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We compute the hydrodynamic relaxation times τπ and τj for hot QCD at next-to-leading order in
the coupling with kinetic theory. We show that certain dimensionless ratios of second-order to first-order
transport coefficients obey bounds which apply whenever a kinetic theory description is possible; the
computed values lie somewhat above these bounds. Strongly coupled theories with holographic duals
strongly violate these bounds, highlighting their distance from a quasiparticle description.
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Introduction.—The quark-gluon plasma (QGP) pro-
duced at RHIC [1,2] and the LHC [3–6] appears to be
an excellent fluid. Despite the small system size, viscous
hydrodynamics does a good job describing many collective
properties, spectra, and correlations [7,8]. To be causal and
stable [9,10], such treatments must work to second order in
the gradient expansion, requiring many more coefficients
than the celebrated shear viscosity to entropy ratio η=s. In
particular, a treatment of collective flow requires not only
the shear viscosity η but also the shear relaxation rate τπ ,
and baryon-number diffusion needs not just a diffusion
coefficient Dq but also a diffusive relaxation time τj.
We would like to use experiments to constrain the

properties of the QGP such as η=s, but the necessity to
include higher-order coefficients could lead to a prolifer-
ation of fitting parameters. So one often assumes that the
coefficients follow some simple relations, such as τπ ¼
Kη=ðϵþ PÞ, with ðϵþ PÞ the enthalpy density and K a
constant which we draw from some microscopic theory of
relativistic plasmas. For instance, York and Moore showed
that weakly coupled massless QCD treated to leading
order (LO) in the gauge coupling yields 5 < K < 6, nearly
independent of coupling strength [11], while Baier et al.
find that strongly coupledN ¼ 4 super-Yang-Mills (SYM)
theory has K ≃ 2.62 [12].
Recently, we extended previous perturbative results for

the shear viscosity and baryon-number diffusion of hot
QCD from leading [13] to next-to-leading order (NLO)
[14]; see Fig. 1. How does a NLO treatment change K? In
this Letter, we will explore this issue. In addition to finding

concrete results for K and τj=Dq, we will also show very
general bounds on these dimensionless ratios which follow
as soon as we state that a theory is well described by
relativistic kinetic theory. These bounds are badly violated
by strongly coupled theories with holographic duals, with
the interesting implication that these theories are very far
from having quasiparticle descriptions.
Definitions.—Let us start by defining the objects of our

investigation. In the Landau-Lifshitz fluid rest frame, the
stress tensor has the form

hTijðxÞi ¼ δijhPi þ πij; ð1Þ

where the nonideal dissipative part can be gradient
expanded. At first order,

πij1 ¼ −η
�
∇iuj þ∇jui −

2

3
δij∇lul

�
− ζδij∇lul: ð2Þ

FIG. 1. η=s of QCD as a function of the temperature at LO and
NLO for the different choices of the running coupling detailed
in Fig. 3 and in the text later on. Figure taken from Ref. [14].
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We will concentrate on shear viscosity η and not discuss
bulk viscosity ζ further. At second order, the coefficients
relevant for a conformal theory have been introduced in
Ref. [12]. Here, we will only deal with second-order
relaxation, whose coefficient τπ is defined as [15,16]

τπ∂tπ
ij ¼ πij1 − πij: ð3Þ

When there are additional conserved global charges Qα

such as baryon or lepton number, the associated charge
density nα ≡ j0 and current density j satisfy, at first order in
the gradients, a diffusion equation,

hj1i ¼ −Dα∇hnαi ¼ −kμα∇
μα
T
; ð4Þ

where Dα is the diffusion coefficient. Here, we have
rewritten the current with a gradient of the associated
chemical potential μα. The associated transport coefficient
kμα is related to Dα through the susceptibility χα:

Dα ¼
kμα
Tχα

; χα ≡ ∂nα
∂μα : ð5Þ

If we were to write Eq. (2) as a gradient of the charges
T0j ¼ ðϵþ PÞuj, we would naturally see that the associ-
ated relaxation coefficient is η=ðϵþ PÞ. Analogous to
Eq. (3), the second-order relaxation of j reads [18–20]

τj∂tj ¼ j1 − j: ð6Þ

In Refs. [13,21], it was shown how the first-order transport
coefficients can be determined from a linearized kinetic
theory. In Ref. [21], the collision operator defining the
kinetic theory of QCD was determined at leading logarith-
mic accuracy, in Ref. [13] at LO, and in Refs. [14,22] at
(almost) NLO. The kinetic theory expression for τπ was
derived in Ref. [11], leading to its LO determination.
First, we summarize the main findings of Refs. [11,13,21].

We start from a generic kinetic theory of the form

� ∂
∂tþ vp ·

∂
∂x

�
faðp; x; tÞ ¼ −Ca½f�; ð7Þ

where faðp; x; tÞ ¼ dNa=d3xd3p is the phase space distri-
bution function for the excitation (gluon, quark, antiquark)
of index a. If ui, μ vary with space, then the local-
equilibrium form of fa does as well [23], fa0 ¼
½expð−βuμPμ − qaαβμÞ ∓ 1�−1. The gradients on the left-
hand side of Eq. (7), which we treat as perturbatively small,
give rise to a source of departure from equilibrium Xi ¼
∇iμα for flavor diffusion (l ¼ 1) and Xij ∝ πij1 =η for shear
(l ¼ 2). This determines the linearized departure from
equilibrium via a linearized version of Eq. (7),

SaðpÞ ¼ ðCf1ÞaðpÞ; ð8Þ

where Sa ¼ βqaXi���jIi���jðpÞfa0½1� fa0�, with qa ¼ qaα for
number diffusion and p for shear. f1 is the linearized
departure from equilibrium, faðpÞ¼fa0ðpÞþf1ðpÞf0½1�
f0� and Ii���j ∝ pi…pj (see Refs. [13,21]). At linear
order fa1 ∝ Xi���j, allowing us to define the scalar function
χðpÞ [24]

fa1ðpÞ≡ β2Xi���jIi���jðp̂ÞqaχaðpÞ: ð9Þ

The linearized collision operator C is worked out in detail for
the case of weakly coupled QCD in Ref. [13] at LO and in
Ref. [14] at NLO.
General bounds.—To determine η, Dα, τπ , and τj, we

will need to solve Eq. (8) to linear order in f1 but to
subleading order in gradients, which will depend in detail
on the form of the collision operator. However, we can
already make some generic statements about the solution,
which will allow us to place bounds on certain dimension-
less ratios which hold automatically for all systems
described by relativistic kinetic theory, regardless of the
details of C. To see this, let us first define an inner product
on the Hilbert space of functions of momentum,

ðg; hÞ≡ β2
X
a

νa

Z
p
ðqaÞ2fa0ðpÞ½1� fa0ðpÞ�gaðpÞhaðpÞ;

ð10Þ

with νa the degeneracy of species a and
R
p≡

R ðd3p=ð2πÞ3Þ.
Basic considerations such as stability ensure that the
linearized collision operator C is a linear, real, symmetric,
positive semidefinite operator under this inner product
and strictly positive in the channels we consider. In terms
of this inner product, the first-order transport coefficients
become [13,21]

η ¼ 1

15
ðχ; 1Þ; kμα ¼

T
3
ðχ; 1Þ: ð11Þ

The enthalpy density and charge susceptibility can be easily
obtained as

ϵþ P ¼ T
3
ð1; 1Þ; χα ¼ Tð1; 1Þ: ð12Þ

τπ , τj require inserting f1 into the left-hand side of
Eq. (7) and using the time derivative to find f2 at one
space-derivative, one time-derivative order. As shown in
Ref. [11], the properties of the inner product and of C then
turn the evaluation into the inner product of the first-order
departure from equilibrium χ with itself:

ητπ ¼
β

15
ðχ; χÞ: ð13Þ
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The same analysis can be applied to τj and we find

kματj ¼
1

3
ðχ; χÞ: ð14Þ

It is then insightful to consider these dimensionless ratios,

τπ
η=ðϵþ PÞ ¼ 5

ðχ; χÞð1; 1Þ
ðχ; 1Þ2 ;

τj
Dα

¼ 3
ðχ; χÞð1; 1Þ
ðχ; 1Þ2 ; ð15Þ

which also have the same number of powers of the collision
operator (χ ∝ C−1) in the numerator as in the denominator.
The triangle inequality implies

τπ
η=ðϵþ PÞ ≥ 5;

τj
Dα

≥ 3: ð16Þ

These results apply to any kinetic theory description of
these transport coefficients, as long as the enthalpy density
or the charge susceptibility are also consistently computed
within the kinetic theory. We remark that the l ¼ 1, 2
departures from equilibrium contributing to these transport
coefficients do not by construction contribute to the (l ¼ 0)
thermodynamical functions ϵþ P or χα.
In contrast, strong-coupling results from the AdS=CFT

correspondence inN ¼ 4 SYM theory give for τπ [12] and
for the relaxation of a Uð1Þ current in SYM theory [25]

τπ
η=ðϵþ PÞ

����
AdS

¼ 4 − 2 lnð2Þ; τj
DUð1Þ

����
AdS

¼ π

2
: ð17Þ

In both cases, these strong-coupling results are approx-
imately half the minimum value attainable in kinetic theory.
Finite-coupling corrections [26–30] to the first ratio show a

modest increase. We also note that our kinetic theory
bounds in Eq. (16) can be shown to become in d spatial
dimensions, dþ 2 and d, respectively. It would be inter-
esting to derive larger-dimension holographic results in
comparison.
Second-order relaxation at (almost) NLO.—We now

provide results for the second-order relaxation of the shear
stress tensor and of the light quark current jq in QCD. In
Ref. [14], we have introduced in great detail a linearized
collision operator to “(almost) NLO,” (Corrections which
lie beyond the kinetic theory picture arise at still higher
order.) 2 ↔ 2 elastic scatterings and effective 1 ↔ 2
inelastic scatterings contribute to the LO collision operator,
the former taking the lion’s share. At NLO, we found all
new scattering processes, and corrections to the LO
processes, which are suppressed by a single power of
the QCD coupling g. As we showed in detail, there are
only a few such OðgÞ subleading effects. First, the rate of
soft 2 ↔ 2 scattering is modified; this can be described
as an additional momentum-diffusion coefficient δq̂. This
modification and an OðgÞ correction to the in-medium
dispersion also provide an OðgÞ shift in the 1 ↔ 2 rate.
Next, this 1 ↔ 2 splitting rate must be corrected wherever
one participant becomes “soft” (p ∼ gT) or when the
opening angle becomes less collinear. And finally, sub-
tractions are needed because of the way the numerical
implementation of the LO scattering kernel [13] already
resums a small amount of the NLO effects. We were able to
give a relatively simple determination of these effects by
the use of light-cone techniques fostered by Ref. [31].
Unfortunately, these methods typically keep track of the
incoming and outgoing momentum of a particle but lose
track of the momentum which it transfers to the other
participants. This momentum transfer also affects the

(a) (b)

FIG. 2. The second- to first-order ratio of the relaxation coefficients for (a) shear stress τπ=½η=ðϵþ PÞ� and (b) for quark number
diffusion τj=Dq as a function of mD=T for QCD with three light flavors. (The corresponding value of (αs) is shown on the upper
horizontal axis.) The LO result for τπ is from Ref. [11] and that for τj is also new. The uncertainty from the unknown gain terms is shown
by the bands; it is estimated as specified in Ref. [14] by the LO value for the gain terms, times mD=T, times a constant in the interval
½−2; 2�. The dashed lines represent an estimate in which we include only the NLO q̂ to the LO collision operator.
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departure from equilibrium of the other particle or particles
which receive the momentum, generating, in the effective
Fokker-Planck approach applicable for these soft scatter-
ings, a gain term. This is an effect which we failed to
account for at NLO, hence, the “almost” NLO. However,
we estimated that this missing part is most likely small.
Finally, we found out that η=s and Dq at NLO become
smaller than their LO counterparts by a factor of 4 at the
couplings of relevance for heavy ion collisions; see Fig. 1.
The large δq̂ contribution is by far the main contribution
responsible for this behavior.
We now use this (almost) NLO collision operator to

determine τπ and τj using Eqs. (8) and (15). We solve
Eq. (8) with the same variational method as in Ref. [14],
which also details the NLO operator δC. In Fig. 2, we plot
our results for the second-order coefficients τπ and τj
normalized as in Eq. (15) as functions of the Debye mass
mD ∼ gT over the temperature. The LO results for τπ were
originally obtained in Ref. [11]. Those for τj are new and
consistent with the leading-log estimate in Ref. [19]. The
plot shows that both LO results in solid blue decrease
with increasing coupling, approaching the minimum values
[Eq. (16)], while the NLO results in solid green and red,
respectively, start to differ significantly from the LO at
mD ≳ 0.5T, where they start growing, getting in the
ballpark of 3=2 of the minima when αs ∼ 0.3. The dashed
green or red curves are the results obtained by adding only
δq̂ to the LO collision operator, showing that also in this
case it dominates NLO corrections. The bands are obtained
by varying the estimate for the unknown gain terms within
a range reasonably encompassing their probable size (and
sign), as described in Ref. [14]. Intuitively, the LO results
approach the bound at increasing coupling because the

log-enhanced 2 ↔ 2 processes, which force χðpÞ ∝ p,
become less effective at larger couplings, while the other
processes drive χðpÞ to a constant, saturating Eq. (15). At
NLO, the large δq̂ drives χðpÞ towards p2, which is further
from the bound.
Figure 3 presents the more phenomenologically relevant

dependence of these second-order coefficients on the
temperature. Since only a NNLO treatment would directly
include running-coupling effects, this requires that we pick
a prescription for relating the running coupling to the
temperature. We do so by either using the M̄S coupling in
the range πT < μM̄S < 4πT (leading to the larger, light-
shaded bands in the left plot) or via the effective electro-
static QCD (EQCD) coupling with 2.7T < μEQCD < 4πT
as in Ref. [32] (narrow, dark-shaded bands in the left plot).
The discontinuities in the plot occur where we change
prescriptions for the number of light fermion species. The
right plot in the figure indicates the errors due to the
uncertainties from our ignorance of the gain terms which
we discussed above.
Conclusions.—Viscous hydrodynamical studies of heavy

ion collisions require second-order hydrodynamical coeffi-
cients τπ, τj which can be understood as relaxation times
towards the first-order behavior. While the hydrodynamic
coefficients such as η=s and τπT vary by orders
of magnitude as a function of the temperature and differ
substantially between LO and NLO calculations (see Fig. 1),
we have shown that simple dimensionless ratios, Eq. (15),
are remarkably robust, varying at most by 40% as a function
of coupling or temperature and between LO and NLO
determinations. Furthermore, and more remarkably, we have
shown that in any theory which can be described by kinetic
theory of ultrarelativistic particles, these dimensionless ratios

FIG. 3. The second- to first-order ratio of the relaxation coefficients for shear stress τπ=½η=ðϵþ PÞ� (values above 5) and for quark
number diffusion τj=Dq (values below 5) as a function of T. On the left, we plot different choices of the running coupling: the solid
bands fix the coupling using the two-loop EQCD value with μEQCD ¼ ð2.7 ↔ 4πÞT, while the shaded bands use the standard MS two-
loop coupling with μM̄S ¼ ðπ ↔ 4πÞT. On the right, we plot instead in the shaded red bands the estimated uncertainty due to the gain
terms. All curves in this plot are obtained using the effective EQCD coupling with μEQCD ¼ 2.7T.
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obey inequalities shown in Eq. (16). These inequalities hold
regardless of the details of the collision operators, and they
give the hydrodynamics practitioner a simple prescription for
how to estimate the relation between first-order and second-
order transport coefficients.
It is also remarkable that the bounds we have found fail

by a full factor of 2 when we compared them to the results
within strongly coupled theories with holographic duals.
We conclude that such strongly coupled theories are very
far from having a kinetic description. This provides a useful
counterpoint to the frequent unspoken assumption that the
QGP should have a kinetic description.
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