the two Affuity. following :
I. A bafe requires the more of an acid for faturation Aletbos. the flronger its affuity for that acid is.
2. An acid requires the more of any bafe for fatura. tion the greater uffinity it has for that bale.

In order to judge of the truth of the fird of thefe pro. pofitions, let us examine the following table, drawn up from the experiments of Bergman, Wenzel, and Lirwan.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Bergman.} & \multicolumn{3}{|c|}{Wenzel.} & \multicolumn{3}{|c|}{Kirwan.} \\
\hline roo prarts of & Suphuric. & Nitric. & Muriatic. & Sulphuric. & Nitric. & Muriatic. & Sulphuric. & Nitric. & Muriatic. \\
\hline Barytes & 15,4 & & 30,8 & & & & & & \\
\hline Potals & 78,6 & 64 & 51,5 & 82,4 & 107,7 & 54 & 81, 8 & 87, I & 78,2 \\
\hline Soda & 175 & 135,5 & 125 & 125,8 & 166,6 & 83 & 129,4 & 136,1 & 114,2 \\
\hline Lime & 143,7 & I 34,4 & 70,45 & 147,74 & 195,6 & 103,6 & 141 & 180 & 86 \\
\hline Magnefia & 173,67 & 159,25 & 82,92 & 181,8 & 257,15 & 122,27 & 170,5 & 255 & 104,275 \\
\hline Ammonia & & & & 142,42 & 201,22 & 96,25 & 1 \(8 \%, 5\) & 233 & 116 \\
\hline Alumina & 2 II, 11 & & 220,2 & 77,7 & 68,7 & 38,6 & & & \\
\hline
\end{tabular}
* Encye.

Method. Cbim. i. 59 + Clim. Ann. ii. 1785. \(\ddagger\) Pbit. 1ran.1784.ceflary to faturate 100 of barytes, it fhonld be \(42,8\). © Ann.de The firft and laft columns of Wenzel and lKirwan's Cbim. iv. ©5. experiments agree equally well with the propofition, but the fecond deviates from it completely. Wenzel prohably might have been mifled by the manner of performing liis experiments; but the fame objection does not feem to lie againft thofe of Kirwan.

It can fcarcely be doubted, however, to whatever caufe the error is to be imputed, that the numbers in the fecond column of Mr Kirwan's table are too large. The following experiment of Morveau is fufficient to nhew this.

According to Mr Kirwan's experiments, the proportions of acid and alkali in the four following falts are as under :
\[
\text { Sulphat of potafs } \begin{cases}\text { Acid } & 100 \\ \text { Potafs } & 108,7\end{cases}
\]

Now when fulphat of potafs and witrat of lime are mixed together, a double decompofition takes place, and fulphat of lime and nitrat of potafs are formed. Let thefe two falts be mixed tngether; let the quantity of fulphat of potafs be fuch, that the acid contained in it amounts to 100 ; and let a more than fufficient quan. tity of nitrat of lime be added, to faturate the fulphuric acid with lime. It is evident that for that purpofe 80,6 of lime muft be prefent; and the quantity of nitric acid combined with thefe 80,6 muft be 234,4 . This quan. tity would require for faturation 195,32 of potafs, but there are only 108,7 in the mixture; confequently there ought to exit in the mixture, after the mutual decompolition of the falts, 64,87 of nitric acil in a fate of liberty. Such would be the refult, provided Mr Kirwan's numbers were accurate ; but the fact is, that no fuch excefs of acid exitts in the mixture \(\dagger\); and confe- + Ann. de quently the quantity of nitric acid contained in nitrat of Cbim. xss: lime is fated too high by Mr Kirwan. Although \({ }^{295}\). therefore Mr Kirwan's tables do not coincide with the propofition which we are confldering, this is not to be confidered as a proof of its falfehood ; as there is reafon, from the experiment ahove defcribed, to fufpect fome error in the data from which Mr Kirwan calculated the ftrength of the acids.
The truth of the fecond propofition may be judged of by the following Tables :

It appears that all the table of Bergman agrees with the propofition except the numbers which correfpond to fulphat of ioda, fulphat of alumina, nitrat of lime, and muriat of foda, which the late experiments of Mr Kirrran have fufficiently fhewn to be inaccurate.
Wenzel's table correfponds exacly, except the columns under ammonia and alumina, which Morveau has proved to be inaccurate.

Kirwan's table correfponds exactly, except with regard to the quantity of ammonia neceffary to faturate muriatic acid, which does not appear to have been accurately determined by experiment.

Let us therefore take the truth of thefe two propofitions for granted, and let us confider every deviation from them as an error; and let us fee whether they will enable us to difcover the abfolute affinity of fulphuric, nitric, and muriatic acids, for their refpective bafes.

Table I. शuantity of Bafe neceffary to Saturate 100 Parts of the three Atids.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \({ }^{100}\) parts & \(\left.\right|^{\text {Earst. }}\) & Pr & & & & \\
\hline Sulph. acid & 233 & 12 & 78,7 & 68,3 & 56,8 & 49,3 \\
\hline Nitric acid & 258,4 & \(1{ }^{1} 8,4\) & 9 & 74,4 & 62,8 & \\
\hline , & & & & & & \\
\hline
\end{tabular}

Table II. Quantity of Aiud neceflity to Saturate 100 Affinity, Parts of the fix: Bafes.
\begin{tabular}{|c|c|c|c|}
\hline 100 parts & Sulphi.acis & Nutric acid. & Mur. acid. \\
\hline Barytes & 42,8 & 38,7 & 30,8 \\
\hline Potafs & 81 & 64 & 52,9 \\
\hline Soda & 126,7 & 101,4 & 79 \\
\hline Lime & 145,7 & 134,4 & 87,5 \\
\hline Magnefia & 176,2 & 159,25 & 105,4 \\
\hline Ammonia & 202,6 & 182,4 & 127,25 \\
\hline
\end{tabular}

The firft of theie tables reprefents the affinity between the fame acid and its various bafes; and the fecond that of the bafes for the different acids. If it were required to know the ratios of the affinity which different bafes have for any particular acid, the firft table, fuppofing it accurate, would give it exactly. In like manner, if it were required to know the ratios of the affinity of the acids for the various bafes, we would find them in the fecond table.

But if we wifhed to know what was the affinity be- \({ }^{576}\) tween one acid and bare, compared with that between Anvat tableeanother acid and a different bafe; or if we wanted to of affinityhave not the relative but the abfolute affinity between two bodies-it is plain that we could not find it in either of the tables; for the abrolute affinity muit confift of two things, the affinity which the acid has for the bafe, and the affinity which the bafe has for the acid. Now the firf table gives us the one of thefe, and the fecond the other; fo that in order to reprefent affinity in abfolute numbers, the two tables muft be multiplied into one another. This was the miftake into which Mr Kirwan fell. His method confifted merely in conftructing a table like our firft, which (fuppofing the numbers accurate) gave only the affinity between the bafes and the fame acid, but left out the affinity between the different acids and the fame bafe ; confequently the different columns could not be compared with each other.

It is evident, however, that if the tables were multiplied together in their prefent flate, they could not poffbly give an accurate table of affinities. For that purpofe, it is neceffary to put the fame number in the firit. column of each table, and then to fubflitute other numbers in the remaining columns, having the fame ratio to oae another with the numbers in the original columns. This is done in the following Tables:
Table I. Ratios of tha Affrity of fix Bafes for three. Acids.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & B & & & & & \\
\hline Sulph. acid & 100,00 & 52,85 & 33,73 & 29,27 & 24,34 & \\
\hline Ni & & 57,43 & 36,98 & 28,77 & 24,28 & 19,5 \\
\hline Mur. & 00, & 58, & 38,8ı & & & \\
\hline
\end{tabular}

Tadle II. Ratios of the Sifinity of three Acids for fix Bafes.
\begin{tabular}{|l|l|l|l|l|}
\hline & Sulph. acid & Nieric acid! Mur. aci.! \\
\hline Barytes & 100,00 & 90,42 & 74,54 \\
\hline Potafs & 100,00 & 79,01 & 65,30 \\
\hline Soda & 100,00 & 80,03 & 62,35 \\
\hline Lime & 100,00 & 92,24 & 60,05 \\
\hline Magnefia & 100,00 & 90,34 & 59,68 \\
\hline Ammonia & 100,00 & 90,02 & 62,77 \\
\hline
\end{tabular}

Table III. Affinity between three Acids and fix Bafes in Albolute Numbers.
\begin{tabular}{|l|c|c|c|}
\hline Barytes & Sulph. acij & Nitric acid. & Mur. acid. \\
\hline Potafs & 10000 & 9042 & 7454 \\
\hline Soda & 5285 & 4537 & 3794 \\
\hline Lime & 3373 & 2969 & 2419 \\
\hline Magnefia & 2927 & 2653 & 2143 \\
\hline Ammonia & 2112 & 1763 & 1515 \\
\hline
\end{tabular}

On the fuppofition that the two propofitions mentioned above were frictly true, and that the numbers which we fixed upon were precifely the quantiticz of acid and bafe neceffary to faturate each other reciprocally, this laft table would reprefent accurately in numbers the ftrength of the affiaities of the chree acids for each of the fix bafes refpectively.
We muft acknowledge, however, that the truth of thefe propofitions has not hitherto by any means been fufficiently proved; but a great number of facis concur to render them exceedingly probahle, and highly worthy of the attention of chemical philofuphers. And we hope that the method propofed by Morveau, and which had been previoufly practifed by Richter, of verifying theoretical calculations of the compofition of the falts, by mixing together two falts which mutually decompofe each other, and afcertaining whether the refult correfponds with calculation, will be followed out, and that it will be the means of enfuring more accuracy than it has hitherto been poffible to obtain.
No one will fufpect that any thing which has here been faid is meant as a refiection on the ingenious chemifts who have attempted to folve this moit difficult of all chemical problems, the proportion of the ingredients which enter into the compolition of the falts. Mr Kirwan, in particular, is entitled to the greateft praife for the perfevering induftry with which he bas profecuted
the fubject, for the candour which he has difplayed, and for the new rout which he has opened to the chemical philofopher. Though this problem has not hitherto been folved, and though the difficulties which furround it are almolt infurnountable, we may hope much from the general fenfe which is at prefent entertaincd of its importance, and from the zeal and ahilitics of thofe philofophers who have particularly turned their attention to it.

In the mean time, the following Table of the Atength of affinities by Morveau, though the numbers be arbjtrary, will be found of very great ufe \({ }^{\text {* }}\).
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Suiph. \\
acid
\end{tabular} & \begin{tabular}{c}
Nitric \\
acid.
\end{tabular} & \begin{tabular}{c}
Muriat. \\
acid
\end{tabular} & \begin{tabular}{c}
Acetou. \\
acid.
\end{tabular} & \begin{tabular}{c}
Carbumic \\
acid.
\end{tabular} \\
\hline Barytes & 66 & 62 & 36 & 28 & 14 \\
\hline Potals & 62 & 58 & 32 & 26 & 9 \\
\hline Soda & 58 & 50 & 31 & 25 & 8 \\
\hline Lime & 54 & 44 & 24 & 19 & 12 \\
\hline Ammonia & 46 & 38 & 21 & 20 & 4 \\
\hline Magnefia & 50 & 40 & 22 & 17 & 6 \\
\hline Alumina & 40 & 36 & 18 & 15 & \(2(\mathrm{D})\) \\
\hline
\end{tabular}

Ensye
Metbad.
Cbim. i. 773
5. Although every chemical combination is produced by the fame general law, yet as their phenomena vary fomewhat according to circumftances, affinities have, for the fake of greater perfpicuity, been divided into claffes. Thefe claffes may be reduced to three-fimple, Thiee \({ }^{578}\) compound, and difpofing affinities. claffes of af-

The firf clafs comprehends all thofe cafes in which finity,
only two badies combine together; as, for inflance, ful- virg phuric acid and putafs, oxygen and carbon. The affi- effinity nities which belong to this clafs are known by the name of fimple or fingle affrities. Although one of the fub. ftoncés to be combined happens to be already united with another body, the combination is fill reckoned a cafe of fingle afinity. Thus luppofe the fulphuric acid previoufly combined with magnelia, and forming with it the falt called fulphat of magnefia, as foon as potais is. prefented, the acill leaves the earth (which is precipitated), and unites with the alkali. Even when three budies combine, it uften happens that the uniun is produced merely by fingle affinity. Thus, when fome potafs is dropped into tartarous acid, part of the acid unites with the alkali, and forms tartrite of potafs: after this the remainder of the acid combines with the tartrite juft formed, and compofes a new falt known by the name of acidulous tartrite of potioss, or tartar. This is evidently nothing elfe than two inflances of fimple affinity immediately following each other.

When more than three bodies are mixed, decompo-Conipound fitions and new combinations often take place, whichaffinity,
(D) This table, however, does not correfpond quite accurately to all the phenomena. For inftance, according to it, fulphat of barytes is not decompofed by carbonat of foda, although the contra:y takes place in รаอย,

Affinity. could not have heen produced had the bodies been prefented in a different flate. If, for infance, into a fo lution of fulphat of putafs there be poured nitric acid, no decompolition is produced, becaufe the fulphuric acid has a ftronger affinity for putafs than nitric acid has. For the very fame reafon, ammonia may be poured into the folution without producing any change. But if nitrat of ammonia be poured in, a decompofition initantly takes place, and two new bodies, fulplout of ammonia and nitrat of potafs, are formed. Such cafes of decompofition form tlie fecond clafs of affinities. They were called by Bergman cales of double elecive atiraction; a name which is exceedingly proper when there are only four bodies concerned. But as there are often more than four, it is neceffary, as Mr Morveau has ob. ferved, to employ fome inore comprehenfive term. We fhall therefore call the affinities belonging to this clafs compound affnities (E) ; and comprehend under the term all cafes where more than three bodies are prefent, and produce combinations which would not have been forned without their united action. In thefe cafes the affinity of all the various bodies for each other acts, and the refulting combin:ion is produced by the action of thofe affinities which are ftrongeft. 'The manner in which thefe combinations and decompofitions take place, was firft clearly explained 1 Dr Black. Let the affinity between potafs and fulphuric acid be \(=62\); that uetween nitric acid and ammonia \(=3^{8}\); that between the fame acid and potals \(=58\); and that between the fulphuric acid and ammonia \(=46\). Now, let us fuppofe that all thefe forces are placed fo as to draw the ends of two cylinders crofing one another, and fixed in the middle in'this manner,

(100

It is evident, that as 58 and \(46=104\), are greater than \(62+3^{8}=100\), they would overcome the other for ces and fhut the cylinders. Juft fo the affinity between potals and nitric acid, together with that between fulphuric acid and ammonia, overcomes the affinity between potafs and fulphuric acid, and that between nitric acid and ammonia, and produces new combinations.

In all cafes of compound affinity, there are two kinds of affinities to be confidered ; 1, , Thofe afinities which tend to preferve the old compound, thefe Mr Kirwan has called quiefient affinities; and thofe which tend to deftroy them, which he has called divellent affinities.

Thus, in the inftance above given, the affinity between potals and fulphuric acid, and that between nitric acid and ammonia, are quiefcent affinities, which endeavour to preferve the old compound; and if they are Itrongeft, it is evident that no new compound can take place. On the contrary, the affinity between potafs and nitric acid, and that between fulphuric acid and
ammonia, are divellent affinitics ; and as they are in this cale Atrongeft, they actually dettroy the former combinations and form new ones.

Bergman, who publifhed a great many cafes of compound affuities, employed to explain them a method fomewhat different from this. He would have reprefented the above cafe in the following manner:

Sulphat of Ammonia.
At the four corners of an imaginary fquare are placed the four fubitances, fo that one acid hall be diagonally oppofite to another. On the right and left fide of the fquare are placed the old compounds, each on the fide of its own ingredients, and above and below are placed the new compounds.

Mr Elliot improved this method of Bergman, by adding numbers expreffive of the affinity of the various fubitances. It is in cafes of compound affinity that the ratios of affinities, if we were pulfefled of them, would be peculiarly ufeful. For it is evident, that if we lanew the ftrength of affinities in abfolute numbers, we would be able to determine before hand all the cafes of compound affinity.

If we knew, for inftance, that the affinity between the muriatic acid and barytes were \(=368\) that between the fame acid and potafs \(=32\); the affinity between potals and carbonic acid \(=9\); and that between the lame acid and barytes \(=14 ;\)-we would be certain, previous even to experiment, that when muriat of barytes and carbonat of potafs are mixed, a duuble decompofition would take place; which we know from experiment to be actually the cafe.

Muriat of Potals.

\section*{Carbonat of Barytes.}

Another inftance of decompofition by compound affinities.

Suppofing Morveau's numbers exact, it follows alfo, even prior to experiment, that no decompofition takes place when fulphat of lime and muriat of putafs are mixed;

for the quiefcent affinities are 86 , and the divellent only 82 .

Nor wben acetite of lime and muriat of foda are mixed;

becaufe the quiefcent affinities are 47, and the divellent only 45. Thefe cafes where no decompofition takes place have been called by Morven cafes of inverfe compound affinity.
Morveau has propofed the following improvements in reprefenting thefe cales of compound affinities*.

When decompofition does not take place, notling is s5. to he written above and below the fquare, as in the two laft examples. When a new compound remains diffolved, a ftraight' line is to be placed between it and the équare, as in the following fcheme.

When a new compound is precipitated, a line bent downwards in the middle is to be placed between it and the fquare, as in the following fcheme:

Sulphat of Potafs.

When a new compound is fublimed, the line between it and the fquare is to be pointed upwards in the middle, thus

When a new compound is partly diffolved and partly precipitated, the line placed between it and the fquare is to affume the following fhape: \(\qquad\)
When it is partly diffolved and partly fublimed, the following is the line to be ufed:
The third clafs of affinities has been called by \(\mathrm{Mr}_{\text {And }}{ }^{588}\) difpo. Morveau difpofing affrities, becaufe they difpofe fub- fingafnitity flances to combine that would not otherwife have done it. Suppofe, for inftance, that fulphur is prefented to oxygen gas, it does not manifeft any affinity for it; but combine it previoufly with potafs, and it unites with oxygen with avidity. Its previous union with potafs, in this cafe, difpofed it to unite with oxygen. The caufe of this curinus affinity is not yet well underftood. If we confider what it was that prevented the fulphur and oxygen from combining, we fhall find that it can only be its own attraction of cohefion, and the affinity between the oxygen and caloric which are combined. Whatever then diminifhes this attraction of cohefion, or of aggregation as it has been called, mul facilitate the union

Afinity. of the fulphur with oxygen. This is done in fome meafure by the putafs. Befides, if affinity depends upon the fisure of particles, it is evident that there mult be an alfinity between the new compound and oxygen: but the moment the oxyect approaches withira a certain ditance of the fulphur, it mites with it, as its affuity is much greater for that fublance than for the compound.
The following is another inftance of this curious aftinity : Sugar, as Lavoilier has proved, is compofed of oxygen, hydrugen, and carbon: Now if concentrated fulphuric acid be poured uponfugar, the oxygen and hydrogen combine, and form water, which unites with the acid, and the carbon is precipitated. In this cafe, the prefence of the acid dijpofed the oxygen and hydrogen to combine. In what manuer this new combination is produced, it would not be eafy to explain: not by weakening the attraction of cohefion; for we do not fee how the acid could produce that effect. The only explanation that can be given, is to fuppofe that the fulphuric acid, when it approaches within a certain diftance of the osygen and hydrogen, attracts them ; and that this attraction, together with the affinity between the oxygen and hydrogen, is greater than that which produces the combination between the ingredients of the fugar themfelves: the confequence of which muft 582 be decompofition.
why bo- 6. We come now to one of the mof difficult quefdies requiretions in chenuiftry - Why do bodies "require different different temperatures in order to unite? and why does the pre: tempera-
tures to fence of caloric in many cafes favour or rather produce cures to unite,
of other bndies. This is the reafon that bodics comhine more cafily when held in folution by water, or when they have been previouly reduced to a tine powder. Now caluric pofiefles the property of diminifling cohefion. And one reafon why fome bodies require a high temperature to csufe them to combine is, that at a low temperature the attraction of cohefion is in them fuperion to that of afanaty; accordingly, it becomes neceflary to weaken that attraction by caloric till it beconncs inferior to that of affinity. The quantity of caloric neceflary for this purpofe muft vary according to the ftrength of the cohefion and of the affinity ; it muft be inverfely as the affinity, and directly as the colefion. Wherefore, if we knew precifely the force of the cohefion between the particles of any body, and of the affinity between the particles of that body and of any other, we could eafily reduce the temperatute neceffary to calculation.
That caloric or temperature acts in this manner cannot he doubted, if we confider that other methods of diminifhing the attraction of cohefion may be fubatituted for it with fuccefs. A large lump of charcoal, for inftance, will not mite with oxygen at fo low a temperature as the fame charcoal will do when reduced to a very fine powder; and charcoal will combine with oxygen at a ftill lower temperature, if it be reduced to its integrant particles, by precipitating it from alcohol, as Dr Prieftley did by paffing the alcohol through red hot copper. And to thew that there is nothing in the nature of oxygen and carbon which renders a high temperature neceflary for their union, if they be prefented to each other in different circumftances, they combine at the common temperature of the atmofphere; for if nitric acid, at the temperature of \(60^{\circ}\), be poured upon charcoal powder, well dried in a clofe crucible, the charcoal takes fire, owing to its combining with the oxygen of the acid *: And in fome other fituations - Prouffand carbon is fo completely divided, that it is capable of Moreveas, combining with the oxygen of the atmofphere, or, Encyc. Mewhich is the fame thing, of catching fire at the com-thod Chim. mon temperature. This feems to be the cafe with it in i . 474. thofe pyrophori that are formed by dillilling to drynefs feveral of the neutral falts which contain acetous acid \(\dagger\). Thefe obfervations are fufficient to thew that + Morveaus caloric is in many cafes neceffary in order to diminifhibid. the attraction of cobcfion.

But there is a difficulty ftill remaining, How comes it that certain bodies will combine with oxygen without the affiftance of any foreign heat, provided the combination be once begun, though a quantity of caloric is neceflary to begin the combination? and that other bodies require to be furrounded by a great quantity of caloric during the whole time of their combining with oxygen? Alcohol, for inftance, if once kindled, burns till it is quite confumed; and this is the cafe with oils alfo, provided they be furnifhed with a wick.

We muft obferve, in the firft place, that we would err very much, were we to fuppofe that a high temperature is not as neceflary to thefe fubflances during the wbole of their combuftion as at the commencement of it ; for Mr Mongé found, on making the trial, that a candle would not burn after the temperature of the air around it was reduced below a certain point.

All fubftances which continue to hurn after being once kindled are volatile, and they burn the eafier in

Affinty. proportion to that volatility. The application of a certain quantity of caloric to alcuhol volatilizes part of it ; that is to fay, diminifhes the attraction of its cobefion fo much that it combines with oxygen. The oxygen which enters into this combination gives out as much heat as volatilizes another portion of the alcohol; which combines with oxygen in its turn; more heat is given out; and thus the procefs goes on. Oils and tallow exhibit the very fame phenomena; only as they are lefs volatile, it is neceffary to affift the procefs by means of the capillary attraction of the wick, which confines the action of the caloric evolved to a fmall quantity of oil, and thus enables it to produce the proper effect. In flort, then, every fubftance which is capable of continuing to burn, after being once kindled, is volatile, or capable of being converted into vapour by the degree of heat at firft applied. The reafon that a live coal will not burn when fufpended infulated in the air, is not, as Dr Hut-- On Light ton fuppofed*, becaufe its light is dififpated; but becanfe and Heat. the coal cannot be converted into vapour by the degree of heat which it contains, and becaufe the cohefion of its particles is too great to allow it to combine with oxygen without fome fuch change. There are fome coals, however, which cuntain fuch a quantity of bitumen that they will burn even in the fituation fuppofed by Dr Hutton, and continue to burn, provided they be furnifhed with any thing to act as a wick. It is needlefs to add, that bitumen, like oil, is eafily converted into vapour.
But this explanation, inflead of removing our difficulties, has only ferved to increafe them: For if caloric only acts by diminihing the attraction of cohefion, and converting thefe fubflances into vapour, why do not all elaftic fluids combine at once without any additional caloric? why do not oxygen and hydoogen, when mised together in the flate of gas, unite at once and form water? and why- do not oxygen and azot, which are conftantly in contact in the atmofphere, unite alfo and form nitrous gas? Surely it cannot be the attraction of cohefion that prevents this union. And if it be afcribed to their being already combined with caloric, how comes it that an additional dofe of one of the ingredients of a compound decompofes it? Surely, as Mr Mongé has obferved, this is contrary to all the other operations in chemiftry.

That the particles of fluids are not deflitute of an attraction for each other, is evident from numberlefs facts. The particles of water draw one another after them in cafes of capillary attraction; which is probably owing to the attraction of cohefion. It is owing to the attraction of cohefion, too, that fmall quantitics of water form themfelves into fpheres: Nor is this attraction fo weak as not to be perceptible. If a finall plate of glafs be laid upon a globule of mercury, the globule, notwithftanding the prefiure, continucs to preferve its round figure. If the plate be gradually charged with weights one after another, the mercury becomes thinner and thinner, and extends itfelf in the form of a plate; but as foon as the weights are removed, it recovers its globular figure again, and pufhes up the glafs before it. Here we fee the at-

Suppl. Vol. I. Part I.
traction of cohefinn, riot only fuperior to gravita- Affinity. tion, but actually overcoming an external force ". ATHorvera, And if the workman, after charging his plate of Affaritc. glafs with weights, when he is forming mirrors, laap-p. 543. pen to remove thefe weights, the mereury which had been forced from under the glafs, and was going to feparate, is drawn back to its place, and the glafs again pufled up. Nor is the attraction of cohefion confined to folids and liquids; it cannot be doubted, that it exifts alfo in gafes; at leaft it is evident, that there fubfifts an attraction between gafes of a different kind: for although oxygen and azotic gas are of different gravities, and ought therefore to occupy different parts of the atmofphere, we find them always mixed togeher ; and this can only be afcrihed to an attraction. And were we to allow, with Humbolt and feveral other chemifts, that thefe two gafes are chemically combined in atmofpherical air, an opinion contradicted by a late experiment in France (F); fill the exitence of carbonic acid gas in every part of the atmofphere can only be afcribed (if the inaccuracy of the expreffion nay be tolerated) to a kind of cohefion. And whoever has been accuftomed to pneumatic experiments, muft have ohferved that fmall portions of air, as well as water, form themfelves into fplieres, and that the attraction of cohefion is fo ftrong in gafes, that large globules of them often adhere by a fingle point to the bottom of veffils filled with heavy fluids : whereas, had there been no attraction of cohefion, every part of the globule ought to have afcended to the furface of the fluid, except the particles immediately in contact with the veffel. Allowing, then, that there is an attraction of cohefion between the particles of gafes, let us fee whether that will not affift us in removing the difficulty.

It feems evident, in the firlt place, that the affinity Explained. between the bafes of the gafes under confideration and oxygen is greater than their affinity for that dofe of caloric which produces their elaftic form; for when they are combined with oxygen, the fame dofe will not feparate them again. Let us take hydrogen for anl inffance: The affinity of hydrogen is greater for oxygen than for the caloric which gives it it gafeous form ; but the oxygen is alfo combined with caloric, and there exilts an attraction of cohefion between the particles of the hydrogen gas; the fame attraction fubfilts between thofe of oxygen gas. Now the fum of all thefe affinities, namely, the affinity between hydrogen and caloric, the affinity between oxygen and caloric, the cohefion of the particles of the hydrogen, and the cohefion of the particles of oxygen-is greater than the affinity between the hydrogen and oxygen; and therefore no decompofition can take place. Let the aflinity between
\begin{tabular}{llll}
Oxygen and caloric be & - & - & 50 \\
Hydrogen and caloric & - & - & 50 \\
Cohefion of oxygen \\
Cohefion of bydrogen \\
& - & - & 4 \\
Sum of quiefcent affinities, \\
The affinity of oxygen and hydrogen, & - & 106 \\
\hline
\end{tabular}

The quiefcent affinities being greater than the divellent affinities, no decompofition can take place.

Y y
Let
(F) Air brought by means of a balloon from a great height in the atmofphere was found to contain lefs oxygen gas than the fame quantity of air near the ground.

Let now a quantity of caloric be ad led to the oxygen and hydrogen gas, it has the property of expanding them, and of courfe of diminifhing their coheforn; while its affinity for them is fo finall that it may be neglected. Let us fuppofe that it diminithes the coliefion of the oxygen 1 , and of the hydrogen alfo 1 , their colhetion will now be 3 and 1 ; and the quiefcent affinities being only 104, while the divellent are 105, the decompofition wuuld of courfe take place, and a quantity of caloric would thas be fet at liberty to produce the fame effects upon the neighbouring particles.
Thus, then, caloric atts only by diminifhing cohefion : And the reafon that it is required fo much in gafeons fubfances, and in thofe combiuations into which oxygen enters, is the ftrong affinity of oxygen and the other bafes of the gafes for caloric; for, uwing to the repulfion which exilts between the particles of that fubtile fubitance, an effect is produced by adding large dofes of it, contrary to what happens in other cafes. The more of it is accumulated, the ftronger is the repulfion between its particles; and therefore the more powerful is its tendency to fly off: and as this tendency is oppofed by its affinity for the body and the cohefion of its particles, it mult diminifh both thefe attractions.

Though we have thus attempted to explain what has been always confidered as one of the moft difficult problens in chemiftry, we are far from fuppofing that we have removed every difficulty. Much fill remains to be done before the action of light and caloric can be fully underfood; and there may be other agents, of whofe exiftence we have not yet even conceived the idea.

One difficulty ftill remains to be examined. Heat not only produces the combination of fome bodies, but alfo occafions the decompofition of others. How does 584 it act in thefe cafes ?
How heat That many of thefe decompofitions are produced by decompofes chemical affinity, will be evident from the following exbodies. amples.

When fulphur and arfenic acid are expofed to heat,
* Pellstier. fulphuret of arfenic is formed * evidently by a kind of compound affinity.

In the fame manner, when nitrat of potafs and boracic acid are expofed to heat, the nitric acid is volatilized, and borat of potafs is left behind.

By the fame compound affinity boracic acid and heat decompofes muriat of foda.

In the fame manner, it would be eafy to explain how all the decompofitions by the dry way, as it is called. are produced.
But how comes caloric to decompofe water after having prodaced the union of oxygen and hydrogen? The union, we have feen, was probably brought about by the play of oppofite affinities ; but in the feparation, caloric feems to act by its peculiar power, or the repulfion which exits between its particles. When caloric combines with an integrant particle of water, this repulfion muft feparate the component parts fomewhat from one another; confequently it mult weaken their affinity; for every increafe of diftance produces that effeet. Now let us fuppofe that the affinity between oxygen and hydrogen is 105 , and that the affinity between caloric and each of thefe bodies is 50 : as foon as the particles of oxygen and hydrogen are fo far feparated from each other that their affinity is lefs than soo, they will unite with caloric in preference, becaufe the fum of their affinities for caloric is equal to 100 ; confequently, whenever that takes place water will be decompofed. Hence we fee the reafon why more heat is always neceffary to produce the decompofition of bodies than what produced their union.

Caloric poffeffes another fingular property, that of changing the compound affinities of bodies, even when mean will appear evident from the folluwing examples:

Muriat of ammunia, • decompofe each other at the Carbonat of magnefia, \(\}\) ordinary temperature of the atmofphere, and form mumat of magnelia and carbouat of ammonia: but, on the contrary,

Muriat of magnefia, and \(\}\) decompofe each other at
Carbonat of anmonia, \(\}\) a high temperature; for inftance, at \(212^{\circ}\). The products are muriat of ammonia and carbonat of magnefia *.

Again, if muriat of loda and fulplat of magnefia be mixed together at a low temperature, for inflance at zero, they decompofe each other, and muriat of mag. nefia and fulphat of foda are furmed; but no decompofition takes place at a temperature above \(3^{20} .-\) Muriat of foda, and fulphat of alumina, exhibit precifely the fame phenomena \(t\).

Lattly, fulphat of magnefia and carbonat of ammonia decompofe each other at the ordinary temperature; but at \(212^{\circ}\) the carbonic acid flies off, and the remaining fubflances form a triple falt \(\ddagger\).

The lait of thefe phenomena appears owing to the affinity between carbonic acid and caloric, and the two firlt to the affinity between muriat of ammonia and caloric, for that falt is volatilized.

It would not be fo eafy to explain the mutual decompofition of muriat of foda and fulphat of magnefia at a low temperature. It is probably connected with the alterations in the diftance of the ingredients of chemical compounds, which are produced by the prefence and abfence of caloric.

From the important part which caloric aets in chemi.

That caloric is a neceflary agent in all chemical decompofitions and new combinations, we very readily al-
low ; becaufe we know no other caufe except caloric to Affinit.. prevent the particles of bodies from actual contact ; in which cafe decompolition wonld be impoffible: and if this be the fente in which that ingenious philofopher afcribes chemical combinations to caloric, we very, readily agree with him; but if he fuppoles that caloric is the agent by which the particles of bodie' are brought near each other, and the force by which they adhere to one another, we cannot help thinking that he is millaken: For that bodies, chemically combined, are kept near each other by fome force, cannot puffibly be denied. Now, what is that force? We have faid, after Newton, an attradion letween t'e particles themfelves: acknowledging, at the fame time, that we are 'mable to explain what that is.

Count Rumford feems to fuppofe that there is no fuch thing as attraction between the particles themfelves, but that caloric is the agent which keeps them together. If fo, how does caloric perform this office? For our part, we do not pretend to underftand it any more than the nature of attraction; nor do we fee that it is poffible to render it more intelligible. But there is another queftion of ftill greater importance, What are the proofs that caloric is the only agent in all cafes of chemical combinations? For our part, we can think of no proof that can render this opiniun in the fmalleft degree plaufible.

Has this celebrated and candid philofopher confidered this fubject with his ufual accuracy? If heat be a body, it cannot furely be the caufe of aflinity, milefs it be poffeffed of properties which, fo far from being proved, have not even been fufpected. On the contrary, if it be a property of matter, what property is it? If it be a peculiar motion, as Count Rumford fufpets, we would afk if it be poffible for any motion whatever, independent of attraction, to produce the permanent union of two bodies?

\section*{Part III. Of DOUbly compound bodies.}

THE bodies which confift of combinations of thofe fubftanees that have been denominated compound, and which, for that reafon, we have ventured to call doubly compound bodies, may be reduced to three claffes:

Soaps,
Neutral falts, Hydrofulphurets.
Thefe fhall form the fubject of the three following Chapters ; and we fhall finifh this part of the article with lome ubfervations on cryflallization.

\section*{Chap. I. Of Soaps.}

The compounds into which oils enter without decompofition have been denominated foaps.

Oils are capable of combining with alkalies, earths, and metallic oxides; they are capable alfo of combining with feveral of the acids. There are therefore two claffes of foaps; 1. Alkaline, earthy, and metallic foaps, which, for the fake of brevity, we Mall call alkaline foaps; and,
2. Acid foaps. Thefe two claffes form the fubject of the two following Sections.

\section*{Sect. I. Of Alkaline Soaps.}

As there are a great number of oils, all or moft of which are capable of combining with alkalies, earths, and oxides, it is natural to fuppofe that there are as many genera of alkaline foaps as there are oils. That there are differences in the nature of foaps correfponding to the oil which enters into their compultion, is certain; but thefe differences are not of fufficieut importance to require very particular defeription. We hall therefore deferibe all the alkaline foaps together, and notice, as we go along, fome of the moft important differences refulting from the oily ingredients.
1. Soap of foda, or common fuap. The word foap common 586 (fapo, oanav) firlt occurs in the works of Pliny and Ga-hard foan! len, and is evidently derived from the old German word fepe (c). Pliny informs us, that foap was firlt difcovered by the Gauls; that it was compored of tallow
\[
Y \text { y } 2 \quad \text { and }
\]

Alkaline Soaps.

Pliny,
lib. xviii. c. 51. 587 Method of forming it
and athes; and that the Gcrman fuap was reckoned the beft *.

Soap may be prepared by the following procefs. A quantity of the foda of commerce, which is a carbonat of foda, and which is often called barilla from the name of a plant, by burning which it is procured in great quantities in Spain, is pounded and mixed in a wooden veffel, with about a fifth part of its weight of lime, nacked and paffed through a fieve imniediately before. Upon this mixture a quantity of water is poured, confiderably more than what is fufficient to cover it, and allowed to remain on it for feveral hours. The lime attracts the carbonic arid from the foda, and the water becomes itrongly impregnated with the pure alkali. This water is then drawn off by means of a ftop-cock, and called the firg ley. Its fpecific gravity fhould be about 1,200.

Another quantity of water is then to be poured up. on the foda, which, after ftanding two or three hours, is alfo to be drawn off by means of the ftop-cock, and called the fecand ley.

A nother portion of water is poured on ; and after ftanding a fufficient time, is drawn off like the other two, and called the third ley.

Another portion of water may fill be poured on, in order to be certain that the whole of the foda is diffolved; and this weak ley may be put afide, and employed afterwards in forming the firf ley in fubfequent operations.

A quantity of oil, equal to fix times the weight of the foda ufed, is then to be put into the boiler, together with a portion of the third or weakefley, and the mixture muft be kept boiling, and agitated conttantly by means of a wooden inftrument. The whole of the third ley is to be added at intervals to the mixture; and after it is confumed, the fecond ley mult be added in the fame manner. The oil becomes milky, combines with the alkali, and after fome hours it begins to acquire confiftence. A little of the firfl ley is then to be added, not forgetting to agitate the mixture conftantly. Portions of the firt ley are to be added at intervals; the foapy fubftance acquires gradually greater conffitency, and at laft it begins to feparate from the watery part of the mixture. A quantity of common falt is then to be added, which renders the feparation much more complete. The boiling is to be continued ftill for two hours, and then the fire muft be withdrawn, and the liquor mult be no longer agitated. After fome hours repofe the foap feparates completely from the watery part, and fwims upon the furface of the liquor. The watery part is then to be drawn off; and as it contains a quantity of carbonat of foda, it ought to be referved for future ufc.

The fire is then to be kindled again; and, in order to facilitate the melting of the foap, a little water, or rather weak ley, is to be added to it. As foon as it boils, the remainder of the firit ley is to be added to it at intervals. When the foap has been brought to the proper confiftence, which is judged of by taking out fmall portions of it and allowing it to cool, it is to be withdrawn from the fire, and the watery part feparated from it as before. It is then to be heated again, and a
little water mixed with it, that it may form a proper pafte. It is then to be poured into the veffels proper for cooling it ; in the bottom of which there ought to be a little chalk in powder, to prevent the foap from at. taching itfelf to it. In a few days the foap will have acquired fufficient confiftence to be taken out, and formed into proper cakes (H).

The ufe of the common falt in the above procefs is to feparate the water from the foap; for common falt has a ttronger affinity for water than foap has.

Olive oil has been found to anfwer beft for making foap, and next to it perhaps tallow may be placed : but a great vaniety of other oils may be employed for that purpofe, as appears from the experiments of the French chemifts above quoted. They found, however, that lintfeed oil and whale oil were not proper for making hard foaps, though they might be employed with advantage in the manufacture of foft fonps. Whale oil has been long ufed by the Dutch for this laft purpofe.

Soap may alfo be made without the affiftance of leat ; but in that cafe a much longer time and a larger proportion of alkali is neceffary.
Manufacturers have contrived varions methods of fophifticating foap, or of adding ingredients which in-catiophifio creafe its weight without increating its value. The moft common fubftance ufed for that purpofe is water; which may be added in confiderable quantities, efpecially to foap made with tallow (the ingredient ufed in this country), without diminifhing its confiftency. This fraud may be eafily detected, by allowing the foap to lie for fome time expofed to the air. The water will evaporate from it, and its quantity will be difcovered. by the diminining of the weight of the foap. As foap fophificated in this manner would lofe its water by being kept, manufacturers, in order to prevent that, keep their foap in faturated folutions of common falt ; which do not diffolve the foap, and at the fame time, by preventing all evaporation, preferve, or rather increafe, the weight of the foap. Meffrs Darcet, Lelievre, and Pelletier, took two pieces equal in weight of foap faphifticated in this manner, and placed the one in a dry place in the open air, and the other in a faturated folution of common falt. After a month, the firft had loft só of its weight, the other had gained about \(\frac{10}{80}\) parts *. *Ann. de Various other methods liave been fallen upon to fophif. Clifin. xiso ticate foap; but as they are not, we loope, generally \({ }^{336}\). known, it would be doing an injury to the public to defcribe them here.

Different chemifts have analyfed foap, in order to af- 589 certain the proportions of its ingredients; but the re-of its ingrefult of their experiments is various, becaufe they ufed dients. foap coutaining various quantities of water. From the experiments of Darcet, Lelievre, and Pelletier, it appears that foap newly made and expofed to fale contains
\[
\begin{aligned}
& \text { 9,75 Oil, } \\
& \text { 1,37 Alkali, } \\
& \text { 4;87 Water. }
\end{aligned}
\]

Soap is foluble both in water and in alcohol. Its properties as a detergent are too well known to require any defcription.

Alkalinc It is decompoied by linuc, and by compound affinity (1) by fulphat of lime, nitrat of lime, muriat of lime,
2. Soap of potafs. - Potafs may be fubftituted for foda in making foap, and in that cafe precifely the fame procefs is to be followed. It is remarkable, that when potafs is ufed, the foap does not affume a folid form; its confiftence is never greater than that of hog's lard. This is what in this country is called foft foup. Its properties as a detergent do not differ materially from thofe of hard foap, but it is not neanly fo convenient for ufe. The alkali employed by the ancient Gauls and Ger. mans in the formation of foap was potals: hence we fee the reafon that it is defcribed by the Romans as an unguent.
Some perfons have afirmed that they knew a method of making hard foap with potafs. Their method is this: After forming the foap in the manner above defcribed, they add to it a large quantity of common falt, buil it for fome time, and the foap becomes folid when cooled in the ufual way. That this method may be practifed with fuccefs has been afcertained by Meffrs Darcet, Lelievre, and Pellietier; hut then the hard foapp thus formed does not contain potaifs, but foda: for when the common falt (muriat of foda) is added, the potafs of the foap decompofes it, and combincs with its muriatic acid, while at the fame time the foda of the falt combines with the oil, and forms berd foap: and the muriat of potafs formed by this double decompofition is diffolved in the water, and drawn off along with it *.

Chaptal has lately propofed to fubflitute wool in place of oil in the making of foap. The ley is formed in the ufual manier, and made boiling hot, and fhreds of woollen cloth of any kind are gradually thrown into it ; they are foon diffolved. New portions are to be added fparingly, and the mixture is to be conflantly agitated. When no more cloth can be diffolved, the + 1lid. xxi. Coap is madet. This fonp is faid to have been tried with 27. fuccefs. It might doubtlefs be fubifituted for foap with advantage in feveral manufactures, provided it can be obtained at a cheaper rate thant the foaps at prefent employed.

Fin, too, have been lately fubftituted for oil with equal fuccefs. The only difadvantage which foap made in this manuer is liahle to, is a difagreeable fmell, from which it cannot eafily be freed.
3. Soap of ammonia. -This foap was firt particularly attended to by Mr Berthollet. It may be formed by pouring carbonat of ammonia on foap of lime. A dormble decompofition takes place, and the foap of ammonia fwins upon the furface of the liquor in the form of an cil; or it may be formed with fill greater eafe by pouring a folution of muriat of ammonia into common foap diffolved in water. We have formed it often by \(\ddagger\) Bertbollet, mixing cauftic ammonia and oil \(\ddagger\).
infoluble both in water and alcoliol. Carbonat of fixed alkali decompofes it by compound affinity \({ }^{*}\). It melts with difficulty, and requires a ftrong lieat.

Alkaline Suaps.

5: Soap of magnefit.-This foap may be formed by mixing together folutions of common foap and fulphat 593 of magnefia.

It is exceedingly white. It is unctuous, drics with difficulty, and preferves its whitenefs after deficcation. It is infoluble in builing water. Alcolol and fixed oil diffolve it in confiderable quantity. Water renders its folution in alcohol milky. A moderate heat melts it; a tranfparent mafs is formed, llightly yellow, and very brittle \(\dagger\).
\(t\) Beribollers
6. Soap of alumina. - This foap may be furmed by ibid. mixing together folutions of alum and of common foap. of 594 It is a flexible foft fubftance, which retains its fupple- of aluminefs and tenacity when diry. It is infoluble in alcohol, water, and oil. Heat eafily melts it, and reduces it to a beautiful tranfparent yellowifh mafs \(\ddagger\).
7. Soap of barytes refembles almoft exactly the foap 595 of lime \(\$\).
8. Soap of mercury. - This fuap may be formed by \({ }^{\$ 1 \text { lidid. }} \$ 96\) mixing together a folution of common foap and of cor- of mercurotive inuriat of mercury. The liquor becomes milky, ry, and the foap of mercury is gradually precipitated. This foap is vifcid, not eafily dried, loies its white colour when expofed to the air, and acquires a flate colour, which gradually becomes deeper, efpecially if expofed to the fun or to heat. It diffolves very well in oil, but fparingly in alcohol. It readily becomes foft and fluid when heated \(\|\).
9. Soap of zine. -This fuap may be formed by mix- 597 ing together a folution of fulphat of ziuc and of foap. \({ }^{\text {a }}\) zinc, It is of a white colour, inclining to yellow. It drics rpeedily, and becomes friable T .
10. Soap of cobalt. - This foap, made by mixing ni- of coba trat of cobalt and common foap, is of a dull leaden colour, and dries with difficulty, though its parts are not comected.
Mr Berthollet obferved, that towards the end of the of nickel, precipitation there fell down fome green coagula, much more confiftent than foap of cobalt. There he fuppofed to be a foap of nickel, which is generally mixed with cobalt *.

1 1. Soap of tin.- It may be formed by mixing com- of tin, 600 mon foap with a folution of tin in nitro-muriatic acid. of tin, It is white. Heat does not fufe it like other metallic foaps, but decompofes it \(\dagger\).
12. Soap of iron. - Formed by means of fulphat of \(60 \times\) iron. It is of a reddifh brown colour, tenacious, and of iron, eafily fufible. When fread eanly fufible. When fread upon woon, it finks in and dries. It is eafily foluble in oil, e epecially of turpentine. \(\ddagger\) Ibid, Berthollet propofes it as a varnifh \(\ddagger\).
13. Soap of eopper. Formed by means of fulphat of copper. It is of a green colour, has the feel of a refin, and becomes dry and brittle. Hot alcohol renders its colour deeper, but fcarcely diffolves it. Ether diffulves it, liquefies it, and renders its colour deeper and more beantiful. It is very foluble in oils, and gives \(\$\) Ibidd them a pleafant green colour \(\oint\).
14. Soap of lead.- It may be formed by means of \({ }^{\text {Of leads }}\) acetite
(1) In this and the following chapter, compound affinity is not taken always in its ftriet and proper fenfe, but is applied to all thofe decompofitions in which the affinities of more than three bodies \(a \underset{\text { a }}{ }\)

Alkalite acetite of lead. It is white, tenacious, and very adhesor \(1^{\text {co }}\) live when hated. When fufed, it is tramparent, and - Rerthollet, becones fumewhat yellow if the heat be increafed *.
if: a
of 4 nierat of filser. It is at firlt white, bur becomes red.
Oifiiver, dith by expofure to the air. When fufed, its furface beenses covered with a very brilliant iris; beneath the
t lit \% furface it is black + .
Of sold,
16. Soap of gold. - It is at frift white, and of the conlitence of cream. It gradually affumes a dirty purIle colour, and adheres to the fikin fo that it is difficult \(\ddagger\) Itill: to efface the imprefion \(\ddagger\).

606
Ald of
manganefe.
\(\oint\) §id.
17. Suap of manganefe. -It is at firf white, but it aflumes in the air a reddifh colour, owing evidently to the abforption of oxygen. It fpeedily dries to a hard brittle fibitance, and by liquefaction aflumes a bruwn blackih colour§.

We owe the fullowing refinous foaps to Mr Me zaize.
Soap of cur- zaize. Soap of turpentine and potafs. -576 grains of pentine andurpentine were diffulved in 9216 grains of alcohol, and putafo then 576 grains of potafs were added. The alcohol 'was diflilted off at a boiling water heat. There remained in the retort \(64^{8}\) grains of a brownifh foapy matter, which when fpread on glafs appeared tranfparent. There remained alfo nearly the fame quantity of potafs diffolved in water. This foap was put in a veffel for fix weeks; during which time 72 grains of fulution of potafs feparated from it. It had affumed the conliftence of honey. Its colour was browner. It was completely foluble in water: the folution was milky. It diffolved alfo in alcohol. It had no difagreeable tafte. Vinegar 608 decompofed it.

Srap of

609 with Starkey's foap.
of balm of 20. Soap of balm of Pern and potals- \(115^{2}\) grains
Peru, of balm, 2304 grains of potafs, and 9216 grains of al-
Peru, of balm, 2304 grains of potafs, and 9216 grains of alconfittent.
610 confittent.
Of guaiac, ac was diffolved in 18648 grains of alcohol, and the folution filtered, and to this 1728 grains of potafs were added, and the foap obtained as above. It was folid, of a brown colour at firft, which afterwards became green on the furface, but remained unaltered within. Its folution in water was greenifh. It had no difagreable tafte. It diffolved in aleohol, and formed a green tincture. Vinegar decompofed it.
22. Soap of fcammony and potafs.-By the above

611
And of
feammony

11 Four. de
Pby.xv.
4 if.
612
Method of forming acid foaps.
19. Soap of benzoin and potafs.-By treating 9216 grains of alcohol, 1728 grains of benzoin, and 576 grains of potafs, as above, 1728 grains of a foap were obtained, browner than that of turpentine, of an odour a little aromatic. When left in a cellar for \(f_{1} x\) weeks, it became fulid. Its folution in water was yellowih. Vinegar decumpofed it. This compound is the fame 21. Soap of guaiae and potafs.-1728 grains of guaiprocefs a foap was obtained with fcammony pretty confiftent, of a brown colour, foluble in water, and not decompofed by the water of pits from which felenites is obtained. It has no difagreeable tafte. Its folution in alcohol is of a deep amber colour \(\|\).

\section*{Sect. II. Of Acid Soaps.}

Sulphuric acid may be combined with oils in the following manner: Put two ounces of it into a glafs mortar, and add, by little and little, three ounces of the
oil nearly boiling lint, triturating it conftantly. A fub- Acid flance is obtained of the confiftence of turpentine. Ihif Scaps. folve it in about fix ounces of boiling water, and the foap will unite into a mufs as the water cools If it fill contain an excefs of acid, diffolve it again in boiting water, and contime this procefs fill the foap is perfect!y nentralized.
1. Suap of fulphuric acid and lintfeed oil.-. It dif- Acid foap folves entirdy in water. The folution is opague, of anf linefeed bluif white colour, vifcid, and frothes whon agritated. oil, Alcuhol diffolves it. The fulution is tranfparint and brown. Putafs decompofes it, forming fulphat of potals. The oil fwims on the top, of the confillence of wax. Ammonia decompoles it ; and if 100 much be added it forms foap of ammonia. Magnefia, line, nitric acid, an.l muriatic acid, alfo decompufe it. Ditilled, it yielded a few drops of water and an oil, which coagulated, and was of the contiftence of was.
2. Soap of fulphuric acid and oil of almonds.-So-of alound luble in water; folution milky. Frothes. Suluble in oil. alcohol ; folution brown and tranfparent. Potafs, lime, nitric acid, muriatic acid, fulphurous acid (the oil feparated affumed the confiltence of turpentine), tartar, acidulous oxalat of potafs, fal ammoniac, nuriat of lead and zinc decompofe it. It is not decompofed by vinegar, boracic acid, acetite of ammonia, borax, copper, tin, nor lead. When diftilled, there paffed over a little water and an oil, which coagulated and finelt very rancid : there remained behind a coal.
3. Soap of fulphuric acid and olive oil. - It is brown, of ulive
and of the confilitence of wax. Solution in hot water oil, whise, opaque, vifcid; frothes. Solution in alcohol tranfparent and bruwn. Potafs, aminonia, magnefia, nitric acid, muriatic acid, vinegar, nitre, fal ammoniac, acetite of lead and white oxide of lead, decompofe it.
4. Soap of fulphuric acid and butter of cocau.-It is of butter hard, and marbled like Venice fosp. Solution in water of cocao, grey, opaque, vifcid; frothes. Solution in alcohol yellow and tranfparent. Potafs, ammonia, nitric, inuriatic, and acetous acids, tartar, fal ammoniac, tartrite of potafs, acetite of lead, and zinc in powder, decompofe it. When diflilled, there came over water, an oil that coagulated, and a few drops of a black oil, which alfo congealed : both were rancid.
5. Soap of fulphuric acid and wax.-It is white, and of war, \({ }^{617}\) becomes very hard. Its folution in water is white, and opaque, ad frothes: Its folution in alcohol is yellow and tranfparent. Potafs, ammonia, nitric and muriatic acids, decompofe it.

\section*{615}
6. Soap of fulphuric acid and fpermaceti.- It is Offermabrown. It diffolves in water: the folution is milky, ceti, vifcid, and frothes on agitation. It diffolves in alcohol; the folution is tranfparent and yellow. It is decompofed by as much alkali as faturates the acid : if more be added, it unites with the oil, and forms a new foap. Lime and magnefia decompofe it. The oil is alfo feparated, and appears in the form of a coagulum on adding to the folution nitric acid, muriatic acid, tartar, nitre, nitrat of foda, common falt, and zinc in powder; but not on adding vinegar, tin, lead.
7. Soap of fulphuric acid and oil of eggs.- Its folution of oil of in water is white, opaque, vifeid; frot lies: that in alco. eggs, hol yellow and tranfparent. Alkalies decompofe it; but if too much be added a new foap is formed. Nitrie and muriatic acids feparate the oil of the confiftence of vax,

Neutral wax, the firl yellow, the laft a deep brown. Nitre, Salts. fal ammoniac, acetite of lead, iron filings, zinc powder, decompofe it ; vinegar, borax, filings of lead do wot.

To unice this acid with the effential nils, three ounces were put into a glafs mortar, and four ounces of the oil were added drop by drop, and care taken to prevent its becoming hot : equal parts of water were then poured on, and the whole heated fowly nearly to the temperature of boiling water : on cooling, the foap united into a brown mafs.
8. Soap of fulphuric acid and turpentine. It is brown, and of the confitence of foft wax. Its folution in wa. ter is grey, opaque, vifcid; frothes: Its folution in alcohol is brown and tranfparent. Alkalies decompofe it : with too much it forms at the boiling heat a new foap.
Nitric and muriatic aeids feparated the oil thickened, as did alfo white oxide of lead, muriat of lead, muriat of foda and iron filings; but acetous acid, boracic acid, tartrite of potafs, and tin filings, produced no fueh effect.
9. Soap of fulphuric acid and amber oil.-Its folution in water and aleohol as in the laft foap. Alkalies, magnefia, and lime, decompofed it. Nitric and muriatie acids feparated the oil of the confiftence of wax. Tartar, fal ammoniac, muriat of antimony, acetite of lead, iron filings, decompofed it ; vinegar, acetite of ammonia, and lead did not.
Mr Achard, to whom we owe thefe foaps *, could not fucceed in his attempts to form foaps with nitric and muriatic acids.

\section*{Chap. II. Of Neutral Salts.}

The word falt has been ufen in chemittry in a very extenfive, and not very definite fenfe. Every hody whieh is Capid, eafily melted, foluble in water, and not combultible, has been called a falt.

Salts were confidered by the older ehemifts as a clafs. of budies intermediate between earths and water. Many difputes arofe about what bodies ought to be eomprehended under this elafs, and what ought to be excluded from it. Acids and alkalies were allowed by all to be falts; hut the diffieulty was to determine coneerning earths and metals. Several of the earths poffefs all the. properties which have been aferibed to falts; and the metals are eapable of entering into combinations which poffifs faline properties. It is needlefs for us to enter. into this difpute at prefent, as we have taken. the liber\(t y\), in imitation of fome of the beft modern chemifts, \(t 0\) expunge the clafs of falts altogether, and to arrange thofe fubordinate claftes, which are ufually referred to it, under diftinet heads.
The word neutral jalt was originally applied exclufively to combinations of acids and alkalies, which were confidered as fubftances poffeffing neither the properties of acids nor alkalies, but properties intermediate between. the two. But the word is now always taken in a more extenfive fenfe, and fignifies all compounds formed by. the combination of acids with alkalies, tarths, or metallic oxides. In thefe compounds, the earth, alkali, or oxide, is denominated the bafe. Each order of falts is
denoninated after the acid which enters into its compo. Sulphats. fition; and every individual falt is diftinguifhed by fubjoining the name of its bafe. Thus all the falts into which fulphuric acid enters are called furphats, and the falt formed by the comhination of fulphuric aeid and putafs is called fulthat of potafs.
It is evident, then, that there mult be as many orders of. neutral falts as there are acids; and as many falts in eachorder as there are alkalies, earths, and metallic oxides, fuppofing every acid capable of combining with every one of thefe fubftances. But befides thefe fimple combinations of one acid and one bafe, there are others more complex, compofed of two acils combined with one bafe, or two bafes combined with one acid, or a neutral falt combined with an acid or a bafe. Thefe combinations have been called triple falts; and they increafe the number of nentral falts very confiderably.
In the following fections we fhall take a thort view of the properties of the principal neutral falts at prefent known; for this wide and important region of chemiltry is itill very far from being completely explored.

\section*{Sect. I. Of Sulphats.}

Sulphuric acid is capable of combining withall the alkalies, with alkaline earths, alumina, jargonia, ard the greater number of the metallic oxides. The principal neutral falts which it forms are as follows :

624
1. Sulphat of potafs. - This falt may be formed by S.lphat cẽ. faturating diluted potafs with fulphurie acid, and then prtaf. tevaporating the folution gently till eryffals are formed. It feems to have been known at a very early period by chemits, and a great variety of names were given to it, according to the manner of forming it, or the faney of the operator. Some of thefe names were, fpecififumz purgans, nitrum fisum, arcanum duplicatuin, panacea holJuttica, fal de duobus, fal polychreft glaferi, \&c.; but it was commonly known by the name of vitriolated iartar till the Freneh chemits called it fulphat of potafs, when they.formed their new nomenelature in 1787 (x):

When the fulution of fulphat of potafs is fufficiently tes propleadiluted, it affords by evaporation hexahedral py ramids, tics. or flort hexangular prifms, terminated by one or more hexangular pyramids. But thefe cryftals vary muci in their figure, according to the care with which they are prepared.

It has a very difagreeable bitter tafte. Its ipecific gravity is \(2,298^{*}\).

It is foluble in the temperature of \(60^{\circ}\) in 16 times* \({ }^{*}\) Drijon. its weight of water; in a boiling heat, it is foluble in 5 times its weight \(\dagger\).
+ Bergmano
According to Bergman, it is compored of 40 parts of acid, 52 parts of alkali, and 8 of water; but according to Kirwan, whofe experiment has been already defcribed, it is compofed of 45 parts of acid and 55 of alkali.

It fuffers no alteration in the air.
When placed upon burning coals, it breaks into pieces with a noife refenhling a number of fmall explofions fueeeeding each other at flort intervals (1), but fuffers no other alteration. In a red heat it inctits.
It has hitherto been applied to little ufe. It is a purgative,.
(\(\kappa\)) Bergman called it alkali vegetabile vilriolatam, and Morveau vitriol of potafs.
(L) This is called decrepitation.
purgative, but its difagreeable tate prevents it from being much employed for that purpose.

It often has an excels of acid, owing, as Mr Bergman and Morveau have very ingenioully explained, to an aftuity which exits between this fall and Sulphuric acid.

It is decompofed by compound affinity by the fol. lowing fats:

It is sometimes luminous in the dark, as Mr Giobert has observed 9 .
2. Sulphat of foda. - This fall was frt difcovered by Glauber a German chemift, and for that reafon was long known by the name of Glauber's fall. He himfelf called it far mirabile. It may be prepared by faturating foda with fulphuric acid, but is more ufually obtained by decompofing common flt in order to procure inuriatic acid.

Its cry fils are transparent, and when formed by low evaporation, are fix-fided prifms terminated by dihedral Summits.

Its tate at frt has forme refemblance to that of com. mon fall, but foo becomes very difagreeably bitter.

It is foluble in 2,67 times its weight of water at the temperature of \(60^{\circ}\), and in 0,8 of boiling water.

It is compofed, according to Bergman, of 27 parts of acid, 15 of alkali, and 58 of water; but, according to the experiments of Kirman, of 22 parts of acid, 17 of alkali, and 61 of water.

When expofed to the air, it lofes great part of its water, and falls into a white powder (s).

When expoled to heat, it frt undergoes the watery fufion (0), then its water is evaporated, it is reduced to a white powder, and at lat in a red heat it melts. Mr Kirman has obServed, that part of the acid, as well as the water, is driven off by the application of a ftrong heat *.
This fall is ufed as a purgative.
It often combines with an excels of acid.
It is decompoled by compound affinity; by the following fubftances:
 by Glauber, and called by him fecret fol ammoniac. It was alfo called vitriolated ammoniac. It may be presared by faturating ammonia with fulphuric acid.

Its cryftals are generally fall fix.fided prifns, whole planes are unequal, terminated by fix-fided pyramids.

It has a tharp bitter taft:
It is foluble in twice its own weight of water at the temperature of \(60^{\circ}\), and in its own weight of boiling water.

According to Mr Kirman, it is composed of 29,7 of alkali, 55,7 of fulphuric acid, and 14,16 of water**. \#rijp

When exposed to the air, it flowly attracts moifture. Transf. ibid.
When heated, it frt decrepitates, then melts, and in clofe veffels Sublimes, but with forme loft of its alkali \(\dagger+\dagger\) Kirman's It has not hitherto been applied to any ufo. Mineral.
It is apt to contain an excels of acid.
It is decompofed by compound affinity by the following fats:
 forms is fo great that they baffle all defcription.

It is foluble in 43,000 times its weight of water at the temperature of the atmofphere \(\|\).
\|Kirwan's
Sulphuric acid diffolves it when concentrated and Min i. boiling, but it is precipitated by the addition of wa. \({ }^{135}\). ter.

When exposed to heat it melts, and, if the heat he very Prong, gradually diffipates.

After being heated red loot, it has the property of 629 being luminous in the dark. This was firit observed fore. in a variety of this fubflance known by the name of Bologna ftone. Lemery informs us, that this property was fort difcovered by an Italian shoemaker named Vincenzo Cafsiarolo. This man found a Bologna ftone at the foot of Mount Paterno, and its brightnefs and gravity made him fuppofe that it contained filer. Having exposed it to the fire, doubtless in order to extract from it the precious metal, he obferved that it was luminous in the dark. Struck with the difcovery, he repeated the experiment, and it conflantly fucceeded with him.

From an experiment of Mr Klaproth, it appears to be compofed of 33 parts of acid and 77 of barytes.

It is decompofed by compound affinity by the fol. lowing fats:
\[
\begin{aligned}
& \text { Nitrat of magnefia, } \\
& \text { Nitrate of fora, } \\
& \text { lime, }
\end{aligned}
\]
-

\section*{5. Sulphat of lime. - This fubftance was well known \(\mathrm{ob}_{3} \mathrm{O}\)}
to the ancients under the name gytfum; but the Sulphat of compofition of gypfum was not known till Margraf lime. and Masquer analyfed it, and proved that it was compoled of fulphuric acid and lime. The artificial com.
(m) Mot of there double decompofitions in this and the following fections are inferted on the authority of Morveau. See his Table of Affinity, page 360 of this article.
(N) This is called eflorefcing.
(o) When fubftances melt by means of the water they contain on the application of heat, they are fard to undergo the watery fufion.

Sulphat:. pound formed liy the union of thefe two bodies was for \(\underbrace{\text { merly called folenite. }}\)

It is found cryftallized in various forms, fometimes tranfparent and fornetimes opaque; and when pure it is of a white colour.

It has a llightly naufeous tafe, fearcely perceptible except by drinking a glafs of water impregnated with *Macguer. it *.

It is foluble in ;00 parts of water at the temperature \(0.60^{\circ}\), but much more foluble in builing water.

It is compofed, according to Bergman, of \(4^{6}\) parts of acid, 32 of earth, and 22 of water: according to the latc experiments of Mr Kirwan, when fo far dried as fill to retain its glaffy appearance, it contains 48 of acid, 34 of earth, and 18 of water; which differs very little from the determination of Bergman.

It is not affected by expofure to the air.
It is foluble in fulphuric acid.
When expofed to heat, it undergoes a kind of watery fufion, but afterwards it cannot be melted by the ftrongeft heat. In a clay crucible indeed it fufes at \(130^{\circ}\) Wedgewood, owing evidently to the prefence of the clay.

When heated red hot and cooled, it is called plafier of Paris; a fubftance fo ufeful for cafting moulds, \&c. on account of its property of becoming folid almolt im. mediately when reduced into a pafte with water.
By compound affinity it is decompofed by the fullowing fubitances:
Acetite of barytes, \(\left.\begin{array}{l}\text { Carbonat of potafs, } \\ \text { potafs, } \\ \text { Carbonat of barytes, }\end{array} \quad \begin{array}{l}\text { magnefia? }\end{array}\right]=-\) aluinina \(\dagger\).
+ Berrsman. \(63^{2}\) Sulpriat of Itrontices.
6. Sulphat of flrontites. This falt, firt formed by Dr Hope, is a white powder deftitute of talte. It is fuluble in \(3^{8} 40\) parts of boiling water. Sulphuric acid diffolves it readily when affited by heat, but it is preci\(\ddagger\) Dr Hope, pitated by the addition of water to the fulution \(\ddagger\).
7. Sulphat of magnefia. This falt was firft obferved
iv. 10. 633
ulphat n magncfia.保 but Dr Black was the firf who accurately afcertained its compofition. It has been called Epfora fall, fal ca. tharticus amarus, and Seydler falt.

It cryttallizes in quadrangular prifms, whofe plains are equal, furmounted by quadrangular pyramids.

It has an exceffively bitter tafte.
At the temperature of \(60^{\circ}\) it is foluble in its own weight of water, and in \(\frac{3}{4}\) ths of its weight of boiling water. The volume of water is increafed th by add§ Bergman, ing the falt \(\$\).

It is infoluble in alcohol.
It is compofed, according to Bergman, of 19 parts of earth, 33 of acid, and 48 of water; according to Mr Kirwan, of 17 parts of earth, 29,46 of acid, and 53,54 of water.
When expofed to the air it efflorefces, and is reduced to powder.
When expofed to heat it undergoes the watery fufion, and by increafing the temperature its water is evaSuppl. Voz. I. Part.II.
porated, but it cannot be decompofed by means of \(\underbrace{\text { Sulithats. }}\) heat.

It is fonetimes employed as a cathartic, but its chicf ufe is to furnifh magnefia by its decompolition.

It is decompofed by compound affinity by the following falts.
_ foda (P\(),\)
Actite of barytes,
Act

Acctite of lime, Carbonat of barytes,
_—— potafs,
* Bergmaq.

634
8. Sulphat of ammonia and magnefia. This triple Sulphat of falt was difcovered by Mr Fourcroy. Into the folution ammonia of 100 parts of fulphat of magnefia in 500 parts of wa. and mag. ter, 12 parts of anmonia being poured, a very fmall quantity of magnefia was precipitated, and a confiderable quantity more on the addition of another dofe of ammonia; but farther additions had no effect. From the magnefia precipitated, it appeared that \(3^{8}\) parts of the fulphat had been decompoled. There remained, therefore, 62 parts in folution, mixed with a large quantity of ammonia. By evaporation, 92 parts of a white tranfparent rhomboidal falt were obtained, evidently compofed of fulphuric acid, ammonia, and magnelia, in the propurtions that would have formed 62 parts of fulphat of magnefia and 30 of fulphat of ammonia, and probably confifing of a combination of thefe two fulphats \(\dagger\).
9. Sulphat of alumina. This falt may be formed be C/im, iv. diffolving alumina in fulphuric acid. It has an aftrin. \({ }^{211}{ }_{625}\) gent tafte, is very foluble in water, and crythalizes in sulphat of thin plates which have very little confiftence \(\ddagger\). Little alumina. attention has hitherto been paid to this falt, which was \(\ddagger\) Vauquclin, never properly diftinguifhed from alum till two memoirs, Annde one by Vauquelin and another by Chaptai, on the na 2 - binn. xxii. ture of alum, made their appearance in the 22 d volume \(\mathbf{~ c h m o t a l}\) of the Annales de Climie. This falt generally contains ibid. 294. an excefs of acid, and is not neutralized without confiderable difficulty \(\$\).
10. Sulphat of alumina and potafs, or alum. The \({ }^{277}{ }_{63} 6\) oruxtrpotx of the Greeks, and the alumen of the Romans, Alum, was a native fubftance, which appears to have been nearly related to green vitriol or fulplat of iron; and which confequently was very different from what we at prefent denominate alum. From the refearches of Profeffor Beckmann, it appears that we owe the difcovery of alum to the Afiatics; but at what period, or by what means, the difcovery was made, is altogether unknown.

It continued to be imported from the Eaft till the 15 th century, when a number of alum works were eftablifhed in Italy. In the 15 th century it was manufactured in Germany and Spain ; and duringa Queen Elizabeth's reign an alum work was ettablifhad in England by Thomas Chalomer.

The alum of conmerce is ufually obtained from earthe containing fulphur and clay, or fulphuric acid and clay.

The compofition of alum has been but lately under- Its compo.
Z z
ftood fition,
sulphats. ftood with accuracy. Ii has been long known, indeed, that one of its ingredients is fulphuric acid \((R)\); and the experiments of Geoflroy, Hellot, Pot, Margraf, and Macquer, proved inconteftibly that alumina is anwther insoredient. But fulphuric acid and alumina are incupable of forming alum: Minufacturers knew, that tla addition of a quantity of potafs, or of ammonia, or of iome fubltance containing thefe alkalies, is almoft always neceffary; and it was proved, that in every cafe in which fuch additions are unneceflary, the earth from which the alum is obtained contained already a quantity of potals. Various conjectures were made about the part which potafs acts in this cafe; but Chaptal and Vauquelin appear to have been the firtt chemifts that afeertained, by decilive experiments, that alum was a triple falt, compofed of fulphat of alumina and of pot-
638 And pro- Alum erytallizes in large octahedrons, compofed of jerties. two tetrabedral pyranids, applied to each other at their bafes.

It has a fweetifh and aftringent tafte, and always red* Veumand dens the tincture of turnfole.
. Venmann It is foluble at the temperature of \(60^{\circ}\), in from \(10^{}\) + Kirzuar to \(15 \dagger\) times its own weight of water, according to its and Cbaptal. purity; pure alum being molt infoluble. Seventy-five \(\ddagger\) Bergman. parts of hoiling-water diflolve 100 of alum \(\ddagger\).

A hundred parts of alum contain, according to Kir§Kirruan's wan, 17,62 parts of acid, 18 of earth (and alkali), and Min. ii. 14. \(6+38\) of water \(\oint\).

When expofed to the air it efforefces lightly.
When expofed to a gentle heat it undergoes the watery fufion. A ftrong heat caufes it to fwell and foam, and to lofe about 44 per cent. of its weight, confifting \|I Ib:d. chiefly of water of eryftallization\|. What remains is called calcined or burnt alum, and is fometimes ufed as a corrofive.

Alum is of great importance as a mordant in dyeing, and is ufed alfo in feveral other arts.

By compound affinity it is decompofed by the following falts.
\begin{tabular}{|c|c|}
\hline Nitrat of foda,
lime,
anmmonia,
Muriat of bagnetides,
\(=\) potafs,
\(=\) foda,
\(=\) ammonia,
Acetite of bagnytes, & \begin{tabular}{l}
Acetite of potafs, \\
- foda, \\
- - lime, \\
- ammonia, \\
- magnefia, \\
Carbonat of barytes, \\
- putafs, \\
-_ - foda, \\
-- lime, \\
———— magnonia,
\end{tabular} \\
\hline
\end{tabular}
".39 3 .
melted together in an iron ladle, and the mixture dried Sulphate. till it becomes blackith and ceafes to fwell; if it be then pounded fmall, put into a glafs phial, and placed in a fand-bath till a blue flame iffues from the mouth of the phial, and after burning for a minute or two be allowed to cool (t), a fubftance is obtained known by the name of Homberg's pyropborus, which has the property of catching fire whenever it is expofed to the open air, efpectally if the air be moift.

This fubftance was accidentally difcovered by Homberg about the beginning of the 18 th century, while he was engaged in his experiments on the human faces. He had ditilled a mixture of human fæces and alum till he could obtain nothing more from it by means of heat ; and four or five days after, while he was taking the refiduam out of the retort, he was furprifed to fee it take fire fpontaneoully. Soon after Lemery the Younger difcovered that loney, fugar, flour, or almoft any animal or vegetable matter, could be fuhfituted for human fæces; and afterwards Mr Lcjoy de Suvigny thewed that feveral other falts containing fulphuric acid might be fubitituted for alum * . Scheele proved, that * See Muso alum deprived of potafs was incapable of forming py-quer's Dia. rophorus, and that fulphat of potafs might be fubftituted for alum \(\dagger\). And Mr Prouft has thewn, that a num- + Scbete on ber of neutral falts, compofed of vegetable acids and al- Fire, and on kalies, or earths, when diftilled by a ftrong fire in a re- Pyropborus, tort, left a refiduom which took fire fpontancoufly on expofure to the air.

Thefe facts have thrown a great deal of light on the nature of Homberg's pyrophorus, and enabled us in fome meafure to aceount for its fpontaneous inflamma. tion. It has been afcertained, that part of the fulphuric acid is decompofed during the formation of the pyrophorus, and of courfe a part of the alkaline bafe becomes uncombined with acid, and the carbon, which gives it its black colour, is evidently divided into very minute particles. It has been afcertained, that during the combuftion of the pyrophorus a quantity of oxygen is abforbed, The inflammation feems to be owing to a difpofing affinity. Part of the carbon and of the fulphur attract oxygen from the atmofphere, in order to combine with the potafs, and the caloric difengaged produces a temperature fufficiently high to kindle the reft of the carbon.

Alum is capable of combining with alumina, and of forming what has been called alun faturated with its earth, which is an infoluble, taftelefs, earthy-like fubftance.

It is capable alfo, as Chaptal informs us, of combining with feveral other bafes, and of forming many triple falts, which have never yet been examined with attention \(\ddagger\).
(R) Some chemits have thought proper to call the fulphuric acid, obtained by ditilling alum, fpirit of alum.
(s) This they did in the two menoirs above quoted, and which were firt publifhed in the \(22 d\) volume of the Annales de Cbimis. An account of Vauquelin's memoir has been already given under the article Acum in this Supplement. Chaptal's memoir is no lefs iuterefting. This celebrated chemit appears, from the facts ftated in the 23 d volume of the Annales, p. 222. to have made his difcovery before Vauquelin: who, however, was ignorant of what Chaptal had done, as he informs us in the Ann. de Chin. xxv. 107. that his paper was read to the Inftitute a fortnight before that of Chaptal's came to Paris. He informs us, too, that Defcroifilles had long be. fore made the fame difcovery, and that he had publifhed it in Berthollet's Art de la Teinture.
(T) Care mult be taken not to keep it too long expoled to the heat.

Sulphate. 11. Sulphat of jargonia (u). In order to combine \(\underbrace{}_{640}\) jargonia with acids, thcy flould be pourcd upon it while Su phat of it is yet moitt, after bcing frecipitated from fome of its jargonia. folvents; for after it is dry, acids do not act upon it withont difficulty. By this method fulphat of jargomia is eatily formed. It is white, and without fenfible tafte. Heat expels the acid from it, and the jargonia remains in a ftate of purity. At a liigh temperature charcual converts it into a fulphuret, which is foluble in water, and which, by evaporation, furnifhes cryftals of * Vauguce hydrofulphuret (T) of jargonia *.

Sin, Anus de Klaproth informs us, that with excefs of acid fulClim. xxii. phat of jargonia forms tranfparent ftelliform cry ftals, fo\(\pm 99\).
\(\dagger\) Yourr de
Pby.
dxxvi. luble in water, and baving an aftringent tafte \(\dagger\).
whic. Sulphat of iron. There are two fulphats of iron, Which were firf accurately diftinguifled by Mr Prouft. The one contains the green oxide, the other the red oxide of iron. We fhall, in imitation of Mr Prouft, de-
\({ }^{6} 41\) nominate them from their colours.
Green ful- The green fulphat of iron. - This falt, which is comghatof iron.pofed of fulphuric acid and green oxide of iron, is found native, and was known to the ancients. It is mention\(\ddagger\) Lib. xxxiv.ed by Pliny under the names of mify, fory, calchantum \(\ddagger\). c. 12. It was formerly called green vitriol.

It is generally prepared by expofing native fulphuret of iron, a very abundaut mineral, to air and moifture.

Its cryftals are of a light green colour, and in the form of rhomboidal parallelopipeds.

It has a fharp aftringent taite.
It is foluble in fix times its weight of water at the temperature of \(60^{\circ}\), and in \(\frac{3}{4}\) ths of its weight of boil-

\section*{\{ Bergman. ing water \(\oint\).}

It is infoluble in alcohol.
According to Bergman, it is compofed of 39 parts
of acid, 23 of oxide, and \(3^{8}\) of water; bus according Sulihats. to Mr Kirwan, of 26 parts of acid, 28 (U) of oxide, and 46 of water.

When expofed to the air, it efflorefees ; but if it be moillened, it is gradually converted into red fulphat of iron.

When heated, it furf affumes a yellow colour, lofes its water and its acid; if the heat be increafed, nothing remains but a yellow powder.

The Pruffic alkali precipitates from the folution of this falt a white powder, which gradually becomes blue by attracting oxygen*.

It is ufed in dyeing, and in making ink, \&ec.
It is decompofed by compound affinity by

> Nitrat of filver,

Muriat of foda \(\dagger\).
+ Ballen ard
The red fulphat of iron may be formed by expofing Tiaben, a fulution of green fulphat to the air, or by treating it Ann, de with nitric aciu. It was formerly called mother water of 320 . Chim . vitriol.

Little is known of its properties, except that it is Red fulplat deliquefcent, incryftallizable, and foluble in alcohol. wif iros.

It was firft accurately examined by Mr Proult.
The green fulphat of iron generally contains fume of it, which may be feparated by means of alcohol.

It is alone capable of forming Pruflian blue with the Pruffic acid, and of ftriking a black colour with the gallic acid \(\ddagger\).
We have obferved, that when it is diluted with wa- Prouffs pro ter, and an excefs of fulphuric acid is poured in, it is per, Ni, Nolagain flowly converted into, green fulphat.
13. Sulphat of zinc.-This falt, atcording to the \({ }_{6}{ }^{4} 3\) beft accounts, was difeovered at Rammelfberg in Ger-Suiphat of many, about the middle of the 16 th century. Manyzinc. Z z 2 afcribe
(v) Fargonia, or, as the French chemifts call it, zirconia, has been difcovered in great abundance in France hy Morveau, who found that the hyacinths of Expailly contained more than half their weight of it. From Vauquelin's analyfis they appear to be compofed of
\[
\begin{aligned}
& 32 \text { parts of filica, } \\
& 64 \\
& \begin{array}{l}
\text { jargonia, } \\
\text { oxide of iron. }
\end{array}
\end{aligned}
\]

Jargonia has been examined with great care by thefe two philofophers, the experiments of Klaproth have been confirmed, and feveral new properties of it have been difcovered. Perhaps a more detailed account than we have hitherto given of this new earth may not be unacceptable to our readers.

Jargonia is a white powder, its fpecific gravity is confiderable, it has a feel refembling that of filica, it has no tafte, and is infoluble in water. When feparated from its folutions by pure alkalies, it retains, when expofed to the air to dry, a pretty confiderable quantity of water, which renders it tranfparent, and gives it a refemblance to gum arahic both in its colour and fracture.

When expofed to the heat of the blow-pipe it does not melt ; but Vauquelin melted it by expofing it furrounded with charcoal in a porcelain crucible to an intenfe heat for an hour and a half. Its fpecific gravity was then 4,35 , its colour was grey, and its hardnefs fuch that it was capable of fcratching glafs. It melts with borax, and forms a tranfpareut and colourlefs glafs; but phofphat of foda and the fixed alkalies do not attack it.

It is infoluble in the fixed alkalies, has very little affinity for carbonic acid, and is precipitated from its folutions together with iron by the Pruffic alkali.

Its affinities, as far as they have been afcertained by Vauquelin, are as follows:
Vugetable acids, order unknown,
Sulphuric acid,
Muriatic,
Nitric.
See upon this fubject the Memoirs of Morveau and Vanquelin, Aun. de Chim. xxi, 72. and xxii. 179.
(r) Thefe curious falts form the fubject of the next chapter.
(u) Perhaps the quantity of oxide is fomewhat over-rated here; for before it was examined by Mr Kirwan, it had affumed a red colour : it mult therefore have been converted into the brown or red nxide by atrasting on:gen from the atmofphere.
afcribe the invention to Julius Duke of Brunfwick. Henkel and Neumann were the firt chemits who proved that it contained zinc ; and Brandt firft afcer-
* Beck.
mann's Hift
of Invenzions, art. Zinc. tained its compofition completely *. It is generally formed for commercial purpofes from fulphuret of zinc or blende, as it is called. This falt is called alfo whbite vitriol.
It is of a white colour, and its cryitals are rhomboidal prifms, terminated by quadrangular pyramids : there is generally" a flight defect in two of the oppofite angles of the prifm, which produces a quadrangular fec-
\(\dagger\) Bergman, tion \(\dagger\). Its fpecific gravity is 2,000 .
ii. 327. It has a fharp flyptic tafte.

It is foluble in 2,28 parts of water at the temperature of \(60^{\circ}\); but in a much fmaller quantity of boiling water \(\ddagger\).

It is compofed, according to Bergman, of 40 (\(v\)) parts of acid, 20 of oxide, and 40 of water: Kirwan fuppofes that it is compofed of 12 parts of acid, 26,4 of zinc, 20 of oxide, \(4 \mathrm{I}, 6\) of water (w).

According to Bergman, this falt is not altered in the air; others affirm that it eflorefces. This, no doubt, depends upon the place where it is kept.
\({ }_{\text {Sulphat of }}^{6+4}\)
maniganefe.
Heat decompofes this falt.
I4. Sulphat of manganefe.-This falt was firf obtained by Scheele (\(x\)): It is compofed of fulphuric acid and white oxide of manganefe.

Its crytals are oblique parallelopipeds; they are of
§ Scbeele,
\(\| I d\).
645
Sulphat of
nickel.

I Bergman,
ii. 26 §.

646
Sulphat of
cobalt.
\({ }^{647}\)
Sulphat of
lead.
* Monnet.

648
Sulphat of
copper. a white colour, and very bitter \(\$\).

Thefe cryftals are decompofed by a ftrong red heat, and the fulphuric is converted into fulphurous acid by the oxide attracting its oxygen, and being changed into black oxide I|.
15. Sulphat of nickel. - This falt, which is compofed of fulphuric acid and oxide of nickel, was firlt defcribed by Bergman. Its cryftals are in the form of decahedrons, compofed of two quadrangular truncated pyramids; they are of a green colour 9 .
16. Sulphat of cobalt.-This falt was firft mentioned by Mr Brandt. Its cryitals are of a reddifh colour ; but if any nickel be prefent, they are green.
\({ }^{17}\). Sulphat of lead.-This falt has been long known: it is compofed of fulphuric acid and white oxide of lead. The cryftals are white, fmall, and moft commonly needlefhaped: according to Sage, they are tetrahedral prifns.

It is foluhe in 18 parts of water,
Heat decompofes it.-It is very cauftic.
18. Sulphat of tin.-Nothing is known concerning this falt, except that it cryftallizes in fine needles interlaced with one another*.
19. Sulphat of copper.--This falt appears to have been known to the ancients. It is generally obtained by evaporating thofe waters which maturally contain it. It is called wifo blue vitriol.

Its crytals are of a deep blue colour; they are in the form of oblong thomboids. Its fpecific gravity is 2,230.

It has a very Arong ftyptic tafte; and indeed is employed as a cauftic.
It is foluble in four parts of water at the tempera-
f \(60^{\circ}\), but in a much fmaller quantity of boiling sifi. water *.
It is compofed, according to Bergman, of 46 parts * Bergman, of acid, 26 of oxide of copper, and 28 of water. Kir.
wan fuppofes it to contain 27,68 of acid, 35 of oxide, and 37,32 of water \(\dagger\).
When expofed to the air, it efflorefces, and is cover. 23.
ed with a yellowifh grey powder.
It requires a very frong heat to decompofe it.
It has the property of communicating a green colour to flame.

It is ufed in the preparation of feveral paints, and for a variety of other purpofes.

It is decompofed by compound affinity by acetite of lead.
20. Sulphat of bifmuth.- Little is known of this Sulphat or falt, except that it is with difficulty cryftallized, and is birmuth, very deliquefcent.
2 I. Sulphat of antimony.-This falt does not cry -Antimony, ftallize. It is eafily decompofed by heat.
22. Sulphat of arfenic.- This falt is fcarcely known. Arfenic, It does not appear to be crytallizable. It is decompofed by water.

652 23. White fulphat of mercury. - This falt may be whate fule formed by boiling together two parts of mercury and phat of three of concentrated fulphuric acid, and ftopping the mercury. procefs whenever the mercury is converted into a white
mafs. This mafs, in order to remove the excefs of acid, is to be wafhed repeatedly with fmall portions of water, till it ceafes to redden turnfole. The fulphat of mercury, thus obtained, is very white. Its cryftals ane either fmall plates or prifms. Its tafte is not very cauftic. It is foluble in 500 parts of water at the temperature of \(55^{\circ}\), and in 287 parts of boiling water. It is compofed of 83 parts of white oxide of mercury, 12 of fulphuric acid, and 5 of water \(\ddagger\). It is not altered \(\ddagger\) Fourcreg; by expofure to the air. Heat decompofes it.

This fulphat is capable of combining with a new portion of acid: It was in that flate before it was wafh. \({ }^{2}\) ed with water. This falt, which may be called acidulous white fulphat of mercury, has a very cauftic tafte, and is corrofive. It reddens vegetable blues. It is foluble in 157 parts of water at the temperature of \(55^{\circ}\), and in 33 parts of boiling water \(\delta\).
24. Yellow fulphat of mercury.-This falt may be ibid. obtained by continuing to buil the preceding mixture of 653 mercury and fulphuricacid till the mercury affumes a yel- Yellow fullow colour. It appears to be compofed of yellow oxide phat of low colour. It appears to be componed of yellow oxide mercury.
of mercury and a fmall portion of fulphuric acid. It is foluble in 2000 parts of water ai the temperature of \(55^{\circ}\), and in 600 parts of boiling water. The folution is colourlefs. It was formerly called turbith mineral \|. \|Fourcroys, 25. Sulphat of armonia and mercury.- This triple ibid. falt may be formed by pouring ammonia into a folution \(65_{4}\) of fulphat of mercury. If only a fmall quantity of am- Sulphat of monia be ufed, a copious blackifh precipitate takes and merplace, part of which is converted into running mercury cury.
by expofure to light; and confequently is black oxide of mercury ; the remaining part is the triple falt. If a large quantity of ammonia be ufed, only the black oxide

Sulphats. is precipitated; for the triple falt is rendered much \(\underbrace{\text { more foluble by an excefs of ammonia. As this excefs }}\) evaporates, the falt cryftallizes. The crytals are polygons, very briliant and hard. It has a fharp, auttere, metallic tafte. It has no peculiar odour. It is fearcely foluble, except with excefs of ammonia. It is compofed, according to Fourcroy's anaiyfis, of 18 parts of fulphuric acid, 33 of ammonia, and 39 of oxide of mercury. Heat decompofes it. The products obtained hy diftilling it are, a little ammonia, azotic gas, a little pure mercury, iome filphite of ammonia; and there reFourroy, mains yellow fuiphat of inercury *.
33. Sulphat of cellurium. - When one part of tellurium is mixed cold in a well-ttopped veffel with a hundred parts of concentrated fulphuric acid, the latter gradually affumes a beautiful crimfon red colour : when a-fmall quantity of water is added, drop by drop, the colour difappears, and the metal is precipitated in the form of black flakes. The folution is deftroyed by heat, the colour difappears, and the metal feparates in the ftate of a white oxide. When fulphuric acid is diluted with two or three parts of water, and a fmall quantity of nitric acid is added, it diffulves a confiderable quantity of tellurium. The folution is tranfparent and colourlefs, and is not decompofed by the addition \$ Xlaprotb, of a larger quantity of water \(\$\).

\section*{Sect. II. Of Sulphites.}

Salts compofed of fulphurous acid united refpectively with alkalies, earths, or oxides, are called fulphites. Thofe hitherto examined are the following:
7. Sulphite of potals. - This falt was firlt formed by Stahl; but was firft accurately defcribed by Berthollet, Fourcroy, and Vauquelin.

It may be formed by paffing iulphurons acill into a faturated folution of carbonat of potafs till all effervef. cence ceafes. The folution becomes hot, and cryttalFourcroy, lizes by cooling \|.
ind Vouque- Its cryftals are white and tranfparent; their figure in, Nicbor-
- 317.
| Ibid. that of rhomboidal plates. Its cryftallization often prefents fmall needles diverging from a common centre \(I\).

Its tafte is penetrating and fulphurous. At the common temperature of the atmofphere, it is foluble in its own weight of water, but much more foluble in boiling water.

When expofed to the air, it efflorefees, tecomes sulphices opaque and hard, and is gradually converted into fulphat \(\underbrace{-}\) of potafs by abforbing oxygen.

When expofed to a fudden heat, it decrepitates, lufes its water: at a red heat fome fulphurous vapours are emitted; at lalt a portion of fulphur feparates, and the reflumu is fulphat of potafs, with a flight excefs of alkali.

Nitric and oxy-muridtic acids convert it into fulphat of potafs by imparting oxygen.

It decompofes the oxides of gold, filver, mercury, the red oxide of lead, the black oxide of manganefe, and the brown oxide of iron. When the green oxide of iron and the white oxide of iron are boiled with it in water, and an acid added, a precipitate takes place of thefe borlies united to fome fulphur, and the filt is converted into a fulphat: at the fame time fulphursted hydrogen gas is emitted.

By compound aflinity it is decompofed by
All falts with bafe of foda, except the borat and carbonat;

All metallic falts except carbonats ;
All neutral falts whofe acid has a ftronger affinity for potafs than inlphurous acid has *.
2. Sulphite of foda. - This falt was firft accurately 660 defcribed by Fourcroy and Vauquelin. Sulphice of

It is white and perfectly tranfparent. Its cryftals foda. are four-fided prifms, with two very broad fides and two very narro:s ones, terminated by dehechal pyramids.

Its tafte is cool and fulphurous.
It is foluble in four times its weight of cold water, but it is more foluble in hot water.

It is compofed of 18,3 parts of foda, 31,2 of acid, and 50 of water.

By expofure to air, it efflorefces, and is flowly con. verted into a fulphat.

When expofed to heat, it undergoes the watery fufion, and afterwards exhibits precifely the fame phenomena as the fulphite of potafs.

Metallic oxides and falts affect it precifely as they do fulphite of potafs.

It is decompofed by compound affinity by carbonat of potafs, and the other falts which decompofe fulphite of potafs \(\dagger\).
3. Sulphite of ammonia. - This falt was firft defcri- 176. bed by Fourcroy and Vauquelin \(\ddagger\).
oulphite of
It cryftallizes in fix-fides prifms terminated by fix- ammonia. Gded pyramids.

Its tafte is cool and penetrating like that of the and Vouques Nicbolother ammoniacal falts, but it leaves a fulphurous im-fon's Yourn. prefion in the mouth.
i. 317.

It is foluble in its own weight of cold water. Its folubility is increafed by heat.

It is compofed of 29,07 parts of ammonia, 60,06 of acid, and 10,87 of water.

When expofed to the air, it attracts moilture, and is foon converted into a fulphat.

Heat volatilizes it without decompofition.
Its habitudes with metallic oxides and falts are nearly the fame with thofe of the above defcribed fulphites, 662 only it is capable of forming with feveral of them triple barytes of falts \(\delta\).
4. Sulphite of bary
by Berthollet II barytes.- This falt was firt defcribed vimn.ii. \(5 \%\),
It is incrydtallizable ; it has no perceptible aft Fourcroy and is perfectly infoluble in water f .

It is compofed of 59 parts of barytes, 39 parts of acici, and 2 of water.

It dues nut eafily change into a fulphat by expofure * Hide to air: but heat produces this cffect *.

Sulphite of 5 . Sulphite of lime. - This falt was firt deferibed by Sulphite of linae. 13ertholle't \(\dagger\).
\(t\) sinn de
thime thed.
\(\ddagger\) Hisuctroy a. 1 Vaugue liv.

5 Thid.
Sulphite of
magnefia.
Its cryltals are fix-fided peifms, terminated each by a very long pyranid \(\ddagger\).
It has fearcely any tafte; however, when kept long in the mouth, it communicates to the tongue a tafte which is manifetly fulphurous.

It is very fparingly foluble in water, except with excufs of acid.
It is compofed of 47 parts of lime, 48 of fulphurous acid, and 5 of water.

By contact of air it is converted into a fulphat, but verv flowly.
Heat converts it into a fulphat by depriving it of a portion of fulphur.
It is decompofed by compound affinity by
Carbonates of alkalies, Fluats of alkalies, \(\begin{array}{ll}\text { Cirbonates of alkalies, } & \text { Fluats of alkalies, } \\ \text { Phoofphats of alkalies, } & \text { Moft metallic falts } \oint .\end{array}\)
6. Sulphite of magnefia.-This falt was firf deferibed by Fourcroy and Vauquelin.

Its crytals are white and tranfparent, and in the forin of depreffed tetrahedrons.

Its tatle is mild and earthy at firft, and afterwards fulphurous.

It is fparingly foluble in water, except when there is an excefs of acid.

It is compofed of 16 parts of magnefia, 39 of acid, and 45 of water.

It becomes opaque when expofed to the air; is very flowly converted into a fulphat.
By expofure to heat, it foftens, fwells up, and be. comes ductile like gum; a Arong heat decompofes it altogether.

It is decompofed by

\section*{Alkaline falts,}
\(\|\) Fourcroy Earchy falts, except thofe of alumina II.

Sulphite of ductile mafs. It is not. foluble in water, but becomes alumina. abundantly fo when there is an excefs of acid.

It is compofed of 44 parts of alumina, 32 of acid, and 24 of water.

\section*{T Fourray Heat decompofes it 9 .}
and \(V\) auguc- 8. Sulphite of iron. - It was firlt formed by Berthol\({ }^{\text {lin. }} 666\) let.
Sull hire of Its cryftals are white, and have but very little of the iron Atyptic tafte of iron falts *.
* Ann. de Berthollet alfo formed the fulphites of zinc and tin, Cbim, ii. 5 . but he has not defcribed them.

\section*{Sect. III. Of Nitrats.}

Those falts, in the compofition of which the nitric acid forms one ingredient, are called nitrats.
1. Nitrat of potafs, nitre, or faltpetre-As this falt is produced naturally in confiderable quantities, particularly in Egypt, it is highly probable that the ancients were acquainted with it; but fcarcely any thing certain can be collected from their writings. If Pliny mentions it at all, he confounds it with foda, which was known by the names of nitron and nitrum. It is certain, however, that it has been known in the eaft from
time immemorial. Roger Bacon mentions this falt in Nitrat: the 1 gith century under the name of nitre.

It-cry ilallizes in flemder oblong hexagonal prifms, often friated, terminated by hexagonal pyramids obliquely truncated. Its fpecilic gravity is 1,920 .

Its tafte is harip, bitterifh, and cooling.
It is foluble in feven times its weight of water at the temperature of \(60^{\circ}\), and in nearly its own weight of boiling water*.

According to Bergman, it is compored of 3 T parts of acid, 61 of potafs, and 8 of water; but this proportion of acid is undoubtedly too fmall. According to Mr hirwan, it is compofed of 41,2 of acid, 46,15 of alkali, and \(12,6 j\) of water \(\dagger\).

It is not altered by expofire to the air.
When expofed to a ftrong heat, it melts; and congeals by cooling into an opaque mafs, which has been called mineral cryfal. If the heat be continued, the acid is gradually decompofed and driven off. When the folution of nitre is expofed to a boiling heat, part of the falt is evaporated along with the water, as Wallerius, Kirwan, and Lavoifier, obferved fucceffively. When nitre is expofed to heat along with many combuttible fubitar.ees, its acid is decompofed; the combuttible feizes the oxygen, and at the fame time a lively white flame appears, attended with a decrepitation : this is called the dictonation of nitre.

Nitre mixed with charcoal and fulphur in proper proportions forms gunpoweder.

Nitre is decompofed by compound affinities liy
Acetite of barytes.

No phenomenon has excited the attention of chemi- Reproduc. cal philofophers more than the continual reproduction tinn of niof nitre in certain places after it lad been extracted from \({ }^{\text {t }}\) them. Prodigious quantities of this falt are neceffary for the purpofes of war; and as Nature has not laid up great nagazines of it as the has of fome other falts, this. aunual reproduction is the only fource from which it can be procured. It became, therefore, of the utmolt confequence, if poffible, to difcover the means which Nature employed in forming it, in order to enable us to imitate her proceffes by att, or at lcait to accelerate and facilitate them at pleafure. Numerous attempts accordingly have been made to explain and to imitate thefe proceffes.

Stahl, fetting out on the principle that there is only one acid in nature, fuppofed that nitric acid is merely fulphuric acid combined with phlogifton; and that this combination is produced by putrefaction : he affirmed accordingly, that nitre is compofed by uniting together potafs, fulphuric acid, and phlogiton. But this opinion, which was merely fupported by very farfetched analogies, could not fland the teft of a rigorous examination.

Lemery the Younger accordingly advanced another ; affirming, that all the nitre obtained exifts previouny in animals and vegetables, and that it is formed in thefe fubflances by the proceffes of vegetation and animalization. But it was foon difcovered that nitre exilts, and is actually formed, in many places where no animal nor vegctable fubftance has been decompofed; and confequently this theory was as untenable as the former. So far indeed is it from being true that nitre is formed alone by thefe procefles, that the quasitity of nitre in plants has been found to depend entirely on the foil in whieh they grow \(\ddagger\).

\section*{Part III.}

CHEMISTRY.

Nitrats.
At lat by the numerous experiments of feveral erench philofophers, particularly by thofe of Thouvenel, it was difcovered that nothing elfe is neceffary for the production of nitre but a bafis of lime, heat, and an open but not too free communication with dry atmofpheric air. When tlefe circumftances combine, the acid is firtt formed, and afterwards the alkali makes its appearance. How the air furnithes materials for this production is calily explained, now that the component parts of the nitric acid are known to be nxygen and azot. But how lime contributes to their union it is not fo eafy to fee. It is a difpofing affinity, which, like molt others referred to that lingular clafs, our prefent knowledge of the nature of affinity does not enable us to explain. The appearance of the potafs is equally extraordinary. If any thing can give countenance to the hypothefis, that potafs is compofed of lime and azot, it is this fingular fact.
2. Nitrat of foda. This falt was called formerly cubic nitre.

It forms rhomboidal cryftals. Its fpecific gravity is 1,870.

It has a cool fharp talte, and is fomewhat more bitter than nitre.

It is foluble in about three parts of water at the temperature of \(60^{\circ}\), and is fearcely more foluble in boiling water.

It is compofed, according to Bergman, of 43 parts of acid, 32 of foda, and 25 of water. From an experiment formerly defcribed, Mr Kirwan concludes, that it contains 57,65 of acid, and 42,35 of alkali; but perhaps the proportion of acid may be fomewhat over-rated, as no direct proof has been brought that the falt con. tains no water.

When expofed to the air it rather attracts moifture.
Its phenomena in the fire are the fame with thofe of nitre, only it does not melt fo ealily.

It is decompofed by compound affinity by the following falts:
\[
\begin{aligned}
& \text { Sulphat of barytes, } \\
& \text { Muriat of barytes, } \\
& \text { alumina, } \\
& \text { potafs, }
\end{aligned}
\]

> Muriat of ammonia, Acetite of barytes, Carbonat of barytes,
3. Nitrat of ammonia. This falt cryftallizes with difficulty into regular needles. It was formerly called nitrum femivolatile, and nitrum flamnans.

It has a fharp, acrid, fomewhat urinous tafte.
It is foluble in about half its weight of boiling wa. ter.

It is compofed of 58 parts of acid, about 26 of al-
* Kirwar. kali, and 16 of water*.

When expofed to the air it deliquefces.
When expofed to heat, it firft undergoes the watery fufion, afterwards detonates, and is completely decompofed. Berthollet has thewn, that this phenomenon is owing to the hydrogen of the alkali entering into combination with the oxygen of the acid, and forming water, while the acid fies off in a gafeous form.

By compound affinity it is clecompofed by the follow. ing fubftances:

Acetite of lime
Muriat of line,

4. Nitrat of barytes. This falt may be formed into Nierat of hexagonal cryftals, but it requires great addrefs to pro-barytes: duce them.

It attracts moifture from the atmofphere.
Heat decompofes it, and leaves pure barytes. The decompofition of this falt by heat is the moft convenient method of procuring pure barytes yet known. It was firt propofed by Mr Vauquelin.

By compound affinity it is decompofed by Alkaline carbonats, Oxalat of ammonia * Bergman,
5. Nitrat of lime. This falt forms by cryftallization Nierat of fix-fided prifms, terminated by dehedral pyrainids, but Nume. more conmonly fmall regular octahedral needles.

It has a tharp bitterifh tafte.
It is foluble in two parts of cold water, and in its own weight of hoiling water.

Boiling alcohol diffolves its own weight of it \(\dagger\). \(\dagger\) Eergmon:
According to Bergman, it is compoled of 43 parts of acid, 32 of lime, and 25 of water. Kirwan has found, that 100 parts of lime require for faturation 180 parts of acid \(\ddagger\).

Nitrat of lime deliquefces when expofed to the air. 20 .
Heat decompofes it like all other nitrats.
By compound affinity it is decompofed by
Snlphat of barytes, Acetite of potafs,

\[
\text { Acetite of barytes, Tungltat of ammontia } f \text {. }
\]
6. Nitrat of iry. This falt, firt formede. Hope, cryflallizes gular in their flape: fonctimes they are hexagonal fiontites. truncated pyramids; fometimes octahedrons, confilting of two four-fided pyramids united at their bafes.

It is foluble in its own weight of water, at the temperature of \(60^{\circ}\), and in little nore than half its weight of boiling water. It has a ttrong pungent tafte.

In a dry air it efllorefces, but in a inoif air it deliquefces.

It deflagrates on hot coals. Subjected to heat in a crucible, it decrepitates gently, and then melts. In a red heat it boils, and the acid is diffipated. If a combuftible fubtance be at this time brought into contact with it, a deflagration with a very vivid red flame is produced \(\|\).
7. Nitrat of magnefia. The compofition of this falt Tranf. Elin was firft afcertained by Dr Black.

Its cryftals are quadrangular prifms. It has a very \({ }^{6744}\) bitter talte. It is very foluble in water. Alcohol dif-maznefia. fulves \(\frac{7}{9}\) th of its own weight of it F . f Engman,

One hundred parts of magnefia require 255 of niticic \({ }^{\mathrm{ii}, 3 \text { S }}\). acid for faturation *.

It deliquefces in the air, according to Bergman; but Dijonval affirms, that he has procured it in cryftals which ratber efflorefce.

It is deconipofed by heat.
By compound affinity it is decompofed hy Sulphat of barytes, Muriat of lime,
potafs,
Muda,
Muriat of barytes,
alumonia,
potafs,

Its folution is exceedingly cauftic. When placed on Nitrats. burning coals it melts and detonates as it dries. It can fcarcely be dried without being in fome meafure decompofed.

It deliquefces in the air *.
* Fourcroy,
13. Nitrat of manganefe. This falt, compofed of 680 oxide of mangancfe and nitric acid, was firf examined Nitrat of by Scheele. Its cryftals are fmall and Ihining, of a manganefe. very bitter tafte, and foluble in water \(\dagger\).
\(\dagger\) Scbecle on
14. Nitrat of cobalt. It is of a pale red colour, and Manganefe. cryftallizes in needles. It deliquefees when expofed to \(\frac{081}{08}\) the air. Heat decompofes it. When nickel is prefent, cobalt, this falt affumes a green colour.
15. Nitrat of nickel. Its cryftals are of a green co- Of nickel, lour, and in the form of rhomboidal cubes. They are deliquelcent, and are gradually decompofed when expofed to the air, the acid leaving them \(\ddagger\).
16. Nitrat of lead. Nitric acid cumbines with the ii. 268 white oxide of lead. The cryftals of this falt are of a 6833 white coluur ; their form an irregular octagon, or ra- Of lead, ther truncated hexahedral pyramid. Wher expofed to heat it decrepitates, and melts with a yellowith flane. By compound affinity it is decompofed by

> Muriat of potafs,
> Cada,
> Cammona, of foda \(\S\).
§ Bergmano
17. Nitrat of tin. Tin is converted into an acid by \(65_{4}\) nitric acid: it is not probable, therefore, that any per- of tin, manent nitrat of tin can be formed. 685
18. Nitrat of copper. This falt appears to have been of copper, firt obtained by Macquer.

Its form, when properly crytallized, is an oblong parallelogram. It is of a fine blue colour. It is exceedingly cautic. It melts at \(77^{\circ} \|\).
|| Sage.
It is deliquefcent in a moif air, hut in a dry place is covered with a green efforefeence. It is very foluble in water. Heat decompofes it. rious forms. Fourcrey obtained it in tlattened rhomboids. It, efflorelees in the air. Water decompofes it. It detonates in the fire.
20. Nitrat of antimony. Little is known concern-of 687 ing this falt, except that it is very deliquefeent, and is ay, decompofed by lieat. nitric acid forms a falt which cryftallizes. It is very deliquefcent. It does not detonate.
22. Nitrat of mercury. This falt may be formed by 689 diffolving mercury in nitric acid. It cryftallizes in the ry, cold in regular flat 14 -fided figures ; but their form differs according to the manner in which the cryftallization has been performed.

It is foluble in water.
This falt is exceedingly cauftic. It detonates on coals. When heated in a crucible it melts, and is decompofed. The oxide attracts oxygen from the acid, which flies off in the form of nitrous gas, and red oxide of mercury remains behind.

It is flowly decompofed alfo in the air. It is decompoled by compound affinity by

Sulphat of copper, and a great many other fulphats,
Phofphat of foda,
Borax. 690
23. Nitrat of ammonia and mercury. This triple of ammo falt may be formed by pouring ammonia into a folution nia and of mercury,

Muriats. of nitrat of mercury, If only enough of ammonia to faturate the acid be ufed, the triple ialt precipitates in the form of a white powder; but with an excefs of ammonia it remains diffulved, and forms by eraporation very bright polyhedral cryitals.

It has a very fharp tafte. It is foluble in 1200 parts of water at the temperature of \(55^{\circ}\). Hot water feparates a little ammonia, which renders it till more infoluble. It turns vegetable blucs green. Muriatic acid diffolves it.

According to Fourcroy's analyfis, it is compofed of 68,20 parts of oxide of mercury, 16 of ammonia, and 15,80 of nitric acid and water.

When diftilled it yields ammonia, azotic gas, oxygen gas, yellow oxide of mercury, and pure mercury *.
24. Nitrat of filver. This falt may be formed by
- Fourcroy

Ann. de Cbim. xiv. 37.

It forms flat tranfparent cryitals compofed of needles. It is exceedingly cantlic. When melted it forms a grey mafs called lapis infernalis, from its great corrolivenefs

It is very foluble in water. It is not altered by ex. pofure to the air. Light decompofes it.

By compound affinity it is decompofed by
The fulphats,
The muriats.
25. Nitrat of uranium. This falt was firt formed by Klaproth. Its cryftals are hexagonal plates of a greenif yellow colour. The largeft were \(\frac{1}{d}\) ths of an inch in length and \(\frac{f}{f}\) th in breadth \(\dagger\).
26. Nitrat of titanium. It is capable of cryftallizing.
27. Nitrat of tellurium. The folution of teliuriam in nitric acid is tranfparent and colourlefs. When concentrated, it produces in time fmall white light cry ftals in the form of needles, which exhibit a dendritic aggrejation \(\ddagger\).

\section*{Sect. IV. Of Nitrites.}

The falts which the nitrous acid forms with alkalies, earths, and metallic oxides, are denominated nitrites. Very few of them have been examined; we thall not therefore attempt a defcription of them.

\section*{Sect. V. Of Muriats.}

Salts into which the muriatic acid enters are called muriats.
1. Muriat of potafs. This falt was formerly called febrifuge or digefive falt of Sylvius, and regeneraled fea falt. Its cry itals are cubes, but rather irregular.
It has a difagrecable bitter tafte. Its fpecific gravi-
§ Kirwar. ty is 1,836 §.
It is foluble in three times its weight of water at the temperature of \(60^{\circ}\), and in double its weight of boiling \| Bergman. water \|.

It is compofed, according to Bergman, of 35 parts of acid, 61 of potafs, and 8 of water. Kirwan has found it to contain 36 of acid, 46 of alkali, and 18 of

When expofed to heat, it firft decrepitates, then melts, and at laft is volatilized, but without decompofition.
The following falts decompofe it by compound affinity:

Sulphat of foda,
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
\(\qquad\) alumina, \\
Nitrat of foda,
\(\qquad\) lime,
\end{tabular} \\
\hline
\end{tabular}
2. Muriat of foda, common or fea falt. This follt Muriars. has been known, and in common ufe, from the earlicft \(\underbrace{8}_{0,6}\) ages. It is fometimes called alfo fal gem.

Its cryftals are cubes, hut they often affume other \(\mathrm{G}, \mathrm{d}\) d.

- Kiruan.

Its tafte is univerfally known, and is what is ftrictly fpeaking denominated falt.

It is culuble in \(2 \frac{1}{4} \frac{7}{7}\) times its weight of water at the temperature of \(60^{\circ}\), and in \(2: 3, \frac{3}{7}\) is weight of boiling water + .

According to Bergman, it is compofed of 52 parts of acid, 42 of alkali, and 6 of water. According to the late experiments of Mr Kirwan, of 40 parts of acid, 35 of alkali, and 25 of water.

It is not affected by expofure to the air. It ought to be obferved, however, that the muriat of foda in common ufe contains, belides other impurities, a quantity of muriat of magnefia, which renders it deliquefceut.

When heated it decrepitates. Heat volatilizes, but does not decompufe it.

The following falts decompofe it by compound affnity :
Sulphat of ammonia,
alunina,
-_ potafs \({ }^{*}\),
Nitrat of ammunia,
-_ magnefia,
alunina,

That the red oxide of lead decompofes this falt is a \(C b \pi, x \times x\). well known fact, and it has been confidered as cuntrary (1) Bergman to the laws of affinity. Mr Haffenfratz endeavourel to (b) Crell, account for it by fuppofing that the oxide is combined Annode with carbonic acid, and that therefore it is a cafe of compound affinity. Mr Curaudau has proved that car- \((c)\) cobecle:
bonic acid, inftead of prumotine, impedes the decombonic acid, inttead of promoting, impedes the decom- \(0 \geqslant 7\) pofition ; aud that, in fact, carbonat of lead is inca- How depable of decompofing muriat of fod?. He concludes, conpy redoxide therefore, that the phenomenon cannot be accounted of read. fur by the commonly received laws of affinity * We * Ann.de cannot, however, think that the phenomenou is fo bim, xiv. unaccountable as Mr Curaudau fuppofes; for muriatic \({ }^{15}\) acid is capable of decompofing the red oxide of lead, of combining with part of its oxygen, and of being converted into oxy-muriatic acid, Now if oxy-muriatic and nitro-muriatic acids be merely the fame fubitance in a different form, as there is the ftrongeft reafon for fuppofing, the white oxide of lead has a ftronger affinity for it than foda has, and ought therefore to decompofe it.
3. Muriat of ammonia, or fal ammoniac. L'his falt Muriat of was known to the ancients, and was called by them falanninonia. anmoniac, hecaufe it was found in great quantities near the temple of Jupiter Ammon in Africa \(\dagger\). \(\quad \begin{gathered}{ }^{v} l i n y, \\ \text {. }\end{gathered}\)

It aflumes the form of plumofe cryitals. The indi- \({ }_{c}^{\text {lib. }}\). xxic vidual cryftals are long hexahedral pyramids. Its \(\mathrm{fpe}-\) Sal Ammoo cific gravity is \(1,420 \ddagger\).

It has an acrid, poignant, urinous tafte.
It diffolves in about three times its weiglt of water at the temperature of \(60^{\circ}\), and in a much fmaller quantity of boiling water.

It is compofed, according to Kirwan, of 35 parts of acid, 30 of alkali, and 45 of water \(\{\).
§ Kirzuan's
In its common form (which is an opaque mafs) it is Mineral. not affected by the air, but its cryftals are liable to de- \({ }^{\text {ii. }} 34\). liquefce.

Heat volatilizes without decompofing it.
The following fal:s decompure it by compound affnity :
\begin{tabular}{|c|c|}
\hline Sulphat of alumina, & Acerite of magnefia, \\
\hline Nitrat of foda, & ——— alumina, \\
\hline Acctite of barvtes, & Carbonat of barytcs, \\
\hline - potafs, & --- potass, \\
\hline & \\
\hline
\end{tabular}

When this falt is fublimed with gold leaf, there is found in the seck of the returt an amethyft coloured matter, bordering on purp le, foluble in water, and forning a purple folution. When filtered there remains behind a purple powder. This falt feems from this to be
- Storr,

Crell's Neru Dif6overies, \&ce. Yalt in y. 4 r.

099
Muriac of
barytes,
\& Dr Pearfor.

700
Muriat of
ammonia
and baryter,
\(\ddagger\) Ann. de
Cbim, iv.
8.
j0I
Miriat of
lusse,

\section*{Part III.}

Muriats. 704 Muriat of ammonia and nug. nefia,
- Ann, de Chir.jv. 222. 705 Muriac of alumina,

706
Muriar of jargonia,

Carbonat of larytes, potafs,
9. Muriat of ammonia and magnefian (y) falt was firft mentioned, we believe, by Bergman. It may be formed by pouring ammonia into a folution of muriat of magnefia. Part of the magnelia is precipitated, but great part of it remains diffolved, ats com. bined with the acid and the anmonia. This triple falt is compofed, according to Fourcroy, of 73 parts of muriat of magnefia and 27 of muriat of ammonia *.
10. Muriat of alumina.-This falt eryfallizes with difficulty. It has an aftringent tafle. Its folution is gelatinous, and cannot be filtrated without much dilution in water. It is deliquefcent. When evaporated to drynefs, it forms a gummy mafs : in a flrong heat it is decompofed.

The following falts decompofe it by compound affinity :
\begin{tabular}{ll}
\begin{tabular}{l}
Nitrat of ammonia, \\
Acetite of barytes,
\end{tabular} & \begin{tabular}{l}
Acetite of magnefia, \\
Carbonat of barytes,
\end{tabular} \\
potafs, & \\
lime, &
\end{tabular}
11. Muriat of jargonia,-This falt is eafily formed by pouring muriatic acid on newly precipitated jargonia. It is colourlefs; its tafte is very aftringent : by evaporation it furnifhes fmall tranfparent cryflals in needles, which lofe their tranfparence in the air. Muriat of jargonia is very foluble in water and in alcohol ; to the flame of which it does not communicate any parcicular colour. Heat decompofes it ; and it is decompofed likewife by the faliva when taken into the mouth.

When muriat of jargonia contains a little filica, it forms culsic cryftals without confitence, and refembling a jelly. Thefe cryftals, when expofed to the air, gradually lofe their tranfparency, and diminifh in volume, and there are formed in the middle of the falt white filky needle-fhaped cryftals.

Muriat of jargonia is decompofed by fulphuric acid; part of the fulphat precipitates, and part remains diffolved in the muriatic acid. When this acid is driven off by heat, the remainder of the fulphat is gradually depofited : if the evaporation be flopped before the mafs be reduced to drynefs, it forms a kind of jelly when cold. It is allo decompofed by the phofphunic, citric, tartarous, oxalic, and faccholactic acids, which form with jargonia infoluble compounds that precipitate in white flakes.

The gallic acid poured into muriat of jargonia produces a white precipitate; but a green, bordering on grey, if the jargonia contain iron; and this laft precipitate becomes, when dry, of a bright black colour, and refembles China ink. The liquid preferves a greenith colour ; new portions of gallic acid produce no farther precipitation; but carbonat of ammonia feparates in great abundance a flaky matter of a purplifh colour, not unlike that of the leys of wine. From thefe experiments it follows, that gallic acid has a greater affinity for jargonia than muriatic acid has; and that the gallats of jargonia and iron are foluble in muriatic acid.

Carbonat of potafs decompofes muriat of jargonia,
and part of the carbonie acil combinea with the enth, and renders it eafily foluble in acids though dried.

Carbonat of ammonia occafions a precipitate, which is moltly diffolved by adding more carbona*.

Pruffitt of mercury produces an abundant precipitate, which is foluble in muriatic acid ; and whiclı confequently is not muriat of inercury.

A plate of ainc, introduced into a folution of muriat of jargonia, occalions a llight effervelicence; the liquos becomes milky, and in a few days becomes a white femitranfparent jelly.

Alumina decompofes muriat of jargonia with the affiftance of a llight heat : the alumia difolves, the liquor becomes milky, and affumes the form of a jelly. When the muriat contains iron, it remains in the folution, and the precipitated jargonia is quite pure. Here, then, is a method of frecing jargonia from iron *. *Iauguelins
12. Muriat of iron. - Muriatic acid forms with the Anmode green oxide of iron a falt which cryftallizes in flat Chim. xaii. needles, When expofed to the air, they deliquefce, \({ }^{201}\). and the green oxide attractz oxygen, and is gradually muiat of converted into a brown oxide. Heat decompores thisiron, falt.
13. Muriat of zinc. - This falt, procured by difil. Muriat of ving zinc or its oxide in muriatic acid, does not cryftal. zus,
lize. Its folution is colourlefs. When heated, it becomes of a blackiflı brown. By diftillation, a part of the acid is feparated, and muriat of zinc remains behind of a milk-white colour, folid, and formed of fmall radiated needles. It attracts moifture in the air.
14. Muriat of manganefe.-Muriatic acid diffolves Muriat of the white oxide of manganefe. Its folution afords by nangunefe, evaporation angular thining crytals \(\dagger\) : They are deli. Mibecte on quefcent and foluble in alcohol \(\ddagger\).
14. Muriat of cobalt.- The folution of oxide of co-Mineral. is. balt in muriatic acid is of a pale red, except it be con- 37. taminated with nickel or iron, when it is greenin. It 710 cryftailizes in fmall ueedles, which are very deliquefcent. Heat decompofes it.
16. Muriat of nickel.-This fal is deliquefcent, and
lofes its acid when expofed to the air \(\oint\).
17. Muriat of lead. Muriatic acid combines with oxide of lead eafily enough : but this falt is more readi. ly procured by pouring muriatic acid into a folution of nitrat of lead; the muriat immediately precipitaies in the form of a white powder. It is foluble in 30 times its weight of boiling water; and the folution yields by evaporation fmall, flender, brilliant needles in hundles.

It is fomewhat deliquefcent. When expofed to heat, it melts into a brown mafs, formerly called corneous lead.

It is decompofed by compound affinity by
\[
\begin{aligned}
& \text { Sulphat of filver \|, } \\
& \text { Carbonat of foda. } \\
& \text { 18. Murgmat of tin. This falt may be formed by dif } \quad \mathrm{Tin}_{3}
\end{aligned}
\]

711
Nickel,
§ Bergmun,
ii. 26.
\({ }^{712}\)
Lead,
\[
\begin{aligned}
& \text { Sulphat of filver } \| \text {, } \\
& \text { Carbonat of foda. }
\end{aligned}
\] folving tin in hot muriatic acid. By evaporation it aftords needle-fhaped eryluls, which are deliquefcent.

This falt has a flrong affinity for oxygen. It decompofes oxy-muriatic, nitric, fulphurous, arfenic, molybdic, and tungitic acids, the red oxide of mercury, black oxide of manganefe, oxide of antimony, zinc, lil3 A 2
1. Oxy-muriat of potafs. - This fingular falt was dif. Oxy-mus covered by Mr Berthollet in 1786. It may be formed by faturating a folution of potafs with oxy-muriatic \(\underbrace{}_{722}\) acid gas. By cvaporating this folution in the dark, ory-mucommon muriat of potafs is firt obtained: When it is riat of potfeparated, and the liquor allowed to cool, oxy-muriat af, of potals cry tallizes.

Its cry ftals are rhomboids, of a filvery brilliancy.
It has an infipid cooling tafte, refembling that of nitre. It is foluble in 17 parts of water at the temperature of 60 , and in \(2 \frac{1}{2}\) parts of boiling water *. It does not * Hoyle, deliquefee in the air; but light converts it into com- Nitholfon's, mon muriat by feparating oxygen. When heated, it Fourncl, ii melts, and gives out oxygen gas; and this is the beft \({ }^{292 .}\) method hitherto difcovered of obtaining that gas in a Rate of purity. According to Mr Hoylc, it contains about lialf its weight of concrete oxygen \(\dagger\).

When mixed with charcoal, iron, and many other combuftibles, and heated, it detouates with aftunifhing violence. This property induced the French chemifts to propofe it as a fubftitute for nitre in the preparation of gunpowder. The attempt was made at Effons in 1788; but no fooner had the workmen begun to triturate the mixture of charcoal, fulphur, and oxy-muriat, than it exploded with violence, and proved fatal to Mr Letors and Mademoifelle Chevraud. The force of this gunpowder when it is prepared is much greater than that of the common fort of powder ; but the danger of preparing it, and even of ufing it after it is prepared, is fo great, that it can hardly ever be fubftituted with advan. tage for common gunpowder.

Fourcroy and Vauquelin afcertained by experiment, that this falt exploded when triturated with fulphur, charcoal, antimony, arfenic, cinnabar, fugar, gums, oils, alcohol, ether, and fulphuret of iron. When thefe fubflances were mixed, and ftruck with a hammer, the explofion took place. The theory of thefe explufions was firft pointed out by Mr Berthollet. The oxygen of the oxy-muriatic acid combines with the combuftible, and at the fame time lets go a quantity of caloric; and trituration or percuffion acts merely by bringing the particles which combine within the fphere of each others attraction.
2. Oxy-muriat of foda. This falt was difcovered at \(\mathrm{Oxy}^{2 / 23}\) the fame time by Mr Berthollet. Its properties are riat of foda, the fame with the laft, except that it is too deliquefcent to be ufed.
3. Oxy-muriat of ammonia. - This combination is inpoffible. The oxy-muriatic acid and ammonia decom-

(z) We have been informed, that this falt had been ufed by bleachers in Scotland fome years before Mr Ten. s.ant propofed it.

Oxy-mu- of mercury. Berthollet firf pointed out the nature of riat. its compofition.
\(\xrightarrow{-}\)
This falt was mentioned by Rhafes in the roth century ; and it feems to have been known in the eaft at a much earlier period (A). The methods of preparing it ufed by the older chemilts were numerous, complicated, and generally concealed as fecrets. We fhall not attempt, therefore, to give any account of them; and the methods ufed by later chemifts have been deferibed at confiderable length in the article Chemistry (Encycl. \(n^{\circ} 815\).)

It may the prepared by diffolving mercury in a fuffi. cient quantity of oxy-muriatic acid, or by diffolving red oxide of mercury in common nuriatic acid.

When carefully cryftallized, this falt aftumes the form of cubes or oblique parallelopipeds, or sather quadrangular prifms, with fides alternately narrower, and terminated by two inclined planes meeting together.

It has an exceedingly difagrecable metallic tafte.
It is foluble in 19 times its weight of water at the * Spidman. temperature of \(50^{\circ *}\) : Boiling water, according to Macquer, diffolves half its weight of it. Alcohol, at the temperature of \(70^{\circ}\), diffolves \(\frac{1}{8}\) ths of its weight of this \(\uparrow\) Macguer. falt \(\dagger\).

It does not attract moifture from the air.
It is foluble in fulphuric, nitric, and muriatic acids.
When triturated with \(\frac{3}{4}\) ths of its weight of mercury and a little water, and then fublimed, it forms a white infipid falt, called formerly calomel or fowee mercury: This, as Scheele has proved, is precifely the fame with common muriat of mercury.

The theory of thefe two preparations is now pretty obvious. The experiments of Adet and Pelletier have Thewn, that oxy-muriatic acid may be ohtained from

Anrode Cbim. i. I. and xii. 225. corrofive muriat of mercury \(\ddagger\). We may conclude, therefore, with confidence, that the falt is an oxy-muriat. It caunot be prepared by means of cummon muriatic acid, except with red oxide of mercury, or fome other fuhllance from which it may abforb oxygen. When pure mercury is added to oxy-muriat, it feizes the oxygen from the oxy-muriat, and the whole is converted into common muriat.

It is decompofed by

> Tartar, Mof metals.
8. Oxy-muriat of tin. When an amalgam of tin is triturated with its own weight of corrofive muriat of mercury, and the mixture is diftilled in a glafs retort by means of a very gentle heat, there paffes over a thick white fnoke, which condenfes into a colourlefs liquor that emits copious fumes, and has been called, in confequence, fmoling liquor of Libavius. This liquor was examined by Mr Adet. He found, that when about \(\frac{7}{3} \mathrm{~d}\) part of water was added to this liquor, it ceafed to fume, and affumed a cryfalline form ; that then it might even be made red hot without fubliming. It therefore owes its volatility to want of water, or rather to a ftrong attraction for water. He found that this fubftance was capable of difolving, and therefore of oxidating more tin, without the emiffion of any hydrogen, and confequently without the decompofition of
water; he concluded from this, that it was compofed of Phefphate. oxy-muriatic acid and tin*. This has been completely proved by Mr Pelletier, who found that when oxide of Clim. in 3 . tin was combined with oxy-muriatic acid, it formed a compound precifely the fame with the finoking liquor of Libavius \(\dagger\).
\(\dagger\) finn. de
This falt may be prepared, as Pclletier has proved, Clim, xiti. by diffolving tin in muriatic acid, and then faturating it \({ }^{225}\). with oxy-muriatic acid gas.

It is ufed in dycing.
9. Oxy-muriat of iron. This falt is deliquefcent; Ory-mucolourlefs; of a pure bitter tafte, without any of the riat of iron. fweet aftringency of the common falts of iron \(\ddagger\).

1 I.ambe,
Few of the other oxy-muriats have been hitherto ex. Mancbefor amined with attention : Many of the metals, indeed, Mem. v. have been diffolved in aqua-regia; but in molt of thefe \({ }^{\text {p. }}\). folutions the falt produced is a common muriat. The nitric acid fupplies oxygen, and the muriatic acid diffolves the oxide.

\section*{Sect. VII. Of Ploffbats.}

Those falts, into which phofphoric acid enters as an ingredient, are called phofphats. This clats of falts was firft difcovered by Margraf.
1. Phofphat of potafs. This falt cryfallizes in fhort Phofphat tetrahedral prifms, terminated by quadrangular fyra. cf potafs, mids.

It is very foluble in cold water, and fill more fo in hot water.

It decrepitates on ignited coals like common falt. When a very Itrong heat is applied, it melts into an opaque vitreous mafs, ftill foluble in water.

The following falts decompofe it by compound affinity:

\section*{Sulphat of lime, Muriat of mercury, Nitrat of mercury, Acetite of lead.}
2. Phofpliat of foda.-Dr Pearfon, who firft formed Phofphat this falt, gives the following procefs for preparing it ; of fuda,

Diffolve in a long-necked matrafs 1400 grains of cry. ftallized carbonat of foda in 2100 grains of water at the temperature of \(150^{\circ}\). Add gradually 500 grains of phofphoric acid of the fpecific gravity 1,85 . Boil the liquor for fome minutes ; and while it is boiling hot, filtrate it, and pour it into a fhallow veffel. Let it remain in a cool place, and cryftals will continue to form for feveral days. From the above quantities of materials he has obtained from 1450 to 1550 grains of cryftals.

Its cryftals are rhomboidal prifms, of which the acute angles are \(60^{\circ}\), and the obtufe angles \(120^{\circ}\), terminated by a three-fided pyramid.

Its tafte is almoft the fame with that of common falt.
It is foluble in water. When expofed to the air it efflorefces.

This falt has been introduced into medicine as a purgative, and on account of its pleafant tafte has of late been much ufed. It is ufually taken in broth, which it is employed to feafon inftead of common falt.

Hellot remarked a particular falt in urine, different from thofe that had ufually been obferved, in 1737. Haupt defcribed it in 1740 under the name of fal mi-
(A) If we liften to Junker, the ancients applied the name mercurium to this falt; mercury they called argero aum vivum.

Hurf, hats, relile porlutum, or zuanderful perlated fait. It was called perided from the grey, upaque, pearl-like colour which it aflumed when melted by the blow-pipe. Margraf defuribed it in \(17+5\), and found it would not yield poofphorns when treated with elarcoal, as the other fals of wine did. Rouelle the lounger analyfed it in 17:6, and concluded from his experiments that it was a compound of phofphoric acid and foda; but Mr Prouft, being unable to obtain phofphorus from it, concluded, that it did not contain phofphoric acid, but another acid analugous to the boracic. To this fubftance, which Mr Proult actually obtained, Bergman gave the name of perluted acid, and Morvean afterwards called it ouretic acid. But Mr Klaproth foon afterwards analyfed it, and proved that it confifted of foda fuperfaturated with phofphoric acid. Seheele foon after made the fame difcovery. This acid of Mr Prouft, then, is merely phofphat of foda conbined with phof.

\section*{739}

Phofphat
pluric acid, or acidulous plofphat of folla.
3. Phofphat of ammonia. - This falt forms oblongpointed cryitals, or, as Mr Lavoifier afirms, cryitala refembling thofe of alum.
It is foluble in water. Heat evaporates it fo eafily, that it is difficuit to obtain it in eryitals except by adding an excefs of alkali.

Microcofmic falt, or falt of urine, is merely a mixture

93r
Of :arytec,
* Morusg:
orime,
4. Phofplat of barytes.-This falt is infoluble in water *.
5. Phofphat of lime.-This falt is taftelefs, and almon perfeetly infoluble in water. It forms the hafis of bones, and is therefore often called earth of bones. TVenzel objerved it cryitallize when held in folution by phofphoric acid.
tDelteformp It is decompofed by fulphat of ammonia \(\dagger\).
Anno de.
Cbim. vi.
37.
\(\pm\) Bergman
\(\$ 1 d\).
733
of tron.
ries,
fii Dr Hope,
Iranf. Edin.
iv. 16.

734
Of nagne-
fia,
\(\$\) Bergman
ii. 390.
* Wenzel.

735
Of aluni-
na,
Carbonat of potafs \(\ddagger\),
-..-- foda \(\$\).
6. Phofphat of Atrontites. - This falt was firft formed by Dr Hope. It is a white powder foluble in 1920 parts of boiling water \(\|\).
7. Phofphat of magnefia.-This falt does not cryftallize except with excefs of acid, and then the cryftals are very fmall. Somewhat longer cryftals may be formed by dropping phofphoric acid into acetite of mag. nefia. It moft commonly forms by evaporation a gummy mafs. It is foluble in alcohol \(\pi\).

It is infoluble in nitric acid. It melts by a Atrong heat into a porcelain-like fubttance *.
8. Phofphat of alumina.-This is a faline powder, infoluble in water. Diffulved in phofphoric acid, it yields a gritty powder, and a guminy folution, which by heat is converted into a tranfparent glafs.
9. Phofphat of iron.-This falt is merely a dry adhetive mafs, infoluble in water, but fuluble in acids. With excefs of acid, it forms cry ftals which do not deliquefee, and by heat are converted into a garnet-coloured glais \(\dagger\).
10. Phofphat of zinc.-It does not cryflallize, but when evaporated becomes a gummy mafs, which may be melted into a tranf \({ }^{\sim}\) rent glafs \(\ddagger\).
11. Phofphat of manganefe. - The folution of the oxide of manganefe in phofphoric acid is reddifh, but becomes white on expofure to the air.
\(\dagger 7 d\).
737
Of zinc,
\(\ddagger\) Id.
\(7^{738}\)
Of manga-
nefe,
of 739 nickel, 12. Phofplat of nickel.-It is greenih, and does not § Bergman, cryftallize §.
13. Phofplat of arfenic.-It cry Alalizes in fmall Borats. graius lardly foluble in water *.
14. Phofphat of uranium. - Firit formed by Klap- \({ }^{740}\) roth. It does not eryftallize, but affumes the appear-* Bergmar, ance of yelluwith white fakes, dificultly fuluble in in. 290. water.
15. Phofphat of antimony and lime.-1)r learfon of cira. has difeovered, that : he well known medicine called \({ }_{742}\) James's Pozuder is a triple falt, compofed of phofphoric Jamec's acid, oxide of antimony, and lime. It is very intoluble powser. in water.

The remaining plofphats are fcarcely known.

\section*{Sect. VIII. Cf Borats.}

The compounds into which the boracic acid entcrs are called borats.
t. Burat of potafs. - This falt, formed by combining Burat of boracic aeid and potafs, is very little known. Baron pota \(\mathrm{s}_{\text {, }}\) firf formed it. Borat of potafs cryftallizes, is foluble in water, and may be melted into a vitreous mafs, foluble in water.
2. Borat of foda or borax. - This falt is brought Of foda, from the Eaft Indies in an impure fate under the name of tinkal. When purified in Europe, it takes the name of borax.

Its cryftals are hexangular prifms, of which two fides are much broader than the renainder, terminated by triangular pyramids. It is of a white colour. Its fpecific gravity is \(\mathbf{1 , 7 4 0}\).

Its tafte is ftyptic and alkaline.
It is fuluble in 18 times its weight of water of the temperature of \(60^{\circ}\), and 6 times its weight of boiling water.
It is compofed, according to Bergman, of 17 parts of foda, 39 of acid, and 44 of water.

When expofed to the air, it efflorefces flowly and nightly.

When heated, it fwells, lofes about four tenths of its weight, becomes ropy, and then affumes the form of a light, porous, and very friable mafs, known by the name of calcined borax; it then melts into a tranfparent glafs, ftill foluble in water.

By compound affinity it is decompofed by
\[
\text { Nitrat of mercury } \dagger \text {. }
\]

When two picces of burax are ftruek together in the Bergman. dark, a flafh of light is emitted \(\ddagger\).
\(\ddagger\) Acum,
Borax las the property of facilitating the fufion of Nishoffor's a great number of bodies. This property renders it fournal, iin uffeful in glafs-making, in aflaying ores, and in folder. \({ }^{28}\). ing metals.
Borax turns fyrup of violets green; it appears therefore to be fuperfaturated with alkali.

The real borat of foda, or the falt in which boracic acid and foda faturate each other, has not yet been examined with attention. According to Dr Withering, foda requires twice its weight of boracic acid to fatuo rate it.

\section*{3. Borat of ammonia.-This falt has been examined of anime} only by Mr Fourcroy.

Its crytals are polyhedral pyramids.
It has a poignant urinous tafte, and turns fyrup of violets green. It diffolves readily enough in water. When expofed to the air, it gradually lofes its cryftal line form and becomes brown \(\delta\).

C Fourcroy's
Cbemifry, Partii.
4. Borat ch. 4.

\section*{Part Iil.}

Borats. \(74^{6}\)
of lime,
747
Of ftron-
tites,
* Hope,

Tranf. Edin.
iv. \(1 \%\)
\(74^{9}\)
of magne
fia,
+ Bergman,
ii. 386 .

349
of alumi-
na,
\(7 \vdots 0\)
Of irun,
751
of zinc,
\(\ddagger\) Reufs.
752
Cobalt,
\(\oint I d\).
753
Nickel,
Nickel, Bergmar. foluble \|.
Lead,
- Reufs.

Tin,

736
Copjer,
- Bergman.

757
Bifmuth,
†Wenzel. is 8
Arfenic,
\(\ddagger\) Rcu/s.

\section*{Fluat of \\ potal:,}
\(\$\) Scbecle on
Fluor. 760
Soda,
||. 1 ibid. 961
Ammonia,
- Wieglab.
\(7^{62}\)
Barytes, 963
Lime,
* Вergnar. large quantity of water to diffolve it *.
4. Borat of bargtes-Uuknown.
5. Borat of lime.- It is difficultly foluble in water, and did not cryftallize with Beaume.
6. Borat of ftrontites. - This falt was firf formed by Dr Hope.-It is a white powder, foluble in about 130 parts of boiling water. The folution turns the fyrup of violets green *.
7. Borat of magncfia.- It affumes the appearance of fmall irregular cryftals. It is coluble in acetous and formic acids. Alcolol decompofes it. It melts eafily in the fire without being decompofed \(\dagger\).
8. Borat of alumina.-It does not cryftallize, and is fearcely foluble in water.
9. Burat of iron.-Its cryftals are of a yellow colour, but the falt has never been examined with attention.
10. Borat of zine. This falt does not appear to he capable of cryttallizing. By heat, it melts into a lieght green infoluble flag \(\ddagger\).
II. Borat of cobalt. - When oxide of cobalt is melted with boracic acid, a bluith grey flag is produced. This, by lixiviation and evaporation, yields cryftals of a reddifh white colour and ramified form \(\oint\).
12. Borat of nickel.-A faline fubftance difficultly
13. Borat of lead. - When boracic acid and red oxide of lead are melted together, the product is a fine greeninh yellow, tranfparent, hard, infoluble glafs \(\ddagger\).
14. Borat of tin.-When equal parts of boracic acid and tin filings are melted together, the product diffolved in water yields by evaporation tranfparent white polygonous cryitals.

I 5. Borat of copper. - When borax is poured into a folution of fulphat of copper, borat of copper is precipitated in the form of a pale light green jelly, which when dird is with great difficulty foluble in water. It eaflly melis into a dark red vitreous iubitance*. According to Palm, by long trituration of tilings of copper and borasic acid in water, and then digetting the mixture, it diffolves, and erytals may be obtained from it.
16. Borat of bifmuth.-A white powder, which melts into a white tranfparent permanent glafs \(\dagger\).
17. Burat of arfenic.- White oxide of arfenic and boracic acid form a. falt foluble in water and cryftallizable \(\ddagger\).

\section*{Sect. IX. Of Fiuats.}

Those falts into which fluoric acid enters are called fluats. They were firft formed by Schecle.
1. Fluat of potafs. It forms a gelatinous mafs almoft without talte.

It diffolves readily in water. When expofed to the fire it melts without any ebulition \(\delta\).
2. Fluat of foda. This falt refembles exactly the fluat of potafs \(\|\).
3. Fluat of ammonia. It eryftallizes in fmall prifms. It is deliquefeent, and is partly decompofed by heat If.

It is decompofed by
Nitrat of mercury,
———— filver,
4: Fluat of barytes. A powder w
5. Fluat of lime. This falt abounds in nature. It is known by the name of fluor fpar.

It cryfallizes moft commonly in the furm of cubes.

It is taftelefs and nearly infoluble in water.
It is not altered by the air. Its fpecific gravity is about 3,1 .

When expoled to a fudden heat it decrepitates. A very violent heat melts it into a white opaque mals.

When reduced to powder and heated it hecomes phofplorefcent ; but it lofes this quality altogether if it be heated red hot.
6. Fluat of ftrontites. This falt was formed by Dr Hope : but its properties have not been examined.
7. Fluat of nagnefia. - It is not foluble in water ex. Magnefia, cept there be an excefs of acid. In that cafe, by fpontaneous evaporation, it forms hexagonal prifms, terminated by a low pyramid compoled of three rhomboidal fides.

Thefe cryftals are hardly [oluble in water. Alcohol diffolves a finall portion of them. Heat does not decompofe them *.
8. Fluat of alumina. A faline mals; which is freet. ii. 384. ifh, clammy, and gelatinous.

705
9. Fluat of filica. Little is known concerning this Alumina, fingular combination, except that it can exift in a ga- siliea, feous form, and that it depofites filica in cryftals after a certain time.
10. Fluat of filica and potafs or foda. This triple falt may be formed by pouring fixed alkali into a folution of fluat of filica. It contains an excefs of acid. On evaporation it yields a kind of jelly, which when dry feparates into gritty particles like fand. It is foluble in \(9^{6}\) parts of hot water. In the fire it readily melts into a white mafs. If the heat be continued the acid feparates, and there remains a tranfparent glafs, which is foluble in water, and forms a liquor filicum \(\dagger\).
11. Fluat of iron. It is ineryftailizable ; but when sekele, evaporated leaves a hard mafs.
12. Fluat of zine. It refembles that of iron. nal, i. \(20 \%\),
12. Eluat of zinc. It refembles that of iron.
13. Fluat of manganefe. It may be formed by pour- Metallic ing fluat of ammonia into a folution of oxide of zinc influats.
any of the three mineral acids. It cryftallizes.
14. Fluat of cobalt. A yellow gelatinous mafs.
15. Fluat of nickel. It affords green cryflals.
16. Fluat of lead. A fweet talted powder.
17. Fluat of tin. A naufeous tafted jelly.
18. Fluat of copper. Blue cryftals; fome of thens? oblong, others cubic.
19. Fluat of arfenic. Small cryftals.
20. Fluat of mercury. A powder. Before the blow. pipe it melts into a yellow glafs, moft of which evapo. rates by a continued heat \(\ddagger\).

\section*{Sect. X. Of Carbonats.}

The compounds into which the carbonic acid enters are called carbonats. They were firft analyfed by Dr Black.
1. Carbonat of potafs. This falt is formed by fatu. \({ }_{709} 86\) rating potals with carbonic acid, which is beft done by of potafs, expoling a folution of potals for a conliderable time to carbonic aeid gas.

It cryftallizes, according.to Bergman, in quadrangular prifms ; the apexes of which are compoled of two inverted triangles, converging like the roof of a houle \||. \|| Brgman. According to Pelletier they are tetrahedral rhomboidal prifms, with dihedral fummits. The complete cryfal has eight faces, two liexagons, two rectangles, and four shombs 4 :
† Pelletier.
It has an alkaline, hut not a cauftic tafte.
It is foluble at the common temperature in about four tines its weight in water *. Boiling water difo folves \(\frac{s}{8}\) ths of its weight \(\dagger\). Alcohol, even when hot, does not diffolve above ร⿰氵'ro patts of it.

According to Bergman, it is compofed of \(4^{8}\) parts of potafs, 20 of acid, and 32 of water. According to Pelletier, of 43 parts of acid, 40 of potals, and 17 of water. Bergman under-rated the quantity of acid from not obferving that the falt lofes part of its acid when heated. Even folution in hot water produces a feparation of
1 \(1 d\). fone acid \(\ddagger\).

It is not altered by expofure to the air.
Heat deprives it of its water and part of its acid, but does not decompofe it completely. The following falts decompofe it by compound affinity :

Nitrat of barytes,
Ammonia,
Acetite of barytes,
Oxy-mariat of mercury,
Phofphat of lime \(\|\).

Nitrat of lime,
When potals is faturated with carbonic acid it always lets fall a quantity of filica. Mr Pelletier has propofed this faturation as the beft method of purifying potafs from that earth.

2 Carbonat of foda. This falt may be formed in the fame manner with carbonat of potafs.

Its cryftals are five-fided prifms, with one of the angles frequently truncated, furmounted by dihedral pyramids with rhomboidal faces.

Its tafte is precifely the fame with that of carbonat of potafs.

It is foluble in double its weight of cold water.
It is compofed, according to Bergman, of 16 parts of acid, 20 of alkali, and 64 of water.
It eflorefces when expofed to the air. Heat is inca-
I Bergman, pable of decompoing it completely 9 .
The following falts dccompofe it by compound affinity :
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{\(\ddagger\) Bergman.} & & \multirow[t]{2}{*}{Acetite of barytes,
\(\qquad\)} \\
\hline & Sulphat of ammonia,
\(\qquad\) baryles, & \\
\hline & lime, & ___ lime, \\
\hline & agnefiaf & --- magnefia, \\
\hline & Muriat of barytes, & \begin{tabular}{l}
\(\qquad\) alumina, \\
Nitrat of ammonia,
\end{tabular} \\
\hline & M ammonia, & - magnefia, \\
\hline & ne, & -_ alunin \\
\hline - Id, -- marnefia, -_- lead*, & magnefia, & lead*, \\
\hline 12. & alumina, & Phofphat of lime \(\dagger\) \\
\hline
\end{tabular}

Carbonat
of ammo.
nia,
\(\ddagger\) Bergman,
¿2 21.
3. Carbonat of ammonia. This falt forms octahedral cryftals, having for the mott part their two oppofite apexes truncated \(\ddagger\).

Its taite and fmell, thougb much weaker, are the fame with thofe of pure ammonia. Like all the alkaline carbonats it converts vegetable blues to green, precifely as pure alkalies do.

It is foluble in rather lefs than twice its weight of
cold water. Hot water difolvee ite own weight of it. Carbonats,
According to Bergman it is compofed of 43 parts of
alkali, 45 of acid, and 12 of water.
When expofed to the air it becomes fomewhat moift.
The fmalleft heat is fufficient to evaporate it.
The following falts decompufe it hy compound affinity':
Sulphat of alumina, Acetite of barytes,
Nitrat of lime,
Muriat of lime,
4. Carbonat of barytes. This falt has been fouad Caribonat native.
of barytes,
Its cryftals have been obferved to allume four different forms; douhle lix-fided and double four-fided pyramids, fix-fided columus terminated by a pyramid with the fame number of faces, and fnall radiated cryitals \(\frac{z_{2}}{2}\) an inch in length, and very thin, appearing to be hexagonal prifms, rounded towards the point.

Cold watcr diffolves arios part, and boiling water riss part of this falt. Water faturated with carbonic acid diffolves \(\boldsymbol{z}_{8} \delta^{\text {th }}\) part *.
* Fourcroys

According to Dr Withering, who firit difcovered it \(\mathrm{Ann}^{2}\) de native, it is compuled of 80 parts of barytes and 22 of Cbm . iv. acid. Bergman informs us, that artificial carbonat is \({ }^{64}\). compofed of 7 parts of acid, 28 of water, and 65 of earth \(\dagger\).
\(\dagger\) Bergman
It is not altered by expofure to the air. i. 2I.
It is decompofed by the application of a very violent heat \(\ddagger\).
| Dr Hoper
By compound affinity it is decompofed by the following falts:
\begin{tabular}{|c|c|}
\hline Sulphat of foda,
\(=\) lime,
\(=\) magnenia,
alia,
Nitrat of foda,
\(=\) lime,
ammonia, & \begin{tabular}{l}
Nitrat of alumina, Muriat of lime, \\
-..- ammonia, \\
——— magnefia, \\
Acetite of alumina \\
- magnefia, \\
-- alumina.
\end{tabular} \\
\hline
\end{tabular}
5. Carbonat of lime. This fubftance, under the Carbonat names of marble, chalk, lime Itone, \&c. exifts in great of hnee. abundance in nature, varioufly mixed with other bodies.

When pure, it is of a white colour, and has very little tafte.

It is infoluble in pure water; but water faturated with carbonic acid diffolves \(\mathrm{r}^{\frac{1}{0} \sigma \text { б }}\) part of it ; from this folution it gradually precipitates as the acid leaves it in the form of finall rhomboidal cryitals \(\delta\).
§ Bergman,
It is compofed, according to Bergman, of \(3+\) partsi. 2r. of acid, 11 of water, and 55 of lime.

It fuffers little or no alteration by being expofed to the air.

When expofed to heat, it firft lofes its water, and afterwards its acid feparates as the heat is increafed: But to feparate the acid completely, a very ftrong heat is required.
The following falts decompore it by compound affinity :

> Sulphat of alumina,
> copper.
6. Carbonat of ftrontites. This falt, which was firft 773
as firtt Carbonat examined by Dr Hope, is infipid, and foluble in 1536 of fronparts \({ }^{\text {tites, }}\)

Carbonats. parts of holling water. It is compofed of 30,2 parts of \(\underbrace{*}\) acid, 69.8 of ftrontites. A violent heat decompofes it *. Tranf. Edin. 7. Carbonat of magnefia. This falt may be formed iv. 5. by faturating the common magnelia of the hops with 774 carbonic acid gras.
Carbonat of It diffolves in water faturated with carbonic acid; magnefia. and forms by evaporation cryftals, which are tranfparent hexagonal primns, terminated by a hexagonal plane; thefe are partly in groups and partly folitary: their \& Butini fur length is about lix lines, their breadth two \(\dagger\). They ba Magnefie. were difcovered by Mr Butini of Geneva.

Water at the temperature of 50 diffolves \(7^{\frac{7}{5}}\) part of \(\ddagger\) Fourcroy, its weight of this falt \(\ddagger\). When in the ftate of powder, Annode and of courfe deprived of its water of cryfallization, it Cbim, in. is much more infoluble; and what is very remarkable, 2g9. it is more foluble in cold than in hot water, impregna§Butini. ted with carbonic acid \(\oint\).

It is compofed, according to Fourcroy, of 50 parts of acid, 25 of magnefia, and 25 of water.

When expofed to the air, it efflorefces, and falls into Fourcroy, powder \|.
When heated, it decrepitates, falls into powder, and fId. ilid. is decompofed \(\uparrow\).

The following falts decompofe it by compound affinity :
\[
\begin{array}{ll}
\text { Sulphat of lime, } & \text { Nitrat of lime, } \\
\text { Muriat of lime, } \\
\text { ammonia, } & \text { alumina, }
\end{array} \quad \text { A cetite of lime } . ~ \$
\]

775 8. Carbonat of alumina. Carbonic acid is capable of alumina. (diffolving alumina; for if alum be decompofed by an alkaline carbonat, fome alumina remains diflolved in the liquor, and may be precipitated by a heat futficient to * Bergman, drive off the carbonic dcid *. It cannot be duubted, i. 81. then, that there may be produced a carbonat of alumina; but the falt has never been examined with accuracy.

\section*{\({ }^{776}\)}

Metric carbonats
9. Carbonat of iron. Water faturated with carbo-
 which gradually precipitates by expofure to the air \(\dagger\). Ruft of iron is a kind of carbonat, at lealt it always contains carbonic acid.
10. Carbonat of ziuc. Zinc is copioufly difiolved \(\$ 16 i d\). by water faturated with carbonic acid \(\ddagger\). As the metallic oxides, when faturated with carbonic acid, do not differ materially in their appearance from pure oxides, we fhall not attempt to defcribe any of the metallic carbonats. We Thall, however, prefent our readers with the following Table, exhibiting a view of the weight which metallic oxides gain by being faturated with this acid.
\begin{tabular}{|c|c|c|}
\hline & By Bergman. 1' ecipit & By Wenzel. \\
\hline & Carb. of Solla.
Wei,ht. & Carb. of \(\mathrm{Po}_{\mathrm{o}} \mathrm{If}\). Weight \\
\hline Oxide of zinc, & 100,930 & 100,774 \\
\hline irnn, & 100,250 & 100,863 \\
\hline manganefe, & - 100,800 & \\
\hline cobalt, & 100,600 & \\
\hline nickel, & 100,350 & \\
\hline lead, & - 100,320 & 102,304 \\
\hline tin, - & - 100,310 & 100,345 \\
\hline copper, & - 100,940 & 100,884 \\
\hline bifmuth, & 100,300 & 100,224 \\
\hline antimony, & 100,400 & 100,395 \\
\hline mercury, & 100,100 & 100,062 \\
\hline filver, - & - 100,290 & 100,288 \\
\hline gold, - - & \(=100,060\) & - 100,326 \\
\hline
\end{tabular}

Suppz. Vol, I. Part I.

Quantity of lofs by driving off the gas by folution Acctites. according to Wenzel :

Thefe determinations differ too widely from cach other to be exact. It is obvious that part of the weight mutt be owing to adhering water, and very probably triple falts are formed, which mult render the determination ftill more erroneous.

\section*{Sect. XI. Of Actites.}

The compounds which the acetous acid forms are called acetites.
1. Acetite of potafs. Pliny is fuppofed, but pro-Acetiic of bably without any reafon, to have been acquainted with rotafs. this falt, becaufe he recommends a mixture of vinegar and vine athes as a cure for a particular fpecies of tumor*. It was firt clearly defcribed by Raymond Lully. * Pliniz, 1. It has received a great number of names; as, for in-xxiii. praAtance, arcanum tartari, fecret foliated earth of tartar, ef- miano fential falt of wine, regenerated tartar, diuretic falt, digeftive falt of Sylvius.

Its cryftals are very white, and affume the form of thin plates.

It has a fharp warm taite.
It is foluble in about ten times its weight of water at the temperature of \(60^{\circ} \dagger\). It is foluble alfo in alcohol. + Eergman,

According to Wenzel, 240 parts of acetous acid re-v. 78. quire for faturation \(241 \frac{4}{\%}\) ths of potafs. And from the experiments of Dr Higgins, it appears that acetite of potals is compoled of 61,5 parts of alkali and 38,5 of acetous acid and water \(\ddagger\).

When expofed to the air it is very deliquefcent. - Acid, p. 8.
When lieated, it melts as readily as wax ; and if a very ftrong heat be applied, the acid is decompofed.

The following lalts decompofe it by compound affinity :
 - lime, \(\quad 798\)
2. Acetite of foda. This falt was firf defcribed by Acetite of Mr Baron.
Its cryltals are Itriated prifms, not unlike thofe of fulphat of foda.

It has a harp tafte, approaching to bitter.
It is foluble in 2,86 parts of water at the temperature of \(60^{\circ} \$\).

According to Wenzel, 440 parts of actous acid re-ibid. quire for faturation \(157 \frac{1}{7}\) ths of foda.

It is not affected by expofure to the air.
When heated, it firf lofes its water of cryftallization;

Acetites. -

779
Aceite of
ammonia.
- Men.

Pur. i. 775
+ Higgins
on Actives
Acil \({ }_{2} \mathrm{p}\).
188.
\(\ddagger\) Higgins,
ibid, p. 192.
§ Ibid.
\(\| 1 b i d\).

I Ibid. p.
393.
\(7^{80}\)
Acetite of
barytes.
in a frong heat it melts; and in a fall ftronger, its acid is deftroyed. This falt can only he obtained in cryftals when there is an excefs of alkali in the folution.

The following falts decompofe it by compound affinity :
\[
\begin{aligned}
& \text { Sulphat of armmonia, } \\
& \text { Nitrat of ammoninia, }
\end{aligned}
\]
3. Acetite of ammonia. This fult was formerly called Spirit of Mindicrerus.

It is too volatile to be eafly cryftallized : It may, however, by gentle evaporation, be made to depofite needle-fhaped cryftals. Mr de Laffone eryftallized it by fublination *. When the fublimation is flow, it forms long, flender, flatted cryftals, terminating in finarp points, of a pearl white colour, and about an ineh and eight-tenths in length \(\dagger\).
It impreffes the tongue at firft with a fenfe of coldnefs, and then of fweetnefs, which is followed by a tafte refembling that of a mixture of fugar and nitre, in which the fweet does not predominate over the mawkih tafte of the nitre \(\ddagger\).
According to Wenzel, 240 parts of acetous acid faturate 244 of ammonia.

It is very deliquefcent. It melts at \(170^{\circ}\), and fublimes at about \(25^{\circ} \mathrm{g}\).

When a watery folution of this falt is diftilled, there comes over firft a quantity of ammonia, next a quantity of acetous acid, and at laft of the neutral falt itfelf. No fuch decompofition takes place when the eryfals are diftilled by a moderate heat il.
The following falts decompofe acetite of ammonia by compound affinity :
\[
\begin{array}{ll}
\text { Sulphat of alumina, } & \text { Carbonat of foda, } \\
\text { Carbonat of potafs, } & \text { Nitrat of fiver }
\end{array}
\]
4. Acetite of barytes. This falt was firt formed by Mr Morveau.

It is not eafily cryftallized. Morveau procured it in long priims in groups.

It has a pleafant, fomewhat acid tafte, and always contains an excefs of acid.

It is foluble in water, and does not deliquefee when * Morenenu, expofed to the air *.

Encye. Mee The following falts decompofe it by compound affl\$ood. Clim. nity :

789
Acetite of lime.
+ Plisii, 1 .
+ Puxvi.c. 24
2. 8. Sulpnat of potafs,

Nitrat of potafs,

- lime, ammia,
5. Acetite of lime. This falt was firt defcribed ac-

Nitrat of alumina, Muriat of potafs,
 curately by Crollius. The aneients, however, ufed a mixture of line and vinegar in furgery \(\dagger\).
It cryflallizes in fine necdles, of a glofly appearance like fatin.
Its tafte is bitter and four, becaule it has an excefs of aeid.

It is foluble in water.

According to Wenzel, 240 parts of acetous acid re. Acetites. quire for faturation 125 of lime: according to Maret, 100 parts of acetite of lime contain 50 of lime *. From * Fncye. tive experiments of Dr Higgins, it follows, that ace- Mettod. tite of lime is compofed of 35,7 parts of lime and \(64,3 \% \mathrm{cim}\). i. 9 . of acetous acid and water \(\dagger\).
\(+O_{n}\) Actious
It is not altered by expofure to the air ; at leaft Acid, p. 47. Morveau kept fome of it for a whole year merely covered with paper, and even quite uncovered for a month, without its underguing any alteration \(\ddagger\).
| lbid. En.
Heat decompoles it, and at the fame time partly de- cse. Mecompofes its acid.

The following falts decompofe it by compound affinity
\begin{tabular}{|c|c|}
\hline ulphat of foda, & Muriat of alumina, \\
\hline - ammonia, & Carbonat of barytes, \\
\hline alumina, & foda, \\
\hline Nitrat of ammonia, & - \\
\hline - magnefia, & magnefia, \\
\hline
\end{tabular}

\section*{Muriat of ammonia,}
6. Acetite of frontites. This falt was firft formed Acetite of by Dr Hope. It forms fmall cryftals, which are not frontices. affected by expofure to the atmofphere. 49 parts of it are foluble in 120 parts of boiling water: It feems to be nearly as foluble in cold water. It renders vegetable colours green \(\oint\).
7. Acetite of magnefia. This falt was firt mention- Tranf. Edin. ed by Mr Wenzel.

\section*{783}

It is not cryltallizable; but forms by evaporation a Acetire of vifcid mafs \(\|\).

It has a fiwectifh tatte ; leaving, however, a fenfe of \(\|\) ii. 3 Bergnan, bitternefs \(\%\).
It is very foluble both in water and alcohol *.
According to Wenzel, 240 parts of acetous acid re- * Bergman, quire for faturation \(123 \frac{3}{\frac{3}{3}}\) ths of magnefia.

When expofed to the air, it deliquefees. Heat decompofes it.
The following falts decompofe it by compound affnity :

8. Acetite of alumina. This falt can only be form. Acetite of ed by digelting acctous acid on alumina recently preci-alumina. pitated.

By evaporation needle-fhaped cryftals are obtained, which are very deliquefcent. According to Wenzel, 240 parts of acetous acid require \(20{ }_{7}^{5}\) ths of alumina for faturation.

This falt is decompofed by compound affinity by the following falts:

Nitrat of ammonia,
Muriat of ammonia,
Carbonat of harytes,

\section*{Carbonat of potals,}

9. Acetite of jargonia. This falt may be formed by Acetite of. pouring acetous acid on newly precipitated jargonia. jargonia. It has an aftringeut tafte. It does not cryitallize; but when evaporated to drynefs, it forms a powder, which + Klaprotb, does not attract moifture from the air as acetite of alu- Tourn.de mina does \(\dagger\). It is very foluble in water and in alco. Pbyf. xasvin hol. \({ }^{188 .}\)

Actires. hol. It is not fo eifily decompofed by heat as nitrat

* Vauque. Atrongly to water *.
lin, Annode 10. Acetite of iron.-This falt was mentioned by CSing. xxil. 206.
\({ }_{7} 86\)
Acetire of iron. + Wenzel. form of a gelatinous mafs \(t\).

It has a fweetifh ftyptic tafte.
According to Welizel, 240 parts of acetous acid require for faturation \(186 \frac{1}{2}\) of iron.

Heat decompofes this falt; and it feems alfo to be
787 gradually decompofed by expofure to the air.
Acerite of 11. Acetite of zinc.-This falt was firt mentioned zinc. by Glauber.

Its cry ftals are rhomboidal, and fometimes hexagonal plates, of a white colour, and the appearance of talk.

It is foluble in water. According to Wenzel, 240 parts of acetous acid require for faturation \(195 \frac{5}{5}\) ths of zinc.

It is not altered by expofure to the air. Heat decompofes it. When thrown upon burning coals, it explodes with a blue flame.
12. Acetite of manganefe.-This falt is not cryftallizable; and when evaporated to drynefs, it deliquefces.
788 Is it not an acetat?
Acerite of 13. Acecite of cobalt.-This falt is deliquefeent. Its cobalt.

\section*{759}

Acetite of
nickle.
\(\ddagger\) Bergman.
\& Dionnet.
790
Acetite of
lead. folution is of a fine red colour while cold; but becomes blue by being heated, and it recovers its former culour on cooling. According to Weazel, 240 parts of acetous acid require for faturation \(24 \frac{5}{7}\) ths of cobalt.
14. Acetite of nickel. - This falt furms rhomboidal cubes of a green colour \(\ddagger\) : They are not deliquefcent: Their tafte is fweet \(\oint\).
15. Acetite of lead. - This falt is mertioned by Ifaac Hollandus and Raymond Lully. It is compofed of acetous acid and white oxide of lead.
- Mervas:

It was formerly called fugar of lead, fugar of Salurn, falt of Saturn, vinegar of Saturn, extrad of Salurn, \&c.

Its cryftals are flat parallelopipeds, terminated by two inclined planes approaching each other.

It has a fweet and fomewhat aftringent tafte.
It is not very foluble in water; but acetous acid diffolves it abundantly.

According to Wenzel, 240 parts of acctous acid require for fateration 503 of lead.

When expoled to the air it becomes yellow, but undergoes no other alteration.

Heat decompofes it by deftroying the acid. When diftilled, the refiduum takes fire fpontaneoully on expofare to the air. Paper dipped into acetite of lead forms cxcellent matches, which are not fubject to go out, and which burn very flowly.

The following falts decompofe it by compound affinity:

Muriat of ammonia,
Sulphat of copper,
Phofpliat of foda,
Phofphat of ammonia, Oxalat of potafs \(\|\), Malat of potals 9 .
16. Acetite of tin.-This falt was firtt deferibed by Len:ery.
Its cryftals are prifmatic needies in groups*. According to Wenzel, 240 parts of acctous acid require for faturation \(3 \mathrm{r}^{5} \mathrm{z}\) of tin.
17. Acetite of copper.-1 lhis falt was known to the ancients, and various ways of preparing it are defcribed by Pliny*. It was Cormerly known by the names of cryllals of Venus and verdigrife.
\(\underbrace{\text { Acetite. }}\)
792
It is of a deep erpern colour. boids.
- Libixxiv.
c. 11 .

It has a difagreeable coppery tafte.
It is foluble in water and in alcohol.
According to Wenzcl, 240 parts of acetous acid re-
quire \(16 \frac{1}{1}\) th of copper for Saturation.
It effloretces when expofed to the air. Heat decompofes it. It is ufed in painting.
18. Acetite of bimuth. - This falt feems to have been Acctite of
firft mentioned by Geoffroi. He called it fugar of bimuth. bifmuth.
It is molt eafily procured by mixing together the fo-
lutions of nitrat of bifmuth and acetite of potais. It
forms brilliant, talky, filvery cryftals.
It has a fweetifh tafte. According to Weuzel, 2.40
parts of acetous acid require for faturation \(15 \frac{5}{5}\) ths of bifmuth.

It does not deliquefce when expofed to the air. Heat
decompofes it.
19. Acetite of antimony.-It yields with difficulty Acctive of fmall crytals \(\dagger\). According to Wenzel, 240 parts of \(+W\) anemony. acetous acid require for faturation \(1 \frac{1}{4} d\) of antimony. 20. Acetitc of arfenic. - This falt forms fmall cry-Acetite of Atals in grains, hardly foluble in water \(\ddagger\) :
21. Acetite of mercury. -This falt is mentioned by Dergman. Schreder.

Its cryfals are fmall thin plates.
It has a difagreeable tatte, and excites coughing.
It is hardly foluble in water. According to WVen-
zel, 240 parts of acctous acid require for faturation \(240 \frac{3}{2}\) ths of mercury.
When expofed to the air it becomes black, owing to the reduction of the oxide of mercury. Heat decompofes it.

797
22. Acetite of filver.-This falt was perhaps firt Acterte of defcribed by Margraf.
It is belt formed by dropping acetite of foda or pot-
afs into a faturated folution of nitrat of filver \(\$\). \(\$\) Muret,
It forms fmall ohlong cryftals, catily diffolved in wa-ibid.
ter \(\dagger\). It has a fharp tafte.
\(\dagger\) Marg of.
According to Wenzel, 240 parts of acetons acid require for faturation \(101 \frac{4}{9}\) ths of filver.

Heat decompofes it. It is decompofed by muriat of magnefa \(T\).
(Bergman.)
23. Acctite of gold. -This falt is mentioned by \(798^{\circ}\) Sehreder and Juncker.
24. Acetite of uranium.-- This falt was firt formed \({ }^{\text {gold. }}\)
by Klaproth.
799
Its cryftais are regular four-fided flender prifms, ter. uranimu. minated at both ends by regular quadrilateral py ramids: they are tranfparent, and of a beautiful topaz yellow colour.
Heat decompofes them : and what is fingular, if they be heated gradually red hot, the oxide which remains retains uearly the form of the cry ftals *.

The compounds into which the acetic acilenters are on Uraizmo ralled actats. They are fo imperfectly known at pre-. deetats. fent, that we flall not attempt a defeription of them.

\section*{Sect. Xil. Of O: alats.}

True compounds of which oxallc acil furnis a part \({ }_{3} \mathrm{~B}_{2}\)
are

Oxalats are known by the naunc of oxalats. They were firf
I. Oxalat of potafs.-This falt erytallizes with difficalty. It is very foluble in water. When heated it falls to powder *.
2. Acidulous oxalat of potafs.-The oxalic acid is alfo capable of combining with potafs in excefs, and forming another falt, called acidulous oxalat from its acid tafte; or, to fpeak more accurately, this falt is formed by the combination of oxalat of potafs with oxalic acid. This falt exitts ready formed in o.xalis acetofella or woodforrel; from which it is extracted in fome parts of Europe in great quantities. Hence it was furmerly called falt of wood forrel. It is mentioned by Duclos in the Memoirs of the French Academy for 1668. Margraf firft proved that it contained potafs; and Schecle dif. covered that its acid is the oxalic. A great many interefting experiments had been previoufly made on it by Wenzel and Wiegleb.

It may be formed, as Scheele has flown, by dropping potafs very gradually into a faturated folution of oxalic acid and water: as foon as the proper quantity of alkali is added, acidulous oxalat is precipitated. But care mult be taken not to add too much alkali, otherwife no precipitation will take place at all.
\(\dagger\) De Lifle. Its crytals are fmall opaque parailelopipeds \(\dagger\).
It has an acid, poignant, bitterifh tafte.
It is foluble in about ten times its weight of boiling water, but much lefs foluble in cold water.

It is not altered by expofure to the air. Heat deconpofes it.

This falt is fold in this country under the name of
803 effential falt of lemons.

Oxalat of
foda.

804
Oxalat of
ammonia.
3. Oxalat of foda. - This falt agrees very much with oxalat of potafs. Its cryftals are fmall, and foluble in water.

From Bergman's defcription, oxalic acid appears alfo capable of combining in excefs with foda, and forming. an acidulous oxalat.
4. Oxalat of ammonia.-Its cryftals are four-fided prifins, generally diverging from various points. They redden the infufion of turnfole.
\(\ddagger\) Bergman.
\$ Bergman, ibid.

805
Earthy ox-
alats.
|| Bergman,
ibid.

I Bergmar, water. Heat decompofes it T.
ibid.
* Hope, by deftroying the acid *.

Tranf. Edin. 8. Oxalat of nagneflia. This falt is in the form of iv. 14. a white powder. It is farcely foluble either in water or alcohol. It is compofed of 35 parts of magnefia \(\dagger\) Bergman, and 65 of acid and water. Heat decompofes it \(\dagger\).
 387.

They are eafily foluble in water, but not in alcohol \(\ddagger\).
It is decompofed by nitrat of barytes \(\hat{j}\).
5. Oxalat of barytes. - This falt does not cryftallize except with excefs of acid. The addition of potafs, or even of water, deprives it of this excefs, and then it crumbles into powder. It is infoluble in water \(\|\).
6. Oxalat of lime.-This falt does not cryftallize. It is infoluble in water, but fomewhat foluble in acids. It is compofed of 48 parts of acid, 46 of lime, and 6 of his falt was firit formed by Dr Hope. It is a white infipid powder; foluble in 1920 parts of boiling water. Heat decompofes it is fparingly foluble in alcohol. It has a fweet altringent tafte. It is compofed of 44 parts of alumina and 56 of acid and water.

When expofed to the air it deliquefecs; and if it has bsell previoufly well dried, its weight is increafed by \(\frac{2}{5}\). It reddens turnfole *.

Oxalacs.
* Eergman,
10. Oxalat of iron.-This falt forms prifmatic cry-ibi ftals of a yellowih green colour.

So6
It has an aftringent and fweet tafte. It is very \(f 0\) - \(\begin{gathered}\text { Metalatic. }\end{gathered}\) luble in water.
It is compofed of 45 parts of green oxide, and 55 of acid and wuter. When expofed to heat it falls to powder \(\dagger\).

From Bergman's defeription, the brown oxide of iron appears alfo capable of combining with oxalic acid. The compound does not crytallize, and is nearly infoluble in water \(\ddagger\).
11. Oxalat of zinc.-It is hardly foluble in water.

It is compofed of 75 parts of oxide and 25 of acid.
12. Oxalat of manganefe. - It is compofed of oxalic acid and white oxide of manganefe. It appears capable of cryftallizing \(\oint\).
13. Oxalat of cobalt.-This is a rofe-coloured powder, infoluble in water, but foluble in oxalic acid; and eapable, by that means, of crytallizing \|.
14. Oxalat of niekel. - This is a green eoloured powder, hardly foluble in water. It is compofed of two parts of acid and one of oxide \(\mathbf{\pi}\).
15. Oxalat of lead. - It forms fmall cryftalline grains. They are infoluble in alcohol, and nearly infoluble in water. They contain 55 parts of oxide and 45 of acid *.* Ilid.
16. Oxalat of tin.- This falt forms prifmatic cryitals. It has an auftere tafte. If the folution of this falt be quickly evaporated, it affords a mafs refembling horn, and foluble in water \(\dagger\).
17. Oxalat of copper.-This falt is uncryftallizable. It is a bluifh powder, infoluble in water, except with excefs of acid. It is compofed of 21 parts of copper and 29 of acid \(\ddagger\).
i8. Oxalat of bifmuth. -This falt may be formed by dropping oxalic acid into a folution of uitrat of bifmuth. It forms pellucid polygonous cryftals. When oxide of bifmuth is diffolved by oxalic acid, the refult is a white powder, fcarcely foluble in water \(\$\).
19. Oxalat of antimony. - This falt forms cryltalline grains, with difficulty foluble in water \(\dagger\).
20. Oxalat of arfenic.- This falt is compofed of oxalic acid and white oxide of arfenic. Its cryillals are prifms very foluble in water and alcohel. It reddens turnfole.
Heat fublimes it ; and by a flrong heat it may be decompofed if.

2I. Oxalat of mercury.-A white powder, hardly foluble in water, except with excefs of acid *.
22. Oxalat of filver.-This falt may be formed by pouring oxalic acid into a folution of nitrat of filver. It is a white powder, fcarcely foluble in water, and not at all in alcohol; but foluble in nitric acid. It becomes black by being expofed to the air, owing to the reduction of the oxide \(\dagger\).
23. Oxalat of platinum. - 7his falt affords yellow cry fals.

\section*{Sect. XIII. Of Tartitites.}

The falts into which tartarous acid enters as an ingredient are known by the nane of tartritcs.
1. Acidulous oxalat of potafs or tartar. - This falt, Tartar, which is compofed of potafs and an excefs of tartarous acid, or rather of tartrite of potafs and tartarous acid,

Tartrites. has been long known. It is obtained in a ftate of impurity at the bottom, and adhering to the fules of calks in which wine has fermented. It is called tartar, fays Paracelfus, becaufe it produces the oil, water, limeltone, and falt, which burn the patient as Hell dues. According to him, it was the principle of every difeafe and every remedj, and all things contain the germ of it.

Margraf and Rouelle firt demonftrated that it contained potafs ready formed : and Scheele firft obtained tartarous acid from it in a flate of purity.

Its cryftals are very finall and irregular. According to Montet, they are prifins, fomewhat flat, and molly with fix fides. It has a ftrong acid tafte. It is fuluble
* W゙enzel. in about 30 times its weight of builing water*. According to Bergman, it contains 23 parts of alkali and 77 of acid.

It is not altered by expofure to the air. Heat decompofes it, and at the fame time deftroys the acid. It
808 is capable of forming a great many compounds.
Tartrite of 2. Tartrite of potafs. This falt may be formed by potals. faturating the laft defcribed falt with potafs. It was formerly called foluble tartar, becaufe it is much more foluble in water than the acidulous tartrite of potafs. It crytallizes moft readily when there is a fmall excefs of alkali in the folution. Its cryftals are fmall oblongs.

It has an unpleafant bitter tafte. It is foluble in 4 parts of water at the temperature of \(40^{\circ}\).
3. Tartrite of foda. This falt has never been accu. Sog rately examined.
Tartrite of 4. Tartrite of potafs and foda. This triple falt, forpotafs and merly known by the name of falt of Seignette, becaufe soda. firft formed by Mr Seignette apothecary at Rochelle, is made by faturating tartar with foda.

Its cryftals are prifms of eight or ten unequal fides, having their ends truncated at right angles. They are generally divided into two in the direction of their axes, and the bafe on which they fland is marked with two diagonal lines, fo as to divide it into four triangles.

It has a bitter tafte. It is almoft as foluble as tartrite of potafs.

It efflorefces when expoled to the air. Heat decom.
810 poles it.
Tarerite of 4. Tartrite of ammonia. The cryftals of this falt are ammonia. polygonous prifms, not unlike thofe of the laft deferibed falt.

It has a cooling bitter tafte like that of nitre. It is eafily foluble in water. Heat decompofes it.
5. Acidulous tartrite of ammonia. This falt may be formed by pouring tartarous acid into a folution of tartrite of ammonia. Like acidulous tantrite of potafs it is very infoluble in water.
6. Tartrite of potafs and ammonia. This triple falt may be formed by pouring ammonia into acidulous tartrite of potafs.

Its cryftals, according to Macquer, are prifms with four, five, or fix fides: according to the Dijon academicians, parallelopipeds, with two alternate foping fides.

It has a cooling tafte. It is foluble enough in water. It efflorefces in the air. Heat decompoles it.
7. Tartrite of barytes. Unknown.

Earthy tar- 8. Tartrite of lime. This falt, firft formed by Scheele, stites, is a taftelefs and almoft infoluble powder. By heat the acid is decompofed, and the pure lime remains behind. 9. Tartrite of ftrontites. This falt was firf formed
by Dr Hope. Its cryetals are fmall regular triangular tables, having the edges and angles fharp and well de. fined. It is infipid. It diffolves in 320 parts of boiling water.

It is not altered by expofure to the air. Heat decompofes it by deftroying the acid *. * Hope,
10. Tartrite of magnefin. Ihis falt is infoluble in Edin. Tronf. water except there be an excefs of acid prefent. It then \({ }^{\text {iv. }} 15\). affords by evaporation fmall cryftals in the form of hexangular truncated prifnis \(\dagger\).

\section*{\(\dagger\) Bargman}

It has a more faline tafte, and is more fufible, than ii. 283. tartrite of limef.
\(\dagger\) Von Pat.
Heat firlt melts and afterwards decompoles it.
11. Tartrite of alumina. This falt does not cryftal- TVent, acid. lize, but forms by evaporation a clear tranfparent gum. my mafs. Its tafte is allingent. It is foluble in wa. ter. It does not deliquefee in the air \(\delta\).
12. Tartrite of potafs and alumina. This triple falt Ren. \(^{\text {a }}\)
is formed by faturating tartar with alumina. It bears a very ftriking refemblance to the laft defcribed falt.
13. Tartrite of iron. This is a grey powder. When Metallie tartarous acid is poured into a folution of fulplat of arrites iron, fcaly crythals are formed by evaporation. Thefe cryftals are doubtlefs compofed of tartarous acid combined with fulplat of iron. This triple falt might be called tariro-fulpbat of iron.
14. Tartrite of potafs and iron. This triple falt was formerly called turtarifed tinclure of Mars, chalyleated tartar, and tartarifed iron. It may be formed by boiling two parts of tartar and one of iron filings, previoufly made up into a pafte, in a proper quantity of water. The liquor by evapuration depolites cryftals, which form the falt wanted.
15. Tartrite of zinc. This falt is not cafily foluble in water.
16. Tartrite of potafs and rinc. This triple falt, formed by combining tartar and oxide of zine, is very foluble in water \(\|\).
17. Tartrite of lead. This falt, which is compofed de Cbim. of tartarous acid and white oxide of lead, is almolt infoluble in water. Nitric acid diffolves it.
18. Tartrite of potafs and lead. This falt, formed by combining white oxice of lead with tartar, is very foluble in water 9 .
19. Tartrite of tin. Unknown. The tartrite of potafs and tin, compofed of tartar and oxide of tin, is capable of ery tallizing.
20. Tartrite of copper. This falt is beft formed by pouring tartarous acid into the fulutions of muriat or fulphat of copper; it precipitates in the form of blue cryftals *.

This falt forms the beft kind of the pigment ealled Brunfwick green \(\dagger\).
- Bergman.

2i. Tartrite of potafs and eopper. This triple falt is alfo in the form of blue cryftals.
22. Tartrite of bifmuth. Small eryftalline grains \(\ddagger\). | Bergmane
23. Tartrite of antimony. This falt has never been examined with attention.
24. Tartrite of potals and antimony, or tartar emctic. To this falt, which is perlaps the mof powerful emetic known, a great deal of attention has been paid, and a valt number of methods have been tried to prepare it. Thefe methods have been already deferibed in the En. cyclopædia. It appears from the experiments of Mr

Bindbeim,

Citrats.
- Ann de Chim. xii. 218.

Bindhein, that if this falt be carefully prepared, the dillerence that refults from the ufe of different oxides is not fo erreat as might have been expected*.

It was lirt made known by Adrian in 1631 . It is a triple falt, compoled of tartar and white oxide of antimony.

It is of a white colour and tranfparent. Its cryftals are trihedral pyramids.

It diffulves in co parts of cold water, and in a fmaller preportion of hot water. It is decompofed by lime and alkalies, iron, \&c. Care ought therefore to be taken to ufe only diftilled water when it is adminitered as a nedicine.
25. Tartrite of arfenic. This falt forms prifmatic + Bergman, cryftals very like thofe of oxalat of arfenic \(\dagger\).
is 295 . 26. Tartrite of mercury. A yellow powder.
27. Tartrite of potafs and mercury. This triple falt \& Monnet. cryftallizes \(\ddagger\).

\section*{Sect. XIV. Of Citrats.}

The compounds into which the citric acid enters have been denominated citrats.

Thefe falts are at prefent very imperfectly known.
§ Tourn. de Mr Dizé has promifed foon to fupply this defect \(\oint\).
Pbyf.1-94, 1. Citrat of potafs. This falt does not cryftallize. Supplement. It has a cooling faline tafte, and deliquefces when ex-

Alkaline Alkaline citrats. || Dr Dorald Monro Plisi. Tranf. 57. I Dob/cri. pofed to the air.
2. Citrat of foda. This falt does not deliquefce. It has a mild, pleafant, cooling tafte \(\|\). According to Schecle, it does not crytallize.
3. Citrat of ammonia. This falt cryftallizes in thin needles. It has a cooling and moderately faline talte 9 . The ammonia is feparated by the application of heat **
4. Citrat of barytes. This falt is fcarcely foluble in water. It affumes the form of a white powder \(\dagger\). It is foluble in citric acid.
5. Citrat of lime. This is a white powder, fcarcely foluble in water \(\ddagger\).
6. Citrat of magnefia. Does not cryfallize. It forms a gummy faline mafs very foluble in water \(\oint\).
7. Citrat of alumina. This falt is fcarcely foluble in water.
8. Citrat of iron. A folution of a brown colour.
9. Citrat of copper. A green gummy mafs.
10. Citrat of mercury. This falt may be formed by pouring citric acid into nitrat or acetite of mercury. It is a flaky falt, of a brick.duft colour, more or lefs red \(\|\).

\section*{Sect. XV. Of Malats.}

The compounds into which the malic acid enters are called malats. This clafs of falts was firft difcovercd by Scheele. They are no better known than the citrats.
3. Malat of potafs.
\(\left.\begin{array}{l}\text { 3. Malat of potafs. } \\ \text { 2. Malat of foda. } \\ \text { 3. Malat of ammonia. }\end{array}\right\}\) Thefe falts are deliquefcent \(\%\).
4. Malat of lime. Small irregular cryttals. They require a large quantity of boiling water for their folution. With excels of acid they are readily foluble in cold water \(\dagger\). They are infoluble in alcohol \(\ddagger\).
5. Malat of barytes. The properties of this falt re-
femble pretty much thofe of malat of lime \(\}\).
6. Malat of magnefia. Deliquefcent \|.

STRY.
Part III.
7. Malat of iron. A browin folution, not crytalili. zable *.
8. Malat of zinc. This falt forms beautiful cryftals \(\dagger\). + Scheck.

\section*{Sect. XVI. Of Lactuts.}

The neutral falts formed by the combination of the \(\begin{array}{r}817\end{array}\) lactic acid with various bafes are called lacats. They were fint difcovered by Echecele.
1. Iactat of potafs. A deliquefcent falt, foluble in alcohol \(\ddagger\).
2. Lactat of foda. This falt does not cryftallize. It \({ }^{\text {Mitk. }}\) is foluble in alcohol \(\S\).
3. Lactat of ammonia. Cryftals which deliquefce. \({ }^{\text {Ibid. }}\) Heat feparates a great part of the ammonia before deftroying the acid.
4. Lactat of barytes. Thefe falts deliquefce \|. The \|I Ybid.
5. I.actat of lime. lactat of lime is foluble in al-
6. Lactat of alumina. cohol 9 .
7. Lactat of magnefia. Small deliquefcent cryftals*-* Ibid.
8. Lactat of iron. A brown folution.
9. Lactat of zinc. Cryftals \(\dagger\). \(\dagger\) IBid

Thefe falts have a very Arong refemblance to malats.
The only difference which Scheele obferved was, that the malat of lime was infoluble in alcolol, while alcohol diffolved lactat of lime.

\section*{Sect. XVII. Of Saccholuts.}

The compounds into which the faccholactic acid èn- 818 ters are called faccholats. They alfo were firft difcovered by Scheele.
1. Saccholat of potafs. Small cryftals, foluble in eight times their weight of boiling water \(\ddagger\). Scecele on
2. Saccholat of foda. The fame; foluble in five Sugar of
times their weight of boiling water \(\oint\).
Mill.
3. Saccholat of ammonia. A falt which has a fouring \(\S\) lid.
tafte. Heat feparates the ammonia 9 .
I Ibid.
4. Saccholat of barytes.
5. Saccholat of lime.
6. Saccholat of magnefia. (in water *. \(18 i d\).
7. Sacchoiat of alumina.

The compounds into which the gallic acid enters are denominated gallats. They were firft attended to by 810
Gallats. the Dijon academicians and by Scheele.
J. Gallat of potafs. We only know that thefe
2. Gallat of foda. \} compofitions are puffible,
3. Gallat of anumbnia. Jand that their properties are different from thofe of all other falts.
4. Gallat of barytes. \(\}\) Thefe falts are foluble in wa-
- 5. Gallat of lime. \(\}\) ter, efpecially when there is excefs of acid.
6. Gallat of mannefia. This falt is a yellow powder, foluble in water and in alcohol *.
* Barthodid
7. Gallat of alumina. This falt, according to Bar- Ann. de tholdi, exitts ready formed in nut galls. It is very fo- cbim. xih luble in water.
8. Gallat of iron. This falt, which Mr Prouft has difcovered to be formed of gallic acid and brown oxide of iron, is of a black colour, and does not feem capable of cryftallizing. It is foluble in the three mineral acids, and by that means is deprived of its black colour. It is to this falt that ink partly owes its black colour. Gallat of iron is decompofed by alkalies.

We fhall not attempt any farther account of this clafs

\section*{Part III.}

CHEMISTRY.

Benzoats. of falts. Searcely any addition has yet been made to \(\rightarrow\) the experiments of Scheele which have been given already in the article Chemistry, Encyrl.

\section*{Sect. XIX. Of Benzoals.}

820
Alkaline
benzoats.

The compounds into which the benzoic acid enters have been called benzoats.
1. Benzoat of potals. This falt forms pointed feathery cryttals. It has a faline fharp tafte. It is very fo-
* Keir's luhle in water. It deliquefees when expofed to the air *.

Didiensry. 2. Benzoat of foda. The cryftals of this falt are larger, but its tafte is the fame with that of benzoat of potaifs. It is alfo very foluble in water. It cfflorefces + Ibia. in the air \(\dagger\).
3. Benzoat of ammonia. This falt cryftallizes with dificulty. Its cryitals are feather-fhaped. It deli\(\ddagger\) Ibis. quefces \(\ddagger\).

821
Earthy
benzoats.
§ Iuid.
+ Ibid.
822
Metallire
benzoats.
T Trammifdorf, Ann
de Cbim. xi 314.
- Id. ibid.
+ IS. ibid.
\(\ddagger\) 14. ibid.
§ 14. ibid.
! Id. ibid.

IId. ibid.
* id. ibid.
\(\dagger\) id. ibid.
16. Benzoat of arfenic. Small feather-fhaped cryfals. It is foluble in hot water, but cryltallizes in the cooling. A moderate heat fublimes it ; a ftrong heat decompores it. Sulphur decompofes it. It is not de: compofed by alkalies \(\ddagger\).
17. Benzoat of mercury. A white powder. It is infoluble in water, hut diffolves in a fmall quantity is alcohol. It is not altered by expofure to the air. A fmall heat fublimes it; a greater decompofes it. It is
15. Benzoat of antimony. Cryftals which efflorefce
9. Benzoat of manganefe. This falt, which is formed of benzoic acid and white oxide of manganefe, cryftallizes in fmall feales. It diffolves readily in water; with difficulty in alcohol. It is not altered by expofure the air \(\dagger\).
10. Benzoat of cobalt: Flat cryftals \(\ddagger\).
11. Benzoat of lead. Very white cryitals, foluble in water and alcohol. They are not altered by expoliure
12. Benzoat of tin. This falt may be formed by pouring benzoat of potafs into a folution of tin in the nitro-muriatic acid. The benzoat of tin is precipitated. It is foluhle in hot water, but infoluble in alcohol. Heat decompofes it II.
13. Benzoat of copper. Small cryftals of a deep green coluur. They are with difficulty foluble in water, and not at all in alcohol 9 .
14. Benzoat of bifmuth. This falt forms white needle-fhaped cryftals. They are foluble in water, and in a very fmall proportion in alcohol. They are not altered by expofure to the air. Heat decompofes them \({ }^{*}\).
the air. Heat difengages the acid \(\delta\).
4. Benzoat of lime. This falt forms white, fhining, pointed cryftals, of a fweetifh tafte, and not eafily foluble in water \(\oint\).
5. Benzoat of magnefia. Feather-fhaped cryftals, of a fharp bitter tafte, and eafily foluble in water \(\dagger\).
6. Benzuat of alumina, an aftringent falt.
7. Benzoat of iron. This falt forms yellow cryitals. It has a fweet tate. It is foluble in water and alcolol.
8. Benzoat f zis. This fatt forms arore
. Benzoat of zinc. This falt forms arboreicent
itals. It is foluble in water and alcohol. When expo-
d to the air it is diffipated. Heat decompofes it *
18. Benzoat of filver. This falt, is foluble in water,
and alfo in a very fmall proportion in alcohol. It is Camphonot altered by expofure to the air, but the rays of the rat. fun render it brown. Heat difengarges its acid * \(\cdot\) Id. ibis.
19. Benzoat of gold. Small irregular cryftals, not eafily foluble in water ; infoluble in alcoliol. It is not altered by expofure to the air. Heat decompofes it \(\dagger\). \(\dagger\) Id. ibid.
20. Benzoat of platinum. This falt forms fmall brownifh cryftals, with dificulty foluble in water; not foluble in alcohol. When expofed to heat, it is decompofed, and there remains belind a brown powder \(\ddagger\). \(\ddagger\) Th. ibid.

\section*{Sect. XX. Of Succinats.}

The neutral falts, formed by the combination of the fuccinic acid with various hafes, have been called fuccimals.

We fall not defcribe thefe falts, as we could not add mucl to the account given in the Appendix to the article Chemistry in the Encycl. That account was taken from Mr Kier's Chemical Dictionary, and that gentleman borrowed it from Leonhardi.

\section*{Sect. XXI. Of Camphorats.}

The neutral falts into the compofition of which camphoric acid enters, have bcen denominated camphorats. The only chemilt who has hitherto examined then is Bouillon la Grange : his experiments have been publifhed in the \(27^{\text {th }}\) volume of the Annales de Cbimic.
1. Camphorat of potafs. To prepare this falt, carbonat of potals is to be diffolved in water, and the folu. tion faturated with camphoric acid. When the effervefcence is over, the liquor is to be evaporated by a gentle heat to the proper confiftence, and cryftals of campho. rat of potals will he depofited when the liquor cools.

Camphorat of potafs is white and tranfparent ; its cryitals are regular hexagons. Its talte is bitterifi and fightly aromatic.

Water at the temperature of \(60^{\circ}\) diffolves \(\frac{T_{5}}{\text { r }}\) th part of its weight of this falt ; boiling water diffolves \(\frac{1}{y}\) th part of its weight.

It is foluble in alcohol, and the folution burns with a deep blue flame.

When expofed to moif air, it lofes a little of its. tranfparency, but in dry air it fuffers no change.

When expofed to lieat it melts, fwells, and the acid is volatilized in a thick fmoke, which has an aromatic odour. Before the blow-pipe it burns with a blue flame, and the potafs remains behind in a tate of purity.

By compound affinity this falt is decompofed by Nitrat of harytes, All the falts whufe bafe is lime,
Nitrat of filver,
Sulphat of iron,
Muriat of tin,
-_- lead \(\oint\).
§ Borillun
2. Camphorat of foda. This falt may be formed La Grange, precifely in the fanse manner with the camphorat of Ann. is potals.

It is white and tranfparent ; its tafe is fomewhat \({ }^{24}{ }^{2}\) \$2s bitter;-its cryftals are irregular. Camphors

Water at the temperature of \(60^{\circ}\) diffolves \(\cdot \operatorname{lef}\) than \({ }^{\text {nf fuda. }}\)
\({ }_{\Sigma} \frac{1}{\delta} \frac{1}{\sigma}\) th part of its weight of this falt ; boiling water dif.
folves \(\frac{7}{8}\) th of its weight.
It is alfo foluhle in aicohol.
When expoled to the air it lofes its tranfparency, and
-

Canpho. efflorefces nightly, but is never completely redaced to rats. powder.
* Beuillon

La Grange,
Ane: de
Cbim.xyvii. 26.

825
Camphorat
of ammo. nia.

Heat produces the fame effect upon it as on camphorat of potafs : the acid burns with a blue fame, which becomes reddifh towards the end.

By compound affinity it is decompofed by
Nitrat of lime,
Muriat of magnefia,
barytes,
alumina,
Muriat of hime,
Sulphat of alumina,
ny other falts with me-
tallic bafes *.
3. Camphorat of ammonia. This falt may be prepared by diffolving carbonat of ammonia in hot water, and adding camphoric acid nowly till the alkali is faturated. It mult then be evaporated with a very moderate heat, to prevent the difengaging of ammonia.

It is very difficult to obtain this falt in regular cryflals. When evaporated to drynefs, there is obtained a folid opaque mafs of a fharp and bitterifh tafte.

Water at the temperature of about \(60^{\circ}\) diffolves nearly \(\frac{\text { qog th }}{}\) th part of its weight of this falt; boiling water diffolves \(\frac{1}{3} \mathrm{~d}\) of its weight: But this and the two falts above defcribed are a good deal nore foluble when there is excefs of bafe.
-It is entirely foluble in alcolol.
When expofed to the air it attracts moifture, but not in fufficient quantity to enable it to affume a liquid form.

When expofed to heat it fwells, melts, and is converted into vapour; before the blow-pipe it burns with a blue and red flame, and is entirely volatilized.

Moft of the calcarcous falts form triple falts with camphorat of ammonia.

It decompofes in part all the aluminous falts except the fulphat of alumina \(\dagger\).
Samphorat
Cat of barytes.
4. Camphorat of barytes. In order to prepare this falt, barytes is to be diffolved in water, and camphoric acid added to the folution; the mixture is then to be boiled, and afterwards filtered and evaporated to drynefs.

Camphorat of barytes does not cryftallize; when the evaporation is conducted flowly, the falt is depofited in thin plates one above another, which appear tranfparent while immerfed in the liquor, but become opaque whenever they come into contact with the air.

It has very little tafte, though it leaves at laft upon the tongue a fight impreffion of acidity mixed with bitternefs.

Water diffolves only a very fmall quantity of this falt, boiling water being capable of taking up only \({ }^{\frac{1}{\delta} \text { or th part of it. }}\)

It is not altered by expofure to the air.
When expofed to heat it melts eafily, and the acid is volatilized. When the heat is confiderable, the acid burns with a lively blue flame, which becomes red and at laft white.

It is decompofed by
Nitrat of potafs, foda, lime, ammonia, and magnefia. Muriat of lime, potafs, alumina, and magnefia. All the fulphats.
\(\ddagger\) Bouillon
La Grange, Carbonat of potafs and foda.
;bid. p. 23. Phofphat of potafs, foda, and ammonia *.
5. Camphorat of lime. This falt may be prepared Camphoras by dropping into lime-water cryftallized camphoric acid. fime.

The mixture is then to be made boiling hat, paffed through a filter, and evaporated to about \(\frac{3}{7}\) the of its volume. On cooling, camphorat of lime is depolited.
It has no regular hape; but if the evaporation has been properly conducted, it is in plates lying oue above
 bitter.

Water at the temperature of \(60^{\circ}\) diffolves very little of this falt; boiling water is capable of diffolving about \(\frac{\pi}{2} \frac{2}{8}\) th part of its weight of it. It is infoluble in alcohol.

It is compofed of 43 parts of lime, 50 of acid, and 7 of water.

When expofed to the air it dries and falls into powder.

When expofed to a moderate heat it melts and fwells up: when placed on burning coals, or when heated in clofe veffels, the acid is decompofed and volatilized, and the lime remains pure.

When fulphuric acid is poured into a fulution of this falt, it produces an infoluble precipitate; nitric and muriatic acids precipitate the camphoric acid.

It is decompofed by compound affinity by
Carbonat of putafs,
Nitrat of barytes,
Meriat of alumina, Sulphat of alumina, Phorphat of foda *.
6. Camphorat of maguefia. This falt may be pre-La Grange, pared by pouring water on carbouat of magnefia, and then adding cryltallized camphoric acid: lieat is then applied, the folution is filtrated, and evaporated to drynefs. The falt obtained is diffolved in hot water, paffed Camphoraz through a filter, and evaporated by means of a mode. of magnerate heat till a pellicle forms on the furface of the folu. Gia. tion. On cooling, the falt is depofited in thin plates. The fecond folution is to remove any excefs of magnefia that may happen to be prefent.

This falt does not cryftallize. It is white, opaque, and has a bitter tafte.

It is fcarcely more foluble in water than camplorat of lime.

Alcohol has no action on it while cold, but when hot it diffolves the acid and leaves the magnefia; and the acid precipitates again as the alcohol cools.

When expofed to the air it dries and becomes covered with a little powder; but this effect is produced flowly, and only in a warm place.

When theis falt is placed on burning coals, the acid is volatilized, and the nagnefia remains pure. Before the blow-pipe it burns like the other camphorats with a blue flame.

The nitrats, nauriats, and fulphats, do not completely decompofe this falt, if we except the nitrat of lime and muriat of alumina \(\dagger\).
7. Camphorat of alumina. To prepare this falt, alumina, precipitated by means of ammonia, and well walhed, is to be mixed with water, and eryftals of camphoric acid added. The mixture is then to be heated, filtered, and concentrated by evaporation.

This falt is a white powder, of an acid bitterifh tafte, leaving on the tongue, like mof of the aluminous falts, a fenfation of aftringency.

Water at the temperature of \(60^{\circ}\) diffolves about. \(\frac{3}{50}\) th part of its weight of this falt. Boiling water diffolves
Camphorat of alumina
suberats. it in confiderable quantitics; but it precipitates again as \(\xrightarrow{\text { the folution cools. }}\)

Alcohol, while cold, diffolves it very fparingly ; but when hot it diffolves a confiderable quantity of \(i t\), which precipitates alfo as the folution cools.

This falt undergoes very little alteration in the air ; but it rather parts with than attracts moilture.

Heat volatilizes the acid; and when the falt is thrown on burning coals it burns with a bluc flame.

It is decompored by the nitrats of lime and baBouillon rytes *

La Grange,
A=n. de
CEim. xxvii. \(3+\).
\(\$ 30\)
Suberat of potass.

\section*{Sect. XXII. Of Suberats.}

The falts formed by the fuberic acid have obtained the appellation of fuberats. They have hitherto been examiaed only by Bouillon la Grange.
1. Suberat of potafs. - This falt ought to be formed by means of cryftallized carbonat of potafs.

It cryftallizes in prifms, having four unequal fides. It has a bitter faltifh tafte, and it reddens vegetable blues. It is very foluble in water. Caloric melts it, and at laft volatilizes the acid.

It is decompofed by moft of the metallic falts, and by fulphat of alumina, muriat of alumina, and of lime; nitrat of alumina and of lime; and phofphat of alu. mina \(\dagger\).
2. Suberat of foda.-This falt does not cryftallize. It reddens the tincture of turnfole. Its tafte is flightly bitter. It is very foluble in water and in alcohol. It attracts moifure from the air. Caloric produces the fame effect on it that it does on fuberat of potafs.

It is decompofed by the calcareous, aluminous, and
\(\ddagger\) Id. ibid.
p. 53.

Suberat of
amnonia. magnefian falts \(f\).
3. Suberat of ammonia. - This falt cryfallizes in parallelopipels. Its tafte is faltifh, and it leaves an impreffion of bittcrnefs: It reddens vegetable blues.

It is very foluble in water. It attracts moillure from the air. When placed upon burning coals, it lofes its water of cryftallization, and fwells up; and befure the blow-pipe it evaporates entirely.

It is decompofed by the aluminous and magnefian
§ IJ.ibid.
p. 55.
\({ }^{8} 33\)
Suberat of
barytes.
|| 14. ibid.
P. 58.

834
Suberat of
lime. falts §.
4. Suberat of barytes. - This falt does not cry fallize. Heat makes it fwell up, and melts it. It is fcarcely foluble in water except there be an excefs of acid.

It is decompofed by moft of the neutral falts, except the barytic falts and the fluat of lime \(\|\).
5. Suberat of lime. - This falt dues not cryftallize. It is perfectly white: It has a faltith tate: It does not redden the tincture of turnfole.

It is very fparingly foluble in water except when hot ; and as the folution cools moll of the falt precipitares again.

When placed upon burning coals it fwells up, the acid is decompofed, and there remains only the lime in the flate of powder.

It is decompofed by
The muriat of alumina,
The carbonats of potals and foda,
The fluat of magnefia,
The phofphats of alumina and foda,

\section*{The borat of potals,}

All the metallic folutions 7 .
TId. ibid.
P. 54.
\(\delta_{35}\)
Suberat of
6. Suberat of magnefia. - This falt is in the form of magnefia.
bitter tafte: It is foluble in watcr, and attracts fome
Prufiats moilture when expoled to the air.

When heated it fwells up and melts: before the blow-pipe the acid is decompuled, and the magnefia remains in a ftate of purity.

It is decompoled by
Muriat of alumina,
Nitrat of lime and alumina,
Borat of potals,
Fluat of toda,
Pholphat of alumina *.
- Bouillon
7. Suberat of alumina. - This falt does not cry ftallize. Ls Grange When its folution is evaporated by a moderate heat in Ann. de a wide veffel, the falt obtained is of a yellow colour, cibim. sxiii, tranfparent, having a flyptic tafte, and leaving an im. \({ }_{536}\). preffion of bitternefs on the tongue. When too much Suberat of heat is employed it melts and blackers. It reddens the alumina. tincture of turnfole, and attracts moifture from the air. Before the blow-pipe it fwells up, the acid is volatilized and decompofer, and nothing remains but the alumina.

It is decompoled by
The carbonats of potafs and foda,
The fulphat of iron,
The muriat of iron,
The nitrats of filver, mercury, and lead + . \(\dagger\) If, ibid,
Suberic acid forms alfo compounds with the oxides of filver, mercury, lead, copper, tin, iron, bifmuth, arfenic, cobalt, zinc, antimay, manganefe, and molybdenum; moft of which are incryftallizable, and have an excef; of acid \(\ddagger\).
\(\ddagger\) H. \({ }^{2}\) idid. F. 57.

\section*{Sect. XXIII. Of Pruffats.}

The componnds into which the pruffic acid enters are called Pruffuts.

Thefe fubftances, the moft important of which are triple falts, have fomething very peculiar in their affinities. The pruffic acid appears to have a ttronger affinity for alkalies and earths than for metals, at leaft thefè fubftances are capable of decompofing metallic pruffiats ; yet acids farcely decompofe the metallic pruffiats, while the weakef acid known decompofes the pruffiats of alkalies and earths. Thefe phenomena have not yet been fatisfactorily accounted for.
\(\left.\begin{array}{l}\text { 1. Pruffiat of potafs. } \\ \text { 2. Pruffiat of foda. }\end{array}\right\}\) Thefe falts were firll ob. Alkaline \(\begin{aligned} & 8, \\ & \text { pruliats. }\end{aligned}\) prullats. tained pure by Mr Scheele. They are foluble in water; but they are of little ufe, as mere expofure to the air decompofes them.
3. Pruiliat of ammonia. - This falt has the fmell of ammonia. It is very volatile and as eafily decompofed as the other two.
4. Prufliat of lime.-This falt is foluble in water. Earthy

It is alfo decompofed by expofure to the air. prufliata
5. Pruffiat of barytes. \(\}\) Thefe falts are alfo fo.
luble in water, and decompofed by all acids.
Pruffic acid does not combine with alumina.
7. Pruffiat of iron, or Pruffian blue. - This fubftance Prufiaan is compofed, as Mr Prouft has thewn, of the pruffic blue.
acid and brown oxide of iron. With the green oxide the pruffic acid forms a white compound, which, how. ever, becomes gradually blue when expofed to the atmofphere, becaule the oxide abforbs oxygen, and is converted into brown oxide \(\oint\).

Pruffiat of iron is a deep blue coloured powder. \(3^{C}\)
is
is insoluble in water, and scarcely foluble in acids. It is compofed, according to the molt accurate experiments hitherto made, of equal parts of oxide of iron and proffie acid. It is not affected by expofure to the air. Heat decumpofes it by deftroying the acid, and the oxide of iron remains behind.

The Pruffian blue of commerce, befieles other impurities, contains mixed with it a great quantity of alumina. Its ufe as a pigment, and the attempts which have been made to introduce it as a dye, are well known.
Prufliat of iron may also exit in another fate: It may have a fuperabundance of oxide; its colour is then more or left yellow. To this fate it may be reduced by digefting it with alkalies or any of the alkaline earths. There fubftances deprive it of part of its acid, but not of the whole. of the pruf-other phenomena which the pruffic acid difplays in its fica acid ex-combinations, we would conjecture, that this yellow grained.

This yellow pruffiat is foluble in acids.
Were we to attempt an explanation of this, and the pruffat is the fubflance formed by the direct combinaion of brown oxide of iron and prufic acid, and that the blue pruffiat is formed of the yellow pruffiat combined as an integrant with pruffic acid: That the affinity between the pruffic acid and oxide of iron is much ftronger than that between yellow pruffiat of iron and pruffic acid; that therefore alkalies and earths have a flrouger affinity for pruffic acid than the yellow pruffiat has, hut a much weaker affinity than oxide of iron, and perhaps every other oxide; -hence the apparent fuperiority of alkalies and earths in forme cafes, while in others they appear very inferior. We would fuppofe, then, that the pruffic acid has a much ftronger affinity for oxide of iron, and perhaps for all other oxides, than for other bodies; that the pruffiats, thus formed, are capable of combining with pruffic acid; but that their affinity for it is much left than that of the alkalies and earths. This conjecture is fupported by ali the phenomena at prefent known ; it would remove all the apparent anomalies which the combinations of this fingular acid prefent, and reduce the whole of them under the known laws
\(8_{4} \mathrm{I}\)
Properties of Pruflian
alkali, of affinity.
9. Pruffat of potafs and iron, commonly called Prufflan alkali:, or Prufiun tefl. This fubflance is a triple fat, composed of pruffic acid, potafs, and oxide of iron combined together. To chemitts and mineralogitts it is one of the molt important inftruments ever invented ; as, when properly prepared, it is capable of indicating whether any metallic fubftance (platinum excepted) be prefent in any folution whatever, and even of pointing out the particular metal, and of afcertaining its quacity: This it does by means of a compound affinity, which, after what has been laid above, may be eafily underfloor. The Pruflian alkali may be conceived to be a combination of two fubftances, pruffiat of potais and blue prufliat of iron. Now every metallic oxide has a longer affinity for pruffic acid than potafs has (and, in fad, feems to have a fronger affinity for it than for any other fubftance). If, therefore, there happen to be any oxide in the folution, it immediately feizes the pruffic acid with which the portals is combined, and by that means decompofes the triple fall. A pruffiat of the particular metal is formed, and, as moll pruffiats of metals are insoluble, it is precipitated; and it indicate by its colour the particular metal, and by its
weight the quantity of metal that happens to be presfont. At the fame time the blue prufiiat of iron is al. fo precipitated, and its weight mut be deducted from the quantity of the precipitate.

In order to be certain of the accuracy of there refults, it is neceffary to have a Pruffian alkali perfectly pure, and to be certain before hand of the quantity, or rather of the proportions of its ingredients. To obtain a tell of this kind has been the object of chemifts ever fine the difcoveries of Masquer pointed out its importance. It is to the fe of impure tells that a great part of the contradictory refults of mineralogical analyses by different chemists is to be aferibed.

There are two * ways in which this tefl may he rem- * See Mir. deed impure, betides the introduction of foreign in- wan's Miro gradients, which we do not mention, because it is ob- 1.487. pious that it mut be guarded again. 1. There may be \(\frac{84^{2}}{8}\) a fuperabundance of alkali prefent, or, which is the impurities. fame thing, there may be mixed with the Pruffian tefl a quantity of pure alkali; or, 2. There may be contained in it a quantity of yellow pruffiat of iron, for which pruffiat of potafs has alfo a confiderable affinity.

If the Pruffian tefl contain a fuperabundance of alkali, two inconveniences follow. This fuperabundant quantity will precipitate thofe earthy falls which are liable to contain an excels of acid, and which are only foluble by that excels: Hence alumina and barytes will be precipitated. It is to the use of impure tets of this kind that we owe the opinion, that barytes and alumina are precipitated by the Pruffian alkali, and the consequent theories of the metallic nature of the fe earths. This miftake was firft corrected, we believe, by \(\mathrm{Mr} \mathrm{Kla}^{-}\) broth.

Another inconvenience arifing from the fuperabundance of alkali in the Pruffian tefl is, that it gradually decompofes the blue pruffiat which the tet contains, and converts it into yellow pruffiat. In what manner it does this will be understood, after what has been fail; without any explanation.

On the other hand, when the Pruffian alkali containsa quantity of yellow pruffat of iron, as great inconveniences follow. This yellow pruffiat has an affinity for. pruffic acid, which, though inferior to that of the potaft, is til confiderable; and, on the other hand, the potafs has a ftronger affinity for every other acid than for the pruffic. When, therefore, the tefl is expofed: to the air, the carbonic acid, which the atmosphere always contains, affifted by the affinity between the yetlow prufiat and the pruffic acid, decomposes the prusfiat of potafs in the tefl ; and the yellow pruflat is procipitated in the form of Pruffian blue: And every other acid produces the fame effect. A tell of this kind, therefore, would indicate the pretence of iron in every mixture which contains an acid (for a precipitation of Pruffian hlue would appear); and could not, therefore, be trusted to with any confidence.

We will not attempt to defcribe the various methods Klaproth'swhich different chemifts have adopted of preparing this method of tell; but fall fatisfy ourfelves with defcribing the forming is method of Klaproth, which anfwers the purpose completely. This we fall do nearly in the words of Mr Kirman.

Prepare a pure potals, by gradually projecting into a large crucible heated to whitnefs a mixture of equal parts of purified nitre and crytals of tartar ; when the whole
\(\underbrace{\text { Prufliats. is injefted, iet it be kept at a white heat for half an }}\) \(\underbrace{\text { - hour, to burn off the cual. }}\)

Detach the alkali thus obtained from the crucibic, reduce it to powder, fpread it on a muffe, and expufe it to a white lieat for half an hour.
1) iffolve it in fis times its weight of water, and filter the folution while varm.

Pour this folution into a glafs receiver, placed in a fand furnace, heated to \(170^{\circ}\) or \(180^{\circ}\), and then gradually add the beft Pruffian blue in powder, injecting new portions according as the furnier becomes grey, and fupplying water as faft as it evaporates; continue until the added portions are no longer difcoloured, then increafe the heat to \(212^{\circ}\) for half an hour.

Filter the ley thus obtained, and faturate it with fulphuric acid moderately diluted; a precipitate will appear ; when this ceafes, filter off the whole, and wafh the precipitate.

Evaporate the filtered liquor to about one quarter, and fet it by to cryfallize : after a few days, yellowifh cryftals of a cubic or quadrangular form will be found mixed with fome fulphat of potafs and oxide of iron ; pick out the yellowifh cry tals, lay them on blotting paper, and rediffolve them in four times their weight of cold water, to exclude the fulphat of potafs.
7. Effay a few drops of this folution with barytic water, to fee whether it contains any fulphuric acid, and add fome barytic water to the remainder if neceffary: filter off the folution from the fulphat of barytes, which will have precipitated, and fet it by to cryftallize for a few days; that the barytes, if any fhould remain, may be precipitated. If the cryftals now obtained be of a pale yellow colour, and difcover no bluifh ftreaks when fprinkled over with muriatic acid, they are fit for ufe; but if they ftill difcover bluih or green ftreaks, the folutions and cryftallizations muft be repeated.

Thefe cryitals mult be kept in a well-Itopped bottle, which to preferve them from the air fhould be filled with alcohol, as they are infoluble in it.

Before they are ufed, the quantity of iron they con. tain fhould be afcertained, by heating 100 grains to rednefs for half an hour in an open crucible : the pruffic acid will be confumed, and the iron will remain in the flate of a reddifh brown magnetic oxide, which fhould be weighed and noted: This oxide is half the weight of the Prufian biue afforded by the Pruffian alkali; ; its weight muft therefore be fubtracted from that of me\(t\) allic precipitates formed by this teft. Hence the weight of the cryftals, in a given quantity of the folution, fhould be noted, that the quantity employed in precipitation nay be known. Care muft be taken to continue the calcination till the oxide of iron becomes brown; for while
- Kirwan's it is black it weighs confiderably more than it fhould *.

Ni ineral. 9 . Pruffiat of foda and iron. The only difeernible
difference between this falt and the laft is, that it cry4 Bertbolle: fallizes differently \(\dagger\).

\footnotetext{
\(\ddagger\) Woulfe,

\section*{Yuurn. de} Pby. xxxiv. \({ }^{\circ}\) 10:. and deliquefces in the air. Heat decompofes it like the other pruffiats \(\ddagger\).
We fall not give any defcription of the triple falts
}
10. Pruffiat of ammonia and iron. This triple falt has alfo been employed as a teft; but it is not fo eafy to obtain it in a flate of purity as the other two. It was difcovered by Macquer, and firit recommended by Meyer.

It forms flat hexangular cryftals, foluble in water,
formed by digcting the alkain: carths on prulfiat of Sebats. iron; they are fufficiently known, and are not of any ufe except as tefts; and in that refecct they are inferior to that above deferibed. They are all foluble in water, and are moft of them capable of cryllallizing.
11. Pruffiat of neercury. This ialt, which was firf Prufiat of formed by Scheele, is compofed of the pruffic acind mercury. combined with the red oxide of mercury. It may be formed by boiliag the red oxide of mercury with Pruffian bluc. It cryftallizes in tetraliedral prifms, terminated by quadrangular pyranids, the fides of which correfpond with the angles of the prifm.
This falt is capable of combining with fulphuric and muriatic acids, and forming triple falts, which have not yet been examined *.

\section*{Sect. XXIV. Of Formats.}

The compounds into which the formic acid enters are called formats. We fall not defcribe them, as little has been added to the account already given in the Appendix to the article Chemistry in the Encyclopredia.

\section*{Sect. XXV. Of Sebats.}

The compounds into which the febacic acid enters are called febats. For our knowledge of this clafs of falts we are chiefly indebted to the celebrated Cre!!, who publifhed a differtation on the febacic acid and its combinations in the Plilofophical Tranfactions for 1780 and 1782.
1. Sebat of potafs. This fa!t is of a white colour. Alkalive feo Its crytals are quadrangular pyramids, of which two bats. oppofite fides are narrower than the others. It has a fharp faline tafte like muriat of ammonia, but milder. It is foluble in water, infoluble in alcohol, and does not deliquefee when expofed to the air. Heat decompofes it.
2. Sebat of foda. This falt is white. Its cryitals are pyramids, with three or four fides: a very moderate heat melts them.
3. Sebat of aminonia. This falt in tafte and folubility refembles muriat of ammonia, but it differs from it in not being capable of fubliming iron.
4. Sebat of lime. The cryttals of this falt are hex-Earthy \({ }^{847}\) agons, terminated by a planc furface: they liave a tharp bats. acrid tafte; are very foluble in water, but not in alco. hol : they do not deliquefce.
5. Sebat of magnefia. A gummy, faline, uncryftallizable mafs.
6. Sebat of alumina. A gummy faline mafs, which does not cryftallize, and has an auftere aftringent tafte.
 liquefce.
8. Sebat of lead. Needle.flaped cryftals, very foluble in water.
9. Scbat of tin. A white deliquefcent falt.
10. Sebat of copper. This falt is capable of cryftal. lizing, but is very deliquefcent.
11. Sebat of antinony. A cryflallizable falt, which does not deliquefce.
12. Sebat of arfenic. Small cryttals.
13. Sebat of mercury. A white powder, very dif, ficultly foluble in water.
14. Sebat of gold. Yellow cryftals.
15. Sebat of platinum. Brownih yellow cryftals.

The bombats or compounds which the bombic acid forms are fill unknown.

Metallic Acid salts.

Sect. XXVI. Of Arfeniats.
Tale compounds formed by the combination of the arfenic acid with bafes are called orfenints. This clafs of falts was firf difcovered by Macquer ; but little, accurate was known concerning it till Scheele made known the arfenic acid.

An abflract of Scheele's experiments has been given in the article Chemsstry, Encycl.

To his defcription of arfeniats feveral additions might be made, but not of fufficient confequence to warrant a repetition of what has been given in that article; and without fuch a repetition thefe additions would fearcely be intelligible.

\section*{Sect. XXVII. Of Metallic Acid Salts.}

Ir has been conjectured that all metals may be converted into acids by combining them with a fufficient quautity of oxygen. This conjecture has been verified in a confiderable number of inftances. We have feen the arfenic acid, the tungttic acid, the molybdic acid, and the new metallic acid of Vauquclin. Berthollet has difcovered that platinum becomes an acid; and the fame thing has been afcertained with regard to tin. Even thofe metallic oxides which do not poffefs many of the characters of acids are capable of combining with alkalies and earths, and of forming peculiar neutral falts. Thefe oxides, therefore, perform the office of acids; and confequently muit be confidered as partaking of their nature, or rather as a kind of intermediate fubflances between acids and thofe bodies which unite only with acids.

Some of thefe neutral falts we fhall proceed to enumerate.
1. Aurat of ammonia, or fulminating gold. This falt is compofed of the oxide of gold and ammonia. This compound may be furmed by precipitating gold from nitro-muriatic acid by ammonia. The precipitate is fulminating gold. Bergman was the firt who clearly demonftrated that this powder is compofed of uxide of gold and ammonia. When heated a little above the boiling temperature it explodes with aftonihing violence. Chemifts had made many attempts to explain the caufe of this phenomenon, but without fuccefs, till Mr Berthollet difcovered the compofition of anmonia. After making that difcovery, he proved, by a number of delicate and hazardous experimerts, that during the fulmination the ammonia is decompofed, that its hydrogen combines with the oxygen of the oxide and forms water, while the azot flies off in a gafeons furm, and
2. Argentat of ammonia, or fulminating filver. This fubitance was difcovered by Mr Berthollet. It may be formed by diffulving oxide of filver in ammonia. It is a black powder. It poffeffes the fulminating property much more powerfully than the lat defcribed fubfance. The fighleft friction makes it explode with violence.
* Bertbollet, This propcrty, as Mr Berthollet has proved *, is owing

\section*{Ann.de}

Cbim. i.
water. Nitrat and muriat of barytes precipitate filver Hydrofulfrom this falt.
phurets.
3. Mercuriat of lime. Oxide of mercury boiled with \(\overbrace{8 s}\) linie-water forms, by evaporation, frall tranfparent yel-mercuriat low cryitals *.
4. Mercuriat of ammonia. Oxide of mercury dif. "f anmmofolves in anmmonia in large quantity, and by evapora- \(:\) nil. idisid. tion furnifhes a white falt \(\dagger\).
5. Cuprat of ammonia. Oxide of copper diffolvesibid.
in ammonia. Mr Sage has deferibed its cry fallization. 852 It is decompofed by lime and putafs, and cuprat of lime Cuprat of and potafs are formed.
6. Stannat of gold. When gold is precipitated by Stannat of tin it unites with it. Vogel and Beaumé firit obferved gold. that the precipitate, which is purple, contained tin.
7. Plumbat of lime. Lime-water boiled un the red Plumbat oxide of lead difolved it. This folution, evaporated in a of lime. retort, gave very fmall tranfparent cryftals, furming prifmatic colours, and not more foluble in water than lime. It is decompofed by all the fulphats of alkalies and by fulphurated hydrogen gas. The fulphuric and muriatic acids precipitate the lead. It blackens wool, the nails, the hair, white of eggs ; but it does not affect the colour of filk, the fkin, the yoke of eggs, nor animal oil. It is the lead which is precipitated on thefe coloured fubflances in the flate of oxide; for all acids can diffolve it. 1 Berthollets. The fimple mixture of lime and oxide of lead blackens .Arn. de thefe fubitances ; a proof that the falt is eafily formed \(\ddagger\). Cbim, i. 37 .
8. Zincat of ammonia. De Cafone has publifhed a Zincat great number of experiments on the property which Zinmeat of ammonia has of diffolving oxide of zinc. Lime-water \$ \(\mathrm{Id} . \mathrm{ibid}\). and potafs allo diffulve it \(\$\).
9. Antimoniat of putafs. When antimuny is deto- osf 6 nated with nitre in a crucible, part of its oxide unites of porafs. with the potafs of the nitre \(\|\).
\(\|\) Id. ibrd.

\section*{Chap. IlI. Of Hydrosulphurets.}

Sulphurated hydrogen gas, which has been defcri-Propertics bed in the firft part of this article, poffeffes almoft all of fulphuthe properties of acids. It combines with water, and rated hythe folution gives a red colour to vegetable blues. It \({ }^{\text {drogen gaso }}\) decompofes loaps and fulphurets, and is capable of combining with alkalies, earths, and metallic oxides, and of. forming compounds, to which Mr. Berthollet, to whom we are indebted for difcovering them, has given the name of bydrofulphurets 9 .

Before giving any account of thefe compounds, which Chim. Ann. de we fhall do from the paper of Berthullet juft quoted, 233 . we beg leave to make a few previous obfervations, in order to rectify fome inaccuracies into which we have fallen from not being acquainted with the experiments of that philofopher.

858
Sulphur is capable of combining with alkalies, carths, Remarks metals, and metallic oxides, and forming the compounds on fulphuknown by the name of fulphurets. The alkaline, earthy, rets. and even fome of the metallic fulphurets, can only exift. in a flate of drynefs: the inflant they are moiftened with water, a quantity of fulphurated hydrogen gas is formed, which combines with the fulphuret, and forms a new compound. To thefe triple compounds Mr Berthollet. has given the name of hydrogenous. fulphurets. All folutions of fulphurets in water are in face hydrogenous. fulphurets. Were it not for the formation and combination of fulphurated hydrogen, the alkaline fulphurets
would

Hydroful. would be completely decompofed by water, and their phurets. fulphur precipitated; for water has a ftronger affinity for the alkalies than fulphur has. This Berthollet proved by the following experiment: To a foltition of fulpluret of potafs in water (that is, to hydrogenous fulpluret of potafs), a quantity of oxy-muriatic acid fuperfaturated with potals was added, and the fulphur was inmediately precipitated. In this experiment the fulphurated hydrogen was deftroyed by tlie uxygen of the oxy-muriatic acid; and the precipitation of the fulphur fhews that its affinity for potafs was not fufficient to keep it diffolved, or, which is the fame thing, that its affinity for potafs was inferior to that of water.

859 Hydrogenous fulphuret of mercury.

860
Method of forming bydrofulplaurets.

The fubftance which we defcribed in Part I. chap. iii. fect. 4. of this article, under the name of Black Sulpburet of Mercury, is a hydrogenous fulphuret of mercury, and thecefore differs from the red fulphuret of mercury or cinnabar by containing a quantity of fulphurated hydrogen. Potafs has a ftronger affinity for this laft fubflance than the fulphuret ; potafs therefore, by the affiftance of heat, deprives the black or hydrogenous fulphuret of its fulphurated hydrogen, and reduces it to the thate of red fulphuret. This explains the method of forming cinnabar defcribed in the fection above referred to, and points out a much eafier procefs for obtaining that ufeful pigment.

We thall now proceed to the method of forming the hydrofulphurets. Berthollet obtained fulphurated liydrogen gas from fulphuret of iron in the ufual manner, by means of fulphuric acid. It was made to pafs thro a veffel filled with water before it entered that in which the combination was to take place. By this method a folution of potafs was impregnated with fulphurated hydrogen; and in order to be certain of faturating the alkali completely, the gas was added in excefs, and the excefs was afterwards driven off by means of lieat. By this method hydrofulphurets of putafs, foda, and ammonia, may be formed.

In order to form hydrofulphuret of lime, that earth was mixed with diftilled water, and fulphurated hydrogen gas paffed into this mixture till a fufficient quantity of hydrofulphuret was judged to be formed ; the liquid, which contained it in folution, was poured off the undiffolved lime, and faturated to excefs with fulphurated hydrogen, and this excefs was afterwards driven off by means of heat.

Hydrofulphuret of magnefia may be formed by diffolving magnefia in water impregnated with fulphurated hydrogen gas.

If a folution of fulphuret of barytes in water, or, more properly, if hydrogenous fulphuret of barytes be evaporated, a great number of confufed cryftals are formed; if thefe he feparated quickly by filtration, and placed upon blotting paper to dry, a white cry flalline fubftance is obtained, which is hydrofulphuret of barytes.

The affinities of the alkalies and earths for fulplurated hydrogen appear, from the experiments of Berthol. let, to be as follows:

Barytes,
Potafs,
Soda,
Lime,
Ammonia, of fulphurated bydrogen.
\begin{tabular}{|c|c|c|c|}
\hline Metalic Solutions. & Solution of Hydragenous Sulthuret of Potaf. & Water impregnated whih Sulphurate. Hydogen Gas. & Hydroful, huret of Potas. \\
\hline Green fulphat of iron. & A thack precipitate, which becomes yellow by the con. tact of the air. & & A black precipitate. The potals feparated. \\
\hline Red oxide of iron. & & Becomes black. The liquor remains very deep coloured if there be an excefs of fulphurated liydrogen. & Becomes black. \\
\hline Sulphat of zinc. & A white precipitate. & A white precipitate. & A white precipitate. \\
\hline Acetite of lead. & A white precipitate, which by an addition becomes black. & A black precipitate. & A black precipitate. \\
\hline Red oxide of lead. & & Becomes black. & The potals feparated. \\
\hline Nitrat of bifmuth. & & A black precipitate. & A black precipitate. \\
\hline Oxide of bifmuth. & & Becomes black. & \\
\hline Nitrat of filver. & A black precipitate. & A black precipitate. & A black precipitate. \\
\hline Sulphat of copper. & A brown precipitate. & A black precipitate. & A black precipitate. \\
\hline Green oxide of cop. per. & & Becomes black. & Separation of the potals. \\
\hline Nitrat of mercury. & In a great deal of water, a brown colour. & \(\overline{\text { A brownifh black precipi- }}\) tate. & A brownifh black precipitate. \\
\hline Oxy-muriat of mercury. & A white precipitate, which becomes black by addition. & A white precipitate, becoming black by an addition. & White, becomes black by addition. \\
\hline Red oxide of mercury. & & Blackif. & A heat produced which caufed the hydrofulphuret to boil. The alkali feparated (1). \\
\hline Muriat of tin. & & & A black precipitate. \\
\hline Oxy-muriat of tin. & A precipitation of fulphur, and of the oxide. & No change. & A precipitate of white oxide of tin, and a difengagement of fulphurated hydrugen gas. \\
\hline White oxide of tin. & & No change. & Difengagement of fulphura. ted hydrogen gas. \\
\hline Sulphat of manganefe. & & No change. & A white precipitate. \\
\hline Black oxide of manganefe. & & The odour difappears. An excefs of the water diffolves the oxide. & Ammonia difengaged. Heat. The liquor boils (\(A\)). \\
\hline Nitrat of antimony. & & & A reddifh orange precipitate. \\
\hline Tartrite of antimo"y. & A yellow orange precipitate. & An orange colour, but no precipitate. & An orange red precipitate, rediffolved by an excefs of hydrofulphuret. \\
\hline White oxide of antimony. & & Becomes yellow after fome feconds. & Theliquor lofes its colour (A). \\
\hline
\end{tabular}
(A) In thefe, hydrofulphuret of ammonia was ufed inftead of hydrofulphuret of potafs.
\begin{tabular}{|c|c|c|c|}
\hline Metallic Solutions. & Solution of Hydrogenous Sulphuret of Potafs. & Water impregnated with Sulphurated Hydrogen Gas. & Hydrofulphuret of Potas. \\
\hline Oxide of antimony fublimed. & / & Searcely changes colour. & \\
\hline Solution of axide of arfenic. & Sulphuret decompofed as by an acid. & Becomes fomewhat muddy, and of a yellow colour. & A yellow colour, but no precipitate. \\
\hline Sulphat of titanium. & & & A precipitate of a deep green. \\
\hline Molybdic acid. & & A brown precipitate. & A brown precipitate. \\
\hline
\end{tabular}

The word cryfal, in its ftrict and proper fenfe, fignifies a tranfparent body poffeffed of a regular figure. But it is now ufed to denote a body which has affumed a regular figure whether it be tranfparent or not. Cry. fallization is the af by which this regular figure is furmed.

As the greater number of eryftals helong to the clafs of neutral falts, it may not be improper, before we conclude this part of the article, to make a few obfervations on the phenomena of cryftallization.
As cryftallization is confeffedly nothing elfe than the regular arrangement of the particles of bodies, it is evident that before it can take place the particles of the hody to be cryftallized muft be at fome diftance from each other, and that they muft be at liberty to obey the laws of attraction: They may be put into this fituation 365 by three mothods, folution, fufpenfion, and fufion.
Formed by 1 . Solution is the common method of cryftallizing folution, falts. They are diffolved in water : The water is flowly evaporated, the faline particles gradually approach each other, combine together, and form fmall cryitals; which become conftantly larger by the addition of other particles till at laft. they fall by their gravity to the bottom of the veffel. It ought to be remarked, however, that there are two kinds of folution, each of which prefents different phenomena of cryifallization. Sume falts diffolve in very fmall proportions in cold water, but are wery foluble in hot water; that is to fay, water at the common temperature has little effect upon then, but water combined with caloric diffolves them readily. When hot water faturated with any of thefe falts cools, it becomes incapable of holding them in folution :: the oonfequence of which is, that the faline particles gradually approach each other and cryitallize. Sulphat of foda is a falt of this kind. To cryitallize fuch falts, nothing more is neceflary than to faturate hot , water with them, and fet it by to cool. But were we to attempt to cry flallize them by evaporating the hot water, we fhould not fueceed; nothing would be procured but a fhapelefs mafs. Many of the falts whiclı follow this law of cryftallization combine with a grear deal of water; or, which is the fame thing, many cryftals formed in this manner contain a great deal of water of cryital. lization.
There are other falts again which are nearly equally foluble in hot and cold water; common falt for inftance. It is evident that fuch falts cannot be cryftallized by
cooling; but they cryftallize very well by evaporating their folution while hot. Thefe falts generally contain but little water of cryftallization.
2. It appears, too, that fome fubitances are eapable of affuming a cryftalline form merely by having their particles fufpended in water, without any reğular folus tion ; at leaft it is not eary, on any other fuppofition, to explain the cryftallizations of carbonat of lime fometimes depofited by waters that run over quantities of that mineral.
3. There are many fubftances, however, neither foluble in water, nor capable of being fo minutely divided as to continue long fufpended in that fluid; and which, notwithftanding, are capable of affuming a cryftalline form. This is the cafe with the metals, with glafs, and fome other bodies. The method employed to cryfta]. lize them is fufion, which is a folution by means of caloric. By this method the particles are feparated from one another; and if the cooling goes on gradually, they are at liberty to arrange themfelves in regular cryftals. There are many fubftances, however, which it has been hitherto impoffible to reduce to a cryftalline form, either by thefe or any other method. Whether this bc owing to the nature of thefe bodies themfelves, or to our ignorance of the laws by which cryftals are formed, as is much more likely, cannot he determined.
\(\qquad\)
 .

The phenomena of cryftallization feen to have attracted but little of the attention of the ancient philo- Cryinallio ex. fophers. Their theory-indeed, that the elements of bo- plained. dies poffefs certain regular geometrical figures, may have been fuggefted by thefe phenomena; but we are ignorant of their having made any regular attempt to explain them. The fchoolmen afcribed the regular figure of cryltals to their fubftantial forms, without giving themfelves much trouble about explaining the meaning of the term. This notion was attacked by Boyle; who proved that cryftals were formed by the mere aggregation of particles *. But it fill remained to explain,
 cles united in fuch a manner as to form regular figures? oftorms and Thefe queftions were anfivered by Newton. Accord. .estritica. ing to him, the aggregation is produced by the attraction which he had proved to exit between the particles of all-bodies, and which acts as foon as thefe particles are brought within a certain diftance of each other by the evaporation of the liquid in which they are difolved. The regularity of their figures he explained by fuppofing, that while in a flate of folution they were arranged in the liquid in regular rank and file; the con.
\(868^{n}\) y o fi. g

Cryffalliza-fequence of which, as they are acted upon by a power \(\underbrace{\text { tim. }}\) which at equal diftances is equal, at unequal diftances

This explanation, which is worthy of Newton, is now univerfally admitted as the true one, and has contributed much towards elucidating this important part of chemiltry.

Still, huvever, there remain various \({ }^{\circ}\) phenomena relating to cryftallization, which it is no eafy matter to explain.

It has been obferved, that thofe falts which cryftal. lize upon cooling, do not affume a cry ftalline form fo readily if they are allowed to cool in clofe veffels. If a faturated folution of fulphat of foda, for intlance, in hot water be put into a phial, corked up clofely, and allowed to cool without being moved, no cryftals are formed at all; but the moment the glafs is opened, the falt cryftallizes with fuch rapidity that the whole of the fulution in a manner becomes folid. This phenomenon has been explained by fuppoling that there is an affinity between the falt and caloric, and that while the caloric continues combined with it the falt does not cryflallize; that the caloric does not leave the falt fo readily when external air is not admitted, as glafs receives it very nowly and parts with it very flowly. In thort, the atmofpherical air feems to be the agent employ. ed to carry off the caloric; a takk for which it is remarkably well fitted, on account of the change of denfity which it undergoes by every addition of caloric. This is confirmed-by the quantity of caloric which always makes its appearance during thefe fudden cryftallizations. This explanation might he put to the teft of experiment, by putting two folutions of fulphat of foda in hot water in two fimilar veffels; one of glafs, the other of metal, and both clofed in the fame manner. If the falt contained in the metallic veffel cryftallized, which ought to be the cafe on account of the great couducting power of metals, while that in the glafs veffel remained liquid, this would be a eonfirmation of the theory, amuunting almolt to demonftration. On the contrary, if both folutions remained liquid, it would be a proof that the phenomenon was fill incompletely underftood.

Not only falts, but water itfelf, which commonly cryftallizes at \(32^{\circ}\), may be made to exhibit the fame phenomenon : it may be cooled much lower than \(3^{\circ}\) without freezing. This, as Dr Black has completely pro-

871 Tariety of forms in
cryftals accounted
Sor.
+ Optics,
p. 375 .

If the regular form of cryftals depends upon the ag. gregation of particles, and if during all cryftallizations this aggregation goes on in the fame manner, why have not all cryftals the fame form? Some have afcribed thefe differences to a certain polarity which the particles of bodies are fuppofed to poffefs, and which difpofes each kind of particles to arrange themfelves according to a certain law. Sir Ifaac Newton appears rather to have afcribed it to the forms of the particles themfelves \(\dagger\); and this feems to be the real folution of the problem. For fuppofing that all particles have the fame form, they muft of courfe poffefs the fame polari. ty; and therefore every cryftal mult have the fame form. It is impoffible, then, to account for the different forms of cryftals without fuppofing that the particles which compofe them have alfo different forms. And if the particles of bodies have different forms, their regular
argregation mutt produce cryftals of various Thapes; Cryfalliza. and therefore their polarity, which is merely a fuppofition founded on this difference in the appearance of cryftals, cannot be admitted. Suppofe, for inftance, that eight cubic particles were regularly arranged in water, and that by the gradual evaporation of the liquid were to approach, end at laft to combine, it is evident that the cryftal which they would produce \(=\) would be a cube. Eight fix-fided prifms would alfo produce a fix-fided prifm; and eight tetrahedrons would form a very different figure.

But it will be afked, if the figure of cryftals depends entirely upon the form of the particles that compofe them, how comes it that the fame fubftance does not always cryflallize in the fame way, but prefents often fuch a variety of forms that it is fuarcely puffible to reckon them? We anfwer, that thefe various forms are fometimes owing to variations in the ingredients which compofe the integrant particles of any particular body. Aluin, for inftance, cryftallizes in octahedrons; but when a quantity of alumina is added, it cryttallizes in cubes; and when there is an excefs of alumina, it does not cryftallize at all. If the proportion of alumina varies between that which produces octahedrons and what produces cubic cryftals, the cryftals become figures with fourteen fides; fix of which are parallel to thofe of the cube and eight to thofe of the octahedron; and according as the proportions approach nearer to thofe which form cubes or octahedrons, the cryttals affume more or lefs of the form of cubes or octahedrons. What is fill more, if a cubic eryftal of alum be put into a folution that would afford octahedral ery ftals, it paffes into an octahedron: and, on the other hand, an nctahedral cryftal put into a folution that would afford cubic cryitals, becomes itfelf a cube *. Now, how difficult a matter it is to proportion the different ingredients with Ann. de abfolute exactnefs, muft appear evident to all. Cbims. siv.

A nother circumflance which contributes much to va- \({ }^{149 .}\) ry the form of cryitals, is the different degree of concentration to which their folution has been reduced, and the rapidity or flownefs with which they are formed. For it is too evident to require illuftration, that when cryftals are depofited very rapidly they mult obltruct one another, and mix together fo as very much to obfcure the natural regularity of their form.

Even the nature of the veffel in which the cryftallization is performed is not without forve influence.

But, independent of thefe aecidental circumftances, Mr Hauy has thewn that every particular fpecies of Hauy's the cryfals has a primitive figere, and that the variations ory of cryations fals. are owing to the different ways in which the particles arrange themfelves. Of this theory, which is certainly exceedingly ingenious, and even fatisfactory, we fhall attempt to give a fhort view.

Happening to take up a hexangular prifm of calca. reous fpar, or carbonat of lime, which had been detaehed from a group of the fame kind of cryitals, he obferved that a fmall portion of the eryftal was wanting, and that the fracture prefented a very fmooth furface. Let \(a b c d e\) \(f_{g} b\) (fig. 8.) be the cryital; the fracture lay obliquely as the trapezium \(p s u t\), and made an angle of \(135^{\circ}\), both with the remainder of the bafe \(a b c s p b\) and with tuef, the remainder of the fide in \(n \in\). Obferving that the fegment \(p s u t\) in thus cut off had for its vertex in, one of the edges of the bafe \(a b c n i b\) of the prifm, he attempted to detach
a knife, directed in the fame degree of obliquity as the trapezium \(p s u t\), and affifted by the frokes of a ham. mer, He could not fucceed: But upon making the attempt upon the next edge \(b c\), he detached another fegment, precifely fimilar to the firft, and which had for its vertex the edge \(b c\). He could produce no effeet on the next edge \(a b\); but from the next following, \(a b\), he cut a feginent fimilar to the other two. The fixth edge likewife proved refractory. He then went to the other bafe of the prifm \(d \in f g h r\), and found, that the edges which admitted fections fimilar to the preceding ones were not the edges e \(f, d r, g k\), correfponding with thofe which had been found divifible at the oppofite bafe, but the intermediate edges \(d \rho, k r, g f\). The trapezium lqyv reprefents the fection of the fegment, which had \(k r\) for its vertex. This fection was evidently parallel to the fection \(p s u t\); and the other four fections were alfo parallel two and two. Thefe fections were, without doubt, the natural joinings of the layers of the cryftal. And he eafily fucceeded in maling others parallel to them, without its being poffible for him to divide the cryftal in any other direction. In this mauner he detached layer after layer, approaching always nearer and nearer the axis of the prifm, till at laft the bafes difappeared altogether, and the prifm was converted into a folid OX (fig. 9.), terminated by twelve pentagons, parallel two and two ; of which thofe at the extremities, that is to Cay, ASRIO, IG EDO, BAODC at one end, and FKNPQ, MNPXU, ZQPXY at the other, were the refults of mechanical divifion, and had their common vertices \(\mathrm{O}, \mathrm{P}\) fituated at the centre of the bafes of the original prifm. The fix lateral pentagons RSUXY, ZYRIG, \&c. were the remains of the fix fides of the original prifm.

By continuing fections parallel to the former ones, the lateral pentagons diminifhed in length; and at laft the points \(R, G\) coinciding with the points \(\mathrm{Y}, \mathrm{Z}\), the points \(S, R\) with the points \(U, Y\), \&c. there remained nothing of the lateral pentagons but the triangles YIZ, UXY, \&c. (fig. 10.). By continuing the fame fec. tions, thefe triangles at laft difappeared, and the prifm was converted into the rhomboid \(a_{e}\) (fig. 11.).

So unexpected a refult induced him to make the fame attempt upon more of thefe crytals; and he found that all of them could be reduced to fimilar rhomboids. He found alfo, that the cryftals of other fuhftances could be reduced in the fame manner to certain primitive forms; always the fame in the fame fubftances, but every fubflance having its own peculiar form. The primitive forin of fluat lime, for iuflance, was an ocrahedron ; of fulphat of barytes, a prifm with rhomboidal bafes; of field-fpath, an oblique angled parallelopiped, but not rhomboidal; of adamantine fpar, a rhomhoid, fomewhat acute; of blende, a dodecahedron, with rhomboidal fides; and fo on.

Thefe muft be confidered as the real primitive forms of the cryfals; the other forms which they often affume may be called fecondary forms.

The primitive cryftals obtained by the above procefs may be divided by fections parallel to their different fides: all the matter which furrounded this primitive cryftal Surpl. Vol. I. Part I.
may alfo be divided by fections parallel to the fides of Cryduliza. the primitive cryftal. It follow's from this, that the parts detached by means of thefe fections are fimilar, and differ from one another only in fize, which diminifies in proportion to the length that the divifion is carried. But the divifion of the cryftals into fimilar folids hats a term, beyond which we flould come to the friall. eft particles' of the body, which could not be divided withour chemical decompofition. It is probable, therefore, that the form of the integrant particles of a body is the fame with the primitive form of its cryftals. Here, then, we have a method of difcovering the form of the particles of bodies ; and if this method could be applied to all fubfances whatever, it would enable us to afcertain the affinity of all bodies for each other by accurale calculation. It muft be allowed that feveral oojections might be made to the conclufions of Mr Hany ; but his theory is, on the whole, fo plaufible, that it would certainly be worth while to extend it, and apply it to the calculation of affinities as far as it is fufceptible of the application. If the cryftals obtained by the above procefs be the primitive forms, it becomes a queftion of fome confequence to determine in what manner the fecondary forms are produced.

According to Hauy, all the parts fuperadded to the primitive cryftals, in order to form the fecondary cryftal, conlift of plates, which decreafe regularly by the fubtraction of one or more rows of integrant particles, in fuch a manner, that the number of thefe ranks, and confequently the form of the fecondary crytal, may be determined by thcory (c).

To explain this, let us fuppofe that EP (fig. 12.) reprefents a dndecahedron, terminated by equal and fimilar rhombs; that this dodecahedron is a fecondary cryftal, the prinitive form of which is a cube: the fituation of this cube in the dodecahedron may be conceived from fig. 13. The fimaller diagonals \(\mathrm{DC}, \mathrm{CG}, \mathrm{GF}\), FD, of four fides of the dodecaliedron, united round the fame folid angle \(L\), form the fquare CDFG. Now there are fix folid angles, compofed of four plains, iowit, the angles L, O, E, N, R, P (fig. i2.); and confequently, hy making fections through the fmaller diagonals of the fides, that form thefe angles, fix fquares will be made apparent, which are the fix fides of the primitive cube, three of which are reprefented in fig. 13.
CDFG, ABCD, BCGH. CDFG, ABCD, BCGH.

This cube being compofed of cubic integrant partio cles, each of the pyramids, LCDFG for inflance (fig. 13.) which repofe upon its fides, muft alfo, according to the theory, be compofed of limilar cubic , ,articles. To make this appear, let us fuppofe that ABFG (fig: 14.) is a cube compofed of 729 fmall cubes: Each of its fides will conlift of SI fquares, being the external fides of as many cubic particles, which together confitute the cube. Upon \(A B C D\), one of the firles of this cube, let us apply a fquare lamina, compofed of cubes equal to thofe of which the primitive cryital cunfifts, but which has on each lide a row of cubes lefs than the outernof layer of the primitive cube. It will of courfe be compofed of 49 cubes, ? on cach fide; fo that its lower hafe on \(f g\) (fig. 15.) will fall exactly on the fquare marked with the fane letters in fig. 14.

Above this lamina let us apply a fecond \(/ m \rho^{\prime \prime}\) (fig. 3 D 解 16.\()\).
(c) The explanation of Bergman is not very diferent. See his Opufc. wi. ii. difí. I.

Cryfallizz-16.), compofed of 25 cubes; it will be fituated exactly tion. above the fquare marked with the fame letters (fig.
14.) Upon this fecond let us apply a third lamina \(v x y \approx\) (fig. 17.) confilting only of 9 cubes; fo that its hafe thall reft upon the letters \(v x y z\) (fig. I4.). Latly, on the middle fquare \(r\) let us place the fmall cube \(r\) (fig. 18.), which will reprefent the laft lamina.

It is evident, that by this procefs a quadrangular pyramid lias been furmed upon the face ABCD (fig. 14.), the bafe of which is this face, and the vertex the cube \(r\) (hg. 18.). By continuing the fame operation on the other five fides of the cube, as many funilar pyramids will be formed; which will envelope the cube on every fide.

It is evident, however, that the fides of thefe pyranids will mot form continued planes, but that, owing to the gradual diminution of the lamin \(x\) of the cubes which compofe them, thefe fides will refemble the fteps of a ftair. We can fuppofe, however (what muft certainly be the cafe), that the cubes of which the nucleus is formed are exceedingly fmall, almof imperceptible; that therefore a vaft number of laminæ are required to form the pyramids, and confequently that the channels which they form are imperceptible. Now DCBE (fig. 19.) being the pyramid refting upon the face ABCD (fig. 14.), and CBOG (fig. 19.) the pyramid applied to the next face BCGH (fig. I4.), if we confider that every thing is uniform from E to \(O\) (fig. 19.) in the manner in which the edges of the lomine of fuperpofition (as the Abbé Hauy calls the lamiux which compofe the pyramids) mutually project beyond each other, it will readily be conceived, that the face CEB of the firft pyramid ought to be exactly in the fame plane with the face COB of the adjacent pyranid; and that therefore the two faces together will form one rhomb ECOB. But all the fides of the fix pyramids amount to 24 triangles fimilar to CEB; confequently they will form 12 rhombs, and the figure of the whole cryital will be a dodecahedron, fimilar to that reprefented in fig. 12. and 13.

If the decreafe of the laminx of fuperpofition took place according to a more rapid law, if each lamina had on its circumference two, three, or four rows of cubes lefs than the inferior lamina-in that cafe, the pyramids produced being lower, their adjacent faces would no lenger form one plane; and therefore the furface of the fecondary cryftal would corfilt of 24 ifofceles triangles, all inclined towards each other.
In this manner Mr Hauy has hewn, that a variety of fecondary cryftals are formed, and that their forms vary by means of night variations in the ratio of the decrement. Dodecahedral fulphurct of iron, for inftance, is formed from a cubic nucleus, by the addition of laminæ, decreafing, as in the example given above, with this difference, that from every lamina laid upon the face ABCD (lig. 14.) only one row of cubes are fubtracted at the fides AD and BC refpectively; whereas \(t\) wo rows are fubtracted at each of the fides \(A B\) and CD. The confequence of this more rapid decrement on two parallel fides than on the other two will be, that the pyramid raifed on the face ABCD (fig. 14.), inftead of terminating in a fingle cube as in the example given above, will terminate in a range of cubes; or (fruppofing the cubes infinitely fnall) inftead of tcrminating in a point, it will terminate in a ridge. The fyramid will therefore have for its two fides, contiguGus to \(A B\) and \(D C\), two trapeziums, and for its fides,
contiguous to AD and BC , two trianglcs. Let us Cry A allizafuppole alfo, that with regard to the laminx of fuper- tion. polition which arife on the face BCGH (fig. 14.), the decrements follow the fame law, and that each lamina decreafes by two rows of cubes towards the lines BC and HG, and only by one row towards the lines CG, BH : The pyramid, in that cafe, will be placed in a direction oppofite to the pyramid on \(\triangle B C D\), the ridge at the vertex of it running parallel to BC : the vertex of the pyramid raifed upon CDFG muft be parallel to CG: the pyramids on the three other fides of the cuhe ought to ttand each like that which arifes on the oppofite face.

The fides of all the fix pyramids thus formed amount to \(t\) welve trapeziums and twelve triangles. Esery triangle is evidently contiguous and in the fame plane with a trapezium of the nearef pyramid; confequently the fecondary cryftal thus fornied confifts of twelve fides, each of which is a pentagon.

Several other examples have been given hy Mr Hauy; but thefe are fufficient to fhew in what manner the various fecondary forms of cryftals are conftructed, according to the theory of that ingenious philofopher.

In his refearches on this fubject, Mr Hauy perceived, that fume cryftals affumed fecondary forms which could not be accounted for by any decrement whatever along the edges. Thus, for inftance, fome bodies, the primary form of which is cubic, are fometimes found cry fallized in regular octagons. Mr Hauy explains the formation of thefe fecondary cryftals, by fuppofing that the decrement took place parallel, not to the edges, but to the diagonals of the faces of the primary cubes.

In order to comprehend this, let us fuppofe ABCD (fig. 20.) to be the furface of a lamina compofed of fmall cubes, the bafes of which are reprefented by the little fquares in the figure. It is evident, that the cubes \(a, b, c, d, e, f, g, b, i\), are in the direction of the diagonal of the fquare ABCD ; that the row of cubes \(q, v\), \(k, u, x, y, z\), is parallel to the diagonal ; as alfo the row \(n, t, l, m, p, o, r, s\); and that the whole figure might be divided into rows of fquares, each of which would be parallel either to the diagonal AC or DB.
Now we may conceive that the laininæ of fuperpofition, inftead of decreafing by rows of cubes parallel tothe edges \(A B, A D\), decreafe by rows parallel to the. diagonals.
Let it be propofed to confruct around the cube AB GF (fig. 21.), confidered as a nucleus, a fecondary folid, in which the lamine of fuperpofition thall decreafe on all fides by fingle rows of cubes, bat in a direction parallel to the diagonals. Let ABCD (fig. 22.), the fuperior bafe of the nucleus, be divided into 8 I fquares, reprefenting the faces of the fmall cubes of which it is compofed. Figure 23. reprefents the fupcrior furface of the firl lamina of fuperpolition; which muft be placed above \(A B C D\) (fig. 22.) in fuch a manner that the points \(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime},(\) fig. 23.) anfwer to the points \(a, b, c, d\), (fig. 22.). By this difpofition the fquares \(\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c, \mathrm{D} d\) (fig. 22.), which compofe the four outermoft rows of fquares parallel to the diagonals AC , BD , remain uncovered. It is evident alfo, that the borders QV, ON, IL, GF (fig. 23.), project by one range beyond the borders \(\mathrm{AB}, \mathrm{AD}, \mathrm{CD}, \mathrm{BC}\) (fig. 22.), which is neceffary, that the nucleus may be enveloped towards thefe edges: For if this were not the

Crytaliza-cafe, reentering angles would be formed towards the tion. parts \(A B, B C, C D, D A\), of the cryltal; which angles appear to be excluded by the laws which determine the formation of fimple cryitals, or, which comes to the fame thing, no luch angles are ever obferved in any cryftal. The folid mult increafe, then, in thofe parts co which the decrement does not extend. But as this decrement is alone fufficient to determine the form of the fecondary cryital, we may fet afde all the other varia. tions which intervene only in a fubfidiary manner, except when it is withed, as in the prefent cafe, to conftruct artilicially a folid reprefentation of a cryftal, and to exhibit all the details which relate to its Atructure.

The fuperior face of the fecond lamina will be \(A^{\prime}\) GL'K' (fig. 24.). It mult be placed fo that the points \(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}, d^{\prime \prime}\), correfpurd to the points \(a^{\circ} b c^{\prime} d^{\prime \prime}\) (ing. 23.), which will leave uncovered a fecond row of cubes at each angle parallel to the diagonals \(A C\) and \(B D\). The folid fill increafes towards the fides. The large faces of the laminx of fuperpolition, which in lig. 23. were octagons, in fig. 24 . artive at that of a fquare; and when they pals that term they decreafe on ald lides; fo that the next lamina has for its fupcior face the fquare \(B^{\prime} M L^{\prime} S^{\prime}(f i g . ~ 25\).\() , lefs by one range in\) every direction than the preceding lamina (fig. 24.). This fquare muif be placed fo that the points \(e^{\prime}, f^{\prime}, g^{\prime}, l^{\prime}\), (fig. 25.) correfpond to the points \(e, f, 5, b\) (fig. 24.). Figures 26, 27, 28, and 29, reprefent the four laminx which ought to rife fucceffively above the preceding; the manner of placing them being pointed out by correfponding letters, as was done with refpect to the three fint laminx. The lait lamina \(z^{\prime}\) (fig. 30.) is a fingle cube, which ought to be placed upon the fquare z (lig. 29.).

The laminæ of fuperpofition, thus applied upon the fide ABCD (fig. 22.), evidently produce four faces, which correfpond to the points \(A, B, C, D\), and form a pyramid. Thefe faces, having been forned by lamina, which began by inereafing, and afterwards decreafed, muft be quadrilaterals of the figure reprefented in fig. 31. ; in which the inferior angle \(C\) is the fame point with the angle \(C\) of the nucleus (fig. 21. and 22.); and the diagonal LQ reprefents \(L^{\prime} \mathfrak{G}^{\prime}\) of the lamina \(A^{\prime} G^{\prime} L^{\prime} K^{\prime}\) (fig. 24.). And as the number of laminx compoling the triangle \(\mathrm{L}, \mathrm{Q} \mathrm{C}\) (fig. 31.) is much fmaller than that of the laminx forming the triangle ZLQ, it is evident that the latter triangle will have a unnch greater height than the former.

The furface, then, of the fecondary cryftal thus produced, muit evidently confift of 24 quadrilaterals (for pyramids are raifed on the other 5 fides of the primary cuhe exactly in the fame mamer), difpofed 3 and 3 around each folid angle of the nucleus. But in confequence of the decrement by one range, the three quadrilaterals which belong to each folid angle, as C (fig. 21.) will be in the fame plane, and will form an equilateral triangle ZIN (fig. 32.). The 24 quadrilaterals, then, will produce 8 equilateral triangles; and conlequently the fecondary cryftal will be a regular octagon. This is the ftructure of the octahedral fulphuret of lead and of muriat of foda.

Decrements which take place in this manner have been called by Mr Hauy decrements on the angles.

There are certain cryftals in which the decrement on the angles do not take place in lines parallel to the diagonals, but parallel to lines fituated between the dia.
gonals and the edges. This is the cafe when the fub-Cryfallizu. tractions are made by ranges of double, triple, \&c. tion. muleculx. Fig. 33. exhibits an inftance of the fub. tractions in queftion; and it is feen that the mole. cula which compufe the range reprefented by that fi. gure are afforted in fuch a mamer as if of two there were furmed only one; fo that we need only to conceive the cryfal compofed of parallelopipedons having their bafes equal to the fmall rectangles \(a b \in d, c d f\) of \(b \mathrm{gil}\), \&c. to reduce this cafe under that of the cummon decrements on the migles. To this particular kind of decrement Mr Hauy has given the name of intermediate.

In other cryitals the decrements, either on the edges or on the angles, vary according to laws, the proportion of which cannot be expreffed but by the fraction \(\frac{2}{3}\) or 3. It may happen, for example, that each lamina exceeds the fullowing by two ranges parallel to the edges, and that it may at the fame time lave an altitude triple that of a fimple molecule. Figure 34. reprefents a wertical geometrical fection of one of the kinds of pyranids which would refult from this decrement ; the effect of which may be readily conceived, by conlidering that AB is a horizontal line taken on the upper bafe of the nucleus, \(b a z r\) the fection of the firtt lamina of fuperpo. fition, \(g f e n\) that of the fecond, \&c. Thefe decrements Mr Hany has called mixad.

Thefe two laft feccies of decrepnents occur but rarely ; MrHauy found them only in certain metallic fubltances.

All the metamorphofes to which cryftals are fubject. ed depend, according to Mr Haby, on the laws of Itructure jult explained, and others of the like Find. Sometimes the decrements take place at the fane time on all the edges; as in the dodecahedron haviag rhom. bufes for its planes, as befure mentioned; or on all the angles, as in the uctahedron originating from a cube. Sometimes they take place only on certain edges or certain angles. Sometimes there is an uniformity between them; fo that it is one fingle law by one, two, three ranges, \&c. which acts on the different edges, or the different angles. Sometimes the law varies fron one edge to the other, or from one angle to the other; and this happens above all when the nucleus has not a fynmetrical form; for example, when it is a parallelo. pipedon, the faces of which differ by their refpective inclinations, or by the meafure of their angles In certain cafes the decrements on the edges concur with the decrements on the angles to produce the fame cryitalline form. It happens alfo fometimes that the fame edge, or the fame angle, is fubjected to feveral laws of decrement that fucceed each other. In fhort, there are cafes where the fecondary cryftal has faces parallel to thofe of the primitive form, and which combine with the faces produced by the decrements to modify the figure of the cryftal.

The cryftals arifing from a fingle law of decrement have been called by Mr Hauy fimple fecondary forms: thofe which arife from feveral fimultaneous laws of decrement he has called compound fecondary forms.
"If amidit this diverfity of laws (he obferves), fometimes infulated, fometimes united by combinations more or lefs complex, the number of the ranges fubtracted were itfelf extremely. variable; for example, were thefe decrements by twelve, twenty, thirty, or forty ranges, or more, as might abfolutely be poffible, the multitude Dd 2

Cr) falliza: of the furms which might ex ift in each hind of mineral E10n. would be inmenfe, and exceed what could be imagined.

But the power which effects the fubtractions feems to have a very limited action. Thefe fubtractions, fur the moult part, take place hy one or two ranges of molecules. 1 have found noue which exceeded four ranges; except in a variety of calcareous fpar, furming part of the collection of C . Gillet Laumont, the ftructure of which depends on a decrement by fix ranges; fo that if there exift laws which exceed the decrements by foer ranges, there is reafon to telieve that they rarely take place in nature. Yet, notwithitanding thefe narrow linits by which the laws of cryftallization are circunferibed, I have found, by confining nyfelf to two of the fimpleft laws, that is to fay, thofe which produce fubtractions by one or two ranges, that calcareuns fpar is fufceptible of two thoufand and forty-four different forms: a number which exceeds more than fifty times that of the forms already known; and if we admit into the combination decrements hy three and four ranges, calculation will give \(8,388,604\) poffible forms in regard to the fame fubft ance. This number may be fill very much aug mented in confequence of decrements either mixed or intermediary.
" 'The trixe remarked on the furface of a multitude of crytals afford a new proof in favour of theory, as they always have directions parallel to the projecting edges of the laminx of fuperpofition, which mutually go beyond each other, unlefs they arife from fome par. ticular want of regularity. Not that the inequalities refulting from the decrements muft be always fenfible, fuppoting the form of the cryftals had always that degree of finining of which it is fufceptible; for, on account of the extreme minutenefs of the inolecules, the furface would appear of a beautiful polifh, and the frix would elude our fenfes. There are therefore fccondary cryitals where they are not at all obferved, while they are very vifible in other crytals of the fame nature and form. In the latter cafe, the action of the caufes which produce cryfallization not having fully enjoyed all the conditions neceffary for perfecting that fo delicate operation of nature, there have been flarts and interruptions in their progrefs, fo that, the law of continuity not having been exactly obferved, there have remained on the furface of the cryftal vacancies apparent to our eyes. Thefe frall deviations are attended with this advantage, that they point out the direction according to which the itrix are arranged in lines on the perfect forms where they efcape our organs, and thus contribute to unfold to us the real mechanifm of the ftructure.
" The fmall vacuitics which the edges of the laminæ of fuperpofition leave on the furface of even the mofl perfect fecondary crytals, by their re-entering and falient angles, thus afford a fatisfactory folution of the difficulty a little befure mentioned; which is, that the fragments obtained by divilion, the external fides of which form part of the faces of the fecondary cryftal, are not like thofe drawn from the interior part. For this diverfity, which is only apparent, arifes from the fides in queftion being compofed of a multitude of fmall planes, really inclined to one another, but wbich, on account of their fmallnefs, prefent the appearance of one plane ; fo that if the divifion could reach its utmoll bounds, all thefe fragments would be refolved into molecules fimilar to each other, and to thufe fituated towards the centre.
" The fecundity of the laws on which the variations Ciyfialliza* of cryttalline furms depend, is not confined to the producing of a multitude of very different forms with the fame molecules. It often happens alfo, that mulecules of different figures atrange themfelves in fuch a manner as gives rife to like polyhedra in different kinds of minerals. Thus the dodecahedron with rhombufes for its planes, which we obtained by combining cubic molecules, exifts in the granite with a fructure compofed of fmall tetrahedra, having ifofceles triangular faces; and I have found it in fparry floor (fluat of lime), where there is alfo an affemblage of tetraliedra, but regular ; that is to fay, the faces of which are equilateral triangles. Nay more, it is poffible that finilar mulecules may produce the fame cryitalline form by different laws of decrement. In fhort, calculation has conducted me to another refult, which appeared to me fill more remarkable, which is, that, in confequence of a fimple law of decrement, there may exit a cryftal which externally has a perfect refemblance to the nucleus, that is to fay, to a fulid that does not arife from any law of decrement *."

\footnotetext{
- Ann. \({ }^{\text {ef }}\)

Cbim. xviiu.
}

Such is a fhott view of the theory by which \(\mathrm{Mr}^{225}\). Hauy explains the various cryltalline forms of the fame fubflance. We would with pleafure have entered more into detail, had not moft of his examples been deduced from fubflances which belong rather to mineralogy than to the elements of chemiftry. This theory, to fay no more of it, is, in point of ingenuity, inferior to few; and the mathematical fkill and induftry of its author are intitled to the greateft applaufe.

But what we confider as the moft important part of that philofopher's labours, is the method which they point out of difcovering the figure of the integrant particles of cryftals; becaufe it may pave the way for calculating the afinities of bodies, which is certainly by far the moft important part of chemiftry. This part of the fubject, therefore, deferves to be inveftigated with the greateft care.

Mr Hauy has found, that the primitive form of all the cryftals which he has examined may be reduced to fis; 1. The parallelopipedon in general, comprehending the cube, the rhomboid, and all folids terminated by fix fides parallel two and two; 2. The regular tetraherlron;3. The octahedron with triangular fides; 4. The hexagonal prifm; 5. The dodecahedron bounded by rhombs; 6. The dodecahedron bounded by ifofceles triangles. Were we to fuppofe that thefe primitive forms are exactly fimilar to the form of the integrant particles which compofe them, it would follow, that the. integrant particles of all the cryfals hitherto formed have only fix different forms. This fuppofition, however, is not probable; becaufe the fame nucleus has been difcovered in different fpecies of minerals, and becaufe we can eafily conceive integrant particles of different forms, combining in fuch a manner as to compofe. nuclei of the fane figure, juft as we have feen that dif. ferent primitive forms are capable of producing the famefecondary furm. Still, therefore, in endeavouring to difcover the integrant particles of bodies, there are difficulties to remove, which hitherto, at leaft, have been unfurmountable. But the theory of Mr Hauy may be confidered as a firft tep towards the difcovery; and a flep in refearches. of fo difficult a nature is of very great confequence.

Conclufion. We have now finifhed the three firft parts of this article, which comprehend all the elementary part of chemiftry. We ought now to proceed to the fourth part, which was to confint of a chemical examination of fuhflances as they exit in nature in the mineral, vegetable, and animal kingdoms; but this, for various reafons, we fhall defer till we come to the words Mineralogy, and Animal and Vegetable Substances.

We fhall finifh this article with a few remarks upon the chemical nomenclature, which for fome tiine paft has been an object of ferious attention.

Chemiftry was unfortunately firt cultivated by a fet

\section*{873}

\section*{Remarks}
on the che- of ignorant men, filled with the higheft notions of their mical no- own importance, and buoyed up with the mighty feats menclature, which they were to perform by their art. The little which they did know they were anxious to conceal; and their anxiety was no lefs to infpire the world with high ideas of their knowledge. and power: The confequence of this was, that they loaded chemiftry with the molt ridiculous and whinfical names that can well be conceived. Liver of Julpbur, mercury of lije, borned moon, butter of antimony, the double fecret, the corraline fecret, the fecret of viliriol, the zoonderful falt, the fecret falt, the falt wuith many virtues, the falt of two ingredients, the foliated earth of tartar, were the names by which they diftinguifhed fome of the moft familiar preparations; and, were it worth while, a great many more names of the fame ftamp might eafily be added.

As foon as chemiftry had attracted the attention of men of fcience, the abfurdity of its numenclature was felt, and feveral partial improvements were at different times made in it. Macquer, ii particular, difcarded many of the ancient names, and fubtituted others lefs exceptionable in their place.

But foon after the publication of the fift edition of his Dictionary, an evil began to be felt feverely, which never could have occurred to the earlier chemitts. Hitherto the number of objects which had engaged the attention of thofe who cultivated the fcience had been very limited; the acids amounted only to five, the earths to four, the metals to 12 or 54 , and the neutral falts fcarcely exceeded 20 or 30 . To remember names for fo fmall a number of bodies, however ridiculous they happened to be, was no very difficult inatter. But about that time, in confequence chiefly of the difcovery of fixed air by Dr Black, which laid the foundation of pneumatic chemiftry, the feience began to cxtend itfelf, and to enlarge its boundaries with inconceivable rapidity. The number of bodies conuected with it, and which it had to deferibe, foon became immenfe; and if every one of them received names not dependant upon one another, the moft retentive memory could not have remembered the thoufandth part of them.

The difficulty of Audying chemiltry from that time till the year \(1 / 82\) mult have been very great: it was even perceived and complained of by the mafters of the fcience. In 1782 Mr de Morveau, who had undertaken the chemical part of the Encyclopectie Methorique, publifhed in the Gournal de Plyyfique a new chemical nomenclature, and at the fame time invited all thofe perSons who were fond of chemiftry, and interetted in its progrefs, to propofe objections and improvements.
This new nomenclature was formed agreeable to the five following rules :-
1. Every fubftance ought to have a name, and not to Conclufion. be denoted by a phrafe.
2. Names ought to be as much as poffible conformable to the nature of the things fignified by them.
3. When the character of a fubftance is not well enough known to determine the denomination, a name which has no meaning is preferable to oue which conveys a falfe idea.
4. In the choice of new words thofe ought to be preferred which have their roots in the dead languages moft generally known, that the word may be eafily fuggefted by the fenfe, and the fenfe by the word.
5. The new words ought to he as fuitable as poffible to the genius of the languages for which they are formed.

This nomenclature was approved of by Macquer, and by Bergman, who had himfelf propofed one upon a plan not very different (D . He wrote to Morveau, and exhorted him to profecute his undertaking with conrage. "Do not fpare (fays he) a fingle improper denomination ; thofe that are already learned will be always fo, and thofe that are not will learn the fooner *."

This nomenclature was adopted by feveral chemifts, Method. and it was ufed in the greateft part of the firif volume face. of the chemical part of the Encyclopectie Methodique; but the new difcoveries in chemiltry had produced a more accurate method of reafoning, and had enabled Lavoifier to explain the phenomena of the fcience without the affiftance of the hypothetical principle of phlogifton, which had hitherto been neceflary. As the language, even in its improved fate, was accommodated to this principle, and prefuppofed its exiftence, new changes became evidently neceffary, in order that, according to Morveau's rule, the words might dennte the moft effential properties of the things inrended to be fignified. Accordingly, when Morveau was in P'a is in 1787, Lavoifier, Berthollet, and Fourcroy, agreed to labour in concert with him to bring the chemical nomenclature fill nearer to perfection. "Thefe philufophers, affifted ly the mathematicians of the Royal Academy and by feveral chemifts, furmed a new numenclature, which they made public in 1787.

For fome time little attention was paid to this nomenclature by foreign chemilts, and it feemed generally to be difapproved. The adherents of the phlogiltic fyftem in France, who were exceedingly numerous, viewed it as an engine artfully formed to undermine and deftroy their favourite theory. They refolved, there- \(\$\) fore, unanimoufly, to crufh, if poffible, this new iuttru. ment, which they confidered as
-_in nofiros fabricata machina muros,
Injperuura comos, venturaque defiper urli..

And for this purpofe they exerted thenfelves with a vio gour, which was only equa!led by the zeal and indefat igable exertions of their antagonilts.: A kind of civil war was thus kindled in the republic of letters, which was carried on with great animbofity: And poftcrity will fee, with regret, men of undoubted genius at times divefting themfelves of the armour of truth and of candour, and endeavouring to ferve their party, and fab their adverfaries with darts fteeped in the poifon of calumny and falfehood *. This conteft, however, which \(\dagger\) See the was not confined to France, was productive of good ef- Journ, oe fects, which infinitely furpaffed all the bad oncs. It \(P\) hyf for
(0) See his thoughts on a natural hiftory of foffils in the \(4^{\text {th }}\) vol. of his Opufs.

Conciution. occafioned an accumulation of frots, produced a rigid examination of theories and opinions, introduced an accuracy into chemical experiments which has been of the moft effential fervice, and gave that tone and vigour to the cultivators of chemiftry which have brought to light the moft fublime and unlooked.for truths. It deferves attention, and the fact is no inconfiderable exidence in favcur of the antiphlogiftic theory, that almof all the illuftrious chemilts who at prefent adhere to it declared origitially againft it. Berthollet, Morveau, Black, Kirwan, and many other chemifts who are now its ableft defenders, were at firft its moft powerful opponents. "This fyltem had hardly been publifhed in France (fuys Dr Priefley, who ftill continues to adhere to the doctrine of phlogitton) before the principal philofuphers and chemifts of England, notwithftanding the rivalhip which has long fubfifted betweell the two countries, eagerly adopted it. Dr Black in Edinburgh, and as far as I hear all the Scots, have declared themfelves converts, and, what is more, the fane bas been done by Mr Kirwan, who wrote a pretty large treatife in oppofition to it. The Englifh reviewers of books, I perceive, univerfally favour the new doctrine. In America, alfo, I hear of nothing elfe. It is taught, 1 believe, in all the fchools on this continent, and the old fyltem is entircly exploded. And now that Dr Crawford is dead, 1 hardly know of any perfon except my friends of the Lunar Sucisty at Birmingham, who adhere to the doctrine of phlogifton; and what may now be the cafe with them in this age of revolutions, philofuphical as well as civil, I will not at this diftance anfwer fur.
"It is no douht time, and of courfe opportunity of examination and difeuffion, that gives thability to any principles. But this new theory has not ouly kept its ground, but laas been conftantly and uniformly advancing in reputation more then ten years, which, as the attention of fo many perfons, the belt judges of every thing relating to the fubject, has been unremittingly given to it, is no inconfiderable period. Every year of the laft twenty or thirty has been of more importance to fcience, and efpecially to chemiftry, than any ten in the preceding century *."

We have endeavoured in the preceding article to ftate the different theories which have fucceffively made their appearance in chemiflry with as much fairnefs as poffible. If we have fucceeded, the reader will be enabled to judge for himfelf which of thefe theories is the moft confiftent with truth ; or rather, if we have fucceeded, he will join with us in thinking that the theory of Lavoifier is in moft points an accurate account of what takes place in nature.

This we confider as a fufficient reafon for having adopted the new nomenclature; for, as Morveau long ago obferved, molt of the ubjections that were made to it were rather levelled at the doctrine of thofe who formed it, than at the nomenclature itfelf. Its fuperiurity to every other nomenclature cannot be difputed for an inftant ; and the valt facility which it has
added to the acquifition of chemintry, mul be acknow. Conclufion, ledged by cvery one who knows any thing about the fcience. The Table of the new nomenclature will not be expected here, as it has been already given in the Appendix to the article Chemistay in the Encycho pedia. At any rate, it would have been unneceffary, as we have ufed the new names all along; and therefore our readers muft by this time be well acquainted with them.

Upon the almoft infinite number of criticifms which have been made on the new nomenclature, and the many new terms which fince its publication have been fucceffively propofed, we do not mean to enter. Few of thefe terms can bear a comparifon with the French nomenclature, and fill fewer have any claim to be preferred to it; and the philuiuphers who perfilt in thefe ufelefs innovations, are more probably actuated by the delire of appearing to have a thare in the great revolution which chemittry has undergone, than by any hopes of being able to improve the accuracy or the elegance of its language. liow few have difplayed the magnanimity of an illuftrious pliilofopher of our own country, who, thongh he had invented a new nomenclature him. felf, exhorted his pupils not to ufe it, but to adopt that of the French cheinifts, which was likely foon to come into univerfal ufe.

Even the etymological remarks which have been made on the new nomenclature, we confider as cither of little confequence or as ill-founded. The philofophers who formed it have difplayed a fagacity and a moderation whicls could not be excelled, and have, upon the whole, formed a language much more fyftematic, and much more perfect, than could have been expected; and who. ever compares it with the nomenclature propofed in 1782 by Morveau, will fee how great a fhare of it is due to that illuftrious philofopher.

Notwithiftanding what we lave here faid, we would not be underflood to confider the new momenclature as already arrived at a flate of fuch abfolute perfection, that no alteration whatever can be made in it except for the worfe. Such perfection belongs not to the works of man ; nor if it did, could it be expected in this cafe, if we confider for a moment the prefent Rate of chemiftry. New difcoreries muft oceafion additions and alterations in the nomenclature ; but the authors of the new nomenclature have given \(u 6\) the rules by which changes and additions are to be made; and if they are adhered to, we may expect with confidence that the language of chemiftry will in its advancement to perfection keep pace with the fcience. We have in the preceding article ventured in an inflance or two to adopt little improvements that have been fuggefted by later writers. We have taken the liberty, too, of choofing, from the variety which the Britifh chemitts have propofed, that mode of fpelling each of the terms which appeared to us moft agreeable to the Englin idiom, and mort conformable to analogy: Whether or not we have made a proper choice mult be left for others to cetermine.

\section*{I N D E X.}

\section*{A \\ CET \(A T S, 11^{\circ} 800\) Acetites, \(4^{6} \downarrow\), and Part III. chap. ii. fect. TI . \\ Acelic acid, Part II. chap. v. fect. 12. \\ Actous acid, Part II. chap. v. fect. 1 r.}

Acid principle, 388
Acid, real, infulphuric acid, \(39^{8}\). in nitric acid, 412.
Acid foaps, Part III. chap i. fect. 2.
Acids, Part II. chap. v.
Acids, animal, 549.
metallic, 559. vegetable, 526 .
Acidum pingue, 374
Adhefion explained, 566. experiments on, 577.
Aerial acid, 457
Es, meaning of the word, p. 239, note.
Affinityexplained, \(n^{\circ} 13\), and Part II. chap. vi.

Afrnity, compound, 580 . difpoling, 581 . fimple, 579.
Agufina, 239.
Air, a non-conductor of caloric, 260. artificial, 457.
Alcobol, Part II. ch. ii. analyfis of, 353 . fubftances, foluble in, 358.

Alkalies, Part II. ch. iv.
Alkali vegetabile vitriolatum, p. 359, note.

Alkaline foaps, Part Iỉ. ch. i. fect. I.
Alloy explained, p. 226, note.
Alum, no 636 .
fpirit of, p. 362, note.
Alumen, n\({ }^{\circ} 636\).
Alumina, Part I. ch. iv. fect. 6. acetite of, 784 . benzoat of, 821 . borat of, 749 . camphorat of, 829 . carbonat of, 775 . citrat of, 814 . fluat of, 765 . lactat of, 817. muriat of, 705 . nitrat of, 676 . exalat of, 805 . phofphat of, 735 . faccholat of, 818.

Alumina, febat of, \(n^{\circ} 847\).
foap of, 594.
fuberat of, 836 . fulphat of, 627 .
fulphite of, 665. tartrite of, 811.
Analgam, what, 93 .
Amber, 502.
Ammonia, Part II. ch. iv. lect. 3. actite of, 779 . anrat of, 849 .
benzoat of, 820 . borat of, 725 . camphorat of, 825 . carbonat of, 770 . citrat of, 813 . cuprat of, 852. fluat of, 761 . lactat of, 817 . malat of, 816 . mercuriat of, 8 s I. muriat of, 697. nitrat of, 670 . oxalat of, 804 . phofphat of, 730. pruffiat of, 837 . faccholat of, 818 . febat of, \(8 _6\). foap of, 591. fuberat of, 832 . fulphat of, 627 . fulphite of, 66 r . tartrite of, 810. zincat of, 855 .
Animal acids, 549.
Antinony, PartI. ch.iii. feet. 10. acetite of, 794. benzoat of, 822 . muriat of, 716. nitrat of, 687. oxalat of, 806 . febat of, 848 . fulphat of, 650 . tartrite of, 812.
Antiphlogific theory, P. 277 . note.
Ants, acid of, Part II. ch. v. fect. 29.
Apulum, \(\mathrm{n}^{\circ} 240\).
Aqua fortis, 407.
Alqua-regia, p. 224, note.
Arcanum duplicatum, \(n^{\circ} 624^{\circ}\) tartari, 777.
Arfeniats, 552, and Part III. ch. ii. fect. 26.
Arfenic, Part I. ch. iii. fect. 12. acid, 550. acetite of, 795.
benzoat of, 822 .

Arfenic, borat of, \(\mathrm{n}^{\circ} 758\). fluat of, 767 . muriat of, 717. nitrat of, 688.
oxalat of, \(8 \supset 6\). phofphat of, 740 . fcbat of, 848 . fulphat of, 65 I . tartrite of, 812.
Aimofpheric air, compofition of, 53.

Aurum mufivun, 120.
Auflount, 240.
Avot, Part I. ch. ii. fect. 5. how combined with oxygell, 42 I .

\section*{B}

Balfam of fulphur, 370.
Balm of Peru, foap of, 609.
Barytes, Part I. ch. iv. fect. 3.
acetite of, 780 . borat of, 725 . camphorat of, 826 . carbonat, 771. citrat of, 814. fluat of, 752 . lactat of, 817. malat of, 816. muriat of, 699. nitrat of, 671 . oxalat of, 805 . oxymuriat of, 724. phofphat of, 731. pruffiat of, 838 . faccholat of, 818. foap of, 595. fuberat of, 834 . fulphat of, 628 . fulphite of, 664.
Parglic, water, 209.
Becr, when firft known, 34 ว.
Bill metal, 122.
Benzoats, 501, and Part III. ch. ii. fect. 19.
Henzuic acid, Part II. ch. v. fect. 20.
Benzoin, 499. foap of, 608.
Bergman, character of, II4.
Bifinuth, Part I. ch. iii. fect. II. acctite of, 793. benzoat of, 822. borat of, 757. muriat of, 715 . nitrat of, 686 . oxalat of, 806 . fulphat of, 649 . tartrite of, 812.

Black, Dr, difcovers latent heat, 268.
difcovers the compofition of the carbo. nats, 200, 373.
Black bodies fooneft lieated by light, 325 . lead, 109.
Blende, P. 247 , note.
Blue, liquid, \(n^{\circ} 513\).
Boiling point of water, experiments on, 337, 338.
Bologna fone, 629.
Bombyc acid, 546 .
Boracic acid, Part II. ch. v.
fect. 8.
Borats, 447 , and Part II. ch. ii. fect. 8.
Borax, 441 , 744.
Barbonium, 240.
Brafs, 140.
Brittlenefs, to what owing, 303:
Bronze, 122.
Brunfwick green, 812.
C
Cadmea, 134.
Careous acid, \(457^{\circ}\)
Calchantum, \(6+1\).
Calcination, 61.
Calnmel, 718, 725.
Caloric, Part I. ch. v. whether a fubfance, 241, 312 .
equilibrium of, 246 .
of fluidity, 269.
of evapuration, 270.
methods of obtaining, 292.
whether the fame witls light, 328.
Calorimeter, 265.
Calx, 61.
Camplor, 506.
Camphorats, 5 10, and Part III. ch. ii. fect. 2 I .
Campharic acid, Part. II. ch. v, fect. 22.
Canton's pyrophorus, 320.
Capacity for caluric explained, 262.

Carbon, Part I. ch. ii. fect. 3. attempts to decompore,
44.

Carbonats, 462, and Part III. ch. ii. fect. ic.
Carbonated hydrogen gas, 42 : and Part III. ch. iii.
Carbonated azotic gas, 50.

4,00
CHEMISTKY．
INDEX．

Carlionic acid，32，and Part II． ch．v．feet． 10.
Carbunts，\(n^{\circ} 35\).
Curbunet of iron， 129 mangancic， 175.天1ルじ，139．
Cavallo＇s experiments on light， \(3+5\).
Cavendik，Itenry，difcovers the compofition of wa－ ter， \(3+1\) ．
and of nitric acid， \(+29\).
Crzuflicun acidum， 374
Cementation，\({ }^{1} 3\).
Chalybeated tartar， 812.
Charcoal，conducting power of， 252.

Chemiflry，deanition of，I．
Cbronic acid，Part 1l．ch．v． fect． 35.
Chromum， 189.
Cinnabar， 91.
Citrats， \(47^{\text {P，}}\) ，and Part III．ch． ii．fect． 14.
Citric acid， 476.
Cobalt，Part I．ch．iii．fect． 13. acetite of， 790.
benzoat of， 822. borat of， 752 ． Huat of， 767 muriat of， 710. nitrat of， 680. oxalat of， 806 ． foap of， 598. fulphat of， \(6 \not+6\) ．
Cobefion， 570.
Cold，method of producing， 280. why produced by mix－ tures， 282.
Colcur effects the heating of bodies by light， 335 ．
Colouring matter of Pruffian blue， 333.
Combuffion explained，293．
Commou falts， 696.
Compound affinity， \(5^{83}\) ．
Compound bodies，Part II．
Condenfation diminifhes specific caloric，303．
Conduaing powers of bodies， \(251,2 \times 6\).
Comtar，no abfolute， 568.
Copper，Part I．ch．iii．fuet． 5 ． acetite of， 792. benzoat of， 822 ． borat of， 756. citrat of， 815 ． fluat of， 767 ． muriat of， 714. nitrat of， 685 ． oxalat of， 806 ． febat of， 848 ． foap of， 602. fulphat of，684．

Cork，no 511.
Corrofive muriat of mercury， 725.
fublinate， 725.
Corundum， 2 i，ó．
Crazuford，D）r，his experiments on fpecific caloric， 264.
his theory of com－ buttion， 297.
Crylal，rock， 216.
Cryflallization，Part III．ch．iv．
Crylals，what，18， 864.
Cuprum，when firft ufed，page 239，note．

\section*{D}

Decrepitation explaincd，p． 359. notes．
De Luc＇s theory of light， 332.
Denfity，increaled by hammer－ ing．
of different mixtures of acids and water， 397. \(411,424\).
Dephlogiflicated air， 6. muriatic acid， 428.

Detonation of nitre， 667 ．
Diamond， 38.
Digeglive falt of Sylvius， 777.
Difpofing affinity， 584.
Diuretic falt， 777.
Duaility， 60.

\section*{E}

Earths，Part I．ch．iv． properties of， 192.
combinationswith each other， \(205,217\). 225.
remarks on， 240.
Effervefcence，what，page 214， note．
Efflorefing explained，\(n^{\circ} 626\) ， and note．
Eggs hatched by electricity， 313.

Elearive attraction，what， 13.
Elearicity，analogy between and caloric， 246.
whether an agent in producing heat by friction， 314.
Emetic tartar， 812.
Empyreal air， 6.
Epfom falt， 633.
Equilibrium of caloric， 246.
Eiber， 355 ．
Etbiops mineral， 90
Eudiometer， 420.
Euler＇s theory of light， 315 ．
Expanfion of bodies，table of， 242.

Extrad of Saturn， 790.
F
Fat，acid of， 543.

Featbers，why a warm cover． ing，\(n^{\circ} 260\).
Febrifuse falt of Sylvius，69\％．
Fire damp， 3 6．
Fitxed air，202， 457.
ammonia， 701.
oil， \(3^{61}\) ．
Fluats， 455 ．and Part III．ch． ii．fect． 9 ．
Fluits，whether conductors of caloric， 256 ．
proved that they are， 259.
Fhor， 449 ．
Fluoric acid，Part II．ch．v． fect． 9.
Formic acid， 529.
Formita rufa， 539.
Franklin＇s experiments on the heating of bodies by light， 325.

Friaion，caloric produced by， 307， 310.
Fulminating gold，849．\} filver， 850 ．
Furs，in what their warmth con： fifts， 260.
Fufible（par，449．
Fufion， 867.

\section*{G}

Gallats， 498 ，and Part III．ch． ii．rect． 18 ．
Gallic acid，Part II．ch．v．fect． 19.

Galls， 493.
Gas explained，5，457．
Gafeous form of bodics，to what owing， 279.
Gafes，not heated red hot， 327 ．
Glafs， 377 ．
conducting power of， 253. of antimony， \(145^{\circ}\)
Glauber＇s falt， 626.
Glucina，236， 237.
Gold，Part I．ch．iii．fect．I． acted on by nitric acid， 413.
fulminating， \(8_{4} 8\) acetite of， 798 ．
benzoat of， 822 ．
rebat of， 848 ． foap of， 605 ． Atannat of， 853.
Guaic，roap of，610．
Gunpowder， 667.
Gypfum， 630.

\section*{H}

Hartborn， 382.
Hauy＇s theory of cryAtallization， 872.

Heat，Part I．cl．v． makes bodies luminous， 326.

Hepatic gas， 42.
Hot bodies lighter than cold， 248.

Houi poun， \(11^{\circ} 4.41\).
Hutton＇s theory of light， \(333^{\circ}\) explanation of the ap－ parent reflection of cold，page 283，note．
Hydrogen gas，Part I．ch．ii． yect． 4.
Hydrogenous fulphurets， 858 ．
Hydrofulphurets，Part III．ch． iii．

\section*{1}

Fames＇s powder， 742.
Jargon， 243.
Jargonia，Part I．ch．iv．fect． 7 ．

\section*{\＆page 363 ，note．}
acetite of，\(n^{\circ} 785\).
muriat of， 706. nitrat of， 677 ．
fulphat of， 640 ．
Ice， 335
Inflammable air，page \(21 \%\) ．
Iron，Part I．ch．iii．fect． 6. catt， \(1{ }^{1} 3\)
cold fhort， 108.
wrought， 11 I ．
acetite of， 786.
benzoat of， 822 ．
burat of， 750 ．
carbonat of， 776.
citrat of， 815 ．
fluat of， 767.
green fulphat of，641．
lactat of， 817 ．
malat of， \(8_{1} 6\) ．
muriat of， 707.
nitrat of， 678 ．
oxalat of， 806 ．
phofphat of， 736.
pruffiat of， 839 ．
red fulphat of， 642.
febat of， 848.
foap of， 601.
fulphite of， 666.
tartrite of，812．
Irvine， Dr ，his theory of heat， 296.
theorem to difcover the real zeno， 272.

K
Kirvian＇s theory of phlogiton， 299.
experiments on the ftrength of acids， 497， 511.
Lat，white 517.
Lactic acid，Part II．ch．v．fect． 24.

Ladats， \(4^{86}\) ，and Part III．ch． ii．fect． 16.
Lagic acid．Part Il．ch．v．fect． 17.
Lana philofophica，page， 238. note．
Latent caloric，\(n^{\circ} 269\).
Lavoifier and La Place，experi－
ments of on fpecific caloric, \(\mathrm{n}^{0} 265\).
Lead, Part I. ch. jii. fect. 8. acetite of, 782 .
benzoat of, 822 .
borat of, 754 .
fluat of, 767.
muriat of, 712.
nitrat of, 683 .
oxalat of, 806 .
febat of, 848 .
foap of, 6 ว3.
fulphat of, \(6 \not+7\).
Lemons, effential falt of, \(\mathrm{SO2}^{2}\)
Light, Part I. ch. vi. Ligneous acid, page 333, note.

Lime, Part I. ch. iv. fect. I. acetite of, 78 I . benzuat of, 82 L . borat of, 746 . camphurat of, 827 . citrat of, 814. fluat of, 763 . lactat of, 817 . malat of, 816 . mercuriat of, 851. muriat of, 701 . nitrat of, 672 . oxalat of, 805 . oxy-muriat of, 724. phorphat of, 732 . plumbat of, 854 . prnffiat of, \(83^{8}\). laccholat of, 818. febat of, 847 . fuap of, 592. ruberat of, 834 . fulphat of, 630 . fulphite of, \(6 \mathrm{H}_{3}\). tartrite of, 811.
Line-water, 195.
Liquid blue, 513 .
Liquor flicum, \(215,377\). Lute, what, 7 .

\author{
M
}

Macquer's opinion about phlogititon, 296.
Magnefia, Part I. ch. iv. fect. 2. acetite of, 783 . benzoat of, 821. borat of, \(74^{8}\). camphorat of, 828 . citrat of, 814 . fluat of, 764 . lactat of, 817 . malat of, 816 . muriat of, 703. nitrat of, 674 . oxalat of, 805 . oxy-muriat of, 724. phofphat of, 734 . prufliat of, \(83_{3}\). faccholat of, 818. febat of, 847.

Magnefin, foap of, \(\mathrm{n}^{\circ} 593\). fuberat of, 835 . fulphat of, 633 . fulphite of, \(65 \%\). tartrite of, 811 .
Malats, 483 , and Part III. ch. ii. fect. 15.

Malic acid, 480.
Malleability, 59 .
Mangance, Pait I. ch. iii. fect. 15. benzoat of, 822 . fluat of, 767. muriat of, 709. nitrat of, 680 . oxalat of, 8 c 6 . phofphat of, \(73^{8 .}\) fuap of, 606. fulphat of, 644 .
Marcafite of gold, 1,34 .
Marks given to metals by the ancients, 130 .
Marine acid, 422.
Mafficot, 125 .
Menachanite, 186.
Mephetic acid, 457.
Mercury, Part I. ch. iii. feet. 4. a nonconductor of caloric, 259. acetite of, 796 . benzoat of, 822 . citrat of, 815 . fluat of, 767 . hydrogenous fulphuret of, \(85 \%\). muriat of, 718 . nitrat of, 689 . owalat of, 806 . oxy-muriat of, 725. prufliat of, 845 . febat of, 848 . foap of, 596 . tartrite of, \(8: 2\). white fulphat of, 651 . yellow fulphat of, 653 . Metallic acids, 559 .
Metals, Part I. ch. iii. expanfion of, 242. conducting power of, 254.

Miafmata, how deflroyed, 426.
Microcofmic falt, 730.
Mineral cryftal, 667.
Miniunt, 125.
Mi poun, 44 I.
Mijy, \({ }_{41}\).
Molybdena, 180.
Molybdenum, Part I. ch. iii. fect. 17.

Molybdats, 555 .
Molybdic acid, 555.
Mother ley, explained, page 251, note.
Muriatic acid, Part II. ch. v. feet. 5.

Mruriatic acid dephlogifticated, \(\mathrm{n}^{0} 4^{28 .}\) oxygenated, 428 . compofition of, 434.

Muriats, 425 , and Part III. ch. ii. fect. 5 . N
Names given to metals by the ancients, 130.
Narcotic falt, \(44^{2}\).
Neruton's theory of light, 315 .
Nickel, Part I. ch. iii. fećt. 14. acetite of, 789 .
borat of, 753.
fluat of, 767.
muriat of, 71 I .
nitrat of, 682 .
oxalat of, 806 .
phofphat of, 739.
foap of, 599 .
fulphat of, 645 .
Nitrats, 414, and Part III. ch.
ii. fect. 3 .

Nitre, 667.
âts on platinum. p. \(3^{12}\), note.
cubic, 669 .
Nitric acid, 51 , and Part II. ch ii. fect. 3 .
its action on oils, 413 .
Nitrites, 417 , and Part III. ch. ii. fcet. 4

Nitrous air or gas, \(409,418\).
acid, Part II. ch. v. feet. 4.
Nitrö-muriatic acid, \(4 \mathrm{j}^{1}\).
Nititum fixum, 624. flammans, 670. femivolatile, 670.

Oil of vitriol, 39 r .
Oils, Part II. ch. iii. drying, 365 . nonconduetors of heat, 295.

Olive, when firt cultivated in Europe, 330.
Olive oil analyfed, 363 .
Oricbalcum, what, 140.
Orpiment, 155.
Ouretic acid, 729.
Oxalats, 470 , and Part III. ch. ii. fect. 12.

Oxalic acid, Part II. ch. v. fect.
- 13.

Oxide and oxydation, 68.
Oxides of antimony, \(144^{\circ}\) arfenic, 154. bifmuth, 149 . cobalt, 160. copper, 96.
gold, 71.
iron, 105.
lead, \(125^{\circ}\)

Oxides of manganefe, \(n^{\circ} 173\).
mercury, 85 .
molybdenum, 185. nickcl, 167. platinum, 81.
filver, 74 .
tellurium, 188.
tin, 119.
titanium, 185.
tunghlen, 179.
uranium, 183.
zinc, 136.
metallic, remarks on, 191.

Oxygen, Part I. ch. i. gas contains light, 322. caloric it gives out, 278.

Oxy-muriats, 432, and Part III. ch. ii. fect. 6.
Oxy muriatic acid, Part II. cho v. fect. 6.

\section*{P}

Panacea holfatica, 624.
\(P_{e}-\) la, page 332 , note.
Perculfion produces heat, and why, no 302.
Perlated falt, 729., acid, 729 .
Peruter, 140, 152.
Pblogilon explained, 295, 20. its exiftence difpro. ved, 30 r.
Phlogifit theory, page 277, note.
Phlogificated air, \(\mathrm{n}^{0} 5^{2}\).
Ploojpbats 438, and Part III. ch. ii. feet. 7.
Pbofphorated hydrogen gas, 41 . azotic gas, 50 .
Plopploric acid, 28 , and Part II. ch. v. fect. 7-

Phofphorous acid, 440.
Pbofphorus, Part I. ch. ii. fect. 2.
whether an ingredient of fteel, 115.
Ploofphuret of antimony, 145 . arfenic, 156 bifnuth, \(15^{1}\). cobalt, 162. copper, 100. gold, 72. iron, 108. lead, 127. lime, 197. manganefe, 174 . mercury, 92. molybdenum, 181. nickel, 169. platinum, 82. potafs, 375 filver, 7 Ć. tin, 121. Phofphurest

Phofphuret of tungften, no 179 . zinc, \(13^{3}\). Piget's experiments on light and caloric, 325 , and p. 284, note.
Pincbbeck, \({ }^{40}\).
Pin poun, \(44^{1}\).
Plafler of Paris, 63 t.
Platinum, Part I. ch. iii. fect. 3. benzoat of, 822. oxalat of, 806 . febat of, 848 .
Plumbago, 109.
Pneumatic apparatus, 7 .
Pompholyx, page 240 , note.
Potifs, Part Il. ch. iv. Cect. 1. acetite of, 777. acidulous oxalat of, 802 . antimoniat of, \(8 ; 6\). benzoat of, 820 . borat of, 743 . camphorat of, 823 . carbonat of, 768. citrat of, 813. fluat of, 759 . lactat of, 817. malat of, 816 . muriat of, 695. nitrat of, 667 . oxalat of, 801 . oxy-muriat of, 722 . phofphat of, 728. pruffiat of, 837. faccholat of, \(8: 8\). febat of, \(\&_{7} 6\). fuberat of, 830 . fulphat of, \(6: 2\). fulphite of, 659 . tartrite of, 808.
Pounxa, \(44^{1}\).
Precipitate per \(\mathrm{fe}, 88\).
Priefliey's theory of combution, 297: experiments on ninitrous ןas, 409.
Prince's metal, 140.
Pruffan blue, 530, 839. alkali, 532,841 .
Pruffiats, 537.
Prufic acid, Part II. ch. v. fect. Silk, why a warm covering, 28. affinities of, 840 .
Pyrolignites, 524.
Pyrolignous acid, Part II. ch. v.
fect. 26.
Pyromucites, 522.
Pyromucous acid, Part II. ch.v. fect. 25 .
Pyrophori, \(3^{211}\).
Pyrophorus of Homberg, 639.
Pyrotartrites, 528.
Pyrotartarous acid, Part II. ch. v. fect. 27 .

2uicklime, 193.

คuikfluer, Part I. ch. iii. fect. Snow of antimony, 144.
\(4:\)
Rancidity, \(n^{\circ}{ }_{36} 6_{4}\)
Realoar, \(155^{\circ}\)
Red heat explained, 326. lead ore of Siberia, page 299, note. precipitate, \(n^{\circ} 88\).
Redulion explained, page 232, note.
Regenerated tartar, \(\mathrm{n}^{\circ} 777\).
Refiduum, what, 19.
Refin explained, p. 299, note.
Rock cryftal, 216.
\(R u f l\) of iron, 105.
Saccharine acid, 467.
Sacclolats, 492, and Part JII. ch. ii. fect. 17.
Sal ammoniac, 697. catharticus amarus, 633 . de duobus, 624. gem, 6g6. mirabile, 626. perlatum, 629. polycreft Glaferi, 624.
Salt of Saturn, 790.
Salts, 622. neutral, 623.
Saturation explained, 571.
Scammony, foap of, 611.
Scheele, account of, 33 I , and note in page 286.
Sea falt, 696.
Sebats, 545, and Part III. ch. ii. fect. 25 .

Secret foliated earth of tartar, 777.
fal ammoniac, 627.
Selenite, 630 .
Seminetals, 69.
Seydler falt, 633.
Siderunt, 108.
Sidneia, 239.
Silica, Part I, ch. iv. fect. 5 . Schecle's theory of the formation of, 450 .
fluat of, 766 .
260.

Silkworm contains an acid, 546.

Silver, Part I. ch. iii. 反ect. 2. fulminating, 850.
acetite of, 797.
benzoat of, 822 . muriat of, 720 . nitrat of, 6 g 1. oxalat of, 806.
fuap of, Go4.
fulphat of, 655.
Simple affinity, 582.
bodies what, 3 .
Snoking liquor of Libavius, 726 .

Soap, \(37^{8 .}\)
origin of the term, \(; 86\).
method of forming, 587 .
hard, 586.
foft, \(59=\).
of wool, 590.
of filh, 590.
Soaps, Part III. ch. i.
Soda, Part II. ch. iv. fect. 2. acetite of, 778.
benzoat of, 820 .
borat of, 744.
camphorat of, 824.
carbonat of, 7 6.9.
citrat of, 813.
fluat of, 760 .
lactat of, 817.
malat of, 816 .
muriat of, 696.
nitrat of, 669 .
oxalat of, 803 .
oxy-muriat of, 723 .
phofphat of, 729 .
pruffiat of, 837 .
faccholat of, 818.
febat of, 848 .
fuberat of, 831 .
fulphat of, 626.
fulphite of, 660.
Soluble tartar, 808.
Solution, 865.
why haltened by heat, 291.

Sory, 641.
Sparks produced by the collifion of quartz, 305.
Specific caloric, what, \(262,290\). table of, 267.
Specificum purgans, 624.
Spelter, 134.
Spirit of Mindererus, 779. nitre, 407. falt, 422 .
Stabl's theory of combuttion,

\section*{295.}

Steam, \(33^{5}\).
a nonconductor of caloric, 261.
Steel, 112.
Stibium of the ancients, what, 142.

Stones, conducting power of, 255.
Strength of acids, 397, 411.
Sironites, Part I. ch. iv. fect. \(4 \cdot\) acetite of, 782. carbonat of, 773 . muriat of, 702 . nitrat of, 673 . oxalat of, 805 . phofphat of, 733. fulphat of, 633 . tartrite of, 811.
Suberais, 514. and Part III. ch. ii, fect. 22.

Suberic acid, Part II. ch. v. lect. 23.
Succinats, \(\mathrm{n}^{\circ} 505\).
Succinic acid, Part II. ch. S. fect. 25.
Sugar, 465 .
acid of, 466.
of bifmuth, 793.
of lead, 790.
of milk, 488 .
of Saturn, 790.
Sulphats, 399. and Part III. ch. ii. fect. 1.
Sulphites, 405. and Part III. ch. ii. fect. 2.
Sulphur, Part I. ch. ii. Rect. I.
Sulphurated hydrogen gas, 40, 857.

Sulphuret of ammonia, 386.
antimony, 145.
arfenic, 155 .
barytes, 210.
bifmuth, 150.
cobalt, 161.
copper, 99.
iron, 107.
lead, 126.
lime, 196.
magnefia, 204.
mercury, 90, 9I,
859.
molybdenum, 181.
nickel, 168.
potafs, 375.
filver, 75 .
tellurium, 188.
tin, 120.
tungften, 179.
uranium, 183. zinc, 137.
Sulphurets, remarks on, 8,8 .
Sulphuric acid, Part II. ch. v. lect. 1.
Sulpburous acid, Part II. ch. v. fect. 2.
Sylvanite, page 247 , note.
Syrupous acid, page 333 , note.
Tanning principle, page \(327, \mathrm{n}_{\text {s }}\)
Tartar, \(472,807\).
emetic, 812.
Tartarized tincture of Mars, 812.
iron, 812.
Tartarous acid, Part II. ch. v. fect. 14.
Tartrites, 474, and Part III. ch. ii. \{ect. 13 .
Tellurium, Part I. ch. iii. fect. 20.
fulphat of, 658.
Temperature explained, 290.
Tennant, Smithfon, decompolcs carbonic acid, 459.
Tenjion of caloric explained, 247.

\section*{Index.}

Terra pendcrofa, 207.
Thermometer, 244 .
how a meafure of temperature, 248.
ftands higher when it s bulb is blackened, 325 .
finks in an exhauftedreceiver, 241.

Wedgewood's, 224.

Tin, Part \(\therefore \cdot \operatorname{ch}\). iii. fect. 7. acetite of, 791. benzoat of, 822 . burat of, 755 . fluat of, 767 muriat of, 713. nitrat of, 684. oxalat of, 806 . oxy-muriat of, 726.
febat of, 848 .
foap of, 600 .
fulphat of, 647.
Tinfoil, 1 ı.
Tinplate, \(\mathrm{n}^{\circ} 12 \mathrm{~S}\).

Tincal; 44 t .
Titanim, Lart I. ch. iii. fect. 19.
muriat of, 721.
fulphat of, 057.
Tombac, white, 157.
Tungstats, 554 .
Tungsten, Part I. ch. iii, reet.iG.
Tungstic acid. 553.
Turbith mineral, 653.
Turpentine, foap of, 607.
Types, printers, compofition of, 147.

\section*{U}

Vegetable acids, 526.
Venus, cryftals of, \(79^{2}\).
Verdigrife, 792.
Vernilion, 91.
Vinegar, Part II. ch. v. fect. 11.
of Saturn, 790.
Fital air, 6.
Vitriol, blue, 648.
green, 641. white, 643 .
Vitriol of potafs, p. 359, note, mother water of, 642.

Vitriolated anmonia, 627. tartar, 624.
Fitriolic acid, 391.
Volatile and volatilization, what, 17.

Volatile alkali, 382. oils, 369.
Uranium, Part I. ch. iii. fect. 18.
acetite of, 799.
phofphat of, 741 .
fulphat of, 655 . W
Water, 38, Part II. ch. i. weight of, 334 . hillury of its decompoGition, 341.
proofs of its decompofition, 342.
a nonconductor of heat, 256.
of nitre, 407.
Watery fufion explained, 626, and note.
Wedgerwood, Thomas, his experiments on light, \(325,3^{26}\), 327, 329.

Wedgewood's thermometer, \(224^{*}\) Wilckles's experiments on fpecific caloric, 263.
Wine, effential falt of, 777.
Wood, conducting power of, 252 .
Yitria, \(23^{3}\).

\section*{Z}

Zero, real attempt to difcover, 271.

Zinc, Part I. ch. iii. feet. 9. acetite of, 787. benzoat of, 822 . borat of, 750 . carbonat of, 776 . fluat of, 767. lactat of, 817 malat of, 8 i 6 . muriat of, 708. nitrat of, 679. oxalat of, 806 . phofphat of, 737. loap of, 597. fulphat of, 643 . tartrite of, 812.
Zirconia, page \(3 \sigma_{3}\), note. Zoonic acid, 547.

\section*{C HE}

Cherubim. CHERUBIM were emblematical figures; of which an account, a very vague one indeed, has beerig given in the Eneyclopedia Britannica. We are far from thinking ourfelves qualified to improve that account, or to explain emblems in the Jewifh worthip, which even Jofephus did not underftand ; and we certainly fhould not have refumed the fubject but to gratify a numerous clafs of our readers, and to comply with the requeft of fome highly refpected friends.

The followers of Mr Hutchinfon, who are firmly perfuaded that their matter brought to light from the writings of the Old Teftament many important doctrines which had lain concealed from all the piety, all the induftry, and all the learning of 1700 years, believe that, among other things, he and they have been able to afcertain the form and the import of the Hebrew Cherubin. Their difcoveries on this fubject, as we have been told by better judges than we pretend to be, are more clearly ftated by Mr Parkhurft in his Hebrew Lexicon, than by any other writer of that fchool. We fhall therefore lay before our readers his doctrine reipecting the form of the artificial cherubs, as well as of their emblematical meaning; and fubjoin a fev remarks, which the nature of his reafoning has forced from us.
"Fir \(h\), then, as to the form of the artificial cherubs in the tabernacle and temple. Mofes (fays our author) was commanded (Exod. xxv. 18, 19.) 'Thou that make two cherubs : of beaten gold fhalt thou make them at the two cods of the mercy-feat. And thou

\section*{C HE}
fhalt make one cherub at the one end, and the other Cherubins, cherub at the other end : מו חבפדח, out of the mercyfeat (Margin Eng. Traflat. of the matter of the mer-cy-feat) fhall ye make the cherubs at the two ends thereof.' All which was accordingly performed (Exod. xxxvii, 7,8 .), and thefe cherubs were with the ark pla. ced in the holy of holies of the tabernacle (Exod. xxvi. 33, 34. xl. 20.) ; as thofe made by Solomon were afterwards in the holy of holies of the temple (I Kings vii. 23, 27.)

We may obferve that in Exodus Jehovah fpeaks to Mofes of the cherubs as of figures well known ; and no wonder fince they had always been among believers in the holy tabernacle from the beginning. (See Gen. iii. 24. Wiif. ix. 8. And though mention is made of their faces (Exod. xxv. 20. 2 Chron. iii. 13.), and of their wings, (Exod. xxv. 20. 1 Kings viii. 7. 2 Chron. iiio 11, 12.) ; yet neither in Exodus, Kings, nor Chronicles, have we any particular defcription of their form. This is however very exactly, and, as it were, anxionfy fupplied by the prophet Ezekiel, ch. i. 5. - Out of the midt thereof (i.e. of the fire infolding itfelf, ver. 4.) ת the likenefs of four livings creatures or animals: Tand man men likenefs of a inan (being) with them.' This laft Hebrew expreffion camot mean that they, i. e. the four animals, had the likenefs of a man, which interpretation would indeed make the prophet contradict himfelf (comp. ver. 10.) ; but it imports that the likenefs of a man in glory, called (verfe 26.)

\section*{C H E [404]}

Cherubim. and particularly defcribed in that and the following verfes, was with them. Ver. 6. 'And there were four faces to one (ת:3 or fimilitude), and four wings to one, anb to them. So there were at lealt two compound figures. Ver. 10.' And the likenefs of their faces; the face of a man, and the face of a lion, on the right fide, to them four; and the face of an ox to them four ; and the face of an eagle to them four:' Ezekiel knew (ch. x. 1.-20.) that thefe were cherubs. Ver. 21. 'Four faces \(7 \pi{ }^{\text {ל }}\) to one (cherub) and four wings to one.' This text alfo proves that the prophet faw more cherubs than one, and that each had four faces and four wings. And we may be certain that the cherubs placed in the holy of holies were of the form here deferibed by the priett and prophet of Ezekiel, becaufe we have already feen fron Exudus, 1 Kings, and a Chronicles, that they likewife had faces and wings, and becaufe Ezekiel knew what he faw to be cherubs, and becaufe there were no four-faced cherubs any where elfe but in the holy of holies; for it is plain from a comparifon of Exod. xxvi. 1, 31. I Kings vi. 29, 32. and 2 Chron. iii. 14. with Ezekiel xli. 18, 19, 20. that the artificial cheruhs on the curtains and vail of the tabernacle, and on the walis, doors, and vail of the temple, had only two faces; namelv, thofe of a lion and of a man.
"For it mult be obferved further, that, as the word בור \(\operatorname{zis}\) ufed for one compound figure with four faces, and \(\square\) in the plural for feveral fuch compounds (fee Exod. xxv. 18, 19. xxxvii. 8. I Kings vi. 23-26), fo is ברוב applied to one of the cherubic animals, as to the ox, Ezek. x. 14.; (compare ch. i. 10.) to the coupled cherub, or lion-man, Ezek. xli. 18.; and \begin{tabular}{rl}
כ \\
\hline
\end{tabular} to feveral of the cherubic animals, as to feveral oxen, t Kings vii. \(3^{6}\). (compare ver. 29.) to feveral coupled cherubs, Exod. xxvi. 1. 1 Kings vi. 32,35 \& al. I proceed to thew.
"Secondly, of what the cherubs were emblems, and with what propriety.
"That the cherubic figures were emblenis or reprefentatives of fomething beyond themfelves is, I think, agreed by all, both Jews and Chriftians. But the queftion is, Of what they were emblematical? To which I anfwer in a word, Thofe in the holy of helics were emblematical of the ever-bleffed Trinity in covenant to redeem man, by uniting the human nature to the Second Perfon; which union was fignified by the union of the faces of the lion and of the man in the churubic exhibition, Ezek. i. 10. compare Ezek. xli. 18, 19. The cherubs in the holy of holies were certainly intended to reprefent fome beings in heaven, becaufe St Paul has exprefisly and infallibly determined that the holy of holies was a figure or type of heaven, even of that heaven where is the peculiar refidence of God (Heb. ix. 2ł.). And therefore thefe cherubs reprefented either the ever bleffed Trinity with the man taken into the effence, or created fpiritual angels. The following reafons will, I hope, clearly prove them to be emblematical of the former, not of the latter :
" \(\Omega\), Not of angels; becaufe (not now to infift on other cirçumftances in the cherubic furm) no tolerable seafon can be affigned why angels fhould be exhibited with four faces apiece.
" 2 ally, Becaufe the cherubs in the holy of holies of the tabernacle were, by Jelioval's order, 'made out of the matter of the mercy-feat, or beaten out of the fame
piece of gold as that was' (Exod. xxv. 18, 19. xxxvii. Clembim. 9.). Now the mercy-feat, made of gold and crowned, was an emblem of the Divinity of Clirift (See Rom. iii. 25. The cherubs therefore reprefented not the angelic, but the Divine nature.
" 3 dly, The typical blood of Chrift was fprinkled befure them on the great day of atonement (comparc Exod. xxxvii. 9. Lev. xvi. 14. Heh. ix. 7, 12.): And this cannot in any fenfe be referred to created angels, but muft be referred to Jehovah only ; becaufe,
" 4 thly, The high priclt's entering into the holy of holies on that day, reprefented Chrilt's entering with his own bluod into heaven 'to appear in the prefence of God for us' (Heb. ix. 7, 24.) And,
\(5^{\text {thly }}\), When God 'raifed Chrift (the humanity) from the dead, he fet him at his own right hand in the heavenly places, far above, 'rnepañ, all principality and power, and might and dominion, and every name that is named, not only in this world, but alfo in that which is to come (Eph. i. 21.). Angels and authorities and powers being made fubject unto him' (1 Peter iii. 22.)
"6tbly, The prophet Fzekiel faith (ch. x. 20.), - This is the liviug creature, an (which muft mean one compound figure, comp. ver. 14.) that .F faw' inftead of, a fubtitute of ' the Aleim of Ifrael, , it is granted, may refer cither to fituation or fubflitution, (fee Gen. xxx. 2. 1. 19.) as the fenfe requires. Here, notwithftanding what is faill ver. 19. the latter fenfe is preferable; becaufe it was the glory of the God of Ifrael, i. e. the God-man in glory, (compare ch. i. 26.) not the Aleim (the Trinity) of Ifrael that were over the cherubim; and the text fays not, thefe were the living creatures, but, this was the living creature,
 both the cherubims, ver. 19. but one compound cherub. only was a fubltitute of the Aleim.
"If it fhonld be here afkicd, Why then were there two compound cherubs in the holy of holies? I anfiver, Had there not in this place been two compound cherubs, it would have been naturally impoffibie for them to reprefent what was there defigned; for otherwife, all the faces could not have looked inwards toward each other, and down upon the mercy-feat, and on the interceding high prieft fprinkling the typical blood of Chriit, (fee Exod. xaxvii. 9.) and at the fame time have looked outward toward the temple, nom (Vulg. ad domum exteriorum, to the outer-houfe,) 2 Chron. iii. 13. Or, in other words, the Divine Perfons could not have been reprefented as witnefling to each other's voluntary engagements for man's redemption, as beholding the facrifice of Chritt's dcath, typified in the Jewifh church, and at the fame time as extending their gracious regards to the whole world. (See Ifí. liv. 5. and Spearman's Inquiry, p. \(3^{82}\). edit. Edinburgh.
"The coupled cherub, or lion-man, on the vail and curtains of the outer tabernacle, and on the vail, doors, and walls of the temple, accompanied with the emblematic palm-tree, is fuch a friking emblem of the lion of the tribe of Judah (Rev. v. 5.) united to the man Chrift Jefus, as is eafy to be perceived, but hard to be evaded. Thefe coupled cherubs appropriate the tabernacle or temple, and their vails, as emblems of Chritt, and exprefs in vifible fymbols what he and his apoftles do in words. See John ii. 19, 21. Heb. viii. 2. ix. 11.
X. 20.

Cheruhime x. 20. comp. Matt, xxvii. 5 \%. And as the texts juft cited from the New Teftament afford us divine anthority for afferting that the outer tabernacle or temple was a type of the body of Chrit, fo they furnih us with an irrefragable argument to prove that the cherubs on their curtains or walls could not reprefent angels. For did angels dwell in Chrill's body? No, furcly: But ' in him dwelt all the fuluefs of the Goulhead bodily.' (Col. ii.,.g.)
"I go on to confider the propriety of the animals in the cherubic exlibition reprefenting the Three Perfons in the ever-blefled I'rimity. And here to obviate any undue prejudice which may have been conceived againit the Divine Perfons being fymbolically reprefented under any animal forms whatever, let it lie remarked that Jehovah appeared as three inen to Ahraham (Gen. xviii.); that the ferpent of brafs fet up ly God's conmand in the wildernefs was a type or emblem of Chrift, Godman, lifted up on the crofs (comp. Num. xxxi. r-9. with Johu iii. It, 15.); that at Jefus's baptifin the Holy Spirit defcended in a bodily thape, like a dove, upon him (Luke iii. 21, 22.) ; that Chrif, as above intimated, is exprefsly called the lion of the tribe of Judah (Rev. v. 5.) ; and continually in that fymbolical book fet before us under the fimilitude of a lamb. All thefe are plain feriptural reprefentations, each of them admirably fuited, as the attentive reader will eafily obferve, to the particular ci:cumflances or fpecific defign of the exhibition. Why then fhould it appear a thing incredible, yea why not highly probable, that Jehowah Aleim fhould, under the typical itate, order his own Perfons and the union of the manliood with the effence to be reprefented by animal forms in the cherubim of glory? Efpecially if it be confidered that the three animal forms, exclulive of the man (who ftood for the very human nature itfelf) are the chief of their refpective genera: the ox or bull of the tame or graminivorous; the lion, of the wild or carnivorous; and the eagle, of the winged kind.-But this is by no means all: For as the great agents in nature, which carry on all its operations, certainly are the fluid of the heavens, or, in other words, the fire at the orb of the fun, the light iffuing from it, and the fpirit or grofs air conltantly fup. porting, and concurring to the actions and effects of the other two; fo we are told (Pfal. xis. 1.) that K א recounting, or particularly exhibiting the glory of God, even his eternal power and godhead, as St Paul fpeaks, Rom. i. 20. And aecordingly Jehovah himfelf is fometimes, though rarely (1 prefunie for fear of miltakes) called by the very name (ber or heavens in the Old Teftament, fee 2 Chron. xxsii. 20. (comp. 2 Kings xix. 14. 1fa. xxxvii. 15.) Dan. iv. 23. or 25 .; as he is more frequently exprefled by ougaves heaven in the New. (See Mat. xxi. 25. Mark xi. 30 . 31. Luke xv. 18, 21. xx. 4, 5. John iii. 27.) Yea not only fo, but we find in the Scriptures both of the Old and New Teflament, that the Perfons of the eternal Three and their econo-* mical operations in the fpiritual, are reprefented by the three conditions of the celeftial fluid and their operations in the material world. Thus the peculiar emblem of the Word or Second Perfon is the wis or light, and he is and does that to the fouls or fpirits of men which the material or natural light is and does to their bodies. (See inter al. 2 Sam, xxiii, 4. Ifa, xlix. 6. 18. I.

Mal. iv. 2. or iii. 20. Luk i. 78. ii. 32. Jchu i. 4-9. Cherubin1. viii. 12. xii. 35, \(3^{6}, 46\).) The Third Perfon has an other diftinctive name in feripture but in Hebrew, and חrveus in Greck (botls which words in their primary fenfe denute the material firit or air in notion), to which appellation the epithet \(2 \cdot T p\), ar.oo hol \()_{y}\), or one of the nanes of God, is ufually added : and the actions of the Fluly Spirit in the fpiritual fytem are deferibed by thofe of he air in the natural (See John iii. 8. xx. 22. Acts ii. 2.) Thus, then, the fecond and Third Ferfons of the ever-bleflid Trinity are plainly reprefented in feripture hy the material light and air. But it is further written, Jehovah thy Aleim is a confuming fire. Dent. iv. 24. (Comp. Deut. ix. 23. Heb, xii. 29. Pfal. xxi. 1c. 1xxviii. 21. Nah. i. 2.) And by fire, derived either imnediately or mediately from heaven, were the typical facrifices confumed under the oid difpenfation. Since, then, Jehovah is in feripture reprefented by the material heavens, and cven called by their name, and efpecially by that of fire, and fince the Second and flird Perfons are exhibited refpectively by the two conditions of light and fipirit, and fince fire is really a condition of the heavenly fluid as much diftinct from the other two as they are from each other, it remains that the peculiar emblem of the lirft Perfon (as we ufually fpeak) of the eternal Trinity, confidered with refpect to the other two, be th: fire.
"Bearing then in mind that the perfonality in Jeho. valh is in feripture reprefented by the material Trinity of nature ; which alfo, like their divine antitype, are of one fubitance, that the primary feriptural type of the Father is fire; of the Word, lightit and of the Holy Gholt, fpirit, or air in motion; we flall eafily perceive the propricty of the cherubic emblems. For the ox or bull, on account of his horns, the curling hair on his forehead, and his unvelentivg fury when provoked (fce Pfal. xxii. 13) is a very proper animal emblem of fire; as the lion from his ufual tawny goldlike colour, his flowing mane, his thining eyes, his great rigilancy and prodigious frength, is of light; and thus likewife the eagle is of the fivis or air in action, from his being chief among fowls, from his impetuous rootion (fee 2 Sam. i. 23 . Job ix. 26. Jer. iv, 13. Lam. iv. 19.), and from his towering and furprifing flights in the air (fee Job xxxix. 27. Prov. sxiii. 5. xxx. 19. 1fa, xl. 31. and Bochart, vol. iii. p. 173.) And the heathen ufed thefe emblematic animals, or the like, fometimes feparate, fometimes joincd, in various nanliels, as reprefentatives of the material Trinity of nature, which they adored. Thefe particulars Mr Hutchinfon has proved with a variety of ufeful learning, vol. -ri. p. 381 , et feq. and any perfon who is tolerably acquainted with the heathen mythology will be able to increafe his valuable collection with many iuftances of the fame kind from modern as weil as ancient accounts of the pagan religions.
"Thas, then, the faces of the ox, the lion, and the eagle, reprefenting at fecond hand the Three Perfons of Jehovah, the Father, the Word, and the Holy Spirit ; and the union of the divine light with man being plainly pointed out hy the union of the faces of the lion and the man (fee Ezek. i. 10. xli. 18.), we may fafely affert, that the cherubim of glory (Heb. ix. 5.) in the holy of holies were divinely inftituted and proper emblems of the Three Eternal Perfons in covenant to redeem
'Cheru' in. redect man, and of the union of the divine and human natures in the perfon of Chrift. Ancl we find (Gen. iii. 24) that immediately on Adam's expulfion from paradife, and the ceflation of the firft or paradifiacal d'fpenfation of religion, Jehovah Aleim himfelf fet up thefe emblems, together with the burning flame ransin rolling upai itfelf, to keep the way to the tree of life: undoubtedly, confidering the fervices performed before them, not to hinder, but to emable, man to pafs through it."

Thus far Mr Parkhurft ; and to his differtation where is the man who will deny the merit of erudition, comhined with ingenuity? To the latter part of his reafoning, however, objections obtrude themfelves upon us of fucl force, that we know not how to anfwer them. The reader obferves, that, according to this account, the clerubim are only at fecond hand emblematical of the Holy Trinity, and that the primary emblem is that fluid which the author conccives to fill the folar fyftem, and to be one fubllance under the different appearances or modifications of fire, light, and grofs air. But unfortunately for this reafoning, we are as certain as we can be of any matter of fact, that fire anti air are not one fubitance; that the grofs air itfelf is compounded of very different fubtances; and that even light is a cifferent fubitance from that which caufes in us the fenfation of heat, and to which modern chemitts have given the name of caloric (See Chemistry-Index in this Sup. plement). We admit, that the primary atoms of all matter naay be fubftances of the very fame kind, though we do not certainly knows that they are: but this makes nothing for our author's hypothefis; becaule the fun and all the planets muft, in that cafe, be added to his one fubftance, which would no longer appear under a triple form. Could it indeed be proved, that all men from Adan downwards, who made ufe of cherubic figures for the very farne purpofe with the ancient Jews, beliered that fire, air, and light, are different modifications of the fame fubftance, their belief, though crroueous, would be a fufficient foundation for our author's reafoning; but of this no proof is attempted, and certainly none that is fatisfactory could be brought.

Our learned author, indeed, takes much for granted without proof. He has not proved that anywhere the bull was the emblem or hieroglyphic of fire, the lion of light, or the cagle of air. We do not, it muft be owned, know that fuch hieroglyphics were not ufed in Egypt and other countries before the introduction of alphabetical characters; but unlefs they were fo ufed by Adam, all that is here faid of the propriety of thefe emblems muft go for nothing: Indeed we fee not their peculiar propricty. The tawny colnur, flowing mane, and fiercenefs of the lion, might, for awy thing that we can perceive to the contrary, reprefent fire as fitly as the horns, curling hair, and fury of the bull; and if it be true, as is generally faid, that the eagle can look theadily on the fun, he feems, of all the three, to be the fitteft emblem of light.

But there are other objections to this interpretation of the word cherubim. The four animals in the Revelation, which were undoubtedly cherubim, as well as the four and twenty elders, fell down before the Lamb,
"Ch.v.8. and worhipped God*. Now, fays Dr Gregory Sharp,
zix. 4. "it is fcarce to be conceived, if thefe four beafts were reprefentatives of the divine perfons, that they could with
any propriety, or without the greateft folecifn, be faid Cherulim, and delcrihed to fall down before and worhip other emblematical reprefentations of the fame divine nature and perfections: And therefore, whatever thefe beafts were emblens of, they could not he cherubim in Mr Hutchinfon's fenfe of that word; it being as contrary to the rational explanation of a vifion to fay that one emblem of the divinity flould worthip another emblern of it, as it is contrary to the reafon of mankind, and to all our notions either of the Godhead or of wornip, to fay that the 'Trinity, worhipped the Trinity, or any one Perfon in the Trinity."
This ohjection is admitted by our learned author to he a very plaufible oue. To us it appears unanfwerable. He anfwers it, however, in the following words:
"Let it be carefully obferved, that thefe reprefentations in Rev ch. \(v\). and xix. are not only vifional but hieroglyphical, and therefore mult be explained according to the analogy of fuch emblematical exlibitions; and as at ver. 6. 'the lamb, as it had been flain, having feven horns and feven eyes, flanding in the midit of the throne, and of the four animals, and of the four-andtwenty elders,' is evidently fymbolical of the Lamb of God now raifed from the dead, and invefted with all knowledge and power both in heaven and in earth; fo 'the four animals falling down before him' (ver. 8.), and, as it is expreffed (ch. xix. 4.),' worhhipping God who fat upon the throne,' muft, in all reafon, be explained fymbolically likewife, not from any abftract or inetaphylical notions we may have framed to ourfelves of worlhip in general, but from the fpecific and peculiar circumftances of the cafe before us. Thus, likewife, wher in 1 Chron. xxis. 20. 'All the cone gregation worfhipped Jehovah and the king, namely David, the worfhip to both is expreffed by the fame Atrong phrafe- יטתחחד proftrated themfelves to, LXX. трәerxuvnorav; yet furely no one will fay that the people meant to worhip David as God, but only to acknonledge him as king. So Adonijah, who had contefted the crown with Solomon, came, \(n\) nnev and worfhipped King Solomon (: Kings i. 53.), not as God doubtjefs, but as king, thereby furrendering his own claim to the throne. However 'contrary therefore it may be to the reafon of mankind, and to all our notions either of the Godhead or of worfhip, to fay that the Trinity worfhipped the 'Irinity, or any one Perfon of the Trinity, 'i. e. with divine worfhip as a creature worhips his Creator; yet it is by no means coustrury to the rational and fcriptural explanation of an emblematic vifion, to fay that the liecroglyphical emblems of the whole ever-bleffed Trinity fell down and worhipped the hieroglyphical emblem of the God-man, or God who fut upon the throne. Since fuch falling downs proitration, or worfhipping, was the ufual fymbolical act , as it till is in the eaft, not only of divine worfhip, but of acknowledging the regal power to be in the perfon fo worhipped; and thefe acts of the cherubic animals in Rev. v. 6. xix. 4. meant nothing more than either a ceffion of the adminiftration of all divine power to Chrift God-man, or a declaration of the divine Perfons, by their hiroglyphical reprefentatives, that He mult reign till all his enemies were made his foottool. Comp. Mat. xxviii. 18. 1 Cor. xv. 25."
With every inclination to honour the memory of \(\mathrm{Mir}_{5}\) Parkburlt' who was certainly a fcholar, and, which is

\section*{C H E [407] C H E}

Chere, of more value, a pious and a grood man, we cannot help confidering this anfwer as mere triling. In the i8th Pfalm, the Lord is faid to "ride upon a cheruh;" and in Ezekiel, chap. i. there is faid to have "been over the heads of the cherubim a throne, and upon that throne the likenefs or appearance of a man," whom we take to be the Son of God incarnate. But is there any country in which the regal power of the fovereign is acknowledged by his riding, not upon his fubjects, but upon other co-equal fovereigns? or, in which it is the cuftom for the fovereign to place his viceroy (for fueh our Saviour in his buman nature certainly is) in his throne above himfelf ?

We mult therefore confefs, that we know not of what the cherubic figures were emblematical, and that he who labours to eftablith the doctrine of the ever bleffed Trinity by fuch eriticifms and reafonings as thofe which we have examined, is either a fecret enemy to that doctrine, or a very jnjudicious friend.

CHESS, the celebrated game, of which a copious account has been given in the Encyclopædia, is affirmed by Sir William Jones to have been invented by the Hindoos. "If evidence were required to prove this Afatic Re fact (fays he *), we may be fatisfied with the teftimufearcbes, vol. ny of the Perfians, who, though as much inclined as ii. Mem. 9. other nations to appropriate the ingenious inventions of a foreign people, unanimounly agree that the game was imported from the weft of India in the fixth century of our cra. It feems to have been immemorially known in Hindoftan by the name of Cheturanga, i. e. the four angá's, or members of an army; which are the fe, ele. plants, borfes, chariots, and foot foldiers; and in this fenfe the word is frequently ufed by epic poets in their deferiptions of real armies. By a natural corruption os the pure Sanferit word, it was changed by the old Perfians into Chetrang; but the Arabs, who foon after took poffeffion of their country, had neither the initial nor final letter of that word in their alphabet, and confequently altered it further into Shetranj, which found its way prefently into the modern Perfian, and at length into the dialects of India, where the true derivation of the name is known only to the learned. Thus has a very fignificant word in the facred language of the Brahmins been transformed by fucceffive changes into axedrez, foaccli, échecs, chefs, and, by a whimfical concurrence of circumftances, has given birth to the Englifh word check, and even a name to the exclequer of Great Britain."

It is confidently afferted that Sanferit books on chefs exift in Bengal; but Sir William had feen none of them when le wrote the memoir which we have quoted. He. exhibits, however, a defeription of a very ancient Indian game of the fame kind, but more complex, and in his opinion more modern, than the fimple chefs of the PerGrans. This game is alfo called Chaturanga, but more frequently Chaturaji, or the four lings, fince it is played by four perfons reprefenting as many princes, two allied armies combating on each fide. The defcription is taken from a book called Blawiflya Purán; in which the form and principal rules of this factitious warefare are thus laid down: "Eight fquares being marked on all fides, the red army is to be placed to the eaft, the green to the fouth, the yellow to the weft, and the black to the north. Let the elepbant (fays the author of the Purin) fland on the left of the king; next to him the
bor \(\int e\); then the boat; and before them all, four foot-foldiers; but the boat mut be placed in the angle of the board."
" From this palfage (fays the prefident) it clcarly appears, that an army with its four angris mult be placed on each fide of the board, fince an eleplant could not ftand, in any other pofition, on the left hand of each king; and Radhacant (a Pandit) informed me, that the board confilted, like our's, of 64 fquares, half of thent occupied by the forces, and half vacant. He added, that this game is mentioned in the oldent law-books, and that it was invented by the wife of a king, to amule him with an image of war, while his metropolis was befieged, in the fecond age of the world. A Jioip or boas is abfurdly fubftituted, we fee, in this complex game for the rat'b, or armed chariot, which the Bensalefe pronounce rot'll, and which the Perfians changed into rokb: whence came the rook of Come European nations; as the vierge and fal of the French are fuppofed to be corruptions of ferz and fil, the prime minifer and elephant of the Perfians and Arabs."

As fortune is fuppofed to have a great flare in deciding the fate of a battle, the ufe of dice is introduced into this game to regulate its moves; for (fays the Pu . rán) "if cinque be thrown, the king or a pawn muft be moved; if qualre, the elepbant ; if irois, the bore ; and if deux, the boat. The king paffes freely on all fides, but over one fquare only; and with the fame limitation the parwn moves, but he advances ftraight forward, and kilis his enemy through an angle. The elephant marches in all directions as far as his driver pleafes; the borfe runs obliquely, traverfing the qquares; and the /bip goes over two fquares diagonally." 'Ihe elephant, we find, has the powers of our quech, is we are pleafed in call the general or minifler of the Perfians; and the fiop has the mution of the piece to which we give the unaccountable appellation of lifloop, but with a reitriction which muit greatly leffen its value.

In the Purán are next exhibited a few gencral rules and fuperficial directions for the conduct of the game. Thus, "the paquns and the fip both kill and may be voluntarily killed; while the king, the elephant, and the borfe, may flay the foe, but mult not expofe themfelves to be flain. Let each player preferve his own forces with extreme care, fecuring his king above all, and not facrificing a fuperior to keep an inferior piece." Here (fays the prefident) the commentator on the Purin obferves, that the borfe, who has the choice of eight mores from any central polition, mutt be preferred to the floip. which has only the choice of four. But the argument would not hold in the common game, where the bifnop and tower command a whole line, and where a knight is always of lefs value than a tower in action, or the bithop of that fide on which the attack is begun. "It is by the overbearing power of the elepbant (continues the Purann) that the king fights boldly ; let the whole army, therefore, be abandoned in order to fecure the elephant. The king muft never place one elephant before another, unlefs he be compelled by want of room, for he would thus commit a dangerous fault; and if be can flay one of two huftile elephants, he mult deftroy that on his left hand."

All that remains of the paffage which was copied for Sir William Jones relates to the feveral modes in which a partial fuccefs or complete victury may be obtained

\section*{C H E}

Chefs, Chevrette
by any one of the four players \(;\) for, as in a difpute be. tween two allies, one of the kings may fometimes affume the command of all the forces, and aim at a feparate conquelt. Firt, "When any one king has placed himfelf on the fquare of another king (which advantage is called finbafana or the thone) he wins a fake, which is doubled if he kill the adverfe monarch when he feizes his place; and if he can feat himfelf on the throne of his ally, he takes the command of the whole army." Sceondly, "If he can occupy fucceffively the thrones of all the three princes, he obtains the victory, which is named cbeturaji; and the fake is doubled if he kill the laft of the three, juft before he takes poffeffion of his throne; but if he kill him on his throne, the ttake is quadrupled. Both in giving the firhafana and the chetaraji the king muft be fupported by the elephants, or by all the forces united." Thirdly, "When one player has his own king on the board, but the king of his partner has been taken, he may replace his captive ally, if he can feize buth the adverfe kings; or if he cannot effict their capture, he may exchange his king for one of them, againt the general rule, and thus redeem the allied prince, who will fupply his place." This advantage has the name of nripacribla or recovered by the king. Fourthly, "If a pawn can march to any fquare on the oppolite extremity of the board, except that of the king, or that of the Mip, he affumes whatever power belonged to that fquare." Here we find tbe rule, with a light exeeption, concerning the advancement of powns, which often oceations a molt intercitigg flruggle at our common cheff; but it appears that, in the opinion of one ancient writer on the Indian game, this privilege is not allowable when a player has three pawns on the boand; but when only one pawn and one fhip remains, the pawn may advance even to the fquare of a king or a hip, and aflume the power of either. Fifthly, According to the people of Lanec', where the game was invented, "there could be neither vittory nor defeat if a king were left on the plain with. out force; a fituation which they named cacaca/bi'ba." Sixthly, "If three Thips happen to meet, and the fourth Ship can be brought up to them in the remaining angle, this has the name of vilhannauca; and the player of the fourth feizes all the others."

The account of this game in the original Sanferit is in verfe, and there are two or three couplets thill remaining, fo very dark, either from an error in the manufcript, or from the antiquity of the language, that Sir William Jones could not underfand the Pandit's explanation of them, and fufpects that even to him they gave very indittinct ideas. It would be eafy, however, he thinks, if it be judged worth while, to play at the game by the preceding rules; and a little practice would perhaps make the whole intelligible.

CHEVRETILE, in artillery, is an engine employed to raife guns or mortars into their carriage. It is formed of two pieces of wood about four feet long, llanding upon a third, which is fquare. The uprights are about a foot afunder, and pietced with holes exactly oppolite to one another, to receive a bult of iron, which is put in, either higher or lower at pleafure, to ferve as a fupport to a handfike, by which the gun is raifed up.

408] C H I
By the author of the Military Guide, this is faid to be the moft ufeful of all the inventions for raifing guns into their carriages; and it feems thefe inventions have been many.

CHICHA, the name given by the natives to the inland of Jefto, which lies to the fouth of Oku-Jetfo, or Segalian ifland. Sue Segalian in this Supplement.

CHIMERE, the upper robe worn by bifhops in church and in the Houle of Peers, to which the lawn fleeves are generally fewed. Befure the Reformation, and even after it till the reign of Queen Elizabeth, the chimere was always of fcarlet filk; but bihop Hooper, fcrupling firft at the robe ittelf, and then at the colour of it, as too light and gay for the epifcopal gravity, the chimere was afterwards made of blaik jatin. The ar. chiepifcopal ehimere has a long train.

CHIMNEY, a particular part of a houfe well known, which Profeffor Beckmann has, in our opinion, proved to be an invention cumparatively modern. It would be very untair clealing in us to give even a large abftract of one of the moft curions differtations of a curious bouk, which has been but lately publihed, and thereby injure the intereft of him to whon the native of Britain is indebted for the pleafure of perufing it in his own tongue. No man, however, can blame us for here ftating, in fupport of our own opinion, the profeffor's anfwer to the paltage of Ferrari, which we have quoted under the word Chimery in the Encyclopxdia.
"When the triumviri, fays Appian *, caufed thofe * De bellis who had been proferibed by them to be fought for by civil. lib. ir. the military, fome of them, to avoid the bloody hands. \({ }^{\mathrm{Pb}} \mathrm{o}^{62,}\), editio of their perfecutors, hid themfelves in wells, and others, Tollii. as Ferrarius tranhates the words, in fumaria fub teifo, qua jcilice fumus e tello evolvitur (a). The true tranflation, however (fays Mr Beckmann), is Jumnfa canacula. The principal perfons of Rome endeavoured to conceal themfelves in the fmoky apartments of the upper Hory under the roof, which, in general, were inhabited only by poor people; and this feems to be contirmed by what Juvenal \(\dagger\) exprefsly fays, Rarus venit in canacula + Sat, . .
miles. miles.
"Thofe paffages of the ancients which fpeak of fmoke rifing up from houfes, have with equal impropriety been luppofed to allude to chimneys, as if the fmoke could not make its way through doors and windows. Seneca \(\ddagger\) writes, 'Laft evening I had fome frieuds with me, and on that account a ftronger fmoke was raifed; not fuch a fmoke, howerer, as burtts forth from the kitcheus of the great, and which alarms the watchmen, but fuch a one as lignifies that guefts are arrived." Thofe whofe judgments are not already warped by prejudice, will undoubtedly find the true fenfe of thefe words to be, that the fmoke forced its way tlırough the kitchen windows. Had the houfes been built with chimney-funnels, one cannot conceive why the watchmen hould have been alarmed when they obferved a ftronger fmoke than ufual arifing from them; but as the kitchens had no conveniences of that nature, an apprehenfion of fire, when extraordinary entertainments were to be provided in the houfes of the rich for large companies, icems to have been well founded; and on fuch occafions people appointed for that purpofe were
ftationed

\footnotetext{

}

Chimney flationed in the neighbourhood to be contantly on the watch, and to be ready to extinguifh the Hames in cale a fire fhould happen. There are many other paftages to be found in Roman authors of the like kind, which * Eciog. i. it is hardly neceffary to mention; fu:ch as that of Virgil *, ver. \(\mathrm{s}^{3}\).
- Et jam funma procul villarum culmina fumant,'
+ Aulubry, and the following words of Plautus \(\dagger\), defcriptive of a act ii. fc. 4 mifer:
- Quin divum atque hominum clamat continuo fidem,
- Suram rem periiffe, feque eradicarier,
- De fuo tigillo fumus ti qua exit for:as.'

In the Vefpe of Ariftophanes, referred to in the Encyclopredia, old Philoclenn wifhes to efcape through the kitchen. Some one alks, "What is that which makes a woife in the chimney ?" "I am the finoke (replies the old man), and am endeavouring to get out at the chimney." "This paflage, however (fays the Profeffor), which, according to the wfual tranflation, feems to allude to a common chinney, can, in my opinion, efpecially when we conlider the illuftration of the fcholiafts, be explained alfo by a fimple hole in the roof, as Reifke has determined; and indeed this appears to be mure probable, as we find mention made of a top or
\(\ddagger \tau_{n \lambda \alpha} \quad\) covering \(\ddagger\) with which the hole was clofed."
In the Encyclopxdia we have faid, that the inflances of chimneys remaining among the ruins of ancient buildings are few, and that the rules given by Vitruvius for building them are obfcure; but we are now fatisfied that there are no remains of ancient chimneys, and that Vitruvius gives no rules, either obfoure or perfpicuous, for building what, in the modern acceptation of the word, deferves the name of a chimney.
"The ancient mafon-work flill to be found in Italy does not determine the queftion. Of the walls of towns, temples, amphitheatres, baths, aqueducis, and bridges, there are fome though very impen fect remains, in which chimneys cannot be expected; but of common dwell-ing-houfes none are to be feen except at Herculaneum, and there no traces of chimneys have been difcovered. The paintings and pieces of fculpture which are preferved aftord us as little information; for nothing can be perceived in them that bears the fimalleft refemblance to a modern chimney.
" If there were no funnels in the houfes of the ancients to carry off the fmoke, the directions given by Columella, to make kitchens fo high that the roof frould not catch fire, was of the utmoft importance. An accident of the kind, which that author feems to have appreliended, had almoft happened at Beneventum, when the landlord who entertained Mxcenas and his company was making a ftrong fire in order to get fome birds fooner roatted.

\section*{'——u-ubi fedulus hofpes}
- Pæne arfit, macros dum turdos verfat in igne;
- Nam vaga per veterem dilapfo flamma culinam
f Horzt.
lib. i. fat. 5. Had there been chimneys in the Roman houfes, Vitruvius certaiuly would not have failed to defcribe their conftruction, which is fometimes attended with confiderable difficulties, and which is intimately connected with the regulation of the plan of the whole edifice. He does not, however, fay a word on this fubject; neither

Suppl, Vol. I. Part II.
does Julius Pollux, who has collected with great care \(\underbrace{\text { Chimicy. }}\) the Greek names of every part of a dwelling-houle; and Grapaldus, who in later times made a collccion of the Latin terms, has not given a Latin word expreffive of a modern chimney \({ }^{*}\)."
* Franifis

Our author admits the derivation of the word clim- Marrii Grat ney to be as we have given it in the Encycluparlia; but prilinc par (fay he) "Caminus fignified, as far as I have been able tibus adiuns to learn, firft a chenical or metallurgic furnace, in which a crucible was placed for melting and refining metals; fecondly, a finith's forge; and, thirdly, a hearth on which portable foves or fire- pans were placed for warming the apartment. In all thefe, however, there appears no trace of a chimney." Herodotus relates (lib. viii. c. \({ }^{1} 37\).), that a king of Libya, when one of his fervants alked for his wages, offered him in jeft the fun, which at that time flone into the houfe through an opening in the roof, under which the fire was perhaps made in the middle of the edifice. If fuch a hole mutt te called a chimncy, our author admits that chimneys were in ufe among the ancients, efpecially in their kitchens; but it is obvious that fuch chimneys bore no refemblance to our's, through which the fun could not dart his rays upon the floor of any apartment.
"However imperfect may be the information which can be collected from the Greek and Roman authors refrecting the manner in which the ancients warmed their apartments, it neverthelefs fhews that they commonly ufed for that purpofe a large dire.pan or portable flove, in which they kindled wood, and, when the wood was well lighted, carried it into the room, or which they filled with burning coals. When Alexander the Great was cutertained by a friend in winter, as the weather was cold and raw, a fmall fire bafon was brought into the apartment to wara it. The prince, obferving the fize of the veffel, and that it contained only a few coals, defired his hoft, in a jecring manner, to briug more wood or frankincenfe; giving him this to underfand that the fire was frter for burning perfumes than to produce heat. Anacharlis, the Scythian philofupher, though difpleafed with many of the Grecian cuftoms, praifed the Greeks, however, becaufe they fhut out the fmoke and brought only fire into their houfes \(\dagger\). We \(\dagger\) Plutarebs are informed by Lamprilius, that the extravagant He- ympof. liogabulus cauled to be burned in thefe foves, inftead of wood, Indian fpiceries and coftly perfumes \(\ddagger\). It is alfo worthy of notice, that coals were found in fume of the apartments of Herculaneum, as we are told by Winklemann, but neither foves nor chimneys."
It is well known to every fcholar, that the ufeful arts of life were invented in the eaft, and that the cuftoms, manners, and furniture of eaitern nations, have remained from time immemorial almolt unchanged. In Perfia, which the late Sir William Jones feens to have confidered as the original country of mankind, the methods employed by the inhabitants fur warming themfelves have a great refemblance to thofe empluyed hy the ancient Greeks and Romans for the fame purpofe. According to De la Valle, the Perfians make fires in their apartments, not in chimneys as we do, but in foves in the earth, which they call tennor. "Thefe ftoves confift of a fquare or round hole, two fpans or a little more in depth, and in fhape not unlike an Italian cafls. That this hole may throw out heat fooner, and with more ftrength, there is placed in it an iron veffel of the

Chimres. farre fize, which is either filled with burning coals, or a fire of wood and other inflammalle fubftances is made in it. When this is done, they place over the hole or ftove a wooden top, like a fmall low table, and fpread above it a large coverlet quilted with cotton, which hangs down on all fides to the floor. This covering condenfes the heat, and carres it to warm the whole apartment. The people who eat or converfe there, and fome who fieep in it, lie down on the flour above the carpet, and lean, with their froulders againtt the wall, on fquare cufhions, upon which they fometimes alfo fit ; for the ternor is contructed in a place equally ditant from the walls on buth fides. Thofe who are not very cold only put their feet under the table or covering; but thofe who require more heat can put their hands under it, or creep under it altogether. By thefe means the ftore diffufes over the whole body, without caufing uneafinefs to the head, fo penetrating and agreeable a warmh, that I never in winter experienced atiy thing more pleafant. Thofe, however, who require lefs heat let the coverlet hang down on their fide to the flour, and erjoy without any inconvenience from the flove the moderatcly lieated air of the apartment. They have a method alio of firring up or blowing the fire when neceffary, by means of a fmall pipe united with the tennor or fove under the earth, and made to project above the floor as high as one choofes; fo that the wind, when a perfon blows into it, becaufe it has no other vent, acrs immediately upon the fire like a pair of belluws. When there is no longer occafion to ufe this flove, buth holes are clofed up, that is to fay, the mouth of the fove and that of the pipe which conveys the air to it, by a flaz ftone made for that purpofe. Scarcely any appeararce of the \(m\) is then to be perceived, nor do they occafion inconvenience, efpecially in a country where it is always cuftomary to cover the floor with a carpet, and where the walls are plaftered. In many parts thefe ovens are ufed to cook victuals, by placing kettles over them. They are employed alfo to bake bread; and for this purpofe they are covered with a large broad metal plate, on which the cake is laid; but if the bread is thick and requires more heat, it is put into the ftove itfelf,"

Our learned auther having proved, to our entire fatisfaction, that chimneys, fuch as we have now in every comfortable room, were unknown to the moft polifhed nations of antiquity, fets himfelf to inquire into the era of their invention; and the oldett account of them which he finds is an infcription at Venice, which relates, that in the year 1347 a great many chimneys were thrown down by an eartliquake. It would appear, bowever, that in fome places they had been in ufe for a confiderable time before that period; for De Gataris, ia his Hiftory of Padua, relates, that Francefoo de Carraro, lord of Padua, came to Rome in 1368 , and finding no chimneys in the inn where he lodged, becaufe at that time fire was kindled in a hall in the middle of the floor, he caufed two chimneys like thofe which had long been ufed at Padua to be confructed by mafons and carpenters, whom he had brought along with him. Over thefe chimneys, the firft ever feen at Rome, he affixed his arms, which were ftill remaining in the time of De Gataris, who died of the plague in 1405 .

Though chimneys have been thus long in ufe, they are yet far enough from being brought to perfection.

There is hardly a modern houfe, efpecially if highly fo- Chimney. nifhed, in which there is not one room at leaft liable to be filled with fmoke when it is attempted to be heated by an open fire; and there are many houfes fo infefted with this plague as to be almoft uninhabitable during the winter months; not to mention other great defects in common chimneys, which not being fo obvious have attracted lefs attention.: Many ingenious methods bave been propofed to cure fmokey chimneys in every fituation (fee Smoke, Encycl.) ; but Count Rumford's Effay on this fubject contains the mof valuable directions that we have feen, not only for removing the inconveniency of fmoke, but likewife for increafing the heat of the room by a diminifhed confumption of fuel.

To thofe who are at all acquainted with the nature and properties of elaftic fluids, it mult be obvious, that the whole myttery of curing fmokey chimneys confints in finding out and removing the accidental caufes which prevent the heated fmoke from being forced up the chimney by the preffure of the cool and therefore heavier air of the room. Though thefe caules are various, yet, fays our author, that which will moft commonly be found to operate, is the bad conftruction of the chimney in the neigblourbood of the fire-place. "The great fault of all the open fire-places or chimneys for burning wood or coals in an open fire now in common wefe is, that they are much too large; or rather it is the throat of the chimney, or the lower part of its open canal, in the neighbourhood of the mantle, and immediately over the fire, which is too large."

To this fault, therefore, the attention fhould bc firft turned in every attempt which is made to improve the conftruction of chimneys; for however perfect a fireplace may be in other refpects, if the opening left for the paffage of the fmoke is larger than is neceffary for that purpofe, nothing can prevent the warm air of the room from efcaping through it; and whenever this happeus, there is not only an unneceffary lofs of heat, but the warm air which leaves the room to go up the chimney being replaced by cold air from without, draughrs of cold air cannot fail to be produced in the room, to the great annoyance of thofe who inhabit it. But although both thefe evils may be effectually remedied by reducing the throat of the chimney to a proper fize, yet in doing this feveral precautions will he neceffary. And firt of all, the throat of the chimney fhould be in its proper place ; that is to fay, in that place in which it ought to be, in order that the afcent of the fmoke may be moft facilitated : now as the fmoke and hot vapour which rife from a fire naturally tend upzards, the proper place for the throat of the chinmey is evidently perpendicularly over the fire.

But there is another circumftance to be attended to in determining the proper place for the throat of a chimney, and that is, to afcertain its diftance from the fire, or bow far above the burning fuel it ought to be placed. In determining this point there are many things to be confidered, and feveral advantages and difadvan-tages-to be weighed and balanced.
As the fmoke and vapour which afcend from burning fuel rife in confequence of their being rarefied by heat, and made lighter than the air of the furrounding atmofphere; and as the degree of their rarefaction, and confequently their tendency to rife, is in proportion to the intenfity of their heat; and further, as they are hot- fire, the ftronger will be what is comnonly called its draught, and the lefs danger there will be of its fmoking. But, ou the other hand, when the draught of a chimney is very ftrong, and particularly when this ftrong draught is occafioned by the tiroat of the chimney being very near the fire, it may fo happen that the draught of air into the fire may become foltrong as to caufe the fuel to be confumed too rapidly. There are likewife -feveral other inconveniences which would attend the placing of the throat of a chimney very near the burning fuel.

The pofition of the throat of a climney being once determined, the next points to be afcertained are its fize and form, and the manner in which it ought to be connected with the fire-place below, and with the open canal of the chimney above. But as thefe inveftigations are intimately connected with thofe which relate to the form proper to be given to the fire-place itfelf, we mult confider them all together.

Now the defigu of a chimney fire being fimply to warm a room, it is neceffary, firt of all, to contrive matters fo that the room fhally be actually warmed ; fecondly, that it be warmed with the fmalleft expence of fuel polfible; and, thirdly, that in warming it, the air of the room be preferved perfectly pure, and fit for reipiration, and free from fmoke and all difagreeable fmells.

To determine in what manner a room is heated by an open chimney fire, it will be neceffary firft of all to find out under what form the heat generated in the combuftion of the fuel exifts, and then to fee how it is communicated to thofe bodies which are heated by it.

In regard to the firt of thefe fubjects of inquiry, it is quite certain that the heat which is generated in the combuftion of the fucl exifts under two perfectly diftinet and very different forms. One part of it is combined with the fmoke, vapour, and heated air which rife from the burning fuel, and goes off with them into the upper regions of the atmofphere; while the other part, which appears to be uncombined, or, as fome ingenious philofophers have fuppofed, combined only with light, and therefore called radiant beat, is fent off from the fire in rays in all poffible directions.

With refpect to the fecond fubject of inquiry, namely, how this heat, exifting under thefe two different forms, is communicated to other bodies, it is highly probable that the combined heat can only be communicated to other bodies by aftual contaal with the body with which it is combined; and with regard to the rays which are fent off by burning fuel, it is certain that they communicate or generate heat only when and where they are ilopped or abforbed. In paffing through air, which is traufparent, they certainly do not communicate any heat to it ; and it feems highly probable that they do not communicate heat to folid bodies by which they are reflected.

As it is the radiant heat alone which can be employed in warning a room, when fuel is burnt for this purpofe in an open fire-place, it becomes an nhject of much importance to determine how the greateft quantity of it may be generated in the comburtion of the fuel, and how the greatelt proportion poffible of that generated may be brought into the room.

Now the quantity of radiant heat genersted in the Chimney combuftion of a given quantity of any kind of fuel depends very much upon the management of the fire, or upon the manner in which the fuct is confuned. When the fire burns bright, much radiant heat will be fent off from it ; hut when it is fmothered \(u p\), very little will be generated, and indeed very little combined heat that can be employed to any ufeful purpofe: moft of the heat produced will be inmediately expended in giving elafticity to a thick deufe vaponr or fmoke, which will be feen rifing from the fire; and the combuttion being very incomplete, a great part of the inflammable matter of the fuel being merely rareficd and driven up the chimney without being inflamed, the fuel will be wafted to little purpofe. And hence it appears of how much importance it is, whether it be confidered with a view to economy, or to cleanlinefs, comfort, and elcgance, to pay due attention to the management of a climney fire.

Nothing can be more perfectly void of common fenfe, and wafteful and flovenly at the fame time, thats the manner in which chimney fires, and particularly where coals are burned, are commonly managed by fervants. They throw on a load of coals at once, through which the flame is hours in making its way ; and frequently it is not without much trouble that the fire is prevented from going quite out. During this time no heat is communicated to the room; and what is fill worfe, the throat of the chimney being occupied mercly by a heavy denfe vapour, not poffefed of any confiderable degree of heat, and confequently not having mucll elafticity, the warm air of the room finds lefs ditficulty in forcing its way up the chimney and eicaping than when the fire burns bright. And it happens not unfrequiently, efpecially in chimneys and fire-places illconftructed, that this current of warm air from the room which prefes into the chimney, croffing upon the current of heavy fmoke which rifes flowly from the fire, obfructs it in its afcent, and beats it back into the room : hence it is that chimneys fo often fmoke whem too large a quantity of frefh coals is put upon the fire. So many coals thould never be put on the fire at once as to prevent the free paffage of the flame between them. In hort, a fire fhould never be fmothered; and when proper attention is paid to the quantity of coals put on, there will be very little ufe for the pocker; and this circumflance will contribute very much to cleanlinefs, and to the prefervation of furniture.

As we have feen what is meceffary to the generations of the greatef quantity of radiant heat, it rensains to be determined how the greateft proportion of that which is generated and fent off from the fire in all directions may be made to enter the room, and affit in warming it.

This mult be done, firt, by caufing as many as poffible of the rays, as they are fent off from the fire in ftraight lines, to come direaly into the ronm ; which can only be effected by bringing the fire as far forward as poffible, and leaving the openiay of the fire-place as wide and as high as can he done withont inconvenience: and, fecondly, by making the fides and back of the fire-place of fuch a form, and con? ructing them of fuch materials, as to caufe the dircet rays from the fire, which ftrike againft them, to be fint into the roon by seflection in the greatelt abundance.

Now it will be found upon exanimation, that the beit 3 F 2
f.rm

Chinney. form for the vertical fides of a fire-place, or the covings (as they are called), is that of an upright plane, making an angle with the plane of the back of the fireplace of about 135 degrees.-According to the prefent confruction of chimneys, this angle is fometimes only 90 , and very feldon alsove 100 or 110 degrees; but it is obvious, that in all thefe cales the two fides or coverings of the fire-place are very ill contrived for throwing into the room by reflection the rays from the fire which fall upon them.

With regard to the materials which flould be cm . ployed in the conftruction of fire-places, particularly the backs and covings, it is obvious that thofe are to be preferred which alforb the leaft, and of courfe reflec the greateft quantity of radiant heat. Iron, therefore, and, in general, metals of all kinds, are the very worft materials which can poffibly be employed for the backs and covings of chimneys; whilit fire-tone whitewafhed, or common bricks and mortar, covered with a thin coating of plafter, and white-wafhed, anfiver the purpofe extremely well. A white colour fhould, indeed, be always given to the infide of a chimney of whatever materials it be conftructed; and black, which is at prefent fo common, fhould be carefully avoided, becaufe white reflects the moit, and black the leaft, radiant heat. The grate, however, cannot well be made of any thing elfe than iron ; but there is no neceflity whatever for that immenfe quantity of iron which furrounds grates as they are commonly fitted up, and which not only renders them very expenfive, but effentially injures the fire-place.

To have only pointed out the faults of the chimneys in ufe, without fhewing how thefe faults may be corrected, wonld have been a work of very little value; but the Count's Treatife is complete, and contains the plaineft directions for the confruction of fire-places. Thefe directions are introduced by an explanation of fome technical words and exprefions. Thus, by the throat of a chimney, already mentioned, he means the lower extremity of its canal, where it unites with the upper part of its open fire-place. This throat is commonly found about a foot above the level of the lower part of the mantle, and it is fometimes contracted to a imaller fize than the reft of the canal of the climney, and fometimes not.
Plate XX.
Fig. 1. news the fection of a chimney on the common conftruction, in which \(d e\) is the throat.
Fig. 2. Thews the fection of the fame chimney altered and improved, in which \(d i\) is the reduced throat.

The breafl of a chimney is that part of it which is immediately behind the mantle." It is the wall which forms the entrance from below into the throat of the chimney in front, or towards the room. It is oppofite to the upper extremity of the back of the open fire-place, and parallel to it : in fhort, it may be faid to be the back part of the mantle itfelf. - In the figures 1 . and 2. it is marked by the letter \(d\). The width of the throat of the chimney (\(d e\) fig. J. and \(d i\) fig. 2.) is taken from the breaft of the chimney to the back, and its length is taken at right angles to its width, or in a line parallel to the mantle (a fig. I, and 2.).
The bringing forwaid of the fire into the room, or rather bringing it nearer to the front of the opening of the fire-place, and the diminiming of the throat of the chimney, being two objects principally had in view in
the alterations in fire-places propefed by the Comnt, it Chimey. is evident that both thefe may be attained merely by bringing forward the back of the chinney. The only queftion therefore is, How far it hould be brought forward? The anfwer is fhort, and ealy to be under. flood; bring it forward as far as pofible, without diminifhing too much the paffage which mult be left for the fmoke. Now as this paffige, which in its narrow. eft part he calls the throat of the chimney, ought, for reafons which have been already explained, to be immediately, or perpendicularly over the fire, it is evident that the back of the chimney mult always be built perfectly upright. To determine, therefore, the place for the new back, or how far precifely it ought to be brought forward, nothing more is neceffary than to af. certain how wide the throat of the ciimney ought to be left, or what fpace mult be left between the top of the breaft of the chimney where the upright canal of the chimney begins, and the new back of the fire-place carried up perpendicularly to that height.

Numerous experiments have eonvinced the Count, that, all circumftances being well confidered, and the advantages and difadvantages compared and balanced, four inches is the beft width that can be given to the throat of a chininey, whether the fire-place be deftived to burn wood, coals, turf, or any other fuel. In very large halls where great fires are kept up, it may fometinies, though very rarely, be proper to increafe this width to four inches and a half, or even to five inches.

The next thing to be confidered is the width which it will be proper to give to the back of the ehimney; and, in moft cafes, this fhould be one-third of the width of the opening of the fire place in front. It is not indeed abfolutely neceffary to conform with rigour to this decifion, nor is it always poffible; but it hould invariably be conformed to as far as circuinftances will permit. Where a chimney, fays the Count, is defigned for warming a room of a middling fize, and where the thicknefs of the wall of the chimney in front, meafured from the front of the mantle to the breaft of the chimney, is nine inches, I hould fet off four inehes more for the width of the throat of the chimney, which, fuppofing the back of the chimney to be huilt upright, as it alvays ought to be, will give thirteen inehes for the depth of the fire-place, meafured upon the hearth, frum the opening of the fire-place in front to the back. In this cafe, thirteen isches would be a good fize for the width of the back; and three times thirteen inches, or 39 inches, for the wicth of the opening of the tireplace in front ; and the angle made by the back of the fire-place and the fides of it, or covings, would be juf 135 degrees, which is the beft pofition they can have for throwing heat into the room. This pofition, indeed, it may fonctimes be impofible to attain in iltering chimneys already built; but a deviation from it of two or three degrecs will be of no great confequence; for the points of by much the greatef importanee in al. tering fire-places upon the principles here recommended, are the bringing forward the back to its proper place, and making it of the proper width.

Provifion, however, murt be made for the paffage of the chimncy-fweeper up the chimney; and this may eafily be done in the following manner : In building up the new back of the fire-place; when this wall (which need never be more than the width of a fingle brick remains no more than about tea or cleren inches between what is then the top of it and the infide of the mantle, or lower extremity of the breaft of the chimney, an opening or door way, eleven or twalve inches wide, mult be begun in the middle of the back, and continued quite to the top of it, which, according to the height to which it will commonly be ncceffary to carry up the back, will make the opening abundantly fufficient to let the chimmey-fiveeper pafs. When the fire-place is linifhed, this door-way is to be clofed by a tile or fit piece of ftone placed in it without mortar, and by means of a rabbit made in the brick-work, confined in its place in fuch a manner as that it may be eafily removed when the chimney is to be fwept, and reflored to its place when that work is over. Of this contrivance the reader will be able to form a clear conception from fig. 2, which reprefents the fection of a chimney after it has been properly altered from what is exhibited in lig. t. In this improved chimney \(k l\) is the new back of the fire-place; \(l i\) the tile or flone which clofes the door-way for the chimney-fweeper; \(d i\) the throat of the chimriey narrowed to four inches; \(a\) the mantle, and \(b\) the ftone placed under the mantle, fuppofed to have been too high, in order to diminifh the height of the opening of the fire-place in front.

It has been obferved above, that the new back, which it will always be found neceffary to build in order to bring the fire fufficiently forward, in altering a chimney conttructed on the common principles, need never be thicker than the width of a common brick. 'The fame may be faid of the thicknefs neceffary to be given to the new fides or covings of the chimney; or if the new back and covings are conftucted of flone, one inch and three quarters, or two inches in thicknefs, will be fufficient. Care fhould be taken in building up thefe new walls to unite the back to the covings in a folid manner.

Whether the new back and covings are conftructed of ftone or built of bricks, the fpace between them and the old back and covings of the chimney ought to be filled up, to give greater folidity to the ftrufure. This may be done with loofe rubbifh, or pieces of broken bricks or flones, provided the work be ftrengthened by a few layers or courfes of bricks laid in mortar:; but it will be indifpemfably neceffary to finifh the work where thefe new walls end, that is to fay, at the top of the throat of the chimney, where it ends abruptly in the open canal of the chimney, by a horizontal courfe of bricks well fecured with mortar. This courfe of bricks will be upon a level with the top of the door-way left. for the chimney-fweeper; and the void behind the doorway mutt be covered with a horizontal fone or tile, to be removed at the fame time the door is removed, and for the fame purpofe.

From thefe deferiptions it is clear, that where the throat of the chimney has an end, that is to fay, where it enters into the lower part of the open canal of the chimney, there the three walls which form the two cövings and the back of the fire-place all end abruptly. It is of much importance that they fhould end in this manner; for were they to be floped outward, and raim fed in fuch a manner as to fwell out the upper extremity of the throat of the chimney in the form of a trum. pet, and increafe it by degrees to the fize of the canal
of the chimney, this manner of uniting the lower ex- Chimney. tremity of the canal of the chimncy with the throat would tend to affift the winds, which may attempt to blow down the chimney, in furcing their way through the throat, and throwing the finoke backward into the room ; but when the throat of the chimney ends abruptly, and the ends of the new walls form a flat horizontal furface, it will be much more difficult for any wind from above to find and force its way through the narrow paflage of the throat of the climney.

As the two walls which form the new covings of the chimney are not parallel to each other, but inclined, prcfenting an oblique furface towards the front of the chimney, and as they are built perfectly upright, and quite flat, from the hearth to the top of the throat, where they end, it is crident that an horizontal fection of the throat will not be an oblong fyuare; but its de. viation from that form is a matter of no confequence; and no attempts fhould ever be madc, by twitting the covings above where they approach the breaft of the chinney, to bring it to that form. All twifts, bends, prominences, excavations, and other irregularities of form in the covings of a chimney, never fail to produce eddies in the current of air which is continually paffing into, and through, an open fire-place in which a fire is burning; and all fuch eddies dilturb either the fire or the afcending current of finoke, or both; and not unfrequently caufe the fmoke to be thrown back into the room. Hence it appears, that the covings of chimneys thould never be made circular, or in the form cf any other curve, but always quite flat.

For the fame reafon, that is to fay, to prevent eddies, the breat of the chimmey, which forms that fide of the throat that is in front or neareft to the room, fhould be neatly cleaned off, and its furface made quite regular and finooth. This may be eafily done by covering it with a coat of plafter, which may be made thicker or thinner in different parts, as may be neceffary in order to bring the breaft of the chimney to be of the proper form.

With regard to the form of the brealt of a chimncy, this is a matter of very great importance, and which ought always to be particularly attended to. The worft form it can have is that of a vertical plane or upright flat ; and next to this the worf form is an inclined plane. Both thefe forms canfe the current of warm air from the room, which will, in fpite of every precaution, fometimes find its way into the chimney, to crofs upon the current of fmoke which ifes from the fire in a manner moft likely to embarrafs it in its afcent, and drive it back.

The current of air which, paffing under the mantle, gets into the chimney, flould be made gradually 10 bend its courfe upwards; by which means it will nnite quielly with the afcending current of fmoke, and will be lefs likely to check it, or force it back into the room. Now this may be effected with the greatelt cafe and certainty, mertly by rounding off the breat of the chimmey or back part of the mantle, inftead of leaving it flat or full of holes and corners; and this of courfe ought always to be done.

Having thus afcertained the form and pofition of the new covings, the ingenious author next turns his atten. tion to the height to which tbey hould be carried, This will depend not only on the height of the mantle,

\section*{C H I \(\quad 414] \quad \mathrm{C} \quad \mathrm{H}\) I}

Climey. but alfo, and more efpecially, on the height of the -rbreaft of the chimney, or of that part of the chimney where the breat ends and the upright canal begins.The back and covings mutt rife a few inches, five or fix for intlance, higher than this part, otherwife the throat of the chimney will not be properly formed; but no advaitage would be grained by carrying them lish her.

One important circumftance refpecting chimney fireplaces fill remains to be confidered; and that is the grate. In placing the grate, the thing principally to be attended to is, to make the back of it coincide with the back of the fire-place. But as many of the grates now in common ufe will he found to be too large, when the fire pluces are altered and improved, it will be ne. ceflary to diminifh their capacities by filling them up at the back and firles with pieces of fire ftone. When this is done, it is the front of the flat piece of fire-fone which is made to form a new back to the grate, which mutt be made to coincide with, and make part of the back of the fire place. - But in diminifhing the capacities of grates with pieces of fire-ftone, care mult be taken wot to make them too narrozv.

The proper width for grates deftined for rooms of a middling lize will be from fix to eight inches, and their length may be diminifhed more or lefs according as the room is heated with more or lefs difficulty, or as the weather is more or lefs fevere. - But where the width of a grate is not more than five inches it will be very difficult to prevent the fire from going out.

It frequently happens that the iron backs of grates are not vertical, or upright, but inelined backwards.When thele grates are fo much too wide as to render it neceffary to fill them up hehind with fire-ftone, the inclination of the back will be of little confequence; for by making the piece of fone with which the width of the grate is to be diminifhed in the form of a wedge, or thicker above than below, the front of this ftone, which in effect will become the back of the grate, may be made perfectly vertical; and the iron back of the grate being hid in the folid work of the back of the fire-place, will produce no effect whatever; but if the grate he already fo narrow as not to admit of any dimisution of its width, in that cafe it will be beft to take away the iron back of the grate entirely, and fixing the grate firmly in the brick-work, caufe the back of the fire-place to ferve as a back to the grate.

Where grates, which are defigned for rooms of a middling fize, are longer than 14 or 15 inches, it will always be beft, not merely to diminith their lengths, by flling them up at their two ends with fireftone, but, forming the back of the chimney of a proper width, without paying any-regard to the length of the grate, to carry the covings through the two ends of the grate in fuch a manner as to conceal them, or at leaft to conceal the back corners of them in the walls of the covings.

Had thefe directions been duly attended to by the mafons who in Scotland pretend to alter chimneys on the principles of Count Rumford, we fhould not have obferved fo many of the grates placed by them jutting out beyond the mantle of the chimney; nor of courfe heard fo many complaints of rooms being rendered more
finokey, and the confumption of fuel increaled by thefe Ctimeney. pretended improvements. But when the grate is not fet in its proper place, when its foping iron back is retained, when no pains have been taken to make its ends coincide with the covings of the fire-place, when the mantle, intead of having its back rounded ulf, is a vertical plane of iron cutting the column of fmoke which rifes beneath it, and, above all, when the throat of the chimney, inftead of four, is made, as we often fee, fourteen inches wide; let it be remembered, that not one of Count Runford's directions has been followed, and that lis principles have as little to do with the conftruction of fuch a chimney as with the building of the wall of China or the pyramids of Erypt.

To contribute our aid to prevent thefe blunders for the future, we thall here fubjoin the Count's directions for laying out the work ; not to inftruct mafons and bricklayers, to whom we earneftly recommend the ftudy of the effay itfelf (B), which contains much valuable information that we have omitted; but merely to give the country gentleman an opportunity of difcovering whether the workmen whom he employs deviates far and needlelsly from the principles which he pretends to follow.

When a chimney is to be altered, after taking away the grate and removing the rubbifh, fint draw a fraight line with chalk, or with a lead pencil, upon the hearth, from one jamb to the other,-even with the front of the jambs. The dotted line A B, fig. 3. may reprefont this line.

From the middle \(c\) of this line, (\(A B\)) another line \(c d\) is to be drawn perpendicular to it, acrofs the hearth, to the middle \(d\), of the back of the chimney.

A perfon mult now tand upright in the chimney, with his back to the back of the chimney, and hold a plumb-line to the middle of the upper part of the breatt of the chimney (\(d\), fig. I.), or where the canal of the chimney begins to rife perpendicularly;-taking care to place the line above in fuch a manner that the plumb may fall on the line \(c d\) (fig. 3.) drawn on the hearth from the middle of the opening of the chimney in front to the middle of the back, and an affiftant muft mark the precife place \(e\), on that line where the plumb falls.

This being done, and the perfon in the climney having quitted his Atation, four inches are to be fet off on the line \(c d\), from \(e\), towards \(d\); and the point \(f\), where thefe four inches end, (which muft be marked with chalk, or with a pencil), will thow how far the new back is to be brought forward.

Through \(f\), draw the line \(g b\) parallel to the line A B, and this line \(g b\) will fhow the direction of the new back, or the ground line upon which it is to be built. The line cf will fhow the depth of the new fire-place; and if it thould happen that \(c f\) is equal to about one-third of the line A B, and if the grate can be accommodated to the fire-place, inftead of its being neceflary to accommodate the fire place to the grate ; in that cafe, half the length of the line \(c f\) is to be fer off from \(f\) on the line \(g f b\), on one fide to \(k\), and on the other to \(i\), and the line \(i k\) will flow the ground line of the fore part of the back of the chimney.

In all cafes where the width of the opening of the fire-place in front (A B) happens to be not greater, or
(B) It cofts but two hillings; and he muft be a poor bricklayer indeed who cannot afford to pay that fum for inflruction in the moft important, as well as moft difficult, part of his bufinefs.

Chimney. not more than two or three inches greater than three times the width of the new back of the chimney (\(i k\)), this opening may be left ; and lines drawn from \(i\) to \(A\), and from \(k\) to \(B\), will fhow the width and pofition of the front of the new covings; -but when the opening of the fire-place in front is fill wider, it muft be reduced; which is to be done in the following mamer:

From \(c\), the middle of the line \(A \mathrm{~B}, c a\) and \(c b\) muit be fet off equal to the width of the back (\(i k\)), added to half its width (\(f i\)); and lines drawn from \(i\) to \(a\), and from \(k\) to \(b\), will thow the ground plan of the fronts of the new covings.

When this is done, nothing more will be neceffary than to build up the back and covings ; and if the fireplace is defigned for burning coals, to fix the grate in its proper place, according to the directions already given.-When the width of the fire-place is reduced, the edges of the covings \(a \mathrm{~A}\) and \(b \mathrm{~B}\) are to make a finith with the front of the jambs. - And in general it will be beft, not only for the fake of the appearance of the chimney, but for other reafons alfo, to lower the height of the opening of the fire-place whenever its width in front is diminifhed.

A front view of the chimney, after it has been thus altered, is exhibited in frg. 4. where the under part of the door-way is reprefented, as clofed by the white dot. red lines.

When the wall of the chimney in front, meafured from the upper part of the breaft of the chimney to the front of the mantle, is very thin, it may happen, and efpecially in chimneys defigned for burning wood upon the hearth, or upon dogs, that the depth of the chimney, determining according to the directions here given, may be too fmall.

Thus, for example, fuppofing the wall of the chimney, in front, from the upper part of the breall of the chimney to the front of the mantle, to be only four inches, (which is fometimes the cafe, particularly in rooms fituated near the top of a houfe), in this cafe, if we take four inches for the width of the throat, this will give eight inches only for the depth of the fireplace, which would be too little, even were coals to be burnt inflead of wood. -In this cafe (fays the Count) I thould increafe the depth of the fire-place at the hearth to 12 or 13 inches, and fhould build the back perpendicular to the height of the top of the burning fuel (whether it be wood burnt upon the hearth or coals in a grate); and then, floping the back by a gentle inclination forward, bring it to its proper place, that is to fay, perpendicularly under the back part of the throat of the chimney. This nope, (which will bring the back forward four or five inches, or juft as much as the depth of the fire-place is increafed), though it ought not to be too abrupt, yet it. ought to be quite firiifhed at the height of eight or ten inches above the fire, otherwife it may perhaps caufe the chimney to fmoke; but when it is very near the fire, the heat of the fire will enable the current of riling fmoke to overcome the obftacle which this flope will oppofe to its afcent, which it could not do fo eafily were the flope fituated at a greater diftance frow the burning fuel.

Fig. 5, 6, and 7, fhow a plan, elevation, and fection of a fire-place conftructed or altered upon this principle. -The wall of the chimney in front at \(a\), fig. 7 . being
only four inches thick, four incles more added to it for Chinmey. the width of the throat would liave left the depth of the fire-place meafured upon the hearth \(b c\) only eight inches, which would have been too little;-a niche \(c\) and \(e\) was therefore made in the new back of the fireplace for receiving the grate, which niehe was fix inches decp in the centre of it, below 13 inches wide, (or equal in width to the grate,) and 23 inches high ; finifhing above with a femicircular arch, which, in its ligheft part, rofe feven inches above the upper part of the grate. - The door-way for the chimney-fweeper, which begins jult above the top of the niche, may be feen diftinctly in both the figures 6 and 7.-The fpace marked \(g\), fig. 7 . behind this door-way, may either be filled with boofe hricks, or may be left void. - The manner in which the piece of flone \(f\), fig. 7. which is put under the mantle of the chimney to reduce the height of the opening of the fire-place, is rounded off on the infide in order to give a fair run to the colnmn of fmoke in its afcent through the throat of the chimney, is clearly expreffed in this figure. The plan fig. 5 . and elevation fig. 6. Fhow how much the width of the opening of the fire-place in front is diminifhed, and how the covings in the new fire-place are formed.

A perfect idea of the form and dimenfion of the fireplace in its original ftate, as alfo after its alteration, may be had by a careful infpection of thefe figures.

In chimneys, like that reprefented in figure 8 , where the jambs \(A\) and \(B\) project far into the room, and where the front edge of the marble flab o, which forms the coving, docs not come fo far forward as the front of the jambs, the workmen in conflructing the new covings are very apt to place them, - not in the line \(c A\), which they ought to d 0 , - - hut in the line \(c 0\), which is a great fault.-The covings of a chimney fhould never range bebind the front of the jambs, however thofe jambs may project into the room;-but it is not abfo. lutely neceffary that the covings fhould make a finifo with the internal front corners of the jambs, or that they fhould be continued from the back \(c\), quite to the front of the jambs at \(A\).-They may finifh in front at \(a\) and \(b\); and fmall corners \(A, o, a\), may be left for placing the fhovels, tongs, \&c.

Were the new coving to range with the front edge of the old coving \(o\), the obliquity of the new coving would commonly be too great;-or the angle \(d \in \theta\) would exceed 135 degrees, which it never /boald \(d\), or at leant never be more than a very few degrees. No inconvenience of any importance will arife from making the obliquity of the covings lefs than what is here recommended; but many cannot fail to be produced by making it much greater.

Thefe extracts, which we have made fo liberally from Count Rumford's eflay on chimney tire-places, will be fufficient, we hope, to bring fully within the compre. henfion of thofe who are acquainted with pneunatics and pneumatic chemiftry the principles on which chim. neys and fire-places thould be conftructed; but fuch as are in a great meafure ftrangers to thefe feiences will do well to confult the effay itfelf. With a benevolence which does him honour, the ingenious author has expreffed a wifh that his doctrines on this important fubject may be widely propagated; and to encourage artifts to fludy them, he has declared to the public in ge. neral, "that as he doss not intend to take out himfalf,

Chinney- or to fuffer others to take out, any patent for any in-- Siveepers. vention of his which may be of public utility, all per-
funs are at full liberty to imitate them, and vend them, for their own emulunent, when and where, and in any way they may think proper."

Chinnet-Sweppers are a clafs of men whe earn their fubfiftence hy clearing chimneys of foot; which oceafions them to fmoke. While chimneys continued to be built in fo fimple a manner, and of fuch a width as they are till obferved to be in old houfes, they were fo cafily cleaned that this fervice could be perforned by a fervant with \(\alpha\) wifp of ftraw, or a little brufhwood fattened to a rope; but after the flues, in order to fave room, were made narrower, or when feveral flues were united together, the cleaning of them became fo difficult, that they required boys, or people of fmall fize, accuftomed to that employment. The firft chimney-fweepers in Germany came from Savoy, Piedmont, and the neighbouring territories. Thefe for a long time were the only countries where the cleaning of chimneys was followed as a trade ; and hence Profeffor Beckmann concludes with great probability, that chimneys were invented in Italy. The Lotharingians, however, undertook the bulinefs of chimney.fweeping alfo; on which account the duke of Lotlaringia was Ityled the imperial fire-mafer. The firlt Germans who condefcended to elean chimneys were miners; and the chimney-fweepers in that empire fill procure their boys from the forell of Hartz, where the greatelt mines are wrought. Very lately, and perhaps at prefent, the greater part of the ehimney. fweepers in Paris were Savoyards, many of them not above eight years of age, who, for the paltry fum of five fous, which they were obliged to fhare with their avaricions matter, wonld feranble, at the hazard of their lives, through a narrow funnel fifty feet in length, and with their befoms clean it from foot and dirt. At what preeife period chimney-fweeping became a trade in England and Scotland, we have not been able to learn; but among us, as well as elfewhere, young boys are employed in this bufinefs, who are faid to be very harflly treated by fellows who fole them from the doors of cottages in the country. That children have been fometimes kidnapped by chimney - fweepers, we can have no doult ; but that the practice is frequent, we do not believe. We think however that the bufinefs might be wholly abolithed; for a narrow funnel might certainly, if not very crooked, be fiwept by a bundle of flraw or brufhwood faltened to a rope, as well as one that is wider: and the bricks which ieparate the contigroous flues we know to be lefs injured by this method of fweeping, when cautioufly gone about, than by fending boys up the chimneys.

On the 4 th July \(: 996\), letters patent were granted to Daniel Davis, of the parifh of St Giles, Middlefex, for his invention of a machine, by which he propofes to fweep and cleanfe chimneys, and extinguih chimneys on fire, without any perfon going up the fame, as is now the practice. The machinc conlifts of an apparatus of rack-work, of various lengths, which, by meaus of a hand-turn, is made to afcend the chimney. The lengths of the rack-work are joined together by means of mortices and tenons, with a fpring which holds them faft. In each length is a joint, by which the rack-work will accommodate itfelf to angles or turns in the flues. To the firft or uppermoft length
is fixed a brufi of hair, or wire, or fpunge, or other elaftic fubftance as the occafion may require.

This invention is doubtlefs well calculated to anfwer the purpofe intended, and may perhaps be the means of diminifhing the number of thofe objects of mifery, the unfortunate chinney. fweepers.

CHINA is an empire of fuch antiquity and extent, the laws and cuitoms of the people are fo fingular, and the populoufnefs of the country fo very great-that it has attracted much of the attention of Europeans ever fince it was vifited in the 13 th century by Marco Paulo the Venetian traveller. Of fuch a country it would be unpardonable not to give forne account in a work of this nature; but we have not, in truth, much to add to what has been faid of China and the Clinele in the Encyclopædia Britannica. Since the article China in that work was publihed, the court of Ickin has indeed been vifited by an embaffy from Great Britain, and the origin of the people, as well as the antiquity of their empire, has been inveftigated by Sir William Jones with his ufual diligence; but from his memoir, publifhed in the fecond volume of the Afratic Refearches, and from Sir George Staunton's account of the embar. fy, there is not much to be extracted which would be either amufing or inftructive to our readers.

We have already obferved from Grofier and others, that the Chinefe not only lay claim to the ligheft antiquity, but even contend that their firit emperor was the firt man. Both thefe pofitions are controverted by Sir Willian Jones, who, though lee allows the Chinefe empire to be very ancient when compared with the oldett European tate, is yet decidedly of opinion that it was not founded at an earlier period than the 12 th century before the Chriftian era; and that the people, fo far from being aborigines, are a mixed race of Tartars and Hindoos. He begins his inveftigation with afking, "Whence came the lingular people who long had governed China, before they were conquered by the Tartars? On this problens (fays he*) four opinions* AiaticRec have been advanced, and all rather peremptorily affertedfaribes, than fupported by argument and evidence. By a few vol. ii. writers it has been urged, that the Clingfe are an origi- mem. 25 . nal race, who have dwelled for ages, if not from eternity, in the land which they now poffefs. By others, and cliefly by the miffionaries, it is intifted that they fprung from the fame flock with the Hebrews and the Arabs. A third affertion is that of the Arabs them. felves, and of M. Pauw, who hold it indubitable, that they were originally Tartars, defcending in wild clans from the fleeps of Imaus: And a fourth, at leaft as dogmatically pronounced as any of the preceding, is that of the Brabmans, who decide, without allowing any appeal from their decifion, that the Chinas (for fo they are named in Sanjerit) were Hindoos of the military caft, who, abandoning the privileges of their tribe, rambled in different bodies to the north-eaft of Bengal; and forgetting by degrees the rites and the religion of their ancettors, eftablifhed feparate principalities, which were afterwards united in the plains and valleys which are now poffeffed by them.

Of thefe opinions, Sir William having very completely demolifhed the firt three, proceeds to eftablifh the fourth, which he confiders as interefting as well as new in Europe. In the Sanfcrit inflitutes of civil and religious duties, revealed, as the Hindoos believe, by Menu

\section*{C II \(\left[\begin{array}{lll}417\end{array}\right] \quad \mathrm{C} H \quad\) I}
ous paftage ' Many families of the military clafs, havine gradually abandoned the ordinanees of the \(V i d u\), and the company of 13rahmans, lived in a ftate of degradation; as the people of Pundraca and Odra, thofe of Dravira and Camboja, the Tavanas and Sacas, the Paradus and Pablavas, the Chinas, and fome other nations.' A full comment on this text (continues the pretident) would be fuperfluous; but funce the teftimony of the Indian author, who, though not a divine perfonage, was certainly a very ancient lawyer, moralif, and hiftorian, is direct and pofitive, difinterefted and unfufpected, it would decide the queftion before us if we could be fure that the word Clina fignifies a Cbinefe." Of this fact Sir William Jones took the very beft methods to be fatished. He confulted a number of Pandits feparately, who all affured him that the word Cbina has no other fignifieation in Sanferit; that the Cbinas of Menu fettled in a fine country to the north-ealt of Gour, and to the ealt of Camarup and Napal; that they had long been, and till are, famed as ingenious artificers; and that they (the Pandits) had themfelves feen old Chinefe idols, which bore a manifeft relation to the primitive religion of India. He then laid before one of the beft informed Pandits a map of Afia; and when his own country was pointed out to him; the Pandit immediately placed his finger on the north-weltern provinces of China, as the place where he faid the Cbinas of Menu firft eftablifhed themfelves.

In the opinion of Sir William Jones, this is complete evidence that the Chinefe are defcended from an Indian race ; but he does not believe that the Chinefe empire, as we now call it, was formed when the laws of Menu were collected; and for his calling this fact in queftion, he offers reafons, which to us are petfeetly fatisfactory. By a diligent and accurate comparifon of ancient Sanferit writings, he has been able to tix the period of the compilation of thofe laws at betwech 1000 and 1 ; 00 years before Chrift ; but by the evidence of Confucius himfelf, he proves, tlat if the Chinefe empire was formed, it could be only in its cradle in the 12 th century before our era. In the fecond part of the work, intitled La tin \(Y\) ú, Confucius declares, that "although he, like other men, could relate, as mere lefons of morality, the hiftories of the furt and fecond imperial houles, yet, for asant of evidence, he could give no certain aecount of them." Now, fays Sir William, if the Chinefe themfelves do not pretend that any hiftorical monument exitted in the age of Confucius preceding the rife of their third dynalty, about 1100 years before the Chrittian epoch, we may juftly conclude that their tmpire was then in its infancy, and did not grow to maturity till fone ages afterwards. Nay, he is inchined to bring its origin ftill lower down. "It was not, fays he, till the eighth century before the birth of our Saviour, that a fmall kingdom was erected in the province of Sben fi, the capital of which ftood nearly in the 35 th degree of worthern latitude, and about five degrees to the welt of Si-gan. That country and its metropolis were both called Cbin ; and the dominion of its princes was gradually extended to the ealt and weit. The territory of Clin, fo called by the old Hindoos, by the Perfians, and by the Chinefe, gave its name to a race of emperors, whofe tyranny made their memory fo unyopular, that the modern inhabitants of Clina hold the Suppl. Vol. I. Part II.
word in abhorrence, and fpeak of chemfelves as the people of a milder and more virtuous dynatty: but it is highly probable that the whole nation defeencled from the Chinas of Menu, and mixing with the Tarfars, by whom the plains of Honan and the more fouthern provinces were thinly inhabited, formed by degrees the race of men whom we now fee in poffelion of the nobleft empire in Alia."

In fupport of this opinion, which the accomplifled author offers as the refult of long and anxions inquiries, he ubferves, that the Chinefe have no ancient monuments from which their origin can be traced, even by plaulible conjecture; that their fciences are wholly wotic; that their mechanic arts have nothing in them which any fet of nen, in a country fo lighly favoured by nature, might not have.difcovered and improved; that their philufophy feems yet in fo rude a flate as hardly to deferve the appellation; and that their popular religion was importcd from India in an age comparatively modern. He then intitutes a comparifon between the mythology of the Chinese and that of the Hindoos; of which the refult is, that the furmer people had an ancient fyitem of ceremonies and fupertitions which has an apparent affinity with fone parts of the oldefl Indian worfmip. "They believed in the agency of genii or tutelary fpirits, prefiding over the ftars and the clouds; over lakes and rivers, mountains, valleys, and woods; over certain regions and towns; over all the elements, of which, like the Hindoos, they reckoned five; and particularly over firt, the nout billant of them. To thofe defies they offercd victims on high places. And the following paffage from one of their facred books, fiys sir William, is very much in the Atyle of the Bralmans: "Even they who perform a facrifice with due reverence, camot perfectly affure thenfelves that the divine fpirits aecopt their oblations; and far lefs can they, who aroure the gods with languor and ofeitancy, clearly perceive their facred illaples.' Thefe (continues the Prefident) are imperfect traces indeed, but they are traces of an affinity between the religion of Menu and that of the Cbinas, whom he names among the apoltates from it ; and befides them, we difcover many other very fingular marks of relation between the Chincfe and the old Hindoos.
"This relation (he thinks) appears in the remarkable period of \(+32,000\), and the cycle of 60 years; in the predilection tor the mytical number nine; in many fimilar fafts and great feftivals, efpeeially at the folftices and equinoxes ; in the obfequies, confifling of rice and fruis offered to the manes of their anceltors; in the dread of dying childlefs, left fueh offerings hould be intermitted; and perhaps in their common abourrence of red ubjects, which the Indians carrict fo far, that Menu himfelf, where he alluws a Brabmun to trade, if he cannot otherwife fupport life, abfulntely forbids his trading in any fort of red cloths, whether linen, or woollen, or made of woven bark. In a wurl, lays Sir William Jones, all the circumftances which have been mentioned feem to prove (as far as lucl a quefion admits proof), that the Clinefe and Hindoos were originally the fame people; but having heen feparated near 4000 years, they have retained few frong features of their ancient confanguity, efpecially as the Hiadoos have preferved their old language and ritual, while the Chinefe very foon loft both; and the Hindoos have

3 G
conflantly

China. conftantly intermarried anong themfelves, while the Chinefe, by a mixture of Tartarian hood from the time of their firft eftablifhment, have at leugth formed a race diftinct in appearance both from Indians and Tartars."

Sir George Staunton, who accompanied the Earl of Macartney oa his embaffy to the Emperur of China, does not indecd dircetly controvert this reafoning; but overlooking it altogether, gives to the Chinefe a much higher antiquity than Sir William Jones is inclined to allow them. Taking it for granted that their cycle is their own, and that it is not the offspring of afl ronmmical fcience, but of repeated obfervations, he feems to give implicit credit to thofe annals of the empire which almoft every other writer lias confidered as fabulous.
"Next to the Itudies which teach the economy of life, the Chinefe (fays lie) value mott the hiftory of the events of their own comutry, which is, to them, the globe; and of the celeftial movements which they had an opportunity of obferving at the fame time." In regard to the former, he tells us, that "from about three centuries before the Chriftian era the tranfactions of the Chinefe empire have been regularly, and without any intervening chafin, recorded both in official documents and by private contemporary writers. Nowhere had liffory become fo much an object of public attention, and nowhere more the occupation of learned individuals. Every confiderable town throughout the empire was a kind of univerfity, in which degrees were conferred on the proficient in the hiftory and government of the flate. Hiftorical works were multiplied throughout. The accounts of recent events were expofed to the correction of the witneffes of the facts, and compilations of former tranfactions to the criticifms of rival writers." In regard to the latter, the movements of the heavenly bodies, he thinks that in no country are therc Atronger in. ducements or better opportunities to watch them than in China; and hence he iufers, that the cycle of fixty years is of Chinefe formation. "In a climate (fays he) favourable to aftronoiny, the balance of hours beyond the number of days during which the fun appeared to return oppofite to, and to obfcure, or to mix a mong the fame fixed ftars, might be afcertained in a fhort time; and occafioned the addition of a day to every fourth year, in order to maintain regularity in the computation of time, in regard to the return of the feafons; but many ages mult have paft before a period could have been difcovered, in which the unequal returns of the fun and moon were fo accurately adjufted, that at its termination the new and full moons fhould return, not only to the fame day, but within an hour and a half of the tine they had happened, when the period commenced. The knowledge of fuch a period or cycle could be obtained only by a multiplicity of careful and accurate obfervations. Many revolutions of thofe great luminaries mult have been completed, and numberlefs conjunctions have paft over, before their returns could be afcertained to happen in the fame day, at the end of ninetcen years. The fmall difference of time between the returning periods of this cycle, was partly leffened by the intervention of another of 60 years, or of 720 revolutions of the moon, which, with the fettled intercalation of 22 lunations, were at firft fuppofed to bring a perfect coincidence of the relative pofitions of the fua and moon: but even according to this period, every new year was made confantly to recede, in a very fmall degree, which.
the Chincle corrected afterwards from time to time. This cycle anfwered a double purpole, one as an era for chronulogical reckoning, and the other as a regulating periud for a luni-folar year. Each year of the cycle is dittinguithed hy the union of two characters, taken from fuch a:1 arrangement of an unequal number of worls placed in oppolite columns, that the fame two characters cannot be found again together for fixty years. The firt column contains a feries of ten words, the other twelve; which lalt are, in fact, the fame that denote the twelve hours or divilions of the day, each being double the European hour. The firft word or character of the firft feries or column of ten words, joined to the firlt word of the fecond feries or column of twelve, marks the firlt year of the cycle; and fo on until the firt feries is exhanted, when the eleventh ward of the fecond feries, combined with the firft of the firit feries, marks the eleventh year of the cycle; and the twelfth or laft of the fecond feries, joined with the fecond of the firlt feries, ferves for denoting the twelfth year. The third of the firlt feries becomes united in regular progreflion with the firt of the fecond feries, to mark the thirteenth year; and proceeding by this rule, the firft eharacter in the firlt and in the fecond feries cannot come again together fur fixty years, or until the firlt year of the fecond cyele. The Chrifian year 1797 anfwers to the \(54^{\text {th }}\) year of the 6oth Chinefe cycle, which afcertains its commencement to have been 2277 years before the birth of Chrift; unlefs it be fuppofed that the official records and public annals of the empire, which bear teftimony to it, fhould all be falfified, and that the cycle when firt eftablifhed fhould have been autidated; which is indeed as little probable as that the period, for example, of the Olympiads thonld be afferted to lave commenced many ages prior to the firt Olympic games."

This is a very pofitive decifion againft the opinion of a man whofe tatents and knowledge of oriental learning were fuch as to give to his opinions on fuch fubjects the greatelt weight. If the Itatements and reaforings of Sir George Staunton be accurate, the Chinefe empire muft have fublifted at leaft 3000 years before the Chritian era; for he fays exprefly, that many ages muft have elap, fed before the commencincut of that cycle, which, according to him, commenced 227.7 years before the birth of Chritt. But furely Confucius was as well acquainted with the ancient annals of his own country, and the credibility which is due to them, as any man of the prefent age, whether Chinefe or European; and we have feen, that he conifidered none of them as authentic which relate events previons to the I ith century before our era. Even this is by much too canly a period at which to rely upon them with implicit confidence, if it be true, as Sir Ceorge informs us, that the tranfactions of the empire have been regularly secorded only from about three centuries before the birth of Chrit. With refpect to the cycle, there is every probability that it was derived from India, where we know that aftronomy has been cultivated as a fcience from time immemorial, and where, we have fhewn in anuther place, that the commencement of the cycle was actually antedated (fee Philosophy, no. 9 . Encycl.) We have therefore no hefitation in preferring Sir William Jones's opinion of the origin of the Chinefe empire to Sir George Staunton's; not merely becaufe we believe

\section*{C H I}
drop the mode of writing practifed by their anceflors, and to adopt anuther fo very inconvewicnt as that which the Chinefe have ufed from the foundation of their canpire? Tlie force of this objection, however, will vanill, when it is remembered that the Cbinus were of the military eaft ; that they had gradually abandonel the ordindaces of the Vedd, and were in confequence degataded : and that they randiled from their nutive country in small bodics. We do not kuow that the military calt among the İinduos was ever nuch devoted to letiers; there is the greatel rafon to belicve that a degraded call would neglect them; and it is certain that fnall bonlies of men, wandering in deferts, would have their time and their attention completely oceupied in providing for the day that was paffing over them. That the Chinas fhould have forgotten the alphabetical characters of the Hindoos, is therefore fo far from being an wbjection to Sir William Jones's account of their defcent from that people, that it is the natural confequence of the manner in which be fays they rambled from Hindollan to the nortleen provinces of what now confli. tutes the Chinefe empire.

Of the origin of the characters which are wifed hy this lingular people, the illuftrious prefident of the Afiatic Society gives the following account from a Chinefe writer named Li Yang Ping. "The earlieft of them were nuthing more than the outhines of viable objects, earthly and celeflial ; but as things merely intellectual could not be expreffed by thofe ligures, the grammarians of Cbina contrived to reprefent the various operations of the mind by motaphors drawn from the productions of natuse. Thus the idea of roughats and of rotundity, of motion and ref, were convered to the cye by ligns reprefenting a mountain, the \(\mathbb{K y}\), a river, and the carth. The figures of the fun, the room, and the ftars, differently combined, Alood for fmoothrefs and fplendour, for any thing artfully wrought, or woven with delicate workmanीhip. Extenion, growth, inereafe, and many other qualities, were painted in characters taken from the clonds, from the firmament, and from the vegetable part of the creation. The dificrent ways of moving, agility and flownefs, idienefs and diligence, were expreffed by various infects, birds, lifhes, and quadrupeds. In this manner paffions and fentiments were traced by the pencil, and ideas not fubject to any feufe ware exhibited to the fight; until by degrees new combinations were invented, new expreflions added, the characters deviated imperceptibly from their primitive fhape, and the Chinefe language became not only clear and furcible, but rich and elegant in the higheft degree *""

Of this language, both as it is fpoken and written, "Afiatic Sir George Staunton has given an account fo clear and vol ii. Mefcientife, that it will undoubtedly place him high among moir 3 . the moft eminent philologits of the \(18 i / 1\) century. As there is nothing relating to the Chinefe more wonderful than their language, which is very little underitond in Europe, we fhall lay before our readers a pretty copious abftract of what he fays on the fubject, referring them for further information to his account of Lord Macartney's Embalfy to China.
"In the Chinefe tongue (fays \(\operatorname{Sir}\) George) the founds of feveral letters in mott alphabets are utterly unknown, and the organs of a native advanced in life cannot pronounce them. In endeavouring to utter the

China. founds of \(B, D, R\), and \(X\), for inflance, he fubititutes fome other founds to which the fame organ has been accultomed; \(L\) for \(R\), and, as we lave realon to think from fome exprefions of Sir William Jones's, F for B. The nice diftinctions between the tones and accents of words nearly refembling each other in fonnd, but varying much in fenfe, require a nicety of ear to diflinguifh, and of vocal powers to render them exactly. Synonymous words are therefore frequently introduced in Chinefe dialogue to prevent any doubt about the intended fenfe; and if in an intricate difenffon any uncertainty fhould ftill remain as to the meaning of a particular expreflion, recourfe is had to the ultimate criterion of tracing with the finger in the air, or otherwife, the form of the character, and thus afcertaining at once which was meant to be expreffed. In a Chinefe fentence there is no marked diftinction of fubftantives, adjectives, or verbs; nor any accordance of gender, number, and cafe. A very few particles denote the paft, the prefent, and the future; nor are thofe anxiliaries employad when the intended time may be otherwife inferred with certainty. A Chinefe who means to declare his intention of departing to-morrow, never fays that he will depart to-norrow ; becaufe the expreffion of the morrow is fufficient to afcertain that his departure mutt be future. The plural number is marked by the addition of a word, without which the fingular always is implied. Neither the memory nor the organs of fpeech are burthened with the pronunciation of more founds to exprefs ideas than are abfolutely neceffary to mark their difference. The language is entirely monofyllabic. A fingle fyllable always exprefies a complete idea. Each fyllable may be founded by an European confonant preceding a vowel, fometimes followed by a liquid. Such an order of words prevents the harfhnefs of fucceeding confonants founding ill together; and renders the language as foft and harnonious as the Italian is felt to be, from the rarity of confonants, and the frequency of its vowel terminations.
"The names or founds, by which men may be firft fuppofed to have diftinguifhed other animals, when occafion offered to defignate them in their abfence, were attempts at an imitation of the founds peculiar to thofe beings; and Aill, in Chinefe, the name, for example, of a cat, is a pretty near refemblance of its ufual cry. It occurred as aaturally to endeavour, in fpeaking, to imitate the voice, if practicable, as it Was in writing to Sketch a rude figure of the object of defeription. It is obfervable, that the radical words of molt languages, feparated from the fervile letters which mark their inflections, according to their conjugations or declenfions, are monofyllabic. A part of each radical word is retained in compoltion to denote the meaning and etymology of the compound, which thus becomes polyfyllabic ; but the Chinefe grammarians, aware of the inconvenience refulting from the length and complication of founds, confined all their words, lowever fignificant of combined ideas, to fingle founds; and retained only in writing, fome part at leaft of the form of each character denoting a fimple idea, in the compound characters conveying complex ideas."

This is a very plaufible, and perhaps the true, account of the monofyllabic form of the Chinefe language; but it is proper to ftate the different account which is given of this peculiarity by Sir William Jones. "It
has arifen, according to him, from the fingular habits of the people; for though their common tongue be fo mufically accented as to form a kind of recitative, yet it wants thofe grammatical accents without which all hu. man tongues would appear monofyllabic. Thus Amita, with an accent on the firf Syllable, means, in the Sarrforit language, immeafurable, and the natives of Bengal pronounce it Omito; but when the religion of Buddaa, the fon of Máyá, was carried into Cbina, the people of that country, unable to pronounce the name of their new god, called him Foe, the fon of Mo-ye; and divided his epithet Amita into three fyllables O.mi-to, annexing to them certain ideas of their own, and expreffing them in writing by three diftinct fymhols. Hence it is that they have clipped their language into monofyllables, even when the ideas exprefled by them, and the written fymbols for thofe ideas, are very complex."
" In the Clinefe language Sir George Staunton informs us, that there is a certain order, or fettled fyntax, in the fucceffion of words in the fame fentence; a fucceffion fixed by cuttom, differently in different langua. ges, but founded on no mle or natural order of ideas, as has been fometimes fuppofed; for though a fentence confifts of feveral ideas, to be rendered by feveral words, thefe ideas all exift and are comected together in the fame inflant ; forming a picture or image, cvery part of which is conceived at once. The formation of Chinefe fentences is often the fimpleft and moft artlefs poffible, and fuch as may naturally have occurred at the origin of focicty. To interrogate, for example, is often at leaft to require the folution of a queftion, whether the fubject of doubt be in a particular way or the contrary; and accordingly a Chinefe inquiring about his friends health, will fometimes fay, bou, poo bou? The literal meaning of which worls is, "well, not well ?" A fimple character repeated ftands fometimes for more than one of the objects which fingly it denotes, and fometimes for a colleqive quantity of the fame thing. 'The character of moo fingly is a tree, repeated is a thicket, and tripled is a foreft.
"In Cliucfe there are fearcely fifteen hundred diftinct founds. In the written language there are at leaft eighty thoufand characters or different forms of letters, which number divided by the firt gives nearly fifty fenfes or characters upon an average to every found expreffed; a difproportion, however, that gives more the appearance than the reality of equivocation and uncertainty to the oral language of the Chinefe.
"The characters of the Chinefe language were originally traced, in moft inftances, with a view to exprefs cither real images, or the allegorical figns of ideas: a circle, for example, for the fun, and a crefcent for the moon. A man was reprefented by an erect figure, with lines to mank thie extremities. It was evident that the difficulty and tedioufnefs of imitation will have occafioned foon a change to traits more fimple and more quickly traced. Of the entire iggure of a man, little more than the lower extremities only continue to be drawn, by two lines forming an angle with each other. A faint refemblance, in fome few inftances, ftill remains of the original forms in the prefent hieroglyphic characters; and the gradation of their changes is traced in feveral Chinefe books. Not above half a dozen of the prefent characters confif each of a fingle line ; but moit
of them confift of many, and a few of fo many as feventy different flrokes. The form of thofe characters has not been fo flux as the found of words, as appcars in the inttance of almoft all the countries bordering on the Chinefe Sea or Eaftern Afia, where the Chinefe written, but not the oral language, is underftood; in like manner, as one form of Arabic figures to denote numbers, and one fet of notes for mufic, are uniform and intelligible throughout Europe, notwithftanding the variety of its languages.
"A certain order or connection is to be perceived in the arrangement of the written characters of the Chinefe; as if it had been formed originally upon a fyftem to take place at once, and nut gruwn up, as other languages, by flow and diftant intervals. Upwards of two hundred characters, generally confiting each of a few lines or ftrokes, are made to mak the principal objects of nature, fomewhat in the manner of Bifhop Wilkin's divifions, in his ingenious book on the fubject of miver\{ai language, or real character. Thefe nay be cunfidered as the genera or roots of language, in which every other word or fpecies, in a fyftematic fenfe, is referred to its proper genus. The heart is a genus, of which the reprefentation of a curve line approaches fomewhat to the form of the object; and the fpecies referable to it include all the fentiments, paffions, and affections, that agitate the human breall. Each fpecies is accompanied by fome mark denoting the genus or heart. Under the genus band are arranged moft trades and manual exercifes. Under the genos word every fort of fpeech, Atudy, writing, underftanding, and debate. A horizontal line marks a unit; croffed by another line it ftands for ten, as it dues in every nation which repeats the units after that number. The five elements, of which the Chinefe fuppofe all bodies in nature to be compounded, form fo many genera, each of which comprehends a great number of fuecies under it. As in every compound character or fpecies, the abridged mark of the genus is difeernible by a fludent of that language, in a little time he is enabled to confult the Chinefe dictionary, in which the compound characters or fpecies are arranged under their proper genera. The characters of thefe genera are placed at the beginning of the dictionary, in an order which, like that of the alphabet, is invariable, and foon becomes fa. miliar to the learner. The fpecies under each genus follow each other, according to the number of flrokes of which each confifts, independently of the one or few which ferve to point out the genus. The fpecies wanted is thus foon found out. Its meaning and pronunciation are given through other words in common ufe; the firf of which denotes its fignification and the ether its foimd. When no one common word is found to render exactly the fame found, it is cominiuicated by two words with marks, to inform the inquirer that the confonant of the firft word and the vowel of the fecond joined together form the precife found wanted.
"The compofition of many of the Chinefe characters ofteu difplays coniderable ingenuity, and ferves alfo to give an infight into the opinions and manners of the peoplc. The cnaracter expreffive of happinefs includes abridged marks of land, the fource of their phyfical, and of children that of their moral, enjoyments. This character, embellifhed in a variety of ways, is hung up almolt in every houfe. Sometimes written by the
hand of the emperor, it is fent by lim as a compliment, China. which is very highly prized, and fuch as he was pleafed to fend tu the embaflador.
"S Uon the formation, changes, and allufions of compound characters, the Chinefe have publifhed many thoufand volumes of philological learning. Nowhere does criticifin mure abound, or is more itrict. The introduction or alteration of a character is a ferious undertaking, and feidom fails to mett with oppofition. The moft ancient writings of the Chinefe are ftill claffe cal amongtt them. The language feems in no inftance to lave heen derived from or mixed with any other. The written feems to have fullowed the oral language foon after the men who fpoke it were formed into a regular fociety. Though it is likely that all hieruglyphical languages were originally founded on the principles of imitation, yet in the gradual progrefs towards arbitrary forms and founds, it is prohable that every fociety deviated from the originals in a different manner from the others; and thus for every independent fociety there arofe a feparate hieruglyphic language. As foon as a communication took place between any two of them, each wuuld hear names and founds not common to both; each reciprocally would mark Lown fuch names in the founds of its own characters, bearing, as hieroglyphics, a different fenfe. In that inftance, confequently, thofe characters ceafe to be bieroglyphics, and were merely marks of found. If the foreign founds could not be expreffed but by the ufe of a part of two lieroglyphics, in the mamer mentioned to be ufed fometimes in Chinefe dictionaries, the two marks joined together become in fact a fyllable. If a frequent intercourfe thould take place between communities fpeaking different languages, the nectflity of ufing hieroglyphics merely as marks of found would frequently recur. Tlse practice wuuld lead imperceptibly to the difcovery that, with a few hicrogls phics, every found of the foreign language might be expreffed; and the hieroglyphies which anfweied bett this purpofe, either as to exactnefs of found or fimplicity of form, would be felected for this parricular ufe; and ferving as fo many letters, would form in fact together what is called an alphabet. Thus, the paftage from hieroglyphic to alphabetic writing may naturally be traced, without the necefity of having - recourfe to divine infruction, as fome learned men have conjectured, on the ground that the art of writing by an alphabet is too refined and artificial for untutored reafun.'
"The Chinefe printed character is the fame as is ufed in moft manuferipts, and is chiefly formed of Atraight lines in angular politions, as moll letters are in Eaftern tongues, efpecially the Sanferit; the characters of which, in fome inflances, admit of additions to their original form, producing a modilication of the fenfe. A running hand is ufed by the Chinefe only on trivial occafions, or for private notes, ur for the eafe and expedition of the writer; and differs from the other as much as an European manufcript does from print. There are books with alternate columns of both kinds of writing for their mutual explanation to a learner.
"The principal difficulty in the fludy of Chinefe writings arifes from the general exclution of the auxiliary particles of colloquial language, that fix the relation between indeclinable words, fuch as are all thofe of the Chinefe language. The judgment mult be conftantly

China. exercifed by the Itudent, to fupply the abfence of fuch affiftance. That judgment muft be guided by attention to the manners, cuftoms, laws, and opinions of the Chinefe, and to the events and local circumitances of the country, to which the allufions of language perpetually refer. If it in general be true, that a language is difficult to be underflood in proportion to the diftance of the country where it is fpoken, and that of him who endeavours to acquire it, becaufe in that proportion the allufions to which language las continually recourfe are lefs known to the larner, fome idea may be conceived of the obftacles which an European may expect to meet in reading Chinefe, not only from the remotenefs of fituation, but from the difference between him and the native of China in all other refpects. The Chinefe characters are in fact fketches or abridged figures, and a fentence is often a ftring of metaphors. The different relations of life are not marked by arbitrary founds, fimply conveying the idea of fuch counection; but the qualities naturally expected to arife out of fuch relations become frequently the name by which they are refpectively known. Kindred, for example, of every degree is thus ditinguifhed with a minutenefs unknown in cther lauguagres. That of China has diftinct characters for every modification known by them of oljeets in the phyfieal and intellectual world. Abtract terms are no otherwife expreffed by the Chinefe than by applying to each the nanse of the moll prominent ohjects to which it might be applied, which is likewife indeed generally the cafe of other languages. Among the Latius the abtract idea of virtue, for example, was exprefled under the name of valour or ftrength (virtus), being the quality moft efleemed among them, as filial piety is confluered to te in China. The words of an alphabetic lan ruage being formed of different combinations of letters or clemental parts, each with a dittinct found and name, whoever knows and combines thefe together, nay read the words without the leat knowledge of their meaning ; not fo hieroglyphic languagc, in which each character has indeed a found anmexed to it, but which bears no certain relation to the unnamed lines or Atrokes of which it is compofed. Such characier is ftudiced and beft learned by becoming acquainted with the idea attached to it ; and a dictionary of hieroglyphics is lefs a vocabulary of the terms of one language with the correfpondent terms in another, than an encycloprdia containing explanations of the ideas themelves reprefented by fuch hieroglyphics. In fuch fenfe only can the acquifition of Chinefe words be juftly faid to engrofs moft of the time of men of learning among them. 'The knowledge of the fciences of the Chinefe, however inperfect, and of their mof extenfive literature, is certainly fufficient to occupy the life of man. Enongh, however, of the language is imperceptibly acquired by every native, and may, with diligence, be acquired by forcigi:crs for the ordinary concerns of life; and further improvements muft depend on capacity and opportunity."

Next to the fingular flructure of the oral and written language of the Chinelf, there is perhaps nothing in their hiftory more furprifing to a native of Europe than the number of the people, and the means by which they contrive to procure fubfiftence, without foreign trade, in a country fo crouded, and at the fame time not everywhere of a fertile fuil. In the Encyelopædia, the population of this vaft empire is fated, from \(M\).

Grofier, at 200 millions: but great as this is, when compared with the population of every other extenfive country, it appears to be far fhort of the truth. Sir George Staunton has publifhed a ftatenent, taken from one of the public offices in the capital, and given by a great and refpectalle manderin to Lord Maeartney, in which it is Thewn that China Proper contains not fewer than 333 millions of inhabitants. As the extent of the eoumtry is \(1,297.999\) \{quare miles, there are of courfe very near 260 inhabitants to every fquare mile; and of thefe miles a very confiderable proportion confits of nothing but barren rocks. That this account is accurate there can be little doubt; for the extent of the provinces was afcertained by aftrunorical obfervations, as well as by admeafurment; and the number of individuals is regularly taken in each divifion of a ditrict by a tything. man, or every tenth mafter of a family. Thefe returns are collected by cficers refident fo near as to te capable of corrceting any grofs miftake, and are all lodged in the great regifter of Pckin.

For this exceffive population our author fatisfactorily accounts. Celibacy, fays he, is rare in China, even in the military profeffion ; the marriages are prolific as well as carly, and the influence of the patriarchal \(f y\). flem, to be explained afterwards, is fuch, that a man's children adds to his wealth. It is reckoned a difcredit to be without offspring; and they who have none adopt others, who become theirs exclufively. In cafe of mar. riage, fhould a wife prove barren, a fecond may be ef poufed in the lifetime of the firft. The opulent, as in mott parts of the Eaft, are allowed, without reproach, to keep concubines, of whom the children are confidercd as being thofe of the legitimate wife, and partake in all the rights of legitimacy. "Accidents fometimes of extraordinary drought, and fometimes of exceflive inundations, oceafionally produce famine in particular provinces, and famine dileafe; but there are tew drains from moral caufes either of einigration or foreign navigation. The number of manufactures, whofe oeeurations are not always favourable to health, whofe conflant confinement to particular fpots, and fometimes in a clofe or tainted atmofphere, muft be injurious, and whofe refidence in towns expofes them to irregularities, bears but a very fmall proportion to that of lufonadmen in China. In general there feems to be no other bounds to Chinefe populoufnefs tlian thofe which the neceflity of fubfiltence may put to it. Thefe boundaries are certainly more enlarged than in other countries. The whole furface of the empire is, with trifling exceptions, dedicated to the production of fond for man alone. There is no meadow, aud very little pafture ; nor are fields cultivated in oats, beans, or turnips, for the fupport of cattle of any kind. Few parks or pleafure grounds are feen, excepting thofe belonging to the emperor. Little land is taken up for roads, which are few and narrow, the chief communication being by water. There are no commons, or lands fuffered to lie wafte by the neglect, or the caprice, or for the fport of great proprictors. No arable land lies fallow. The foil, under a hot and fertilizing fun, yields annually, in moft inftances, double erops, in confequence of adapting the culture to the fuil, and of fupplying its defects by mixture with other earths, by manure, by irrigation, by careful and judicious induftry of every kind. The labour of man is little diverted from that induftry

\section*{C H I [423] C H I}

Chins. to minifter to the luviries of the opulent and power. ful, or in employments of no real ufe. Even the fol. diers of the Chinefe army, except during the thort initervals of the guards which they are called to mount, or the exercifes, or other occafional fervices which they perform, are moftly employed in agriculture. 'The quantity of fublitence is increafed allo, by converting more fpecies of animals and regetables to that purpofe than is ufual in other countries. And even in the preparation of their food the Chinefe have ceonomy and management."

The government of China is defpotic; and it is a curious fpectacle to behold fo large a proportion of the whole haman race, connected together in one great fyItem of polity, fubmitting quietly, and through fo confilerable an extent of country, to one great fovereign ; and uniform in their laws, their manners, and their language, but differing effentially in each of thefe refpects from every other portion of mankind: and neither de. firous of communicating with nor forning any defigns againtt the redt of the world. 'To produce fuch a phe. nomenon, many caufes muft be conbined; but perhaps the principal are to be found in the patriarchal fyftem already mentioned, in the laws and cufoms of the empire, and in the belief that the emperor is the vicegerent of heaven, and guided in all his actions by divine infpiration.

The patriarchal fyftern is founded upon that filial piety which the philofophers of China have uniformly reprefented as the greateft of human virtues. Thefe fages, while they fuccefsfully inculcated this duty, have left parental affection to its own natural influence; and hence in China parents are lefs frequently neglected than infants are expoled. The laws of the empire, to corroborate the difpofition to filial obedience, furnifh an opportunity for punifing any breash of it, by leaving a man's offspring entirely within his own power: and hence it is, that with the poor, marriage, as we have faid, is a meafure of prudence; becaufe the children, particularly the fons, are bound to maintain their parents.

A Chinefe dwelling is generally furrounded by a wall fix or feven feet high. Within this inclofure a whole family, of three generations, with all their refpective wives and children, will frequently be found. One fimall room is made to ferve for the individuals of cach branch of the family, fleeping in different beds, divided only by mats hanging from the ceilmg. One common room is ufed for eating.

The prevalence of this cuftom, of retaining the feve. ral braiches of a fanily under the fame roof, is attended with important effects. It renders the younger temperate and orderly in their conduct under the an hority and example of the older ; and it enables the whole to fubfift, like foldiers in a mefs, with more economy and advantage. As the venerable patriarch of each habitation prefides over his defcendants with the authority of a magiltrate; fo the different orders of magiftrates are, in their different diftricts and provinces, looked up to with the veneration due from children to their parents, while the emperor is revered as the grand patriarch of the whole empire.

Another thing which contributes much to the permanency of the government and the internal quiet of the empire is, that in China there is lefs inequality in the fortunes than in the conditions of men. The ancient
annals of the empire teflify, that fo: a long period of China. time, the earth, like the other elements of nature, was enjoyed by its inlabitants almoft in common. Their country was divided into. fimall equal dittricts; every diftric was cultivated conjointly by cight labouring fa. milies, which compofed each hamket ; and they enjoyed all the protit of their labours, except a certain flare of the produce referved for public expences. It is true, indeed, that after a revolution, deplered in all the Cninefe hillorics, which happened prior to the Chriftian era, the ufurper granted all the lands away to the partners of his viftories, leaving to the cultivators of the foil a fmall pittance only out of the revenue which it yielded. Property in land alfo became hereditary : but in procefs of time, the moft confiderable domains were fubdividsd into very moderate parcels by the fucceffive diftribution of the polfeffions of every father equally among all his fous; the daughters being always married without dower. It very rarely happened that there was but an only fon to enjoy the whole property of his deceafed parents; and it could farcely be increafed by collateral fucceffion.

From the operations of all thofe canfes, there was a conftant tendency to level wealth ; and few could fucceed to fuch an accumulation of it as to render them independent of any efforts of their own for its increafe. Befides, wealth alone cunfers in China but little importance, and no power ; nor is property, without office, always perfectly fecure. There is no hercditary dignity, which might accompany, and grive it pre-eminence and weirht. The delegated authority of government often leans more heavily on the unprotected rich than on the poor, who are leis objects of temptation. And it is a common remark among the Clincfe, that fortunes, either by being parcelled ont to many heirs, o: by being loft in commersial fpeculations, gaming, or extravaga ce, or extorted by oppreffive mandarines, feldom continue to \(b:\) confiderable in the individuals of the fame family beyond the third generation. 'Fo afeend agrain the ladder of ambition, it is neceffary, by long and laborious fuly, to excel in the learning of the country, which alone qualifies for public employment 3.

There are properly but thee clalles of men in China: men of letteri, from whom the mandarines ate taken: cultivators of the ground; and mechanics, includin; merchants. In Pekin alone is conferred the ligheft degree of literature upon thofe who, in public examinations, are found moft able in the feiences of murality and government as taught in the ancient Chinefe writers; with which ftudies the hittory of their conntry is intimately blended. Among fach graduates all the civil offices in the fate are diftributed by the einperor; and they compofe all the great tribunals of the empire. The candidates for thofe degrees are frech as lave fucceeded in fimilar examinations in the principal city of each province. Thofe who have been chofen in the citics of the fecond order, or chief town of every dif. trict in the province, are the candidates in the provincial capital. They who fail in the firft and fecond claffes have ftill a claim on fubordinate offices, proportioned to the clafs in which they had fucceeded. Thofe. examinations are carried on with great folemuity, and apparent fairnefs. Military rank is likewife given to thofe who are found upon competition to excel in the military art, and in warlike excrcifes. This diftribution

\section*{C H I [424\(] \quad\) C H I} of offices contributes greatly to the peace of the em. pire; for the people cheerfully fubmit to the authority of thofe whom they believe to be placed over them by merit alone, and love that conltitution which brings within the reach of the meanell fubject, who has talents and induftry, the higheft fation next to the fupreme.
"The gleat tribunals are fituated, for the fake of convenience, near the fouthern gate of the impcrial palace at Pekin. To them accounts of all the tranfactions of the empire are regularly tranfinitted. They are councils of reference from the emperor, to whom they report every bufinefs of moment, with the motives for the advice which they offer on the uccafion. There is a body of doetrine compofed from the writings of the carlift ages of the enpire, contirmed by fubfequent lawgivers and fovereigns, and tranfmitted from age to age with increafing veneration, whieh ferves as rules to guide the judgment of thofe tribunals. This doatrine feems, indeed, founded on the broadeft bafis of univerfal juftice, and on the purelt principles of humanity.
"His imperial majefty generally conforms to the fuggeftions of thofe tribunals. One tribunal is directed to coufider the qualifications of the different mandarines for different offices, and to propofe their renoval when found incapable or unjuft. One has for object the prefervation of the manners or morals of the empire, called by Europeans the tribunal of ceremonies, which it regulates on the maxim; that exterior forms contribute not a little to prevent the breach of moral rules. The molt arduous and critical is the tribunal of cenfors: taking into its confideration the effect of fubliting laws, the conduet of the other tribumals, of the princes and great officers of itate, and even of the emperor himfelf. There are feveral fubordinate tribunals ; fuch as thofe of mathematics, of medicine, of public works, of literature and hithory. The whole is a regular and coufifent fyftem, eltablithed at a very early period, continued with little alterations through every dynafty, and revived after any interruption from the eaprice or paffions of particular princes. Whatever deviation has been made by the prefent family on the throne, arifes from the admilifion of as many Tartars as Chinefe into every tribunal." The opinions of the former are fuppofed always to preponderate; and many of them are indeed men of confiderable talents and ftrength of mind, as well as pulifhed mamers. They are, however, in general, fitter for military than civil offices. The hardy education, the rough manners, the active firit, the wandering difpoition, the loofe principles, and the irregular conduct, of the Tartar, hit him better for the profeffion, practice, and purfuits of war, than the calm, regulated, and dumeftic habits of the Chinefe. Warriors feem naturally the offspring of Tyrtary, as literati are of China; and aceurdingly, the principal military commands are conferred on natives of the former country, as, with many exceptions indeed, the chief civil offices are on thofe of the latter.

A military mandarin, who was much with Lord Macartney, and was himfelf a dillinguifhed officer, afferted that, "ineluding Tartars, the total of the army in the pay of China amounted to \(1,000,000\) infantry and 800,000 cavalry. From the obfervations made by the embafly in the courfe of their travels through the empire, of the garrifons in the cities of the feveral orders, and of the military pofts at fmall diftances from each
other, there appeared nuthing unlikely in the calcula: tion of the infantry; but they met few cavalry. If the number mentioned really do exitt, a great proportion of them mult have been in Tartary, or on fome fervice diftant from the route of the embafly.
"Of the troops, efpecially cavalry, a vaft number are Tartars, who have a higher pay than their Chinefe fel-low-foldiers. The principal offieers of contidence in the army are Tartars alfo. None of either nation are received into the fervice but fuch as are healthy, Arong, and fightly. The pay and allowances of a Cninefe horfenan are threc Chinefe ounces, heavier than European ounces, and three-tenths of an ounce, of filver, and fifteen meafures or rations (the weight not mentioned) of rice every lunar month. A Tartar horfeman, feven fimilar ounces of filver, and 20 meafures of rice for the fame period. A Chiwefe foot foldier has one ounce and fix-tenths of an ounce of filver, and ten meafures of rice; and a Tartar of the fame defeription has two ounces of filver and ten meafures of rice every lunar muntli. The Emperor furnithes the arms, accoutrements, and the upper garment, to all the foldiers. Befide their ordinary pay and allowances, they alfo receive donations from the Emperor on particular occafions; as when they marry, and when they have male children born. On the death of their parents they obtain 'a gift of confolation ;' as do their families when the foldiers themfelves die.
"The public revenues of China Proper are faid to be little lefs than \(200,000,000\) of ounces of filver, which may be equal to about \(65,000,003\) of pounds fterling ; or about three times thofe of France before the late fubvertion. From the produce of the taxes all the civil and nilitary expences, and the incidental and extraordinary charges, are firtt paid upon the fot out of the treafuries of the refpective provinces where fuch expences are incurred; and the remainder is remitted to the Imperial treafury at Pekin. This furplus anounted in the year 1792 to the fum of \(36,614,328\) ounces of filver, or \(12,20 \neq 776\) pounds fterling, according to an account taken in round numbers. In cafe of infurrections, or other oceurrences requiring extraordinary expences, they are generally levied by additional taxes on the provinces adjacent to the feene of action, or connected with the occation of the expence.
"In the adminill ration of the valt revenue of the fate, the opportunities of committing abufes are not often neglected; as may be inferred from the frequent confifeation to the Emperor in confequence of fuch tranfgreffions. It is indeed affirmed, that mucli corruption and oppreffion prevail in mult of the public depantments, by which confuderable fortunes are acquired, notwithftanding the modicity of the public falaries."

With fuch a ftanding army and fo vaft a revenue, it will mo longer appear wonderful that one man fhould govern with defpotic fiway even the immenfe multitude of people who inhabit the empire of China, efpecially trained up as thofe people are in habits of filial fubmiffion to their fuperiors. But there are fome circumilances in the fyftern of Chinefe policy, not yet mentioned, which contribute perhaps more than even thefe habits and that power to preferve the fability of the government. The Emperor referves to himfelf alone the right of relieving the wants of the poor, produced by famine or any other unforefeen calamity. On fuch oceafions

Chinn, he always comes forward. He orders the public granaries to be opencd; remits the taxes to thofe who are vifited with misfurtune; affords afliftance to enable them to retrieve their affairs; and appears to his fubjects as ftanding almoft in the place of Providence in their favour. He is perfectly aware by how much a ftronger claain he thus maintains his abfolute dominion, than the mere dread of punilhment would afford. The emperor, to whom the Britifh embafly was fent, newed himfelf fo jealous of retaining the exclufive privilege of benevolence to his fubjects, that he not only rejected, but was offended at, a propoial once made to him by fome confiderable merchants, to contribute towards the relief of a fuffering province; whilf he fcrupled not, at the fame time, to aecept the donation of a rich widow towards the expences of a war in which he was engaged.

This veneration, excited towards the emperor by his apparent benevolence, is increafed by an opinion zealouny inftilled into the people, that he has the faculty of predi\&ing future events of the greateft inportance. The Chinefe, given up to the dotages of judicial altrology, are firmly perfuaded that eclipfes of the fun and moon have a powerful influence on the operations of nature and the tranfactions of mankind; and the periods of their occurrence become, of courfe, objects of attention and folicitude. The government of the counery, ever anxious to eftablifh its authority in the general opinion of its fuperior wifdom and conftant care tor the welfare of the people, employs the European miffionaries at Pekin (for it is doubtful if any one of the natives has fo much feience) to calculate eelipfes, and then announces them to the people with that folemnity which is fitted to enfure veneration for the fuperintend. ing power whenee fuch knowledge is immediately derived to them. Eelipfes of the fun, in particular, are confidered as omenous of fome general calamity; and as great pains are taken to infpire then with a belief that their profperity is owing to the wifdom and virtues of their fovereign, fo they are tempted to attribute to fome deficiency on his part whatever they think portentous. To this prejudiee the emperor finds it prudent to accommodate his conduct. He never ventures on any undertaking of importance at the approaeh of a folar eclipfe, but affects to withdraw himfelf from the prefence of his courtiers, to examine flritly into his late admininftration of the empire, in order to correct any error, for the commiffion of which the eclipfe may have been an admonition. On thefe occafions he invites his fubjecte to give him freely their advice: but it is plain that advice nuft be offered with great deference to a being for whofe admonition the motions of the fun and moon are believed to be regulated; and while fueh notions are implicitly admitted, the perfon of the Chinefe emperor, as well as his authority, inult be looked apon by his fubjects as fornething more than human.

Suppl. Vol. I. Part II.

This is in face the cafe. He is not only approached in perfon with teftimonies of the utmolt refpect, but is adored when abfent with all the rites and ceremonies which are ufed by the Chinefe in the worlhip of their divinities. On his birth-day, at the new and full moon, and probably on other feftivals, all the mandarines relident in the neighbuurhood of any of his numerous palaces affemble about noon, and repairing to the palace, folemaly proftrate themfelves nine times before the throne, their forcheads fltiking the floor cach time; whilit inceufe is burning on tripuls on each fide of it, and offerings are made, on an alter before it, of tea and fruits to the fpirit of the abfent emperor. Over the throne are feen the Chinefe characters of glory and perFection; and the name of the Deity is given to the emsperor, who is confidered by his votaries as poffelling in fome fenfe the attribute of ubiquity. Mr Barrow, one of the gentlemen of the embalfy, was prefent at Yuen-min-yuen, one of the imperial palaces, when thefe idulatrous rites of adoration were performed; and he was alfured that they took place on that diy in all pats ot the empire, the proftraters being everywhere attentive to turn their faces towards the capital.

That he who claims adoration in his abfence does not appear on his birth-day to receive the compliments of his fubjects, will not furprife the reader. The manner in which that feltival is celebrated at the palace, where the emperor happens to be refident, is thus deferibed by Sir George Staunton, who witnefled this more than auguft ceremony at the palace of Zbe-kal in Tartary. "The princes, tributaries, ambaffadurs, great officers of Itate, and principal mandarines, were antembled in a vaft hall; and upon particular notice, were introduced into an inner building, bearing, at leat, the femblance of a temple. It was chiefly furnifthed with great inftruments of mulic, among which were fets of cylindrical bells, fufpended in a liae from ornamented frames of wood, and gradually diminifining in fize frons one extremity to the other, and allo triangular picces of metal arranged in the fame order as the bells. To the found of thefe iuftruments a flow and folemn hymn was fung by eunuchs, who had fuch a command of their voices as to refemble the effect of the mufical glafies at a diftance. The performers were directed, iti gliding from one tone to another, by the ftriking of a fribll and fonorous cymbal ; and the judges of nutic among the gentlemen of the embafly were much pleafed with their execution. The whole had indeed a grand effect. During the performanee, and at particular lignals, nine times repeated, all the perfons prottrated themfelves nine times, except the ambaffador and his fuit, who made a profound obcifance (a). But he whon it was meant to honour, continued, as if it were in imitation of the Deity, invifible the whole time."

That the awful improflion meant to be made upon 3 H
the
(A) The Chinefe court, which confiders all other fovereigns as fubordinate to their own, exacts from foreign minifers, as well as from natives of the empire, nine proftrations upon their firlt introduction to the entper \(r\). This demand was made, in the latt century, of the Dutch, who inflantly complied with it in hopes of obtaining in return fome lucrative advantages; and the confequence was, that their ambaflador was treated with neglect, and difmiffed without promife of the fmalleft favour. It was likewife made of a Ruflian ambaflador in the prefent century ; but he would nut comply with it, until a regular agreement was made for its return, on a like oc. calion, to his own fovereign. Lord Macartney, who was repeatedly u"ged to go through the fane abjee ceremony, difplayed fuch firmnefs and addrefs, that after much evation it was at laft annonneed to him, that his imperial majefty would be fatisfied with the fame form of refpecful obedience that the Englifh are in the labit of paying to their own fovereign ; and upon thefe terms his lordhin was introduced and graciouny reccived.

China, the minds of men by this apparent worflip of a fellowmortal might not be too quickly eflaced, all fcenes of fport and gaity were poftponed to the next day, when a variety of entertainments was exhibited in the prefeace of the emperor, furrounded by his cunt and tributary princes.
Notwithftanding the general veneration of the Chinefe for the perfon and goverument of their emperur, the mandarines afferted that a fect had for ages fubfittcd in the country, whofe chief principles were founded on an antipathy to monarchy, and who nourifhed hopes of at laft fubverting it. Their meetings were held in the n:tmoft fecrecy, and no man avowed any knowledge of them; but a fort of inquifition was faid to be efta. blifhed in order to find them out, and they who were fufpected of fuch fentiments were cut off, or hunted out of fociety. Should the French declaration of the rights of man, which, through the zeal of its authors, has been tranflated into one of the languages of India, find its way into China (of which the court is faid to be much afraid), it would indeed be a powerful engine in the hands of this fecret fect to fap the foundations of the ancient goverument. The minds of many of the Chinefe are far from fatisfied with their condition, which lays both their perfons and their fortunes at the mercy of the mandarines. No private man in China is exempted from corporal punifhment, which may be inftantly inflicted on him at the nod of a magiftrate; and when he has occafion to fpeak to a great mandarine, he is obliged, hy the police of the country, to throw himfelf on his knees, and in that pofture to communicate his bufinefs. The mandarine himfelf, on the other hand, lies under the hardhip of being frequently refponfible for events which he could not controul. Upon the general principle that it is his duty to watch over the morals of the people, he is in nany cafes confidered as a criminal for not preventing crimes which he had not been able to prevent. The mandarines are thus aware of not being guaranteed by good conduct againft difgrace; and feeling the chagrin of infecurity, many of them muft doubtlefs be ripe for a revolt. Fear may keep them quiet during the reign of a fovereign pofiefed of abilities and vigilance; but the maxims which regulate the imperial fucceffion are fuch, that a firm confederacy could hardly fail at the death of an emperor to introduce great changes into the conflitution. The throne of Clina is neither hereditary nor elective. The choice of a fucceffor is left entirely to the reigning prince, who may exclude, as has been infanced, even lis own offspring and family. To prevent commotions and fraud, it is no uncommon practice for the emperor, during his lifetime, to declare his fucceffur; fur when his fucceflion is fettled by a written teftament, the throne is not always filled by him for whom it was deftined. The father of the emperor to whom the Britifh embafly was fent, is faid to lave obtained poffeffion of the throne by fuddenly entering the palace in the laft moments of his predeceffor, and fublituting his own name in a teftament intended for the exaltation of another.

To what has been faid in the Encyclopredia of the religion of the Chinefe, we have here very little to add. Various deities are workipped in the empire by very different rites and ceremonies; but there is in China no flate religion. None is paid, preferred, or encouraged by it. The emperor is of one fuith; many of the man.
darines of another; and the majority of the common people of a third, which is that of Fo. The men of letters venerate ratler than adore Confucius; and meet to honour and celebrate his memory in lalls of a fimple but nea! confluction. The numerous and lower claties of the people are lefs able than inclined to contribute much towa:ds the erection of large and coftly edifices for public worfhip: their attention is almoft wholly engaged by their boufhold gods; for every houfe las its altar and its deities.
"No people are, in fact, more fuperlitious than the common Chinefe. Befde the habitual oflices of derotion on the part of the p-iefts and females, the temples. are particularly frequented by the difciples of Fo previounty to any undertaken of importance; whether to marry, or go a journey, or conclude a bargain, or clange fituation, or for any other material event in life, it is ueceflary firt to confult the fuperintendant deity: This is performed by various methods. Some place a. parcel of confecrated fticks, differently marked and numbered, which the confultant, knecling before the altar, fhakes in a hollow bamboo, until one of them falls on the ground; its mark is examined, and referred to a correfpondent mark in a book which the pieft holds. open, and fometimes even it is written upon a fheet of: paper pafted upon the infide of the temple. Polygonal pieces of wood are by others thrown into the air. Each tide has its particular mark; the fide that is uppermoft when fallen on the floor is in like manner referred to its correfpondent mark in the book or theet of fate. If the Grft throw be favourable, the perfon who madeit proftrates limfelf in gratitude, and undestakes afterwards with contidence the bufinefs in agitation. But. if the throw fhould be adverfe, he tries a fecond time, and the third throw determines, at any rate, the quef. tion. In other refpects, the people of the prefent day feem to pay little attention to their priefls. The temples are, however, always open for fuch as choofe to confult the decrees of heaven. They return thanks. when the oracle proves propitious to their wifhes. Yet they oftener caft lots to know the iffue of a projected enterprife than fupplicate for its being favourable; and their worfhip contilts more in thankfgiving than in prayer.
is The Chinefe are feldom faid to carry the objects to be obtained by their devotion beyond the benefits of this life. Iet the religion of Fo profeffes the doctrine of the tranfmigration of fouls, and promifes happinefs to the yeople on conditions, whish were no doubt originally intended to confit in the performance of moral duties; but in lieu of which are too frequently fubitituted thofe of contrihutions towards the erection or repair of temples, the maintenance of priefts, and a Aries attention to particular ohfervances. The neglect of thefe is announced as punifhable by the fouls of the defaulters paffing into the bodics of the meaneft animals, in whon the fufferings are to be proportioned to the tranfgreflions committed in the human form."

Though the Chinefe artifts are very ingenious as mere workmen, there is hardly any thing which deferves the name of fcience in the whale empire. So little is the Audy of mathematics cultivated, that there are few Mopkeepers in China who can perform the ordinary operations of arithmetic ; but caft up their ac. counts by means of an inftrument called froanpan (See

\section*{C H I [427\(]\) C H I}

China. Swanpan, Encycl.). Though the compofition of gunpowder was certainly known in China inuch earlicer than in Europe, and though the Chanefe had employed it from the beginning in blafting rocks, and in making a valt variety of fire-works; yet Sir Geurge Staunton feems convinced, that they bever thought of the inven. tion of guns till they were taught by the Europeans to introduce them into their armies.

The ftate of phyfic in this vatt country is extremely low, being nowhere taught in public fehools or colleges. "A young man who wilhes to become a phyfician, has no other way of acquiring medical knowledge than by engaging himfelf to fome practitioner as an apprentice. He has thus the opportunity of feeing his mafter's practice, of vifting his patients with him, and of learning fuch parts of his knowledge and fecrets as the other choofes to communicate to him. The emoluments of the profeffion feldom exceed the nill of the practitioner. As many copper coin as fcarcely are equal to fixpence fterling is faid to be the ufual fee among the people; and perhaps quadruple among the mandarines. Medicine is not divided in China into diflinct branches as in molt parts of Europe. The lame perfon acts as phydician, furgeon, and apothecary. The furgical part of the profeflion is fill more backward than the others. Amputation, in cafes of compound fracture and gangrene, is utterly unknown; and death i,s the fpeedy confequence of fuch accidents. The Chinefe method of inoculation, which was introduced into the empire about the beginning of the tenth century of our era, is as follows: When the difeafe hreaks out in any diftrict, the phyficians of the place carefully collect a q̧uantity of ripe matter from puftules of the proper fort ; wheh being dried and pulverifed, is clofely thut up in a porcelain jar, fo as to exclude from it the atmopleric eir ; and in this manner it will retain its properties for many years. When the patient has been duly prepared by medicines, generally of an aperient kind, and ilrictly dieted for a fhort time, a lucky day is chooen to forinkle a little of the variolus powder upon a finall piece of fine cotton wool, and to infert it into the noftrils of the patient.
"No male phyfician is allowed to attend a pregnant woman, and fill lefs to practife midwifery ; in the indelicacy of which both fexes feem to agree in China. There are books written on that art for the ufe of fetnale practitioners, with drawings of the ftate and pofttion of the infant at different periods of geftation ; together with a variety of directions and preferiptions for every fuppofed cafe that may take place: the whole mixed with a number of fuperfitiuus obfervances.

Many practitioners of phylic take the advantage, as elfewhere, of the obfourity in which that art is involved, and of the ignorance and credulity of the people, to gain money by the fale of nottrums and fecrets of their own. They diftribute hand bills, fetting fotth the efficacy of their medicines, with attefted cures annexed to them. And there is one fect which boldly arrogates to itfelf the poifeffion of a medical fecret not to die! To thofe who had all the enjoyments of this life, there remained unaccomplihed no other wifh than that of remaining for ever in it. And accordingly feveral fovereigns of China have been known to cherifh the idea of the poffibility of fuch a medicine. They had put themfelves, in full health, under the care of
thofe religious cmpirics, and took large draughts of the boathed beverage of immortality. The compofition dict nut confift of merely liarmlefs ingredients; hut probably of fuch extracts and proportions of the poppy, and of other fubtan es and liquors, as occationing a temporary exaltation of the inagination, paffed for an indication of its vivifying elleets. Thas encouraged, they had recourfe to freciucnt repetitions of the dofe, which brought on quickly languor and debility of tipirits: and the delucked patients often became victins to deceit and folly in the nower of their age.
"There are in China no profeffors of the fciences connected with merlicine. The hurnan body is never, unleis privately, diflected there. Books, indeed, with drawings of its internal ftructure are fometimes publifhed; but thefe are extremely imperfect, and confulted, perpaps, oftener to find out the name of the fpirit under whofe protection each particular part is placed, than for obferving its form and fituation.
"It is a matter of doubt, whether natural hiftory, na. tural philofophy, or chemiltry, be, as fciences, much more improved than anscomy in China. There are feveral treatifes, indeed, on particular fubjects in each. The Chinefe likewife poffefs a very voluminans Encyclopzdia, containing nany facts and obfervations rela. tive to them; but from the few refcarches which the gentlemen of the embaffy had leifure or opportunity to make during their fhort vifit to the country, theyr perceived no traces of any general fyftem or doctrine by which feparate facts or obfervations were connected and compared, or the common properties of budies alcertained by experiment; or where kindred arts were conducted on fimilar views, or rules framed, or deductions drawn from analogy, or principles laid down to conflitute a fcience."

Of all people the Chinele are perhaps the moft eager in their curiolity about foreigners coming among them, and the moft indifferent abont the countries of fuch fo. reigraers. They have been always in the habit of confining their ideas to their own country, emphatically ftyled the midale kingdom. No Chinefe ever thinks of quitting it, except a few of defperate fortunes reliding near the fea-coatt, or fea faring men, who form a clafs, in a great meafure, apart from fociety. Even forcign commodities confumed in China remind them only of Canton, whence they received them, as if produced in it ; and thefe commodities they confider, perhaps pro. perly, as of no real benefit to the empire. Regions out of Alia are fcarcely mentioned in their books, or noticed in their diftorted maps; and the great body of the people would be little gratified with accounts of fuch regions, which did not contain tales of wonders not performed at home, or of powers exerted beyond the ordipary boundaries of nature.

CHINESE pump. See Pump in this Supplement.
CHINESE Weigbts are fo very different in many refpects from thofe in ufe clfewhere, that it will at leaft gratify the curiofity of our readers to take fome notice of them in this Work. Of thefe weights Charles Coguebert has prefented a fpecimen to the Philumathematical So. ciety in Paris. They are made of copper, and bear a great refemblance in form to the body of a violin. Like that intrument, they are rommded off at the extremities, and indented on the fides to admit the fingers. The faces are flat and parallel, and have Chinefe cha\(3 \mathrm{H}_{2}\)
racters

Cl:in?, Chinefe.

Chinefe. racters englaven on the upper furfacc. They advance in a regular decimal proerreflion, of which Coquebert has difcovered four diftiact feries, the units of which are in the proportio: of \(1,10,100,1000\). Inttead of employing a combination of one, , two, four, and eight units, or after the new fyltem of one, two, and five units, the Chinefe have a diftinct weight for every internediate number between one and ten. Thus they have weights of \(1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70\), So, oc, sce. Of courfe, thofe weights which fland re. Iated to each other in the proportion of 6 to 7,7 to 8 , 8 to 9,9 to 10 , differ fo little in fize, that it would be impofitible to diftinguifh then without the lielp of the characters which are engraven upon the face. This is confefiedly a defeet in the fyftem. Of the four diffe. rent feries exthbited to the fociety, the higient bears in China the name of kin, and is nearly of equal value with a pound avoirdupois. The hin cuntains ten times the number of units of the next inferior weight, which the Chinefe denuminate learg or loam, and which the Europeans call tael, taille, or Chinefe oance. This ounce is divided into ten tfict, which anfwers nearly to our drachm. The tien is again fubdivided into ten fen. The Chinefe extend the deciral fubdivifion of their weights confiderably farther. They have diftine names, which are all monofy llabic, for nine feries below the fen. Suppofing the kin to fand for unity, they have,

The Chinefe weights, compared witb the greatett precifion, and with the help of the beft inftruments, ticar the following proportion to our weights: The kin is equal to 1 pound 12 ounces 2 drachms 24 grains; the leang 1 ounce 1 drachm 60 grains; the thien ho grains \({ }^{8}\) \% ; the fen 7 grains \(\frac{8}{\text { ofor. }}\). Confequently the latt of tbis feries, the fun, amounts to no more than o grains \(000: 0000708\).

Chintse \(W\) beel is an engine employed in the province of Kiang- See, and probably through the whole empire, for raifing water from rivers to irrigate plantations of fugar canes, on a fandy foil, confiderably elevated above the level of the river. By Sir George Staunton, who Says that it is ingenious in its contrivance, cheap in its materials, eafy in its operation, and effectual to its purpofe, it is thus deferibed:
" Two hard wood-pofts or uprights are firmly fixed in the bed of the river, in a line perpendicular to its bank. Thefe pofts fupport the axis, about ten feet in length, of a large and durable wheel, confifting of two unequal rims, the diameter of one of which, clofett to the bank, being about fifteen inches fhorter than that of the outer rim; but both dipping in the flream, while the oppofite fegment of the wheel rifes above the elevated bank. This double wheel is connected with the axis, and is fupported by 16 or 18 fpokes obliquely inferted rear each extremity of the axis, and croffing each other at about two-thirds of their length. They are there ftrengthened by a concentric circle, and fattened afterwards to the rims: the fokes inferted in the in. terior extremity of the axis reaching the outer rim, and thofe proceeding from the exterior extremity of the fame axis, reaching the inner and finaller rim. Between the rims and the croffing of the fpoles is woven a kind
of clufe bafiet-work, ferving as laddle-boards or floats, which mecting fuccefively the current of the Aream, obyy its inpulfe, and turn round the wheel. To both its rims are attached fimall tubes or fpouts of wood, with an inclination of about 25 degrees to the horizon, or to the axis of the vireel. The tubes are clofed at their outer extremity, and open at the oppofite end. By this pofition the tubes, which happen in the motion of the whet to be in the fream with their mouths or open ends uppermoft, fill with water. As that fegment of the wheel rifes, the mouths of the tubes attach to it, alter their relative inclination, but not fo much as to let their contents flow out till fuch fegment of the wheel becomes the top. The mouths of thofe tubes are then relatively depreffed, and pour the water into a wide trough placed on pofts, from whence it is conveyed as may be wanted among the canes.
"The only materials employed in the conltruction of this water-wheel, except the nave or axis, and the pofts on which it refts, are afforded by the bamboo. The rims, the fpokes, the laddle-boards or floats, and the tubes or fpouts, and even the cords, are made of entire lengths, or fingle joints, or large pieces, or thin flices, of the bamboo. Neither nails, nor pins, nor ferews, nor any kind of metal, enters into its conftruction. The parts are bound together firmly by cordage, alfo of flit bamboo. Thus, at a very triffing expence, is conftructed a machine which, without labour or attendance, will furnifh, from a confiderable depth, a refervoir with a conftant fupply of water adequate to every agricultural purpofe.
"Thefe wheels are from 20 to 40 feet in diameter, according to the height of the bank and confequent elevation to which the water is to be raifed. Such a wheel is capable of fuftaining with eafe 20 tubes or fpouts, of the length of four feet, and diameter two inches in the clear. The contents of fuch a tube would be equal to fix-tenths of a gallon, and a periphery of 20 tubes, twelve gallons. A tream of a moderate velocity would be fufficient to turn the wheel at the rate of four revolutions in one minute, by which would be lifted 48 grallons of water in that fhort period; in one hour, 28 80 gallons; and 69120 gallons, or upwards of 300 tous of water, in a day."

Sir George, who faw this wheel in motion, thinks it proferable in many refpects to any machine yet in ufe fur fimilar purpofes. He obferves, that, while it approaches near to the Perfian wheel, of which a deicription and figure is given in the article Hydrostatics, Encycl. it is more limple than that wheel in its contrivance, and much lefs expenfive. This is indeed true; but the fimpleft engine of the kind, and therefore the beft that has yet been invented, is perhaps that which is employed to throw water into the mofs of Blair Drummond in Perthfhire. See Moss, Encycl.

CHOPine, Choppine, or Chopeene, a high fhoe, or rather clog, worn 200 years ago by the Italians.

Tom Coryat, in his Crudities 1611. p. 262, calls them clapineys, and gives the following account of them: "There is one thing ufed of the Venetian women, and fome others dwelling in the cities and towns fubject to the figniory of Venice, that is not to be obferved, I thinke, amongtt any other women in Chriftendome, which is fo common in Venice, that no women whatfoever goeth without it, either in her houfe or abroad,

\section*{C H R}

Chowdry a thing made of wood and covered with leather of fundry \(\|\) colors, fome ruill white, fone redde, fome yellow. It is

Many of them are curioufly painted; fome alfo of them

1 have feen fairly gilt ; fu uncomely a thing, in my opinion, that it is pitty this foolifh cuftom is not cltane banithed and exterminated out of the citie. There are many of thefe clapineys of a great beight, even balf a yard bigh, which maketh many of their women that are very fhort feeme much taller than the talleft women we have in England. Alfo I have heard it obferved among them, that by how much the nobler a woman is, by fo much the higler are her chapineys. All their gentlewomen, and moft of their wives and widowes that are of any wealth, are affifted eyther by men or women when they walke abroad, to the end they may not fall. They are borne up mof commonly by the left arme, otherwife they might quickly take a fall."

CHOWDRY, in Bengal, the pofleflor of feveral Talooks. It is alfo ufed as fynonymous with Talookdar, anciently a collector. See Taloox in this Supplement.

CHRISOM was not, as is faid in the Encyclopædia, a face-cloth or piece of linen laid over the child's head when it was baptized; but it was a white vefture or garment, which, immediately after it was baptifed, the prieft put upon it, faying, "Take this white vefture as a token of the innocency, which, by God's grace in this holy facrament of baptifm, is given unto thee, and for a fign whereby thou art admonifhed, fo long as thou liveft, to give thyfelf to imnocence of living, that after this tranfitory life thou mayelt be partaker of life ever. lafting. Amen."

As foun as the prieft had pronounced thefe words, he anointed the infant upon the head, faying, "Almighty God, the Father of our Lord Jefus Chrif, who hath regenerated thee by water and the Holy Gholt, and hath given unto thee the remifion of all thy fins; he vouchfafe to anoint thee with the unction of his Holy Spirit, and bring thee to the inheritance of everlafting life. Amen."

It was from this anointing or chrifm that the white garment got the name of chrifom, which, after being worn a few days, was offered to the prielt to be kept in the church or veftry, in order to be produced as evidence againt the perfon whofe chrifom it was, fhould he afterwards deny the faith in which he had been baptized. Thefe ceremonies were retained, for fome time after the reformation, in the church of England, which ordered the mother of the child (if the child was then alive) to offer, when the was churched, the cbrifom and other accuftomed offerings. If the child died before its mother was churched, the chrifon was not given to the prieft, but emplayed as a hhroud, in which the body was buried; and hence it is that chrifoms are now enumerated, moft abfurdly indeed, in the weekly bills of mortality. We fay abfurdly; becaufe children who die unbaptized are called chrifoms, though the chrifom, when it was ufed, was never put on till baptifm. Sec Whilby on the Book of Common Prayer, \&e.

CHRONOLOGICAL characters are characters by which times are diflinguithed. Of thefe fome are natural or aftronomical ; others, artificial or lifforical. The natural characters are fuch as depend on the mo. tions of the Atars or luminaries, as erlipfes, follices, equi-
noxes, the different afpeds of the planets, \&ic. The ar- Chronoe tificial characters are thofe that have been invented and eftablifhed by men; as the folar cycle, the lunar cycle, \&c. Hiftorical chronological characters are thofe fupported by the tellimony of hitlorians, when they fix the dates of certain events to certain periods. Hamon's Matbematical Diaiomary.

CHRONOSCOPE, a word fometimes ufed to denote a pendulum or machine to meafure time.

CHUCKIAH, in Bengal, the jurifdiction of a Fogedar. See Fugedàr in this Supplement.

CHURCH is a word which has many different fignifications, all fufficiently explained in the Encyclopadia Britannica, where there is likewife given a concife biflory of the Chriftian chureh (fee History, Sect. ii.), defective, indeed, but perlaps not more fo than was to be expected from the limits of the work and the extent of the fubject.

Of the conflitution of the primitive and apoftolical charch, no man can have a correct notion who has not taken the trouble to confult the primitive and apoltolical writers ; for, as we have elfewhere oblerved, all mudern compilers of eccleflatical hiftory are more or lefs prejudiced in behalf of the particular church to which they belong, and wreft the language of the original writers fo as to make then bear witnefs to the antiquity of modes of failb and ecclefaglical polily, which are not perhaps a huindred years oll.

On this account we fhall not here attempt to corred what we really think the miflakes of him who compiled the fection of ecclefiaftical hifory in the Encyclopadia. Mofheim and Sir Peter King, whom he feems to have implicitly followed, were indeed great men; and it would be folly to deny that the Hiflory of the former, and the Inquiry of the latter into the Conflitution of the Primitive Church, are works of learning and ingenuity; but it is not perhaps too much to fay, that both a! thors wrote under the infuence of prejudice. Our read. eris will difcover how clofely either the one or the other has adhered to truth, by fudying the eccletiattical weriters of the firft four centuries. Such a Itudy will make them acquainted with the doctrmes, difeijline, and worfhip of the church before it was incorporated with the fate; and we know not that kind of knowled ore which is of inore importance to the divine, however much it may be defpifed in this age of affected fcience and real : ignorance.

Of the principal churches at prefent exifing, a pretty full account is given in the Encyclopædia, either under their different denominations, or under the titles of thofe tenets by which they are chielly difinguifned; fo that: from that Work alone a reader may form a tolerably accurate notion of the faith, wormip, conftitution, and difeipline of the church of Rome, the churches of England and Scotland, the Lutheran and Calvinillical churches on the continent of Europe, as well as of the various fects which have arifen in thefe kingdoms during the courfe of the laft and prefent centuries. There is, however, one church which boafts of a very high antiquity, and is certainly fpread over a larger extent of country than all the other churehes that we have neentioned, of which the account given in the Encyclupædia is exceedingly defective. Our readers will perceive that the church to which we allude is

\section*{C II U [\(\left.43^{\circ}\right] \quad\) C IH U}

Church. 1 The Greek church.

The Greck Chunca, which comprehends in its bafon (A) a confidewahle part of Grecer, the Grecian inles, Wallachia, Moldavia, Egypt, Abyffinia, Nubia, Lybia, Arabia, Mefopotania, Syria, Cilicia, and Paleftine. which are all under the juridiction of the patriarchs of Condlantinople, Alexandria, Antinch, and Jerufalem. If to thefe we add the whole of the Ruflian empire in Europe, great part of Siberia in Alia, Af tracan, Cafan, and Georgia-it will be evideut that the Greek church has a wider extent of territory than the Latin, with all the branches which have fprung from it ; and that it is with great impropriety that the chorch of Rome is called by her members the cutholic or univerfal church. That in thefe widely diftant countries the prefeifors of Chrittianty are agreed in every miante article of belief, it would be rafh to affert; but there is certainly fuch an agreement among them with refpect both to faith and to difcipline, that they mutually hold commonion with each other, and are in fact but one chuich.

As the Greek church has no public or eftablifhed articles, like thofe of the churches of England and Scutland, we can colled what is its doctrine only from its creeds, from the councils whofe decrees it receives (B),
oflces in ifs hturgies, and from the
+ Dallu-
suay's Con-
תantimople,

\section*{Modern,}

\section*{and King's} Rites and Ce

\section*{remonies, \(\mathfrak{\sigma}^{\circ}\)}

3 abhor the ufe of images, which they pretend to be one It admits of caufe of their feparation from the lee of Rome, they adpiaures, mit into their churches the pictures of faints to influct, bur not of graven inages. THER, and with the Father and the Son together is worfhipped and glorified :' And the correfponding article of the Athanatian cited is of comrie, "The Holy Ghoft is of the Farher, neither made, nor created, nor begotten, but procecding \(\dagger\)."

Though the bi hops and clergy of the Greek church they fay, the ignorant, and to anmate the devotion of others. This practice they conlider as by no means catechirms which it authorifes to be taught. "The doctrinc of the Trinity, and the articles of the Nicene and Athanalian creeds, are received by the Greeks in common with other Chriltions. In one particular, indeed, they differ from the other churches of Europe, whether Romilh or reformed. They believe that the Huly Spirit procceds from the father only, and not from the Father and the Son; and in defence of this opinion they appeal to ecclefaltical hittory, the acts of councils, the writinge of the fathers, ancient manufcripts, and efpecially to a copy of the creed of Conftantinople, engraven on two tables of lilver, and hung up in the church of St P'eter at Rome by order of Leo I11. Of the Nicene or Conflantimopolitan creed, therefore, as it is received by them, the eighth article iuns in thefe words, " I believe in the Holy Ghof, the Lord and Giver of life, who proceedeth from the FA.
contrary to the ferond commandment of the decalogue, Church. which, according to them, prohibits only the worthipping of fuch idols as the Gentiles believed to be gods; whereas their picturs, being ufed merely as remembrancers of Chrift and the faints, have written on each of them the name of the perfon whom it is meant to reprefent. Dr King affures us that the more learned of the Ruffian clergy would willingly allow no reprefentation whatever of God the Father ; and that, during the reign of Peter the Great, the fynod not only ceulurcd the ufe of fuch pictures in charches, but petitioned the emperor that they might be everywhere taken down. Peter, however, though he fully concurred in opinion with the fyood, thought this a meafore for which the minds of his finbjects were not ripe, and dreated, that if carried into execution it would occalion a general infurrection. Such pictures, therefore, though not more impious than abfurd, are ftill in ufe; and in many churches, as well ancient as modern, the ligure of Daniei's Ancient of Duys, together with that of Chri/t and a dore, are painted in one group to lignify the Huly Trinity. Nay, when our author was in St Peterfburgs nut thirty years ago, there was in the church of bt Ni cholas the picture of an old man holding a globe, and furrounded with angels, on which God the Father was infcribed; and we have not heard that the picture has been fince taken down.

In the Greek as well as in the Roman church, the Irvocation invocation of faints is practifed, but they are not invo- of faiuts ked in either as deities, but merely as interceffors with the Soprene God, "it being more modeft (fay the Greeks), as well as more available, to apply to them to intercede with God, than to addrefs ourlelves immediately to the Almighty." Plaufible as this reafoning may at firft fight appear, it afcribes to the faints the divine attribute of ubiquity, and is likewife in direst contradiction to the doctrine of St Paul, who hath taught us, that as " there is one God, fo there is but one mediator between God and man, the man Chritt Jelus."

The Greek church, at the celebration of the Lord's Piayers for Supper, commemorates the faithful departed, and even the dead. prays for the remiffion of their lins; but he allows not of purgatory, nor pretends to determine dogmaticaily concerning the tate or condition of departed fouls. She mult, however, believe that no final judgment is paffed upon the great hody of mankind (c) till the confummation of all things, otherwile fuch prayers could not be offered without abfurdity; and in this part of her duetrine the is certainly countenanced by all the writers of the primitive church, if not by fome paffages of the facred ceriptures *. The practice of praying for \({ }^{*}\) Mats. the dead is loudly condemued in every Protettant coun-xxv. 19, 20 , try, and yet there is no Chritian who does nut in effect \(-31-34\).
(A) King's Rites and Ceremonies of the Greek Church-Bruce's Travels to the Source of the Nilc-and Lobo's Voyase to Aby/finia.
(B) in the Greck church feven general councils are received, and nine provincial ones. The feven general councils are, 1. The council of Nice, held in the year 325 , under Conflantime. 2. The firt council of Conflantimople, leld A. D. 381, under Theodofus the Great. 3. 'The council of Ephefus, A. D. 43. i, in the reign of Theodulins Minor. 4. The council of Calcedon, A. D. 451, in the reign of Marcian. 5. The fecond council of Conitantinople, A. D. 553, in the reign of Juftinian. 6. The third council of Conftantinople in Trull, A. D. 680 , in the reign of Conttantine Pagonatus. .7. The fecond council of Nice, A. D. 787.
(c) We fay the great body of mankind, becaufe the doubtlefs believes that Enoch, Elias, and thofe faints who sofe with our Saviour, have been already judged, and now enjoy their reward in heaven.

\section*{\(\mathrm{CHOU}[43 \mathrm{I}] \quad \mathrm{CH} \mathrm{H}\)}
difutions, which were once prontable, and inter th fo fatal to the interelts of the court of Rome, are utterly difallowed in the Greek chareh, which likewife lays no claim to the character of infallibility. She is indeed, like foine other churehes, very inconfiftent on this laft topic; for whilf fhe pretends not to an abfolute exemption from error, her clergy feem to confider their own particular mode of worthip as that which alone is acceptable to Gool.

Predeftination is a dogma of the Greek church, and a very prevailing opinion amongit the people of Ruffia; " and I mult do the jultice (fays Dr King) to thofe who have written upon it, efpecially the latett authors of that country, to fay that they have trated it, as depending on the attribute of prefcience in the divine nature, with a much better kind of logic than that with which fuch points are gencrally difcuffed." As our author has not given us the reafoning of the Ruffian doctors on this difficult fubject, we cannot lazard any opinion of our own on the foundnefs of their logic; but from the ftate of fcience in that vaft empire, as it was reprefented to us by an abler judge than he, we doubt of its being entitled to the praife which he beHows on it. (See RUss1A, n \(n^{\circ} 104\). Encych.)

In the Greek chureh there are feven facranents; or, as they are there termed, myfleries, viz. biptifm; the chrifm, or taptifmal unction; the eucbariff; confeffion; ordination; marriage; and the myttery of the boly oil, or archelaion. By the Greeks a mytery is detined to be "a ceremony or aEt appointed by God, in which God giveth or lignifieth his grace ; and of the feventh which they celebrate, four are to be received by all Chriftians, viz. baptifin, the baptifmal uncion, the cucbarijl, and confeffion. Of thefe, taptifm and the eucharift are deemed the cliief; and of the other three, none, nut even the euchelaion, is confidered as obligatory upon all.

With refpect to baptifn, we know not that they hold any peculiar opinions. They confider it indeed as fo abfolutely neceffary to falvation, that in cafes of extremity, when a prieft or deacon cannot be had, it may be adnininftered by a midwife or any other perfon, and is not to be repeated on any occafion whatever. In this opinion, as well as in the practice fomded on it, they are in perfect harmony with the church of Rome, which, as every perfon knows, has for many ages allowed the validity of lay-baptifm in cafes of neceefity. The Portuguefe Jefuits, who in the lat century vifited Abyffinia in the capacity of miffionaries, have maintained that, onec every year, all grown people are in that country baptifed: but Mr Bruce lias flewn, by the moft incontrovertible evidence, that this was a mere fiction, invented to throw odium upon what the church of Rome calls the eaftern chifm, and abhors perhaps more than paganifm it felt.

The daily fervice of the Greek church is fo long and fo complicated, that it is impofible for us to give an
adequade acenunt of it withont fwelling this article far beyord its che froportion. Of this the reader will be convinced, when he is informed that the foveral bouks containing the church forvice for all the days in the intricate year, amonat to more than twenty solames in folio, belides one large volume ealled the mogulation, which contains the directions how the rut are to he ufed.

The four gofpels make one volume by themfelves; and whenever the gofpel is read in any ferice, the deacon exchams; "Wifuom, 几and up. Let ushear the holy gofpel." The prielt then faith, "The leffoni from the gofpel according to st Mathew, it Mark, \&e:" The deacon fays again, "Let us fland." The choir, at the begiminy and end of the rofpel, always fays, "Glory be to thice, O L.ard, glory be to thee." From the old teftament and the epilltes extructs only are ufed in the fervice; and when they are to be read, the deacon calts out, "Attend."

The fervice of this church as it now ftanos, and was at firft drawn up in writing, is calculated for the ufe of monafteries; and when it was afterwatds applied to parochial chuches, many of the oflices or forms, which were eompoled for different liours of che day and night, were uted as one fervice, whohout the ghightelt aleration being made to avoid repetitions. Sonething of this kind has taken Ilace in the church of England, where the matins, the litany, and the communion, which were formerly three ciftinct fervices, read at dif. ferent times of the day, are now run into che fervice; which by thofe not accuftamed to it is therefore deemed long, as well as deformed by necdlefs repetitions,

The fervice of every day, whether it has a vigil or Begins in not, begins in the ercming of what we would call the the even. preceding day, as anong the Jews; and for the fame ing, reafon, becaufe it is faid in the Mufac account of the creation, that "the eve.aing and the morning were the firft day." The fiveral foisices, according to the criginal or monkilh inftitution, are, 1. The wefers, which ufed to be celebrated à little before fun-fit ; 2. The af-ter-vefpers, anfwering to the complatoriam of the Latin church, which ufed to be eelebrated after the monks liad fupped, and before they went to led; 3. The mesfonjecticon, or midnight fervice; 4. The matins at break of day, anfwering to the luath's of the Romith church; 5. The forfl bour of piayer, or primu, at fua-ife; 6. The third hour, or teria, at the third hour of the day; 7. The fixtb bour, or fexta, at noon; \(s\). The nintb bour, or noua, in the afternoon at the ninth hour of the day. Thefe are called the canonical hours; but it is to be cblerved, that the after-zijpors, were not added till a late period, before which the reafon afligned for the number of fervices being feven, was, that David faith, "Seven times a-day will I praife thec." When all the pfalms and hymns were fung, thele daily fervices could not poffibly have been performed in lefs than twelve or fourteen hours. In the church of Rullia, and probably in other branches of the Greek church, there are at prefent but three fervices in the day: the ninth bour, the cefpers, and the after-vefpers making one; the mefonyenicon, the matins, and prima, another; and the third and fixib bour, with the communion, the latt. In all the fervices, except the communion, prayers and praifes are offered to fome faint ; and to the Virgin Mary, almolt as often as to God; and in fome of the fervices, after cvery mort prayer uttered by the deacon or the prieft, the

Church. choir channts "Lord have mercy upon us," thirty, forty, or fifey times, fuceeflively.

Though the number of fervices is the fame every day, the fervices themfelves are conftantly varying in fome particular or other, as there is not a day which, in the Greek clurch, is not cither a fatt or a fettival. Befides the fints, whofe feltivals are marked in the ealendar, and who are fo very numerous that there are more than one for every day in the year, there are other faints and fettivals, to which fome portion of the fervice for every day of the week is appropriated. Thus, Sunday is dedi:ated to the refurrection: Monday, to the angels; Tuefday, to St John Baptift; Wedneduay, to the Virgin and the crofs; Thurday, to the apoftles; Friday, to the pafion of Chint ; and Saturday, to the fuints and martyrs. For thefe days there are particular hymns and fervices, in two volumes folio, to which there is a fupplement containing fervices for the faints and feftivals, as they occur in the calendar throughout the year. Thefe diferent fervices are mixed together, and adjuf. ed hy the directions contaned in the book of regulation; and it is the difliculty of this adjuftment which makes the public warfip of the Greek chureh fo very intricate, that, as was faid of the fervice of the Englih church before the Reformation, "there is more bufinefs to find out what Thould be read, than to read it when found out."

We have obferved, that the Grecks have no peculiar opinions refpecting the nature of baptifm; but the rites and ceremonies with which that ordinance is adminifrered will appear to our unlearned readers very extraordinary. On the day that a woman is delivered, the prieft goes to the houfe, and wfes a form of prayer for her and for the child. On the eighth day the child flould be regularly carried to the ehurch, where the prieft having ligned it with the fign of the crofs on the forehead, on the mouth, and on the breaft, offers up for it a prayer, in which he firt gives it a name, commonly the name of the faint for that day in the calendar; he then takes it from the midwife, and llanding before the picture of the blefled Virgin, he makes the fign of the crofs with the infant, uttering a kind of hymn in honour of the Virgin and of Simeon, who held in his bofom the Saviour of our fouls. He then difmifies the company with an exhortation not to delay the baptifing of the infant, Should it appear in danger of death before the regular time for its baptifim.

On the forticth day after her delivery, the mother fhould attend the chureh to be purified, and earry the child again to be prefented, the perfon who is to be fponfor being prefent. Upon their arrival at the church door, the prieft utters fome pious exclamations; and then, the mother holding the child in her arms and bowing down her head, he makes the fign of the crofs upon her and the child, and laying his hand upon its head, he prays that the woman may be eleanfed from every fin and from every defilement, and that the cliild roay be fanctified and endued with underftanding, with wifdom, and with gentlenefs of manners. He then figns it again, and again prays for it, for its parents, and for its fponfur; after which, if it has been privately baptifed, he takes it in his arms, and makes with it the
fign of the crofs before the door of the church, faying, "N. N. the lervant of God, cuters into the chureh, in the name of the Father, and of the Son, and of the Holy Ghof, now and for ever, even unto ages of ages. Amen." Ile then carries the child into the eluarch, faying, "tee thati go into thine houfe, and thall wormip toward thy holy semple ;" and adraneing into the middie of the church, he fays, "In the midit of thy chureh Shall he praife thee." Illen, if the child be a buy, he carries hin within the rails of the altar ; but if a girl, only to the door, and fays "Nunc dimittis (D);" after which he delivers it to the fpoulor, who makes three revernces, and retires.

This is called the prefentation of the child in the temple, and can orly be performed after it has been baptized. In the detail we have given, we have fuppofed that it was baptized privately before the purification of the mother, which is now indeed commonly the cafe. Such baptifn, hewever, is not regular, being allowed only in cafes of neceffity; and when it has not taken place, the mother and child are difniffed as foon as the is purified, and return at fonse other time, not fixed, in order that the child may be publicly baptized.

Previous to baptifm, the child, though not two months old, mult be folemnly initiated into the chureb as a entechumen (See Catechumen, Encycl.) By thofe whofe religion is a reafonable fervice, fuch initiation of an infant will be confidered as a very idle ceremony; and the rites with which it is performed are not well calculated to give it even a fictitious importance. At the door of the church the prieft unties the girdle of the infant; takes off all his cluthes but one loofe garment ; turns him towards the eall, with hils head uneovered, his feet naked, and his hands held down; blows thrice in his face ; figns him thrice with the fign of the crofs on the forehead and on the breaf, and lays his land upon his head, praying that his "ancient error may be put away from him ; that his heart may be filled with faith, hope, and charity; and that he may walk in the ways of God's commandments." The prieft then four times exorcifes the infant, commanding Satan, in the firlt exorcifm, to " tremble, depart, and flee from Chrif's creature, nor dare to return again, nor dare to lurk concealcd within him, or to meet hinn, or to meditate againft him, either in the evening or the morning, at midaight or at noon-day." In the lat exorcifm he blows thrice upon the child's mouth, upou his forehead, and upon his breatt; faying, each time, "Drive away from him every evil and unclean fpinit that lurks in him, and hath made itfelf a neft in his heart." The child is now become a catechumen, and, being turned to the weft, uncovered, withont thoes, and his hands lifted up, the prieft repeatedly afks him if he renounces and bas renounced the Devil and all his works ? and receiving from the fponfor the proper aufwer, he fays, "Blow and fpit upon him ;" and having blown and fpit upon the eatechumen, he turns him to the eaft, and holding down his hands, afks him repeatedly if he be joined to Chrift, and if he believes in him? The catechumen or his fonfor replies to each queftion, that he is, and has been, joined to Chrift ; and as a proof of
(ธ) We quote the words of Dr King. Is it polfible that in the Greek churcb Latin hymen are ufed, or that Greek hymus have Latin defignations?

\section*{C 11 U \([.433] \quad\) C. HI U}

Church. his faith he repeats, from beginning to end, the Nicene creed. After a repetition of the formerly repeated queltions and anfwers, the prieft prays that the catechumen may be called to God's holy fanctification, and receive the grace of God's holy baptifin.

Baptifin may be celebrated immediately after the candidate has been made a catechumen, or on any ful)fequent day at no great diflance. 'In the firt part of the form there is not much that is fingular, or with which every fcholar is not acquainted. After praying that the water may be fanctified, in terms differing little from thofe which are ufed in the moft refpectable Proteftant churches, the prieft dips his fingers in it, figns it thrice with the fign of the crols; and then blowing upon it, fays three times, "Let every adverfe power he confounded under the fign of the crofs." He then folemnly exorcifes it of the dxmon of darknefs and all evil fpirits; and prays, that " the perfon to be baptifed therein may put off the old man, which is corrupt after the luit of fraul, and may put on the new man after the image of Hin that made him. After this, he blows thrice into a veffel of oil of olives held by the deacon, figns it thrice with the fign of the crofs; and prays fervently, that it may "becume to thofe who are anointed with faith, and are partakers thereof, the unction of incorruption, the armour of righteoufnefs, the reuewing of foul and body, for turning afide all machinations of the devil, and for deliverance from all evil." He then fings allelujah thrice with the people, and pours the oil on the top of the water; and making three croffes with it, fays aloud, "Bleffed be God, who enlighteneth and fanctifieth every man that cometh into the world, now and forever, even unto ages of ages." The perfon to be baptized is then prefented; and the prieft, taking fome of the oil with two fingers, and making the lign of the crofs on his forchead, on his breaft, and betwixt his fhoulders, fays, " N the fervant of God is anointed with the oil of gladnefs, in the name of the Father, and of the Son, and of the Holy Ghoot, now and forever, even unto ages of ages. Amen." He then figns him on the breatt and the middle of the back, faying, "For the healing of his foul and body ;" then on the ears, faying, "For hearing the faith ;" then on the paims of the hands, faying, "Thy hands have made me and fafhioned me;" then on the feet, "That he may walk in the way of thy commandments." After the whole body is thus anointed, the prieft baptizes him, ufing the trine immerfion ; which is unqueftionably the moft primitive manner. He takes the child in his arms, and holding him upright with his face towards the eatt, he fays, "N the fervant of God is baptized (dipping bim the firft time), in the name of the Father, A. men; in the name of the Son (dipping binz again), Amen; and of the Holy Ghoft (dipping bim the third time), Amen, now and for ever, even unto ages of ages. Amen." After the baptifm, the prieft wipes his hands, and with the people fings thrice, from beginning to Suppl. Vol. I. Part II.
end, the 32 d Pfalm; he then puts upon the baptized perfon a white garronent ; faying, " \(N\) the fervant of God is clothed with the garment of righteoufnefs, in the name of the Father, and of the Son, and of the Holy, Gholl, now and for ever, even unto ages of ages (E)." He then prays that he may be delivered frum the evil one, and all his infidious frares; that he may be confirmed in the true faich; and that he may preferve his fonl in purity and righteoufnefs : and procecds immediately to anoint him with the Foly Chrifm.

This chrifm is a very different thing from the oil The bapo with which he was anointed previous to baptifm, and tifmal which was ufed in the confecration of the baptifmal water. It can be prepared only by a bifhop, and ouly on one day in the year, viz. Thurfday in Paffion-wtek; and as the anointing with \({ }_{1}\) it is fubflituted in place of the apoftolical rite of laying on hands, called confirmation in the weltern churches, great quantities of it are of courfe prepared at once, and dittributed through the different churches of each diocefe. The chrifm confilts of the following ingredients, which in different proportions are all boiled together, and afterwards foicnamy confecrated by the bifhop: Fine oil (we fuppofe of olives), white wine, fyyrax calamita (F), palm.dew, rofe-flowers, black palm.gum, Bafil-gum, marjorant, thick and thin oil of nutmegs in veiy different quantities, oil of cinnamon, oil of cloves, lignum Rhodii, oil of oranges, oil of marjoram, oil of lavendar, oil of rofemary, effence of rofemary, cedar, black balfam of Pcru, fandarac, whiteft mattic, and Venice turpentine. With this holy misture the baptized perfon is anointed, the prieft making with it the lign of the clufs on his forehead, on his eyes, his nultrils, his mouth, bo hears, bis brealt, his hands, and his feet; fay ing at each part, "The feal of the gift of the Holy Ghot. Amen." Then with the fponfor and the child he gues thrice round the font, turning from the right to the left; the choir, in the mean time, finging, "As many of you as are baptized unto Chrit have put on Chritt, allelujah."

Seven days after this ceremony is performed, the child is again brought to the church; when the prieit, after praying for him, unties his girdle and linen clothes, wafhes him with clean water, and, fprinkling hin, fays, "Thuu hafe been juftified, enlightened, ianculfied in the name of our Lord Jefus Chrift, and with the Spirit of our God." Then taking a new fponge moitlened with water, he wafhes his face, breaft, \&c.; faying, " Thou haft been baptized, enlightened, anointed, fanctified, wafhed, in the name of the Father, and of the Son, and of the Holy Ghofl, now and for ever, even unto ages of ages. Amien."

The laft ceremony appended to baptifm is that of The ton the tonfure, or Chaving the head of the child in the fure. form of the crofs. At what time this rite crept into the church it would not be eafy to difcover. Some think it received its origin from the religious ceremonies of the Heathen, who certainly rounded the corners 3 I
(\(\varepsilon\)) The reader will perceive, that many of thefe rites and ceremonies are common to the Greek church and the church of Rome in the celebration of the facrament of baptifm.
(F) We quote the words of Dr King, taking it for granted that our readers will pardon our not giving ourfelves much trouble to difcover, on the prefent uccafion, what particular fpecies or variety of the ftorax he means by this defignation. See Styrax, Encycl.

\section*{CH [434] C H U}

Church. of their heads, and marred their beards, at a very early period, in honour of their idols (See Theology, n 155. Encgel,) ; and fome pious, but fowlifh Chriftians, efteemed it highly commendable to transfer to the true God that worfhip, in a different form, which had been rendered by their anceftors to falfe deities. Others will have the tonfure to typify the dedication of the perfon to the fervice of God; the cutting off of the hair being always confidered as a mark of fervitude. Be thefe conjectures as they may, the prieft, after the child is baptized, offers up for him feveral prayers, all alluding to the rite to be performed; and then cuts his hair crofswife, faying, " N the fervant of God is fhorn, in the name of the Father, and of the Son, and of the Holy Ghoft, now and for ever, even unto ages of ages. Amen."

We lave given a full account of the manner in which the facrament of baptifm is celebrated among the Greeks, that the reader may have fome notion of the childigh fuperttition of that church, with which certain zealons Proteftants in England were very defrous, at the beginning of this century, to form a union. There If is no uccafion for dwelling fo long upon their other of. The Grecks fices. For the celebration of the Lord's Supper they have thrce have three liturgies that are occanonally ufed, viz. that commu. nion-offlces.
clare his generation ?", He then thrufts the Spear o. bloquely into the loaf, lifting it up, and faying, "For his life was taken away from the earth." After this he lays down the loaf, and cutting it crofswife, fays, " The Lamb of God, which taketh away the fins of the world, is ीain for the life and falvation of the work.:" All this, and more to the fame purpofe, is unquefionably modern; but we have no douht but that the prieft ufes the words of Chryfoltom himfelf, when, in the confecration of the elements, he fays, "We offer unto thee this reafonable, this unbloody facrifice and we the confe. implore, we pray thee, we humbly befeech thee, to fend the eledown the Holy Spirit upon us, and thofe oblations \({ }^{\text {nients. }}\) prefented unto thee; and make this bread the precious body of thy Chrift; and that which is in this cup the precions blood of thy Chrift, changing them by thy Holy Spirit."

Dr King obferves, that this invocation of the Holy Spirit upon the clements, which in the eaftern church is always ufed after the words of Chrit, "This is my body, this is my bloud, \&ce" is inconfiftent with the Popifh doctrine of tranfubltantiation: and he is undoubtedly right; for the church of Rome teaches, that the change is made about the middle of the mafs, when the prieft, taking into his hand firf the bread and then the wine, pronounces over each feparately the facred words of confecration; i.e. the words of Chrift. " It is the office of the prieft, in this and in all other facraneents (fays a dignitary of that church), only to perform the outward fenfible part ; but the inward invifible effect is the work of the great God, who accordingly changes the fubftance of the bread and wine into the body and blood of Chrift the very inftant that the facred words of confecration are pronounced by the prieft over them." But if this be fo, it wonld be impious, and we believe that by the church of Rome it is deemed impious, to pray afterwards, that God would fend down his Holy Spirit to change into the hody and blood of Chrift elements which he had already changed into that body and blood, in confequence of the prieft's pronouncing over them the all-powerful words of Chrift. Yet is it certain, that in the prefent Greek church tranfubftantiation is as much an article of faith as in the church of Rome; for now every bifhop at his confecration declares, in the moft folemn manner, that he believes and "underftands that the tranfubftantiation of Tranfubthe body and blood of Chrift, in the holy fupper, is ef-fantiation fected by the influence and operation of the Holy Ghoft, when the bithop or prieft invokes God the Father in thele words, and make this bread the precious body of thy Chrif, \&c." This is indeed a different account from that of the Latin church of the time at which this portentous change is wrought; but fuch difference is a matter of very little importance (c). If the change itfelf be admitted, the confequence mult be the fame, whether it be fuppofed to take place when
(c) Mr Bruce feems to doubt whether tranfubftantiation be the doctrine of the Abyffinian church, and relates a converfation which he had on the fubject with a prieft; who folemnly affirmed, that he never believed in the converfion of the fubftance of the bread and wine into the fubfance of our Saviour's body and blood. It muft, be remembered, however, that the prieft had at the time a powerful reafon for wifhing that doctrine not to be true. The Jefuits uniformly attelt, that the Abyffinians believe in the real prefence; though it muft not be forgotten that Ludolf was of a different opinion, and that no man had ftudied the language of Abyfinia more fuccefofully than he.

Chuch. the prieft pronounces the words of infitution, or after \(\xrightarrow[\sim]{\text { he has invoked the defcent of the Holy Ghott ; in ei- }}\) ther cafe it leads to idolatry. It may be proper to mention, that in the Greek church it is deemed effential to the validity of this holy facrancut, that a little warm water be mixed with the wine; that the napkin, which is fpread over the holy table, and anfwers to the cor-

59
The laity commuri. cate kinds.

20 parale of the church of Rome, be confecrated by a bithop, and that it have fome fmall particles of the re. liques of a martyr mixed in the web, otherwife the cucharift cannot be adminittered. In this church children may receive the communion immediately after baptifm; and the lay communicants, of whatever age, rcceive both the elements together, the bread being fopped in the cup: The clergy receive them feparately.

We have obferved, that one of the feven nyfleries or facraments of the Greek church is confeflon; but among the Greeks it is a much more rational and edifying fervice than in the church of Rome. In the Greek church the end of corifeffion is the amendment of the penitent; in the church of Rome it is to magnify the glory of the prieft. In the former clurch, the confeffors pretend only to abate or remit the penance, declaring the pardon from God alone; in the latter, they take upon them to forgive the fin itfelf. The Greek church prefcribes confeffion four times in the year to all her members; but the laity, for the mott part, confefs only once a year previous to receiving the holy communion; and to this they are in Ruffia obliged by the

The ceremonies with which matrimony is performed in the Greek church confift of three diftinct offices, formerly celebrated at different times, after certain intervals, which now make but one fervice. Firt, there was a folemn fervice, when the parties betrothed themfelves to each other, by giving and receiving rings or other prefents, as pledges of their mutual fidelity and attachment. The ancient ufage was for the man to receive a gold ring and the woman a filver one, which is ftill alluded to in the rubric, thongh, in the prefent practice, the rings are generally both of gold. At this time the dowry was paid, and certain obligations were entered into to forfeit fums in proportion to it, if either of the parties thould refufe to ratify the engagement. At this ceremony, called the \(\mu\) unvigov, or recording of the pledges before witnefles, the prieft gives lighted tapers to the parties to be contracted, making the lign of the crofs on the forehead of each with the end of the taper befure he deliver \(j\).

The fecond ceremony, which is properly the mar-
riage, is called the office of matrinenia! coranation, fom a fingular circumbtance in it, that of crowning the parties. This is done in token of the triumph of continence; and therefore it has, in fome places, been omitted at fecond marriages, Formerly thefe crowns were garlands made of flowers or fhrubs; but mow there are kept, in moft churches, crowns of hilver or fome other metal for the celebration of matrimony. At the putting of them on, the prief fays, " N , the lervant of God, is crowned for the handmaid of God: and " N , handmaid of God, is crowned for the fervant of God, in the name of the Father, and of the Son, and of the Holy Ghoft;" adding thrice, "O Lord our God, crown them with glory and honomr:"

The third ceremony is that of diffolving the crowns on the eighth day; after which the bride is conducted to the bridegroom's houfe, immediately to enter on the cares of his family.

With refpect to difcipline and government, the Greek Regular church bears a ftriking refemblance to that of Rome, and fecular In buth there is the fame divifion of the clergy intocleyg. regular and fecular: the fame fpiritual jurifdiction of bifhops and their officials, and the fame diftinction of ranks and offices. It fome points the difciplinc of the Greeks differs from that of the Romans. All orders of fecular clergy in the Greck church inferior to bifhops are permitted to marry ; but celibacy, and the aftumption of the monaftic habits, are indifpenfably requifite in thofe who are candidates for the initre. The regular clergy, fays Mr Dallaway, are generally men of a certain education; whereas the feculars are of the meaner fort, and illiterate in the extreme.

In the Greek church there arc five orders of clergy Five orders promoted by the impofition of hands; but it does not of clergy. appear that the ordination of the reader, or of the fubdeacon, is confidered as a facrament. The forms ufed in the ordination of deacons, prebyters, and bifhops, are ferious and lignificant (H), bearing in themfelves evidence of great antiquity. The candidate for the deaconate or priefthood kneels before the holy table, and the bifhop, laying his right hand on his head, faith, 24 "The divine grace, which healeth our infirmities, and Form of fupplieth our defects, promoteth N , the moft pions fub- ordination. deacon, to the order of deacon ;" or, in the cafe of the priefthood, "The moft pinus deacon to the order of a prefbyter; let us pray for him, that the Grace of the Holy Spirit may come upon him." It does not appear, from Dr King's account of thefe offices, that in the Greek church the attending prebyters lay on their hands together with the hifhop at the ordination of a

312
prefbyter,
(н) We muft except thofe ufed in the church of Abyflinia, which, according to Mr Broce, are fhamefully indecent. "A number of men and children prefent themfelves at a diftance, and there Aand, from liumility, not daring to approach the abuna or bihop. He then afks who thefe are? and they tell him that they want to be deacons. On this, with a fmall iron crofs in his hand, after making two or three figns, he blows with his munth zwice or thrice upon them; faying, Let chem be deacons. I faw once (Gays our author) all the army of Begensder made deacons, juft returned from thedding the blood of 10,000 men. With thofe were mingled about 1000 women, who confequently having part of the fame blaft and brandifiment of the crofs, werc as grood deacuns as the reft. In the ordination of priefts a little more ceremony is ufed; for they muft be able to read a chapter of St Mark, which they do in a language of which the abuna underftands not one word. They then give hins a brick of falt, to the value perhaps of fixpence, for their ordination; which, on account of this preieut, the Jefuits maintained to be Simoniacal." There is but one bimop or abuna in Abyfluian, and he is always a foreigner, fubordinate in his jurifdiction to the patriarch of Alexandria.

\section*{C H U}

Church.
25
Solenun confecration of bifhops.
prefbyter, as is practifed in the church of England; but feveral bifhops lay on their hands together with the archbifhop at the confecration of a bifhop.

This is indeed a very folemn ceremony. The candidate for the epifcopate, who is always an archimandrite or bieromonachus, i. e. an abbot or chief monk in fome monaftery, being named to the vacant fee, and the election being confirmed, repairs, at the time appointed, to the church where the confecration is to be performed. Being arrived, he is introduced by the proto-pope (1) and proto-deacon to the archbifhop and bifhops, who are arranged in proper order on a temporary theatre or platform erected in the church for the occalion. He there gives an account of his faith; declàres folemnly that he has neither given nor promifed money, or any bribe-worthy fervice, for his dignity ; and promifes to adhere fteadily to the traditions and canons of the eaftern church, to vifit his diocefe regularly, and to oprofe ftrenuoully all innovations and herefies, particularly the errors of the Latin church. T'his being done, the archbifhop fays, "The grace of the Holy Spirit, through my humility, exalts thee N. archimandrite or hieromonachus, beloved of God, to be bifhop of the cities N. N. which God preferve." With much ceremony the bifhop elect is then conducted from the theatre, within the rails of the holy altar, where he kneels down with the other bifhops, who hold open over his head the holy grofpel with the letters inverted, the archbifhop faying aloud, "The divine grace, which always healeth our infirmities, and fupplieth our defects, by my hand conducteth thee N . archimandrite or hieromonachus, beloved of God, bifhop elect of the cities of N. N. which God preferve!-Let us pray therefore for him, that the Grace of the moft Holy Spirit may come upon him." Then the prielts fay thrice, "Lord have mercy upon us;" and while the bifhops continue to hold the gofpel, the archbifhop figns the newly confecrated bifhop thrice with the fign of the crofs, faying, " In the name of the Father, and of the Sun, and of the Holy Ghoft, now and for ever, even unto ages of ages. Amen." Then all the bifhops putting their right hands on his head, the archbilhop prays that he may be confirmed in the office of which they lave judged him worthy, that his priethood may be rendered irreproachable, and that he himfelf may be made holy and worthy to be heard of God. After this, one of the affifting bifhops reads a fhort litany in a luw voice, to be heard only by thofe within the altar, and the other bifhops make the refponfes. At the end of the litany the archbifhop, laying his hand again upon the head of the newly confecrated bifhop, prays in very decent and devout terms, that Chrilt will render him an imitator of himfelf, the true Shepherd; that he will make him a leader of the blind, a light to thofe who walk in darknefs, and a teacher of infants; that he may thine in the world, and receive at laft the great reward prepared for thofe who contend boldly for the preaching of the gofpel. After this the pattoral-Itaff is delivered to the new bifhop, with a very proper and lolemn exhortation from the archbihop, to feed the flock of Chrift committed to his care.

The laff facrament of the Greek church is that of the holy oil or cuchelaion, which is not confined to perfons periculofe agrotantibus, et mortis periculo imminente, like the extreme unction of the Romilh church ; but is adminitered, if required, to devout perfons upon the flighteft malady. Though this ordinance is derived from St James, chap. v. ver. 14,15 . it is by no means deemed neceflary to falvation, or obligatory upon all Chriftians; and it is well that it is not, for feven priefts are required to adminifter it regularly, and it cannot be adminiftered at all by lefs than three. The oil is confecrated with much folemnity; after which each prielt, in his turn, takes a twig, and dipping it in the oil now made holy, anoints the fick perfon crofs-wife, on the forehead, on the noftrils, on the paps, the mouth, the breait, and both fides of the hands, praying that he may be delivered from the bodily infirmity under which he labours, and raifed up by the grace of Jefus Chrilt.

In the Greek, as well as in the Latin church, there is a fervice, called the divine lavipedium, obferved on the Thurfday of paffion-week, in imitation of our Saviour's humility. At Conftantinople Jefus Chrift is, on this occafion, perfonified by the Patriarch, and everywhere elfe by the bilhop of the diocefe, and the twelve apoftes by twelve regular priefts, when a ludicrous conteft arifes who fhall reprefent Judas; for the name attaches for life. This office is performed at the welt end of the church, where an arm-chair is fet at the bottom, facing the eaft, for the bihop; and on each fide are placed twelve chairs for the twelve priefts, who are to reprefent the twelve apoofles. The prayers and hymns ufed on this occafion are exceedingly beautiful and appropriate; and when the firt gofpel, relating our Saviour's waithing of his difciples feet, begins to be read, the bifhop or patriarch rifes up, and takes off his pontifical veftments by himfelf without affiltance. He then girds limfelf with a towel, and taking a bafon of water in his hand, kneels down and wafles one foot of each prieft, beginning with the youngelt; and after having wafhed it he kiffes it. All this is done as the feveral. circumftances are read; and when he comes to the lalt prieft, who is fuppofed to reprefent Peter, that prieft rifeth up and faith, "Lord, doft thou wafh my feet ?" \&c. The bifhop anfwers in the words of our Saviour ; and having finifled the whole, puts on his garments again, and fits down; and as the fecond gofpel is read (\(\kappa\)), repeats the words of our Saviour, "Know ye what I have done unto you?" \&c. The office is certainly ancient, and, if decently performed, muft be affecting.
Under the word Patriarchs, Encycl. we have gi. ven a fufficient account of the rife of the patriarchates, as well as of the various degrees of rank and authority claimed by the bilhops of feveral other fees in the Greek chuch. It may be proper to add here, that after the taking of Conftantinople by Mohammed II. he continued to the patriarch of that city the fame prefent which the Greek emperors had been accuftomed to make-a paftoral flaff, a white horfe, and four hundred ducats in gold. To the Greek church and the maintenance of its clergy he left indeed ample revenues, which they have gradually facrificed to their inconftan-

\section*{C IT J}

Church, Chufan.

\section*{437 C I N}
governing at Canton, who draw large fums from the accumulation of foreign trade in that port. l'erhaps, too, the exceffive jealoufy of the Chinefe government might fancy danger in the unreftrained comınunication between foreigners and the fubjects of that empire in feveral of its ports at the fame time.

I'ing-hai, the chief town of Chufan, refembles Venice, but on a fmaller feale. It is furrounded, as well as interfected, by canals, over which are thrown feep bridges, afcended by fteps like the Rialto. The ftreets are narrow, and paved with fquare flat fones; but the houfes, unlike the Venetian buildings, are low and muft. ly of one ftory. The ornaments of thefe buildings are confined chicfly to the roofs, on the ridges of which are uncouth figures of animals in clay, ftone, or iron. The town is full of thops, containing chiefly articles of clothing, food, and furniture, difplayed to full advantage. Even coffins are painted in a variety of lively and contrafting colours. The fmaller quadrupeds, including dogs, intended for food, are expofed alive for fale, as well as poultry, and fifh in tubs of water, with cels in fand. When the gentlemen belonging to the embarfy were at Ting-hai, they were Itruck with the number of places where tin-leaf and Alicks of odoriferous wood were fold for burning in the temples, which indicated no flight degree of fuperitition in the people. Superftition, however, made them not idle; for throughout the whule place there was a quick and active induftry. Men paffed bufily through the ftreets, while not an individual was feen afking alms; and the women were employed in the fhops. At Chufan, the number of valuable harbours, or places of perfect fecurity for fhips of any burden, is almof equal to the number of illands. This advantage, together with that of their central \(f_{1}\). tuation, in refpect to the eaftern colt of China, and the vicinity of Corea, Japan, Leoo.keoo, and Formofa, attract confiderable commerce, efpecially to Ning.poo,' a city of great trade in the aujoining province of Che-chiang, to which all the Chufan iflands are annexed. From one port in that province twelve veffels fail annually for copper to Japan.

According to Brookes, Churan is in N. Lat. 30. 0. and E. Long. \({ }^{124}\). 0.

CINARA, or Cynara, which we tranflate artichoke, is, according to Profeffor Beckmann, the name which was given by the ancients to a plant very different from the artichoke of our kitclen gardens, though he admits that they belong to the fame genus. The proofs which he adduces for the truth of his opinion are too tedious to be introduced into this Work, efpecially as they appear not to us to be abfolutely conclufive. We mutt therefore refer the reader to his Hittory of Inventions. The cinara, carduus, and fiolymus (fee Scolymus in this Supplement), were in his opinion fpecies of the thille, of which the roots and young Boots, as well as the bottom of the calyx of the laft, were eaten. He has proved indeed, he thinks, that the Greeks and Romans ufed the pulpy bottom of the calyx, and the tendereft ftalks and young fhoots of many plants belonging to the thiltle kind, in the fame manner as we ufe artichokes and cardoons, but that thefe latter were unknown to them.
" It appears probable (fays be) that the ufe of thefc thiftles, at leaft in Italy and Europe in general, was in the courfe of time laid afide and forgotten, and that the

Churan, Cinara.

\section*{C I R [43 S] C O A}

Cintabar artichoke, when it was firt brought to Italy from the Levant, was confidered as a new Ipecies of foud. It is undoubtedly certain that cur artichoke was firft known in that country in the 15 th century. Hermolaus Barbarus, who died in 8494 , relates that this plant was firft feen at Venice in a garden in 1473, at which time it was very farce. Alown the ycar 1466, one of the family of Strozza bronght the firft artichokes to Florence from Naples. Politian, in a letter in which he defcrites the difhes he found at a grand entertainment in laly in 1488, among thefe mentions artichokes. They were introduced into France in the beginning of the ifth century, and into England in the reign of Henry VIII."

The original country of the artichoke is unknown. Liumeus lays that it grew wild in Narhonne, Italy, and Sicily, as the cardoun did in Crete; but our anthor has proved vely fufficiently, that with refpect to both thefe facts the great botanift was mifinformed. The articloke is certainly known in Perfia; but Tavernier fays exprefsly, that it was carried thither, like afparagus and other European vegetahles of the kitchen garden, by the Carmelite and other monks; and that it was only in latter times that it became conmon.

CiNNABAR. See Chemistry in this Supplement, \(n^{\circ} 91\).

Circle of Curvature, or circle of equicurvature, is that circle which has the fame curvature with a given curve at a certain point ; or that circle whofe radius is equal to the radius of curvature of the given curve at that point.

CIRCLEs of Declination are great circles interfecting each other in the poles of the vorld.

Circle of Diffpation, in optics. See Optics, Encycl. \(\mathrm{n}^{\circ} 253\).

Ctrcle Equant, in the Ptolemaic aftronomy, is a circle defcribed on the centre of the equant. Its chief ufe is to find the variation of the firft inequality.

Cikcles of Exicurfion are little circles parallel to the ecliptic, and at fuch a diftance from it, as that the excurtions of the planets towards the poles of the ecliptic may be included within them ; being ufually fixed at about 10 degrees.

Cikcles of Pofition, are circles paffing through the common interfecions of the horizon and meridian, and through any degree of the ecliptic, or the centre of any flar, or other point in the heavens; and are ufed for finding out the fituation or pofition of any ftar. Thefe are ufually fix in number, cutting the equinoctial into 12 equal parts, which the aftrologers call the celef. tial houfes, and hence they are fometimes called circles of the celefial boufes.

CIRCULAR Lines, a name given by fome authors to fueh ftraight lines as are divided by means of the div:fions made in the arch of a circle; fuch as the fines, rangents, fecants, \&ic.

Circular Parls, called, from the ufe which he firt made of them, Napier's circular parts, are the five parts of a right-angled or a quadrantal fpherical triangle; they are the two legs, the complement of the hypothenufe, and the complements of the two oblique angles.

Concerning thefe circular parts, Napier gave a geneyal rule in his Logaritbmorum Canonis Defcriptio, which is this; "The rectangle under the radius and the fine of the middle part is equal to the rectangle under the
tangents of the adjacent parts, and to the reetangle un. der the cofines of the oppofite parts. The right angle or quadrantal fide bcing neglected, the two fides and the complenents of the other three natural parts are called the circular parts, as they follow each other as it were in a circular order. Of thefe, any one being fix. ed upon as the middle part, thofe next it are the adjacent, and thofe fartheft from it the oppolite parts."

This rule contains within itfelf all the particular roles for the folution of right-angled foherical triangles, and they were thus brought into one general compreluerive theorem, for the fake of the inemory; as thus, by charging the memory with this one rule alone: All the cafes of right-angled fpherical triangles may be refolved, and thofe of oblique ones alfo, by letting fall a perpendicular, excepting the two cafes in which there are given either the three fides, or the three angles. And for thefe a fimilar expedient has been devifed by Lord Buchan and Dr Minto, which may be thus expreffed: "Of the circular parts of an oblique fpherical triangle, the rectangle under the tangents of half the fum and half the difference of the fegments at the middle part (formed by a perpendicular drawn from an angle to the oppofite fide), is equal to the rectangle under the tangents of half the fum and half the difference of the oppolite parts." By the circular parts of an oblique fpherical triangle are meant its three fides and the fupplements of its three angles. Any of thefe fix being af. fumed as a middle part, the oppofite parts are thofe two of the fame denomination with it, that is, if the middle part is one of the fides, the oppofite parts are the other two, and, if the middle part is the fupplement of one of the angles, the oppofite parts are the fupplements of the other two. Since every plane triangle may be confidered as defcribed on the furface of a fphere of an infinite radius, thefe two rules may be applied to plane triangles, provided the middle part be reftricted to a fide.

Thus it appears that two fimple rules fuffice for the folution of all the polfible cafes of plane and fpherical triangles. Thefe rules, from their neatnefs, and the manner in which they are expreffed, cannot fail of engraving themfelves deeply on the memory of every one who is a little verfed in trigonometry. It is a circumfance worthy of notice, that a perfon of a very weak memory may carry the whole art of trigonometry in his head.

Circulating Decimals. See Decimals in this Supplenient.

CLOCK, a machine for meafuring time, of which a defcription is given in the Encyclopædia. For the fcientific principles of clock and watcb-making, as well as for a fhort account of the moft valuable conftructions, fee Watch-Making in this Supplement.

COACH, as we have obferved in the Encyclopredia, is a very modern invention, if by that word be meant a covered carriage fufpended on fprings. We learn, indeed, from the laborious refearches of Profeffor Beckmann, that coaches of fome kind were known in the beginning of the 16 th century; but they were ufed only by women of the firf rank, for the men thought it difgraceful to ride in them. At that period, when the electors and princes did not choofe to be prefent at the meetings of the flates, they excufed themfelves by informing the emperor that their health did not permit
them
them to ride on horfeback; and it was confidered as a point eftablifhed, that it was unbecoming for then to ride like women. It is certain, however, that, about the end of the 15 th century, the emperor, kings, and princes, began to employ covered carriages on journeys, and afterwards on public folemnities.

The wedding carriage of the firtt wife of the Emperor Leopold, who was a Spanifh princefs, colt, together with the barnefs, 38,000 florins. The coaches ufed by that Emperor are thus deferibed by Kink: "In the imperial coaches no great magnificence was to be feen ; they were covered over with red cloth and black nails. The harnefs was black, and in the whole work there was no gold. The pannels were of glafs, and on this account they were called the imperial glajs coaches. On feftivals the harnefs was ornamented with red alk fringes. The imperial coaches were diftinguifhed only by their having leather traces; but the ladies in the imperial faite were obliged to be contented with carriages, the traces of which were made of ropes." At the magnificent court of Duke Erneft Auguftus of Hanover, there were in the year 168 I fifty gilt coaches with fix. horfes each. So early did Hanover begin to furpafs other cities in the number of its carriages. The firt time that ambaffadors appeared in coaches on a public folemnity was at the imperial commiffion held at Erfurth in 1613 refpecting tbe affair of Juliers.

In the hiftory of France we find many proofs that at Paris, in the \(14^{\text {th }}, 15^{\text {th }}\), and even 16 th centuries, the French monarchs rode commonly on horfes, the fervants of tbe court on mules, and the princefles, together with the principal ladies, fometimes on affes. l'erfons of the firt rank often fat behind their equerry, and the horfe was often led by fervants. Carriages, however, of fome kind appear to have been ufed very early in France. An ordinance of Philip the Fair, iffucd in 1294 for fuppreffing luxury, and in which the citizens wives are furbid to ufe carriages (cars), is ttill preferved. Under Francis I. or rather about 1550 , fomewhat later, there were in Paris for the firft time only three coaches.

The oldelt carriages ufed by the ladies in England. were known under the now forgotten name of whirlicotes. When Richard II. towards the end of the 14 th century, was obliged to fly before his rebellious fubjects, he and all lis followers were on horfehack; his. mother only, who was indifpofed, rode in a earriage. This, however, became afterwards fomewhat unfafhion ahle, when that mnnareh's queen, Ann, the daughter of the Emperor Charles IV. fhewed the Englifh ladies how gracefolly and conveniently the could ride on a fidefaddle. Whirlicotes were laid afide, therefore, except at coronations and other public fulemnities. Coaches were firit known in England about the year 1580 , and, as Stow fays, were introduced from Germany by Fitzallen, earl of Arundel. In the year 1598, when the Englifh ambaffador came to Scotland, he had a coach with him. Anderfon places the period when cuaches began to be in common ufe about the year 1605 . The relebrated duke of Buckingham, the unworthy favourite of two kings, was the firft perfon who rode with a. c.uach and fix horfes, in.16ig. To ridicule this new yomp, the earl of Northumberland put eight horfes to his carriage.

Refpecting the progrefs of luxury with regard to coaches, the readcr will fud much curions information
in the firt volunce of Profeftor Beckmann's Hiflory of Cobalt. Inventions. It is perhaps one of the moft entertaining articles in that very learned work. The author, however, with all his labour, has not been able to aicertain the country in which coaches hung on fprings were firf ufed; but he feams inclined to give the credit of the invention to Hungary.

COBAL'I' (fee Chemistry-Indes, in this Supplement), is a valuable article to potters and dyers. [o. fit it for their ufe, it is firft roafterl and freed from the foreign mineral bodies with which it is united: it is then well calcined, and fold either mixed or unmixed with fine fand under the name of zaffer (zaffera); or it is. melted with filiceous earth and potathes to a kind of blue glafs called finall, which when ground very fine is known in commerce by the name of powder llue. All. thefe articles, becaufe they are molt durable pigments, and thofe which beft withfand fire, and becaufe une can produce with them every thade of blue, are employed above all for tinging cryftal and for enamelling ; for counterfeiting opaque and tranfparent precious ftones, and for painting and varnifhing real porcelain and cartlen and putters ware. This colour is indiípenfably neceffary to the painter when he is defrous of initating the fine azure eculour of many butterflies and other natural objects; and the cheaper kind is employed to give a blucin tinge to new-wahed linen, which fo readily changes to a difagreeahle yellow, though not withoutinjury to the health as well as to the linen.

Profeffor Beckmann, in his Hifiory of Inventions, gives the following account of the paint prepared from cobalt. "A bout the end of the 15 th century cobalt ap" pears to have been dog up in great quantity in the mines on the borders of Saxuny and Bohemia, difcovered not long before that period. As it was not known at firt to what ufe it could be applied, it was thrown afide as a ufeleis mineral. The miners had an averfion to it, not only becaufe it gave them much fruitlefs labour, but becaufe it often proved prejudicial to their health by the arfenical particles with which it was combined; and it appears even that the mineralogical namo cobalt then firlt took its rife. At any rate, I lave never met with it before the begianing of the 16 th cen. tury ; and Mathefius and Agricola feem to have firfe ufed it in their writings. Frifch derives it from the Bolemian word kow, which fignifies metal; but the conjecture that it was formed from cobulus, which was the name of a fpirit that, according to the fuperltitions notions of the times, haunted mines, deftroyed the \(l_{d}\). bours of the miners, and often gave them a great deal of unneceffary trouble, is nore probable; and there is reafon to think that the latter is borrowed from the Greek. The miners, perliaps, gave this name to the mineral out of joke, becaufe it thwarted them ats much as the fuppofed fuinit, by exciting falfe hopes, and rendering their labour often fruitlefs. It was once cuito. mary, therefore, to introduce into the church fervice a prayer that God would preferve miners and their works from ḱobolts and fpirits.
"Refpecting the invention of making an ufeful lind" of blue glafs from cobalt, we have no better information than that which Klotzfch has publifhed from the papers of Cliritian Lelmann. The former, author of an liftorical work refpecting the upper diltrict of the mines in Mifnia, and a clergyman at Schcibenberg, collected:

Cobalt. with great diligence every information that refpected the hiftory of the neighbouring country, and died at a great age in 1688 . Aecording to his account, the colour mills at the time when he wrote were about 100 years old ; and as he began firt to write towards the end of the thirty years war, the invention feems to fall about 1540 or 1560 . He relates the circumftance as follows:- Chriftopher Schurer, a glafs-maker at Platten, a place which belongs Itill to Bohemia, retired to Neudeck, where he eftablifhed his hulinefs. Being once at Schneeberg, he collected fome of the beautiful coloured pieces of cobalt which were found there, tried them in his furnace; and finding that they melted, he mixed fome cobalt with glafs metal, and obtained fine blue glafs. At firft he prepared it only for the ufe of the potters; but in the courfe of time it was carried as an artiele of merchandife to Nuremberg, and thence to Holland. As painting on glafs was then much cultivated in Holland, the artifts there knew better how to appreciate this irvention. Some Dutchmen therefore repaired to Neudeck, in order that they might learn the procefs ufed in preparing this new paint. By great promifes they perfuaded the inventor to remove to Magdeburg, where he alfo made glafo from the cobalt of Sclineeberg; 'out he again returned to his former refidence, where he conftructed a handmill to grind his glafs, and aftervards erected one driven by water. At that period the colour was worth \(7^{\frac{1}{2}}\) dollars per cwt. and in Holland from 50 to 60 florins. Eight colour mills of the fame kind, for which roafted eobalt was procured in cafls from Schneeberg, were fion conftructed in Folland; and it appears that the Dutch muft have been much better acquainted with the art of preparing, and partieularly with that of grinding it, than the Saxons; for the Eleetor John Gearge fent for two colour-makers from Holland, and gave a thoufand florins towards the enabling them to improve the art. He was induced to make this advanee chiefly by a remark of the people of Schneeberg, that the part of the cobalt which dropped down while it was roarting contained move colsur than the roatted cobalt itfelf. In a little time mare colour-mills were erected around Schneeberg. Hans Burghard, a merchant and chamberlain of Schneeberg, built one, by which the eleven mills at Platten were much injured. Paul Nordhoff, a Frieflander, a man of great ingenuity, who lived at the Z wittermill, made a great many experiments in order to improve the colour; by which he was reduced to fo much poverty that he was at length forced to abandon that place, where he had been employed for ten years in the colour-manufactory. He retired to Annaberg, eltablifhed there in 1649, by the affiftance of a merchant at Leipfic, a colour-manufactoiy, of which he was appointed the director; and by thefe means rendered the Annaberg cobalt of utility. The confumption of this article, however, muft have decreafed in the courfe of time; for in the year 1659 , when there were mills of the fame kind at mure of the towns in the neiglbourhood of mines, he bad on hand above 8000 quintals.' Thus far Lehmann."

Kofsler fays, that the Bohemian cobalt is not fo gond as that of Mifnia, and that its colour is more like that of afhes. We truft, however, that the qualities of foreign cobalt fhall foon be a matter of little importance to the Britifh artift, as a rich mine of this mineral has lately been difcovered near Penzance in Cornwal,

COFFEA, the Coffes-Tree, is a plant which has been botanically defrribed in the Encyclopxdia Britannica, where fome account is likewife given of the modes of cultivating it, as well as of, the qualities of its fruit. Since that account, however, was publifhed, two works have fallen into our hands, from which we deem it our duty to make fuch extracts as may not only correct fome mittakes which we had committed, but alfo connunicate ufeful information to the public.

In our former article we adopted the common opinion, that the coffee produced in Arabia is fo greatly fuperior to that which is raifed everywhere elfe, that it is vain to think of cultivating the plant to any extent in the Wett India iflands. We are happy to find that this is a vulgar error. In the year 1733 , when the eultivation of coffee was not fo well underitood in Jamaica as at prefent, fome fanples from that inand were produced in London, and pronounced by the dealers to be equal to the very bell brought from the Eatt. "Two of the famples were equal to the beft Mucha coffee, and two more of them fiuperior to any coffee to be had at the grocers thops in London, unlefs you will pay the price of picked coffee for it, which is two flillings per pound more than for that whieh they call the \(b_{f f} f\) coffee. All the reft of the famples were far from bad coffee, and very little inferior, if at all, to what the grocers call beft coffee *."

If this be fo, it furely becomes the legiflature of Treatife on Great Britain to encourage the cultivation of coffee in Coffec. the Weft Indies, efpecially as it thrives belt in foil which is not fit for the fugar-eane, and may be raifed in confiderable quantities by thofe who are not able to flock a fugar plantation. The encouraging every article which increafes the intercourfe with our colonics is increafing our cominerce. The payment for all the faples of the Weft Indies is made in our manufactures; the fale of which muft inereafe in proportion to the numbers that are employed in the cultivation of what is bartered for them. Our Weft India inands, withont draining us of fpecie or bullion, can fupply us with many of thofe very articles for which we are drained in uther parts of the world, and particularly with coffee.

To give a detailed account of the introduction of the coffee-tree into the Weft Indies, would fwell this article to very little purpofe. According to Buerhaive, a Dutch governor was the firft perfon who procured frefla berties from Mocha, and planted them in Batavia; and in the year 1690 fent a plant from thence to Amiterdam, which came to maturity, and produced thofe berries which have fince furnifhed all that is now cultivated in the Weft Indies.

In 1714 a plant from the garden of Amfterdam was fent by Mr Pancras, a burgomalter and director of the butanic garden, as a prefent to Louis XIV. which was placed in the garden at Marly. In 1718, the Dutch began to cultivate coffee in Surinam; in 1721, the Frencli began to cultivate it at Cayenne; in 1727, at Martinico; and in 1728, the Englifl began to cultivate it in Jamaica.

As it has been more cultivated in the French Weft India iflands than in the Britifh, it may be of importance to our colonifts to be made acquainted with the practiee of the French planters. Accurdingly Dr La* borie, a royalift of St Domingo, has lately publifhed a volume for their inftruction on this fubject; in which

Coffen, are many judicious obfervations, the refult of long experience, refpecting the foil fit for a coffee plantation ; the various eftablifhments neceffary ; the cultivation of the coffee-tree through the feveral fages of its growth and duration ; and the management and ufe of the negroes and cattle.

With refpect to foil, it is a fact, fays he, beyond contradiction, that low lands, and even the mountains near the champaign country, are lefs proper for the preduc. tion of coffee, than lands which are high and at a diItance from the fea. The coffee-tree delights in a comparatively cool climate, and in an open and permeable virgin foil; and is hurt by the parching deftructive air of the fea. The foil on the mountains of St Domingo confifts generally of a bed of mould more or lefs deep; but which, for the production of coffee-trees, ought not to be lefs than four or five feet. If the declivity be gentle, the fofteft and moft friable earth is preferable to all others; but in fteep grounds a firm though not elayey foil, mixed with a proportion of gravel or fmall ftones, through which the water may find an eafy way, is the moft defirable. The colour of the ground is of little confequence, though fuch as is fomewhat reddifh is generally to be preferred. With regard to expofure, the north and weft are the moft eligible in low and hot fituations, becaufe thefe expofures are the coolelt ; and on the higheft mountains the fouth and eaft are to be chofen, beeaufe they are the hottelt. On the whole, neither the highelt nor the loweft fituations are the beft, but thofe which are confiderably above the middle of the mountains.

Whatever be the planter's circumftances in point of fortune, and our author thinks that he ought not to undertake a fettlement without the command of 3000 or 4000 pounds fterling, he ought not to fet out with a great number of negroes. If he cannot command a plentiful fupply of victuals from fome eontiguous plantation, fix, or at the moft twelve, male negroes, with one or two women, will be found fufficient to make the firlt effay. After building two huts, one for the mafler or overfeer and the other for the flaves, they are to commence their operations by cutting away the underwood and ereeping plants with the bill, and felling the trees. The trees are to be cut as low as poffible, but the roots are to be left in the ground, becaufe they preferve the foil during the firft period of culture; and in burning this mafs of wood and thrubs, the only way fometimes of elearing the ground, care muft be taken that the fire be nowhere fo violent as to convert the foil into the confiftence of briek, which it is very apt to do if the foil be elayey. Amid the coffectrees, after they are planted, may be fown beans, maize, and all kinds of efculent plants, pot herbs, and roots; but particular care mult be taken to remove from thefe plantations all creeping plants, fuch as melons, yams, potatoes, gourds, and more efpecially tobaceo, which multiplies to a valt extent, and exhaufts the ground.

In St Domingo the moft approved method of planting the coffee-tree is in Atraight rows croffing each other at right angles, and the diftance between the plants is regulated by the quality and expofure of the ground. The richer the foil, the expofures being the fame, and the cooler the expofure, the quality of the foil heing the fame, the farther muft the trees be planted afunder. If on the north and weit the ground be good, plant ftill

Suppl. Vol. I. Part II.
farther; but, on the contrary, if to the ealt or fouth it be light (which it generally \(i_{i}\)), phant ftill nearer. Thus if it be proper on a fouth or ea!t expofure to plant at the diftance of fix fect, it will be neeeffary to plant at the difanee of feven on a wett or north expofure, if the ground be of the fame quality as in the other fituations.

Though coffee, like all other vegetables, grows from the feed, Dr Laborie advifes, in the forming of large plantations, to make ufe of faplings reared in nurferies ; and the lituation fittelt for a nurfery is a plain, ob at leaft a ground of gentle afcent, where the mould is crumbly. In forming a nurfery, fome plant the whole eherry; but our author recommends the taking off the flin, and wafhing the feparated feeds; in whieh we fufpect that he is mittaken, as his practice is certainly a deviation from nature. The nurfery mut be kept very clear of weeds, and neither corn nor any thing elfe fown in it.

The beft feafon for tranfplanting the faplings is dis. ring the genial rains of April and May, when great attention is required, as the treafures of future harvelts are at ftake. Thofe plants are the fitteft for being removed which, in the language of our author, are crowned, or have eaeli four little boughs; and, if the feeds were freth and fown in furrows about an ineh from each other, this perfection is gewerally attained in the courfe of a year. The faplings muft not be pulled up by force, but earefully raifed by means of a flat, fharp, iron thovel, thrut deep under their roots; and the fooner they are planted, after being taken up, the better.

In planting, the firft thing to be done is to thruft into the ground a dibble, or harp pointed flick, round which a bole is dug fiom nine to twelve inches in diameter, and from fifteen to cighteen in depth. Then a quantity of the mould taken out of the hole is thrown back into it, till its depth be diminifhed about four or fix inches; and the plant being fupported with the left hand, in the middle of the hole, while the end of its ftraight root, which our author calls its pivot, touches lightly the new bed, the furrounding mould is with the right hand thrown in, to the height of fix inches. This being lightly preffed duwn with both hands, more eartl is thrown in and preffed in the fame manner, care being taken not to hurt, or bend, or difplace the fapling, which mult be fet fo deep that its two inferior branches be rather below the level of the ground. On this account three or four inches of the hole are left open, which, by the time that thefe branches rife above it: margin, are filled up by the furrounding earth. The bufinefs is finifhed by finking the fharp-pointed ftick at the upper margin of the lole, where it ferves as a fmail fence to the infant tree. In hot fituations plantain trees are intermingled with the coftee trees for the purpofe of thade and coolnefs. They are ufually placed in every fourth or fixth row, as the trees are more or lefs dillant, and the expofure more or lefs hot.

To the bufinefs of planting very foon fueceeds that of weeding; for there is hardly any plant to which weeds are fo pernicious as the eoffee-tree: they caufe it to grow yellow, fade, wither, and perifh. Where the ground flopes much, efpecially if the foil be foft and friable, the weeds mult be taken up by the hand: for if they be rooted out by the hoe, the foil will be fo loofened that the rains will fweep it away. Some 3 K weedo,

Coffea weeds, however, from the depth of their ronts mult be dug up; and when that is the cafe the earth mult be carefully returned and preffed down. If, "in weeding, any faplings be found withered, others of the fane fize mult be brought from the nurfery and planted in their Itead, with what our author calls their clod, i.e. with the earth of the nurfery adhering to their roots. If any fapling be found broken or twifted, it mult be cut clofe by the ground in a foping direction, the cut furface facing the north, and it will foun put forth fuck. ers, of which the bett ouly need be preferved. In plantations of eighteen or twenty months old trees are often found with yellow, withered leaves, of which the caure is fometimes a premature load of fruit, which mult therefore be inflantly removed or the tree will perifh. If, after this, it begin not in a few days to recover, it is probably eaten at the , roots by a large white worm refembling a flug. In that cafe the tree muft be removed, the worm taken out, and before another tree be planted in its ftead, a large hole mult be made in the ground, expofed to the influence of the fun at leaft for a fortnight.

The natural height of the coffee tree is from 15 to 18 feet; and if left to itfelf it would have the form of moft other trees, i.e. a naked trunk and a branchy head. This is prevented by what the planters call fopping; which is performed by cutting off the top of the tree when it has arrived at the proper height, which varies according to circumftances. In the beft foil and mott genial expofure, it is fuffered to grow to the height of five feet, and in the worlt ftopped at two ; but under the fame afpect, and on ground of the fame quality, all the trees ought to be ftopped at the fame height. This operation of ftopping is very apt to make the trees put forth fuperfluous branches, which renders them inacceffible to the genial warmth of the fun, and, of courfe, deficient in the powers of fructification. Thefe muft be plucked away while yet tender; for if they be fuffered to grow till it become neceffary to cut them, a number of fprouts fucceed; whereas, when they are plucked, the wound foon cicatrizes, and nothing follows.

The faw and the knife, however, muft fometimes be ufed; for when trees grow old their heads are apt to Spoil; fuperfluous branches may have been lift upon them through neglect; a bough may have been broken by accident; or branches may be feent by too great a load of fruit. In all thefe cafes recourfe mult be had to pruning, which fhould be performed immediately after crop, and in fuch a manner as that the tree, when it puts furth its newebranches, may ftill have as much as poffible its natural or former appearance. This will be accomplifhed by cutting the withered bough immediately above a knot, whence a good fecondary branch is put forth, which may be eafily trained into the proper fhape. Our author directs the cut to be always made fo as that the floping furface fhall face the north; by which expofure it will efcape the injury which it would otherwife receive from the exceffive heat of the fa, 1 . This is a gond advice; but it would ftill be an improvement on it to treat the wound with Furfyth's or Hit's plafter, which we have deferibed elfewhere (See Encycl. Vol. XVIII. page 562). When the tree is completely pruned, the mofs and ofher excrefcences mult be feraped from the trunk with a wooden knife, great care being taken not to injure the bark.

\section*{}

After pruning follows what is called nipping. This is nothing more than the removal of thofe fuperfluous fmall twigs which are fent forth from every cut furface in fuch numbers as would foon exhault the tree; and it is called nipping, becaufe they are plucked away by the hand, and not cut by the knife. It is needlefs to alli, that when the ground begins to be impoverifhed, it muft be enriched by proper manure. This is known to every hufbandman both in Europe and in the Weft Indies; but it is not perhaps fo generally known that the weedings, and chicfly the red flkins of coffee, when gathered into pits, are, in procefs of time, converted into a black mould, which our author lays makes the very beft manure.
" The fruit of the coffee, when perfectly ripe, appears like a fmall oval cherry. Under a red and flining Nkin a whitifh clammy lufcious pulp prefents itfelf, which generally inclofes two feeds. Thefe feeds have one fide fat, the other hemifpherical. The firf is marked with a longitudinal fiffure, and the fat fides are applied to each other. When the feeds are opened, they are found covered with a white, ligneous, brittle membrane, denominated parchment : on the infide of which is another filver-coloured membrane, exceedingly thin, and feeming to originate from the fiffure of the feeds. Sometimes the cherry has but one feed or grain, which then is in the form of a fmall egg. This is peculiar to old decayed trees, or to the extremities of fome fmall branches."

The bufinefs of preparation confifts in taking the feed from its covering, in drying, and in cleaning it fo as to have every adrantage at market. Our author thinks that the beft method of preparing the coffee is to ftrip the feed of its outer fkin immediately on its being pulled, and to dry it in its parchment. The procefs has been already defcribed in the Encyclopxdia; but we believe it to be an injudicious one. We have. the authority of a very eminent botanit *, well ac- Dr quainted with all the vegetable productions of the Weit \(W\), ig \(b\) t Indies, to fay, that the improvement which we have there mentioned, as propofed by Mr Miller, is greatly preferable to Dr Laborie's practice. Indecd he himfelf admits, that coffee dried in the cherry is more heavy than when dried in parchment, and that it generally has a higher flavour. Nay, he fays exprefsly, that "if a planter wants io have coffee of the firit quality, eithes for himlelf or for his friends, he muft fet a part a number of his oldelt trecs, and not gather the fruit till it is ripened into drynefs. It is in that manner, he believes, that the Arabians in Yemen make their little harvells; and he declares, that coffee thus nourithed on the tree to the laft moment, mult have every perfection of which it is capable." His ouly yenfible objection is, that the trees are foon exhaufled when the fruit is lef fo long upon them ; but doubtiefs this exhauftion might be retarded by proper manure.

The chemical analy fis of coffee evinces that it pof. feffes a great portion of mildly bitter and lightly aftringent gummous and refinous extract; a confiderable quantity of oil; a fixed falt ; and a volatile falt. - Thefe are its medicinal conftituent principles. The intention of torrefaction is not ouly to make it deliver thofe principles, and make them foluble in water, but to give it a property it does not poffers in the natural ftate of the berry. By the action of fire, its leguminous tafte and

\section*{C O F}
the aqueous part of its mucilage are deflroyed; its \(f_{a}\) line properties are created and difengaged, and its oil is rendered enpyreumatic. - From thence arifes the pungent fincll, and exhilarating flavour, not found in its natural flate.
The roatting of the berry to a proper degree requires great nicety: Du Four jutly remarks, that the virtue and agreeablenefs of the drink depend on it, and that both are often injured in the ordinary method. Bernier fays, when he was at Cairo, where it is fo much ufed, he was affured by the beit judges, that there were unly: two people in that great city, in the public way, who underitood the preparing it in perfection. If it be under-done, its virtnes will not be imparted, and in ufe it will load and opprefs the ftomach:--If it be overdone, it will yield a flat, burnt, and litter tanle, its virtues will he de? l royed, and in ufe it will heat the body, and act as an aftringent.

Fourteen pounds weight of raw coffee is generally reduced, at the public roafting honfes in London, to cleven pounds by the roalling; for which the dealer pays feven pence half-penay, at the rate of five flilllings for every hundred weight. In Paris, the fame quantity is redueed to ten pounds and an half. But the roafting ought to be regulated by the age and quality of the coffee, and by nicer rules than the appearance of the fumes, and fuch as are ufually practifed: therefore the reduction muft confequently vary, and no exact ftandard ean be afcertained. Beficies, hy mixing different forts of coffee together, that require different degrees of leat and roafting, coffee has feldom all the advantages it is capable of receiving to make it delicate, grateful, and pleafant. This irdeed can be effected no way fo well as by people who have it roatted in their ewn houfes, to their own tafte, and freth as they want it for ufe. The clofer it is confined at the time of roalting, and till ufed, the better will its volatile pungency, flavour, and virtues, be preferved.
The mode of preparing this beverage for common ufe differs in different countries, principally as to the additions made to it.-But though that is generally underfood, and that tafte, conftitution, the quality of the coffee, and the quantity intended to be drunk, muit be coufulted, in regard to the proportion of coffee to the water in making it - yet there is one material point, the importance of which is not well undertood, and which admits of no deviation.

The prefervation of the virtues of coffee, particularly when it is of a fue quality, and exempt from ranknefs, as has been faid, depends on carefully confining it after it has been roafted; and not powdering it until the time of ufing it, that the volatile and ethereal principles, generated by the fire, may not efeape. But all this will fignify nothing, and the beft materials will be ufelefs, unlefs the following important admonition is ftrictly attended to ; which is, that after the liquor is made, it fhould be bright and clear, and entirely exempt from the lealt cloudinefs or foul appearance, from a fufpenfion of any of the particles of the fubflance of the coffee.

\section*{\(44.3] \quad\) C O F}

There is fearcely any vegetable infufion or decoction Cuffea whofe effects differ from its grofs origin more than that of which we are lpeaking. Coffec taken in fubftance caufes oppreffion at the ilomacl, heat, naufea, and indigettion: confequently a continued ufe of a prepara. tion of it, in which any quanticy of its fululance is contained, befides being dif gulling to the palate, mult tend to produce the fame indifpofitions. The reliduum of the roalted berry, after its virtues are extracked from it, is little more than an carthy cals, and muft therefore be injurious.

The want of attention to this circumftance has been the caufe of many of the complaints againft coffee, and of the averfion which fome people have to it ; and it is from this couffideration that coffee fhould not be prepared with milk inftead of water, nor fhould the milk be added to it on the fire, as is fometimes the cafe, for economical ditetetic purpofes, where only a tmall quantity of cuffee is ufed, as the tenacity of the miln impedes the precipitation of the grounds, which is neceffary for the purity of the liquor, and theefure nether the milk nor the fugar fhould be added untilafter it is made with water in the ufual way, and the clarification of it is completed (A). The inilk frouid he hot when added to the liquor of the coffee, which fhould alto be hot, or both fhould be hreated together, in this mode of ufing cuffee as an article of fuftenance.
If a knowledge of the pripciples of coffee, founded on examination and various experiments, added to ubfervations made on the extenfive and indiferiminate ufe of it, cannot authorife us to attribute to it any particular quality uniriendly to the human frame; if the unerring tell of experience has confirmed its utility, in many countries, not exclutively productive of thofe inconveniences, habits, and difeafes, for which its peculiar propertics feem mort applicable - let thofe properties be duly confidered; and let us reffert on the llate of our atmolphere, the food and modes of lite of the inhabitants, and the chronical infirmities which derive their origin from thefe fources, and it will be evident what falutary effects might be expected from the general dietetic ufe of coffe in Great Britain.

COFEER-DAMs, or Batardears;, in bridge-building, are enclofures formed fur laying the foundation of piers, and for other works in water, to exclude the furrounding water, and fo prevent it from interrupting the workmen.

COLCHESTER, the chief town in Effex, is defcribed in the Encyclopædia Britaunica ; but the defcription is in many refpects erroneous. The following account of it was fent to us by an obliging curreipondent, who is defirous that the place of his nativity may be accurately deferibed in this Supplement.

Colchefter is pleafantly fituated upon an eminence, gradually rifing on the fouth fide of the river Colue. It is the ancient Colonia Camulodunum, from which word Colonia, both the town and the river Colne received their names. The Saxons called it Colneceafter. That it flourifhed under the Romans, feveral buildings full of their bricks, and innumerable quantities of coin 3 K 2 dug
(A) It is not to coffee alone that this reflection is confined; every article we ufe as a diluter demands the fame attention. Malt liquors, particularly fmall beer, which in this refpect is much neglected, ought always to be carefully fined. The fæculent matter entangled by the mucilage of the malt is hurtful to digettion, and detrimental to health.

\section*{\(\mathrm{C} O \mathrm{~L}\)}

Coichener, dug up in and about it, fully evince. In the year 1763 , Colours.
a curious teffellated or mofaic pavement was found in
the garden of the late Mr Barnard, furgeon in the High Street, now the property of Mr Joln Wallis, about three feet under the furface of the earth. The emperor Conflantine the Great was born here, his mother Helen being daughter of Coul, governor or king of this diftrict under the Romans. She is faid to have found out the crofs of Chrift at Jerufalem; and on that account the arms of this town are a crofs regulee between three ducal coronets, two in chief and one in bafe, the coronet in bafe paffing through the crofs.

The walls wherewith the town was encompaffed are ftill tolerably entire on the fouth, eaft, and weft fides, but much decayed on the north fide : they are generally about nine feet thick. By a ftatute of King Henry VIII. this town was made the fee of a fuffragan bifhop.

This town is the moft noted in England for making of baize ; it is alfo of fpecial note for eandying the cringo roots, and for oy fters.

In the conclufion of the civil war 1648 , this town fuffered a fevere firge of ten weeks; and the befieged making a very refolute defence, the fiege was turned into a bluckade, wherein the garrifon and inhabitants fuffered the utmoft extremity of hunger, being reduced to cat horfe-fefh, dogs, and cate, and were at laft obliged to furrender at difcretion, when their two valiant chief officers, Sir Charlcs Lucas and Sir George Lifle, were fhot under the caftle walls in cold blood. Colchefter is a borough by prefcription, and under that right fends two members to paliament, all their charters being filent upon that head. The charter was renewed in 1763 . The town is now governed by a mayor, recorder, 12 aldermen, 18 affiftants, and is com-mon-council men. Quarter-feffions are held here four times in the year.

The famous abbey gate of St John is ftill ftanding, and allowed to be a furprifing, curious, and beautiful picce of Gothic architecture, great numbers of perfons coming from remote parts to fee it. It was built, together with the abbey, in 1097, and Gudo, fleward to King William Rufus, laid the firlt fone.

St Am's chapel, flanding at the eaft end of the town, is valuable in the efteem of antiquarians as a building of great note in the early days of Chriftianity, and made no fmall figure in hiftory many centuries patt. It is now pretty entire.

St Botopl's priory was founded by Ernulphus in the reign of Henry I . in the year 1rio. It was demolifhed in the wars of Charles I. hy the parliament army under Sir Thomas Fairfax. The ruins llill exhibit a beautiful nketel of ancient mafonry, much admired by the lovers of antiquities. The caftle is ftill pretty entire, and is a magnificent ftructure, in which great improvements have of late been made. Here is an excellent and valuable library.

The markets, which are on Wednefday and Saturday, are very well fupplied with all kinds of provifions. There are no lefs than fix diffenting meeting-houfes in this town. Colchefter is 51 miles from London. It had 16 parifh churches, in and out of the walls, but now only 12 are ufed, the reft being damaged at the fisge in \(\mathrm{r}_{4} \mathrm{~S}\).

COLOURS. See Pigments in this Supplement. Accidental Colours, a name given to a very curious
optical phenomenon, which was firft, we believe, at tended to by Buffon. That philofopher wrote a fhort paper on it, which was publifhed in the Memoirs of the Academy of Sciences for the year 1743.

If a perfon look lledfally and for a contiderable time at a fmall red fquare painted upon white paper, he will at latt obferve a kind of green-coloured border furround the red fquare. If he now turn his eyes to fome other part of the paper, he will fee an imaginary fquare of a delicate green bordering on blue, and correfponding exactly in point of fize with the red fquare. 'This imagimary fquare continues vifible for fume time, and indeed does not difappear till the eye has viewed fucceffively a number of new objects. It is to this imaginary fquare that the improper name of accidental colour has been given. If the fmall fquare be yellow, the imaginary fquare or accidental colour is blue : the accidental colour of green is red; of blue, yellow; of white, black; and on the contrary, that of black is white.

The firlt perfon, as far as we know, who gave a fatisfactory explanation of thefe phenomena was Profeffor Scherffer of Vienna, whofe differtation, tranflated by Mr Bernoulli, has been publifhed in the 26 th volume of the Journal de Phyfique.

In order to underftand thefe phenomena, let us recollect, in the firft place, that light confifts of feven rays, namely, red, orange, yellow, green, blue, indigo, violet; that whitenefs confilts in a mixture of all thefe rays: and that thofe bodies which reflect but very little light are black. Thofe bodies that are of any particular colour, reflect a much greater quantity of the rays which conftitute that particular colour than of any other rays. Thus red bodies reflect moft red rays; green hodies, moft green rays, and fo on.

Let us recollect, in the fecond place, that when two impreffions are made at the fame time upon any of our organs of fenfation, one of which is ftrong and the other weak, we only perceive the former. Thus if we examine by the prifm the rays reflected by a red rofe, we fhall find that they are of four kinds ; namely red, yellow, green, and blue. In this cafe, the impreffion made by the red rays makes that made by the others quite infenfible. For the fame reafon, when a perfon goes from broad day light into an ill-lighted room, it appears to him at firft perfectly dark, the preceding ftrong impreffion renderisg him for fome time incapable of feeling the weaker impreffion.

With the affiftance of thefe two remarks, it will not be difficult to explain the phenomena of accidental colours. When a perion confiders attentively for fome time a whice fquare lying on any black fubftance (paper for inftance), it is evident that the part of the retina on which the white fquare is painted, receives a ftronger impreffion than any other part ; at leaft the greateft number of rays ftrike upon it. A weaker impreffion, thetefore, will act on it with much lefs force than upon the reft of the retina. Confequently, when the eye is turned from the white fquare to fome other part of the black paper, a fquare is perccived of the fame fize with the white fquare, and much blacker than any other part of the paper : this is evidently in confequence of the weaker impreffion made by the rays reflected by the black paper upon that part of the eye previoully fatigued by the copious reflection from the white fquare. For the very fame reafon, if, after looking for a fuff-

\section*{C 0 L \\ 445] \\ C 0 L}
colours. cicnt time at ã white fquare lying on a black ground, we turn our eyes upon a fheet of white paper, we perceive a very well defined black fouare. In this cafe, the part of the retina already fatigued is not fo fenfible to the rays reflected by the white paper as the other parts of it which have not been fatigued. The reafon then that black is the accidental colour of white is fufficiently evident.

On the contrary, when we look a fufficient time at a black fquare lying upon a white ground, if we turn our eyes to any other part of the white paper, or even upon black paper, we fhall perceive a fmall lquare anfwering to the black fquare, and much brighter than any other part of the paper: evidently becaufe that part of the retina on which the black fquare was painted being lefs fatigued is more fufceptible of impreffions than any other nart of the cye. Thus we fee why the accidental colour of black is white, and why that of white on the contrary is black. Thefe facts, indeed, have been long known, and they have been generally explained in this manner.

When a perfon has looked for a fufficient time at a red fquare placed on a fheet of white paper, and then turns his eyes to another part of the paper, that part of the retina on which the red was painted being fatigned, the red rays reflected from the white paper ceafe to make any fenfible impreffion on it, and confequantly there will be feen upon the white paper a fquare fimilar to the red fquare, and the colour of which is that which would refult from the mixture of all the rays of light except the red. In general, therefore, the accidental colour is the colour which refults from the mixture of all the rays of light, thofe rays excepted which are the fame with the primitive colour.

Now, in order to difcover the accidental colours, let us recollect the manner which Newton employed to determine the colour which refults from the mixture of feveral others, the fpecies and quantity of which are known. He did it by dividing the circumference of a circle, fo that the arches are to one another in the proportion of a ftring hortened by degrees, in order to found one after another the notes of an octave; which is nearly the proportion that the different rays occupy when light is decompofed by means of the prifm. Or fuppofe the circumference of the circle, as ufual, divided into 360 degrees, the different rays, according to Benvenut, fhould occupy the following arches:
\begin{tabular}{llllll}
Red, & - & - & - & - & \(45^{\circ}\) \\
Orange, & - & - & - & - & 27 \\
Yellow, & - & - & - & - & - \\
48 \\
Green, & - & - & - & - & - \\
60 \\
Blue, & - & - & - & - & - \\
Indigo, & 60 \\
Violet, & - & - & - & - & 40 \\
- & - & - & - & - & 80
\end{tabular}

Let us now compare the action of colours on one another with that of different weights; and for that purpofe let us fuppofe each colour concentrated in the centre of gravity of its arch. In order to find the colour refulting from any mixture, we have only to find the common centre of gravity of the arches which reprefent the different colours: The colour refulting from the mixture will be that of the arch to which the common centre of gravity approaches neareft. And if that common centre of gravity is not in the Atraight line which joins the centre of the circle, and the centre of gravity
of the arch to which it is moft contiguous, the refult- Colours. ing colour will approach more or lefs to the colour of the contiguous arch towards which the linc, paffing. through the centre of the cricle, and the common centre of gravity of the arches, falls. And fanther, the refulting colour will be more or lefs deep according to the diltance of the common centre of gravity from the centre of the circle.

In the cafe under confideration at prefent, namely, to determine the different accidental colours, the application of this method is remarkably eafy ; becaufe only one of the feven primitive colours is excluded, and confequently the fix colours from the mixture of which we win to know the refulting colour are all contiguous. For it is evident, that the fum of the fix arches, reprefenting thefe lix colours, will be divided into two equal parts by the line which palfes through the centre of the circle and their common centre of gravity; and that if the fame line be produced till it reaches the circumference of the circle on the other fide, it will alfo divide the arch reprefenting the feventh or omitted colour into two equal parts. Let us fuppofe, for inltance, that the violet is omitted, and that we wanted to know the colour refult ing from the mixture of the other fix colours, we have only to bifect the arch reprefenting the violet, and from the point of fection to draw a diameter to the circle, the arch of the circle oppofite to the violet through which the diameter paffes will indicate the colour of the mixture. The arch reprefenting the violet being \(80^{\circ}\), let us take the half of it, which is \(40^{\circ}\), and let us add to it \(45^{\circ}\) for the red, \(27^{\circ}\) for the orange, and 480 for the yellow, we flall have \(160^{\circ}\), which wants \(20^{\circ}\) of half the circumference of the circle. If now we add the \(60^{\circ}\) for the green, the fum total will be \(220^{\circ}\), confuderably more than half the circumference; confequently the common centre of gravity is neareft the green alch; but it falls \(10^{\circ}\) nearer the yellow than the ftraight line which joins the centre of the eircle and the centre of gravity of the green arch. Hence we fee that the refulting colour will be green, but that it will have a fhade of yellow.

It is evident, then, that the accidental colour of violet muft be green with a fhade of yellow; and this is actually the cafe, as any one may convince limfelf by making the experiment.

Suppofe, now, we wanted to know the accidental colour of green, or, which is the fame thing, the colour refulting from the mixture of all the primitive rays cxcept the green. The green arch is \(60^{\circ}\), the half of which is \(30^{\circ}\); if to this we add \(60^{\circ}\) for the blue arch, and \(40^{\circ}\) for the indigo arch, we fhall have \(130^{\circ}\), or \(50^{\circ}\) degrees lefs than a femicircle. If to this we add the violet arch, which is \(80^{\circ}\), we fhall have \(30^{\circ}\) more than the femicircle; confequently the common centre of gravity falls nearelt the violet, and it is \(10^{\circ}\) nearer the red arch than is the centre of gravity of the violes arch. Hence we know that the accidental colour of green will be violet or purple, with a hade of red: Aud experiment confirms this.

Buffon obferved that the accidental colour of blue was reddifh and pale. Let us fee whether we fhall ol, tain the fame refult from our method. Let us fuppofe that Buffon employed a light blue. In that cafe, if to 30 , the half of the blue arch, we add 60 for the green, 48 for the yellow, and 27 for the orange, we Shall have \(165^{\circ}\) or \(15^{\circ}\) lefs thau lalf the circumfurence of the

Colours. circle: Confequently the common centre will fall neareft the red arch, but within 15 of the orange. The accidental colour muth therefore be red, with a fhade of orange; or, which is the fame thing, it mutt be a pale red.

In the fame manner we may difeover, that the accidental colour of indigo is yellow, inclining a good deal to orange ; and that the accidental colour of indigo and blue together is orange, with a ftrong fhade of red. Both of which correfpond accurately with experiment.

It would be eafy to indicate, in the fame manner, the accidental colour of any primitive colour, if what has been faid were not fufficient to explain the caufe of accidental colours, and to thow that their phenomena correfpond exactly, both with the Newtonian theory of optics, and with what we know to be laws of our fenfations in wther particulars.

From the theory above given, which is that of Profeffor Scherffer, the fillowing confequences may be deduced:
1. The accidental culour of a red fquare, lying upon a white or a black ground, ought to be blackifh. if we caft our eyes upun a red coloured furface. 2. If the furface upen which we look at a red fquare be itfelf coloured, if it be yellow, for inftance, the white paper upon which we afterwards caft our eyes will appear blue, with a green fquare in it correfponding to the original red fquare. And, in general, we ought to perreive the accidental colour of the ground on which the fquare is jlared, as well as the fquare itfelf. 3. If while we are looking at the little fouare we change the fituation of the eye, fo that its image fhall occupy a differant place on the retina, when we turn our eyes to the shite paper we thall fee two fquares, or at leath one unlike the figure of the original one. 4. If the white paper on which we look be farther diftant than the little fquare was, the imaginary fquare will aypear confide. rably larger than the true one. 5 . If while we are looking at the little fquate, we gradually make the eye approach to it, withont alucring its fluation, the imaginary faare will appear with a pale border. 'Thefe, and many other confequences that might eafily be deductd, will be found to take place conftantly and accu. rately, if any one choofes to put them to the tet of experiment ; and therefore may be conlidered as a complete confirmation of the theory given above of the caufe of aceidental colours.

There is another circumftance refpecting accidental colours which deferves attention. If we continue look. ing ftedfattly at the little fquare longer than is neceffary, in order to perceive its accidental colour, we fhall at laft fee its border tinged with the accidental colnur of the ground on which the fquare is lying. For inflance, if a white fquare be placed upon blue paper, its border becomes yellow; if upon red paper, it becomes green; and it becomes reddith tipon green. In like inanner, the border of a yellow fquare becomes greenifi upon a red ground, and that of a red fquare on a green ground becomes purple.

The caufe of this phenomenon feems to depend upon the contraction and extention of the image of the fquare painted on the retina. We know for certain, that the diameter of the pupil changes during our infpecting the fquare ; at firft it becomes lefs, and afterwards increafes. And though we cannot fee what paffes in the bottom of the eye, we can fearcely doubt that fimilar morements are going on there, if we attend to the changes
that are continually taking place in the Lorder of our little fquare; fometimes it is large, fometimes fmall; at one time it difappears aliogether, and the next moment makes its appcarance again.

There is another phenomenon connected with accidental colours, which it is not fo cafy to explain; name\(l_{y}\), that if we look at thefe little fquates for a very long time, till the eye is very much fatigued, their accidental colours will appear even after we thut our eyes. The very fame thing takes place if we attempt to look at a very luminous ubject; as the fun, for inftance. Pro. feffor Seherffer thinks that this may be partly owing to the light which ftill paffes through the eye-lids. That fome light pates through the eye-lids is evident, becaufe when we look towards a flrong light with our cye-lids fhut, we fee dittinctly their colour, derived from the bloud-veffels with which they are filled; and if we pafs our finger before our eyes, we fee the niadow of the finger though our eye-lids be fhut, provided our eyes be turned towards the window. But that this light is not fufficient to explain the phenomenon in queftion is evident from this eincumflance, that the fame accidental colours make their appearance though we go immediately into the darkeft place. Perhaps we have accounted for the phenomenon elfewhere (See Metaphysies, Encych. \({ }^{4} 54\).) We pafs over the other conjectu:es of Profeffor Scherffer, whieh are exceedingly ingenious, but not fufficiently fupported by facts to be admitted.

COLUMBA Noachi, Noah's Dove, a fmall con. Aellation in the fouthern hemifphere, confifting of 10 ftars.

COMAR, or KHomar, a Zemindar's demefne of land.

COMBUSTION is an operation of nature, which, though of the highelt importance, feems not to have attracted much of the attention of philofophers previous to the feventeenth century. Since that period indeed, the labours of Baenn and Boyle, and Hooke and Mayow, together with thofe of Stahl and Lavoilier, have thrown much light on the fubject ; as the reader will find by confulting the articles Chemistry both in this Supplement and in the Encycloprdia. The theory of Lavoifier is i.y far the molt rational that has yet been uffered to the fublic, and places its author in the firft ranks of philofophy. He corrects the crrors of his predeceffors, and has advanced before them one very important ftep; but, as we have elfewhere obferved, many new fteps are ftill wanting to render his theory of combuttion complete. It explains indecd, in a fatisfactory manner, why, during the procefs of combuttion, the burning body gradually waltes away ; but it gives no explanation of the conftant emiffion of heat and light, though a circumflance as worthy of attention as the wafting of the body.

The emiffion of light and heat the French chemifts feem indeed to have confidered as of no importance; for rather than acknowledge that the theory of their juftly admired and ill-fated affociate is incomplete, they have ehofen to give a new meaning to the word combusfion; and to make it fignify the combination of a body with oxygen, whether during that procefs light and heat be evolved or not. Surely fuch conduct is unphilofophical; and yet our own chemifts, with a fervility which ill becomes the countrymen of Bacon and New-

\section*{C O M}

Combuf ton, have, for the moft part, acquicfeed in this abfurd tion.

From the clafs of idolaters of the fcience of the great
nution mutt be excepted Dr Thomfon, the author of the article Chemostry in this supplanent. Senfible that combufion, in the fenfe ufually affixed to that word, denotes a phenomenon very different from many of thofe which are ineluded under the term in its new acceptation, he acknowledges the theory of Lavoifier to be defective; but influenced by that diffidence which is the infeparable attendant on the fpirit of true phitofophy, he has not ventured to complete it in the article to which we have referred. He has indeed formed a theory of his own, and fubmitted it to public difcuf. fion; but, with great propriety, gives it no place in his Syltem of the Science, till it thall have undergone the examination of other chemifts.

The conductor of this work, however, perfuaded that, while gratifying his readers in general, he thall not injure his friend's fane, embraces with pleafure the opportunity afforded him, by a new edition, of laying before them a concife view of this very ingenions theory.

Dr Thomfon, then, admitting the truth and accuracy of the Lavoiferian theory as far as it proceeds, divides the bodies which occupy the attention of chemifts into, r. Combufibles ; 2. Supporters of combuflion; and, 3. Incombuliblts.

The combustibles, or thofe bodies which, in common language, are faid to burn, may be divided into, 1. Simble combuttibles; 2. Compound combuftibles; and, 3. Combuttible oxides. Simple combuftibles are, fulphur, phofpborus, carbon, bydrogen, and all the metals, except perhaps goll, filver, and mercury. Compound combuf. tibles confitt of compounds formed by the fimple combuftibles uniting together two and two ; and combuftible oxides are compofed of one or more fimple comburtibles combined with a dofe of oxygen. Thefe oxides may be arranged under two heads: viz. thofe which containing only a fingle bafe combined with oxygen, may therefore be termed fimple combuftible axides; and thofe which containing more than one bafe, may therefore be termed compound combuttible oxides. The fimple combutible oxides are only four in number; namely, oxide of fulphur, ovide of phofpborus, charcoal, and carbonic oxife gas. All the fimple combuttible oxides are by combultion converted into acids. The compound combuttible oxides include by far the greater number of combultible bodies; for almolt all the animal and vegetable fubfances belong to thein, and the double bafe is ufually carbon and bydrogen.

The supporters of combuflion are a fet of bodics which are not of themfelves, thictly fpeaking, capable of undergoing combuftion, but which are abiolutely neceflary for the procels. All the fupporters known at prefent are fix ; viz. 1. O.ygen gas; 2. Air ; 3. Ga. feous oxide of azot; 4. Nitrous gas ; 5. Nitric acill; and, 6. Oxy-muriatic acid. There are other fubftances, to be mentioned afterwards, to which the author gives the name of partial fupporters; but all fupporters contain one common principle, namely oxygen.

The incombustible bodies are neither capabie of undergoing combuftion themfelses, nor of fupporting the combultion of bodies that are. Of courfe, they are not immediately connected with combuttion; but they are noticed here, becaufe fome of the alkalies and
earths, which belong to this clafs, poffifs certain pro. Comburperties in common with combuftibles, and are cap. Whe of exhibiting phenomena fomewhat aualogous to combultion; phenomena which the author delwibes under the title of femi-comluy lion.

From the preceding obfervations it is obvions, that, in every eafe of combultion, there mut be prefent a combufible and a fupporter: and Lavoifer afcertained beyond a doubt, that, cluring the procefs, the combuiftible always unites with the oxygen of the fupporter. This new compound owr anthor calls a produd of combufion; and maintains that every fuch prorluct is either water, or an acid, or a metallic oxide. He admits, indeed, that other bodies fometimes make their appearance during combuftion; but affirns that thefe, upon examination, will be found neither to be products, nor to have undergone combuition.

But though the combination of the combutible with oxygen be a conftant part of combultion, yet the facility with which combultibles burn is not in proportion to their apparent aflinity for that gas. Phofphorus, for inflance, burns more readily than charcoal; yet chareval is capable of abitracting oxygen from phofphorus. The combutible oxides take fire more readily than fome of the fimple combiftibles. Thus, charcual burns more cafily than carbon or diamond; and alcohol, ether, and oils, which are all compound comburtible oxides, are exceedingly combultible; whereas the metals, which are fimple combuftibles, do not burn, when air is the fupporter, but at a very high temperature. This facility of burning combuftible oxides is probahly owing to the weak affinity by, which their particles are united; and to the fame caufe, viz. the inferiority of the cohedion of heterogeneous particles, is to be attributed the fact, that fome of the compound fupporters oceafion combution in circumftances when the combuftibles would not be acted on by fimple fup. porters.

None of the products of combution are themfelves combutible, in the ufual and proper acceptation of that word. 'This, however, is not owing to their being faturated with oxygen, for feveral of them are capable of combining with an additional dore of it : but during this new combination nes ealoric nor light is ever emitted, and the componnd formed differs effentially from a mere produf of combution, leing by the additional dofe of oxygen converted into a fupportir.

When the fupporters, thus formed by the combination of oxygen with products, are made to fupport combultion, they do not lofe all their oxygen, but only the additional dofe which conftituted then fupporters. Of courfe they are again reduced to their original fate of products of combution; and as they owe their properties as fupporters, not to the whole of the oxygen which they contain, but to the additional dofe, the author calls them parial Jupporters.

All the partial-fupporters with which we are ac. quainted contain a metallic bafis; for metallic oxides are the only products at prefent known capable of combining with an additional dofe of oxygen. The fol. lowing oxides, which are products of combuftion, combined each with an additional dofe of oxygen, are partial fupporters : 1. Red oxide of iron; 2. Yellow oxide of gold; 3. White oxide of filver; 4. Red oxide of mercury ; 5. Arfenic acid; 6. Red and brown oxides

Coribus of lew!; 7 . Black oxide of manganefe; 8. Acidulous tion.

Thus it :mpears that feveral of the products of combuftion are capable of combining with oxygen; and hence it foliows that the incombultinility of products is not owing to their want of affuity for oxyzen, but to fome other caufe.

Though no mere produr of combution is capable of fupporline combution, this is not occafioned by any want of aflinity for combuttible bodies; for feveral of thefe products are capable of combining with an additional dofe of their bafes. By this combination, however, they lofe their properties as products, and are converted into comluflibles; whence it follows that the procefs mut differ effentially from that of combuftion. Thus fulphuric acid, a produt of combultion, by combining with an additional dofe of fulphur or its oxide, is converted into fulpburous acid; a fubftance which, from many of its properties, Dr Thomfon concludes to he combufible. Thus alfo phofphoric acid, a product of combuttion, is capable of combining with phofphorated hydrogen, and forming phofihorous acial, a combuttible body. When this lat acid is heated in contact with a fupporter, it undergoes combuftion; but it is only the additional dofe of the combuttible which burns, and the whole is converted into phofphoric acid. Hence we fee that it is not the whole bafis of thefe compounds that is combuftible, but merely the additional dofe; and therefore the compounds themfelves may be termed partial combulibles, to indicate, that part only of the bafe is capable of undergoing combution. Now, fince the products of combuttion are capable of combining with oxygen, but never exhibit the phenomena of cumbuftion, except when they are in the ftate of partial comburtibles, combuftible bodies mult contain Come principle, which they lofe during combuftion, and to which they owe their combuftibility; for after they have lof it, they unite to oxygen without exhibiting the phenomena of combution.

Thongh the products of combuttion are not capable of fupporting combuttion, they not unfrequently part with their oxygen juft as fupporters do, give it out to combuflibles, and convert them into products; but during this procefs no heat nor light is ever evolved. Wa= ter, for inftance, gives out its oxygen to iron, and converts it into llack oxide, a product; and fulphuric acid gives out its oxygen to phofphorus, and converts it into phofuhoric acid. Thus we fee that the oxygen of products is capable of converting combutibles into products, juft as the oxygen of fupporters; but during the combination of the laft only are heat and light emitted. The oxygen of fupporters, then, contains fomething which the oxygen of products wants.

Whenever the whole of the oxygen is abitracted from produets, the combutibility of their bafe is reftored as completely as before combuftion; but no fubltance is capable of abftracting the whole of oxygen, except a combullible or a partial combufille; and when this is lone, the combuftible or partial combuftible lofes its own combultibility by the procefs, and is converted into a product.

From thefe facts, which have been all cftablined by 3tahl, Lavoifier, and our author, it follows that the products of combultion may be formed without actual
combution: But in thefe cafes a nerv combufilie is al. ways evolved. The procefs is merely an interchange of combuftibility ; for the combutlible is converted into a product only by means of a product. Both the oxygen and the bafe of the produst having undergone combuftion, have loft fomething which is effential to combution. The procefs is merely a douhle decompofition. The product yislds its oxygen to the combuftible, while, at the fame time, the combuttible gives out fomething to the bale of the product. The combuftibility of that bafe, then, is reftored by the luis of its oxygen, and by the reftoration of fomething which it receives from the other combuftible thus converted into a product.

No fupporter can be produced by combuttion, or by any equivalent procefs. Now as all the fupporters, except oxygen gas, confift of oxygen combined with a bafe, it follows as a confequence, that oxygen may combine with a bafe, without lofing that ingredient, whatever it is, which gives occafion to combultion. The mere act of combination of oxygen with a bafe, therefore, is by no means the fame with combuttion.

Several of the fupporters and partial fupporters are capable of combining with combuitibles, without undergoing decompolition, or exbibiting the phenomena of combultion. In this manner the yellow oxide of gold, and the white oxide of filver, combine with ammonia; the red oxide of mercury with oxalic acid; and oxy-muriatic acid with ammonia. Thus alfo nitre and oxy-muriat of potah may be combined, or at leat jatimately mixed with feveral combuftible bodies, as in gunpowder, \&c. In all thefe compounds the oxygen of the fupporter retains each the ingredients proper to itfelf, which render them fufceptible of combuition ; and hence the compound is fill combuftible. They butn indeed with amazing facility, not only when hested, but when triturated or liruck fmartly with a hammer; and have received, in conlequence, the name of detonating or fulminating bodies.

Such are the properties of the combultibles, the fupporters, and the products; and fuch the phenomena which they exhibit when made to act upon each other. If we compare together the fupporters and the producs, we flall find that they refemble each other in feveral refpects. Both of them contain oxygen as an effential part ; both are capable of converting combuftibles into products ; and of both feveral combine with combur. tibles and with additional dofes of oxygen. But they differ widely from each other in the phenomena which accumpany their action on combultibles. The fupporters convert thefe bodies into products; and at the fame time combuftion, or the emifion of light and heat, takes place; whereas the products convert combuftibles into products without any fuch emiffiun. Now as the ultimate change produced upon combultibles by buth thefe fets of bodies is the fame, and as the fubftance which combines with the combuftibles is in both cafes the fame, namely oxygen, we mult conclude that this oxygen in the fupporters contains fomething which the oxygen of the products wants ; fomething which feperates during the paffage of the oxygen from the fupporter to the combuftihle, and occalions the combuf. tion, or emiffion of fire, which accompanies this paffage. The oxygen of fupporters, then, contains fome ingre-

\section*{C O M}

Cambuf dient which the oxygen of produts wants. Many cirtion. cumflances concur to render it probable that this in-
gredient is caloric.

The combufibles and the producs alfo refemble each other in feveral refpects. Both of them coatain the fame or a fimilar bafe; both frequently combine with combutibles, and likewife with oxygen : but they differ effeutially in the phenomena which accompany their combination with oxygen. In the one cafe, fire is emitted; in the other, not. If we recolled that no fubftance but a combuftible is capable of reftoring combuftibility to the bafe of a product, and that at its doing fo, it always lofes its own combuftibility; and if we recollef farther, that the bafe of the product does not exhibit the phenomenon of combuftion even when it combines with oxygen-we canuot avoid concluding, that all combultibles contain an ingredient which they lofe when converted into products, and that this lufs contributes to the fire which makes its appearance during the converfion. Many circumflances concur to render it probable that this ingredient is Licht.

If we fuppofe that the oxygen of fupporters contains caloric as an effential ingredient, and that light is a component part of all combufibles, the phenomena of combuftion, numerous and intricate as they are, admit of an eafy and obvious explanation. The compouent parts of the oxygen of fupporters are two; namely, i. A bafe; and, 2. Caloric. The component parts of combuftibles are likewife two ; namely, I. A bafe; and, 2. Light. During combuftion the bafe of the oxygen combines with the bafe of the combuftible, and forms the product ; while at the fame time the caloric of the oxygen combines with the light of the combuftible, and the compound fies off in the form of fire. Thus combuttion is a double decompofition; the oxygen and combultible divide themfelves each into two portions, which combine in pairs; the one compound is the product, and the other the fire, which efcapes. Hence the reafon that the oxygen of products is unfit for combuftion: It wants its caloric. Hence the reafon that combution does not take place when oxygen combines with products, or with the bafe of fupporters: Thefe bodies contain no light. The caloric of the oxygen of courfe is not feparated, and no fire appears. Hence alfo the reafon why a combuftible alone can reftore combuntibility to the bafe of a product. In all fuch cafes a double dccompofition takes place. The oxygen of the product combines with the bafe of the combuftible, while the light of the combuftible combines with the bafe of the product."

Such is the theory of Dr Thomfon, propofed to the - Nichot. public* under the humble title of Remarks on Combuflion. his reafoning refts, we carr conceive to it but one plaufible objection. Why is not the caloric of the oxygen feparated when that gas combines with badies deffitute of light ? That there is caloric emitted on many occafions, when no light appears with it, is incontrovertible; but perlaps the matter of light is chemically combined with all bodies which emit heat, though it never flies off but when the heat is great. If this be a fact, and it is not improbable, the theory before us feems to be eftablifhed; for it not only completes the theory of Lavoifier, but affords an eafy folution to fome pheSuppl. Vol. I. Part. II.
nomena which have been thought inconfilent with that theory.

In the year 1793, the affociated Dutch chemita drew the attention of philofophers to a curious phenomenon which accompanies the formation of forne of the fulphurets. When eight parts of copper, iron, lead, tin, or zinc filings, and three parts of flowers of fulphur, are mixed together in a glais receiver, and the veffel placed upon burning coals, the mixture melts, a kind of explofion takes place, it becomes fuddenly red hot, and a glow, like that of a piece of red hot charcoal fanned with bellows, rapidly pervades the whole. When this difappears, the mixture is found in the flate of folid fulphuret of copper, or iron, \&cc. The experiment fucceeds whether the veffel be filled with air, or with azotic or hydrogen gas, or even with water or mercury. What is fingular in this experiment is the glowing red beat, or the emifion of fire, which accompanies the combination of the fulphur and metal. This emiffion being the fame which takes place during combultion, the procefs has been confidered as a combuftion, and fated as fuch, by the German chemifts, as an objection to Lavoifier's theory. But our author fhews that no objection can be urged from this experiment againft the truth of that theory as far as it goes; and that all the phenomena are fully explained by the additions which he has made to it. Thus, we have only to recollect, 1. That the fulphur is in a melted fate, and therefore contains caloric as an ingredient ; 2. That the metals which produce the phenomenon contain light as an effential ingredient; and, 3 . That the fulphuret produced is always in a folid ftate-and the explanation is fimple and obvious. The fulphur combines with the bafe of the metal, while the caloric, to which the fulphur owed its fluidity, combines with the light of the metal, and the compound flies off under the form of fire.

Thus the procefs is exaclly the fame with combuftion, excepting what regards the product. The melted fulphur acts the part of the fupporter, while the metal occupies the place of the combufible. The firf furnifhes caloric, the fecond light, while the bafes of both combine together. Hence we fee that the bafe of fulplurets (and the fame thing holds of fome phorphurets) refembles the bafe of products in being deflitute of light, the formation of thefe bodies exhibiting the feparation of fire like combufion; but the product, differing from a product of combuftion in being deftitute of oxygen, our author propofes to diftinguith the procefs by the title of femi-combufion, to indicate that it poffeffes one half of the characteriftic marks of combuftion, but is deftitute of the other half.

COMPASS, or Mariner's Steering Compass, is an inftrument of fo great value, that every improvement of it, propofed by men of fcience or of experience, is entitled to notice. We fhall therefore lay before our readers fome obfervations on the defects of the compafs in common ufe, which have fallen into our hands fince the article in the Encycloprodia was publifhed. The firf is by Captain O'Brien Drury of the royal navy, and relates entirely to the needle.
" Experiance (fays this officer) hhews us, that the needle of a compafs, as well as all other magnets, whether artificial or real, perpetually lofes fomething of its

\section*{C O M}

Comtaio. ceeding powers, whech often produces a difference exgreat errors in thip-reckonings proceed more frequently from the incorrecuels of the compals than from any other eaufe.
"Sicel cannot be ton lighly tempered for the needle of a fea-compafs, as the more it is hardened the more permaneut is the magnetifm it receives; but, to preferve the magnetifin, and confequently the polarity of the needle, I recommend to have the needle cafed with thin, well-pulihsed, foft iron ; or elfe to have it armed at the poles with a bit of foft iron. I have found, from many experiments, that the cafed needle preferved its magnetifm in a much more perfect degree than the needle note eafed; and I have fometimes thought that the magnetic power of the cafed necdle had inreafed, while the magnetic power of the uncafed and unarmed needle always lofes of its polarity."

This is not an opinion taken up at random, but is the refult of what appears to have been a fair and judicious experiment ; for our muthor placed a cafed needle, an armed needle, and one without either cale or armour, in a room for three months ; each having at that time precifely the fame direction, and nearly the fame degree of force. At the expiration of the three months, he found that the cafed needle and the armed needle had not in the leaft changed their direction; but the other had changed two degrees, and had loft very confiderable of its magnetic power. If there was any change in either of the other netdles, it was too inconfiderable to be perceived.

Thefe obfervations feem to be new, and may tend to the improvement of the compafs. But it is not with refpect to the needle only that this inftrument is defeetive. Mr Bernard Romans of Penfacola well obferves, that, on another account, the heavieft brafs compaffes now in wfe are by no means to be relied on in a hollow or high fea. This is owing to the box hanging in two brafs rings, confining it to only two motions, both vertical and at right angles with each other; by which confinement of the box, upon any fuccuffion, more efpecially fudden ones, the card is always put into too much agitation, and, before it can well recover itfelf, another jerk prevents its pointing to the pole ; nor is it an extraordinary thing to fee the card unfhip. ped hy the violence of the fhip's pitching.

All thefe inconveniences are remedied to the full by giving the box a vertical motion at every degree and minute of the circle, and compounding thefe motions with a horizontal one of the box as well as of the card. By this unconfined difpofition of the box, the effects of the jerks on the card are avoided, and it will always very fteadily point to the pole. "Experience (fays our author) has taught me, that the eard not only is not in the fmalleft degree affected by the hollow fea, but that, in all the violent fhocks and whirlings the box can receive, the card lies as ftill as if in a room unaffected by the leall motion.
"Lately a compafs was invented and made in Holland, which has all thefe motions. It is of the fize of the common brafs compaffes; the bottom of the brafs box, inftead of being like a bowl, mult te raifed into a hollow cone, like the bottom of a common glafs bottle; the vertex of the cone mult be raifed fo high as to leave but one inch between the card and the glats; the box
mult be of the ordinary depth, and a quantity of lead Compar. mult be poured in the bottom of the box, round the bafe of the cone ; this fecures it on the ftile whereon it traverfes.
"This file is firmly fixed in the centre of a fquare wooden box, like the common compafs, except that it requires a thicker bottom. The ftile mult be of brafs, about fix inches long, round, and of the thieknefs of one-third of an inch; its head blunt, like the head of a fewing-thimble, but of a good polifh : the ftile mult ftand perpendicular. The inner vertex of the cone mult alfo be well polifhed ; the vertical part of the cone ought to he thick enough in allow of a well-polifhed cavity, fufficient to admit a fhort flile, procceding from the centre of the eard whereon it traverfes. The com. pafs I faw was fo conftructed; but I fee no reafon why the file might not proceed from the centre of the vertex of the cone, and fo be received by the card the common way. The needle mult be a magnetic bar, blunt at each end ; the glafs and cover are put on in the common way."

A compafs of this kind was fubmitted to our author's examination by the captain of a lloop of war, who affured him, that in a hard gale, which lafted fome days, there was no other compafs of the fmalleet fervice. Mr Romans was fatisfied that the officer did not praife the apparatus more than it deferved; and we feel ourfelves ftrongly inclined to be of the fame opinion.

It muft not be concealed, however, that the ingenious Mr Nicholfon feens to think very differently of all fueh contrivanees. In a paper publifhed in the ninth number of his valuable Journal, he labours to prove, that the compafs is very little difturber by tilting the box on one fide, but very much by fudden horizontal changes of place ; that a fcientific provifion againtt the latter is therefore the chief requifite in a well made inftrument of this kind; and that no other provifion is requifite or can cafily be obtained, than good workmanfhip according to the common conftruction, and a proper adjuftment of the weight with regard to the centres or axes of fufpenfion. The fame author is of opinion, that it would greatly improve the compafs to make the needle flat and thin, and to fufpend it, not, as is moft commonly done, with its flat fide, but with its edge uppermoft ; for it being a well-known fact, that foft ftel lofes its magnetifn fooner than bard, it is obvious, that unlefs both fides of a needle be equally hard (which is almoft impofible if they be diftant from each other), the magnetic power will, in procefs of time, deviate towards the harder fide.

The Cbinefe Compass has fome advantages over the European compafs, from which it differs with refpect to the length of the needle, and the manner in whieh it is fufpended. In the corpafs of China, the magnetic needle is feldom above an inch in length, and is lefs than a line in thicknels. It is poifed with great nicety, and is remarkably fenfible, or, in other words, points fteadily towards the fame portion of the heavens. This theadinefs is accomplifhed by the following contrivance: "A piece of thin eopper is ftrapped round the centre of the needle. This copper is rivetted by its edges to the upper part of a fmall hemifpherical cup, of the fame metal, turned downwards. The cup fo inverted ferves as a focket to receive a fteel pivot rifing from a cavity made into a round piece of light wood or cork, which.
sompars, thus forms the compafs-box. The furfaces of the foc-Comple- ket and pivot, intended to meet each other, are perment. fectly polifhed, to avoid, as much as polfible, all friction.

The cup las a proportionably broad margin, which, befide adding to its weight, tends, from its horizontal pofition, to keep the centre of gravity, in all fituations of the compafs, nearly in coincidence with the centre of furpenfion. The cavity, in which the needle is thus fufpended, is in form circular, and is little more than fufficient to remove the needle, cup, and pivot. Over this cavity is placed a thin piece of traufparent talc, which prevents the ncedle from being affected by any motion of the exterual air ; but permits the apparent motion of the former to be cafily obferved. The finall and fhort needle of the chinefe has a matcrial advantage over thofe of the ufual fize in Europe, with regard to the inclination or dip towards the horizon; which, in the latter, requires that one extremity of the needle flouid be made fo much heavier than the other as will counteract the magnetic attraction. This being different in different parts of the world, the needle can only be accurately true at the place for which it had been conftructed. But in fhort and light needles, fufpended after the Chinefe manner, the weight below the point of fufpenfion is more than fufficient to overcome the magnetic power of the dip or inclination in all fituations of the globe; and therefore fuch needles will never deviate from their horizontal pofition."
COMPLEMENT, in general, is what is wanting, or neceffary, to complete fome certain quantity or thing.

Aritbmetical COMPLEMENT, is what a number or logarithm wants of unity or 1 with fome number of cyphers. It is bett found by begiuning at the left hand dide, and fubtracting every figure from 9 , except the laft, or right hand figure, which mult be fubtracted from 10. So, the arithmetical comp. of the log. 9.5329714 , by fubtracting from 9 's, \&c. is 0.4670286 .

The arithmetical complements are much ufed in operations by logarithms, to change fubtractions into additions, which are more couveniently performed, efpecially when there are more than one of them in the operation.

Complement, in aftronomy, is ufed for the diftance of a far from the zenith; or the arc contained between the zenith and the place of a ftar which is above the liorizon. It is the fame as the complement of the altitude, or co-altitude, or the zenith diltance.

Complement of the Courfe, in navigation, is the quantity which the courfe wants of \(90^{\circ}\), or 8 points, viz. a quarter of the compafs.

Complfment of the Curtain, in fortification, is that part of the anterior fide of the curtain which makes the cemigorge.

Complement of the Line of Defonce, is the remainder of that line, after the angle of the flank is taken away.

Complenients of a Parallelogram, or in a Parallelogram, are the two leffer parallelugrams, made by drawing two right lines parallel to each fide of the given pasallelogram, through the fame point in the diagonal.

COMPLEMENT of Life, a term much ufed, in the doctrinc of life aunuities, by De Moivre; and, according to him, it denotes the number of years which a given life wants of 86 , this being the age which he confidered as the utmoft probable extent of life. So 56 is the complement of 30 , and \(3 \circ\) is the complement of 56 .

COMPOSITION of PRORORTION, according to the 15 th definition of the sth book of Euclid's Eilc. ments, is when, of four proportionals, the furn of the firft and fecond is to the feconds as the fun of the third and fourth is to the fourth.

Composition of Ratios, is the adding of ratios to. gether: which is performed by nultiplying together their correfponding terms, viz. the antecedents together, and the confequents together, for the antecedent and confequent of the compound ratio; like as the addition of logarithms is the fame thing as the multiplication of their correfponding numbers. Or, if the terms of the ratios be placed fraction-wife, then the addition or compofition of the ratius is performed by multiplying the fractions together.
COMPOUND interest. See Algebza, Engycl. and Compound INqEEEST in this Supplement.
CONCEPTION, a city of Chit in South America, was vifited in 1786 by the celebrated, though unfortunate, navigator La Peroufe, who gives an account of fone particulars relating to it very different from what we have given of it under the article Conception, Encyel. So far are the Spaniards frum living in fecurity with refpect to the Indians, that, accordug to him, they are under continual alarms of being atacked by thofe bold and enterpriing lavages. "The Indians of Chili (fays he) are no longer thofe Amcricans who were infpired with terror by European smms. The increafe of horfes, which are difperfed through the interior of the immenfe delerts of America, and that of oxen and theep, which has alfo been very great, have converted there people into a nation of Arabs, in every thing refembling thofe who inhabit the deferts of Arabia. Conftantly on horfeback, they confider an excurfion of two hundred leagues as a very fhort journey, They march accompanied by their flocks; feed upun their flefh and milk, and fometimes upon their bluod; and cuver thenfelves with thicir fkins, of which they make helmets, cuiraffes, and bucklers. A!! their old cuttoms are laid afide. They no longer feed upon the fame fruits, nor wear the fame drefs; but have a more friking refemblance to the Tartars, or to the inhabitants of the banks of the Red Sea, than to their ancer. tors, who lived two centuries ago. So decifive an influence has the introduction of two domeftic avimals liad upon the manners of that once timid people. It is eafy to conceive what formidable enemies they mult now be to the Spaniards; for fuppofing them defeated in battle, how is it poflible to follow them in fuch long excurtions? How is it pulfible to prevent affemblages, which bring together in a fingle puint nations feattered over 400 leagues of country, and thus form armies of 30,000 men :"
Of thefe people M. Rollin, furgeon-majur of the frigate la Buflale, gives the following phytiological particulars: "They are, in general (lays he), of lower fature, and lefs robuft, than Frenchmen, though they endure with great courage the fatigues of war and all its attendant privations. There is a great famenefs in the phyfiognony of moft individuals. The face is larger and rounder than that of Europeans. The featurcs are more itrongly marked. T'he eyes are fmall, dull, black;, and deeply feated. The furehead is low; the cyebrow 8 black and haggy ; the nofe thort and flatteried; the check-bones high ; the lips thick; the moth wide; 3 L 2
```

Com,mi.
liun

```
 1
Concep.
 tion.

\section*{C O N [452] C O N}
conception and the chin diminutive. The swomen are fhort, ill- other; and this kingdom, of which the productions, if condorcee \(\underbrace{\text { made, and with difgulting countenances. Both men }}\) and women bore their nofe and ears, which they adorn with glafs or mother-of-pearl trinkets. The colour of their fkin is a reddifh brown: That of their nails is fimilar, but not fo drep. The hair of both is black, coarfe, and very thick. The men have little beard; but their arm-pits and parts of fex are well furnifhed with hair, which parts, in moft of the women, have none."

The military governor of Conception, who was an Irihman, returned, while M. de la Peroufe was there, from the frontiers of the Spanifh fettlements, where he had jult concluded a glorious peace with the Indians. This peace was highly neceffary to the people of his government, whofe diftant habitations were expofed to the inroads of favage cavalry, whofe practice it is to maffacre the men and children, and to make the women prifoners. This amiable man, whofe name was Higguins (probably Higgins), had fucceeded in gaining the good-will of 'thefe favages, and thereby rendered the moft fignal fervice to the nation that had adopted him. For while the Indians and Spaniards are at variance, an alliance with the former by any of the maritime powers of Europe would become fo formidable to the latter, as to induce them, for fear of their lives, to abandon their fettlements in Chili, and retire to Peru. This was clearly feen by Monneron the engineer on the expedition, who, with the true fpirit of a Frenchman, pointed out to his government the method of wrefting from its moft faithful ally one of the moft valuable provinces of the Spanith empire.

La Peroufe defcribes the common people of Conception as much addicted to thieving, and the women as exceedingly eafy of accefs. "They are a degenerated and mongrel race (lays he); but the inhabitants of the firt clafs, the true bred Spaniards, are polite and obliging in the extreme. The bifop was a man of great fenfe, of agreeable manners, and of a charity of which the Spanifh prelates afford frequent examples." He was a Creole, and had never been in Europe. Of the monks our author gives a very different claracter. "The misfortune (fays he) of having nothing to do, the want of family ties, the profeffion of celibacy, without being feparated from the world, and their living in the convenient retirement of their cells, has rendered, and could not fail to render, them the greateft profigates in America. Their effrontery is incooceivable. I have feen fome of them flay till midnight at a ball; aloof, indeed, from the good company, and feated among the fervants. Thefe fame monks gave our young men more exact information than they could get elfewhere, concerning places with which priefts ourgt to have been acquainted only in order to interdict the entrance."
M. de la Peroufe reprefents that part of Chili, which is called the Bifbopric of Conception, as one of the mott fertile countries in the univerfe. Corn yields fixty to one; the yineyards are equally productive; and the plains are covered with innumerable flocks, which, tho' left to themfelves, multiply beyond all imagination. Yet this colony is far from making the progrefs that might be expected from a fituation fo favourable to an increafe of population. The influence of the government inceffantly counteracts the climate and the foil. Probibitory regulations exitt from one end of Chili to the
carried to their ligheft pitch, would feed the half of Europe; of which the wool would fuffice for the manufactures of Great Britain and France, even when manufactures flourifhed in the latter country; and of which the cattle, if falted dow.s, would produce an inmenfe revenue-is entirely deftitute of commerce, and its inhabitauts funk in foth and iodolence. Unlefs, therefore, Spain change its fyftem entirely, Chili will never reach that pitch of profperity which might be expected from its fituation and fertility. For the latitude and longitude of Conception, fee Encycl.

CONDORCET (Jean Antoine Nicolas Caritat de), was born at Ribemont in Picardy, the 17 th of September 1743 , of a noble and very ancient family. At the age of 15 he was fent to ftudy philofophy at the college of Navarre, and had the good fortune to fall into the hands of an able profeffor, who has fince diftinguifhed limfelf by his geometrical works. The young Condorcet had no relifh for the bufinefs of the firtt courfe, for the quibbles of ontology and pneumatology, and all the wretched appendages of fchool metaphyfics: But in the following year, his fludies, being directed to the mathematical and phyfical fciences, were entirely congenial to his tafte; and though there were upwards of 120 fcholars, he diftinguifhed himfelf above them all. At Eafter he held a public thefis, at which Clairaut, D'Alembert, and Fontaine, alfifed. He now returned home, but continued to cultivate geometry. To enjoy more opportunities of improvement, he removed in 1762 to Paris; where he attended the chemical courfe of Macquer and Beaumé, and frequented the literary focieties which D'Alembert had formed at the houfe of Mademoifelle de Lefpinaffe.

In 1765 , when only 22 years old, he publifned a work on the Integral Calculus, which difcovered vaft extent and originality of views. Condorcet was already numbered with the foremoft mathematicians in Europe. "There was not (fays La Lande) above ten of that claís; one at Peterßurgh, one at Berlin, one at Bafle, one at Milan, and five or fix at Paris; England, which had fet fuch an illuitrious example, no longer produced a fingle geometer that could rank with the former." It is mortifying to us to confefs that this remark is but too much fonnded in truth. We doubt not but there are in Great Britain at prefent mathematicians equal in profundity and addrefs to any who have exifted fince the illultrious Newton; but thefe men are not known to the learned of Europe, becaufe they keep their fcience to themfelves. They have no encouragement, from the tafte of the nation, to publifh any thing in thofe higher departments of geometry which have fo long occupied the attention of the mathematicians on the continent.

In 1767 Condorcet publifhed his.folution of the problem of three bodies; and in the following year, the firit part of his Analytical Eflays; in which he entered very profoundly into ihofe arduous queftions. He was received into the academy on the 8th of March 1769: and from that time till \({ }^{1} 773\) he enriched their annual volumes with memoirs on infinite feries, on partial and finite differences on equations of condition, and on other objects of importance in the higher calculus. It muft be regretted, that he indulged fpeculation perhaps to excels; the methods that he propofes for inte.
gration

\section*{C O N [453\(] \quad \mathrm{C} 0 \mathrm{~N}\)}

Condorcet gration are fometimes of a nature fo extremely general, as to refufe to be accommodated to practice. Profecuting thofe refearchee for feveral ycars longer, he conlpofed an ample Treatife on the Integral Calculus, in five parts, comprifing the doctrines and their application. It was afterwards copied out for the preis in 1785 by Keralio, formerly governor to the Infant of Parma. Only 128 pages were printed; but the manufcript fill exifts; as does that of an elementary Treatife on Arithmetic. It is to be hoped that both of thefe will yet be given to the public.

His attention was not, however, entirely abforbed in thofe recondite fudies. He publifhed about this time an anonymons panphlet, intitled \(A\) Lefter to a Theologian; in which he replied with keen fatire to the attacks made by the author of the Tbree Centuries of Literature againt the philofophical fect. "But (fubjoins the prudent La Lande) he pulhed the matter fomewhat too far; for, admitting the juftuefs of his fyttem, it was more prudent to confine within the circle of the initiated thofe truths which are dangerous for the multitude, who cannot replace by found principles what they would lofe of fear, of confolation, and of hope." Condorcet was now leagued with the atheifts; and La Lande, who wifines well to the fame fect, cenfures not his principles, but only regrets his ralhnefs. He was indeed, as Mr Burke obferved, a fanatic atheift and furious democratic republican.

On the 10th of June 1773 he was made fecretary of the academy of fciences; and that important truft he difcharged through the reft of his life with great ability and uncommon reputation. The dutics of his office required him to write the lives of the deceafed academicians, which he performed with diligence, judgment, and univerfal applaufe: And what fyecies of compofition is capable of being rendered fo extenfively ufeful as biography? In the moft infinuating form it conveys inftruction; and, befowing vitality and action on the rules of conduct and on the leffons of virtue, it fires the breaft with the nobleft emulation. The life of a philofopher mult alifo include a portion of the hiftory of fcience. We there trace the fucceffive fteps which led to difcoveries, and learn to eftimate the value of thofe acquifitions by the efforts that were made, and the obitacles that were furmounted. The literati of France have long excelled in the compofition of Eloges: but thofe of Coudorcet are of a very fuperior caft. Replete with information and genuine fcience, they maintain a dignified impartiality, and difplay vigour of imagination, with boldnefs and energy of ftyle. The intrepidity (fay his Panegyrits) with which he uttered the fentiments of truth and of freedom, could not have been expected from the mouth of an academician under an abfolute monarchy. It could not, indeed, till the prefent eventful age, have been expected under any government whatever; for what he called the fentiments of truth were the dogmas of debafing irreligion, which would not have been permitted in the far-fanied republics of Greece and Rome; and what he dignified with the appellation of the principles of freedom, experience bas fhown to have been the immediate fourcc of anarchy, out of which has fprung a defpotifm, the heavieft under which any people have groaned fince the creation of the world.

Befides the eloges, which properly belonged to his province, Condorcet publifhed in a feparate volume
the lives of thofe fuvants, who, having died before the Condorece: renewal of the acancmy in 1699 , did not fall in with the plan of Fontenelle. The lupprefion of the hittory of the aeademy, or the regular abltracts of the printcd memoirs, which he effected in 1783 , affurded him more leifure. In 1787 appeared, yet without a name, his account of Turgot; an inctlimable piece, whieh, in developing the beneficial views of a virtuous and enlightened ininifter, exhibits the neateft abltract of the principles of political economy that is extant in any language. Ncarly about the fame time he compofed that elegant life which is prefixed to the fplended edition of the works of Voltaire. Condorcet had been elected member of the Acadonie Françaife in 1782 ; and his re. putation as a fine writer was fo well eftablifhed, that bookfellers were fulicitous to cover their undertakings with the fanction of his name. He promifed an additional volume to the tranflation of Euler's Letters to a German Princefs ; but it was never finifhed. The part which was printed, amounting to only 112 pages, contains the elements of the calculation of probabilities, and a curious plan of a dictionary, in which objects fhould be arranged by their qualities merely. A new tranflation of Smith's celebrated \(W\) ealth of Nations was likewife announced with the notes of Condorcet, tho' be was never heartily engaged about it. On equally night grounds, his name was lent to the Bibliotheque de l'Homme Public ; and the facility of his temper laid him but too open, at this period, to fuch difingenuous arts. Indeed difingenuous arts feem to be the natural offspring of the prefent philofophy of France; for the tricks played by Voltaire to his bookfellers, which are well known, would in this country have funk into difgrace the greatelt genius that ever lived; and the attempt of Diderot to cheat the late emprefs of Rufla, by felling to her, at an immenfe price, a library, which he pretended to be one of the mott valuable in Europe, when he poffeffed not perhaps one hundred volumes, was difingenuity ingrafted on impudence. But to return from this hort digreffion.

Thefe literary purfits did not entirely feduce Condorcet from more profound ftudies. At the inftigation of Turgot, he fought to apply analy fis to queflions of politics and morality. His firft Memoir on Probabilities was read to the academy in 1781. He afterwards extended his refearches to the confideration of clections, fales, and fucceffions; and digefting thofe remarks and calculations into a fyftematic fhape, he publifhed in 1785 a quarto volume, containing the elements of a new and important fcience.

It is eafy to conceive the intereft that Condorcet would take in the fuccefs of the revolution. Aware of the prodigious influence of newfpapers, he contributed largely to the Fournal de Paris, and the Cbronique, which acquired great celebrity from the elegance of his. pen; and not very long before his death, he began, in concert with the famous Sieyes, a Journal of Social Inftruction. In 1791 he wrote a pamphlet in favour of republican government, which procured him a feat in the Legiflative Affembly, and the academy permitted him fill to retain the office of fecretary. He drew up a manifefto on the fubject of the war menaced by the crowned heads; and a very ample report on public inftruction, which has in part been lately adopted by the councils of France. He was an early member of the Jacobin

\section*{C O N [454 \\ \(\mathrm{C} O \mathrm{~N}\)}

Condorece. Jacobin clob, that active inftrument of the revolution : but perceiving the progreflive ferocity of its meafures, he foriook it in Mareh 1792.

On the s 3 th ol Auguft, when the king was conducted to the temple, Condorcet was nancd by the Affembly to draw up a juflificatory memorial addreffed to all Europe. At the diffolution of that Affembly, he was chofen deputy to the National Convention, and for fome tinse acted a diftinguifised part in its deliberations. He was at the head of the committee appointed to prepare the plan of a republican conftitution. But, in the meanwhile, the faction of the Mountain, with a peculiar energy of character, was rapidly acquiring ftrength. The report of the committee was coldly received-was even treated with contempt ; and, on the 3 If of May 1-03, Robefpierre completely triumphed.

During the conteft between the Mountain and the Brifotises, Condorcet maintained a cautious filence. Tor eight months he luardly fpoke in the Convention; and feems to have been fingularly wary in not riking an opinion on any party queftion. At length he was fo far roufed by the indignities which the legiflative body daily endured, that he propofed the diffolution of the Convention, and the calling of a now one. This jrobably exafperated the Mountain to fuch an excefs, that in a fubfequent infurrection his printing-office was deftroyed. He was not, however, included in the lint of profcribed deputies; nor was he one of the members who figned the famous proteft againlt the proceedings on the 31 ft of May. See Revolution (Encycl.), n \({ }^{\text {o }}\) 159.

Dut thongh he could conquer every fentiment of friendmip, and ftifle every indignant fenfation at the deftruction of lis party, his vanity as an author propelled him to a fatal exertion. When the conlfitution of 1793 was accepted, he publifhed \(A n\) Addrefs to all French Citizens; reprobating the extreme rapidity and want of confideration with which it had been framed and accepted, and detailing the numerous acts of violence by which the prevailing party in the Convention had eftablifhed their influence. This rafh aet placed him in the power of the Mountain : Chabot denounced the publication, and moved for a decree of accufation againft Condorcet ; which was immediately granted.

He efcaped from the arrell, and concealed himfelf nine months in the houfe of a woman in Paris, who, though the knew him only by name, had the generofity to rifk her life, and fuftain all the inconveniences arifing from her harbouring fuch a gueft. At length a domiciliary vint was threatened, and he was obliged to quit his afylum. He had the good fortune, though unprovided with a paffport or civic card, to efcape through the barrier; when he went to the countryhoufe of a friend on the plain of Mont-Rouge. Unfortunately his friend was at Paris, and not expected to return in lefs than three days; during which the fugitive was obliged to wander about, expofed to hunger, cold, fufpenfe, and the pain arifing from a wound in his fout. At length his friend returned into the country, and found him; but confidering it dangerous to take him to his houfe in the day-time, requefted him to wait till night, when he would receive and conceal him. Condorcet, on that day which his friend had fixed as the end of his miferies, forgot the dictates of prudence, and went to an inn at Chemars, where he ordered an
amelette. His \{qualid appearance, dirty cap, torm Condorcet, clothes, leamefs, and voracity, fixed the attention of a municipal officer, who afleed him whence he came, whither lie uas groing, and if he had a paffport? His confution at thefe interrogatories betrayed hom, and he was inftantly apprehended. He was cunlined that night in a dungeon, and in the morning was lound dead. He always carried about him a dofe of poifon, with which he terminated his life, to avoid a trial before the revolutionary tribunal, and fhun the gradual approach of inevitable deftruction.

Thus miferably perimed a philofopher, whofe "genius (fays Madame Roland) was equal to the compreheution of the vafteft fubjects; but he had no other characteriftic befides fear. It may be faid of his underflanding, combined with his perfon, that it was a fine effence abforbed in cotton. No one could fay of him, that in a feeble body he difplayed great courage ; for his heart and his condtitution were equally weak. After having deduced a principle, or demonftrated a fact, in the Affembly, he would give a vote decidedly oppotite ; overawed by the thunder of the tribunes, armed with infults, and prodigal of threats."

It was during the period of his concealment at Pa ris, uncertain of a day's exiftence, that he wrote his Sketch of the Progrefs of the Human Mind ; a production which unduubedly difplays genius, thuugh it contains fome of the mof extravagant paradoxes that ever fell from the pen of a philufopher. Among uther wonderful things, the author inculcates the polfibulity, if not the probability, that the nature of man maybe improved to abfolute perfection in body and mind, and his exiftence in this world protracted to immortality. So firmly does he feem to have been perfuaded of the truth of this unphilofophical opinjon, that he let him. felf feriouly to contider how men fhould conduct themfelves when the population thould become too great for the quantity of tood which the earth can produce; and the only way which lie could find for counteracting this evil was, to check population by promifcuous concubinage and other practices, with an account of which we will not fully our pages. Yet we are told by La Lande, that this Nietch is " only the outline of a great work, which, had the author lived to complete it, would have been confidered as a monument erected to the bonour of human nature! !!" La Laude, indeed, fpeaks of the author in terms of high refpect; and his abilities are certainly unquettionable : but what fall we think of the murals of that man, who fint purfued with malicions reforts, and afterwards hired ruffians to affaffinate \({ }^{*}\), the old Duke of Rochetoucalt, in whote houre he had been brought up; by whom he had been treat- * Jour. de ed as a fon ; and at whofe folicitation Turgot creatediy92. for him a lucrative office; and by the power of the court raifed him to all his eminence ? There is a living Englin writer, who has laboured hard to prove that gratitude is a crime. Condorcet mut furely have held the fame opinion ; and therefore could not blame thofe low-born tyrants who paffed againft him what we muft think an unjult decree of acculation; for it was in fome degree to his writings that thofe tyrauts were indebted for their power.

About the end of the year \(: 786\), Condorcet married Marie-Louile Sophie de Grouchy, whofe youth, wit, and beauty, were lefs attractive in the eyes of a philo-
topher

\section*{C O N}

Cunferva fopher than the tender and courageous anxiety with
If . which the watched the couch, and affuaged the fuffer-
ings, of the fon of the prefident du Paty, who had heen bitten by a mad dog. This union, however, we are told, was fatal to his repofe; it tempted him into the dangerous vad of ambition ; and the idea of providing for a wife and daughter induced him to feek for offices which once he would have defpifed.

CONFERVA jugalis (fee Conferva, Encycl.) is introduced here merely on account of a curious circumftance refpecting it, which was communicated, not long aro, to the Philomatic Society at Paris. Citizens Charles and Romaio Coquebert having collected fome of this Conferva in the neighbourhood of Paris, afcertained, by means of an excellent microfcope, conftructed by Nairne and Bluat, that, in this fpecies, there are male and female filaments, which unite by an actual copulation; that certain globules contained in the male filaments pafs into the interior part of the female filaments; and that by this union there are formed in the latter feeds, or, if we may ufe the exprefion, fmall ova, which reproduce the fpecies. This is the firft inftance, in the vegetable kingdom, of a reproduction abfolutely analogous to that which we find among animals. - PbiLofophical Magazine, \(\mathrm{N}^{\circ} 3\).

May this fact be depended on? We quettion not, in the dighteft degree, the veracity of the editor of the very refpectable mifcellany from which we have copied it ; but we confefs ourfelves inclined to admit the phyfiological difcoveries of citizen philofphers with great hefitation. The fact, if real, is certainly curious, and may lead to important conclufions; and we therefore recommend an inveftigation of its truth to our botanical readers.

CONGELATION. See Chemistry in this Suppiement, \(1^{\circ} 280-283\).

CONTAGION (fee Encycl.) is a rubject on which much has been written to very little purpofe. Of adl the attempts which have been made to account for it, there is not one that can be thought fatisfactory. This, however, is not perhaps a matter of great inportance, if a method could only be difcovered to fop the progrefs of contagion where it is known to have place. Among the many benefits which may be reaped from the late difcoveries in chemitry, even this defideratum promifes to be one; and we furely need not add one of the greatefl. Dr James Carmichael Smyth, phyfician extraordinary to his Majefty, fuggefted, in the year 1795 or \({ }^{1796}\), a procefs for determining the effect of the nitric acid in deftroying contagion ; and experiments, according to his directions, were made on board the Union and other fhips at Sheernefs.

The Union was an hofpital fhip, and the experiment on board her was conducted dy Mr Menzies, late furgeon to his Majefty's floop Dilcovery, and by Mr Baffan, furgeon of the Union; and when it is confidered that frefh contagion was drily pouring into the hofpital from the Ruffian veffels, which were at that time lying
in the Downs, and which had brought with them a Contagion. fpecies of fever that might in every fenfe of the word be termed an epidemy, it will be allowed, that the fuccefs which attended it was fuch that it cannot be too generally known.

The wards were extremely crowiccl, and the fick of every defcription lay in cradles, promifcuoully arringed, to the number of nearly two hundred; of which about one hundred and fifty were in dificrent fages of the above malignant fever, which was extremely contagious, as appeared evident from its rapid progrefs and fatal effeets among the attendants on the fick and the fhip's company.

The utenfils and materials provided for the procefs were the following: A quantity of fine faud, about two dozen quart earthen pipkins, as many common teacups, fome long nlips of glafs to be ufed as fpatulas, a quantity of concentrated vitriolic (fulphuric) acid, and a quantity of pure nitre (nitrat of potaff).

The procefs was conducted in the following manner: \(1 /\), All the ports and feuttles were fhut up; the fand, which had been previoufly heated in iron pots, was then fcooped out into the pipkins ly means of an iron ladle; and in this heated fand, in each pipkin, a fmall tea-cup was immerfed, containing about half an ounce of the fulphuric acid, to which, after it had acquired a proper degree of heat, an equal quantity of nitrat of potafh in powder was gradually added, and the mixture firred with a glafs fpatula till the vapour arofe from it in confiderable quantity (A). The pipkins were then carried through the wards by the nuriss and convalefcents, who kept walking about with them in their hands, occafionally putting them under the cradles of the fick, and in every corncr where any foul air was fupected to lodge. In this manner they continned fumigating, until the whole fpace between decks was fore and aft filled with the vapour, which appeared like a thick haze.

The vapour at firt excited a good deal of coughing among the patients, which gradually ccafed as it became more generally diffifed through the wards; part of this effect, however, was to be attributed to the inattention of thofe who carried the pipkins, in putting them too near the faces of the fick; which canfed them to inhale the flrong vapour as it immediately iflued from the cups.

The body-clothes and bed-clothes of the fick were as much as poffible expofed to the nitrous vapour during the fumigation; and all the foul lincu removed from them was inmediately immerfed in a tub of cold water, afterwards carried on deck, rinfed out, and hung up till nearly dry, and then fumigated before it was taken to the wafh-houfe: a precaution extremely neceflary in every cafe of infectious diforder. Due attention was alfo paid to cleanlinefs and ventilation.

It took about three hours to fumigate the fhip. In about an hour after, the vapour having entiely fubfided, the ports and fcuttles were thrown open for the admiffion of frefh air. It could plainly be perccived that
(A) That the fumes of the mineral acids poffefled the property of fopping contagion was proved by Morveauas far back as the year 1773 , who, by means of the fumes of muriatic acid extricated from the muriat of foda, (fea falt) by the fulphuric acid, purified the air of the cathedral of Dijon, which had been fo much infected by. exbumations :hat they were obliged to abandon the building. See Chemistry, \(n 426\). in this Suppl.

\section*{\(\mathrm{G} 0 \mathrm{~N} \quad\left[45^{6}\right] \quad \mathrm{CO} 0\)}

Contagion, that the sir of the hofpital was greatly fwectened even by this firt fumigation. The procefs was repeated again next morning; and the people employed, being now better acquainted with it, were more expert, and finihed the whole in about an hour's time. In an hour afterwards, the vapour having entirely fubfided, the frefh air was freely admitted into the hofpital as before. Fewer pipkins were employed for the evening fumigations than for thofe of the mornings, as the frefh air could not be admitted fo freely after the former as the latter.

The plearing and immediate effect of the fnmigation in deftroying the offenfive and difagreeable fmell, arifing from fo many fick crowded together, was now very perceptible, even to the nurfes and attendants; the confequence of which was, that they began to place fome degree of confidence in its efficacy, and approached the cradles of the infected with lefs dread of being attacked with the diforder: fo that the fick were better attended, and the duty of the hofpital was more regularly and more cheerfully performed. In flort, a pleafing gleam of hope feemed now to caft its cheering influence over that general defpondency, which was before evidently pictured in every countenance, from the dread and horror each individual naturally entertained of being, perhaps, the next victinn to the malignant powers of a virulent contarion.

It is a remarkable fact, that from the 26 th of November \({ }^{1795}\), when the fumigation was firft reforted to, till the 25 th of December, not a perfon on board was attacked with the fever, though, in the three months preceding, more than one-third of all the people in the fhip had been feized with the diftemper, and of thefe more than one in four were carried off by it ; and the probability is, that the ficknefs and mortality would have gone on, increafing in proportion to the diffufion of the contagion, and to the increafing defpondency of the people, who confidered themfelves as fo inany devoted victims.

The advantage of the fumigation was not felt by the fhip's company and attendants alone, whom it preferved from the baneful effects of the fever : the fick and convalefcents derived almoft an equal benefit from it. The fymptoms of the difeafe were meliorated, and loft much of their malignant appearance; and the advantage of a pure air, and free from ftench, to convalefcents, may be readily conceived.

Great confidence is always dangerous. It proved fo on the prefent occafion. On the 17 th of December they imagined themfelves fo fecure, that they difcontinued the cuftom of fumigating morning and evening, thinking that once a day was fufficient. On the 25 th , one of the nurfes fuffered a light attack; and on the 26 th, a marine, who, for a week before, had been in a ftate of intoxication, was feized with the fever, of which he died. Thefe two accidents gave immediate alarm : they returned again to the practice of fumigating twice a-day ; and from that time to the extermination of the diforder, there was not an inflance of a perfon fuffering from contagion on board the hip.

The fuccers of the experiment was not confined to the Union : the power of the nitrous vapour to deftroy contagion was equally difplayed on board the Ruffian thips in which it was employed. The fafety, too, with
which it may be employed, in any fituation, without Gontagien inconvenience or rik of fire, is another great recom. mendation in its favour.

From the defcription that has been given of the procefs, no perfon can be at any lofs in reforting to the fame kind of fumigation. It is only neceffary to ob. ferve, for the fake of thofe who may not be verfant in chemical purfuits, that the ingredients ought to be pure, and that metal veffels or rods muft not he em. ployed. Any kind of metal getting among the ingredients would caufe the vapour to be very noxicus inftead of falutary. The fumes that rife fhould be white; if they are of a red colour, there is reafon to lufpect the purity of the ingredients.

The importance of this difcovery need not be infifted. on: it is equally applicable to every fpecies of putrid coutagion, even to the plague itfelf. It hould therefore be ufed in all hofpitals and parith workhoufes; and fhould be conitantly reforted to by the proprietors of all large works, on the fird appearance of infectious difeafe among the people employed in them :-Indeed, it fhould be employed even as a preventive in all fituations where a number of people, from the nature of their bufinefs, are obliged to be crowded together, or where, from local circumftances, there are reafons for fufpecting that the purity of the air is injured by noxious exhalations or other caules. If there be any circumftances in which its utility may be called in quetion, it can only be in cales of inflammatory difeafes; for in fuch fuperoxyge. nation has been found hurtful.

CONTRA-Harmonical Proportion, that relation of three terms, in which the difference of the firft and fecond is to the difference of the fecond and third, as the third is to the firft. Thus, for inftance, 3, 5, and 6, are numbers contra-harmonically proportional; for 2:1::6:3.

Contra-Mure, in fortification, is a little wall built before another partition wall, to ftrengthen it, fo that it may receive no damage from the adjacent buildings.

COOPER, an artificer who makes coops, cafks, tubs, or barrels, i.e. all kinds of wooden veftels bound together by hoops. See Encycl.

The art of the cooper appears to be of great antiquity, and to have very foon attained to all the perfection which it poffeffes at prefent. This being the cale, it is obvious that we can communicate a inftruction to the cooper himfelf, and, on the fubject of his art, very little that could be interefting to our other readers. In the Encyclopedic Methodique there is a long and verbofe account of the tools or inftruments employed by the cooper; of the kinds of timber proper for the different kinds of cafks; of the methods of preparing the wood for his various purpofes; of the manner in which he ought to bold the plane when dreffing the ftaves; and of the time when it is proper to put the ftaves together, or, in other words, to mount the calk. From this detail we hall extract fuch particulars as appear to us to be leaft generally known, though perhaps of no great importance in themfelves.

Notwithttanding the antiquity of the art of cafkbuilding, there are fome countries in which even now it is wholly unknown; and others where, though it is fufficiently known, yet, from the fcarcity of wood or fome other caufe, earthen veffels, and fkins lined with.

\section*{C 0 O [457] CO}

Cooper. pitch, are preferred to wooden barrels for the holding and transporting of liquors. 'The Latin word folium, which we tranllate "a cal," was employed by the Romans to denote earthen veffels unfed for this purpofe; though the word dolare, from which it is derived, applies very well to our calks, which are compofed of feveral pieces of wood hewn from the fame tree, and fitted by planes before they be joined together. We are indeed certain that calks of the fane kind with our own were in ufe among the Romans before the Chriftin era; for both Varro and Columella, in treating of the rural economy of their days, peak of veftels formed of feveral faves of wood bound together by circles or hoops. The merit of having invented fuck veffels is given by Pliny to certain people who lived at the foot of the Alps, and who in his days lined their calks with pitch.

At what period the fabrication of calks was introdued into Britain is unknown to us, though it is probable that we derived the ant from the French, who might have it from the Romans.

We need hardly inform any of our readers, that a calk has the appearance of two truncated cones joined at their bales, or that the part where the junction ap. pears to he made being the mut capacious, or that of which the diameter is the largell, is vulgarly called the belly of the calk. There cones, however, were they completed, would not be regular, but rather conoids, being formed of pieces of timber, or faves, which are nut ftraight lines as in the cone, but are curved from the vertex to the bate.

In chooling his wood, if he can have a choice, the cooper prefers old and thick and Itraight trees, from which he hews thin planks to be formed into faves; and in France, where this art is practifed on a large fcale, the winter months are allotted for the preparaion of the faves and bottoms, and the fummer for putling them together or mounting the calk. 'l'he author of the article in the Encyclopedic Metbodique directs the cooper, when dreffing the faves with the plane, to cut the wood always across; a practice which we doubt not is proper, though we think it would not be eafy to affign the reafon of it. Planning is the mot laborious and difficult part of the work; and there are but few coopers who plane quickly, and at the fame time well. In hops where the work is diftributed into parts, plaining is reckoned a great object ; and in France, before the revolution, a good plainer gained from three foil. lings and threepence fterling to four fillings and three farthings a-day.

In forming the faves, it mull never be forgotten that each is to conftitute part of a double conoid; that it mutt therefore be broadelt at the middle, becoming gradually, though not in flraight lines, narrower towards - he extremities; that the outride across the wood mut be wrought into the fegment of a circle ; and that the lave mut be thicket near the middle, growing thimer, by very gentle degrees, towards the ends. To adjult accurately there different curves (for even the narrowing of the faves malt be in a curve) to the frize and intended fhape of the calk, would require either great experience, or a larger portion of mathematical faience than we have reafon to think that many coopers polfells. With refpect to the infide of the fave, it is of little confequence whether it be rounded into the fer-

Cooper, Col crocus. -
\(\qquad\)
 1

\(\qquad\) 1.

\(\qquad\)
\(\qquad\)

\(\qquad\)

Suppl. Vol. I. Part II.
mont of a circle or not, and therefore the cooper very Seldom takes that trouble.

The faves being all dreffed and ready to be arranged in a circular form, it might be thought neceftary, in order to make the feams tight, to trio the thin edges, which are to be joined together, in fuch a man-

 Accordingly, in the Encyclopedia, we have given a flout Retch of his history, as well as an account of what led him to fuppule the fun placed in the centre of our fyftem (fee Copernicus, and Astronomy, \(11^{\circ} 22\). Encycl.) Since there articles were publidaed, Dr Adam Smith's Effays on Pbilofoplical Subljels have been given to the world; and in that which is iatitled The Hi/lor: of Agronomy, we have an account of Copernicus's dir. coveries, fo much more perfpicnous dud futisfactory thar any thing which we have elfewhere fen on the fubject, that we are perfuaded our readers will be pleated to meet with it here.
"The confufion (fays Dr Smith.) in which the old hyputhelis reprefented the heavenly bodies, was, as Co. pernicus himself tells us, what frt fuggelted to him the 3 .I
defiga

.

\section*{C O P [458] C O P}

Copernicus. defirn of forming a new fyttem, that thele, the nobleft works of Nature, might no longer appear devoid of that harmony and proportion which difeover themfelves in ber meaneft productions. What moll of all diffatisfied him was, the notion of the equalizing circle, which, by reprefenting the revolutions of the celeilial fpheres as equable only, when furveyed from a point that was different from their eentres, introduced a real inequality into their motions; contrary to that molt natural, and indeed fundamental idea, with which all the authors of attronomical fyftems, Plato, Eudoxus, Ariftotle, even Hipparchus and Ptalemy themfelves, had hitherto fet out, that the real motions of fuch beautiful and divine objects muft neceffarily be perfectly regular, and go on in a manner as agreeahle to the imagination as the objects themfelves are to the fenfes. He began to confider, therefore, whether, by fuppoing the heavenly bodies to be arranged in a different order from that in which Aritotle and Hipparchus had placed them, this fo much fought for uniformity might not be beftowed upon their motions. To difcover this arrangement, he examined all the obfeure traditions delivered down to us, coneerning every other hypothsfis which the ancients had invented for the fame purpofe. He found, in Platarch, that fome old Pythagoreans had reprefented the earth as revolving in the centre of the univerie, like a wheel round its own axis; and that others, of the fame fect, had removed it from the centre, and reprefented it as revolving in the ecliptie like a flar round the eentral fire. By this central fire he fuppofed they meant the fun; and though in this he was very widely mittaken, it was, it feems, upon this interpretation that he began to confider how fuch an hypothefis might be made to correfpond to the appearances. The fuppofed authority of thofe old philofophers, if it did not originally fuggeft to him his fyitem, it feems at leaft to have confirmed him in an opinion which, it is not improbable, he had before hand other reafons for embracing, notwithltanding what he himfelf would affirm to the contrary.
" It then oeeurred to him, that if the earth was fuppoled to revolve every day round its axis, from well to eaft, all the heavenly bodies would appear to revolve, in a contrary direction, from ealt to weft. The diurnal revolution of the heavens, upon this hypothefis, might be only apparent; the firmament, which has no other fenfible motion, might be perfectly at relt ; while the fun, the moon, and the five planets, might have no other movement befide that eaftward revolution which is peculiar to themfelves. That, by fuppoling the earth to revolve with the planets round the fun, in an orbit, which comprehended within it the orbits of Ve. nus and Mcreury, but was coniprchended within thofe of Mars, Jupittr, and Saturn, he could, without the embarraffment of epicyeles, connect together the apparent annual revolutions of the fun, and the direct, retrograde, and ftationary appearances of the planets; that while the earth really revolved round the fun on one ficle of the heavens, the fun would appear to revolve round the earth on the other; that while fhe really advanced in her annual courfe, he would appear to advance eaftward in that movement whieh is peculiar to himfelf. That, by fuppofing the axis of the earth to be always parallel to itfelf, not to be quite perpendicular, but fomewhat inelined to the plane of her or.
bit, and confequently to prefent to the fun, the one Copernicus pole when on the one fide of him, and the ether when on the other, he would aecount for the obliquity of the eclipic; the fun's feemingly alternate progreffion from north to fouth, and from fouth to north, the confequent change of the feafons, and different lengths of days and nights in the different feafons.
"If this new hypothefis thus connected together all thefe appearanees as happily as that of Ptolemy, there were others which it connected together much better. The three fuperior planets, when nearly in conjunction with the fun, appear always at the greaten ditance from the earth, are fnialleft, and leaft fenfible to the eye, and feem to revolve forward in their direct motion with the greatelt rapidity. On the contrary, when in oppofstion to the fun, that is, when in their meridian about midnight, they appear neareft the earth, are largeft, and moft fenfible to the eye, and feem to revolve backwards in their retrograde motion. To explain thefe appearanees, the fyitem of Ptolemy fuppofed each of thefe planets to be at the npper part of their feveral epieycles in the one cafe, and at the lower in the other. But it afforded no fatisfactory principle of connection, which could lead the mind eafily to conceive how the epicyeles of thofe planets, whofe fpheres were fo diftant from the fphere of the fun, fhould thus, if one may fay fo, keep time to his motion. The fyftem of Copernicus afforded this eafily, and like a more fimple machine, without the affiftance of epieyeles, connected together, by fewcr movements, the complex appearances of the heavens. When the fuperior planets appear nearly in conjunction with the fun, they are then in the fide of their orbits, which is almof oppofite to, and moft diftant from, the earth, and therefore appears fmalleft and leaft fenfible to the eye. But as they then revolve in a direction which is almolt contrary to that of the earth, they appear to advance forward with double ve. locity; as a thip that fails in a contrary direction to another, appears from that other to fail both with its own velocity and the veloeity of that from which it is feen. On the contrary, when thofe planets are in oppofition to the fun, they are on the fame fide of the fun with the earth, are neareft it, molt fenfible to the eye, and revolve in the fame dircetion with it ; but as their revolutions round the fun are flower than that of the earth, they are neceffarily left behind by it, and there. fore feem to revolve backwards; as a fhip which fails flower than another, though it fails in the fame direction, appears from that other to fail backwards. After the fame manner, by the fame annual revolution of the eath, he connected together the direct and retrograde motions of the two inferior planets, as well as the flationary appearances of all the fire.
"Thus far did this new aecount of things render the appearanees of the heavens more completely coherent than had been done by any of the former fyitems. It did this, too, by a mole fimple and intelligible, as well as more beautiful machinery. It reprefented the fun, the great enlightener of the univerfe, whofe body was alone larger than all the planets taken together, as eaablifhed immoveable in the centre, fhedding light and heat on all the worlds that circulated around him in one uniferm direction, but in longer or fhorter periods, according to their different diftanees. It tonk away the diurnal revolution of the frmament, whofe rapidity,

\section*{C O P [459] C O R}

Copernicus upon the old hypothefis, was beyond what even thought could conccive. It not only delivered the imagination from the embarrafment of epicycles, but from the difficulty of conceiving thefe two oppofite motions going on at the fane time, which the fyitem of Ptolemy and Arillotle beftowed upon all the planets; I mean, their diurnal weltward, and periodical eaftward revolutions. The earth's revolution round its own axis took away the neeeflity for fuppoling the firt, and the fecond was eafily conceived when by itfelf. The five planets, which feem, upon all other fyitens, to be objects of a fpecies by themfelves, unlike to every thing to which the imsgination has been accuftomed, when fuppofed to revolve along with the earth round the fun, were naturally ap prehended to be objects of the fame kinil with the earth, habitable, opaque, and enlightened only hy the rays of the fun: And thus theis hypothefis, by claffug them in the fame fpecies of things, with an object that is of all others the mont familiar to us, took off that wonder and uncertainty which the ftrangenefs and fingularity of their appearance had exeited; and thus far, too, better anfwered the great end of philofophy.
"Neither did the beauty and fimplicity of this fyftem alone recommend it to the imagination ; the novelty and unexpectednefs of that view of nature which it opened to the fancy, excited more wonder and furprife than the ftrangeft of thofe appearances, which it had been invented to render natural and familiar, and thefe fentiments ftill more endeared it. For though it is the end of philofophy to allay that wonder which either the unufual or feemingly disjointed appearances of Nature excite, yet fhe never triumphs fo much as when, in order to conneet together a few, in themfelves perhaps inconficlerable objects, fhe has, if I may fay fo, created another conltitution of thiags, more natural indeed, and fuch as the imagination can more eafily attend to, but more new, more contrary to common opinion and expectation, than any of thofe appearances themfelves. As in the inftance before us, in order to comect together fome feeming irregularities in the motions of the planets, the moft inconfiderable objects in the heavens, and of which the greater part of mankind have no occalion to take any notice during the whole courfe of their lives, The has, to talk in the hyperbolical language of Tycho Brahé, moved the earth from its foundations, ftopt the revolution of the firmament, made the fun ftand fill, and fubverted the whole order of the univerfe.
" Such were the advantages of this new hypothefts, as they appeared to its author when he firft invented it. But though that love of paradox, fo natural to the learned, and that pleafure which they are fo apt to take in exciting, by the novelty of their fuppofed difeoveries, the amazement of mankind, may, notwithftanding what one of his difciples tells us to the contrary, have had its weigbt in prompting Copernicus to adopt this fyftem ; yet when he had completed his Treatife of Revolutions, and began coolly to confider what a ftrange doctrine he was about to offer to the world, he fo much dreaded the prejudice of mankind againft it, that, by a fpecies of continence of all others the moft difficult to a philofopher, he detained it in his clofet for thirty years to. gether. At laft, in the extremity of old age, he allowed it to be extorted from him, but died as foon as it was printed, and before it was publifhed."

This noble theory, however, being repugnant to the
prejudices of habit and education, was at firt coldly received, or utterly rejected, by every clafs of men. The aftronpmers alone favoured it with their notice, though rathër as a convenient hypothefis than an important truth. By the vulgar it wits conlidered as a chmmera, belied by the clearelt evidence of our fenles; while the laarned beheld it with difdain, becaufe it militated againtt the fanciful dittinctions and the vague erroncous tencts of the Peripatetic philofophy, which no one had ventured to call in queflion; and it is amuling to obferve with what dexterity the Cupernicans, fill ufing the fame weapons, endeavoured to parry the blows of their antagonits. Its real merits and blemihnes appear to have been overluoked by both partics. Brahé framed a fort of intermediate fyttem; but this Danifla allronomer was more, remarkable for his patience and fkill in obferving the heavens, than for his talents of philofophical inveltigation. 'I'owards the commencement of the 1 Gth century, a new order of things emerged. 'Ithe fyitem of Copemicus luecame generally known and daily made converts. Its reception alarined the ever-watehful authority of the church, roufed her jea. loufy, and at length provoked tier vindictive artillery. The ultma ralio ibeologorum was pointed at the head of the illultrious Galileo, whofe elegrant genius difeovered the laws of motion, extended the feience of meehanics, and added luftre and fulidity to the true fyitem of the univerfe. From the ftorms of perfecution Copernicus hinfelf had been exempted only hy a tinely death.

COPPER, one of the metals; for the properties of which, fee Chemistry Index in this Supplement. The Chinefe have a metal which they call pe-tung, but which Sir George Staunton denominates

White Copfer. This metal has a bcautiful filverlike appearance, and a very clofe grain. It takes a fine polifh, and many articles of neat workmanthip, in imitation of filver, are made of it. An aecurate analy fis has deternined it to confitt of copper, zine, a little filser and in fone fpecimens a few particles of iron and of niekel have been found. From this account it would appear that white copper is not an artificial mixture of metals, but is found native in the mine. Yet in the very fame page and paraçraph, Sir George proceeds to fay that Dr Gallan was informed at Canton, that the artilts, in making their petung, reduce the copper into as thin theets or lamine as polfible, which they make red-hot, and increafe the fire to fuch a pitch as to foften in Come degree the laminx, and to render them ready almot to flow. In this fate they are fufpended over the vapour of their pureft tu-te-nag or zinc, placed in a fubliming veffel over a brifk fire. The vapour thus penetrates the heated laminx of the copper, fo as to remain fixed with it, and not to be eatily diffipated or calcined by the fucceeding furion it has to undergo. The whole is fuffered to cool gradually, and is then found to be of a brighter colour, and of a clofer grain, than when prepared in the Eu-opean way. Surely this is not the white eopper, which confifts of copper, zine, filver, iron, and niekel.

CORK is the exterior bark of a tree which has been deferibed in the Encyclopxdia. When the tree is about 15 years old it is fit to be barked, and this can be done fucceffively for eight years. The bark always grows up again, and its quality improves as the age of the tree increafes. It is commonly finged a little over a \(3 \mathrm{M}_{2}\)
ftrong

Coprer, cork.

\section*{\(C\) ORR \([460] \quad \mathrm{O}\) R}

Comba. ftrong fire or iglowing ecals, or laid to foak a certain time in water; after w! ich it is plued u.der ftous in order to be prefled ftraight. We were wont to procure the greater fart of our cork from the Dutch, who brought it principaily from France; but they imported fome alfo from Portugal and Spain.

This tree, as well as the ufes to which its bark is put, was knowr to the Greeks and the Romans; by the former ef whom it was called prax-s. and by the latter fuber. By the Romans, as we learn from Pliny, it was even employed to ftop veffels of every kind; but its application to this ufe feems not to have been very common till the invention of glafs bottles, of which Profeffor Beckmam finds no mention before the 15 th century.

In later times, fome other vegetable productions have been found which can be employed inftead of cork fer the laf-mentioned purpofe. Ameng thefe is the wood of a tree common in South America, particularly in moift places, which is called there monbin or monbain, and by botanits fpondiar lutca. This wood is brought to England in great abundarce for that ufe. The fpongy root of a North American tree, known by the name of \(n y f / n\), is alfo ufed for the fame end, as are the roots of liquorice, which, on tbat account, is much cultivated in Sclavonia, and exported to other countries.

CORNUA Ammonis, in natural hiftory, are foffil Shells, of which a pretty full account is given in the Encycloprdia. Sue Cornu Ammonis and Snake.Stones. It was obferved in the laft of thefe articles, that few, if any, of thefe fhells are known in their recent ftate, or as occupied by the living animal; but fome authors have afferted, on the authority of Lin. mous, that ammonites, with fhells fimilar to all the varieties of the foffil ones, are yet found alive in the depth of the fea. We are much inclined to embrace this opinion; but it has been controverted by M. de Lamanon, who accompanied La Peroufe on his voyage of difcovery, by fuch arguments as we know not how to anfwer. This unfortunate naturaiift (fee Lamanon in this Supplement) allows that there are ftill in the fea living cornua ammonis; but he thinks that they are in very finall numbers, and materially different from the greater part of the foffil ones. According to him, thefe laft ought to be confidered as a race, formerly the nioft numerous of all, of which, either there are no defcendants, or thofe defcendants are reduced to a few degenerate individuals. That there are no living animals with fhells of the very fame kind with fome of the foffil cornua ammonis, the fullowing obfervations he confiders as a fufficient proof.
" The foffil fhells are very light and thin, whereas the fhells of thofe animals that live in very deep water are always thick and ponderous; befides, the form of the foffil cornua ammonis points out to us, in fome meafure, the organization of the animal which inhabited it. The celebrated Juffieu, oroved, in 1721 , that there ex. ifted a very clofe analogy between the ammonite and
nautilus (\(A\)). It is wall known that the natilus, by Cornuz. filling or emptying a part of its fhell, has the power of remaining ftatinnary in any depth it pleafes: the fame was doubtlefs the cafe with the amnonite ; and if this fpecies itill abounds in the fea, it would furely be occafronally difenvered by failors.
"The waves alfo would throw fragments of it on the fhore ; fifhermen might fometimes entangle it in their nets; or, at leaft, there would be fragments flicking to the lead of the founding line when afcertaining great depths. It may alfo be added, that if the ammonites never quitied the aby fs of the fea, thofe which are found petrified would not be conftantly met with on the fame level, and in the fame bed, as thofe fhell-finh that ouly inhabit the thallows. There are, however, found in Normandy, Provence, Touraine, and a multitude of other places, ammonites mixed with turbines, buccina (whelks), and other littoral fhells. They are foûnd, befides, at every degree of elevation from below the level of the fea to the fummits of the higlieft inountains. Analogy alfo leads us to fuppofe, that Nature, who has given eyes to the natilus, has not refufed them to the ammonite: now what ufe could thefe be of if they remained confined to thofe depths which the light is unable to penetrate?
" The extinction of the ancient race of ammonites is therefore an eftablifhed fact, which no rational fuppofition can deftroy; and this fact is undoubtedly the moft furprifing of any that is prefented to us in the bittory of aquatic animals. The difcovery of a few living fpecies of cornua ammonis does not deltroy the truth of this, for thefe ammonites are very different from thofe which are found petrified. They are extremely rare, and cannot be looked up to as the reprefentatives of the old ammonites, fo varied in their fpecies, and the number of which in the ancient ocean was probably far more conliderable than that of all the other fhells befides."

To every univolve Thell, rolled in a fpiral, fo as that a horizontal plane will divide it into two equal parts, formed of united fpirals, and bearing a certain proportion to each other, our author gives the name of an ammonite. "I thought it ahfolutely neceffary (fays he) to afcertain the precife meaning of the term ammonite, previous to defcribing that which I found during our voyage round the world. The form of this is almoft orbicular, the long diameter being to the thort one as three lines to two lines and three quarters. The firft fpire is by far the largeit, occupying nearly half of the longitudinal diameter. The fumbrit is placed at the diftance of about two-thirds of this diameter; it is terminated on the right fide by a very fmall knob vifible only through a magnifier, thus differing from the ammonite of Rimini, which befides is microfcopical and celled, the infide of this which we are now fpeaking of being entirely plain. The number of fpiral circumvolutions is four and a half; they are equally convex on both lides, and are fixed on a plane, dividing the fhell
(A) There are, however, fome ftriking internal differences: firf, the partitions in the fhell of the nautilus are more curved than thofe of the anmmite : fecondly, the anmonite wants the finall bole which communicatea from one ceil to the other.

Crraua, into two equal parts: there is on cach fide a kind of bofs formed by the increale of the perpendicular diameter of the fpires, in proportion as they rectde from the centre. The furface is fmooth; the back is anmed with a flat, even, brittle creft, as thin as paper, furrounding it on every fide like a ruff: it is about half a line broad, extends over the fummit of the fpires, and ferves to join them togrether. The mouth of the fhell is nearly triangular ; its edges project in the form of lips, and are rounded at the border. I have often tound this ammonite enclofed in the Itomach of the honctta (fiomber pelamis, Linn.), caught in the Suuth Sca, between the tropies, where no hottom was found with a line of more than two hundred fathoms. Thefe fhells were covered with a black clayey mud. Their fize varies from one to fuur lines acrofs; they are confequently the largeft living ammonites that have yct been difcovered."

It is well known for what purpole the modern philofoplers of France have been fo indefatigable in the fturly of natural hiftory ; and there can be little doubt but that it is to ferve the fame purpofe that Lamanon thus reafons for the deftruction of the ancient race of ammonites in fome univerfal convuliton of the world. But fuppofing his arguments conclufive, they affect not the truth of the Jewih and Chritian foriptures. It is nowhere faid in the Bible, that the matter of this glube was brought into being at the moment when Moles reprefents the Creator as beginning to reduce the chaos into order; and it is more than infinuated that there will be a newe earth after the prefent fyltem of things Shall be diffolved. That new earth will certainly be flored with fome kind of inhabitants; and could it be demonilrated that there was an old earth, previous to the era of the Mofaic cofmogany, inhabited by creatures rational and irrational, and that the foffil cornua ammonis make part of the wreck of that fyitem, the caufe of revelation would remain uninjured. " Mofes, as a real
the hell of the ammonite (a fac into which we have Cosrection. had no opportunity of inquiring), his arguments for the extinction of the ancient race are grofs fophifms, unwortly of a inan cither of feience or of candunr.

CORRECTION. H Ouse is a prifon where idle vagrants are compelled to work, and where perfons guiliy of certain crimes luffer puniflument and make reparation to the public. Of the former kind uf corredion houfes, perhaps enough has been faid in the Lneyclopiedia norder the title Work.Houfe; but of the latter very little will be found in that work under the tictes Bridewell and Idleness.

Perhaps houfes of correction, as means of punifhment, are not, in this country, employed fo frequently as jutice and expediency feem to require. In the opinion of Dr laley, whofe opinions ame always worthy of attention, it is one of the greatell defects of the laws of England (and we may fay the fane thing of the laws of Scotland), that "they are not provided with any other punifunent than that of death, fulliciently terrible to keep offenders in awe. Tranfportation, which is the punifhment fecond in the order of feverity, anfwers the purpofe of example very imperfoclly; not only becaufe exile is in reality a flight pumifhment to thofe who have neither property, nor fricuds, not regular intans of fubfiltence at home, but becaufe the punifhment, whatever it he, is unobferved and unknown. A tranfpurted conviet may fuffer under his fentence, but his fufferings are removed from the view of his countrymen; his mifery is unfeen; his condition ftrikes no terror into the minds of thofe for whofe warning and admonition it was in. tended. This chafm in the fcale of punifhnent produces alfo two farther imperfections in the adminittra. tion of penal jullice; of which the tirlt is, that the fame pmifhment is extended to crimes of very different characters and malignancy; and the fecond, that punithments, feparated by a great interval, are affigned to crimes hardly dithinguifable in their guitt and mifchief."

Fcrhaps this chafm might be properiy filled up by houfes of correction under judicious management, which. might likewife promote another importart purpofe, better than the punifmonts in common uf.

The end of punifhment is twofold, amendmont and ex* ample. In the firt of thefe, the refarmation of criminals, little has ever been effected, and little indeerl feems practicable by the pumithents known to the laws of Britain. From every fpecies of punifhment inflicted among us, from imprifonment and exile, from pain and infamy, malefactors return more hardened in their crimes, and more inttructed. The cafe we thank would often he different when they returned to the world from a well regulated houfe of correction. As experience is the mily fafe guide in matters of legiflation and police, we flalil lay before our readers \(M\). Thoum's account of the honfe of correction at Amfterdam, which feems to. corroborate our opinion.

The Amiterdam corredion houfe, from the employment of the prifoners confoned in it, is crilled the rajityboufe, and is deftined to the reception of thefe maletac. tors whofe crimes do not amount to a capital offence. Their punifhment cannet fo properly be denominate? folitary coufinement as a fequeltration from focicty du. ring a limited term of years. The building is dithates? in a part of the fuburbs to the worth-call of the city.

\section*{C OR \([462] \quad\) C O R}

Corredion The exterior has nothing remarkable, either with re. fpect to form or extent. It is detached from the ftreet by a fpacious court, which enntains the keeper's lodye, together with apartments for the different fervants belonging to the eftabliflment. Over the gate, which opens from this court into the prifon, are placed two ftatues, as large as life, reprefenting two men in the act of fawing a picce of logrood.

The inner court is in the form of a fquare, round which are arranged the apartments of the prifoners, together witl the neceffary warehoufes. One part of the ground ftory is divided into different chambers; the other ferves as a depot for the logwood, and the implements errployed in its preparation.

The keeper, whofe conntenance, contrary to the general cuftorr of perfons of his profeffion, was Atrongly indicative of urbanity and gentlenefs, introduced M . Thouin into an af artment where two prifoners were at werk in fawing a large log of Campeachy wood. The faw is curapofed of four blades joined together, with very itrong, large, and fharp teeth, which make a fciffure in the wood of nearly two inches in breadth. The operation is repeater, till the pieces become too fraall to undergo the faw, when they are ground in mills peculiarly contructed for this purpofe.

This employment requires an extraordinary exertion of Arength, and is at firit a fevere penance even to robull perfons; but habit, addrefs, and practice, foon render it eafy; and the prifoners in a fhort time become competent to furnifl, without painful exertion, their weekly contingent of 200 lb . weight of fawed picees. After completing this tak, they even find time to fabricate a variety of little articles in wood and ftraw, which they fell to thofe who wifit the prifon, or difpofe of, by means of agents, in the town.
M. Thouin next infpected three apartments of dif. ferent dimenfions, which opened into the isner court. The one was inhabited by four, the fecond by fix, and the third by ten prifoners. The furniture of the rooms confilted in hammocks, with a matrafs, a blanket, and a coverlid to each, tables, chairs, and ftools, glafs, \&c. earthen vetels, and various other articles of convenience. Every thing in thefe apartments was dikinguihed by neatnefs and propricty; and notwithflanding the number of inhahitants allotted to eaeh, was fully adequate to the dimenfions of the rooms ; the fenfes were not offended with any difagreeable feent, and the air was in every refpect as pure and wholefome as the furrounding atmofphere.

In an obfcure part of the buidling are a number of cells, in which furmerly thofe prifoners who revolted againt the proper fubordination of the place, or illtreated their comrades, were confined for a few days. But the keeper affured M. Thonin that thefe cells had not been made ufe of for upwards of 10 years. They are dark gloomy dingeons, with only a frall aperture for the adinifion of light and air. The fuppreffion of this barbarous and coercive punifhment does honcur to the humanity of government.

The fture rooms are filled with various kinds of wood for the purpofes of dyeing; as the haemotoxylum cam. pechianum, the morus tincturia, the caefalpinia fappan, Ec. They ate all exotics, with the exception of the Evonymus Europxus. The warehoufes were not of §ufficient extent to contain the quautity of wood,
which was depofited in piles in different parts of the Correction court.

The prifoners, amounting to 76 in number, were uniformly habited in coarfe woollens; wear very good ftockings, large leather fioes, white fhirts, and caps or hats. They are, by the rules of the houfe, obliged to frequent ablutions, which greatly contribute to the prefervation of their health. There was only one fick perfon amongft them ; and, what is not a little remarkable, alnoof all the prifuners had formerly lived in large commercial towns; very few villagers were amongtt them. They had all been fentenced to imprifonment for theft ; but it depends upon themfelves, by reformation and good behaviour, to fhorten the term of their confinement, which many of them frequently do.

The keeper, whofe humanity to the unfortunate perfons conmmitted to his care entitles him rather to the title of their protector than their gaoler (and M. Thous in informs us, that the prifoners generally called him by no other name than father), affits them with his counfels and friendly admonitions. He regifters every week, in a book appropriated to this purrofe, both the inftances of good and bad behaviour, which is annually fubmitted to the examination of the magiRracy, who, from this report, abridge or prolong the term of confinement, according to the degree of indulgence which each prifoner appears to merit. Cafes frequently thappen where a malefactor, condemned to an imprifonment of eight years, by his good behaviour procures his enlargement at the expiration of four ; and fo in proportion for a fhorter term. But great attention is paid to difcriminate between actual reform and hypocritical artifice.
The reward of good behaviour is not, however, confined to, or withheld till, the period of actual liberation. Their reftoration to fociety is preceded by a progreffive amelioration of their lot. Their work is gradually readered lefs laborious, they are accommodated with feparate apartments, and employed in the fervices of domeftic economy. The kecper even entrufts then with coimmiffions beyond the precincts of the priforl; and fcarce a fingle inftance has occurred of their abufing this indulgence. By this prudent management, a confiderable faving is effected in the expence of the eftablifhment, at the fame time that it tends to wear away prejudiee, and to initiate the prifoners by gradual advances into the reciprocal duties of focial life.
M. Thouin made partieular inquiries whether it was dultomary for perfons after their difcharge to be confined a fecond and third time, as is but too often the cafe in many countries, for a repetition of their offence. He was informed, that fuch inftances very rarely occur; but the cafe is not withont precedent, as he obferved in the perfon of a young Jew, who was then in the rafp-ing-houfe for the third time. The cafe of this man is fomewhat extraordinary. During the period of his detention, he always conforms, with the moft ferupulous obfervance, to the rules of the place, and gives general fatisfaction by his exemplary conduct. But fuch, as he himfelf avowed to our traveller, is his conflitutional propenfity to thieving, that no fooner is the term of his imprifonment elapfed, than he returns with redoubled ardour to his lawlefs courfes. It is not fo much for the fake of plunder, as to gratify his irrefiftible impulfe, that he follows this vicious life; and M. Thouin adds, that he recounted his different exploits with as much exultation
\[
\left.C \begin{array}{llll}
C & O & R & 463
\end{array}\right] \quad C \quad R \quad A
\]
rection exultation and triumph as a veteran difplays when rehearling lis warlike atchievements.

Another falutary regulation in this inftitution, from which the beft confequences refult, is the indulgence granted to the prifoners of receiving the vifits of their wives and miftreftes twice every week. Proper care, however, is taken to guard againt the introduction of difeafe ; and the ladies, in one fenfe, purchafe their admiftion by giving a trifling fum of moncy at the gate, which becomes the perquilite of the aged prifouts, whofe wants are of a different nature from their youth. ful comrades. Thus the pleafures of one clafs contribute to the comforts of the other ; and the entrance money, trifling as it is, keeps away a croud of idle vagabouds, who have no acquaintance with the prifoners. The ladies at their vifits are permitted to eat and drink with their lovers; and when the converfation becomes too animated fup a third perfon to he prefent, the reft of the company obligingly take the hint, and leave them to enjoy a tete-a-tete.- By this prudent regulation, many hurtful confequences attendant on a total feclufion from female fociety are guarded againft.
M. Thouin concludes his account with obferving, that the ralping-houfe at Amfterdam bears a greater refemblance to a well-ordered manufactory than to a prifon. It were to be wifhed that all fimilar inflitutions were conducted upon a fimilar plan (A).

So fays our author: But though we have admitted experience to be the only fafe guide in regulating inflitutions of this kind, we cannot help thinking that the plan is fufceptible of improvement. We do not fee the propriety of locking up four, fix, or ten thieves in the fame apartment. The uncommou attention to cleanlinefs, which diftinguithes all ranks among the Dutch, may indeed prevent the room from laving an offenfive fcent; but what can prevent fuch a number of unprin. cipled perfons from corrupting each other in Holland, as we know that they do in Great Britain? The introduction of females of loofe character to felons fuffering pumifment for their offences in a prifon, is a practice which we truft will be approved only by philofophers of the French fchool. The Britifh philofopher, whom we have already quoted with approbation, is of opinion, and we heartily agree with him, that "of reforming punifhments, none promifes fo much fuccefs as that of folitary imprifonment, or the confuement of criminals in feparate apartments. 'This improvement of the Amfterdam houle of correction would augment the terror of the punifunent, would feclude the crimi. nal from the fociety of his fellow-prifoners, in which fociety the worle are fure to corrupt the better; would wean him from the knowledge of his companions, and from the love of that turbulent pernicions life in which his vices had engaged him ; would raife up in him reflections on the folly of his choice, and difpofe his mind to fuch bitter and continued penitence, as might produce a lalling alteration in the principles of his con"luet."

In fome houfes of correction, the prifoners are fub. jected to the difcipline of flagellation at ftated intervals.

We will not take it upon us to fay that this punith. Courtefey ment is never proper; tut we are fully conviaced that it is not often fo ; and tha Alagellation, if it can at all produce any good effect, muft be adminiflered in private. It is oblerved by Ficlding, who well underfood human mature, that falting is the proper punifhnent of profigacy, not any punifhment that, like flagellation, is attended with hame. L'uninment (fays he) that deprives a man of all fenfe of honour, never will contribute to make him virturus; and we believe it is generally admitted by the gentlemen of the army, that a foldicr who has fuffered the puniflment of whipping feldom prores good for any thing.

COURTESEY of Scotland. See Law (Encycl.), Part III. fect. ix. § 28.

COWRY-Shells, the lowef money in fome parts of the Eaft. See Money (Encyd.), where they are called Raris.

CRANE, in mechanics, a machine ufed for raifing or lowering great weights. For the principles on which thefe machines act, fee Drnamics in this Supplement, and likewife Mechanics, Encycl. where defcriptions are given of feveral very powerful cranes.

The crane in common ufe is employed with fome danger to thofe who work it ; and therefore a machine of this kind, acting upon a fimple and certain principle, by which the men walking in the wheel can lower goods with faftety as well as expedition, las long been conlidered as a great defideratum in mechanics. Repeated premiums have been offered by the Society for the Encous ragement of cirts to induce ingenious ment to attempt the invention of fuch a machine; and various have been the contrivances for accomplithing fo dclirable a purpofe. A clergyman, who fublcribes E. C. we fuppofe as the initials of his name, propofes, through the mediun of the Repertory of Arts, to accomplifh it merely by introducing the action of a worm or fcrew into the crane.

Whenever a worm of two threads is iutroduced into a machine, all retrograde motion is fopped, unlefs that worm receive its reaction from the firl moving force; for, powerfully as a worm acts upon a wheel, a wheel has no power upon a worm, whatever force may be applied to it. Suppofe, then, the firf motion in a crane were given by a worm upon the axis of the wheel in which the man walks, the man would have perfect command of the machine, to raife or lower the goods at pleafure, with the remoteft poffibility of being overpowered by the defcending weight.
"Were I to conttruct (fays the author) a crane upon this principle, I would have the axis of the wheel in which the man walks, and the axis of the worm, in feparate parts, and occafionally united \(t y\) a coupling-box. When goods were to be raifed, the two axes fhould be connected; when lowered, they might be difunited, and the worme turued by a winch, which would be done much more expeditioufly that way than by the wheel. For the reafons before fuggelled, the defcent of the weight could be accelerated or ftopped at pleafure, at the difcretion of the perfon turning the winch.
"This contrivance might be not inconveniently applied
(A) We do not know that M. Thouin's journal of his travels has been yet publifhed. Extracts from it have been inferted into the Decade, a periodical publication at Paris, whence this accoust of the Amplerdam houfe of corretion was firlt copied into the Monthly Magazine for June 1798.

\section*{C R A \(\left[\begin{array}{lll}664\end{array}\right] \quad\) C R A}

Crane. plicd to a crane alrendy erected upon the common principle: Let there be a wheel put upon any convenient axis in the machine as it now fands; upon this let there lie a worm, that can be thrown in or out of gear at pleafure: and let the lever by which it is done lie within reach of the man's hand in the wheel. The goods being fatened to the erane, and raifed off the floor of the warehoule ready for letting down, the man puts the worm into gear, leares the wheel, and lets the goods down by the winch. Provided it can be conveniently done, it would be advifable to throw the wheel in which the man walks out of gear when the winch is made ure of; this, however, I fhould apprchend, would not be a matter of abfolute necellity."

Our author is aware of two objections which may be urged againt the introduction of a worm into a crane in the manner which he propofes. The firlt arifes from the flowness of the motion produced by the turning of a ferew, which he confiders as unworthy of regard; hecaufe the neceflary fpeed is to be gained by the lirft pair of wheels and the diameter of the barrel of the windlats.

To the feeond, arifing from the fuppofed greater friction between a worm and wheel, he replies, that as the frietion between the teeth of two wheels (if not formed on the true epicycloidal principle) muft, while it lafts, be greater than between a worm and wheel for the fame fuace of time, it feems no unreafonable fuppofition that the aggregate of friction will, in the two cafes, nearly balance each other ; efpecially if it be taken intu, the account, that to obtain the power of one worm and wheel, there will be, in moit cafes, required two pair of wheels, and two additional axes-all which will add to the friction. But, granting the balance of friction to be againft the action of the worm, the power to overcome it is greater in proportion than to overcome the friction of two wheels.

Mr James Whyte of Chevening, in the county of Kent, whofe improvement ia the conftruction of pullies has, with due refpect, been noticed elfewhere *, gives,
* See Me
cbanics, \(\mathrm{n}^{\circ}\)
27. Encyel. in the Tranfactions of the Sociely for the Encouragement of Arts, \&c. the following defeription of a new crane for wharfs:
Plate XX.
A (fig. I.), a circular inclined plane, moving on a pivot underneath it, and carrying round with it the axis E . A perfon walking on this plane, and prefling agaiuft the lever D , throws of the gripe D , by means of an iron rod C ; and thus admits the plane and its axis to move freely, and raife the weight \(G\) by the coiling of the rope F round the axis E .

To thew more clearly the conftruction and action of the lever and gripe, a plan of the circular inclined plane, with the lever and gripe, is added (fee fig. 2.), where B reprefents the lever, D the fpring or gripe. In this plan, when the lever B is in the fituation in which it \({ }^{n}\) :ow appears, the fpring or gripe \(D\) prefles againf the periphery of the plane, as shewn by the double line, and the machine cannot move ; but when the lever B is preffed out to the dotted line H , the gripe is alfo thrown off to the dotted line I, and the whole machine left at liberty to move. One end of a rope or cord, of a proper length, is fixed near the end of the lever B, and the other end made faft to one of the uprights, ferving to prevent the lever moving too far when prefled by the man.

The properties of this crane, for which the premium
of 40 guineas was adjudgred by the fociety to the inventur, are as follows :
1. It is fimple, confilling mevely of a wheel and axle. 2. It has comparatively little friction, as is ubvious from the bare infpection of the figure. . 3. It is durable, as is evident from the two properties above mentioned. 4. It is fafe; for it cannot move but during the pleafure of the man, and while he is actually prelling on the gripe-lever. 5. This crane admits of an almolt in. fraite variety of different powers; and this variation is obtained without the leaft alteration of any part of the machine. If, in unloading a veffel, there fhould be found groods of every weight, from a few hundreds to a ton and upwards, the man that does the work will be able fo tu adapt his flrength to each as to raife it in a fpace of time proportionate to its weight; he walking always with the fame velocity as nature and his greatelt eale may teach him.

It is a great difadvantage in fome cranes, that they take as long time to raife the fmalleit as the largett weight, unlefs the man who works them turn or walk with fuch velocity as mult foon tire him. In other cranes, perhaps, two or three different powers may be procured; to obtain which, fome pinion muft be fhifted, or frefh handle applied or reforted to. In this crane, on the çontrary, if the labourer find his load fo heavy as to pernit him to afcead the wheel without its turning, let him only move a llep or two toward the circumference, and he will be fully equal to the tak. Again, if the load be fo light as fcarcely to refilt the action of his feet, and thus to oblige hin to run through fo much [pace as to tire him berond neceflity, let him move laterally towards the centre, and he will foon feel the place, where his ilrength will fuffer the leat fatigue by raifing the load in quettion. One man's weight applied to the extrenity of the wheel would raife upwards of a ton; and it need not be added, that a lingle. Sheaved block would double that power. Suffice it to fay, that the fize may be varied in any required ratio; and that this wheel will give as great advantage at any point of its plane as a common walking-wheel of equal diameter, as the inclination can be varied at pleafure, as far as expediency may require. It may be neceffary to obferve, that what in the figure is the frame, and feems to form a part of the crane, mult be confidered as a part of the houle in which it is placed; fince it would be moftly unneccflary fhould fuch eranes be erected in houfes already built. With refpect to the horizontal part, by walking on which the man who attends the gib occafionally affifts in raifing the load, it is not an effential part of this invention, where the crane is not inmediately contiguous to the gib, although, where it is, it would be certainly very convenient and economical.

Crane is alfo a popular name for a lyphon, employed in drawing of liquors.

CROSS, in furveying, is an inftrument conffing of a brafficircle, divided into four equal parts by two lines crofling each other in the centre. At each extreminy of theie lines is fixed a perpendicular fight, with fmall holes below each nit, for the better difcovering of diftant objects. The crofs is mounted on a ftaff or ftand, to fix it in the ground, and is very ufeful for meafuring fmall pieces of land, and taking offsets, \&c.

Cross-luff, or Foreflaff, is a mathematical intrument

Fig.3.

lis...i.

Fig. 8.

Fig. 4.

7ig.7.

Fig. \({ }^{6}\).

CTEINE

rover, of box or pear-tree, confifting of a fquare ftaff of about three feet long, having each of its faces divided like a line of tangents, and having four crofs pieces of unequal lengthis to fit on the flaff, the halves of thefe heing as the radii to the tangent lines on the faces of the alaf.- The inftrument was ufed in taking the altitudes of the celeftial bodies at fea.

CROWN, in aftronomy, a name given to two confellations, the fouthern and the northern.

Crown, in geometry, a plane ring included between two parallel or concentric peripheries of unequal circles.
\(C_{\text {ROFN }}\) Pof , is a poft in fome buildings flanding upright in the middle between two principal rafters; and from which proceed ftruts or braces to the middle of each rafter. It is otherwife called a king-pofl, or king'spiece, or joggle-piece.

La CRUZ, an excellent harbour on the north-weft coaft of America, difcovered by the Spaniards in 1779. They were introduced into it by a paffage which they called Bucarelli's Entrance, and which they placed in \(55^{\circ} 18^{\prime} \mathrm{N}\). Lat. and \(139^{\circ} 15^{\prime} \mathrm{W}\). Loug. from the meridian of Paris. There is no good reafon to queftion the exactnefs of the latitude of this paftage as laid down by the Spaniards; but the editor of Peroufe's voyage juftly concludes, from the furvey made by our celebrated navigator Captain Cook on the cualls adjacent to the entrance of Bucarelli, that this entrance is abont \(135^{\circ}\) \(20^{\prime}\) to the weft of Paris, or very nearly \(\$ 33^{\circ}\) weit of Greenwich.

The Spaniards were not long in the harbour of \(L a\) Cruz before they received a vifit from the inhabitants in its neighbourlood. Bartering took place. The Indians gave their peltry, and various trifles, for glafs beads, bits of old iron, \&c. By this traffic the Spaniards were enabled to gain a fufficiently exact knowledge of their genius, of their offenfive and defenfive arms; of their manufactures, \&c.

Their colour is a clear olive; many among them have, however, a perfectly white R in : their countenance is well proportioned in all its parts. They are robuft, courageous, arrogant, and warlike.

They clothe themfelves in one or two undreffed fkins (with the fur apparently) ; thefe are the fkins of otters, of fea-wolves, of henades (a fpecies of deer), of bears, or other animals, which they take in hunting. Thefe dreffes cover them from the neck to the middle of the leg; there are, however, many among them who weaf boots of fmooth Akin, refembling Englifh boots, only that thofe of the Indians open before, and are laced tight with a flring. They wear hats woven from the fine bark of trees, the form of which refembles that of a funnel or a cone. At the writts they have bracelets of copper or iron, or for want of thefe metals the fins of whales; and round the neek, neck laces of fmall fragments of bones of fifhes and other animals, and even copper collars of the bignefs of two fingers. They wear in their ears pendants of mother-of-pearl, or flat pieces of copper, on which is emboffed a refin of a topaz colour, and which are accompanied with jet bearls. Their hair is long and thick, and they make ufe of a comb to hold it together in a tmall queae from the middle to the extremity ; a narrow ribbon of coarfe linen, woven for this purpofe, ferves as a ligament. They wear alfo as a covering a kind of fcarf, woven in a par. licular manner, fomething more than a yard and a half

Suppl. Vol. I. Part II.
long, and about half a yard lroad, round which hangs a fringe fomething more than half a quarter of a yard deep, of which the thread is regularly twitted.

The women give proofs of their modelty and decen. cy by their drefs. 'Iheir phyfiognomy is agreeable, their colour frefl, their cheeks vermilioned, and their hair long; they plait it tugether in one long trefs. They wear a long robe of a fmooth fkin tied round the loins, like that of a nun; it covers them from the neck as low as the feet; the fleeves reach down to the wrills. Upon this robe they put divers finins of otters or other animals to defend themfelves from the inelemency of the weather. Better dreffed, màny of them might difpute charms with the molt handfome Spanifh women; but diffatisfied with their natural charms, they have recourfe to art, not to embellih, but io disfgure themfelves. All the married women have a large opening in the under lip, and this opening or orifice is filled up by a piece of wood cut in an oval flape, of which the fmalleft diameter is almolt an inch; the more a woman is advanced in years, the more this eurious ornament is cytended: it renders them frightfial, the old women efpecially, whole lip, deprived of its wonted fpring, and dragged by the weight of this extraordinary jewel, ncceffarily hangs in a very difagreeable manner. The girls wear only a copper needle, which croffes the lip in the place where the ornament is intended hereafter to be placed.

Thefe Indians in war make ufe of cuiraffes and fhoulder pieces of a manufacture like that of the whalebone flays among the Europeans. Narrow boards or fcantlings form, in fome fort, the woof of the texture, and threads are the warp: in this manner the whole is very flexible, and leaves a free ufe to the arms for the handling of weapons. They wear round the neck a coarfe and large gorget which covers them as high as below the eyes, and their head is defended by a morion, or Nkull-piece, ufually made of the head of fome ferocious animal. From the waif downwards, they wear a kind of apron, of the fame contexture as their cuirafs. Laftly, a fine fkin hangs from their fhoulders down to the knee. With this armour they are invulnerable to the arrows of their enemies; but thus armed, they cannot change pofition with fo much agility as if they were lefs burdened.

Their offenfive arms are arrows; bows, of which the frings are woven like the large cords of our belt mulical infruments ; lances, four yards in length, tongued with iron; Enives, of the fame metal, longer than Eu: ropean bayonets, a weapon, however, not very common among them ; little axes of flint, or of a green fone, fo hard that they cleave the moft compact wood without injury to their edge.

The pronunciation of their language is extremely difficult ; they fpeak from the throat, with a movement of the tongue againft the palate. The little ufe the women make of the inferior lip greatly injures the diftinctivenefs of their language. The Spaniards could neitleer pronounce nor write the words which they heard.

From the vivacity of fpirit in thefe Iudians, and from their attention amply to furnifh the market eftablifhed in the harbour, it may be concluded that they are pret. ty laborious. They continually brought ftuffs well woven and fhaded by various colours, the fikins of land and fea wolves, of otters, bears, and other finaller ani. mals; of thefe fome were raw, and others dreffed. There were to be found at this market alio coverlets of coarfe cloth, fhaded with white and brown colours, very well woven, but in fmall quantities: large ribbons of the fame liner which might match with that of the Spanih officers mattreffes; fleins of thread fuch as this cloth was made of; wooden plates or bowls neatly worked; fmall boats, or canoes, painted in various colours, the figures of which reprefented heads with all their parts; frogs in wood, nicely imitated, which opened like tobacco hoxes, and which they employed to keep their trinkets in: boxes made of fmall planks, of a cubical form, being three quarters of a yard on each fide, with figures well drawn, or carved on the outfide, reprefenting various animals; the covers fabricated like Flanders etwees, with rabbeted edges, formed fo as to Shut into the body of the box; animals in wood, as well thofe of the earth as of the air ; figures of men of the fame material, with fkull-caps reprefenting the heads of various fierce animals; fnares and nets for fifhing; copper collars for the neck, and bracelets of iron for the wrift, but which they would not part with except at a very high price; beak-like inftruments, from which they drew founds as from a German flute. The principal officers took fuch of thefe merchandizes as were moft agreeable to them, and left the remainder to the fhips crews.

As the Indians difcovered that the Spaniards were very dainty in their fifh, they did not let them want for choice : the greateft abundance was in falmon, and a fpecies of fole or turbot three yards and a quarter long, broad and thick in proportion; cod and pilchards were alfo brought to market, and fifhes refembling trout. From all this it may be inferred, that this gulf is full of fifh; the banks too are covered with fhells.

The quantity of mother-of.pearl that thefe lndians cut to pieces for making ear-rings awakened the curiofity of the Spaniards: they tried to difcover whether thefe people had no: in their poffeffion, or whether their country did not produce pearls, or fome precious ftones: their refearches were fruitlefs; they only found fome Aones which they judged to be metallic, and which they carried on board, not having the neceffary means for extracting the metal they might contain.

Thefc Indians feed upon fifh, frefh or dry, boiled or roafted; herbs and roots which their mountains yielded them, and particularly that which in Spain is called fea parfley; and, laftly, upon the flefl of animals which they take in hunting : the productions of the chafe are undoubtedly abundant, feeing the number of dogs they keep for this purpofe.

Thefe Indians appeared to the Spaniards to worfhip the fun, the earliefl and moft natural of all idolatrous worflip; and they paid a decent refpect to the remains of their dead. Don Maurelle, one of the Spanifh officers, in an expedition round the gulf, found in two iflands three dead bodies laid in boxes of a fimilar form to thofe which have been defcribed above, though confiderably larger, and decked in their furs. Theie biers were placed in a little hut upon a platform, or raifed foor, made of the branches of trees.

The country is very hilly, the mountains are lofty, and their flope extends almoft every where to the fea. The foil, limefone; it is neverthelefs covered with an impenetrable forefl of tall fir trees, very large and very
ftrait. As thefe trces cannot ftrike very deep into the earth, the violence of the wind often tears them up by the roots: they rot and become a light mould, upon which grows a bufly thicket; and in this are found nettles, camomile, wild celery, anife, a fpecies of cab. bage, celandiue, elder, wormwood, forrel; and without doubt there are other plants along the rivers.

The Spaniards faw ducks, gulls, divers, kites, ravens, geefe, ftorks, gold-finches, and other little birds unknown to them.

The commerce between the Spaniards and the Indians was quite undifturbed; and fo defirous were the latter to obtain iron, cloth, and other ftuffs, that they fold their children for broken iron hoops and other wares. The Spaniards in this manner bought three young lads, one from five to fix years old, another of four, and the third from nive to ten, not to malse Saves, but Chriftians of them; they hoped befides to derive ufeful information from them as to the nature of the country and its inhabitants. Thefe youths were fo contented in being with the Spaniards, that they hid themfelves when their parents came on board, from the apprehenfion of being again reftored to them. Two young girls were alfo purchafed with the fame view; one very ugly, feven years of age; the other younger, better made, but fickly, and almoft at the gates of death.

At the full and change of the moon, the fea rifes in the harbour of La Cruz feventeen feet three inches Englifh; it is then high water at a quarter after 12 at noon : the lowef tides are fourteen feet three inches; the night tides exceed by one foot nine inches thofe of the day.

\section*{CRYSTAL, See Crystal and Crfstallization, Encycl. and Chemistry - Index. in this Supplement. \\ Rock-Crrstal.} figure exprefled by the equation \(x y^{2}=a\), having two afy mptotes, and confilting of two hyperbolas, lying in the adjoining angles of the afymptotes, and not in the oppolite angles, like the Apollonian hyperbola; being otherwife called by Newton, in his Enumeratio Linearum Tertii Ordinis, an hyperbolifmus of a parabola; and is the 6 gth fpecies of thofe lines according to him.

Cubic Parabola, a curve of the fecond order, having two infinite legs tending contrary ways. The curve of this parabola cannot be rectified even by means of the conic fections.-

CULLEN (Dr William) was a nian to whom phyfical fcience is fo oceply indebted, that it has often ftruck us with wonder that no account of him has yet been given to the public, which deferves to be claffed with Britill biography. We know, indeed, that a life of him has been written by an eminent phyfician well qualified and ftrongly inclined to do juftice to the merits of his revered preceptor; but that life has been withheld from us by him who has certainly the beft right to confider himfelf as the guardian of the Doctor's fame, and who, we have been told, is to enlarge and publith it himfelf. In this flate of things our readers mult pardon us for laying before them a very imperfect account of this eminent man, to whom we were ourfelves almoft Atrangers. There is a character of him in the periodical publication called The Bec, which we

\section*{C U L}

Culten. Mall appropriate to our own ufe, we are perfuaded, with the enture approbation of its author, though fometimes we may exprefs our fufpicions that his praife is exaggerated.

Dr William Cullen was horn in Lanarkfhire, in the welt of Scotland, 11th December \(171 \%\). His father was for fome time chicf magillrate of the town of Ifamil. ton; but though a very refpectable man, his circumftances were not fuch as to pernit him to lay out much money on the education of his fon. William therefore, after ferving an apprenticefhip to a furgeon apothecary in Glafgow, went feveral voyages to the Weft Indies as a furgeon in a trading veffel from London: but of this employment he tired, and fettled himfelf, at an early period of life, as a country furgeon in the parifh of Shutts, where he ftaid a fhort time practifing among the farmers and country people, and then went to Hamilton with a view to practife as a plyffician, having never been fond of operating as a furgeon.

While he refided near Shotts, it chanced that Archibald Duke of Argyle, who at tlat time bore the chief political fway in Scotland, made a vifit to a gentleman of rank in that neighbourhnod. The Duke was fond of literary purfuits, and was then partieularly engaged in fome chemical refearches, which required to be elucidated by experiment. Eager in thefe purfuits, his Grace, while on this vifit, found himfelf much at a lofs for the want of fome fmall chemical apparatus, which his landllord could not furnifh : but lappily recollecting young Cullen in the neighbourhood, he mentioned liim to the Duke as a perfon who could probably furnifh it. He was accordingly invited to dine; was introduced to his Grace, - who was fo much pleafed with his knowIcigre, his politenefs, and addrefs, that he formed an acquaintance which laid the foundation of all Dr Cullen's future advaneement.

The name of Cullen by this time became familiar at every table in that neighbourhood; and thus he cane to be known, by character, to the Duke of Hamilton, who then refided, for a fhort time, in that part of the country : and that nobleman having heen fuddenly taken ill, the affiftance of young Cullen was called in ; which proved a fortunate circumftance in ferving to promote his advancement to a flation in life more fuited to his talents than that in which he had hitherto moved.

The clivracter of the Douglaffes, of which name the family of Hamilton now forms a principal branch, has always been fomewhat of the fame flamp with that of the rifing Cullen. Genius, benevolence, franknefs, and conviviality of difpolition, have been, with them in general, very prominent features; and if to that be added a fpirit of frolic and diflipation, thefe will be accounted as only natural confequences of thofe youthful indulgences that fpring from an excefs of wealth at an early period of life, and the licence allowed to people of elevated rank. The Duke was therefore highly delighted with the fprightly character and ingenious converfa.
tion of his new acquaintance. Receiving inftruction from him in a much more pleafing, and an infinitely eafier way than he had ever before obtained, the converfation of Cullen proved lighly interefting to his Grace.-No wonder then that he foon found incans to get his favourite Doctor, who was already the eftecmed acquaintance of the man through whofe hands all preferments in Scotland were obliged to pafs, appointed to a place in the univerfity of Glafgow, where his fingular talents for difcharging the duties of the ftation he now occupied foon became very confpicuous (A).

During his refidence in the country, however, feveral important incidents occurred, that ought not to be paffed over in filence. It was during this time that was formed a connection in bufinefs in a very humble line between two men, who became afterwards eminent. ly confpicuous in much more exalted ftations. William, afterwards Doctor, Hunter, the famous lecturer on anatomy in London, was a native of the fame part of the country; and not being in affluent circumftances more than Cullen, thefe two young men, flimulated by the impulfe of genius to profecute their medical fudies with ardour, but thwarted by the narrownefs of their fortune, entered into a copartnery bufinefs as furgeons and apothecaries in the country. The chief end of their contract being to furnin the parties with the means of profecuting their medical ftudies, which they could not feparately fo well enjoy, it was ftipulated, that one of them alternately hould be allowed to ftudy in what college he inclined, during the winter, while the other hould carry on the humefs in the comntry for their common advantage. In confequence of this agreement, Cullen was firft allowed to !ludy in the univerfity of Edinburgh for one winter; but when it came to Hunter's turn next winter, he, preferring London to Edinburgh, went thither. There his fingular neatnefs in diffecting, and uncommon dexterity in making anatomical preparations, his affiduity in lludy, his mildnefs of manner, and pliability of temper, foon recommended him to the notice of Dr Douglais, who then read lectures upon anatomy and midwifery there; who engaged Hunter as an affiftant, and whofe chair he afterwards filled with fo much honour to himfelf and fatisfaction to the public.

Thus was diffolved, in a premature manner, a copartnery perhaps of as fingular a kind as is to be found in the annals of literature : nor was Cullen a man of that difpofition to let any engagement with him prove a bar to his partner's advancement in life. The articles were Freely departed from by him; and Cullen and Hunter ever after kept up a very cordial and friendly correfpond. ence; though, it is believed, they never from that time had a perfonal interview.

During the time that Cullen practifed as a country furgeon and apothecary, he formed another connection of a more permanent kind, which, happily for him, was not diffolved till a very late period of his life. With \(3 \mathrm{~N}_{2}\)
the
(A) It was not, however, folely to the favour of thefe two great men that Cullen owed his literary fane. He was recommended to the notice of men of fcience in a way ftill more honourable to himfelf. The difeafe of the Duke of Hamilton having refifted the effect of the firf applications, Dr Clarke was fent for from Edinhurgh; and he was fo much pleafed with every thing that Cullen had done, that he became his eulogilt upon every occafion. Cullen never forgot this; and when Clarke died, gave a public oration in his praife in the Univerfity of Edinburgh; which, it is believed, was the firt of the kind in this country.

\section*{C U L [468\(] \quad\) C U L}

Cullen. the ardour of difpofition he poffefed, it cannot be fuppofed he heleld the fas fex with indifference. Very carly in life he took a ftrong attachment to an amiable woman, a Mifs Johnflon, daughter to a clergyman in that neighbourhood, neanly of his own age, who was prevaited on to join with him in the facred bonds of wedlock, at a time when he had nothing elfe to recommend him to her except his perfon and difpofitions; for as to riches and poffeffions he had little of thefe to boalt of. She was beautiful, had great good fenfe, equanimity of temper, an amiable difpofition, and elegance of manners, and brought with her a littic money, which, though it would be accounted nothing now, was fomething in thofe days to one in his fituation in life. After giving to him a numerous family, and participating with fim the changes of fortune which be experienced, the peacefully departed this life in fummer 1786 .

In the year 1746, Cullen, who had now taken the degree of doctor in phyfic, was appointed a lecturer in chemitry in the univerfity of Glafyow: and in the month of Oefuber began his lectures in that fcience. His fingular talents for arrangement, his diftinctnefs of enunciation, his vivacity of manner, and his knowledge of the fcience he taught, rendered his lectures interefting to the fludents to a degree that lad been till then unknown at that univerfity. He became, therefore, in fome meafure, adored by the ftudents. The former profeffors were eclipfed by the brilliancy of his reputation; and he had to experience all thofe little rubs that envy and difappointed ambition naturally threw in his way. Regardlefs, however, of thefe fecret fhagreens, he preffed forward with ardour in his literary career; and, fupported hy the favour of the public, he confoled himfitf for the contumely he met with from a few indivicuals. His practice as a phyfician increafed from day to day; and a vacancy having occurred in the year 1751, he was then appointed by the king profeffor of medicine in that univerfity. This new appointment ferved only to call forth his powers, and to bring to light talents that it was not formerly known he poffer. fed; fo that his fame continued to increafe.

As, at that period, the patrons of the univerfity of Edinburgh were conftantly on the watch for the molt cminent medical men to fupport the rifing fame of the college, their attention was foon directed towards Cul len ; who, on the death of Dr Plumber, profeffor of chemiftry, was, in 1756, unanimonfly invited to accept the vacant chair. This invitation he accepted : and having refigned all his employments in Glafgow, he began his academical career in Edinburgh in the month of October of that year; and there he refided till his death.
If the admiffion of Cullen into the univerfity of Glafgow gave great fpirit to the exertions of the fudents, this was ftill, if poffible, more ftrongly felt in Edinburgh. Chemiftry, which had been till that time of fnall account in that univerfity, and was attended to by very few of the ftudents, inflantly became a favourite ftudy; and the lectures upon that fcience were more frequented than any others in the univerfity, anatomy alone excepted. The ftudents, in general, fpoke of Cullen with the rapturous ardour that is natural to youth when they are highly pleafed. Thefe eulogiums appeared extravagant to moderate men, and could not fail to prove difgufting to his colleagues. A party was
formed among the ftudents for oppofing this new favourite of the public; and thefe ftudents, by mifieprefenting the docirines of Cullen to others who could not have an opportunity of hearing thefe ductrines themfelves, made even fome of the mofl intelligent men in the univerfity think it their duty publicly to oppofe thefe imaginary tenets. The ferment was thus augmented; and it was fome time before the profeffors difcovered the arts by which they lad been impofed upon, and univerfal harmony refored.

During this time of public ferment, Cullen went fteadily forward, without taking any part himfelf in thefe difputes. He never gave ear to any tales refpecting his colleagues, nor took any notice of the doctrines they taught: That fome of their unguarded fitrictures might at tines come to his knowledge, is not impoffible ; but if they did, they feemed to make no impreffion on his mind.

Thefe attempts of a party of fudents to lower the character of Cullen on his firf outfet in the univerfity of Edinburgh having proved fruitlefs, his fame as a profeffor, and his reputation as a phy fician, became more arid more refpected every day. Nor could it well be otherwife: Cullen's profeffional knowledge was always great, and his manner of lecturing firgularly clear and intelligible, lively and entertaining ; and to his patients, his conduct in general as a phyfician was fo pleafing, his addrefs fo affable and engaging, and his manner fo opem, fo kind, and fo little regulated by pecuniary confiderations, that it was impoffible for thofe who had occafion to call once for his medical affiftance, ever to be fatisfied on any future occafion without it. He became the friend and companion of every family he vifited; and his future acquaintance could not be difpeofed with.

But if Dr Cullen in his public capacity deferved to be admired, in his private capacity by his fudents he deferved to be adored. His ecnduct to them was fo attentive, and the intereft he took in the private concerns of all thofe ftudents who applied to him for advice, was fo cordial and fo warm, that it was impoffible for any one who had a heart fufceptible of generous emotions, not to be enraptured with a conduct fo uncommon and fo kind. Among ingenuous youth, gratitude eafily de. generates into rapture-into refpect nearly allied to adoration. Thofe who advert to this natural conftruction of the human mind, will be at no lofs to account for that popularity that Cullen enjoyed -a popularity, that thofe who attempt to weigh every occurrence by the cool ftandard of renfon alone, will be inclined to think exceffive. It is fortunate, however, that the bulk of mankind will ever be influenced in their judgment not lefs by feelings and affections than by the cold and phlegmatic dictates of reafon. The adoration which generous conduct excites, is the reward which nature hath appropriated exclufively to difinterefted beneficence. This was the fecret charm that Cullen ever carried about with him, which fafcinated fuch numbers of thofe who had intimate accefs to him. This was the power which his envious opponents never could bave an opportunity of feeling.

The general conduct of Cullen to his ftudents was thus. With all fuch as he obferved to be attentive and diligent, he formed an early acquai:tance, by inviting them by twos, by threes, or by fours at a time, to fup with him, converfing with thero on thefe occafions with
the mofe engaging eafe, and freely entering with them on the fubject of their ftudies, their amufements, their diffieulties, their hopes, and future profpects. In this way he nfually invited the whole of his mumerous clafs, till he made himfelf acquainted with their abilities, their private character, and their objects of purfuit. Thofe among them whom he found molt affiduous, bett dif. pofed, or the molt friendlefs, he invited the moll frequently, till an intimacy was gfadually formed, which proved highly beneficial to them. Their doubts, with regard to their objects of Atudy, he liftened to with attention, and fulved with the moft obliging condefcenfion. His lihrary, which confifted of an excellent affortment of the belt books, efpecially on medieal fubjects, was at all times open for their accommodation ; and his advice, in every cafe of difficulty to them, they always had it in their power molt readily to obtain. They feemed to be his family; and few perfons of dif. tinguifhed merit have left the univerlity of Edinburgh in his time, with whom he did not keep up a correfpondence till they were fairly eftablifhed in bufinefs. By thefe means he came to have a mofl aceurate knowledge of the ftate of every country, with refpect to practitioners in the medical line; the only wefe the made of which knowledge was, to direct fludents in their choice of places, where they might have an opportunity of engaging in bufinefs with a reafonable profpect of fuecefs. Many, very many, able men has he thus put into a good line of bulinefs where they never could have thonght of it themfelves; and they are now reaping the fruits of this beneficent forefight on his part.

Nor was it in this way only that he befriended the ftudents at the univerfity of Edinburgh. Pofleffing a benevolence of mind that made him ever think firit of the wants of others, and recullecting the diffeculties that he himfelf had had to ftruggle with in his younger days, he was at all times fingularly attentive to their pecuniary concerns. From his general acquaintance among the ftudents, and the friendly habits he was on with many of then, he fuund no difficulty in difcovering thofe among them who were rather in hampered circumftances, without being obliged to hurt their delicacy in any degree. To fuch perfons, when their habits of fludy admitted of it; he was peculiarly attentive. They were mure frequently invited to his houfe than others; they were treated with more than ufual kindnefs and familiarity; they were conducted to his library, and encouraged by the molt delicate addrefs to borrow from it freely whatever bouks he thought they had vecafion for: and as perfons in thefe circumflanees were ufually more fhy in this refpect than others, books were fometimes prefed upon them as. a fort of conttraint, by the Ductor infilting to have their opinion of fuch or fuch paflages they had not read, and defiring them to carry the book home for that purpofe. .He, in flort, behaved to them rather as if he courted their company, and ftood in need of their acquaintance than they of his. He thus raited them in the opinion of their acquaintance to a much higher degree of eltimation than they could otherwife have obtained; which, to people whofe minds were depreffed by penury, and whofe fenfe of honour was fiarpened by the confcioufnefs of an inferiority of a eertain kind, was fingularly engaging. Thus they were infpired with a fecret fenfe of dignity, which elevated their minds, and excited an
unconmon ardour of purfuit, inftead of that melanclio.
Cullen. ly inactivity which is fo naturul in fuch circumftances, and which too often leads to defpair. Nor was he lefs delieate in the manner of fupplying their wants, than attentive to difcover them. He when found ont fome polite excufe for refuling to take paynent for a firt courle, and never was at a lofs for one to an aficr courfe. Before they could have an opportunity of applying for a ticker, he would fometimes lead the converfation to fome fubject that occurred in the courde of his lectures; and as his lectures were never put in writing by him. felf, he would fometimes beg the favour to fee their notes, if he knew they had been taken wit! attention, under a pretext of affilting his memory. Sometimes he would exprefs a wifh to have their opinion of a pastict!lar part of his courfe, and prefented them with a ticket for that purpofe; and fometimes he refufed to take payment, under the pretext that they had nut received his full courfe the preeeding year, fome part of it ha. ving been neceffarily omitted for want of tome, which he meant to include in this courfe. By fucb delicate addrefs, in which he greatly excelled, he took care to forerun their wants. Thus he not only gave them the bencfit of his own lectures, but by refufing to take their money, he alfo enabled thein to attend thofe of others that were neceffaty to complete their courfe of Atudies. Thefe were particular devices he adopted to individuals to whom economy was neceffary; but it was a general rule with him, never to take moncy from any fludent for more than two courfes of the fame fet. of lectures, permitting him to attend thefe lectures as many years longer as he pleafed gratis.

He introduced another general rule into the unjerfity, that was dictated by the fame principle of difin. terelled beneficence, that ought not to be here paffed over in filence. Before he came to Edinburgh, it was the cuftom of medieal profeffors to accept of fees for their medical affitance, when wanted, even from medical Atudents themfelves, who were perhaps attending the profeffor's own lectures at the time. But Cullen hever would take fecs-as a phyfician from any tudent at the univertity, though he attended them, when called in as a phyfician, with the fame afduity and care as if ther had been perfons of the firlt rank, who paid him mult liberally. This gradually induced others to adopt a fimilar practice; fo that it is now become a gencral rule for medical profffors to decline taking any fees when their affiftance is neceffary to a fudent. For this ufeful reform, with many others, the itudents of the univerfity of Edinburgh are folely indebted to the liberality of Dr Cullen.

The firtt lectures which Cullen delivered in Euinburgh were on chemiftry; and for many years he alfo gave clinical lectures on the cafes which occurred in the Ruyal Infirmary. In the month of Februany 17f3, Dr Alfton died, after having begun his ufual courfe of lectures on the materia medica; and the magiftrates of Edinburgh, as patrons of that profeffonfip in the univerlity, appointed Dr Cullen to that chair, reguefting that he would finifh the courfe of lectures thai had betn begun for that feafon, This he agreed to da: and though he was under a necefity of going on with the courfe in a few days after he was nominated, he did not once think of reading the lectures of his predeceffor, but refuled to deliver a new courfe entircly his own

\section*{C U L}

Culles. The popularity of Cullen at this tinise may be gueffed at by the increafe of new fudents who came to attend his courfe in addition to the eight or ten who had entered to Dr Aliton. The new ftudents exceeded 100. All inpperfeet copy of thefe leetures, thus fabricated in hafte, having been publifhed, the Doefor thought it neceflary to give a more correct edition of them in the latter part of his life. But his faculties being them much impaired, his friends louked in vain for thofe ftriking beautics that characterifed his literary exertions in the prime of life.

Some years afterwards, on the death of Dr White, the magiftrates once more appointed Dr Cullen to give lectures on the theory of phyfic in his ftead. And it was on that occafion Dr Cullen thought it expedient to refign the chemical chair in favour of Dr Black, his former pupil, whofe talents in that department of fcience were then well known, and who filled the chair till his
* See Black, death with great fatisfaction to the public*. Soon after,

SuppL on the death of Dr Rutherford, who for many years
had given lectures with applaufe on the practice of phyfie, Dr John Gregory (whofe name can never be mentioned by any one who liad the pleafure of his acquain. tance without the warmeft tribute of a grateful refpect) having become a candidate for this place along with Dr Cullen, a fort of compromife took place between them ; by which they agreed cach to give lectures alternately on the theory and on the practice of phyfic during their joint lives, the longef furvivor being allowed to hold either of the claffes he fhould incline. In confequence of this agreement, Dr Cullen deliveced the fr \(\beta\) courfe of lectures on the practice of phylic in winter \({ }^{17}\) 65, and Dr Gregory fucceeded hiin in that branch the following year. Never perhaps did a literary arrangement take place that could have proved more beneficial to the fludents than this. Buth thefe men poffeffed great talents, though of a kind extremely difirmilar. Both of them had certain failings or defe As, which the other was aware of, and counteraEted. Each of them knew and refpected the talents of the other. They co-operated, therefore, in the happieft manner, to enlarge the undertanding, and to forward the purfuits of their pupils. Unfortunately this arrangement was foon dettroyed by the unexpected death of Dr Gregory, who was cut off in the flower of life by a fudden and unforefeen erent. After this time, Cullen continued to give lectures on the practice of phyfic till a few months before his death, which happened on the \(5^{\text {th }}\) of February 1790 , in the 77 th year of his age.

In drawing the charater of Dr Cullen, Dr Anderfon, to whon we are indebted for this lketch, obferves, that in fcientific purfuits men may be arranged into two grand claffes, which, though greatly different from each other in their extremes, yet approximate at times fo near as to be blended indifcriminately together; thofe who poffefs a talent for detail, and thofe who are endowed with the faculty of arrangement. The firl! may be faid to view objects individually as through a microfcope. The field of vifion is confined; but the objects included within that field, which muft ufually be confidered fingly and apart from all others, are feen with a wondrous degree of accuracy and diftinetnefs. The other takes a fiveeping view of the univerfe at large, confiders every object he perceives not individually, but as a part of one harmonious whole: His mind

470] C U L
is therefore not fo much employed in examining the feparate parts of this individual object, as in tracing its relations, connections, and dependencies, on thofe around it.-Such was the turn of Cullen's mind. The talent for arrangement was that which peculiarly diftinguifhed him from the ordinary clafs of mortals; and this talent he poffeffed perhaps in a more dilitinguifhed degree than any other perion of the age in which he lived. Many perfons exceeded him in the minute knowledge of particular departments, who, knowing this, naturally looked upon him as their inferior ; but poffeffing not at the fame time that glorious faculty, which, "with an eye wide roaming, glances from the earth to heaven," or the charms which this talent can infufe into congenial minds, felt difguft at the pre-eminence he obtained, and aftonifhment at the means by which he obtained it. An Ariftucte and a Bacron have had their talents in like manner appretiated; and many are the perfons who can neither be exaited to fublime ideas with Homer, nor ravifhed with the natural touches of a Shakefpeare. Such things are wifcly ordered, that every department in the miverfe may be properly filled by thofe who have talents exactly fuited to the tafk afligno ed them by heaven.

Had Cullen, however, poffeffed the talents for arrangement alone, fmall would have been his title to that high degree of applaufe he has attained. With. out a knowledge of fads, a talent for arrangement produces nothing but chimeras; without materials to work upon, the Atructures which an over-heated inagination may rear up are mercly "the bafelefs fabric of a vifion." No man was more fenfible of the juftnefs of this remark than Dr Cullen, and few were at greater pains to a avid it. His whole life, indeed, was employed, almoft without in:terruption, in collecting facts. Whether he was reading, or walking, or converfing, thefe were continually falling into his way. With the keen perception of an eagle, he marked them at the firft glance; and without llopping at the time to examine them, they were Itored up in his memory, to be drawn forth as occafion required, to be confronted with other faets that had been obtained after the fane mauner, and to have their truth afcertained, or their falfity proved, by the evidence which fould appear when carefully examined at the impartial bar of juftice. Withuut a memory retentive in a fingular degree, this cuuld not have been done; but fo very extraordinary was Dr Cullen's memory, that till towards the very decline of life, there was fcarcely a fact that had ever occurred to him which he could not readily recollect, with all its concomitant circumitances, whenever he had occafion to refer to it. It was this faculty which fo much abridged his labour in ftudy, and enabled him fo happily to avail himfelf of the labuur of others in all lis literary \(f_{\text {peculations. He of- }}\) ten reaped more by the converfation of an hour than another man would have done in whole wecks of labo. rious fludy.

In his prelections, Dr Cullen never attempted to read. His lectures were delivered viva voce, withont having been previoufly put into writing, or thrown into any particular arrangement. The vigour of his mind was fuch, that nothing more was necefflary than a few fhort notes before him, merely to prevent him from varying from the general order he had been accuftomed to obferve. This gave to his difcourfes an eafe, a vivacity,

\section*{C U L [47I] C U L}

Cnilen. vacity, a variety, and a force, that are rarely to be met with in aeadenical difeourfes. His lectures, by confequenee, upon the fame fubject were never exactly the fame. Their general tenor indeed was not much varied; but the particular illuftrations were always new, well fuited to the eircumiltances that attracted the general attention of the day, and were delivered in the partieular way that accorded with the caft of mind the prelector found himedf in at the time. To thefe circumitances mult he afcribed that energetic artlefs clocution, which rendered his lectures fo gencrally captivating to his hearers. Even thofe who could not fol. low him in thofe extenfive views his penetrating mind glaneed at, or who were not able to underfland thofe apt allufions to collateral objects which he could only rapidly point at as be weut along, could not help being warm. ed in fome meafure by the vivacity of his manaer. But to thofe who could folluw him in his rapid eareer, the ideas he fuggetted were fo numerous, the views he laid open were fo extenive, and the objects to be attained were fo important-that every active faculty of the mind was roufed; and fuch an ardomr of enthufiafm was excited in the. profecution of ftudy, as appeared to be perfectly inexplicable to thofe who were merely unconcerned fpectators. In confequence of this unfhackled freedom in the compofition and delivery of his lectures, every circumflance was in the nieeft unifon with the tone of voiee and expreffion of countenance, which the particular calt of mind he was in at the time infpired. Was he joyous, all the figures introduced for illuftration were fitted to excite hilarity and good humour : was he grave, the objects brought under view were of a nature more folemn and grand: and was he peevifa, there was a peculiarity of manaer in thought, in word, and in action, which produced a moft ftriking and interefting effect. The languor of a nervelcfs uniformity was hever experienced, nor did an abortive attempt to excite emotions that the fpeaker himfelf could not at the time feel, ever produce thofe difeordant ideas which prove difgulting and unplealing.

It would feem as if Dr Cullen liad eonfidered the proper bufinefs of a preceptor to be that of putting his pupils into a proper train of fudy, fo as to enable them to profecute thofe ftudies at a future period, and to earry them on much farther than the fhort time allowed for academical prelections would admit. He did not, therefore, fo much frive to make thofe who attended his lectures deeply verfed in the particular details of objects, as to give them a general view of the whole fubject; to thew what had been already attained refpecting it; to point out what remained yet to be difcovered; and to put them into a train of fludy that fhould enable them at a future period, to remove thore difficulties that had hitherto obilructed our frogrefs; and thus to advance of themfelves to farther and farther degrees of perfection. If thefe were his views, nothing could be more happily adapted to them than the mode he invariably purfued. He firft drew, with the ftriking touches of a mafter, a rapid and general outline of the fubject, by which the whole figure was feen at once to ftart boldly from the canvas, diftinct in all its parts, and unmixed with any other object. He then began anew to retrace the picture, to touch up the leffer parts, and to finifh the whole in as perfect a manner as the ftate of our knowiedge at the time would permit.

Where materials were wanting, the picture there continued to remain imperfect. The wats were thas iondered obvious; and the means of fupplying thefe were pointed out with the mot eareful diferimination. The Atudent, whenever he looked back to the fubject, perceiverl the defects; and his hopes being awakened, he felt an irrefillible impulfe to explore that hitherto une trodden path which had been pointed out to him, and fill up the chafm which flill remained. Thus were the active faculties of the mind mof powerfully excited; and inftead of labouring himfelf to fupply deficiencies that far exceeded the power of any one man to accomplifh, he fet thonfands at work to fulfil the tafk, and put them into a train of groing on with it, when he himfelf thould he gone to that country "from whofe dread buurne no traveller returns."

It was to thefe talents, and to this mode of applying them, that Dr Cullen owed his eelebrity as a proffifur; and it was in this manner that he has perhaps done more towards the advancenent of feience than any other man of his time, though many individuals might perhaps be found who were more deeply verfed in the particular dcpartments he taught than he himfelf was. Chemiftry, which was before his time a mult difgufting purfuit, was by him rendered a ttudy fo pleafing, fo ealy, and fo attractive, that it is now profecuted by numbers as an agreeable reercation, who but for the lights that were thrown upon it by Cullen and his pupils, would never have thought of engaging in it at all; though perhaps they never heard of Cullen's name, nor bave at this time the moft diflant idea that they owe any obligations to him; and the fame may be faid of the other branches of icience which he taught.

Aceording to a man who knew hin well, there are three things which eminently diftinguified Cullen as a profeffor. "The energy of his nind, by which he viewed every fuiject with ardour, and combined it immediately with the whole of his knowledge.
"The fcientific arrangement which he gave to his fubject, by which there was a lucidus orcho to the dullelt fcholar. He was the firlt perfon in this country who made chemiltry ceafe in be a chaos.
"6'A wonderful art of interefting the ftudents in every thing which le taught, and of raifing an emulative enthufiafm among them."

We are well aware that this character will by many be deemed an extravagaat pancgyric; but having no opportunity of judging for ourfelves, we would rather adopt from otlecrs an extravagant panegyic than an unmerited cenfure. Dr Anderfon himfelf admits that Cullen's character was far from perfect ; and, in the opinion of mot other men with whom we have converfed on the fubject, and who were at the fame time qualified to form an ettimate of his mental powers, his imagination was not balaneed by his judgment. Hence the common remark in the univerity of Edinhurgh, that Dr Cullen was more fuecefsful in demolithing the theories of others than in giving ftability to thofe which were reared by himfelf.

Dr Cullen's external appearance, though ftriking and not unpleafing, was not elegant. His countenanee was expreffive, and his eye in particular remarkably lively, and at times wonderfully penetrating. In his perfon he was tall and thin, flooping very much about the fhoulders. When he walked, he bad a contemplative look,

Curfeu and did not feem much to regard the objects around 11 lim.
Cuffo, CURFEU Bell (fue Curfew, Encycl), called in the law Latin of the middle ages ignitegium or pyritesium, and in Frenel, curre-fou-was a fignal for all perfous to extinguifh their fires at a certain hour. In thofe eges people made fires in their houfes i.1 a hole or pit in the centre of the floor, under an opening formed in the roof; and when thic fire was burnt out, or the family went to bed, the hule was thut by a cover of wood or of earth. This practice ftill prevails among the cottagers in fome parts of Scotland, and we doubt not of other countries. In the dark ages, when all ranks of people were turbulent, a law was almot everywhere eftablifhed, that the lire floould be extinguifhed at a certain time in the evening; that the cover fhould be put over the fire-place; and that all the family hould retire to reft, or at leaft keep within doors The time when this onght to be done was fignified by the ring. ing of a bell, called therefore the curfeu-bell or ignitegium. The law of William the Conqueror, which introduced this practice into England, as has been mentioned in the Encycloprdia, was abolifhed by Henry I. in 1100.

The ringing of the curfeu-bell gave rife to the prayerbell, as it is called, which is ftill retained in Some Pro. teft:nt countrics. Pope Johu XXIII. with a view to avert certain apprehended misfortunes, which rendered his life uncomfortable, gave orders, that every perfon, on hearing the igniserium, fhould repeat the Ave Maria three times. When the appearance of a comet, and a dread of the Turks, afterwards alarmed all Chriftendom, Pope Calixtus III. increafed thefe periodical times of prayer, by ordering the prayer-bell to be rung alfo at noon. Beckmann's Hilory of Inventions.

CURVE of Equable Approach. It was firt propofed by Leibnitz, namely, to find a curve, down which a body defeending ly the force of gravity thall make equal approaches to the horizon in equal portions of time. It has been found by Bernoulli and others, that the curve is the fecond cubical parabola, placed with its vertex uppermoft, and which the defcending body muft enter with a certain determinate velocity. Varignon rendered the quettion general for any law of gravity, by which a body may approach towards a given point by equal fpaces in equal times. And Maupertuis alfo refolved the problem in the cafe of a body defcending in a medium which refilts as the fquare of the velocity.

CUSSO, or Banksia Abyssinica, is a beautiful and ufeful tree, indigenous to the high country of Abyffinia. At leaft Mr Bruce, who has given of it the only defcription which we have feen, fays that he never faw it in any. otber part of A fia or Africa. It feldom grows above 20 feet high, very rarely traight, generally crooked or inclined. Its leaf, which is of a deep unvarnifhed green, having the fore part covered with Soft hair or down, is about \(2 \frac{1}{7}\) inches long, divided by a ftrong rib into two unequal divifions, of which the upper is broader and larger than the lower. It is more indented than even the nettle leaf, which it in fome meafure refembles, only the leaf of the Culfo is narrower and longer.

Thofe leaves grow two and two upon a branch, having between each two the rudiments of two pair of leaves, which probably are deciduous ; but the branch is terminated with a fingle leaf or fipula at the point. The end of this ftalk is broad and Atrong, like that of
a palm b:anch. It is not fulid like the gerid of the date tree, but opens in the part that is without leaves about an inch and a half from the bottom, and out of this aperture procecds the flower. There is a round falk, bare fur about an inch and a quartcr, from which proceed crooked branches with fingle flowers attached to tleeir ends; the ftalk that carries thefe proceeds out of every crook or geniculation. The whole clufter of flowers has very much the thape of a clutter of grapes; the ftalks which fupport it refemble the falks of the grape; and a very few imall leaves are fcattered through the clufter of flowers.
" The calyx or flower cup is of a grecniß colour, tinged with purple ; when fully blown it is altogether of a deep red or purple; the corolla is wubite, and confifts of five petals; in the midet is a fhort piftil with a round head, furrounded by eight famina, of the fame form, loaded with yellow farina. The cup conlifts of five petals, which much refemble another flower; they are rounded at the top, and nearly of an equal breadtlı cvery way. The feed is very finall, fmaller than even the ferren fantonicum; and being likewife very bitter it is ufed in Abyfinia as a vernifuge. From its fnall. nefs, however, and its being very eafly fhed, no great quantity of it is ever gathered, and therefore the flower is often fubitituted in its flead. The Abyfinians, fays our author, of both fexes, and at all ages, are troubled with the fort of worm called alcarides, of which every individual evacuates a large quantity once a-month. The method of promoting thele evacuations is hy infufing a handful of dry cullo flowers in about two Englifh quarts of bouza, or the beer they make of teff (fee Teff, Encycl.), and after it has been fteeped all night, the next morning it is fit for ufe.
"The bark of the tree is fmooth, of a yellowifh white, interfperfed with brown flreaks, which pafs through the whole hody of the tree. It is not firm or hard, but rather ftringy and reedy. On the upper part, before the firit branch of leaves fet out, are rings round the trunk, of fmall filaments of the confiftence of horfe hair : thefe are generally fourteen or fixteen in number, and are a very remarkable characteriftic belonging to the tree."

From this defcription, which, it mult be confeffed, is not remarkable for perfpicuity, and from an infpec. tion of the figure which Mr Bruce has given of the cuffo, we are inclined to rank it with the palms, as a new genus, nearelt to the caryota.

CUVETTE, or Cunette, in fortification, is a kind of ditch within a ditch, being a pretty deep trench, about four fathoms broad, funk and running along the middle of the great dry ditch, to hold water; ferving both to keep ofl the enemy and prevent him from mining.

CYCLE of Indiction, is a feries of 15 jears, returning conitantly around like the other cycles, and commenced from the third year before Chrift ; whence it happeus that if 3 be added to any given year of Chrif, and the fun be divided by 15 , what remains is the ycar of the indiction.

CYCLOID (fee Encycl.) is a curve, which is thus generated: Suppofe a wheel or circle to roll along a Itraight line till it has completed juft one revolution ; a nail or point in that part of the circumference of the circle, which at the beginning of the motion touches the Araight line, will, at the end of the revolution, have defcribed on a vertical plane a cycloid.

DAGELET,

Dagelet, Dairy.

DAGELET, the name given by La Pcroufe, the celebrated though unfortunate navigator, to an ifland on the couaft of Corea (fee Corea, Encycl.), which he difcovered in the year 1787. It is little more-than three leagues in circumference; and our author almott made its circuit 3 the ditance of a mile without finding buttom. This finall fpot is very lleep, but covered with the fineft trees from the fea-fhore to the fummit. A rampart of bare rock, like a wall, encircles the whole outline of it, with the exception of feven little fandy crecks, where it is poffible to land. In thefe creeks the Frenchmen faw upon the flocks fome boats of a coaltruction altoget her Chinefe; but the fight of their thips frightened the workmen, who fled from their dock-yard into the wood, which was not more than fifty paces diftant. As a few huts were feen, but neither villages nor cultivation, La Peroufe concluded that the inland is with. out inhabitants, and that the men whom he faw at work were Corean carfenters, who during the fummer months go with provifion to Dagelet for the purpofe of building boats, which they fell upon the continent. He places the north eaft point of this illand in Lat. \(37^{\circ} \cdot 25^{\prime}\). and E. Long. \(129^{\circ}\). \(2^{\prime}\). from Paris.

DAIRY is a word which fignifies fometimes the art of making various kinds of food from milk; fometimes the place where milk is manufactured; and fometimes the management of a milk-farm. On the dairy, in the firt and fecond of thefe fenfer, enough has been faid in the Encyclopedia under the titlcs Burter, Cheese, and Dairy; on the management of a milk farm that work contaius nothing.

When a dairy is eftablifhed, the undertaker may fometimes think it his intereft to obtain the greateft polfible quantity of produce; fometimes it nay be more beneficial for him to lave it of the fineft quality ; and at other times it may be neceffary to have both thefe objects in view, the one or the other in a greater or lefs proportion : it is therefore of importance that he fhould know how he may accomplifh the one or the other of thefe purpofes in the eafieft and moft direct manner.

To be able to convert his milk to the highelt poffible profit in every cafe, he ought to be fully acquainted with every circumftance refpecting the manufacture both of butter and of cheefe; as it may in fome cafes hap. pen, that a certain portion of that milk may be more advantageoufy converted into butter than into cheefe, while another portion of it would return more profit if marle into checfe.

The firft thing to he adverted to, in an undertaking of this nature, is to choofe cows of a proper fort. Among this clafs of animals, it is found, by experience,

Suppl. Vol. I. Part II.
that fome kinds give milk of a much thicker confiftence and richer quality than others; nor is this rich. nefs of quality neceffarily conneeted with the fmallnefs of the quantity yielded by cows of nearly an equal fize ; it therefore behoves the owner of a dairy to be peculiarly attentive to this circumftance. In judging of the value of a cow, it ought rather to be the quantity and the quality of the cream produced from the milk of the cow, in a given time, than the quantity of the milk itfelf : this is a circumftance that will be hewn hereafter to be of more importance than is generally imagined. The fmall cows of the Alderney breed afiord the richeft milk hitherto known ; but individual cows in every country may be found, by a careful felection, that alford much thicker milk than others; thefe therefore ought to be fearched for with care, and their breed reared with attention, as being peculiarly valuable.
Few perfons who have had any experience at all in the dairy, can be ignorant, however, that in comparing the milk of two cows, to judgre of their refpective qualities, particular attention mult be paid to the time that has elapied fince their calving : for the nilk of the fame cow is always thinner foon after calving than it is afterwards; as it gradually becomes thicker, though generally lefs in quantity, in propontion to the time tince the cow has calved. The colour of the milk, foon after calving, is richer than it is afterwards; but this, efpecially for the firft two weeks, is a faulty colour that ought not to be covcted.
To make the cows give abundance of milk, and of a good quality, they muft at all times have plenty of fond. Grafs is the bell fond yet known for this purpofe, and that kind of grafs which fprings up fpontaneounly on rich dry foils is the beft of all. If the temperature of the climate be fuch as to permit the cows to graze at eafe throughout the day, they fhould be fuffered to range on fuch paftures at freedom ; but if the cows are io much incommoded by the heat as to be prevented from eating through the day, they ought in that cafe to be taken into cool hades for protection : where, after allowing them a proper time to ruminate, they flould be fupplied with abundance of green food, fris-cut for the purpofe, and given to them by hand frequently, in fmall quantities, frefh and frefh, fo as to induce them to eat it with pleafure. When the heat of the day is over, and they can remain abroad with eafe, they may be again turned into the pallure, where they thould be allowed to range with freedon all night, during the mild weather of fummer.

Cows, if abundantly fed, hould be milked three times a-day, during the whole of the fummer feafon (A) ; in 30 the
(A) If cows be milked only twice in the day (24 hours), while they have abundance of fucculent food, they will yield a much fmaller quantity of milk, in the fame time, than if they be milked three times. Some attentive obfervers think a cow, in thefe circumftances, will give nearly as much milk at each time, if milked threc times, as if the were milked only twice. This fact, however, has not, that we know of, been afcertaincd by experiment. There can be no doubt but they give more, how much more is not afcertained; nor, whether it would be advantageous, in any cafe, to milk them four times, or oftencr; nor, what effect frequent milking produces on the quality of the milk.

The quantity of cream obtained from the firt-drawn cup was, in every cafe, much fmaller than from that which was laft drawn; and thofe hetween afforded lefs or more as they were nearer the begiuning or the end. It is unneceflary here to fpecify thefe intermediate proportions; but it is proper the reader flould be iuformed, that the quantity of cream obtained from the laitdrawn cup, from fome cows, exceeded that from the firlt in the proportion of fixteen to one. In other cows, however, and in particular circumitances, the dif. proportion was nut quite fo great; but in no cafe did it fall thort of the rate of eight to one. Probably, upon an average of a great many cows, it might be found to run as ten or twelve to one.

Secondly, The difference in the quality of the cream, however, obtained from thefe two cups, was much gieater than the difference in the quantity. In the firtt cup, the cream was a thin tough film, thinner, and perhaps whiter, than writing paper; in the laft, the crean was of a thick butyrous coniftence, and of a glowing richuefs of colour that no other kind of cream is ever found to poffefs.

Thirdly, The difference in the quality of the milk that remained, after the cream was feparated, was perhaps thill greater than either in refpect to the quantity or the quality of the cream. The milk in the firit cup. was a thin bluifh liquid, as if a very large proportion of water had been mixed with ordinary milk; that in the latt cup was of a thick confiftence, and yellow colour, mure refembling cream than milk both in tafte and appearance.

From this important experiment, it appears that theperfon who, by bad milking of his cows, lofes but half a pint of his milk, lofes in fact about as much cream aswould be affurded by fix or eight pints at the begin. ning, and lofes, befides, that part of the cream which alone can give richnefs and high flavour to his butter.
"If milk be put into a difh, and allowed to fand till it throws up crean, that portion of cream which rifes firt to the furface is richer in quality, and greater in quantity, than what rifes in a fecond equal space of time; and the crean that rifes in the fecond interval of time is greater in quantity, and richer in quality, than that which rifes in a third equal fyace of tine; that of the third than the fourth, and fo on: the cream that rifes decreafing in quantity, and declining in quality, continually, as long as any rifes to the furface."

Our ingenious author confefes, that his experiments. not having been made with fo much accurarcy in this cafe as in the former, he was not enabled to afcertain the difference in the proportion that takes place in. equal portions of time; but they have been fo often repeated as not to leave any room to doubt the fact, and it will be allowed to be a fact of no fmall importance in the management of the dairy. It is not certain, however, but that a greater quantity of cream may, upon the whole, be obtained from the milk by taking it
(B) Cows fhould always be treated with great gentlenefs, and foothed by mild ufage, efpecially when young and ticklifh, or when the paps are tender; in which laft cafe, the udder ought to be fomented with watm water before milking, and touched with the greateft gentlenefs, otherwife the cow will be in danger of contracting bad habits, becoming ftubborn and unruly, and retaining her milk ever after. A cow never lets down her milk pleafantly to the perfon the dreads or difilikes. The udder and paps fhould always be wathed with clean water before milking ; but care flould be taken that none of that water be admitted into the milking-pail.

\section*{D A I [475] D A I}

Dairy. away at different times; but the procefs is fo trouble fome as not to be counterbalanced by the increafed quantity obtained, if indeed an increafed quantity be thus obtained, which is not as yet quite certain.
"Thick milk always throws up a fmaller proportion of the cream it actually contains to the furface, than milk that is thinner; but that cream is of a richer quality. If water be added to that thick milk, it will afford a confiderably greater quantity of cream than it would have done if allowed to remain pure, but its quality is, at the fane time, greatly debafed."

This is a fact that every perfon attentive to a dairy mult have reniarked; but I have never (fays our author) leard of any experiment that conld afcertain, either the precife amount of the increafed quantity of cream that might thus be obtained, or of the ratio in the decreafe of its quality. The effects of mixing water with the milk in a dairy are at leatt afcertained ; and the knowledce of this fact will enable attentive perfuns to follow that practice which they think will belt promote their own interett.
" Milk which is put into a bucket or other proper veffel, and carried in it to any condiderable diftance, fo as to be much agitated, and in part cooled, before it be put into the milk-pans to fettle for cream, nicver throws up fo much, nor fo rich cream, as if the fame milk had been put into the milk-pans directly after it was milked."

In this cafe, it is believed the lofs of cream will be nearly in proportion to the time that has elapfed, and the agitation the milk has fuftained, after being drawn from the cow. But Dr Anderfon fays that he is not yet in poffeffion of any experiments which fufficiently afecrtain how much is to be afcribed to the time, and the agitation, taken feparately. On every branch of agriculture we find experiments wanting, at each ftep we advance in our inquiries; and it is the duty of every enquirer to point out, as he goes along, where they are wanted, fince the labours of no one man can poffibly complete the whole.

From the above facts, the following corollaries feem to be clearly deducible:

Fi.jl. It is of importance that the cows fhould be always milked as near the dairy as puffible, to prevent the neceffity of carrying and cooling the mailk before it is put into the difhes; and as cows are nuch hurt by far driving, it muft be a great advantage in a dairyfarn to have the principal grafs fields as near the dairy or homeftead as polfible.

Secondly. The practice of putting the milk of all the cows of a large dairy into one veffel, as it is nilked, there to remain till the whole milking is finifhed, before any part of it is put into the milk-pans-feems to be highly injudicious; not only on account of the lofs that is fuftained by agitation and cooling, but alfo, more efpecially, becaufe it prevents the uwner of the dairy from diftinguifhing the good from the bad cow's milk, fo as to feparate thefe from each other, where it is neceffary. He may thus have the whole of his dairy product greatly debafed by the milk of one bad cow, for years together, without being able to difcover it. A better practice, therefore, would be, to lave the milk drawn from each cow put feparately into the creamingpans as foon as it is milked, without being ever mixed with any other. Thus would the careful manager of
the dairy be alle on all oceafions to observe the particular quality of cach individual cow's milk, as well as its quantity, and to know with precifion which of his cows it was his intereft to difpofe of, and which of them he ought to keep and loreed from.

Thirdly. If it be intended to make butter of a very fine quality, it will be advifable in all cafes to kecp the milk that is firft drawn feparate from that which conics laft; as it is obvious, that if this be not done, the guality of the butter will be greatly debafed, without much augmenting its quantity. It is alfo obvious, that if this is done, the quality of the butter will be improved in proportion to the finallnefs of the quantity of the laftdrawn milk that is retained; fo that thofe who winh to be fingularly nice in this refpeet, will do well to rtain ooly a very fmall portion of the laft-drawn milk.

To thofic owners of dairics who have profit orly in view, it mult ever be a matter of trial aid calculation, how far it is expedient fur them to carry the improving of the quality of their butter at the expence of diminifhing its quantity. In different fituations prudence will point out different kinds of practice as molt eligible; and all perfons mult be left, after making accurate trials, to determine fur themfelves. It is likewife a confideration of no fmall importance, to determine in what way the inferior milk, that is thus to be fet apart where fine butter is wanted, can be emplnyed with the greateft profit. In the Highlands of Scotland they have adopted, without thinking of the improvement of their butter, a very fimple and economical practice in this refpect. As the rearing of calves is there a principal object with the farmer, every cow is allowed to fuckle her own calf with a part of her milk, the remain. der only being employed in the dairy. To give the calf its portion regularly, it is feparated from the cow. and kept in an inclofure, with all the other calves belonging to the fame farm. At regular times, the cows are driven to the door of the inclofure, where the young calves fail not to meet them. Each calf is then feparately let out, and runs directly to its mother, where it fucks till the dairy-maid judges it has had enough; ihe then orders it to be driven away, having previoufly fhackled the hinder legs of the mother, by a very fimple contrivance, to oblige her in ftand till. Boys drive away the calf with fwitches, and return it to the inclofure, while the dairy-maid milks uff what was left by the calf : thus they proceed till the whole of the cows are milked. They ubtain ouly a fmall quantity of milk, it is true, but that nilk is of an exceeding rich quality; which in the lands of fuch of the iuhabitants as know how to manage it, is manufactured into the richeft marrowy bufter that can be anywhere met with. This richuefs of the Highland butter is univerfally a. frribed to the old grafs the cows feed upon in their remote glens; but it is in fact chiefly to be attributed to the practice here defcribed, which has long prevailed in thofe regions. Whether a fimilar practice could be economically adopted clfewhere, our author takes not upon him to fay ; but doubtlefs other fecondary ufes might be found for the milk of inferior quality. On fome oecafions, it inight be converted into butter of an inferior quality ; on other oceafions, it might be fold fweet, where the fituation of the farm was within reach of a market-town ; and on others, it might be converted into cheefes, which, loy being made of fweet milk,

302
would
wonld be of a very fine quality if carefully made (c). Still other ufes might be devifed for its application; of which the following is worthy of noticc. Take common fkimmed milk, wheu it has begun to turn four, put it into an upright fland charn, or a barrel with one of its ends ont, or any other convenient veffel. Heat fome water, and pour it into a tub that is large enough to contain with eale the veliel in which the milk was put. Set the veffel containing the milk into the hot water, and let it remain there for the fpace of one night. In the morning it will be found that the milk has feparated into two parts; a thick cream. like fubflance, which occupies the upper part of the veffel, and a thin watery part that remains at the bottom. Draw off the thin part (called in Scotland zuigg), by opening a flop-cock, placed for that purpofe clofe above the bottom, and referve the cream for ufe. Not much lefs than half of the milk is thns converted into a fort of cream, which, when well made, feems to be as rich and fat as real cream itfelf, and is only diftinguifhable from it by its fournefs. It is eaten with fugar, and efteemed a great delicacy, and ufually fells at double the price of frefh unfkimmed milk. It requires practice, however, to be able to make this nicely; the degree of the heat of the water, and many other circumftances, greatly affecting the operation.

Fourbly. If the quality of the butter be the chief object attended to, it will be neceflary, not only to feparate the firf from the lalt drawn milk, but alfo to take nothing but the cream that is firf feparated from the beft milk, as it is this firft rifing cream alone that is of the prime quality. The remainder of the milk, which will be fitl fweet, inay be either employed for the purpofe of making fweet milk cheefes; or may be allowed to fland, to throw up cream for making butter of an inferior quality, as circumftances may direct.

Fiftbly. From the above facts, we are enabled to perceive, that butter of the very beft poffible quality can only be obtained froni a dairy of confiderable extent, judicioully managed; for when only a fmall yor-
tion of each cow's milk can be fet apart for throwing up cream, and when only a fmall proportion of that cream can be referved, of the prime quality, it follows (the quausity of milk being upon the whole very in confiderable), that the quantity of prime cream produced would be fo finall as to be fearcely worth inanufacturingr feparately.

Sixthly. From thefe premifes we are alfo led to drau* another conclulion, extremely different from the opinion that is commonly entertained on this fubject, v1\%. That it feems probable, that the very belt butter could be made with economy in thofe dairies only where the manufacture of cheefe is the principal object. The reafons are obvious: If only a fmall portion of milk thould be fet apart for butter, all the reft may be made into cheefe, while it is yet warm from the cow, and perfectly fweet; and if only that portion of cream which rifes during the firt three or four hours after milking is to be relerved for butter, the rich milk which is left after that cream is feparated, being fill perfectly fweet, may be converted intu cheefe with as great advantage nearly as the newly-milked milk itfelf.

But as it is not probable that many perfons could be found who would be willing to purchafe the very finett butter, made in the manner above pointed out, at a price that would be fufficient to indemuify the farmer for his trouble in making it, the ee hints are thrown out merely to thew the curious in what way butter poffeffing this fuperior degree of excellence may be obtained, if they choole to be at the expence; but for an ordinary market, Dr Anderfon is fatisfied, from experience and attentive obfervation, that if in general about the firft drawn half of the milk be feparated at each milking, and the remainder only fet up for producing cream, and if that milk be allowed to tland to throw up the whole of its cream (even till it begins fenlibly to talle fourifh), and that cream be afterwards carefully managed, the butter thus obtained will be of a quality greatly fuperior to what can ufually be procured it market, and its quantity not confiderably lefs than if the whole
(c) The making of cheefe has never yet been reduced to fcientific principles, and confequently the reafoning relating to it is very inconclufive. It is in general fuppofed, that the goodnefs of cheefe depends almoft entirely upon its richnefs, by which is meant the propurtion of olly matter, whether natural or extraneous, it contains; nothing, however, is more certain, than that this opinion is erroneous. Sometimes a very lean cheefe is much better tatted than one that is much fatter ; and, which will appear to moft perfons ftill more extraordinary, it. frequently happens that a cheefe that taftes foft and fat is much leaner than one that is hard, dry, and fticky. The mode of manufacturing it occafions this, and not the quantity of cream it contains. It is-very poffible by art to make poor fkim milk checfe affume the foft buttery tafte and appearance even of cream cheefe. This fubject, therefore, deferves to be more paricularly elucidated than it has litherto been.

Connected as they are with the object difcuffed in the text, we beg leave with our author to fuggelt the following particulars, as proper ohjects of examination and experiment, viz. Is the quantity of cafeous matter afforded by milk neceflarily connected with the preportion of cream that milk contains, or does it depend upon fome other principle not hitherto inveftigated? Without pretending to decide this queftion, Dr Anderfon feels himfelf ftrongly inclined to believe it does not depend upon the quantity of cream. It is well known that cow's milk, which always throws up more eream, and that of a much richer quahty, than ewe-milk, does in no cafe afford above one-half the proportion of chefe that ewe-milk foes. Nor can this fingular tendency of ewe-milk, to yield a great proportion of curd, be attributed to its fuperior thicknefs; for cow-milk can be often had that is thicker and richer than ewe-milk, but it always aflords a much fmalier proportion of curd. From thefe confiderations, it is not impoffible but it might be found, upon a careful inveftigation, that the refufe milk, which oughe. to be leparated from the other in making the beft butter, might be equally proper, or very nearly fo, for ma. king cheefe, as if no fuch feparation had been made. We therefore recommend this as a proper object of expea rimental enquiry.

Dharae. of the milk had been treated alike. This, therefore, is the practice that our author thinks moit likely to fuit the frugal farmer, as his butter, though of a fuperior quality, could be afforded at a price that would always enfure it a rapid fale.

Dr Anderion throws out many other ingenious and ufeful obfervations on this important branch of rural econony. In particular, he points out, in the plaineft manner, the requitites of a good milk-houfe, which, as he truly obferves, flould be cool in fummer and warns in winter, fo as to preferve a temperature nearly the fame throughout the year. But we have treated of this part of the fubject elfewhere, and nuft therefore refer fuch as are detirous to know the Doctor's fentiments on it, to The Letters and Papers of the Batb and Wefl-of.Engiand Society for the encutragement of agriculture, \&e. or to the eighth volume of The Repertory of Arts and Manufagures.

DAHALAC, the largeft ifland in the Red Sea, is thus defcribed by Mr Bruce. It is low and even, the foil fixed gravel and white fand, mixed with fhells and other marine productions. It is dettitute of all forts of herbage, at leaft in fummer, unlefs a fmall quantity of bent grafs, juft fufficient to feed the few antelopes and goats that are on the ifland. There is a very beautiful ipecies of this laft animal found here, fmall, fhort-haired, with thin black fharp horns, having rings upon them, and they are very fwift of foot.

This ifland is, in many places, covered with large plantations of acacia crees, which grow to no height, feldom above cight feet, but fread wide, and turn flat at top, probably by the influence of the wind from the fea. Though in the neighbourhood of Abyffinia, Dahalac does not partake of its feafons; no rain falls here from the end of March to the begianing of October ; but in the intermediate months, efpecially December, January, and February, there are violent flowers for 12 honrs at a time, which deluge the ifland, and fill the cifterns fo as to ferve all next fummer; for there are no hills nor mountains in Dahalac, and confequently no fprings. Thefecilterns alone preferve the water, and of them there yet remain 370 , all hewn out of the folid rock. They fay thefe wete the works of the Perfians; it is more probable they were thofe of the firf P 'olemies. But whoever were the conftructors of thefe magnificent refervoirs, they were a very different people from thofe that now poffefs them, who have not induftry enough to keep one of the 370 clear for the ufe of man. All of them are open to every fort of animal, and half full of the filth they leave there, after drinking and wafhing in them; yet one of thefe cifterns, cleaned and fhut up with a door, might afferd them wholefone fweet water all the year over.

After the rains fall, a prodigious quantity of grafs immediately fprings up; and the goats give the inhabitants milk, which in winter is the principal part of their fubfiltence, for they neither plow nor fow; all their employment is to work the veffels which trade to the different parts of the coaft. One half of the inhabitants is conftantly on the Arabian fide, end by their labour is enabled to furnith with dora (millet or Indian corn) and other provifions the other half who flay at home; and when their time is expired, they are relieved by the other balf, and fupplied with neceffaries in their surn. But the fuftenance of the poorer fort is entirely
fhell and other fin. Their wives and daughters are Dahalac. very bold and expert fifherwomen. Several of thern, en. tirely naked, fwam off to the veffel befure it canc to an anchor, begging handfuls of wheat, rice, or dora. They are very importunate and furdy beggars, and not eatily put off with denials. Thefe miferable people, who live in the villages not frequented by barks from Arabia, are fometimes a whole year without talting bread. Yet fuch is the attaclment to their place of nativity, they prefer living in this bare, barren, parched fpot, alinott in want of neceflaries of every kind, efpecially of thefe eflential ones, bread and water, to thofe pleafant and plentiful countries on both fides of them.

There are in Dahalac twelve villages or towns, of which each has a plantation of doontrees round it, which furnith the only manufacture in the ifland. The leaves of this tree, when dried, are of a glofly white, which inight very eatily be miftaken for fattin : of thefe they make balkets of furpriling beauty and neatnefs, ftaining part of the leaves with red or black, and working them into figures very artificially. Our author knew fome of thefe, refembling flraw-bafkets, continue full of water for 24 hours, without one drop coming througl. They fell thefe at Loheia and Jidda, the largefl of them for four commefh, or fixpence. This is the employment, or rather amufement, of the men who ttay at home; for they work but very moderately at it, and all of them indeed take fuecial care not to prejudice their health by any kind of fatigue from induftry.

People of the better fort, fuch as the Shekh and his relations, men privileged to be idle, and never expoled to the fun, are of a brown complexion. But the common fort employed in fifhing, and thofe who go conftantly to fea, are not indeed black but red, and little darker than the colour of new malogany.

The inhabitants of Dahalac feemed to be a fimpie, fearful, and inoffenfive people. It is the only part of Africa or Arabia (call it which you pleafe) where you fee no one carry arms of any kind : reither gun, knife, nor fword, is to be feen in the laands of any one. Whereas at Loheia, and on all the coaft of Arabia, and more particularly at Yamboo, every perfon goes armed ; even the porters, naked and groaning u:der the weight of their burden and heat of the day, have yet a leather belt, in which they carry a crooked kuife, fo monftroufly long, that it needs a particular motion and addrefs in walking not to lame the bearer. This was not always the cafe at Dahalac ; feveral of the Portuguefe, on their firt arrival here, were murdered, and the ifland often treated ill, in revenge, by the armaments of that nation. The men feemed healthy. They told our author they had no difeafes among them, unlefs fometimes in fpring, when the boats of Yemen and Jidda bring the fmall-pox among them, and very few efcape with life that are infected. He did not obferve among them a man that feemed to be fixty years old; from which he inferred that they are not long livers, though the air Thould be healthy, as being near the channel, and as they have the north wind all fumuner, which moderates the heat.

Dahalac, like all the other iflands in the Red Sea, depends upon Mafuah. The revenue of its governor confifts in a goat brought to him monthly by each of the twelve villages. Every veffel that puts in there for Mafuah pays him alfo a pound of coffee, and every one

\section*{D A Hi [478] \\ D A L}
i)ahalac. from Arahia a dollar or pataka. No fort of fmall money is current at Dahalac, excepting Venetian glafsbeads, ohd and new, of all fizes and colours, broken and whole.
Altoough this is the mifcrable fate of Dalalace at prefent, matters were widely different in former times. The pearl finery flouringed greatly here under the Ptolemies; and even long after, in the time of the caliphs, it produced a great revenue, and till the fovereigns of Cairo, of the prefent miferable race of hlaves, hegan to withlraw thentelves from their dependency on the port, Dahalac was the principal ifland that furnifhed the pearl fifhers or divers. It wats, indecd, the chief port for the fifhery on the fouthern part of the Ked Sea, as Suakem was on the north; and the bafha of Mafual paffed part of evely fummer here, to avoid the heat at his place of refidence on the continent.

The fifhery extencled from Dahalac and its iflands nearly to lat. \(20^{\circ}\). The inhahited iflands furnifled each a bark and fo many divers, and they were paid in wheat, flour, \& c. fuch a portion to each bark for their ufe, and fo much to leave with their family for their fubliftence; fo that a few months employment furnifhed them with every thing neceffary for the reft of the year. The fiffiery was rented in later times to the bafha of Suakem; but there was a place between Suakem and the fuppufed river Frat, in lat. \(21^{\circ} 28^{\prime}\) north, called Gungunnah, which was referved to the grand fignior in particular, and a fpecial officer was appointed to receive the pearls on the fpot and fend then to Conftantinople. The pearls found there were of the largeft fize, and inferior to none in water or roundnefs. Tradition fays, that this was exclufively the property of the Pharaohs; by which is meant, in Arabian manufcripts, the old kings of Egypt before Mahomet.

In the fame extent between Dahalac and Suakem was another very valuable fifhery, that of tortoifes, from which the fineft thells of that kind were produced, and a great trade was carried on with the Eaft Indies (China c(fpecially) at little expence, and with very confiderable profits. But the immenfe treafures in the bottom of the Red Sea have now been abondoned for near 200 years, though they never were richer in all probability than at prefent. No nation can now turn them to any profit but the Englifh Eaft India Company, more intent on ranltiplying the number of their enemies, and weakening thenfelves by freading their inconfiderable force over new conquefts, than creating additional profit by engaging in new articles of commerce. A fettlement upon the rivet Frat, which never yet has belong. ed to any one but wandering Arabs, would open them a market both for coarfe and fine goods from the fouthern frontiers of Mororco, to Congo and Alygola, and fet the commerce of peanls and tortoife fhell on fout again. All this fection of the gulf frem Suez, as we are told, is in their charter, and twenty thips might he employed on the Red Sea without any violation of territorial claims. The myhrrh, the frankincenfe, fome cinnamon, and variety of drugs, are all in the pofferfion of the weak king of Adel; an ufurper, tyrant, and Pagan, without protection, and willing to trade with any fuperior power that only would Secure him a miferable livelihoor.

There are neither horfes, dogs, fheep, cows, nor any fort of quadruped but goats, affes, a few half.flarved
camels, and antelopes at Dahalac, which laft are very numerous. The inhabitants have no knowledge of firearms, and there are no doges nor beafts of prey in the inatid to kill them; they catch indeed fome few of them in thaps.

The language at Dahalac is that of the thepherds, thongh Arabic, too, is fpoken by moft of them. Our author Itates the latitude of Dahalac to lie between \(15^{\circ}\) \(27^{\prime} 30^{\prime \prime}\), and \(15^{\circ} 54^{\prime} 30^{\prime}\) north.

DALRYMPLE (Sir David), was born in Edin. hurgh on the 2 xth of October (N. S.) 1726. His father was sir James Dalrymple of Hailes, Bart. and lis mother Lady Chriftian Hamilton, a daughter of the Earl of Hadinton. His grandfather Sir David Dalrymple was the youngett fon of the firf Lord Stair, and is faid to have been the ableft of that family, fo much diftinguimed for ability. He was Lord Advocate for Scotland in the reign of George 1. and his fon Sir James had the auditorfhip of the exchequer for life.

The fubject of this memoir was edncated at Etons fchool, where he was diftinguifhed as a fcholar, and long remembered as a virtuous and orderly youth. In that juftly celebrated feminary be acquired a claffical tafte. which, though it was once prevalent in Scotland, has in that country been long on the decline; and formed, belides, friendhips to perfons and attachments to things, which accompanied him through life. Hence probably fprung his partiality to Englith manners and coftoms, which marked both his public conduct and private converfation, and was the fource of much of his dignity, and fome of his littleneffes.

From Eton he returned to Edinburgh, whence, after the ufual courfe of a gentleman's fludies in that univerfity, he went to Utrecht to ftudy the civil law ; and remained there till after the rebellion in 1746 . Upon his return to his native country, fo promifing were his parts, and fuch his induftry and fobernefs of mind, that very fanguine expectations were entertained of his future eminence; and in fome refpects thefe expectations were not fruftrated. To his intimate friends it was well known, that if left to follow the bent of his own inclinations, he would have devoted his time and his talents to the ftudy of antiquities and the belles lettres; in buth which departments of literature he was eminently qualified to excel. On the death of his father, however, he found his affairs fo very much encumbered, that in order to retrieve them, and to provide for his brothers and fiflers, he refolved to follow the law as a profeflion, in which fome of his anceftors had made a dittinguifhed figure.

He was called to the Scotch bar in 1748 , where, notwithitanding the elegant propriety of the cafes which he drew, it mult be confeffed that his fuccefs did not anfwer the expectations which had been formed of him. This was not owing either to want of fcience or to want of induftry, but to certain peculiarities, which, if not inherent in his nature, were the refult of early and deep-rooted habits. He poffefled on all occafions a fovereign contempt, not only for verbal antithefis, but for well rounded periods, and every thing which had the femblance of declamation; and indeed he was wholly unfitted by an ill-toned voice and ungraceful elocution, for fhining as an orator. No wonder, then, that his pleadings, which were never addreffed to the
paffions,

\section*{D A L}
[479]
D.irym- paffions, did not rival thofe of fome of his opponents, who, poffeffed of great rhetorical powers, did not, like hinn, employ flrokes of irony too flue to be perceived by the hulk of any audience, but expreffed themfelves in full, clear, and harmonious periods. Even his menorials, though claffically written, and often replete with valuable matter, did not on every occafion pleafe the court ; for they were always brief, and fometimes, as it was faid, indicated more attention to the minutix of forms than to the merits of the caufe. Yet on points which touched his own feelings, or the interefts of truth and virtue, his language was animated, his arguments foreible, and his ferupulons regard to form thrown afide.

He was fometimes employed as a depute advocate, which gave him opportunities at the cirenits of difplaying that candour and tendernefs of difpofition which fo well becomes the public profecutor ia a criminal court. Of this the following inflance may be worth relating. On the firt day of the court at Stirling, he was once accolted by another advocate in thefe words: "Sir David, why is there not a trial this forenoon? I would be getting on." "There are (replied he) fome unhappy culprits to be tried for their lives; and therefore it is proper that they have time to confer with their men of law." "That is of little confequence (faid the other). Laft year I came to vifit Lord Kames when he was here on the circuit, and he appointed me counfel for a man aecufed of a rape. Though I had very little time to prepare, yet I made a decent fpeech." "Pray, Sir, (faid Sir David), was your elient aequitted or eondemned?" "O (replied the other), molt unjuflly condemned." "That, Sir, (faid the depute advocate) is no good argument for hurrying on trials."
To return from this digreffion, if it be confidered as fuch, it is furely to the honour of Sir David Dalrymple, that whatever nien thought of his fingularities, his detractors concurred with his admirers in believing him incapable of mifleading the judge by a falfe ftatement of facts; or his clients, by holding out to then fallacious grounds of hope.

His high fenfe of honour, and his inflexible integrity, were indeed univerfally admitted; and it was with the warmeft approbation of the public, that in 1766 he was appointed one of the judges of the court of feflion, the highelt civil tribunal in Scotland. He took his feat on the bench, aceording to the ufage of that court, by the title of Lord Hailes, the defignation by which he is generally known among the learned of Europe; and the expectations entertained of him were again fanguine. His unwearied affiduity in fifting dark and intricate matters to the bottom was well known ; his elegant and concife manner of expreffing his fentiments was admirably fuited to the character of a judge; and his legal opiuions had been generally found. Yet it mult be confeffed, that as a judge he was neither fo ufeful nor fo highly revered as he ought to have been from the extent of his knowledge, and his maqueftioned integrity. The fame minute attention 10 forms, which had in fome degree obftructed his rife at the bar, ac-
companied him to the bench, and brought upon him Da'rymthe ridicule of the wits about the court (1): and we \(\qquad\) \(\underbrace{\text { ple. }}\) all know, that the character even of Socrates himfelf was not able to refift the torrent of ridicule. In extc. nuation of this foihle, it may be obferved, that by fome of the judges of the court of feffion perhaps too little regard has been paid to form; and that forms, even apparently trining, cannot in legal proceedings be wholly difregarded without involvirg in danger truth and juftice. Be this as it may, fuech was the opinion which the other judges entertained of Lord Hailea's accuracy, diligenee, and dignified manners, that, in the abifence of the prefident, they generally roted him into the vacant chair.
In May 1776 be was appointed one of the lords commiffioners of jufteiary; and in that flation he commanded the refpect of all mankind. Fully impreffed with a deep fenfe of the importance of his office, he feemed, in the criminal court, to lay afide his fingularities. So far from throwing his whole weight into the fcale of the crown, a charge which has been fometimes brought, we believe unjuftly, againft the Seotch judges, Lord Hailes, like the judges of England, was alvays counfel for the prifoner when the king's counfel appeared too ftrong for their opponents, or when there was any particular intricaey in the cafe. In adminiftering the oath to the wituefles, he had none of that indecorum which we have elfewhere eenfured in fome of his brethren (fee Оатн, Encycl.); but rifing folemnly from his feat, he repeated the words in fo ferious a manner, as left no doubt in the moft profigate mind but that he was himfelf imprefled with a fenfe of the immediate prefence of the Supreme Being, and with the firm belief of a future judgment. When the witnefs appeared. to be young or ignorant, we have beheld, with the utmort love and veneration, the pious pains which his Lordfhip took to difcover whether he was duly ac. quainted with the nature and obligation of an oath, before he admitted him to fwear; and though it is perhaps impolfible for human vigilance and fagacity to prevent perjury altogether in courts of juffie he mult furely have been a villain uncommonly hardened and artful who could perjure himfelf in the prefence of Lord Hailes. In doubtful cafes his Lordnip inclined always to the fide of mercy; but when it became his duty to pafs fentence of death upon convicted criminals, he addrefled them in a train of fuch piety and commiferation, as to draw tears from the_ eyes of every beholder, and was calculated to make a deep and proper impreffion on the unhappy perfon himfelf. In the difcharge of this painful duty, we never faw him furpaffed, and have feldom feen him equalled.

Had Lord Hailes been confpicuous only as a found lawyer and an able and upright judge, we fhould not have thought his life intitled to a place in this Work; but he was no lefs eminent as a man of general erudition, and as a voluminous author. His fkill in clafical. learning, the belles lettres, and hiftorical antiguities, efpecially thofe of his own country, is univerfally admitted;
(A) In a fatirical ballad on the court of feffion, Mr Bofwell, alluding to Lord Hailes's fondnefo for verbal cristicifm, makes him addrefs the prefident in the folluwing words:

To jodge of this matter 1 eannot pretend,
For juftice, my Lord, wants an \(e\) at the cad.

Dalrym. ted; but it cannot be denied, that the fame faftidiouf. ple. nefs, and the fame microfcopic attention to minutix,
which characterifed liin as a barritter, prevented him from rifing to that rank in the republic of letters to which his learning and genius would otherwife have infallibly carried him. But if he was not one of the moit celebrated writers of the age, he was unqueftionably one of the molt virtuous; if his publications were not alway, cdifying, they were at leaft innocent and ingenious; and fome of them are in the higheft degree valuable. In proof of this affertion, we need inftance only his Annals of Scorland, and his Inquiry into the Secondary Caufes zubich Mr Gibbon has a/figned for the Rapid Progreis of Chrifianity. Of the former of thefe works, though little calculated to pleafe the common herd of readers, it may with truth be faid, that in refearch and ingenuity it ftands unrivalled among the writings of Scotch antiquaries; and of the latter, it is furely not tou mueh to fay, that it difplays uncommon acumen, clofenefs of reafoning, and zeal for the caufe of truth, without the ufual rancour of theological controverfy.
His tafte for retirement, which the fate of his affairs rendered for a while necefiary, grew upon him as he advanced in years. His conflitution, of which he was very careful, as well as his principles and habits, rendered him averfe from diffipation of every kind. After he was made a judge, he confidered abltraction from the gay and faftionable world as connected with the duty of one whoffe time was no longer his own; and when he chofe to unbend his miard, it was in the fociety of a few eafy friends, whom he felected as much for their worth and good humour as for their genins or their learning. He had indeed occalionally yucli converfation with that conftellation of wits and men of fcience who flourifhed in Edinburgh at the fame period with hinfelf; but it was impoffible for friendllip or intimacy to fubfint between men who thought fo dififerently as he and they thought on the noft important of all fubjects. T'hough an old-fafhioned whig, zealuufly attached to the conftitution, he fcorned to take any fhare in the civil or eecletiaftical broils in which fome of his brother judges were warmly eugaged for the firft 20 years of the prefent reign; for he louked on thefe as either frivulous or mifchievous.

Although his Lurdlhip's conftitution had been long in an enfechled ftate, he profecuted his ftudies, and attended his duty on the bench, till within three days of his death, which happened on the 29th of November 1702 , in the 66 th year of his age.

His Lordhhip was twice married; by his firt wife Anne Brown, unly daughter of Lord Cualton, one of the judges of the court of feffion, he left iffine one daughter, who inherits the family eftate. His fecond marriage (of which alfo their is iffue one daughter) was to Helen Ferguffon, youngelt daughter of Lord Kilkerran, who has the affiction to furvive him. Leaving no male iffue, the title of Caronet defcends to his nephew.

Though the church of Scotland does not much encourage funeral difcourfes, a very landable endeavour was made to render the talents and virtues of Lord Hailes a theme of inftruction to mankind, in a immon preached foon after his death in the church of Inverefk, by his learned friend and venerable paftor Dr Carlyle;
from which we fhall tranferibe a fummary view of his character as a judge, a fcholar, a Chriftian, and a citi. zen.
"His knowledge of the laws was accurate and profound, and he applied it in judgment with the molt fcrupulous integrity. In lis proceedings in the criminal court, the facisfaction he gave to the public could not be furpaffed. His abhorrence of crimes, his tendernefs for the criminals, his refpect for the laws, and his reverential awe of the Omnifcient Judge, infpired him on fome occaffons with a commanding fublimity of thought, and a feeling folemnity of expreffion, that made condemnation feem jait as the doom of Providence to the criminals themfelves, and raifed a falutary horror of crimes in the breat of the audience.
"Confcious of the dignity and importance of the high office he beld, he never depatted from the decorum that becomes that reverend character; which in. deed it coft him no effort to fupport, becaufe he acted from principle and fentiment, both public and private. Affectionate to his family and relations, fimple and mild in his manners, pure and confcientious in his morals, enlightened and entertaining in his converfation ; he left fociety only to regret, that, devoted as he was to more important employments, he had fo little time to fpare for intercourfe with them.
"He was well known to be of high rank in the republic of letters, and his lofs will be deeply felt through many of her departments. His labours, in illuftration of the hiftory of his country, and many other works of profound erudition, remain as monuments of his accurate and faithful refearch for materials, and his found judgement in the felection of them. Of his unfeigned piety and devotion, you have very often been wituetfes where we now are. I mult and, however, that his attendance on religious ordinances was not merely o:at of refpect to the laws and for the fake of example (motives which: fhould never fail to have influence on perfuns of fuperior rank, fur the molt obviuus reafons), bat from principle and conviction, and the moft confcientious regard to his duty; fur he not only practifed all the virtues and charities in proof of his faith, but he demonftrated the fincerity of his zeal by the uncommon pains be took to illuftrate primitive Chrilianity, and by his elaborate and able defences of it againlt its enemies.
"His profound refearches into hittory, and his thorough knowledge of the laws, made hin perfectly acquainted with the progrefs of the conflitution of Britain, from the firit dawn of liberty in the common law of the land, and the trial by jury which precede all written records, and afterwards in the origin and eftablifhment of parlianients, through all its vieiflitudes and dangers, till at laft, by the blefflig of divine Providence, which brought many wonderful events to coneur to the fame end, it was renewed, ftrengthened, and finally confirmed by the Revolution.
"It was this goodly and venerable fabric of the Britifl conftitution whiel the deceafed moft refpectable character contemplated with admiration and delight (of late, indeed, with a mixture of anxiety and fear), as the temple of piety, as the genuine fource of greater happinefs and freedom, to a larger portion of mankind than ever flowed from any government upon eartb.
" Ill indeed can the times bear the lofs of fuch an affectionate

\section*{D A L \\ \(48 \mathrm{r} \quad]\) \\ D A L}

Darym. affectionate patriot and able guardian of the laws of his country. But we mult not murmur at the will of Providence, which in its mercy ' may have withdrawn the good man from the evil to come.' In mercy, I fay, to him, whofe rightevus fpirit was fo deeply grieved when 'he faw the wicked rage, and the people imagine a vain thing."

Such is the memorial which, in the hour of recent forrow, followed this excellent man to the grave; and we believe it will yet be allowed to be jutt by all who had the happinefs of his Lordhip's acquaintance, and are 'what he was, friends to the beft interefts of mankind.

This fketcl of the life of Lord Hailes would be more imperfect than even it is, if we could not fubjoin to it a catalugue of his publications, of which the greater part are exceedingly curious. We call them publications, becaufe he employed almoft as much of his time in republifhing old and ufeful books as in preparing for the prefs his own valuable works.

Befides his effays in the papers called The World and The Mirror, which are well known and univerfally admired, his Lordfhip publifhed the following works:

Sacred Poems, or a Collection of Tranflations and Paraphrafes from the Holy Scriptures; by various authors, Edinburgh, \(1751,12 \mathrm{mo}\). Dedicated to Charles Lord Hope, with a preface of ten pages.
The Wifdom of Solomon, Wifdom of Jefus the Son of Sirach, or Ecelefiatticus, 12 mo , Edin. 1755.

Sclect Difcourfes (in number nine), by Juln Smith, late Fellow of Queen's College, Cambridge, i2mo, \({ }^{291}\) pages. Edin. 1756 ; with a preface of five pages, " many quotations from the learned languages tranflated, -and notes added, containing allufions to ancient mythology, and to the erroneous philofophy which prevailed in the days of the author,-various inaccuracies of thyle have been corrected, and harf expreffions foftened."

A difcourfe of the unnatural and vile Confpiracy attempted by John Earl of Gowry and his brother, againft his Majefty's perfon, at St Johnftoun, upon the 5 th of Aug. 1600. No date of the republication, but the edition and notes fuppufed by Lord Hailes, 12 mo , 1757.

A Sermon, which might have been preached in Eaft Lothian upon the 2 jth day of October 1761 , on Acts xxviii. 1, 2. "The barbarous people thewed us no little kindnefs." Edin. 1761, pp. 25, 12 mo . "Occafioned by the country people pillaging the wreck of two veffels, viz. the Betfy, Cunningham, and the Leith Packet, Pitcairn, from London to Leith, caft away on the fhore between Dunbar and North Berwick. All the paffengers on board the former, in number 17 , perifhed; five on board the latter, OEtober 16. 1761." A moft affecting difcourfe, admirably calculated to convince the offenders!
Memorials and Letters relating to the Hiftory of Britain, in the reign of James 1. publifhed from the originals, Glafgow, 1762 .-Addreffed to Philip Yorke, Vifcount Roylton, pp. 151. "Frorn a collection in she advocate's library, by Balfour of Denniyln." The preface of four pages, figned Day. Dalrymple.

The works of the ever memorable Mr John Hales of Eaton, now firt collected together in 3 vols, Glafgow, 1755 ; preface of three pages. Dedicated to William (Warburton), Bifhop of Glouceter. "The Suppl. Vol. I. Part II.
edition faid to be undertaken with lis approbation; Ditymobfolete words altered, with correEtions in fpelling and punctuation."

A fpecimen of a book entitled "Ane Compendious Booke of Godly and Spiritual Sangs, collectil out of fundrie parts of the Scripture, with fundrie of other Ballates changed out of prophaine Sanges, for avoydius of Sin and Harlotrie, with augmentation of fundry Gude and Godly Ballates, not contained in the firt edition. Edinburgh, printed by Andro Hart." 12 mo. Edin. 1765, Pp. 42 ; with a Gloffary of four pages.

Memorials and Letters relating to the Hiftory of Britain in the reign of Charles I. publifhed fron the originals, Glafgow, 1766 , pp. 189. Preface of fix parres, figned Dav. Dalryniple, chiefly collected by ifr Wodrow, author of the l-Iitory of the Church of Scot. land. Infcribed to Robert Dundas of Aminton, Lord Prefident of the Court of Seffion.

An account of the prefervation of Charles II. arter the Battle of Worcciler, drawn up by himifelt to which are added, his Letters to feveral perfons. Glafgow, 1766, pp. 190, from the MSS. of Mr Pepys, dictated to him by the king himfelf, and commusicated by Dr Sandby, mafter of Magdalen College. The letters are collected from various books; fume of them now firt publifhed, communicated by the tutors of the Duke of Hamilton, by the Earl of Dundonald, \&c. The preface of four pages, figned Dav. Dalrymple, dedicated to Thomas Holles, Duke of Newcafte, chancellor of the univerfity of Cambridge.

The Secret Correfpundence between Sir Robert Cecil and James VI. \(12 \mathrm{mo}, 1766\).

A catalogue of the Lords of Seffion, from the In. flitution of the College of Juftice in the year 1532, with Hitorical Notes. Suum cuique- rependet poferitas. Edin. 1757 , 4to, pp. 26.

The Private Correfpondence of Dr Francis Atterbury, Bifhop of Rocheller, and his friends, in 1725, never before publifhed. Printed in 1768, 4to. Advertifement, pp. 2. Letters, pp. 10. A fac finile of the firft from Bifhep Atterbury' to John Cameron of Lochiel, to prove their authenticity.

An examination of fome of the Arguments for the High Antiquity of Regiam Majeftatem; and an Inquiry into the authenticity of the Leges Malcolmi, by Sir David Dalrymple, 4to, pp. 52. Edin. 1769.

Hiftorical Memoirs concerning the Provincial Councils of the Scottifh Clergy, froni the earlieft Accounts to the Nera of the Reformation ; by Sir David Dalrymple. Edinburgh, 4969 , \(4^{\text {to, pp. }} 41\).--Nota, Having no high opiuiou of the popularity of his writings, he prefixes to this work the following motto: "Si delectamur quum fcribimus quis eft tam invidus qui ab eo nos abducat ? fin laboramus guis of qui alienx modum ftatuat induftrix."-Cicero.

Canons of the church of Scotland, drawn up in the Provincial Councils held at Perth, A. D. 1242, and 1269. Edinburgh, 1769, 4 to, pp. 48.

Ancient Scottifh Poems, puhlifhed fron the MS. of George Bannatyne, 1568. Edin. 1775, 12 mo . Preface fix pages; Poerms pp. 221 ; very curious notes pp. 0: ; gloffary and lifts of patlages and words not undertood, Pp. 14.

The additional cafe of Elizabeth, claining the title and dignity of Countefs of Sueheriand; by her Guar-

\title{
D A L
}

Dalrym- dians. Wherein the facts and arguments in fupport of ple. her claim are more fully ftated, and the errors in the additional cafes for the other clainants are detected, 4 to. - This fingularly learned and ahle cafe was fubferibed by Alexander Wedderburn (prefent Lord Chancellor), and Sir Adam Fergulfon, but is the well-known work of Lord Hailes. It ought not to be regarded merely as a law-paper of great ability, but as a treatife of profound refearch into the hiftury and antiquity of many important and general points of fucceflion and family hiftory. Introduction, pp. 21 ; the firit four chapters pp. 70; the fifth and fixth chapters pp. 177.

Remarks on the Hiftory of Scotland, by Sir David Dalrymplc. - "Utinam tam facile vera invenire poffem quam falfa convincere." Cicero.-Edin. 1773, inferibed to George Lord Lyttleton, in nine chapters, pp. 284. 12 mo .

Huberti Langueti Epitolx ad Philippum Sydneium Equitem Anglum, accurante D. Dalrymple de Hailes, Eq. Edinburgh, 1776,8 vo. Inferibed to Lord Chief Baron Smythe.-Virorum Eruditorum Tellimonia de Langueto, pp. 7. Epittolx, pp. 289. Index Nominum, pp. 41.

Annals of Scotland, from the Acceffion of Malcolm III. furnamed Canmore, to the Acceffion of Robert I. by Sir David Dalrymple. Edin. 1776, pp. 311. Appendix, pp. 51.

Tables of the Succeffion of the Kings of Scotland, from Malcolm III. to Robert I. their marriages, children, and time of their death; and alfo of the Kings of England and France, and of the Popes who were their contemporaries.

Chronological Abridgement of the Volume, pp. \(3^{\circ}\). The Appendix contains eight differtations: 1. Of the law of Evenus and Mercheta Mulierum, pp. 17. 2. A commentary on the 22 d ftatute of William the Lion, pp. 8. 3. Of the 18 th fratute of Alexander III. pp. \(5 \cdot\) 4. Bull of Pope Innocent IV. pp. 6. 5. Of Walter Stewart Earl of Menteeth, 1296, pp. 7. 6. Of M•Duff, nain at Falkirk in 1298 , pp. 3. 7. Of the death of John Comyn, loth February, 1305 , pp. 4. 8. Of the origin of the houle of Stuart, pp. 6.

Annals of Scotland, from the Acceffion of Robert I. furnamed Bruce, to the Acceffion of the Houfe of Stuart; by Sir David Dalrymple, Edin. 1779, 4to, pp. 277. Appendix, pp. 54, containing, 1. Of the inanner of the death of Marjory, daughter of Robert I. pp. 7. 2. Journal of the campaign of Edward III. 1327, pp. 9. 3. Of the genealogy of the family of Seton in the i4th century. 4. Lift of the Scottifh commanders at the battle of Hallidon, 19th July 1383, pp. 11. 5. Whether Edward III. put to death the fon of Sir Alexander Seton, pp. 8. 6. Lift of the Scottifh commanders killed or made prifoners at the battle of Durham, pp. 8. 7. 'Table of kings, p. 1. 3. Corrections and additions to volume i. pp. 16. Chronological abridgement of the volume, pp. 39 -

Account of the Martyrs of Smyrua and Lyons, in the 2d century, \(12 m o\), with explanatory uotes, Edin. 1776. Dedicated to Bifhop Hurd, pp. 68. Notes and illutrations, pp. 142. This is a new and correct verfion of two inoft ancient cpifles, the one from the church at Smyrna to the church at Philadelphia ; the other from the Chriftians at Vienna and Lyons to thofe in Afia and Phrygia-their antiquity and autherticity are
undoubted. Great part of both is extracted from Elt. Dalrym. febins's Ecclefiaftical Hiftory. The former was firf completely edited by Archbihhop UTher. The author of the notes fays of them, with his ufual and fingular modefly, "That they will afford little new or interefting to men of erudition, though they may prove of fome bencfit to the unlearned reader." But the erudicion he poffeffed in thefe brancles is fo rare, that this notice is unneceffary. 'They difplay much uleful learning and ingenious criticifm, and breathe the moft ardent zeal, conneeted with an exemplary knowledge of Chriftianity. N. B. This is the firt volume of the remains. of Chriftian Antiquity.

Remains of Chriftian Antiquity, with explanatory notes, vol. ii. Edin. 1778 , 12 mo . Dedicated to Dr Newton bifhop of Briftol. Preface, pp. 7. This volume contains the trial of Juftin Martyr and his companions, pp. 8. Epifle of Dionyfius bifhop of Alexandria, to Fabius bifhop of Antioch, pp. I6. The trial and execution of Cyprian bifhop of Carthage, pp. 8. The trial and execution of Fructuofus bifhop of Tarracona in Spain, and of his two deacons, Augurius and Eulogius, pp. 8. The maiden of Antioch, pp. 2. Thefe are all newly tranflated by Lord Hailes from Rui. nart, Eufebius, Ambrofe, Sc. The notes and illuftrations of this volume extend from p. 47 to 165 , and difplay a moft intimate acquaintance with antiquity, great critical acumen, both in clucidating the fenfe and detecting interpolations; and above all, a fervent and enlightened zcal, in vindicating fuch fentiments and conduct as are conformable to the word of God, againft the malicious farcafms of Mr Gibbon. To this volume is added an Appendix of pp. 22, correcting and vindica. ting certain parts of vol. i.

Remains of Chriftian Antiquity, vol. iii. Edin. 1780. Dedicated to Thomas Balguy, D. D. Preface, pp. 2. It contains the Hiftory of the martyrs of Paleftine in the third century, tranflated from Eufebius, pp. 94. Notes and illuttrations, pp. 135 ; in which Mr Gibhon again cumes, and more frequently, under review.-The partiality and mifreprefentations of this popular writer are here expofed in the calmeft and molt fatisfactory manner:

Pity it is that Lord Hailes hould lave printed and publifhed thefe valuable volumes, and indeed moft of his other works, at his own expence; and difperfed them fo liberally to his friends, that they have been little circulated among any other.

Octavius, a Dialogue, by Marcus Minucius Felix. Edin. 1781, pp. 16. Preface.-The fpeakers are, Cœcilius a Heathen, OCtavius a Chriltian; whofe arguments prevail with his friend to renounce Paganifm and become a Chriftian profelyte. Notes and illuftrations, pp. \(12=\).

Of the Manner in which the Perfecutors died; a Treatile, by L. C. F. Lactantius, Edin. I782. Inferibed to Dr Porteuus bifhop of Chetter (prefent bifhop of London). Preface, pp. 37, in which it is proved that Lactantius is the author. Text, Pp. 125. Notes and illullrations, pp. 109.
L. C. F. Lactantii Divinarum Inftitutionum Liber Quintus feu de Juftitia, 1777.

Difquilitis concerning the Antiquity of the Chriftian Church. Glafgow, 1783 . Infcribed to Dr Ha. lifax bifhop of Glouccter, pP. 194.-This fmall origi-
rejected all words and phmes of French origin, and written entirely in the Auglo Saxon dialect. In the courfe of the notes many obfcuritics of the original, not adverted to by other commentators, are explained. Some ftrange inaceuracies of Mr Gibbon are allo detceted, not ineluded in the mifreprefentations of his two famous chapters.

This was the laft work of this truly leamed, refpectable, and ufeful man. Whether he left behind him any thing elfe fruithed for the prefs, is known only to his friends. We have repeatedly heard that he was engaged in examining the authenticity of the books of the New Teftament, and that, with the exception of two or three, he found every verfe contained in it in the writings of the firf three centuries. This feems ins deed to have been an object in all his works; for, at the end of each of his tranflations and editions of the primitive Chriflian writers, a table is given of paflages quoted or mentioned by them. If his Lordmip completed any work of this kind, it noould not be with. held from the public. We may indeed be told that its utility is in a great meafure fuperfeded by the laborious collections of Lardner (B), and the more clegant work of Paley (c) ; but not to mention the prejudices generally entertained againtt Lardner on account of his evident bias to Unitarianifin, it would furely be proper, in the prefent age of wild opinions, to thew the multitude, who are guided by authority, how important a fubject the Chrittian religion was deemed by this learned and accomplifed layman.

DARCY (Count), an ingenious philofopher and mathematician, was born in lreland in the year 1725 ; but his friends being, like many uther great and good families at that period, attached to the houle of Stuart, he was at 14 years of age fent to France, where he fpent the reft of his life. Giving early indications of a genius for fcience, he was put under the care of the celebrated Clairaut (fee Clairaut, Encycl), under whofe tuition he improved fo rapidly in the mathematics, tliat at 17 years of age he gave a new folution of the problem concern. ing the curve of equal preflure in a relifting medium, This was followed the year after by a deternination of the curve defcribed by a heavy body, Iiding by its own weight along a moveable plane, at the fame time that the preffure of the body caufes a horizontal motion iu the plane.

Though Darcy ferved in the war of 1744, he found leifure, during the buftle of a military life, to fend two memoirs to the academy : the firft of thefe contained 3 general principle in mechanics, that of the prefervation of the rotatory motion ; a principle which he again brought furward in 1750, by the name of the principle of the prefervation of action. He was taken prifoner in this war by the Englifh; and fuch was either the refpect paid to fcience, or the mercy of the cabinet of St James's, that he was treated, not as an Irih rebel, but as a French fubject fighting for his king and his country.

In 1760 , Darcy publifhed An Effay on Artillery, containing fome curious experiments on the charges of gunpowder, \&cc. \&c. and improvements on thofe of the.

Dalryns nal and moft excellent work confifts of fix chapters, ple. Chap 1. A commentary on the conduct and character of Gallio. Acts xviii. 5, 12, 17.-Chap. 2. Of the time at which the Chriftian religion became publicly known at Rome.-Cliap. 3. Caufe of the perlecution of the Chriftians under Nero. In this the liypothedis of Mr Gibbon, vol. i. \(4^{\text {to }}, \mathrm{p} .64 \mathrm{I}\), is examined. Chap. 4. Of the eminent Heathen writers who are faid (hy Gibbon) to have difregarded or contemned Clrittianity, viz. Seneca, Miny fen. Tacitus, Pliny jun. Galen, Epictetus, Plutarch, Marcus Antoninus. 'Гo the admirers of Heathen philofophers, and to thofe efpecially who flate between them and the Chrillian doctrine any confanguinity, this clapter is earneftly recom-mended.-Chap. 5. 1lluftration of a conjecture by Gib. bon, refpecting the filence of Dio Caffus concerning the Chriftians. In this chapter, with extreme impartiality, he amplifies and fupports an idea of Mr Gibbun on this head. Chap. 6. Of the circumbltances refpecting Chrifianity that are to be found in the Auguitan hifory.

It feems very probable that the clofe attention which Lord Hailes appears to have given to fuch fubjects, was in fome meafure the effect of the miftakes and partiality of Gibbon. In no one work from 1776, the date of Mr Gibbon's firf publication, has he omitted to trace this unfair and infinuating author; but in 1786 he came forth of fet purpofe with the moft able and formidable reply which he has received, intitled, "An Inquiry into the Secondary Caufes which Mr Gibhon has affigned for the rapid growth of Chriftianity ; by Sir 1)avid Dalrymple." Edin. 1786 ; gratefully and affcetionately inferibed to Richard (Hurd) Bihop of Worcefter, 4to, pp. 213 . In five chapters.

Sketch of the Life of John Barclay, 4 to, 1786.
Sketch of the Life of John Hamilton, a Secular Prieft, 4to (one of the moft favage and bigotted adherents of Popery, who lived about A. D. 1600.)

Sketch of the Life of Sir James Ramfay, a general officer in the armies of Guftavus Adolplus king of Sweden, with a head.

Life of George Lenlie (an eminent capuchin friar in the early part of the 17 th certury, 4to, pp. 24.

Sketch of the Life of Mark Alex. Boyd, 4to.
Thefe lives were written and publifhed as a fpecineen of the manner in which a Biographia Scotica might be executed; and it is likely that Lord Hailes felected purpofely the leaft interefting.

The Opinions of Sarah Dutchefs Dowager of Marlborough, publifhed from her original MSS. 1788 , 12 mo , pp. 120 . (with a few foot notes by Lord Hailes, in which he corrects the fplenetic partiality of her Grace).

The Addrefs of Q. Sept. Tertullian to Scapula Tertullus, Proconful of Africa, tranfated by Sir David Dalrymple, 12 mo . Edin. 1790 , inferibed to Dr John Butler, bifhop of Hereford; preface, pp. 4 ; tran@a. tion, pp. 18 ; original, pp. 13 ; notes and illufrations, pp. 135.

This addrefs contains many particulars relating to the church after the third century. The trandator has

\section*{D A T}

Darcy, 1) + та.
ingenious Robins; a kind of experiments which our author carried on occafionally to the end of his life. In 3765 , he gave to the public the mon ingenious of all his wooks, his Memoir on the Duration of the Senfation of Sight ; in which he endeavours to prove, and indeed completely proes, that a body may fometimes fatis by our eyes without producing a fenfation attended with confcioufneis or marking its prefence, otherwife than by weakening the brightnefs of the object which it may chance to cover in its paffage. If in this work he thall be thought to have taken hints from Dr Hartley, it is not perhaps too much to fay, that fome of our molt celebrated writers on vifion have fince been beholden to Darcy. No man indeed has catife to be athamed of being indebted to him; for all his works difplay in an eminent degree the union of genius and philofoply; but as he meafured every thing unon the larget fcale, and required extreme accuracy in experimeut, neither his time, fortune, nor avocations, allowed him to execute more than a very fmall part of what he projected.

In his difpofition, Darcy was annable, fpirited, lively , and a lover of independence; a paffion to which he nobly facrificed, even in the midit of literary fociety.He died of a cholera morbus in 1779 , at 54 years of age. He was admitted of the French academy in 1749, and was made penfoner-geometrician in 1770 . His eflays, printed in the Memoirs of the Academy of Sciences, are various and very ingenious, and are contained in the volumes for the years \(1742,1747,1749,1750\), 1751, 1752, 1753, 1754, 1758, 1759,1760,1765, and in tom. F. of the Savans Etrangers.

DATA of Euclid, the firft in order of the books that have been written by the ancient geometricians, to facilitatc and promote the method of refolution or analyfis. In general, a thing is faid to be given which is either actually exhibited or can be found out, that is, which is either known by liypothefis, or that can be demonftrated to be known : and the propofitions in the book of Euclid's data thew what things can be found out or known, from thofe that by hypothefis are already known: fo that in the analyfis or inveftigation of a problem, from the things that are laid down as given or known, by the help of thefe propofitions, it is demonftrated that other things are given, and from thefe laft that others again are given, and fo on, till it is demonftrated that that which was propofed to be found out in the problem is given; and when this is done, the problem is folved, and its compofition is made and derived from the compofitions of the data which were employed in the analyfis. And thus the data of Euclid are of the moft general and neceffary ufe in the folution of problems of every kind.

Marinus, at the end of his preface to the data, is miftaken in afferting that Euclid has not ufed the fynthetical, but the analytical method in delivering thens: for though in the analyfis of a theorem, the thing to be demonftrated is affumed in the analyfis; yet in the demonftrations of the data, the thing to be demonitrated, which is, that fomething is given, is never once affumed in the demonftration; from which it is manifeft, that every one of them is demonftrated fynthatically: though indeed if a propofition of the data be turned into a problem, the demonftration of the propofition be-
comes the analyfis of the problem. Simpfon's Prefuce to bis Edition of the Data.

Cigculating DEClMALS, called alfo recurring or repeating decinals, are thade in which a figure or feveral figures are contimually repeated. They are difinguifhed into fingle and nubliple, and thefe again into pure and mixed.

A pure fingle circulate is that in which one figure only is repeated; as \(\cdot 222, \& \mathrm{c}\). and is marked thus \(\cdot 2\).

A pure mutiple circulate is that in which feveral figures are continually repeated; as. 232323 , \&c. marked -23 ; and 524524,8 c. marked 524 .

A mixed fingle circulate is that which confits of a terminate part, and a fungle repcating figure; as \(4^{\circ} 222\), \& c. or \(4^{\circ} 2\). And

A mixed multiple circulate is that which contains a terminate part with feveral repeating figures; as \(45^{-524}\).

That part of the circulate which repeats is called the repetend; and the whole repetend, fuppofed infinitely continued, is equal to a vulgar fraction, whofe numerator is the repeating number or figures, and its denominator the fame number of nines: 10.2 is \(=\frac{z}{9}\); and \(\cdot 23\) is \(=\frac{23}{6}\); and 524 is \(=\frac{524}{979}\).

It feems it was Dr Wallis who firft diftinctly confidered or treated of infinite circulating decimals, as he himfelf informs us in his Treatife of infinites. Since his time many other authors have treated on this part of arithmetic ; the principal of thefe, however, to whom the art is moftly indebted, are Mefirs Brown, Cunn, Martin, Emerfon, Malcolm, Donn, and Henry Clarke; in whofe writings the nature and practicc of this art may be fully feen, efpecially in the laft mentioned ingenious author.

DEFERENS, or Deferent, in the ancient aftronomy, an imaginary circle, which, as it were, carries about the body of a planet, and is the fame with the eccentric ; being invented to account for the eccentricity, perigee, and apogee of the planets.

DEFLECTION, the turning any thing afide from its former courfe by fome adventitious or external caufe. The word is often applied to the tendency of a hip from her true courfe by realon of currents, \&c. which turn her out of her right way. It is likewife applied. by aftronomers to the tendency of the planets from the line of their projection, or the tangent of their orbit.. See Astronomy in this Supplement.

DEJECTION, in aftrology, is appiied to the planets: when in their detriment, as altrologers fpeak, i. e. when they lave loft their force or influence, as is pretended, by reafon of their being in oppofition to fome others which check and counteract them. Or it is ufed when a planet is in a fign oppofite to that in which it has its greateft effect or influence, which is called its exaltation. Thus, the fign Aries being the exaltation of the fun, the oppofite fign Libra is its dejection.

DELIACAL Problem, a celebrated problem among the ancients, concerning the duplication of the cuhe.

DEMI-Bastion, in fortification, a baltion that has only one face and one flank.

DENDROMETER, in its ufual acceptations is the name of an inftrument for meafuring trees, of which the reader will find a defeription in the Encyclopadia Britannica. The fame name has been lately given, by

WiL.

Dendro. William Pitt, Efq; of Pendeford near Wolverhampmeter. ton, to an inftrament propnfed by him for meafuring diftances by one obfervation.

The idea of fuch an inftrument is not new. It has been frequently difcuffed, both in converfation and upon paper; but has been generally trated by found mathematicians with contempt, on the fuppofition of its being founded on falfe principles. Of all this our author is fully aware ; but he, notwithftanding, ftrongly recommends it to the attention of the ingenious mathematical initrument maker. -

To determine diftances by one obfervation, two methods may be propofed, founded on different principles; the one on the fuppolition of the obferver being in the centre, and the object in the circumference, of a circle; the other, on the contrary fuppofition, of the obferver being in the circumference, and the object in the centre.

To determine the diftance of any ohject on the firt fuppofition, the bulk or dimenfions of fuch object mult be known, either by meafure or eftimation, and the angle formed by lines drawn to its extremities being taken by an accurate inftrument, the diftance is eafily calculated; and fuch calculations may be facilitated by tables or theorems adapted to that purpofe. For this method onr prefent inftruments, with a nonius, and the whole very accurately divided, are fufficient; the unly improvement wanting feens to be the application of a micrometer to fuch inftrmments, \({ }^{\text {n }}\) to enable the obferver to read his angle with more minnte accuracy, by afeertaining, nut only the degrees and parts of a degree, but alfo the minutes and parts of a minute.

As in this method the bulk of inacceffible objects can only be eflimated, the error in diftance will be exactly in the proportion of the error in fucle eftimation; little dependence can therefore be placed on diftances thus aicertained. For the purpofes of furveyiag, indeed, a ftaff of knowu length may be held by an affittant; and the angle from the eye of the obferver to its two ends being meafured by an accurate influment, with a micrometer fitted to afcertain minutes and parts of a minute, diftances may be thus deternined with great accuracy ; the application of a microneter to the theorelite, if it could be depended upon, for thus determining the minute parts of a degree, in fmall angles, is very much a delideratum with the practical furveyor.
This method of meafuring diflances, though plain and fimple enough, our author illuftrates by an example : Suppofe A, fig. I. (fee Plate XXI.) the place of the inftrument ; BC the affiftant's ftaff, with a perpendicular pin at \(D\), to enable the affiftant to hold it in its right pofition; now, if the angle BAC conld, by the help of a micrometer, be afeertained to parts of a minute, the diftance from A to B , or to C , might be eafily calculated by the rules of plane Trigonometry; for which fee that article in the Encyclopredia.

But this method of afcertaining diftances cannot be applied to inacceffible objects, and it is moreover fubject to the inconvenience of an affitant being obliged to go to the object whofe diftance is required (an inconvenience almoit equal to the trouble of actual ad. meafurement) ; therefore the perfection of the fecond method prupofed, if attainable, is principally to be defired; Hamely, that of conceiving the obfervation made on the circumference of a circle, whofe centre is in the
object whofe diftance is to be afcertained; and, none of Dendroe our inftruments now in ufe being adapted to this mode meter. of obfervation, a new comfruction of a mathematical infrument is therefore propofed, the name intended for which is the dendrometer.
Our author admits, that this name is not now ufed for the firf time, though he thinks that the priaciple has never been applied in pracice, for the familiar purpofe of afcertaining terrefrial diftances, in furveying, or otherwife, though the fame principle has been fo generally and fuccefsfully applied in determining the diftance of the heavenly budies by means of their parallax.
The following principles of conftruction are propofed, which nay perhaps be otherwife varied and improved. O, fig. 2. the otject of whofe diftance is required; ABCDE the inftrument in plano; BC a telefcope, placed exactly parallel to the fide AE; CE an arch of a circle, whofe centre is at \(A\), accurately divided from E in degrees, \&c.; AD an index, movealle on the centre A , with a nonius feale at the end D , graduated to apply to the divifions of the arch; alfo with a telefcope, to enable the obferver to difcriminate the object, or any particular part or fide thereof, the more accurately. The whole flould be mounted on three legs, in the manner of a plain table or theodolite, and furnifled with fpirit-tubes to adjuft it to an horizontal pofition. The inftrument being placed in fuch pofition, the telefcope BC muft be brought upon the object \(O\), or rather upon fome particular point or fide thereof; when, being there fattened, the index AD mult be moved till its telefcope exactly frikes the fame point of the ohject; then the divifions on the arch ED mark out the angle DAE, which will be cxaclly equal to the angle BOA, as is demonftrated in the XV. and XXIX. propofitions of Euclid, Buok I.; and the fide BA, as well as the angles \(A B O\), and BAO, beingalready known, the diftance BO or AO may be eafily, deternined.

As the perfection of this inftrument depends altoge ther upon its accuracy in taking fmall angles, fo that accuracy mut depend, not ouly upon the intrument's being properly fitted with a micrometer, but alfo in fome meafure upon the length of the line BA in the figure. That line, therefore, might be extende:d, by the inftrument being confructed to fold or flide out to a greater length when in ufe; upon which principle, comeeted with the application of a micrometer, an accurate and ufeful inftrument might certainly be conftructed. To adjuft fuch inftrument for ufe, let a ttaft be held up at a diftance, in the manner of tig. i. exactly equal in lengeth to the diflance of the two telefcopes, and the index AD being brought exactly upon the fide AE, if the two tulefcopes accurately trike either end of the flaff, the inftrument is properly adjutted.

The conflruction of a fimilar iuftrument, on the prine ciples of Hadley's quadrant, fur naval obfervations, would alfo donbtlefs be an acceptable object in navigation, by enabling the mariner to afcertain the difo tances of thips, capes, and other objects, at a fingle ob. fervation; and that, perhaps, with greater accuracy than can be done by any method now in ufe.

For this purpofe, the folluwing contruction is pro pofed: ABCDE, fig. 3. the inftrument in plano; O : the object whofe diftance is required ; at A , at C , at E, and at 3 , are to be fixed fpeculums, properly fra-

\section*{D E S}

Denomina-med and fitted, that at 3 having only its lower part
tor
II
Defante. quickfilvered, the upper part being left tranfparent to view the object ; the fpeculum at \(A\) being fixed oblique. ly, fo that a line A I, drawn perpendicular to its fur- face, may bifect the angle BAC in equal parts; that at C being perpendicular to the line C 2 ; thofe at E and 3 being perpendicular to the index E 3, and that at \(E\) being furnifhed with a fight ; the arch \(D C\) to be divided from D in the manner of Hadley's quadrant ; the movement of the index to be mealured as before by a micrometer; and as the length of the line AE would tend to the perfection of the inftrument, it may be conftructed to fold up in the middle, on the line C 2, into lefs compafs when not in ufe. The inftrument may be adjufted for ufe by holding up a ftaff at a diftance, as before propofed, whole length is exactly equal to the line AE .

To make an obfervation by this inftrument, it being previounly properly adjufted, the eye is to be applied at the fight in the fpeculum \(\mathbf{E}\), and the face turned towards the object; when the object being received on the fpeculum \(A\), is reflected into that at \(C\), and again into that at E , and that at 3 on the index; the index being then moved till the reflected object in the fpeculum at 3 exactly coincides with the real object in the tranfparent part of the glafs, the divifions on the arch D 3, fubdivided by the micrometer, will determine the angle \(\mathrm{DE}_{3}=\) the angle AOE ; from which the diftance \(O\) may he determined as before.

DENOMINATOR of A Ratio is the quotient arifing from the divifion of the antecedent by the confequent. Thus, 6 is the denominator of the ratio 30 to 5 , becaufe 30 divided by 5 gives 6 . It is otherwife called the exponent of the ratio.

DEPRESSION of A Star, or of the Sun, is its diftance helow the horizon; and is meafured by an are of a vertical circle, intercepted between the horizon and the place of the ftar.

Depression of the Vifible Horizon, or Dip of the Horizon, denotes its finking or dipping below the true horizontal plane, by the obferver's eye being raifed above the furface of the fea; in confequence of which, the obferved altitude of an odject is by fo much too great.
'DEROODUST, in Bengal, Entire; as an entire difriet, oppofed to Kismut, which fee.

DESAULT (Peter Jufeph), furgeon in chief to the Hofpital of Humanity, formerly the Hotel-Dieu at Paris, was born on the Gtli of Fehruary 1744 at Mag. ny Vernois, a village in the neighbourhood of Lure, in the department of Haute Saone (formerly the province of Franche Comté). His father and mother were in that fituation of life which is removed from want, and yet does not difpenfe with labour; he himfelf was the youngeft child of a numerous family.

At Lure, under the direction of a private inftructor, he was taught the firft rudinents of the Latin tongue; his parents afterwards confided him to the care of the Jefuits, then almoft exclufively entrulted with the education of youth in the public fchools. This celebrated fociety, prompt in difcovering, as expert at developing, and adroit in appropriating talents, foon diftinguifhed the young ftudent from the crowd; and he, in his turn, was not difpleafed with the life he led in one of their feminaries.

\section*{D E S}

On the completion of his ftudies, his father, who had deftined him for the church, intimated a wif that he thould apply himfelf to theology; but his genius had taken a different direction, and he was averfe to the profeffion of an ecclefiaftic: in fhort, young Default declared that he was determined to betake himfelf to the itudy of the healing art; and, after a long and in. effectual refiftance on the part of his family, he was fent to Béfort, in order to ferve an apprenticeflip, as it was then termed, in the military hofpital of that place. He accordingly fpent three years there; during which he acquired fome knowledge of anatomy, attended to the drefling of the patients, and endeavoured to fupply, by his own obfervations, what was wanting in his inftruction.

In the midft of thefe profeffonal labours, his mind frequently rambled towards another fcience but little connected with furgery: this was mathematics, the elements of which he had acquired among the Jefuits. His progrefs in this favourite itudy was rapid ; but he fell into one of the many errors fo common among the phyfieians of that day ; this confifted in a falfe applica. tion of the rules of geometry to the laws of the animal economy.

He not only perufed with avidity the treatife of Bo. relli De Moti Animalium, but actually tranflated the whole of it, and even added a commentary, fill more abundant in calculation than that of the celebrated profeffor of Naples.

His fuccefs in a branch of phyfiology fo much cultivated at that time, attracted the attention of one of lis fuperiors, a zealous partizan of the doctrine of the mechanicians, who wihhed to attach him to his perfon ; but his defire of fame required a more extenfive theatre, and his love of ftudy made him folicitous of better means of infurction. Paris prefented both thefe advantages; and he accordingly repaired thither in 1764 , at the age of nineteen, in fearch of them.

Surgery at that period flourithed in the capital under the aufpices of a Lafaye, a Morand, an Anduuillet, and a Louis. The fight of fuch great matters excited the genius of thofe who afpired to emalate them: young Default deemed himfelf worthy of equalling men whom other ftudents were content with only admiring. Animated by this fentiment, he entirely refigned himfelf to his ardour; anatomy became the fpecial object of his labours, and his diffections were not confined to the hue man body, for he inveftigated, by means of his knife, a prodigious number of animals of all kinds: at firf, from a difficulty of procuring human fubjects, and afterwards on account of the advantages which he experienced from this general method. In order to become intimately acquainted with our own organization, it is neceffary to compare it with whatever has a refemblance to it in other bodies.

He accordingly fpent the greater part of the day in the amphitheatres. 'The hours folen from his favourite labours were employed in attending the bofpitals; he was the firft at the bed of the patient where an operation was to be performed, and was fure to be prefent at the dreffings, on purpofe to examine the refult. The infirmities of mankind, fterile in refpect to the vulgar, ferved him as the beft treatife for curing them; and the great furgeons of all nations have formed their mode of practice by contemplating the fame book.

But he reckoned ton much on a robult and vigorous temperament; for, after two years clofe and affiduous application, he fell into a cachectical babit of body, which had nearly proved mortal, and which confined him for almoft twelve munths to his bed; but at length, owing partly to the vigour of his youth, and partly to the attention of his young friend Chopart, his infeparable companion in his operations, who attendel him alfo during his laft illnefs, and only furvived hima few days, he was fo fortunate as to recover.

Reftored to life, he forgot that an excefs of attention had conducted hiin to the very gates of death; a new career opened to his view, and required new efforts on his part. In the winter of 1766 he commenced a courfe of anatomy, and foon reckoned \(3 c 0\) pupils, moft of them older than himfelf, who were attracted by the clearnefs of his demon itrations, the methodical arrangement of his defcriptions, and, above all, by his indefatigahle zeal in the fcience of intruction.

His fuecefs infpired the privileged profeffors, whofe fchools became deferted, with jealouly and revenge; they employed the authority of the corporation againf - him, and would have nipped his effurts in the bud, had it not been for the protection of Louis and Lamartiniere, who were zealous of protecting a youth of talents, whofe fole reproach was, that he had not wealth enough to purchafe certain franchifes. After all, had it not been for the permiffion he obtained of borrowing the name of a celebrated phyfician, he mult have actually defifted from his lectures.

Default's reputation now began to be buzzed about, and a multitude of patients claimed his affiftance; but he conftantly refufed to practife until he fhould be pla. ced at the head of fome great eftablifhment.

At length, at the repeated folicitations of his friends, he prefented himfelf as a candidate to the corporation of furgeons; and they, much to their honour, admitted him in 1776, on condition of paying the ufual fees when convenient. The following is the title of his thefis: "De calculo vefice urinarie, coque extrabendo, prieviâ fagione, ope infrumenti Haukenficuni emendati."

His public lectures were accompanied with as much celebrity as his private ones. Brilliant difcoveries were not the object of his anatomical labours, which were al. ways connected with the art of healing: he was, however, the frit man in France who taught furgieal anatomy.

After becoming firlt a fimple meinber, and then a counfellor, of the perpetual committee of the academy of furgery, he was appointed ehicf furgeon to the hofpital of the college, and confulting furgeon to that of St Sulpice: neither of thefe added any thing to his fortune, but they gave him a elear infight into practice, and enabled him to judge of cafes by the inductions arifing from his own experience.

\section*{D E S}

In 1779 he invented the bandage now in ufe for Defaule. fractures; by means of which, the fragments being kept \(\underbrace{\text { Dus. }}\) in a flate of perpetual contact, become confolidated, without the leatt appearance of deformity, an almon inevitable confequence of the former mode.

On his appointment to the placc of furgoon major to the hofpital de la Cbarité, in 1782, he introduced a new method of treatment in oblique fractures of the thigh-bone; and he alfo liealed, by means of a methodical compreffion, thofe various ulcers whofe cure had hitherto been attended with great difficulty. In addition to this, he fubflituted new bandages in fractures of the humerus and clavicle, and adopted a new mode of treating the hare-lip, fuperior to that ufed by Louis. He never recurred to amputation but in extreme cafes, when there was a eertainty that diffolution would have followed a neglect of the operation.

When a premature death carried off Ferrand, chief furgeon of the Hotel Dieu in Paris, Default was confidered as the moft proper perfon to fucceed hint and, on the demife of Moreau, the whule clarge of the hofpital devolved on him. After three years of folicitations and difputes, he at length in 1788 proceeded in his long projected fcheme of ettablifing a clinical fchool; and a fpacious amphitheatre was accordingly erected for that purpofe. Scarcely had his firlt (a) courfe com. menced, when the number of pupils who flocked around him was rcally attonifhing. Foreigners repaired from all parts, and feveral of the neighbouring fiates fent ftudents to Paris, exprefsly for the purpofe of affiling at his demonftrations. More than 600 auditors conflant. ly attended, in order to learn a new fyftem, confiting of a fimple mode of treatment, difengared from ancient prejudices, and a complex incoherent practice.
A few of his improvements are here fpecified.
1. The method of ligature employed by the ancients in the cure of umbilical hernias of children, having been generally omitted in the practice of the moderns, he again introduced and perfected this mode, and dennonflrated, by his fuccefs, its fuperiority over compreffive bandages.
2. He was one of the firt men in France to cxtract the loofe eartilages (cartilages fottans) in joints.
3. He employcd a new treatnent, that of a methodical compreffion, in refpect to fchirrofities of the rectum; in order to which he introduced a candle or bougie, the fize of whice he gradually augmented.
4. He fimplified, and rendered more commodious, the reduction of luxations of the humerus.
5. Fatal experience having pointed out the danger of employing the trepan in wounds of the head, he fubfituted another method of treatment (l'ufage de l'imé. tique) now adopted by many prachitioners.
\(\dot{6}\). He made feveral very ufeful improvements on chirurgical infruments; fuch as thofe employed in the cafes
(A) The hufinefs of the day was conducted in the following routine: I. A public confultation concerning the indigent out-patients. 2. The young practitioners belonging to the hofpital read a detailed account of all, the interefting eafes of fuch patients as were to be difcharged that day. 3. The operations: cach of thefe was preeeded by a differtation on the flate of the patient, who was then carried to the amphitheatre, where Default, attended by his affiftants, performed the operation in prefence of all the pupils. 4. Argumentative details, by the profeflor, either on the dangerous maladies exifing in the hofpital, or on the fituation of the patients on. whom operations had been performed during the preceding day. 5. The diffection of fubjects. And, 6. A. - lecture on fome particular branch of pathology.

\section*{D E S [488] D E T}

Defult. cafes of polypus in the womb and noftrils (la pince à gaine et des porte-naveds pour la ligature des polypes, \&cc.;) for cutting through obftructions in the different cavities (le kictome): and for the ffitala in ano. In cafes of incifion he introduced the ufe of the inftrument (le gorgerat) invented by Marchetti, well known among foreigners, but almof totally neglected in France before this period.

He at the fame time retrenched the ufe of a great number of fuperfluous ones, and banifhed all practices attended with greater pain than utility. Avoiding every thing that was complex, he proved that the art of healing, in imitation of nature, ought to be fimple in its means, and fruifful in its refources.

In 1791 the publifhed his Gournal de Chirurgerie, which was edited by his pupils, and deftined to defcribe the moft interefting occurrences in his fchool, and alfo extracts from his lectures, which were then dedicated to the inve?igation of the maladies incident to the urinary paffages. The treatment of thefe difeafes, hitherto the reproach of practitioners, had been much improved by the affittance of the artift Bernard. The elaftic probes (les fandes élafiques), on their firt appearance, fixed the attention of all profeffional men; but none knew better than Default how to appretiate their advantages. By means of them, he introduced a novel mode of cure in contractions of the urethra, which faved a great number of lives every year in the Hoiel-Dieu. But he did not confine their ufe to the difeafes of the urethra alone, for he employed them to remove the divers obitacles that impede deglutition or refpiration.

In the midft of fuch a multiplicity of labours, and although he was obliged to attend 400 fick twice a. day, Default neverthelefs employed more than four hours -of his time in vifiting private patients.

Few furgeons ever enjoyed fuch an exclufive hare of public confidence; few ever poffeffed fiunilar means of enriching themfelves; and yet he neglected for a long time to take advantage of this. Had he been lefs ardent for glory, he would have been more favoured by fortune; but he facrificed all interefted views to the noble ambition of advancing his art. His clinical and anatomical courfes were gratuitoully opened by him to the world after the year 1790; and while the public fehools languifhed in the midit of troubles, infeparable perhaps froin a mighty revolution, he was forming the greater part of thofe furgeons employed at this prefent moment in the numerous armies of the republic. Confidered under this point of view alone, the fervices which he rendered to humanity are incalculable: too happy if perfecution had not been his fole reward!

While out of mere attaclimert to the public weal, he added to his various functions that of a inember of the council of health, conferred on him in 1792 by the minifter Servan, he was denonnced in the popular focieties as an erotiff, an indifferent, \&c. and became one of the firt victims of that profcription which, under Rubefpierre, extended to nearly every man of talents.

Chaumctte accufed him to the fections as having neglected the brave men wounded on the 1oth of Auguft, while they themfelves were lavifhing their bleffings at the Hotel-Dieu on their faviour. Twice was he brought to the tar of a commune ; defirous of difcovering a pretext for perfecution, the clamours of the people were
unremittingly excited againft lim. He was at length carried away from his amphitheatre, while in the very act of haranguing his pupils; and, in confequence of a mandat d'arr t from the revolutionary conmittee, con. ducted by a body of armed men to the Luxembourg. From this horrid prifon few ever departed but to meet their fate; luckily, however, his name was not yet entered on that bloody lift, in which thofe of Malt therbes and Lavoifier were inferted. On the contrary, at the end of three days he was liberated, and intantly refumed all his functions.

On the eftablifhment of L'Ecolede Santé, Defaule was appointed clinical profeffor; and for external maladies he foon after obtained from the government the converfon of the Eveché into an hofpital for furgical operations.

In the mida of thefe plans, the troubles that occurred in the month of May unfortunately affected his mind, and made him dread left the days of profcription mould return. It was in vain that his friends attempted to foothe his fufferings; for on the night of the 29 th of May, a malignant fever made its appearance, and a nearly continual delirium enfued until his death, which occurred on the if of June 1795. on which day he breathed his lan, in the arms of his pupils, at the age of 5 I .

The populace we:e perfuaded that he was poifoned. This ridiculous opinion originated in confequence of the epoch of his death, which preceded but a hort time that of the fon of Louis XVI. whom he had vifited during his ilinefs in the prifon of the Tenuple. It is pretended that he fell a victim to his coultant refufal to yield to the criminal views entertained againft the life of that child.

Default was of a middling flature. He was well proportioned, and poffeffed an open countenance. His temperament, naturally robuft, had been fortified by his early education, and was never fapped by an excefs of pleafures, for to them his heart was always indifferent. His ruling paffion was the love of glory; his favourite purfuit, the practice and advancement of his art. He was warm, nay fometines violent; and his fcholars were not always inclined to praife the fweetnefs of his teme per. On the other hand, his mind was noble, elevated, and great, even to excefs.

The French repullic, cager to pay homage to his memory, has prefented his widow with a penfion of 2000 lives per annun. A fon, Alexis Mathias Default, was the fole fruit of his niarriage ; and he has left but one work behind him, in which the namc of his friend Chopart is joined with lis own. It is entitled Traité des Maludies Cbirurgicales et des Operations qui leur conviennent, 2 vols two.

DETERMINATE PROBLEM, is that which has but one folution, or a certain limited number of folutions; in contradiftinction to an indeterminate problen, which admits of infinite folutions.

Detfrminate Segion, the name of a tract or general problem, written by the ancient geometrician Apollonius. None of this work has come down to us, excepting fome extracts and an account of it by Pappus, in the Preface to the 7th book of his Mathematical Collections. He there fays that the general problem was, " To cut àn infinite right line in one point \(\mathrm{f}_{\mathrm{O}}\), that, of the fegments contained between the point of
fection

\section*{D E T}
rection fought, and given points in the faid line, either the fquare on one of them, or the rectangle contained by two of thera, may have a given ratio, cither to the rectangle contained by one of them and a given line, or to the rectangle contained by two of them."
DETONATION (fee that word Encycl.). The aftonifling violence with which the oxy-muriat of potafs, when mixed with various fubflances, detonates, has been already noticed in this Supplement under the article Chemistry, no 722, where the theory of thefe explofions is likewife given. But as feveral chemitts feem to think that this falt, which decrepitates by friction, and foontaneoully takes fire when mixed with fulphur, contains in itfelf the elements and phenomena of thunder, it will not probably be unacceptable to our readers to find, in this place, a diftinct account of the various mixtures which produce its detonations. The following are the principal which have been difeovered by Fourcroy and Vauquelin.
1. Three parts of the nxy-muriat of potafs, and ne part of powdered fulphur, rubbed together in a metal mortar, produce numerous fuccefive explofions, refembling the fmacking of a whip, or even as lond as the report of a piftol or a mulket, according to the rapidity of the motion, and the force of the preflure made ufe of. A few grains of the fame mixture, by being ftruck fmartly upon an anvil with a hammer, occation a report equal to that of a mufket; and torrents of purplifh light are feen about the anvil. If this mixture be thrown into concentrated fulphuric acid, it inftantly takes fire, and burns, without uoife, with a flame of a dazzling whitenefs.
2. A mixture of three parts of this falt, half a part of fulphur, and half a part of charcoal, caufes ftronger explofious than the preceding when rubbed in a mortar, and a louder noife when truck upon an anvil. Its fiame alfo, when the mixture is made to explude, or when it is thrown into fulphuric acid, is more rapid, mure lively, and of a redder coluur, than that of the preceding.
3. A mixture of equal parts of oxy-muriat of potafs and antimony in powder explodes with noife by percuffion; but produces only reddifa fparks when thrown into fulphuric acid. If zinc be fubfituted in the place of antimony, a fimilar explofion takes place, accompanied with a white flame. Sulphuric acid has no effect upon this luft mixture.
4. With regulus of arfenic, this falt explodes very violently by the troke of a hammer; it inflames, with fingular rapidity and brilhancy, by the contact of fulphuric acid. In this laft experiment there arifes a fmoke, which in the air takes the form of a crown, in the fame manner as phofphurated hydrugenous gas does when it inflames fpoutaneoully in a till atmofphere.
5. Sulphuret of iron or martial pyrites inflames rapid. ly, but without noife, when rubbed in a metal mortar with oxy-muriat of potafs. This mixture, when ftruck upon an anvil, explodes violently, and with a red flame.
6. The red fulphuret of mercury or cinnabar, and the fulphurated calces of antimony, explode with the oxy-muriat of potais by percuffion, but they do not inflame by fulphuric acid. The fame thing happens when charcoal alone is mixed with this falt.

Any of the following fubttances, namely, fugar, gums, Suppl. Vol. I. Part II.

\section*{\(439]\) I) A}
oils (both fixed and volatile), alcohol, ether, when mix- Detrnsed with oxy-muriat of potafs, have the property of ex- tion ploding very violently by the ftroke of a hamner, and III all of them fend forth a brifk flame at the time of their Diabetes. explofion. The liquid combultible fubftances above mentioned are to be mixed with the falt in fuch a manner as to form a kiud of patte. Nune of thefe mixtures explode or inflane by being rubbed in a mortar ; but fome of them inflame by beng mixed with concentrated fulphuric acid, their combuftion being flow and progreffive.
8. All the fubflances above mentioned, which, being mixed with the oxy-muriat of potafs, take fire and burn iuftantly, and with confiderable noife, by the quick pref. fure of the Arokes of a hamere, produce a much fronger explufion when they are fo clofely wrapped up in paper, two or three times doubled, as to be thereby compreffed before they are ftruck.
9. An electric fhock from a battery of large furface, charged by a ftrong clectric machine, caufes all the forementioned mixtures to explode in the fame manner as percuffion, and their explution is alfo accompanied by a bright light.

To the above mentioned facts, the authors add, that it was already well known that gunpowder would ex. plode by a violent blow, or very ftrong preffure; but they obferve, that the ftroke which is neceffary fur that purpofe muft be much ftronger than that which fuffices to produce an explofion in the above-mentioned mix. tures of combuftible fubitances with the oxy muriat of potafs; and that its explofion is by no means fo remarkatde as that which is produced by the help of this new falt.

DEWAN, under the Mogul government, the recciver general and civic governor of a province: in private life a fleward.

DEWANNY, the revenue department of a pro. vince.
DiABETES Mellitus (fee Medicine, no 318; \&c. Encycl.), is fo formidable a difeafe, though not very frequent, that it would be unpardonable in 11s nut to mention every method of treating it fuccefsfully which has come to our knowledge. Since our article Medicine was publifhed, Dr Rollo, furgeon general to the royal artillery, has fuggefted a method of treating this difeafe, which in various inflances has been crowned with fuccefs.

The Doctor fuppofes, that in this complaint the vegetable matter taken into the fomach has not, from foine defect in this organ, undergone a fufficient change to form proper chyle ; that in confequence of this, much faccharine matter is evolved, which, when carried into the circulation, proves a general flimulus, producing head-aches and quicknefs of pulfe, but that it acts more remarkably on the kidneys, occafioning a conftant and copious fecretion of fweet urine. From this hypothefis, he was naturally led to adopt a plan of cure, which has proved completely fuccefsful. The indications he lays down are: 1 . To prevent the formation of faccharine matter in the ftonach; and, \(z\). To remove the morbidly increafed action of this organ, and reftore it to a healthful condition. Thefe indications are to be anfwered by a complete diet of animal food, and by the ufe of fuch medicines as fhall diminifh the action of the
ftumach,

\section*{D I D}
[490]
D I D
Diamon.l, fomach, and at the fame time counteract the formaDideror tion of faccharine matter. 'The remedies employed for this purpofe have been emetics, kali fulphuratum, limewater, hefatized ammonia, and vegetable narcotics. Hut the principal dependerce is to be placed on a total abfinence from all vegetable matter, which alone can fupply the faccharine principle. By a regular perfeverabce in this plan, the firft of two patients was completely cured in four weeks, although the difeafe had beea of feven months continuance. The urine, which at the commencement of the treatmeat was fireet, and anounted to 24 pints daily, was at laft reduced to \(1 \frac{8}{3}\) pint, being at the fame time free from any faccharine impregnation. The fecond patient, from his age and other circumftances, although relieved from the diabetic affection, did not regain his wonted ftate of health; but even in this cafe, the effects produced by the treatment, when properly attended to, were mofl decidedly in contirnation of this plan of cure.

The Doctor has recejved feveral comm:mications in confequence of the difperfion of the printed notes on the firt cafe. The mot inportant are the refult of two cales treated in this way by Dr Cieghorn of Glaf. frow, and one hy Drs Currie and Gerard at Liverpoul ; all of which afford the frongelt corroboration of the efficacy of this mode of treatment.

DIAMOND, the moft precious of all the gems; for the nature of which fee Chemestry, \(n^{\circ} 33\), \&c. in this Supplement.
DIDEROT (Dionyfus) of the academy of Berlin, the fon of a cutler, was born at Langres in 1713. The Jefuits, with whom he went through a courfe of fudy, were defirous of having him in their order; and one of his uncles, defigning him for a canonry which he had in his gift, prevailed upon him to take the tonfure.

His father feems to have known him better; for perceiving that he was not inelined to be a Jefuit, nor fit to be a canon, he fent him to Paris to profecute the Atudy of the law. To the law, however, he paid very little attention, but devoted his time to fcience and general literature; which fo offended his father, that he fopped the remittance of his pecuniary allowance, and feemed for fome time to have ahandoned him.

The talents of young Diderot fupplied him with a maintenance, and drew him from obfcurity. According to his friends, his capacious mind embraced phyfics, geometry, netaphyfics, ethics, and the belles lettres, from the time that he began to read with reflection; and it is certain that he afpired at being a mafter in all thefe departments of literature. His buld and elevated imagination feemed to give him likewife a turn for poetry; but he neglefted it for the fciences. He fettled at an early period at Paris, where the natural eloquence which animated his converfation procured him friends and patrons. What firf drew the attention of the public to him as an author, and gave him a high reputation among a certaia clafs of readers, was a fmall volume written againt the Chritian religion, and intitled Penfées Philofopbiques; which was reprinted afterwards under the title of Etrennes au* Efprits-forts.

This buok appeared in 1746 , 12 mo . The adepts of the new philofophy compared it, for perfpicuity, elegrance, and ferce of dietion, to the Penfies de Pafal. But the aim of the two authors was widely different; Pafcal employed his talents and his erudition, which
was profound and various, to fipport and illuftrate the great truths of our huly religion, which Diderot attacked by all the difingenuous arts of an unprincipled fuphit. The Penfes Pbilofopliques, lowever, became popular. It contributed to promote the object of that confpiracy which had been for fome time formed againt every thing which ennobles buman nature (See Jaco. bins in this Supplement). It was therefore applauded by Voltaite and D'Alembert, and read, of courfe, by every man and woman of tafte in Paris.

Our author was more ufefully employed in 1746 , when, together with Meffrs Eidous and Touifant, he publifhed a general DiAtionary of Medicine, in fix volumes folio. This work, it muft be confeffed, has con. fiderable merit ; for though there are in it feveral articles fuperficial and erroneous, there are many others of fuch deep and aceurate difquifition, as defervedly recommended it to men of feience.

It was about this time that an intinacy was formed between Diderot and D'Alembert, and that, under the direction of Voltaire, they formed the idea of a Ditionaire Encyclopedique. The great objects which they had in view when they entered upon this work are now univer\{ally known. D'Alembert was a profound mathematician, Diderot had confiderable knowledge in the phyfical fciences, more efpecially mechanical philofo. phy, and Voltaire was a mafter of the belles lettres.

It is not to be fuppofed that fuch men would publin any thing very defective in thefe departments of fcience; but an Encyclopadia muft treat of religion; and to every kind of religion they were all fworn enemies. They engaged, however, a very worthy, though not very acute, clergyman, to furnifh the theological articles; and for other branches of knowledge, they were promifed the affiftance of feveral men of letters, and of a variety of artifts.

Diderot took upon himfelf the defeription of aits and trades; one of the molt importaut departments of the work, and the molt acceptable to the public. To the particulars of the feveral procefli's of the workmen he fometimes added reflections, fpeculations, and principles, adapted to the elucidation. But befides his own department, he furnifhed articles on almoft every other fubject.

By thole who knew not the great aim of the undertakers of this work, it has been regretted that Diderot was not lefs verhofe, lefs of the differtator, and lefs inclined to digreffions. He has alfo been cenfured for employing needlefsly a fcientific language, and for having recourfe to metaphyfical doctrines, frequently unintelligible, which occafioned him to be called the Lycophron of philofopby; for having introduced a number of definitions incapable of enlightening the ignorant, and which the philofopher feems to have invented for no other purpofe than to have it thought that he had great conceptions; while, in fact, be had not the art of exprefling perfpicuoully and fimply the ideas of others. But thefe complaints arife from mittaking entirely the purpofe for which be wrote.

It has been completely proved, that one great object for which the philofophers, as they called themfelves, undertook the compilation of the Encyclopedie was to fap the foundation of all religion. This was to be attempted, not directly and avowedly; for bare-faced atlieifin would not then have been fuffered in France.

\section*{D I D}

Diderat.

A cloak, therefore, was to be worn, and the poifoned dagger to be concealed under it. Whilt the well-meaning divine was fupporting, hy the beft arguments which he could devife, the religion of his cuuntry, Diderot and D'Alembert were overturning thofe arguments under titles which properly allowed of no fueh difquifitions. This neceflarily produced digreffions; for the greateft genius on earth could not, when writing on the laws of motion, attack the myfteries of Chritianity without wandering from his fubject; but that the object of thefe digreffions might not pafs unnoticed by ony clafs of readers, care was taken to refer to them from the articles where the quetion was difculfed by the divine. That when employed in this way, Diderot feems to write obfcurely, is indeed true; but the obfcurity is not his. His atheifm was fo plain, that for the moft part D'Alembert, or fome other leader of the gang, had to retouch his articles, and throw a mift over them, to render their intention the lefs obvious.

Even with all this care and ftudied obfcurity, the defign of the Encyclopedie was too palpable not to be feen, and too wicked not to give offence. Certain wild pofitions on government and on religion occafioned the impreflion to be fufpended in 1752 . At that time there were no more than two volumes of the dictionary publifhed; and the prohibition of the fucceeding ones was only taken off at the end of 1753 . Five new volumes then fucceffively appeared. But in 1757 a new ftorm arofe, and the book was fuppreffed. The remainder did not appear till about ten years after; and was then for a wbile only privately diftributed; fome copies having been feized by government, and the printers thut up in the Baftile. The merit, however, of fome of the articles is confeffedly great; and the firf edition was quickly fold off.

Thus was this great work in the prefs from 175 s to 1767 ; during which period, Diderot and D'Alembert were accultomed to frequent the coffee-houfes of Paris, and to enter with keennefs into religious difputes: the former attacking Chritianity; and the latter, under the mafk of piety, defending it ; but always yielding to the arguments of his opponent. This practice was put a Itop to by the police; and Diderot, when reproached by the lieutenant with preaching atheifm, replied, " Ce . la eft vrai, je fuis athée, \& m'en fais gloire."

Finding his impious converfations interrupted, and the publication of the Encyclopedie rendered tedious by the vigilance of government, he thought of propagating his notions by other vehicles. Alternately ferious and fportive, folid and frivolous, he publifhed, at the very time he was working on the Dictionary of Scienees, feveral productions, which could fearcely have been expected from a man fo completely employed. His Bijoux Indiforets, 2 vols 12 mu , are of this number-a difguting ivork, even to thofe young people who are unhappily too eager for following after licentious ronances. Even here a certain philofophical pedantry appcars in the very paffages where it is mont mifplaced, and never is the author more aukward than where he intends to difplay a graceful eafe.

The Fils Naturel, and the Pere de Famille, two comedies in profe, which appeared in 1757 and 1758 , are not of the fame kind with the Bijoux Indifcrets. They are moral and affecting dramas, where we fee at once a nervous fyle and pathetic fentiments. The former piece

491 i) 1 D
is a picture of the trials of virtue, a confist between interelts and paftions, wherein love and friendfip play important parts. It has been faid that Diderot horrowed it from Goldoni ; but if that be the cafe, the copy does honour to the original; and, with the exception of a finall number of fcenes, where the author mixes his philufophical jargon with the fentiments of the heart, and fome fentences out of place, the ftyle is aficcting and natural enough. In the fecond comedy, a tender, virtuons, and humane father appears, whofe trancquillity is difturbed by the parental folicitudes, infpired by the lively and impetuous paffions of his children. This philofophical, moral, and almoft tragical comedy, has produced confiderable effects on feveral theatres of Europe. The dedication, to the princels of Naffau Saarbuck, is a little moral tract of a fingula turn, without deviating from nature. This piece, written with a true dignity of ftyle, proves that the author poffeffed a great fund of moral fentiments and philofophical ideas. At the end of thefe tro pieces, puldift= ed together under the citle of Theatre de \(M\). Diderot, are dialogues, containing profound reflections and novel views of the dramatic art. In his plays he has endea. voured to unite the characters of A rillophanes and Plato; and in his reflections be fometimes difplays the genius of Ariftutle.

This Spirit of criticifm is exbibited, but with (oo) much licence, in two other works, which made a great noife. The former appeared in \(1749,12 \mathrm{mo}\), intitled Letters on the Blind for the Ule of thoje who See. The free notions of the author in this work coft him his liberty. He underwent a fix months imprifonment at Viorcenncs. Having naturally ftrong paffions and a haughty fpirit, and finding himfelf on a fudelen deprived of liberty and of all intercourfe with human heings, he was threatened with the lofs of his reafon. The danger was great ; and to prevent it, they were obliged to allow him to leave his room, to take frequent walks, and to receive the vilits uf a few literary men; among whom J. J. Rouffeau, at that time his friend, went and adminiftered confolation to him, which he ought not to have forgotten.

The letter on the Blind was followed by another On the Deaf and Dumb, for the Ufe of thofe who can Hear and Speak; 175t; 2 vols, 12 mo. Under this title the author delivered reflections on metaphyfics, on poetry, on eloquence, on mufic, \&c. In this effiy there are fome good things, among uthers abfurd and imperfect. Though be ftrives to be perfpicuous, yit he is not always underfood; and this is more his fault than that of his readers. Of what he has compofed. on abftract fubjects, it has been faid that it is a chaus on which the light Gines only at intervals The other productions of Diderot betray the fame defect of clearnefs and precifion, and the fame uncouth emphaits, fo: which he has always been blamed.

The plincipal of them are, 1. Principles of Moral Philofophy, \(1745,12 \mathrm{mo}\); of which the Albé de Eontaine fpeaks well, though it met with no great fuccefs. It was our philofopher's fate to write a great deal, and not to leave a good book, or at leaft a book wel! iom= pofed. 2. Hiftory of Greece, tranflated from the E1.glifh of Stanyan. 3 vols, 12 mo ; an indifferent tranfla. tion of an indifferent book 3. Pieces on feveral Mathematical Subjects, 1748.8 vo . 4 . Reflections on the

Irter
freter is very obfeure. 5. The Code of Nature, 1755, 12 mo ; which is certainly not the code of Chriftianity. 6. The Sixth Senfe, \(1752,32 \mathrm{mo}\). 7. Of Public Education; one of that fwarm of pullications produced by the appearance of Emelius, ant the abolition of the Jefuits. Thungh all the ideas of this anthor could not be adopted, yet fome of them are very judicious, and would be highly ufeful in the execution. 8. Panegyric on Richardfon. Full of nerve and animation. 9. Life of Seneca. This is the laft work which he acknowledged; and \(i t\) is one of thofe by Diderot that is perufed with molt pleafure, even in rectifying the judgments he paffes on Seneca and other celebrated men. The Abbé Barruel fays, that he was the author of Syleme de la Nature, which is ufually given to Robinet ; and it is certain, that if he was not the author, he furnithed hints, and revifed the whole. Yet the junto of atheills were themfelves afhamed of the firlt edition of that work ; and after all Diderot's care to improve it, the fubfequent editions are, notwithftanding his boafted knowledge of the laws of nature, contemptible in the eyes of a real meclanical philofopher.

When a new cdition of the Encyclopedie was refolved on, Diderot, the editor of the former edition, thus addreffes the bookfellers who had undertaken to republifh it. "The imperfections (fays he) of this wark originated in a great variety of caufes. We had not time to be very fcrupulous in the choice of our coadjutors. Among fome excellent perfons, there were others weak, indifferent, and altogether bad. Hence that motley appearance of the work, where we fee the rude attempt of the fchool-boy by the fide of a piece from the hand of a mafter; a piece of nonfenfe next neighbour to a fublime performance. Some working for no pay, foon loft their firft fervour ; others, badly recompenfed, ferved us accordingly. The Encyclopedie was a gulf into which all kinds of fcribblers promifcuouly threw their contributions ; their pieces ill conceived, and worfe digelted, good, bad, contemptible, true, falfe, uncertain, and always incoherent and unequal ; the reference that belonged to the very parts affigned to a perfon, never filled up by him. A refutation is often found where we thould naturally expect a proof. There was no exaft correfpondence between the text and the plates. 'To remedy this defect, recourfe was had to long explications. But how many unintelligible machines, for want of letters to denote the plates!" To this confeffion Diderot added particular details on various parts; fuch as proved that there were in the Encyclopedie futjects to be not only retouched, but to be compofed afrefh : and this was what a new company of literati and artifts fet themfelves to work upon in the Incyclopedie Methodique.

This immenfc work is not yet completed; and therefore we cannot fpeak of it as a whole ; but it is furely not lefs verbofe than the former edition, nor do the aims of its editors appear to be purer. That it contains much valuable information in chemittry, and indeed in every department of phyfical fcience, no candid man will controvert: but its articles on abitract philofophy are prolix and obfcure; and it betrays the fame impiety, the fame eager defire to corrupt the principles of the rifing generation, and the fame contempt for esery
thing which can make mankiud happy here or hereafter, with the former edition.

Notwithftanding his numerous publications, Diderot was never rich. Soon after the pullication of the lat volumes of the Encyclopedit, upon which he had been employed for upwards of twenty years, his circumftan. ces were fo ftraitened, that an expedient was to be de. vifed for their improvement. He had long correfponded with the late Emprefs of Ruffia, whom he perfuaded to confider him as the greateft, or one of the greateft economilts of France. In the courfe of the correfpondence lie had mentioned his own library as one of the molt valuable in Europe; and when Catharine wanted to purchafe it and make him librarian, he faid that his conttitution could not fupport the cold climate of St Peteriburgh. She offered to let him keep it during his lifctime in Paris; and the library was fold for an immenfe price. When her ambaffador wanted to fee it, after a year or two's payments, and the vifitation could be no longer put off, Diderot was obliged to run in a hurry through all the bookfellers thops in Germany to fill his empty thelves with old volumes. He had the good fortume to fave appearances; but the trick took air, becaufe he had been niggardly in his attention to the ambaffador's fecretary. This, however, did not hinder him from vifiting his imperial pupil, to whom he told a poor ftory, in hopes of getting his daughter married with parade, and patronifed by her majelty; but it was feen through, and he was difappointed.

In the year \(17^{8} 4\) Diderot's health began vifibly to decline; and one of his domeftics, perceiving that his death was at no great diftance, acquainted him with his apprehenfions, and addrefled him on the importance of preparing for anothicr world. He heard the man with attention, thanked him kindly, acknowledged that his fituation required ferionfuefs, and promifed to weigh well what lie had faid. Some time after this converfation he defired that a prieft might be brought; and thefame domeftic introduced to him M. de Farfac, Curé de St Sulpice. Diderot faw this ecclefiafic feveral times, and was preparing to make a public recantation of his errors. Condorcet and the other adepts now crowded about him, perfuaded him that he was cheated, that his cafe was not fo dangerous as it was faid to be, and that he only wanted the country air to refore him to healnh. For fone time he refifted their attempts to bring him back to atheifm, but was at laf prevailed upon to try the effeet of the conntry air. His departure was kept fecret, and he was concealed in the country till the ad of July, when he died. His dead body was fecretly brought back to Paris, and a report was fpread and believed that he died fuddenly on rifing from the table, without remorfe, and with his atheifin unfhaken.

To draw a formal character of this wretch is furely fuperfluous. His friends extol his franknefs, his difintereltednefs, and his integrity ; but except his grofs avowal of atheirm, which may in France be called franknefs, this character is belied by every tranfaction of his life. He married, and had a daughter, as has been already mentioned. M. Bauzé, referred to by Abbé Barruel, coming one day into Diderot's houfe, found him explaining to this daughter a clapter of the gorpel. When he expreffed fome furprife at this conduct, Diderat faid: "J'entends ce que vous voulez dire;

\section*{D \(1 \mathrm{~F} \quad[* 493] \quad \mathrm{D}\) I F}

Terentialımais au fond, quelles meilleures leçons pourrois.je lui 1e hod. donncr, on trouverai-je micux ?" It was a coinmon afertion of Diderot's, that between hin and his dog "il n'y avoit de difference que habit." In ustering this fentiment, he refembled not Pope's Indian with untutored inind,
" Who thinks, admitted to that equal fky,
"His faithful clog thall bear him cumpany."
The Indian hopes to carry his dog with him to heaven; but Diderut hoped to dic like a dog, and to be as if he had never heen.

DIFFERENTIAL mETHOD, is the art of working with the differenees of quantities. By this method any term of a feries nay be found from the feveral orders of differences being given; or vice verfa, any difference may be found from having the terms of the feries given: it likewife fhews how to fuld the fum of fueh a feries. And it gives rules to find by interpolation any intermediate term, which is not expreffed in the feries, by laving its place or pofition given.

When any feries of quantities is propofed, take the firf term from the feeond, the fecond from the third, the third from the fourth, \&c. then all thefe remainders make a new feries, ealled the fir \(\mathcal{l}\) order of diferences. In this new feries take the firft term from the fecond, the feeond from the third, the third from the fourth, \&c. as befure; and thefe remainders make another feries, called the fecond order of differences. In like manner, in this feries, take the firt term from the fecond, the fecond from the third, \&e.; and thefe will make a feries called the third order of differences; and after this manner you may proceed as far as you will. Thus in the following propofition \(\mathrm{A}, b, c, d, c, \& c\). is the feries; \(\mathrm{B}, \mathrm{B}^{2}, \mathrm{Ba}_{3}, \mathrm{~B}^{4}\), \&c. the firft order of diferences; C , \(\mathrm{C}^{2}, \mathrm{C}^{3}\), \&e. the fecond order of differences; \(\mathrm{D}, \mathrm{D}^{2}\), \&e. the third order; E, \&c. the fourth order, and fo on. But the firft terms of thefe feveral orders of differences, as \(B, C, D, E, \& c\). àre thofe that are prineipally made ufe of in ealculations by this method.
\(P_{\text {ROp. I. I. If there be any feries, }} A, b, c, d, c, \& c\). and if there be taken the firtt differences \(B, B^{2}, B^{3}, \& c\). the feeond differences \(\mathrm{C}, \mathrm{C}^{2}, \mathrm{C}^{3}, \& \mathrm{c}\). the third differences \(\mathrm{D}, \mathrm{D}^{2}, \mathrm{D}\), \&c. and fo on.

Then if T ftand for the fint term of the \(n\)th differences, \(\pm \mathrm{T}=\mathrm{A}-n b+n \times \frac{n-1}{2} c-n \times \frac{n-1}{2}\) \(\times \frac{n-2}{3} d+n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} e-\& \mathrm{c}\). that is, +T , when \(n\) is even, and -T when \(n\) is odd.

The feveral orders of differenees being taken as before direced, will fland thus. Then,

feries A , b , \({ }^{c}, d,{ }^{c}, \& c\). If diff. \(b-A, c-b, d^{\prime}-c, e-d, \& c\). 2d diff. \(c-2 b+\mathrm{A}, d-2 c+b, e-2 d+c\), \(\& \mathrm{c}\). 3 d diff. \(\quad d-3 c+3 b-A, e-3 d+3 c-b\), \&c.

That is, \(\mathrm{B}=b-\mathrm{A}, \mathrm{C}=c-2 b+\mathrm{A}, \mathrm{D}=d-3 c+36\) Difirerential \(-\mathrm{A}, \mathrm{E}=e-4 d+6 c-4 b+\mathrm{A}, \& \mathrm{c}\). or \(-13=\mathrm{A}-b\), \(+\mathrm{C}=\mathrm{A}-2 b+c,-\mathrm{D}=\mathrm{A}-3 b+3 c-d_{0}+\mathrm{E}=\mathrm{A}\) \(-4 b+6 c-4 d+c\), \(k e\). where, putting ' T fuceedhively equal to \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \& \in \mathrm{c}\). and \(n=\mathrm{I}, 2,3,4\), \&c. the prop. will be evident.

Cor. Hence
\(\mathrm{A}=\mathrm{A}\), the firt term.
\(\mathrm{B}=-\mathrm{A}+b\), the firlt difference.
\(\mathrm{C}=\mathrm{A}-2 b+c\), the 2 d difference.
\(\mathrm{D}=-\mathrm{A}+3^{b}-3 \mathrm{c}+d\), the 3 d difference.
\(E=A-4 b+6 c-4 d+e\), the \(4^{\text {th }}\) difference.
\(\mathrm{F}=-\mathrm{A}+5^{b-10 c+10 d-5^{e}+f, \text { the } s^{\text {th }} \text { difference, }}\) \&c.
Prop. II. If \(\mathrm{A}, b, c, d, c, \& c\). be any feries, \(\mathrm{a}^{\text {nd }}\) there be taken \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\), \& \& . the firt of the fever \({ }^{\text {al }}\) orders of differences;

Then, the \(n\)th term of the feries will be \(=A\)
\(+\frac{n-1}{1} \mathrm{~B}+\frac{n-1}{1} \times \frac{n-2}{2} \mathrm{C}+\frac{n-1}{1} \times \frac{n-2}{2} \times \frac{n--3}{3}\)
\(\mathrm{D}+\frac{n-1}{1} \times \frac{n-2}{2} \times \frac{n-3}{3} \times \frac{n-4}{4} \mathrm{E}+\), 8ce.
For from the equations in the laft Prop. viz \(B=6\) \(-A, C=c-2 b+A, \& c\). we have, by tranfpofing, \(b=A+B=-A+2 b+C=-A+2 A+2 B+C\) (expunging b) ; that is,
\(c=\mathrm{A}+2 \mathrm{~B}+\mathrm{C}, d=\mathrm{A}-3^{b}+3 c+\mathrm{D}=\mathrm{A}-3 \mathrm{~A}-3 \mathrm{~B}\)
\(+3 A+6 B+3 C+D\) (expunging \(b\) and \(c\)); that is,
\(d=\mathrm{A}+3 \mathrm{~B}+3 \mathrm{C}+\mathrm{D}\). Alfo \(e=-\mathrm{A}+4 b \cdots 6 c+4 d\)
\(+\mathrm{E}=\) (expunging \(l, c, d)-\mathrm{A}+4 \mathrm{~A}+4 \mathrm{~B}-6 \mathrm{~A}\)
\(-12 B-6 C+4 A+12 B+12 C+4 D+E\); that is, \(e=\mathrm{A}+{ }_{4} \mathrm{~B}+5 \mathrm{C}+4 \mathrm{D}+\mathrm{E}, \dot{2} \mathrm{c}\).

Then putting \(\mathrm{A}, b, c, d\), \&c. for the \(n\)th term, and \(n\) fucceffively \(=1,2,3,4\), '\&c. the feries will be evident.
Cor. I. If \(d^{\prime \prime}, d^{\prime \prime}, d^{\prime \prime \prime}\), \&ec. be the firit of the fitf, fe. cond, third order, \&c. of differences; then
The \(n\)th term of the feries \(A, b, c, d, \& c\). will be
\(=\mathrm{A}+\frac{n-1}{1} d+\frac{n-1}{1} \times \frac{n-2}{2} d^{\prime \prime}+\frac{n-1}{1} \times \frac{n-2}{2}\)
\(\times \frac{n-3}{3} d^{\prime \prime}+\frac{n-1}{1} \times \frac{n-2}{2} \times \frac{n-3}{3} \times \frac{n-4}{4} d t^{\prime \prime}+\) \&ce.

For \(\mathrm{B}=d^{\prime \prime}, \mathrm{C}=d^{\prime \prime}, \mathrm{D}=d^{\prime \prime \prime}\), \&cc. And the co. effieients are the uncix of the \(n\) - Ith power.

Cor. 2. Hence alfo it follows, that any term of a given feries may be aceurately determined, if the diffe-
renees of any order happen at laft to be equal.
Cor. 3. Hence
\(A=A\), the firt term.
\(l=A+B\), the \(2 d\) term.
\(c=A+2 B+C\), the 3 d term.
\(d=A+3 B+3 C+D\), the \(4^{\text {th }}\) term.
\(e=A+4 B+6 C+4 D+E\), the 5 th term.
\(f=A+5 B+10 C+10 D+5 E+F\), the 6 th term.
\(g=\mathrm{A}+6 \mathrm{~B}+15 \mathrm{C}+20 \mathrm{D}+15 \mathrm{E}-6 \mathrm{~F}+\mathrm{G}\), the 7 th term, \&c.
Trop. III. If \(a, b, c, d, e, \& c\). be any feries, and \(d^{\prime}\) \(d^{\prime \prime}, d^{\prime \prime \prime}, \& \mathrm{cc}\). the firt of the feveral ordcrs of differences; then

The fum of \(n\) terms of the feries is \(=n a+n\)
\(\times \frac{n-1}{2} d^{\prime}+n \times \frac{n-1}{2} \times \frac{n-2}{3} d+n x^{n-1} \frac{n-2}{3} \times\)

> D A I
> Diffraction
> thires.
> For in the feries of quantities,

Therefore (by Cor. 1. Prop. II.) the \(\overline{n+1}\) th term of the feries, \(o, a, a+b, a+b+c, a+b+c+d\), \& c. or the \(\overline{\text { wh }}\) th term of the feries, \(a, a+b, a+b+c, a+b+c\) \(+d\), s.c. is \(=0+n a+n \times \frac{n-1}{2} d+n \times \frac{n-1}{2}\) \(x^{n--2} d^{n \prime}+\& c\). . But the \(n\)th term of the feries \(a\), \(a+b, a+b+c, \& c\). is the fum of \(n\) terms of the feries. \(a, b, c, d\), \&c. and therefore equal to \(n a+n X\) \(\frac{n-1}{2} d+n \times \frac{n-1}{2} \times \frac{n-2}{3} d^{\prime}+8 \mathrm{c}\).

For a fuller account of this method, and its application to curves, we refer the reader to Emerfon's works, from which thefe three propofitions are taken.
DIFFRACTION, a term firt ufed by Grimaldi, to denote that property of the rays of light which others have called inflection; the difcovery of which is sttributed by fome to Grimaldi, and by others 'to Dr Hook.

DIMINUTION, in mufic, is the abating forsething of the full value or quantity of any note.

DIOPHANTUS, a celebrated mathematician of Alexandria, has been reputed to be the inventur of algebra; at leaft his is the earliet work extant on that fcience. It is not certain when Diophantus lived. Some have placed him before Chritt, and fome after, in the reigns of Nero and the Antonines; but all with equal uncertainty. It feems he is the fame Diophantus who wrote the Canon Aftronomicus, which Suidas \(f_{a y s}\) was commented on b \(\because\) the celebrated Hypatia, daughter of Theon of Alexandria. His reputation muft have been very high among the ancieuts, fince they ranked him with Pythagoras and Euclid in mathematical learning. Bachet, in his notes upon the 5 th book De Arithmeticis, has collected, from Diophantus's epitaph in the Anthologia, the following circumftances of his life; namely, that he was married when he was 33 years old, and had a fon born five years after; that this fon died when he was \(: 2\) years of age, and that his father did not furvive him above four years; from which it appears that Diophantus was 84 years old when he died.

Diopter, or Dioftra, the fame with the index or albidade of an aftrolabe, or other fuch inftrument.

Dioptra was an inftrument invented by Hipparchus, which ferved for feveral ufes; as, to level water courfes; to take the height of towers, or places at a diftance; to determine the places, magnitudes, and diftances of the planets, \&c.

DIRECT, in arithmetic, is when the proportion of any terms. or quantities, is in the natural or direct order in which they fland; being the oppofite to inverfe, which confiders the proportion in the inverted order of the terms. So, \(3: 4: 6: 8\) directly ; or \(3: 4:: 8: 6\) inverfely.

DIRECTION, in attronomy, the mution and uther Direction phenomena of a planet when direct.

Dinectics, in aftrology, is a kind of calculus, by which they pretend to find the time in which any not. able accident thall befal the perfon whofe horofeope is drawn.

DISCRETE Quantity, is fuch as is not continued and joined together. Such, for inftance, is any number.

DITTON (Humphry), an cminent mathematician, was born at Saliflury, May 29. 1675 . Being an only fon, and his father obferving in him an extraordinary good capacity, determined to cultivate it with a good education. For this purpofe he placed him in a reputable private academy; upon quitting of which he, at the defire of his father, though againt his own inclination, engaged in the profeffion of divinity, and began to exercife his function at Tunbridge in the county of Kent, where he continued to preach fome years; during which time he anarried a lady of that place.

But a weak conftitution, and the deatlo of his father, induced Mr Diteon to quit that profeffion. And at the perfuafion of Dr Harris and Mr Whifton, both eminent mathematicians, he engaged in the fudy of mathematics; a fcience to which he had always a ftrong inclination. In the profecution of this fcience he was much encouraged by the fuccefs and applaufe he reccived: being greatly efteemed by the chief profeflors of it, and particularly by Sir Ifaac Newton, by whofe intereft and recommendation he was elected mafter of the new mathematical fchool in Chrift's Hofpital ; where he continued till his death, which happened in 1715, in the 40th year of his age, much regretted by the plilofophical world, who expected many ufeful and ingenious difcoreries from his affiduity, learning, and pene. trating genius.

Mr Ditton publihed feveral mathematical and other tracts, as below.-I. Of the Tangents of Curve:, \&c. Phulof. Tranf. vol. zz.
2. ATreatife on Spherical Catoptrics, publifhed in the Philof. Tranf. for 1705 ; from whence it was copied and reprinted in the Acta Eruditorem 1707, and alfo in the Memoirs of the Academy of Sciences at Paris.
2. General Laws of Nature and Motion, 8vo, 1505. Wolfus mentions this work, and fays that it illuftrates and renders eafy the writings of Galileo, Huygens, and the Principia of Newton. It is alfo noticed by La Roche, in the Memoires de Literature, vol. viii. P. 46.
4. An Inflitution of Fluxions, containing the firf Principles, Operations, and Applications, of that admirable Method, as invented by Sir Ifaac Newton, 8vo, i 706. This work, with additions and alterations, was again publifhed by Mr John Clarke, in the year 1728.
5. In 1709 he publifhed the Synopfi Algehraica of John Alexander, with many additions and corrections.
6. His Treatife on Perfpective was publihed in 1712. In this work he explained the principles of that art mathematically; and befides teaching the meth cds then generally practifed, gave the firft hints of the new method afterwads enlarged upon and improved by Dr Brook Taylor; and which was publifhed in the jear 1715.
7. In 1714, Mr Ditton publifhed feveral pieces hoth theological and mathematical; particularly his Difcourfe on the Refurrcetion of Jefus Chrift ; and The New Law of Fluids, or a Difcourfe concerning the \(\Lambda\) feent of Liquids, in exact Geometrical Figures, between two nearly contiguous Surfaces. To this was annexed a trach, to demonftrate the impoffibility of thinking or perception being the refult of any combination of the parts of matter and motion : a fubject much agitated about that time. To this work alfo was added an advertifement from him and Mr Whifton, concerning a method for difcovering the longitude, which it feems they had publifhed about half a year before. This at. tempt probably coft our author his life; for although it was approved and countenanced by Sir Ifaac Newton, before it was prefented to the Board of Longitude, and the method has been fuccefffully put in practice, in finding the longitude between Paris and Vienna; yet that board then determined againft it: fo that the difappointment, together with fome public ridicule (particularly in a poem written by Dean Swift), affected his lealth fo that he died the enfuing year, 1715 .

In an account of Mr Ditton, prefixed to the German tranflation of his Difcourfe on the Refurrection, it is faid that he had publifhed, in his own name only, another method for finding the longitude; but which Mr Whifton denied. However, Raphael Levi, a learned Jew, who had ftudied under Leibnitz, informed the German editor, that he well knew that Ditton and Leibnitz had correfponded upon the fubject; and that Ditton had fent to Leibnitz a delineation of a machine he lad invented for that purpofe; which was a piece of mechanifm conftructed with many wheels like a clock, and which Leibnitz highly approved of for land ufe; hut doubted whether it would anfwer on thip-board, on account of the motion of the fhip.

DIVING-Belz has been already defcribed in the Encycloparlia; but in that work was given no account of its antiquity or its invention. In the works of Ariflotle we read of a kind of kettle ufed by divers to enable them to remain for fome time under water; but the manner in which thofe kettles were employed is not clearly defcribed. "The oldeft information (fays Profeffor Beckmann) which we have of the ufe of the diving bell in Europe, is that of John Taifnier, who was horn at Hainault in 1509, had a place at court under Charles V. whom he attended on his voyage to Africa. He relates in what manner he faw at Toledo, in the prefence of the emperor and feveral thoufand fpectators, two Greeks let themfelves down under water, in a large inverted kettle, with a burning light, and rife up again without being wet. It appears that this art was then new to the emperor and the Spaniards, and that the Gieteks were canfed to make the experiment in order to prove the poffibility of it."

When the Englifh, in 1588, difperfed the Spanifh fleet, called the Invincible Armada, part of the fhips went to the bottom, near the ine of Mull, on the weftern coaft of Scotland; and fome of thefe, according to the account of the Spanifh prifoners, contained great riches. This information excited, from time to time, the avarice of fpeculators, and gave rife to feveral attempts to procure part of the lof treafure. In the year 1665 , a perfon was fo fortunate as to bring up some cannon, which, however, were not fufficient to
defray the expences. Of thefe attempts, and the kind of diving bell ufed in them, the reader will find an acconnt in a work printed at Rotterdan in 1669, and entitled G. Sinclari Ars zova et magna gravitatis et le- vitatis. In the year 1680, Willian Pllipps, a native of A merica, fornied a project for fearchins and unload. ing a rich Spanifh fhip funk on the coall of Hifpaniola; and reprefented his plan in fuch a plaufible manner, that King Charles II. gave him a fhip, and furnifhed him with every thing necuffary for the undertaking. He fet fail in the year 1683 ; but being unfuccefsful, returned again in great poverty, though with a firm conviction of the poffibility of his feheme. By a fubfeription promoted cliefly by the Duke of Albemarle, the fon of the celebrated Monk, Phipps was enabled, in 1687, to try his fortune once more, having previouly engaged to divide the profit according to the twenty fhares of which the fulficription confilted. At firft all his labour proved fruitlefs; but at lait, when his patience was almof entirely exlaufted, he was fo lucky as to bring up, from the depth of fix or feven fathoms, fo much treafure that he returned to England with the value of two hundred thoufand pounds ferling. Of this fum he himfelf got about fixteen, others fay twen. ty thoufand, and the duke ninety thoufand pounds. After he came back, fome perfons endeavoured to perfuade the king to feize both the fhip and the cargo, under a pretence that Phipps, when he folicited for his majefty's permiffion, had not given accurate information refpecting the bufinefs. But the king anfivered, with much greatnefs of mind, that he knew Phipps to be an honeft man, and that he and his friends fhould fhare the whole among them had he returned with double the value. His majefty even conferred upon him the ho: nour of knighthood. to fhew how mucli he was fatisfied with his conduct. We know not the conftruction of Phipps's apparatus: but of the old figures of a diving. machine, that which approaches nearett to the diving. bell is in a book on fortification by Lorini; who defcribes a fquare box bound round with iron, which is funifhed with windows, and has a flool affixed to it for the diver. This ingenious contrivance appears, however, to be older than that Italian; at leaf he does not pretend to be the inventor of it.

In the year \(161 \%\), Francis Kefsler gave a defeription of his water-armour, intended alfo for diving, but which cannot really be ufed for that purpofe. In the year 1671 , Witfen taught, in a better manner than any of his predeceflors, the conftruaion and ufe of the diving. bell; but he is much miftaken when he fays that it was invented at Amflerdam. In 1679 appeared, for the firlt time, Borelli's well known work de mortis animalium; in which he not only defcribed the divingbell, but alfo propofed another, the inlpracticatility of which was hewn by James Bernoulli. Whon Sturm publifhed his Collegiunn curiofum in 1678, he propofed fome hints for the improvement of this machine, on which remarks were made in the Journal des fcavans. To him fucceeded Dr Halley, whofe bell is well known.

DODECATEMORY, the 12 houfes or parts of the zodiac of the primum mobile. Alfo the 12 figns of the zodiac are fometimes io called, becaufe they contain each the 52 th part of the zodiac.

DOME. Sec Arch in this Supplement.
DOMINGO,

\section*{D O N \([496] \quad \mathrm{D} R \mathrm{R}\)}

Damingo, DOMINGO, or St Domingo. See Hispaniolia, Don. both in Encycl. and in this Supplement.

DON Martin de Mayorga, the name given by the Spaniards to a clufter of "iflands in the South Sea, difcovered on the 27 th of February 178 r by Don \(F\). A. Maurelle, a celebrated pilot of that nation.

Thofe iflands are deferibed by him as abounding with tropical fruits and roots, as highly cultivated, and as inhabited by a people confiderably polifhed. The fertility of the land, fays he, is fuch, that its cultivation caunot fail to promife a favourable harvelt. Every where are feen an endlefs number of cocoa-nut trees, beautiful banana trees ranged in lines with the greateft order, and numerous plantations of potatoes, of which he defcribes fome as fifteen feet in length, and of the thicknefs of a man's thigh. He admired the order with which every thing was difpufed. No weeds were fuffered to grow between the plants; and their roads were kept in repair with a diligence deferving imitation by the moft civilized nations.

Their government appears from his account to be defpotic. The fovereign, who is called the Tubou, is leld in the highelt veneration by his fubjects, whofe ljves and properties are at his difpofal. Under him there is an order of nobles called Equis, who, though they firink into inflanificance in the prefence of the Tulou, have great anthority over the people. Thefe people are faid by Maurelle to be of great mufcular ferength and large fature, the ordinary height of the men being fix feet or fix feet four inches, while many of them are much taller. It would appear, too, that they delight in gymnaftic exercifes; for when the \(\mathcal{T} u\) bou, by whom he had been treated with great hofpita. lity, wifhed to amufe him and his Mip's company, he extibited to them feats of wrefting and boxing, and that as well by the women as by the men.

Though thefe people put the greatell confidence in the Spaniards, and frequently faid whole nights on board the frigate, they had yet the common inclination of favarges to fteal. "Every time they came on board (fays our author), clothes, iron-work, whatever fell in their way, they confidered as lawful prize. They drew out through the port-holes, or the windows, whatever was within their reach. They thieved even to the very chain of the rudder. I made my complaints to the lsing; he gave me permifion to kill whomfoever I fhould detect in the act; and I was affured he had himfelf difcovered and punifhed with death the authors of the complained of theft. Our vigilance was neceffarily called into action; we furprifed the illanders ftriving to tear away the new rudder chains; we fired a piftol at them, one of them fell dead on the occalion, and this was an awful leffon for thofe who were either on board or alongfide of the frigate ; they faid to themfelves, or to one another, chito (robber) fama (death)."

They make of the bark of trees a kind of eloth net unlike that which has been brought from other iflands in the South Sea; and our author defcribes the women as being feculiarly neat both in their drefs and in their perfons. They had their mantles or loofe garments adjufted in neat plaits and folds, and becomingly attached by a knot over the left choulder. They wore garlands or wreaths on the head, and chaplets of large glafs beads round their necks; the hair was pleafingly difpofed in trefles, and the whole perfun perfumed with
an oil of an agreeable odour; ahove all, the Min was fo exquifitely clean, that they would not have fuffered the fmalleft particle of duft to remain upon it a moment.

In this archipelago Don Maurelle found a fafe harbour, to which he gave the name of El Refugio; and which he places in Soutl Lat. 18.36'. and W. Lou. \(177^{\circ} \cdot 47^{\prime} \cdot 45^{\prime \prime}\). of Greenwich.

DRACOENA Draco (fee Dracoena, Encycl.), is a native of Madcira, though it is there becoming farce. The following account of it is by La Martiniere, naturalift in the laft voyage of difcovery by La Peroufe. "The idea of the dracona draco (fays he) given by the 隹aby fpecimens cultivated in our hot-houfes, is far inferior to that we entertain of it when we have an opportunity of feeing it in its native foil. I met with three in particular, of which the trunk was fix or feven feet high, and four and a half, or fee in diameter. The principal branches, 12 or 15 in number, and as thick as a man's body, shoot out a little obliquely, dividing themfelves generally into two, and now and then into three, to the height of 40 or 50 feet, including the feven feet of the trunk. The leaves are all at the extremity of the branches, where they are placed in alternate order, and form a clutter. This tree prefents the anofl perfect regularity to the eye, and tempts the fpectator to think that the moft תkilful gardener makes it the object of his daily care."

DRAINS. Under this word in the Encyclopzdia we publifhed Mr Bayley of Hope's method of draining land; and by a letter from the author, we have fince learned, that experience, the beft guide, has fully proved the ufefuluefe and durability of his drains. With a candour, however, worthy of a man who writes not for fame, but for the good of the public, he informs us of a mittake into which he had led us; and requefts us to correct it in this Supplement.
"I wifh (fays he) that, in the Supplement to the Encyclopredia, due notice may be taken of a very great error into which I was led in iny fcheme of making the main drains. I conjectured, that where the bottom of the trench was of a hard or falid body, as clay or marl, it might not be neceffary to lay it with bricks or ftones; but in this I was quite wrong. By the runs of water, the alternate changes from wet to dry, and the acceis of air, thefe hard bottoms have been rendered friable; they have crumbled away, and let in all ny drains which were not fupported by a button laid with brick ur flone." For this information we requelt the anthor to accept of our thanks, and we are perfluaded we may add the thanks of the public.

As the draining of land is a matter of great importance in agriculture, and as the fubject has been aggain brought before us, we imagine that our agricultural readers will be glad to find liere the fubitance of a paper on this fubject, for which the author received the filver medal of the Society inftituted for the encouragement of Arts, Manufactures, and Commerce. That au. thur is Mr John Wedge of Bickenhill, near Coventry, who is not only a great farmer himfelf, but had likewife been employed by the Earl of Alesford in the ma. nagement of feveral eftates. Encouraged by his lordMip's liberality, Mr Wedge informs the fociety, that he had been employed for fume years in draining large purtions of land, of which part was in the Earl's occupation, and part in his own, as tenant to his lord/hip.

\section*{DR A [497] DR A}
\(\qquad\) -
\(\qquad\)
\(\qquad\)
\(\qquad\)
 ,

\(\qquad\)
\(\qquad\)
\(\qquad\) F

\(\qquad\)
\(\qquad\)

\(\qquad\)

Drains, thereof, and fuund the bog to be what has been deferibed under the firf clafs. He therefore determined to attempt the cure in the manner before preferibed for that clafs, namely, to cut through the whole of the itratum (in this inftance, of quick-fand), through which he found the water pafs. This he effected as follows: The funmer being dry, and favourable for the purpole, and having previoutly made his main open drain, he began his main clufe drain the firt week in June 1791, three feet wide, on the declivity near the edge of the great bog. In the firft operation he dug through the peat, the hard fand, and gravel, and one fpade's graft (about nine inches deep, and feven inches wide) into the quickfand the whole length of this drain, which was 73 perches, of eight yards to the perch, in length. The drain thus dug ran copioufly, not lefs than 60 gallons per minute. In this ftate he left it about nine days: the effect of it was rapid, both ahove the drain and on the bog helow. Upon examination, he now found about three inches on the top of the fpade's graft, which had been made into the quick-fand perfectly dry. He then dur out thefe three inches of dry fand, to nearly the whole width of the drain, three feet; and at the fame time dug out, as before, another fpade's graft from the top of the quick-fand, as near the middle of the drain as poffible. This was left to run a few days, as before, and had the fame effect, namely, three or four inches more of the top of the quick-fand became dry and hard. The fane operation was repeated again and again with the fame effect, till the purpofe of getting through this quick-fand was completed, fo far at leaft as the level of the main open drain would permit. The ftrean of water continued increafing during the whole operation ; the bog below the drain was quite dry, and the land above perfectly fo. The drain which was firlt made, and continued running for fome time during the progrefs of the main clofe drain, became gradually dry; and has not, lince that drain was finifhed, difcharged one fingle drop of water. Great care was neceffary, in making the main clofe drain, to keep the ftream of water in the middle of it, otherwife the current would have undermined the fides, as it fometimes had done, and caufed them to fall in. For this reafon it was neceffary, when the dry fand was taken from the top of the quick-fand, immediately to take out a fuade's graft from the middle thereof, in order to divert the current from the fides.

The main clofe drain thus made was three feet wide at top, about nine feet deep on the average, and, bevelling a little from the top, it was about one foot ten inches wide at the bottom. The ftone and other materials were put into this drain in the following manner:

Where the drain went through the quick fand into the fratum of clay helow it, as in mont places it did, the bottom, and in fume inftances the frdes, wanted no particular fecurity (A) ; but where it did not go quite through the quick fand, which the level of his main open drain in fome places would not admit, the bottom of the drain was covered half an inch thiek with ling; then peat-turfs, one foot wide and three or four inches thick, were cut in convenient leugths, and placed on
their edges on each fide of the bottom of the drain, forming two dides of a trough of peat ; then fide ftones about eight inches high, and a ftone coverer, were put in upon the ling between the peat turfs; a large peatturf, near two feet wide and four inches thick, was then cut and firmly placed over the whole: this left in the bottom of the drain an open face, of more than fix inches fquare, for the water to pals. The whole was then completed by filling in the upper part of the drain.

In this way the author drained, for about L. So, thirty acres of land, which, from being of no value whatever, became worth at leaft 14 hillings per acre of yearly rent. He likewife hollow-drained nime acres by the method preferibed for the third clafs of wet land. Thefe diains were made a few yards below that part of each field where the dry and wet land feparate, about 22 inches deep, with fides and a coverer of Itone, and ling on the top of it, to keep the earth from running in. The length of thefe drains was 880 yards, and the expence of labour and materials three halfpence per yard. The drains, in wet weather, difeharge a large quantity of water ; and will, he has no doubt, anfwer the intended purpofe. Thus far relates to land in his own occupation.

Nine acres of the land in the earl of Aylesford's occu. pation was almof an entire pulp. This bog was of the fecond clafs, namely, water pafing through a quickfand, and confined by a ftratum of clay below, and another fratum of clay above it. The water thus confined, being prefled by its fountain, and forced up thro" the weakelt parts of the clay, had formed a bog of ir. regular thicknefs on the furface, in fome places lix feet deep, in others not more than two. As there is a cunfiderable fall in this land from eaft to welt, he thought it expedient to put two drains into it ; and this appears to him to have been neceflary, from a confideration that both thefe drains continue to run in the fame proportions as when firlt opened. The manner in which thefe drains were executed was, by digging through the different upper ttrata, and as deep into the clay as the main open drain would admit; then digging or boring through the remaining part of that clay into the quickfand, at the diftance of about fix yards in a progreflive manner.

The water rifing rapidly through thefe holes into the clofe drains, has effected a complete cure of this land, every part of which will now bear a horfe to gallop upon it. Thefe drains difcharge 3660 gallons an hour; which is much lefs than they did at firt, as muft be the cafe in all bogs. This and will be worth twenty finilings per acre. The drainiag coft twenty-five pounds ; and the length of the under-ground drains is cight hundred and fourteen yards.

Mr Wedge had juit finifhed (January 1792) draining another piece of land, about forty-three acres. As this was intended to anfwer two purpofes, one, to drain the land, the other, to give an additional fupply of water to a mill-pool, and as a circumftance arofe in the execution of the work which frequently happens in draining land, namely, a fudden alteration in the po-
(A) He will probably find in time that he was under the fame miftake with Mr Bayley, and we hope that with Mr Bayley's candour he will acknowledge it.

Drains, fition of the under ftrata-a defeription thercof will (as quoted by Withering, in his Arrangement of Rrinot, we hope, be thought tedious. This draining was
tifl Plants,) inentions the effects of this fimgular plant,
begun at the level of a mill-pool, and continued, without any great difficulty, to the diftance of about thirtytwo chains, in the manner before deferibed as a cure for the fecond clafs of boggy land: but at or near that place the under ftrata altered their pufition; the quickfand which conveyed the water nuw became of twice its former thicknefs ; and the clay, which had hitherto been above that quick fand, for fome diftance difappeared. From the quick-fand thus becoming ro much deeper, he could not, with the level of the mill-pool, cut through it; nor indeed, from the wetnefs of the feafon, would fuch an operation have been proper. He therefore continued a fhallow drain to fome diftance, making fide-lules into the quick-fand, whichran freely; but as this could not cure the whole of the bog below, he brauched out another drain (which was made by the method defaibed for curing the fecund clafs of wet or boggy land), by finking a clofe drain through the up. per ftrata into the upper clay, and then, at a fmall diftance on one fide of this clufe drain, boring a hole with an anger through the remaining part of that clay into the quick fand; and at every eight yards, as this chofe drain advanced, fill boring other holes, in the manner before deferibed: through many of thele hules the water rufhed with great rapidity. The water difcharged by thefe drains into the mill-pool is 168 gallons per minute, or \(3780 \log\) fhearls in a day; which is after the rate of \(1,379,700\) hogheads in a year.

Ahout fix acres of this land were always found ; about twelve acres on the north fide were an abfolute prlp, and the remaining twenty fix acres very unfound. The whole is now found, and will, when cultivated, be worth fixteen 免illings per acre. This land would have heen drained at a much lefs expence into the main open drain; but then the water, which was much wanted for the mill, would have been loft. Thefe clufe drains are in lengtl \(145^{2}\) yards, and coft L. 1 co, of which about L. 30 ought to be clarged to the mill.

Important as this fubject is, we muft not enlarge this article, or we thould make large extracts from Dr Anderfon's Pradical Treatife on Draining Bugs and Swamty Grounds, lately publimed. It is proper, however, to inform the public, that the author puts in his claim for being the firt difcoverer of that mode of draining for which Mr ELKington las obtained from Parliament a premium of I . \(10=0\); and the reader who fhall turn to the amicle Dratns in the Encyclopædia, will perceive that his claim is well-founded.

DROSSERA Anglicana, or the Sundew (fee Drossera, Encycl.), is a very minute villous plant, ufually growing entangled with mufs on peat bogs; the leaves are curioufly fringed with numerous frong reddifh hairs, terminated by fmall pellucid globules of vifcous liquor, which occafion, by the reflection of the fun, thet peculiar luftre from which its name is derived. It is in thefe hairs that thefe effential properties of the plant refide; for if a fmall infect fhould fix itfelf on one of the leaves, thefe hairs immediately begin to clofe, one by one, till the infect is wholly environed by them, and then the leaf in which it is imprifoned gradually bends inwards, fo as to reach the hafe : in this flate the infect is killed by the operation of the acrimonious juice exuding from the ends of the hairs. Rothius
oecafioned by the irritation of an ant, which he placed on the ceutre of one of the leaves with a pair of pincers. The ant, in endeavouring to efcape, was held faft by the vifcous juice of the finaller hairs till the large ones, tugether with the edges of the leaf, clufed in and imprifoned it. The ant died in fifteen minutes; but he obferves, that the cffects folluwed fooner or later, in dif. ferent experiments, according to the flate of the weather. Dr Whithering has publifined a limilar accomet of the fenfitive properties of the fundew, which was com. municated to him by two of his botanical friends, and which he has made very entertaining and interefting. The fame thing is confirmed by a writer in the Month. ly Magazine for Augult 1797; who fays, that whenever he made experiments on the droffera with anty and other diminutive infects, he commonly found them jerifl in a fhorter time than fifteen minutes. His experiments were made on the droffera rotundifulia. Ruthius, however, obferves, that the longifolia prodaces the fame effeets, but with greater rapidity. In concluding his account, Dr Withering fuggets this enquiry, "Whether this deflruction of infects be not neceflary to the welfare of the plant ?" And it is furely worth fome butanift's while to take fome pains to anfiver the queftion.

DRUGS (fee Encycl.) are fo commonly counterfeited, or at leall adulterated, that, in London, the royal college of phyficians, it is well known, has long ago appointed a court of examiners co inveltigate the goodnefs of drugs and medicines in the different che. inits and apothecaries flops. The counterfeit, how. ever, is made up with fuch dexterity, that not only the merchant and drug-uroker, but even the man of tkill, is fometimes deceived; and indeed nothing can detect this impoition but a practical knowledge of chemillry. We threfore recommend it to cvery father of a family to ftudy our Supplementary article Chemsutry with this riew, if with no other; for whatever be the faults of that atricle, we have lult much labour if it be not futh. ciently perfpicuous to enable cevery man, not an abio. lute flranger to pliyfical fcience in all its branches, to detect the common impollures of drug fellers.

DUFTER, in Bengal, an office or department.
Dufter Cana, the piace where the ofice is kept.
DWARFING of vegetables, an art invented by the Chinefe, to which the attention of Sir George Staunton was attracted on the following occafion:

When the embafly was at Chufan (See Chusan in this Supplenent), the gentlemen who went on fhure were introduced to the governor in his hall of audience, where on feveral tables were placed, in frames filled with earth, dwarf pines, oaks, and orange trees, bearing fruit. None of them exceeded in height two feet. Some of thofe dwarfs bore all the marks of decay from age : and upon the furface of the fuil were interfperfed fmall heaps of ftones, which, in proportion to the arijoining dwarfs, might be termed rucks. Thefe were honey-combed and mofs-grown, as if untouched for ages, which ferved to maintain the illulion, and to give an antique appearance to the whole. 'This kind of Aunted vegetation feemed to be much relifhed by the curious in China ; and fpecimens of it were to be found in every confiderable dwelling. To produce them formed a part of the gardener's fkill, and was an art invented \({ }_{3} R_{2}\)

Dxerfing. in that country. Befide the mere merit of overcoming unorron a diffculty, it had that of introducing vegetables into common apartinents, from which their natural fize mult otherwife have excluded them.

The general method of obtaining vegetable dwarfs is faid to he the following: A quantity of clay or mould is applied to the upper part of the trunk of a tree, from wlich a dwarf is intended to be taken, and clofe to its divifion into branches. The mould is to be confined to the fpat by coarfe hempen or cotton cloth, and to be carefully kept moilt by water. In confequence of this application, continued fometimes above a twelvemonth, fmall tender fibres fhoot down like reots from the wood iuto the mould. The part of the trunk emitting thafe new fibres, together with the branch rifing immediately above it, is then to be carefully feparated from the relt of the tree, and planted in new earth, in which the fibres become new roots, while the former branch is now the flem of the vegetable thus transformed in fome meafure. This operation does not deflroy or alter the productive faculty which thofe parts enjoyed before their feparation from their parent root. That which, while a branch of the original tree, bore flowers and fruit, continues to produce the fame, though no longer fupported upon any flock. The terminal buds of fuch branches of trees as are meant to become dwarfs are torn off; which circumftance prevents the further elongation of thofe branches, and forces other buds and branchlets from the fides. Thefe branchlets are bent by wires to

\section*{D Y N A M I C S.}

Definition. \(T\)HIS name marks that department of phyfico-mathematical fcience which contains the abftract doctrine of moving forces; that is, whatever necef. farily refults from the relations of our ideas of motion, and of the immediate caufes of its production and changes.

Objeê \(^{2}\) of dynnamics
change of change of tion of a thing which we call its motion.

All changes of motion are confidered by us as the indications, the claracteriftics, and the meafures of changing caufes. This is a phyfical law of human thought, and therefore a principle to which we may refer, and from which we muft derive all our knowledge of thofe caufes. When we appeal to our own thoughts or feelings, we do not find in ourfelves any difpofition to refer mere exiftence to any caufe, although the beginning of exiftence certainly produces this reference in an inftant. Had we always obferved the univerfe in motion, it docs not appear that we fhould have afcribed it to a canfe, till the obfervation of relative reft, or fomething leading to it, had enabled us to feparate, by abftraction, the notion of matter from that of motion. We might then perceive, that refl is not incompatible with matter ; and we might even ol:ferve, by means of relative motions, that abfolute reft might be produced by the concourfe of equal and oppofite motions. But all this requires reflettion and reafoning; whereas we are now fpeaking of the firf fuggettions of our minds.

We cannot have any notion of motion in abfrailo, without confidering it as a ftate or condition of exiltence, which would remain, if not changed by fome caufe. It is from changes alone, therefore, that we infer any agency in nature; and it is in thefe that we are to find all that we know of their caufes.
whatever form the operator wifhes: and when the ap- Dyeing. pearance of age and decay is meant to be given to a dwarf tree, it is repeatedly fmeared with treacle or molaffes, which attracts multitudes of ants, who, in purfuit of thofe fweet juices, attack the bark, and, by a gradual corrofion of it, produce the defired effect. Thefe different proceffes are fometimes attempted to be kept fecret by the gardeners, and they vary defignedly in the mode of carrying them on; but the principle on which they are founded is fufficiently apparent from what is related herc; and the contrivance argues ingenuity and perfeverance, rather than the practice does true tafte, which confifts in affifting Nature in its moft favourite works-not in counteraeting its operations or diflorting its productions.

DYEING is an art into which, fince the article in the Encycloprodia was publifhed, improvements have been introduced of fuch importance, that it would be unpardonable not to notice them in this Supplement. They ought to be noticed under the prefent title; but, for reafons affigned at the time, we were under the neceffity of poftponing them, in the firf edition, to the title Vegetable, Animal, and Dyeing Substances. We might now reftore the article DyEing to its proper place ; but though we confidently amnounce this as an improved edition, we doubt whether we can, in juftice to the purchafers of the firt edition, alter its arrangement. We therefore fill refer the reader to the article Dyeing Substances.

When we look around us, we cannot but obferve Mechannice that the motions of bodies have, in moft cafes, if not relation, always, fome relation to the fituation, the diflance, and what. the difcriminating qualities of other bodies. The motions of the moon have a palpable relation to the earth; the motions of the tides have as evident a relation to the moon ; the motions of a piece of iron have a palpable dependence on a magnet. The vicinity of the one feems to be the occafion, at leall, of the motions of the other. The caufes of thefe motions have an evident connection with or dependence on the other body. We are even difpofed to imagine, that they are inherent in that body, and that it poffeffes certain qualities which are the caufes of thofe modifications of motion in other bodies. Thefe ferve to diftinguif fome bodies from others, and may therefore be called properties; and, fince the condition of other bodies fo evidently depends on them, thefe properties exprefs very interefting rela. tions of bodies, and are chiefly attended to in the enumeration of the circumflances which afcertain what we call the nature of any thing. We do not mean to fay that thefe inferences are always juft; nay, we know that many of them are ill-founded : but they are real, and they ferve abundantly for informing us what we may expect from any propofed fituation of things. It is enough for us to know, that when a piece of iron is fo and fo fituated in relation to a magnet, it will move in a certain manner.

This mutual relation of bodies is differently confidered, according to the intereft that we chance to take in the phenomenon. The caufe of the approach of the iron to a magnet is generally afcribed to the magnet, whicls
which is faid to attract the iron, becaufe we commonly employ the magnet in order that thefe motions may take place. The fimilar approach of a thone to the carth is afcribed to the flone, and we fay that it tends to the earth. In all probability, the procedure of nature is the fame in both; for they are obferved, in every inflance, to be mutual between the related bodies. As iron approaches a magnet, fo the magnet approaches the iron. The fame thing is obferved in the motions of electrified bodies; alfo in the cafe of the fone and the earth. Therefore the caufe of the motions may be conceived as inherent in either, or in both.
The qualities thus inherent in bodies, conftituting their mechanical relations, have been called the mechanical affections of matter. But they are more commonly named powers or forces; and the event which indicates their prefence, is confidered as the effect and mark of their agency. The magnet is faid to ACt on the iron, the earth is faid to ACt on the flone, and the iron and the ftone are faid to ACr on the magnet and on the earth.

All this is figurative or metaphorical language. All languages have begun with focial union, and have improved along with it. The firft collections of words expreffed the mofl familiar and the molt interefting no. tions. In the procefs of focial improvement, the number of words did not increafe in the fame proportion with the notions that became interefting and familiar in their turn: for it often happened that relations of certain ideas fo much refembled the relations of certain other ideas, that the word exprefling one of them ferved very well for expreffing the other; becaufe the diffinilar circumflances of the two cafes prevented all chance of miftake. Thus we are faid to furmount a difficulty without attaching to the word the notion of getting over a fteep hill. Languages are thus filled with figurative expreffions.

Power, Force, and Action, are words which muft have appeared in the language of the moft fimple people; becaufe the notions of perfonal ability, ftrength, and exertion, are at once the moff familiar and the noof irterefting that can have a place in the human mind. Thefe terms, when ufed in their pure, primitive fenfe, exprefs the notions of the power, 「orce, and action of a fentient, active, being.: Such a being only is an agent. The exertion of his power or force is (exclufively) action: But the relation of caufe and effect fo much refembles in its rcfults the relation between this foree and the work performed, that the fame term may be very intelligibly employed for both. Yerhaps the only cafe of pure unfigurative action is that of the mind on the hody. But as this is always with the defign of producing fome change on exterval bodies, we think only of them; the inftrument or toul is overlooked, and we fay that we act on the external hody. Our real action therefore is but the firf movement in a long train of fucceffive events, and is but the remote caufe of the interefting event. The refemblance to fuch ations is very frong indeed in many cafes of mechanical phenomena. A man throws a ball by the motion of his arm. A fpring impels a ball in the fame manner by unbending. Thefe two events refemble each other in every circumftance but the action of the mind on the corporeal organ-the reft of it is a train of pure mechanifm. In general, becaufe the ultimate refults of the mutual influence of bodies on each other greatly
refemble the ultimate refults of our adtions on bodies, we have not invented appropriated terms, but lave contented ourfelves with thofe already employed for exprefling our own actions, the exertions of our own powers or forces. The relation of phyfical caule and effect is expreffed metaphorically in the words which belong properly to the relation of agent and action. This has been attended by the ufual confequences of poverty of language, namely, ambiguity, and fometimes miftake, both in our reflections (which are generally carried on by mental difcourfe), our reafonings, and our conclufions. It is neceffary to be on our guard againft fuch mitakes; for they frequently amount to the confounding of things totally different. Many philofophers of great reputation, on no better foundation than this metaphorical language, have confounded the relations of activity and of caufation, and even denied that there is any difference; and they have affirmed, that there is the fame invariable relation between the determinations of the will and the inducements that prompt them, as there is between any phyfical power and its effect. Others have maintained, that the firit mover in the mechanical operations, and indeed through the whole train of any complicated event, is a percipient and intending principle in the fame manner as in our actions. According to thefe philofophers, a particle of gravitating matter perceives its relation to every other particle in the univerfe, and determines its own motion according to fixed laws, in exact conformity to its fitu. ation. But the language, and even the actions of all men, fhew that they have a notion of the relation of an agent to the action, eafily diftinguifhable (becaufe all diftinguifh it) from the relation between the phyfical caufe and its effect. The proofs of this fact have been adduced in other parts of the Encycloprdia Britannica, as, for example, in the article Philosophy, \(n^{\circ}\) 42. and in this Supplement in the article Action.

Thefe remarks are not made in this place for any philological purpofe, luch as the mere improvement of lan. guage ; but becaule this metaphorical language has affected the doctrincs of mechanical philofophy, and has produced a difpute about fome of its firtt principles; and becaufe we find that the only way to decide this difpute is to avoid, moft fcrupulounly, all metaphorical language, though at the expence of much circumlocution.

When we fpeak of powers or forces as refiding in a Directions bady, and the effeet as produced by their exertion, the for the fafe body, contidered as poffeffing the powcr, is faid to ACT employ. on the other. A magnet is faid to act on a piece of analugy. iron; a billiard ball in motion is faid to ast on one that is hit by it : but if we attenpt to fix our atten. tion on this action, as diftinct both from the agent and the thing acted on, we fud no object of contem. plation--the exertion or procedure of uature in produ. cing the effect does not come under our view. When we jpeak of the action as diftiset from the agent, we find that it is uot the action, properly fpeaking, but the act, that we fpeak of. In like maumer, the action of a mechanical power can be conceived only int the effect produced.

A man is not faid to ace unlefs he produces fome Agion effect. Thought is the aft of the thinking principle; irylies motion of the linb is the act of the mind on it. In change; mechanics, alfo, there is action only in fo far as there and mere is mechanical cffect produced. I muf aft violently in not antion.
order to begin motion on a flide: I muft exert foree, and this force exerted produces motion. I conceive the production of motion, in all cafes, as the exertion of force; but it requires no exertion to continue the motion along the fide; I am ennfeious of none, therefore I ought to infer that no force is neceffary for the costinuation of any motion. The continuation of motion is not the production of any new effect, but the permaneney of an effect already produced. We in. deed confider motion as the effect of an action; but there would be no effect if the body were not moving. Motion is not the action, but the effect of the action.

Mechanical actions have been ufually claffed under two heads : they are either Pressures or Impulsions. They are generally conlidered as of different kinds; the exertions of different powers. Pressure is fuppofed to differ effentially from Impulse.

Inflead of attempting to define, or dcferibe, thefe two kinds of forces and actions, we fhall juft mention foone intances. This will give us all the knowledge of their diftinctions that we can acquire.
Examples of prettion.

When a ball lies on a table, and I prefs it gently on one fide, it moves toward the other fide of the table. If I follow it with my finger, continuing iny preflure, it aceelerates continually in its motion. In like manner, when I prefs on the handle of a common kitchen jack, the fly legins to more. If I continue to urge or prefs round the handle, the fly accelerates continually, and may be brought into a flate of very rapid motion. Tl.efe motions are the effects of genuine prefure. The lall would be urged along the table in the fane manner, and with a motion continually accelerated, by the unbending of a fpring. Alfo, a fpring eoiled up round the as:is of the handle of the jack would, by uncoiling itfelf, urge round the fly with a motion accelerating in the fame way. The more I refled on the preffure of my finger on the ball, and compare it with the effect of the fpring on it, the more clearly do I fee the perfeet fimilarity; and 1 call thefe infuenecs, exertions, or actions, by one name, pressure, taken from the moolt faniliar inftance of thens.

Again, the very fame motion may be produced in the ball or fy, by puiling the ball or the machine by means of a tliread, to which a weight is fufpended. As hoth are motions accelcraied in the fame manner, I call the influence or action of the thread on the ball or macline by the fame name presisure, and weight is confidered as a prefling power. Indeed I feel the fame compreflion from the real prelfure of a man on my thoulders that I would feel from a load laid on them. But the weight in our example is acting by the intervention of the thread. Dy its preflure, it is pulling at that part of the theead to which it is faftened; this part is pul. ling at the next by means of the force of colefion; and this pulls at a third, and fo on, till the mool remote pulls at the ball or the machine. Thus may elafticity, weight, cohefion, and other forces, perform the office of a genume power; and fince their refult is always a motion beginning from nothing, and accelcrating by perceptible degrees to any velocity, this refemblance makes us call them by one familiar name.

But farther, I fee that if the thread be cut, the weight will fall with an accelerated motion, which I will increafe to any degree, if the fall be great enough. I afcribe this alfo to a preffing power acting on the weight. Nay, after a very little refinement, I confider
this power as the caufe of the body's weight ; which word is but a diftinguifhing name for this particular inftance of preffing power. Gravitation is therefore adked to the lifl of preffures; and, for fimilar reafons, the altractions and repulfions of magnets or electric bodies may be added to the lift; for they produce actual compreflions of bucies placed between them, and they produce motions gradually accelerated, precifely as gravitation does. Therefore all thefe powers may be diftinguihed by this deferiptive name prefures, which, in Atrict language, belongs to one of them only.

Several writers, however, fubdivide this great clafs Graviry, at. into preflions and folicitations. Gravity is a folicita- trations, tion \(a b\) extra, by which a body is urged downward. and repulIn like manner, the furees of magnetifm and electricity, connfidered and a vait variety of other attracions and repulfions, as preficens are called folicitations. We fee little ufe for this dif. tinction, and the term is too like an affection of mind.

Impursion is exhibited when a ball in motion puts Examples another ball into motion by hitting, or (to fpeak meta- of impule phorically) by flriking it. The appearances here are fion. very different. The body that is flruek acquires, in the inflant of impulfe, a fenfible quantity of motion, and fometimes a very rapid motion. This motion is neither accelerated nor retarded after the troke, unlefs it be affected by fome other force. It is alfo remarked, that the rapidity of the motion depends, inter alia, on the previuus velucity of the ftriking body. For iriftance, if a clay ball, moving with any velocity, ftrike another equal bail which is at reft, the fruck hall moves with half the velocity of the other. And it is farther remarkable, that the flriking body always lofes as much notion as the flruck body gains. This univerfal and remarkable fact feems to have given rife to a confufed or indiftinct notion of a fort of transiferce of motion from one budy to another. The phrafeology in general ufe on this fubject expreffes this in the moft precife terms. The one ball is not faid to caule or produce motion in the other, but to communicate mation to it; and the whole phenomenon is called the communication of motion. We call this an indifing nution; for furely Communinow one will fay that he has any elear conception of it. cation of We can form the moft dittinct notion of the communi. motion, net cation of heat, or of the eaufe of heat ; of the communieation of faltnefs, fweetnefs, and a thoufand other thinzs ; but we cannot conceive how part of that identical motion which was formerly in A, is now infufed into B , being given up by A. It is in our attempt to form this notion that we find that motion is not a thing, not a fubftance which ean exift independently, and is fufcept ible of actual transference. It appears in this cafe to be a flate, or condition, or mode of exittence, of which bodies are furceptible, which is producible, or (to fpeak without metaphor) etufable, in bodies, and which is the effect and charaterijlic of certain natural çualities, properties, or powers. We are anxious to have onir redders imprefled with clear and precife notions on this fubject, being confident that fuch, and only fueh, will carry then througb fome intricate paths of mechanical and philofophical refearch.

The remarkable circumitance in this phenomenon is, \({ }_{\text {Isberent }} 10\) that a rapid motion, which requires for the effecting it force is the the action of a preffing power, continued for a fenfible, diftintive and frequently a long time, feems to be effected in an charater ol inftant by impulfion. This has tended much to fup. impulion, port the notion of the actual transference of fomething formerly
furmerly poffeffed exclufively by the friking body, inhering in it, but feparable, and now transtured, into the bady friken. And now room is found for the employment of metaphor, both in thought and language. The priking hody affects the horly which it thus impels: It therefore poffeffes the pozeer of impulion, that is, of communicating motion. It poffefles it only while it is in mntion. This pozver, therefore, is the efficient diltinguifling caufe of its motion, and its only affice mutt be the continuation of this motion. It is therefore ealled the inherent force, the force inherent in a moving body, vis insita corpori moto. This force is transfufed into the body impelled; and therefore the transference is iaftantancous, and the impelled borly eontinues its motion till it is changed by fome other action. All this is at firft fight very plaufble; but a fcrupulous attention to thofe feelings which have given rife to this metapharical conception, hould have proZuced very different notions. I am confcious of exertion in order to begin mution on a flice; but if the ice be very fmooth, I am confcious of no exertion in order to fide along. My power is felt only while I am confeious of exerting it : Thenefure I have no primitive feeling or notion of power while I am fliding along. I am certain that no exertion of power is neceffary here. Nay, I find that I cannot think of my moving forward without effurt otherwife than as a certain mode of my exiftence. Yet we imagine that the partifans of this opinion did really deduce it in fune fhape from their feelings. We muft continue the exertion of walking in order to walk on; our power of walking muft be continually exerted, otherwife we fhall ftup. But this is a very imperfect, incomplete. and carelefs ohfervation. Walking is much more than mere continuance in progreflive motion. It is a continually repeated lifting our body up a finall height, and allowing it to come down again. This renewed afcent requires repeated excrtion.

We lave other obfervations of importance yet to e infiuite- make on this force of moving bodies, but this is not the moft proper occation. Mean while we muft remark, that the intantaneous producion of rapid motion by impuife lais induced the firft mechanicians of Europe to maintain, that the power or force of impulfe is unfufceptible of any comparion with a prefling power. They have afferted, that impulfe is infinitely great when compared with preflure; not recollecting that they hidd them to be things totally difparate, that have no pro. portion more tlan weight and fweetucifs. But thefe grentlemer are perpetually enticed away from their creed by the fimilarity of the ultimate refults of preflure and impulfe. No perion can find any difference between the motion of two balls moving equally fwitt, in the fame direction, une of which is defcending by gravity and the other has derived its motion from a blow. This ftruggle of the mind to manatain its faith, and yet accommodate its doctrines to what we fee, has vecafioned fome other curious forms of expreffion. Preffure is confidered as an effort to produce motion. When a ball lies on a table, its weight, which they call a pozwer, continually and repeated endeavours (mark the metaphorical word and thought) to move the ball down. ward. But thefe efforts are ineffectual. They fay that this ineffectual power is dead, and call it a vis mortua; but the force of impulfion is called a vis viva, a living force. But this is very whimfical and very inaccurate. If the impelling ball falls perpendicularly on the other
lying on the table, it will produce no motion any nore than gravity will; and if the tabie be annilhilited, gravity becones a qis viva.

We mult now add, that in order to prove that im-Arguments pulfe is infinitely greater than preffure, thefe mechanici- inditina ans turn our attention to many faniliar facts which plead and inconfrongly in their favour. A carpenter will drive a nail clufive. into a board with a very moderate hlow of his hammers This will require a preffure which fecms many hundred tines greater than the irpeiling effort of the carpenter. A very moderate blow will fhiver into pieces a diamond which would canry the weight of a mountain. Secing this pradigious fuperiority in the impulfe, how fhat they account for the production of motion by means of preflure? for this motion of the lammer nighth have been acquired liy its falling from a height; nay, it is actually acqui.ed by means of the continued prefliure of the carpenter's arm. 'They confider it as the aggregate of an ininity of fucceding preflures in every inftant of its continuance ; to that the irfignificant fmalloefs of each effort is compenfated by their inconceivable number.

On the whole, we do not think that there is clear No diffeevidence that there are two kinds of mechanical force rence be. effentially diffrent in their nature. It is virtually gi. fion and prefo ven up hy thofe who fay that impulfe is infinitely great-impulfion. er than preflure. Nor is there any confiderable advantage to be obtaised by arranging the phonomenon under thofe two heads. We may perhaps find fome method of explaining fatisfactorily the renarkable difference that is really olfifrved io the two modes of producing motion; namely, the gradual production of motion by acknowledged peeflure, and the infantameows production of it by impulie. Indeed, we thould not have taken up fo much of our reader's attention with this fubject, had it not been for forme inferences that have been made from thefe premifes, which mect us in our very entry on the confideration of frift priaciples, and that are of extertive influence on the whole fcience of mechanical philofophy, and, indeed, on the whole fludy of nature.

Mechanicins are greatly divided in their upinion 1 s impulabout the nature of the fole moving force in Nuture. Con the file Thufe whom we are now feaking of, feem to think caufe of that all motion is produced by preffure: For when they connder impulfe as equivalent to the ageregate of an infinity of repeated preflures, they undoubtedly fup. pufe any preffure, however infignificant, as a moving force. But there is a party, toth numerous and refpectable, who maintain that impulfon is the fale caufe of motion. We fee bodies in mation, fay they, and we fee them impel others; and we fee that this production of motion is regulated by fuch laws, that there is hut one abfolute quantity of motion in the wiverfe which remains unalterably the fame. It mult therefure be tranfo fufed in the acts of collifion. We alfo fee, with clear evidence, in fome cafes, that motion can produce preffure. Euler adduces fome very whimfical and complicated cafes, in which an action, precifely fimilar to pref. fure, may be produced by motion. Thus, two balls connected by a thread, may be fo fruck that they fhall move forward, and at the fame time wheel round. In this cafe the connecting thread will be flretched between them. Now, fay the philofophers, fince we fee motion, and fee that preffure may be produced by motion, it is prepofterous to imagine that it is any thing elfe than.
a refult of certain motions; and it is the bufinefs of a philofopher to inquire and difcover what motions produce the preflures that we obferve.

They then proceed to account for thofe prefling powers, or fulicitations to motion, which we obferve in the accelcration of falling bodies, the attractions of magnetifin and electricity, and many other phenomena of this kind, where bodies, are put in motion by the vicinity of uther bodies, of (in the popular language) by the action of other bodies at a diftance. To fay that a magnet cannot act on a piece of remote iron, is to fay that it ean act zobere it is not; which is as abfurd as to fay, that it can act whicn it is not. Nibil movetur, fays Euler, nifí a contiguo et moto.

The bulk of thefe philofophers are not very anxions

How dnes
it produce preflure?

Incompstible with the rules of pholosophiling.

\section*{13}

Others maintain that prefSure is the fole moving force. about the way in which thefe motions are produced, nor do they fall upon fuch ingenious methods of producing preflure as the one already mentioned, which was adduced by Euler. The piece of iron, fay they, is put in motion when brought into the neighbourthood of a magnet, becaufe there is a Atream of fluid iffuing from one pole of the magnet, which cireles round the magnet, and enters at the other pole : This Aream impels the iron, and arranges it in certain determined pofitions, juit as a ftrean of water wonld arrange the flote grafs. In the ame manner, there is a ftream of fivid continually moving towards the centre of the earth, which impels all bodies in lines perpendicular to the furface ; and fo on with regard to other like phenomena. Thefe motions are thus reduced to very fimple cafes liy impulfion.
It is unneceffary to refute this doctrine at prefent; it is enough that it is contrary to all the dictates of common renfe. To fuppofe an agent that we do not fee, and for whofe exiftence we have not the fmalleft argunent ; with equal propriety we might fuppofe miniftering fpirits, or any thing that we pleafe.

Other philofophers are fo diffatisfied with this notion of the production of preffure, that they, on the other hand, affirm that preffure is the only moving foree in nature; not according to the popular notion of preffure, by the mutual contact of folid bodies, but that kind of preflare whicli has been ealled folicitation; fuch as the power of gravity. They affirm, that there is no fuch thing as contact on inflantaneous communication of motion by real collifion. They fay (and they prove it by very convincing facts (fee Optics, \(\mathrm{n}^{\circ} 6_{3}-68\). Encycl.), that the particles of folid bodies exert very ftrong repulfions to a fmall diftance ; and therefore, when they are brought by motion fufficiently near to another bo: dy , they repel it, and are equally repelled by it. Thus is motion produced in the other body, and their own motion is diminilhed. And they then fhew, by a fcrupulous confideration of the flate of the bodies while the one is advancing and the other retiring, in what manner the two bodies attain a common velocity, fo that the quantity of motion before collifion remains unchanged, the one body gaining as much as the other lofes. They alfo fhew cafes of fuch mutual action between bodies, where it is evident that they have never come into contact ; and yet the refult has been precifely fimi. lar to thofe cafes where the motion appeared to be changed in an inftant. Therefore they conclude, that there is no fueh thing as inflantaneous communication, or transfufion of motion, by contact in collifion or impulfe. The reafon why previous motion of the impelling body
is neceffary, is not that it may have a vis infita corpori moto, a force inherent in it by its being in motion, but that it may continue to follow the impelled and retiring body, and exert on it a foree inherent in itfelf, whether in motion or at red.- Aceording to thefe philofophers, therefore, all moving forces are of that kind which has been named folicitution ; fuch as gravity. We fhall know it afterwards by the more familiar and defcriptive name of Accelerating or Retarding force.

The exertions of mechanical forces are differently Adion, Retermed, according to the reference that we make to the fifunce, \(R=\) refult. If, in boxing or wreftling, 1 itrike, or endea- \({ }^{\text {aElicn. }}\) vour to throw my antagonif, I am faid to ACT; but if I only parry his blows, or prevent him from throwing me, I am faid to resist. This diftinction is applied to the exertions of mechanical powers. When one body A changes the motion of another \(B\), we may confider the change in the motion of B either as the indication and meafure of A's power of producing motion, or as the indication and meafure of \(A\) 's refiltance to the being brought to reft, or having its mution any how changed. The diftinction is not in the thing itfelf, but only in the reference that we are difpofed, by other confiderations, to make of its effect. They may be ditinguifhed in the following manner: If a change of motion follow when one of the powers ceafes to be exerted, that power is conceived as having reffited. The whole language on this fubject is metaphorical. Refittance, effort, endeavour, \&c. are words which cannot be employed in mechanical difeuffions without figure, becaufe they all exprefs notions which relate to fentient beings; and the unguarded indulgence of this figurative language has fo much affected the imagination of philofophers, that many liave almoft animated all matter. Perhaps the word Reaction, introduced (we think) by Newton, is the beit term for expreffing that mutual foree which is perceived in all the operations of nature that we lave inveftigated with fuccef's. As the magnet attracts iron, and in fo doing is faid to all on it ; fo the iron attracts the magnet, and may be faid to reaf on it.

With refpect to the difficulty that has been objected We need to the opinion of thofe who maintain that all the me-net fuppofe chanical phenomena are produced by the agency of at- action at a tracting or repelling forces; namely, that this fuppofes Tendency. the bodies to act on each other at a diftance, however fmall thofe diftances may be, which is thought to be abfurd, we may obferve, that we nay afcribe the mutual approaches or receffes to tendencies to or from each other. What we call the attragion of the magne: may be confidered as a tendeney of the iron to the magnet, fomewhat fimilar to the gravitation of a fone toward the earth. We furely (at leaft the unlearned) can and do conceive the iron to be affected by the magnet, without thinking of any intermedium. The thing is not therefore inconceivable; which is all that we know about abfurdity : and we do not know any thing about the nature or effence of matter which renders this tendency to the magnet impoflible. That we do not fee intuitively any reafon why the iron fhould approach the magnet, mult be granted; but this is not enough to entitle us to fay, that fuch a thing is impoffible or in. confiftent with the nature of matter. It appears, therefore, to be very hafty and unwarrantable, to fuppofe the impulfe of an invifible fluid, of which we know nothing, and of the exittence of which we have no proof. Nay,
if it be true that bodies do not conc into contast, even when one ball hits another, and drives it before it, this invilible fluid will not folve the difliculty; becaufe the fane difficulty occurs in the action of any particle of the fluid on the body. We are obliged to fay, that the production of nution without any ebfervel contact, is a much more faniliar phenomenon than the production of motion hy impulfon. More motion has been prosuced in this way by the gravitation of a fmall fream of water, rumaing ever lince the creation, than by all the impulfes in the world twice tuld. Wre do not mean by this to fag, that the giving to this chferved mutnal relation between iron and a loadtlone the name tendency makes it lefs aniure, than when we fay that the loadtone attracts the iron; it unly malies it more concevable: It fuggefts a very familia anaugy ; but buth are equally figurative expreffions; at leath as the word tendency is ufed at prefent. In the language of ancient Rome, there was no metaphor when Virgil's heoo laid, Tordimus in Latium. Tindere verfus folom means, in plain Latin, to approach the fun. The fafe way of conceiving the whole is to fay, that the condition of the iron depends on the vicinity of the magnet.

When the exertions of a mechanical power are obferved to be always directed tow:nd a body, that body is faid to attract; but when the other body always moves off from it, it is faid to repel. Thefe alfo are metaphorical expreffions. I attract a boat when I pull jt toward me by a rope; this is purely Atrraction: and it is pure, unfigurative Repulsion, when I pufl any body from me. The fane words are apolied to the mechanical phenomena, mercly becaufe they refemble the refults of real attraction or repulfion. We mutt be much on our guard io avoid metaphor in our conceptions, and never allow thofe words to luggeft to our mind any opinion about the manner in which the mechanical forces produce their effects. It is plain, that if the opinion of thofe who maintain the exiftence and action of the abovementioned invitible fiuid be jut!, there is nothing like attraction or repulfou in the univerfe. We muft always recur to the limple phenomeaon, the motion to or from the attraction or repelling body; for this is all we fee, and generally all that we know.

We conceive one man to have twice the ftrength of another man, when we fee that lie can withiland the united effort of two others. Thus animal force is conceived as a quantity, made up of, and meafured by, its own parts. Lut we doubt exceedingly whether this be an accurate conception. We have not a difinct notion of one Itrain added to another; though we have of their being joined or combined. We want words to exprefs the difference of thefe two notions in our own minds; but we inagine that others perceive the fame difference. We conceive clearly the addition of two lines or of two minutes; we can conceive them apart, and perecive their boundaries, common to both, where one ends and the other begius. We canoot conceive thus of two forces combined; yet we cannot fay, that iwo equal forces are not double of one of them. We meafure them by the effects which they are known to produce. Yet there are not wanting many cafes where the action of two men, equally ftrong, does not produce a double motion.

In like manner, we conceive all mechanical forces as meafurable by their effects; and thus they are made Suppl, Vol, I, Part II.
the fuhjects of mathematical difeuffion. We talk of the proponsions of gravity, magnetifm, clectricity, Sic.; nay, we talk of the propertion of gravity to magres. tifm:-Yct these, confidered in themfelves, are dipa. tate, and do not admit of any propoltion; but they produce eflects, fome of which are meafurable, and whole affuned mealures are fufecprible of compaifon, being quantitios of the fame kinsl. Thus, one of the dlects of gravity is the acecleration of motion in a fall. ing body: magnetifn will alfo accelvate the motion of a piece of iron; thefe two accelerations are compa. rable. But we cannot compare magnetifm with heat ; becaufe we do not knuw any meafuable cficets of magnetifn that are of the fame kind with any cffects of leat.

When we fay, that the gravitation of the moon is the By their 3 booth part of the gravitation at the fea-flore, we dfectso mean that the fall of a flone in a fecond is 3 sco times greater than the fall of the moon in the fane time. But we alfo mean (and this exprefles the proportion of the tendency of gravitation more purely), that if a llone, when hung on a fpring ftcelyard, draw out the rod of the fleelyard to the mark 3600 , the fame flons, taken up to the diftance of the moon, will draw it out no further than the mark s. We alfo mean, that if the ftone at the fea-flore draw out the rod to any mark, it will require \(3^{\circ}=0\) fuch ftunes to draw it out to that mark, when the trial is made at the diftance of the moon. It is not, therefore, in confequence of any imnediate perception of the proportion of the gravitation at the moon to that at the furface of the earth that we make fuch an affertion ; but thefe motions, which we conlider as its effects in thefe fituations, being inagnitud s of the fame kind, are fulceptible of comparifon, and have a proportion which can be afcertaincd by obfervation. It is thefe proportions that we cunterplate; although we fpeak of the proportions of the unfeen caules, the forces, or endeavours to defeend. It will be of material fervice to the reader to perufe the judicious and acute differtation on quamity in the 45 th volume of the lhilofophical Tranfactiens; or he may Iludy the artiele Quanrity in the Encyclopadic, where, we trult, he will fee clearly how force, velocity, denlity, and many ather magnitudes of very frequent occurrence in nechanical philofophy, may be made the fubjects of mathematical difculion, by means of fome of thofe proper quantities, meafurable by their own parts, winch are tu be affuncd as their meafures. Prefiures are mealurable only by prelfures. When we confider them as moving powers, we fhould be able to meafure them by any moving powers, utherwife we cannot compare them; therefore it is not as preffures that we then meafure them. This obfervation is momentous.

One circumftance muft be carefuliy attended to. That thofe affumed meafures may be accurate, they muft be invariably connected with the magnitudes which they are employed to meafure, and fo comnected, that the degrees of the one mutt change in the fame manner with the degrees of the other. This is evident, and is granted by all. But we mult alfo know this of the meafure we employ; we mult fee this conftant and precife relation. How can we know this? We do not perceive force as a feparate exiftence, \(\mathrm{f}_{0}\) as to fee its proportions, and to fee that thefe are the fame with the proportions of the meafures, in the fame manner that Euclid fees the proportions of triangles and thofe of 3 S their
their bares, and that thefe proportions are the fame, when the triangles are of equal altitudes. How do we difcover that to every magnitude which we call force is invariably attached a correfponding magnitude of acceleration or deflection ?- Clearly. In faet, the very exiftence of the force is an inference that we make from the obfersed acceleration; and the degree of the furce is, in like manner, an inference from the abferved magnitude of the acceleration. Our meafures are therefore neccflarily connected with the magnitudes which they meafure, and their proportions are the fame; becaufe the one is always an inference from the other, buth in fpecies and in degree. motiuns; and therefore of the proportions of the farces. And thas dynamics becomes a demonftrative fcience, one of the difciplines accurata.

But moving forces are confidered as differing alfo in kind; that is, in direction. We affign to the force the direction of the obferved change of motion ; which is nut only the indication, but alfo the charakeriftic, of the changing force. We call it an accelerating, retarding, deflecting, fort, according as we obferve the motion tu be accelerated, retarded, or deflefied.

Thefe denouninations few os inconteftably that we have no knowledge of the forces different from our knowledge of the effects. The dennminations are all either deficriptive of the effects, as when we call them accelerating, penetrating, protrufive, attractive, or repulive furces; or they are names of reference to the fubtances in which the accelerating, protronive, \&c. forces, are fuppofed to be inhereut, as when we call them

20
Forces are difonvered b) their cp. pnfition to other for ces.
magnetifm, eleiricity, corpufcular, \&e.
- When I fruggle with another, and feel, that in order to prevent being thrown, I muft exert force, I learn that my antagonit is exerting force. This notion is transferred to matter; and when a moving power which is \(k\) nown to operate, produces no motion, we conceive it to be oppofed by another equal force; the exittence, agency, and intenfity of which is detected and meafured by thefe means. The quiefcent flate of the body is connidered as a change on the flate of things that would have been exhibited in confequence of the known action of one power, had this other power not acted; and this change is confidered as the indication, characteriftic, and meafure of another power, detected in this way. Thus forces are recognifed not only by the changes of motion which they produce, but alfo by the changes of motion which they prevent. The cohefion of matter in a itring is inferred not only by its giving motion to a ball which I pull toward me by its intervention, but alfo by its fufpending that ball, and hindering it from falling. I know that gravity is acting on the ball, which, however, does not fall. The folidity of a board is equally inferred from its ftopping the ball which frikes it, and from the motion of the ball which it drives before it. In this way we learn that the particles of tangible matter cohere by means of moving forces, and that they refift comprefion with force; and in making this inference, we find that this sorpufcular force exerted between the particles is pu-
tual, oppofite, and equal: for we mult apply forse Finflaw equally to \(a\) or to \(b\), in order to prodnce a feparation of Mution. or a compreffion. We learn their equality, by ohferving that no motion enfues while thefe mutual forces are known to act on the particles; that is, cach is oppofed by another force, which is neither inferior nor fuperior to it.

\section*{Of the Laws of Motion.}

SUCH, then, being our notions of mechanical forces, the caufes of the fenfible changes of motion, there will refult certain confequences from them, which may be called axioms or laws of motion. Sume of thefe may be intuitive, offering themfelves to the mind as foon as the notions which they involve are prefented to it. Others may be as neceffary refults from the relations of thefe notions, but may not readily offer themfelves without the mediation of axioms of the firf clals. We fhall feect thofe which are intuitive, and may be taken for the firt principles of all difcuffions in mechanical philofophy.

\section*{First Law of Motion.}

\section*{Every body continues in a flate of reft, or of uniform rectilineal inotion, unlcfs affected by fome mecharical force.}

This is a propofition, on the trath of which the whole fcience of mechanical philofophy ultimately depends. It is therefore to be eftablifhed on the firmelt foundation; and a folicitude on this head is the mare jultifiable, becaufe the opinions of philofophers have been, and flill are, extremely different, both with refpect to the truth of this law, and with refpect to the foundation on which it is built. Thefe opinions are, in general, very obfcure and unfatisfactory; and, as is natural, they influence the difcuffiuns of thofe by whom they are held through the whole fcience. Although of contradictory opinions one only can be jult, and it may appear fufficient that this one be eftablifhed and unifurnly appplied ; yet a fhort expofition, at lealt, of the reft is neceffary, that the greateft part of the writings of the philofophers may be intelligible, and that we may avail ourfelves of much valuable information contained in them, by being able to perceive the truth in the midft of their imperfect or erroneous conceptions of it.

It is nut only the popular opinion that reft is the natural Aate of body, popd that motion is fomething fo-tinued mio and reign to it, but it has been feriounly maintained by the tion indi- cate contis greatelt part of thofe who are efteemed plilofophers. natced n nti They readily grant that matter will continue at reft, tion? unlefs fome moving force act upon it. Nothing feems neceffary for matter's remaining where it is, but its continuing to exill. But it is far otherwife, fay they, with refpect to matter in mution. Here the body is continually changing its relations to other things; therefore the continual agency of a changing caufe is neceffary (by the fundamental principle of all philofophical difculion), fur there is here the continual production of an effect. They fay that this metaphyfical argument receives complete confirmation (if confirmation of an intuitive truth be neceffary) from the moft familiar obfervation. We fee that all motions, however violent, terminate in reft, and that the continual exertiun of fome force is neceffary for their continuance.

Thefe philofuphers therefore affert, that the conti- Whimica? nual action of the moving caufe is cffentially neceffary rotemen of

Firelaw for the continuance of the motion: but they differ among themfelves in their notions and opinions about this caule. Some maintain, that all the motiuns in the univerfe are produced and continued by the immediate agency of Deity; others affirm, that in every particle of matter there is inherent a fort of mind, the quers and everpuoxn of Arittole, which they call an Elemental Mind, which is the caufe of all itg motions and changes. An overweaning reverence for Grech learning has had a great influcnce in reviving this doctrine of Ariftotle. The Greek and Roman languages are affirmed to be more accurate cxpreffions of human thought than the modern languages arc. In thofe an. cient languages, the verbs which exprefs motion are employed both in the active and paftave voice; whereas we have only the active verh to move, for expreffing both the fate of motion and the act of putting in motion. "The fone moves down the flope, aud moves all the pebbles which lie in its way;" but in the ancient languages the mere fate of motion is always expreffed ty the paffive or middle voice. The accurate conception of the fpeakers is therefore extolled. The ftate of motion is expreffed as it ought to be, as the refult of a continual action." Kivetiat, movetur, is equivalent to "it is moved." According to the fe philofophers, every thing which moves is mind, and every thing that is mored is body.

The argument is futile, and it is falfe; for the modern languages are, in general, equally acçurate in this in. thance: "fe monvoir," in French; "fich bequegen," in German; "drigatfu," in Sclavonic ; are all paffive or reflected. Aud the aucients faid, that "rain falls, water runs, fmoke rifes," juit as we do. "The ingenious author of Ancient Metaphyfics has taken much pains to gives us, at length, the procedures of thofe elementary minds in producing the oftenfible phenomena of local motion; but it feems to be merely an abufe of lan. guage, and a very frivolous abufe. This elemental mind is known and characterifed only by the effect which we afcribe to its action; that is, by the motions or changes of motions. Uniform and unexcepted experience fhews us that thefe are regulated by laws as precife as thofe of mathematical truth. We confider nothing as more fixed and determined than the com1 mon laws of mechanifm. There is nothing here that indicates any thing like fpontancity, intention, purpofe; none of thofe marks by which mind was firt brought into view: but they are very like the effects which we produce by the exertions of our corporeal forces; and we have accordingly given the name force to the caufes of motion. It is furcly much more appofite than the name mind, and conveys with much more readinef; and perfpicuity the very notions that we wifh to convey.

We now wifh to know what reafon we have to think that the continual action of fome caufe is neceffary for continuing matter in motion, or for thinking that reft is its natmal ftate. If we pretend to draw any argument from the nature of matter, that matter muft be known, as far as is ncceffary for being the foundation of argument. Its vary exiltence is known only from oblervation; all our knowledge of it muft therefore be derived from the fame fource.

If we take this way to come at the origin of this opinion, we thall find that experience gives us no atsthority for faying that reft is the natural condition of
matter. We cannot fay that we inse ever feen a body Firt baw at relt ; this is evident to every perfon who allows the of Mntions, validity of the Newtonian philofophy, and the truth of the Copernican fyltem of the fun and planets; all the parts of this ryltem, are in motiun. Nay, it appears from many obfervations, that the fun, with his attend. ing plancts, is carried in a certain direction, with a velocity which is very great. We have no unqueftionable authority for faying that any one of the fars is absolutely fixed: but we are certain that many of them are in motion. Reft is therefore fo rare a condition of body, that we caunot lay, from any experience, that it is its natural ftate.

It is eafy, bowever, to fee, that it is from obfervation that this opinion has been derived; but the obfervation has been limited aud carelefs. Our experiments in this fublunary world do indeed always require continued action of fome moving force to continue the motion ; and if this be not employed, we fee the motions flacken every minute, and terminate in reft after no long period. Our fuft notions of fublunary bodies are indicated by their operation in cafes where we have fome interen. Perpetually feeing our own exertions neceflary, we are led to confider matter as fomething nut only naturally quiefcent and inert, but fuggih, averfe from motion, and pione to reft (we inutt be pardoned this metaphorical language, becaule we can tind no other term). What is expreffed by it, on this occafion, is precifely one of the erroneous or inadequate conceptions that are fuggefted to our thoughts by reafon of the poverty of language. We aninate matter in order to give it motion, and then we endow it with a fort of moral character in order to explain the appearance of thufe motions.

But more extended obfervation has made men gra. dually defert their fint opinions, and at laft allow that matter has no peculiar aptitude to reft. All the retardations that we offerze have been difcovered, one after another, to have a ditinct reference to fome external circumfances. The dimiuntion of motion is always ohferved to be accompanied by the removal of obitacles, as when a ball moves through fand, or water, or air; or it is owing to oppofite motions which are deAtroyed; or it is uwing to roughnefs of the path, or to friction, \&cc. We find that the more we can keep thole things out of the way, the lels are the motions diminifhed. A pendulum will vibrate but a fhort while in water; much longer in air; and in the exhanfed receiver, it will vibrate a whole day. We know that we cannot remore all obftacles; but we are led by fuch obfervations to conclude that, if they coutd be completeiy removed, our motions would continue for ever. And this conclution is almolt demonltrated by the mutions of the havenly bodies, to which we know of no obdlacles, and which we really obferve to retain their motions for many thoufand years without the fmalleft fenlible diminution.
Another fet of philofophers maintain an opinion di- fnactivity rectly oppofite to that of the inactivity of matter, and of maveter affert, that it is effentially active, and continnally chan-denied by ging its flate. Faint traces of this are to be found in Leibnitz. the, writings of Plato, Arifotle, and their, commentators. Mr Leibuitz is the perfon who has treated this queftion moft fyRematically and filly. He fuppufes Mona\%, every particle of matter to have a principle of indivi. whist. duality, which he therefore calls a Monad. This mo-

D Y N A MICS. Firf Law nad has a fort of percepion of its intuation in the univerle,
of Motion and of its relation to every other part of this univerfe. Lafty, he fays that the monad acts on the material particle, much in the fame way that the foul of man acts on his body. It modifies the motion of the material atom (in conformity, however, to unalterable laws), produciug all thofe modilications of motion that we obferve. Matter therefore, or at leaft particles of matter, are continually active, and continually changing their fituation.
- It is quite unneceffary to enter on a formal confutation of Mr Leibnitz's fyftem of monads, which differs very little from the fyfem of elemental minds, and is equally whimfical and frivolous; becaufe it only makes the unlearned reader ftare, without giving him any information. Should it even be granted, it would nut, any more than the aftion of animals, invalidate the general propofition which we are endeavouring to eflablifh as the fundamental law of motion. Thofe powers of the monads, or of the elemental minds, are the caufes of all the changes of motion; but the mere material particle is fubject to the law, and requires the exertion of the monad in order to exhihit a change of motion.

A third fect of philofophers, at the head of which we may place, Sir lfaac Newton, maintain the doctrine enounced in the propofition. But they differ much in refpect of the foundation on which it is built.
Some affert that its truth flows from the nature of will nong. If a body be at reft, and you affert that it tion. remain at reft, it mult nove in fome one direcvelocity, and do not continue its equable, rectilineal, motion, it muft either be accelerated or retarded; it mult turn either to one fide, or to fome nther fide. The event, whatever it be, is individual and determinate; but no caufe which can determine it is fuppofed: therefore the determination cannot take place, and no change will happen in the condition of the body with refpect \(t o\) motion. It will continue at reft, or perfevere in its sectilineal and equable motion.

But confiderable objections may be made to this argument, of fufficient reafon, as it is called. In the inmenfity and perfect uniformity of fpace and time, there is no determining caufe why the vifille univerfe fhould exift in the place in which we fee it rather than in an. other, or at this time rather than at another. Nay, the argument feems to beg the queftion. A caufe of determination is required as effentially neceffary - a determination may be without a caufe, as well as a motion without a caufe.
Other philofophers, who maintain this doctrine, confider it merely as an experimental truth; and proofs of its univerfality are innumerable.
When a flone is thrown from the hand, we prefs it forwaro while in the land, and let it go when the hand has acquired the greatelt rapidity of motion that we ean give it. The tlone continues in that ftate of motion which it acquired gradually along with the hand. We can throw a tlone much farther by ineans of a fling; becaufe, by a very moderate motion of the hand, we can whirl the fone round till it acquire a very great velocity, and then we let go one of the ftrings, and the flone efcapes, ly continuing its rapid motion. We fee it ftill more diflinctly in flooting an arrow from a bow. The fring prefles hard on the notch of the arrow, and
it yields to this preflure and goes forward. The fring Fire ram alone would go fatter forward. It therefore continues "f Mutinn. to prefs the arrow forward, and accelerates its motion. This goes on till the bow is as nuch unbent as the Atring will allow. But the Atring is now a traight line. It came into this pofition with an accelerated motion, and it therefore goes a little beyond this pofition, but with a retarded motion, being clecked by the bew. But there is nothing to check the arrow; therefore the arrow quits the Atring, and Hies away.

Thele are fimple cafes of perfeverance in a fate of motion, where the procedure of nature is fo eafily traced that we perceive it alnolt intuitively. It is no lefa clear in other phenomena which are mure complicated; but it requires a little reflection to trace the procefs. We have often feen an equeftrian thowman ride a horfe at a gallop, ftanding on the faddle, and ftepping from it to the back of another horfe that gallops along. fide at the fame rate; and he does this feemingly with a; much cafe as if the horfes were ftanding ftill. The man has the fame velocity with the horfe that gallops under him, and keeps this velocity while he fleps to the back of the other. If that other were ftanding flill, the man would fly over his head. And if a man hhould ftep from the back of a horfe that is fanding ftill to the back of arrother that gallops paft him, he would be left behind. In the fame inanner, a flack wire-dancer toffes; oranges from hand to hand while the wire is in full fwing. The orange, fwinging along with the hand, retains the velocity; and when in the air follows the hand, and falls into it when it is in the oppofite extremity of its fiving. A ball, dropped from the maft-liead of a fhip that is failing brifkly forward, fails at the fnot of the mant. It retains the motion which it had while in the hand of the perfon who dropped it, and follows the maft during the whole of its fall.

We alfo have familiar inftances of the perfeverance of a body in a flate of rett. When a veffel filled with water is drawn fuddenly along the flour, the water dathes over the pofterior fide of the veffel. It is left behind. In the fame manner, when a coach or boat is dragged forward, the perfons in it find themfelves Atrike againtt the hinder part of the carriage or boat. Properly \{peaking, it is the carriage that ftrikes on them. In like manner, if we lay a card on the tip of the finger, and a piece of money on the card, we may nicle away the card, by litting it neatly on its edge ; but the piece of money will be left behind, lying on the tip of the finger. A ball will go through a wall and Hy onward; but the wall is left behind. Buildings are thrown down by earthquakes ; fometimes by being toffed from their foundations, but more generally by the ground on which they ftand being hattiiy drawn fidewifc from under th.em, \&c.

But co:mmon experience feems infufficient for efta-common \({ }^{30}\) blifhing this fundanental propofition of mechanical phiv exverience lufopily. We mutt, on the faith of the Coperuican fy- inffficiente ften, grant that we never faw a budy at reft, or. in uniform rectilineal motion; yet this feems abfolutely neceflary before we can fay that we have eftablifhed this propofition experimentally.

What we imagine, in our experiments, to be putting a body, formerly at reft, into motion, is, in fact, ouly changing a moft rapid motion, not lefs, and probably much greater, than 90,000 feet per fecond. Suppofe a cannon pointed eaft, and the bullet difcharged at noon

Firf I a:v day with ho times grester velocity than we have ever IM Mition, heen able to give it. It would appear to fet out with
this unmeafurable velocity to the eaflward; to be gradually retarded by the refiftance of the air, and at laft brought to reft by hitting the ground. But, by reafon of the carth's motion round the fun, the fact is quite the reverfe. Immediately before the difcharge, the ball was moving to the weftward with the velocity of go,000 feet per fecond nearly. By the explofion of the powder, and its preflure on the ball, fume of this motion is deftroyed, and at the mazele of the gun, the ball is moving flower, and the cannon is hurried away from it to the weflward. The air, which is alfo moving to the weftward \(90,0 c o\) feet in a fecond, gradually commmicates motion to the ball, in the fame manner as a hurricane would do. At lalt (the ball dropping all the while) fome part of the ground hits the ball, and carries it along with it.

Other obfersations muft therefore be reforted to, in order to obtain an experimental proof of this propofition. And fuch are to be found. Although we cannot meafure the abfolute motions of bodics, we can obferve and meafure accurately their relative motions, which are the differences of their abfolute motions. Now, if we can thew experimentally, that bodies flow equal tendencies to refilt the augmentation and the diminution of their relative motions, they, iffo faro, fhew equal tendencies to refilt the augmentation or diminution of their abfolute motions. Therefore let two bodies, A and B , be put into fuch a fituation, that they cannot (by reafon of their impenetrability, or the actions of their mutual powers) perfevere in their relative motions. The change produced on \(A\) is the effcet and the meafure of B's tendency to perfevere in its former fate; and therefore the proportion of thefe changes will fhew the proportion of their tendencies to maintain their former ftates. Therefore let the following experiment be made at noon.

Let A, apparently moving weftward three fect per fecond, hit the equal body 13 a pparently at reff. Sup. pofe, \(1 / 2\), That A impels B forward, without any diminution of its own velocity. This refult would fhew that B manifctts no tendency to maintain its motion unchanged, but that A retains its motion undiminilhed.
adly, Suppofe that A flops, and that B remains at reft. This would thew that \(A\) does not refift a diminntion of motion, but tbat 13 retains its motion unangmented.

3 di's, Suppofe that both move weftward with the velocity of one foat per fecond. The change on \(\Lambda\) is a diminution of velocity, amonnting to two feet per fecond. This is the cffect and the meafure of B's ten. dency to maintain its velocity unaugmented. The change on B is an augmentation of arie toot per fecund made on its velocity; and this is the meafure of A's tendency to maintain it velocity undiminifhed. This tendency is but half of the former; and this refilt would fhew, that the refiflance to a diminution of velocity is but balf of the reliftance to augmentation. It is perhaps but one quarter; for the change on B has produced a double change on A.
\(4^{t h} h\), Suppoie that hoth move weftward at the rate of \(I_{\frac{1}{5}}^{\frac{1}{5}}\) feet per fecond. It is evident that their tendencies to maintain their fates unchanged are now equal.

5 thly, Suppofe A \(=2\) B, and that both move, after the collifiou, twe feet per fecond, \(B\) has received an
addition of two fett per fecond to its former velocity. Fin law This is the drect and the nocafure of \(A\) 's whole ten- of Motion. dency to retain its motion undiminimed. Hals of this change on \(B\) meafures the perfevering tendency of the half of \(A\); but \(A\), which formerly tnoved with the apparent or relative velocity threr, now moves (by the fuppolition) with the velocity two, laving lof a velocity of one frot per lecond. Each haif of A therefore has loft this velocity, and the whule lofs of motion is two. Now this is the meafure of \(\bar{B}\) 's tendency to maintain its furmer fate unaugmented; and this is the fame with the meafure of A's tendency to maintain its own former tate undiminifhed. The coactufion from fuch a refult would therefore be, that bralies have equal tendencies to maintais their former fates of motion without angmentation and without diminution.

What is fuppofed in the + th and \(5^{t h}\) cafes is really the refule of all the e:.:periments which have been tried; and this law recrulates all the changes of motion which are protuced by the mitual actions of bodies in impulfions. This affertion is true without exception or qualification. Therefore it appears that bodies have no preferable tendency to reft, and that no fact can be adduced which thould make us fuppofe that a motion once bergun fhould fulfer :any diminution withont the action of a changing caufe.
But we mult now chferve, that this way of eftablith- But capeing the firt law of motion is very imperfect, and alto. rience is gether unfit for rendering it the fundamental principle not the proof a whole and extenfive fcicnce. It is fubject to all per founda. the inaccuracy that is to be fuend in our beft experi-asion. ments; and ir cannut be applied to cafes where fornpulous accuracy is wated, and where no experiment caa be made.

Let us therefore examine the propofition by means. of the general principles adoptcd in the article Pumosophy, Encycl. which contain the foundation of all our knowledge of active nature. Thefe principles will, we inaggine, give a decifion of this quellion that is fpeedy and accurate, fhewing the propofition to lee an axiom or intuitive confequence of the relations of thofe ideas which we have of motion, and of the caufes of its production and changes.

It has heen fully denonflrated that the powers or Logiced forces, of which we fpeak fo much, arc never the imme. proof. diate ohjects of our perception. Their very exiftence, their kind, and their degree, are intlinctive inferences from the motions which we obferve and clafs. It evidently fullows from this experimental and univerfal truth, \(1 / 2\), That where no change of motion is obfervect, no luch inference is made; that is, no power is Suppafed to act. But whencter ary clange of motion is ublerved, the inference is made; that is, a power or force is fuppofed to have acted.
In the fame form of logical conclufion, we mut fay that, 2 dlly, When no change of metion is fulpofed or thought of, no force is fuppofed; and that whencver we fuppofe a change of motion, we, in fact, though not in terms, fuppofe a changing furce. And, on the other hand, whenever we fuppofe the action of a changing force, we fuppofe the change of motion; for the action of this force, and the change of motion, is one and the fame thing. We cannot think of the action without thinking of the indication of that action; that is, the change of motion.-In the fame manner, when we do not thing of a changing force, or fuppofe that there is

Hin law of Alution.

1t is a law of human thuag\%,
no action of a elanging force, we, in fact, though not in terms, fuppofe that there is no indication of this changing force; that is, that there is no change.

Whencver, therefore, we fuppufe that no inechanieal force is acting on a body, we, in fact, fuppofe that the body continues in its former condition with refpeet to motion. If we fuppofe that nothing accelcrates, or retards, or deflects the motion, we fuppole that it is nut accelerated, nor retarded, nor deflected. Hence follows the propofition in exprefs terms - IV funpofe that the lody continues in its former flate of refl or motion, unlifs ave fufpofe that it is changed by fome mechanical furce.
'Tlus it appears, that this propolition is not a matter of experience or contiugency, depending on the properties which it has pleafed the Author of Nature to bellow on body: it is, to us, a neceflary truth. The propolition does not fo much exprefs any thing with regrard to body, as it does the operations of our mind when eontemplating body. It may perliaps be effential tu body to move in fone particular direction. It may he eflintial to body to ftop as foon as the moving caufe has ceafed to act ; or it may be effential to body to diminifh its motion gradually, and finally come to reft. But this will not invalidate the truth of this propotition. The?e circumftances in the nature of body, which render thofe modifications of motion effentially neceffary, are the caures of thore modifications; and, in our fudy of nature, they will be confidesed by us as changing forces, and will be known and called by that name. And if we fhould ever fee a particle of matter in fuch a fituation that it is affected by thofe effential properties alone, we thall, from obfervation of its motion, difeover what thofe cffential properties are.
And almont This law turns out at laft to be little more than a an identical tautological propofition: But mechanical philofophy, prof olition. as we have defined it, requires no other fenfe of it: for, even if we thould fuppofe that body, of its own nature, is eapable of changing its ftate, this change muft be performed aecordiag to fome law which characterifes the nature of body; and the knowledge of the law ean be had in no other way than by obferving the deviations from uniform rectilineal motion. It is therefore indifferent whether thofe changes are derived from the nature of the thing, or from external caufes: for in order to confider the varieus motions of bodies, we muft firft eonfider this nature of matter as a mechanieal affection of matter, operating in every inftance; and thus we are brought baek to the law enounced in this propofition. This becones more certain when we reflect that the external caures (fuch as gravity or mag. netifm), which arc acknowledged to operate changes of motion, are equally unknown to us with this effential original property of matter, and are, like it, nothing but inferences from the phenomena.

The above very diffufe difeufions may appear fuper\&uous to many readers, and even cumberfome; but we truft that the philofophical reader will excufe our ansiety on this head, when he reflects on the complicated, indiftinct, and inaccurate notions commonly had of the fubject; and more efpecially when he obferves, that of thofe who maintaiu the trut! of this fundamental propofition, as we have enounced it, many (and they too of the firt eminence), reject it in fact, by combining it with other opinions which are inconfiftent with it, nay, which contradict it in exprefs terms. We may even
include Sir Iface Newton in the number of thote who Firit haw have at leall introdueed modes of exprefion which mif. of Motion. lead the minds of ineautious perfons, and fuggett inadequate notions, incompatible with the pure doctrine of the propufition. Although, in words, they difclaim the doctrine that rell is the natural fate of body, and that force is ueceflary for the continuation of its motion, yet in words they (and moft of them in thought) likewife abet that doctrine: for they fay, that there refides in a moving body a power or force, by which it perfeveres in its motion. They call it the vis insira, the inherent force of a moving body. This is furely giving up the queftion : for if the motion is fuppofed to be continued in confequence of a force, that force is fuppofed to be exerted ; and it is fuppofed, that if it were not exerted, the motion would ceale; and there. fure the propofition mult be falle. Indeed it is fometines expreffed fo as feemingly to ward off this objec: tion. It is faid that the body continues in uniform rectilineal motion, unlefs aflected by fome external caufe. But this way of fpeaking obliges us, at firft fetting out in natural philofophy, to aflert that gravity, magnetifin, electricity, and a thoufand other mechanical powers, are external to the matter which they put ir motion. This is quite improper: It is the bufmets of philofophy to difcover whether they he external or not ; and if we affert that they are, we have no principles of argumentation with thofe who deny it. It is this one thing that has filled the fludy of nat ure with all the jargon of xthers and other invifible intangible fluids, whieh has difgraced phitofophy, and greatly retarded its progrefs.

We muit obferve, that the terms qis infila, inherent 32 force, are very improper. There is no difpute among ioherent philofophers in calling every thing a force that pro- force, are duces a change of motion, and in inferring the action improper of fuch a force whenever we oblerve a change of mo-their ufual tion. It is furely incongruous to give the fame name iaccepta. to what has not this quality of producing a change, or \({ }^{\text {tiun. }}\) to infer (or rather to fuppofe) the energy of a force when no change of motion is obferved. This is one among many inflances of the danger of miltake when we indulge in analogieal difcuftons. All our language, at leaft, on this fubject is analogous. I feel, that in order to oppofe animal force, I mult exert force. But I muft exert force in order to oppole a body in motion: Therefore I imagine that the moving body poffeffes force. A bent fpring will drive a body forward by unbending: Therefore I fay that the fpring exerts force. A moving body impels the body which it hits: Therefore I fay, that the inptlling body poffeffes and exerts force. I imagine farther, that it poffefles force only by being in motion, or becaufe it is in motion; becaufe I do not fund that a quietcent body will put another into motion by touching it. But we frall foon find this to be falfe in many, if not in all cafes, and that the communication of motion depends on the mere vicinity, and not on the metion of the impelling body; yet we afcribe the exertion of the vis infita to the circumitance of the continued motion. We therefore conceive the force as arifing from, or as conffting in, the impelling body's being in motion; and, with a very obfcure and indiftinct conception of the whole mattur, we call it the force by which the bodly preferves itflf in motion. Thus, taking it for granted that a force refides in the body, and being obliged to give it fome office, this is the only one that we can think of.

But philofophers imagine that they perceive the neceffity of the exertion of a furce in order to the continuation of a mution. Motion (fay they) is a continued action ; the body is every inftant in a new fituation; there is the continual production of an effect, therefore the continual action of a caufe.

Dut this is a very inaccurate way of thinking. We have a diftinct conception of motion; and we conceive that there is fuch a thing as a moving caufe, which we dittinguilh from all other eaufes by the name force. It produces motion. If it does this, it produces the claracter of motion, which is a continual change of place. Motion is not action, but the effect of an action; and this action is as incomplete in the inflant inmediately fucceeding the beginning of the motion as it is a minute after. The fubfequent change of place is the continuation of an effect already produced. The immediate effect of the moving force is a determinatiov, by which, if not hindered, the body would go on for ever from place to place. It is in this deterinination ouly that the ftate or condition of the body can differ from a ftate of reft; for in any inflant, the body docs not defcribe any fpace, but lias a determination, by which it will defcribe a certain fpace uniformly in a certain tinue. Motion is a condition, a flate, or mode of exiftence, and no more requires the continued agency of the moving caufe than yellownefs or roundnefs does. It requires fome chemical agency to change the yellownefs to greennefs; and it requires a mechanical caufe or a force to change this mution into rell. When we fee a moving body ftop fhort in an inftant, or be gradually, but quickly, bronght to reft, we never fail to fpeculate about a caufe of this ceflation or retardation. The cafe is no way different in itfelf although the retardation ihould be extremely flow. We fhould always attribute it to a caule. It requires a caufe to put a body out of motion as much as to put it into motion. This caufe, if not external, mult be found in the body iffelf; and it mult have a felf-determining power, and may as weli be able to put itfelf into inotion as out of it.

If this reafoning be not admitted, we do not fee how any effect can be produced by any caule. Every effect fuppofes fomething done: and any thing done implies that the thing done may remain till it be undone by fome other caufe. Witbout this, it would bave no exiftence. If a moving caufe did not produce continued motion by its inflantaneous action, it could not produce it by any continuance of that action; becaufe in 120 inflant of that action does it produce contimued motion.

We muft therefore give up the opinion, that there refides in a noving body a force by aubich it is kept int motion; and we muft find fome other way of explainiag that remarkable differcuce between a muving body and a body at relt, hy which the firft caufes other bodies to muve by hitting them, while the other does not do this by merely touching them. We fhall fee, with the cleareft evidenec, that motion is neceffary in the inmpelling body, in order that it may permit the forces inberent in oue or both bodies to continue this preflure long enough for producing a fenfible or contiderable motion. But thefe moving forces are inherent in bodies, whether they are in motion or at relt.
The foregoing obfervations thew us the impropriety of the phrdfe connmunication of motion. By thus reflect-
ing on the notions that are involved in the general con. Firit Lavy ceution of one body heing made to move by the im- of Motun. pulfe of another, we perceive that there is nothing in. dividual transferred from the one body to the other. ConinnuniThe determination to motion, inderel, exilted only in cation of the inpelling budy before collifion; whereats, alterwards, \({ }_{3 \text { n }}\) notion in is both budies are fo conditioned or determiaed. But we pere phrafe, can form no notion of the thing transferred. With the fame metaphylicat impropriet \(y\), we fpeak of the communication of joy, of fever.

Kepler introduced a term inertia, vis inertie, so 35 . into mechanical philufophy ; and it is now in cunflant inertitio. ufe. But writers are very carelefs and vague in the no. tions which they affix to thefe terms. IKepier and Newton feem generally to employ it for expreffing the faet, the perfeverance of the body in its prefent flate of motion or rell: but they alfo frequently exprefs by it fomething like an indiference to notion or rell, manifelled ly its requiring the fame quantity of force to make an augmentation of its motion as to make an equal dimnution of it. The popular notion is like that which we have of actual refiftance; and it always inplies the notion of force exerted by the refifting hody. We fuppufe this to be the exertion of the ais infita, or the inlose rent force of a budy in motion. But we have the fame notion of refiltance from a body at reft which we fet in motion. Now furely it is in direct contradiction to the common ufe of the word force, whern we fuppofe refillance from a buily at rett; yet vis inertiz is a very common expreffion. Nor is it more abfurd (and it is very abfurd) to fay, that a body maintains its ftate of reft by the exertion of a vis inertia, than to fay, that it maintains its fate of motion by the exertion of an inherent force. We fhould avoid all fuch metapinsricai expreffons as refflance, indiference, Juggi2ncts, or pronenefs to reff (which fome exprefs by incrtia); becaufe they feldom fail to make us indulge in metapho. rical notions, and thus iead us to mifconceive the modus operiandi, or procedure of nature.
There is no refiflance whatever olferved in thefe phenomena; for the force employed always produces its complete effect. When I throw down a man, and find that I have employed no mere force than was fufficient tu throw down a fimilar and equal mafs of dead matter. I know by this that he has not refifted; but 1 conclude that he has refifled, if I have been obliged to enmploy much more force. There is therefore no retiltance, properly fo called, when the exerted furce is obferved to produce its full effect. To fay that there is refillance, is therefore a real mifconception of the way in which mechanical forces have operated \(i: a\) the collifion of bodies. There is no more reintance in thefe cafes than in any other natural clanges of condition. We are guilty, however, of the fame impropriety of language in other cafes, where the caufe of it is more evident. We fay that colours in grain reffif the action of foap and of the fun, but that Pruffinn bife docs not. We all perceive, that in this expreffion the word iefiltance is entirely figurative: and we fhould fay that Pruffian blue refifs foap, if we are right in faying that a body refitts any force employed to change its thate of motion ; for foap mut be employed 10 dicharge or change the culour; and it does change it. Force mult be empluyed to change a motion; and it does change it. The impropriety, both of thought and langurge, is plain in the one caic, and it is no befs real in tiec other. Both.

\section*{D Y N A MICS.}

Seconthaw of the terms, inbirent force and inertia, may be ufed of Motion, with fafety for abbreviating language, if we be careful to employ them only for exprefling, eithcr the fimple facd of perfevering in the former flate, or the neceffity of employing a certain deturminate force, in order in change that \({ }^{36}\) Rate, and if zue avoid all thought of refiflance.

Deviations from uniform recti lineal mocion are the are the only mdications. The indication is very tions of torce.

From the whole of this difuflion, we learn, that the deviations from uniform notions are the indications of the exiftence and ayency of mechanical forces, and that - limple, mere change of place; it can therefore indicate nothing but what is very limple, the fomething competent to the production of the very motion that we obferve. And when two changes of motion are precifely fimilar, they indicate the fame thing. Suppofe a mariner's compafs on the table, aud that by a fnall tap with my finger I caufe the needle to turn off from its quiefeent pofition 10 degrees. I can do the fame thing by bringing a magnet near it; or by bringing an electrified body near it; or by the unbending of a fine fpring prefing it afide; or by a puff of wind ; or by feveral other methods. In all thefe cafes, the indication is the fame; therefure the thing indicated is the fame, nome\(l_{y}\), a certain intenfity and direction of a moving power. How it operates, or in what manner it exits and exerts itfelf in thefe inflances, outwardly fo different, is not under confideration at prefent. Impulfivenefs, intenfity, and direction, are all the circumitances of refemblance by which the affextions of matter are to be characterifed; and it is to the difcovery and deternination of thefe alone that our attention is now to be directed. We are direcied in this refearch by the

\section*{Second Law of Murion.}

Livery chanre of motion is proportional to the force impreffed, ahi is maide in the direation of that force.
This law alfo may almoft be couldered as an identical propolition ; for it is equivalent to faying, that the changing force is to be meafureci by the change which it produces, and that the direction of this force is the dircciun of the clange. Of this there can be no doubt, when we confider the force in no other feufe than that of the caufe of motion, paying no attention to the form or manner of its exertion. Thus, when a pellet of tow is thot from a pop-gun by the expanfion of the air comprefled by the raminer, or where it is fhot from a toy piftol by the unbending of the coiled wire, or when it is nicked away by the thumb Jike a marble-if, in all thefe cafes, it moves off in the fame direction, and with the fame velocity, we cannot conlider or think of the force, or at lealt of its exertion, as any how different. Nay, when it is driven forward by the inftantaneons percuffion of a fmart ftroke, although the manner of producing this effect (if poffible) is effentially different from what is conceived in the other cafes, we mult atill think that the propelling force, confidered as a propelling force, is one and the fame. In flort, this law of motion, as thus expreffed by Sir Ifaac Newton, is equivalent to faying, "That we take the changes of motion as the meafures of the changing forces, and the direction of the change for the indication of the direction of the forces:" For no reffecting perfon can pretend to fay, that it is a deduction from the acknowledged principle, that effects are proportional to their caufes. We do not affirm this law, from having obferved the proportion of the forces and the proportion of the
changes, and that thefe proportions are the fame ; and Seconalas from having obferved that this fas obtained through of Motion the whole extent of our ftudy of mature. This would indeed eflablih it as a plyyical law, an univerial fact; and it is, in fact, fo eflablinied. But this does mot eftablith it as a law of motion, according to our definition of that term; as a law of human thonght, thie refult of the relations of our ideas, as an intuitive truth. The injudicious attempts of philofophers to prove it as a matter of obfervation, have oceationed the unly difpute that has arificn ia mechanical plifofophy. It is well known that a bullet, moving with double velocity, penetrates four times as far. Many other fimitar facts corrohorate this: and the plilufor hers ohferve, that four times the force has been expended to generate this double velocity in the bullet; it requires four tines as much powder. In sll the examples of this kind, it would feem that the ratio of the forces employed has been very accurately afcertained; yet this is the invariable refilt. Philofaphers, therefore, have concluded, that moving forces are nut proportional to the velucities which they produce, but to the fquares of thofe velocitics. It is a ilrong confirmation, to fee that the bodies in motion feem to poffefs forces in this very proportion, and produce effects in this proportion; penctrating four times as deep when the velocity is only twice as great, \&ec.

But if this be a juf eftimation, we cannot reconcile it to the conceffion of the fane philufophers, who grant that the velocity is proportional to the force imprefled, in the cafes where we have no previous obfervation of the ratio of the forces, and of its equality to the ratio of the velocities. This is the cafe with gravity, which thefe philofophers alwsys meafure by its acculerating puwer, or of the velocity which it generates in a given tine. And this cannot be refufed by them ; for cafea occur, where the force can be meafured, in the molt natural manner, by the actual preffure which it exerts. Gravity is thus neafured by the preffure which a fone exerts on its fupporis. A weight which at Quito will pull unt the rod of a fpring Itedyard to the nark 312 , will pull it to 313 at Spizbergen. And it is a fact, that a body will fa!! \(3 \times 3\) inches at Spitzbergen in the fame time that it falls 312 at Quito. Gravitation is the caufe both of the preffure and the fall; and it is a matter of unexcepted obfervation, that they have always the fame ratio. The philofophers who have fo flrenuoully maintained the other meafure of forces, are among the moft eminent of thofe who have examined the motions produced by gravity, magnetifm, electricity, \&c.; and they never thinh of nealuring thofe forces any other way than by the velocity. It is in this way that the whole of the celeftial phenonena are explained in perfect uniformity with obfervation, and that the Newtonian philofophy is conlidered as a demonltrative fcience.

There mult, therefore, be fome defeet in the principle on which the other meafurement of forces is built, or in the method of applying it. Preflure is undoubtedly the inmediate and natural ineafure of force; yet we know that four fprings, or a bow four times as Arong, give only a double velocity to an arrow.

The truth of our law refts on this only, that we affume the changes of motion as the meafure of the changing forces; or, at lealt, as the meafures of their exertions in producing motion. In fact, they are the meafures onlys

\section*{Sern llaw of a certain circumfance, in which the actions of very} of \(M\) tion perceive 10 circum refpeet to motion, differs. Its clange of place or fituation can make no difference; for this is implied in the very circumftance of the body's heing in motion.

But if either the velocity or direction change, then furely is its mechanical condition no longer the fame; a furce has acted on it, either intrinfic or from without, either accelerating, or retarding, or deflecting it. Suppofing the direction to remain the fame, its difference of coudition can confitt in nothing but its difference of velocity. This is the only circumftance in which its condition can differ, as it paffes through two different points of its rectilineal path. It is this determination by which the body will defcribe a certain determinate fpace uniformly in a given time, which defines its condition as a moving body: the changes of this determination are the meafures of their own caufes; - and to thofe caules we have given the name force. Thofe caufes may refide in other bodies, which may have other properties, characterifed and meafured by other effects. Preflure may be one of thofe properties, and may lave its own meafures; thefe may, or may not, have the fame proportion with that property which is the caufe of a change of velocity : and therefore changes of velocity may not be a meafure of preffure. This is a quefion of fact, and requires obfervation and experience; but, in the mean time, velocity, and the change of velocity, is the meafure of moving force and of changing force. When therefore the change of velocity is the fame, whatever the previous velocity may be, the changing force muft be confidered as the fame : thercfore, finally, if the previous velocity is nothing, and confequently the change on that body is the very velocity or motion that it acquires, we muft fay, that the force which produces a certain change in the velocity of a moving body, is the fame with the force which would impart to a body at reft a velocity equal to this change or difference of velocity produced on the body already in motion.

This manner of eftimating force is in perfect conformity to our moft familiar notions on thefe fubjects. We conceive the weight or downward preffure of a body as the caufe of its motion downwards; and we conceive it as belonging to the body at all times, and in all places, whether falling, or rifing upwards, or deferibing a parabola, or lying on a tablc; and, accordingly, we obferve, that in every flate of motion it reccives equal changes of velucity in the fame, or an equal time, and all in the direction of its preflure.
All that we have now faid of a change of velocity might be repeated of a change of direction. It is furely poffible that the fame change of direction may be made onl any two motions. Let one of the motions be confidered as growing continually flower, and terminating in refl. In every inftant of this motion it is pof. Suppl. Vol. I. Part II.
fible to make one and the fame change on it. The ceonntan fame clange may therefore be made at the very inftant ot Maion. that the motion is at an end. In this cafe, the clange is the very motion which the body acquires from the changing furce. Therefore, in this cafe allo, we mult fay, that a clange of motion is itcle a notion, and that it is the motion which the force would produce in a body that was previonlly at reft.

The refult of thefe obfervations is evidently this, fow afeerthat we muft afcertain, in every inftance, what is the tained an ! change of motion, and mark it by characters that are meafured. conficuous and diflinguifhing; and this mark and meafure of change muft be a motion: Then we muft fay, that the changing force is that which would produce this motion in a body previounly at reft. We mutt fee how this is manifelt, as a motion, in the difference between the former motion and the new motion; and, on the other hand, we muft fee how the motion produceable in a quiefcent body may be fo combined with a motion already exifting, as to exhibit a new motion, in which the agency of the changing force may appear.

Suppofe in fhip at anchor in a Atream; while une man walks forward on the quarter deck at the rate of two miles per hour, another walks from flem to ftern at the fame rate, a third walks athwart hip, and a fourth fands fill. Let the fhip be fuppofed to cut or part her cable, and float down the fream at the rate of three miles per hour. We cannot conceive any difference i, the change made on cach man's motion in abfolate fpace; but their motions are now exceedingly different from what they were : the firlt man, whom we may fuppofe to have been walking weft ward, is now moving eaftward one mile per hour ; the fecond is moving eaftward four miles per hour ; and the third is moving in an oblique direction, about three points north or fouth of due eaft. All have fufiered the fane change of condition with the man who had been ftanding itil. He has now got a motion eaflward three miles per hour. In this initance, we fee very well the circumitance of famenefs that obtains in the change of thefe four conditions. It is the motion of the ihip, which is blended with the other motions. Dut this circumftance is equally prefent whenever the fame previous motions are changed into the fame new motions. We nout learn to expifcate this; which we fhall do, by corfidering the manner in which the motion of the hip is blended with each of the mens motiuns.

This kind of combination has been called the Compo-Comp fisition of motion ; becaufe, in every puint of the mo.tion of motion really purfued, the two motions are to be found.

The fundamental theorem on this lubject is this:Two uniform motions in the fides of a parallelogram compofe an uniform motiun in the diagonal.

Suppofe that a point A (fig. r.) defribes ABuni-Pla:e Xxr. formly in fome given tine, while the line \(A B\) is carried uniformly along \(A C\) in the fame time, kerping always parallel to its firt polition AB. The puint A, by the combination of thele notions, will defcribe AD , the diagonal of the parallelogram ABDC , unifornly in the fame time.

For it is plain, that the velocities in \(A B\) and \(A C\) are proportional to \(A B\) and \(A C\), becaufe they are uniformly defcribed in the fame time. When the point has got to \(X\), the middle of \(A B\), the line \(A B\) has grot into the fituation GH, half way between \(A .3\) and \(C D\),
secondiaw and the point \(E\) is in the place e, the middle of GH.
 rallelograms \(A B D C\) and \(A E \in G\) are fimilar; becaufe \(A E\) and \(A G\) are the halves of \(A B\) and \(A C\), and the angle at A is common to both. Therefore, by a propofition in the Elements, they are about the fame diaconal, and the point \(e\) is in the diagonal of AD. In like manner, it may be hlewn, that when A has deferibed AF, \(\frac{3}{4}\) ths of \(A B\), the line \(A B\) will be in the fituation IK, fo that AI is \(\frac{1}{5}\) ths of AC, and the point \(f\), in which A is now found, is in the diagonal AD. It will be the fame in whatever point of \(A B\) the deferibing point \(A\) be fuppoled to be found. The line \(A B\) will be on a fimilar puint of \(A C\), and the deferibing point will be in the diaronal AD.

Moreover, the motion in \(A D\) is uniform: for \(A_{e}\) is defcribed in the time of defcribing \(A E\); that is, in half the time of defcribing \(A B\), or in half the time of defcribing AD. In like manner, \(A f\) is defcribed in \(\frac{3}{3}\) ths of the time of defrribing AD, \&c. Sc.

Lattly, the velocity in the diagonal AD is to the velocity in either of the fides as \(A D\) is to that lide. This is evident, becaufe they are uniformly defcribed in the fame time.

This is juftly called a comproftion of the motions \(A B\) and AC , as will appea: by confidering it in the following manner: Let the lines \(\mathrm{AB}, \mathrm{AC}\) be conceived as two material lines like wires. Let AB move uniformly from the fituation \(A B\) into the fituation \(C D\), while \(A C\) moves uniformly into the fituation \(B D\). It is plain that their interfection will always be found on AD. The point \(\epsilon\), for example, is a point common to both lines. Confidered as a point of EL, it is then moving in the direction \(e \mathrm{H}\) or AB ; and, confidered as a point of GH , it is moving in the direction \(e \mathrm{~L}\). Both of thefe motions are therefore blended in the motion of the interfection along AD . We can conceive a fmall ring at \(e\), embracing loofely both of the wires. This material ring will move in the diagonal, and will really partake of both motions.

Thus we fee how the motion of the fhip is actually blended with the motions of the three men; and the circumftance of famenefs which is to be found in the four changes of motion is this motion of the hip, or of the man who was ftanding flill. By compofition with each of the three former motions, it produces each of the three new motions. Now, when each of two primitive motions is the fame, and each of the new motions is the fame, the change is furely the fame. If one of the changes has been brought about by the actual compofition of motions, we know precifly what that change is \(;\) and this informs us what the other is, in whatever way it was produced. Hence we infer, that,

Whan a motion is any bow chauged, the change is that motion aubich, zuben compounded suith the furmer motion, wu:ll produce the nese notion. Now, becaufe we affume the change as the neafure and characteriftic of the changing force, we muft do fo in the prefent inflance ; and we mult fay,
44
Changing force.

That the changing force is that zubich wuill produce in a quiefcnt body the motion sulich, by compofition quith the former motion of a bods, weill produce the new moticn.

And, on the other hand,
Its effest. When the motion of a body is changed by the ation of any force, the necu motion is that woblich is compounded of
the former motion, cind of the motion aubich the jucce would se: nndraw produce in a quiefient loaly.

I Moviun
When a force changes the direction of a motion, we nefaging fee that its direction is tranfverfe in fome angle BAC ; forice becaufe a diagonal AD always fuppofes two lides. As; we have difinguifod any change of direction by the term deflection, we may call the tranfuerfe fuice a deflecting force.

In this way of eftimating a change of motion, all the characters of both motions are preferved, and it expreffes every circumflance of the change; the mere change of dircetion, or the angle BAD, is not enough, becaufe the fame force will make difierent angles of deflection, according to the velocity of the former mution, or according to its direction : but in this eflimation, the full effect of the deflecting force is feen ; it is feen as a motion; for when half of the time is elapfed, the body is at \(e\) intead of \(E\); when three-fourths are elapfed, it is at \(f\) inftead of \(\mathbf{F}\); and at the end of the time it is at D inftead of B . In fhort, the body has moved uniformly away from the points at which it would have arrived independent of the change; and this motion has been in the fame direction, and at the farre rate, as if it had moved from A to C by the changing force alone. Each force has produced its full effect: for when the body is at D , it is as far from \(A \mathrm{C}\) as if the forse \(A C\) had not acted on it ; and it is as far from AB as it would have been by the action of AC alone.

For all thefe reafons, therefore, it is evident, that it we are to abide by our meafure and character of force as a mere producer of motion, we have felected the proper characteriftic and meafure of a changing force: and our defcriptions, in conformity to this felection, muft be agreeable to the phenomena of nature, and retain the accuracy of geometrical procedure; becaufe, on the other hand, the refults which we deduce from the fuppofed influence of thofe forces are formed in the fame mould. It is not even requitite that the real exertions of the natural forces, fuch as preffure of various linds, \(\mathbb{E c} \mathrm{c}\). fhall follow thefe rules; for their deviations will he confidered as new forces, although they are only indications of the differences of the real forces from our hypothefis. We have obtained the precious advantage of mathematical inveftigation, by which we can examine the law of exertion which characterifes every force in nature.

On thefe principles we eftablifl the following fundamental elementary propofition, of continual and indifFenfable wfe in all mechanical inquiries.

For the body, whofe motion \(A B\) was clanged into AD, had gotten its motion by the action of fome firce. It was moving along NAB; and, when it reached the point \(A\), the force \(A C\) acted on it. The primitive motion is the fame, or the body is in the fane condition in every inflant of the primitive motion. It. may have acquired chis motion when it was in N , or when at O , or any other point of NA. In all thefe cafes, if \(A C\) act on it when it is in \(A\), it will always defcribe \(A D\); therefore it will defcribe \(A D\) when it acquires the primitive motion alfo in \(A\); that is, if the two for-
sicordtare ces ant on it at one and the fanc intant. The demon-
 flration may be neatly exproffed thus: The change induced by each force on the mution produced by the other, is the notion which it would produce in the body if previounly at refl. Therefore the motion refulting from joint action is the mution which is compounded of thefe two motions; or it is a motion in the dialgonal of the parallelogram, of which thefe motions are the fides.
This is called the Composition of Forces. The forces which produce the motions along the fides of the parallelogram are called the Simple Forces, or the Constituent Forces; and the force which would alone produce the motion along the diagonal is called the Compound Force, the Resulting Force, the Equitalent Force.

On the other hand, the force which produces a mntion along any line whatever, may be conceived as refulting from the combined action of two or more forces. We may knorv or otferve it to be fo; as when we fee a lighter duagged along a canal by two horfes, one on each fide. Each pulls the boat directly toward himfelf in the direction of the track-rope ; the boat cannot go both ways, and its real motion, whatever it is, refults from this combined action. This might be produced by a fingle force; for example, if the lighter be dragged along the canal by a rope from another lighter which precedes it, being dragged by one horfe, aided by the helm of the foremoflighter. Here the real foree is not the refulting, or the compound, but the equivalent force.
This view of a motion, mechanically produced, is called the Resolution of Forces. The force in the diagonal is faid to be refolved into the two forces, ha ing the directions and velocities reprefented by the fides. This practice is of the moft extenfive and multifareous ufe in all mechanical difquifitions. It may frequently be excredingly difficult to manage the complication of the many real forces whieb concur in producing a phenomenon; and hy fubftituting others, whofe combined effects are equivalont, our invelligation may be much expedited. But more of this afterwards.

We mult carefully remember, that when the motion \(A D\) is once begun, all compofition is at an end, and the notion is a fimple motion. The two determinations, by one of which the body would defcribe \(A B\), and by the other of which it would defcrihe AC , no longer co-exijf in the body. This was the cafe only in the infant, in the very act of changing the motion AB into the motion BD : yet is the inotion AD equivalent to a motion which is produced by the ailual compofiticn of two motions \(A B\) and \(A C\); in which cafe the two motions co-exift in every point of \(A D\).

Accordingly this is the way in which the compofition of forces is ufually illuftrated, and thought to be demorftrated. A man is fuppofed (for inftance) to waik uniformly from \(A\) to \(C\) on a fleet of ice, while the ice is carried uniformly along AB by the Atream. The man's real motion is undoubtedly along AD ; but this is by no means a demonftration that the inftantaneous or fhort-lived action of two forces would produee that motion; the man muft continne to exert force in order to walk, and the ice is dragged along by the ftream. Some indecd exprefs this proof in another way, faying, let a body defcribe AB, while the fpace in which this motion is performed is carried along AC.

The ice may lee carried along, and may, hy friction, or Seennd Law otherwife, drag the man along with it ; hut a fpace of Motion. eamot be removed from one place to another, mor, if it could, would it take the man with it. Should a Ship Itart fuddenly forwand while a man is walking acrofs the deck, he would be left behind, and fall toward the ftern. IV'e mult fupprfe a tranferfe force, and we mult fufprofe the conputition of this force with. out prouf. This is no demenffration.

We apprehend that the demonatration given above of this fundamental propofition is unexcoptionaide, when the terms furce and defiection are ufed in the ab, ftraft fenfe which we have affixed to them; and we hope, by thefe means, to maintain the rigour of mathematical difculfiun in all our future difquilitions on thefe fubjects. The ouly circumilance in it which can lee the fubject of difulfion is, whether we have felected the proper mieafure and characterittic of a clange of montion-We never met with any objection to it.

But fome have fill maintained, that it coes not evi- Objections dently appear, from thefe principles, that the motion to the dewhich refults from the joint action of two natural nonntrapowers, whofe known and mealurable intenfities lave \({ }_{45}\). It will the fame proportions with AB and BC, and which alio not aptly to exert thenfelves in thofe directions, will produce a mo-peefures. tion, having the direction and proportion of AD. They will !ot, if the velocitics produced by theie forces are not in the proportion of thofe intenfities, but in the fubduplicate ratio of them. Nay, they fay, that it is not fo. If a body be impelled along \(A C\) by one fpring, and along \(A B\) by two furings. equally itrong, it will not defcribe the diagonal of a parallelogram, of which the fide \(A B\) is donisle the fide \(A C\). Nay, they add, that an indefinite number of examples ran be given where a body does not deferibe the diagonal of the parallelograna by the joint action of two forees, which, feparately, would caufe it to cleferihe the fides. And, laftly, they fay that, at any rate, it does not appear evident to the mind, that cwo incitcments to motion, ha. ving the directions and the fame proportion of intenfi. ty with that of the fides of a parallelogram, actually generate a third, which is the immediate caufe of the motion in the diagonal. An equivalent force is not the fame with a refulting force.

Yet we fee numberlefs cafes of the compofition of incitements to motion, and they feem as determinate, and as fufceptible of being combined by compolition, as the things called moving forces, which are meafured by the velucities: we fee them actually fo combined in a thoufand inffances, as in the example already given of a lighter dragged by two horfes pulling in dificrent directions. Nay, experiment thews, that this compofution follows precifely the fame rule as the compofition of the forces which are meafured by the velocitics; for if the point A (fig. 1.) be pulled by a thread, or preffed by a fpring, in the direction AB, and by another in the direction AC , and if the preflures are proportional to AB and AC, then it will be withheld from moving, if it be pulled or preffed by a third force, acting in the direction A \(d\), oppofite to AD , the preflure being alfo proportional to AD . This force, acting in the direction Ad, would certainly withftand an equal force acting in the direction \(A D\); therefore we muft conclude, that the two preffures \(A B\) and \(A C\) really generate a force AD. This uniform agreement flew's \(3 \mathrm{~T}_{2}\) 。 tbat
scenad fave that the compofition is dedacib'c from fixed principles; of Musturn but it coocs not appear that it ean be held as deinonArated by the arguments employed in the cafe of motions. A demonifration of the compofition of preffures is aill wanted, in order to render mechanica a demonifraive feience.

This compofition is of more dif. ficuit muve tigation.

Aecurdingly, philofophers of the firf eminence have turned their attention to this problem. It is by no meanseafy; being fo nearly allied to firit principles, that it mult be difficult to tind axioms of greater finplicity by which it inay be proved.

Mechanicians generally contented themfelves with the fulution given by Ariftote; but this is merely a compolition of motions: indeed he does not give it for any thing clie, and ealls it "curecors tav fo ar." The firtt writer who appears to have confidered it as different from the mere compofition of motions, was the celebrated Duich engineer Stevinus in his work on Shices ; but his folution is ohfcure. It was fulficient, however, to coavince Daniel Bernoulli of the neceflity and the ditficuity of the problem. He has given the firit complete demonftration of it in the falt volume of the Commentaries of the Imperial Academy of Sciences at St Feterforrgh. It is extremely ingenious ; but it is tedious and intricate, requiring a feries of 15 propolio tions to deinonitrate that two prefflucs, having the directions and magnitudes of the fides of any parallelogram, compofe a third, which has the direction and magnitude of its diagonal. His firlt propofition is, that two equal prefures, asing at right angles, compofe at third, in the direfion of the diagonal of a fuuare, and baving to cither of the other two the profurtion of the diagonal of a Square to its fides.

Mr D'Alembert has greatly firmplified and improved this demonilration, by beginning with a cafe that is felfevident; namely, If three equal forces are inclined to each otber in equal angles of 120 degrees, any one of them will belance the combined aation of the other two. Surely; for neither of them ean prevail. Therefore two equal forces, inclined in \(2 n\) angle of 120 degrees, produce a third, which has the direction and proportion of the diagnnal of the rhombus; for this is equal and oppoofite to one of the three above mentioned. He then demonftrates the fame thing of two equal forces inclined in any angle ; and by a feries of eight propolitions more, demonftrates the general theorem. This differtation is in the Memoirs of the Academy at Paris for 1769. He improves it flill farther in a fubfequent memoir.

Mr Riceati and Mr Fonfenex, in the Commentaries of the Academy of Turin, have given analytical demonftrations, which are alfo very ingenious and concife, but require aequaintance with the higher mathematics. There is another very ingenious demonftration in the Fourral dics Sçavans for June 1764 , but too obfeure for an elementary propolition. It is fomewhat fimplified by Belidor in his Ingenieur Frangois. Frilius, in his Cofmograpbia, has giveu one, which is perhaps the beft of all thofe that are eafily comprehended withont acquaintance with the higher mathematics: but we imagine that, although no one can doubt of the conclufion, it has not that intuitive evidence for every ftep of the procefs that feems neceflary.

We here offer another, compofed by blending together the methods of Bernoulli and D'Alembert ; and we imagine that no objection can be made to any ftep
of it. We limit it entirely to preflures, and do not at SecondLank all confider nor empluy the motions whiela they may be of Motion, fuppofed to prodace.
(A) If two equal and oppofite preffures or ineite. ments to motion act at once on a material particle, it fuffers no change of motion ; for if it yields in cither direction by their joint action, one of the preffures prevails, and they are not equal.

Equal and oppofite preffures are faid to balance each other ; and fuch as balanee mult be efteemed cqual and oppofite.
(B) If \(a\) and \(b\) are two magnitudes of the fame kind, proportional to the intenfities of two preffures whicls act in the fame direction, then the magnitude \(a+b\) will meafure the intenfity of the preflure, which is equivalent, and may be called equal, to the combined effort of the other two; for whe:a we try to furm a notion of proffure as a meafurable maguitude, diftinct from motion or any other eflect of it, we find nothing that we can meafure it by but mother preffure. Nur have we any notion of a double or triple preflure different from a preflore that is equivalent to the joint effort of two or three equal prefiares. A preflife \(a\) is aecounted triple of a preffure \(b\), if it balances three preflures, each equal to \(b\), acting together. Therefore, in all propor. tions which ean be expreffed by numbers, we muft ac. knowledge the legitimacy of this meafurement; and it would furely be affectation to omit thofe which the mathematicians eall incommonfuralle.

In like manner, the magnitude \(a-b\) mult be acknowledged to meafure that preflure which arifes from the joint action of two preflures \(a\) and \(b\) acting in oppofite directions, of which \(a\) is the greatefl.
(C) Let ABCD and \(\mathrm{A} b \mathrm{C} d\) (fig. A) be two rhom. bufes, which have the common diagonal AC. Let the angles BA \(l\), DA \(d\), be bifected by the ftraight lines \(A E\) and \(A F\).

If there be drawn from the points E and F the lines EG, EH, \(\mathrm{Fg}, \mathrm{F} h\), making equal angles on cach fide of EA and FA, and if \(\mathrm{G} g, \mathrm{H}^{2}\) be drawn, cutting the diagonal \(A C\) in \(I\) and \(L\) : then \(A I+A L\) will be greater or lefs than \(A Q\), the half of \(A C\), according as the angles \(\mathrm{GEH}, \mathrm{gF}\) b, are greater or lefs than \(\mathrm{G} \AA H\), \(g\) A 1 .

Draw GH, \(g h\), cutting AE, AF, in O and 0 , and draw \(\mathrm{O}_{0}\), cutting AC in K .

Becaufe the angles AEG and EAG are refpectively equal to AEH and EAH, and AE is common to both triangles, the fides \(\mathrm{AG}, \mathrm{GE}\) are refpectively equal to \(\mathrm{AH}, \mathrm{HE}\), and GH is perpendicular to AE , and is bifected in O ; for the fame reafons, \(g\) gh is bifected in o. Therefore the lines \(\mathrm{G} g, \mathrm{O} 0, \mathrm{H} h\), are parallel, and IL is bifected in K . Therefure \(A I+A L\) is equal to twice AK. Moreover, if the angle GEI be greater than GAH, AO is greater than EO, and AK is greater than \(K Q\). Therefore \(A I+A L\) is greater than \(A Q\); and if the angle GEH be lefs than GAH, A I \(+A L\) is lefs than AQ.
(D) Two equal preffures, acting in the directions \(A B\) and \(A C\) (fig. 2.), at right angles to each other, compofe a preffure in the direction AD , which bifects the right augle ; and its intenity is to the intenfity of each of the conftituent preflures as the diagonal of a fquare to one of the fides. It is evident that the direction of the preflure, generated by their joint action,
e:on fle aw will bifcet the angle formed by their directions; becaufe of Mosion. no reation can be affigned for the direction inclining more to one fide than to the other.

In the next place, fince a furee in the direction AD does, in fact, arife from the joint action of the equal preffures AB and AC , the preflure AB may lee conceived as ariling from the joint adion of two equal forees fimilarly inclined and proportioned to it. Draw EAF perpendicular to AD. One of thefe forces mult be directed alung AD , and the other along AE . In like manner, the preffure AC may anife from the jpint action of a preffure in the direction \(A D\), and an equa! prefure in the direction AF. It is alfo plain, that the preflures in the directions \(A E\) and \(A F\), and the two preffures in the direction AD , mult be all equal. And alfo, any one of them mult have the fame proportion to AB or to AC , that AB or AC has to the furce in the direction AD , arifing from their joint action.

Therefore, if it be faid that \({ }^{\circ} \mathrm{AD}\) dues wot meafure the preflure ariting from the joint action of \(A B\) and AC , let \(\mathrm{A} d\), greater than AD , be its jult meature, and nake \(\mathrm{Ad}: \mathrm{AB}=\mathrm{AB}: \mathrm{Ag}=\mathrm{AB}: \mathrm{A} e\). Then Ag and Ae have the fame inclination aad proportion to \(A B\) that \(A B\) and \(A C\) have to \(A d\). We deternine, in like manner, two forces \(\mathbf{A} f\) and \(A g\) as conilituents of AC .

Now \(A d\) is equivalent to \(A B\) and \(A C\), and \(A B\) is equivalent to \(\mathrm{A} \varepsilon\) and \(\mathrm{A}_{g}\); and AC is equivalent to. Af and \(\mathrm{A} g\). Therefore \(\mathrm{A} d\) is equivalent to \(\mathrm{A}_{e}\), Af, Ag, and Ag. But (A) \(\hat{A} e\) and \(A f\) balance each other, or annihilate tach other's effect ; and there remain only the two forces or preffures Ag, Ag. Therefore (\(B\)) their meafure is a magnitude equal to twice \(\mathrm{A}_{\delta}\). But if \(\mathrm{A} d\) be greater than the diagonal \(A D\) of the fquare, whofe fides are \(A B\) and \(A C\); then A \(g\) mult be lefs than A I, the fide of the fquare whofe diagunal is AB. But twice A \(g\) is lefs than AD, and much lefs tban \(\mathrm{A} d\). Therefore the meafure of the equivalent of \(A B\) and \(A C\) camot be a line \(A d\) great. er than AD. In like nanner, it camot be a line As that is lefs than AD. Therefore it mult be equal to AD , and the propofition is demonftrated.
(E) Cor. Two equal forces \(\mathrm{AB}, \mathrm{AC}\), acting at right angles, will be balanced by a force \(A O\), equal and oppofite to \(A D\), the diagonal of the iquare whofe fides are \(A B\) and \(A C\); for \(A O\) would balance \(A D\), which is the equivalent of \(A B\) and \(A C\).
(F) Let AECF (fig. 3.) be a rhombus, the achite angle of which EAF is half of a right anyle. 'I'wo equal preffures, which have the directions and meafures \(\mathrm{AE}, \mathrm{AF}\), compofe a preflure, having the direction and meafure AC, which is the diagonal of the rhombus.

It is evilent, in the firll place, that the compound force has the direction AC, which bifects the angle EAF. If AC be not its juft meafure, let it be AP lefs than \(A C\). Let \(A B C D\) be a fquare deferibed on the fame diagonal, and make AP: AQ = AE: AO, \(=\mathrm{AF}:\) Ao. Drav KOG, K og perpendicular to \(\mathrm{AE}, \mathrm{AF}\); draw \(\mathrm{Gl} g, \mathrm{OH}_{0}, \mathrm{EG}, \mathrm{EK}, \mathrm{Fg}, \mathrm{FK}\), PF , and PE.

The angles \(C A B\) and FAE are equal, each being half of a right angle. Alfo the figures AEPF and AGEK are fimilar, becaufe AP: AC=AE:AO. Therefore FA: \(\mathrm{AP}=\mathrm{KA}: \mathrm{AE}\), and \(\mathrm{EA}: \mathrm{AP}=\) GA:AE. Therefure, in the fame manner that the
forees \(A E, A F\) are affirmed to compofe \(A P\), the forces secondtaw AG and \(A \mathrm{~K}\) may compofe the force AE , and the forces of Motion. Ag and AK may compofe the force Al?. Therefore (13) the force \(A 1\) is equivalent to the four forces \(A G\), AK, Ag, AK. But (D) AG and \(A \delta\) are the lides of a fquare, whofe diagonal is cqual to twice AI : and the two forecs \(\mathrm{AK}, \mathrm{AK}\) are equal to, or are ineafured by, twice \(A K\). Therefore the four forces \(A \mathrm{G}\), \(\mathrm{AK}, \mathrm{A} g, \mathrm{AK}\), are equivalent to \(2 \mathrm{Al}+2 \mathrm{AK},=\) 4 AH.
But beca:fe AP was fuppofed lefs than AC, the angle TPE is greater than FAE, and GEK is gieater than GAK, AO is greater than OE, and AH is greater than \(H Q\), and \(2 A H\) is greater than \(A Q ;\) and therefore \&H is greater than AC, and much gicater than AP' 'Therefore AP is not the jull meaiure of the force compufed of AE and AF.
In like mamer, it is flewn, that \(A E\) and \(A F\) do not compore a force whofe ineafure is greater than AC. It is therefore equal to \(A C\); and the propolition is demonfrated.
(G) By the fame procefs it may be demonfrated, that if BAD be half a right augle, and EAF be the fourth of a right angle, two forces AE, AF will compofe a force mealured by AC. And the procels may be repeated fur a rhombus whofe aeute angle is \(\frac{1}{8}\) th, fight, Sce. of a rigght angle; that is, any portion of a right angle that is produced by continual bifection. Two forces, forming the lides of fuch a rhombus, com. pofe a force meafured by the diagonal.
(H) Let ABCD, Abcd (fig. 4.) be two rhombufes formel by two confecutive bifections of a right. angle. Let AECF be another rhombus, whofe fides \(A E\) and AF bifect the angles \(\mathrm{BA} b\) and DA \(d\) :

The two forces \(A E, \dot{A F}\), compofe a furce \(A C\).
Bifect \(A E\) and \(A F\) in O and o. 1) raw the perpen. diculars GOH, gol, and the lines GI \({ }_{o}\), OK 0 , HL \(\%\), and the lines EG, EH, FG, Fh.

It is evident, that AGEH and \(\mathrm{A} g \mathrm{~F}\) are rhombufes; becaufe \(A O=O E\), and \(A \circ=0 \mathrm{E}\). It is alfo. plain, that fince \(b \mathrm{~A} d\) is half of BAD , the angle GAIf is half of \(b \mathrm{~A} d\). It is therefore formed by a continual. bifection of a right angle. Therefore (G) the forces \(\mathrm{AG}, \mathrm{AH}\), compofe a furce AE ; and \(A g, A h\), compufe the furce AF. Therefore the forces AG, AH, A \(\tilde{s}, \mathrm{~A} b\), acting together, are equivaleat to the forec; \(A E, A F\) acting together. But \(A G, A g\) compofe a furce \(=2 A 1\); and the furees \(\Lambda \mathrm{H}, \mathrm{A} b\) compofe a force \(=2 \Delta \mathrm{~L}\). Therefore the four forees acting together are equivalent to \(2 \mathrm{AI}+2 \mathrm{AL}\). or to \(4 \AA \mathrm{~A}\). But becaufe AO is \(\frac{1}{2} \mathrm{AE}\), and the lines \(\mathrm{G} g, \mathrm{O}_{0}, \mathrm{H}\) b, are evidently parallel, 4 AK is equal to 2 A (), or tu AC ; and the propolition is demonitsted.
(I) Cor. Let us now fuppufe, that by continual bi. fection of a aight angle we have obtained a very fuall angle a of a rhombus; and let us name the rhombus by. the multiple of \(a\) which forms its acute angle.

The propotition (G) is true of \(a, 2 a, 4 a, \& c\). The propofition (H) is true of \(3 a\). In like man er, becaufe (G) is true of \(4 a\) and \(8 a\), propofition (H) is true of \(6 a\); and becaufe it is true of \(4 a, 6 a\), and \(8 a\), it is true of \(5 a\) and \(7 a\). And fo on continually till we have demonftrated it of every multiple of \(a\) that is lefs than a right angle.
(K) Let RAS (fig. 5.) be perpendicular to \(\mathrm{AC}_{\text {. }}\).

Secondisw and let ABCD be a rhombus, whofe acute angle BAD \(\underbrace{\text { of } M \text { tion. }}\) is fome multiple of \(2 a\) that is lefs than a right angle. Let A \(b c d\) be another rhombus, whofe fides \(\mathrm{A} b, \mathrm{~A} d\) bifect the angles RAB, SAD. Then the forces \(A b\), A \(d\) compofe a force AC.

Draw \(b R, d\) s parallel to \(\mathrm{BA}, \mathrm{DA}\). It is evident, that \(\mathrm{AR} b \mathrm{~B}\) and \(\mathrm{AS} d \mathrm{D}\) are rhombufes, whofe acute angles are multiples of \(a\) that are each lefs than a right angle. Therefore (I) the forces AR and AB compofe the force A \(b\), and \(\mathrm{AS}, \mathrm{AD}\) compofe \(\mathrm{A} d\); but AR and AS annihilate each other's effect, and there remains only the forces \(\mathrm{AB}, \mathrm{AD}\). Therefore \(\mathrm{A} b\) and \(\mathrm{A} d\) are equivalent to \(A B\) and \(A D\), which compore the force \(A C\); and the propofition is demonftrated.
(L) Cor. Thus is the corrollary of laft propofition extended to every rhombus, whofe angle at A is fome multiple of \(a\) lefs than two right angles. And fince a may be taken lefs than any angle that can be named, the propofition may be confidered as demonftrated of ceery rhombus: and we may fay,
(M) Trwo equal forces, inclinted to each other in any angle, compofe a force whiuch is meafured by the diagonal of the rhombus, zubofe fictes are the meafures of the conflituent forces.
(N) Two forces AD, AC (fig. G.), having the direction and proportion of the fides of a rectangle, compofe a force AD, having the dircetion and proportion of the diagonal.

Draw the other diagonal CD, and draw EAF parallel to it ; draw BE, CF parallel to DA.

AEBG is a rhombus; and therefore the furces AE and \(A G\) compofe the force \(A B\). AFCG is alio a rhom. bus, and the force \(A C\) is equivalent to \(A F\) and \(A G\). Therefure the forces \(A B\) and \(A C\), acting together, are equivalent to the forces \(A E, A F, A G\), and \(A G\) acting togrether, or to \(A E, A F\), and \(A D\) acting together : But A.E and AF anninilate each other's action, being orpofite and equal (for cacl is equal to the half of BC). Therefore AB and AC acting together, are equivalent to AD , or compofe the force Al .
(O) Two forces, which lave the direction and proportions of \(A B, A C\) (fig. 7.) the fides of any parallelogram, compofe a force, having the direction and proportion of the diagonal AD.

Draw AF perpendicular to BD , and BG and DE perpendicular to AC .

Then AFBG is a rectangle, as is alfo AFDE; and \(A G\) is equal to \(C E\). Therefore (\(N\)) \(A B\) is equivalent to. \(A F\) and \(A G\). Therefore \(A B\) and \(A C\) acting together, are cquivalent to AF, AG, and AC aiting together; that is, to \(A F\) and \(A E\) atting together ; that is (N) to \(A \mathrm{D}\); or the forces \(A B\) and \(A C\) compofe the force \(A \mathrm{D}\)

Hence arifes the moft general propofition,

Compnila tion of all incitement to motion.

If a material particle be urgel at once by tavo frefures or incitements to motion, whofe intenfuies are proportional to the fides of any parallelogram, and which a\& in the diredions of thofe fides, it is affelted in the jame manner as if it suere alted on by a fingle forie, whofe intenfity is meafured by the diagonal of the parallelogram, and wbich ails in its diredion: Or, two preflures, baving the direation and proportion of the fides of a parallelorran, generatic a preffure, baving the direaion and proportion of the diagonal.

Thus have we endeavoured to demonftrate from abAtract principles the perfect fimilarity of the compofition
of preffures, and the compofition of foress ricafured by Secontl:am the motions which they produce. We cannot help be- of Mation, ing of the opinion, that a feparate demonftration is indifpenfably necelfary. What may be fairly deduced seenning from the one cafe, cannot ilways be applied to the difference other. No compofition of preffures can explain the of the comchange produced by a deffecting force on a motion al- pofitions of ready exilting; for the changing preflure is the onty of prefure one that exifts, and there is none to be compoundeddifappear with it. And, on the other haud, our notions and ob- when carefervations of the compufition of motions ivilh not explain tuly exathe compolition of preffures, unlefs we take it for granted thar the preffures are proportional to the velocities; but this is perhapes a gratuitous alfumption. At any rate, it is not an intuitive propolition; and we lave mentioned fome facts where it feems that they do not follow the fame propotion. The preflure of four equal fprings produces only a double velucity. It would ap. pear, therefore, that there are circumitances which oblige us to fay, that the exertion of preflure, as a caufe of notion, is not (ahways at leaft) proportional to the real meafmable preflure. We are therefore anxious to difo cover in what the differcnce conlifts; and in the mean time nuft allow, that the preffure exeited on a body at reft is different from its exertion in producing motion. We cannot indeed fate any immediate comparifon between preffure and motion, nor have we any clear cons ception of the connection between them. It is only by our fenfations of touch that we have any notion of preffure, and it is experience that teaches us that it always accompanies every casfe of motion. We can, however, obferve the proportions of preffures, and compare them with the proportions of motion. We rery eften ob. ferve them difierent ; and therefore it was indifpenfably neceflary to invelligate the laws of combined prefiure as we did the laws of combiued motion in confequence of preflure. Yet we thould err, if we hatily ailerted that preflures are not proportional to the motions which they produce; all that we are intitled to call in donbt is, whether the preffures in their exertion, while they actually produce motion, or changes of motion, continue to he the fanse as when they do not produce motion, being withitond or balanced by oppofite preffures. Confidered as caufes of motion, we ought to think that they do not vary while they produce motion, and that the aetual preflure, while it produces a double motion, is really double, although it may be quadruple when the body exerting it is made to act on a hody that it cannot move. We are confirmed in this opiniou by obferving, that other facts thew us, that even while prodacing motion, the preflure which we call quadruple, becaule we have meafured it by four cqual preffures balancing it, is really quadruple, contidered as the caufe of motion, and produces a quadruple motion. A bow which requires four times the force to draw it to any given extent, will communicate the fame velocity to a bundle of four arrows that a bow four times cafier drawn communicates to one arrow, and will therefore produce a quadruple motion. Yet it will only produce a double velocity in the arrow that acquired a dimple velocity from a bow having one fourth of the ftrength.

Thefe difcrepancies thould excite the endeavours of mechanicians to inveftigate the laws obferved in the action of preflures in producing motion. Had this been done with care and with candour, we hould not have
ecordfax had the great difference of opinion, which fill divides philofophers, about the meafures of moving forces. But a fipitit of party, which had arifen from other caufes, gave importance to what was at firfonly a difference of exprefion, and made the partifans of Mr Leibnitz avail themfelves of the figurative language which has done fo much harm in all the departments of philofophy. Notwithitanding all our caution, it is hardly poffible to avoid metaphorical conceptions when we entploy the language of metapher. The abettors of the Leibnitzias meafure of noving forces, or perhaps, to fpeak more properly, the abettors of the Lecibnitzian meafure of that furce which is fuppofed to preserve bodies in their condition of mation-inlift, that the force which is exerted in producing any change of motion is greater in proportion as the motion changed is greater: and they give a very fpecious argument for their affertion. They appeal to the exertions which we ourfelves make. Here we are confcious of the få. Then they give fimilar exanples of the action of bodies. A clay ball, moving lix feet per fecond, will make the atsdition of une fout to the velocity of an equal clay ball that is alrcally moving four feet per fecond in the fame direction. Lut if this latt ball be already moring ten feet per fecond, we muff folluw it with a velocity of twelve fect in order to increate its velocity one foot. But, without infilting on the numberlefs paralogifms and inconfiftencies which this way of canceiving the matter would lead us into, it fuffices to obferve, that the phenomena give us abundant affurance that there has been the fame exertion in both thefe cafes. This acceleration is always accompraied by a compreffion of the balls, and the comprefion is the fame in both. This compreffion is a very gond medfure of the force einployed to produce it ; and in the prefent cafe, we need not even trouble ourfelves with any rule for its meafurement : for furcly when the comprefion is not different, but the fame, the force exerted is the fame. This is farther confirmed by obferving, that it requires :he fame furce to make the farne pit, or to give the fame mution, to a piece of ciay lying on the table of a hip's cabin, whether the fhip be failing two miles or ten miles per hour.

Thus we fee that there are firong reafons for believing, that the exertions of preflure in producing motion, or that the preflures aidially exerted, are proportional to the changes of motion obferved, and that they coincide in this refpect with uur abftrdet conceptions of moving forces.

But we have fill better arguments. None of the Leibnitzians think of denying the equal exertions of gravity, or of any of thofe powers which they call folicitations or acceleratirg forces. They all admit, that gravity, or any conltant accelerating force, produces cqual increments of velocity in equal times, and that a double gravity will produce a double increment in an equal time, and an equal increment in half of the time; and that a quadruple gravity will produce a double velocity in half the tince. All thefe things are granted by them, and their writings are full of reafonings from this principle. Now from the fact, acknowledged by the Leibnitzians, that the quadruple force of a bow gives a double velocity to the arrow, in every inftant of its action, it indifputably follows, that it has acted on it orily for half the time of the action of the four.
times weaker bow, which gives the arrow only half the secondlaw velocity ; and thus has the diferepancy between the ef- of Murion. feets of preflures and of our abitract moving forees entirely difappeared. For this circumfance of the difference in the time of acting will be found, on ftrict exanination, in all the cales of the change of motion by preffures which we meafure by their effects on a body at reft. Whell this and the appreciatle changes of actual preffure, during the time of producing the motion, are taken into contideration, all difererce vanifhes, and the compofition of preflures is in perfect harmony with the compofition of mutions, or of abllract moving forces. Dynamics is thus made a demonflrative feiefice, and affurds the opportunity of inveltigating, by obfervation and experinent, the nature of thofe mechanical powers which refide in bodies, and which appear to us under the form of preffure, inducing us to confider prefo fure as a caufe of motion.

In this, however, we are rather inaccurate. Preffure is nue of the fenfible effects of that property which is alfo the caufe of motion. It is not the preflure of a piece of lead, but its lieavinefs, that is the reafon that it gives motion to a litchen jack. Preffure is mercly a generic name, horrowed from a faniliar inftance, and given to moving forces, which have the fame nature, but different names that ferve to mark their connection with certain fulflances, in which they may be fuppofed to refide. Natural philofophy is almof entirely employed in examining the nature of thefe varions preffures or accelerative forces; and the general doctrines of dynamics, by afcertaining what is common to them all, enable us to mark with precifion what is characterillic of each.

We have now advanced very far in this inveftigation; General cofor we have obtained the criterion by which we learn follaries. the direction and the magnitude of every changing force: and, of the other hand, we fee lowe to itate what will be the effect of the exertion of any force that is known or fufpecied to act. All this we learn ly the compofition of forces; and the greatell pat of mechanical difquifition confifts in the application of this duefrine. Fur fuch reafons it merits ininute coufideration; and therefore we muft point out fome gencral conclutions from the properties of figure, which will greatly facilitate the ule of the parallelogram of furces.
I. The confituent and the refulting forces, or the fimple and compound forces, act in the lame plane ; for the fides and diagonal of a parallelogram are in oue plane.
2. The fimple and the compound forces are proportional to the fides of any triangle which are parallel to their directions. For if any three lines, \(a b, l d, a d\), be drawn paralhl to \(\mathrm{AB}, \mathrm{AC}\), and AD (fig. \(7, \mathrm{n}^{\circ} 2\).), they will form a triangle firnilar to the triangle ABD. For the fane reaions they are proportional to the fides of a triangle atd, which are refectively perpendicular to their directions.
3. Therefore each is proportional to the fine of the oppofite angle of this triangle ; for the fides of any triangle are proportional to the fines of the oppolite angles.
4. Each is proportional to the fine of the angle contained by the directions of the other two ; for AD is to \(A B\) as the fine of the angle \(A B D\) to the fine of the angle ADB . Now the fine of ABD is the fame
seconslaw with the fine of BAC contained between the directions of \(M, \ldots m\) and \(A C\), and the fine of \(A D B\) is the fame with the fine of CAD : alfo AB is to AC , or BD , as the flane of \(A D B\) (or CAD) to the fine of B.AD.
\(s^{5}\)
Some fpecalue.ve mental propoition. Ande we obsere, in the firt place, the paral- that fince \(A D\) may be the diagonal of an indefinite lel gran of fumber of parallelograms, the motion or the preffure furces. AD may refult from the joint action of many pairs of
forces. It may be procuced by forces which wonld feparately produce the motions AF and AG. This generally gives us the means of difcovcring the forees which concur in its production. If one of them, AB , is known in direction and intenfity, the direction AC, parallel to BD, and the intenfity, are difcovered. Sometimes we know the directions of hoth. Then, by drawing the parallelogram or triangle, we learn their proportions. The force which deflects any motion \(A \mathrm{~B}\) into a motion AD , is had ty fimply drawing a line from the point \(\mathbf{B}\) (to which the body would have moved from \(A\) in the time of really noving from \(A\) to D) to the point \(D\). The deflecting foree is fuch as world have caufed the body move from \(\bar{B}\) to \(D\) in the fame time. And, in the fanse manner, we get the compound motion \(A D\), which arifes from any two fimple motions \(A B\) and \(A C\), by fuppofing both of the motions to be accomplithed in fucceffion. The final place of the bo\(d y\) is the fanc, whether it moves along \(A D\) or along \(A B\) and \(B D\) in fucceffion.

This theorem is not linited to the compofition of two mations or two forces only; for fince the combined action of two forces puts the body into the fame ftate as if their equivalent alone had acted on it, we may fuppofe this to have been the cafe, and then the action of a third force will produce a clange on this equivalent motion. The refulting motion will be the fame as if only this third force and the equivalent of the other two had acted on the body. Thus, in
PisteXxili. fig. 8 . the three forces \(A B, A C, A E\), may act at once on a particle of matter. Complete the parallelogram \(A B D C\); the diagonal \(A D\) is the force whieh is generated by \(\therefore B\) and \(A C\). Complete the parallelogram \(A E F D\); the diagonal \(A F\) is the force refulting from the combined action of the forces \(A B, A C\), and AE. In like manner, completing the parallelogram AGHF, the diagonal AH is the force refulting from the combined action of \(A, B, A C, A E\), and \(A G\), and \(f 0\) on of any number of forces.

This refulting foree and the refulting motion may be much more expelitioufly determined, in any degree of compolition, by drawing lines in the proportion and * direction of the forces in fucceffion, each from the cur of the precening. Thus, draw \(A B, B D, D F, F H\), and join \(\mathrm{AH} ; \mathrm{AH}\) is the refulting force. The demonftration is evident.

It is to be noticed here, that in the compofition of more than two forces, we are not limited to one plane. The force \(A D\) is in the fame plane with \(A B\) and \(A C\); but \(A E\) may be elevated above this plane, and \(A G\) may lead below it. \(A F\) is in the plane of \(A D\) and \(A E\), and \(A H\) is in the plane of \(A F\) and \(\Lambda G\).

Complete the parallelograms ABLE, ACKE, ELFK. It is evident that ABLFKCD is a paraltelopiped, and that AF is one of its diagonals. Hence we derive a more general theorem of great ufe.

Three forces havirat the proportion and dirclion of tie Secondiaw three fides of a parallelopifed, compole a force laving of Matiwn the proportion and direction of the diagonal.
Any number of forces acting together on one par-One force ticle of matter are balanced by a force that is equal and "a) ha. oppofite to their refulting force; for this force would ta lance many lance their refulting force which is equivalent in them in actins to. action. When this is duly confidered, we perceive that each force is then in equilibrio with the equival. nt of all the others; for a force can balance only what is equal and oppofite to it. It appears very readily by the geometrical conftruction. If, inftead of the circuit \(A, B\), D, F, H, we take B, D, F, H, A, we have BA for the equivalent of the forces \(A C, A E, A G\); hut \(A B\) is equal and oppofite to BA . Therefore the force AB is in equilibrio with the equivalent of all the others.

When any number of forces act on one particle of matter, and are in equilibrio, if they be confidered as acting in pareels, the equivalents of thefe parcels are in equilibrio; for let the forces \(A B, A C, A E, A G, A b\), be in equilibrio, and let them be confidered in the two parcels \(A B, A C\), and. \(A E, A G, A b\); then \(A D\) is the equivalent of \(\mathrm{AB}, \mathrm{BD}\) (or AC), and DA is the equivalent of \(\mathrm{DF}, \mathrm{FH}, \mathrm{H}+(\) or \(\mathrm{A} b\)) : now AD and DA balance each other. This corollary enables us to fimplify many intricate complications of force; it alfo enables us to draw accurate conelufions from very imperfect obfervations. In moft of our practical difcuffions we know, or at leaf we attend to, a part only of the forces which are acting on a material particle; and in fuch cafes we reafon as if we faw the whole: yet is our mathematical reafoning good with refpect to the equivalent of all the parcels which we are contemplating, and the equivalents of the fmaller parcels of which it conlifts ; and the neglected force, or parcel of forces, induces no error on our conclufions.

In the fpuntancous phenomena of nature, the invefti- Expeditious gation and difrovery of our ultimate object of fearch is methedsfor frequently very difficult, on account of the multiplicity ohe refultof direcions and intenfities of the operating forces or inn renotion motions. We may generally facilitate the procefs, by in cumplifubftituting equivalent forces or motions acting in con- cated cafes venient directions It is in this way that the nariga. tor computes the fhip's place with very little tromble, by fubltituting equivalent motions in the meridional and equatoreal directions for the real oblique courfes of the fhip. Inftead of fetting down ten miles on a courfe, S. \(3^{6.52 .}\) W. he fuppofes that the flhip has failed eight miles due fouth, and fix miles due weft, which brings her near to the fame place. Then, inftead of fourteen miles fouth-weft, he fets down ten miles fouth and ten miles weft; and he proceeds in the fame way for every other courfe and diftance. He does this expeditioully by means of a traverfe table, in which are ready calculated the meridional and equatoreal fides of right angled triangles, correfponding to every courfe and diftance. Haying done this for the courfe of a whole day, he adds all the fouthings into one fum and all the weftings into another: he confiders thefe as forming the fides of a right angled triangle; he looks for them, paired together, in his traverfe table, and then notices what angle and what diftance correfponds to this pair. This gives him the pofition and magnitude of the ftraight line joining the beginning and end of his day's work.

Cecondlaw The miner proceds in the fame way when he takes of Motinn. the plan of fubterraneous working?, incaluring, as he goes along, and noticing the bearing of each line by the compals, and fetting down, from his traverfe table, the nort hing or fouthing, and the ealting or welling, for each oblique line : but there is another circumftamee which he muft attend to, namely, the flope of the various drifts, galleries, and other workings. This he does by noting the rife or the dip of each floping line. He alds all thefe into two fums; and taking the rifings from the dips, he obtains the whole dip. Thus he learns how far the workings proceed to the north, how far to the eaft, and how far to the dip.

The reflecting reader will perceive that the line joining the two extrenities of this progreflion will form the diagonal of a rectangular parallelopiped; one of whofe fides lies north and fouth, the other lies eaf and weft, and the third is right up and down.

The mechanician proceeds in the verg fame way in the iuveftigation of the very complicated phenomena which frequently engage his attention. He confiders every motion as compounded of three motions in fome convenient directions, at right angles to each other. He alfo confiders every force as refulting from the joint action of three forces, at right angles to each other, and takes the fum or difference of thefe in the fame or oppofite directions. From this procefs he obtains the three fides of a parallelopiped, and from thefe computes the polition and magnitude of the diagonal. This is the motion or force refulting from the compofition of all the partial unes.
Forces may This procedure is called the Estimation or Re-

\section*{be eltima-} ced by. or sduced to,
\({ }^{64}\) given diAgiven di
rcotiun,

\section*{65 \\ Or a given} uction of motions and forces.
A motion or force AB (ing. 9.) is faid to be efimated in the direction EF, or to be refluced to this direction when it is conceived as compounded of the motions or forces \(A C, A D\), one of which \(A C\) is paral. lel to EF, and the other AD is perpendicular to it. This expreflion is abundantly fignificant; for it is plain that the motion AD neither promotes nor hinders the progrefs along EF , and that AC expreffes the whole progrefs in this direction.

In like manner, a force AB (fig. 10.) is faid to be effimated in, or reduced to, a given plane EFGH, when it is conccived as refulting from the joint action of two forces AC, AD, one of which is parallel to a line \(a b\) drawn in that plane, and the other \(A D\) is perpendicular to it The polition of the line \(a b\) is determined by letting fall \(\mathrm{B} b\) perpendicular to the plane, and drawing \(b \mathrm{P}\) to the point P , in which BA meets the plane; then \(A a\) heing drawn parallel to \(B b\), will cut off \(b a\), which is the reduction of the motion \(A B\) to the plane. Drawing - C parallel to a \(b\), and completing the paral. lelogram \(A C B D\), it is evident that the motion \(A B\) is equivalent to AD and AC , which is parallel to \(a b\), and the three furces \(A B, A C, A D\), are, as they fhould be, in one plane perpendicular to the plane EG.

If three forces \(\therefore B, A C, A D\) (fig. II.), are in equilibrio, and are reduced to any one direction \(d \mathrm{~A} /\), or to one plane EFGH, the reduced forces are alfo in equilibrio.

Firfl, Let them be reduced to one direction \(d /\) by drawing the perpendiculars \(\mathrm{B} b, \mathrm{C} c, \mathrm{D} d\); make AL equal to \(A D\), and join \(B L, C L\), and draw the perpendiculars \(L\) l, \(C c\); then, becaufe, the forces \(A B, A C\), Suppl. Vol. I. Part II.

AD , are in equilibrio, ABLC nut be a parallelogram, secondlaw and \(A L\) is the force equivalent to \(A B\) and \(A C\) com. of AKorn, bined; then, becaufe the lines \(\mathrm{D} d, \mathrm{~B} b, \mathrm{C} c, \mathrm{~L} l\), are parallel, \(d A\) is equal to \(A l\), and \(A b\) to \(C 0\), or to cl ; therefore \(A b\) is equal to the fum of \(A b\) and \(A c\), which are the reductions of \(A B\) and \(A C\); therefore \(d A\) is equil to the fame fum, and in equilibrio with them.

Secondly, Let them be reduced to one plane EFGH. and let \(\alpha, \xi_{,} \alpha, \alpha \delta\), be the reduced forces. The lines \(D\). \(\mathrm{A}_{\alpha}, \mathrm{B}_{3}, \mathrm{C} x, \mathrm{~L}_{\lambda}\), are all parallel, being perpendicular to the plane; therefore the planes \(A B \in \alpha\) and \(C L x \%\) are parallel, and \(\alpha \beta, \times \alpha\), are parallel. For fimilar rea. fons \(\beta \lambda, \alpha\), , are parallel ; therefore \(\alpha \beta \lambda x\) is a parallelogram. Alfo, becauie the lines \(\mathrm{D}_{\delta,} \mathrm{A}_{\alpha}, \mathrm{L}_{\mathrm{A}}\), are parallel, and 1) \(A\) is equal to \(A L\); therefore \(\delta \alpha\) is equal to \(\alpha\). But becaufe \(\alpha 3 x x\) is a parallelogram, the forces \(\alpha \cdot f, \alpha x\), are equivalent to \(\alpha\), ; and \(\alpha \delta\) is equal and uppofite to \(\alpha \lambda\), and will balance it ; and therefore will balance \(\alpha \beta\) and \(\alpha x\), which are the reductions of \(A \dot{b}\) and \(A C\) to the plane EFGH, while \(\alpha\) is the reduction of AD; therefore the propolition is demonftrated.

The moft ufual and the mof ufeful mode of reduc. The moft tion is to eflimate all forces in the directions of three ufeful mote lines drawn from one point, at right angles to each of reducother, like the three plane angles of a rectangular cheft, their co.or forming the length, the breadth, and the depth of the dinates. cheft. Thefe are commonly called the three co crdinates. The refulting force will be the diagroual of this parallelopiped. This procefs oceurs in all difquiftions in which the mutual action of folids and fluids is conts. dered, and when the ofcillation or rotation of detached
free bodies is the fubject of difcuffion.
The only other general theorem that remains to be Relative deduced from this law of motion is, that if a number motions of of bodies are moving in any manner whatever, and an! o ies not cqual force act on every particle of matter in the fane affected by or parallel directions, their relative motions will fuffer reous equal no change ; for the motion of any body A (fig. 12.), and raralel relative to another body B , which is alfo in motion, is incc. compounded of the real motion of \(A\), and the oppolite to the real motion of \(B\); for let \(A\) move uniformly from \(A\) to \(C\), while \(B\) defcribes \(B D\) uniformly, draw \(A \mathrm{D}\), alfo draw \(A E\) equal and parallel to BD , join EC . DC, ED. The motion of \(A\), relative to \(B\), confifts in its change of pofition and diftance. Had A deferibed AE, while B deferibed BD, there would have been no change of relative place or diftance; but \(A\) is now at C , and DC is its new direction and dillance. The relative or apparent motion of \(A\) therefore is EC. Complete the parallelogram ACFE; it is plain that the mocion EC is compounded of EF, which is cqual and parallel to \(A C\), the real motion of \(A\), and of \(E A\), the equal and oppolite to \(B D\), the real motion of \(B\).

Now let the metuons of \(A\) and \(B\) fultain the fame change ; let the equal and parallel motions \(\mathrm{AC}, \mathrm{BH}\). be compeanded with the motions \(A C\) and \(B D\); or let forees act at once on \(A\) and \(B\), in the parallel ditections \(A G, B H\), and with equal intenfities ; in cither fuppoGition, the refulting motions will be \(A c_{4} B a^{\prime}\), the dia. gonals of the parallelugrams \(A \mathrm{G} \subset \mathrm{C}\), and \(\mathrm{BH} d \mathrm{D}\). Conftruct the figure as before, and we fee that the 1 c lative motion is now ec, and that it is the fame with EC both in refpeet of magnitude and pofition.

Here we fill fee the confant analogy between the compolition of motions and the compolition of fonces.

SecondLaw In the firl cafe, the relative motions of things are not \(\underbrace{\text { of Motion. }}\) changed, whatever common motion be compounded with them all ; or, as it is ufually, but inaccuratcly, expreffed, althongh the fpace in which they move be carried along with any motion whatever. In the fecond cafe, the relative motions and actions are not changed by any external force, however great, when equally exerted on every particle in parallel directions.

Thus it is that the evolutions of a fleet in a uniform current are the fame, and produced by the fame means, as in ftill water. Thus it is that we walk about on the furface of this globe in the fame manner as if it neither revolved round the fun, nor turned round its axis. Thus it is that the fame ftrength of a bow will communieate a certain velocity to an arrow, whether it is thot caft, or welt, or north, or fouth. Thus it is that the mutual actions of fublunary bodies are the fame, in whatever directions they are exerted, and notwithftanding the very great changes in their velocitics by reafon of the earth's rotation and orbital revolution. 'The real velocity of a body on the earth's equator is about 3000 feet per fecond greater at midnight than at midday. For at midnight the motion of rotation nearly confpires with the orbital motion, and at midday it nearly oppofes it. The difference between the velocities at the beginning of January and the beginning of July is vally greater. And at other times of the day, and other feafons of the year, both motions of the earth are tranfverfely compounded with the eafterly or welterly motion of an arrow or cannor: bullet. Yet we can obferve no
change in the effects of the inutual actions of bodies.
This affords a demonItration of the proportionality of moving forces to the molions produced by them,

This is an important obfervation; becaufe it proves that forces are to be meafured by no other fcale than by the motions which they produce. We have had repeated occafions to mention the very different eftimation of moving forces by Mr Leibnitz; and have flewn how, by a very partial confideration of the action of thofe natural powers called prefures, he has attempted to prove that moving forces are proportional to the fquares of the velocities; and we fhewed briefly, in what manner a right confideration of what paffes when motion is produced by meafurable preflures, proves that the forces really exerted are as the velocities prodiced. But the moft copious proof is had from the prefent obfervation, that, in fact, the mutual actions of bodies depend on their relative motions alone.
tem, are counterparts of cach other. Since this indc. Secondlaw pendence is a matter of obfervation in all terrettrial bo. Uf Morion. dies, we are intitled to fay, that the powers which the Author of Nature has imparted to natural bodies are no way different from what are competent to matter once called into exiltence. And it alfo follows from this, that we muit always remain ignorant of the abfolute motions of bodies. The fact, that it has required the unremitted Atudy of ages to difoover even the relirtive motions of our folar fyitem, is an argument to prove that the influence of this nechanical principle extends far beyond the linits of this fublunary world; nor has any phenomenon yet been exhibited which thould lead us to imagine that it is not univerfal.

When we have made ufe of thefe arguments with Sn Rernoulfome zealous partizans of Mr Leibnitz's doctrine, they li's defence have anfwered, that if indeed this independence of the 'f this latt relative motions of terreftrial bodies were obferved to without obtain exactly, it would be a conclufive argunent. But furce.
the motion with which all is carried along is fo great in comparifon with the motions which we can producè in our experiments, that the fmall additions or diminutions that we can make to the velocity of this common motion mult obferve very nearly the proportions of the additions or diminutions of their fquares. The differences of the fquares of 2,3 , and 4 , are very unequal; but the differencus of the fquares of \(9,10,11\), are much nearer to the ratio of equality ; and the differences of the fquares of \(1000001,1000002,1000003\), do not fenfibly deviate from this ratio. But it is not fact that we cannot produce motions which have a very fenfible proportion to the common motion. The motion of a cannou ball, difcharged with one-third of its weight of powder, is nearly equal to that of the rotation of the earth's equator. When, therefore, we difcharge the ball eaflward, we double its motion; when to the weftward, we deftroy it. Therefore, according to Leibnitz, the action in the firf cafe is three times the action in the fecond. In the firt cafe it changes the fquare of the velocity (which we may call I) from 1 to 4 ; and, in the fecond, it changes it from 1 to 0 . But fay the Leibnitzians, the velocity of rotation is but \(z^{3}\) of the orbital velocity of the earth, and our obfervations of the velocitics of cannon bullets are not fufficiertly exact to cnfure us againt an error of \(\frac{1}{33^{\frac{1}{2}}}\). But the later olfervations on the peculiar motions of the fixed fars concur in fhewing, that the fun, with his attending planets, are carried along with a very great motion, which, in all probability, has a fenfible ratio to the orbital motion of the earth. This mult make a prodigious change on the earth's abfolute motion, according as her orbital motion confpires with, oppofes, or crofies, this other motion : the eath may even be at abfolute rett in fome points of its orbit. Thus will the compoition with the motions produced in our experiments be fo valied, that eafes mugl occur when the difference of the refults of the two meafures of force will be very fenfible.

But, farther, they have not atiended to the agreement of our experiments, when the difcharges of cannon are made in a direction tranfverfe to that of the common motion. Here the immenfity of the common motion, and the minutenefs of our experimental velocities, can have no cffect in diminifhing the difference of the refults of the two doctrines. This will appear diftinetly

Secondfaw incly to cvery reader who is much converfant in dif. of Motio quiftions of this kind; and it is in thefe more moderate mutions that the complete independence of the relative motions on the common motions mult accurately appears. Pendulum clocks and watches have been often executed which do not deviate from perfect equability of motion one part in 86400 . This could nut be obtained in all directions of the offillations, if the forces deviated from the ratio of the velocities one part in \(86+00\).

On the whole, we may conlider it as eftablifhed on Perfect a greenent of the fureft foundation, that the action of thofe powers of the abfract natural bodies which we call preflure, fuch as the force notion of firce with all o:4 ac curate ol) Cervacions of che exertions of natural dies, as well as the action of thofe other incitements to motion which we call attrabions and repulforis, fuch as gravitation, magnetifm, and electricity -is proportional to the change of velocity rroduccd by it. And we mult obferve here, that this is not a mere mode of conception, the refult of the laws of human thought, which cannot conceive a natural power as the caufe of motion otherwife than by its producing motion, and which cannot conceive any degree of moving power different from the degree of the motion. This is the abilract doctrine, and is true whether the preflures are proportional to the velocities or to the tquares of the velocities. But we fee farther, that whatever is the preflure of a fpring (for example) on a quiefcent body, yet the preffure actually exerted in producing a double velocity is ouly double, and not quadruple, as our firft imperfect obfervations make us imagine.

Sir Iface Newton has added another propofition to the number of laws of mution; namely, that every action is accompanied by an equal and contrary reaaion. But in affarming this to be a law of nature, he only means that it is an univerfal fact: And he makes this affirmation on the authority of what le conceives to be a law of human thought; namely, that thofe qualities which we find in all bodies on which we can make experinents and obfervations, are to be confidered as univerfal qualities of body. But we have limited the term laze of inotion to thofe confequences that neceffarily flow from our notions of motion, of the caufes of its production and changes. Now this third Newtonian propofition is not fuch a refult. A magnet is faid to act ou a piece of iron when, and only when, the vicinity of the magnet is obferved to be accompanied by certain motions of the iron. Dut it by no means follows from this obfervation, that the prefence of the iron thall be accompanied by any motion, or any change of fate whatever of the magnet, or any appearance that cau fuggeft the notion that the iron acts on the magnet. When this was obferved, it was accounted a difcovery. Newton difcovered that the fun acts un the planets, and that the earth acts on the moon; and Kepler difcovered that the moon reacts on the earth. Newton had olferved that the iron reaets on the magnet ; that the actions of electrified bodies were mutual; and that every action of fublunary bodies was, in fact, accompanied by an equal and contrary reaction. On the authority of his rule of philofophizing, he affirmed that the planets react on the fun, and that the fun is not at reft, but is continually agitated by a frmall motion round the general centre of gravitation. He pointed out feveral confequences of this reaction. Aftronomers examined the celeftial
motions more narrowly, and found that thofe confe Seend Law quences do really obtain, and ditturb all the planetary of Motion. motions. It is now foond that this reciprocity of action obtains throughout the folar fyltem with the utmof precifion, and that the third Newtonian propofition is really a law of nature, although it is not a law of hue man thought. It is a difoovery. The conerary in. volves no abfurdity or contradiction. It would inded be contrary to experience; but things might have been otherwife. It is conceivable, and polfible, that a ball A thall llrike another equal ball \(B\), and carry it along with it, without any dinnution of its velocity. The fact, that the velocity of \(A\) is reduced to one-half, is the indication of a force reliding in 13 , which force changes the motion of A ; and the intenlity of this force is learised from the change which it produces. This is found to be equal to the change produced by \(A\) on \(B\). And thus the reaction of \(B\) is difcovcred to be equal to the action of \(A\).

It is highly probable, that this univerfality and equality of reaction to action is the confequence of fome general principle, which we may in time difcover ; meanwhile we are intited to fuppofe it univerfal, and to reafon from this topic in our difquifitions about the actions of bodics on each other.

Although the celebrated philofophers of Europe Manpertir have at laft agreed in the reception of the two propofi-ie, Leibuitz, tions fu largely difcuffed by us as the laws of motion, and other they have differed exceedingly in their opinion about phersotheir origin and validity: Some afferted that they are phers, have entirely matiers of experience; while others affirmed very inadethem to be neceflary truths. The royal academy ofquate opiBerlin made this quetion the fubject of their prize dif- censing the fertation in the year 1744. Mr Maupertuis, prefidene fenningtion of the academy, publifhed a differation; in which he of the laws endeavoured to prove that they are neceffary truths, only of motion. becaufe they are fuch as make the quantity of action the leaf pofible an cconomy which is worthy of infinite wifdom ; and therefore certainly directs the choice of the A11thor of Nature. On this accoumt alone are they neceffary truths.

But this is not the way to confider a quellion of this kind. We know too little about intinite wifdom to be able to fay with Melfrs Leibnitz and Maupertuis, that the Deity fhould or fhould not imprefs on bodies laws different from thofe which are effential to matter; and we are not to inquire whether God could or could no: do this. We know from our own experience, that matter, when fubjected to the action of intelligence, may be moved in a way extremely different from what it would follow if left to itfelf, and that its motions may either be regulated by fixed, but contingent, laws, or may be without any conflancy whatever, and vary in every inftance. When we fuppofe the exittence of matter and motion, a variety of truths are involved in the fuppofition, in the fame manner as all the theorems in the third book of Euclid's Elconents are involved in the conception of a circle and a ftraight line. Our firft employment fhould be to evolve thofe truths. We can do this in no way but by firt noticing the relations of the ideas that we have of the different objects of contemplation, and then following the laws of human thought in our judgments concerning thofe relations. This procels of the mind is expreffed in the train of a geometrical demonftration. The different parts or argu-

\section*{D Y N A M I C S.}

Secondlaw mentations of this train are not the caufes of our con: clufions, but the means by which we fe.m our judgement; not the reafons of the thath of our ultinate conclufion, but the fteps by which we arrive at the knowledge of it. The young geometer generally thinks orherwife: But that this is the matter of fact is plain from this, that more than one demonftration, and often very different, can be given of the fame theorem. We mult proceed in the fame manner in the prefent quedion ; and the firt geveral truths which we find involved in the notions of matter, motion, and force, mult be received as neceffary truths. The fteps by which we arrive at the difcovery are the laws of human thought; and the expreflion of the difcovery, involving both the truth itelf and the manner of conceiving it, is a necef. fary law of motion. There may he other facts, perhaps as general as any of thofe neceflary laws, but which do not neceffarily refult from the relations of our notions of motion and of force. Thefe are difcuvered by cbfervation only; and they ferve to characterife the forces which nature prefents to our view. Thefe facts are contingent laws of motion.

We apprehend that this method has been followed in treating this article. The fret propofition, termed c law of motion, is only a more convenient way of exyreffing our contemplation of motion in body as an effect of the general uaufe which we term force. The fecond propolition does nothing but exprefs more diftinclly the relation between this caufe and its effect ; it expreffes what we mean by the magnitude and the kind of the caufe. The propofition, flating the compofition of forces, is but another form of the fame law, better fuited to the ordinary procedure in geometrical difquifitions.

Tuese propofitions might have completed the doctrines of dynamics; but it appears that, in order to the production of a material univerfe which fhould accomplifh the purpofes of the Creator, it was neceffary that there be certain characteriftic differences between the forces inherent in the variuns collections of matter which compofe this univerfe. The facts or phyfical laws (for the above-mentiuned laws are metaphyfical) of mution may be different from thofe which wouid have heen obferved had matter been left entirely to itfelf. This difference may have introduced other laws of motion as neceffarily refulting from the mature of the forces. We have occalionally mentioned fome inftances where this appears to obtain, but gave good rea. fons for affirming, that a due examination of all circumflances which may be obferved in the production or variation of motion by thofe forces, has demonftrated that there are no fuch deviations from the two laws of motion alrezdy determined, but that all the mechanical powers of bodies, when confidered merely as caufes of motion, act agreeably to the fame laws. Careful examiuation was, however, faid to be neceffary.

This examination muft confift in dillinctly noticing the circumftances that occur in the production of motion by any force whatever. It is by no means enough to) Hate finply the intenfity of the force and the direcfion of its exertion. If a force continue to act, it conth. uns to vary the motion already produced. Should ine force clange its intenfity or direction while it is awing, thefe circumfances mult induce fill farther
changes in the motion ; and it is not till all a ation has of detele. ceafed that the motion is brought to its oftenfible flate, rated and in which it is the orjeft of our attention and our future difcufions. Inflances of the effects of fuch coritinued and fuch varied actions are to be feen in molt of the plenomena of nature or art. The communication of motion by impulfe is perhaps the only initance (very frequent indeed) that can be produced where this is not neceflary: Nay, we fhall perhaps find reafon to conclude, that this intance is not an exception, and that even the communication of motion from one billiard ball to another is brought about by an action continued for fome time, and greatly varied during that time. Much preparation is therefore neceflary before we can apply the general laws of motion to the folution of moft of the quertions which come before us in the courfe even of our elementary difquifitions. We mult lay down fome general propofitions which determine the refults of the continued, and perhaps varied, actions of moving forces; and we mult mark the different effects of the fimple continuation of action, and alfo thofe of the variations in this continued action, both in refpect of intenfity and ourection. The effect of a mere continuance of action mult be an acceleration of the motion ; or a retardation of it, if the force continue to act in the oppofite direction. The effect of the continued action of a tranfverfe force mult be a continual deflection, that is, a curvelineal motion. Thefe mutt therefore now occupy our attention in their order.

\section*{Of Accelerated and Retarded Motions.}

All men can perceive, that a ftone dropped from the hand, or fliding down an uniform ीope, has its motion continually accelerated, and that the motion of polisial er. an arrow rifing perpendicularly through the air is con-our conceptinually retarded; and they feel no difficulty in conceiving thefe clanges of motion as the effects of the con, ftone is in a different condition in refpect of motion in to motion the beginning and the end of its fall. In what refpect do thefe ftates of the body differ? Only in refpect to what we call its velocity. This is an affection of motion; it is an expreffion of the relation between the two notions or ideas which concur to form the idea of motion; namely, the fpace and the time. Thefe are all the circunnilances that we obferve in a motion. Time elapfes, and during its currency a fpace is defcribed. The term velociiy expreffes the magnitude of the fpace which correfponds to fome unit of time. Thus, the rate of a fhip's motion is determined, when we fay that it is nine miles in an hour, or nine miles per lour. We fometimes fay (but aukwardly) "The motion is at the rate, or with the velocity, of a mile in three days." It is moft conveniently expreffed by a number of fome given units of length, which completely make up the line defcribed during this unit of time. But the mechanicians exprefs it in a way more general by a fraction, of which the numerator is a number of inches, feet, yards, fathoms, or miles, and the denominator is the number of feconds, minutes, or hours, employed in moving along this line. This is a very proper expreffion; for when we fueak of any velocity, and continuie to reafon from it, we conceive ourfelves to fpeak of fomething that remains the fame, in the different occafions of ufing the term. Now if the velocity be conflant, it is indifferent
of Acele- how long the line may be; becaufe the time of its de- fcription will be lengthened in the fame proportion. Thus if 48 fect be deferibed in 12 feconds, 36 feet will be deferibed in 9 feconds, 16 feet will be deferibed in 4 feconds, \&c. Now \(\frac{18}{\frac{1}{2}, \frac{18}{9},}\), and \(\frac{16}{7}\), are fractions of equal value, being equal to \(\frac{4}{3}\), or 4 , that is, to the velucity of 4 feet per fecond. The value of this fraction, or the quotient of the number of the units of length, divided by the number of units of time, is the number of thofe units of length deferibed uniformly in one unit of time.
Magnitude But how fhall we determine the velocity of any inflant of a velo- or in any point of a motion that is continually changing? city of
which we Suppofe that a body has fallen 144 feet, and that we the velocity which it has in paffing through that point? In the next fecond the budy falls 112 feet farther: This cannot be the meafure of the velocity at the begianing of the fourth or the end of tire third fecond. It is too great. The fall during the preceding fecond was \(\delta 0\) feet. This is tuo fmall. The mean of there two, or \(\frac{80+112}{2},=\frac{19^{2}}{2},=96\), is probably more exact. Due attention to the nature of this motion fhews us, that \(9^{6}\) is the proper meafure, or that the motion at that inflant is at the rate of 96 feet perfecond. But it is peculiar to this kind of motion that the half fum of the fpaces defcribed in two fucceeding equal moments is the meafure of the velocity in the middle inftant. Therefore this method will not generally give an accurate meafure. Yet it is indifpenfably neceffary to obtain fome accurate meafure; for it is in this particular alone that the ftate of the body differs from its fimilar fate in another inftant. 'The difference of place makes no diltinction ; for if a body cuntinue its motion unclanged, its condition in every different inftant of time, or point of fpace, is unchanged or the fame. The change of place is not a change of motion, but is involved in the very conception of the continuation of the motion. The change of condition confifts, therefore, in the change of velucity. Therefore the change of velucity is the only indication, and the only meafure of the action (perhaps accumulated) of the changing force. It is therefore the chief object of uur fearch ; and accurate meafurcs of velocity are abfolutely meceflary.
When the velocity changes continually, there can be no adual meafue of it. In what then does the magnitude of a velocity confit, when there is no actual meafure of it? It is a certain undefcribable determination; by which, if not changed, a certain fpace zoould be unifurmly deferibed in a given urit of time. Thus we know, that if, when a flone has fallen 16 feet, its motion be directed along a horizontal plane, without diminution, it will move on for ever at the rate of 32 feet per fecond. The fpace which would be thus defribed is not the velucity, but the meafure of the velocity. But the propurtions of thufe fpaces, being thepropertions of thofe meafures, are the pruportions of the velucitics themfelves. We rnay difcuver thefe proportions in the following manner:

Let ACG (fig. 13.) be a line defcribed by a body with a motion anyhow continually, but gradually, va.ried; and let it.he required to determine the proportion of the velocity in any point C to the velocity in any other point 5 .

Axiom.-If \(A\) be to \(B\) in a ratio that is greater than o any ratio lefs than that of C to D), but lefs than any ratio greater than that of \(C\) to \(D\), then \(A\) is to \(B\) as \(C\) to \(D\).

Take the flraight line \(a<g\) to reprefent the time of Retarded Moriuns. the body's motion along ACG, fo that the points \(a, c\), \(f, g\), may reprefent the inflants of tine in which the. hody paffes through the points \(A, C, F, G\); and the portions \(a c, c f, f g\), of the line a \(g\), may reprefent the times employed in deferibing the partions AC, CF, FG; and therefure \(a c\) is to \(a f\) as the time of deferibing AC to the time of defcribing AF .

Moreover, let \(b k n o\) be a line fo related to tha Atraight line \(a\) of \(g\), by the perpendicular ordinates \(a b\), \(c k, f n, g o\), and the areas \(a c k b, a f n b, a g \circ b\), may be proportional to the portions \(A C, A F, A G\), of the line defcribed by the moving body; and let this relation be true with refpect to every puint \(\mathrm{B}, \mathrm{D}, \mathrm{E}\), \&ce, and the correfponding points \(b, d, e, \& \&\).

Then it is affirned, that the velocity in the point C is to the velocity in the point F as \(c k\) is to \(f n\).

Let the equal lines \(l c, c d, e f, f g\), reprefent equal monents of time, and let \(\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{G}\), be the points through which the body is paffing at the inftants \(b, d\), \(c g\). Then the areas \(b i k c, r k l d, c m n f, f n o g\), nill reprefent, and be proportional to, the fpaces \(\mathrm{BC}, \mathrm{CD}\), EF, FG, which are deferibed during the inoments \(b c\), c \(d\), e f,f \(f\).

Draw t \(p\) parallel to \(a g\), fo as to make the rectangle \(b t p c\) equal to the trapezium \(b i k c\); and draw the lines \(q v, u r, s x\), in the fame manner, fo that each rectangle may be cqual to its correfponding trapezium.

If the motions had been uniforn during the moments \(b c\) and \(f z\), that is, if the fpaces BC and FG lad been uniformly deferibed, then the velocity in the point \(C\) would lave been to the velocity in the point \(F\) as \(c p\) to \(f s\) : For fince the rectangles \(b t p c\) and \(f s, y g\) are refpectively equal to the trapeziums \(b i l i c\) and \(f\) nog \(g\); and fince \(b i k c\) is to \(f n \circ g\) as \(B C\) is to FG , the rectangle \(b t p c\) is to the rectangle \(f s x g\) as BC to FG. But becaufe thefe two rectangles have equal altitudes \(l c\) and \(f g\), they are to each other in the proportion of their hafes \(c p\) and \(g x\), or \(c p\) and \(f\) s. Therefore BC is to FG as \(c p\) to \(f\) s. But if BC and FGare uniformly deferibed in equal times, they are proportional to the velocities of thofe unifurm motions. Therefnre \(c p\) is to \(f s\) as the velocity with which DC is uniformly decribed to the velocity with which FG is uniformly deferrbed in an equal time.

But the motion expreffed by the figure is not uniform, becaufe the linc b/o recedes from the axis a \(g\), and the areas, cut off by the parallel ordinates, increale in a greater propurtion than the correfyous? g parts of the axis; that is, the fpaces increafe falt.n than the times: for the moments \(b c, c d\), e \(f, f g\), bring all equal, it is evident that the correfponding hips of the area continually aurment. 'The motion is fwifter at the inflants \(c\) than at the inftant \(b\), and the velocity at the inflant \(c\) is greater than that with which the fpare BC would be uniformly defcribed in the fanse time. For the fanse. reafun, the velucity at the inflant \(f\) is lefs than that with which the fpace FG would be uniformly deferibed in the fame time. Therefore the velocity at the intlant \(=\) is to the velocity at the inflant \(f\) in a greater ratio thanthat of \(c p\) to \(f s\). In the very fame manner, it w!!b appear by coniparing the motion during the inonent

\section*{526}

Of Accele- \(d\) with the motion during tie moment \(e f\), that the verated and locity at the inftant \(c\) is to the velocity at the inltant \(f\) Retaried Mocions
the limit of the continually increaning ratio of iop to \(f s\), of Aecaleor of the continually diminiming ratio of \(e q\) to \(f r\). Sir rated ard Iface Newtun calls this the pltinate matio of \(f\) to \(f\) Retarded or \(c q\) 虽 N . or of \(c q\) to \(f r\). Now the ratio of \(c p\) to \(f s\) is, by conftruction, the fame with the ratio of the rectangie \(b t p c\) to the rectangle \(f s x g\), and the ratio of \(c q\) to \(f r\) is the fame with the ratio of the rectangle o \(q v d\) to the rectangle eurf. But the ratio of the rectangle \(b t p c t 0\) the rectangle \(f s \times g\) is the fame with the ratio of the fpace \(b i k c\) to the ipnce \(f\) no \(g\); that is (by thypothefis), the fame with the ratio of the fpace DC to the fpace FG ; and the ratio of the rectangles \(c q v d\) and \(\epsilon u r f\) is the fame with that of the fpaces CD and 15F. There. fore the ratio of the velocity at \(C\) to the velucity at \(F\) is the fame with the ultimate ratio of the fimall increments \(B C, F G\), or \(C D, E F\) of the fpaces gencrated in very fmall and equal times.

It is alio evident, that becaufe the ratio of \(c k\) to \(f n\) is the limit both of the ratio of \(c p\) to \(f s\) and of the ratio of \(\varepsilon q\) to \(f r\), thefe ultimate ratios are the fame, and that we may fay that the velocity in C is to the velocity in \(F^{\prime}\) in the ultimate ratio of BC to \(E F\), or in the ultimate ratio of CD to FG .

We alfo can eafily perceive, that the ratio of the area \(b i k c\) to the area \(e\) in \(n f\) approaches more ncar to the ratio of \(c k\) to \(f n\) as we take the moments \(b c\) and of finaller. Therefore, in many cafes of practice, wherc it may be eafy to meafure the fpaces deferibed in the different fmall moments of the motion, but difficult to afcertain their ultimate ratio, fo as to obtain accurate meafures of the proportions of the velocities, we may reduce the errors of meafurement to fomething very infiguificant, by taking thefe moments extremely fmall ; and we fhall diminith the error fill more, by taking the proportion of the half fum of BC and CD to the half fum of EF and EG for the proportion of the velucities in C and F .

It often happens that we have it not in our power to compare the fpaces deferibed in fmall monents which are precifcly equal. Still we ean find the exact proportion of the velocities, if we ean afcertain the ultimate ratio of the increnconts of the fpaces, and the ultimate ratio of thic moments of time in which thefe increments are cefcribed: for it is plain, by confidering the gradual approach of the points \(p\) and \(r\) to the points \(k\) and \(n\), that the ratio of \(c k\) to \(f n\) is fill the ultimate ratio of the bafes of refangles equal to the mistilineal areas, whether the altitudes (reprefenting the moments) are equal or not. Now the bafes of two rectangles are in the proportion of the reetangles directly, and of their altitudes inverfely. But the ultimate ratio of the altitudes is the ultimate ratio of the moments, and the ultimate ratio of the refangles is the ultimate ratio of the fpaces deferibed in thofe unequal moments. Therefore, in fuch cafes, we have,

Cor. 2. The velocities are in the ratio compounded of the dircel ultimate ratio of the momentary increments of the fpaces, and the inverfe ullimate ratio of the increments (or monctits) of the times in which thefe increments of the jpa. ces are made.

I「 \(s, v\), and \(t\), are taken to reprefent the magnitudes of the faces, velocities, and times, and if \(s, v\), and \(i\), are taken always in the limiting or ultimate ratio of their momentary iucrements, we chall have \(v\) always in
Cor. 1. In a motion continually varicd, the velocities in the different points of the path are to each olluer in the limiting or ultimate ratio of the fpaces defcribed in equal times, thofe times being luppored to diminith continually: for it is evident, that if the equal moments \(b c, c d, e f, f g\), are fuppofed to diminifh continually, cill the inftants \(b\) and \(d\) coalefce with \(c\), and the inftants \(e\) and \(g\) coalefce with \(f\); then the ratio of \(c k\) to \(f n\) is
of \(A\) ceciec the proportiun of \(s\) directly, and of \(i\) inverfely. We rated and Kctarded Mutions. exprefs this by the proportional equation \(v \div \frac{3}{i}\), which is equivalent to the analogy \(V: \tau=\frac{\dot{\mathrm{S}}}{\dot{\mathrm{I}}}: \frac{\dot{s}}{i}\), or \(\mathrm{V}: v\) \(=\dot{S} i: \dot{s} \dot{I}\).
the firft of thefe two propulitions, which enables us to 0 or afeertain the velucity of the mution in its different mo- rated and ments. 'Ihus if we obfere, that a flone in falline de Retarded feends one foot in the quarter of a lecond, 16 fect in a Motions fecond, 64 feet in two feconds, and ti4feet in three feconds; the general law immediately olferved is, "that the fpaees deforibed are as the fquares of the times;" for 1 is to is as the fquare of 16 th the fquare of 1. Again, 16 is to \(6+\) as \(1^{2}\) to \(2^{2} ;\) and 16 is to 144 as \(1^{2}\) to \(3^{\circ}\). Hence we infer, with gratat probability, that the flone would fall 36 feet in a fecond and a half; for 16 is to 36 as \(1^{2}\) to \(1_{2}^{12}\); and we conclude in the fame way fur all other parts of the motion.

This inmediate obfervation of the analogy butween A grod ex. the fpaces and the fiuares of the times fuggetls an ealy ample of determination of the velucity in this particular kind of the gromemotion; and it merits particular notice, being very often thod. referred to. Viecan take \(a_{g}\) to reprefent the time; and then, becaufe the areas which are to reprefent the fpaces deferibed mult be propotioned to the fepures of the portions of \(a g\), we felccive that the line which cornes in place of \(b, k\) o mut be a ftraight line drawn from a. For examole, the fraight line as \(\gamma\). Forthis is the orly boundary which will give areas abB, \(a c \%\), \(a d s, \& c\). proportional to \(a b^{2}, a c^{2}, n d^{2}\), \&c. Andwe perceise that any ftraight line drawn from a will have this property.

Having thus got our reprefentations of the timcs and the fpaces, we fay, on the authority of our theorem, that the velocity at the infant \(b\) is to the velocity at the inflan: \(d\) as \(b \beta\) to \(d \delta\), \&cc. And now we berin to make inferences, purely geometrical, and exprefs our difcovery of the velocities in a very general and fimple manner. Wermark, that \(b_{\beta}\) is to \(d s\) as \(a b\) is to ad; and we make the fame affirmation concerning the madgnitudes reprefented \(b_{j}\) thefe lines. We fiy that the velocity at the inflant \(b\) is to velocity at the infant \(d\) as the time \(a b\) is to the time \(a d\). We fay, in terms flill more general, that the velucities are proportional to the times from the beginning of the motion. We more. over perceive, that the fpaces are alfo proportional to the fquares of the acquircd relocities; or the velocities are as the fquare roots of the fpaccs.

We can farther infer, from the properties of the triangle, that the momentary increments of the f paces are proportional to the momentary increments of the fquares of the times, or of the fquares of the velocities.

We allo ublerve, that not only the whole acquired velucities are propurtional to the whole elapfed times, but that the iucrements of the velocitics are propor: tional to the tines in which they are acquired ; for \(\pi \dot{x}\) is to \(p\) as \(b c\) to \(d f\), Ecc. Equal inerements of velucity are therefore acquired in equal times. Therefore fuch a motion may, in great propricty of language, be deno. minated a uniformly accelerated motion; that is, a motion in which we obferve the faces propartioned to the fquares of the times, is ti motion uniformly accelerated; and fpaces in the duplicate ratio of the times form the oftenfible characteritic of an uniformly accelerated motion.

Lafty, if we draw a parallel to the axis \(a b\), we perceive that the rectangle \(a_{e} \times\) is double of the triangle aef. Now becaufe ae reprefents the time of the motion, and es reprefents the acquired velocity, the rectangle \(a e^{\varepsilon \lambda}\) will reprefent the fpace which would be uniformly defcribed with the velocity es during the time.

Of accier a e. But the triangle ae: reprefents the face really raing and deferibed with the uniformly accelerated motion during Retardi,
10 oces.
the thame time. Hence we infer, that the fpace that is 1 nices. defcribed in any time, with a mution increafing uniformly from nothing, is onc-half of the fpace which would be uniformly defribed during the fame time with the f:nal velocity.

Thefe are but a part of the inferences whlich we may draw from the geonetrical properties of thofe reprefentations which we had felected of the dificent meatureable affections of motion. We may affirm, with refpect to the motions themflues, all the inferences which relate to maguitude and propertion, and thus improve our knowledge of the metions.

We touk the opportunity of this very fimple and peripictuous axample, to give our young readers a juft conception of the matbermatical method of profecuting mechanical knowledge, and to make them fenfible of the unqueftionable authority for every theorem deduced in this manner.

One of the mof important is, to difcover the accumulated refint of a motion of which we only obferve the snumentary increments. This is to be done by finding the area, or portions of the area, of the mixtilineal fpace \(a g \circ b\); and it is evidently analogous to the inverfe method of fluxions, or the integral calculus.

In mott cafes, we mult avail ourfelves of the corolla\(r y_{j} \dot{=} \doteq v i\), ard we obtain the folution of our queftion only in the cafes where our knowledge of the quantities \(s, i\), and \(v\) (confidered as geometrical magnitudes, that is, as lines and furfaces), enables us to difcover \(s\) and \(i\).

\section*{Of Accelerating and Retarding Forces.}
.
Having thus difcovered the proportions of the velocities in motions varying in any manner whatever, we can ubferve the variations which happen in them. Thefe variations are the effects, and the only marks and meafures, of the changing forces. They are the characteriftics of their kinds (confidered merely as moving forces) ; that is, the indications of the directions in which they aet; for this is the only difference in kind of which they are fufceptible in this general point of view. If they increafe the velocity, their direction mult be conceived as the fame with that of the previous motion; becaufe the refult of the action of a force is equivalent so the compofition of the motion which that force would produce in a quiefcent body with the motion already exining: and an increafe of velocity is equivalent to the compofition of a motion in the fame direction.

Havi g no other mark of the force but the accelera. tion, we have no other name for it in the abftract doctrines of dynamics, and we call it an accelerating force. Had it retarded the motion, we fhould have called it a retarding force.

In like manner, we have no meafure of the magnitude or intenfity of an accelerating furce, but the acceleration which it produces. In order therefore to invelligate the powers which produce all the changes of motion, we mult endeavour to obtain meafures of the acceleration.
A continua increafe of velocity is the effect of the continued action of accelerating forces. If equal increments of velocity gre produced in every fucceeding equal moment of time, we cannot conceive that there is
any change in the acceleating forcs. Therefore a mai- Of teceie. formly accelerated motion is the mark of the unvaried rating and action of an accelerating force, that is, of the continued Retarding action of a costant force; of a force whofe intenfity is always the fame. When therefore we obferve a hody defcribe fpaces proportional to the fquares of the timer, we mult infer that it is urged forward by a force whofe intenfity dues not change; and, on the other hand, a conflant force muft produce a uniformly accelerated ino. tion by its continued action. And if any previous circumflances affure us of this continued action of an invaited furce, we may make all the inferences which were mentioned under the article of uniformly accelerated mo. tion.
That furce muft furely be accounted double which produces a double increment of velocity in the fame time hy its uniform action, we can form no other eftimation of its magnitude. And, in general, accolerating forces mufl le accounted proportional to the increments of velocity which they produce, by aEing uniformly during the fame or equal times.

Suppofing them to aet on a body at reff. Then the velocity produced is itfelf the increment; and we muft fay, that accelerating forces are proportionai to the velocities which they generate in a body in equal times. And becaufe we found (n 79 .), that the face deferibed with a uniformly accelerated rotion is half the fpace which would be uniformly deferibed in the fame time with the final velocity, which face is the direct meafure of this velocity, and becaute halves have the fame proportion with the wholes - we may fay that ascelerating forces are proportional to the Spaces tbroughb Another whicb they tmpel a body from reft in equal times by their nicasure. \(u n\) iform azion.

This is an important remark; becaufe it gives us an ealy meafure of the force, without the trouble of firt computing the velocities. It alfo gives us the only diftinct notion that we have of the meafurement of forces by the motions which they produce. When fpeaking of the compufition of forces. we diftinguifhed or dencminated them by the fides and diagonal of a parallelogram Thefe lines mult be conceived as proportional to the faces through which the forces urge the body aniformly during the fmall and infenfible time of their action, which time is fuppofed to be the fame for both forces; for the fides of the parallelogram are fuppofed to be Separately defcribed in equal times, and therefore to be proportional to the velocities gencrated by the conilituent forces. If indeed the forces do not act uniformly, nor fimilarly, nor during equal times, we cannot fay (without farther inveftigation) what is the proportion of the intenfity of the furces, nor can we infer the compofition of their action. We muft at leaft fuppofe, that in every inflant of this very fmall time of their joint action, their direction remains unchanged, and that their intenfities are in the fame ratio. We fhall fee by and bye, that with thefe conditions the fides of the parallelogram are fill proportional to the velocities generated. In the mear. time, we may take the fpaces through which a body is uniformly impelled from reft (that is, with a uniformly accelerated motion) as the meafures of the forces; yet thefe fpaces are but the halves of the meafures of the velocities. Then, if a body be moving with the velucity of 32 feet per fecond, and an accelerating force acts on it during a fecond,
\(8!\) Meafure of Ii) accelecra ung force.

1f Actele. and if this forse be fuch that it would impel the body ating and (from a ftate of relt) 16 feet, it will add to the body a 2etarding
Forces. the effect of gravity - the weight of a pound of lead may be confidered as a force which does not vary in its intenfity. We know that it will caufe the lead to fall 16 feet in a fecond; but if the body has already fallen 16 feet, we know that it is then moving with the velocity of 32 feet per fecond. And the fact is, that it will fall 48 feet farther. in the next fecond, and will have acquired the velocity of 64 feet per fecond. It has therefore received an augmentation of 32 feet of velocity by the action of gravity during the 2 d fecond; and gravi\(t^{2} \boldsymbol{y}\) is in fact a conflant force, caufing equal increments of velocity in equal times, however great the velocities may be. It does not act like a thream of fluid, whofe impulfe or action diminithes as the folid body withdraws from it by yielding.

But fuppofing that we have not compared the increments of velocity uniformly accquired during equal times, in what manner fhall we meafure the accelerating forces? In fuch a cafe, that force muft be accounted double which generates the fame velocity, by acting uniformly during half the time; for when the force is fuppofed invariable, the changes of velocity which it produces are proportional to the times of its action; therefore if it produces an equal velocity in half the time, it will produce a double velocity in an equal time, and is therefore a double force. The fame may be faid of every proportion of time in which an equal change of velocity is produced by the uniform action of an accelerating force. The force mult be accounted greater in the fame proportion that the time required for the production of a given velocity in a body is lefs. Hence we infer, that accelerating forces are inverfely proportional to the times in which a given change of velocity is produced by their uniform altion.

By combining thefe two propofitions we eftablifh this B2 general theorem:
Meafure of Accelerating forces are proportional to the changes of ve-ceeleraing force,
locity which they produce in a body by their uniform action direaly, and to the times in subich thefe changes

It muft always be kept in mind, that \(v\) and \(t\) are ab. Of Acceleftract numbers; and that \(v\) refers to fome unit of fpace, ruting und fuch as a foot, an inch, a yard; and that trefers to Force.. fome unit of time, fuch as an hour, a minute, a fecond; and efpecially that \(a\) is the number of the fame units \(8_{3}\).
 of the tine with the velocity generated, by the force ber. acting uniformly during that unit. It is twice the fpace actually deferibed by the body during that unit when impelled from reft by the acceleratiog force. It is neceffary to keep hold of thefe clear ideas of the quantitics expreffed by the fymbols.
On the other hand, when the meafure of the accelera. Me:fire of ting force is previoully known, we employ the theorem a charge of a \(t^{\prime}=v^{\prime}\); that is, the addition made to the velocity vilocity. during the whole, or any part, of the time of the action of the force is obtained by multiplying the accelectation of one unit of time by the number of fuch units contained in \(t^{\prime}\).
Thefe are evidently leading theorens in dynamics; 'Thefe meas becaufe all the mechanical powers of nature come un- fire-exder the predicament of accelerating or retarding forces. \(\begin{aligned} & \text { prefs the } \\ & \text { greatel }\end{aligned}\) It is the collection of thefe in any fubject, and the man- pante of onr ner in which they accompany, or are inherent in it, knowledge which determine the mechavical character of that fub- of neechajeet ; and therefore the phenomena by which they are nicol nabrought into view are the the characteriltic phenomend. Nay, it may even be queftioned, whether the phenomena bring any thing more into view. This force, of which we fpeak fo familiarly, is no object of diftinet contemplation; it is merely a fonething that is proportional to \(\frac{\dot{v}}{i}\). And when we obferve, that the \(\frac{\dot{v}}{\dot{T}}\), found in the motions that refult from the vicinity of a body A , is double of the \(\frac{\dot{v}}{i}\), which refults from the vicinity of another body \(B\); we fay that a force refides in \(A\), and that it is double of the force refiding in B . The accelerations are the things inmediately and truly expreffed by thefe fymbols. And the whole fcience of dynamics may be completely tanght without once em. ploying the word force, or the conception which we imagine that we form of it. It is of no ufe till we come to dludy the mechanical hiftory of bodies. Then, indeed, we muft have fome way of expreffing the fact, that an acceleration \(=\frac{3^{2} \text { feet }}{1^{\prime \prime}}\) is obferved in every thing on the furface of this globe; and that an acceleration \(=\) 418 feet is
facts are characteriftic of this earth and of the fun ; and we exprefs them thortly by fayiug, that fucls and fuch forces refide in the earth and in the fun. It will preferve us from many mittakes and puzeling doubts, if we refolutely adhere to this meaning of the term force; and this will carry mathematical cvideace through the whole of our invefligations.

As velocity is not an immediate object of contem-Arother plation, and all that we obferve of motion is a fpace me fure of and a time, it may be pruper to give an expreffion of cre era. this meafure of accelerating force which involves no other idea. Suppofing the hody to have been previoufly at reft, we have \(a \doteqdot \frac{v}{t}\). Multiply both parts are produced inverfely.
If, therefore, A and \(a\) are the forces, \(\mathrm{V}^{\prime}\) and \(v^{\prime}\) the changes of velocity, and \(\mathrm{T}^{\prime \prime}\) and \(z^{\prime}\) the portions of time in which they are uniformly produced, we lave
\[
\begin{aligned}
& \mathrm{A}: a=\mathrm{V}^{\prime} t^{\prime}: v^{\prime} \mathrm{T}^{\prime},=\frac{\mathrm{V}^{\prime}}{\mathrm{T}^{\prime}}: \frac{v^{\prime}}{t^{\prime}} \\
& \text { And } a \doteqdot \frac{v^{\prime}}{t^{\prime}}
\end{aligned}
\]

The formula \(a \doteq \frac{v^{\prime}}{t^{\prime}}\) is not reffricted to any particular magn:tude of \(v^{\prime}\) and \(t^{\prime}\). It is true, therefore, when the portion of time is diminifhed witheat end; for fince the action is fuppofed uniform, the inerement of velocity is leffened in the fame proportion, and the value of the fraction \(\frac{v^{\prime}}{t^{\prime}}\) remains the fame. The claasacters or fymbols \(v^{\prime}\) and \(t^{\prime}\) are commonly ufed to exprefs finite portions of \(v\) and \(t\). The fymbols \(v\) and \(\dot{t}\) are ufed by Newtnn to exprefs the fame things taken in the ultimate or limiting ratio. They are ufually confidered as indefinitely fmall portions of \(v\) and \(\ell\). We thall abide by the formula \(a \doteqdot \frac{\dot{v}}{i}\).

530
Of Accelc-of the fraction by \(t\), which does not change its value, rating and rating and
Retarding and we have \(a \doteqdot \frac{v t}{f^{2}}\). Dut \(v t=s\); and thereforce. \(a\), \(\underbrace{\text { Forces. }}\)
\(\doteqdot \frac{5}{t^{2}}\).
The formula \(a=\frac{s}{t^{2}}\) is equivalent to the proportion \(t^{2}: 1=s: a\); and \(a\) would then be the fpace through which the accelerating force would impel the body in one unit of the time \(t\). But this is only half of the meafure of the velocity which the accelerating force generates lluring that unit of time. For this reafon we did not exprefs the accelerating force by an ordinary equation, but ufed the fymbol \(\fallingdotseq\). In this cafe, therefure, of uniform action, we may exprefs the accelerating force by \(a=\frac{2 s}{t^{2}}\).

The following theorem is of fill more extenfive ufe 85 in all dynamical difquititions.
Mon kene- Accelerating forces are proportional to the momentary insal meafure cremetits of the fquares of the velocities direaly, and as of accelera- the fpaces along which they ore uniformly acquired inting force.

\section*{D Y N A M ICS.}
along the portions \(B b\) and \(\mathrm{C} c\); and \(\mathrm{E} b\) and \(\mathrm{F} k\) are of Accele. equal to thofe portions refpectively. The ratio of Al rating and to AC is compounded of the direct ratio of E e to \(\mathrm{F} f\); Ketarding Forces and the inverfe ratio of \(\mathrm{E} b\) to \(\mathrm{F} k\). The propoftion Forceso is therefore demonftrated.

The proportion may be expreffed thus:
\(\mathrm{AB}: \mathrm{AC}=\frac{\mathrm{E} e}{\mathrm{E} b}: \frac{\mathrm{F} f}{\mathrm{~F} k}\), and may be expreffed by the proportional equation \(A B \doteq \frac{\mathrm{E}_{\ell}}{\mathrm{E} Z}\) or, fymbolical\(\mathrm{ly}, a \doteqdot \frac{\left(v^{2}\right)}{s}\)

Remark. Becaufe the motion along any of thefe \(\boldsymbol{v}^{\circ}\) is hut three lines is uniformly accelerated, the relation between one-half fpaces, times, and velocities, may be reprefented by fite in. means of the triangle ABC (fig. 15.) ; where AB re- of \(v^{2}\). prefents the time, \(B C\) the velocity, and \(A B C\) the fpace. If BC be taken equal to AB , the triangle is half of the fquare \(A B C F\) of the velocity \(B C\); and the triangle \(A D E\) is half of the fquare ADEG of the velocity DE. Let \(\mathrm{D} d\) and \(\mathrm{B} b\) be two moments of time, equal or unequal. Then \(\mathrm{D} d e \mathrm{E}\) and \(\mathrm{B} b \in \mathrm{C}\) are halk the increments of the fquares of the velocities DE and BC , acquired during the moments \(\mathrm{D} d\) and \(\mathrm{B} b\). It was demonitrated, that the ratio of the area \(\mathrm{D} d e \mathrm{E}\) to the area \(\mathrm{B} b c \mathrm{C}\) is compounded of the ratio of DE to BC , and the ultimate ratio of \(\mathrm{D} d\) to \(\mathrm{B} b\). But \(\mathrm{D} d\) and \(\mathrm{B} b\) are refoectively equal to \(\varepsilon e\) and \(\times c\). Therefore \(\mathrm{D} d e \mathrm{E}\) is to \(\mathrm{B} b c \mathrm{C}\), in the ratio compounded of the ratio of DE to BC , and the ultimate ratio of \(\varepsilon e\) tu \(* c\). If we reprefent DE and BC by V and \(v\), then ' \(\varepsilon\) and \(x \in\) muft be reprefented by \(V^{\prime}\) and \(v\), the inere. ments of V and \(v\); and then the compounded ratio will be the ratio of \(\mathrm{VV}^{\prime}\) to \(v v^{\prime}\); and if we take the ultimate ratio of the moments, and confequently the ultimate ratio of the increments of the velocities, we have the ratio of \(V \dot{V}\) to \(v \dot{v}\). If, therefore, \(V^{2}\) and \(v^{2}\) reprefent the fquares of the velocities, \(Y \dot{V}\) and \(v \dot{v}\) will reprefent not the increments of thofe fquares, but hals the increments of them.

We may now reprefent this propofition concerning accelerating forces by the proportional equation \(a \fallingdotseq\) \(\frac{2 v}{:}\); and we muft confider this as equivalent with \(a=\) \(\frac{V^{2}-v^{2}}{2(S-s)}\); keeping always in mind, that \(a, V\), and \(v\), relate to the fame units of time and fpace, and that \(a\) is that number of units of the fcale on which \(S\) and \(s\) are meafured, which is run over in one unit of time.

This will be more clearly conceived by taking an Meafure of example. - Let us afcertain the accelerative power of gravity gravity, fuppuling it to act uniformly on a body. Let confidered the fpaces be meafured in feet and the time in feconds. lerating It is a matter of obfervation, that when a body has fal-force.
len 64 feet, it has acquired a velocity of \(6+\) feet per fecond : and that when it has fallen 144 feet, it has acquired the velocity of 96 feet per fecond. We want to determine what velacity gravity communicated to it by acting on it during one fecond. We have \(\mathrm{V}^{2}=\) 9216 , and \(v^{2}=4096\); and therefore \(V^{\prime 2}-v^{2}=5120\). \(S=144\), and \(s=64\), and \(S-s=80\), and \(2(S-s)\)
\(=160\). Now \(a=\frac{5120}{160}=32\). Therefore gravi-

Acecle-ty has generated the velocity 32 fect per fecond by ratiog an 1 acting uniformly during one fecond.
Netaring The augmentation of the fourre of the velocity is pro-
forces. \(\underbrace{\text { forces }}_{80 .}\) portional to the force and to the space jointly. For, becaure
80. \(a=\frac{v v}{\dot{s}}\), we have \(a \dot{s}=v \dot{v}\).

Thus we learn, that a given force acting uniformly on a budy along a given fpace, produces the fame increment of the fquare of the velocity, whatever the previous velocity may have been. Alfo, in the fance manner as we formerly found that the angmentation of the velocity was proportioned to the time during which the force has acted, fo the augnentation of the fquare of the velocity is proportional to the fpace along whith it has acted.
It is pretty plain, that all that we have faid of the uniform aetion of an accelerating force may he affirmed of a retarling force, taking a diminution or decrement of velocity in place of an increment. A uniformly retarded motion is that in which the decrements of velocity in equal times are equal. and the whole decrements are proportional to the whole times of action. Such a motion is the indication of a conftant or invariable force aeting in a direction oppofite to that of the motion. We conceive this to be the cafe when an arrow is fhot perpendicularly upwards; its weight is conceived as a force continually preffing it perpendicularly downwards.

In fuch motions, however great the initial velocity may be, the body will come to reft ; becaufe a certain determinecl velocity will be taken from the budy in each equal fucceffive noment, and forme multiple of this will exeeed the initial velocity. Therefore the velocity will be extinguifhad before the end of a time that is the fame multiple of the time in which the velocity was diminifhed by the quantity ahove mentioned. It is no lefs evident, that the time in which any velocity will be extinguified by an oppofing or retarding lorce, is equal to the time in which the fane furce would generate this velocity in the body previoufly at rett. Therefore, be extinguifhed by the fame oppufing foree are proportional to the initial velocitics.
2. The ditances to which the body will go till the extinction of its vclocity are as the fquares of the initial velocities.
3. They are alfo as the fquares of the times elapfed.
+ The diftance to which a body, projected with any velocity, will go till its motion be extinguifhed by the uniform action of a retardiny force, is one half of the fpace which it would deferibe uniformly during the lame time with the initial velocity.

Forces ge- It very rarely happens, that the force whiel accelenerally va- rates the body acts uniformly, or with an unvaried inriable in their inten Iity.
haps the moft important in the fudy of mechanical na-or ture. It is only thus that we learn what is ufually call, rating and ed the nature of a mechanical force. This chicfly con- Retording filts in the relation fubliting between the intenfity of the force and the diflanee of the fubfance in which it refides. Thus the nature of that power which produces all the planetary motions, is cunlidered as afcertained when we have demonflated that its preflure or intenfity is inverfely as the fquare of the diflance from the body in which it is fuppofed to refide.

Acceleration expreffes fone relation of the velucity and time. This relation may be geometrically expreffed in a varicty of ways. In figure 13. the uniform acceleration or the unvaried relation between the velocity and the time is very aptly expreffed by the conftant ratio of the ordinates and abfeifes of the triangle \(a g v\). The ratio of \(d \delta\) to \(a d\) is the fame with that of \(c\), to \(a e\), or that of \(f \neq\) to \(a f\), \&c.; or the ratio of the increment of velocity \(w \times\) to the increment of the time \(\beta\) wor \(b c\), or that of \(i \phi\) to \(: i\), \&cc. This ratio \(w x: \beta=5\)

\section*{is equivalcut to the fymbol \(\frac{v}{-}\)}

But when the fpaces deferibed in a varied motion are reprefented by the areas bounded by a curve line \(b k o\), we no longer have that conflant ratio of the increments of the ordinates and abfiffes.
Therefore in order to obtain meafures of the acce. Their mes. lerating forccs, or at leatt of their proportions, let the furch in abscifia \(a\) e \(g\) (fig. 13.) of the line \(b k o\) again repre- fuch cafes fent the time of a motion. But let the areas bounded ed? Theoby parallel ordinates now reprefent the velocities, that rems of is, let the whole area increafe during the time \(a g\) at nof extenthe fame rate with the velocitics of the motion along the line AG. In this cafe the ordinates \(h i, c k, d h\), \&c. will be as the accelerations at the iuftants \(b, c, a\), \&c. or in the points D, C, D, \&c.
This is demonftrated in the fame way as the former propofition (\(\mathrm{n}^{\circ} 72\).). If the accelerating force be fuppofed conftant during any two equal mounents \(b c\) and \(f g\), the rectangles \(b c p\) and \(f g * s\) would exprefs the increments of velocity uniformly acquired in equal times, and their bafes \(c p\) and \(f s\) would have the ratio of the accelerations, or of the accelerating forces. But as the velocities exprefled by the figure increafe fafer than the times during every moment, the force at the inftant \(c\) is to the force at the inflant \(f\) in a greater ratio than that of \(c p\) to \(f s\); but, for fimilar reafons, it is in a lefs ratio than that of \(c q\) to \(f r\); and therefore (as in the other propofition) the force at the inftant \(c\) is to the force at the inflant \(f\) as \(c k\) to \(f n\).

Cor. Becaufe \(c p\) is to \(f s\) in the ratio compounded of the direct ratio of the rectangle \(c p t b\) to the rectangle \(f s x g\), and the inverfe ratio of the altitucie \(b c\) to the altitude \(f g\); and becaufe thefe reftangles are proportional to the increments of velocity, and the ultimate ratio of the altitudes is the ultimate ratio of the mosments or increments of the time-we mull fay, that the accclerating forces (that is, their intenfities or preflures producing acceleration) are dircily as the incroments of velocity, and inverfely as the increments of the times: Which propofition may be exprcfled, in regard to two accelerations A and \(a\), by this analogy :
\[
\text { A:a }=\frac{\dot{\mathrm{V}}}{{ }_{3}^{\mathrm{T}}:}: \frac{\dot{v}}{i} .
\]
\(5: 2\)
Uf Aicele-
laingard
Ketarding by the proportional equation \(a \doteq \frac{v}{i}\). Alfo \(a\)
\(\underbrace{\text { Fores. }}: \dot{v}\), and \(\int a i=v^{i}\). And thus do thefe theorems extend even to the cafes where there cannot be obferved an immediate meafurt, either of velocity or of acceleration; becaufe neither the fpace nor the velucity increafes uniformly.

See Barrozu's Leil. Geomitr.
faitim
92.

93
All thefe theorems selate to cbinges of velocty; by which means they indicate im. smefiatedy the operation
natural powers.

No finite change of velocity ca change of an accelerating force, that no finite change of velocity is
velocity can
heprocuce effected in an inflant by the action of an accelerating inanintantforce. When the fig. 13 . is ufed for the fcale of accein an intant force. When the fig. \({ }^{13}\). is ufed for the fcale of acce-
\(b v a n y a c-\) lerations, and they are reprefented b; the ordinates of relera \(i\) g the line \(b k o\), the increment of velocity is reprefented
force.

We may learn from this invertigation of the value of force.

The theorem \(a \doteqdot \frac{\dot{v}}{i}\) is employed when we would difcover the variation in the intenfity of fome natural power. We obferve the motion and reprefent it by a figure analugous to fig. 13. where the alfififfa reprefents the times, and the area is made to increafe at the fame rate with the fpaces defcribed. Then the orcinates will reprefent the velocities, or have the proportion of the velocities. Then we may draw a fecond rurve on the otleer fide of the fame abfciffa, fuch that the artas of this laft curve thall be proportioned to the ordinates of the firt. The ordinates of this laft curve are proportional to the accelerating forces.

On the other hand, when we know from other circumftances that a force, varying according to fome known law, afts on a hody, we can determine its motion. The intenfity of the furce in every inflant being known, we can draw a line fo related to another line seprefenting the time that the ordinates fhall be proportional to the forces: The areas will be proportional to the velocities. We can draw another curve to the fame abfeifs, fuch that the ordinates of this fhall be proportional to the areas of the other, that is, to the velocities of the motion. The areas of this fecond curve will be proportional to the fpaces defcribed.
We mult now obferve, that all that has been faid concerning the effects of accelerating forces continually varying, relates to changes of motion, independent of what the abfolute motions may be. The areas of the line whofe ordinates reprefent the velocities do nut neceffarily reprefent the fpaces defcribed, but the change made on the faces deferibed in the fame time, fnot the motions, but the changes of mution. If, in. deed, the body be fuppofed to be at reft when the forces begin to act, thefe areas reprefent the very fpaces that are paffed over, and the ordinates are the very velocities. In every cafe, however, the accelerations are the real increments of the velocities.

This circumfarice gives a great extenfion to our theorems, and enables us to afcertain the difturbances of any fpecies of regular motion, apart from the motions themfelves, and thus avoid a complication which would frequently be inextricable in any other way. And this procefs, which is merely mathematical, is perfectly conformable to mechanical principles. It is in fact an application of the doctrine of the compofition of motion; a doctrine rigidly demonftrated when we meafure a mechanical force by the change of motion which it produces. Acceleration is the continual compofition of a new motion with the motion already produced.

\section*{D Y N A MIC S.}
by an area, that is, by a flip of the whole area; which of Accelc flip mult have fome altitude, or mult occupy fome por- ratingand tion of the abfifia which reprefints time. Some por- Retading tiun of time, however fimall it may be, muft elapfe be. fore any meafurable addition can be made to the velo. city. The velocity muft change continually. As no motion can be conceived as inftantaneous, becaufe this would be to conceive, that in one iultant the moving particle is in every point of its momentary path; fo no velocity can change, by a finite quantity, in one inftant; becaufe this would be to conceive, that in that intant the particle had all the intervening velocities. The intant of change is at once the laft inftant of the preceding velocity, and the firt of the fucceeding, and therefore muft belong to both. This cannot be conceived, or is abfurd. As a body, in paffing from one part of fpace to another, muft pafs in fucceffion through all the intermediate places; \(f 0\), in paffing from one velocity to another, it mull in fucceffion have all the intermediate velocities. It mult be continual'y accelerated; we mult not fay gradually, however finall the fteps.

But to return from this digreffion :
The moll frequent cafes which come under examina- More con. \({ }^{94}\) tion do not thew us the relation between the forces and venient times, but the relation between the forces and fpaces. manner of Thus, when a piece of iron is in the neighbourhood of the action a magnet, or a planet is confidered in the neighbour of forces, hood of the fun, a force is acting on it in every point and mure of its path, and we have difcovered that the intenfity conving ine of this force varies in a certain proportion. Thus, a to view. fpring varies in its preffure as it unbends; gunpowder preffes lefs violently as it expands, \&c. \&ic.
Our knowledge is generally confined to fome fuch effect as this. We know, that while a body is moving along a line ADE (fig. 16.), it is urged forward by a force, of which the intenfity varies in the proportion of the ordinates \(\mathrm{BF}, \mathrm{CG}, \mathrm{DH}, \mathrm{EI}\), sc. of the line FGHI.

To inveftigate the motion or change of motion produced by the action of this force, let CD be fuppofed a very fmall portion of the fpace s, which we may exprefs by s.. Draw GK perpendicular to DH. Then, if we fuppore that the force a Ets with the unvaried intenfity CG through the whole face CD, the rectangle CDKG will exprefs half of the increment of the fquare of the velocity (\(\mathrm{n}^{\circ} 85\)). We nay fuppofe that the force aets uniformly along the adjoining frall fpace \(\mathrm{D} r\) with the intenfity DH . The rectangle DH or will in like manner exprefs another half increment of the fquare of the velocity. And in like manner we may obtain a fucceffion of fuch increments. The aggregate or fum of them all will be half the difference between the fquare of the velocity at B and the fquare of the velocity at \(E\).

If we employ \(f\) to exprefs the indetermined or variable intenfity of the accelerating force, and \(v\) to ex. prefs the variable velocity, and \(z\) its increment uniformly acquired; then the rectangle CDKG will be expreffed by \(f s^{\prime}\). We have feen that this is equal to \(v v^{\prime}\). Therefore, in every cafe where we can tell the aggregate of all the quantitics \(f s\), it is plain that we will obtain half the difference between the fquares of the velocities in B and E , on the fuppolition that the intenfiit of the force was conftant along cach little fyace, and
yaried
of secele- varied by farts. Then, by increafing the number, and raing and Ketarding Forces.
diminifhing the magnitude, of thofe little portions of the face without end, it is evident that we terminate in the exprefion of the real tate of the cafe, i. e. of a foree varying continually; and that in this cafe the aggregate of thefe rectangles occupies the whole area AEIF, and is equivalent to the fluent of \(f \dot{s}\), or to the fymbol \(\int \dot{f} s\), ufed by the foreign mathematicians to exprefs this fluent, which they indeed conceive as an arsgregate of fmall rectangles \(f s^{\prime}\). And we fee that this area expreffes half of the augmentation of the fquare of the velocity. 'Iherefore,

If the abfijfa AE (fig. 16.) of a line FGI is the path along which a body is urged by any accelerating force, and if the orlinates BF, CG, DH, छc. are propprtional to the forces aling on the points \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}_{\mathrm{c}}\). the intercepted aseas BCGF, BEIF, छc. are proportional to the augnentations of the fquare of ibe velocity.
Obferve that the areas BCGF and DEILA are alfo proportional to the augmentations made on the fquares of the velocities in B and D .

Obferve alfo, that it is indifferent what may have been the original velocity. The action of the forces reprefented by the ordinates make always the fame addition to its fquare; and this addition is half the fquare of the velocity which thofe forces would generate in the body by impelling it from reft in the point \(A\).
Laftly, on this head, obferve, that we can ftate what coultant or variable force will make the fame augmentation of the fquare of the velocity by impelling the body uniformly along the fame fpace BE; or along what fpace a given force muft impel the body, in order to produce the fame increafe of the fquare of its velocity. In the firft cafe, we have only to make a rectangle \(B E N \neq\), equal to the area \(B E I F\), and then \(B \varphi\) is the intenfity of the conflant force wanted. In the fecond cafe, in which the force EO is given, we mutt make the rectangle \(\mathrm{A}=\mathrm{OE}\) equal to the area BEIF , and \(A E\) is the fyace required.

The converfe of this propofition, viz. If the areas are as the increments of the fquare of the velocity, the ordinates are, as the forces, is eafily demonflrated in the fame way; for if the elementary areas CDIKG and ElM e reprefent increments of the fquares of the velocity, the accelerating forces are in the ratio compounded of the direct ratio of thefe rectangles and the inverfe ratio of their altitudes, becaufe thefe altitudes are the increments of the face (\(1^{\circ} 85\).). Now the bafe CG of the rectangle CDKG, is to the bafe EI of the rectangle EIMe in the fame compounded ratio ; there-- fore the force in C is to the force in E as CG to EI.

The line bko (fig. 13.) was called by Dr Barrow (who firlt introduced this extenfive empluyment of notion into geometry), the scale of velocitics; and the line FHL (fig. 16.) was ruaned by him the fcale of ac-
celerations.
Hermann, in his. Pharonomia, calls it the celerations. Hermann, in his Pboronomia, calls it the fcale of forces. We fhall retain this mame, and we may call \(b k \cdot 0\) of fig. 13 . the fcule of accelerations, when the areas reprefent the velocities. Sir Ifaac Newton added another fcale of very great ufe, viz. a ciale of times. It is conftructed as follows.

Let ABE (fig. 16.) be the line alung which a body is accelcrated, and let FHI be the fcale of forces, that is, having its orcinates FB, HD, IE, \&ce, proportional
to the forces acting at \(\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}\), \&.c. ; let \(f\) bi be another line fo related to ABE , that \(\mathrm{C}_{g}\) is to \(\mathrm{E} i\) in the inverfe fubduplicate ratio of the area BFGC to the area BFIE; or, to exprefs it more generally, let the fquares of the ordinates to the line \(f g\) i ve inverffly, as the areas of the line FHI intercepted between thefe ordinates and the firt ordinate drawn through \(B\); then the times of the bodies moving from a flate of reft in \(B\) are as the intercepted areas of the curve \(f g\) i.

For let CD and \(\mathrm{E}_{e}\) be two very frnall portions of the face deferibed in equal times. They will he ultimatcly as the velocities in C and E. The area FBCG is to the area FBEI as the fquare of E it the fquare of \(\mathrm{C}_{g}\) (by confluction); but the area FBCG is to FBEI as the fquare of the velocity at C is to the fquare of the velocity at \(E\) (by the propofition); therefure the fquare of the velocity at C is to the fquare of the velocity at E as the fquare of E ; to the fquare of \(\mathrm{C} g\); therefore \(\mathrm{E} i\) is to \(\mathrm{C}_{g}\) as the velocity at \(C\) to the velocity at \(E\), that is, as \(C D\) to \(E_{e}\) : but fince \(\mathrm{E} i: \mathrm{C} g=\mathrm{CD}: \mathrm{E} e\), we have \(\mathrm{E}: \times \mathrm{E}_{e}=\) \(\mathrm{C} g \times \mathrm{CD}\), and the clementary rectangles \(\mathrm{C} g k \mathrm{D}\) and Eime are equal, and may reprefent the equal moments of time in which CD and Ee were defcribed. Thus the areas of the line \(f g l\) will reprefent or exprefs the times of defcribing the correfponding portions of the abfeiffa.

We may exprefs the nature of this fcale more briefly thus. Let BE be the face defcribed with any varied motion, and \(f g l\) a curve, fuch that its ordinates are inverfely as the velocities in the different points of the abfciffa, then the area will he as the times of defcribing the correfponding portions of the abfeiffa.
In all the cafes where our mathematical knowledge Exanples enables us to affign the values of the ordinates of the fi-of the apr gure 16 , we can obtain the law of action of the forces, bication os or the nature of the force; and where we can affign \({ }^{10^{\circ} 95}\). the value of the areas from our knowledge of the proportions of the ordinates or forces, we can afcertain the velocitics of the motion. We thall give an example or two, which will thew the way in which we avail ourfelves of the geometrical properties of figure, in order to afcertain the effects of mechanical forces.
1. Let the accelerating force which impels the body along the line \(A B\) be conftant, and let the body be previoully at relt in \(B\); the line which bounds the ordinates that reprefent the forces mult be fome line - HN parallel to \(A B\). The area \(\mathrm{BDH} \phi\) is to the area \(B E N\) as the fquare of the velocity at \(D\) to the fquare of the velocity at E . Thefe areas, having equal bafes DH and EN, are as their altitudes BD and BE ; that is, the fpaces defribed are as the fyuares of the acquired velocities. And we fee that this characterific mark of uniformly accelerated motion is included ia this general propolition.
2. Let us fuppofe that the body is impelled from A Fx.mple: (fig. 17.) towards the point C, by a ferce proportional fecond of to its diftance from that point. This forec may he re- oreuliar prefented by the ordinates D.A, E.E, eb, \&c. to the ance, ftraight line DC. We may take any magnitude of there ordinates; that is, the line DC may make any angle with AC. It will fimplify the inveltigation if we make the firt furce \(A D=A C\). About \(C\) defcribe the circle AII \(a\), cutting the ordinate EB in F; let \& \(b\) be another ordinate, cutting the circle in \(f\) yery near

\section*{DYNAMICS.}

Of Accele to F ; draw CH perpendicular to AC , and make the ratily and arch \(\mathrm{H} b=f \mathrm{~F}\), and draw \(b c\) parallel to HC ; join Retarding Forces. FC and DH , and draw \(\mathrm{F} g\) perpendicular to \(f b\). Let IML be another ordinate.

The area DABE is to the area DAKL as the fquare of the velocity at B to the fquare of the velocity at K . But DABE is the excefs of the triangle ADC above the triangle EBC, or it is half of the excefs of the fquare of CA or CF above the fquare of CB , that is, half the fquare of BF. In like manner, the area DAKL is equal to half the fquare of KM ; but halves have the fame ratio as the integers; thercfore the fquare of BF is to the fquare of KM as the fquare of the velocity at \(B\) to the fquare of the velocity at K ; therefore the velocity at \(B\) is to the velocity at \(K\) as \(B F\) is to KM . The velocities are proportional to the fines of the arches of the quadrant AFH defcribed on AC.

Cor. 1. The final velocity with which the body arrives at C , is to the velocity in any other point B as radius to the fine of the arch AF .

Cor. 2.- The final velocity is to the velocity which the body would acquire by the uniform action of the initial force at \(A\) as 1 to \(\sqrt{2}\); for the rectangle \(D A\) CH exprefles the fquare of the velocity acquired by the uniform action of the force DA; and this is double of the triangle DAC ; therefore the fquares of thefe velocities are as 1 and 2 , and the velocitics are as \(\sqrt{ } 1\) and \(\sqrt{ } 2\), or as 1 to \(\sqrt{ } 2\).

Car. 3. The time of defribing \(A B\) is to the time of defcribing \(A C\) as the arch \(A F\) to the quadrant AFH.

For when the arch Ff is diminifhed continually, it is plain that the triangle \(f i \mathrm{~F}\) is ultimately fimilar to CFB, by reafon of the equai angles Cib (or CFB) and \(f i \mathrm{~F}\), and the right angles CBF and \(f \mathrm{~F} i\); therefore the triangles \(f s F\) and \(C B F\) are alfo limilar. Moreover, \(\mathrm{B} b\) is equal to \(\mathrm{F} g, \mathrm{~F} f\) is equal to \(b \mathrm{H}\), which is ultimately equal to \(c \mathrm{C}\); therefore fince the triangles \(f g \mathrm{~F}\) and CFB are fimitar, we have \(\mathrm{Fg}: \mathrm{F} f=\mathrm{FB}\) : \(\mathrm{FC},=\mathrm{FB}: \mathrm{HC}\); therefore \(\mathrm{B} b\) is to \(c \mathrm{C}\) as FB to HC , that is, as the velocity at B to the velocity at C ; therefore \(\mathrm{B} b\) and \(c \mathrm{C}\) are deferibed in equal moments when indefinitely fmall; therefore equal portions \(\mathrm{F} f\), \(b \mathrm{H}\), of the quadrant correfipond to equal moments of the accelcrated motion, along the radius AC; and the atches \(\mathrm{AF}, \mathrm{FM}, \mathrm{MH}\), \&c. are proportional to the times of defruibing \(A B, B K, K C\), Ec .

Cor. 4. The time of deferibing AC with the uneor ally accelerated motion, is to the time of defcribing it uniformly with the final velocity as the quadrantal arch is to the radius of a circle; for if a point move in the quadrantal arch fo as to be in F, \(f, \mathrm{M}, \mathrm{H}\), \&c. when the body is in \(\mathrm{B}, b, \mathrm{~K}, \mathrm{C}\), it will be moving uniformly, becaute the arches are proportional to the times of defcribing thofe portions of AC; and it will be moving with the velocity with which the body arrives at C , becaufe the arch \(b \mathrm{H}\) is ultimately \(=\mathrm{C} c\). Now if two bodies move uniformly with this velocity, one in the arch AFH , and the other in the radius AC , the times will be proportional to the faces uniformly defrribed; but the time of defcribing \(A F H\) is equal to the time of the accelerated motion along AC ; therefore the propofition is manifet.
203.

Cor. 5. If the body proceed in the line \(\mathrm{C} a\), and be retarded in the fame manner that it was accelerated
along \(A C\), the time of defcribing \(A C\) unformly with of Acce, the velocity which it acquires in C is to the time of rating at defcribing AC \(a\) with the varied mution, as the dianse- Retardit ter of a circle to the circumference; for becaufe the \(\underbrace{\text { Forces }}\) momentary retardations at \(\mathrm{K}^{\prime}, \mathrm{B}^{\prime}, \mathbb{R c}\). are equal to the accelerations at K and B, \&c. the time of defcribing \(\mathrm{AC} a\) is the fame with that of defcribing \(\mathrm{AH} a\) uniformly with the greatef velocity. That is, to the time of defcribing AC uniformly as AH a to AC , or as the circumference of a circle to the diameter. Therefore, \&c. N. B. In this cafe of retarding forces it is convenient to reprefent them by ordinates \(\mathrm{K} / \mathrm{L}, \mathrm{B} \mathrm{E}\), \(a \mathrm{D}^{\prime}\), lying on the other fide of the axis \(\mathrm{AC} a\); and io confider the areas bounded by thefe ordinates as fubtractive from the others. Thus the fquare of the velu. city at \(\mathrm{K}^{\prime}\) is expreffed by the whole area DACL'L'D, the part C'K.L being negative in refpect of the point DAC. This obfertation is general (See alfo Optics, no 125, Encycl.)

Cor. 6. The tine of moving along KC, the half of \(A C\), by the uniform action of the force at \(A\), is to that of deferibing \(\mathrm{AC} a\) by the varied action of the force directed to C , and proportional to the ditance from it, as the diameter of a circle to the circumference; fot when the body is uniformly impelled along KC by the conflant force IK, the fquare of the velocity acquired at C is reprefented by half the reetangle IKCH, and therefore it is equal to the velocity which the variahle force generates by impelling it along AC (by the way: an important obfervation). The body will defcribe AC uniformly with this velucity in the fame time that it is uniformly accelerated along KC. Therefore by Cor, 5. the propofition is manifert.

Cor 7. If two bodies deferibe AC and KC by the action of forces which are every where proportionial to the dillanecs from C , their final velocities will be proportional to the diltances sun over, and the times will be equal.

For the fquares of the final velocities are proportiona! to the triangles \(\mathrm{ADC}, \mathrm{LKC}\), that is, to \(\mathrm{AC}^{2}, \mathrm{KC}^{2}\), and therefore the velocities are as \(\mathrm{AC}, \mathrm{KiC}\). The times of deferibing AC and KC uniformly, with selacities proportional to AC and KC , muit be equal ; and thefo times are in the fame ratio (riz. that of radius to \(\frac{1}{4}\) th of the circumference) to the times of defcribing \(A C\) and KC with the accelerated motion. Therefore, sic.

Thus, by availing ourfelves of the properties of the circle, we have difeovered all the properties or characters of a motion produced by a force always directed to a fixed point, and proportional to the diftance from it.

Some of thefe are remarkable, fuch as the latt corollary; and they are all important; for there are innumerable cafes where this law of action ubtains in Nature. It is nearly the law of aftion of a bow fting, and of all elaftic bodies, when their change of figure during their mutual action is moderate ; and it has been by the help of this propofition, firft demonftrated in a particular cale by Lord Brouncker and Mr Huyghens, that we have been able to obtain precife meafures of time, and confequently of actual motions, and confequently of any of the mechanical powers of Nature. It is for this reafon, as well as for the eafy and perficicuous employment of the mathematical method of proceeding, that we have fejected it.

Inftead of giving any more particular cafes, we may obferve
of Acecle; obferve in general, that if the intenfity of the force be rating and Re'arting torces. proportional to any power whofe index is \(n-1\) of the diftance, and if \(a\) be the diftance from the fixed point at which the body begins to be accelerated, and \(x\) its diftance from that point in any part of the motion, the velocity will be \(\doteq \sqrt{a^{\prime \prime}-x^{n}}\). This is very plain, becaufe the increment CGHD of the area of fig. 16. which is alfo the iucement of the fquare of the veloci\(x y\), is \(\doteqdot x^{n-1} \cdot x\), and the area is \(\doteqdot x^{n}\); and the whole area, corrcfponding to the diftance \(a\), is \(a^{n}\). Therefore the portion of the area ly ing beyond the diflance \(x\) is \(a^{2}-\mathrm{N}^{n}\). This is ats the fquare of the velocity, and therefure the velocity is as the fquare rout \(\sqrt{a^{n}-a^{n}}\) of this quantity.

This propofition, \(f \dot{s} \doteq v v\), or \(f \doteq \frac{v v}{s}\), is the 39th of the firt book of Newton's Trincipia, and is perliaps the mott important in the whole doctrine of dynamics, whet her employed for the invelligation of forces or for the explanation of motions. It furnithes the moft imnediate data for buth purpofes, but more efpecially for the left. By its help, Sir Ifaac Newton was able to point out the numerous dilturbances of the planetary motions, and to feparate them from each other ; thus unravelling, as it were, that mof intricate motion in which all are blended together. He has given a moft wonderful fpecimen of its application in his Lunar Theory.

We now are able to explain all the puzzling facts which were adduced by Leibnit\% and his partilans in fupport of their mealure of the forces of bodies in motion. We fee why four fprings, equally bent, communicate but a double velocity, and nine fprings but a triple velocity; why a bullet moving twice as faft will penetrate an earthen ranpart to a quadruple depth, \&cc. \&c.
This theorem alfo gives a molt perfpicuous explanation of the famous doctrine called confervatio virium vivarum. When perfectly elaftic bodies act on each other, it is found that the fum of the maffes multiplied by the fquares of the velocities is always the fame. This has been fuhitituted, with great encomiums, by the German plitofophers in place of Des Cartes's principle, that the quantity of motion in the univerie, eftimated in one direction, remains always the fame. They are ubliged, however, to acknowledge, that in the ations of perfectly hard bodies, there is always a lofs of vis wiva, and therefore have denied the exitence of fuch bodies But there is the fame lofs in the mutual actions of all foft or ductile, or cven imperfectly clatic, bodies; and they are miferably puzzled how to explain the fagt ; but both the confervatio and the amifis are neceffary conifequences of this theorem.

In the collifion of elattic bodies, the whole change of motion is produced during the fhort time that the bodies are comprefled, and while they regain their figure. When this is completed, the bodies are at the fame diftance from each other as when the mutual action began. Therefore the preceding body has becn accelerated, and the following body has been retarded, along equal fpaces; and in every point of this fpace the accelerating and the retarding force has been cqual. Confequently the fame area of 6 g .17 . expreffes the change
made on the fquare of the velocity of both bodies. Thercfore, if V and U are the velocities before collifiun, and \(v\) and \(u\) the velucinies after collition, of the two bodies A and B , we nut have \(\mathrm{A} \times \mathrm{V}^{2}-v^{2}=\mathrm{B} \times \overline{u^{2}-V^{2}}\), and therefore \(\mathrm{A} \times \mathrm{V}^{2}+\mathrm{B} \times \mathrm{U}^{2}=\mathrm{A} \times v^{2}+\mathrm{B} \times u^{2}\).

But in the other clafs of bodies, which do not conspletely regain their figure, but remain compreffed, they are nearer to each other when their nutual action is ended than when it began. The foremult loody has been aceclerated along a florter tpace than that along which the other has been retarded. The mutual forces have, in every inftant, been equal and oppolite. Therefore the areal which exprefles the diminution of the fquare of the velocity, nuft exceed the area exprefling the augmentation by a quantity that is always the fame when the permanent compreffion is the fame; that is, when the relative motion is the fame. \(\mathrm{A} \times \mathrm{V}_{2}=v^{2}\) muft exceed \(\mathrm{B} \times \overline{u^{2}-\mathrm{U}^{2}}\), and \(\mathrm{A} \times \mathrm{V}^{2}+\mathrm{B} \times \mathrm{U}^{2}\) nuft excecd \(A \times v^{2}+B \times u^{2}\).

This fame theorem is of the mof extenfive ufe in all practical queftions in mechanic arts; and without it mechanics can go no farther than the mere Aatement of equilibrium.

Hermann, profeflor of mathernatics at Pavia, one of Hiftory of the ornaments of the mathematical clafs of philofophers, \({ }^{1,095 . ~ \text { is }}\) has given a pretty demonftration of this valuable propo- curious. fition in the Ada Eruditorum Lipfice for 1709; and fays, that having fearched the writings of the mathema. ticians with great care, he found himfelf warranted to fay, that Newton was the undoubted author, and bralts. of his own as the firft fynthctical demonftration. The purpofe of this affertion was not very apparent at the time ; but long after, i: 1745 , when Hermann's papers, preferved in the town-houfe of Pavia, wcre exanined, in order to determine a difpute between Maupertuis and Koenig about the claim to the difcovery of the principle of leafl action, letters of Leibnitz's were found, reque!ting Hermann to fearch for any traces of this propoofition in the writings of the mathematicians of Europe. Leibnitz was by this time the envious detractor from Newton's reputation ; and could not but perceive, that all his contorted arguments for his doctrine received a clear explanation by means of rhis propofition, in perfcet confornity to the ufual meafure of moving forces. Newton had difeovered this theorem long before the publication of the Principia, and even before the difcovery of the chicf propolition of that book in 1666 ; for in his Optical Lectures, the materials of which were in his poffeffion in \(166_{t}\), he makis frequent ufe of a propofition founded on this (fee no 42 .) We may here remark, that Hernana's demontration is, in every ftep, the fame with Dr Barrow's demonftration of it as a theorm merely gromerrical, withont fpeaking of moving forces (fee Leser. \(^{2}\) Geom, tr: xi. p. S5. edit. 16), but friving it as an inftance of the transformation of curves, which he calls scales of velucity, of time, of accelcration, \&e. It is wery true that Barrow, in thefe mathematical lectures, approached very near to both of Newton's difcoveries, the fluxionary geometry, and the principles of dynamics; and the junto on the contineat, who were his continual detractors, charge him with impudent plagiarifm from Dr Barrow, and even fay that he has added nothing to the difcoveries of his teacher. But furely Dr Barrow was the beft judge of this mat.

Of accele- ter; and fo far from refenting the ufe which Nowton satitg and has made of what he had tanght him, he was charmed Forces.
\(\qquad\) with the genius of the juverais fociatijfimus his felholar, and of his own acend gave him his profefforial chair, and cver after lived in the utmoft harmony and friendShip with him. Nay, it would even appcar, from fome expreffions in thofe very lectures, that Dr Barrow owed to young Newton the firf thought of making fuch cxtenfive ufe of motion in geometry. We recommend this work of Barrow's to the ferions perufal of our readers, who wifh to acquire clear notions of the fcience of motion, and an elegant tafte in their mechanical difquifitions. After all the cultivation of this fcience by the commentators and followers of Newton, after the Phoronomin of Hermann, the Mechanica of Euler, the Dynamique of D'Alembert, and the Mechanique Analytique of De la Grange, which are undoubtedly works of tranfcendent merit and utility, the Principia of Newton will till remain the moft pleafing, perfpicuous, and elegant fpecimen of the application of mathematics to the fcience of aniverfal mectianics, or what we call Dinamics.

The two fundamental theorems \(f i=\dot{i}\), and \(f ;\) \(=v \dot{v}\), enable us to folve every queftion of motion accolerated or retarded by the action of the mechanical powers of nature. But the employment of them may be greatly expedited and fimplified by noticing two or three general cafes which occur very frequently.

Thofe may be collced fimilar inffaits of time. and finnilar points of Space whbich divide given portions of time, and of fpace in the fame ratio. Thus the niddle is a fimilar iuflant of an hour or of a day, and is the finilarly fituated point of a foot or of a yard. The beginning of the 2 If minute, and of the gth hour, are fimilar inflants of an hour and of a day. The beginning of the 5 th inch, and of the \(2 d\) foot, are fimilar points of a foot and of a 105 yard.
Similar ace Forces may be faid to ait fimilarly when their intentions,what? filies in fimilar inflants of time, or in fimilar points of Space, are in a conflant ratio. Thus in fig. 17. when one body is impelied towards C from A, and another from K , each with a force proportional to the diflance of every point of its motion from C , thefe forces may be faid to aet fimilarly along the fpaces AC and KC , or during the times reprefented by the quadrantal arches AFH, KNO. The following propofitions on fimilar actions will be found very ufeful on many occafions; but we muft premife a geonmetrieal lemma.

If there te two lines EFGII (fig. 18.), ef \(g h\), fo related to their abfciffes AD, \(a d\), that the ordinates IK, \(i k\), drawn from fimilar points I and \(i\) of the abfciffes, are in the conttant ratio of AE to af ; then the area ADHE is to the area \(a d b e\) as the rectangle of AD \(\times \mathrm{AE}\) to the rectangle a \(d \times a\) e.

For let each abfciffa be divided into the fame number of equal and very fmall parts, of which let \(C D\) and \(c d\) be one in each. Infcribe the rectangles CGID, \(c\) gid. Then becaufe the number of parts in each axis is the fame, the lengths of the portions CD and \(c d\) will be proportional to the whole abreiffes AD and \(a d\). And becaufe \(C\) and \(c\) are fimilar points \(C G\) is to \(c g\) as \(A E\) is to ac. Therefore \(\mathrm{CD} \times \mathrm{CG}: c d \times c g=\mathrm{AD}\) AE: a \(d \times a e\) This is true of each pair of correfponding reftangles; and therefore it is true of their fums. But when the nunber of thefe rectangles is in-
creafed, and theeir breadth dimininhed withont end, it is of Aceeceevident that the ultinate ratio of the fum of all the rect- rating ant angles, fuch as CDHG to the funs of all the reftangles Reta diag \(c d b g\), is the fame with that of the area ADHE to the area \(a d b e\), and the propofition is manifen.

If two partites of matter are fimilarly infrlied during given times, the cbanges of velecily are as the times and as the forces jointly.

Let the times be reprefented by the Itraight lines ABC (fig. 19.) and \(a b c\), and the forces by the ordinates \(A \mathrm{D} . \mathrm{BE}, \mathrm{CF}\), and \(a d, b e, c f\). Then if B and \(b\) are fimilar intants (fuppofe the middlcs) of the whole times, we have \(\mathrm{BE}: b_{c}=\mathrm{AD}: a \mathrm{~d}\). There. fore, by the lemma, the area \(A C D F\) is to \(a c f d\) as \(\mathrm{AC} \times \mathrm{AD}\) to ac \(\times\) ad. But thefe areas are proportional to the velocities (\(n 072\)), and the propofition is demonfrated. For the fame reafon the change of velocity during the time AB is to the change during \(a b\) as \(\mathrm{AB} \times \mathrm{AD}\) to \(a b \times a d\).

Cor. I. If the times and forces are reciprocally proportional, the changes of velocity are equal; and if the forces are inverfely as the times, the changes of velocity are equal.

If two particles be fimilarly urged along given fpaces, the changes made on the fquares of the velocities are as the forces and Spaces jointly.

For if AC (fig. 19.) and \(a c\) are the fyaces along which the particies are inpelled, and the foress are as the ordinates \(A 1\)) and \(a d\), the areas ACFD and \(a c f d\) are as the changes on the fquares of the velocities. But thefe areas are as \(\mathrm{AC} \times \mathrm{AD}\), and \(a c \times a d\). Therefore, \&c.

Cor. 2. If the fpaces are inverfely as the forces, the changes of the fquares of the velocities are equal; and if thefe are equal, the fpace are inverfely as the forces.

Cor. 3. If the fpaces, along which the particles lave been impelled from a previous flate of reft, are directly as the forces, the velocities are alfo as the forces. For, becaufe the changes of the fquares of the velocities ate as the fpaces and forces jointly, they are in this cafe as the fquares of the forces or of the fpaces; but the changes of the fquares of the velocities are in this cafe the whole fquares of the velocities; therefore the fquares of the velocities are as the fquares of the forces, and the velocities are as the forces. N.B. This includes the motions reprefented in fig. 17

If two particles be fimilarly impelled along given faces, from a flate of reft, the fquares of the times are proportional to the fpaces directly, and to the forces in. verfely.

Let \(A B C\) (fig. 19.) abe be the Spaces deferibed, and \(\mathrm{AD}, a d\), the accelerating forees at A and \(a\) Let \(\mathrm{V}, \mathrm{B}\) exprefs the velocity at B , and \(v, b\) the velocity at \(b\).

Let \(G H K\) and \(g b k\) be curves whofe ordinates are inverfely as the velocities at the correfponding points of the abfcifa. Thefe curves are therefore exponents of the times (\(n^{\circ} 99\).) Then, becaure the forces att fimilanly, we have, by the laft theorem, \(\mathrm{AC} \times \mathrm{AD}:\) ac \(\times a d=\mathrm{V}^{2}, \mathrm{~B}: v^{2}, b,=b b^{2}: \mathrm{HB}^{2}\). Therefore HB \(: b b=\sqrt{a c \times a d}: \sqrt{A C X A D}\), and therefore in a confant ratio. Call this the ratio of \(m\) to \(n\). But, fince the ordinates of the lines \(G H K, g h k\) are inverfely as the velocities, the areas are as the times (\(\left(1^{\circ} 99\right)\);
of Acsce and fince thefe ordinates are in the conflant ratio of \(m\) rating and to \(n\), the areas are in the ratio of \(\mathrm{AC} \times m\) to \(a c \times n\). Ketarding Therefure (calling the times of the motions T and \(t\)),
Forces. we have
\(T: t=m \mathrm{AC}: n a c\); and therefore
\(\mathrm{T}^{2}: t^{2}=m^{2} \times \mathrm{AC}^{2}: n^{2} \times a c^{2}\). But
\(m^{2}: n^{2}=a c \times a d: \mathrm{AC} \times \mathrm{AD}\). Therefore
\(\mathrm{T}^{2}: t^{3}=a c \times a d \times \mathrm{AC}^{2}: \mathrm{AC} \times \mathrm{AD} \times a c^{2}\),
Or \(\mathrm{T}^{:}: t^{2}=a d \times \mathrm{AC}: \mathrm{AD} \times a c\).
Or \(\mathrm{T}^{z}: t^{2}=\frac{\mathrm{AC}}{\mathrm{AD}}: \frac{a c}{a d}\).
The attentive reader will obferve that thefe three propofitions give a great extenfion to the theorems which were formerly deduced from the nature of uniformly accelerated motion, or of uniform action of the forces, and were afterwards demonflrated to oltain in the momentary action of forces any how variable.

The firft of the three propofitions, \(\mathrm{V}: v=\mathrm{F} \times \mathrm{T}\) : \(f \times t\), is the extenfion of the theorem \(f \times \dot{i}=\dot{v}\). The ficond, \(V^{2}: v^{2}=F \times S: f \times s\), is the extention of the theorem \(f \times \dot{s}=v \dot{v}\). And the third, \(\mathrm{T}^{2}: t^{t}=\frac{\mathrm{S}}{\mathrm{F}}: \frac{s}{f}\), is the extenfion of \(f=\frac{\dot{s}}{\left(t^{2}\right)}\), or of \(f \times\left(t^{2}\right)=s\). Thefe. theorems hold true of all firnilar actions; and ouly for this reafon, are true of uniformly accelerated motions, or uniform actions.

There remains one thing more to be faid concerning the action of accelerating forces. Their magnitude is afcertained by their effect. Therefore that is to be confidered as a double force which produces a double quantity of motion. Therefore when a body A contains twice the number of equal atoms of matter, and acquires the fame velocity from the action of the force 1 that another body \(a\), containing half the number of atonns, acquires from the action of a force \(f\), we conceive F to be double of \(f\). 'I hat this is a legitimate inference appears clearly from this, that we conceive the fenfible weight of a body, or that preffure which it exerts on its fupports, as the aggregate of the equal preffure, of every atom, accumulated perbaps on one point; as when the body hangs by a thread, and, by its intervention, pulls at fome machine. Without inquiring in what manner, or by what intervention, this accumula. tion of preffure is orought about, we fee clearly that it refults from the equal accelerating force of gravity acting immediatly on each atom. When this weight is, thus employed to move another body by the intervention of the thread, which is attached to one point perhaps of that body, it puts the whole into motion, generating a cert:in velocity \(\eta\) in every atom, by acting uniformly during the time \(t\). We conceive each atom to have fuftained the action of an equal accelerating force, whofe meafure is \(\frac{v}{t}\). Without confidering how this force is exerted on each atom, or by what it is immediately exerted, or how it is diffufed through the body from the point to which the weight of the other body is applied by means of the thread; we ftill confider it as the aggregate of the action of gravity on each atom of that other body. Moreover, attending only to the motion produced by it, and perhaps not knowing the weight of the impelling body, we meafure it, as a moving force, by confidering it as the aggregate of the
forces propagated to each atom of the impelled body, of Accelce. and meafured by \(\frac{v}{t}\). If we know that the impelled Rerarding body contains the number \(m\) of atoms, the aggregate of \(\underbrace{\text { forcese }}\) forces is \(m \frac{v}{t}\), or \(\frac{m v}{t}\).

But fince we meafure forces by the quantity of motion which they produce, we muft conceive, that when the fame force is applied to a body whild confifts of \(n\) particles, and produces the velocity \(u\), by acting uni-
formly during the fame tinie \(t\), the force \(n \frac{n}{t}\) is equal to the force \(m \frac{v}{t}\).

Sir Ifaac Newton found it abfolutely neceffary, in Moving \(\begin{gathered}\text { rio }\end{gathered}\) the difquifitions of natural philofophy, to keep this cir- frree, mocumflance of acceleration clear of all notions of quanti- - vive force, ty of matter, or other confiderations, and to contem- is sininino. plate the affections of motion only. He therefore con- guifhed fidered \(\frac{v}{t}\) as the truc original meafure of accelerating lerating \(\begin{gathered}\text { fore } \\ \text { force. }\end{gathered}\) force, and \(m \frac{v}{t}\) as an aggregate. He therefore calls the aggregate a vis motrix, a moving force, meafured by the quantity of motion that it generates. And he confines the term accelerating force to the quantity \(\frac{v}{t}\), meafured by the acceleration or velocity only. It would be convenient, therefore, alfo to confine the fymbol \(f\) to \(m \frac{\tau^{\prime}}{t}\), and to retain the fymbol a for expreffing the accelerating force \(\frac{v}{t}\).

This appellation of motive force is perfectly juft and fimple; for we may conceive it as the fame with the accelerating force which produces the velocity \(m\) times \(v\) in one particle, by acting on it uniformly during the time \(t\). This motion of one particle having the velocity \(m v\), is the fame with that of \(m\) particles having each the velocity \(v\).

If therefore a motive force \(f\) acts on a body confifting of \(m\) particies, the accelerating force \(a\) is \(=\frac{f}{m} \frac{v}{t}\).
Therefore the three laft propofitions concerning the fimilar, the uniform, or the momentary actions of moving forces, when expreffed in the moft general terms, are,
\[
\begin{aligned}
& v^{\prime} \doteqdot \frac{f}{m t^{\prime}} \\
& v^{2} \doteqdot \frac{f s^{\prime}}{m}, \text { or } v \dot{v}=\frac{f s}{m} \\
& t^{2} \doteqdot \frac{m s^{\prime}}{f}
\end{aligned}
\]

Of Deflecting Forces.
When we obferve the direction of a body to change, Deflecting we unavoidably infer the agency of a force which actsforces. in a direction that does not coincide with that of the body's motion; and we may diflinguifh this circumftance by calling it a deflecting force. We have already fhewn how to eftimate and meafure this deflecting force, by confidering it as competent to the

Of Defeet-production of that motion which, when compounded \(\underbrace{\text { ing Por.es. }}\) with the former motion, will produce the new motion (\(n^{\circ} 44\).) Now, as all clanges of motion are really compolitions of motions or forces, it is evident that we fhall explain the action of deflecting forces when we fhew this compofition.

Alteration
of dctlectons are continual, and produce curvilineal motions.

We may alinott venture to fay à priori, that all deflections muft be continual, or exhibit curvilineal motions: for as no finite velocity, or change of velocity, can be produced in an inftant by the action of an accelerating force, no polygonal or angular deflection can be produced; becaufe this is the compofition of a finite velocity produced in an inftant. Deflective motions are all produced by the compolition of the former motion, having a finite velocity, with a tranfverfe motion continually accelerated from a flate of reft. Of this we can form a very ditinet notion, by taking the fimplet cafe of fuch accelerated motion, namely, an uniformly accelerated motion.
Let a body be moving in the direction \(A C\) (fig. 20.) with any conflant velocity, and when it comes to \(A\), let it be expofed to the action of an accelerating force, acting uniformly in any other direction AE . This alone would caufe the body to defrribe \(A E\) with a uni. formly accelerated motion, fo that the fpaces AD, AE would be as the fquares of the times in which they are diffcribed. Therefore, if \(A B\) be the fpace which it would have defcribed uniformly in the time that it defrribes AD by the action of the accelerating force, and \(A C\) the fpace which it would have defcribed uniformly while it deferibes AE by the aetion of the accelerating force-nothing more is wanted for afcertaining the real motion of the body but to compound the uniform motion in the direction \(A C\) with the uniformly accelerated motion in the direction \(A E\). \(A D\) is to \(A E\) as :he fquare of the tine of defcribing \(A D\) to the fyuare of the time of defribing \(A E\); that is, as the fyuare of the tine of defcribing \(A B\) to the fquare of the time of deferibing \(A C\); that is, as \(A B^{3}\) to \({A C^{2}}^{2}\) (by reafon of the uniform motion in AC). This compofition is performed by tahing the timultaneous points \(\mathrm{B}, \mathrm{D}\), and the fimultaneous points \(\mathrm{C}, \mathrm{E}\), and completing the parallelograms ABFD, ACGE. The body will be found in the points \(F\) and \(G\) in the infants in which it would lave been found at B and C by the uniform motion, or in D and E by the accelerated motion. In the fame manaer may be found as many points of the real path as we pleafe. It is plain that thefe points will be in a line AFG , fo related to AE that AD : \(A E=D F^{2}: E G^{2}\); or fo related to the original motion \(A C\), that \(A B^{2}: A C^{2}=B F: C G\), \&c. This line is therefore a parabola, of which AE is a diameter, DF and EG are ordinates, and which touches \(A C\) in A.

And of the Having thus afcertained the path of the body, we metion in can alfo afcertaia the motion in that path; that is, the this pach. velocity in any point of it. We know that the velo- city in the point \(G\) is to the velocity of the uniform motion in the direction AC as the tangent TG is to the ordinate EG; becaufe this is the ultinnate ratio of the momentary increment of the arch AFG to the momentary increment of the ordinate EG. Thus is the velocity in every point of the curve determined. We have taken it for granted, that the line of projection qouches the path, and that the direction in every point
is that of the tangent. To fuppofe that the curve, in of Defer any portion of it, coincides with the tangent, is to fup. \(\underbrace{\text { ing Force, }}\) pofe that the body is not deflected; that is, is not acted on by a tranfverfe accelerating force: And to fuppofe that the tangent makes a finite angle with any part of the path, is to Cuppofe that the deflection is not continual, but hy ftarts - both of which are contrary to the conditions of the cafe. No ftraight line can be drawn between the direction of the body and the fucceeding portion of the path, otherwife we muft again fuppofe that the deffection is fubfultory, and the motion angular.

But while the inveftigation is fo eafy when the direction and intenfity of the deflecting force in every point of the curve are known, the inveftigation of the deffecting force from the oblerved motion is by no means eafy. The obferved curvilineal motion always arifes from a compofition of a unifurm motion in the tangent with fome tranfverfe motion. But the fame curvilineal motion may be produced by compouading the uniform motion in the tangent with an infinity of tranfverfe motions; and the law of action will be different in thefe tranfverfe motions according as their directions differ. We mult learn, not only the intenfity of the deffecting force, and the law of its variation, but alfo its direction in every point of the curve. It is not eafy to find general rules for difcovering the direction of the tranfverfe force; molt commonly this is indicated by extrinfic circumftances. The deflecting force is frequently obferved to refide in, or to accompany, fome other body. It nay be prefumed, therefore, that it acts in the direction of the line drawn to or from that body ; yet even this is uncertain. The moft general rule for this inveftigation is to obferve the place of the body at feveral intervals of time before and after its paffing through the point of the curve, where we are interefled to find its precife direction. We then draw lines, joining thofe places with the places of the tangent where the body would have been by the uniform motion only. We fhall perhaps obferve thefe lines of junction keep in parallel politions: we may be affured that the direction of the tranfverfe force is the fame with that of any of thefe lines. This is the cafe in the example juft now given of a parabolic motion. But when thefe hines change pofition, they will change it gradually; and their pofition in the point of contact is that to which their politions on hoth fides of it gradually approximate.

But all this is deftitute of the precifion requifite in philofophical difcuffion. We are indebted to Sir Ifaac Newton for a theorem which afcertains the direction of the tranfverfe force with all exactnefs, in the cafes in which we mof of all wifh to attain mathematical accuracy, and which not only opened the accefs to thofe difcoveries which have immortalifed his name, but alfo pointed out to him the path he was to follow, and even, marked lis firft feps. It therefore merits a very particular treat mient.
If a body defcribes a curve line \(A B C, D E F\) (fig. Newton'? 21.) lying in one plane ; and if there be a point \(S\) fofundanct fituated in this plane that the line joining. it with the for the di body defcribes areas ASB, ASC, ASD, \&c., propor- rection oll tional tu the times in which the body defcribes the defleting arches \(A B, A C, A D, \& c\). the force which deflects the furc. body from rectilineal motion is continually directed to the fixed point. \(S\).
s Deflet. Let us firf fuppofe that the body defcribes the po-别 forcc. lygon \(A B C D E F\), \&c. formed of the chords \(A B, B C\), CD, DE, F.F, \&c. of this curve: and (for greater fimplicity of argunent) let us confider areas deferibed in equal fuccellive times; that is, let us fuppofe that the trianglea \(\mathrm{ASB}, \mathrm{BSC}, \mathrm{CSD}\), \&c. are equal, and defribed in equal times. Make \(B c=A B\), and draw c S.
1reas \(\div 10\)
Had the motion \(A B\) fuffered no change in the point B , the body would have deforibed \(\mathrm{B} c\) in the equal moment fuccecding the firf: but it defcribes BC. The body has therefore been deftected by an external force; and \(B C\) is the diagonal of a parallelogram (\(\mathrm{n}^{\circ} 45,46\).), of which \(\mathrm{F} c\) is one fide, and \(c \mathrm{C}\) is another. The deflecting force will be difcovered, both in refpect of direction and intenfity, by completing the parallelogram \(\mathrm{B} c \mathrm{C} b\). \(\mathrm{B} b\) is the fpace which the deflecting force would have caufed the budy to defcribe in the time that it deferibes \(\mathrm{B} c\) or BC . Becaufe \(\mathrm{B} c\) is equal to 13A, the triangles BSc, BSA are equal. But (by the nature of the motion) BSA is equal to BSC. 'Thêrefore the triangles BSC and BSc are equal. They are alfo on the fame bafe BS ; therefore they lie between the fame parallels, and \(\mathrm{C} c\) is parallel to SB . But \(c \mathrm{C}\) is parallel to \(\mathrm{B} b\). Therefore \(\mathrm{B} b\) coincides with BS, and the deflecting force at B is directed toward S . By the fame argument, the deflecting force at the angles \(\mathrm{D}, \mathrm{E}, \mathrm{F}, \& \mathrm{c}\). is directed to S .

Now, let the fides of the polggon be diminifhed, and their number increafed without end. The demonitration remains the fame; and continues, when the polygon finally coalefces with the curve, and the deflection is continual.

When areas are defcribed proportional to the times, equal areas are deferibed in equal times; and therefore the deflection is always directed to S. Q. E. D.

The point \(S\) may, with great propriety of language, be called the Centre of Deflection, or the Centre of Furces; and forces which are thus continual. ly directed to one fixed point, may be diftinguifhed from other deflecting forces by the name Central Forces.

The line joining the centre of forces with the body, and which may be conceived as a ftiff line, carrying the body round, is ufually named the Radius Vector.

The converfe of this propofition, viz. that if the deflecting forces be always directed to S , the motion is performed in one plane, in which \(S\) is fituated, and es produce reas proortional to te times.
their hafes \(A B, E F\) are inverfely as their altitudes Sr, of Dificét. St. Hut thefe bafes, being deferibed in equal timer, ing tome. are as the velocities; and they ultimately conncide with the tangents at \(A\) and \(E\).

Cor. 2. If \(B \times\) and \(F\) : be drawn perpendicular to 157. \(S A\) and \(S E\), we have \(S A \times B \alpha=S E \times F_{1}\), and \(S A: S E=F \cdot: \mathrm{B} a:\) For \(S A \times B a\) is double of the triangle 13SA, and \(\mathrm{SE} \times \mathrm{F}\) : is double of the equal triangle SFE.

Cor. 3. The angular velocity round S , that is, the r 18 magnitude of the angle deferihed in equal times by the velocity is radius vector, is inverfely proportional to the fquare of inverfely as the diftance from S. For when the arches AB, EF \(f\) flye dilare diminithed continually, the perpendiculars \(B_{\infty}\) and tarce from F e will ultimately coincide with arches delcribed round the centre \(S\) with the radii SB and SF. Now the magnitude of totceso an angle is proportional to the length of the arch which meafures it directly, and to the radius of the arch inverfely. In any circle, an arch of two inches long meafures twice as many degrees as an arch one inch long; and an arch an inch long contains twice as many degrees of a circle whofe radius is tivice as thort. 'Therefore, ultimately, the argle ASD is to the angle ESI as \(\mathrm{B} \propto\) to F f , and as SF to SB jointly ; that is, as B \& \(\times S F\) to \(F \varepsilon \times S B\). But \(B_{u}: \Gamma_{f}=S E: S A\) (Cor 2.) Therefore \(\mathrm{ASB}: \mathrm{ESF}=\mathrm{SE} \times \mathrm{SF}: S \mathrm{~B} \times \mathrm{SA}\), \(=\) ultimately \(\mathrm{SE}^{2}: \mathrm{SB}^{2}\).

This corollary gives us an oftenfible marl, in many very important cafes, of the action of a deflecting force being always directed to a fixed point. We are offen able to meafure the angular motion when we camut meafure the real velocities.

Having thus difcovered the chief circumtlances which Intimate enable us to afcertain the direction of the deflecting connection foree, we proceed to inveltigate the quantity of this de- if dynaflective determination in the different points of a curvi- nhe higher lineal motion. This is a more difficult tafk. The mo-genmetry. montary effect of the deflecting force is a fmall deviation from the tangent; and this deviation is made with an accelerated motion. The law of this acceleration regulates the curvature of the path, and is to be determined by it. We may be allowed to obferve by the way, that it appears clearly from the form in which Newton has prefented all his dynamical thoutems, that we are indebted to thefe problems for the inmenfe irs. provement which he has made in geometry by his i.s. vention of fuxions. The purpofes he lad ia view fursgefted to his penetrating mind the means for attaininer them; and the connection between dynamics and geometry is fo intimate, that the fame theurems are in a manner common to both. This is particularly the cafe in all that relates to curvature. Or hall we fay that the geometry of Dr Barrow fuggelled the dynamical theorems to Newton? Wc have feen how the curvature of a parabola is produced loy a force acting uniformly. The momentary action of all finite forces may be conlidered as uniform; and therefore the curvature will be that of fome portion of fome parabola; but it will be difficult to determine the precife degree without fome farther help. We are beft acquainted with the propertics of the circle, and will have the cleareft notions of the curvature of other curves by comparing them with circles.

The curvature of a circular arch of given length is Meafure ci fo much greater as its radius is florter; for it will con- curvatuse, tain fo many more degrees in the fame length; and
or Deffer therefore the change of direction of its extremities is fo \(\underbrace{\text { ing Fores.s. much greater. Curvatures may always be meafured }}\)

119 verfely.
Evolution Suppofe a thread made faft at one end of a material Evolution curve ABCD (fior 22), and applied to it in its whole
and invelu or
tion of length. Taking hold of its extremity D, unfold it gration of curves.

Circle of curvature Equicurve sircle. dually from the curve DCBA; the extrenity D will deferibe another curve \(\mathrm{D} c b a\). This genmetrical operation is called the Eqolution of curves, and 1) \(c b, a\) is called the Evolure of DCBA, which is called the Involute of \(\mathrm{D} / b\) a. Perhaps this denumination has been given from the genetis of the area or furface contained by the two lines, which is folded up and nufolded fomewhat like a fan. When the defribing point is in \(b\), the thread \(b \mathrm{~B}\) is, undoubtedly, the momentary radius of a circle e \(b f\), whofe centre is \(B\), the point of the involute which it is juitt groing to quit. The momentary motion of \(b\) is the fame, whether it is deferiling an arch of the evolute pafing through \(b\), or an arch of a circle round the centre B . The fame line \(b \%\), perpendicular to the thread \(b \mathrm{~B}\), touches the circle \(c b f\) and the curve \(\mathrm{D} b a\) in the point \(b\). This circle \(e b f\) mutt lie within the curve \(\mathrm{D} b a\) on the fide of \(b \mathrm{~B}\) toward \(a\); becaife on this fide the momentary radius is continually increafing. For fimilar reafons, the circle \(\varepsilon b f\) lies without the curve on the other fide of \(b \mathrm{~B}\). Therefore the circle \(e b f\) both touches and cuts the curve \(\mathrm{D} b a\) in the point \(b\). Moreover, becaufe every portion of the curve between \(b\) and D is defcribed with radii that are fhorter than \(b \mathrm{~B}\), it mult be more incurvated than any portion of the circle \(e b f\). For fimilar reafons, ewery portion of the curve between \(b\) and \(a\) muft be lefs incurvated than this circle; therefore the circle has that precife degree of curvature that belongs to the curve in the point \(b\); it is therefore called the Equicurve Circle, or the Circle of Curvature, and \(B\) is called the centre, and \(B b\) the Radius of Curvatury. It is eafy to perceive that no circle can

\section*{D Y N A MIC S.} be deferibed which fhall touch the curve in \(b\), and come between it and the circle ebf; for its centre muft be in fome point \(i\) of the radius \(b\) B. If \(i b\) be lefs than \(\mathrm{B} b\), it mult fall within the curve on both fides of \(b\), and if \(i b\) is greater than \(\mathrm{B} b\), the circle muft fall without the curre on both fides of B \(b\). The circle e \(b f\) lies clofer to the curve, has clofer contact with it than any other, and has therefore got the whimfical name of Osculating Circle; and this fort of contact was called Osculation.
This view of the genefis of curve lines is of particular ufe in dynamical difcuffions. It exhibits to the eye the perfect famenefs of the momentary motion, and therefore of the momentary deflection, in the curve and in the equicurve circle, and leaves the mind without a doubt but that the forces which produce the one will produce the other. A great variety of curves may be defcribed in this way. If perpendiculars be drawn to the curve 1) \(b a\) in every point, they will interfect each other, each its immediate neighbour, in the circumfe. rence of the curve DBA: and geometry teaches us how to find the curve DBA which thall produce the curve D \(b a\) by evolution. See Evolution and Involution, Supplentent.

It is a matter worthy of remark, that the path of a body that is deffected from rectilincal motion by a fi-
nite force, varyng according to any liaw whatever, may of Dcficet. nlways be deferibed by evolution. This includes alnotitiny Forrce every cafe of the action of deflecting forces; none being excepted but when, by the oppolite action of difierent forces, the body is in equilibrio in one fingle point of its path.

Our tafk is now brought within a very narrow compafs, namely, to meafure the deflection in the arch of a circle.

Had the motion reprefented in fig. 2 I . been polygonal, it is plain that the defecting force in the point B is to that in the point E as the diagonal \(\mathrm{B} b\) of the parallelogram \(\mathrm{ABC} b\) to the diagonal \(\mathrm{E} i\) of the parallelogram DEF \(;\); therefore let ABCZY be a circle paffing through the points \(A, B\), and \(C\), and let the radius vector BS cut the circumference in \(Z\); draw \(\mathrm{AZ}, \mathrm{CZ}\), and the diagonal AC , which neceffarily bifects and is bifected by the diagonal B \(b\). The triangles \(b\) DC and CBZ are fimilar; for the angle \(\mathrm{C} b \mathrm{~B}\) is equal to the alternate angle \(A B b\) or \(A B Z\), which is equal to the ACZ , flanding on the fame chord \(A Z\). And the angle \(\mathrm{CB} b\), or CBZ , is equal to CAZ , flanding on the fame cloord CZ ; therefore the remaining angle \(b \mathrm{CB}\) is equal to the remaining angle AZC ; therefore ZA is to AC as BC to \(\mathrm{B} b\), and \(\mathrm{B} b\) \(=\frac{A C \times B C}{A Z}\). In like manner \(E i=\frac{D F \times E F}{D z}\).
Nuw let the points A and C continually approach, and ultinately coalefce with \(B\); it is evident that the circle \(A B C Z Y\) is ulimately the equicurve or coinciding circle at the point B , and that AS ultimately coalefces with, and is equal to, \(\overline{B S}\), and that \(A C \times B C\) is ultimately \(2 \mathrm{BC}^{2}\); therefore ultimately \(\mathrm{B} b: \mathrm{E} i=\) \(\frac{2 \mathrm{BC}^{2}}{\mathrm{BZ}}: \frac{2 E F^{2}}{\mathrm{Ez}}\), or \(=\frac{\mathrm{BC}^{2}}{\frac{1}{2} \bar{B} Z}: \frac{\mathrm{EF}^{2}}{\frac{1}{2} \mathrm{Ez}}\).

Now BC and EF being defcribed in equal times, are Meafure of as the velocities: \(\mathrm{B} b\) and \(\mathrm{E} ;\) are the meafures of the deneeting velocities which the defective forces at B and E wonld forces. generate in the time that the body defcribes EC or EF, and are therefore the meafures of thofe forces. They are as the fquares of the velocities directly, and inverfely as thofe chords of the equicurve circles zubich bave the direcitions of the deffaction.

Obferve, that \(\mathrm{B} b\) or \(\mathrm{E} i\) is the third proportional to half of the chord and the arch defcribed; for B \(b: \mathrm{BC}\) \(=B C: \frac{B Z}{2}\).

It is evident that as the arches \(A B, B C\), continually diminin, AC is ultimately parallel to the tangent \(13 r\), and \(B O\) is equal to the actual deflection fron the tangent. The triangles BOC and AOZ are fimilar, and \(\mathrm{BO}=\frac{\mathrm{OC}^{2}}{\mathrm{OZ}}\), or ultimately \(=\frac{\mathrm{BC}^{2}}{\mathrm{BZ}}\). We may meafure the forces by the actual deflections, becaufe they are the halves of the meafures of the generated velucities; and we may fay that
The adual momentary deftection fromt the tangent is a third Measure of
proportional to the deflective chord of the equicurve circle defection.
and the arch deffribed during the moment.
Either of thefe meafures may be taken, but we muft Caution. take care not to confound them. The firlt is the moft proper, becaufe the change produced on the body (which is the immediate effect and meafure of the force) is the determination, left inherent in it, to move with
or Dencet a certain relocity. This is the meafure alfo which we jug Furces. obtain by means of the differential or fluxionary cal. culus; but the otier meafure mult be obtained when our immediate objcet is to mark the actual path of the hody. What is now delivered coincides with what was more brietly fated in Astronomy, Suppl. no 16. and is repeated in this place, becanfe the tteps of this demonfration, which is Newton's, fo naturally terminate in the equicurve circle, and give at unce the immediate meafure of the deflecting furce: at the fame time the reader muft perceive that this meafure does not depend on the force being always directed to one centre ; it is ennght that the two fides of the polygron, in immediate fucceffion, are deferibed in equal times. This is neceffary in order that ABC \(b\) may be a parallelogram, and that the diagonals \(A C\) and \(B b\) may mutually bifect each other.

Thus have we obtained a meafure of dellecting force, and, in the moft important cafes, a method of difcovering its direction. It only iemains to point ont the relation between the intenfity of the force, the curvature of the path, and the velocity of the motion. Thefe three circumflances have a neceffary connection; for we fee that the intenlity is expreffed by certain values of the other two in the formula \(f \doteqdot \frac{\text { Arch } 2}{\frac{3}{x} \text { Churd }}\), or \(f\) \(=\frac{2 B C}{B Z}\). The deflective velocity \(B b\) is acquired in the time that the body defcribes BC ; therefore the deflective velocity is to the velocity in the curve as \(B b\) to BC. The velocity \(B b\) is acquired by an accelerated motion along BO ; for while, by progreffive motion, the body deferibes BC , it deflects from the tangent through a fpace equal to the half of \(B b\), becaufe the momentary action of the deflecting force may be confidered as uniform. The progreflive velocity \(B C\) may be generated by the fame force, uniformly acting through a space greater than BC ; call this fpace \(\therefore\). The fpaces along which a hody mut be uniformly impelled in order to acquire different velocities, are as the fquares of thofe velocities; therefore \(\mathrm{B} b^{2}: \mathrm{BC}^{2}=\) Bo: \(x\); but \(\mathrm{Bb} b: \mathrm{BC}=\mathrm{BC}: \frac{1}{2} \mathrm{BZ}\); therefore \(\mathrm{B} b^{2}\) : \(\mathrm{BC}_{2}=\mathrm{B} b: \frac{3}{2} \mathrm{BZ}\), and \(\mathrm{B} b: \frac{1}{2} \mathrm{BZ}=\mathrm{B} 0: x\), and \(\mathrm{B} b: \mathrm{B}_{0}=\frac{1}{2} \mathrm{BZ}: x\); but \(\mathrm{B}_{0}\) is \(\frac{z}{2}\) of \(\mathrm{B} l\); therefore \(x\) is \(\frac{8}{4}\) of \(B Z\); that is,

The velocity in any point of a curvilineal path, is that which the defleging jorces in that point would generate in the body by impelling it uniformly along one fourth part of the deflective chorl of the equicurve circle. If the velocity increafe, the chord of the eq̧uicurve circle mult increafe; that is, the path becomes lefs incurvated. If the force be increafed, the curvature will allo inereafe, for the chord of curvature will be lefs.

There is another general obfervation to be made on the velocity of a curviincal motion, which greatly af. fifts us in our inveftigations. A of orbi always direded to a fixed point, and varying according to 1 motion any proportion wabatever of the diflances from that point, proach to and if another body, aded on by the fame centripetal e centrc. force, move toward the centre in a Araight line, and if in any one cafe of equal diflances from the centre of force the two bodies bave equal welocities, they quill have equal relocities in every other cafe of equal diflances from the centre.

Let one body be impelid from A (fig. 2.3) toward of DefiectC along the fraight line AVDEC, and let another be \(\underbrace{\text { ing Forces, }}\) deflected along the curve line VIK \(k\). About the centre C defcribe concentric arches I1), KE, very near to each wher, and cutting the curve in I and K , and the line \(A C\) in 1\()\) and \(E\); draw \(1 C\), cutting \(K E\) in \(N\) and draw NT perpendicular to the arch IK of the curse, and complete the parallehogram I'INO. I.et the hodics be fuppofed to have equal velucities at I and at D.

Then, becaufe the centripetal forees are fuppofed to be the fame for both bodies when they are at cqual diftances, the accelerating forces at D and I may be reprefented by the equal lines \(D E\) and IN ; but the force IN is not wholly employed in accelerating the body along the arch IK, but, acting tranfverfely, it is party employed in incurvating the path. It is equivalent to the two forces IO and IT, of which only 1 T accelcrates the budy. Now 1 NN is a right-atsgled triangle, as is allo the triangle INT; and they are limilar; therefore \(I N: I^{\prime} L^{\prime}=I K: I N\), or \(D E: I T=I K: D E ;\) that is, the force which accelerates the body along DE is to the force which accelerates the body along IK as the fpace IK is to the fpace DE ; therefore (\(\mathrm{n}^{\mathrm{n}} 86\).) the incrment of the fquare of the velucity acquired alone DE is equal to the increment of the fquare of the velucity acquired along IK. But the velocitics at \(D\) and 1 were equal, and confequently their fquares were equal ; and thefe having received cqual increments, therefore the fquares of the velocities at \(E\) and \(I\) are equal, and the velocities themfelves are equal. And fince this is the cafe in all the correfponding. points of the line \(A C\) and the curve \(V I K\), the velocities at all equal difances from \(C\) will be equal.

It it evident that the conclufion will be the fame, if the bodies, inttead of being accelerated by approaching the centre in the ftraight line \(A C\), and in the curve. VIK, are moving in the oppolite directions from E to A, or from I to V , and are therefore retarded by the centripetal force.

Cor. Hence it follows, that if a body be projected Retarded from any point, fuch as \(V\), of the curve, in a line tend- curvilineal ing ftraight from the centre, with the velocity which it mation al. had in that point of the curve, it would go to a diftance companied VA, fuch, that if it were impelled alung \(A V\) by the by recefs centripetal furce, it would acquire its former velocity in from the the point \(V\); allo in any point lretween \(V\) and \(A\) it \({ }^{\text {centre. }}\) will have the lame velocity in its recefs from the centre that it has there in its approach to the centre.

The line BIFG, whofe ordinates are as the intenfir ties of the centripetal force in \(A, V, D, L\), or in \(A\), V, I, K, may be called the scale or exponent of. force; the areas bounded by the ordinates \(A B\), VL, DF, EG, \&c. drawn from ally two points of the axis, are as the fquares of the velocity acunired by acceleration along the intercepted part of the axis, or in any curvilineal path, while the body approaches the centre; or which are lof while the body retires from it. When we can compute thefe areas we obtain the velocities (fce \(n^{\circ}\) 102.).

We are now in a condition to folve the chief problem in the fcience of dynamics, to which the whole of it is, in a great meafure, fubfervient. The problem is this,

Let a body be projected with a known velocity from

Of DrA c. ong Forece.
\(12+\) Inverlepro f'em of centripetal forces.
a given point and in a given direction, and let it be under the influence of a mechanical force, whofe direction, intenfity, and variation, are all known : it is required to determine its path, and its motion in this path, for any given time?

This problem is fufceptible of three diftinet claftes of conditions, which require diferent inveftigation.
1. The furce may act in one conftant dircction; that is, in parallel lincs.
2. The force may be always directed to a fixed point.
3. It may be directed to a point which is continually changing its place.
1. When the force acts in parallel lines, the problem is folved by compounding the rectilineal accelerated motion which the furce would produce in its own direction with the unifurm motion which the projection alone would have produced. The motion mult be curvilimeal, when the accelerating force is tranfverfe, in any degree whatever, to the projectile motion; and the curvilineal path muf be concave on that fide to which the deflecting force tends; for the force is fuppofed to act inceffantly. "The place of the body will be had for any time, by finding where the body would have been at the end of that time by each force acting alone, and by completing the parallelogram. Thus, fuppofe a body projected along \(A B\) (fig. 20.) while it is continual. ly acted on by a force whofe direction is \(A D\). Let \(D\) and \(B\) be the places where the body would be at the end of a given time. Then the body will at the end of that time be in F , the oppofite angle of the parallelogram \(A B F D\). But it has not deferibed the diagonal AF ; becaufe its motion has been curvilineal, as we fall find by determining its place at other inftants of this time.

The velocity in any point \(F\) is found by firf determining the velocity at D , and making DT to DF as the velocity at \(D\) to the velocity at \(B\) (that is, the velocity of projection, becaufe the motion along \(A B\) is uniform). Then draw TF. Then AB is to TF as the conftant velocity of projection to the velocity at \(F\). We have feen already (no 112-119.) that TF is a tangent to the curre in \(F\). Hence we may determine the relocity at F in another way. Having determined the form of the path in the way already defcribed, by finding its different points, draw the tangent \(F d\), cutting the line DA in \(d\). Then the velocity at \(A\) is to that at \(F\) as \(A B\) to \(d F\). Hence allo we fee, that the velocities in every point of the curve are proportional to the portion of the tangents at thofe points which are intercepted between atiy two lines parallel to AD.

Either of thefe methods for akcertaining the velocity, in this cafe of parallel deflections, will in general be eafier than the general method in \(n^{\circ} 121\). by the equicurve circle.

It was thus that Galileo difcovered the parabolic mo. tion of lieavy bodies.
Inverfe problen of centrigetal forces. by cent or cerifue motions of bodies afteted one fix of centripetal forces, and is the 42 d propofition of the Got book of Newton's Principia. We fhall give the folution after the manner of its illuftrious author ; becaufe it is elementary, in the purclt fenfe of the word,
keeping in view the two leading circermflances, and of Dertece. thefe ouly, namely, the motion of approach and recefsing Forces. from the centre, and the motion of revolution. By this judicions procefs, it becomes a pattero by which more refined, imd, in fume refpects, hetter folutiuns thould be modelled. At the fame time we fhall fupply fome fteps of the inveftigation which his elegant concifenefs has made him oinit.

Let a body, which tends to C (fig. 24.) with a foree proportional to the ordinates of the exponent BLFG, having the axis \(C A\), be projected from \(V\) in the direction \(V Q\), with the velocity which the centripetal fore would generate in it by accelerating it along \(A V\). It is required to determine the path or orbit VINI of the body, and its place 1 in this orbit, at the end of the af. figned time \(T\) ?

Suppofe the thing done, and that I is the place of the body. About the centre C, with the diftances CV and CI, defcribe the circles YV and 1D. Draw CIX to the circumference, and draw the ordinate DF of the exponent of forces, producing it toward \(s\), and produce the ordinate VL toward \(a\). Let \(\mathrm{V} t\) be the diftance to which the body would go along the tangent VQ in the time \(T\), and join \(t \mathrm{C}\). Let this be fuppofed done for every point of the curve. Let \(a i k\) and \(a x y\) be two curves fo related to the curve VIK, that the ordi. nate DF cuts off an area \(\mathrm{V} a i \mathrm{D}\) equal to the orbital fector VCI, and an area \(\mathrm{V} a \times \mathrm{D}\) equal to the circular fector VCX.
Then, becaufe the velocity of projection is given, the diftance \(\mathrm{V}_{t}\) is known, and the area of the triangle VC t. But this is equal to the area VCI, by the laws of central forces (\(n^{\circ} 115\).). Therefore the area V aiD is given. Alfo, becaufe the area VCI increafes in the proportion of the time, the area \(V\) a \(i \mathrm{D}\) increafes at the fame rate. Therefore laving thefe fubfidiary curves a \(i k, a \times y\), the problem is folved as follows:

Draw an ordinate \(\mathrm{D} i\), cutting off an area \(\mathrm{V} a i \mathrm{D}\) proportional to the time, and drfcibe a circle DIR. Then draw a line CX, cutting off a fector VCX, equal to the area V \(a \not x \mathrm{D}\) cut off by the ordinate \(\mathrm{D} i x\). This line will cut the circle \(D R\) in the point \(I\), which is the point of the orbit that was demanded.

But the chief difficulty of the problem confifts in the defcription of the two fublidiary curves \(a i k\) and \(a x y\), into which the lines VIK and VXY are transformed. We attain this contruction by refolving the motion in the arch of the orbit into two motions, one which is in the direction of the tranfverfe force, or of the radius vector, and the other is in the direction of revolu. tion, or perpendicular to the radius.

Let \(V k\) and IK be two very fmall arches defcribed in equal monents, and therefore ultimately in the ratio of the velocities in \(V\) and \(I\left(n^{\circ} 73\right.\).). Defcribe the circle KE, cutting IC in N. Draw KC and \(k \mathrm{C}\), and \(k n\) perpendicular to VC.

The element ICK of the orbit is \(=\frac{I C \times I N}{2}\), or to \(\frac{1}{2}\) IC \(\times \mathrm{KN}\). This is equal to the element D ikE of the area \(V\) a \(i \mathrm{D}\), or to \(\mathrm{D} i \times \mathrm{DE}\), or to \(\mathrm{D} i \times \mathrm{IN}\). Therefore \(I N: K N=\frac{1}{2} I C: D i\), or \(2 I N: K N=\) IC : \(\mathrm{D} i\), and \(\mathrm{D} i=\frac{\mathrm{IC} \times \mathrm{KN}}{2 \mathrm{IN}}\).

Now let \(A l f g b\) be the exponent of the velocities,

0: Defer-that is (no 86.), let \(\mathrm{V} l^{2}\) be to \(\mathrm{D} f^{2}\) as ABLV to \(\underbrace{\text { ing Force: }} \mathrm{ABFD}\), or \(V /: \mathrm{D} f=\sqrt{\mathrm{ABLV}}: \sqrt{A B F D}\). Make \(\mathrm{V} v\) and \(\mathrm{I} i\) in the tangents refpectively equal to \(\mathrm{V} l\) and 1) \(f\). Draw \(v u\) and \(i o\) perpendicular to VC and IC, and \(v m\) perpendicular to LV produced. Let \({ }_{n}, r z\) be an equilateral hyperbola, having \(\mathrm{VC}, \mathrm{ZC}\), for its afyymptotes, and cutting FD produced in \(r\). Then the ordinates \(\mathrm{V} m, \mathrm{D} r\), are iaveriely proportional to \(\mathrm{CV}, \mathrm{CD}\), or \(\mathrm{V} m: \mathrm{Dr}=\mathrm{CD}: \mathrm{CV},=\mathrm{CI}: \mathrm{CV}\). But becaufe the momentary fectors VC \(k\) and ICK are equal, \(k n: \mathrm{KN}=\mathrm{CI}: \mathrm{CV}\). Therefore,
\[
\overline{\mathrm{V}}_{n}: \mathrm{D} r=k n: \mathrm{KN}
\]
but \(\quad \mathrm{V} v: \mathrm{V} m=\mathrm{V} k: k n\)
and \(\mathrm{I} i(\operatorname{or} \mathrm{Df}): \mathrm{V} v=\mathrm{IK}: \mathrm{V} k\)
therefore \(\mathrm{I} i: \mathrm{D} r=\mathrm{IK}: \mathrm{KN}\)
but I \(i: i_{0}=\mathrm{IK}\) : KN, by fim. triang.
Therefore \(\mathrm{D} r=i o\), and \(i_{0}: \mathrm{V} m=\mathrm{VC}: \mathrm{CI}\).
Alfo, by fimilarity of triangles, \(\mathrm{I}_{0}: i_{0}=\mathrm{IN}: \mathrm{KN}\), and \(2 I_{0}: i_{0}=2 \mathrm{IN}: \mathrm{KN}\).

Now it was fhewn, that in order that the fpace DikE may be equal to the fpace ICI, we nuft have
\[
2 \mathrm{IN}: \mathrm{KN}=\mathrm{IC}: \mathrm{D}
\]
or \(\quad 2\) Io:io \(=I C: D i\)
but io: V \(m=\mathrm{VC}: I \mathrm{IC}\)
therefore \(2 \mathrm{I}_{0}: \mathrm{V}_{\mathrm{in}}=\mathrm{VC}: \mathrm{D}\) i
and \(\mathrm{D} i=\frac{\mathrm{VC} \times \mathrm{V} m}{2 \mathrm{I}}\).
Having obtained D i, we eafily get \(\mathrm{D} x\); for the mitimate ratio of ICK to XCY is that of \(\mathrm{IC}^{2}\) to \(\mathrm{VC}^{3}\). Therefore make
\[
\mathrm{IC}^{2}: \mathrm{VC}^{2}=\mathrm{D} i: \mathrm{D} x
\]

Thus are the points of the two fubfidiary curves aik, \(a \times y\), determined.

The rectangle \(\mathrm{VC} \times \mathrm{V} m\) is a comftant magnitude; and is given, becaufe VC is given, and \(V m\) is the given velocity \(V l\), diminithed in the ratio of radius to the fine of the given angle CVO.

But the line 2 I 0 is of variable magnitude, but it is alfo given, by means of known quantities. I \(o^{2}\) is \(=\mathrm{I} i^{2}-i o^{2}=\mathrm{D} f^{2}-\mathrm{D} r^{2}\), and \(\mathrm{I} 0=\sqrt{\mathrm{D} f^{2}-\mathrm{Dr}} \mathrm{r}^{2}\). Moreover, \(\mathrm{D} f^{2}=\mathrm{ADFD}\), and \(\mathrm{D},^{2}=\frac{\mathrm{VC}^{2} \times \mathrm{V} m^{2}}{\mathrm{IC}^{2}}\). Therefore \(2 I_{0}=2 \sqrt{\mathrm{ABFD}-\frac{\mathrm{VC}^{2} \times V m^{2}}{\mathrm{C}^{2}}, \text { ex- }}\) preffed in known quantities, becaufe ABFD is known. from the nature of the centripetel force.

Let the indeterminate diflance CI or CD be \(=x\), and let the ordinate DF, exprefing the force, be \(y\). Let VC be \(a\), and \(\mathrm{V} m\) be \(c\), and let \(a \delta\) be a rectangle equal to the whole area of the exponent of force lying between the ordinate All and the ordinate CZ, fo that
\(a b-\int y \dot{x}\) may reprefent the indeterninate area. \(A B F D\).
\[
\begin{aligned}
& \text { We have } D \cdot i=\frac{a c}{2 \sqrt{a b-\int y \dot{x}-\frac{a^{2} c^{2}}{x^{2}}}} \\
& \text { and } D x=\frac{a^{3} c}{2 x^{2} \sqrt{a b-\int y \dot{x}-\frac{a^{2} c^{2}}{x^{2}}}}
\end{aligned}
\]

Remark. We have hitherto fuppofed that the velocity of projection is acquired by acceleration along Av. But this was merely for greater fimplicity of ar-
gument, and that the final values of \(\mathrm{D} i\) and I\() x\) might of Deflectbe eafier conceived. In whatever way the velocity is ing Furces; acquired, it will ftill be true, that when in any point \(V\) we make \(\mathrm{V} l\) to \(\mathrm{V} m\) as the momentary increment \(\mathrm{V} k\) of the arch is to the perpendienlar \(k n\) on the radius vector, we flall have in every other point, fuch as I, the line \(\mathrm{D} f\) to the line \(\mathrm{D} r\) as the inerement IK of the arch to KN . And in the final ecquation \(\mathrm{D} f\) will fill be expreffed by \(\sqrt{a b-\int y \dot{x}}\).

Cor. I. The angle which the path of the projectile makes with the radius vector is deternined by this folution; for \(I i\) is to \(i o\) as radius to the fine of this angle ; which fine is thercfore \(=\frac{a c}{x \sqrt{a b-\int y x_{0}}}\)

Cor. 2. When the marnitude \(\frac{a c}{x}\) is equal to \(\sqrt{a b-\int y x}\), the path is perpendicu'ar to the radius vec. Apfidee detor, and the body is a tone of the apfides of its orbit, and termined; begins to recede from the centre after having approach. ed to it, or begins to approach after laving receded.

Cor. 3. The curvature of the orbit VIK is allo de- And curva. termined in every point; for the curvature of any lineture. is inverfely as the radius of the equicurve circle, and this is to the chord which pafles through C as radius to the fine of the angle CI \(i\). Becaufe the velocity in any point \(I\) is \(=\sqrt{A B} \overline{F D}\), and is equal to what the centripetal force at I would produce, by impelling the body along \(\frac{1}{7}\) th of the deflective chord of the equicurve circle, we have this chord \(=4 \frac{\mathrm{ABFD}}{\mathrm{DF}}\). Or we obtain it by taking a third proportional to the monentary deflection and the monentary arch of the curve, or by other proceffes of the higher geometry, all proceeding on the quantities furnithed in this inveftigation.

Such is the folution of this celebrated problem given Nawno 129 by Sir Ifaac Newton, who may jufly be called the in- inewnencor. ventor of the fcience of which it is the clief refult, as well as of the geometry, by help of which is is profecuted. For we cannot give this glory to Galileo ; for his fimple problem of the motion of bodies affected by uniform and parallel gravity, however jutt and elegant his folution may be, was peculiar ; and the fame mult be faid of Mr Huyghens's doctrine of centrifugal forces. Befides, thefe theorems had been inveitigated by Newton feveral years before, fua matbefi fucem freferente, as corollaries which he could not país unnoticed, from his general method. This is proved by letters from Huyghens. Newton's invertigation is extremely, but elegantly, concife, and is one of the bet exertions of his fagacious mind.

Whether we confider this problem as a picce of mere Hiffory cs. mathematical ipeculation, or attend to its confequences, :his prowhich incluce the whole of the celeflial motions in all blem. their extent and complication, we mult allow it to be highly intercting, and likcly to engage much attention in the perind of ardent inquiry which clofed the lati century. Accordingly, it was no fooner known, by the publication of the Mathemalical Principles of Natural Philofoplyy in 1686 , than it occupied the talents of the moft rminent.mathematicians; and many folutions were publifhed, fome of which differ confiderably from Newton's ; fome are mure expeditious, and better fitted for computation. Of thefe, the moft remarkable
for
of Deffer for originality and ingenuity are thofe of de Moivre, ing Forces. Hermann, Keill, and Stewart. The laft differs molt from the methods purfued by others. M•Laurin's propofitions on this fubject, and in that part of his fluxions which treats of curvature, are highly valuable, claflng the chief affections of curvilineal motions geometrically, as they are fuggefted by the fluxionary method; and then flewing, in a very inftructive manner, the connection between thefe mathematical affections of motion and the powers of nature which produce them. This part of his excellent work is a fine example of the real nature of all inquiries in dynamics ; fhewing that it differs from geometry little more than in the language, in which the word force is fubftituted for acceleration, retardation, or defection. We recommend the careful perufal of thefe propofitions to all who wih to have clear conceptions of the fubject. Dr John Keill and Dr Horfeley (bifhop of Rochefter) have given particular treatifes on the motions of bodies deflected by centripetal forces inverfely proportional to the cubes of the diftances; induced by the fingular motions which refult from this law of action, and the multitule of beautiful propofitions which they fuggef to the mathematician. Newton, indeed, firft perceived buth of thefe peculiarities, and has begun this hranch of the general problem. He firft demonftrated the defcription of the logarithmic and hyperbolic fpirals, and indicated a rariety of curious recurring elliptical fpirals, which would be defrribed by meaus of this force, and fhewing that they are all fufequible of accurate quadrature. Several of thofe authurs affeet to confider their folutions as more perfect than Newton's, and as more immediately indicating the remarkable properties of fuch motions; and alio affect to have deduced them from different and original principles. But we cannot help faying, that their claims to fuperiority are very ill founded; there is not a principle made ufe of in their folutions which was not pointed out by Newton, and employed by him. The appearance of originality arifes from their having taken a more particular concern in fome general property of curvilineal motions; fuch as the curvature, the centrifugal force, \&c. and the making that the leading ftep of their procefs. But Newton's is ftill the beft ; becaufe it is ftrictly elementary, aiming at the two leading circumftances, the motion to or from the centre, and the motion of revolution round that centre. To thefe two purpofes he adapted his two fubfidiary curves. This procedure became Newton, pater, et rerum inventor, who was teaching the world, and who might fay,

> Avia Pieridum perigro loca, nullius ante Trita pede-

Singular boatt of John Ber noulli.

Is it not furprifing, that 25 years after the publication of Newton's Principia, a mathematician on the continent fhould publifh a folution in the Memoirs of the French academy, and boaft that he had given the firft demonftration of it? Yet John Bernoulli did this in 1710 . Is it not more remarkable that this fhould be precifely the folution given by Newton, beginning from the fame theorem, the 4oth I. Prin. Following Newton in every ftep, and ufing the fame fubfidiary lines? Yet fo it is. Bernoulli actually reduces the whole to two functions; namely, \(\frac{a c}{\sqrt{a b-\int \dot{x}-\frac{a^{2} c^{3}}{x^{2}}}}\)
and \(\frac{a^{2} c}{\sqrt{a b x^{4}-\int x^{4}-a^{2} c^{2} x^{2}}}=\); which latt is in
Of Dellea
plainly the fame with Newton's \(\frac{Q \times C X^{2}}{A^{2} \sqrt{A B D F-Z^{2}}}\); becaufe Newton's \(\frac{Q}{A}\) is the fame with \(\frac{a c}{x}\), and Newton's \(A=\sqrt{\mathrm{ABFD}} \overline{\mathrm{Z}^{2}}\) is the fame with \(x^{2} \sqrt{a b-\int \dot{x}}\) \(\overline{-a^{2} c^{2}} x^{2}\), which Bernoulli has clianged (apparently to hide the borrowing) into \(\sqrt{a b x^{4}-\int p x^{4} x-a^{2} c^{2} x^{2}}\) This publication of Bernoullii is perhaps the molt impudent piece of literary rollcry, for theft is too mild a term, that has ever appeared; and is the more deferving of fevere reprehenfion, becaufe it is full of reflections on the fimple and fupremely elegant method of Newton. It is hardly conceivable that a perfon of Dernoulli's confunmate mathematical knowlege was fo nuch blinded by the mechanical procedure of the fymbolical calculus (which indeed is rarely accompanied by any ideas of the fubject in hand) as not to perceive the perfect famenefs of his folution. No; he fhews, from time to time, that the phyfical ideas of motion and force were prefent to his mind; for he affeets to fhew, that all Newton's brightef difcoveries, fuch as the proportionality of the areas and times, \&c. flow as corollaries from his proce. dure.
Bernoulli's chief boaft in this differtation is, that now philofophers may be affured that the planets will ahways defcribe conic fections; a truth of which they had not as yet reccived any proof: becaufe, fays he, Newton's argument for it in the corollary of the 13 th propofition is inconclufive, and becaufe he had not been able to accommodate his demonftration of the 41 At and 42 d propofition to the paticular cafe of the planetary gravita. tion. Two affertions that border on infolence. Newton's demonftration in the corollary of the 13 th propofition is juft, founded on the principle on which the very demonftration of the 42 d , adopted by Bernoulli, prom ceeds, and without which that demonftration is of no force; namely, that a body in given circumftances of fituation, velocity, direction, and centripetal force, can defcribe no other figure than what it really defcribes. Ncwton did not accomnodate the demonftration of the 42 d propofition to the planetary motions, becaufe he had already demonftrated the nature of their orbits; bue mentions the cafe of a force proportional to the reciprocal of the cubes of the diftance; not as a deduction from the 42 d , but becaufe it was not a deduction from it, and admitted a very fingular and beautiful inveltigation by methods totally and eftentially different.

Bernoulli alfo fays, that Newton's folution does not give us the notion of a continuous path, as his own does, but only informs us how to afcertain points of this path. This is the boldeft of all his affertions. Bernoulli ufes the differential calculus. It is the efential character of this calculus that it exhibits, and can exhibit, nothing but detached points. This is undeniable. And this has been objected to Newton's firft propofition. But Newton's fluxionary geometry, of which the calculus exhibits ouly elements (being the fame with the differential), fuppofes

Snelifion. fuppofes the continuity of all magnitudes; and when - applied to dynamics, is no fublitution whatever, but the ipfac corpora. This geometry offered itfelf to the mind of Newton, the accomplificd and darling feholar of Barrow, whofe geometry flafted on Newton's mind as the torch which was to thew him the fteps of this yet untrodden path.

We truft that our readers will not be difpleafed with our repeated endeavours to defend our great plitofo. pher from the injurious attacks that have been made on him. During his own illuftrious life, while he was diffuring light and knowledge around lim, and never contended for faine, happy in being the initructor of mankind, he was injured by thofe who envied his reputation, while they derived their chicf honours from being his bell commentators. Now, fince he has left this world, he has been more grofsly injured by thofe who avail themfelves of that very reputation : and who, hy ciude and contemptible inferences from his doetrine of elallic undulations, and grofs mifreprefentations of his notions of an etherial fluid, have pretended to fupport a fyitem of matcrialifm ; and thus have fet. Newton at the head of the atheiftical fect, which he held in ablorrence. For our part, we alway's think with pleafure on the wonderful energy of that great mind; becaufe it gives us a foretafte of thofe pleafures that await the wife and good, when the forrows flowing from the infirmities, the vices, and the arrogant vanity of man, are paift;

> Utque in boc infelici campo, Ubi luaus regnat et pavor, MTortalibus prorjus non alfit folatiun. Hujus enum foripta evolvas, Menlemque e antarumn erum capacem Corpori caduco fuperfitemn credas.

It cannot be expected that, in the narrow limits pre-- Fribed to a work like ours, we can proceed to confider the various departments of this celebrated problem. We are only giving the outlines of the general doctrines of dynamics ; and we have beftowed more time on thofe which are purely elementary than forme readers may think they deferve. We were anxious to give juft conceptions of the fundamental principles of dynamics; becaufe we know that nothing elfe can intitle it to the name of a demonftrative fcience, and becaufe we fee much inditinctnefs and uncertainty, and a general vagucnefs or want of precifion, in fcveral elementary works which are put into the hands of perfons entering on the fudy. This leads to errors of more confequence than a perfon is apt to think; becaufe they affect our leading thoughts of mechanifm itfelf, and our notions of the intimate nature of the vifible univerfe.
Itans. problem. Many very general doctrines of dynamies rcmain untouched; all, namely, that relate to the rotative motion of rigid bodies, and a'l that relate to the mutual action of bodies on each other in the way of impulfe.

The rotative motions, with the doctrine of mechanic momenta, have been confidered at large in the article
Rotation of the Rotation of the Encycl. Britain.; and we propofe to offer fome important confiderations on the faine fubject in our fupplement to the articles Mifachine and Mechanics. In the article Impulsion will be confidered fuch doctrines as are truly general, and independent of the fpecific differences of the bodies. Dyms:aics pro.
Suppl. Voz. I. Part II.
feffes to involve no notions but thote of force, and its Conclufion. marks and meafures.

Nutwithlanding thefe grcat omiffions, we muft ob. ferve that no new principle remains to be confidered. We lave given ell that are necefary; and there is no queftion that occurs in the cafes omitted, which cannot be completely anfwered by means of the propofitions already eftablifined. We lave taught how to difcover the ex=ittence and agency of a mechanical force, to meafure and characterife it, and then to fate what will be its various effects, according to the circumflances of the cafe.
Proceeding by thefe principles, men have difeovered Univeryal an univerfal fact, that every action of one budy on ano-rcafion is a ther is accompanied hy an equal reaction of that o. haw of the ther on the firt, in the oppofite direction; that is, to wartial exprefs it in the language of dynamics, " all the pheno world. mens which make is infer that the mena which make us infer that the body \(A\) poffeffes a Force by which it changes the motion of the body 1, Nhew, at the fame time, that B poffeffes a force by which it makes an equal and oppofite alteration in the motion of A." This, however, is not a doctrine of abftract dynamics : it docs not flow from our idea of force; therefore it was not included in oun lift of the Laws of Motion. It is a part of the mechanical hiftory of nature, juft as the law of univerfal gravitation is; and it might be called the law of Universal Re. Acrion. Sir Ifaac Newton has, in our humble apprehenfion, deviated from his accultomed logical aecuracy. when he admits, as a third axiom or law of motion, that reaction is always equal and contrary to action. It is a phylical law, in as far as it is obfiryod to obtain through the whole extent of the folar fy ftem. But. Newton himfelf did not, in the fubfequent part of his noble work, treat it as a logical axiom; that is, as a law of human thought with refpeet to motion: for he labours with much folicitude, and with equal fagacity, to prove, by fat and obfcrvation, that it really obtains through the whole extent of the folar fy flem; and it is in this difcovery that his chief claim to unequalled penetration and difcernment appears.
A vailing ourfelves of this fact, we, with very little \({ }_{1 m} 135\) trouble, ftate all the laws of impulfion. The body A, लplinncd for example, moving to the weftward at the rate of by it eight fect per minute, overtakes the double body B, moving at the rate of four feet per minute. What muft be the confequence of their mutual impenetrability, and of the equality and contrariets of action and reaction? Their motions muft be fuch that both fultain equal and oppofite changes. . They muft give, in fome way or other, this indication of poffifling equal and oppofite forces. This will be the cafe if, when the changes are completed, A and B inove on in contact at the rate of four feet per minute: for here \(A\) has produced in each half of B a change of motion two; and therefore a totality of change equal to four. This is the effect, the mark, the meafure, of the impolfive force of A; for it is the whole impulfion. B has produced in A a change of motion four, equal to the former, and in the oppofite direction. This is the effect, mark, and meafure, of the repulfive forec of \(A\); for it is the whole repulfion. And this is all that we obferve in the collifion of two lumps of clay; and the oblervation is one of the facts on which the reality of the phyfical law of equal action and reaction is founded: and we car make no farther inference from this fact.

Conclufion. But the event might have been very different. A and B may be two magnets fluating on corks on water, with their north poles fronting each other. We know, by other means, that they really poffers forces by which they equally repel each other. The dyramical principles already eftablifhed tell us alfo what muit happen in this cafe. That hoth conditions of equal reaction and fenfible repulfion may be fulfilled, A muft come to reft, and \(B\) mutt move forward at the rate of four feet per minute. The fame thing mull happen in the metting of perfectly clattic bodies, fuch as billiard balls. If elaftieities are known to be imperfect in any degree, our dynamical principles will till ftate the effed of their collifion, in conformity to the law of equal reaction.
In like manner, all the motions of rotation are explainmies applied to the force of cohefion. This is confidered as a moving force, becaufe, when the attraction of a magnet acts ou a bit of iron attached to one end of a long lath floating on water, the whole lath is moved, although the magnet does not act on it at all : fome ohher force aets on it ; it is its cohefion; which is therefore a moving force, and the fubject of dynamical difcuffion.
And thus it appears that thefe fubjects do not come neceffarily: nor, perlaps, with feientific propriety, under the eategory of dynamics, but are parts of the mechanical hiftory of nature. Yet, did a work like ours give room in this place, the fudy of mechanical nature might be confiderably improved by giving a fyttem of fuch general doctrines as involve no other notions but thofe of force and its meafures, and the hypothefis of equal reaction. Some very general, nay univerfal, confequences of this combination might be eftablifhed, which would greatly affift the mechanician in the folution of difficult and complicated problems. Such is the propofition, that the mutual ations of bodies depend on their relative motions only, and require no knowtedge of their real motions. This priaciple fimplifies in a wonderful manner the mo!t difficult and the moft frequent eafes of action which nature prefents to our view; but at the fame time gives a fevere blow to human vanity, by forcing us to acknowledge that we know nothing of the real motion of any thing in the univerfe, and never fhall know any thing of it till our intellectual confitution, or our opportunities of obfervation, are completely changed.
Mr D'Alembert has made this principle fill more ferviceable for extricating ourfelves from the immenfe complication of actions that oceurs in all the fontaneous phewomena of nature, by prefenting it to us in a different form, which more diftinctly exprefles what may be called the elements of the actions of bodies on each other. His propofition is as follows (See bis Dymıanique, page 73.):
D'Alem. "In whatever manner a number of bodies change bere'sgenét their motions, if we fuppofe that the motion which ral princi- each jody would have in the following moment, if it ple of dynamics.
were perfectly free, is decompofed into two others, one of which is the motion which it really takes in conle. quence of their mutual actions, the other will be fuch, that if each body were impreffed by this force alone (that is, by the force which would produce this motion) the whole fyttern of bodies would be in equilibrio."

This is almoft felf-evident; for if thefe fecond contituent forces be not fuch as would put the fyftem in equilibrio, the other conflituent motions could not be
thofe which the bodics really take by the mutual action, Conelufi but would be changed by the firft.

For example, let there be three bodies \(P, Q, R\), and let the forces \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), act on them, fuch as would give them the velocities \(p, q, r\), in any directions whatever, producing the momenta, or quantities of motion, \(\mathrm{P} \times p, \mathrm{Q} \times q, \mathrm{R} \times r\), which we may call \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), becaufe they are the proper meafures of the moving force. Let ns moreover fuppofe, that, by friking each other, or by being any how connetted with each other, they eannot take thefe motions \(\mathrm{A}, \mathrm{B}\), and C , but really take the motions \(a, b\), and \(c\). It is plain that we may conceive the motion A impreffed on the body P , to be enmpofed of the motion \(a\), whieh it really takes, and of another motion.. In like nanner, B may be refolved into \(b\), which it takes, and another \(\beta\); and C into \(c\) and \(x\). Thie motions will be the fame, whether we act on P with the force A , or with the two forces \(a\) and \(\alpha\); whether we act on \(Q\) with the force \(B\), or with \(b\) and \(B\); and on R with the force C , or with \(c\) and \(x\). Now by the fuppofition, the bodies aetually take the motions \(a, b\), and \(c\); therefore the motions \(\alpha\), \(\beta\), and \(x\), mult be fuch as will not derange the mations \(a, b\), and \(c\); that is to fay, that if the bodies had only the motions \(a, z\), and \(x\), impreffed on them, they would deftroy each other, and the fyftem would remain at reft.
Mr D'Alembert has applied this propofition with great addrefs and fuceefs to the very difficult queftions that oceur in the motions and aftions of fluids, and many other molt difficult problems, fuch as the preceffion of the equinoxes, \&c. The caufe of its utility is, that in mof cafes it is not difficult to find what forces will put a fyftem in equilibrio ; and, combining thefe with the known extraneous forces whofe effects we are interefled to difenver, we obtain the motions which really follow the mutual action of the bodies.
This is not, properly feeaking, a principle : it is a form in which a general fact may be conceived. In the fame way the celebrated mathematician De la Grange obferved, that a fyttem of bodies acting on each other in any way, is in equilibrio, if there be impreffed on its parts forces in the iaverfe proportion of the velocities which each body takes in confequence of their action or connection; and he expreffes this univerfal fact by a very fimple formula; and calling this alfo a principle, he folves every queftion with cafe and seatnefs, by reducing it to the inveftigation of thofe. velucities. In this way he has written a complete fyftem of dynamics, to which he gives the title of Mecbavique Analytique, full of the moit ingenious and elegant rolutions of very interefting and difficult problems; and all this without drawing a line or figure, but accomplifhing the whole by algebraic operations.

Eut this is not teaching mechanical plilofophy ; it is merely employing the reader in algebraic operations, each of which he perfectly undertands in its quality of an algebraic or arithmetical operation, and where he may have the fullett conviction of the juthefs of his procedure. But all this may be (and, in the hands of an expert algebraif, it generally is), without any notions, diftinet or indifinct, of the things, or the proceffes of reafooing that are repreferted by the fymbols made ufe of. It is precifely like the occupation of a banker's clerk when he carries his eye up and down the columns of pounds fhillings and pence, calculates the compound intereft reverfionary values, \(\& \mathrm{sc}\).
onclufion. It were well if this were all, although it greatly di-- minifhes the pleafure which an aceomplifaed mathemapofes might receive; but this total abfence of ideas expars cyan the mott eminent analy ft to frequent riks of alogifin and phyfical ablurdity. Euler, who was perhaps the moft expert algebraift of the laft century, making ufe of the Newtonian theorem for afcertaining the motion of a body impelled along a ftraight line AC (fig. 24) by a centripetal force, by comparing it with the motion in an ellipfe, of which the fhorter ax is was diminimed till it vanifhed altogether, exprefies his furprife at finding, that when he computes the place of the body for a time fubfequent to that of its antival at \(C\), the body is back again, and in forne place be. tween C and A ; in thort, that the body cumes back again to \(A\), and plays backward and forward. He fays that this is fomewhat wonderful, and feems inconifitent wit', found reafon: "fod analy/g magis fidendum." It mult be fo. And he gocs on to another problem.

In like manner Mr Maupertuis, an accomplifhed man and goud philofopher and geometer, finding the fymbol AIVS, or the quantity of matter, multiplied by the velocity and by the diftance run over during the action, always prefent iffelf to him as a mathematical minimum in the actions of hodies on cach other; he was amufed by the obfervation, and prefumed that there was fome reafon for it in the nature of things. Finding that it gave him very neat folutions of many elementary problems in dyuanics, he thought of trying whether it would affift him in accounting fur the conflant ratio of the fines of incidence and refraction; he found that it gave an immediate and very neat folution. This problem had, before his time, oceupied the minds of Des Cartes and Fermat. Each of thefe gentlemen folved the problem by faying, that the light did not take the florteff way from a point in the air to a point under water, but the cafief way, in conformity with the aeknowledged economy of nature and confummate wif. dom of its adorable Author. But how was this the eafieft way, the courfe that economifed the lahour of nature? One of thefe gentlemen proved it to be fo, if light move fafter in air than in water; the other proved it to be fo, if light move fafter in water than in air. Both could not be right. Maupertuis was convinced that he had difcovered what it was that nature was fo chary of, and grudged to wafte-it was MVS! Therefore MVS can mean mothing but labour ; nothing but natural exertion, mechanieal action; thercfore MVS is the proper meafure of action. "He kept this great difcovery a profound fecret; and, being Prefident of the Royal Academy of Berlin, he propored for the anmual prize queftion, "Are the laws of motion neceffary or contingent truths?" He could not compcte for the
prize, by the laws of the Acadeny; but before the Conclufion. time of decilion, he publifhed at Paris his Differtation on the Principle of the leaft Alion; in which he pointed out the frugular fact of MVS being always a miuimum; and therefore, in fact, the object of maturc's ceonomical care. He folved a number of problems by making the ninimum Itate of \(\frac{f r s}{m}\) a condition of the problems; and, to crown the whole, fhewed that the laws of motion which obtain in the univerfe could not be but what they are, becanfe this ceonomy was worthy of infinite wifdom; and therefore any orther laws were impouflible. Thec reputation of Maupertuis was already eftablifhed as a good mathenatician and a worthy and amiable man, and he was a favourite of Frederic. The principle of leaft action became a mode; and it drew attention for fome time, till it went out of fathion. It is no mechanical primeiple, but a neceffry mathematial truth, as any perfon muft fee who recollects that \(v\) is the fame with \(\dot{s}\), and that \(f\) is the fame with \(m\) v.

To avoid fuch paralogifms and fuch whims, we are Great adconvinced that it is prudent to deviate as little as puf- vantages of fible in our difeuffions from the geometrical method. the yeomeThis has furely the advantage of keeping the real fub-thod. ject of difcuffion clafe in view; for mution includes the notion of lines, with all their qualities of magnitude and pofition. It is neculcfs to take a reprefentative when the original itfelf is in our hands, and affords a much more comprehenfible object than one of its abflract qualities, mere magnitude. Let any perfon candidly compare the lunar theory by Mayer or Eule: with that by its illuntrious inventor Sir Ifaac Newton, and fay which of the two is moft luminous and moft pleafing to the mind. No perfon will deny that there later performances are incomparably more adapted to all practical purpofes, and lead to corrections which it would be extremely difficult and tedious to inveftigate geometrically; but it mult be acknowledged, at the fame time, that till this be done, we have no idea whatever of the deviation of the track which this correction afcertains from the path which the moon would follow, independent of the difturbance expreflid ty the correction. In like manner, Dan. Bernoulli, by mixing as much as poffible the linear method with the algebraic, in his differtations on mulical chords, made the beautiful difcovery of the fecondary trochoids, and demanAtrated the co-exitence of the harmonic founds in a full mufical nute. Let the accomplifhed mathematician pufh forward our knowledge of dynanics by the employment of the fymbolical analy fis ; but let him be folluwed as clofe as polfible by the geometer, that we may not be robbed of ideas, and that the fudent may have light to direct his fteps. But, - manum e taluld.

\section*{D Y N}

DYNANOMETER, an inftrument for afertaining the relative mufcular itrength of men and other animals. That it would be defirable to know our relative ftrengths at the different periods of life, and in different fates of health, wili hardly be denied; and there cau be no doubt but that it would be highly ufeful to have a portable inftrument by which we could afcertain the ielative ftrength of horfes or oxen intended for the

\section*{D Y N}
plough or the waggon. Such an inftrument was invent- Dymanoed, many years ago, by Graham, and improved hy Defaguliers; but being conftructed of wooden work it was too bulky to be portable, and therefore it was limited in its ufe.
M. Leroy of the Academy of Sciences at Paris conflructed a much more convenient Dynanometer than Graham's, confifting of a metal tube, 10 or 12 inches

Dynaro- in length, placed vertically on a foot like that of a canniete: \(\rightarrow{ }^{-}\) dleitick, and containing in the infole a fpiral ipring, laving above it a graduated thank terminating in a glube. This Thak, togcther with the fpring, funk into the tube in proportion to the weight acting upon it, and thus pointed in degrees the ftrength of the perfon who prefleat oin the ball with his hand.

This was a very finple condruction, and, we think, a good one: but it did not fatisfy Buffon and Guenears. Thefe two philofophers withed not merely to afeertain the mufcular force of a linger or a hand, but to eftimate that of each limb feparately, and uf all the parts of the body. They therefore employed M. Regnier to contrive a new dymameter; and the necount which he gives * of his attempts to fulfil their wifhes is calculaied to enhance the difficulty of the enterprize. The initrument, however, which he conftructed, is not fuch as appears to us to have required any uncommon flill in mechanics, or any very great Aretch of thought. It confits chieny of an elliptical fpring, 12 inches in length, rather narrow, and covered with leather that it may not hurt the fingers when compreffed by the hands. 'Whis fpring is compofed of the beft ftel well welded and tempered, and afterwards fubjected to a ftronger effort tlaz is likely to be ever applied to it either by men or animals, that it may not lofe any of its elafticity by ufe.

The effects of this machine are eafily explained. If a perfon comprefles the fpring with his hands, or draws it out lengthwife by pulling the two extremities in con. trary directions, the fides of the fpring approach towards each other; and it has an apparatus (we do not think a very fimple one) appended to it, confiting of an in dex and femicircular plate, by which the degree of approach, and confequently of effort, employed, is afcertained with great accuracy. The author gives a tediwus defeription of other appendages, by means of which
horfes or oxen may be employed to comprefs the fprint. Dyfente, But as any mechanic may devife means for this purpule, we do nut think it worth while to tranferibe that defoription. The Englith reader will find a full account of the whole apparatus in the 4 th number of the very valuable mifcellany intitled The Pbilofopbical Magazine. 'Ihe principle of the contrivance confits in the elliptical fpring, of which we confefs ourfelves unable to perceive the fuperionity to the fpiral fpring of M. Leioy, though the author fees it very clearly.

DYSENTERY. See Medicine-Index, Encycl.For the cure of this difeafe we have the following limple prefcription by Dr Perkins and Dr B. Lynde Oliver, of the State of Maffachufetts in Nortls America.

Saturate any quantity of the beft vinegar with common marine falt; to one large table-fpoonful of this folution add four times the quantity of boiling water; let the patient take of this preparation, as hot as it can be fwallowed, one fpoonful once in half a minute until the whole is drank: this for an adult. The quantity may be varied according to the age, lize, and cuntlitution of the patient. If neceffary, repeat the dofe once in hix or eight hours. Confiderable evacuations I conceive (fays Di Parkins) to be not only unneceffary, but injurious, as they ferve to debilitate and prolong the difeafe. A tea of plantain, or fome other cooling limple drink, may be ufeful; and if a thirft for cyder be difcovered, it may be gratified. Carefully avoid keeping this preparation in veflels partaking of the qualities of lead or copper, as the poifon produced by that means may prove dangerous.

The fuccefs of the remedy depends much on preparing and giving the dofe as above directed.- The fimplicity of this treatment renders it the more valuable, as all perfons have it in their power to avail themfelves of its ufe.
D. Perkins fays, that he has found it ufeful in agues, diarrheas, and the yellow fever.

\section*{E A R}
\(\underbrace{\text { Earth. }}\) ARTH, in chemiftry. See Chemistry-Index in this Supplement. Earth, in aftronomy and geography. See Encyclopredia.

Earth, in ancient philofophy, one of the elements, the fubftance of which this globe is compofed. To afcertain the denfity of that fubftance, many experiments have been made; but perhaps none more ingenious than thofe of Mr Cavendifh, which are detailed at full length in Part 1I. of the Tranfactions of the Royal Society of London for 1793 . They were projected by tbe late Rev. John Michell, F. R.S. but he did not live to carry them into effect. After his death, the apparatus came to the Rev. F. J. H. Wollafton, Jackfonian Profeffor at Cambridge, who transferred them to Mr Cavendifh. The apparatus contrived for making fenfible the attraction of imall quantities of matter, and which has been improved by Mr Cayendif, is very fimple: it

\section*{E A R}
confifts of a wooden arm 6 feet long, fufpended by the middle in an horizontal potition by a flender wire 40 inches long ; to eaçh extremity is hung a leaden ball about two incles in diameter; and the whole is inclofed in a wooden cafe to defend it from the wind.

As no more force is required to turn this balance on its centre than is neceffary to twift the flender fufpending wire, the fmalleft degree of attraction of a leaden weight or weights, a few (eight) inclues in dianeter, brought near to the fmall fuipended hall or balls of the balance, will be fufficient to move it fenfibly afide.

To determine from hence the denfity of the earth, all. that is neceflary is, to afcertain what force is required to draw the arm afide through a given fpace, and then to have recourfe to calculation.

To prevent any difturbance from currents that might be produced within the box that contained the balance, by even the difference of temperature that might he oc-
cafioned
riv, 1.

\(1 \mathrm{i}, \ldots\)

Fir, 1.

1゙か， 14 ．

＂

Fing 19

1＂ヶ．．．

Fin，1．＂

Fath. eafioned by heat being communicated by the bodies of the experimenters to one fide of it more than another, it was fupported in the middle of a clofe roons; the operators, from adjoining apartments, viewed the operation through holes in the wall by means of telefcopes; and the apparatus had a flrong light thrown upon its two ends (an opening being left at each end of the box for the purpofe) by means of two lamps, alfo in the adjoining apartments, the rays from which were likewife made to pafs through the loles formed in the wall.

The two large balls were fufpended from a beam near the cieling, which could be moved in an loori. zontal direction, by means of a ftring and pulley, fo as to be brought near to the fmall balls of the balance, or made to recede again, without requiring any perfon to be in the room.

From this defeription it will be cafily feen, that on the two large balls being brought near to the two linall ones, but on oppolite fides of each, that thair forces may not counteract each other-the fmall fufpending wire of the balance mult be twifted by the movements of the arms, oceafioned by attraction, which carries the fmall towards the large balls; and that the wire, endeavouring to untwif itdelf, will again in its turn carry the fmall balls away from the large ones. Vibrations are thus uccafioned, which would continue a long time before the fmall balls would fettle between the firlt point of rett and the large balls: but it is not neceflary to wait for this; an ivory feale at each end of the balance enables the experimenters, by means of their telefcopes, to fee the two extreme divifions to which the fmall balls move in their vihrations, and thus to determine the middle point. The time neceflary for each vibration is alfo noticed.

A full account of thefe experiments, and of the cal. culations founded on them, would be little interelting to the great majority of our readers. We fhall thercfore only mention the refult. By a mean of the experiments the denlity of the earth comes out \(5^{\circ} 48\) times greater than that of water.

By the experiments made by Dr Mafkelyne on the attraction of the hill Schehallien, the denfity of the earth was computed to be only \(4 \frac{3}{2}\) times that of water. The difference of refult, therefore, is almoft one-filth, which no doubt muit leffen our confidence in either fict of experiments, or in the principle on which they were devifed.

Earth Worm (fee Lumbricus, Encycl.), is an animal which occafions fuch deftruction in gardens, by gnawing the tender roots of fhrubs and plants, that va. rious methods have been propofed for remedying this evil. One of the lateft, and that which promiles to prove the mott fucceffful, is given by M. Socoloff in the fifth volume of the New 'Tranfacions of the Imperial Academy of Sciences at Peterfhurgh. As the deftructive power of quick lime, heightened by a fixed al. kali, which corrodes or difiolves all the tender parts of animals, has heen long known, it occurred to our allthor that this mixture would be the bef means for accomplinhing the object which he had in view. He therefore took three parts of quieklime, newly made; and two parts of a faturated folution of fixed alkali in water, and thence obtained a fomewhat milky liquor fufficiently cauttic, highly hoftile and poifonous to earthworms and other fmall aninsals; for as foon as it touched any part of their bodies, it occafioned in them vio.
lent fymptoms of great uneafinefs. If this licuoor be poured Earth, ponded into thofe holes in which the earth-worms refide Eas deluce, under ground, they inmediately throw themfelves out as if driven by fome force; and, after various contor tions, either languith or die. If the leaves of plants or fruit trees frequented by the voracious catorpillars, which are fo deftructive to them, le sjrinkled over with this liquor, thefe infects fuddenly cot tract their bodies and drop to the ground. For though Nature has de. fended them tolerably well by their hairy fkins from any thing that might injure their delicate boties, yet as foon as they touch with their feet or mouths leaves which have been moitened by this liquor, they become as if it were ftupified, intantly contract themfelves, and fall down.

With regard to plants or corn, thefe futfain no injlu. ry from the liquor, becaufe it has no power over the productions of the vegctable kinglom, as our author has fully learned from experience; or if any burt is to be fufpected, all the danger will be removed by the firft fhower that falls. This liquor may be procured in abundance in every place where lime is burnt. If the lime be frefh, onc part of it infufed into about feventy parts of common water will produce real linse-water. The want of the fixed alkali may be fupplied by boiling wood-ames in water, and thickening the ley by evaporation.

This liquor might be employed allo to kill bugs and other domeftic infects; but on account of its itrong lixivious fmell, M. Socoloff thinks it could not be ufed with fafety in houfes that are inhahited. Nothing, however, more fpeedily or more eftectually deftroys bugs, as our author fays he has repeatedly, experienced, than the oily pickle that remains in calks in which falted herrings have been packed.

EAU de Luce, a fragrant alkaline liquor which. was fome years ago in great repute, efpecially among the fair fex, and of which the leading perfection is, that it fhall puffefs and retain a milky opacity.

Mr Nicholfon, in the fecond number of his valuable journal, tells us, that being informed by a philufophical friend, that the ufual recipes for making this compound ((ee Chemistry, Encycl. \(n^{\circ}\) 1037.) do nut fucceed. and that the ufe of maftic in it has hitherto been kept a fecret, he made the following trials to proeure a good cau de luce.

One dram of the rectified oil of amber was diffolvol: in four ounces of the ftongelt ardent fpirit of the hops; its fuccilic gravity being .840 at 60 degrees of Fahrenheit. A portion of the clear lpirit was poured upon a larger quantity of fine powdered mattic than its was julged could be taken up. This was occalionally agitated without heat; by which means the gum refm was for the moft part gradually diflolved. One part of the oily folution was poured into a phial, and to this was added one part of the folution of matic. No opacity or other change appeared. Four parts of ftrong cautic volatile alkali were then poured in, and imme. diately fhaken. The nuid was of a denfe opake winite colour, affording a firgt ruddy tinge when the light was feen through a thin portion of it. In a fecond mixture, tour parts of the alkali were added to one of the folution of mattic ; it appeared of a lefs denfe and more yellowifh white than the former mixture. More: of the gum refinous folution was then poured in ; but it ftill appeared lefs opaque than that misture. It was

\section*{E C I.}
\(y_{3}\) de lise rudely by tranfmitted light. Thae lat experiment was
clipric. Lelipric. repeated with the oily folution infead of that cof mattic. 'The white was much lefs denfe than either of the foregoing compound;, and the requifite opacity was not given by angmenting the dofe of the oily folution. No ruddinefs nor other remarkable appearanee was feen by tranfinitted light. ' Thefe mixtures were left at repole for two days; no feparation appeared in either of the compound containing mallic ; the conpound conlitting of the cily folution and alkali became paler by the feparation of a cream at the top.

It appears, therefore, that the firft of thefe three mixtures, fubject to variation of the quantity of its ingredients, and the odorant additions which may be made, is a grood eau de luce.

In a fubfequent number of the fame Journal, we have the following recipe by one of the author's correfpondents, who had often proved its value by experience. "Digeft ten or twelve grains of the whiteft pieces of maftic, felected for this purpofe and powdered, in-two ounces of alcohol; and, when nearly diffolved, add twenty grains of elemi (See Amyris, Encycl.). When both the refins are diffolved, add ten or fifteen drops of rectified oil of amber, and fifteen or twenty of effence of bergamot: Shake the whole well together, and let the fæees fubfide. The fulution will be of a pale amber colour. It is to be added in very finall portions to the beft aqua ammonix pure, until it affumes a milky whitenefs, fhaking the pbial well after each addition, as directed by Macquer. The treagth and caulticity of the ammoniac are of moft effential confequence. If, upon the addition of the firtt drup or two of the tinc-ture,-a denle opaque coagulated precipitate is formed, not much unlike that which appears on dropping a folution of filver into water Aighty impregnated with common falt, it is too ftrong, and mut be diluted with alcohol. A conlitlerable proportion of the tincture, perhaps one to fonr, onght to be requifite to give the liquor the proper degree of opacity."

EAVES Boarn, or Eaves-I㢈h, a thick featheredged board, ufually wailed ruund the eaves of a houfe for the lowermoft tiles, flate, or thingles, to rett upon.

ECLIPSAREON, an intament iavented by Mr Fergufon for fhewing the phenomena of eclipfes; as their time, quantity, duration, progrefs, \&c.

ECLIPTIC. See Encyel. both under Ecliptic and in Astronomy-Index. It was obferved in As. tronomy, Encyel. \(1^{\circ}\) 407. that the obliquity of the ecliptic has been found gradnally to decreafe. This was obferved, among others, by La Lande, who, in the third edition of his aftronomy, reckoned the fecular diminution of this obliquity at 50 leconds. From a new examination, however, of ancient obfervations, he has fince found reafon to eftimate it at only 36 feconds; but whether this be perfectly accurate, is yery doubtful. The mean obliquity was determined for the 1 ft of January 1793, with circular inftrunents̄, by Mechain at Barcelona, and Piazzi at Palermo, to he \(23^{\circ} 27^{\prime} 53^{\prime \prime} \cdot 3\). Yet the obfervation of the fummer folltice of 1796 , by Mechain and Le Français, gave in feconds more; which was juftly confidered as a perplexing circumitance. But, as one of the ableft of our literary journalifts obferves, might not this difference arife from the uncertainty of our tables of refraction, as affected by the hygrofcopic variations of the atmoffhere?

EaLIPTIG Bounds, or Limits, are the greateft diftances
from tine nodes at which the fun or moon can be celip. Fictiptic, Sed, namely, near 18 degrees for the fun, and 12 de- Edythone grees for the moon.

EDYSTONE Rocks, fo remarkable for the lighthoule built on then, obsaned their mame from the great variety of contrary fets of the tide or eurrent in their vicinity. They are fituated neanly S. S. W. from the middle of Piymouth Scund, according to the true meridian. The dillance frum the port of Plymonh is nearly \(1+\) miles, and from the promontory called Ram. bead about 10 miles. They are a!molt in the line, but Smeaton's fumewhat within it, which joins the Start and the Li- Account of zard points ; and as they lie nearly in the direction of the Edyfuno veffels coatting up and down the channel, they were neceffarily, before the eftablihment of a light houfe, very dangerous, and often fatal to thips under fuch circumflances. Their fituation, likewile, with regard to the Bay of Bifcay and Atlantic ocean, is fuch, that they lie open to the fwells of the Bay and ocean from all the fouth-weltern points of the convafs: which fwells are generally allowed by mariners to be very great and heavy in thole feas, and particularly in the Bay of Bifcay. It is to be obferved, that the foundings of the fea from the fouth-weitward toward the E. dyfone are from so fathoms to 42 , and everywhere till you come near the Edyflone the lea is full 30 fathoms in depth; fo that all the heavy feas from the fouthweft come uncontrouled upon the Edyftone rocks, and break on them with the utmoft fury.

The force and height of thefe feas is increafed by the circumftance of the rocks ftretching acrofs the Channel, in a north and fouth direction, to the length of above 100 fathoms, and ly their lying in a floping manner toward the fonth-weft quarter. This \(\operatorname{living}\) of the rock, as it is teclmically called, does not ceafe at low water, but till goes on progrellively ; fo that, at 50 fathoms weltward, there are 12 fathons water; nor do they terminate altogether at the diflance of a mile. From this configuration it happens, that the feas are fwelled to fuch a degree in forms and hard gales of wind, as to break on the rocks with the utmalt siolence.

The effect of this flope is likewife fenfibly felt in moderate, and even in calm weather; for the libration of the water, caufed in the Bay of Bifeay in hard gales at fouth-weft, continues in thofe deep waters for many days, though fuccecded by a calm; infomuch, that when the fea is to all appearance finooth and even, and its furface turnfled by the fighteft brecze, yct thofe librations ftill continuing, which are called the groundfreell, and meeting the dlope of the rocks, the fea breaks upon them in a frightful maner, fo as not only to ubftruct any work being done on the rock, but even the landing upon it, when, figuratively fpeaking, you might go to fea in a walnut thell. A circumfance which thill farther increafes the difficulty of working on the rock is, there being a fudden drop of the furface of the rock, forming a ftep of about four and a half, or five feet high; fo that the feas, which in moderate weather cone fwelling to this part, meet fo fudden a check that they frequently \(\mathrm{l}_{\mathrm{y}}\) to the height of 30 or 40 feet.

Notwithftanding thefe dificulties, it is not furprifing that the dangers to which navigators were expoled by the Edyftone rocks Thould make a commercial nation defirous of having a light-houfe on them. The wonder is, that any one fhould be found hardy enough to undertake the building. Such a man was firft found

\section*{E D Y \(\quad[551] \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{Y}\)}

Esyotone. in the perfon of Henry Wimfanky of Littleburv in Effex, Gent. who, in the year 1096 , was furnifled by the mafter, wardens, and affiftants, of the Trinity-houfe of Deptford-Atrond with the neceffary powers to carry the delign intr excecution.

Mr Winfanley hat! diftinguighed himelf in a certain branch of mechanies, the tendency of which is to raife wonder and furprife. He had at his houfe at Littlebury a fet of contrivances, fuch as the following: Being taken into one particular room of his houfe, and there obferving an old nipper carelefsly lying on the floor: if, as was natural, yon gave it a kick with your foot, up ftarted a ghaf hefore you. If you fat down in a certain chair, a couple of arms would immediately clafp you in, fo as to reuder it impomble to difentangle yourfelf till your attendant fet you at liberty. And if you fit down in a certain arbour hy the fide of a canal, you nere forthwith fent out afoat to the middle of the canal, from whence it was impolfible for you to efcape till the manager returned you to your furmer place. Whether thofe things nere thewn to ftrangers at his houfe for money, or were done by way of amufement io thofe that came to vilit the place, is uncertain, as Mr Winftanley is faid to have been a man of fome property; but it is at leaft certain, that he eftablihed a place of public exhibition at Hyde Park-corner, called Winflanley's water-cuorks, which were fhewn at ftated times at one fhilling each perfon. The purticulars of thofe water works are not now known ; but, according to the tafte of the times, we muft naturally fuppofe a great variety of jets d'eau, \&c.

Thefe particulars are at prefent of no other importance than that they ferve to give a fketch of the talents and turn of mind of the original undertaker, and to account for the whimfical kind of buildings which he erected on the Edyftone; from the defign of which, it feems as if it were not fufficient for his enterprifing ge. nius to erect a building on the fpot, where, of all uthers, it was leaft likely to fand unhurt; but that he would alfo give it an elevation, in appearance the molt liable to fubject it to damage from the violence of the wind and waves.

This ingenious man entered upon his great undertaking in 1696 , and completed it in fomething more than four years. The firl fummer was occupied with ma. king 12 holes in the rock, and in faftening 12 great irons, which were to hold the work that was afterward to be done. The nest fummer was feent in making a folid body, or round pillar, 12 feet high and 14 feet in diameter. In the third year, the aforefaid pillar or work was made gnod at the foundation, from the rock, to 16 feet in diameter; and all the work was raifed, which, to the vave, was 80 feet high. Being all finifh. ed, with the lantern, and all the rooms that were in it, we "ventured (fays Mr Winftanley) to lodge there foon after midfummer, for the greater difpatch of this work: but the firlt night the weather came bad, and fo continued, that it was eleven days before any boats could come near us again; and not being acquainted with the height of the feas rifing, we were almof all the time drowned with wet, and our provifions in as bad a condition, though we worked night and day, is. much as poffible, to make fhelter for ourfelves."

Mr Winftanley, however, fucceeded in fetting up the light on the 14th of November in that year (1698) ; but he was detained till within three days of Chriftmas
before he could return to thare, being almolt at the laft Ebytone, extremity for want of provifions.

In the fourth year, obferving the effects that the fea producesi on the honfe, burying the lantern at times, although more than, 60 teet ligh, Mr Wialtanley encompafled the aforefaid building early in the fpring with a new work of four fect thicknefs from the foundation, making all fulid for near 20 feet high; and taking down the upper part of the firt building, and enlarging every part in its proportion, he raifed it 40 feet higher than it was at lirft: Yct, he ubferves, "the fea, in times of forms, flies in appearance one bundred feat alow the vine, and at times doth cover half the fide of the houfe and the lantern as if it were under water."

No material occurvences concerning this building happened till November 17c3, when the fabric, needing fome repairs, Mr Winftanley went down to Plymouth to fuperintend the work. And "we mult not wonder (fays Mr Smeaton), if, from the preceding accounts of the violuce of the feas, and the ftructure of the lighthaufe, the common fenfe of the public led them to fuppofe this building woold not he of long duration. The following is an anecdate which I received to the fame effect from fo many perfons that 1 can have no donbt of the truth of it: Mr Wintanley being among his friends previous to his going otf with his workmen on account of thofe reparations, the danger being intimated to him, and that one day or other the light-houfe would certainly be overfet; lue replied, "He was fo very well affured of the ftrength of his building, he hould only wifh to be there in the greateft form that ever blew under the face of the heavens, that he might fee what effect it would have on the flucture."-It happened that Mir Wintanley was hut too amply gra. tified in this wifh; for while he was there with his. workmen and light-keepers, that dreadful form began which raged mot violently on the 2Gth of November 1703 , in the night; and of all the accounts of the kind which hiftory furnifhes us with, we have none that has. exceeded this in Great Britain, or was more injurious or extenfive in its devathation. The next morning, November 27 th, when the violence of the furm was fo much abated that it could be feen whether the lishthoufe had foffercd by it, nothing appeared ftanding, but, ppun a nearer infpection, fome of the large irons by which the work was fixed opon the rock; nor were an: of the people, or any of the materials of the building, ever fonnd afterwards, fave only part of an iron cham, which had got fo fat jambed imto a chink of the rock, that it could never afterwaris be difengaged till it was cut out in the year 1756."

Thus perimed Mr Wintanley, together with his buildiag: but fo great was the utility of that building while it food, that the public could not fail to be defirous of having another in its place. Accordingly, in 1706, an act of parlimment of the fth of Quten Anne was paffed, for the better enabling the mater, \&e. of the Trinity-houfe of Deptford-1trond io rebuild the fame. lyy this act, the duties payable by thipping paffing the light-houle were velted in the corporation of the Trinity-houfe, who were empowered to grant a leafe to fuch undertaker or undertakers as they fhould approve. In confequence, they agreed with a Captain Lovel or Lovel for a term of 99 years, commencing from the day on which a light fhould be exhibited, and continuing fo long as that exhibition hould laft during.

\section*{E D Y [\(\left.55^{2}\right] \quad\) E D Y}

Fids fine the faid term. On this fuundation Captain Lovet en. nated at three feet above the top of his cupola. The Elyfione gaged Mr Joln Rudyerd to be his engineer or archi. tect and furveyor.

It docs not appear that Mr Rudyerd was bred to any merhanical bufinefs or fcientilic profeflion, being at that time a filk mercer on Ludgate-hill; nor is it known that, in any other iuttance, he had diftinguifized himfelf by any mechanical performance befure or after. His want of perfonal experience, however, was in a degree adfitled by Mr Smith and Mr Norcutt, both hipwrights in the King's yard at Woolwich.

It is not, as Mr Smeaton oblerves, very material in what way this gentleman became qualified for the execution of his work; it is fufficient that he directed the performance in a mafierly manner, and fo as perfectly to anfwer the end for which it was intended. He faw the crrors i: the former building, and avoided them ; inftead of a polygon he chofe a circle for the outline of his building, and carried up the clevation in that form. Iis principal aim appears to have been \(u f e\) and \(f i m p / i-\) city; and indeed, in a building fo fituated, the former could hardly be acquired in its full extent without the latter. He feems to have adopted ideas the very reverfe of his predeceffor; for all the unwieldy ornaments at top, the open gallery, the projecting cranes, and o. ther contrivances, more for ornament and pleafure than ufe, Mr Rudyerd laid totally afide. He faw, that how beautiful foever ornaments might be in themfelves, yet when they are improperly applied and out of place, by affecting to fhew a talte, they betray ignorance of its firft principle, judgment; for whatever' deviates from propriety is erroncous, and at beft infipid.
-It is impoffible for us to give an accurate account of the conftruction of Mr Rudyerd's light-houfe. We can only fay, in general terms, that it was altogether built of wood; for the courfes of moorftone, which Mr Rudyerd, adverting to the maxim, that weight is beft refitted by weight, introduced into the folid part of his building, muft be confidered as being of the nature of ballaft; the weight of thefe amonnted to above 270 tons. The main column of the building confited of one fimple fyres are, being an elegant fruftum of a coure, unbroken by any projecting ornament, or any thing on which the violence of the forms could lay hold; meafuring, exclufively of its foping foundation, 22 feet and right inches on its largeft circular bafe; 6r feet high above that circular bafe; and 14 feet and three inches in diameter at the top: fo that the circular bafe was fomewhat greater than oue-third of the total height, and the diameter at the top was lefs than two-thirds of the bafe at the greateft circle. On the flat roof of this main colum, as a platform, Mr Rudyerd fixed his lantern, which was an octagon of ten feet and fix inches diameter externally The mean height of the windowframes of the lantern above the balcony floor was nearly nine feet; fo that the elevation of the centre of the light ahove the higheft fide of the bafe was 70 feet; that is, lower than the centre of Mr Wintanley's fe. cond lantern by feven fect, but higher than that of his firft by \({ }_{4}\) feet. Thie width of Mr Rudyerd's lantern was, however, neanly the fame as that of Mr Winftanley's fecond: but inftead of the towering oruaments of irunwork, and a vane that rofe above the top of the cupola no lefs than 21 feet, Mr Rudyerd judicioufly contented himfelf with finifhing his building with a round ball of two feet and three inches diameter, which termi-
whole height of Mr kudyerd's light-houre, from the loweft fide to the top of the ball, was 92 feet, on a bate of 23 feet and four inches, taken at a medium between the highefl and lowefl part of the rock that it covered. The whole building was completed in the year 1709, three years from its commencement.
This great work, after having braved the elements for forty-dix years, was burnt to the ground in 17550 On the ed of December of that year, when the lightkeeper, then on the watch, went, abuat two o'cluck in the morning, into the lantern, to fruff the candles according to cuflom, he found it in a fmoke; and in fite of all that he and his companions could do, the whole cdifice was un fire in the compars of little more than eight hours, and in a few days was burnt to its founda. tion. The three light-men were with much difficulty got on flore, when one of them immediately ran off, and has n:ever fince been heard of. Another, who had been dreadfully burned by melted lead, of which, according to his own account, he had fwallowed a quantity, lingered in agony for twelve days, and then expired. His ftomach being opened, there was found in it a folid piece of lead of a flat oval form, which weighed feven ounces and five drachms; and thus was verified an affertion which, to the furgeon and others who attended him, appeared altogether incredible, viz. that any human being could live after receiving melted lead into the flomach.
On the deflruction of Mr Rudyerd's light-houle, Mr Smeaton (fee Smeaton in this Supplement) was recommended by Lord Macclesfield, then prefident of the Royal Society, as the fitteft perfon in England to buald another. It was with fome difficulty that he was able to perfuade the proprietors that a ftone building, propeily conitructed, would in all refpects be preferable to one of wood; but having at laft convinced thern, he turned his tloughts to the flape which was moft fuitable to a building fo critically fituated. Reffecting on the itructure of the former butildings, it feemed a material improvement to procure, if puffible, an erilargement of the bafe, without increaling the fize of the roaif, or that part of the building which is between the top of the rock and the top of the folid work. Hence he thought a greater degree of ftrength and itiffnefs would be gain. cd, accompanied with lefs refiftance to the acting power. On this occafion, the natural figure of the wait or bole of a large fpreading oak oceurred to Mr Sneaton.
"Let us (fays he) confider its particular figureConnected with its roots, which lie hid below ground, it rifes from the furlace with a large fwelling bafe, which at the height of ore diameter is generally redu. ced by an elegant curve, concave to the eye, to a diameter lefs by at leaft one third, and fometimes to half its original oafe. From thence, its taper diminifling more flowly, its fides by degrees come into a perpendicular, and for fome height form a cylinder. After that, a preparation of more circumference hecomes neceffary, for the ftrong infertion and eftablifhment of the principal boughs, which produces a fuelling of its dia-meter.- Now we can hardly duubt but that every fection of the tree is nearly of an equal ftrength in proportion to what it has to refift; and were we to lop off its principal boughs, and expofe it in that fate to a rapid current of water, we thould find it as capable of sefifing

\section*{E D Y [553 1 E D Y}
ady fone refifing the action of the heavier fluid, when divefted of the greater part of its elothing, as it was that of the lighter, when all its fureading ornaments were expofed to the fury of the wind: and hence we may derive an idea of what the proper hape of a column of the greateft Ifability ought to be, to relift the action of ex. ternal violence, when the quantity of matter is given of which it is to be compofed."

The wext thing to be contidered was, how the blocks of tlone couid be bonded to the rock, and to one another, in fo firm a manner as that not only the whole together, but every individual piece, when connected with what preceded, flould be proof againft the greateft violence of the fea. For this purpofe, cramping was the firlt idea, but was rejected on account of the great quantity of iron which was neceltary, and from the trouble and lufs of time which would attend that operation. In its pata was fubilituted the method of duretailing. From fome fpecimens which Mr Smeaton had feen in Belidur's deleription of the flone floor of the great Anice at Cherburgh, (where the tails of the upright headers are cut into dovetails for their infertion iuto the mals of rough mafonry below,) he was led to think, that if the blocks themfelves were, both iaficle and outfide, formed into large dovetails, they might be managed fo as to luck one another together, heing pri. marily engrafted into the rock; and in the round or entire courfes above the top of the rock, they might all proceed from, and be locked to, one large centre ftone. Thele particulars being digefted in his own mind, he explained his defign by the help of drawings; with which, after mature deliberation, the proprietors were perfectly fatisfied; and declared, that the feheme was not only in itfelf practicable, but, as appeared to them, the only means of doing the bufinefs effectually.

During this time Mr Smeaton had never vifited the rock on which he was to be employed : he therefore refolved to go to Plymouth early in the fpring of 1756 , that he might lofe no opportunity of viewing it. At Plymouth he met Mr Jolias Jeffop, to whom he was referred for information and affiftance, and who afterwards proved of great fervice: he was not only an approved workman in his branch as a mipwright, but a competent draughtfman and an excellent modeller ; 'in which latl (fays the author) he was accurate to a great degree: he therefore appeared to be a very fit perfon to overlook the exact execution of a delign given.' Mr Jeffop, like others, expreffed his doubts that a ftone building could ftand on the Edyfone: but they were removed by the propofed mode of its contruetion.As Mr Smeaton was impatient to go to the rock, he feized the firf opportunity that feemed to promife any chance of landing on \(i t\). On the 2 d of April he got within a flone's throw of it, but could not land: on the \(s\) th he was more fortunate; he now landed, and ftaid on the rock for two hours and a half. This time was employed in taking a general view of the whole. No remains of the houfe could be perceived either on the rock, or about it, except the greateft part of the iron branches that had been fixed by Mr Rudyerd; and fome of the moorftones were difecrned lying in the bottom of the gut. Such traces were alfo obferved of the fituation of the irons fixed by Mr Winftanley, as to render it no very difficult tafle to make out his plan, and the pofition of the edifice; whence it appeared very probable, that Mr Winttanley's building

Suppl. Vol. I. Part II.
was overfet altogether, and that it had torn up a por. Fifonme. tion of the rock itfelf, as far as the irons had been faltened in it. With regard to the fteps, which were faid to have been cut in the rock by Mr Rudyerd, the traces of only-ive were remaining; thefe were faintly cut, and without much regularity. It was-next ried in what degree the rock was workable; and Mr Smeaton had the fatistaction of finding every thing fucceed to his withes.

Hawing thus determined that there was no impracticability in fixing a thone building, it become of the greateit impurtance to ficure a more fafe and certain landing on the rock; as it would frequently happen, while the veffels were lying eff the rock, waiting for a favourable time to enter the gut, that tides might change, ground fwells come on, winds thift, and thoins arife, which wonld of courfe make it defirable to return to Plymonth, if poffible, thourh the purpore of the voyage was linperformed. In addition to this, when veflels had got with fome facility into the gut, they frequenty could not get ont agsin withont extreme danger: for as the larger fort lad not room to turn in it, they were in reality obliged to go ont Aern forward ; the Sugar-loaf rock being fo critically placed, with Alallow water on beth fides of it, that it prohibits a thorough paffage. It was true, indeed, that by the fkill and expertnels of thole feamen who had frequently attended the fervice of the Edyftone, not only row boats, but the attendant veffels, after having delivered their cargoes, had been carried quite through, at the top of an high tide, with a fair wind and fmooth water: but this was not an experiment to be commonly repeated. The two voyages which Mr Smeaton had made were in a fmall failing veffel of about ten or twelve tons burden, which was built for the fervice, and called the Edyftone Boat. It occurred to him, that while the light houfe was ftanding, if the boat had been Ataved on the rocks while lying in the gut, there was a poffibility of the men being faved by getting into the looufe, as the light-kecpers would have been ready to throw out a rope to their affiftance: but that if any accident of the kind were to happen now that the houfe was down, and no protection nor melter to be had, there was little chance of their cfape; -and thefe confiderations being likely to calt a damp on every exertion to land, he determined to go out no more without another failing boat to attend.

Tlie weather being unfavourable for viliting the rock, all exertions were ufed to forward the work on fhore: and, firlt, a work-yard was chofen in a field acljacent to Mill Bay, about a mile weft from Plymouth. The next object was to procure moor ftone, or granite ; and with this view the author vifited Hingftone Downs, and obferved the manner of warking the tone, which is curious. He nest went to Lanlivery, near Fowey harbour, from which place the flone-work for the late light-houfe had been furnifhed.

During this time he had marle five voyages to the rock with little fuccefs: the event of the latt had frongly pointed out, that the much greater tonnage of the ftone which muft he neceffary to be carried out and fixed, in cafe of a ftone building, than was requilite in the compofitions of his predeceffors, would make the uncertainty and delay which they had deferibed as being attendant on their voyages, in order to fix their work, bear far heavier on the feheme ; and would thus 4 A
accafion

\section*{E D Y}

Edyfane occation the whole time of the performance to be lengthened. It appeared, therefore, that had a veffel been fixed within a quarter of a mile, or fome fuch competent ditance from the rocks, and which flould be capable of lodging the workmen, all their tools and loofe materials, the feveral piects of wrought tone only excepted, that then the workmen might, by meaus of fmall row-boats or yawls, have effected a landing both of themfelves and of their materials, and have been at work on the rock during the greatelt part of thofe days which otherwife, as voyagers, they would have lott in fruitefs endeavours to get to the place of action. Agreeably to this opinion, it was propofed to build a flroag and very well found noop of about fifty tons, with irnn chains for mooring her on the rocky ground near the Edyilone. A veffel was in tact afterward moored in this fituation : but it was one not built for the fervice, but origivally intended to have been fationed as a temparary floating light during the rebuilding of the light-houfe.

Mr Smeaton now made a fixth voyage to the rock, on which he employed himfelf for nineteen hours in taking fuch dimenfions as would enable him to make an accurate model of its furlace. He likewife attempted a feventh royage : but being unable to reach the Edyftnne, he bore away for Falnouth, in order to examine the moor-fone works at Contantine in that neighbourhoud. From the difficulties which occurred here, as well as at other places, he was cunvinced that a fufficient quantity of moor-fone could not be readily and expeditionfy procured, in order to complete the whole building; and that he muft therefore confine the moorflone to the outfide, as being more durable, and content himfelf with the ufe of Portland, or fome other free-working ftone, for the infide work. In confequence, after making three more voyages to the rock, and completing all the obfervations which he was defirous of taking there, he vifited the ine of Portland in his return to London, and made the neceflary agreements for carrying on his work.

On his arrival in London, Mr Smeaton again met the proprietors, from whom he experienced the greateft liberality and confidence: they declared, that as he was now apprized of what was to be done, they left both the time and the means of its accomplifhment to him.

On this occafion (he obferves), I found myfelf totally unfettered; and perhaps no refolution of the proprietors ever more conduced to the ultimate fuccefs of the work than this, which fet me fo much at liberty. Had they been of the fame temper and difpofition of by far the greatelt part of thofe who have employed me, both before and fince, their language would have been, Get on, Get on, for God's fake get on! the public is in expectation; get us fomething fpeedily to fhew, by which we may gain credit with the public!This, however, was not their tone, which I looked upon as a lhappy earneff from the proprietors in the outfet.'

During his flay in London, he refolved, as an abfolutely neceffary preliminary ftep, to form models of the rock, both in its prefent ftate and as cut to the intended fhape for receiving the builling. Connected with the laft was a model of the building itfelf, fhewing diAinctly how the work was to be adapted to each leparate Itep in the afcent of the rock, and particularly exhibiting the conftrustion of the firft entire courfe after riling to the level of the upper furface of the rock: to
this a folid being fitted, the model thewed the external form of the whole building, including the lantern; while, by a fection on paper, the whole infide work was reprefented. Thefe models, as well, indeed, as molt of the material parts of the bufinefs, were the entire work of Mr Smeaton's own hands. After exhibiting thefe to the Lords of the Admiralty, who exprefted their warmeft approbation, he returned to Plymouth on the 23 d of July 1756.

On his arrival at Plymouth, he found that Mr Jeflop had completely fitted up, for prefent fervice, the floop, which had before been ufed as an attendant; as well as the Edyfone boat, and a large yawl, with fails and oars. Another feaman was now taken into the fervice, which made the number of the crew fix. The Neptune Bufs, which had been built for the purpofe of exhibiting a temporary light, but which was afterward moored near to the rock, was arrived : but as her deftination was not known, all orders for morring-chains werc fufpended, and Mr Smeaton was obliged to content himfelf with preparing cables in the belt manner that he conld for mooring the floop in that fituation. As the weather was unfavourable, he had but one opportunity of vifiting the rock ; he therefore applied vigoroully to prepare every thing on thore. The firft bufinefs was to eflablifh the working companies, which were to confin of two complete fets of hands, to relieve each other by turns; fo that, whenever winds and tides would permit, the work might be purfued by day and night. In his diftribution and management of thefe people he appears to have acted with great judgment. He made choice of, and agreed with, Mr Thomas Richardfon, a mafter mafon of Plymouth, to act as foreman of one of the companies; and alfo with William Hill, who lad been fome time foreman to another mafter mafon of the fame place, to act as the other foreman. He likewife entered three mafons, and nine tinners (Cornifh miners), as a company, to go out with Mr Richardfon to take the firft turn, or week, commencing from Saturday the 3 If of July. Mr Jeffop was appointed general affiftant. The wages of the foremen, while at fea, were to be 5 s. per day certain; and for every hour fpent on the rock, the farther premium of Is.-but when employed in the work-yard or otherwife on fhore, their wages were to be 3 s .6 d . per day. The wages of the mafons were to be 2 s .6 d . per day certain at fea, with a premium of 9 d . per hour ; and the tinners were to have 2 s. per day certain at fea, and 8 d . per hour. In the work-yard, or at hore, the mafons were to have 20 d . and the tinners 18 d . per day, and to be paid for over-time when required to work; -and that the feamen might not want inducement to do their utimof in landing the worknien at the Edyfone as early as poffible at every opportunity, and in fupplying them with what was neceffary for keeping them at work, over and above their weekly wages, which were fettled at 8 s . per week, they were all to receive a premium for every landing on the rock; the mafter feamen having 2 s . 6 d . and the ordinary men 2 s . to make their advantage equivalent to that of the other workmen, in whatever fervice the feamen, who were conltantly on duty, were employed. Mr Jeftop, as general affititant, was to have 10 s .6 d . per day at fea, and 5 s. per day on land ; and every one was to fupply himfelf with vietuals.-Mr Smeaton likewife agreed for half an acre of ground on the weft fide of Mill-bay for

\section*{E D Y [555] E D Y}

Elyfone. a work-yard, as before mentioned, which he marked out, and ordcred to be fenced with boards. At this time arrived Mr John Harrifon, who was to act as clerk to the Edyltone works, with whom a plan was digefted for keeping the accounts and correfpondence; and for the diftinct noting of fo great a varicty of articles, it was found expedient to open fourteen different books.
Matters being thus fettled on hore, and the weather having become more promifing, Mr Richardfon and his company embarked in the floop, with her ground tackle on board, attended by the author and Mr Jeflop, and having the yawl alfo properly manned. Having landed on the rock, Mr Smeaton proceeded to fix the centre, and to lay down the lines of the intended work on its furface; and being followed by Mr Richardfon, he, with fharp picks, left indelible traces of thofe lines, fo as that the workmen might proceed on them when ever they fhould be able to land. The roughnefs of the fea, however, foon rendered it advifable to return to the floop; and from the fame caufe it was thought unfafe to attempt to moor her that evening. On the next day, the wind continued to blow very fref ; but on the following they were able to moor the floop: and every one being anxious to make a beginning, the whole company landed on the rock, and immediately began the work, which was purfued for about four hours, when they were driven off by the fea. On the following day, all hands landed before fun-rife, and worked, during that tide, for fix hours; and in the afternoon's tide they again landed, and continued the work, by the help of links, till ten o'clock at night. They purfued this courfe for fome time with very little interruption, working, at an avcrage, for about five hours in each tide.

The weather had now been fair from Auguft 27th to the 14th of September; and in this fpace they had worked for 177 hours on the rock. During this interval, alfo, Mr Jeffop had prevented a weft Indiaman homeward bound, and a man of war's tender, from driving on the rocks, to which they were approaching, tbough they themfelves were not aware of it. On the 16 th, the work on the rock was in the following fituation : The loweft new ftep (the moft difficult to work, beeaufe the loweft), with its dovetails, was quite com. pleted.-The fecond ftep was rough bedded, and all its dovetails fcapelled out.-The third ftep (heing the loweft in Mr Rudyerd's work) was fmooth bedded, and all the dovetails roughed out.-The fourth was in the like ftate - The fifth was rough bedded, and its dovetails were feapelled out; and the fixth was fmooth bedded, and all the dovetails roughed out.-Laflly, the top of the rock, the greateft part of the bulk whereof had been previoully taken down as low as it could be done with propriety, was now to be reduced to a level with the upper furface of the fixth tep; the top of that tep being neceffarily to form a part of the bed for the feventh or firft regular courfe: fo that what now remained, was to bring the top of the rock to a regular floor by picks; and from what now appeared (as all the upper parts that had leen damaged by the fire were cut off) the new building was likely to reft on a bafis even more folid than the former lighthoufes had done.

The equinoctial winds that were now reigning, afforded little profpect of doing much more work on the rock for this feafon: for though a more moderate inserval of weather might be expected, yet that mult be
employed in weighing the Bufs's moorings. To pre- Edy fore, vent the neceflity of this, however, it was an object of confideration, whether they could not difpenfe with that operation, and thereby have a little more time for work on the rock. Mr Smeaton's contrivance for this purpofe was admirable; but it was rendered vain by the bad failing of the bufs. After overcoming many difficulties, the bufs with Mr Smeaton on board was driven at a great rate towards the bay of Bifcay, in danger every hour of being fwallowed up by the waves or dafhed in pieces on the rocks of Scilly. At laft, on Friday morning the 26 th of November, they reached Plymouth Sound, and relinquifhed all thoughts of returning to their work on the rock that feafon.

The winter therefore of 1756, and the following fpring, were employed in preparing materials for the outwork: the mafonry particularly required great attention. It was a defirable object to ufe large and heavy pieces of ftone in the building; yet their fize muft neceffarily be limited by the practicability of landing them with fafety. Now fmall veffels only could deliver their cargoes alongfide of this hazardous roek; and thefe could not deliver very large ftones, becaufe the fudden rifing and falling of the veffels in the gut amounted frequently to the difference of three or four feet, even in moderate weather; fo that in cafe after a flone was raifed from the floor of the veficl, her gunwale fhould take a fwing, fo as to hitch under the flone, one of a very large magnitude mult, on the veffel's rifing, infallibly fink her. From this confideration, it was determined that fuch fones frould be ufed as did not much exceed a ton weight; though occalionally particular pieces might amount to two tons. That they might attain a certainty in putting the work together on the rock, the ftones of each courfe were tried together in their real lituation with refpect to each other; and they were fo exactly marked, that every ftone, after the courfe was taken afunder, could be replaced in the identical pofition in which it lay on the platform, within the fortieth part of an inch:- nor was this judged fufficient; for every courfe was not only tried fingly together on the platform and marked, but the courfe above it was put on it, and marked in the fame way; fo that every two contiguous courfes might fit each other on the outfide, and prevent an irregularity in the outline. This degree of accuracy might feem fuperfluous: but as the nature of the building required the workmen to be in a condition to refit a florm at every ftep, it became neceffary to lix the centre flone firt, as being leaft expofed to the Ilroke of the fea; and in order to have fure means of attaching all the reft to this, and to one another, it was indifpenfable that the whole of the two courfes thould be tried together ; in order that, if any defect appeared at the outfide, by an accumulation of errors from the centre, it might be rectified on the platform.

Another circumitance, to which Mr Smeaton was particularly attentive, and coneerning which his remarks are very valuable, was to afcertain the moft proper compolition for water cements. In making mortar for buildings expofed to water, tarras had been mott efteemed: but fill there were objections to its ufe. Mr Smeaton was therefore induced to try the terra puzzolana, found in Italy, as a fubftitute for tarras. Fortunately there was a quantity of it in the hands of a merchant at Plymouth, which had heen imported as a ven-

\section*{E D Y}

EdyRone ture from Civita Vecchia, when Wutnimiter-bridge was building ; and which he expected to lave ford for that work to a good advantage, but failed in his fpeculation : for having found that tarras anfwered their purpofe, neither commiffioners, engineers, nor contractors, would trouble themfelves to make a trial of the other material. This was found in every refpect equal to tarras, as far as concerned the hardening of water-mortar, if not picferable to it ; and if-wade into a mortar with line produced from a flone found at Aberthaw, on the coait of Glamorganhhire, it exceeded, in hartnefs, any of the compofitions commonly ufed in dry work; :nd in wet and dry, or wholly wet, was far fuperior to any which Mr Smeaton had feen, infomuch that he did not doubt its making a cement that would equal the beft merchantable Portland flone in fulidity and durability.

Thefe preliminary arrangements being lettled, they proceeded, on the 3 d of June 1757 , to carry ont the Neptune bufs, and to begin the work. Atter getting up the moorings (a work of no fmall difficulty and fome danger), and after fixing the fender-piles, the thears, windlafs, \&c. the firlt ftene was landed, got to its place, and fixed, oll Sunday the 12 th of June; and on the next day the firt courfe was completed. On the 14 th, the fecond courfe was begun: but, in confequence of a frefh gale, the workmen were obliged to quit the rock, after fecuring every thing as well as poffible. Such was the violence of the gale, that it was i:upracticable for the boats to get out of the gut, otherwife than by paffing the Sugar-loaf rock, in which they providentially fucceeded. On the 18 th, they were again as fuddenly driven from their work, and feveral pieces of fone were wafhed away by the violence of the fea. In the night of the 6th of July, the watch on the deck of the bufs efpied a fail on the rocks, and one of the \(y\) awls was fent to her relief, which brought back the whele crew, feveral of whon were in their fhirts, and in great diftrefs. It was a fnow of about 130 tons burthen, which was returning in hallaft from Dartmouth ; but not knowing exactly where they were, they had miftaken the rocks for fo many fifhing-boats, till it was too late to clear them : ard on the veffel's Atriking, fhe filled fo quickly, that the toat floated on deck before they could get into it.

During this time the building went on, though its progrefs was retarded by various interruptions and accidents; till, at the latter end of Auguif, when the feventh courfe was nearly finifhed, a violent flom arofe, which carried away the fliears and triangles, together with two of the largett flones which had been left chained on the rock! yet notwithftanding thefe and various other difficulties, the ninth courfe was comple. ted by the end of September.
"Being now arrived at the eve of Octuber (fays Mr Smeaton), I maturely confidered our fituation; and finding that we had been 18 days in completing the laft courfe, whereas the former one was begun and finifled in five, though the weather, both on fhore and above head, had remained to all appearance much the fame; I from thence concluded it to be very probable, we might not get another courfe completed in the compafs of the month of Octöber : So that when I reflected on the many difafters that we had fuffered latt year hy continuing out to the month of November, and how little work we in reality did after this time, it appear.
ed to me sery problematical whether we mirht be able, Esftor with every pofible exention, to get another courfe finifhed this leafon; and conlidering how very incligible it was to have a courfe lie open during the winter in this Ilage of the work, and that we had now got thrce complete courfes ellahifhed above the top of the rock, the fum of whole height was four feet lix inches; and that we could not leave the work in a more defenfible ftate, whether as relative to the natural violence of the fea, or the pulfibility of external injuries - from thefe confiderations, it appeared to me highly proper to put a period to the uutwork of the prefent leafon."

At the commencement of the following year, 1758 , the weather proved very tempeftuous till March; and on vifiting the rock, they difcovered that the great buoy on the moorings had been carried away; nor were the mooring chains, though fought with the greateit perfeverance, recovered till the middle of May. In confequence of this delay, and from other accidents, the tenth courfe of the building was not completed till the 5th of July. From this time, the progrefs was without any very material interruption; fo that on the \(26 t h\) of September the 25 th courfe, being the firt of the fuperiltucture, was finifhed. The work was now fo far advanced, that Mr Smeaton made a propofal to the Trinity Board and to the proprietors, of exhibiting a light during the enfuing winter; and for this purpofe he continued his operations longer than he otherwife would have done, in order to complete the firt room, and make it habitable ; but foul weather coming on, he was obliged to quit the rock, and returned to Plymouth. A ftorm enfued; and, on the next morning, looking out with his telefcope, he could difcern the houfe with the fea breaking overit, bat nothing of the bufs. On the following day, the air being nore clear, he had a diftinct view of the building; but the bufs was really gone. This was a day of double regret, as it likewife brought a negative on his propufal for exhi. biting a light from the houfe during the winter. The bufs had run into Dartmouth ha:bour; fhe was brought home; and the work on the reck being fecured againt the winter, the operations of the thild feafon were clofed.

During the early part of 1759 , Mr Smeaton was employed in London in forming and making out the neceffary defigns for the iron rails of the bulcony, the caft iron, the wrought iron, and the copper works for the lantern, together with the plate glafs work. It was not till the 22 d of June that lie arrived at Plymouth. As the moorings had been again loit, new chains were provided, and the buis was once more fixed in her fituation. On the sth of July he landed ou the rock, and found every thing perfectly found and firm, without the leaf perceptible alteration, excepting that the cement, ufed in the firlt year, now in appearance approached the hardnefs of the moorfone; and that ufed in the laft year had the full hardnefs of Portland; but on hauling up the ttones for the next circle from the ftore-room, where they had been depofited, he had the mortification to find only feven initead of eight. It was imagined that a body of falling water, making. its way through the open ribs of the centre, had wafhed this ftone out of the ftore-room door, though it weighed between four and five hundred weight.

The progrefs of the work, however, was now fuch,

\section*{E D Y [557] E D Y}

Edynone. that a whole room, with its vauled cover, was built complete in feven days.

On the 1 tht of Augult the main column was completed.

On the 27 th Mr Kichardfon and his company left the Edyflone, and gave an aecount that they had lived in it lince the 23 d, having found it much nore warm than the bufs's hold and cabin.

They had now fuiflued every thing belonging to the mafonry. The work of the cupula was going on brifkly in the yard st Mill-bay, though it was retaided by the fucceffive illuefles of the two principal copperfmiths. However, by the exertions of Mr Smeaton, who was himfelf ready to work at every bufinefs, all matters were put in fuch forwarducls, that by the Sth of September there was nothing io prevent the frame of the lantern from being fixed in its place but bad weather. It was not till the , jth that the weather pernifted the boats to deliver their cargoes. The ifth was remarkably fone; fo that by the evening the whole frame of the lantern was ferewed together, and fixed in its place. On the 17th, which was alfo exceedingly fine, the cupola was brougln out, and the fhears ind tackle wore fet up for hoilting it.
"This (fays Mr Sineaton) perhaps may be accounted one of the mof difficult and hazardons operations of the whole undertaking ; not fo much on account of its weight, heing only about 1 I cwt. as on acecunt of the great height to which it was to be hoitted clear of the building, and fo as, if poffible, to avoid fuch blows as might bruife it. It was alfo required to be hoilted a confiderable height above the baleony flonr; which, thongh the largeft bafe that we had fur the thears to fland on, was yet but 14 feet within the rails, and therefore narrow in proportion to their height. About noon the whole of our tackle was in readinefs; and in the afternoon the Wefton (boat) was brought into the gut, and in lefs than lialf an hour her troublefone cargo was placed on the top of the lantern without the leaft danage. During the whole of this operation it pleafed God that not a breath of wind difcompoled the furface of the water, and there was the leall fwell about the rocks I had obferved during the feafon.
"Turday, September 18th, in the morning, 1 had the fatisfaction to perceive the Edyflone boat, on hoard of which 1 expected the ball to be; and which being double gilt, I had orderto the earriage of it to be carefully attended to. The wind and tide were both unfavourable to the veffel's getting foon near us; therefore, being defirous to get the ball ferewed on before the fhears and tackle were taken down, one of the yawls was difpatched to bring it away. This being done, and the ball fixed, the thears and tackle were taken down, which took up nearly as much time as was employed is fetting them up; that is, near \(\mathbf{I} 2\) hours each, in the wbole, to do the work of an hour. - Imut obferve, that by choice I ferewed on the ball with mine own hands, that in cafe any of the forews had not held quite tight and firm, the circumftance might not have been llipped over without my knowledge; being well aware, that even this part would at times eome to a confiderable ftrefs of wind and fea, and which could not be replaced without fome difficulty in cafe any thing fhould fail.-It may not be amifs to intimate to thofe who may in future have to perform the fame ope. ration, that the fcaffold on which this was done con-
difted of four boards only, wall mailed together, at fuch Edyfone. diftances as to permit it to he lifted over the ball when done with. It relled on the cupola, encompaffing its neck; and Roger Cornthwaite, one of the mafuns, placed himfelf on the oppolite fide upon it, to balance me while I moved round to fix the ferews."

Refpecting the difpolition of the internal part of the edifice, Mr Sreaton hixed the beds in the uppernoft room, and the fire-place, which conflituted the kitchen, in the room lelow it ; wheras, in the late houfe, the upper room was the kitelicu, and the beds were placed in ous of the rooms below: the conferuerce of which was, that the beds and budding were generally in a very dampi and difagrecable flate. The prefent difpotitiun has perfictly anfwered the end propoled, as nothing ean be inore cempletely dry than the two habitable roms.

On the ifl of Uctober, every thing being finilhed, and the chandoliers hung, there was nothing to hinder a trial by lighting the candles in the day-time. Aecordingly 24 candles were put into their proper places, and were contiated buming for three hours, during which time it blew a hard gale; and a fire heing kept at the fane time in the kitchen, they both opolated witheut any interfernce ; not any degree of fmoke appearing in the lantern nor in any of the rooms: and by opening the vent-holes, which had been made in the botiom of the lantern for occafional ufe, it could be kept quite cool; whereas, in the late light-lıoufe, it ufed to be fo hot, efpecially in the fummer, as to give much truuble by the running of the candles.

All being thus in readieefs, and a conductor, in eafe of lighlining, being adapted to the building, notice was given to the Trinity-houre that the light would be exhihited on the 1 Gth of Cetuber 1759. The feafon of the year being now advanced to that which was always very precarious, the Neptune hufs wals unmoored, and on the gth of Oquber the eame to an anchor in Piymouth harbour.- "And thons (fays Mr Smeaton), after innumerable difficulties and dangers, was a happy period put to this undertaking, without the lofs of life or limb to any one conserucd in it, or accionent, by which the work could be faid to be materially retaided."

With regard to fubfequent ocenrences, it is truly obferved, that the befl account is, that atter a trial of 40 years, which have elayfed fmee tiee finifling of the building, it flill remains in its original good comhtion. A fen particulars are however interetting. On the 1 gth of Octuber Mr Smeaton, with Mr Jelfup, \&c. vifited the houfe, and, landing, found all well. Henry Edwards, one of the light-keepers, gave in accomut that they lighted the houfe as they were directed, and found the lights to burn fleadily, notwithtandigg it blew very hard; that they had che greatelt feas un the days ionmediately preceding the lighting ; and that then the waves broke up fo high, that had iliey not been thrown off by the cove courfe, they would have endangered breaking the glafs in the lantern; that when the feas broke the higheft, they lad experienced a fenfible motion ; but that, as it was barely pereeptible, it had occafioned them neither fear nor furprife.

During his tay at Plymouth, in the times of ftormy weather, Mr Smeaton took feveral opportunitits of viewing the light-houfe with his telefcope from the Hoa, and alfo from the garrifon; both which places were fufficiently elevated to fee the bafe of the building? and the whole of the rock at low water in clear wea-

E D Y
tion that nothing but avood could refift the fea upon the Edy ftone rocks; who faid, that though they allowed it was built very ftrong, yer if fuch a ftorm as had deftroyed Winfanley's light-houfe was again to hap. pen, they doubted not but it muft fhare the fanse fate. The year 1762 was ufhered in with ftorny weather, and irdeed produced a tempelt of the firf magnitude; the rage of which was fo great, that one of thofe who had been ufed to predict its downfal was heard to fay, If the Edyftone light-houfe is ftanding now, it will fand till the day of judgment. And, in reality, from this time, its exiftence has been fo entirely laid ont of meus minds, that whatever ftorms have happened fince, no inquiry has ever been made concerning it."

For the length of this detail we camnot bring ourfelres to make any apology. If there be a few of our readers to whom it may appear tedions, we are perfuaded that there are many more to whon it will be in a high degree interelting; while fuch of them as are engineers will derive inflruction even from this very abridged hiftory of the Edyftone light. houfe.

EFFECTION, denotes the geometrical conftruction of a propofition. The term is alfo uled in reference to problems and practices, which, when they are deducible from, or founded upon, fome general propofitions, are called the geometrical. efferion of them.

ELASTICITY. In addition to the article in the Encyclopsdia, fee, in this Supplement, the view of Boscovich's theory of natural philofophy, \(n^{\circ} 26\).

ELECTIONS, or Choice, fignity the feveral different ways of taking any number of things propofed, either feparately, or as combined in pairs, in threes, in fours, \&c.; not as to the order, but only as to the number and variety of them. Thus, of the things \(a, b\), \(c, d, e, \& c\). the elections of
one thing are \((a) 1=,2^{2}-1\),
two things are \((a, b, a b) 3=,2^{3}-1\),
three things are \((a, b, c, a b, a c, b c, a b c) 7=,2^{3}-1\), \&c.; and of any number \(n\), all the elections are \(2^{n}-1\); that is, one lefs than the power of 2 whofe exponent is \(n\), the number of fingle things to be chofen, either \(\mathfrak{f e}\) parately or in combination.

\section*{ELECTRICITY.}

WE cannot but be fomewhat furprifed that, among the many attempts which have been made by the philofophers of Britain to explain the wonderfal phenomena which are claffed under this name, no author of eminence, befides the Hon. Mr Cavendifh and Lord Mahon, have availed themielves of their fufceptibility of mathematical difcuffion ; and our wonder is the greater, becaufe it was by a mathematical view of the fubject, in the phenomena of attraction and repulfion, that the celebrated philofopher Franklin was led to the only knowledge of electricity that deferves the name of fcience; for we had farcely any leading facts, by which we could clafs the phenomena, till he publifhed his theory of pofitive and negative, or plus and minus, electricity. This is founded entirely on the phenomena of attraction and repulfion. Thefe furnin us with all the indications of the prefence of the mighty agent, and the marks of its kind, and the meafures of its force. Mechanical force accompanies every other appearance; and this ac-
companiment is regulated in a determinate manner. Many of the effects of electricity are ftrictly meclianical, producing local motion in the fame manner as magnetifm or gravitation produce it. One fhould have expeeted that the countrymen of Newton, prompted by his fuccefs and his fame, would take to this mode of examination, and would have endeavoured to deduce, from the laws obferved in the action of this motive force, an explanation of other wonderful pbenomena, which are infeparably connected with thofe of attraction and repulfion.

But this has not been the cafe, if we except the la. bours of the two philofophera above mentioned, and a few very obvious pofitions, which muft uccur to all the inventors and improvers of electrometers, batteries, and other things of meafiurable nature.

This view has, however, been taken of the fubject by a philofopher of unqueftioned merit, Mr Epinus of the Imperial Academy of S4 Peterfburgh. This gentleman,
gentleman, ftruck with the refemblance of the electricical properties of the tuurmalin to the properties of a magnet, which have always been confidered as the fubject of mathematical difculfion, fortunately remarked a wonderful fimilarity in the whole feries of electrical and magnetical attractions and repulfions, and fet himfelf ferionfly to the claffification of them. Having done this with great fuccefs, and having maturely reflected on Dr Franklin's happy thought of plus and minus electricity, and his confequent theory of the Leyden phial, he at laft hit on a mode of conceiving the whole fubject of magnetifin and electricity, that bids fair for leading us to a full explanation of all the phenomena; in as far, at leaft, as it enables us to clais them with precifion, and to predict what will be the refult of any propofed treatment. He candidly gives it the modeft name of a hypothefis.

This was publifhed at St Peterburg in 1759, under the title of Theoria Elearitatis et Magnetifmi, and is unqueftionably one of the moft ingenions and brilliant performances of the eighteenth century. It is indeed moft furpriing that it is fo little known in this country. This, we imagine, has been chiefly owing to the very flight and almoft unintelligible account which Dr Priefley has given of it in his hiftory of electricity ; a work which profeffes to compreliend every thing that has been done by the philofophers of Europe and America for the advancement of this part of natural fcience, and which indeed contains a great deal of in? tructive in. formation, and, at the fame time, fo many loofe conjectures and infignificant obfervations, that the reader (efpecially if acquainted with the Doctor's character as an unwearied bookmaker) reaforably believes that he has let nothing flip that was worthy of notice. We do not pretend to account for the manner in which Dr Priefley has mentioned this work, fo much, and fo defervedly celebrated on the continent. We cannot think that he has read it fo as to comprelend it ; and imagine, that feeing fo much algebraic notation in every page, and being at that time a novice in mathematical learning, he contented himfelf with a few fcattered paragraphs which were free of thofe embarafments; and thus could only get a very imperfect notion of the fyftem. The Hon. Mr Cavendifh has done it more juftice in the 6 ift volume of the Philofophical Tranfactions, and confiders his own moft excellent differtation only as an extenfion and more accurate application of Epinus's theory. Tha: we have not an account of this expofition of the Franklinian theory of electricity in our language, is a material want in Britifh literature; and we truit, therefore, that our readers will be highly pleafed with having the ingenious difcoveries of the great American philofopher put into a form fo nearly approaching to a fyftem of demonfrative fcience.

We propofe, therefore, in this place, to give fuch a brief account of \(\mathbb{\text { Epinus's }}\) theory of electricity, as will enable the reader to reduce to a very fimple and eafily remembered law all the phenomena of electricity which have any clofe dependeuce on the mechanical effects of this powerful agent of Nature ; referring for a demonfration of what is purely mathematical to Sir Ifaac Newton's Principia, and the Differtation by Mr Cavendifh already mentioned, except in fuch important articles as we think ourfelves able to prefent in a new, and, we hope, a more faniliar form. We do not mean,
in this place, to give a fyftem of philofophical electricity, nor even to narrate and explain the more remarkable phenomena. Of thefe we have already given a vaft collection in the article Electricity, Encych. Wc confine ourfelves to the phenomena which may be called mechanital, producing meafurable motion as their inmediate effect; and thus giving us a principle for the mathematical examination of the caufe of electrical phenomena. We fhall confider the reader as acquainted with the other phyfical effects of electricity, and fhall frequently refer to them for proofs.

Moreover, as our intention is merely to give a fynoptical view of this claborate and copions performance of Mr Æpinus, hoping that it will excite our countrymen to a careful perufal of fo valuable a work, we fhall omit moft of the algebraic inveftigations contained in it, and prefent the conclufions in a more familiar, and not lefs convincing form. At the fame time we will infert the valuable additions made by Mr Cavendilh, and many important particulars not noticed by either of thofe gentlemen.

\section*{Hypothesis of Epinus.}

The phenomena of eleetricity are produced by a fuid Hypotherir. of pcculiar nature, and therefore called the electric FLuID, having the following properties:
I. lts particles repel each other, with a force decreafing as the diftances increafe.
2. Its particles attract the particles of fome ingredient in all other bodies, with a force decreafing, aecording to the fame law, with an increafe of diftance; and this attraction is mutual.
3. The electric fluid is difperfed in the pores of other bodies; and moves, with various degrees of facility, through the pores of different kinds of matter. In thofe bodies which we call non-eletrics, fuch as water or metals, it moves without any perceivable obftruction ; but in glafs, rofins, and all bodies called eleatrics, it noves with very great difficulty, or is altogether immoveable.
4. The phenomena of electricity are of two kinds; I. Such as arife from the actual motion of the fluid from a body containing mure into one containing lefs of it. 2. Such as do not immediately arife from this transference, hut are inftances of its attraction and repulfion.

Thefe things being fuppofed, certain confequences neceffarily refult from them, which ought to he analogous to the obferved phenumena of electricity, if this hypothefis be complete, or fome farther modification of the affumed properties is neceffary, in order to make the analogy perfee.
Suppofe the body A (fig. I.) to contain a certain quantity of fluid. Its particles adjnining to the fur. Pias.: face, fuckis as \(P\), are attraeted by the particles of con. XXIV . mon matter in the body, but repelled by the other particles of the fluid. The totality of the attractive forces acting on P may be equal to the totality of the repulfive forces, or may be unequal. If thefe two fums are equal, \(P\) is in equilibrio, and has no tendency to change its place. But there may be fuch a quantity of fluid in the body, that the repulfions of the fluid exceed the attractions of the common matter. In this cafe, P has a tendency to quit the body, or there is an expul. Give force acting on it, and it will quit the body if it be

\section*{EEECTRICITY.}
moreable. Becaufs the fame mut be adnitted in refpect of every other particle of moveable flaid, it is phain that there will be an eflux, till the attration of the common matter for the particles of nuid is equal to the repulfion of the remaining fluid. On the uther hand, if the primitive repulfon of the fluid acting on the particle P be lefs than the attractions of the common matter, there will be the fame, or at leatt a fimilar, fuperiority of attraction acting on the fluid refiding in the circunambient bodies; and there will be an infux from all hands, till ar er vilibrium be reftored.

Hence it follows, that there may always be affigned to ans body fuch a quantity of fluid that there fhall be no tendency either to efflux or influx. But if the quantity be increafed, and nothing prevent the motion, the redundant fluid will flow out; and if the proper quantity be diminifhed, there will be an influx of the furrounding fluid, if not prevented by fome external force. This may be called the tody's natural quantity; becaufe the body, when left to itfelf, will always be reduced to this flate.

If two bodies \(A\) and \(B\), contain each its natural quantity; they will not exert any fenfible action on each other ; for, becaufe the fluid contained in \(B\) is united by attraction to the common matter, and is alfo repelled by the fluid in \(A\), it necefiarily follows that the whole body B is repelled by the fluid in A . But, on the other hand, the matter in A attracts the fluid in 13 , and corfequently attracts the whole body B : Similar action is exerted by \(B\) on \(A\). Thefe contrary forces are either equal, and deftroy each other, or unequal, and une of them prevails. This equality or inequality evidently depends on the quantity of fluid contained in one or both of the bodies (\(\left(1^{\circ} 7\right.\).) Now it is known that bodies left entirely to themfelves neither attract nor repel; and it fullows from the lyyputhetical properties of the fluid, that if there be either a redundancy or deficiency of fluid, there will be an eflux or influx, till the attractions and repulfions balance each other. Therefore the internal ftate of two bodies which neither attract nor repel each other, is that where each contains its natural quantity of electric fluid.

In order, therefore, to conceive diftinetly the flate of a body containing its natural quantity, and to have a diftinct notion of this natural quantity, we muft fuppofe that the quantity of fluid competent to a particle of matter in A repels the fluid competent to a particle of matter in B , juift as much as it attracts that particle of matter ; and alfo, that the fluid belonging to a particle of matter in A , repels the fluid belonging to a particle of matter in B , juft as much as the particle of matter in A attracts it. Thus the whole fluid in the one repels the whole fluid in the other as much as it attracts the whole matter.

Since this muft be conceived of every particle of common matter in a body, we muft admit, that when a body is in its natural ftate, the quantity of electric fluid in it is proportional to the quantity of matter, every particle being united with an equal quantity of fluid. This, however, does not neceffarily require that different kinds of matter, in their natural or faturated flate, fhall contain the fame proportion of fluid. It is fufficient that each contains fuch a quantity, uniformly diftribu. ted among its particles, that its repulfion for the fluid in another body is equal to its attraction for the com.
mon matter in it. It is, however, mare probable, for reafons to be given afieswards, that the quartity of electric Ruid attached, or competent, to a particle of all kinds of matter is the fame.

We fall now confider more panticularly the immediate refult 3 of this hypothelis, iri the moll limple cafes, from which we may derive fome elcnentary propolitions.

Since our hypothefis is accommodated to the fact, Eleetric that bodies in their natural Itate, having their naturalphenomer quantity of electric nuid, are altogether inactive on each arife from other, by making this natural quantity fuch, that its otsar dancict mutual repulfion exactly balances its attraction for the ey in fuic common matter - it follows, that we mult deduce all the 'o al or pa electric phenomena from a redundancy or deficiency of \({ }^{\text {tala }}\).
eleatric fluid. This accordingts is the Franklinian doctrine. The redundant flate of a body is called by Dr Fraiklin positife or plus electricity, and the deficient tate is called negative ur minus electriciry.
A body may contain more than its natural quantity, or lefs, in every part, or it may be redundant in one place and defficient in another. Thefe diarerent conditions will exhibit different appearances, which muft be confidered firft of all.
Let the body (fig. 1.) be fuppofed in its natural action of ftate throughout, which we fhall gencrally exprefs by the re lun faying that it is saturated; and let us exprefs the dar thuid quantity of fluid required for its faturation by the fym-how conbol \(Q\). Let \(P\) be a fuperficial particle of the fluid. It puted. is attrated by the common matter of the body (which we fhall in future call fimply the mather), and it is repelled equally by the fluid. Let us call the attraeion \(a\), and the repulfion \(r\). Then the force with which the fuperticial particle is attracted by the body, mult be \(=a-r\), and \(a-r\) muft be \(=0\), hecaufe \(a=r\). Let the quantity \(f\) of fluid be added to the body, and uniformly diftributed through its fiubfance. Then, becaufe we nout admit that the astion is in proportion to the quantity of acting fluid, and this is now \(\mathrm{C}+f\), we have \(\mathrm{C}: \mathrm{Q}+f=r: \overline{\mathrm{Q}+\frac{f}{\mathrm{C}}} \times r\); and therefure \(P\) is repelled by the whole fluid with the force \(\frac{\overline{Q+f}}{\bar{Q}} \times r\), or \(\frac{\mathrm{Q} r}{\mathrm{O}}+\frac{f r}{\mathrm{O}}\), or \(r+\frac{f r}{\mathrm{O}}\). But it is attracted by the common matter in the fame manner as before, that is, with a force \(=a\). Therefore the whule action on P is \(=a-r-\frac{f r}{Q} \cdot\) But \(a-r=0\). Therefore the whole action on P is \(=-f r\); that i , P is repelled with the force \(\frac{f r}{0}\)

This will perhaps be as difinetly conceived by recollecting, that as much of the fluid as was neceffary for faturation, that is, the quantity \(Q\), puts the particle \(P\) in equilibrio ; and therefore we need only confider the action of the redundant fluid \(f\). To find the repulfive force of this, fay \(Q: f=r: \frac{f r}{Q}\), and prefix the fign - ; becaufe we are to confider attractions as pofitive, and repulfions as negative, quantities.

Unlefs, therefore, the particle Pbe withheld by fome \(u^{-}\)

\section*{ELECTR1CITY.} natural quantity of fluid, there will be an influx from witlout ; for if there be a deficiency of fluid \(=f\), the particle \(P\) will be repelled with the force \(\bar{Q} \times r\), \(=r-\frac{f r}{0}\). It is attracted with the force \(a\); and therefore the whole action is \(=a-r+\frac{f r}{Q},=+\frac{f r}{Q}\) (becaule \(a-r=0\)) ; that is, P is attracted with the force \(\frac{f r}{Q}\). Fluid will therefore enter from all quarters, as long as there is any deficiency of the quantity neceffary for faturation, unlefs it be oppofed by fome external force, or hindered by fome internal obitruction.

When there is a deficiency of fluid, there is a redundancy of matter, fuch that its attraction for external flaid is equal to the repulfion of a quantity \(f\) of fluid. This confirms the affumption in \(\mathrm{n}^{\circ} 10\), that the aftion of a body on the clearric fuid depends entirely on the redundant fluid, or the redundant matter of the body.
The efflux or influx may be prevented, either by furrounding the body with fubftances, through the pores of which the fuid cannot move at all, or by the body itfelf being of this conflitution. And thus we fee, that the very circumftance of being impervious to the fluid, or completely permeable, renders the body capable or incapable of permanently exhibiting electrical phenomena, if furrounded by permeable bodies. This circumftance alone, therefore, is fufficient to conititute the difference between elearics per fe, and non-electrics. Here, then, is a numerous clafs of phenomena, which receive an explanation by this hypothetical conftitution of the elearic fluid. All eleatrics per fe are bodies fit for conlining electricity in bodies which are rendered capable (by whatever means) of producing electrical phenomena; and noconductor, or fubftance which allows the eleatricity to pafs through it, can be made elearic by any of the means which produce that effect in infulators. And it is well known that the electricity of eleetrics is vaftly more durable than that of non-electrics in limilar fituations. It is true, jndeed, that an electric, which has been excited fo as to exbibit electric phenomena with great vivacity, lofes this power very quickly if plunged into water, or any other condueling body. But this is owing to the redundancy or deficiency being quite fuperficial, fo that the parts which are difpofed to give out or to take in the fluid are in immediate contact with the conducting matter. That
the redumdancy or deficiency is fuperficial, follows from this hypothefis; for when the furface is overcharged by the incans empluyd for exciting, the impermeability of the electric per fe prevents this redundant fluid from penetrating to any depth; and when the furface has been rendered deficient in fluid, the fane inpermeability prevents the fluid from expanding from the interior parts, fo as to contribute to the replenilhing the fuperficial ftratum with fluid. If, indecd, we could fal! on any way of overcharging the interior parts of a glafs ball, or of abllracting the natural quantity from them, it is highly probable, that it would continue to attract or repel even after it had been plunged in water. Although the furrounding water would inftantly take off the fluid redundant contained in the very furface, the repulfion of the fluid in the internal parts would fill be fenfible; nay, if a very fmall permcability be fuppofed, the body would again become overcharged at the furface; juft as we fee, that when we plunge a red hot ball of iron into water, and take it out again immediately, it is black on the furface, and may be touched with the finger; but in half a ninute after, it again becomes red hot. Perlaps this may be acconplifhed with a globe of fealing wax, which is permeable while liquid, by electrifying it in a particular way while in that itate, and allowing it to freeze. But the reader is not far enough advanced in the hypothefis to underfand the procefs which muft be followed. He cannut but recullect, however, many examples in coated glafs, \&c. where the eleericity is moft pertinacioully retained by a furface in very clufe contaet with conducturs.
Let us now fuppofe a body NS (fig. 2.) contain-Confequen ing in the half NA a quantity \(f\) of redundant fluid, ces of uneand in the half AS let there be a deficiency \(g\) of Aluid; quable difthat is let there be a quatity of matter unfarted tribution of that is, let there be a quantity of matter unfaturated, fluid. r.Acand fuch as will attract fluid as much as the quantity g tion on exof fluid would repel it. Let the fluid neceflary for the ternal fluid. faturation of each half of NS be Q, as hefore. Let the attraction of the whole matter of NA for a particle of fluid at N be.a; and let \(r\) be the repulion exerted on the fame particle N by the whole uniformly diftributed fluid in NA, and let \(r^{\prime}\) be the repulfion exerted by the fume quanity of fluid in the remote part SA. Then the force with which the particle N or S is attracted by the merely faturated body NS muft be \(\neq a-r-r\). This is evidently nothing, if the body be in its natural flate. But as NA contains the redundant floid \(f\), and \(S A\) is deficient by the quantity \(g\), the whole action muft be \(a-\overline{Q+f} \times r\). \(-\frac{\bar{Q}-\frac{g}{Q} \times r^{\prime}}{}\)

But becaule \(a-r-r=0\), the action becomes \(=\frac{g r^{\prime}-f r}{Q}\), or becaufe \(r\) is greater than \(r^{\prime}\), the particle \(N\) is repelled with the force \(\frac{f r-g r^{\prime} \text {. }}{Q}\) In like manner the particle \(S\) is attracted with the force \(\frac{g r-f r^{\prime}}{Q}\)

In the mean time, a particle \(\mathbf{C}\), fituated at the mid-2. Action dhe, mult be in equilibrio, if the body be in its natural on the ennftate, being equally attracted, and alfo equally repelled, \({ }^{\text {tained }}\) fluid. on both fides. But as we fuppofe that NA is overchar-

4 B
ged with the quantity \(f, C\) mull be repelled in the direction CS with the force \(\frac{f r}{Q}\). And if we alfo fuppofe that AS is deficient by the grumtity \(g, \mathrm{C}\) is attracted in the direction CS with a force \(\frac{g r}{2}\). Therefore, on the whole, it is urged in the direction CS with the force \(\frac{f r+g r}{Q}\), or \(\frac{f+g \times r}{Q}\).

Hence we learn, that as long as there is any redun-
dancy in AN, and deficiency in AS, there is a tendency of the redundant fluid to move from N toward S ; and, if the body be altogether permeable by the electric 月luid, we cannot have a permanent fate till the fluid is fimilarly diftribut:d, and equally divided, between the two halves of NS. Therefure a flate like that affumed in this example cannot be permanent in a conducting body, unlefs an external force act on it; but it may fubfít in a non-conductor, and in a leffer degree, in all imperfeit conductors.

It is neceffary, in this place, to confider a little the nature of that refiltance which muft be affigned to the motion of the elearic fluid through the pores of the hody. If it refemhle the refiftance oppofed by a perfeet fluid, ariing folely from the inertia of its particles, then there is no inequality of force fo minute but that it will operate a uniform diftribution of the fluid, or at ? falt a diftribution which will make the excefs of the mutual attractions and repulfions precifely equal and oppofite to the exterual force which keeps it in any flate of unequal diffribution. But it may refemble the refiftance to the defcent of a parcel of fmall hot diffeminated among a quantity of grain, or the refiflance to motion through the pores of a platic or ductile body, fuch as clay or lead. Here, in order that a particle may change its place, it muft overcome the tenacity of the adjoining particles of the body". Therefore, when an unequal diftribution has been produced by an extermal force, the removal or alteration of that force will not be followed by an equable diftribution of the fluid. In every part there will remain fuch an inequality of diftribution, that the want of equilibrium between the electric attractions or repulfions is balanced by the tenacity of the parts.

We learn farther from the foregoing propofitions, that a particle at N is lefs repelled than if the part AS were overcharged as AN is: for in that cafe, it would be expelled by a force \(\frac{f \times \overline{r+r^{\prime}}}{\bar{Q}}\), which is much greater than \(\frac{f r-g r^{\prime}}{Q}\). And, in like manner, the particle \(S\) is attracted with lefs force than it would be if NA were equally uadercharged with SA.

The condition of the hody now defcribed may be changed by different methods. The redundant floid in AN may flow into AS, where it is deficient, till the whole be uniformly diltributed; or fluid may efcape from AN, and fluid may enter into AS, till the body he in its natural ftate. The firft method will be fo much the flower as the body is lel's permeable, or more remarkably eletric per fe; and the fecond method will be flower than if the whole body were overcharged or undercharged.

What we have been now faying of a body NS that
is overcharged at one end, and undercharged at the other, and capahle of retaining this !late, is applicable. in every particular, to two conducting bodies NA and SA', lhaving a non-conducting body Z interpofed between them, as in lig. 3. All the formulas, or expreffions of the forces which tend to expel or to draw in fluid, are the fame as before. Perlaps this is the beft way of forming to ourfelves a diftinct motion of the body that is redundant in fluid at one end, and deficient at the other. And we perceive, that the flate of the two bodies, feparated by the electric Z, will be more permanent when one is overcharged, and the other undercharged, than if both are either over or undercharged.

It muft be remarked, that the quantities \(f\) and \(g\) were A body taken at random. They may be fo taken, that the may be in force with which the fluid tends to efcape at N, or to active, or enter at \(S\), may be nothing, or may even be clanged where it \(i\) to their oppofite. Thus, in order that there may be redundant no tendency to efcape from N , we have only to fuppofe \({ }^{\text {or deficie }}\) \(g r^{\prime}-f r=0\), or \(g: f=r: r^{\prime}\), and \(g=\frac{f r}{r^{\prime}}\). In this cafe, the particle at N is as much attracted by the redundant matter in SA as it is repelled by the redundant fluid in NA.

When the extremity N is rendered inactive in this \(\frac{23}{2}\) manner, the condition of the other extremity S is con-nceefiry fiderably changed. To difoover this condition, put for thiso \(\frac{f r}{r}\) in place of \(g\) in the formula \(\frac{g r-f r^{\prime}}{Q}\), which expref. fes the attraction for a particle at \(S\), and we obtain \(\frac{f \times \overline{r^{2}-r^{\prime 2}}}{0}\).

On the other hand, we may have the redundancy and defieiency fo balanced, that there fhall be no tendency to influx at S . For this purpofe, we muft make \(g=\frac{f r^{\prime}}{r}\). When this obtains at \(S\), the action at N will be had by putting \(\frac{f r^{\prime}}{r}\) in place of \(g\) in the formula \(\frac{f r-g r^{\prime}}{Q}\), and this will give us \(\frac{f \times \overline{r^{\prime 2}-r^{2}}}{Q}\) for the force repelling a particle at N .

When the tendency to efflux or influx is induced in this manner, by a due proportion of the redundancy and deficiency of electric fluid, the part of the body where this ubtains is by no means in its natural flate, and may contain either more or lefs than its natural quantity. But it neither acts like an overcharged nor like an undercharged body, and may therefore be called NEUtral. The reader, who is converfant with electrical experiments, will recollect numberlefs inflances of this, and will alfo recollect that they are important ones. Such, fur example, is the cafe with the plates and covers of the eleetrophorus. Thefe circumftances, therefore, claim particular attention.
As the quantities \(f\) and \(g\) may be fo chofen, that the appartus fhall be neutral, either at S or at N ; they may likewife be fo, that either end flall exhibit either the appearance of redundancy or defficincy. Thus, inftead of neutrality at N , we may have repulion, as at the firt, by making \(g\) lefs in any degree tban \(\frac{f^{r} r}{r^{\prime}}\). If, on the contrary, \(g\) be greater than \(\frac{f r}{r^{\prime}}\), the extremity N , tho' overcharged, will attraet fluid. In like manner, if \(g\) ged, will repel fluid.-We may mako the following ge. neral remarks.
1. Both extremities \(N\) and \(S\) cannot be neutral at the fame time : for fince the neutrality arifes from the increafed quantity of redundancy or deficiency at the other extremity, fo as to compenfate for its greater diftance, the adivity of that extremity mut be proportionably greater on the fluid adjoining to its furface, whether externally or internally. When an overcharged extremity is rondered neutral, the other extremity at tracts fluid more ftrongly; and when a deficient extremity is rendered neutral, the other repels fluid more frongly. All thefe elementary corollaries will be fully werified afterwards, and gise clear explanations of the moft curious phenomena.
2. We have been fuppofing that the redundant fluid is uniformly \{pread, and that the body is divided into equal portions; but this was merely to fimplify the procedure and the formulæ. The reader muft fee that the general conclufions are not affected by this, and that fimilar formulit will be obtained, whatever is the difpofition of the fluid. We cannot tell in what manner the redundant fluid is difpofed, even in a body of the fimpleft form, till we know what is the variation of its attraction and repulfion by a change of diftance; and even when this has been difcovered, we find it difficult in moft cafes, and impoffible in many, to afcertain the mode of diftribution. We fhall learn it in fome important cafes, by means of various phenomena judicioufly felected.

A body may be confidered in many divifions, in fome of which the fluid is redundant, and in others deficient. We may exprefs the repulfion of the whole of this body in the fame way as we exprefs that of a body confidered in two divifions, ufing the letters \(f, g, b\), \&cc. to exprefs the quantities of redundant or deficient fluid in each portion, while \(Q\) expreffes the quantity neceflary for faturating each of them; and the repulfion at different diftances may be expreffed by \(r, r^{\prime}, r^{\prime \prime}, r^{\prime \prime \prime}\), \&c. as they are more and more remote; and we may exprefs their action as attractive or repulfive by prefixing the fign + or - Thus the attraction may be \(\frac{\left(f r-g r^{\prime}+b r^{\prime \prime}-i r^{\prime \prime \prime}\right)}{-Q_{-}}\), scc.

Having obtained the expreffions of the invifible actions of electrified bodies on the fluid within them, or furrounding them, let us now confider their fenfible actions on other bodies, producing mation, or tendencies to motion.

Here it is obvious that the mechanical phenomena exhibited are what may be called renole effects of the acting forces. The immediate effects, or the mutual actions of the particles, are not obferved, but hypothetically inferred. The tangible matter of the body is put in motion, in confequence of its connection with the fluid refiding in the body, which fluid is the only fubject of the action of the other body.

In confidering thefe phenomena, we fhall content ourfelves with a more general view of the actions which take place between the fluid or tangible matter of the one body, and the fluid or matter of the other, fo as to gain our purpofe by more fimple formulx than thofe hitherto empluyed. They were premifed, however, be-
caufe we mu/t have recourfe to them on many very important particular occafions.

Let there be two bodies, \(A\) and \(B\), in their natural ftate. Let the tangible matter in \(A\) be called \(M\), and let the fluid neceffary for its faturation be called \(F\), and let \(m\) and \(f\) be the tangible matter and the fluid in B. Let the mutual action between a fingle particle of fuid and the matter neceffary for its faturation be expreffed by the indeterminate fymbol \(x\), becaufe it varies \(b y\) a change of diflance.

The actions are mutual and equal. Therefore when the motion of \(B\) by the action of \(A\) is determined, the motion of \(A\) is allo afcertained. We flall therefore only confider how \(A\) is affected. I. Every particle of fluid in A tends toward every particle of matter in 13 with the force \(\approx\). The whole tendency of A toward B may therefore be expreffed by \(z\), multiplied by the product of \(F\) and \(m\). 2. Every particle of fluid in \(A\) is repelled by every particle of fluid in \(B\), with the fame force \(\approx\). 3. Every particle of matter in \(A\) is attracted by every particle of fluid in \(B\), with the fame force. We may exprefs this more purely and briefly thus:

> 1. F tends toward \(m\) with the force +Fmz
> 2. F tends from \(f\) with the force \(-\mathrm{F} f z\)
> 3. M tends toward \(f\) with the force \(+\mathrm{M} f z\)

Therefore the fenfible tendency of \(A\) to or from \(B\) will be \(=z \times \overline{\mathrm{F} m+\overline{\mathrm{M} f}-\overline{\mathrm{F} f} \text {. But, by the hypotilefis, }}\) the attraction of a particle of the fluid in A for a particle of the matter in \(B\), is equal to its repulfon for the particle or parcel of the fluid attached or competent to that particle of matter. Therefore the attraction Fm is balanced by the repulfion \(\mathrm{F} f z\). Therefore there remains the attracion of the matter in A for the fuid in \(B\) unbalanced, and the body A will tend toward the body \(B\) with the force \(M f z\), or \(B\) attracts \(A\) with the force \(M f z\). A mult therefore move toward B. And, by the 3 d law of motion, \(B\) nuf move toward \(A\) with equal force.

But the fact is, that no tendency of any kind is ob-Compleferved between bodies in their natural ftate. The hy- tion of the pothefis, therefore, is not complete. If we abide by it, hypothefis as far as it is already expreffed, we mufl farther fuppofe, that there is fome repulfive force exerted between the bodies to balance the attraction of M for f. Mr 压pinus, therefore, fuppofes, that every particle of tangible matter repels another particle as much as it attracts the Auid neceffary for its faturation. The whole action of B on A will now be \(=\approx \times \overline{\mathrm{Fm}-\overline{\mathrm{F} f-\mathrm{M}} \overline{\mathrm{M}}+\overline{\mathrm{Mf}} \text {. }}\) F \(m z\) is balanced by \(\mathrm{F} f \approx\), and \(\mathrm{M} m z\) by \(\mathrm{M} f z\), and no excefs remains on either fide.

Epinus acknowledges that this circumflance appear-0 0 jedtions ed to himfelf to be hardly admiflible; it feeming incon- anfwered. ceivable that a particle in A flall repel a particle in B , or tend from it, electrically, while it attracts it, or tends toward it, by planetary gravitation. We cannot conceive this; but more attentive coufideration fhewed him, that there is nothing in it contrary to the obferved analogy of natural operations. We muit acknowledge, that we fee innumerable inftances of inherent forces of attraction and repulfion; and nothing hinders us from referring this lately difcovered power to the clafs of primitive and fundamental powers of nature. Nor is there any difficulty in reconciling this repulfion with univerfal gravitation; for white bodies are in their natural \(4 \mathrm{~B}_{2}\) ftate,
ftate, the electric attractions and repulfions precifely balanee each other, and there is nothing to diltub the phenomena of planetary gravitation ; and when bodies are not in their natural electrical flate, it is a fact that their gravitation is difturbed. Although we cannot conceive a body to have a tendency to another body, and at the fame time a tendency from it, when we derive our notion of thefe tendencies entircly from our own comfcioufuefe of effort, endeavour, conatios, sifus acsedendif fou recedendi, nothing is more ceriais, thain that bodies exhibit at once the appearances which we endeavour to exprefs by thefe words. We can bring the north poles of two magnets near each other, in which cafe they recede from each other; and if this be prevented by fome obflacle, they prefs on this obftacle, and feem to endeavour to feparate. If, whike they are in this fate, we elecirify one of then, we find that they will now approach each other; and we have a ditinet proof that buth tendencies are in actual exertion by varying their diflances, fo that one or other force may prevail; or by placing a third body, which fhall be affeeted by the one but not by the other, \&e. We do not underftand, nor can conceive in the leaft, how either force, or how gravity, refides in a body; but the effects are paft contradiction. It mult be granted, therefore, that this adjitional circumflance of Fepinus's hypothefis has nothing in it that is repugnant to the obferved phenomena of Nature.
\(N . B\). It is not neceffary to fuppofe (although Mr Epinus does fuppofe it), that every atom of tangible matter repels every other atom. It will equally explain all the phenomena, if we fuppofe that every particle contains an atom or ingredient having this property, and that it is this atom alone which attracts the particles of electrical fluid. The material atoms having this property, and their correfponding atoms of fluid, may be very few in comparifon with the number of atoms which compofe the tangible matter. Their mutual fpecific action being very great in comparifon with the attraction of gravitation (as we certainly obferve in the action of light), all the phenomena of electricity will be produced without any fenfible effect on the phenomena of gravitation, even although neither the ele Aric fluid nor its ally, this ingredient of tangible matter, fhould not gravitate. But this fuppofition is by no means neceflary.
Since we call that the natural electrical ftate of bodies in which they do not affect each other, and the hypothetical powers of the fluid are accommodated to this condition, we may confider any body that has more than its natural quantity as confifting of a quantity of matter faturated with fluid, and a quantity of redundaut fiuid fuperadded; and an undercharged body may be contidered as confiting of a quantity of matter superadded. The faturated natter of thefe two bodies will be totally inactive on another body in its natural Itate, and will neither attract nor repel it, nor be attracted nor repelled by it ; therefore the action of the evercharged body will depend entirely on the redundant fluid; and that of the undercharged body will depend entirely on the redundant matter; therefore we need only confider them as confilting of this redundant fluid or mptter, agreeably to what was faid in more vague terms in \(\mathrm{n}^{\circ} 10\). and 13 . This will free us from the complicated formulx which would otherwife be necef. fary for exprefling all the actions of the fluid and tan-
gible matter of two bodies on each other. The refults will be fufficiently particular for diftinguining the fen\(f_{1} b l e\) action of bodies in the chief general cafes: but in fome particular and important cafes, it is abfolutely ne. eeffary to employ every term.
1. Suppofe two bodies \(A\) and \(B\), containing the General quantities F and \(f^{\prime}\) of redundant fluid, it is plain that preffion their inutual action is expreffed by \(\mathrm{F} \times f^{\prime}+z\), and that \(\left(\mathcal{I}_{\mathrm{d}}\right.\) mboli. of it is a repulfion; for fince every particle of redundant mutual ace fluid in A repels every particle of redundant fluid in B tien. with the force \(\approx\); and fince \(\mathrm{F}^{\prime}\) and \(f^{\prime}\) are the numbers of fuch particles in each, the whole repulfion muft be expreffed by the product of thefe numbers.
2. In like manner, two bodies A and B , containing the redundant matter \(\mathrm{M}^{\prime}\) and \(m^{\prime}\), will repel each other with the force \(\mathrm{M}^{\prime} \mathrm{m}^{\prime} \mathrm{z}\).
3. And two bodies A and B, one of which A contains the redundant fluid \(F^{\prime}\), and the other \(B\) contains the redundant matter \(m^{\prime}\), will attract each other with the force \(\mathrm{F} m^{\prime} z\).
4. It follows from thefe premifes, that if either of the bodies be in its natural itate, they will neither attract nor repel each other; for, in fuch a eafe, one of the factors \(\mathrm{F}^{\prime}\), or \(f^{\prime}\), or \(\mathrm{M}^{\prime}\), or \(m^{\prime}\), which is neceffary for making a product, is wanting. This may he perceived independent of the mathematical formula; for if A contain redundant fluid, and B be in its natural ftate, every particle of the redundant fluid in \(A\) is as much repelled by the natural fuid in B as it is attracted by the tangible matter.

The three firft propofitions agree perfectly with the Sceming known phenomena of electricity; for bodies repel paradux. each other, whether both are pofitively or both are negatively electrified, and bodies always attract each other when the one is pofitively and the other negatively electrified. But the fourth cafe feems very ineonfiftent with the moft familiar phenomena. Dr Franklin and all his followers affert, on the contrary, that electrified bodies, whether pofitive or negative, always attract, and are attracted, by all hodies which are in their natural ftate of electricity. But it will be clearly Thewn prefently, that they are miftaken, and that Franklin's theory necuflarily fuppofes the truth of the fourth propofition, otherwife two bodies in their natural ftate could not he neutral or inactive, as any one nay perceive on a very fight examination by the Frauklinian priuciples. It will prefently appear, with the fullefl evidence; and, in the mean time, we proceed to explain the action of bodies which are overcharged in fome part, and undercharged in another.
Let the body B (fig. 4.) be overeharged in the part Action of \(\mathrm{B} n\), and undercharged in the part \(\mathrm{B} s\), and let \(f^{\prime}\) and a body he. \(m^{\prime}\) be the redundaut fluid and conmnon matter in thofe ving the parts; let A be overcharged, and contain the redun- quably dis dant lluid \(F\); let \(z\) and \(z^{\prime}\) exprefs the intenfity of ac-pured tion correfponding with the diftances of A from the overcharged and undercharged parts of B ; the part B \(n\) repels A with the force \(\mathrm{F}^{\prime} f^{\prime} z\), while the part B s attragls it with the force \(F^{\prime} m^{\prime} z\) : A will therefore be attracted or repelled by \(B\), aecording as \(\mathrm{F}^{\prime} m^{\prime} z^{\prime}\) is greater or lefs than \(F^{\prime} f^{\prime} z^{\prime}\); that is, according as \(m^{\prime} z^{\prime}\) is greater or lefs than \(f^{\prime} \boldsymbol{z}\). This, again, depends on the proportion of \(f^{\prime}\) to \(m^{\prime}\), and on the proportion of \(z\) to \(z\) '. The firft depends on many external circumftances, which may occafion a greater or lefs redundaney or deficiency of electrical fluid; the fecond de-

\section*{ELECTRICITY.}
pends entirely on the law of electric attraction and repulfiun, or the change produced in its intenfity by a change of diflance. As we are, at prefent, only aim. ing at very general notions, it is enough to recullect, that all the electric phenomena, and indeed the general analogy of nature, concur in thewing that the intenfity of both furces (attraction and repulfion) decreafes by an increafe of dittance; and to combine this with that circumftance of the bypothetis which fattes the repulfion to be equal to the attraction at the fame diftance; therefure both forecs vary by the fame law, and we have \(z\) always greater than \(z\). The vifible action of \(B\) on A (which, by the 3 d law of motion, is accompanied by a fimilar action of A on B) may be various, even with one pofition of B , and will be chatinged by changing this pofition.
1. We may fuppofe that \(B\) contains, on the whole, its natural quantity, hut that part of it is abftracted from \(\mathrm{B} s\), and is crowded into \(\mathrm{B} n\). 'This is a very common cafe, as we fhall fee prefently, and it will be expreffed in our formula by making \(f^{\prime}=m^{\prime}\). In this cale, therefore, we have \(\mathrm{F}^{\prime} f \approx\) greater than \(\mathrm{F} m^{\prime} z\), becaufe \(z\) is greater than \(z^{\prime}\). A will therefore be repelled by \(B\), and will repel it ; and the repulfion will be Fi' \(f^{\prime} \times \approx-z^{\prime}\).
It is evident that if A be placed on the other fide of \(B\), the appearances will be reverfed, and the bodies will attract each other with the force \(F^{\prime} f^{\prime} \times \overline{z-z^{\prime}}\).

It is alfo plain, that if A be as much undercharged as we have fuppofed it overcharged, all the appearances will be reverfed; if on the undercharged fide of \(B\), it will be repelled; and if on the overclarged fide of \(B\), it will be attracted.
2. If the redundancy and deficiency in the two portions of B be inverfely proportional to the forces, fo that \(F^{\prime}: m^{\prime}=z^{\prime}: z\), we fhall have \(f^{\prime} z=m^{\prime} z^{\prime}\), and \(m^{\prime}\) \(=\frac{f^{\prime} z}{z^{\prime}}\). In this cafe thefe two actions balance each otber, and \(\mathbf{A}\) is neither attracted nor repelled when at this precife diflance from the overcharged fide of B . B may be faid to be neutral with refpect to \(A\), although A and the adjoining fide of B are both overcharged.
\({ }^{40}{ }^{40}\) neural at one Id are
lore ac. ve at the ther. \(f^{\prime} \approx\) into \(f z^{\prime}\), we bave the action on \(\mathrm{A}=\mathrm{F}^{\prime} \times\left(\frac{f^{\prime} \varepsilon}{z^{\prime}}\right.\) \(\left.-f^{\prime} z^{\prime}\right),=\mathrm{F}^{\prime} f^{\prime} \times \frac{z^{2}-z^{\prime 2}}{z^{\prime}}\); that is, A is frongly at. tracted.

In like manner, \(f^{\prime}\) and \(m^{\prime}\) may be fo proportioned, that when A, contaiuing redurdant fluid, is placed near the undercharged end of \(s \mathrm{~B}\), it fhall neither be attracted nor repelled, B becoming neutral with regard to A at that precife diftance. For this purpofe \(m^{\prime}\) mutt be \(=\frac{f z}{z}\). And if \(A\) be now placed at the fame diftance on the other fide of \(B\), it will be repelled with the force \(F^{\prime} f^{\prime} \times \frac{z^{2}-z^{\prime 3}}{z}\).

Thus, when the overcharged end is rendered neutral
to an overeharged body, the other end Arongly attracts it; and when the undercharged end is rendered neutral to the fame body, the overcharged end ftrongly repels it.

Similar appearances are exhibited when \(A\) is under. charged.

Thefe cafes are of Grequent occurrence, and are important, as will appear afterwards.

It is eafy now to fee what changes will be made on the action of B on A , by changing the proportion of \(f^{\prime}\) and \(m^{\prime}\). If \(m^{\prime}\) be made greater than \(\frac{f^{\prime} \tilde{z}}{z}\), A will be attracted in the fituation where it was formerly neutral; and if \(m^{\prime}\) be made lefs, A will be repelled, \&c. \&c.
Therefore, whell we obferve B to be neutral, or attractive, or repulitive, we mutt conclude that \(m^{\prime}\) is equal to \(\frac{f \approx}{z^{\prime}}\), or greater or lefs than it, \&c.

We have been thus minute, that the reader may perceive the agreement between this action on a body containing redundant fluid, ard the action on the fuperfcial fluid formerly confidered in \(n^{\circ} 21,22,23,2+\) When thefe things are attended to, we fhall explain, with great eafe, all the curious phenomena of the electrophcrus.

There is another circumftance to be attended to here, Neurrality which will alfo explain fome electical appearances that generally feem very puzzling. We limited the inactivity of B primited to a to a certain precife diftance of the body A. This in- pancice. tm -
 brought nearcr, both \(z\) and \(z^{\prime}\) are increafed. If they obtained are both increafed in the fame proportion, the value of \(\frac{z}{z^{\prime}}\) will be the fane as before, and the body A will meither be attraged nor repelled at this new diftancc. But if \(z\) increafe falter than \(z^{\prime}\), we fhall have \(f^{\prime} \approx\) greater than \(n^{\prime} z^{\prime}\), and \(A\) will be repelled; and if \(\approx\) increafes more flowly than \(z^{\prime}\), A will be attracted by bringing it nearer. The contrary effects wifl be obiervid if A be removed farther from the overcharged end of B. Z'his explains many curious phenomena; and thufe phenomena become inflructive, becaufe they enable us to dificover the law of electric action, by fhewing us the man. ner in which it dinimifhes by a change of diftarice. Electricians cannot but recollect many infances, in which the motion of the electrometer appeared very capricious. The general fact is, that when an orercharged pith ball is fo fituated near the overcharged fide of the elearophorus as to be neutral, it is repelled when brought nearer, but attracted when removed to a greator ditance. This fhews that \(z\) increafes fafter than \(z^{\prime}\) when A is brouglit nearer to B. Now, fince the bodies may be again rendered neutral at a greater diftance than before, and the fame appearances are fill obferved, it follows, that the law of action is fuch, that every diminution of diflance caufes \(z\) to increafe fafter than \(z^{\prime}\). We flall find this to be valuable information.
Let us, in the laft place, inquire into the fenfible ef- Action fect on A when it alfo is partly overcharged and partly when the undercharged. This is a much more complicated cafe, fluid is unand is fufceptible of great variety of external appearan- cquably difces, according to the degrecs of redundancy and def-both bodics ciency, and according to the kind of electricity (pofitive or negative) of the ends which front each other.

Firft,

Firt, then, let the overcharged end of A (fig. 5.) fron the undercharged end of \(B\), they being overcharged in \(N\) and \(n\), but undercharged in \(S\) and \(s\). Let \(F\) and \(f\) be the quantity of fluid natural to each; and let \(F^{\prime}\) and \(f^{\prime}\) be the redundancy in N and \(n\), and \(\mathrm{M}^{\prime}\) and \(m^{\prime}\) the deficiency in S and s. Moreover, let Z and \(\mathrm{Z}^{\prime}\) reprefent the iutenfily of actions of a particle in N on a particle in \(n\) and \(s\); and let \(z\) and \(z^{\prime}\), reprefent the actions of a particle in S on a particle in \(n\) and in \(s\); or, in other words, let \(Z, Z^{\prime}, z, z^{\prime}\), reprefent the intenlity of action between particle and particle, correfponding to the diftances \(\mathrm{N} s, \mathrm{~N} n, \mathrm{~S} s, \mathrm{~S} n\).

Procecding in the fame manner as in the former examples, we eafily fee, that the action of B on A is \(=\) \(\mathrm{F}^{\prime} m^{\prime} \mathrm{Z}-\mathrm{F}^{\prime} f^{\prime} \mathrm{Z}^{\prime}-\mathrm{M}^{\prime} m^{\prime} \approx+\mathrm{M}^{\prime} f^{\prime} z^{\prime}\); the attrac. tions are confidered as pofitive quantities, having the fign + prefixed to them, and the repulfions are negasive, having the fign -

This action will be either attractive or repulfive, according as the fum of the firt and laft terms of the numerator exceeds or falls fhort of the fum of the fecond and third: And the value of each term will be greater or lefs, according to the quantity of redundant fluid and matter, and alfo according to the intenfity of the electric action. It would require feveral pages to flate all thofe puffible varieties. We fhall therefore enntent ourfelves at prefent with flating the fimpleft cafe; becaufe a clear conception of this will enable the reader to form a pretty diftinct notion of the other poffible cafes: and alfo, becaufe this cafe is very frequent, and is the mort ufeful for the explanation of phenomena.

We fhall fuppofe, that the redundant part of each body is juft as much overcharged as the deficient part is undercharged; fo that \(\mathrm{F}=\mathrm{M}^{\prime}\), and \(f^{\prime}=m^{\prime}\). In this cafe, the formula becomes
\[
\frac{F^{\prime} f^{\prime}\left(Z-Z^{\prime}-z+z^{\prime}\right.}{F f}
\]

Ufeful reprefenta. tion of the mutual force= by ordinates to a curve.

Here we fee that the fenfible or external effet on A depends entirely on the law of electric action, or the variation of its interfity by a change of diftance. If the fum of \(Z\) and \(z^{\prime}\) exceed the fum of \(Z^{\prime}\) and \(z, A\) will be attracted; but if \(Z+z^{\prime}\) be lefs than \(Z^{\prime}+z\), A will be repelled. This circumftance fuggets to us a very perfpicuous method of expreffing thefe actions between particle and particle, fo that the imagination fhall have a ready conception of the circumitance which determines the external complicated effect of this internal action. This will be obtained by meafuring off from a fixed point of a fraight line portions refpectively equal to the diftances \(\mathrm{N} s, \mathrm{~N} n, \mathrm{~S} s\), and \(\mathrm{S} n\), between the points of the two bodies A and B , where we fuppofe the forces of the redundant fluid and redundant matter to be concentrated, and erect ordinates having the proportion of thofe forces. If the law of action be known, even though very imperfectly, we fhall fee, with one glance, of which kind the movements or tendencies of the bodies will be. Thus, in fig. 5 . drawing the line \(\mathrm{C} z\), take \(\mathrm{C} p=\mathrm{N} s, \mathrm{C} q=\mathrm{N} n, \mathrm{C} r=\mathrm{S} s\), and \(\mathrm{C}_{t}=\mathrm{S}_{n}\), and erect the ordinates \(\mathrm{P}_{p}, \mathrm{Q}_{q}, \mathrm{R} r\), and \(\mathrm{T} t\). If the eleciric action be like all the other attractions and repulfions which we are familiarly acquainted with, decreafing with an increafe of diftance, and decreafing more flowly as the diftances are greater, thefe ordinates will be bounded by a curve PQRTZ, which has its convexity turned toward the axis. We

Anall prefently get full proof that this is the cafe here : but we premile this genctal view of the fobjeet, that we may avoid the more tedicus, but more phitofophical, procefs of deducing the nature of the curve from the phenomena now under conlideration.

This confltuction evidently makes the pair of ordi-Gerecra! nates \(\mathrm{P}_{p}, \mathrm{Q}_{q}\), equiditant with the pair \(\mathrm{R} r, \mathrm{~T} t\) t charazer Alfo, \(\mathrm{P}_{p}, \mathrm{R}_{r}\), and \(\mathrm{Q} q\), \(\mathrm{T} t\), are equidiftant pairs. It of clectric is no lefs clear, that the fum of \(\mathrm{P} p\) and \(\mathrm{T} i\) exceedsforce. the fum of \(\mathrm{Q} q\) and \(\mathrm{R} r\). For if \(\mathrm{C} z\) be bifeeted in V , and \(V\) r be drawn perpendicular to it, cutting the fraight lines PT and QR io \(x\) and \(y\), then \(x v\) is the half fum of \(\mathrm{P} p\) and \(\mathrm{T} t\), and \(y v\) is the half fum of \(\mathrm{Q} q\) and Rr . Moreover, if \(\mathrm{Q}^{m}\) and \(\mathrm{T} n\) are drawn parallel to the bafe, we fee that \(\mathrm{P} m\) exceeds \(\mathrm{R} r\); and, in general, that if any pair of equiftant ordinates ale brought nearer to C , their difference increafes, and vice vorfia. Alfo, if two pairs of equidiftant ordinates be brought nearer to C, each pair by the fame quantity, the difference of the neareft pair will increafe more than the difference of the more remote pair. And this will hold true, although the firt of the remote pair flould ftand between the two ordinates of the firft pair. If the reader will take the trouthe of confidering thefe fimple confequences with a little attention, he will have a notion of all the effects that are to be expected in the mutual actions of the two bodies, fufficiently precife for our prefent purpofe. We fhall give a much more accurate account of thefe mathematical truths in treating the article Magnetism, where precifion is abfolutely neceffary, and where it will be attended with the greateff fuccefs in the explanation of phenomena.
Now let us apply this to our prefent purpofe. Firff, then, When the overcharged end of A is turned to. ward the undercharged end of \(B, A\) mult be attracted; for \(P_{p}+T t\) is greater than \(Q q+R r\).

Sccondly, This attraction muft increafe by bringing the bodies nearer; for this will increafe the difference between \(\mathrm{P} m\) and \(\mathrm{R} n\).

Thirdly, The attraction will increafe by increafing the length either of \(A\) or of \(B\) (the diftance \(N\) s remaining the fame) ; for by increafing the length of \(A\), which is reprefented by pr or \(q t, \mathrm{R} r\) is more diminithed than \(\mathrm{T} t\) is. In like manner, by increafing B , whofe length is reprefented by \(p q\) or \(r t\), we diminin \(Q q\) more than T t.

On the other hand, if the overcharged end of \(B\) front Ufe of this the overcharged end of \(A\), their mutual action will be
\[
\mathrm{F}^{\prime} f^{\prime}(-\mathrm{P} p+\mathrm{Q} q+\mathrm{R} r-\mathrm{T} t)
\]
and \(A\) will be repelled, and the repulfion will increafe or diminifh, by change of diftance or magnitude, precifely in the fame manner that the attractions did. It is hardly neceffary to obferve, that all thefe confequences will refult equally from bringing an apparatus fimilar to that reprefented in fig. 3 . near to another of the fame kind; and that they will be various according to the polition and the redundancy or deficiency of the two parts of each apparatus.

Curious
If the body B of lig. 5. is not at liberty to approach which toward A, nor to recede from it, and can only turn fould reround its centre B , it will arrange itfelf in a certain fult from determinate pofition with refpect to that of A. For the hypoexample, if the centre B (fg. 7.) be placed in the line fembling
pafting magnecifo
undercharged in \(s\). The fuid will he rarefied in and conflipated in \(n\). We need unly confider the mutual actions of the redundant fluid and redundant matter. It is plain that things are now in the fituation defcribed in \(\mathrm{n}^{\circ} 15\). : A mull be attracted hy B , becaufe \(f^{\prime}=m^{\prime}\), and \(z\) is greater than \(z^{\prime}\). The attractive force is \(\mathrm{F}^{\prime} \mathrm{f}^{\prime} \times\left(z-z^{\prime}\right)\).
dies con. Thus we fee that the hypothefis is accommodated to ning the the phenomena in the cafe in which it appeared to differ ural
nacity, in the mutual actions would have fo balanced each other :e, at- that no external effects would have appeared. But now At and the greater vicinity of the redundant inatter prevails, A. attract
by tlee. ied bo- is attracted by A, and approaclies it.
it

We have. fuppofed that the fluid in \(A\) is immoveabie; \(5^{52}\) but this was fur the fake of greater fimplicity. Supdehange pofe it moveable. Then, as foon as the uniform diftri-
fate of fe to of bution of the fluid in B is changed, and 13 becomes un, whichdercharged at \(s\), and overcharged at \(n\), there are forces. cares acting on the fluid in A , and tending to change its ation. thate of diftribution. The redundant matter in S at.
tracts the redundant fluid in A more than the more re. mote redundant fluid in \(n\) repels it, becaufe \(\approx\) ' is lefs than \(z\). This tends to conltipate the redundant finid of A in the nearer parts, and render N more redun. dant, and \(S\) lefs redundant in fluid than before. It is plain that this inult iucreafe their mutual action, with. out changing its nature. It can be ftrictly demonftraled, that however fmall the redundancy in A may be, it can never be rendered defficient in its remote extremity by the action of the unequally difpofed fluid in B, if the fluid in B be no more nor lefs than its natural quantity. It is alfo plain that this change in the difpolition of the fluid in A mult increale the fimilar change in 13. It will he till more rarefied ins, and condenfed in \(n\); and this will go on in both till all is in equilibrio. When things are in this flate, a particle of fluid in \(B\) is in equilibrio by the combined action of feveral forces. The particle \(B\) is propelled toward \(n\) by the action of the redundant fluid in A. But it is urged toward \(S\) by the repulfion of the redundant fluid on the fide of \(n\), and alfo by the attraction of the redundant matter on the fide of \(s\); and the repulfion of the redundane fluid in A mult be conceived as balancing the united antion of thofe two forces refiding in B.

Hence we may conclude, that the denfity of the fluid in \(B\) will increafe gradually from s to \(n\). It will be extremely difficult to obtain any more precife idea of its denfity in the different parts of \(B\), even although we knew the law of action between fingle particles.
we
This mult depend very much on the form and dimenof elearic fions of \(B\); for any individual particle futtains the fenfible action of all the redundant fluid and redumdant matter in it, fince we fuppofe it affected by the more remote fluid in A. All that we can fay of it in general is, that the denfity in the vicinity of \(s\) is lefs than the natural denfity; but in the vicinity of \(n\) it is greater; and therefore there mult be forne point between \(s\) and \(n\) where the fluid will have its natural denfity. This point may be called a Neutral neutral point. We do not mean by this that a par-point. ticle of fuperficial fluid will neither be attraefed nor repelled in this place. This will not always be the cafe (although it will never be greatly otherwife 2; nor will the variation of the denfity in the different parts of \(B\) be proportional to the force of \(A\) on thofe parts. Some eminent naturalifts have been of this opinion; and, ba.. ving made experiments in which it appeared to be otherwife, they have rejected the whole theory. But a little reffection will convince the mathematic:an, that the fum of the internal forees which tend to urge a particle of fluid from its place, and whicta are balaneed by the action of \(A\), are not proportional to the variations of denfity, although they increafe and decreafe together. We thall take the proper opportanity of explaining thofe experinents; and will alfo confider fome fimple, but important cafes, where we think the law of difribution of the fluid afcertained with tolerable precifion.

If we fuppofe, on the other hand, that \(A\) is under. charged, the redundant matter in A will attract the moveable fluid in B , and will abftract it from the remote extremity, and crowd it into the adjacent extremity. Moreover, the fluid now becoming redundant in the nearer extremity of \(B\), will act inore frongly on the moveable fluid in A than the more remote redundane: matter of \(B\); and thus fluid will be propelled toward the remote fide of \(A\), which will become now unders

\section*{ELECTRICITY.}
charged in its nearer fide, and lefs undercharged in its remote fide than if B were taken away. 'Chis muft increafe the inequability of ditiburion of the fluid in \(B\), and both will be put faither from their natural flate; but \(A\) will never become overcharged in its remoic extremity.

Things being in this tlate, it is plain that \(A\) and \(B\) will mutually attract each other in the fane manner, and with the fane force, as when \(A\) was as much over-

54
Eleêric atnot ade- is ther A be over or undercharged. A fact which Dr quate t, the expiana tion of the phenumeда.

Franklin could never explain to his own fatisfaction ; nor will it ever be explained confiftently with the acknowledged principles and obferved laws of mechanics by any perfon who employs elattic atınofpheres for this purpofe. It is indeed a fufficient objection to the em-
ployment of fuch electric or other atmofpheres, that the fame extent of attraction and repulfion between the particles of the atmofphere is neceffary, as is employed here between the particles of the fuid refiding in the body; and therefore they ceafe to give any explanation, even although their fuppofed actions were legitimately deduced from their conflitution. This is by no means the cafe. Let any perfon examine ferioufly the modus operandi of the electric atmorpheres employed by Lord Mahon (the only perfon who has written mathema. tically on the fubject), and he will fee that the whole is nothing but figurative language, without any diftinct perception of what is meant by thefe atmofpheres, as diftinct from the fluid moveable in the conducting bodies, or any pereeption how the unequal denfity of thefe atmofpheres protrudes the fluid along the conductor. Befides, it is well known that a conducting wire becomes pofitive at one end, and negative at the other, by the mere vicinity of an overcharged or undercharged body, and this in an intant, although it be furrounded with fealing-wax, or other non-conductors, to any thicknefs: in this cafe there can be no atmolpheres to operate on the included fluid. To this we may add Dr Franklin's judicious experiment of whirling an electrified ball many times round his head, with great rapidity, by means of a filk line, without any fenfible diminution of its electricity. It is not conceivable that an electric atmofphere could remain attached to the ball; nor could it be inftantancounly formed round the ball, in every point of its motion, fo as to be operative the moment he ftopped it and tried it ; for this would have exhaufted or greatly diminithed the electricity of the ball) ; whereas that fagacious philofopher affirms (and any perfon will find it true), that when the air is dry, he did not obferve the electricity more diminifhed than that of another ball which remained all the while in the fame place.

Let the overcharged body A (fig. 6.) be brought near the ends of two oblong conductors \(B\) and \(C\) in their natural flate, and lying parallel to each other ; the fluid will be propelled toward their remote ends \(N\), \(n\), where it will be condenfed, while it will be rarefied in the ends S and \(s\), adjacent to A . Both will be attracted by \(A\), and will attract it. But the redundant fluid in NB will repel the redundant fluid in \(n \mathrm{C}\); and the redundant matter in SB will repel the redundant matter in \(s\) C. For this reafon the bodies \(B\) and \(C\) will repel each other, and will feparate; but SB attracts
\(n \mathrm{C}\), and NB attracts \(s \mathrm{C}\); and on this account the bodies fhould approach : but the ciftances of the attracting parts being greater than thofe of the repelling parts, the repulfions muft prevail, and the bodies mult really feparate.

It is equally clear that the very fame fenjible appearance will refult from bringing an underchatged body near the ends of \(B\) and \(C\), although the internal motions are jult the oppolite to the former.

If another body D , electrified in the fame way with \(A\), be brought near the oppolite ends of \(B\) and \(C\), it will prevent or diminifh the internal motions, and it fhould therefore prevent or diminith the esternal effects.

If another conducting borly be brought near to the end \(s\) of \(C\) that fronts \(A\), it will be affected as \(C\) is, and the end \(f\) will repel \(s\); but if it be brought near the remote end, as is the cale with the body F , it will attract this remote end. As the body \(A\), containing more or lefs than its natural flate of electric fluid, affects every other body, while they do not (when out of its neighbourhood) affect each other, it is ufually faid to be the electrified body, and the others are faid to be electrified by it ; and ince thefe bodies, when perfect conductors, cannot retain their power of exhibiting electrical appearances (fee \(n^{\circ}\) 17.), it will be convenient to diftinguifh this laft electrical ftate by a particular name. We thall call it electricity by position, or induCED electriciry. It is induced by pofition with regard to the permanently electrical body.

We have fuppofed, in thefe laft propofitions, that Confeque the Aluid was perfectly moveable in B, and, at lait, alfo, ces of ob in \(A\) : but let us examine the confequences of fome ob. Aruction: fruction to this motion. Withuut cutering into a minute enquiry on this head, we may flate the ohflruction as uniform, and fuch that a certain fmall force is neceffary for caufing a particle of fluid to get through between two paticles of the common matter, juft as we conceive to happen in tenacious bodies of uniform texture ((ee \(n^{\circ}\) 18.).

It is evident, that when an overcharged body \(A\) (fig. 4. or 5.) is brought near fuch an imperfect conductor B, the fluid cannot be fo copionfly propelied to the remote extrenity \(n\). We may conceive the fate of diftribution by taking a conftant quantity from the intenfities of the force of \(A\) at every point of \(B\). This circumftance alone fhews us that there will not be fo unequable a diftribution of the fluid, and therefore there will not be fuch a Irong atiralion between imperfea as between perfia conduäors. Eut belides this, we fee that an incomparably longer time muft clapfe before things come to a thate of equilitriam. Each particie of fluid employs time to overcome the obltacle to its motion, and it cannot advance till after the fucceeding ones, each efcaping in its turn, have again come up with the formolt. An important confequence refults from this. The neutral point, where the fluid is of the natural denfity, will not be fo far from the other body as it would have been without thefe ob. ttructions; and this point will be a conliderable while of advancing along the imperfect conductor. At the finf approach of the overcharged electric, the near extremity of the imperfect conductor becomes a little undercharged, and the neutral point advances from the very extremity a fmall way, the difplaced fluid being crowded a little before it, and giving way by degrees
as its formoft farticles get paft the obftrudions. The motion forward takes place over a contiderable extent at the very firlt; namely, in that part of the conductor where the propelling power of the neighbouring elcetric is juft able to pufh a particle over the obltruction. As the propulion goes on, the neutral point mult gradually advance, and at laft reach a certain dillance, determined by the degree of the obflruction. It is plain, that the final accumulation at the remote end of the imperfect conductor will be lefs than in a perfect conductor, and the neutral point will be mearer to the other end.

There is another remarkable confequence of the obftruction. It muft always happen that, at the begiming of the action, the greateft conttipation will not be towards the remote extremity, but in a place much nearer to the difurbing caufe. Beyond this, the contipation will diminifl. As time clapfes during this operation, this conftipated fluid aets on the fluid beyond it by re. pulfion, and may do this with fufficient force to difplace fome of it, and render a part of the imperiect conductor deficient, with a fimall conltipation beyond it. This may, in like manher, produce a rarefac ion farther on, fullowed by another condenfation ; and this may be frequently repeated when the obftruction is very great, and the repultion of the overcharged body very great alfo. This can be ftrietly demonftrated in fome very timple cafes, but the demonftration is very tedious: As the refult, however, is of the firft importance in the theory of elcaricity, and ferves to explain fome of the moft abftrufe phenomena, we wifh the reader to have fonte ftrunger ground of confidence than the above bare affertion. He may obierve fimilar effects of canfes precifcly fimilar. If we dip the end of a flat culer into water, and if, after allowing the water to become perfeetly ftill, we move the ruler gently along in a direction perpendicular to the face, we flall obferve a fingle wave heap up before the ruler, and keep before \(i t\), all the relt of the water before it remaining ftill: but if we do the fame thing in a veffel of claminy fluid, efpecially if the clammy part is fwimming on the furface of a more perfect fuid, like a cream, we fhall obferve a feries of fuch waves to curl up before the ruler, and form befure it in fucceffion; and if we have previoully fputted the furface of the cream, we fhall fee that it is not the fame individual waves that are pufhed before the ruler, but that they are fucceffively formed out of different parts of the furface, and that the particles which, at one time, form the fummit of a wave, are, immediately after, at the bottom, \&c. In like manner, when a cannon is fired in clear air, at no great diflance, we hear a fingle fnap; but, in a thick fog, we hear the fnap both preceded and followed by a quivering noife, refembling the ruhing of a fluttering wind, which lafts perhaps half a fecond. A flight reflection on thefe fats will fhew that they are neceffary refults of the mechanical laws of fuch obflruction.

The confequence of this mode of action mult be, that an imperfect conductor may have more than one neutral point, and more than one overcharged and undercharged portion, fo that its aetion on diftant bodies may be extremely various. The formula of \(n^{\circ} 28\). was accommodated to this cafe, and will be found to have very curious refults. A nother body may be placed in the direction of the axis, and will be attracted
Suppl. Vol. I. Part II.
at one diftance, repelled when this diftance is increafed, and again attracted when at a thill greater dittance, \&c. \& c .

Suipofe the obftruction not to be confiderable: The immeciate operation of the neighbouring overcharged budy will be the production of an undercharged pant:n the adjoining extrenity, an overcharged part beyond this, an undercharg d portion farther on, \&c. In a little while thefe will fhift along the conductor; ane after another will difappear at the farther end, and the body will have at lat but one neutral point. A greater obttrucrion will leave the budy, finally, with more than one neutral point, and their ultimate nunber will be greater in proportion as the oblluction to the fluid's motion is luppuled greater.

Now, let the overcharged body, the caufe of this un-Induced e. equal ditribution, be remuved. We have feen, \(n^{\circ} 17\). lectriciey, that when a body contains its natural yuantity of fluid, retdered but unequally diltributed, there is a force acting on every particle, and tending to rellure the original equable diftribution; and that fuch a force remams ac lung as there is any inequality in this refpect. If, therefore. there be novobltruction, the iniform diltribution will take place immediately; for it is well known, that the fpeed with which eleciricity is propagated is immenfe. The elafticity, or the attracive and repulfive forces, muft be very great indeed when compared with any that we know, except, perhaps, the force which impels the particles of light. The electricity, therefore, of a perfect conductor, that is, its power of atting on other bodies in the fame way that an original electric acts on them, muft be quite momentary, and ceafe as foon as the inducing cante is removet. The conducior is clectrical merely in confequence of its polition. Hence the propricty of our denpminations. Nothing material is fuppofed in this theory to be conmanicated from the overcharged body: Nay, this theory teaches, that the fenfible elemricity of the overcharged body is augmented in fome refpects; for it becomes more overcharged in the part neareft to the cunductor: Indeed it becomes lefs overcharged on the other end, and will act lefs forcibly on that fide than if the conductor were away. It may be remarked here (it fhunld have been mentioned in \(n^{\circ} 5\)) that when \(F^{\prime}\) is prefented in the manner thewn in fig. 6. the body B becomes more Itrongly overcharged at the end remote frum \(A\), and more itrongly undercharged at the end next to \(A\), than when \(\mathbf{F}\) is away. The contrary may happen, by prefeuting a body in the manner of \(E\). We wilh thefe particulars to be kept in mind. In the mean time, all thefe circumilances are neceffary confequences of the fuppofition, that nothing is communicated from \(A\) to B or C. The electricity induced on perfect conductors is momentary, requiring the continual prefence of a body that is electrified in fome way or other.

But the cafe is quite otherwife in imperfect conduetors. When the overcharged, or otherwite electrical body A is removed, the forces which tend to rettore the uniform diftribution of the fuid immediately operate, and muft reftore it in part. They cannot, however, do it completely: For when the force which urges any particle from an overcharged to an undurcharged part, is jutt in equilibrio with the obltruction, it will remain, juft as a number of grains of fmall hut may lie, uniformly mixed with a mafs of clammy fluid, or, \({ }_{4} \mathrm{C}\)
as fuch fluids retain heary mud, in a fate of equable or inequable diffufion. If the refifance arife nierely from the inertia of the targille matter, there is no force fo fmall but it will in time reflore the uniform diftribution. But this cannot he the cafe in folid bodies. Their particles exert lateral forcts, by which they maintain themfelves in particular fituations: thefe mult be overcome by fuferior forces.
We fhould therefore expect, that imperfect conductors will retain part of their inequable conflitution; and, in confequence of this, their power of affecting other bodies like electrics; that is, their Electricity. For we muft obferve (having neglected to do it in the beginning), that the term eledricity is as often ufed to exprefs this power of producing elefrical phenomena as it is ufed for expreffing a fubftance fuppofed to be the original caufe of all thefe appearances. It is neceffary to keep this dittinction in mind ; becaufe there are many phenomena which clearly indicate the transference of this caufe, and they muft not be confounded with others, where the exhibition of electric phenomena is evidently propagated to a diftance. We mult vot always fuppofe, that when the electric appearances are exhibited in an inftant at the far end of a wire \(4 \frac{1}{2}\) miles long, the fame numerical particles of the electric fluid have moved over this ipace. We muft diftinguifh thofe cafes where this muft be granted from thofe in which it certainly has not happened. Of thefe there are innumerable inftances.

We have now to obferve, that by this theory the fingle circumftance of perfect and imperfect conducting power is fufficient for eftablifhing the whole difference between idio-electrics and non-electrics. The idioelectrics are fufceptible of excitation in various ways, and retain their electricity; and this may be done in any part of them without affecting the reft in any remarkable degree. This annot be done in perfect conductors, plainly becaufe they are perfea condugors. Any inequality of diftribution of the electric fluid, which is all that is neceflary for rendering them electric, is immediately deftroyed by its uniform diffurion. We can have no direct proof of their incapability of excitation; but if they can be excited, they cannot fhew it. We doubt, however, their excitability ; becaufe the appearances in the excitation of electrics feem to indicate, that oppofite flates of two hodies are necefflary previous to the appearance of electricity. This is impoffible in perfect conductors. By this theory, therefore, perfect conductors are neceffarily non-electrics; and non-conductors are neceffarily (if excitable) idio-electrics.
With refpect to the particular phenomena which may be expected on the removal of the original electric ; it may juf he remarked, that the electric appearances of the inperfect conductor will go off in the coutrary order to that of their indication. The accumulation and deficiency will diminifh gradually, and the neutral point or points will gradually approach the end which had fronted the original elearic. The imperfect conductor will be finally left with one or more neutral points, according to the magnitude of the obftructions, and the force which had been employed in its electrification: And their final fate will be fo much the more inequa. ble, and confequently they will retain fo much the greater clectric powers, as they are lefs perfect conducturs.

The laft obfervation which we fhall make on this no head at prefent is, that whether electrified by induc. Eleefrics tion, or by friction, or moft other modes of excitation, are only the electrification will be nearly fuperficial in bodies anly forici which conduct very imperfectly; and bodies which are altogether impervious (if there be any fuch) mult have the accumulation or deficiency altogether at their furface. If a glars globe be fuch a body, it will hardly be poffible to electrify it to any depth; and all that we can expect is alternate ftrata of overcharged and undercharged glafs. If thefe frata are once formed, they tend greatly to make the bndy retain its fuperficial eledricity. A fuperficial fratum of redundant flluid, tending, by the mutual repulfion of its particles, to efcape, is retained by the fratum of redundant matter immediately below it : And the almoft infuperable obfiruction prevents the fluid of the ftratum beyond this from coming up to fupply the vacancy. If we can fall on any contrivance to produce fuch deficient flrata within the glafs, we fhall make it much more retentive and capable of holding faft a much greater quantity. We have alrcady mentioned fomething of this in \(n^{\circ} 14\). and we secommend the cafe to the attentive confideration of the reader.

Thus have we given a fketch of the leading doctrines Compariof this elegant theory of Mr Epinus, all legitimately fon of the deduced from the circumftances affumed in the hy po- expery with thefis concerning the mectianical propertics of that fub-ment. ftance which he calls the clearic fluid. Let us now fee with what fuccefs this hypothefis may be applied to account for the plenomena. It would have been more philofophical to have arranged the phenomena, and from the comparifon to have deduced the hypothefis. But this would have required much more room than can be afforded in a Work like ours.
We prefume, that many of our readers, namely, all fuch as are already converfant with electrical phenomena and with eleftric experiments, have feen, as we went along, the perfect agreement of the hypothefis with the various phenomena of attraction and repulion, and all thofe which are ufually claffed under the name of clectric atmofpheres: and we are confident, that when they compare the confequences that fhould neceffarily refult from fuch a fluid with the legitimate confequences of the mechanical action of elaltic atmofpheres, they will acknowledge the great fuperiority of this hypothefis in point of fimplicity, perfpicuity, and analogy with other general operations of nature. To fuch readers it would not be necelfary to fate any farther comparifon :. but there are many who have not yet formed any diftinct fylematic view of the appearances called elearical. We do not know any way of giving fuch a view of them as by means of this lyypothefis ; and we may venture to fay, that it will enable the fludent of Nature to clafs them all, with hardly a fingle exception. After which, the hypothefis may be thrown afide by the faftidious philofopher ; and the ufeful claffification, and general laws of the electric phenomena, will remain ready foundations for a more perfect theory. For the fake of fuch readers, therefore, we fhall take a fhort revieve of thofe general appearances which are accompanied by attractions and repulfions, and compare them with this压pinian theory.
We fhall not at prefent confider the various modes of excitation, although this theory alfo affords much infruction

\section*{ELECTRICITY.}
fruction on the fubject, but confine ourfelves entirely to the faits which are moft immediately dependent on it, and fhould be employed to fupport or overturn it ; and we fhall fuppofe the reader acquainted with moft parts of the common apparatus ; fuch as electrometers, infulation, ses. We alfo prefume that he knows, that when a fmall pith-ball has been electrified by touching a piece of glafs which has been excited by rulbing with dry flamel, it will repel another body fo electrified; and that balls, which have received their electricity in this manner from fealing-wax excited by the fanne rubber, alfo repel each other; but that balls, thus electrified by glafs, attract thofe which are electrificd by fealing-wax.

The following fimple apparatus will ferve for all the experiments which are veceffary for eflablifhing the theory:
r. Two flender glafs rods A (fig. 8.), having a brafs ball B at the cud, about a quarter of an ineh in diameter, fufpending a very fmall and delicatc pith-ball electrometer C.
2. Some electrometers (fig. 9.), confifting of two pieces of rufh pith, about four inches long, nicely fufpended, and hanging parallel, and almoft in contact with each other. It is proper to have them as fmooth as puffible, and neatly rounded at the ends, to prevent unneceffary diffipation.
3. Some pith-ball clectrometers (fig. 10.), whofe threads are of filk, about four inches long, and fome with flaxen threads moiftened with a folution of fone deliquefcent falt, that they may be always in a good conducting fate.
4. Several brafs conductors (fig. 11.), each fupported on an infulating ftalk and foot. They fhould be about an inch and half or two inches long, and about threefourths of an inch in diameter, with round ends, and well pulifhed, to prevent all diffipation. The fooi mult be fo narrow as to allow them to touch each other at the ends.
5. Two balls (fig. 12.), one of glafs, and the other of glafs coated with fealing.wax, each furnihed with an infulating handle, the other end of which may be occafionally ftuck into a fout, or into the fide of a block of wood, which can be fid up or down on a wooden pillar, and fixed at any height. Thefe balls fhould be about three inches in diameter. They muft be excited by rubbing with dry warm flannel.
6. Some little pieces of gilt card (fig. 13.), about two inches long, half an inch broad, and rounded at the ends, and made as fmooth as poffible. Each mult have a dimple ftruck in the midide with a polifhed blunt point, fo that it will traverfe frecly like a mariner's needle when fet on a glafs point, rounded in the flame of a lamp. More artificial needles may be made of fome light wood, having fmall cork balls at the ends, all gilt and polifhed, and turning, in like manner, on glafs ftalks : alfo fome fimilar needles made of fealing-wax, one end of each being black, and the other red.

The mechanical phenomena of electricity may be ex. preffed in a few fimple propofitions. The moll general fact that we know, and from which all the reft may be deduced, is the following :

If any body A is electrified, by any means whatever, and if another body E is brought into its neighbourhood, the laft becomes electrical by pofition.

Set the brafs conductors in a row, touching each other, as reprefented in fig. II. by A, B, C ; and let a A neutral pith-ball electrometer, having filk threads, be fet near tradele., beone end of the conductors. Excite one of the glohes, caife rin by rubbing it with dry flannel. When this is brouglit dered elecnear the end of the conductor, the pith-ball will ap. erical b. in proach the other end. But the glube mult not be dustiun. brought fo near as to caufe the pith-ball to ftrike againtt the other end. On removing the globe, the pithball will move off and hang perpendicularly. The fame effeet is produced by hoth gluhes.

Thus the mere vicinity of the electric renders the conductor electric, and the electricity ceafes on removing the globe. This is perfectly conformable to the theary, whether we fuppofe the huid to be made re. dundant or deficient at the remote end of the conductor. If one fhould afcribe the approach of the pithball to the immediate action of the globe, it is fufficient to obferve, that if the ball be fufpemled near the fide of the conductor, it will approzch the conductor, flewwing that it is affected by the conductor, and not by the glabe.

Let the globe be held in the pofition D (fig. \(\mathbf{I} 2\)), \(\mathrm{S}^{3}\) ate of difo about fix inches from the conductor, and a little above trilution the line of its axis. Take the glafs rod (fig. 8.), and \({ }_{\text {experimen }}\) bring its knob into contact with the under fide of the talis. remote end \(c\) of the conductor. The balls of the electrometer will feparate, fhewing that they are electrified in the fame manner, and repel each other. Slide the brafs knob along the under fide of the conductors, quite to the end \(a\). The balls will gradually coilapfe as the knob approaches a point near the middle of the conductors, where they will hang parallel. Paffing this point, they will again feparate, and molt of all when the knub is at \(a\). In this fituation they will deviate toward the globe, and will be directed ftraight toward it, if it be held tuo near, or in the direction of the axis. This would difturb the experiment, and mult be avoided. Thefe phenomena are conformable to the account given of the difpofition of the fluid in the conductor. The electrometer may be confidered as making a part of the conductor; and when its threads hang parallel, it is in its natural ftate, having its fluid of its natural denfity. This, however, cannot be ftricily true, according to the theory; becaufe the balls of the clectrometer muft be confidered as more remote from the clectric, and their electrical ftate muft correfpoid to a point of the conductor more remote than that where the knob of the electrometer touches it. This will be more remarkably the cafe as the threads are longer. Accordingly, an electrometer with very long threads will never collapfe. The place of the neutral point cannot be accurately afcertained in this way. Lord Mahon imagined Lord Mathat its fituation B was determined (in his experiments hnn's deterwith a long conductor) to be fuch, that \(\mathrm{D} c\) was har- mination of monically divited in \(B\) and \(a\); and be finds this to be the neurral agreeable to the refult of an electric anofphere who prine not denfity is inverfely proportional to the fquare of the dif. by hisextance. But we cannot deduce this from his narration planation. of the experiment. He gives no reafon for his felection of the point D , bor tells us the form and dimenfions of the elcetric employed, nor takes into account the action of the fluid in the long conductor. It is evident that no computation can be inflituted, even on his Lordihip's principles, till all this be done. We have

\section*{EIE C TRICIT Y.}
always found that the neutral point was farther from the eledric, in proportion as the conduEtor was fmaller, and when the electricity was ftronger; and that the dif. ferences in this refpect were fo very confiderable, that no dependence could be had on this experiment for determiaing the law of action. It fhould be fo, buth ace cording to Lord Mahon's and Mr Epinus's theory. But to proceed with our examination :

Having touched the end \(c\) of the conductor with the knob of the electrometer, bring it away. The balls will continue to repel each other, and they are attracted by any body that is in its natural ftate. Tonch the fanse end with the knob of the other clectrometer, and hring it alfo away; the balls of the two electrometers will be found to repel each other: but if one has touched the conductor at \(c\), and the other las touched it at \(a\), the electrometers will ftrongly attract each o. ther. All this is quite conformable to the theory. If the fluid has been compreffed at \(c\), and therefore the balls of that electrometer are overcharged, they muft repel each other, and repel any other body electrified in the fame way. They mult attract and be attracted by any natural body. But the balls of the other elec. trometer having touched the conductor at \(a\), muft be undercharged, and the redundant fluid of the one muft attract the redundant matter of the other.

If the conductor has been electrifed by the vicinity of excited glafs, the electrometer which touched it in the remote end \(c\), will be repelled by a piece of excited glafs, but attracted by excited fealing wax. The electrometer which tonched the conductor in \(a\) will be attracted by excited glafs, and repelled by excited feal-ing-wax. The contrary will be obferved if the conductor has had its electricity induced on it by the vicinity of the globe covered with fealing-wax. This is a complete proof that Mr Dufuy's doctrine of vitreous and refinous electricity is unfounded. Both kinds of electricity are produced in a condusing body, without any material communication, by mere juxta-polition to a body poffeffed of either the vitreous or the refinous elec- tricity.
Wre have not yet mentioned any reafons which in. dicate which end of the conductor is electrical by the redundancy of eledric fluid, nor is the reader prepared for feeing their force. It is generally believed that the remote end of a conductor which is clectrified by glafs, excited by rubbing it with flannel or amalgamated leather, is electrical by redundancy. No difference has been obferved in the attractions and repulfions. But there are other marks of diftinction which are conftant, and undouhtedly arife from a difference in the mode of action of thofe of mechanical forces. If, while the excited glafs globe remains at \(D\), a glafs mirror, foiled as ufual with tin-leaf, be made to touch the remote end of the conductor, and flowly drawn tranfverfely, fo that the conductor draws a line as it were acrofs it-this mirror being laid down with the foiled fide undermoft, the duft, which fettles on it in the courfe of a day or two, will be chiefly collected along this line, fomewhat in the form of the tibres of a feather. But if the conductor was rendered electrical by the globe covered with fealing-wax, the dutt will be collected along this line in little fpots like a row of beads. The appearances will be reverfed if the mirror has been paffed acrofs the end of the conductor whicb is nearell to the excited
eleefric. In thort, in whatcver way the drawing point has been elecfrified, if it repel a ball which has touched excited glafs, the line will be feathered; but if it attract fuch a ball, the line will be fpotted. There are many ways of making this appearance much more remarkable (fee Electkicity, Encycl. Sect. viii. n \({ }^{\circ}\) 48.) than this; but we have mentioned it on this occafion, becaufe the circumftances which occafion the difference, whatever it is, are the moft fimple poffible. Nothing is communicated; and therefore the effect mult arile from the unnatural Atate of a fubftance or power refiding in the body. If it be a fubltance fui generis, the electric action muft arife from a different diftribution of this fubftance; from a redundancy and deficiency of it in the different purtions of the conductor. Without pretending as yet to fay which is redundant, we fhall fuppofe, with Dr Franklin, that the electricity of excited glafs is fo; and we fhall ufe the words redundant and poftive to diftinguifh this electricity from the other. This is merely that we may, on many occafions, confiderably abbreviate language.

The different electrical fates of the different por. tions of the conductor may be feen in another way, which is perhaps more fimple and unexceptionable than that already narrated. While the globe remains at D , take the two extreme pieces A and C alide ; or, if only two pieces have been ufed, draw the remote piece farther away. Now remove the excited globe. When we examine A feparately, we fhall find it wholly negative, or undercharged, ftrongly repelling a ball electrified by fealing-wax, and attracting a ball electrified by glafs. The other piece C exlibits pofitive electricity, attracting and repelling what A repelled and attracted. If only three pieces of the conductor have been employed, the middle piece \(B\) is generally pofitive; but this in a very faint degree.

If all the pieces be again joined, they are void of electricity. If, inftead of fuch conductors, a row of metal balls, fufpended by filk lines, are employed, one of them may generally be found without any fenfible electricity, when [eparated from the reft, having been the nentral part of the row while united.

Thefe very fimple facts fhew, as completely as can be wifhed, that if the electric phenomena depend on a fluid moveable in the pores of the body, the conftitu. tion given it by Mr Apinus is adequate to the explanation. We may now venture to affert, that every other phenomenon of attraction and repulfion will be found in exact conformity with the legitimate confequences of this conftitution of the electric fluid.

That nothing is communicated from the electric will appear fill more forcibly by the following experiment : Let a conductor be rendered electrical in the way now electhing is defcribed, and touch either extremity of it with the communilittle electrometer, and cbferve attentively the divergen. cated. In. cy of its threads. Now approach its remote extremi- herent ty with another conducting body, fuch as a fingle piece excited. of thofe conductors, it will be rendered electrical ; as may he difcovered by a delicate electrometer. Obferve carefully whether the elestrometer in contact with the firt conductor be affected:-it will generally be found to fpread its threads wider. It will certainly be thus. affected if the other conductor be very long and bulky, or touched by the hand; or if, inftead of this fecond conductor, we approach the firt with the extended
palm of the hand. As the fecord conducior was renCisred clearieal, fo, uadoubtedly, is the hand alfo: and its electrifieation has not deprived the firt conductor of any of its clectric power, but, on the contary, has incleafed it. And this augmentation of its power is equally fentihle at both ends: For an electroneter at the other end will allo diverge more when the hand is brought near the remote end. This theory explains this in the mof fatisfactory manner. The firll conductor renders the fecond electric, by propelling its fluid to a greater dillance. The fecond conductor now acts on the fluid that is moveable in the frit, and caufes a greater accumulation in its end which is fartheft from the electric ; that is, renders it more clectric.
Suppofe that, inftead of employing an excited globe of glafs, we had made ufe of a conducting body, nightly overcharged. Thus if we employ the conductor A, overcharged, to induce clecticity on C ; this will produce the fame general effect on our fet of conducturs. But if we lave previoufly examined the force of the redundant body, by fufpending a pith-ball near it, and obferving its deviation from the perpendicular, we may fometimes be led to think that it has imparted fomething to the other body. For if the other hody and the pith-ball be on oppofite fides of the redundant body, the pith-ball will fall a little; indicating a diminution of elefric force. But this fould bappen according to the theory; for it was thewn, in \(n^{\circ} 52\), that the conltipation in the remote end of the overcharged body will be diminifhed, and along with this, its action on the pith ball. We mould find the electricity of the other end, next the conductor, increafed, could we find an eafy way of examining it ; but an electrometer applied there will be too much affected by the condutior.

The lame conclufions may be drawn from the folIowing facts: Hang up a rulh-pith electrometer. Approach it below with a body flighty electrified. The legs of the electrometer immediately diverge, though attracted by the eleetrified budy. Hold the hand above the clectrometer, and they will diverge thill more; touch the top of ir, and they fipead yet farther. Hold the eleatrified body (very weakly electrified) above the cleetrometer, fo that its legs may diverge a little. He?h the hand above the electrified body; the legs of the clectro.seter will come nearer each other.

Thefe appearances are obferved whether the elcetric be pofitive or negative. We need not take up time in explaining this by the theory, its agrement is fo ob. vious.
eatric Laftly, on this head, if, in place of a fixed conducedles po. ior, we ufe one of the needles of gilt card, fet on its pivot, and if we then approach it with another conducting body, in the manner reprefented by E and C of fig. 6. we fhall obferve that end of the needle to avoid the other body; but if we bring them together, in the manner reprefented by F and B, they will attract each other. The attraction will be greater when the body F is long; and moft of all when it communicates with the ground. Thefe phenomena are therefore in perfect conformity with the theory ; but it may fometimes happen that E will attract the end of C that is neareft to A , and E will be electrified pofitively if A be pofitive. This feems inconfiftent with the theory; and, accordingly, it has been adduced by Volta againft Lord Mahon's account of the electrical flate of a con-
ductor in a fituation finnilar to that of C . But the theory of Nipinus fhews the puflibility of this cafe. Wheo E is very lung, or when it is held in the hand, it is rendered much more undercharged than the adjacent part of C ; and the fluid in the remuter, but not much remoter, part of C is ttrongly attracted by the copious redundant mater in the uear end of \(E\), alid is brought back again, and pafies over into \(E\), in the way to be deferibed inmediately The cale is rare, and it will not happen at any confiderable diftance from the neutra! point of C. If, indeed, E touch the near end of C before \(A\) is brought near, the approseh of \(A\) will caufe flud to pals into \(E\) immediately, and \(C\) will be left undercharged on the whole.

The reader, who is at all converfant with electrical experiments, will be fenfible, that thefe experiments are delicate, requiring the greatef drynefs of air, and every attention to prevent the diflipation of electricity during the performance. This, by changing the flate of the conductors and electrometers, will frequently occafion irregularities. The electrometers are moft apt to change in this refpect, it being fearcely poffille to make them perfectly footh and free from tharp angles. It may therefore happen, that when the conducturs have affected them for fone time, by the action of the diftur. bing electrie, the removal of this clectric will not caufe the electrometers to hang perpendicular; they will often be attracted by the conductors, and often repelled; but. the intelligent experimentur, aware of thefe circum. ftances, will know what allowances to make.

The theory ubtains a till more complete fupport from a comparifon with fimilar experiments inade with imperfect conducturs. If, in place of the feries \(A, B\), imperfect conducturs. If, in place of the feries \(\mathrm{A}, \mathrm{B}\), ductors
C , of metalline conductors, we employ cylinders of grearly corglafs or fealing wax, or even dry wood or marhle, and roberate eleetrometers with filk threads in place of the rufh-pith the theoryclectrometers, we fhall find all the appearances to be fueh as the theury enables us to predick. If, for example, we ufe a fingle cylinder A of glafs, we flatl find that the neighbourhood of the electicic D farcely induces any electricity on A . The electrometer will handly exhibit the fmalleft attraction, and its motions will be almult entirely fuch as arife fron the immediate influence of the electric body D. A eylinder of very dry wood will be more affe "ed by the electric D; and a circumflance of theorctical importanee is very dillinctly obferved, namely, the gracual fhifting of the neutral point. It will be found to advanee along the cylinder for a very long while, when every circunflance is very faviurable, the air very dry, and the wood almoft a nonconductor; and its final fituation will be found much nearer to the eleciric than in the brafs conductor. Several inltructive experinents of this kind may be found in a treatife publifhed in 1783 by Dr Thomas Milner at Maidtone in Kient, entitled, "Experiments and Obferrations on Ele\&ricity." The author does not profefs to advance any new doctrines, but only to exhibit experiments feientifically arranged for forming a fyltem. He fupports the Franklinian fyftem as it was generally underftood at that time; but is much embarraffed for the explanation of the repulfion of negative eleCtrics. The Æpinian correction of this theory did not offer itfelf to his mind.
We need not go over the fame ground again with Irregula \({ }^{68}\) imperfea conductors. It is well known that fuch hor. ritics.
dies are more weakly attracted and repelled; that the balls of an electrometer with linen thrcads diverge v dit. ly more when an electrified body is held below it, than if the threads are filken: that fuch electrometers frequently exhibit very capricious appcarances from the flow but real progrcfs of the electricity along the threads. The?? anomalies will be better underftood when we explain the diffipation of electricity along imlearicion A very effential deduction from the theory is, that іті!erfet conductors is really I ermanent. the electricity induced on an imperfect conductor mult have fome permanency. This is fully confirmed by experiancm. But the remarkalle inflazees of this particular cannot be produced till we be better acquainted
with the metlods of producing great accumulations of fluid. It is enough to obferse at prefent, that a permanent electricity may always be obferved at the junction of the conductors with their infulating ftalks. The brafs conductor A ceafes to be electric as foon as the excited glole is removed; but the very top of the glafs ttalk on which it is fupported will fenfibly affect a delicate electrometcr for a long while after. The following pretty experiment fhews this permanency very diftinctly. Set one of the fealing-wax needles on its pivot, and place it between two infulated metal fpheres of confiderable fize, at fuch a diftance from both as not to receive a Ppark. Electrify thefe balls moderately, one of them pofitively, and the other negatively, and keep them thus electrified for fome hours by renewing their electrification. The needle quickly arranges itfelf in the line adjoining the two fpheres, juft as a magnetic needle will do when placed between two magnets whofe difimilar poles front each other. Any gentle force will derange the needle; but it will vibrate like a magnetic needle, and finally fettle in its former pofition. When this has been continued fome time, that end of the needle which pointed to the pofitive globe will be found negative, and the other will be found pofitive, if examincd with an electrofcope. And now, if the two -globes be removed, this little needle will remain electrical for entire days in dry frofty weather, and its ends will approach any body that is brought near it (taking care not to come too clofe) ; and the end which pointed to the pofitive globe will avoid a piece of rubbed fealing wax, but will approach a piece of rubbed glafs; but the other end will be affected in the oppofite way. In fhort, it proves an electric needle with a pofitive and negative pole.

If two fmall infulated balls are moderately electrified, and placed about fix inches afunder, this needle, when carried round them, will arrange it felf exactly as a magnetic needle does when carried round a magnet of the fame length. If the fame trial be made with the needle of gilt card, it will arrange itfelf in the fame manner that a foft iron needle arranges itfelf near a magnet, but either end will turn indifferently to either globe.
Eletrical
If a thin glafs plate, coated with red fealing wax, be meridians. Set on the pofitive and negative globes, and we fprinkle (from a confiderable height) a fine powder of black fealing wax, and then pat the plate gently with a glafs rod fo as to agitate it a little, the particles of wax powder will gradually arrange themfelves into curve lines, diverging from the point over one of the globes, and converging to the point over the other, precifely like the curves formed by iron.filings fprinkled on a paper
held over a magnet. Fach little rag of wax hecomes electrical by polition, acquires two poles, and the pofitive pole of one attracts the negative pole of another; and they adhere in a certain oeterminate pofition, near\(l_{y}\) a tangent to the curve, which was mentioned in \(n^{\circ} 50\), and indicates the law of magnetic action. When in this ftate, if a hot brick be held over the plate till the wax foften a little, the particles of black wax will adhere to the red coating, and give us a permanent fpecimen of the action.

It is well known that liquid fealing wax is a conductor. 'The writer of this article filled a glafs tube with powdercd fealing wax, and melted it, and then expofed it, in its melted flate, to the influence of a pofitive and a negative globe, hoping to make a powerful and permanent clectric needle, which mould have two poles, and exhibit a fet of phenomena refembling thofe of magnetifn. Accordingly he, in fonse meafure, fucceeded, by keeping the globes continually clectrified for feveral hours, till the wax was quite cold. It had two diftinct poles, and preferved this property, even though plunged in water, and while immerfed in the water; but he was greatly difappointed as to the degree of its electricity. It juft affected a fenfible electrometer at the diftance of fix inches from either pule. It was confiderably ftronger than if it had not been melted during the impregnation, but by no means in the degree that he expected. It retained fome electricity for ahout fix weeks, although lying neglected among conducting bodies. After its power feemed quite extinct, he was melting it again in order to renew it. Some light fibrous things chanced to he near it. While it was fofteuing, it hecame very fenfibly electrical, caufing there fihres to bend towards it, and even to cling to the tube. We fhall fee by and bye, that he was miftaken in expecting more remarkable appearances, and that the theory, when properly applied, does not promife them. Having thus eftablified (as we think) this theory on fufficient foundations for making it a very perfpicuous way of explaining the phenomena of induced clectricity, we proceed to compare it with the fecond general fact in electricity.

Prop. II. When an infulated body \(B\) is brought Eleatricit very near an electrified body \(A\), a fpark is obferved to by comm pafs between them, accompanied with a noife (which nication we fhall call the clectric \(S_{\text {xap }}\)), and \(B\) is now electrified permanently, and the electricity of A is diminifhed.

Although this be one of the moft familiar facts in electricity, it will be proper to confider its attending circumftances in a way that connects it with what we have now learned concerning electricity by pofitior.

Let the infulated body A (fig. 14.) be furnifhed with a cork-ball, hanging by a filk thread from a glafs ftalk connected with A ; let B be fitted up in the fame manner; let A be electrified weakly, and its degree of eleetricity be eftimated by the inclination of the ball towards A : fince B is not clectrified, its electrometer will hang perpendicular; but when it approaches A (keeping the electrometers on the remote fides of both), its eletrometer will approach it, and the electrometer of A will gradually approach the perpendicular. When the bodies are brought very near, a fpark is feen between them ; and, at that inftant, the electrometer of

\section*{ELECTRICITY.}

B comes much nearer to it, and that of A drops farther from it. If they be now feparated, their cleatroneters will retain their new pofitions with very little change, and \(B\) will now manifett the fame kind of electricity with A.

Such is the appearance when \(A\) has been but weakly electrified. Bringing \(B\) near \(A\), the fluid in \(B\) is drawn to the remote fide, if \(A\) be overcharged, or drawn to the fide neareft to A , if A has been undercharged. B acis on its eledrometer in confequence of the change made in the difpofition of its fluid. The electrometer is attracted. In the mean time, the change made in the difpofition of the fluid in B affects the moveable fluid in A. If A was overcharged, the adjacent fide of \(B\) becomes undercharged, and its redundant matter, attracting the fluid in \(A\), condenfes it in the adjacent fide, abftracting part of the redundant fluid from that fide which is next to the pith-ball. Then the joint actiun of the whole redundant fluid in A on the pith-ball is diminifled.

As there is now an attraction in the redundant fluid in A for the redundant matter on the adjacent fide of \(B\), it is reafonable to fuppofe that when this attraction, juined to the repulfion of the redundant fluid behind it, is able to overcome the attraction which conneets it with the fuperficial particles of the matter, it will then efcape and fly into B: but this will not happen gradually, hut at once, as foon as the expelling force has arifen to a very confiderable intenfity. We cannot fay what is the precife augmentation that is neceflary; but we cau clearly fee, that however great the attraction for the adjoining particles may be, while the particle is furrounded by them on all fides, it will yield to the fmalleft inequality of force, becaufe the particles before it attract as much as thofe behind it; but when it is juft about to quit the laft or fuperficial particles of A a much greater force is now neceflary. It can be frielly oemonftrated, that when the mutual tendency is inverfely as the fquare of the diftance, the adion of a particle placed immediately without a fphere of fuch matter is double of its action when fituated in the very furface *. A faltus of this kind muft obtain whatever be the law of clectric attraction. We fhall fee other caufes alfo which fhould prevent the efcape of redundant fuid, and alfo its admiffion, till the impelling force is encreafed in a certain abrupt degree.

Thefe obfervations mult fuffice at prefent to explain the defultory nature of this tranference, if there be really a transference. That this has happened, inay be confidently inferred from the fudden diminution of the cleatricity of \(A\), indicated by the fudden fall of its electrometer ; but it is more exprefsly eftablined, that there lias heen a transference by the change produced on \(B\). It is now permanently electrified, and its electricity is of the fame kind with that of \(A\), pofitive or negative according as A is poftive or negative. And now we are enabled to explain the third general fact in electricity.

Prop. III. When a body has imparted eleetricity to another, it conftantly repels. it, unlefs that other has afterwards imparted all its eleciricity to other bodies. This fact, from which there is no exception, is an immediate confequence of the theory. Before the transference fuppofed by it, \(B\) was in its natural fate; after
the transference, both bodies contain redundant fluid, or redundant matter ; therefure they muft mutually repel.

We may now take another form of the expcriment, which will be much more convincing and inftructive. Let A be electrified pofitively, or lyy redundancy, and let its electrometer be attached to it by a conducting ftalk, and have a flaxen thread; let this be the cafe alfo with the electrometer of \(B\); then the appearances fhould happen in the following order: When A is made to approach B , the eleetrometer of B mult gradually rife, diverging from B ; becaufe the fluid condenfed on the fide remote from \(A\), and in the electrometer, will ack more Afrongly on it than the deferted matter on the other fide of B ; and when the fudden transference is made, and \(B\) is wholly overcharged, its electrometer will immediately rife much higher, and muft remain at that height, nearly, when \(A\) is removed. On the other hand, the electrometer attached to the remote fide of A muft defcend, by reafon of the change made in the difpofition of the fluid in A by the induced electrical ftate of B: and when a confiderable portion of the redundant fluid in A paffes into B, the electrometer of \(A\) mult fudenly fink much lower, and remain in that flate when \(B\) is removed.

Many circumflances of this phenomenon corroborate Transferour belief of a real transference of matter. The caufe ence nf a of elećtric action refided formerly in A alone; it now peculiar refides alfo in \(B\). The larger that \(B\) is, the greater is fubftrance the diminution of A's electric power, and the finaller bable. is the power acquired by \(B\). It perfectly refembles, in this refpect, the communication of faltnefs, fweetnefs, \&ce by mixing a Solution of falt or fugar with different quantities of water; and the evidence of a trausference of a fubitance, the caufe of eleEtric attractions and repulfions, is at leaft as cogent as the evidence of the transference of heat, when we mix hot water with a quantity of cold, or when a hot fulid body is applied to the fide of a cold one. We alio fee fo many chemical and other clanges produced by this commumication of electricity, that we can hardly retufe admitting that fome matorial fubfance paftes from one body to another, and, in its new fituation, exerts its attractions and repultions, and produces all cheir effects.

We may deduce the following corollaries; all of which are exactly conformable to the phenomena, ferving fill more to confirm the juftnefs of the theory.

74
1. A certain quantity of what polfeffes thefe powers Degrees ofof attraction and repulfion is neceflary for giving a de- vivacity termined vivacity to the appearances. Another fpark proporinane muft pafs between the budies, only if they be lirought flill suanury nearer, and their electrometers muft rife and liall itill far- inuantrty ther. For by the firlt transference of electric ithid iato \(B\), the cxpelling power of \(A\) is diminified, and the fuperior attraction of the redundant matter in the adja. cent fide of \(B\) is alfo counteracted by the repulfion of the fluid which has entered into it ; therefore no more will follow unlefs thefe forces be encreafed, at lealt to their former degrce. When this aldition has heen made to \(B\), and this abltraction from \(A\), their refpective elec. trometers mult be affected. All this is in perfect con. formity to experience.
2. All the phenomena of communicated electricity Commusio muft be more reinarkable in proportion to the con- cano mont ducting power of the bodies. A very imperfect can- in conduza ducter, ens.

\section*{ELECTRICITY.}
ductor, fuch as glafs or fealing wax, will impart or receive fuid only between the very neareft parts; whereas a metalline body is iuftantly affected through its whole extent. This deduction is perfectly agreeable to the whole train of electric experiments. The finger receives a ftrong fpark from a large metalline electrified body, which dilcharges every part of it of a portion of its electricity. But an excited glohe, which fhews, by its action on a diltant body, as great a degrec of elcetricity, will give only a very fimall fpark; and it is found not to be affeci d at any confiderable diftance from the point of its furface from which the transference was made. The whole electricity of a perfect conductor is difcharged by tonching it; but a non-conductor will fucceffively, give fparks, if touched in many diferent parts; and it may be feen by a nice electrometer, that each contact takes away the electricity only from a very finall fpace round it: and it is further highly deferving of notice, that fome time after a fpark has been obtained from a particular fpot of the electric, a fecond fpark may be obtaiued from it, the electricity of the neighbouring parts having been gradually diffufed through it.
3. If an electrified condueting body touch any thing communieating with the ground by perfect conductors, all its electricity nuft difappear, and none can appear in the body tonched by it; for the mafs of the earth bears fuch an unmeafurable proportion to that of the greateft body that we can electrify, that when the redundancy or deficiency is divided between them, it nuft be imperceptible in both.

Hence the necefity of infulation, as it is called, or the furrounding by non-conducturs every broly which we would have exhibit electric appearances. We mutt refer the reader to the article Electricity in the Encycl. for all the oblervations on this head, and the reafons of preference given to certain fubltances to be employed for infulating rupports. But we mult confider, in its proper place, the manner in which the electric fluid is diffipated by imperfectly infulating fubftances; a fubject intinately conmefted with the theory.
4. Any unelectrified body will be firft attracted by

An electrified bouy attrake and then repels any unelec trified bo. dy.
an electrified body, will touch it, and will then be repelled. The neutral body is rendered electrical by induction. It is, in confrequence of this, attracted, comes near enough to receive a fpark, or even touches it, and is then electrified by communication; and, in confequence of this, it is repelled. This is confirmed by an endlefs train of experinents. It was firft taken notice of (we think) by Sir Ifaac Newton. Otho Guericke, a gentlenan of Mardeburgh, to whom we owe the air pump, mentions many intlances of the repultion, hut did not obferve that it was an univerfal law. Newton was fo ftruck with it as to engage in a confiderable train of experiments in the early part of his lifc, while meditating on the power of gravity; but even his fagacious mind did not ubferve the whole procefs of nature in his experiments. He obierved, that the light bodies which rofe and adhered to tle rubbed plate of glafs were foon after repelled by it ; but did not ohferve that the fame piece would again rife to the glafs after it had touched the table. This fact is now the foundation of many experiments, which the itinerant eledricians vie with each other in rendering very amufing. We may render them inftru Give. Take away
the middle conductor B (fig. 11.), and hang in its place a cork ball by a long filk thread. As foon as the elearic hody D is brought near to A , the ball is attracted by its remote end, comes into contact, is repelled by it, and attracted by the adjacent end of C. touches it, is faintly repelled by it, and again attrazted by A ; and the operation is repeated feveral times. When all has ceafed, remore C , and alfo the ele-tric D . C is found to have the fame electricity with D, and A has the oppolite electricity. The procefs is too obvious to need any detailed application of the theory. The cork ball was the carrier of fluid from \(A\) to \(C\) if D) was electric by redundancy, or from C to A if D was undercharged. If inftead of removing C when the vibrations of the ball have ceafed, we bring D a little nearer, they will be renewed, and after fome time will again ecafe. The reafon is plain. The earrier ball hard brought the conductor A into a flate of equilibrium with the action of D. But this action is now increafed, and the effects are renewed. If we now rave \(D\), the ball will vibrate between \(A\) and \(C\) with great rapidity for a confiderable time before the vibrations come to an enad; and we fiall find their number to be the fame as befure. The caufe of this is alfo obvious from the theory. We may fuppofe \(A\) to be negative, and C pofitive. One of them will attract the ball into contact, and will repel it. having put it into an electric flate oppofite to that of the other conductor. It now becomes a carrier of fluid from the pofitive to the negative conductor, till it nearly reftore both to their primitive flate of neutrality.

There is frequently a feeming capricioufnefs in thofe \({ }^{29}\) rezulat attractions and repullions. A pith ball, or a down fea- tit, frether, hung by filk, will cling to the conductor, or other- q whe wifc electrified body, and will not fly off again, at leaft Whyfor a long while. This ouly happens when thofe hodies are fo dry as to be ahnof non-eonductors. They acquire a pofitive and negative pole, like an iron nail adhering to a magnet, and are not repelled till they becone almof wholly pofitive or negative. It never happens with conducting light bodies.
5. It hould follow fron the theory, that the electric Electric: attractions and repulfions will not be prevented by thictiom tike intervention of non-conducting fubfances in their neu- gravitatit tral itate. Accordingly, it is a fact, that the interfo- is not hit fition of a thin pane of glafs, let it be ever fu extenfive, "fied inter does not hinder the electrometer from being affected. 1 offion Alfo, if an infulated electric be covered with a glafsimen-conbell, an eleftrometer on the outfide will be affected. ductors Nay, a metal ball, covered to any thicknefs with fealing wax, when electrified, will affict an electrometer in the fame way as when raked We cannot fue how thefe facts can be explained by the action of electric atmofpheres. It is indeed laid, that the atmofphere on one fide of the glafs produces an atmofphere on the other; but we have no explanation of this production. If the interpofed plate be a non-condustor, how does the one atmofphere produce the other? It mult produce this effeet by afting at a dilance on the particles which are to form this atmofphere. Of what ufe, then, is the atmofphere, even if thofe atmofpheres could effect the ubferved motions of the electrometer in confiftency with the laws of mechanics? The atmofpheres only fubftitute millions of attractions or repulfions in place of one. We mult obferve, however, that the motions

\section*{ILECTRICITY.}
of the eleetrometer are modified, and fometimes greatly changed, hy the interpofed non-conducting plate; but this is owing to the clectricity induced on the plate. If the electric is pofitive, the adjacent furface of the plate begones faintly negative, and the fide next the electrometer flightly pofitive. This affects the clectro. meter even more than the more remote eledric does. That this is the canfe of the difference hetween the ftate of the electrometer when the plate is there and when it is removed, will appear plainly by breathing gently on the glafs plate to damp it, and give it a fmall conducting power. This will make fome clange in the polition of the electrometer. Continue this more and more, till the plate will no longer infulate. The changes produced on the electrometer's pofition will form a regular feries, till it is feen to affume the very pofition which it would have taken had the plate been brafs. Then, confidering thofe changes in a contrary order, and fuppofing the feries continued a little farther, we thall always find that it leads to the polition which it would have taken when uo plate whaterer is interpofed. We confider this as an important fact, thewing that the electric action is fimilar to gravitation, and that there is no more occafion for the intervention of ath atmoSphere for explaining the phenomena of electicity than for explaining thofe of gravitation.
6. Siace non-electrics are conductors, and fince electrics may be excited by frittion with a non-electric, it follows, that if this non-electric be infulated, and feparated from the electric, it will exhibit figns of electrici-
ty; but when they are together, there muft not appear any marks of it, however itrong the excitation may be. We do not pretend to comprehend diftinetly the manner in which friction, or the other modes of excitation, operate in changing the connection between the particles of the fluid and thofe of the tangible matter; nor is this explained in any electric theory that we know: but if we are fatisfied with the evidences which we have for the exiftence of a fubfamee, whofe prefence or abfence is the caufe of the electric phenomena, we muft grant that its ufual connection with the tangible inatter of bodies is changed in the act of excitation, by friction, or by any other means. In the cafe of fricticn producing pofitive electricity on the furface of the electric, we inuft fuppofe that the act of friction caufes one body to emit or abforb the fluid more copioully than the other, or perhaps the one to emit and the other to abforb. Whichever is the cafe, the adjoining furfaces mult be in oppolite ftates, and the ne mult be as much overcharged as the other is undercharged. When the bodies (which we may fuppofe to have the form of plates) are joined, and the one exactly covers the other, the affemblage mut be inactive; for a particle of moveable fluid, fituated anywhere on the lide of the overcharged plate, will be as much attracted by the undercharged furface of the remote plate as it is repelled by the overcharged furface of the near plate. The furfaces are equal, and equally electric, and act on either fide with equal intenlity; and they are coincident. Therefore their actions balance. The action is expreffed by the formula of \(n^{\circ} 43\); namely, \(\mathrm{F}^{\prime} m^{\prime} \times \overline{z-z^{\prime}}\); and \(x-z^{\prime}\) is \(=0\), by reafon of the equal diftances of thefe furfaces from the particle of exterior fluid.

But let the plates be feparated. Part, and probably the greateft part, of the redundant fluid on one of Suppl. Vol. I. Patt II.
the rubbed furfaces will Aly back to the other, being ur. ped both by the attraction of the redundant matter and the repulfion of its own particles. But the electric, being clettric becaule, and only becaufe, it is a non-conductor, mult retain fome, or will remain deprived of fome, in a fratum a little within the furface. The two plates mult thereforc be left in oppofitc flates, and the conducting, or uon cletric plate, if infulated befure foparation, mull now exhibit electric action.

All this is exadly agreable to fact. We alfo know that eleetrics may be excited by rubbing on each other; and if of equal extent, and equally rubbed, they exhibit no electric powers while joined together; but when parted, they are always in oppofite flates. The fame thing happens when fulphur is melted in a metal difh, or when Newton's netal is melted in at glafs difh. While joined, they are moft perfectly neutral; but manifett very ftrong oppofite electricities when they are feparated. This completely difappears when they are jomed again, and reappears on their feparation, even after being lept for months or years in favourable cireumitaaces. We have obferved the plates of tile, and wther laminated foffils, exhibit very vivid electricity when fuhit afunder.

Attention to thefe particulars enables us to confruct Principles machines for quickly exciting vivid clectricity on the of the confurface of bodies, and for afterwards exhibitiog it with pruet on of continued difpatch. The whirling globe, cyli,der, or machines. plate, firft employed by Mr Haukfoe, for the folitaty purpole of examining the electricity of the globc, was moft ingenioully converted by Haufer, a Graman profeffor, into a rapid collector and difpenfer of electricity to other bodies, by placing an infulated prime conductor clofe to that part of the furface of the globe which had been excited by friction. Did our limits give us room, we fhould gladly enlarge on this fubject, which is full of mott curious particulars, highly meriting the attention of the philofopher: But it might eafily oce cupy a whole volume; and we have fill hefore us the moft interefting parts of the mechanical department of electricity, and fhall hardly find room for what is effen. tially requifite for a clear and ufeful comprehenfion of it. We mutt therefore requeft our readers to have recourfe to the original anthors, who have confidered the excitation by friction minutely. Aud we particnlally recommend the very careful perufal of Beccaria's Dif. fertations on it, comparing the phenomena, in every Atep, with this theory of Epinus. Much valuable in. formation is alfo ubtained from Mr Nicholfon's Obfer. vations, of which an abitract is given in the article Electricity in the Encyclopadia Britanuica. The Rpinian theory will be found to conneet many things, which, to an ordinary reader, muft appear folitary and accidental.

Seeing the 83 fo perfe that this very fimple hypothefis of Rpinus Evilences all the perfly coincides in its legitimate confequences witho tuee mageneral phenomena of attraction and repultions the electric and not only with thofe that are fimple, but even fuch fuid. as are compounded of many others - we may liften, without the imputation of levity, to the other evidences which may be offered for the materiality and mobility of the caufe of thofe mechanical phenomena. Such. evidences are very numerous, and very perfuafive. We have faid that the transference of electricity is defulto\(r y\), and that the change made in the clectric flate of the

\section*{ELECTRICITY.}
commuricating bodies is always confiderable. It appears to keep forre fettled ratio to the whole electric power of the body. When the form of tlye parts where the communication takes place, and other circumftances, remain the fame, the transference increafes with the fize of the bodies: and all the phenomena are more vivid in propotion. When the conductor is very large, the tpark is very luight, and the finap very lund.
1. This frap alone indicates fome material agent. It is occafioned by a fonerous undulation of the air, or of fure claftic fuid, which fuddenly expands, and as fuddenly collapfes again. But fuch is the rapidity of the undulation, that when it is made in elofe seffels it does not exif lang enough, in a very expanded thate, to af. fect the column of water, fupported in a tube by the eladicity of the air, for the purpofe of a delicate thernometer or barmmeter ; jut as a muket ball will pafs througli a loofe hanging fheet of papet without caufing any fenfible agitation.

Spark, and heat.

Chemical effecte.

This is therefore afluned. 2. The spark is accompanied by interfe heat, which will kindle infarmable bodies, will melt, explode, and calcine netals.
3. The frark produces fome very remarkable chemical effects. It calcines metals ever. under water or oil; it renders Bolognan phofphorus luminous: It decompofes water, and makes new compofitions and decompofitions of many gaziform fluids; it affects vegetable coluurs; it blackens the calces of bifmuth, lead, tin, luna cormea; it communicates a very peculiar fmell to the air of a room, which is diftinct from all others; and in the calcination of metals, it chanfes remarkably the fmells with which this operation is ufually accompanied: it affects the tongue with an acidulous tate; it agitates the nervous fyftem. - When we compare thefe appearances with fimilar chemical and phyfiological phenomena, which naturalifts never hefitate in afcribing to the action of materia! fubflances, transferable from one body , or one ftate of combination, to another, we can fee no greater reafon for hefitating in afcribing the electric phenomena to the action of a material fubfance; which we may call a fluid, on account of its connected mobility, and the eletiric fluid, on account of its diftingnifhing effects. We arc well aware, that thele evidences do not amount to demountration; and that it is poffible that the elcetric phenomena, as well as many chemical changes, may refult from the mere difference of arrangement, or pofifíon, of the ultimate particles of bodies, and may be confidered as the refult of a change of modes, and not of things. But in the inflances we have mentioned, this is extremely improbable.

We therefore venture to affume the exiftence of this fubflance, which philofophers have called the elcitric fluid, as a propofition abundantly demonftrated; and to affirm, on the authority of all the above-mentioned facts, that its mechanical character is fuch as is expreffed in Mr Epinus's hypothefis.

We proceed, therefore, to explain the moft interefting phenomena of eleetricity from tl:ele principles.

\section*{ion of it}
depends on
its law of
astion.
We have feen that, in a perfect conductor, in its natural flate, the electric fluid is uniformly diftributed, and cannot remain in any other condition. We are particularly interefted to know how it is diffributed in an overcharged or undercharged body, and how this is affected by the circumambient non-conducting air. It
is evident that much depends on this. The tendency to efcape, and particularly the teudency to transference from one lody to another, mult be greatell where the fluid is molt conftrpated. We know that it tends remarkably to diflipate from all protuherances, edges, and long bodies, and that it is impullible to confine it in a body having wery acute far-projecting points; and, what is more paradoxical, it is liardly pofible to prevent its entering into a body furnifhed with a fharp point. The fmalleft reflection muft fuggeft to our imagination, that a perfectly moveable Auid, whofe particles mutually repel, even at confiderable diftances, and which is confined in a veffel from which it cannot efcape, mull be compreffed againt the fides of the veffel, and be denfer there than in the middle of the veffel. But in what proportion its denfity will diminifh as we recede from the walls of the veffel, muft depend on the change of clectric repulfion by an increafe of diftance. The intenfity varies in the proportion of fome furction of the diftance, and may be expreffed by the ordinates of a curve, on whofe axis the diftances are meafured. But we are ignorant of this function. We mult therefore Procefs for endeavour to difcover it, by obferving a proper folution dfeovering of phenomena. Having made fome approximation to this law. this difcovery, fuch as thall give rife to a probable conjecture concerning the function which expreffes the intenfity of electric repulfion, mathematics will then enable us to fay how the fluid muft be diftribused (at leaft in fome limple and inftructive cafes) in a perfectly conducting body furrounded by the air, and what will be its action on another body. Thus we thall obtain oftenfible refults, which we can compare with experiments. The writer of this article made many experiments with this view above 30 years ago, and fatters himfelf that he has not been unfuccefsful in his attempts. Thefe were conducted in the molt obvious and timple manner, fuggefled by the reafonings of Mr Npinus; and it was with fingular pleafure that, fome years after, he perufed the excellent differtation of Mr Cavendifh in the Philofophical Tranfactions, vol. 61. where he obtained a much fuller conviction of the truth of the conclufion which he had drawn, in a ruder way, from more familiar appearances. Mr Cavendifh has, with fingular fagacity and addrefs, employed his mathematical know. ledge in a way that opened the road to a much farther and more fcientific profecution of the difcovery, if it can be called by that name. After this, Mr Coulombs. a diftinguifhed member of the French Academy of Sciences, engaged in the fame refearch in a way ftill more refined; and fupported his conclufions by fome of the molt valuable experiments that have been offered to the public. We fhall now give a very brief account of this argument : and have premifed thefe hiftorical remarks; becaufe the writer, although he had eftablifhed the general conclufion, and had read an account of his inveltigation in a public fociety in 1769 , in which it was applied to the moft remarkable facts then known in electricity, has no claim to the more claborate proofs of the fame doctrine, which is given in fome of the following paragraphs. Thefe are but an application of MrCi Cu vendifh's more cautious and general mathematical procedure, to the function which the writer apprehends to be fufficiently eftablifhed by obfervation.

The moft unexceptionable experiments with which we can begin, feem to be the repulfions oblervable be.

Compara- Fir 15. reprefents the electrometer in front. A is meter. luable philofophical inftrument. a polifhed brafs ball, \(\frac{1}{2}\) th of an inch in diameter. It is fixed on the point of a needle three inches long, as flen.
tu'cen two fmall fpheres. Whatever be the law of dif. tribution of the particles in a fphere, the general action of its particles on the particles of anuther fphere will fellow a law which will not differ much from the law of action between two particles, if the diameters of the fpheres be fmall in proportion to their diflance from each other. The inveftigation was therefore begun with them. But the fubject required an clectrometer fufcep. tible of comparifon with others, and that could exhibit abfolute meafures. The one employed was made in the following mamer; and we give it to the public as a vader as can be had uf that length. The other end of the needle paffes through a ball of amber or glafs, or other firm non-conducing fubftance, about half or three-fourths of an inch in diameter; but the end mult not reach quite to the furface, although the ball is com1 letely perforated. From this ball rifes a flender glafs rod FEL, three inches long from F tu E, where it bends at right angles, and is continued on to L , immediately over the centre of the ball A. At L , is fixed a piece of amber C , formed into two parallel checks, between which hangs the flalk DCB of the electrometer. This is formed by dipping a flrong and dry filk thread, or fine cord in melted fealing-wax, and holding it perpendicular till it remain covered with a thin coating, and be fully penetrated by it. It muft be kept extended, that it may be very flraight ; and it mult be rendered fmooth, by holding it before a clear fire. This ftalk is faftencd into a fmall cube of amber, perforated on purpofe, and having fine holes drilled in two of its oppofite fides. The cheeks of the piece C are wide enough to allow this culre to move freely between them, round two fine pins, which are thruft thro' the holes in the checks, and reach about half way to the ftalk. The lower part of the ftalk is about three iuches long, and terminates in a gilt and burnifhed corkball (or made of thin metal), a quarter of an inch in diameter. The upper part CD is of the fame !ength, and paffes through (with fome friction) a fmall corkball. This part of the inftrument is fo proportioned, that when FE is perpendicular to the horizon, and DCB hangs freely, the balls \(B\) and \(A\) juft touch each other. Fig. 16. gives a fide perfpective view of the inftrument. The ball F is fixed on the end of the glafs rod FI, which paffes perpendicularly through the centre of a graduated circle GHO, and has a knob handle of boxwnod on the farther end I. This glafs rod turns ftiffy, but fmoothly, in the head of the pillar HK, \&e. and has an index NH, which turns round it. This index is fet parallel to the line LA, drawn through the centre of the fixed ball of the electrometer. The circle is divided into 360 degrees, and 0 is placed uppermoft, and 90 on the right hand. Thus the index will point out thie angle which LA makes with the vertical. It will be convenient to have another index, turning fiffly on the fame axis, and extending a good way beyoud the circle.

This inftrument is ufed in the following manner: A connection is made with the body whufe electricity is to be examined, by flicking the point of the connecting wire into the bole at \(F\), till it touch the end of the
needle; or, if we would mạely electrify the brils \(A\) and 13, and then leave them infulated, we have only to touch one of them with an electrified body. Now. take hold of the handle I, and turn it to the right till the index reach 90 . In this pofition, the line LiA is horizontal, and fo is CB ; and the moveable ball B is refting on \(A\), and is carricd by it. Now electrify rhe balls, and gently turn the bandle backwards, bringing the index back toward o, \&c. noticing carefully the two balls. It will happen that, in fome particular pofition of the index, they will be obferved to feparate. Bring them together again, and again caufe them to feparate, till the exact pefition at feparation is afcertained. This will fhew their repulfive force in contact, or at the diflance of thein centres, equal to the fum of their radii. Having determined this puint, turn the instrument itill more toward the vertical poffition. The balls will now feparate more and more. Let au affirtant turn the long index fo as to make it parallel to the ftalk of the clectrometer, by making the one hide the other from his view. The mathematical reader will fee that this electrometer las the properties afcribed to it. It will give abfolute meafures: for by poizing the ftalk, by laying fome grains weight on the cork-ball D, till it hecomes horizontal and perfectly balanced, and cumputing for the proportional lengths of BC , and DC , we know exactly the number of grains with which the balls mutt repel each other (when the ftalk is in a horizuntal pofition), in order merely to fipurate. Then a very fimple computation will tell us the grains of repul. fion when they feparate in any oblique pofition of the falk; and another computation, by the refulution of forces, will fiew us the repulfion exerted between them when AL is ohlique, and BC makes any given angle with it. All this is too obvious to need any farther explanation. The reafon for giving the connection between A and C fuch a circuitous form, was to avoid all action between the fixed and the moveable part of the electrometer, except what is exerted between the two balls A arid B. The needle AF, indeed, may act a little, and might have been avoided, by making the horizontal axis FI to join with \(A\) : but as it was wanted to make the inftrument of more general uff, and frequently to conneet it with an electrical machine, a battery, or a large body, no mode of comnection offered itfelf which would not have been more faulty in this refpect. The ueateft and moof compendious form would have been to attach the axis FI to C , and to make CA and CB ftiff metalline wircs, in the fame manner as Mr Brookes's electrometer is made. But as the whole of their lengths would have acted, this confruction would have been very improper in the invelligation of the law of electric repulfiom. As it now ttands, we imagine that it has confiderable advantages over \(\mathrm{Mr}_{r}\) Brookes's conftruction; and alfo over Mr De Luc's comparable eleefrometer, defcribed in his Effays on Meteorology. It has even advantages over Mr Coulumb's incomparably more delicate electrometer, which is lenfible, and can meafure repulfians which do not exceed the 50,000 of a grain; for the influment which we have defcribed will mcafure the attragtions of the oppofitely electrified bodies; a thing which Mrr Coulomb could not do without a great circuit of experiments. For inftead of making the ball B above A, by inclining the inftrument to the right hand, we may incline it to
the left ; and then, by clectrifying one of the balls pofitively, and the other negatively, when at a great diftance from each other, their mutual attraction will caule them to approach; \(C B\) will deviate from the vertical toward \(A\); and we can compute the force by means of this deviation.

We muft remind the perfon who would make oblervations with this inftument, that every part of it mult be fecured againt diffipation as much as poffible, by varnỉhing all its parts, by having all angles, points, and roughnefles removed, and by choofing a dry ftate of the air, and a warm room; and, becaufe it is impoffible to prevent diflipation altogether, we muft make a previous courfe of experiments, in a variety of circumftances, in order to determine the diminution per minute correfponding to the circumftances of the experiments that are to be made with further views.

We truft that the reader will accept of this particular account of an inftrument which promifes to be of confiderable fervice to the curious naturalift ; and we now proceed with an account of the conclufions which have been drawn from obfervations made with it.

Here we could give a particular narration of fome of the experiments, and the computations made from them; but we omit this, becaufe it is really unneceflary. It fuffices to fay, that the veriter has made many hundreds, with different inftruments, of different fizes, fome of them with balls of an inch diameter, and radii of 18 inches. Their coincidence with each other was far beyond his expectation; and he has not one in his notes which deviate from the medium \(\frac{1}{8}\) th of the whole foree, and but few that have deviated \(\frac{1}{T}\) th. The deviations were as frequently in excefs as in defeet. His cuftom was to meafure all the forces by a linear fcale, and cxpreis them by ftraight lines erected as ordinates to a bafe, on which he fet off the diftances from a lixed point; he then drew the mof regular curse that he could through the fummits of thefe ordinates. This method fhews, in the moft palpable manner, the coincidence or irregularity of the experiments.

The refult of the whole was, that the mutual repul. fion of two fpheres, electrified pulitively or negatively, was very nearly in the inverfe proportion of the fquares of the diftances of their centres, or rather in a propor. tion fomewhat greater, approaching to \(\frac{1}{x^{2,06}}\). No difference was obferved, although one of the fpheres was much larger than the other: and this circumflance enables us to make a confiderable improvement on the electrometer. Let the ball A be made an inch in diameter, while B is but \(\frac{1}{4}\) th of an inch. This greatly diminithes the proportion of the irregular aetions of the rett of the apparatus of the whole force, and alfo diminiflies the dinipation when the general intenfity is the fame. according ving oppolire electricities, and which therefore attracto the fame ted eacb other, the refults were not altogether fo relaw.
gular, and a few irregularities amounted to \(\frac{f}{6}\) th of the whole; but thefe anomalies were as often on one fide of the medium as on the other. This feries of experiments gave a refult which deviated as little as the former (or rather lefs) from the inverle duplicate ratio of the diftances; but the deviation was in defect as the other was in excef.

We therefore think that it may be concluoded, that the action between two fpheres is exactly in the inverse
duplicate ratio of the diltance of their centres, and that this dilference between the obferved attrations and repultions is owing to fome unperceived caufe in the form of the experiment.

It mult be obferved alfo, that the attractions and Attractions repulfions, with the fame dentity and the fame dittances, and repulwere, to all fenfe, equal, except in the forementioned \(\begin{aligned} & \text { fions are } \mathrm{co}_{-} \\ & \text {qual at }\end{aligned}\) anomalous experiments. The mathematical reader will qual dif. fee that the above-mentioned irregularities are imper-tances. fections of experiment, and that the gradations of this function of the diftances are too great to be much af. fected by fuch fmall anomalies. The indication of the law is precife enough to make it worth while to adopt it, in the mean time, as a bypothefis, and then to felect, with judgment, fome legitimate confequences which will admit of an exact comparifon with experinent, on fo large a feale, that the unavoidable errors of obfervation fhall bear but an infignifieant proportion to the whole quantity. We fhall attempt this: and it is peculiarly fortunate that this obferved lav of action between two fpheres gives the moft eafy accels to the law of action between the particles which compofe them; for Sir Ifaac Newton has demonftrated (and it is one of his moft precious theorems), that if the particles of matter act on each other with a furce which varies in the inverfe duplicate ratio of the diffances, then fpheres, confifing of fuch particles, and of equal denfity at equal diftances from the centre, alfo at on each other with forees varying in the fame proportion of the diftances of their centres. He demonftrates the fame thing of hollow fpherical fhells. He demonftrates that they act on each other with the fame force as if all their matter were collected in their centres. And, laftly, he demonfrates, that if the law of aftion between the particles be different from this, the fenfible action of fpheres, or of hollow fpherical Thells, will alfo be different (fee Principia, I. Prop. 74, \&e. alfo Astronomy, Encyel. 307.)

Therefore we may conclude, that the law of electric Eledric acattraction and repulion is fimilar to that of gravitation, tinn is inand that each of thofe forces diminithes in the fame pro- verfely as portion that the fquare of the ditance between the par- the fquare ticles increafe. We have obtained much ufeful informa-tance. tion from this difcovery. We have now full confirmation of the propofitions concerning the mutual action of two bodies, each overcharged at one end and undercharged at the other. Their evidence before given amounted only to a reafonable prubability; but we now fee that the curve lise, whofe ordinates reprefent the forces, is really convex to the abfeifia, and that \(\mathbb{Z}+\approx^{\prime}\) is always greater than \(Z^{\prime}+\approx\); from which circumfance all the reft follows of courfe.

Let us now enquire intu the manner in which the Difpofition redundant fivid, or redundant matter, is diftributed in fluid when bodies; the proportion in which it fubfitts in bodies redundane communicating with each other: the tendencies to or deficient. efcape; the forces which produce a transference, \&e. \&e.

In the courfe of this enquiry, a continual reference will be made to the following elementary propofition :

Let ABD (fig. 17.) be the bafe of a cone or pyramid, whole vertex is \(P\), and axis PC; and let \(a b d\) be another fection of it by a plane parallel to the bafe; let thefe two circles, or fimilar polygons, confift of matter or Ruid of equal and uniform denfity; and let \(P\) be a particle of fluid or matter; the attraction or repulfion of this particle for the whole matter or fluid in the figure \(A B D\) is equal to its attraction or repulfion for
the whole matter or fuid in abd. For the attraction for a particle in ABD is to the attraction for a particle fimilarly placed in abd as \(\mathrm{P} c^{2}\) to \(\mathrm{PC}^{2}\); and the number of particles in ABD is to that of thofe in \(a b{ }^{2}\) as \(\mathrm{PC}^{2}\) to \(P^{3} c^{2}\); therefore the whole attraction for \(A B D\) is to that for \(a b d\) as \(\mathrm{P} c^{2} \times \mathrm{PC}^{2}\) to \(\mathrm{PC}^{2} \times \mathrm{P} c^{2}\), or in the ratio of equality.

Cor. 1. The fame will betrue of the action of plates of equal thicknefs and equal denlity; or, in general. having fuch thicknefs and denfity as to contain quantities of matter or fluid proportional to their areas.
2. The action of all fuch fections made by parallel planes, or by planes equally inclined to their axis, are equal.
3. The tendency of a particle P to a plane, or plate of uniform thicknefs and denfity, and infinitely extended, or to a portion of it bounded by the fanc pyramid, is the fame, at whatever diftance it be placed from the plate, and it is always perpendicular to it.
4. This tendency is proportional to the denfity and thicknefs of the plate or plates juintly.

It is only in two or three fimple cafes that we can propofe to fate with precifion what will be the difpofition and action of the electric fluid in bodies; but we fhali felect thofe that are moll iafructive, and connected

92 with the mofl remarkable and important phenomena.
Let \(\mathrm{A} a d \mathrm{D}\) (fig. 18.) and \(\mathrm{E} e b \mathrm{H}\) reprefent the fections of a part of two infinitely extended parallel plates (which we fhall call A and E), confifting of folid conducting matter, in which the elcetric fuid can move without any obltruction, but from which it cannot efcape.

Firfl, Let then be both overcharged, A containing the quantity \(r\) of redundant fluid, and it containing the quantity \(s\), and let \(r\) be greater than \(s\).
The fluid will be difpofed in the following manner:
1. There will be two frata, A abB and GgbH, adjoining to the remote furfaces, in tach of which the quantity \(\frac{r+s}{2}\) will be crowded together as clofe as poffible.
2. Adjoining to the interior furface (that is, the furface neareft to \(E\)) of the plate \(A\), there will be a ftratum \(\mathrm{C} c d \mathrm{D}\), containing the quantity \(\frac{r-s}{2}\) crowded together.
3. The adjacent fide of E will have a fratum E ef F , juf fufficient for containing the quantity \(\frac{r-s}{2}\) at its natural denfity. This fratum will be entirely exhaufted of fluid.
4. The fpaces \(\mathrm{B} b c \mathrm{C}\) and Ffg G will be in their natural fate.

For a particle of fluid in the fpace \(\mathrm{B} b \subset \mathrm{C}\) is urged in the direction a \(d\) by the force \(\frac{r+s}{2}\left(n^{\circ} 91,3.\right)\), and in the direction \(d\) a by the force \(\frac{r-s}{2}\), therefore it is, on the whole, urged in the direction a \(d\) with the force s, which will balance the repulfion of the redundant fluid in the other plate. A particle of fluid in the fpace Ffg G is repelled in the direction be by a force \(\frac{r+s}{2}\) by the fluid in \(\mathrm{G} g h \mathrm{H}\), and it is attracted in the fame direction by the redundant matter in \(E\) ef \(F\),
with the force \(\frac{r-s}{2}\). Thefe make a force \(r\) which balances the repulfion \(r\) of the other plate. No other difpofition will be permanent; for if a particle be taken out from either ftratum \(\mathrm{A} a b \mathrm{~B}\) or \(\mathrm{C} c d \mathrm{D}\) into the fpace between them, the repulfion from that fratum which it quited is leffened, and the repulfion of the uppoite flratum, joined to that of the other plate, will divive it back again. The fame thing holds with refpect to the fluid in the other plate.

Cor. 1. If the two plates be equally overcharged, all the redundant fluid will be crowded on the remote furfaces, and the adjacent furfaces will be in the natural flate.
In the fecond place, let the plates be undercharged, when they and let \(r\) be the fluid wanting in \(A\), and \(s\) the fluid are underwanting in \(\mathbf{E}\), and let \(s\) te greater than \(r\); then,
1. The ftrata adjoining to \(\mathrm{A} a\) and \(\mathrm{H} b\) will be completely extruufted of Auid, and the reduadant matter in each will be fuch as would be faturated by \(\frac{r+s}{2}\).
z. The fratum \(\mathrm{C} \subset d \mathrm{D}\) will contain redundant fluid \(\frac{s-r}{2}\), crowded clofe.
3. The fratum E ef F will be deprived of fluid, and the quantity abfluacted is \(\frac{s-r}{2}\).
a. The fpaces \(\mathrm{B} b \in \mathrm{C}\) and \(\mathrm{F} \int g \mathrm{G}\) are in the natural flate.
The demonfration is the fame as in the former cafe.
Tkirdly, Let A be overcharged, and E underchar- When they ged, A containing the redundant fluid \(r\), and E want- pofine fates, ing the fluid \(s\); and let \(r\) be grater than \(s\). 'Then,
1. The ftrata \(\mathrm{A} a b \mathrm{~B}\) and \(\mathrm{G} g b \mathrm{H}\) contain the re. dundant fluid \(\frac{r-s}{2}\), crowded clofe.
2. The fratum \(\mathrm{C} \subset d \mathrm{D}\) conitains the quantity \(\frac{r+s}{2}-\), crowded clufe.
3. The flratum E ef F is exhauted, and wants the quantity \(\frac{r+s}{2}\).
4. The reft is in the natural fate.

Cor. 2. If the redundant fluid in A be juff fufticient to faturate the redundant matter in E , the two remote furfaces will be in their natural fate, all the redundant Aluid in A being crowded into the ilratum \(\mathrm{C} c d \mathrm{D}\), and ail the redundant matter being in E e \(f\) F.

This difpofition will be the fame, whatever is the diftance or thicknefs of the plates, unlefs the redundant fluid in \(A\) be more than can be contained in the whole of E when crowded clofe.
When the two plates are overcharged, the fluid Preflure preffes their remote furfaces with the force \(\frac{\overline{r+5}}{4}\), aind dency te to \(\begin{gathered}\text { and } \\ \text { fapape. }\end{gathered}\) would efcape with that force if a paffage were opened. It would enter the remote furfaces of two undercharged plates with the fame force; and, in either cafe, it would run from the inner furface of one to the adjacent furface of the other, with the force \(\frac{\overline{r-s}}{4}\).

If one be overcharged and the other undercharged, fluid would efcape from the remote furface with the

Murwal ac- They repel or attraet each other with the furce \(\overline{r+s}{ }^{2}\)
titons. risns. according as they are both over or undercharged, or as one is overcharged and the other undercharged.

This example of paralle! plates, infinitely extended, is the fimpleft that can be fuppofed. But it cannot obtain under our obfervation; and in all cafes which we can obferve, the fluid caunot be uniformly fpread in any ftratum, but mult be denfer near the edges, or near the centre, as they are overcharged or undercharged. Let ABD (fig. 19.) reprefent a fphcre of perfectly conducting matter, overcharged with electric fluid, which is perfectly moveable i! its pores, but cannot
force \(\frac{r-s^{2}}{4}\), and would run through a canal between 4
them with the force \(\frac{r+s}{4}\). efcape from the fphere. Let it be furrounded by con--ducting matter faturated with moveable fluid. It is required to deterninc the difpofition of the fluid within and without this fphere.

Sir Ifaac Newton has demonitrated (Princ. I. 70.) that a particle \(p\), placed anywhere within this fphere, is not affected by any matter that is without the conrentric fpherical furface \(p q r\) in which itfelf is fituated, therefore not affected by what is between the furfaces ABD and \(p q r\). He alfo demonftrates, that the matter within the furface \(p q r\) acts on the particle \(p\) in the rame manner as if the whole of it were collected in the centre C.

Hence it follows, that the redundant fluid will be all conftipated as clofe as poffible within the external furface of the fphere, forming a fhell of a certain minute thicknefs, between the fpherical furfaces ABD and abd; and all that is within this (that is, nearer the centre C) will be in its natural ftate.

With refpect to the diftribution of the fluid in the furrounding matter, which we fuppofe to be infinitely extended, we muft recollect that this thell of conftipated redundant fluid repels any external particle of fluid in the fame manner as if all were collected at C . Hence it is evident, that the fluid in the furrounding matter will be repelled, and, being moveable, it will recede from this centre; and there will be a fpace all round the fphere ABD which is underclarged, forming a thell letween the concentric furfaces \(A B D\) and \(\alpha B \delta\). This fhell will contain fuch a quantity of redundant matter, that its attraction for a particle of fluid is equal to the repulfion of the fhell of fluid crowded internally on the furface \(A B D\). All beyond this furface \(\alpha \beta \delta\) will be in its natural fate; for this redundant matter acts on a particle of fuid, fituated farther from the centre, in the fame manner as if all this redundant matter were collected in the centre \(\mathbf{C}\). So does the redundant fluid in the conitipated fhell. Therefore their actions balance each other, and there is no force exertell on any particle of fuid beyond this deficient faell. This deficient fhell will not affect the fluid in the fphere a bd by Newton's demonfration. No other difpofition will be permanent. But farther: This undercharged fhell nuit be completely exhaufted: for a particle of fluid placed betwecn \(A B D\) and \(\alpha \beta \delta\) will be more repelled by the fluid in the crowded fhell within the furface ABD , than it is attracted by the redundant matter of its own thell that is lefs remote from the centre ; and
it is nut affected by what is more remote from the centre. Therefore the fluid without the fplere ABD cannot be in equilibrio, unk fs the fhell between AB1) and \(\alpha \beta \delta\) be not only rarefied, but altogether exhauted of nuid.

If the fphere be undercharged, the fpace between ABD and \(a b d\) will be entirely cxhaufted of fuid, and there will be a flell \(\alpha \beta \delta\) of redundant matter lurrounding the fphere. All within a \(b d\), and all without \(\alpha 3,8\), will be in its natural fitate. It is unneceffary to repeat the fleps of the fame demonftration.
This valuable profolition is by the Hon. Mr Cavendin.

This would be the difpofition in and about a glafs Confquene globe tilled and furrounded with an ocean of water, efs of this and having reduadant fluid within it, on the fuppofition that glafs is impervious to the electric fluid. But it would nut affect an electrometer, even fuppofing that the movements of the electrometer could be effecied under water. Suppoie the globe of water to be furrounded with air, and that the fluid is diipofed in both in the manner here defcribed; it will be perfectly neutral in its action on any eletrometer fituated in the air. But, Ly reafon of the almoft total immobility of the fluid in pure dry air, this flate cannot foon obtain; and, till it obtain, the conflipated fhell within the glafs muft repel the fluid in an electronneter more than the partially rarefied flell of air, which furrounds the glafs, attracts it. By the gradual retiring of the fluid in the furrounding air from the globe, the attraction of the deferted matter will come nearer to equality with the repulfion of the conftipated fhell within the glafs, and the glube will appear to have loft fluid. Yet it may retain all the redundant fluid which it had at the firft. Therefore we are not to imagine that a body fimilar to this globe has no redundaut eleEtric fluid, or only a fmall quantity, becaule we obferve it inactive, or nearly fo.

Thus we fee, as we proceed, that the Æpinian theory is adequate to the explanation of the phenomena. But we fee it much more remarkably in a very familiar and amuling experiment, ufually called the electric well. See Electricity, Encyel. Sect. x. 4.
To fee it in perfection, make a glafs veffel of globular fhape, with a narrow mouth, fufficiently wide, bowever, to admit an electrometer fufpended to the end of a glafs rod of a crooked form, fo that the electrometer can be prefented to any part of the infide. Smear the outfide of the globe with fome tranfparent clammy fluid, fuch as fyrup. Set it on an infulating fland (a wine glafs), and electrify it pofitively. Hold the clectrometer near it, anywhere without, and it will be frongly affected. Its deviations from the perpendicular (if the ball of the electrometer has alfo been electrified) will indicate a force inverfely as the fquare of the diftance from the centre of the glohe, pretty exactly, if the thread of the electrometer is of filk. Now let down the electrometer into the infide of the globe. It will not be affected in any fenfible degree, nor :pproach or avoid any body that is lying within the glohe. The electrometer may be held in all parts of the globe, and when brought out again, is perfectly, inactive and neutral. But if the balls of the electrometer be touched with a wire, while hanging free within the globe, they will, on withdrawing the wire, repel each other; and when taken out, they will be found negatively eleari-
fied. The experiment fueceer's as well with a metal globe ; nay, even although the mouth be pretty wide; in which cafe, there is not a perfect balance of actiun in every direction. The electrumeter may be made to touch the buttom of the globe, or anywhere not too near the mouth, without acquiring any fenfible clectricity; but if we touch the cmefise with the electromerer, it will inflantly be electrified and ftrongly repclled. Deep cylinders, and all romad veffels with narrow mouths, exlibit the fame faintuefs of clectricity within, except near the brims, although Itrongly electric without; and even open metal cups have the interior electricity much diminifhed.
101 Electric Sodies are
only fuperficially fo.

Reflecting on this valuable propofition of Mr Cavendim, we fee clearly why an overcharged electric is only fuperficially \(\{0\); and that this will be the cafe even although we attempt to accumulate a great quantity of electricity in it, by melting it in a thin glafs globe, and electrifying it while liquid, and keeping up the accumulating force till it beconses quite colld. The prefent writer, not having confidered the fubjeet with that judicious accuracy that Mr Cavendifh exerted, had hopes of producing a powerful and permanent electric in this way, and was mortified and puzzled by the difappointment, till he faw his miftake on reading Mr Cavendifh's differtation.

Thefe obfervations alfo point out a thing which
Cautions in certain experiments. Thould be attended to in our experiments for difcovering the eleetricity excited in the fpontaneous operations of nature, as in chemical compulition and decompofition, congelation, fufion, evaporation, \&c. It has been ufual to put the fubftances into glafs, or other nonconducting yeffels, or into veffels which conduct very imperfectly. In this laft cafe efpecially, the very faint electricity which is produced, infantly forms a compenfation to itfelf in the fubltance of the veffel, and the apparatus becomes almoft neutral, although there may have been a great deal of electricity excited. It will be proper to confider, whether the nature of the experiment will admit of metalline veffels. In the experiments on metalline folutions, the beft method feems to be, to make the veffel itfelf the fublance that is to be diffulved.

For fimilar reafons we may collect, without a more minute examination, that bodies of all thapes, when overcharged, will have the redundant fuid much denfer near the furface than in the interior parts; and denfer in all clevations, bumps, projections, angles, and near the ends of oblong budies; and that, in general, the quantity of redundant fluid, or redundant matter, will be much more nearly proportional to the furfaces of bodies than to their quantities of matter. All this is fully proved by experience. The experiment of the electrified chain is a very beautiful one. Lay al long metal chain in an infulated metal difh furnifhed with an electrometer. Let one end be held an inch or two above the coil by a lilk thread. Electrify the whole, and oblerve the divergency of the electrometer; then, gradually drawing up the chain from the coil, the electrometer will gradually fall lower, and lowering the chain again will gradually raife it.
303.

We sow fee with how. little reafon Lord Mahon con. cluded that the point of his conductor, obferved to be neutral, correfponded with his theory; namely, one of the media of a harmonic divifion. We fee no realon
for beginning the computation at the extremity of the prime conductor. It certainly hould not have been from the extremity. Had the prime conductor been a fingle globe, it thould have begun from the centre of this globe. If it was of the ufual form, with an outAtuding wire, terminated by a large ball, the action of the body of the conductor hould certainly have been taken into the account. In hort, alimoll any point of the long conductor might have been accommodated to his Lurd hip's theory.

We might now proceed to inveltigate the diftribution of the electric fuid in bodies expoled to the action of others, and particularly in the oblong conductors made ufe of in our preparatory propofitions. The problem is determinate, when the length and diameter of cylindric conductors are given ; but even when the electric employed for inducing the electricity is in the form of a globe, we mult employ functions of the diftances that are pretty complex, and oblige us to have recourfe to fecond fluxions. The mutual actions of two oblong conducturs, of confiderable diameters, give a problem that will occupy the firtt mathematicians; but which is quite impruper for this fcanty abItract. Nor is a minute knowledge of the difpofition of the fuid of very in:portant fervice. We may therefore content ourfelves with a general reprefentation of the flate of the fluid in the following manner, which will give us a pretty diftinct notion how it will act in molt eafes :
Let A (fig. 20.) be an overcharged fphere, and BC General rea conducting cylindric or prifmatic body; draw bo pa- 1 refentarallel to BC , and erect perpendiculars \(\mathrm{B} b, \mathrm{C} c, \mathrm{P} p\), dion of the \&ic. to reprefent the equable denfity of the fuid, when of the fluid. the conductor is in its natural ilate; but let \(\mathrm{B} d, \mathrm{C} r\), Ps, sc. reprefent the unequal denfities in its different points, while in the vicinity of the overcharged fphere. Thefe ordinates mult be bounded by a line \(d n r\), which will cut the line \(b c\) in the point \(n\) of the perpendicular, drawn from the neutral point \(N\) of the conductor. The whole quantity of fluid in the conductor is reprefented by the parallelogram \(B C c b\); which muft therefore be equal to the \(\mathrm{f}_{\mathrm{p}} \mathrm{ace} \mathrm{BC} r n d\) : the reundant fluid in any portion CP or PN is reprefented by the faces ort \(p\), or \(t p n\); and the redundant matter, or deficient. fluid, in any purtion BQ , is reprefented by \(b d v q\). The action of this body on any body placed near it, depends entirely on the area comtained between this curve line and its axis \(b c\). The only circumflance that we can afcertain with refpect to this curve is, that the variations of curvathe in every point are proportionas to the forces exerted by the fphere \(A\); and are therefore inverfely as the fquares of the dillances from \(A\). This propetty will be demonfrated by and bye. The place of \(n\), and the magnitude of the ordinates, will vary as the diameter of the conductor varies. We thall confider this a little more particularly in fome cafes which will occur afterwards. We may confider the fumpleft cafe that can occur ; namely, when the conductor is, like a wire, of no fentible dianieter, nay, as containing only one row of particles.

Let AE (fig. 21.) be fuch a \{lender conducting ca- In a very nal ; and let \(\cdot \mathrm{B} b, \mathrm{C} c, \mathrm{E} e\), \&c. reprefent the denfity Iender cao of the flud which occupies it, being kept in this flate nal the murt of inequable denfity by the repulfiun for fome over-be almuft charged body. A particle in C is impelled in the di- cqually direction CE by all the fluid on the lide of \(A\), and in the fributed discction

\section*{ELECTRICITY,}
direstion CA by all the fluid on the fide of E . The moving force, therefore, arifes from the difference of thefe repulfions. When the diameter of the canal is conftant, this arifes only from the difference of denlity. The foree of the element adjacent to E may therefore be expreffed by the execfs of \(\mathrm{D} d\) above \(\mathrm{C} c\), and \(t\) :.e action at the diffance CD jointly. Therefore, drawing \(\beta c\) : parallel to AE , this force of the clement E will be expreffed by \(\frac{d \delta}{c \delta} \dot{x}\), repelling the particle in the direction CA . If CF be taken equal to CD , the force of the element at F will be expreffed by \(\frac{f \stackrel{y}{c r^{2}}}{\dot{x}}\), or \(\frac{f p}{c^{\delta^{2}}} \dot{x}\), alfo impelling the particle in the direction CiA. The joint action of thefe two elements therefore is \(\frac{d \delta+f_{\hat{F}}}{c^{\delta^{2}}} \dot{x}\).
If \(b c e\) were a ftraight line, we fhould have \(d \delta+f\), al. ways proportional to \(6 \delta\); and it might be expreffed by \(m \times c \delta ; m\) being a number expreffing what part of \(c \delta\) the fum of \(d \delta\) and \(f \phi\) amounts to (perlaps \(\dot{i}^{\frac{1}{\delta}}\) th, or \({ }^{1}{ }^{\frac{1}{0}} \mathrm{t}\) th, or \({ }^{\prime}\) 'th, Sc.). But in the cafe expreffed in the figure, \(d\) does not increafe fo falt as \(c^{\delta}\), and \(f_{p}\) increafes fafter than \(c \delta\). However, in the immediate neighbourhood of any poiat \(\mathbf{C}\), we may exprefs the accelerating force tending towards \(A\) by \(\frac{m c \delta}{c \delta^{2}} \dot{x}\), without any fenfihie error ; that is, by \(m \frac{x}{x}\); that is, by the fluxion of the area of a hyberbola HD'G, haying \(\mathrm{CC}^{\prime}\) and CK for its allymptotes; and the whole action of the fluid between F and D , on the particle C , will be expreffed by the area C'CDD'H. Hence it follows, that the action of the fmallett conccivable portion of the canal inmediately adjoining to C on both fides, or the difference of the aetions of the two adjoining elements, is equal to the action of all beyond it. This fhews, that the ftate of compreffion is hardly affected by any thing that is at a fenfible diftance from C ; and that the denfity of the fluid, in ar: incefinituly flender canal, is, to all fenfe, uniform. The geometer will alfo fee, that the fecond fluxion of \(\mathrm{D} d\) is proportional to the force of the diftant body. We learn, therefore, fo much of the nature of the curve \(b c\) c.(Coulonib).

We are now in a condition to examine the communication of electricity by means of conducting canals (which is one of the molt important articles of the ftudy,) having found that the fluid, in a very flender cayo6 nal, is very nearly of uniform denfity throughout. Communi- There can be no doubt but that, if a hody B (fig. cation and 22.) be overcharged or undercharged, any other body transfer-
nnce by
C, which communicates with it by a condueting canal, cuce by canals. will alfo be overcharged or undereharged. It is as cuident, that if a body, in any flate of eleqtricity, be in the neighbourhood of an overcharged or undercharged body \(A\), whike it communicates with \(C\) by a canal leading from the fide moit remote from \(A\), fluid will be 107 driven from B into C , or abtlracted from C into B .

It is not, however, fo clear, that when the canal leads from the fide neareft to \(A\) (as in fig. 2j.), fluid will be driven from B into C . We conceive the fluid to be moveable in the body and in this canal, but not to efcape from it. Its motion, thereforc, in this cafe, fhould, in the opinion of Mr Cavendifh, refemble the
running of water in a fyphon by the preftare of the air, While the repulfion of the redundant fluid in \(A\) allows the bend of the fyphon neareft to A to retain fluid, a current thould take place from \(B\) along the fhort leg. in confequence of the fuperior action on the fluid in the long leg. But ir the repulfion of A can drive the fluid out of the bend between B and F, Mr Cavendifh thinks, that it does not appear that fluid will come up from \(B\) in oprofition to the repulion of \(A\), and then run along to D . But fluid does not move, in cither of thefe eafes, on the principle of a fyphon; becaufe there is nothing to hinder the fluid from expanding in the part EDF. And we are rather difpofed to think, that it will always move from \(B\), over the bend, to C ; Yor even if the fluid can be completely driven out of the bend EF, it muit be done by degrees, and the fluid in the long leg will, from the very begimning of the action of \(A\), be more muved from its place than that in the fhort leg; and therefore will yield to the compreffion, whicit acts tranfverfely, and, by thus yielding more toward \(F\) than toward \(E\), the fluid will rufh through the contracted part, and go into C. We do not fay this with full conlidence; but are thus particular, on account of an important ufe that may be made of the experiment. For if the body A be underehar- Proporal ged, fluid will certainly be attracted from C , and pafs fordifonve: over the bend into B , however great the action of A wg redun. may be. Perhaps this may be fo contrived, therefore, dancy of as to decide the long agitated quellion, Whetber the elic-tricity of excited glafs be plus or minus? If it he found that this apparatus, being prefented to the rubber of an electrical machine, diminithes the pofitive electricity of \(C\), and increales that of \(B\); but that, prefenting the fame apparatus to the prime conductor, makes little change-we may conelude, that the electricity of the prime conduet or is pofitive. We have triad the experiment, paying attention to every circumflace that feemed likely to infure fuecefs; but we have always found hitherto, that the apparueus was equally affected by both electricities.

We mult now confider the aftion of electrified bodies on the canals of communication; becaufe this will give us the eafieft method of afcertaining the propurtion in which the expelling fluid is diftributed between them. For when two bodies communicate by a canal, and have attained a permanent ftate, we mult conceive that their oppofite actions on the fluid moveable along this eanal are in equilibric, or are equal. This will generally be a much ealier problem thai their action on each other, fince we have feen a litule ago, that the fluid in a flender canal is of uniform denfity very nearly. A very few exainples of the molt important of the fimple cafes mult futife.

Therefore let AC a (fig. 24.) reprefent the edge of Action of a a thin conducting circular plate, to which the flender plate on a canal CP is perpendicular in the centre. It is required reaitineal to determine the action of the matter or fluid, uniform- \({ }^{\text {canal. }}\) ly fpread over this plate, on the fluid moveable in the canal PC?
t. Required the action of a particle in \(A\) on the fluid in the whole canal? Join AP; and call CP \(x\), \(\mathrm{AP} y\), and \(\mathrm{AC} r\); and let \(f\) exprefs the intenfity of action at the diftance 1 , or the unit of the fcale on which the lines are meafured.
The action of \(A\) on \(P\), in the direction \(A P\), is \(\frac{f}{g^{2}}\).

This, when eftimated in the direction \(C D\), is reduced to \(\frac{f}{y^{2}} \times \frac{x}{y^{\prime}}\); and is therefore \(=f \frac{x}{y^{3}}\). Therefore the fluxion of the action, in the direction \(\mathrm{CP}^{\prime}\), on the whole canal, is \(f \frac{x}{y^{3}} \dot{x}=f \frac{y \dot{y}}{y^{3}}\) (becaufe \(\left.x: y=\dot{y}: \dot{x}\right)=f \times\) \(\frac{y}{y^{2}}\). The variable part of the fluent is \(=f \frac{-1}{y}\), and the complete fluent is \(=f\left(\mathrm{C}-\frac{1}{y}\right)\), where C is a conftant quantity, accommodated to the nature of the cafe. Now, the action muft vanifh when the canal vanifhes, or when \(x=0\), and \(y=r\). Therefore \(C-\frac{1}{r}=0\), and \(C=\frac{1}{r}\); and the general expreffion of the action is \(f\) \(\left(\frac{1}{r}-\frac{1}{y}\right),=f \frac{y-r}{r y}\), expreffing the action of a particle in the circumference of the plate on the fluid in the whole canal CP.
2. Required the action of the plate, whofe diameter is \(\mathrm{A} a\), on the particle P ?
On a fine Let a reprefent the area of a circle, whofe diameter e particle is the fluxion of this area: becaufe \(r: y=\dot{y}: \dot{r}, 2\) ar \(\dot{r}\) is \(=2 a y \dot{y}\). Therefore the fluxion of the action of the plate on the particle P is \(f \times 2 a y \dot{y} \times \frac{x}{y^{3}}=2 f a\) \(\times \times \frac{y}{y^{2}}\). The fluent of this has for its variable part \(2 f a x \times \frac{-1}{y}\) (for when the particle P is given, \(x\) does not vary). This is \(=2 f a \times \frac{-x}{y}\). To complete this fuent, we mull add a conflant quantity, which fhall make the fluent \(=0\) when the particle \(P\) is at an infinite diftance; and therefore when \(x=y\). Therefore \(\frac{y}{y}-\frac{x}{y}=0\), or \(\mathrm{I}-\frac{x}{y}=0\), or \(\mathrm{C}=1\); and the com. plete fluent for the whole plate is \(2 f a\left(1-\frac{x}{y}\right)\).
xir. The meaning of this expreffion may not occur to the reader : For \(1-\frac{2}{y}\) is evidently an abftract number ; fo is \(a\). Therefore the expreffion appears to have no reference to the fize of the plate. But this agrees with the obfervation in \(n^{\circ} 91\). where it was fhewn that, provided the angle of the cone or pyramid remained the fame, the magnitude of the bafe made no change in its attraction or repulfion for a particle in the vertex.

It will appear by and bye, that \(1-\frac{x}{y}\) is a meafure or function of a certain angle of a cone.

Cor. If PC be very fmall in proportion to AC , the action is nearly the fame as if the plate were infnite: For when the plate is infinite, \(\frac{x}{y}\) is \(=0\), and the action is \(=1\), whatever is the diftance (fee \(n^{\circ} 9:-93\).) Therefore, when \(x\) is very fmall in comparifon of \(r\), and confequently of \(y, i-\frac{x}{y}\) is very nearly \(=1\).

Suppl. Vol. I. Part II.
3. Tho find the action of the plate on the whole co-

The fluxion of this muft be \(=2 f a \times\left(1-\frac{x}{y}\right) a^{\circ}\), nal. or \(2 f a\left(\dot{x}-\frac{x \dot{x}}{y}\right)\), or \(2 f a \times(\dot{x}-\dot{y})\); becaufc \(\dot{y}=\) \(\frac{x x}{y}\). The fluent of this lias for its variable part \(2 f a\) \(\times(x-y)\). A conflant quantity muft be added, which fhall make it \(=0\) when the column \(=0\); that is, when \(y=r\), and \(x=0\); that is, \(C-r=0\), and \(\mathrm{C}=r\). Therefore the complete fluent is \(=2 \int a(x+\) \(r-y\).
Thius we have arrived at a moft fimple expreffion of \({ }_{\text {Genmetri- }}^{11_{3}}\) the attraction or repulfion of a plate for fuch a column, cal exprefor for portions of fuch a column. And it is molt ea- linnof thefe fily conftructed geometrically, fo as to give us a fenfible \({ }^{\text {actions. }}\) image of this action of ealy conception and remembrance. It is as follows: Produce PC till \(\mathrm{CK}=\mathrm{CA}\), and about the centre \(P\) defcribe the arch AI, cutting CK in I. Then \(2 f a \times 1 \mathrm{~K}\) is evidently the geometro cal expreffion of the attraction or repulfion. This is plainly a cylinder, whoie radius is a unit of the fcale, and whofe height is twice IK.

In like manner, by defcribing the arch \(\mathrm{A} i\) round the centre \(p\), we have \(2 f a \times i\) K for the action of the plate on the fmall column \(\mathrm{C} p\); and \(2 f a \times I i\) is the action of the plate on the portion \(P p\).

The general meaning of the expreffion \(2 f a \times I K\) is, that the action of the whole plate on the column PC is the fame as if all the fluid in the cylinder \(a \times 2 \mathrm{IK}\), were placed at the diftance I from the acting particle.

From this propofition may be eafily deduced fome very ufeful corollaries by the help of the geometrical confruction.
1. If PC be very great in comparifon with AC, the action is nearly the fame as if the column were infinitely extended; for in this cafe IK is very nearly \(=\mathrm{CK}\), the difference being to the whole nearly as AC to twice AP.
2. If, in addition to this laft condition, another co-Importane lumn \(p \mathrm{C}\) be very fmall in comparifon of AC , then the corollary. action on PC is to that on \(p \mathrm{C}\) very nearly as \(p \mathrm{C}\) to AC . For it will appear that \(i \mathrm{~K}: 1 \mathrm{~K}=p \mathrm{C}: \mathrm{AC}\) very nearly. It is exaetly fo when \(\mathrm{CP}: \mathrm{CA}=\mathrm{CA}: \mathrm{C} p\); and it will always be in a greater proportion than that of \(p \mathrm{C}\) to IK.

This will be found to be a very inportant obfervation.

The redundant fluid has hitherto been fuppofed to be uniformly fpread over the plate: but this cannot be; becaile its mutual repulfion will caule it to be denfer near the circumference. We have not determined, by a formula of cafy application, what will be the variation of denfity. Therefore let us confider the refult of the extreme cafe, and fuppofe the whole redundant fluid to be crowded into the circumference of the plate, as we faw that it muft be on the furface of a glube.

In this cafe, the action on the fluid in the canal will aftion of be \(f a\left(r-\frac{r^{2}}{y}\right)\). For the area of the plate is \(a r^{2}\), and fc cnce or the \({ }^{2}\) Eancl.
the action of a particle in the circumference on the whole canal was fhewn (\(\mathrm{n}^{\circ} 10 \mathrm{~g}\).) to be \(\left(\frac{y-r}{r y}\right)\). Therefore the action of the whole fluid crowded into the circumference is \(f a r^{2} \times \frac{y-r}{r y},=f a r \frac{y-r}{y}\). It may be reprefented as follows: Defcribe the quadrant \(\mathrm{C} b \mathrm{BE}\), cutting AP and \(\mathrm{A} p\) in B and \(b\). Draw BD and \(b d\) parallel to PC. Then \(\mathrm{PB}=y-r\), and \(\mathrm{DC}=r\) \(\frac{y-r}{y}\). Therefore the action is reprefented by \(f\) multiplying a cylinder, whofe radius is 1 and beight is DC. In like manner, \(d \mathrm{C}\) is the height of the cylinder correfponding to the column \(p \mathrm{C}\), and \(\mathrm{D} d\) the height correfponding to \(\mathrm{P}_{p}\).

Equivaient Lafly, on this fubject. If KI be taken equal to centre of AP, or PL be equal to KI, the repullion whicls all the action.

Cor. 1. When CP is very great in comparifon with CA , the point D is very near to A , and I is very near to \(C\), and \(C D\) is to IK nearly in the ratio of equality. In this cafe the action of the fluid, uniformly fpread over the plate, is nearly double of the action of the fame fluid crowded round the circumference; for they are as cylinders, having the fame bafes and heights in the ratio of 2 IK to DC, which is nearly the ratio of 2 to 1.
2. On the other hand, when the column \(p \mathrm{C}\) is very fhort, the action of the fluid fpread uniformly over the plate is to its action, when crowded round the circumference, nearly in the ratio of 4 AC to \(p \mathrm{C}\). For thefe actions are in the ratio of \(2 f a \times i \mathrm{~K}\) to \(1 f a \times d \mathrm{C}\), or as \(2 i \mathrm{~K}\) to \(d \mathrm{C}\), or nearly as \(2 p \mathrm{C}\) to \(d \mathrm{C}\), or more nearly as \(2 b d\) to \(d \mathrm{C}\). But \(\mathrm{C} d: b d=b d: b \mathrm{~A}+\mathrm{A} d\), or nearly \(=b d: 2 \mathrm{CA}\). Therefore \(\mathrm{C} d: 2 b d=p \mathrm{C}\) : 4CA nearly.
Hence we fee that the action on frort columns is much more diminifhed by the recefs of the redundant fluid toward the circumference than that on long columus. Therefore, any external eleetric force which tends to fend fluid along this canal, and from thence to fpread it over the plate, will fend into the plate a greater quantity of fluid than if the fluid remained ultimately in a fate of uniform diftribution over its furface; and that the odds will be greater when the canal is fhort.
-fluid in the plate, collected in K , would exert on the fluid in the canal CL, is equal to the repulfon which the fame fluid, conftipated in the circumference, would exert on the column CP. For we have feen that the action of a particle in A , on the whole column PC, when eftimated in the direction PC, is \(\frac{y-r}{y r}\); and it is well known that the action of a particle in K for the column CL is \(\frac{1}{\mathrm{KC}}-\frac{1}{\mathrm{KL}}\), or, \(\frac{1}{r}-\frac{1}{y}=\frac{y-r}{y r}\). Therefore the action of the, whole fluid, collected in the circumferenee, on the column CP , is equal to that of the fame fluid, colleeted in K , on the culumns CL .

Cor. I. If the columin CP is very lang in proportion to AC or KC , the ations of the fuids in thefe two different fituations are very nearly the fame. The aetion of the fluid collected in K exceeds its action whan collected in A only by its action on the fmall and renote column LP. The aftion of all the fluid collect-
ed at \(K\) on the column CP, is eafily had by toking \(\mathrm{C} l=\mathrm{KP}\). It is equal to the action of the fame fluid placed in A on the column C 1 .

Cor. 2. The action of all the fluid uniformly fpread, 8220 exerted on the column CP, is to the action of the fame fluid collected in K, exerted on the column CL, as 2 IK to CD .

If the column CP' is very great in proportion to AC , the half breadth of the plate, the action in the firtt cale is very nearly double of the action in the other cafe, and is exactly in this proportion if CP is of inlinite extent.

124
Cor. 3. If CNO be a \(f_{\text {pherical furface or thell of the Adion of }}\) enerical fame thicknefs and diameter as the plate \(\mathrm{A} a\), and con- 'pherical taining redundant fluid of the fame uniform denlity, the furface, or action of this fluid on the column CL is double of the lid, on the action of the fluid uniformly fread over the plate on fame canal. the column CP , and quadruple of the action of the fluid collected in the circumference: for the action is the fame as if all were collected in the centre K , and the furface of the fyhere is four times that of the plate, and therefore they are as IK to 2 CD .

Let us now confider the comparative actions of different plates or fipheres on the canals.

If two circular plates, DE, \(d_{c}^{d c}(\) fig. 25.), or two Antion of Spherical mells, ABO, abo, of equal diameters and two plate, thicknefs with the plates, and containing redundant or two fluid of equal denity, communicate with infunitely ex-ax heir dia tended flraight canals OP, \(O p\), pafling throngh their meters, centres perpendicular to their furfaces, alfo containing when the fluid uniformly diftributed and of equal denfity-the canals are repulfions will be as the diameters. For the repulfion intingit of the fpherical furfaces is the fame is if all the fluid were collested at their centres; and the repultion of the fluid uniformly fpread over the furfaces of the plates is double of its repulfion if collected at the centres of thefe fpheres; it follows, that the repulfions of the plates are proportional to thofe of the fpheres. But becaufe the repulfion of a plate whofe radius is \(r\) was hewn to be \(=2 a \times \bar{r}+\overline{x-y}\), and when the column is infinitely extended, \(x\) is equal to \(y\), and \(\overline{r+x-y}\) \(=r\), it follows, that the repulfions of the plates are as \(2 a \times \mathrm{R}\) and \(2 a \times r\), or proportional to their diameters. Therefore the repulions of the fpheres are in the fame proportion.

Cor. 1. If the canals are very long in proportion to 126. the dianeters of the plates or fpineres, the repultions are nearly in the fame proportion.

Cor. 2. But as the lengths of the canals diminifl, the The prom repultions apprnach to equality; for it was fhewn, that purtion of when the canal was very fnall, the repulfion was to the greaten that for an intinite column as the length of the canal to mininion is is the radius of tiue plate. Therefore if the radius or the the canals greater plate be (for example) double of that of the are fhort. imaller, and the little colunn be rísth of the radius, it will be \(\frac{1}{5}\) th of the radius of the fmaller plate. Now \(\frac{{ }^{2}}{30}\) th of half the repulfion is equal to \(\frac{1}{2} \frac{1}{8}\) th of the double repulion. Alfo, in the cafe of the foheres, the repulfron of a particle at the furface is as the quantity of fluid dipectly, and as the fquare of the radius inverfely; but when the denfity is the tame in both fhells, the quantity is as the furface, or as the fquare of the radius. Therefore the repulfions are equal.

Cor. 3. If the denlity of the fluid in two fpherical hells be inverfely as the diameters, the repulfions for an infinitely

Eis two fpheres two ate cqual the nenverfely as the ria-
meters;
129 Or if the quantity of
redundant redundant
fluid be os the diameter:
infinitrly extended column of fluid are equal; for each repels as if all the fluid was collected in the centre. Therefore, if the denfity, and confequently the quantity, he varied in any proportion, the repulfon will vary in the fame proportion. The repulfions will now be as \(\operatorname{CO} \times \frac{1}{\operatorname{CO}}\) to \(\operatorname{co} \times \frac{1}{c o}\), or in the ratio of equality.

Cor. 4. When the quantities of redundant fluid in two fpheres are proportional to their diameters, their repulfions for au infinitely extended canal are equal: for if this redundant fluid is conflipated in the furfaces of the fpheres, as it aluays will be when they confitt of conducting matter, the denfities are as the diameters inverfely; becaufe the furfaces are as the fquares of the diameters. Therefore, by the laft corollary their actions on an infinitely extended canal are equal. But in fpheres of nonconducting matter it may be differently difpofed, in concentric fhells of uniform denity. This makes no change in the action on the fluid that is without the fphere, bceaufe each flell acts on it as if it were all eollected in the centre. Therefore the repulfions are ftill equal.

Cor. 5. Two overeharged fpheres, or fpherical ficlls, OAB, oab (fig. 26.), communicating by an infiutely extended canal of conducting matter. contain quantities of xedundant fluid proportional to their diameters ; for their actions on the fluid in the interjacent canal muft be in cquilibrio, and therefore equal. This will be the eafe only when the quantities of fluid are in the a proportion of their diameters.

When the canals are very long in proportion to the diancters of the fpheres, the proportion of the quantities of redundant fluid will not greatly differ from that of the diameters.

Cor. 6. When the fpheres of conducting matter are thus in equilibrio, the preffures of the fluid on their furfaces are inverfely as their diameters; for the repulfion of a particle at the furface is the fame with the tendency of that particle from the centre of the fphere, the actions being mutual. Now this is proportional to the quantity of redondant fluid directly, and to the fquare of the diftance from the centre inverfely, that is, to the diameter directly, and to the fquare of the diameter inverfely, that is, to the diameter inverfely.

Hence it follows, that the tendency to efcape from the Spheres is inverfely as the diameter, all other eireumitances being the fame: for in as far as the cfcape proceeds from mere electric repulfon, it mult follow this proportion. Dut there are evident proofs of the co-operation of other phyfical caufes We obferve chemical compofitions and decompofitions accompanying the efcape of eleflric fluid, and its influx into bodies : we are ignorant how far, and in what manner, thefe operations are affected by diftance. Bofeovich flews moft convincingly, that the adtion of a particle (of whatever order of compofition), on external atoms and particles, is furprifingly changed by a change in the diftance and arrangement of its component atoms. A conftipation, therefore, to a certain determined degree and lineal magnitude, may be neceflary for giving occafion to fome of thofe chemical operations that accompany, and perhaps oceafion, the efeape of the electric fluid. If this be the cafe (and it is demonflrable to be poffible, if the operations of Nature be owing to attrac.
tions and repulfions), the efeape \(m: /\) be defultory. is detually 10 ; and this contirns the opinion.

The pulalic is indchted to Mr Caverdifi for the preceding theorems on the action of fuheres and circular plates. He has given them in a more abllract and ge. neral form, applicable to any law of elcetric aftion which experience may warrant. We have accommodated them to the inverfe duplicate ratio of the diftanees, as a point futficiently eitablifhed; and we hope that we have rendered them more fimple and perfuicuous. We have availed vurlelves of Mr Cualomb's demonftration of the uniform denfity in the canal, without which the theorems could not have been demonftrated. The minute quantity of the fuid in the canal can have no fenfible eflect on the dilpofition or proportion of the fluid in the plates of fpheres.

It may be thought that the lalt cotollary, refpecting rhispropothe equilibuium of two fpheres, is nut agreeable to hy- itionagrees droltatical principles, which require the equality of the sith hytwo torces which halance each uther at the urifices of laws. the flender cylindric canal ; whereas, in that corollary, the forces at the extremties of the canal are inmericly as the diameters of the fpheres or plates. Filis would be a valid objection, if the compreting forces acted only on the extremities of the canals; fut they act on every partiele through their whole length. It is not, therefore, the preffuce at one end of the canal that is ia equilibrio with the preffure at the uther end, by the interpofition of the fluid. It is the preffure at one end, together with the fum of all the intermerliate preffures in that direttion, that is in cquilibio with all the preffure in the oppolite direction. The preflures at the ends are only parts of the whole oppolite preftures; they are the firtt in each account. In this manner a flender pipe, having a ball at each end, may be kept filled with mercury, while lying horizontal, if the air in each ball is of equal denity. But it it ive raifed perpendicular to the horizon, it cannot remain filled from end to end, mulds the air of the ball below be matle fo elaftic by condenfation, that its preffure on the lower orifice of the pipe exceed the prelfure of the air in the upper ball on the other orifice by a force equal to the weight of the neicury, that is, to the aggregate of the action of gravity on each particle of mercary in the pipe. 'Therefore the repulfions of the fheres that we are fpeaking of are in equilibrio by the intervention of the fluid in the canal, in perfect confiftency with the laws of hydruftatical preffure.

Mr Cavendith has purfued this fubject mueh faitlier, and has confidered the mutual action of more than two bocies, communicating with each other by canals of moveable fluid unitormly denfe. But as we have not room for the whole of his valuable propolitions, we felected thofe which were elementary and leading theo. rems, or fuch as will enable us to explain the moft important phenomena. They are allo luch, as that the attentive reader will find no difficulty in the inveltgration of thofe which we have omitted.
Mr Cavendifh's moft general propofition is as follows: Ceneral
When ah overcharged hody communicates, by a ca-prep fition nal of verygreat length, ftraight or crooked, with twowth reor more thinilar bodies, alfo at a very great diflance firet to the from each other, and all are in electric equulibrium, and communi-

\section*{ELECTRICITY.}
confequently each body overcharged in a certain determined proportuon, depending on its magnitude, if any two of thefe bodies are made to communicate in the fame manner, their degrees of elcetricity are fuch, that no fluid will pafs from one to the other, their mutual actions on the fluid in this canal being alfo in equilibrio. He brings out this by induction and combination of the fiugle cafes, each of which he denonftrates by means of the following theorem:
The action of an overcharged fyhere ACB (fig. 25.) on the fluid in the whole of a canal \(d f \mathrm{P}\) that is oblique, tending to impel the fluids in the direction of that canal, is equal to its action on the fluid in the whole of the rectilineal canal CP . Let \(b i\) be a minute.portion of the Araight canal, and \(f d\) the portion of the cruoked canal which is equidiftant from the centre C of the fphere; draw the radii \(\mathrm{C} f, \mathrm{C} d\), and the concentric arches \(b f, i d\), cutting \(f \mathrm{C}\) in \(g\); and draw ge perpendicular to \(f d\); the force acting on \(i b\), impelling it toward \(P\), may be reprefented by \(b i\). The fame force acting on \(d f\), in the direction \(c f\), mult therefore be exprefled by \(g f\). This, when eftimated in the direction of the canal \(d f\), is reduced to ef; but it is exerted on each particle of \(d f\). Now \(d f: g f=g f\) : \(e f_{2}\) and \(d f \times e f=g f^{2}=g f \times b i\); therefore the whole force on \(d f\), in the direction \(d f\), is equal to the force on \(i b\), in the direction \(i b\). Hence the truth of the propofition is manifelt:

We beg the curions reader to apply this to the cafe in hand, and he will find that the molt complicated cafes may all be recuced to the fimple ones which we have demonftrated to be ftrictly true when the bodies are fpheres or plates, and the canals infinitely long, and which are very nearly true when the canals are very long, and the bodies fimilar : And we now proceed to one compound cafe more, which includes all the mot remarkable phenomena of electricity.

Let \(\mathrm{HK}, \mathrm{AB}, \mathrm{DF}\), and LM (fig. 27.), be four farallel and cqual circular plates, two of which, HK rand AB , communicate hy a canal GC of indefinite extent, joining their centres, and perpendicular to their planes; let DF and LM be connected in the fame manner, and let the two canals be in one ftraight line; let the plate HK be overcharged, and the plate LM juff faturated. It is required to determine the difpofition and proportion of the electric fluid in the plates which will make this condition of HK and LM pof. fible and permanent, every thing being in equilibrio?

The plate. HK being overclarged, and communicating with \(A B, A B\) muft be overcharged in the fame manner ; and being alfo equal to HK , it muft be overcharged in the fame degree, containing an equal quantity of redundant fluid difpofed in the fame manner. To fimplify the inveftigation, we fhall lirft fuppofe that the redundaut fluid is uniformly fpread over the furfaces of both.

When the plates HK and AB are in this ftate, let the plates DF and LM be brought near them, as is reprefented in the figure, CE being the diftance of the centres of \(A B\) and \(D F\). It is evident that the redundant fluid in \(A B\) will att on the natural moveable fluid in DF, and drive fome of it along the canal EN, and render LM overcharged. Take off this redundant fluid in LM. This will diminifh or annihilate the repulfion which it was beginning to exert on the canal

EN ; therefore more fluid will come out of \(D F\), and again render LM overcharged. The redundent fluid. in LM may again be taken off, in lefs quantity than before, as is plain. Do this repeatedly till no more can be taken off. But this will undoubtedly render DF undercharged, and it will now contain redundant natter. This will act on the fluid in the canal GC, and abftract it from G ; therefore fluid will come out of HK into AB. HK will be lefs overclarged than before, and \(A B\) will be more overcharged. But the now increafed quantity of redundant fluid in \(A B\) will act more ftrongly on the moveable fluid in DF, and drive more out of it. This will leave more redundant matter in it than before, and this will act as before on the fluid in the canal GC. This will go on, by repeatedly touching LM, till at laft all is in equilibrio. Or this ultimate flate may be produced at once by allowing LM to communicate with the ground. And now, in this permanent flate of things, HK contains a certain quantity of redundant fluid; AB contains a greater quantity ; DF contains redundant matter; and LM contains its natural quantity. The demand of the problem therefore is to determine the propartion of the redundant fluid in HK to that in \(A B\), and the proportion of the redundant fluid in \(A B\) to the deficiency of fluid in DF. The oynamical confiderations which. determine thefe proportions are, \(I f\), The repulfion of the redundant fluid in \(A B\), for the fluid in the canal EN, mull be precifely equal to the attraction of the redundant matter in DF for the fame fluid in the canal ; for LM, being faturated, is neutral. \(2 d\), The repulfion of the redundant fluid in HK, for the whole fluid in the canal GC, muf balance the excefs of the repulfion of the redundant fluid in \(A B\) above the attraction of the redundant matter in DF for the fame.

Let the redundant fluid in AB be \(=f\).
the redundant matter in \(\mathrm{DF}=\mathrm{m}\).
the redundant fluid in \(\mathrm{HK}=\mathrm{F}\).
Becaufe HK and AB are equal, there can be no doubt but that the fluid in thofe plates would be fimilarly difpofed; and it is lighly probable, that if AB be very near DF, the redundant fluid in AB , and the redundant matter in DF, will alfo be difpofed nearly in the fame manner. This will appear plainly when we conlider with attention the forces acting between a very fmall portion of \(A B\) and the correfponding portion of \(D F\). The probability that this is the cafe is fo evident, that we apprehend it unneceffary to detail the proofs. We thall afterwards conlider fome circumflances which fhew that the difpofition in the three plates will (though nearly fimilar) be nearer to a ftate of uniform diftribution than if only AB and HK had been in action. Affuming therefore this fimilarity of diftribution, it follows, that their actions on the fluid in the canals will be fimilar, and nearly proportional to their quantities.

Therefore let \(I\) be to \(n\) as the repulion of the fluid in \(A B\), for the fluid that would occupy \(C E\), is to its repulfion for the fluid in EN or CG.

Then the action of \(A B\) on EN is \(f \overline{x n-1}\), and the action of DF on EN is \(m n\); therefore, becaufe the plate LM is inactive, the actions of \(A B\) and \(D F\) on EN mult balance each other, and \(f \times \overline{n-1}=m n\), and \(m=f \times \frac{n-1}{n}\).

The

\section*{ELECTRICITY.}

The repulfinn of \(f\) for the fluid in CG is \(f n\). The attraction of \(m\) for it is \(m \times \overline{n-1}\); and becaufe \(m\) \(=f \times \frac{n-1}{n}\), the attraction of \(m\) for the lluid in CG is \(f \times \frac{\overline{n-1}}{n} \times \overline{n-1}\). Therefore the repultion of \(f\) is to the attragion of \(m\) as \(f n\) to \(f \times \frac{\overline{n-1}}{n}\), or as \(f n^{2}\) to \(f \times \overline{n-1}^{2}\), or as \(n^{2}\) to \(\overline{n-1}^{3}\). Call the repulfion of \(f r\), and the attraction of \(m a\).
We have \(r: a=n^{2}: \overline{n-1^{2}}\)
and \(\quad r: r-a=n^{2}: n^{2}-(n-1)^{2}=n^{2}: 2 n-1\).
Therefore, becautie the repulfion of \(F\) is equal to this excefs of \(r\) above \(a\), we have \(n^{2}: 2 n-1=f: \mathrm{F}\), and \(\mathrm{F}=f \frac{2 n-1}{n^{2}}\), or \(f=\mathrm{F} \frac{n^{2}}{2 n-1}\). Therefore, if \(n^{2}\) is much greater than \(2 n-1\), the quantity of redundant fluid in AB will be much greater than the quantity in HK.

Now, when the electric action is inverfely as the fquare of the diltance, and EC is very fmall in comparifon with \(A C\), we have feen (\(n^{\circ} 115\).) that \(1: n\) near\(\mathrm{ly}=\mathrm{CE}: \mathrm{CA}\), or that \(n\) is nearly \(\frac{\mathrm{AC}}{\mathrm{EC}}\). When this is the cafe, and confequently \(n\) is a confiderable number, we may take the number \(\frac{n^{2}}{2 n}\) for \(\frac{n^{2}}{2 n-1}\) without any great error. In this cafe \(f\) is equal to \(\mathrm{F} \times \frac{n}{2}\) very nearly. Suppofe CA to be fix inches, and CE to be
 or, more exacly, \(F=\frac{n^{2}}{2 n-1}=\frac{14,400}{239} ;=60^{\frac{1}{4}}\). If, inftead of the plate HK, we employ a globe of the fame diameter, \(f\) will be but half of this quantity, or \(f\) \(=\mathrm{F} \times \frac{n}{4}\left(\mathrm{n}^{2} 123,124.\right)\)
It alfo appears, that when the plates \(A B\) and \(D F\) are very uear to each other, and confequently \(n\) a large number, the deficiency in DF is very nearly equal to the redundancy in AB. In the example now given, \(m\) is \(\frac{59}{60}\) of \(f\), being \(=f \times \overline{n-1}\).

Yet this great deficiency in DF does not make it electrical on the fide toward LM. It is juft fo much evacuated that a particle of fluid at its furface has no tendency to enter or to quit it.

Laftly, this great quantity of fluid collected in AB does not render it more electrical than HK.

In general, things are in the condition treated of in \(n^{0} 22,23, \& \mathrm{c}\).

The attentive reader will readily fee, that this account of the apparatus of four plates is only an approximation to the condition that readily obtains under our obfervation. Our canals are not of indefinite length, nor nccupied by fluid that is diftributed with perfect uniformity; nor is the fluid uniformly fpread over the furface of the plates. He will alfo fee, that the real ftate of things, as they occur in our experiments, tends to diminifh the great difproportion which this imaginary ftatement determines. But when the canals are very long in comparifon with the diameters of the plates,
and \(A B\) is very near to \(D F\), the difference from this determination is inconfiderable. We thall note thefe differences when we confider the remarkable phenomena that are explained by them.

In the mean time, we fhall juft mention fome fimple confequences of the prefent combination of plates.
Suppofe AB touched by a body. Electric fluid will Mechod be communicated; but by no means aill the redundant of deftroyfluid contained in AB: only as much will quit it as ing this great acce will reduce it to a neutral fate, if the body which nulation: touches it communicates with the ground ; that is, till r. by dethe attraction in the redundant natter in DF attracts grees; fluid on the remote fide of AB as much as the redundant fluid left in AB repels it. When this has been done, DF is no longer neutral ; for the repultion of \(A B\) for the fluid in EN is now diminifhed, and therefore the attraction of DF will prevail. If we now touch DF, it may again become neutral with refpect to EN; but All will now repel again the fluid in CG, and again be electric on that fide by redundancy. Touching \(A B\) a fecond time takes more fluid from it, and DF again becomes electric by deficiency, and attracts fluid on that fide.-And thus, by repeatedly touching \(A \cdot B\) and DF alternately, the great accumulation of fluid in \(A B\) may be exhaufted, and the nearly equal deficiency in DF may be made up.
But this may be done in a much more expeditious \(\begin{aligned} & \text {. All at } \\ & \text { A. }\end{aligned}\) way. Suppofe a flender conducting canal a \(b d\) brought ence. very near to the outfides of the plates, the end \(a\) being near to A , and the end \(d\) to D . The vicinity of \(a\) to \(A\) caufes the fluid in \(a b\) to recede a little from \(a\) by the repulfion of the redundant fluid in \(A B\). This will leave redundant matter in \(a\), which will ftrongly attract the redundant fuid from \(A\), and a may receive a fpark. But the confequence, cven of a nearer ap. proach of the fuid to the outward furface of \(A\), will render the correfponding part of DF more attra\&tive, and the retiring of fuid from \(a\) along \(a b\) will pufh fome of its natural fluid toward \(d\); and thus \(A\) becomes more difpofed to give out, and \(a\) to take it in, while \(d\) is difpofed to emit, and \(D\) to attract. Thus every circumftance favours the paffage of the whole, or almoft the whole, redundant fluid to quit AB at A , to go along \(a b d\), and to enter into DF at D.
It is plain that there mult be a ftrong tendency in The plates the fluid in \(A B\) to go into \(D F\), and that the platesfrongly ate mutt ftrongly attract each other: A particle of fluidtract each fituated between them tends toward DF with a force, \({ }^{o}\). her. which is to the fole repulfion of \(A B\) nearly at twice the redundant fluid in it to what it would contain if electrified to the fame degree while ftanding alone.

With this particular and rensarkable cafe of induced electricity, we fhall conclude out explanation of MExinus's Theory of Electric Attraction and Rupulfion. The reader will recollect, that we began the confideration of the difpofition of the electric fluid in bodies, in order to deduce fuch legitimate confequences of the hypotherical law of action as we could compare wittr the phenomena.

Thefe comparifons are ahundantly fupplied by the Method of \({ }^{\text {fal }}\) preceding paragraphs, particularly by \(11^{\circ} 74,75,76\); examinirg by \(n^{\circ} \mathrm{J} 30\), and by \(\mathrm{n}^{\circ} 134\).
Let a fmooth metal fphere be electrified pofitively of this thein any manner whatever, and then toueh it with a fmall \({ }^{\text {ory. }}\)
one in its natural ftate. The redundant fluid is divided letween them in a proportion which the theory deterinines with aecuracy. By the theory alfo tlre redundant fluid in both acts as if collected in the centre. 'I herefore the proportion of the repulfions is determined. Thele cau be examined by our electrometer. Eut as this menfuration may be faid to depend on the truth of the theory, we may examine this independent of it Let the balls be equal. Then the redundant fluid is divided equally between the bodies, whatever be the kaw of action. Therefore obferve the electrometer, as it is uffeeted by the eleçtrified body, both before and after the communication. This will give the pofitions of the electrometer which correfpond to the quantities 2 and \(I\).
142 Grantuation of electro- ing it, and then touch the other ball with it. This meter. will reduce to \(\frac{1}{2}\) the original quantity \(\frac{1}{2}\), and therefore to \(\frac{t}{4}\) th of the original quantity. This will determine the value of another polition of the electrometer. In lihe manner, we obtain \(\frac{1}{8}\) th, \(\frac{x^{\frac{2}{6}} \mathrm{f} \text { th, \&c. \&c. Then, by }}{}\) touching a ball contaiting 1 with a ball containing \(\frac{1}{2}\), we get a pulition for \(\frac{3}{2}, \frac{3}{4}, \frac{3}{8}\), \&c. Proceeding in this way, we graduate our electrometer independently of all theory, and can now examine the electricity of budies with confidence. The writer of this article took this method of exami..ing his electrometer, not having then feen Mr Cavendifl's differtation, which gives another mode of meafurenent. He had the fatisfaction of obferving, in the frrf place, that the politions of the infrument, which unquettionably indicated \(1, \frac{7}{2}, \frac{1}{2}\), \&c. were precifely thofe which fhould indicate them if electric repulfion be inverfely as the fquares of the diftances. Having thus examined the electrometer, it was eafy to give to balls any propofed degree of electricity, and then make a communication between balls of vely different diameters. The electrometer informed us when the repeated abitractions by a finall ball reduced the elcetricity of a large ball to \(\frac{1}{5}, \frac{1}{4}\), \&ic. 'This flewed the proportion of eleciricity contained in balls of different diameters. This was alfo found to be fuch as refulted from an action in the inveife duplicate ratio of the diftances.

Long after this, Mr Cavendifl's inveltigation pointed ont the proportion of the redundant eleetric fluid in balls of different lizes joined by long wires; in \(n^{\circ}{ }_{1} 30\), \&c. thefe were examined-and fomid to be fuch as were fo indicated by the electrometer.

And, lattly, the mode of accumulating great quantities of fluid by means of parallel plates, gave a third way of confrouting the hypothetical law with experiment. 'The argument was no lefs fatisfactory in this cafe; but the examination required attention to particulars not yet mentioned, which made the proportions between the fluid in IHK and AB (fig 27.) widely different from thofe mentimed in the preceding paragraplis. Thefecircumftances are among the noll curious and important in the whole itudy, and will be confidered in their place.

We reft therefore with confidence on the truth of The law of the law of clectric action, affumed by us as a principle cientre e- of explanation and inveftigation. It is quite needlefs ti* : : well and unfrofitable to give any detail of the numerous determined.
experiments in which we confronted it with the phenomena. The fcrupulous reader will get ample fatisfac-
tion from the excellent experiments of Mr Coulomb with his delicate electrometer. He will dind them in the Mcmoirs of the Academy of Sciences of Paris for \(178+\), 1785,1786 , and \(1 ; 87\). Some of them are of the fane kind with thofe employed by the writer of this articie ; others are of a diferent kind; and many are directed to another object, extremely curious and impurtast in this ftudy, namely, to difcover how the clectric fluid is difpofed in bodies; and a third fet are directed to an examination of the manuer in which the electric fluid is diffipated along inperfect conducturs.

But we have already drawn this article to a great length, and mult bring it to an end, by explaining fome very remarkable phenomena, mamely, the operation of the Leyden phial, the operation of the electrophorus, and the diflipation of electricity by fharp points and by imperfect conductors.

The ebfervations of Mr Watfon on the neceffity of connecting the rubber of an electrical machine with the ground, might have fuggefted to philofophers the doctrine of plus and minuts electricity, efpecially after the valuable difcoveries of Mr Symmer and Cigna. A ferious confideration of thefe general facts would have led to the theory of coated glafs ahmoit at its firt appearance. But the hiftorical fact was otherwife; and a confiderable time elapled betwen the firf experiments with charged glals by Kleit, and the clear and fatiffactory account given by Dr Franklin, of all the efential parts of the apparatus, and the probable procedure of nature in the phenomenon. The impermeability of glafs by the electric fluid, and the confequent abfraction of it from the one fide while. it was accumulated on the other, furgetted to his acute mind the leading principle of electrical philufopliy; namely, that all the phenomena arife from the redundancy of deficiency of tlectric fluid, and that a certain quantity of in reficles naturally in all bodies in a date of uniform dillribution, and, in this thate, pruduc:s no feufble eifect. This was, in his hands, the inlet to the whole feience; and the greatell part of what has been fince adeded is a more ditinct explanation how the redundancy or deficiency of electric fluid produces the obferved pheno. mena. Dr Franklin deduced this leadiag principle from obferving, that as fait as one fide of a glafs plate was electrified pofitively, the other iide appeared negative, and that, unlefs the electricity of that lide was communicated to other budies, the other fide could be no farther electrified. Having formed this opinion, the old obfervations of Watfon, Symmer, and Cigna, were explained at onee, and the explanation of the Leyden phial would have come in courfe. It is for thefe reafons, as much as for the important difcuovery of the famenefs of electricity and of thunder, that Dr Franklin fands fo high in the rank of philofophers, and is juttly conlidered as the author of this department of natural fcience. Whatever credit may be due to the chemical fpeculations of De Luc, Wilcke, Winkler, and many others, who have attempted to afociate electricity with other operations of nature, by refolving the electric fluid into its confituent parts, all their expla. nations prefuppofe a mathematical and mechanical doctrine concerning the mode of action of the ingredients, which will either account for the total inactivity of the compound, or which will explain, in the very fame manner, the action of the compound itfelf: yet all feem

\section*{ELECTRICITY.}
co content themfelves with a vague and indiflinct notion of this preliminary ftep, and have allowed themfelves to fpeak of el trical atmofpheres, and foheres of activity, and fuch other creatures of the mind, without once taking the trouble of conlidering whether thofe affumptions afforded any real explanation. How different was Newton's conduct. When he difcovered that the planets attracted each other in the inverfe duplicate ratio of the dittances, and that terreftrial gravity was an inftance of the lame force, and that therefore the deflection of the earth was the effect of the aecumulated weight of all its parts; he did not rafhly affirm this of the planets, till he examined what would be the effect of the accumulated attraction in the abovenentioned proportion.

Mr Æpinus has the honour of firt treading in the feps of our illuftrious countryman; and he has dome it with fingular fuccels in the explanation of the phenomena of attraction and repulfinn, as we have already feen. In no part of the thudy has his fuccets been fo confpicuous as in the explanation of the curious and important phenomena of the Leyden phial. It only remained for him to account for the accumulation of fueln a prodigious quantity of this agent as was competent to the production of effects which feemed to exceed the fimilar effects in other cafes, out of all proportion. Indeed, the difproportion is fo great, as to make them appear to be of a different and incomparable nature. Dr Wilfon's experiments in the pantheon are therefore precious, by fhewing that nothing was wanted for the production of all the effects of the Leyden phial hut a furface fufficiently extenfive for containing a valt quantity of fluid, and fo perfectly conducting as to admit of its fimultaneous and rapid transference. Therefore we affert that one of the chief merits of Mr Apinus's theory is the fatisfactory explanation of the accumulation of this vaft quantity of fluid in a fmall fpace. We trult, therefore, that our readers will perufe it with pleafure. But we mut here ubferve, that Mr Repinus has not exprefsly done this in his work which we have already made fo much ufe of, nor in any other that we know of. He has gone no farther than to point out to the mathematicians, that his hypothefis is adequate to the accounting for any degree of accumulation whatever. This he does in, that part of his work which contains the formulx of \(n^{\circ} 38,39,40,41, \&<\). And he afterwards thews, that all the phenomena of attraction and repulion which are obferved in the charged jar are precifely fuch as are neceflary confequences of his theory.

It is to the Hon. Mr Cavendifh that we are indebted for the fatisfactory, the complete (and we may call it the popular), explanation of all the phenomena. Forming to himfelf the fame notion of the mechanical properties of the electric fluid with Mr E.pinus, he examined, with the patience, and much of the addrefs, of a Newton, the action of fuch a fluid on the fluid around it, and the fenfible effects on the bodies in which it refided; the difpofition of it in a confiderable variety of cafes; and particularly its action on the fluid contained in flender canals and in parallel plates;-till he arrived at a fituation of thingo. fimilar to the Leyden phial. And he then pointed out the precife degree of accumulation that was attainable, on different fuppofitions cuncerning the law of electric aetion in general.

We have given an ableraed of this inveligation accommodated to the inverie duplicate ratio of the diftances.

Fron this it appcars (\(1^{\circ}{ }^{1} 35\)), that whatever quantity of electric fluid we can put into a circular plate 12 inches in dianeter, by fimple commanication with the prime conductor of an electrical machine, we can accomulate 60 times as much in it by bringing the plate within \(\frac{2}{2}\) th Hf an inch of another equal plate which communicates with the ground; and it appears in no 139, that all this accumulated fluid may be transferred in an inftant to the other plate (which is thewn to be almoft equally deprived of fluid), by connecting the two plates by a finall wire.

But as it was alfo fhewn in that paragraph, that the force with which the accumulated fluid was attracted by the redundant matter in the other plate was exeeedingly great, and confequently its tendency to efcape was proportionably increafod; this accumulation cannot be obtained unlefs we can prevent this fpontancons transference.

Here the non-conducting power of idio-electrics, inexplicawithout any diminution, the action of the electric fluid ble by mas on fluid or matter on the other fide of them, comes to terial atmoour aid, and we at once think of interpofing a plate of fpheres. glafs, or wax, or rofin, or any other eleftric, between our conducting plates. Such is the immediate fuggeftion of a perfon's mind who entertains the Epinian notion of the electric fluid; and fuch, we are convinced, is the thought of all who imagine that they underftand the phenomena of the Leyden plial. But thofe who attempt to explain electric action by means of what they eall electric atmolphere of variable denfity or intenfity, are not intitled to make any fuch inference, nor to expect any fuch phenomena as the Leyden phial exhibits. Electricity, they lay, acts by the intervention of atmofpheres: Thercfore, whatever allows the propagation of this action (conceive it in any manner whatever), allows the proparation © f thene agents; and whatever does not conduct elechic action, does not conduct the agents. Interpoled glafs fould therefore prevent all action on the ether plate. This is true, even although it were poflible (which we think it is not) to form a clear notion of the free paffage of this material atmofphere in an infant, and this without any diminttion of its quantity, and confequently of its action, by the difplacement of fo much of it by the folid matter of the body which it penetrates. Yet with. out this undiminifhed action of the electrified plate on the fluit, and on the matter, beyond the glafs, and on the canal by which its flaid may be driven off into the general mais -- no fuch accumulation can take place; and if the phenomena of the Leyden plial are agreeable to the refults of the Apimian liypothefis, all ex. planation by atmofpheres mutt be abandoted. Indeed when the partifans of the atmofpheres attempt to explain their conceptions of them, they do not appear to differ from what are called jpheres of acivity (a phrafe firt ufed by Dr Gilbert of Colchetter, in his celebrated work De Magnete et Corporibus Magneticis): and (pheres of activity will be found nothing more than a figurative expreffion of fome indiftinet conception of ailion in every direction. When we ufe the words attragion and repulfion, we do not fpeak a whit more figuratively than when we ufe the general word agion. Thefe terms are all figurative, only atfration and repulfion have the ad-

\section*{EIE ETRICITY.}
rantage of fpecifying the direation in which we conceive the action to be exertcd.

It therefore becomes fill more intereling to the philofopher to compare the phenomena of charged glass with the EPinian theory. They afford an experimentum
\(15:\)
Phenomena of charsed glats explained. crucis in the queltion about electric atmofpheres.

Let \(G\) (iig. 28.) reprefent the end of a prime conductor, furnithed with Henley's electrometer. Let \(A B\) reprefent a round plate of tinfoil, patted on a pane of glafs which exceeds the tinfoil about two inches all round. The pane is fixed in a wooden foot, that it may Aand upright, and be fhifted to any diftance from the eonductor. DF reprefents another plate of the fame dimenfions as \(A B\), in the centre of which is a wire \(E N\), having a finall ball on the end \(N\), to which is attached a Canton's electrometer. This wire paffes through the wooden ball \(O\), faftened to the infulating thand P. The glafs pane mult be very clean, dry, and warm. Connect the conductor \(G\) with \(A B\) by a wire reaching to the centre \(C\). Turn the cylinder of the electrisal machine flowly, till the electrometer rife to \(30^{\circ}\) or \(40^{\circ}\), and note the number of turns. Take off the electrieity; and having taken away the connecting wire GC, turn the machine again till the electrometer rife to the fame height. 'The difference in the number of turns will give fome notion of the expenditure of fluid neeeffary for eleetrifying the plate of tinfoil alone. This will be found to be very trifling when the electricity is in fo moderate a degree. It is proper, however, to keep to this moderate degree of electrification, becaufe when it is much higher, the diffipation from the edges of the plate is very great. Replace the wire, and again raife the electrumeter to \(30^{\circ}\). Now bring forward the plate DF, kecping it duly oppolite and parallel to \(A B\), and taking care not to touch it. It will produce no fenlible change on the polition of the electrometer till it come within four or three inches of the glass pane; and even when we bring it much nearer (if a fpark do not fly from the glafs pane to DF), the electrometer HG will fink but two or three degrees, and the electrometer at N will be little affected. Now remove the plate DF again to the diftance of two or three feet, and attach to its ball N a bit of chain, or filver or gold thread, which will trail on the table. Again, raife the electrometer to \(30^{\circ}\), and bring DF graduaily forward to AB. The electrometer HG will gradually fall down, but will rife to its former height, if DF be withdrawn to its firf fituation. It is farcely neceffary to fhew the conformity of this to the theory contained in \(n^{\circ} 134,335,8 \mathrm{Ec}\). As the plate DF approaches, the redundant fluid in \(A B\) acts on the fluid in \(D F\), and drives it to the remote end of the wire EN, as was fhewn by the divergency of the balls at N ; and then an accumulation begins in AB , and the electrometer HG falls in the fame manner as if part of the fluid in the prime conductor were communicated to \(A B\). When DF communicates with the ground, the electrometer at N cannot fhew any electricity, but much more fluid is now driven out of \(\mathrm{DF}^{3}\), in proportion as it is brought nearer to \(A B\). Inftead of connecting \(A B\) immediately with the prime conductor, let the wire GC have a plate at tlie end \(G\), of the fame dimenfions as \(A B\), having an electrometer attached to the fide next to \(A B\). Let this apparatus of two plates be electrified anyhow, and note the divergency of the electrometer at H , be-
fore DF, communicating with the ground, is brought near it, and then attend to the changes. We fhall find the divergency of this electrometer correfpond with the diftance of DF very nearly as the theory requires.

152
While the plates AB and DF are near each other, State of the efpecially when DF communicates with the ground, ifcoating. we hang a pith-ball between them by a filk thread, it will be Arongly attracted by the plate which is neareft to it, whether DF or AB; and having touched it, it will be brifkly repelled, and attracted by the glafs pane, which will repel it after contact, to be again attracted and repelled by DF ; and thus bandied between the plates till all clectricity difappear in both, the electrometer attached to \(H\) defcending gradually all the while.

As all thefe phenomena are more remarkable in proportion as the plates are brouglit nearer, they are moft of all when DF is applied clofe to the glafs pane. And if, in this fituation, we take any accurate method for meafuring the intenfity of the electricity in the plate HG, before the approach of DF , we fhall find the diminution, occationed by its coming into full contact with the pane, confiderably greater than what is pointed out in \(n^{\circ} 135\). When we employed plates of 12 inches diameter, pafted on a pane one fortieth of an inch in thicknefs, we found the diminution not lefs than 199 parts of 200 ; and we found that it recuired at lealt 200 times the revolution of the cylinder to raife the electrometer to the fame height as before. This comparifon is not fufceptible of great accuracy, by reafon of many circumflances, which will occur to an electrician. But in all the trials we have made, we are certain that the accumulation greatly exceeded that pointed out by the Æpinian theory as improved by Mr Cavendifh. And we muft here obferve, that we found this fuperiority more remarkable in fome kinds of glafs than others, and more remarkable in fome other idioelectrics. We think that, in general, it was moft remarkable in the coarfe kinds of glafs, provided they were uniformly tranfparent. We found it moft remarkable in fome common glafs which had exfoliated greatly by the weather; but we alfo found that fuch glaffes were very apt to be burt by the charge. The hardeft and beft London crown-glafs feemed to accumulate lefs than any other; and a coloured glafs, which when viewed by reflection feemed quite opake, but appeared brown by tranfmitted light, admitted an accumulation greatly exceeding all that we have tried; but it could not be charged much higher without the certainty of being burf. This diverfity in the accumulation, which may be made in different kinds of glafs, linders us from comparing the abfolute accumulations afligned by the theory with thofe which cxperiment gives us. But though we cannot make this comparifon, we can make others which are equally fatisfactory. We can difcover what proportion there is between the accumulation in glafs of the fame kind, as it may differ in thicknefs and in extent of furface. Uling mirror glafs, which is of uniform and meafurable thicknefs, and very flat plates, which come into accurate or equable con-tact-we found that the accumulation is inverfely as the thicknefs of the plates; but with this exception, that when two plates were ufed inftead of a plate of double thicknefs, the diminution by the increafe of thicknefs was not nearly in the proportion of this increafe. In-

Atead of being reduced to one hallf, it was more than two-thirds; and in the kind called Dutch plate, the diminution was inconliderable.

The experiments with the Dutel and other double plates, fuggefled another inflructive and pretty experiment. Obferving thefe plates to cohere with confiderable force, it was thought worth while to meafure it ; which was attempted in this manner: ' wo very hat brafs plates AB, DF (fig. 29.) furnifled with wires and balls, were fufpended. about three inches afunder, by filk threads, as reprefented in the figure. At \(C\) was attached a very fine filver wire, which hung very loofe between it and the prime conducter, withont co. ming near the table. Another was attached to NT which tunched the table. A plate of mirror glafs was fet between them, as thewn by QR. When this apparatus was electrified, the threads of fufpenfon imme diately began to deviate from the perpendienlar, and the plates to approach the glars pane and each other. The pane was carefuily hifted, fo as to he kept in the exact middle between them. This refult flewed vory plainly the prefture of the Aluid on one of the plates, and the mutual attraction of the redundant matter and redurdant fluid. This increafed as the accuitulation increafed; and it was attempted io compare tiue attraction with the accumulation, by comparing the deviation of the fufpending threads with that of the electrometer attached to the prine conductor ; but we could not reconcile the feries (which, however, was cxtmenely regular) with the law of electric action. This harmony was probably ditturbed by the force employed in raifug the filver wires. When more flexible filver threads wele ufed, much was loll by diffipation from the roughnefs of the threart. We did not think of emaploying a fine faxen thread moiftened: but, indeed, an agreement was hardly to be expected; becaule theory teaches us, that the diltribution of the redundant fluid in AB will be extremely different from the diltribution of the redundant matter in DF, till the plates cone very near each other. The accumulation in AB depends greatly on the law of diftribution, being lefs (with any degree of redundancy) when the fluid is denfer near the centre of the plate. Other circumftances concurred to dilturb this trial; but the theory was abundantly confirmed by the experiment, which thewed the Atrong attiaction arifing from the accumulation. This was fo great, that althourg the plates were only three inches in diameter, and the glafs pane was \(\frac{{ }^{3}}{3}\) of an inch thick, and the threads deviated about is degrees from the perpendicular-it required above an ounce weight, hung on the wire EN , to feparate the plates from the glafs.

The experieneed electrician need not be told, that by bringing the two ends of a bent wire in contact with the two plates (fint touching DF with it) difcharges the apparatus, and caufes the plates to drop off from the pane. But he may farther obferve, that if there be attached to each end of the difcharging wire a downy feather, and if he firt bring the end near the plate DF, and obferve the feather to be not at all, or but a very little, affected, and if he then bend round the other end toward the plate AB, both feathers will immediately fretch out their fibres to the plates, and cling falt to them, long before the difcharging fpark is feen. This is a fine proof of the procefs of difcharge, which begins by the induction of electricity on the ends of the

Suppl. Vol. I. Part II.
difeharging wire ; firf. negative elcetricity on the end that approtches \(A\), and, in the fame infant, oppofite electricities at D and the adjoining end ol the wire.

The fullowing obfervation of Profeflor Rishmann of Beautifut St Peterfoursh (the gentleman who fill a Cacrifice to and idtrucelectrical ftudics by a thmader Itroke from his afpua- tie experitus) is extremely infructive and amuling. Let a glats inent by pane be coated on both fides, and fumified with a tmatl Richmuan. eleetrometer attached to the coatings. It is reperefote ed as if fecon edgewife in fig. \(;=\). let it be charged po. ditively (that is, by redundancy) by the coating \(A B\), while 1)F communicates with the ground The electrometer A a will Iland out from the piate, and D) \(d\) will hang down clule by its cuating, as long as 1)10 communicates with the ground. But as the electricity gradually dilfipates by communication to the contignour air, the ball \(a\) will giadually, but very fluwly, fall down. Wre may judge of the intonfty of the remaining electricity by the deviation of the electrometer, and we may conceire this deviation divided into degrees, indicating not angles, but intentities, which we conceive as proportional to the redundancy or deficiency which uccafion them.

If we take away the communication with the gromad, we hall obferse the bail a fall down very fpeedily, and then more flowly, till it reach about half of is hirt clevation. The ball \(d\) will at the fame time ife to searly the fame height; the angle !etwen the two clectrometers continuing nearly the lame as at firtl. When a has ceafed to rife, both bills will vely flowly defeen t, till the charge is loft by diffipation. If we toll h DT during this defcent, \(a^{\prime}\) will immedia:cly fall down, and a will as fuddenly rife nearly wismeh; the angle between the electrometers contianing nearly the fance. Remove the finger from \(\mathrm{DF}^{2}\), and \(a\) will fail, and \(a\) will rife, to nearly their former places; and the flow icefcent of both will again continue. The fame thing will happen if we touch \(A B\); a will fall down clofe to the plate, and \(d\) will rife, \&c. And this alternate touching of the coatings may be repeated fonse husidreds of times before the plate be difcharged. If we fufpend a crooked wire \(\mathrm{v}_{\mathrm{o}} u\), having two pith balls \(v\) and \(u\) from an infulated point \(m\) above the plate, it will vibrate with great rapidity, the balls lliking the cuatings alternately; and thus retioring the equilibrium by tleps. Each itroke is accompanied by a fpark.

All thefe phenomena are not mbly coniequences of llieory of the theory, but their meafures agree precifely with the :2. computations deduced from the formule in no 22,23 , 24, accommodated to the cafe by means of \(n^{\circ} 1 ; 5\) and \({ }^{5} 3^{6}\), as we have yerified by repeated trials. But it would occupy much room to trace the agreencont here, and would futigne fuch readers as are not familiarly converfant with fuxionary culculations. The inquifitive reader will get full conviction by perufing \(E_{1}\) inus's Effay, tppendix i. A very diftinet notion nay he conceived of the whole procels, by fuppofing that in a minute \(A B\) lofes \(\frac{1}{\text { o }}\) th of the unbalanced redundancy actually in it, and confequently diminifhes ... inucis in its action. It will be proved afterwards, that the diffipations in equal times are really in propustion to the fupericial repulfons then exerted. We may alío tuppofe, that the action of the redundant fluid, on redundant matter, in either coating, on the external fluid contiguous to it, is to its action on the nluid contiguous to

\section*{ELEGTRIGITY.}
the other coating in the conftant proportion of in to 9. We felect this proportion for the fimplicity of the computation. Then the difference of thefe actions is alwayes \(\frac{1}{10}\) th of the full action on the fluid contiguous to it. This is alfo an exact fuppolition in fome particular cafe, depending on the breadth of the coating and the thicknefs of the pane.

Now, let the primitive unbalanced repulfion between \(A B\) and the contignous fluid of the electrometer be 1 co , while DF communicates with the ground. The ball a will fland at 105 ; the ball \(d\) will hang touching 1)F. Then \(a\), by lofing \({ }^{\frac{1}{0}} \mathbf{0}\) th, retains only 90 , and would fink to \(90^{\circ}\) : But as this deftroys the equilitrium on the other fide, fluid will enter into DF, fo as to reduce the deficiency T \(^{\frac{2}{\sigma}}\) thl. 'Therefore nine degrees of fluid will enter; and its action on \(a\) will be the fame as if Pothe of 4 , or 8,1 had been refored to \(A B\). Therefore \(a\) will rife from 90 to 98,1 ; or it will fink in une minate from 100 to \(9^{8,51}\).

But if we have cut off the communication of DF with the ground, this quantity of fluid cannot comes into DF; and the quantity which really comes into it from the air will be to that which efcapes from A as the attraction on the fide of DF to the repulfion on the fide of AB . By the diminution of the repulion \(\mathrm{r}^{\prime}\) the , and the want of 9 degrees of fluid in DF to balance it, DF acquires an attraction for fluid which may be called 9 . Therefore, fince \(\frac{-r^{\prime}}{}{ }^{\text {th }}\) of the primitive repulfion of \(A B\) las diffipated 10 meafures of fluid in the minute, the attraction of DF will caufe it to acquire \(\frac{1}{10}\) th of 9 , or 0,9 , from the air in the fame minute. At the end of the minute, therefore, there remains an unbalanced attraction for fluid \(=8,1\); and confequently an unbalanced repulfion between the redundant matter in DF, and that in the ball \(d\). Therefore \(d\) will rife to 8,1 . But a cannot now be at 98,1 ; becanfe DF has not acquired 9 meafures of fluid, but only \(\frac{9}{10}\) ths of one meafure. Therefure \(a\), inflead of rifing from 90 to \(9^{8,1}\), will only rife to \(90+\frac{9}{10}\) ths \(\times \frac{9}{r_{0}}\) ths; that is, to \(90,8 \mathrm{r}\).

At the clofe of the minute, therefore, \(a\) is at \(90,8 \mathrm{t}\), and \(d\) is at \(8, \mathrm{x}\), and their diftance is 98,91 . In the next minute, \(A B\) will lofe \(\frac{{ }^{\prime}}{T 0}\) th of the remaining unbabanced electricity of that fide, and DF will now acquire a greater proportion than before; becaufe its former unbalanced attraction gets an addition equal to \(\mathrm{y}_{0}\) ths of the lofs of AB . This will make a larger compenfation in the action on \(a\), and \(a\) will not fall fo much as before. And becaufe in the fucceeding minutes the attraction of DF for fluid is increafing, and the repulfion of \(A B\) is diminihing, the compenfation in the action on \(a\), by the increafed attration of DF, continues to increafe, and the defcent of \(a\) grows continually fower ; confequently a time muft come, when the repulfion of \(A B\) for fluid is to the attraction of DF for it, nearly in the proportion of 10 to 9 . When this frate obtains, \(d\) will rife no more ; becaufe the receipt of fluid by DF, being now \(\frac{9}{10}\) ths of the lofs by AB , it will exactly compenfate the additional attration of DF for fluid, occafioned by that lofs. The next lofs by \(A B\) not being fo great, and the next receipt by DF continuing the fame, by reafon of its undiminifhed attraction, there will be a greater compenfation in the action on \(a\), which will prevent its defeending fo faft; and there will be more than a compenfation for the ad-
ditional attraftion of DF for fluid: that is, the fluid which has now cone into DF will render it, and alfo the hall \(d\), lefs negative than before ; and therefore they will not repel fo ftrongly. Therefore \(d\) nuft now defcend. It is evident, that fimilar reafons will fill fubfift for the flow defcent of \(a\), and the flower defcent of \(d\), till all redundancy and deficiency are at an end.

This maximum of the elevation of \(d\) happens when a has defcended about one half of its elevation ; that is, when the unbalanced repulfion of \(A B\) is reduced to about one-lialf. For if one-half of the unbalanced fluid be really taken out of \(A B\), and if DF can get no fupply whatever, it muft acquire an attraction correfponding to roths of this; and if the fupply by the air be now opened to it, things will go on in the way already defcribed, till all is difeharged.

This account of the procefs is only an approximation; becaufe we have fuppofed the changes to happen in a defultory manner, as in the popular way of explaining the acceleration of gravity. The rife of \(d\) is not at an end till the attraction of DF for fluid is to the repultion of \(A B\) as 19 to 20.

But if we interrupt this progrefs in any period of it, by touching DF, we immediately render it neutral, and \(d\) falls quite down, in confequence of receiving a complete fupply of fluid. But this muft change the flate of AB, and canfe it to rife \(\frac{9}{10}\) ths of the defcent of d. As \(a\) and \(d\) were nearly at an equal height before DF was touched, it is plain that a will rife to nearly twice its prefent height; after which, the fame feries of phenomena will be repeated as foon as the finger is removed from DF.

If, inttead of touching.DF, we touch \(A B\); the fanc things mult happen; a muft fall down, and \(d\) inuft rife to nearly twice its prefent height, and all will go on as before, after removing the finger. Lafty, if inttead of allowing either fide to tonch the ground alternately, we only touch it with a finall infulated body, fuch as the wire with the balls \(v\) and \(u\), the ball attached to the fide touched finks, till the electricity is fhared between the coating and the wire with balls. The ball attached to the other coating rifes \(\frac{9}{0}\) ths of the finking. of the firt ball. The crooked wire ball is now repelled by the coating which it touched, and the other ball is brought near to the other coating, and mult be attracted by it, becaufe the electricities are oppofite. This operation evidently tends to transfer the redundant fluid by degrees to the fide where it is deficient. It needs no explanation. We fhall only mention a thing which we have always obferved, without being able to account for it. The vibration of the wire acquires a certain rapidity, which continues for a long while, and fuddenly accelerates greatly, and immediately afterwards ceafes altogether.

This pretty experiment of Profeffor Richmann will be found very inftructive ; and will enable us to underfland the operation of the electrophorus, and to fee the great miflake of thofe who fay that it is perfectly fimilar to a difcharged glafs plate.

Thus, then, we fee, that all the claffes of phenome- 159 na, connected with attraction and repulfion, are precife-tion difjano ly fuch as would refult from the action of a fluid fo \({ }^{\text {id demon- }}\) coutituted. The complete undiminifhed action of the irated. caufe of thofe phenomena on the other fide of the interpofed non-conductor of that caufe is demonftrated, and

\footnotetext{
all
}
all cxplanation by the mechanical action of material elatlic atmolpheres of variable dendity mult be aban doned, and the infinitely limpler explanation by the attractive and repulive forees of the fluid itfelf muft be preferred.

So lapepily does the Franklinian theory of pofitive and negative electricity explain the phenomena, when a fuitable notion is formed of the manner of action of this fluid. We cannot but think that this is attained, when. to the general doctrine of Repinus, we add the fpecification of the law of action, fo fully verified by the experiments of Mr Coulomb, which are in the hands of the public, and are of that fimple nature that any careful experimenter can convince himfolf of their accuracy (See \(n^{0} 14\). .) We may therefore proceed with forne confidence, and apply this doctrine even to cafes where experiment does not offer itfelf for proof.
Dr Franklin affirms that electric fluid cansot be liranklin minaken in thrown into one fide of the coated pane unlefs it be fuppofing abitracted from the other; and that therefore the charthat a chare ged glafs contains no more than it did before charging.
ged plate ged plate nitural quantity of do not communicate with the ground. He proves it alfo by faying, that if a perfon, when infulated, difcharges a glafs through his own body, he is not found clectrified: And he infers, as a neceffary confequence of this, that a feries of any number of jars may be charged by the fame turns of a machine, if we make the outtide of the firf communicate with the infide of the fecond, and the outfide of the fecond with the intide of the third; and fo on; and the outfide of the laft communicate with the ground. Having made the trial, and having found that more turns of the machine were neceffary, he attributes this to diflipation into the air by the communication. But our theory teaches us otherwife. We learn from it, that the redundant matter in the plate DF is lefs than the redundant fluid in AB , in the proportion of \(n-1\) to \(n\); and therefore the redundant fluid in the overcharged fide of the next plate is no greater. The charge or redundancy in the \(m\) th jar of the feries will therefore be \(\left.\frac{\overline{n-1}}{n}\right|^{m}\). Thus, if \(n\), or the charge of the firft jar, be 60 , the charge of the loth jar will be nearly 51. Although a coated plate cannot be charged unlefs one of the coatings communicate with the ground, it may be eleariffed as much as one of the coatings can be alone. And this is feen in our attempt to charge it: For as foon as we attempt to clectrify one fide, the other is eleatritied alfo; for it gives a fark which no unelectrified body will do. Alfo, when we difcharge a jar by an infulated difcharger, we always leave it cleCtrical in the fame way with the body from which it was charged. If a man is not found electrified after having difcharged a jar through his own body, it is owing to the great furface of his body, which reduces the fimple elcetrification of a fide of the jar to a very infignificant and infenfible quantity.

Wilcke (and we believe Franklin before him) maintains, that when the jar has been charged, by connecting one fide with the prime conductur, and the other with the rubber, it is nentral and inactive on both fides. But this is not fo ; and a flight reflection might have convinced them that it cannot be fo: if it were, the jar could not be difcharged. Each fide, while con-
nected with the machine, wult be in the condition of the part with which it is comneceed, and in a difpofition to take or give. If the trial be carefully made, it will be found to he equally attive on both fides; and the difcharging rod, having down on its ends, will fhew this in an unequivocal manmer, and fhew that its condition differs in this refpect from that of a jar charged in the ordinary way. It is in the maximum itate of Richmann's plate, deferibed in \(n^{\circ} 156\). when \(d\) rifes no more.

In difcharging a jar A, if inllead of the outtide con- Charye one municating with the infide by a wire, we make it com-jir by the municate with the intide of a fecond jar B, while the difcharge outfide of B is made to conmunicate with the infide of of another. \(A\), we fhall find be charged by the difcharge of \(A\); and that the difcharge of \(A\) is nut complete, the charge 22 always remaining, whatever may have been the magnitude of \(n\).

We may infer from this experiment, that when a mportant fhock is given to a number of perfons \(a, b, c, \& c\). we infereoce. are not to conclude, that the fluid which comes into the deficient fide of the jar is the fame which came out of the redundant fide. The whole, or perlaps only is part, of the moveable fluid in the perfon a goes into \(t_{0}\) replacing as much as has patfed from \(b\) into \(c, \& c\). In deed, where the canal is a nender wire, we may grant that great part of the individual particles of fluid which were accumulated on the infide of the jar have gone into the outfide. Perhaps the quantity transferred, even in what we call a vory great difcharge, may be but a fmall proportion of what naturally belongs to a body. This may be the reafon why a charge will not melt more than a certain length of wire. Mr Cavendifl afcribes this to the greater obftruction in a longer wire; but this does not appear fo probable. A greater obftruction would occafion a longer delay of the tranfference; and therefore the action of the fame quantity would be longer continued. He proves, that a metal wire conducts many hundred times fafter than water ; yet, when water is difipated by a difcharge, it is found to have actually gonducted a much greater proportion of the whole charge. We afcribe it chiefly to this, that, in a fhort wire, the quantity transferred exceeds the whole quantity helonging to the wire.

It is furely needlefs to prove that the thery of 162 Leyden phial is the fame with that of the coated pane. Thiallite The only diference is, that we are not fo able to tell \({ }^{3}\) coated the difpofition of the accumulated luid, and the evacua- \({ }^{\text {panco }}\) ted matter, in every figure. When the phial is of a globular form, and of uniform thicknefs, with an exceedingly fmall neck, we then knew the difpofition nore accurately than in a plate. The redundant fluid is then unifortnly diftributed. If we could infure the uniformity of thicknefs, fuch a phial would be an excellent unir for meafuring all other clarges by; but we can neither infure this (by the manner of working glafs), nor meafure its want of uniformity: whereas we can have mirror plate inade of precifely equal thicknefs, and meafure it.. This, thercfure muft be taken as our unit.

And here we remark, that this gives us the moft Excellent perfect of all methods for comparing our theory with necthod for experiment. We muft take two platss, of the dame verifying glafs and the fame thicluefs, but of different dimenlions of coated furface. We mull charge both by very long concueting wircs ou both fides, and then meafure
how often the charge of the one is contained in the other. MI Cavendif thas given an unexcept:onable method of doing this independent of all theory. As it applies equally to jars, however irregular, we fhall take. it altogether.
Meafure of When a jar is charged, obferve the electrometer connef:ed with it, and immediately communicate the charge to another cqual jar (the perfect equality being previoufly afccrtained by the methods, which will appear immediately). Again note the electrometer. This will give the elevation, which indicates one half, independent of all theory. Now electrify a jar, or a row of equal jars, to the fame degree with the firt, and communicate the charge to a coated mirror plate, difcharging the plate after each communication, till the electrometer reaches the degree which indicates une-lalf. This fhews how often the charge of the plate is contained in that of the jar or row of jars.

Let the charge of the plate be to that of the jars as \(x\) to 1. Then, by each communication, the electricity is diminifhed in the proportion of \(\overline{1+x}\) to I. If \(m\) communications have been made, it will be reduced in the proportion of \(\overline{1+x^{m}}\) to \(t\). Therefore \(\overline{1+} x^{m}\) \(=2\), and \(1+x=m \sqrt{2}\), and \(x=m \sqrt{2}-1\).

When \(x\) is fmall in propurtion to \(t\), we fhall be very near the truth, by multiplying the number of communications by \(1,+44\), and fubtracting 0,5 from the product. 'The remainder fhews how often the charge of the plate is contained in that of the jars, or \(\frac{1}{x}\).

Thus may the perfeet equality of two jars be afcertaincd; and the one which exceeds, on trial, may be reduced to equality by cutting off a little of the coating. An electrician thould have a pair of finall jars or phials fo adjufted. It will ferve to difcover in a minute or two the mark of one-half electricity for any electrometer, and for any degree; as alfo for meafuring jars, batteries, fhocks, \&c. much more accurately than any other method: becaufe fuch phials, conflrueted as we fhall deferibe immediately, may be made fo neutral, and fo retentive, that the quantity which diffipates during the handling becomes quite infignificant in proportion to the quantity remaining; whereas, in alf experiments with electrometers, confructed with the moil cu. rious attention, the diffipations are great in proportion to the whole, and are capricious.
864.

It was chichy by this method that the writer of this article, having read Mr Cavendifl's paper, compared the ireafures given by experiment with thofe which refult from an action in the inverfe duplicate ratio of the diftance. When the charges were muderate, the coincidence was perfect; when the charges were great, the large plates contained a little mure. This is plainly owing tu their being lefs difpufed to difipate from the edges.
185
Maxims for We may now follow with fome confidence the prac-cunfruat- tical maxims deducible from the theory for the con-
क力口 jars,
hateries, \&sc.
original experiments of Gray, kleilt, and Curreus. A continuous plating is prefcribed, in preference to furse methods commonly practiferl; fuch as filling the jav with brafs duft, or gold leaf, or covering its furface with filings fluck on with gum water, or coating the inficle with an amalgam of mercury and tin. This luit appears, by reflection from the ontfide, to give a very continuous coating; but if we lold the jar between the eye and the light, we may perceive that it is only like the covering with a cobweb. Yet there are cafts where thicfe imperfect coatings only are practicable, and fome rare ones where they are preferable. In the Hiat for medical exhibition of electricity, where the pirpole in medical ea tended is fuppofed to require the transfufion of a great tibliturn of quantity of the electric fluid, any thing that can diminifh the irritating finartnefs of the fpark is defirable. This is greatly effected by thofe imperfect coatings. Small fhocks, which convey the fame quantity of Huid with the tharp pungent and alarming fpark from a large furface, are quite ioft and inoffentire, greatly refernbling the fpafmodic quivering, fometimes felt in the lip or eye-lid, and will not alarm the moft fearful patient.
Clofe cuntact of the metallic coating is obferved to How to increafe the effect of the charge. But it is alfu found prevent the that it greatly increafes the rifk of burfting the glafs jurfsting of higt by fpontaneous difcharge through its fubltance. An jarsherges, experienced clectrician (we think it is Mr Brookes of Nurwich) fays, that fince he lias employed paper covered with tinfoil, with the paper nest the grafs, infead of the foil itfelf, he has never lad a jar burft; whereas the accident had been very frequent before. The theory juftifies this obfervation. Paper is an imperfect conductor, even when foaked with four palte; and the transfufiau, though rapid, is not inftantaneous nor defultory, but begins faintly, and fwells tu a maximum. It operates on the glafs, like gradual warming, inflead of the fudden application of great heat.

Mr Cuthbertion, an excellent artift in all clectrical ap- Very curiparatus, and inventor of the beft air-pump, has made a ous obler curious oifervation on this fubject. He fays that he wratu by has uniformly obfried, that jars take a much greater berffon. charge (nearly one-third), if the intide be confiderabiy damped, by olowing into it with a tube reaching to the bottom (Nichelfon's (7ournal, March 1799). -We mult acknowledge, that we can form no diftinct cunception of what Mir Cuthbertion calls an undulation of the chafic atmofibere. We do not know whether he means that the atmofphere is actually undulating as water, or as air in the production of found, as its parts being in a reciprocating motion; or whether he only means that this atmofphere conilits of quiefcent ftrata, alternately denfer and rarer. Nor can we furm any notion how either of the fe undulatiuns contributes to the explofion, or prevents it. We are really but very imperfectly acquainted with that part of the feience which fhould deternine the precife accumulation that produces the defultury transference. We mentioned one neceffary confequence of the action inverfely as the fquare of the diftance, which has fome relation to this queftion, viz. that a particle, making part of a fpherical Curface, is twice as much repelled when it has juft quitted the furface, as when it made part of it, provided its place be immediately fupplied. And another circumftance has been frequently mentioned, viz. that a greater, and perbaps much grcatcr, force is neceflary for enabling a particle

With refpect to the form of the coated glafs, the . theory preferibes that which will occafion fuch a dithribution of the clectric fluid as fhall make its repulfion for the fluid in the eanal which conncts it with the prime conductor as little as poffible. In this refpect it would feem that a plate is the beft, and a globe the worft: but if both are very thin, the difference cannot be confiderable. Our experience, however, feens to indicate the oppofite maxim as the moft proper. We have uniformily found a globe to he far preferable to a plate of the fame thicknefs, and that a plate was generally the weakeff form. It mull be owned that we have not yet been able to afcertain by the theory what is the exact diftribution of the redundant fluid in a plate. In a Sphere it muft be unifurmly ipread over the furfaee. We mut alfo afcribe part of the inferiority of the plate to its greater tendency to diffipation from the edges. If a plate be eoated in a flar-like forn, with flender projecting points, we thail obferve them luminous in the dark, almoll at the heginning of the aceumulation; and the plate will difcharge it felf by thefe points, over the uncoated part, befurc it has attained any confiderable ftrength. Thofe forms are leat expofed to this deterioration which have the leaft circumference to the fame quantity of furface. We have always found that a fquare eoating will not receive a more powerful charge withont exploding than a circular one of the fame breadth, although it contains a fourth more furface; and this although any vilible efcape from the angles be prevented by covering the outline with fealing wax. Of all furms, therefore, a glube, with a very natrow, but long neck, is the moft retentive. But it is very difficult to coat the infide of fuch a veffel. The balloons ufed ia chemieal diftillations make exeellent jars, and can be eafily coated internally when the neek will admit the liand. The thimett of tinfuil may be ufed, by firf pafting it on Faper, and then applying it either with the foil or the paper next the glats. ft hould be cut into guffets, as in the covering of terreftrial glohes; and they fiould be put on overlapping about half an inch. The middle of the botom is then coated with a circular piece. The great buttles for holding the mineral acids's are alfo good jars, but inferior to the balloons, becaufe they are very thick in the bottom, and fur fome diftance from it. A box of balloons contains more effective furface than an equal box of jars t69 of the fame diancter and height of coating. Conipendi- The moft compendious battery may be made in the ous battery.following manner: Choofe fonve very flat and thin panes of the beft erown glafs, coat a cirele (\(a b c d\)), (fig. 31.) in the middle of both furfaces, fo as to leave
particle of fluid to quit the laft feries of particles of the folid matter than for producins almof any conllipation. But we are not ecrtain that thefe cireumflances are of fulfeient influcnee ty explain the whole of the cyent. Valeant quantum valere poffint. Yet we are of opision that Mr Cuthbertfon has affigned the true eaufe, namely, the imperfect coating of the infide of the glafs. When we come to the explanation of the efcape of electricity along imperfect conductors, we hope that it will appear, that the difpofition to efeape mult be greatly diminimed by a eharge, which difpofes the fluid fo, that in no place the conftipation is remarkably greater than in another part very near it, and the denlity chan-
a fuffieient border uncoated for preventing a fpontaneons difcharge : let each of them have a narruw flip of tinfoil a reaching from the coating to the edge on one fide, and a fimilar nip, \(c\) leading to the oppofite edge on the other folle. Laty them on eaeh other, fo that the flips of two adjuining plates may coincide. Connect all the ends, of thefe llips on one fide tugether hy a fip of the fame foil, or a wire which turuehes them all. Then, connecting onse of thefe collecting flips with the prinee eonductor, and the other with the ground, we may clarge and difcharge the whole tugether. If the pancs be round, or exact fquares, we may employ as few of them together as we pleafe, by fetting the whole in an open frame, like an old-fafhioned plate-warmer; and then turuing the fet whieh we would emplay together at right angles to the reft. This evidently detaches the two parecls from each uther. This battery may be varied in many wass; and if the whole is always to be employed together, we may make it extremely retentive, by covering the uncoated border of the plate with rreited pitch, a ard, while it is foft, preffing down its neighbour on it till the metallic coatings touch. For greater variability this inay be done in parcels of the whole.
On the fame principle, a miof compendions baitery Another may be made by aiternate layers of tinfoil and hard var. nifh, or by coating plates of very clear and dry. Murcovy glafs. But thefe muit be ufed with eaution, left they be burt by a fontaneous difcharge; in which cafe we eannot difcover where the flaw has happened. They make a furprifing accumulation, without fhewing any vivid electricity.
We have made a very fine electric phial for carry- partable ing about, by forming tiur plate (iron plate tiuned) into jar. fomewhat of a phial fhape, with a lung neck. We then covered this with a eoating of fine fealing was, about to \(^{\text {th }}\) th of an inch thiek, quite to the end of the neck, and coated the fealing wax, all tut the neck, with tinfoil. It is plain that the fraling wax is the coated idio-clectric, and that the tin-plate phial ferves for an inner eoating and wire. The difipation is almoft nothing if the neck be very fimall; and it only requires a little caution to avoid burting by too ligh' a charge. Fwen this may be prevented by coating the fealing wax fo near to the end of the neck, that a fpontaneous diicharge mult happea before the accumulation is too great.

It is well known that the diflarge happens whentmportance the difcharging balls are at a confiderable ditance from of a clofe each other; therefore only aq mueh is difcharged as dicharge. correfponds to that diftance. This is one caufe of the refidum of a difcharge which fometimes is pretty confidetable. Same experiments require the very utmolt force of the eharge. It is therefore proper to make the difcharge as clofe and abrupt as pofible. But the molt rapid approach that we can make of the difcharger is nothing in comparifon with the veloeity with which the fluid feems to fly off, and will thercfore have but fmail influence in making a more inflantaneous and complete difeharge. Theory points out the fullowing met hod: Let a very thick plate of glafs (half an inch), of feveral inches diameter, be put between the difehargiog balls, which flould, in this cafe, be fmall, and let thefe balls be ftrongly preffed againft it by a fpring. While the charge is going on, a very fmall part of the glafs plate,

\section*{EIECTRICITY.}
round the points of contaf, will receive a weak and ufelefs charge: but this will not hinder the battery from acquiring the fame intenfity of charge. When this is completed, let the intervening glats plate be brinkly withcrawt. The difcharge will berin with an intenfity which is unattainable in the ordinary manner of procceding.

Much las been faia of the lateral explofion. It appears, that in fome of the prodiginus transferences of elecuricity that have taken place in the difcharge of great furfaces through wires barely fufficient to conduct them, fiafoce of light are thrown off laterally; but the moft delicate electrometer, it is faid, is not affected. The fact is uot accurately narrated; we have always obferved a very delicate electrometer to be affected. The paffage of fuch a quantity of fluid is ahnoft equivalent to the co exiftence of it in any given fection of the wire; but it remains there for fo fhort a time, that, acting as an accelerating furce, it camot produce a very fenfible motion. It is like the difcharging a pittol ball through a fhect of paper hanging loofcly. It goes through it with-

It has fometimes appeared to us probable that, by means of this lateral explofion, the direction of the current may be difcovered. Let the jar \(a b\) (fig. 32.) be difeharged by a wire \(a c d c l\), interrupted at \(c d \mathrm{~b}_{j}\) the coating of a very thin plate of talc; let the coating alfo be very thin. There nuft he fome obllruction to the motion, which muft caufe the fuid to prefs on the fides or furfaces of the coating, juft as the obftruction to the motion of water in a pipe (arifing from friction, or even from material obftacles in the pipe) caufes the water to prefs on the fides of the pipe. Therefore if a wire \(x \neq\) connect the other coating with the ground, we thould expect that fluid will be expelled along this wire, and a charge be given to the plate of talc. Now whether the courfe in this apparatus be from \(b\) to \(a\), or from \(a\) to \(b\), if any chargc be acquired by \(c d\), it will probably be pulitive in \(c d\), and negative in \(\times \delta\); for it is electric fuid that is fuppufed to pafs: therefore we Mould always have one fpecies of electricity, whether a las been charged by glafs or by fealing *ax ; and this fpecies will indicate which is politive. We have faid "probally"-for it is not impolfible that it may be otherwife. If the abitraction at \(d\) be fuppofed more powerful than the fupplying force at \(c\), the fame obGruetion may perhaps keep the plate \(c d\) in an abjorbing State, juft as water defcending in a vertical pipe, into which it is preffed by a very fmall head of water in the ciftern, inftead of preffing the fides of the pipe, rather draws them inwards, as is well known. This feems, at any rate, an interefting experiment; for we mult acknowledge, that there Aill hangs a myfterious curtain before a theory which deduces fo much from the prefence of a fubitance which we have never been able to exhibit alone, and where we do not know when it abounds and when it is deficient. It is like the phlogifton of Stahl, or the caloric of Lavoifier. It will be proper to ufe the thinneft plate of talc to be charged, and to connect it with another cuated plate of half the diameter, or lefs, in order to increafe the accumulation. It feems by no means a defperate cafe.

The theory of coated glafs now explained, might have been treated with more precifion, and the formule
deduced in the beginning of this article might have been empluyed for flating the fum total of the acting forces, and thus demonatrating with precition the truth of the general refult; and indeed it was with fuch a view that they were premifed: hut they would have becu condiderably complicated in the prefent cale; for however thin we fuppofe the tinfoil coatings to be, it is evident from \(n^{-} 9^{2}, \hat{i}\). that each coating will confift of three firata; of which the two outermolt are active, and mult have their forees flated, and the fatement of the force of each Itratum would have conlifted of three terms. This would have been very embaraffing to fons readers; and the force of the conclufion would nut, after ail, have been much mare convincing than ve hope the above more loofe and popular aecount hat been.

We have hitherto confidered the non-electric coat-Does the ings only, and have not attended to what may chance charge reto obtain in the fubllance of the coated electrics them- fide in the felves. May not part, at leaft, of the redundant fluid coatings oz be lodged in one fuperficial ftratum of the glafs? or, if glafs? it do not penetrate it, may it not adhere to the furface, and drive of from the other furface, or fratum, a part of what naturally adheres to it? Till Dr Franklin's notions on the fubject became prevalent, no perfon doubted this. The electric was fuppofed to contain or to accumulate in its furface a!l the electricity that we know. But the frif fuggeftion of Dr Pranklin's experiments certainly was, that the electric plate or veffel acted merely as an obftacle, preventing the fluid from flying from the body where it was redundant to that where it was deficient. It is therefore an important queftion in the fcience, whether the glafs or electric concerned in thefe phenomena ferve any other purpofe befides the mere prevention of the redundant fluid from Bying to the negative plate?

Now it appears, at the very firf, that this is the cafe. It is \({ }^{176}\) the For if a glafs be coated only on otre fide, and be elec-glafs. trified on that fide, we obtain a ftrong fpark from the other fide by bringing the knuckle near it : and this may be obtained for fome time from one fpot of that furface; and after this we get no more from that foot, but get fparks, with the fame vivacity, and in the fame number, from any other fpot that is oppofite to the coating on the dther lide. In this manner we can obtain a fucceffion of fparks from every inch of furface oppofite to the coating, and from no other part. But what puts this queftion beyond all doubt is, tlat if we now lay a metal coating on the furface from which the fparks have been drawn in this manner, and make a communication between the two metallic cuatings, by means of a bent wire, we obtain.a perfect difcharge. To complete the proof, we need only obferve that this experiment fucceeds whether the glafs has been electrified by excited glafs or by excited fealing.wax. There. fore the coated forface may receive the electric fluid by the coating, as we fee plainly that it is abftracted by the coating. The ufe of the coatings may be nothing more than to act as conductors to every part of the furface of the electric. None of thefe thoughts efcaped the penetrating and fagacious mind of Dr Franklin. He immediately put it to the teft of experiment; and, laying a moveable metallic cuating on both furfaces, he found the glafs charge perfectly well. He lifted off the coatings; which operation was accompanied by

Raihes
A.ahes of light hetween the metallic coverings and the glafs from which the feparated them. Having removed the coatings, he applied others, completed the circle, and obtaiued a perfect difelarge, not diftinguifhable from what he would have obtained from the firft coatings.

Thus it was demonflrated, that the glafs plate itfelf acquired by charging a redundant fratum on one fide, and a deficient fratum on the other fide; and we now fee, at once, the reafon why the accumulation turns out greater than what is determined by the theory. The diftance between the redundant and deficient ftratum is lefs than the thickncfs of the glafs; and this, perhaps, is an unknown proportion.

This precious experiment of Dr Franklin was repeated by every electrician, and varied in a thoufand ways. No philofopher has carried this refearch farther than Beccaria ; and he bas given ground for a moit important difcovery in the mechanical theory, namely, that the charged glafs has feveral ftrata, of inconceivable thinnefs, alternately redundant and deficient in electric fluid; and that by continuing the electrification, thefe ftrata penetrate deeper into the glafs, and probably in. creafe in munber. We have not room here to give even an account of his experiments, and muft refer the philofophical and, curious reader to that part of his valuable Treatife where he treats of what he calls vindicating or recovering elofricity; as alfo to a paper by Mr Henly in Phil. Tranf. for 1766 , giving account of ex. periments on Dutch plates by Mr Lane. The general form of the experiment is this. He puts two plates together; he coats the outer furfaces, and charges and difcharges them as one thick plate. Their inner touch. ing furfaces are found frongly electrical after the difcharge, having nppofite electricities, and changing thefe electricities, by repeated feparations and replacings, in a way feemingly very capricious at firt fight, but which the attentive reader will find to he according to fixed laws, and agreeably to the fuppofition that the ftrata gradually fhift their places within the glafs, very much refembling what we obferve on a long glafs rod which we would render electric by induction. In this cafe, as was obferved in \(n^{\circ} 57\). there are obferved more than one neutral point, \&\&c.

Mr Cavendih endeavours to give us fome nntion of the difpofition of the fluid in the fubflance of the glafs in the following manner: Having feparated the coated plate from the machine and from the ground, fuppofe a little of the redundant fluid in BB BD (fig. 33.) equal to the fluid wanting in \(E \in \varnothing \mathrm{~F}\). If we now fuppofe all the redundant fluid to be lodged in \(b \beta \delta d\), and \(e \in \mathscr{f}\) to hold all the redundant matter, and the two coatings to be in their matural flate, a particle \(p\), placed in the middle of the furface \(b d\), will be nearly as much attracted by \(e f f\) as it is repelled by \(b \beta \delta d\) (exactly fo if the plates were infnitely extended); and if the coating be removed, keeping paraliel and oppofite to the furface that it quits, there will be very little, if any, tendency to fly from the glafs to the coating: there will rather be fome difpofition in the fluid to quit the coating and fly to the glafs; becaufe the repulfion of \(6 \beta \delta d\) is more diminithed than the attraction of eff. (\(\mathrm{n}^{\circ} 42\).) But the difference will be very fmall indeed. (N. B. the refult.would be very different if electric àc.
tion followed a different law. Were it as \(\frac{1}{d^{3}}\), the coating would be much overcharged; and were it as \(\frac{1}{d}, i^{\text {t }}\) would be very much undercharged). Now the fact is, that when the coating is carefully removed, it is poffeffed of very little electricity, not mure than may reafonably be fuppofed to rum into it by hringing away one part before another. It is imposfible to keep it mathematically parallel.

Hence we may conclude that the greateft part of the redundant fluid is lodged in the glafs if the plates be thin, and the redundant fluid bear but a fmall proportion to the natural quantity. Similar reafoning fhews that the greateft part of the defieiency is in the other fide of the glafs; and that therefore the coatings are very nearly in their natural ftate, and merely ferve the purpofe of conducting.

We have employed coatings of confiderable thich. nefs, having holes through them, oppofite to which was fome gold leaf of the heavieft fort, and almoft free of cracks. We have examined the ftate of the botton of thofe pits in Mr Coulomb's manner, and always found them void of electricity.

Thus we learn that glass, and probably all other e-Conjecturelectrics, acquire redundant and deficient itrata as well as burfing of the mof perfect conductors, at the fame time that they burting of may be impervions to the fluid; and we get fome mode of conceiving how the rupture happens by a ftrung charge. This may very probably happen when the ftrata have formed, in alternate order, fo deep in the glafs, that a ftratum, in which the fluid is crowded clofe together, may become contiguous to one deprived al. together of fluid. We cannot, however, fay with confidence, what /lbould be the effect of this thate of things; or of one conflipated flratum coming in contact with another.

This view of the condition of charged glafs explains (we think) feveral phenomena which feem not well underttood by electricians.
The refiduum of a difcharge is frequently owing to Several a clarge extending heyond the coating, where the ac-phenomena tion is confiderably irrcgular, or diferent from what it explained. would be if the plates were infinitely extended. This outline charge is taken up by the coated part after a very little while, and may again be difcharged. But it alfo frequently arifes from another ftratum (nuch thinner, as it will always be) than the exterior one, coming to the furface fome time after the firt difcharge, and being now in a condition fer being difcharged. It explains the fparkling that is perceived in fucceffon between the parts of a jar that is coated in fpots, during the charge, and the very fenfible reffduum of the charge of fuch a veffel. It explains the phenomena of Diccaria's Elearicitas Vindex (fee Electricity, Encyel. \(\mathrm{n}^{0} 48\).), and the great difference that may be found in the different kinds of glafs in this refpect. It explains the great difference between the fenfation occafioned by a fpark from a perfectly conducining furface of confio derable extent, and that vecafoned by a thock, which conveys the fame quantity of fluid accumulated in a fmall furface of glafs. The difcharge of the firt is ald moft inftantanenus, while that of the laft requires a fmall moment of time, and is therefore lefs defultory

\section*{ELECTRICITY.}
and abrupt. The ore is pungent and tartling; but the other is fufter in the firt intant, and fwells to a maxinum. Therefore, in the medical employment of electrieity, when the purpofe is to be affected by the transfufion of a great quantity of electric fluid, we fhould reconmend very fimatl fhocks from a very large furface of coated glafs, very faintly electrified, in place uf Itro:g fparks. Patients of irritable conflitutions are frequently alarmed by the quicknefs and pungency of Atrong fparks: but if the balls of Lane's fhock-meafurer be fot fo clufe as to give four or five thucks in cach turn of a feven inch cylinder, the fhocks are not even difagreeable. The balls fhould be made of tine cupellecl filver: in which cafe, the furface will never be hurt by the greateft difcharge; whereas the difcharge of four iquare feet of coated glafs will raife fuch a roughnefs on the furface of brafs as will caufe it to fputter, and deftroy entirely the regularity of the expenditure of fluid. The fame coafideration fhould make us prefer a jar coated entirely with amalgam. This cob-web coating gives a greater fuftuefs to the fhock. Latlly, we fee why a prwerful and permanent electricity was not produced in the tube filled with metted faling was, and treated as mentioned in \(n^{\circ} 101\). The redundancy and deficiency intended to be produced could only be fuperficial. And becaufe the was cooled by degrees from the furface to the axis, and the wax is a conductor while liquid, it muft have taken a charge at laft; and therefure muft appear but faintly electrical.

This account of the ftate of charged ghas promifes us fome affiftance in our attempts to conceive what paffes in the excitation of ghafs by friction. It appears from Beccaria's experiments, that the relandant fluid is lodged in the fame manner in both cafcs; for by rubbing one fide of a glafs tumbler, while poiuts were prefented to the oppolite furtace, and were connected with a wire that commumicated with the ground, 182 he gave it a powerful charge.
The quan- It is olferved, that when the laminx of a piece of tity if fuid Mufcory glafs are feparated, by pulling them afunder may be nay he ex-
ceeding great.
ed to the circumitance, that no fuch difplacement can happen. The accumulation that can be made in the human body is only fuperficial ; and therefore, althu' the whole fluid of a man's body may change its place, it will not clange it with the rapidity that feeras necefliary for the violent effects of electricity, except in the very points of commurication with the furrounding bodies.

We have now feen in what fenfe the idio-elcetrics may be faid to be inpervious to the electric 月luid. It is moved in them ouly to very fina! and imperceptible dittances. When a confiderable Itratunn is difcharged, the fluid dues not come from the extremity of it to the point of difcharge through the glafs, but through the cuating. And when alternate ftrata of redundant fluid and redundant matter are formed, the particles in each fhift their, places very little, moving perpendicularly to the Itratum.

Even this degree of obtruction has been denied by fome very active electricians, whan have multiplied experiments to prove that the fluid paffes freely through glafs, and that the theory of coated elcetrics is tutally different from what Franklin imagines. Mr Lyons of Dover has publifhed a nemerous litt of fingular experiments, which he has made with this view, with much trouble, and no fmali expence. They may all be reduced to this: A wire is bronght from the outfide of a phial, charged by the knob, and terminates in a fharp point at a fmall diftance from a thin glafs plate (it is commonly introduced into a glafs tule, having a ball at the end, and the point of the wire reaches to the centre of the ball) ; and another wire is connected with the difeharging rod, and alfo comea very near (and frequently (lofe) to the other fide of the glafs, oppofite to the pointed wire. With this apparatus he obtains a difcharge: and therefore fuys that the glafs is permeable to electricity. But he does not marrate all the circumflatices of the experiment. We have repeated all of them that have any real dificerence (for mult of them are the fanue fact in difictent forms), and we have ohtained difcharges: But they were all very incomplete, except when the ghafs was perforated, which happened very frequently. The difcharge was never made with a full, bright, undiviled 〔park, and loud fnap; but with fputtering, and trains of fparks, continued for a very femfible time; and the phial was neve: deprived of a confiderable part of its charge: and (which Mr Lyons has taken no notice of) the glafs is found to be charged, negative on the fide connected with the politive fide of the phial, and pufitive on the other. This charge was communicated to the glafs over a pretty confiderable furface romid the points inmediately uppufite to the wires. This is quite confurnable to the experiments of Dr Franklin and Beccaria, who charged a tumbler by grafping it with the land, and prefenting the iufide to a point electrified by the prime conductor. The whole experinient is analugous to the one narrated in \(11^{\circ} 176\).
We may conclude our obfervations on coated glafs Bars toucho witls mentioning a curious experiment. A flat flick of dike fine fealing wax, warmed till it bent pretty readily, was nagnetsfor rendered permanently electrical, with a pofitive and negative pole, in a manner analogous to the donble touch of magnets. A fmall jar was taken, having a hemifphere on the end of its infide wire,' and another on the
and of a Ril wire projecting from the outer coating, and then turned up parallel to the infide wire ; fo that the two hemifpheres flood equally ligh, and about three inches afunder. This jar was electrified fo weakly, as to run no rifk of a fpontaneous difcharge. The flat faces of the two hemifpheres were now applied to the flat fide of the fealing was, and were moved to and fro along it, overpaffing both ends about an inch with each hemifphere. The experiment was very troublefome ; for the phial often difcharged itfelf along the furface of the fealing wax, and all was to begin again. But, by continuing this operation till the fealing wax grew quite cold and hard, it acquired a very fenfible electricifm, which lafted feveral weeks when kept with care ; but fill it was not mueh more fenfible than that of the fealing wax, which congealed between two globes oppofitely electrified.

After this application of the theory to the phenomena of coated glafs, it will not be neceffary to employ much time in its application to the electrophorus. The general propofitions from \(n^{2} \mathbf{1 4}\). to 25 . and their companions in \(n^{0} 3^{8-4.4}\), will enable us to fate with precifion (when combined with the law of electric action) the actions of every part of this apparatus; and confiderable affiftance will be derived from a careful confideration of our analyfis of Profeffor Richmann's experinient in \(n^{\circ} 156\). But we muft content ourfelves with a general, popular view of thefe particulars, which may be fufficient for making us underfland what will be tbe kind, and fomewhat of the intenfity, of the action of its different parts.

The electrophorus confifts of three parts. The chief part is the cake \(A B C D\) (fig. 34.) of fome electric; fuch as gum lac, fealing wax, pitch, or other refinous compolition. This is melted on fome conducting plate, DCFE, and allowed to congeal; in which fate it is found to be negatively electric. Another conducting plate GHBA is laid on it, and may be raifed up by filk lines, or any infulating handle. We fhall call ABCD the cake, DCFE the sole, and GHBA the cover.

The general appearances not having been fo fcientifically claffed in the article Electricity as could he wifhed, we fhall here narrate them, very briefly, in a way more fuited to our purpofe. In comparing the theory with obfervation, it will be proper to make all the three parts of confiderable thicknefs, and of no great breadth. Although this diminifhes greatly the moft remarkable of the actions, it leaves then fufficiently vivid, and it greatly increafes the f:naller changes which are inftructive in the comparifon. The general facts are,
1. If the fole has been infulated during the congelaf. tion of the electric, till all is cold and hard, the whole is found negatively clectric, and the finger draws a fark from any part of it, efpecially from the fole. If allowed to remain in this fituation, its electricity grows gradually weaker, and at laft difappears: but it may be excited again by rnbbing the cake with dry warm flannel, or, which is the beft, with dry and warm cat or. hare fur. If the cover be now fet on the cake by its infulating handle, but without touching the cover, and again feparated from the cake, no electricity whatever is obferved in the cover.
2. But if it be touched while on the cake, a fharp

Suppl. Vol. I. Part II.
pungent fpark is obtained from it; and if, at the fame tine, the fole betouched with the thumb, a very fenfih.he thock is felt in the finger and thumb.
3. After this, the clectrophorus appears quite inactive, and is faid to be dead; neither fole nor cover giving any fign of electricity. But,
4. When the cover is raifed to fome diftance from the cake (keeping it parallel therewith), if it be touched while in this fituation, a fnart fpark flies, to fome diftance, betwecn it and the finger, more remarkably from the upper fide, and fiill more from its edge, which will even throw of fparks into the air, if it be not rounded off. As this diminifles the defired effects, it is proper to have the edige fo rounded. This fpark is not fo harp as the former, and refembles that from any electrified conductor.
5. The electricity of the cover, while thus raifed, is of the oppofite kind to that of the cake, or is politive.
6. The electricity of the cover while lying on the cake is the fame with that of the cake, or inegative.
7. The appearances \(n^{\circ} 2,3,4\), may be repeated for a very long time without any fenfible diminution of their vivacity. The inltrument has been known to retain its power undiminifhed even for months. This makes it a fort of magazine of eleetricity, and we can take off the electricity of the cake and of the cover as charges for feparate jars, the cover, when raifed, charging like the prime conductor of an ordinary electrical machine ; and, when fet on the cake, charging it like the rubber. This caufed the inventor, Mr Volta, to give it the name of Electrophorus.
8. If the fole be infulated before putting on the cover, the fpark obtained from the cover is not of that cutting kind it was before: but the fame fhock will be felt if hoth cake and cover be touched together.
9. If the cover be again raifed to a confiderable height, the fole will be found electrical, and its electricity is that of the cake, and oppolite to that of the cover.
10. After touching both cover and fole, if the cover be raifed and again fet down, without touching it while aloft, the whole is again inactive.
ir. If both eover and fole be made inactive when joined, they flew oppofite clearicities when feparated, the fole having the electricity of the cake.
12. If both cover and fole be nade inactive when feparate, they hoth thew the oppofite to the electricity of the cake when joined.

Let us how attend to the difpofition of the electrical Dif;ofition fluid in the different payts of the inftrument in their va- of the lluid rious fituations, and to the forces which operate mutuaily between them. N.B. Experiments for examinitg this ialtrument are befl made by fetting the three plates vertically, fupported on glafs falks, with leaden feet, to fteady them. A very fmatl electronseter may low attached to the outer furfaces of the cover and fole.

If the extent of the plates were incomparably greater than their thicknefs, we may infer from \(n^{\circ} 9^{2}\), Sic. that the redundant fluid andi niatter would be difpofed in parallel fleata, and that the aetions would be the fame at all ditances. But lince this is not the cafe, the dispotition of the fluid will be fomewhat differetit ; and whatever it is, the acion of any fratum will be cimpnifled by an increafe of diftancc. "The following oiefeription cannot be wery different from the truth:
I. The cake grows negative by cooling ; and if :t + G
were alone, it would have a negative fuperficial fratum on both fides, of greater thicknefs near the edges; and the fluid would probably grow denfer hy degrees to the middle, where it would have its natural denfity. Thhis difpolition may be inferred from \(1^{\circ} 92,93\), and 98 . But it cools in conjunction with the iole, and the attraction of the redundant matter in the cake; for the movealle fluid in the fole diturbs its uniforms difufion in the fole, and caufes it to approach the cake. And becauf this, in all probability, happens while the cake is ttill a conductor, the difpofition of its fluid will be different from that defcribed above, and the final difpofition of the fluid in the cake and fole will refemble that defcribed in \(\mathrm{n}^{\circ} 95\), where the plates \(E\) and \(A\) reprefent the cake and fole. But becaufe we do not know precifely the gradation of denfity, and aim only at general notions at prefent, it will be fufficient to confider the cake and fole as divided into two frata only; one redundant in fluid, and the other deficient, neglecting the neutral ftratum that is interpofed between them in each. The cake, then, confifts of a ftratum ABbaA containing redundant matter, and a flratum \(a b C D\) containing redundant fluid: and the fole has a flratum \(\mathrm{DC} n m\) containing redundant fluid, namely, all that belongs naturally to the face DCFE, and a fratum \(m n \mathrm{FE}\) containing redundant matter. This may be called the pRIMITIVE ST.ite of the cake and fole; and if once chariged by communication with unelectrified bodies, it can never be recovered again without fome new excitement.
II. If the fole be touched by any body communicafion of the redundant fluid in the fole for a fuperficial particle \(y\) is equal to the attraction of the redundant matter in the cake for the fame particle. What has been faid concerning infinitely extended plates rendered neutral on one fide, may fuffice to give us a notion of the prefent difpofition of the fluid in the fole. The under furface will be neutral, and the fluid will increafe in denfity toward the furface DC. The fole contains more than its natural quantity of fluid, but is neutral by the balance of oppofite forces. Let it now he infulated. T'inis difpofition of fluid may be called the common fate of the electrophorus.
III. Let the cover GHBA be laid on it. The par- ticle \(\approx\), at the upper furface of the cover, muft be more attracted by the redundant matter in ine ftratum \(A B b a\) than it is repelled by the redundant fluid in the remoter ftrata; for the fluid in the cake is lefs than what belongs to it in its natural ftate, and therefore \(z\) is attrac. ted by the cake. The redundant fuid which has come into the remote fide of the fole is lefs than what would faturate the redundant matter of the cake, becaufe it only balances the excefs of the remote action of this matter above the nearer action of the compreffed fluid in the fole; and this fmaller quantity of redundant fluid acts on \(z\) at a greater ditance than that of the redundant matter in the cake. On the whole, therefore, the particle \(z\), lying immediately within the furface GH, is attracted ; therefure fume will move toward the cake, and its natural ftate of uniform diffufion through the cover will be changed into a viclent flate, in which it will be comprefled on the furfare AB , being abtracted from the furface GH. It will now have a fratum \(\sigma g p \mathrm{H}\), containing rcdundant matter, and another
spBA, containing redundant fluid. But this will difturb the arrrangement which had taken place in the fole, and had rendered it nentral on the under furface. We do not attend to the fluid in the cake, but confider it as inmoveable ; for any motion which it can get will be fof finall, that the variations of its action will be altogether inlignificant. The particle \(y\), fituated in that farface, will be noore repelled by the compreffed fluid in the fratum \(g p \mathrm{CA}\) than it is attracted by the equivalent, but more remote redundant matter in GH \(p_{5}{ }^{\text {s }}\). Fluid is therefore difpofed to quit the furface EF, and the fole appears politively electric ; very little indeed, if the cover be thin. All this may be obferved by attaching a fmall Cantun's clectrometer to the lower furface of the fole, or by touching the fole with the electrometer of fig. 8. and thea trying its electricity by rubbed wax or glafs.
IV. A particle of fluid \(z\), placed immediately without the furface GII, will-be more attracted by the deficient itratum GHpg and by \(\mathrm{AB} b\) a than it is repelled by the redundant flrata beyond them, and the cover muft be fenfibly negative. This is the common fate of the whole inftrument after fetting on the cover. It is flightly pofitive on the lower furface of the fole, and much more fenfibly negative on the upper furface of the cover. A finart fpark will therefore be feen between it and the finger, fluid will enter, till the attraction of the redundant matter in \(\mathrm{AB} b a\) is balanced by the repulfion of the redundant Huid in DCFE.
V. A fpark will now be obtained from the fole, be. Dead futso caufe it was faintly pofitive before, and there has been added the action of the fluid which has entered into the cover. The fluid in the fole is therefore difpofed to fly to any hody prefented to it. But when this has happened, the equilibrium at the furface GH is deftroyed. and that furface again becomes negative, and will at. tract fluid, although the cover already contains more than its natural quantity. A fmall fpark will therefore be feen between the cover and any conducting body prefented to it. By tonching it, the neutrality or equir librium is refored at GH ; but it is deftroyed again at EF, which will again give a politive fpark, which, in its turn, again leaves GH negative. This will go on for ever, in a feries of communications continually diminilling, fo as foon to become infenfible, if the three parts of the electrophorus be thin. This makes it proper to make them otherwife, if the inftrument be intended for illuttrating the theory.

At laft the equilibrium is completed at the furfaces GH and EF, and both are nentral in relation to furrounding bodies, although both the cover and fole contain more thas their natural thare of electric fluill. We may call this the neutral or dead itate of the electrophorus.

This itate may be produced at once, in ftead of ooing Cburrgos it by theif alternate touches of GH and EF. If we fataro touch at once both thefe furfaces, we have a bright, touch at once both thefe furfaces, we have a bright,
pungent fpark, and a fmall fhock. If this be the ob. ject of the experiment, the fate \(N^{\circ}\) IV. which gives oc-
cafion to it, may be called the charged flate of the ject of the experiment, the fate \(\mathrm{N}^{\circ}\) IV. which gives oc-
cafion to it, may be called the charged fate of the. electrophorus.

When the inftrument has thus been rendered neutral in relation to furrounding bodies, it is plain that it may continue in this itate for any length of time without any diminution of its capability of producing the other
\(\qquad\) I

\footnotetext{

}
\(\qquad\)

1

phenomena,
phenomena, provided only that no flnid pafs from the cover to the cake. We du not fully underfland what prevents this communication, nor indeed what prevents the rapid efeape from an overcharged body into the air. This caufe, whatcocr it be, operates here; and the bett way of preventing the difipation, or the abforytion by the cake, is to keep the electrophorus with its cover on. It will come into this nentral flate loy dilfipation from the fole, and abforption by the cover, in no very long time; and after this, will remain neutral, retaining its power with great obftinacy, efpecially if the cake and plates are very thin.
VI. If the cover be now removed to a diftance, both Farts of the apparatus will thew frong marhs of clectricity. The cover contains much redmentant huid, and muft appear flrongly purfitive, and will give a bright fpark, whicl way be employed for any purpofe. It may be empluyed for charging a jar purtitively by the knob, if we jut touch the cover with the knab. The fole will attract Buid, or be negative, althougin it contain more than its matural quantity of nuil, and it will take a fuak. The fole therefore, in the abfence of the conver, may be employed to charge a jar negatively by the knob. By touching it with the finger, or with the knob of a jar held in the hand, it is reduced to the common flate deferibed in \(\mathrm{N}^{8}\) II.; and now all the furmer experiments may be repeated. We may call this the active or the charging itate.

This ftite of the apparatus las caufed it to get the name Llearophorus. Volta, its undoubted inventor,
 flecirrity, but a mecting achine. alrcady obferved, to contain a magazine of electricity. The cover, when removed, will charge a jar held in the land pofitively ; and having done this fervice, it will charge a jar negatively when again fet on the cake. The fole, in the abitince of the cover, will charge a third jar negatively ; and then, when the cover, after being touched, is let down again, it will charge a fourth jar pofitively. It will not be difficult to contrive a fimple mechanifm, conne cted with the motion of the cover, which fhall connect the joined parts with two jars, and fhall connect them, when Ceperated, with two others; and thus charge all the four with great expedition. All this is done without any new excitation of the electrophorus. But it is by no means a malgazine of electricity which it gradually expends : it is a collector of electricity from the furrounding bodies, which it afterwards imparts to others, and may be employed to difcharge jars in the fame gradual manner as to charge them.
VII. If the elchtrophorus is not infulated, a hoock may fill be obtained, by firft touching the fole, and then, without removing the finger, touching the cover: but this will not be fo finart as when the negative cover is touched at the fame time that we tonch the fole, more highly pofitive than when it communicates with the ground. The difference muft, however, be almoft imperceptible when the pieces are thin.
VII. If the electrophorus is not infulated, the cover, when put on, will give a fpark in the manner already mentioned, and it will be fomewhat flronger than when it is infulated ; becaufe the fluid is allowed to efcape from the fole, and does not obftruct the entry into the cover. If we then, without removing the finger from the cover, touch the fole, nothing is felt ; but if we fint
touch the fole, and, without removing the finger from it, touch the cover, we obtain a thock. This is evident from the theory. By this ferics of alternate tonches, the period of the electrophorus is cumpleted. The dectrophiorus is charged, or rendered nentral, by touching the plates when joined; then, by touching boeli when feparated, the whok is reduced to the conamon llate. When ieparated, from being in the nentral flate, they lave oppofite electricitics, the fole hewing that of the eake When brought together, each in the common flate, they have oppufte electricities, the corer thewing that of the cake.
IX. When, by long expofite to the air without its \({ }^{197}\) cover, the electrophorus has loit its virtue, it may be may be ree brought again into an active llate in a variety of way. oreated. Its furface may be rendered negative by friction with dry cat or hare R in, or warm flannel. It may be rendered negative by feting on it a jar charged negatively on the iulide, and then touching the knob with any thing communicating with the fromend. 'This is the mott expeditious method, and wiif give it a high degrec of excitation, if the jar be of fize, and if the clectrophorus be conced with a plate of tinfoil which comes inco contact all over its furface. This however requits the previous charging of the iar ; therefore it will be ats cx. peditious and effectual to connect this furface with the rubber of an electrical machine. Wire had almoft forgotten to semark, that the effects of bringing the cover cd gewife to the cake follow clearly from the theury, as will appear to the attentive reader withont further explanation.
The electrophorus has been compared to a clarged for \({ }^{\text {g }} 9\) plate of coated glafs. It is tue that it may be brourhitnilar toa into an external Itate which very much refenbles a char-clarged ged pane; namely, when the cover, in its natural Ihate, panc. is fit on the electrophorus in its natural ftate : and accordingly it gives a fhock, and the two exterior fu, faces become neural ; but the internal conllitution, and the acting forces, are totally and effentially differnht. The two coatings of the pane would not, when feparatish, exhibit the appearances of the electrophorus; nor, when touched in their disjoined flate, will they pruduce the fame effects when joined. In the operation of coated glafs, the conflant or invariable part, the glafs is not the ascent, it is norcly the occafion of the action, by alloruing the accumulation. In the clectrophorus, the dectric, which is the :onflant invariable part, is the asent procincing the accumulation. The electrophorus is an originat, and a very ingenious and curious electrical nachine. Nothing has fo much contributed to fpread forne general, though flight, acquaintance with the mechanical principles of electricity. The numerous dabblers in natural knowledge had been diverted from feientific purfuit by the variety of the dingular and amufing effects of elcctricity, and had really attainod very little connected knowledge. The effects of the eleatrophorus forced this knowledge on them; becanie no ufe can be made of it without a pretty claar conception of the difpofition of the electricity, and the kind and intenfity of the actions. It is therefore moll ungrateful in the experimenters who have attained better views, to attempt to rob Mr Volta of the real merit of difcovery, by fhewing that its effects are fimilar to thofe of Mr . Symmer's Itockings, or of Cigua's plates, or of Franklin's charged or difcharged glaits panes. And the at.

\section*{EEECTRICITY.}
tempt deftoys iffelf: for it fhews the innorance or inattention of its antlour ; for the fimilarity is not real, as will appear char to aby ferfon who will examine things minutely and fientifically, frocceding in this examination on fuppofitions fimilar to thafe which we employed in the analyfis of Richrann's experiment. It was indeed in fubfervency to this examination that we entered into the detail of that experiment, it being a fimpler cafe. The accurate examination of Richmann's experiment requires the fuxionary calculus in its refmed form. In the prefent queltion five acting ftrata are to te confidered, which renders the fornule very complicated, and indeed intractable, unlefs we make the plates extremely thin ; whieh, fortunately, is the beit form of the indrument. We have eompleted this mathematical anily fis; and the popilar siew here given is the refult of th:t complitation.

The electricians are no lefa obliged to Mr Volta for anotler natchine, or inftrument, from which the Aludy of Nature's oplations has derived, or may deriow, im- menfe advantages. We mean the condenser or collector of elcetricity. We refer to the article Electeicity in the Encylopachat for a defcription of the inltrumerit, and fome account of its effects and proper. ties. The general effect is to render fenfible an acenmulation or deficiency of electric fluid fo flight that it will not affee the mof delieate electrometer; and it produces (at lealt in :he opinion of Mr Volta) this cffeet, by employing for the fole of an electrophorus a body which is an imp crfee? conductor, fuch as a plate of well dried matlle, or well dried, but not baked, wood; or evell a conducting hody, covered with a bit of dry taffety or other filk. Mr Volta, Cavallo, and others, who have written a great deal on the fubject, have attempted to fhew how thefe fubftances are preferable (and they certainly are preferable in a ligh de. gree) to more perfect infulators: but not having taken pains to form precife notions of the difpofition and action of the electric fluid in the fituations afforded by the inftrument, theirseafonings have not been very clear. We think that an adequate conception of the effentials of the propofed inftrument may be acquired by means of the following confiderations :

Furnin the cover of an electrophorus with a graduated eleftrometer, which indicates the proportional degrees of cleciricity; electrify it pofitively to any degree, fuppofe fix, whilc held in the hand, at fome diftance, right over a metal plate lying on a wine glafs as an infulating fand, but communicating with the ground by a whe. Bring it gradually down toward the plate. Theory teaches, and we know it by experiment, that the electrometer will gradually fublide, and perhaps will reach to \(2^{5}\) before the electricity is communicated in a fpark. Stop it befure this happens. In this fate the attraction of the lying plate prodaces a compenfation of four degrees of the mutual repulion of the parts of the cover, by conftipating the fluid on its under furface, and forming a deficient liratum above. This needs no farther explanation after what has been faid on the charging of coated glafs plates. Now we can fuppofe that the efcape of the fluid from this body into the air begins as foon as eltctrified to the degree 6 , and that it will fiy to the lying plate with the degree 2, if brought nearer. If we can prevent this communication to the lying plate, by interpoling an
electric, we may electrify the corer again, while fo near the metal plate, to the degree 6 , before it will ftream of into the air. If it be now removed from the lying plute, the fluid would raife the electrometer to 10 , did it not immediately ftream off; and an electric excitement of any kind which conld only raife this body to the degree 6 by its intenhty, will, by this apparatus, raife it to the degree 10 , if only copious enough in extent. If we do the fame thing when the wire is taken away which comects the lying plate with the ground, we know that the fame diminution of the electricity of the other plate cannot be produced by bringing it down into the neighbourhood of the lying plate (fee \(n^{\circ}{ }^{13+}\), \&c. I51, \&e:)

Here we fee the whole theory of Mr Volta's conden. Theory fer. He feens to have obfcured his conceptions of it thereufs by having his thoughts running upon the electrophorus lately invented by him, and is led into fruitlefs attempts to explain the advantages of the imperfect conductor above the perfect infulator. But the apparatus is altogether different from an electrophorus, and is more analogons in its operations to a coated plate not charged nor infulated on the oppofite fide ; and fuch a coated plate lying on a tahle is a complete condenfer, if the upper coating be of the fame fize with the plate of the condenfer. All the directions given by Mr Volta for the preparation of the imperfect conductors fhew, that the effeet produced is to make them as perfect conductors as pollible for any degree of electricity that exceeds. a certain fmall intenfity, but fuch as thall not fuEer this very weak cledricity to clear the firft ftep of the conduit. The marble mult be thoroughly dried, and even heated in an oven, and either ufed in this warm fate, or varnifhed, fo as to prevent the reabforption of morfo ture. We know that marble of llender dimenfions, fo as to be completely dried throughout, will not conduct till it has again become moif. A thick piece of marble is rendered fo, fuperficially only, and ftill conducts internally. It is then in the beft poffible trate. The fame may be faid of dry unbaked wood. Varnifning. the upper furface of a piece of marble or wood is equivalent to laying a thin glafs plate on it. Now this method, or co:ering the top of the marble, or of a book, or even the table, with a piece of clean dry filk, makes them all the molt perfect condenfators. This juft view: of the matter has great advantages. It takes away the nyfterious indiftinctnefs and obfcurity which kept the inftrument a quackifh toal, incapable of improvement. We can now make one incomparably better and more fimple than any propofed by the very ingenious inventor. We need only the fimple moveable plate. Let this be varnifhed on the under fide with a moderately. thick coat of the pureft and hardeft vernis de Martin,. or coach-painters varnifh; and we have a complete con-. denfator by laying this on a table. If it be connected. by a wire with the fubfance in which the weak and, imperceptible electricity is excited, it will be raifed; (provided there be enough of it of that fmall intenfity) in the proportion of the thicknefs of the varnifh to the fourth part of the diameter of the plate. This degreeof condenfation will be procured by detaching the connecting wire from the infulating handle of the condeg-fer, and then raifing the condenfer from the table. It. will then give fparks, though the original eleetricity could no fenfibly affect a daxen fibre.

It muft be particularly noted, that it can produce this condenfation ouly when there is fluid to condenfe; that is, only when the weak clectricity is diffufed over a greater fpace than the plate of the cordenfer. In this way it is a moft excellent cullector of the weak atmofpheric electricity, and of all diffufed electricity. Dut to derive the fame astantage from it in many zery interefling cafes, fuch as the inquiry intu the electricity excited in many operations of Nature on fmall quantitics of matter, we muft have condenfers of various fizes, fome not larger than a filver penny. To conftruct thefe in perfection, we mult ufe the pureft and hardeft varnifh, of a kind not apt io crack, and highly coercive. This requires experiment to elifcover it. Spirit varnifhes are the moft coercive; hut by their difference of contraction by cold from that of metals, they foon appear frofy, and when viewed through a lens, they appear all flivered: They are then ufelefs. Oil varnifhes have the requifite tonghnefg, but are much inferior in coercion. We have found amber varnih inferior to copal varnih in this refpeet, contrary to our expectation. On the whole, we fhould prefer the finell coach-painters varnifh, new from the thop, into which a pencil has never been dipped: and we mult be particularly careful to clear our pencils of moifture and all conducting matter, which never fails to taint the varnifh. We fearcely need remark, that the coat of varnifh on thefe finall condenfers fhould be very thin, otherwife we lofe all the advantage of their fmallnefs.
Mr Cavallo lias ingenioufy improved Volta's condenfer by conneeing the moveable plate, after removal, with a fmaller condenfer. The effect of this is evident from \(n^{\circ} 130\). But the fame thing would have been generally obtained by ufing the fmall condenfer at firlt, or hy ufing a fill thinner coat of varuif.

It will readily occur to the reader, that this inftrument is not inftantaneous in its operation, and that the application muft be continued for fone time, in order to collect the minute electricity which may be excited in the operations of nature. He will alfo be careful that the experiment be fo conducted that no ufelefs accumulation is made anywhere elfe. When we expect electricity from any chemical mixture, it never fhould be made in a glafs veffel, for this will take a charge, and thus may abforb the whole excited electricity, accumulating it in a neurral or infenfible fate. Let the mixture be made in veffels of a conducting fubftance, infulated with as little contact as poffible with the infulating fupport; for here will alfo be fomething like a charge. Sufpend it by filk threads, or let it reft on the tops of three glafs rods, \&c.

After this account of the Leyden phial, electrophorus, and condenfer, it is furcly unnecentary to employ any time in explaining Mr Bennet's moft ingenious and ufeful initrument called the doubler of eleiricity. The explanation offers itfelf fpontaneoully to any perfon who underftands what has been faiia already. Mr Cavallo has with indultry fearched out all its imperfections, and has done fomething to remove them, by feveral very ingenious conftructions, minutely defcribed in his Treatife on Electricity. Mr Bennet's original inftrument may be freed, we inlagine, as far as feems poffihle, by ufing a plate of air as the intermedium between the three plates of the doubler. Stick on one of the plates three very finall fpherules made from a capillary tube of glafs,
or from a thread of fealing wax. The other plate being laid on them, refts on merc points, and can fcarcely receive any friction which will dilturb the experiment. Mr Nichollon's beautiful mechanifin for expediting the multiplication, has the incoaveniency of hringing the plates towards cach other edgewife, which will bring on a fpark or communication fooner than may be defired: lut this is no inconvenience whatever in any philufophical refearch; becaufe, before this happens, the electricity has become very dittinguifhable as to its kind, and the degree of multiplication is little more than an anmufement. The fpark may even ferve to give an indication of the original intenlity, by means of the number of turns neceflary for producing it. If the fine wires, which form the alternate connctions in fu ingenious a manner, could be tipped with little balls to prevent the diflipation, it would be a great improvement indeed. An alternate motion, like that of a pump-handle, might be adopted with advantage. This would allow the plates to approach each other face to face, and admit a greater multiplication, if thought ncceffary.
One of the mott remarkable facts in electricity is the Difipation rapid diflipation by fharp points, and the impolifility of eleariof making any confiderable accumulation in a body ciey from which has any fuch, projecting beyond other parts of flaipp its furface. The diflipation is attended with many remarkable circumllances, which have greatly the appearance of the actual efcape of fome material fubitance. A ftream of wind blows from fuch a point, and quickly electrifies the air of a room to fuch a degree, that an electrometer in the fartheft corner of the room is affected by it. This diffipation in a dark place is, in many inftances, accompanied by a bright train of light diverging from the point like a firework. Dr Franklin therefore was very anxious to reconcile this appearance with his theory of plus and minus electricity, but does not exprefs himfelf well fatisfied with any explanation which had occurred to him. From the beginning, he faw that he could not confider the fream of wind as a proof of the efcape of the electric fluid, becaufe the fame ftrcam is obferved to iffue from a flarp negative point ; which, according to his theory, is not difperfing, but abforbing it. Mr Cavendifh has, in our opinion, given the frilt fatisfactory accomat of this phenomenon.
To fee this in its full force, the phenomenon itfelf mutt be carefully ohferved. The fitream of wind is plainly produced by the efcape of fomething from the point iffelf, which hurries the air along with it ; and this draws along with it a great deal of the furrounding air, efpecially from belind, in the fame manner as the very flender thread of air from a blow-pipe hurries along with it the furrounding air and hame from a confiderable furface on all fides. It is in this manner that it gathers the whole of a large fame into one mafs, and, at lall, into a very point. If the fmuke of a little rolin thrown on a bit of live coal be made to rife quietly round a point plojecting from an electrificd body, continually fupplied from an electrical machine, the vortices of this-fmoke may be obferved to curl in from all fides, along the wire, forming a current of which the wire is the axis, and it gues off completely by tho point. But if the wire be made to pafs through 3 cork fixed in the botton of a wide glafs tube, and if its paint project not beyoud the mouth of the.tulie,

\section*{ELECTRICITY.}
the afflux of the air from behind is prevented, and we have no flream; but if the cork be removed, and the wire llill occupy the axis of the tube, but without touching the fides, we have the frean very diftinctly; and finoke which rifes round the far end of the tube is drawn into it, and groes of at the point of the wire. Now it is of importanee to obferve, that whatever prevents the formation of this flrean of wind prevents the diflipation of electricity (for we flall not fay efcape of electric tluid) from the point. If the point project a quaster of atn ineh beyond the tube, or if the tube be open behind, the flream is ftrong, and the diffipation fo rapid, that even a very good macline is not able to raife a Henly's electrometer, flanding on the conductor, a very few degrees. If the tule be flipped forward, fo that the paint is juft even with its mouth, the diffipation of electricity is next to nothing, and does not exceed what might be produced by fuch air as ean be collected by a fuperficial point. If the tube be made to advance half an inch beyond the point which it furrounds, the diffipation becomes infentible. All thefe facts put it beyond a doubt that the air is the eaufe, or, at leaft, the occafion of the diffipation, and carrits the electricity off with it, in this manner rendering electrical the whole air of a room. The problem is sedueed to explain how the air contiguous to a fharp electrified point is electrificd and thrown off.
Theory of It was demonftrated in \(n^{\circ} 130\), that two fpheres, j.
union which takes place between the electric fluid and a correfponding ingredient of the air. In hhis flate of contipation, almoft completely furrounded by the air, the little mafs of fluid munt attract and be attracted with very great force, and more readily ovelcome the force which keeps the cletiriticd fluid attached to the laft feries of particles of the wire. It unites with the air, rendering it electric in the highet degree of redundancy. It is therefore flrongly repelled by the mafs of conllipated fluid which fucceeds it within the point. Thus is the clectrified air continually thrown off, in a flate of electrification, that molt rapidly diminifh the electricity of the conductor. Hience the uninterrupted flow, without noite or much light, when the point is made very fine. When the point is bunt, a little accumulation is necelfary before it attains the degree neceflary for even this minate explofion ; but this is foon done, and thefe little explinfions fucceed each other rapidly, accompanied by a fputtering noife, and trains of bright fuarks. The nuife is unduobtedly owing to the atonis of the highly electrified fruid. Thefe are, in all pruhability, rarelied of a fuddev, in the act of elecirification, and immediately collapfe again in the act of chemical union, which caufes a lonoruus agitation of the air. This clectrinied air is thus thrown off, and its place is immediately fupphed by air from behind, not yet electrified, and therefore flrongly drawn forward to the point, from which they are thrown off in their turn. 'This rapid expanfion and fubfequent coillupling of the air is verified by the experiments of Mr KinnerAy, related by Dr Franklin, and is feen in numberlefs experiments made with other views in later times, and not attended to. Perhaps it is produced by the great heat which accompanies, or is generated in the transfic ence of elcctricity; and it is of the fane kind with what occations the burling of fones, fpliting of trees, exploding of metals, sic. by electricity. "The expantion is either inconfiderable, or it is fucceflively produced in very finall portions of the fubflance expanded; for when metal is exploded in clofe vefiels, or under water. there is but a minute portion of gazeous matter prodiced; and in the diflipation by a very fine point, lufficiently great to give full empluyment to a powerful machine, the fream of wind is but very faint, and nine-tenthis of this has been dragged along by the really electified thread of wind in the middle.
From a collation of all the appearances of clectricity, we muft form the fame conception of the forces which operate round a point that is megatively electrified, not difperting, but drawing in electric fluid. It is more completely undercharged than any other part of a body, and attracts the fluid in the furrounding air, and the air in which it is retained, with incomparably greater force. It therefore deprives the contiguous air of its iluid, and then repels it, and :hen produces a ftrean like the overcharged point.

If a conducting body be brought near to any part of an overcharged body, the fronting part of the tirit is rendered undercharged; and this increafes the charge of the oppofite part of the overcharged body. It becones more overcharged in that part, and fooner attains that degree of conftipation that enables the fluid to quit the fuperficial feries of particles, and to electrify ftrongly the contiguous air. The explofion is therefore made in this part in preference to any other ; and
the air thus explojed is Atrongly attracted by the frout. ing part of the other body, and inult fly thither in prefereace to any other point. If, moreover, the fronting prit of A be promineat or pointed, this effect will be produced in a fuperior degree; and the eurrent of electrified air, which will begin very carly, will increafe this difpofition to transference in this w.dy by rarefying the air; a change which the whole courfe of electric phemomena flews to be highly favourable to this transference, althoush we cannot perhaps form any very adequate notion how it coutributes to this effect. This feems to be the reafon why a great explofion and fuap, with a copions transference of electricity, is generally preceded by a hiffing moife like the ruihing of wind, which iwells to a maximum in the loud fnap itfelt.

If two prominences, precifly fimilar, and elefrified in the contrary way to the fame dergree, are prefented to each other, we cannot fay from which the current fhould take its commencement, or whether it fhowld not equally begin from buth, and a general difpertion of air laterally be the effect ; but fuch a fituation is barely poffible, and muft be infinitely rare. The current will begin from the fide whicla has fome fuperiority of propelling force. We are difpofed to think that this current of material electrified fubtanee nuaf fuffer great change during its paffage, by mixing with the current in an oppofite eletrical fate coming from the other bociy. Any little mafs of the one current muit furongly attract a contiguous mafs of the other, and certain changes fhould furely arife from this mixture. Thefe may, in their turn, make a great change in the mechanical motions of the air; and, inflead of producing a quaqua verfum difperfion of air from between the bo: dies, as fhould refult from the mecting of oppofite ftreams, it may even produce a collapling of the air by the mutual flrong attractions of the little nafies. Many valuable experiments offer themelves to the curious in. quirer. Two little bails may he thus prefented to each other, and a finoke may be made with rofin to occupy the interval between them. Motions may be obferved which have certain anelogies that would afford ulcful information to the mechanical inquirer. There mulk be fomething of this mixture of currents in all fuch trans. firences, and the molt minute differenees in the condition of a little pareel of the air may greatly affect the future motions. The moit promifing iurm of fuch experiment would be to uie two points of the fane fuls. flance, fhape, and fize, and electrified to the fame degree in oppofite fenfes.
A fter all care has been taken to infure fimilarity, there remains one effential difference, that the one currom is redundant in elee?ric fluid, and the other deficient. This circumlance mul produce characteritic differences of appearance. And are there not fuch differences? Is not the pencil and the ftar of light a characteriftic difference? And does not this well-fupported fact greatly corrohorate the opinion of Dr Franklin, that the electric phenomena refult from the redundancy and deficiency of one fubftance, and not from two difinct fubflances operating in a fimilar manner? For the diftinction in appearance is a mechanical oiftinction. Motion, direction, velocity, are perceivable in it. Locomotive forces are concerned in it; but they are fo implicated with forees which probably refemble chemical affinities, hardly operating be-
yond eontact, that to extricate their eifeets from the complicated plenomenon feems a defperate problem. There is fome hitherto inexplicable chemical con polition and decompofition taking place in the transference of electricity. Of this a mumerous train of obfervations made fince the dawn of the parsumatie chemifry leaves us no room to donbt. The emerfion or production of light and heat is a remarkable figu aurl proof. Now this takes place along the wubote path of transference; therefore the procefs is by no means counpleted at the point from which the active caufe proceeds; and although there be certain appearances that are pretty regular, they are fill mixed with athers of the moft capricious anomaly. The \%:grag furm of the moft condeuferl fpark, tutally unlike, by its tharp angles, to any motions producible by aceelcrating furces, which motions are, without excer,tiun, curvilineal, makes us doubt exceedingly whether the luminous lines which we obierve are fuccefive appearances of the fame matter in diffurent places, or whether they be not rather fimultaneons, or nearly fimultancous, corufeations of different parcels of natter in different places, indicating ehemieal compofitions taking place almoit at once ; and this beeomes more probable, when we reflect on what has been faid already of the jumbling of oppofite currents; fuch mixtures hould be expected. We have feen a darted fla fl of lightning which reached (in a direction nearly parallel to the horizon) above thrce miles from right to left; and it Ceemed to us to be co.cai/lent; we could not fay at which end it began. The ilhunder hegan with a loud crack, and continued with a mott irregular rumbling noife about 15 leconds, and feensed equal on both hands. We imagine that it was really a fimultaneous fnap, in the whole extent of the fpark, but of different ftrengli in different places; different portions of the fonorous agitation were propagated to the ear in fucceffion ty the fonorous undulations of air, cauting it to feem a lengthened found. Such would be the appearance to a perfon flanding at one end of a long line of foldiers who difcharge their firelocks at one infant. It will feem a running fire, of different frengeth in different parts of the line, if the mufkets have been unequally loaded. It is inconceivable that this long zigzag fpark can mark the track of an individual malis of elcetrified air. The velocity and momentum would be enormous, and would fiveep off every thing in its way, and its path could not be angular. The fame mutt be afferied of the Atreams of light in our experiments. The velocity is fo unmeafurable that we eannut tell its direct:on. 'I'here may be very little local motion, juf as in the propagation of found, or of a wave on the furface of water. That particular change of mutual fituation among the adjoining atoms which oc. cafions chemical folution or precipitation may be produced in an inftant, over a great extent, as we know that a parcel of iron filings, lying at random on the furface of quickfilver, will, in one inftant, be arranged in a certail manner by the mere neighbourhood of a magnet. Is not this like the fimultaneous precipitation of water alung the whole path of a difcharge?

But fill there muft be fome caufe which gives thefe finultaneous cornfations a fituation with refpect to each other, that has a certain regularity. Now the luminous trains (for they are not uniform lines of llght) of almoit continuous fparks which are arranged between
a pofitive and a negative point, feem to us to indicate emanation from the ponitive, and reception by the negative point. The general line has a confiderable refemblance to the path of a body projected from the pofitive point, repelled by it, and attracted by the negative point. This will appear to the mechanician on a very little reflection. If the curve wace completely vifible, it would fonewhat refemble thofe drawn between \({ }^{\prime}\) ' and N in fig. 35. PABN overpaffes the point N , and connes to it from belind; \(\mathrm{P} a b N\) lies within the other, and arrives in a direction nearly perpendicular to the axis; \(\mathbf{P} \propto 1 B N\) defcribes a ftraight line, and arrives in the dircetion PN. As the chemical compofition advances, the light is difengaged or produced, and therefore the appearances are nore rare as we advance farther in the direction in which they are produced; and thace would perhaps be no appearance at all at the point where the motion ends, were it not that the few remaining parcels, where the compofitions or decompofitions have not been completed, are crowded together at the nergative point, incomparably more than in any other part of the track. We think that thefe confiderations offer fome explanation of the appearance of the pencil and ftar, which are fo miformly characteriltic of the pofitive and negative electricities; but we fee many grounds of uscertainty and doubt, and offer it with due diffidence.
Eichteneric writiig the face of a mirror by the pofitive and by the nergaaffords dif tinctive marks of + and tive knobs of a charged jar, are alfo uniformly characteriftic of the two eleetricities. Thefe are mechanical diftinctions, indicating certain differences of accelerating forces. We muft refer the curious reader to Lichtenberg's Differtations in the Gottingen Commentaries ; to the Publication of the Haarlem Society; to the Gotba Magazine; to Differtations by Spath at Altdorf, and other German writers.
It only remains for us to take notice of the general laws of the diflipation of clectricity into the air, and along imperfect infulators. On this fubject we have fome valuable experiments of Mr Coulomb, publihed in the Memoirs of the Academy of Sciences of Paris for 1785.

Thefe experiments were made with the affiftance of an eleGrometer of a particuiar conftuction, which flall be defcribed under the article Electrometer.

The general refult of Mr Coulomb's experiments was, that the momentary diffipation of moderate degrecs of electricity is proportional to the degree of electricity at the moinent. He found that the diffipation is not fenfibly affected by the flate of the barometer or thermometer; nor is there any fenfible dificrence in bodies of different fizes or different fubftances, or even different figures, provided that the electricity is very weal.
312.

But he found the diffipation greatly affected by the different flates of humidity of the air. Sauffure's hygrometer has its fcale diftinctly related to the quantity of water diffolved in a cubic foot of the air. The folbwing little Table fhews an evident relation to this in she diffipation of electricity :

Hence it foilows, that the diffipation is very nearly in the triplicate ratio of the moilture of the air. Thus if

Hence, at a medium, \(m=3,40\).
We fhould have oblerved, that the ingenious anthor took care to feparate this difilipation by immediate contade with the air, from what was occafioned by the imperfect infulation afforded by the fupports.

It muft alfo be remarked here, that the immediate Diminution ooject of obfervation in the experiments is the diminu-of repulion tion of repultion. This is found to be, in any given is douthe of flate of the air, a certain proportion of the whole re- the cion. pulfion at the moment of diminution: but this is double of the proportion of the denfity of the electric fluid: for it nuft be recollected, that the repulfions by which we judge of the diffipation are mutual, exerted by every particle of fluid in the ball \(t\) of Coulomb's electrometer, on every particle in the ball \(a\). It is therefore proportional to the elcctric denfity of each; and therefore, during the whole diffipation, the denfities retain their primitive proportion ; therefore, the diminution of the repulion being as the diminution of the producis of the denfities, it is as the diminution of the fquares of either. If therefore the denfity be reprefented by \(d\), the mutual repulfion is reprefentable by \(d^{2}\), and its momentary diminution by the fluxion of \(d^{2}\); that is, by \(2 d \dot{d}\), or \(2 d\) \(\times d\). Now \(2 \dot{d} \times d^{\prime}\) is to \(d^{*}\) as \(2 \dot{d}\) is to \(d^{\prime}\); and therefore the diminution of repulfion obferved in our experiment bears to the whole repultion twice as great a proportion as the diminution of denfity, or the quantity of fluid diffipated bears to the whole quantity at the monent. For example, if we obferve the repultion diminifhed \(\frac{1}{4}\), we conclude that \(\frac{x}{80}\) of the fluid has efcaped.

Mr Coulomb has not exainined the proportion betwcen the diffipations from bodies of different fizes. A great and a fmall fphere, communicating by a very long canal, have fuperficial denfities, and tendencies to efcape, inverfely proportional to the diameters. A body of twice the diameter has four times the furface; and tho' the tendency to efcape be twice as fmall, the furface is four times as great. Perhaps the greater furface may compenfate for the fmaller denfity, and the quantity of fluid actually gone off may be greater in a large fphere. This may be made the fubject of trial.

It muft be kept in mind, that the law of diffipation Dimpiption afcertained by thefe experiments, relates to one given depends on flate of the air, and that it does not follow that in the fate of another ftate, containing perhaps the fame quantity of the air. water, the diffipation fhall be the fame. The air is fuch
a hete-
a heterngeneons and rariable compound, that it may have very different affuities with the electrie fluid. Mir Coulomb thonght that he hould infer from his numerous experiments, that the diffipation slid not iucreafe in the ratio of the cube of the water diffolved in the air, unlefs it was nearly as much as it could diffolve in that temperature This indeed is couformahle to general olfervation: for air is theoght dry when it dries quichly an! thing expofed to it ; that is, when not nealy fit turated with moilture. Now it is well known, that what is thought dry air is favourable to electricity.

The difipation along imperfect infulators is brought about in a way fomewhat different from the manner of its cfeaping by leetrifying the contiguous air and going of with it. It ferms to be chiefly, if not foldy, alung the furface of the iafulating fupport that the clectricity is diffufed, and that the diflution is produced there chiefly by the muiture which adheres to it. It is not very eafy to form a clcar notion of the manner, but Mr Conlomb's explanation feems as fatisfactory as any we have feen.

Water adheres to all bodies, flicking to their furfaces. This adheform prevents it from going of when clectrified ; and it is therefore fufceptible of a lighter degree of elecirification. If we fuppofe that the particles of moifture are uniformly difpoied along the furlace, leaving fipaces between them, the clectricity commmicated to one pratticle mult attain a certain denfity before it can fly acrofs the infulating interval to the next. Therefore, when fuck an imperfect conductor is electritied at one end. the electricity, in paffing to the other, will be weakened at every 月ep. If we take three adjacent particles \(a, b, c\), of this conducting matter, we learn, from \(11^{\circ} 105\), that the motir.a of \(b\) is fenfibly afficted only, by the difference of \(a\) and \(\iota\); and therefore that the paflage of electricity from \(b\) to crequires that this difficence be fuperior or equal to the force neceffary for clearing this cuercive interval. Let a particle pafs over. The electric denfity of the particle \(b\) of conducting matter is diminimed, while the denfity of the particle on the other fide of \(a\) remains as before. Thereforc fome will pafs from \(a\) to \(b\), and from the particle preceding \(a\) to \(a\); and fo on, till we come to the electritied end of this imperfect infulator. It is plain from this confideration, that we muft arrive at laft at a particle beyond \(c\), where the whole repulion of the preceding particle is jult fufficient to clear this interval. Some will come over, whofe repulfion, now acting in the oppofite direction, will hinder any fluid from fupplying its place in the particle which it has quitted. Here the transference will fop, and beyond this the infulation is complete. There is therefore a mathematical relation between the infulating power and the length of the canal, which may be afcertained by our theory; and thus another opportunity obtained for comparing it with obfervation. That this inveftigation may be as timple as -poffible, we may take a very probable cafe, namely, where the infulating, or, to name it more graphically, the coercive, interval is equal in every part of the canal.

Let \(R\) be the cuercive power of the infulator ; that is, let \(R\) be the force neceffary for clearing the coercive interval. Let a ball C (fig. \(3^{6 .}\)) be fufpended by a filk thread \(A B\), and let \(C\) reprefent the quantity of its redundant fluid; and let the denfity in the different points of the canal be as the ordinates \(A D, \mathrm{P} d\), \&e. of fome curve line \(\mathrm{D} d \mathrm{~B}\), which cuts the axis in B where the

Surpl. Vol. I. Part II.
thread begins to infulate completely. Let \(P^{3} p\) be an cloment of the axis. Draw the urdinate off, the ca:lgent \(d f \mathrm{~F}\), and the normal \(d \mathrm{~L}\), and fe perpendicilar to Pd . Let AC be \(=r, \mathrm{AP}=x, \mathrm{P} d=y\). 'Ihen \(\mathrm{P}_{p}=\dot{x}\), and de \(=-\dot{y}\). We have feen that th: only fentible action on the particle of fluid in P is \(\because y\) (fee \(n^{\prime \prime} 105\)), when the action of the redundant fluid in the glube on the particle P , having the denfity \(y\), is reprefented by \(\frac{C_{y}}{(r+x)^{2}}\). Thercfore we have \(\frac{y}{x}=\) \(R\), the cocrcive power of the thread. This is fuppofed to be cunftant. 'Therefore \(\frac{1 \text { ' } 1 \times d e}{P p}\) is cqual to fome couftant line R. But \(\mathrm{P} p\), or \(f e: d e=\mathrm{P}^{\mathrm{P}} d: \mathrm{IE}\). ' hacrefore the fubnormal PE' is a conttant line. But this is the property of the parabola alonc; and the curve of denfity \(\mathrm{D} d \mathrm{~B}\) is a parabola, of which the parameter is 2 PE , or 2 R .

Cur. I. The denfities in cifferent points of an in \(\mathrm{V}_{\text {ariation }}^{215}\) perfect infulator are as the fquare roots of their diftance of denfing from the point of complete infulation: For \(\left.\mathrm{P} d^{2}: A\right)^{2}\) in the infu\(=1 \mathrm{BP}: \mathrm{DA}\).
2. The length of canal required for infulating dif- tength neferent deafitics of clectricity are as the fquares of the ceffiary for denfities. For \(\mathrm{AB}=\frac{\mathrm{AD}}{2 \mathrm{PE}}\); and PE has becu fhewn \(\xlongequal{\text { infulation }}\) denfiy \({ }^{2}\). to be a conflait quantity. Indeed we fee in the demonftration, that BP would infulate a ball, whofe dectric denfity is \(P d\), and \(B A: B P=A D:: P d z\).
3. The length neceffary wor infulation is inverfoly as atio \(\div\) the coercive force of the canal, and may be reprefented. generally by \(\frac{D^{2}}{R}\). For \(A B\) is \(=\frac{1 A^{2}}{2 P E}=\frac{D^{2}}{2 R^{2}}\).

Mr Coulomb has verified thefe conclufions by a very fatisfactory feries of experiments, by the affitance of his delieate elfetrometer, which is adinirably fuited for this trial. - The fubject is fo intercting to every zealous fludent of electricity, that Mr Canton, Dr B. Wi:fon, Mr Waitz, Wilcke, and others, have made experiments for eftahlifhing fome meafure of the conducting powers of different jubftances. It was one of the finit things that made the writer of this atticie fuppofe that electrice action was in the inverfe duplicate ratio of the diftances: for, as early as 1763 , he had found that the lengths of capillary tubes neceffary for infulation were as the fquares of the repulfions of the ball which they infulated. The inode of reafoning offers of itfelf, and the fluxionary expreffion of the infulating power, viz. \(\frac{d \dot{d}}{\dot{x}}\) led inımediately to a force proportional to \(\frac{1}{x^{2}}\)
Nunicrous experiments were made, which we do not give here, becaufe the public are already poffeffed of thofe of Mr Coulomb.

This difuffion explains, in a fatisfactory manner, the Expianaoperation of the condenfer, as deferibed by Mr Volta, intin of the The weak degrees of cleatricity, which are rendered ficaty of fufficiently fenfible by the infulation of the plate of diry denfer. marble, are completely infulated by the perhaps thin fratum that has been fufficiently dried, while the reit conducts with an efficacy fufficient for permiting the accumulation.
\(4 \mathrm{H} \quad\) When

\section*{ELECTRICITY.}

When we reflet on the theory now delivered, we fie that the formulx determine the diftribution of the fluid along an imperfect conductor in a certain manner, on the fuppolition that a certain determinate dofe has heen imparted to the ball: Bccaufe this dofe, by diffuting itfulf from particle to particle of the conducting rratter, will diffure iffl all the way to B , in fuch a manner that the repulfon thall every where be in equilibric, with the maximum of the coercive force of the infulating interal. But it muft be farther noticed, that this refinance is not aigive, but coercitive, and we may compare it to fiiction or vifcidity. Any repulfinn of electric fluid, which falls fhort of this, will not difturb the ftability of the fluid fpread along the canal, aecording to any law whatever. So that if AI) reprefent the electric denfity of the globe, and remain conitant, any curve of denfity will anfwer, if \(\frac{d \dot{d}}{x}\) be ererywhere
lefs than \(R\). It is therefore an indctcrminate problem to affign, in general, the difpofition of Huid in the canal. The denfity is as the ordinates of a parabola only on the fuppufition that the maximum of \(R\) is everywhere the fame. And, in this eafe, the ditances AB is a minimum : for, in other cafes of dentity, we mult have \(\frac{d, \dot{d}}{}\) lefs than R. If, therefore, we vary a fingle ele\(\times\) ment of the curve \(\mathrm{D} d \mathrm{~B}\), in order that the flability of the fluid may not be difturbed, having \(d\) conftant, we muft neceffarily have \(\dot{x}\) larger, that \(\frac{d \dot{d}}{\dot{x}}\) may atill be lefs than \(R\); that is, we mut lengthen the axis.

We fee alfo, that to afcertain the diltribution in a conducting canal is a determinate problem; whereas, in inperfect conduQtors, it is indeterminate, but limited by the ftate of the flut, when it is fo difpofed that in every point the action of the fluid is in equilibrio with the maximum of refiftance. This confideration will he applied to a valuable purpofe in the article Magnetism.

This ductrine gives, in our opinion, a very fatisfactory explanation of the curious obfervations of Mr Brookes and Mr Cuthbertfon, mentioned in no 167 . namely, that damping the infide of a coated jar diminifhes the rifk of explofion, and enables it to hold a higher charge. We learn here, that there is no denfity fo great but that the leaft imperfect conductor will infulate it, if long enough ; and that the coercive quality of an imperfect conductor may be conceived fo conftituted from A towards B , that the denfities fhall diminifh in any ratio that we pleafe, fo that the variation of denfity (the caufe of motion) may every where, even to the infulating point \(B\), be very fmall. However great the conftipation at the edge of the metallic coating may he, an imperfect conductor may be continued ontward from that edge, and may be fo conflituted, that the conitipation fhall diminifi by fuch gentle gradations, that an explofion fhall be impoffible. An uniform dampnefs will not do this, but it will diminifh the abruptnefs of the variation of denfity. The flate of denfity beyond the edge of the coating of a charged jar, very clean and dry, may be reprefented by the paabolic arch \(\mathrm{D} i a\). This may be changed by damping, or properly dirtying (to ufe Mr Brookes's phrafe), to Df \(B\); which is evidently preferable. We
think it by no means difficult to contrive fuch a continuation of imperfectly conducting coating. Thus, if gold leaf can be ground to an impalpable powder, it may be mixed with an oil varnith in various proportions. Zones of this gold varnith may be drawn parallel to the edge of the coating, decreafing in metal as they recede from the elgge. By fuch contrivances it may be poffible to increafe the retentive power to a great degree.

This luctrine farther teaches us, that many precau-Cautions in tions mult be taken when we are making experiments deducing from which meafures are to be deduced; and it points meafurcs then uut to the mathernatician. In particular, when fromexpe bodies, fupported by infulators, are electrified to a high \({ }^{\text {r }}\) degree, the fupports may receive a quantity of fuid, whicl may greatly difturb the refults ; and this quantity, by exerting hut a weak action on the parts of the canal, may continue for a yery long time, and not be removed but with great difficulty. In fuch cafes, it will be neceffary to ufe new fupports in every experiment. Not knowing, or not attending to this circumftance, many erroneous opinions have heen formed in fome delicate departments of electrical refeareh.

Mr Coulomb's experiments on this fubject are chiefly valuable for having itated the relation between the intentity of the electricity, or, as he expreffes it, the electric denfity, and the lengths of fupport neceffary for the complete infulation. But, as the abfolute intenfities have all been meafured by his electrometer, and he has not given its particular feale, we eannot make much ofe of thens till this be done by fome electrician.
Mr Coulomb found that a thread of gum lac was Infulating the mot perfee of all infulators, and is not lefs than powers of ten times better than a filk thread as dry as it can be various made, if we meafure its excellence by its Mortnefs. In a confiderable number of experiments, he found that a thread of gum lac, of 1,5 inches long, infulated as well as a fine filk thread of 15 inches. When the thread of filk was dipped in fine fealing-wax, it was equal to the pure lac, if fix inches long, or four times its length. If we meafure their excellence by the intenfities with which they infulate, lac is three times better than the dry thread, and twice as good as the thread dipped in fealing-wax: fo that a fibre of filk, even when included in the lac, diminithes its infulating power. We alfo learn that the diflipation along thefe fubftances is not entirely owing to moilture condenfed or adherent on their furfaces, but to a fmall degree of conducting power. We have repeated many of thefe experiments, and find that the conducting power of filk thread depends greatly on its colour. When of a brilliant white, or if black, its conducting power feems to be the greatef, and a high golden yellow, or a nut brown, feemed to be the beft infulators; deubtlefs the dyeing drug is as much concerned as the fibre.

Glafs, even in its dryeff flate, and in fituations where moifure could \(h_{\text {r.i. }}\) no ascefs to it, viz. in veffels cqn. taining cauftic alkali dried by red heat, or holding frefh made quicklime, appeared in our experiments to be contiderably better than filk; and where drawn into a fender thread, and covered with gum lac (melted), infulated when three times the length of a thread of lac; but we found at the fame time, that extreme finenefs was neceffary, and that it diffipated in proportion to the fquare of its diameter. It was remar kably hurt by having a bore, howeyer fine, unlefs the bore could alfo
he conted with lac. Human hair, when completely freed from every thing that water could waft out of it, and then dried by lime, and coated with lac, was equal to filk. Fir, and cedar, and larch, and the rofe-tree, when fplit into filaments, and firft dried by lime, and afterwards baked in an oven which juil made paper become faintly brown, feemed hardly infuior to gum lac.

The aubite zuoods, as they are called, and mahogany, were much inferior. Fir haked, and coated with melted lac, feems therefore the beff fupport when ftrength is required. The lac may be rendered lefs brittle by a minute portion of pure turpentine, which has been cleared of water by a little boiliag, without fenfibly increafing its conducting power. Lac, or fealing wax, diffolved in fpirits, is far inferior to its liquid fate by heat.

Thefe obfervations may be of ufe for the conftruction of electrical machines of other electrics than glafs.

General re- WE have now given a comparifon of the hypothefis Rections. of Mr 厄pinus with the chief faets obferved in elec- trieity, diverfified by every circumtlance that feemed likely to influence the refult, or which is of importance to be known. We truft that the reader will agree with us in faying that the agreement is as complete as can be expected in a theory of this kind; and that the application not only feems to explain the phenomena, but is practically ufeful for directing us to the procedures which are likely to produce the effect we wifh. Thus, fhould our phyfiological opinions fuggelt that copious transference of fluid is proper, our hypothefis points out the moft effectual and the moft convenient methods for producing it. We learn how to conftipate the fluid in a quiefcent ftate, or how to abftract as much of it as poffible from any part of a patient; we can do this even in the internal parts of the body. We had once an opportunity of feeing what we thought the cure of a paralyfis of the gullet. Electricity was tried, lirtt in the way of fparks, and then fmall fhocks taken acrofs the trachea. Thefe could not be tolerated by the patient. The furgeon wifhed to give a fhock to the \(๕ f\) fophagus without affecting the trachea. We recommended a leaden piftol bullet at the end of a flong wire, the whole dipped in melted fealing wax. This was introduced a little way, we think not more than three inches, into the gullet, which the palfy permitted. A very flight charge was given to it in a few feconds; and the firt thack produced a convulfion in the mufcle, and the fecond removed the diforder completely. Here the ball formed the inner, and the gullet the outer, coating of the Leyden phial.
The theory Notwithflanding the flattering teftimony given by of Reinus the great conformity of this doctrine with the pheno.
is only a is ony a
hypothefis. mena, we fill choofe to prefent it under the title of a hypothefis. We have never feen the electric fluid in a feparate flate; nor have we been able to fay in what cafes it abounds, or when it is deficient. After what we have feen in the late experiments of that philanthro. pic philofopher Count Rumford on the production of heat by friction, we think that we cannot be too cautious on what grounds we admit invilible agents to perform the operations of Nature. We think that all mult acknowledge that thofe experiments tend very much
to ftagger our belief in the exnt wese of a fuid fui generis, a fire, heat, caloric, or what we pleafe to call it ; and all will acknowledge, that no better proofs can be urged for the exiftence of an electic fluid.
Accordingly many acute and ingenious perfons have 2225 rejected the notion of the exifence of an electric fluid of an eleeand have attempted to thew that the phenmena pro- tric "all is ceed, not from the profence of a pecinliar fulfinuce, but denicd. from peculiar modes; as we know that fonnd, and fome conconitant motions and other mechanical apprarances, are the refults of the elaftic midulations of air; and as Lord Bacon and others have explained the effects of fire by elaftic undulations of the integrant particles of tangible matter.

Wic have feen nothing, however, of this kind that Requifies appears to give any explanation of the motions, pref fur a jut fures, and other mechanical appearances of electricity. theory. We peremptorily require, that every doarine which claims the name of an explanation, flall be perfectly confitent with the acknowledged laws of mecharifm : and that the explanation fhall confift in pointing out thofe mechanical laws of which the fans in electricity are particular inflances. It is no difficult matter to pre. fent an intricate or comples phenomenon to our view, in fuch a form that it fhall have fome refemblance to fome other complex phyfical fact, more familiar, perhaps, but not better underfond. The fpecious appearance of fimilarity, and the nore familiar acquintance with the other phenomenon, difpofe us to confider the comparifon as a fort of explanation, or, at lealt, an alluftration, and to have a fort of indolent acquiefcence in it as a theory.

But this will not do in the prefent queftion: For we have here felected a particular circumflance, the obferved motions occafioned by elcetricity, and called allataions and repulfions-a circumflance which admits of the molt accurate examination and comparion with any explao nation that is attempted. In fuch a cafe, a vague picture would fpeedily vanihh into air, and prove to be nothing but figurative expreffions.

Many philofophers, and among them fome refpect- No atvan. able mathematicians, have fupported the doctrine of tape in aianDu Fay, Symmer, Cigna, Sic. who employ two fluids be bothe the as agents in all clectrical operations. It muit be grant-of two ed that there are fome appearances, where the explana- fluido tion by meeans of two fluids feems, at firf fight, more palpable and eafier conceived. But whenever we attempt to obtain meafures, and to fay what will he the precife kind and degree of the action, we find ourfelves obliged to affign to the particles of thofe fluids áctuating mechanical forces precifely equivalent to thofe affigned by Epinus to his fingle fluid. Then we have to add fome myfterious uncxplained comections, both with each other and with the other particles of tangible matter. If we except Mr Prevof, in his Effai fur les Forces Magnetiques et Eletriques, we do not recoilect an author who has ventured to fubject his fyitem to frict examination, by pointing out to ws the laws of action according to which he conceives the particles influence each other. Whe fhall have a proper opportunity, in the article Magerism, to give this alathor's theory the attention it really merits. We venture to fay, that all the chemical theories of electricity labour under thefe inconvenicnces, and have acquincd their influence merely from the inattention of their par-
tifans to the laws of mechanical mutiou, and require, in order to reconcile them with thofe laws, the adoption of powers fimilar to Epinus's attractions and repulfions. Slight refemblances to pheromena, which itand equally in need of explanation, have contented the partifans of fuch theories, and figurative language and metaphurical conceptions have taken place of precife dif227 cuffion. It would be endlefs to examine them all.
Hypothefis The muff fpecious of any that we know was pubof Profeflor licly read in the univerfity of Edinburgh by the late Ruffel.
in confequence of the elearicity in the compond. Part of this electricity mult be attached to the furface in a non-elattic flate; becaufe when it is brought fo near as to be attracted, its particles are within the fpheres of each other's action, and this redoubled attraction overcomes the repulion occationed by its union with the other ingredient; and the electric fluid is partly decompofed, and the elearicity, properly fo called, adheres to the furface of the electric, as the water of clamp air adberes to a colld pane of glifs in our windows. Alfo, by this conflitution, electric fuid may appear in two Itates; elaftic, like air, when entire; and unelatlic, like water, when partly decompofed by the attration of electrics.

Elcatricity may be forced into this unelallic union by various means; by friction, which forces the eleatric fluid contained in the air into clofe contag, and thus occafions this decompofition of the fluid and the union of it eledricity with the furface. This operation is compared by Mr Ruffel to the forcible wetting of fume powders, fuch as lycoperdon, which cannot be wetted without fome difficuliy and mechanical compreffion; after which it adheres to \(\because\).ter ftrongly. It may be thus united in fome natural operations, as is olferved in the melting and freezing of fome fubflances in contact with electrics; and it may be thus forced into union by means of metallic coatings, into whicl the electric fluid is forced by an artful cinployment of its mutual repulfions. This opcration is compared to the condenfation of the moifture of damp air loy a cold pane of the window; and the evacuation of the other fide of the coated pare is compared to the evaporation of the moillure from the other fide of the window, pane in confequence of the heat which mult emerge from the condenfed vapour. We find in the Proteffor's notes above-mentioned many fuch partial analogies, employed to fhew the fudents that fuch things are feen in the operations of Nature, and that his conjecture merits attention.

The intelligent reader will fee that the gencral refults of this conftitution of the electric fluid will tally pretty well with the ordinary electrical phenomena; and, accordingly, this conjecture was received with great fatisfaction. We remember the being much pleafed with it, as we heard it applied by Mr Ruffel's pupils, many of whom will recollect what is here put on record. But the attentive reader will allo fee, that all this intricate combination of different keinds of attraction and repulfion is nothing but mere accommodations, of hypochetical forces to the phenomena. How incomparably more beautiful is the fimple hypothefis of Æpinus, which, without any fuch accommodations tallies fo preciffly with all the phenomena that have yet been obferved? Here no diltinction of action is neceffary, and all the varicties are confequences of a circumflance perfectly agreeable to general laws; namely, that the internal itructure of fome fubllances may be fuch as obftructs the motion of the electric fluid through the pores-Nothing is more likely.

Several jears after the death of the Scotch Pro- \({ }^{928}\) feffor in 1773, a theory very much refembling this of Mr de acquired great authority, being propofed to the phi-1.Luc. lufuphers by the celebrated naturalift Mr de Luc. This gentleman having long cultivated the Itudy of meteorology with unwearied afliduity and great fuccefs,
and having heen fo familiarly converlant with expanfive finds, and the affinities of their compounds, was dipofed to fee their operations in almort all the changes on the furface of this globe. Electricity was too bufy an atior in our atmofpherc to efeape his particular notice. White the neechanical philufophers endeavoured to explsin its effects by accelerating forces attracting and repeliang, Mr de Luc endeavourch to explain them by means of the expanfive properties of aeriform flnids and gafes, and by their chemical affinities, compolitions, and decompofitions. He had formed to himfelf a peculiar ophinion concerning the conflitution of our atmofphere, and had exphaned the condenfation of moifure, whether of fteam or of damp aeriform fluids, in a way much more relined than the finple theory of Dr Hooke, siz. folution in air. He confiders the compound of air and fire as the carrier of the water held in foimtion in danp air, aad the fire as the general carrier of both the air and the moiture. Even fire is confidered by him as a vapour, of which ligh is the carvier. When this damp air or feam is applied to a culd furface, fuch as that of a glafo prane, it is decompofed. The water is attracted by the pa es by chemical affinity, and attaches itfelf to the furface. The fire, thus fet at liberty, acts on the pane in another way, producing the cquilibrium of temperature, and the expanfion of the pane. Acting in the fame manner on the moitture which chances to adhere to the other fide, in a proportion fuited to its temperature, it deftroys their union, enters into chemical combination with the moithure, and fits it fur uni. ting with the air on the other fide, or carries it of: Having read Mr Volta's theory of elecitrie influences, by which that philofopher was enabled to give a feientific narration and arrangement of the fhenomena of the electroplorus newly invented by limieff, and which is called an explanation of thofe phenomena, Mr de I.uc imagined that he faw a clofe analogy between thofe influences on the plates of the electrophorus and the bygroffopic phenomena of the condenfation and evaporation of moifture. In fhort, he was itruck with the refemblance between the condenfation of moiture on one fide of a glafs pane, and its evaporation frons the other; and the accumblation of electric fluid on one fide of a coated pane, and the abfltaction of it from the other. Subfequent examination pointed out to him the fane analogy between all other lyygrofoopic and elearic phenomena.

Ife therefore immediately formed a fimilar opinion mncerning the electric operations. It may be expreffed briefly as fullows:
229.

The electrical phenomena are the operations of an expanive fubitance, called the elefric fluid. This confifts of two parts: 1. Eleiric matter, which is the gravitating part of the compound ; and elocric deferent fluid, or carrying fuide, by which alone the electric matter feems to be carried from one body to another. The refemblance between the hygrofcopic and electrical phe* See Ilées nomena are affirmed to be *.
I. As watery vapour or feem is compofed of fire, the deferent fluid, and water, the gravitating part, fo eleciric fluid is compofed of the elearic deferent fluid, and clecric matter.
2. As vapours are partly decompofed when too denfe for their temperature, and then their deferent fuid becomes free, and fhews itfelf as fire; fo elcaric fluid
that is too denfe is decompofed, and its deferent faikl manifctls itfelf in the plopopporic and jiery phenomena of elearricity.
3. İs fre quits the water of vapour, to unite itfelf with a bodyly lef warm ; fo the elecirie deferent quits the elegric natter, in part, to go to other bodies which have proportionally lefs of it.
In this analogy, however, there is a diftinction. Fire, in quitting the rwater in vapour, remains actuated by nothing but its expandive force; remains free, and extends itfelf till the equilibrium of termperature is reflored; but the elearic deferent, when difengaged from eleatric nutter, in order to reftore its peculiar cquilibrium, is actuated by tindencies to ditinet bodies, and acts by this tendency in thus reftoring the eledric equilibrium; and it is only in confequence of this tendency that it quitted the elegric matter. This sendency is then directed to fome body in the vicinity.
4. As the fire of aupour pervalles all bodies, to refore the equithrium of timperature, depofiting the quater: fo, the eleervic deferent quits the eleetric matter, to reftore the electric cy:ulitrium in an intant, and for this pur. pofe pervades ail bodies, depofiting on them the elcarie matter which it carried, but difierently, according to their natures.
5. As fire and zeater, while compofing zapour, retain their tendurucies and affinities by which they produce the hygrofoopic phenomena; fo the ingredients of the clectric fuid, even in their ftate of union, retain their tencencies and affinities, which prosice the greateit part of the elearvic plencomena.
6. In panticular, the clearic mater retains its sendencies and affinities; and farther, the clectric offinities are, like the bygrofoopic, withont any chuice.

Here, however, there is a farther diftinetion. The affinities of reatcr refpect only lygrofoopic fubitances; but thofe of tearic matier refotec all iubftances, and therefore refpect the common atmofpheric fluids.
7. When fre quits she suater of supour, to form the equilibrium of temperulupe, it remains in the place where vapour moft abounds, but is partly latent, not exerting its powers; fo in the reftoration of the cquilibrium of the elearic defercht annong neighbouring budies, thofe which have propertionally molt elecricic nututir alfo retain moit diferent fluid, but in a latent fate.
8. As two maffes of vopour may be in expanyive equi. librimm (which others call Lalancing each others elaiticity \()^{\prime}\), althontrh the vapours contain very different proportions of fire and zuater; fo two mafics of electric fluidi may be in oxpanfive cquilibrium, although one contains much more elcaric matiter in the faine hulk, provided that the elecric deferint be alfo more copious.

The chief diftinction that mingles with thefe analogies is, that the affinity of cuiter to bygroficpic fub. flances operates only in contact, whereas clearic matter tends to dilfant bodies; and thefe diftances are very dif. ferent in regard to different bodies.

Such is the refemblance which has appeared fo ftrong to Mr de Luc. It is evidently the fame which furnilhed the conjecture to Mr Ruffel, and which. he confidered mechanically, in order to explain the phenomena of electric motions to ftudents of mechanical philolophy. The only refemblanee feems to us to appear in the con. denfation of moifture contained in damp air.

Mr de Luc, led by the habits of his former fludies,, attempts.

\section*{ELE C TRICITY.}
attempts to explain cyery thing by the relations which were tholt familiar to him, affinities and expanfive forces. Let us attend a little to the manner in which lie explains one or two of the moft general facts.

\section*{1. The conditions of conduãors and non-condu\&ors.}

This dillinction depends on the differences in the tondercy to ditant bodies: there are great differences in thefe diftances according to the nature of the bodies; and from this arife great differences of phenomena, independent of infulation or non-infulation, which are only the fenfible dillinctions of thefe claffes of bodies. Flectric matter tends to conductors at great diftances; but having reached them it does not adhere, and remains free to move round them, being dragged by the diferent fluid; but its tendency to non-conduzors is only at fmall aud infenfible diftances; and having come into contact, it adheres, and can no longer be dragged by the deferent fluid.

Hence the operation of conduziors and non conduitors ; and there is no other foundation for the notion of idioelearics and non-elearics, or electrics by communication. A part of a nor-conduator takes as much elearic matter as it can from the fubltance furnithing it; but cannot communicate it to another part, except very flowly; therefore, to communicate it to the whole furface, we mult cover it with a conductor (Surely this is a diftinction in the body, independent of the diftance of mutual tendency!).

Hence, too, the property of non-conduators by which the electric fluid is benumbed (engourdi) or cramped; therefore we can accumulate a great deal in them; and it will remain long, being benumbed; and if it be determined to quit them at once, the current will be much more denfe than when quitting an equal conducting furface.

Since conduciors do not fix the electric fuid, it myf circulate round them. It is urged to this mution by its expanfive pozver, by which it would difperfe from a body with inconceivable velocity, and perhaps the rapidity of its motion would decompofe it, and caufe fome light to emerge ; but it is at the fame time impelled by its tendency to bodies. Thus, by thefe two forces, it runs to a conduding body, and muft circulate round it as the planets do round the fun. In this circulation, if it cone to any great projection, it cannot follow the outline, becaufe fo abrupt; it therefore flies off at all points and protuberances. It will be the more difficult to keep to an abrupt outline as the Aratum in circulation is more copious or deeper, becaufe a greater mal's is with greater difficulty turned round a flarp angle. It is more inclined to efcape if another body be near, and it immediately becomes a fatellite to that body.

Thus all bodies get a fhare of electric fluid, circulating round conductors, and benumbed or cramped in noncondulors. Bodies of this laft clafs receive their portion by the air as hygrofoopic fubfances receive their water by the fire.

All the differences in the tendencies to bodies proeeed from the clatric matter. The deferent fuid follows other laws; namely, 1 . Its tendency to all fubftances is greater than that of the elearic matter to any one. 2. The tendency (and alfo that of the elearic matter) is always from the body which contains moll of it to that which contains leaft. 3 . The body which contains
moft of the one alfo contains moft of the other. 4. The deferent fluid has a particular affinity (chemical) with the elecric matter. 5. All thefe tendencies are leffencel by an increafe of diftance. 6 . The elearic matter, when compoting elearic fuid, has more or lefs exicanfive force as it is uaited to more or lefs deferent fluid.

\section*{Explanation of Charged Plates.}

Mr de Luc fays (\(\$ 286\).), that his System was finggefted by Vulta's Theory of Eledric Infuerces. Thefe (fays he) had been pretty well generatifed before, but with little improvement to the fcience, till Mr Volta difcovered a circuinflance which, in his opinion, comeeted by a general theory many phenomena which had formerly no obferved relation to any thing. This was, that when a body elcarified poftively brings a neighbouring body communicating quith the ground into the negative flate, its own pofitive elertricity is werkened while it remains in thai neithbourbood, but is recovered when the other body is removed. "Such is the diftinguining law of Mr Volta's theory, which brings all the phenomena of electric influences under lis theory, beginning with thofe of coated glafs, which were furmerly fo obfcure, becaufe they were not referred to their true caufe, \(\$ \mathrm{c}\).
" My System (Mr de Luc fays) concerning the nature of the clearic fluid explains the laws of Mr Volta's theory ; and of confequence explains, like it, all the phenomena which it comprehends: but it reaches much farther, feeing that more general laws comprehend a greater number of phenomena.
" In the phenomena of coated glafs, I plainly faw one of the procedures of watery vapour. Suppofe a glafs pane, moifened on hoth lides, and having the temperature of the furrounding bodies. Suppofe that warmer vapour comes to one fide. It is condenfed on the furface; that is, it is decompofed, the water adheres to the furface, and the fire penetrates the glafs, heats it, and increafes the evaporation from the other fide, by entering into combination with the water, and carrying it off with it. More vapour is condenfed on the fide A ; more fire reaches the fide B , and carries off more zvater. But as this happens only becaufe the fire alfo raifes the temperature of the pane, it is evident that the condenfation on the fide A , and the evaporation from \(B\), muft gradually flacken, and the naximum of accumulation in A, and of evaporation from B, will take place when the temperature of the pane is the fame with that of the hot vapour.
"The electrical phenomena of coated glafs are perfectly fimilar. The eleatric fluid reaches the fide \(A\), is decompofed, and the elearic matter is there benumbed and fixed. The deferent fluid penetrates the pane, and carries of the clearic matter from the fide B. This goes on, but flackens; and the maxinum of accumulation and evacuation obtains when the fide \(A\) has acquired the fame intenfity of electricity with the charging machine. More is accumulated in \(A\) than is abfracted from B; becaufe B is farther from the fource (he might have added, that part of the fire is expended in raifing the temperature of the pane): but the accumulation is inactive, becaufe the elearic matter is benumbed and fixed. Though the elearic matter is much diminifhed in B, yet the elearic fluid in its coat. ing has as much expanfive force as that of the ground;
becaufe
becaufe it has a furplus of deferent fluid. The abfolute quantity of clearic matter in both fides is fomewlat augmented."
This explanation of the Leyden phial comprehends the whole of Mr de Luc's theory; and the conflitution of the elechric fluid, and its various affinities, expanfive powers and tendencies, are all affigned to it in fubferviency to this explanation, or deduced from thofe phenomena. As the author, in all his writings, claims fome fuperiority over other naturalifts for more general and comprehentive views, and for more fcrupulous attention to precifion and meafurement, and particularly for more folicitude that no natural agent be omitted that has any hare in the procedure-he furcly will not be offended, although we fhould fate fuch difficulties and objections as occur to us in the confideration of this System (as he choofes to call it) of electricity.

We wifh that it had been expreffed in the plain and precife language of mechanieal and chemical fcience; for he reafons entirely from the nature of expranfive forces, tendencies, and affinities. His language will appear to fone readers, as it does to us, rather to exprefs the conduct of intelligent beings, acting with choice, and for a purpofe, than the laws of lifelefs matter. His account would have heen lefs agreeable, it is true, but more inftructive, and leís apt to be mitaken. Metaphorical language is feldom ufed without the rifk of metaphorieal conceptions; and the reader is very apt to think that he bas acquired a notion of the fubject, while he is really thinking of a thing of a different nature. We apprehend that a great deal of this happens in this inftance, and that when the narration is itripped of its figurative language, it will be found without that connection and analogy which it feems to poffefs.

We alfo wifh that the explanation had been derived from fome well-eftablifhed principle. The whole of it is profeffedly founded on a refemblance between the pheriomena of electricity, and fome things faid of watery vapour; but thefe are not the pbenomena of watery vaprur, but Mr de Luc's bypotbefis (he will pardon us the term, which we prefer to fy/fem) concerning vatery vupours. We do not think it philofophical to explain one hypothefis by another. Our illuftrious countrymen, Bacon and Newton, difapproved of this practice; and their rules of philofophifing have fill currency among philofophers. Explanation, in our opinion, is the pointing out fome acknowledged general fact in nature, and fhewing that the particular phenomenon is an example of it. We do not fee this in Mr de Luc's explanation ; beeaufe we do not fee the fats in the cafe of watery vapours to which the pbenomena of electricity are faid to have a refenblance. The phenomena we mean are chiefly the motions, and the transferences of the powers producing fuch mutions; we do not fpeak of the light, and fome uther phenomena, becaufe Mr de Luc does not fpeak of them in this explanation. We fhall even admit the transference as a thenomenon, although we do not fee any fubfance transferred: but we fee a power of producing certain motions where that power did not formerly appear ; and the appearance of this power is all the authority adduced, even by Mr de Luc, for the transference. We muft
now add, that the electric phenomena, which Mr de Luc calls like the phenomena of watery vapour, are all fuppofitions; and that therefore the explanation is a fy item of fuppofitions, franed fo as to be like the fyltem of watery vapour. For Mr de Lac will grant, that, on the one hand, we fee nothing like the water in the electric phenomena; and, on the other hand, there is no. thing in watery vapour like the motions of the electrometers, which are the only phenomena fron which Mr de Luc profeftes to reafon.

We alfo fear that the very curious expcriments of Count Rumford on the melting of ice, and the propagation of heat through liquids, will oblige Mr de Lue to ehange the talks of the ingredients, both of vapour and of clearic fluid. Water, and not fire, feems to be the corrier or deferent fluid; and we think that Franklin and Nepinus have made it highly probable that electricity, and not air, is the carrier.

We have alfo great difficulty in conceiving (indeed we cannot conceive) how the deferent fiuid, from which the elearic matter has been detached by its fuperior affinity with the fide A, can overcome the fame fuperior affrnity of the elearic matter with the fide \(B(A)\), and carry it off; how the deferent fuid penetrates the non-condueting pane, in order to carry off che cleiric matter in the form of fuidl ; and how it cannot do this, except by means of a condusing canal, into which it is exprefly faid that it does not penctrate. It mult not be faid that it runs along the furface of this canal: for the fmalleft wire will be a fufficient conductor, covered a foot thick with fealing wax. This indeed, according to Mr de Luc, allows the deferent fuid to pafs; but it mult alfo, according to him, Arain it pretty clear of all elearic matter. For we cannot help thinking, that the procefs (although purely ideal) has a clofer refemblance to what we fhould obferve in a flream of muddy water poured on a ftrainer, both fides of which are previnuly foul. If we were difpofed to amufe ourfelves with a figurative hypothefis, we could give oue on the principle of filtration that is very pretty, and pat to the purpofe, of glafs coated, and charged and difcharged by conducting canals.

With refpect to the fuggeltion of this theory by Volta's theory of electric influences, and the ignorance of naturalifts before that time of the true ftate of things, we mult obferve, that Mr Ruffel propofed the fane analogy to the condideration of his hearers many years before; and it was very generally known. The electric influences had been folly detailed by Repinus and Wilcke in 1759 , and applied with peculiar addrefs and force of evidence by Mr Cavendifl before 1771 ; and they were defcribed nearly in the fame way by Laue, Lichtenberg, and others.
And with refpect to Mr Volta's general prineiple, which Mr de Luc prizes fo highly, and by whicl he explains every thing, we mult obferve, that it is not trus as a phenomenon in elearicity; but, on the contrary, the pofitive flate of a body is sendered fironger, or more remarkable, by inulucing the negative ßate on a neighbouring body. See \(n^{2} 5\) 2. and 66 . - Mr Volta was inifed by the appearances of the electrophorus, whicl. had engaged all his attention, and modelled all his notions on thefe fubjects.
(A) We may here afk, How comes there to be fuch a quantity of electric matter already lodged in B : - Ia ia becoumbed? or in what fate is it?

His obiervations had been confined to difks; and though fay that the defcription of its itatc is by no means ayreethefe are excellent inftruments for producing very fenfible effects, they are quite ualit for examining the general nature of electric influences. Even without mach knowledge of dynamics, a perfon mult perceive that the action of their different parts on the electrometer may be verv different, by reafon of their different puitions and dittanes from it . Befides, the clectrometers of the apparatus deferibed by Mr de Luc in fect. \(4 \mathbf{H}^{2}\). \&c. did not indicate the real condition of the dilks to which they were attached, but the condition of the remote ends of overcharged conductors of confiderable length. Therefore, although all the electrometers fell lower when the other group of diks was in wught near, the pofitive ftate of the neareft difk was greatly augmented. The moft unexceptionable apparatus for this purpofe would be a row of polifhed balls on infulating fathds, placed in contact, the whole charged pofitive; and when another fuch group, or a long budy, is brought near, let the balls be feparated at once, and examined apart by a ver: fmall electrometer, made in the furn of our figure 3. We prefume to fay that, if the other group is properly managed, and made to communicate thuroughly with the ground, the pofitive eleatricity of the balls neareft to it will be found greatly zugmented, and that every one of them will be found in that precife ftate of elestrification that is pointed out by the Appinian theory. Mr de Lac has made and narrated the experiments with the dilis, and the curious firares ohferved by Lichtenbergh, with great judgment and tidelity; and they are claffical and valuable experiments for the examination of the theory. We may here mention a very neat way of executing the apparatus of balls, which was practifed by a young friend, who was fo kind as to make the experiments for us, when our thoughts were turned to bir de Luc's theory. Each ball was mounted on a flender glafs rod varnithed. The lowei and of the falk was fised in a little block of wood which had a fquare hole through it, by which it fliden̉ Ateadily along a horizontal bar of mahogany, fupported at the ends about an inch from the table. The balls werc made to feparate at once, and equally, from each other, hy a chequer jointed fraine, fuch as is feen in the toy hops, carrying a company of foot foldiers, who open and clufe their ranks and files by pulling or purhing the ends of the frame. Taking out the pins of the mididie juints of this chequered frame-work, and widening the holes for receiving the glafo ftalks, it is plain that all the balls will feparate at once, in the very flate of electricity in which they were when in the neighbourhood of the non-infulated group. This apparatus confilted of fix balls. We found the ball next the other group much more Arongly pofitive than before bringing that group near; and it was generally the third hall which feemed equally electric in both fituations. We arded nine halls more, connecting the whole by a fimilar contrivance; and found it a moft inftructive apparatus for the theory of the diltribution of the electric fluid. We wifh that it had occurned to us when the \(n^{\circ} 6_{2}, \& \%\). were under confideration.

With refpect to the condition in which the eledric matter is faid to be lodged in the fide A of the coated pane, where Mr de Luc fays that it is fixed, engourdi, in the now-conducing furface (which condition Mr de I.. c confiders as characterific of fueh fubftences), we mult
able to what we have obicived. The powers of this elatric mather are no more benumbed or ene:vated (it is a very unghilofophical phrafe), than if it were in a conduing body at the fame dillance from the oppofite co.nting. If coatings he applied to a block of glaifs of two or threc inches in thacknefs, and if the electrification be fo moderate that it would not fly from the one coatiug to the'other when the glaifs is removed - no fenfible difference will be found between the elestricity of the two contings with or withuut the glafs. The electric matter in the fide A has not its puwers engourdi; they are balanced by the powers of the fide 13 .

But how will Mr de Luc explain the eharging a pane negatively? How will he bring off a quantity of elearic matter, greater (according to his own account) than what will be bernumbed on the other fide? Nay, we murt alk, where does he find it? Is there a quantity already benumbed there? What is to revive it?

Let us now coufider a little the couftitution of the ingredients of this elctric fluid, by which ail thefe things are hrought about. And in doing this, let us banifh, when puffible, all figurative language; and, in the precife and dry phrafeulogy of dynamics, let us fpeak of the motion of fingle particles of the elcaric fluid, deferent furid, and elearic matter. By expanfize power, mult certainly be meant fuch a power as that by which air, gafes, intumed gunpowder, fteam, and the like, enlarge their bulk, and which is clearly manifefted as a mechanical preflure, by buriting veffels, impelling bullets or pittons, \&cc. as well as by the actual enlargement of the bulk of the fluid. We have no other in. dications of its being a force; and therefore our notions of its mode of acting muit be derived fulely from what we underfland of this power in air or the other fluids. Newton's Principia are our authority for laying that all that we know of it is, that it acts as a number of corpufctes would act, which repel each other with a force inverfely proportional to their diftances; this action not exteading beyoud the adjoining corpufcle, noz even to the fecond. We know a good deal of the propagation of preffure and prugreffive motion throngh fuch a fluish, when it is contined in a veffel, or fyitem of vefiels, of any form, and fume few fimple circumflances which take place in the elaftic undulations which may be excited and propagated through it. We have but a very indifing notion of the motions which one mafs of fuch a fluid will produce in another mafs, when both are at liberty to expand. This is very indiftict ; but we are certain that it will be like the motion of two mafles of air blown or driven againt each other. Now thefe electric Aluids, by their expanfive puwers, muit act like thofe cothers with which we are more familiarly acquainted. And here we venture to fay, that the ajpearances in electricity are fo far from being like thefe, that we cannot imagine any thing more remarkably different. We fhall mention but one thing. Every mark that we have for the prefence of elearic fluid obliges us to grant, that in an overcharged body it is crowded into the external furface, fo that the quantity has little or nu relation to the quantity of matter in any body, but merely to its furface. This is quite unlike air, or any uther expanfive fluid, which is uniformly diftributed through the whole fpace comprehended by the furface which bounds it. We never faw any thing

\section*{LLECTRICITY.}
like ftreams of this elearic fiuid, impelling or any way acting on each other, except in the transference by fparks; and there it was indeed like the motions of air, for it was not elearic Anid,' nor elctric matter, but elearifted air.

Let us next coufider the tendencies by whieh the relations of thefe expanfive fluids to other bodies are produced, and the electric motions are faid to be explained. We obferve that Mr de Lue avoids the ufe of the words atbration and ropulfion, fo much employed by the Britifh phitofophers. He confiders thete tendeneies as determinate impulfions, and adopts the doctrine of Le Sage of Generu, who his not only laid Newton under great obligations, by a mechanical explanation of gravity, but has alfo explained exprantion, elaftieity, chemical affinity, and all fuecific tendencies, to the fatif. faction of the moft eminent mathematicians. To fuch only Mr de Lue profufle's to addrefs himfelf, who are not contented with a doctrine which fuppofes bodies to adt where they are not. But, unfortunately, Mr le Sage has never olliged the world with this explanation. We are not moft cminent mathematicins; but we are ahle to prove, that Mrle Sage's favourite theorem, mentioned by Mr de Lue in \(\$ 157,158\), as demonftrated by Mr Prevoft, the editor of Lucrece Neutonien, is a complete dereliction of the tirt principles of Mr le Sage, and is alfo incompatible with mechanical laws. Mr de Luc fhould have given a demonitration of the theorem on which all his fyftem refted; otherwife it is only reviving " dixis philofophus, crgo verum."

But let us fee what thefe tendencies perform. Mr de Lue fays, that the fluid, fetting out from a body by its expanfive power, would move in a Atraight line with inconceivable velucity, and would immediately defert even this glube, were it not deflected by its tendency to other bodies. We do not fee whence this immenfe ve. locity is derived. But let it go off; it is deflected from its rectilineal courfe by its tendency to fone conducting body, which it reaches, but cannot, nor does not enter; and therefore muf continually circulate round it, as the planets circulate round the fun, following its outline, if not too abrupt, but flying off from all points in the direction of the axis of the point, \&e. Here we are at home; for this is a plain dynamical problem of central forees. All that we fhall fay on this head is, that Mr de Luc has certainly not confidered the planetary motions with attention, when he hazarded this very comprehenfive propufition. If he will take the trouble to do this, he will fee that every part of it is inconfiftent with the acknowledged laws of mechanifm, and that the motions are abfolutely impoffible. Befides, we know that it will not fly off from a hundred points placed together, which is a ftill more abrupt line, if they do not project beyond the brim of a pit in which they ftand; yet this pit only makes the outline more abrupt. We farther believe, that no perfon can form to himfelf any ditinet notion of fuch cireulations round every conducting body; they will be more numerous, and infinitety more confufed and jarring, than all the vortices of Des Cartes. How can fuch notions take place ronnd a bunch of brafs wire buried in fealing wax? Yet he mult grant that they really happen there; or what prevents the eledric fluid from being flrained clear of all electric matter in paffing through the air?

We would alfo alk, why the tendency is always from she body containing mof of the fuid to that containing leaf?

It is wut enough to fay that it is fo: this would only be contriving a thing to fuit a purpofe; a reafon thould be given if we pretend to explain. Now the tendency to a diftant body is to the natter in that body, without any relation to the fluid in it, or in the body from which it came.

On the whole, we cannot think this theory is any thing hint telling a fory of ideal beings, in very figuriative language, which gives it fome animation and intereft. The different affinities, tendencies, and powers, are ouly ways of exprefing ecrtain fuppojed events, and fuited to thote events: but it gives no explanation of the olfferval mecianical phenomona of eledricity, flewing from acknowledred principles that they nuft be fo.

What a difference between this laboured and intrio eate mechanifm, and the finple, perfuicnons, and diftinct theory of Sipinus! Even Mr Ruffel's explana. tion is more intelligible, and more applicable to the motions which are really obferved. That gentleman faw the neceffity of confidering them as the tubjects of mecbanical difcu/fion, and that all that was wanted was to find out what law of ditant action would tally with the phenomena. The Scotch philofopher was careful to warn his hearers that he only propufed a conjefure. The Swede calls his performance Tentamen Theoris, Sc." and begins and concludes it with exprefsly faying, that it is only a byputb.fis. The Englifh nobleman calls lis dilfertation an Allempt to explain fome of the phenomena, \&c. None of thefe philofophers call their works a sysTEM, which comprebends all theories, whether that of Volta or of any other fuccefsful inquirer.

We hope to be exculed for treating fo largely of this fubject. It ttruck us as a very proper example of the bad confequences of indulging in figurative language. It must be very feducing, when fo lcrupuluss and fo eminent a philofopher as Mr de Luc is led aftray by it.

We conclude this long article by obferving, that whatever may be the fate of Mr Epinns's bypotbetical theory, his claffification of the facts, and his precile determination of the mechanica! pbenomenat to be expected from any propofed fituation and condition of the fubItances, will ever remain, and be an unering direction in future experiments; and the whole is an illutrious fpecimen of ingenuity, addrefs, and good reafoning. We hope to make this fill more evideut, when we apply it to the quiet and manageable phenomena of MAG. NETISM

Pondere et menfurâ..

\section*{APPENDIX;}

\section*{Containing an abstract of mr coulont's} EXPERIMENTS.

Mr Coulomb in the Mem. de l'Acad. de Paris for 1786, relates feveral experiments made for afcertaining the difpofition or diftribution of the electric fluid in an overcharged body. Their general refults were,
1. That the fluid is diftributed amung bodies accord. ing to their figure, without any elective affinity to any kind of fubftance.

For when a ball, or body of conducting matter, and of any fhape, is clectrified to any particular degree, as
indicated
indicated by his elefrometer, if it be touched by another equal and fimilar body, fimilarly fituated in refpect of the touching points, the electricity is always reduced to \(\frac{1}{2}\).
2. In an overcharged conducting hody, the fuid diffufes itfelf entirely along the furface, without penetrating inte the interior parts.

The conducting body AB (fig. 37.) liad pits \(a, b\), ace. made in various parts of its furface. They were half an inch in diameter, and fume of then ' \(x^{2}=\) ths, others The \(^{\frac{3}{0}}\) ths, \&ic. in depth. \(c\) reprefents the edge of a fmall circle of gilt paper, \(\frac{1}{3}\) th of an inch in diameter, fixed perpendicularly on the end of a fine thread of gum lac. 'The body was electrified and touched with this little electrofcope, by fetting it flat down on the furface. The circle \(c\) was then prefented to an elecarometer which moved 90 degrees by a force not exceeding \(\frac{\sigma^{2}}{}{ }^{2} 5^{\text {th }}\) th a French grain. When this contact was inade with the even furface of the concuctor, it was ftrongly electrified, and particularly when it touched any eminence, or the ends of long ey linders, \&c. The paper being exceedingly thin, and placed in full contact, it may be fuppofed to bring off with it the quamity of fluia correfponding to that part of the furface, or rather a greater quantit?. But when it was made to touch the bottom, even of the fhalloweft of thefe pits, it did nct affect the ciectrometer in the leaft.

He demonttrates the following elementary theorem :
The attraction or repultion being fuppofed to he proportional to the inverfe of any power \(m\) of the diftance; that is, being as \(\frac{1}{n^{m}}\) : if \(m\) be greater than 3 , the action of all the raffes of fuid which are at a finite diflance is nothing in cermparifon witl the action in contact ; nnd therefore the fuid mut be unifformly diffufed, in the fame way as if each particle acted only on the adjoining particles.

But if \(m\) be lefs than 3 , for example, if \(m\) be 2 , as feems to be the cafe in electricity, the action of all the maffes at a finite ditance is not infinitely fmall in comparifon with the action in contact, and the redundant fluid mult go tuward the furface, and noo redundant fluid will be retained in the interior parts. The demonftration is to this effect:

Let A a BF (fig. 38.) be a perfectly conducing bo\(d y\) of any fhape, and let \(d a e\) be a thin fice Separated from the reft hy the plane de; let doe be precifely equal and fimilar to \(d a e\), and let \(a b c\) be perpendicular to the feparating plane; then the action of all the particles in the thin flice dae (when eftimated in the direction \(a b\)) on the particle \(b\), mult balance the action of all the reft of the fluid in the Lody; for \(b\) is fuppofed to be at reft. Now, as the law of continuity will be obferved in any diftribution of the flaid, through the whbole borly, it is plain that, by taking \(a b\) fufficiently fmall, the difference of denfity at \(a\) and at \(c\) may be infinitely fmall ; therefore the action of the fluid in dae will be infinitely near to an equilibrium with the action of dce; and the action of the fluid in the reft of the body on the particle \(b\) will be intinitely fmall. This cannot be, when the action of a mafs of tluid at a finite diflance is not infinitely fmall in comparifon with the action in contach, unlefs we fuppofe that the quantity of fluid at a finite ditance is alfo infinitely fmall, or nothing; that is, unlefs the whole reduadant fluid is conflipated on the furface, and the interiur parts are mercly faturated.

The preceding propofitions are quite analogous to propofitions in Mr Cavendifi's differtation in the Philofophical Tranfactions for 1771.

In the Memoirs of the fame Academy for \(1787, \mathrm{Mr}\) Coulomb endeavours to afcertain the denfity of the fluid in different bodies which touch each other. When the bodies do not differ extremely in magnitude, he determines this by the immediate application of them to the electrometer; but when one is extremely fmall in consparifon with the other, he firft determines the force of the large body, and then touches it 20 or 40 times with the fmall one, till the force of the large body is reduced to \(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\), \&ice. The general refult was, that when the furfaces of the fpheres had the proportion ex. preffed in the firt column of the following Table, then the denfity in the fmall one had the proportion expreffed by the numbers of the fecund column, and never atlained the magnitude 2.
\begin{tabular}{cccccc}
\begin{tabular}{c}
1
\end{tabular}\(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\)
\end{tabular}\({ }^{1} 1\)

This is extremely different from the proportions which obtain when the two fpheres communicate by very long flender canals, which he found exactly conformable to the determinations of the theory : but in Mr Coulomb's experiments the fpheres touched each other, and had no other communication.

He then endeavours to afcertain the denfity of the fluid in the different parts of the furface of thefe touching fpheres, in order to obtain fome experimental knowledge of the diltribution. He touched then (while in mutual contact) with the little papercircle, and examined its electricity by his electrometer, and made his eftinnstion on the fuppofition that it brought off one-half of the electricity of the touched part.

When the globes were equal, he found the denfity to be o in the point of contact, and fearcely fenfible till he took the paper 30 degrees from the point of contac. From this it increafed rapidly to \(60^{\circ}\); flowly from thence to \(90^{\circ}\); and from thence to \(180^{\circ}\) it was almoft uniform. The denfities were nearly
\begin{tabular}{lllllll}
0 & \(\cdot\) & \(\cdot\) & at & \(\cdot\) & \(\cdot\) & \(0^{\circ}\) \\
\(\mathbf{i}\) & \(\cdot\) & \(\cdot\) & - & - & \(\cdot\) & 30 \\
4 & \(\cdot\) & \(\cdot\) & - & - & \(\cdot\) & 60 \\
5 & \(\cdot\) & \(\cdot\) & - & \(\cdot\) & \(\cdot\) & 90 \\
6 & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & 180
\end{tabular}

He alfo found, that the more the globes differed in bulk, the moré is the denfity changed in the fnall globe, and it is the more uniform in the gleat one, increafing rapidly from 0 , at the point of contact, to about \(7^{\circ}\), and beyond this being fenfibly uniform.

Hence we may conclude, that the electricity is diffufed with almuft perfect uniformity in a globe communicating with another at a great diflance by a flender canal (as Mr Cavendifh has demonftrated) ; while, from the reafoning employed before, it is probable that it is alfo uniformly diffufed all along the canal; and therefore, that the quantities in two fuch globes are very nearly as the diameters, and the denfities inverfely as the diameters, as Mr Cavendifh demonftrated, on the fuppofition that the fluid in the canal is incompreffible.

He found that a finall globe, placed between two equally large ones, fhewed electricities of the fame kind with that of the other two, when the radius of the

\title{
1’ig..".
}

Pig. I. rice2.

(1)
姳. 4.

\(\square\)
 3 (n)s

rim. ! fin. 10 .

l'i...:

1'ig. 13.

Fix. 7.
I'ig. II.

\(\square\)

「io． 20.
ris．2f．

「ig．？？

ド心のッ

トゥッ゙っ！

Fig．34．
Fic．0．2

1票解。

great one was not more than five times that of the middle one, but fhewed no electricity when the difproportion was greater.
When three equal globes were in contact, the derifiiy of fuid in the middle globe was \(\frac{-1}{1,34}\) of that of the cther two. A fmall glohe being removed to a very fnall diftance from an overcharged great one, after biaving been in contar, fhewed oppofite electricity in the fronting point ; when a little farther off, it was neutral; and beyond this, it was overcharged.

The dianeters being 11 and 8 , the fronting point of the fmall one was negative till the difance was 1 ; here it was neutral, and when it was removed farther, it was pofitive. When the diameters were 11 and 4 , the fmall globe was negative till their dittance was 2 , where it was neutral. When the diameters were 11 and 2 , the diftance whieh rendered the fmall globe nentral in the fronting point was \(2 \frac{1}{2}\).

All thefe facts are perfectly conformable to a mathematical deduction, from the fuppofition that the redundant fluid is fpread over the furfaee, and that the interior points are neutral. If any fort of doubt fhould remain in the minds of thofe who are not converfant in fuch difcuffions, it mult be greatly removed by the fact, that it is quite indifferent whether one or both globes be folid, or be an extremely thin fhell.

When an electrified body is touched with a long wire, and by another of equal diameter and length, coated to any thicknefs with lac or lealing wax, the
two wires take off precifely the fame quantity of elec. tricity. This was demonftrated by touching a globe repeatedly till the electricity was reduced to \(\frac{1}{2}\)

Hence we mult conclude, that the electric fluid does not form active atmofpleres around budies, by the action of whofe partieles in contact (mathematical or phyfieal) the phenomena of attraction and repultion are produced, but by the action of the fluid in the boijy, agreeable to the theory of Epinus.

Such are the obfervations of Mr Coulomb They are extremely valualle, becaufe they confirm in the completeft manner the legitimate confequences of the theory.

We think that the materiality of that which is transferred from place to place in the exlitinition of electric phenomena, is greatly couffrmed by fome obfervations of Mr Wilfon's in the Pantheon. When a fpark was taken from the whule of the lung wire extended in that vall theatre, the fenfation was in different from a \(\int_{\text {park }}\) which conveyed even a much greater quantity of fluid from a pretty large, but compret, furface, that they could hardly be compared. The laft was like the abrupt twitel with the point of a hooked pist. as if pulling off a puint of the flin ; the fpark frons the lang wire was more like the forcible piercing with a needle, not very fharp, breaking the flin, and puthing it inward. We lad this account from the Duetor in converfation. He afcribed it, with feeming jurtice. tos the momentum acquired by the fluid aecelerated alung that great extent of wire.

\section*{E L E}
lectricity, ter. plement.
ELECTROMETER, is an inftrument whieh mea. fures the quantity of electricity in any electrified body. The moft common electrometers are deferibed in the artiele Electricity (Encycl.), \(\mathrm{n}^{\circ}\) 27, and 182-233. A very valuable one is likewife deferibed in \(n^{\circ} 85\). of the article Electricity in this volume; but there are fill two electrometers, of which we have hitherto given no aecount, though they are of fuch value, that to puifs them unnoticed would be unpardonable. The firft, which is incomparably the moft accurate and delicate inftrument of the kind that we have feen, was invented by Mr Coulomb, and is adapted to afcertain the fmalleft quantity of redundant electricity. The fecond is a late invention of Mr Cuthbcrtfon, the ingenious improver of the air-pump, and is employed only to meafure the charge of large jars and batteries.

Electrometer, by Mr Coulomb of the Royal Academy of Sciences at Paris, deferibed in the Memoirs for 1785 .

Mr Coulomb had made fume experiments in examination of Dr Hook's theory of fprings "ut teafio fic vis ;" and found, that it was furprifingly exact, in regard to the furce neceflury for twifting elaftic wires. Having fufpended a nicely turned metal cylinder by a fine wire in the direction of its axis, and having given it feveral turns, and left it to regain its natural pofition, he obferved, that it performed all its sevolutions of untwifting and twifting in times precifely equal, whether thefe ofcillations were of a few degrees, or confifted of

E L E
feveral revolutions. He thence concluded, that the Eleetrome. force with whicls the wire endeavoured to regain its natural pofition was exactly proportional to its diftanee \(\underbrace{\text { ttr. }}\) from it. Engaged, foon after, by order from the Minifter of Marine, in an examination of the phenomena of the mariner's compafs, he took this method of fufpending his needles, in order to obtain exact meafures of the forees which caufed them to deviate from the magnetie meridian. He made fome obfervations with needles fo fufpended; which are highly valuable to the philofopher engaged in that fudy. When his fuccefs in this refearch had fully gratified his winhes, he turned his thoughts to the examination of the law of electric action by the help of an electrometer furpended in the fame manner. It is conflructed as follows :

ABDC (fig. 1.) reprefents a glafs cylinder, 12 Plate inehes in diameter and in heioht. This is covered by xxyIr. a glafs plate fitted to it by a projecting fillet on the under furface. This cover is pierced with two round holes of \(1 \frac{3}{3}\) th inches in diameter. One of them \(f\) is in the centre, and it receives the lower end of the glals, tube \(f /\), of 24 inches height, which is fixed in the hole with a eement made of fealing wax, or other clectric fubflance. The top of this tube receives the brats collar H (fig. 2. \(n^{\circ}\) 3.), bored truly cylindrical, and having a fmall houlder, which retts on the top of the tube. 'This collar is faftencd with cement, and receives the hollow cylinder © (fis. 2. \(11^{\circ}\) 2.), to which is joined the circular plate \(a b\), divided on the cdge into 3 to degrees. It is alfo pierced with a round hole G in the centre, which receives the cylindrical pin \(i\) (fig. 2. \(\pi^{\circ}\) I.), having

\section*{E L E [620] E L E}

Electrome- a milled head \(b\), and an index io, whofe point is bent down, fo as to mark the divifions on the circle \(a b\). This pin turns filfly in the hole G , and the cyiincier d turns fteadily in the collar H. To the lower anf of the centre pin is faftened a little pincer \(q\), formeal like the end of a port-crayon, and tightened by the ring \(q\), fo as to hold fatt the furpention wire, the lower end of which is grafped by a furilar pincer \(P_{0}\) (fig. 3.), tightened by the ring \(q\). The lower end \(q 0\) is cyliadrical, and it is of fuch weight as to Atrain the wire perfectly ltraight, but withuut any rifk of breaking it. It may be made half of the weight that will jut break it.

This pincer is enlarged at \(C\), and pierced with a hole, which receives tightly the arm \(g \mathrm{C} q\) of the electrometer. This is eight inches long, and confifts of a dy filk thread, orflender ftraw of fume grafs completely dried, and dipped in melted gum lac or fine fealing wax, and held upright before a clear fire, till it form a Alender cylinder of about \({ }^{\frac{1}{5}}\) th th an inch in dianster. This occupies fix of the eight incles, from \(g\) to \(q\) : the remaining two inches is a fine thread of the lac or fealing wax, as it drains off in forming the arm. At a is a ball of pith of elder or fime cork, one-fourth or onehalf of an inch in diameter, made very fmooth, and gilded. It is balanced by a vertical circle \(g\) of paper, of large dimenfions, fliffened with varnifh. The reffitance of the air to this plane foon checks the ofcillations of the arm.

The whole is feen in its place in fig. I. where the arm hangs horizontally about the middle of the height of the great cylinder. In its ofcillations the ball a moves round in a circle, whofe centre is in the axis of the whole inflrument. Its fituation is indicated by a graduated circle Z O Q. drawn on a nip of paper, and adhering to the glafs with varnifh. The electrified budy, whofe action is to be obferved, is another fmall ball of cork \(t\), alfo gilt, or a brafs ball well polifhed. This is cantied by a flalk of gum lac \(m_{\varphi}\), inclofing a dry filk thread. This flalk is grafped by a clamp of cleft deal, or any fimilar contrivance which lies firm on the glafs cover. When this ball is let down through the hole \(m\), it ftands fo as to touch the ball \(a\) on the arm when that ball is oppofite o on the graduated circle.

To electrify the ball \(t\), we employ the infulating handle, fig. 4. which is a flender flick of fealing wax or lac, hulding a metal wire that carries a fmall polifhed metal ball. We tuuch with it fome electrified body, fuch as the prime conductor of a machine, the knub of a jar, \&cc. Introduce this clectrified ball cautioufy into the hole \(m\), and touch the ball \(t\) with it. The ball \(a\) is immediately repelled, and goes to a diftance, twifting the fufpenfion-wire, till the force of twilt exerted by the wire balances the mutual repulfion of the balls \(t\) and \(a\).

Such is the procefs for examining the law of electric action. But when we would examine the action of different bodies in different flates, another apparatus is wanted. This is reprefented by the piece \(c \mathrm{~A} d\) (fig. 5.), confifing of a plug of fealing wax A, which fits fight into the hole \(m\), and is pierced by the wire \(c d\), hooked at \(c\), to reccive a wire connecting it occafionally with an electrified body, and having below a polifhed metal hall \(d\).
The inftrument is fitted for obfervation in the following manner: Turn the milled button \(b\) at top, till the twift-index \(i o\) is on the mark \(o\) of the twilt circle. Then turn the whole in the collar H , till the ball \(a\) Itands
oppofite to the mark o of the paper circle \(z O Q\), and at Elceerome. the fame tine touches the balit or \(d\).

The obfervation is made thus: The ball \(t\) is electrified as already faid, and \(a\) is repelied, and retires from \(t\), twifting the wire, and, after a few ofcillations, fettles at a diftance correfponding to the repulion. Now turn the twift-index, fo as to furce the ball a nearer to t. We eftimate the force of this new repulfion by adding the mution of the twift-index to the angle at which the ball firlt refted. By turning the twit-index fill more, we bring the balls ftill nearer, and have a meafure of another repulfion.- And thus may we obtain as many meafures as we pleafe.
In this way Coulomb afcertained the relation between the repulfion and the diftance to be the inverfe duplicate ratio of the dillances. He difcovered the law of difflpation by air in contag, and the relation which this hears to the primitive repulfion, hy oblerving the gradual approach of \(a\) to \(t\) as the electricity diffipates from buth, and by flackening the twit-index till the ball \(a\) retires to its primitive ditlance. He afcertained the diffipation along imperfect conductors and the length neceflary for infulation, by completely infulating the ball \(t\). and ohferving the lofs by air in contast with it, and then fliding a metal red down the infulating ftalk, till the diffipation began to exceed what took place by the air alone. He examined the proportion of redundant fluid in cummunicating bodies, by connecting them alternately with the piece, fig. 5. ; as alio by electrifying one ball, and obferving its repulfive force, and then flaring its eleetricity with another, and obferving the diminution. He examined the graduation of his electrometer, by fharing the electricity of one ball with an equal ball, which gave him the pofition that indicated one half; and, by repeating this, for onefourth, \&cc. in the fame manner as we practifed and related in Electricity (Suppl.), no 141 , \&c.

An example of one or two of thofe trials will give a clear conception of the conclufions deduced from thefe obfervations.

The ball \(t\) was introduccd and electrified ; \(a\) was repelled, and fettled at \(40^{\circ}\); the index was twifted \(140^{\circ}\), which brought \(a\) to 20 ; and the tine was noted. The electricity gracually diffpated, and \(a\) came nearer to \(t\). The index was untwifted \(30^{\circ}\), and a retired a little beyond \(20^{\circ}\); but on waiting a few fecends, it flood exactly at \(20^{\circ}\). The time was again noted. The interval was exactly three minutes. The couclufion from the experiment was as follows :

When the ball was brought to \(20^{\circ}\), the repulfion was evidently \(140+20\), or 360 . Three minutes afterwards it was \(230+20\), or 130 ; and \(30^{\circ}\) were loft in three minutes, or \(10^{\circ}\) per minute. The mean force was 145. Therefore the mean lufs per minute was \({ }^{10} 5^{\circ}\) Obferve alfo, that the primitive force correfponding to the diftance was 40 ; and the force correfponding to 20 was 360 , or inveríely as \(20^{2}\) to \(40^{2}\).
But obferve, that the diftances were not meafured by the angles, but by the chord of the angles. The obliquity of aqion muft alfo be accounted for; and the real lever is lefs than the arm, in the proportion of radius to the cofine of \(\frac{5}{2}\) the angle.
The wire ufed by Coulomb in his firf experiments on the law of action was of fuch flrength, that \(\frac{1}{4} \frac{1}{2}\) th of a French grain, applied at the point \(a\), beld it faft

\section*{E L E [G21] E L. E}
actrome-till the twitt-index was turned \(360^{\circ}\); fo that one detef. gree correfponded to गा \({ }^{1} \geqslant\) हु of a grain. A foot of this wire weighed rith of a grain. Experience having flewn that this was a fenfibility far exceeding what was neceffary for the meafures that he had in view, and made the inftrument too delicate for common ules, be fubftituted inuch ftronger and Shorter wires, and recom. mends much fmaller dimenfions for the whole inftrument. We have made two of only five inches in diameter and 14 inches high; the arm ag being 2 i inches, and the fufpenfion a lingle fibre of filk, caurying 30 grains. It is far more fentible thon Bennet's gold leat electrometer. 'The fame inftrument, witl a filver wire fufpenfion, and a thread of lac projecting from the end \(g\), as an index to coincide more clofely with the fale, is fufficiently nice for all experiments of meafurement. It is always proper to have the diameter of the cylinder double the length of the arm, that the action of the glafs may not difturb the polition of the arm. It is greatly improved by havine a round hole in the botton of the indtrument, in which the cylinder \(\mathrm{C}_{0}\) of the lower pincer may hang freely : this prevents much tedious of cillation. For ordinary experiments, for meafuring charges of bateries, and the like, a much lefs delicate inflrument, with a fufpenfion-wire ftrained at both ends, is abundantly delicate, and valtly more manageable. The wire hould extend as far below the arm as above it, and fhould be grafped below, by a pincer turning by a milled head in a hole at the erd of a ीender fring. This enables us to adjult the intrument fpeedily. Having placed the twif-index at \(c\), turn this lower hutton gently till the ball a points exactly to o on the faper circle. Even in this coarfelt tlate we have found it more delicate, and much more exact, than the electrometer defcribed in Electricity (Suppl.), no 85 . which was much more coltly, and liahle to accidents. Coulomb's electrometer has the great advantage of walting very little electricity; whereas Henly's, or Brookes's, or de Luc's, wafte it very fall when it is intenfe.

We improved it greatly by taking away the apparatus with the ball \(t\), and fubftituting the piece, fig. 5 . for it, after changing its coritruction a little. Initead of the wire \(c d\), we ufed the fmalleft glafs tube that we could varnifh on the infide, by drawing through it a filk thread dipped in varnifh. Having varnifhed it with lac both within and without, a brafs ball \(d\) was fixed on its lower end, and a fine wire, with a ball at top, was put down into the tube, fo as to tuuch the ball below. When the plug was fitted intu the hole \(m\) once for all, the fituation of the ball \(d\) fuffered no alteration. When delicate experiments are to be made, the upper ball \(c\) is touched by the charger, fig. 4 . which elecirifies d. C is immediately drawn out with a glafs forceps ; and thus \(d\) is left completely infulated. When external electricity, fueh as the faint electricity of the atmo. fphere is to be examined, the wire is allowed to temain in the tube. \(-N . B\). A fcrupulous experimenter, who may object to the fraining fpring recommended above, may fubftitute a fmall weight, which will be condaut in its action.

The reader will obferve, that this electrometer, as hitherto managed, meafures only repulfons. It is not fo eafy to meafure attractions with it ; and Mr Coulomb was obliged to take a very circuitous method, during which a great deal of electricity was diflipated. In this refpeet, the electrometer defcribed in the article

Electricity (Suphl.) has the advantage; but in every Eleq隹me. other refpect, Mr Coulomb's is the finelt electrometer that has yet been publified, giving abfolute meafures, and this with great accoracy. The Hon. Mi Cavendifh has employed the condruction in his note valuable experiments on the force of gravity (Phol. Tranf. 1798 , Part I1.) ; an experinent which Newton would have been delighted with obferving.

Cubbertfon's Thaftrometser is thus defcribed by himfelf in the latt number of the fecond volume of Ni cholfon's Philofopbical Fournal. GH (fig. 6.) is an oblong piece of wood, about 18 inches iu length and fix in breadth, in which are dixed three ghafs fupporters, \(\mathrm{D}, \mathrm{E}, \mathrm{F}\), mounted with brafs halls, \(a, c, b\). Of thefe fupporters \(E\) and \(F\) are exactly of the fame length; but O is four inches fhorter. Under the brafs ball a is a long brafs hook; the hall \(c\) is made of two hemifoheres, the under one being fixed to the brafs mounting, and the upper turned with a groove to thue upen it, fo that it can be taken off at pleafure. The ball \(b\) has a brafs twhe fixed to it, about three inches long, cemented on tle top of F , and the fame ball has a hole at the top, of about one-lalf inch diamater, currefponding with the infide of the tube. AB is a ftraight brafs wire, with a knife-edged centre in the midule, placed a little below the centre of gravity, and equally balaneed with a hollow brals ball at each end, the centre, or axis, refting upon a proper fhaped piece of brafs fixed in the infide of the ball \(c\); that fide of the hemifphere towards \(c\) is cut open, to permit the end \(c A\) of the balance to defcend till it touches the ball \(a\), and the upper hemifphere \(C\) is alfo cut open to permit the end \(c \bar{B}\) to afcend; \(i\) is a weight, weighing a certain number of grains, and made in the form of a pin with a broad head; the ball \(B\) has two loles, one at the top, and the other at the bottom; the upper hole is fo wides, as to let the head of the pin pafs throngh it, but to fop at the under one, with its fhank hanging freely in \(b ; k\) is a common Henley's quadrant electroncter; and when in ufe it is ferewed upon the top of \(c\).

It is evident, from the couftruction, that if the foot ftand horizontal, and the lall 13 be made to tonch \(b\), it will remain in that pofition without the help of the weight \(i\); and if it Chould by any means receive a very low charge of electric Muid, the two balls \(b, B\), will repel each uiner ; B will begin to afcend, and, on account of the centie of gravity being shove the centre of motion, the afcenfion will continue till \(A\) refl upon a. If the balance be fet agdin horizontal, and the pin \(i\) be put into its place in \(B\), it will caufe \(B\) to reft upon \(b\), with a preflure equal to that weight, fo that more electric fluid mult be communicatcd than formenly before the balls will feparate; and as the weight in \(B\) is increa. fed or diminifhed, a greater or lefs quantity of clectric flaid will be required to effect a feparation.

When this inftrument is to be applied to a jar, or battery, one end of a wire I muat be inferted into a hole in \(b\), and the other end into a hole of any ball proceeding from the infide of a batery, as M. A clain, or wire, or any body through which the charge is to pafs, must be hung to the hook at \(m\), and carried from thence to the outfide of the battery, as is reprefented by the line \(N_{\text {. }} k\) muft be fcrewed upon \(c\), with its index towards \(A\). The reafon of this inftrument being added, is to hew, by the index continuing to rife, that the charge of the battery is increafing, becaufe the

\section*{E L E}

Tile n- mme other part of the infrument does not ad till the battery thr has received its required charge.
Elyhas.
It is almof needlefs to obferve that this inftrument
contits of three electrometers, viz. Henley's electrometer, Lane's difharging electrometer confiderably improved, and Drookes's Ateclyard electrometer improved likewife. By this combination and thefe improvements, we poffefs all that ean be required in in electroneter for batteries and large jars; for, by \(k\), we fee the progrefs of the charge ; by the feparation of \(B b\), we have the repullive power in weight; and by the ball \(A\), the difcharge is caufed when the charge has acquired the flrengith propofed.

In the journal from which this abftract is taken, the reader will find fome curious experiments made with batteries by means of this electrometer ; but one will be fufficient to explain its ufe. Prepare the electrometer in the manner thewn in the figure, with the jar M annexed, which contains about 168 fquare inches of coating. Take out the pia in \(B\), and obferve whether the ball B will remain at reft upon \(b\); if not, turn the adjufing ferew at \(C\) till it juft remains upon \(A\). Put into \(B\) the pin, marked , weighing 15 grouns; \(_{5}\) take two inches of watch-pendulum wire, fix to cach end a pair of fpring tongs, as is reprefented at \(G\) m, hook une end to \(m\), and the other to the wire \(N\), comenunicating with the outfide of the jar; let the uncoated part of the jar be made very clean and dry ; and let the prine conductor of an electrical machine, or a wire proceeding from it, touch the wire L. then, if the machine be put in motion, the jar and electrometer will charge, as will be feen by the rifing of the index of \(k\); and when charged liigh enough, \(B\) will be repelled by \(b\), and A will defcend and difcharge the jar through the wire which was confined in the tongs, and the wire will be fufed and run intu balls. The ingenious author, by breathing through a glafs pipe into the jar, damped it a little in the infiode. I'hen loading \(B\) with a pin of 30 grains, he obtained fuch a charge as fufed eight inches of watch pendulum wire, difpofed exactly as the two inches were difpofed in the former experiment. By repeating and varying his experiments, he found that duubic quantities of electrical fluid, in the form of a dicharge, will melt four times the length of wire of a certain diameter.

ELe:TROPHORUS. See Electricity in this Supflement.

Elephas, the Elephant. See Encyelopedia; where the ratural hiftory of this huge and fagacious animal is detailed at confiderable length. Since that article was publithed, we have feen the third volume of the Afratic Refearches, in which forne important queftions, which we were then obliged to leave in uncertainty, feem to be decided by John Corfe, Efq. They relate, \(i \Omega\), To the mode in which elephants copulate which Buffon afferts (and in proof of his affertion adduces the ftructure and pofition of the generative organ in the female) to be performed while that female remains recumbent on the back ; but which Mr Corfe infifts from ocular evidence, takes place after the manner in which the horfe copulates with the mare. \(2 d\), 'lo the method of receiving nouriftment from the mother ; which is not, as Buffon avers, by the trunk, but by the mouth, which fucks the dug, while the trunk of the young aninal grafps it round to prefs out the milk. 3d, To the period of their going with young; which

Mr Curfe conceives cannot be lefs than tivo yoars ; Elc; lantio whereas Bullon and Pennant affiga only nine munths for the geftation of their young. His reafons for this fuppofition are unanfwerable, and fall be given in his own words.
"As far as I know, the exact time an elephant goes with young las not yot been afcertained; but it cannot be lefs than two years, as one of the elephants brought forth a young one, twenty one months and three days after the was taken. Slie was obferved to be with young in April or May 1788 , and the was only taken in January preceding; fo that it is very likely fhe muft have had connection with the male fome montlis before The was fecured, otherwife they could not have difiovered that the was with young, as a fetus of lefs than fix months cannot well be fuppofed to make any alteration in the fize or fiape of folarge an animal The young one, a male, was produced October 16,1789 , and appeared in every refpect to liave arrived at its full time. The gentleman to whom it belongs examined its mouth a few days after it was brouglit forth, and found that one of its grinders on each fide had partly cut the gum."

When Mr Corfe wrote his memoir, the young elephant was active and well, and beginning to eat a little grafs. In A frica the Huttentots feed on the elephant; and M. Vailant declares, that an elephant's foot, when baked in their manner, is a moft delicious morfel.

ELEPHANTIASIS (fec Medicine, n \({ }^{\circ}\) 3;2. Encycl.) is one of the mot dreadful maladies with which the human race is anywhere afflicted. It is not indeed common, if it be found at all, in the temperate climates of Liurope ; but it is frequent in the Ealt and Weft Indies, where it too often bafles the fkill of the ablelt phyficians. In the fecond volume of the Afiatic Refearehes we have the following prefeription for its cure:
"Take of fine fref white arfenic one tólá, or 105 grains; of picked black pepper fix times as much: let both be well beaten at intervals for four days fuecelfively in an iron mortar, and then reduced to an impalpable powler in one of ftone with a fone peftle, and thus completely levigated, a little water being mixed with them. Make pilis of them as large as tares or fmall pulfe, and keep them dry in a thady place. One of thofe pills mutt be fwallowed morning and evening with fone betel leaf, or in countries where betel is not at hand, with cold water: if the body be eleanfed from foulnefs and obitructions by gentle catharties and bleeding before the medicine is adminitered, the remedy will be fpeedier."

This prefeription, we are told, is an old feeret of the Hisdon phyficions, which they confider as a powerful remedy againit all corruptions of the blood, whether oceafioned by the elephantiafis or the venereal difeafe, which they call the Perfian fire, and which they apply likewife to the cure of culd and moilt dittempers, or palfy, diftortions of the face, relaxation of the nerves, and fimilar difeafes. As the Hindoos are an ingenious and fcientific people, it might be worth fome European phylician's while to make trial of this ancient medicine in the Wef Indies, where the elephantiafis or kindred difeafes prove fo frequently fatal.

ELEVATION, in architecture, denotes a draught or defeription of the principal face or fide of a building; called alfo its upright or orthography.

ELLIPSE, or Ellipsis, is one of the codic fec-

\section*{E N A}
fully ftirred. The veffel which he inten ded to coat, having firft been wetted by dipping it in water, had as

\author{
Enamel-
} much of the aforefaid powder applied to its infide, by means of a very fine filk lieve, as would allhere to it of itfelf, or could be made to do fo lyy prefing it with the finger. After this veffel had been dricd and gra. dually heated, it was expofed to a fublen and violent heat, partly in a coal-fire, kept up by a pair of bellows (the veffel being at the fame time covered, fo that no coals or afhes could fall into it), and partly in an aftaying furnace.

In the coal-fire, and with a leeat as violent as is commonly ufed to make copper-folder run, the mixture was melted, in about the fpace of a minute, into an opaque white cnamel, which evenly covered the furface of the copper, and fixcd itfelf pretty firmly to the metal; it alfo bore hard blows withont breaking, and refifter the trials made by boiling things in it, and by applying acids to it. The forementioned mixture was alfo reduced into a fine powder in a glafs mortar, and made into a fort of thin paite with water; it was then applied to the veffel with a fmall brufh, an operation as ealy as that of applying any other wet colouring matter. Fie likewife tried this palte, by covering veffels with it in the fame way the potters apply their common glazing for flone-ware. By both the above-mentioned proceffes he obtained a very fmooth coating, particularly by the latter, which is more quickly performed. When the pafte is applied, the vellel fhould be made a little warm, fo alfo fhould the pafte itfelf.

If the conftituent parts of thefe two fubitances he confodered (that is to fay, that gypfum is compofed of calca. reous earth faturated with vitriohic (fulphuric) acid, and fluor fpar of a particular acid united to filiceous earth; alfo, that the whole, when put into the fire without the addition of any other fubitance, is, of all earthy or fony mixtures, that which the molt eafily melts into anopaque white glafs, not very brittle), and if, on the other hand, the action of acids be attended to -we flall eatily conceive thefe fubfances mult attach themfelves Atrongly to copper, and that the varnih formed by them cannot afterwards be diffolved or acted upon by acids.

The greatelt difficulty attending on this fimple mixture is, the ftrong and furden heat neceffiry to apply it with effect, that heat being greater them is conmouly to be obtained in ans allaying furnace. Ont that account, M. Rimnan endeavoured to render it more fufible by the addition of fome other fubflance.

Of his experiments made with this viow, fome faild, and others fucceeded. We fhall record only fuch as were fuccefsful, and at fame time attended with fuch muderate expence as not to prechade them from conmon lle.
2. With the fubllances employed in his firf experio ment, which, with the author, we thall henceforth call \(n^{\circ} 1\). he mixed an equal quantity of what is called fiufible glafs (vitrum fufibile), compofed of lix parts of lime, four of fluor fipar, two of yuarte reduced into a fine powder, and one tenth of a part of manganefe; the whole having been calcined, and ground with wa. ter in the manner colours are ground, lue fpread it un the veffel with a brufh. This mixture ran pretty well upon the copper in the coal fire; it alfo attacled itfelf very ftrongly to it, and produced an enamel which was firm and hard, and feemed likely to bear wear; but. it was of a dark grey culuur, and without any brillian.

\section*{E N A [6.4] E N A}
cy. The misture did not melt more readily in the af. faying furnace.

Two parts of \(n^{\circ}\) r. with one part of the fufible glars, and a quarter of a part of manganefe, had nearly the fame eflect. This latt mixture, indeed, was rather more eafly intled, but it had a darker colour.
3. Eight parts of \(n^{\circ}\) I. with one half of a part of borax, one quarter of a part of nitre, and half a part of manganefe, were melted, in the space of ten minutes, into a brown liver-coluured glafs; which, in the affaying furnace, produced upon the copper veffel a black enamel, which had a dull furface. In other refpects it was firm, even, and hard; but it did not fufficiently cover the veffel by a fingle application, nor was it capable of refilting the action of acids.
4. One part of the brown glafs mentioned in the laft experiment, with three parts of \(n^{0} 1\). became in the affaying furnace with a red heat, almoft as fluid as the laft, and held an even and fmooth furface; but it was of a dark colour, and had not any brilliancy. It was not fenfibly acted upon by vitriolic (fulphuric) acid.
5. Four parts of \(\mathrm{n}^{\circ} \mathbf{1}\). mixed with one half of a part of litharge, were melted in a crucible, with the help of the bellows, in five minutes, fo as to become as fluid as water. This mixture, during the fufion, emitted a finell of fulphureous acid, and formed an opaque glafs of a ftraw colour; which, after being ground, as ufual, and fpread upun a copper veffel, produced an enamel which covered the veffel very evenly, and was with. out bubbles. It was likewife, perhaps, the lardeft of all, but could not be melted in the aftaying furnace, requiring a Atronger fire kept up by the bellows. It preferved its ftraw colour, but without any lullre, and refifted the action of acids better than the common gla. zing of the putters.
6. Mr Rinman mixed together equal quantities of gsplum, fluor fpar, and what the putters call sobite lead (a), and which f.rves for the bafis of their glazing. This mixture, after being calcined, melted in five minutes, with the affiftance of a pair of bellows, into a very white, hard, and opaque enamel, which was very eafily poured out of the crucible. This enamel, treated like the others, ran very freely, equally, and without bubbles, by the heat of the aflaying furnace. It was alfo pretty hard and ftrong, but without any luftre, and had green and yellow fpots, occafioned by the acids of the gypfum and flour fyar, which had acted upon the copper during the fufion of the enamel. It, however, bore melting two or three times, and then ap. peared of a white colour; it was but very little affected by other acids.
7. Equal parts of fluor \{par, of gypfum, of litharge, and of pure finc glafs, powdered and mixed together, melted in five minutes, by the help of a pair of bellows, and produced a white and hard glafs, very like that of the laft experiment, but rather harder. After being applied on the veffel in the ufual manner, it formed, with the greatelt heat of an affaying furnace, an enamel of a yellowifh white colour, firm and hard, but without luftre. In order to avoid the formation of bubbles, care was taken (as ought always to be done
in enameiling to remove the veffel from the fire as foon Enamelas it lad acquired a brilliant appearance therein, or as ling. foon as the enamel was completely melted.
8. Twelve parts of glafs of lead, or of litharge, with eight parts of fint glafs, and two of flowers of zinc, were melted, in the fpace of feven minutes, into a clear yellow glafs, which, when ufed for enamelling, was difpofed to form bubbles; but, by continuing the leat for a longer time, the bubbles were difperfed, and he ob. tained a pretty good enamel, of a yellow brown colour with a greenifh caft, very hard and firnı. It refited the action of the vegetable acids, like the enamels already fpoken of, but it was a little attacked by the mineral acids.
9. He powdered and mixed together five parts of four [par, five parts of gypfun, two parts of minium, one half of a part of horas, two parts of flint glafs, one half of a part of cals of tin, and only one twenty. fifth of a part of calx of cubalt. This mixture was melted in a crucible in fix minutes, by help of the bellows, and produced an opaque glafs of a pearl colour, a litzle inclining to blue, on account of the calk of cobalt. It was pretty hard, and, after being ground with water in the ufual way, it became of a very good confiftence, fo as to be very fit for fpreading over veffels, to which it adhered wery Atrongly. If any bubbles formed on the veffel during its drying, they might be rubbed down with the finger, and the whole furface rendered fincoth and even. After being warmed, and gradually heated, it was put into an affaying furnace made very hot with birch charcoal, which had been jult kindled under the muffe. After a minute it melted, and began to appear brilliant; fo that he found it neceffary to take out the vefiel very quickly, which was already very evenly coated with a thick, and fufficiently hard, enamel, the furface of which, however, had no brilliancy.

The colour remained always inclining to green, be. caufe the copper had been a little attacked by the acids of the gypfum and flour fpar during the fution; bat in other refpects this enamel was very firm, was very little hurt by light blows, and bore very well fudden changes of heat and cold. Weak acids had no action upon it; but he had fome reafon to think that it would, in length of time, have been acted upon, to a certain degree, by vitriolic (fulphurie) acid. Its colour, except the forementioned fhade of green, was white, with a dull, and rather changeable furface.

The calx of cobalt which has been jult mentioned, and which Mr IRinman made ufe of merely with the intention of obtaining a fine colour, was prepared by faturating a folution of cobalt in aquafortis (nitric acid) with common falt, and evaporating to drynels; by which means he obtained a fine rofe-culuured calx. A very fmall quantity of this calx, when mixed with any fufible glafs, gives it a beautiful blue colour.

Of the various fpecies of enamel, which had been defcribed in the courfe of thefe experiments, and which may be all applied, with more or lefs advantage, to kitchen utenfils, the leaf expenfive are \(n^{05} 1,2\), and 5 ; but they are alfo thofe which require the greatelt heat. On the other hand, \(n^{\circ} 9\). may be recommended
(A) This fubitance is itfelf a mixture, being compofed of four parts of lead and one of tin.

\section*{E N A [625] E N F}

Enanel- as the imoll enfy of fufion, and, at the fame time, very ling. durable when uled for coating velfels in which victuals
are to be dreffed, which is here the principal object, and is of far greater importance than the brilliant appear. ance refulting from the enamel gencrally ufed by artifs, which however may be employed when the faving of expence is not regarded.

The enanels hitherto defcribed are not applicable to veffels made of iron, though they may be employed to cover cupper with great advantage. Iron will not indeed bear the common practice of enamellers, namely, to be put into the fire and taken out again feveral times; for the fparks which fly from iron, when in a hot fire, detach and carry off the enamel from the parts contiguons to thofe where the fparks are formed. The acids, too, of the gypfum and fluor fpar, made ufe of in the enamels already mentioned, acted upon the iron during the fufion of the enamel, from which refulted bubbles and bare fpots, which eatirely fpoiled the appearance of the work. Our anthor therefore continncd his experiments with a view to difcover a proper enamel for veffels made of this metal.
so. He reduced into a very fine powder, and ground together, nine parts of minium (red oxide of lead), fix parts of flint glafs, two parts of pure potalh, two parts of purified nitre, and one part of borax. This mixture was put into a large crucible, which it only half filled; he covered the crucible fo that no coals could fall into it, and gradually increafed the fire under it. When the effervefcence had entirely ceafed, he caufed the mixture to melt, by ufing the bellows for four or five minutes; by thefe means he obtained a clear and compact glafs, which he poured ont of the crucible upon a piece of marble. Having quenched it in water, and reduced it to a very fine powder in a glafs mortar, he ground it with water to the confiftence of a very thin pafte. He then covered an iron veffel with it on both fides, which, after having dried and leated it by degrees, he put under a muffle well heated in an affaying furnace. The enamel melted very readily in the fpace of half a minute, and with a very brilliant appearance. He immediately withdrew the veffel, and let it cool : it was fonnd to be entirely coated with a beautiful enamel of a black colour; which colour appeared to be caufed by a thin layer of calcined iron, which might be feen through the tranfparency of the enamel.

A copper veffel having been covered with the fame enamel, the fine colour of the copper was vilible through the thin coat of glafs; and it was as well defended from ruft by this coating as it would have been by an enamel of a ftronger kind.
11. To hinder the colour of the metal from being feen through the coating, he added to the mixture, ufed in the preceding experiment, only one humdredth part of the calx of cobalt deferihed in \(n^{0} 9\). The whole was melted into a beautiful blue glafs; it was prepared for enamelling, and applied in the manner before defcribed, upon another iron veffel. The enamel proved to be fmooth, thick, and brilliant, like the preceding, but it covered the veffel more perfectly ; it was of a fine blue colour, with fome black fpots in thofe parts where it had been moft thinly applied.
12. The glafs of \(n^{\circ} 10\). reduced into powder, and ground with potters white lead, of which mention has Suppl. Vol. I. Part II.
alreacy been made, melted with the fame lacility; it produced a very finooth enamel, of a grey colour, but move firm and hard than the former, and, on account of the addition mate to it, of a flill lefs pricc. By mixing with the fame glafs a finall quantity of crocus martis, he olstained a very fine enamel, of a dark red colour, not to mention other colours in it ftill more heautiful. The crocus martis he ufed in this experiment was prepared from a folution of iron in aqua regia (nitro-muriatic acid), which was cvaporated to drynef, and the matter thus edulcorated and calcined.
13. In order to render the forementioned enamel more folid, and to give it what is called body, he meltcd together a mixture of twelve parts of flint glafs, eigliteen parts of minium, four parts of potath, four parts of nitre, two parts of horax, thrce parts of calx of tin, and one eighth part of calx of cobalt, obferving, always the ufual precautions. He obtained a glafs of a light blue colour, which, after having been gronud with water, and fpread npon fimall iron bafims, or tca cups, produced, by means of a brifk fire in an affaying furnace, an enamel which was fmooth and even, and of a pearl colour. The coating was of a proper thicknefs, to obtain which requires a certain degrec of dexterity and practice. He alfo tried to paint upon this enamel with what is called mineral purple (purpura mineralis). which he ufed with a little powdered quartz, nitre, and borax ; it produced a very beautiful red colour.

Though this laft mentioned compofition is more beautifnl when applied upon iron, and more even than the preceding, it has the difadvantage, on account of the falts which it contains, of not refifing the action of the ftronger vegetable acids, and fill lefs that of the mineral ones. But as a veffel when cuated with this enamel bears, without any injury, fudden changes of heat and cold, and alfo to have any greafy mixtures baked or boiled in it (even thofe which are of a cauftic alkaline nature, or thofe which contain the ufual weak acids which are ufed in the preparation of our food), it may be applied to veffels of various kinds, among others, to tea cups; particularly as it is neither brittle nor fubject to crack, provided it is not expofed to violent blows. It is hardly neceffary to fay, that this enamel can only be applied upon veffels made of hanmered iron, and not upon thofe of caft iron, thefe laft being always too thick to be heated with fufficient quicknefs; for the greater is the face of time necelfary to make the veffels red hot, the greater is the quantity of feales formed upon them, and, of courfe, the enamel becomes more injured.

Our author makes fome other judicious obfervations on the enamel for iron, of which he has deferibed the compofition, and fays, that, independent of its ule for coating kitchen utenfils, it might be made to ferve many other purpofes, fuch as preferving things made of that metal, not only from ruft, but aifo, as he proved by experiment, to a certain degree, from calcination.

Encaustic Painting. See Painting in this Supplement.

ENFIELD (William, L. L. D.), well known in the learned world by feveral ufeful and clegant publi. cations, was born at Sudbury, on March 29. O. S. 1741 , of parents in a humble walk of life, but of very refpectable characters. His amiable difpofition and promifing talents early recommended hin to the Rev.

E-amel.
ling
Enfreld.

\section*{E N F [626\(]\) E N F}

Enfeld. Mr Hextall, the diffenting minitler of that place, who took great eare of his education, and infufid into his young mind that tafte for elegance in compofition which ever afterwards ditinguithed him.

In his \(\mathrm{I}^{\text {-th }}\) year he was fent to the academy at Daventry, then under the direction of the Rev. Dr Athworth, where be paffed throngh the ufual courfe of inftruction preparatory to the uffice of the miniftry; and with fuch fuccefs did he cultivate the talents of a preacher, and of an amiable man in focicty, that, on leaving the academy, he was at once chofen, in s 763 , minitter of the very refpectable congregation of Benn's Garden in Liverpool.

In that agrecable town be paffed feven of the happieft years of his life, very teacratly beloved and eftecmed. He married, in \(1767^{\circ}\), the daughter of Mr Holland draper in Liverpool, with whon he pafted all the reft of his duys in moft cordial union. His literary reputation was eztended, curing his refidence in this place, by the publication of two volumes of fermons, which were very well received, and have ferved to grace many pulpits befides that in which they were originaliy preached. A collection of hymns and of family prayers, which he allo publifhed at Liverpool, did credit to his tafte and judgment.

About 1770 , he was invited to take a fhare in the conduct of the acadenyy at Warrington, and alfo to occupy the place of minitter to the diffenting congregation there, both vacant by the death of the Rev. Mr Seddon. His acceptance of this honourable invitation was a fource of variety of mixed fenfations and events to him, of which anxicty and vexation compofed too large a fhare for his happinefs. No affiduity on his part was wanting in the performance of his various duties; but the difeafes of the inftitution were radical and incurable; and perhaps his gentlenefs of temper was ill adapted to contend with the difficultics, in matter of difcipline, which feem entailed on all diffenting academies, and which, in that fituation, fell upon him, as the domeftic refident, with peculiar weight. Ile always, however, poffeffed the refpect and affection of the beft difpofed of the ftudents; and there was no reafon to fuppofe that any other perfon, in his place, could have prevented that diffolution which the academy underwent in 1783.

During the period of his engagement there, his indefatigable induftry was exerted in the compofition of a number of works, moftly, incieed, of the clafs of ufeful compilations, hut containing valuable difplays of his powers of thinking and writing. The moft confiderable was his "Infitutes of Natural Philofophy" (quarto, Johnfon, \(17^{8} 3\)); a clear and well-arranged compendium of the leading principles, theoretical and experimenta!, of the fciences comprifed under that head. "And it may be mentioned, as an extraordinary proof of his diligence and power of comprehenfion, that, on a vacancy in the mathematical department of the academy, which the flate of the inflitution rendered it impoflible to fupply by a new tutor, he prepared himfelf, at a fhort warning, to fill it up; and did fill it with credit and utility, though this abftrufe branch of frience had never before been a particular object of his ftudy. He continued at Warrington two years after the academy had broken up, taking a few private pupils.

In 1585 , receiving on invitation from the principal
diffenting congregation at Norwich, he accepted it, and firf fixed his refidence at Thorpe, a pleafant vil. lage near the city, where he purfued his plat of taking a limited number of pupils to board in his houfe. He afterwards removed to Norwich itfelf; and, at length, fatigued with the long cares of education, entirely ceafed to receive boarders, and only gave private inftructions to two or three feleet pupils a few hours in the morning. This too he at laft difcontinued, and devuted himfelf folely to the duties of his congregation, and the retired and independent occupations of literature. Yet, in a private way and fmall circle, few men hat been more fuccefsful in education, of which many Itriking examples might be mentioned, and none more fo than the members of his own family. Never, indeed, was a father more defervedly happy in his children ; but the eldeft, whom he had trained with uncommon care, and who had already, when juft of age, advanced in his profeftional career fo far as to be chofen town-clerk of Nottingham, was moft unfortunately fnatched away by a fever a few years fince.

This fatal event produced effects on the doctor's health which alarmed his friends. The fymptoms were thofe of ansina pectoris, and they continued till the ufual ferenity of his mind was reflored by time and employment. Some of the laft years of his life were the moft comfortable: employed only in occupations which werc agreeable to him, and which left him mafter of his own time; witnefling the happy fettlement of two of his daughters: contracted in his living within the domeftic privacy which he loved; and connected with fome of the moft agreeable literary companions, and with a fet of the moft cordial and kind-hearted friends that perhaps this inland affords, he feemed fully to enjoy lite as it flowed, and indulged himfelf in plealing profpeets for futurity. Alas! an unfufpected and incurable difeafe was preparing a fad and fudden change: a fchirrons contraction of the rectum, the fymptoms of which were miftaken by himfelf for a common laxity of the bowels, brought on a total ftoppage, which, after a week's ftruggle, ended in death. Its gradual approach gave him an opportunity to difplay all the tendernefs, and more than the ufual firmnefs of his nature. He died November 3. 1797, amidf the kind offices of mourning friends, and his laft hours were peace!

Befides the literary performances alrcady mentioned, Dr Evifitd completed, in 1791, the laborious tafk of an abridgment of " Drucker's Hiftory of Philofophy," which he comprifed in two volumes quarto. It may be truly faid, that the terets of philofophy and the lives of its profeflors were never before difplayed in to pleafrig a form, and with fuch clearnefs and elegance of language. Indeed it was his peculiar excellence to arrange and exprefs other mens ideas to the utmoft advantage. Perhaps, at the time of his deceafe, there was not in England a more perfect mafter of what is called the middle fyle in writing, combining the qualities of tafe, elegance, perfpicuity, and correctnefs, entirely free from affectation and fingularity, and fitted for any fubject. If his caft of thought was not original, yet it was free, enlarged, and manly. What he was in the capacity of a teacher of religion, his feveral congregations will teftify with grateful and affectionate remembrance. Few minifters have paid fuch unremitting attertion to the perfection of their pulpit compo-

\section*{E N G \(\quad\left[\begin{array}{llll}627 & 1\end{array}\right.\)}
fitions: nor was it only by detached difcourfes that he inculcated the truths of morality and recigion, hut by methndical plans of inftruction, drawn up with great care and comprehcmion. The valuable flures of this kind which he left behind him will not be coufigned to oblivion ; but, it is hoped, will inform and improve numbers to whom the voice of the preacher could never have extended. In delivery, his manner was grave and impreffive, de pending rather on the weight of juit enunciation than on the arts of oratory. Little need be anded to this flketeh of the moral qualities of the excellent man above commemorated. If moderation, compliancy, and gentlenefs were ever prevalent in him to a degree of excefs, who that knew him will blame an excels which opened his foul to every emotion and office of affection and friendhip?

This account of Dr Enficld, which is taken from the Monthly, Magazine, is acknowledged by its author to be the elfufion of friendhip; but we believe that the pranegyric, though high, is in general juift. It is our duty, however, to warn our readers againt pheing inplicit confidence in the Doctor's reprefentation of ancient philofophy; for though we have frequenty found him correct, and have therefore quoted him with approbation ourfelves, we have likewife found him fometimes miflaking the fenfe of his authors. In a work like his, miftakes were indeed unavoidable; for when he refolved to comprefs the fubftance of Brucker's five volumes within the compafs of two, he could not avoid fornetimes giving what he thought the fenfe of the ancients, when accuracy required their very avords to be given. This we believe to be the fource of thofe errors in his elegant hiitory, which we have heard others unjufly attribute to defign; for had it been his defign to deceive, he would not furely have ftored his margin with references to enable every reader to detect the deceit.

ENGINEER, is the appellation of him whofe profeffion it is to contrive or make any kind of ufeful engine or machine. He is denominated either a civil or military engineer, according as the objects of his profeffion refpect civil or military purpofes. See Fortification, Encycl. and Machine in this Supplement.

ENGONASIS, in aftronomy, the fame as Hercules, one of the northern conflellations.

ENGRAFTinG. See Grafting, Encyel。where it is faid that there is little hope of producing mixed fruits by engrafting one tree upon another of the fame clafs. We confefs ourfelves to be unwilling to relinquilh this opinion; but it would be very unfair to withhold from the public any fact which feems to militate againft it, and has come to our knowledge. We fhall therefore tranferibe from the Philofophical Magazine the following communication from Dr Thornton, lecturer on medical botany at Guy's Hofpital, refpecting a fuppofed lufus natura, which he confiders as the confequence of engrafting.

In the firt volume of the Philofophical Tranfagions, \(\mathrm{N}^{\circ}{ }^{29}\). publifhed November 1667 , you have the following communication, intitled,
"S Some Hortulan Experiments about the engrafting
of Oranges and Lemons or Citrons, whereby is produ- Ennealecas ced an individual liruit, half Otange and half Iemon, teris growing together as one Body upon the fame Tree." Scatch

We have here orange trees (\(a\) aith the intelligence Epfopafrom Florence) that bear a frut which is citron on one liano fide and orange on the other. They have been brourlit hither out of other countries, and they are now much propagated by engrafting. This was coufirmed to us (fays the editor of the Tranfactions of the Royal Society) by a very ingenious Englifh gentleman, who afferted, that himfelf not only had feen, but bought of them, anno 1662, in Paris, whither they had been fent by Genoa merchants; and that on fome trees he had found an orange on one branch and a lemon on another branch (which is not fo remarkable as what follows); as alfo, one of the fame fruit, half nrange and half lemon; and fumctimes three quarters of one and a quarter of the other.

In the third part of the Reports of the Board of Agriculture, among the foreign communications, we fee, with equal pleafure and attonifhment, an account of the American apple, which, by a peculiar mode of lindding \((A)\), is half fweet and half four, half white and half red, withont the leall confution of the refpective halves.

At Mr Mafon's, florif, Fleet-Atreet, oppofite the Bolt and Tun, there is a production now, September \(179^{8}\), to be feen half peach and half nectarine. It has all the foftnefs and yellow down of the peach, and the feek red fmuothnefs of the nectarine; fuppofed to be a hufus nature, but probably is rather the fportings of art than of nature, and which perhaps will be the caufe why we fhall in future fee many other fuch vegetable woiders, which, as we fee, were known to our anceftors.
ENNEADECATERIS, in chronology, a cycle or period of 19 -folar years, being the fame as the goldell number and lunar cycle, or cycle of the moon.

ENSETE. See Musa, Encycl.
EOLIPILE. See Æolipile, Encycl.
epaule, or Espaule, in fortification, the fhoulder of the baltion, or the angle made by the face and flank, otherwife called the angle of the epaule.

EPISCOPACY, the government of the church by diocefen bifhops. See Encycl.

Scorch EPISCOPALLANS, are a fociety of Chriftians, certainly as refpectable, if not fo numerous, as any other in the kingdon, which diffents from the worfhip and difcipline of the eftablithed church. For many years, however, the public worfhip of that fociety was profcribed by the legiflature; and there is reafon to fufpect that its real principles are not yet univerfally undertood. If this be fo, it furcly becomes the editors of a work in which fome account is given of ahnoft every denomination of Chriflians down to the novel fect which ftyles its members Bereans, to do juflice to the venerable remains of what was once the eftablifhed church of their native country.
That the reformation from popery was, in Scotland, \(F\) frablifhtumultuous and irregular, is known to all Europe; and ...r \(E_{-}\) very few of our readers can be ignorant that there wras ifiopacy \(4 \mathrm{~K}_{2}\) neither
(A) the manner in which the extraordinary nectarine-peach firf produced in this country was effected, was by inferting the bud of one fruit upon the fock bearing a different fort.

\section*{E P I [628] E P I}

Senich Elifco; a lia.s.

2
No liturgy ufed in the Scotch
clurch,
neither order in the reformed church, nor decency in her worfhip, till James V1. with much addrefs, aceom. plifhed the eftablifhment of a very moderate epifcopacy. To this form of chureh-guvernment the better part of the nation was fufficiently attached; and it continued to be the ecclefiaftical polity, fupported by the fate, till the grand rebellion, when it was overthrown by the partizans of the national covenant. It was reftored, how. ever, in 1662 ; and ayrain abolifhed in 1689 by that convention which placed the Prince and Princefs of Orange on the ancient throne of the Scottih monarchs.
Thefe events are fo univerfally known, that it is fufficient in this place barely to inention them; but there are probably many of our readers who do not know that, during the whole period of her legal eflablifhment, the Seotel epifeopal ehurch liad no public liturgy. It appears indeed, that the firt reformers made ufe of the Euglin book of common prayer; and there is on record fufficient evidence that John Knox himfelf, though he dilapproved of fome things in that bnok, had no objection either to flated forms of prayer in general, or to a fubordination among the minillers of the gofpel ; but his fucceffor Andrew Melvil, who poffeffed neither his learning nor his worth, had influence enough to introduce into the church a perfect parity of minillers, and to excite among the people a very general abhorrence of liturgical worfhip. So rooted indeed was that ablorrence, that, as every one knows, an attempt to introduce into the chureh of Scotland a book of common prayer, copicd with fome alterations from that of England, produced the folemn leasue and covenant, which involved in one common ruin the unfortunate Charles and his darling Epifcopacy. At the reftoration of the monarchy, the Epifcopal conflitution of the church was reltored, but no new attempt was made to eftablifh the ufe of a public liturgy; and except at the ordinations of the clergy, when the Englifh forms were ufed, no fervice book was feen in a Scottifh church. ,

For fome years after Epifcopacy had ceafed to be the religion of the ftate, the deprived clergy made no alteration in their modes of focial worfhip. Having refufed to transfer to King William that allegiance which they had fworn to King James, they were treated, during his reign, with fuch feverity, that on the Lord's day they durft not venture further than to officiate "in their own hired houfes, where they received fuch friends as chofe to come in unto them;" and in thofe fmall congregations, if congregations they may be called, they continued to pray, if not extempore, at lealt without book, till the acceffion of Anne to the throne of her anceftors. The attachment of that Princefs, not only to the conftiution, but alfo to the worfhip of the church of England, was well known to them; and they very reafonably thought, that they could not more effectually reconmend thenfelves to her protection than by adopting the ufe of the Englifh liturgy, which the molt enlightened among them liad long profeffed to admire. It was accordingly introduced by degrees into Scotland; and an act of parliament being paffed on the 3 d of March Iク12, "to prevent the dilturbing of thofe
hitherto heen prohibited, were evcrywhere built, and well frequented.

That thofe who had refufed allegiance to King Willian: and Queen Anue foould fcruple to pay it to a new family, elogged as it was by fo many oatlis, can excite no wonder; nor is it at all wonderful that, for their attachment to the abdicated family, the public worfhip of the Scotch Epifcopalians was, after the infurrection of 1715 and 1716 , laid under fome reftraints. Thefe, however, were neither rigoronfly fevere, nor of long duration ; and by the year 1720 , their congregations were as numerous as formerly, confifting, efpecial. ly in the northern counties, of men of all ranks, even fueh as held offices of truft under the eftablifhed government, who frequented the Epifcopal chapels in preference to tlie parifh churches.

Hitherto the Epifcopalians had been fafely conduct. ed through all dangers and difficulties by the prudence of Dr Rofe, the deprived bithop of Edinburgli; but foon after his death, which happened on the 20th of March 1720, divifions broke out among them, which threatened to prove more fatal to their church than any perfecution to which they had jet been fubjected. For reafons which will be feen afterwards, it is proper to trace thofe divifions from their fource.

No native of Britain, who knows any thing of the Sources of hittory of his country, can be ignorant that Dr San-divifon acroft, the archbifhop of Canterbury, and five other bi- nong the fops, were at the Revolution deprived of their fees by pifcopalian act of parliament ; becaufe, like the Scotch bifhops, ans. they could not bring themfelves to transfer to King William and Queen Mary that allegiance which they had fo lately fworn to King James. As thofe prelates were extremely popular for the vigorous oppofition which they had given to fome of the Popin projects of the late king, and as a number of inferior elergymen, of great eminence for piety and learning, were involved in the fame fate with them-it need not excite great furprife, that a fweeping deprivation, which, in all its circumflances, was perhaps without a precedent in ecclefiatical hiftory, produced a fchifn in the church of England. The deprived clergy, confidering the bifhops who were placed in the fees thus vacated as intruders, and all who adhered to them as fchifmatics, opened feparate chapels under the authority of the primate and his nonjuring fuffragans; and contended, that they and their adherents conflituted the only orthodox and catholic branch of the church in England.

Both churches, however, made ufe of the fame liturgy; and during the lives of the deprived prelates, there was no other apparent difference in their wormip than what neceflarily refulted from their paying allegiance to different fovereigns. But this unifurmity was not of long duration. The bifhops, who had been poffeffed of fees before the Revolution, were fearcely dead, when. their fucceffors, being under no civil reftraint, found, in. the principles which they had hrought with them from the eftablifhment, the means, not only of dividing their own little church, but likewife of fowing the feeds of diffenfion among their brethren in Scotland.

It has been obferved elfewbere *, that in the church* swmis of England there are three opinions refpecting the na- of the ture and end of the Lord's Supper, which, in oppofi. Lord, Eno tion to each other, have been all patronifed by men of \({ }^{\text {cycl. }}\) great eminence for theological learning. It appears,

\section*{E P I [629] E P I}
scotch indeed, from the firt liturgy fet forth by authority in Epifonpa. lians. that chureh from the errors of popety unanimoully held the Lord's Supper to be a cuchariftical facrifice;
and this opinion, which has been adopted by great numbers in every age finee, feens to have been the moft prevalent of the three among thofe clergy who were deprived of their livings at the Revolution. It is indeed countenaneed by feveral paffages in the prefent order for the adminiltration of the Lord's Supper; and therefore, though there are other things in that order which cannot be eafly reeoneiled to it, archbifhop Sancroft and his fuffragans, whatever their own opinions might be, chofe not to widen the breach bet ween themfelves and the eftablifhment, by deviating in the fmalleft degree from the form in which they had been accultom. ed to celebrate that facrament. Their fucceflors, however, in office, were men of different difpolitions. Confidering themfelves as totally uncomected with the ftate, and no longer bound by the aft of uniformity, one party, at the head of which was bifhop Collier, the celebrated eeclefiaftical hiftorian (A), judged it pro-- per to make fuch alterations in the communion office as might render it nore fuitable to their own notions of the Lord's Supper, and bring it nearer, both in matter and form, to the mott ancient liturgies of the Chriftian church.

Of the propofed alterations, fome were perhaps proper in their circumftanees; whilft others, to fay the beft of them, were certainly needlefs, if not inexpedient. They were accordingly all oppofed by another powerful party of nonjurors; and the queitions in difpute were referred, firit to Dr Rofe, the deprived bifhop of Edinburgh, and afterwards to Dr Atterbury and Dr Potter, the bifhops of Rochefter and Oxford. What judgment the two Englifh prelates gave in this controverfy we know not ; but that of bithop Rofe did him much honour. Declining the office of umpire between the partics, he recommended mutual forbearance and occafional commuaion with each other, according to either form ; and employed a gentleman, well verfed in ecelefiartical literature, to prove that fuch a compliands of bifhop's with each others innocent prejudices was not uncommon in the pureft times.

Thef difputes among the Englifh nonjurors, and the appeal which was made to Dr Rofe, drew, more clofely than hitherto it had been drawn, the attention of the Scotch Epifcopal clergy, not only to their own liturgy, which had been authorifed by King Charles I. but like-
wife to the mof ancient liturgies extant, as well as to what the fathers of the firft three centuries have taught concerning the nature of the Lord's Supper. The confequence was, that fuch of them as were fehulars foon difcovered, that the Scutch eommunion uffice approached much nearer to the noft ancient offices than the Englith; and a powerful party was formed for reviving the ufe of it in Scotland.

Ifad thofe men aimed at nothing farther, it is probable they would have met with very little oppofition. Their opponents, who, in general, were lefs learned than they, were fo ftrongly attaehed to the houle of Stuart, that they would have adopted almoft any thing fanctioned by the royal martyr's authority ; but the advocates for the Seotch office knew not where to ftop. They wifhed to introduce fome other ufages of the pri- Revival of mitive ehurch; fuch as the commemoration of the faith- a:cient usaful departed, and the mixture of the euchariftic eup \({ }^{\mathrm{gcs}}\)
(See Supper of the Lord, \(\mathrm{n}^{\circ}\) 2. and 3. Encycl.); and their brethern, perceiving no authority from Charles I. for thefe things, and being accuftomed to confider them as Pupifh practices, a violent controverly was ready to burft forth about what every enlightened mind mult confider as matters of very little importance.

That the euchariftic cup was in the primitive chureh mixed with a little water, is a fact ineontrovertible; that the practice was harmlefs and decent, it is wonderful that any man thould deny: but that fuch a mixture is effential to the facrament, we caunot believe, for the reafons affigned in the article referred to; and therefore it ought furely to have been no object of contention.

That the faithful departed were eommemorated in the primitive church long before the invention of purgatory, is known to every fcholar; that in thofe days fuch a commemoration tended to invigurate the faith and the charity of Chriftians, it would, in our opinion, be very eafy to preve; and that at prefent every Chriftian prays in private for his deceafed friends, we have: proved elfewhere by arguments, of the confutation of. which we are under no apprehenfion (See Grefs-church in this \(S_{\text {upplement }}\)): but we fee not the ueceffy of ins. troducing fuch prayers into public worfhip at any period; and we perceive impropriety in doing it at a pcriod when, from various circumitances, they may caufeweak brethren to err. But thofe who pleaded for the revival of this practice in the beginning of the current eentury, were blinded by their very erudition (\(B\)); and thofe who oppofed it feem not to have been acequaiuted
(A) This very learned, though violent man, of whom the reader will find fome account in the Encyclopedia, was, with Dr Hickes and others, confeerated by the deprived prelates, for the purpofe of preferving the Epifo copal fucceffion in what they eonfidered as the true church of England.
(B) Paradoxical as this affertion may at firff fight appear, nothing is more certain than that erudition, and even \{cience, if partially cultivated, is as likely to blind as to enlighten the underftanding. When a man deo votes all his time, and all his attention, to ome purfuit, he contracts fuch a fondnefs for it, as gradually to eonfider it as the only valuable purfuit, which will infallibly lead to truth, and to nothing but truth; and in this dir. poftion of mind, he is ready to embrace the moft extravagant abfurdity to whieh it may conduct him. Of this the reader will find one very Arriking inflance in page 547 of this volume, where the celcbrated Culer appears fo devoted to his darling analyfis, as to place implicit confidence in it, even when he himfelf feems fenfible tbat it had led him to a conclufion contrary to commonfenfe, and the nature of things. That Dr Bentley was a very eminent philologitt, is univerfally known; that his emendatory criticifms on the Clafies are often happy, no man will deny; and yet, mifled by his favourite purfuits, he never pronounces more dognatically than when the dogma which he utters is untenable. We appeal to his criticifms on Milton. Perbags there is not a maz

\section*{E P I [0.30\(]\) E P I}

Scotch
Bpitcopa lians.
with the workings of a benevolent and devout mind, or indeed to have known in what the eflence of a prayer confilts.

The ancient nfages, however, were not the only fubjects which, on the death of bithop Rofe, furminhed matter for controverfy among the Scutch Epifcopalians. 'I'hat excellent prelate, together with the drprived archbithop of Glafgow, and the deprived bifhop of Dunblain, had, from time to time, as they faw occafion, raifed to the Epifcupal dignity fome of the molt deferving Prefbyters of the church; but it was refolved, for what reafon we do not very well know, that none of the new bifhops fhould be appointed to vacant diocefes during the life of any one prelate who had poffeffed a legal eftablifhment ; fo that bifhop Rofe, who furvived all his brethren, was for feveral years the ecclefiatical governor of the whole Epifcopal church in Scotland. On his death, therefore, though there were four bifhops in Scotland, and two Scotch bifhops refiding in Lordon, there was not one of thofe prelates who could claim to himelf the authority of a diocefan over any portion of the Catholic church. This they at birt unanimounly acknowledged; and one of then, in the name of himfelf and his brethren, recommended to the clergy of the diocefe of Edirburgh to elect, after the primitive plan, a fueceffor to their late venerable diocefan. The advice was followed; the election was made, and approved by the bifoops: and Dr Fullarton, the binop chofen, became biflop of Ediuburgh, by the fame means and the fame authority as, in the prinitive church, \(S t\) Cyprian became bifhop of Carthage, or Curnclius biShop of Rome.

The clergy in other diflicts, following the example of thofe in Edinourgh, diocefan Epilcoracy was about to be revived thronghout all Scotland upon principles purely ecclefiallical, when fome of the bifhops, whom Dr Rofe had left behind himmerely for preferving the Epifcopal fucceifion, conceived a new and very extra.
ordinary conftitution for the Scotch Epifcopal church. Whether they were envions of their colleagues, and offended that none of the elections had fallen upon them; whether they were fo ignorant as not to know that diocefan Epifcopacy had fubfifted long before the converfion of the Roman empire, in abfulute independence on the ftate; or that they were actuated, as there is reafon to fufpest, by tome political principle which they could not with fafety avow;-fo it was, that they oppofed diocefan Epifcopacy of every kind, and propofed to govern the whole Scotch church by a college
of bihops. Againf this unprecedented feheme lle Soun more learned bihops oppofed all their infuence; and. Eftectur being exceedingly difagreeable to the inferior clergy, \(\qquad\) it was very foon abardoned by its authors themfelves, who, after fome acrimonious controverfy, were glad to cone to an agrecment with their diuccfan brethren.

Of this agreement, or concordate as it was called, the Thole divifollowing were the principal articles: 1. "That the Gons healScotch or Englifh liturgy, and no other, might be ed. indifferently uled in the public fervice; and that the peace of the church hould not be dillurbed by the in. troduction of any of the ancient ufages which had lately excited fuch diffenfions. 2. That no man fleculd thenceforward be confecrated a bithop of the Scotch church without the confent and approbation of the majority of the binops. 3. That the biflooss, by a majority of voices, hould chnofe one of their number to prefide in the meetings of his brethren, and to convocate fuch meetings when he judired them neceflary: that this prelident hould be fyled Primus Epifcopus, or more fhortly Primus ; but that he fhould not poffefs metropolitical power, or claim any kind of juridiction without the buunds of his own diocefe or diltrict. 4. That upon the vacancy of any diucefe or diftict, the prefbyters hould neither elect, nor lubnit to, another bifhop, without receiving a mandate by the Primus, iffued with the confent of the majority of his col. leagues."

This concordate was in \(173^{1-2}\) fubferibed by all the bifhops then in Scotland, who immediately became diocefans, and thought no more of the collcge fyflem. It was afterwards, with a few additions, for afcertaining more precifely the prerogatives of the I'rimus; for regulating the conduct of fynods; for exempting bihous from the juriddiction of other bithops, in whofe diftriets they night chance to refide ; and for preventing inferior clergymen from deferting their congregations, or removing from one diferict to another, without the consfent of the bifhops of both-thrown into the form of canons; and thefe canons have continued to be the code of the scotch Epifcopal church down to the prefent day.

The members, and more efpecially the ciergymen of p.litical this church, had always been confidered as unduly at opinions. tached to the family of Stuart ; and though there was undoubtedly at firf fome ground for that lufpicion, the writer of this article knows, from the moft incontrovertible evidence, that it was continued too long, and carried by much too far. Jacubitifm was imputed
alive who will refule to Dr Warburton the praife of learning and ingenuity. The addrefs with which he detects the double ductrines of the ancient philofophers, \(i\) fometimes almolt aftonifhing; yet, mifled by his own ardour in this purfuit, he difcovers hidden meanings everywhere, and has found a rational fyftem of religion in fome of the ancient myfteries, where there is every reafon to believe that nothing in reality was to be found but atheifin and vice. Jult fo it is with the ardent reader of the Chriftian fathers. If lie devote all his time to the ftudy of their writings, he not only becomes enamoured of his employment, but acquires gradually fuch a veneration for the character of his mafters (and venerable they undoubtedly are) as renders him afraid to queftion any thing which they advance, and nnable to difinguin between their teftimony, which is deferving of all credit, and their reafonings, which are often inconclufive. We truft it is needlefs to difclaim any wifh to difcourage, by this note, the ftudy either of the Chriftian fathers, the Greek philofophers, philological criticifin, or the modern analyfis; we only wifh to diffuade men of letters from devoting their whole time to any one purfuit whatever ; for they may depend upon it, that fuch partial fudies contract the mind. One of the moft eminent mathematicians at prefent in England is reported to have declared his contempt of the Paradife Lof, becaure he found in it nothing demonflraled!

\section*{E P I}

While Epifenpacy was the eftablinteel form of church gover.ment in Scotland, the clerge of that chureh fub. feribed a confeflion of fath fummed "p in twenty five articles, which the reader will find in the billory attributed to John knox. It is fufficient to obferve in this Foith of place, that in eflentials it differs little from the articles the Sco:ch of mon other wormed churchics; and in every thing Epifropal which does not immediately relate to papiffry, it is moderate and uncxceptionable ; perhaps more fo than the prefent confeifion of cither of the Bitifh churehes. During the period which intervened between the Revelution and the year 1792, no fubfeription was indeed recpuired from Scotch Epifcopalian clergymen to any fummary of Chrilhan doctrine ; but at their ordinations, thofe clergy folemuly profeffed their belief of all the canonical bouks of the Old and New Teflaments; declared their perfuation that thofe books contain fufficiently all ductrines neceflary to falvation, through faith in Jefus Chritt; and were obliged to read daily in their chapels the Englih book of Common Prayer, which contains the Apofles, Nicane, and Athanafian crecds. Dut now thofe clergymen are enjoined by act of parliament to fubfcribe the 39 articles of the church of lingland; fo that the principles of their faith are well known. No loubt there are differences of opinion among them about the fenfe of fome of thofe articles; and it is-well known that there are fimilar differencos among the Englifh clergy themfelves: but there is every reafon to believe, that the faith of the Scotch Epifconalians has, in every important point, been at all times orthodox.

We are aware, that they have been reprefented as unfriendly to the Englifh ferice; hut fi:ch a reprefentation appears to be either a wilful fallhood, or the offspring of ignorance. The only reformed liturgy that ever had the fanction of a civil eftablifhment in Scutlond is the loot of Common Proyer and Scot.ind, fration of the Sacranityts, and oblber farts of Divine Ser- Mix. vice authorifed by king Charles I. In that took, the order of adminill ration of the Lord's Supper difers in fome particulars from the Englifh order, and is unquef. tinnably better adapted to the opinions of thofe who contider that holy otdinance cither as an eucharillicul facrifice, or as a feat upon a facrifice. In the one or other of thefe lights, the Lord's Supper is viewed by a great majority of the Scotch Epifcopalians: and of courfe the Scotcl communion office is ufel in a great majority of their chapels: but it is not ufed in them all. Their lifhops, who, when in England, commumicate with the eftablifhed church, leave the inferior cler. gy at liberty to ufe either the Englifh or the Scoteh form, as is molt agrecable to themfelves and to the people anong whom they miniter; and to lilence the clamour of fymbolizing with the church of Rome, which was fome years ago either ignorantly or malicioufly raifed againt them, they altered the arrangement of the Scotch prayer of confecration, fo as not only to bring it nearer to the mof primitive forms, but alfo to make it abfolutely incondifent with the real prefence, as taught either by the church of Rome or by the Lutheran churches. On this fubject, fee Greek.Churca, \(n^{0} 17\). in this Supplement.

Thus have we given a fort view of the difinguifh- Englifh ing principles of what muft furely be confidered as a clergymen very refpectable fociety of Chriftians, and the only re. in Scotland: formed.

\section*{ERK [632] E T O}

Fgunnt formed Erifopal fociety in that part of Great Britaiu called Scotland. There are, indeed, chapels in Scotland diftinct from the church of which we have been treat-
ing, where the Englifh liturgy is read by clergymen who have received Epifcojal ordination either in England or in Ireland; but thofe chapels being all independent of each other, and under the infpection of no bifhop, the perfons what frequent them feem to be rather Congregationalits than Epifcopalians, and certainIy do not conllitute what can, with any propriety, be called an Epifcopal church.

EQUANI', in altronomy, a fanciful circle, introduced into feience to remove fome of the defects of the Ptolemaic fyltem of the univerfe. In this artificial fytem of epicyeles and eccentric circles, the idea of circular and equable motion was by no means abanduned; but white each of the heavenly bodies revolved in its own orb, the centre of that orb was fuppofed to be carsied at the fame time round the circumterence of another circle. The more obvious inequalities were thus explained with a geometrical precifion. With all its nice combination, however, of circles, the fyltem was foon found to have defects; to remove which, the fine contrivance of the equant was introduced. Though the angular motion of a planet viewed from the earth was confeffed to be unequal, a point could be conceived from which it would be feen to move with perfect uniformity. That point was made the centre of the e-- quant, and lay at the fame diftance from the centre of the eccentricity on the one fide, as the earth was removed on the other. "Nothing (fays Dr Smith, from whom this account of the equant is taken) can more evidently flew how much the repofe and tranquillity of the imagination is the ultimate end of philofo"phy, than the invention of this equalizing circle."

EQUATION of a curve. Sce Algebra (Encycl.) Part III. chap. ii.

Secular Equation, in aftronomy. See Astronomy in this Supplenent, no \(25-3^{8}\).

EQUICURVE cIRCle, the fame with Circle of Curvature, which fee in this Supplement.

ERGETT el krane \(\}^{\text {Two Abyffinian fhrubs of }}\) ERGETT y'dimmoe \(\}\) the genus Encycl.
ERKOOM, an Abyflinian bird, part of a large tribe, es in which (fays Mr Bruce) the greateft variety lies in his beak and horn. The horn he wears fometimes upon the beak and fometimes upon the forehead above the rout of the beak." This bird is by naturalitts called the Indion crow or raven; and our author, though he feems to think this claffification improper, admits that he has one charecteriftic of the raven; he walks, and does not hop or jump in the mauner that many others of that kind do; but then he at times runs with very great velocity, and, in running, very much refembles the turkey or buftard when his head is turned from you.

The colour of the eye of this bird is of a dark brown, or rather reddifh, caft, but darker ftill as it approaches the pupil; he bas very large eyelathes, both upper and lower, but efpecially lis upper. From the point of the beak to the extremity of the tail is three feet ten inches; the breadth, from one point of the wing to the other extended, is fix feet, and the length twenty. two jnches; the length of the necl: ten inches, and its
thicknefs three inches and a half; the length of the beak, mealuring the opening near the head ftraight to the point, ten incles; and from the point of the beak to the root of the horn, feven inches ard theee eighths. The whole length of the horn is three inches and a half. The length of the horn, from the foot to the extremity where it joins the beak, is four inches. The thicknefs of the beak in front of the opening is one inch and feven eightis. The thicknefs of the hom in front is one inch and five eighths. The hom in height, taken from the upper part of the point to the beak, two inches. The length of the thighs fevell inches, and that of the legs lis inches and five eighths. The thickuefs in profile feven lines, and in front four lines and a half. It has three toes before and one hehind, but they are not very ftrong, nor feemingly made to tear up carcafes. The length of the foot to the hinder toe is one inch fix lines, the innermult is one inch feven lines, the middle two inches two lines, and the latt outer one two inches one line. "This" bird is all of a black, or 1 ather black mixed with foot-colour; the large feathers of the wing are ten in number, milkwhite both without and within. The tip of his wings reaches very nearly to his tail ; his beak and head meafured together are eleven inches and a half, and his head three inches and a quarter. At his neek he has thofe protuberances like the Turkey-cock, which are light blue, but turn red upon his being chafed, or in the time the hen is laying.

The erkoom, though not eafily raifed, flies (fays our author) both ftrong and far. It has a rank fmell, and is faid in Abyffinia to feed upon dead carcafes. This, however, he thinks a miftake, as he never faw it following the army, nor approaching a dead carcafe; and as often as he had oceafion to open this bird, he found in its itomach nothing but the green fearabens or bectle. It builds in large thick trees, always, if it can, near churches; has a covered neft like that of a magpie, but four times as large as the eagle's. It places its neft firm upon the trunk, without endeavouring to make it high from the ground: the entry is always on the eaft fide.

ETON is a place which, on account of its college, fhould not be omitted in a repofitory of arts, fciences, and literature; and as no notice is taken of it in the Encyclopedia, we hall deviate for orree from the plan which we had laid down for this Supplenzent, and which is, not to admit into it deferiptions of places in nur uwn ifland that may be vifited by the greater part of our readers with little trouble.

Though in a different county, namely, BuckinghamMire, Eton may be faid to be one and the fame town with Windfor, for which fee Encycl. It is pleafantly fituated on the banks of the Thames, in a delightful valley, which is of a remarkably bealthy foil. Its college was founded by Henry V1. for the fupport of a provolt and feven fellows, one of whom is vice-provolt, and for the education of feventy King's fcholars, as thefe are called who are on the foundation. Thefe, when properly qualified, are elected, on the firf Tuefday in Auguit, to king's college Cambridge, but they are not removed till there are vacancies in the college, and then they are called according to feniority; and after they have been three years at Cambridge, they claim a fellowfhip. Befides thofe on the foundation

\section*{E T O [\(\left.\sigma_{33}\right]\) E U D}

Eon. there are feldom lefs than three hundred feliolars, and often many more, who board at the mafters houfes, or within the bounds of the college. The fchool is divided into upper and lower, and each of thefe into three claties. To each fehool there is a mafter and four affiltants or ufthers. The revenue of the college is about L. 5000 a-year. Here is a noble library, and in the great court is a fine ftatue of the founder, erected at the expence of a late prowft Dr Godolphin dean of St. Paul's. 'ithe chapel is in a good tyle of Gothic architecture. The fehools and uther parts, which are'in the other ftyle of building, are equally well, and feem like the defign of Inigo Jones.

At Eton there is a fingular, and we think a landable, feftival called the Mcntem, celebrated triennially (formerly duemially) by the fchulars of the fchool upon Whit-Tuefday. The following account of this feilival, taken from the Monthly Magazine, will probably be acceptable to many of our readers.

It commences hy a number of the fenior boys taking polt upon the bridges or other leading places of all the avenues around Windfor and Eton foon after the dawn of day. Thefe youths fo polled are chiefly the beft figures, and the moft active of the fudents; they are all attired in fancy dreffes of filks, fatins, \&c. and fome richly embroidered, principally in the habits or fathion of rumning footmen, with poles in their laands; they are ealled falt-bearers, and demand falt, i. e. a contribution from every paffenger, and will take no denial.

When the contribution is given, which is ad libitum, a printed paper is delivered with their motto and the date of the year, which palfes the bearer free through all other falt-bearers for that day, and is as follows, viz.
" Pro more et monte,

\section*{1799, (A)}

Vivant Rex et Regina."
Thefe youths continue thus collecting their falt at all the entrances for near feven miles round Windfor and Eton, from the dawn of day until about the clofe of the proceffion, which is generally three o'clock in the afterimon.

The proceffion commences about twelve o'elock at noon, and conlifts of the Queen's and other bands of mufic ; feveral ftandards borne by different fludents; all the Etonian boys, two and two, dreffed in officers mniforms; thofe of the king's foundation wearing blue, the others fcarlet uniforms, fwords, \&c.

The Grand Standard-bearer.
The Captain, or Head Boy of Eton School.
The Lieutenant, or Second Boy.
His Majefly, attended by the Prince of Wales, and other male branehes of the royal family on horfeback, with their fuite.

The Queen and Princeffes in coaches, attended by their fuite.

Band of mufic, followed by a great concourfe of the Nobility and Gentry in their carriages and on horfeback.

The proceffion commences in the great fquare at Eton, and proceeds through Eton to Shough, and round to Salt Hill, where the boys all pafs the king and queen in review, and afcend the Montem : here an ora-

Suppl. Vol. I, Part II.
tion is delivered, and the grand ftandard is diplayed Fenn, with much grace and activity by the ftandard bearer, Eutiunewho is generally felected from among the fenior boys. \(\underbrace{\text { ier. }}\)

There are two extraordinary falt-bearers appointed to attend the king and queen, who are always attired in ranciful habits, in maner of the other falt-bearers alreally deferibed, but fuperbly embroidered. 'Thefe falt-bearers carry each an embroidered bag, which not: only receives the royal falt, but alfo whatever is collected by the out-ftationed falt-heareris. The domation of the king and queen, or, as it is called upon this occafion, the royal falt, is always fifty guineas each; the Prince of Wales thirty guineas; all the other princes and princeffes twenty guineas each. As foon as this ceremony is performed, the royal family return to Windfor. 'lhe boys are all fumptuoufly entertained at the tavern at Salt Hill; and the beautiful gardens at that place are laid out for fuch ladies and gentlemen as choofe to take any refrefhnents, the different bands of mufic performing all the time in the gardens.

About fix occlock in the cvening all the boys return in the fame order of proceflion as in the morning (with the exception only of the royal family), and, marching round the great fquare in Eton fchool, are difmiffed. The captain then pays his refpects to the royal family at the queen's lodge, Windfur, previous to his departure for King's College, Cambridge ; to defray which expence, the produce of the montem is prefented to hinn; and upon Whit-T'uefday, in the year 1796, it amounted to more than roooguineas. The day concludes by a brilliaut difplay of beauty, rank, and fa. flhon, a promenade on Windfor Terras, bands of mufic performing, \(\& \mathrm{c}\). and the fcene highly enlivened and enriched by the affable condefeention of the royal family, who indiferiminately mix with the company, and p3rade the Terrace till nearly dark.
Spontaneous EVAPORATION. See Weather, no 17, \&c. Encycl.

EUDIOMETER, an inftrument for afcertaining the purity of the atmufpherical air. Many have been the contrivances of chemifts for this purpofe (iie Eudiometer, Encycl.) ; but perhaps the beft eudiometer is that of Morvecau (or Guyton, as he now choofes to call himielf), of which mention has been made in Cubmistry, \(n^{\prime} 420\). in this Supplement. The folluwing fhort defeription will make the nature and ufe of this inftrument plain to every reader.

AB, (Plate XXVIII.) reprefents a fmall glafs retort with a long neck; its whole capacity being from feven to nine folid inches. It mutt be chofen of fuch a curvature that, when the neck is fet upright, the bulb may form at its lower part a cavity to retain the matturs introduced. The extremity of the neck of this retort is ground with emery to enter the glafs tube CD, which is open at both ends, and about 12 or 15 inches in length. The retort then clofes the tube in the manner of a ground ftopper, and intercepts all citernal communication. A cylindrical glafs veffel \(F\) is provided, of the form of a common jar, in which the glafs tube CD may be entirely plunged beneath the level of the water. Laftly, the fulphuret of potanh is prepared and broken into pieces fufficiently finall to be intioduced 4 L
is. 1.

\section*{E U D [634] E V E}

Eudiome- into the retort. Thefe are to be inclofed, dry and even ter, Eu loxus. hot, in a bottle for ure. Thefe contitute the whole apparatus and preparation of materials.

When it is required to examine an aeriform fluid, by feparating its oxygen, two or three pieces of the ful. phuret, of the lize of a pea, are put into the rctort. It is then fllled with water, taking care to incline it fo that all the air may pafs out from the bult. The orifice of the retort is then to be clofed, and inverted into the preumatic tube, in order that the gas propored for examination may be transferred into it in the ufual manner. By an eafy manceuve of alternately inclining the returt in different directions, all the water is made to flow out of the bulb in which the fulphuret remains. When this is done, the retort is placed in the vertical fituation, and its extremity introduced into the tube of glafs CD, which muft always be under water. A fmall lighted taper is then to be placed under the bulb. To fupport the retort in its pofition, the jar is provided with a wooden cover, in which there is a notch to receive it.

The firlt impreffion of the heat dilates the gafeous fluid fo much that it defcends almoft to the bottom of the tube, which is difpofed exprefsly for its reception; otherwife the partial efcape would prevent an accurate determination of its change of bulk. But as foon as the fulphuret begins to boil, the water quickly rifes, not only in the inferior tube, but likewife in the neck of the retort, notwithftanding the application, and even the increafe of the heat.

If the fluid be abfolutely pure vital air, the abforption is total. In this cafe, to prevent the rupture of the veffel by too fudden refrigeration, the afcent of the water muft be rendered hower, either by removing the taper, or by increafing the perpendicular height; which will not prevent the abforption from continuing while any gas remains which is proper to fupport combuftion.

If the fluid be common air, or oxygen mixed with any other gas, the quantity of water which has entered the retort mult be accurately meafured after the cooling. It reprefents the volume of air abforbod. Care muft be taken to inclofe the remaining gas under the fame preffure, by plunging the retort to the level of the line at which the inclofed water refts, before the orifice is ftopped.

This operation of mealuring, which is very eafy when meafuring veffels are at hand, may be habitually performed by a lip of paper pafted on the neck of the retort, upon which divifions are drawn from obfervation, and which mult be covered with varnilh to defend it from the action of the water.

EUDOXUS of Gnidus was a celebrated philofopher of the fchool of Pythagoras. His firlt preceptor was Archytas, by whom he was inftructed in the principles of geometry and philofophy. Ahout the age of twentythree he eame to Athens; and though his patrimony was fmall, by the generous affltance of Theomedon a phyfician, he was enabled to attend the fchools of the philofophers, particularly that of Plato. The liberality of his friends afterwards fupported him during a vifit to Egypt, where he was introduced by Agefilaus to king Nectanebis II. and by him to the Egyptian priets. It has been faid that he accompanied Plato into Egypt; but this is inconfiftent with chronology ; for Nectanebis II. reigned in Egypt from the fecond year of the
hundred and fourth Olympiad, to the fecond year of Evestion the hundied and feventh; and it was before Plato opened his fchool, that is, before the ninety-eighth Olympiad, about the fortieth year of lis age, that he vifited Egypt. Eudoxus is highly celebrated by the ancients for his fkill in aftronomy; but none of his writings on this or any other fubject are extant. Aratus, who has deferibed the celeftial phenomena in verfe, is faid to have followed Eudosus. He flourifhed about the nine-ty-feventh Olympiad, and died in the fifty-third year of his age. Enfield's Hijl. of Pbilefophy.

EVECTION is ufed by fome aftronomers for the libration of the moon, being an inequality in her motion, by which, at or near the quadratures, fhe is not in a line drawn through the centre of the earth to the fun, as the is at the fyzygies, or conjunction and oppofition, but makes an angle with that line of about \(2^{\circ} 51^{\prime}\). The motion of the moon about her axis only is equable ; which rotation is performed exactly in the fame time as fhe revolves about the earth; for which reafon it is that the turns always the fame face towards the earth nearly, and would do fo exactly, were it not that her monthly motion about the earth, in an eliptic orbit, is not equable; on which account the moon, feen from the earth, appears to librate a little upon her axis, fometimes from eaft to weft, and fometimes from weft to eaft; or fome parts in the eaftern limb of the moon go backwards and forwards a fmall fpace, and fome that were confpicuous are hid, and then appear again.

The term evection is ufed by fome aftronomers to denote that equation of the moon's motion which is proportional to the fine of double the difance of the moon from the finn, diminifned by the moon's anomaly. This equation is not yet accurately determined; fome flate it at \(1^{\circ} 30^{\prime}\), others at \(1^{\circ} 16^{\prime}\), \&c. It is the greateft of all the moon's equations, except the equation of the centre. Hutton's Digionary.

EVENLI even number. See Number, Encycl.
Evenlr Odi Number. See Number, Encyd.
EVOLVENT, in the higher geometry, a term ufed by fome writers for the involute or curve refulting from the evolution of a curve, in contradiftinction to that evolute or curve fuppofed to be opened or evolved. See Evolute and Involute, Sufpl.

EVOLUTE, in the higher geometry, a curve firf propofed by Huyghens, and fince much ftudied by mathematicians. It is any curve fuppofed to be evolved or opened, by having a thread wrapped clofe upon it, faftened at one end, and beginning to evolve or unwind the thread from the other end, keeping the part evolved or wound off tight ftretched; then this end of the thread will defcribe another curve, called the involute. Or the fare involute is deferibed the contrary way, by wrapping the thread upon the evolute, keeping it always ftretched. For the Involution and Evolution of Curves, fee Involution in this Supplement.

Imprefeat Evolute, a name given by M. Reaumur to a new kind of evolute. The mathematicians had hitherto only confidered the perpendiculars let fall from the involute o:s the convex fide of the evolute : but if other lines not perpendicular be drawn upon the fame points, provided they be all drawn under the fame angle, the effect will fiill be the fame ; that is, the oblique lines will all interfect in the curve, and by their interfections form the infinitely fmall fides of a new curve,

\section*{\(E \cup P\)}

Duphon, to which they would be fo many tangents, Such a curve is a kind of evolute, and has its radii; but it is an imperfect one, fince the radii are not perpendicular to the firlt curve or involute.

EUPHON, a mufical inftrument invcnted lately by Dr Chladni of Wittenberg, well known by his various publications on philofophical fubjects, efpecially the theory of muical founds. The euphon contifts of fortytwo iminoveable parallel cylinders of glafs of equal length and thicknefs; but its conAtruction, tone, and the method of playing it, are totally different from thefe of the harmonica, with which indeed it has nothing in common but the glafs. See Harmonica, Encyel.

Dr Chlachi gives the following account of his invention. In his igth year he began to learu to play the larpfichord; and he afterwards read a great many of the principal works on the theory of mufic, by which he found that the phy fico-mathematical part of that fcience was tar more defective than other hranches of natural philofophy. Being therefore polfeffed with an idea that his time could not be better employed than in endeavouring to make difcoveries in this department, he accordingly tried various experiments on the vibrations of ftrings and the different kinds of vibration in cylindric pieces of wood, firt difcovered, through calculation, by the elder Euler; and found, that though a great deal had been faid on the nature of thefe elattic bodies, yet the manner of vibration and the proportion of tones in uther elaftic bodies, which do not proceed, as in the lormer, in Atraight lines, but depend on the ribration of whole furfaces, were totally unknown, and that the little which had been written on that fubject, by fume authors, did not correfpond with nature. He had already long remarked, that every plate of glafs or metal enitted various tones according as it was held and ftruck in different places; and he was defirons to difcover the caufe of this difference, which no one had ever examined. He fixed in a vice the axle of a brafs plate which belouged to a polifhing machine, and found, that by drawing the bow of a violin over it, he produced very different tones, which were ftronger and of longer duration than thofe obtained mercly by ftriking it.

The obfervation, that not only frings but alfo other elaftic budies may he made to produce founds by drawing a violin bow over them, Dr Chladni dues not give as a difcotery of his own; as the fo called iron violin has been long known, and as he had read of an infruIn all pro-ment conitructed in Italy*, where glafs or metal bells ability the were made to found by means of two or more violin armonica Tazzuchi. hows drawn over them. But the idea of employing this infrument to examine vibrating tones was firtt entertained by himfelf. Having accurately remarked the tones produced by the abovementioned metal plate, he found that they gave a progreflion which correfponded with the fquares of \(2,3,4, \& \mathrm{c}\).

Not long before he had read, in the Tranfactions of the Royal Society of Gottengen, the obfervations of Mr Lichtenberg on the phenomena produced by frewing pounded refin over a glafs plate or cake of refin, and he repeated many of his experiments. This led him to the idea that, perhaps, the various vibratory movements of fuch a plate would he difcovered by a diverfity of phenomena, if he ftrewed over it fand or any shing of the like kind. By this experiment there was
produced a flar-formed figure; and the author, having Euphon. continued his refearches, publified the refult of them in \(\underbrace{-1}\) a work entitled, Difeoveries refpecting the Theory of Sound, printed at Leiphic in 1787 .

Whillt he was employed in thefe inveltigations, he refolved to invent a new mufical inftrument; and he began to conlider whether it might not be poffible by rubbing glafs tubes in a tlraight line, with the wet fingers, to produce founds in the lame manner as is done in the harmonica by rulbing them circularly. That glafs tubes, like thole in his euphon, would not merely by fuch rubbing emit any tones, he had long known by theory and experience; and he therefore applied himfelf to the folution of the difficult queftion, in what manner the inftrument ought to be conftructed to anfwer the intended purpofe? After various fruitlefs attempts for a year and a half, during which his imagination was fo full of the idea, that fometimes in his dreams he thought he faw the inftrument and leard its tones, that is, like thofe of the harmonica, but with more diftinctnefs and lefs confution, he at lengeth, in a flate between fleeping and waking, obtained a folution of the prublem which had given fo much employment to his thoughts. On the fecond of June 1789 , beirg tired with walking, he fat down on a chair, ahout nine in the evening, to enjoy a Chort number; but farcely had he clufed his eyes when the inage of an inftrument, fuch as he wifhed for, feemed to prefent itfelf before him, and terrified him fo much that he awoke as if he had been ftruck by an electric fhock. He immediately ftarted up in a kind of enthufiafin; and made a feries of experiments, which convinced him that what he: had feen was perfectly right, and that he had it now i: his power to carry his defign into execution. He made his experiments and contlructed his firft inftrument in fo private a manner, that no perfon knew any thing of them. On the 8th of March 1790 his firft inftrument of this kind was completed; and in a few days he was able to play on it fome eafy pieces of mufic. It was now neceffary to give to this inflrument, as it was entirely new, a new name; and that of euphon, which fignifies an intrument that las a pleafant found, appeared to him the moft proper.

It was not, however, brought to perfection at once, for he nade a fecond inltrument which was au improvement of the lirth, and a third which was an improvement of the fecond. In found, indeed, and particularly in the higher tunes, the firlt was equal to either of the other two; but the cunftruction was deficient in frength, fo that every week fome hours were neceffary to keep it in proper repair ; and it was impouffible to convey it the diffance of a mile without alnoft totally deftruying it. Dr Chladni alfo, for want of better tubes, employed thofe ufed for thernometers, and marked the whole and half tones by a coating of fealing-wax on the under fide; but as the wax, owing to the moifture and vibration, often cracked and flew off, it was attended with danger to the eyes. It was therefore extremely difficult to give to the conttruction of the infrument fufficient flrength; but this the inventor at length accomplifhed, fo that his new euphon cannot be injured or put out of tune either by playing or by carriage. The third inftrument was fomewhat different from the firft and fecond; as the fore part, which in the two former rofe upwards with an oblique angle, ftood

\section*{E U P [\(\left.\sigma_{3} \sigma\right]\) E X C}

Euphon, it right angler, fo that it could be tranfported with Euphorbia. eafe in a particular camiage made for that purpofe. InAteal of the thermoneter tubes ufed in the firft, the Doctor now emplays tubes of different colours. In the fecond inftrment thore for the while tones were of dark green glafs; but he ufed for the half tones, in both, a milk white kind of glafs. In a word, the euphon lias fome refen:blance to a fmall writing-deft. When opened, the abovementioned glafs tubes, of the thicknefs of the barrel of a quill and about 16 inches long, are feen in a horizontal pofition. They are wet. ted with water, by means of a fponge, and itroked with the wet fingers in the direction of their length, fo that the increafe of the tone depends merely on the itronger or weaker preffure, and the flower or quicker movement of the fingers. The number of tubes at prefent is forty-two. In the back part there is a perpendicular founding-board divided in the middle, through which the tubes pals. It appears thercfore that the euphon ought not to be confidered as an altered or improved harmonica, but as a totally now ard different inftrument. In regard to fiweetnefs of found, it approaches very near to the harmonica; but it has feveral advantages which no unprejudiced perfon, who examines both inflruments, will deiy.
1. It is fimplor, both in regard to its conftruction and the movement necefiary to produce the found, as neither turning nor ftamping is required, but merely the movement of the finger. 2. It produces its found fpeedier; fo that as foon as it is touched you may have the tone as full as the inftrument is capable of giving it; whereas, in the harmonica, the tones, particularly the lower ones, muft be made to increafe gradually. 3. It has more diftintnefs in quick paffages; becaufe the tones do not refound fo long as in the harmonica, where the found of one low tone is often heard when you wifh only to hear the following tone. 4. The unifon is purer than is generally the cafe in the harmonica, where it is difficult to have perfect glaffes, which in every part give like tones with mathematical exachnefs. It is however as difficult to be tuned as the harmonica. 5. It does not affect the nerves of the performer; for a perfon fcarcely feels a weak agitation in the fingers; whereas in the harmonica, particularly in concords of the lower notes, the agitation extends to the arms, and even through the whole body of the performer. 6. The expence of this inftrument will be much lefs in future than that of the harmonica. 7. When one of the tubes breaks, or any other part is deranged, it can be fion repaired, and at very little expence; whereas, when one of the glaffes of the harmonica breaks, it requires much time, and is very diffecult to procure another capable of giving the fame tone as the former, and which will correfpond fufficiently with the feries of the reft.

EUPHORBIA (See Encycl.). Of this plant three new fpecies were difcovered by Le Vaillant during his

Plate xXVIII.
fig. I. laft travels into the interior parts of Africa. The firft, which he calls the Cucumber-Euphorbia, adheres to the earth no otherwife than by a few flender roots. It rifes to the height of nine or ten inches only; and exaefly refembles a cucumber, of which it has the bent Shape. It contains abundance of milky juice, which appeared to him as cauftic as that of the great euphorbia. Its colour, which is a yellowifh-green, tinted with a beautiful fhade of violet towards the root, gives it a
very attractive appearance : but woe betide the man who Euplorhia fhould be tempted to eat of it! as it is a virulent poifon. The fecond, to which he gave the name of the MelonRiben E four Lupiorbia, docs not rife more than three or Fig 2 . four inches from the ground, to which it adheres by a collection of fibrous roots, iffuing from feveral tubercles difpofed in the manner of a crown. The flem forms a flatted globe exeavated at the fummit, and has ribs like the apple which in France is called calville blanche. Thefe ribs are elevated, thick, and convex, have a greenifh colour, and are marked with brown tranfverfal bands. From the fummit of the ribs iffue feveral litte tufts of pedunculate flowers. The third he called the Caterpillar-Euphurbia, becaufe when he firlt found it, he thought he perceived on it feveral beautiful caterpillars. The defcription of it in a few words is as follows: From a very large tuberous root, which here and there throws ont a few thready fibres, iffue feveral ftalks almott of the length of the finger : they creep along the ground, are twifted, woody, deftitute of leaves, and furnifhed with feveral rows of round tubercles, each guarded by two prickles.

All thefe kitsds of euphorlia are to be dreaded, the laft two in particular; becaufe being low and mixed. with the herbage like mufhruoms, animals, as they feed, run the rifk of eating them with their pafture. Our author confirms the account which has been given in the Encyclopedia of the favages poifoning the refervoirs of water with this plant, in order to procure the gamewhich fhall drink of it. To effect the death of the animal, it is neceffary that the poifon reach the blood and mingle with it. Yet, unconceivable as it may be, the animal, though poifoned, is not the lefs wholefome food, as our author fays he has experienced. However great may be the proportion of euphorbia thrown into a pond of water, he is perfuaded that it never diflufes itfelf. threugh the whole mafs. It is his opinion, that the poifon is a refinous juice, which, being from its nature incapable of combining with water, fwims on the furface, and there forms a mining greenith oil, which with a little attention may be difcerned by the naked eye when the furface is fmooth. I tried (fays he) the qua-. lities of this oil on myfelf, taking with a ftraw, from the furface of the bafin, a fingle drop, which I put upon iny tongue ; and it gave me that kind of burning pain. which a cautic occafions. I then took up fome water. from the refervoir in the hollow of my hand, and blow. ing off the oily fluid which fwam on the furface, I dip. ped the end of my tongue into the remainder, but could not perceive in it the nighteft tafte different from that of water itfelf. He feems to think that milk is an antidote to the poifon of euphorbia; becaufe he fqueezed fome of the juice into a bafon of milk and gave it to an ape, which fwallowed part of it without the leaft injury. He confeffes, however, that the dofe was trifling.

EUSTYLE, is the beft manner of placing columns, with regard to their diftance; which, according to Vitruvius, fhould be four modules, or two diameters and a quarter.

EXCENTRIC, or Excentric Circle, in the ancient Ptolomaic aftronomy, was the very orbit of the planet itfelf, which it was fuppofed to deferibe about the earth, and which was conceived excentric with it ; called alfo the deferent.

Inftead

Inftead of thefe excentric circles round the earth, the moderns make the planets defcribe elliptic orbits about the fun; which accounts for all the irregularities of their motions, and the ir various diftances from the earth, \& c. more juftly and naturally.

Excintric, or Excentrit Circle, in the new aftronomy, is the circle defcribed from the centre of the orbit of a planet, with half the greateft axis as a radius; or it is the circle that circumferibes the clliptic orbit of the planet.

EXCHANGE. See Encycl. under that word, and likewife under Burs of Excbange, where the antiquity of fuch hills, efpecially among the Chinefe, is mentioned. In Profeffor Beckmann's Hiftory of Inventions the reajer will find an ordinance of the year 1394 concerning the acceptance of bills of exchange, and alfo copies of two bills of the year 1404, which fufficiently prove that the methor of tranfacting bufinefs by bills of exchange was fully eftablified in Europe fo early as the fourteenth century; and that the prefent form and terms were even then ufed. The ordinance, which was iffued by the city of Barcelona, decreed that bills of ex. change fhould be accepted within twenty-four hours after they were prefented, and that the acceptance fhould be written on the back of the bill.

But there are queftions relating to bills of exchange of much greater importance than their antiquity ; and thefe queftions are not yet decided. For inftance, Ought a bill of exchange to be confidered by the law merely as a depofit belonging to the drawer, and fucceffively confided to the remittees? or fhould it be confidered as transferable property, at all rimes abfolutely vefted in the holder, whofe neglect therefore, when it vitiates the value, falls wholly on himfelf?

In a work puhlifhed 1798 by Profeffor Bufch of Hamburgh, entitled, Additions to the Tbeoretical and Prattical Delineaion of Commerce (A), the reader will find fome arguments, which, to fay the leaft of then, are certainly plaufible, to prove that bills of exchange ought to be at all times confidered as the abfolute property of the holder. This theory is then applied to the difficult and ftill unfettled cafe of the holder of a bill having many indorfements, where the drawer, drawee, and early indorfers, have all failed. It is evident that, if the holder proves under each bankruptcy the whole amount of the hill, he will rective much nore than his due. May he make his election where to prove the whole demand, and where to prove the refidue? or ought he not (which feems moft equitable) to be compelled to prove his debt againft his immediate predeceffor only? -the affignees of that predeceffor proving in their turn, in like manner (each party once only), back to the drawer. This is a cale of great importance to difcounters, and the reader will find fome judicious obfervations on it in the Profeffor's work.

EXEGESIS, or ExEgetica, in algebra, is the finding, either in numbers or lines, the roots of the equation of a problem, according as the problem is either numeral or geometrical.

EXPECTATION of Life, in the doctrine of life annuities, is the fhare, or number of years of life, which
a perfon of a given age may, upon an equality of chance, Exponen. expect to enjoy.

By the expectation or thare of life, fays Mr Simpfon (Seleal Fivercifes, p. 273), is not lacre to be undertood that particular period which a perfon hath an equal chance of furviving; this lat being a different and nore fimple confideration. The expectation of a life, to jut it in the moft familiar light, may be saken as the number of years at which the purchafe of an anmuity, grant. ed upon it, without difcount of moncy, ought to be valued. Which number of years will differ more or lefs from the period abovementioned, according to the different deyrees of mortality to which the feveral Atages of life are incident. Thns it is much more than an . equal chance, according to the table of the probability of the duration of life which the fame author has given us, that an infant, jult come into the world, arrives not to the age of ten years; yet the expectation or Thare of life due to it, upon an average, is near twenty years. The reafon of which wide difference is the great cxcefs of the probability of mortality in the firft tender ycars of life, above that refpectiag the more mat ure and flronger ages. Indeed if the numbers that die at every age were to be the fatne, the two quantities above fpecified would alfo be equal; hut when the faid numbers become continually lefs and lefs, the expectation mult of confequence be the greater of the two.

EXPONENTIAL Calculus, the method of differencing, or finding the fluxions of exponential quantities, and of fumming up thofe differences, or finding their fuents.

Exponential Curve, is that whofe nature is defined or expreffed by an exponential equation; as the curve denoted by \(a^{x}=y\), or by \(x^{x}=y\).

Exponential Equation, is one in which is contained ar exponential quantity : as the equation \(a^{y}=b\), or \(x^{x}=a b, \& c\).

Exponential Quantity, is that whofe power is a variable quantity; as the expreffion \(a^{x}\), or \(x^{x}\). Exponential quantities are of feveral degrees and orders according to the number of exponents or powers, one over another.

EXTRA.Constellary Stars, fuch as are not propetly included in any conftellation.

Extra-MIudane Space, is the infinite, empty, void fpace, which is by fome fuppofed to be extended be. yond the bounds of the univerfe, and confequently in which there is really nothing at all. The phrafe extramundane fpace has been folong. in ufe among our beft writers, that it is now impoffible to banifh it from the language; and yct it has been the fource of fome extravagg:nt miftakes. Many philofophers confider face as fomething real, diftinct both from body and mind; and no lefs a man than Dr Clarke confidered it as an attribute of the Deity. Yet we think nothing more evident, than that if body had never exifted, fpace would never have been thought of ; and if this be fo, extramundane fpace, inftead of denoting any real thing, or attribute intinitely extended, can mean nothing more than the poflibility of enlarging the corporeal ciniverfe, however widely extended it may be. See Metaphysics. Encycl. Part II. ch. iv.
(A) Profeffor Bufch publifhed in 1792 a work entitled \(A\) Thberetical and Pradical Diflineation of Commerces -

\section*{EX T [\(6 ; 8\)] E X T}

Ixtrador, EXTRADOS, the outfide of an arch of a bridge, Extremes, vault, \&c. See \(\mathrm{A}_{\mathrm{rch}}\) in this Supplement.

EXTREMES Conjunct, and Extremes Disjunc, in fpherical trigonometry, are, the former the two circular parts that lie next the affumed middle part ; and the latter are the two that lie remote from the middle part. Thefe were terms applied by Lord Napier in his univerfal theorem for refolving all right-angled and quaulrantal fpherical triangles, and publithed in his Lngarith. morum Canonis Defcriptio, ann. 16ı4. In this theorem, Napier condenfes into one rule, in two parts, the rules for all the cafes of right angled fpherical triangles,
which had been feparately demonilrated by Pitifeus, Extremen Lanbergius, Copernicus, Regiomontanus, and others. In this theorem, neglecting the right angle, Napier calls the other five parts circular parts, which are, the two legs about the right angle, and the complements of the other three, viz. of the hypothenufe, and the two ublique angles. Then taking any three of thefe fire parts, one of them will be in the middle between the othir two, and thefe two are the extremes comjunct when they are immediately adjacent to that middle part, or they are the extremes disjunct when they are cach feparated trom the middle one by another part.

\section*{F.}
\(\underset{\substack{\text { Face, } \\ \text { Falcerty }}}{ } \mathrm{F}\) ACE or FAÇADE, in architecture, is fometimes ufed for the front of outward part of a building, which immediately prefents itfelf to the eye; or the fide where the chiff entrance i , or next the ftreet, \&c.

FALCONRY, is a fpecies of fport, ahout the antiquity of which there has been fome difpute. Under the word Hawking, Encycl. we have deduced what we thought fufficient evidence of its being prastifed among the Thracians, and likewife among the britons before the invation of this ifiand by the Romans. Flavius Blondus, however, and Laurentius Valla, hoth writers of the 15 th century, and the latter, one of the molt learned men of his time, affirm that no nation or perple were accultomed to catch either land or water fowls with any rapacious bird trained for the purpofe.

We were pleafed to fee our own opinion, fo different from this, completely eftablifled by the learied labours of Profeffor Beckmann. So early (fays he) as the time of Ctefias (and he refers to the page and edition of his author) hares and foxes were hunted in India by means - Hif Ani- of rapacious bids. The account of Ariftotie *, bowmat, lib. ix. ever, is ftill more to the purpofe, and more worthy of cap. 6. notice. "In Thrace (lays he) the men go out to catch birds with hawks. The men beat the reeds and bufles which grow in marfhy places, in order to raife the fmall birds, which the hawks purfue and drive to the ground, where the fowlers kill them with poles." The fame account is to be found in another book afcribed alfo to Ariftotle; and which appears, at any rate, to be the work of an author not much younger. Refpecting Thrace, which is fituated above Amphipolis, a wonderful thing is told, which might appear incredi ble to thofe who had never heard it before. , It is faid that boys go out into the fields, and purfue birds by the affitance of hawks. When they have found a place convenient for their purpofe, they call the hawks by their names, which immediately appear as foon as they hear their voices, and chafe the birds into the bufhes, where the boys knock them down with flicks and feize them. What is fill more wonderful, when thefe hawks lay hold of any birds themfelves, they throw them to the fowlers; but the boys, in return, give
them fome fhare of the prey. De nirabilibus aufcultat. Falconry, cap. 128.
In this paffage, there are two additions which render the circumfance ftill more remarkable. The firit is, that the falcons appeared when called by their names; and the fecond, that of their own accord they brought to the fowlers whatever they caught themfelves. Nothing is here wanting but the fpaniel employed to find out game, the hood which is put upon the head of the hawk while it ftands on the hand, and the thons ufed for holding it, to form a flort defcription of falconry as 1 ill practifed. Our falconers, when they lave taken the bird from the hawk, give hin, in return, a frall fhare of it ; and in the like manner the Ehracian hawks receive fome part of their booty.

Other writers after Arillote, fuch as Antigonus, Allian, Pliny, and Phile, have alfo given an account of this method of fowling. Slian, who feldom relates any thing without fome aiteration or addition, fays, that in Thrace nets were ufed, into which the birds were driven by the hawks; and in this he is followed by the poet Phile. Relian, alfo, in another place deforibes a manner of hunting with hawks in India, which, as we are told by feveral travellers, is 1 till practifed in Perlia, where it is well underftond, and by other caftern nations.

The Indians (fays he) hunt hares and foxes in the following manner: They do not employ dogs, but eagles, crows, and, above all, kites, which they catch when young, and train fur that purpofe. They let loofe a tame hare or fox, with a piece of flon faftened to it, and fuffer thefe birds to lly after it, in order to feize the flefh, which they are fond of, and which, on their return, they receive as the reward of their labour. When thus inftructed to purfue their prey; they are fent after wild foxes and hares in the mountains ; thefe they follow in hopes of obtaining their ufual food, and foon catch them and bring them back to their mafters, as we are informed by Ctefias. Inftead of the flefh, however, which was faftened to the tame animals, they receive as food the entrails of the wild ones which they have caught.

It feems, therefore, that the Greeks received from In. dia

\section*{F A L [639] F A L}
rats dia and Thrace the firt infurmation refpecting the method of fowling with hirds of prey ; but it does not appear that this practice was introduced annoug them at a very early period. In Italy, however, it mult have been very conmon, for Martial and Apuleius fpeak of it as a thing every where known: the furincr calls a hawk the fowler's fervant.
The Profeflor traces the hifory of this art with great learning down to the prefent time. It was carried to the higheft perfection at the principal courts of Eurupe (he fays) in the 12 th century, when the ladies kept hawks, which were as much fondled by thofe who wifhed to gain their farour as lap dugs are at prefent. Among ic oldeft witers on falconry, as an art, he reckotis Demetrius, who about the year 1270 was phyfician to the Emperor Michat Palcologns. His book, written in Greek, was firf printed at Paris in \(\mathbf{1} 612\) with a Latin tranflation ; but its precepts (fays our author) would be thought of weny little value at prefent. For an account of the modern art of Falconry, fee Encyclopecilia.

FALK (John Peter), known to the world as one of the feientific travellers employed by the late Emprefs of Ruflia to explore her valt dominions, was born in Weflroguthia, a province in Sweden, about the year 1727. He fudied medicine in the univerfity of Upfal, and went through a courfe of botany under the celebrated Limnxus, to whofe fon he was tutor. He publicly defended the differtation (A) which that famous botariil had compofed on a new fpecies of plants, which he called afromeria.

In the year \(\mathbf{7 6 0}\), he was fo deeply affected with depreflion of fpirits, that M. de Linnć, in the view of obliging him to take exercife and diffipation, fent him to travel over the ifland of Gothland, to make a colleciton of the plants it produces, and the various kinds of corals and corallines which the fea leaves on its thores. This voyage was attended with no diminution of his diftemper, which found a continual fupply of aliment in a fanguine melancholy tempcrament, in a too fedentary way of life, and in the bad thate of his finances.

Profeffor Forfael having left Upfal for Copenhagen in 1760 , Falk followed him thither, in the defign of applying, by the advice of M. de Limet, to be appointed affiftant to M. Forkael in his fanmous journey thro' Arabia; tut notwithflanding all the pains that M. CE. der, and feveral other men of literary reputation at Co . perihagen, took in his behalf, his application failed, as the focicty that were to go on that important expedition was already formed. Ohliged, with much difcontent, to return, he herborifed as he travclicd, and en. siched the Flura Suecica with feveral new difeoveries.

A man in ofice at St Peterfburgh having written to M. Linné to fend him a director for his cabinet of natural hiftory, M. Falk accepted the poft, which led him to the chair of profeffor of botany at the apothecaries garden at St Peterfburgh, a place that had been long vacant. His hypochondriac complaint ftill continued to torment him. When the Imperial Academy of Sciences was preparing in 1768 the plan of its learned expeditions, it took M. Falk into its fervice, though his healh was uncertain. He was recalled in 1771; but
having got only to Kafan in 1773, he there obtained permifion to go and ufe the baths of Kifiar, from which he returned again to Kafan at the end of the year, wilh his health apparently better.

But his difeafe foon returned with redoubled viofence. From the month of December 1773 he had never quitted his bed, nor taken any other nourifhment than bread dried in the Swedifh manucr (knekebrued), of which he fcarcely took once a day fome monthfuls dipped in tea. At firft he received the vilits of a few friends; but afterwards denied himfelf to then, and was reduced to the fricteft folitude. When M. Georgi, meniber of the fociety of natural hiftory at Berlin, who had been deitined to affift and relieve the profeffor in the duties of his expedition, went to fee him on this occafion, nuthing feemed left of him but a Neleton of a wild and terrifying afpect. The few words he drew from him confifted in complaints, occafioned hy a hoft of difeafes which kepe his body in torture, and threw him into the moft cruel fleepleffers. The laft evening M. Georgi kept him company till midnight. He fpoke little, and faid nothing that could give reafon to fufpect the defign he was meditating. His hunter, and at the fame time his trufty fervant, offered to fit up with him the night ; but he could not be perfuaded to confent.
M. Georgi heing requefted the next day, March 31, to come to the lodging of the unfortunate gentleman, he found him lying befure his bed, covered with blond; befide him lay a razor, with which he had given himfelf a light woind in the throat, the fatal pittul, and a powder-horn; all together prefenting a tremendous fpectacle. He had put the muzzle of the pittol againft his throat, and, recling the ponmel upon lis brd, he difcharged the contents in fuch a manner, that the ball, having goue through his head, had ftuck in the cieling. His foldier had feen him fill fittting up in his bed at fout o'clock, at which time he ufually fell into a flort
flumber. Ia his chamber was found a note written the four o'elock, at which time he ufually fell into a fort
nlumber. Ia his chamber was found a note written the evening before, hetraying throughout the diftracted
nate of his mind, but nothing declaratory of his defign, evening before, hetraying throughout the diftracted
Rate of his mind, but nothing declaratory of his defign, or that was of any importance.
M. Falk, like all hypochondriac perfons, was not very communicative, and on certain oecalions was ditruft-
ful. But, at the fane time, he was of a fedate temper, ry communicative, and on certain oecalions was ditruft-
ful. But, at the fame time, he was of a fedate temper, complaifant, and upright, which made it a very cafy matier to bear with him, and fecure to him the indul-
cence of all his acquaintance. His extreme fobicty maticr to bear with him, and fecure to him the indul-
gence of all his acquaintance. His extreme fobicty had enabled him to make fome favings from his pay, though he was very beneficent; it was not, therefure, indigence that drove him to this act of violence. He indigcuce tuat drove him to this act of violence. He
was of a cold conftution, preferring folitude and quict to fuciety, to the company of his friends, and to ordinary amufements, which yet be did not fhun, except in the latter period of his life. As to religion, he thewed on all occafions more refpect for it than any ftrong cffufions of zeal. It was folely to be afcribed to the
violence of his diftemper, and the weaknefs of mind effufions of zeal. It was folely to be afcribed to the
violence of his diftemper, and the weaknefs of mind which it brought on, that led him to put a pesiod to his days. The fate of this unfortunate feholar was generally and juftly lamented.
His papers were found in the greateft diforder. They contain,
.

Falk.

\(\qquad\)
\(\qquad\)
\(\qquad\)

-

-
-

\(\qquad\)

(A) In the collection known under the title of Linnei Amenitates Academicic.

\section*{FA R [\(6 \neq 0] \quad \mathrm{F}\) A R}

Fmoner. contain, however, very ufeful and important rclations. He particularly made it his bufnef; to inquire about the Kirguifes, and other Tartarian nations; and as he frequently remained for the face of nine months together in the fane place, he was enabled to procure fatisfatory notions concerning the objects of his invelligations. 'Ihe Imperal Academy, in 1774, appointed Profeffor Laxmann to arrange his manuferipts in order for publication; which was done accerdingly.

FARDER (Richard, D. D.), fo well known as one of the commentaturs on Shakefpeare, was a man of fuch pleafing, thongh fingular mamers, that we regret the very imperfect account which we mult give of his life. One of us, who had the pleafure of being a little known to him, has been fo much delighted with the natural eale and pleafantry of his converfation, that we made all the inquiries which we judged requifite to enable us so draw up fuch a biograpnical thetch of this agreeable man as might be acceptable to our readers, and not unworthy of this character; but thefe inquiries were made in vain. Thofe to whon we applied knew little more of the incidents of his life than what we had previounly found in a mifcellany, of which the writers feem to confider it as a principle of duty to vilify the character of every perfon who, like Dr Farmer, is the friend of soder, and the enemy of fudden or rapid innovations. Tu that mifcellany, therefore, we mult be beholden for fuany facts; but we fhall certainly copy none of its malevolence.

Dr Farmer was born at Leicefter 1735 ; but what vas the fation of his father we have not leamed. "Of his fchool education he received part, perhaps the whole, in his native town: and from fchool he was removed to the univerfity of Cambridge, where he devoted himfelf chiefly to claffical learning and the belles lettres. In 1757 he was admitted to the degree of bachelor of arts; in 1760 to that of malter of arts; a bachelor of divini\(1 y\) in 1767 , and a doctor of divinity in 1775 ; m which year he was alfo elected mafter of Emanuel on the deceale of Dr Richardfon, and principal librarian on the decenfe of Dr Barnardifton.

The dilturbances in America having by this time become ferious, the univerfity of Cambridge, with numberlefs other loyal bodies, voted an addrefs to the king, approving of the meafures adopted by government to reduce the factious colonilts to their duty. The addrefs, however, was not carried unanimoufly. It was, of courfe, oppofed by Jевв, fo well known for his free opinions in politics and religion, and by fome others, of whom one man, a member of the caput, carried his oppofition fo far, as actually to refufe the key of the place which contained the feal neceffary on fuch occafrons. In this emergency, Dr Farmer, who was then vice-chancellor, is faid to have forced open the door with a fledge-hammer; an exploit which his democratical bingraphers affect to ridicule, by calling it bis courtly zeal, and the occation of all his fubfequent preferments.

If it be indeed true that he broke the door in pieces with his own hands, his conduct mult be acknowledged to have been not very decorous; but if the office which he filled be taken into confideration, we apprehend it would be as difficult to prove that conduct effentially wrong, as to vindicate the obftinate arrogance of him who occafioned it. The feal was the property of the
miverlity, of which this ontrageons Supporter of the bill of rights was but an individual member. The univerfity had refolved that it hould be employed for a certain purpole, which it was the duty of the vice chancellor to carry into effect; and fince the feal was refufed to him, he had mo alternative bat to get pofferfion of it by furce. We hope, however, that he ensployed a fervant to break the dour; and, indecd, as vice-chancellor, he mult have had fo many fervants at his command, that it is not conceivable he would wield the fledge hamner himfelf.

Some time after this he was made a prebenlary of Canterbury, we believe through the recommendation of Lord North, then premier ; and it was at Canterbury that the writer of this Ketch had the happincis of heing introduced to him, and witnefling his holpitality. A fer enjoying his prebend for feveral years, he refigned it on being preferred, by the prefent premier, to a reflentiaryfhip of St Panl's; and we lave reafon to believe that he declined a bihopric, which was offered to him âs a reward for the conllitutional principle which he was at pains to propagate, not only in his college, but, as far as his influence went, through the whole univerlity.

It has been faid that the delights of the pipe and the bottle in Emanuel parlour outweighed, in his eftimation, the dazzling fplendor of the mitre; but he had uther and better reafons for preferring a private to a public ftation. In early life, at leaft before he was advanced in years, he had felt the power of love, and had fuffered fuch a difappointment as funk deep in his mind, and for a time thrratened his underfanding. From that period, though lic retained his faculties entire, he acquired fome peculiarities of manner, of which he was fu far confcious as to be fenfible that they would hardly becume the character of a bifhop: being likewife flrongly attached to dramatic entertainments, which, if we millake not, the Englifi bifhops never witnefs, and delighting in clubs, where he could have rational converfation without itate or ceremony of any kind-he very wifely preferred his refidentiaryfhip to the highelt dig. nity in the church. At the time of his death, which happened in the autum of 1797 , he was a fellow of the Royal and Autiquarian Societies, mafter of Emamuel college, principal librarian of the public libtary in the univerfity, one of the canons refidentiary of St Paul's, chancellor of the diocefe of Lichfield and Coventry, and prebendary of Worcefter.

Though a good claffical fcholar, Dr Farmer has been celebrated only for that kind of literature which is connected with the Englifh drama; and having a ftrong predilection for old Englifh writers, he ranked high among the commentators upon Shakefpeare. His 'Effay upon the Learning of Shakefpeare,' dedicated to Mr Cradock, the intelligent refident of Gumley-Hall in Leicefterfhire, has paffed through feveral editions. This effay was, in fact, the firt foundation of his fame, which an unconquerable indolence prevented him from carrying to that height to which the exercife of his literary talents could not have failed to raife it. So great indeed was his love of eafe, that after having announced for fubferiptions a hiftory of Leicefterfhire, and actual. ly begun to print it, rather than fubmit to the fatigue of carrying it through the prefs, he returned the fubfcriptions, and prefented the MSS. and plates to Mr

Nichols,

\section*{F A R}

Pamer. Nichols, the wefpectable printer of the Gentleman's Magazine, who has fince carried on the hiftory with a degree of fpirit, ability, and induftry, perhaps unprecedented in this department of literature.

Indolence and the love of cafe were indeed the Doctor's chief characteritics; and to thein, with the difappuintment already mentioned, may be attributed a want of propriety in his external appearance, and in the ufual forms of behaviour belonging to his ftation. The prevailing features of his character diftinguifhed themfelees by feveral oddities: There were three things, it was faid, which the matter of Emanuel loved, wiz. old port, old clothes, and old books ; and three things which no one could perfuade him to perform, viz. to rife in the morning, to go to bed at night, and to fettle an account. When in Cambridge, if an old houfe were pulled down, the matter of Emanuel was always there in an old blue great coat, and a rufty hat. When in London, he was fure to be found in the fame garb at an old book.ftall, or flanding at the corner of a dirty lane, poring through his glafs at an old play-bill.

This character is not drawn by a friendly pencil ; but it is neverthelefs not unjuft. His inattention to the commen decencies of drefs and behaviour was notorious, infomuch that, in the company of Atrangers, the eccentricity of his appearance and of his manners made him fometimes be taken for a perfon half crazed. The writer of this fketch faw him one morning at Canterbury dreffed in ftockings of unbleached thread, brown breeches, and a wig not worth a fhilling; and when a brother prebendary of his, remarkable for elegance of manners, and propricty of drefs, put him in mind that they were to attend on the arctibihop, Dr Farmer replied, that it had totally efcaped him ; but he went home, and dreffed himfelf like a clergyman. That he fat late reading, and occafionally drinking brandy and water, cannot be denied; and it is literally true, that he could not eafily be prevailed upon to fettle his accounts. His accounts with fome of his pupils, when tutor of his college, were never fettled to the day of his death; and the young gentlemen not unfrequently took advantage of this menconquerable indolence to borrow of him confiderable fums, well knowing that there was little chance of a demand being ever made upon their parents. Oue gentleman, in particular, told a friend of ours, who was himfelf a penfioner of Emanuel, that when he left that college, he was near fifty pounds in debt to Dr Farmer; "a debt (faid he) which I would have fcrupulounly paid; but, after repeated folicitations, I could get no bill froin him."

Having been a warm partizan of government during the American war, it will readily be believed that Dr Farmer was the determined enemy of levellers and anarchifts. He was fuch a whig as thofe who placed King William on the throne; and of courfe deemed a violent tory by our prefent republicans, of whom, to fay the truth, he could hardly fpeak with temper. By his enemies he is admitted to have been a man of generofity. As he obtained moncy eafily, fo he parted with it eafily. Whilft he was always rcady to relieve diftrefs, his bounty was frequently beflowed on the patronage of learned men and learned publications. He was, accordingly, a favourite with all good men who knew him. In his own college he was adored; in the univerfity he had, for many years, more influence thian any other

Suppr. Vol. I. Part II.
individual; and, with all his eceentricitics, his death was a lofs to that learned body, which, in the opinion of fome of its members, will not foon be made up.

A flurt time before his death, his character was thns jullly and ably drawn by the celebrated Dr Parr:
"Of any undue partiality towards the mafter of Emanuel College, I thall not be fufpected by thofe perfons who know how little his fentiments accord with mine, upon fome ecclefiaftical, and many political matters. From rooted principle and ancient habit he is a tory; I am a whig; and we have both of us too much confidence in each other, and too much refpect for ourfelves, to diffemble what we thiuk, upon any grounds, or to any extent. Let me then do him the juttice which, I am fure, that he will ever be ready to do to me. His knowledge is varions, extenfive, and recondite. With nuch feeming negligence, and perlaps, is later years, fome real relaxation, he underfands more, and remembers more, about cominon and uncommon fuhjects of literature, than many of thofe who would be thouglit to read all the day and meditate half the night. In quicknefs of apprehenfion, and acutencfs of diferimination, I have not often feen his equal. Through many a convivial hour have I been charned by his vivacity: and upon his genius I have reflected, in inany a ferious moment, with pleafure, with admiration, but not without regret that he has never concentrated and exerted all the great powers of his mind in fome great work, upon fome great fubject. Of his liberality in patronifing learned men I could point out numerous inftances. Without the fmalleft propenfities to avarice, he poffeffes a large income; and, without the mean fubmiffion of dependence, he is rifen to a high ftation. His ambition, if he has any, is without infolence; his munificence is without oltentation ; his wit is without acrimony; and his learning without pedantry."

FASCINATION, the art of bewitching, enchantment, an unfeen inexplicable inftuence. Under the title Serpens (Encycl. no 22.) we have mentioned feveral inftances of the fafcinating power of the rattlefnake, which were related by men of cbaracter, and certainly gained fome degree of credit among men of fcience. In Vaillant's New 'Travels into the Interior Parts of Africa, an account is given of fimilar inftances of fafcination by African fervants, fome of them witneffed by himfelf, and others reported to him by men of veracity.

On the confines of the European colony, at a place called Swart-land, our traveller faw a fluike on the branch of a tree, tremble as if in convulfions, whilil it uttered the molt piercing cries of diftrefs. Clofer attention led him to difcover upon the next branch of the faine tree a large ferpent, that, with fretched ont neck, and fiery eyes, though perfectly fill, was gazing on the poor animal. He fhot the ferpent; but, in the mean time, the lird liad died. Ilaving meafured the ditance between the place where the flurke was feen in convulfions and that occupied by the ferpent when it was thot, he found it to be three feet and a half; which convinced him and his attendants that the bird had not died either from the bite or the poifon of its ens. my. Indeed he ftripped it before the whole company, and made them obferve that it was untouched, and had not received the flighteft wound. - In another dittric of Africa, during the courte of the fame travels, he
rinn.

\section*{F A S [642 I F A S}

Fafcina- farv a fmall moufe die in convulfions, occafoned by the tion fafcinating power of a ferpent, at the diftance of two yards from it; and when he confulted his Hottentots upon this incident, they expreffed, he fays, no fort of aftonithment, hut affured him that the ferpent had the faculty of attracting and fafcinating fuch animals as it wifhed to devour.

We have already had occafion to remark how regardlefs this anthor is of inconfittencies in his narrative; and we perceive fomething like an inconfifency in the narratives before us. Though his Hottentots expreffed no Curprife at the fafcination of the monfe, and declared that nothing was more common, he fays exprefily, that to thofe who witneffed the fafcination of the fhrike, the fact appeared fo extraordinary, that they could hardly believe it, even after they had feen it.

The moft wonderful inflance of fafcination which we have anywhere met with, was that of a Captain in the Dutch fervice at the Cape, who, after affuring our traveller that it is an event which happens very frequently, proceeded thus: "My teftimony ought to have the more weight, as I had once nearly become myfelf a victim to this fafcination. While in garrifon at Ceslon, and amufing myfelf, like you, in hunting in a marfh, I was, in the courfe of my fport, fuddenly feized with a convulfive and involuntary trembling, different from any thing I had ever experienced, and at the fame time was ftrongly attracted, and in fpite of myfelf, to a particular fpot of the marth. Directing my eyes to this fpot, I beheld, with feelings of harror, a ferpent of an enormous fize, whofe look inftantly pierced me. Having, however, not yet loft all power of motion, I cmbraced the opportunity before it was too late, and faluted the reptile with the contents of my fufec. The report was a talifman that broke the charm. All at once, as if by a miracle, my convulfion ceafed; I felt myfelf able to fly ; and the only inconvenience of this extraordinary adventure was a cold fweat, which was doubtlefs the effect of my fear, and of the violent agitation my fenfes had undergone."

This inflance of fafcination differs in one very material circumftance from the two fomewhat fimilar inftances mentioned in the Encyclopedia. In both there, the eyes of the perfons fafcinated were fixed on the eges of the fnake; but here the Dutch Captain was ftrongly attracted towards the ferpent before he faw, or even fufpected, that fo formidable an enemy was in his neighhourhood. If the fory therefore be true, the effect which he defcrihes could not poffibly have been the effect of fear, but of fome unfeen influence on his whole nervous fyftem.

The fubject has of late attracted the attention of men of fience, whofe local fituation gives them an opportunity of making experiments upon different ferpents, with a view to afcertain whether they really poffefs or not this molt unaccountable of all powers. In the year 1796 was printed at Philadelphia, a Memoir concerning the Fafcinnting Faculty wubich has been aforibed to the Ralle-frakc, and otber American Serpents, by Benjamin Smith Barton, M. D. Profeflor of natural hiftory and botany in the univerfity of Pennfylvania. In this memoir, the manner in which the fafcinating power is fuppofed to be exerted is thus ftated by the ingenious profeffor :
"The frake, whatever its Cpecies may bc, lying at the boltom of the tree or bufh upon which the bird or fquirrel fits, fixes its eyes upon the animal it defigns to fafcinate or enchant. No fooner is this done, than the unhappy animal is unable to make its efeape. It now begins to utter a mott piteousicry, which is well known by thofe who hear it, and underitand the whole machinery of the bufmefs, to be the cry of a creature enchanted. If it is a fquirrcl, it runs up the tree for a fhort diftance, comes down again, then runs up, and, laftly, comes lower down. 'On that occafion (fays an honeft, but rather credulous writer*), it has been obferved, that * Profefor the fquirel always goes down more than it goes up.' Peter Kum 'The fnake ftill continues at the root of the tree, with its eyes fixed on the fquirrel, with which its attention is fo entirely taken up, that a perfon accidentally approaching, may make a confiderable noife without the fnake's fo much as turning about. The fquirrel, as before mentioned, comes always lower, and at laft leaps down to the fuake, whofe mouth is already wide open for its reception. The poor little animal then, with a pitenus cry, runs into the fnake's jaws, and is iwallowed at once, if it be not too big; but if its lize will not allow it to be fwallowed at once, the frake licks it feveral times with its tongue, and fmoothens it, ano by that means makes it fit for fwalicwing."

From Dr Barton's memoir, it appears that the North American Indians are by no means of one opinion refpecting the fafcinating power of the rattle-fnake. Some intelligent friends of his, well acquainted with the manners, religions opinions, and fuperftitious prejadices of thofe people, informed him, that though they liad often heard the Indians fpeak of the ingenuity of there reptiles in catching birds, fquirrels, \&ic. they did not recollect having cver heard them fay that fnakes charm binds. On the other hand, huwever, a Mohegan Indian told the Doctor himfelf, that the Indians are of opinion, that the rattle-fnake can charm, or hetwitch, fquirrels and birds, and that it does this with its rattle, which it fakes, thereby inviting the animals to defcend from the trees, after which they are eafily caught. According to this Indian, his countrymen do not think that the fnake, in any manner, acconplifhes the bufinefs with its eyes. A Choktah Indian affured the Doctor, that the rattle fuake does charın birds, \&c.; but he was honeft enough to confefs, that he did not know in what manner it does it. The interpreter, throngh whom the converfation was carried on with this Indian, faid that the fnake charms by means of its ratte.

This opinion of the interpreter was the opinion of Dr Mead. That eminent naturalit, controverting, about fifty years ago, the common opinion, that Providence has furnifhed the rattle-fnake with its rattle to give warning to travellers, was the firf who afferted that this fingular appendage is given to the animal to terrify fquirrels and finall birds, which are then fo ftu. pified by the fight of fo formidable an enemy, that at length they drop down, and become it3 prey; and that this is what the Indians call fafcination. The fame opinion has been adopted by profeffor Blumenhach of Gottingen, who, in his Manual of Natural Hiftory, thus expreffes himfelf on this curious fubject:
"That fquirels, fmall birds, \&c. fall down fponta= neonfly from trees into the mouth of the rattle-fnake, lying

Fufci: tion.

\section*{FA S [643] FA S}

Tafeins- lying below then, is an undifputed fact: and is the
marked in regard to other fnakes, and alfo toads, hawks, and cats: :all of which, in certain circunittances, as ap. pears, have the power of drawing towards them fmall animals, merely by fixing their eyes ftedfantly on them. In regard to the rattle-fnake, this effect is produced loy the ratte in its tail, the hiffing noife of whicl makes fquiricl.s, \&c: whether through curiofity, mittake, or terror, feem to aypproach the animal as it were fpontaneoully. At any rate, I know, from the information of intelligent eye-witneffes, that it is a common Itratagerm of the young favages in A merica to conceal themictves in the bulles, where they imitate the hiifing noife of the rattle finake, and by thefe means attract fquirrels, which they are then emabled to catch."
To this opinion Dr Barton orppofes an infuperable objection. It is, that this fafceivating power is by no means peculiar to the rattle-fiake. With regard to the itratugem of the favages, he thinks that I)r Blumenbach has been impofed upon; as neither he, nor any other peffoan of whon the made the inquiry, ever heard of fuch a ftratagen. The young Indians, he fays, place a reed crofs-wife in their mouth, and by a tremulous motion of the lips, imitate the cry of yonng birds; by which means they entice the old ones, fo that they can eafily fhoot then: And this practice may have given rife to the ftory of their imitating the liffing noife of the rattle-fnake.
Some have fuppofed that ferpents, under certain circumflances, emit from their bodies a ftupifying vapour ; and that it is this vapour which produces the effect calied fufcimftion: But againtt this opinion Dr Barton alleges the fullowing arguments: " 1 know, indeed (fays hee), that in fome of the larger fpecies of ferpents, inhabiting South America and other countries, there is evoived in the flomach, during the long and tedious procefs of digeltion in thefe animals, a vapour or a gas, whofe odour is intenfely fetid. I have not, however, found that this is the cafe with the rattle-fnake, and other North A merican ferpents, that I have exa. inined. But my own obfervations on this head have not been very minute. I have made inquiry of fome perfons (whofe prejudices againt the ferpent tribe are not fo powerful as my own), who are not afraid to put the heads and neeks of the black fnake, and other ferpents that are deflitute of venemous fangs, into their mouths, and have been informed, that they never perceived any difagreeable fncll to proceed from the breath of thefe animals. I have been prefent at the opening of a box which contained a number of living ferpents; and although the box had been fo clofe as to adinit but a very fmall quantity of frefh air, although the obfervation was made in a fmall warm room, I did not per. ceive any peculiarly difagreeable eflluvium to arife frum the bodies of thefe animals. I am, moreover, informed by a member of this fociety \({ }^{*}\), who has, for a confiderable time, had a rattle-fnake under his immediate care, that he has not ohferved that any difagreeable vapour proceeds from this reptile. On the other hand, however, it is afferted by fome creditable perfons of my acquaintance, that a moft offenfive odour, fimilar to that of fefh in the laft flage of putrefation, is continually emanating from every part of the rattle-fnake, znd fome other fpecies of ferpents. This odour ex-
tends, under certain circumfances, to a confiderable diftance from the body of the animal. Mr Willian Bartrain affures me, that he has ohferved 'horfes to be fenfible of, and greatly agitated by it, at the diflance of forty or filty yards from the fnake. They mewed (he fays) their abhorrence by foorting, winnowing, and Aarting from the road, endeavouring to throw their riders, in order to make their efcape." This fact, related by a man of rigid veracity, is extremely curious ; and, in an efpecial mamer, deferves the attention of thofe writers who imagine that this fetid emanation from ferpents is capable of affecting birds, at fmall diftances, with a kind of afphysy. It even gives fome colour of probability to the 'ftury related by Metrodorus, and preferved in the Natural Hittory of Jliny *." *Lib. 38

Some experiments, however, which were made in Caporq. Philadelphia a little before the Doctor compofed his memoir, feem to have been decifive not only as to the fitor, but as to every thing which refentbles fafcination in the rattle-fnake. Birds which were put into a cage which contained a rattle-finake, flew or ran from the reptile, as though they were fenfible of the dat...er to which they were expofed. The fnake made many attempts to eatch the birds, but could feldom fucceed. When a dead bird was thrown into the cage, the fuake devoured it immediately. He foon eanght and devoured a living mok, an animal much more flaggif than the bird. Dr Barton himfelf faw a fnow-bird (fee EmBERIZE, Encycl.) in a cage with a large rattle frake. The little animal had been thus imprifoned for feveral hours when he firf faw it, but it exlibited no figus of fear. It hopped about from the floor of the cage to its rooft, and frequently perched on the fnake's back. Its chirp was nowife trenulous, but perfectly natural. It ate the feeds which were put into the cage; and by its whole actions moft evidently demonflrated that its fituation was not uneafy.
Having thus difpofed of the doctrines of fome of his predeceffors, Dr Barton proceeds to fay: "The refult of not a little attention to the fubject has taught me, that there is but one wonder in the bufinefs; -the wonder that the flory fhould ever have been believed by a man of underitanding and of obfervation." Fafcination, we are informed, is almofl entirely limited to birds that build low, and "in alnoft every inftance, I found that the fuppofed fafcinating faculty of the ferpent wa:s exerted upn the birds at the particular feafon of their laying their eggs, of their hatching, or of their rearing their young, Alill tender and defencelefs. I now began to fufpect that the cries and fears of birds fuppofed to be fafcinated originated in an endeavour to protect their nefl or young. My inquiries bave convinced me that this is the cafe."
The rattle-fnake, which is the lazieft of all the ferpent tribe, never moves in a [piral manucr or climbs ins trees; but the black-fnake, and fome other fpecies of the genus coluber, do. When impelled by bunger, and incapable of fatisfying it by the capture of animals on the ground, they begin to glide up trees or bufhes upon which a bird has its neft. The bird is not ignorant of the ferpent's object. She leaves her neft, whether it contains eggs or young ones, and endeavours to oppofe the reptile's progrefs. In doing this, fhe is actuated by the ftrength of her inftinctive attachment to her eggs, or of affection to her young. Her cry is melancholy,

Fanfe her n:otions are tremulous. She expofes herfelf to the moft imminent danger. Sometines fhe apyroaches fo near the reptile that he feizes her as his prey. But
this is far from being univernally the cafe. Often fhe compels the ferpent to leave the tree, and then returns to her neft.

It is a well known fact, that among fome fpecies of birds, the female, at a certain period, is accuftomed to compel the young ones to leave the neft; that is, when the joung have acquired fo much ftrength that thev are no longer entitled to all her care. But they ftill clains fome of her eare. Their flights arc aukward, and foon broken by fatigue. They fall to the ground, where they are frequently expofed to the attacks of the ferpent, which attempts to devour them. In this fituation of affairs, the mother will place herfelf upon a brauch of a tree or bufh, in the vicinity of the ferpent. She will dart upon the ferpent, in order to prevent the deftruction of her young: but fear, the inftinct of felf.prefervation, will compel her to retire. She leaves the ferpent, however, but for a flort time, and then returns again. Oftentimes fhe prevents the detruction of her young, attacking the fake with her wings, her beak, or her claws. Should the reptile fucceed in eapturing the young, the mother is expofed to leís danger; for, whilit engaged in fwallowing them, he has neither inclination nor power to feize upon the old one. But the appetite of the ferpent tribe is great : the capacity of their fomachs is not lefs fo. The danger of the mother is at hand when the young are devoured. The fnake feizes upon her: and this is the cataftrophe, which crowns the tale of fafcination !

FAUSSE Braye, in fortification, an elevation of earth, about three feet above the level ground, romnd the foot of the rampart on the outfide, defended by a parapet ahout four or five fathoms diftant from the upper parapet, which parts it from the berme and the edge of the ditch. The fauffe-braye is the fame with what is otherwife cailed Chemin des rondes, and Baffe encente ; and its ufe is for the defence of the diteh.

FEATHER-edged, is a term ufed by workmen for fuch boards as are thicker on one edge, or fide, than on the other.

FELTING, the method of working up wool or hair into a kind of cloth or fuff, without either fpinning or weaving it. In this country felting it little practifed except in hat-making ; and as nine-tenths of thofe who are employed in the manufacturing of hats know nothing of the principles on which they proceed, the following obfervations on the mechanifm of felting muft to them be both agreeable and ufeful. They are by M. Monge, and taken from the Annales de Cbemie.

If we examine, in a microfcope, human hair, wool, the hair of a rabbit, hare, beaver, \&c. hnwever great the magnifying power of the inftrument may be, the furface of each hair appears perfectly fmooth and even; or at leaft, if any inequalities are to be perceived, they feem rather to arife from fome difference in the colour and tranfparency of particular parts of thefe fubitances than from the irregularity of their furfaces; for their inage, when viewed by a folar microfeope, is terninated by even lines, without any roughnefs. The furface of thefe objects, however, is by no means fmooth; on the contrary, it appears to be formed either of lamelle which cover each other from the root to the
point, pretty much in the fame manner as the fcales of Felting a finh cover the aninal from the head to the tail; or, more probably, of zones placed one over the other, like what is obferved in the ftructure of horns: to this conformation it is that the fubstances here treated of uwe their difpofition to what is called felting.

If, with one hand, we take hold of a hair by the. root, and draw it between two fingers of the other, from the root towards the point, we are hardly fenible of any friction or refftance, nor can we diftinguifh any found; but if, on the contrary, we hold the hair at the point, and draw it between the fingers, from the point toward the root, we are fenfible of a refiftance which did not exift in the former cafe; a fort of tremulous motion is likewife produced, which is not only perceptible to the touch, but may allo be diftinguifhed by the ear.

It is evident, therefore, that the texture of the furface of a hair is not the fame from the root towards the point as from the point towards the root; and that a hair, when grafped, muft offer more refiftance in fliding or moving progrefinely towards the point than towards the root ; i. e. in moving with its point foremof.

If a hair, after being taken hold of by the fore-finger and thumb, he rubbed by them, in the longitudinal direction of the hair, a progreffive motion takes place, and this motion is always towards the root. This effect does not at all depend on the nature of the fkin of the fingers or its texture; for if the hair be turned, fo that the point is placed where the root was, the movement then becomes contrary to what it was before; that is to fay, it is always directed towards the root.

What is obferved, in the above inftance, is entirely analogous to what happens when country children, by way of fport, introduce an ear of rye or barley between the wrift and the flirt, the points of the beards of which are directed outwards. By the yarious motions of the arm, this ear, fometirres eatching againf the firt, fomctimes againft the fkin, takes a progreffive motion backwards, and foon gets up to the arm.pit. It is very clear that this effect is produced by the beards of the ear, and indeed chiefly by the afperities upon thofe beards; which, being all directed towards the point, do not permit the ear to move in any other direction than towards that part to which it was united to the falk. There is no doubt that it is the fame with refpect to hair ; and that its furface is befet with afperitics, which, being laid one upon the other, and turned towards the points, permit no motion but towards the ront.
A tight knot, made in the mildle of a hair, is very difficult to untie by the ufual means, on account of the extreme thinnefs of the hair; but if we place the hair in the bend of the hand, fo that the kuot is in a line with the little finger, and, after grafping the hair by clofing the hand, we Arike the fit feveral times againt the knee, the afperities of one end of the hair being now in a contrary direction to thofe of the other, each of the ends recedes a little, one of them one way, the other the contrary way; the knot is thereby opened, and, by introducing a pin into the eye which is formed, it is very eafy to finifh untying it.

Thefe obfervations, which it would be ufelefs to mul. tiply, relate to long hair, that having been taken as an example; but they apply with equal propriety to wool;

\section*{F E L [645] F E R}

Trling.
furs, and in general to every kind of animal hair. The furface of all thefe is therefore to he confidered as compofed of hard lamellie placed one upon another, like tiles, from the ront to the point; which lamellie allow the progreflive motion of the hair towards the rout, but prevent a timilar motion towards the point.

From what has been faid, it is eafy to explain why the contact of woollen ftuffs is rough to the Rkin, while that of liven or cotton cloths is fmooth; the reafon is, the afperities upon the furface of the fibres of the wool (notwithtanding the flexibility of each particular fibre), by fixing themfelves in the fkin, produce a difagreeable fenfation, at leaft till we are accuftomed to it ; whereas the furface of the fibres of hemp or flax, of which linen is made, being perfectly fmooth, do not caufe any fuch fenfation. It is alfo evident; that the injury arifing to wounds or fores, from the application of wool, does not proceed from any chemical property, but is octafioned folely by the conformation of the furface of the fibres: the afperities of which attach themfelves to the raw and expofed flefh, which they flimulate and irritate to fuch a degree as to produce inflammation.

This conformation is the principal caufe of that difpefition to what is called felting, which the hair of all animals in general poffeffes.

The hatter, by Atriking the wool with the Aring of his bow (fee Hat, Encycl.), feparates the hairs from each other, and caufes them to fpring up in the air ; the hairs fall again on the table, in all polfible directions, fo as to form a layer of a certain thicknefs, and the workman covers them with a cloth, which he preffes with his hands, moving them backwards and forwards in various directions. This preffure brings the hairs againft each other, and multiplies their points of contact; the agitation of them gives to each hair a progreffive motion toward the root ; by means of this mution the hairs are twifted together, and the lamelle of each hair, by fixing themfelves to thofe of other hairs which happen to be directed the contrary way, keep the whole in that compact flate which the preflure makes it aequire. In proportion as the mafs becomes compaet, the preffure of the hands fhould be increafed; not only to make it more clofe, but alfo to keep up the progreffive motion and twiting of the hairs, which then. rakes place with greater difficulty: but throughout the whole of this operation, the hairs fix themfelves only to each other, and not to the cloth with which they are covered, the fibres of which, as we have already said, are fmooth, and have not that difpofition to felting which we have deferibed above.

It may not be amifs here to explain why that hair which is intended for making hats is always cut off with a fharp inftrunsent (although that cunnot be done. without lofing a part of its length), and not plucked out by the roots, as might be done after foftening the: Kin: the reafon is, the bulb of the hair, which in the latter cafe would come out with it, would render that end which was fixed in the fkin thick and obtufe; and it would confequently be lefs difpofed to introduce itfelf among the contiguous hairs, and to contribute by its progrefs motion to the contexture of the mals.

The above defcribed conformation of the furface of hairs and wool is not the only caufe which produces their difpofition to felting. It is not fufficient that every hair poffefles the forementioned tendency to move
progreflively towards the root, and that the inclined la- Feltingo melle, by hooking themfelves to each other, preferve thi Fergufion. mafs in that fate to which compreffion has brought it ; but it is alfo neceffary that the liairs flould not te Atraight, like needles; if they were \(\{0\), preffing and rubbing them together would increly caufe them to continue their progreffive motion, without changing their direction; and the effect of thofe operations would only be to make them move from the centre of the mais, without producing any compactnefs in it. Every hair mult therefore be twifted or curled in fuch a manner that the extrenity which is towards the root may be difpofed to change its direction perpetually, to twift itfelf about other hairs, and to incline towards itfelf again, in cafe it fhould be determined thereto by any change in the pofition of the relt of its length. It is becaufe wool has naturally this crooked form that it is fo proper fur felting, and that it may be made ufe of for that purpofe without undergoing any previous preparation.

But the hairs of the beaver, the rabbit, the hare, \&ce. being naturally ftraight, cannot be employed alone in felting till they have nadergone a preliminary operation; which confitts in rubbing or combing them, before the \(y\) are taken off the fkin, with a brufh dipped in a fulution of mercury in aquafortis (nitric acid). This liquor, acting only on one fide of the fubftance of the hairs, changes their direction from a right line, and gives them that difpofition to felting which wool naturally poffeffes.

When the hairs are not iitended to enter into the body of the mafs, but are unly to be employed in making a fort of external coating, fuch as is fometimes given to the outer furface of hats, the operation juft mentioned need not be performed; but the felt on which they are to le fixed being finihed ; the hair is unifurmly fpread upon the furface to which the coating is to be applied; and, being covered writh a cloth, it is preffed with the hands, and agitated for a certain cime. By thefe means, the hairs introduce themfelves, by the root, a certain depth into the felt, and are there fiseä by their lamelld in fuch a manner as not to be eafily extracted. A particular direction is afterwards given to them by means of a brufh, and they are made to keep this direction by having a het iron paffel orer them. If the agitation were continued for a longer time, thefe hairs, not having their Atraightnefs deftroyed by the operation befure defcribed, would pafs eritirely through the felt, going ont at the oppofite furface, as each hair follows exactly the direction it aequired at the beginning.

It is owing to the very fane circumftances which make wool and hair capable of felting, that woollen cloth is thickened by fulling. See Fulling in this Supplement.

FERGUSSON (Robert), who at an early feriod of life obtained a confiderable degree of eelebrity \(y\) as a Scottih poet, was born at Edinburgh on the 5th of September 1750, according to a manuicript acconut of him with which we have been favoured by a relation. In the biographical iketeli prefixed to the Perth edition of his poems he is faid to have been born in 175 I .

His father William Ferguffun poffelfed, as well as himfelf, fome talents for poetry; but, marrying early, and being wifer than his fon, he abanconed the mufes

\section*{F E. R [\(\left.\sigma_{7} 6\right]\) F E R}

Fenguitin. for trade, and was cmployed in diffcrent mercantile houles, firlt in Aberdeen and afterwards in Edinburgh. At the time of his death he was an accountant in the Britifi Linen Hall; but never acquired any thing like opulence.

During the years of infancy and childhood, the conAtitution of our poet was fo weak, that little hopes were entertaised of his arriving at manhood. By the care, however, and attention of his parents, he gradually acquired Itrength, and at the age of fix was put to an Englifh fehool, where his proficiency in reading and reciting was uncommonly great. At the age of feven he was fent to the high fchool of Edinburgh, where he continued four years, and with very little labour made a rapid progrefs in the knowledge of the Latin tongue ; but for fome reafon or other he was removed from the high fchool to the grammar fchool of Dundee, whence, after two years, he was fent to the univerfity of St Andrew's. A gentleman of the name of Ferguffon had left burfaries in that univerfity for the education of two boys of the fame name; and Mr William Ferguffon having with difficulty obtained one of them for his fon, was induced to educate kim at St Andrew's in prefe. rence to Edinburgh.

Though at no priod of his life a fevere ftudent, our poet's attainments in fijence were fuch as to keep alive in the univerfity the hopes which had been formed of him at fchool: and he was confeffedly the firlt mathematician of his ftanding. On this account we are told that he became the favourite of Dr Wilkie, who was then profeffor of natural philofoplyy in the univerfity of St Andrew's; but it is not improbable that the Dector valued him as much for his puetical genius as for his Skill in geometry; for Wilkie was a poct hinsfelf, and Mr Ferguffon had already writen feveral fmall poems which attracted confiderable notice, as well from the profeffors as from his fellow-fludents. But whaterer was the bond of union, Dr Wilkie patronifed the youthful poct ; and the poet fhewed afterwards that he was not ungrateful. Upon the Ioutor's death, he puhlifhed, in the Scottifh dilled, a beautiful eclogue to his memory, in which the peculiar merits of that eccentric genius are appreciated with great judgment. See WicKIE, in this Supplement.

During the latt winter that he refided in St Andrew's, our poet had collected materials for a tragedy on the death of Sir William Wallace, and had even completed two acts of the play; but having feen a fimilar work on the fame fubject, he abandoned his delign; "becaufe (faid he to a friend) whatever I publifi flall be original, and this tragedy might be confidered as a copy."

Having finifned his fudies at the univerfity, he returned to Edinburgh without refolving on any permanent employment. His fatlotr had defigned him for the church; but he was now dead, and our anthor turned a deaf ear to the intreaties of his mother, and of every other friend who endeavaured to perfuade him to fultil his father's intention. He was then advifed to ftudy phyfic; but he declined it, becaufe, he faid, that, when reading the defcription of difeafes, he fancied that he felt the fymptoms of them all in himfelf. To the law, however, he could not flart the fame objection; and he began to ftudy it, but made no progrefs. At this his relation and the editor of his poems exprefs no
furprife; for, according to them, it was a fudy the Fergumon. molt improper for him, as it could not be expected that a genius fo lively would fubmit to the drudgery of that dry and fedentary profeflion.

That the law was a very improper profeffion for a man of his narrow fortune is indeed true; but we truit that his two biegraphers will not confider us as intending any offence to them, if we embrace the prefent opportunity of expoling the folly of a very common remark, that a lively genius cannot fubmit to what is abfurdly ealled a dry fludy. We might inftance different lawyers at our own bar, who, with great poetical talents in their youth, have rifen to the fummit of their profeffion ; but to avoid perfonal difinctions at home, we thall take our examples from England. The genius of the late Earl of Maristicld was at leat as lively as that of Mr Ferguffon, and if he had pleafed he could have been equally a puet; yet he fubmitted to the drudgery of ftudying a law thill drier than that of Scotland. To the fine tafte of Atterbury bihhop of Kochefler, and to his clafical compolitions both in profe and verfe, no man is a dtranger who is at all converfant in Englifh literature: yet that elegant fcholar and poet, after he had rifen to the dignity of Dean of Carlitlc; fubmitted to the drudgery of Itudying, through the mediun of barbarous Latin, the ecelctiaftical law of England from the earlieft ages; and declared, that by dint of perfeverance lic came in time to relifh it as muels as the ftudy of Homer and Virgil Whatever be thought of Miton's political principles, no man can read his controverfial writings, and eutertain a doubt but that he could have fubmitted to the drudgery of tudying the law.

The truth is, and it is a truth of great importance, that a man of real vigour of mind may bring himfelf to delight in any kind of ftudy which is ufeful and honuurable. Such men were Lord Manstield, the Bifhop of Rochefter, asd Milton; but, whether thrungh fome radical defect in his nervous fyitem, or in confequence of early difipation, Mr Ferguflon, with many ettimable qualities, was fo utterly deftitute of this mental vigrous, that rather than fubmit to what his friends call drudgery, he feems to have looked with a wifhful eye to fome finecure place.

With this view he paid a vifit to an uncle who lived near Aberdeen, a man of great learning and in opulent circumftances, in loopes that, hy his intereit, he might be fettled in a poft fuitable to his merit: But how deluive were his hopes! His uncle indeed received him with every mark of affection ; but his fondnefs gradually cooled, and at the end of fix mouths he ordered him abruptly to leave his houfe, without having endeavoured to procure for hion any fettlement.
To a mind like Ferguflon's, feelingly alive, fuch treatment from fo near a relation, to whom he had always behaved with becoming refpect, mult have been dreadfully galling. Stung with indignation, he returned to his mother's at Edinburgh; and as foon as he recovered from a fevere illnefs, brought upon him by difappoint inent and the fatigue of his journey, he compofed two elegies; one on "The Decay of Friendhip," and the other "Againft Repining at Fortune," both occafioned by his adventure in the North. How much he felt the dafhing of his hopes, is apparent from the following pathetic lines in the Decay of Friendhip:

But,

F E R [
But. ah! thefe yonthful fportive hours are fled,
Thefe fcenes of jocund inith are now no more ; No healing flumbers 'tend my humble hed, No friends condole the forrows of the poor.
And what avail the thoughts of former joy ? What comfort bring they in the adverfe hour?
Can they the canker-worm of Care dellroy, Or brighten Fortune's difcontentid lour?
So deftitute was he at this period, that he fubmitted to copy papers in the commiffary clerk's office, we believe at fo much the fheet; but not liking the employ. ment, and quarrelling with the commiffary clerk-depute, he foon left the office in difuut.

Hitherto he had lived rather in obfenrity ; and happy lad it been for him if in that obfeurity he had been fuffered to remain; happy had it been for him, laad his converfation been lefs fafcinating, and his company lefs courted by the frolic and the gay. Poffefing an inex. hantible fund of wit, the beft good nature, much modetty, and great goodnefs of heart, he was viewed with affection by all to whom he was known; but his powers of fourg, and almoft unrivalled talents for mimickry, led him oftener into the company of thofe who wifhed for him merely to enliven a focial hour, than of fuch as by their virtue were inelined, and by their influence were able, to procure him a competent fettlement for life. The confequence of this was great laxity of manners. His moral principles indeed were never corrupted, nor, as we have renfon to believe, his faith in revelation flaken; but there is no doubt but that, courted as he was by the fyren voice of pleafure, he yielded to many temptations, and in the hours of ebricty committed actions which, in his cooler moments, he refiefted on with abhorrence.
His confcience was indeed frequently roufed. Being on a vifit to a friend at Haddington, and fauntering one day near the churchyard, he was aceofed by a clergyman, who feemed to be no ftranger to the kind of life which he led. This judicious divine contrived to draw his attention to the fhortnefs of time, the length of eternity, death and judgment, and the awful fate that awaits the wicked in an unfeen world; and the converfation made a deep imprefion on his mind. It feemed, however, to be effaced from his memory thy the diffipation of Edinburgh, till it was recalled with double effect by the following accident :
In the room adjoining to that in which he flept was a farling, which being feized one uight by a cat that bad found its way down the chimney, awaked Mr Ferguffon by the mott alarming fereams. Having learned the caufe of the alarm, he began ferioufly to reficia how often he, an immortal and accountable being, had in the hour of intemperance fet death at defiance, though it was thus terrible in reality even to an maccomatable and finlefs creature. This brought to his recollection the converfation of the elergymai, which, aided by the folemnity of midnight, wrought his mind up to a pitch of remiorfe that almoft bordered on frantic delpair. Sleep now forfook his eyelids; and he rofe in the morn. ing, not as he had formerly done, to mix again with the focial and the gay, but to be a reclufe from fociety, and to allow the remembrance of his paft follies to prey upon his vitals. All his vivacity now forfook him; thufe lips which were formed to give delight, were clo.
6.7] \(\quad \mathrm{F}\) E R
fed as by the hand of death; and "on lis countenance Feiguffon fat horrur plum'd."

From this flate of gloomy defpondney, however, he began gradually to recover; and, except that a fettled melancholy was vifible in his countenance, his health was completely rettured, when one evening he fell and cut his liead fo dreadfully, that from the lofs of blood he became dclinious. In this deplorable fate he continued fur feveral montlis, till, being quite exhaufted by want of flecp and conftant fpeaking. hee expired on the 16th of October 1774. He was interred in the Canongate churchyard, where his friends crected a monument to his memory, which has been fince removed to make way for a larger and more elegant inomument by his enthufiatic aumirer the late poet Burns.

Thus died Robert Fergufion, a young man of the brightelt genius and of the beft heart, who, had he juined prudence to his uncommon talents, nuft have rifen to great eminence in the republic of letters; but, as a late juvenile poet has obferved of him -

> Complete alike in head and heart, But wanting in the prudent Iart, He prov'd a poet's lut.

Of his poems no general character can le given. The fubjechs of them arc fornetimes uncominon and generally local or temporary. They are of courfe very unequal. But fuch of them as are in the Scuttifh dialect have been univerfally admired by his countrymen; and when it is confidered that they were compofed amidt a round of difipation, they will be allowed to furnifh complete evidence of his genius and his tafte.

FERIIA'T (Peter), who was comfellor of the parliament of Touloufe in France, floarifhed in the 17 th century, and died in 16613 . He was a man of great talents, and a very general feholar; hut being coniemporary and imtimatcly connceted with Des Cartes, Merfenne, Torrieclli, and Huygens, he was naturally led to derote much of his time to the inathematical fciences. He was (fays Dr Hutton) a firll rate mathematician, and pofffind the fineft tatte for pure and gemume geometry, which he contributed greatly to improve, as wel! as algeci:a.
Fermat wis author of, 1. A Mcthod for the Quadrature of all forts of Paribolis.-2. A nother on Maximuns and Minimums: which ferves not only for the determination of plane and folid problems, but alfo for drawing tangents to curve lines, finding the centres of gravity in folids, and the refulution of queftions con. cerning numbers: in fhort, a incthod very finilar to the Aluxions of Newion.-3. An Introduction to Ceometric Lonci, plane and folid.- + . A Treatife on Spherical Tangencies : where he demontrates in the folids the fane things as Vieta demontrated in planics. - 5. A Reftoration of Apollonius's two Books on Plane Loci.6. A Gencral Method for the dimenfion of Curve Lines. Befides a munber of other fnaller pieces, and many letters to learned men; feveral of which are to be found in his Opera Varia Mathematict, printed at Touloufe, in folio, 1679.

FERMENTATION is a chemical procefs which has been already coufidered in the Encycloperia, and will be again refumed in this Supplement under the title Animal and Vegetable Substances. In this place we mean nothing more than to give fuch directions, principally

\section*{FE R [\(\sigma_{4}\)}

Eermenta. cipally from Mr Richardion of Hull, for the proper ferrion. mentation of malt liquors as have not been fully detailed in the anticle Brewing (Encycl.).

This author controverts, we do not think very fuccefsfully, the conelufions drawn by Mr Henry from the expcriments, of which the reader will find an aecount in the article Fermentation (Encyel) ; but it is not his theory with which we are at prefent concerned, but his practice as that of an experienced and enlightened brewer. Having treated of Worls, and the proper method of boiling them, for which fee Wort in this Supphenent, and having given an hiforical view of the procefs of fermentation, of which a pretty accurate abridgement is inferted in the articles Brewing and Fermentation (Encgel.), he procceds thus:
" The agency of air, in the bufinefs of fermentation, is very powerful; but as all fermentable fubjects have an abundant fupply, we are rather to provide for the egrefs of their own, than to fuffer the adinifion of the external air, by which a great number of the fine, volatile, oleaginous parts of the fubject would be carried off, and a proportionate injury in flavour and fpirituofity fuftained. Hence fuch a covering mouid be provided for the gyle tun as would barely allow the efcape of the common air produced by the operation; whillt the gas, or fixed air, from its greater denfity, refting upon the furface of the beer the whole deptl of the curb, prevents the action of the esternal air, and confequently the efcape of thofe fine and valuable parts juft men. tioned.
" But towards the conlufion of vinous fermentation, this aerial covering begins to lofe its efficacy; which points out the neceffity of then getting the beer into calks as foon as poffible, that the confequences may be prevented, of expofing fo large a furface, liable to fo copious an evaporation. Amongtt thefe, a lofs of fpirituofity is not the leaft ; for this evaporation is more and more fpirituous, as the action approaches the completion of vinous fermentation ; and that once obtained, the lofs becomes fill more confiderable, if fill expofed to the air; whence it might be termed the diftillation of Nature, in which fhe is fo much fuperior to art, that the ethereal fpirit rifes pure and unmixed, whillt the higheft rectification of the fill produces at beft but a compound of aqueous and fpirituous parts.
"Nur is this entirely conjecture. Experience teaches us, that we cannot produce fo ftrong a beer in fummer, ceteris paribus, as in winter ; the reafon is, not becaufe the action of fermentation does not realize fo much fipirit in warm weather, but becaufe the fermenting liquor, after the perfection of vinofity, continues fo long in a ftate of rarefaction, that the fpirituous parts are diffipated in a much greater degree at that time than at any other, in a fimilar ftate of progreffion. And this doctrine of natural diftillation feems to account for that increafe of Atrength obtainable from long prefervation, in well clofed calks, and, more particularly fo, in glafs bottles; for Nature, in her efforts to bring about her grand purpofe of refolving every compound into its firlt principles, keeps up a perpetual internal ftruggle, as well as an external evaporation ; and if the latter be effectually prevented, the former mult be productive of additional fpirituofity, fo long as the action keeps within the pale of vinous fermentation.

\section*{48] F E Z}
" L11 order to maistain a due regulation of the fermenting power, and to anfwer the feveral purpofes of the operation, a fcrupulous attention to the degree of heat at which the action commences, and a particular regard to the quality and quantity of the ferment employed, are iudifpenfably neceffary." The degree of heat mult be afcertained by the thermometer, and regulated by experience: the quantity of yeaft can be afcertained only by the intention of the artift.

FEZZAN is a kingdom in the anterior of Africa, placed in the vaft wildernefs as an illand in the ocean. The following account of it was, given to Mr Lucas the African traveller by an old hereef, a native of Fe\%zan ; and that account was confirmed by the governor of Mefurata, who had himfelf vifited Fezzan, and who, having treated the traveller with great kindneis, ought not to be fufpected of having wantonly deceived him.

According to this account, Fezzan is fituated to the fouth of Mefurata (fee Mesurata in this Suppl.), and the traveller from the latter place to the former arrives in eight days at Wadan, where refreflments are procured for the caravan. From thence in five hours they reach the defart of Soudah, where no vegetable is feen to grow but the talk, a tree from which the lemon-co. loured wood is taken which forms handles for tools. The paffage of the defart takes up fome days, when the traveller finds a miferable village, producing nothing but dates, brackifh water, and Indian corn; from this village a day's journey conducts to the town of Sebbah, where are the remains of an ancient caftle, and other venerable ruins, and in four days more he reaches Mourzouk, the eapital of Fezzan.

This city is fituated on the banks of a fmall river, furrounded by a high wall for defence, and is diftant from Mefurata 390 cumputed miles. Eaftward of Mourzook is the town of Queela, in which are the remains of ancient buildings ; the fize of the cifterns, and the conftruction of the vaulted caves, exhibit inftances of ancient fplendour. South of whieh place is Jermah, diftinguithed by n:merous and majeftic ruins, on which are many infcriptions. Teffouwa lies eaftward, near which was a river which the fhereef remembers, but is now overwhelmed in the moving fands. N. E. from Mourzouk, diftant about 120 miles, is the large town of Temmifwa, where the caravans of pilgrims from Bornou and Nigritia, by way of Cairo to Mecca, provide their ftores for the defart.

In the town or province of Mendrah is a large quantity of trona, a fpecies of foffil alkali, that floats on the furface or fettles on the banks of its fpreading lakes, great quantity of which is fent to Tripoli, and hipped for 'Turkey, Tunis, and Morocco ; at the latter place it is ufed as an ingredient in the red dye of the leather. Mendrah is about 60 miles fouth of Fezzan. The territory of Fezzan extends but little weftward, being confined by barren mountains. The fmaller towns of this kingdom are faid to be about one hundred; thefe towns are chielly inhabited by hufbandmen and fhep. herds ; in every town a market is regularly held ; mutton and goat's feh are fold by the quarter, ufually from thirty-two to forty grains of gold, or from four to five fhillings Englifh. The fech of camels is dearer, and divided into fmaller parts.
The houfes are of clay, with flat roofs compofed of branches

The revenue is compofed of a tax on towns and vil- Fezzan. lages, a tax on every camel load of goods (except pro, ifione) which enters the capital, fines for offences, lands of perfons dying without heirs, and a tax on gardens and date trees. Gold dun by weight is the chief medium of payment ; but for conconichec they are furnifhed with fmall papers of gelld duft of different values, from two xarles or one e.d a half npwards; for fmaller articles corn or flour are ufcd as a medium. One grain of gold is equal to \(1 \frac{1}{3}\) d. Aterling. The Fezzan grain is the fame as in England.

The juftice of the fovereign is highly extolled; fmall offences are punifhed by the baltinado, and the punifoments incrcafe to fine, imprifonnent, and dieath. Truit. ing to their natural defence, their towns are without guard, and they have no landing forces. The ouly war the flereef remembered was undertaken againll a people inhabiting the mountains of Tritedi, which is feparated from the people of Fezzan by a wide and fandy defart. Thefe people are wild and favage, and had plundered a caravan belonging to the king, who fent an anmy of between 3 and 4300 men againft and fubducd them. The country of thefe perple produces much fenna. The vales of T'ibudiare faid to be fertile in corn and pafure for cattle, particularly camels. The people live in huts, and profefs various religions, fome the Mahomedan, others are attached to their ancient idolatry.

The people of Fezzan carry on a confiderable tradc with Tripoli, Bornou, Nigritia, \&c. At the end of October, when the heats are abated, the caravans depart from Mourzouk in fmall parties of ten or twelve, unlefs in time of war. They lay in provifions of dates, meal, and mutton falted, dried in the fun, and boiled in oil or fat. The merchants have agents in the chief towns, to whom they fend the flaves they purchafe.

The caravans to Tripoli carry the trona, fenna, gold and flaves bronght from the fouthern countries; and in retura bring back cutlery, woollen, filks, dollars, copper, and brafs.

That to Bornou carries brafs and copper, for the currency of the country, imperial dollars, and various manufactures; but of their own produce only a prepa. ration of clates, and meal of Lndiain corn; and they take in return flaves, gold duil, and civet.

To Cafhna, an empire in Nigritia, they carry cowries, brafs to make rings and bracelets, loorfes, itverai kinds of manufactures, and the Gooroo :uts; and in return take gold dult, flaves, cotton cloth, dyed goats Rkins, hides, fenna, and civet, for the countries fouth of the Niger, where alfo they convey fabre blades and 1)utch knives, coral, brafs beads, looking glaffes, jollars, Sc. and receive back gold duft, flaves, cotton cloths, goat Rkins, Gooroo nuts, cowries, and ivory.

A caravan of pilgrims fets out likewife ia the autumn of every fecond or third year from Mourzouk, the capital of Fezzan, to Mecca. They proceed to Temeffa, over the mountain of Ziltan, and thence to Sibbul, a place fubject to Tripoli; and thence nearly in a line with the Mediterranean fea to Cairo, and thense to Mecca by the cuftomary route.

As not one celeflial obfervation has been taken to determine any latitude between Benin and Tripoli, all the pofitions are fixed by eftimation, reckoning fifteen or fixteen miles for a day's journey. Mr Remnell places

Muurzook,

\section*{ricurate}

Mourzouk, the capital of Fezzan, in 1at. \(27^{\circ} \cdot 20^{\prime}\), or 260 miles from Mafurata.

FIGURATE numbers are fuch as do or may reprefent fome geometrical figure, fuch as a triangle, pentagon, or pyramid, \&c. Thefe numbers are treated of at great length by Macharin in his Fluxions; Simfon in his Algebra; and Malcolm in his Arithmetic ; but the following accotint of them by Dr Hutton is as perfpicuous as any that we have feen:
Figurate numbers are diftinguifhed into orders, according to their place in the fale of their generation, being all produced one from another, viz. hy adding continually the terms of any ore, the fucceffive fums are the terms of the next order, beginning frons the firlt order, which is that of equal units \(1,1,1,1, \& c\).; then the fecond order confits of the fucceffive fums of thofe of the firft order, forming the arithmetical progreffion \(1,2,3,4\), 8cc. thofe of the third order are the fucreffive fums of thofe of the fecond, and are the triang 1 lar numbers \(1,3,6,1 \mathrm{c}, 15, \& \mathrm{c}\); thofe of the fourth order are the fucceffive furns of thofe of the third, and are the pyramidal numbers \(1,4,10,20,35,8 \mathrm{cc}\); and fo on, as below :
\[
\begin{aligned}
& \text { Order. Nanie. } \\
& \text { 1. Equals, } \\
& \text { 2. Aritlmeticals, } \\
& \text { 3. Triangulars, } \\
& \text { 4. Pyramidals, } \\
& \text { 5. 2d Pyramidals, } \\
& \text { 6. } 3 \text { d Pyramidals, } 1,6,21,56,126, \text { \& } 2 \text {. } \\
& 7 \cdot 4^{\text {th }} \text { Pyramidals, } 1,7,28,84,210 \text {, \&̌. } 6 \text {. }
\end{aligned}
\]

The above are alt confidered as different forts of triangular numbers, being formed from an arithmetical progreffion whofe common difference is 1 . But if that common difference be 2 , the fucceffive fums will be the feries of fquare numbers: if it be 3 , the ferits will be pentagonal numbers, or pentagons; if it be 4 , the feries will be hexagonal numbers, or hexagons; and fo on. Thus:
\begin{tabular}{|c|c|c|}
\hline Aritlometicals. & If Sums, or Polygons. & 2d Sums, or 2d Polygons. \\
\hline 1, 2, 3, & Tri. 1, 3, 6, 10 & 1, 4, 10, 20 \\
\hline 1,3, 5,7 & -Sqrs. 1, 4, 9, 16 & 1, 5, 14, 30 \\
\hline 1, 4, 7, 10 & Pent. 1, 5, 12, 22 & 1, 6, 18,40 \\
\hline 1,5,9, \({ }_{\text {ac. }}\) & Hex. 1, 6, 15, 28 & 1, 7, 22,50 \\
\hline
\end{tabular}

And the reafon of the names triangles, fquares, pentagons, hexagons, \&c. is, that thofe numbers may be placed in the form of thefe regular figures or polygons, as here below :

But the figurate numbers of any order may alfo he found without computing thofe of the preceding orders; which is done by taking the fucceflive products of as many of the terms of the arithmeticals \(1,2,3,4,5\), \&c. in their natural order, as there are units in the number which denominatcs the order of figurates required, and dividing thofe products always by the firit product. Thus the triangular numbers are found by dividing the products \(1 \times 2,2 \times 3,3 \times 4,4 \times 5\), \& c. each by the firt product \(I \times 2\); the firf pyramids hy dividing the products \(1 \times 2 \times 3,2 \times 3 \times 4,3 \times 4 \times 5\), \&c. by the firft \(1 \times 2 \times 3\). And, in general, the figurate numbers of any order \(n\), are found by fubttituting fucceffively \(1,2,3,4,5, \& c\) inflead of \(x\) in this general expreffion \(\frac{x \cdot x+1 \cdot x+2 \cdot x+3 \cdot \& c \text {. }}{1 \cdot 2 \cdot 3 \cdot 4 \cdot \text { sc. }}\); where the factors in the numerator and denominator are fuppofed to be multiplied together, and to be continued till the number in each be lefs by ithan that which expreffes the order of the figurates required.

PILTER (Sce Encycl.). It is well known that vef fels made of a particular kind of porous fone are employed as filtering bafins for freeing water, intended to be drunk, from yarious kinds of impurity. In fea voyages fuch filtering bafins mult be highly ufeful; and they are frequently found ufeful at land where no water can be had but from flagnant pools, or fprings flowing through clay. The fone, however, of which they are made is not every where to be found; and therefore different perfons have endeavoured to employ the art of the potter to fupply their place.

In the year 1790 a patent was granted to a female potter, for her invention of the following compofition for this purpofe; viz. four equal parts, out of nine equal parts, of tobacco-pipe clay ; and five equal parts, out of nine equal parts, of coarfe fea, river, drift, or pit fand ; thefe two materials, in the above proportions, are fufficient for the purpofe of making fmall bafins, and other veffels, to contain a quantity not exceeding one gallon of water, or other liquid. But the compofition, when confined to thefe two materials, and in thefe proportions, often flies or cracks in the fire, if larger bafins, or other veffels, are attenipted to be made with it. She, therefore, in the fecond inflance, compofes her filtering bafins of equal parts of tobacco-pipe clay and coarfe fea, river, drift, or pit fand; in the third inftance, of three equal parts, out of nine equal parts, of tobacco-pipe clay; one equal part, out of nine equal parts, of Stourbridge clay, or clay from the furface of coal mines, or any other clay of the fame quatity; one equal part, out of niae equal parts, of Windfor,
or other loan, of the fame quality with Windfor loam; and four equal parts, out of nine equal parts, of coarfe river, fea, drift, or pit fand. Or, in the fourth inflance, of four equal parts, ont of eight equal parts, of tobacco-pipe clay ; three equal parts, out of cieght equal parts, of coarfe fea, river, drift, or pit fand; and one equal part, out of eight equal parts, of that burnt ground clay of which crucibles are inade.

If the lady who invented, or pretends to have in. vented, thefe balins, have a right to her patent, far be it from us to wihh our readers of any defeription to incroach upon it; but as the ufe of the materials of which lier bafus are inade was known to potters before fhe was bom, they may certainly compound thefe materials in proportions different from liets, withont doing her any legal iujury. As the varies her own proportions fo much, we think it probable that fome proportion differing a little from them all, may anfiver the purpofe of filtering veffels equally well; and it is almoit needlefs to add, that with this precaution any potter may make fuch veffels, for which he would undoubtedly have a great demand.

A patent has likewife been granted to Mr Jomua Collier of Southwark for a very ingenious contrivance for filtering and fiveetening water, oil, and all other liquids. Of this contrivance, which combines the application of machinery with the antifeptic properties of charcoal (See Chemistry \(n^{\circ} 34\). Supplement), we fhall give a detailed account.

Fithoil is one of the liquids which he had it particularly in view to free from all its impurities in fancll, tafte, and colour ; and the chemical procefs cmployed by him for this purpofe, confifts in pouring a quantity of any fpecies of fifh-oil, or a mixture of different forts of fifh-oil, into any convenient veflel, which is to be heated to the temperature of 110 or 120 degrees of Fahrenheit's fcale, and then adding of cauttic mineral alkali, of the fpecific gravity commonly deferibed as 1.25, or of fuch Arength that a phial containing roco graius of diftilled water will contain 1250 grains of thefe lees, a quantity equal to four parts of the 102 by weight of the quantity of oil; the mixture is then to be agitated, and left to Itand a fufficient time for the falts and fediments to fubfide; it is then drawn off into another veffel, containing a fufficient quantity of fref burnt charcoal, finely powdered, or any other fubfance poffeffing antifeptic properties, in a powdered or divided ftate, with an addition of a fmall proportion of diluted fulphuric acid, fufficient only to decompoie the Imall quantity of faponaceous matter till fufpended in the oil, which appears by the oil becoming elear at the furface: the contents of this veffel are alfo agitated, and the coaly faline and aqueous particles left to fubide; after which the oil is paffed through proper ftrainers, herein after defcribed, and is thereby rendered perfectly tranfparent and fit for ufe.

The principle of the improved ftrainers, or filtering machincs, confifts in the means applied to combine hydroltatic preffure, which increales aecording to the perpendicular height of the fluid, with the mode of tiliering per afeenfum, thereby procuring the new and peculiar advantage that the fuid and its fediment take oppofite directjons. A great advantage attending this mvention is, that the dimentions of the chamber in which the fediment is received, may be varied, while the
chines not only to the purpofe of families, work-houfes, hofpitals, public charities, the navy, or the merclant fervice, but alfo to all the purpofes of oil-men, of diftillers, of the iahoratory, the brewery, \&c. chambers of various capacities mutt be provided for the rediment and precipitated matter. With refpect to the oil-trade, the fpace required is very great, cSpecially for fpermaceti, or Brafil bottoms. La the valious purpofes of the laboratory, no limits can be fixed, but all dimenfions will be occafonally required: in diftilleries and breweries they may be fmaller in proportion; and in that defigned for water and for domettic ufe, a very fmall chamber will be fuificient. When water is to be fweetened, or freed from any putrid or moxious particles, it paffes, in its way to the filtering chamber, through an iron-box, or cylinder, containing charcoal finely powdered, or any other antifeptic fubltance infoluble in water, the water being foreed into it by hydroftatic preffure, through a tube of any fufficient height. 'This box has two apertures to receive and deliver the fluid, and thefe are opened and clufed by cocks, or ferews, or any other methoul ufed for fuch purpofes; and being affixed to the machine by other ferews, may be eafily detached from the fame. Thus, whenever the charcoal begins to lofe its antifeptic properties, the box is removed and heated till it is rel hot; by which means the foreign matter efcapes through the fmall a: pertures; after which the box is cooler, and the charcoal becomes fiveet, pure, and equally fit for vie as at firt, though the procefs le ever fo often repeated.

Another part of the invention confits in filtering machines in the form of thils, in which chareoal nay be repeatedly burned after any fluid fubltances have paffed through it, for the purpofe of frecing them either fion putrid or noxious particles, or of difcharging their coluring matter; which filtering ftills are fo contrived, that the Huid may pafs through in any quantity, without difplacing the charcoal: the part of the fluid remaining interfperfed among the charcoal, may be driven over by heat, and be cmphoyed for many inferior purpoies of the arts or manufactures. Laftly, the heat may be raifed fo as to purify the charcoal, as has been before deferibed in the machines for water. The flue of thofe itills is fo conftrmeted that water may be employed to coal them without the lols of time requifite for their gradually parting with their heat to the furrounding atmofphere, fo as to be fit fur a fubfequent operation.

But it was not merely to the purifying of oils and various liquids that Mr Collier turned his attention. To his filtering apparatus are attached inftroments for afcertaining the comparative qualities of oils, which depend in part on the principle or their fpecific gravities; ipermaceti oil, contrafted with other lifh oils, beiag as 87; to 920. For this purpofe, a glais veffel of any convenient fhape is made ufe of, furnithed with a bubble alfo of glafs, and a themometer. If the oil is pure, this hubble finks, when the nercury rifes to a certain flandard, 战 the application of the hand, or any other heat to the veffel containing the oil. If the fpermaceti oil is impure, the hubble will ftill fivat, though it is of the temperature requiret: and the degree of impure, or foreign matter, will be ilewn by the flate of the thermometer at which the bubble fintis.
\(+\mathrm{N}_{2}\)

To detcrmine what tendency oils nfed for burning have to congeal in cold wather, a freezing mixture is put in a phial of thin glafs, or any other convenient veffel; into this a thermoncter is immerfed, and a fingle drop of the oil, under experiment, fuffered to fall on the outfice of the veffl, where it immediately congcals: as the cold produced by the mixture gradually ceafes, it is eafy to obferve by the thermometer at what point of temperature the oil becomes fluid, and runs down the fide of the glafs.

A flort defcription of this apparatus will make its principles plain to every reader. A (fig. 1.) is the ciftern into which the water or other liquor to be filtered is put. B B is a tube opening into the bottom of the cittern \(A\), and bent along the bottom of the machine conveying the fluid into CCC the filtering chamber, which is covered with leather bound down round its circular rim, and through which leather the water is percolated. DD, The bafon rifing above the level of the chamber and receiving the filecred liquor. E, The fpout by which it runs off into a pitcher or other veffel. F, Another fpout furnithed with a cock to draw off the foul water from the chamber when neceffary. GGG, The air tube, which begins above the level of the chamber, is covered with a button, which laves the leather from bcing cut, and has a fmall lateral aperture for the air to be carried off. This pipe paffes along the bottom and up the fide, and rifing above the level of the water in the ciftern, is there clofed, except a fmall lateral aperture through which the zir efcapes. H, A guard or nim with crofs bars put over the leather to keep it from being forced up by the water. It is faftened down by means of two notches on oppofite fides of the guard, by which it locks into two ftaples rivetted into the bottom of the bafon. I, The lid fliding down to cover the water from dut, and fufpended at pleafure by neans of KK , two fprings on each tuhe for that purpofe. I.MNO, A cylindrical box containing charcoal, which is connected with the above by means of the tube \(P\), and a continuation of the tube \(B\). LM, The water tube B continued below the charcoal apparatus, fo that the fluid may pafs through the fame into the cylinder, from whence it enters the chambers at \(P\), fo as to be filtered through the leather as before deferibed. RR, Cullars which may be unferewed at pleafure, fo as to detach the charcoal apparatus whenever the charcoal requires to be purified by heat. SS, Two cocks to direct the fluid through the charcoal cylinder, or immediately into the filtering chamber.

Fig. 2. A, A tub or ciftern containing the oil to be filtered, and fupplying a tube of fufficient height for the hydroftatic preffure to operate. \(\mathrm{BB}, \mathrm{A}\) main tube of wood, tin, leather, or cloth, to whicls any number of bags, of the lize and flape of corn faciss, or any CC, conrenient fize or thape may be connected. Thefe are bound to DDD, fraight double iron bars, furnifhed with a hinge at one end and a forew at the other, by opening which the hags may be emptied. F, A trough underneath, made to receive the filtered oil from the receivers EEE.

Fig. 3. A, A runnel cafk no ciftern, into which the fluid is put which paltes down. B, A tube fitted into the fame, through which it enters. C, An iron fill, or fill of any other fubftance capable of futtaining heat, full of furly powdered and fifted charcoal, through
the head of which the fluid paffes into any receiver. D, A fire-place of any conttruction to drive over the fluid remaining interfi,erfed among the charcoal, and alfo to purify the charcoal by an increafe of temperature when required. E, A cock to let water into the flues to cool the apparatus for a fubfequent operation.

Fig. 4. The trial glafs with its thernometer.
FIRE. See that article Encycl. and Caloric and Combustion, Chemistrt-Index in this Suppl.
- Extinaion of Fige is fometimes a matter of fo much confequence, that every thing which promifes to be effectual for that purpofe is worthy of attention. In the nineteenth number of Mr Nicholfon's Journal of Philofophy, Clemiftry, and the Arts, we lave the following compofition for extinguifhing fire, invented by M. Von Aken.

With 40 meafures of this mixture an artificial fire was extinguifhed under the direction of the inventor by three perfons, which would have required the labour of 20 men and 1500 meafures of common water. Sig. Fabbroni was conmiffioned to examine the value of this invention, and found in his comparative trials with engines of equal power, worked by the fame number of men, that the mixture extinguifhed the materials in combuftion in one fixth part lefs time, and three eighths lefs of fluid than when common water was ufed. He obferved, as might indeed have been imagined from the nature of the material, that the flame difappeared whereever the mixture fell, and that the faline, metallic, and earthy matters, formed an impenetrable lute round the hot combultible matter, which prevented the accefs of the air, and confequently the renewal of the defructive procefs.

This recipe, Mr Nicholfon informs us, is taken from No 85 . of Giornale Letterario di Napoli, in which it was inferted in the form of a letter from Sig. Fablroni to Sig. D. Luigi Targioni of Naples; and the author of the letter eftimates the price of the compofition at about. one halfpenny per pound.
The reafon afigned by Mr Nicholfon for giving this. abridged account a place in his valuable work, will be admitted by him and the public as a fufficient reafon for our adopting it into our's. It is, that fuch inventions are worthy of the attention of philofophers and economifts, even though in the firt applications they may prove lefs advantageons than their inventors may be difpofed to think. It is fcarcely probable that this praftice in the large way, with an engine throwing up. wards of 200 gallons (value about I., 3, ios.) each minute, would be thought of or adopted, or that a fufficient ftore of the materials would be kept in readinefs; fince at this rate the expenditure for an hour would demand a provifion to the amount of L. 210 fterling. Dut in country places the procefs, or fome rariation of it, might be applied with fufficient profit in the refult; more efpecially if it be confidered that common falt or alum, or fuch faline matter as can be had and mixed with the water, together with clay, chalk, or lime, ochreous earth or common mud, or even thefe laft without any falt, may anfwer the purpofe of

\section*{F IR}
ide with more or left effect, and cxtinguifl an ac cidental fire with much greater feed and certainty than clear water would do.

Fire-Balls are meteors, of which forme account has been given in the Encyclopedia, as well as of various hypothefes which have been framed respecting their natare and their origin. Since that article was puhlifhed, a new and very fingenlar hypothelis has been framed by. Profeffor Chladni of Wittenberg, who maintains: it by arguments, which, however fanciful, are yet worthy of phil. Mog the reader's notice *.
us 5 and \(7^{\circ}\). He fuppofes that fireballs, inftead of being collecttons of the electrical fluid floating in the highest regions of our atmofphere, are males of very dene matter formed in far diftant parts of space, and fubjected to limilar laws with the planets and comets. He endeavours to prove that their component parts mut be denfe and heavy; becanfe their conte thews, in fo apparent a manner, the effects of gravity; and becaufe their maps, though it diflends to a monftrous fire, rethins fufficient confiftency and weight to continue an exceedingly rapid movement through a very large face, without being decomposed or diffulved, notwithttanding the refinance of the atmofphere. It fees to him probable, that this fubfance is ty the effect of fire reduced to a tough fluid condition; becaufe its form ap. pears fometimes round and fometimes elongated, and as its extending till it burks, as well as the burping itfelf, allows us to fuppofe a previous capability of extenfion by elaftic fluidity. At any rate, it appears to be certain, that fuch denfe matter at fo great a legit is not collected from particles to be found in our atmofphere, or can be thrown together into large nuaffes by any power with which we are acquainted; that no power with which we are acquainted is able to give to fuch bodies fo rapid a projectile force in a direction almost parallel to the horizon; that the matter does not rife upwards from the earth, but exits previously in the celeftial regions, and mut have been conveyed thence to our earth. In the opinion of Dr Chladni, the following is the only theory of this phenomenon that agrees with all the accounts hitherto given, which is not contrary to nature in any other refpect, and which befides feems to be confirmed by various males found on the foot where fire-halls fell.

As earthy, metallic, and other particles form the principal component parts of our planets, amon which iron is the prevailing part, other planetary bodies may therefore conf of fimilar, or perhaps the fame component parts, though combined and modified in a very different manner. There may alto be denfe matters accumulated in faller males, without being in immediate connection with the larger planetary bodies difuerfed throughout infinite face; and which, being impelled either by dome projecting power or attraction, continue to move until they approach the earth or forme other body, when, being overcome by its attractive force, they immediately fall down. By their exceedingly great velocity, fill increafed by the attraction of the earth and the violent friction in the atmofphere, a ftrong electricity and heat mut neceffarily be excited; by which means they are reduced to a flaming and melted condition, and great quantities of vapour and different kinds of gales are thus difengaged, which diftend the liquid mafo to a monstrous frize, till, by a fill farther ex.
panful of thee claftic fluids, it mut at length bunt. Dr Chladni thinks alfo, that the greater part of the Shooting gars, as they are called, are nothing ale than continued, and appeared to be in a perpendicular direction above us. Some time after, when it hack ceafed, we heard a hollow wolfe, which fecmed to roll along-
fire-balls; which differ only from the latter in this, that their peculiarly great velocity carries them pat the earth at a greater diflance, fo that they are not fo flrongly attracted by it as to fall down; and therefore, in their pathage through the high regions of the atmofphere, oceation only a transient electric faff, or actual ty take fire for a moment, and are again fpecdily extine-

\footnotetext{

}

\(\qquad\)
 T
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)

\footnotetext{

}

\footnotetext{

}

\footnotetext{

}

Fire, the chain of the Pyrcnees in: echocs, for the diftance of is miles. It continued about fonr minutes, becoming gradually morc remote, and ai ways weaker; and at the tame tince we perecived a fromg finell of fulphur.
"While we were codeavouring to point out to fome perfons prefont the place where the meteor had divided itielf, we obferved a fmall whitilh clond, which arofe perhaps from the vapour of it, and which concealed from us the three fars of the Great Bear, lying in the mitule of thofe forming the femiciacle. With fome difficulty, however, we conid at latt dikinguifh thefe ilars again behind the thin cloud. There arofe, at the fance rime, a freth gentle brecze.
"From the time that elapfed between the burfing of the bull and the explofion which followed, I was inclined to think that the meteor was at the height of at leaf feven or eight mile, and that it fell four niles to the north of Mormes. The latter part of my conjecture was foon confirmed by an aecount which we received, that a great many fones had fallen from the atmofphere at Juliae, and in the neighbourhood of Barhotan. One of thefe places lies at the diftance of about four miles to the north of Mormes, and the wther at about the diftance of five to the north-northweit."
M. de Carrits Burbotan, the friend who was with the Profelfor in the court and garden of Mormes when the meteor firt attracted their attention, was at Juliac t:vo days afterwards, and confirmed to him the truth of this circumftance. It appeared, likewife, from the account of feveral intelligent perfons, highly worthy of credit, that the neteor burf at a little diftance from Juliac, and that the ftones which fell were found lying in a fpace alnoft circular, about two miles in diameter. They were of varions tizes. Some were fien to fall, which, when found, weighed 18 or 20 pounds, and which hard funk into the earth from two to three feet. M. de C. Barbaton tranfmitted one weighing 18 pounds -to the Academy of Sciences at Paris; and M. Baudin was told, that fome were found which weighed even 50 pounds. He examined a fmall one, and found it very heavy in proportion to its fize: it was black on the outfide; of a greyin colour in the infide, and inter-- fperfed with a number of fmall flining metallic particles. On ftriking it with a piece of ftcel, it produced a few fmall dark red fparks, net very lively. A mineralogitt, to whom a like piece of fone from the fane metcor was fhewn at Paris, deferibed it as a kind of grey flag mixed with calcareous fpar, the furface of which exhibited vitrified blackifh calx of iron. The Profefior was told alfo, that fome flones were found totally vitrified.

Such (fays Dr Chladni) is the account given by Baudin of this meteor ; the phenonena of which he endeavours to explain from accumulations in the upper parts of the atmofphere.
According to all the obfervations hitherto made with any accuracy on fire-balls, the height at which they were firft perceived was always very confiderable, and by conparing the angles under which they were feen from different points, often 19 German miles, and even more ; their velucity, for the mot part, feveral miles in a fecond; and their fize always very great, often a quarter of a mile, and even more, in diameter. They were all feen tu fall moflly in an oblique direction; not
onc of them ever proceeded upwards. All of the:n lave appeared under the form of a globular mafs, fometimes a little extended in length, and highly luminous; having behind it a tal, which, according to evcry appearance, was compoled of flames and fmoke. All of them burft afier they were feen to move throngh a large fpace, fometimes over feveral ditricts, with an explofion which fhook evers thing around. In every inftance where there has been an opportunity of obferviag the fragments that fell after they burf, and which fometimes have funk to the depth of feveral feet into the earth, they were found to confift of fcorious mafles, which contained iron in a netallic or calcined ftate, pure, or elle mixed with different kinds of earth and fulphur. All the ancient and inodern accounts, written partly by naturalits and partly by others, are fos effentially fimilar, that the one feems to be only a repetition of the other. This conformity in accounts, the authors of which knew nothing of thofe given by others, and who could have no intereft in fabricating fumilar talcs, can farcely have arifen from accident or fiction, and gives to the related facts, however inesplicable many of then may feem, every degree of crediblity.

In the third volume of Pallas's Travels, we have an account of a mafs of iron difcovered by him in Siberia, which Dr Chladui confiders as having been undoubtedly a fire-ball, or the fragnent of a fire-ball. 'This problematical mafs was found between Kralnojark and Abekank in the high flate mountains, quite open and uncovered. It weighed 160 pounds; had a very irregular and fomewhat comprefied fgure like a rough granite; was covered externally with a ferruginous kind of czuit; and the infide confifted of malleable iron, brittle when heated, porons like a large fea fponge, and having its intcrtlices filled with a brittle hard vitrified fubitance of an amber yellow colour. This texture and the vitrified fubtance appeared uniformly througlout the whole mafs, and without any traces of flay or artificial fire.

Dr Chladni thews, with a great deal of ingenuity, that this mals neither originated by the wet method, nor could have been produced by art, the burning of a foreft, by lightning, or by a volcanic eruption. It appears to him, therefore, in the higheft degree probable, that it is of the fame nature with fire-balls, or, as they have fometimes been called, fying dragons. 'The Tartars, as we are informed by Pallas, confidered this mals as a facred relic which had dropped down from heaven; and this circumitance Dr Chladni confiders as no flight confirmation of his opinion, which he farther fupports by the following reafonings:
" 1 . As firc-balls confift of denfe and heavy fubflances, which, by their exceedingly quick movement, and the friction thence excited by the atmofphere, besome electric, are reduced to a llate of ignition, and melted by the heat, fo that they extend to a great fize, and burft; it thence follows, that in places where fragments, produced by the burting of a fire-ball, have been found, fubtances endowed with all thefe properties muft alfo have been found. Iron, however, the principal component part of all the maffes hitherto found (and he fpeaks of many befides that of Pallas), poffeffes all thefe properties in a very eminent degree. The weight and toughnefs of the principal component parts of fire balls,

\section*{F I R [65] F I R}

Fise. which muft be very confiderable, fince, with the greatell poffible diftention, they retain confftence enough to proceed with the utmolt velocity through fuch an insmenfe face without decompontion of their mafs, and without their progrefs being obllucted by the refith ance of the air, agree perfectly well with melted iron; their dazaling white light has by many obfervers been compared to that of melted iron; iron allo exhibits the fame appearances of flaming, fmoking, and throwing out farks, and all thefe phenomena are mof beautiful when they take place in wital air. Of the extenfion by elaftic fluids expanded by the heat, and of the contraction which follows from cold, traces may be difeovered in the internal fpongy nature of the iron maffes which have been found, and in the globular depreffions of the exterior hard erult; the latter of which gives us reafon to fuppofe, that in thefe places there have been air. bubbles, which, on cooling, funk down. The mixture of fulphur found in various maffes, agrees alfo exceedingly well with the phenomena of fre balls, and efpecially with the great inflammability of fulphur in very thin impure air; for it is well known that fulphur in an airpump will take fire in air in which few other bodies could do the fame. In regard to thofe maffes in which no fulphur was found, this may have arifen from the fulphur efcaping in vapour, fince fome time after the appearance of fire-balls a trong finell of fulphur has been perceived. The brittlenels of the Siberian iron mafs when heated, may arife from fome fmall remains of ful. phur, which may perhaps be the caufe of the facility with which fragments of this mals, as well as of another found at Aix.la.Chapelle, could be roafted.
" 2 . The whole texture of the maffes betrayed evident figns of fufion. This, lowever, cannot have been occafioned by any common, natural, or artificial fire; and particularly for this reafon, beeaufe iron fo malleable is not fufible in fuch fire, and when it is fufed with the addition of inflammable matters, lofes its malleability, and becomes like common raw iron. The vitrified fubftance in the Siberian mafs is cqually incapable of being fufed in a common fire. The fire, then, mult have been much ftronger than that produced by the common, natural, and artificial means; or the fufion mut have been effeeted by the force of exceedingly frong eledrieity ; or perhaps buth caules may have been combined together.
"3. It is totally incomprehenfible how, on the ligh fate mountains, where the Siberian mafs was found, at a confiderable diftance from the iron mines; in the chalky foil of the extenfive plains of America, where for a hundred miles around there are no iron mines, and not even fo muth as a ftone to be found; and at Aix-la-Chapelle, where, as far as the author knows, there are no iron works-fo many ferruginous particles could be collected in a fmall fpace as would be neceffary to form maffes of \(t 600,15,000\), and 17,000 , up to 33,600 pounds. This circumftance thews that thefe maffes could as little have been fufed by lightning as by the burning of a foreft or of foffle coal. Thefe maffes were found quite expofed and uncovered, and not at any depth in the earth, where we can much more readily admit fuch an accumulation of ferruginous particles to have been melted by the effeets of light. ming.
as Should it be afked how fuch mafles originated, or
by what means they were brought into fuch an infu. lated pofition? this queltion would be the fame as if it were ansed how the plancts originated. Whatever hypothefes we may form, we mult cither adnuit that the planets, if we except the many revolutions which they may have undergone, cither on or neal their furface, have always becon fince their firf formation, and cerer will be the fame; or that Nature, acting on created inatter, poffe fees the power to produce worlds and whole fyllems, to deftroy them, and from tleir materials to form new ones. For the latter opinion there are, indeed, more grounds than fur the former, as altertations of deftruction and creation are exhibited by all organifed and unorganifed bodies on our earth; which gives us reafon to fufpect that Nature, to which greatnefs and fmalluefs, confidered in general, are merely relative terms, can produce more effects of the fame kind on a larger feale. But many variations have been obferved on diftant bodies, which, in form meafure, render the laft opinion probable. For cxample, the appearing and total difappearing of certain ftars, when they do not depend upon periodical changes. If we now admit ther planetary bodies have flartcd into cxiftence, we cannet fuppofe that fueh an event can have otherwife taken place, than by conjecturing that either particles of matter, which were before difperfed through infuite 「pace in a more foft and chaotic condition, have united together in large maffes by the power of attraction ; or that new planetary bodies have been formed from the fragments of much larger ones that have been broken to pieces, either perhaps by fome external thock, or by an internal explofion. Let whichever of thefe hypothefes be the truen, it is not improbable, or at leaf not contrary to nature, if we fuppofe that a large quan. tity of fucl material particles, either on accomat of their too great diftance, or becanfe prevented by a ftronger movement in another direction, may not lyave united themfelves to the larger accumulating mafs of a new world; but have remained infulated, and, impelle. 1 by fome fhock, have continued their courfe through in. finite face, until they approached fo near to fome planet as to be within the fphere of its attraction, and then by falling down to occalion the phenomena before mentioned."

WhetherChladni be a philofopher of the Frencl fehool we know not; but fome parts of his theory tend ftronsly towards materialifm; and the aroments by which he attempte to prop thofe parts are peculiarly weak. When lee talks of Nature producing words, lie either fubftitutes Nature for Nature's God, or utters jargon which has no meaning. In what fenfe the word Nathere is ufed by every philofopher of a found mind, we hase ellewhere beci at fome pains to fhew (fee River, \(1^{\circ} 110\). Encyd.); but how abfurd would it be to fay, that the fyftem of general laws, by which the Author and Governor of the univerfe connects together its variuus parts, and regulates a! their operations, polefies, independently of Hin, "the power to produce worlds and whole fyltems, to deftroy them, and from their materials to form new ones!"

As Chladni admits, or talks as if he admitted, the creation of matter, it would be wrong to impute to him this abfurdity; but if by Nature he means Gov, and he can confiftently man nothing elfe, we beg lidue to affirm, that it is dirently ontrary to every notion

\section*{FIR [0,6] I I S}

Fire. which we can form of Nature in this finfe, "to fuppofe that a large quantity of material particlea, either on accomnt of the dijlance, or becaufe prevented by a fironger movement in another direction, have not united themfelves to the larger accumblating mafs of a new world, but remained infulated, and impelled by fome fhock, have continued their courfe through infinite fpace, \&c." Is there any diftance to which God cannot reach, or any movement fo flrong as to refift his power? Our author's language is indeed confufed, and probahly his ideas were not very clear. When he fpeaks of the particles of matter being at firt difperfed through infinite fpace, and afterwards united by the power of attraction, he revives the queftion which was long ago difcuffed between Newton and Bentley, and difcuffed in fuch a manner as fhould have filenced for ever the babblings of thofe who form worlds by attraction.
"The hypothefis (fays Newton) of matter's being at firit eveuly fpread through the heavens, is, in my opinion, inconfilent with the hypothefis of innate gravity without a fupernatural power to reconcile them; and therefore infers a Dcity. For if there be innate gravity, it is impofible now for the matter of the earth, and all the planets and fars, to fly up from them, and become evenly fpread through all the heavens, without a fupernatural power ; aud certainly that which can ntver be hereafter without a fupernatural power, could never be leeretofore withont the fame power:" Dr Chladni, indeed, does not fay that his partieles of matter were evenly difperfed through intinite fpace; but fuch mult be his meaning, if he has any meaning : for matter une evenly difperfed mutt, by an innate attraction, be united as foon as it exifts, and fo mited as not to leave fmall fragments of it to wander, we lnow not why, throngh the tracklefs woid. Turn matter on all fides, make it eternal or of late production, finite or infinite, there can be no regular fyftem produced but by a voluntary and meaning agent; and thercfore, if it be true that fire-balls are maffes of denfe matter, coeral with the pisnetary fyttem, exifting in the celeftial regions, and thence conveyed to our earth, they mult have been formed, and their motions imprefed upon them, by the Author of Nature for fome wife purpofe, though by us that purpofe may never be difcovered. One thing feems pretty clear, that wherever they may be formed, the phenomena attending theirburfting, account fufficiently for the notions of thunderbults which have been generally entertained in all ages, and in every country.

Gucel-Fire (fee Witd-Fike, Encycl.). In the fecond volume of Mr Nicholfon's Philofophical Journal, we have the following receipt for making this compofition, taken from fome manuferipts of Leonard de Vinci, who flourifhed in the end of the fifteenth and beginning of the fixteenth centuries, and who appears to have advanced far before lis enntemporaries in pheffical feience. Take the charcoal of willow, nitre, brand\}, refin, fulphur, pitch, and camphor. Mix the whole together over the fire. Ilunge a woolien cord in the mixture, and form it into balls, which may afterwards be provided with fpikes. Thefe balls, being fet on fire, are thrown into the enemy's veffels. It is called the Greek fire, and is a fingular compofition, for it burns even upon the water. Callinicus the archited taught this compofition to the Romans (of Conftantinople), who desived great advantage from it, particularly under the
cmperor Lro, when the Orientals attacked ComRantio nople. A great number of their reffels were burned by meane of this compofition.

The compofition of the Greek fire thus given by Vincini is found in nearly the fame words in fome of the writings of Baptifa Porta; whence it appears that both authors derived their information from the fame fource. A compofition which bumt without accefs to the atmofphere could not fail to fill the minds of our forefathers with wonder; but the modern dfeoveries in chemiftry have difelofed the fecret, by fhewing, that the combuftion is carried on by means of the oxygen contained in the nitre.

Rafant or Razant FIRE, is a fire from the artillery and fimall arns, directed parallel to the horizon, or to thofe parts of the works of a place that are defended.

Running \(F_{1 \text { g }}\) is when ranks of me:a fire one after another; or when the lines of an army are drawn out to fire on account of a victory; in which cafe each fquadron or battalion takes the fire from that on its right, from the right of the firft line to the left, and from the left to the right of the fecond line, \&cc.

Fishling, the art of catching fif. See Angling, Fishery, anu Fishing, \&ec. Eincycl.

Chinefe Fishing. We venture to give this appellation to fome very ingenious contrivances of the people of China for catching in their lakes, not only fifh, but water fowl. For the purpofe of catching fin they have trained a fpecies of pelican, refembling the common coryorant, which they call the Leu-tze, or filhing-bird. It is brown, with a white throat, the body whitifh beneath, and Spotted with brown; the tail is rounded, the irides blue, and the bill yellow. Sir George Staunton, who, when the embalfy was proceeding on the fouthern branch of the great canal, faw thofe birds employed, tells us, that on a large lake, clofe to the eall fide of the canal, are thonfands of fmall boats and rafts, built entirely for this fpecies of fifhery. On each boat or raft are ten or a dozen birds, which, at a fignal from the owner, plunge into the water; and it is attonifhing to fee the enormous fize of fift with which thes return, grafperd within their bills. They appeared to be fo well trained, that it did not require either ring or cord about their throats to present them from fwallowing any portion of their prey, except what their mafter was pleafed to return to them for encouragement and food. The boat ufed by thefe fifhermen is of a remarhable light make, and is often carried to the lake, together with the fifling birds, by the men who are there to be fupported by it.

The fame author fav the fiflermen bufy on the great lake Wee-chaung hee; and he gives the following account of a very lingular method pratifed by them for eatching the fifh of the lake without the aid of biras; of net, or of houks.

T'o one fide of a boat a flat board, painted white, is fixed, at an angle of about 45 degrees, the edge inclining towards the water. On moonlight nights the boat is fo placed that the painted board is turned to the moon, from whence the rays of light ftriking on the whitened furface, give to it the appearance of moving water; on which the fifh being tempted to leap as on their element, the boatmen, rifing with a flring the board, turn the fifh into the boat.

Water-fowl are much fought after by the Chinefe

\section*{FIS [657] i L A}
rifula. and are taken upon the fame lake by the following ingenious device. Empty jars or gourds are fuffered to lloat about upon the water, that fuch objects may become familiar to the birds. The fiflerman then wades into the lake with one of thofe empty veffels upon his head, and walks gently towards a bird; and liftiug up his arm, draws it down below the furface of the water without any difturbance or giving alarn to the ret, feveral of whom he treats in the fame mauner, until he fills the bag he liad brought to hold his prey. The contrivance it felf is net fo fingular, as it is that the fame exactly fhould have occurred in the new continent, as Ulloa afferts, to the natives of Catthagena, upon the lake Cienega de Tefias.

Fistula lachrymalis is a difeafe which, in all its flages, has been treated of in the article Surgery, clap. xiv. Encycl. A work, however, has been lately publifhed by James Ware furgeon, in which there is the deffription of an operation for its cure confiderably different from that moil commonly ufed, and which, while it is fimple, the author's experience has afcertained to be fuccefsful.

In the cure of this difeafe, which is very troublefone, and not very uncommon, it is a well known practice to infert a metallic tube in the nafal duct of the lachrymal canal : but the advantage derived from this operation is not at all times lafting. Among other caufes of failure, Mr Ware notices the lodgment of infpiflated mucus in the cavity of the tube. To remedy this defect, he recommends the following operation.
"If the difeafe has not occafioned an aperture in the lachrymal fac, or if this aperture be not lituated in a right line with the longitudinal direction of the nafal duct, a puncture fhould be made into the fac, at a fmall diftance from the internal juncture of the palpebra, and nearly in a line drawn horizontally from this juncture towards the nofe with a fpear-pointed lancet. The blunt end of a filver probe, of a fize rather fmaller than the probes that are commonly ufed by furgeons, thould then be introduced through the wound, and gently, but fteadily, pufhed on in the direction of the nafal duct, with a force fufficient to overcome the obftruction in this canal, and until there is reafon to believe that it has freely entered into the cavity of the nofe. The pofition of the probe, when thus introduced, will be nearly perpendicular; its fide will touch the upper edge of the orbit ; and the fpace between its bulbous end in the nofe and the wound in the flain will ufually be found, in a full-grown perfon, to be about an inch and a quarter, or an inch and three-eighths. The probe is then to be withdrawn, and a filver ftyle, of a fize nearly fimilar to that of the probe, but rather fmaller, about an inch and three-eighths in length, with a flat head, like that of a nail, but placed obliquely, that it may fit clofe on the fkin, is to be introduced through the duct, in place of the probe, and to be left conttantly in it. For the firft day or two after the ftyle has been introduced, it is fometimes advifable to wafh the eye with a weak faturnine lotion, in order to obviate any tendency to inflammation which may have been excited by the operation; but this in general is fo night, that our author has rarely had occafion to ufe any application to remove it. The fyle fhould be with. drawn once every day for about a week, and afterwards every fecond or third day. Some warm water Suppl. Vol. I. Part II.
fonend caeh time be injectad throngh the duet into the nefe, and the inftrmment be afterwards replaced in the fame manner as hefors. Mr Wrare formerly ufed to cover the head of the ftyle with a piece of diachylon platter fpread on black filk, but has of late olwiated the neceffity for applying any platter by blackenmg the head of the ftyle with fealisg wax.
"The effect (fays lie) prodnced by the ftyle, when introduced in the way abore mentioned, at firt gave me much furprife. It was employed with a view fimi. lar to that with which Mr Pott recommends the introduction of a bougie; viz. to open and dilate the natal duct, and this to cltablifh a jafige, through which the tears might alterwarts be conveyed from the eye to the nofe. I expected, however, that whilt the flyle continued in the duct the obltruction would remais, and of courfe that the watering of the eye, and the weaknef; of the fight, would pove as troublefome as they lad been before the inftrument was introduced. I did not imagine that any enential benefit could refult from the operation until the flyle was removed, and the paliage thereby opened. It was an agreeable dilappointnent to me to tind that the amendment was much more expeditious. The watering of the eye ilmoft wholly ceafed as foon as the llyle was introduced; and in proportion as the patient amended in this refpeet, his fight alfo became mose ftrong and ufeful. The Ityle, therefore, feems to act in a twofold capacity : firt, it dilates the obftructed paffage ; and then, by an attraction fomewhat fimilar to that of a capillary tube, it guides the tears through the duct into the nole.
" The wound that I ufually make into the fac, if the fupperative procefs has not formed a fuitable aper. ture in this part, is no larger than is juft futbicient to admit the end of the probe or Hyle; and this, in gene. ral, in a little time, becomes a fiftulous orifice, through which the ftyle is palled without occalioning the fmalleft degree of pain. The accumulation of mater in the lachrymal fac, which, previous to the operation, is often copious, ufually abates foon after the operation has been performed; and, in about a week or ten days, the treatment of the cafe becomes fo eafy, that the patient himfelf, or fome friend or fervant who is conftantly with him, is fully competent to do the whole that is necef. fary. It confifts folely in withdrawing the flyle two or three times in the week, occafomally injecting fome warm water, and then replacing the inftrument in the fame way in which it was done before.
"It is not eafy to afcertain the exact length of time that the ftyle fhould be continued in the duct. Some have worn it many years, and, not finding any inconvenience from the inftument, are ttill afraid and unwilling to part from it. Others, on the contrary, have difufed it at the end of about a month or fix weeks, and have not had the fmalleft return of the obstruction afterwards."

The author relates fo many fuccefsful cafes of this operation, that we thought it our duty to record his method in this Supplementary volume of our general repofitory of arts and fciences; for a fuccefsful practice, as well in furgery as in phyfie, muft reft on the bafis of experience.

Oblique or Second ILANK, or Flane of the Curtain, is that part of the curtain from whence the face of the oppofite baftion can be feen, being contuined between the lines rafant and fichant, or the greater

\section*{I L O [6 j 3] F L O}

Flank and lefs lines of defence ; or the part of the ourtain beII. tween the flank and the point where the fichant line of Floating. defence terminates.

Conver!, Low, or Retired FLANK, is the platform of the cafemate, which lies hid in the baltion, and is otherwife called the orillon.

Fichant FLANK, is that from whence a camnon playing, fires directly on the face of the oppofite battion.

Rafint or Razant \(F_{L A N K}\), is the point from whence the line of defence begins, from the conjunction of which with the curtain the fhot only rafeth the face of the next baltion, which happens when the face cannot be difcovered but from the flank alone.

FLIE or FLY, that part of the mariner's compais on which the thirty two points of the wind are drawn, and over which the ncedle is placed, and fattened underneath.

FLOATING Bodies are fuch as \(f\) im on the furface of a fluid, of which the moft important are hips, and all kinds of veffels employed in war and in commerce. Every feaman knows of how much confequence it is to determine the ftabilit; of fuch veffels, and the pofitions which they affume when they float freely and at reft on the water. To accomplifh this, it is necelary to ftate the principles on which that flability and thefe pofitions depend; and this has been done with fo much ingenuity and fcience by George Atwood, Efq; F.R.S. in the Philofophical Tranfactions for the year 1796, that we are perinaded a large clafs of our readers will thank us for inferting an abftract of his memoir in this place.

A floating body is preffed downwards by its own weight in a vertical line that paffes through its centre of gravity; and it is futtained by the upward preffure of a fluid, acting in a vertical line that paffes through the centre of gravity of the immerfed part ; and unlefs there two lines be coincident, fo that the two centres of gravity may be in the fame vertical line, the folid will revolve on an axis, till it gains a pofition in which the equilibrium of floating will be pernanent. Hence it appears, that it is neceflary, in the finf place, to afcertain the proportion of the part immerfed to the whale; for which purpofe the fpecific gravity of the noating body mult be known ; and then it mult be determined, by geometrical or analytical methods, in what pofitions the folid can be placed on the furface of the fluid, fo that the two centres of gravity already mentioned may be in the fame vertical line when a given part of the folid is immerfed under the furface of the fluid. When thefe preliminaries are fettled, fomething ftill remains to be done. Pofitions nay be affumed in which the circhmflances juft recited concur, and yet the folid will affume fome other pofition in which it will permanently float. If a cylinder, e. g. having its fpecific gravity to that of the fluid on which it floats as 3 to 4 , and its axis to the diameter of the bafe as 2 to I , he placed on the fluid with its axis verical, it will fink to a depth equal to a diameter and a half of the bafe; and while its axis is preferved in a vertical pofition by esternal force, the centres of gravity of the whole folid and of the immerfed part will remain in the fame vertical line : but when the external force that fultained it is removed, it will decline from its upright profition, and will permanently float with its axis horicontal. If the axis be fuppofed to be half of the dia-
meter of the bafe, and be placed vertically, the fulid Floating will fink to the depth of three-eighths of its diameter; and in that pofition it will fleat permanently. If the axis be nade to incline to the votical line, the folid will change its pofition until it fucties permanently with the axis perpendicular to the horizon.

Whether, therefore, a folid floats permanently, or overfets when placed on the furface of a fluid, for that the centre of gravity of the folid and that of the part immerfed thall be in the fame vertical line, it is faid to be in a pofition of equilibrium ; and of this equilibrium there are three feccies, viz. the equilibriuns of itability, in which the fulid fluats permanently in a given polition ; the equilibrium of inflability, in which the folid, though the two centres of gravity already mentioned are in the fame vertical line, fpontaneoully overfets, unlefs fupported by external force; and the equilibrium of indifierence, or the infenfible equilibuium, in which the folid refls on the flaid indifferent to motion, without tendency to right itfelf when inclined, or to incline it felf farther.

If a folid body foats permanently on the furface of a fluid, and external force be applied to incline it from its pofition, the refiftance oppofed to this inclination is termed the ftability of floating. Among various floating bodies, fome lofe their quiefcent pofition, and fome gain it, after it has been interrupted, with greater facility and force than others.

Some fhips at fea (e.g.) yield to a given impulfe of the wind, and fuffer a greater inclination from the perpendicular than others. As this refiftance to heeling or pitching, duly regulated, has been deemed of importance in the conftruction of veffels, feveral eminent mathematicians have inveftigated rules for determining the flability of fhips from their known dimenfions and weight, withont recurring to actual trial. To this clafs we may refer Buuguer, Euler, Fred. Chapman, and others; who lave laid down theorems for this purpofe, founded on a fuppofition that the inclinations of flips from their quiefcent politions are evanefcent, or, in a practical fenfe, very fmall.
" But hips at fea (fays our ingenious author) are known to heel through angles of \(10^{\circ}, 20^{\circ}\), or even \(30^{\circ}\); and therefore a doutht may arile how far the rules, demonftrated on the exprefs condition that the angles of inclination are of evancfcent magnitude, fhould be admitted as practically applicable in cafes wbere the inclinations are fo great." --" If we admit that the theory of flatics can be applied with any effect to the practice of naval architecture, it feens to be néceffary that the rules, inveltigated for determining the fability of veffels, flould be extended to thofe cales in which the angles of inclination are of any magnitude likely to occur in the practice of navigation."

A folid hody placed on the furface of a lighter fluid, at the depth correfponding to the relative gravities, cannot change its pofition by the combined actions of its weight and the preffure of the fluid, except by revolving on fome horizontal axis which paffes through the centre of gravity : but as many axes may be drawn through this point of the floating body in a direction parallel to the horizon, and the motion of the folid refpects one axis only, this axis mult be determined by the figure of the body and the particular nature of the cafe. When this axis of motion, as it is called, is determined,

\section*{F L 0}
termined, and the Specific gravity of the fold is known, "the pufitious of permanent floating will be obtained, furl by finding the feveral politions of equilibrium through which the olid may be conceived to pals, while it revolves round the axis of motion; and fecundby, by determining in which of thole portions the e quilibrium is permanent, and in which of them it is momentary and unftable"

Such as we have now briefly fated are the general principles on which are founded Mr Atwood's inveftigations for determining the pofitions affumed by homogeneous bodice, floating on a hud furface; and alfo for determining the ability of flips and of other floating bodies. We cannot farther accompany him in his elucidation of them, in the problems to the follton of which they lead, and in the important practical purpofes of naval architcituse to which they are refurred. The whole paper, comprehending ne ifs than 85 pages, is curious and valuable; it abounds with aanalytical and geometrical difquilitions of the mot eldborate kind; and it ferves to enlarge our acquaintance with a fubject that is not only highly interesting to the speculative mathematician, but extremely ufeful in its practical application.

With this latter view, the author feeds to have directed his attention to the various objects of inquiry whicli this article comprehends. They are fuck as intimately relate to the theory of naval architecture, fo far as it depends on the pure laws of mechanics, aud they contribute to extend and improve this theory. The union of thole principles that are deduced from the laws of motion, with the knowledge which is derived from observation and experience, cannot fail to eflablifh the art of constructing veffels on it, true bafis, and gradually to lead to farther improvements of the greateft importance and utility. To this purpofe, the author ubferves, that
" If the proportions and dimenfions adopted in the conftruction of individual veffels are obtained by exact geometrical menfurations, and calculations founded on them, and observations are made on the performance of there veffls at fa; experiments of this kind, fufficientty diverfified and extended, feer to be the proper grounds on which theory may be effectually applied in developing and reducing to fyftem thole intricate, fobtil, and hitherto unperceived caufes, which contribute to impart the greaten degree of excellence to veffels of every Species and defcription. Since naval architecture is reckoned amongit the practical branches of faience, every voyage may be confidered as an experiment, or rather as a fries of experiments, from which ufeful truths are to be inferred towards perfecting the art of conflructing veffels : but inferences of this kind, confiftently with the preceding remark, cannot well be oh. tained, except by acquiring a perfect knowledge of all the proportions and dimenfions of each part of the Ship; and fecondly, by making and recording fufficient. by numerous observations on the qualities of the veffel, in all the varieties of fituation to which a hip is usualli liable in the practice of navigation."

In the valuable mifcellany entitled the Philosophical Magazine, there is a paper on this fubject by Mr John George Englifh, teacher of mathematics and mechanical philofophy ; which, as it is not long, and is eafily underftood, we fall take the liberty to tranfcribe.
"However operofe and difficult the calculations ne. Figuring. cellar to determmic the facility of nautical veflels may, in fume cafes, be, yt t they all depend, fays this author, upon the four following dingle and obviuns theorems, accompanied with other well-known fereometrical and statical principles.
"Theorion 1. Every floating body difflaces a quarttidy of the fluid in which it floats, EG; 1 to it, own weight: and consequently, the fpecitic gravity of the fluid will be to that of the floating body, as the magnitude of the whole is to that of the part innerfed.
"Theorem 2. Every floating body is impelled downward by its own cflential power, acting in the direction of a vertical line paflug through the centre of gravity of the whole; and is impelled upward by the reaction of the fluid which fupports it, acting in the direction of a vertical line puffing through the centre of gravity of the part inmerfed : therefore, unlefs there two lines are coincident, the floating body thus impelled mut revolve round an axis, either in motion or at reft, until the equilibrium is reftered.
"Theorem 3. If by any power whatever a veffel be deflected from an upright polition, the perpendicular diftance between two vertical lines palling through the centres of gravity of the whole, and of the part innerfed reflective! y , will be as the stability of the veffl, and which will be politive, nothing, or negative, accurding as the metacentre is above, coincident with, or below, the centre of gravity of the veffel.
"Theorem 4. The con mon centre of gravity of any fyftem of bodies being given in pofition, if any one of the fe bodies be moved from one part of the fyltem to another, the correfponding motion of the common centre of gravity, eftimated in any given direction, will be to that of the afurefaid body, cftirated in the fame direction, as the weight of the body moved is to that of the whole fy flem.
" From whence it is evident, that in order to aftertain the flatility of any veflel, the pofition of the centres of gravity of the whole, and of the part inmerfed, mut be determined; with which, and the dimentions of the veffel, the line of flotation, and angle of deflection, the lability or power either to right itfelf or overturn, may be found.
" In hips of war and inerchandife, the calculations neceffary fur this purpofe become unavoidably very operofe and troublefome; but they may be much facilifated by the experimental method pointed out in the New 'Tranfactions of the Swedifh Academy of Screencos, first quarter of the year 1787 , page 48 .
" In river and canal boats, the regularity and femplicity of the form of the veffel itself, together with the compact difpofition and homogeneal quality of the burden, render that method for then unneceflary, and make the requifite calculations become very early. Veffell of this kind are generally of the fame tranfverfig section throughout their whole length, except a final part in prow and fern, formed by figments of circles or other fimple curves; therefore a length may cafily be affigned fuck, that any of the tranfverfe factions being multiplied thereby, the product will be equal to the whole folidity of the veffel. The form of the Section ABCD is for the molt part either rectangular, as in fig. I. trapezoidal as in fig. 2 . or mix-

Fl-ating. tilineal as in fig. 3 . in all which MM reprefents the line of floatation when upright, and EF that when inclined at any angle MXE ; alfo (\(r\) reprefents the centre of gravity of the whole veffcl, and R that of the part immerifer.
" If the veffel be loaded quite up to the line \(A B\), and the feecific gravity of the hoat and burden be the iame, then the point \(G\) is fimply the eentre of gravity of the fection \(A B C D\); but if not, the centres of gravity of the boat and burden mult be found feparately, and reduced to one by the common method, namely, by dividing the fum of the momenta by the furn of weights, or areas, which in this cafe are as the weights. The point \(R\) is always the centre of gravity of the fection MMCD, which, if eunfilting of different figures, mult alfo be found by dividing the fum of the momenta by the fum of the weights as common. Thefe two points being found, the next thing neceffary is to determine the area of the two equal triangles \(M X E, M X F\), their centres of gravity 0.0 , and the perpendicular projected diftance \(n n\) of thefe points on the water line EF. This being done, through \(R\), and parallel to EF, draw RT \(=\) a fourth proportional to the whole area MMCD, either triangle MXE or MXF, and the diftanee \(n n\); through T , and at right angles to RT or EF, draw \(T\) nseeting the vertical axis of the veflel in \(S\) the meracentre ; alfo through the points \(G, 13\), and parallel to ST, draw NGW and BV; moreover through S, and parallel to EF, draw WTSV, meeting the two forner in \(V\) and \(W\); then \(S W\) is as the ftability of the veffel, which will be pofitive, nothing, or negative, according as the point \(S\) is above, coincident with, or below, the point \(G\). If now we fuppofe \(W\) to reprefent the weight of the whole veffel and burden (which will be equal to the fection MMCD multiplied by the length of the veffel), and \(P\) to reprefent the required weight applied at the gunwale \(B\) to fuftain the veffel at the given angle of inclination ; we fhall always have this proportion : as VS : SW : : W : P; which proportion is general, whether SW be pofitive or negative; it mut only, in the latter cafe, be fuppofed to act upward to prevent an overturn.
"In the rectangular veffel, of given weight and dimenfions, the whole procefs is fo evident, that any farther explanation would be unneceffary. In the trapezoidal veffel, after having found the points \(G\) and \(R\), let \(\mathrm{AD}, \mathrm{BC}\) be produced until they meet in K . Then, fince the two fertions MMCD, EFDC are equal, the two triangles \(M M K, E F K\) are alfo equal; and there. fore the reetangle \(\mathrm{EK} \times \mathrm{KF}=\mathrm{KM} \times \mathrm{KM}=\overline{\mathrm{KM}^{2}}\); and fince the angle of inelination is fuppofed to be known, the angles at E and F are given. Confequently, if a mean proportional he found between the fines of the angles at E and F , we fhall have the following proportions:
"As the mean proportional thus found: fine \(\angle E:\) : \(\mathrm{KM}: \mathrm{KF}\), and as the faid mean proportional: fine LF: : KM : KE; therefore ME, MF become known: from whence the area of either triangle MXE or MXF, the difance \(n n\), and all the other requifites, may be found.
"In the mixtilineal fection, let \(A B=9\) feet \(=108\) inches, the whole depth \(=6\) feet \(=7^{2}\) inches, and the altitude of MM the line of floatation 4 feet or 48 inches; alfo let the two curvelinear parts be circular
quadrants of two feet, or 24 inches radius each. Then Fluating the area of the two quadrants \(=904^{\prime 7} 808\) Iquare inches, and the diftance of their centres of gravity from the buttom \(=13.8177\) inches very nearly; alfo the area of the included rectangle \(a b i e=1440\) fquare inches, and the altitude of its eentre of gravity 12 inches; in like manner, the area of the rectangle AB cd will be found \(=5184\) iquare inches, and the altitude of its centre of gravity 48 inehes: therefore we flall have

"Now the fum of the momenta, divided by the fum of the areas, will give \(\frac{278613.98966016}{7528.7808}=37.006\) inches, the altitude of \(G\), the centre of gravity of the fection ABCD above the bottom. In like manner, the altitude of \(R\), the centre of gravity of the fection MMCD, will be found to be equal \(\frac{123093.98966016}{4936 \% 808}\) \(=24^{\circ} 934\) inches; and confequently their difference, or the value of \(G R=12.072\) inches, will be found.

Suppofe the veffel to heel \(15^{\circ}\), and we thall have the following proportion ; namely, As radius : tangent of \(15:: M X=54\) inches : 14.469 inches \(=\mathrm{ME}\) or MF ; and confequently the area of either triangle MXE or MXF \(=390.663\) fquare inches. Therefure, by theorem 4 th, as \(4936^{\circ} 7808: 390 \cdot 663:: 72=n n=\) \(\frac{2}{3} \mathrm{AB}: 5.6975\) inches \(=\mathrm{RT}\); and, again, as radius : fine of \(15^{\circ}: 12.072=G R: 3.124 .5\) inches \(=R N\); coufequently RT-RN \(=5.6975-3.1245=2.573\) inches \(=\mathrm{SW}\), the ftability required.
"Moreover, as the fine of \(15^{\circ}\) : radius : \(: 5.6975=\) RT: \(22.013=R S\), to which, if we add \(24^{\circ} 934\), the altitude of the point \(R\), we Thall have \(46 \cdot 9+7\) for the height of the metaeentre, which taken from 72, the whole altitude, there remains 25.053 ; from which, and the half width \(=54\) inches, the ditance BS is found \(=59.529\) inches very nearly, and the angle SBV \(=\) \(80^{\circ}-06^{\prime}-42^{\prime \prime}\); from whence \(S V=58.645\) inches.

Again : Let us fuppofe the mean length of the veffel to be 40 feet, or 480 inches, and we fhall have the weight of the whole veffel equal to the area of the fection MMCD \(=4936.7808\) multiplied by \(480=\) 2369654.784 cubic inclies of water, which weighs exactly 85708 pounds avoirdupois, allowing the cubic foot to weigh 62.5 pounds.
"And, finally, as SV : SW (i.c.) as \(58.645: 2.573\) \(:: 85708: 3760+\), the weight on the gunwale which will futain the veffel at the given inclination. Therefore a veffel of the above dimenfions, and weighing \(3^{8}\) tons, 5 cwts. 28 lbs . will require a weight of 1 ton, 13 ewts. 64 lbs . to make her incline \(15^{\circ}\).
"In this example, the defleeting power has been fuppofed to act perpendicularly on the gunwale at B; but if the veffel is navigated by fails, the eentre velique mult be found; with which, and the angle of deflestion, the projected diftance thereof on the line SV may be obtained; and then the power, calculated as above

EvPGOKikita

Fig. 1.

Fig. \({ }^{3}\).

\section*{\(\mathrm{F} O \mathrm{R} \quad\left[\begin{array}{cc}661\end{array}\right] \quad \mathrm{F} O \quad \mathrm{R}\)}
neceffary to be applied at the projected point, will be that part of the wind's force which caufes the veffel to heel. And converfely, if the weight and dimenfions of the veffel, the area and altitude of the fails, the direction and velocity of the wind be given, the angle of deflection may be found."
fluent, or Flowing Quantity, in the doctrine of fluxions, is the variable quantity which is confidered as increafing and decreafing; or the fluent of a given fluxion, is that quantity whofe fluxion being taken, according to the rules of that doctrine, fhall be the fame with the given fluxion. See Fluxions, Ensycl.

FLuids (Motion in). See Hydrostatics and Resistance of Fluids, Encycl. and Motion in this Supplement.

FOGEDAR, the military govcrnor of a fubordinate diftrict in India, who has fometimes the additional office of colle Eting the revenues.

FOLIATE, a name given by fome to a curve of the 2 d order, expreffed by the equation \(x^{3}+y^{3}=a x y\), being one fpecies of defective hyperbolas, with one afymptote, and confifting of two infinite legs croffing each other, forming a fort of leaf. It is the 42 d fpecies of Newton's Lines of the 3 d Order.

FORCER, in mechanics, is properly a pifton without a valve. For, by drawing up fuch a piftun, the air is drawn up, and the water follows; then purhing the pifton down again, the water, being prevented from defcending by the lower valve, is foreed up to any height above, by means of a fide branch between the two.

FORDYCE (James, D. D.), fo well known to ferious readers by his fermons to young women, and other fpecimens of pulpit eloquence, was born at Aberdeen in the year 1720 . His father was a man much efteemed, and held, more than once, the office of chief magiftrate in his native city; and his mother was a woman of good fenfe, amiable temper, and exemplary piety. This refpectable pair had the fingular felicity of tranfmitting fuperior talents to almolt every individual of a numerous family ; of one of which, viz. David Fordyce, the reader will find fome account in the Encychopadic.

The fubject of this memoir, who was their fourth fon, acquired, as well as his brother, the rudiments of claffical learning at the grammer fehool of A berdeen, whence he was removed to the Marifchal college and univerfity in the fame city. Having completed a regular courfe of fudy both in philofophy and theology, he was licenfed, when very young, according to the forms of the church of Scotland, to be a preacher of the gofpel; and was foon afterwards preferred to the place of fecond minifter in the collegiate church of Brechin in the county of Angus. After remaining there for fome years, he received a prefentation to the church of Alloa near Stirling; and though the inhabitants of that parifh were prepoffeffed in favour of another minifter whom they knew, and prejudiced againit Mr Fordyce whom they did not know; fo narrow minded and totally deftitute of tafte was his colleague in Brechin, that he judged it expedient to hazard the confequences of a removal. He was aware that he entered on his new charge under a confiderable degree of popular odium ; but he thought it more probable
that he fhould be able to overcome that odium, than Fordyce, conciliate the affections of a four fanatic. In this ex. pectation he was not deceived. The prejudices of the good people in Alloa were very quickly removed, not more by the able and impreflive mauner in which he conducted the public fcrviecs of the Lurd's day, than by the amiable and condefcending fpirit with which he performed the more private duties of vifiting and catechifing in the different diftricts of his parill; duties which, as they were wont to be performed by the Scoteh clergy, contributed much more than preaching to the religious inftruction of the lower claffes of the people.

It was during his refidence at Alloa that Mr Fordyce firf dittinguifhed himfelf as an author by the fuecefive publication of the three folluwing fermons. The firt, upun the eloquence of the pulpit, was annexed to "the Art of Preaching" by his brother David; the fecond, upon the methods of promoting edification by public inllitutions, was preached at the ordination of the Rev. Mr Gibfon minifter of St Ninian's, a ncighbouring parifh, in the year 1754, and publifhed, with the charge and notes, in 1755 ; and the third, upon the delufive and perfecuting fipirit of popery, was preached the fanme year before the fynod of Stirling and Perth; and being publifhed, came very quiekly to a fecond edition. But the fermon which moft frongly arrefted the attention, both of the audience before which it was delivered, and of the public to which, in 1760, it was given from the prefs, was that on the folly, infamy, and mifery of unlazuful pleafire, preached befure the General Affembly of the Church of Scotland. The choice of fuch a fubject, on fuch an oceation, excited the furprife of all his hearers, and tempted the younger part of them to fnile at the very reading of the text; but this unfeafonable mirth was foon converted into ferioufnefs. The picture exhibited in this fermon is the work of a mafter; and we have been affured by a friend who heard it preached, that the firit and elegance of the compofition was fo feconded by the folemuity and animation with which it was delivered, that it made a very friking impreffon, not only upon the more refpectable part of the audience, but upon minds of noted levity: It raifed indeed its writer's fame as a pulpit orator to an unrivalled eminence among his brethren in Scotland.

Abunt this time, and we believe in confequence of this fermon, Mr Fordyce received from the univerfity of Glafgow a diploma, creating him Doctor in Divinity; and if there is yet any thing honourable in academical degrees, prollituted as they have long been byan undiflinguifhing diftribution, the honour could not have been conferred with greater propriety on any man in the church to which he then belonged.
In that church he did not long remain. ©oon after the publication of this fingular fermon, and his confequent acquifition of academical honours, he aecepted of an invitation from a fociety of Protellant diffenters, who had their place of meeting in Monkwell-1lreet, London, to become colleague and fucceffor to their paflor, who was then old and infirm, and who died, indeed, in the fpace of a few months. This gave uccafion to the Ductor to difplay his oratory ouce moreboth from the pulpit and the prefs in a fernion on the death of Dr Lawrence. He was now fole paftor to
the congregation of Monkwell-freet; an 1 peached for many years with great powers of eloquence and fervour of piety, to an audience always clowded and often overflowing.

When a preacher obtains, with or without merit, an uncornmon flare of popularity, a confiderable proportion of his hearers will ever confit of thofe, who are guided in their choice rather by curiofity and fafhion, than by found judgment. The attachnents of fuch people are as capricions and variable as their minds; and they clange their preacher as they change their drefs, not from their own tafte, for in general they have none; but from the defire of being where others are, of doing what others do and of adnuining what others admire. Dr Fordyce appreciated jultly the value of fuch mens approbation, and knew it eventually by experience; but he was more than compenfated for the lofs of hearers of this defcription by the fteady adherence of others, whofe efteem was molt defirable, becaufe it was grounded upon the dictates of a found undertanding.

At laft, about Chriftmas 5782 , when his health, which had long been declining, rendered it neceffary, in his own opinion, and in the opinion of his phyficians, to difcontinue his public fervices, he refigned his charge in Monkwell-Atreet, and retired to a villa in Hampfhire, in the neighbourbond of the Earl of Bute, who ho. noured him with his friendhip, and to whofe valuable library he had free accefs. Afterwards he removed to Bath, where having, with Chriftian patience, fuffered much from an afthmatic complaint, to which he had been fubject for fome years, on the it of October \(179^{6}\) he expired without a groan.

Were we to hazard an opinion of Dr Fordyce's intellectual powers from fuch a perufal of his works as we muft acknowledge to have been hafty, we would fay that he was a man of genius rather than of judgneat ; that his imagination was the predominant faculty of his mind ; and that he was better fitted, by an addrefs to the paffions, to enforce the practice of virtue, than, by the exertions of his own undertanding, to vindicate fpeculative truth, or to detect the fophiitry of error. From this remark, we camot be furpected of a wifh to leffen his character in the public etteem; for his talents, as they appear to us, are furely of more value to a preacher than thofe which are perhaps better adapted to literary or fcientific purfuits. In none of his works iadeed do we percive any evidence either of profound fcience, or of various crudition ; though we doubt not but thofe works are every thing which their author in. tended them to be. Of his fermons to youns women, which have attracted mott general notice, it would be prefumptuous in ws to give a claraster; for though we fat down many years ago to read thent, we could not get through; and we have never made a fecond attempt. As far as we can depend upon what we recollect of thefe far-famed difcourfes, the cenfure paffed on them by Mrs Wolltoncraft feems to be juft. Their author, however, was certainly qualified to excel, and actually did excel as a preacher. We have already men-
timed with appretation three or four of hin oceafion? Pordyen, fermons; but perhaps the fineit fpecimen of pulpit ora. Eornuma tory which ever fell from his pen, is the charge which he delivered at the ordination of his fucceffor in the meetirg of Monkwell ftrcet. It is indeed one of the mof valuable difcuurfes of the kind that we have feen, and fhould be read with attention by cevery clergyman of every denomination, who wifhes to difcharge his duty with credit to himfelf and with advantage to his people.

The effect of Dr Fordyce's addreffes from the pul. pit was much heightened, not only by an action and an elocution, which he ftudidd with care and practifed with fuccefs; but by the figure of his perfon, which was peculiarly dignified, and hy the exprefion of his counteriance, which was animated at all times, but animated mott of all when lighted up, by the ardour of his foul in the fervice of God. By fome of his hearers, it was obferved that, on many occafions, he fecmed not merely to fpeak. but to look conviction to the heart. His cye, indeed, was particularly bright and penetrating, and he had carefully attended to the effect which an orator may often produce upon an andience by the judicious ufc of that little, but invaluable organ.

With refpect to his theological fentiments, we are affured (A) they were in no extreme, but liberal, rational, and manly. He feems to have been untainted by that rage of innovation, which of late has fo completely disfigured the creed, as well religious as political, of the great body of Englifh diffenters. The coufequence was, that he lived on terms of friendfhip with men of very oppofite fentiments; with Price a republican and Arian, and with Johnfon, who, though he hated-a whig and a Prefbyterian, refpected talents and worth wherever he found them.

We fhall conclude this fhort Acetch of Dr Ferdyce's life and character with the following lift of his works, of which fome have been tranfated into feveral languages. 1. A Sermon and Charge, at the ordination of the Rev. Mr Gibfon Minitter of St Ninian's, 1754. 2. Another Ordination Sermon on the Eluquence of the Pulpit, aunesed to his brother's "Art of Preacho ing," \({ }^{2754}\). 3. A Sermon on the Spirit of Popery, 1754. 4. A Sermon on the Folly, Infamy, and Mifery of Unlawiul Pleafure, \(1762=\) 5. A Sermon. on the Death of Dr Lawrence, 1760. 6. Sermons to Young Women, 2 vols. 1755. 7. A Sermon on the Character and Conduct of the Female Sex, 1776. 8. Addreffes to Young Men, 2 vols. 1777. 9. A Charge at the Ordination of the Rev. James Lindfay, in Monkwell-ftreet, 1783. 10. Addreffes to the Deity, 1:85. 11. Poems, 1786. 12. A Difcurfe on Pain, 1791. He alfo re-pubtifhed, with an additional character, "The Temple of Virtue, a Dream," written by his brother David.

FORMULA, a theorem or general rule or expreffron, for refolving certain particular cafes of fome problem, \&c. So \(\frac{5}{2} s+\frac{1}{3} d\) is a general formula for the greater of two euantities whofe fum is \(s\) and difference \(d\); and \(\frac{1}{2} s-\frac{1}{2} d\) is the formula, or general value, for the
(A) By his fucceffor in Monkwell-ftreet, to whofe fermon, preached on occafion of the Doctor's death, our readers are indebted for every thing valuable in this fhort memoir.
the lefs quantity. Alfo \(\sqrt{d x-x^{2}}\) is the formula, or general value of the ordinate to a circle, whofe diameter is \(d\), and abfeifs \(x\).

FORSTER (Jolin Reinhold, LL. D.) profeffor of natural hiftory in the univerfity of Halle, member of the academy of feiences at Berlin, and of other learmed focieties, was horn at Dirfehan, in Weft Pruffa, in the month of October 1729, and was formerly a Proteftant clergyman at Dantzick. He had a numemous fanily, and the emoluments of his office were flender. He therefore quitted Dantzick, and went, firt to Ruffia, and thence to England, in queft of a hetter fettlement than his own country afiorded. In the diffeuting academy at Warrington he was appointed tutor in the modern langrages, with the occafional office of lecturing in various branches of natural hillory. For the frit department he was by no means well qualified; his extraordinary knowledge of languages, ancient and modern, being unaccompasied by a purticle of talle; and his ufe of them being all barbarous, though fluent. As a natural hiftorian, a critic, geographer, and antiquary, he ranked much higher; but unfortanately thefe were acquilitions of little value in his academical department.

At length he obtained the appointment of naturalitt and plilofopher (if the word may he fo ufed) to the fecond voyage of difcovery undertaken by Capt. Cook ; and from \(177^{7} 2\) to 1775 he accompanied that immortal navigator round the world. On his return he refided in London till the improper conduct of himfelf and his fon made it expedient for them both to leave the kingdom. Fortunately he received an invitation to Halle, where, for 18 years, he was a member of the philofophical and medical faculties. Anong his works are: An Introdustion to Mineralogy, or, An aceurate Claffification of Foffils and Minerals, \&e. London, 1768 , 8vo. A Catalogue of the Animals of Nurth America, with hort Directions for collecting, preferving, and tranfporting all kinds of Natural Curiolities, London, 177 r , 8vo. Obfervations made during a Voyage round the World, on Phyfical Geogranlly, \&e. London, 1778. He was the author of a great many productions in Englifh, Latin, or German, and of feveral papers in the Philofophical I'ranfactions. He tranfated into Englifh, Bougainville's Voyage round the World, and Kalm's, Bofiu's, and Reidfel's Travels. He was employed likewife, when in England, in the Critical Review ; and he wrote various detached papers on different fubjects, which have been mferted in foreign journals and the tranfactions of icarned academies.

He died at Halle on the 16 th of December 1798 , in the 70 h y year of his age.

FORSIER (George), the fon of the preceding, was born at Dantzick, and accompanied lis father to England when he was about twelve years of aige. He was enfered a fudent in the academy at Warrington, and foon acquired a very perfect ufe of the Englifh tongue. He alfo diftinguifhed himfelf greatly by his attainments in fcience and literature in general ; adding to an excellcut memory, quick parts and a fertile imagination. His temper was mild and amiable; in which he much differed from his father, one of the moft quarrelfome and irrisable of men; by which difpofition, joined to a total want of prudence in common concerns, he loft almolt all
the friends his talents had acquired him, and involved limfelf and family in perpetual diflicultics.

The cafe was very different with the fubject of this memuir ; for when Dr Forfter was appointed naturalitt to Captain Cook, his fon, through the interelk of the friends whom his good nature had male, was affuciated with him in his office. 'The voyage continued during the fpace of three ycars; and on their return the two Foriters publifhed jointly a botanical work in Latin, containing the characters of a number of new genera of plants, dilcovered l:y them in their circumnavigation. Thus far they acted properly in the fervice of government for the advancement of fience; but in publifh. ing another work their conduct was not proper.

The fasher had come under au: engagement not to publifh.feparately, from the authorifed narrative, any accunnt of the voyage : and this engagement he and his fon were determined to violate. An account of the voyage, livefore, was publithed in Englifh and German by George ; and the language, which is correct and elegant, was undoubtedly his; but thole who knew both him and his father, are fatisficd that the matter proceeded from the joint flock of their obfervations and reflections. Several parts of the work, and particularly the elaborate investigations relative to the languages fpoken by the natives of the South Sea Illands, and the fpeculations concerning their fucceffive migrations, are thought to be itrongly impreffed with the genius of the elder Forter.

That a work thus furreptitioully ufhered into the world was not patronifed by thofe with whom the authors had fo ungratcfuliy broken faith, could excite no wonder, even though the publication itflf had been otherwife unexceptiomble; but this was far from being the cafe. It abounds with reflections injurious to the goverrment whofe fervants they had been, and not juit to the navigators employed on voyages of difcovery. The younger Forter, too, had Cume tinne before publithed a brols replete with factions fentinents; and the coldnefs with which he and his father were both treated in confequence of fuch conduct, determined thens to leave London.

We have already related all that we know of the fa. ther, who was recommended to onf notice only by his connection with the illuttrious Cook; and of the fon, there is a fhont account in the Montlily Maga. zine, by Charles Pougens, fraught with thole impious and feditious reflections which fo frequently difgrace a mifcellany, which would otherwife be highly valuahie. According to this author, George Forfter was defirous to fettle in France. Avaricions of glory, and an idolator of liberty, Paris was the city molt fuitable to hiss tatte and character of any in Europe. Notwithtanding this, he was foon contrained to leave it: the intereft of his family demanded this facrifice ; for a learmed man, who fails round the world, may enrich his memory, but he will not better his fortme. He was accortingly obliged to accept the place of profef. for of natural hiftory in the univerfity of Caffel. But his factious fpirit accompanied him whitherfoever he went. It is well known, that the petty princes of Germany have long been in the practice of hiring out their troops to more opulent fovereigns engaged in war. 'This practice, which we are not difpofed to defend, not only fcandslized our Cofmopolite, but fo ir-

\section*{F O R}

Forfere ritated his temper and offended his pride, becaufe, for-- footh, the Prince of Heffe-Caffel would not by bim he perfuaded to relinquifh it, that he did every thing in his power, we are told, to withdraw himfelf from a fituation fo mufuitable to a thiuking being. Every thing in his powcr: Did the Priace retain him in the univetfity contrary to his inclination? The univerfity of Cafel muft be contemptible indeed, if the prelections of fuch a man as George Forter were of fuch confequence to it.

He got away, however; and the fenate of Poland having offered hin a chair in the univerfity of Wilna, Forter accepted of the invitation. But although this office was very lucrative, and the enlightened patriots of that conntry did not neglect to procure him all the diterary fuccours of which he flood in need, he could not be lang happy in a femi-barbarous nation, in which l:berty was fuffered to expire under the intrigues of Ruffia and Pruffia.

On this, with wonderful confiftency, the man who could not endure the defpotifm of Heffe, or even the ariftocracy of England, accepted of the propolitions of that friend to liberty Catharine If.; who, jealous of every fpecies of glory, wifhed to fignalize her reign, by procuring to the Ruflian nation the honour of undertaking, ifter the example of England and France, a new voyage of difcovery rome the world. Unfortunately for the progrefs of knowledge, the war with the Ottoman Porte uccationed the nifcarriage of this ufeful project.

But Forfter could not long remain in obfcurity. The different publications with which he occafionally enriched natural hiftory and literature, encreafed his reputa. tion. The Elector of Mentz accordingly appointed him prefident of the univerfity of the fame name; and he was difcharging the functions of his new office when the French troops took poffeffion of the capital. This philofophical traveller, who had fudied fociety under all the various afpects arifing from different degrees of civilization; who had viewed man fimple and happy at Otaheite ;-an eater of human flefh in New Zealand, corrupted by commerce in England, depraved in France by luxury and atheifm, in Brabant by fupertition, and \(\therefore\) Poland by anarchy;-beheld with wild enthufiafm the dawnings of the French revolution, and was the firft, fays M. Pougens, to promulgate \(\cdot\) republicanifm in Germany.

The Mayencois, who had formed themfelves into a national convention, fent him to Paris, in order to folicit their reunion with the French republic. But, in the courfe of his miffion, the city of Mentz was befieged and retaken by the Pruffian troops. This event occafioned the lofs of all his property; and what was ftill more difatrous, that of his numerous manufcripts, which fell into the hands of the Prince of Pruffia.

Our biographer, after conducting bis bero through thefe fcenes of public life, proceeds to give us a view of his domeftic habits and private principles. He tells us, that he formed a connection (whether a marriage or not, the fudied ambiguity of his language leaves rather uncertain) with a young woman named Therefa Hayne, who, by the illumination of French philufophy, had divefted herfelf of all the prejudices which, we trult, the ladies of this country ftill confider as their honour, as

\section*{664] \\ \(F O \mathrm{~S}\)}
they are certainly the guardians of domentic pence. Mifs Hayne was indignant at the very name of duly. With Eluifa fhe had taken it into her head that

Love, free as air, at fight of human ties, Spreads his light wings, and in a monent dies.
She was frank enough, however, fays our author, to acknowledge the errors of her imagination; and from this expreflion, and his calling her afterwards Forter's wife, we are led to fuppofe that fhe was actually married to him. But their union, of whatever kind, was of fhort duration. Though the lady is faid to bave been paffionately attached to celebrated names, the name of George Furfter was not fufficient to fatisfy her. He foon ceafed, we are informed, to pleafe her; the therefore transferred her affections to another; and, as was very natural for a woman who was indignant at the name of duty, fhe proved falfe to her hurband's toed. Fortter, however, pretended to be fuch a friend to the modern rights of men and women, that he defended the character of his Therefa againft crowds who condemn. ed her conduct. Nay, we are told, that he confidered himfelf, and every other hufand who ceafes to pleafe, as the adulterer of nature. He therefore laboured Atrenuoufly to obtain a divorce, to enable Therefa Hayne to efpoufe the man whom the preferred to himfelf. Strange, however, to tell, the prejudices even of this Cofmopolite were too ftrong for his principles. While he was endeavouring to procure the divorce, he made preparations at the lame time, by the fudy of the oriental languages, to undertake a juurney to Thibet and Indoftan, in order to remove from that part of the world, in which bath his heart and his perfon had experienced fo fevere a fhock. But the chagrin occafioned by his misfortunes, joined to a fcorbutic affection, to which he had been long fubject, and which he had contracted at fea during the voyage of circumnavigation, abridged his life, and prevented him frem realifing this double project. He died at Paris, at the age of 39, on the 13th of February 1792.

This is a ftrange tale; but we truft it will not prove ufelefs. The latter part of it at leaft fhows, that when mon diveft themfelves of the principles of religion, they foon degenerate from the dignity of philofophers to the level of mere fenfualifts; and that the woman who can, in defiance of decorum and honour, transfer her affections and her perfon from man to man, ranks no higher in the fcale of being than a female erute of mure than conmon fagacity. It fhews likewife, that the contempt of our modern fages for thofe partial attachments which unite individuals in one family, is a mere pretence; that the dictates of nature will be heard; and the laws of nature's God obeyed. George Forfter, though he was fuch a zealous advocate for liberty and equality, as to vindicate the adultery of his wife; yet felt fo fenfibly the wound which her infidelity inflicted on his honour, that he could not furvive it, but perifhed, in confequence, in the flower of his age.

Royal FORT, is one whofe line of defence is at leaft 26 fathoms long.

Star Fort, is a fconce or redoubt, conffituted by reentering and faliant angles, having commonly from five to eight points, and the fides flanking each other.

FOSSIL-MEAL, otherwife called lac lune, mineral argaric,
argaric, a:ld guhr, is, according to M. Fabbroni, a mixed earth, which exhales an argillaceous odour, and throws out a light whitifh fmoke when fprinkled with water. It is abundant in Tufcany, where it is employed for cleaning plate. It does not effervefce with acids; is infufible in the fire, in which it lofes an cighth part of its weight, though it becomes feareely diminithed in bulk; and, according to the analylis made by \(M\). Fabbroni, confifts of the following compunent parts: Siliceous earth 55, magnelia 15, water 14, argil 12, lime 3, iron I. With this earth, which is found near Cafteldelpiano in the territories of Sienna, M. Fabbroni compofed bricks, which, either baked or unbaked, floated in water. Hence he infers, that the floating bricks, which Pliny mentions as peculiar to Maffilua and Calento, two cities in Spain, muft have been made of foffil meal. Bricks made of that fubltance refift water exceedingly well, and unite perfectly with lime; they are fubject to no alteration either by heat or cold; and about a twentieth part of argil may be added with advantage tu their compofition, without depriving them of the property of fluating. M. Fabbroni tried their refiltance, and found it very little inferior to that of common bricks; but it is much greater in proportion to their lightnefs. One of thefe bricks, feven inches in length, fuur and a half in breadth, and one inch eight lines in thicknefs, weighed only \(\mathbf{~} 4 \frac{7}{4}\) th ounces; whereas a common brick weighed 5 pounds \(0 \frac{3}{4}\) ths ounces.

Brieks of foffil-meal may be of important benefit in the conftruction of reverberating furnaces; as they are fuch bad conductors of heat, that a peifon may bring one half of them to a red heat, while the other is held in the hand. They may be employed alfo for buildings that require to be light; for conftructing cooking places on board hips; and alfo floating batteries, the parapets of which, if made of thefe bricks, would be proof againft red hot bullets; and, laftly, for conftructing powder magazines.

FOULAHS, or Foolahs, a people in Africa, inhabiting a country on the confines of the great defert (fee Sahara in this Suppl.), along the parallel of nine degrees north. They partake mueh of the negro form and complexion; but have neither the jetty colour, thick lips, nor crifped hair of the negroes. They have alfo a language diftinct from the Mandinga, which is the prevailing one in this quarter. The Foulals occupy, at leaft as fovereigns, feveral provinces or kingdoms, interfperfed throughont the tract comprehended between the mountainous border of the country of Sierra Leona on the weft, and that of Tombretoo on the eaft; as alfo a large tract on the lower part of the Senegal river; and thefe provinces are infulated from each ather in a very remarkable manner. Their religion is Mahomedanifm; but with a great mixture of Paganifm, and with lefs intolerance than is practifed by the Moors.

The principal of the Foulah ftates is that within Sierra Leona; and of which Teemboo is the capital. The next in order appears to be that bordering on the fouth of the Senegal river, and on the Jaluffs; this is properly named Siratik. Others of lefs note are Bondou, with Foota-Torra adjacent to it, lying between the rivers Gambia and Falemé; Foola-doo and Brooko along the upper part of the Senegal river; Waffela beyond the upper part of the Niger; and Maffina lower down

Suppl. Vol. I. Part II.
on the fame river, and joining to I'ombuctoo on the welt.

Fonulahe,
The kingdom of the Foulalis, fituated between the upper part of the Gamhia river and the coalt of Sierra Leona, and along the Riu Grande, is governed by a Mahumet an fuvereign ; but the bulk of the people appear to be Pagans. From the circumfances of their long hair, their lips, and comparatively light colour, Major Renuel is decidedly of opinion, that the Fun. lah's are the Lencrthiops of Ptolemy and Pliny. The furmer, as he ubferves, places the Leucæthiops in the fituation occupied by the Foulahs; and by the name which he gave them, he evidently meant to deferibe a peoyle lefs black than the generality of the Ethiopians. Hence it may be gathered that this nation had been traded with, and that fome notices refpecting it had been communicated to Ptolemy. It may alfo be re. marked, that the navigation of Hanno terminated on this coaft ; and as this was alfo the term of l'tokny's knowledge, it may juftly be fufpected that this part of the coalt was deferibed from Carthaginian materials.

Thofe who have perufed the Journal of Meffrs Watt and Winterbotom through the Foulah country in 1794 , and recollect how flattering a picture they give of the urbanity and hofpitality of the Foulah's, will be gratified on finding that this nation was known and diftinguifhed from the reit of the Ethiopians at a remute period of antiquity.

The contralt between the Moorifh and Negro cha. racters is as great as that between the nature of their refpective countries, or between their form and complexion. The Muors appear to poftefs the vices of the Arabs without their virtues; and to avail themfelves of an intolerant religion, to opprels ftrangers: whillt the Negroes, and efpecially the Mandingas, unable to comprehend a ductrine that fubttitutes opinion or belief for the focial duties, are content to remain in their humble Atate of ignorance. The hofpitality thewn by thefe good people to Mr Park, a deltitute and forlorn ftranger, raifes them very high in the feale of humanity : and I know of no fitter title, fays Mr Rennel, to confer on them than that of the Hindoos of Africa; at the fame time, by no means intending to degrade the Mahomedans of India by a comparifon with the African Moors.-See Major-Rennels Geographical Illultations of Mr Park's Gourney, and of North Africa at large, printed for the African Affociation.

FRANC.AIS (Port des), the name given by Peroufe to a bay, or rather harbour, which he undoubtedly difcovered on the north-weft coalt of America. It is fituated, according to him, in \(58^{\circ} 37^{\prime} \mathrm{N}\). Lat. and in \(139^{\circ} 50^{\prime} \mathrm{W}\). Long. from Paris. When the two frigates which he commanded approached it, as they were Itretching along the coalt from fouth to north, he per. ceived from his hip a great reef of rocks, Lehind which the fea was very calm. This reef appeared to be about three or four hundred toifes in leugth from calt to welt, and to be terminated, at about two cables length, by the point of the continent, leaving a pretty large opening; fo that Nature feemed to have made, at the extremity of America, a harbour like that of Toulon, only more valt in her defigns and in her means: this new harbour was three or four leagues deep.

Some officers, who had been difpatched in boats tos reconnoitre this harbour, gave a report of it extremely
favourable ;

\section*{F R A}

Francais. farourable: and on the \(\mathfrak{3}^{\text {d }}\) of July 1786 , the two fri-gates entered it, and anchored near its mouth in three fathoms and a half, rocky botton. The bay, however, was quickly founded, and much better anchoring ground difcovered at an inand in the middle of it, where the fhips might ride in 20 fathums water with muddy bottom. This ground was taken poffeffion of, an obfervatory erected on the ifland, which was only a mufket fhot from the fhips, and a fettlement formed for their ftay in the harbour. From a report made by one of the officers who had penetrated towards the bottom of the bay, Peroufe had conceived the idea of finding perhaps a channel by which he might proceed into the interior of America; but he was difappointed. The bottom of the bay, indeed, according to him, is one of the mofl extraordinary places in the world. It is a bafon of water, of a depth in the middle that could not be fathomed, bordered by peaked mountains of an exceflive height, covered with fnow, without a blate of grafs upon this immenfe collection of rocks, condemned by Nature to perpetual flerlity. "I never (fays he) faw a hreath of air ruflle the furface of this water; it is never troubled but by the fall of enormous pieces of ice, which continually detach themfelves from five different glaciers, and which in falling make a noife that refounds far in the mountains. The air is in this place fo very calm, and the filence fo profound, that the mere voice of a man may be heard half a league off, as well as the noife of fome fea birds which lay their eggs in the cavities of thefe rocks."

It was at the extremity of this bay that he was in hopes of finding a paflage into the interior of America. He imagined that it might terminate in a great river, of which the courfe might lie between two mountains; and that this river might take its fource in the great lakes to the northward of Canada. Two channels were indeed found, ftretching, the one to the eaft, and the other to the weit; but both were very foon terminated by immenfe glaciers.

In Port des Fraçais the variation of the compafs is \(28^{\circ}\) eaft, and the dip of the needle \(74^{\circ}\). The fea rifes there feven feet and a half at full and change of the moon, when it is high water at one o'clock. The fea breezes, or perhaps other caufes, act fo powerfolly upon the current of the channel, that M. Peroufe faw the flood come in there like the mof rapid river; while, in other circumitances, at the fame period of the inoon, it may be ftemmed by a boat. In this channel he loft two fhallops and twenty men. In his different excurfions, he found the high water mark to be about 15 feet above the furface of the fea. Thefe tides are probably incident to the bad feafon. When the winds blow with violence from the fouthward, the channel muft be impracticable, and at all times the currents render the entrance difficult; the going out of it alfo requires a combination of circumitances, which may retard the departure of a veffel many weeks; there is no getting under way but at the top of high water; the breeze from the weft to the north-weft does not often rife till toward eleven o'elock, which does not permit the taking
advantage of the morning tide; finally, the eafterly winds, which are contrary, appeared to him to be more frequent than thofe from the welt, and the valt height of the furrounding mountains never permits the land breezes, or thofe from the north, to penetrate into the road.

As this port poffeffes great advantages, M. Peroufe thought it a duty incumbent on him to make its inconveniences alfo known. It feemed to him that this anchorage is not convenient for thofe ships which are fent out at a venture for trafficking in Rkius; fuch fhips ought to anchor in a great many bays, and always make the fhortet ftay poffinle in any of them; becaufe the Indians have always difpofed of their whole ltoek in the firf week, and all loft time is prejudicial to the interefts of the owners : but a nation which fhould form the project of eftablifhing factories fimilar to thofe of the Englifh in Hudfon's Bay, could not make choice of a place more proper for fuch a fettlement. A fimple battery of four heavy cannon, placed upon the point of the continent, would be fully adequate to the defence of fo narrow an entrance, which is alfo made To difficult by the currents. This battery could not be turned or taken by land, becaufe the fea always breaks with fuch violence upon the coaft, that tn difembark is impoffible. The fort, the magazines, and all the fettlements for commerce, fhould be raifed upon Cenotaph Ifand (A), the circumference of which is nearly a league: it is capable of being cultivated, and there is plenty of wood and water. The hips not having their cargo to feek, but being certain of having it collected to a fingle point, would not be expofed to any delay: fome bnoys, placed for the internal navigation of the bay, would make it extremely fafe and eafy. The fettlement would form pilots, who, hetter verfed than we are in the fet and flrength of the current at particular times of tide, would enfure the entrance and departure of the fhips. Finally, continues the author, our traffic for otters fkins has been fo very confiderable, that I may fairly prefume there could. not, in any part of America, be a greater quantity of them collected.

The climate of this coaft fecmed to Peroufe much milder than that of Hudfon's Bay in the fame latitude. Pines were meafured of fix feet diameter, and r +0 high; while thofe of the fame fpecies at Prince of Wales's Fort and Fort York, are of a dimenfion fcarce fufficient for ftudding fail-booms. Vegetation is alfo very vigorous during three or four months of the year ; and our author thinks, that Ruffian corn, as well as many common plants, might thrive exceedingly at Port des Français, where was found great abundance of celery, lupine, the wild pea, yarrow, and andive. Among thefe pot herbs were feen almoft all thofe of the meadows and mountains of France; fuch as the angelica, the butter cup, the violet, and many fpecies of grafs proper for fodder. The woods abound in goofeberries, rafpberries, and flrawherries; clufters of elder trees, the dwarf willow, different \{pecies of briar which grow in the fhade, the gum poplar tree, the poplar, the fallow, the horn-beam; and, finally, fuperb pines, fit for themafts.
(A) This name was given to the illand in the bay from the monument erected on it to the memory of their. unfortunate companions.

\section*{F R A}

Trancals, mafts of our largen nips. Not any of the vegetable productions of this country are unknown in Europe. M. de Martiniere, in his different excurfions, met with only three plants which he thought new; and it is well known, that a botanift might do the fame in the vicinity of l'aris.

The tivers were filled with trout and falmon; and as the Indians fold thefe filh to the French in greater quantities than they conld coufume, they had very little fifhing in the bay, and that only with the line. They caught fome ling, a fingle thornback, fome plaice, fletans or faitans, of which fome were more than roo pounds in weight (B), and a fifh refembling the whiting, but a little larger, which abounds on the coalt of Provence, where it is known by the name of poor prief. Peroufe calls thefe finh capelans. In the woods they met with bears, martens, and fquirrels; but they faw no great variety of birds, though the individuals were very numerous.
" If the aninal and vegetable productions of this country refemble thofe of a great many others, its appearance (fays our anthor) can be compared to nothing. The views which it prefents are more frightful than thofe of the Alps and the Pyrenees; but at the fame time fo picturefque, that they would deferve the vifits of the curious, were they not at the extremity of the world. The primitive mountains of granite or fchiftus, perpetually covered with fnow, upon which are neither trees nor plants, have their foundation in the fea, and form upon the fhore a kind of quay ; their flope is fo rapid; that after the firf two or three hundred toifes, the wild goats cannot climb them; and all the gullies which feparate them are immenfe glaciers, of which the tops cannot be difcerned, while the bafe is wathed by the fea. At a cable's length from the land there is no bottom at lefs than 160 fathoms. The fides of the harbour are formed by fecondary mountains, the elevation of which does not exceed from 800 to 900 toifes; they are covered with pines, and overfpread with verdure, and the faow is only feen on their fummits: they appeared to be entirely formed of fehif. tus, which is in the commencement of a flate of decompofition ; they are extremely difficult to climb, but not altogether inacceffible.
" Nature affigus inhabitants to fo frightful a country, who as widely differ from the people of civilized countries as the feene which has juft been defcribed differs from our cultivated plains; as rude and barbarous as their foil is rocky and barren, they inhabit this land only to deftroy its population : at war with all the animals, they defpife the vegetable fubftances that grow around them. I have feen (fays our author) women and children eat fome rafpberries and Arawberries; but thefe are undoubtedly viands far too infipid for men, who live upon the earth like vultures in the air, or wolves and tigers in the forefts.
"Their arts are fomewhat advanced, and in this re. fpect civilization has made confiderable progrefs; but that which foftens their ferocity, and polifhes their manners, is yet in its infaucy. The mode of life they purfue excluding all kind of fubordination, they are
continually agitated by fear or revenge; prone to an. Franeais. ger, and cafly irritated, they are continually attacking eath other dagger in hand. Expofed in the winter to perifh for want, becaufe the chafe cannot be fuccefsful, they live during the fummer in the greateft abundance, as they can catch in lefs than an hour a fufficient quantity of fifh for the fupport of their family; they remain idle during the reft of the day, which they pals at play, to which they are as much addicted as fome of the inhabitants in pur great citics. This gaming is the great fource of their quarrels. If to all thefe deftructive vices they fhould unfortunately add a knowledge of the ufe of any inebriating liquor, M. Peroufe does not hefitate to pronounce, that this colony would be entirely amihilated."

Like all other favages, they are incorrigible thicves ; and when they aftumed a mild and placid appearance, the Frenchmen were fure that they had ftolen fomething. lron, of which they appeared to know the ufe, and of courfe the value, moft excited their cupidity; and when our navigators wcre engaged in careffing a child, the father was fure to feize the opportunity of taking up, and concealing under his finin-garment, cvery thing of that metal which lay within his reach, and was not too heavy to be carried off.
M. Rollin, furgeon major of one of the frigates, thus defcribes thefe people. "They have very little fimilarity to the Californians; they are taller, flouter, of a more agreeable figure, and greater vivacity of expreffion: they are alfo much their fuperiors in courage and fenfe. They lave rather a low forehead, but more open than that of the Southern Americans; their eyes are black and very animated; their eyebrows much fuller ; their nofe of the ufual fize, and well formed, except being a little widened at the extremity; their lips thinner; their mouth moderately large; their tettl fine and very even; their chin and ears very regular.
"The women alfo have an equal advantage over thofe of the preceding tribes; they have much more mildnefs in their features and grace in their limbs.Their countenance would be even very agreeable, if, in order to fet it off, they did not make ufe of a fral ge cuftom of wearing in the lower lip an elliptical piece of wood, lightly grooved on its circumference and tooth its fides, and which is commonly half an iuch thick, two in diameter, and three in length.
"This fingular ornament, befides bcing a great deformity, is the caufe of a very troublefone as well as difgutting involuntary fow of faliva. This appendage is peculiar to the woinen; and female cliddren are made to undergo the ineparatory operations from the tine of their birth. Tor this purpofe, the lower lip is pierced with a kind of pin of copper or gold, which is eitherleft in the opening, or its place fupplicd with a sing of the fame material, till the period of puberty. The aperture is then gradually enlarged, by fubftituing firtt a fmall piece of wood of the form mentioned abeve, then a larger one; and fo on, increafing its fize by degrees till it reaches the dimenfions juft fated.
"This extraordinary cuftom fhews the great power of dilatation in the lip, and may encourage medical prac-
titioners
(B) This is a flat fifh, longer and not fo fquare as the turbet. Its back is covered with fmall fcales; and thofe which are taken in Europe are much lefs than the fletans of Port des Français.

Erancais titioners in their attempts to remedy deformities of this II Friction. part by the ufe of the kuife.
"The general colour of thefe people is olive, a fain- ter tinge of which is apparent in their nails, which they fuffer to grow very long; the hue of the fkin, however, raries in different individuals, and in various parts of the fame individual, according to their expofure to the action of the air and fun.
"Their hair is, in general, neither fo coarfe nor black as that of the South Americans. Chefnut coloured hair is by no means unfrequent among them. Their beard is allo fuller, and their armpits and parts of fex better provided with hair.
"The perfect evennefs of theil teeth led me at firf to fufpect that it was the effect of art; but after an attentive and minute examination, I could perceive no wearing away of the enamel, and 1 faw that this regularity is natural. 'lhey tatton and paint their face and body, and bore their ears and the cartilage of their nofe.
"Some writers have imagined, that the cultom of painting the face and body, fo generally adopted by the Africans, Americans, and Welt Indians, is only intended as a prefervative againlt noxions infects. I think, however, that I am warranted in afferting its fole end to be ormament. I found it so prevail among the inhabitants of Eafter Illand and the natives of Port des Français, without obferving among them either venomous infects or reptiles. Befides, I remarked that they wore paint only when they paid us a vifit; for they made no ufe of it when in their own houfes."
M. Peroufe himfelf fucaks not fo favourably of the women as M. Rollin. "They are (he fays) the moft difgulting of any on the earth, covered with ftinking okins, which are frequently untanned; and yet they failed not to excite defires in fome perfons, in fact of no fmall confequence: they at firft farted many dificulties, giving affurances by their getures that they ran the rifk of their lives; but being overcome by prefents, they had no objection to the fun being a witnefs, and abfolutely refufed to retire into the wood." There can be no doubt that this planet is the god of thefe people, fince they frequently addrefled themfelves to it in their prayers; but our voyagers faw neither temple nor prielt, nor the leaft trace of public worfhip at fated times. They burn their dead.

FRE'GATES Française Bafe de, the name given by La Peroufe to a dangerous reef of funken rocks which he difcovered in the Pacific ocean. On the north-weft extremity of this reef they perceived an inet or fplit rock from 20 to 25 fathoms in height and about 50 toifes in diamter. From this inet the reef extends more than four leagues to the fouth-eafti and upon the extremity of the point in that direction, the frigates had almoft ftruck before the breakers were obferved. This was during a fine clear night and fmooth fea. With great propricty, the Commodore returned in the morning to afcertain the geographical fituation of this unknown rock; and he eftimated the iflet to be in \(23^{\circ}\) \(45^{\prime}\) N. Lat. and \(168^{\circ} 10^{\prime} \mathrm{W}\). Long. from Paris.

FRICTION, in mechanics, is a fubject of great importance both to the practical engineer and to the 「peculative philnfopher. It is therefore our duty to correct, in this Supplement, the miftakes into which we fell when treating of that fubject in the Encyclopadia. What we have there taught of friction (fee Mecha.

Nics, Seet. II. § 8.) is taken from Fergufon; but it has been flewn by Mr Vince, that the experiments from which his conclufions were drawn were not properly inftituted. That eminent mathematician and philofopher therefore entered upon the inveftigation of the fubject anew, and endeavoured, by a fet of experiments, to determine the following queftions:
1. Whether friction be a uniformly retarding force?
2. The quantity of friction ?
3. Whether the friction varies in proportion to the preffure or weight?
4. Whether the friction be the fame on whichever of its furfaces a body moves ?
1. With refpect to the firt of thefe queftions, the author truly obferves, that if friction be a uniform force, the difference between it and the given force of the moving power employed to overcome it mult alfo be uniform ; and that therefore the moving power, if it be a body defcending by its own weight, mult defeend with a uniformly accelerated velocity, jutt as when there was no friction. The fpaces defcribed from the beginning of the motion will indeed be diminifhed in any given time on account of the friction; but ftill they mut be to each other as the fiuares of the times employed. See Drnamics in this Supplement.
2. A plane was therefore adjufted parallel to the horizon, at the extremity of which was placed a pulley, which could be elevated or depreffed, in order to render the ftring which connected the body and the moving force parallel to the plane. A feale accurately divided was placed by the fide of the pulley perpendicular to the horizon, by the fide of which the moving force defcended; upon the fcale was placed a moveable fage, which could be adjufted to the fpace through which the moving force defcended in any given time; which time was meafured by a well-regulated pendulum cloek vibrating feconds. Every thing being thus prepared, the following experiments were made to afcertain the law of friction.
3. Exp. 1. A hody was placed upon the horizontal plane, and a moving force applied, which, from repeated trials, was found to defeend \(5^{2 \frac{1}{2}}\) inches in \(4^{\prime \prime}\); for by the beat of the clock, and the found of the moving furce when it arrived at the flage, the fpace could be very aceurately adjufted to the time: The ftage was then removed to that point to which the moving force would defcend in \(3^{\prime \prime}\), upon fuppofition that the faces deferibed by the moving power were as the fquares of the times; and the fpace was found to agree very accurately with the time: the fage was then removed to that point to which the moving foree ought to defcend in \(2^{\prime \prime}\), upon the fame fuppofition, and the defcent was found to agree exactly with the time : laftly, the ftage was adjufted to that point to which the moving force ought to defcend in \(\mathrm{I}^{\prime \prime}\), upon the fame fuppofition, and the fpace was obferved to agree with the time. Now, in order to find whether a difference in the time of defcent could be obferved by removing the ftage a little above and below the pofitions which correfponded to the above times, the experiment was tried, and the defeent was always found too foon in the former, and too late in the latter cafe; by which the author was affured, that the fpaces firft mentioned corre. fponded exactly to the times. And, for the greater certainty, each defcent was repeated eight or ten times;

\section*{F R I [669 i F R I}

Priction. and every caution uled in this experiment was allo made ufe of in all the following.

Exp.2. A fecond body was laid upon the horizontal plane, and a moving force applied which defeended \(41 \frac{3}{7}\) inches in \(3^{\prime \prime}\); the flage was then adjulted to the fpace correfponding to \(2^{\prime \prime}\), upon fuppofition that the fpaces defcended through were as the fquares of the times, and it was found to agree accurately with the time; the itage was then adjufted to the face correfponding to \(i^{\prime \prime}\), upon the fame fuppofition, and it was found to agree with the time.

Exp. 3. A third body was laid upon the horizontal plane, and a moving force applied, which defcended \(59 \frac{5}{8}\) inches in \(4^{\prime \prime}\); the ftage was then adjufted to the fpace correfponding to \(3^{\prime \prime}\), upon fuppofition that the fpaces defcended through were as the fquares of the times, and it was found to agree with the time; the Alage was then adjufted to the fpace correfponding to \(2^{\prime \prime}\), upon the fame fuppofition, and it was found to agree with the time; the ftage was then adjutted to the fpace correfponding to \(1^{\prime \prime}\), and was found to agree with the time.

Exp. 4. A fourth body was then taken and laid upon the horizontal plane, and a moving force applied, which defcended 55 inches in \(4^{\prime \prime}\); the ftage was then adjutted to the fpace through which it ought to defeend in \(3^{\prime \prime}\), upon fuppofition that the fpaces defcended through werc as the fquares of the times, and it was found to agree with the time; the ftage was then adjuited to the fpace correfponding to \(2^{\prime \prime}\), upon the lame fuppofition, and was found to agree with the time; laftly, the ftage was adjufted to the fpace correfponding to \(\mathrm{I}^{\prime \prime}\), and it was found to agree exactly with the time.

Befides thefe experiments, a great number of others were made with hard bodies, or thofe whole parts fo firmly cohered as not to be moved inter fe by the friction; and, in each experiment, bodies of very different degrees of friction were chofen, and the refults all agreed with thofe related ahove; we may therefore conclude, that the frigion of bard bodies in motion is a uniformly resarding force.

But to determine whether the fame was true for budies when covered with cloth, woollen, \&c. experiments were made in order to afcertain it; when it was found, in all cafes, that the retarding force increafed with the velocity; but, upon covering bodies with paper, the confequences were found to agree with thofe related above.
4. Having proved that the retarding force of all hard bodies arifing from friction is uniform, the quantity of friction, confidered as equivalent to a weight without. inertia drawing the body on the horizontal plane backwards, or acting contrary to the moving force, may be immediattly deduced from the foregoing experiments. For let \(\mathrm{M}=\) the moving force expreffed by its weight ; \(F=\) the friction \(; W=\) the weight of the body upon the horizontal plane; \(S=\) the jpace through which the moving force defcended in the time \(t\) expreffed in feconds; \(r=16_{\mathrm{P}}{ }^{\frac{1}{\Sigma}}\) feet; then the whole accelerative force (the force of gravity being unity) will be \(\frac{M-F}{M+W}\); ; bence, by the laws of uniformly accelerated motions; \(\frac{M-\mathrm{F}}{\mathrm{M}+\mathrm{W}} \times r t^{2}=\mathrm{S}\), confequently \(\mathrm{F}=\mathrm{M}-\frac{\overline{\mathrm{M} \times W} \times \mathrm{S}}{r t^{2}}\). To exemplify this, let us take the cafe of the laft ex-
periment, where \(M=7, W=25 \frac{3}{3}, S=4 r^{7}\) feet, Frißtion.
 fequently the friction was to the weight of the rubbing body as 6.4167 to 25.75 . And the great accuracy of determining the friction by this method is manifeft from hence, that if an crror of one inc! had been made in the defcent (and experiments carefully made may always determine the face to a much greater exactrefs), it would not have affected the conclution rotodth part of the whole.

5: We comc, in the next place, to determine whether friction, cateris paribus, varies in proportion to the weiglst or prefure. Now if the whole quantity of the friction of a body, meafured by a weight without inertia equivalent to the friction drawing the body backwards, increafes in proportion to its weight, it is manifeft that the retardation of the velocity of the body arifing from the friction will not be alcered; for the retardation varies as \(\frac{\text { Quantity of friction }}{\text { Quantity of matter }}\); hence, if \(a\) body be put in motion upon the horizontal plane by any moving force, if both the weight of the body and the moving force be increafed in the fame ratio, the acceleration arifing from that moving force will remain the fame, becaule the aceelerative force varies as the moving furce divided by the whole quantity of matter, and both are increafed in the fame ratio; and if the quantity of friction increafes alfo as the weight, then the retardation arifing from the friction will, from what has been faid, remain the fame, and therefore the whole acceleration of the body will not be altered; confequently the body ought, upon this fuppofition, fill to deferibe the fame fuace in the fame time. Hence, by obferving the fpaces defcribed in the fame time, when both the hody and the moving force are increafed in the fame ratio, we may determine whether the friction increafes in proportion to the weight. The following experiments were therefore made in order to alcertain this matter:

Exp. 1. A body weighing 100 z : by a moving force of \(40 \%\) defcribed in \(2^{\prime \prime}\) a fpace of 5 ! inches; by loading the body with 1002 . and the moving force with 40 Oz . it defcribed 56 inches in \(2^{\prime \prime}\); and by loading the budy again with 1002 , and the moving, foree with .4 oz . it deferibed 63 inches in \(2^{\prime \prime}\).

Exp. 2. A body, whore weight was 16 oz , by a moving force" of 5 oz . defcribed a fpace of 49 inches in \(3^{\prime \prime}\); and by loading the body with 6407 . and the moving force with 20 oz . the fpace deferibed in the fame time was \(\sigma_{4}\) inches.

Exp. 3. A body weighing 6 oz . by a moving force of \(2 \frac{1}{2} \mathrm{Oz}\). defcribed 28 inches in \(2^{\prime \prime}\); and by loading the body with 24 uz . and the moving force with looz. the fpace defcribed in the fame time was 54 inches.

Exp. 4. A body weighing 8 oz . by a moving force of \(40 z\). defcribed \(33^{\frac{7}{z}}\) inches in \(2^{\prime \prime}\); and by loading the body with 8 oz . and the moving force with 4 oz . the fpace defcribed in the fame time was 47 inches.

Exp. 5. A body whofe weight was 9 oz. by a moring force of. \(4 \frac{1}{2}\) oz. defcribed 48 iuches in \(2^{\prime \prime}\); and by loading the body with 9 oz . and the moving foree with \(\psi^{\frac{1}{2}} 02\) 。 the fpaee deferibed in the fame time was 60 incles.

Exp. 6. A body weighing 10 oz. by a moving force of

Frimion. 3 oz, defcribed 22 inches in \(2^{\prime \prime}\); by loalling the body with 10 oz . and the mnving force with \(30 \%\) the fpace defcribed in the fame time was 31 inches; and by loarding the body again with 30 oz . and the moving force with \(g o z\). the fpace defcribed was \(3 t\) inches in \(z^{\prime \prime}\).

From the fe experiments, and many others which it is nut neceffary here to relate, it appears, that the fpace defcribed is always iacreafed by increaling the weight of the body and the accelerative force in the fame ratio; and as the acceleration arifing from the moving force continucd the fame, it is manifeft, that the retardation arifing from the friction muft have been diminifhed, for the whole accelerative force muft have been increafed on account of the increafe of the fpace defcribed in the fame time; and hence (as the retardation from friction varies as Quantity of friction Quantity of mattcr the quantity of frizion increafes in a lefs ratio than the quantity of malter or zueight of tise body.
6. We come now to the laft thing which it was propofed to determine, that is, whether the friction varies by varying the furface on which the body moves. Let us call two of the furfaces A and \(a\), the former being the greater, and the latter the lefs. Now the weight on every given part of \(a\) is as much greater than the weight on an equal part of A , as A is greater than \(a\); if therefore the friction was ito proportion to the weight, cateris paribus, it is manifeft, that the friction on a would he equal to the friction on A , the whole friction being, upon fuch a fuppofition, as the weight on any given part of each furface multiplied into the number of fuch parts or into the whole area, which products, from the proportion above, are equal. But from the laft experiments it has been proved, that the friction on any given furface increafes in a lefs ratio than the weight; confequently the friction on any given part of \(a\) has a lefs ratio to the friction on an equal part of \(A\) than A has to \(a\), and hence the friction on \(a\) is lefs than the friction on \(A\), that is, the fmalleft furface has always the leaft friction.

As this conclufion is contrary to the generally received opinion, Mr Vince thonght it proper to confirm it by a fet of experiments made with different bodies of exactly the fame degree of roughnefs on their two furfaces.

Exp. 1. A body was taken whofe flat furface was to its edge as \(22: 9\), and with the fame moving force the body defcribed on its flat fide \(33^{\frac{1}{2}}\) inches in \(2^{\prime \prime}\), and on its edge 47 inches in the fame time.

Expp. 2. A fecond body was taken whofe flat furface was to its edge as \(3: 3: 3\), and with the fame moving force it deferibed on its flat fide 32 inches in \(2^{\prime \prime}\), and on its edge it defrribed \(37 \frac{1}{\mathrm{t}}\) inches in the fame time.

Exp. 3. He took another body and covered one of its furfaces, whofe length was 9 inches, with a fine rough paper, and by applying a moving force, it defrribed 25 inches in \(\varkappa^{\prime \prime}\); he then took off fome paper from the middle, leaving only \(\frac{3}{8}\) ths of an inch at the two ends, and with the fame moving force it deferibed 40 inches in the fame time.

Exp. 4. A nother body was taken which had one of its furfaces, whofe length was 9 inches, covered with a fine rough paper, and by applying a moving force it defcribed 42 inches in \(2^{\prime \prime}\); fome of the paper was then taken off from the middle, leaving only \(1 \frac{3}{8}\) inches at
the two cuds, and with the fame moving foree it de- Friedion. fcribed 54 incles in \(2^{11}\); he then took off more paper, leaving ouly \(\frac{1}{j}\) of an inch at the two ends, and the body then deforibed by the fame inoving force, 60 inches in the fame time.

In the two laft experiments the paper which was taken off the furface was laid on the body, that its weight might nut be altered.

Exp. 5. A body was taken whofe flat furface was to its edge as \(30: 17\); the flat fide was laid upon the horizontal plane, a moving force was applied, and the ftage was fixed in order to ltop the moving force, in conlequence of whicle the body would then go on with the velocity acquired antil the friction had deflroyed all its motion ; when it appeared from a mean of 12 trials that the body moved, after its acceleration ceafed, \(5 \frac{2}{3}\) inches betiore it Itopped. The edge was then applied, and the moving force defcended through the fame fpace ; and it was found, from a mean of the fame nuniber of trials, that the fpace defcribed was \(7 \frac{1}{3}\) inches before the body loft all its motion, after it ceafed to be accelerated.

Exp. 6. Another body was then taken whofe flat furface was to its edge as \(60: 19\), and by proceeding as before, on the flat furface it deferibed, at a mean of 12 trials, \(5 \frac{1}{8}\) inches, and on the edge \(6 \frac{1}{2} \frac{1}{4}\) inches, before it Itopped, after the acceleration ceafed.

Exp. 7. Another body was taken whofe flat furface was to its edge as \(26: 3\), and the fpaces defcribed on thefe two furfaces, after the acceleration ended, were, at a mean of ten trials, \(4^{\frac{3}{4}}\) and \(77^{\frac{7}{0}}\) inches refpectively.

From all thefe different experiments it appears, that the fmalleft furface had always the leaf friction, which agrees with the coufequence deduced from the coufideration that the friction does not increafe in fo great a ratio as the weight ; we may therefore cunclude, that the frizion of a body does not contimue the fawe when it has different furfaces applied to the plane on zubich it moves, but that the fmallefl furface will bave the leaf friction.

To the experiments inflituted by Mr Fergufon and others, from which conclufions have been drawn fo different from thefe, our author makes the following objections: It was their object to find what moving force would jul put a body at reit in motion ; and having, as they thought, found it, they thence concluded, that the accelerative force was then equal to the friction. But it is manifef, as Mr Vince olferves, that any force which will put a body in motion mult be greater than the force which oppoles its motion, otherwife it could not overcome it ; and hence, if there were no other objection thaa this, it is evident, that the friction could not be very accurately obtained : but there is another objection which totally deftroys the experiment io far as it tends to thew the quantity of friction, which is the ftrong cohefion of the body to the plane when it lies at reft ; and this is confirmed by the following experiments. \(1 / 2\), A body of \(12 \frac{3}{3} \mathrm{oz}\), was laid upon an horizontal plane, and then loaded with a weight of 8 lb . and fuch a moving force was applied as would, when the body was juft put in motion, continue that motion without any acceleration ; in which cafe the friction muft be juft equal to the accelerative force. The body was then ftopped, when it appeared that the. fame moving force which had kept the body in motion be-

Fricion, fore, would not fut it in motion, and it was found neFriguritic. ceflary to take off \(f^{\frac{2}{2}}\) oz. from the body before the
fame moving force aould put it in motion; it appears therefore, that this body, when laid upon the plane, at reft, acquired a very frong coltefion to it. \(2 d l y\), A budy whofe weight was 16 oz . was laid at reft upon the horizontal plane, and it was found that a moving force of 6 oz . would juft put it in motion ; but that a moving force of 4 oz . wooull, when it was juft put in motion, continue that motion without any acceleration, and therefore tle accelerative force inult ilen have been equal to the friction, and not when the moving force of \(60 \%\) was applied.

From thefe experiments, therefore, it appears how very confiderable the cohefion was in proportion to the friction when the body was in motion; it being, in the latter cale, almolt \(\frac{3}{3}\) d, and in the former it was fonnd to be very nearly equal to the whole friction. All the conclufions therefore deduced from the experiments, which have been infltuted to deternine the friction from the force ucceflary to put a body in motion, have manifefly been totally falle; as fuch experiments only thew the refiltance which arifes from the cobefion and friction conjointly.

Our author coucludes this part of his fubject with the following remark upon \(11^{\circ} 5\) : "It appears from all the experiments (fays he) which I have made, that the proportion of the increafe of the friction to the increafe of the weight was different in all the different bodies which were made ufe of; no general rule therefore can be eftablifhed to determine this for all bodies, and the experiments which I have litherto made have not been fufficient to determine it for the fame body."

He then proceeds to eftablith a theory upon the principles which he has deduced from his experiments. That theory is comprehended in five propofitions, of which the object of the firtt is "to find the time of defcent, and the number of revolutions made by a cylinder rolling down an inclined plane in confequence of its friction.
II. "To determine the fpace through which a body, projected on an horizontal plane with a given velocity, will move before it ftops, or before its motion becomis uniform.

III: "To find the centre of friction.
IV. " To determine, from the given velocity with which a body begins to revolve about the centre of its bafe, the number of revolutions which that body will make before all its notion be deftroyed.
V. "To find the nature of the curve defcribcd by any point of a body affected by friction when it defcends down any inclined plane."

To give the folutions of thefe problems, with the corollaries deduced from them, would fwell this article to very little purpore; for they would be unintelligible to the mere mechanic, and the mathematician will either folve them for himfelf, or have recourfe to the original memoir, where he will find folutions at once elegant and perfpicuous.

FRIGORIFIC Mixtures, are thofe which experience has taught philofophers to employ for the pur-
pofe of producing artificial cold. Some of thefe mix. Figorific. tures are enumerated, under the title Cold (Encycl.), and a much more accurate lift of them is given, together with the principle upon which they produce their effect, in the article CHEmistry, \(1^{\circ}\) 282. (Suppl.). There is one mixture, however, not mentioned in that lift, which was employed by Segun, and feems, on many accounts, to be the moft eligible that has yet been propofed. Confidering the muriats (fee Che-mistry-Indix, Suppl.) as a clafs of falts beft fuited for the purpore, he gave the decided preterence to muriat of lime in cryfals; and his method was to mix the cryfals, previoully pulverifed, with an equal weight of uncompreffed frow.

By means of this misture Mr W. H. Pepys junior, of the London Philofophical Society, with the affitance of fome friends, froze, on the 8th of February 1799 , 55 lhs. averdupoife of mercury into a fulid mafs. The mereury was put into a ftrong b'adder and well fecured at the mouth, the temperature of the lahoratory at the time being \(+33^{\circ}\). A mixcure confilting of muriat of lime 213 . at \(+33^{n}\), and the fame weight of fnow at \(+32^{\circ}\) gave \(-42^{\circ}\) (A). 'The mercury was put as gently as poffible into this mixture (to prevent a rupture of the bladder), by means of a cloth held at the four corners. When the cold mixture had robbed the mercury of fo much of its heat as to have its own temperature thereby raifed from - \(42^{\circ}\) to +5 , another mixture, the fame in every refpect as the lalf, was made, which gave, on trial with the thermometer, \(-43^{\circ}\). The mercury was now received into the cloth, and put gently into this new mixture, where it was left to be cooled fill lower than before.

In the mean time five pounds of muriat of lime, in a large pail made of tinned iron, and japanned infide and outide, was placed in a cooling mixture in an earthenware pan. 'Ithe mixture in the pan, which confitted of 4 lb. of muriat of lime and a like quantity of fnow, of the fame temperature as the former, in one hour reduced the 5 lb . of muriat in the pail to \(-15^{\circ}\). The mixture was then emptied ont of the earthen pan, and four large corks, at proper diftances, placed on its botiom, to ferve as refts for the japanued pail which was now put into tlie pan. 'The corks anliwered the parpofe of infulating the inner veffel, while the exterior one kept off the furrounding atmofphere, and preferved the air between the two at a low temperature.

To the 5 lb . of muriat of lime which had been cooled, as already noticed, to \(-15^{\circ}\), and which fill remained in the metallic veffel, was now added fnow, uncomprefled and free from moiture, at the ufual temperature of \(+32^{\circ}\). In lefs than three minutes the mixture gave a temperature of \(-62^{\circ}\) : a degree of cold which perhaps was never before produced in this coun. try, being \(94^{\circ}\) below the freezing point of water.

The mercury, which, by immerfion in the fecond cooling mixture to which it was expoled, was by this time reduced to \(-30^{\circ}\), was now, by the means em. ployed before, cautioully put into the latt-made mixture of the temperature of \(-62^{\circ}\). A hoop with net-work faftened to its upper edge, and of fuch a breadtli in the rim
(A) The thermometer made ufe of in this experiment was filled with tinged alcohol, and accurately divided. according to Fahrenheit's fcale.

\section*{FR I [672] F U E}

Fricorific. rim that the net-work, when loaded with the bladder of mercury, could not reach its lower edge, was at the bottom of the mixture, to prevent the bladder from coming in contact with the weffel ; by which means the mercury was fufpended in the middle of the mixture. As foon as the bladder was fafely depofited on the network, the vellels were carefully covered over with a cloth, to impede the paflage of heat from the furrounding atmofphere into the freezing materials. The condenfation of moitture from the atmofphere by the agency of fo low a temperature was greater than could have been expected: it floated like ftean over the veffels, and, but for the interpofed covering, would have given the misture more temperature than was defirable.

After one hour and forty minutes they found, by means of a fearcher introduced for the purpofe, that the mercury was folid and fixed. The temperature of the mixture at this time was -46 , tha: is, \(16^{\circ}\) higher than when the mercury was put into it.

Our young pliilofophers having neglected to ning the hoop and net-work in fuch a manner as might have enabled them to lift it out of the mixture at once, with the bladder and its contents, were obliged to turn out the whole contents of the pail into a large evaporating capfule made of iron. This was not effected withont the mercury ftriking agraint its bottom and being fractured, though it reccived a confiderable increafe of temperature from the capfule. The fracture was fimilar to that of zinc, but with parts more cubical. The larger pieces were kept for fome minutes before fufion took place, while others were twitted and bent into various forms, to the no fmall gratification and furprife of thofe who never witneffed or expected to fee fuch an effect produced on fo fuifle a metal.

In experiments of the kind here defcribed, all the exterior veffels hould be of earthen-ware or wood, which being bad conductors of heat, prevent the ingredients from receiving heat from the atmofplere and furrounding objects with the fame facility that they would through metals; and, for a fimilar reafou, the interior veffels are beft of metal, that they may allow the heat to pafs more readily from the fubitance to be cooled into the frigorific mixture employed for that purpofe.

Muriat of lime is certainly the moft powerful, and at the fame time the moft economical fubtance that can be employed for producing artificial cold; for its firf coft is a mere trifle, being a refiduum from many chemical proceffes, as the diftillation of pure ammonia, \&c. and often thrown away: befides, it may be repeatedly ufed for fimilar experiments, nuthing being neceffary for this purpofe but fltration and evaporation to bring it to its firft flate. The evaporation fhould be carried on till the folution becomes as thick as a ftrong fyrup, and upon cooling the whole will be cryftallifed: it muit then be powdered, put up in dry bottles, well corked, and covered with bladder or cement to prevent liquefaction; which otherwife would foon take place, owing to the great affinity the muriat has for moiture.
-The powerful effects produced by the frigorific mix. zure of muriat of lime and fnow, prefent a wide field fo: experinents to determine the polfibility of fixing fome of the gafes by intenfe cold. And we are happy to be informed by Mr Pepys, that, as foon as an
opportunity offers, he and his friends mean to make fome experiments with that view, and to communicate the refult of them to the editor of the valuable mifcel.
experiment on mercury.
 tuated in \(32^{\circ} 2^{\prime}\) fouth lat. and \(41^{\circ} 33^{\prime} 45^{\prime \prime}\) welt lon. The land of Frio is high, with a hollow in the middle, which gives it, at a diftance, the refemblance of two \(f\) eparate iflands. The paffage between the inland and the continent is about a mile broad, and feemed to Sir Erafmus Gower to be clear from fhoals.

FROST, as is well known in Scotland, is particularly defructive to the bloffom of fruit trees; and the following method of fecuring fuch trees from being da. maged by early frofts may be acceptable to many of our readers. A rope is to be interwoven among the brancises of the tree, and one end of it brought down fo as to be immerfed in a bucket of water. The rope, it is faid, will act as a conductor, and convey the cffects of the frott from the tree to the water. This idea is not new; for the following paffage may be found in Colerus: "If you dig a trench around the root of a tree, and fill it with water, or keep the roots moit till it has bloomed, it will not be injured by the froft. Or, in fpring, fufpend a veffel filled with water from the tree. If you wifh to preferve the bloom from being hurt by the froft, place a velfel of water below it, and the froft will fall into it." Pbilofopbical Magazine, \(\mathrm{n}^{\circ} 11\).

FUEL, whatever is proper to burn, or make a fire, either for warming a room or dreffing victuals. The fuel molt generally ufed in Great Britain is pit-coal, which is a very expenfive article; and that expence is greatly increafed by the walte of coal occafioned by the injudicious manner in which fires in open chimneys are commonly managed. The enormous wafte of fuel in London, for inftance, may be eftimated by the vaft dark cloud which continually langs over that great metropolis, and frequently overfhadows the whole country far and wide; for this denfe clond is certainly rompofed almott entirely of unconfumed coal, which has efcaped by the chimneys, and continues to fail about in the air, till, having loft the heat which gave it volatility, it falls in a dry fhower of extremely fine black duft to the ground, obfcuring the atmofphere in its defcent, and frequently changing the brightef day into more than Egyptian darknefs.
"I never (fays Court Rumford) view from a diftance, as I come into town, this black cloud which langs over London, without wifhing to be able to compute the immenfe number of chaldrons of coals of which it is compofed ; for could this be afcertained, I am perfuaded fo ftriking a fact would awaken the curiofity, and excite the attonifhment of all ranks of the inhabitants; and perhaps turn their minds to an object of economy to which they have hitherto paid little attention."

The object to which the benevolent anthor more particularly wifhes to direct the public attention, is the lighting of a coal fire, in which morc wood thould be employed than is commonly ufed, and fewer coals; and as foon as the fire burus bright, and the coals are well lighted, and not before, more coals thould be added to increafe the fire to its proper fize.

Kindling halls, compofed of equal parts of coal, -charceal,-and clay, the two former reduced to a fine
powder,

\section*{F U L [673] F U L.}

Fuel, powder, well mixed and kneaded together, with the Fulling clay moiftened with water, and then formed into balls of the lize of hens eggs, and thoroughly dried, might be ufed with great advantage inftead of wood for kindling fires. Thefe kindling balls may be made fo inflammable as to take fire in an inltant and with the fimallet fpark, by dipping them in a ftrong folution of nitre, and then drying them again; and they would neither be expentive nor liable to be fpoiled by long keeping. Perhaps a quantity of pure charcoal, reduced to a very fine powder, and mixed with the folution of nitre in which they are dipped, would render them Atill more inflammable.

The Count thinks that the fires which are made in the open chimneys of elegant apartments might be greatly inproved by prepariug the fuel ; for nothing (fays the) was ever more dirty, inctegant, and difgufting, than a conmon coal fire.

Fire balls, of the fize of goofe eggs, compofed of coal and charcoal in powder, mixed up with a due proportion of wet clay, and well dried, would make a much inore cleanly, and in all refpects a pleafanter fire, than can he made with crude coals; and, he believes, would not be more expenfive fuel. In Flanders, and in feveral parts of Germany, and particularly in the duchies of Jutiers and Bergen, where coals are ufed as fuel, the coals are always prepared before they are ufed, by pounding them to a powder, and mixing them up with an equal weight of clay, and a fufficient quantity of water to form the whole into a mafs, which is kneaded together and formed into cakes; which cakes are afterwards well dried and kept in a dry place for ufe. And it has been found, by long experience, that the expence attending this preparation is amply repaid by the improvement of the fuel. The coals, thus mixed with clay, not only burn longer, hut give much more heat than when they are burnt in their crude flate.

It will doubtlefs appear extraordinary to thofe who have not confidered the fubject with fome attention, that the quantity of heat produced in the combuttion of any given quantity of coals fhould be increafed by mixing the coals with clay, which is certainly an incombuftible body; but the phenomenon may be explained in a fatisfactory manner.

The heat generated in the combuftion of any fmall particle of coal exifting under two diltinct forms, namely, in that whieh is combined with the flame and fnoke which rife from the fire, and which, if ineans are not found to ftop \(i t\), goes off immediately by the chimney and is loft-and the radiant heat which is fent off from the fire in all directions in right lines:-It is therefore reafonable to conclude, that the particles of clay, which are furrounded on all lides by the flanie, arreft a part at lealt of the combined heat, and prevent its efcape; and this combined heat, fo arrefted, heating the clay red hot, is retained in it, and being changed by this operation to radiant heat, is afterwards emitted, and may be directed and employed to ufeful purpofes. In the compofition of fire-balls, the Count thinks it prohable that a certain proportion of chaff, of ftraw cut very fine, or even of faw-duft, might be employed with great advantage.

FULLING of woollen cloths (fee the method of performing the operation under the article Fulling, Encycl.) depends, like Felting, fo entirely upon the ftructure of wool and hair, that the following obferva-

Suppl. Vol. I. Part II.
tions, which are not unimportant, will be intelligible to every reader who has perufed that article in this Supplement.

The afperities with which the furface of wool is every where furrounded, and the difpofition which it has to affume a progreflive inotion towards the root, ruder the fpinning of wool, and making it into cloth, difficult operations. In order to fpin wool, and afterwards to weave it, we are obliged to cover its tibres with a coating of oil, which, filling the cavitics, renders the afperities lefs fenlible; in the fame way as oil, when rub. bed over the linface of a very fine file, renders it ftill lefs rough. When the piece of cloth is finifhed, it muft be cleanfed from this oil; which, befides giving it a difagreeable fonell, would caufe it to hoil whatever it came in contact with, and would prevent its taking the colour whieh is intended to be given to it by the dyer. To deprive it of the oil, it is carried to the fulling-mill, where it is beat with hammers in a trough full of water, in which fome clay has been mixed; the clay combines with the oil, which it feparates from the cloth, and both together are walled away by the frefn water which is brouglt to it by the machime ; thus, after a certain time, the oil is entirely wathed out of the eloth.

But the fcouring of the cluth is not the only object in fulling it ; the alternate preffure given hy the mallets to the piece of eloth, occalions, elpecially when the fcouring is pretty far advanced, an effect analogous to. that which is produced upon hats by the hands of the hatter; the filures of wool which compofe one of the threads, whether of the warp or the worof, aflume a progreffive movencnt, intruduce themfelves among thate of the theads nearelt to them, then into thore which fole low; and thus, by degrees, all the threads, both of the warp and the woof, become felted together. The cloth, after having, by the above means, become fhortened in all its dimendions, partakes both of the nature of cloth and of that of felt; it may be cut without being fubject. to ravel, and, on that account, we are not obliged to hem the edges of the pieces of which clothes are made. Laftly, As the threads of the warp and thofe of the woof are no longer fo diltinct and feparated from each other, the cloth, which has acquired a greater degres of thickuefs, forms a warmer clothing. Kuit worted alfo is, by fulling, rendered lefs apt to rua, in cale a ftitch fhould drop in it.

FULMINATING Gold. \(\}\) See Chemistry, Sufp' Fulminating Silver. \(\}\) nos \(8+9\) and \(8 j 0\).
Mr Berthollet, the inventor of fulminating bilwer, ha. ving contented himfelf with a general and concite defeription of this fubject, many practical chemills have failed in their attempts to prepare it ; and others, forming their opinions from the fpecimens which they had made, have been expofed to great danger ; as will appear from the following relation:

An ounce of fine filver was diffolved in the courfe of eight hours in an ounce of pure nitrous acid, of the London Pharmacopceia, diluted previoully with tluree ounces of diftilled water in a glafs matrafs. The folution being poured off, the refiduary black powder and the matrafs were wafhed with feven or eight ounces of warm diftilled water, and this was added to the folution. The black powder, being gold, was rejected; fome gold being thus feparable from any filver of commerce.

To the forcgoing diluted folution, pure lime-water \(4 Q\) prepared

Fulling, Fulminating.

Fu'mina- prepared with diRilled water was added gradually; for
ting. the fulution ought not to be poured into the lime water. When about thirty pints of lime-water lad been expended, and the precipitate had fublided, more lime water was adder, by fucceffive pints, as long as it caufed any precipitation. For it was deemed fitter that the precipication thould not be perfeced, than that an excefs of lime-water fhould be ufed, the earthy pellicle of the exceffive lime-water being apt to mix with the precipitate. The clear liquor being poured away, the precipitate was poured off, and wafled into a filter.
When the faline liquor had drained from it, two ounces of diftitled water were poured on the magma; and when this water had paffed, frefh portions were fuccef. fively added and paffed, until the whole quantity of water thus expended in wafhing away the nitrous calcareous falt amounted to a quart.
The filter being then unfolded, to let the magma of oxide of filver fpread on the fiattened paper, it was placed on a chalk-flone to accelerate the exficcation, and was gradually dried in the open air; a cap of paper being placed loofely over it to exclude the duft.
When the weather ferved, the cap was removed, to expofe the oxide to the rays of the tion; although this was not deemed neceffary ; and exficcation was promoted by cutting the oxide into thin flices. When perfecily dry it weighed 1 oz. 4 dwts. and about one-fifth of it was confidered as oxygen.

When aqua ammonix pure of any plarmacopocia is ufed with this oxide, either in the finall quantity which blackens it completely, or in a greater quantity, the black matter which fubfides, and which has been reprefented by fyltematic writers as the fulminating compound, has no fuch property, any farther than may be owing to the matter depofited from the alkaline folution during the exficcation.

The alkaline liquor containing the fulminating filver ought to be poured off from the infoluble powder, and expofed in a fhallow veffel to the air. In confequence of the exhalation, black hining cryftals form on the furface only, and foon join to form a pellicle. As this pellicle adheres a little to the fides of the veffel, or iraintains its figure, the liquor may be poured off by a gentle inclination of the veffel.

This liquor will yield another pellicle in the fame way; hut the third or fuurth pellicle will be paler than the former, and weaker in the explofion. The firft pellicles, wben flowly dried, explade by the touch of a feather, or by their being heated to about \(96^{\circ}\).

The quantity of water in the ordinary aqua ammonix pure renders it lefs active in the folution of the oxide, and is an impediment to the fpeedy formation and feparation of the fulminating filver; and an experimenter who has often ufed twenty grains of the oxide to produce fucceffive pellicles of fulminating filver, which may be feparately expluded with fafety, and who has perceived that the pellicles never explode whilft wet, if they be not heated, would, in all probability, refolve on the following inprovement, and expofe limfelf to the unforefeen danger of it.

Diflilled water was impregnated with as much pure ammoniac as it could eafly retain under the ordinary temperature of the air. A quantity of this frong ammoniacal liquor, equal in bulk to a quarter of an ounce of water, was placed in a fmall bottle, and 24 grains of
the oxide of filver, ground to fine powder, were added. The bottle, being almof Gilkel, was corked, to prevent the formation of that film which ufually appeared in confequence of the exhalation of the ammoniac in other experiments.

During the folution of the oxide, bubbles of the gafeous kind arofe from it, and the folution acquired a blue colour. As no filn appeared, the bottle was agitated three or four times in the courfe of as many hours, in order to promote the folution of a fmall quantity of blackened oxide which remained at the bottom. The experinienter confidering this as an ample provifion for twenty different charges, to be exploded in different circumfances, in the prefence of the fociety, intended to pour off the folution into as many fmall veffels, and to weigh the refiduary black powder, after allowing two hours more for the folution.

On the fixth hour he took his ufual precaution of wearing fpectacles; and obferving that a fmall quantity of black powder fill remained indiffulved, and that no film was yet formed at the furface, he took the bottle by the neck to fake it; knowing that it might explode by the heat of his hand, if he were to grafp it, and that the explofion in this circumitance might wound him dangeroufy.

In the inflant of fhaking, it exploded with a report that ftunned him. 'The bottle was blown into fragments fo fmall as to appear like glafs coarfely powdered. The hand which held it was impreffed as by the blow of a great hammer, and loft the fenfe of feeling for fome feconds; and about 52 fmall grains of glafs were lodged, many of them deeply, in the \(\mathbb{R}\) in of the palm and fingers. The liquor ftained his whole drefs, and every part of the fkin that it touched. Thus it appeared that fulminating filver may be made which will explode even when cold and wet, by the mere diflurbance of the arrangement of its parts, in the aqueous fuid.

In fubfequent experiments, privately and carefully conducted, it feemed that the property of expluding in the cold liquor, by mere commotion, depended on the unufual quantity or poximity of the explofive molecules in a given bulk of the liquor. And the flat bottoms, as well as the fides, of the thick veffels of glafs or pot-ters-ware, whether they flood on boards or iron plates, were always beaten to fmall fragments.

This afforded a curious inftance of the pofible equilibrium between the powers tending to retain the caloric and thofe which effect the expulfion of it ; and experiments and confiderations of this kind feemed to promife a true folution of the phenomena of Rupert's drops.

FUNCTION, a term ufed in analytics for an algebraical expreffion, anyhow compounded of a certain letter or quantity with other quantities or numbers; and the expreffion is faid to be a function of that letter or quantity. Thus \(a-4 x\), or \(a x+3 x^{2}\),
or \(2 x-a \sqrt{a^{2}-x^{2}}\), or \(x^{c}\), or \(c^{x}\), is each of them a function of the quantity \(x\).

FURD-y-Huckecut, in Bengal, fignifies a paper of defcription.
Furd-y-Sozual, paper of requeft.
FUST, in architecture, the thaft of a column, or the part comprehended between the bafe and the capital, callcd alfo the naked.

\title{
G A L
} AGUEDI, a tree peculiar to Lamalmon, in Abyf finia, is thus deferibed hy Mr Bruce. The leaves are long, and broader as they approach the end. The point is obtufe; they are of a dead green, not unlike the willow, and placed alternately one above the other on the falk. The calyx is compofed of many broad fcales lying one above the other, which operates by the preffure upon one another, and keeps the calyx hut before the flower arrives at perfection. The flower is monopetaluus, or made of one leaf; it is divided at the top into four fegments; where thefe end, it is covered with a tuft of down, refenbling bair, and this is the cafe at the top alfo. When the flower is young and unripe, they are laid regularly fo as to inclofe one another in a circle. As they grow old and expand, they feen to lofe their regular form, and become mure con-
fufed, till at laft, when arrived at its full perfection, Gaguedi. they range themfelves parallel to the lips of the calyx, \(\underbrace{\text { (}}\) and perpendicular to the ftamina, in the fame order as a role. The common receptacle of the flower is oblong, and very capaciuus, of a yellow colour, and covered with fmall leaves tike liair. The Itile is plain, fimple, and upright, and covered at the bottom with it tuft of down, and is below the common reeeptacle of the flower.

Our author fays that he has obferved, in the midule of a very hot day, that the flowers unbend themfelves more, the calyx feems to expand, and the whole flower to turn itfelf towards the fun in the fame manner as does the funfower. When the branch is cut, the flower dries as it were inttantaneunfy, io that it feems to contain very little humidity.

\section*{G A L V A N I S M.}

GALVANISM is the name now commonly given to the influence difcovered nearly eight years ago by the celebrated Galvani, profeffor of anat omy at Bologna, and which, by him and fome uther authurs, has been called animal electricity. We prefer the former name, becaufe we think it by no means praved that the phenomena difcovered by Galvani depend either upon the electric fuid, or upon any law of animal life. While that is the cafe, it is furely better to diftinguinh a new branch of fcience by the name of the inventor, than to give it an appellation which probably may, and in our opinion certainy does, lead to an erroneous theory.
M. Galvani was engaged in a fet of experiments, the object of which was to demonftrate, if poffible, the dependence of mufcular motion upon electricity. In the courfe of this inveltigation, he had met with feveral new and ftriking appearances which were certainly electrical; foon after which, a fortunate accident led to the difcovery of the phenomena which conftitute the chief fubject of this article. The ftrong refemblance which thefe bore to the electrical facts which he had befure obferved, led almoft irrefiltibly to the conclufion that they all depended upon the fame caufe. This opinion he immediately adopted; and his fubfequent experiments and reafonings were naturally directed to fupport it. The fplendor of his difcovery dazzled the imaginations of thofe who profecuted the enquiry; and for fome time his theory, in fo far at leaft as it attributed the whole to the agency of the electric fluid, was fanctioned by univerfal approbation. Of late, however, this opinion has rather loft ground; and there are now many philofophers who confider the phenomena as totally unconne t ted with electricity.

We propofe, in the firft place, to enumerate the chief fachs which have been afcertained on the fuhject; we Thall then enquire, whether or not the caufe of the appearances be the eleftric fluid; and, thirdly, we fhall examine how far it has been proved that this caufe is neceffarily connected with animal life.

Whift Galvani was one day employed in diffecting a frog, in a room where fome of his friends were amufing themfelves with cleEtrical experiments, une of them ha.
ving happened to draw a fyark from the conductor at the fame time that the profeffor touched one of the nerves of the animal, its whole body was iuftantly thaken by a violent convulfion. Aftonifhed at the plienomenon, and at firft imagining that it might be owiug to his having wounded the nerve, he pricked it with the point of his knife, to affure himfelf whether or not this was the eafe, but no motion of the frog's hody was produced. He now touched the nerve with the inftrament as at firft, and directed a fpark to be taken at the fame time from the machine, on which the contractions were renewed. Upon a third trial, the animal remained motionlefs; but obferving that he leld lis knife by the handle, which was made of ivory, he changed it for a metallic one, and immediately the movements took place, which never was the cafe when he ufed an electric fubflance.

After having made a great many fimilar experiments with the electrical machine, he refolved to profecute the fubject with atmofpheric elearicity. With this view he raifed a conductur on the rouf of his houfe, from which be brought an iron wire into his room. T'u this he attached metal conducturs, connected with the nerves of the animals dettined to be the fubjects of his experiments; and to their legs he faftened wires which rewhed the floor. Thefe experiments were not confined to frogs alone. Different animals, both of cold and warnu blood, were fubjected to them; and in all of them confiderable movements were excited whenever it lightned. Thefe preceded thunder, and correfponded with its intenfity and repetition; aud even when no lightuing appeared, the inovements took place when any ftormy cloud paffed over the apparatus. That all thefe appearances were produced by the electric fluid was obvious.
Having foon after this fufpended fome frogs from the iron pahifades which furrounded his garden, by means of metallic hooks fixed in the fpines of their backs, he obferved that their mufcles contrasted frequently and involuntarily as if from a fhuck of clecticity. Not doubting that the contractions depended on the electric thuid, he at firft fufpected that they were connected with shanges in the ftate of the atmofphere. He foon
found, however, that this was not the cafe; and having varied, in many different ways, the circunflances in which the frogs were placed, he at length difcowered that he could produce the movements at pleatue by touching the animals with two different metals, which, at the fame time, touched one another either immediately or by the intervention of fome other fubitance capable of conduciing electricity.

All the experiments that have yet been mave may be reduced to the following, which will give the ritherwife uninformed reader a precife notion of the fubject.

Lay bare about an inch of a great nerve, leading to any limb or mufcle. Let that end of the bared part which is fartheft from the limb be in clofe contact with a bit of zinc. Touch the zinc with a bit of filver, while another part of the filver touches, either the naked nerve, if not dry, or, whether it be dry or not, the limb or muifle to which it leads. Violent contractions are produced in the limb or mufcle, but not in any mufcle on the other fide of the zinc.

Or, touch the bared nerve with a piece of zinc, and touch, with a piece of filver, either the bared nerre, or the limb; no convulion is obferved, till the zinc and

A fact fo new, illuttrated by many experinients and much ingenious reafoning, which Profeffor Galvani foon publihed, could not fail to attract the attention of phyfiologifts all over Europe; and the refult of a valt number of experiments, equally cruel and furprifing, has been from time to time laid before the public by Valli, Fowler, Monro, Volta, Humboldt, and others.

Frogs, unhappily for themfelves, have been found the moft convenient fubjects for thefe experiments, as they retain their mufcular irritability and fufceptibility of the galvanic influence very long. Many hours after they have been decapitated, or have had their brain and fpinal marrow deftroyed, ftrong convultions can be produced in them by the application of the metals. A leg feparated from the body will often continue capable of excitement for feveral days. Nay, very diftinet movements have been produced in frogs pretty far advanced in the procefs of putrefaction. Different kinds of fifhes, and many other animals botle of cold and warm blood, have been fubjected to fimilar experiments, and have exhibited the fame plenomena; but the warm blooded animals lofe their fufceptibility of galvanifm, as of every other itimulus, very foon after death.
The metals. Almoft any two metals will produce the novements; but, it is believed, the moft powerful are the following, in the order in which they are here placed: 1. Zinc; 2. Tin ; 3. Lead; in conjunction with, 1. Gold; 2. Sil. ver; 3.Molybdena; 4. Steel; 5. Copper. Upon this point, however, authors are not perfectly agreed.

The procefs by which thefe fingular phenomena are produced, confits in effecting, by the nfe of the excising apparatus, a mutual communication between any two points of contact, more or lefs ditant from one
another, in a fyftem of nerrous and mufeular organs. The fphere of this mutual communication may be regarded as a complete circle, divided into two parts. That part of it which confilts of the organs of the Aninial and animal under the experiment, has been called the ani- excitatory mal are; that which is formed by the galvanie inftru arcs. ments has been called the pacitatory arc. The latter ufually confits of more picces than one; of which fome are named flays, braces, \&ic. others communicators, from their refpective ufes.

A very numerous train of experiments on galvanifm Experihas been made by a committee of the Pliy fical and Mathe- ments of matical Clafs of the National Iullitute of France; and the Freric as their report comprehends a vaft number of the moft inportant facts which are yet known on the fubject, we fhall prefent our readers with the fulntance of it (A).

The immenfe mafs of matter which refulted from the experiments of the committee, is, in their report, prefented, not in the order in which the experiments were made, but in a fort of claffifcation, by means of which a more diltinct knowledge of the fubject is obtained at one view. The facts are arranged under thefe fis heads. \(1 / f\), Refults of the different combinations and difpofitions of the parts of the animal arc. 2d, Account of what has been obferved of the nature and the different difpolitions of the excitatory arc. 3 d, Circumftances not entering into the compolition of the galvanic circle, which, neverthelefs, by their influepce, modify, alter, or entirely prevent the fuccefs of the experiments. 4 th, Means propofed for varying, diminifhing, or reftoring the fenfibility to galvanifm. \(5 \mathrm{t} h\), Attempts to compare the phenomena of galvanifm with thofe of electricity. 6th, Additional experinents, performed by M. Humboldt, in the prefence of the members of the committee; which have a reference to feveral of the proofs ftated in the foregoing articles.
I. To the number of twenty experiments were made on the anio on the animal arc. The firt feven of thefe were di- malarc. recfed to afcertain the relations between the nerves and thofe mufcles over which they are diftributed. In the laft thirteen, the nerves were cut afunder, or fubjected to ligatures; the fection or ligature being always between the extremities of the arc. Nerves'taken from different animals, or from differcnt parts of the fame animal, and joined in one and the fame arc, were anong the particular fuhjects of thefe experiments; as were alfo the folitary nerve, and the folitary mufcle, included between the extremities of the excilatory arc. There were interpofed, toa, in the courfe of thefe experiments, portions of nerves, and of mufcles, diltinct from thofe parts. And, in fome of the experiments, the animal was without the fkin and the epidermis.

The following are inferences which have been deduced from thefe experiments :
1. The animal are \(r\) ay confift either of nerves and infereaces, mufcles together, or of nerves alone, without mufcles(B).
2. Nerves are, therefore, the effential part of the animal
(A) The members of the committee were, M. M. Coulomb, Sabbatier, Pelletan, Charles, Foureroy, Vauquelin, Guyton, alias Murveat, and Hallé. M. M. Venturi, De Modene, and M. Humboldt, affifted in the experiment.
(B) We are ftrongly inelined to doubt the truth of this propofition. Dr Fowler was at firf led to think that contractions conld be excited in a limb without the metals having any communication with it, except through the medium of the nerve. Recollecting, however, that a very fmall quantity of moifture ferves as a conductor of galvanifm, lie fufpected, and our opinion perfectly coincides with his, that in every cafe where contractions
nimal are ; for the mufies are always more or lefs interfected by the nerves; and are, confequently, in part, a uervous organ.
3. All the parts of the animal are muft be either mutually continuous, or at leaft contiguous to one another. Lut even contiguity is fufficient to enable the galvanic phenomena to take place.
4. The fection or ligature of a nerve interrupts not the galvanic phenonena, if the parts which are cut afunder or bound up fill remain in clofe contiguity to une another.
5. No diverlity of the parts forming the animal are, though thefe be taken from dffferent parts of the fame animal, or even from different animals, will have power to impair its galvanic fufceptibility, provided only that thefe parts be till mutually contiguous.
6. If the integrity or galvanic fufceptibility of the animal are be fufpended by the feparation of any of its parts to fome diflance from one another, it may be reftored by the interpolition of fome fubttanees, not of an animal nature, between the divided parts. Metallic fubftances are in particular fit for this ufe. But the mutual contiguity of all the fubftances cutering into the compofition of the arc muft ever be carefully preferved. Mr Humboldt difcovered that a bit of frefh morelle (Helvella mitra Linn.) will fupply the place of a part of the nerve.
7. The mufeular organs which indicate, by contrac.
tion, the prefence of the galvanic influence, are always thofe in which the nerves of a complete animal are lave their ultimate termination.

From this it follows, that.the mufcles affected by galvanifm are always thofe correfponding to that extremity of the are which is the molt remote from the origin of the nerves of which it is compoled.
8. When all the nerves of the animal are originate towards one of its extremities, then only thofe mufeles which correfpond with the oppolite extremity are fuf. ceptible of galvanic convulfions.
9. When an animal are confifts of more than one fyftem of different nerves, which lave all their origin about the middle of the are, then will the mufeles of thefe feveral fyftems of nerves be moved alike at both the extremities of the arc.
10. It feems likewife to appear, from a variety of thefe experiments, that the opinion of thofe is inadmif. fible, who afcribe the phxummena of galvanifm to the concurrence of two different and reciprocally correfponding influences, one belonging to the nerve, the other to the mufcle, and who compare the relations between the nerve and the mufcle, in thefe phxnomena, to thofe between the interior and the exterior coating of the Leyden plial.
11. It appears, laftly, that the covering of the epidermis, in the entire animal body, acts as an obftacle to the decifive difplay of the effects of galvanifm; and
that,
are produced in a limb without any apparent communication between the metals and the mufeles, except through the medium of a nerve, the communication is in fact completed by the moifture upon the furface of the nerve. In this cafe, the animal are may be confidered as confiting of three pieces, difpefed in the following order; the nerve, the mufcle, and the water adhering to the furface of the nerve. The latter, indeed, ought rather to be confidered as a part of the excitatory arc. "When a nerve (fays Dr Fowler), which for fome time has been detached from furrounding parts, is either carefully wiped quite dry with a picee of fine munlin, or (lent this fhould be thought to injure its flructure) fuffered to remain fufpended till its moifure has evaporated, no contractions can be excited in the mufcles, to which it is diftributed, by touehing it alone with any two metals in contact with each other ; but if it be again moiftened with a few drops of water, cuntractions inftantly take place. And, in this way, by alternately drying and moiltening the nerve, contractions may at pleafure be alternately fufpended and renewed for a confiderable time. It may, indeed, be contended, that the moifture foftened, and this reftored elafticity and free expanfion to the dried cellular membrane furrounding the fibres, of which the trunk of a nerve is compofed; and thus, by removing confraint, gave free play to their organization.
"But from obferving, that in every other inftance where contractions are produced by the mutual contact of the metals, a conducting fubftance is interpofed between them and the mufcles as well as between them and the nerve; I think it would be unphilufophical not to allow, that, in the inftance in queftion, the moifture, adhering to the furface of the nerve, formed that requifite communication between the metals and the mufeles." We know of no accurate experiment by which it has ever been thewn, that centrackions can be produced in a limeb without a communication being eftablifled between the metals and nerve, and again between the mufeles and the metals, either directly, or through fume medium capable of conducting galvanifm.

To remove the only objection which can be made to Dr Fowler's cxperiment, and of which we have feen that he was himfelf aware, namely, that the nerve while dry is incapable of performing its furctions, we repeated it in the following manner: A fmall, but vigorous and lively, male frog was decapitated, and the feiatic nerve being laid bare from the knee upwards, was cut through where it paffes out of the pelvis. Fifteen minutes after the head was cut off, the nerve having leen cautioufly feparated from the furrounding parts, and coated with tinfoil in the ufual nanner, a filver probe was applied to it and its'coating, without any other communication with the mufcles, and ftrong contracticns took place in the leg. The nerve was now very carefully dried with a piece of fine linen, and the probe was applied as before to the tinfoil and the nerve; no movement whatever took place. Things remaining precifely in this fituation, one end of the probe being fill in contact with the nerve and its coating, the other end was applied to the mufcles of the thigh, and the leg immediately contracted as ftrongly as ever. Upon moiftening the nerve, the contractions were again produced by applying the probe to the nerve and tinfoil alone. We find from this experiment, which we have feveral times repeated with the utmoft care, and with the fame refult, that the dry nerve retained its functions completely. This appears to us perfectly decifive of the queftion.
that, though from its extreme tenuity, it may not al. together prevent thefe effects, yet it cannot but very materially diminifh them.
II. The Excitatory Are is ufually formed of three different pieces, made of different metals. Of thefe, one mult be in contact with the nerve; the other mult tonch the mufcle; and the third mult form the mean
of communication between thefe two. This arrangement, though not indifpenfably neceffary, is at leaft the mof convenient.

Iu refpect to the excitatory arc, the committee examined, nit, The application of metallic fubitances to form it : in refpect to which they endearoured to afcertain the number and the diverfity of the pieces of metal of which this are may be compofed ; the metallic mixtures or alloys which are capable of being employed for this ufe; the particular degree of the friction of one metal upon another, which is favourable to the exhibition of the phenomena; the different fates, in refpect to galvanifm, of metals differently mineralized. 2dly, The effects of the ufe of carbonic fubftanses in forming the excitatnry arc. 3 dly, The effects in the fame formation, of bodies, which are either noncundustors, or clfe very imperfect conductors of electricity, fuch as jet, afphaltus, fulphur, amber, fealingwax, diamond, \&c. \(4^{\text {thly }}\), The contequences of the interpofition of water, and of fubfances moiltened with watcr, between the different parts of the excitatory arc. In forming their excitatory ares, too, they made themfelves the chord of the are; they introduced into it animal fubtances which had loft their vitality; they rubbed the fuppoiters with the dry fingers, fo as to mark them with nothing but the traces of the peripiration from the fkin. They made, likewife, fome experiments for the purpofe of afcertaining the relations between, on the one hand, the extent and magnitude of the furfaces of the parts compofing the arc; and, on the other, the cffects produced by its energy. Frum
their experintents they have alfo drawn fome inferences concerning the relative efficiencies of the feveral conflituent parts of the exciting arc. It is impofible for us here to relate in detail all this train of experiments. The following corollaries exprefs the fubtance of thofe general truths, which their authors were led to infer from them.
1. The excitatory arc poffeffes the greateft power of fuferences. galvanifin, when it is compofed of at leat three diftinet pieces; each of a peculiar wature: the metals, water, and humid fubitances, carbonaceous matters, and animal fubitances, ftripped of the epidermis, being thic only materials out of which thefe pieces may be formed.
2. Neverthelefs the excitatory arc appears to be not deltitute of exciting energy, even when it confifts but of one piece or of feveral pieces, all of one proper fubflance (c). In general it mult be owned, identity of nature in the conftituent pieces, and particularly in the fupports forming the extremities of the are, diminifhes, in a very fenfible manner, its gralvanic energy.
3. The flighteft difference of nature induced upon the parts, whether by any feeble alloy, or by friction with extraneous fubltances, is at any time fufficient to communicate to the excitatory are that full power in which the identity of its compofition may have made it defective.
4. As the animal are is fufceptible of being in part made up of metallic fubllances, or fuch others as are adapted to enter into the compofition of the excitatory arc ; fo, on the other hand, the excitatory arc admits of being in part formed of thofe fubltances which are the proper components of the animal arc.
5. The energies of both the excitatory and the animal ares are alike fufpended by the feparation of their component parts, or at leaft by the feparation of thefe parts to a certain diftance.
6. Even the fmalleft degree of moifture is fufficient
(c) We do not think it has ever been proved, that one piece of metal, or feveral pieces of the fame motal, are capable of forming the excitatory arc. It is admitted on all hands, that the flighteft alloy communicates galvanic energy to a piece of metal ; that is, renders it capable of forming the excitatory arc. It is alfo known, that the metallic oxides are much lefs perfect conductors of galvanifm than their correfpunding reguli, to make ufe of an antiquated exprefion. It appears to us, that in all cafes where one metal appears to act, more efpecially where friction with the fingers, or breathing on a piece of metal furmerly inert, give it galvanic powers; in all thcie cafes, we think it probable that a llight degree of oxidation, produced in fome part of the furface of the metal, gives it activity by deftroying the homogeneity of its nature. We do not find that this circumfance has been in general fufficiently attended to. Dr Wells having difcovered that charcoal acts powerfully as an exciter when applied along with a metal, found that by friction it alfo can be rendered capable of acting fingly. What change is thus produced in it we can only conjecture; but that it is fomething which deftroys the identity of its flructure, rendering it in fome meafure a heterogeneous fubitance, mult be admitted.

Candour forces us to acknowledge, that in one of Mr Humboldt's experiments, it feems very difficult to point out any want of homogeneity in the exciting arc. He put into a china cup fome mercury exactly purified; he placed the whole near a watn flove, in order that the entire mafs might affume an equal temperature : the furface was clear without the appearance of oxidation, humidity, or duft. A thigh of a frog, prepared in fuch a manner that a crural nerve and a bundle of mufcular fibres of the fane length hung down feparately, was fufpended by two filken threads above the mercury. When the nerve alone touched the furface of the metal, no itritation was manifefted; but as foon as the mufcular bundle and the nerve touched the mercury together, they fell into convulfions fo brifk, that the fkin was extended as in an attack of tetanus. This is by far the mof decifive experiment which has heen tried on the fame fide of the queftion; but as it mult be admitted, that in moft cafes two metals are ahfoluttly neceffary, and that a fingle metal often derives activity from circumtances fo llight, that we could not a priori lave expected that they were capable of producing any change; we feel ourfelves compelled to conclude, that in M. Humboldt's experiment fome fimilar very flight circumflance had efcaped unobferved; perhaps fome gilding, or ornaments with metallic colours, in a flate of oxidation.
so join the parts of the excitatory arc, and to determine their effects upun the animal arc.
7. The influence upon the flate of the atmofphere, and of furrounding circumftances, upon the fuccefs of the experiments of galvaniin, is, confequently, very great. In order, therefore, to perform thefe experiments with due accuracy, the flate of the hygrometer, and of other meteorologieal inftruments, munt be vigilantly infpected during their progrefs; and the iufluence of the perfons making the experiment upon the fpherc within which it is made, muft likewife be carefully attended to.
8. The experiments which were made to afcertain the nature of the animal arc, together with thofe made upon the excitatory arc, with a view to the comparifon of the effects of the flef of animals, with or without the epidermis, and of the different effects of this epidermis, when it is wet and when it is dry, appear to fuggeft to us, that the epidernis is one of thofe fuhftances which diminifh or interrupt the efficacy of the excitatory arc. The epidermis is, as well as the hairs and briftles of animal bodies, among the number of thofe fubilances which deferve the appellation of idioeleftrics.
9. Examine the fubftances which are fit for the furmation of the excitatoryarc, and you will find that the greater part of thofe which have been fuccefsfully put to this ufe are fubftances capable of acting as conductors of the electrical fluid; but that the fubfances which interrupt the operation of galvanifm are generally fuch as are well known alfo to relift the tranfmifion of electricity.
10. Lafly, it appears, that the galvanic energy depends, not only upon the nature and arrangement of the component parts of the excitatory arc, but on their extent too, and on the magnitudes of their tranfiniting furfaces.
III. The committee appear to have ufed no lefs care and difcernment in experiments upon thofe circumflances which, though different from the ftructure of the gravanic circle and its two conflituent ares, have, however, a decifive inffuence upon the exhbibition of the phanomena of galvanifim. Some curious obfervations were made on the differences in the flate of the parts expofed to the galvanic action. It was afcertained, that frogs fref from the ditches did by no means exhibit the fame phonomena as thofe which had been during fome days preferved in the houfe; nor did the limbs of animals, when recently flripped of the fkin, prefent the fame appearances as after they had been fubjected to a variety of galvanic experiments; nor were the fame effects to be produced upon the parts of animal bodies which, after a certain number of trials, had been left for a while at reft, and then taken up again, as upon thufe which had been fubjected to one continued train of experiments. The committee next examined the variations in the fuecefs of the experiments upon a ftrong lively frog, which may be produced by varying the mode in which the communicator is carried from the one fupporter to the other: when the communicator is brought into contact with the fupporter, or is withdrawn from actual contact with it; when the conmunicator is brought flowly, or when it is brought rapidly, into contact with the fupporter; the effects are nearly the fame: and a frnart convulfion is, in all thefe cafes, produced at the moment of the com-
mencement of the mutual contact, or of its ceflation. But when the frog is fatigued, the effects are different. Thefe fucceffive experiments likewife affect the refultes of one another, by means even of their fucceffion folely. And they are alfo naturally fubject to be infuenced by the nature of the media amidft which they are performed; fuch as common air, water, an electrical atmofphere. The following are the infurences which have been deduced from this clafe of thefe experiments.
1. In many cafes the galvanic energy is excited by lufercnces, excreife, is exhanted by continued motion, is renovated by reft.
2. The multiplicity of the caufes by which the expcriments of galvanifm are liable to be influenced to fuccefs or failure, is fo great, that we cannot, as yct, be too cautions in either rejecting or belicving thefe accounts which we hear of the fuccefs of any fuch experiments ; unlefs when we are able accurately to appreciate all the influencing circumftances.
3. This is remarkally confirmed by a fact, which the committee have related in their paper, and which refpects the continuation of the galvanic 「pafn. \(^{\text {a }}\)

The communicator being fupported by the hand, and refting, feemingly, without change of pofition, ftill upon the fame point of contact, there is known to takc place a real change in the galvanic contact, although the communicator have remained thus apparently motionlefs.

From this, it may he farther inferred, that the final. lef poffible change in the relative fituations of the parts of the galvanic circle and the excitatory arc, is capable of producing an effect upon the fufceptible animal, and of occafioning miftakes in regard to the tuccefs of the experiment, if the utmoft care be not taken to notice and eftimate every variation that can hapреп.
4. 'The truth of the foregoing propofition is farther confirmed by the experiments upon the manner in which the galvanic movements are affected by the advancing or the withdrawing of the communieator. For thefe experiments fully evince the neceffity for the mont vigilant obfervation of every novement in the procef's of an experiment, not only collectively, but in their fucceffion, and at the different periods of the operation.
5. It fhould feem that there are, in the formation of the excitatory arc, independently of its modes of actingin the galvanic operations, certain enervating, and certain exciting difpofitions; of which fome not only angment or diminifh the energy in the prefent inftance, but, befides, difpofe the animal to a greater or a fmaller fufceptibility, under fubfiquent experiments.
6. In order to accuracy of experiment, and to the correct afcertaining of the effects of an experiment. it is of great importance to know the precife flate of the animal, the manner in which it has been preferved and fuftained to the prefent moment, the fate of the at. mofphere, particularly as it is indicated by the hygrometer, hy the barometer, the thermonjeter, and the electrometer.
7. It were to be wifhed, that in making a fatement of experiments of different forts, thefe fhould be arranged in the order of their efficacy, and that there might thus be formed a galvanic foale, which fhould help us to determine the precife degree of the galranic
fufceptitility.
fufceptibility of any animal in this or that particular ftate or pofition, flould direez us in fubjecting every fuch animal only to experiments fuitable to its particular fufceptibility ; Mould enable us to eftimate, from the efficacy or ineffacty of our experiments, the galvanic value of the eircumflances in which we every day find ourfelves, and hould enable us to judge when the fuccefs or mifcarriage of an experimeut can afford room for certain conclufions abfolutely negative or affirmative.
IV. In their experiments upon the means of varying, diminißbing, and renezuing the fufceptibility of animal bo. dies to the influence of galvanifm, the committee exa. nined, itt, the influence of electricity upon that fufceptibility : 2d, the effects of the mufcular organs, and of certain liquors, fuch as alcohol, the oxygenated muriatic acid, the folutions of potafl and opium, upon the galvanic properties; 3 d, and at the medical fehool of Paris they made a number of experiments, in order to afeertain what new modifications the galvanic energy undergoes in varions cafes of fuffoeation or afplyyxia. Thefe laft-mentioned experinents were made upon hotblooded animals, of which fome were reduced into the ftate of alphyxia by fubmerfion, fome by ftrangulation, fome by the action of gafes, while others were killed in vacuo by the difcharge of the electric fpark. In that fuffocation which was produced by fulphurated hydrogenous gas, by earbonic vapours, and by fubmerfion, in which the animal was fufperded by the hinder feet, the galvanie fufeeptibility was eutirely deftroyed. The galvanic fufceptibility was only fufpended by fuffocation produced by the pure carbonic acid confined under mercury. It was diminifhed, but not deftroyed, in thofe cafes of fuffocation, which were occafioned by fulphurated hydrogenous gas that had loft a portion of its fulphur, by gas ammoniac. gas azute, or fuch gafes as had been exhaulted of their pure air by refpiration; and the fame thing was found to take place in animals which had perifhed by total fubmerfion. But the galvanic fufceptibility furvived unaltered in fuffocations brought on by fubmerfion in mercury, by pure hydrogenous gas, by carbonated hydrogenous gas, by oxygenated muriatic aeid, by fulphureous acid; as alfo when the fuffocation was oceationed by ftrangulation, by the abftraction of the air in the air-punp, or by difcharges from an electrical battery. The refults of the experiments at the medical fchool fuggefted the following reflections:
1. Though it be true that all cafes of fuffecation refemble one another in the privation of refpirable air, and in the fufpenfion of the functions of refpiration, and of the circulation of the blood; yet, in their other circumftances, they are fubject to great differences, arifing from diverfity of nature in the fublanees by which they are oceafioned.
2. Of thefe caufes, fome appear to act with a nore thorough efficaey, penetrating at once all parts of the nervons and mufcular fytems. Others again feem to act but fuperficially, producing only pulmonary afphyxia, with its immediate effects.
3. One of the noot remarkable changes not confined to the organs of refpiratien, confints in the alterations produced on the galvanic fufceptibility. In that refpect the various cafes of afphyxia differ greatly one from another.
4. The flate of the irritablity of the mufces, when examined by means of bodies, the mechanical action of which caufes the mufeles to contrast by irritating them, is far from always correfponding to the flate of thẹir galvanic fufeeptibility.
5. Laftly, the caufes of fuffocation or afphyxia, do not act upon all parts of the mufcular fyitem in the fanse manner; but the licart is very often found in a ftate extremely different from that of the other mufcles.
V. The comparifon lurween the phenomena of galvanifin and thofe of clearicity is perlaps one of the mott interefting oljects of attention in the whole body of interefting oljects of attention in the whole body of of galva.
animal phyyiolugy. It is weil known that Galvani was nifm with aceidentally led to his diforery by obferving the mo-thofe of etions of foine frogs, at a certain ditance from an elec. \({ }^{\text {Icctricity- }}\) trical machine difcharging fparks. The cummittee from the inflitute made, therefore, fome attempts to afeertain the relations hetween electricity and galvanifin. Having firlt paid due attention to the fufeeptibility of animals toward the influence of electrieity, they then fought to difcover to what precife degree aninnals divelted of the natural covering of the epidermis were liable to be affected by the variations of the electrical fluid in the atmofphere around them. Next, comparing the fufeeptibility of electricity with the fufceptibility of galvanifn, they perceived that quantities of the electrical fluid, fuch as are flill capable of being very aceurately meafured by the electrometer, are, however, often too weak to act upon a frog that retains the mont perfect fenfibility to all the energy of galvanifin. The niembers of the committee purpofe to profecute farther their experiments upon this part of the fubject.
VI. The following are the general refults of the ex-Refule of periments made by M . Humboldt in the prefence of fine expethe committee:
1. There is ne truth in the affertion of certain phyfiologits, that the experiments of galvanifm fayl when tried upon the heart and thofe other mufeles of which the contractions depend not upon volition; for thefe organs have been found to be actually fubject to the influence of galvanifin (D).
2. The effects of galvanifm are liable to be interrupted by the conltriction of a berve, whenever both the nerve and the conflticting ligature are enveloped in the flefh of the animal body (5).
3. The powers of the exciting arc may be renovated or deltroyed, even though its fupporters remain the fame, and althongh the extremities of the are be unchanged. Only the relations of the intermediate matters require to be altered.
4. There are at mofpheres of galvanifm.
5. There are fubfances which, though in an eminent mauner conductors of electricity, yet interrupt the motions of galvanifm.
M. Humboldt had performed alfo other experiments which,
(D) This was demonftrated fix years ago by Dr Fowler.
(E) Dr Valli made this obfervation foon after the difcovery of galvanifm.
which, when he nttempted to repeat them before the committee, could not be brought to fucceed, on account, as was fuppofed, of the feafon of the year.

Such are the principal refults of this valuable train of experiments upon galvanifin. From them our readers will perceive that this interclling fubject is till very inperfectly underflood, and will form forme idea of the importance of the difooveries which a diligent profecution of it promifes to the philofopher and the phyfician.

The effects of galvanifm upon fome of the organs of fenfe are no lefs flriking than thofe which we have feen it capable of prolucing upon the mufcles.

If the upper and under furfaces of the tnngue be coated with two different metals, and thefe be brourght into contact with cach other, a peculiar ferfation, refembling tafte, is produced in the tongue the monent that the metals touch each other. With the greater number of metals this fenfation is fearcely perceptible; but with zine and gold, zinc and filver, or zine and. nolyblena, it is very flrong and difagreeable. Dr Fowler thinks it is flrongett with aine and gold; to us it appears a good deal flronger with zine and filver. It is fenfilly fronger when the zinc is applied to the upper, and the filver to the under furface of the tongue, than when this order is inverted. The fenfation is mof diftinct when the tongue is of the ordinary temperature, and the metals of the fame temperature with the tongue. Any confiderable increafe or diminution of heat in either greatly leffens the effect. Mr Subhir of Berlin, in his Theorie des Plaifers, p. 155, (publifhed in 1767) takes notice of the difagiceable tafte produced by iilver and lead in contact upon the tonguc. This is the firt intance of galvanifm that had been made public.

To enfure complete fuccefs to the experiment, the metals ought to be allowed to remain fome time in contact with the tongue before they are made to touch each other, that the tafle of the metala themfelves may not be confounded with the fenfation produced by their mere contact. Whatever has a tendency to blunt the fenfibility of the tongue, as opium, alcohol, acids, and the like, diminifhes the effect of the metals.

It is difficult to defcrite the fenfation thus produced accurately. It has been called fubacid; but we think it inore nearly refembles the effect produced by allowing a grain or two of nitre to lie upon the tongue for fone time, than any other tafte with which we are acquainted. Joined to chis, there is evidently a metallic tafte, which varies with the metal employed; but we are inclined to confider this as the ordinary effect of the metals upon the tongue, which carnot be perfectly diftinguithed from that oecafioned by their mutual contact.

This tafte can alfo be produced by applying one of the metals to the tongue, and the other to any part of the Schneiderian membrane. Profeffor Robifon has made many experiments of this kind, the refult of which is contained in a letter to Dr Fowler. "I find (fays he), that if a piece of zinc be applied to the tongue, and be in contact with a piece of filver which touches any part of the lining of the mouth, noftrils, car, urethra, or anus, the fenfation refembling tafte is felt on the tongue. If the experiment be inverted, by applying the filver to the tongue, the irritation produced by the zinc is not fenfible, except in the mouth and the

Suppl. Vol. I. Part II.
urethra, and is very night. 1 find the irritation by the zinc ftrungett when the contact is very flight, and confined to a narrow fpace, and when the contact of the filver is very extenfive, as wlsen the tongue is applicd to the cavity of a filver fpoon. When the cinc touches in an extenlive furface, the inritation produced by a narrow contace of the filver is very ditinct, efpecially on the upper fide of the tongue, and along its margin. This irritation feems to be mere pungeney, withont any refemblance to tafte, and it leaves a latting impreffion like that made by cauftic alkali.
"When a 10 d of zise, and une of filver, are applied to the roof of the mouth, as far back as pofinle, the ir. ritations produced by bringing their outer ends inton contact are very throng, and that by the zine refembles tatte in the fame mamer as when applied to the tongue."
M. Volta found, that when a tin cup, filled with an aikaline liquor, is held in one or both lands previoufly moiftened with water, if the point of the tongue is dipped in the liquor, an acid tafte is pereeived. This is at firt dittinct and pretty ftrong, but gradually yivlds to the alkaline tatte of the liquor. The acid tatle is ftill more remarkable, when, inftead of an alkaline liquor, an intipid mucilage is made ufe of. The fane philofopher found, that when a cup made of tin, or, What is better, of zine, was filled with water, and phaced upon a filver fupport, if the point of the tongue was applicd to the water, it was found quite infipid, till he laid hold of the filver fupport, with the hand well moiftened, when a very diflinct and very ftiong acid tafte was immediately perceived.

If one of the metals be applied to the tungue, and the other to the ball of the eye, a pale luminous flafi is perceived when they are brought into contact with each other, and the fenfation refembling tatle is at the fame time produced in the tongue. A flafly is, in like manner, produced when one of the metals is applied to the eye, and the other to any part of the palate, fauces, or infide of the cheek. This experiment requires a good deal of attention in the performance; care mult be taken not to prefs the piece of metal agaiuft the ball of the cye, lett a flath thould be produced hy the mere mechanical preffure. It fhould be cautioufly introduced between the eye-lins, till it juft touch any part of the ball ; and it fhuuld be allow ed to remain in that fituation for fome time before it is brought into contact with the other piece of tretal, that the parts may be fo far accuftumed to it as to admit of the fenfations produced being properly attended to. The experiment fucceeds very well with tian and filver; but the flafh is more bright when zine and gold are ufed. The piece of metal which is applied to the ball of the eye mult be finely polithed, otherwife the mechanical irritation is fometimes fo great as to prevent the flafi from being perceived. Dr Robifon lias obferved, that the brightnefs of the flafh correfponds with the extent of contact of the metal with the congue, palate, fauces, or cheek.

If a piece of one of the metals be placed as high up as poffible between the gums and the upper lip, and the other in a fimilar fituation with refpect to the under lip, a very vivid flafh of light is obferved at the moment that they are brought into contact, and arother at the inflant of their feparation. While they yemain in contact, no flafh is obferved.

When a rod of filver is thruft as far as poffible up 4 R one
one of the noflrils, and then brought into contact with a piece of zinc placed upon the tongue, a very frong flath of light is produced in the correfponding eye at the inftant of contact. We have fometimes imagined that the flafh in this experiment was produced before the metals actually touched; but in this we nay have been deceived.

The following curious experiment was firlt marle by Profeflor Robifon: "Put a plate of zinc into one cheek, and a plate of filver (a crown piece) into the other, at a little diftance from each other. Apply the cheeks to them as exteufively as puffible. Thrut in a rod of zinc between the zinc and the cheek, and a rod of filver between the filver and the other cheek. Bring their outer ends flowly into contact, and a fmart convullive twitch will be felt in the parts of the gums fituated between them, accompanied by bright flafhes in the eyes. And thefe will be dittinetly perceived before contact, and a fecond time on feparating the ends of the rods, or when they lave again attained what may be called the friking diflance. If the rods be alternated, no effect whatever is produced." - The flaftes produced in this laft experiment are rather more vivid than any which we have been able to excite by the other methods. The convulfive twitches are very diftinct, and fomewhat painful, but quite different from the fenfation produced by an electric fhock. If the edges of the tongue be allowed to touch the plates of metal in the cheeks, the fenfation refembling tafte is felt very ftrongly; but this does not in the leaft impair the 0 . ther effects of the experiment.

No method has yet, we believe, been difcovered of applying the galvanic influence fo as to affect the fenfes of fmelling or hearing. We have tried many experiments with this view, chicfly on the organs of fmelling, but hitherto without any fuccefs (\(F\)). Neither has the fenfe of touch been affected by it, unlefs, indeed, tlee following experiment be confrdered in that view: Let a fmall portion of the cuticle be remored from any part of the body by a Tharp knife, and carry the incifion to fuch a depth that the blood fhall jult begin to ooze from the cutis vera. Let a picce of zinc be applicd here, and a piece of filver to the tongue; when they are brought into contact, a very fmart irritation will be felt at the wound.

Some very lingular facts of this kind have been difcovered by M. Humboldt, who had the refolution to make himfelf the fubject of many well-devifed experiments. One of the moft remarkable of thefe is the folluwing: He cauled two bliftering plafters to be applied on the deltoid mufcle of both his own fhoulders. When the left blifter was opened, a liquor flowed out, which left no other appearance on the flin than a flight varnim, which difappeared by walhing. The wound was afterwards left to dry up: this precaution was neceflary, in order that the acrid humour which the galvanic irri-
tation would produce, mirht not be attributed to the idiofyncritis of the veftels. This painful operation was fcarcely commenced on the wound, by the application of zine and filver, before the ferous humour was difcharged in abundance; its colour became vifibly dark in a few feconds, and left on the parts of the fkia where it paffed traces of a brown inflamed red. This humour having defecnded towards the pit of the flomach, and flopped there, caufed a rednels of more than an inch in furface. Thic humour, when traced along the epidermis, left ftains, whicl, after having been wafhed, appeared of a bluifh red. The infained places having been imprudently walhed with cold water, increafed fo much in coluur and extent, that M. Humboldt, as well as his phydician Dr Schalleru, who affitted at thele experiments, entertanced fome apprehenfion for the confe. quences.

Having now taken notice of the principal facts that are hitherto known in galvanifm, we proceed to confider fome of the leading opinions on the fubject.

The firft writers upon the difcovery of Galvani feem Phensmealmolt univerfally to have talien it for granted, that the ma of galva phenomena depend on the electric fluid; and leaving this \({ }_{\mathrm{p}}\) nifin fup- fore very important queftion behind them, proceeded to ex-fult from eplain how this fluid produces fuch effects. The celebra. leetricity; ted difcoverer of this influence bimiclf confiders a mufcle as the perfect prototype of a Leyden phial. When a mufcle contracts upon a connection being formed, by means of one or more metals between its external furface and the nerve which penetrates it, M. Galvani contends, that, previoufly to this effect, the inner and outer parts of the mufcle contain different quantities of the electric fluid; that the nerve is confequently in the fame ftate, with refpect to that fluid, as the internal fubflance of the mufcle; and that, upon the application of one or more metals between its outer furface and the nerve, an clectrical difcharge takes place, which is the caufe of the contraction of the mufcle. Thus the nerve is fuppofed to perform the office of the wire connected with the internal furface of the phial ; and the excitatory arc is confidered mercly as a conductor.

This theory appears to ns jult as incapable of explaining the phemomend of galvanifm as it is inconfiftent with the known laws which regulate the motions of the electric fluid. We fhall not confider it minutely ; for we hope it will foon appear highly probahle, if nut certain, that the clectric fluid has no thare in the production of the pheromena in queftion. If this be the cafe, all the different modifications of that theory muft of courfe fall to the ground. At prefent we faall content ourfelves with afking the following queftions:
1. How is it polfible for the electric fluid to be con- 20 denfed in a mufcle, which is wholly furrounded by fub-fition ill flances capable of conducting that fluid?
2. If we fuppofe there is fome non-defeript non-conducting fubstance placed between the external and internal
(f) Profeffor Robifon lans long ago obferved, that the flavour of a pinch of fnuff taken from a bex made of tin-plate, which has been long in ufe, fo that the tin coating is removed in many places, is extremely different from that of fnuff when taken from a new box, or a box lined with tin-foil. The fame difference is obferved when we rub a piece of pure till, or of pure iton and a half worn tinned plate, with the finger. Alfo, if we rub a caft fteel razor, and a common table knife confifting of iron and fteel welded togethcr. This is furely owing to a caufe of the fame kind.
ternal parte of a mufcle, which may admit of the one being pofitively, and the other negatively electrified at the fame time-how comes it to pafs that a difcharge does not take place, and a confequent contraction enfue, when any fubttance whatever, capable of conducting the eleatric flid, is interpofed between the nerve and the external firtace of the mufcle? For example, when the nerve and mulcle are laid bare, and the animal thrown into water; or when the nerve is cut throngh, and the end applied to the external furface of the murcles.
3. How does it happen, when one difcharge actual. ly takes place, in conlequence of the application of the escitatury arc, that the balance is not intantly rettered? That this does not happen, appears by the fame mufcle and nerve being eapable of producing many hundreds of fimilar, and equally ftrong difcharges, with. out any apparent means of the cquilibrium being again ditturbed.

We have never feen any anfwers to thefe queftions which appeared to us at all fatisfactory; and till we have feen them anfwered, we mutt be excufed for difbelieving M. Galvani's theory.

One of the earlict writers, and one of the molt affiduons inveftigators of the phenomena of galvanifm, is Dr Valli. He differs in opinion from Galvani upon feveral points; but agrees with him in thinking eleetricity and galvanifm the fame. Let us confider the proofs by which he fupports this doctrine.
"I have afferted (fays he), that the nervous fluid is the fame with electricity, and with good reafon; for
27 \({ }^{21}\) "Sul)fances which conduct electricity are conductors hich \(V\) alli likewife of the nervous fluid.
rdeavous "Subitances which are not conducturs of electricity fupport do not conduct the nervous fluid.
"Non-conducting bodies, which acquire by heat the propecty of conducting electricity, preferve it likewife for the nervous fluid.
"Cold, at a certain degree, renders water a non-conductor of electricity as well as of the nervous fluid.
"The velocity of the nervous fluid is, as far as we can calculate, the fame with that of electrisity.
"'The obitacles which the nerves, minder certain circumitances, oppofe to electricity, they prefent likewife to the nervous fluid.
"Attraction is a property of the electric fluid, and this attraction has heen difcovered in the nervous fluid.
"We here fee thee greateft analogy between thefe fluids; nay, I may even add, the characters of their identity."

That there is a confiderable analogy between \{ome of the effects of the eletric fluid and fome of the phenomena of galvanifm, we readily admit ; but that "the characters of their identity" are anywhere to be found, we abfolutely deny. In the above paffage, Dr Valli confiders it as certain that the nervous fluid is the caufe of the phenomena difcovered by Galvani. But it has never been demonftrated irrefragably, that any fuch thing as a nervous fluid exifts, and ftill lefs that this is the fame with the influence difoovered by Galvani.

That bodies are, in general, conduCtors or non-conductors of galvanifm, according as they are conductors or non-conductors of electricity, we believe to be true ; but this rule is by no means without exception, as it certainly would be, if galvanifm and eleetricity were the
fame. There is an experiment of Dr Fowler's, which feens to thew that water is a more powerful condicetor of galvanifin than mercury; though the reverfe is gencrally allowed as to electricity.

If the abdomen of a frog be filled with water, and a filver probe pafied through it fo as to touch the feriatic nerves, no contrachions are produced; weither do they appear when the prohe is touched ahove the firface of the water with a piece at zinc. But if the zinc be applied to the probe at the furface of the water, contractions are produced as vigorues as if both the metals touched the derve. Ifere the water ferves as a conducting medium betwen the nel ves and the point where the metals touch each other: but if the abdomen be filled with mercury inflead of water, no coneractions are produced by applying the filver prohe to the nerves, and touching the probe,with the zinc at the furface of the mercury. We do not fec how this experiment can ie accounted for, except by allowing that water is a more powerful conductor of galvanifin than mercury.

If this experiment thould be thought inconclufive, we have the authority of M. Humboldt, and of the commit. tee of the National Intlitute of France, for fay ing that there are fubflances which, thungh in ala eminent manner conductors of electricity, yet interrupt the motions of galvanifm. This is certainly fufficient to take away all weight from Dr Valli's two freft reafuns for confidering thefe two fluids as the fame, viz. that all conductors of electricity are likewife conductors of galvanifm ; and that all bodies which do not conduct the former are alfo non-conductors of the latter. There two are by far the moft important of his reafons; and if they were true in their full extent, they would certainly theiw a very friking analogy, though they would by no means deferve the appellation of "characters of identity."
As to the Doctor's two next propofitions, which regard the effects of heat and cold in rendering bodies conductors or non-conductors, they are, in fact, only branches of the two firt ; and as we have feen that thefe are not univerfally true, we might admit that they are correct in this particular, without weakening our argument. For this reafon we flath not confider them minutely; but we may obferve that Dr Fowler's experiments fhew that boiling water, and water coolcd duwn to the freezing point, both conduct this influence as well as water at the ordinary tomperature of the atmofphere. If any change in the colducting power takes place beyond tiefe points, it may with greater probability he alcribed to the ehanges of form which the water undergoes, than to the increafe or diminution of its temperature.

We confefs ourfelves pecfecly ignorant of any data upon which Dr Valli could found a calculation, the refult of which could fhew that the velocity of the nervous fluid is the fame with that of clectricity. Suppofe we fhould take it into our heads to affert that the velucity of galvanifm is the fame with that of light, we apprehend our author could not eafily demonftrate the contrary. Neither, in all probability, would he confider this affertion of ours as a fufficient proof that galvanifm and light are the fame.
With regard to the next propofition, that "the obfacles which the nerves, under certain circumftances, oppofe to electricity, they prefent likewife to the nervous luid;" we may renark, that any obflacle which
deftroys the functions of a nerve conpletely, will prevent the mufcles which are fupplied by that nerve from coniracting upon the application of any fimulus whatever (G). . It does not, however, by any means follow, that the paffage of either the gralvanic or the electric tluid is prevented. The nerves may fill he very good conductors of both, though the mufcle is deprived of all power of contracting. That there are obifacles, howcrer, which the nerves, under certain circumftances, prefent to the paflage of electricity, but which they do not muder the fanse circumitances prefent to galvanifm, we think abundantly demonflated by Dr Valli's own experiments.
" I have frequently obferved (fays he) that the legs, of which the nerves had been tied at a certain diftance from the mufcles, did not feel the action of a certain
quantity of artificial electricity, although they were violently convulfed by exciting that which was inherent and peculiar to them." What then was the canfe of the difference obferved in thefe cafes between the effects of galvanifin and electricity? Was it, that the quantity or degree of the former exceeded that of the latter? Be it fo.

Dr Valli informs us, that in his experiments, an electric charge which could flath through a thicknefs of air equal to .035 of an inch, produced no movement in the leg of a frog of which the crural nerve was tied, while the other leg, of which the nerve was left free, underwent confiderable movements.

That the influence difcovered by Galvani can pafs through an exceeding thin plate of air, is certain, as it is tranfmitted from link to link of a chain, where no confiderable force is ufed to bring the links into contact. Dr Robifon's experiment, too, in which the flafhes of light are diflinctly obferved before the rods of filver and zinc touch each other, is another proof of the fame fact ; and, if we be not deceived, the fame thing takes place when a rod of fllver thrutt up the nottril is applied to a piece of zinc in contact with the tongue. But that it will only pafs through an exceed. ing thin plate of air, any man may convince himfelf by an experiment firft iried by Dr Fowler, which is eafily repeated. If a ftick of fealing-wax be coated with tinfoil, it will be found a very grood conductor ; but if, with a tharp pen-knife, an almolt imperceptible divifion be made acrofs the tinfoil, even this interruption of continuity in the conductor will be found fufficient effectually to bar'the paffage of galvanifm.

We find, then, that a quantity of the electric fluid which can pais through a plate of air of the thicknefs of .035 of an inch, is obftructed by a ligature upon a nerve, while the galvanic influence pafies readily along a nerve included in a ligature, but is obleructed completely by making an almoft imperceptible divifion in a good conductor. The plate of air in this cafe furely is not near .035 of an inch in thicknefs. It refults inconteftibly, from a comparifon of thefe two experiments, that there is, between thefe two agents, fome other difference befides the mere degree of intenfity.

We come now to the laft reafon which our author
affigns for his belief that galvanifin, or, as he choofer to call it, the nerpous fluid, is the fame with electricity. It will he found a very important one. That property by which bodies charged with the electric fluid attract or repel other bodies, according as they are in the fame or the oppofite flate of electricity from themfelses, is fo flriking, and at the fame time fo univerfal, that it has been very properly adopted as the meafure of this fluid. If it were true, then, that the galvanic influence poffeffed the fame propertics of attraction and repultion as the electric fluid, this circumftance would certainly increafe the analogy between then very much. As we have already feen, however, that they differ in other efo fential points, cren if it were true that they agreed in this, it could coultitute no proof of their identity. But if, on the other hand, we fhould find that this affertion of our author is founded on error, and that the galvanic influence poffeffes in no degree whatever thofe properties of attraction and repullion which have always been juflly confidered as efleutial characteriftics of the electric fluid, we fhall then be fully juftified in afferting, that thefe two agents, however much they may refemble each other in fome lefsimportant particulars, are in their nature totally diflinet and monnected.

Let us examine the proofs by which Dr Valli's af firtion is fupported. He tells us, that he obferved the hair of hairs of a moufe, attached to the nerves of frogs, by ledtricity. the tinfoil with which he furrounded them, alternately attracted and repelled by each other, whenever another metal was fo applied as to excite contractions in the frogs. We are very far from meaning to infinuate that Dr Valii did not fee, or think he faw, what he thus defribes; but that the motion of the hairs mut have arifen from fome caufe, different from that to which he afcribed it, cannot admit of a doubt; for hairs, in fuch a ftate of electricity as he fuppofes, never attract, but always repel each other.

Dr Fowler, who has paid paticular attention to this part of his fubject, has many times repeated this experiment, both in the manner deferibal by Dr Valli and with every variation in the difpofition of the hairs which he could devife : but whether they were placed on the metals, the nerves, or the mufcles, or upon all at the fame time, he has never in any inftance been able to obferve them agitated in the nighteft degree. He has made fimilar experiments upon a dog, and upon a large and lively fkate, by difpoling, in the fame way that Valli did the hairs of a moufe, flakes of the fineft flax, fwandown, and gold leaf: but although the contractions produced in the fkatc, by the contact of the metals, were fo flrong as to make the animal bound from the table, not the lealt appearance of electricity was indicated. He next fufpended from a tlick of glafs, fixed in the ceiling of a clofe room, fome threads, five feet in length, of the flax ufed in the former experiment ; and brought fome frogs recently killed, and infulated upon glafs, as near to them as pollible without touching: but the threads were in nowife affected by the contractions produced in the frogs.

In a very ingeninus paper upon galvanifm by Dr Wells,
(G) We do not here mean that contraction which mufcles are fufceptible of long after death, upon having their fibres mechanically irritated, which is produced by what phyliologifis have called the vis inflia, and which is perfectly known to our cooks, as it was to their predeceffors in the Roman kitchens, as the foundation of the art of crimuing. We at prefent confine ourfelves to contraction produced through the medium of the nerres.

Wielle, which is pullifited in the London Philufophical Tranfactions for : 795 , that gentleman maintains the opinion, that the influence difcovered by Galvani is clectrical. He admits, that it is not attended with thufe appearances of attraction and repultion which are heth to be the tells of the prefence of chatricity; but he contends, that " neither ought figns of attraction and repulion to be in this cafe prefented on the fuppofition that the influence is electrical ; fince it is neceffary, for the exhibition of fuch appearances, that bodics, after becoming elcetrical, fhould remain fo during fome fonfible pontion of time; it being well known, for example, that the paflige of the charge of a Leyden phial, from one of its furfaces to the other, does not affect the moll delicate electrometer, fufpended from a wire, or other fubftance, which forms the communication between them."

That the charge of a Leyden phial does not, in paf. fing along a wire, affect anclectrumeter, is certain : and it is equally true, that we have no means of applying an electrometer to a quantity of galvanifm in a thate of reft in a body. If this influence ever exits in fuch a Itate, we have no teft by which wee can difecuver its prefence; and it is only from the effects which it produces in tranfitu that we know of its exiftence. But the clectric fluid, in paffing from link to link of a chain, fenfibly affects an electrometer; and in Dr Fowler's expe. riment with the fkate, for example, as more than one piece of metal is employed as an exciter, the fluid, in paffing from one piece to another, fhould have affected the light fubftances which were placed upon them. This appears to us a fufficient anfwer to the objection ftarted by Dr Wells: but the fame ofjection having been latcly made to us by a gentleman from whom we fhall ahways reccive every fuggeltion with uncommon deference, we thought it worth while io try the fullowing experiment:

Three hours after a frog had been decapiated, it fhewed ftrong figns of galvanic fufceptibihiy. One of the feiatic nerves being coated with tenfuil in the ufial manner, the leg was laid upon a plate of zinc. A gentleman was defired to lay hold of the nerve and its coating with the fingers of one hand, which had been previounly dipped in water, while with the other hand, alio wet, he held the end of a fnall brafs chain about twon inches in length. Another gentleman now took hold of the other end of the chain, and, with a filver probe, held in his other hand, tunched the plate of ainc The influence being thus made to pafs through the clain, the leg contracted vigoroufly; but a very fenfible electroncter, held fo near to the chain as almolt to totuch it, was neither attracted nor repelled. Ja performing this experiment, it was neceflary to have the hands wet, as the dry cuticle tends much to abll ruct the palfare of galvanifin; but the utmoft care was taken that the chann thould be perfectly dry, otherwife the influence might have been tranfmitted by the moillure upon its furface without paffing through the chain itfelf.

To avoid the poffibility of this happening, the expcriment was varied in the following mauner:'The frog's leg was laid upon a plate of zinc, and the nerve upon a plate of filver. A gentleman now took a filver probe, and one end of the hrafs chain in contact with it, in one hand ; and in the other hand he held the other end of the chain in contact with a rod of zinc. He now touched the filver plate with the rod of filver, and the
zine plate with the rod of zinc. As the infurence was not now to be made to pals through 'his body, there was no neceffity for his hands being wet ; the whole excitatory arc was therefore made completely dry. In this way very flong contractions there excited in the leg , and ftill the clectrometer was not affected in the fnallefl degree when brought wear the chain.

It is proper to obferve, that Dr Valli, in his affertion that attraction is a property of galvanifm, does not reft entirely upon his own obfervation: a committee of the Academy of Sciences at Paris performed the following experiment along with him: "They placed a prepared frog in a reffel which contained the cleftrometer of M. Coulumb, charged negatively and politivels by turns. Ia buth cafes, in exciting the animal in the common way, the ball of the electrometer was attracted." It appears to us that Dr Valli and the committee have been deceived hy the friction produced by the motion of the animals under their experiments having excited fo much clectricity as to affect the eleetrometer. The firt time we tried the experiment abovementioned with the brals chain, we were almoft mifled by a fimilar circunftance. Infead of an artificial electrometer, which we lappened not to have at hand, we made ufe of a yery lung and flender human lair; and we found that it was ftrongly attracted by the chain. Upon an attentive exammation, however, we found that this did not arife from the action of the influence paffing thro' the chain, but from the fate of the hair itfelf, which was fo highly electrical as to be ftrongly attracted by every conducting fubftance which it approached. Upon fubfitnting another hair, which flewed no mark of being either politively or negatively electilied, it was neither attracted nor repelled by the chain. From the above, or fome fimilar circumfance, it is probable that Dr Valli's miftake has originated ; but we are confident, that whoever will repeat the experiment with fufficient attention, will find the refult precifely as we have de. fcribed it.

Perhaps it may fill be faid, that although we have never been able to difeover attraction and repulion as properties of galvanifm, this mayarife from our not being able to accumulate this infucnce in fufficient quantity. To this reafoning, if reafoning it can be called, we oppofe the followine confiderations, which ftate a diffenilarity in the phenumena of electricity and galva- the phenonifm, the feemerabfolut ly ireconcileable with mena of identity of the caufe.

Nothing is more . and of elec. of electricity than this, that all thofe appearances which fult not we call allrailions, repulfons, abfragions, and aicumula from the tion of elearic fluid, are precifely fimildr to what would be the appearances, if electricity were a fluid, whofe particles repel each other, and attract the particles of other matter, according to a certain law (Sec Electricity, Suppl.). Of all thofe phenomena, the mot remarkable is the accumulation of clectric energy (to give it no more definite name), by means of thin idio. electrics, coated with non-electrics; fuch, namely, as are exluibited by the Leyden phial, the condenfer, the doubler, \&c.

If the phenomena of galvanifm are prorluced by the paffage of electric Auid from one extremity of the excitatory are to the other, this paffage will be regulated by the known laws of electricity. It may therefore be
accumulated (in tralfitu) by means of an apparatus fimilar to the co-ted pane, or to the condenfer. Yrofeffor Robifon, with this view, made the following experiments:
1. He made a jert of the conductor to his condenfer, or collector of atmofpheric cledtricity, confith of a long glafs rod, on one fide of which was fattened (with varnih) a very natrow flip of tinfoil; there was a fine point at one end of this rod, and a gold leaf electrometer at the other. This apparatus was infulated at one end of a room 19 feet long, having a window in the middle of each fide. A fmall electric machine was placed at the other end. On a dry day, with a gentle breeze in a direction acrofs the room, both windows were opened a little way, fo that there was a continual ftream of air acrofs the room. The machine was worked; and after a fhort time had elapfed, the electrometer began to diverge, gradually opened, and at laft ftreck the conducting llips on each tide, and then collapfed, and again began to diverge. The windows were flut; and immediately, without working the machine, the electrometer diverged rapidly, and touched the fides of the phial every minute and half. This continued fo long, that there feemed to be no end to it. The Profeffor now made a cut acrofs the tinfoil with a very tharp knife; the electrometer now diverged very fecbly, and \(7 \frac{1}{5}\) minutes elapfed before it touched the fides. He pafied the knife a fecond time through the cut. This widened it (though fcarcely fenfible to the eye), becaufe the knife had been blunted by the glafs in the firf operation. All divergency of the electrometer was now at an end; and although the machine was worked till the electric finell was fenfible at the door to a perfon who happened to come in at this time, no tendency to divergence was obferved. (\(N . B\). the tep of the electrometer had no conducting fubftance about it, except the fip of tinfoil).

The cut, being examined with a microfcope furninh. ed with a microneter, was \(\frac{1}{3}^{\frac{3}{0} \frac{1}{0}}\) th of an inch. It was now filled up, by binding over it another flip of tinfoil. A plate of talc, whofe thicknefs did not exceed the gooth of an inch, was coated on one fide in a circle of \(1 \frac{1}{2}\) inch diameter. The electrometer was removed, and the coated fide of the talc was put into clofe contact with the flip of tinfoil on the glafs rod. A Atand of tin, whofe top was a plate of \(1 \frac{1}{2}\) inch diameter, fimeared over with mercury, was placed in contact with the other fide of the talc, and they were preffed into very clofe and continuous contact.

The machine being now worked, the coated taic received a charge in about 5 minutes fufficient to give a very fnart flock: and this was repeated with great regularity every live or fix minutes. The windows were now thrown open, and the room cleared of its former contents of air, till noue of thofe-prefent conld perceive any electric fincll. The machine was now worked again. But after half an hour, only a very faint twitch was felt; but enouglt to thew that an ac-
cumulation was taling place. The windowe were now half flut. After working the machine about dive minutes, a faint teritch was obtained; after a quarter of an hour more, there was a moderate fhock.

In this ftate of things, the apparatus was examined as a condenfer, by firft taling out the fharp point by an infulating landle, and then removing the tin fland. Examined in this way; it appeared plainly that, even when all the windows were open, the accumulation hegan almoft as foon as the machine was worked. Nay, it was found, on another day equally farourable, that
 charge, although a cut of \(\frac{51}{5} \frac{1}{50}\) wide did not allow the electricity to fly acrofs it. 'I'his is perfeclly fimilar to all our experiments on coated glafs. The thicknefs which admits an accumulation is almoft incomparably greater than the diftance to which a fipark will fly, or a concuffion is producitle, in the fame intenfity of electricity.
2. The above defrribed apparatus was infulated, and a wire comected with each end. To one wire was joined a thin plate of lac, coated on the fide next the wire; and to the other a piece of moill leather covered with tin-foil. Thefe plates were rubbed together by means of infulating handles. The plate of coated talc quickly took a charge.

The fame plate of talc, and afterwards another plate not more than half as thick, was now made part of the excitatory arc, and fometimes part of the animal arc. Sometimes plates of varnifl, incomparably thiuner than either of thefe, were employed. But all Profeffor Robifon's attempte to produce an accumulation of galvanic encrgy in this way were fruitlefs. The fecond form of the electrical experiment was adopted, as having a fomewhat greater refemblance to the fuppofed procedure of galvanifm; but the well-informed electrician will eafily perceive, that the firft form is far morc delicate and decifive.

The internal procedure in the elefric and galvanic convulfions is therefore fo different, nay, oppalite, that we cannot bring ourfelves to think that the appearances are operations of the fame agent (\(H\)).

We have now gone over all the points of refemblance which, in Dr Valli's opinion, conilitute the characiers of the identity of galvanifm and electricity. We thinis that, without going farther, we might fafely reit our affertion, that thefe two agents are perfectly diftinct and unconnected with each other. But there are leveral other circumflances which merit attention. electrical phenomenon can take place between Farther two bodies, unlefs thefe bodies be in oppofite flates of ounidernelectricity with regard to each other. Now, how are teat on city we to account for the accumulation of electricity in any and gatya. body, or part of a body, furrounded on all hands by nifm. conducting fubftances? The experiments of Galvani fucceed equally well, whether the fubjects of them be infulated or furrounded by conductors; whether performed in the drieft air or under water (1) ; whether, by
(H) What if it were called metallorgufin, which tranflates exactly metallic irritation, or inetallegerfifm, from \(\mu \in \tau \alpha \lambda \wedge\)) , and eripos excitatio:
(1) Dr Fowler mentions an exception to this. "When the feparated leg of a frog was held under water, and formed part of the circuit through which this influence had to pafs in order to excite another leg, it never contracted; although it did, and Itrongly, when held above the furface." In this cafe it is plain, that the frog's
be means of an electrical machine, we charge the auional and the metals till every part of them ftrungly aficet the electrometer, on whether we reverfe the experiment and elestrify them nergatively, ftill no change is produced in the force or frequency of the actions excited by the application of the metals. Is there any electrical siperiment which could continue to give the fame refult in luch oppolite circumfances? or is there any poffibility of accunating for it confitently with the known laws of the clestric fluid?
'The writers on this fubject who adopt the electric theory, intead of attempting to explain how the electric fluid cain be condenfed in a lody furrounded by conducting fubftances, have recourle to the analogy of the gymnotie, torpedo, and other fifhes of the fame: kind. Fere, fay they, we have in fact the chectrie huid accumulated in fuch a fituation, and there is no reafoming againf facts. We anfwer, that thefe animals are all furnifhed with organs of a very peculiar tracture, which may poffibly be fitted for the purpole of fuch a condenfation. Befides, we apprebend it has never been inconteftibly proved that thefe ingular animals derive their powers from the electric finid. WTithout wifhing to enter into this queftion, which is foreign to our prefent fubject, we may remark that Mr Walh difcovered, that the fhock of the torpedo would not pafs through a fraall brals chain ; a circumftance in which it differs remarkably both from electricity and from the influcnce difcovered by Galvani.

It were worth while to try Profeffor Robifon's methods of accumulation in the examination of the convultions occaloned by the torpedo. The Profeffor fufpects that the popular horror at the lamprey, and the accounts of cramps and pains produced by it, have their fource in fome fimilar powers of that animal.

Dr Valli's reafoning on this part of the fubject is very curious. He takes it for granted that the gymnotus owes its influence to the electric flud. Then, though the gy mootus gires fhocks and cmits fparks, while the torpedo only gives fhocks without emitting fparks, he fays it would be abfurd to affert that the turpedo derives its influence from a caufe different from the gymnotus. Again, though the influence difcovered oy Galvani neither gives fhocks nor emits fparks, it would fill be abfurd to maintain that it is not the fume as the electric fluid, and as the influence of the gyninotus and torpedo. To difient from any part of this very logical deduction, he declares would be contrary to the laws of plilofophifing! Rifun teneatis?

A fraid, probably, that his readers might be tempted to offend againet thefe new laws, he proceeds to ftrengthen thein by the analogy of animals and vegetables retaining an uniform temperature in media, warmer or colder than their own bodies; from which he argues that they may alio lave a power of accumulating clectricity, ans re-
taining it in a particular part, though their whole hodies are condnctors. But the cafes are in no refpeet fimilar. Neither animals nor vegetables accumulate caloric in any particular part of their bodies in preference to any other part. They have no power of redaining caloric in their bodies more Atomgly than any other bodies do; for if they are placed in a modium colder than themfelves, they are continually imparting caluric to that medium. Neither is there the finallett proof, from any experiments yet publifhed, that when placed in a medium warmer than themfelves, they do not continually abforb caloric from it. The exittence of a frigorific power in nnimals appears to us exceedingly problematical ; but if it were proved to exift, it would by no means demonllate that animals or vegetables have a faculty of declining to abforb caluric from bodies warmer than themelves. It is readily admitted, that animals and vegctables have a power, within certain limits, of preforing their temperature ligher than that of the furcunding melium; nor is there any thing furpiling in this, as the caloric, which they are continually receiving by the dccurpufition of oxygenous gas, is diffpited fowly. But if we thould alluw that arimals have a femilar faculty of generating the clectric nluid; from the nature of that fluid it mult be continually commu. nicated, not only to every part of the bodies of the animale tlemivises, the whole of which are conductors, but to every conductine fubftance contiguous to them: and this muft take place, not flowly, like the diffipation of caloric, but inttantaneounty, fo as to render any fenfi. ble accumulation impoffible.

Galvanifm differs frons electricity in nothing more Diference remarkahly than in the mude of its excitement and dif-in their charge. To produce the plenomena difenvered by Gal-mode of ex. vani, no operation at all fimilar to the frition of an electric upon a conducting fubflance is neceffary (K). The nerves and mufcles have only to be lid hare, and a communication formed between them by means of the excitatory are, when the contractions immediately cufine. In the cafe of electricity, a fingle difcharge having reflored the equilibrimm, no farther effects can be produced till this has been again dellroyed by fome means capable of producing a condenfation in one quarter and a com. parative rarefaction in another. 'The fact is very different with regard to galvanifm; for with it the number of thocks which may be given appears to be infi. nite. Nay, they frequently beconie ftronger in proportion as they have been longer continued: this influence diftering extremely in this particular, too, from the electric fluid, which, bctides being itfelt exhautted, never fails in a remarkable manner to exhaull the contractile power of the mulcles.

The permanence of the eficets of galvanifn is ftill And in the more flriking in the experiments upon the organ of duration of talte. When the metals are applied to the tongue, the their ef. fenfation
leg had in fact formed no part of the circuit through which the influence pafled; the infiuence had been tranffritted by the water in which the leg was held.
(k) It is true, as we have noticed above, that galvanic energy is fometimes communicated to a conducting fubftance by rubbing it upon fome other fubftance; but this has no refemblance to the excitement of electricity by friction. The galvanic energy is communicated in this cafe to a conduaing fublance, and it fucceeds as readily when both the bodies are of this clafs as when one of them is an idio-electric. But no electric phenomenon has ever been produced by the friction of two conducting bodies upon each other; one of them mult be an idio. clectric, and it is in this one that the excitement takes place.
fenfation produced is not fudden and tranfient ; but fo long as the metals are in contact with the toncue and with each other, folong does the tafte continue; and, after fome time, it becomes infufferably difagrecable. M. Volta, who adopts the cleEtric theory with various modifications, fenfitle of the permanence of the effect, in his curious experiments abovementioned fuppofes, that a ftream of electricity paffes from the tin cup to the liquor, from this to the tongue of the perfon makiag the experiment, then through his body, and returns through the water upon his hands to the cup; and thus he fuppofes the fluid to move perpetually in a circle. It is furely unaceffary for us to obferve, that the fuppofition of a itream of electricity continually moving in a circle in this manner, is wholly inconfiftent with the laws which appear in every cafe to regulate the motions of that fluid. The fame obfervation applies to the manner in which he explains moft of the other phenomena of galvanifm.

The electric fluid cannot be put in motion but by deftroying the equilibrium to which it perpetually tends; but whenever this is deftroyed, all that is required to produce a difcharge is, that a fingle conducting fubltance be placed between the two points in which it is unequally dittributed. Here again there is a very wide diftinction between this fluid and the influence difcovered by Galrani. M. Tolta divides all conductors of galvanifm into two claffes; ift, Diy conductors, comprehending metals, pyrites, fone other minerals, and charcual; and, 2d, Moift conduetors. He afferts, that it is abfolutely neceffary, in order in the production of the phenomeua, that two conductors of the firf clafs touch each other immediately on one hand, while at their other extremities they touch conductors of the fecond clafs. Whether this be admitted or not, we have already lated our opinion that the action of two different lublances is abfolitely neceffary in order to excite contractions: and although it is contended by fome writers that a fingle piece of metal has fometimes been found fufficient, yet even they mult allow that, in by far the greater number of cafes, it has been found neceffary to make nfe of two metals, and that the effect is even heighened in geaeral by employing three. In the whole fcience of electivity, we
do not know a fingle fact which bears the nighteft analogy to this, Never in a lingle inltance has it been found, that the effects of a Leydeul phial have been increafed by ufing a conductor formed of two or more metals in procuring the difcharge.

Before leaving the fubject of conductors, we may take notice of a very curious and important fact mentioned by Dr Valli. "Amongt men," faus he, "there dictors are fome individuals who are good conductors, others galvanif who are lefs fo; and fome again who appear to be almoft non-conductors. I was une day carrying on, with three of my friends, fome experiments upon frogs. A frog was put in water, and we each by turn effayed its power. Two of us excited frong convulfions, the third enly feeble ones, and the fourth none at all. 'Ihis experiment was repeated frequently with the fame \(r\) fult. This is not the only example I could adduce of the reality of this fact, but 1 do not think it neceffary to dwell any longer upon it." We have met with one individual who is not fenfible of any peculiar fenfation when the metals are applied to his tongue. This feems in fome meafure to corroborate Dr Valli's obfer. vation. It is apprehended, however, that all men are equally good conductors of electricity.

There is ftill another very marled dittinction between the effects of galvanifm and electricity. No nrock at all refembling that produced by the electricfluid has ever been felt by any perfon whofe body was made a part of the chain conducting the galvanic in. fluence, while a very fmall quantity of the electric fluid is inmediately felt (L). In Dr Robifon's experiment with the plates of zinc and filver in the cheeks, there is no doubt a convulfive twitch diftinctly felt in the gums; but, as we have already obferved, the fenfation thus produced is quite different from that which is felt from an electric fhock (m)

There is an experiment related by Dr Valli, which feems to thew that nothing like an electric fhock is felt, even when this influence is tranfmitted through a nerve, fo as to excite convulfons. Having laid bare the nerves of a fowl's wing, without cutting them, and without killing the fowl, upon applying the metals very fmart movements were produced, but the animal remained perfectly tranquil. Nor was this owiug to the fowl
(L) There is an exception to this rule which ought to be taken notice of. M. Cotugno inforins us, that when he was one day employed in diffecting a live inoufe, he received a fenfible fhock from the animal. Bua as neither he nor any other perfon has ever been fimilarly affected in any other inflance, it feems pritty certain that he was deceived into the belief of a foock from the fenfation produced by the truggles of the auimal he diffected.
(m) "No one (fays M. Humholdt) can fpeak more deciledly on this fubject than myfelf, having made feveral experiments on my own perfon, the feat of which, in fome infances, was the focket of a tooth which I had caufed to be extracted; in ochers, certain wounds whici. I made in my hand; and in others, the excoriations produced by four bliftering platters:" The following is the refult of thefe painful experiments. The galvanic irritation is always painful, and the more fo in proportion as the irritated part is more injured and the time of irritation more prolonged. The firft frokes are felt but fightly; the five or fix following are much more fenfible, and even farcely to be endured, until the irritated nerve becomes infenfible from continued ftimulus. The fenfation does not at all refemble that which is caufed by the electric commotion and the electric bath; it is a peculiar kind of pain, which is neither tharp, pungent, penetrating, nor by intermiffions, like that which is caufed by the electric fluid. We may diftinguif a violent ftroke, a regular preffure, accompanied by an unintermitting glow, which is incomparably more aftive when the wound is covered with a plate of filver and irritated by a rod of zinc, than when the plate of zinc is placed on the wound, and the filver pincers are afed to eftablifh the communication.
fowl being in a Aate of infenfibility; for when the nerves were pricked or irritated it fereamed vioiently. But all animals fhew figns of great uncalinefs from an electric Shock.

In general, it mult be confeffed, that animals under experiments of this kind feem reftefs and uncafy. The great difinction of which we fecak at prefent, confifts in this, that the electrie fluid produces a fhock and uneafy fenfation when any part of the body is introduced into the conducting chain; while the influence difcovered by Galvani, on the contary, when merely tranfmitted through the body in this manner, gives no fhock, nor any fenfation whatever, infumuch that we are not fenfible of its paffage. If this influence be made to act directly on a nerve, there is, no doubt, fome kind of irritation produced, as appears from the effect of the metals upon the tongue, the eye, and other nervous parts; but fill this action bears no analogy to that of the electric fluid. As the application of the metals to the organs of fenfe, produces in each organ the pecnliar fenfation for which it is confructed, as tafte in the tongue, light in the eye, \&ce. fo when nerves intended merely for mufcular motion are fubject. ed to the action of galvanifm, the effect produced is motion is the mufcles on which they are diftributed.

If this view of the matter be juft, it will explain why no thock is felt when the human body is made a part of the conducting chain. . In that cafe the influence does not, in all probability, act directly upon any nerve; and we fee that this influence poffiffes no power, like the electric fluid, of producing a convulive fhock, when merely paffed through any part of the body; but it has this peculiar property, when paffed directly through a nerve, it excites that nerve to perform the function for which it was intended by nature. To this it will no doubt be objected, that contractions may be excited in different parts of a frog without*any divifion being made in its fkin; and here it may be fuppofed that the influence is not made to pafs directly through a nerve. But it ought to be recollected that the fhin of thefe animals is abundantly fupplied with nerves, whofe trunks communicate at different places with thofe which fupply the mufcles; and that the contractions are, ahways ffrong and eafily excited, in proportion as they are applied near to the courie of any of the nerves which go to the mufcles. But though we had no doubt thac the influence might be tranlimitted through the bodies of thefe animals, as well as through the human body, without any contractions being produced, we have thought it worth while to afcertain the fact by the following experiment.

A frog was prepared in the ufual manner by coating its fiatic nerve with tinfoil, and laying the leg upon a plate of zinc. Another frog, in ai very vigorous fate, had its fore legs and cheft attached to a rod of filver, and its pofterior extremities to a rod of zinc. The filver rod was applied to the tinfuil and nerve of the prepared frog, and the zinc rod to the plate of zinc upon which the leg was laid. Immediately very ftrong contractions took place in the leg; but no mo-
 the other frog through the hody of which the influence mult lave paffed. It is neceffary in this experiment to dry the body of the frog which is to ferve as a conductor very carcfully, otherwife the influence

Suppl. Vol. I. Part II.
might be tranfmitted by the water upon its furface without paffing through its body.
There is an csperiment mentioned by Dr Fowler, which fhews a friking dificronce between electricity and galvanifm. It was intlituted with a view to afeertain the effects of the latter upon the hlood-veffels. The Doctor relates it as follows: "Having laid bare and feparated from furrounding parts and from cach other, the crural artery and nerve in the thigh of a full grown frog, I cut out the whoke of the nerve between the pelvis and the knee: I then influated henedth the artery a thin plate of fealing wax, fpread upon paper, and broad enough to kecp a large purtion of the artery completely apart from the reft of the thigh. The blood fill continued to flow through the whole courfe of the artery in an undiminihed flream. The artery, thus partially infulated, was touched with filver and zinc, which were then brought into contact with each other; but no contraction whatever was produced in any mufcle of the limb. This experiment was frequently repeated upon feveral different frogs, both in whom the nerve was, and in whom it was not divided. The refult was uniformly the fame. But vivid con. tractions were produced in the whole limb when an electric fpark, or even a full frean of the aura was paffed into the artery."

Before taking leave of this branch of our fubject, it may be proper to take notice of one fact, which may he thought to militate againd the doctrine we have endeavoured to eftablith. It is faid that a frog, exhaulled and brought near to a clarged electrophorus, has been found to refume its fufeeptibility. We think this fact may be accounted for without admitting any connection between galvanifin and electricity, merely by fuppoling that the irritability of the mufctes, which had been exhauted, was reflored by the application of a moderate ftimulus, (the clecric fluid), of a kind dif. ferent from thofe by which it had been exhautted. Such of our readers as are acquainted with the writings of modern phyfiologites on the fubject of mufcular irritability, will know that facts of this kind are very conmon. Thus it has been found by M. Humboldt, that the oxygenated muriatic acid has often reflured irritability. To this explanation it will no doubt be objected, that the application of other finuuli, as alcohol and a folution of potafl, inllead of reftoring, totably deftroy the fufecptibility of galvanifm. Sufpecting, that although thele fubtrances in a concentrated flate deftroy the fufceptibility, yet that when fufficiently diluted, they might be found to have the oppofite effect, we tried the following experiment, which confirmed our conjecture.

A frog, 57 hours after it had been decapitated, had ceafed for ahove an hour to be capable of excitement by the application of the metals in any way that could be devifed. A few drops of alcohol being diluted with about a tea.fpoonful of watcr, the nerve and the mufcles which had been laid bare, as well as the whole flin of the animal, were wet with it. Upon the application of an excitatury arc, compofed of four pieces, gold, zinc, filver, and tinfoil, a few very night contractions of the toes were diftinciay cbierved. After this, no means that we could think of produced the fmallett excitement. Alculul was now applied in a more concentrated ftate, but without any effect. The fame 4 S fuar
four pieces of metal which produced the contractions of the toes, had been ufed hefore the diluted alcolorl was applied, but without effect. We have not tried the applieation of potafh mueh diluted.

From what has been faid, we think we are fully warranted in faying, that although fome of the phenomena difcovered by Gavaui bear a ftriking refemblance to fome of thofe produced by the electric fluid; yet there are others, and thefe not the leaft important, which differ fo widely from any effects which have ever been feen to arife from that fluid, that they mult derive their origin from fome other caufe. Our readers may prohably think that we have dedicated too much time to this queftion; but as we conceive it to be the moft important point which can he difcufed on this fuhject, we thought it worth while to confider it at fome length; and we were the more convinced of the neceffity of doing fo, from this confideration, that there are fill fume writers of high authority who maintain the hypothefis, that galvanifm and electricity are the fame.
The galvanic influence probably foreign from animats.

The next queftion that occurs to us with regard to the nature of galvanifm is, whether or not it depends upon any law of animal life? To us it appears rather more probable, that the iufluence which incites the mufcles of animals to contract in the experiments of Galvani, is fomething quite foreign to the animals themfelves; as much fo as the electric fluid of the Leyden phial is to the animal which receives a fhock from it, in both cafes the body of the animal acting as a mere conductor. Upon this queftion, however, we confefs that we have neither facts nor arguments to addnce fufficient to warrant our drawing any certain conclufion. It will doubtlefs be afked, if this influence be fomething foreign to the bodies of animals, why do we never find it acting anywhere but in their bodies? why is it not, like the ele tric fluid, capable of being made evident to the fenfes by its effects upon inaninate matter? The only anfwer which we are in a condition to give to this queftion is, that it may very poffibly be capable of producing important effects upon inanimate matter, nay, thefe effects may be the fubject of our daily obfervation; but for want of our being fufficiently acquainted with galvanifm to point out the relation between thefe effects and their caufe, the effects themfelves are either not explained at all, or aferibed perhaps to fome other power, with which they have no conncetion. In like manner, the electric fluid has doubtlefs heen producing moft important effects from the beginning of time; hut, prior to the difcovery of that fluid, thefe were either not explained at all, or confidered as originating from fome caufe which, in face, had no fhare in their production.

The great dificulty is to obtain fome teft by which we may detect the galvanic influence when actually prefent in inanimate matter. Hitherto we have no fuch teft; nor fhould we know that fuch an influence exits, but for the effects whieh it produces upon the bodies of animals through the medium of their nerves. If we lad any means of afcertaining its exiftence, either in a feparate fate, or conjoined with inanimate matter, the fcience would-make a rapid progrefs, as it would be eafy to diverfify experiments fo as to difcover its nature and effects. To detect it in a feparate ftate is, in all probability, impoflible; but that the zeal and inge-
nuity of philulophers will one day be able to dificover fome teft of its prefence in inaninate matter, there feems no reafon to doubt.

We have made many experiments with a view to difcover fuch a teft, but hitherto without the fmalleft fuccefs. In the trials we have already made, our views have been chiefly confined to the difecovery of fume chemical effects of this influence upun inanimate inatter. M. Volta and other writers, having confidered the fenfation produced by it upon the tongue as fimilar to that occafioned by aeids, we were not without hopes that it would be found to refemble that clafs of fubtances in fome of its other properties. We have thercfore tranfmitted it through liquids tinged with the mof delizate vegetable colours; but no change in thefe coluurs has been effected by the tranfmiffion of many galvanic thocks. We have alfo tried, in the fame way, alkaline liquors, without any effect. We next difolved in water different neutral falts, and other compound bodies, of which the parts are held tugether by the weakell affinities; but no change has been obferved to be produced in them by the tranfmifion of this iniluence. Our want of fuecefs, however, thall not deter us from continuing onr efforts; we fhall vary the nature of our experiments in every way that fhall occur to us as likely to be attended with advantage ; and if we fhould ultimatcly fail, we truft that others will be more fortunate. Every new fact which is difcovered upon the fubject tends to facilitate this inveltigation, by furnifhing us with new. guides to direct the courfe of our experiments.
Dr Fowler is of opinion, that this influence, what- Dr Fowler ever it may be, is not derived from the metals alone, hefitasees ow but that the animals at leaft contribute to its produc- this point, tion, as well as indicate its prefence; and he feems to have been led to adopt this theory chielly from two confiderations, neither of which appears to us to have much weight. They are the following: The neceffity of a communication between the metals and the mufcles, as well as between the metals and the nerves; and the obfervation, that animals have a more complete controul over its effects than one would expect them to have over an influence wholly external to them. But the communication between the metals and the mufcles may be neceflary to the contraction of the latter, tho' not to the production of galvanifm ; which, however \({ }_{2}\) for want of any ubvious effect, is not obferved. That animals have fome controul over the effects of galvanifm upon themfelves, may be very true; but this circumftance does not appear to us capable of proving any thing, as they have a controul over the effects of other ftimuli in the fane way. Thus, an animal of any refolution can bear, withaut betraying any uneafy fenfation, a blow which, inflicted unexpectedly, would have produetd a convulfive.ftart. The will does not in any degree controul the effects produced by galvanifm upon our ferifes of tafte, feeing \&c.; that is, the fenfations are produced, though we may have refolution not to betray them. But, fays Dr Fowler, the will is not able to controul the effeets of electricity, when the electricity is otherwife fufficiently flrong to excite mufcles to contraction. This argument may tend to fhew, that galvanifn differs from electricity; but as it mula be admitted, that we can refift the contractions naturally produced by the application of other foreign ftimuli, it by no means proves that animals have any power of
preventing the excitement or tranfmifflion of galvanifin. Befides, though we callnot prevent an involuntary contraction of our mufcles from taking place when an electric thock of confiderable ltrength is paffed through them, yet any man may with his hand draw fparks from the prime conductor of an electric machine without flrinking, though even thefe fparks would, if he were off his guard, produce a convulfive ftart.

If the gavanic infucnce exifted ready formed in the mufcles or nerves of auimals, the only thing requifite to the production of the eontractions wrould be to make a communication between the nerves and mafules, by means of any fingle fubitance capable of evidueting this influence; as water, for example: hut the reverfe is known to be true. It may be faid, however, that, although there is no proof that any influence naturally refides in the nerves or mufces eapable of producing the effects mentioned by M. Galvani, thefe fubfances may Atill, by fome power, independent of the properties they pofiefs in conmon with dead inatter, contribute to the excitement of the influence, which is fo well known to exift in them after a certaia application of metals. Upon this part of the fubject, the obfervations of Dr Wells will be found to merit confiderable attention.
" It is known (fays that gentleman), that if a mufcle and its newe be covered with two pieces of the fame metal, no motion will take place upon connecting there pieces by means of one or more different metals. After making this experiment one day, I accidentally appiied the metal I had ufed as the connector, and which I ftill held in one hand, to the coating of the mufcle only, while with the other hand I touched the fimilar coating of the nerve, and was furprifed to find that the mufele was immediately thrown into contraction. Having produced motions in this way fufficiently often to place the fact beyond doubt, I next began to confuler its relations to other facts formerly known. I very foon perceived, that the inmediate exciting caufe of thefe motions could not be derived from the action of the metals upon the mufcle and nerve to which they were applied; otherwife it muft have been admitted, that my body and a metal formed together a better conductor of the exciting influence than a metal alone; the contrary of which I had known, from many experiments, to be the cafe. The only fource, therefore, to which it could pofibly be referred, was the action of the metals upon my own bo. dy. It then occurred to me, that a proper opportunity now offered itfelf of determining whether animals contribute to the production of this influence by means of any other property than their muifure. With this view I employed various moift fubtances, in which there could be no fufpicion of life to conflitute, with one or more metals, different from that of the coatings of the mufcle and nerve, a connecting medium between thefe coatings, and found that they produced the fame effect as my body. A fingle drop of water was even fufficient for this purpofe; though, in general, the greater the quantity of the moifture which was ufed, the more readily and powerfully were contractions of the mufcle excited. But if the mutual operation of metals and moifture be fully adequate to the excitement of an influence capable of occafioning mufcles to contract, it follows, as an immediate confequence, that
animals act by their moifture alone in giving origin to the fame influence in M. Galvani's experiments, unlefs we are to adnit more caufes of an effect than what are fulficient fur its production." We do not quate the above realoning as perfectly conclutive, for it by no means appcars to us to be fo; but it certainly gives fome probability to the opinion, that galvanifin is, as M. Volta fuppores, the refult of the action of two dry conductors, which tonch each ocher inanediately ou one hand, while at their other extremities they touch conductors of what he calls the fecond clafs, (that is, moiture, for all the conductors of the fecond clafs contain water), and that the bodies of animals act merely as nooiturc.

One of M. Humboldt's experiments related above, appears to us to fitengthen the conclution, that the influence difouvered by Galvani is iomething perfectly foreign to the bodies of animals. Can it be fuppofed that any fubftance which naturally refides in cor bodics, flould, in a few feconds after it is put in motion, convert the fimple ferous difcharge of a blifer into a dark coloured fluid, of a mature fo acrid as to irritate and violently inflame the fkin wherever it touches it? We do not fay that this is impoffible, for we are too little acquainted with the laws of fecretion to fay with certainty what may, or what may not, produce fuch a change ; but we know no finnilar alteration produced, in a feou feconds, by a mere change of action in the veffels themfelves.
We fhall not undertake to determine the nature of The caufe the caufe which produces fuch aftonifhing effects. We which proo think it is certainly not the electrie fluid, and probably duce the fomething which refides or is formed in the excitatory fects unare ; but we confider our knowledge of galvanifin as knuwn. ftill in its iufancy, and our fock of \(f_{d}\) cts as infinitely too fmall to admit of our forming a juft theory on the fubject. Fortunately, however, the difcovery of Galvani has attracted fo much the attention of philoio. phers in every part of Europe, that new facts may be expected to come to light every day; and we hope the time is not very diftant, when thefe may be fo clafted, as to entitle the fubject to be ranked ainong the feiences. See Torpedo in this Suppl.

While this article was in the prefs, we were favoured by a friend with an account of fonce German differtations on the fubject, which we are obliged to infert in this irregular manare.
Mr Creve, furgeon in Wurtzburg, had an opportunity of obferving the galvanic irritation on the leg of a boy, which had been amputated far above the knce in the hofpital of that city. Immediately after the anıputation, Mr Creve laid bare the crural nerve (kniekelhnerven), and furrounded it with a ilip of tinfoil. He touched at once the tinfoil and the nerve with a French crownpiece. In that inftant the molt violent convulfons took place in the leg both above and below the knee. The remainder of the thighbouic bent with force toward the calf; the font was more bent than extended. All thefe motions were made with much force and rapidity. None were prodnced when the tinfoil was taken away, or when a ffeel pincer was ufed in place of a piece of filver, or when the tin or filver was covered with blood: but they were renew-
ed wheo thefe oblacles were removed. Thefe phenomena continuted till 38 minutes after the anputation, when the limb became cold.

Dr Chrituopher Heinrich Paff (in Difertatione de Electricitat. Animali, Stutgardt, 1793: fee alfo Gren's Gournal der Pbyyk, T. viii. P. 196, \&e.) has clafted the phenomena in a very orderly and perfpicuous manner; and the refult of the numerous experiments made by lhinfelf and others, correfponds very nearly with our inferences in the preceding pages.

\section*{1. Pbonomena of mufcular contrabisn.}

The general form of his experiments is the fame with that which we have placed at the begiuning of this article; but the following varieties were obferved:

The nerve being coated with tinfoil, it was always obferved that the contractions were ftronger when the filver firl touched the mufcle, and then the coating. If it touchech the coating firth, the effects were always, and vary fenfibly, weaker.

They were ftill flronger when the filver did not touch the mufcle at all, but only the nerve and its suat . g .

When the contractions were weaker at the beginning, they allo ceafed fooner.

No contraction enfued from touching the coating only, or the nerve only, or the mufcle only, with the filver.

Continuing the contact did not occafion any repetition of the contractions, except in fore cafes, where the filver was drawn along different parts of the coating, while its other end remained in contact with the nerve.

The contractions took place only in the mufcles to which the nerve led.

Their ftrength and duration were greater when the furfaces of contact were greater, and when the two metals touched each other in points or fharp edges.

A ligature, with a filk thread below the coating (that is, between the coating and the mufcle, or part of the nerve touched by the filver), prevented all contraction ; but not if the ligature was between the coating and the brain. If the nerve was cut through below the coating, and the parts feparated a quarter of an inch, no contraction followed by touching the coating and the nerve or mufcle: but it trok place, if the parts were brought into coutact; or even if a piece of any other nerve was put between the parts.

If a confiderable part of a bared nerve was infulated and coated, partly with tinfoil and partly with filver, contractions were produced in the mulcle to which it led whencver the two metals were brought into contact.

If one crural nerve be coated with tin, and the other with filver, contractions are produced in both legs by bringing the metals into contact.

If the nerve be dry under the coating, or when the filver touches it, or in hoth places, we have no contractions; but they begin as foon as we moilen the nerve.

Dr Pfaff infers from thefe phenomena, that the nerve alone is fubject to the irritation produced by the two metals.

If the prepared frog be immorfed in water, fo that the coating touches the water, contractions are produced by touching the coating above water with the flver, while another part of the filver toucles the
nerve, or the mufcle, or even dips pretty decp in the watcr.
No fuch thing happens in oil; or, at beft, the con. tractions are very flight.
Dr Pfaff could not produce contractions without employing two metals, or a metal and charcoal.

A very thin covering of mulcular feflu on the nerve did not altogether prevent the contractions, and in many cafes did not fenfibly diminifl them.
If a piece of filver be laid on the mufcles of the breaft or belly, and be brought into contact with the tin-coating on the lumbal region, only the muides of the breaft or belly are affected, but not thofe of the . legs.
Dr Pfaff fays, that the involuntary mufcles are not affected by galvanifm ; and refers for convincing proof3 to a differtation by Dr Ludwig, fhewing that the heart is not furnifhed with nerves, (Scriptor. neurolog, minor. filect. vol. 2.).

\section*{II. Irritation of the Organs of Serfe.}

Here Dr Pfaff's difiertation contains nothing remarkable.

\section*{III. Conjetiures as to the Caufe.}

Dr Pfaff ufes the fame arguments that we have employed to refute the opinion of a fimilarity between the animal organs and the Leyden phial, and the opinion that electricity is the agent. He mentions the opinion of thofe who maintain that the agent is a fluid put into motion by means of its relation to the metals only, in their action on each other, and who confider the animal as merely ferving as a conductor; and alfo ferving, by its irritability, to give us the information of the prefence of fuch a fluid, in the fame manner as another. kind of irritation, fomewhat analogous to it, indicates the prefence and agency of the electric floid. It may therefore be called the Metallic Irritation; a term which will fufficiently diftinguifh it.

But Dr Pfaff feems rather to think that the agent refides in the aninal, and that the metals are the conductors (See a differtation, encitled, Farther ContriIntions to the Knowuledre of Animal Elearicity, in Gren's Gournal der Phyfik, 'T. viii. p. 377.). This fluid he conceives to be intimately blended with the principle of life; nay, perhaps, to be the fanse. He mentions a thought of Profeffor Kielmayer, "that it may refemble the magnetic fluid in its manner of acting, giving connection to the diltant particles of a nerve, as we oblerve a magnet give an inflantaneous conncction to each of a parcel of iron filings; all of which it would arrange in a certain precife manner, if they were fufficiently moveable, by giving momentary polarity to eacl.". This fomewhat refenbles Newton's hypothetical whim read to the Royal Society, defrribing what may be done by means of an æther (See Birche's iiffory of the Royal Society):
But all this is vague conjecture, and merits little attention. This will be better bettowed on an obfervation of M. Humboldt of Jena, "that a bit of frefh inorelle (the Helvella mitra of Linnens) may be fubitituted for a bit of nerve in the animal are in thefe experinients." This is the only vegetable fubflance yet difcovered to have this property. If the werve be laid on the murelle, we have only to touch the morelle with the zinc, and the mufcular contractions immediately follow.

GARDECAUT.

Gartecatit, GARDECAUT, or Guard du Cord, in a watch, Garden. is that which ftops the fufee when wound up, and for that end is driven up by the fpring. Some call it Guard-cock ; others Guard du Gut.

GARDEN (Francis), better known to the public by the title of Lord Gardinfone, was horn at Edinburgh June 24th, in the year 172 x . His father was Alexander Garden of Troup; an opulent landhelder in Aberdeenthire; his mother was Jane, daughter of Sir Francis Grant of Cullen, S.C.I.

After paffing through the ufual courfe of liberal education at the fchool and the univerlity, lue betook himfelf to the Audy of law for his profeflion. In the year \(174+\) he was admitted a member of the Faculty of Advocates, and called to the Scottih bar.

In his practice as an advocate he fuon began to be dilinguifhed, by a frong, native rectitude of under: ftanding ; by that vivacity of apprehention and imagination which is commonly denominated Genius; by manly candour in argument, often more perfuafive than fubtlety and fophiftical artifice; by powers which, with diligence, might eafily attain to the higheft eninence of the profeffion. But the fame ftrength, upennefs, and ardour of mind, which diftinguithed him fo advantageouny among the pleaders at the bar, tended to give him a fondnefs for the gay enjoyments of convivial intercourfe, which was unfavourable to his progrefs in juridical erudition. Shining in the focial and convivial circle, he became lefs folicitonfy ambitions than he might otherwife have been, of the character of an eloquent advocate, or of a profound and learned lawyer. The vivacity of his genius was averfe from auftere and plodding fudy, while it was captivated by the fafcinations of polite learning and of the fine arts. Nur did he always efcape thofe exceffes in the purfuit of pleafute into which the temptations of opening life are apt oceafonally to feduce the moft liberal and ingenuous youth. But his chcerful conviviality, his wit, humour, tafte, good-nature, and benevolence of heart, rencered him the delight of all his acquaintance. He became his Majedy's Solicitor July 3d, 1767.

At length the worth of his character, and his abi-- lities as a lawyer, recummended him to the office of a Judge in the Courts of Sefion and Jufticiary, the fupreme judicature, civil and criminal, for Scotland. His, place in the Court of Seffion he continued to occupy till his death; but had, fome years before, refigned the office of a Commiffioner of Julticiary, and in recompence got a penfion of \(2 \mathbf{J c l}\). per annum. Clear difcernment, frong good fenfe, confcientious howefty, and amiable benevolence, remarkably diftinguifhed all his opinions and conduct as a judge.

We not unfrequently fee the gay young men of the prefent age, to turn, as they advance towards middle life, from the headlong purfuit of pleafure to a fordid and contracted felfifhnefs, which cxcludes even thofe few good qualities that feemed to accompany their furt thoughtlefs days. Their life is divided between fenfuality and that anxious inbumane avarice and ambition whofe ultimate object is, to provide gratifications to fenfuality and pride. The kindling light of rectitude, and the firft fparks of generous humanity, are extinguifhed in their breafts as foon as thofe ebullitions of youthful paffion and inexperience are over, by which the ufeful effeiency of their carly good qualities was
prevented. Hardly have they become tolerably well Garden. acquainted with nankind, when the milk of human kindnefs is turned into gall and venom in their hearts.

It was far otherwife with Lord Gardenftone. As he advanced in years, humanity, tafte, public fpirit, became fill more and more eminently the predominant principles in his mind.-He piticel the condition of the peafantry, depreffed rather by their ignorance of the moft filfinl modes of labom, and by their remotenefs from the fphere of improvement, than by any tyranny or extortion of their landlords. He admired, protec. ted, and cultivated the polite arts. He was the ardent votary of political liherty, and friendly to every thing that promifed a feafible amelioration of public economy, and the principles of government.

In the year 1762 he purchafed the eftate of Johnfton, in the county of Kincardine. Within a few years after he began to attempt a plan of the mof liberal improvement of the value of this eftate, by an extenfion of the village of Laurencekirk, adjoining. He offered leafes of fmall farms, and of ground for building upon, which were to lalt for the term of one hundred years ; and of which the conditions were extremely inviting to the labourers and tradefmen of the furrounding country. Thefe offers were eagerly liftened to. More defirous to make the attempt beneficial to the country than to derive profit from it to himfelf, he was induced, within a few years, to reduce his ground-rents to onehalf of the orisinal rate. - Weavers, juiners, fhoumakers, and uther artifans in a confiderable number, reforted to fettle in the rifing village. His Lordhip's carneftnefs for the fuccefs of his project, and to promute the profperity of the good pcople whom he had received under his protection, led him to engage in feveral undertakings ; by the failure of which he incurred confiderable loffes. Projects of a printhield, and of manufactures of linen and of Atockings, attempted with fanguine hopes in the new village, and chiclly at his Lordfhip's ritk and expence, mifgave in fuch a mamer as might well have finally difguited a man of lefs iteady and ardent philanthropy with every fuch engagement. But the village Itill continued to advance. It grew up under his Lordfhip's eye, and was the favourite object of his care. In the jear 1779 he procured it to be erected intu a burgh of barony ; having a magiftracy, an annual fair, and a weekly market. He proviwed in it a good jnu for the reception of travellers; and with an uncommos attention to the entertainment of the guefts who might refort to it, furnifled this inn with a library of books for their amufement. He invited an artif? for drawing, from the continent, to fettle at Lamencekirk. He had the pleafure of feeing a comferable Linen manufacture at length fixed in it. A bleachitibld was alfo eftablifhed as a matural counterpart to the linen manufacture. Before his Lordfhip's death, he faw his plan of improving the condition of the labourers, by the formation of a new village at Laurencekirk, crowned with fuccet's beyond his moft fanguine hopes. He has acknowledged, with an amiable franknefs, in a memoir cuncerning this village, "That he hat tried, in fome mealure, a variety of the pleafurcs which mankind purfue; hut never relifhed any fo muck as the pleafure arifng from the progrefs of his village."

In the year 1785 , upon tle death of his clder bre

Garden. ther, Alexander Garden of Troup, M. P. for Aberdeenfhire, Lord Gardenfone fuccecded to the poffeffion of the family cftates, which were very confiderable. Until this time his Lordhip's incume had never been more than adequate to the liberal expence into which his rank, and the generofity of his nature, unavoidably ked him. But the addition of a fortune of about three thoufand pounds a-year to his former revenue, gave him the power of performing many acts of beneficence with which he could not before gratify his good heart. It was happy', likewile, that his fucceffion to this ample income, at a period when the vigour of his conftitution was rapidly yielding to the infirmities of old age, enahled him to feek relief, by a partial ceflation from buitnefs, by travel, and by other means, which could not have been eafily compatible with the previous thate of his fortune.

In the month of Sept. 1786 , he fet out from London for Dover, and paffed over into France. After vifiting Paris, he proceeded to Provence, and fpent the winter months in the genial climate of Hieres. In the fyring of 1787 he returned northwards, vifiting Ge neva, Switzerland, the Netherlands, and the Dutch provinces, and palfing through Germany into Italy. With a fond curiofity, attentive alike to the wonders of nature, to the noble monuments of the arts, and to the awful remains of ancient grandeur, with which Italy abounds, he vifited all its great cities, and furveyed almolt every remarkable and famous fcene that it exhibits.

His firt objee, in thefe travels, was to obtain the reftoration of his declining health by the intluence of a milder elimate, by gentle, continued, and varied exercife; by that plealing exhilaration of the temper and fpirits, which is the belt medicine to health, and is nolt fuccefsfully produced by frequent change of place, and of the objects of attention. But the curiofities of nature and art, in thofe countries through which he travelled, could not fail to attract, in a powerful manner, the curiofity of a mind cultivated and ingenious as his. He, whofe breaft glowed with the mont ardent philanthropy, could not view the varied works and manners of a diverfity of nations of his fellow men, without being deely interefted by all thofe circumftances which might appear to mark their fortunes as happy or wietched. IIe eagerly collected fpecimens of the fpars, the fhells, the flrata of rocks, and the veins of metals, in the feveral countries through which he paffed. He amaffed alfo cameos, medals, and paintings. He enquired into fcience, literature, and lucal inftitutions. He wrote down his obfervations, from time to tine ; not indeed with the minute care of a pedant, or the oftentatious labour of a man travelling with a defign to publifh an account of his travels, but limply to aid memory and imagination in the future emembrance of objects ufeful or agrecable.

After an abfence of about three years he returned to his native country. The laft years were fpent in the difcharge of the duties of his office as a judge ; in focial intercourfe with his friends, among whom was the venerable Lord Monboddo, and others of the moft refpectable characters that our country has to boaft of ; in the performance of a thoufand generous offices of benevolence and humanity; in cherithing thofe fine arts, of which he was an eminent admirer and judge; and above all, in promoting the comfort, and encouraging
the induftry of his dependants, and in lending his aid to every rational attempt at the improvement of public economy and public virtue.

St Bernard's Well, in the neighourhood of Edinburgh, had been, long fince, diftinguifhed for the medicinal virtues of its waters. But various circumftan. ces had alio concurred of late to throw it into neglect. Yet its waters being ftrongly mineralized by a fulphurated hydrogenous gas, were, by this means, mnquettionably qualified to operate, with highly henclicial effects, in the cure of various difeafes. The qualities of this mineral water falling under Lord Gardenflone's notice, he was induced to purchafe the property of the well, to direct it to be cleared from furrominding obftacles, which contaninated the virtues of the water, or made it inacceflible; to erect a beautiful and commodions edifice over it ; and to appoint proper perfons to diftribute the water, for a very trivial compenfation, to the public. The well lies at a diftance from Edinbugh, which is very convenient for a fummer morning's walk. Within the few years which have pafled fince Lord Gardenftone's benevolent care brought: it into notice, it has attracted many of the inhabitants of that eity to vifit in the mornings of fpring and fummer. And, undoubtedly, the agreeable exercife to which they have thus been allured, and the falutary effects of the water, have contributed, in no mean degree, to difpel difeafe, and to confirm, or re-eftablifh health. Such monuments are worthy to preferve the memory of a patriotic and a good man!

As an amufement for the laft two or three years of his life, when his increafing infirmities precluded him from more active exercife, and from mingling fo frequently in the fociety of his friends as was agreeable to his focial and convivial temper, he bethought himfelf of revifing fonse of the jeux d'efprit, and light fugitive pieces, in which he had indulged the gaicty of his fancy in his earlier days; and a fmall volume of poems was publifhed, in which the beft pieces are, upon good authority, afcribed to Lord Gardenfone. He revifed alfo the memorandums which he had made upon his travels, and permitted them to be fent to prefs. The two former volumes were publifhed one after another while his Lordflip was yet alive; the third after his death. They met with a wesy favourable reception in the world, and were honoured with the high approba. tion of the molt reipectable writers of periudical criti. cifin. They convey nuch agreable information, and befpeak an elegant, enlightened, and amiable mind. The lat volume is filled chiefy with memoranduns of his Lordfhip's travels in Italy ; and contains many interelling crivicifms upon fome of the nobleft productions of the fine arts of painting and fculpture.

His Lordfhip's health had long been declining; and he died a bachelor on the 22d of July 1793, lamented by liis relations and friends, by his tenants and humble dependants, and by all true patriots and good men to whom his merits and virtues were known.

Such is the account of Lord Gardenfone's life, which was prefixed to the third volume of his travelling memorandums; and though it was no doubt an effufion of fond friendihip, we believe that the praife which it beftows on his Lordmip is not much exaggerated. In the latter years of his life, it mult indeed be confefled, that he contracted intimacies with men un-

G E O \(\quad\left[\begin{array}{r}6 \\ \hline\end{array}\right.\) worthy of his regard; and that his attachment to li-
berty made him form expectations from the French revolution, which even the events which he faw ought to have repreffed. But his inind was by that time weakened by difeafe ; and it would be very unuat to balance the imprudencies of one or two ycars againd the ineritorious actions of a whole life. Befides his travelling memorandurns and his poems, his Lordhip pullihhed A Letter to the Inbalitants of Lawrencelirk, the mofl valuable, in our opinion, of all his publications; for it contains perhaps the mof falutary advices which were ever offered to the inhabitants of a manufacturing town, for the regulation of their conduct towards each other. That the prople of Laurencekirk have followed thefe advices, it would give us pleafure to learn on good authurity.

GAS. Sce that article, Encycl. and CpanmisteyIndex in this Supplement. We have introduced the word here, to notice fome experinents made by Piofeffor Jacquin of Viemma, at the defre of Dr Chladui, on the different gafes as the vehicle of founds. A ghats bell was furnifhed with a metallic fopper cemented to a neck at the top; and in the bore of this cock, within the glafs, a fmall flute or pewter (etain) ahout is inches in length was fixed. The ghofs being then placed on the fhelf of the pneumatic veflel, and filled with any particular kind of gas, a bladder alfo filled with the fame gas, and provided with a cock, was adapted to the external aperture of the cock belonging to the bellglafs. In this difpofition of the apparatus, the flute was made to found by gently preffing the bladder. Comparative experiments were made with atmofpheric air, oxygen, hydrogen, carbonic acid, and nitreus gas. The intenfity of the found did not vary; but when compared with that produced by atmofpheric air, the oxygen gas gave a found half a tone lower; azotic gas, prepared by different methods, contlantly gave a found half a tone lower; hydrogen gas gave nine or eleven tomes higher; carbonic acid gas gave one-third lower, and nitrous gas alfo very nearly a thind lower. A mixture of oxygen gas and azot, in the proportions of the atmofpheric air, afforded the tone of this lat; that is to fay, it was half a tone higher than each of the component parts alone. When the two gafes were not unifornly mixed, the found was abominably harfh. Chladni intends to give a fuller account of thefe interenting expe-riments.- Fournal de Pby̌ique, Vol. IV. N. S. p. 57.

GAZONS, in fortification, turfs, or pieces of frefh earth covered with grafs, cut in form of a wedge, about a foot long, and half a foot thick, to line or face the ontlide of works made of earth, to keep them up, and prevent their mouldering.

GEOCENTRIC place of a planet, is the place where it appears to us from the earth ; or it is a point in the ecliptic, to which a planet, feen from the eatth, is referred.

Geocentric Latitude of a Planet, is its latitude as fecn from the earth, or the inclination of a line connecting the planet and the earth to the plane of the earth's (or true) ecliptic: Or it is the angle which the faid line (connecting the planet and the earth) makes with a line drawn to meet a perpendicular let fall from the planet to the plane of the ecliptic.

Grocevtric Longitude of a Planet, is the diftance nucafured on the ecliptic, in the order of the figns,
between the geocentric place and the Girit point of GeometriArits.

Geometrical Method of the Ancients. \(\underbrace{\text { Georgium. }}\) The ancients eflablifhed the higher parts of their grometry on the fame principles as the clements of that foience, by demonftrations of the fane kind: and they were careful not 20 fuppofe any thing done, till by a previous problem they had thewn that it could be done by actually performing it. Much lefs did they fuppofe ally thing to be done that cannot be conceived; fuch as a line or feries to be aftually continued to infinity, or a magnitude diminifhed till it become infinitely lefs than what it is. The elements into which they refolved magnitudes were finite, and fuch as might be conceived to be real. Unbounded liberties have of late been introduced; by which geometry, which ought to be perfectly clear, is filled with myfteries.

Gfonetrical Solution of a problem, is when the protlen is directly refolved according to the Arrict rules and priaciples of geometry, and by lines that are truly geometrical. This exprefion is ufed in contradifinction to an arithmetical, or a mechanical, or infrumental folution, the problem being refolved only by a ruler and compafes.

The fame term is likewife ufed in oppofition to all indirect and inadequate kinds of folutions, as by approximation, infinite feries, Scc. So we have no geometrical way of finding the quadrature of the circle, the duplicature of the cube, or two mean proportionals, though there are mechanical ways, and others, by infinite feries, sic.

GEORGIUM Sidus (fee Astronomy. Index, En(ycl.) has no fewer than fis fatellites revolving round it, all difcovered by Dr Herfctel. Of the two which he firf difcuvered, one was found to revolve in 8 days 17 h .1 m .17 fec . at the diflance of \(33^{\prime \prime}\) from its primary; and the other in 1 j d. \(11 \mathrm{~h} .5 \mathrm{~m} .1,5 \mathrm{fec}\). at the ditance of \(44^{\prime \prime}, 23\). The planes of their orbits form fuch large angles with that of the planet itfelf, and confequently of the ecliptic, as to be almort perpendicular to it. To this remarkable departure from the analogy of the old planets, another thill more fingular has been lately announced. They move in a retrograde direction! The new fatellites revolve as follows, the periodical times being inferred from their greatent elongations: The interior fatellite in 5 d .21 h .25 m . at the diftance of \(25^{\prime}, 5\). A fatellite intermediate between the two old ones in rod. 23 h .4 m . at the dit:ance of \(3^{8^{\prime \prime}}, 57\). The nearell exterior fatellite at about double the difance of the futtheft old one, and confequeutly its periodical time 38 d .1 h. 49 m . And the moft diftant fatellite full four times as far from its primary as the old fecond fatellite. Whence it will take at leaft 107 d .16 h .40 m . to complete it revolution. Whether the motions of thefe four be direct or retrograde, is, we fuppofe, not yet determined.

From fome obfervations of the Doctor, with an excellent feven-feet telefcope, certain appearances, refembling that of two rings furrounding the planet, and crofling each other at right angles, were feen on feveral different days. They were not altered in pofition by turning the fpeculum in its cell; but (fays Mr Nicholfon) there is little doubt that they were optical deceptions, becaufe they kept their pofition with refpect to the tube, after the relative potition of the parallel had

\section*{C E R [G0G] G E R}

Genatd. been much clanged by the earth's rotation, nat becaule they did not appear with larger telefcopes applied during the courfe of ten years. The dine of the Georgium Sidus is ीattened. It therefore revolves with confiderable rapidity on its axis. From the very faint light of the fatellites, they are oblerved to difappear in thofe parts of their orbits which bring them upparently neareft the planet. Tinis does not arife from an atmofphere; for the effect is the fame, whether the fatellite be within or beyond the planet.

GERKARD (Alexander, D.D.), was the eldeft fon of the reverend Gilbert Gerard minifter of Chapel-Garioch, in the county of Aberdeen. He was born on the 22 d of February 1728 , and received the firt rudisnents of his educatiou at the parifh fchool of Foveran in the fame county.

It may perhaps be proper to inform our Englifh scaders, that in every parith in Scotland there is a fchool where, for very fmall fees, the youtl of the parifh are not only tanglit to read the Englihhlanguage, to write', and to perform the elementary operations of arithmetic, but are alfo inftructed in the Greek and Latin languages. Of thefe fehools, many of the mafters were, about fixty years ago, eminent for claffical learning ; and it feems that Mr Forbes, the matter of the fchool of Foveran, poffefed fuch fame as a teacher, that Mr Gerard judged it more expedient to commit his fon to his care than to have him educated at the fehool of his own parifh, and under his own immediate infpection. The attaiments which that fon afterwards made in literature, evince that his judgment was correct, and that the fehoolmafter of Foveran deferved the fame which he enjoyed.

Young Gerard, however, did not remain long at Foveran. His father died when he was but ten years old; and his mother removing foon afterwards with her family to Aberdeen, he was of courfe put to the grammar fchool in that city: but fo folid was the foundation which had been already laid, that in two years time he was deemed fit for the univerfity, and was accordingly entered a ftudent in Marifchal college. Such rapid progrefs fupplies the place of that teftimony which we have not been able to procure, refpecting his early attachment to literature.

After completing the ufual academical courfe of four years in the ftudy of Greek, Latin, mathematies, and philofophy, he was admitted to the degree of mafter of arts; and immediately afterwards commenced the atudy of theology, which he profecuted in the univerfities of Aberdeen and Edinburgh. In 1748, when he had little more than completed his \(20 t \mathrm{~h}\) year, he was licenfed to preach in the church of Scotland, and two years afterwards was chofen affiltant to Mr David Fordyce profeflor of philofophy in the Marifchal college and univerfity of Aberdeen. In this capacity be performed the duties of the abfent profeffor till the 7 th of July 1752, when he was appointed fuecefor to Mr Fordyce, who had been drowned on the coaft of Holland, as has been already related in the Encyclopredia.

At that period it was the practice in the Marifchal college, as it continued to be in the King's, for the fame profeffor to carry forward a clafs of tudents for three fucceffive years through all the different branches of philofophy which were taught in the college. Thefe were, Logic, Ontology, Dneumatics, Morals,

Polities, and Natural Philosorhy; and, Mi Ge. Cepard. rard carried one clafa through this extentive courfe. Mathematics and the Greek langugge were taught by feparate profefors.

About the year 1754 , a very material alteration was made in the oriter of teaching philofophy in the univerfity of Aberdeen; and in the Marifchal college each profetfor was retlricted to one department of ficionce. The principal and profeffors in that college, juftly obferving that the public is interelted in every thing which relates to education, thought it incumbent upon thens to lay before that public the reafons which had determined them to deviate from the arrangement which they liad hitherto obferved: and they employed Profeffor Gerard to draw up thefe reafons. This talk he performed in a fmall pamphlet, which, being printed by the appointment of the college, appears to have griven very general fatisfaction.

This, indeed, it could lardly fail to do ; for the ju. dicious author points out very clearly the inconveniences of the old, and the advantages of the new plan of academical ftudy. Having obferved that the philofoply which had fo long kept puffeftion of the fehools, confifted, in a great ineafure, of verhal fubtleties and theories ill-grounded, though ingenioufly devifed, he pro. cceds to contralt it with the philufophy of Bacon and Locke, and to fhow of how little value the former is when compared with the latter. He then enters on a brief examination of the foholaltic logic, and proves, to the conviction of every impartial judge, that the art of fyllogifing, though a proper enough introduction to a philufophy which was built on general principles, either taken for granted, or founded on very narrow and in. adequate obfervation, is by no means fitted to aflit the mind in the cultivation of that feience which is dedu. ced by induction from particular facts. "The only bafis of philufophy (fays he) is now acknowledged to be an accurate and extenfive hiftory of nature, exhibiting an exact visw of the various plenomena, for which philofophy is to account, and on which it is to found its reafonings. This being the reformed tate of philofophy, great inconveniences muft be found in profecuting the fcholaftic order of the feiences. The ftudent muft make a tranfition at once from words and languages to philofophy, without being previouly introduced to the knowledge of facts, the fole foundation of, and preparation for it ; he mult be hurried at the firt into the moft abftrufe, difficult, and fubtle parts of it ; he mult be put upon examining the nature, foundation, and different kinds of evidence and reafoning, before he is acquainted with any fpecimens of thefe kinds by which they may be illuftrated. And in proportion as philo. foply is more improved, and more thoroughly reformed, thefe inconveniences mult become more fenfible.
"The view of thefe (continues lie) induced the mal. ters of the Marifchal college to think of altering the hi. therto received order; and after the moft mature deli. beration, made them at latt refolve, that their fudents nlould, after being inftructed in languages and claffical learning, be made acquainted with the elements of hiftory, natural and civil, of geography and chronology, accompanied with the elements of mathematics; that they fhould then proceed to natural philofophy; and, laft of all, to morals, politics, logic, and metaphyfics."

In vindicating this arrangement, he labours with
great carneftnefs, and we think with complete fuccefs, to thew the propriety of making logic the laft branch of academical Itudy. "All fciences (fays he), all departments of knowledge whatever, muft be prenifed as a ground-work to genuine logic. Hittory has one kind of evidence, mathematics another, nanural philofuphy one ftill different, the philofophy of human nature another dillinct from all thefe; the fubordinate branches of thefe feveral parts have ftill minuter peculiarities in the evidence appropriated to them. An unprejudiced mind will in each of thefe be convinced by that lpecies of argument which is peculiar, to it, thungh it does not rellect bow it comes to be convinced. By being converfant in them, nee is prepared for the Itudy of logic; for they fupply hin with a fund of materials; in them the different kinds of evidence and argument are exemplified ; from thenz only thofe illuftrations can be taken, without which its rules and precepts mult be unintelligible.
"All jult conclufions concerning the works of na. cure mult be founded on an induction of particulars. And as in natural philofophy thefe particulars are fupplied by obfervations and experiments on natural bodies; fo in logic, the particulars, of which an induction muft be made, are to be learned only from the body of arts and fiences. Thefe are the fubjects on which obfervations mult be made, in order to lay duwn rules for inveftigating anl proving the truths of which they are made; juft as the genuine performances of any art are what mult be coulidered and obferved in laying down the rules of that art. No folid precept can be formed in logic, except by examining arts and fciences, and attending to the method of reafoning ufed in them, and to the evidence that accompanies \(\vdots\). . In proportion as they are cultivated, and no farther, logic may be improved. And what is true of the invention of logic, is true likewife of the Itudy of it. It can be unde:food no farther, than the feveral fciences which it reviews and criticifes are previoufly underltood. Accordingly we find, that all the fy ftems of lovic which have not been conpiled from a careful review and examination of the feveral fciences, confilt more of ingenious fubtleties than of ufeful precepts affiting to the mind in the various parts of knowledge. And when logic las been learned before the other fciences, the fubftantial parts of it have been fcarce attended to, or made any ufe of, in the profecution of them ; nor fo much as underftood, but in as far as the mind was gradually opened, and brought to recollect then in its progrefs through the fciences.
"Logic is precifely the fame to phillofoshy that works of criticifin are to poetry. The rules of criticifm are formed by an accurate ferutiny and examination of the beit works of pnetry. To one who had never read a poem, thefe rules would be obfcure and ufelefs; he could not comprehend them, far lefs would he be able to form a judgment of their jultnefs, and of the reafons on which they are founded. If one perufes the beil poetical performances, he will acquire fome degree of tafte, though he has never profeffedly ftudicd the rules of criticifn; and he will, at the fame time, lay in materials, and obtain a ftock of examples, which may render thefe rules intelligible to him, and enable inim to judge whether they are juft or not. And by atterwards Audying thefe rules, he imprcves, refines,

Suppi. Vol. I. Part II.
and corrects his afe, perceives the principles on which he has founded all his judguents, though he did not in the mean tine think of them, and gains additional fecurity againft his judging wrong. This may illuftrate what has been faid of the place which logic ought to hold among the feicnces. 'Tlec ubfervations made in it, both concerning the methods of invention and of probation, are founded on, and deduced from, the feveral feiences in which thefe methods are ufed. Neither the obfervations themfelycs, nor the reafons on which they are built, can be fully comprehended by one abfulutely ignorant of thefe fciences. In itudying the particular fciences, reafon will fpontaneoufly exer: itfelf: if the proper and natural noethod of reafoning is ufed, the mind will, by the native foree of its faculties, perceive the evidence, and lee convinced by it, though it does not reflect bow this comes to pafs, nor explicitly confider according to what general rules the underftanding is exerted. By afterwards ftudying thefe rules, one will be farther fitted fur profecuting the feveral feiences; the knowledge of the grounds and laws of evidence will give him the fecurity of refleaion, againt employing wrong methods of proof and improper linds of evidence, additional to that of infina and natural genius. And thus logic will greatly contribute to improvement in knowledge; and more fo, when it is ufed as a reviez of the method taken in the profecution of fcience, of the foundations gone upon, and of the general rules that bave been oblerved, than when it is applied as an introduction to the clements of fcience; for in the former cafe, its rules can be perfectly underflood, fufficiently illuftrated, and put in practice as they are learned, which in the latter is quite impollible."

Having thus vindicated the new arrangement with refpect to the place which it affigns to the ftudy of logic, he proceeds to inquire in what order the other fiences thould fucceed each other. "Ethics (fays he) or moral philnfophy is founded as wall as lugic on pneumatics, and moft therefore come after it. The conflitution of man, and his feveral active powers, muft be explained, before his bufnefs, his duty, and his happinefs, can be difcovered. Jurifprudence and politics, taking a more complex view of man than morals, by confideriing his various ftates, as well as his nature and powers, comnut, with any propriety, be introduced till morals have firf been Atudied.
" It only remains then to determine whether natural philofophy or pueumatology ought, in the order of teaching, to have the preference. And many conliderations feem to require that the former fhould be fue died firlt. If it were not, pneumatology would be too far disjoined from the practical feiences founded on it ; one of which, lugic, onght, as we have fien, to be tanght laft of all. Befides, we ought ahways in hegin with the cafief and molt obvions fubjects, and to proceed gradually to the mof dificult ; and in order to this, we ought to comply as much as polible with the natural openings and progrefs of the human mind. Now it is evident, that the inind receives firt of all im. preffions and ideas of thofe fenfible thimgs with which at is furrounded. It is not till after it has exercifed its faculties about them that it reflects on its own operativns, or acquires perceptions of them. We are from our earlieft infancy accultomed to obferve external things, though often tranfiently and ipattentively; they \(4{ }^{\circ}\)

\section*{G E R}

Gerard. lie always in our vienv, they force themftlves upon us, and we cannot avoid regarding them more or lefs. But we feldom attend to the operations of our minds in our earlier years; it is late before we acquire diftinct notions of them, or can eafily and readily make them the objects of our contemplation. Farther, external fenfation, by which bodies are perceived, is a more palpable kind of evidence than internal, from which all our knowledge of fpirits is derived; ;it Atrikes and affects us more. The philofophy of fpirits, as well as that of bodies, is founded folely on experiments and obfervations; but in the latter it is much eafier to make thefe than in the former: we can put bodies in any fituation that we pleafe, and obferve at leifure their effects on one another: but the phenomena of the mind are of a lefs conftant nature; we muft eatch them in an inflant, and be content to glean them up, by obferving their effects as they accidentally difoover themfelves in the feveral circumftances of life. The reafonings alfo by which conclufions are deduced concerning mind are of a more abftrufe and difficult nature than thofe employed in the feience of bodies; the ideas about which they are converfant are apter to be confounded with one another, and are with greater difficulty kept diftinct. On all thefe accounts, natural philofophy muft be to young minds eafier than pneumatology, and confequently fhould be taught firft."

For this long digreffion, if fuch it thall be deemed, we are perfuaded that thofe who retain any attachment to the place where their minds were firft imbued with the principles of fcience, will think no apology requifite, when they are informed, that the plan of education, which is here fo ably defended, was about the fame period adopted by both colleges in the univerfity of Aberdeen; that the writer of this article had his .own education in the King's college; and that in the profperity of that college he fill feels himfelf decply interefted. Let it be remembered, toc, that the pub. lication from which this extract has been made, furnifhes a proof of profeffor Gerard'a abilities, and of the eftimation in which he was held by his colleagues at a very early period of life; and then furely the digref. fion will not be thought impertinent.

He was now profeflor of moral philofophy and logic, and of thefe fciences alone: but though his plan of \(e-\) ducation in the Marifchal College fhews the order in which his lectures were arranged, we have not been able to learn on what foundation he built his fyltem of ethics. As Hintchefon's Moral Philofophy was then much read and admired, it will not detract from Mr Gerard's merits to fuppofe, that, with his predeceffor Mr Fordyce, he was an advocate for the moral fenfe of that author; for there are but three or four foundations on. which a fyltem of ethics can be raifed; and it may be doubted whether there be one of them which is not as old as the age of Plato. 'It would indeed be ridiculous in any modern (a) to aim at giving a new
foundation to moral virtue; for virtue mut have been practifed upon fome Iteady principle from the earlielt period of human fociety; and the moft eminent profefior will find fufficient room for the difplay of all his learning and ingenuity in illuftrating the principle which his own judgment has led him to adopt.

Of this. profeffor Gerard was fully fenfible; and whillt he was confeientioul!y difcharging his duty to his pupils, he neglected no opportunity of improving himelf. He was member of a literary fociety at Aberdeen, of which the refpectability will not be queftioned, when it is. known that it confifted of fuck men as the late Doctors Black wel, Gregory, Retid, and Campbell, with Dr Beattie, and many others of perhaps equal talents, though not known to the world as authors (в). This fociety met regularly during the winter, we believe once every forthight ; the members. communicated their fentiments with the utmoft freedom; every novel upinion was fure to be canvaffed on all lides with impartiality ; the underftandings of the members were thus mutually whetted; and hence originated Reid's Inquiry into the Human Mind, Gregory's Comparutive I'iezv, Gerard's Effay on Genius, Beattie's Ejlay on Trruth, and Campbeli's Philofoply of Rbe. toric.

On the 5th of September 1759, Mr Gerard was ordained a minifter of the Church of Scotland; on the inth of June 1760, he was appointed profeffor of divinity in the Marifchal College, and ininifter of the Grayfriars church in Aberdeen ; and at the fame time, as we fuppofe, created doctor in divinity.

On the 18 th of June 1771 he refigned his profeflorfhip in Marifchal College, together with his churelr. living, and was preferred to the theological chair in. the univerfity of King's College, then beconse vacant by the death of proteflor Lumifden. In that flation he coutinued, profecuting his fludies, beloved by his colleagues, and revered by his pupils, till his birth-day 179 ; ; when, having juft completed his 67th year, he died without a groan. His death was occafioned by a fchirrous tumor, which began to appear on his face in the year 1794, but without confining him to the houfe, or, except for a very few weeks, interrupting his ufual purfuits. It impaired, however, his licalth, and gratually undermined his conftitution. Of this he was very foon fenfible; but he faw his diffolution approaching with the utmoft compofure and refignation, and preferved to all about him fo much of that equanimity and placidnefs of temper which had marked the whole courfe of his life, that of him may truly be faid,

Multis illi multos annos precantihus-
Diri carcinomatis veneno contabuit,
Nexibufque vitz paulatim refolutis,
E terris, ineliora ferans, emigravit.
Were we to hazard an opinion of Dr Gerard's intel: lectual powers, from having. attentively perufed his.
work \({ }^{2}\),
(A) The friends of Mr Godwin, who affect to call his Pulitical Juftice the new philofophy, will, of courfe, think this a rafh affertion; but were it worth while, it would be no very difficult tafk to produce, from the atheitical writers of antient Greece, fomething fimilar even to his wildeft paradoxes. Dr Gerard was too well acquainted with.the fubject, and too warm a friend to genuine virtue, to pretend to novelty in moral fcience.
(в) Such as Profeflor Thomas Gordon, who read lectures in the King's College for 63 or 64 years, and whofe learning was equalled only by his virtues.

\section*{G E R [699] G E R}

Cerard. works, we would fay that he poffeffed great rectitude of judgment, rather than any remarkable vigour of mind; that he was capable, by intenfe fludy, of becoming matler of almoft-any fubject, though perlaps he had not the imagination requifite for making difcoveries in fcience; and that his attaiuments were folid rather than brilliant. What he knew, he knew thoroughly; but to us his knowledge feems to have been the reward of labrur.

By one, to whom he was well known, and who Dr Beit- himfelf thands high in the republic of letters *, we are affured that he had improved his memory to fuch a degree, that, iu little more than an hour, he could get by heart any fermon of ordinary length; though far from availing limfelf of this talent, as many would have done, he compofed with care all the fermons that he preached. In early life he made it a rule not to ftudy after fupper; and from that rule he never deviated, but amufed himfelf after that time, either with the converfation of his family, or with any light reading that came in his way ; and he was generally in bed by half palt eleven. He feems not to have approved of early more than of late ftudy; for though, for a few years, when as profeffor of philofoply he had various fciences to teach, he rofe regularly, during winter, at five in the morning, he difcontinued that practice as fuon as he had it in his power, and did not enter upon ferious Atudy till after breakfait, generally about ten e'clock. He was indeed very laborious through the day, and could with difficulty be perfuaded to take any bodily exercife; but being remarkably temperate in eating and drinking, he enjoyed very good health, which was only occalionally interrupted by thofe fonach complaints, to which men of fedentary lives are often fuhject.

The fruits of this inceffant fludy were, befides the lectures which he read to his different claffes, \(\mathrm{I} /\), , \(d n\) Effay on Tafle, to which, in. 756 , was adjudged the gold medal hy the Philofophical Society of Edinburgh (See Socieries, Encych.), which had propofed tafte as the fubject for a prize. Of this effay there has been a fecond, and a third edition ; of which the laft, which was publifhed in 1780 , is confiderably enlarged and improved. \({ }^{2 d}\), Differtations on the Genius and Evidences of Cbriflianity, publifhed in 1766 . \(3^{d,}\), An Fiflay on Genius, publifhed in 1774. 4th, Two volumes of Sermons; of which the firit was publifhed in 1780, and the fecond in 1782 . 5th, A part of his theological courfe, entitled The Pafloral Care, which was publifhed in 1799 by his fon Dr Gilbert Gerard, who fucceeded him as profeffor of divinity in the King's college and univerfity of Aberdeen. Befides thefe works Dr Gerard publifhed many lingle fermons, which were preached on occafional fubjects.

Of this amiable and refpectable inftructor of youth, we have been fawoured with the following character, drawn by a man of talents and virtue \(\dagger\), who was firft his pupil and afterwards his friend; and though it made part of a funeral fermon, we believe that, by thofe who were moft intimately acquainted with Dr Gerard, the panegyric which it contains will not be deemed extravagant.
"In domettic life, his conduct was amiable and exemplary. He poffeffed, in a high degree, that kindnefs of heart and affability of manner which interefted him
at all times in the happinefs of his dependants, prefer.
Gerard. ved grood humour in his houfe, and endeared him to his family. He knew how to check improprieties without harfnnefs, and when and how to indulge without impairing his authrrity. His natural good lenfe, fteadinets, and prudence, prevented him from being thrown iuto confufion by the adverfe incidents of life; and \(e\) nabled him, in proling emergencies, to adopt wite meafures, and to aominitler falutany counfel. His tender fympathy fuothed the troubled howr forrow; his rational and friendy advice guided his fanily thro' the perplexities of life, and he feelingly rejoiced in all their innocent enjoyments. His attachments were not confined to his family or his relatives; he was fufceptible of warm friendihip. In felecting the objects of it he was cautious, always preferring thofe whofe merits entitled them to confidence and regard. His attachment, flowly formed, was not to be flak a by every oblique infinuation, or by every idle report to the prejudice of his friend. Steady in his profefliuns of regard, he was capable of confiderable and difintterefled exertions to ferve thofe whom he really efteemed. To his judicious advice they had ready acculs; and his belt efforts to promote their good they conla aluays command. As a member of fuciety, his houfe was ever the feat of hofpitality, and his door was always open to the ftranger. In entertairing lis friends, he equally avoided the extravagance and oftentation which did not become his character or fuit his fortune, and the rigid econvony which marks the conduct of thule who give with a reluctant and fparing hand. He acither anxioufly counted, nor affectedly fhumect learsied converiation. While he never obtruded upon company fubjects which, by the diplay of fuperior knowledge or abilities, were calculated to gratify his own vanity at the expence of hurting others, he always itudied, as far as propriety would admit, to adapt lis converfation to the temper and inclinations of his alfuciates. To pleafe the young, and to promote the ir harmiefs feftivity, was ever his delight ; with cheerfulnefs he defcended to their trivial amufements, and in his prefence they felt no reftraints but thofe which virtue and de. cency inpofe. Though he often left for a little ftudies in which he was keenly engaged, to enjoy the converfation of a friend, he never luffered his love of fociety, one of his ttrongelt paffions, to induce him to facrifice any important literary purfuit, or to neglect any neceffary buinefs.
"As a clergyman, the office which he held for feveral years in Marifchal college rendered it his duty to be a daily preacher, and gave him a feat in the ecclefiaftical courts. But the unavoidable labour of preparing prelections for his theological pupils, did not prevent his unremitting attention to his public exhibitions in the pulpit. Thefe were marked by that dillinctnefs of arrangement, that juftnefs of reafoning, and that accuracy of compofition, which effectually fecured the approbation of the ableft judges; while by their plainnefs and fimplicity, they failed not of promuting the edification of the meanell capacities. To the luw arts of acquiring popularity he never ftooped: But his prudence, his good fenfe, his exemplary conduct, and his minifterial diligence, eftablifhed his refpectability and ufefulnefs, and procured him the full confidence and efteem of his colleagues. Poffeffing more than or-

Gerard. dinary excellence, envy never led him to depreciate the merits of other preachers. Though one of the belt of judges, he was always one of the moft candid hearers. When ly his trandation to the univerfity of King's college he was releafed from the labour of conllant preaching, far from fhewing any averfion to difcharge the mof public minifterial dutics, he was always obedient to prebleyterial appointments; and while health and ftrength remained, willing to oblige his clerical friends by appearing in their pulpits. Nor in private life did he ever lofe fight of the character of a clergyman. Having in a publication ably defended its re. fpeitability, in oppofition to the fcoffs and fueers and fophifms of modern feeptics; he comidered it as his honour, in his life and converfation, to difplay its dignity and inportance; and to fhew that the gravity of a Chriftian paftor is pertectly confiftent with the good breeding of a gentleman, and with the cheerfulnefs, affability, and eafe of an agreeable companion.
"As a man of letters, his attaiments were far above thofe at which the generality of fludents arrive. In his literary purfuits, he had all the advantages of a indgment uncummonly clear and diftinct; aided, from his earliell years, by the moft indefatigable and perfevering ttudy. The well-earned reputation with which, before he was promoted to the rheological chair, he taught in Marifchal college different fciences, inconreftibly proves that his powers, not confined to one fubject. jufly entitled him to eminence in feveral branches of titerature. Fiis publications, feveral of which have been tranflated into other languages, promife fair to extend his fame, and to hand it down to generations ytt unborn; and his unremitting labours promifed ftill a farther contribution to the general flock of learning.
"As a profeflor of divinity, he will be long and gratefully remembered by his numerous pupils. This was his peculiar department, and in this he flone. Poffer. ing large ftores of theological knowledge, he was judicious in felecting his fubjects, happy and fuccefstul in his manner of communicating inflruction. He had the merit of introducing a new, and in many refpects a better plan of theological education, than thofe on which it had been formerly conducted. Liberal, but not loofe, in his fentiments, his great aim was, not to impofe by his authority upon his pupils any favourite fyitem of opinions; but to imprefs them with a fenfe of the importance of the minitterial office, to teach them the proper manuer of difcharging all its duties, and to enable them, by the knowledge of'Scripture, to form a juft and impartial judgment on controverted fubjects. Solicitons for their improvement, he was ever ready to encourage rifug merit by his warmell approbation ; and reluctant to damp evell unfuccefsful efforts of genius by deferved cenfure. Having a conflant eye to what is practically ufeful, rather than to unedifying fpecula-
tion, he enjoined no duty which he was unwilling to exemplify in his own conduct. Hence that friet regard to the minifterial character which he uniformly difplaycd, and hence liis uncommon punctuality in attending the public ordinances of religion."

GERMINATIGN. among botanifs, is a very interefting fubject, on which the late difcoverics in chemiftry have thrown much light fince the article Germination was publifhed in the Encycloperiac. In the year 1793, Mr Humbuldt difcovered that fimple metallic fubitances are unfavourable to the gernination of plants, and that metallic oxides favour it in proportion to their degree of oxidation. This difcovery induced him to fearch fur a lubstance with which oxygen might be fo weakly combined as to be eafily feparated, and he made choice of oxigenated muriatic acid gas inixed with water. Creffes (lepidium fativum) in the oxygenated muriatic acid fhewed germs at the end of fix hours, and in common water at the end of 32 hours. The action of the firf fluid on the vegetable fibres is announced by an enormous quantity of air bubbles which cover the feeds, a phenomenon not exhibited by water till at the end of from 30 to 45 minutes. Thefe experiments, amounced in Humboldt's Flora Sublerranca Fribergenfis, and in his Aphorifms on the chemical phyfiology of Plants, have been repeated by others (A). They were made at a temperature of from 12 to 15 Reaumur. In the fummer of 1796, Humboldt began a new feries of experiments, and found that by joining the ftimulus of caloric to that of oxygen he was enabled fill more to accelerate the progrefs of vegetation. He took the feeds of garden crefles (lepidium fativum), peas (pifìm fativum), French beans (pbafcolis vulgaris), garden lettuce (hutuuca fativa), mignonette (refella odorata) ; equal quantities of which were thrown into pure water and the oxygenated muriatic acid at a temperature of \(88^{\circ} \mathrm{F}\). Creffes exhibited germs in three hours in the oxigenated mnratic acid, while none were feen in water till the end of 26 hours. In the muriatic, nitric (B), or fulphuric acid, pure or mixed with water, there was no germ at all : the oxygen feemed there to he ton intimately united with bafes of azot or fulphur, to be difengaged by the alfinitics prefented by the fibres of the vegetable. The author announces, that his difcoveries may one day be of great benefit in the cultivation of plants. His experiments have been repeated with great induf. try and zeal by feveral dillinguilhed philufophers. Profefior Pohl at Drefden caufed to germinate in oxygenated muriatic acid the feed of a new kind of euphorbior taken from Boccon's colliection of dried plants, 110 or 120 years old. Jacquin and Vander Schott at Viemna threw into oxyrenated muriatic acid all the old feeds which had been kept 20 or 30 years at the botanical garden, every attempt to produce vegetation in which

Geiche, had been fruitlefs, and the greater part of them were Gheyfli. quas Atimulated with liceefs. Eyen the hardelt feeds yielded to this agent. Among thofe which germinated
were the yellow bonduc or nickar tree (guiandina Donduc), the pigeon cytifus or pigeon pea (ogti/us cajan), the dodonea angullifolit, the climbings minofa (mimofa fondens), and new hinds of the bomea. - There are now fhewn at Vienna very valuable plants which are entirely owing to the oxygenated muriatic acid, and which are at prefent from tive to eight inches in leighti. Humbolft cauied to germinate the clufia rofea, the feeds of which had been brouglit from the Bahama inands by Boole, and which before had refilted every effort to make them regetate. For this purpofe he employed a new procefs, which feems likely to be much eafier for gardeners who have not an opportunity of procuring oxigenated matriatic acid: He formed a palte by, mixing the feeds with the black oxide of manganefe, and then poured over it the muriatic acid diluted with water. Three cubic inches of water were mixed with half a cubic inch of the muriatic acid. The veffel which contains this mixture muft be covered, but not clofely thut ; elfe it inight readily burfl. At the temperature of \(95^{\circ}\) the muriatic acid becomes ftrongly oxidated; the oxigenated muriatic gas which is difengaged paffes through the feeds; and it is during this paffage that irritation of the vegetable fibres takes place. - Pbilofopbical Magazine.

GESCHE fl Aube, or Gir Gir, a fpecies of grafs growing plentifully near Ras el Feel on the borders of Albyfinia. It begins, fays Mr Bruce, to thoot in the end of April, when it firtl feels the humidity of the air. It advances then fpeedily to its full height, which is about 3 feet + inches. It is ripe in the beginning of May, and decays, if not deftroyed by lire, very foon af. terwards.

The leaf is long, pointed, narrow, and of a feeble texture. The fuck from which it Auots produces leaves in great abundance, which foon turn yellow and fall to the ground. The goats, the only cattle thefe miferable people have, are very fond of it, and for it abandon ali other food while it is within their reach. On the leaves of fome plants our author faw a very fmail glutinous juice, like to what we fee upon the leaves of the lime or the plane, but in much lefs quantity; this is of the talte of fugar.

From the ront of the brancli arifes a number of ftalks, fometimes two, but never, as far as he had feen, more than three. The flower and feed are defended by a wonderful perfection and quantity of finall parts. The head, when in its maturity, is of a purplith brown.

This fpecies of grafs was one of the acquifitions of our author's travels. It nas not before known in Europe, nor when he publimed his hook had the feed produced a plant any where but in the garden of the French king.

GHETSSIQUAS, a nation of Hottentots which inlabits a diftrict of Soutls Africa bordering on the country of Caffraria. M. Vaillant vilited a horde of this people at no great diftance from Orange river, as he was returning from his latt African excurfion to the Cape, and was thewn by them a chain of mountains to the eaft, which extending to a dittance was lotk in the north, and which, inhabited by their principal tribes, feparated them from the Cafties, or at leaft from the

Briquas and Bremas, whom they confider as tribes of Callics.

With refpect to fuch characteriftics as are not origrital and derived from nature, as the form of their drels, weapons, intruments of mulic, fondnefs for hunting ind dancing, and the like, the Gheyfliquas do not differ from the furrounding nations, except in having adopted a particular colour for their ornaments. All the omaments of the Gheyfliquas are white, and compufed of the bouss of a fleeep's leg or foot, to which they give a dazzling whitenefs by proceffes peculiar to themfelves. 'Thus, as they fabricate their own necklaces and other artickes of luxury, and have no occafion to purchafe the materials, they have no dependence on the colunies with refpect to traje, except fur a few necelfary articles, which they want in common with other favages. Accordingly this nation is lefs knowa and lefs vifited than any other.

The women are well made, lively, and always ready to laugh or dance: yet, with all the gaiety of their dilpofition, they have the refervednefs of manners to which polihed rations give the names of modefty and Jecorum, and which, in fo warm a climate, and with fuch ardeut confitutions, appears to be a virtue of no cafy attainment.

Our author fays that he no where met with a nation fo truly generous. Though he had nothing to give in excluange, yet during two days that he faid with them, he had bowls of milk bruught to him as prefents, night and morning, from every hut. The chief even obliged him to accept a lanib; aud though our traveller's attendants were not deftitute of provilions, he would give them alfo feveral fheep with which to regale themfelves; a degree of gencrofity of which a proper eftimate can be formed only by thofe who know fornething of favage manners and favage penury.

The practice of femi-cattration prevails among the Gheyfliquas, and among them only of all the Hotten. tut tribes; and it prevails in all their hordes without exception. Our author convinced himfelf of this fact by his own eyes; for the men were fo complaifant, that, if he hat chofen, he might have infpected the whole horde. Many travellers have written upun the fubject of this whimfical operation; but they do nut agree either as to its origin, the motives that lead to its invention, or the nations by whom it is practifed. Kolben, who fays that it commonly confilts in the extraction of the left tefticle, reprefents it as a religious ceremony, a general and facred luw, with all the Hottentots indifriminately; but this is unqueltionably falfe. (Sec Hotrentors, Incgal.) Others attribute it to the delire of the Gley ficquas to render themifives more fleet in ruming, an effict which it furely is not calculated to prodice ; and fome have faid that its intention is to prerint the too abundant proparation of the fpecies. Yet Kolben, though lie feems iuchined to this laft opinion, affirms that twins are not the lefo common on account of the operation. According to thofe whom M. Vallant queltioned on the furjeat, it is merely a mark of diftinction, which their anceflors, being at war with the neighbouring nations, invented for the purpofe of knowing one anuther; but, as he himfelf admits, this is a very improbable account of the matter, as they would furcly have adopted, like the Loangees, Ponbocs, and Corma:tins, marles of diainc.

Ghirgner. tion mare eafily difcerned. Be this as it may, the operation among the Gheyfiquas is performed by the father, commonly at the birth of the child, though fome. times not till he has completed his third year.

GHIRGONG, the capital of Afam in Hindoftan, is,

Pennant's
View of
Hindofin. according to Mr Pennant, fituated in latitude \(26^{\circ} 30^{\prime}\) north. He does not fate its longitude. It has four gates, and the city is encompaffed with a bound hedge of bambuos. The Rajah's palace is furrounded by a caufey, planted on each fide with a clofe hedge of bamboos, which ferves inftead of a wall. On the outfide there is a ditch, which is always full of water. The Rajah's feat is adorned with lattice work and carving. Within and without have been placed plates of brafs, fo well polifhed, that when the rays of the fun ftrike upon them they fline like mirrors. It is an af. certained fact, that 3000 earpenters and 12,000 labourers were conftantly employed in this work during two years before it was finifled.

The Afiatic Refearches fpeak much of the wealth of Afam, and of the plenty and excellency of its natural productions, and that it abounds in all metals but tin. Gold is found in every part of the country by wafhing the fand of the rivers, and is one of the fources of revenue; 12,000 , fome fay 20,000 people, are employed in that work, each of whom has from the Rajah certain wages. Its gum lac is excellent, and it is very productive of filk.

Among the fruits which this country produces are mangoes, plantains, jacks, oranges, citrons, limes, pine apples, and puniala, a fpecies of tamarind, which has fuch an excellent flavour, that every perfon who taftes it prefers it to the plum. There are alfo cocoa nut trees, pepper vines, and areca trees. The fugar cane excels in foftuefs and fwetnefs, and is of three colours, red, black, and white. There is ginger free frome fibres, and betel vines. The Arength of vegetation and fer tility of the foil are fuch, that whatever feed is fown or llips \(p\) lanted they always thrive. The environs of Ghirgong furnih fmall apricots, yams, and pomegranates; but as thefe articles are wild, and not aflifted by cultivation and engraftment, they are very iadifferent. The principal crop in this country confits in rice and lentiles. Wheat and barley are never fown; lignum aloes is alfo à production of this country. The filks are excellent, and refemble thofe of China, but they manufacture very few more than are required for ufe. They are fuccefsful in embroidering with flowers and in weaving velvet. - One of their great forefts is inhabited by abundance of elephants: 6 or 700 may be taken in a year, but they are neglected by the natives, who have neither horfes, camels, nor affes, fuch as are brought from other countrics.

According to our author, "the people of Afam are a bafe unprincipled nation, and have no fixed religion. They follow nom tule but that of their own inclination, and make their own vicious minds the teft of the propricty of their actions. They do not adopt any mode of worthip practifed either by heathens or Mahomedans, nor do they concur with any of the known feets which prevail among mankind; unlike the pagans of Hindoftan, they do rot reject vietuals which have been dreffed by Moflems, and they abftain from no fefh except human. They even eat animals that have died a matural death."

On this paflage, one of the ableft of our literary jour. Gal bin. nalifts obferves, that in jutlice to the people of Afam, we mutt remark, that the above account, extracted from the memoirs of Mir Jumla's expedition into that country, was compofed by a rigid Mahumedar, at the court of that fanatical tyrant Aurengzebe. The anthor and his mafter faw, in the Afanefe, only idolaters; and, in idolaters, the meanett of mankind. Their diet, though lefs reftricted than that of the Hindous of Bengal, is by no means promifcuous; and their weligion does not in any way differ from that of Hindof-tan,-as might eafily be prosed by their coins, inferibed with the names of Hindoo deities.

GIBBON (Edward, Efy.), the celebrated hiforian of the Decline and Fall of the Roman Empire, was horn at Putney in the county of Surrey on the : \(7^{\text {th }}\) of A pril 1737. He was the firt child of the marriage of Edward Gibbon, Efq; and Judith Porten, the youngelt daughter of a merchant of London.
The family of Gibbon appears to be ancient and honourable ; and our author delights to trace his pedigree from John Giblon architect to King Edward III, who poffeffed lands in the hutudred and parifh of Rolvenden, in the diftrict which is now called the Weald of Kent. In that dittrict the elder branch of the family ftill adheres to its native foil, without much increafe or diminution of property; but the fortunes of the younger branch, from which fprung the fubject of this memoir, were fluctuating. It is not, however, with his family, but with himfelf, that we are concerned.

So feeble was his conftitution, and fo precarious his life during his childifh years, that at the baptifm of each of his brothers (and they were five in number) his father's prudence fucceffively repeated the name of Edward, that, in cafe of the death of the eldert fon, this patronymick appellation might till be perpetuated in the family. His brothers and a fifter were all fnatched away in their infancy; and, in terms of affectionate gratitude, he attributes his own prefervation to the more than maternal care of a maiden aunt, his mother's eldeit fifter. "Many anxious and folitary days (fays he) did that dear and excellent woman confume in the patient trial of every mode of relief and amuferment. Many wakeful nights did fhe fit by my bed-fide in trembling expectation that each hour would be my lalt. Suffice it to fay, that while every practitioner from Sloane and Ward to the Chevalier Taylor was fucceffively fummoned to torture or relieve me, the care of my mind was too fre. quently reglected for that of my health. Compafion always fuggefed an excufe for the indulgerce of the manter, or the idlenefs of the pupil; and the chain of my education was broken as often as I was called from the fchool of learning to the bed of ficknefs."

His education feems indeed to have been far from fyftematical. At the age of feven he was delivered into the hands of Mr Jolin Kirby, who exercifed about eighteen months the office of his doraeftic tutor, and of whom be writes in terms of refpect. This man lad been an indigent curate in Cumberland, and when forced by diftrefs to leave his native country, he was introduced by his learning and his virtue to the family of Mr Gibbon, from whom he might have found at leaft a temporary fhelter, had not an act of indifcretion again driven him into the world.. One day reading prayers in the parifh church, he moft unluckily forgot the name
of King George ; and his patron, a loyal fuhject, dif. mifed him with fome reluctance and a decent reward. As our author deferihes his anceftors as hereditary Tories, and fome of them as Jacobites, we think it not inprobable that Mr Kirby may have been accuftomed to unit the name of the King when reading prayers in the family; for otherwife he would have pronounced it mechanically in the church.

Be this as it may, our author, upon the difmiftion of his tutor, was fent to Kingfon upon Thames, to a Echool of feventy boys kept by Dr Wrooddefon and his affitants. He deces not reprefent himfelf either as happy or as having made great progrefs at that fchool. The want of itrength all activity difunalified him for the fports of the ticld; his companions reviled lim for the fins of his Tory anceftors; and lis tudics were frequently interrupted by ficknefs. After a real or nominal refidence of near two years at Kingiton, lie was finally recalled (Dec. 1747) By the death of his mother. By this time be was well acquainted with Pope's Homer, the Arabian Nights Entertainments, Dryden's Virgil, and a tranlation of Ovid's Metamorphofes ; and the entertainment which he received from theft books gave him a talte for defultory reading.

After living a year with lis maternal aunt, during which period he read many books on religious fubjects too deep for the comprehenfion of a boy, he was in January 1749 cntered in Weftminter fchool, of which Dr John Nicholl was at that time head mafter. "There (fays he) in the fpace of two years, interrupted by danger and debility, I painfully climbed into the third furm; and my riper age was left to acquire the beauties of the Latin and the rudiments of the Greek tongue. Inltead of andacionfly mingling in the fports, the guarrels, and the conncetions of our little world, I was ftill cherifhed at home under the maternal wing of my aunt, who now lived in College-ftreet; and my removal from Weftminfter long preceded the approach of manhood."

He was firt carried to Bath for the recovery of his health; then to Winchefter, where he lived in the houfe of a phyfreian; then to Bath again, where he read with a clergyman fome odes of Horace ard fome tpifodes of Virgil; after which an unfuccefsful trial was made to renew his attendance at Weftminfter fchool. "It might now be apprehended (fays he) that I fhould continue for life an illiterate cripple; but as I approached my fixteenth year, Nature difplayed in my favour her my--fterious energies: my conftitution was fortified and fixed; and my difurders inflead of growing with my growih, and ftrengthening with my frength, molt wonderfully vanifhed." In confequence of this he was canied to Oxford; and before he had accomplifhed his fifteenth year, was, on April 9.1752, matriculated a genteman commener of Magdalen college.

For the honour of that celebrated univerfity, we would fain hope that the account which Mr Gibbon gives of Magdalen college is greatly exaggerated. He reprefents his tutors as totally regardlefs of his morals or his Atudies. Speaking of the firlt and beft of them, for he had two, he fays, "No plan of fudy was recommended for my ufe; no exercifes were prefcribed for his infpection; and, at the mof precious feafon of youth,
whole days and weeks were fuffered to elapfe without labour or anufemcnt, without advice or account." Wc fhall make no uther remark on this paffage, than that from gentlemen, who mult have been contemporary with Mr Gibbon at Magdalen, we have received different accounts of the college; and it is furely a very fingular circumfance, that at this period of idlenefs, our author thould have become enamoured of Sir John Marnam's Canoz Cbronicus, and have conceived the idea of writing an Effay on the age of Sefollris. Such, however, was the cafe. Nut only was the effay planned, but part of it was written; and though he never finimed it, he declares, that his folution of fonse dilliculties in chronology was not devoid of ingenuity ; but he gues on to vilify Oxfond. "It inight at leat be expected (fays he), that an ecclefiaftical fchool thould in. culcate the orthodox principles of religion. But our venerable mother had contrived to mite the oppofite estremes of bigotry and indifference: an heletic, or unbeliever, was a monlter in lereyes; but foe was always, or often, or fometimes (A), remifs in the fpiritual educa. tion of her own children. Without a fingle lecture, cither public or private, either Chrittian or Proteftant, without any academical fubfeription, without any Efifcopal confirmation, I was led by the dim light of my catechifm to grope my way to the chapel and communion table, where I was admitted without a queftion, how far, or by what means, I might be qualified to receive the facrament. Such almolt incredible neglect was productive of the wort mifchiefs. From my childhood I had been fond of religious difputation; nor had the clatic fpring been totally broken by the weight of the atmofphere of Oxfurd. The blind activity of iolenefs arged me to advance without armour into the dangerons mazes of controverfy; and, at the age of fixteen, 1 bewildered myfilf in the errors of the church of Rome."

Tlus anxions is our anthor to account for his reconciliation to the Romifh church by the negligence of the tutors of his college. This event took place on the 8th of June 1753 , when, at the feet of a prielt in London, he folemuly, thongh privately, aljured the errors of herefy. An elaborate controverfial epiltle, approved by his director, and addrefted to his father, announced and juftified the ttep he had taken; and the old gentleman, in the firt fally of paffion, divulging the fecret, the gates of Margdalen college were hut argaint the convert. It was neceflary therefure to form a new plan of education ; and our young Catholic, by the advice of Mr Eliot (afterwards Lurd Eliot), was fettled, on the zoth of June, under the roof and tuition of Mr Pavilhard, a Calvinit miniter at Laufanne in Switzerland.

He reprefents his fituation there as at firft extremely uncomfortable. He could not avoid contrafting a fmail chamber, ill contrived and ill.furninted, with his elegant apartment in Magdalen college; and M. Pavilliard being entrufted with the management of his expences, he felt himfelf degraded from the rank of gentleman commoner to that of a fehool-boy. He began, however, gradually to be reconeiled to his fate; and his love of reading returned, which, he fays, had been chilled by the air of Oxford. He rapidly acquired the French language; and of his tutor he fays, "My obligations
C.litam, to the leffons of Mr Pavilliard gratitude will not fuffer ne to forget. He was endued with a clear head and a warn heart; lis innate benevolence had annaged the fpirit of the church; he was rational, becaufe he was moderate : in the courfe of his ttudies, he had acquired a juf, though fuperficial knowledge of mol branches of literature; by long practice he was fillled in the arts of teaching; and he laboured with alliduous patience to know the charaiter, gain the affection, and open the mind of his Englih pupil."

Under the tuition of this amiable preceptor he deferibes his progrefs in the French and Latin claffics, in hiliory, geography, logic, and metaphyfics, as uncoinmonly rapid; and he allows to the fame man a landfome flare of the honour of reclaining him from the errors of popery. The various diferiminating articles of the Romifh creed difappeared like a dream ; and, after a full conviction, on Chriftmas day 1754 , he received the facrament in the church of Laufanne. Thus had our author conmunicated with three dificrent focieties of Clurifians before the completion of his eighteenth year; and as fuch changes from church to church arc always dangerous, we need not wonder that, in a mind fo ill-furnifhed as Mr Gibbon's then was for theological inveltigations, they paved the way for lis laft clange to Deifin. At prefent, however, he fufpended his religious inquirics, acquicfcing (as he fays) with implicit belief in the tenets and my feries which are adupt. Ed by the gencral confent of Catholics and Protedlants.

He continued to profecute his ftudies with ardour. Uader Mr Pavilliard he learned the Greck alphabct, the grammar, and the pronunciation of the language accurding to the Frencl a accent, and foon made limfelf mafter of the works of Homer, Herodotus, and Xenoplon. During two winters he attended the private lectures of M. de Traytorrens, who explained the elements of algebra and geometry as far as the conic fections of the Marquis de P HÓpital ; but in mathernatics he was content (he fays) to receive the paffive impreffion of his profeffor's lectures, without any active exerciie of his own powers. In the writings of Grotius and Puffendorf he fludied the duties of a man, the rights of a citizen, the theory of juntice, and the laws of peace and war, which have had fome influence on the practice of modern Europe. "Locke's treatife on guvernment (fays he) inftructed me in whig principles, which are founded rather in reafon than experience; but my delight was in the frequent perufal of Montefquien, whofe energy of atyle and boldnefs of hypothcis were powerful to awaken and fimulate the genius of the age "
We have been thus minute in our account of Mr Gibbon's fudies, becaufe it furnifhes perhaps the moft ufffulteffon which can be drawn from the whole hiftory of his life. His education had been rendered irreguler, and had been often interrupted by ill-health and a feeble conflitution ; but as foon as he was able, and had an opportunity, he applied with ardour to the cultivation of letters, and his works bear witnefs that his labour was crovned with fuccefs. "This part of his flory therefure (to ufe the words of Johnfon) well deferves to be remembered. It may afford ufeful admonition and powerful encouragement to men whofe abilities have been made, for a time, ufelefs, and who, having loft one part of life in idlenefs, are tempted to throw away the remainder in defpair:"

In the jear 1757 Voltaire arrived at Lufaune, and Gibhon our young thudent's defire to fee the man who was at once a pret, an linilorian, and, as he deemed himfelf, the prince of philofophers, was ardent, and eafily gratified. He was seccivel by the vain and arrogant Fruchman with civility as an Englith youth, but could not buait of any peculiar notice or diltinction. "The highett gratification (fays he) which I rcceived from Vcltaire's refidence at Laufame, was the uncommo: circunllance of hearing a great poet declaim his own productions en the thage. His declamation was fafthioned to the pomp and cadence of the old flage; and he expreffed the elithuriafin of poetry rather than the feclings of Nature."
About this time Mr Gibbon bscame enamoured of Mademuifelle Sufan Curchod, the daughter of the niniltcr of Craffe, in the mountains which feparate the Pays de Vaud from the county of Burgundy. In terms of rapture he defreribes this lady as pofiefied of every accomplithment which could adorn her fex. She liftened to the voice of truth and paffion; her parents honourably encouraged the connection ; and our author indulged in the dream of felicity: but on his return to England, he difcovered that lis father would not hear of this Atrange connection, and that without his confent he was defitute and helflefs. "After a painful truggle (fays he) I yielded to my fate. 1 fighed as a lover, I obeyed as a fon, and my wound was infenfilly healed by time, abfence, and the habits of a new life." The lady confoled herfelf by giving her hand to M. Neckar, then a rich banker of Paris, afterwards the minifiter, and at laft one of the deflroyers of the French monarchy:
In the fpring of the year 1758 our author was recalled to England. On his arrival in London he haftened to the houfe of his aunt, Mrs Porten, who lad been the guardian of his tender years; for though his father was in town awaiting his arrival, he knew not how he fhomld be received by a parent who had parted with him in anger, and given him a flepmother in his abfence. His reception was more agreeable than he expected. His father received him as a man and a friend; and the manners of Mrs Gibhon were fuch, that, after foine referve on his fide, fhe and he eafily adopted the tender names and genuine characters of mother and fon; and, by the indulgence of thefe pareuts, he was left at liberty to confult his own tafte or reafon in the choice of place, of company, and of amufemeuts. In London he had few acquaintances, and hardly any friends; and being accuftoned to a very fnall focicty at Laufanne, be preferred the retirement of the country to the bullle of that over-grown metropolis, where he found hardly any entertainment but in the thearres.
Before he left Laufanne he had begun a work on the fludy of ancient literature, which was fuggefted by the defire of jullifying and praiing the object of a favourite purfuit. "In France (fays he), to which my ideas were confined, the learning and language of Greece and Rome wete neglected by a philofophic age. The guardian of thofe ftudics, the Academy of Infcriptions, was degraded to the loweft rank among the three royal focietics of Paris: The new appellation of Errulits was * \(\sec \mathrm{E}_{0}\) contemptuoufly applied to the fucceffors of Lipfous and Dif(carer Cafaubon; and I was provoked to hear *, that the ex. Protitimai ercife of the memory, their fole merit, had been fuper-par D. Derf \(A\) A feded by the nobler faculties of the imagination and the el:Engythot
judgment die.

Gothon. judgment. I was amhitious of proving by my own cxample, as well as by my precepts, that all the faculties of the mind may be exereifed and difplayed by the ftu. dy of ancient literature." This laudable ambition continued; and in his father's houfe at Beriton in Hampthire he Enillied his Efai fur l' Eiude de la Litorature; which, alter being reviled by Mallet the poet and Dr Maty of the Briting mulemm, was, in 1761, publithed in a finall 12 mo volume.

The fubjects of tatte, criticifin, and philofophy, which in this work came under our young author's condideration, could hardly promife much novelty of remark. Some founer obfervations, however, he appears to have placed in a new and pleafug proint of view; advancing, moreover, fome ingenions conjectures, and difplaying no iticonfiderable crudition. Yet, by his own account, he was at this tine almoft a firanger to the writers of Greece; and when lie quotes them, it is probable that the quotations are given at fecond hard. "Io this effay was prelised a dedication to his father in the Englifh language, which exhibits the author himfelf in a very amiable light; but if his reputation had depended folely upon this youthful attempt, the name of. Gibbon would have been lult in oblivion. Yet he feems, even in his riper years, to have been delighted with it himfelf, and to have confidered its merits as equal to thofe of his later productions; but Milton, it is faid, preferred the Paradife Regained to the Paradife Loft.

Before the publication of this effay, the author, at his own delire, had been appointed a cajutain in the South Hampfhire militia, in which be ferved upwards of two years. At firn, the company of ruftic and illiterate officers, and the buftle of a military life, were extremely difagreeable to him, as they interrupted his itudies; but he admits, that his inilitary ferviees, his bloodlefs and inglorious campaigus, as he calls them, were, on the whole, beneficial, as they brought him acquainted with Englifh manners, Englifh parties, and Englif! principles, to which his for eigu education and referved temper had hitherto kept him an entire itranger. In the canp and in quarters he had even found leifure, after the firft feven or eight months of his fervice, to read a great deal of Greek, and tor plan different hiftorical works, to the compolition of which he feems to have thought that he was born with an innate propenfity. He always talks of himfelf as a philofopher; but furely a more unphilofophieal perfuation than this has feldom been admitted.

At the end of the war he went again abroad, and reached Paris on the 28 th of January \({ }^{176} 3\), only 36 days after the difoanding of the militia in which he had borne the eommiftion of a captain. In that metropolis he faid not long. He viliterl palaces, churches, gardens, and theatres, and was introduced to D'Alembert and Diderot, then confidered as at the head of French feience. From Paris he proceeded to Switzcrland, and once more took up his refidence at his favourite Laufanne. Voltaire's impieties had forced him from that town to his own caftle at Ferney, where our author once vifited him, without (he fays) courting his more intimate acquaintance.

The fociety in which Mr Gibbon moft delighted during his fecund refidence at Laufame was a very fingufar one. "It conffited of fifteen or twenty unmarried badies of gentecl families; the eldeft perhaps about Suppl. Vol. I. Part-II.
twenty, all agrecable, feveral handiome, ard two of Gibor. threc of exquifite beauty. At cach other's houfes they alfembled almofl every day, without the controul, or wen the preface of a mother or an aunt ; they were trutled tos thic own pruderice, smoner a crowd of young men of every nation in Europe. They laughed, they fung, they danced, they played at cards, they acted co. medies ; but in the midt of this carelefs graiety, they refpectod themflves, and were refpeeted by the inen; the invifible line between liberty and licentionfels was never trafgreffed by a gesture, a word, or a look, and their virgin chaltity was aever fullied by the breath of fcandal or fufpicion."

We readily agree with our author that this fingular inftitution was expreflive of the innocent bimplicity of Svi?s manners; and we only regeet that he had not the fame refpect for the landes of his own country as for thole frolic females of Switzerland. He would not, in that cafe, have Itaincd lome of his moll brilliant pages with obfcene ribaldry:

We fhall not follow him in his ramble through Italy, or repeat his remarks on the towns which he vilited. It is fufficient, in fuch a Neteh as this, to inform oter readers, that it was at Rome on the 15 th of October 1764 , as he fat mufing amidit the ruins of the Capitol, that the idea of his great work firft itarted into his mind. But his original plan was circumferibed to the decay of the eity rather than of the empire.

From carrying even this contracted plan into execu. tion he was for fome years diverted. On the 25 th of June 1765 he arrived from ltaly at his father's houfe in Hampfire, and found that he han nliel duties to perform which interrupted his ftudies and diflurbed his quiet. His father had involsed himfelf in datfeuties from whieh he could be extricated only by lelling or mortgaging part of his eilate; and to fuch fale or mort gage our anthor cheerfully confented. He regtets on this oecafron that he had not "embraced the lucrative purfuits of the law or of trade, the chances of civil ofice or India duventure, or even the fat numbers if the church;" and it is to be hoped that, when he thought even of flumbering in the chureh, he had Hill fome faith in revealed religion. He wated fome time in planning a hifory of the revolutions of Switzorland, and even wrote part of it in the French language, which, by the advice of friends, he however fuppreffed. We next find hinn engaged with a friend in a Journal entitled Memoires Lituraires de la Gronde B̈retagne, of which two volumes for the years 1767 and 1708 were publifhed, and a third almoft completed, when his friend, a native of Switzerland, was engaged, through his intereft, as travelling governor to Sir Richard Worlky, and the Journal was, of courfe, abandoned. He then entered the lifls with Warburton; whufe interpretation of the lixth book of the Erreid he attacked with great petulanee and with much fuecels. The bifhop of Gloecttr was by this time in a flate of ercat mental decay, which was pceuliarly unfortunate for our anthor ; for had his Lordfhip enjoyed his priltine vigour, he would probably have given Mr Gibbon fuch a chaltifement as might have made him more modet afterwards when writing the liftory of the Decline and Fall of the Roman Limpire.

Tu that great work he now fat down ferioully; and the hiftory which he gives of his preparatory fludies
fufficicitly

Gibbon. fufficiently accounts for the inaccuracy of his quotations. Through the darknefs of the middle ages he explored his way in the annals and antiquities of Italy by the learned Muratori and other moderns; and feems to acknowledge that, from the beginning to the end of his work, he frequently contented himiclf with authorities furnifhed at fecond land.

At laft, in \(177 \boldsymbol{6}\). the firt volume of his hiftory was publifhed by Cadell the bookicller and Strahan the printer ; and the fuceefs of it far furpafied his expectation. The encomiums lavifhed on it by Dr Rohertfon and Mr Hume in letters to the author, and the fulfome compliments which thofe three eminent hiftoriars paid to each other, are melancholy fpecinens of lettered littlenefs and vanity. The fecond and third volutees appeared in 1781 ; the fourth, fifth, and fixth in \(1 ; 87\); and Mr Gibbon's fame was eftablifhed as a hiftorian. The work was admired both by natives and by foetigners, and tranflated into feveral of the languages of Eirupe. Dr Zimmerman reprefents the author as excelling perhaps Hume and Robertfon, who were hiftorians of the firit rank. All the diguity (he adds), all the charms of hiftoric fyle, are united in Gibbon: his periods are melody itfelf, and all his thoughts have nerve and vigour." This praife, however, mutt not be admitted without exception. Few writers, indeed, were poffeffed of fuch popular talents as our hiftorian. The acutenefs of his penetration, and the fertility of his genius, have been feldom equalled, and fearcely ever furpafied. He feizes, with fingular felicity, on all the mof interefting facts and lituations; and thefe he embellifhes with the utmoft luxuriance of fancy and elegance of ftyle. His periods are full and harmonious; his language is always well chofer, and is frequently diftinguifhed by a new and peculiarly happy adaptation. His epithets, too, are in general beatiifnl and happy; but he is rather too fond of them. The uniform Atatelinefs of his diction fometimes imparts to his narrative a degree of obfcurity, unlefs he defcends to the miferable expedient of a note, to explain the minuter circumftances. His ftyle, on the whole, is much too artificial; and this gives a degree of monotony to his periods, which extends, we had almuft faid, to the turn of his thoughts.

A more ferious objection is his attack upon Chriftianity; the loofe and difrefpectful manner in which he mentions many points of morality regarded as important on the priuciples of matural religon; and the indecent allufions and expreffions which too often occur in the work. .

An attack upon Chritianity is not cenfurable merely as fueh; it may proceed from the pureft and moft virtuous motives: but, in that cafe, the attack will never be carried on in an infidious manner, and with improper weapons, and Chriftianity itfrlf, fo far from dreading, will invite every mode of fair and candid difcuffion. Our hiftorian, it mult be cunfefied, often makes, when
he cannot readily find, an opportunity to infult the Chriftian religion. Such, indeed, is his cagernefs in the caufe, that he floops to the moft defpicable pun, or to the mott awkward perverfion of language, for the pleafure of turning the feripture into ribaldry, or call. ing Jefus an impoitor.

Yet of the Chrifian religion has Mr Gibbon himfelf obferved, that it " contains a pure, benevolent, and univerfal fyttem of ethies, adapted to every duty and every condition of life." Such an acknowledgment, and from fuch a writer, tuo, ought to have due weight with a cer. tain clafs of readers, and of authors likewife, and lead them ferioully to confider, how far it is confiltent with the character of good citizens, to endeavour, by fly infinuations, oblique hints, indecent fucer, and profane ridicule, to weaken the influence of fo pure and benevolent a fyftem as that of Chriltianity, acknowledgd to be ad. mirahly calculated for promoting the happinefs of incividuals, and the weltare of fucity.

Mr Hayley, in his poetical Effay on Hiftory, after a fplendid panegyric on the arduous labuurs of his friend, laments the irreligious fpirit by which he was actuated.

Think not my verfe means blindly to engage
In rafh defence of thy profaner page!
Though keen her fpirit, her attachment fond,
Bafe fervice cannot fuit with Friendhip's bond;
Too firni from Duty's facred path to turn,
She breathes an honeft figh of deep concern,
And pities Genius, when his wild eareer
Gives Faith a wound, or Innocence a tear.
Humility herfelf divinely mild,
Sublime religion's meek and modeft child, Like the dumb fon of Crefus, in the ftrife, Where force affail'd his fathor's facred life, Breaks filence, and with filial duty warm, Bids thee revere her parent's hallowed furm (B)!
The part of the hiftory which gave fuch offence to his own friend, as well as to the friends of the Clriftian religion in gemeral, was the account which our hiftorian has given of the progrefs and eftablifhment of Chriftia. nity in the twolaft chapters of his firt volume; in which he endeavours to prove, that the wonderful triumph of that religion over all the eflablifhed religions of the earth, was not owing to any miraculous atteftations to its truth, but to five fecondary caufes which he enumerates; and that Chriftianity, of courfe, could not be of divine origin. Several anfwers appeared on this occafion, written, as we may naturally fuppofe, with different degrets of temper and ability (\(c\)).

One of them only, Mir Davis, who had undertaken to point out various inftances of mifreprefentation, inaccuracy, and even plagiatifin in his account, did our hiltorian condefcend particularly to anfwer, and that in a tone of proud contempt and confident fuperiority. To
(B) Herodotus relates, that a Perfian foldier, at the forming of Sardis, was preparing to kill Crofus, whofe perfon he did not know, and who, giving up all as loft, neglected to defend his own life. A fon of the unfortunate monarch, who had been dumb from his infancy, and who never fpoke afterward, found utterance in that trying moment, and preferved his father by exclaiming, ' \(O\) kill not Croefus!'
(c) Dr Chelfum, Dr Randulph, Dr Watfon (bithop of Llandaff), Lord Hailes, Dr White, Mr Apthorpes Mr Davis, and Mr Taylor, the author of 'The Letters of Ben Mordecai.'
sibbon. this Mr Davis replied ; and it is but jutice to obferve, that his reply bears evident marks of learning, judgment, and critical acumen, and that he has convisted our author of fometimes quoting inaccurately to ferve a purpofe. At his other anfwerers Mr Gibbon merely glanced, treating Dr Watfun, however, with particular refpect ; but his pofthunous memoirs fhew how inuch he felt the attacks made on him by Lord Hailes, Dr White of Oxford, and Mr Taylur. To Dr Priefley, who, in his Hijlory of the Corruptions of Chriftionity, threw down his gauntlets at once to Bifhop Hurd and the hiforian of the Roman empire, and who prefented the latter with a copy of his book, declaring at the fame time, that he fent it not as a gift but as a challenge; he wrote in fuch terms as pronuced a corre. fpundence, which certanly added not to the honour of the diffenting divine.

At the begrining of the memorable contef between Great Britain and Anmica, uur author was retumed, by the interelt of Mr Eliot (now Lord Eliot), for the borough of Lifkeard, and fupported, with many a fincere and flent vote, the rights, though not, perhaps, the interef, of the mother country. "After a fletting illufive hope, prodence condemued me (fays he) to acquiefce in the humble flation of a mute. I was not armed by Nature and education with the intrepid energy of mind and voice.

\section*{Fincentem fircpitus, ct natum rebus agendis.}

Timidity was fortilied by pride; and even the fuccefs of my pen difcouraged the trial of my voice."

That pen, however, was uffful to the miniftry whom he could not fupport by his eloquence in the houfe. At the requeft of the Lord Chancellor and Vifcount Weymouth, then fecretary of fate, he vindicated, in a very able manner, againft the French manifefto, the juttice of the Brition arms; and his Memoire Iufificatif was delivered as a flate paper to the courts of Europe. He was rewarded for this fervice with the place of one of the lords commiffioners of trate and plantations; and kept it, till the board was abolifhed by Mr Burke's reform bill. For accepting this place he was fevercly, but mofl unjuftly, blamed by fome of the leaders of the oppofition, as if he had deferted a party in which he had never enlifled, and to the principles of which he was rendered inimical both by family prepofteffion and by his own judgnient.

On the downfal of Lord North's adminiftration, Mr Gibbon was of courfe in the uppofition deprived of an office, without the falary of which he could not conveniently fupport the expence of living in London. The coalition was indeed foon formed, and his friends were again in power; but having nothing to give him imme. diately, they could not detain him in parliament or even in England. He was tired of the bufle of the metropolis, and lighed once more for the retirement of Lanfanne, at which he arrived before the overthrow of the coalition miniftry, and where he lived happily till the laft years of his life. It was in this retreat that he wrote the fourth, fifth, and fixth volumes of his hiftory ; and he left it only for a year to fuperintend the publication of thefe volumes in London. This great work being concluded, he returned to the banks of the Leman lake, but found his enjoyments damped by the diftrefs, and foon afterwards by the death, of his oldeft and
dearett Suifs friend. Laufanne had now lof much of its attraction; the French revolution had crowded it with unfurtunate emigrants, who could not be cheerful themfelves or excite the cheerfulsefs of others; and the demons of democracy had begun to poifen the ininds of the fober citizens with princholes which Mr Giblon had always held in abhorrence. Speaking of thefe principles and their effects in Switzerland, he adds, "I legg leave to fubferibe my aftent to Mr Burke's creed on the revolution of France. 1 admire his eloquence, I approve his politics, 1 adore his chivalry, and 1 can almolt excufe his reverence for church eftablifhments. While the ariftocracy of Berne protects the bappinefs, it is fuperfluous to inquire whether it be founded in the righes of men : the economy of the fate is hberaliy fup. plied without the aid of taxes; and the magittrates muf reign with prudence and equity, fince they are unarmed in the midit of an armed nation."

It was againt the beneficent and mild government of Berne that the emifaries of France contrived to excite the difcontents of the people, by inflilling into their limple and untutored minds their own wild notions of liberty and equality. From the eficets of this Gallie frengy, which began to be very vilible fo carly as the beginning of the year-1792, Mr Gibbon refolved to take flelter in England, and to abandon, for fome time at leaft, what he called his paradife at Laufame. Difficulties intervened, and forced him to poftpone his journey from week to week, and from month to month; but on receiving the accounts of Lady Sheffield's death, he haltened to adminilter confolation to his friend, and arrived fafe in London in the begiming of June 1793.

He continued in good health and fpirits through the whole of the fummer ; but his conflitution had frifiered much from repeated attacks of the gout, and from an incipient dropfy in his ancles. The fwelling of his ancles, however, fublided; but it was only in confequence of the water flowing to another place: and heing repeatedly tapped for a bydrocele, he at laf funk under it, and died at his lodgings in St James's Atreet; London, on the 1 Gth of January 1794.

To draw a character at once general and juft of this extraordinary man, wonld be diffenle perlaps to one who had enjoyed the pleatute of his aceuaintence, and muft be impofiable to thofe to whom his perfon was a Atranger. Of the extent of his erudition there can be but one opinion; but vatious upinions nay be held refpecting the accuracy of his kuowledge. Lord shefield, who knew hin well, and loved him much, affures us, that his converfation was flll more captivating than his writings: but this could not refult from the brilliancy of his nit; for of wit he declares himfelf that he had none. His memory was capacious and retentive, his penetration uncommon, and his culloquial eloquence ready and elegant; fo that he could illuttrate almoft any topic of converfation from the copious flures of his own mind. From his private correlpondence, and a journal not written for the public eye, he arpe is 10 have been a dutiful fon, a luyal funject, and an affec. tionate and tteady friend; but it is difficult to reconcile with fo much moral and political worth his unfain and unmanly fneers at the religion of his country.

GIBRALTAR is a fortrefs of immenfe frength, of which a very full account has been given in the En-

\section*{G I B [Fo8] G I B}

Gil saltar. egcicpratia. Nothing, howevel, is in that article faid of the natural hittory of the mountain on which the fortrefs is built, though, to men of fcience, that fubject mult be as interelting as a detail of lieges. This defect we are enabled to fupply by means of Major Imrie's mineralogical defeription of Gihraltar, which is puhlifhed in the fourth volume of the Tranfactions of the Royal Suciety of Edinburgh; and, we are perfuaded, the folluwing abfract of that elegant memoir will afford ratinnal entertainment to many of our readers.
"The form of tinis mountain is oblong; its fummit a Sharp craggy ridge; its direction is nearly from north 10 fouth; and its greatefl length, in that dircetinn, falls very little Chort of three mitcs. Its tradth varies with the iadentations of the fuore, but it nowhere exceeds three quarters of a nile. The line of it ridge is unciulated, and the two extrenies are fomewhat higlier then its centre.
"The funmit of the Sugar In naf, which is the poirt of its çreateftelevation towards the fouth, is 1429 feet; the Reck Mostas. which is the higheft peint to the woth, is 1350 ; and the Signal I Ioufe, which is nearly the central point beiween thefe two, is 1276 feet abuse the level of the feat. 'The wefterti fie of the monntain is a feries of rugged flopes, iaterfperfed with abmpt precipices. Its northern extremity is perfeaty perpendi. cular, except towards the north-weft, where what are called the Lines intervere. and a narrow paflage of flat ground that leads to the ilthmus, and is entirely covered with fortification. The caltern rise of the mounsain moftly conlifls of a range of precipices; but a hank of fand, rifing from the Mediterranean in a rapid acclivity, covers a third of its perpendicular height. Its fouthern extremity falls, in a rapid flope from the fummit of the Sugar Loaf, into a rocky flat of confiderable extent, called Windmill Hill.
" The principal mafs of the mountain rock confifts of a grey, denfe (what is generally called primary) marble; the different beds of which are to be examined in a face of 1350 feet of perpendicular height, which it prefents to Spain in a conical form. Thefe beds, or frata, are of various thicknefs, from 20 to upwards of 40 feet, dipping in a direction from eaft to weft, nearly \(3 t\) an angle of 35 degrees. In fome parts of the folid mafs of this rock are found teftaceous bodies entirely tranfmuted into the conflituent matter of the rock, and their interior hollows filled up with calcareous fpar; hut thefe do not occur offen in its compofition, and its beds are not feparated by any intermediate frata.
"The caves of Gibraltar are many, and fome of them of great extent. That which moll deferves attention and examination is called St Michael's Cave, which is fituated upon the fonthern part of the mountain, almoft equally difant from the Signal Tower and the Sugar Luaf. Its entrance is 1000 feet above the level of the fea: This entrance is furmed by a rapid flope of earth, which has fallen into it at various periods, and which leads to a fpacious hall, incrufled with fpar, and apparently fupported in the centre by a large maffy falactisical pillar. To this fucceeds a long feries of caves of difficult accefs. In thefe cavernous receffes, the formation and procefs of ftalactites is to be traced, from the dimfy quilt-like cone, fufpended from the roof, to the sobult taunk of a pillar, three feet in dimeter, which
rifes from the fuor, and feems intended by Nature to Gibralter. fupport the roof from which it originated.
\(\because\) The only inhabitants of thefe caves are bats, fome of which are of a large fize. The foil, in general, upon the mountain of Gibraltar is but thinly fown ; and in many parts that thin covering has been wafned off by the heavy autumnal rains, which have left the fuperficies of the rock, for a confiderable extent, bare and open to infpection. In thofe fituations, an obferving eye may trace the effects of the flow, but conftant, decompofition of the rock, caufed by its expofure to the air, and the corrofion of fea-falts, which, in the heavy gales of eafterly winds, are depofited with the fpray on every part of the mountain. Thofe uncovered parts of the mountain rock alfo expofe to the eye a phenomenon worthy of fome attention, as it tends clearly to demonAtrate, that, however high the furface of this rock may now be elevated above the level of the fea, it has once heen the bed of agitated waters. This phenomenon is to be obfervecu in many parts of the rock, and is confantly found in the beds of torients. It confills of potlike holes, of various fizes, holluwed out of the folid rock, and formed apparently by the attrition of gravel or pebbles, fet in nution by the rapidity of rivers or currents in the fea.
"Upon the wet fide of the mountain, towards its bafe, fome flrata occur, which are heterogenial to the mountain rock : the firft, or highef, forms the fegment of a circle; its convex fide is towards the mountain, and it Hopes alfo in that dircction. This fratum confifts of a number of thin beds; the outward one, being the thimeft, is in a tate of decompolition, and is mouldering down into a blackifh brown or ferruginous coloured earth. The beds, inferior to this, progreffively increafe in breadth to 17 inches, where the Iratification refts upon a rock of an argillaceous nature.
"This laft bed, which is 17 inches thick, confifts of quartz of a blackifh blue colour, in the fepta or cracks of which are found fine quartz cryfals, colourlefs, and perfectly tranfparent. Thefe cryftals are compofed of 18 planes, difpofed in hexangular columns, terminated at both extremities by hexangular pyramids. The largelt of thofe that Major Imrie faw did not exceed onefourth of an inch in length: They, in general, adhere to the rock by the fides of the column, but are dctached without difficulty. Their great degree of tranfparency has obtained them the name of Gibraltar diamonds."

Much has been faid of the foffil hones found in the rock of Gibraltar; and the general idea which exilts coneerning them is, that they are found in a petrified fate, and enclofed in the folid calcareous rock; but this, fays Major Imrie, is a miltake, which could arife only from inaccurate obfervation and falfe defcription.
"In the perpendicular fiffures of the rock, and in fome of the caverns of the mountain (all of which afford. evident proofs of their former communication with the furface), a calcareous concretion is found, of a reddifh brown ferruginous colour, with an earthy fracture, and confiderable induration, enclofing the bones of various animals, fome of which lave the appearance of being human. Thefe bones are of various fizes, and lie in all directions, intermixed with Thells of fuails, fragments of the calcareous rock, and particles of fpar ; all of which. materials are fill to be feen in their natural uncombined
fates.

Charal'ar. ftates, partially feattered over the furface of the mountain. Thefe having been fwept, by heavy rains at dif. ferent periods, from the furfice into the fituations above deforibed, and having remained for a long feries of years in thole places of refl, expoled to the permeating action of water, lave become inveloped in, and cemented by, the calcareous matter which it depofits.
"The bones, in this compofition, have not the fmalleit appearance of heing petrified; and if they have undergone any change, it is more like that of calcination than that of petrifaction, as the moff folid parts of them generally admit of being eut and fraped down with the fame cafe as chalk,
"Bunes combined in fuch concretions are not feculiar to Gibraltar: they are found in fuch large quantties in the country of Dalmatia, and upon its coalts in the ifinds of Cherfo and Ofero, that fome naturalits have been induced to go fo far as to afiert, that there has been a regular fratum of fuch matter in that country, and that its prefent broken and interrupted appearance has heen caufed by earthquakes, or other convulfions, experienced in that part of the glooe. But, of late ytars, a traveller (Abbé Alberto Fortis) has given a minute defcription of the concretion in which the bones are found in that country: And by his accomnt it appears, that with regard to fituation, compolition, and colour, it is perfectly fimilar to that found at Gibraltar. By his defeription, it alfo appears that the two mountain rocks of Gibraltar and Dalmatia confilt of the fame Species of calcarcous fone; from which it is to be prefumed, that the concretions in both have been formed in the fame manner and about the fame periods.
"Perhaps if the fiffures and caves of the rock of Dal. matia were fill more minutely examined, their former communications with the furface might yet be traced, as in thofe deferiked above; and, in that eafe, there would be at leaft a frong probability, that the materials of the concretions of that country have been brought together by the fame accidental caufe which has pro. bably collected thofe found in the caverns of Gibraltar. Major Imrie traced, in Gibraltar, this concretion, from the loweft part of a deep perpendicular fifure, up to the furface of the mountain. As it approached to the furface, the concretion became lefs firmly combined, and, when it had no cuvering of the calcarcons rock, a fmall degree of adhefion only remained, which was evidently produced by the argillaseous earth, in its compofition, having been moifened by rain and baked by the fur.
"The depth at which thefe materials had been peneirated by that proportion of falactitical matter, capable of giving to the concretion its greatell adhefion and fulidity, he found to vary according to its fituation, and to the quantity of matter to be combined. In fiffures, narrow and contracted, he found the concretion polief ling a great degree of larduefs at fix feet from the furface; but in other fituations mure extended:- and where a larger quantity of the materials had been accumulated, he found it had not gained its greateft degree of adhefion at douhle that depth. In one of the caves, where the mafs of concretion is of confuderable fize, be perceived it to be divided into different beds, each ber being covered with a cruft of the ftalactitical fpar, from one inch to an inch and a half in thicknefs; which feems to indicate, that the materials liave been carried in at
various periods, and that thefe periods have been very Gibraleas. remote from each other.
"At Rofia Bay, upon the welt fille of Cibraltar, this concretion is found in what has evilently heen a cavern, originally formed by huge unthapely mailes of the rock which lave tumbled in tugether. The fiflure, or cavern furmed by the difruption and fubfidence of thofe malfes, has been entirely filled up with the conerction, and is now expofed to foll view by the outward mafs having dropped down in confequence of the eucroachments of tlie fea. It is to this fpot that Atrangers are geacrally led to examine the phenomenon; and the compolition, having here attained to its greatelt degree of hardness and folidity, the hatly observer, feeing the bones inelofed in what has fo little the appearance of having been a vacuity, examines no further, hut immediately adopts the idea of their being incafed in the fo. lid rock. The communieation from this former chafm to the furface from which it has rcceived the materials of the concretion, is fiil to be traced in the face of the rock, but its opening is at prefent covered by the bafe of the line wall of the garrifon. Here bones are found that are apparently human; and thole of them that appear to be of the legs, arms, and vertebre of the hack, are feattered among others of various kinds and fizes, even down to the finallett bones of fmall birds. Major Imrie found here the complete jaw-bone of a heep; it contained its full complement of teeth, the enamel of which was perfect, and its whitenefs and luftre in no degree impaired. In the hollow parts of fome of the large bones was containcs a minute cryfallization or pure and colourlefs calearcous fpar ; but, in moft, the interior part confilled of a prarry cruft of a reddifh colour, fearccly in any degrce tranfparent.
"At the northern extremity of the monntain, the concretion is generally found in perpendicular fiflures. The miners there, employed upon the fortitications in exc:vating one of thofe fiffures, found, at a grat depth from the furface, two flulls, which were fuppofed to be hi:man ; but, to the Major, one of them, if not both, appeared to be too fmall for the human fpecies. The bone of each was perfectly firm and folid; from which it is to be prefumed, that they were is a fate of maturity before they were inclufed in the concretion.. Had they appertained to very young children, perhaps the bone would have been more porous, and of a lefs firm tex. ture. The probability is, that they bclonged to a fuecies of monkey, which fill coutinues to inhabit, in confiderable numbere, thofe parts of the roct: which are to us inacceffible.
"This concretion varies, in its compofition, accordits to the fituation in which it is fomd: At the extremity of Princes Lincs, high in the rock which looks towards. Spain, it is found to confift only of a reddifh calcareous. earth, and the bomes of dimall birds cemented thereby. The rock around this fpot is iuhabited by a number of hawks, that, in the breeding feafon, neftle leere and rear their young; the bones in this concretion are prubably the remains of the food of thofe hirds. At the bafe of the rock, below King's Lines, the concretion confilts of pebbles of the prevailiug calcareous rock. In this concretion, at a very confiderable depth under the furface, was found the under parts of a grlafs bottle, nowommonly fhaped, and of great thicknefs; the colour of the glafs was of a dark grcem."

Naics:

\section*{G I B [7ro] G L A}

Gibraltar. Major Imrie makes an apolugy for gixing fo minute a defcription of thefe foffil bones; hut, in our opinion, the public is indebted to him for befowing fo much attention on a fubjeet which all mutt admit to be curious, and which, from the ftrange inferences drawn from finilar plenomena by modern philosophers, has become important as well as curious.

We cannot difmifs this article without noticing the fubterraneous galleries conftructed in the rock not only for the protection of the men during a fiege, but alfo for placing cannon, to annoy the enemy, in fituations inacectille but by fuch means. The idea of forming thefe galleries was conceived by the late Lord Feathfield when governor, and by him, in fome meafure, carried into execution; though the plan was not completed till lately by General O'Hara. Of thefe galleries we have in the Montbly Magazine for April 1798 an animated account, which we fhall infert in the writer's own words.
"'The fubterraneous gallories are very extenfive, pierce the rock in feveral places and in various direc. tions, and at various degrees of elevation; all of them have a communication with each other, either by fights of feps cut in the rock, or by wooden ftairs where the paffages are required to be very perpendicular.
"The eentinels may now be relieved during a fiege from one poft to another in perfect fafety; whereas, previounly to the confrncting of thefe galleries, a vaft number of men were killed by the Spaniards while march. ing to their feveral flations. The width of thete galleries is about twelve feet, their height about fourteen. The rock is broken through in wariuns places, both for the purpofe of giving light and for placing the guns to bear on the enemy. In different parts there are fpacious receffes, capable of accommodating a confiderable number of men. To thefe receffes they give names, fuch as St Patrick's Chamber, St George's Hall, \&ic. The whole of thefe fingular ftructures have been formed out of the folid rock by blafting with gunpuwder. Through the politenefs of an officer on duty, a place called Smart's Refervoir was opened for our infpection, which is a great curiofity, and not generally permitted to be fhewn. It is a fpring at a confiderahle depth in the body of the rock, and is abuve 700 feet above the level of the fea; we defeended into the cavern that contains it by a rope ladder, and with the aid of lighted candles moceeded througli a narrow pafage over eryftallized protuberances of the rock till we came to a hollow, which appears to have been opened by fome convulfion of Nature. Here, from a bed of gems, arifes the falu. tary fount, clear as the brilliant of the eaf, and cold as the icicle. We hailed the nymph of the grot, and, profrating ourfelves, quaffed higean nectar from her fparry urn. When reftored to the light of day, we obtained, through the medium of the fame gentleman, the key of St George's Hall, at which we arrived by a very intricate and glonniy path to the fpacious excavation, which is upwards of an hundred feet in length, its height nearly the fame. It is formed in a femicircular part of the rock; fpacious apertures are broken through, where cannons of a very large calibre command the illhmus, the Spanith lines, and a great part of the bay. The top of the rock is piereed throngh, fo as to intruduce fufficient light to enable you to view every part of it. It appears almoft incredible that fo large an excavation could be formed by gunpowder, without blowing up
the whole of that part of the rock, and fill more fo , that they fould be able to diren the operations of fuch an inftrument, fo as to render it fubfervient to the purpofe of elegance. We found in the liall a table, pla. ced, I fuppofe, for the conveniency of thofe who are traverfing the rock. The cloth was fpread, the wine went round, and we made the vaulted roof refound with the accents of mirth and the fongs of conviviality."

Thefe excavations are indeed very extraordinary works; but as the whole ruek abounds with caverns, we wifh that our anthor had inquired more particularly than he feems to have done, whether St Geurge's Hall be wholly the work of art. From one of the jaffages which we have extracted from Major Imrie's memoir. we are led to think that it is not, or at lealt, that the concretion removed lad not acquired the confiftence of the more folid parts of the rock. If this was the cafe, much of the wonder will vanifh, fince the pick-axe and clifel were probably employed to give elegance to the vault, and even, in fome degree, to direet the operation of the gunpowder.

GlMEOLS, are the brafs rings by which a feacompafs is fufpended in its box that ufually ftands in the binacle.

GlRT, in timber-meafuring, is the circumference of a tree, though fome ufe this word for the quarter or \(4^{\text {th }}\) part of the circumference only, on account of the great ufe that is made of it; for the fquare of this 4 th part is efteemed and ufed as equal to the area of the fection of the tree; which fyuare therefore multiplied by the length of the tree, is accounted the folid content. This content, however, is always about onefourth part lefs than the true quantity; being nearly equal to what this will be after the tree is hewed fquare in the ufual way: fo that it feems intended to make an allowance for the fquaring of the tree.

Girt Line, is a line on the common or earpenter's niding rule, employed in calling up the contents of trees by means of their grirt.

GLIASS ETching, or Engraving upon, is in the article Chemistry (Encycl.) faid to be a new art; and as that acid which diflulves filiceous earth, and allo glafs, was firt difcovered in the year 1771 by schecle, one might naturally imagine that the art of etcling with it upon glafs could not be older. By many others, as well as by us, it has inderd been noticed as a new invention; yet Profeffor Beekmann, whufe labo. rious refearches have brought many things to light, has proved, that fo early as the ycar 1670 the art of ctching upun glafs was difeovered by Henry Schwan. haro, fon of George Scluanhard, who was a ce!ebrated glafs cutter, patronized by the Emperor Ferdinand IIl. about the midcle of the laft century. At the time of his death, 1667 , the father practifed his att at Prague and Ratibon. Whether the fon followed the fame bufinefs at the fame towns, or removed to Nuremberg, is nut very evident from the profeffor's hiftory ; but in the year above-mentioned, fome aqua regia (nitro muriatic acid) having accidentally fallen on his fpectacles, he was furprifed to find the glafs corruded by it, and become quite foft. He thus fuund limfelf in poffeffion of a liquid by which he could etch writinc and figures upon plates of glafs.

Such is our information ; but if it be admitted (and it would difplay unreafonable fecpticifm to queftion it), Schwanhard mult either have improved the nitro-muriatic acid
acid by fome means or other unknown to us, or have contined his etchings to fome particular kiads of glafs; for the fluoric is the ouly acid, with which we are acquainted, that corrodes all glafs. (See ChemistryInder in this Suff cment). M. Deckmunn inteed feems to think that he had difcovered the fuoric aciu itfelf; fur in the year 1725 there appeared in a periodical work the following receipt fur making a powerful acid, by which figures of every hind can be etched upon glafo.
"When the fpiritus nilri per difillutionem has paffed into the recipient, ply it with a frong fore, and when well dephlegrated, pour it, as it corrodes ordinary glafs, into a lVeldenburg flalk. Then throw into it a pulverifed green Bohemian emerald, otherwife called befphorus (which, when reduced to puwder, and heater, emits in the dark a green light), and place it in warn fand tor \(2+\) hours. Take a piece of relars well cleaned, and freed from all greafe by means of a luy; put a border of wax round it, about an puch in beight, and cover it all over with the above acid. The longer you let it fand fo much the better; and at the end of fune tine the glafs will be corroded, and the figures which have been traced out with fulphur and varnith will appear as if raifed above the pane of glafs."

That the Bohenian emerald or befborus mentioned in this receipt is green fparry fluor, cannot, fays the profeffor, be doubted; and lue feems to have as little doubt of the receipt itfelf having pafied from Scinwanhard and his fcholars to the pcriustical work of \(1 / 25\), from which it has been lately inferted in the OEkonomifche Encyclopedie of Krunitz. This fuppolition certainly acquires a confiderable degree of probability from the fimilarity of Schwanhard's method of etching to that which is here recommended, and which is fo different from what is now followed. At prefent, the glafs is covered with a varnifh either of ifuglafs diffolved in water, or of turpentine oil mixed with a litile white lad, through which the figures to be stched are traced as on copper; but Schwanhard, when he had drawn his figures, covered them with varnifh, and then by his liquid corroded the glafs around them. His figures, therefore, when the varnih was removed, remained fmooth and clear, appearing raifed from a dim or dark ground; and M. Beckmana, who perfuaded fome ingenious artilts to make trial of this antient method of etching, declares, that fuch figures have a much bet. ter effect than thofe which are cut into the glufs.

Before concluding this article, it may be worth while juft to mention a propofal which has been lately made to employ glafs inftead of copper for throwing off prints in the rolling prefs. That it is pollible to ufe, glafs plates of great thicknefs for th is purpofe, it would be rafh to deny; but the fuperiority of fuch plates to thofe of copper we cannot conceive. If nut broken in pieces in the rolling prefs, they would doubtlefs laft longer; but the expence of them at firit would probably be greater, and the engraving on \(\mathrm{t}_{\mathrm{t} \text { tin }}\) could not be fo fine.

GLOSSOCOMMON, in meclanics, is a name given by Heron to a machine compofed of divers dented wheels with pinions, ferving to raife huge wcights.

GLUCINA (A), a peculiar earth difcovered by Vauquelin in the beryl and the emerald. Its general properties are as folluws: 1. It is white; 2. Infipid; 3. Infoluble in water ; 4. Adhelive to the tongue; 5 . Infutiole; 6. Soluble in the lixed alkalis ; 7. Infoluble in ammoniac ; 8. Soluble in the carbonat of ammoniac ; 9 . Soluble in almolt every one of the acids (excopt the carbonic and pherphoric acids), and forming falts of a faccharine tafte; 10. Fulible with borax into a tranfparent glafs; 11. Abforbs one fourth of its weight of carhonic acid ; 12. Decompofes the a!nminous fales; \({ }^{13}\). Is not precipitable by well faturated hydro-fulphurets.

The fpecific charabters of glucina, which are united in mone of the other known carths, are: I. Its falts are faccharine, and flightly aftringent; 2. It is very foluble in the fulphuric acid by excefs; 3. It decompofes the aluminons falts; 4 . It is foluble in the carbonat of ammoniac ; 5. Is completely precipitated from its folutions by ammoniac ; 6. Is affinity for the acids is intermediate between magnefia and alumine.

One hundred parts of leryl contain 16 of gheina; but for the beft method of analyzing the beryl, and of conrfe ohtaining the earth, we intilt refer our readers to the article Mineralogy in this Sutplement; and fall conclude this thort article with a valuable and judicious remark of Vauquelin's.
"It almoft always happens (fays this able chemilt), in the fciences of offervation, and even in the fpecu. lative fciences, that a hody, a principle, or a property, formerly unknown, though it may often have been ufed, or even held in the hands, and referred to other limple fpecies, may, when once difcovercd, be afterwarc's fund in a great varicty of fituations, and be xpplied to many ufetul punpofes. Chemittry affords many recent examples of this truth. Klaproth had no fooner difcovered the difierent fubftances with which le has enriched the ficience, but they were found in various other bodies; and if I may refer to my own proceffes, it will be feen, that after I had determined the characters of chrome, firlt fomd in the native red lead, 1 eanily recognized it in the emerald and the ruby: The fame has happened with regard to the earth of the beryl. I have likewife derected it in the emerald; in which, neverthelefs, it was overlooked both by IKlaproth and myfelf in our firft analy fis: fo difficult it is to be aware of the prefence of a new fubltance, particularly when it poffeffes fone properties refembling thofe already known!"

GOLD, the moft perfect of all the metals. See Chemistry-Fndex in this Suppliment.

It has been a very common opinion anong metallurgifts, that tin las the property of deftroying the ductility of gold, on being melted with it even in very fmall quantities; and Dr Lewis adds, that even the vapours which arife from tin in the fire, make gold fo brittle, that it flies in pieces under the hammer. This opinion was controverted by Stanefby Alchorne, Efq; of his Majefty's mint, who made a fet of experiments, which, in his opinion, authorife a very different conclufion, viz. that though tin, like other inferior metals, will
(A) This name was given to the earth of beryl by the editors of the Annales de Chimie. Its moll characte. rific property being that it forms falts of a faccharine tafte, they gave it a name derived from raukaira, to renden fweel. According to this etymology, fhould not the name be Glycina?
ccurts. will contaminate gold in proportion to the Zuantity mixed with it, yet there does not appear in in any thing fpecifically inimical to that precious inctal.

As we have elfewhere (fee Ciremistry, \(n^{\prime \prime} 100\) i, Ec. Fincoch.) enumerated thefe experiments, and admitted the conclalion drawrifrom them, it becomes our duty, in this plece, to ftate what has been wrged againt that conclufion.
M. 'rillet, being in his own mind perfuaded that tin renders gold fo bitele that it cannot be reduced to thin leaves, and far lefs be made to pais through the wireplate but by virtue of repeated annealing, and peculiar treatment, which gold of the ufual ductility does not require, determined, from refpeč to M. Alchorne, to reprat his experiments.
Ilis lirlt experiment* confifted in mixing 24 grains of fine gold with one of tin which contained no arfewic. He wrapped the grain of tin in the 24 grains of gold reduced to a very thin leaf, and placed the whole upon a piece of charcoal, fo hollowed out as to fupport
the mixed metal during fution. He cven fprinkled a finall quantity of calcined burax upon the metal, in order that the fufion might be more fudden, that the metal might flow together, and the tin unite with the gohl, without allowing time for it to hecome calcinet. This alloy was fpeedily fufed by the enameller's lamp, and reduced into a finall button without any lofs of weight. It was then flattenced carefully beneath the hammer; but, notwithftanding his utmoft precaution in this refpeet, it cracked, and at laft broke into three picees, its thichnefs then being a quarter of a line or thereabouts. He repeated this experiment with a double quantity as we!! of pure gold as of tin, and the refult was the fame.

He next alloyed 4 ounces of gold, of the finenefs of 22 carats, with 1 gros 24 grains of tin lleprived of arfenic, or, in other words, with 4 pennyweights of tin; and thefe two metals being reduced into finall pieces, were mixed together, put into a crucible, and urged by the ftrong heat of a forge with two pair of bellows. When their fufion appeared to be complete, he poured the metal into a fmall ingot mould proportioned to the quantity.

The ingot thus obtained had lof fearcely any thing of the weight of the two metals that compofed it; which was a proof that the tin had united and incorporated with the fonr ounces of gold. But on attempting to bend the inget, which was about fix inches long, and not more than two or three lines thick, he remarked, contrary to the nature of gold of 22 carats, that it was rigid. and would have required a confiderable effort to give it any degree of curvature, or bring it to the flexibility it would have poffefled if no tin had entered into its compofition. Not fatisfied, however, with the inferct ee naturally flowing from this circumftance, he procceded to the proper teft by hammering, particularly with the edge of the hammer, in order that the bar might be lengthened, and by that means fubmitted to the mof decilive praof. He did not obferve, during the continuation of this procefs, till the bar was reduced to about two-thirds of its firft thicknefs, that its edges were crached, or exhibited much of the appearance of brittlenefs; but as he was apprehenfive that this accident might happen by too loug lammering, he divided the bar by cutting off the part
which hadd been hammered out. This part was piaced in the midtt of lighted eharcoal, in order that, by a moderate danealing, it might recover the fate of nallahility it pofiefled before it was hammeren. But when be went to take it out of the fies, where it had undergone no greater heat than a cherry-red, he found it divided into two parts. After having fuffered thefe to cool, he forged them again. They were extended with confiderable eafe, though with fome cracks at the edges; but they did not yet fatisfy the whole of his enguiries. He therefore annealed one of the two lan mentioned pieces a fecond tiare, and referved the other in its hardharnmered tate to be paffed between the laninating rollers. The annealed part, which might have the thicknefs of about a milling, broke in the fire, thongh the heat was very gentle, into four or live portions. The longett of thefe portions, which bed refiled the action of the fire, bent and twitted itfelf, and fhewed, by this thate of ftrong contraction in different dircetions, that it had tended to break and become divided into fmall portions, fumilar to thufe which lad alrcady fepa. rated from it.

Satistied by this experiment that the piece of the mixed ingot which he had kept in its hamner-hardened flate would not bear anmealing, he detemnined to extend it ftill more between the rollers, fetting them up very gradually, in order that the fracture, if it ihould take place, might he priacipally owing to the brittlenefs of the material, and not to the force of compreffion to which it was fubjecterd. By this managemen: he fucceedel in extending the mictal to donble its length notwithitanding its hardnets, and rendering it as thin as trong paper; though the edges were cracked through their whole length like the teeth of a faw. But this accident is not at all furprifing, when it is confidered that gold, though alloyed fimply with copper, whatever may be the caufe, does nut poffefs its ufual ductility, particularly when it is laminatedvery thit, without repeated anuealing as the metal becomes hard.

A ware that the fracture of the pieces of gold might be attributed tos an incomplete fufion, or urequal mixture of the two metals, he inelted the whole ingut over agrain with the utmoft precaution; but in vain. The metal was as brittle as formerly, and would not bear anncaling.

Ife next fufed fix ounces of pure gold of 24 carats with 2 gros, or 6 perny-weights of tin, taking every poffible precaution to have the metals completely mixed. When the whole was in perfect fufion, he poured the mixture into an ingot mould, and obtained an in. got rather longer and cleaner than the two former. As foon as it was cold he forged one of its extremities with the edge of the hammer. It was lengthemed without any perceptible crack; and when it was reduced to the thicknefs of one line, or thereabouts, he cut it off for feparate treatment. By moderate anneal. ing it maintained its integrity; and, with the exception of a few eracks, it paffed the laminating rollers without breaking. As he was fearful, neverthelefs, that it might break in fome part if he continued to laminate it, he gave it a night annealing. It had fcarcely acquired a cherry-reduefs between the charcoal, before it broke into five or fix parts, fome of which were funply bended or twifted, and others flat as they quitted the rollers. Amung the annealed pieces of this

\section*{G O I. \(\quad 71\)}

Goid. extremity of the ingot, there was one fufficiently long, though a little curled, which he laminated a fecond time, with the determination of rendering it very thin without the leaft annealing. It acquired at lealt double the length it had at firf without breaking; and, if we exeept the two fides of this plate which were cracked, the bordy, or main piece, was entire. It was fpongy, and might be confidered as if formed out of an ingot of common gold containing no tin, but not poffelling the whole of its natural ductility.
"It folluws, fays M. Tillet, from thefe experiments, that gold, whether fine or alloyed, when perfecly fufed with a fmall portion of the fineft tin , aequires rigidity and harduefs by the mixture ; that it lofes fomewhat of its diftinguilhing colour; and that it may, indeed, by careful manakement, be extended to a certain degree by the hammer, or ftill better by the rollers; but that, as it camot be annealed without danger of breaking, it is by this defect deprived of the effentinl advantage of recovering its original foftnefs after it has been Atrongly hanmer-hardened. It is not but loy careful management in the ufe of the hammer, and by frequent an. nealing, that artifts employed on works of gold and filver fucceed in obtaining them without cracks, and bringing them to a flate of perfection, without being obliged to have recourfe to folder to repair the defects which exceffive hardnefs under the hammer would occafion. How mueh, therefore, ought gold-workers, who continually have this metal in their hands, to be attentive to prevent the introduction of tin in their workfhops, and never to employ fuch compounds of gold as are fubject to break, or even to warp, while annealing? The expence of refining, which they would pay for depurating fuch compounds, would be of lefs confequence to them than the lofs of time required for the carcful management of fuch gold contaminated by tin, even if they did fucceed in ufing it, and were not often forced to abandon, after much labour, a work nearly finithed.
" If it he allowable (continues our author) to form conjectures on the caufe of the fracture of plates of gold containing tin, when fubjected to the anncaling heat, it may be prefumed, finee tin very fpeedily melts, while gold requires a Atrong heat for its fufion, that the parts of the tin intermixed in a fort of proportional equality with thofe of the gold, tend to feparate by a fpeedy fufion and at a very gentle degree of heat; that they remain without confiflence between the parts of the gold, while the latter preferve this whole of their folidity, and do not lofe it even by the annealing heat : whence it feems, that the parts of the preeious inetal, when ignited among the coals, having no longer the folid conrection formed by the tin, but, on the contrary, having an infinite number of fnall cavities oecupied by partieles of that metal in fufion, muft tend to difuniun; whereas the fame accident docs not take place in the pieces which have relifted the annealing, and have been laminated after cooling, becaufe the particles of tin have become folid by cooling, and have recovered their original flate of union with the gold.
"This fracture of the compound does not take place with an alloy of gold and copper, for an oppofite reafon to that which has here been explained; namely, becaufe thefe two metals require ncarly the fame heat for their fufion. The effect of annealing being there-

Sufpl. Vol. I. Part II.
fore equal upon both, the metals, notwihntanding this treatment, preferve their natural confiftence, even tho' the heat be carried near the point of fufion."
Goin-Lcaf. See Goll-Leaf (Encycl.), where a full account is given from Dr Lewis of the proeefs of golldbeating. In that article we have faid that gold-leaf ought to be prepared from the finefl gold ; but \(\mathrm{Mi}^{2} \mathrm{Ni}\) chnifon, who in all probability knows anch more of the matter than the author from whom our acenunt was cupied, affires us that this is a miftake, and that pure gold is too ductile to be worked between the gold-beater's ikin. The neweft fkins will work the finef gold, and make the thinneft leaf, hecaufe they are the fmoothett. Old flins, being rough or foul, reyuire coarfer gold. The finer the gold, the more ductile; infomucl that pure gold, when driven out by the hammer, is too foft to foree itfelf over the irregularities, but would pafs round them, and by that means beeome divided intu narrow flips. The fineft gold for this purpofe las three grains of alloy in the ounce, and the coarfett twel-s grains. In general, the alloy is fix grains, or oneeightieth part. That which is called pale-gold eon. tains three pennyweights of filver in the ounce. The alloy of leaf-gold is filver, or eopper, or both, and the colour is produced of various tiats accordingly. "Two ounces and two pennyweights of gold is delivered by the mafter to the workman, who, if extraordinary Riilful, returns two thrufand leaves, or eighty bouks of gold, together with one ounce and fix pennyweights of wafte euttings. Hence one book weighs 4.8 grain; ; and as the leaves meafure 3.3 inches in the fide, the thicknefs of the leaf is one two hundred and eighty-two thoufandth part of an inch.

The yellow metal called Dutch gold is fine brafs. It is faid to be made from copperplates, by eementation with ealamine, without fubfequent fution. Its thicknefs, conipared with that of leaf gold, proved as 19 to 4, and under equal furfaces it is confiderably more than twice as heavy as the gold. Nicholjon's Fournal, vol. ill.

GOLDONI (Charles), was horn at Venice in the year 1707. He gave early indications of his humourous character, as well as his invincible propenfity to thofe fludies which have rendered his name immortal. His father, pereeiving that the darling amufement of his fon was dramatic performances, lad a fmall theatre erected in his own houfe, in which Goldoni, while yet an infant, amured himfelf with three or four of his companions, by acting comedies. Before he wats ient to fehool, his genius prompted him to becone an author. In the feventh and eighth years of his age, ere he had fcarcely learned to read correctly, all his time was devoted to the peruling comic writers, among whom was Cicognini, a Florentine, little known in the dramatic commonwealth. After having well ftudied thefe, he ventured to fketch out the plan of a comedy, which needed more than one eye-witnefs of the greatell probity to verify its being the production of a child.

After having finifhed his grammatical itudies at Venice, and his rhetorical fludies at the Jefuit's college in Perugia, he was fent to a boarding-fchool at Rimini to fludy philofophy. The impulfe of nature, however, fuperfeded with him the fludy of Arittorle's works, fo much in vogue in thofe times. He frequented the theatres with uncommon curiofity; and paffing 4 X
gradually

Goldoni. gradually from the pit to the fase, entered into a f:miliar acquaintance with the actors. When the fesfon of comic performances was over, and the aftors were to remove to Chiozza, young Goldoni made his efcape in their compaty. This was the firft fault he committed, which, ascording to his own confeffion, drew a great many others after it. His father had intended hisn to be a plydician, like himfelf: the young maal, however, was wholly averfe to the fudy: He propofed afterwards to make him an advocate, and fent him to be a practitioner in Modena. An horrid cercmony of ecclefiattical jurifaiction, at which he was prelent, infpired him with a melancholy turn, and he determined to become a capuchin.

His father, percciving the whimfical, inconfant humour of his fon, feigned to fecond this propofal, and Fromifed to go and prefent him to the guardian of the capuchins in Venice, in the hope that, after forre ftay in that extenfive and merry city, his melancholy int would ceale. The fcheme fucceeded; for the young man, indulging in all the faftionable diffipation of the place, was curd of his foclifh refolution. It was however neceffary for him to be fetiled in fome empluyment ; and he was prevailed upos by his mother, after the death of his father, to exercife the profeflion of a lawyer in Venice. By a fudden reveríe of fortune he was compelled to quit at once both the bar and Venice. He then went to Milan, where he was employed by the refident of Venice in the capacity of fecretary ; where becoming acquainted with the manager of the theatre, he wrote a farce, entitled I/ Gondoliere IYeneziano, the Venetian Gondolier; which was the furt comic production of his that was performed and printed. Some time after, Goldoni broke with the Venetian refident, and removed to Verona.

There was in this place, at that time, the company of comedians of the theatre of St Samuel of Venice, and among them the famous actor Cofali, an old acquaintance of Goldoni, who introduced him to the ma nager. He began therefore to work for the theatre, and became infenfibly united to the company, for which be compofed feveral pieces. Having removed along with them to Genoa, he was for the firft time feized with an ardent paffion for a lady, who foon afterwards became his wife. He returned with the company to Venice, where he difplayed, for the firlt time, the powers of his genius, and executed his plan of reforming the Italian flage. He wrote the Momolo, Courtifurn, the Squanderer, and other pieces, which obtained univerfal admiration.

Feeling a ftrong inclination to refide fome time in Tuicany, he repaired to Florence and Pifa, where he wrote The Foorman of Tauo Mafers, and The Son of Harlequin loft and found again. He returned to Venice, and fet about executing more and more his fa. vourite fchenve of reform. He was now attached to the theatre of St Angelo, and enployed himfelf in writing both for the company and for his own purpofes. The conftant toils he underwent in thefe engagements impaired his health. He wrote, in the coudfe of twelve months, fixteen new comedies, befides forty-two pieces for the theatre; among thefe many are confidered as the beft of his productions. The firft edition of his works was publifhed in 1753, in 10 vols. 8vo. As be wrote afierwards a great nuns-
ber of new picces for the theatre of St Luca, a fep7. Goheoni. rate eclition of thefe was publifhed, under the title of The New Comic Theatre: among thefe was the Terence, called by the author his favourite, and judged to be the maller-piece of his works. He made another journey to Parna, on the invitation of Duke Philip, and from thence he pafled to Rome. He had compofed 59 other pieces io late as the year 1761, five of which were deligned for the particular ufe of Marque Albergati Capacelli, and confequently adapted to the theatre of a private company. Here ends the literary life of Goldoni in Italy.

Through the channel of the French Ambaffador in Venice, he lad received a letter from Mr Zenuzzi, the firt actor in the Italian theatre at Paris, containing a propofal for an engagement of two years in that city. F.e accordingly repaired to Paris, where lue found a felect and numerous company of excellent performers in the Italian theatre. They were, however, charge able with the fame faults which he had corrected in Italy; and the Fiencli fupported, and ceven applauded in the Italians, what they would have reprobated on their own flage. Goldoni wifhed to extend even to that country his plan of reformation. without confidering the extrome difficulty of the undertaking. Scurrilities and jefts, which are ever accompanied by actions, geftures, and motions, are the fame in all countries, and almoft perfectly undertood even in a foreign tongue: while the beauties of fentiment and dialogue, and other things which lead to the underfanding of characters and intrigucs, require a familiar acquaintance with the tongue of the writer.

The firft attempt of Goldoni towards his wifhed.for reform, was the piece called The Father for Love; and its bad fuccefs was a fufficient warning to him to defilt from his undertaking. He continued, during the remainder of his engagement, to produce pieces agreeable to the general talte, and publifhed twenty-four comedies; among which The Love of Zelinda and Lindor is reputed the beft.

The term of two years being expired, Goldoni was preparing to return to Italy, when a lady, reader to the dauphinefs, mother to the late king, introduced him at court, in the capacity of Italian mafter to the princefies, aunts to the king. He did not live in the court, but reforted there at each fummons, in a poftchaife fent to him for the purpofe. Thefe journeys were the caufe of a diforder in the eyes, which afflicted him the reft of his life ; for being accuftomed to read while in the chaife, he lof his fight on a fudden, and in fpite of the molt potent remedies, he could never afterwards recover it entirely. For about fix months lodgings were provided him in the chateau of Verfailles. The death, however, of the dauphin, changed the face of affairs. Goldoni loft his lodgings, and only, at the end of three years, received a bounty of 100 louis in a gold box, and the grant of a penfion of four thoufand livres a-year. This fettlement would not have been fufficient for him, if he had not gained, by other means, farther fums. He wrote now and then comedies for the theatres of Italy and Portugal ; and, during thefe occupations, was delirous to fhew to the French that he merited a high rank among their dramatic writers. For this purpofe, he neglected nothing which could be of ufe to render himfelf mafter of the French language.

\section*{\(\mathrm{G} 00 \quad[7: 5] \quad(i \quad 0) 0\)}

Gwhon, He licam, fooke, and converfed fo much in it, that, in Good Hope his \(62 d\) year, he ventured to write a comedy in French, and to have it reprefented in the court theatre, on the oceafion of the marriage of the kiner.

This piece was the Boarru Bienfaifant; and it met with fo great fuccefs, that the author received a bounty of 150 lonis from the king, another gratification from the performers, and confiderable fums from the bookfellers who publifhed it. He publified, foon after, another comedy in French, called L'Avre Frflueux. After the death of Louis XV. Goldoni was appuinted Italian teacher to the Princefs Clotille, the peefent princefs of Piedmont ; and after her marriage he attended the late untortunate Princefs Elizabeth in the fame capacity.

The approach of old age obliged him to quit Terfailles, and to live in l'aris, the air of which, lefis farp, was better adapted to his conilitution. The lat work of Goldoni was The Folponi, written after his retirement from court ; from which time he bade a lafting adieu to writing. Unfortunately for him, he lived to fee his penfions cut off at the revolution, like others, and he feent his laft days in poverty and diftrefs. He died in 1792, at a crifis when, according to the expreffion of a deputy in the Convention, tive French nation was ready to repay him cevery debt of gratitude.

Goldoni is on a par with the greateft cumic poets of modern times, with regard to dramatic talents, and is thought fuperior to them all with regard to the fertility of his genius. His works were printed at Leghorn in \(1788-91\), in 3 vols. 8vo. He has been generally called the Molieret of Italy ; and Voltaire, in one of his letters to Marquis Albergati, ityles him The Painter of Nature. Goldoni is one of thofe authors whofe writings will be relifhed in the moit remote conntries, and by the lateft pofterity.

GOOD-HOPE, or Cape of Good Hope, was taken by the Bitifh on ryth Auguft 1795 with very little difficulty. At this we need not be much furprifed, if to the difcontent which muit have prevailed among the planters and townfmen with the new order of things, be added the manners of the people. M. Vaillant, who was at the Cape during the lat war, when the garrifon expected to be every day attacked hy a Britif fquadron, and when the people were not abfolutely difgufted with their nwn government, reprefents them, however, as rendered fo completely frivolous by imitating the manners of their French allies, that, though the place was ftrongly fortified, it could hardly be expected to hold out long againft a vigarous and well conducted fiege.
"The females of the Cape (fays he), when I faw them for the firlt time, had really excited my allonillment by their drefs and their elegance; but I admired in then, above all, that modefly and referve peculiar to the Dutch manners, which nothing as yet had corrupted.
" In the courfe of fix months, a great change had taken place. It was no longer the French modes that they copied; it was a caricature of the French. Plumes, feathers, ribbons, and tawdry ornaments heaped together, without tafte, on every head, gave to the prettieft figures a grotefque air, which often provoked a fmile when they appeared. This mania had extended to
the neighbouriay plantations, where the women could fon!llap farcely be known. A mode of drefs entirely new was every where ine roduced; but fo fantaftical, that it would have been dificule to determine from what country it had been imported."

At that time a French and a Swifs regiment were in the garrifon; and though the town was uccupied onl with warlike preparations, and though an attack from the Britifh fleet was every moment expected, the French officers had already introduced a tathe for pleafure. Employed in the morning at their exercife, the Frenell foldiers in the evening acted plays. A part of the barracks was transformed into a theatre ; and as women capable of performing female characters could not be found in the town, they amigned thefe parts to fome of their comrades, whofe youth, delicate fcatures, and frefhnefs of complexion, feemed beft calculated to favour the deception, Thefe heroines, of a new kinel, heightened the curiolity of the fpestators, and retidered the entertainment till more lively and interefting.

To add to the general pleafure, ladies of the firt rank confidered it as incumbent on them to lend to the military actors and actrefles, their laces, jewels, rich dreffes, and moft valuable ormannenis. But fome of them had caufe to repent of their condefeention; for it happened more than once that the Countefs of Almaviva having left in pledge at the futtling-houfe her borrowed decorations, the owner, to recower them, was obliged to difcharge not only the bill due for brandy and tubacco, but all the other debts of the heroine.

During the intoxication and giddinefs occationed by thefe amufements, Love alio did not fail to act his part; and certain little intrigues were, from time to time, brought to light, which give employment to the tongue of feandal, and introduced unhappinefs into families. Hymen, it is true, amidtt thefe adventures, fometimes intervened to repair the follies of his brother ; and many marriages, which rettored every thing to order, were the refult of his negotiations; but the complaints, though fiffed, did not lefs exift. The watchfulneis of the mother was alert. The huband, by fo much the more fecretly irritated as he faw himfelf obliged to conceal his jealoufy, curfed in his heart both actors and theatre; while the matronly part of the community, lefs on the referve, declained with bitternefs againft the licentioufnels that prevailed, which they wholly imputed to this mode of theatrical entertainment. At lait, to the great mortification of the young, hut to the high latisfaction of the cld women and hubands, the theatre was on a fudeten thut up. The caufe that afected this was altogether foreign to the complaints that were made, and of a nature that it was impofible to furefe. T'wo of the French actors, who, it mutt be remembered, were officers in the army, thought proper to imitate the paper money of the company, and to put their forged notes in circulation. The forgery was detected, and traced to its anthors: the two theatrical heroes were baniked from the Cape: and the company, athamed of the adventise, dared neither feek others to fupply the vacant places, nor refume their flage entertainments.

Intoxicating as were thefe pleafures, governmens: meanwhile had not been inattentive to the danger which threatened the colony. As they daily expecterl

\section*{G O O}

Good Hope to be attacked by the Britifh fleet, they had increafed the means of defence, and urdered differchit works and new furtifications to be conllructed.

At firt, the bufinefs was carried on with activity and ardour ; becaufe the inhalitants, inftigated by their private intereit, which was then confidered as involved with that of the public, had voluntarily offered their fervices, and mingld with the workmen. Young and old, foldiers and magiftrates, failors and planters, all folicited the honour of co-eperating for the general good and common fafety. Tu behold this heterogeneous multitude-fome loaded with pick-axes, and fome with fpades, or other fimilar implements-marching out in the morning from the town, and proceeding in high fipirits to the new fortifications, was a figlit truly adinirable.

But this patriotic fervoar was of no long contizuance. Under pretence of faring their Atrength, and that they might not weary themfelves to no purpofe, they foon caufed their flaves to follow them with the tools and inttruments. In a little time they contented themfelves with fending their flaves only; and at lait thefe fubfitutes themrdves, in imitation of their mafters, or perhaps by their fecret orders, gave over going alfo. Their eathufarm, in fhort, from the firlt mument of its breaking out till the period when it was thus entirely cooled, had been the affait of fomething lefs than a fortnight.

This talle for frivolity which, almoft twenty years ago, was introduced amung the Dutch in Cape-town by their good friends the French, fpread rapidly thro' the planters, who are thus defcribed by M. Vaillant, who certainly had the bef opportunities of knowing them.

The planters of the Cape may be divided into three claffes; thore who refide in the vicinity of the Cape, within a diftance of five or fix leagues; thofe who live farther off in the interior parts of the colony; and lafly, thofe who, more dillant Aill, are found at the extremity of the frontiers among the Hottentots.

The firf, who are opulent proprietors, and have handfome country houfes, may be likened to what was formerly called in France pelits fiegnurs terriers, and differ extremely from the other planters in eaf: and luxury, and particularly in their manners, which are haughty and difdainful. Such is the refult of wealth. The fecond, fimple, kind, hofpitable, are cultivators, who live upon the fruits of their labour. Here we have an example of the good effects of mediocrity. The latt, poor enough, yet too indolent to derive fulfiftence from the foil, have no other refource than the produce of fome cattle, which they feed as they can. Like the Beduin Arabs, they think much of the trouble of driving them from canton to canton, and from one patturage to another. This wandering life prevents them from building any fettled habitations. When their flocks oblige them to fojourn for a while in the fiane place, they confruct, in hatke, a rude kind of hut, which they cover with matts, after the manner of the Hottentots, whofe cuftoms they have adopted, and from whom they in no refpect differ, but in their complexion and features. And here the evil is, that there is no precife fituation in focial life to which thefe miferable beings belong.

Thefe fluggifl tribes are held in hortor by their in-
duftrious neighbours, who dread their approach, and Gnod Hope remove as far from them as they can; becaufe, having no property of their own, they fteal without \{eruple that of others, and, when is want of pafturage for their cattle, conduct them feeretly to the firft cultivated piece of ground that comes in their way. They flatter themfelves they fhall not be difcovered, and they remain till every thing is devoured. If detected in their thefts, fquabbles and contentions enfue, and afterwards a fuit at law, in which recourfe is had to the magiftrate, and which communly terminates in making three men enemies, the rubber, the perfon robbed, and the judge.

Nothing can be fo mean and cringing as the conduct of the firt defcription of planters, wheu they have any thing to tranfact with the principal officers of the company, who may have fome influence over their lot; and nothing fo alfurdly vain and io fuperlatively infolent as their behaviour to perfons from whom they have nothing to hope and nothing to fear. Proud of their wealth, Spoiled by refiding near a town, from whence they have imbibed only a luxury that has corrupted, and vices that have degraded them, it is particularly towards Itrangers that they exercife their furly and pitiful arrogance. Though neighbours to the plantera who inhabit the interior of the country, you muft not fuppofe they regard them as bretliren; on the contrary, in the true fpirit of contempt, they have given therm the name of Rauw-boer, a word anfwering to the loweft defeription of clown. Accordingly, when thefe honeft cultivatora come to the town upon any kind of bufinefs, they never ftop by the way at the houses of the gentry of whom we are feaking; they know too well the infulting manner in which they would be received. One might fuppofe them to be two inimical nations always at uar, and of whom fome individuals only met at diftant intervals, upon bufinefs that related to their mutual interefls.

What is the more difgufting in the infolence of thefe Africans is, that the majority of them are defeended from that corrupt race of men, taken from prifons and hofpitals, whom the Dutch company, defirous of forming a fettlement at the Cape, fent thither to begin, nt their rifk and pearl, the population of the country. This fhameful enigration, of which the period is not fo remote but that many circumflances of it are remenibered, ought to render particularly modelt thofe who are in the moll ditant manner related to it. On the contrary, it is this very idea that moft contributes to their arrogance; as if they flattered themfelves that, under the guife of fupercilious manners, they could hide the abjectnefs of their origin. If a tlranger arrives at the Cape with the defign of remaining and fettling there, they conceive him to be driven from his country by the lame wretched circumftances which formerly banifhed their fathers, and they treat hint with the moft fovereign contempt.

This melancholy failing is the more to be lamanted as the contagion has fpread through almoll every refidence about the Cape, which is in reality a very charming canton. Eirbelifhed by cultivation, by, its numerous vineyards and pleafant country houfes, it everywhere exhibits fo varied and delicious a profpect, that, were it occupied by other inhabitants, it would excite no fenfations but thofe of pleafure.

\section*{G O O [717 i \(\quad\) G O 0}

Cood fnpe As we advance into the country, the planters are a fort of farmers ; and confitute, by heir manners, cuftoms, and occupations, a clafs by the infelves, perfectly dittinct from what we have been deficibing. Situated farther from the Cape, and, of confequence, nut having the fame opportunities for difjofing of their commudities, they are lefs rich than the firt. We fee among them none of thofe agreeable country houtes, which, placed at different ditances from the town, emsbellifh the country as we pafs, and afford fuch charming profpects. Their habitation, which is ahuut the lize of a large coach-houfe, is covered with thateh, and divided into three rooms by means of two partitions, which reach only to a certain height. The middle apartment, in which is the entrance to the houfe, ferves ait onec both as a pariour and cating-room. It is there that the fanily retide cluring the day, and that they receive their tea and other wifitors. Of the two other rooms, one forms a chamber for the male children, and the other for the females, with the father and mother. At the back of the middle apartment is a farther roum ferving for a kitchen. The refl of the bullding confiits of barns and flables.

Such is the diftribution which is generally followed in the interior plantations of the culony; but nearer to the frontiers, where there does not prewail the fame eafe of circumftances, the habitations are much lefs commodious. They are merely a barn, confitting of a fingle room, without any divifion, in which the whole family live together, without Ceparating either day or night. They fleep upon fheep finins, which ferve them alfo for covering.

The drefs of thefe planters is fimple and ruftic. That of the men confifts of a check fhirt, a waifterat with fleeves, a large pair of trowfers, and a liat half untorped. The women have a petticoat, a jacket litted io their fhape, and a little round bonnct of muflin. Untlefs upon extraordinary occafions, neither fex wear flockings. During a part of the year, the women even walk with their feet quite naked. The oecupations of the men require that theirs thould have fome covering; and this covering they make from a piece of the hide of an ox, applied and fhaped to the foot foom after the animal is killed, and while the hide is yet frefh. Thefe fandals are the only article of their drefs which they make themfelves; the reft is the bulineis of the women, who cut out and prepare their whole wardrobe. Though the equipment we have mentioned confitute the every-day drefs of the planier, he has, however, a cuat of handome blue cloth, which he wears upon days of gala and ceremony. He has then alfo Htuckings and fhues, and is dreffed exactly like an European. But this finery never makes its appearance but when he goes to the Cape; and then, indeet, is not put on till he arrives at the entrance of the town.

It is commonly in thefe journeys that they purchafe fuch things as they may want to relit their wardrobe. "there is, at the Cape, as well as in Paris and London, a fjecies of old-clothes-men, who deal in commodities of this fort ; and who, from their enormous probits, and the extortion they practife, they have ubtained the name of Capfe Smoufe, or Cape Jews. Thefe traffickers contrive at all times to fell their goods at a dear rate; but they vary their price in proportion as their flock io great or imall: of courfe they bear no fixed
price; and the planter who cones from the defert, and Grod Hope who can underitand but little of this fuctuation, is fure to be duped.

On the other band, the regular floopkeeper, who knows the probity of thefe farmers, and how punctual they are in the payment of their debts, exerts every effort to prevail on them to open an account with him. He tempts them by the pretended clseap price and excelient quality of his ftufls, and offers to remit the payment till their next journey in the following year. It is feldom that thefe people, fimple and unexperienced as they are, perceive the craft that is prefented to them under this guife of kinduefs and civility. If they fuffer themfelves to be prevailed npon, they are fhackled for life. Upon their return, there are new purchafes to be made upun the fame conditions; and thus, year after year, always in debt, always buying without prompt payment, they become the prey of an extortioner, who raifes to hiafelf a fottune out of their weaknels.
lt is true, thefe buyers, after being thas duped at the Cape, commonly return home only to make dupes of others. The cumning that has been employed to deceive them, they employ in their turn to tempt the Hottentots who are in the ir fervice. The remnants of ftuff, or the frippery garments which they bring back, are fuld to thele unfurtunate fervants with fo great a profit, that commonly the wages of a year are inade. quate to the payment; and they find themfelves, like their malters, in debt for the year that is to come. In the end, therefore, it is the puor Hottentot that pays for the extortion at the Cape.

Cuitom has rendered the planters infenfible to the want of fruit and pulfe, though the foil is admirably adajted to the cultivation of both. The facility with wheh they rear their cattle makes up for this priva. tion, as their flocks afford them plenty of provition. The chief food is mutton; and their tables are loaded with fuch profufion as to difguft one at the fight.

From this mode of living, cattle are in the colonies, as in other places, not only a uffful object, but an article of the firf neceDity. The planter undertakes himfelf the care ồ watching over his flocks. Every evening, when they return from the field, he ftands at his door, with a ftick in his land, and counts them over one by one, in order to be fure that none of them are mifling.

People who have no other employment than a little agriculture, and the fuperintendance of a flock, mutt have long intervals of idhences. It is thus with the planters, particularly thofe who live in the interior parts of the country, and who being unable, on account of their diflance from the Cape, to difpofe of their corn, never raife mose than is fufficient for their own confumption. From the profound inaction in which they live, one would fuppole their fupreme felicity to confit, in doing nuthing. "They fomctimes, however, vilit each other; and upun thefe occafions the day is fpent in fmoking, and drinking tea, and is telling, or liftening to tales of romance, that are equal ncither in merit nor morality to the Itory of Blue-beard.

As every man always carries with him, wherever he goes, both a pipe, and a tobacco-pouch made of the fkin of the fea-calf, he is fure in thefe vifits to have one fource of amufement. When any one of the company

\section*{G O N}
"Soral Ef pe is defirous of lighting his pipe, he takes out his pouch Gnnion. . and, having filled, palfes it to the reft. This is a civiuy. lity that is never omitted. However numerous may he the finty, every body finokes: the confequence of which is a cloud, that, rifing at firft to the upper part of the room, increafes, by degrees, till it fills the whole houfe, and becumes at lait for thick that it is impoffible for the fmokers to fee one another.

When a Atranger travelling through the country is received by the mafter of a houfe, he iuftantly becomes a member of the family. Accuftomed to a dumeftic life, the planters delight in the ties of aflinity, and coninder in the light of a relative every perfon whom they love. Upon entering a houfe, the form of falutation is, to fhake hands firft with the matter, and then with every male jerfon in the company arrived at ycars of maturity. If there happens to be any one whom we do not bike, the hand is refuted to him ; and this refufal, of fo common a tefimony of friendhip, is looked upon as a formal declaration that the vifitor confiders hin as his enemy. It is not the fame with the females in the company. They are all embraced one after another; and to make an exception would be a fignal affrout. Old or young, all mult be kiflid. It is a benefice with the duties attached to it.

At whatever time of the day you enter the houfe of a planter, you are fure to find the kettle and tea-things uron the table. This practice is univerfal. The inhabitants never drink pure water. If a franger prefents himfelf, it is tea they offer him for refrefment. This is their common liquor in the interval of meals, and in one feafon of the year, when it often happens that they have neither beer nor wine, is their only beverage.

If a ftranger arrives at dinner-time before the cloth is taken away, he fhakes hands, embraces, and immediately feats himfelf at the tabie. If he wifhes to pafs the night, he flays without ceremony, fmokes, drinks tea, afks the news, gives them all he knows in his turn; and the next day, the kiffing and fhaking hands being repeated, he goes on his way, to perform elfewhere the fame ceremony: To offer money on thefe occalions would be regarded as an infult.

Thefe particulars of a people, whofe condition it is to be hoped that the generofity of the Britifh character, and the mildnefs of the Britifh government, will gradually meliorate, cannot but be acceptable to many of our readers. We fhall, therefore, make no apology for the length of this article.

GOMASH'IEH, in the language of Bengal, one cent.

GONIOMETRY, a method of meafuring angles, fo called by M. de Lagny, who gave feveral papers on this method in the Memoirs of the Royal Acad. anno 1724, 1725, '729. M. de Lagny's method of geniometry confits in meafuring the angles.with a pair of compaffes, and that wishout any fcale whatever, except an undivided femicircle. Thus, having any angle drawn upon paper to be meafured, produce one of the fides of the angle backwards behind the angular point ; then with a pair of fine compaffes defcribe a pretty large femicircle from the angular point as a centre, cutting the fides of the propoled angle, which will intercept a part of the femicircle. Take then this intercepted part very exactly between the points of the compafies, and turn them fuccefurely over upon the arc of the femi-
circle, to find how often it is contained in it, after which there is commonly fone remainder: then take this remainder in the compafles, aud, in like manner, find how often it is comtained in the laft of the integral parts of the firft arc, with again fome remainder: find, in like manner, how often this latt remainder is contained in the former; and fo on continually, till the remainder become too fmall to be taken and applied as a meafure. By this means he ohtains a feries of quotients, or fractional parts, one of another, which being properly reduced into one fraction, give the ratio of the firill arc to the femicircle, or of the propofed angle to two right angles, or 180 degrees, and confequently that angle itfelf in degrees and minutes.

We have given this account of goniometry from Dr Hutton, and frankly acknowledge that we had never thought of it till we perufed his excellent Dictionary of Mathematics and Philefophy. To have omitted the method when pointed out to us would have been wrong : though we mittake much if mathematicians is gencral will not look upon it as a method of very litule value.

GOThiC Architecture. See Gochic Axchitecture in this Suppl. and Roor, Encych.

GOUVERNANTE, the Spanith name of a plant which the Indians of California ufe in decoction as a fudorific driuk for the cure of the venerial difeafe. It is thus defcribed in the third volume (Englifh trama. tion) of Peroufe's Voyage round the World.

Calyx quadrified, egg flapred, of the fame fize with the corolla; placed beneath the fruit, deciduon\%. Corolla polypetalous; petals four, finall, entire, cgg- fhaped, fixed upon the peceptacle. Stamina, eight, fixed to the receptacle, of the fame length as the corolla : threads channellet, concave on the one fide, and convex on the other; wings veiled, anthere fimple. Pittil, \(\mathrm{gr} . \mathrm{rm}\) oblong, covertd, with five angles, and five cells; feeds oblong ; pericarpium covered with fine heirs.

This plant is a thrub of midedle fize; the branches are angular and knotty, and covered with an adhenive varnifh; the lateral branches are alternate, and placed very near to cach other: the leaves are fmail, petiolated, bilobed, opponte, fmooth on the upper fide, the muder fide indittinctly weined ; the bloffoms are axillary, fometimes terminating, pedunculated, folitary, but fometimes in pairs.

From this defrription, the gouvernante appears to be a new fpecies of daphne.

GRAVIMETER, the name given by citizen Guyton (Morvean) to an inftrument of glafs, comftructed in all refpects on the principle of Nicholfon's Hydrometer, deferibed in the article Hydrostatics, \(11^{\circ} 18\). Eircyif. It is therefore needlefs to give a defeription of this inftrument here ; as every artift in glafs, who has feen Nicholfon's hydrometer, or underltands our defcription of it, may conftruct the gravineter of Morveau; and every man who has made himfelf mafter of our article SPECIFIC Gravity, may apply the gravimeter to every purpofe to which it is applicable. It may juit be proper to obferve, that Morveau, having at firt loaded the fuall feale or baion \(G\) (Plate 240 , fig: 9 . Ein cycl.) with a bulb of glafs containing a fufficient quantity of mercury, found it expedient afterwards to fubflitute in the place of this bulb a fmall mafs of folid glafs, brought to the proper form and weight by grinding. For a minute account of this inftrument, if any

\section*{\(\mathrm{G} R \mathrm{E} \quad[719] \quad \mathrm{G}\) R}
of our readers can be fuppofed to require a minute iccount of it, we muft refer to the third mumber of Nicholon's Journal of Philofophy, Chamifry, and the Arls.

GREEN, though one of the feven criginal or prifmatic colours, is among dyers a compound of blue and yellow. Of the European methods of dyeint green, ant of the principles on which thefe methods are founded, a fuffivient account will be found in the Encyclopedia, under the articles Cozour-Making and Dyping, and, in this Supplement, under Animal and Vegriable Substances; but it may be worth while, in this place, to infert the method practifed at Aftracan, in giving to cotton yarn that beautiftl green colour for which the oriental cotton is fo juftly admired.

The principdl dye is the blue, which is employed both for cotton and filk. To prepare it, the indigo or blue dye-tuff is finely pounded, and diffolved in water by a gentle heat in large earthen jars, feven of which ftand in brick-work over the fire-place, at the diftance of about an ell and a half from each other. About two pounds are put into each veffel. Five pounds of foda finely pounded, together with two pounds of pure lime and one pound of clarified honey, are added to each; when thefe ingredients have been well mixed, the fire is ftrengthened; and when the whole begins to boil, the dye is ftirred cavefully round in all the veffels, that every thing may be completely diffolved and mixed. After the firt boiling the fire is flackened, and the dye is fuffered to ftand over a gentle heat, while it is continuaily firred round: this is continued even after the furnace is cooled, till a thick foum arifes in the neck of each jar, and foon af. ter difappears. The dye is then allowed to ftand two days, until the whole is incorporated, and the dye thickens.

The dyers affert, that with this dye they can produce three fhades of blue, and that, as the dyeing particles gradually diminifh, they can dye alfo a green solour by the addition of yellow.

When a manufacturer gives cotton yarn to a blue dyer, he firft boils it at home in a lex of foda (kalakar), then dries it, wafnes it, and dries it again. The blue dyer lays this yarn to fteep in pure water, prefles out the fuperfluous water with the hands, and then im. mediately begins to dip it in the blue jar, often wringing it till it is completely penetrated by the dye. This firt tint is generally given to yarn in fuch jars as have had their colouring matter partly exlaufted. It is then dried, rinfed, and again dried; after which, it is put into the fref hlue dye, properly faturated; and, after the colonr has been fuficiently heightened, it is dried for the Iaft time.

For a yellow dye, the dyers of Aftracan employ partly faw-wort, brought from Ruflia, and partly the leaves of the kijar belge or fumach; The proceds is as follows : The yarn is firf boiled for an hour in a ftrong ley of foda; it is then dried, afterwards rinfed and laid wet to fteep for twelve hours. in a folution of alum with warm water. When it has besn dried in the air, it is laid to foak feveral times in troughs with the dye which has been boiled thick in kettles from the abovementioned plants, till it has acquired the wifhed-for colour, care being taken to dry it each time it is foaked. It is then rinfed in running water, and dried for the int time.

On this yellow colonr a green is often dyed. After Gregury. the yarn has been dyed yellow it is given out to the blue dyer, who immediately dips it in the blue jars, the dye of which has been already partly exhautted; and if the green colour is not then fufnciently lingh, the o. peration is repeated, the yarn being bried each time. Siee Neue Nordifche Beytrage, by Profefler Pallas; or Philofopbical Magazinc, "' 2.

GREGORY (David), was a fon of the Rev. John Gregory, minifter of Drumoak, in the county of Aberdeen, and elder brother to Mr James Gregory, the inventor of the molt common refleding telefcope. He was born about the year 1627 or 1628 ; and though he poffeffed all the genius of the other branches of his family, he was educated by bis father for trade, and ferved an apprenticefhip to a mercantile houfe in Holland. I-Iaving a flronger paffion, however, for know. ledge than for money, he abandoned trade in 1555 ; and returning to his own country, he fucceeded, upon the death of an elder brother, to the eftate of Kinar. die, fituated about forty miles north from Aberken, where he lived many years, and where thirty-t wo children were born to hin by two wires. Of thefe, three fons made a confpicunus figure in the republic of letters, being all profeffors of mathematics at the fame. time in three of the Britifh univerfities, viz. David at Oxford, James at Edinburgh, and Charles at St Andrews.

Mr Gregory, the fubject of this memoir, while le lived at Kinardie, was a jeft among the neighbouring gentlemen for his ignorance of what was doing about his own farm, but an orncle in matters of learning and philufophy, and particularly in modicine, which he had fludied for his amufement, and began to practife among his poor neighbours. He acquired fuch a reputation. in that fcience, that he was employed by the nobility and geutlemen of that comnty, but took. no fees. His hours of itudy were fingular. Being much oceupied. through the day with thofe who applied to him as a phyfrcian, he went early to bed, rofe about two or three in the moraing, and, after applying to his ftudies. for fome hours, went to bed again and flept an hour or two before breakfaft.

He was the firf man in that country who had a bae. rometer; and having paid grat attention to the chan. ges in it, and the correfponding changes in the weather, he was once in danger of being tried by the prefbytery for witcheraft or conjuration. A deputation of that body waited upon him to enquire into the ground of certain reports that had come to their eas ; but he fatisfied them fo far as to prevent the profecution, of a man known to be fo extenfively ufeful by his knowledge of medicine.

About the begioning of this century he remored with his family to Aberdeen, and in the time of Queen. Anne's war employed his thoughts upon an improve-ment-in artillery, in order to make the fhot of great guns-more deftructive to the enemy, and executect a : model of the engine he had conceived. Dr Reid ine forms us, that he converfed with a clock-maker in A. berdeen who had been employed in making this model; . but having made many different pieces by direction without knowing their intention, or how they were to be put together, he could give no account of the whole. After making funce experiments with this mo-

Gregnry, del, which fatisfied him, the old gentleman was fo fanGrinding. guine in the hope of being ofoful to the allies in the war againit France, that he fet about preparing a field equipage with a view to mahe a campaign in Flanders, and in the mean time fent his model to his fon the Savilian profffor, that he might have his and Sir Ifaac Newton's opinion of it. His fon thewed it to Newton, without letting bim know that his own father was the inventor. Sii Ifaac was much difpleafed with it, faying, that if it had tended as much to the prefervation of mankind as to their deftruction, the inventor would have deferved a great reward; but as it was contrived folely for deftruction, and would foon be known by the enemy, he rather deferved to be puniffed, and urged the profeffor very Atrongly to delloy it, and if pofible to fupprefs the invention. It is probable the profeflor followed this advice. He died foon after, and the model was never found.

If this be a juft account of the matter, and Dr Reid's veracity is unqueftionable, we cannot help thinking that Newton's ufual fagacity had, on that oecation, forfaken lim. Were the implements of war much more deftructive than they are, it by no means follows that more men would be killed in batte than .at prefent. Mufkets and cannons are furely more deftrative weapons than javelines and bows and arrows; and yet it is a well knowu faet, that fince the invention of gunpowder battles are not half fo bloody as they were before that period. The oppofite armies now feldon conse to clofe quarters, a feew rounds of mufketry and artillery commonly decide the fate of the day; and had Mr Gregory's improvenient heen carried into effect, ftill fewer rounds would have decided it than at prefent, and the carnage would confequently have been lefs.
When the rebellion broke out in 1715 , the old gentleman went a fecond time to Holland, and returned when it was over to Aberdeen, where he died about \(\mathbf{1}_{720}\), aged 93 , leaving behind him a hittery of his own time and country, which was never publifhed.
Gregory (Dr David). In addition to the account given in the Encyclopedia of this entinent mathematician, it may be proper to add, that he was a moft intimate and confidential friend of Sir Ifaac Newton, and was intrufted with a manufcript copy of the Principia, for the purpofe of making obfervations on it. Of thefe Newton availed hinfelf in the fecond edition, they having come too late for his firt publica. tion, wlich was exceedingly hurried by Dr Halley, from fears that Newton's backwardnefs would not let it appear at all. There is a complete eopy of thefe obfervations preferved in the library of the univerfity of Edinburgh, prefented to it by Dr James Gregory, the prefent profeffor of the pratice of medicine. Thefe contain many fubline mathematical dificuffions, many valuable commentaries on the Principia, and many interefting aneedotes. There are in it fome paragraphs in the hand-writing of Huyghens relative to his Theory of Lighlt. It would appear that this work of confidential friendlhip was the foundation of that fyftem of phyfical and matliematical aftronomy which has raifed Dr Gregory to great eminence in the republic of letters.

GRINDING, in Cutlery, a well-known operation,
by which edgetools are marpened. As commonlv Cinding prafifed, the grinding of tools is attended with great inconveniency, arifing from the production or develope. ment of heat hy friction. The fact of fpaks Aying from a dry grinditone when a piece of irou or teel is applied to its furface during the rotation, has been feen by every one. Thie heat produced during this procels is fuch that the fteel very foon becones ignited, and hard tools are very frequently foftened and fpoiled, for want of care during the grinding. When a eylindri. cal ftone is parily immerfed in a trough of water, the rotation mult be moderate and the work flow, other. wife the water would foon he thrown off by the centrifugal force; and when this fluid is applied by a cock from ahove, the quantity is too fmall to preferve the requifite low temperature. It is even found, that the point of a hard tool, ground under a confiderable mafs of water, will be foftened, if it be not held to as to meet the ftream; fparks being frequently afforded even under the water.

To find a remedy for this, Mr Nicholfon was led, by fome accounts which he received of German cutlery, to make the following experiment. He procured a Newcattle grindllone of a fine grit and ten inches in diameter, and alfo a block of mahogany to be ufed with emery on its face. Both the ftone and the wooden block were mounted on an axis, to be occafionally applied between the centres of a Itrong lathe. In this fituation both were turned truly cylindrical, and of the fame diameter. The face of the wood was grooved obliquely in oppofite directions, to afford a lodgement for the emery. The face of the flone was left finooth. and there was a trough of proper lize applied bencath the ftone to hold water. The grindftone was then ufed with water, and the wooden cylisder was faced with emery and oil. The inftrument ground was a file, out of which it was propofed to griad all the teeth. The rotation was produced hy the mechanifm of the lathe; the velocity being fuch as to turn the grinding apparatus about five revolutions in a fecond. The ftone operated but flowly, and the water from the trough was foon exhaulted, with inconvenience to the workman, who could fcarcely be defended from it but by flackening the velocity. The emery cylinder cut rather fafter. But notwithftanding the friction was made to operate fucceflively and by quick changes on the whole furface of the file, it fuon became too much heated to be held with any convenience; and when a cloth was ufed to defend the hand, the work not only became awkward, but the heat increafed to fuch a degree that the oil hegan to be decompoled, and emitted an empyreumatic frnell. The tone was then fuffered to dry, and the file tried upon its face. It alnoft immediately became blue, and foon afterwards red-lot. Both the cylinders were then covered with tallow, by applying the end of a candle to each while revolving. and emery was fprinkled upon the cylinder of wood. The fame tool was then applied to the grindfone in rapid motion. At the firft inltant the friction was fcareely perceptible; bot very fpeedily afterwards the zone of tallow preffed by the tool became fufed, and the ftone cut very faft. The tool was fcarcely at all heated for a long time; and when it began to feel warm, its temperature was immediately lowered by removing effeit took place when the experiment was repeated with the wooden eylinder.

It is not dilicalt to explain this by the modern doctrive of heat. When ail was uled upon the wooden cylinder, the heat developed by the friction was employed in miling the temperature of the tool and of the fluid oil: but when tallow was fubltituted infead of the oil, the greateft part of the heat was employed in fumiog this conliflent budy. From the increafed capacity of the tallon, when melted, this heat was abforoed, and became latent, inttead of being employed to raife the temparature : and whenever, hy continuing the procefs, the tallow already melted began to grow hot, together with the tool, it was ealy to rednce the temperature again by employing the heat on another zone of conlitent tallow. He uled thefe two cylinders, with much fatisfaction, in a confiderable quantity of wurk.
'This promifes to be a valuable ditcovery; and the public is obliged to the ingenions anthor of the Philofophical Journal for being at fo much pains on this, as well as on other occations, to render his feience fubfervient to the ufeful arts.

GROSE (Francis, Efq; F.A.S.) was born, we believe, in 17.3 : He was the fon of Mr lirancis Grofe of Richmond, jeweller, who filled up the corouation crown of George 11. and dicd \(1769^{\circ}\). By his father he was left an independent fortune, which he was not of a difpofition to add to, or even to preferve. He cally entered into the Surrey nulition of which he becume adjutant and paymafter; but fo much had diffipation taken poffefion of him, that in a fituation which above all others required aitention, he was for carelefs as to have for fome time (as he uled pleafantly to tell) only two books of accounts, vi\%. his right and left hand poekets. In the one he receivel, and from the other paid; and this too with a want of circumfection which may be readily fuppofed from fisch a mode of book-kecping. His lofes on this occafion roufed his latent talents. With a grood claffical education le united a fine tate for drawing ; and encouraged by his friends, as well as prompted by his fituation, he undertook the work from which he derived both profit and reputation; we mean, his Views of Antiquities in England and Wales, which he firt began to publifh in numbers in the year 1773 , and finilhed in the year 1776. The next year he arded two more volumes to his Englim Vieks, in which he included the iflands of Guernfey and Jerfey, which were compheted in 1787 . This work antwered his molt fanfrime expectations; and, from the time be began it to the end of his life, he continued without intermifion to publith various works (a lift of which we fubjoin), bencrally to the advantage of his literary reputation, and almolt always to the benefit of his finances. His wit and good humour were the abundant fource of farisfaction to himfelf, and entertainment to \(h_{\text {is }}\) friends. He vifted almoft every part of the kingdom, and was well received wherever he went. In the fummer of rÿghe fet out on a tomr in Scotland; the refult of which he began to communicate to the public in \(179^{3}\) in numbers. Before he hat coneluded this work, the proceeded to Ireland, intending to furnifh that kingfom with riews and deferiptions of her antiquities; in Suppl. Vol. I. Part II.
the fame maner ine had exectited thatic of (Brent Evi. tain : but foon afeer lis arrival in Ibslin, beeng at the hufe uf Mo Hurne there, he fudllenly was feized at table with an apoplectic fit, on the 6th May 1791, and dier in:mediately. He was interred in Dublin.
". His lite:ary hiftory (fays a friend), efpectable a.i it is, was exceeded by his good humour, comviviality, and friencthip. Living mach abroad, and in the be! company at home, he had the ealiett habits of aday):ing hinfelf to all tempers ; and, being a man of gencral knowkedge, perpctually drew ont fome converfation that was either ufeful to himfelf or agreable to the party. He could obferve upon moll things with precilion and judgment ; but his natural tentlency was to humour, in which he excelled both 1,0 the (ivetion of aneclotes and his monner of tellins them: it may be fain, too, that his figure rather alfited him, which was in fact the very tithepage to a joke. Ho had nether the pride nor inaligaty of authoribip: he fit the itrdependency of his own ealents, and was fatiffed witir them, withoat degrading others. His friendhips were of the fane cal ; conltant and fincere, owertoukinet fone fatits, and feeling ont greater virtues. He had a good heart; and, abaing thofe little indiferetions natural to moft men, could do no wrong."

He married at Canterbury, abd redided there fome years, much beloved and retpected for his wit and vivacity; " which (another friend obferres), thongh he pufteffed in an extreme degree, was but litile turctured with the caultic fpirt is frevalent anong ipiris. of that clafs. His humom was of that nature which exhilarates and enlivens, without leaviag behind it a Ating: and thoughi perhaps none puffefled more than himbelf the faculty of "fetting the table in a roar," it was never at the expene: of virtue or frood maners. Of him indeed may be laid in the words of Shakefpeare,

> Within the limits of becoming mirth, I never fpent an hour's tall: withal: His eye begets occacon lur his wit; And every object that the one doth catch, The other turns to a mirth-usuring jeft.
"Of the moft carelefs, open, and artiefs difpofition. he was often (particularly in the early part of his life) the prey of the deligning ; and has mone than once (it is helieved) embarrafed himfelf by tou implicit conf. dence in the probity of others. A tale of dittrifs never failed to draw commiferation from his heart ; and often has the tear been difcovered gliding down that check which a moment before was flufled with jocularity."

Ife was father of Danitl Grofe, Efq; eaptain of the royal regiment of attillery (who, after feveral canipaigns in America, was appointed in 1790 deputy governor of the new fettlement at Botany Ibsy), and lome other children.

His works are as follow :
1. The Antiquities of England and Wales, 9 vol.. 4to and Svo. 2. The Antiquities of Scotland, 2 vols. 4 to and \(8 v o\). 3. The Antiquities of Ireland, 2 vols. 4 to and sro. 4. A Treatife on ancient Amunr and Weapons, 410, 1785 . 5. A Clafical Distionay of the Vulgar Tongue, 8vo, 1785 . C. Military Autiquities; being a Hilary of the Engion strmy from 4 Y

Guerite, the Conqueft to the prefent time, 2 vols 4 to, 1786 , Guillotinc. i788. 7. The Hiftory of Duver Cafle, by the Rev.

William Danell, 4to, 7786.8 . A Provincial Glor. fary, with a Collection of local Proverbs and popular Superftitions, 8 vo, 1788. 9. Rules for drawing Caricatures, 8vo, 1788 . 10. Supplement to the Treatife on Ancient Armour and Weapons, 4to, 1789.11. A Guide to Health, Beauty, Honour, and Riches; being a collection of humorous Advertifements, pointing out the Means to obtain thofe bleffings; with a fuitable introductory Preface, 8ro. 12. The Olio ; being a Collection of Effays in 8 ro, 1793.

GUERITE, in Fortification, a centry-box; being a fmall tower of wood, or ftone, ufually placed on the point of a baftion, or on the angles of the finulder, to fold a centinel, who is to take care of the ditch, and watch againft a furprife.

GUILLOTINE, a new term introduced into the languages of Europe by the mournful effects of fanaticifm in the holy caufe of liberty. Our readers are net ignorant that this is the name given by the National Affembly of France to the engine of decapitation, which thofe ufurpers of the legiflative authority decreed to be the fole punifhment of thofe condemned to death for their crimes. This decree was iffucd on March 20tb 1792.

We do not imagine that the world will derive much ufeful inftruction from a minute defeription of this terrible inftrument of public jufice; and therefore content ourfelves with giving two figures of it , fufficiently expreflive of its conftruction. It is only the revival of an inftrument ufed in former times. The earlieft accounts that we have of it is, that it was ufed in the barony of Halyfar in Yorkthire. It was alfo fet up in Scotland; but we have no certain information that it has ever been ufed ; and it ic fill fhewn as a fort of curiofity by the name of the Mayden. See Maiden, Encyd.

Eratafthenes could not think of a better way of hand. ing down his name to future ages than by burning the temple of Diana at Ephefus ; Dr Guillotin, phyfician at Lyons, and member of the felf-naned National Affembly of France, thouglit himfelf honoured by the decree which affociated his name with this inftrument of popular vengreance.. It was indeed propofed by hin as an inftrument of mercy, in a ftudied harangue, filled with that fentimental flang of philanthropy, which cofts fo little, promifes fo much, and has now corrupted all the languages of Europe. His invention is indced one of the moft expenfive fpecimens of Gallic phi. lanthropy, whofe tender mercies are cruel; and was accordingly received with loud applaufes, both from the houfe and from the galleries. To proceed, however, with impuling dignity, it was referred to the confideration of a committee, with injunctions to afk the opinion of able fargeons of its efficiency. Mr laouis, a celcbrated furgeon of Paris, declaved it well fitted for the taßk, in a long pedantic differtation; in which he takes oceafion to deliver, with academic coldnefs, a theory of the operation of cutting inftruments; and fays that he had examined the edge of the guillotiac, and other fuch inftruments, with a microfcope, and had difcovered that the finefl edges were toothed like a faw. M. Guillotio, he faid, had therefore with great judgment made the axe of his engine of death with a noping edge, by which meaas il gliffoit d'une fagon infiniment glus douce.

This differtation was fo much to the tafte of the hu- Guillotine mane leriflature, that they rewarded Mr Loutis with 2000 livres, and publiched it in the Paris Journals. As to the inventor, he reaped all the benefit from it which he fo kindly intended for the nation, by the trial of it on his own perfon, when he fell under the difpleafure of Robefpierre.

We acknowledre, that in as far as this inftrumert leftens the duration of the horrid conllict with the king of terrors, and probably diminifies the corporeal fufferance, it may be called merciful (alas! the day!) ; but we queftion much, whether the dreadful agitation of foul is not rather increafed by the long train of preparatory operations. The hands of the convict are tied behind his hack: he is then ftretched along on his face on a frong plank, and his precife pofition adjulted to the inftrument. When faftened to the plank, it is puffed forward into its place under the fatal edge, his neck adjufted to the block, and a bafket placed juft before his eyes (for the face of Louis XVI. was not covered) to receive his head. This mut employ a good deal of time, and every moment is terrible.

The conftruction has received many alterations and refinements; and has at lat been made fo compendious and portable, as to become part of the travelling equipage of a commiffioner from the National Affembly, fent on a provincial or Special vifitation. 'Thus did the fovereign people become terrible in majetty. So fenfible was the affembly of the advantages of this awful impreffion, or fo intoxicated with the enjoyment of irrefiftible power, that they have thought their coins ornamented by this attribute of their fupremacy: and as Jupiter is diftinguifhed by his thunderbolt, fo the na: jefty of the people is diftimuifhed by the no lefs fatal axe. We have feen a piece of ten fous, Aruck at Mentz in 1793, and iffued as current money, at the very time that they were planting the tree of liberty in that illuminated city by the lands of Cuftine and his troops. The device is the fafees and axe of ancient. Rome, crowned with a red cap, and furrounded by a laurel wreath. The infcription is, Republique Françoife, 1793, an. 2d. Fully impreffed with the fame fentiments, Lequinio, the fentimental novellit of France, whom Mercier compares with the lender, the heart-tonching Sterne-Lequinio, now commiffioner, fent by the National Afiembly to regenerate Normandy and Brittany, writes to his mafters, that "he is. very fuccersful in converfions from fupertition to found reafon." He oppofes to the Bible and the relicts of the faints the conttitution and the guillotinc. "And you would wonder (fays he) at my fuccefs - The wife (but they are few) give up their prejudices at once; but the multitude, the fufid workippers of Notre Dame, look at our lady the guillotine; are filent, becomes ferious, and their doubts vanifh;-they are converted. This is your labarumin boc figno vinces."

GULA, Gueule, or Gola, in Architecture, a: wavy member whofe contour refembles the letter \(S\), commonly called an Ogee.

GUNPOWDER, as we have oblerved in the Encyclopedia under the word GUN, has been known in the eaft, and particularly in China, from a period of very remote antiquity. No man, however, feems to have fufpected that the knowledge of it was conveyed from the eaftinto Europe; but all have agreed to allow the

\section*{G U N}

Gumpow- merits of the invention both to friar Bacon and to der. \(\xrightarrow{+}\) Bartholomew Schwartz. This generally receised opinion has been lately controverted by eitizen Langles, who, in a memoir read in the French national inftitute, contends, that the knowledge of gunpowder was conveved to us from the Arabs, on the return of the Crufaders to Europe. He affures us that the Arabs made ufe of it in 690 at the fiege of Mecea; and he adds, that they derived it from the Indians, among whom it nult have been known in the remotefl ages, fince their facred books (the Vedam) forbid the ufe of it in war.

It is indced extremely probable, that the compofition of gunpowder was known in India at a very early period ; for in whatever conntry nature forms nitre in the greaten plonty, there its deflagrating quality is mof likely to be firt obferved; and a few experiments fomuded on that obfervation, will lead to the compugition which produces fuch fudden and viotent effects. "Nitre (fays Sir Genge Stainton) is the natural and daily produce of China and India; and there accordingly the knowledge of gunpowder feens to be coeval with that of the mofl diftant hiftoric events. Among the Chinefe, it has been applied at all times to ufeful purpofes; fuch as blafting rocks, and removing great obfructions, and to thofe of amufement in making a valt variety of fire-works. It was alfo ufed as a defence by undermining the probable paffage of the enemy, and blowing him ! p . But its force had not been directed through frong metallic tubes as it was by Europtans foon after they had difcovered it. And though, in imitation of Europe, it has been introduced into the armies of the Eaft, other modes of warfare are fometimes fitll preferred to it."

Of gunpowder manufactured by thofe who have manufactured it fo long, it is defirable to know the compofition and the qualities. It was therefore natural for the Hon. George Napier, when fuperintending the royal laboratory at W wolwich, and making experiments upon fo neceffary an implement of modern war, to procure fome Chinefe powder from Canton.

This he did; and analyzing two ounces of it, he found, after repeating the operation fis times, that the mean refult gave the following proportions*. Nitre 1 oz . 10 dwts. charcoal 6 dwts. fulphur 3 dwts. \({ }^{1} 4\) grs. Here is a deficiency in weight of ten grains, which M. Napier fuppofes the confequence of fome defeet in his procefs; but as M. Baumé, a French chemilt, made a variety of experiments to obtain a total feparation of the fulphur from the charcoal of gunpowder, and was never able to effect it, one fourteenth part remaining united, three graius muft be deducted from the charcoal and added to the fulphur to give the accurate proportion of the ingredients; which by turning to the article Gunpowder, Encycl, the reader will perceive differs fonewhat from the proportion of the fame ingredients in the gunpowder of Europe. This Chinefe powder was ufinally large-grained, and not Atrong, but very durable. It liad been made many years when our author got it ; yet there was no vifible fymptom of decay, the grain being hard, well coloured, and though angular, it was even-fized, and in perfect prefervation.

When we confider the operations in which gunpowder is employed, it is obvious that it muft be an object of importance to afcertain its explofive ferce; and yet
there is fearecly a fubject concerning which the moot approved writers have fo much differed. Mr Robins, who has done more towards perfecting the art of gunnery than any other individual, fates the explofive force of gunpowder to be 1000 times greater than the mean preffure of the atnoufphere; while the celebrated Daniel Barnouilli determines it to be not lefs than 10,000 tinucs this preffure. Such a diflerence of opinion led Comnt Rumford to purfue a courfe of experiments, of which fone were publifhed in the Trantactions of the Royal Society for the year 1781, and the remainder in the Tranfactions of the fame Society for 1797 ; with the view principally of determining the initial expanfive force of gunpowder. By one of thefe experiments, it appeared, that calculating even on Mr Robins's own principles, the force of gunpowder, inftead of being 1000 tines, mult at leaft be 1308 times greater than the mean preffure of the atnofphere. Fron this experiment, the Count thought himfelf warranted in concluding that the principles affumed by Mr Robins were erroneous, and that his mode of afiertaining the force of gunpowder could never fatisfactorily diternine it. Defpairing of fuccefs in that way, he refolved to make an attempt for afcertaining this force by actual meafurement ; and after many unfuccefsful experiments, he was at length led to conclude, that this force was at leaf 50,000 times greater than the mean preflure of the atmofphere.
Mr Robins apprchends that the force of fired gunpowder confifts in the action of a permanently elallic fluid, fimilar in many refpects to common atmofplierical air; and this opinion has been very generally received : but Count Rumford thinks, that though the permanently elaftic fluids, generated in the combuttion of gunpowder, affint in producing the effects which refult from its explofion, its enormons force, allowing it to be \(50,00=\) times greater than the mean preflure of the atmofphere, cannot be explained, without fuppofing that it arifes principally from the elafticity of the aqueous vapour generated from the puwder in its combuftion.
"The brilliant difcoveries of modern chemifts (fays he) have tanglit us, that both the conflituent parts of which water is compofed, and even water itfelf, exitt in the materials which are combined to make gulpowiler ; and there is nuch reafon to believe that water is actually formed, as well as difengaged, in its combution. M. Lavoifier, I know, imagined that the force of fired gunpowder depends in a great ineafure upon the ex. panfive force of uncombined caloric, fupprofed to be let loofe in great abundance during the combultion or dcflagration of the powder : but it is not only dangerous to admit the action of an agent whofe exiltence is not yet clearly demonftrated; but it appears to me that this fuppofition is quite unneceffary, the claftic force of the heated aqueous vapour, whofe exiftence can hardly be doubted, being quite fufficient to account for all the phenomena. It is well known that the elafticity of aqueous vapour is incomparably more aurmented by any given augmentation of temperature than that of any permanently elaftic fluid whatever; and thofe who are acquainted with the amazing force of fteam, when heated unly to a few degrees above the briling point, can eafily perceive that its elafticity mult be al. moft infinite when greatly condenfed and heated to the

Gurpow.
der.

\section*{\(\mathrm{G} U \mathrm{~N} \quad[724] \quad \mathrm{G}\) U N}

Cumpow- temperature of red-hut irna ; an l this heat it mat ect der. tainly acquare in the explobou of gurpowder. Bat it the force of fired gexpessider arifes frincipnlly from the thaftic force of itatid aplecth. vipuour, a cannon is mothing nore than 2 :/lome chine upon a peenliar connllaction: and upun determ nime the ratio of the elaf. ticity of this vapour th its deality, and to its temperature: a law will be found is ohtain very diferent from that affumed by hlr Rohins in his 'rreatile on Gunnery."

In order to meature the elalaic force of fired granrowder, Count Rumford adopted a new plan; and, ios. dtead of caufing the grenerated elathic fluid to act un a moveable body throlgh a determined face, which he had found to be inefectual to his purpofe, he contrived an apparatus in which this fuid fnotld be made to act, " by a determined Turfact, agninlt a weight, which, by being increated at pleafure, foould at latt be fuch as would jant be able to corline it, and which is that cafe would jult eomiterbalance and coafequently metiane the elattic force."

Having fueceeded in ferting fire to the puwder, without any conimuncation with the external air, "by cauling the heat employed for that purpofe to pals tirrough the folid furtance of the barrel, it only remained to apply luch a weight to an opening made in the harrel, as the whole force of the generated elatic Huid monld not be ahle to lift, or difplace." Many precautions were necr liary. A lolid tlock of very hard thone, four feet four inches fquare, was placed upon a bed of folid mafonry, which defeended fix fect helow the furface of the earth. Upon this block of ftone, which ferved as a bafe to the whole machinery, was plaeed the fmall barrel, in which the explofons were made, with its opening directly upwards, This opening was clofed by a folid hemifohere of hardened Heel, on which th: weight to be overcome by the explution was laid. Having charged the barrel with 10 grains of powder, its whole contents being about 28 grains, and a 2.4 pounder, weighing 808 i llus. avoirdupois, being placed on its cafcabel fo as by ics weight to confine the generated elaftic flu \(d\), a heated iron ball was applied to the end of the vent tuhe (a fmall folid projection from the centre of the bottom of the barel). In a few moments the powder took lire, though the explolion made a very feeble report; and when the weight was raifed, the confmed elallic vapour rufled out of the barrel. The Ilight ffeet produced by this explofion induced fome of the attendants on this occafion to undervalue the importance of this experiment, and to form a very inadequate idea of the real force of the elafic fluid that lad been thus almof infenfibly difeharged. In a fecond experiment, the barrel was filled with powder, and the fame weight laid on as before. The barrel was made of the bell hammered iron, and uncommonly ftrung. The charge of powder amounted to little more than ioth of a cubic inch, which is not fo mucl as would be required to load a fmall poeket-pifol, and not one-tentb part of the quantity frequently ufed for the charge of a common mulket. Yet this inconliderable guantity of powder, when fet on fire, exploded with a force that burft the barrel, and with a loud report that alarmed the whole neighbourhood.

The author proceeds to make an eflimate, from the known ftrength of iron, and the area of the fracture of
the harrs in the preceding experiment, of the real force Gurpowemplayed by the elallic vapour to burd it ; and lee com. futes that it mand have hen egusl to the preflure of a weight of \(41252 y\) los.; whieh, by awother computation, be found to be 5 sora times greater than the mean preffure of the atmolphere. By another procefs, he inveftigates the llrengtia of the iron of which the barral was made; and he thenee finds that the force required to burlt it was equal to the preflure of a weight of \(410624 \frac{7}{2}\) lis. 'I'his weight, ruduced into at mofpheres, gives 547.50 atmof hleres for the mealure of the forse exerted by the wattic Aluid in the prefent intance. This force mut be coatideratly lefs than the initial foree of the elallic fluid remerated in the combultion of gunpowder, before it has begun to expand; "for it is more than prohable (fays Count Ramford) that the barrel was in fart burll before the generated elatic fluid had reserted all its force, or that this fluid wonld have been able to have burf a barrel Ail] Atonger than that ufed iis the experiment."

After having thewn the extreme force of fired gunperwder, the Count adverts to an ohjection which may be made againit his deductions. How durs it happen that fire-ams and artillery of all kirds, which certainly a!e not calculated to withfand fo enormous a force, are not always burlt when they are ned? Inftead of anfwering this queltion, by afling low it happened that the extremely frong bariel ufed in his experiment could le buift by the force of gunpowder, if this foree be not in fact much greater than it has ever been fuppoled to be, he procceds to hew that the combuttion of guripowder, inflead of being infantaneous, as Mr Robins's theory fuppofes, is much lets rapid than has hitherto heen afprehended; an obfervation which, if eftablifhed, is certainly fufficient to anfwer the objection.

He remarks, that it is a well known fact that, on the difebarge of fire-arms of all kinds, there is always a condiderable quantity of unconfumed grains of gunpowder blown ont of them; and what is very remartable, as it leads directly to a difcovery of the caufe of the effect, thefe unconfumed grains are not merely blown out of the muzzles of fire-arms, but come out alfo by thein vents or touch-holes, where the lire enters to inflame the charge, as many perfous who have had the misfortune to itand with their faces near the touch hole of a mufket, when it has been difcharged, have found to their coll.

It appears extremely improbable to our author, if not abfolutely impoffible, that a grain of gunpowder actually in the chamber of the piece, and completely furrounded by flame, fhould, by the action of that very flame, be blown out of it without being at the fame time fet on fire. And, if this be true, lie confuders it as a mut decifive proof, not only that the combutlion. of gumpowder is lefs rapid than it has generally been thought to be, but that a grain of gunpowder actually on fire, and burning with the utmolt violence over the whole of its furface, may be projected with fuch a velocity into a cold atmofphere, as to extinguifh the fire, and fuffer the remains of the grain to fall to the ground un* changed, and as inflaminable as before.

This extraordinary fact was afeertained beyond all poffibility of doubt by the Count's experinents. Ha. ving procured from a powderinill in the neighbourlood: of the city of Munich a quantity of gunpowder, all of the fame mafs, but formed into grains of very different lizes,

\section*{C U N}
- Gurpow der!
fices, fome as frnall as the grains of the foren Buttel puwder, he placed a number of vertical fereens of very thin paper, one behind another, at the diflamee of 12 inches from each other; and lowling a conmon muthet repostedly with this powder, fometimes withut and fometines with a wad, he fired it againf the foremoft fereen, and oblerved the quantity and eficets of the unconfumed graits of powder which impinged arninit it. 'lhe fercens were to contrived, by means of double frames united by lringes, that the paper could be changed with very little trouble, and it was actually chan. ged alter cvery experiment.

The diftance from the muzzle of the gun to the firf fereen was not always the fame; in Come of the experiments it was only \(\delta\) fcet, in others it was 10 , and in fome 12 fiet.

The charge of powder was varied in a great number of different ways; but the mof interefting experiments were made with one fingle large grain of powder, profelled by fmaller and larger charges of very fine grained powder.

Thele large grains never failed to reach the fercen; and though they fometimes appeared to have been brolen into feveral pieces by the force of the explofion, yet they frequently reached the fcreen entire; ald fometimes paffed through all the fereens (five in number) without heing broken.

When they were propelled by large charges, and confequently with great velocity, they were feldom on fire when they arrived at the firf fereen; which was evident, not only from their not fetting fire to the pa. per (which they fometimes did), but alfo from their being found fticking in a foft board, againft which they ftruck, after having paffed through all the five fereens; o: leaving vifble marks of their having been impinged araint it, and being broken to pieces and difpenfed by the blow. Thefe pieces were often found lying on the ground; and from their forms and dimenfions, as well is from oilier appearances, it was often quite cvident that the little globe of powder bad been on fire, and that its diameter had been diminifhed by the combultion refore the fire was put ont, on the globe being rrojected into the cold atmofphere.

That thefe globes or large grains of powder were always fet on fire by the combution of the charge, can hardly be doubted. 'This certainly happened in many of the experiments : for they arrived at the fcreens on fire, and fet tire to the paper; and in the experiments in which they were projected with fmall velocities, they were often feen to pafs through the air on fire; and when this was the cafe, no veltige was to be found. They fometimes pafted on fire throngh feve. ral of the forcmont fcreens without fetting them on lire, and fet fire to one or more of the hindmoft, and then went on and impinged againt the board whichs was placed at the difance of tweive inchics belind the latt screen.

The Count then proceeds to mention another expcriment, in which the progreffive combation of gunpowder was fhewn in a manner fill more Atriking, and not lefs conclufive.

A fmall piece of red liot iron being dropped down into the chamber of a common horfe piftol, and the piftol being elevated to an angle of about 45 degrees, upon dropping down into its barrel one of the fmald
globers of powder (of the fize of a pea), it toot firc, and Gsppneswas projected into the atmoffere by the claftic fund gencrated in its own combuftion, leaving a very beautiful train of light behind it, and difappearing all at once like a falling far. This amuliag experiment was re. peated very often, and with ghobes of diferent dizes. When very finall ones were ufed fingily, they were commonly confumed entirely before they came out of the barrel of the piftol; thit when feveral of then were uled together, fome, if not all of them, were commonly projected into the atmofplierc on tire.

As the fownefs of the combultion of guapowder is monoubtedly the caufe which has prevented its enormous and almont incredible furce from heing diforvercd, our author dednces, as an evident confequence, that the readisf way to increafe is effes, is to contrive matters fo as to accelcrate its infammation and combuftion. This may be donc in various ways; but, in his opinion, the molt limple and mof effectual manret of doing it would be to let lire to the charge of powder, by thonting (through a fmall opening) the flame of a fmaller charge into the midft of it.

He contrived am inftrmment on this principle for fring cannon three or four years ago; and it was found, on repeated trials, to be ufefni, convenient in practice, and not liable to accidents. It likewife fupericdes the neceflity of ufing piming, of vent tubes, port.fires, and matches; and on that acconnt le imagined it might be of ufe in the Britih navy, but it does not aypear to have been received into practice.

Another infallible method of increafing. very confiderably the efiect of gumpowler in fire-ams of all forts and dimenfions, would be to caule the bullet to fit the bore exactly, or without windage, in that part of the bore at lealt where the bullet rells on the charge: for when the bullet does not completely clufe the opening of the chamber, not ouly nuch of the elaitic fluid, generated in the firt moment of the combulkion of the charge, efcapes by the fide of the bullet; but what is of till greater importance, a confiderable part of the unconfumed powder is biown out of the chamber aleng with it in a tate of actual combutton, and, getting before the bullet, continues \(w\) burn on a a it paffes through the whole length of the bore; by which the motion of the bullet is much impeded.

The lofs of force which arifes from this caufe, is in fome cafes almof incredible; and it is by no means dif. ficult to contrive matters fo as to render it very apparent, and alfo to prevent it.

If a common horte-piltol be fired with a loofe baid, and fo fmall a clarge of powder that the ball fall not be able to penetrate a deal board fo deep as to Hick in. it when fired againtl it from the diftance of fis feet; the fame ball, difcharged from :he fanc piflol with the fame charge of powder, may be made to pals quise throurh one deal hoard, and bury itfelf in a fecond placed behind it, merely by preventing the lois of force which arifes from what is catled windage, as he found more than once by whal experiment.

Thic Connt has in his poffeflion a muket, from which, with a common charge of powder, he fires two bullets at once with the fare velocity that a fingle bullet is diccharged from a muket on the common confruction with the fume quantity of powder. Ands. what renders the experinent fill more triking, the

\section*{G U N \([.726] \quad\) G U T}

Canoow. diameter of the bore of his muket is exaotly the fame de: as that of a common muket, except coly in that part
of it where it joins the chamber, in which part it is jutt fo much contracted, that the bullet, which is next to the powder, may tick faft in it. I'se adds, that thongh the bullets are of the common fize, and are confequiently coofiderably lefs in diameter than the bore, means are ufed which effeetually prevent the lofs of force by windage; and to this lalt ciscumftance he concludes, it is doubtlefs owing, in a great meafure, that the charge apptars to exert fo great a force in propelling the ballets.

That the conical form of the lower part of the bore where it unites with the chamber has a coniderable thare in producing this extraordinary effect, is, however, very certain, as he has found by experiments made with a view merely to afcertain that fact.

At the clofe of the Count's laft memoir, we have a computation, defigned to thew that the force of the elaftic fluid generated in the combuftion of gunpowder, enormuns as it is, may be fatisfactorily explained on the fuppofition that it depends folily on the elatticity of watery vapour, or fleam. From experiments made in France in the ycar 1790 , it appears that the elafticity of fteam is doubled by every addition of temperature equal to \(30^{\circ}\) of Fahrenheit's thermometer. As the heat generated in the combution of gunpowder cannot be lefs than that of red-hot iron, it may be fuppofer equal to \(1500^{\circ}\) of 1,bhrenheit's feale:-but the elatlic force of fteam is juit equal to the mean preffure of the atmofphere, when its temperature is equal to that of boiling water, or to \(212^{\circ}\) of Fahrenheit's thermometer ; confequently \(212^{\circ}+30^{\circ}=240^{\circ}\) will reprefent the temperature, when its elalicity will be equal to the preflure of two atmofpheres; and, purfuing the calculation, at \(602^{\circ}\), or \(2^{\circ}\) above the lieat of boiling linfeed oil, its clafticity will be equal to the preffure of \(819^{2}\) atmofpheres, or above eight times greater than the utmoit force of the fluid generated in the combuftion of gunpowder, accorling to Mr Robins's compu. tation : but the heat in this cafe is much greater than that of \(602^{\circ}\) of Faheenheit ; and therefore the elafticity of the fleam generated from the water contained in the powder mult be much greater than the preffure of 8192 atunofpheres. At \(722^{3}\), the elallicity will be equal to the preflure of \(13:, 072\) atmofpheres; and this temperature is lefs than the heat of iron, which is vilibly redhot in day-light, by \(355^{\circ}\) :-but the flame of gunpow. der has been found to melt brafs, which requires a heat equal to that of \(3807^{\circ}\) of Fahrenheit; \(2730^{\circ}\) above the heat of red hot iron, or \(3805^{2}\) higher than the temperature which gives to fteam an elalticity equal to the preflure of 131,072 atmofpheres. That there is in gunpowder water Sufficient for fupplying the necefary quantity of fteam, the author has very fatisfactorily evinced; but we nult not purfue his curinus inveftigations any farther. Thofe who want a fuller account of them, will find it either in the original memoirs themfelves, or in a very accurate abridgment of thefe memoirs in the firll volume of Nicholfon's Fournal of Natural Philofophy, \&ic.

We cannot conclude this article without mentioning a new kiad of gunpowder, invented fome yuars ago in France, in which the marine acid is fubtituted, in equal quantity, for nitre. Dr Hutton tried fome of
this uew powder which was made at Woolwich, and found it of about donble the ftrength of the ordinary fort ; but it is not likely to come into common and general ufe, for the preparation of the acid is difficult and expenfive (See Chemestry-Index in this Suppl.), and the powder which is made of it catches fire and ex. plodes from the frnalleft degree of heat, and without the aid of a fpark. It is to this circunillance, however, that its fuperior ftrength feems to be in a great meafure owing.

GUNTER's Chain. Sce Geometry, Encyclopedia, Part II. cliap. 1.

GUT-tie, a dangerbus difeafe to which oxen and male calves are rendered liable by an improper mode of caftration. In fome places, and patticulaly in Herefordhire, the breeders of cattle, when they caltrate their calves, open the firolum, take hold of the telticles with their tecth, and tear them out with violence; by which meaus all the velfels thereto belunging are rup. tured. The vafa deferentia, cotering by the holes of the cranfverfe and oblique mufcles into the abdonen, pals orer the urcters in acute angles; at which turning, by their great length and elaftic force, the peritoneum is ruptured; the vafa deferentia are fevered from the tefticles, and, fpringing back, form a kind of bow from the urethra, where they are united, over the ureters, to the tranfverfe and oblique mufcles, and there again unite, where they firf entered the abdomen; the part of the gut that is tied is the jejunum, at its turning from the left fide to the right, and again from the right to the left, forming right angles under the kidney, and at. tached to the duplicature of the peritoneum, to which it was united, where the rupture happened. There the bow of the gut hangs over the bow of the vafu deforentia, which, by a finden motion, or turn of the beast, form a hitch or tic of the Aring round the bow of the gut (filled with air), fimilar to what a carter makes on his cart line. This caufes a ttoppage in the bowels, and brings on a mortification, which, in two days, or four at molt, proves fatal: And to this accident is the beaft, when calltrated as above, liable from the day that he was caftrated till the time of his being flaughtered.

The fymptoms of the gut-tie are the fame as thefe of an incurable colic, volvelus, or mortification of the bowcls. The beaft affected with this complaint will kick at its belly, lie down, and groan: it luas alfo a to. tal toppage in its bowels (except blood and mucus, which it will void in large quantities), and a violent fever, âc. To diftinguin with certainty the gut-tie from the colic, \&c. the hand and arm of the operator mutt be oiled, and introduced into the anus, through the rectum, bey ond the os pubis, turning the hand down to the tranfverfe and oblique muffles, where the veffels of the tefticles enter the abdomen. There the Aring will be found united to the mufcles, and is ealily traced to the Itricture by the hand, without pain to the beaft.

From the general view of the agriculture of the coun. ty of Hereford, drawn up by Mr Clark of Builth, Breconfhire, we learn that Mr Harris farmer at Wickton, near Leomintter, had been uncommonly fuccefsful in the cure of the gut-tie. That gentleman informs us, that he had cut cattle for this difeafe from the age of three months to that of nine years ; and as it is a matter of great importance, we thall ftate his method of operating in his own words.

\section*{H A R}

Gut-tic.
"The only method of cure (fays he) that can le fafely ventured upon is, to make a perpendicular incifion, four inches under the third vertebra of the luins, on the left fide, over the panineh or ftomach, and introduce the arm to find the part affected ; if polible, keep the beaft ftanding by the lelp of proper afiftauts. 'Tle knife I make ufe of to ferere the fling is in the form of a large fithook, with an edge on the concave fide : it is fixed to a ring, which fits the middle finger, which finger erooks round the back of the knife, the end of the thumb being placed on its edge. The inftrument. hy heing thus held in the hand, is feened from wounding the furrounding inteltines; with it I divide the ftring or ftrings, and bring out one or both, as circumftances require. Here it is to be obferved, that great care mut be taken by the operator not to wound or divide the ureters, which would be certain death. I then few up the divided lips of the peritoneum very clufe, with a furgeon's needle threaded with flroug thread, eight or ten double, fufficiently wased; I alfo few up the kin, leaving a vacancy at the top and bottom of the wound fufficiently wide to introduce a tent of furgeon's tow, fpread with common digeftive and traumatic balfam ; covering the incilion with a plafter made of the whites of eggs and wheat flour. The wound, thus treated, and dreffed every day, will be

\section*{万27]}
well in a fortnight. The medicine I give to remove Gut-tie, the floppage in the three ftomachs vccalioned by the tic, and to carry off the fever, is four uunces of Glauber's falt, two oluces of cream of tartar, and one ounce of fenna, intufed in two pounds of boiling water, adding half a pound of olive-oil, and working it off with plenty of grud, mixed with a large quantity of infufion of mallows and elder-bark. I adminitler the gruel and infution for at lead two or three days; by which time the beaft will be well, will eat his provender, and chew the cud, and will forever be relieved, and remain fafe from this fatal diforder.
" The following fimple and eafy method of caftration will effectually prevent the gut-tic. Open the fcrotum, lonfen out the tefticles, and tie the feveral vef. fels with a waxed thead or filk ; or fear them with a hot iron, to prevent their bleeding, as in the common way of cutting colts. This method can never difplace the veffels of the teltieles, bladder, kidneys, or inteftines; all of which remain covered or attached to the peritoneun, or lining of the abdomen of the beafl, which renders it impodfible that there fhould ever be a flrictme or tie on the gute"

GUZ, an Indian meafure, varying in different places, but which may be reekoned about an Englifi yard, The guz of Akbar was 41 fingers.

HANCES, Hanches, Haunches, or Hanfes, in architecture, are ce:tain fmall intermediate parts of arches between the key or erown and the fpring at the bottom, being perhaps about one-third of the areh, and fituated nearer the bottom than the top or crown; and are otherwife called the fpandrels. See Arch in this Supplement.

HANSPIKE, or Handsper, a lever or piece of Atong wood, for raifing by the hand great weights, ic. It is five or fix feet long, cut thin and erooked at the lower end, that it may get the eabier between things that are to be feparated, or under any thing that is to be raifed. It is better than 2 crow of iron, becaufe its length allows a better poife.

HARRIOT (Thomas) was a very eminent mathematician of the 16 th and 17 th centuries, of whom fome account has been given in the Encyclopadia Britannica. In that article it has been fhewn, that Des Cartes liad feen fome improvements of Harriot's in algebra, and publifhed them to the world as his own; but this piece of plagiarifm has been more completely proved in the Aftronomical Ephemeris for the year 1788, by Dr Zache, attronomer to the Duke of Saxe-Gotha; who likewife fhews that Harriot was an aftronomer as well as an algebraift.
" I here prefent to the world (fays the Doctor) a fhort account of fome valuable and curious manuferipts, which I found in the year \(17^{8} 4\) at the feat of the carl of Egremant, at Petworth in Sulfex.
"A predeceffor of the family of lord Egremont,
Harriot. viz. that nuble earl of Northumberland, named Henry Percy, was not only a generous favourer of all good learning, but alfo a patron and Mrecenas of the learned men of his age. Thomas Harriot, the author of the faid manufcripts, Robert Hues (well known by his Treatife upon the Globes), and Walter Warner, all three eminent mathematicians, who were known to the earl, received from him yearly penfions; fo that when the earl was cominitted prifoner to the Tower of Lon. don in the year 1606 , vur author, with Hues and Warner, were his conllant companions; and were ufually called the earl of Northumberland's three Magi.
"Thomas Harriet is a known and celebrated mathematician among the leamed of all nations, by his excellent work, Artis Analytice Praxis, ad aquationes alseLraicas nova expeditata \& generali methodo, refolvendar, Traalatus poglbumus ; London 1631 : dedicated to Henry earl of Northmmberland; publified after his death by Walter Warner. It is remarkahle, that the fame and the honour of this truly great man were conftantly attacked by the French mathematicians, who could not endure that Harriot fhould in any way diminifh the fame of their Vieta and Des Cartes, efpecially the latter, who was openly accufed of plagiarifm from our author.
"Des Cartes publihed his Geometry fix years after Harriot's work appeared, viz. in the year 1637. Sir Charles Cavendifh, then ambaffador at the French court

\section*{II A R}

Frantiof. at Paris, cherved to the famons geonmenician Rover= val, that thefe i.splyorements in analy fas had been already rade thefe lix years in England, and allewed him af. termands Harrive's Artis Sindyltice Proxis; which, as Roveral was hoting over, at every page he cricd out, On!! uni! i! !'a su! Tis! yes! be bas fict it! Deo Caices hailalfo heen in England befure Harriut's death, and had heand of his new imprecemerts and inventions in andyly.
"Now all this relates to Harriot the celebrated analytt ; bat it has not hitherto been known that Hasriot was an eminent aftronomer, buth theoretical and practial, which fill afpears by thele manuferifts ; anoug which, the mott rumakable ate 109 whtervations of the fun's fpots, with their drawings, calculations, and deternination of the fun's rotation about his axis. There is the greatefl probability that Harriut *as the tirl difeoverer of thefe fpots, even before cither Galiteo or Scheiner. The carliet intelligence we have of the firit difcovered folar fuots is uf one foh. Fabricius Phrytias, who in the year 1601 publithed at Witqumberg a finall treatife, mitled, De illucuids in Sole owfirvatis © apharente ecrum cum Sole converfinate narratio. Galilen, who is commonly accounted the hinit difcoverer of the folar Spots, publiffed his book, iflaria e Dimonjtazioni intc.ane alle ITachie Solore e loro accilerte, at Rome ia the yeat 1613. His firlt olfervation in this wonk is lated June 2d abiz. Angelo de Filiii, the ethitor of Galiteo's work, who wrote the dedication and preface to it, mentions, page 3. that Galleo had not ouly diicovered thefe fprits in the month of Aptil in the year ı́ns, at Rome, in the Quirinal Garden, but had thewn them Ceveral months betore (molli m. \(\sqrt[3]{ }\) innanzi) :o his friends in Florence; and that the oblervations of the disu:fed Apelles (the Jefuit Scheiner, a pretender to this nim difiovery) were not later than the month of Ocluber in the fame year; by which the epoch of tilis dilcovery was fixed to the beginning of the year \(\mathbf{1 6 1 1}\). But a paffage in the firl letter of Gahiloo's works, pa. 11. gives a more preeife term to this diccovery. Galilco there fays in plain terms, that he hat wferved the fpots in the fun 18 months before. The date of this letter is May 24. 1612; which brings the trne epoch of this difcovery to the month of November 1610 . However, Galileo's fint produced obfervations are only from June 2. 1612, and thofe of father Scliciner of the month of OCtober in the fame year. But now it appears from Harriot's manufcripts, that his firlt obfirvations of thefe fpots are of Dec. 8. 1610. It is not likely that Harriot could have this notice from Galleo, for I do not fud this mathematicin's name ever quoted in Harriot's papers: But I find him quoting book i. chap. 2. of Jofeph a Coita's Natural and Moral Hifiory of the Wgig Indies; in which he relates, that in Peru there are foots to be feen in the fun which are not feen in Europe: and he:nce it is proBalle, that Harriot took the hint of looking for fuch Tpors. Befides, it is not unlikely, that living with fo munificent a patron, Fiarriot got from Holland the new invented telefcopes much fooner than they could reach Gilileo, who at that time lived at Venice. Harriot's very careful and exact ebferrations of thefe fpots, fhew difo that he was in poficflion of the belt and moft imForvec telefcopes of that tinc; for it appears he had fome with magnifying powers of 10,20 , and 30 times. th! jeal! there are no earlier obfervations of the folar

\section*{\(\because 2 S\) Yi A}
fpots extant tian his; they run frons Decenbor \(\&\). Liareint. 1610, til Janary I 8.1613 . I compared the corre tavere fipondiag ones with thefe wharved by Galiloo, beween which I found an exect agreement. Had Haniut hat any uttion about Ghito's dicoveries, he critainly would have a: fo known tomething about tie phates cif Venus and Merenry, azl edpecially about the fryantar thape of Saturn, fret difoovered by Ŝalieo; but I hat nut a word in all his papers concerning the particular figure of that planet.
"I found hkewits (continues Dr Zich) arome the papers of lyurriot a large fet of obicroations on the fatellites of !upiter, with drawings of them, ilsir potitions, and calculations of their revolutons and permats. Ifis fint observation of thofe difoovered fatellites, 1 liad to be of Jannary 16. 1610 ; and they go till Febrazy y 26. 1612. Gailico pretend3 to have difcoveted then Janmary 7. 1610 ; lis that it is mot improbable that Ha:riot was hkewife the firt difcoreter of theie attend. ants of Jupiter.
"Ameng his other obfervations of the moon, of eclipfes, of the planet Mars, of foltices, of refraction, of the declination of the needle, \&c. there are remarkabie ones of the comet of 1607 , and the litter comet (for there were two) of \(161 \%\). They were all obferved with a crofs-llaff, by meafuring their ditances from fixed \(1 l a r s\); whence thele obfervations are the more valuable, as comets had before been but grofsly obferved. liepler himfelf obierved the comet of 1607 only with the naked eye, pointing out its place by a coarfe ellimation, without the aid of an iultrument; and the, clements of their orbits could, in defect of better ohfervations, be only calculated by them. The oblervations of the comet of the year 1607 are of the more importance, even now for modern altronomy, as this is the lame comet that fulfilled Dr İdles's prediction of its return in the year 1759. That prediction was only gronnded upon the elemeuts afforded him by the fe coarfe obter var tions: for which reafon he only affigned the term of its return to the face of a year. The very intricate calculations of the perturbations of this conet, afterwards made by M. Clairaut, reluced the limits to a numsh's fpace. But a greater light may now be thrown upou this matter by the more accurate oblervations on thes comet by Mr Harciot. In the month of Octubur 1785, when I converfed unon the fubject of Hamiot's papers, and efpecially on this comet, with the celebrated mathematician \(M\). de la Granse, director of the Koyal Academy of Sciences at Berlin, lie then fuggetied to me an idea, which, if brought into esceution, will clear up an important point in aftronomy. It is well known to aftronomers how difficult a matter it is to determine the mals, or quantity of matter, in the planet Saturn; and how little latisfactory the notions of it are that have hitherto been formed. The whole theury of the perturbations of comets ilepending upon this uncertain datum, feverdl attempts and trials have been made towards a more exact determination of it by the moil eminent geometricians of this age, and particularly by la Grange hinfelf; but never haring been fatisfied with the few aud uncertain data heretofure obtaned for the refolution of this problem, he thought that Harriot's oblervations on the comet of \(160 \%\), and the modem ones of the fame comet in 1759, would fuggelt a way of refolving the problem a pol?eriori; that of determining

\section*{H A S [720] H A T}

Haffelquif. by thent the elements of its ellipfis. The retardation of the comet, compared to its period, may clearly be laid to the account of the attraction and perturbation it has fuffered in the region of Jupiter and Saturn; and as the part of it belonging to J tpiter is very well known, the renaiader mutl be the fhare whicle is die to Saturu; whence the mafs of the latter may be inferred. In confequence of this conlideration, I have alreedy begun to reduce moft of Harriot's obfervations of this conct, in order to calculate by them the true clements of its orbit on an elliptical hypothefis, to compiete M. de la 'Grauge's idea upon this matter.
"I forbear to mention here any more of Harriut's analytical papers, which I found in a very great num. ber. They comtain feveral elegant folutions of quadratic, cubic, and biquadratic equations; with fome other folutions and loca genmetrica, that fhew his eminent qualifications, and will ferve to vindicate them againt the attacks of feveral French witers, who refufe him the juftice due to lis ficill and accomplifhments, merely to fave Des Cartes's honour, who yet, by Come impartial men of his own nation, was accufed of public plagiarifm."

HASSELQUIST (Frederick) was born in the province of Eatt Gothland in 1722, and fudied medicine and botany in the univerfity of Upfal. Linnæus had in his lectures reprefented the extrandinaty merits and great celebrity which a young fudent might obtain by travelling through Palentine, and by inguiring into and defcribing the natural hilory of that country, which was till then unknown, and had become of the greateft inportance to interpret the bible, and to underftand eaftern philology. Haffelquilt was fired with ambition to accomplifi an otject fo important in itfelf, and fo warmly reeommended by his beloved mafter. There being no fund arifing from the liberality of the crown, private collections were made, which poured in very copionfly, efpecially from the native country of the young traveller. All the faculties of the univerfity of Upfal alfo granted him a ftipend.

Thus protected, he commenced his journey in the fummer of 1749 . By the interference of Lagerftroem, he had a free paffage to Smyrna in one of the Swedifh Eaft Indiamen. He arrived there at the conclufion of the year, and was received in the moll friendly manner by Mr A . Rydel, the Swedifh conful. In the beginning of 1750 he fet out for Egypt, and remained nine months at Cairu the capital. Hence he fent to Linmæus, and to the learned focieties of his country, fome fpecimens of his refearches. They were publifired in the public papers, and met with the greatel approbation ; and upon the propofition of Dean Baeck and Dr Wargentin, fecretary of the Royal Academy of Sciences, a collection of upwards of 10,000 dollars in copper money was made for the continuance of the travels of 'young Haffelquift. Counfellors Lagerftroem and Nordencrantz wcre the mof active in raifing fubferiptions at Stockholm and Gothenburgh. In the fpring of \({ }^{1755}\), he repaired to his deftination, and paffed through Jaffa to Jerufalem, Jericho, \&cc. He returned afterwards through Rhodus and Scio to Sinyrna. Thus he fulfilled all the expectations of his country, but he was not to reap the reward of his toils. The burning heat

Suppl. Vol. I. Part II.
of the fandy deferts of Arabia had affected his lungs; he reached Smyrua in a fate of illnels, in which lie languifhed for fome time, and dicd February 9. 1752, in the 3 eth year of his age.

The fruits of his travels were, however, preferved through the liberality of a great princefs. He had been obliged to contract debts. 'The' T'uks, therefore, feired upon all his collections, and threatcned to expofe them to public fale. The Swedith conful prevented it. He fent, with the intelligence of the uninappy exit of his countryman, an account of the diftrefles under which he died;-and at the reprefentation of Dean Bacek, Queen Louifa Ulrica granted the fum of \(1+, 000\) dullars in copper fpecie to redeem all his collcetions. They arrived afterwards in good prefervation at Stockholm; contilling of a great quantity of antiques, A rabian manuferipts, thells, virds, ferpents, infects, \&cc. and were kept in the cabinets at Uhichffale and Diotninghulm. The fpecimens of the ratural curiofities of thefe mufeums being double or treble in nurber, Linmans obtanined fome of them, and publifhed the voyage of his ill- fated friend, and honoured his memory with a plant which he called from his name Hofilquifia. Hasselquesta, Einyorl.

HAT-making is a mechanical procefs, which is detailed in the Encyclopedia from the but infurmation that could then be obtained. We have lately learned, however, that our detail is fometimes defective, and fometimes erroneous; and it is our duty to fupply thofe defects, and to correct thofe errors. But, firangers as we are to the bufinefs of hat-making, we frould not perhaps have fufpected, that we had been mifled loy the perfons whom we confufted, had we not been infurmed by a very intelligent writer in Nicholfon's Philofophical Journai, that the account of the manufacturing of hats, which is given in the Encyclopadia, is far from the truth. This information induced us to look through the Journal itfelf for a more accurate account of the proces; well convinced, that the liberal-minded anthor of that work would not have pointed out our millakes without making us welcome to avail ourfelves of his aid to correct them. Our readers will therefore be indebted only to Mr Nicholfon and his correfpondent for whatever inftuction they may derive from this article ; and as we wifa not to deck ourfelves in borrowed plumes, we fall communicate that inftruction in the words of its author.

Having vifited the manufactory of Mefrs Cullinfons, hatters in Gravel-lane, Southwark, Mr Nicholfon gives the following account of their procedure:
" The materiais for making hats are rabbits fur cut off from the fkin, after the hairs have been plucked out, together with wool and beaver. The two former are mixed in various proportions, and of different qualities, according to the value of the article intended to be made; and the latter our author believes to be univerfally ufed for facing the finer articles, and never for the body or main ftuff. Experience has fhewn, that thefe materials cannot be evenly, and well felted together, untefs all the fibres be firf feparated, or put into the fame flate with regard to each other. This is the ohject of the firt procels, called bowing. The material, without any previous preparation (a), is laid upun a platform of wood,
(A) Some writers mention a partial wetting of the fur while on the fkin, by lightly fmearing it with a folution of nitrate of mercury to give it a curl. Meffrs Collinfons do sot ufe it, nor any other preparation. or of wire, fomewhat more than four fiet fyuare, called a burdle, which is fixed againll the wall of the workthop, and is enlightened ly a fmall window, and feparated by two fide partitions from other hurdles which occupy the ref of the face along the wall. The hurdle, if of wood, is made of deal planks, not quite three irches wide, difpofed parallel to the wall, and at the difence of one fortieth or one-fiftieth of an inch from each other, for the purpofe of fuffuing the duf, and other impurities of the fuff, to pais through ; a purpole tlill more effectually anfivered by the hurdle of wire.
"The workman is provided with a bow, a bow-pin, a lafiset, and feveral cloths. The how is a pole of yellow deal weod, bet ween feven and eight feet long, to which are fixed two bridges, fomewhat like that which receives the hair in the bow of the violin (E). Over thefe is ftretched a catgut, about une-twelfth part of an inch in thicknefs. The how pin is a ftick with a knob, and is ufed for plucking the bow-ftring. The baket is 2 fquare picee of ozicr work, confifting of open ftrait hars with no crofliag or interweavingy Its length acrofs the bars may be about two feet, and its breadth eighteen inches. The fides into which the bars are fixed are flightly bended into a circular ceurve, fo that the bafket may be fet upright on one of thefe edges near the right hand end of the hurdle, where it ufually ftands. The cloths are linen. Befides thefe implements, the workman is alfo provided with browwn paper.
"The bowing commences by fhovelling the material lowards the right hand partition with the baket; upon which, the workman holding the bow horizontally in his left hand, and the bow-pin in his right, lightly plaees the bow-ftring, and gives it a pluck with the pin. The ftring, in its return, ftrikcs fart of the fur, and caufes it to rife, and fly partly aerofs the hurdle in a light open form. Dy repeated ftrokes, the whole is chus fubjected to the bow; and this beating is repeated till al! the original clots or maffes of the filaments are perfectly opened and obliterated. The quantity thus treated at once is called a batt, and never exceeds half the iguantity requirtd to make orie hat.
" When the batt is fufficiently howed, it is ready for berilenins; which term denutes the firth commencement of felting. The prepared material being evenly difpofed on the hurdle, is firit preffed duwn by the convex fide of the balket, then cuverel witha a cloth, and preffed fucceffively in its varinins parts by the hands of the workman. The preffure is gentle, and the hands are very flightly inoved back and forvards at the fame time throngh a pace of perhaps a quarter of an inch, to famor the liardcning or entangling of the fibres (See Felting in this Suppl.) In a very fhort tinc, indeed, the ftuff acquires fufficient firmnefs to bear careful handling. The cloth is then taken off, and a fheet of paper, with its corners doubled in, fo as to give it a triangular outline, is laid upon the batt, which laft is folded over the paper as it lies, and its edges, meeting one over the other, form a conical cap. The joining is foon rade good by preffure with the hands on the cloth. Another batt, ready hardened, is in the next place laid on the hurdle, and the cap liere mentioned placed upon it, with the joining downwards. This laft batt being alfo folded up, will confequently have its place of junction diametrically oppofite to that of the inner felt, which it mult therefore greatly tend to ftrengthen. 'The principal part of the lat is thus put together, and now requires to be worked with the hands a confiderable time upon the hurcle, the cloth being alfo occafionally fprinkled with clear water. During the whole of this operation, which is called bofoning (\(c\)), the article becomes firmer and firmer, and contracts in its dimentions. It may eaflly be underfood, that the chief ufe of the paper is to prevent the fides from felting together.
"The hafoning is followed by a ftill more effectual continuation of the felting, called zorking (D). This is done in another fhop, at an apparatus called a battery, corfifing of'a kettle (containing water flightly acidulated with fulphuric acid, to which, for beaver hats, a 'quantity of the grounds of beer is added, or elfe plain water for rinfing out), and eight planks of wood joined together in the form of a fruftum of a pyramid, and meeting in the kettle at the middle. The outer or upper edge of eacl plank is about two feet broad, and
(f) Mr Nicholfon's correfpondent, who is himfelf a hitter, fays that the bow is heft made of afh; that it is compofed of the fang or handle; that the bridge at the finaller end, or that which is neareft the window in the act of bowing, is ealled the cock; and that the other bridge, which is nearer to the workman's hand, is called the breech.
(c) Mr Nichollon's correfpondent fays, that after bowing, and previous to the bafoning, a bardining finn, that is, a large piece of finin, about four feet long and three feet broad, of leather alumed or half tanned, is preffed upon the bat, to bring it by an eafier gradation to a compact ajpearance; after which it is bafoned, being fill. kcpt upon the hurdle. This operation, the bafoning, derives its name from the procefs or mode of zuorking, being the fame as that pracifed upon a wool hat after howing; the laft being done- upon a piece of caft inetal, four feet aerofs, of a circular fhape, called a bufon: the joining of each batt is made good here by fhuffing the hand, that is, by rubbing the edge of each batt folded over the other to excite the progreffive motion of each of the filaments in felting, and to join the two together. Many journeymen, to hurry this work, ufe a quantity of vitriol (fulphuric acid), and then, to make the nap rife and flow, they kill the vitriol, and open the body again by throwing in a handful or two of oatmeal ; by this means they get a great many made, though, at the fame time, they leave them quite grainy from the want of labour. This, in handling the dry grey hat when made, may be in part difcovered; but in part only.
(D) The intelligent writer who has been fo often quoted, fays, that before this operation is begun, the hat is dipped into the boiling kettle, and allowed to lie upon the plank until cold again; this is called foaking, that is, being perfectly faturated with the hot liquor: if they are put in too haftily in this flate, for they are then only bowed and bafoined, they would burft from the edges, each bait not being fufficiently felted into the other.

Hat. rifes a little more than two feet and a half above the ground; and the llope towards the kettle is confiderably rapid, fo that the whole battery is little more than fix feet in diameter. The quantity of fulphuric acid added to the liquor is not futncient to give a four tafe, but only renders it rougi to the tonglie. In this liquor, lacated rather higher than unpractiled hands could bear, the article is dipped from time to time, and then worked on the planks with a roller, and alfo by folding or rolling it up, and opening it again ; in all which, a certain degrec of care is at firt ueceflary, to prevent the fides from felting together ; of which, in the more advanced Atages of the uperation, there is no danger. The imperfections of the work now prefent themfelves to the eye of the workman, who picks out knots and uther hard fubflances with a bodkin, and adds more felt upon all fuch parts as require trengthening. This added felt is patted down with a wet bruft, and foon incorporates with the reft. The Leaver is laid on tuwards the conclufion of this kind of working. Mr Nicholfon could not diftinetly learn why the beer grounds were utid with beaver-hats. Some workmen faid, that by rendering the liquor more tenacious, the hat was enabled to hold a greater quantity of it for a longer tine; but others faid, that the mere acid and water would not adhere to the beaver facing, but would foll off immediately when the article was laid on the plank. It is probable, as he obferves, that the manufacturers who now follow the eftablifhed practice, may not have tried what are the inconveniences this addition is calculated to remove."

Our author's correfpondent, however, affigns feveral reafons for the addition of thofe dregs, which, he fays, ought to be thick, and the fuurel that can be got. 1. Vitriol (fulphuric acid) would barden the hat too much, which is kept mellow by the dregs. 2. The dregs are faid by the workmen to hold or fill the hody, whillt a little vitriol cleanfes it of the dirt, \&x. that may be on the rabbit or other wools. 3. Another ad. vantage attending the ufe of dregs, whether of beer, poiter, or wine, is, that as the boiling of the dyeing does not draw out much of the mucilage from each hat when it comes to be ftiffened, the diegs form a body. within the hat, fufficiently ftrong or retentive to lieep the glue from coming through amongt the nap. 4 . Vitriul (fulphuric acid) alone purges or weakens the goods too much; confequently half of the quantity does better with the addition of crege, as it alluws the budy to be made clofer by more work.

Of thefe four reafons for the ufe of dregs, the lat alone appears to us perfpicuous or at all fatisfactory. But be this as it may, acid of fome kind gives a roughnefs to the furface of the hair, which facilitates the mechanical action of felting; and Mr Collinton informed Mr Nicholfon, that in a procefs, colled caroting, they make ufe of nitrous acid. In this operation, the naterial is put into a mixture of the nitrous and fulphuric acids in water, and kept in the digefting heat of a ftove all-night; by which means the hair acquires a ruddy o: yellow colour, and lofes part of its ftrength.
"It muft be rememhered, that our hat till peffefics the form of a cone, and that the whole of the feveral aetions it has undergone have only converted it into a Foft flexible felt, capable of being extemded, though with fome difficulty, in every direction. The next thing to
be done is to give it the form rectured by the wearer. For this purpole, the workman rums up the edge or rim to the dipth of about an inch and a half, and then returas the point back again through the centre or axis of the eap, fo far as not to take out this fuld, but to produce another inner fold of the fame depth. The point being returned back again in the fanse manner, produces a third fold; and thus the workman proceeds, until the whoie has acquired the appearance of a flat circular piece, confilting of a number of concentric undulations or folds, with the point in the centre. 'This is laid upon the plank, where the workman, keeping the piece wet with the liquor, pulls out the point with his fingers, and preffes it down with his luand, at the fame time turning it round on its centre in contact wi:h the plank, till be has, by this neans, rubbed ont a flat portion equal to the intended crown of the hat. In the next place, he takes a block, to the crown of whick he applies the fat central portion of the felt, and by forcing a fling down the fides of the block, be cautis the next part to allume the figure of the crown, which he continues to wet and work, mitil it las properly difpofed itfelf round the block. The rim now appears like a founced or puckered appendage round the edge of the crown; but the block being ict upright on the plank, the requifite figure is foon given by yorking, rubling, and extending this part. Water only is ufed in this operation of fanioning or blocking: at the conelufion of which it is preffed out by the blunt edge of a copper inplement for that parpufe:
"Previuus to the dyeing, the nap of the hat is ra: [ed or loofened ont with a wire bruf, or carding inftrument. The fibres are tou rotten after the dyeing to bear this operation. The dyeing materials are logwood, and a inixture of the fulphates of iron and of copper, known in the market by the names of green copperàs and blue vitiol. As the time of Mr Collinfon was limit ed, and my attention, fays Mr Nicholfon, was mure particularly directed to the mechanical procefes, I did not go into the dye-houfe; but I have no duubt that the hats are boiled with the logwood, and afterwards inmerfed in the faline folution. I particularly atked whether galls were ufed, and was anliwered in the negative.
"The dyed hats dre, in the next place, taken to the fiffening fhop. Onc workman, afteted by a buy, dues this part of the bufuefs. He has two veflels, or builers, the one containing the grounds of itrong beer, which cofts feven fhillings per barrel, and the oiher veffel cortaining melted glue, a little thinner than it is ufed by carpenters. Our author particularly afked, whether this laft folution containcd any other ingredient befides glue, and was affured that it did not. The beer grounds are applied in the infide of the crown to preveut the glue fron coming through to the face, and alfo, as he fuppofes, to give the requifte firmnefs at a lefs expence than could be produced by glue alone. If the glue were to pafs through the hat in different places, it might, he imagines, be more difncule to produce an even glefs upon the face in the fubfequent finifhing. The glue ftiffening is applied after the beer grounds are dried, and then only upon the lower face of the flap, and the infide of the crown. For this purpule the hat is put into another hat, called a điffening hsi, the erown of which is notcled, or nit open in various directiuns. Thefe are then placed in a hole in a desl

\section*{H A T [732] H A T}

Hat. board, which fupports the flap, and the glue is applied with a brufh.
"The dry hat, after this operation, is very rigid, and its figure irregular. The lait drefling is given by the application of moifture and heat, and the ufe of the brufi and a hot iron, fomewhat in the flape of that ufed by tailors, but horter and broader on the face. The hat being foftened by expofure to ttean, is drawn upon a block, to which it is fecurely applied by the former method of forcing a fring down from the crown to the conmencement of the rim. The judgment of the workman is employed in moiltening, brufhing, and ironing the hat, in order to give and preferve the proper figure. When the rim of the hat is not intended to be of an equal width throughout, it is cut by means of a wooden, or perhaps metallic pattern; but as nu fuch hats are now in fahion, Mr Nicholfon faw only the tool for cutting thein round. The contrivance is very ingenious and fimple. A number of notches are nade in one edje of a flat piece of wood for the purpofe of inferting the point of a knife, and from one fide or edge of this piece of wood there proceeds a ftraight handle, which lies parallel to the notched fide, forming an angle fomewhat like that of a carpenter's fquare. When the legs of this angle are applied to the vutfide of the crown, and the board lies flat on the rim of the hat, the notched edge will lie nearly in the direction of the radius, or line pointing to the centre of the hat. A knife being therefore inferted in one of the notches, it is eafy to draw it round by leaning the tool againft the crown, and it will cut the border very regular and true. This cut is made before the hat is quite finifhed, and is not carried entirely through; fo that one of the laft operations confits in tearing off- the redundant part, which by that means leaves an edging of heaver round the external face of the flap. When the hat is completely finifhed, the crown is tied up in gauze paper, which is neatly ironed down. It is then ready for the fubfequent operations of lining," \&c.

Our autlor concludes his valuable memoir on the fabrication of hats, with fome obfervations on the probable gain or lofs of employing machinery in the ma* nufacture. Thefe obfervations, as they are ftated in the original paper, we recommend to the ferious attention of every judicious hat-maker, who carries on his bufinefs on a large fcale; for he will find them not the reveries of a rafh fpeculatif, but the cool reflections of a real philofopher, who is at the fame time no ftranger to the arts of life. They fuggen the following fubjects of inquiry: Whether carding, which is rapidly and mechanically done, be inferior to bowing, whieh does not promife much facility for mechanical operation? Whether a fucceffion of batts or cardings might be thrown round a fluted cone, which rapidly revolving, in contact with three or more cylinders, might perform the hardening, and even the working, with much more preciion and fpeed than they are now done by hand ? Whether blocking or fhaping be not an cperation extremely well calculated for the operation of one or more machines? Whether loofe weaving and fubfequent felting might not produce a lighter, cheaper, and ftronger article? And how far the mechanical felting, which is not coufined merely to the hairs of animals, might be applied to this art?

Before we difmifs this fubject, it may be worth while
to flate Mr . Dunnage's methol of naking zuater proof Hzt. bats, in imitation of beaver, for which, in Novenber 1794, he obtained a patent. It is as follows: Let a hag be woven, of fuch count in the reed, and cut over fuch fized wite, as will give the lats to be manufactured from it that degree of richnefs, or appearance of fur, which may be thought neceflary. The materials of which this thag may be compofed are varions, and Chould be accommodated to different kinds of hats, according to the degree of beauty and durability to be given then, and the price at which they: are defigned to be fuld; that is to fay, fill, mohair, or any other hair that is capable of being fymo into an end fine enough for the purpofe, cotton, inkle, wool, or a mix. ture of any, or all the above materials, as may fuit the different purpofes of the manufacturer. Thofe anfwer bett (fays our author), which are made with two poles, either of Bergani, Piedmont, or Organzine filk, rifing alternately, in a leed of about nine hundred count to eigliteen iuches wide, with three fhoots over eachs wire. This method of weaving difributes the lilk. (as it may be put fingle into the harnefs), and prevents any ribly appearance which it might have if the filk were paficd double, and the whole of the pole cut over each wire. This may be made either on a two or four thread ground of hard filk, fhot with fine cotton, which he thinks preferable for fhoot, to filk, inkle, or any other material, as it forms both a clofe and fune texture. An inferior kind of trats may be made fromany of the before-mertioned materials, and with cheaper filk. This fhag fhould be ftretched on a frame, fuch as dyers ufe to rack cloth; then (having previoufly fet the pile upright with a comb, to prevent its being injured or fuek together), go over the ground with thin lize, laid on with a foft brufh. For black, or dark colours, cominon fize will do; with white, or any light colour, ufe ifinglafs, or a fize made from white kid leather. Thefe, or gum, or any other mucilagi. nous matter, which, without altering the colour, will prevent oil from getting through the ground fo as to. injure the pile, will anfiver the purpofe. Take care not to apply more of any material, as a preparation, than may be fully faturated with oil or varning, fo that water will not difcharge it from the ground. The fize, or other glatinous matter, being dry, the pile mult be teefleded, or carded with a firre card, till the filk is completely taken out of the twift or throwing, when it will lofe its cuarfe fhaggy look, and affume the appearance of a very fine fur. It muft now he once more fet upright with a comb, and you may proceed to lay on your water-pronf material; this too may be varied according to circumfances. For black, or any dark colour, linfeed oil well boiled with the ufual driers, and thickened with a fmall quantity of any good drying colour, will do; for white, or very fine colours, poppy or nut oil, or copal or other varnifhes, may be ufed. In this particular the manufacturer muft. judge what will beft anfwer his purpofe, taking care never to ufe any thing that will dry hard, or be fubject to craci. Mr Dunnage has found good drying linfeed oil preferable to any other thing which he has uffd, and, with the precaution of laying on very little the firft time, it will not injure the fineft colours. When the firft coat of oil is dry, go over it a fecond and a third time, if neceffary, till you are convinced the

\section*{H A T [7.3] H A W}

H3s. pores of the ground are fully clofed up, and the ftuff rendered impervious to water. It hould now fland feveral days, till the fmell is fufficiently gone oft; and before it is taken from the frame, fhould be gone over with fome ox-gall or line-water, to take off the greatinefs, which would otherwife privent the filfening from adhering to the oil. The material being now ready to be formed into hats, fhould be cut into proper fhapes for that purpoofe. The crown fhould be made up over a block, with needle and litk, the oiled fide outwards. The feans flould then be rubbed with a piece of hard wood, bone, or ivory, to make them lie flat, and the edges of the ftuff pared off very near the fitches, that no joint may_appear on the right fide. The fuams fhould then be carcfully gone over with the prepared oil, till every crevice or hule made thy the needle is completely filled up, and the crown rendered perfectly water-proof. The crown inay then be turned and fiff: ened, by fticking linen, leather, paper, or any other material that may be found to anfwer the purpole, to the inner or painted lide, till it acquires about the fame degree of itiffnefs, or refiftance to the touch, as a good beaver. The mucilaginous matter which he ufed to attach the diffening to the crown, and the upper and under parts of the brim to each other, was compofed of one pound of gum-aratic or fenega, one pound of ftarch, and a half a pound of glue, boiled up with as much water as reduced the whole to the confiftence of a thick pafte. A greater or lefs proportion of any of thefe ingredients may be ufed, and other glutinous and adhefive fubftances may anfwer the fame purpofes ; or drying-oils may be made ufe of, inftead of this or other mucilage; or any of the refinous gums cliffolved in oil or firits; only it fhould be obferved, in this cafe, the hats will require more time in the preparation, as the oily matter, unlefs expofed to the air, will not rea. dily dry; but he found by experience that the above mentioned compofition does not dry hard or brittle, but retains that pleafant fexibility which is agreeable to the tonch, while it communicates to the wher materials a fufficient degree of elaikicity. Before the brim is perfectly dry, care fhould be taken to form a neck or rifing rouged the hole where it is to be attached to the crown, by notching it round with a pair of feiffars, and then forcing it over a block fumething larger than you have made the hote, fo that the uncut ltuff may turn up, under the lower edge of the crown, about a quarter of an inch. Before yon join the crown and brin together, go over the ontfide of the neck of the brim, and the infide of the crown, as high as the neck will come (which thould be ahout half in inch), with the prepared oil; and when they are nearly dry, fo as to adhere to the finger on touching them, put the crown over the neek of the brim, and let them be fewed flrongly together, taking care to few down as little of the pile as poffible, and ufing the fame precaution of oiling, where the needle has been through, as was obferved in making up the crown. The hat is now ready for dreffing; which operation may be performed over a block, with a hot iron, brufti, \&ic. in the fame manner as thofe commonly called felts. When putting in the lining, be very careful to let the needle only take hold of the under furface of the brim ; for hould it perforate the upper one, the water will find its way through, and the hat be of no valuc. Though we
have already declared how little we are acquainted with Howkinn. the operation of hat-making, we camot help fuggefling the inquiry, whether thefe water-proof hats might nut: be improved both in ftrength and beauty, by a llight felting hefore the application of the fize by the bruth. Such of them as are compofed of wool or h.tir, or contain a mixture of thefe materials, are unqueftionably fuiceptible of feiting.

HAWKINS (Sir John), was the youngell fon of a man who, thongh defcended from Sir John Hawkins the memorable admiral and treafurcr of the navy in the reign of Queen Elizabeth, followed at firf the occupation of a houfe-carpenter, which he afterwards exchanged for the profeffion of a furveyor and builder. He was bora in the city of Londoan on the 30th day of March 1719; and after having been fent firft to one fichool, and afterwards to a fecond, where he acquired a tolerable knowledge of Latin, he went through a regular courfe of architecture and perfpective, in order to fit him for his father's profeftion of a furvegor. He was, however, perfuaded, by a near relation, to abandon the profeflion of his firt choice, and to embrace that of the law ; and was accordingly articled to Mr John Stcott an attorney and folicitor in great practice. In this lituation his time was too fully employed in the attual difpatch of bufineis to permit him, without fome extraordinary means, to acquire the neceffary lanowledge of his profeffion by reading and ftudy; befides that, his mafter is faid to have been more anxious to render hins a good copying clerk, by fcrupulous attention to his hand-writing, than to qualify hiin by infruction to conduct bufinefs. To remedy this inconvenience, therefore, he abridged himfelf of his reft, and rifing at four in the morning, found opportunity of reading all the neceffary and moft eminent haw writers, and the works of our molt celebrated authors on the fubjects of verfe and profe. By thefe means, before the expiration of his clerkthip, he had rendered himfelf a very able lawyer, and had acquired a love for literature in general, but particularly for poetry and the polite arts; and the better to facilitate his improvenient, he occafionally furnifhed to the Univerfal Spechator, the Weflenin Her Journal, the Gentleman's Magazine, and other periodical publications of the time, etfays and difquifitions on \(f e\) veral fubjects. The firt of thefe is believed to have been an Eflay on Swearing; but the exact time of its appearance, and the paper in which it was inferted, are both unknown. It was, however, re.publifhed fome years before his death (withont his knowledge till he faw it in print) in one of the newipapers. His next production was an liffay on Foneffy, inferted in the Gentleman's Magazine for Merch 1739 ; and which occafioned a controverfy, continued through the Magazines for feveral fucceeding months, between him and a Mr Calamy, a defcendant of the celebrated Dr Edmund Calamy, then a fellow-clerk with him.

About the year 174 I, a club having been inflituted by feveral amateurs of mufic, under the name of the Madrigal Society, to mect every Wedneflay evening, and his clerkthip being now ont, he became a member of it, and continued fo many years. - Purfuing his inclination for mufic ftill farther, he hecame alfo a member -of the Academy of Ancient Mufic, which ufed to meet every Thurfday evening at the Crown and Anchor in the Strand, but funce removed to Freemafons Hall;

\section*{H A W W 7347 I A W}

Mimhins. and of this he continued a member till a few years be- fortune, he quited bufnets to Mir Clark, aftersards Al. Haxkins. -are- fore its remowil.

Impelled by his own tate for poctiy, and excited to it ly his friend Fotter Wehb's example, who had contributed to the Gentleman's Magazine many very clegant poctical compoitions, he had, before this time, himfelf become an gecafional contributor in the fame kind, as well to that as to fome other publications. The earlieft of his productions of this ipecies, now known, is fuppofed to be a copy of verfes "T'o Mr Genge Stanley, occafoned by looking over fome Compolitions of his lately publifhed," which bears date 1 gth Febmary 1740 , and was inferted in the Daily Advertifor for lebruary 21. 1741; but, about the year \(17+2\), he propofed to Mr Stanley the project of publifhing, in coajuetion with him, fix cantatas for a voice and infruments, the words to be furnifhed by himfelf, and the mulic by Mr Stauley. The propofal was accepted, the, publication was th l:e at their joint expence, and for their mutual benefit; and accordingly, in 1742, fix cantatas were thus publihed, the five firt written by Mr F-awkins, the lixth and latt by Fufter Webb; and thele having fucceeded beyond the mult fanguine expectations of their authors, a fecond fet of fix more, wittell wholly by himfelf, was in like manner publifhcd a few months after, and fucceeded equally well.

As thefe compolitions, by being frequently performed at Vauxhall, Rauelagh, and other public places, and at many-private concerts, had become favourite cutertainments, many perfons, finding the author aifo a moden well-infornied young man of unexcepionable morals, were become defirous of his acquaintance. Among thefe was Mr Hare of Limehoufe, a brewer, who being himfelf a mufical man, and having met him at Mr Stanley's at mufical parties, gave him an invitation to his houfe; and, to forward him in his profeffion, introduced him to a friend of his, Petcr Storer of Highgate, \(\mathrm{E}[\mathrm{f}\); which proved the means of making his fortune.

In the winter of the year 1749, Doctor, then Mr Jolinfon, was induced to inilitute a club to meet every 'Turfday evening at the King's Head, in Ivy lane, near St Pal's. It confifted unly of mue perfons; and Mr Hawkins was one of the firft members About this time, as it is fuppofed, finding his father's houfe, where he had hitherto refided, too fimatl for the difpatch of his bulinef;, now very much increafing, he, in conjunction with Dr Munckley, a phyfician with whom he had conracted an intinacy, took a houfe in Clements lane, Lombard.ftreet. The ground floor was uccupied by him as an office, and the firft fluor by the Doctor as his apartment. Here he coutinuedt till the begimaing of \({ }^{3} 753\), when, on occafion of his marriage with Sidney, the youngeft of Mr Storer's daughters, who brought him a confiderable fortune, he took a houfe in Auftin Friars, near Broad-ftreet, flill continuing to follow his profeflion of an attorney.

Having received, on the death of Peter Storer, Efq; his wife's brother, in 1759, a very large addition to he:
derman Clad, who had a fhort tine before completed his clerkhip under hin, difpofel of his houfe in Auttin Friars, and purchafid a houf: at Twickenham. Soma afterwards he boughit the leafe of one in Hatton-ftreet, L.ondon, for a town relidence.

From a very early period of his life he had entertais. ed a ftrong bove for the amufement of angling ; and his affection for it, together with the vicinity of the river Thames, was undoubtedly his motive to a refidence a: this village. He had been long acquainted with Walton's Complete Angler; and had, hy obfervation and experience, become himfelf a very able proticient in the art. Hearing, ahout this time, that Mr Mofes Browne propofed to pulalifh a new edition of that work, and being himfelf in poffefion of fome materia] particulars refpecting Walton, he, by letter, made Mr Browne an offer of writing, for his intended edition, Walton's Life. To this propofal no anfwer was returned, at leaft for fome time; from which circunitance Mr Hawkins concluded, as any one reafonably would, that his offer was not aceepted; and, therefore, having alio learnt that Mr Browne meant not to publifh the text as the author left it, but to modernize it, in urder to file oft the ruft, as he called it, he wrote again to tell Mr Browne that he underfood his intention was to fuphirticate the text, and that therefore be, Mr Hawkins, would himfelf publifh a correct edition. Such an edition, in 1760 , lie accordingly publifhed in oclavo with notes, adding to it a Life of Walton by himfelf, a Lite of Cotton, the author of the feconl part, by the weHknown Mr Oldys; and a fet of cuts defigned by Waic, and engraved by Ryland.

His propenlity to mufic, manifefted by his becoming a member and frequenter of the feveral inufical focieties before mentioned, and alfo by a regular coneert at his houfe in Auflin Friars, had led him, at the time that he was endeavouring to get together a good library of books, to be particularly folicitous for collecting the works of fome of the beft mufical compuftrs; and, among other acquilitions, it was his dingular good fortune to becone poffeffed by purchafe of feveral of the moft fearce and vahuable theoretical treatifes on the fcience any where extant, which had formerly been collected by Dr Pepulch. With this fock of erudition, therefore, he, about this time, at the intance of fome friends, fet about procuring materials for a work then very much wanted, a Hiftury of the Science and Practice of Mulic, which he afterwards publifhed.

At the recommendation of the well-known Paul Whitchead, to the Duke of Neweattle, then Lord-lieu. tenant for Middlefex, his name was, in 1700 , inferted in the commifion of the peace for that county; and having, by the proper ftudies, and a fedulous attend. ance at the fillions, qualined himfelf for the office, he became aa active and ufeful magitrate in the county (a). Obferving, as he had frequent occalion to do in the courfe of his duty, the bad fate of highways,
(A) When he firf began to aEt, he formed a refolution of taking no fees, not even the legat and authorifed ones, and purfued this method for fome time, till he found that it was a temptation to litigation, and that every trifing ale-houfe quarrel produced an application for a warrant. To check this, therefore, he altered his mode, and received his due fees, but kept them feparately in a purfe; and at the end of every fummer, before he left the country for the winter, delivered the whole amount to the clergyman of the parim, to be hy him diftributcel among fuch of the poor as he judged fit.

\section*{H \(\triangle\) V}

Hawkine. and the great defect in the laws for amending and keeping them in repair, he fet himfelf to revife the former ftatutes, and drew an act of parliament confolidating all the former ones, and adding fuch other regulations as were neceffary. His fentiments on this fubjeet he publifhed in oatavo, in 1r (i3, under the title of "Obfervations on the State of Highways, and on the Laws for amending and keeping them in Repair;" fubjoining to them the daught of the act before mentioned; which hill being alterwards introduced into parliament, paffed into a law, and is that under which all the highwass in England are at this time kept repaired. Of this bill, it is but julice to add, that, in the experience of more than thinty years, it has never required a fingle amendment.

Johnfon, and Sir Joflua, then Mr Reynolds, had, in the winter of this year (1763) projected the etlablifh. ment of a club to meet every Monday evening at the Turk's Head, in Gerard-ftreet ; and, at Jolmfon's folicitation, Mr Hawkins becane one of the firlt nembers.

An event of conliderable importance engaged him, in the year 1764 , to fland forth as the champion of the county of Middlefex, againt a claim then for the firt time fet up, and fo enormous in its amount as jufly to excite refiftance. The city of London finding it neceffary to rebuild the gaol of Newgate, the expence of which, according to their own eftimates, would amount to L. 40,000 , had this year applied to parliament, by a bill brought into the Houfe of Conimons, in which, on a fuggellion that the county prifoners remaved to Newgate lor a few days previous to their trials at the Old Bailey, were as two to one to the London prifoners confantly confmed there, they endeavoured to throw the burthen of two-thirds of the expence on the coumty, while they themfelves propofed to contribute one-third only. This attempt the magiftrates for Middefex thought it their duty to oppofe; and accordingly a vigorous oppofition to it was commenced and fupported under the conduct of Mr Hawkins, who drew a petition againt the bill, and a cafe of the county, which was printed and difributed amongt the members of both boufes of parliament. It was the fubject of a day's converfation in the Houfe of Lords; and produced fuch an effect in the Houfe of Commons, that the city, by it 6 own members, moved for leave to withdraw the bill. The fuccefs of this oppofition, and the abilities and fpirit with which it was conducted, naturally attracted towards Mr Hawkins the attention of his fellow-magiftrates; and the chairman of the quarter feffions dying not long after, he was, on the 19th day of September 1765, elected his fucceffor.

In the year 1771 he quitted Twickenham, and foll. his houfe there to Mr Vaillant; and in the fuinmer of the next year, for the pur pofe of obtaining, by fearches in the Bodkian and other libraries, farther inaterials for his hiftory of mufic, he made a journey to Oxfurd, carrying with him an engraver from London, to mak* drawings from the portraits in the mulic fehool.

On oecafion of actual tumults or expected difurbances, he had more than once been called into fervice of great perfonal danger. When the riots at Brentford had arifen, during the time of the Middlefex election in the year 1768 , he and fome of his brethren attended to fupprefs them ; and, in confequence of an expected riotous affembly of the journeymen Spitalfield weavers in

Moorfields in 1769 , the inagiftrates of Middlefex, and Fravkins. he at their head, with a party of guards, attended to oppofe them; but the nob, on feeing them prepared, thought it prudent to difperfe. In thefe and other inItances, and particulatly in his conduct as chairman, having given fufficient proof of his adtivity, refolution, abilities, integrity, and loyalty, lie, on the 23 d of October 1772, received from his majelty the honour of knighthood.

In 1773, Dr Johnfon and Mr Stevens publifhed, in 10 vols Sivo, their firft joint edition of Shakefpeare, to which Sir John Hawkins comtributed fuch notes as are dittinguifhed by his name, as he afterwards did a few mofe on the republication of it in 1778 . An addrefs to the king frum the county of Middlefex, on occation of thie American war, having, in 1774 , been judged expedient, and at his inttance voted, he drew up fuch an addrefs, and, together with two of his brethren, had, in the month of October in that year, the linnour of prefenting it.

After fixteen years labour, he, in 1776 , publifhed, in five volumes quarto, his General Hilory of the Science and Practice of Mufic; which, in confequence of permiffion obtained in 1773 , he dedicated to the king, and prefented it to him at I3uckingham Houfe on the 14 :h of November 1776 , when he was honoured with an audience of confiderable length buth from the king and queen.

Not long after this publication, that is to fay in November 1777, he was induced, by an attempt to rob his houfe, which, though unfuccefsful, was made three dif. ferent nights with the intervil of one or two only Fietween each attempt, to quit his houfe in Hatton-litcet, and, after a temporary refidence for a flort time in St James's Place, he took a leafe of one, formerly inhabited by the famons Admiral Vernon, in thie freet leadings up to Queen Square, Weftminter, and removed thither.

By this removal he became a conftant attendant on divine worfhip at the parifh-church of St Mlargaret, Weltminitter: and having learnt, in December \(177^{\text {h }}\), that the furveyor to the board of ordnance was, in de:fiance of a provifo in the leafe under which they clained, carrying up a building at the eaft end of the church, which was likely to obfcure the beautiful painted glafs window over the altar there, Sir John Hawkins, with the concurrence of fome of the principal inhabitants, wrote to the furveyor, and compelled him to take duwn two feet of the wall, which he had already carried up. above the fill of the window, and to flope of the roof of his building in fuch a manner, as that it is not onily no injury, but, on the contrary, a defence to the window.

In the month of December 1793 , Dr Johaifon haviag difeovered in hinfelf fymptonis of a dropfy, fent for Sir John Hawkins, and telling hin the precarious tlate of his health, declared his decire of making a will, and requefled him to be one of his executors. Sii John. accepted the office ; infructed the DoEtor how to inake his will; and on his death undertook to be his biographer, and the guardian of his fame, by publifing a. complete edition of his works.

Not three months after the commencement inf this undertaking, he met with the fevereft. lofs of almof any that a literary man can fultain, fhort of that of his friends or relations, in the dellruction, by fire, of his library ; comfining of a numerous and well-chofen co!-

Hawlirs lection of books, ancient and modern, in many langusgee, and on molt fubjects, which it had been the bulinefs of above 30 jears at iatervals to get together. Of thiz lofs, great as it was in pecuniary value, and comptifing in houks, prints, and dowings, many articles that could never be replaced, he was never heard in the fmalleft degree to complain; but having found a temporary ruception in a large houfe in Orchard-ftreet, Wefminfter, he continued there a flort lime, and then took a houfe in the Broad Sanctuary, Weftminfter.

This event, for a thort time, put a ftop to the progrefs of his literary purfuits. As foon, however, as he could fufficiently colleet his thoughts, he recommenced his office of biographer of Johnfon ; and completed his intention by publifhing, in 1787 , the life and works, in eleven volumes octavo, which he dedicated to the king.

With this production he terminated his literary labours; and having for many years been more particularly fedulous in his attention to the duties of religion, and accuftomed to fpend all his leifure from other neceffary concerns in theological and devntional ftudies, be now more clofely addicied himfelf to them, and fit himfelf to prepare for that event, which he faw could be at no freat diftance; and the better to accomplifh this end, in the month of May 1788, he, by a will and other proper inftruments, made fuch an arrangement of his affairs as he meant fhould take place after his deceafe.

In this manaer he fpent his time till about the beginning of May I789, when, finding his appetite fail him in a greater degree than ufual, he had recourfe, as he had fometines had before on the fame occafion, to the waters of the Iflington Spa. Thefe he drank for a few mornings; but on the ifth of that month, while he was there, he was, it is fuppofed, feized with a paralytic affection, as, on his returning to the carriage which waited for him, his fervants ferceived a vifible alteration in his face. On his arrival at home, he went to bed, but got up a few hours after, intending to receive an old friend, from whom he expected a vifit in the evening. At dinner, however, his diforder returning, he was led up to bed, from which he never rofe, on the 2 It of the fame month, about two in the morning, dying of an apoplexy. He was interred on the 28 th in the cloiners of Wefminfter Abbey, in the north walk near the caflern door into the church, under a ftone, containing, by his exprefs injunctions, no more than the initiats of his name, the date of lis death, and his age ; leaving behind him a high reputation for abilities and integrity, nnited with the well-carnt character of an active and refolute magiftrate, an affectionate huband and father, a firm and zealuus friend, a loyal fubject, and a fincere Chiftian.

Such is the character of him in the Biographical Dictionary, which we have neither hight no inclination to controvert. With none of his works are we acquainted but his edition of Walton's Complete Angler, and his Life of fobnfon. The former is a very pleafing book; and in the latter are collceled many inte. refting anecdotes of literature and literary men; but they are not well arranged, and the ftyle of the compofition is coarfe and flovenly. Sir Juhn, we doubt not, was a man of worth, and his reflections on the fentimental flang of Sterne and others, fhew that he had
fuccefffully Atudied homan nature; but he certainly was not a man of general tafe.

HEAT. See in this Supplement, Curanstry, Part 1. chap. v. where we have endearoured to cilablifh the moden doctrine refuceting Caleric or latent huat. In \(n^{\circ} .309\), \&ic. of that article, we have given an account of Cunt Runford's ingenious experiments, inftituted with a view to determine whether or not caloric he a fubltance, and have ftated our reafons for diffenting from his opinion. It has been fuggefled to us, however, by a friend, to whofe judgnent we are inclined to pay great deference, that it would be preper, in this place, to give the Count's arguments at full length, and in his own words; and the plopriety of this is the more apparent, that in the fapplementary article Electricity, we have hinted our own fufpicions of the non-exittence of an elearical jlaid. The Count then reafons from his experiments in the following words:
- By meditating on the refults of all thefe experiments, we are naturally brought to that great queltion which has fo often been the fubject of fpeculation among philofuphers, namely, What is hoat ?-Is there any fuch thing as an igneous fiuid?-Is there any thing that can with propriety be called caloric?
"We have feen that a very confiderable quantity of heat may be excited in the friction of two metallic furfaces, and given off in a conftant ftream or flux in all direations, without interruption or intermifion, and without any figns of diminution or exhauftion.
"From whence came the heat which was continually given off in this manner in the foregoing experiments? Was it furnifhed by the fmall particles of metal detached from the larger folid maffes on their being rubbed tugether ? This, as we have already feen, could not poffibly have been the cafe.
"Was it furnithed by the air? This could not have been the cafe; for in three of thefe experiments, the machinery being kept immerfed in water, the accefs of the air of the atmofphere was completely prevented.
" Was it furnifhed by the water which furrounded the machinery ? That this could not have been the cafe is evident ; fir \(h\), becaufe this water was comtinually receiving leat from the machinery, and could not at the fame time be giving to and reciving beat from the fame budy; and, fecondly, becaufe there was no chemical decompofition of any part of this water. Had any fuch decompofition taken place (which indeed could not reafonably have been expected), one of its conpuund elar? tic fluids (inoft probably inflamnable air) mult at the fame time have been fet at liberty, and, in making its efcape into the atmofphere, would have been detected; but though I frequently examined the water to fee if any air bubbles rofe up through it, and had even made preparations for catching them, in order to examine then if any fhould appear, I could perceive none; nor was there any figa of decompofition of any kind whatever, or other chemical procefs going on in the water:
" Is it poffible the heat could have been fupplied by means of the iron bar to the end of which the blunt fteel borer was fixed ? or by the fmall nock of gun-metal by which the hollow cylinder was united to the cannon? Thefe fuppufitions appear more improbable even than either of thofe before mentioned; for heat was
continually

Heat, continually going off or out of the maclinery, by both thefe laft paffages, during the whole time the experiment
latted.
"And, in reafoning on this fubject, we muft not forget to confider that moll remarkable circumftance, that the fource of the lieat gencrated by friction in the fe experiments appeared evidently to be incxhaulible.
"It is hardly neceftary to atd, that any thing which any infulated body or fyftem of bodies can continue to furnifh without limitation, cannot poffibly he a material fubfance; and it appears to me to be extremely dilh. cult, if not quite impoffhle, to form any ditinct idea of any thing capable of being excited and communicated in the manner the heat was excited and communi. cated in thefe experiments, except it be motion.
"But althourg the mechanifm of heat hould in fact be one of thofe myiteries of nature which are beyond the reach of human intelligence, this ought by no means to difcourage us, or even leffen our ardour, in our attempts to inveltigate the lawe of its operations. How far can we atrance in any of the paths which fcience has opened to us, hefore we find ourfelves enveloped in thofe thick mitts which on every fide buund the horizon of the human intellect? But how ample and interefting is the field that is given ns to explore!
"Nobody, furely, in his fober fenfes has ever pretended to underftand the mechanifm of gravitation ; and yet what fuhlime difcoveries was our inmortal Newton enabled to make, merely by the invellyation of the laws of its action! The effects produced in the world by the agency of heat are probably jufl as extenfive and quite as important, as thofe which are owing to the tendency of the particles of matter towards each other ; and there is no donbt but its operations are in all cafes determined by laws cqually immutable."

HELENA, or St Helena. In addition to the account of this ifland in the Encyclopedia, the following particulars from Sir George Stamiton deferve a place in this supplement, becaufe fome of them are important in themfelves, while others correct one or two mittakes into which we had fallen, by adopting, implicitly, the narrative of Forfter.

The circumference of St Helena meafures fomewhat lefs than twenty-cight miles. Along the whole coatt to leeward, or to the northward, fhips may anchor in perfect fecurity in all feafons of the year, but the bank fhelves fo abruptly afterwarde, that the anchorage, being in deep water, is infecure. The tide feldom rifes above three feet and a half; but the furge of the fea is fometimes tremendous; and feveral accidents happened in approaching or quitting the fhore, until a wharf was erected lately, which renders the arrival there, and departure from it, perfectly fafe. In the immediate neigh. bourhood of the ifland, forms are little known, thunder is rarely heard, and lightning is feldom perceived.

The tteep eminences which intervene between the valleys, that are the chief feats of population, render the communication from one part of this little fpot to another flow and difficult. Planters on the windward fide of the ifland confider a journey to the leeward, or feat of government, as a Cerious undertaking. Several of them take that opportunity of paying their refpects to the governor, which is called there fometimes "going to court." There are St Helena planters who luave not travelled fo far. At prefent, by order of the governor, there are fignals fo placed all over the iland, Suppl. Vol, I. Part II.
as to give inflant notice of the approach of veffels to
Helera. any part of it.

In the Encyclopodia, it is faid that peaches are the only European fruits which thrive in St Helena; but this appears to be a miftake Several forts of fruit trecs imported into the ifland had been dediroyed by a partictilar infect ; but encouragement has been given for the cultivation of thuse which that mifchevous animal is known to fpare, fuch as the apple, for example, with all the varicties of which it is fufecprible. 'The plantain and banana, of the two fpecies of the mufa, thrive alfo remarkably well. The ground is fertile, and in favourable feafons procluces, in fome inflances, double crops within the year. Plantations, however, of cotton, indigo, or canes, were not fomm to anfwer : thongh fone grood coffee has been produced in it. A botanic garden has been. eftablifhed nea: the grovernor's country houfe. An intelligent gudener has been fent to take care of it by the company ; and a vaft variety of trees, plants, and flowers of diferent, ant fometimes oppofite climates, are already collected in it. 'the furrounding fea abounds in cfeulent fith; and feventy difierent fpecies, including turtle, have been caught upon the coafts. Whales are feen in great nuribers playing round the ifland, where it is fuppofed the funthern whale fifhery might be carried on to great mationzl advantage.

The country is chiefly cultivated by blachs. Per. fons of that colour were brought in a flate of flavery to it by its firlt Europear fettlers; and it feldom haprens that white men will fubmit to common work where there are black flaves to whom it may be transferred. Thefe were for a lorg time under the unlinnited do. minion of their owners, until a reprefentation of the a. bufes made of that power induced the India Company to place them under the immediate protection of the magiftracy, and to enact varions regulations in their favour ; which have contrihuted to render them, in a great degree, coufortable and fecure. Thefe regulations may have hurt, at firt, the feelings of the owners of flaves, but not their real interell ; for it appears, that before their introduction there was a lofs, upon an average, of about ten in a hundred flaves every year, to be fupplied at a very heavy expence: whereas, under the prefent fyfem, they maturally increafe. All future importation of flaves into the ifland is prohibited.

Befides the blacks in a flate of flavery, there are fome who are free. 'I lie labour of thefe tending to diminifh the value of that of flaves, the free blacks became once obnoxious to fome flave owners; who hed fufficient influence, in a grand jury, to prefent them as without viflie meas of gaining a livelihood, and liable to become burdenfome to the commenity; but upon examination, it appeared that all free bluks of astc to work were actually employed ; that not one of then lead been tried for a crime for feveral years, nor had any of them been upon the parifl. They are now by the humane interpofition of the company placed under the immediate protection of the government, and put nearly upon a footing with the other free intrabitants, who, when accufed of crimes, have the privilege of a jury, аз well as in civil caufes.

The principal fettlement of St Helena has the peculiar advantage of uniting the thelter of a lceward \(f_{1}-\) tuation with the coolnefs of windward gales. The fouth-eaft wind blows conftantly down the valley, rendering a refidence in it pleafant as well as healthy. 5 A The

Helicoid The conntry is fo fertile, and the climate fo congenial 11 Hinzuan.
to the human feelings, that perlhaps it would be difficult to find out a fpot where perfons, not having ae-
equired a relifh for the enjoyments of the world, or al. ready advauced in life, and furfeited with them, could have a better elanee of protracting their days in eafe, health, and comfort.

HELICOID Parabola, or the Parabolic Spiral, is a curve arifing from the fuppofition that the common or Apollonian parahola is bent or twilled, till the axis cone into the periphery of a eirele, the ordinates ftill retaining their places and perpendicular politions with refpect to the eircle, all thele lines Atll remaining in the fame plane.

HELISPHERICAL LINE, is the Rhumb line in Navigation; being fo called, becaufe on the globe it winds round the pole helically or fpirally, coming fill nearer and nearer to it.

IEENIOCHAS, or Heniochus, a northern con-

HERSCHEL, the name by which the French, and mon other European nations, call the new planet difcovered by Dr Herfchel in the year 1781. Its mark or character is \({ }_{5}\). The Italians eall it Ouranos, or Urania; but the Englifin, the Georgian Planet, or Georgium Sidus.

HETERODROMUS Veetis, or Lever, in Mechanies, a lever in which the-fulcrum, or point of furpenfion, is between the weight and the power; heing the fame as what is otherwife called a lever of the frit kind.

HINZUAN, the proper name of one of the Comosa inlands, which by different writers of difierent nations has been called Anzuame, Anjuan, Funnny, and Fohanna, and which is defcribed in the Encyrlopadia ninder the name of Sr Joanna. In that article, it is cblerved, that an anonymous writer has cenfured the deferiptions of this illand given by the Abbé Reynal and Major Reoke, as being not only exaggerated, but erroneous; neither the country being fo picturefque as the former reprefents it, nor the inhabitants meritius the refpectable charadter given of them by the latter.

There was not perhaps much propricty in admitting into fuch a work as the Encydopudia Britannica, the anonymous cenfure of deferiptions, authenticated by the names of refpectahle authors; but the beft reparation which we can make to thofe authors is, to inform our rearlers, that their defcriptions of Hinzuan are confurmed by Sir William Jones, whofe teftimony, we believe, no man will controvert. That accomplihed fcholar, who vifited the illand on his voyage to India, thus defrribes its appearanee from the bay in whieh the fhip rode at anchor.
"Before us was a vaft amphitheatre, of which you may form a general notion by picturing in your minds a multitude of hills infinitely varied in fize and figure, and then fuppofing them to be thrown together, with a kind of artlefs fymmetry, in all imaginable pofitions. The back ground was a feries of mountains, one of which is pointed, near half a mile pernendicularly ligh from the level of the fea, and little more than three miles from the fhore: all of them richly elothed with wood, chiefly fruit trees, of an exquilite verdure. I had feen many a mountain of fupendous height in Wales and Swifferland, but never faw one before, round the bofom of which the elouds were almoft continually rolling, whiles it green fummit rofe nourihing above
them, and received from them an additional brightness. Hinzuan. Next to this diftunt range of hills was another tier, part of which appeared charmingly verdant, and part rather barren; but the contraft of colours changed even this nakednefs into a beauty : nearer ftill were innumerable mountaine, or rather cliffs, which brought down their verdure and fertility quite to the beach ; fo that every thade of green, the fweeteft of colours, was difplayed at one view by land and by water. But nothing condueed more to the variety of this enehanting profpect, than the many rows of palm trees, efpecially the tall and graceful Arecas, on the fhores, in the valleys, and on the ridges of hills, where one might almolt fuppofe them to have been planted regularly by defign. A more beautiful appearance ean farce be coneeived, than fucle a number of elegant palms in fuch a fituation, with luxuriant tops, like verdant plumes, placed at juft intervals, and howing between them part of the renioter landleape, while they left the relt to be fupplied by the beholder's inagination. The town of Matfamidì lay on our left, remarkable at a diftance for the tower of the principal mofque, which was built by Halimah, a queen of the illand, from whom the prefent king is defcended : a little on our right was a fmall town, called Bantáni. Neither the territory of Nice, with its olives, date trees, and eypreffes, nor the ifles of Hieres, with their delightful orange groves, appeared fo charming to the as the view from the road of Hinzuan."

Sir William Jones, fpeaking of the inhabitants, takes notice of the Lords, Dukes, and Princes, of whom we have made mention after Major Rooke. "The frigate, (fays lee) was prefently furrounded with canoes, and the deck foon crowded with natives of all ranks, from the high born chief, who wafhed linen, to the halfnaked flave, who only paddled. Moft of them had letters of recommendation from Englifhmen, which none of them were able to read, though they fpoke Englith intelligibly; and fome appeared vain of titles, which our countrymen gave them in play, aceording to their Suppofed flations: we had Lords, Dukes, and Princes, on board, foliciting our cuftom, and importuning us for prefents. In fact, they were too fenfible to be proud of empty founds, but juitly imagined, that thofe ridiculous titles would ferve as marks of diftinction, and, by attracing notice, procure for them fomething fubftantial." He fpeaks with great refpect of the king, whule name was Abmed, as well as of feveral chiefs whom he faw, and feems to have met. with no man of rank on the ifland whole character was contemptible, but Selim the king's eldeft fon. For the behaviour of that prince, the old fovereign made the beft apology that he could, while he privately affured the interpreter, that he was much difpleafed with it, and would not fail to exprefs his difpleafure. He concluded his converfation with a long harangue on the advantage whieh the Englifh might derive from fending a fhip every year from Bombay to trade with his fubjects, and on the wonderful cheapnefs of their eommodities, efpecially of their cowries. Ridiculous as this idea might feem, it thowed (fays Sir William) an enlargement of mind, a defire of promoting the intereft of his people, and a fenfe of the benefits arifing from trade, whieh could hardly have been expected from a petty African chief, and which, if he had been fovereign of Yemen, might have bcen expanded into rational projects proportioned to the extent of his dominions.

The

\section*{H I N [739}
or bayonct, which he brought, after the fcufle, from his lodging. This foul murler, which the law of at. ture would have jultified the magiftrate in punihing chiefs a few curious circumflances concerning the government of Hinzuan; which he found to be a momarchy limited by an arillocracy. 'The king, he was told, had no power of making war by his uwn authori\(t y\); but if thic affembly of nobles, who were from time to time convened by him, refolved on a war with any of the neighbouring iflands, they defrayed the charges of it by voluntary contributions; in return fur which, they claimed as their own all the booty and captives that might be taker. The hope of gain or the want of llaves is ufually the real motive for fuch efferprifes, and oftentible pretexts are ealily found : at that very time, he undertlood they meditated a war, becaufe they wanted hands for the following harvelt. Their fleet confifted of fixteca or feventeen fmall veffels, which they manned with about two thoufand five hundred iflanders, armed with mulkets and cutlaffes, or with bows and arrows. Near two years before they had poffeffed themfulves of two towns in Mayata, which they ftill kept and garrifoned. The ordinary expences of the government were defrayed by a tax from two hundred villages; but the three principal towns were exempt from all taxes, except that they paid aunually to the chief Mufti a fortieth part of the value of all their moveable property; and from that payment neither the king nor the nobles clained an exemption. The kingly authority, by the prineiples of their conftitution, was confidered as elective, though the line of fucceflion had not in fast been altered fince the firft e lection of a fultan.

Sir William Jones concludes his remarks on this ifland with fome reflections ; of which, though they may be confidered as digreffive, we are perfanded our readers will approve of our extending the circulation.
"We have lately heard of civil commotions in Hin. zuan, which, we may venture to pronounce, were not excited by any crnelty or vidence of Ahmed, lout were probably occafioned by the infolence of an oligarchy naturally hootile to king and people. That the mountains in the Comara iflands contain diamonds, and the precious metals, which are fludioufly concealed by the policy of the feveral governments, may be true, though I have no reafon to believe it, and have only heard it afferted without evidence; but I hope, that neither an expectation of fuch treafures, nor of any other advantage, will ever induce an European power to violate the firt principles of jutice by affuming the fovereiguty of Hinzuan, which cannot anfiver a hetter purpoie than that of fupplying our fleets with feafonable refrefhment ; and although the natives have an intcreft in receiving us with apparent cordiality, yet if we wint their attachment to be unfeigned and their dealings juft, we muft fet them an example of frict loonelly in the performance of our engagements. In truth, our nation is not cordially loved by the inhabitants of Hin«uan, who, as it commonly happens, furn a gencral opinion from a few intlances of violence or breach of faith. Not many years ago an European, who had been hofpitably received and liberally fupported at Matfamudo, behaved rudely to a young married woman, who, heing of low degree, was walking veilud through a fireet in the evening; her hofband ran to protect her, and refented the rudenefs, probably with menaces, poffibly with actual force ; and the European is faid to have given him a mortal wound with a knife
with death, was reported to the king, who told the governor (1 ufe the very words of Alwi, a couthin of the: king's), that "it would be wifer to huf! it up." A1. wi mentioned a civil affe of his own, which ought not to be concealed. When be was on the coatt of Afri. ca in the dominions of a very favage prince, a fmall European veffel was wrecked; and the prince not only feized all that could be faved from the wreck, but claimod the captain and the crew as his flaves, and treated them with ferocions infolence. Alwi affured me, that, when he heard of the accilent, he hatteners to the prince, fell proftrate before him, and by tears and importunity prevaled on lrim to give the Europeans their liberty; that he fupported then at his own expence, enabled them to build another veffel, in which they failed to Hinzuan, and departed thace for Europe or India: he flewed me the captain's promifory notes for fums, which to an African trater muft be a confiderable object, but which were suo price for liberty, fafety, and, perhays, life, which his good, though difinterefted, offices had procurel. I I lamented that, in my fituation, it was wholly out of my power to afliit Alwi in obtaining juttice; but he urged me to deliver an Aralic letter from lim, inclofing the notes, to the governor general, who, as he faid, knew him well; and I complied with his requeft. Since it is poffible, that a fubflatial defence may be made by the perfon thus accufed of injuftice, I will not name eitler hin or the veffel which he had commanded; but, if he be living, and if this paper fhould fall into his hands, he may be induced to reflect how highly it imporits our national honour, that a people, whom we eall favage, but who adminifter to our convenience, may have no juit caufe to reproach us with a violation of our contracts."

HIPS, in architceture, are thofe pieces of timber placed at the corners of a roof. 'I'hefe are much longer than the rafters, becaufe of their oblique potition. 1ip means alfo the angle formed by two pasts of the root, when it rifes outwards.

Hir-Roof, called alfo Italian rouf, is onc in which two parts of the roof meet in an angle, rifing outwards: the fame angle being called a valley, when it finks in wards.

HIRCUS, in attronomy, a fixed itar of the firit inagnitude, the fame with capella.

Hircus is alfo ufed by lome writers for a comet, ell. compafled as it were with a mane, feemingly rough and hairy.

HIRUDO. See Encyel. A new feccies of this infect was difeowered in the South Sea by Le Martiniere, naturalitt in Peroule's voyage of difoovery. He found it buried ahout half an inch in a thark's liver, but could not conceive how it had got thither. It was fomething more than an inch long, of a whitifi colour, and compofed of feveral rings timilar to thofe of the tienia. The fuperior part of its head was furnihhed with four fmall ciliated mamillx, by which it took its food; under each mamilla on both fides was a fmall oblong pouch, in the form of a cup; and in the form of its inflrumenta cibarin, it very nearly refembles the animal which has been fuppofed to be the caufe of meafles ia fwine. Both the fe fpecies are referable to the genus himblo, the characters of which, as given by Limicus, Atand (fiys Martinicte) in need of refurmation.

\section*{H I S [740] H I S}

Mirunio, HIRUNDO Esculenta (fee Hirundo, Encycl. \(\underbrace{\text { Hifpaniola. }}{ }^{\circ} 3\).), is thus deferibed in the Tranfactions of the Ba. tavian Society in the Ifland of Fava, vol. iii. ; and the defeription confirms the fagacious conjecture of Mr Latham refpecting the fize of the bird, which the reader will find in our article refermed to.
"The hirundo efculenta is of a lilackifi grey colour, inclining a little to green; but on the back to the tail: as well as on the belly, this blackith colour gradually changes into a moufe colour. The whole length of the hird from the bill to the tail is about four inches and a half, and its heiglt from the bill to the extremity of the sniddle toe three inches and a quarter. The diftance from the tip of the one wing to that of the other, when extended, is ten inches and a quarter. The largelt feathers of the wings are about four inches in length. The head is flat ; but, on account of the thicknefs of the feathers, appears round, and to be of a latge lize in proportion to the rett of the body. The bill is broad, and ends in a harp extremity, bent downwards in the form of an awl. 'The width of it is increaled by a naked piece of nkin , fomewhat like parchment, which, when the bill is thut, lies folded together; but which, when the bill opens, is confiderably cxtended, and en. ables the bird to catch with greater eafe, while on wing, the infects that ferve it for food. The eyes are black, and of a confiderable fize. The tongue, which is not forked, is flaped like an arrow. The ears are flat, round, naked fpots, with fmall oblong openings, and are entirely concealed under the feathers of the head. The neck is very fhort, as well as the Jegs and the bones of the wings. The thighs are wholly covered with feathers; and the very tender lower parts of the legs, and the feet themlelves, are covered with a flith like black parchment. Each foot has four toes, three of which are before and one turned backwards. They are all detached from each other to the roots; and the middle one, together with the claw, is fully as long as the lower part of the leg. Fach toe is furninhed with a black, tharp, crooked claw of a confiderable length, by which the animal can with great facility attach itfelf to crags and recks. The tail is fully as long as the booy together with the neck and the head. When expanded it has the form of a wedge, and confits of ten large feathers. The four firt on each fide are long; and, when the tail is clofed, extend alinoft an inch beyond the relt. 'The other feathers decreafe towards the middle of the tail, and are equal to about the lingth of the body:"

There is a variety of this fpecies of hirundo, with a fpeckled breaft, and white fpots on the tail feathers; and this, though lefs nunierous than the other, and indeed not found at all in Java, appears to have been the only hirundo efculenta known to Linnxus. For an account of the catable nelts of thefe birds, and the manner of collecting them, fee Cap and Bution in this Suptlement.

HISPANIOLA, or St Domingo, the largeft of the Antilles or Caribbee inands, has been defcribed, as it exilled prior to the French revolution, in the Encyclofadia. Previous to the year 1789 the sovernment of the French part of the illand was adminitered by an officer called the Iutendant, and a Governor-General, both nominated by the crown, and invelted with authority for three years. Their powers were in forse cafes diftinct, and in others united; but though thefe powers were extenfive and almolt abfolute, the attention which
the old government of France paid to the character and Hifpaninla, rank of thofe perfons whom it had placed over its foreign fettlements, fecured to the inhabitants of Hifpaniula a very confiderable thare of happinefs. In fpite of what our reflefs innovators call political evils, figns of profpcrity were everywhere vilible; their towns were opulent, their markets plentiful, their commerce extenGive, and their cultivation increafing.

Such was, in 1788 , the flate of the French colony, in the ifland of St Domingo; but in that eventful year, the flame, which had burft forth in Europe, fpread it felf to the Wef lndies. An affociation had been formed in France upon principles fomewhat fimilar to thofe of our fociety for the abolition of the flave trade; hut that affociation, which called itfelf Amis des Noirs, had much more dangerous defigns than ours. Avowing its deteftation of every kind of flavery, as well as of the African trade, and condemning thofe abettors of liberty who dared to declare themfelves poffeffors of men, its members kept up an intimate and clandeftine connection witl thofe sich mulattoes who refided in France for their cducation, and laboured to convince them that neither their colour nor their fpurious lirtl fhould make any civil or political ditinction between ifem and the whites who ware born in wedlock. I'o co-operate, as it were, with thefe factious and falfe doenrines, the National Aftembly iffued its famous declaration, in which it was maintained that all mankind are born, and continue free, and equal in their rights. The confequence of this was fuch as might lave been expected. The mulattoes of Hifpamiola, inftructed in the French philofophy of the rights of man, broke out into rebellion; but not acting in concert, they were quickly over. powered.

The fpirit, however, which had been excitcd among them, fill continned to ferment; and the National Atfembly of France, taking the flate of the illand into folemn confideration, decreed, by a great majority, that its intention had never been to intermeddle with the internal affairs of the colony ; that their internal legination was entirely their own; and that the legiflature of the mother country would make uoinnovation, directly or indirectly, in the fyftem of commerce in which the colonies were already concertied. However grateful this declaration might be to the whites of St Domingo, and in the then ftate of things however wife in itfelf, it occafioned difcontent and remonftrances on the pat of the factious friends of the negroes. They regarded it as an unwarrantable fanction of the African traffic, and a confeffion that the planters of Hifpaniola were not colonifts, but an independent preople.

The colonits themfelves, indeed, or rather their reprefentatives, feem to have thought that by this decree they were rendered independent ; for in their general affembly they paffed an act debarring the king's delegate, the governor-general, from negativing any of their future acts. This violent meafure was far from giving univerfal fatisfaction. The, weltern parifhes recalled their delegates, while thofe of Cape François re. nounced their obedience to the whole allembly, and pe. titioned the governor to diffolve it.

During thefe diffenfions, the commander of a fhip of the line, which lay in the harbour of Port-au-Prince, gave a fumptuous entertainment to the friends of the governor; on which account the feamen, who declared themfelves in the intereft of the affembly, thought fit to mutiny:

Hifpaninla nutiny; and the affembly, in return, votal their thanks to the mutineers. Some of their partizans, feizing at the fame tine a powder magazine, the gorcrnor declared them adherents to traitors, and called on all cificers, civil and military, to bring them to punifunent. This was the fignal for civil infurrection; armed troups tock the field on buth fides; and war feemed incevitable, when the allembly refolved to repair in a body to France, and jurtify their paft conduct.

In the mean time the \(A\) inis des Noirs contrived to excite the people of colour to rehellion. They initiated in the doctrine of equality and the rights of man one James Oge, then refiding in l'aris in fonc degrec of affluence. They perfuaded him to go to St Domingo, put himfelf at the lead of his people, and detiver them from the oppreffion of the whites; and in order to cwade the notice of government, they undertook to procure for him arms and ammuition in America. He ersbarked accordingly, July 1790, for Neiv England with money and letters of credit; but notwithanding the caution of the Amis des Noirs, his defigns were difcovered by the French govermant, and his frotrait was fent out before him to St Domingo. He landed on the ifland in October, and lix weeks afterwards publifhed a manifefto, declaring his intention of taking up arms, if the privileges of whites were not granted to all perfons ruithout diflinaion. He was joined by about 200 men of colour; and this little army of ruffians not only maf. facred the whites wherever they fell in with them in fnall numbers, but, by a ftill more unjuftifiable mode of conduct, took vengeance on thofe of their own colour who refufed to join their rebellious flandard. They were, however, foon overpowered by the regular troops; and their leader, after difclofing, it is faid, fome inipertant fecerets, fufiered the punifiment duc to his treafon.

White thefe things were going on in the illand, the members of the Colonial Afferibly arrived at Paris, where they were received by the reprefentatives of the French people with marked fymptoms of averfion. The refolutions conipoling their famous decree were pronounced improper : their vote of thanks to the mutineers was declared criminal ; they were themfelves pt:fonally artefted; orders were given for a new affembly to be called; and the king was requefted to angment the naval and military force then at St Iomingo.

The National Affanbly of France having decreed that every perfon twenty-five years old and upwards, porfefing pioperty, or having rctided ino ycars in the colony and paid taxes, fhould be fermitted to wete in the formation of the colonial affermbly, the people of colour very naturally concluded that this privilege was conferred uron them. Such, however, we believe, wes not the meaning of the National Affenibly; but Gregoire, wihh the other friends of the negroes, at latl prevaled, and wimatises liorn of free parents were pronounced to be not enly worthy of choofing their reprefentatives, but alfo cligilhe themetues to feats in the culonial off femblies. This decree facrificed at once all the whites in the ifland to the people of colour ; and the indignation which filled the minds of both the royal and the republican parties fecmed to have united them in one common caufe. They refolved to reject the civic oath; to confifcate the French property in the harhour, on which they actually laid an cmbargo; to pull down the national colours, and to hoill the Britifh flandard in their ftead. The mulattoes in the mean time collected in ar.
med bodies, and waited with anxious expectation to fee Hifpaniola. what ineafures the colonial affembly would adopt.

During thefe diffenfions, the negro flaves, into whofe minds had been fedelecully inftilled an opinion that :heir rights were equal to thofe of their matters, refolved to recover their frectom. On the morning of the 23 d of Augult 1791, the town of the Cape was alarmed by a confufed report that the flavis in the adjoining parifhes had revolted; and the tidings were foon confirmed by the arrival of thofe who had narrowly efeaped the maifacre. The rebellion had broken out in the parifh of Acul, nine miles from the city, where the whites had been butchered without diflinction; and now the rebels procecded from parifh to paith, murdering the men, and ravifhing the unfort unate women who fell into their hands. In a thort time the fiword was accompanied with fire, and the cane-fields blazed in every direction. The citizens now flew to arms, and the command of the national troops was given to the governor, whilit the women and children were put aboard the fips in the barbour for fafety. In the firf action the rebels were repulfed; but their numbers rapidly increafing, the governor judged it expedient to act folely on the defenfive. In the fpace of two months it was computed that upwards of 2000 white perfons perifhed; and of the infurgents, who confifted as well of mulatoes as of negroes, not fewer than ro,0co died by famine and the fword, and hundreds by the hands of the executioncr.

When intelligence of thefe dreadful proccedings reached Paris, the Affembly began to be convinced that its equalifing principles had been carried too far; and the famous decree, which fut the people of colour on the fanie footing with the whites, was repealed. Three commifioners were likewife fent to the colony to tefore peace between the whites and the mulatoes; but two of them leing men of had character, and none of them poffefling abilities for the arduous tak of extinguifhing the flames of a civil war, they returned to lrance without accomplifhing in any degrec the object of thacir miffion.

In the mean time the Amis des Noirs in the mother country had once more gained the afcendant in the Na. tional Affembly; and three new commifioners, Santhenax, Potverel, and Ailkand, with 6000 chofen men frem the mational gunds, were embarked for St Doiningo. It was ftrongly fulpecied that the object of thefe commitioners was to procure unqualified freedom for ail the blacks in the ifland; but they folemnly fwore that their fole purpofe was to ellablifh the rights of the mulatoes, as decreed ty the law which had been lately repealed. The whites therefore expecied that a colonial afembly would be convoked; but inftead of this the commifioners nominated twelve perfons, of whom fix had been members of the laft affembly, and fix were mulattocs, Une Commiffion Intermediaire, with authority to raife contributions on the inhabitants, the application of which, however, they referved to themfelves. The governor finding that the commiffioners ufurped all authority, complained that he was but a cypher in public affairs; his complaint was anfivered by an arreft upou his perfon, and he was fent a flate prifoner to France.

The tyranny of the commiffioners did not ftop here. Thcy overawed the members of the commiffion intermediaire, by arrefting four of their number; and difagreeing among themfelves, Santhonax and Polverel difmiffed Ailhaud from their councils. War was by this time declared

Hf mida doclared between the mother country and Great Britain, and prudence compelled the government of France to take fome care of the injured colony. Galbaud, therefore, a man of fair character, was appointed governor, and ordered to put the ifland in a llate of defence againit tureignn invation; but poffefling Weft Iudia property, v: hich it feems was a legal difqualrication for the office of governor, the commiffoners difregarded his authority, and took up arms againt him. Finding themfelves likely to be worfted, they offered to purchale the aid of the relel regroes, by the offer of a pardon for their palt conduct, freedom in future, and the plunder of the cafital. Two of the negro chiefs, more honourable than the French commiffioners, fpurned at the bafe propofal; but a third, after the govemor had fled to the Mips, entered the town with 3000 revolted negroes, and began an indiferininate naflacre. The miferable inhabitants fed to the flore, but their retreat was'ftopped hy a party of nuluttoes; and for two days the flaughter was inceffant. The town was half confumed by fire; and the commiffioners, terrified at the work of their own hands, fled for protection to a mip of the line, and thence iffued a manifefto, which, while it tried to exte. nuate, evinced a confeionfuefs of their guilt.

Thus was lott the fineft ifland in the Welt Indies; an illand which produced alone as much fugar as all the Pritilh Weft India poffeffons united; not to mention the coffee and indigo, which were in immenfe quantities cultivated in Hifpaniola. Had it not been for the reflefs machinations of the Amis des Noirs, it dees not alpear that fo general a revolt would have t.ken place ennong the flaves; for though the fpirit of republicasifnt had found its way into the ifland, the republicans ioned with the royalifts to keep the negroes in proper fanjection. The unfuccefsful attempt which, at the requeft of the more refpectable part of the inhabitants, the Britifh government made to fubdue the execrable commifioners and their adherents, is frefh in the ineemory of all our readers, and need rot here be detailed at length. Suffice it to fay, that after prodigies of valour, our troops were compelled, rather by difeafe than by the fwords of the enemy, to abandon the ifland. 'Touffaint L: Onverture, a black chief, converted it into an independent republic, and continued to govern it undifturbed, till the preliminaries of peace were figned between Britain and France in \(\mathbf{1 8 0 1}\). Immediately after that event, Bonaparte difpatched a fleet from Breft, with the permiffion of our government, carrying a confiderable army under the command of general Le Clere. Touffaint at firft refufed to fubmit. Several bloody actions were fought between the French troops and the blacks, in which the former were uniformly fuccefsful. The open country was foon abandoned by the negroes : feveral of Touffaint's generals fubmitted; and at laft he himfelf was prevailed upon, by the addrefs and the magnificent promifes of Le Clere, not only to throw down his arms, but to put himfelf into the power of the French general. For fome days thefe promifes were religiouny wherved; but a pretence was foon found for breaking them. Touffaint was flript of his immenfe property, and fent prifoner to Erance. Thus was the colony recovered to France in a ftill fhorter time than it had been loft. Since that event, nothing lias tranfpired concerning the ftate of the ifland, or the regulations which the French find it neceffary to make. But it is obvious, that a confiderable period muft elaple before it can be refto-
red to that flate of profperity which it formerly enjoged.

HOLLOW, in architecture, a concave moulding, about a quarter of a circle, by fome called a cafement, by others an abacors.

Hollom. Tover, in fortiacation, is a rnunding made of the remainder of two brifures, to join the curtain to the crillon, where the finall thor are played, that they may not be fo much expofed to the view of the enemy.

HOMODROMUS VEetis, or Lever, in mechanics, is a lever in which the weight and power are botls on the fame fode of the fulcrum as in the lever of the 2d and 3 d kind; being fo called, becaufe here the weight and power move both in the fame direction, whereas in the heterodromus they move in oppulite directions.

HOOKE (Dr Robert) is faid, in the account of him which is publifhed in the Encyclopadia, to have laid claim to the inventions of others, and to have boatted of many of his own, which he never communicated. We will not prefume to fay that this charge is entirely groundlefs ; but we know that it has been greatly exaggerated, and that many dilcoveries undouhtedly made by him have been claimed by others. Of this the reader will find one confpicuous proof under the article Watch (Encycl.); and perhaps the following hiftory of the inventions to which he laid claim may furnifin another. It would be harfh to charge him with falfity in any of them; that is to fay, to imagine that he either ftole them from others, or did not think, at leaft, that he was on inventor. And, with refpect to many of then, the priority of his claim is beyond difpute.

1656 , Barometer, a weather glafs.
1657, A feapement, for maintaining the vibration of a pendulun.-And not long after, the regulating or balance fpring for watches.

1658 , The double harrelled air-pump. The co. nical pendulum. - Ilis firft employment of the conical pendulum was no lefs ingenious and feientilie than it was original. He employed it to reprefeot the mutual gravitation of the planets; a fact which be had molt fyftematically announced. He had fhewn that a force, perfectly analugous to gravity on this earth, operated on the furface of the moon and of Jupiter. Conffering the numerous round pits on the furface of the moon, furrounded with a fort of wall, and having a little eminence in the middle, as the production of volcanoes, he inferved, that the ejected inatter fell back again to the moon, as fuch matter falls back again to the earth. He faw Jupiter furrounded with an atmofphere, which accompanied hin! ; and therefore prêfled on hinn, as our air prefles on the earth:He inferred, that it was the fame kind of power that maintained the fun and other planets in a round form. He inferred a force to the fun from the circulation round him, and he called it a gravitation; and faid that it was not the earth which deferibed the ellipfe, but the centre of gravity of the earth and moon. He therefore made a conical pendulum, whofe tendency to a vertical pofition reprefented the gravitation to the fun, and which was projected at right angles to the vertical plane; and fhewed experimentally, how the different proportions of the projectule and centripttal tendencies produced various degrees of eccentricity in the orbit. He then added another pendulum, deferibing a cone round the firit, while this deferibed a cone round the vertical line, in order to fee what puint between them deferibed the elliple.

Hooke. ellipfe. The refults of the experiment were intricate and unfatisfactory ; but the thought was ingenious. He candidly acknowledged, that be had not.difcovered the true law of gravitation which would produce the defcription of an ellipfe round the focus, owing to his want of due mathematical knowledge; and therefore left this inveftigation to his fuperiors. Sir Ifaac Newton was the happy man who made the difeovery, after having entertained the fame notions of the forces which connected the bodies of the folar fyftem, before he had any acquaintance with Dr Hooke, or knew of his speculations.

1660 , The engine for cutting clock and watch wheels. -The chief phenomena of capillary attraction.-The freezing of water at a fixed temperature.

1663 , The method of fupplying air to a diving bell. - The number of vibrations made by a multeal chord.
\(166_{4}\), His Micrographia was, by the council of the Royal Sosiety, ordered to be printed; hut in that work are many juff notions refpecting refpiration, the compofition of the atmofphere, and the nature of light, which were afterwards attributed as difcoveries to Mayow and others, who, though we are far from fuppofing that they ftole their difcoveries from Dr Hooke, were certainly anticipated by him.

1666, A quadrant by reflection.
1667, The marine barometer.-The gage for founding unfathomable depths.

1668 , The meafurement of a degree of the meridian, with a view to determine the figure of the earth, by means of a zenith fector.

1669 , The fact of the confervatio virium vivarum, and that in all the productions and extinctions of motion, the accumulated forces were as the fquares of the final or initial velocities. This doctrine he announces in all its generality and importance, deducing from it all the confequences which John Bernoulii values himfelf fo highly upon, and which are the chief facts ad. duced by Leibnitz in fupport of his doctrine of the forces of bodies in motion. But Hooke was perfectly aware of their entire correfpondence with the Cartelian, or common doctrine, and was one of the firl in applying the celebrated \(39^{\text {th }}\) propofition of Newton's Principia to his former pofitions on this fubject, as a mathematical demonftration of them.

1673, That the catenaria was the beft form of an arch.

1674 , Steam engine on Newcomen's principle.
1679, That the air was the fole fource of heat in burning : That combution is the folution of the inflanmable vapour in air; and that in this folution the air gives out its heat and light. That nitre explodes and caufes bodies to burn without air, Lecaufe it confills of this air, accompanied by its heat and light in a condenfed or folid fate; and air fupports flame, becaufe it contains the fame ingredients that gunpowder doth, that is, a nitrous fpirit: That this air diffolves fomething in the blood while it is expoled to it in the lungs in a very expanded furface, and when faturated with it, oan no longer fupport life nor flame; but in the act of folution, it produces animal heat: That the arterial and venal blood differ on account of this fomething being wanting in one of them. In fhoit, the findamental doctrines of modern chemiftry are fyitematically delivered by Dr Hooke in his Micrographia, publifhed in 1664, and his Lampas, publifhed in 1677.

168 o , He firf obferved the feconday vibrations of Horne. elaftic bodies, and their comection with harmonic founds. A grlafs containing water, and excited by a fiddleflick, threw the water into undulations, which were fquare, hexagonal, oftagonal, \&c. fhewing tlat it made vibrations fubordinate to the total vibration; and that the fundamental found was accompanied by its ostave, its twelfth, \&c.

1681, He exhibited mufical tones by mans of toothed wheels, whirled round and rubbed with a quill, which dropped from tooth to tooth, and produced tones proo portioned to the frequency of the cracks or fuaps.

1684, He read a paper before the Royal Society, in which he affirms, that fome ycars before that period, he had propofed a method of difcourfing at a diftance, not by found, bu: by fight. He then proceeds to defcribe a very accurate and complete telegraph, equal, perhaps, in all refpects to thofe now in ufe. But fome years previous to \(168_{4}\), M. Anontans had not invented his telegraph ; fo that, though the Marquis of Worcefter unqueftionably gave the firft hint of this inftrument, Dr Fooke appears to have firt brought it to perfection. See Telegrafh, Encycl. ; and a book, publifhed 1726, entitled Pbilofophical Experinents and Obfervations of the late eminent Dr Robert Hooke.

We are indebted to him for many other difcoveries of lefer note; fuch as the wheel barometer, the univerfal joint, the manometer, fcrew divided quadrant, telefcopic fights for aftronomical inftruments, reprefentation of a nufcular fibre by a chain of bladders, expe. riments hewing the inflection of light, and its attraction for folid bodies, the curvilineal path of light thro' the atmofphere.

HORNE (George, D. D.), late Lord Bithop of Norwich, was a man of fuch amiable difpofitions, primitive piety, and excmplary morals, that we wifh it were in our power to do juflice to his character. His life, it is true, has been alrcady written, at coufiderable length, by two anthors, poffefid of cudition and of unqueltionable integrity ; but mere erudition is by no means fufficient to fit a man for difcharging the duties of a biographer. It was not the learning of Johnfon, but his fagacity, and intimate acquaintance with human nature, that placed him fo far above his contemporaries ; in this department of literature.

Of Bifhop Horne's biographers, one poffefled, indeed, the great advantage of having lived in labits of intimacy with him from his boyin years. In the anthenticity of his narrative, therefore, the fulleft confidence may be placed: and that narrative we thall faith. fully follow; referving, however, to ourfelves the liber. ty of fometimes making reflections on the various incidents recorded, widely difierent from thofe of the author.

George Horne was, in 1730 , born at Otham in Kent, a village near Maidfone, giving the name to a parifh, of which his father was the rector. He was the fecond of four fons; of whom the eldeft dicd in very. early life, and the youngeft, who is Alll alive, fucceeded his father both in the rectory of Otham and in that of Breda in the county of Suflex. He had likewife three fiters, of whofe fortunes we know nothing.

Mr Horne, the father of the family, was of a tem. per fo remarkably averfe from giving pain or trouble upon any occafion, that he ufed to awake his fo:s* George, when an infant, by playing upon a flute, that*

\section*{\(\mathrm{II} 0 \mathrm{R} \quad[744] \mathrm{II} \mathrm{O}\)}

Hone. the change from fleeping to awaking might be gradual and pleafant. Having been for fome years a tutor at Oxford, he took upou himfelf the early part of the claffical education of this furourite fon ; an office of which he was well qualified to difcharge the duties. Uuuder fuch an infructor, the fubject of this memoir led a very pleafant life, and made a rapid progrefs in the Greek and Latin languages. By the perfuation of a friend, however, he was, at the age of thirteen, placed in the fchool of Maidttone, \(t:-\) n under the care of a Mr Bye, eminent for his knowledge of ancient litera. ture. And remaining with this gentleman two years, he added much to his fock of learning ; and, anong other things, a little elementary knowledge of the Hebrew tungue, which Mr Bye taught on the plan of Buxtorf. Though Dr Horne afterwards rejected that plan, he readily admitted, that the knowledge of it was of great advantage to him.

At the age of fifteen, he was removed from Maid. ftone fchool to Univerfity college Oxford, where his father had happily obtained for him a fcholarfhip. At college his fludies were, in general, the fame with thofe of other virtuous and ingenious youths; while the vivacity of his converfation, and the propricty of his conduct, endeared him to all whofe regard was creditable. About the time of his takiog his bachelor's degree, he was chofen a fellow of Magdalen College; and foon afterwards, if not before, commenced author.

The hiftory of his authorfhip is curious, and we fhall give it at fome length. While he was decply engaged in the Atudy of oratory, poetry, and every branch of polite literature, he was initiated by his faithful filend Mr Jones in the myfteries of IXutchinfonianifm; but Mr Jones was not his preceptor. Indeed that gentleman informs us, that when he firf communicated to Mr Horne the noveties with which his own mind was filled, he found his friend very little inclined to confider them; and had the mortification to fee, that he was himfelf lofing ground in \(\mathrm{Mr}^{-}\)Horne's efteem, even for making the attempt to convert him. At this we are not to be much furpiled. Mr Horne, though, by his biographer's account, no deep Newtonian, faw, or thought he faw, the necefinity of a vorum to the porfibility of motion ; and as we believe that every man, who knows the meaning of the words motion and vacuum, and whofe mind is not biaffed in favour of a fyenem, fees the fame thing, it was not to be fuppofed, that a youth of found judgment would haftily relinquifh fo natural a notion. By Mr Horne, however, it was at length relinquifhed. Mr Jones introduced him to Mir George Watfon, a fellow of Uuiverfity college, whom he reprefents as a man of very fuperior accomplifhments; and by Mr Watfon Mr Iforne was made a Hutchinfonian of fuch zeal, that at the age of nineteen, he implicitly adopted the wild opinion of the author of that \(\mathrm{f}_{\mathrm{y}} \mathrm{f}\) tem, that Newton and Clarke had formed the defign of bringing the Heathen Fupiter, or Stoical anima mundi, into the place of the God of the univerfe. With fuch a conviction impreffed upon his mind, it is not wonderful that he fhould endeavour to diferedit the fyftem of Newton. This he attempted, by puhlifhing a parallel between that fyftem and the Heathen doctrines in the Somnium Scipionis of Cicero. That publication, which was anonymous, we have never feen ; but Mr Jones himfelf admits it to have been exceptionable; and the ami-
able author feems to have heen of the fame opinion, for Horns. he never republihed it, nor, we believe, replied to the anfwers which it provoked.

He did not, however, defert the caule, but publihed, foon afterwards, a mild and ferious pamphlet, which he called A Fair, Candid, and Imparii.al State of the Cafe letween Sir Ifanc Newton and Mr Hutcbinfon. Eveli of this pamphlet we have not been able to procure a firht ; but Mr Jones affures us, that the author al. lows to Sir Ifaac the great merit of having fettled laps and rules in natural philufophy, and of having meafured forces as a mathematician with fovereign kill; whil! be claims for Mr Hutchinfon the difcovery of the true phyfiological caufes, by which, under the power of the Creator, the natural world is moved and directed.

If this be a fair view of the flate of the cafe, it allows to Newton mure than ever Newton claimed, or has been claimed for him by his fondeft admirers; for the laws and rules, which he fo faithfuliy followed in the ftudy of philofophy, were not fettied by him, but by the illuftrious Bacon. With refpeet to the true caufes here mentioned, we have repeatedly had occafion, during the courfe of this Work, to declare our opinion, that all men are equally ignorant of them, if they be confidered as any thing diftinct from the genera! laws by which the operations of nature are carried on. To the difcovery of other phyfiological caufes, Newton, in his greatef work, made indeed no pretenfion ; but it may be worth while, and can hardly be confidered as a digreffion, to confider what are the pretenfions of Huchiafon, to which Meffrs Horne and Jones gave fo decided a preference.

Mr Hutchinfun himfelf writes fo obfcurely, that we dare not venture to tranflate his language into common Englifi, lent we fhould undetiguedly mifreprefent his meaning ; but according to Mr Jones, who has ftudied his works with care, his ditinguifhing doetrite in philofophy is, that "The forces, of which the Newtonians treat, are not the forces of nature; but that the world is carried on by the action of the elements on one another, and all under God." What is here meant by the elements, we are taught by another cminent difciple of that fchooi. "The great agents in nature, which carry on all its operations, are certainly (fays Mr Parkhurf) the fluid of the heavens; or, in other words, the fire at the orb of the fun, the light iffuing from it, and the fisirit or grofs air conflantly fupporting, and concurring to the actions of the other two." (SeeCherubim in this Sunplagent). Mr-Horne adopt. ed this fyftem in preference to the Newtonian ; becaufe, fays his biographer, "It appeared to him nothing better than raving, to give active powers to matter, fuppoling it capable of acting where it is not ; and to affirm, at the fame time, that all matter is inert, that is, inactive ; and that the Deity cannot act but where he is prefent, becaufe his power cannot be but where his fublance is."

That much impious arrogance has been betrayed, not by Newtonians only, but by philofophers of every fchool, when treating of the modus operandi of the Deity, we feel not ourfelves inclined to controvert; but we never knew a well-informed Newtonian, who fpoke of the active powers of matter but in a metaphorical fenfe; and fuch language is ufed, and muft be ufed, by

\section*{\(\mathrm{H} O \mathrm{R}\)}

Horne.
the folluwers of Hutchinfon. Mr Jones fpeaks of the ation of the elements; and Mr Parkhurlt calls the fluid of the heavens, which, according to him, confints of fire, light, and air, agents; but it would furely be uncandid to accufe thefe two pious men of animating the elements, though we know that agion and aisivity, in the literal feafe of the words, can he predicated only of living beings. With refpect to giving active powers to matter, therefore, the followers of Hutchinfon rave juft as much as thofe of Newton; and we fee not the raving of either in any other light than as the neceffary confouuence of the peverty of language.

But the Newtomian makcs matter act upon matter at a diftance! No ; the genuine Newtonian does not make matter \(a f\) (in the proper fenfe of the word) at all; but he bclieves, that God has fo conflituted matter, that the motions of different maffes of it are affected by each other at a difance; and the Hutchiufonian holds the very fame thing. As this celeftial fluid of Mr Parkhurf's confifts partly of air, we know, hy the tell of experiment, that it is elallic. The particles of which it is compofed are therefore diftant from each other; and yet they refilt compreffion. How does the Hutchinfonian account for this fact? Perhaps he will fay, that as matter is in itfelf equally indifferent to motion and reft, Gorl has fo conflituted the partieles of this fluid, that though they poffefs no innate power or activity of their own, they are affected by each other at a dittance, in confequence of his fiat at the creation. This we believe to be the only folution of the difficulty which can be given by man ; but it is the very anfiver given by the Newtonians to thofe who object to them the abfurdity of fuppofing matter to be affected by matter at a diftance. That the mutions of the heavenly bodies are affected by the prefence of each other is a fact, fay they, which appears incontrovertible. "We have afeertained with precifion the laws by which thefe motions are regulated; and without troubling ourfelves with the true phytiological caufes, have demonftrated the agreement of the phenomena with the laws. The interpofition of this celeftial fluid removes not a fingle difficulty with which our doctrine is fuppofed to be clogged. To have recourfe to it can therefore ferve no purpofe, even were the phenomena contiltent with the nature of an elaftic fluid confidered as a phyfical caupe; but this is nut the cafe.- It is demonftrable (fee Astronomy and Dynamics in this Suppl.) that the motions of the beavenly bodies are not confiftent with the mechanifm of an elaftic fluid, confidered as the caufe of thefe motions; and therefore, whether there be fuch a fluid or not diffufed through the fular fyitem, we cannot allow that it is the great agent in nature by which all its operations are carried on."

Sueh inight be the reafoning of a well.informed New. tonian in this controverfy; and it appears fo conclufive againlt the objections of Hutchinfou to the Newtonian forces, as well as againft the agents which he has fubflituted in their ftead, that fome of our readers may be difpofed to call in queftion the foundnefs of that man's underfandiug who could become a Hutchinfonian fo zealous as Mr Horne. But to thefe gentlemen we beg leave to reply, that the foundeft and mof upright mind is not proof againft the influence of a fyttem, efpecially if that fyftem has novelty to recommend it, and at the fame time confifts of parts, of which, when taken fepa-
Suppl. Vol. I. Part II.
rate! \(y\), many are valuable. Such was the fytem of Hutchinfon when adopted by Mr Horne. It was then but very little known; it could be ftudied ouly through the medium of Hebrew literature, not generally cultivated; and that literature, to the cultivation of which Mr Hutchinfon had given a new and a better then, is in itfelf of the utmof importance. L.et it be obforved, too, that the Huthinfonians liave, for the molt part, been men of devout minds, mealous in the caufe of Chriftianity, and untainted by Arianifm, Sccinianifm, and the other herefies which have fo often divided the church of Chrift:-and when all thefc circumflances are taken into conlideration, it will not be deemed a proof of any defect in Mr Horne's underftanding, that in early life he adopted the whole of a fy ftem, of which fornc of the parts contain fo much that is good; efpecially when it is remembered, that at firf vierw the agency of the celeftial fluid appears fo plaufitle, that for a time it feems to have inpofed upon the mind of Newton himfelf.
But the truth is, that Mr Horne was at no period of lis life a thorough-paced Hutchinfonian. It is confeffed by Mr Jones," "that Mr Hutchinfon and his admirers laid tod great a 11 refs on the evidence of Hebrew etymology; and that fone of then carried the matter fo far, as to adopt a mode of fpeaking, which had a nearer refemblance to cant and jargon than to found fenfe and fober learuing. Of this (continues he) Mr Horne was very foon aware; and he was in for little danger of following the example, that he ufed to difplay the foibles of fuch perfons with that mirth and good humour," which he poffeffed in a more exquifite degree than moft men. This feems to be complete evidence that he was never a friend to the etynological part of the fyficn; and the prefent writer can attelt, that, in the year 1786, he feemed by his converfation to have lon much of his conviction of the agency of the celeflial fluid. He continued, indeed, to itudy the Hebrew Scriptures on the plan of Mr Hutchinfon, unincumbered with the Maforetic points, or with rabbinical interpretations; and the fruits of his ftudies arc in the hands of the religious public, in works which, by that public, will be efteemed as long as their lan. guage is undertood.
Hitherto DIr Horne was a layman, but he interefed himfelf in every thing connteted with religion, as much as the moft zealous dignitary of the church; and confidering the naturalization of the Jews as a meafure at leaft indceent in a Chrifian cuuntry, he publihed, in an evening paper, a feries of letters on that fubject, both when the Jew-bill was depending, and after it had paffed the houfe. The letters were anonymous; but they attracted much notice, and many groundlefs conjectures were made refpecting their author. To the real anthor, the meafure which they oppofed was fo very obnoxious, that he refufed to dine at the table of a friend, only becaufe the fon-in-law of Mr Pellhanı was to be there. And he was not much more friendly to the marriage-act than to the Jew-bill. If he confidered the one as difgraceful to religion, he probably thought that the other, with its numerous claufes, might be made a fnare for virtue.
The time now approached when he was to take holy orders, which to him was a very ferious affair ; and when he gave an account of his ordination to an inti- .
mate

\(\qquad\)

\(\qquad\)

\footnotetext{
\(\qquad\)
\(\qquad\)
\(\qquad\)
}

\(\qquad\)
\(\qquad\)

\(\qquad\)

\(\qquad\)
\(\qquad\)
 (
 T
\(\qquad\)相
 .

 -

\section*{\(\mathrm{H} O\) R [746] H O R}

Horne. mate friend, he concluded the letter with the following rellections, which, even in an abllact like this, it would be unpardouable to omit :
"May he, who ordered Peter three times to feed bis lumbs, rive me grace, knowledge, and flill, to watch and attend to the fuck which he purchafed upon the crofs, and to give reft to the fe who are under the burden of hia and forrow. It hath pleafed God to call me to the minitry in very tronblefome imes indeed, when a lion and a bear have broken into the fold, and are making lavoc among the fheep. With a firm, shough lumble confidence, do I purpofe to go forth; not in my own ftrength, but in the frength of the Lard God; and may he profper the work of my hands!" This was in the year 1753 , when the pious atuthor was hardiy 23 years of age; and he had not beea many months in orders, when one of the moft celebrated preachers in the metropolis pronounced, that "George. Forne was, without exception, the befl preacher in England."

In the year \(17 ; 6\), he was again involved in contro. verfy. A pamphlet had been publifhed at Oxford, luppofed hy Mr Kennicott, who afterwards gained fuch fame as a collector of Hebrew manuferipts, entitled \(A\) Word to the Hutchinfonians, in which Mr Horne was perfonally ftruck at. To this work our author replied in a fmall tract, called Ain Apology for certain Gentlemen in the Univerfity of Oxford, Afperfed in a late Aronymous Pamplet; and whatever may be thought of the queftion at iffue, all men nuft admire the temper with which the apologif conducted himfelf under very great provocation.

But it was not about Hutchinfonianifm alone that thefe two illultrious men were dnomed to differ. Mr Home took a deeided part againft Mr Kennicott's pro. pofal for collating the text of the Hebrew bible, with fuch manufcripts as could be found, for the purpofe of reforming the text, and preparing it for a new tranflation into the Englin languare; and in the year 1,50 , he publifhed A Viewi of Mr Kernicott's Method of Correaing the Hebrew Text, with three \(\mathcal{Q}\) ueries formed thereon, and bumbly fubmitted to the Chrifian world. That his alarm was on this occation too great, experience has hewn ; but that it was not groundlefs, is evident from the View, in which the reader will find a. bove 20 inflances from Mr Kennicotr's differtations (fee Kennicott, Encycl.), to fhew what an inundation of licentious criticifm was breaking in upon the facred text. Indeed there is reafon to believe, that this tract, togetlier with anorher on the fame fide of the queftion by Dr Rutherford of Cambridge, contributed to reprefs the collecor's rafnnefs, and to make the Bible of Dr Kennicott the valuable work which we find it. Be this as it may, fuch was the moderation of the Drs Kennicott and Horne, that though their aequaintance commenced in hottility, they at length contracted for each other a friendfhip, which latted to the end of their lives, and ftill fubtitts between their families.

In what year Mr Horne was admitted to the degree of D. D. and when he was chafen prefident of his college, Mr Jones has not informed us; but, if our memory does not deceive us, he had obtained both thefe preferments when, in the year 1772 , he gave to the public a fmall work, 8 vo, entitled Confiderations on the

Life and Death of St Fown the Bapifl. This traft was

Horne. the fubltance of a courfe of fermons, which he had many years before, in conformity to an eftablifhed curfon at Magdalen College, preached before the univerfity of Oxford. -Mr Jones, fpeaking of it, fays, that "he is perfuaded there was no other man of his time, whofe fancy as a writer was bright enough, whofe fkill as an interpreter was deep enough, and whofe heart as a moralift was fure enough, to have made him the author of that little work.' l3y moft readers this frain of pa. negyric will be thought extravagant, and of courfe it will defeat its own purpole; but the work is cestainly a work of merit.

In the year \(\mathbf{y} 776\), when the author was vice-chancellor, was publifhed, in two volunes 4to, Dr Horne's Commentary on the Pfalms. It is a work of which very different opinions have been formed, though it was the refult of the labour of twenty years. That it will always be a favourite companion of the devout Chriftian, we are as much inclined to believe as Mr Jones; but we cannot, without belying our own judgment, fay that it appears to us calculated to produce much general good in an age like the prefent. Granting it to be true, which we believe will not be granted without fome exceptions, that Clarke, and Hoadley, and Hare, and Middleton, and Warburton, and Sherlock, and South, and William Law, and Edmund Law, had turned the public attention, of which they had got the entire command, too much to the letter of the Bible to the neglect of the fpirit of it; Thould not Dr Horne, after the example of St Paul, have let in the light gradually upon fuch weak organs as thofe of the public thus difeafed, rather than pour it upon them at once in a flood of fplendor. The apofle "fed his Corinthian converts with milk and not with meats" when the found them muale to bear the latter food; and there is reafon to fufpect that the carnal followers of Warburton, and Sherlock, and South, were unable to bear, at once, fuch ftrong meat, as that which makes the fifteenth pfatm a portrait of our Sa viour. Indeed, we think it not improbable that the mind of Sherlock would have recoiled with horror from the very conception of the polfibility of Jefus Chritt "fivearing to his neighbour and difappointing him," though that conception mult have paffed through a mind which was certainly as pure as his. The commentary, however, though truth tlus compels us to fay that, in our opinion, it is far from perfect, is certainly a work of great learning, great genius, and fervent picty, and fuch as the devout Chriftian will perufe again and again with much advantage.

Dr Horne's next work was of a different kind, and, we think, of a fuperior order. In the year 1775 was publifhed a letter of Dr Adam Smith's, giving an account of the death of Mr David Hume. The object of the author was to fhew that Mr Hume, notwithftanding his fceptical principles, had died with the utmoft compofure, and that in his life, as well as at his death, he had conducted himfelf as became one of the wifert and beft men that ever exifted. The letter is very much laboured, and yet does no honour either to the author or his friend. It could not reprefent Mr Hume as fupporting himfelf under the gradual decay of nature with the hopes of a happy immortality; but it might have reprefented him as taking refuge, with other infidels, in the eternal lleep of death. This, thoughbut a gloomy profpect, would

Inme．not have been childifh；but the hero of the tale is ex－ hibited as talking like a fehool－buy of his conferences with Charon，and his reluctance to go into the Stygian ferry－boat，and as confoling himfelf with the thought of leaving all his friends，and his brother＇s family in particular，in great profperity ！！！The abfurdities of this letter did not efeape the watchful and penetrating eye of Dr Horne；and as he could not mittake its ob－ ject，he held it up to the contempt and feorn of the re－ ligious world in \(A\) Letter to Adam Smith，L．L．D．on the Life，Death，and Philofopby of his Friend David Hume，Efq；by one of the People called Chrifitians．The reafoning of this little tract is clear and conclufive，while its keen，though good humoured wit is inimitahle；and it was，fome years afterwards，followed by a feries of Letters on Infudelity，compofed on the fame plan，and with much of the fame ipirit．This finall volume，to the fecond edition of which the letter to Dr Smith was prcfixed，is better calculated than almoft any otier with avhich we are aequainted，to guard the minds of youth againft the infidious throkes of infidel ridicule，the only daugerous weapon which infidelity has to wield．

When the letters on infidelity were publified，their author had for fome time been Dean of Canterbury， where he was beloved by the chapter and almoll adored by the citizens．He was a very frequent preacher in the cathedral and metropolitical church，where the writer of this fhort fletel has litened to him with de－ light，and feen thoufands of people of very various de－ feriptions hang with rapture on his lips．As a preacher iadeed he excelled；and notwithtanding the flortuefs of his fight，which deprived thim of fome of the graces of a pulpit orator，fuch were the excellence of his matter， the fimple elegance of his ftyle，and the fweetnefs of his voice，that，when at the primary vifitation of the pre－ fent archbihhop，he preached his admirable fermon on the Duty of Contending for the Faith，the attention of more than 2000 people was fo completely fixed，that the fmallett noife was not to be heard through the whole crowded choir．Of the inportance of preaching，and of the proper mode of performing that duty，he had very juft notions；and though he never bad himfelf a parochial cure of fouls，it was the defire and pleafure of his life to make himfelf ufeful in the pulpit wherever he was，whether in town or in the moft obfoure corner of the country．Four or five volumes of his fermons have been publiihed fince his death．

In the year 1787 he publifhed，under the name of an undergraduate of the univerfity of Oxford，a letter to Dr Priefley，in which he made that orack of Sucinianifin alnolt as ridiculuns as，in the letter to Dr Smith，he had formerly made the hero of modern feepticifm．

The nierits of Dr Horne，which had made him pre－ fident of Magdalen College，a king＇s chaplain，and dean of Canterbury，raifed him，we think，in，the year 1790， to the fee of Norwich；and he had foon an cepportuni－ ty of thewing that he had not loff fight of his fpiritual character in the fplendour of the peer of parliament． The sicoteh Epifcopalians had for fume time been foli－ citing the legitlature to repeal certain penal laws of un－ common feverity，under which they had groaned for upwards of forty years；but they found it a work of
－Sce
Scorch Episcopa WANS in this Supple
bury，to whom their religious and political principles were well known；and he continued his atfilance after he was bihhop of Norwich．Indeed the whole bench fhewed，on this occation，a zeal for the interells of true religion every way becoming their character of Chrif． tian bilhops；and after 1）r Horne was removed to a better world，the Scotch Epifcopalians found among his furviving brethren friends as zealous and active as he．

Dr Horne，though a very handfome man，was not naturally of a ftrong conftitution ；and from the difad－ vantage of being uncommonly near－fighted，he had not been able to incresfe its frength by the practice of any athetic exercife．The only amufement in which lie took delight was agreeable converfation；and his life was therefore what is called fedentary．The confe－ quence of this was，that the infirmities of age caunc fatt upon him；and when the defign was formed of making him a bithop，he felt himfelf little inclined oo undertake the charge of fo weighty an office．He was，however， prevailed upon to accept of the fee of Norwich；but he enjoyed his new dignity for a very thort period，if he can with truth be faid to have enjoyed it at all．His health declined rapidly：and，in the autumn of 1791， he fuffered，while on the road from Norwich to Bath， a paralytic Aroke，the effects of which he never reco－ vered．He lingered a month or two，with fuch appa－ rent changes in the llate of his health as fometimes gave delufive hopes to his family，till the 17 th of January 5792，when he died in the 62d year of his agee，with thofe hopes which can be excited only by the colifeiouf． nefs of a well fpent life，and by a firm trutt in the pro－ mifes of the gofpel．

In this thort plectch of the life of bifhop Horne ve have taken the liberty to exprefs our diffent from fome of his opinions，and to fate the reafons on which that diffent refts．By himidf we know that this part of our conduct would have been applauded；but it is poflible that by fome of his friends it may be deemed difrefpect－ ful to his memory．To thefe gentlemen we beg leave to obferve，that if Jolmfon made the praife of Kyrl， Pope＇s Man of Rofs，really more folid by making it more credible，it will be difficult to perfuade us that we have done any injury to Dr Horne＇s fame by avoiding the extravagant panegyric of thofe who feen to have confidered him as a man exempted from error．He was firft induced to favour the Hutchinfonians hecaufe lie thought he perceived danger to religion in the New－ tonian doctrines of attraction and repulfion；and we very readily admit that many Newtonians，not undertlanding the doctrines of their mafter，have expreffed themfelves in fuch a manner as could not render a religious man partial to their fyltem．But from the dangers of mil－ take，no fyftem，whether religious or philofophical，was ever frec ；and the atheiftical purpules which the agency of ethers and celettial fluids has lately been made to ferve，mult induce evely man of piety to paufe before he admit fuch agency．Dr Horne livel to witnefs fome of its pernicious effects；and we have reafon to believe that they made a due impretion on his mind ；but he fpent his latter years，as iudeed he had fpent the greater part of his life，in nobler purfuits than the fludy of hu－ man feience ；lie fpent them in the proper emplnynents of a Chrillian，a clergyman，and a Lihop．His faith was fuunded on a ruck；and it was that genuine faith which worketh by love；for thongh his preferments

\section*{H O R}

Horogra- were rich, his charity kept pace with them ; and it
las been proved that, notwithftanding his proper economy, he hoarded not one flilling of his anuual in. come. This was an elevation of charater above all li. terary, alove all philofophical fame. The author of this article had the honour to be known to Dr Horne, to enjoy, if he miftook not, it fhare in his friendfhip, and to correfpond with him regularly for many years; and there is not one of his rational admirers who more fully admits the truth of the character given of him by Dr Thurlow late bifhop of Durham when fucceeding him in the office of proctor in the Univerfity. "As to the laft proctor (faid he) I thall fpeak of him but in few words, for the truth of which I can appeal to all that are bere prefent. If ever virtue itfelf was vifible and dwelt upon earth, it was in the perfon who this day lays down his office."

Soon after he was advanced to the prefidenthip of Magdalen college, this great and good man married the only daughter of Philip Burton, Efq; a gentleman of confiderable fortune. By this lady lie had three daughters, of whom the eldeft was married to a clergyman a fhort time before the death of her father, and the two younger were, in 1796 , refiding with Mrs Forne in Hertfordhire.

HOROGRAPHY, the art of making or conftructing' dials; called alfo dialing, horologiography, gnomonica, feiatherica, photofeiatherica, \&c.

HOROPTER, in opties, is a right line drawn through the point where the two optic axes meet, pasallel to that which joins the centres of the two eyes, or the two pupils.

HORSE-SHOE, in fortification, is a work fometimes of a round, fometimes of an uval figure, inclofed with a parapet, raifed in the ditch of a marfhy place, or in low grounds ; fometimes alfo to cover a gate ; or to ferve as a lodgment for foldiers, to prevent furprifes, or relieve an over-tedious defence.

HOVEN is a word of the fame import with raifed, froelled, tumeficd. It is particularly applied to black cattle and heep, when from eating too voracioully of clover, or any other fucculent food, they become fwollen. Such cattle are, in the language of the farmer, called

Hogen-Cattle; and the beaft, whether bullock or Theep, which is huven, when left without relief, dies in half an hour. The caufe of the difeafe is the extra. quantity of air taken down with that kind of food, which, in its paffage from the paunch upwards, forces the broad leaves of the clover before it, till they clofe up the paffage at the entrance of the paunch, and prevent the wind from going upwards in its regular courfe. The ufual method of relief is to flab the animal in the paunch; an operation which is always dangerous, and has often proved fatal. It was therefure, with geod reafon, that the Society for the Eneouragement of Arts, Manufactures, and Commerce, voted a bounty of fifty guineas to Mr Richard Eagar of Graftham farm, near Guildfords for making public a very fimple method practifed by him for the cure of horen-cattle. It is this; " let the grazier or farmer have always ready fmooth knobs of wood, of different fizes, fixed to the end of a flexible cane, which for oxen fhould be at leaf fix feet long, and for fleep three feet. When a beaft is hoven, let one perfon take hold of him by the notril
and one horn; let another hold his tongtue faft in one Houghton. hand, putting the cane down his throat with the other. \(\underbrace{\text { Houghon }}\) Be careful not to let the animal get the knob of the cane between his grinders: obferve alfo to put the cane far enough down ; the whale length will not injure. You will find the obltacle at the entrance of the paunch: puht the cane hard, and when you perccive a fmell to come from the paunch, and the animal's body to fink, the cure is performed, and Nature will act for itfelf."

This method, we doubt not, will prove fuecefsful ; but might not the purpofe be as well, if not better, effected, by ufing, inftead of the cane and knob, a piece of thick fliff rope, which, in many places of Scotland, is employed to foree down turnips or potatoes when they flick in the throat of a bullock?

HOUGHTON (-) is a man to whom the fcience of geography is fo much indebted, that we are almoft afhamed to confefs that we know not his Chriftian name, the place where he was born, or the age at which he died. He had been a captain in the 6 gth regiment, and in the year 1779 had acted under General Rooke as fort-major in the ifland of Goree. Hearing, fome time in the year 1739 , or perhap's earlier, that the African affociation wifhed to penetrate to the Niger by the way of Gambia, he exprefled his willingnefs to undertake the execution of their plan. For this tafl he was peculiarly fitted. A natural iutrepidity of character which feemed inaccenible to fear, and an eafy flow of conflitutional good humour, which even the rougheft accidents of life were not able to fubdue, formed him for exploring the country of relentlefs favages; whilft. the darknefs of his complexion was fuch, that he fearce. ly differed in appearance from the Mours of Barbarys whofe drefs in travelling he intended to affume.

His inftructions from the affociation were, to afcertain the courfe, and, if poflible, the rife and termination of the Niger; and after vifiting the cities of Tombucтоo and Houssa (fee thefe articles in this Supplement), to return by the way of the defart, or by any other route which the circumftances of his fituation at the time might recommend to lis choice.

Having left England on the 16 th of October 1790, he arrived at the entrance of the Gambia on the 10 th of November, and was kindly received by the king of Barra, who remembered the vifit which the major had proceedingen formerly paid him from the inand of Goree; and who of the Afrinow, in return for a fmall prefent of the value of 20 s. can Afociacheerfully tendered rpocection and affillance as far as \({ }^{\text {tion. }}\) his dominion or influence extended.

An offer from the mafter of an Englih veffel employed in the trade of the river, enabled the Major, and the interpreter he had engaged on the coalt, to proceed to Junkiconda; where he purchafed from the natives a horfe and five affes, and prepared to pafs with the merchandife which conftituted his travelling fund, to Medina, the capital of the fmall kingdom of Woolli.

Fortunately for him, a few words, accidentally dropped by a negro woman in the Mandingo language, of which he had haltily acquired a fuperficial knowledge, excited fufpicions of danger ; and gave him intimation of a confpiracy which the negro miftrefles of the traders, who feared that the Major's expedition portended the ruin of their commeree, had formed againft his life. Afraid, therefore, of travelling by the cuitomary route, he availed bimfelf of the opportunity which the dry fea-

Houghten. fon and the tide of ebh afforded of fwimming his horfe and his affes acrofs the ftream ; and having by thofe means avoided the parties who were fent for his deftruction, he proceeded with much difficulty on the fouthern fide of the river, to that diftrict of Cantor which is oppolite to the kingdom of Woolli. There he repaffed the Gambia, and fet a meffenger to inform the king of his arrival, and to requeft a guard for his protection.

An efcort, commanded by the king's fon, was immediately difuatehed; and the Major, whofe intended prefent had been announced, was kindly received, and hefpitably entertained at Medina.

The town is fituated at the diftance of about goo miles by water from the entrance of the Gainbia; and the conntry adjacent abounds in corn and cattle, and, generally fpeaking, in all things that are requifite fur the fupport, or effential to the contort of life. Two different feets of religion diltinguifh rather than divide the people; the one is compofed of the profelfors of the Mahomedan faith, who are salled Bufhreens; the other, and, it is faid, the more numerous, confilts of thole who, denying the miffion of the prophet, avow themfelves deifts, and from their cuftom of drinking with freedon the liquors of which he prohibited the efe, are denominated Sonikees or drinkiug men.

In a letter from Major Houghton to his wife, which a feaman preferved from the wreck of a veffel in which the difpatches to the fociety were loft, the Major indulged the reflections that naturally arofe from his paft and prefent fituations. A bilious fever had attacked him foon after his arrival in the Gambia; but his health was now unimpaired-a confpiracy had affailed his life; but the danger was pafted - the journey from Junkiconda had expofed him to innumerable hardhips ; but he was now in poffeffion of every gratification which the kindnefs of the king or the hofpitality of the people could enable him to enjoy. Delighted with the healthinefs of the country, the abundance of the game, the fecurity with which lie made his excurfions on horleback, and, above all, with the advantages that would attend the erection of a fort on the falubrious and beautiful hill of Fatetenda, where the Englifh once had a factory, he exprefles his carnelt hope that his wife will hereafter accompany him to a place in which an income of ten pounds a-year will fupport them in affluence; and that fhe will participate with him in the pleafure of rapidly acquiring that val wealth which he inagines its commerce will afford.

While, in this manner, he indulged the dream of future profperity, and with fill more ample fatisfaction contemplated the eclat of the difcoveries for which he was preparing, but in the purfuit of which he was retarded by the abfence of the native merchant, for whofe company he had engaged, he found himfelf fuchdenly involved in unexpected and irrefiftible misfortune. A fire, the progrefs of which was accelerated by the bamboo roofs of the buildings, confumed with fuch rapidity the houfe in which he lived, and with it the greateft part of Medina, that feveral of the articles of merchandize, to which he trufted for the expences of his journey, were deftroyed; and to add to his affliction, his faithlefs interpreter, who had made an ineffectual attempt on his goods, difappeared with his horfe and three of his affes; a trade gun which he had purchafed on the river foon afterwards burft in his hands,

749] H O U
and wounded him in the face and arm: and though the Houghton. hofpitable kindnefs of the people of the neighbouring town of Barraconda, who cheerfully opened their houfes to more than a thoufand families, whofe tenements the flames had confuned, was anxionfly exerted for his relief; yet the lofs of his goods, and the confequent diminution of his travelling fund, were evils which no kindnefs could remove.

It was in this fituation that, wearied with the fruitlefs hofe of the return of the native trader, with whom he had contracted for his journey, he refulved to avail limfelf of the company of another flave merchant, who was lately arrived from the fouth, and was now on his way to his farm on the frontier of the kiugdom of Bambouk. Accordingly, on the crening of the 8th of May, he proceeded by moom light and on foot, with
 offered to drive with their own, and which carried the wreck of his fortune; and journeying by a north-eat courfe, arrived on the fifth day at the uninhabited frontier which feparates the kingdums of Woolli and Bondou.

He had now pafled the former limit of European difcovery; and while he remarked with pleafure the numerous and extenfive population of this unvifited country, he obferved, that the long black hair and copper complexion of the inhabitants announced their Arab original. They are a branch of that numerous tribe which, under the appellation of Foolics, have overfyread a confiderable part of Senegambia; and their religions diftinctions are fimilar to thofe which prevail in the kingdom of Woolli.

A journey of 150 miles, which was often interrupted by the engagements of his companion who traded in crery town, condacted hins to the banks of the Fa. lemé, the fouth-weftern koundary of the kingdom of Bambouk. Its ftream was exhanted by the advanced Atate of the dry feafon, and its bed cxhibited an appearance of flate intermixed with gravel.

Bambouk is inhabited by a mation, whofe woclly hair and fable complexions befpeak them of the negro race, but whofe character feems to be varied in propor. tion as the country rifes from the plains of its weltern divifion to the highlands of the caft. Diftinguifhed into fects, like the people of Woolli and Bondou, by the different tenets of Mahomedans and Deilts, they are equally at peace with each other, and mutually tolerate the refpective opinions they condemn.

Agriculture and patturage, as in the negro ftates on the coat of the Atlantic, are their chief occupations; but the progrels which they have made in the mamufacturing arts, is fuch as enables them to imelt their iron ore, and to furnifh the feveral inftruments of hufbandry and war. Cloth of cotton, on the other hand, which in this part of Africa feems to be the univerfal wear, they appear to weave by a difficult and latorious procefs; and to thefe two circumftances it is probably owing, that with them the meafare of value is not, as on the coaft, a bar of iron, but a piece of cloth.

The common vegetable food of the irlabitants appears to confift of rice; their animal, of beef or mint ton. A liquor, prepared from fomented honey, fupplies the want of wine, and furnifhes the means of thofe feftive entertainments that conftitute the luxury of the court of Bambonk.

\section*{H O U [750 \(] \quad \mathrm{H} O\) U}

Piaphecn. On the Major's arrival at the banks of the river Fa. lerré, he found that the war which had lately fubfifted between the kings of Bundou and Bambouk was terminated by the ceffion to the former of the conquetts le had made in the low land part of the dominions of the latter; and that the king of Bondon had taken up his refidence in the territory which he had thus obtained.

The Major haftened to pay his refpects to the victorions prince, and to offer a limilar prefent to that which the kings of Barra and Woolli had cheerfully accepted; but to his great difappointment an ungracions reception, a fullen permiffion to leave the prefent, and a ftern command to repair to the frontier town from which he canc, were followed by an intimation that he monld hear again from the king. Accordingly, on the next day, the king's fon, accompanied by an armed attendance, entered the houfe in whicb the Major had taken up his temporary dwelling, and demanded a fight of all the articles he had brought. From there the prince felected whatever commodities were beft calculated to gratify his avarice, or pleafe his eye ; and, to the Major's great difappointment, took from him the blue coat in which he hoped to make his ap. pearance on the day of his introduction to the Sultan of Tombuctoo. Happily, however, a variety of articles were fuccefsfully concealed, and others of inferior value were not confidered as fufficiently attractive.

The Major now waited with impatience for the performance of the promife which the flave merchant, with whom he had travelled from the Gambia, had made of proceeding with him to Tombuctoo; but as the merchant was obliged to fpend a few days at his rice farm on the banks of the Falemé, the Major accepted an invitation to the holpitality of his roof. There he obferved, with extreme regret, that the apprehenfion of a fcarcity of grain had almmed his fricnd; and that, treading the confequences of leaving his family in fo perilous a feafon to the chances of the market, he had determined on collecting, hefore his departure, a fufdicient fupply for their fupport. This argument for delay was too forcible to be oppofed; and therefore the Major refolved to employ the interval in vifting the king of Bambouk, who refided in the town of Ferbanna, on the eaftem fide of the Serra Coles, or river of Gold. Unfortunately, however, by a miltake of his guide, he loft his way in one of the valt woods of the country; and as the rainy feafon, which commenced with the new moon on the \(f^{\text {th }}\) of July, and was introduced with a wefterly wind, was now fet in, the ground on which he paffed the night was deluged with rain, while all the foy exhibited that continned blaze of lightning, which in thofe latitudes often accompanies the tornado. Diftreffed by the fever, which began to affail him, the Major continued his route at the break of day, and waded with difficulty through the river Serra Coles, which was fwelled by the foods, and on the banks of which the alligators were balking in the temporary fun-fhine.

Scarcely had he reached Ferhanna when his fever rofe to a height that rendered hin delirions; but the frength of his conflitution, and the kindnefs of the negro family to which his guide had conducted him, furmounted the dangerous difeafe; and in the friendly reeeption which was given him \(y\) the king of Bambouk
he foon forgot the hardfhips of his journey. The king Houghec. joformed hin, that the lolles he had lately furtained in the contef with the armies of Bondou, arofe from lins having exhautled his ammunition; for, as the French traders, who formerly fupplied his troops, had abandoned the fort of St Jofeph, and, either from the diynefs of the lait feafon, or from other caules, had defert. ed the navigation of the upper part of the Senegal, he had no means of replenifhing his fores; whereas his enemy, the king of Bondon, continued to receive from the \(D^{\prime}: i t i n\)., through the channel of his agents on the Gambia, a conftant and adequate fupply.

Major Houghton availed himfelf of the ofportunity which this comverfation afforded, to fugget to the king the advantage of encouraging the Britifh to open a trade by the way of his dominions to the populous cities on the banks of the Niger.

Such was the fate of the negociation, when all bufinefs was fufpended by the arrival of the annual prefeuts of Mead, which the people of Bambouk, at that feafou of the year, are accuftomed to fend to their king; and which are always followed by an intemperate feftival of feveral fincceffive days.

In the interim, the Major received, and gladly ac. cepted, the propofal of an old and refpectable merchant of Bambouk; who offered to condnet him on horfeback to lombuctoo, and to attend him back to the Gambia. A premium of L. 125 , to be paid on the Major's return to the Britifh factory at Junkiconda, was fixed by agreement as the merchant's future re. ward. It xas further determined that the Major fhould be furnifhed with a horfe in exchange for his two affes; and fhould convert into gold duth, as the molt portable fund, the fcanty remains of the goods he had brought from Gricat Britaiu.

This plan was much approved by the king, to whom the nerchant was perfonally known; and who gave to the Major at parting, as a mark of his clteem, and a pledge of his future friendthip, a prefent of a purfe of gold. With an account of thefe preparations the Major clofed his laft difpatch, of the 24 th July 1791 ; and the A. frican affociation entertained for fome time fanguine. hopes of his reaching Tombufoo. Alas! thefe hopes were blafted. Mr Park, who fucceeded him in the arduous tafk of exploring that favage country, learned, that laving reached Jarra (See that article in this Supplement), he there met with fome Moors who were travelling to I'ifheet (a place by the falt pits in the Great Defart, ten days journey to the northward) to purchafe falt; and that the Major, at the expence of lome tobacco and a mufiket, engaged them to convey him hither. It is impoffible (fays Mr Park) to form any other opinion on this determination, than that the Moors intentionally deceived him with a view to -rob, and leave him in the Defart. At the end of two days he finfected their treachery, and infilted on returning to Jarra. Finding him pertift in this determination, the Moors robbed him of every thing which he poffefsed, and weat off with their camels. Being thus deferted, he returned to a watering place, in polfeffion of the Moors, called Farra; and heing by thefe unfeeling wretches refufed food, which he had not tafted for fome days, he fonk at laft under his misfortunes. Whether he actually died of hunger, or was murdered outright by the favage Mahometaus, Mr Park could not lcarn;

\section*{\(\mathrm{H} O \mathrm{U}\)}

Soufl. Dut he was fhewn at a diftance the fpot in the woods to which his body was dragged, and where it was left a prey to corruption.

Thus perifhed, in the prime of life, Major Houghton, a man whofe travels enlarged the limits of European difcovery, and whofe accounts of the places which he vilited were ftrongly confirmed by the intelligence which the Dritih conful at Tunis colleded from the Barbary merchants.

HOUSSA, the capital of an African empire, on the banks of the Niger; is a city which has excited much curiofity among men of fcience, fince it was firft mentioned to a committee of the African Affociation ahout the year 1792. The perfon from whom they received their information was an Arab, of the name of Shabeni; who faid that the population of Houlla, where he had sefided two years, was equalled only (fo far as his knowIcdge extended) by that of London and Cairo: and, in his rude unlettered way, he defcribed the government as monarchical, yet not unlimited; its juftice as fevere, but directed by written laws; and the rights of landed property as guarded by the inftitutions of eertain hereditary officers, whofe functions appear to he fimilar to thofe of the Canongoes of Hindoftan (fee CAnongoes in this Suppl.); and whofe important and complieated duties imply an unufual degree of civilization and refinement. F'or the probity of the merchants of Houffa, the Arab expreffed the higheft refpect; but remarked, with indignation, that the women were admitted to fociety, and that the honour of the hufband was often infecure. Of their written alphabet, he knew no more then that it is perfectly different from the Arabic and the Hebrew characters; but he reprefented the art of writing as common in Houffa. And when he deferibed the manner in which their pottery is made, he gave, unknowingly to hinfelf, a reprefentation of the ancient Grecian wheel. In paffing to Houfta fiom Tombuctoo, in which laft city he had refided feven years, he found the banks of the Niger more numeroufly propled than thore of the Nile, from Alexandria to Cairo; and his mind was obviounly impreffed with bigher jdeas of the wealth and grandeur of the empire of Houffa, than of thofe of any kingdom which he had feen, England alone excepted.

The exittence of the city of Houffa, and of the empire thus deferibed by Shabeni, was ftrongly confirmed by lotters which the committee received from his Majefty's confuls at Tunis and Morocco ; and it has been put beyond all poffibility of douht hy Mr Park, who received from various perfons fuch concurring accounts of it, as could not be the offspring of deliberate falfehood. From a well-informed thereeff, who had vifited Houffa, and lived fome years at Tombuctoo, he learned that the former of thefecities was the largeft that the faereeff had cver feen; and by comparing this man's account of its population with that of various other cities, of which Mr Park had feen one or two, we can hardly eftimate the inhabitants of Houffa at a lefs number than 100,000. Many merchants, with whom our traveller converfed, reprefented Houffa as larger, and more populous, than '「umbuctoo, and the trade, police, and government, as nearly the fame in both. In that cafe, the king of Houffa and chief officers of fate muft be iMoors, and zealots for the, Mahometan religion; but they cannot be fo intolerant as the fovercign of Tom-
buctoo and his minifters; for in Houffa, Mr Park was told that the Negroes are in greater proportion to the Moors than in Tombuctoo, and that they have likewife fome thare in the govemment. According to accounts derived from Barbary merchants, the people of Houffa have the art of tempering their iron with more than European 隹ll and their files, in particular, are much fuperior to thofe of Great Britain and Erance. The confuls at Tunis and Morocco afiured the committee of the African Affociation, that at both thefe courts the eunuchs of the feraglio are brought from Houfia.
'I'o thofe who may fill entertain doubts of fo much refinement being to be found in the interior parts of a country, confidered as peculiarly favage, we thall only oblerve, in the words of the committce of affociation, that it is by no means "impoflible that the Carthaginians, who do not appear to have perifted with their cities, may have retired to the fouthern parts of Africa; and though loft to the Defart, may have carried with them to the new regions which they occupy fome portion of thofe arts and fciences, and of that commercial knowledge, for which the inhabitants of Carthage were once fo eminently famed. In Major Rennel's laft map of North Africa, Houffa is placed in \(1 G^{c}\) and about \(20^{\prime}\) N. Lat. and \(4^{\circ} 30^{\prime}\) E. Long.

HOUZOUANAS, are a wandering people, who inlabit that part of Africa, which, in a direction from eaft to weft, extends from Caffraria to the country of the Greater Nimiquas (Sce Nimouas in this Suppl.) According to the map prefixed to Vaillant's new travel;, the diftrict occupied by the Houzonanas lies between \(16^{\circ}\) and \(29^{\circ}\) eaft longitude. Of its breadth from fouth to north we are ignorant, but it begins at the \(23^{d}\) parallel, aud ftretches northward prubably a great way.
M. Vaillant is inclined to believe, that the Houzonanas are the original ftem of the various nations, inhabit ing at prefent the fouthern part of Africa, and that frum them all the tribes of the eaftern and weftern Hottentots are defcended. The people themfelves know nothing of their origin; but to the queftions that are put to them on the fubject, they always reply, that they inhabit the country which was inhabited by their ancefturs. At the Cape M. Vaillant receired the following account of thent, which, though he does not warrant its authenticity, has much the appearance of being authentic.

When the Europeans firft eftablifhed themfelves at the Cape, the Houzounas inhabited the cuuntry of Camdebo, the fnowy mountains, and the diftrict that feparates thefe mountains from Caffraria. Become neighbours to the colony, in confequence of its extending itfelf towards them, they at firft lived on peaceable terms with the planters; and, as they difplayed more intelligence and greater activity than the Hottentots, they were even employed in prcterence to affift in cultivating the land and in forming the fettlement. This good underftanding and harmony were, however, foon interrupted by that multitude of lawlefs banditti fent from Holland to people the country.

Thofe worthlefs profligates wihed to enjoy the fruits of the land without the trouble of tilling it. Educated, befides, with all the prejudices of the whites, they imagined that men of a difierent colour were bore only

Houff,
Houzou.
anas.

Houzou. to be their naves. They accordingly fubjected them \(\underbrace{2 \mathrm{anaf} \text {. }}\) to bondage, condemned them to the mot laborious fer- viees, and repaid thofe fervices with harfh and fevere treatment. The Houzouanas, incenfed at fueh arbitrary and tyranrieal conduct, refufed any longer to work for them, and retired to the defles of their mountains. The planters took up arms and purfued them; they maffacred them without pity, and feized on their cattle and their country. Thofe who efeaped their atrocities betook themfelves to flight, and removed to the land which they now occupy; but, un quitting their former puffeffions, they fwore, in their own name and that of their pulterity, to exterminate thofe European monflers, to be revenged againt whom they had fo many incitements. And thus, if tradition be true, was a peaceful and induftrious nation rendered warlike, vindictive, and ferocious.

This hatred has been perpetuated from generation to generation, though the Houzouanas of the prefent day are ignorant of the original caufe of it. Bred up with an invincible averfion to the planters, they know only that they are animated to plunder and deftroy them; but it is only by a vague fentiment of deteftation, with the fource of which they are unacquainted; and which, though it renders them cruel towards the planters, does not prevent them from being good, kind, and humane, towards each other.

The Houzouanas, being known only by their incurfions and plundering, are in the colonies often confounded with the Bohmen, and dittinguimed by the fame appellation. Sumetimes, however, from their tawny colour, they are called Chinefe Hottentuts; and, by means of this double denomination, ill informed travellers may eafily be led into an error, of which the confequence mult be, that their narratives will be replete with abfurdity and falfehoods.

Their real name, and the only one which they give themfelves, is that of Houzouana; and they have nothing in common with the Bofhmen, who are not a diftinct people, but a mere collection of fugitives and free-booters. The Houzouanas form no alliances but among themfelves. Being almof always at war with the furrounding nations, they never mix with them; and, if they confent at any time to admit a ftranger into their hordes, it is only after a long acquaintance, a fort of apprenticethip, during which he has given proofs of his fidelity, and eltablifhed lis courage. Such indeed are their courage and predatory liabits, that they are the dread of all the furrounding tribes; and the Hottentots who accompanied M. Vaillant trembled at the very thought of emtering the IHouzouana territories. Nay, after they had lived many days among them, and had experienced their fidelity, they continued under the daily apprehenfion of being maffacred by them. Yet one of their own countrymen, who had lived long among the Houzouanas, gave fuch a charac. ter of that people as fhould have banifhed thofe idle fears.
"The Houzouanas (faid he), are by no means what you fuppofe them to be, murderers by profeffion. If they fometimes thed blood, it is not from a thirit of carnage, but tu make juit reprifals that they take up arms. Attacked and perfecuted by furrounding na. tions, they have found themfelves reduced to the ne-
ceffity of flying to inaccefible places among the barreo mountains, where no other people could exift.
"If they find antelopes and damans to kill ; if the nymphs of ants are abundant ; or if their good fortune brings then plenty of locufts - they remain within the precincts of their rocks; but if the provilions necenfary to fublifence fail, the mations in their neighbourhood muft fuffer. From the fummits of their mountains, they furvey at a diftance the countries around; and if they obferve cattle, they make an incurfon to carry them off, or flaughter them upon the fpot, according to circumftances; but though they rob, they never kill, cxcept to defend their lives, or by way of retaliation to revenge an ancient injury.
"It happens fometimes, however, that after very fatiguing expeditions they return without bouty ; either becaufe the objects of their attack have djfappeared, or becaufe they have been repulfed and beaten. In fuch cales, the women, exafperated by hunger and the la. mentation of their ehildren crying for food, become almoft furious with paffion. Reproaches, infult, and threats, are employed; they wifh to feparate from fuch daftardly men, to quit hufbands deftitute of courage, and to feek others who will be more anxious to procure provifion for them and their children. In frort, having exhaufted whatever rage and defpair could fug. gelt, they pull off their fmall apron of modefty, and beat their hufbands about the head with it till their arms are weary of the exercife.
r. Of all the affronts which they can offer, this is the moft infulting. Unable to withftand it, the men in their turn become furious. They put on their warcap, a fort of lelmet made with the Nkin that covers the neck of the hyrna, the long hair of which forms a creft that floats over the liead, and fetting out like madmen, never return till they have fucceeded in carrying off forne cattle.
" When they come back, their wives go to meet them, and extol their courage amidtt the fondeft ca. reffes. In a word, nothing is then thought of but mirth and jollity ; and, till fimilar feenes are recalled by fimilar wants, paft evils are forgotten."

Such was the character given of this formidable people to M. Vall!ant at his firf interview with them: and during the long excurfions which he made in their company, they did not belie it in a fingle inflance. In many refpects they appeared to refemble the Arabs, who, being alfo wanderers, and like them brave and addicted to rapine, athere with unalterable lidelity to their engragements, and defend, even to the lait drop of their blood, the traveller who civilly purchales their fervices, and puts himfelf under their protection. In our author's opinion, if it be at all practicable to traverle from fouth to north the whole of Africa, it could only be under the conduct of the Houzouanas; and he really thinks that fifty men of their temperate, brave, and indefatigable nation, would be fufficient to protect an enterprifing European through that long and ha: zardous journey.
"Yet thefe people, fo fuperior both in body and mind to the other natives of South Africa, are but of low flature; and a perfon five feet four inches in heiglit is accounted among them very tall; but in their little bodies, perfeetly well proportioned, are united, with furprifing

Houzos－priing frength and agility，a certain air of affurance， boldnefs，and laughtinefs，which awes the beholder， and with which our author was greatly pleafed．Of all the favare races，he faw none that appeared to be endowed with fo active a mind，and fo hardy a conflitu－ tion．
Their head，thongh it exhibits the principal charac－ teritics of that of the Hottentot，is，however，rounder towards the chin．They are alfo not fo black in com－ plexion ；but have the lead colour of the Malays，dif－ tinguihed at the Cape by the name of bouguince． Their hair，more woolly，is fo fhort，that hee imagined at firft their heads to have been fhaved．The nofe too is fill flatter than that of the Hottentots；oi，rather， they feem altogether deltitute of a nofe；what they have confifting only of two broad nottrils which pro－ ject at mof but five or fix lines．From this confirma－ tion of the nofe，a Houzouana，when feen in profile，is the reverfe of handfome，and confiderahly refembles an ape．When beheld in front，he prefents，on the firlt view，an extraordinary appearance，as half the face feems to be foreliead．The features，however，are fo expref－ five，and the eyes fo large and lively，that，notwith－ ftanding this fingularity of look，the countemance is to－ terably agreeable．

As the heat of the climate in which he lives renders clothing unneceffary，he continues during the whole year almoft entirely naked，having no other covering than a very finall jackal fkin fattened round his loins by tivo thongs，the extremities of which hang down to his knees．Hardened by this conftant habit of naked－ nefs，he becomes fo infenfible to the variations of the atmofphere，that when he removes from the burning fands of the level country to the fnow and hoar－froft of his mountains，＇he feems indifferent to and not even to feel the cold．

His hut in nowife refembles that of the Hottentot． It appears as if cut vertically through the middle；fo that the liut of a Hottentot would make two of thofe of the Houzouanas．During their emigrations，they leave them ftanding，in order that，if any other horde of the fame nation pafs that way，they may make ufe of them．When on a journey，they have nothing to repofe on but a mat fufpended from two fticks，and placed in an inclined pofition．They often even fleep on the bare ground．A projecting rock is then fuffi－ cient to fhelter them；for every thing is fuited to a people whofe conltitutions are proof againft the fevereft fatigue．If，however，they ftop anywhere to fojourn for a while，and find materials proper for conilructing huts，they then form a kraal；but they abandon it on their departure，as is the cafe with all the huts which they erect．

This cuftom of labouring for others of their tribe announces a focial character and a benevolent difpofi－ tion．They are indeed not only affectionate hufonds and good fathers，but excellent companions．When they inhabit a kraal，there is no fuch thing among therrs as private property；whatever they poffefs is in com－ mon．If two hordes of the fance nation meet，the re－ ception is on both fides friendly；they afford each o－ ther mutual protection，and cosifer reciprocal obliga－ tions．In hoort，they treat one another as brethren， though perhaps they are perfect flrangers，and have never feen each other before．
Suppl．Vol．I．Part II．．

Active and nimble by nature，the Huwzouanas con－ fider it as anufement to clinb mountains，and the mont elevatert peaks；and they conducted M．Vaillant，his fervants and cattle，over precipices，and through defiles， which he and his Hottentots would have decened abfo－ lutely impaffable．The only arms of this people are bows and arrows，in the ufe of which they are very ex－ pert．The arrows，which are uncommonly flort，are carried on the thonlder in a quiver，about 18 inches in length，and four in diameter，made of the bark of the alue，and covered with the flin of a large fpecies of li－ zard，which thefe wandurers find in all their rivers，par－ ticularly on the banks of Otange and Finh River．

Nocturnal fires are a peculiar language underfoorl and employed by alnoft all favage nations．None，how－ ever，have carried this art fo far as the Houzouanas， becaufe none have fo much need of underfanding and bringing it to perfection．If it be neceffary to announce a defeat or a vi\＆tory，an arrival or departure，a fuccefs． ful plundering expedition，or the want of alfiftance，in a word，any intelligence whatever，they are able，either by the number of their fires or the manner in which they arrange them，to make it known in an inftant．They are even fo fagacious as to vary their fires from time to time，left their enemics flould become acquainted with their lignals，and treacheroufly empluy them in their turn to furprife them．

Our author fays，that he is unacquainted with the principles of thefe fignals，invented with fo mueh inge－ nuity．He did not requeft information；isceanfe lie very rationally inferred that his requelt would not have been granted；but he obferved，that three fires kindled at the difance of twenty paces from each other，fo as to form an equilateral triangle，were the fignal for rally－ ing．

Among the phyfrcal qualities which，in M．Vaillant＇s opinion，prove that the Houzomanas are a dillinct na－ tion，he mentions the enormous matural rump of the women，as a deformity which diflinguifhes them from every other people，favagre or polifhed，which he had ever known．＂I have feveral times（fays he）had oc－ cafion to remark，that，among the female Huttentots in general，as they advance in age，the inferior part of the back fwells out，and acquircs a fize which it greatly exceeds the proportion it bore in infancy with the other parts of the boily．The Honzouana women，lavisg in their figure fome refemblance to the Hottentots，and appearing therefore to be of the fame race，one might be induced to believe that their prajection belind is ouly the Hottentot rump more fwelled and extended． I obferved，however，that among the former this fin－ gularity was an excrefcence of flow growth，and in fome meafure an infirmity of old age；whereas anong the latter it is a natural deformity，an original characterif－ tic of their race．The Honzonana nothers wear on their reins，like our nuners，a flin which covers this protuberance of the pufteriors；but which，heing thin and pliable，yields to the quivering of the fefh，and be－ comes agitated in the fame mamer．When on a jour－ ney，or when they have children too young to follow them，they place them upon their runp．Ifaw one of thefe women run in this manner with a child，about three ycars of age，that flood erect on its feet at her back，like a footboy behind a carriare．＂
If one balf of what our traveller fays of the activity 5 C
and

Youz วu－
！リス＂。

\section*{H U N}

Hungary- and enterprifing fpirit of this film rular people be truc, water. might not the African Affociation fend a fecund Hough-
tun, or fecond Park, to make difcoveries in that unexplored courtry, under the protection of the Houzoua. nas? Wre do not indeed think that it would te poffible to traverfe the whole extent of Africa from fouth to nurth, but Vaillant penetrated farther in that direction than any one had done lefure him; and it appears that with his intrepid Honzouanas he might have penetrated much farther.

HUNGARY-water, is fpirit of wine ditilled upon rofemary, and which therefore contains its oily and flrong-feented effence (fee Pharmacy, no 365. Encyel.) To be really good, fays Profeffor Beekmant, the firit of wine ought to be very ftung, and the rofemary frefh;
by the king of Poland, who was then a widower, and who wifhed to make her luis fecond wife.
The Profeffor jufly confiders this ftory as a ridiculous fable (A). "It appears to me (Cays he) moit probable, that the French name l'eau de la reine d' Hongrgric, was chofen by thofe who, in latter times, prepared fpirit of rofemary for fale, in order to give greater confequence and credit to their commodity ; as various medicines, fume years ago, were extolled in the gazettes under the title of Pompadour, though the celebrated lady, from whofe name they derived their importance, certainly neither ever faw them nor ufed them."
HUNTER (Juhn), the celcbrated furgeon, was the youngelt child of John! Hunter of Kilhride, in the county of Lanark. He was born on the 14th of July 1728, at Long Calderwood, a fmall eftate belonging to the family; and lofing his father when he was about ten years of age, he was perlaps too much indulged by his mothcr. One confequence of this was, that at the gram-mar-fchool he made no progrefs in learning; and he may be faid to have been almoft totally illiterate when, in September \(17 \div 8\), he arrived in Londun. His hrother, Dr William Hunter, of whom an account is given in the Encyclopadia, was then the mof celebrated teacher of anatomy, and John had exprefled a defire to affit him in his refcarehes. The Doctur, who was very defirous to ferve him, and anxious to form fome opinion of his talents for anatomy, gave him an arm to diffect for the mufcles, with the neceffary directions how it was to be done; and he found the performance fuch as greatly exceeded lis expectation.

His firft eflay in anatomy having thus gained him fome credit, Mr Hunter was now employed in a diffection of a more dificult nature; this was an arn in which all the arteries were injected, and thefe, as well as the mufcles, were to be expofed and preferved. Thic manner in which this was performed, gave Dr Hunter fo much fatisfaction, that he did not fcruple to fay tbat his brother would become a good anatomift, and that he fhould not want for employment. From this period we may confider Mr Hunter as having ferioufly ergaged in anatomy; and under the inftructions of Dr Fiunter, and his affittant Mr Symonds, he had every opportunity of inprovement, as all the diffections at this time carried on in London were confined to that fchool. and if that be the cafe, the leaves are as proper as the flowers, which, according to the prefeription of fome, fhould only be taken. It is likevife neceflary that the fpirit of wine be ditillled feveral times upon the rofemary; but that procefs is too troubletione and expenfive to admit of this water being difpofed of at the low price it is ufually fold for; and it is certain that the greater part of it is nuthing elfe than common brandy united with the effence of rufemary in the fimpleft manner. In general, it is only mixed with a few drops of the oil. For a long time paft, this article has been brought to us prineipally from France, where it is prepared, particularly at Beaucaire, Mont pelier, and other płaces in Languedoc, in which that plant grows in great abundance.

The name Hungary zuater feems to fignify, that this water, fo celebrated for its medicinal virtues, is an Hungarian invention; and we read in many books, that the receipt for preparing it was given to a queen of Hungary by a hernit ; or, as others fay, by an angel, who appeared to her in a garden, all entrance to which was fhut, in the form of a hermit or a youth. Some call the queen St Ifabella; but thofe who preterd to be bett acquainted with the circumfance affirm, that Elizabeth, wife of Charles Robert king of Hungary, and daughter of Uladiflaus II. king of Poland, who died in 1380 or \({ }_{1} 38 \mathrm{I}\), was the inventrefs. By often wafhing with this fpirit of rofemary, when in the scth year of her age, fhe was cured, as we are told, of the gout and an univerfal lamenefs; fo that fhe not only lived to pafs 80 , out became fo livels and beautiful, that the was courted
(A) It was firf publifhed to the world in 1659 in a poithumous work of John Prevot, who fays, that in the beginning of a very uld breviary, he faw a remedy for the gout, written by the queen's own hand, in the following words:
"I Elizabeth, queen of Hungary, being very infirm and much troubled with the gout in the 72 d year of my age, ufed for a year this receipt, given to me by an ancient hermit, whom I never faw before nor fince; and was not only cured, but recovered any frength, and appeared to ali fo remarkatly beautiful, that the king of Poland afked me in marriage, he being a widower and I a widow. I, however, refufed him for the love of my Lord Jefus Chritt, from one of whole angel, I believe, I received the remedy. The receipt is as follows:
" R. Take of aqua vite, four times dillitled, three parts, and of the tops and flowers of rofemary two parts : put thefe together in a clofe veffel, let them ftand in a gentle heat 50 hours, and then diftil them. Take one dram of this in the morning once every weck, either in your food or drink, and let your face and the difeafed limb be wafhed with it every morning.
"It renovates the itrength, brightens the firits, purifies the marrow and nerves, reftores and preferves the fight, and prolongs life." Thus far from the Breviary. TLen follows a confirmation which Prevot gives from his own experience.

Hunter, In the fummer \(1749, \mathrm{Mr}\) Chefelden, at the requeft of Dr Hunter, permitted hin to attend at Chelfea Holpital ; and he there learned the firt rudinents of furgery.

The fullowing winter he was fo far advanced in the knowledge of human anatomy, as to inftruct the pupils in diffection, to whom Dr Hunter had very little time to pay attention. This office, therefore, fell almoll elltircly upo: him, and was his conftant empluyment during the winter feafon.

In the fummer moiths of \(1750, \mathrm{Mr}\) Hunter attended the hufpital at Cbelfea; in 175 t , he became a pupil at St Bartholomew's, and in the winter was prefent at uperations oceation ally, whenever any thing extrdordinary occurred. 'l'the following fummer he went to scotland; and in 1753 tntered, it is difficult to conceive for what reafon, is a gentleman commoner at St Mary-hall, Orford. In 1754 he became a furgeon's pupil at St Gcorge's hofpital, where he continued during the fummer nowth; : no in 1756 was appoiated houfe furgeon.

In the winter 17.55 , Dr Henter admitted him to a partucrhip in his lectures, and a certain purtion of the courfe was allotted to wim; belides which, he gave lectures when the Doctor was called away to attend his patients. Making antatomical preparations was at this, time a new art, and very little known ; every preparation, therefore, that was ikilfully made, became au ubject of admiration ; many were wanting for the ufe of the lectures; and the Doctor being l:mfelf an enthufiall for the art, keft no means untried to infufe into his brother a love for his favourite purfuits. How well he fucceeded, the collection afterwards made by Mr Hunter will fuffeciently evince.

Anatomy feems to have been a purfuit for- which Mr Hunter's mind was peculiarly fitted, and he applied to it with an ardour and perfeverance of which there is hardly an example. His labours were fo ufeful to his brother's collection, and fo gratifying to his difpofition, that although in many other refpects they did not agree, this funple fie kept them together for many years.

Mr Hunter worked for ten years on human anatomy; during which period he made himfelf mater of what was already kiown, as well as made fome addition to that knowledge. He traced the ramifications of the olfactory nerves upon the membranes of the nole, and difcovered the courle of fome of the branches of the fifth pair of nerves. In the gravid uterus, he traced the arteries of the uterus to their termination in the placenta. He was alfo the firt who difeovered the exiftence of the lymphatic veffels in birds.

Many parts of the human body being fo complex, that their ftructure could not be underfood, nor their ufes afcertained, Mr Hunter was led to examine finilar parts in other animals, in which the Iructure was more fimple, and mure within the reach of inveltigation; this carried hin into a wide fiell, and laid the foundation of his collection in comparative anatomy,

In this new line of purfuit, this active inquirer hegan with the more common animals, and preferved fuch parts as appeared by their analogy, or in fome other way, to elucidate the human economy. It was not his intention to make diffections of particular animals, but so inflitute an inquiry into the various organizations
by which the functions of life are performed, that he Hunter. night thereby acyuirs fome knowledge of general principles.

So eagerly did Mr IHunter attach himfelf to comparative anatomy, that he fought by every means in his power the opportunitics of profecuting it with advan. tage. He applied to the keeper of wild beatls in the 'Hower for the bodies of thole which died there; and he made fonilar applications to the men who fhowed wild beats. Ife purchatid alt rare anmals which cance in his way; and thefe, with fuch others as were prefented to him by his frichels, he entrubled to the thowmen to keep till they dicd, the better to encounare them to affit him in his lahours.

His health was fo much impaired by exceffive attention to his purfuits, that in the year igho he was advifed to go abroad, having complaints in his brcalt which threatened to be confumptive. in Gctuber of that year, Mr Adair, infpector-general of hofpitals, appointed him a furgeon on the flalf; and ia the following fpring le went with the army to Bellife, leaving Mr Hewton tu affift lis brother during his abfence.

Mr Hunter ferved, while the war continued, as fenior furgeon on the daff, huth in Bellife and Portugal, till the year 1763 ; and in that period acquired his knowledge of gun-fhut wounds. On his teturn to England be fettled in London; where, nost linding the emoluments from his halt-pay and private practice fufficient tu fupport him, he taught practical anatomy and operative furgery for feveral winters. He returned alfo, with unabated ardour, to comparative anatomy ; and as his experiments could not be carried on in a large town, he purchafed for that purpole, about two miles from London, a piece of ground near Brompton, at a place called Earl's Court, on which he built a houfe. In the courfe of his inquiries, this excellent anatomilt, afcertained the changes which animal and vegetable fubllances mindergo in the fomach whon acted on by the gattric juice; he difcovered, by means of feeding young animals with madder (which tinges growing bones red), the mode in which a bone retains its flape during its growth; and explained the procefs of exfor. liation, by which a dead picce of bone is feparated from the living.

His fundnefs for animals made him keep feveral of different kinds in his houfe, which, by attention, he rendered familiar with him, and amufed himelf ty ubferving their preculiar labits and inllincts; but this familiarity was attended with conliderable rifk, and fumetimes led him into fituations of danger, of which the following is a remarkable inftance:

Two leopats, which were kept chained in an outhoule, had broken from their confinement, and got into the yard among fome dogs, which they immediately attacked; the howling this produced alarmed the whole neighbourhood; Mr Hunter ran into the yard to fee what was the natter, and found one of them getting up the wall to make his efcape, the other furrounded by the durs; he immediately laid hold of them buth, and carried them back to their den; but as foon as they were fecured, and he had time to reflect upon the rifl: of his own fituation, he was fo much agitated, that he was in danger of fainting.

On the fifth of February 1767 , he was chofen a fel-

Hunter. low of the Royal Society. His defire for improvement in thofe branches of knomledge which might alfit in his refearches, led hin at this time to propofe to Dr George Fordyce and Mr Cumming, an eminent mechanic, that they fhould adjonrn from the meetings of the Royal Socicty to fone coffee-houfe, and difcufs fuch fubjects as were connected with feience. This plan was no fooner eftablifhed, than they found their numbers inicreafed; they were joined by Sir Jofeph Banks, Dr Sulander, Dr Mrikelrne, Sir George Shuckburgh, Sir Harry Engleficld, Sir Charles Blagden, Dr Noothe, Mr Ramflen, Mr Watt of Birmingham, and many others. At thefe meetings difcoverics and improvements in different branches of philofophy were the objects of their confideration; and the works of the members wese read nver and criticifed before they were given to the public. It was in this year that, hy an exertion in dancing, after the mufcles of the leg were fatigued, le broke his tando achillis. This accident, and the confmement in confequence of it, led him to pay attention to the fubject of broken tendons, and to make a feries of "experiments to afcertain the mode of their union.

In the year 1769 Mr Hunter beeame a member of the corporat:on of furgeons; and in the year following, through his brother's intereft, he was clected one of the furgeon's of St George's liofpital. In May 1771, his Treatife on the Natural Hiftory of the Teeth was publifhed; and in July of the fame year he married Nifs Home, the eldeit daughter of Mr Home, furgcon to Burgoync's regiment of light horfe. The expence of \(\mathrm{h}_{\mathrm{is}}\) purfuits had heen fo great, that it was not till feveral years after his firit engagement with this lady that his affairs could be fufficiently arranged to admit of his marrying.

Though aftur his marriagè his private practice and profefional character advanced rapioly, and though his family began to increafe, he ttill devoted much of his time to the forming of his collection, which, as it daily became larger, was aifo attended with greater expence. The whole fuit of the beft rooms in his houfe were occupied by his preparations; and he dedicated his mornings, from funife to eight \(0^{\circ}\) clock (the hour for breakfall), entirely to his purfuits. To there he adjed fuch parts of the day as were not engaged in attending his patients.

The knowledge he derivel from his favourite ftudies he conftantly applied to the improvement of the art of furgery, and omitted no opportunity of examining morbid bodies; from which he made a collection of facts which are invaluable, as they tend to explain the real caufes of fymptoms, which, during life, could not be exactly afcertained, the judgment of the practitioner being tho frequently mined by theoretical opinions, and delufive fenfations of the patients.

In the practice of furgery, where cales occurred in which the eperations proved inadequate to their intention, he always inveftigated, with uneommon care, the caufes of that want of fuccefs; and in this way detected many fallacies, as well as made fome important difcuveries, in the healing art. He detected the caufe of failure, common to all the operations in ufe for the radical cure of the hydrocele, and was enabled to propofe a mode of operating, in which that event can with certainty be avoided. He afcertained, by experiments
and obfervations, that expofure to atmofpherical air fimply, ean neither produce nor increafe inflammation. I- difcovered in the blood fo many phenomena connected with life, and not to be referred to any other caufe, that he confflered it as alive in its fluid ftate. He improved the operation for the fillula lachrymalis, by removing a circular portion of the os unguis inftead of breaking it down with the point of a trochar. He alfo difcovered that the gaftric juice had a power when the fomach was dead of diffolving it ; and gave to the Royal Society a paper on this fubject, which is publifhed in the Philufophical Tranfactions.

In the winter 1773 , he formed a plan of giving a courfe of lectures on the theory and principles of firgery, with a view of laying before the public his own upinions upon that fubject. For two wiaters he read his lectures gratis to the pupils of St George's Hofpital; and in 1775, gave a courfe for money upon the fame terms as the other teachers in the different branches of medicine and furgery. But giving lectures was al. ways particularly umpleafant to him; fo that the defire of fubmitting his opinions to the world, and learning their general eftimation, were feareely fufficient to overcome his natural dillike to fpeaking in public. He never gave the firft lecture of his courfe without taking 30 drops of laudanum to take off the effects of his uncafmefs.

Comparative anatomy may be confidered as the purfuit in which Mr Hunter was conttantly emploged. No opportunity, cfonped lim. In the year 1773, at the requeft of his friend Mr Walfh , he diffected the torpedo, and laid before the Royal Suciety an account of its electrical organs. A young elephant, which had been prefented to the Queen by Sir Rubert Barker, died, and the body was given to Dr Hunter, which afforded Mr Hunter an opportunity of examining the ftructure of that animal by affilting his brother in the diffection ; fince that time two other elephants died in the Queen's menagerie, both of which came under Mr. Hunter's examination. In I77t, he publifhed in the Philofophical Tranfactions an account of certain receptacles of air in birds, which communicate with the lungs, and are ludged both among the flefly parts and holluw bones of thefe animals; and a paper on the Gillaroo trout, commonly called in Ireland the Gizarardtrout.

In 1775 , feveral animals of that fpecies, called the gymnotus eleciricus of Surinam, were brought alive to this country, and by their electrical properties excited very mueh the public attention. Mr Walfh, defnous of purfuing his inveltigations of animal electricity, made a number of experiments on the living animals; and to give lis friend Mr Hunter an opportunity of examining them, purchafed thofe that died. An anatomical account of their electrical organs was drawn up by Mr Hunter, and publifhed in the Philofophical Tranfactions. In the fame volume there is a paper of his, containing experiments on animals and vegetables refpecting their power of producing, heat.

In the courfe of his purfuits, Mr Hunter met with many parts of animals where natural appearances could not be preferved, and others, in which the minuter verfels could nut be diftinctly feen when kept in fpirits; it was therefore neceffary to have them drawn, either at the moment, or before they were put into bottles.

Hunter. The expence of employing profefed draughtimen, the difficuity of procuring them, and the difadvantage which they laboured under in being ignorant of the fulject they were to reprefent, made him defirous of having an able perfon in his houfe entirely for that purpofe.

With this view he eagaged an ingenious young artitt to live with him for ten years; his time to be wholly employed as a draughtfana, and in making anatomical preparations. This gentleman, whofe name ras Bell, foon became a very good practical anatomift, and from that knowledge was enabled to give a fpirited and accurate refemblance of the fubjects be drew, fuch as is rarely to be met with in reprefentations of anatomical fubjects. By his labours Mr Hunter's collection is enriched with a confiderable number of very valuable dravings, and a great variety of curious and delicate anatomical preparations.

In January \({ }^{1776} \mathbf{~ M r}\) Hunter was appointed furgeon extraordinary to his Majetty; and in the fpring he gave to the Royal Society a paper on the beft mode of recovering drowned perfons.

In the antumn he was taken extremely ill ; and the nature of his complaints made his friends, as well as himfelf, confider his life to be in danger. When he reffected upon his own fituation, that all his fortune had been expended in his purfuits, and that his family had no provifion but what fhould arife frum the fale of his collection, he became tery folicitous to give it its full value, by leaving it in a flate of arrangement. This he aceomplithed with the affillance of Mr Bell and his brother-in-law Mr Home.
In \(x 78\), he publifhed the fecond part of his Treatife on the Teeth, in whieh their difeafes, and the mode of treatment are confidered. This rendured his work upon that fubject complete. He putlifhed alfo in the Philofophical Tranfactions a paper on the Heat of Auimals and Vegetables. In 1779 , he publified his account of the Free Martin in the P'hilofophical Tranfactions; and in 178 c , he laid before the Royal Sccicty an account of a woman who had the fmall pox during presnancy, where the difeafe feemed to have been eommunicated to the fortus.

In 1781, he was elected a fellow of the Royal Socicty of Sciences and Belles Lettres at Gottenburg. And in 1982, he gave the Royal Society a paper on the Organ of Hearing in Fifl. Defides the papers which he prefented to that learned body, the read lix Croonion ledures upon the fubject of Mufcular Action, for the years 1776, 1778, 1779, 178c, 1781, and 1782. In thefe lectures he collected all his obfirvations, upon mufcles; refpecting their powers and effects, and the ftimuli by which they are affected; and to thefe he added Comparative Obfervations upon the moving Powers of Plants.

Thefe Icetures were not publifhed in the Philofophical Tranfactions, for they were withdrawn as foon as read, not being confidered by the author as complete differtations, but rather as materials for fome future publication.

It is much to be regretted (fays Mr Home) that Mr Hunter was fo tardy in giving his obfervations to the public; but fuch was his tuin for inveftigation, and fo extenfive the fale upon which he inflituted his inquiries, that he always found fomething more to be acconplifned, and was unwilling to publinh any thing whieh
appeared to himfelf unfinifhed. His olforvations on the Hurter. Mufcular Action of the Blood-veffels were laid before the Royal Society in 1780, and yet he delayed publifhing them till his Obfervations on the Blood and Intlammation were arranged; and they make part of the volume. which was publijhed after his death.

In \(179^{3}\), he was chofen into the Royal Society of Medicine and the Royal Acadeny of Sungery in Paris; and the fame year the leafe of the houfe which he occupied in Jeranyn-ftrect having expired, he piurehafed the leafe of a large houfe on the call-fide of Leiceterfquare, and the whole lot of fround adjoining to CaflcAtreet, on which there was another houif. In the middle fpace between the two houfes, he crected, at the ex. pence of L. 3000, a huilding for his eollection; though, unfortunately for his family, the leafe did not extend beyond 24 years.
In the building formed for the collection there was a room fifty-two feet long by twenty-eight feet wides, lighted from the top, and having a gallery all round, fur containing his preparations. Under this were two apartments; one for his lectures, and the other, with no particular deflination at firft, but afterwards made ufe of for weekly meetings of medical friends during the winter. To this building the houfe in Cafte. ftreet was entirely fubfervient; and the ronms in it were ufed for the differcit branches of human and comparative anatomy.
- About this period Mr Hunter may be confidered as at the height of his chirurgical career; his mind and body were both in their full vigomr. His hands were capable of performing whatever was fuggefted by his mind ; and his judgment was matured by former experience. Some inflances of his extraordinary fill may very propectly be mentioned.

He removed a tumor from the fide of the liead and neck of a patient at St George's Hofpital, as large as the head to which it was attached; and by bringing the cut edtres of the fkin together, the whole was nearly healed by the fref intention.

He difected out a tumor on the neck, which one of the beit operating furgeons in this country had declared, rather too ilrongly, that no one but a fool or a madman would attempt; and the patient got perfectly well.
He difcovered a new mode of performing the operation for the popliteal ancorila, by taking up the femoral artery on the anterior part of the thigh, without doing any thing to the tumor in the ham. The fafety and effeacy of this monde have been confirmed by many fubfequent trials; and it muft be allowed to fland very high among the nodern improvements in furgery:
If we condider Mr Hunter at this period of his life, it will afford us a flrong picture of the turn of his mind, of his defire to acquire knowledge, and his unrcmitting affiduity in profecuting whatever was the objees of lis. at:ention.
He was engaged in a very extenfive private praclice; he was furgeon to St George's Holpital ; he was giving a very long courfe of lectures in the winter; he was carrying on his inquiries in comparative anatony; had a fchool of practical human anatumy in his honfe; and was alway's employed in fome experiments refpecting the animal economy.
He was always folicious for fome imp:ovenent in. mudical!

Funter，medical chlucation；and，with the affitance o：Jro For－ dyce，inttituted a metical fociety，which he allowed to meet in his lecture room：，atad of which he was clofen one of the patrous Thas tueicty，called the Lycoum Midicums Iromiticnf，under his aufyices and thofe of Dr Fordyce， has acquired cotbiderable reputation，both from the mumbers and merits of its members．

In the year 1 ブi i，in confequence of the death of Mr Middleton，Mr Hunter was appointed deputy furgeon－ general to the army．He now publithed his work up－ on the Venereal Difeafe．which had been lung expect． ed by the public；and；if we may judge from the ropid fale of the firf edition，thefe expectations have not been difappointed．He alfo publifhed a work entitled，Ob－ fertations on certain Parts of the Animal Econony． In this work he has collecited foveral of his papers in－ Ferted in the Philofophical Tranlactions，which related to that fubject，having permiffion from the prefident and council of the Royal Suciety to reprint them；there are alfo Obfervations upon fone other parts of the Ani－ mal Ecunomy，which had not before been publifhed． ＇Ihis work met with a very ready falc．

In the year 1787 ，he gave a paper to the Royal So－ ciety，containing an Experiment to determine the Effect of extirpating one Ovarium on the Number of Young； a paper in which the wolf，jackall，and dog，are proved to be of the Jame frecies；and a third upon the Ana－ tomy of the Whale Tribe．Thefe papers procured him the honour of receiving Sir Iohn Copley＇s anmual gold medal，given as a mark of dittinguilhed abilities．

His collection，which had been the great objeet of his life，both as a purfuit and an amufcment，was now bronght into a tate of arrargement；and gave him at length the fatisfaction of Arewing to the public a feries of anatomical facts formed into a fyftem，by which the economy of animal life was illuttrated．He flewed it to his friends and acquaintances twice a－yeur，in Oeto－ ber to medical gentlemen，and in May to noblemen and gentlemen，who were only in town during the fpring． This cuftom he continued to his death．

Upon the death of Mr Acair，which happened in the year \(1792, \mathrm{Mr}\) Hunter was appointed infpector－gereral of hofpitals，and furgeon－gcneral to the army．He was allo elected a nember of the Royal College of Surgeons in Ireland．In the year 1791，he was to much enga－ ged in the duties of his office，as furgeon－general to the anmy，and hie private practice，that he had little time to bellow upon his feientifical objects；but his leifure time，finall as it was，he wholly devoted to then．

In 1792 ，lie was clected an honorary member of the Chirurgo－Phyfical Society of Edinhurgh，and was cho－ fen one of the vice－predidents of the Veterinary College， then firit eftablifhed in London．He publitied in the ＇I＇ranfactions of the Society fur the Improvement of me－ dical and chirurgical knowledge，of which fociety he was one of the original members and a zealous promo－ ter，three papers on the fulluwing fubjects：Upon the Treatment of Inflamed Veins，on Introlufception，and on a Mude of conveying lood into the Stomach in Cafes of Paralylis of the（Efophagus．

He finifhed his Oblervations on the Economy of Bees， and prefented them to the Royal Society．Thefe oh－ fervations were made at Earl＇s Court，and had engaged his attention for many years；every inquiry into the economy of thefe infects had been attended by almoft
unfurmontaine diffenlties；but thefe prowed ：o h：im 13unar． only an incitement，and the contrivances he made ufe of to dring the diferent operations of the ie indefatigable animals to view were almolt without end．

Earl＇s Court to Mr Hunter was a retirenent frem the fatigues of his profefion ；but in no refpest a re－ treat from his labours；there，on the contrary，they were carried on with lefs interruption，and with an unvearied perfevendee．From the year 1772 till his death，he made it his cultom to fleep there during the autumn months，coming to town only during the hours of bu－ finels in the forenoon，and returning to dimner．

It was there he carried on his experiments on di－ geftion，on excoliation，on the tranfplanting of tecth in－ to the combs of cocks，and all his other inveltigations on the animal cconomy，as well in health as in difeale． The common bee was nut alone the fubject of his ob－ fervation，but the wafp，hornet，and the lefs known kinds of bees，were alfo objects of his attention．It was there he made the feries of preparations of the external and internal changes of the filk worm；allo a feries sf the incubation of the egg，with a very valuable fet of drawings of the whole feries．＇The growth of vegetables was alio a favourite fubject of inquiry，and one on which he was always engaged in making experiments．

The collection of comparative anatomy which Mr Hunter has left，and which may be confidered as the great object of his life，muft be allowed to the a proof of talents，affiduity，and labour，which cannot be con－ templated without furprife and admiration．It remains an unequivocal telt of his perfeverance and abihties，and an honour to the country in whole fchouls he was edu－ cated，and by the patronage of which he was thabled on fo extenfive a feale to carry on his purfuits．In this cullection we find an attempt to expufe to view the gra－ dations of Nature，from the mott dimple fate in which life is found to exilt，up to the moit perfect and moit complex of the animal creatior．－man himfelf．

By the powers of his art，this collector has been ena． bled fo to expofe，and preferve in \(f_{p}\) pirits or in a dried ftate，the different parts of animal bodies intended for fimilar utes，that the various links of the chain of per－ fection are readily followed and may be clearly under－ floud．

This collection of anatomical facts is arranged ac－ cording to the fubjects they are intended to illultrate， which are placed in the following order：Firl，Parts conitructed for motion．Seconaly，Parts effential to ani－ mals refpecting their own internal economy．Tbirdly， Parts fuperadded for purpoles connected with external objects．Fourtbly，Parts for the propagation of the fpecies and meintenance or fupport of the young．

Mr．Hunter was a very healthy man for the firt furty years of his life and，if we except an infammation of his jungs in the year 1759 ，occalioned mut probably by his attention to anatomical purfuits，he had no com－ plaint of any confequence during that period．In the 1 pring of 1769 ，in his forty firlt year，he had a regular fit of the gout，which returned the three following fyrings，but not the fourth；and in the lpring of 1773 ， having met with fomething which very forcibly affected his mind，he was attacked at ten o＇clock in the forenoon with a pain in the fomach，attended with all the fymp－ toms of angina pecloris．In the life of him prefixed to his Treatife on the Blood，Inflammation，and Gun－Shot

Wounds, the reacier will find one of the moft complete hiftories of that difeafe 1 roon record. Suffice it, in this place, to hay, that for twenty years he was fubject to frequent and fevere attacks of it, which however did rut, till a fhort time before his death, either impair his judgenent or render him incapable of performins operaiions in furgery. "In autumn 1790 (fays Mr Home), at.d in the froing and antumn 1791, he had mone fevere iottacks than riming the other periods of the year, but of not mure than a few hours duration: in the hersillaing of (OEtoiner 1-92, one, at which I was prefent, was in volent that I thought he would have died. On OEtober the 16th, 1593, when iu his ufual tlate of hralth, he weat to St George's Hurpital, and meeting with forne things which irritated his inind, and not beiner perfettly mather of the circunttances, he withheld his fentiments; in which tate of reftrant he went into the next rocm, andturring round to Dr RoDerifuit, one of the pliylicians of the hofpital, le gave a deep groan and dropt down dead; being then in his C 6 th year, the firtie age at which lis brother Dr Hunter had died."

It is a curious circumftance, that the firft attack: of thefe complaints was produced by an afiection of the mind, and every future return of any confequence arofe from the fame caufe; and although hocily exereile, or dillention of the Alomach, brought on fighter affections, it Atill required the mind to be affected to render them fevere; and as his mind was irritated by trifles, thefe produced the mof violent effects on the difeafe. His coachman being beyond his time, or a fervant not attending to his directions, brought on the fpafms, white a real misfortune produced no effect.

Mr Hunter was of a fhort flature, uncommonly ftrong and actise, vely comfactly made, and capable of great bodily exertion. His countenance was animatet, oper, and in the latter part of his life decply imprefled with thoughifulnefs. When his print was thewn to Lavater, be faid, "That man thinks for himfelf." In lis youth he was cheerful in his difpurtion, and entered into youthful follies like others of the fame age; but wine never agreed with his fonmach; fo that after fome tine he left it off altogether, and for the latt twenty years drank nothing but water.

His temper was very warm and impatient, readily provoked, and, when irritated, not eafily foothed. His difpufition wes candic, and fiec from relerve, even to a fault. He hated deceit ; and as he was above every kind of artifice, he detefted it in others, and two openly avowed his fentiments. His mind was uncommonly a Aive; it was naturally formel for inveftigation, and that turn difplayed itfelf on the molt trivial occafions, and always with mathematical exacnefs. What is curions, it fatigued him to be long in a mixed company which did not admit of connecicd convelfation ; mure farticularly during the latt ten years of his life.

He required lefs relaxation than mott other men; feidom fiexping more than four hours in the night, but alnolt always nearly an hour after dimer; this, probably, arofe from the natural turn of his mind being fo much adapted to his own occupations, that they were in reality his amufement, and therefore did not fatigue.

In private practice he was liberal, ferupulouny linneit in faying what was really his opinion of the cafe, and ready upon all oceafions to acknowledge his ignorance, whenever there was any thing which he did not under: tland.

\section*{759] Y D}

In converfation, lie fpuke too freely, and fumetires barflyy, of his contemporaries: hut if he lid not do jultice to their undoulted merits, it arole not fromenvy, but from his thorourg consiction that furger: was as yet in its infancy, and he himfels a mevice in lis own art; and his anxiety to have it carrisd to perfection, made him think me anly and ill of every one whofe exertions in that refpect did unt eyual his own.

HUN'LERS, in fortification, denote pieces of timber, about fix inches fipuare, placed at the lower end of the platform, next to the parapet, to prevent the wheels of the gun-carriages from danaging the parapet.

HYDROGRAPHICAL Charts or Mars, more ufually called fea-charts, a:e projections of fome part of the fea, or coall, for the whe of navigation. In thefe are laid down all the rhumbs or points of the compafs, the mecricians, farallels, Sc. with the coafts, eapues, illands, rocks, moal:, fiallows, \&e. in their proper plaees, and proportions.

HYDROMETER, is an inftument, of which fo much las been faid in the Encycl. under that title, and in the article Smenfic Gravity, that we certainly fould not again introduce it in this place, but to guard our readers again!t error, when fludying the wurks of the French chemits. Thefe gentemen, wio are fo floresly attached to every thing which is new, as to believe that their anceftors have for ages been wandering in the mazes of ignorance, refer very frequently to the pefr-liqueur of Baumé ; and as that inftrument has never been generally ufed in this country, it becomes our duty to deferibe its conftruction.
laftead of adopring the fimpler method of immediate numerical reference to the dentity of water expreffed by unity, as is done in all modern tables of feccific gravity, he had recourfe to a procefs fimilar to that of graduating the flems of thermometers from two fixed points. The firt of thefe points was obtained by immerling his inflrument, which is the common arcometer, confiting of a ball, nem, and counterpenife, in pure water. At that puint of the ftem which was interfected. by the furface of the fluid, he marked zero, or the commencement of his graduations. In the next place, he provided a number of fulations of pure diy cominon falt in water: thefe fulutions container refpectively one, two, threc, four, \&e. poundz of the falt; and in each foldition the quantity of water was fuch, as to make up the weight ecer:il to one landred puands in the whick; fo that in the folution containing one pound of falt, there were ninety-nine pounds of water; in the folntion containing two pounds of falt, there were ninety-eigbe pounds of water, and fo of the reft. The inftrument was then plunged in the firt folntion, in which of courfe it fluated with a larger portinn of the fem above the fuid, than when pure water was ufud. The flaid, by the interfection of its furface upon the ttem, indicated the place for making his firt degree; the fame operation repeated, with the fluid containing two pounds of falt, indicated the mark for the fecoml degree ; the folution of three puands afford. cd the third degree ; and in this manner his cnumeration was carried as far as fifteen degrees. The firt fifteen degrees afterwards, applied with the compafies repeatedly along the ftem, ferving to extend the graduation as far as cighty degrees, if required.

This inftrument, which iscapplicable to the admea. furement II
IIydrometer.

Hyirus, farement of denfities exceeding that of pure water, is Hygrome commonly ditinguihed by the name of the Hydrome-
ter. ter for fults.

Tlie hydrometer for firits is conftructed upon the fanc priaciple; but in this the couaterpuife is fo adjulted, that molt part of the llem rifes above the fluid whea immerled in pure water, and the graduations to exprefs inferior denfities are contiaued upwards. A Iolution of ten parts by weight of falt in ninety parts of pure water, affords the firft point, or zero, upon the fem; and the nark indicated by pure water is called the tenth degree; whence, by equal divifions, the remaining degrees are continued upwards upon the ftem as far as the fiftietla degree.

Thefe experiments, in both cafes, are made at the tenth degree of Reaumur, which anfwers very nearly to fify-five of Falirenheit.

HYDRUS, or Water Serpent, one of the new fouthern contellations, including only ten fars.

HYGROMETER, is an inftrument of fo much importance to the meteorologift, that it becomes us to give fome account of every improvement of it which has fallen under our notice. In the Encyclopadia, the principles upon which hygrometers are conltructed have been clearly ftated, and the defects of each kind of liy. grometer pointed out.

Infted of hairs or cat-gut, of which hygrometers of the firft kind are commonly made, Caffebois, a Benedicinc monk at Mentz, propofed to make fuch hygrometers of the gut of a filk-worm. When that infect is ready to fpin, there are found in it two veffels proceeding from the head to the ftomach, to which they adhere, and then bend towards the back, where they form a great many folds. The part of thefe vefiels next the ftomach is of a cylindric form, and about a line in diameter. Thefe veffels contain a gummy fort of matter from which the worm fpins its filk ; and, though they are exceedingly tender, means have been devifed to extract them from the infect, and to prepare them for the above purpofe. When the worm is about to fpin, it is thrown into vinegar, and fuffered to remain there twenty-four hours; during which time the vinegar is abiorbed into the body of the infect, and coagulates its juices. The worm being then opened, both the veffels, which have now acquired ftrength, are extracted; and, on account of their pliability, are capable of confiderable extenfion. That they may not, however, become too weak, they are ftretched only to the length of about fifteen or twenty inches. It is obvious that they muft be kept Cufficieutly extended till they are completely dry. Before they attain to that ftate, they mutt be freed, by means of the nail of the finger, from a flimy fubftance which adheres to them. Such a thread will fuftain a weight of fix pounds without breaking, and may be ufed for an Biygrometer in the fame manner as cat-gut ; but we confefs that we do not clearly perceive its fuperiority.
'To an improvement of the hygrometer conftructed on the third principle, flated in the Encyclopredia, M. Hochheimer was led in the following manner:

Mr Lowitz found at Dmitriewhs in Aftracan, on the banks of the Wolga, a thin bluif kind of flate which attracted moifture remarkably foon, but again fuffered it as foon to efcape. A plate of this flate
weighed, when brouglit to a red heat, I75 grains, and, Hygrote when faturated with water, 247 : it had therefoce imbihed, between complete drynefs and the point of com- a romul thin plate of this flate at the end of a very delicate balance, faftened within a wooden frame, and fufpended at the other arm a chain of Glver wire, the end of which was made faft to a fiding nut that moved up and down in a fmall grouve on the edge of one fide of the frame. He determined, by trial, the polition of the nut when the balance was in equilibrio and when it had ten degrees of over-weight, and divided the face between thefe two points into ten equal parts, adding fuch a number more of thefe parts as might be necef. fary. When the flone was fufpended from the one arm of the balance, and at the other a weight equal to 175 grains, or the weight of the fone when perfectly dry, the nut in the groove thewed the excefs of weight in grains when it and the chain were fo adjuited that the balance ftood in equilibrio. A particular apparatus on the fame principles as a vernier, applied to the nut, fhewed the excefs of weight to ten parts of a grain. Lowitz remarked that this hygrometer in continued wet weather gave a moifture of more than 55 grains, and in a continued heat of \(\mathrm{r}_{3} 3\) degrees of Fahrenheit only \(1 \frac{1}{2}\) degree of moifture.

The hygrometer thus invented by Lowitz was, however, attended with this fault, that it never threw off the moilture in the fame degree as the atmofphere hecame drier. It was alfo fometimes very deceitful, and announced moilture when it ought to have indicated that drynefs had again begun to take place in the atmofphere. To avoid thefe inconveniences, M. Hochheimer propofes the following method:
I. Take a fquare bar of fleel about two lines in thicknefs, and from ten to twelve inclies in length, and form it into a kind of balance, one arm of which ends in a ferew. On this ferew let there be ferewed a leaden bullet of a proper weight, inftead of the common weights that are fufpended. 2. Take a glafs plate shout ten inches long, and feven inches in breadth, de. ftroy its polifh on both fides, free it from all moinure by rubbing it over with warm afhes, fufpend it at the other end of the balance, and bring the balance into equilibrium by ferewing up or down the leaden bullct. 3. Mark now the place to which the leaden bullet is brought by the fcrew, as accurately as poffible, for the point of the greateft drynefs. 4. Then take away the glafs plate from the balance, dip it completely in water, give it a hake that the drops may run off from it, and wipe them carefully from the edge. 5. Apply the glafs-plate thus moiftened again to the balance, and bring the latter into equilibrium by ferewing the leaden bullet. Mark then the place at which the bullet fands as the lighelt degree of moifture. 6. This apparatus is to be fufpended in a fmall box of well dried wood, fufficiently large to fuffer the glafs plate to move up and down. An opening mult be made in the lid, exactly of fuch a fize as to allow the tongue of the balance to move freely. Parallel to the tongue apply a graduated circle, divided into a number of degrees at pleafure from the highelt point of drynefs to the highelt degree of moilture. The box mult be pierced with fmall holes on all the four fides, to give a free paffage to the air ; and to prevent moilture from penetrating

\section*{H Y P}

Syspome str.
intu the wood by rain, when it may be requilite to ex. pufe it at a window, it muit cither he lackerced or printed. To fave it at all tines from rain, it may be covered, however, with a fort of roof fitted to it in the nof convenient manner. Liut all thefe external appendages may be improved or altered as may be found neceffary.

HYPERBOLA Deficient, is a curve having only
one afymptote, though two hyperbolie tegs running eut Hrpmeras inlinitely by the fide of the aiymptote, hut contraty wows, \(\varepsilon^{\text {i }}\) i....

HYPOTRACFIEIION, in Architecture, is uted for a little frize in the Turcan and Doric capital, between the aftragal and annulets; called alfo the colerin and gorgerin. The word is applied by fome authous in a more general fenfe, to the neck of any column, or that part of its eapital below the aftragal.
\(\square\) ACOBINS, in the language of the prefent day, is the name affumed, at the beginning of the French revolution, by a party in Paris, which was outrageonlly democratical, and fanatically impious. This party, which confifted of members of the National \(A\) ffembly, and of others maintaining the fame opinions and purfuing the fame objects, formed itfelf into a club, and held its mectings in the hall belonging to the Jacobin friars, where meafures were fecretly concerted for exciting infurrections, and over-awing at once the legiflature and the king. The name of Facobin, though it was derived from the hall where the chub firt met, has fince been extended to all who are enemies to monarchy, ariftocracy, and the Chriftian religion; and who would have every man to be his own prief and his own lawgiver. Hence it is, that we have Jacobins in Creat Britam and Ireland, as well as in France.

Of the proceedings of the French Jacobins, fome account has been given in the Encyclopadia, under the tithe Revolution; and the fubject will be refumed in this Supplement under the fame title. The purpofe of the prefent article is to trace the principles of the feet from their fource; for thefe principles are not of yelterday.
"At its very firft appearance (fays the Abbci Barmel), this feet counted 300,000 adepts; and it was fupported by two millions of men, feattered through France, armed with torches and pikes, and all the firebrands of the revolution," Such a wide fpread confiracy could not he formed in an inftant; and indeed this able writer has completely proved, that this fect, with all its confpiracies, is in itfelf no other than "the coalition of a triple fect, of a triple confpiracy, in which, long before the revolution, the overthrow of the altar, the ruin of the throne, and the difolution of all civil fociety, had been debated and determined."

It is known to every felmolar, that there have been in all ages and countries men of letters and pretenders to letters, who have endeavoured to fignalize themfelves individually by writing againt the religion of their country; but it was referved for the philofophilts (a) of France to enter into a combination for the expreis purpofe of eradicating from the human heart every religious fentiment. The man to whom this idea firf ocur-

Suppl. Vol. I. Part II.
red was Voltaire; who, daring to be jealous of his God, Jacobins, and being weary, as he faid himfelf, of bearing people repeat that twelve men were fufficient to eftablith Chrif. tianity, refolved to prove that one might be fufficient to overthrow it. Full of this project, he fwore, before the year 1730, to dedicate his life to its accomplifhment ; and for fome time lie flattered himfelf thet he fhould enjoy alone the glory of deftroying the Chrittian religion. Ile found, hoverer, that affociates would be neceffary; and from the numerons tribe of his admivers and difciples, he chufe \(D^{\prime}\) Alembert and Dirlerot as the moft proper perfons to co-operate with him in his defigns. How admirably they were qualified to act the part afingned them, may be conceived from the life of Diderot in this Supplement. But Voltaire was nut farislied with their aid alone.

He contrived to embark in the fame caufe Frederic II. of Pruffia, who wifhed to be thought a philofopher, and who of courfe deemed it expedient to talk and write againtt a religion which lie had never Itudied, and into the evidence of which he had probably never deigned to inquire. This royal adept was one of the moft zealons of Voltaire's coadjutors, till he difcovered that the philofophifts were waging war with the throne as well as with the altar. This indeed was not originally Vol. taire's intention. He was vain ; he luved to be careffed by the great; and, in one word, he was, fiom natural difpofition, an arifocrate and admirer of royaky: But when he found that alnof every fovereign but Fiederic, difapproved of his impious projects as foon as \(l\) : ferceived their iffue, he determined to oppofe all the governments on earth, rather than forfeit the glory, with which he had fattered himfelf, of vanquifhing Clirit and his apoltles in the ficld of controverfy.

He now fet himfelf, with D'Alembert and Diflerot, to excite univerfal difcontent with the eftablifhed order of things. This was an employment entirely fuited to their difpofition; for not being in any fenfe grat themfelves (E), they wifhed to puli all men down to their own levet. How effectually they contrived to convert the Encyclopedie into an engine to ferve their purpofes, has been thewn already; but it was not their only nor their moft powerful engine; they formed fecret focie-
(A) This term was invented by Abbé Barruel, and we have adopted it, as dencting fomcthing very different from the meaning of the word philofopher.
(B) We do not by this mean to infinuate that \(D^{\prime}\) Alembert was not a man of fcience. He was perhaps the only man of feience in that gang ; but he was a matter of no fcience but nathmatics; and his birth being ob-
fcure,

\section*{J A C [\(\quad\); \({ }^{2}\)] J A G}
\(\underbrace{\text { Jucobine, ties, affumed new names, and employed an enigmatical fronding remorfe, which can be exceeded only hy the }}\) language. Thus, Frederic is called Luz : D'Alembert, Protagoras, and fometimes Bertrand; Voltaite, Ralon; and Diderot, Pla:on, or is anagram Tonpla; while the general term for the conifirators is Cacouze. In their fecret meetings thev profefled to celcbrate the mylteries of Myisra; and their great uhject, as they profeffed to ene anuther, was to confound the zuretch, meaning JC -. Voltaire propofed to eftablith a colony of philofophifts at Cleves, who. protected by the king of Pruffia, might publifh their opinions without dread or danger ; and Frederic was difpofed to take shem under his protection, till he difcovered that their opinions were anarchical, as well as impious, when he threw them off, and even wrote againft them.

They contrived, however, to engage the minifters of the court of France in their favour, by pretending to have nothing in view but the enlargement of fcience, in works which fpoke indeed refpectfully of revelation, while every difcuvery which they brought forward was ineant to undermine its sery foundation. When the throne was to be attacked, and even when barefaced atheifm was to be promulgated, a number of impious and licentious pamphlets were difperfed, for fome time none knew how, from a fecret fociety formed at the Hatel d'Holbach at Paris. Thefe were fold for trifles, or diftrihuted gratis to fchoolmafters, and others who were likely to ciŕculate their contents. D'Alembert, Dide. rot, and Condorcet, who was now aflociated with the other confpirators, flattered the ambition of every man among the great, and efpecially of the Duke d'Orleans, the richelt fubject in Europe, and a prince of the blood of France. The firit and the laft of thefe three adepts had, by their mathematical knowledge, got fuch an afcendancy in the Royat Academy of Sciences, that they could admit or exclude candidates as they knew them to be friendly or inimical to the projects of the confpirators; and they had contrived, by matchlefs addrefs and unwearied perfeverance, to fill almoft all the feminaries of education with men of their own principles.

Thus was the public mind in France completely coryapted, when the mafon lodges, over which the infamous Orleans prefided, were vifited by a delegation from the German illuminati ; and nothing more was neceflary to produce the feet of Jacobias, by whofe intrigues and influence, France, as M. Barrucl exprefles himfelf, has become a prey to every crime. It was by the machinations of this feet that its foil was flained with the blood of its pontiffs and priefts, its rich men and nobles; with the blood of every clafs of its citizens, without regard to rank, age, or fex. Thefe difciples of Voltaire were the men who, after having made the unfortunate Louis, his queen, and fifter, drink, to the very dregs, the cup of outrage and ignominy during a long confinement, folemnly murdered them on a fcaffold, proudly menacing all the fovereigns of the earth with a fimilar fate. Yet think not, indignant reader, that the ways of Providence are unequal. The nations of Europe were ripe for chatlifement ; and that chaftifoment thefe villains were employed to inflict : but their own punimment did not linger. Voltaire died in agonies of de-
torments of the damned. There is reafon to believe that the end of 1 : Alembert and Diderot very much refumbled that of their leader; while the more hardened adept, Condorcet, became his own executioner; and the other chiefs of the rebellion bave regularly inflicted vengeance on each other, every alteration of the French conititution (and thefe alterations have beert many) being followed by the exccution of thofe by whom the goverument was previouny adminiftered.

JAGHIRE, affignment made in Bengal by an Imperial grant upon the revenue of any diltrict, to defray civil or military charges, penfons, gratuities, \&c.

JAGHIREDER, the holder of a Jaghire.
Sr JAGO, the largeft and moft populous of the Cape de Verde Iflands, of which fome account has been given in the Encyclopardia, is reprefented by Sir Gcorge Staunton as liable to long and exceffive droughts, for which no philofophical caufe can be affigned. When the embafly to China tuached at it in the latter end of \({ }^{1792}\), it was in a flate of abfolute famine. Little or no rain had fallen for about three years befure. The rivers were almoft all entirely dry. The furface of the earth was, in general, naked of any herbage. The greatett part of the cattle had perihed, not lefs througli drought than want of food. Of the inlabitants many had migrated, and many were famifhed to death. Nor was this całamity peculiar to St Jago. All the iflands of Cape de Verde were faid to have experienced the fame long drought, and to be confequently in a flate of fimilar defolation. Yet the frequent flowers which were obferved by the firft navigators who rouched at St Jago, in. duced them to give to the ifland the name of Pluvialis; and no clange had been obferved in the fteady current of wind, blowing from the eafl, which is common to tropical climates.
"What were the uncommon circumflances (fays Sir George) that took place in the atmofphere of that part of Africa to which the Cape de Verde ifands lie contiguous, or in the valt expanfe of continent extending to the eafl behind it, and from which this direful effect muft have proceeded, as they happened where no man of fcience exifted to obferve or to record them, will therefore remain unknown; nor is theory bold enough to fupply the place of obfervation. Whatever was the caufe which thus arrefled the bountiful hand of Nature, by drawing away the fources of fertility, it was obfervable, that fome few trees and plants perfevered to flourifh with a luxuriance, indicating that they fill could. extract from the arid earth whatever portion of humidity it was neceflary to derive from thence for the purpofe of vegetable life, though it was denied to others."

Befide the trees of the palm kind, which are often found verdant amidft burning fands, nothing, for example, couid be more rich in flavour, or abound more with milky, though corrofive juice, than the afclepias gigantea (fee Asclepias, Encycl.), growing plentifully, about feveral feet high, without culture, indeed, but undifturbed, it being of no avail to cut it down in favour of plants that would be ufeful, but required the aid of more moiture from the atmofphere. The jatro-
fcure, if not fpurious, and abftract mathematics not furnifhing ready accefs to the great, his ideas, when compared with Voltaire's, were grovelling, and (as M. Barruel fays) he was afraid. to be feen.

\section*{J A G [703] J A L}

Jgo, pha cureas, or phyfie nut tree, which the French Wct Indians, with fome propriety, cail lpis immortel, and
plant, on that account, in the boundaries of thir eftates, appeared as if its perpetuity was not to be affected by any drought. Some indiro plants were Atill cultivated with fuecefs in fhaded vales, toge: her with a few cotton nerubs. Throughaut the conntry fome of thafe fpecies of the mimofa, or fentitive plant, which grow into the fize of treces, were mofl common, and did not appear to languifh. In particular fyots the amona, or fugar apple trec, was in perfoct verdure. The horaflus, or great fan palin, lifted, in a few places, its lofty head and fpreading leares with undiminihned heauty. In a bottom, abont a mile and a half behind the town of Praya, was fill growing, in a healthy fate, what may be called fur fize a phenomenon in vegetation, a tree known to botanits by the name of adanforia, and in Englifi called monkey hrecad tree. The natives of St Jago call it kalifin a ; othicrs, bacobah. Its trunk neatfured at the bafe no lefs than 56 feet in girth ; but it foon divided into tho great branches, one rifing perpendicularly, and meafining 42 feet in circumference; that of the other was alsout 26 . By it flood another of the fame fpecies, whofe fingle trunk, of \(3^{8}\) feet girth, attracted little notice from the vieinity of its huge companion.

But the annual produce of agrieulture was fcarcely to be found. The plains and fields, formerly productive of corn, fugarecanes, or plaintains, nourifhed by regular falls of rain, now bore little femblance of vegetation. Yet in the fmall number of plants which furvived the drought, were fome which, from the fpecimens fent to Europe, were found to have been liitherto unknown. Vegetation quickly, indeed, revived wherever, through the foil, any maifture could be conveyed.

Sir George reprefents Praya, the refidence of the Purtuguefe Viecroy, as a hamlet rather than a town. It confits of about 100 very fmall dwellings, one flory high, feattered on each fide of the plain, which extended near a mile in length, and about the third of a mile in breadth; and fell off, all aromd, to the neighbouring valleys and to the fea. Not being commanded by any neighbouring eminence, it was a fituation capable of defence; the fort, however, or battery, was almoft in ruins; and the few gums mounted on it were mofly honey-combed, and placed on carriages which fcarcely held together.

A party belonging to the embanfy croffed the country to the ruins of St Jago, the former capital of the inand, fituated in the buttom of a vale, through which ran a flream, then both fmall and nuggith. On each fide of that fream are the remains of dwellings of confiderable folidity and fize ; and the fragments of glafs luftres, fitll hanging from the ceilings of fome of the principal apartments, denote the elegance or riches that were once difplayed in this now deferted place. Not above half a dozen families remain in it at prefent; the reft abandoned it, or perifhed. Here was fill, however, an attempt at a night manufactory of ftripped cotton חips, the fame as are made in the other parts of the inland, for the ufe of the Africans on the main, who pay for them in naves, elephants teeth, and that gum which is generally called arabic.

Amillt the ruins of St Jago, the party found a Portuguefe, to whom one of them was recommended, and
who reecived them with the mot cordial hofpitality in
Jalmana. his houfe, and treated them with every fpecies of tropical fruits from his garden, lying on each fide the river.
He had been a navigator; and informed them that the ife of Brava, one of the Cape de Verde's, was a fitter and fafer place for hipss to call at fur water and provifions than the inand of St Jago; that it had three harbours : one ealled Puerto Furno on the call lide of the ifland, from which veffels mull warp, or be towed out by boats: the Puerto Fajendago to the weft; and the Puerto Fenseo to the fouth, which was the beff for large fhips, and into which runs a fmall river. In another of the Cape de Verde iflinds, called San Vicente, he obferved that there was allo a large harbour on the north end, but that freft water was at fome diflance from it : and there was likewife a good port ai Bonavifta. This information of the hatbours in the ifle of Brava was confirmed by accounts given by nthers to Sir Erafnus Gower, who recommends to make a trial of them.

JALOFFS, or Yaloffs, are an active, powerful, and warlike people, inhabitiag great part of that tract of Africa which lies between the Senegal and the Mandingo fates on the Gamlia (See Mandingols in this Supplement). Their nofes, fays Mr Park, are nut fo much depreffed, nor their lips fo protuberant, as thofe of the generality of Africans; and though their Nk in is of the deepeft black, they are confidered by the white traders as the moft fightly negroes in that part of the continent where they live. They are divided into feveral independent ftates or kingdoms, which are frequently at war with their neighbours or with each other. In their manners, fupertitions, and government, they have a greater refemblanee to the Mandingoes than to any other mation; but execl them in the manufacture of cotton cloth, fpinning the wool to a finer thread, weaving it in a broader loom, and dyeing it of a betcer colour. They make very good foap, by boiling ground nots in water, and then adding a ley of woud afhes. They likewife manufacture excellent iron, which they carry to Bondou to barter for falt. Their language is faid to be copious and fignificant, ard is often learned by Europeans trading to Senegal. Lirom the names of their numerals, as given by Mr Park, it would appear that their numeration proceeds by fives, as ours does by tens.

Our author relates the event of a religivus war, which, as it difplays a generffity of charater very uncommon among favages, will afford pleafure to the minds of many of our readers. Almami Abdulkader, forereign of a Malomedan kingdom called Fouta Torra, fent to Damcl, a king of the Jaliffs, an imperions meflage, commanding him and his fubjects to embrace intantly the faith of the prophet. The ambaffadur having got admiffion to the prefence of Damel, ordered fonse Bufireens (i.e. Mahomedan negroes) who accompanicd him, to prefent the emblems of his miffion. Two knives were accordingly laid before the Jaloff prince, and the ambaffador explained himfelf as follows :
"With this knife (faid he) Abdulkader will condefeend to flave the head of Damel, if Damel will embrace the Malomedan faith; and with this other knife Abdulkader will cut the throat of Damel, if Damel refufes to embrace it: Take your choice."-Damel coolly told the ambaffador that he had no choice to make: \({ }_{5} \mathrm{D}_{2}\)
\[
\mathrm{J} A \mathrm{R} \quad\left[\begin{array}{ll}
764 &]
\end{array} \mathrm{I}\right. \text { C }
\]
\(\underbrace{\substack{\text { Juluff, } \\ \text { jutat }}}\) he neither chofe to have his head 隹ed, nor bis throat cut. Anc with this anfwer the ambaffador was civilly difmiffrl.

Abdulkader took his neafures accordingly; and with a powerful 31 my invaded Damel's conntry. The inliabitants of the towns and villages filled up their wells, deftroyed their provifions, carried off their eftects, and abandoned their dwellings, as he approached. By this means he was led on from place to place, until he had advanced three days journcy into the country of the Jaloffs. He had, indeed, met with no oppofition ; but his anny had fuffered fo much from the tcarcity of water, that feveral of his men died by the way. This induced him to direct his march towards a watering place in the woods, where his nitn, having quenched their thinf, and being overcome with fatigue, lay down carelefsly to fleep anoong the buffes. In this fituation they were attacted by Damel before day-break, and completely routed. Many of them were trampled to death as they lay aflecp by the Jaloffs horfes; others were killed in atcempting to make their efeape; and a ftill greater number were taken prifoners. A mong the latter was Abdulkader himfelf. This ambitious, or rather frantic prince, who, but a month lefore, had fent the threatening meffage to Damel, was now himfelf led into his prefence as a miferable captive. The behaviour of Damel, on this oceafion, is never mentioned by
- Tbe bifoo

\section*{Fitns of the} cowary. the finging men* hut in terms of the higheft approbation; and it was, indeed, fo extraordinary in an African prince, that the reader may find it diffienlt to give
credit to the recital. When his royal prifoner was brought before him in irone, and thrown upon the ground, the magnanimous Damel, inftead of fetting his toot upon his neck, and ltabbing hin witl his fyear, according to the cuttom in fuch cafes, addrefled him as follows: "Abdulkader, anfwer me this queftion. If the chance of war lant placed me in your fituation, and you in mine, how would you have treated me ?" "I would have thrut my fear into your heart (returned Abdulkader with great firmnefs) ; and I know that a fimilar fate awaits me." "Not fo (faid Damel); my tpear is indeed red with the blood of your fubjects killed in battie, and 1 could now give it a deeper ftain, by dipping it in your own ; but this would not build up my towns, nur bring to life the thoufands who fell in the woods. I will nat therefore kill you in cold blood, but I will retain jeu as my have, until I pe:ceive that your prefence in your own kingdom will be no longer dangerous to your neighbours; and then I will conflder of the proper way of difpofing of you." Abdul.
 for three months; at the end of which period, Damel liftened to the folicitations of the inhabitants of Foota Torra, and rellored 10 them their king. Strange as this ftory may appear, Mr Park has no doubt of the truth of it. It was told to him at Malacotta by the negroes; it was afterwards related to him by the Europeans on the Gambia; by fome of the French at Goree; and confurmed by mine flaves, who were taken prifoners along with Abdulkader by the watering place in the woods, and carried in the fame hip with him to the Weft Indies. - Such generofity is this reflects honour on human nature.

JARRA, is a town of confiderable extent in the Moorifh kingdom of Ludamar in Africa. The houfes
are built of clay and fone intermixed, a kind of wall very common in many parts of Scotland, where elay is made to fupply the place of mortar. The greater part of the inhabitants of Jarra are Negroes from the horders of the foutherr llates, who prefer, fays Mr Park, a precarious protection under the Moors, which they purchafe by a tribute, to the being continually expofed to their predatory hollilities. The tribute which they pay is confiderable; and they manifef the molt unlimited obedience and fubmiffion to their Mourifh fuperiors: by whom they are, in return, treated with the utmoft indignity and contempt. The Moors in this, and the other fates adjoining the country of the Negroes, refemble in their perfons the Mulattoes of the Weft Indies, and feem to be a mixed race between the Moors, properly fo called, of the north, and the Negroes of the fouth; poffeffing many of the worft qualities of both nations. Jarra is fituated in \(15^{\circ} 5^{\circ} \mathrm{N}\). Lat. and \(6^{0} 4^{\prime}\) E. Long.

IDIS. Under the generic name Tantalus (Encycl.), we have defcribed, after Mr Bruce, a bird which lie found in Abyflinia, and concluded to be the facred ihis of ancient Egypt. M. Vaillant, during his laft travels in Africa, found, in fome lakes near the eleplants river, a bird very different from Mr Bruce's, which he confidered as belonging to the fame fpecies; and which he deferibes thus: It is three feet in height. Its head and throat, which are extremely bare, are co. vered with a flin of the brighteft red, terminated by a band of a beautiful orange, which feparates the naked part from that covered with feathers. The upper part of the wings, having broad ftripes of a fine violet colour, arreeably fhaded, is bordered by a white band of feathers, the thick and filky beards of which, feparated from cach other, have a perfect refemblance to a rich fringe. The quills of the wings and tail are of a greenifh black, which, as it receives the light in a more or lefs oblique direction, affumes the appearance of violet or purple. The reft of the plumage is of a beautiful white. The bill, which is long and fomewhat crooked, is yellow; as are the feet. This bird belongs to the genus of the ibis, of which we are already acquainted with feveral fpecies.

ICE-House. Sce that artiele, Encyclopedia. Profeffor Beckmann, in the third volume of his Hiftory of Inventions, has proved elcarly that the ancients were well acquainted with what ferved the purpofe of icehoufes.
"The art (fays he) of preferving fow for cnoling liquors during the fummer, in warm countries, was known in the earlieft ages. This practice is mentioned by Solomon *, and proofs of it are fo numerous in * Proverbss the works of the Greeks and the Romans, that it is xxv. I5. unneceflary for me to ouote them, efpecially as they have been collected by others. How the renofitorites for keeping it were conftructed, we are not exprefsly told; but it is probable that the fnow was preferved in pits or trenches.
it When Alcxander the Great befleged the city of Petra, he caufed 30 trenches to be dug, and filled withfnow, which was covered with oak branches; and which kept in that manner for a long time. Plutareli fays that a covering of chaff and coarfe cloth is fufficient; and at prefent a like method is purfued in Portugal. Where the fnow has been collected in a deep gulph,

Ichnegra- fome grafs or green fods, covered with dung from the
\(\mathrm{ph}_{1}\),
Jcbb. fheep pens, is thrown over it ; and under thefe it is fo well preferved, that the whole fummer through it is fent the diftance of 60 Spanifl miles to Lifoon.
"When the ancients, therefore, wifhed to lrave cooling liquors, they either drank the melted fnow, or gut fome of it in their wine, or they placed jars filled with wine in the fuow, and fuffered it to cool there as long as they thought proper. That ice was allo prefered for the like purpofe, is probable from the teftimony of various authors ; but it appears not to have been ufed fo much in warm countries as in the northern. Even at prefent fnow is employed in Italy, Spain, and Portugal ; but in Perfia ice. I have never any where found an account of Grecian or Roman ice-houles. By the writers on agriculture they are not mentioned."

ICHNOGR.APHY, in architecture, is a tran[verfe or horizontal fection of a building, exhibiting the plot of the whole edifice, and of the feveral rooms and apartments in any ftory; together with the thicknefs of the walls and partitions; the dimenfions of the doors, windows, and chimneys; the projectures of the columns and piers, with every thing vifible in fuch a fection.

JEBB (John), was born in Southampton-ftreet, Covent Garden, London, on the 16 th of February 1736. He was the eldeft fon of the Rev. John Jebb, dean of Cafhel, in the kingdon of. Ireland. He received the elements of his education in different fchools, and was admitted, July 7. 1753, penfioner in the univerfity of Dublin, whence he removed, November the gth 1754 , to St Peter's college in Cambridge, where he was likewife a penfioner. In January 1757 he proceeded to the degree of B. A. and his place in the diftribution of academical honours was, on that occafion, fecond wrangler, the late eminent mathematician Dr Waring being the firf. In 1758 he obtained the fecond prize of fitreen guineas, annually given by the univerfity to the authors of the beft compofitions in Latin profe, being fenior or middle bachelors of arts. Dr Roberts, afterwards provoft of Eton college, obtained the firft.

In the month of June \(1760, \mathrm{Mr}\) Jebb was admitted probationer fellow of St Peter's college, and proceeded to the degree of Mafter of Arts at the com. mencement in the fame year ; and on the firt of July 1761, was confirmed fellow by Dr Mavifon, bilhop of Ely.

On the 6th of June ry62, he was ordaned deacon at Bugden by Dr John Green, bihop of Lincoln; and on the 25 th of September, 1763 , he was admitted by the fame bifhop into prielt's orders.

On the 22 d of Auguit, \(1764, \mathrm{Mr}\) Jebb was collated by Dr Matthias Mawfon, bifhop of Ely, to the fmall vicarage of Gamlingay, near Potton, in Bedfordfhire, upon the recommendation of Dr Lav, mafter of Peterhoufe. On the 17 th of the following October, he was elected by the univerfity into the rectory of \(O\). vington, near Wation, in Norfolk, after a competition with the Rev. Henry Turner, then fellow of St John's college, afterwards vicar of Burwell, in Cambridgefhire. Upon cafting up the votes, there appeared to be for Mr Jebb 91, for Mr Turner 73; and accordingly he was inftituted into the fame the 15 th of December fol. towing.

On the 29 th of the fame month, (December 1764) Mr Jebb married Anne \({ }_{2}\) eldeft daughter of the Rev.

James Torkington, rector of Little Stukeley, in Huntingdonflire, and of lady Dorothy Sherard, daughter of Philip, [econd earl of Harborough.

Early in the year \(1765, \mathrm{Mr}\) Jebb, together with the Rev. Robert Thorpe, fellow of Pcterhoufe, and the Rev. George Wooliton, fellow of Sidney college, publimed, in a fnall quarto, a comment on thofe jaits of Sir Ifaac Newton's Principia which more immediately relate to the fyftem of the world. The title of the joint work of thefe able and judicious philofophers vas, "Excerpta quædam e Newtoni principiis plitofophi: naturalis, cum notis variorum." A work, of which the univerfity of Cambridge continues to bear teflimony to the excellence, by the general ufe of it in the sourfe of academical education.

Mr Chappelow profeffor of Arabic, dying on the 14 th of January ry68, Mr Jebb offered himfelf a can. didate for the vacant chair; but it was given to ile Hallifax, afterwards bihop of Gloucefter ; a man of dcferved celebrity, of whom we regret that it was not in our power to give a biographical ketch.

On July 10. \(1769, \mathrm{Mr}\) Jebb was inftituted to the vicarage of Flixton, near Bungay, in Suffolk, on the prefentaiton of William Adair, Efq. of Flixton-hall; and on the 4 th of April 1770, was inftituted to the united rectories of Homersfield and St Crofs, parifhes contiguous to Flixton, upon the fame prefentation: being alfo, in the fummer of the fame year, nominated chapm lain to Robert earl of Harborough. In confequence of the acceffion of thefe preferments, though not confiderable in themfelves, he refigned, fome time in the month of October 177 I , the rectory of Ovington, which he had received from the univerfity; and Mr Sheepflanks, fellow of St John's college, was elected in his place.
Dr Hallifax fucceeding to the prefufforfhip of civil law, in the month of October s 770 , upon the death of Dr Ridlington, Mr Jebb once more folicited that of \(A\). rabic, which Dr Hallifax then vacated: but he had by this time difplayed fuch an innovating fpirit in religion, that the univerfity gave the vacant profefforfhip to Mr Cra. ven, a man refpected even by Mr Jebb and his triends.

Early in the year 1773, a defign was formed of ap-. plying to parliament for relief in the matter of fub. feription to the liturgy, and thirty-nine articles of the Church of England; and in the profecution of this de. fign Mr Jcbb took a very active part. He attended different meetings of the difcontented clergy, held at the Fenthers tavern, London, affitted in the drawing up of their petition, and wrote their circular letter, which gave to the public an account of their aims. He bufied himfelf at the fame time in making various at. tempts to bring about what he called a reformation of the univerfity of Cambridge: but finding them fruitlefs, he retired, on the 25 th of June \(177^{2}\), to Bungay, where he Iludied French and Italian, and procceded in a plan of fome political or conflitutional licures.

He had by this time ceafed to read the prayers of the church, though he fill continued to preach occafionally ; and the Archdeacou of Suffolk, l:olding, this year, his ufual vilitation of fome neighbouring parithes in the church of Flixton, Mr Jebb preached fucin a fermon againft fubfeription, as drew upon himfele a public rebuke from the Archdeacon, in the prefence of the clergy. "Mucli altercation, (Fays he) enfued \%i

\section*{j E B [\(\quad\) B6] J E B} but have heard no more of it. I acted thus, ruith a viczu to call the attention of the Norzeich clergy to our caule; and have in part fucceeded "
He acted much more honourably than this, when, in 1775 , he refigned all his preferments in the clurch; which furely he ought not to have retained one day after his confcience would not permit him to read the prayers of the liturgy. He now refolved to become a \}hyfician ; and after attendiug St Bartholomew's hof. pital in London-for fix months, as the prpil of Dr William Pitcairn, he received, on the 18 th of March 1777, a diploma of Doctor of Phyfic from the univerfity of St Andrews!! He did not, however, commence practice till the 5 th of February \(177^{8}\); and even then he continued to attend the lectures of Dr H unter, Mr John Hunter, and Dr Higgius. On the 18th of February 1779 he was elected a fellow of the Royal Society.
Dr Jehb, at the breaking out of the Anerican war, lad mewn himfelf at Cambridge a warm partizan of the revolting colonies; and of courfe a keen advocate for what he called, and, we doubt not, thought, the civil liberties of mankind. He now fignalized himfelf by "An addrefs to the Freeholders of Middlefex," affembled at Free nafon's tavern in Great Queen-Itreet, on Monday, December the 20th 1779, for the purpofe of eftablifhing meetings to maintain and fupport the freedom of election. Upun this occafion, he communicated to James Townfend, Efq. chaiman of that meeting, the above addrefs, under the fignature of "Salus Publica;" prefuming, that if the fentiments appeared to be founded in reafou, they would not be the lefs regarded on accomnt of their being fuggeited by an unknown individual."

This addefs was immediattly printed, and very foon paited through three editions, each being enlarged by the addition of frefh matter; and in 1782 , followed the fourth edition corrected, which alfo bore our author's name in the title page.

About the end of February \(1780, \mathrm{Dr}\) Jebb was appointed by the committce of the county of Huntingdon, one of their deputies, to attend a nieeting in London of reprefentatives from certain other petitioning counties, in order to concert meafures for the more effectual reform of the prefent conttitution of the houfe of commons. Soon afterwards he became one of the mof active members of "the fociety for conftitutional information;" of which the object, according to their own account, was to diffure throghout the kingdon, as univerfally as poffible, a knowledge of the great principles of conttitutional freedrom, particularly fuch as refpect the election and duration of the repredentative body. "With this view (fay they), conflitutional tracts, intended for the extenfion of this knowledge, and to commuincate it to perfons of all ranks, are printed and ditributed gratis, at the expence of the fociety. Effays, and extracts from various authors, calculated to promote the fame defign, are alfo publifhed under the direction of the fociety, in feveral of the newfpapers; and it is the wifh of the Cociety to extend this knowledge throughout every part of the united kingdons, and to convince men of all ranks, that it is their intereft, as well as their duty, to fupport a free conftitution, and to maintain and affert thofe common rights,
which are cffential to the dignity and to the happunefs of hunian nature." Could DD Jebb have furefectill the mifchiefs which have flowed from this inntitution; could he have forefien the wonderful fpasn of fac. tious focieties which have [prung from it as. from a parent ftock, our veneration for genius alid learairg will not permit us to believe, that he would have neglected the fludies of his profeffion for the fake of taking the lead in party politics.
1)r Petit, one of the phyficians of St Bartholo. mew's hofpital, dying the 2 fth of May, Dr Jebb oficred himfelf a candilite to fucceed to that appointment. The election caine on the 23 d of June; when Dr Budd, his antagonif, fucceeded by a great majomity.

The oppofition which was made to his election at St Batholumew's, followed him in the winter, wich he offered himfelf at St Thomas's hofpital in the borough. Indeed he relinquifhed his petenfions there fooner than in the former place ; but for no other rea. fon than thecaufe he found that all his political principles were likely to be again objected to him, and to hazard his fucceefs.

In the year 1783 he concurred with others in forming "the fociety for promoting the knowledg of the fcriptures," which met firit on the \(2=t\) th of September in that year, and whofe mectings continued to be held, and, for ought we kniow to the contrary, are ftill held at Effex-houfe. The iketch of their plan was chiedy written by Dr Jebb: and their object was to propagate the doctrines of Unitarianifm, for which he was as great a zealot as for civill liberty.

His health now began to decline ; but during his confinement, lie fudied the Saxon language, the Anglo Saxon laws, Englifl hiltory and antiquities, with a view to cxamine into our criminal cude, and paticular points of liberty. The vigour of his mind was thill equal to the furuinhing himfelf with this frefh Atore of knowledge; he foreftiw the advantage of fuch an acquifition in the inveftigation of the legal rights of Englifhmen, and had defigned to have employed it in the fupport of fome great conftitntional queftions, which he confidered as effential to the freedom of his country.

But as the year began to dawn, it was very obfervable to many of his friends that, according to every appearance, and without fome very great and fingular effort of nature, his increafed debility would defeat every exertion of the moft judicious medical affiftance, and terminate the remaining fparks of human life.

In this enfeebled flate, his mind was active. His "Thoughts on Prifons" were printed and circulated in the county of Suffolk in 1785 , by his much valued friend Mr Lofft ; and there is fufficient reafon fur concluding that this little tract had effect on the deliberations of the jultices at Ipfwich and Bury, then engaged in erecting a new gaol for the divilion of Ipfwich, and a new houfe of correction for that of Bury.

The grood effects of this very excellent tract, it was apprehended, would be extended by a more general publication. In this hope Dr, Jebb revifed and corrected it with his dying hand: and his furviving friend publifhed it foon after his death, adding thereto "an abftract of felonies created by Itrtute and other articles relative to the penal law.

He continued to linger till May the \(2 \mathrm{~d} \ddagger 786\), when, about 8 o'clock in the evening, he breathed his laft, leaving

\section*{J E R [767] J T L}
fficroiz l:aving behind lifn, among men of different perfualions, Je:bot very different characters. By the ditenters he is fel.
com mentioned but as the Great Jebb; by churchmen, his abilities are univerfally allowed, whilt regret is exprelled that they were fo often emplayed in luppart of fiston and herefy. His mural charater has never been afperferl.

JEFFERSONTA, a new plant lately difeovered in Georgia hy Di Brickel of Savannah, aird fo named by him ia complinent to the vice prefident of the United States. In the Mont'y. Marazine for July 1798 we have the following defeription of it ;

Jeffersonia pentendria monogynia.
Calyx, below, compofed of five thort oval imbricated leaves; corolla, monophyllous, fumel-fiaped ou the receptacle, fub-pentangular, bearing the filments near the bale, its margin hypoerateriform, divided into five round ducts nearly equal; flyle, pitiform, florter than the petal, but longer than the ltamens; figma, quadripid; anthers, erect, linear, fagittated ; fruit, two univalved, carinated, polyfpermous capfules, united at the bafe, opening on their tops and contiguous fides, having flat feeds, with a marginal wing.

Only one fpecies is as yet difeovered, Yefferfonia fempervireus. It is a fhrub with round polithed twining ftems, which climb up on buthes and fmall trees; the petioles fhort, oppofite ; leaves oblong, narrow, entire, evergreen, acute; flowers axillary, yellow, having a fweet odvur. The woods are full of this delightful thrub, which is covered with bloffoms for many months in the year.

JERBOA, fee Mos, Encycl, where deferiptions are given of the jaculus or common jerboa, and of the Arabian, Egyptian, and Siberian jerhoas. A variety of this animal has lately been found in Canada by Majorgeneral Davies, F. R. S. and L. S. who fays it belongs to Schreber's genus of Dipus, and may be thus charac. terifed: Dipus Canadensis palmis tetradadylis, plantis pentadacylis, caud. \(\hat{i}\) annulate undique fetosa, corpore longiore. The truth, however, feems to be, that it is only a variety, if indeed a variety, of the Siberian jerboa. The beautiful figure indeed given by General Davies of the Canadian jerboa differs in fome refpects from our figure of the Sibericus. Its ears !ie flat and farther down the neek; its belly is not fo large; its toes are longer; and it has no brum at the end of the tale; but the habits of the two animals feem to be the fame. This will be apparent from the following extracts of the General's letter to the Linnean Society:
"The firf I was fo fortmate to catch was taken in a large field near the falls of Montmorenci, and by its having Itrayed too far from the fkits of the wood, allowed myfelf, with the affiftance of three other gentlemen, to furround it, and after an hour's hard chafe to get it unhurt, though not before it was thoroughly fatigued; which might in a great meafure accelerate its. death.
"During the time the aninal remained in its ufual: vigour, its agility was ineredible for fo fmall a creature. It always took progreffive leaps of from three to four, and fometimes of five yards, although feldom above 12 or 14 inches from the furface of the grafs; but I have frequently obferved others in fhrubby places ant in the woods, amongit plants, where they chiefly retide, leap confiderably higher. When found in.fuch places, it is
impoffible to take them, fron their wonderful agility, and their evading all purfuit by bounding into the thick. elt cover they can find."

That the Canadian, as well as the Siberian Jerboa, fleeps through the winter, feems evident from a feceimen having been found, towards the end of May, inclufed in a ball of clay, ahout the lize of a cricket ball, nearly an inch in thieknefs, perfectly finnoth within, and about twenty inches under ground. It was given to the Genetal; who proceeds thus:
"How long it had been under ground it is impoff. ble to fay; but as 1 never could obferve thefe amimals in any parts of the country after the beginning of September, I conceive they lay themfelves up fome time in that month, or heginning of October, when the frof becomes fharp: nor did 1 ever fee them again befure the lat week in May, or beginning of June. From their being enveloped in balls of clay, withent any appearance of foo 1 , I conceive they fleep during the winter, and remain for that term withou: fuftenance. As foon as I conveyed this fpecimen to my houre, I depofited it, as it was, in a fmall chip box, in fome cotton, waiting with great anxiety for its waking; but that not taking plice at the feafon they generally appear, I kept it until I found it begin to fmell: I then ftuffed it, and prefersed it in its torpid pofition. I am lerl to believe, its not recovering from that flate arefe from the heat of my room during the time it was in the box, a fire having been conftantly burning in the ftove, and which, in all probability, was too great for refpiration. I am led to this conception from my expericnce of the fnow bird of that country, which always expires in a few days (after being caught, although it feeds perfectly well) if expofed to the heat of a room with a lire or ltove; but being nourihned with fnow, and kept in a cold room or palfage, will live to the mildle of fummer."

JETTE, the burder made round the filts under a pier, in certain old bridges, being the fame with flarling; confifting of a ftrong framing of timber filled with Itones, chalk, \&e. to preferve the fuundations of the piers from injury.

JII.LIFREE is a town on the northern bank of the river Gambia, oppofite to James's ifland, where the Englith had formerly a fmall fort. The kingdom of Barra, in which it is fituated, produces great plenty of the neceflaries of life; but the chief trade of the inhabitants is in falt, which they carry up the river in cancoes; and, in return, bring down Indian corn, cotton cluths, elephants teeth, fmall quantities of Gold duft, \&e. "The number of canoes and pcople conflantly employed in this trade, make the king of Barra (fays Mr Park) more formidable to Europeans than any other chicftain on the river, and have encouraged him to eftablifh thore exorbitant duties, which tradere of all nations are obliged to pay at entry, amounting nearly to I. 20 on every veffel, great and fmall. Thefe duties, or cultoms, are generally collected in perfon by the alkaid or governor of Jillifree, who is attended by a numerous train of noify and troublefom= dependants, who, by their frequent intercourfe with the Englinh, have aequired a fmattering of our language, and beg for every thing which they fancy with fuch earneftucfs, that traders, in order to get quit of them, are frequently obliged to grant thei: requelts. Lat. \(13^{\circ} 16^{\prime}\). Long. \(16^{\circ}\) Io welt from Greenwich.

ILLUMINATI

\section*{I L L}
71. mi.. 1 i .

1 on jest of :10. liaziв.ин.

ILLUMINATI is the name which was affumed ly a fecret foci:ty or order, founded, on the firtt of May 1775 , by D. Adam Weithanpt profellor of canon law in the umivelity of Ingolladt. The real object of this onter was, by clandellinc arts, to nverturn every government aal every religion; to bing the feiences of civil dife into contempt ; and to reduce mankind to that inaginary ftate of Nature when they lived independent of each other on the fpomaneous productions of the earth. Is alowed object, however, was very different. It profeffed to diffule from fecret focieties, as from fo many centres, the light of feience over the world; to propagate the pureft principles of virtue; and to re inflate mionkind in the happinefs which they enjoyed during the golden age fubled by the poets. Such an object was well adapted to make a Ieep impreffion on the ingenuons minds of youth; and to joung men alone Wcithaupt at firf addreflet bimfelf.

It will naturally oceur to the reader, that the ineans of attaining this glorious object Should have been made as public as pufible; and that the veil of fecrecy thrown over the procetdings of the order was calculated to excite fufpicion, and to keep even young men of virtue and fagacity at a ditance. In any other country than Germany fecrecy might perhaps have had this effect ; but various circumfances confpired there to make it operate with a powerful attraction.

Ever finee free mafonry had acquired fuch reputation throughout Europe, a multitude of petty fecret focieties had been formed in the univerfities of Germany, each having its lodige, its mafter, its myferies, all modelled on thufe founded by mafons coming from England and Scotland (A). Before the foundation of Weihaupt's order, thefe lodges, we believe, were in goneral larmlefs; or if they were productive of any evil, it was only by giving the youth of the univerfities a tafte for fecrecy and mifticifm. Of this Weifhaupt availed himfelf; and as foon as he had conceived the ontlines of his plan, and digefted part of his fy:tem, he initiated two of his own pupils, to whom he gave the names of Ajax and Tiberius, affuming that of Spartacus to himfelf. Thefe two difciples foon vying with their matter in impicty (for it will be feen by and bye that he was noft impious), he juclged them worthy of being ad. mitted to his myfteries, and conferred on them the higheft degree which he had as yet invented. He called them Areopagites, denominated this monftrous affuciation, the order of illuminati, otalluminees, and infalled himfelf general of the order.

When public report fpread the news in Germany of this new order having been founded in the univerfity of Ingolftadt by Weifhaupt, it was generally fuppofed to be one of thofe little college-lodires which could not intereft the adepts after they had finighed their fludies. Many even thonght that Weihaupt, who was at that
time a fyorn enemy to the Jefuits, lind founded this litumati lodge with no other view than to form a party for himfelf againit thefe fathers, who after the fuppreffion of their order had been comthmed in their ofliets of public teachers at the miverfity of Jngolitatit and this opinion the illuminees were at pains to propagate. His character, tou, was at this tine fuch as to remove every lifpicion fron the piblie mind. A feeming aniduity in his duty, and a great fhew of zeal and crudition in exponding the laws, eafily mifled people to beliese thit his whole time and talents were engroffed with the Andy of them; and if we are to credit his own accuunt, Ingolftadt had never witneffed a profector fo well calcu. lated to ald new lullre to its univertity.

This feems, indeed, to have been the general opinion Art of the as well as his own ; for, fome time atter the foundation founder. of his order, he applicd himfelf with fuch dilizence and apparent candour to the duties of his ofice, that he was chufen what Abbé Barruel's tranfator calls superior of the univerfty. This new dignity only added to his hypocrify, and funithed him with fieth means of carrying on his dark defigns. He converted his houfe into one of thofe boarding houfes where young men, perpetually under the eje of their mafters, are fuppofed to be better preferved than anywhere elfe from the dangers which threaten them at that age. He folicited fathers and mothers to entruft their chillren to his care; and, counterbaluncing in fecret the leffons which he was obliged to grive in public, he fent home his oupils well difpofed to continue the fame career of feduction which he himfelf carried on at Ingolitadt, Atrocionlly im. pions, we fee him (fays M. Barruel), in the firlt year of his illuminifin, aping the God of Chriftianity, and ordering Ajax, in the following terms, to propagate the doctrines of his new gofpel: "Did not Chrill fend his apofles to preach his gofpel to the univerfe? You that are my Peter, why fhould you remain ille at home? Gu then and preach."

Thefe preachers har yet received no particular defignation; for when his firf adepts were initiated, he was far from having completed the code of his order. He knew that years and experience were neceffary to perfect that gradual fy fem of initiations and trials which, according to the plan he had conceived, his novices were to undergo ; but he could not endure the idea of facrificing years to mere theoretic projects; and he flattered himfelf with the hopes of fupplying the deficiencies of his incomplete code by provifional regulations and private inftructions, and of acquiring affociates who would receive his new golpel implicitly, and cooperate with him in all his views.

At length, however, the code was completed, and The \({ }^{3}\) eet the fect divided into two grand claffes; and each of thefe dividet in again fubdivided into leffer degrees, proportionate to the to clafes of progrefs of the adepts.
(A) Such, we are forry to fay, is the cafe fill. In a letter, dated the roth of May r799, which we received from a gentleman of learning and honour then refiding in Upper Saxony, is the following account of the univerfity of Jena: "This univerfity contains from two to three thoufand Andents, who are alinoit all republicans, and go about the country in republican uniforms. They are all furmed into clubs or fecret focieties; and the quarrel of one number of a club is taken up by all. The confequenee is, that the number of ducls among the different clubs is inconccivable. The weapon is generally the fabre, and the duel often ends in the death of one of the combatants." Yet gentlemen of Great Britain fend their fons to Germany to be educated !

\section*{I L L [76و] I L L}

Illumieati. "Thie firfl clafs is that of Jreparation. It com\(\underbrace{\text { Mumiuati. }}\) tains four degrees, vize, thofe of Norice, of Mincrual, of Ainor Illumince, or Illuninatus Minor, and of Major Illuminee, or Illuminatus Alacior. I's this clafs beloug likewife fome intermediary degrecs, borrowed from freemalonry, as means of propagation. Of the mafonic degrees, the code of the illuminitti admits the firlt three without any alteration ; but it adapts more particularly to the views of the fect the degree of Scotch Knight, and Ityles it the degree of Directing Illuminee, or Illuminatus dirigens.

The ficonid clafs is that of the Mysteries, which are fubdivided into the leffer and greater mylleries. The leffer cumprehend the priethood, and adminiftration of the fect, or the degrees of priefts, and of regents or princes.
in the greater myferies are comprehended the two degrees of Magus or philofopher, and of the Man-king. The elea of the latter compore the council and degree of Areopagites.
"In all thefe claffes, and in every degree (fays the Abbe Barrucl), there is an office of the utmoft confequence, and which is common to all the brethren. It is that which is occupied by him who is known in the code by the appellation of Recrutiter, or Brother In \(f_{2}\) nuator. This (continues our author) is not a term of my invention: it is really to be found in the code, and is the denomination of that illuminee, whofe employment is to entice members into the fect."

As the whole ftrength of the order depended upon the vigilant and fucceffful exercife of this office, fome brethren were carefully inftructed for it, who might afterwards vifit the different towns, provinces, and kingdons, in order to propagate the doctrines of illuminifm. Weifhaupt propofed to felect as his apoftles cither weak men, who would implicitly obey his orders, or men of abilities, who would improve the office by artifices of their own. It was, however, a duty which every brother was obliged to exercife once or twice in his life, under the penalty of being for ever condemned to the lower degrees.

To ftimulate the ardour of the brother infinuator, he was appointed fuperior over every novice whom he fhould convert. To affift his judgment, he was iuftructed in three important points concerning the defeription of men whom he ongbt to felect for converfion, the means which he ought to employ for enticing them to enter the order, and the arts which he ought to itady to form their character.

To enable the recruiter to determine wham lie ought to felect for converfion, he was to infinuate himfelf into all companies; he was to pry into the character of all whom he fhould meet with, whether friends, relations, frangers, or enemies; he was to write down all his remarks regularly every day ; to point out their itrong and weak fides, their paffions and prejudices, their intimacies, their interefts, and their fortune. This journal was to be tranfmitted twice every month to the fuperiors; by which means the order would learn who were friendly or hoftile to their views, and who were the individuals to whom they ought to direct their arts of feduetion (b).

Suppl. Voz. I. Part II.

The perfons to be excluded were all fuch as would Mllumirati. expofe the order to fufpicion or reproach. All in difcreet talkers, all who were proved violent, and dificuit to be manarget, all addicted to drumkennefs, and all Pagans, Jews, and Jefuits, were to be rejected. As the paitonage of princes would tend much to enrich and ftrengthen the fociety, it was agreed to admit them to the inferior degrees, but they were never to be initiated into the grand mylleries; they were never to rife beyond the degree of Scotch knight.
The perfons to be felected were young men of all Pee fons ftations, from eighteen to thirty; but particularly thofe the order, whofe education was not completed, and confequently whofe habits were not formed. ". Seek me out (fay's Weifhanpt in his directions to the infinuator) the dexterous and dathing youths. We mufl lave adepts who are infinuating, iutrigning, full of refource, bold and enterprifing ; they mult alio be fles:ible aud tractable, obedient, docile, and fociable" In another place he fays, "A bove all things pay attention to the figure, and felect the well made men and handfome young fellows. They are generally of engaging manners and nice feelings. When properly formed, they are the beft adapted for negociations; for firf appearances prepoffefs in their favour. It is true, they have not the depth that men of more gloomy coultenances often have. They are not the perfons to be cntru/led wuith a revolt, or the care of firring up the people; but it is for that very reafon we mult kn \(\lrcorner w\) how to choofe our agents. I am particularly fond of thofe men whofe very foul is painted in their eyes, whofe foreheads are high, and whofe countenances are open. A bove all, examine well the eyes, for they are the very mirrors of the heart and foul. Obferve the look, the gait, the voice. Every external appearance leads us to diftinguih thofe who are fit for our fchool."
Though young men were preferred, yet perions of al! ages were to be admitted if their character accorded with the principles of the order. The infinuator was defired to feek out thofe who were diftinguifhed by their power, riches, or learuing. "Spare no pains (fays To be feWeifhaupt), fpare nothing in the acquifition of fuch dirced by adepts. If heaven refule its fuccour, conjure hell. whatever

\section*{Fledere \(f_{2}\) mequens fuperos, Acheronta noveta."}

Perfons were to be fingled out from thofe profeffions which give men influence over others, or put them in the molt favourable fituation for diffeminating any peculiar opinions. With this view, feloolmafters, and fuperintendauts of ecclefiaftic feminaries, were to be fought after with much care. Bookfellers, poft-matters, and the fecretaries of polt-offices, were alfo to be felected. Thofe profeffions which accuftomed men to fpeak and argue, as that of counfellors and attorneys, and even phyficians, were alfo to be courted. "They are worth having (fays Weiflaupt), but they are fonetimes real devils, fo difficult are they to be led; they are, however, worth having when they can be gained over." Every exertion was to be made to gain the officers of a prince, whether prefiding over provinces or attending him im his conncils. "He that las done this, has done uore than if he had engaged the prince himfelf."

5 E
There
(B) As a fpecimen of the journals kept by the infinuators, and of the characters which the illuminees felected

Illuminati. \(\underbrace{1}\)
10.

And their characters tranimitted to the fuperiors.

There was alfo another defcription of men of whom Weifhaupt very wifely judged that they would be admirably fitted for the diffuffion of his doctrines. Thefe were the difappointed and diffatisfied. "Select thofe io particular (fays he) who have met with misfortunes, not from accidents, but from fome injuftice; that is to fay, in other words, the difcontented; for fuch men are to be called into the bofom of illuminifm as into their proper afylum.

When the infinuator has made choice of his vietim, he is required to draw from his diary a view of his cliaracter, opinions, principles, and connections. This he is to tranfmit to the fuperiors for their examination, and that they may compare it with the dianies which they have already received, perhaps from different infiuuators. When the choice of this infinuator is approved, the fuperiors determine which of the infmuators will be beft qualified to perform the tafk of feducing their candidate.

Two different methods were recommended; one of which was to be employed in enticing men who were fomewhat advanced in life or diftinguithed by fcience ; the other was to be ufed in feducing young men whofe character was not formed.
11
Proper me- With men of knowledge, who had already imbibed thods of fe- the principles of modern philofophifm (for no true phiducing men lofophers were to be attempted), the infinuator was to of know. ledge,
affume the character of a philofopher well acquainted with the my teries of ancient times. He was to defcant upon the importance of the fecret doctrines tranfmitted by tradition, to quote the gymnofophints of India, the prietls of lis in Egypt, and thofe of Eleufis, with the Pythagorean fchool in Greece. He was to learn by heart certain paffages from Ifocrates, Cicero, and Seneca, that he might have them ready upon all occafions. He was to throw out hints, that thefe fecret doctrines explained the difficult queftions concerning the origin and order of the univerfe, the Providence of God, the nature of the foul, its immortality and future deltination; he was to infpire them with the belief that the knowledge of thefe things would render life more agreeable and pain more fupportable, and would enlarge their ideas of the majelty of God: he was then to declare that he lad been initiated into the ee myteries. If the candidate expreffed any curiofity to be made acquainted
with them, the infinuator was firft to afcertain his opi- Illuminati, nions upon fome leading points, by propufing to him to write a differtation upon certain quettions. Should the anfwers not I leafe the infinuator, he was to relinquith his prey; but fhould they be fatisfactory, the candidate was to be admitted to the firt degree.

When the felected vietim was young, and had not im- And young bibed any of thofe opinions which correfponded with nien, the principles of the fect, a different method was to be followed. "Let your firt care (fays the legiflator to his infinuators) be to gain the affection, the confidence, and the efteem of thofe whon you are to entice into the order. Let your whoie conduct be fucl, that they fhall furmife fomething more in you than you wifh to thew; hint that you belong to fome fecret and powerful focicty ; excite by degrees, and not at once, a wifh in your candidate to belong to a fimilar fociety. Certain arguments and certain books, which the infinuator mult have, will greatly contribute to saife fuch a wifh ; fuch, for example, are thofe which treat of the union and Atrength of aflociations."

Every infinuator mutl be provided with books of this fort. But that their fuccefs might nut depend folely upon books, Weifhaupt gave to his difciples a fpecimen of the artilices which they might employ. The infinuator might begis by obferving, that a child in the cradle, abandoned to itfelf, is entirely helplefs; and that it is by the afiftance of others that it acquires ftrength; and that princes owe their greatnefs and their power to the union of thcir fubjects. Then the infinnator might touch on the importance of knowing mankind, and the arts of governing them; that one man of parts might eafily lead hundreds, even thoufands, if he but knew his adrantages. He was next to dwell upon the defects of civil fociety ; to mention how little relief a man can obtain even from his bett friends; and how very neceffary it is for individuals to fupport one another in thefe days : to add, that men would triumph even over heaven were they but united. He was to adduce as examples, the influence of the freemafuns and of the Jefuits. He was to affert, that all the great events which take place in the world depend upon hidden caufes, which thefe focieties powerfully influence. He was to awake in the breaft of his pupil the defire of reigning in fecret ; of prepa-
for propagating their principles, we fhall give the character of Zwack, denominated Cato, as it is defcribed in the tablet of his in innuator Ajas (Maficnhaufen).
" Francis Xaverius Zwack was fon of Philip Zwack, commiffary of the Chambre de Comptes, and was born at Ratifon; at the time of his initiation (29th May 1776) he was twenty years of age, and liad finiffed his college education.
"He was then about five feet high; his perfon emaciated with debanchery ; his conftitution bordering on melancholy; his eyes of a dirty grey, weak and languihing; his complexion pate and fallow; his bealch weak, and nnuch hurt by frequent diforders; his nofe long, crooked and hooked; his hair light brown; gait precipitate ; lis eyes always call towards the ground; under the nofe, and on each fide of the mouth, a mole.
"His heart tender and philanthropic in an extaordinary degree ; but Aoic when in a melancholy mood; otherwife a true friend, circumfpect, referved, extremely fecret; often fpeaking adrantageouny of himfelf; envious of other people's perfections; voluptuous; endeavouring to improve himidelf; little calculated for numerous affemblies; choleric aud violent, hut eafily appeafed; willingly giving his private opinions when one has the precaution to praife him, though contradicting lim; a lover of novelties. On religion and confcience widely differing from the received ideas; and thinking precifely as he ought, to become a good member of the order.
"His predominant paffions are, pride, love of glory, probity; he is eafily provoked; has an extraordinary prupenfity for myfteries; a perpetual cuftom of fecaling of himfelf and of his own perfections; he is alfo a perfect malter in the arts of difinulation ; a proper perfon to be received into the order, as applying himfelf particularly to the ftudy of the human heart." Sucl is the character of the beloved difciple of Weihaupt, the ino comparable Cato, and a leader of the fect of the illuminces!

\section*{1 L L [771] I L}

Slluminati. ring in his clofet a new conftitution for the world; and \(\underbrace{}_{13}\) of governing thofe who think they govern others.

After thefe, or other artifices of the fame kind, have

\section*{lato the} noviciate.

14
Pcriod of the noviciate. been cmployed, if the candidate be infpired with an ardonr to be intitiated, and give fatisfactory anfwers to the queftions propoled to hina, he is immedintely admitted a novice. But fhould he reject all means of feduction, let him take heed to imfelf; "for the vengeance of fecret focieties is not a common vengeance; it is the hidden fire of wrath. It is irreconcilcable; and fearcely ever does it ceafe the purfuit of its victims until it has feen them immolated."

The period of the noviciate varied according to the age of the new convert to illuniniim. At firf it constinued three years for thofe under 18 years of age, two years for thofe between 18 and 24 , and one year for thofe who were near \(3 \supset\); but it was afterwards Shortened,

The novice was not acquainted with any of the order except his infinuator, under whofe direction he remained during his noviciate. The lint leffons which he was taught refpected the inviolable nature of the fecrecy which every illuminee was obliged to obferve. He was tuld that flence and fecrecy were the very foul of the order; that ingenuoufnefs was a virtue only with refpect to his fuperiors; and that diftrult and referve were fundamental principles. He was enjoined never to fpeak of any circumftance relating to the order, concerning his own admiffion, or the degree which he had received, not even before brethren, without the flrongeft neceffity ; and was required to lign a declaration to this purpole.
15
Dictumary, geography, calendar, and cyl her of the order.

T'le novice was next taught the dictionary of the order, its geography, calendar, and eypher. To prevent the polibility of difcovery, every illuminee received a new name, which was characteriftic of his difpotitions, or of the fervices which were expected of him. Thus Weifhaupt, as we lave obferved, was called Spartacus, beciule he pretended to wage war agaiut thofe oppreffors who had reduced mankind to flavery; and \(Z\) wack, as we have feen, was named Cato, becaule he had written a differtation in favour of fuicide, and had once determined to commit that crime.

According to the new geography of the order, Bavaria was called Achaia; Munich was called Athens; Vienna was named Rome; Wertzburg was denominated Caribage ; and Ingolftadt, the fountain of the order, was called Ephefus, and by the profound adepts Eleufis. The novice bad alfo to learn the Pertian caIendar, which the order had adopted. Their era began A. D. 630. The months received new names: May was called Adarpsthafcht; Junc, Chardad; July, Thermeh; Augult, Aerdedmeh; and fo on. The cypher confifted of numbers which correfponded to the letters of the alphabet, in this order \(a, b, c, d\), aniwering to the numbers \(\mathrm{J} 2,11, \mathrm{~J}, 9\).

The novice had next to Atudy the flatutes of the illuminees, which he was affured contained nothing injurious to the flate, to religion, or to good morals. He was next defired to apply himfelf to acquire the morality of the order; which he was to do, not by reading the gofpels, but hy perufing Epictetus, Seneca, and Antoninus, and by ftudying the .works of the modern fophifts Weiland, Meiners, and Helvetius, \&c. The ftudy of man was alfo recommended as the moft intereft-
ing of all the fciences. He was taught this fludy not llitminati. merely as a \{cience, but as an art. A mole! of a juur. nal was given him, and he was required to infert in it oblervations upon the character of every perfon that de happened to meet with. To quicken his diligence, the inimuator occafonally examined his jommal. In the mean time, the infinuator was watehing hin as a centinel, and noting down regularly obiervations upon the defeets and merits of his pupil, which he always fent to his fuperiors.

16
The great object of the infinuator was to entangle the Noviee onovice, and to bind him indiffolubly to the order. With blged to this view he required the novice to draw a failhful pic-own cha. ture of himelf, under the pretence that he would thus racter. know himfelf better. YHe defired him to write duwn his name, his age, his country, his refidence, and his employment ; to give a lift of the books in his library ; to thate his revenue; to enumerate his friends and enemics, and the caufe of his enmities. He was alfo to give a finular account of his father and mother, his brothers and fitters, and to be very careful in pointing ont their paffions and prejudices, their throng and weak fietes.

In the mean time, the inlinuator was occupied in drawing up a new ftatement of every thing he had been able to difcover of the character and conduct of the novice. This flatement was tranfmitted to the fuperiors, compared with the former. If the novice was approved, he was then admitted to the fecond degree, upon his anfwering, in a fatisfactory manner, 24 grand queftions, which might enable the order to judge of his principles and the credit to which he was entitled, and would fix him down by fronger ties to the authoity of the fuperiors. The deteflable principles of the illuminees now begin to appear, as will be evident from the following quettions which we have felceted:

Have you ferioully reflected on the importance of the ftep you take, in binding yourlelf by eingagements that are unknown to you? Should you cver difcover in the order any thing wicked or unjutt to be done, what part would you take? Do you, moreover, grant the power Power of of life and death to our order or fociety? Are you life and difpofed, upon all occafions, to give the preference to clathed by men of our order over all other men? Du you fubject the fociety. yourfelf to a blind ubcilence, without any reflribion qubatjoever?

The novice having thus furmendered his confejence, lis will, and his life, to the devotion of the confpirators, and tius fubferibed, with his own hand, and confirmed by his oath, a refolution to become the mof abject have, was now deemed ỵualitied to afcend to the fecond degree, called Minerval.

In the dead hour of midnight he was conducted to a retired apartment, where two of the order were waiting is to receive him. The fuperior, or his delegate, appear-Admiffion ed ftanding in a fevere and threatening pofture; he held to the aea glimmering lamp in his hand, and a naked fword lay neerval. before him. The novice was anked, whether he fill perfilted in his intention of adhering to the order? Upon anfwering in the affirmative, he was ordered into a dark room, there to meditate in filence on his refolution. On his return, he was Atrictly and repeatedly quellioned if he was determined to give implicit obedience to all the laws of the order? The infinuator became fecurity for his pupil, and then requefted for him the protection of the order, which the fuperior granted with great folem.
\({ }_{5} \mathrm{E}_{2}\)
nluminati. nity, protefling that nothing would be found there hurtful to religin, to morals, or to the ftate. Having thus faid, the fuperior takes up the naked fword, and pointing it at the heart of the novice, threatens him with the fatal confequences of betraying the feerets of the order. The noviec again takes an oath, by wh:ich he binds himfelf, in the noof unlimited manner, to ferve the order with his life, honour, and eftate, and to obferve an inviolable obedience and fidelity to a!l his fuperiors. He is then admitted a Minerval, and henceforth is allowed to attend the aeademy of the fect.
The Minerval acadeny was compofed of 10,12 , or 15 Ninervals, and placed under the direction of a major llluninee. It met twice every munth in an inner apartment, feparated from the other rooms of the manfion by an autichamber; the door of which was to be fhut with care during the meeting, and ftrongly fecu. red by bolts. At the commeneement of every meeting, the prefident read and commented upon fome felect paffages of the Bible, Seneca, Epictetus, Marcus Aurelius, or Confucius; evidently with a view of diminifhing the reverence for the facred writings, by thus placing them on a level with the heathen moralits. Then each brotleer was afked what bcoks he had read fince laft meeting, what obfervations he had made, and what fervices he inad performed for promoting the fuccefs of the order?
To each Minerval academy a library belonged. This was formed by the contributions of the brethren, by prefents of hooks, and by another inethorl very extraordinary. All Illuminees acting as librarians, or keepers of archives, were admonithed to Aeal fuch books or manuferipts as might be ufeful to the order. At one time, fending a lift of the books which he wifhed to be embezzled from the library of the Carmes, Weifhaupt fays, "All thefe would be of much greater ufe if they were in our hands. What do thofe rafcals do with all thefe books?

Every brother at his admiffion was required to declare to what art or feience he meant chiefly to apply; and it was expected that he fhould afterwards every year give an account of the difeoveries or improvements which he had made. All the other brethren who were occupied in the fame Audies, were defired to give him every poffible affiftance. Thus a kind of academy was formed, to which thofe nwho could not ferve it by their talents might give pecuniary contributions. That this academy might have the appearance of a literary fociety, prizes were annually diftributed; the beft difonurfe was publifhed, and the profits fent to the coffers of the order.

Every month the prefident was to take a review of the faults which he had obferved in his pupils, and examine them eoncerning thofe which they might have been confcious of in themfelves; and it would be an unpardonable neglect, fay the flatutes, fhould any pupil pretend that, during the fpace of a whole month, he had remarked nothing reprehenfible.

It is impolfible to read thefe rules without admiring them. Were men but half as anxious, attentive, and \(r\) _-eful, to render themfelves good citizens and good
mit fuicide, rather than give any information againft the Illumirati. order. Suicide was reckoned not only isnocent, but honomrable, and was alfo reprefented as a peculiar fpecies of voluptuoufnefs. In orker to difcover the fentiments of the Minervals upon this fuhject, they were required to write a differtation upon the character and death of Cato, or any fimlar fubject. They were alfo defired to difeufs the favonrite doctrine of Weifhanpt, that the end fandifies the means; a principle of the moft pernicious tendency, which would render calumny, affafination, fedition, and treafon, laudable and excellent. Next, they were called upon to compofe a differtation, by which their opinions concerning kings and priefts might be afcertained. If they performed all thefe talks with the fpirit of an infidel, and the defperate firmnefs of a confpirator, they were then judged worthy of being promoted to the degree of minor illuminee.

The minor illuminees held meetings fimilar to thofe of the Minerval academy. It was neceffary that the prefident thould be one who was raifed to the degree of prieft, and intiated in the myfteries; but he was required to perfuade his pupils, that beyond the degree which he had attained there were no mytteries to be difclofed. "The ininor illuminees were to be fo trained, \(\mathrm{Min}^{22}\) or that they might look upon themielves as the foundersluminees of the order ; that by this powerful motive they might trained for be animated to diligence and exertion. With this view, the degree hints were feattered rather than precepts enjoined. It of was infinuated, that the world was nut fo delightful as it ought ; that the happinefs for which man was made is prevented liy the misfortunes of fome, and the crimer of others; that the wicked have power over the good; that partial infurrection is ufelefs; and that peace, contentment, and fafety, might be eafily obtained by means drawn from the greatelt degree of furce of which human nature is capable. Such views, it is added, actuating a fecret fociety, would not only be innocent, but moft worthy of the wife and well-difpofed.

Weilhaupt had furmed, with peculiar care, a code for this degree, which was intitled, Inflrutions for formsing ufeful Labourers in Illuminifm. Thefe intructions difcover an aftonihing knowledge of human nature, and are drawn up with a degree of fyftematic coolnefs which perhaps no confpirator before him ever exhibited. He lays down rules, by which the character of almot any perion may be afeertained. He recommends to the minor illuminees, to attend to the conduct of any perfon entrufted to their care, at two periods; when he is tempted to be what he ought not to be, and when, removed from the influence of every external temptation, he follows the dictates of his inclination. 'They were to ftudy the peculiar habits and ruling paffions of each; to kindle his ardour by defeanting on the dignity of the order, and the utility of its labours; to infufe a fpirit of obfervation, by afking queftions, and applauding the widom of the anfwers; to correct the failings of their pupil, by fpeaking of them as if they were not his, and thus making him judge in his own caufe ; to inftruct and advife, not by tedious declamation, but by fometimes dropping a few words to the purpofe, when the mind fhould be in a proper fate to receive them. Above all, they were directed to avail themfelves of thofe moments when they obferved a pupil difcontented with the world. "It is then (fays Weifhaupt) you muft prefs the fwelling heart, ftimulate the feufibility,

Nluminati. and demonftrate how neceffary fecret focietics are for the attainment of a better order of things."

Having paffed with applaufe through the fates of probation alrearly deferibed, the minor illumince is promoted to the rank of major illumince, or Scotch novice. As major illuminee, he is encompalfed with more rigid chains; and as Scotch novice, he is dilpatched as a miflionary into mafonic lodges, to convert the brethren to illuminifm.

The candidate for this degrce is ftrictly examined, in order to difcover what opinions he now entertains concerning the object of the fociety; the motives that prompted him to join it ; whether he is difpofed ftill to co-operate with the reft of the brethren in accomplifhing the grand object; and whether he be a member of any other fociety ; and what are the duties which it requires.

The fertile genius of Weifhaupt is not exhauted ; he has fill in referve artifices more profound, and bonds more powerful; his refources keep pace with the progrefs of his fchemes. He now lays a fnare for his pupils, from which he hopes none can efcape, and therefore he flatters himfelf they are his for ever. He demands of every candidate for higher degrees, to write, as a proof of confidence, a minute and faithful account of his whole life, without any referve or diffimulation. Referve or diffimulation would indeed be vain ; for the moft feeret circumftances of his life are already well known to the adcpts, by means of innumerable fpies, who, by the appointment of the fuperiors, have, unknown to him, been watching and ferutinizing all his actions and words, his temper, paffions, and opimions.

Now is prefented to the candidate the code of the brother fcrutator, called by the order the nofee te ipfum (know thyfelf). This is a catechifm, containing from a thoufand to fifteen hundred queftions, concerning his perfon, his health, his education, his opinions, his in. clinations, his habits, his paffions, his prejudices, and even his weakneftes. Quettions are alfo propofed refpecting his acquaintances, his relations, friends, and enemits. The candidate is required to enumerate his farourite colours, to deferibe his language, the nature of his converfation, his gait and gettures. Nothing, in fhort, is omitted that can tend to difinguifh his character as an individual, or as a member of fuciety. Upon many qualities in his character, thirty, forty, or fometimes near a hundred queftions are propofed. The following fpecimen will enable the rearler to judge what aftonifhing care Weifnapt employed to difcriminate characters.

Is his gait how, quick, or firm ? Are his fteps long, fhort, dragging, lazy, or fkipping? Is his language regular, diforderly, or interrupted? In fpeaking, does he agitate his hands, his head, or his body with vivacity? Does he clufe upon the perfon he is fpeaking to? Does he hold him by the arm, clothes, or button-hole? Is he a great talker, or is he taciturn? If fo, why? Is it through prudence, ignorance, refpect, or floth? \&c. Concerning his education, he is queftioned to whom does he owe it? Has he always been under the eyes of his parents? How has he been brought up? Has he any efteem for his mafters? Has he travelled, and in what countries?

By thefe queftions his temper and difpofitions might be accurately known. His leading paftions would be
difeovered by the following queries: "When he finds lliuminati, himfelf with different parties, which dous he adopt; the ftrongeft or the weakeft; the wittiell or the inoft Itupid? Or does he form a third? Is he conftant and firm in fpite of all obfacles: How is he to toe ratined? by praife, by flattery, or low eourthip; hy women, money, or the entreaties of his fritnds? Dues he love fatire ; and on what does he excreife that tabent ; on religion, hypocrify, intolerance, government, minilters, monks ?" \&c.

All thefe queftions are to be anfivered and illntrated by facts. It is neceffary to obferve that the ferutators alfo give in written anfwers to all thefe queltions. When the candidate las thus given a mimute hiftory of his life, and revealed all lis fecrets, his foibles, his errors, his vices, and his crimes, Weifuaupt triumphantly exclaims, "Now I hold him; I defy him to hurt us; if he thould wifh to betray us, we have alfo his fecrets."

The adept is next introduced into a dark apartment, where he folemnly fwears to keep fecret whatever be may learn from the order. He then delivers up the hiftory of his life, fealed, when it is read to the lodge, and compared with the character drawn of him by the brother ferutators. A corner of the veil is now lifted up, fill, however, with extreme caution. Nothing ap= pears palpable but the pureft principles and moll generous defigns. At the fame time many things are darkly fuggefted, which are incompatible with purity and generofity ; for while the utmoft care is employed to deceive the underfanding, nothing is negleced that can tend feeretly to corrupt the heart. A number of queftions are afked; the evident intention of which is to make the adept difeontented with the prefent moral government of the world, and to excite the defirc of attempting a great revolution. After anfwering thefe quellions, the fecretary opens the code of the ludge: and having informed the young illuminee that the ot:ject of the order is to diffule the pure truth, and to make virtue trimph, he proceeds to fhow that this is to be accomplifhed by freeing men from their projudices, and enlightening their underitandings. "To attain this, (continues the fecretary), we mut trace the origin of all fciences, we mult reward opprefled talents, we moit undertake the education of youth; and, forming an indiff luble league among the molt powerful geniufes, we mutt boldly, though with prudence, combate fuperfition, incredulity, and folly; and at length form our people to true, jult, and uniform principles on all fubjects." The fecretary adels, that in attempting to divelt vice of its power, that the virtuous may be rewarded even in this world, the order is counteracted by princes and priefls, and the political conflitutions of nations; that, however, it was not intended to excite revolutions and oppofe force by force, but merely th bind the hands of the protectors of diforder, and to govern without appearing to command; that the powers of the earth mult be encompaffed with a legion of indefatigable men, all directing their lahours towards the improvement of human nature. Were there but a ecrtain number of fuch men in every country, cac, might form two others. "L.ct thefe (fay* he) onty be united, and nothing will be impoffrble to our order." All this is very fpecious; it is well contrived to fafeinate the imagiation of the young, and the lwart of

\section*{I L I,}

Huminati. the generous and bencvolent, while, under all this pretended regard to virtue and to the happinefs of mankind, is concealed a mott formidable confpiracy againt the peace of the world.

After this adorefs is delivered, the major illuminee is prefented with the codes of the inlinuator and forutator; for he muft now infpect the pupils of the infinuators, and mult exercife the office of fcrutator while

The deeree The next degree, which is that of Scotch knight, of Scotch is both intermediate and Atationary. It is Itationary knight. for thofe who are not fufficiently imbued with the
principles of the order, and intermediate for thofe who have imbibed the true fpirit of illuminifm. The Scotch knights were appointed the directors of all the preparatory degrees, and to watch over the interefts of the order within their diftrict. They were to Atudy plans for increafing the revenues of the order, and to endea. vour to promote to public offices of confidence, of power and wealth, as many of the adepts as poffible; and to ftrive to acquire an abfolute fway in the mafonic lodges. They were to procure the management of the mafonic funds; and while they were to perfuade the brethren that thefe were expended according to their own orders, they were to employ then for promoting the views of the order. Thus one office of the Scotch knights was to embezzle the money that was entrufted to them, in order to diffufe truth, and to make virtue triumph.

After paffing with applause through this long and tedious probation, the adept is introduced to the clafs of the myiteries. He is not yet, however, made acquainted with the whole fecrets of the fociety ; ine mult fill fubmit to new trials; his curiofity muft be farther excited, his imagination mult be kept longer upon the flretch, and his principles of depravity be rendered more violent and inseterate before the vail be entirely withdrawn, which will difeover to him Weifhaupt and lis infernal crew, ploting the deltruction of the laws, feiences, and religion of mankind. The degree of epopt or prieft, to which the adept was next raifed, opened to view, however, fo great a part of the myfteries, that the reader will be fully prepared to expect the fecrets which remain to be unfolded in the other degrees.

Before being admitted to the degree of epopt, the adept was required to give a written anfwer to ten preliminary queltions. The infinuations againft the eitablifhed order of the world, which had formerly been nightly mentioned, inereale now to an indirect propofal to attempt a complete revolution. The candidate is afked, whether he thinks the world has arrived at that happy ftate which was intended by nature? Whether civil aflociations and religion attain the ends for which they were defigned? Whether the fuences are conducive to real happinefs? or whether they are not merely the offspring of the unnatural fate in which men live, and the crude inventions of crazy brains? It is then propofed as a queftion, whether there did not in an. tient times exift an order of things more fimple and happy? What are the beft means for reftoring mankind to that fate of felicity? Should it be by public meafures, by violent revolutions, or by any means that zould enfure fuccefs? Would it not be proper, with this view, to preach to mankind a religion more per.

774 I L L
fect, and a philofophy more elevated? And, in the Dluminat, mean time, is it not advifable to diffeminate the truth in fecret focieties?

Should the anfwers given to thele quefions accord with the fentinents of the order, on the day fised for the initiation, the candidate is blindfoided, and, along with his introducer, is put iuto a carriage, the windows of which are darkened. After many windings and turnings, which it would be impoufible for the adept to trace back, he is condueted to the porch of the temple of the myteries. His guide frips him of the mafonic infignia which he wore as a knight, removes the bandage from his eyes, and prefents lim with a drawn lword; and then having Itrictly enjoined him not to advance a ttep till he is called, leaves him to his meditations. At lengtb he hears a voice ex. claiming, " Come, elter, unhappy fugitive; the fathers wait for you ; enter, and fhut the dcor afier you." He advances into the temple, where he fees a throne with a rich canopy riling above it, and before it, lying upon a table, a crown, a fecptre, a fword, fome pieces of gold, and precious jewels, interlaid with chains. At the foot of the table, on a fearlet cuthion, lie a white robe, a girdle, and the fimple ornaments of the facerdotal order. The candidate is required to make his choice of the attributes of royalty, or of the white robe. If he choofe the white robe, which he knows it is expected he hould do, the hierophant, or initructor, thus addreffes him: "Health and happinefs to your great and noble foul. Such was the choice we expected from you. But flop; it is not permitted you to inveft yourfelf with that robe, until you have beard to what we now defline you." The candidate is then ordered to fit down; the book of the mytteries is opened, and the whule brethren liften in filence to the voice of the hierophant.

The exortiun is long and pompous; much artifice infrutions is concealed in it, and inuch eloquence difplayed. It picvious to experiates on the fublime and generous vicws of the for anfion. ciety; evidently with the defire of luiling adleep the fufpicion of the candidate, of exciting lim to admiration, and of infpiring him with enthutian. The hieroplunt then proceeds to unveil the mytteries. He launches out into a fplendid deleription of the original ftate of mankind; when health was their ordinary ftatc, when meat, and driak, and melter, were their only wants. At that period (fays he) inca enjoyed the moft ineflimable blelings, equaity and lilerty; they enjoyed them to their utmoft extent : buit when the wandering life cealed, and property farted into exitence; when arts and fciences began to flourin; when a dif. tinction of ranks and civil affociations were eflablifhed, "liberty was ruined in its foundation, and equality difappeared. The world then ceafed to be a great family, to be a fingle empire ; the great bond of nature was rent afunder." Whants now increaled, and the weak imprudently fubmitted to the wife or the ftrong, that they might be protected. As the fubmiffion of one perfon to another arifes from wants, it ceafes when the wants no longer exift. Thus the power of a father is at an end when the child has acquired his Atrength. Every inan, laving attained to years of difcretion, may govern himfelf; when a whole nation, therefore, is arrived at that period, there can exilt no farther plea for keeping it in wardhip.

Such

Such af fate as that of civil focicty, is then reprefented as incompatible with the practice of virtue. "With the divifion of the globe, and of its ftates, benevolence (fays the hierophant) was reftrained within certain limits, beyond which it could no longer be extuded. Patriotifm was deemed a virtue; and he was flyled a patiot who, partial towards his countranen, and unjuft to others, was blind to the merits of flangers, and believed the very vices of his own country to be perfections. We really belold (continues he) pathotilin generating localifm, the confined fpirit of families, and even cgoifm. Diminifh, reject that love of country, and mankind will once more learn to know and love each other as men. Partiality being caft afide, a union of hearts will once more applat, which will expand itfelf over the globe."

Thefe umphilofophical declamations, entlufiaftically pronounced, at length make the profylete exclatm, in unifon with his matter, "Are fuch then the confequences of the infitution of fates, and of civil fociety? Ofolly! Oh people! that yon did not forefee the fate that anaited you; that you fhould yourfolves have fecended your defpots in degrading lomman nature to fervitude, and even to the condition of the brute!"

Having wrought up the profelyte to this pitch of frenzy, and enumerated all the evils which, according to Weifhaupt, arife from political affuciation, the hicrophant comes to reveal the means by which the grievances of the hman race may be redreffed. "Providence (he fays) has tranfmitted the means to us of fecretly meditating, and at length opcrating, the falvation of human kind. Thefe means are the fecret fchools of philofophy. Thefe fehorls have been in all ages the archives of nature, and of the rislits of man. Thefe fohools fall one day retrieve the fall of haman nature, and princes and nations shall disapprar from the face of the earth; and that without any violence. Human nature thall form one great family, and the earth fhall be:ome the hahitation of the man of reafon. Reafon Ball be the only book of laws, the jole code of man. This is one of our grana' myllerics. Attend to the demonftration of it; and learn how it has been tranfmitted down to us."

This pritended demontration makes part of the fame fophiftical harangue; and couffls in panegyices on the dignity of human nature; in a bafclets morality ; and in a feandaluus perverfion of the Chriftian Scriptures, with a blafphemous account of the minifty of the Saviour of the world.
"What ftrange 9lindnefs (continues the hitrophant) can have induced men to imagine, that human nature was always to be governed as it has hitherto been? Where is the being who has condemned men, the betk, the wifeft, and the moft enlightened men, to perpetual Пavery? Why thould human nature be lereft of its molt perfect attribute, that of governing itfelf? Why are thofe perfons to be alvays led who are capable of conducting themfelves? Is it then imponfible for mankind, or at leaft the greater part of them, to come to majority? Are we then fallen fo low as not even to feel our chains, as to hug them, and not cherifh the flattering hope of being able to break them, and recover our liberty? No; let us own that it is not impoffible to attaill unlversal independence."

The principal means which Weifhaupt offers to his

775] I L L
adepts for the conqueft of this land of promife, is to Illuminati. diminifh the wants of the people; and accordingly the \(\underbrace{0}_{28}\) code denominces eternal war with every fpecies of com-The illumimerce. Fonce the hicrophant procceds to inform the nees enecandidate, that he who withes to fubject nations tomies to his yoke, need but to create wants, which he alone cancommerce. fatisfy. "Confer (fays he) upon the nercantile tribe fome rank or fome authority in the government, and you will have created perlaps the mot formidable, the mot defpetic of all powers. He, on the contrary, who wifhes to rember mankind free, teaches them how to refraia from the acquition of things which they can not afford: he enlightens them, he infufes into them bold and inflexible manners. If you cannot diffufe, at the fame inflant, this degree of light anong all men, at leaft begin by enlightening yourfelf, and by rendering yourfelt better. The mode of diffuling univerfal light is, not to proclaim it at once to the whole world, but to begin with yourfulf; then turn to your next neighhour : you too can enlighten a third and a fourth : let thefe in the fame manner extend and multiply the number of the children of light, until numbers and force fhall thrasu ponver into your i.ands. You will foon acquire futficient force to lind the bands of your opponents, to fuljugate tbem, and to ftitte wickectuets in the embryo ;" i. e. you will foon be able to dlitte every principle of law, of government, of civil or political focicty, whofe very inftitution, in the eyes of an illuminee, is the germ of all the vices and misfortunes of human nature.

The hierophant, continuing to infilt on the neceflity Their mo. of enlightening the people to operate the grand revo-rality; hution, fuems to be apprchenfive that the candidate may not yet clealy conceive the real plan of this revolution, which is in future to be the fole object of all his inflructions. Let your intluctions and lights be univerfally diflufed; fo thall yourender mutual fecurity univerfal; and fermity und inflrution aill evable us to live withoui priuce or govermment. The influction which is to accomphef this great end, is inftruction in morality, and morality alons; for "tue morality is nothing elfe than the ait of teaching men to facke off their suarifbif, to attain the age of manhood; and thus to weed neither princes nor governments. The morality which is to perform this miracle, is not a morality of vain fubtletics. It is not that morality which, degrading man, renders hiow carelefs of the goods of this workl, forbids him the enjuyment of the innocent pleafures of life, and infpires him with the hatred of his neighbuar. Aloze all, it muft not be that morality which, adding to the miferies of the miferable, throws them into a flate of pufillanimity and defuair, by the threats of lell and the fiar of devils. It mult be a divine docirine, fuch as Jefus iaurst to his difciples, and of which he grave the real interpretation in his fecret conferences."

The impious hierophant then proceeds, with match- \({ }^{30}\) lefs blafphemy, to reprefent the Redeemer of mankind And blafo of as teaching, like the Grecian fophifts, an exoteric and chrin. an efoteric doctrine. He deferibes him as the grand mafter of the illuminees; and affirms, that the object of his fecret, which is loft to the world in general, has been preferved in their myfteries. It was "to reinflate mankind in their original equality and li* bebty, and to prepare the means. This explains in.

\section*{I L L [7; C] I L L}

Iluminari, what fenfe Chrit was the Saniour and Redeemer of the suorld. 'I'he doctrine of original lin, of the fall of man, and of his regeneration, can now be underflood. The flate of pure nature, of fallen or corrupt nature, and the flate of grace, will no longer be a problem. Manki:ch, in quitting their thate of orivinal liberty, fell from the fate of nature, and lof obeir dignity. In their civil fociety, under their govemments, they no longer live in the ftate of fure nature, but in that of fallen and corrift nature. If the moderating of their pafions, and the diminution of their wants, reinfate them in their primitive dignity, that will really conftitute their redengion and their flate of grace. It is to this point that morality, and the molt perfect of all morality, that of Jefus, leads mankind. When at length this doctrine fhall prevail thronghout the world, the reign of the good and of the elect flall be eftablithed."

This language (as M. Barruel obferves) is furely not enigmatical; and the profelyte who has heard it
\({ }^{2}\) without huddering, may flatter himfelf with being Prepalatn- worthy of this Antichriftian priefthood. He is led ry rtes to back to the porch, where he is invetted with a white tunic and broad fearlet belt of filk. The fleeves of the tunic, which are wide, are tied in the middle and at the extremities with ribbons likewife of fcarlet; and the candidate is recalled into the temple of myteries. He is met by one of the brethren, who does not permit linn to advance till he has declared "whether he perfectly underftands the difcourfe which has been read to him; whether he has any doubts concerning the doctrines tanght in it; whether his heart is penetrated with the fanctity of the principles of the order; whether he is fenfible of the call, feels the frength of mind, the fervent will, and all the difintereftednefs requifite to labour at the grand undertaking; whether he is ready to make a facrifice of bis will, and to fuffer himfelf to be led by the moft excellent fuperiors of the order."
Initationto The rites of the preceding oegree were in impious dethe frieft- rifion of the facrament of the Lord's fupper; thofe of hood. the prefent are an atrocious mimicry of facerdotal ordination ; at which, as every one knows, the Lord's fupper is likewife celebrated. A curtain is drawn, and an ahar appears with a crucifix upon-it. On the altar is a bible; and the ritual of the order lies on a reading den, with a cenfer and a phial full of oil befide it. The dean, or prefident, who acts the part of a bifhop, bleffes the candidate, cuts hair from the crown of his head, anoints him, clothes him in the veflments of the priefthood, and pronounces prayers after the fathion of the order. He prefents him with a cap, faying, "Cover thyfelf with this cap; it is more precious than the royal diadem." The mock communion is then diftributed; and it confifts of milk and honey, which the dean gives to the profelyte, faying, "This is that which nature gives to man. Reflect how happy he would fill have been, if the defire of fuperflities had not, by depriving him of a tafte for fuch fimple food, multiplied his wants, and poifoned the balm of life." The ceremonies are terminated by delivering to the epopt that part of the code which relates to his new degree.

Among the inftructions which it contains, the following are more particularly worthy of notice. The epopt, fays the code, "will take care that the wri-
tings of the members of the orde: flall be cried un, and Mhnninati. that the trumpet of fame flail be founded in their honour. He will alfo ñod means of bendering the reviewers from cafing any fifficions on the writers of the fect." He is likewite intruited to tribe the common people into the interelts of the ordic, and to corropt their minds, by getting poffefinos of fchools and other feminaries of learning. But "if it be neceffary for us to be malters of the ordinary fchools (fays the inpious legilator), of how much more importance will it be to gain over the Ecclefinfii fominaries and their fuperiors! With them we gain over the chief part of the conntry; we acquire the fuspart of the greatefl enemies to innovation: and the grand point of all is, that through the clergy we become maflers of the middle and luaer claffes of the prople."

From the degree of epopt or prieit are chofen the Qualificaregents or prince-illuminees. On making this choice, fays thons for the code, three things of the utmoft coniequence are to of regene. be obferved. " \(1 /\), The greateft referve is neceffary with refpect to this degree: \(2 d{ }^{2} \mathrm{y}\), Thofe who are ad. mitted into it, muit be as much as poffible free men, and independent of princes: 3 dly, They mutt have clearly ma. nifefted their batred of the general conflitution, or the actual flate of mankind; and have thewn how evidently they wifh for a change in the government of the world." If thefe requifites be found in an epopt who afpires to the degree of regent, fix preliminary quellions are put to him; of which the obvious meaning is to difcover, whether he deems it lawful and proper to teach fubjects to throw off the authority of their fovereigns, or, in other words, to deftroy every king, miniter, law, magiftrate, and public authority on earth.

When thefe queftions are anfwered to the fatisfaction of his examiner, he is informed, "that ass in future, he is to be entrutted with papers belonging to the order of far greater importance than any which he has yet had in his poffeffion, it is neceffary that the order fhould have farther fecurities. He is therefore commanded to make his will, and infert a claufe with refpect to any private papers which he may leave, in cafe of fudden death. He is to get a formal or juridical receipt for that part of his will from his family, or from the public magitrate; and he is to take their promifes in writing, that they are to fulfil his intentions." This precaution being taken, and the day fix-Admifioes ed for his inauguration, he is admitted into an ante-to this dechamber hung with black, where he fees a fkeleton, gree. elevated two fleps, with a crown and fword lying at its feet. Having given up the written difpofitions, \&rc. refpecting his papers, his hands are loaded with chains as if he were a llave, and he is left to his meditations. A dialogue then takes place between his introducer and the provincial, who is feated on a throne in a faloon adjoining. It is in a voice lond enough to be heard by the candidate, and confits of various queftions and anfwers; of which the following may ferve for a fpecimen :

Prov. Who has reduced him to this flate of fla. very?

Anf. by the Inirod. Society, Governmeats, the Sciences, and falfe Religion.

Prov. And he wifhes to caft off this yoke, to become a feditious man and a rebel ?

Anf. No; he wifhes to unite with us, to Join in OUR fights against the constitution of governments, the comuption of morals, and the profanation of religion. He wifhes, through our means, to become powerful, that he may attain the grand ultimatum.

Prov. Is he fuperior to prejudices? Docs he prefer the seneral intereg of the meniverfe to that of more limited aflociations?

Anf. Such have been his promifes.
Prov. Afk him, whether the fkeleton which is before him he that of a ling, a noblemon, or a beggar :

Anf. He cannot tell; all that he fees is, that this fieleton was a man like us; and the character of man is all that he attends to.

After a great deal of infidious mummery like this, the epopt is admitted to the degree of prince; but before his inveltiture with the infignia of that order, he is exhorted to be free, \(i\). e. to be a man, and a man who knows how to govern bimflf; a man who knows his duty, and his imprefcripille rights; a man who ferves the univerfe alone; whofe actions are folely directed to the general benjfi of the world and of humm nature. "Every thing elfe (fays the provincial) is injusTICE." A long pancgyric is then made on the happinefs which will be experienced by mankind, when every fatber of a fanily flall be fovercign in his tranquil cot! when he that wifhes to invade thefe forred rigbis hall not find an afylum on the face of the earth! when idlenefs thall be no longer fuffered; and when the clod of ufeful fiemes foall be cafl fride (c)!

The fign of this degree confifted in extending out the arms to a brother with the hands open; the sripe was to feize the brother by the two elbows, as it were to prevent him from falling; and the word was re. demption! The epopt was invelted with his principality by receiving a buckler, boots, a cloak, and a hat ; and on receiving the boots, he was defired to far no roud which might lead to the propagation or difcovery of bappinefs. Thus decorated, the prince illuminee received the fraternal embrace, and heard the inItructions for his new degree.

One would think that the adept had now arrived at the very aemé of profanenefs and treafonable confpiracy. He has been initiated in myfteries which burlefque Chriftianity and its Divine Author, and at the fame time vow vengeance againft all government, all law, and all feience: yet Weifhaupt, in a letter to Cato Zwack, his incomparable man, lays, that he has com. pofed four degrees above that of regent, or prince.illumince; with refpect even to the lowefl of which, his degree of prieft will be found no more than child's play. " The ritual of thefe degrees, (fays he), I never fuffer to go out of my hands. It is of too fe-

Suppl. Vul. I. Part II.
rious an import; it is the key of the ancient and mo. Mluminath dern, the religious and political, lillory of the uni- --هum verfe."

This caution of the chief confpirator has deprived us of the power to give fo particular an account of thefe degrees as we have done of the preceding; but the Abbe llarruel alfures us that they were rednced to tivo, viz. that of Magus, and that of the Man-king; and that thefe two contituted the greater mestee ries. When the adept was admitted to the degree of magus, he was illuminized only in philofophy and religion; when to that of man king, new lights were given him refpecting property, and every fpecies of political affociation. The Abbe quotes a paffage from the Critical billory of all the degrces of illuninifm, written by a man of honour, who had paffed through them all, which will give the reader a fulficient idea of the object of thefe laft degrees.
"With refpect to the two degrees of marus and of Objects of man king (fays this writer), there is no reception, that the degree is tof fay, there are no cercmonies of initiation. Even and manthe elect are not permitted to tranferibe thele degrees; king. they unly hear them read, and that is the reaton why I do not publith them in this work. I'he firt is that of Magus, called alfo philofopher. It contains the fundamental principles of Spinorifm. Here every thing is material; God and the world are but one and the fame thing : all religions are inconliftent, chimerical, and the invention of ambitious men."

That this is the doctrine of Spinoza, and that Spinoza was an atheit, is mott certain ; but though nothing can be effentiall, worfe than atheifm, we are ftroncly inclined to fufpect that, at the initiation of the Magus, expreffions muft have been ufed more fooking at leaf. to the car than the philofophic jargon of the aportate Jew. It is long fince the philofophy of Spinoza was in Germany recommended from the prefs (fee Splnoza, Encycl.) ; it is but very lately that a profeffor in the univerfity of Jena publifhed a look, in which he teaches that there is no God, and that we abfurdly give that title to the relations of Nature (D) ; and fometling approaching fo near to atheifm had been communicated to the adept when he was admitted to the priethood, that we are perfuaded Weifhaupt mult have alluded to language at leaf different from that in which Spinoza tanght his dark doctrines, and that language, aceompanied perhapes with impious and audacious geitures, when he faid that, compared with his higher myfteries, his degree of priell was but child's play.

What gives fome degree of probability to this conjecture, if it be nothing more, is the following fact related by the Abté Barruel. During the French revolution (fays that able and weil-informed writer), a comedian \(5^{F}\)
appeared
(c) This will naturally furprife our readers; but it could not furprife him to whom it was addreffed; for when candidate for the priefthood, he had been alked, "Do the fciences which men cultivate, furnifh them with real lights? Are they conducive to real happinefs? Are they not, on the contrary, the offspring of numberlefs wants, and of the unnatural fate in which men live? Are they not the crude inventions of crazy hrains ?" There were, however, to be academies for the cultivation of fuch fciences as fuited the delignsof the order. Each acadeny was to confift of nine epopts, of whom feven were to prefide refpectively over fo many departments of fcience, whilf the other two were to officiate as feeretaries. One of the departments included the oceult fciences, to which belonged the art of raifing the feals of the letters of all who belonged not to the order, and of fecuring their own letters againft fimilar practices!!
(D) We learned this from the letter already quoted in note (A).

\section*{}

Illuminatio appeared (E), dreffed in the facerdntal robes of the il luminces, and perfonally defying Almighty God. "No! deftroyec."

This may appear to be nothing more than what the adept has becri already taught in the leffer myfteries; and it is in fact nothing more than that to which he
muft have feen thefe mytheries tending; but the reader and it is in fact nothing more than that to which he
muft have feen thefe mytteries tending; but the reader undertands not the language of the illuminees, if he fuppofes that, by the patriarchal fate, they mean fuch a flate as that of the patriarchs of the Old Teftament. No! their patriarchal ftate is the fancied favage ftate of the atheiftical philofophers of Greece and Rome, when mankind had ncither property nor fixed habitation. This is evident from one of the difcourfes of the hierophant ; in which he tells the adept, that it would have been happy for man " had he known how to preferve himfelf in the primitive fate in which Nature had placed him! But foon the unlappy germ developed itfelf in his heart, and reft and happinefs difappeared. As families multiplied, the neceffary means of fubiritence began to fail. The Nomade or roaming life ceaffd; property bogan; men chofe fixed babitaticns; agriculture brought them togetbir; LIBERTY WAS RUINED IN ITS gounoathuns, and beuality disappeared."

To reftore that liberty and equality, therefore, whicb is the ultimate object of the order, and conflitutes the Man-king, all property muft be abolifhed, every houfe burnt, as well the cottage of the peafant as the palace of the prince; and mankind mut once more inhabit woods and caverns without clothes and without fire, and fally out occafionally to encounter their fellowbrutes, and to fearcb for food ameng the wild herbs of the defart. According to Mochus the Phenician, and the Greek philofophers of this hopeful fchool, this was *See the original itate of man *; and to this flate it was the
1oig's Let-object of Weifhaupt and his adepts to reduce man again. (faid the impious wretch) thou doft not exilt. If thou haft power over the thunderbolts, grafp them; ain them at the man who dares fet thee at defiance in the face of thy altars. But no! I blafpheme thee, and I flill live. No! thon doft not exift." It will be feen by and bye, that the chiefs of the revolution, and even numbers of their tools, were illuminized; and is it improbable that this blafphemer, who was arrayed in the infignia of the epopts, made ufe of the language and geftures of the higher myfteries? Whether it be or not, M. Barruel ha; proved, even from the writings of Weifhaupt himfelf, that the magi were at leaft atheifts of the fchool of Spinoza.
" The fecond degree of the grand myileries, called the Man-king, teaches (according to the author of the Critical Hiftory), that every inhahitant of the country or town, every father of a family, is fovereign, as men formerly were in the times of the patriarchal life, to which mankiul is once more to be carried back; that in confequence all authority and all magillracy mult be demonftrate the tyranny and defpotifm of all laws hu-
man and divine, and of every government, whether monarchical, arittocratical, or republican ; which bas declared him free, and taught him that he las no forereign on earth or in heaven ; no rights to refpect in others, but thofe of perfect equality, of favage liberty, and of the molt abfolute independence; that this fociety is not the offspring of an ignorant and fuperftitious antiquity, but of modern philofophy; io one word, that the true father of illuminifm is no other than Adam Weilhaupt, known in the fociety by the name of Spartacus! This important fecret, however, remained a myftery even to the greater part of the magi and the man-kings, being revealed only to the grand council of areopagites, and to a few other adepts of diftinguilhed merit.

So zealoully was the order bent upon propagating Prop fat its execrable principles through the whole world, that fora feniale fome of the chiefs had plannied an order of female a- order, depts, in fubferviency to tlie defigns of the men. "It will be of great fervice, (fays Cato Zwack), it will procure us both information and money, and will fuit charmingly the tafte of fome of our trueft members, who are lovers of the fex." An affefior of the Impe. rial chamber at Wetzlar, of the name of Dittfurt, but known among the illuminees by that of DiFinos, expreffed even his defpair of ever bringing men to the grand object of the order without the fupport of female adepts; and he makes an offer of his own wife and his four daughters-in-law to be firt initiated. This order wds to be fubdivided into two claffes, each forming a feparate fociety, and having different fecrets. The firit was to be compofed of virtuous.women ; the fecond of the wild, the giddy, and the voluptuous. The brethren were to conduct the firft, by promoting the reading of good books; and to train the fecond
(E) He does not fay where this aypearance was made ; but the circumflances related lead us to fuppofe that it was in a church.

\section*{I L L [779] I L L}

Fiuminati, fecond to the arts of fecrelly gratifying their pafions. The wile of an adept named Ptulemy Magus was to prefide over one of the clafles; which (fays Minos) will become, umder her management and his, a very pretty jociety. "You mull contrive pretty degrees, and dreffes, and ornaments, and elegant and decent rituals. No man nult be admitted. This will make them more keen, and they will go much farther than if we were prefent, or than if they thought that we knew of their proceedings. Leave them to the fcope of their own fancies, and they will foon invent mytteries which will put us to the bluifh, and myfteries which we can never equal. 'They will be our great apoftles. Reflect on the refpect, nay, the awe and terror, infpired by the female myflics of andiquity. Ptolemy's wife mut direct them, and the will be iullucted by Ptolemy ; and my flep. daughters will confult with me. We mult always be at hand to prevent the introduction of any improper queflion. We mutt prepare themes for their difeuffion: thus we fhall confefs them, and infpire them with our fentiments. No man, however, mult come near them. This will fire their roving fancies, and we may expect rare mylteries!"

But notwithtanding all the plans and zeal of this profligate wretch and others of the fraternity, it does not appear that the General Spartacus ever confented to the eftablifhment of the filterhood. He fupplied, howerer, the want of fuch an infitution, by fecret inftructions to the regcuts, on the means of making the influence of women over men fubfervient to the order, without entrutting them with any of the fecrets. "The fair fex (fays he) havirg the greateft part of the world at their difpofal, no ftudy is more wurthy the adept than the art of flatlery, in order to gain them. They are all more or lefs led by vanity, curiolity, pleafure, or the love of novelty. It is on that lide, therefore, they are to be attacked, and by that to be rendered fubfervient to the order." That Weilhaupt's fagacity had not on this occafion forfaken him, is very evident; fince it has been proved that the German fair, who were the correfpondents of the illuminees, welcomed the French * Dr Robi invaders of their native country *. Nay, fo lately as fon's Proofsthe winter of 1798 , our correfpondent in Saxony heard of a Confi= feveral of thefe illuminized ladies exprefs a wifh that the vucy. French might invade and conquer England; for then, faid they, tea and coffee would be cheaper!

It is not enough for the founder of a fect of confpirators to have fixed the precife ubject of his plots. His accomplices mult form but one body, animated by one fpirit; its members mult be moved by the fame laws, under the infpection and government of the fame chiefs. A full account of the guvernment of Weifhaupt's order will be found in the valuable work of Abbe Barruel ; our limits permit us to give only fuch a general view of it as may put our readers on their guard againlt the fecret machinations of thefe execrable villains, whofe ludges are now recruiting, under different denominations, in every comutry in Europe.

Wherever illuminifm has gained a footing, as the means of fubordination, there is a general divifion of command as well as of locality. 'The candidates and novices are each under the direction of his own infinuator, who introduces him into the Minerval lodges; each Minerval lodge has a fuperior from among the preparatory elafs, under the infpection of the intermediary clafs. So
many lodges conftitute a ditrit, under the direction of thun inatio a fuperior, whom the order calls dean. The des: is fubjected to the provincial, who has the infpection and command of all the lodges and deancries of the prowinec. Next in erder comes the national fuperior, who has full power over all within his nation, provincials, deans, lorlges, \&e. 'Ihen comes the fupreme conncil of the order, or the arcopazitics, over which prefides the senera? of iltuninifm. Thus has the order formed within uffif a fupreme tribunal, to whofe inquilition all nations ate to be fubjected. The areopagites, confiting of tweive fathers of the order, with the general at their head, form the centre of communication with all the national fuperiors on carth; each national is the centre of one particular nation ; the provincial, of one province; the clean, of the lodges within his deanery; the Minerqul mafler, of his academy ; the venerable, of his matonic lodge; and the infmuator or recruiter, of his novices and candidates.

The higher degrees (fays Weifhaupt in ome of his rheir \({ }^{44}\) inftructions to the regents) mult always be hidden from mio do of the lower. The fimple illumince therefore correfponds carrefion= with his immediate fuperior, knowing perhaps no other dence; member of the order ; the latter, with his dean ; and thus gradually afcending to the national fuperiors, who alone are acquainted with the refidence of the areopagites, as they again are with the names and refidence of the general. Any member, however, of the inferior degrees, may occafionally correfpond with his unknown fuperiors, by addreffing his letters Quibur licet; and in thefe letters he may mention whatever he thinks conducive to the advancement of the order. It he be a novice, he may in thefe lutters inform his fuperiors how his inftructor behaves to him, or may draw the character of any perfon whatever. When the letter of any adept contains fecrets, or complaints which lie choofes to conceal from his immediate fuperior, he directs it Soli or Primo; and then it can be opencd only by the provincial, the national fuperior, the areopagitcs, or the general, according to the rank of the writer. which is by fome contrivance unknown to M. Barruel, indicated on the outfide of the letter. The provincial opens the letters of the ninor and major illuminees which are directed Soli; the Quibus licets of the epopts: and the Prinos of the novices; but he cannot open either the Primo of the minerval, the Soli of the Scotch knight, or the Quibus licet of the regent. He can only form a conjecture as to the perfons who open his own letters, and thofe which he is not permitted to open himlelf.

When it is confidered, that by one of Weifhaupt's 45 ftatutes, the provincial lias in each chapter or dillrict ving of gia confidential epupt, who is his fecrel cerfor or fiy ;portance to that thefe fpies are tu infinuate themfelves into all com- hacir order, panies, and collect anecdotes of fecret biflory; that the hitlorian of the province is to infert thefe anecdotes into a journal kept for that purpofe ; and that the provincials are obliged to forward the contents of thefe journals to the high fuperiurs of the order -- fome notion may be formed of the influence of the general and areopagites in every country iuto which illuminifm has found its way. "The means of aequiring an afcendency over men (fays Weifhaupt), are incalculable. Who could enumerate them all ? They mutt valy with the difpofition of the times. At one period, it is a

\section*{I L L [780] I L L}

Illuminati. tafte for the marvellous that is to be wrought upon. At another, the lure of fecret focieties is to be held ont. For this reafon, it is very proper to make your inferiors believe, without telling them the real flate of the cale, that ail other fecret focieties, particularly that of Fremafoury, are ficretly direded ly us. Or elfe, and IT IS REALLY THE FACT IN SOME STATES, THAT POtent monarchs are governed by our order. When any thing remarkable or important comes to pafs, hint that it origimated with our order. Should any perlon by his merit acquire a great reputation, let it be generally underftood that be is one of us.
"If our order cannot ettablifh ittelf in any particular place, with all the forms and regular progrefs of our degrees, fome other form mull be affiumed. Always have the olject in view; that is the effential point. No matter what the clonk be, provided you fucceed; a clook, however, is alweys neeeffury, for in fecrecy our firength lies. The inferior lodges of freemasonry are the most convenient cloaks for our grand obIECT; becaufe the world is already familiarifed with the idea, that nothing of importance, or worthy of their attention, can fpring from mafoury." No artifice, however, is to be left untried. "You may attend large and commercial towns during the times of fairs in different characters; as a merchant, an officer, an abbs. Everywherc you will perfonate an extraordinary man, having important bufinefs on your hands; but all this mult be done with a great deal of art and cantion, left you fhould have the appearance of an adventurer. You may write your orders with a chymical preparation of ink, which dijappears after a certain time. Never lole fight of the military fchools, of the academies, printing preffes, libraries, cntbedral chapters, or any public efablijhbments that can influence education, or government. Let our regents perpetually attend to the various means, and form pians, for making us masters of all thefe efablifbments. When an author fets forth principles true in themfelves, but which do not as yet fuit our general plan of education for the world, or principles, the publication of which is premature; every effort muft be made to gain over the autbor; but fhould all our attempts fail, and we fould prove unable to entice him into the order, let bim be dijeredited by every poffole means"

Of their methors of difcrediting anthors, one has come to our knowled'ge, which mult be interefting to forne of our readers. Dr Robifon's work, entitled Proofs of a Confpiracy, Scc. which firl unmalked thefe hypocrites in this country, found its way into Ger. many, and was tranflated into the German language, and expofed to fale at the Leipfic fairs. The illuminees, under the difguife of merchnnts and abbes, attended, and bought up the whole impreflion, which they conmmitted to the flames. A fecond edition was publifhed, and it fhared the fame fate (F). This was a more compendious way of anfwering the learned author than that which has been adopted by the Jacobin journalifts in London ; but perhaps it may consince the readers of thefe journals, that the Doctor has not fo far
miftaken the fenfe of the writings of Pbilo and Sparta. Mrmmati. cur, as their illumnifed maters with them to believe.
When thefe arts of diffeminating the diforganifing and impious principles of the order are duly conlidered, and when it is remembered that its emiffaries dare not difobey a lingle injunction of the high fuperiors, without expofing theinfelves to poifon, or to the daggers of a thuufand unfeen affafins, no man can be furprifed to learn that the illuminees contributed greatly to the French revolution. The philofophers of 1 rance had indeed pre thunin pared the public mind for embracing readily the doc- of Fiance trines of illumisitin; and fo early as 1782 , Philo and Spartacus had formed the plan of illuminizing that nation; but they were afraid of the vivacity and caprice of the people, and extended not their attempts, at that time, beyond Strafbourg. Already, however, there exifted fome adepts in the very heart of the kinglom; and the Marquis de Mirabeau, withen ambaffador at the court of Berlin, was initiated at Brunfwick by a difciple of Philo Knigge's. On his return to France he began to introduce the new myiteries among his mafonic hrethren.
The flate of free mafonry was at that time peculiarly adapted to the views of the conlpirators. The French sy means had engrafted on the old and innocent Britifh mafonry of free mav a number of degrees, gradually rifing above each other, fonrjo to the very mylteries of illuminifm itfelf (fee Masonry in this Suppl.) Thefe were called the phitofoplical degrees, and comprehended the knights of the fiun, the higher Roficrucians, and the knights Kadefo. At the head of all thefe focieties, whether ancieit or modern, were three lodges at Paris, remarkable for the authority which they exercifed over the reft of the order, and Philip of Orleans was the grand-matter. So early as the year 1787 , France contained 282 towns, in which. were to be found regular lodges, under the direction of that execrable wretch. He increafed their number by introducing to the mafonic my fleries the loweft of the rabble, as well as thofe French guards whom he deitined to the fubfequent attack of the batile, and to the florming of the palace of his near relation and royal matter. In every country town and village lodges were opened for afiembling the workmen and peafantry, in hopes of beating their imaginations with the fophitticated ideas of equality and liberty, and the rights of man; and it was then that Mirabeau invited a deputation. from the order of Weinaupt, which very quickly diffufed the light of illuminifn throngh the whole kingdom. Intead of Spartacus Weifhaupt, Cato Zwack, and Phila Knigge, we find wiclding the firebrands of revolution in the capital of Fiance, Pbilip of Orleans, Mirabean, Syeges, and Conlorct. The day of general infurrection was fixed by thefe mifcreants for the i4th of July 1789. At the fame hour, and in all paris of France, the cries of equality and liberty refomed from the ludges. The Jacobin clubs were formed; and hence fprung the revolution, with all its horrors of atheifm, murder; and malficre!

In fupport of this account of the illuminces we have not loaded our margin with authorities; becaufe our detail has becn taken wholly from the valuable works
(A) This information was communicated to us by a gentleman of character, who was at Leipfic when the two impreffions of the book were thus difpofed of. The Abbé Barruel's work has no doubt been anfwered in the fame way, though we cannot fay fo upon the fame authority.

\section*{I L I. [78 \(] \quad\) I M P}

Illumin ti. of Albé Barruel and Dr Rohifon, to which we refer our readers for much curious information that our timits do not permit us to give. We cannot, however, conelude the article, without making fome remarks on that fecious principle by which the confpirators have deluded numbers, who abhor the:r inpieties, and who would not gol all their length cven in rebellion; we mean the maxim, "that it is our duty to love all men with an equal degree of affection, iund that any partial regard for our country, or our children, is unjult." but more efpecially to them who are of the houfehold of faith ;" becaufe he is told, that "if any man provide not for his ozon, and efpecially for thofe of his owen borfe,
he hath denied the faith, and is worfe than an infidel;" becaule his divine mafler, immediatciy after refulving all duty ints the love of God and man, delivers a pas rable, to fhew that we neither can nor ought to lase all men equally; and becaufe the fane Divine P'erfon had one difciple whom he loved more than the reft. But we wifh thofe philofoplecrs who talle perpetually of the mechanifm of the human mind, and at the fame time affect to have no partial fonduefs for any individual, but to love all with the fame degree of rabional affection, to confider well whether fuch philanthropy be confittent with what they call (very improperly indeed) nechanijm. If this mechanifm be (as one of then fays it is) nuthing more than ottrafion and refulfion, we know that it cennot extend with equal foree over the whole world; becaufe the force of attraction and repulfion varies with the diflance. If by this abfurd phrafe, they mean a fet of infinaive propenfities, or feelings, we know that among favages, who are more governed by inflinct than civilized men, philanthropy is a feeling or propenfity of a very limited range. If they believe all our paffions to originate in felf love, then is it certain that our philanthropy muft be progrefive; embracing firf, and with Atongell ardour, cur relations, our friends, and nur neighbours; then extending gradually through the fociety to which we belong; then grafping our country; and laft of all the whole human raice. Perhaps they inay fay that reafon teaches us to love all men equally, beeaufe fuch equal luve would contribute molt to the fum of human happinefs. This fome of them indeed have actually faid; but it is what no man of rellection can pollibly believe. Would the fum of human happinefs be increafed, were a man to pay no greater attoution to the education of his own children than to the edueation of the children of framgers? were he to do nothing more for his aged and helphers parents than for any other old perfon whatever? or, were he to neglect the poor in his neightourhood, that he might relieve thofe at the diflance of 1000 miles? Thefe queftions are too abfurd to inerit a fcrious anfwer.

When a man, therefore, buafts of his univerfal bencvolence, declaring himfelf ready, without fee or reward, to facrifice every thing dear to him for the benefit of ftrangers whom he never faw; and when he condemns, in the cant phrafe of faction, that narrow policy which does not confider the whole human race as one great fanily - we may fafely conclude him to be cither a confummate hypocrite, who loves none but bimfelf, or a philofophical fanatic, who is at once a

Aranger to his duty and to the workings of his own l.luminati heart.

If this conclufion require any fart her proof, we have it in the conduct of W, inaupt and his areopagites. In the hand-writing of Cato his incomparalle mala, was ixem lig frund the defcription of s ftrong box, which, if forced ed in the upen wow haw and open, would blow up and defiog its consents; fexeral , hat illuntireceipts for froouring abortion; a compufition which 1. ces. linds or kills when furted in the face; tea fur procuring abortion: Herla qua babent qualitatem dilateream; a method for filling a bed.clamber with foflential rad pours; how to take off impreflions of feals, fo as to ufe thean afterwards as feals; a receipt ad excitundum furorem utcrinum; and a differtation on fuiciels. Would genuine philanthropifs have occation for fuch receipts as thefe? No! the order which ufed them was founded i) the muil confumate villany, and by the molt deteftable hypocrite. 'The ineeftuons Weiftaupt feduced the widuw of his brother, and folicited poifon and the dagger to murder tlic woman whom he had fondly prefled in lisis arn:s. "Excerable liypoerite (fays M. Barruel), he in phored, he conjured both art and friendhiip, to dethroy the innocent vietim, the child, whofe hirth mult betray the murals of his father. The feandal from which he florinks, is not that of his crime: it is the feandal which, publithing the depravity of his leart, would deprive him of that authority by which, under the cloak of virtue, be plunged youth into vice and crror. I cim on the eve, (hays he) of lofing that reputation whieh save me fo great antbority osur our people: My fifter in-luzw is willb child. I zuill bazard a disperate blowe, for I neither can nor will lofe mj" honour." Such is the benevolence of thofe who, banifhing from their minds all partial affection for their children and their country, profefs themfelves to be members of one great family, the family of the woild:

IMAGINARY Quantities, or Impoffille Quantities, in algebra, are the even roots of negative quantities; which expreffions are Imaginary, or impoffible, or oppofed to real quantities; as \(\sqrt{ }-a a\), or \({ }^{4} \sqrt{ }-a^{4}\), \&ic. For as every even power of any quantity whatever, whether politive or negative, is nceeflarily politive, or having the firn + , becaufe + by + , or - by - , give equally + ; hence it follows that every even power, as the fquare for inftalae, which is negative, or having the fign - , has no pollible rout; and thercfore the even loots of fuch powces or quantitios are faid to be inpoffible or irraginary. The mixt expreffions a:ifing from imaginary yuantities joined to real ones, are alio imaginary; as \(a-\sqrt{ }-a a\), or \(b+\sqrt{ }-a a\).

Imaginary Roots of an cquatioli, are thofe roots or values of the muknown quantity, which contain fome imaginary quantity. Tlus the woots of the equation \(\cdots:+a u=0\), are the two imaginary quantities \(+\sqrt{ }-a a\) and \(-\sqrt{ }-a n, o r+a \sqrt{ }-1\) and \(-a \sqrt{ }-1\).

1MPACT, the fimple or fingle action of one body upon another to put it in motion. Puint of impact is the place or point where a budy acts.

IMPERFECT NUMEER, is that whofe aliquot parts, taken all together, do not make a fum that is equal to the number itfelf, but cither exceed it, or fall fhort of it ; being an abundant number in the former cafe, and a defective number in the latter. Thus, 12 is an abundant imperfect number, becaufe the fum of all its aliquot parts, \(1,2,3,4,6\), makes 16 , which exceeds
innet the number 12. And 10 is a defective imperfect number, becaufe its alipuot pats, \(1,2,5\), taken all togetler, inake only 8 , which is lefs than the number 10 iticlf:
1.1POST, in architecture, a capital or plinth, to a pillu, or pilater, or pier, that fupports an arch, \&ec.
Parbe of DMEULSLON, is the tem empluyed in the lanInมlufio - guage of mechanical philofophy, for exprefling a fuppofed peculiar exertion of the powers of body, by which a moving body clanges the motion of another budy by hitting or triking it. The plaineft cafe of this action is when a budy in motion hits another body at refl, and puts it in motion by the Atroke. The body thus put in motion is faid to be impeleed by the other: and this way of producing motion is called 1 m pulsion, to dillinguifh it frum pression, thrusting, or protruston, by which we puth a body from its place without Atriking. The term has been gradually extended to every change of motion occalioned by the collifion of bodies.

When Speculative men began to collect into general claffes, the obfcrvations made during the continual exertions of our own perfonal pewers on external bodies, in order to gain the purpofes we had in view, it could not be long before they remarked, that as we, by the ftrength of our arm, can move a body, can flop or any how change its motion; fo a body already in motion produces effects of the fame kind in another body, by hitting it. Such obfervations were almult as early and as interefting as the other; and the attention was very forcibly turned to the general facts which obtained in this way of producing motion ; that is, to the expifcation of the geneal laws of impulfion. We do not find, however, in what remains of the phyfical fcience of the ancients, that they had proceeded far in this claffification. While mechanics, or the fcience of machines, had acquired fome furm, and had been the fubject of fuccoffful mathematical difcuffion, we do not find that any thing fimilar had been done in the feience of impulfe. Yet the aftillery of ancient times was very ingenious and powerful. But although Vegetius, and Ammianus Marcellinus, and Hero, defcribe the mechanifm of thefe engines with great care, and frequently with mathematical fkill, we fee no attempts to afcertain with precifion the force of the miffle weapon, or to flate the efficacy of the battering ram, by meafures of the momentum, and comparifon of it with the refiltance oppofed to it. The engineers 'were contented with very vague notions on thefe points.

Ariftotle, in his 2oth Mechanical Quettion, and Galen in fome occafional obfervations, are the only authors of antiquity whom we recolles as treating the furce of impulfe as a quantity fulceptible of meafure. Their obfervations are extremely vague and trivial, chiefly directed, however, to the difcrimination of the force of impulfe from that of preffure.

In more modern times, great additions had already been made to the affiftance we had derived from the impulfive efficacy of bodies in motion. Water-mills and wind-mills had been invented, and had been applied to fuch a variety of purpufes, that the engineers were faft acquiring more diftinct notions of the force of impulfe. Naval contructions was changed in fuch a manner, that there hardly remained any thing of the ancient rigging. The oblique action of wind and water were
now found even more effective than the dire ! and hips Intpulion. conlu nuw fail with almolt any wind. All thole things fixed the attention of the engiaeers and of the fpeculatift on the numberlefs mudifications of the force of impulle.
lut it fon appeared that this was a refined branch of knowledge, and required a more profound Atudy than any other department of the fcience of motion. At the lame time, it was equally clear, that it was alfo of fuperior importance. Mills worked by cattle, of by mens hands, were everywhere giving place to wind and water mills; and a fhip alone appeared to every intelligent mechanician to be the greateft effort of human invention, and mof delerving his carefal lludy. Alt theie improvements in the arts of life derived their efficacy from the impulfe of bodies. The laws of impulfion, therefore, became the ubjects of ftudy to all who pretended to philofophical fcience. But this is a branch of fludy wholly new, and derives litile afitlance from the mechanical fcience already acquired; for that was confined to the determination of the circumftances which regulated the equilibrium of forces, either in their combined action on bodies in free face, or by the in. tervention of machines. But in the production of mo. tion by impulfe, the equilibrium is not fuppofed to ubtain ; and therefore its rules will not folve the moft important queftion, "What will be the precife mutiun?"

Galileo, to whom we are indebted fur the firf difcoveries in the doctrine of free inutions, was alfo the firft who attempted to bring impulfion within the pale of mathernatical difcuffion. This lie attempted, by en= deavouring to flate what is the force or energy of a body in motion. The very obfure reflections of \(A\). sittotle on this fubject only ferved to make the ftudy more intricate and abflrufe. Galileo's reftections on it are void of that luminous perfpicuity which is feen in all his other writings, and do not appear to have fatisfied his own mind. He has recourfe to an experiment, in order to difcover what prellure was excited by impulfion. A weight was made to fall on the fcale of a balance, the other arm of which was loaded with a confiderable weight; and the furce of the bluw was eftimated by the weight which the blow could thus ftart from the ground. The refults had a certain regularity, by which fome analogy was obferved between the weights thus farted and the velocity of the impulfe; but the anomalies were great, and the analogy was fingular and puzzling; it led to many intricate difeufions, and fcience advanced but flowly.

At laft the three eminent mathematicians, Dr Wal-Laws of \({ }^{2}\) lis, Sir Chriitopher Wrem, and Huyghens, about theimpulfion fame time, and unknown to each other, difcovered difcovered the fimple and beautiful laws of collifon, and commu- by Wallis, nicated them to the Royal Society of Lundon in 1668 Huyghens (Phil. Tranf. no \(43-46\).). Sir Chritopher Wrenn alfo invented a beautiful method of demondrating the doctrine by experiment. The bodies which were made to ftrike each other were fufpended by threads of equal length, fo as to touch each other when at relt. When removed from this their vertical fotuation, and then let go, they ftruck when arrived at the loweft points of their refpective circles, and their velacities were proportional to the churds of the arches through which they had defcendec. Their velocities, after the ftroke, were meafured.

\section*{I M P [783] I M P}

Impulfion. meafured, in like manner, by the chords of their arches \(\underbrace{\text { Impulion. of afcent. The experiments correfponded precifely }}\) with the theoretical ductrine.

In the mean time, this fubject had keenly occupied the attention of philofophers, who found it to be of a very abftrufe nature; or, which is nearer the truth, they indulged in great refinement in profecuting the fludy. The firit attempts to meafure the inpulfive force of bodies, by fetting it in oppofition to preffures, whicli had long been mafured by weights, gave rife to fome very refined reflections on the nature of thefe two kinds of forces. Aritotle had faid that they were things altogether difparate. If fo, there can be no pro. portion between them. Yet the analogy obferved in the experiments above mentioned of Galileo, mewed that impulfe could be gradually augumented, till it exceed any preffure. This indicates famenefs in kind, according to Euclid himfelf. A curious experiment of Galileo's, in which the impulfe of a vein of water was fet in equilibrio with a weight, feemed not only to eftablifh this identity beyond a doubt, but even to fhew the origin of preflure itfelf. The weight in one fcale is fuftained as long as the ftream of water continues to Itrike the otluer fale. In this experiment, therefore, preffure is equivalent to continual impulfe. But continual impulfe is not conceivable: we muft confider the impulfe of the fream as the fucceffive impulfe of the different particles of water, at intervals which are altogether indittinguifhable.

From thefe confiderations were deduced two very momentous doctrines: 1. That preffure is nothing but repeated impulfe; 2. That although preffure and impulfe are the fame in kind, they are incomparable in magnitude. The impulfe is equal to the weight of a column of water, whofe length is the height neceffary for communicating the velocity. Now this is inceffant; and the weight is fuftained during any the fmalleft moment of time, by the impulfe, not of the whole column, but of the infenfible portion of it which is then making its itroke. Impulfe, therefore, is infinitely greater than preffure.

Thefe ahftrufe fpeculations have a charm for certain ingenious fpeculative minds; and when indulged, will lead them very far. Accordingly, it was not long befure fome of the moft ingeniuns philofophers of Europe taught that impulfe was the fole origin of preflure. There is but one moving power (faid they) in mechanical nature: This is impulfe.-Nibil movetur (fays Euler) aifl a contiguo et moto. Murcover, having been long and familiarly converfant with the actions of animals, and the actions of moving hodies, and conceiving, -with fufficient diftinctnefs, that impenetrable bodies cannot move without moving thofe with which they are furrounded and in contact, they imagined that they fully underfood how all this difplacement of bodies is carried on; and therefore they maintained, that any motion is fully explained when it is thewn to be a cafe of impulfion: But they faw many cafes of motion where this impulfion could not be exhibited to the fenfes. Thus, the fall of heavy bodies, the mutual approach or recefs of magnetic and electric bodies, exhibited no fuch operation. But even here their experience helped them to an explanation. Air is an invifible fubftance, and its very exiftence was for a lung time known to us only by means of its impulfe. As.we fee that preffures
are generated by the impulfe of water and of air, may Impuifirn. there not be fluids thill more fubtle than air, by whofe invifible impulfe bodies are made to fall, and magnets are made to approach or avoid each other? The imporfibility of this cannot be demonftrated, and the laws of impulfe had not as yet been fo far invelligated as to how that they were incompatible with thofe productions of motion. It was therefore an open field for difcuffon; and the philofophers, without farther hefitatiun, adopted, as a firft truth, that all mution whatever is producen by impulsion. The bulinefs of the philofopher, therefore (fay they), is to inveltigate what combination of invifible impulfions is competent to the production of any obferved motion; fuch as the fall of a heavy body, the elliptical mation of a planet, or the pularity of a magnetic needle. The curious difpofition of iron-filings round a magnet encouraged this kind of fpeculation: It looks fo like a ftream of flaid; but it is a number of quiefcent fragments of iron. This does not hinder us from fuppoling luch a ftream, not of iron-flings, but of a magnetic fluid, which will arrange (fay the atomits) thofe fragments, juft as we fce the flate-grafs in a brook arranged by a fream of water. Fluids, therefore, moving in Itreams, vortices, and a thoufand different ways, have been fuppofed, in order to explain, that is, to bring under a general known law of mechanical Nature, all thofe cafes of the production of motion where impulian is not obferved by the fenfes.

As we have gradually become better acquainted with the laws of the production of motion by impulfion, we. have been able to explode many of thofe proffered explanations, by fhewing that the genuine refults of the fuppofed invilibic motions, that is, the impulions which they would produce, are very unlike the motions which we attempt to explain. It has been hewn that the vortices fuppofed by Des Cartes, or by Leibnitz, or by Huyghens, cannot exilt; and they have been given up. But it is anfwered to all thofe demonftrations of futility, that fill the axiom remains. Motion is produced only by impulfe; but we have not yet difeovered all the poffibilities of impulfion; and we mmt not defpair or \({ }^{-}\) difcuvering that precife fet of invilible motions, and confequent impulfions, of which the phenomena before us. is the neceflary refult.

But this is by no means fufficient authority for de-The apolio ferting the rule of philofophizing, fo prudently and ju-cation of diciounly recommended by Sir Ifaac Newton; namely, thi prianot to admit as the caufe of phenomenon any thing ciple is hathat is not feen to operate in its production. The prudence of this reftriction is evident ; and it has alfo been fufficiently thewn (Philosophy, Eucycl. n \({ }^{\circ} 4^{8}\). \&c.), that truephilofophical explanation, or extenfion of knowledge, is unattainable, if this rule be not flrictly adhered to. We therefore require a cugent rcafon for a practice that opens the dour tu cerry abfurdity, and that cannot give us the knowledge which we are in queft of. What, then, is the reafon that always induces phi. lofophers to have recourfe to impulion for the explanation of a phenomenon, and to reft fatisfied in every cafe where it can be clearly proved that the phenomenon is really a cafe of impulfion? We fay that we in. quire into the reafon why a budy falls, and that we will be fatisfied if it can be thewn us that it has received a number of impulfions downward. Do we inquire why:

\section*{I M P [784] I M P}

Tinpulfion, a body in motion puts another body in motion by hitting it? A ind if we do, have we difenvered the reafon? We believe that nunc of the philufophers, who have re. courfe to invifible impelling fluids, ever ank a reafon for motion by impulfion. Indeed they fhould not, otherwife it wuild ceafe to be a firll principle of explanation. Other philofophers, indeed (nancly, fuch as alk no reafon for the weight of a body, but the flat of the Almaher), require an explanation of motion by impulfe, aind think that, in almult every cafe, they have found it out.

If the philofophers ank no rcafon for this production of motion, they mult (that it may ferve as a principle of explanation) fay that impulfivenefs is an original property of matter, either contingent or eflential. Accordingly, we believe that this, or fomething like this, las been affumed as a principle by the greater part of mechanicians. It has been affumed, as we have obferred in the article Dynanics, Suppl. that a moving body poffeffes the power of producing motion in another body by hitting it; ard they call it the imptesive force of moving bodies-the fORCEINHERENT in a moving body. The reader will have obferved, in our namer of treating that article, and alio in feveral paffages of different articles of the Encychopadia Britannica, that we do not confider this affumption as very cleally authorifed by obfervation, or de3ucible by abflract reafoning, from the firt principles of phitufophy. There is no branch of natural philufophy on which fo many ingeniuns differtations have ben written ; and perhaps there is none that has been more fuccefsfully profecuted: Yct this is the only part of the fcience of motion that has given rife to a ferious difpute; a difpute that has dividud, and fill divides, the mechanicians of Europe.

Some may think it prefumptuous in us, in a Work of this kind, which only aims at collecting and exhibiting in one view the exifing foience of Europe, to pretend to give new doctrines, or to decide a queftion which has called forth all the powers of a Leibmitz, a Bernoulli, a Jurin, a M'I.aurin, scc. But we make no fuch pretenfions; we only hope that, by feparating the quettion from others with which it has, in every inftance, been complicated, and by confidering it apart, fuch notions may be formed, in perfect conformity to the principles adopted by all parties, that the myftery, which has gradually gathered like a cloud, may be difpelled, and all caufe of difference taken away. We apprehend that this requires no very extenfive knowledge, but merely a frict attention to the conceptions which we form of the actions of bodies on each other, and a precifion in the ufe of the terms employed in the dif5 cuffion.
Inquiry in- We truft that our plilofophical readers perceive and to its truth. approve of our anxiety to cutablifh (in the article Dynamics, Suppl.) the leading principles of mechanical philofophy, from which we are to reafon in future on acknowledged facts, or Lavs of human thoughs. It is not fo much the queftion, What is the effence of ma. terial Nature, from which all the appearances in the univerfe proceed? as it is, What do we know of it? how do we come by this linowledge? and what ufe can we make of it? The tænia knows nothing of the folar fyitem, and man is ignorant of the caufe of impulfivenefs. Other intelligent creatures may have fenfes, of which this is the proper object ; and others, of a ftill
more exalted rank, may ferceive the operations of mind Impulinn. as clearly as we perceive thofe of matter, white they are equally ignorant with ourfelves of the caufes which connect the conjoined events in either of thofe operations. But "known unto God, and to Ham alone, are all His works!"
'I'o accomplith this purpofe, we directed the reader's we learn attention to what paffes in his own nind when he thinks the exifton the meehanical phenomena of Nature; on what he ence of calls hody ; on the perceptions which bring it into his chatery by view, and which give him all the notions that le can netans of form of its diftinguithing, its characterific propertics.touch. How does he learn that there is matter in a particular place? He has more than one mean of information; and each of thefe informs him of peculiar qualities of the thing which he calls mather. Many appearances fugger to his mind the prefence of a body. Shew a monkey or a kitten (and even fometimes a luman infant) a mirror, and it will intlantly grope round it to find a companion. Why does the creature grope about fo? It is not contented with the firlt indication of matter, and nothing will latisfy it but touching or grafping what is behind the mirror. It is by our fenfe of touch alone that we get the irrefitible conviction that matter or budy is perceived by us, and it never fails to give us the perception; nay, we have the perception even in fome cales where the experienced philofopher thinks himfelf obliged to doubt of its truth. Some fenfations, arifing from fpafm, cannot be dillinguithed from the feeling of touch; and the patient infifts that fometling prefles on the difeafed part, while the phyfician knows that it is only a nervous affection. Every perfon will think that a cobweb touches his face when an electrified body is brought near it, and will try to wipe it off with his hand. But the modern philufupher fees good reafon for afferting, that in this in. ttance our feeling gives us very inaccurate, if not erroneous, infornation. He thews that the fut, of which our feeling tuly informs us, is the bendiug of the finall hairs or down which grow on the face, and that thefe only have been tonched; and the followers of Epinus deny that even this has been demonltrated.

The philofopher adouts this mode of perception as 7 unqueltionible, and allows that, and that alone, to be ment of matter, which invariably produces this fenfation by con- tonch is actiguity. But engaged in fpeculatiuns which fix his at- by the fect tention on the external object, he neglects and over-ing of exlooks the influment of information, and its manner of erred prefproducing the elfect, jult as the allromomer overlookstuc. the telefiope, and the union and decuffation of the rays of light which form the picture by which he perceives the fatellite of Jupiter travel acrols his ditk. 'I'he philofopher finds it convenient to generalife the inmenfe variety of touches which he feels from external bodies, and to confider them as the operations of one and the fame diferiminating quality, a properry inherent in the external fubtance body: and he gives it a name, by which he can excite the fame notion in the minds of his hearers. It is worth while to attend to what has been done in this matter, becaufe it gives much information concerning the firft principles of meehanifin. An exquifite painting las fometimes fueh an appearance of prominence, that one is difpofed to draw the finger along it, and we expect to feel fome roughnefs, fome obflrution, fomething that prevents the fin-
\(\underbrace{\text { Inpulfinn. ger from going over the place. Perhapa we doubt, and }}\) want to be affured. We prefs a little cloler ; but feel no ubfluction; and we defitt. 'The very firt appearance, therefore, which this indicating quality, viewed as the property of external matter, has in our conceptions, is that of an obfruction, an obfacle, to the exertion of one of our natural powers. The power exerted on this occafion is familiarly and diftindively known by the name of pressure. ' 1 'his is the nane of our own excrion, our own action; and, in this inftance, and (we think, in this alone, the word is ufed purely, primitively , and withont figure: When we fay that a fone preffes on the ground, we fpeak figuratively, as truly as when we fay that the cantlettick ftonds, and the finuffers lie, on the table. It is a perfonification, anthorifed by the fimilarity of the effects and appearances. Further, when we fpeak of our preffure on any thing, with the intention of being precife in our communication, we fpeak ouly of what obtains in the touching parts of the finger and the thing preffed, paying no attention to the long train of intermediate exertions of the mind on the nerves, the nerves on the mufeular fibre, the fibre on the articulated machine, and the machine on the touching part of the finger. And thus the exertion of the fentient and active being is attributed to the particles of lifulefs inactive matter at the extremity of the finger, and thefe are faid to prefs immediately on the touching parts of the external body. And, laftly, as this our exertion is unquettionably the perceived employment of a faculty in us, which we call force, pozver, frength, dillinguifhing it from every other faculty by thefe names; we fay (but figuratively), that force or power is cxerted at the tips of the fingers, and we call it the force of pressure.

And preffure 1. con crived or fuppufed alimoft every pronution.

By far the greatelt part of uur actions on external bodies is with the intention of putting, them out of their prefent fituations; and we can hardly feparate the thought of exerted preffure from the thought of mo. tion produced by it. Therefore, almoft at its firf ap. pearance in the mind, preflure comes before us as a moving power. Nay, we apprelend, that the more we fecculate, and the more we aim at precifion in our conceptions, we thall be the more rearly to grant that we have no clear conception of any other moving power. No man will contend that he has any conception at all of the puwer exerted by the mind in moving the body. It is of importance to reflect on the nianner in which this notion is extended to ald other productions of mo. tion. We think that this will fhew, that in every cafe we fuppofe preflure to be exerted.

The philofopher proceeds in his fpeculations, and obferves that one man can prefs on another, and can purh hin out of his place, in the fame way as he removes any other body ; and he cannot' obferve any difference in his own exertions and fenfations in the two cafes. But the man who is pufhed has the fame feelings of touch and prefiure. By withdrawing from the preflure, he alfo withdraws from the fenfation; by withftanding or refiting it, he feels the preffure of the other man; and what he feels is the fame with what he feels when he preffes on the other perfon, or on any piece of matter. The fame fenfations of touch are excited. He attributes them to the preffure of the other perfon. Therefore he attributes the fame fenfations to the counter preffure of any other body that excites them. Far-

Suppl. Vol. I. Part II.
ther, he can refint to fuch a degree that he is not punt. In Inulfina. cd from his place. In this cafe, the greated preffure is exerted, and is felt by both. Each feels that the more he refills, the greater is the mutual preffure. And each feels that, unkects he not only do not refif, lut alfo auithdraze bimgle from the: preflure of the wther, he will be preffed, and the other will feet comuter prellure, the fame in kind with what is produced by his reffifance, though lefs in degree.

All thefe things are diftinctly and invariably felt; They are but they require attention, in order to be fubjects of kencrally recollection and after-confideration. From this, and figurative. no other fources, are derived all our notions of corporeal preffure, of counter preffure, of action, reaction, of refiffance, and of inaciivity or inertia. Our nutions of moving power, of the mobility of matter, and of the neceffity of this power to produce motion in natter, have the fame urigin. Our notions alfo of the refittance of inanimate matter, indicated by the expenditure of actual preffure, are formed from the fame premifes : the counter-prefure, or what at kaft produces the fame feclings in the perfon who is the mover, is conlidered as the proferty of dead matter; becaufe we feel, that if see do not extert real force, we are difplaced by the fame preffure that would difplace a lifelefs body of the fanis bulk.

Thefe direat inferences are confirmed as we extend we obour acquaintance with things around us. W'e can ex-feree many ert our force in bending a fpring, and we feel its com-prentures. ter-preflure, precifely fimilar to that of another man. We feel that we mull eontinse this prefiure, in order to keep it bent; and that as we withtaw oner preffure, the fpring follows our hand, tall producing fimilar feelings in our organs of touch, and requiring fimilar exertions of our frength to heep it in any fate of teufion. Thefe phenomena are interprted as indications of preffures actually exerted by the fpring, and quite different from what we houid feel from its inere relitance to being moved. This action refembles our own exertion in every particular ; it produces all the effects of preffure; it will fqueeze in the foft fexible parts of our body with which we act on it; it will comprefs any foft body, juft as we do ourfelves; it will put borlics in motion. Farther, we can fet the action of oue fpring in oppofition to that of another, aud obferve that each is bent by bending the other; and we fee that their touching parts exert preflure, for they will comprefs any foft body placed between them.

Thus, then, in all thofe cafes, we have the fame notion of the power immediately exerted betweell the two bodies, animated or inanimated. It is always preffure. If indeed we begin to fpeculate about the noorlus operandi in any one of thefe inflances, we find that we muft fop thort. How our prefure excites the feeling of preffure in the other perfon, or how it produces mution, eludes even conjecture-So it is - Nay, how our intention and volition caufes our limb to exert this preffure, or how the fpringineff of a fpring produces limilar effects, remains cqually hid from our ken. Unwearied itudy has greatly advanced our knowhedge of thefe fubjects in one refpect. It has pointed out to us a train of operations, which go on in our animal frame before the oftenfible preflure is produced; we have difcovered fomething of their kind, and of the order in which they proceed; we have gone farther, and have difcovered, in 5 G forne

\section*{I M P [786] \(\quad 1 \begin{array}{ll}\text { M P }\end{array}\)}

Impulfion. fome of the preflures exerted by lifelefs matter, fimilar trains of intervening operations. In the cafe of a fpring, we have difeovered that there is a centain combination of the properties of all its parts neceflary for the vifible exertion. But what is the principle which thus makes them cooperate, we cannot tell, any more th:n in our own exertions of preflure. Such being the origin of our notions on thefe fubjects, it is no wonder that all our language is alfo derived from it. Force, power, preffurre, action, re-action, refillance, impulfion, are, without any exception, words immediatcly expreffive of our own exertions, and applied metaphorically to the phenomena of matter and motion.

Laftly, when we fee a hody in motion difplace another body by hitting it, and endeavour to form a notion of the way in which this motion is immediately produced, fixing our attention on what palles in the very inftant of the change, we find ourfelves fill obliged to fuppofe the thing we call prefture. We can have no other conception of it ; and there is no violence in this aft of the imagination. For we know, that if we are joftled from our place, and forcibly driven againf another perfon, we put that perfon in motion without any intention or action of our own; and we experience, in doing this, that the very fame feelings of touch and preflure are excited as in the inftances of the fame motions produced by exerted preffion. We alfo fee, that when a body ftrikes another, and puts it in motion, it makes an impreffon or dimple in it if foft, or breaks it if brittle; and, in fhort, produces every effect of preffure. A ball of foft clay makes a dimple in the ball of foft clay which it difplaces, and is dimpled by it. Springy bodies comprefs each other in their collifions, and refile from each other. In hort, in every cafe of this clafs, mutual preffure, indicated by all its ordinary effects, appears to be the intermedium by which the changes of motion are immediattly produced; and the previous motion of ihe ftriking body feems to be only the method of producing this prefture.
Preffare is the only diftine no rion of a moving power.
dies, and produce all the effects of real animal preffure. Inp ulfinn. Impulfe, therefore, is the true caufe of motion, and the folicitation of gravity is nothing but the repeated inspulfe of an invifible fluid.

But, in the firf place, let it he obferved, that both parties profefs to explain the phenomena of mechanical nature, that is, to make them eafier conceived by the mind. Now it may be granted, that could we have any previous conviction of a fluid continually flowing toward the centre of the earth, we could have fome notion of the production of a downward motion of bodies, but not more explanation than we have without it, be. caufe impullivencis is as little underfood by us as preffure.

But there are thoufands of inflances of moving forces where we cannot couceive how they can be produced by the impulfe of a body already in motion. There ap. fures ars pear to be many moving powers in nature, independent inexplicable of and incuplicable by any previous motion; thefe hy impuiof, and incxplicable by, any previous motion; thefe fion. may be brought iuto action, or occafions may be afforded for their action, in a variety of ways. The mere will of an animal brings fome of them into action in the internal procedure of mufcular motion ; mere vicinity brings into action powers which are almolt irrefiftible, and which produce molt violent motions. Thus a little aquafortis poured on powdered chalk contained in a bombfhell, will burtt it, throwing the fragments to a great diftance. A fpark of fire brings them into action in a mafs of gunpowder, or other combuftibles. And here it deferves remark, that the greater the mafs is to which the fpark is applied, the nore violent is the motion produced. It would be juft the contrary, if the motion were produced by impulfe. For in all cafes of impullion, the velocity is inverfely proportional to the matter that is moved. When a fpring is bent, and the two ends are kept together by a thread, a preffure is excited, which cuntinues to act as long as the thread remains entire. What contrivance of impelling fluid will explain this, or give us any conception of the total ceftation of this prelfure, when the thread is broken, and the fpring regains its quiefcent form?

We can explain, in a moit intelligible manner, why All pref. the hardelt preflure produces no fenfible motion in the fures do cafe referred to above. We can conceive, with fufficient ditinctnefs, a tube filled with Acel wires, coiled up like cork ferews, and compreffed together into \(\frac{1}{1}\) th tion of their natural length. A tube of 10 inches long will contain 100 of them. While in this ftate, compreffed by a plug, we can fuppofe each of the fprings to be tied with a thread. Suppofe now that the thread of the fpring next the pitton is burnt or cut; it will prefs on the pifton, and force it out, accelerating its motion till it has advanced one inch; after this, the pifton will proceed with a uniform motion. It is plain that the velucity will be moderate, perhaps hardly fenfible, becaufe the preffure acted on it during a very fhort time. But if two forings have been fet at liberty at the fame inflant, the preffure on the pilton will be continued through a fpace of two inches, and the final velocity will be greater, becaufe the fame (not a double) pref. fure will be exerted through a double fpace. Unbending four fprings at once, will give the pifton a double velocity (See Dynamics, Suppl. \(n^{\circ} 95\).) Now the effect of the. motion of the fecond fpring is to keep the preffure of the

\section*{I M P [787] I M P}

Impulfion. frit in action during a longer time, by following it, and keeping it in a ftate of compreflion. There is nothing fuppofed of this kind in the cafe of ftrong preflure alluded to ; and therefore no motion is produced when the obftacle is removed, except what the infenfible com. yeflion produecs by accelerating the body alung an infenlible pace. If all the 100 fprings are difengaged at once, the piston will be accelerated through 100 inches, and will acquire ten times the velocity that one fpring can communicate. (\(N . B\). The foree expended in moving the fprings themfelves is not confidered here).

It is in this way only that the previous motion of the impelling body atts in producing a conliderable motion. The whole procefs will be minutely confider. \(15^{\circ}\) ed by and bye.
Impuifion is lie may now afle, how it is fo clear a point, that a no. mote clearly com. ceived tran preffure. folid body in motion mutt diphace other bodies? 'l'his feems to be the very point in queftion, Is the affirmative deduced from our notion of folidity ? What is our motion of folidity, and whence is it derived? We apprehend that even this primary notion is derived from preffure. It is by handling a thing, and linding that we rannot put our hand into the place where it is without difplacing it, that we know that it is material. All this is indicated to us by the feeling excited by our preffire. We feel this property always as an obttacle; and therefore f:y, that by this property it refifts our preflure. Nay, there are cafes where even the philafupher prefers this quality to impulivenefs as a telt of matter. To convince another that the jar out of which he has poured the water that filled it is not empty, but full of matter, he dips the mouth of the jar into water, and thows, that although he prefs it down till the furrounding water is above the bottom of it, the water has hardly gotten half an inch iuto the jar; there is fomething there which keeps it out ; there is matter in it. He then opens a loole in the bottom of the jar ; the water immediately rifes on the inlide of the jar, and fills it. He fays that the preflure of the water has driven the matter out by the hole ; and he confirms the materiality of what is expelled by holding a feather above the hole. It is agitated, fhewing that the expelled thing has inpultivenefs, another property (he fays) of matter: what filled the jar was air, and air in motion is wind. The philofopher can exhthbit fome new eafes, where fomething like impullivenefs appears. A flender maguet may be fet on one end, the fouth pole, for infance, and will ftand in that tottering fituation. If a perfon luing the north pole of a powerful magnet haltily near the upper end, it will be thrown down, jult as it may be hlown down by a puff of wind ; therefore (fays the philofoplter) there may be appearances of impulfion, and I may imagine that there is impelling matter ; but nothing but matter exeludes all other matter from its place: this property, therefore, is the fureft tell of its prefence.

Thus we fee, that our notion of folidity or impenetrability (a name till indicating an obfacle to preffure), gives us no clearer conception of the productions of motion by impulfion than preffure does; for it is the fame, or indicated by the fame fenfations.

The queftion now feems to be reduced to this-Since

Motion does not impel by transufing inherent force or in herent motion.
tion, exciting but a very moderate preffure (as may he Impulfinn. feen by the trifliag compreffion ot dimpling), produces a very confiterable motion, how is the previous motion conducive to this purpofe? The anfwer ufnally given is this: A body in motion (by whatever canfe) porfeveres in that motion by the inberent force; whon it arvives at another body, it canot proceed without difplacing that body. The nature of the inherent force is inch, that none of it is loll, and that a purtion of it paffes into the other body, and the two bodies instantly proccerl with the fane quantity of motion that was in the impelling body alone. 'This is an exact enomgh narra. tive of the general fact, but it gives no great explanation of it. If the impalling body perfeveres in its motion by means of its inherent force, that force is exerted in performing its office, and can do no more. The impelled body feems as much to poffel's an inherent force; for the fame markz and evidences of preffure on both lides are obferved in the cullition. If both bodies are foft or compreffible, both are dimpled or compreffed. We are as much entitled, therefore, to fay, that part of the force by which it purfeveres at reit, paffes into the other budy. But the rell, or quiefcence of a body, is always the fame ; yet what pafles into the impelling body is diferent, according to its previous velocity. We can form no conceptiun how the half of the inherent force of the impelling fody is expended by every particle, paffes through the points of contact, and is diftributed among the particles of the impelled body; nay, we cannot conceive this halving, or any other partition of the force. Is it a thing fui generis, made up of its parts, which can be detaclied from each other, as the particles of falt may be, and really are, when a quantity of tiefh water is put intu contact with a quantity of brime? We have no clear conception of this; aud therefore this is no eluevation of the matter, although it may be an exact ttatement of the vifible fact.

Let us take the fimpleft poffible cafe, and fuppofe This inonly two paticles of matter, one of which is at rett, volves aband the other moves up to it at the rate of two feet furdities. per fecond. 'The event is fuppofed to be as follows: in the instant of contact, the two particles proceed with half of the former velucity. Now this inftant of time, and this precife point of fpace, in which the contad is made, is not a part of either the time or fpace before collifion, or of thole after-collifion; it is the boundary between both; it is the laft inftant of the former tine, and the fuft inftant of the latter time ; it helongs to both, and may be fail to be in both. What is the ftate or condition of the impelling particle in this inltant? In virtue of the previous motion, it has the determination, or the force, or the power, to move at the rate of two feet per fecond; but, in virtue of the motion after collifion, it has the determination or power of moving at the rate of one foot per fecond. In one and the fame inftant, therefore, it has two determinations, or only one of them, or neither of them. And it may, in like manner, be faid of the impelled body, that, in that inAant, it was both at reft, and inoving at the rate of one foot per fecond. This feems inconceivable or abfurd.

It is not perhaps very dear and demonftrable, nor Impulfiveis it intuitively certain, that the moving body or par- \({ }^{n} f_{5}\) is not ticle mult difplace the other at all. All that we know property of is, that matter is moveable, and that caufes of this matter. duce motion, or excite that kind of preffure which is the immediate caufe of motion, while a body in mo.

\section*{I M P [788}

Impulion motion exif in nature. When they have produced this motion, they have performed their tafis, and the motion is thair complete effect: the particle continues in this condition for ever, unlefs it be changed by fome caufe; but we do not fee any thing in this condition that enables us to fay what caufes are competent to this change, and what are not. Is it cither intuitive or denjonitrable, that the meri exiffence of another particle is not a fufficient or adequate caufe? Is it certain that the arrival at another particle is an alequate canie? or can we prove that this will mot flop it altogether? The only conclufion that we can draw with any contidence is, that "two particles, or two equal bodies, meeting with equal velocities, in oppolite directions, will flop." But our only reafon for this conclution is, that we cannot affign an adequate reaton why either fhould prevail. But this form of argument never carries lumihous conviction, nor does it even give a decifion at all, unlefs a number of cafes can be fpecified which include every pofible refult. This can hardly be affirmed in the plicity, has fill lefs intuitive or deductive evidence; namely, when bodies meet in oppofite directions with equal quantities of motion. It is by no means eafy, if it be at all poffible, to fhew that they mull fop. The proof proceeds on fome notion of the manner in which the impulfion, exerted on one particle, or on a few of each body, namely, thofe which come into contact, is diftributed among all the particles. A material atom is moved only when a moving force acts on it, and each atom gets a motion precifely commenfurate to the force which actuates it. Now, it is fo far from being clear, how a force impreffed on one particle of a fulid body occafions an equal portion of itfelf to pafs into every particle of that body, and impel it forward in the fame direction, that the very authors who affume the prefent propufition as an elementary truth, claim no fmall honour for having determined with precilion the moving forces that are exerted on each particle, and the circumflances that are neceflary for producing an equal progreflive motion in each. It was by no means an eafy froblem to thew, that the motion of the hody (eflinated by an average taken of the motions of every particle) is precifely that which is announced by this propofition. We muft alfo confider how this inveftigation is conducted. It is by affuming, that whatever force connects a particle \(a\) with a particle \(b\), or whatever force \(a\) exerts on \(b\), the paricle \(b\) exerts an equal force on \(a\) in the oppofite direction-Surely no logician will fay that this is an intuitive truth. The con. trary is moft diftinctly conccivable. It was a difcovery of the aftronomes, that every deflection toward the fun is accompanied by an equal ceflection of the fun. It was a difcovery, that a piece of iron attracts a loadfone; and it was a difovery (and we dare not yet affirm it to be without exception), that every action of bodies is accompanied by an equal and contrary re-action. Eut this is by no means a firft principle. It is the expreffion of a moft generally obferved fact, a fum total of knowledge. When received on this authority, it is fully competent to folve every cafe of impulion, independent of all ubfcure and illogical doctrines of force inherent in moving bodies, of force of inertia, of communication of motion, \&c.

The impofibility of conceiving the detachment of impulion. part of the force inherent in \(A\), and transferring this part into \(B\), and the funilar impoflibility of conceiving the imparting to \(B\) fome of the motion that was in \(A\), floull make us reject any propofition involving fuch conceptions, and refufe its admifion as an elementary truth. Much more fhould we reject a propofition tbat obliges us to fuppofe that a particle of matter has two determinations, forces, motions, or call them by any other name, in one and the fame inflant. One of thefe neceflarily excludes the other. Indeed this was fo evident, even to the moit eminent partizans of the doctrine of the transfufion of inherent force, and others confequent on it, that they found themfelves obliged to deny that there was fuch a thing in the world as a perfectly hard body, in which the motion muft be initantaneoufly changed iuto another, differing from it by any ienfible quantity. The exiftence of perfectly hard bodies is poritively denied by the celcbrated mathematician of Batle, John Bernoulli, in his Difertation on the Communication of Mation, which contended for the prize given by the Academy of Sciences at Paris \(\mathbf{1 7} 10\). His reafon fur this rejection is fingular, and fonewhat amufing. "In the collifion of perfectly hard bodies, the conf(rvatio virium vivarum, demonitrated by the moll eminent mathematician (Mr Leibnitz), to be a law of nature, would be broken without any effect being produced. He does not obferve,' that it is as completely broken by claltic bodies in the inflant of greateft comprefion. A Britif philofupher, nullius addicus jurare in verba magifri, alked, What will be the cafe of two encountering atoms of matter? Without calling. them hard, we mult conceive that they acquire their changes of motion in the inflant of mutual contact, and that they acquire them totally; being aтоцл, indivifible. No anfwer has been given, or indeed can be given, hut what implies the fiame difficulty. Frum all that has been faid, we muft conclude, that this branch of mechanical philofophy is not put, by thofe philofophers, into the condition of an elementary foundation of clear and demonftrative fcience; that the transfution, or transference, either of force or motion, is not a thing of which we have a diftinct conception ; and that it neceflarily leads us into very untenable doctrines. Far lefs does it feent fafe for us to confide fo much in its clearnefs and certainty, as to affirm, that impultion is the fole moving force in mechanical nature, and the fource of what we call preffure.
All this difficuly and obfenity has arifen from our arrogant notion, that we are competent judges of firit principles; whereas we mult acknowledge, that we can only perceive fuch as are properly related or accommodated to our intellectual powers: thefe powers, being fpecific and peculiar, cannot judge of principles of the firll clafs, but of thofe only that are fuitably compounded. We can never know or comprehend any eflential property of matter-we can only know the relative properties of fucb matter as zue fee.
Therefore let us quit entirely the barren and tracklefs Therefore fields of abifraction, and reft fatisfied with contemplating to be learnwhat the Author of Nature has exhibited to our view, ed only by and fuch as he has been pleafed in his wifdom to exhi- oufrerving bit it. We grant that there are no bodies open to our infpection which are perfectly hard, receiving finite changes of motion in an inftant. It has not pleafed

\section*{I M P \\ 789 I M P}

Impulfin. Cod to put any fuch within our reach. When God of its applicalility th the purpofes intended. His ap- Impulficm, \(\underbrace{-2}\) created matter, it was with the purpofe of forming a beautiful univerfe of this matter. He therefore grave it properties whieh fited it for this purpofe. It is this natter only that the has expofed to the wondering view of man. Thanks to his Lematy, he has alfo given us properties of inind, by which this adapptation, when perceived by us, becomes a fource of dignitied pleafure is) the wlferver.-A Nuton, to whom "Yovis omnia plena," a Danicl Bermoulli, were rapt almoft intocectacy by a liagle atom, when they obferved how its propertics, and only fuch properties, litted it for making part of a world, which

> Unwearied, and from day to day, Should its Crfazor's power ditiplay.

Let the mulappy La Place confider thefe properties, which enfure the permanency of the folar iytlem through ages of ages, as proofs of fatalifm, as qualitics tilential to matter. But this Gallic torch effaces the bloom of life from the univerfe, the expreffion of the Supreme Mind which fhines from wilhin; and it fpreads over the constenance of Nature the ghailly palenefs of univerial death. But let us Britons rather follow the example of our illuftrious countryman, and folace ourfelves with every difcovery which tends to quicken our perception of Nature's animated charms. Let us jiflen to the conjectures of him who had already difcovered fo many, and who endeavoured to remove the veil which concealed the refl.

Newton, in his maturity of judgnent, after having collected much information from his unwearied experiments in magnetifn, in chemiftry, in optics, \&̌c. faid, that "he Itrongly fufpected, that, in the fame manner as the bodies of the folar fyftem were connected by gravitation, fo the particles of fublunary bodies were connected together, and affected each other, by means of furces which acted at fmall, and, in many cafes, infentible ditlances; producing the phenomena of cohetion, in all its forms of hardnefs, elaflicity, ductility, foftnefs, fluidity, by which their mecianical actions on each other were modified and regulated." Father Bofcovich, one of the firt mathematicians of Europe, was the firft who gave this conjecture of Newton's the attention that it fo highly deferved. Other writers indeed, fuch as Keill, Freind, Boerhaave, \&cc. tuok occalional notice of it, and even made fome ufe of it in their attempts to explain fome complicated phenomena of nature. But they were fo carelefs in their employment of Newton's conjecture, fo completely neglected his cautions manmer of proceeding, indulged io wantonly in hypothetical afumptions, and reafoned fo falfely from them, that they brought his conjecture into diferedit. Bufcovich, on the contrary, copied Newton with care, and fecured his progrefs as he advanced by the aid of geometry; enabliming a fet of uncontrovertible propolitions, which mult be the inevitable refults of the premifes adopted by him. He then proceeded to compare thefe with the phenomena of nature; and he fhews that the coincidence is as complete as can be defired. All this is done in his Theoria Pbilofopbice Naturalis, firft publifhed at Vienna in 1759. We have given a very fhort account of it in the article Boscovich, Suppl.; but it hardly goes beyond the cnunciation of the general principles, and the indication

1 lication to the production of motion by the collifion \(\underbrace{\text { mpuncm. }}\) of bodies, is peculiarly fatisfactory. But as the work is writen chaidly with the vicw of gaining the approbation of pertons well iuftructed in natural philofophy, it can lardly be called an elementary work, or be employed for the inftruction of perfons chittring on the itudy. We flall attconpt to explain this impurtant law of mechanilin in a way that will give our reialders a diftinct notion (and, we apprehend, a jult once) of the procedure of Nature in all the cafes of impulfion that we cant obferve. We hupe to do this, by confidering the changes of motion produced by moving bodies in a certain feries of familiar cafse, where the procedure of nature nas be diftinctly ubferved, and where it is uniformly cunceived by every fpectator; and which witl gradually lead the mind to thofe cafes where the proceoure is not obferved with diffinctuef : but the fimilarity to the former cafe is concludad by fo dair analugy, that we imacrine no perfon will controvert it. We hall begin by attending to the manner in which two magnets in motiull affect each othcr's motions; a phenonenon that is familanly known in the general, although, perhaps, few pertoris have attended to it minutcly.
Let us, thercfore, fuppofe two magnets, \(A\) and \(D\) plate \(x\) xis, (iig. r.) equal in weight (in the firlt inftance). Let thein be made to float on water, by placing them on Exaninapieces of cork. Let them be placed with their north muntual ace poles touching each other. Let A be held faft, and let ti in of \(B\) be at liberty to move. We know that it will gradual. magne ts. Iy recede from A , with a motion that would continual. ly accelerate, were it not fur the refiftance of the watcr. What is the inference drawn from this appearance? Surely this, that either a moving puwer, mherent in \(A\), repels \(B\), or that \(B\) avoids \(A\), by an evafive power inherent in itfelf. It is immaterial for our purpofe which opinfon we adopt. Let us fay that A repels B. This anmits more concife language than the other If we prevent this motion of \(B\) by means of a very flen. der fpring applied to its remote end, we fhall obferve that the epriug is bent back a litite, jufe as if we were pufhing away the magnet gently with the finger; and we cibferse, that the bending of the fpring is lo much the greater as \(B\) is nearer to \(A\). We can judge of the intenity of the force by which B is actuated, by the bending of the fpring.- This force is equal to the aveight of any body that will bend the spring to the fame degree. This force is analogous, therefure, to the weight, the preflure of gravity, and we may call it a preflure, and meature it by grains weight. Every force that call bend a fpring will move a borly. 'This is a well known fact. Therefore it is next to certain, that it is this force which caufes \(B\) to recede from \(A\); nay, if we compare the motion of B with what /bould refult from the action of a force having this very intenfity, and varying in the fane manner by a change of diftance from \(A\), taking in the diminution which the refiftance of the water mult occafion, we hall find the motions precifely the fame. All this can be difcovered by Dynamics, \(\mathrm{n}^{\circ} 95,8 \mathrm{c}\). Therefore we mult conclude that this, and no other, is the caufe of the recefs of \(B\).

If, inftead of placing \(B\) in contact with \(A\), we place it at a diftance from it, and pufh it toward \(A\) with an. initial velocity, fomewhat lefs than it would have acquired

\section*{I M P [700] M P}

Inpulfinn. quircd in that place by its reciss from \(A\), we niall find that it will approach A with a mution gradually retarded, till it Itup at a fmall diftance from A ; and will now recede from it again with an accelerated motion. In fort, we fhall find that its whole motion to and from \(A\) is precifely the fame with what refults from a imilar conputation by \(n^{\circ} 95\) of Dynamics.

The whole of this phenomenon is conceived by every beholder, who has not imbibed forne peculiar theory of a ftrean of impelling fluid, as the indication and effect of a repulfive force exerted by \(A\) on \(B\), or of a quality of \(B\), by which it recedes from \(A\).

If now \(B\) he held falt, and \(A\) be fet at liberty, it is obferved to be repelled by \(B\), or to recede from 13 , in the fame manner, and with the fame force.

Thus, the two magnets appear to affect each other's motions, and are thought, and faid, by all to repel each other. The effect appears curious, tut excites no farther thought in moft minds: it is only the feeculatif that begins to fufpect that he has not conceived it properly.

Now, let us fuppofe that \(B\) is afloat on the furface of the water, and at reft; and that \(A\) is pulhed towards it, by a fingle ftroke, cauling it to move fo moderately that it flall not Atrike B , but have its motion dellroyed by the repultion before it reaches it ; and let us farther fuppofe, that the initial velucity of \(A\) was exactly mealured - the fact will be as follows. As foon is A comes within a certain diftance of \(B\), its motion begins to be aflected; it gradually diminifhes, and at length it ceafes entirely, and is remains ever after perfecily flill. But it is allo obferved, that in the inflant that A flackens its motion, \(B\) begins to move : that it gradually accelerates in its motion, and at laft acquires the initial velucity of \(A\), with which it proceeds, till the refiltance of the water brings it to relt; perhaps at a confiderable diftance from \(A\). This experiment is very amuling, and the initial velocity of \(A\) may be increafed in each fucceeding tual, till at laft it ftrikes B. Even then the general appearance remains the fame: A is bronght to reft and remains at relt, neither refling nur advancing forward; and \(B\) moves off with the initial velocity of A. What we winh to be particularly noticed is, that as long as the initial velocity of \(A\) is le[s than a certain quantity (depending on the ftrength of the magnets), the motion is communicated to B , or, to exprefs it more cautioully, modion is produced in B, without any thing happening that can get the name of impulfion with propriety. In the ordinary conceptions and language of mankind, impulfe always fuppofes actual contact ; and impulfion is equivalent to a hlow or a flroke. Both of thefe are indeed metaphorical terms, as well as impulfion. Perhaps the worl "to hit," exprefles this particular cafe more purely, and it is perhaps without any figure, and is the appropriate word. We do not fpeak at prefent of the conception and language of philofophers, but of perfons taking an unconcerned view of things, without any intention of fpeculating farther about the matter.

Appearances perfectly fimilar are obferved in electrified bodies. If we hang two equal bunches of very light downy feathers by two equal linen threads, fo as to hang clofe by each other like pendulums without
touching, and if, after having electrified them for that hoplfon, they repel each oh her to fome diftance, we draw one of them, which we thall call A, conliderably afide from the perpendicular, and then let it go to fwing like a pendulum ; we thall obferve, that infted of accelerating till it reach the lowell point of its vilbration, its motion will be retarded; it will Itop entirely when its thread is perpendicular, and will remain at reft. In the mean time, the other bunch \(B\) will acquire motion, whichs will gradually increafe till it equal the motion of \(A\) in its maxinum flate; and with this it would proceed for ever, were it not riling like a pendulum in the arel of a circle. The general fact is the fame as in the cafe of the magnets. Tlie moving body is brought to reft, in which fate it continues, and the quieficent body moves off with an ultinate velucity, equal to the initial velocity of the other, and all this haperens whont contact or inpulion, but is prodaced by the nutual repulfion of the electrified bodies.

If this general fact be compared with what lappens in the collifion of two billiard balls, it will be found perfectly funilar in every refpect, but that of the contact and the impulfion, properly fo called. The impelling ball is bronght to reft, and remains at reft; and the impelled ball moves off with the velocity of the impelling ball.

This being the cale, it is plain that we may derive fome information from the motion of the magnets, that muft greatly affift us in our conceptions of what pafles in the rapid, if not inftantaneous, production of motion in a billiard ball, by hitting it with another. In the cale of the magnets, we perceive, and can rliferiminate, a progreflive train of changes, which terminate in a \(\mathrm{fi}_{\mathrm{g}}\) nal change, perfectly finilar to the change in the impultion of the billiard ball. This will jultify a very ninnte attention to, and fatement of, all the circumHances.

Let us attend to the procefs of this operation, and Firft \({ }^{23}\) eafe. the production of motion in the maguet originally at A moving reit, and the abolition of it in the one originally in mo. \({ }^{\text {onvart }} \mathbf{B}\) tion; and let us reflect on what pafics in our minds at ref. when we try to explain it to ourfelves. The trials mentioned at firt, when one magnet was held fath, thew us that each magnet repels or avoids the other, and that this action is found to be equal on buth fides, producing equal compreffion of the fpring employed for afcertaining the intentity of this repultion when the diAtances are the fame. This is the fact. It is no lefs a fact, that equal moving forces, fuch as equal preflures mult he fuppofed to be, produce equal changes of motion in their own direction. Thercfone, as foon as A comes to fuch a diltance from \(B\) that the mutual action takes place, both magnets are affected, and equally affected; that is, equal changes of motion are produced on each, but in oppolite directions. The motion of A is diminifhed, perliaps \(\frac{1}{x} \frac{1}{0}\) th part in rioth of a fecond, and (let it be carefully remembered) while A paftes over a certain fpace, fuppofe the roth of an inch. Durintr this fmall portion of time, \(B\) acquires as much motion as A lofes. This is not the motion loft by \(A\). This is inconceivable; for motion is not a thing, but a condition. But it is an equal degree of motion. B has pafted over a fmall face during this time, perhaps the 50 th part of an inch, with an almof imperceptible motion,

\section*{I M P [771] I M P} motion, that is gradually accelcrated from nothing.
Since \(A\) is moving fafter than \(B\), it mull Hill sain upon it; and therefore the mutual repulfion will increate ; and in the next roth of a fecond this force will take another aad greater portion of A's original velocity from it, and will acd a croater velocity to that already acquired by 13. And thus, in every fuccealing minute portion of time, the motion of \(A\) will be mure and more diminifhed, and that of \(B\) as much increafed, by the equal, though contimully increaling, funultancous repulfions acting in oppofite dircetions. It is evident, that it is pofinhle that the velucity of A may be fos much diminthed, and that of B fo mucl increaled, that the remaining velocity of A fiall be jult equal to the acquired velocity of 13 . Till this happens, the diflances of the magnets have been continually dininithing; for A has been moving fatler than \(B\), and gaining on it. If the operation of the mutual repulfions could be fopped at this inflant, both magnets would move forwarl for ever with equal velocities.

It is of particular importance to know what this common velucity is. This is determined by our previous knowledge, that the magnets repel or avoid each other with equal forces. Thefe forces may vary by a variation of diflance ; but the force acting on \(A\) is always equal and oppofite to the force acting at the fame time on B . This is the uncontroverted fact (the authority for which thall foon be confidered). Thefe equal forces mult therefore produce equal and oppolite changes of mution. . The motion acquired by B is equal to that loft by \(A\) : But the magnets being fuppofed equal, and moving with equal velocities, they have equal quantities of motion. Therefore the motion acquired by B , or that luft by \(A\), is equal to what remains in \(A\); that is, A has loft half of its motion, and therefore laalf of its velucity ; or the common velocity is half of the primitive velocity of \(A\).

It was for the fake of a fomewhat eafier difenfion that we fuppofed the magnets to be of equal weights. But it is almon equally eafy to afcertain what this common velocity will be in any other proportion of the quantities of matter in \(\mathbf{A}\) and B . It is a matter of unexcepted experience, that whatever be the weight or ftrength of two magnets, their actions on each uther are always equal. Therefore the fimultaneons force mutt always produce equal changes of motion in the two bo. dies. But the change of mution is exprefed by the product of the quantity of matter and the change of velocity. Therefore let \(A\) and \(B\) reprefent the quantities of mat. ter in the magnets; and let \(a\) be the primitive velocity of \(A\), and \(x\) the velocity which obtains when both are moving with one velocity. The velocity lolt by \(A\) is \(a-x\). Therefore we muf have \(B x=A \times \overline{a-x}\), \(=A a-A x ;\) and \(A a=A x+B x,=\overline{A+B} \times x\), and \(\grave{\lambda}=\frac{\mathrm{A} a}{\mathrm{~A}+\mathrm{B}}\). The commion velocity is therefore obluined by dividing the primitive quantity of motion by the fuim of the quantities of matter.

This may be conceived more compendioufly in another way. Since B acquires as much motion as \(A\) lofes, the whole quantity of motion is the fame as before: 'Therefore the common velocity mutt be had by dividing this quantity of motion by the whole quantity of matter. But we wifhed to make the reader keep his
attention fixed on the fteps of procedure, and fee the impulfins. commection of each with the caufes.

We thall find that this period of the whole procers, namely, the moment when both borlies have acquired a common velocity, and the precife magniturle of this velocity, are points of peculiar importance in the doctrine of impulion; indeed they almolt comprehend the whole of it .

But this is a flate that cannot continue for a moment But this in the example before us. 'The repulfive or evalive docs not forces are lill atting on both magnets, and fill dimi-continue, nifh the motion of \(A\), and equally increafe the motion and the of \(B\). Therefore the velucity of \(A\), in the very next magnets moment, nuft be lefs than that of \(B\); and \(B\) has, during this moment, gained on \(A\), or has removed farther from it. This continues; A is ftill retarded, and B is accelerated; and therefore gains more and more upon A, or feparates farther and farther from it. 'This mult continue as long as the mutual repulfions are fuppoied to act. If we duppofe that the finflete action of thefe forces is limited to fome determinate diltance, the mutual action will ceafe when B has got to that diftance hefore A. We may call it the ina dive diflance. After this, A and B will proceed with the velocities which they have at that inllant. Let us inquire into thefe final velocities; and thus complete our acquaintance with the procefs.

We fee (and it is important) that the magnets are The com. in their ftate of greatelt proximity at the inftant of their men velumoving with a common velocity, and that after this city is atthey gradually feparate, till they are again at their in- the infat active diftance. During this feparation they attain dif of neater tances Erom each other equal to what they had during approach. the period of their mutual approach. At thefe ditances the repulfions are the lame as befone, and act in the fame direction. Thercfore, in each moment of feparation, and at each diflance, \(A\) futtums the fame diminution, and \(B\) gets the fame augmentation of its motion, as when they were at the fame dillance in the period of their mutual approach. The fums total, therefore, of thefe equal augmentations and diminutions muft be equal to the augmentation and diminution during the approach. Therefore the whole diminution of A's motim mult be double of the diminution futtained during the approach; and the whole angmentation of II's motion muft, in like manner, be double of that acquired during the approach of A. Hence we eafly fee, that when the magnets are fuppofed equal, \(A\) mult be brought to rell ; for in the period of approach it had loft half of its velocity. It muft now have loft the whole. For fimilar reafons 1 mull finally aequire the primitive velocity of \(A\); for in the inftant of greatelt proximity, it had acquired the half of it.

Thus we fee that the equal mutual repulfiens are pre-Requilion cifely adequate to the production of the changes of mo- is a caufe tion that are really oblerved; and mult therefore be ad. adequate to mitted as the immediate caufes of thefe chanres.

It is equally eafy to afcertain the final velocities when the magncts are of unequal fizes; for the equali- Effed ty of their mutual repulfions is not affected by any inequality of their magnitudes. Their feparations, and magnets the changes of motion during thefe feparations, will be areurequal the fame with their approaches and the correfponding changes of motion; and the whole change on each will be double of the change futained at the inftant of

Impulian. greatef proximity and common velocity. Hence we learn that the final velocity of \(B\) is \(2 x\), or \(\frac{2 A a}{A+B}\); and the final velocity of \(A\) is \(\frac{\overline{A-B} \times a}{A+B}\) For the primitive velocity of A being \(a\), and the common velocity, in the inftant of neareft approach being \(\frac{A a}{A+D}\), the lofs of velocity is \(a-\frac{\mathrm{A} a}{\mathrm{~A}+\mathrm{B}},=\frac{\mathrm{A} a+\mathrm{B} a-\mathrm{A} a}{\mathrm{~A}+\overline{\mathrm{B}}}\) \(=\frac{B a}{A+B}\). Therefore the final lofs of velocity is \(\frac{2 B a}{A+B}\), and the remaining final velocity is \(a-\frac{2 \mathrm{~B} a}{\mathrm{~A}+\mathrm{B}}\), \(=\) \(\frac{\mathrm{A} a+\mathrm{Ba}-2 \mathrm{Ba}}{\mathrm{A}+\mathrm{B}},=\frac{\overline{\mathrm{A}-\mathrm{B}} \times a}{\mathrm{~A}+\mathrm{B}}\).
II. Cafe. Both mag. nets in notion in one direction.

Let us, in the next place, fee what will be the refult when both of the magrets are in motion at the beginning of their mutual action. And, firt, let both move in one direction. Let \(A\), moving with the velocity \(a\), overiake B , moving in the fame direction with the velocity \(b\), lefs than \(a\). Moreover, let the velocities \(a\) and \(b\) be fuch, that their differences \(a-b\) is formewhat lefs than the fum of the velocities \(a\) and 3 , which the mutual repulfions of the magnets would generate in them, if the magnets were placed in contact, and allowed to recede from each other till they get beyoud their acting diftance.

Thele things being premifed, let the magnets be fet in motion in the fame direction with the abovementioned velocities \(a\) and \(b\). The magnet \(A\) mult gain on \(B\), and at laft come fo near it, that the mutual repulfions begin to act on both. It is plain, that the motion of \(A\) will be dininilhed, and that of \(B\) increafed, by equal quantities, during every minute portion of the time of their mutual action. It is alfo evident, that the velocity of \(A\) may be fo much diminifhed, and that of B fo much increafed, that they nall be rendered equal. Alfo this will happen before the magnets touch one another; becaufe the original difference of their quantities of motion has been fuppofed lefs than the motion which the repultive forces are able to generate or extinguifh, by acting on them through the whole diftance which gives occafion to their action. Therefore the difference of the relocities is lefs than the fum of the relocity \(\alpha\), which the inutual repulfion can take from A, and the velucity \(E\), which it can give at the fame time to \(B\). The maguets will gradually approach, and the mutual repulions, and confequent dininution of A's, and augmentation of B's motion, will gradually increafe, till the fum of \(x\) and \(?\) is jut equal to the difference of \(a\) and \(b\); that is, till the bodies are moving with one velocity. If the mutual repulfions were annibilated at this inftatt, the bodies would move forward with this common velocity. What this is we determine with great facility, as we did in the former cafe: Becaufe the repulfions produce equal and oppofite changes of motion in the magnets, as much is taken from \(A \times a\) as is added to \(B \times b\); and the fum of \(A \times a\), and \(B \times b\), is equal to the fum of \(A \times x\) and \(B \times x\), or \(\overline{\mathrm{A}+\mathrm{B}} \times x=\mathrm{A} \times a+\mathrm{B} \times b\), and \(x=\frac{\mathrm{A} a+\mathrm{B} b}{\mathrm{~A}+\mathrm{B}}\).

Therefore the common aelocity is bad by dividing the fun of impultion. the primitive quantities of motion by the fum of the quantitics of maller.

Comman
But the repulfive forces continue to act as in the for velocity \(=\) mer cafe. The motion of \(A\) is ttill more diminithed, \(A a+B \bar{b}\) and that of \(B\) augmented: Therefore the velocity of \(B \overline{A+B}\) mult now exceed the velocity of \(A\), and the magnets but the mult feparate. Reafoning in the fame way as in the marnets fe. and former cafe, it is evident that the mutual action does the change not ceafe till the magnets have feparated to their inac-is doubled tive diftance from each other, and that the whole change ia cach. of motion in each is double of the change that it had fuftained when they were in their greateft proximity, and moving with a common velucity. Thefe confiderations enable us to afcertain the final fate of each. The common velocity is \(\frac{\mathrm{A} a+\mathrm{A} b}{\mathrm{~A}+\mathrm{B}}\). Therefore the change made on the velocity of \(A\), at the inftani of greatef proximity, is \(a-\frac{A a+B b}{A+}\), or \(=\) \(-\frac{B \times \overline{a-b}}{\frac{A+\bar{B}}{}}\), and the final velocity of A is \(a-\) \(\frac{2 \mathrm{~B} \times \overline{a-b}}{\mathrm{~A}+\overline{\mathrm{B}}}\). In like manner, the change produced on the velocity of \(B\) is \(=\frac{A a+B b}{A+B}-b\), or \(=+\) \(\frac{A \times \overline{a-b} b}{A+\bar{B}}\), and the final velocity of \(B\) is \(b+\) \(\frac{2 \mathrm{~A} \times a=}{\mathrm{A}+\mathrm{B}}\). We may alfo obtaio the final velocity of each, by taking its initial velocity frum twice the cummon velocity.

If, in this example of two magnets in motion, we fuppofe them of equal weight, we finall finit that they will finally proceed with exchanged velocities. For when \(\mathrm{A}=\mathrm{B}\), it is plain that \(a-\frac{2 B \times \overline{a-b}}{A+\mathrm{B}}\) is \(=\) \(a-1 \times \overline{a-b},=a-a+b,=3:\) and \(b+\) \(\frac{2 \mathrm{~A} \times \overline{a-b}}{\mathrm{~A}+\overline{\mathrm{B}}}\) is \(=b+1 \times \overline{a-b},=b+a-b,=a\). This cafe is eatily fubjected to experiment, and will be found fully contirmed, if we take into account the retardations occalioned by the refiftance of the water to the motions.

Let us, in the next place, fuppofe the magnets to be Mapners moving in oppolite directions with the velocities \(a\) and moving in \(b\); and (in order that the nagnets may not Arike each nppofite diother) let the fum of \(a\) and \(b\) be lefs than the fum of \(a\) rettions. and \(k\), which the repulfions of the magnets would produce by repelling them from contact to their inactive dillance.

As foon as the magnets arrive at their afting diftance, their mutnal and equal repulfions immediately begin to diminish both of their motions; and in any minute portion of the period of their approach, equal quantities of motion are taken from each. It is evident, that if the prinitive quantities of motion have been equal; that is, if \(A\) and \(B\) have been moving with velocitics reciprocally proportional to their quantities of matter, then, when the motion of one of them has been annililated by zheir mutual repulion, the motion of the other will

\section*{I M P [793] I M P}

Sanpulion. be deftroyed at the fame time, and both will be bruught to reft. Were the repulfions anuihilated at this inflant, they would renain at ref. But becaufe thofe forces continuc their actiuns, the magnets will Ceparate again, regainiag, at every diftance, the velocity which they had, when at that diftance, during their mutual approach; and when they have reached their inactive difance, they will have regained each its original momentum and velocity, but in the oppofite direction. This needs no farther comment; but muft be kept in mind, becaufe this cafe has a precife counterpart in the collifion of folid bodies, mecting each other in oppolite directions with equal momeata. But if the momentum of one exceed that of the other, thus, if \(\mathrm{A} \times a\) be greater than \(B \times b\), then, when the inagnet \(B\) is brought to reft, \(A\) has ftill a monentum remaining equal to \(\mathrm{A} a-\mathrm{B} b\). Having therefore a certain velocity, while B has none, it muft approach fill nearer to \(B\), and a ftill greater repulfion will be exerted on \(B\) than if \(A\) had allo heen brought to reft, but till repelling B . Since B is now acquiring motion in the direction oppofite to its former motion, and A is flill lofing motion, a time mult come when the motion of A is fo much diminifhed, and that of B fo much augmented, that they are moving with a conmon velocity in the direction of A's primitive motion. The reafoning employed in the foregoing examples flew us, that, in the prefent cafe alfo, this flate of common velocity is alfo the fate of the greatelt proximity, and that the magnets feparate again, till they attain their ditance of inaction, and that the total change in each is double of what it was in their thate of greateft proximity. velocity \(=\) the momentum of \(B\) was extinguilhed, that of A was \(\Delta \Delta-B b\) ftill \(=A a-B b\). From what has been already faid \(A+B\) but the change is doubled hy the fubre\(\underset{\substack{\text { quent fepa } \\ \text { ration }}}{ }=\frac{\mathrm{A} a-\mathrm{B} b}{\mathrm{~A}+\mathrm{B}}\).

The velocity loft by A nult therefore be \(a\) \(\frac{\mathrm{A} a-\mathrm{B} b}{\mathrm{~A}+\mathrm{B}},=\frac{\mathrm{B} \times \overline{a+b}}{\mathrm{~A}+\mathrm{B}}\), and the tinal velocity will be \(a-\frac{2 \mathrm{~B} \times \overline{a+b}}{\mathrm{~A}+\mathrm{B}}\). The final motion of A will be in the fame direction as at firt, if \(a\) be greater than \(\frac{2 \mathrm{~B} \overline{a+b}}{\mathrm{~A}+\bar{b}}\), otherwife it will be in the oppofite direction.

In like manner, the change of velocity in \(B\) is \(b+\) \(\frac{A a-B b}{A+B}\), becaufe the former velocity \(b\) is deftroyed, and the new velocity is \(\frac{\mathrm{A} a-\mathrm{B} b}{\mathrm{~A}+\mathrm{B}}\) in the oppofite direction. This is \(=\frac{A \times \overline{a+b}}{\bar{A}+B}\), and the final velocity of B is \(=b-\frac{2 \mathrm{~A} \times \bar{a}+b}{\mathrm{~A}+\overline{\mathrm{B}}}\).

Thus we have fhewn, in the cafe of magnets acting on each other by repulfive forces, or actuated by forces equivalent to repulive forces, how changes of motion are produced, which have a great refemblance to thofe which are feen in the collifinn of folid bodies. Suppl. Vol. I. Part II.

The motions which obtain in the infant of greateft Inpulfion. proximity are precifly finilar to what are obferved in the collifion of unclatic bodies. Their common velocity after coliifion is always \(=\frac{A a+B b}{A+B}\), or \(=\) \(\frac{A a-B b}{A+B}\), according as, the budies were moving in the fame or in oppolite dircetions. The final motions of the magnets are alfo preceifely fimilar to what are ob firved in the collition of perfectly elatic bodies. Wc took the inflance of magnets, becaufe the object is familiar ; but we can fubititute, in imagination, an abAtract repulfive force in place of magactiln, and we can affign it any intenfity, and any law and limits of action we pleafe. We can imagise it fo powerful, that although its action be limited to a very frall, and even infenfible diftance, it thall always reduce the meeting bodies to a common velocity before they cone into actual contact ; and therefore wihout any real impulfion, as impulfion is commonly conceived.
There are fome farther general obfervations that may be made on thofe motions which are of importance.
I. We fee that the changes of motion, and coufe- Thefechanquently the actions, are dependent on the relative mo-gaerere pro tions only, whatever the abfolute motions may be : Fur portional changes are always as \(a-b\) when the bodies are no- to the rela. viug in one direction, and as \(a+b\) when they are mo- tive moving in oppefite directions. Now \(a= \pm i\) is the relative motion.
2. The change of velocity in each of the two bodies And \({ }^{35}\).ciis inverfely as its quantity of matter, or is proportionat Ancually as to the quantity of matter in the other body. The the quantichanges in A and B are \(\frac{\mathrm{B} \times \overline{a=t b}}{\mathrm{~A}+\overline{\mathrm{B}}}\) and \(\frac{\mathrm{A} \times \overline{a=b}}{\mathrm{~A}+\overline{\mathrm{B}}}\). tee. The clanging farces being equal on buth fides, produce equal changes in the quantities of motion; and therefure produce changes of velocity that are iaverifely as the quantities of matter.
3. During the whole procefs, the fum of the momen- Cowser \({ }^{36}\) ta, or quantitics of motion, remains the fame, if the vation mobodies are moving in one direction: if they are moving MENTO. in oppofite directions, it is the difference of momentarast. that remaius the fame; for in every inftant of the procefs equal changes of momentum are made in oppooite directions. When the motions are in the fame direction, as much is taken from the one as is added to the other; and therefure the fium remains unchanged. When the motions are in oppofite directions, equal quantitic: are taken from both; and thercfore the diffrence semains unchanged. This is called the conservatio momentorum ; and it is ufually enunciated by faying. that the quantity of motion, eftimated in one direction, is not changed by the equal and oppofite actions of the bodies. This is a particular cale of a general law affirmed by Des Cartes, that the quastity of motion in the univerfe remains always the fame when eflimated in any one direction.
4. When the whole proceis is completed, the fun Covisen. of the products made by multiplying each body hy the vario vifquare of its final velocity, is equal to the fum of therium viproducts made by multiplying each body into the fquare varuas. of its initial velocity. For when the procefs is completed, the two budies are at the fame dillance from each other as when the nutnal astion began. There5 H fore,

\section*{\(1 \mathrm{M} \mathrm{P} \quad[797] \quad\) I M P}

Impulfion, fore, derine the procefo, cach body has paffed over an ega ' fpace, and in every fimlar point it has been acted on by an equal foree (alelongh this foree be difierent, in different peints of this fyace). Therefort, in every inflant, the fimultaseous products of the gutanity of matter by the momentary varidion of the fquare of the velocity are equal on both fides; and therefore the products of the quantity of matter by the whole change of the fquare of the velucity are alio equal on both fides. See Denamics, Suppl. \(n^{\circ} 95\). and 110. where \(v \dot{v}=\) \(\frac{f \dot{s}}{m}\); and therefore \(m v \dot{v}=f \dot{s}\), and \(m \times \mathrm{V}^{2}-v^{2}\), or \(n \times v^{2}-\mathrm{V}^{2}=\iint^{\circ}\) s. Now, fince thefe changes are in oppofite directions, as much is added to one product as is taken from the other, and the fum of the products of the quantities of matter by the fquares of the fimal velocities, is equal to the fam of the products of the fame quantities of matter by the fquares of the initial velocities.
Thefe two This is a particular cafe of the famous conservatio cheorems are not principles, puncipice, the partizans of Leibnitz, and ascribed \(t 0 \mathrm{him}\); but but general he has no claim whatever to the difcovery. It was fuct. communicated to the Royal Society of London in 1668 by Huyghens, as one of the general laws of impulfion, obtaining in what he calls bard bodies. Several of the I.eibnitzian fehool, indted, extended it farther than Huygheris had done; fome of them indeed very lately. The obfervation of this general law was foon applied to many excellent purpofes in the folution of very intrieate problems; becaure it ofien faved the trouble of tracing the intermediate fteps of a complicated procefs. Affured that thefe pluducts were invariable, the mathematician found it an eafy matter to fate what conditions of the quethion infured this equality of products; and thus the problem was folved. In this mantier Daniel Bernoulli gives moft elegant folutions of fome, otherwife alnoft intractable, problems in Hydraulics. For fuch reafons, as a mighty aid in mechanical invelligation, the difcovery of Huyghens is extremely valuable. lts merit in this refpect is perfectly fimilar (though perhaps fomewhat greater) to Des Cartes's obfervation of the confervatio nicmentorum. "It is alfo like the obfervation or difcovery of Maupertuis, which he ealls the law of frallef ation (indeed it is the fame under a different afpect), or La Grange's law of virtual velocities, or D'Alembert's law of equilibriam of aigion;-all of thefe are general facts, laws by which the changes of motion are obferved to proceed. But their authors have vaunted them as principles, as caufes, from which to conclude effects; whereas they are really inductions from particular inflances. We muft alfo obferve, that this law of confervatio virium viquram was not deduced either by Huyghens or any of the Leibnitzian fehool, by reafoning from more general principles. It was an expifeation of famenefs in events, diverffied by other circumftances. We do not recollect any author who has given what can be called a demonftration of it, deducing it from principles or laws ftill more general. We apprehend that the prefent cafe of its truth has been fo demunttrated by us. The principle is, that " a muving force is to be meafured by the change of motion produced by it:" And the law to which this principle is applied is, that "the mutual repulfions of magnets
are equal and oppofite;" and the application is made Impulfion by ineans of the " 30 th propofition of the firlt book of Newtun's Primifia." Our principle, which is the fame with Sir Ifaac Newton's fecond law of motion, is really an axiom of louman thought. The propofition is the confequence logically drawn from this axiom; and the law of magnetifm is an obferved fact. We hope to thew, by and bye, that this propofition, which is our \(n^{\circ} 95\). of Dynamics, is found to obtain in every inftance that has been or can be given of the conferiatio virium vivarum, and that this confervatio is only another way of expreffing the propofition. Having done this, we thall not think ourfclves chargeable with vanity when we fay, that we have given the firf demonftration of this famous law. We cannot refufe ourfeives fome fatisfaction at having done-this; becaufe it has been fo highly efteemed, chiefly for the fupport derived from it for the Leibnitzian meafurement of the force of moving bodies by the fquare of the velocity which it communicates; whereas it is the logical confequence of the force being proportional to the fimple velocity. We have only taken a weapon out of the hands of a plunderer, and reftored it to its lawful owner, Sir Ifaac Newton. Non ita certandi cupidus, quam propter amorem: For we mut fay,

> Tu pater et rerum invenitor, tu patria nobis Suppeditas precepta, tuifque ex, inclute, chartis Floriferis ut apes in faltibus omnia lillant, Omnia nos itidem depafcimur aurea ditaa Aurea, perpetuâ fomper digniflima vitâ.

We truft that our reader will not think that this minute difcuffion of the mutual actions of magnets or other repelling bodies, in which we have engaged him, bas been thrown away, fince it has enabled us to apprehend clearly a cafe of two fuch general laws as the confervatio momentorum, and the confervatio virium vivarunt.
5. In the monent of greateit vicinity and common \({ }^{38}\), velocity, there is a certain determinate lofs of the vi-lof in the res vive, or prolucts of the matter by the fquarecollifion of of the velocity; and this lofs is proportional to the unelaftic fquare of the relative motion. The vires viva, at bodies. the commencement of the mutual action, are \(=A a^{2}\) \(+\mathrm{B} b^{2}\) (I.) In the moment of greateft proximity, the quantity of matter \(A+B\) is moving with the common velocity \(\frac{A a}{A}+\frac{B b}{B}\); therefore the vires vives are \(=\overline{\mathrm{A}+\mathrm{B}} \times \frac{\overline{\overline{A+} \bar{B} b^{2}}}{\overline{\mathrm{~A}+\mathrm{B}}}=\frac{\overline{\mathrm{A} a+\overline{\mathrm{B}} b^{2}}}{\mathrm{~A}+\mathrm{B}},=\) \(\frac{A^{2} a^{2}+B^{2} b^{2}+\mathrm{AB} \times 2 a b}{\mathrm{~A}}\) (II.)
T. \(\times \overline{\mathrm{A}+\mathrm{B}}=\mathrm{A}^{2} n^{2}+\mathrm{B}^{2} b^{2}+\mathrm{AB} \times \overline{a^{2}+b^{2}}\).
II. \(\times \overline{A+B}=A^{2} a^{2}+B^{2} b^{2}+A B \times 2 a l\).
\[
\text { Difference }-\mathrm{AB} \times \overline{a-b^{2}} \text {. }
\]

Lofs of vis vivaं \(=\frac{A B}{A+B} \times \overline{a-b^{2}}\), a quantity that is proportional to \(\overline{a-l^{2}}\), the fquare of the relative velocity \(a-b\).

Had the bodies been moving in oppofite directions, then (II.) \(\times \overline{A+B}\) would have been \(A^{2} a^{2}+B^{2} b^{2}\) \(-\mathrm{AB} \times 2 a b\), and the difference from \(\overline{\mathrm{A} a^{2}+\mathrm{B} b^{2}}\) \(\times \mathrm{A}+\mathrm{B}\) would have been \(=\mathrm{AB} \times \overline{a+b^{2}}\), proportiomal to the fquare of the relative velocity \(a+b\).

\section*{1 M P}

Inpthins. I'hylica! caute of this luf:.

Such is the fact; and we thall find it of importance in the great debate about the force of moving bodics. l.et us inquire into the phyfical or mechamical canfe of it. In the moment of common velocity, the bodies are nearer to each other than they are at the beginning and at the end of their mutual action. Therefore (when they are moving in one direction) the budy A , which fullows, has been retarded through a fpace which is greater than the fpace along which the preceding body \(B\) has been accelcrated. But, hecaufe the fimultaneous forces acting on the bodies along the e unequal fpaces are aways eyual, the area which meafures the diminution of the fquare of A's velucity (Dynamics, \(n^{\circ} 95\).) muft exceed the area which expreffes the augmentation of the fquare of l)'s velocity, and there mult be a lofs of vires virid. Now, we learned above, that the mutual action is the fame when the relative velocity is the fame; and therefore the approximation, which is the oceafion of this action, mutt be the fame. And it is demontrated in Dynamics, \(n^{2} 93\). that the area, whofe abfeiffa is the fpace deferibed, and ordinates the forces, expreffes the fquare of the generated or extinguifhed velocity. This is evidently the relative velocity of the bodies, becaufe they are brought to a common velocity in the inftant of greateft proximity ; that is, their relative velocity is deftroyed.
6. During the whole procefs, the common centre of pofition or gravity (\(A\)) is moving uniformly with the velocity \(\frac{A a \pm B b}{A+B}\). For the motion of the centre of pofition is the average of the motion of every particle of matter in both bodies. A \(a\) is the fum of the motions of every particle of matter in \(A\), and \(B b\) is the fum of the motions of every particle in B , before the mutual actions hegan. Therefore \(\mathrm{A} a+\mathrm{B} b\) is the whole motions when the bodies are moving in the fame direction with their different velocities. The number of particles is \(A+B\) : Therefore, if the whole motions be equally divided among all the particles, the vevelocity of each mult be \(\frac{A a+B b}{A+B}\). This is the average motion, or the motion of the centre of pofition, deduced from the notion we wifh to imprefs of the character of this centre, as the index of the polition and motion of any affemblage of matter. This velocity may be deduced more eafily from its geometrical property. It is a point folituated between \(\mathbf{A}\) and B , that its diltance from each is reciprocally proportional to the quantities of matter in A and B, as is well known of the centre of gravity. It is equally plain, that when the bodies are moving in oppofite directions, the average velocity a muft be \(=\frac{A a-B b}{A+B}\). Thus we fee, that the motion of the centre of pofition, before the naguets have begun to act on each other, is the fame
with its motion when their mutal repultion is the frpultan. greatett; nainely, at the monent of thei- gre...efl vici- \(\underbrace{\text { - }}\) nity. It has continued the fame furing the whole procefs: For we have already feen, that the fu:n or difference of the momenta, or \(A a=1-B b\), renained always the fame; confequently \(\frac{A a=B b}{A+13}\), or \(x\), the metion of the centre, remains always the fame. There \(\mathrm{r}_{\mathrm{r}}\) re the propofition is demonftrated. It is, indeed, at truth much more general than appears in the prefent inftance. If any munber of bodies be nowing suith ary aclocities, and iat any diretions, the mation of the centre of phition is not afficted by their mulual, equal, and offofite, actions on cach orler.
7. During the whole motion, the motion of the ho-The nao. dies relative to each other, is to the motion of one of ricn, in rethem, relative to the centre of pofition, as the fum of the lation to bodies is to the other budy: For when they were mo- the centre, ving with a common velocity, this velocity was the cally as the farne with that of the eentre; and they are then at reft, bodic: relative to each other, and relative to the centre. And becaufe their diflances from the centre are inverfely as the bodies, their changes of diftance, that is, their motions rclative to the centre, are in the fune proportion: and the fum of their motions relative to the centre is the fame with their motions relative to eath other. Therefore \(\mathrm{A}+\mathbf{B}: \mathbf{A}=a-b\) : motion of B relative:.. the centre. Indeed we faw, that in their mutual action, the change of \(B\) 's motion was \(=\frac{A \times \overline{a-b}}{A+\bar{B}}\), and the change of \(A\) 's motion was \(=\frac{B \times a-b}{A+B}\).

Hence we learn, that while the centre moves uni. The kodics formly, the borlies approach it, and then recede from it, fel arare with velocities reciprocally proportional to their quanti- with the relaties of mater. 'This will be found a very ufeful corol tive velocilary. We may alfo tee that their final velocity of minety which tual recefs is equal to that of their fiat approach, or, they ap. their relative motions are the fame in quantity after the proached. action is over as before it begran, but in oppolite directions.

Alt thefe general facts, which are ditinctiy appre. ciable, and very perceivable, in this example of mag. nets, or electrified bodies, are equally appreciable in all cafes of mutual repulions, however ftrong thefe may be; and although the face through which they are ex: erted fhould be fo fmall as to elude obfervation, and though the whole procefs fhould be completed in an infenfible moment of time.

It fearecly needs any comment to make it clear that An interthe very fame changes of motion muft take place, if a phord fulid body \(A\) thould come up to another folid body B , 1 pmin has at reft, or moving more nowly in the fame dircction, the fame or mo:ing in the oppofite direction ; provided that there the mutual be a fering interpofed between them, which may hinderrepulfions. \(5 \mathrm{H}_{2}\)

A
(A) See the article Posirion in this Supplement; where it will be demonttrated, that the centre of gravity (de. termined in the ufual manner) is the point by whofe fituation and motion we eftimate with the greatert propriety the fituation and motion of the affemblage, of which it is the contre : it is therefore called the centre or posirion. The reader is only defired at prefent to recollect, that the centre of gravity, or pofition of two bodies, is fituated in the line joining their centres; and that its ditance from each is inverfely as their quatitics of matter; and that the diftance and nítion of the centre is the inediam or average of all the diftances or motions.

\section*{I M P}

Impulfion. A from friking 13 ; for, as foon as A touches the fpring, it begins to prefs it againtt \(B\), and, thertfore, to comprefs the fpring. It cannot carry the fpring before it, without the fpring's prifhing \(B\) before it. Pref. fure on B is required for this purpufe. This is fupplied by that natural power vhich we call elafticity, which is inherent in the fpring, whether it be in motion or at reft. It is not in acaion, but in capacity, faculty, capability, power, or by whatever name we may choofe to exprefs the pof. feffion. The occafion required for its exertion is compreffion. This is furnihned by the motion of \(A\); for \(A\) canrot advance without comprefling it. This inherent force of the fpring is Anown to act with perfect equality at both ends, in oppofite direcions. It exerts equal and oppofite preffures on \(A\) and on \(B\); it diminifhes the motion of \(A\), and equally angments the motion of \(B\) (if both are moving that way). \(A\) is retarded, and \(B\) is aceclerated; \(A\) is fill moving fafter than \(B\); and therefore the compreftion and the confequent reaction of the fpring increafes, and fill more retards \(A\) and aceelerates B. A fter fome time, both bodies, with the fpring compreffed between them, are moving with equal velocities; the fpring, however, is Atrongly reactiog on both, and muft now caufe them to feparate; ftill retarding \(A\), and accelerating B - They mult feparate more and more, till the fpring regain its quiefcent form, and its elaftic reaction ceafe entirely. During its reftitution, its pref. fures are the fame as during its compreffion, therefore, the whole chargre produced on each of the bodies muft he double of what it was when the fpring was in its flate of greatef compreflion, and the bodies were moving with a common velocity. In fhort, the whole procefs in this example muf be precifely fimilar to that of the magnets in cvery eircumblance relating to the chandes of motion in \(A\) and \(B\). The common velueity mult be \(=\frac{A a \pm B b}{A+B}\).

The final velocity of A muft be \(=a\)
\(-\frac{2 \mathrm{~B} \overline{a \pm b}}{\mathrm{~A}+\bar{B}}\), and that of B mult be \(=b+\frac{2 \mathrm{~A} \overline{a \pm b}}{\mathrm{~A}+\mathrm{B}}\). The motion of the common centre mutt be unaffected by the action of the fpring, and the motion of eaeh body, relative to the centre, muft be reciprocally as its

We apprehend that this procefs can fearcely be called impulfion; A has not Atruck B. The changes of motion ean fearcely be afcribed to forces inherent in \(A\) or \(B\), in confequence of their being in motion. Any perfon, not already warped by a theory, will (we think) aferibe them to a force imherent in the fpring; inherent in it, whether at reft or in motion, and only requiring a continued compreffion as the proper opportunity for its continued exertion. This fpring may be fuppofed to make a part of \(B\), or of \(A\), or of both; and then, indeed, the force may be faid to be inherent in either, or in both. But it is not the peculiar foree inherent in motion, or in moving bodies only-it is the foree of elaficity, inherent in part of the body, but requiring a continued compreflion for the production of a continued repreflion. The effect of this reaction is modified by the very oceation of the compreffion. This may be the elafticity of another fpring. In this cafe it will only comprefs that fpring.- It may be the advance of a body in motion; the rcaction produces aretarda.
tion of that motion; it may be the obfacle of a Impulfon. quiefeent body-it will give it motion; or, it may be the abltruction by a body moving more flowly away than the fpring is preffed forward-it will accelerate that motion. 'Thus,' in all thefe cafes, we cannot help diftingulifhing the inmediate caufe of thefe changes of motion from the fuppofed furce of a moving body. Nay, the procefs of motion is fimilar, even when we fuppofe that the fpring is not a thing external to the body, although attached to it; but that the whole body, or both bodies, are fpringy, elaftic, and therefore cunipreffible. As foon as the bodies come into fenfible contadt, compreflion mu/l begin; for we may fup- Internal pofe the Endies to be two balls, which will therefure change touch only in one point. The mutual preflure, which through is neceflary in order to produce the retardation of \(A\), the fuband the acceleration of B , is exerted only on the foremoft particle of \(A\), and the hindmolt partiele \(B\); but no atom of matter can be put in motion, or have its motion any way changed, unlefs it be acted on by an adequate force. The force urging any individual particle, mult be precifely competent to the production of the very clange of motion which obtains in that particle. Exeept the two particles whiel come into contact in the collifion, all the other partieles are immediately actuated by the forces which connect them with each other; and the foree acting on any one is generally compounded of many forees which connect that particle with thofe adjoining. Therefore, when A overtakes \(B\), the foremolt particle of \(A\) is immediately retarded - the particles behind it would move forvard, if their mutual connection were diffolved in that inftant ; but, this remaining, they only approach nearer to the foremot Ariling particles, and thus make a compref. fion, which gives occafion for the inherent elafticity to cxert itfelf, and, by its reaction, retard the following particles. Thus tach ftratum (fo to conceive it), continuing in motion, inakes a compreffion, which oceafions the elafticity to react, and, by reacting, to retard the ftratum immediately behind it. This happens in fucceffion: the compreffion and elaftic reaction begin in the anterior ftratum, and take place in fuceeffion backward, and the whole body gets into a flate of compreffion. Things happen in the fame manner in B , but in the contrary direction, the foremof flrata being the lait which are comprefled. All this is done in an inftant (as we commonly, but inaccurately fpeak), that is, in a very fimall and infeufible noment of time; but in this moment there is the fame gradual compreffion, increafe of mutual action, greatelt compreffion, common velucity, fublequent reftitution, and final feparation, as in the cafe of bodies with a flender fpring interpofed, or even in the cafe of the mutually repelling magnets. In all the cafes, the changes of motion are produced by the elafticity or the repulfion, and not by the transfufion of the force of motion. The changing foree is indeed inherent in the bodies, but not becaufe they are in motion; the ufe of the motion is to give occafion, by centinued compreffion, for the continued operation of the inherent elafticity. The whole procefs may be very diftinctly viewed, by making ufe of bodies of fmall firmnefs, fueh as foot-balls, or blown bladders. If blown bladders are ufed, each loaded with fand, or fomething that will require more force, and confequently

\section*{I M P}

Impulion. confequently more compreffion to impel it furward; we \(\xrightarrow[\sim]{ }\) Thall obferve the comprelion of both to be very confiderable, and that a very fenfible time elapfes during the procefs of collifion. This may even be obferved very diftinctly in a foot-ball, which is always feen to reft a little on the toc lefore it flies off by the Atroke. When one foot-ball is ftrongly driven againt another, they plainly adhere tugether for fome time, and then the ftricken ball flies off.

If we return to the example of the two balls with the fpring interpofed, we may make fome farther uleful obfervations. When the fpring is in its fate of greatef compreffion, and the balls are moving with a common velocity, we can fuppofe that the fpring is arrefted in that fituation by a cateh. It is evident that the two bodies will now proceed in contact with this velocity, which we have fhewn to \(\mathrm{bc}=\frac{\mathrm{A} a \pm \mathrm{B} b}{\mathrm{~A}+\mathrm{B}}\).

\section*{797] I M P}
ent fituations, and ftill colicre, it is plain, that when a Impulfion. hody has been dimpled by comprelfion, the particles \(\underbrace{\text { - }}\) have nothing to bring them back to their furf fituation when the compreffing force is removed: the utmoll elalticity to be expected, is that which will not extend to one fhift of fituation ; therefore, the reftitution is altogether infenfible. This is the eafe with all foft bodies, fuch as clay-the fame quality is manifelled in all ductile budies, fuch as lead, foft iron and fleel, foft copper, fuft gold.

Now let one of thefe bodies ftrike another. The com- Effed of preffion, or the fliding of the particles over cach other, this collirequires force, or mutual preflure-This being accom- \(i\) on. panied by a reaction perfectly cqual, mult operatc, during the compreffion, precifely as the equal repulfive forces did. It will take as much momentum from \(A\) as it gives to \(B\); fo that \(A=B=B\) will remain invariably the fame, and a common velocity will at lat obtain, \(=\frac{A a \pm B b}{A+B}\). The compreffion can proceed no farther, and the two bodies mult now procecd in contact with this velocity.

And thus we fee, that in the cafe of eompreffible, but unelaftic bodies, the changes of motion are produeed by the cohefive forces imherent in the bodies; but not inherent in them becaufe they are in motion. We fee clearly in this way, how the pendulum ufed by Robins and his followers gave a true meafure of the velocity of the ball. All the while that it was penctrating into the pendulum, overcoming the colsefion as it went in, this cohelion was acting equally in both direetions. While the fibre was breaking, it was pulling both ways; it was holding back the bull which was breaking it, and it was pulling forward the parts to which it ftill adhered; and when it broke at laft, it had produced equal effects on the ball and on the pendalum in oppofite directions. By fuch a procefs, the pendulum was gradually accelerated, and acquired its utmolt velocity when the ball had ceafed to penetrate: Therefore, this velocity mult \(b e=\frac{A \cdot a}{A+p e n d}{ }^{1 n}\).

What fhould we now expes to happen in the cold lition of bodies? Such bodies as exhibit perfect e. lafticity, when examined by bending, or other fit trials, fhould have their motions changed precifely like the magnets, or bodies which repel or avoid cach other at fenfible diftances. Bodies which exhibit no clallicity whatever, fonld continue in contact after colibion. Tire cormon velocity in thefe flould be A \(a=\mathrm{B} b\)
\(\frac{A+13}{B}\). The perfectly elallic bodies froull futain clanges of motion which are precifly donble of the changes furtained by unelaftic bodies, and foould feparate after collifion with a relative velocity of recefs or leparation, precifely equal to their relative velocity of mutual approach. And bodies polfefing imperfect claiticity, fiould fuftain clanges of motion which differ from the changes on unelattic bodies, precifely in proportion to the degrec of elatticity which they are known to poffefs. And, laftly, if thechanges of notion whichs obtain in the collifion of bodies, are precifely thofe which would refult from the operation of thofe inherent
impultion fores of claficiey and colicfin, wo other force whatever concurs in thhir production: For we know that thofe furces in operate the collifion; we fee the comprefiion and rallitution which are their difetive caules, and their inmediate effects. If any oiler force were fuperabled, we thould fee its effects alfo, and the motions would be differcun from what they are.

Now the fact is, that sue bave never fean a body that is not, in fome degree, compreflible. It has not pleafed the Almighty Creator to make any fueh here below. Affaredly Hic has not found fuch to be of ofe for the purpofes He had in view in this our fublunary world. We know of no body that is perfectly unchangeable in its flape and dimenfions. It is therefore no lofs whatever to us, although we thould not be able to fay a priori what their motions will be in collifion. We cannot even fairly guefs them, by reafoning from what we obfurve in other bodies: For it is juft as likely that their motions may refemble thofe of perfecily elaltic bodies as thofe of unelaftic bodies; for we find that bodies of the mofl extreme hardnefs are generally highly elattic. Diamond, cryftal, agate, quartz. and fuch like, are the molt elaftic bodies we know. Philofophers, however, rather think that the motions of perfectly hard bodies will refemble thofe of unelaftic bodies; becaufe elafticity fuppofes compreffion. We do not pretend to fay with confidence, what would be the motion of a fingle atom of matter (which cantiot admit of comprefion) which is hit by another in motion. We fee all the particles of terreftrial matter connected with each other by certain modifications of the general force of cohetion, fo as to produce various forms of argregation; fuch as aërial fluidity, liquid tluidity, rigidity, foftnefs, ducti. lity, firmnefs or hardnefs; all of which are combined with more or lefs elaticity. Thefe tangille forms refult from certain poftive properties of the material atoms of which the particles are compofed; and, in all the cafes which come under our obfervation, thefe properties produce preffures of one kind or another ; all of which are moving forces. They are inherent in the particles and atoms: therefore when fuch atoms are in motion, thefe forces are in a condition which affords occafion for a continualion of this preflure that is competent to the production of motion in another particle. But what would be the event of the meeting of atoms divefted of fuch forces, we profefs not to know, or even 47 to conceive.
The obfer- The fact alfo is, that all the changes of motion, comved effects monly called impulfions, rubich bave been obferved, are of collifion
are perfect- precifely fuch as have becn defcribed. Unelaftic bodies are perfect-p
 propofitions now ellabl ßiced. fectly elaftic bodies feparate after collifion, and each fuitains double of the change that is fuftained by an unclaftic body. Bodies of imperfect elalticity differ from the two fimple cafes, precifely in the proportion of the elafticity difcoverable by other trials. The mutual actions are obferved to be in the proportion of their relative motions, whatever the real motions may he. For not only are the changes of progreffive motion exachly in this proportion, but the coinpreflions and changes of figure, which we confider as the immediate occafious of thofe actions, asc alfo obferved to be in the fame propor-
tions, in all cajes that aue can olfcreve and meafure mizith tupu'tiono accuracy. All thefe things can be afcertained with great precifion by means of the collifion of pendulous hodies in the way pointed ont by sir Chrilopher IVren (a mothod attrituted by the French to their countryman Mariotte, hut really inventej by Wren, and exhibited to the Royal Society of London the weck after he communcated his theory of impulion).

We mulk alto infer from thefe facts, that the actions Exerfive of hodies on each other are mutual, equal, and uppolite. pro fof the This is really an inference from the phenomena, amd of equal ac not an original or firt principle of reafoniug. The ti-n aidsitcontrary is conceivable, and therefore nut abfurd. In action. the fame way that we can conceive a magnet repelling iron, without inagining that the iron repels the magneí, we may conceive a golden ball capable of impelling a leaden ball before it, without conceiving that the leaden ball will impel the golden ball. We do not tind this eafy indeed; becaufe the contrary is fo familiar, that the one idea inflantly brings the other along with it. We apprehemd it to be imporible to demontrate, that a leaden ball will not fop as foon as it hits the golden ball, or viee verfa. But all our experience thews us, that the preffures exerted in contact are mutual, equal, and oppofite. The fame thing is obferved in the forces which connect the parts of bodies. A quantity of fand or water balanced in a fcale will remain in equilibrio in whatever way it is Itirred about ; its parts always exert. the faine preflure on the fcale: [o does a body fufpended by a flring or relling on the fcale, by whatever points it is fupported. This could not be if the particles did not exert mutual and equal forces ; nor could the phenomena called impulfions be what they are, if the preflures occafioned between the particles by the compreffions and dilatations were not mutual and equal. This law of action and reaction mult be adnuitted as univerfal, though contingent, like gravity. Doubtlefs it refults from the properties which it has pheafed the great Artift to give to the matter of which He has formed this world. There is one way in which we can conceive, moft diftinctly, how this may be a univerfal property of matter. If we grant the reality of a aractions and repulions e dijlanti, and fuppofe that every primary atom of matter is precifely finilar to every other atom in all its properties, and that this affemhage of properties conititutes it a material atom; it follows, that every atom exerts the fame attractions and repultions, or has the fame uniting and evalive tendencies, and then the law of action and equal reaction follows of coarfe. This is furely the very notion that any perfon is difpofed to entertain of the matter. And if mechanital force and mobility are the qualities which diltinguifh what is material from mind or other inmaterial fubftances, the law of equal and contrary reaction feems nealy allied to the clafs of firt principles.

Of all the phenumena that indicate this perfect equality of action and reaction, the moft fufceptible of accurate examination is the famenefs or equality of action when the relative motions are equal. Now there is no phenomenon more certain than this. In confequence of the cotation of the earth round its axis, and its revolution round the fun, it is plain that all our experiments and oofervations are on relative motions only. Now, we not orily find that the actions of two bodies fubjec-

\section*{I M P [799] I M P}
inpulfion. ted to experiment are equal when the relative motions \(\xrightarrow{-}\) are equal, but we find that all our meafures of action on a fingle body are proportional to the apparent motioms which they produce. It requires precifely the fame force to impel a ball eaftward, weftward, fouth, -or north, at 12 , or 2 , or 6 , or \(90^{\prime}\) clock : yet the real motions are immenfely different in all thefe cafes, ind it is only the relative motions that have the proportions which we obferve. Another very important point defucible from our experiments is, that the fame prefure produces the fame change of motion, whatever may be the velocity. We know tnis by obferving, that when the mutual dimpling or compreffon is the fame, the change of motion is the fame, whatever be the hour of the day. This could not be if it required a greater preffure to change the velocity 100000 into 100001 , than to change the velocity i into the velocity 2 . Yet this is one of Leibnitz's great metaphylical arguments for proving that the force accumulated, and now inherent, in a moving body, is proportional to the fquare of its velocity. We beg that this may be kept in remensbrance.

It muft be granted, that what we have already faid on the fubject of impulfion may be called an explanation; for it deduces the phenomena from general and unqueltionable principles, and from acknowledged laws of Nature. The only principle ufed is, that a moving force is indicated, characterifed, and meafured, by the motion which it produces. It is an acknowledged law of Nature, that preffures are moving forces; alfo, that moving forces appear in cafes where we obferve neither preffures nor impulfions, and which we call repulfions or evafive tendencies; that thefe are mutual and equal : and we have fhewn, how a certain fet of changes of motion refult from them, and have fated dillinctly the whole procefs: we fhewed, that thefe phenomena are dinilar to thofe of common impulfion; and we then thewed in what manner the motion of a body gives occafton to the exertion of various moving forces, called elaficity, cobefion, \&e. and that this exercion mutt produce motions fimilar to thofe produced by repulions edillunti; and, lally, we inferred, from the perfect famenefs of thofe refults with the actual phenomena of impulfion, that thofe corpufcular forces are the inmediate and only caufes of the changes called impultions, and commonly afcribed to a feculiar force inherent in a moving body.

From a collective view of the whole, we think it clear, that the opinion that impulfion is the fole caufe of mo. tion is unwarranted. We fee that the phenomena of impulfinn are brought about by the immediate operation of preffure ; and we fee numberlefs inflances of preffure, It is therefore a molt violent and unware of impultion. It is therefore a molt violent and unwarranted opinion, which afcribes to repeated unperceived impulfions all thofe folicitations to motion by which, or in confequence of which, the motions of hodies are affected by diftant bodies, or bear an evident relation to the fituation and diftance of other bodies; as in the examples of planetary deflection, terreftrial gravitation, magnetical and electrical deflexions, and the like. There is nothing in the phenomenon of the preffure of gravity that feems to make impulfion more neceffary or more probable than in the preffure of elafticity, whether that of a fpring or of an expanfive fluid. The admifion of an unperceived
fluid to effect thofe impulfions is quitc unwartantel, impulfion. and the explanation is therefore umphitofoplical, even although we thould perceive intuitively that an atom in motion will put another into motion by litting it. We apprehend that this cannot be affrmed with any clear perception of its truth.

On the whole, therefore, we nuft aferibe that con-Inpulfon tented acquiefcence in the explanations of gravitation, is fuppufed and other attractions and repultions, by means of im- to be better pulfe (if the acquiefeence be not pretended), to the fre and mine quency and faniliarity of impullion, and perhaps to familiar. the perfonal flare and interelt we have in this mode of producing motion. We know that it is always objected that nothing is explained, when we fay that \(A\) repels \(B\), or that \(B\) avoids \(A\); but we muf fay in return, that nothing is explained, when we fay that \(A\) impels 13 by hittin Why fhould it not be allowed to ule the term repelling power, when it is allowed to ufe the term impelling power, the force of impulfe, inertia? All thefe terms only exprefs phenomena. Daes the word body exprefs any more?

The maxim, that a body cannot act rubere it is not, it is nnt any more than suben it is not, is a quaint and lively ex-better unprefion, and therefore has confiderable effect: It may be granted; for we apprehend that we undertand fo little about when and cubere, that we cannot demontrate the affirmative or negative in cither cafe, and that they are on a par with refpect to our knowledge of the:n. We can have no doubt, however, of the fact, that our mind can be affected by an external object that is merely recollected. And we apprehend, that we know nothing of the difference between body and mind but what we have learned by experience. Body, for any thing that we affuredly know to the contrary, may affect, or be affected by, a diftant body, as well as inind may be. It is therefore worth while to pay fome farther attention to the plenomena, ia order to fee whether this esperience is fo univerfal and unexpected as is behiceed. As Mr Cotes, and inany of Newton's difciples, are accufed of explaining many plenomena by attraction and repulfion which their opponents afinm to be cates of impulion; it is not inpollible but that ordinary obfervers, who have no preconceived theories, may inagine impultions to obtain in cafes where a more aceurate infpection would convince them that no impulion has happened.

When we kick away a foot-ball, we confider it as a Engiury is. fort of folid continuous body; yet we know that it the famimuft be filled with compreffed air. It nay not be inv innuplfion. poffible to have it of its round flape without being folmpances of filled: but we know that, in this condition, it would a toot-ball. not fly away from our foot by the ftroke; we fhould only foree in the fide which we kick, and the flaccid ikin would lie at our feet. But when it is flled with Atrongly compriffed air, we can form to ouriclves a pretty diftinct notion how it is made to nove off. Our foot preffes on a part of the akin: this compreffes the air againit the antenior part of the bag, and forces it away. If we reflect more ferioully on the procefs, we can Atill conceive it clearly enough, by thinking on a row of aereal particles, reaching fron the part flruck by the foot to the anterior part, e ich w. whs ing the other, and therefore forcing the anterior part forward. The air is conceived to confitt of a number

\section*{I M P [8co] I M P}
intulfon. of litile fyhcrules in contact, each of which is compreflible; and we think the operation illuttrated by fuppoling each to be like a little volicle or bladder. 'This we beliese to be the ulnal way of conceiving the conftitution of cxpantive fluils: But this will not agree at a! with the known properties of air; for it can be friety cemonttrated, that if fuch a collection of elatic velicles be compreffed into the half of their ordinary bulk, every veficle will be changed from a fphere into a !ufect cube, touching the adjoining cubes in every puint of its lix lides, and ftrongly prelfed againtt them. It can allo be demonftrated, that if a leaden cube of age i.ich lee tacluded in the box, and placed with its fides parallel to the fides of the box, and the compreffion be then made, all the little cubic veficles will acquire the fame pofition. If the box be now turned updilc down, it can be denionftrated that the weight of this leaden cube will not be fufficient for overcoming the refitance of the comprefied cubes. This compref. fed mafs will not be fluid, but will require a very conliderable force to prefs the leaden cube through it, juft as we find fuch a force neceflary for moving a body through melted glafs: the particles no longer flide on each other like uncompreffed fpherules; each will re. quire about lalf of the comprefling force, in order to wercome the friction, or obtruction like friction, producel in fliding along the furface of the contiguous cubes. But we know that air remains perfectly fluid, alihough valtly more compreffed than this. This, therefore, cannot be like the conftitution or form of air. Moreover, it is well known that air has been made ten times denfer than its ordinary itate, and is then perfect. ly fuid. It has alfo been made a hundred times rarer, and it litl remains perfectly fluid. In this fate its particles mult be ten times farther removed from each other than in the former flate, of a thoufand times greater denfity. Yet we know that this rare air is compreffed with a force equal to the weight of a flratum of mercury \(\frac{3}{3} \mathrm{~d}\) of an inch in thickuefs, and that if \(\frac{1}{3} \mathrm{~d}\) of this preffure be removed, it will expand till it is 150 times rarer than common air; that is, there is Come force which pufthes the particles fill farther from each other. 'This force evidently extends beyond the tenth particle of air that is made ten times denfer than common air. Therefore the elafticity of air does not arife from the contact of particles, which are elaftic like blown up bladders, but from fome force which extends beyond the adjuining particles. There is no greater reafon, therefore, for fuppufing, that the particles of air touch each other, than for fuppofing that the two magnets touch each other becaufe they repel. A row of magnets floating on quickfilver, and placed with their fimilar poles front. ing each other, and very near, will tend to feparate, and they require to be held in by a fop put at each end of the canal; and if one ftop be gradually withdrawn the magnets will all feparate, and exhibit the gencral mechanical effects of a row of aerial particles feparating by the removal of preffure. Therelfeems, therefurc, to be the fame neceffity for the operation of an iatervening impelling fuid for producing this feparation or elafticity of the acreal mafs, as for feparating the magnets.

The tefult of thefe remarks feems to be, that the impulfion of a foot.ball is not brought about in the way that is commonly imagined, by the excitement of
corporeal preffure at the points of contact of the two Impulfon. foot balls. For we fee it almot demonflrated, that the progreflive mution of the anterior part of one of the balis has been produced without contact, or, at lean, by the intervention of repulfions acting at a dulance. May not this ubtaia, even in the points in which we fuppole the two balls actually to touch, in the att of inpulfion?

But farther- Every perfon has obferved the brilliant wa. \({ }^{53}\) cares dew-drops lying on the leaves of plants. Every perfon of inubful acquainted with Newton's optical difcoveries, mult be contact. conviaced that the dew drop is not in mathematical contact with the leaf; if it were, it could have no brilliancy. Moft perfons have obferved the rain drops of a fummer fhower fall on the furface of water, and roll about for a few feconds, exhibiting the greatef brilliancy. They camor, therefore, be in mathematical contact with the water. There mult be a fmall diffance between them, and therefore fome force which keeps them afunder, and carries the weight, that is, counteracts the downward preffure of the rain-drop. We know that fome infects with long legs can run about on the furface of water; and if we lift them carefully, and fet them on glafs, their feet do not wet it. Put a little fpirit of wine into this water, and make it lukewarm, and the infect inftantly finks up to the belly, and cannot move about as before: Its feet will now wet a glafs. A well polifhed tteel needle, even of confiderable fize, if perfectly clean and dry, will float on water without being wetted: It is ubferved to make a conliderable, depreflion on the furface of the water, jult as a heavy bar of iron would make when laid on a feather-bed - the needle difplaces a quatity of water equal to itfelf in weight, yet does not tonch it, for it is not wetted. If it be previoully wetted, it will not difplace any water, and will not float. There is fomething, therefore, which keeps the water at a diltance from the feet of the infect, and from the needle, exerting a certain upward preffure on them. The preffure and the reaction are indeed very fmall; but they would produce a very fentible motion if continued futhiciently long in proper circumitances. Here would be a production of motion, which moft perfons would call an impulfion-yet there would be no ftroke, no contact, and therefore no true impulfion.
We now beg the reader to attend minutely to Newton's famous experiment with the object glaffes of long telefcopes, which we have mentioned circumtantially in the article Optics, Encyd. n \({ }^{\circ} 63-68\).

When the upper glafs is very thin and light, no co-very relour appears at the point of contact: but by pref-markable fing it down with fufficient force, we fhall have a black cafe of conor unreflecting fpot in the middle, furrounded by a fil- val lely very ring, and then by a ferics of rings of various co-feeming to: lours, according to the ditance between the parts of touch. the glaftes where the colours appear. Newton has counted 50 of thefe rings. He thews, by a careful computation from the known figure of the glaffes, that the differences between the diftances which exhibit thefe colours are all precifely equal, and that each is about \(\frac{1}{90}\) of an inch. Therefore, fuppoling that the glaffes are in mathematical contact where the unreflecting. fpot appears, making one continuous mals of glafs, their diftance at the outermoft ring. muft not be leís than \(\frac{50}{9} \delta \bar{\delta}\) of an inch, or \(\tau \frac{1}{8} \sigma\). of an incl. Therefure,

\section*{1 M P [80r] I M P}
impulfion. when one glafs carrics the other, withont any appearance of colour at the middle, we mult conclade that there is a repulion exerted between the neareit paits, at a ditance not leis than ityo of an inch, fufficient for fupporting the upper glafe. It requires an increafe of prefure to produce the lirit appearance of colour; and when the preffure is till more increafed, new colours appear in the middle, and the colour formerly there is now feen in a furrounding ring; thefe multiply continually, by new ones furcading from a central fipor. A great preflare at latt produces the uurefiecting fot in the centre, which, unlike to all the colourcd fpots which had emerged in fucceffion, is flarply detined, and never round, but ragotd, and it is immediately furromeded by a bright filvery refection. The thape of this fpot depends on the ligure of the furfaces; fur, un curning the upper lens a little round its axis, the inequalities of the edge of the fout turn, in fome degree, with it. This femiugly trifing remark will he found important by the machanician: A 1 ill farther increafe of preflure emlarges the unreflecting fot, and the dimentions of all the rings- When the preffure is gradually withdrawn, the rings thrink in their dimentions, the unreflecting foot difappears firt, and each ring in fuccefiron contracts into a fpot, and vanifles. Here we have, by the way, an explanation of the brilliancy of dew-drups: they come fo near, perhaps, that the neareit point reflects the filvery appear-ance-but they do not touch; the initant that they truch a wetted part, making one mafs of tranfparent matter, all brilliancy is gone.
s5 matter, all brillancy is golie. proofs of a force, be its eaci uthersorigin what it may, which keeps the glaffes atunder, and even caufes them to feparate; which manifefts itfelf by withtanding preflure ; and thelefore is, itfelf, a preffure, or equivalent to a preflure - It varies in its intenfity by a change of diftance; but we have not been ahle to afcertain by what law. It mult not be mea. fured by the timple variation of the external prefiure; for tince we fee that, even teiore any colour appears in the centre, the weight of the upper lens is lupported, we mult coaclude that the glafles are exerting at leaft an equal force all around the circumference of the outermolt ring. It is evident, that the computation of the whole force, exerted over all the culoured furface, muit be difficult, even on the fimplefl hypothefis concerning the law of repulfion: we can only fay that it increafes by a diminution of difance. It is very eafy to compute the increafe of external preffure, which would fiffice if the repellity force were equal at all diftances; or if it varied accurding to any fingle power of the diftances. We have tried the inverfe fimple, duplicate, and triplicate ratio; but the fact deviated widely from them all. The repulion does not change nearly fo much as in the fimple inverfe ratio of the diftances, if the glafies he fuppofed to touch in the whole furface of the unreflecting fyot. But we found, that if we fuppofe them feparated, though at a diftance equal to forty times the difference of diftance at which the colours change, that is, \(-\frac{1}{2} \frac{1}{2}\) of an inch, the preffures employed in the experiment accord pretty well with a repulfion inverfely as the diftance, but fill with a very confiderable deviation in the great preffures. In the courfe of a number of experiments with a favour. ste pair of lenfes, we broke the uppermolt by too

SUppl. Vol. I. Part II.

Itrong a preflure. We then cut out of it, with a la Intaulion. pidary's hollow drill, a piece of \(\{\) of an inch in diancter, and perlectly round, and we fqueceed it on the other by a meafured preflure, till we produced a colourlefs fpot of nearly fith of an meh in diameter, with a filvery inargin. Computing from this, we thought ourfelves warranted to fay, that not lefs than 8 on pounds are neceflary for producing a black fpot of one inch fquare!

Now, what is the confequence of all this in the doc-And may trine of impulfion? Surcly this:-II a lump of this impel with glafs ftrike anuther lump, and put it in motion, and if eut touchthe mntnal preflure in the act of collifion don not exceed 700 pounds on the fquare inch, the motion has been produced without mathematical contact, and the production can no more be called impulfe than the motion of the magnet in our lirft experiment. The changes of motion have been the operation of moving forces, himilar to the force of magnetifn; and if a ftream of truly impelling fluid be neceffary fire producing the motion of the magnet, it is equaliy neecef. fary fur producing the motion of the piece of glafs.

It may be faid here, that we cannot comparc impulfe and preffure. A flight blow will fplit a diamond which could fupport a houfe. A llight hlow may therefore be enough for exciting all the prefiure necefiary for producing mathematical contact. We mutt here appeal to what every man feels on this occation. We doubt exceedingly whether any perfon will think that, when one piece of glais gives another a grentle blow, and puts it into motion, with the velocity of a few inches per fecond, a blow which he dillinclly hears, there has been exerted a preflure at all approaching to 800 peunds per fquare inch.- We have fufpended a pair of lemes, by an apparatus fo fteady and firn, that they could tutich oully at the centres of each furface; and, having placed ourfelves properly, we could fee, with fuflicient dillinctnefs, the momentary appearance of the coloured \(f_{p}\) ort at the inftant of collifion. We faw this, with the fulleft confidence that it was of no conliderahle breadth in a muderate Aroke, and that it was very Fenfibly bruader when the froke was more violent. We did not truit our own eye alone, tut fewed is to perfons ignoraint of philufiphy, and even to chiisdren, often awithout telling them what to look for, b:t athing them what they faw. From all the inflrmation that we could gather, none of the preffures came near to what muft lave been neceffary fur producing the black lpnt. This could not be millaken: for alhough the buter rings are but faint, there are five or fix near the centre which are abundantly vivill for affecting the eye by the momentary fath. Belides, the dimenfions of the lenfes, and the weight of the netal cells in which they were fised, were fuch as mutt have caufed them to fplit before the hlack fpot could be produced in the centre.

Thefe things being maturely confidicect, we imagine And cer. that few perfons will now doubt the juftice of our af tandy do fertion, that in all thefe examples, the inotions have beenfo, even in produced without mathematical (or rather geometrical) violent contact.-And we inagine alfo, that few will refufe frokeso granting that this is not peculiar to glafs, but obtains alfo in the collifion of other bodics. We have not thought of any method for putting this beyond doubt; but we have hetter reafons than mere likelihond for being of this opinion. Every one acquainted with the

Impulfon. Newtonian difcoveries in optics, knows that this eurious appearance of the coloured rings is the confequence of the action of tranfparent hodies on the rays of light, by which thefe are bent afide from their rectilineal courfe, and that this deflection takes place at a dillance from the diaplanous body; a dittance which the fagacity of the great philofopher has eaabled us to meafure. Now, it is known that metals and other opaque bodies produce the very fame deflections of the rays, bending them toward themfelves at one diftance, and from them at other diftanees; in thort, attracting or re. pelling them as the diftance varies. Nothing but prepoffeffion can hinder a perfon from aferibing limilar effects to fimilar caufes, and, therefore, thinking it almof certain that this mutual repultion is not peculiar to glafs, but common to all folid hodies.

To all this we may furcly add the celebrated experiment of Mr Hnyghens ; in which it is evident, that a fmooth plate of metal attracts another, even although there be a filk fibre interpofed between them. (Sce Pbil. Tranf. no 86.). Is it not highly probable, that at a imaller diflance the bodies repel each other? For we obferve, that metals, as well as tranfparent bodies, attract the rays at one diflance and repel them at an-

Stillgreater But we have fill more important information from doubtc. Ob-the optical difcovery of Newton. Let the reader turn fervations on a foap bubble.

Surely our readers will now grant, that the production of motion by impulfion, as dillinguibed from the production by action e diflanti, is not fo familiar a phenomenon as was imagined, and that it may even be faid to be rare in comparifon: for the inftances of moderate impulfes are numberlefs. The claim of this mode of explaining difficult phenomena by impulfion, has therefore loft much of its force; and we fee much lefs reafon for calling in the aid of invifible fluids, in order to explain the action of gravity, maguetifm, ard electricity. again to Optics, Encycl. n 06 , and read the account of the phenomena exhibited by the \{oap-bubble. The bubble is thinner and thinner as we approach the very uppermont point of it. It alfo exhibits numerous rings, which vary in their colour, in the fame order as in the fpace between the lenfes. Thefe rings cone to view in the fame manner. Firft, a coloured fpot appears in the fummit of the bubble; this becomes a ring, and is fuccecded by another fpot, as the bubble grows thinner in that part, by the gradual fubfiding of the watery filtr. At laft a black fput appears at top, well defined, hut of irregular thape, furrounded by a filvery ring. This fot, when viewed very narrowly, is obferved to reflect a very minute portion of light, without feparating the differently colorific rass of which it conlitts; hut it concoins them all, as way be proved by viewing it through a prifm. Aftor fome little time the bubble burfts.

Surely we muit infer from this, that there is a certain thicknefs of the tranfparent plate which renders it unfit for the vivid refection of light. Does it not legitimately fullow from this, that the unreflecting fot between the lenfes ceafes to entitle us to fay, that they are in contact in that place? All that we can conclude from its appearance is, that the diflance fill between the glaffes is too fmall to fit the place for the vivid refexion of light. This concluiton is indifputable. Were

802 1 II P
it refufed, we are furnithed with an inconteltible proof Impulfon. by the fame bountiful hand. Newton aferibed the colours to the reflection of the plate of air between the glaffes, and expected the ceffation of them when the air is removed. His friend Mr Boyle had lately invented a commodious air pump. The trial was made, and young Newton found himfelf miftaken; for the colours fill appeared, and he even thought them more brilliant. He then tried the effect of water, expecting that this would diminifh their luftre. So it did; and he found that the dimenfons of the rings were diminifhed in the proportion of 4 to 3 ; namely, the proportion of the refractions of glais and water. By this time Newton had difcovered the eurious mechanical relation between bodies and the rays of light ; and his mind was wholly abforbed by the difcovery, and by the revolution he was about to make in the mathematical doctrines of optics. Uufortunately for us, he did not, at that time, attend to the mighty infuence which the difcovery wonld have on the whole of meehanical philofophy, and therefore occupied himfelf only with fuch phenomena as fuited his prefont purpofe. A moft important phenomenon pafied unnoticed. In repeating Sir Ilaac Newton's experiments, we found that the diameters of the rings decreafed in the proportion of 4 to 3 only in certain circumftances. When the upper lenfe was preffed on the other by a heavy metal ring, fo as to produce three or four coloured rings, we found that when water got between them, fometimes no colours whatever appeared; fometimes there was a ring or two, and the diameters were diminifhed in a much greater proportion than Newton had affigned. Well affured of the extrenee nicety of all his proceedings, we were much puzzled with this diferepancy, and mentioned it to a moft refectable and intelligent friend, the late Dr Reid of the univerfity of Glafgow, a mathematician and naturalith of the firft rank. He thought it not im. probable that the glaffes feparated from each other, lifting up the weight, by attracting the water into the interffice, in the larre manner that we obferve wood to fwell with moilture. We immediately got an apparatus which compreffed the glaffes by means of four icrews; and now we faw Newton's proportion moft flictly obferved. But in profecuting the experiment, we lound that the introduction of the water always effaced a very fmall fpot. This happened after precautions had been taken to prevent all feparation of the glafles. As the proportion of 4 to 3 has a relation to refractive power, although we have not been able to deduce it as a necelfary confequence, we neverthelef confidered it as a fufficient proof that the diftances of the glaffes hod not chenged by introducing the water between then. Therefore we think curfelves well entited to conclude, that the difappearance of the black fyot was not owing to a feparation of the glaffes, which admits the water into the empty fpace; and we afirm, that before the entry of the water, there was room for it in the place whiclireflected no light; that is, that although the glafes were preffed togetber with a very great force, they were not in contact.

It deferves remark, that in endeavouring to produce the black fpot, when water is between the glaffes, we found great and unaccountable anomalies. Sometimes a moderate increafe of preffure produced it, and fometimes we were not able to produce it by any preflure.

\section*{1 M P \\ 803] I M P}

Inpulfon. Several lenfes were broken in the trial. We are ted t think that the thicknefs which gives the filvery reflection is much greater than the riyooth part of an inch, and that it is not the fame in all glafles. But we were interrupted in thefe experiments, and indeed in all active purfuits, by bid health, which has never permitted their renewal. The fubject is of great importance to the curiuus mechanicians, and we earnetlly recommend it to their attention. There is fomething very remarkable in the abrupt fenfatian of the coloured reflection. At a certain thicknefs all colours are reflected, without feparation, producing the whitenefs of filver. The fmall eft diminution of it hinders the rivid reflection of all colmurs, and then there feem:s to lucceed a thicknefs which equally reflects a fmall propurtion of all without feparation. "The innef polifh. that can be given to glafs in the toul of tbe artift, leaves incgularities which occation the irregular ragged figure of the foot. It is worth trying, whelher finooshing the furfaces (both) by a foftening heat will remove this ruggednefs. If it does, without deftroying the flarp termination, it will prove the abrupt paffage from offo to zoneffe.

The laft remark to be made on this important experiment in optics is, that the dittance between the glafies which is unfit for vivid refiecion, cannot be determined by means of the other meafurable intervals. It may be equal to many of them taken together. The fame inult be granted with refpect to the thicknefs of tlie black fpot on the top of the fuap bubble. We attempted to meafure this thicknefs by letting a drop (of a known weight) of firit of turpentine fpread on the furface of water. As it fowly entarged in furface, it decreafed in thicknefs, and produced, in regular order, feveral of the more compounded colours of the Newtonian leriss. But before it came tu the 20th ring from the centre, it became very irregular and fuotty. not prived the two optical facts is remarkable and important. It facullion. is. that we have no authoricy for anirming that the changes of motion by the collition of bodies is brought about by abfolute contact in any indlance whatever. The glafles are not in contact where there is vivid refection; and we have no proof that they are in contact in the black fput, however great the compreffion may be.

60
Therefore impulfien carnot cx paingravi tation;

It is hardly neceflary now to fay, that all attempts to explain gravitation, or magnetifm, or electricity, or any fiech apparent action at a dillance by the impulifons of an unfeen lluid, are futile in the greateft degree. Impulfion, by abfolute contact, is fo far from being a familiar phenomenon, that it may juflly be queftioned whether we have ever obferved a lingle inflance of it. The fuppofition of an invifible impelling fluid is not more gratuitous than it is ufelefs; becaule we bave no proof that a particle of this fluid does or can come into contact with the body which we fuppofe impelled by it, and therefore it can give no explanation of an action 6r that is apparently edifanti.
But impul- The general inference from the whole feens to be, fon may be that, inftead of explaining preffire by impulfe, we muft notionly derive all impulie from preffure, but muft alfo afcribe all preffure to action from a diftance; that is, to properties of matter by which its particles are moved particles of iolid, or fenfibly continhous bodies, are not in contact, but are held in their refpective lituations by the balauce of forces which we ase accultomed to call attractions and repulfions. The fluidity of water under very ittong compicfions (which have been known to comprefs it sizth of its buik), is as inconfiftent with the fuppolition of contact as the fluidity of air is. The fhrinking of a hody in all its dimentions by cold, nay, even the bending ot anj body, cannot be concsined with. out allowing that fome of its ultimate unaltuable atoms change their difanees from each other. The pheno. mena of capillary attraction are alfo inexplicable, withont admitting that particles act on others at a dillance from them. The turmation of water into drops, the coalefcence of oil under water into fpherical drops, or intu circular fpots when on the furface, fhew the fame thing, and are inexplicable by mere adhefion. In frort, all the appearances and mutual actions of tangible matter concur in thewing, that the atoms of matter are endowed with inherent forces, which caufe them to :1p. proach or to avoid each other. The opinion of Botcovich feems to be well founded; namely, that at all fentible diftances, the atoms of matter tend toward carh other with forces inserfely as the furares of the ditauces, and that, in the nearett approach, they avoid each otber with infiuperalle force; and, in the intermediate ditlan. ces, they approach or avuid each other with forees vary. ing and alternating by every change of difance. See the article Boscofich, Suppl. the matbematician. Euclid fpeaks of cones and cylinders flanding on the fame bate, and between the fame parallels. Thefe are not material folids, one of which would prefs the other out of its place. Phyfical contact is indicated, innmediately and directly, by our fenfe of twuch; that is, by exciting a prefliare on our organ of touch when it is brought fufficiently near. It is alfo indicated by impulfion; which is the immediate elfeet of the preflure oceationed by a futficient approxintation of the body impelling to the body impelled. The impulfion is the completion of the fane procefs that we cie. feribed in the example of the magnets; but the extent of fuace and of time in which it is completed is fo fmall that it efeapes our obfervation. and we imagine it to be by contact and in an intime. We now tee that it is fimilar to all other operations of accelerating or re: tarding forces, and that no change of velucity is inllantaneous; but as a body, in pafling from one point of fpace to another, paffes throngh the intermediate fpace; fo, in changing from one velucity to another, it paffes through all the intermediate degrees without the fmallell Jaltus. the application of the gencral doctrines of dynamics to cafes where every accelerating or retarding force is oppofed by another that is equal and contrary. We have without geometrical contact.

This collection of facts confpires, with many appear-
ances of nuid and folid bodics, to prove that even the Impulfinn.

From all that has been faid, we learn that phytical Phyfical or fenfible contact differs from geometricai contact, incouract cr the fame nanner as phyfical folidity differs from that of \({ }^{\text {p ained. }}\)

And in this way is the whale doctrine of impulfion We thus brought within the pale of dynamics, withont the ad. avoid many miffiun of any new principle of nontion. It is merely abfurdities. found that the opimion, that there is inherent in a muving body a peculiar force, by which it perfeveres in motion, and puts another in motion by frifting iato it,

I M
is inconfitent with our notions of mo-
\(\underbrace{\text { Iton of moring forces. The impelled body is mo- }}_{\text {Impulion. is as ufelefs as it is incouflatent with our notions of mo- }}\) tion and of moving forces. The impelied body is mo-
ved by the infuperable repulfion exerted by all atoms of matter when brought fufficiently near. The retardation of the impelling body does not arife from an ineria, or refitting fluggifhnefs of the body impelled, but becanfe this body alfo repels any thing that is brought fuf. ficiently near to it. We can have nu doubt of the exillence of fuch canfes of motion. Springs, expanfive fluids, cohering fibres, exhibit fuch active powers, without our being able to give them any other origin than the fiat of the Almighty, or to compreliend, in any manner whatever, how they relide in the material atom. But once we admit their exiftence and agency, every thing elfe is deduced in the mott fimple manner imaginable, without involving us in any thing incomprehenlible, or having any confequence that is inconfiltent with the appearances. Whereas both of thefe obftructions to knowledge come in our way, when we fuppofe any thing analogous to force inherent in a moving body fulely becaufe it is in motion. It forces us to ufe the unmeaning language of force and motion paffing out of one body into another ; and to fpeak of force and velocity as things capable of divifion and actual feparation into parts. The force of inertia is one of the bitter fruits of this mifconception of things. It is amufing to fee how metaphyficians of eminence, fuch as D'Alembert, endeavour to make its operations tally with acknowledged principles. In his celebrated work on dynamics, the moft elaborate of all his performances, he explains how a body, whofe mafs is 1 , moving with the velucity 2 , mult fop another body whole mafs is 2 , moving with the velocity 1 , in the following manner : He fuppoles the velocity 2 to confitt of two parts, and that, in the inftant of collifion, one of the parts deftroys the motion of one half of the other body, and then the other part deftroys the motion of the other half. Thefe are words; but in vain fhall we attempt to accompany them by clear conceptions. His diltinction hetween the force of inertia and what he calls the active forces of bodies, fuch as the force of bodies which frike each other in oppofite directions, is equally unfufcepticle of clear conceptions. Active forces (fays he) ablorb a part of the motion; but when inertia takes part of the motion from the ftriking body, this motion palles wholly into the body that is ftricken, none of it being abforbed or really deftroyed. He demonftrates this by the equation \(\mathrm{A} \times \overline{a-x}=\mathrm{B} \times \overline{x-b}\), which is a mere narration of facts, but no deduction from the nature of inertia, nor cven any eltablifhment of that na. ture by philofophical argument. And in attempting to give fill clearer notions (being fenfihle that fome great obfcurity fill hangs abont it), he fays, "Inertia therefore, and properly fpeaking, is the mean of communicating motion from one body to another. Every body refilts motion; and it is by reffling that it reccives it ; and it receives precifely as much as it deflroys in the body which acts on it." Surely almott every word of this fentence is doing violence to the common ufe of language. What can be more incomprehenfible than that a body refifts motion only when it receives it? Should a man be thaught to refift being pufhed out of bis place when he actually allows another to difplace him, and not to refilt when he firmly keeps. his place? All thefe difficulties and puzzling queftions vanifh when
give over fpeaking of inertia as fomething ditin- Iupulfion. guifhable from the active forces or cautes of mution which we find in hodies, and diftinguith by the names of elafticity, cohefion, marnetifm, electricity, weight, \&c. and which philofophers have claffed under one name, aceclerating or retarding force, according as its direction chances to be the fame, or the oppofite to that of the motion under confideration. To fuppole it a peculiar faculty by which a body maintains its condition of motion or reft, is contrary to every conception that we can annex to the words faculty, power, force. It is frivolous in the extreme to fay, that fnow has the faculty of continuing white or cold; or that it refills being molted becaufe it melts, or becaufc heat mutt be employed to melt it.

The only argument that we know for giving the sero 6 name force to the perfeverance of matter in its ftate of argument motion (or rather for afcribing this perfeverance to the for inertia exertion of a peculiar faculty), which appears to de- is the comferve any attention, is one that we do not recolleft the force with exprefs employment of for this purpofe, namely, the a previous compofition of a previous motion with the motion which motion. a known force would produce in the body at relt. We know that if a body he moving eaftward at the rate of four feet per fecond, and a furce act on it which would impel it from a flate of refl at the rate of three feet per fecond to the fouth, the body will move at the rate of five feet per fecond in the direction E. \(36^{\circ} 52^{\prime} \mathrm{S}\). We know allo, that if a force act on this budy at refl, fo as to give it a motion eaftward at the rate of four feet per fecond, and if anotber force act on it at the fame inftant, fo as to give it a motion to the fouth at the rate of three feet per fecond, the body will move at the rate of five feet per fecond in the direction E. \(36^{\circ}\) \(5^{2} \mathrm{~S}\). In this inftance, the body previoufly in motion feems to peffefs fomething equivalent to what is allowed to be a moving force. Why therefore refufe it the name? The anfwer is eafy. The term force has been applied, by all parties, to whatever produces a change of motion, and is neafured by the chauge which accompanies its exertion. There is fome difference between the parties about the way of eftimating this meafure; but all agree in making, not the motion, but the change of motion, the bafis of the meafurement. Now we fhewed, at great length, in the article Dynamics, that the change of motion, in every cafe, is that motion which, when compounded with the former motion, conftitutes the new motion. Did we take the new motion itfelf as the characteriftic and meafure of the changing force, it would be different in every different previous fate of the body, and would neither agree with our general notion of force, nor with the knowledge that we have of the actual preflures and other moving forces that we know. The fole reafon \(u\) liy the previous motion is equivalent with a force is, that: the only mark or knowledge that we hare of a moving force is the motion which it is conceived to produce. The force is equivalent with the previous motion, becaufe we know nothing of it but that motion; and the name that we give it, only marks fome external thing to. which it has an obferved relation. We call it magnetifm: or electricity, becaufe we obferve that a magnet or an: electrified body gives occafion to its appearance. We: never obferve the refiftance of inertia, except in cafes. where we know, frow other circumfances, that moying

Anfiverea

Impulan. forecs inherent in hodies are really brought into action. The inertia of the ball which has been muved by a Atroke of another, is inferred from the diminution of that other's motion. But this is occafinued precifely in the fame way as the diminution of the motion of the magnet \(A\) in the firlt example; an event which every unprepoffeffed perfon afcribes to the repultion of \(\mathbf{B}\) in the oppolitedirection, and not to its incrtia.

We truft that our reaters are not difpleafed with this detall of the procedure of Nature in the plenomena of impulfion. It has been prolix ; becaule we ap prehend, that the too fynoptical maner in which the laws of colliiion have always been delivered, leaves the anind in great obfeurity concerning the connection of the events. General faits have been taken for philofophical principles and clementary truths; whereas they were dedutions from the fum total of our knowledese. They were very proper logical principles for a fyuthetical difeuffion; but their previous eftablifhment as general facts was neceflary. We have eflablifhed the two moft general facts from which the refult of every collifion may be deduced with the utmoll eafe. The firf is, that in the inftant of greateft compreffion, the common velocity is \(=\frac{A a \pm B b}{A+\frac{B}{B}}\); and we have thewn that this is applicable to the collifion of ynelaftic bodies. The fecond is, that the change in perfectly elaltic bodies is donble of the change in unclatic bodies:. The conferva. tio momentorum, and the confervatio virium vivarum, are alfo general facts; or rather they are the fane mentioned with thofe above, confidered in another afpect. They may all be ufed as the prineiples of a fynthetic treatife of impulion ; and they have been fo employed. Each \({ }_{6} 4\) has its own advantages.

Mr Maupertuis gives a treatife on the Communication of Motion, that is, of impulfion or collifion, which has the appearance of being deduced from a new principle, which he calls the principle of smallestactron. He fuppofes that perfect Wifdnm will accom. plifh every thing by the finalleft expenditure of action; and he chanced to obferve, in the equations employed in the common doctrine of impulfion, a quantity which is always a minimum. He choofes to confider this as the expreflion of the action.

His principle or axiom, deduced from the perfect wifdom of God, is thus expreffed: "Wher any change happens in nature, the quantity of action neceflary for it is the fmalleft poflible." And then he adds,
"In mechanical changes, the quantity of action is the product of the quantity of matter in the body by the fpace paffed over, and by the velocity of the motion." 'this is evidently the meafure adopted long before by Leibnitz (fee Pbil. Tranf. vol. xliii. p. 423, \&c.), and it is equivalent to \(m \vartheta^{2}\); becaufe the fpace multiplied by the velocity is as the fquare of either. We refer to Dr Jurin's remarks on this paffage for proof that this is by no means a juft meafure of action ; and ouly obferve here, that we can form no otber notion of velocity than that of a eertain face defcribed in a given time. The change produced is not the actual defeription of a line, but the determination to that motion. It is in this refpect alone that the condition of the body is changed; and therefore the product \(m v\), and not \(m s v\), is the proper meafure of the action. On the authority of this maxim of divine conduct, Maupertuis invefti-
gates the refults which will make this quantity a mini- Impullon. Bum, and afferts that thefe muf be the laws of col. lifun. Luckily this invelligation is exeremely fimple, and very neat and perfpicuons; and it gives very ealy folutions. For example, the unclaftic body \(A\), moving with the velocity \(a\), overtakes the unelaftic body \(B\), moving with the velucity \(b\). Both move after the collifion with the velucity' \(x\). 'This velocity is required. To determine this, we mull make \(\left.A x \overline{a-x}\right|^{2}+B x\) \(x\) - \(\left.\right|^{2}\) a minimum ; or \(\mathrm{A} a^{2}-2 \mathrm{~A} a x+\mathrm{A} x^{2}+\mathrm{B} x^{2}\) \(-2 \mathrm{~B} b x+\mathrm{B} b^{2}\) is a minimum. Thercfore \(-2 \mathrm{~A} a \dot{\mathrm{a}}\) \(+2 \mathrm{~A} x+2 \mathrm{~B} x-2 \mathrm{~B} b x=0\), or \(2 \mathrm{~A} a+2 \mathrm{~B} b\) \(=2 A x+2 B x\), and \(x=\frac{A a+B b}{A+B}\); as we have already fhewn it to be.

The amiable and worthy author grew more fond of his theory, when he faw what he imagined to be its influence extended to an immenfe varity of the operations of nature. Euler demonftrated, that the quantity called ation by Manpertnis was a minimum in the planetary motions, and indeed in all curvilincal motions in free fpace. But all the while, this principle of leatt action is a mere whim, and the formula which is fo grnerally found a minimum has no perceptible connection with the quantity of action. In many cafes to which Maupertuis has applied it, the conclutions are in direct oppofition to any notion that we call form of the economy of action. Nay, it is very difputable whether it does not, on the contrary, exprefs the greateft want of cconomy; namely, a minimum of effect from a given expenditure of power. In the cafe of impulfion, this minimum is the mathematical refult of the equality and oppofition of action and reaction. Maupertuis might have pleafed his fancy by faying, that it beeame the infinite wifdom of God to make every primary atom of matter alike; and this would have anfwered all his purpufe.

There ftill remains to be confidered a very material Enquirs citcumftance in the doctrine of impulfon, which pro-into the difduces certain modifications of the motions that are of ribution mighty practical importance. We have contented our- frimpulfe felves with merely flating the moving force that is foom that brought into adtion in the points of phyfical contact; is Aruck. but have not explained how this produces the progreffive motion of every particle of the impelled body, and what motion it really does produce in the remote particles. A body, befides the general progreflive motion which it receives from the blow, is communly obferved to acquire alfo a motion of rotation, by which it whirls. round an axis. It has not been fhewn, that when a hody has rceeived an impulie by a blow in a particular direction on one point, it will proced in that diredtion, or in what direction it will proceed. Experience fhews us, that this depends on circumftances tot yet confidered. The billiard player knows, that by a ftroke in one direction he can make his antagonifl's ball move in a direction extremely different.

Thefe are queftions of great intricacy and difficulty, and would employ volumes to treat them properly. We have already enlarged this article till we fear that we have exhaufted the reader's patience, and deviated from the proportion of room juftly allowable to impulston. We muft therefore limit our attention to fuch. things only as feem clementary, and indifpenfably ne.

\section*{M P \([805] \quad \mathrm{M}: \mathrm{P}\)}

Inapulfon. ceftary for a ufeful appication of the doctrine of im. pulfion.

With refpect to the diregion of the motion produced by impulfion, the very example juft now borrowed from billiard playing, hows that it is important, and by no means obrious. We are forry to fay, that we have nothing to offer in folution of this queftion that will be received by all as demonftration. It is comprehended in the following propofition, which we bring forward merely as a matter of fact.

The direction of the ftroke or preflure exerted by two hodies in phylical contact, is always perpendicular to the touching furfaces. Of this truth we hawe-a very diftinct and pretty example and proof by the billiard table. If two balls A and B (Gig. 2.) are laid on the table in contan, and A is fmartly fruck by a third ball \(C\) in any dircction \(C c\), fo that the line \(a A\), which joins the point of contact \(a\) with the centre \(A\), may make an obtufe angle with the line AB, joining the centres of the two balls, the hall B will always fly off in the direction \(A B F\). The preffure on \(B\), which produces the impulfion, is evidently exerted at the point \(b\) of contact, and the direction 1 F is perpendicular to the plane GbH, touching both balls in the point \(b\). The prinary flroke is at \(a\), and acts in the direction \(a \mathrm{~A}\), althourgh C moved in the direction \(\mathrm{C} c\). Had A been alone, it would have gone off in the direction a A produced. But the force acting in the dircetion a \(A\) is equivalent to the two forces \(a d\) and \(d A\), of which dA preffes the bill on B at \(b\), and produces the motion. In like manner, another ball E, fo laid that \(l\) Be is obtufe, will fly off in the direction ED, which may even be oppofite 10 C : Thefe are matters of fact; not indeed precifely fo, becaufe biliard halls are not perfectly elaftic, reftoring their figure with a promptitude equal to that of their comprefion; and alfo be. c.aufe there is a little friction, by which the point \(a\) of the ball \(A\) is dragged a little in the direction of \(C\) 's motion. This may both give a twinl to \(A\), and diminifh its preffure on B. The general refult, however, is abundantly agrecable to the docirines now delivered. But we wifh to thew on what properties of tangible matter this depends ; and although we dare not hope for implicit bclief, we expect fome credit in what we thall offer.

We have evident proof, that at a dittance which is exceeds the gooth part of an incl, bodies repel each other with very great force. This diftance alfo far cxceeds the dilance between the particles, if thefe are difcrete. Let \(m n\) (fig. 3.) he the diftance at which a particle repels another, and let \(P\) be a particle fituated at a lefs diftance than \(n n\) from the furface \(A C\) of a folid body. With a radius PA, equal to \(m n\), defcribe a fegment of a placre \(A B C\), and draw PB perpendicu. lar to AC. It is plain that every particle of matter in the fegment \(A B C\) repels the particle 1 , and that it is not affected by any more. Let \(D\) he any fuch particle. It repels \(P\) in the direction DP. But there is another particle \(d\) fimilarly finnated on the other fide of PB. This will repel \(P\) with equal force in the direction \(d P\). Therefore the two particles D and \(d\) will produce a joint reprulfion in the direction BP. The like may be faid of every particle and its correfponding ane an the other fide of LB. Therefore the joint re.
pulfon of all the matter in the fegment will have the Inpuifinn. direction BP. It is plain, that the radius of curvature of every fenfible figure may be confidered as immenfely great in comparifon of \(m n\); and therefore the propofition is manifeft.

This is a propofition of very great importance to the artilt and the engitaeer, as well as to the philofopher. In all the connections of engires and machines, the mutual action is regulated by this faft. The mutnal preffure at the contacts of the teeth of whecls and pinions depend fo much on it, that it is eafy to make them of fuch a thape that they fhall produce no force whitever. that is of any fervice; and it requires a filled attention to their forms to obtain the fervice we want. "1his will be confidered with fome care in the article Machive.

Having thus difcovered the diration of the real impulion, and that it may be very different from that of the force exerted, we proceed to confider what will be the direction and velocity of the motion, and whether it will be accompanied with any rotation.

Our readers are acquainted with the elementary me- if froke, chanical property of the centre of gravity. If a body whofe ace be fupported at this point by a force acting vertically ton \(p\) ife upwards, and equal to the united weight of every par- through ticle of matter in it, it will not only remain at reft, but of a pofiwill have no tendeney to incline to either fide; that is, rion of nflid the upward force balances the weight of the whole body, imtody, and the mechanical momenta of all the heavy pelsicwith particles balance each other, like the weights in thetion. fcales of a fteelyard. That this may be the cafe, we know that if the weight of every particle be multiplied into the horizontal lever by which it hangs (which is a line drawn from the particle perpendicular to a vertical plane pafling through the centre of gravity), the fum of all the produets on one fide muft be equal to the fum of all the products on the other fide. Therefore, if we fuppofe the particles all equal, and reprefent each by unity, the fums of all the perpendiculars themfelves muit be cqual. How is this balancing effected? Every particle tends downwards with a certain force. It mult therefore be kept up by a force precifely cqual and oppolite. 'This mul be propagated to the particle by means of the connecting corpufcular ferces. The force propagated to any particle is equal and oppolite to the force acting on that particle, which it balanced; and if not balanced, it would produce a motion equal and oppolite to that produced by the other force. Gravity would caufe every particle to defcend equally ; therefore the force which, by acting on one point, excites thofe balancing forces on each particle, would cante them to move cefually upwards. And lince this is true itrany atLitude of the body, it follows, that a force acting in any direction through the centre of gravity, will caule all the particles to move in that direction equally ; that is, without rotation.

Hence we learn, that when the directinn of the ftroke given to any body paffes through the centre of gravity, the body will move in that direction without any rotation. If the quantity of matter, or number of equal particles in the body, be \(m\), the moving power P will imprefs on each particle an accelerating force \(f\), equal to the mtll part of P . Therefore \(f=\frac{\mathrm{P}}{n}\), and \(\mathrm{P}=n f\). An accelerating force is eftimated by the velocity \(v\),

Ingu'finn. which it generates by acting uniformly duriag fome tine \(t\), or \(v=f t\), and \(\dot{f}=\frac{v}{6}\), and \(P=m \frac{v}{6}\), and \(v=\frac{\mathrm{P}}{m} \ell\). The \(f_{y \text { mbol } / \text { may be omittes, if we rcckon }}\) every force by the velocity which it can produce in a fecoud. Thus may all forces be compared with gra. vity, by taking 32 feet for the mealure of gravity. Then \(m \because\) will exprefs the number of pounds which give a preffure equal to the force under confideration. Thus if the force can fenerate the velocity \(4^{8}\) feet per fecond in 100 pounds of matter, by acting on it uaiformly during a fecond, its prefture is equal to the weight of 150 pounds.
This is di- When a body \(A\), moving with the velocity \(a\), overreci mpul-takes or meets a body B, moving with the velocity \(b\), enus. arat the line perpendicular to their touching furfaces paffes through the centres of buth in the direstion of their motion, all the circumitances of the collition are determined by the rules already laid down. 'This is called directimpulse; and it is this which admits the application of the fimple doetrines of impulion, deduced, as we have done it, from the action of aecelerating forces. All that was faid of the changes of motion produced in the magnets obtain here withont any farther modification.

We may jult be allowed to take notice oi a curious obfervation of Mr Huyghens on the collifion of perfectly elaftic bodies. Intead of inpelling the claftic ball C by the ftroke of the elatic ball \(A\), we may caute A to firike an intermediate ball B (allo perfectly elaflic), which is lying in contact with C. In many cales, the ball B will not ftir fentibly from its place, and C alone will fly off. Nay, if a long row of equal billiard balls lie in contact, and one of the extreme balls be hit by another ball in the direction of the row, only the remote ball of the row will fly off. All this is ealily feen and underitood, by confidering then as bodies mutually repelling, and placed at the limits of their mutual action. Or even fuppoling them elattic balle, at a very fmail diltance from each other : 'The ball emplnyed to ftike the fult conies to refl, and the flriken ball moves off with its velocity: It ftrikes the fecond ball of the row, and is bronght to reft: The fecond flrikes the third, and is brought to reft: And this goes on in fucceflion to the laft, which is the only one that can fly off. The curions obfervation of Mr Iluyglicus is, that a greater velocity will be communicatel by a large hall to a frnall one, if we employ the intermedium of another ball of a fize between the two ; and that the velocity will be the greatef polible when the interme. ciute hall is a mean proportional (geometrical) between the two. This is alfo eafily deduced from the fimilar attention to the action of the accelerating forces, or trom the fuppofition of fucceflive impulfes. From this it allo follows that a greater velncity will be produced by the intervention of two, three, or more, mean pro68 portionals.
Obeque Im. But the cirection of the froke may not be the fame with that of the motion. This is called oberoue impUlSE. The cafes of oblique collifions are extremely different, according to the dircetions of the motions; and the refults are, in many of them, far from being obvious. But we have not room for a particular treatment of them. We fhall therefure avail ourfelves of
fome of the general facts mentioncd above, by means Impulfinn. of which we may reduce all the varicties to fome eafy cafes. The mofl ferviceable gencral facts are: 1. That the actions of budies on ath other depend on their relative motions; and, 2. That the motion of the common centre is not changed by the collifion. Thete cmable us to reduce all to the cafe of a body in motion ftriking another at rell. We have only to determine their relative motion by the propufition in DyNames, \(n^{2} 67\). and then to fuperadd the common motion, which changes the relative into the true motions. Thus if two bodies \(A\) and \(B\) (fyg. 4.) meet in I), deferibing the lines \(A D, B D\), the collifion is the fame as if \(B\) had re. mained at reft, and \(A\) liad come agrainft it with the mo. tion AB. In the mean tine, the common coutre of pofition has deferibed CD. If the bodies are unelatic, they remain unted, and proced in the line CD produ. ced toward E, and their common velocity will be reprefented by DE, equal to CD, if \(A D\) aud \(B D\) reprelent ed their initial velocities If the bodies are claftic, they reparate again, and they feparate from the cominon centre in the uppolite dircction, and with the Came velocitics with which they approacbed it. Therefore draw a \(\mathrm{E} b\) parallel to \(\therefore \mathrm{CB}\), and wike \(\mathrm{E} a, \mathrm{E} b\) equal to \(C A\) and \((B\), and then 1\() a\) and \(D b\) are the paths and velocities of the bodits. \(A!l l\) hhis is abundantly plain, and is a neceffary derluction from the general principle, that the motion of the centre is not affected by any equal and uppolice forecs which comect the bodies of a fyftem.

But this great fumplicity is not fuffeient for afcer- often a taining the refults of collifion which cecur in many of comparied the mof important cafes. It not only fuppofis that hy rota. \(A D\) and ED are exactly proportional to the shlocities tior. of \(A\) and \(B\), but alfo that they riect, fo that the plane of mutual contact is perpendicular to the line AB, wnd that the ftroke on eaeh is dirested to its centre. Thefe circumfances will not alwa)s be combined, (ven in the cafe of fpherical bodies. 'I'he confequence will be, that alhough the motion of the centre remains the fame, that of the bodics may fometincs be difictent. We muft therefore give a general propofition, which will, with a little trouble, cnable the veader to determine all the motions which can take place, whether progreflive or rotative.
I.ct the body A (fig. 5.), moving with the relocity General V , in the direction AD , thike the buty B at sefl. Let theorem. F be the point of mutual contact, and bFH a plane touching both bodies in F. Draw AFP perpendicular to this tangent plane, and through \(G\), the centre of pofition of \(B\), draw \(P G C\) perpendicular to \(F P\), and GI parallel to FP. Let \(C\), in the line FG, be the fpontaneous centre of converfion (Rotatios, Eincycl. \(n^{\circ}\) 77. \&c.), correfponding to the point of perculfion F. Join CF. Let the direction cat the tangent plane in H , and PF in A ; and let AH reprefent the velu. city V.
The impulfe is made at the point \(F\), in the direction AF or FP, and the centre of pofition of the body \(B\) will advance in the direction GI, parallel to FP, the direction of the effective impulfe. But becaufe this does not pafs through the centre \(G\), the body will advance, and will alfo turn round an axis paffing through \(G\), perpendicular to the plane of the lines \(G P, P F\), and the fpontaneous axis of converfion will pafs through.

Impurm, fome point \(C\) of the line \(P G\), and will alfo be perpen. dicular to the fame plane. All this has been demonftrated in the article Rotation, \(n^{\circ} 94\), Sc. Complete the parallelogram AFHE. It is plain, that the motion AH is equivalent to AE and AF. By the motion AE , A only flides along the furface of \(\mathbf{B}\) without prefing it, or cauling any tendency to motion in that direction, except perhaps a little arifing from friction. It is by the motion \(A F\) alone that the impulfe is made. Therefore let \(v\) be \(=\mathrm{V} \times \frac{\mathrm{AF}}{\mathrm{AH}}\); and then \(\mathrm{A} \times v\) may

71 Efficient velocity. be called the effrient impulfe of the body A in the prefent circunitances, and \(v\) the efficient velocity. This will be diminilled by the collifion. Let \(s\) be the unknown velocity remaining in \(A\) afeer the collifion, or rather in the inftant of the greatelt comprefion and common motion of the touching points of A and B , eftimated in the direction FF . The effective momentum loft by A muit therefore be \(\mathrm{A} \times \overline{\mathrm{v}-\mathrm{x}}\) : but the fame mult be gained by \(B\), and its centre \(G\) muft move in the disee. tion G1, parallel to FP , with this monentum ; and therefore with the velocity \(\frac{A \times \overline{v-x}}{B}\). That this may be the cafe, the point of percuffion \(F\) mult sild with the velucity \(n\), becaufe the budies are in contact. But becaufe C is the fpoutancous axis of convertion, every particle is beginninjry to delcribe an arch of a circle round this axis. Therefore F is beginning to move in the direction \(\mathrm{F}_{\mathrm{o}}\), perpendicular to the momentaly radins vector CF. Let Fog be a very misute arch, defcribed in a moment of time. Draw \(g f\) perpendicular to FP. Then \(\mathrm{F} f\) is the metion Fa reduced to the direction FP , and will exprefs the yictding of B ia the direction of the impulfe, white G deferibes a fpace equal to \(\frac{A \times \overline{v-s}}{\mathrm{~B}}\), and A deferibes a fipace \(x\). Thecrefore \(\mathrm{F}_{g}\) will exprefs \(x\). Let \(\mathrm{P}_{p}\) be the fpace defcribed in the fame time that \(\mathrm{F} g\) is Jeferilied. Draw \(p \mathrm{C}\), cutting GK in the point I. GI is the yielding of the body B to the impulfe, and mult therefore be equal to \(\frac{A \times \overline{-x}}{B}\).
'The triangles \(F f_{g}\) and CPF are limilar; for the angle \(\mathrm{CF}^{\circ} \mathrm{P}\) is the complement of \(\mathrm{F} \int_{g}\) to a right angle: It is alfo the complenent of PCF to a right angle. Therefure \(\mathrm{F}_{s}{ }^{\sigma}: \mathrm{Ff}=\mathrm{FC}: \mathrm{CP}\). But \(\mathrm{F}{ }_{\delta}: \mathrm{P}_{p}=\) FC : CP ; becaufe the little arches \(\mathrm{F}_{\mathrm{g}}, \mathrm{P}_{\rho}\) have the fane angle at C . Therefore \(\mathrm{P}_{P}=\cdot \mathrm{F} j,=x\). It is plain, that \(\mathrm{CG}: C P=G I: P p\). Therefore \(\mathrm{CG}: \mathrm{CP}\) \(=\frac{A \times v-x}{B}: x\), and \(x=\frac{A \times-x \times C P}{B \times C G}\), or \(x\) \(=v \times \frac{\mathrm{A} \times \mathrm{CP}}{\mathrm{B} \times \mathrm{C} G}-x \times \frac{\mathrm{A} \times \mathrm{CP}}{\mathrm{B} \times \mathrm{CG}} ;\) whenfore \(\approx \times \mathrm{B} \times \mathrm{CG}+\times \times \mathrm{A} \times \mathrm{CP}=v \times \mathrm{A} \times \mathrm{CP}\), and \(x \times \bar{B} \overline{\times C G}+A \times \overline{X P}=v \times A \times C P\), and \(\mathrm{A} \times \mathrm{CP}\) \(x=v \times \overline{\mathrm{B} \times \mathrm{CG}+\mathrm{A}} \times \overline{\mathrm{CP}},=\) the velocity remain. ing in \(A\), ellimated in the direction IFP.

\section*{\(7^{2}\) bodies may \\ geparate. \\ And \(u\), the velocity with which \(G\) will advance, is \(\times \frac{\mathrm{CG}}{\mathrm{CP}}\) \\ ; for \(\mathrm{CP}: \mathrm{CG}=\mathrm{P}_{p}: \mathrm{GI},=x: u\), It is evi-} dent that A will change its direction by the collifion: For in the inftant of greatelt compreffion, it was react.
ed on by a foree \(=A \times \overline{v-x}\) in the diection YA, inpuition, This mult be componuded with \(A \times V\), in che direction AH , in order to obtain the new motion of A ; or it may be found by compounding \(x\), which is retained by A, with FH , which has fuffered so chiange by the collifion. The bodies will therefore feparate, althougiz they be unelafic: If they are clatic, we nut double thefe changes on each. If \(\mathbf{B}\) was alfo in motion before the collifion, the motion of A mut be recivived into two, one of which is equal and parallel to the motion of E : the other mut le employed as we have employed the motion AII.

Exprefinus ftill more general may be obtained for \(x\) and \(u\); namely, by taking the formule for the centres of conterfion and percufliun (Rotariox, \(n^{\circ} 96,99\).)
\[
\mathrm{CG}=\frac{\int_{P} r^{2}}{\mathrm{~B} \times \mathrm{GP}} \text {, and } \mathrm{CP}=\frac{\int_{p r^{2}+B \times C P^{2}}^{B \times G \bar{P}},}{}
\]
where \(p\) ftands for a particle of matter, and \(r\) for its dillance from an axis paffing through \(G\) perpenciculirIy to the plain of the lines GP and PF. In this way
\[
\text { we obtain } s=\frac{A \cdot \int_{p} r^{2}+A \cdot \mathrm{~B} \cdot \mathrm{GP}^{3}}{A+\mathrm{B} \cdot \int_{p} r^{2}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{GP} P^{2}}
\]

It is plaiil from this propofition, that the progreffive change of motion of the bedy depends, not only on the momen-r regrefive tum of the impelling burly, but alfo on the place where motion the other is truck: For even although the original mo- wheatent the mentum of A be the faine, and the obliquity of the diretion of ftroke, making \(v\) the fame, and the body (and confe-the effic-
quenty \(f_{p r^{2}}\)) alfo remain the fame, we fee that \(x\) and ive firs the \({ }^{\circ}\) \({ }_{u}\) depend on the ratio of \(C P\) to CG. Now \(C\) and \(P^{\text {ihe cenres. }}\) are always on oppofite fides of G : Confequently, by removing the direction FP of the impultion farther from \(G\), we diminif \(C G\) and increafe \(C P\); and therefure incteafe the value of \(x=r \cdot \frac{A \cdot C P}{B \cdot C \bar{C} \cdot A \cdot C P}\); and confequently diminifu the value of \(\mathrm{A} \times \overline{\mathrm{v}-x}\), to which If \(x u\) is equal. The greatef momentum of \(B\) is produced when the direction of the inpulfe pafles through \(G\), and no rotation is produces. Indeced we are led, by a fort of conmon fenfe, to expect this.

This invelligation is by no means a piece of mere Importance fpeculative curiofity. It is the folution of the greatell of this the problem in practical mechanics. It is in this way that mary in feawe innfl proceed in computing the actions of the wind qas. \(_{\text {mar }}\). and water on the fails and holl of a fiip. Were it not that many cifernutances concur in determining feveral of the prepdatory Iteps, it is evident that the tatk mut te a moll impracticable. But the preffire and its disection are generally deternined by experin.ent, withnut the trouble of coinputation; and we are feldom foliciteus about the fubfequent motion of the wind or water.

There is another quelion in impultion which is of mpurion the firlt practical importance-mancly, when the imon bodies pulfe is exerted on the parts of a machine, where the confined body flruck is not at liberty to yield freely to the ta particu. ftroke, but muft flide along fome folid path, or turn round fome axis, or take fome other conftrained motion. The operations of moft engincs depend on this. The operation of wedges, axes, and many cutting and picreing infruments, and the penetration of piles, im-

Fig. 1.

Fig: 2

IMYYLSION

Fig: 1.

Fig. 15.

Fige 2.
1)
 . \(\mathbf{F}\)

pelled by a rammer, are all afeertaned by the fame doctrines. But the particular applications can fcarcely be elucidated by any clatification that orcurs \(t\) io nis, the circumftances of the cale making fuch great diference in the refult, both in kind and degree. For example, in the fimpleft cafe that occurs, the driving of piles, the penetration of the pile depends, in the lirft place, on the momentum of the rammer. If the mafs of the pile be neglected, the penetration through a uniformly refilling fubftance will be as the fquare of the velocity of the raminer (Dynamics, Suppl. \(n^{\circ}\) 95.), and its abfolute quantity may be determined from a knowledge of the proportion of the weight of the rammer to the refiltance of the earth. But when we confider that we have to put in motion the whole matter of the pile, we learn that a great diminution of the effect mufl take place. We till can compute what this muft be, becaufe we have the fame momentun, with a velocity diminifhed in a certain proportion of the fum of the matter in the rammer and pile, to that in the rammer alone.- Another defalcation ariles from friction, which continually increafes as the pilc goes deeper ;-and a ttill greater defaleation proceeds from the nature of the pile. If it is a piece of very dry flraight grained fir, it is very elaltic, and acquires almolt a double velocity from the ftroke of a rammer of call iron. If it is moift and fuft, efpecially if it is oak, or other timber of an undulated fibre, it does not acquire fo great velocity, and the penetration is very much diminifhed. It is probable that a pile, headed with moift cork, could not be driven at all. The writer of this article found a remarkable effect of the elafticity in the procefs of boring limeftune. When the boring bit was made entirely of fleel, and rempered through its whole length to a hard fpring temper, the workman bored three inches, in the fame time that another bored two inches with a bit made of foft iron; and he would never ufe any but fleel bits, if they could be hindered from chipping by the hammer (which muft alfo be of tempered fteel throughout). This has hitherto bafled many attempts. A pretty large round head, like a marlin fpike, has fucceeded beit : but even this cracks after fome days ufe. The improvement is richly worth attention; for the workman is delighted by feeling the hammer rife in his land after every ftroke, and fays that the work is not fo hard by half. \(N . B\). The flone cutters at Lifoon and Oporto ufe iron

The cafe of impulfion made on part of a machine moveable round an axis has been confidered in the article Rotation, Encycl. n \({ }^{\circ} 72\); where \(x\) is fhewn to be \(=v \times \frac{\mathrm{A} \cdot \mathrm{CP}^{2}}{\int_{\rho} r^{2}+\mathrm{A} \cdot \mathrm{CP}^{2}}\). But, in this formula, \(r\) denotes the diftance of \(p\) from the point \(C\), and not from G. \(\int_{p} r^{2}\) in this formula, is \(\mathrm{B} \cdot \mathrm{CG} \cdot \mathrm{CP}\); whereas, in the formula for a free body, where \(r\) is the diftance of a particle from \(\mathrm{G}, \int_{p r^{2}}\) is \(=\mathrm{B} \cdot \mathrm{CG} \cdot \mathrm{GP}\).

In the practical confideration of this queftion, the reader will do well to confider the whole of that article with attention. Many circumflances oecur, which make a proper choice of the point of inpulfe, and the direction of the tangent plane, of the greateft confequence to the good performance of the machine ; and there is Suppl. Vol. I. Part II.
nothing in which the Ecentific knowledge of the en. Pry when, gineer is of more effential fervice to him. An cngineer of great practice, and a fagacious combining: mind, collects his general olfervation 3 , and Ifores them up as rules of future practice. But it is feldom that he pofleffes then with that diftincterfs and confixince that can enable him to communicate his l:sowlet pe (1) others, or even fecure himfelf againft all millakes ; whereas a moderate acquaintance with thefe elenconts of real mechanics, may be applied with fafety ob all occafrons, hecaufe arithmetical computations, when rightly made, afford the moft certain if all refults.

There is a circumblanee which greatly affects the per Greas ofs formance of machines which are actuated liy impulies, "f, cuer namely, the yieldiag and bending of the parts. When br the the moving power acts by repedted fmall impulfinns, it ind neride. nay fometimes be entirely confumed, without produ-in. in ine cing any elfect whatever at the remote wouking point ousten in of the machine ; and the engineer, who founds his conftructions on the elementary theories to be had in muft treatifes of mechanics, will often be miferably dilap. pointed. In the ufual theories, even as delivered liy writers of eminence, it is afferted, that the fin, lleftimpulfe will fart the grcateft weight. But finee impulfe is only a continued preffure, and requires time fon the tranfmiffion of its effect through the parts of a yielding folid, it is plain that the motion of the impelling booly may be extinguifhed before it las produced comp of fion enough for exciting the furces which are to rate the remote parts of a heavy body from the gromind. What blow with a hammer could itart a feather bed? Much oftener may we expect, that a blow, fiven to one arm of a long lever, will be coufumed in bending the whole of its lengeth, fo as to bring the remote end into action. Therefore great lifilocs, and perfect claflicity, both in the moving parts and in the points of fupport, are necellary for traifmitting the fuill, or even a contiderable part, of the power of the impelling bendy. Perhaps not the half of the blow given by the wipers of a great forge or tilting mill to the fhank of the hammer is tranimitted in the proper inflant of tim: to the hammer-head. The hammer, while it is tolled upi l.y the blow, is quivering as it flies. Should it reach the fpring above it in the time of its downward vibration, it will not be returned with fuch force as if it had hit the fpring a moment before or after. A quarter of an inch will produce a great effect in luch cafes. It is found, that the minute impulfes given to the pallets of a clock or watch lofe much of their force by the imperfect elafticity of the pendulum or balance. We muft therefore make all the parts which tranfmit the blow to the regulating mafs of matter as continuons, hard, elattic, and fiff, as pofible. 'The performance of ruby pallets is very fenfibly weakened by putting vil on the face of them, efpecially in the detached icapements, which act partly by inpulte. A whet of hard tempered fteel, working on a dry ruby pallet, excels all others. The ituclligent engineer, fecing that, after all his care, much impultion is nuavoidably lelt, will avoud employing a firt mover which acts in a fubfultory manner, and will fubftitute ong of continued preflure when it is in his power. This is one chief caufe of the great fuperiority of overthot water whels above the underihot.

We can now underfland how it happens that Galliteo, Merfennus, and others, could conpare the impulie 5 K
givela

\section*{\(1 \mathrm{M} P \quad[8: 0] \quad 1 \mathrm{M} \mathrm{P}\)}

Implition. given by a falling budy with the prefture of a weight in the oppofite feale of a balance, and can fee the reafon of the immenfe differesecs, yct accompanied by a fort uf regiblarity, in the refults of the experiments. Ga. lleo, Muflumus, and Riccioli, fomen them to he proofs that the forees of tonoving bendies are as their velocities; because the hights from which the budy fell were as the fquares of the weights flarted from the ground. Gravefande found the fane thing as long as he held the fame opinion; but when he adopted the Leibnitzian meafure, he found many faults in the apparatus employed in his furmer illuftrations, and altered it, till he obtained refults agreeable to his new creed. But any one who examines with attention all that pattes in the bending of the apparatus, and takes into account the mafs of matter which mutt be difplactd before the oppolite arm rifes fo far as to detach the fpring which gives indication of the magnitude of the ftroke, mult fee that the agreement is purely accidental, and may be procured for any theory we pleale (fee Gravefande's Nut. Pbil. tranflated by Defaguiliers, vol. i. p. \(2+1\). \&c.) The propofition, \(n^{\circ} 95\), Dynamics, fuffices for explaining every thing that can happen in fuch experiments. And it will fhew us, that although the motion of impulfion is produced by preffure alone, yet impulfe is incomparable with mere preflure: It is not infinitely greater, but difparate. A weight (which is a preffure) bends a fping to a certain degree, and will derange to a certain degree the fibres of a body on which it preffes, before it be balanced. The fame weight, falling on this fpring from the fmalleft height, will bend it farther, and may crufh or fhiver to pieces the body which would have carried it for ever. We fhall make fome further remarks on this fubject, of great practical importance, under the word Pekcussion.

The method which we have purfued in confidering the doctrines of impulion, differs confiderably from that which has generally been followed; but we trult that it will not be found the lefs inftructive. Although the reader fhould not adopt our decided opinion, that we have no proof of pure impulion ever being obferved, and that all the phenomena which go by that mame are really the effects of preffures, analogous to gravity, he perceives that our opinion does not lead to any general laws of impulfion that are different from thofe which are acknowledged by all. We differ only, by exhibiting the internal procedure by which they are unquefionably produced in a vaft number of cafes, and whiclı takes place in all that we have feen, in fome degree. Our method has undoubtedly this advantage, that it requires no principle but one, namely, that accelerating forces are to be eftimated by the acceleration which they produce. Even this may be confidered, not as a principle, but merely as a defini-tion-We get rid of all the obfcurity and perplexity that refult from the introduction of inertia, confidered
as a power - a power of doing nothing ; and we are inyuthen. freed from the unphilofophical fiction (adopted by all the abettors of that doctrine, and even by many others) of conceiving the fpace, in which motions are performed, and bodies act, to le carried along with the bodies in it. - This funnifues. indeed, in fume cafes, a familiar way of conceiving the thing, by fuppofing the experiments to be made in a fhip under fail, and by appealing to the fact, that all our experinents are made on the furface of a globe that is moving with a very great velucity. But it is an abfurdity in philofophy, and, when minutely or argumentatively ufed, it does not free us from one complication of action; for, before we can make ufe of this fubftitution, we muft demonftrate, that the actions depend on the relative motions only: And this, when demonftrated, obliges us to meafure forces by the velocity which they produce.

As no part of mechanical philofophy has been fo much debated about as impulfion, it will furely be agreeable to our readers to lave a notice of the different treatifes which have been publimed on the \{ubject :

Galilei Opera, 'T. I. 957. II. 479, âc.
Jo. Wallifi Tractatus de Percuflione. Oxon. 1669. Chr. Hugenius de Motu Corporum ex Percuffione. Op. 1I. 73.

「raité dela Percuffion des Corps, par Mariotte, Op.I. i.
Hypothefis Phyfica Nova, qua phenomenorum caufre ab unico quodam univerfali motu in notlro globo fuppofito repetuntur. Auct. G. G. Leibnitzio. Moguntix 1671.-Ltion. Op. T. II. p. II. 3.

Ejufdem Theoria Motus Abitracti. Ibid. 35.
Hermanni Ploronomia. Amft. 1716.
Difcours fur les Loix de la Communication de Mouve. ment, par Jean Bernoulli, Paris, 1727 . Jo. Bern. Oper. 11 I.
D) namique de D'Alembert.

Euleri Theoria Corporum folidorum feu rigidorum, 1765.

Horelli (Alphons) de Percuffione.
Sce alfo M'Lamin's Fluxions, and his Account of Newton's Philufophy, for his Differtation crownedihy the Acad. des Sciences at Paris. - Alfo Dr Jurin's elaborate differtations in the Phil. Tranf. N \({ }^{\circ}\) 479.-Alfo Gravefande's Nat. Philofopliy, where there is a moft laborions collection of experiments and reafonings; all of which receive a complete explanation by the 39th Prop. Princip. Neutoni I. or our no.g.5. Dynamics. There are alfo many very acute philofophical obfervations in Lambert's Gedankin iiber die Grundlebren des Gleichrewichts, und der Beweenng. in the fecond part of lis Gebrauch der Mathematik.-Alfo, in the works of Kaeftner, Hamberger, and Bufch. Mufchenbroeck alfo treats the fubject at great length, but not very judiciounly. We do not know any work which treats it with fuch perfpicuous brevity as M‘Laurin's Account of Newton's Philofoply.

\section*{directions for placing the plates.}

©
BT JOHN BROWN, ANCHOR CLOBE. I802.

University of Calitornia
SOUTHERN REGIONAL LIBRARY FACILITY
405 Hilgard Avenue, Los Angeles, CA 90024-1388 Return this materlal to the llbrary from which it was borrowed.

Bifocipul
GtOCT 171994
```


[^0]:    Suppl. Vol. I. Part I.

[^1]:    $\qquad$

[^2]:    Suppl. Vol. I. Part. I.

[^3]:    
    

[^4]:    Suppl. Vol. I. Part I.

[^5]:    

[^6]:    

[^7]:    Suppl. Vol. I. Fart I.

[^8]:     1
    

[^9]:    
    
    
    
    
    
    

[^10]:    ( T ) An earth which fiall be defcribed in the next chapter.

[^11]:    

[^12]:    $4-9$
    Its affini-
    ries. § See Berg. man am! Lavoijucr. || Dr Hop ${ }^{1}$ Tranf, Edits, Sodar ${ }^{i v}$.

[^13]:    .

    $$
    -1
    $$

