

LIBRARY

YE Yem

HXS

UNIVERSITY OF CALIFORNIA. Received JAN 12 1893 . 189 Accessions No. 49994 . Class No. 49994.

RETAINING-WALLS FOR EARTH.

INCLUDING

THE THEORY OF EARTH-PRESSURE AS DEVELOPED FROM THE ELLIPSE OF STRESS.

WITH

AN APPENDIX PRESENTING THE THEORY OF PROF. WEYRAUCH.

BY

MALVERD A. HOWE, C.E., Professor of Civil Engineering, Rose Polytechnic Institute.

Second Edition, Revised and Enlarged.

NEW YORK: JOHN WILEY & SONS, 53 EAST TENTH STREET.

1891,

49994

Copyright, 1891, by JOHN WILEY & SONS.

ROBERT DRUMMOND, Electrotyper, 444 & 446 Pearl Street, New York. FERRIS BROS., Printers, 326 Pearl Street, New York.

цай

ML AL

CONTENTS.

F

PART I.

BA CIT

NOMENCLA	FURE,							0	0				PA	vii
Formulas	FOR	THE	THRUS	r of	EART	н,				0			•	1
FORMULAS	FOR	THE	BREAD	гн с	OF BAS	E OF	A W	ALL,			•	•		6
FORMULAS	FOR	THE	Depth	OF	FOUND	ATION	ıs,							9
EXAMPLES,														11

PART II.

DEMONSTRATION	OF	THE	For	RM	ULAS	FOR	THE	THRUST	r of	EA	RTH,	•	•	27
DEMONSTRATION	OF	THE	For	RM	ULAS	FOR	THE	BREAD	гн о	OF TH	HE B	ASE	OF	
A WALL,					• •									48
DEMONSTRATION	OF	THE	Fo	м	ULAS	FOR	THE	DEPTH	OF	Fou	NDAT	IONS	5.	54

APPENDIX.

WEYRAUCH'S	THE	DRY C	F	EARTI	H-PR	ESSU	RE,		•		0		•	•		•	59
References,															•		103
DIAGRAM I,									•				•	•		•	107
TABLES, .	•	•	•					•		ę		•	٩		•		109

PREFACE.

THE first edition of this work was based upon the theory advanced by Prof. Weyrauch in 1878, but owing to the length of the demonstrations used by him, it was thought advisable to present different and shorter demonstrations in this edition. To show that the new demonstrations give identical results with those obtained by Prof. Weyrauch, his demonstrations have been given in an appendix as they appeared in the first edition.

The new demonstrations are based upon the theory first advanced by Prof. Rankine in 1858. Those readers who are familiar with Rankine's Ellipse of Stress can omit pages 27 to 35, inclusive, in following the demonstrations.

An attempt has been made to present the theory in a shape easily followed by those who have only a knowledge of algebra, geometry, and trigonometry; whenever calculus has been resorted to, the work has been simplified as much as possible. For convenience in practice, the formulas have been arranged in a condensed shape in Part I, and are followed by numerous examples illustrating their application.

The values of various coefficients have been computed and tabulated and will be found to very materially decrease the labor of substitution in the formulas.

V

PREFACE.

It is hoped that the introduction of a brief treatment of the supporting power of earth in the case of foundations, as well as the formula for determining the breadth of the base of a retaining-wall, will prove acceptable.

For valuable help in the verification of proofs of formulas, and the critical reading of the whole text, I acknowledge the kind assistance of Prof. Thos. Gray.

М. А. Н.

TERRE HAUTE, IND., March, 1891.

vi

NOMENCLATURE.

- ϕ = the angle of repose, or the maximum angle which any force acting upon any plane within the mass of earth can make with the normal to the plane.
- ϵ = the angle made by the surface of the earth with the horizontal; ϵ is *positive* when measured *above* and *negative* when measured *below* the horizontal.
- α = the angle which the back of the wall makes with the vertical passing through the heel of the wall; α is *positive* when measured on the *left* and *negative* when measured on the *right* of the vertical.
- δ = the angle which the direction of the resultant earthpressure makes with the horizontal.
- ϕ' = the angle of friction between the wall and its foundation.
- ϕ'' = the angle of friction between the back of the wall and the earth.
 - H = the vertical height of the wall in feet.
 - h = the depth of earth in feet which is equivalent to a given load placed upon the surface of the earth.
- B' = the width in feet of the top of the wall.
- B = the width in feet of the base of the wall.
- Q = the distance in feet from the toe of the wall to the point where R cuts the base,

NOMENCLATURE.

- P = the resultant earth-pressure in pounds against a vertical wall.
- E = the resultant earth-pressure in pounds against any wall.
- R = the resultant pressure in pounds on the base of the wall.
- G = the total weight in pounds of material in the wall.
- γ = the weight in pounds of a cubic foot of earth.
- W = the weight in pounds of a cubic foot of wall.
- p = the intensity of the pressure in pounds on the base of the wall at the toe.
- p' = the intensity of the pressure in pounds on the base of the wall at the heel.
- $p_{o} =$ the average intensity of the pressure in pounds on the base of the wall.
- $x = H \tan \alpha$.

viii

RETAINING-WALLS FOR EARTH.

FORMULAS FOR EARTH-PRESSURE.

In the following formulas α and ϵ are considered as *positive*, and the wall is assumed to be one foot long.

CASE I. General case of inclined earth-surface and inclined back of wall.

$$E = \frac{H^2 \gamma}{2} \frac{\cos(\epsilon - \alpha)}{\cos^2 \alpha \cos \epsilon} \times \sqrt{\frac{\sin^2 \alpha + \cos^2(\epsilon - \alpha)}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}}} \left\{ \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}} \right\}^2}{\sqrt{+2\sin \epsilon \sin \alpha \cos(\epsilon - \alpha)}} \left\{ \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}} \right\}}; (1)$$

or

$$E = \frac{H^{2}\gamma}{2} (B) \sqrt{(C) + (D)A^{2} + (E)A}. \quad (1')$$

$$\tan \delta = \frac{\sin \alpha \cos \epsilon + \sin \epsilon \cos (\epsilon - \alpha)A}{\cos \epsilon \cos (\epsilon - \alpha)A}; \quad (1a)$$

$$\tan \delta = \frac{\sin \alpha}{\cos (\epsilon - \alpha)A} + \tan \epsilon, \quad . \quad . \quad . \quad (1'a)$$

or

where

$$A = \cos \epsilon \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon} - \cos^2 \phi}{\cos \epsilon + \sqrt{\cos^2 \epsilon} - \cos^2 \phi}. \quad (d)$$

CASE II. Surface of earth inclined and $\alpha = 0$.

$$E = P = \frac{H^2 \gamma}{2} \left\{ \cos \epsilon \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}} = A \right\}.$$
(2)

From Diagram I the values of A can be found for all values of ϕ from 0° to 90° and of ϵ from 0° to 90°, varying by 5°.

$$\delta = \epsilon; \ldots \ldots \ldots \ldots (2a)$$

or for all vertical walls the direction of the earth-pressure is parallel to the surface of the earth.

CASE III. The surface of the earth parallel to the surface of repose.

$$\epsilon = \phi$$
.

$$E = \frac{H^2 \gamma}{2} \frac{\cos\left(\phi - \alpha\right)}{\cos^2 \alpha \cos \phi} \sqrt{\frac{\sin^2 \alpha + \cos^2 \left(\phi - \alpha\right)}{+ 2 \sin \alpha \sin \phi \cos \left(\phi - \alpha\right)}}.$$
 (3)

$$\tan \delta = \frac{\sin \alpha + \sin \phi \cos (\phi - \alpha)}{\cos \phi \cos (\phi - \alpha)} \quad . \quad . \quad (3a)$$

CASE IV. The surface of the earth parallel to the surface of repose and the back of the wall vertical.

$$\epsilon = \phi$$
 and $\alpha = 0$.

$$\delta = \phi. \quad \dots \quad \dots \quad \dots \quad (4a)$$

FORMULAS FOR EARTH-PRESSURE.

CASE V. The surface of the earth horizontal.

 $\epsilon = 0.$

$$E = \frac{H^2 \gamma}{2} \sqrt{\tan^2 \alpha + \tan^4 \left(45^\circ - \frac{\phi}{2}\right)}.$$
 (5)

CASE VI. The surface of the earth horizontal and the back of the wall vertical.

$$\epsilon = 0$$
 and $\alpha = 0$.

$$E = \frac{H^2 \gamma}{2} \tan^2 \left(45^\circ - \frac{\phi}{2} \right) \cdot \cdot \cdot \cdot \cdot (6)$$

 $\delta = 0. \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (6a)$

CASE VII. Fluid pressure.

 $\delta = \alpha$, (7a)

GRAPHICAL CONSTRUCTIONS FOR DETERMINING THE THRUST OF EARTH.

The following constructions are perfectly general, and apply to any plane within a mass of earth. When applied for determining the thrust of earth against a retaining-wall, α and ϵ are taken as positive.

* Construction (a).

Let BE represent the surface of the earth and BA the back of the wall. Draw AF parallel to BE, and at any point D in AF lay off DF equal to the vertical DE. Draw

FIG. 1.

FG horizontal, and FH, making the angle ϕ with DF. With any point J in DF describe the arc KI tangent to HF at I cutting FG at K, and draw GL parallel to KJ; with L as a centre and LF as radius, describe the circumference FQON cutting AD at N. Through N draw NO

^{*} See "Theorie des Erddruckes auf Grund der neueren Anschauungen," by Prof. Weyrauch, 1881.

parallel to AB cutting the circumference FQON at O; at A draw AC equal to OG and normal to AB; the area of the triangle ABC multiplied by γ will be the thrust of the earth on the wall.

To determine the direction of the thrust E, prolong OG to Q; then QN will be the direction of the thrust.

This thrust acts on the wall at $\frac{2}{3}AB$ below B.

* Construction (b).

Let BQ represent the surface of the earth, and BA the back of the wall. Draw AD parallel to BQ, and at any

F1G. 2.

point D in AD draw the vertical DG equal to the normal DQ; draw DM making the angle ϕ with the normal DQ.

* This construction follows directly from Rankine's Ellipse of Stress. See Rankine's Applied Mechanics. At any point J in DQ as a centre, describe the are IK tangent to DM cutting DG at K, and draw GL parallel to JK. Bisect the angle QLG, and at A draw AP parallel to LR. At A draw AN normal to AB and equal to DL; with N as a centre and AN as radius, describe an are AP cutting AP at P; connect P and N, and make NO equal to LG; with A as a centre and AO as a radius, describe the arc OC cutting AN at C; then the area of the triangle ABC multiplied by γ will be the thrust against the wall. The direction of this thrust is parallel to AO and it is applied at $\frac{2}{3}AB$ below B.

The constructions (a) and (b) give identical results in every case.

TRAPEZOIDAL AND TRIANGULAR WALLS.

Formulas for the width of the base of trapezoidal walls under the condition that the resultant R cuts the base at a point distant from the toe of the wall equal to one third the width of the base, or $Q = \frac{1}{3}B$.

CASE I. The general case in which the back of the wall is inclined, and E makes an angle with the horizontal.

$$B^{2} + B\left(\frac{4E}{HW}\sin \delta + B' - x\right)$$
$$= \frac{2E}{HW}\left(H\cos \delta + x\sin \delta\right) + 2B'x + B'^{2}. \quad (8)$$

CASE II. The back of the wall vertical.

$$x=0.$$

$$B^{2} + B\left(\frac{4E}{HW}\sin \delta + B'\right) = \frac{2E}{W}\cos \delta + B'^{2}.$$
 (9)

CASE III. The back of the wall vertical and the thrust normal to the wall.

If B = B' and x = 0, the section of the wall is a rectangle, and (9) becomes

$$B^{2} + B \frac{4E}{HW} \sin \delta = \frac{2E}{W} \cos \delta, \quad . \quad . \quad (9a)$$

and (10) becomes

$$B = \sqrt{\frac{2E}{W}} \cdot (10a)$$

Formulas for the width of the base of triangular walls under the condition that the resultant R cuts the base at a point distant from the toe of the wall equal to one third the width of the base, or $Q = \frac{1}{3}B$.

CASE I. The general case in which the back of the wall is inclined, and E makes an angle with the horizontal.

$$B^{2} + B\left(\frac{4E}{HW}\sin\delta - x\right) = \frac{2E}{HW}\left(H\cos\delta + x\sin\delta\right). \quad (11)$$

CASE II. The back of the wall vertical.

 $\alpha = 0.$

$$B^{2} + B\left(\frac{4E}{HW}\sin\delta\right) = \frac{2E}{W}\cos\delta. \quad . \quad (12)$$

CASE III. The back of the wall vertical, and the thrust normal to the wall.

$$x = 0$$
 and $\delta = 0$.

The above formulas do not contain the condition that R shall not make an angle greater than ϕ' with the normal to the base of the wall.

From Fig. 3,

$$\tan \phi' \stackrel{\geq}{=} \frac{E \cos \delta}{G + E \sin \delta} = \tan LJK, \quad . \quad (14)$$

which expresses the condition under which the wall will not slide,

DEPTH OF FOUNDATIONS.

CASE I. When the intensity of the pressure on the earth is uniform.

Letting x' equal the depth of the foundation below the surface,

$$x' = \frac{p_0 (1 - \sin \phi)^2}{(1 + \sin \phi)^2 \gamma - W (1 - \sin \phi)^2}, \quad . \quad (15)$$

when the weight of the foundation is included; and

$$x' = \left\{ \frac{1 - \sin \phi}{1 + \sin \phi} \right\}^2 \frac{p_o}{\gamma}, \quad \dots \quad (16)$$

when the weight of the foundation is not included.

x' is the minimum depth to which the foundation must be extended for equilibrium. The actual depth should be based upon the minimum value which ϕ is likely to have under any condition of the earth.

CASE II. When the intensity of the pressure on the earth is uniformly varying.

$$x' = \frac{p_0}{\gamma} \frac{(1 - \sin \phi)^2}{1 + \sin^2 \phi}, \quad . \quad . \quad . \quad (19)$$

where x' is the minimum depth to which the foundation must be extended for equilibrium;

$$x_{0} = \frac{1}{3} \frac{\sin \phi}{1 + \sin^{2} \phi}, \quad \dots \quad \dots \quad (20)$$

where x_0 is the maximum distance from the centre of the base of the foundation to the point where the resultant pressure cuts the base of the foundation.

ABUTTING POWER OF EARTH.

$$P = \frac{(x')^{*} \gamma}{2} \frac{1 + \sin \phi}{1 - \sin \phi}, \quad . \quad . \quad . \quad (21)$$

where P represents the maximum resultant pressure which horizontal earth can resist, when P is applied against a vertical plane of the depth x'.

APPLICATIONS.

The determination of the earth-pressure by the preceding formulas and graphical constructions is a very simple operation when the angle ϕ has been determined or assumed. That care and judgment be used in assuming the value of ϕ is very important, since a change of a few degrees in the value of ϕ sometimes causes a large change in the value of E. An inspection of Diagram I shows that the value of the coefficient Λ increases very rapidly as ϕ decreases.

When the earth to be retained contains springs, the bank must be thoroughly drained if it is to be retained by an economical tight wall; if it is not drained, the angle ϕ will be likely to become very small as the earth becomes wet.

When the location of the earth to be retained is subjected to jars, the value of ϕ will be decreased.

Hence, in assuming the value of ϕ , the engineer must be sure that the value assumed will be the least value which, in his judgment, it is likely to have.

In constructing the wall the judgment and authority of the engineer must again be exercised in order that the wall be constructed as designed.

In all cases, to insure perfect drainage between the back

of the wall and the earth, numerous "weep-holes" should be provided in the body of the wall, or proper arrangements made to carry away the water at the base of the wall. To facilitate drainage, the backing resting against the wall should be sand or gravel.

In no case should water be permitted to get under the foundation of the wall, neither should the earth in front of the wall be allowed to become wet.

In cold localities the back of the wall near the top should have a large batter to prevent the frost from moving the top courses of stone. As a guard against sliding, the courses of the wall should have very rough beds. The strength of a wall is increased the nearer it approaches a monolith.

Care should be taken to have the foundation broad and deep enough to prevent sliding and upheaving of the earth in front. In clay the foundation should be deep, while in sand or gravel it may be broad and shallow.

The following examples illustrate the application of the formulas:

Ex. 1. Design a trapezoidal wall of sandstone, weighing 150 lbs. per cubic foot, having a width of 3 ft. on top, a height of 30 ft., and the back inclining forward 5° , to retain a bank of sand sloping upward at an angle of 20° .

Data.

 $\gamma = 100$ lbs., W = 150 lbs.; $\epsilon = 20^{\circ}$, $\phi = 39^{\circ}$, $\alpha = 5^{\circ}$; H = 30 ft., B' = 3 ft., x = 2.63 ft.

1°. Graphical determination of the values of E and δ .

The graphical solution of the problem is shown in Fig. 4, where E is found to equal 15,000 pounds. δ lies between 35° and 36°.

2°. Algebraic determination of E and δ .

 $E = \frac{H^2 \gamma}{2} (B) \sqrt{(C) + (D)A^2 + (E)A} \dots \dots \dots (1')$

Substituting the values of B, C, D, and E as given in the tables, and that of A as given by Diagram I, this becomes

$$E = \frac{900 \times 100}{2} (1.036) \times \sqrt{(0.008) + (1.057)(0.264)^2 + (0.061)0.264}},$$

 $E = 45,000 (1.036) \sqrt{0.098} = 14,500$ lbs.

$$\tan \delta = \frac{\sin \alpha}{\cos (\epsilon - \alpha)A} + \tan \epsilon, \quad . \quad (1'a)$$

$$\tan \,\delta = \frac{0.087}{0.966(0.264)} \, \dashv 0.364,$$

$$\tan \delta = 0.705 = \tan 35^{\circ} 11'$$
, about.

3°. Algebraic determination of the value of B under the assumption that $Q = \frac{1}{3}B$.

$$B^{a} + B\left\{\frac{4E}{HW}\sin\delta + B' - x\right\}$$
$$= \frac{2E}{HW}\left\{H\cos\delta + x\sin\delta\right\} + 2B'x + B'^{a}. \quad (8)$$

$$E^{2} + B \left\{ \frac{4 \times 14500}{30 \times 150} \ 0.576 + 3 - 2.63 \right\}$$

$$=\frac{2\times14500}{30\times150}\{30\times0.817+2.63\times0.576\}+6\times2.63+9,$$

$$B^{2} + 7.79B = 172.53,$$
$$B = -3.89 \pm \sqrt{172.53 + \overline{3.9}^{2}};$$

$$\therefore B = 13.69 - 3.89 = 9.80$$
 ft.;

er, practically, 10 feet is the required width of the base.

 4° . To determine if the wall will slide on a foundation of sandstone.

From (14),

$$\tan \phi' \ge \frac{E \cos \delta}{G + E \sin \delta}.$$

Taking B = 10 ft., $G = \frac{10+3}{2} 30 \times 150 = 29250$ lbs.

 $\delta = 35^{\circ} 11'$, cos $\delta = 0.817$, and sin $\delta = 0.576$, then

$$\frac{E\cos\delta}{G+E\sin\delta} = \frac{14500 \times 0.817}{29250 + 14500 \times 0.576} = 0.315.$$

From Table II, the value of tan ϕ' for masonry is 0.6 to 0.7; hence there is no danger of the wall sliding on the foundation.

5°. To determine the minimum depth to which the foundation must extend consistent with the stability of the earth.

First determine the maximum value of x_0 . From (20),

$$x_{0} = \frac{1}{3} \frac{\sin \phi}{1 + \sin^{2} \phi},$$

where ϕ must be assumed at its minimum value. Assume that the minimum value of ϕ in this case is 30°; then

$$x_{o} = \frac{1}{3} \frac{0.577}{1.333} = 0.133,$$

showing that the resultant must cut the base of the foundation within 0.133 feet of its centre. The resultant cuts the base of the wall 1.67 feet from the centre of its base; hence the width of the foundation must be increased.

Assuming that the depth to which the foundation extends is 4 feet, and that it is vertical in the rear; then the direction of the resultant pressure (not including the additional weight of the foundation) will cut the base of the foundation 7.93 feet from the rear or heel. The required width of the base of the foundation is $(7.93 - 0.13)^2 =$ 15.6; say, 16 feet.

The value of p_0 can now be found, which corresponds to the assumed value of x' = 4 feet.

14

From (19),

$$p_{\circ} = x' \gamma \frac{1 + \sin^2 \phi}{(1 - \sin \phi)^2};$$
$$p_{\circ} = 400 \frac{1.333}{0.179} = 2960 \text{ lbs}$$

The average intensity of the pressure on the base of the foundation due to the resultant R is

$$\frac{29250 + 14500 \sin \delta}{16} = 2350 \text{ lbs.}$$

The foundation adds an intensity equal to $4 \times 150 = 600$ pounds approximately; hence the actual value of $p_o = 2350$ + 600 = 2950 pounds; therefore, if the foundation has a depth of 4 feet and a base of 16 feet, the wall will not sink nor the earth in front of the wall heave, until ϕ becomes less than 30°.

6°. To determine if the wall and foundation will slide on the earth.

This is resisted in two ways—by the friction between the masonry and the earth, and by a prism of earth in front of the wall.

The horizontal force tending to make the wall slide equals $E \sin \delta$, or 14500.0.576 = 8352 pounds. The horizontal force tending to make the foundation slide equals the resultant earth-pressure on the rear face of the foundation, which is vertical and 4 feet in height. From (6),

$$E = \left\{ \frac{(30+4)^2}{2} - \frac{30^2}{2} \right\} \gamma \tan^2 \left(45^\circ - \frac{\phi}{2} \right),$$

 $E = 12800 \times 0.226 = 2893.$

or

RETAINING-WALLS FOR EARTH.

Then the total horizontal force tending to make the wall slide is

$$8352 + 2893 = 11245$$
 lbs.

From Table II the tangent of the angle of friction between masonry and moist clay is 0.33, which evidently is much smaller than the tangent of the actual angle of friction between masonry and dry earth. Assume this tangent to be 0.500.

The total vertical pressure upon the base of the foundation is 37600 pounds, hence the ability to resist sliding is 37600 (0.5) = 18800 pounds, which is much larger than 11245; hence there is no danger of the wall slipping, even if the earth in front of the wall does not act.

Ex. 2. Design a trapezoidal wall of sandstone weighing 150 lbs. per cubic foot, having a width of 3 ft. on top, a height of 30 ft., and the back inclining backward 15° , to retain a bank of sand sloping upward at an angle of 30° .

Data.

 $\gamma = 100$ lbs., W = 150 lbs.; $\epsilon = 30^{\circ}$, $\phi = 33^{\circ}$, $\alpha = -15^{\circ}$; H = 30 ft., B' = 3 ft., x = 8 ft.

1°. Graphical determination of the values of E and δ .

In Fig. 5, let EG represent the surface of the earth, and AB the back of the wall. Draw AF parallel to BG, and from any point D' in AF lay off D'F equal to the vertical D'G, and draw FL horizontal; lay off the angle $IFD' = \phi$ = 33°, and locate the point M in D'F so that if an arc be described with M as a centre and LM as a radius the arc will be tangent to IF; then with M as a centre and MF as a radius, describe the circumference FHJ and draw JH

16

parallel to AB; at A draw AL perpendicular to AB and equal to HI. Then

$$\frac{(AB)(AL)}{2}\gamma = \frac{(30.9)(9.6)}{2}100 = 14800 = E.$$

To determine δ , prolong *HI* to *K* and draw *KJ*. Then the angle which this line makes with the horizontal is equal to δ , which is 6° to 7° in this case.

F1G. 5.

2°. Algebraic determination of E and δ . Substituting in (1) and remembering that α is negative,

 $E = 45000 (0.875) \sqrt{0.067 + 0.183 - 0.111} = 14600$ lbs.

From (1'a),

$$\tan \delta = \frac{-0.259}{0.707(0.524)} + .577 = -0.123 = \tan (-7^{\circ}).$$

3°. Algebraic determination of the value of B under the assumption that $Q = \frac{1}{3}B$.

Substituting the proper values in (11) and remembering that α is negative,

$$B = -4.7 \pm \sqrt{163.44 + (4.7)^2} = 9.0$$
 ft.

The foundation can be designed in the manner outlined in Ex. 1.

Ex. 3. Determine the dimensions of a brick wall having a vertical back to retain a bank of sand sloping upward at an angle of 20°. $\phi = 30^{\circ}$, H = 20', B' = 2', $\gamma = 100$.

1°. Algebraic determination of E and δ . Since $\alpha = 0$,

$$E = \frac{H^2 \gamma}{2} A \quad . \quad . \quad . \quad . \quad . \quad (2)$$

 $E = \frac{400 \times 100}{2} 0.424 = 8480$; say, 8500 lbs.

The value of A is readily found from Diagram I.

 $\delta = \epsilon = 20^{\circ}$, since $\alpha = 0$.

2. Algebraic determination of the value of B under the condition that $Q = \frac{1}{3}B$.

$$B^{2} + B\left\{\frac{4E}{HW}\sin\delta + B'\right\} = \frac{2E}{W}\cos\delta + B'^{2}.$$
 (9)

18

From Table I, W = 125 lbs. Then

$$B^{2} + B\left\{\frac{4 \times 8500}{20 \times 125} 0.342 + 2\right\} = \frac{2 \times 8500}{125} 0.940 + 4,$$

or

$$B^2 + 6.65B = 131.84.$$

$$B = -3.36 \pm \sqrt{131.84 + 3.36^2},$$

and

$$B = -3.36 + 11.96 = 7.60$$
 ft.

Ex. 4. Determine the value of B in Ex. 3 under the assumption that $\epsilon = 0$ (horizontal earth-surface).

$$E = \frac{H^2 \gamma}{2} \left\{ \tan^2 \left(45^\circ - \frac{\phi}{2} \right) = \frac{1 - \sin \phi}{1 + \sin \phi} \right\}, \quad (6)$$

or E = 20000 (0.333) = 66666, say 6700 lbs. Since $\alpha = 0$, and $\epsilon = 0$, $\delta = 0$,

$$B^{a} + BB' = \frac{2E}{W} + B'^{a}; \dots \dots \dots (10)$$

$$B^{2} + 2B = 111.2;$$

$$B = -1 \pm \sqrt{111.2 + 1}$$

and

$$B = -1 + 10.59 = 9.6$$
 ft.

Ex. 5. Determine the value of B in Ex. 3, under the assumption that $\epsilon = \phi = 30^{\circ}$.

$$E = \frac{H^{*}\gamma}{2}\cos\phi = 20000 \ (0.866) = 17320 \ \text{lbs.}$$

From (9),

$$B^{2} + B\left\{\frac{4 \times 17320}{20 \times 125} 0.5 + 2\right\} = \frac{2 \times 17320}{125} 0.866 + 4;$$

 $B^2 + 15.86B = 244.05;$

$$B = -7.93 + \sqrt{244.05 + 7.93^2}.$$

and B = -7.93 + 17.52 = 9.6 ft.

Ex. 6. Determine the resultant pressure against the back of a wall when the surface of the earth carries a load equivalent to 5 feet in depth of sand.

H = 30 ft., $\alpha = 10^{\circ}$, $\phi = 30^{\circ}$, $\epsilon = 0$, and $\gamma = 100$ lbs.

FIG. 6.

Graphical solution of the problem.—In Fig. 6, let BS represent the surface of the earth, and BA the back of the wall.

Make ST = 5, and draw HT and BH. Draw AR parallel to BS, parallel to HT, and make LR equal to LT; lay off the angle LRP equal to 30° ; with Q as a centre

20

draw an arc passing through L tangent to PR, and then with OR as a radius describe the circumference of the circle RQM, and at M draw MN parallel to AH; at Aand normal to AH draw AC equal to NL. Then

$$\frac{AC+BV}{2}BA\cdot \gamma = E.$$

The direction of E will be parallel to QM.

To determine the point of application of E, find the centre of gravity E' of ABVC, and draw E'D parallel to AC, then D will be the point of application of E.

E' can be found as follows: Produce AC and BV, make AI = CK = BV, BG = VF = AC, and join F and I and G and K. Then E', the intersection of FI and GK, will be the centre of gravity of ABVC. BD can be found from the formula

$$BD \cos 10^{\circ} = \frac{1}{3} \frac{(TL)^{\circ} - 3(TL)(TS)^{\circ} + 2(TS)^{\circ}}{(TL)^{\circ} - (TS)^{\circ}}.$$

See (30) of Appendix.

Ex. 7. Determine graphically the value of E when $\epsilon = 0$ and $\alpha = 0$, ϕ , γ , and H being given.

In Fig. 7 let BF represent the surface of the earth, and AB the back of the wall. Draw AL parallel to BF and make IL = IF; lay off the angle $GLH = \phi$, and at any point K in LH draw MK perpendicular to HL, and lay off MO = MK; draw MJ parallel to OI. Then will the arc IN, described with J as a centre and IJ as a radius, pass through I and be tangent to GL; with J as a centre and JL as radius describe the circumference LH; at A lay off AC = HI and normal to AB. Then

$$\frac{AC \times AB}{2}\gamma = E.$$

E is parallel to *BF* and applied at *D*, *AD* being equal to $\frac{1}{3}AB$.

FIG. 7.

Ex. 8. Determine the earth-thrust on the profile shown in Fig. 8, H, γ , ϕ , and ϵ being given.

Graphical solution of the problem.—Let BCDEA represent the given profile, and let the surface of the earth be horizontal. Prolong BC until it intersects SA in S; draw SR normal to BCS and equal to the intensity of the earth-pressure at S; connect B and R. Then from the middle point of BC draw GF parallel to SR; the distance GF multiplied by γ will be the average intensity of the earth-pressure on BC. In a similar manner the average intensities on CD, DE, and EA can be found, and hence the total pressures on each determined. The points of application of these resultant pressures, E_1, E_2, E_3 , and E_4 ,

22
FORMULAS FOR EARTH-PRESSURE.

can be found by the method used in Ex. 6 for finding the centre of gravity of a trapezoid. The directions of

FIG. 8.

 E_1 , E_2 , E_3 , and E_4 are found from the construction on the right.

Ex. 9. Determine the thrust of the earth against a vertical wall when ϵ is negative.

For the explanation of this construction, see Part II, page 47, Fig. 8a.

Ex. 10. From the following data determine E, δ , and Q:

$$\epsilon = 0, \ \phi = 38^{\circ}, \ \alpha = 10^{\circ} \ 23'; \ \gamma = 90 \ \text{lbs.}, \ W = 170 \ \text{lbs.};$$

 $H = 15 \ \text{ft.}, \quad B = 6 \ \text{ft.}, \quad B' = 2 \ \text{ft.}$
Ans. $E = 3037 \ \text{lbs.}, \ \delta = 27^{\circ} \ 13', \ Q = 2.2 \ \text{ft.}$

Ex. 11. Determine the dimensions of a trapezoidal wall built of dry, rough granite, having a vertical back and being 20 feet high, to safely retain the side of a sand cut,

 $\hat{23}$

the surface of the sand being level with the top of the wall. W = 165 lbs., $\gamma = 100$ lbs., $\phi = 33^{\circ}$ 40', H = 20 ft., B' = 2 ft.

Ans. E = 5734 lbs., $\delta = 0$, B = 8 ft., and Q = 2.8 ft., about.

Ex. 12. The same as Ex. 11, with $\alpha = 8^{\circ}$ instead of $\alpha = 0$.

Ans. E = 6330 lbs., B = 8 ft., and Q = 2.7 ft.

Ex. 13. What must be the dimensions of a rubble wall of large blocks of limestone, laid dry, to retain a sand filling which supports two lines of standard-gauge railroad track? (Assume the depth of sand to produce a pressure on the earth equal to that produced by the railroad and trains as 4 feet.)

 $\mathbf{24}$

H = 15 ft., $\alpha = 8^{\circ}$, $\phi = 33^{\circ} 40'$, $\gamma = 100$ lbs., W = 170 lbs., B' = 3.5 ft.

Ans. E = 5760 lbs., $\delta = 18^{\circ}$ 7', B = 8 ft., Q = 2.7 ft. Ex. 14. Determine *E*, δ , *B*, and *Q*, when W = 170 lbs., $\gamma = 100$ lbs., $\alpha = 8^{\circ}$, $\epsilon = \phi = 33^{\circ}$ 40', H = 20 ft., B' = 2 ft.

Ans. E = 21760 lbs., $\delta = 32^{\circ} 25'$, B = 9 ft., Q = 3 ft.

* Ex. 15. A wall 9 ft. high faces the steepest declivity of earth at a slope of 20° to the horizon; weight of earth 130 lbs. per cubic foot, angle of repose 30°. Determine E when $\alpha = 0$.

Ans. E = 2187 lbs. * Ex. 16. $\epsilon = 33^{\circ} 42'$, $\phi = 36^{\circ}$, H = 3 ft., $\gamma = 120$ lbs., $\alpha = 0$. Determine E.

Ans. E = 278 lbs. * Ex. 17. $\phi = 25^{\circ}$, $\epsilon = 0$, $\alpha = 0$, H = 4 ft., $\gamma = 120$ lbs., E = ?

Ans. E = 390 lbs. * Ex. 18. $\phi = 38^{\circ}$, $\epsilon = 0$, $\alpha = 0$, H = 3 ft., $\gamma = 94$ lbs., E = ?

Ans. E = 100.5 lbs.

* Ex. 19. A ditch 6 feet deep is cut with vertical faces in clay. These are shored up with boards, a strut being put across from board to board 2 feet from bottom, at intervals of 5 feet apart. The coefficient of friction of the moist clay is 0.287, and its weight 120 lbs. per cubic foot. Find the thrust on a strut, also find the greatest thrust which might be put upon the struts before the adjoining earth would heave up.

> Ans. E = 1230 lbs. Thrust per strut = 6128 lbs. Greatest thrust = 19029 lbs.

* Ex. 20. A wall 10 ft, high, 2 ft. thick, and weighing 144 lbs. per cubic ft., is founded in earth weighing 112 lbs. per cubic ft., and whose angle of repose is 32°. Find the least depth of the foundation.

Ans. x' = 1.21 ft. 10 - 1.21 = 8.79 ft. = amount of wall above the ground.

* Ex. 21. An iron column is to bear a weight of 20 tons (2240 lbs. = one ton); the foundation is a stone 3 ft. square on bed, sunk in earth weighing 120 lbs. per cu. ft.; angle of repose 27° . Find the least depth to which it must be sunk for equilibrium.

Ans. x' = 6 ft.

* Ex. 22. A brick wall, allowing for openings, weighs 42000 lbs. per rood of 36 sq. ft. (on an average one brick and a half), and stands 45 ft. above the ground; the foundation is to widen to four bricks at the bottom. Find depth of foundation in clay weighing 130 lbs. per cu. ft. (angle of repose 27°), neglecting weight of unknown foundation.

Ans. x' = 1.7 ft.

* Alexander's Applied Mechanics.

PART II.

THE THEORY OF EARTH-PRESSURE AND THE STABILITY OF RETAINING-WALLS.

Preliminary Principles.—Before demonstrating the general formula for the thrust of earth against a wall, it will be necessary to establish the relations between the stresses in an unconfined and homogeneous granular mass.

* In Fig. 1 let ABC be any small prism within a granu-

FIG. 1.

lar mass which is in equilibrium un er the action of the three stresses P, Q, and R, having the intensities p, q, and r respectively.

* In all the demonstrations which follow, the dimension perpendicular to the page will be considered as unity. Let θ represent the angle of inclination of the plane CB with AB, and the angle at A be a right angle.

The planes AB and AC are called planes of principal stress, and P and Q are called principal stresses.

CASE I. If the principal stresses are of the same kind and their intensities the same, then will the resultant stress on any third plane be normal to that plane and its intensity be equal to that of either principal stress.

In Fig. 1, for convenience, let AB = 1, then $AC = \tan \theta$, and $CB = \frac{1}{\cos \theta}$. Hence

 $P = p, \ Q = q \tan \theta = p \tan \theta$, since p = q, and $R = \frac{r}{\cos \theta}$.

Since P, Q, and R are in equilibrium, they will form a closed triangle, as shown on the right in Fig. 1. Hence

$$R^2 = P^2 + Q^2,$$

or

$$\frac{p^2}{\cos^2\theta} = p^2 + p^2 \tan^2\theta = p^2(1 + \tan^2\theta);$$

••• r = p = q.

Also,
$$R \cos FDE = P$$
,

or
$$\frac{r}{\cos\theta}\cos FDE = p;$$
 but $r = p.$

Hence
$$\cos \theta = \cos FDE = \cos HDG;$$

 \therefore HDG = θ and R is normal to CB.

CASE II. If the principal stresses are not of the same kind but their intensities the same, then will the resultant make the angle θ with the direction of the principal stress, but on the opposite side from that on which the resultant in Case I lies, and its intensity be equal to that of either principal stress.

The demonstration of Case I proves this principle if Fig. 1 is replaced by Fig. 2.

CASE III. Given the principal stresses of the same kind but having unequal intensities, to determine the intensity and direction of the resultant stress on any third plane.

Let P and Q be compressive and the intensity p > the intensity q.

The following identities can be written:

$$p = \frac{1}{2}(p+q) + \frac{1}{2}(p-q),$$

and

$$q = \frac{1}{2}(p+q) - \frac{1}{2}(p-q)$$

RETAINING-WALLS FOR EARTH.

or the resultant intensity on the plane CB may be considered as being the resultant of two intensities, one being the intensity of the resultant stress caused by two like principal stresses having the same intensity $\frac{1}{2}(p+q)$, and the other the intensity of the resultant stress caused by two unlike principal stresses having the same intensity $\frac{1}{2}(p-q)$.

The intensity of the resultant stress caused by the first two principal stresses will be, by Case I, $\frac{1}{2}(p+q)$, and the direction of the resultant will be normal to the plane *CB*. By Case II the resultant of the second pair of principal stresses will make the angle θ with the direction of *P*, and its intensity will be $\frac{1}{2}(p-q)$; then the resultant intensity can be found as follows:

In Fig. 3 draw *MD* normal to *BC*, and make $LD = \frac{1}{2}(p+q)$; with *L* as a centre and *LD* as radius, describe an arc cutting *FD* at *F*. Then the angle $LFD = LDF = \theta$. Lay off $LG = \frac{1}{2}(p-q)$, and draw *GD*, which is the result-

ant intensity, and the intensity of the resultant stress on CD caused by the two principal stresses P and Q. GD also represents the direction of the resultant stress R.

Since the intensities of the principal stresses remain constant, $\frac{1}{2}(p+q)$ and $\frac{1}{2}(p-q)$ will remain the same for any inclination of the plane *CB*; hence the intensity *r* of the resultant depends upon the angle θ when *p* and *q* are given.

From Fig. 3,

$$GL \cos 2\theta = LM$$
 and $GL \sin 2\theta = GM$,
 $DM = DL + LM = \frac{1}{2}(p+q) + \frac{1}{2}(p-q) \cos 2\theta$,
 $\overline{GD}^2 = r^2 = \overline{GM}^2 + \overline{DM}^2$,

or

$$r = \sqrt{p^2 \cos^2 \theta + q^2 \sin^2 \theta}, \quad \dots \quad (a)$$

which is the general expression for the intensity of the resultant stress of a pair of principal stresses.

As the angle θ changes, the angle β will also change, and it will have its maximum value when the angle $LGD = 90^{\circ}$. This is easily proven as follows:

With L as centre and GL as radius describe an arc; then β will have its maximum value when the line DG is tangent to the arc; but when DG is tangent to the arc the angle LGD is a right angle, since LG is the radius of the arc.

$$\sin \max \beta = \frac{p-q}{p+q}, \quad \dots \quad (b)$$

from which the following can be easily obtained:

$$\frac{p}{q} = \frac{1 - \sin \max \beta}{1 + \sin \max \beta}, \quad \dots \quad (c)$$

which expresses the limiting ratio of the intensities of the principal stresses consistent with equilibrium, p being greater than q.

CASE IV. Given the intensity and direction of the resultant stress on any plane, and the value of max β , to determine the intensities and directions of the principal stresses.

FIG. 4.

Let AD represent the given plane and GD the direction and intensity of the resultant stress at the point D.

Draw DL normal to AD, and draw DI, making the angle max β with LD. At any point J in DL describe an arc tangent to DI, cutting GD in K and draw GL parallel to KJ; with L as a centre and LG as radius describe

a circumference. This circumference will pass through Gand be tangent to DI; hence $\frac{GL}{DL} = \sin \max \beta$.

Since sin max $\beta = \frac{p-q}{p+q}$, and *GL* and *LD* are components of r,

$$GL = \frac{1}{2}(p-q)$$
 and $DL = \frac{1}{2}(p+q);$

then $ND = NL + LD = \frac{1}{2}(p-q) + \frac{1}{2}(p+q) = p$,

and
$$MD = LD - LM = \frac{1}{2}(p+q) - \frac{1}{2}(p-q) = q$$
,

which completely determines the intensities of the principal stresses.

According to Case III, the direction of the greater principal stress bisects the angle between the prolongation of LM and the line GL; hence RL represents the direction of the greater principal stress, and that of the other is at right angles to RL.

The above intensities and directions being determined, the intensity of the resultant stress on any other plane passing through D is easily determined as follows:

Let DY represent any plane passing through D, draw DL' normal to MY and equal to $\frac{1}{2}(p+q)$. Draw R'D parallel to RL, and with L' as a centre and L'D as radius describe an arc cutting R'D at O, and make $L'G' = \frac{1}{2}(p-q)$; then G'D = r' = the intensity of the resultant stress on DY.

It is clear that if the value of max β can be obtained for a mass of earth that the construction of Fig. 3 can be employed in determining the intensity of the earth-pressure at any point in *dny*, *plane* within the mass.

RETAINING-WALLS FOR EARTH.

It has been established by experiment that if a body be placed upon a plane, that (as the plane is made to incline to the horizontal) at some angle of inclination the body will commence to slide down the plane, and that this angle depends largely upon the *character* of the surfaces in contact.

In Fig. 5 let AB represent a plane inclined at the angle ϕ with the horizontal, and C any mass just on the point of sliding down the plane. Let EC represent the weight of the mass C, and ED and DC the components respectively parallel and normal to the plane AB. Then DE is the force required to just keep the mass C from sliding down the plane, assuming the plane to be perfectly smooth, or if the plane is rough this force represents the effect of friction.

$$\frac{DE}{DC} = \tan \phi,$$

or when the mass C is about to slide, the resultant pressure EC on AB makes the angle ϕ with the normal to the

plane, the angle ϕ being the inclination of the plane AB, and is called the angle of friction.

In the case of earth, considered as a dry granular mass, the inclination of the steepest plane upon which earth will not slide is called the angle of repose, and the plane the surface of repose.

From the above, then, it follows that in a mass of earth the resultant pressure on any plane cannot make an angle with the normal to that plane which is greater than the angle of repose ϕ ; therefore the construction of Case IV applies to earth when max β is replaced by ϕ . The values of ϕ for earth under various conditions are given in Table II.

The preceding principles will now be applied in determining the thrust of earth against a retaining-wall.

EARTH-PRESSURE.

In order that the formulas may not become too complex for practical use, it will be assumed that the earth is a homogeneous granular mass without cohesion. The surface of the earth will be considered to be a plane, and the length of the mass measured normally to the page as unity.

* Given the intensity and direction of the resultant stress at any point in any plane parallel to the surface of the earth, the inclination of the surface of the earth with the horizontal, and the angle of repose, to determine the intensity and direction of the resultant stress on a vertical plane passing through the same point.

*For comparison, see the "Technic," 1888; a construction by Prof. Greene.

The construction follows (see Fig. 4, above) directly from Rankine's Ellipse of Stress.

RETAINING-WALLS FOR EARTH.

In Fig. 6 let BQ represent the surface of the earth, and D any point in the plane AD parallel to BQ; draw DQ normal to AD, and make the vertical GD equal to QD; then $GD \cdot \gamma$ is the intensity of the resultant pressure at D. Draw DM, making the angle ϕ with LD, and with L as centre describe an arc tangent to DM and passing through G; then by Case IV $LG \cdot \gamma = \frac{1}{2}(p-q), LD \cdot \gamma = \frac{1}{2}(p+q)$,

FIG. 6.

and RL bisecting the angle QLG is the direction of the greater principal stress. To determine the intensity and direction of the resultant stress at D on a vertical plane, proceed according to Case IV. Draw R'D parallel to RL and DL' = DL normal to DG. With L' as a centre and L'D as radius describe an arc cutting R'D at R'', and make

L'G' = LG: then DG' represents the direction of the resultant stress, and $DG' \cdot \gamma$ the intensity of the resultant.

In Fig. 6 the angle $R'DL' = DR''L' = 90^{\circ} - \omega + \theta'$. \therefore $G'L'D = 2\omega - 2\theta'$. But $2\theta' = \omega + \epsilon$; hence G'L'D $= \omega - \epsilon$.

Draw LY = LG; then the angle $DLY = \omega - \epsilon$. : Since LD = DL' and LY = LG = L'G', the triangle G'L'Dequals the triangle LYD and the angle $G'DL' = \epsilon$; or the direction of the resultant earth-pressure against a vertical plane is parallel to the surface of the earth.

From Fig. 6,

10

$$\frac{1}{2}(p-q)\cos\omega = GX \cdot \gamma,$$

$$\frac{1}{2}(p-q)\sin\omega = LX \cdot \gamma,$$

$$\frac{1}{2}(p+q)\cos\epsilon = DX \cdot \gamma.$$

DY = DG' = DG - 2GX.

Now or

$$DG' \cdot \gamma = DG \cdot \gamma - (p - q) \cos \omega$$

= $\frac{1}{2}(p + q) \cos \epsilon - \frac{1}{2}(p - q) \cos \omega$,
 $\frac{1}{2}(p + q) : \sin \omega :: \frac{1}{2}(p - q) : \sin \epsilon$,

and

$$\sin \omega = \frac{p+q}{p-q} \sin \epsilon,$$

or

$$\cos \omega = \sqrt{1 - \left(\frac{p+q}{p-q}\right)^2 \sin^2 \epsilon} = \sqrt{\frac{(p-q^2) - (p+q)^2 \sin^2 \epsilon}{(p-q)^2}},$$

and since
$$\frac{1}{2}(p+q)\sin\phi = \frac{1}{2}(p-q)$$
,

$$\cos \omega = \frac{1}{\sin \phi} \sqrt{\cos^2 \epsilon - \cos^2 \phi}$$

Substituting this value for $\cos \omega$ in the equation for $DG' \cdot \gamma$, it becomes

$$DG' \cdot \gamma = \frac{1}{2}(p+q)\cos\epsilon - \frac{1}{2}(p-q)\frac{1}{\sin\phi}\sqrt{\cos^2\epsilon - \cos^2\phi},$$

or since

$$\frac{1}{\sin \phi} = \frac{p+q}{p-q},$$

 $DG' \cdot \gamma = \frac{1}{2}(p+q)\{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}\}.$

In a similar manner,

$$DG \cdot \gamma = \frac{1}{2}(p+q)\{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}\},$$

and

$$\frac{DG'}{DG} = \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}};$$

hence

$$DG' = DG \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}}$$

Let x = the *vertical* distance between the two planes BQ and AD, then

$$DG = DQ = x \cos \epsilon.$$

$$\therefore DG' \cdot \gamma = (x) \ \gamma \ \cos \ \epsilon \ \frac{\cos \ \epsilon - \sqrt{\cos^2 \ \epsilon - \cos^2 \ \phi}}{\cos \ \epsilon + \sqrt{\cos^2 \ \epsilon - \cos^2 \ \phi}},$$

which is the expression for the intensity of the resultant earth-pressure on a vertical plane at any depth x below the surface.

Let

*
$$A = \cos \epsilon \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}}$$
 . (d)

* See Rankine's Applied Mechanics; Alexander's Applied Mechanics; Theories of Winkler and Mohr.

The average intensity of the resultant earth-pressure on a vertical plane of the length x will be

$$\begin{pmatrix} x\\ \overline{2} \end{pmatrix} \gamma A$$
,

and hence the total pressure will be

$$P = \frac{x^2}{2} \gamma A. \dots (e)$$

Since the intensities of the pressures are uniformly varying from the surface, and increasing as x increases, the application of the resultant thrust will be at a depth of $\frac{2}{3}x$ below the surface.

Considering the earth as an unconfined mass, the above formula is perfectly general and can be applied under all conditions, including the case when ϵ is negative.

The resultant stress on any plane as AB, Fig. 6, can be found by applying the principles of Case IV. Draw PA. parallel to RL, make AN = LD and NO = LG; then AOrepresents the direction of the resultant pressure on AB. Make AC = AO; then the area of the triangle ABC multiplied by γ is the total pressure on the plane AB, and this pressure is applied at ${}_{3}^{2}AB$ below B.

In unconfined earth this construction is perfectly general and applies to *any plane*. It also applies equally well to curved profiles. An example illustrating the application of the method will be given in the *applications*. See pages 22 and 23.

The following graphical construction, Fig. 7, is more convenient than that of Fig. 6.

As before, let BE represent the surface of the earth, and

AD a plane parallel to the surface. At any point D in this plane, draw DE vertical and make DF = DE; draw FG horizontal and make the angle $HFD = \phi$.

With L as a centre, describe an arc passing through Gand tangent to MF; then with L as a centre and LF as

FIG. 7.

radius, describe the circumference FON, cutting AD at N; through N draw NO parallel to AB, then draw AC normal to AB and equal to OG. The area of the triangle ABC multiplied by γ will be the total earth-pressure on AB. To determine the direction of the thrust prolong OGto Q, then QN is the direction of the thrust.

That this construction is equivalent to that of Fig. 6 is

proved as follows. The triangle GLF of Fig. 7 equals the triangle GLD of Fig. 6.

 $\therefore GL \cdot \gamma = \frac{1}{2}(p-q) \text{ and } LF \cdot \gamma = LO \cdot \gamma = \frac{1}{2}(p+q).$

In Fig. 6, the angle $NAP = NPA = 90^{\circ} - \frac{1}{2}(\omega - \epsilon) - \alpha$.

 $\therefore ONA = \omega - \epsilon + 2\alpha.$

In Fig. 7, the angle $OLN = 2\epsilon - 2\alpha$. But $GLN = \omega + \epsilon$.

 $\therefore GLO = \omega - \epsilon + 2\alpha,$

and GO of Fig. 7 equals AO of Fig. 6.

In Fig. 7, the angle $QNO = 90^{\circ} - \beta'$.

In Fig. 6, the angle $OAB = 90^{\circ} - \beta'$.

Therefore the direction of the thrust is the same in both constructions.

The two constructions given above are all that is required to determine the thrust of earth upon any plane within the mass of earth, as one can be used as a check upon the other; but as a formula is often very convenient, a general formula will now be deduced which will enable one to determine the values of E and δ for any plane within a mass of earth.

GENERAL FORMULA FOR THE THRUST OF EARTH.

In Fig. 8, let BQ represent the surface of the earth and AB any plane upon which the earth-pressure is desired.

Draw AD parallel to BQ and let the vertical distance QD = FA = x,

From (e) the earth-pressure upon FA is parallel to the surface and equal to

FIG. 8.

But $AF = x = H(1 + \tan \alpha \tan \epsilon) = H \frac{\cos(\epsilon - \alpha)}{\cos \alpha \cos \epsilon};$

$$\therefore P = \frac{H^2 \gamma}{2} \frac{\cos^2 (\epsilon - \alpha)}{\cos^2 \alpha \cos^2 \epsilon} A. \quad . \quad . \quad (f)$$

Now the thrust P combined with the weight of the prism ABF must produce the resultant pressure upon AB.

Then from Fig. 8,

$$V = \frac{H^2 \gamma}{2} \tan \alpha \ (1 + \tan \alpha \tan \epsilon)$$
$$= \frac{H^2 \gamma}{2} \frac{\sin \alpha \cos (\epsilon - \alpha)}{\cos^2 \alpha \cos \epsilon}, \quad (g)$$

$$E = \sqrt{(V+P\sin\epsilon)^2 + (P\cos\epsilon)^2} = \sqrt{V^2 + P^2 + 2VP\sin\epsilon}.$$

Substituting (f) and (g) in this it becomes

$$E = \frac{H^2 \gamma}{2} \frac{\cos\left(\epsilon - \alpha\right)}{\cos^2 \alpha \cos \epsilon} \times \sqrt{\sin^2 \alpha + 2\sin \alpha \sin \epsilon \cos\left(\epsilon - \alpha\right) \frac{A}{\cos \epsilon} + \cos^2\left(\epsilon - \alpha\right) \frac{A^2}{\cos^2 \epsilon}},$$

which becomes, by replacing A by its value from (d),

$$E = \frac{H^2 \gamma}{2} \frac{\cos\left(\epsilon - \alpha\right)}{\cos^2 \alpha \cos \epsilon} \times + \frac{\sin^2 \alpha}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}} + 2\sin\alpha \sin \epsilon \cos\left(\epsilon - \alpha\right) \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}} + \cos^2\left(\epsilon - \alpha\right) \left\{ \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}} \right\}^2$$
(1)

which is the general equation for the thrust of earth upon *any plane* within the mass.

To determine the direction of the thrust of the earth, let δ be the angle which the direction of the thrust makes with the horizontal; then, from Fig. 8,

$$\tan \delta = \frac{V}{P \cos \epsilon} + \tan \epsilon,$$

)

RETAINING-WALLS FOR EARTH.

Substituting the values of V and P given above, this becomes

$$\tan \delta = \frac{\sin \alpha \cos \epsilon + \sin \epsilon \cos (\epsilon - \alpha) A}{\cos \epsilon \cos (\epsilon - \alpha) A}, \quad (1a)$$

where

$$A = \cos \epsilon \frac{\cos \epsilon - \sqrt{\cos^2 \epsilon - \cos^2 \phi}}{\cos \epsilon + \sqrt{\cos^2 \epsilon - \cos^2 \phi}}. \qquad (d)$$

Equations (1) and (1a) are readily reduced to more simple forms for special cases. These forms will be found in Part I.

The Plane of Rupture.—Although it is not necessary to know the position of the plane of rupture in order to determine the thrust of the earth, yet it may be of interest to know its position, which can be easily determined as follows:

The plane of rupture will be back of the wall and pass through the heel of the wall. The resultant earth-pressure will make the angle ϕ with the normal to this plane. Now the tangent of the angle which the direction of the resultant earth-pressure on any plane makes with the horizontal is determined from the formula

$$\tan \delta = \frac{\sin \alpha}{\cos (\epsilon - \alpha)A} + \tan \epsilon.$$

If ω represents the angle which the plane of rupture makes with the vertical passing through the heel of the wall, $\alpha = \omega$ and $\delta = \phi + \omega$.

$$\tan (\phi + \omega) = \frac{\sin \omega}{\cos (\epsilon - \omega)A} + \tan \epsilon,$$

from which the value of ω can be determined for any case.

For the case where $\epsilon = \phi$, ϵ being positive with respect to the wall and *negative with respect to the plane of rupture*, the above equation becomes

$$\tan (\phi + \omega) = \frac{\sin \omega}{\cos (\phi + \omega) \cos \phi} - \tan \phi,$$

which is satisfied when $\omega = 90^{\circ} - \phi$.

For the case where $\epsilon = 0$,

$$\tan (\phi + \omega) = \frac{\sin \omega}{\cos \omega \tan^2 \left(45^\circ - \frac{\phi}{2}\right)},$$

which is satisfied when $\omega = 45^{\circ} - \frac{\phi}{2}$.

Reliability of the Preceding Theory.—The preceding theory is based upon the assumptions that the earth is a homogeneous mass and without cohesion, and the formulas are deduced under the assumption that the surface of the earth is a plane.

All writers on the subject have considered the earth as a homogeneous mass and, with a few exceptions, without cohesion.

Old and recent experiments indicate that cohesion has very little effect upon the pressure of the earth, which explains why it has not been considered by most writers.

The assumption of a plane earth-surface is necessary whenever practical formulas and direct graphical constructions for obtaining the thrust of the earth are obtained. General formulas can be deduced for any character of surface, but they are too complex for practical use. Those graphical constructions which do not require a plane earthsurface are not direct in their solution of the problem, but require a series of trials to obtain the maximum thrust.

If the earth-surface is not a plane, one can be assumed which will give the thrust of the earth sufficiently exact for all practical purposes.

For unconfined earth no exceptions can be taken to the preceding theory, the assumptions upon which it is based being accepted, and for confined earth the theory must be true when the direction of the principal stress passing through the heel of the wall lies entirely within the earth.

For all cases in which α and ϵ are positive the theories of *Rankine*, *Winkler*, *Weyrauch*, and *Mohr* agree and give identical results with the preceding theory, as they should, being founded upon the same assumptions.

When α is negative *Weyrauch* does not consider his theory reliable, and his equations lead to indeterminate results.

Winkler and Mohr consider their theories reliable whenever the direction of the principal stress passing through the heel of the wall lies entirely within the earth.

Rankine's method of considering the case where α is negative is equivalent to assuming that the introduction of a wall does not affect the stresses within the mass.

It may be concluded that the preceding theory is perfectly exact when α and ϵ are positive; and when α or ϵ is negative that the stresses obtained will be the maximum which under any circumstances can exist.

For the case where ϵ is negative the stress obtained (which represents the maximum thrust the wall can have against the earth and have equilibrium) will be considerably larger than the actual stress (when a wall is introduced), depending upon the magnitude of ϵ . For small values of ϵ the results will be practically correct. For large values of ϵ

the following method can be employed in determining the thrust of the earth. The method depends upon the assumption that the pressure of the earth is normal to the back of the wall. This may or may not be the case, but it appears to be the most consistent assumption to make for this rare and not important case.

FIG. 8a.

* In Fig. 8a, let AB be the back of the wall and Bf the surface of the earth. Make Ba = ab = bc = cd = etc. Some prism BAa or BAb or BAc, etc., will produce the maximum thrust on the wall; and when this maximum thrust is produced, the resultant pressure on the plane Aa

^{*} See Van Nostrand's Magazine, XVII, 1877, p. 5. "New Constructions in Graphical Statics," by H. T. Eddy, C.E., Ph.D.

or Ab or Ac, etc., will make the angle ϕ with the normal to the plane.

On the vertical line Ad' lay off Aa'=a'b'=b'c', etc., and draw Aa'' making the angle ϕ with the normal to Aa, Ab''making the angle ϕ with the normal to Ab, etc.; then draw a'a'', b'b'', etc., perpendicular to AB, and draw a curve through Aa'', b'', c'', etc. Then there will be a maximum distance parallel to a'a'' between Ad' and this curve which will be proportional to the thrust of the earth against AB. This maximum distance multiplied by the altitude $Ac \div 2$ and the product by γ , the weight of a cubic foot of earth, will be the pressure of the earth.

This method is perfectly general and can be applied in any case.

If the earth-pressure is assumed to have the direction given by the formulas of the preceding theory, the construction will give the same value of E, the pressure of the earth.

Some writers assume that the direction of E makes the angle $\phi'' = \phi$ with the normal to the back of the wall in all cases. This assumption cannot be correct until the wall commences to tip forward, and then it is doubtful that such is the case unless the earth and wall are perfectly dry.

To be on the side of safety in every case, it is better to take the direction of E as given by the above theory.

The construction of Fig. 8a will give the maximum thrust for any assumed direction for any case.

TRAPEZOIDAL WALLS.

It will be assumed that the direction and magnitude of the earth-pressure is known, that the position and extent of the back of the wall and the width of the top are given,

to determine the width of the base for stability against overturning, sliding, and crushing of the material.

Stability against Overturning.—Let ABCD, Fig. 9, represent a section of a trapezoidal wall, TR the direction of the earth-thrust, JG the vertical passing through the centre of gravity of the wall, and JO the direction of the resultant pressure on the base AD caused by E and G.

As long as R cuts the base AD, the wall will be stable against overturning. When R takes the direction JQ, the wall may be said to be on the point of overturning; then the factor of safety against overturning is $\frac{QN}{ON}$, where ONis the actual value of E, and QN the value of E required to make the resultant R pass through D.

Stability against Sliding .- Since the wall will not slide

RETAINING-WALLS FOR EARTH.

along the surface DA until the resultant R makes an angle with the normal to DA greater than the angle of friction ϕ' , the factor of safety against sliding can be obtained as follows: Draw JP making the angle $JMU = \phi'$; then the factor of safety against sliding is $\frac{PN}{ON}$, where PN is the force required in the direction of E to make R make the angle ϕ' with the normal to AD, and ON the actual value of E.

Stability against the Crushing of the Material.—In ordinary practice walls for retaining earth are not of sufficient height to cause very large pressures at their bases, but it is necessary to consider the subject on account of the tendency of the bed-joints to open under certain conditions.

Let AB, Fig. 10, represent any bed-joint in the wall, P the vertical resultant pressure upon the joint, and x_0 the distance of the point of application from the centre of the joint.

The intensity of P can be considered as composed of a uniform intensity $p_0 = \frac{P}{B}$, and a uniformly varying intensity p_0' , so that $p_x = p_0 + p_0'$. Let a equal the tangent of the angle *CDE*, then $p_0' = ax$ and $p_x = p_0 + ax$.

The pressure upon a surface (dx)—the joint being considered unity in the dimension normal to the page—is

$$p_x dx = p_0 dx + ax dx,$$

and the moment of this about DB is

$$(p_{\circ}dx + axdx)x.$$

The algebraic sum of these moments for values of x between the limits $\pm \frac{B}{2}$ must equal Px_0 , or

$$Px_{0} = \int_{-\frac{1}{2}B}^{+\frac{1}{2}B} (p_{0}xdx + ax^{2}dx).$$

Integrating,

$$a=\frac{12x_{\circ}P}{B^{\circ}}=\frac{12x_{\circ}p}{B^{\circ}},$$

and

$$p_{\boldsymbol{x}} = \frac{B^2}{B^2} + \frac{12xx_0}{B^2} p_0,$$

or '

$$p = \left\{ 1 + \frac{6x_o}{B} \right\} \frac{P}{B};$$

and if x_0 be replaced by $\frac{1}{2}B - Q$, where Q is the distance from A to the point where P cuts the base, (Fig. 11,)

$$p = 2\left(B - \frac{3Q}{B}\right)\frac{P}{B},$$

and

$$p' = 2\left(1 - B + \frac{3Q}{B}\right)\frac{P}{B}.$$

If $Q = \frac{1}{3}B$,

$$p'=0$$
 and $p=2p_{o}$,

from which it is seen that when R cuts the base outside the middle third, the joint will have a tendency to open at points which are at a maximum distance from R where it cuts the base.

Therefore in no case should the resultant pressure be permitted to cut the base outside the middle third. This makes it unnecessary to consider the stability against overturning.

FIG. 11.

Then in designing a wall the following conditions must exist for stability:

I. The resultant R must cut the base for stability against overturning.

II. The resultant R must not make an angle with the normal to the base of the wall greater than the angle of friction ϕ' .

III. The resultant R must not cut the base outside of the middle third, in order that there may be no tendency for the bed-joints to open.

The above three conditions apply to any bed-joint of the wall; but if they are satisfied at the base and the wall has the section shown in Fig. 11, it will not be necessary to consider any joints above the base unless the character of the stone or the bonding is different.

Determination of the width of the base of a retainingwall under the condition that R cuts the base at a point $\frac{1}{4}B$ from the toe of the wall.

Let H, B', x, δ , and E be given to determine B. From Fig. 11,

$$KF = \frac{x}{3}\sin \delta + \frac{H}{3}\cos \delta - \frac{2B}{3}\sin \delta,$$

$$HD = \frac{2B^2 + 2BB' - Bx - 2B'x - B'^2}{3(B+B')},$$

$$HF = HD - \frac{B}{3} = \frac{B^2 + BB' - Bx - 2B'x - B'^2}{3(B+B')}.$$

For equilibrium

$$E(KF) = G(HF) = \frac{B+B'}{2} HW(HF).$$

Substituting the values of KF and HF in the above and reducing, it becomes

$$B^{2} + B\left(\frac{4E}{HW}\sin\delta + B' - x\right)$$
$$= \frac{2E}{HW}(H\cos\delta + x\sin\delta) + 2B'x + B'^{2}, \quad (8)$$

which is the general equation for the width of the base of a trapezoidal wall.

For a rectangular wall B' = B.

For a triangular wall B' = 0.

For a wall with a vertical front B' + x = B or B' = B - x.

For a wall with a vertical back x = 0.

Equation (8) is easily transformed to satisfy the requirements of special cases.

The width of the base can be found graphically by assuming a value for B and finding the value of Q; if it is less than $\frac{1}{3}B$ another value of B must be assumed, and so on until Q is equal to or greater than $\frac{1}{3}B$.

Depth of Foundations.—Given the angle of repose ϕ of any earth, to determine the depth to which it is necessary to sink a foundation to support a given load. The surface of the earth is assumed to be horizontal.

In Fig. 12, let p_{\circ} represent the intensity of the pressure on the base of the foundation.

Now when the masonry is about to sink (see Eq. (c)),

$$\frac{p_{\circ}}{q} = \frac{1 + \sin \phi}{1 - \sin \phi} \quad \text{or} \quad q = p_{\circ} \frac{1 - \sin \phi}{1 + \sin \phi}.$$

If x' represents the depth to which the foundation extends below the surface of the earth and γ the weight of a cubic foot of earth, then $\gamma x'$ equals the vertical intensity of the earth-pressure on a plane at the depth of the lowest point of the foundation.

When the wall is on the point of sinking, the earth must be on the point of rising, or

$$\frac{q}{\gamma x'} = \frac{1 + \sin \phi}{1 - \sin \phi},$$

or

$$p_{\circ} = \gamma x' \left\{ \frac{1 + \sin \phi}{1 - \sin \phi} \right\}^2 \dots \dots (15)$$

In any case p_0 must not have a greater value than that obtained from (15)—

$$x' = \frac{p_{\circ}}{\gamma} \left\{ \frac{1 - \sin \phi}{1 + \sin \phi} \right\}^2 = \frac{p_{\circ}}{\gamma} \tan^4 \left(45^{\circ} - \frac{\phi}{2} \right).$$
(16)

The value of x' as obtained from (16) is the least allowable value consistent with equilibrium. Since x' is a function of $\tan^4\left(45^\circ - \frac{\phi}{2}\right)$, care must be taken that ϕ is assumed at its least value. As ϕ becomes smaller the value of x'increases rapidly.

CASE II. When the intensity of the pressure on the base is uniformly varying.

Let p represent the maximum intensity of the pressure on the earth and p' the minimum intensity; then for

RETAINING-WALLS FOR EARTH.

equilibrium p must not exceed the value obtained from the following equation:

$$p = x' \gamma \left\{ \frac{1 + \sin \phi}{1 - \sin \phi} \right\}^2 \dots \dots (17)$$

Also, p' must never be less than $x'\gamma$; then

$$p_{0} = \frac{p+p'}{2} = \frac{x'\gamma}{2} \left\{ 1 + \left(\frac{1+\sin\phi}{1-\sin\phi}\right)^{2} \right\} = x'\gamma \frac{1+\sin^{2}\phi}{(1-\sin\phi)^{2}}, \quad (18)$$

which expresses the maximum value which p_0 can have for the equilibrium of the earth. Solving (18) for x',

$$x' = \frac{p_{o}}{\gamma} \frac{(1 - \sin \phi)^{2}}{1 + \sin^{2} \phi}, \quad . \quad . \quad . \quad (19)$$

which is the minimum value x' can have for the equilibrium of the earth.

In order that p' may never be less than $x'\gamma$ the resultant pressure on the base of the foundation must cut the base within a certain distance of the centre of the base. If x_0 equal this distance, then (see page 51)

$$p' = \left(1 - \frac{6x_0}{B}\right)p_0 = x'\gamma.$$

Substituting the value of p_0 from (18) and solving for x_0 ,

$$x_{\circ} = \frac{1}{3} \frac{\sin \phi}{1 + \sin^2 \phi}, \quad \dots \quad (20)$$

which is the maximum value x_{o} can have, consistent with the stability of the earth.

Abutting Power of Earth.—Let the surface of the earth be horizontal and the body pushing the earth have a verti-

cal face; then at the depth x' the maximum horizontal pressure per unit of area is (see Case I above)

$$q = x'\gamma \,\frac{1+\sin\,\phi}{1-\sin\,\phi},$$

and since q varies directly as x', the total thrust P which the earth is capable of resisting is

$$P = \frac{(x')^{2}\gamma}{2} \frac{1 + \sin \phi}{1 - \sin \phi} \dots \dots (21)$$
APPENDIX.

WEYRAUCH'S

THEORY OF THE RETAINING-WALL.*

In the following the earth is supposed without cohesion, and its pressure is determined independently of any arbitrary assumptions as to direction of the earth-pressure, and with sole reference to the three necessary conditions of equilibrium. The single and only supposition, then, is as follows: That the forces upon any imaginary plane-section through the mass of earth have the same direction.

This assumption lies at the foundation of *all* theories of earth-pressure against retaining-walls. For those cases, therefore, to which the following discussion does not apply no complete or satisfactory theory is yet possible. In what follows, the ordinary assumption as to the direction of the earth-pressure will be proved to be *incorrect*, except for special cases.

* Zeitschrift für Baukunde, Band I. Heft 2, 1878.

I.

GENERAL RELATIONS.

Let the surface of the earth have any form, and the wall AB, Fig. 1, have any inclination. The earth-pressure makes any angle, δ , with the normal to the wall.

Suppose through the point A the plane AC. Then the weight G of the prism ABC is held in equilibrium by the

FIG. 1.

reaction of the wall, E, and by the resultant, R, of all the forces acting upon AC.

Now decompose E, G, and R into components parallel and normal to AC; then for every unit in length of the wall, denoting by e, g, and r the lever-arms of E, G, and R respectively with reference to A, the sum of the forces parallel to AC = 0, or

$$P - P_1 - P_2 = 0;$$
 (1)

GENERAL RELATIONS.

the sum of the forces perpendicular to AC = 0, or

$$Q + Q_1 - Q_2 = 0; \ldots (2)$$

the sum of moments about A = 0, or

$$Gg + Ee - Rr = 0. \quad . \quad . \quad . \quad (3)$$

Equation (3) was first introduced by Prof. Weyrauch.

Further, according to the theory of friction, if φ is the coefficient of friction for earth on earth,

$$\frac{P_2}{Q_2} \stackrel{\not}{=} \tan \varphi \text{ or } \frac{P - P_1}{Q + Q_1} \stackrel{\not}{=} \tan \varphi. \quad . \quad . \quad (4)$$

If now there is any plane for which

$$P - P_1 = (Q + Q_1) \tan \varphi, \quad . \quad . \quad (5)$$

this plane AC will be a plane of equilibrium, and $\frac{P-P_1}{Q+Q_1}$ will be a maximum, or

This plane is designated as the "surface of rupture."

From Fig. 1, for every position of AC,

 $\begin{array}{ll} P &= G\cos \, \omega, & Q &= G\sin \, \omega, \\ P_1 &= E\sin \, (\omega + \alpha + \delta), & Q_1 &= E\cos \, (\omega + \alpha + \delta). \end{array}$

Substituting the above values of P, P_1 , Q, and Q_1 in equation (5), it becomes

$$\begin{aligned} G\cos\omega - E\sin\left(\omega + \alpha + \delta\right) \\ &= \left[G\sin\omega + E\cos\left(\omega + \alpha + \delta\right)\right]\tan\varphi; \end{aligned}$$

and when ω refers to the surface of rupture, the earthpressure upon AB becomes

$$E = \frac{\cos \omega - \sin \omega \tan \varphi}{\sin (\omega + \alpha + \delta) + \cos (\omega + \alpha + \delta) \tan \varphi} G$$

Substituting the value of $\tan \varphi$ or $\frac{\sin \varphi}{\cos \varphi}$, this becomes

$$E = \frac{\cos\varphi\,\cos\omega - \sin\,\omega\,\sin\varphi}{\sin\,(\omega + \alpha + \delta)\,\cos\varphi + \cos\,(\omega + \alpha + \delta)\,\sin\varphi}G,$$

which becomes

$$E = \frac{\cos (\varphi + \omega)}{\sin (\varphi + \omega + \alpha + \delta)} G. \quad . \quad . \quad (7)$$

In order to refer to the surface of rupture, the following relation must exist :

$$\frac{d\left(\frac{G\cos\omega}{G\sin\omega} - E\sin\left(\omega + \alpha + \delta\right)\right)}{d\omega} = 0. \quad (7a)$$

Performing the differentiation indicated in the equation (7a), considering G and ω as the variables, it becomes

$$+ [dG\cos\omega - \sin\omega d\omega G - E\cos(\omega + a + \delta)d\omega] [G\sin\omega + E\cos(\omega + a + \delta)] - [dG\sin\omega + \cos\omega d\omega G - E\sin(\omega + a + \delta)d\omega] [G\cos\omega - E\sin(\omega + a + \delta)] - [G\sin\omega + E\cos(\omega + a + \delta)]^2 d\omega = 0; \qquad (7b)$$

dividing by $d\omega$, this becomes

GENERAL RELATIONS.

or

$$+ \frac{dG\cos\omega}{d\omega} [G\sin\omega + E\cos(\omega + a + \delta)] - [G\sin\omega + E\cos(\omega + a + \delta)]^{2}$$
$$- \frac{dG\sin\omega}{d\omega} [G\cos\omega - E\sin(\omega + a + \delta)] - [G\cos\omega - E\sin(\omega + a + \delta)]^{2}$$
$$= 0, \qquad (7d)$$

Now, since

by clearing of fractions this becomes

$$-\frac{EdG\cos(\alpha+\delta)}{d\omega}+G^2-2GE\sin(\alpha+\delta)+E^2=0.$$
 (7e)

Now since $dG = \frac{1}{2}k \cdot d\omega \cdot k\gamma$, equation (7e) reduces to

$$G^{2} - 2GE\sin(\alpha + \delta) - \frac{Ek^{2}\gamma\cos(\alpha + \delta)}{2} + E^{2} = 0, \quad (7f)$$

which becomes, after dividing by GE,

$$\frac{G}{E} - 2\sin(\alpha + \delta) - \frac{k^2 \gamma \cos(\alpha + \delta)}{2G} + \frac{E}{G} = 0.$$
(8)

Substituting the value of $\frac{E}{G}$ from equation (7), transposing and multiplying by two, equation (8) reduces to

$$\frac{2\sin\left(\phi+\alpha+\omega+\delta\right)}{\cos\left(\phi+\omega\right)} - 4\sin\left(\alpha+\delta\right) + \frac{2\cos\left(\phi+\omega\right)}{\sin\left(\phi+\omega+\alpha+\delta\right)} = \frac{k^{2}\gamma\cos\left(\alpha+\delta\right)}{G}, (8a)$$

whence

$$G = \frac{k^2 \gamma \cos(\alpha + \delta)}{\frac{2 \sin(\phi + \omega) + \alpha + \delta}{\cos(\phi + \omega)} - 4 \sin(\alpha + \delta)} + \frac{2 \cos(\phi + \omega)}{\sin(\phi + \omega + \alpha + \delta)}, \quad \dots \quad (8b)$$

which reduces to

$$G = \frac{\cos\left(\phi + \omega\right)\sin\left(\phi + \omega + a + \delta\right)\cos\left(a + \delta\right)k^{2}\gamma}{2\left[\sin^{2}\left(\phi + \omega + a + \delta\right) - 2\sin\left(a + \delta\right)\cos\left(\phi + \omega\right)\sin\left(\phi + \omega + a + \delta\right) + \cos^{2}\left(\phi + \omega\right)\right]}.$$
 (8c)

Since

$$\sin (\varphi + \omega + \alpha + \delta) = \sin (\varphi + \omega) \cos (\alpha + \delta) + \cos (\varphi + \omega) \sin (\alpha + \delta),$$

the parenthetical portion of the denominator becomes

$$\sin^{2} (\varphi + \omega) \cos^{2} (\alpha + \delta) + 2 \sin (\alpha + \delta) \cos (\varphi + \omega) \sin (\varphi + \omega) \cos (\alpha + \delta) + \cos^{2} (\varphi + \omega) \sin^{2} (\alpha + \delta) - 2 \sin (\alpha + \delta) \cos (\varphi + \omega) \sin (\varphi + \omega) \cos (\alpha + \delta) - 2 \sin (\alpha + \delta) \cos (\varphi + \omega) \cos (\varphi + \omega) \sin (\alpha + \delta) + \cos^{2} (\varphi + \omega),$$

or

$$\sin^2\left(arphi\!+\!\omega
ight)\cos^2\left(lpha\!+\!\delta
ight)\ -2\sin^2\left(lpha\!+\!\delta
ight)\cos^2\left(arpha\!+\!\omega
ight)\ +\sin^2\left(lpha\!+\!\delta
ight)\cos^2\left(arpha\!+\!\omega
ight)+\cos^2\left(arpha\!+\!\omega
ight),$$

or
$$\sin^2(\varphi+\omega)\cos^2(\alpha+\delta) - \cos^2(\varphi+\omega)\sin^2(\alpha+\delta) + \cos^2(\varphi+\omega),$$

or
$$\sin^2(\varphi+\omega)\cos^2(\alpha+\delta)+\cos^2(\varphi+\omega)[1-\sin^2(\alpha+\delta)]$$
,

or
$$\sin^2(\varphi+\omega)\cos^2(\alpha+\delta)+\cos^2(\varphi+\omega)\cos^2(\alpha+\delta)$$
,

or
$$\cos^2(\alpha+\delta) [\sin^2(\varphi+\omega)+\cos^2(\varphi+\omega)],$$

which equals $\cos^2(\alpha+\delta)$, and equation (8c) becomes, after dividing by $\cos(\alpha+\delta)$ and factoring,

$$G = \frac{\cos\left(\varphi + \omega\right)\sin\left(\varphi + \omega + \alpha + \delta\right)}{\cos\left(\alpha + \delta\right)} \cdot \frac{k^{2}\gamma}{2} = \text{Function } \gamma, (9)$$

from which

$$\sin\left(\varphi\!+\!\omega\!+\!\alpha\!+\!\delta\right) = \frac{2G}{k^2\gamma} \cdot \frac{\cos\left(\alpha\!+\!\delta\right)}{\cos\left(\varphi\!+\!\omega\right)}$$

which being substituted in equation (7) gives

FIG. 2.

And, since the sum of the horizontal components of E, G, and R must be equal to 0, or Fig. 2,

$$E\cos(\alpha+\delta)=R\cos(\omega+\varphi),$$

and
$$R = E \frac{\cos(\alpha + \delta)}{\cos(\omega + \varphi)}$$

which becomes, after substituting the value of E from equation (10),

Let AD, Fig. 2, be the natural slope of the ground. From C let fall the perpendicular CH, and draw CJ, making the angle $(\alpha + \delta)$ with CH; then

 $CH = k \cos (\varphi + \omega), \qquad AJ = \frac{\sin (\varphi + \omega + \alpha + \delta)}{\cos (\alpha + \delta)}k.$

The expression for AJ is obtained in the following manner (Fig. 2):

$$CH = k \cos (\varphi + \omega), \quad AH = k \sin (\varphi + \omega), \\ HJ : CH :: \sin (\alpha + \delta) : \cos (\alpha + \delta),$$

and
$$HJ = \frac{CH\sin(\alpha+\delta)}{\cos(\alpha+\delta)} = \frac{\cos(\varphi+\omega)\sin(\alpha+\delta)}{\cos(\alpha+\delta)}k,$$

$$. I II + HJ = AJ = \frac{\sin(\varphi + \omega)\cos(\alpha + \delta) + \cos(\varphi + \omega)\sin(\alpha + \delta)}{\cos(\alpha + \delta)}k,$$

GENERAL RELATIONS.

which reduces to

$$AJ = \frac{\sin\left(\varphi + \omega + \alpha + \delta\right)}{\cos\left(\alpha + \delta\right)}k;$$

and hence, according to equation (9),

$$G = \text{Func. } \gamma = \gamma \Delta A CJ. \quad . \quad . \quad (12)$$

Also, if AK is perpendicular to CJ,

$$\frac{CH}{AK} = \frac{k\cos\left(\varphi + \omega\right)}{k\sin\left(\varphi + \omega + \alpha + \delta\right)} = \frac{E}{G};$$

and if JL is made equal to JC, then, since the perpendicular from L upon CJ is equal to CH,

$$\frac{\Delta CJL}{\Delta CJA} = \frac{CH}{AK} = \frac{E}{G},$$

$$E = \gamma \Delta CJL. \qquad \dots \qquad (13)$$

$$AM = AC,$$

If, finally,
$$AM = AC$$
,
 $\Delta ACM = \frac{AM \cdot CH}{2} = \frac{1}{2}k^2 \cos{(\varphi + \omega)},$

$$R = \gamma \varDelta A C M. \qquad (14)$$

All these geometrical results may be summed up as follows :

Draw from the highest point C of the surface of rupture a line CJ, which makes with the normal CH to the natural slope the angle $\alpha + \delta$, or the angle which the earthpressure makes with the horizontal; then the $\Delta A CJ$ is

or

or

equal in area to the $\triangle ABC$, the prism of rupture. Then lay off JL = JC and AM = AC and draw CL and CM; then for every unit in length of the wall the following relations exist:

Weight of prism of rupture, $G = \gamma \varDelta CAJ;$ Earth-pressure upon wall, $E = \gamma \varDelta CJL;$ Reaction of the surface of rupture, $R = \gamma \varDelta CAM.$ (14a)

The first two relations were first made known by Rebhahn in 1871, for $\delta = 0$ or φ .

Since, now, $G: E: R = AJ: JC: CA, \ldots$ (15)

it can be asserted that-

The weight of the prism of rupture and the reactions of the wall and of the surface of rupture are to each other as the three sides of the $\Delta A CJ$.

Thus far no assumption whatever has been made as to the value of the angle δ . This is determined by equation (3), which, in all theories following Coulomb's method, does not occur.

II.

PLANE EARTH-SURFACE INCLINED

ADOPT in this case the notation of Fig. 3, and let E be first determined for any value of δ .

FIG. 3.

If AC is the surface of rupture, then $\triangle ABC = \triangle ACJ$; or, since

$$\frac{AB}{AC} = \frac{\sin \Pi}{\sin \Pi}, \qquad AB = AC \frac{\sin \Pi}{\sin \Pi}.$$

In like manner, $AJ = AC \frac{\sin V}{\sin VI}$. But since $\Delta ABC = \Delta ACJ$, $AB \cdot AC \sin I = AJ \cdot AC \sin IV$; . . (16)

or
$$\frac{\sin I \sin II}{\sin III} = \frac{\sin IV \sin V}{\sin VI};$$
 . . . (16a)

or, finally,

$$\sin(\alpha + \omega)\cos(\varepsilon + \omega)\cos(\alpha + \delta)$$

$$= \sin(\varphi + \omega + \alpha + \delta)\cos(\varphi + \omega)\cos(\alpha - \varepsilon). (16b)$$

Further, from Fig. 3, if
$$BN$$
 is perpendicular to AD ,
 $\Delta ADB = 2\Delta AJC + \Delta JDC$,
or $AD \cdot BN = 2AJ \cdot CH + JD \cdot CH$;

and since

$$\frac{BN}{CH} = \frac{BO}{CJ} = \frac{OD}{JD},$$

and

$$AD \cdot OD = JD (AJ + AD),$$

$$AD (AD - AO) = (AD - AJ) (AJ + AD),$$

$$AO \cdot AJ = AJ \cdot AD \cdot \cdot \cdot \cdot \cdot (17)$$

whence

FIG. 3'.

Upon this relation rests the well-known construction of Poncelet for the earth-pressure. Draw (Fig. 3') BN perpendicular to the natural slope AD; draw BO, making the same angle with BN that E makes with the horizontal, and

then determine the point J so that equation (17) is fulfilled, that is, make AJ a mean proportional between AOand AD; then draw JC parallel to OB. Thus the surface of rupture AC is found, and use can now be made of the relations already deduced in I.

In order to determine J(A, O, and D being given), there are several methods, one of which is indicated in the figure. In all these constructions δ is assumed.

Now from equation (13), $E = \frac{1}{2} \gamma \overline{JC}^2 \cos (\alpha + \delta)$, but

$$\frac{CJ}{BO} = \frac{AD - AJ}{AD - AO} = \frac{AD - \sqrt{AD \cdot AO}}{AD - AO} = \frac{1 - \sqrt{\frac{AO}{AD}}}{1 - \frac{AO}{AD}}.$$

Let $n = \sqrt{\frac{AO}{AD}}$, then $CJ = \frac{1-n}{1-n^2}BO = \frac{BO}{1+n}$. From Fig. 3,

$$\frac{AO}{AB} = \frac{\sin (\varphi + \delta)}{\cos (\alpha + \delta)}, \qquad \frac{AB}{AD} = \frac{\sin (\varphi - \varepsilon)}{\cos (\alpha - \varepsilon)};$$

and the multiplication of these equations gives

$$n = \sqrt{\frac{\sin(\varphi + \delta)\sin(\varphi - \varepsilon)}{\cos(\alpha + \delta)\cos(\alpha - \varepsilon)}}.$$
 (18)

If
$$AB = l$$
, $BO = \frac{\cos(\varphi - \alpha)}{\cos(\alpha + \delta)}l$;
UNIVERSITY

and by substitution of BO and n in the value for CJ, and of CJ in that for E,

$$E = \left[\frac{\cos\left(\phi - a\right)}{n+1}\right]^2 \frac{l^2\gamma}{2\cos\left(a+\delta\right)} = \left[\frac{\cos\left(\phi - a\right)}{(n+1)\cos a}\right]^2 \frac{h^2\gamma}{2\cos\left(a+\delta\right)} \quad . \tag{19}$$

For the special case of the earth-surface parallel to the angle of repose, $\varepsilon = \varphi$, n = 0, and

$$E = \frac{\cos^2(\varphi - \alpha)}{\cos(\alpha + \delta)} \frac{l^2 \gamma}{2} = \left[\frac{\cos(\varphi - \alpha)}{\cos\alpha}\right]^2 \frac{h^2 \gamma}{2\cos(\alpha + \delta)}.(20)$$

These formulæ hold good for any value of δ . But the angle δ is determined by equation (3). In order to insert e and r in this formula, the points of application of E and R must be known. The angles δ and ω are connected by the relations in (16b), in which there are no other unknown quantities. Since now δ , according to the single assumption of Prof. Weyrauch's theory, is independent of the height, so also is ω , and then for variable h equations (19) and (11) become

$$E = C l^2,$$
 $R = C_1 k^2,$
 $dE = 2 C l d l,$ $dR = 2 C_1 k d k.$

Let x and z equal the distance of the point of application of E and R from A, respectively. Now considering the top as the origin or centre of moments,

$$E(l-x) = 2C \int_0^l l^2 dl, \qquad R(k-z) = 2C_1 \int_0^k k^2 dk,$$

and therefore $x = \frac{1}{3}l$ and $z = \frac{1}{3}k$.

Now G must act through the centre of gravity of the $\triangle ABC$, and it has been already proved that the points

of application of E and R are at distances $\frac{1}{3}l$ and $\frac{1}{3}k$ respectively above A; hence (Fig. 3') ah = ed and $hf = g = bd - ah = \frac{1}{3}k \sin \omega - \frac{1}{3}l \sin \alpha$.

Substituting these values in equation (3) and referring to equation (15),

$$AB (CJ\cos\delta - AJ\sin\alpha) = AC (AC\cos\phi - AJ\sin\omega), \quad . \quad . \quad (22)$$

or

	$\sin II(\sin IV\cos\delta - \sin V\sin\alpha) = \sin III(\sin VI\cos\phi - \sin V\sin\omega),$	(22a)
or	$\cos\left(\epsilon+\omega\right)\left[\cos\left(\phi+\omega\right)\cos\delta-\sin\left(\phi+\omega+\alpha+\delta\right)\sin\alpha\right]$	
	$= \cos (a - \epsilon) \left[\cos (a + \delta) \cos \phi - \sin (\phi + \omega + a + \delta) \sin \omega \right].$	(22b)

By means of the two equations (16b) and (22b) the two unknown quantities δ and ω are completely determined. As soon as these are known, E can be found from equation (19) or (20). Also by the relations in equations (16) and (22), or (16a) and (22b), the surface of rupture and direction of the earth-pressure may be determined, and can therefore be found by a graphical construction.

III.

HORIZONTAL EARTH-SURFACE.

For this most important practical case it is simply necessary to make $\varepsilon = 0$ in equation (19). The proper values of δ and ω in this case are found from (16b) and (22b).

Making $\varepsilon = 0$ in equation (22b), it becomes

$$\cos \omega \left[\cos \left(\varphi + \omega \right) \cos \delta - \sin \left(\varphi + \omega + \alpha + \delta \right) \sin \alpha \right] \\ - \cos \alpha \left[\cos \left(\alpha + \delta \right) \cos \varphi - \sin \left(\varphi + \omega + \alpha + \delta \right) \sin \omega \right] = 0.$$

Since

$$\sin (\varphi + \omega + \alpha + \delta) = \sin (\varphi + \omega) \cos (\alpha + \delta) + \cos (\varphi + \omega) \sin (\alpha + \delta),$$

$$\cos (\alpha + \delta) = \cos \alpha \cos \delta - \sin \alpha \sin \delta,$$

and
$$\sin (\alpha + \delta) = \sin \alpha \cos \delta + \cos \alpha \sin \delta,$$

the above expression becomes

 $\begin{array}{c} \cos \omega \cos \delta \cos \left(\varphi + \omega \right) \\ - \cos \omega \sin \alpha \cos \alpha \cos \delta \sin \left(\varphi + \omega \right) \\ + \cos \omega \sin^2 \alpha \sin \delta \sin \left(\varphi + \omega \right) \\ - \cos \omega \sin \alpha \cos \alpha \sin \delta \cos \left(\varphi + \omega \right) \\ - \cos \omega \sin \alpha \cos \phi \cos \left(\alpha + \delta \right) \\ + \cos^2 \alpha \sin \omega \cos \delta \sin \left(\varphi + \omega \right) \\ - \cos \alpha \sin \omega \sin \alpha \sin \delta \sin \left(\varphi + \omega \right) \\ + \cos^2 \alpha \sin \omega \sin \delta \cos \left(\varphi + \omega \right) \\ + \cos \alpha \sin \omega \sin \alpha \sin \alpha \cos \delta \cos \left(\varphi + \omega \right) \end{array} \right\} = 0,$

which reduces to

 $\cos \omega \cos (\varphi + \omega) \cos \delta$ $-\sin \alpha \cos \alpha [\sin (\varphi + \omega) \cos \omega - \cos (\varphi + \omega) \sin \omega] \cos \delta$ $-\sin \alpha \cos \alpha [\cos (\varphi + \omega) \cos \omega + \sin (\varphi + \omega) \sin \omega] \sin \delta$ $+ [\sin^2 \alpha \sin (\varphi + \omega) \cos \omega + \cos^2 \alpha \cos (\varphi + \omega) \sin \omega] \sin \delta$ $+ [\cos^2 \alpha \sin (\varphi + \omega) \sin \omega - \sin^2 \alpha \cos (\varphi + \omega) \cos \omega] \cos \delta$ $-\cos^2 \alpha \cos \varphi \cos \delta + \sin \alpha \cos \alpha \cos \varphi \sin \delta$ $= 0. \qquad (22c)$

The expression in the first parenthesis is equal to $\sin \varphi$, in the second to $\cos \varphi$. If in the third $\cos^2 \alpha = 1 - \sin^2 \alpha$, and in the fourth $\sin^2 \alpha = 1 - \cos^2 \alpha$, equation (22c) becomes

$$+ \cos\omega\cos(\varphi + \omega)\cos\delta - \sin\alpha\cos\alpha\cos\delta\sin\varphi \\ - \sin\alpha\cos\alpha\sin\delta\cos\varphi \\ + \sin\delta\sin^{2}\alpha\sin(\varphi + \omega)\cos\omega + \sin\delta\sin\omega\cos(\varphi + \omega) \\ - \sin^{2}\alpha\sin\omega\sin\delta\cos(\varphi + \omega) \\ + \cos\delta\cos^{2}\alpha\sin(\varphi + \omega)\sin\omega - \cos\delta\cos\omega\cos(\varphi + \omega) \\ + \cos^{2}\alpha\cos\delta\cos\omega\cos(\varphi + \omega) \\ - \cos^{2}\alpha\cos\varphi\cos\delta + \sin\alpha\cos\alpha\cos\varphi\sin\delta \\ \end{bmatrix} = 0.$$
Reducing and dividing by $\cos\delta$,
$$- \sin\alpha\cos\alpha\sin\varphi + \sin^{2}\alpha\cos\omega\sin(\varphi + \omega) \tan\delta$$

$$\left. + \sin \omega \cos \left(\varphi + \omega \right) \tan \delta \\ + \sin^2 \alpha \sin \omega \cos \left(\varphi + \omega \right) \tan \delta \\ + \cos^2 \alpha \sin \omega \sin \left(\varphi + \omega \right) \\ + \cos^2 \alpha \cos \omega \cos \left(\varphi + \omega \right) - \cos^2 \alpha \cos \varphi \right\} = 0.$$

Since

$$\cos \omega \sin (\varphi + \omega) - \sin \omega \cos (\varphi + \omega) = \sin \varphi$$

and

 $\sin \omega \sin (\varphi + \omega) + \cos \omega \cos (\varphi + \omega) = \cos \varphi,$ this reduces to

$$-\sin\alpha\cos\alpha\sin\varphi + \sin^2\alpha\sin\varphi\tan\delta +\sin\omega\cos(\varphi + \omega)\tan\delta = 0;$$

and since

$$\cos(\varphi + \omega)\sin\omega = \frac{1}{2}\sin(2\omega + \varphi) - \frac{1}{2}\sin\varphi,$$

this becomes

$$\tan \delta = \frac{2\sin \alpha \cos \alpha \sin \varphi}{2\sin^2 \alpha \sin \varphi + \sin (2\omega + \varphi) - \sin \varphi};$$

and since

 $\sin \alpha \cos \alpha = \frac{1}{2} \sin 2\alpha$ and $1-2 \sin^2 \alpha = \cos 2\alpha$,

this reduces to

$$\tan \delta = \frac{\sin \varphi \sin 2\alpha}{\sin (2\omega + \varphi) - \sin \varphi \cos 2\alpha}.$$
 (23)

This equation, therefore, expresses the condition that the "sum of the moments of E, G, and R is zero."

Substituting $\frac{\sin \delta}{\cos \delta}$ for tan δ in equation (23), clearing of fractions and factoring,

 $\sin \delta \sin (2\omega + \varphi) - \sin \delta \sin \varphi \cos 2\alpha = \sin \varphi \cos \delta \sin 2\alpha,$

or

 $\sin \delta \sin (2\omega + \varphi) = \sin \varphi \cos \delta \sin 2\alpha + \sin \varphi \sin \delta \cos 2\alpha.$

Since $\cos \delta \sin 2\alpha + \sin \delta \cos 2\alpha = \sin (2\alpha + \delta)$,

this becomes

$$\sin \delta \sin (2\omega + \varphi) = \sin \varphi \sin (2\alpha + \delta)$$
. (24)

In order to determine ω it is only necessary to make $\varepsilon = 0$ in equation (16b) express $\sin (\varphi + \omega + \alpha + \delta)$ in terms of \sin and $\cos (\varphi + \omega)$ and $(\alpha + \delta)$, and then the sin and \cos of $(\alpha + \delta)$ in terms of the sin and \cos of α and δ . Making $\varepsilon = 0$ in equation (16b), it becomes

$$\sin (\alpha + \omega) \cos (\alpha + \delta) \cos \omega$$

= sin (\varphi + \omega + \alpha + \delta) [cos (\varphi + \omega) cos \alpha]. (24a)

Since

$$\sin (\varphi + \omega + \alpha + \delta) = \sin (\varphi + \omega) \cos (\alpha + \delta) + \cos (\varphi + \omega) \sin (\alpha + \delta) \sin (\alpha + \delta) = \sin \alpha \cos \delta + \cos \alpha \sin \delta \cos (\alpha + \delta) = \cos \alpha \cos \delta - \sin \alpha \sin \delta;$$

hence

$$\sin (\varphi + \omega + \alpha + \delta) = \sin (\varphi + \omega) \cos \alpha \cos \delta$$
$$- \sin (\varphi + \omega) \sin \alpha \sin \delta$$
$$+ \cos (\varphi + \omega) \sin \alpha \cos \delta$$
$$+ \cos (\varphi + \omega) \cos \alpha \sin \delta,$$

and equation (24a) reduces to

$$\left. \begin{array}{c} \cos\omega\sin\left(\alpha+\omega\right)\cos\alpha\cos\delta\\ & -\cos\omega\sin\left(\alpha+\omega\right)\sin\alpha\sin\delta\\ -\cos\omega\sin\left(\varphi+\omega\right)\sin\left(\varphi+\omega\right)\cos\delta\\ & +\cos\alpha\cos\left(\varphi+\omega\right)\sin\left(\varphi+\omega\right)\sin\alpha\sin\delta\\ -\cos\alpha\cos^{2}\left(\varphi+\omega\right)\sin\alpha\cos\delta\\ & -\cos^{2}\alpha\cos^{2}\left(\varphi+\omega\right)\sin\delta\end{array} \right\} = 0. (24b)$$

Dividing by $\cos \delta$,

$$\left. \begin{array}{c} \cos \alpha \cos \omega \sin \left(\alpha + \omega \right) \\ -\cos \omega \sin \alpha \sin \left(\alpha + \omega \right) \tan \delta \\ -\cos^2 \alpha \cos \left(\varphi + \omega \right) \sin \left(\varphi + \omega \right) \\ +\cos \alpha \sin \alpha \cos \left(\varphi + \omega \right) \sin \left(\varphi + \omega \right) \tan \delta \\ -\cos \alpha \sin \alpha \cos^2 \left(\varphi + \omega \right) \\ -\cos^2 \alpha \cos^2 \left(\varphi + \omega \right) \tan \delta \end{array} \right\} = 0. (24c)$$

Since

 $\cos \alpha \cos \omega \sin (\alpha + \omega)$ equals, by expanding $\sin (\alpha + \omega)$, $\sin \alpha \cos \alpha \cos^2 \omega + \sin \omega \cos \omega \cos^2 \alpha$, and likewise

 $-\cos\omega\sin\alpha\sin\alpha\sin(\alpha+\omega)\tan\delta = -\cos^2\omega\sin^2\alpha\tan\delta$ $-\cos\alpha\sin\alpha\cos\omega\sin\omega\tan\delta,$

equation (24c) becomes

$$-\sin\alpha\cos\alpha\left[\cos^{2}\left(\varphi+\omega\right)-\cos^{2}\omega\right] \\ -\cos^{2}\alpha\left[\sin\left(\varphi+\omega\right)\cos\left(\varphi+\omega\right)-\sin\omega\cos\omega\right] \\ -\left[\cos^{2}\alpha\cos^{2}\left(\varphi+\omega\right)+\sin^{2}\alpha\cos^{2}\omega\right]\tan\delta \\ +\sin\alpha\cos\alpha\left[\sin\left(\varphi+\omega\right)\cos\left(\varphi+\omega\right) \\ -\sin\omega\cos\omega\right]\tan\delta \right\} = 0. (24d)$$

Now

$$\cos^2(\varphi + \omega) - \cos^2 \omega = \frac{\cos 2(\varphi + \omega) - \cos 2\omega}{2},$$

which equals

$$\frac{2\sin\frac{1}{2}\left[2\omega - (2\varphi + 2\omega)\right]\sin\frac{1}{2}\left[2\omega + (2\varphi + 2\omega)\right]}{2}$$
$$= \frac{2\sin\left(-\varphi\right)\sin\frac{(2\omega + \varphi)}{2},$$

or
$$-\sin(2\omega + \varphi)\sin\varphi$$
,

and

$$\sin (\varphi + \omega) \cos (\varphi + \omega) - \sin \omega \cos \omega = \frac{1}{2} \sin 2(\varphi + \omega) - \frac{1}{2} \sin 2\omega;$$

also,

$$\sin \alpha \cos \alpha = \frac{\sin 2\alpha}{2}$$
, and $\cos^2 \alpha = \frac{\cos 2\alpha}{2} + \frac{1}{2}$.

Hence, after multiplying by 2, equation (24d) reduces to

$$\frac{\sin 2\alpha \sin (2\omega + \varphi) \sin \varphi}{-\cos 2\alpha \frac{1}{2} \sin 2(\varphi + \omega) + \cos 2\alpha \frac{1}{2} \sin 2\omega} = 0. (24e)$$

$$-\frac{1}{2} \sin 2(\varphi + \omega) + \frac{1}{2} \sin 2\omega = -\tan \delta \cos 2\alpha \cos^2(\varphi + \omega) - \cos^2(\varphi + \omega) \tan \delta = 0. (24e)$$

$$-2 \tan \delta \sin^2 \alpha \cos^2 \omega + \sin 2\alpha \sin (\varphi + \omega) \cos (\varphi + \omega) \tan \delta = 0. (24e)$$

Now

$$\begin{array}{l} -2 \tan \delta \sin^2 \alpha \cos^2 \omega = [\operatorname{since} \, \sin^2 \alpha = 1 - \cos^2 \alpha] \\ - \left[\cos^2 \omega - \cos^2 \alpha \, \cos^2 \omega \right] 2 \tan \delta, \end{array}$$

which equals

$$-\frac{2\cos^2\omega\tan\delta}{2}+2\tan\delta\cos^2\alpha\cos^2\omega$$

Also,

$$-\frac{\cos 2\alpha \sin 2(\varphi + \omega)}{2} + \frac{\cos 2\alpha \sin 2\omega}{2}$$
$$= -\cos 2\alpha \left[\frac{\sin 2(\varphi + \omega) - \sin 2\omega}{2}\right]$$
$$= -\frac{\cos 2\alpha [2 \sin \varphi \cos (2\omega + \varphi)]}{2}$$
$$= -\frac{\cos 2\alpha \cos (2\omega + \varphi) \sin \varphi}{2},$$

and

$$\frac{-\frac{\sin 2(\varphi + \omega)}{2} + \frac{\sin 2\omega}{2} = -\frac{\sin 2(\varphi + \omega) - \sin 2\omega}{2}}{2}$$
$$= -\frac{2\sin \frac{1}{2}(2\varphi + 2\omega - 2\omega)\cos \frac{1}{2}(2\varphi + 2\omega + 2\omega)}{2}$$
$$= -\frac{\sin \varphi \cos (2\omega + \varphi),}{2}$$

and

$$-\tan\delta\cos 2\alpha\cos^{2}(\varphi+\omega)+2\tan\delta\cos^{2}\alpha\cos^{2}\omega$$
$$=\left(\text{by making }\cos^{2}\alpha=\frac{\cos 2\alpha}{2}+\frac{1}{2}\right)$$
$$-\tan\delta\cos 2\alpha\left[\cos^{2}(\varphi+\omega)-\cos^{2}\omega\right]+\tan\delta\cos^{2}\omega,$$
or
$$\tan\delta\cos 2\alpha\sin\left(2\omega+\varphi\right)\sin\varphi+\tan\delta\cos^{2}\omega,$$

HORIZONTAL EARTH-SURFACE.

Also,

$$\begin{aligned}
-\cos^{2}(\varphi + \omega) \tan \delta + \tan \delta \cos^{2} \omega \\
= -\tan \delta \left[\cos^{2}(\varphi + \omega) - \cos^{2} \omega\right] \\
= \sin \varphi \sin (2\omega + \varphi) \tan \delta.
\end{aligned}$$

Also,

$$\tan \delta \sin 2\alpha \sin (\varphi + \omega) \cos (\varphi + \omega) - \sin 2\alpha \sin \omega \cos \omega \tan \delta = \tan \delta \sin 2\alpha [\sin (\varphi + \omega) \cos (\varphi + \omega) - \sin \omega \cos \omega] = \tan \delta \sin 2\alpha \left[\frac{\sin 2(\varphi + \omega) - \sin 2\omega}{2} \right] = \tan \delta \sin 2\alpha \sin \varphi \cos (2\omega + \varphi);$$

and hence equation (24e) becomes

$$+ \sin \varphi \left[\sin \left(2\omega + \varphi \right) \sin 2\alpha - \cos \left(2\omega + \varphi \right) \cos 2\alpha \right] \\ - \sin \varphi \cos \left(2\omega + \varphi \right) \\ + \sin \varphi \left[\sin \left(2\omega + \varphi \right) \cos 2\alpha \\ + \cos \left(2\omega + \varphi \right) \sin 2\alpha \right] \tan \delta \\ + \sin \varphi \left[\sin \left(2\omega + \varphi \right) \tan \delta \right] - 2\cos^2 \omega \tan \delta$$

and

 $\tan \delta = \frac{\sin \phi \left[\sin \left(2\omega + \phi \right) \sin 2\alpha - \cos \left(2\omega + \phi \right) \cos 2\alpha \right] - \sin \phi \cos \left(2\omega + \phi \right)}{2 \cos^2 \omega - \sin \phi \left[\sin \left(2\omega + \phi \right) \cos 2\alpha + \cos \left(2\omega + \phi \right) \sin 2\alpha \right] - \sin \phi \sin \left(2\omega + \phi \right)},$

By making $\sin 2\alpha = 2 \sin \alpha \cos \alpha$ and $\cos 2\alpha = 1 - 2 \sin^2 \alpha$ in the numerator, and $\cos 2\alpha = 2 \cos \alpha \cos \alpha - 1$ and $\sin 2\alpha = 2 \sin \alpha \cos \alpha$ in the denominator, this becomes

$$\begin{split} &\tan \delta = \\ &\sin \phi \left[\sin \left(2\omega + \phi \right) 2 \sin a \cos a - \cos \left(2\omega + \phi \right) + \cos \left(2\omega + \phi \right) 2 \sin^2 a \right] - \sin \phi \cos \left(2\omega + \phi \right) \\ &2 \cos^2 \omega - \sin \phi \left[\sin \left(2\omega + \phi \right) 2 \cos^2 a - \sin \left(2\omega + \phi \right) + \cos \left(2\omega + \phi \right) 2 \sin a \cos a \right] - \sin \phi \sin \left(2\omega + \phi \right)^* \end{split}$$

or

 $\tan \delta = \frac{2 \sin \phi \sin a \, [\sin (2\omega + \phi) \cos a + \cos (2\omega + \phi) \sin a] - 2 \sin \phi \, \cos (2\omega + \phi)}{2 \cos^2 \omega - 2 \sin \phi \, \cos a \, [\sin (2\omega + \phi) \cos a + \cos (2\omega + \phi) \sin a]},$

which reduces to

$$\frac{\sin \phi \sin \alpha \sin (2\omega + \phi + \alpha) - \sin \phi \cos (2\omega + \phi)}{\cos^2 \omega - \sin \phi \cos \alpha \sin (2\omega + \phi + \alpha)}.$$
(24g)

Equating this value of $\tan \delta$ with that in equation (23),

$$\frac{\sin \varphi \sin \alpha \sin (2\omega + \varphi + \alpha) - \sin \varphi \cos (2\omega + \varphi)}{\cos^2 \omega - \sin \varphi \cos \alpha \sin (2\omega + \varphi + \alpha)} = \frac{\sin \varphi \sin 2\alpha}{\sin (2\omega + \varphi) - \sin \varphi \cos 2\alpha}.$$

Dividing by sin φ , clearing of fractions and dividing by sin α , also transposing, this becomes

$$\sin (2\omega + \varphi + \alpha) \sin (2\omega + \varphi) -\sin (2\omega + \varphi + \alpha) \sin \varphi \cos 2\alpha - \frac{\sin 2\alpha}{\sin \alpha} \cos^2 \omega + \frac{\sin 2\alpha}{\sin \alpha} \cos \alpha \sin (2\omega + \varphi + \alpha) \sin \varphi - \frac{\cos (2\omega + \varphi) [\sin (2\omega + \varphi) - \sin \varphi \cos 2\alpha]}{\sin \alpha}$$
 = 0,

or

$$\sin (2\omega + \varphi + \alpha) \sin (2\omega + \varphi) \\ -\sin \varphi \cos 2\alpha \sin (2\omega + \varphi + \alpha) - 2\cos \alpha \cos^2 \omega \\ +\sin \varphi 2\cos^2 \alpha \sin (2\omega + \varphi + \alpha) \\ - \frac{\cos (2\omega + \varphi) \left[\sin (2\omega + \varphi) - \sin \varphi \cos 2\alpha\right]}{\sin \alpha} \right\} = 0.$$

$$2\cos^2\alpha - \cos 2\alpha = 1,$$

82

Since

this becomes $\sin (2\omega + \varphi + \alpha) [\sin (2\omega + \varphi) + \sin \varphi] - 2 \cos \alpha \cos^2 \omega - D = 0.$

in which

$$D = \frac{\cos\left(2\omega + \varphi\right)\left[\sin\left(2\omega + \varphi\right) - \sin\varphi\cos2\alpha\right]}{\sin\alpha},$$

or

 $\sin (2\omega + \varphi + \alpha) [2\sin (\omega + \varphi) \cos \omega] - 2\cos \alpha \cos^2 \omega - D = 0,$ or

$$\sin (2\omega + \varphi + \alpha) \sin (\omega + \varphi) - \cos \alpha \cos \omega - \frac{D}{2 \cos \omega} = 0.(25)$$

The formulæ for ω , δ , and E can now be found in the simplest manner. Equation (25) is satisfied for $2\omega + \varphi = 90^{\circ}$. Hence,

Substituting this value in equation (23), it becomes

$$\tan \delta = \frac{\sin \varphi \sin 2\alpha}{\sin (90 - \varphi + \varphi) - \sin \varphi \cos 2\alpha}$$
$$= \frac{\sin \varphi \sin 2\alpha}{1 - \sin \varphi \cos 2\alpha}, \quad \dots \quad (27)$$

or the equivalent, but more convenient expression for calculation,

$$\tan \left(\delta + \alpha\right) = \frac{\tan \alpha}{\tan^2 \left(45^\circ - \frac{\varphi}{2}\right)} \dots \dots (28)$$

If, finally, $\omega = 45^{\circ} - \frac{\varphi}{2}$ in equation (10), it becomes, remembering that $k^2 = \frac{h^2}{\cos^2 \omega}$,

$$\begin{split} E &= \frac{\cos^2\left(\varphi + 45^\circ - \frac{\varphi}{2}\right)}{\cos\left(\alpha + \delta\right)} \cdot \frac{\hbar^2 \gamma}{2\cos^2\left(45^\circ - \frac{\varphi}{2}\right)} \\ &= \frac{\cos^2\left(45^\circ + \frac{\varphi}{2}\right)}{\cos^2\left(45^\circ - \frac{\varphi}{2}\right)} \cdot \frac{\hbar^2 \gamma}{2\cos\left(\alpha + \delta\right)} \\ &= \frac{\sin^2\left[90^\circ - \left(45^\circ + \frac{\varphi}{2}\right)\right]}{\cos^2\left(45^\circ - \frac{\varphi}{2}\right)} \cdot \frac{\hbar^2 \gamma}{2\cos\left(\alpha + \delta\right)}; \end{split}$$

hence
$$E = \tan^2 \left(45^\circ - \frac{\varphi}{2} \right) \frac{\hbar^2 \gamma}{2 \cos \left(\alpha + \delta\right)}$$
, . . (29)

or, from equation (28),

$$E = \frac{\tan \alpha}{\sin (\alpha + \delta)} \frac{h^{\prime} \gamma}{2} \dots \dots \dots \dots \dots \dots \dots \dots (29a)$$

This last expression, however, when $\alpha = 0$ takes the indeterminate form $\frac{0}{0}$.

The earth-pressure upon a portion of the wall reaching from the depth h_0 to the depth $H = h_0 + h_1$ may be found from equation (29) by substituting $H^2 - h_0^2$ in place of h^2 , as is evident from the following:

Suppose the wall to have a height *H*, then $E_0 = C_0 \frac{H^2}{2} \gamma$, and likewise for a height h_0

$$E_{1} = C_{0} \frac{h_{0}^{2}}{2} \gamma \therefore E = E_{0} - E_{1}^{*} = C_{0} \frac{H^{2} - h_{0}^{2}}{2} \gamma, \quad . \quad . \quad (29b)$$

 C_{o} representing the constant quantity.

From equation (29b) $E = C(H^2 - h_o^2)$; hence $dE = 2CHdH - 2Ch_odh_o$. Now let x equal the distance of the centre of pressure below the top of the wall, then

$$Ex = 2C \int_{0}^{H} H^{2} dH - 2C \int_{0}^{h} h_{0}^{2} dh,$$

 $C(H^2 - h_0^2)x = \frac{2}{3}CH^3 - \frac{2}{3}Ch_0^3$

or
$$x = \frac{2}{3} \frac{H^3 - h_0^3}{H^2 - h_0^2}$$

and if y = the distance from bottom,

$$y = \frac{1}{3} \frac{H^3 - 3Hh_0^2 + 2h_0^3}{H^2 - h_0^2} \dots \dots \dots \dots (30)$$

Equation (30) holds good when the earth-surface is loaded and the loading is equal to a distributed load of the height h_0 . Still, even then, h_0 is often so small that $\frac{h}{3}$ can be substituted for it just as for unloaded earth-surface.

In all cases δ is determined by equation (28).

or

Instead of using equations (28) and (29), the following simple construction can be used :

Draw (Fig. 4) AC and AD vertically and horizontally, each equal to h, also DF making the angle $FDG = 45^{\circ} - \frac{\varphi}{2}$ with the horizontal. Through the points D and F describe a circle whose centre lies in AD. Then draw GH parallel to AB, and through A the straight line HJ. Then JG is the direction of the earth-pressure upon the wall AB. If AK is made perpendicular to AB, and equal to AH, then the ΔABK gives the intensity and distribution of the earth-pressure, or

$$E = \gamma \Delta A B K.$$

The proof of this construction is as follows: Conceive, in Fig. 4, JD and FG drawn, then

$$\tan AHG = \frac{AP_{\bullet}}{PH} = \frac{AG\cos\alpha}{HG - [AG\sin\alpha = PG]};$$

in which AP represents the perpendicular let fall from A upon GH.

HORIZONTAL EARTH SURFACE.

AG : AF :: AF : AD = h,

therefore
$$AG = \frac{\overline{AF}^2}{h}^2 = h \tan^2\left(45^\circ - \frac{\varphi}{2}\right).$$

Now

but

$$HG = GD \sin \alpha = (AG + AD) \sin \alpha$$
$$= h \sin \alpha + h \tan^{2} \left(45^{\circ} - \frac{\varphi}{2}\right) \sin \alpha;$$

 $\tan AHG \cong$

$$\frac{h \tan^2 \left(45^\circ - \frac{\varphi}{2}\right) \cos \alpha}{h \sin \alpha + h \tan^2 \left(45^\circ - \frac{\varphi}{2}\right) \sin \alpha - h \tan^2 \left(45^\circ - \frac{\varphi}{2}\right) \sin \alpha};$$

therefore

$$\tan A HG = \frac{\cos \alpha}{\sin \alpha} \tan^2 \left(45^\circ - \frac{\varphi}{2} \right) = \cot \alpha \tan^2 \left(45^\circ - \frac{\varphi}{2} \right).$$

From Fig. 4, $\langle GDJ = \langle AHG, \langle GDJ + \langle JGD = 90^{\circ}, \rangle$ and therefore

$$\tan JGD = \cot AHG = \tan \alpha \cot^2 \left(45^\circ - \frac{\varphi}{2} \right) = \tan \left(\alpha + \delta \right),$$

or < JGD is the angle of the earth-pressure to the horizon. Since, now, $< AHG = 90^{\circ} - \alpha - \delta$,

$$AH = \frac{\cos \alpha}{\cos (\alpha + \delta)} AG = h \tan^2 \left(45^\circ - \frac{\varphi}{2} \right) \frac{\cos \alpha}{\cos (\alpha + \delta)},$$

and

$$\frac{1}{2}AH \cdot AB = \tan^2\left(45^\circ - \frac{\varphi}{2}\right)\frac{h^2}{2\cos\left(\alpha + \delta\right)} = \frac{E}{\gamma}.$$

THEORY OF THE RETAINING-WALL.

For a vertical wall the construction becomes much simpler. Draw, in Fig. 5, AD = h horizontally, then DF making the angle $45^{\circ} - \frac{\varphi}{2}$ with AD. Draw through D and F a circle with centre in DA and continue it around to K.

FIG. 5.

then the ΔABK gives the intensity and distribution of the earth-pressure, while in direction it is horizontal.

Hence $E = \gamma \, \Delta A B K.$

The proof is as follows (Fig. 5):

$$AK = \frac{AF^{2}}{AD} = \frac{h^{2} \tan^{2}\left(45^{\circ} - \frac{\varphi}{2}\right)}{h} = h \tan^{2}\left(45^{\circ} - \frac{\varphi}{2}\right)$$
$$\frac{1}{2}AB \cdot AK = \frac{h^{2}}{2} \tan^{2}\left(45^{\circ} - \frac{\varphi}{2}\right) = \frac{E}{\gamma}.$$

HORIZONTAL EARTH-SURFACE.

As $\alpha = 0$, equation (28) gives $\tan \delta = 0$; $\therefore \delta = 0$ and E act normal to the surface of the wall.

FIG. 6.

Finally, in Fig. 6 is the construction for loaded earthsurface. The point of application of the earth-pressure is always found by drawing through the centre of gravity of $\triangle ABK$ a parallel to AK and producing it to meet the wall. The proof for this construction is the same as that for Fig. 4.

IV.

EARTH SURFACE PARALLEL TO SURFACE OF REPOSE.

$$\varphi = 3$$

For this case,

$$E = \frac{\cos^2(\varphi - \alpha)}{\cos(\alpha + \delta)} \frac{l^2 \gamma}{2} = \left[\frac{\cos(\varphi - \alpha)}{\cos\alpha}\right]^2 \frac{h^2 \gamma}{2\cos(\alpha + \delta)}; (20)$$

a formula which holds good for all values of δ , and which for $\delta = 0$ or φ gives results usually accepted in previous theories of retaining-walls. In order to find the proper values of δ and ω , equations (16b) and (22b) must be used.

In equation (22b) replace $\sin (\varphi + \omega + \alpha + \delta)$ by $\sin (\varphi + \omega + \alpha) \cos \delta + \cos (\varphi + \omega + \alpha) \sin \delta$, and making $\varepsilon = \varphi$ it becomes

$$\left. + \cos \left(\varphi + \omega \right) \cos \left(\varphi + \omega \right) \cos \delta \\ - \cos \left(\varphi + \omega \right) \sin \left(\varphi + \omega + \alpha \right) \cos \delta \sin \alpha \\ - \cos \left(\varphi + \omega \right) \cos \left(\varphi + \omega + \alpha \right) \sin \delta \sin \alpha \end{array} \right\} = \\ \left(+ \cos \left(\alpha - \varphi \right) \cos \left(\alpha + \delta \right) \cos \varphi \right)$$

 $= \begin{cases} -\cos(\alpha - \varphi) \sin(\varphi + \omega + \alpha) \sin \omega \cos \delta \\ -\cos(\alpha - \varphi) \cos(\varphi + \omega + \alpha) \sin \delta \sin \omega; \end{cases}$

dividing by $\cos \delta$ and transposing,

$$-\frac{\cos (\alpha - \varphi) \cos (\alpha + \delta) \cos \varphi}{\cos \delta} + \cos (\alpha - \varphi) \sin (\varphi + \omega + \alpha) \sin \omega + \cos (\varphi + \omega) \cos (\varphi + \omega) - \cos (\varphi + \omega) \sin (\varphi + \omega + \alpha) \sin \alpha$$

$$= \begin{cases} +\cos(\varphi + \omega)\cos(\varphi + \omega + \alpha)\frac{\sin\delta}{\cos\delta}\sin\alpha\\ -\cos(\alpha - \varphi)\cos(\varphi + \omega + \alpha)\frac{\sin\delta}{\cos\delta}\sin\omega. \end{cases}$$

Since

$$-\frac{\cos(a-\phi)\cos(a+\delta)\cos\phi}{\cos\delta} = -\frac{\cos(a-\phi)\cos\phi(\cos a \cos \delta - \sin a \sin \delta)}{\cos\delta}$$
$$= -\cos(a-\phi)\cos\phi\cos\phi + \cos(a-\phi)\sin a \frac{\sin\delta}{\cos\delta}\cos\phi,$$

the above expression reduces to

 $\tan \delta =$

 $\frac{\cos \alpha \cos(\alpha - \phi) \cos \phi - \cos \alpha \cos (\phi + \omega)}{\sin \alpha \cos(\alpha - \phi) \cos \phi - \sin \alpha \cos(\phi + \omega)} \frac{\cos (\phi + \omega + \alpha) - \cos(\alpha - \phi) \sin \omega \sin(\phi + \omega + \alpha)}{\cos(\phi + \omega + \alpha) + \cos(\alpha - \phi) \sin \omega \cos(\phi + \omega + \alpha)}$

and this equation fulfils the condition that the sum of the moments of G, E, and R shall be zero.

If equation (16b) is treated in a like manner, the resulting equation will fulfil the condition that the sum of the forces parallel to the surface of rupture shall equal zero. Making $\varepsilon = \varphi$ in equation (16b), it reduces to

$$\sin (\alpha + \omega) \cos (\varphi + \omega) \cos (\alpha + \delta) - \sin (\varphi + \alpha + \omega + \delta) \cos (\varphi + \omega) \cos (\alpha - \varphi) = 0,$$

or

$$\sin (\alpha + \omega) \cos (\alpha + \delta) - \sin (\varphi + \omega + \alpha) \cos (\alpha - \varphi) \cos \delta - \cos (\varphi + \omega + \alpha) \cos (\alpha - \varphi) \sin \delta = 0,$$

or

$$\frac{\sin (\alpha + \omega) \cos \alpha \cos \delta}{\cos \delta} - \frac{\sin (\alpha + \omega) \sin \alpha \sin \delta}{\cos \delta} - \frac{\sin (\alpha + \omega) \sin \alpha \sin \delta}{\cos \delta} = 0;$$
$$\sin(\varphi + \omega + \alpha)\cos(\alpha - \varphi) - \frac{\cos(\varphi + \omega + \alpha)\cos(\alpha - \varphi)\sin\delta}{\cos \delta} = 0;$$

therefore

$$\tan \delta = \frac{\cos \alpha \sin (\alpha + \omega) - \sin (\varphi + \omega + \alpha) \cos (\alpha - \varphi)}{\sin (\alpha + \omega) \sin \alpha + \cos (\varphi + \omega + \alpha) \cos (\alpha - \varphi)}.$$

Setting both values of $\tan \delta$ equal to each other and clearing of fractions, the following expression is obtained:

+
$$\cos \alpha \cos \varphi \sin \alpha \sin (\omega + \alpha) \cos (\alpha - \varphi)$$

- $\cos \alpha \sin \alpha \sin (\omega + \alpha) \cos (\omega + \varphi) \cos (\omega + \varphi + \alpha)$
- $\sin \omega \sin \alpha \sin (\omega + \alpha) \cos (\alpha - \varphi) \sin (\varphi + \omega + \alpha)$
+ $\cos \alpha \cos \varphi \cos (\alpha - \varphi) \cos (\varphi + \omega + \alpha) \cos (\alpha - \varphi)$
- $\cos \alpha \cos (\varphi + \omega) \cos^2 (\varphi + \omega + \alpha) \cos (\alpha - \varphi)$
- $\sin \omega \cos^2 (\alpha - \varphi) \sin (\varphi + \omega + \alpha) \cos (\varphi + \omega + \alpha)$

for the first member of the equation, and

+
$$\cos \alpha \cos \varphi \sin \alpha \sin (\omega + \alpha) \cos (\alpha + \varphi)$$

- $\sin \alpha \cos \alpha \sin (\omega + \alpha) \cos (\omega + -) \cos (\varphi + \omega + \alpha)$
+ $\sin \omega \cos \alpha \sin (\omega + \alpha) \cos (\alpha - \varphi) \cos (\varphi + \omega + \alpha)$
- $\sin \alpha \cos \varphi \cos^2 (\alpha - \varphi) \sin (\varphi + \omega + \alpha)$
+ $\sin \alpha \cos(\varphi + \omega) \cos(\varphi + \omega + \alpha) \cos(\alpha - \varphi) \sin(\varphi + \omega + \alpha)$
- $\sin \omega \cos^2 (\alpha - \varphi) \cos (\varphi + \omega + \alpha) \sin (\varphi + \omega + \alpha)$

for the second member.

$$ANGLE \ \varepsilon = ANGLE \ \phi. \qquad 93$$

The first terms, second terms, and sixth terms cancel. Divide the equation by $\cos (\alpha - \varphi)$. Terms number 3 combined give

 $-\sin\omega\sin(\omega+\alpha)\left[\sin\alpha\sin(\phi+\omega+\alpha)+\cos\alpha\cos(\phi+\omega+\alpha)\right],$

which becomes

$$-\sin\omega\sin(\omega+\alpha)\cos(\varphi+\omega).$$

Terms number 5 combined give

 $-\cos (\phi + \omega) \cos (\phi + \omega + a) [\cos a \cos (\phi + \omega + a) + \sin a \sin (\phi + \omega + a)],$

which becomes

$$-\cos(\varphi + \omega + \alpha)\cos(\varphi + \omega)\cos(\varphi + \omega).$$

Terms number 4 combined give

 $+\cos\varphi\cos(\alpha-\varphi)\left[\cos\alpha\cos(\varphi+\omega+\alpha)+\sin\alpha\sin(\varphi+\omega+\alpha)\right],$

which becomes

$$+\cos \varphi \cos (\alpha - \varphi) \cos (\varphi + \omega),$$

and hence, after dividing by $\cos (\varphi + \omega)$, the equation above reduces to

 $\cos(\alpha - \varphi)\cos\varphi - \cos(\varphi + \omega + \alpha)\cos(\varphi + \omega) - \sin(\omega + \alpha)\sin\omega = 0$, (31) and this equation is fulfilled for

$$\omega = 90^{\circ} - \varphi. \quad . \quad . \quad . \quad (32)$$

In order to find that value of δ which satisfies all conditions of equilibrium, substitute the above value of ω in the first expression for tan δ and obtain $\frac{0}{0}$. If, according to \$

the method for discussing indeterminate fractions, the first differentials of the numerator and denominator and their ratio are found, and ω made equal to $90^{\circ} - \varphi$, the value of tan δ will be found.

The differential of the numerator is

 $d[-\cos\alpha\cos(\varphi+\omega)\cos(\varphi+\omega+\alpha)-\cos(\alpha-\varphi)\sin\omega\sin(\varphi+\omega+\alpha)],$ which equals

$$\begin{cases} +\cos\alpha\cos\left(\varphi+\omega+\alpha\right)\sin\left(\varphi+\omega\right) \\ +\cos\alpha\cos\left(\varphi+\omega\right)\sin\left(\varphi+\omega+\alpha\right) \\ -\cos\left(\alpha-\varphi\right)\sin\left(\varphi+\omega+\alpha\right)\cos\omega \\ -\cos\left(\alpha-\varphi\right)\sin\omega\cos\left(\varphi+\omega+\alpha\right) \end{cases} d\omega.$$

Substituting for ω , $90^{\circ} - \varphi$, this becomes

$$\left\{ \begin{array}{l} +\cos\alpha\cos\left(\varphi + 90^{\circ} - \varphi + \alpha\right)\sin\left(\varphi + 90^{\circ} - \varphi\right) \\ +\cos\alpha\cos\left(\varphi + 90^{\circ} - \varphi\right)\sin\left(\varphi + 90^{\circ} - \varphi + \alpha\right) \\ -\cos\left(\alpha - \varphi\right)\sin\left(\varphi + 90^{\circ} - \varphi + \alpha\right)\cos\left(90^{\circ} - \varphi\right) \\ +\cos\left(\alpha - \varphi\right)\sin\left(90^{\circ} - \varphi\right)\cos\left(\varphi + 90^{\circ} - \varphi + \alpha\right) \end{array} \right\} d\omega.$$

As the second term reduces to zero, this becomes

 $\left[\cos\alpha\sin\alpha-\cos\left(\alpha-\varphi\right)\cos\alpha\sin\varphi+\cos\left(\alpha-\varphi\right)\cos\varphi\sin\alpha\right]d\omega,$ or

$$\left[\frac{\sin 2\alpha}{2} - \cos \left(\alpha - \varphi\right) \left(\cos \alpha \sin \varphi - \cos \varphi \sin \alpha\right)\right] d\omega,$$

or

$$\begin{bmatrix} \frac{\sin 2\alpha}{2} - \cos (\alpha - \varphi) \sin (\varphi - \alpha) \end{bmatrix} d\omega$$
$$= \begin{bmatrix} \frac{\sin 2\alpha}{2} + \frac{\sin 2(\varphi - \alpha)}{2} \end{bmatrix} d\omega,$$
ANGLE
$$\varepsilon = ANGLE \varphi$$
. 95

or

$$\left[\frac{2\sin\frac{1}{2}(2\varphi-2\alpha+2\alpha)\cos\frac{1}{2}(2\varphi-2\alpha-2\alpha)}{2}\right]d\omega,$$

which equals $\sin \varphi \cos(\varphi - 2\alpha) d\omega$.

The differential of the denominator is

$$\begin{cases} +\sin\alpha\cos\left(\varphi+\omega+\alpha\right)\sin\left(\varphi+\omega\right)\\ +\sin\alpha\cos\left(\varphi+\omega\right)\sin\left(\varphi+\omega+\alpha\right)\\ +\cos\left(\alpha-\varphi\right)\cos\left(\varphi+\omega+\alpha\right)\cos\omega\\ +\cos\left(\alpha-\varphi\right)\sin\omega\sin\left(\varphi+\omega+\alpha\right) \end{cases} d\omega.$$

Substituting $90^{\circ} - \varphi$ for ω , and this becomes [$\sin \alpha \sin \alpha + \cos(\alpha - \varphi) \sin \alpha \sin \varphi + \cos(\alpha - \varphi) \cos \varphi \cos \alpha$] $d\omega$, or

$$[\sin^2 \alpha + \cos (\alpha - \varphi) (\sin \varphi \sin \alpha + \cos \varphi \cos \alpha)] d\omega,$$

or

$$\begin{bmatrix} 1 - \cos^2 \alpha + \cos \left(\alpha - \varphi\right) \cos \left(\alpha - \varphi\right) \end{bmatrix} d\omega$$
$$= \begin{bmatrix} 1 - \frac{\cos 2\alpha}{2} - \frac{1}{2} + \frac{\cos 2(\alpha - \varphi)}{2} + \frac{1}{2} \end{bmatrix} d\omega,$$
or
$$\begin{bmatrix} 1 - \sin \varphi \sin \left(\varphi - 2\alpha\right) \end{bmatrix} d\omega;$$

therefore

$$\tan \delta = \frac{\sin \varphi \cos (\varphi - 2\alpha)}{1 - \sin \varphi \sin (\varphi - 2\alpha)} \quad . \quad . \quad (33)$$

To find an expression for the sin δ , clear equation (33)

of fractions and deduce $\tan \delta - \tan \delta \sin \varphi \sin (\varphi - 2\alpha)$ = $\sin \varphi \cos (\varphi - 2\alpha)$. Multiplying by $\cos \delta$,

 $\sin \delta - \sin \delta \sin \varphi \sin (\varphi - 2\alpha) = \sin \varphi \cos (\varphi - 2\alpha) \cos \delta,$

or

 $\sin \delta = \sin \varphi [\sin \delta \sin (\varphi - 2\alpha) + \cos (\varphi - 2\alpha) \cos \delta];$

therefore

$$\sin \delta = \sin \varphi \cos (2\alpha - \varphi + \delta), \quad . \quad (34)$$

from which the results of III. can be deduced.

If the earth-surface is parallel to the surface of repose, or makes the angle φ with the horizontal, then, under the assumption of a plane surface of rupture, $\delta = \varphi$ only when the wall is vertical (make $\alpha = 0$ in equation (33), then $\tan \delta = \tan \varphi$; $\therefore \delta = \varphi$), and $\delta = 0$ only when the angle of the wall with the vertical $\alpha = 45^{\circ} + \frac{\varphi}{2}$.

As it is often more convenient in determining the direction of the earth-pressure to know the angle $(\alpha + \delta)$ of Ewith the horizon, $\tan (\alpha + \delta)$ may be expressed in terms of $\tan \alpha$ and $\tan \delta$, remembering that

$$\cos \alpha - \sin \varphi \sin (\varphi - \alpha) = \cos \varphi \cos (\varphi - \alpha),$$

and hence

$$\tan \left(\alpha + \delta\right) = \frac{\sin \alpha + \sin \varphi \cos \left(\varphi - \alpha\right)}{\cos \varphi \cos \left(\varphi - \alpha\right)}.$$
 (34a)

With reference to a limited portion of wall which does

not reach as far as the surface, and with reference to loaded earth-surface, the same remarks hold good as in III.

Instead of formulæ (20) and (33) or (34), the following construction may be used:

Draw through A, Fig. 7, a parallel to the earth-surface,

and with AC as a radius describe the circle ADG. Draw DF horizontal and GH parallel to AB, and then the straight line HFJ. Then the direction of the earth-pressure is GJ; and if AK is made perpendicular to AB and equal to HF, $E = \gamma \Delta ABK$, and the triangle gives the distribution of the pressure. The point of application is found by drawing through the centre of gravity of the triangle a perpendicular to AB.

98 THEORY OF THE RETAINING-WALL.

The proof of this construction is as follows :

Conceive HD drawn, and its intersection with GJ to be at L. Then from the notation of Fig. 3, where $\varepsilon = \varphi$,

$$FD = AD \cos \varphi, \qquad HD = 2AD \cos (\varphi - \alpha).$$

Since, now, $\langle JLD = \langle JHD + \varphi - \alpha \rangle$, by expressing tan JLD by tan of JHD and $\varphi - \alpha$, after reducing,

$$\tan JLD = \frac{\cos \varphi \sin (2\alpha - \varphi) + \sin 2(\varphi - \alpha)}{1 + \cos 2(\varphi - \alpha) - \cos \varphi \cos (2\alpha - \varphi)},$$

or

$$\tan JLD = \frac{\sin \varphi \cos (\varphi - 2\alpha)}{1 + \sin \varphi \sin (\varphi - 2\alpha)} = \tan \delta.$$

Since HD is perpendicular to AB, the earth-pressure has the direction GJ. Further,

$$HF = \frac{FD \sin \alpha}{\sin (\alpha + \delta - \varphi)} = \frac{\sin \alpha \cos \varphi}{\sin (\alpha + \delta - \varphi)} AD,$$

 $AD = \frac{l\cos(\varphi - \alpha)}{\cos\varphi}, \text{ or, with reference to the value of } FD.$ $\Delta ABK = \frac{\cos(\varphi - \alpha)\sin\alpha}{\sin(\alpha + \delta - \varphi)} \frac{l^2}{2}, \text{ and since from equation}$ (34) sin $(\alpha + \delta - \varphi)\cos(\varphi - \alpha) = \sin\alpha\cos(\alpha + \delta),$

$$\Delta ABK = \frac{\cos^2\left(\varphi - \alpha\right)}{\cos\left(\alpha + \delta\right)} \frac{l^2}{2} = \frac{E}{\gamma}.$$

RECAPITULATION OF FORMULÆ.

RECAPITULATION OF FORMULÆ.

Inclined earth-surface, plane :

$$n = \sqrt{\frac{\sin(\varphi + \delta)\sin(\varphi - \varepsilon)}{\cos(\alpha + \delta)\cos(\alpha - \varepsilon)}}.$$
 (18)

The tan δ deduced from formulæ (22b) and (16b):

$$\tan \delta = \frac{\sin (2\alpha - \epsilon) - K \sin 2(\alpha - \epsilon)}{K - \cos (2\alpha - \epsilon) + K \cos 2(\alpha - \epsilon)},$$

in which

$$K = \frac{\cos \varepsilon - \sqrt{\cos^2 \varepsilon} - \cos^2 \varphi}{\cos^2 \varphi},$$
$$E = \left[\frac{\cos (\varphi - \alpha)}{(n+1)\cos \alpha}\right]^2 \frac{\hbar^2 \gamma}{2\cos (\alpha + \delta)}.$$
 (19)

Earth-surface parallel to natural slope :

$$E = \left[\frac{\cos\left(\varphi - \alpha\right)}{\cos\alpha}\right]^2 \frac{\hbar^2 \gamma}{2\cos\left(\alpha + \delta\right)}; \quad . \quad . \quad (20)$$

$$\omega = 90^{\circ} - \varphi; \quad \dots \quad \dots \quad \dots \quad (32)$$

$$\tan \left(\alpha + \delta\right) = \frac{\sin \alpha + \sin \varphi \cos \left(\varphi - \alpha\right)}{\cos \varphi \cos \left(\varphi - \alpha\right)}; \quad . \quad . \quad (34a)$$

 $s = \sigma$

$$\tan \delta = \frac{\sin \varphi \cos (\varphi - 2\alpha)}{1 - \sin \varphi \sin (\varphi - 2\alpha)}.$$
 (33)

Horizontal earth-surface:

$$\omega = 45^{\circ} - \frac{\varphi}{2}; \quad \dots \quad \dots \quad \dots \quad \dots \quad (26)$$

$$\tan \delta = \frac{\sin \varphi \sin 2\alpha}{1 - \sin \varphi \cos 2\alpha}; \quad . \quad . \quad . \quad . \quad (27)$$

$$\tan \left(\alpha + \delta\right) = \frac{\tan \alpha}{\tan^2 \left(45^\circ - \frac{\varphi}{2}\right)}; \quad \dots \quad \dots \quad (28)$$

$$E = \tan^{2}\left(45^{\circ} - \frac{\varphi}{2}\right) \frac{\hbar^{2} \gamma}{2\cos\left(\alpha + \delta\right)}; \quad . \quad . \quad (29)$$

$$E = \frac{\tan \alpha}{\sin (\alpha + \delta)} \cdot \frac{\hbar^2 \gamma}{2} \cdot (29a)$$

If $\alpha = 0$, then $\delta = 0$, and

If
$$\alpha = \left(45^{\circ} - \frac{\varphi}{2}\right) = \omega$$
, then $\delta = \varphi$, and

$$E = \frac{\tan\left(45^{\circ} - \frac{\varphi}{2}\right)}{\sin\left(45^{\circ} + \frac{\varphi}{2}\right)} \frac{\hbar^{2}\gamma}{2} \cdot (29e)$$

If the surface is loaded, substitute $H^2 + h'^2$ for h^2 , or consider h to be the height of the earth increased by the height of an amount of earth weighing as much as the applied load.

100

RECAPITULATION OF FORMULÆ.

NOMENCLATURE.

Height of wall	H
Thickness at base	b
Thickness at top	b '
Batter in inches per foot of H on front face	d
Weight per cubic foot	W
Total weight of wall	${G}$
Angle of repose of earth	φ
Angle made by surface of rupture with vertical	ω
Weight of cubic foot of earth	γ
Total thrust of earth against wall	E
Angle made with the horizontal by the surface	
of the earth	3
Angle made by rear face of wall with the ver-	
tical α	
Angle made with normal by E δ	
Dist. of point where the resultant pressure cuts	
the base from the front edge of the wall q	
The resultant pressure due to E and G R	

NOTE.

For the translation of Prof. Weyrauch's paper the writer is indebted to the labor of Prof. A. J. Du Bois, of the Sheffield Scientific School, Yale College, who had copies printed by the electric-pen process. However, only the leading equations of Prof. Weyrauch were given; hence a great deal of labor has been devoted to expanding, verifying, and filling in the intermediate steps of the work, and this nucleus of the mathematical part alone has grown to about double the original quantity.

М. А. Н.

REFERENCES.

A brief outline of the theories advanced by the following writers can be found in "Neue Theorie des Erddruckes," Dr. E. Winkler, Wien, 1872:

Hoffmann,	Poncelet,
Holzhey,	Prony,
de Lafont,	Rankine,
Levi,	Rebhann,
de Köszegh Martony,	Rondelet,
Maschek,	Saint-Guilhem,
Mayniel,	Saint-Venant,
Mohr,	Sallonnier,
Montlong,	Scheffler,
Moseley,	Trincaux,
Navier,	Vauban,
Ortmann,	Winkler,
v. Ott,	Woltmann.
Persy,	
	Hoffmann, Holzhey, de Lafont, Levi, de Köszegh Martony, Maschek, Mayniel, Mohr, Montlong, Moseley, Navier, Ortmann, v. Ott, Persy,

Audé. Poussée des Terres. Nouvelles expériences sur la poussée des terres. Paris, 1849.

BAKER-CURIE. Note sur la brochure de M. B. Baker théorie. Annales des Ponts et Chaussées, pp. 558–592, 1882.

— The actual lateral pressure of earthwork. Van Nostrand's Magazine, xxv, 1881; also Van Nostrand's Science Series, No. 56.

- BOUSSINESQ. Complément à de précédentes notes sur la poussée des terres. *Annales P. et C., 1884.
- BOUSIN. Equilibrium of pulverulent bodies. The equilibrium of earth when confined by a wall. [†]Van N., 1881.
- CAIN. Modification of Weyrauch's Theory. Van N., 1880.
 Earth-pressure. Modification of Weyrauch's Theory. Criticism of Baker's articles. Van N., 1882.
- —— Uniform cross-section, and **T** abutments: their proper proportions and sizes, deduced from Rankine's general formulas. Van N., 1872.
- ----- Practical designing of retaining-walls. Van N. Science Series, No. 3, 1888.
- CHAPERON. Observations sur le mémoire de M. de Sazilly (1851). Stabilité et consolidation des talus. Annales P. et C., 1853.
- CONSIDÈRE. Note sur la poussée des terres. Annales P. et C., 1870.
- COUSINERY. Détermination graphique de l'épaisseur des murs de soutènement. Annales P. et C., 1841.
- DE LAFONT. Sur la poussée des terres et sur les dimensions à donner, suivant leurs profils, aux murs de soutènement et de reservoirs d'eau. Annales P. et C., 1866.
- DE SAZILLY. Sur les conditions d'équilibre des massifs de terre, et sur les revêtements des talus. Annales P. et C., 1851.

EDDY. Retaining-walls treated graphically. Van N., 1877.

FLAMANT. Note sur la poussée des terres. Annales P. et C., 1882.

— Résumé d'articles publiés par la Société des Ingénieures Civils de Londres sur la poussée des terres. Annales P. et C., 1883.

^{*} Annales des Ponts et Chaussées.

⁺ Van Nostrand's Magazine.

- FLAMANT. Note sur la poussée des terres. Annales P. et C., 1872.
- Mémoire sur la stabilité de la terre sans cohésion par
 W. J. Macquorm Rankine (Extrait 1856-57). Annales P. et C., 1874.
- GOBIN. Détermination précis de la stabilité des murs de soutènement et de la poussée des terres. Annales P. et C., 1883.
- Gould. Theory of J. Dubosque. Van N., 1883.
- ---- Designing. Van N., 1877.
- JACOB. Practical designing of retaining-walls. Van N., 1873; also Van N. Science Series, No. 3.
- JACQUIER. Note sur la détermination graphique de la poussée des terres. Annales P. et C., 1882.
- KLEITZ. Détermination de la poussée des terres et établissement des murs de soutènement. Annales P. et C., 1844.
- LAGREUE. Note sur la poussée des terres avec ou sans surcharges. Annales P. et C. 1881.
- L'Èveillé. De l'emploi des contre-forts. Annales P. et C. 1844.
- LEYGUE. Sur les grands murs de soutènement de la ligne de Mezamet a Bédarieux. Annales P. et C., 1887.
- Nouvelle recherche sur la poussée des terres et le profil de revêtement le plus économique. Annales P. et C., 1885.
- MERRIMAN. On the theories of the lateral pressure of sand against retaining walls. (School of Mines Quarterly.) Engineering News, 1888.
- ----- The theory and calculation of earthwork. Engineering News, 1885.
- REBHANN. Theorie des Erddruckes und der Futtermauern. Wien, 1870 and 1871.

REFERENCES.

- SAINT-GUILHEM. Sur la poussée des terres avec ou sans surcharge. Annales P. et C., 1858.
- SCHEFFLER-FOURNIE. Traité de la stabilité des constructions. Paris, 1864.
- TATE. Surcharged and different forms of retaining-walls. Van N., 1873; also Van N. Science Series, No. 7 Also published by E. & F. N. Spon.

THORNTON. Theory. Van N., 1879.

106

DIAGRAM I.

107

Table I contains the crushing-strengths and the average weights of stone likely to be used in the construction of retaining-walls and foundations; also the average weights of different earths.

Table II contains the coefficients of friction, limiting angles of friction, and the reciprocals of the coefficients of friction for various substances.

Tables III, IV, and V contain the values of the coefficients [see equation (1')] (B), (C), (D) and (E), where

$$(B) = \frac{\cos (\epsilon - \alpha)}{\cos^2 \alpha \cos \epsilon}, \quad (C) = \sin^2 \alpha, \quad (D) = \left\{ \frac{\cos (\epsilon - \alpha)}{\cos \epsilon} \right\}^2$$

and
$$(E) = 2 \sin \alpha \sin \epsilon \frac{\cos (\epsilon - \alpha)}{\cos \epsilon}.$$

The tables were computed with a Thacher calculating instrument and checked by means of diagrams. It is believed that they are correct to the second place of decimals; an error in the third place of decimals does not affect the results for practical purposes.

Table VI contains the natural sines, cosines and tangents.

TABLE I.

VALUES OF W.

Name of Substance.	Crushing Lds. in tons per sq. ft.	Average weight in lbs. per cu. ft.
Alabaster Brick, best pressed '' common hard	40 to 300	144 150 125 100
Chalk	20 to 30	100 156 49.6 to 102 162
Feldspar Granite Gneiss	300 to 1200	166 170 168 107
Hornblende, black Limestones and Marbles, ordinary	250 to 1000	$ \begin{array}{c c} 187 \\ 203 \\ 5 164.4 \\ 168 \end{array} $
Mortar, hardened Quartz, common Sandstone	150 to 550	103 165 151 169
Slate	400 to 800	102 175 170

VALUES OF γ .

Name of Substance.	Average weight in lbs per cu. ft.	
Earth, common loam, loose " " shaken " " " shaken Gravel Sand Soft flowing mud Sand perfectly wet	$\begin{array}{c} 72 \text{ to } 80 \\ 82 \ ^{\prime\prime} 92 \\ 90 \ ^{\prime\prime} 100 \\ 90 \ ^{\prime\prime} 106 \\ 90 \ ^{\prime\prime} 106 \\ 104 \ ^{\prime\prime} 120 \\ 118 \ ^{\prime\prime} 129 \end{array}$	

TABLE II.

	tan φ.	φ 👳	$\frac{1}{\tan\phi}$
Dry masonry and brickwork	0.6 to 0.7	31° to 35°	1.67 to 1.43
Masonry and brickwork with damp mortar	0.74	$36\frac{1}{2}^{\circ}$	1.35
Timber on stone	about 0.4	$22^{\tilde{\circ}}$	2.5
Iron on stone	0.7 to 0.3	35° to $16\frac{2}{3}^{\circ}$	1.43 to 3.33
Timber on timber	0.5 "0.2	$26\frac{1}{2}^{\circ}$ " $11\frac{1}{3}^{\circ}$	2 * 5
Timber on metals	0.6 "0.2	31° " $11\frac{1}{3}^{\circ}$	1.67 "5
Metals on metals	0.25 "0.15	14° '' $8\frac{1}{2}^{\circ}$	4 "6.67
Masonry on dry clay	0.51	. 27°	1.96
" " moist clay	0.33	181°	3.
Earth on earth	0.25 to 1.0	14° to 45°	4 to 1
Earth on earth, dry sand,			
clay, and mixed earth	0.38 0.75	21° " 37°	2.63 " 1.33
Earth on earth, damp clay.	1.0	45°	1
Earth on earth, wet clay	0.31	17°	3.23
Earth on earth, shingle and			
gravel	0.81	39° to 48°	1.23 to 0.9

* ANGLES AND COEFFICIENT'S OF FRICTION.

* From Rankine's Applied Mechanics.

TABLE III.	•
------------	---

e	$a = 5^{\circ}$	$a = 6^{\circ}$	$a = \hat{i}^{\circ}$	a = 8°	$a = 9^{\circ}$
	(B)	(B)	(B)	(B)	(B)
0	1.004	1.005	1.007	1.010	1.012
5	1.012	1.015	1.018	1.022	1.026
10	1.019	1.024	1.029	1.035	1.040
15	1.027	1.034	1.041	1.048	1.055
20	1.036	1.044	1.052	1.062	1.071
25	1.045	1.055	1.065	1.076	1.088
30	1.055	1.066	1.079	1.092	1.105
35	1.065	1.079	1.094	1.109	1.124
40	1.078	1.094	1.111	1.129	1.147
45	1.093	1 111	1.131	1.152	1.173
	(C)	(C)	(<i>U</i>)	(C)	(C)
	0.008	0.011	0.015	0.019	0.024

TABLE IV.

e	$a = 5^{\circ}$	$a = 6^{\circ}$	a = 7°	a = 8°	$a = 9^{\circ}$
	(<i>D</i>)	(D)	(D)	(<i>D</i>)	(<i>D</i>)
0	0.992	0.989	0.985	0.981	0.976
5	1.008	1.008	1.006	1.005	1.003
10	1.023	1.026	1.028	1.030	1.031
15	1.040	1.046	1.051	1.056	1.060
20	1.057	1.066	1.075	1.084	1.092
25	1.075	1.089	1.102	1.114	1.125
30	1.096	1.113	1.130	1.147	1.163
35	1.118	1.140	1.164	1.183	1.204
40	1.144	1.172	1.199	1.226	1.253
45	1.174	1.208	1.242	1.276	1.309

TABLE V.

e	$a = 5^{\circ}$	$\alpha = 6^{\circ}$	$\alpha = 7^{\circ}$	$a = 8^{\circ}$	$\alpha = 9^{\circ}$
	(E)	(E)	(E)	(E)	(E)
0	0	0	0	0	0
5	0.015	0.018	0.021	0.024	0.027
10	0.031	0.037	0.043	0.049	0.055
15	0.046	0.055	0.065	0.074	0.083
20	0.061	0.074	0.086	0.099	0.112
25	0.076	0.092	0.108	0.124	0.140
30	0.091	0.110	0.130	0.149	0.169
35	0.106	0.128	0.151	0.174	0.197
40	0.120	0.145	0.172	0.198	0.225
45	0.134	0.162	0.192	0.222	0.253

2

TABLE III-Continued.

e	$a = 10^{\circ}$	$a = 11^{\circ}$	$a = 12^{\circ}$	$a = 13^{\circ}$	a = 14°
	(B)	(B)	(B)	(B)	(B)
0	1.015	1.019	1.022	1.026	1.031
5	1.031	1.037	1.041	1.047	1.053
10	1.046	1.055	1.061	1.068	1.076
15	1.063	1.073	1.081	1.090	1.100
20	1.081	1.092	1.103	1.112	1.125
25	1.099	1.112	1.124	1.136	1.150
30	1.119	1.135	1.151	1.163	1.179
35	1.141	1.159	1.175	1.195	1.211
40	1.166	1.186	1.205	1.225	1.245
45	1.195	1.218	1.240	1.263	1.288
	(C)	(C)	(C)	(C)	(C)
	0.030	0.036	0.043	0.051	0.029

TABLE IV-Continued.

e	$\boxed{\begin{array}{c} a = 10^{\circ} \\ \hline (D) \end{array}}$	$\frac{a = 11^{\circ}}{(D)}$	$\frac{a = 12^{\circ}}{(D)}$	$\frac{a = 13^{\circ}}{(D)}$	$a = 14^{\circ}$ (D)
0	0.970	0.964	0.957	0.950	0.943
10 10	$1.000 \\ 1.031$	$0.997 \\ 1.031$	$0.993 \\ 1.030$	$0.988 \\ 1.028$	0.983 1.026
15	1.064	1.067	1.069	1.061	1.072
$\frac{20}{25}$	1.136	1.105	$1.110 \\ 1.156$	$1.116 \\ 1.165$	$1.121 \\ 1.173$
30 35	1.178	1.194	1.204	1.220	1.232
40	1.291	$1.244 \\ 1.304$	1.328	1.353	1.377
45	1.342	1.375	1.407	1.438	1.469

TABLE V—Continued.

Street, or other statements and statements and					
¢	$\frac{a = 10^{\circ}}{(E)}$	$\frac{a=11^{\circ}}{(E)}$	$\frac{a = 12^{\circ}}{(E)}$	$\frac{a = 13^{\circ}}{(E)}$	$\frac{a = 14^{\circ}}{(E)}$
0	0	0	0	0	0
5	0.030	0.032	0.036	0.039	0.042
10	0_061	0.067	0.073	0.079	0.085
15	0.093	0.102	0.111	0.119	0.130
20	0.124	0.137	0.150	0.163	0.175
25	0.156	0.173	0.189	0.205	0.221
30	0.188	0.208	0.216	0.248	0.269
35	0.220	0.244	0.268	0.292	0.316
40	0.252	0.280	0.308	0.336	0.365
45	0.284	0.316	0.349	0.382	0.415

		the second second second second second	The second se		
	$\alpha = 15^{\circ}$	$a = 16^{\circ}$	$\alpha = 17^{\circ}$	a = 18°	$a = 20^{\circ}$
	(B)	(B)	(B)	(B)	(B)
0	1.035	1.040	1.048	1.051	1.062
5	1.059	1.066	1.076	1.081	1.098
10	1.084	1.093	1.104	1.112	1.132
15	1.110	1.120	1.134	1.138	1.168
20	1.135	1.149	1.165	1.177	1.218
25	1.165	1.179	1.197	1.211	1.245
30	1.195	1.212	1.233	1.248	1.288
35	1.229	1.249	1.272	1.291	1.339
40	1.268	1.291	1.317	1.340	1.389
45	1.313	1.338	1.369	1.393	1.451
	(C)	(C)	(C)	(C)	(C)
	0.067	0.076	0 086	0.095	0 117

TABLE III-Continued.

TABLE IV-Continued.

	$a = 15^{\circ}$	$a = 16^{\circ}$	$a = 17^{\circ}$	$a = 18^{\circ}$	$a = 20^{\circ}$
	(\overline{D})	(<i>D</i>)	(<i>D</i>)	(D)	(<i>D</i>)
0	0 933	0.924	0.915	0.905	0.883
5	0.977	0.971	0.964	0 957	0.940
10	1.023	1.018	1.016	1.011	1.000
15	1.072	1.073	1.071	1 069	1.068
20	1.124	1.127	1.129	1.131	1.132
25	1.181	1.188	1.194	1.200	1.208
30	1.244	1.256	1.266	1,276	1.293
35	1.316	1.332	1.348	1.363	1.390
-40	1.400	1.422	1.444	1.465	1.505
45	1.500	1.530	1.559	1.588	1.643

TABLE V-Continued.

	$a = 15^{\circ}$	a = 16°	$a = 17^{\circ}$	a = 18°	$a = 20^{\circ}$
-	(E)	(E)	(E)	(E)	(E)
0	0	0	0	0	0
5	0.045	0.047	0.050	0.053	0.058
10	0.091	0.097	0.102	0.108	0.119
15	0.139	0.148	0.157	0.165	0.183
20	0.188	0.200	0.213	0.225	0.249
25	0.238	0.254	0.270	0.177	0.318
30	0.289	0.309	0.329	0.349	0.389
35	0 341	0.365	0.390	0.414	0.463
40	0.394	0.423	0.452	0.481	0.539
45	0.448	0.482	0.516	0.551	0.620

TABLE VI.

NATURAL SINES, COSINES, TANGENTS AND COTANGENTS.

	0°		1	•	2	0	3	•	4	0	
	Sine (Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	,
0	.00000	One.	.01745	.99985	.03490	.99939	.05234	.99863	.06976	.99756	60
2	.00029	One.	.01803	.99984	.03548	.99937	.05292	.99860	.07034	.99752	59 58
3	.00087	One.	.01832	.99983	.03577	.99936	.05321	.99858	.07063	.99750	57
4	.00116	One.	.01862	.99983	.03606	.99935	.05350	.99857	.07092	.99748	56
6	.00145	One.	.01920	.99982	.03664	.99933	.05408	.99854	.07150	.99740	00 54
7	.00204	One.	.01949	.99981	.03693	.99932	.05437	.99852	.07179	.99742	53
8	.00233	One.	.01978	.99980	.03723	.99931	.05466	.99851	.07208	.99740	52
10	.00202	One.	.02036	.99979	.03752	.99930	.05495	.99849	.07266	.99736	50
11	.00320 .	999999	.02065	.99979	.03810	.99927	.05553	.99846	.07295	.99734	49
12	.00349 .	99999	.02094	.99978	.03839	.99926	.05582	.99844	.07324	.99731	48
13	00407	99999	02123 02152	.99977	.03868	.99925	05640	.99842	.07353	.99729	47
15	.00436	99999	.02181	99976	.03926	.99923	.05669	.99839	.07411	.99725	45
16	.00465	99999	.02211	.99976	.03955	.99922	.05698	.99838	.07440	.99723	44
17	.00495	99999	.02240	.99975	.03984	.99921	.05727	.99836	.07469	.99721	43
18	.00524	00008	.02269	.99974	.04013	.99919	.05756	.99834	07597	.99719	42
20	.00582	.99998	.02327	.99973	.04071	.99917	.05814	.99831	.07556	.99714	40
21	.00611 .	99998	.02356	.99972	.04100	.99916	.05844	.99829	.07585	.99712	39
22	.00640 .	99998	.02385	.99972	.04129	.99915	.05873	.99827	.07614	.99710	38
23	.00669	99998	.02414	.99971	.04159	.99913	.05902	.99826	.07643	.99708	37
24	00727	99998	.02443	.99970	04188	.99912	.05931	00822	07701	.99705	30
26	.00756	99997	.02501	.99969	.04246	.99910	.05989	.99821	.07730	.99701	34
27	.00785 .	99997	.02530	.99968	.04275	.99909	.06018	.99819	.07759	.99699	33
28	.00814	.99997	.02560	.99967	.04304	.99907	.06047	.99817	.07788	.99696	32
30	.00844	99996	.02589	.99966	.04333	.99905	.06105	.99813	.07846	.99692	30
31	.00902	99996	.02647	.99965	.04391	.99904	.06134	.99812	.07875	.99689	29
32	.00931 .	.99996	.02676	.99964	.04420	.99902	.06163	.99810	.07904	.99687	28
33	.00960	99905	.02705	.99963	.04449	.99901	.06192	.99808	.07933	.99685	27
35	.01018	99995	02763	99962	04507	99898	06250	.99804	.07991	99680	25
36	.01047	.99995	.02792	.99961	.04536	.99897	.06279	.99803	.08020	.99678	24
37	.01076	.99994	.02821	.99960	.04565	.99896	.06308	.99801	.08049	.99676	23
38	.01105.	99994	.02850	.99959	04692	.99894	.06337	.99799	08107	.99673	22
40	.01164	99993	.02908	.99958	.04623	.99892	.06395	.99795	.08136	.99668	20
41	.01193 .	99993	.02938	.99957	.04682	.99890	.06424	.99793	.08165	.99666	19
42	.01222 .	.99993	.02967	.99956	.04711	.99889	.06453	.99792	.08194	.99664	18
43	.01231	99992	.02996	.99955	.04740	.99888	06511	.99790	.08223	.99001	16
45	.01309	99991	.03054	.99953	.04798	.99885	.06540	.99786	.08281	.99657	15
46	.01338	99991	.03083	.99952	.04827	.99883	.06569	.99784	.08310	.99654	14
47	.01367 .	.99991	.03112	.99952	.04856	.99882	.06598	.99782	.08339	.99652	13
48	.01396	99990	.03141	.99951	.04885	.99881	.06656	.99780	.08308	.99049	11
50	.01454	99989	.03199	.99949	.04943	.99878	.06685	.99776	.08426	.99644	10
51	.01483	99989	.03228	.99948	.04972	.99876	.06714	.99774	.08455	.99642	9
52	.01513	.99989	.03257	.99947	.05001	.99875	.06743	.99772	.08484	.99639	8
54	01571	99988	.03286	.99946 00045	.05030	.99873	.06773	99770	.08513	99637	6
55	.01600	99987	.03345	.99944	.05088	.99870	.06831	.99766	.08571	.99632	5
56	.01629	99987	.03374	.99943	.05117	.99869	.06860	.99764	.08600	.99630	4
57	.01658	.99986	.03403	.99942	.05146	.99867	.06889	.99762	.08629	.99627	3
50	01716	99986	03432	.99941	05905	99866	.06918	.99760	08658	.99025 00600	1
60	.01745	.99985	.03490	.99939	.05234	.99863	.06976	.99756	.08716	.99619	Ô
	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	
	89	•		30 2	W. 8	7	. + 80	30	85	jo	

Ī		5	0	6	0	7	0	8	•	9	0	- 14
l	'	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	1
	012345678910	.08716 .08745 .08774 .08803 .08831 .08860 .08889 .08918 .08947 .08976 .09005	.99619 .99617 .99614 .99612 .99609 .99607 .99604 .99602 .99599 .99596 .99594	.10453 .10482 .10511 .10540 .10569 .10597 .10626 .10655 .10684 .10713 .10742	.99452 .99449 .99446 .99446 .99443 .99440 .99437 .99434 .99431 .99428 .99424 .99421	.12187 .12216 .12245 .12245 .12274 .12302 .12331 .12360 .12389 .12418 .12447 .12476	.99255 .99251 .99248 .99244 .99240 .99237 .99233 .99230 .99226 .99222 .99219	.13917 .13946 .13975 .14004 .14033 .14061 .14090 .14119 .14148 .14177 .14205	.99027 .99023 .99019 .99015 .99011 .99006 .99002 .98098 .98994 .98990 .98986	.15643 .15672 .15701 .15730 .15758 .15787 .15816 .15845 .15873 .15902 .15931	.98769 .98764 .98760 .98755 .98751 .98746 .98741 .98737 .98732 .98728 .98723	60 59 58 57 56 55 55 55 55 52 51 50
	$11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20$.09034 .09063 .09092 .09121 .09150 .09179 .09208 .09237 .09266 .09295	.99591 .99588 .99586 .99583 .99580 .99578 .99575 .99572 .99570 .99567	.10771 .10800 .10829 .10858 .10887 .10916 .10945 .10973 .11002 .11031	.99418 .99415 .99412 .99409 .99400 .99402 .99399 .99396 .99393 .99390	$\begin{array}{r} .12504\\ .12533\\ .12562\\ .12591\\ .12620\\ .12649\\ .12678\\ .12706\\ .12735\\ .12764\end{array}$.99215 .99211 .99208 .90204 .99200 .99197 .99193 .99189 .99186 .99182	.14234 .14263 .14292 .14320 .14349 .14378 .14378 .14407 .14436 .14464 .14493	.98982 .98978 .98973 .98969 .98965 .98961 .98957 .98953 .98948 .98944	.15959 .15988 .16017 .16046 .16074 .16103 .16132 .16160 .16189 .16218	.98718 .98714 .98709 .98704 .98700 .98695 .98690 .98680 .98681 .98681	49 48 47 46 45 44 43 42 41 40
	21 22 23 24 25 26 27 28 29 30	.09324 .09353 .09382 .09411 .09440 .09469 .09498 .09527 .09556 .09585	.99564 .99562 .99559 .99556 .99553 .99551 .99548 .99545 .99542 .99540	.11060 .11089 .11118 .11147 .11176 .11205 .11234 .11263 .11291 .11330	.99386 .99383 .99380 .99377 .99374 .99370 .99367 .99364 .99360 .99357	.12793 .12822 .12851 .12880 .12908 .12937 .12966 .12995 .13024 .13053	.99178 .99175 .99175 .99167 .99163 .99160 .99156 .99152 .99148 .99144	.14522 .14551 .14580 .14608 .14637 .14666 .14695 .14723 .14752 .14781	.98940 .98936 .98931 .98927 .98923 .98919 .98914 .98910 .98906 .98902	.16246 .16275 .16304 .16333 .16361 .16390 .16419 .16447 .16476 .16505	.986671 .98662 .98657 .98652 .98648 .98643 .98638 .98633 .98633 .98629	39 38 37 36 35 84 83 82 81 30
	31 32 33 34 35 36 37 38 39 40	.09614 .09642 .09671 .09700 .09729 .09758 .09787 .09816 .09845 .09874	.99537 .99534 .99531 .99528 .99526 .99523 .99520 .99517 .99514 .99511	.11349 .11378 .11407 .11436 .11465 .11494 .11523 .11552 .11580 .11609	.99354 .99351 .99347 .99344 .99341 .99337 .99334 .99331 .99327 .99324	.13081 .13110 .13139 .13168 .13197 .13226 .13254 .13283 .13312 .13312 .13341	.99141 .99137 .99133 .99129 .99125 .99122 .99118 .99114 .99110 .99106	.14810 .14838 .14867 .14896 .14925 .14954 .14982 .15011 .15040 .15069	.98897 .98893 .98889 .98884 .98880 .98876 .98871 .98867 .98863 .98858	.16533 .16562 .16591 .16620 .16648 .16677 .16706 .16734 .16763 .16792	.98624 .98619 .98614 .98609 .98604 .98600 .98595 .98590 .98585 .98580	29 28 27 26 25 24 23 22 21 20
	$\begin{array}{r} 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \end{array}$.09903 .09932 .09961 .09990 .10019 .10048 .10077 .10106 .10135 .10164	.99508 .99506 .99503 .99500 .99497 .99494 .99491 .99488 .99485 .99482	.11638 .11667 .11696 .11725 .11754 .11783 .11812 .11840 .11869 .11898	.99320 .99317 .99314 .99310 .99307 .99303 .99300 .99297 .99293 .99290	.13370 .13399 .13427 .13456 .13485 .13514 .13543 .13572 .13600 .13629	.99102 .99098 .99094 .99091 .99087 .99083 .99079 .99075 .99071 .99067	.15097 .15126 .15155 .15184 .15212 .15241 .15270 .15299 .15327 .15356	.98854 .98849 .98845 .98841 .98836 .98832 .98827 .98823 .98823 .98818 .98814	.16820 .16849 .16878 .16906 .16935 .16964 .16992 .17021 .17050 .17078	.98575 .98570 .98565 .98561 .98556 .98551 .98546 .98546 .98541 .98536 .98531	19 18 17 16 15 14 13 12 11 10
	51 52 53 54 55 56 57 58 59 60	.10192 .10221 .10250 .10279 .10308 .10337 10366 .10395 .10424 .10453	.99479 .99476 .99473 .99470 .99467 .99464 .99461 .99458 .99455 .99452	.11927 .11956 .11985 .12014 .12043 .12071 .12100 .12129 .12158 .12187	.99286 .99283 .99279 .99276 .99272 .99269 .99265 .99262 .99258 .99255	.13658 .13687 .13710 .13744 .13773 .13802 .13831 .13860 .13889 .13917	.99063 .99059 .99055 .99051 .99047 .99043 .99039 .99035 .99031 .99027	.15385 .15414 .15442 .15471 .15500 .15529 .15557 .15586 .15615 .15643	.98809 .98805 .98800 .98796 .98791 .98787 .98782 .98778 .98773 .98769	.17107 .17136 .17164 .17193 .17222 .17250 .17279 .17308 .17336 .17365	.98526 .98521 .98516 .98511 .98506 .98501 .98496 .98491 .98486 .98481	9876543210
	,	Cosin	Sine 4•	Cosin 8	Sine 3•	Cosin 8	Sine 2•	Cosin 8	Sine 1°	Cosin 8	Sine D°	

	1 1	0°	1	1°	1	2°	1	30	1	1.	
	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	1
0	.17365	.98481	.19081	.98163	.20791	.97815	.22495	.97437	.24192	.97030	60
2	.17422	.98471	.19138	.98152	.20848	.97803	.22552	.97424	.24220	.97015	58
3	.17451	.98466	19167	.98146	.20877	.97797	.22580	.97417	.24277	.97008	57
45	.17508	.98455	.19195	.98135	.20903	.97784	.22008	.97404	.24305	.96994	55
6	.17537	.98450	.19252	.98129	.20962	.97778	.22665	497398	.24362	.96987	54
8	.17565	.98145	19281	98124	21019	97766	.22693	.97391 97384	24390 94418	.96980	53
9	.17623	.98435	.19338	.98112	.21047	.97760	22750	.97378	.24446	.96966	51
10	.17651	.98430	.19366	.98107	.21076	.97754	.22778	.97371	.24474	.96959	50
11	.17680	.98425	.19395	.98101	.21104	.97748	.22807	.97365	.24503	.96952	49
12	17737	98414	19423	98090	.21132	.97735	.22863	.97358	.24531	96945	48
14	.17766	.98409	.19481	.98084	.21189	.97729	.22892	.97345	.24587	.96930	46
15	.17794	.98404	.19509	.98079	.21218	.97723	.22920	.97338	.24615	.96923	45
17	.17852	.98394	.19566	.98067	.21275	.97711	.22977	.97325	.24672	.96909	43
18	.17880	.98389	.19595	.98061	.21303	.97705	.23005	.97318	.24700	.96902	42
19 20	.17909	.98383	.19623	98056	.21331	.97698	.23033	.97311	.24728	96894	41
91	17066	08373	10690	08044	91388	07696	93000	07908	94784	06880	30
22	.17995	.98368	.19709	.98039	.21417	.97680	.23118	.97291	.24813	.96873	38
23	.18023	.98362	.19737	.93033	.21445	.97673	.23146	.97284	.24841	.96866	37
24	18052	.98357	19700	98027	.21474	97661	.23175	97271	.24809	96851	30
26	.18109	.98347	.19823	.98016	.21530	.97655	.23231	.97264	.24925	.96844	34
27	.18138	.98341	.19851	.98010	.21559	.97648	.23260	.97257	.24954	.96837	33
20	.18195	.98331	.19908	.97998	.21616	.97636	.23316	.97244	.25010	.96822	31
30	.18224	.98325	.19937	.97992	.21644	.97630	.23345	.97237	.25038	.96815	30
31	.18252	.98320	.19965	.97987	.21672	.97623	.23373	.97230	.25066	.96807	29
32	18281	.98315	.19994	97981	21729	.97617	.23401	97217	25122	96793	28
34	.18338	.98304	.20051	.97969	.21758	.97604	.23458	.97210	.25151	.96786	26
35	.18367	.98299	.20079	.97963	.21786	.97598	.23486	.97203	.25179	.96778	25
37	.18424	98288	.20136	97952	.21843	.97585	.23542	.97189	.25235	.96764	23
38	.18452	.98283	20165	.97946	2.21871	.97579	.23571	.97182	.25263	.96756	22
89 40	18481	98272	20193	97940	21928	97566	.23599	.97169	.253291	.90749	20
41	18538	08967	20250	07028	21956	07560	\$93656	07169	95348	96734	19
42	.18567	.98261	.20279	97922	1.21985	.97553	.23684	.97155	.25376	.96727	18
43	.18595	.98256	.20307	.97916	1.22013	.97547	1.23712	.97148	.25404	.96719	17
44	.18652	.98245	.20350	97905	.22041	.97534	.23769	.97134	.25460	.96705	15
46	.18681	.98240	.20393	.97899	.22098	.97528	:.23797	.97127	.25488	.96697	14
47	.18710	.98234	20421	97893	22126	97521	* 93853	97120	.25545	.96682	13
49	.18767	.98223	20478	.97881	22183	.97508	23882	.97106	.25573	.96675	iĩ
50	.18795	.98218	.20507	.97875	.22212	.97502	.23910	.97100	.25601	.96667	10
51	.18824	.98212	.20535	.97869	7.22240	.97496	23938	.97093	.25629	.96660	9
52	.18852	98207	20563	97863	999907	97489	23966	.97086	.25685	.90003	7
54	.18910	.98196	.20620	97851	1.22325	.97476	.24023	.97072	.25713	.96638	6
55	.18938	.98190	.20549	97845	22353	.97470	24051	.97065	.25741 25769	.96630 96623	5
57	.18995	.98179	20706	97833	122410	97457	.24108	.97051	.25798	.96615	8
58	.19024	.98174	7.20734	.97827	1.22438	.97450	.24136	.97044	.25826	.96608	2
59 60	.19052	.98168	20763	.97821	22407	97444	24104	.97030	.25882	.96593	Ô
5	Cosin	Sinet	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	-
	11	Qo	TH	aor y	1 17	707	17	6°	7!	j.	

.	1 1	5.	1	6•	1	7°	1	8°]	19	0	,
1'	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	
0	.25882	.96593	.27564	.96126	.29237	.95630	.30902	.95106	.32557	.94552	60
1	.25910	.96585	.27592	.96118	.29265	.95622	.30929	.95097	.32584	.94542	59
2	.25938	.90578	.27620	.96110	.29293	.95613	.30957	.90088	.32012	.94033	00 57
3	.25966	.96570	27040	.90102	.29521	.90000	31012	95070	.82667	.94514	56
4	26022	96555	27704	.96086	29376	.95588	.31040	.95061	.32694	.94504	55
6	.26050	.96547	.27731	.96078	.29404	.95579	.31068	.95052	.32722	.94495	51
7	.26079	.96540	.27759	·96070	.29432	.95571	.31095	.95043	.82749	.94485	53
8	.26107	.96532	.27787	.96062	.29460	.95562	.31123	.95033	.32(1)	.91476	52
9	.26135	.96524	.27815	.96054	.29487	.90004	91179	05015	92832	.94400	50
10	.20103	.90014	.21040	.90040	.29010	.00020	.01110		00000	0440	40
11	.26191	.96509	.27871	.96037	.29543	.95530	.31206	.95000	. 32809	.91117	43
12	.26219	.96502	.27899	.96029	.29571	.90020	31961	04088	82014	94498	47
10	26275	06486	27955	96013	29626	.95511	.31289	.94979	.82942	.94418	46
15	26303	96479	27983	.96005	.29654	.95502	.31316	.94970	.32969	.94409	45
16	.26331	.96471	.28011	.95997	.29682	.95493	.31344	.94961	.32997	.94399	44
17	.26359	.96463	.28039	.95989	.29710	.95485	.31372	.94952	.33024	.94390	43
18	.26387	.96456	.28067	.95981	.29737	.95476	.31399	.94943	.33051	.94380	42
19	.26415	.96448	.28095	.95972	.29765	.95467	.31427	.94933	.33079	.94370	41
20	.26443	.96440	.28123	.95964	.29793	.95459	.31454	.94924	.00100	.94301	40
21	.26471	.96433	.28150	.95956	.29821	.95450	.31482	.94915	.83134	.94351	89
22	.26500	.96425	.28178	.95948	.29849	.95441	.31510	.94906	.33161	.94342	88
23	.26528	.96417	.28206	.95940	.29876	.95433	.81537	.94897	.83189	.94332	06
24	.26556	.96410	.28234	.95931	.29904	.95424	01500	04979	93044	04212	85
20	96619	.90402	28204	.90920	20060	05407	31690	04869	83971	04303	34
97	26640	06386	28318	05007	20087	95308	81649	94860	83298	94293	33
28	26668	96379	28346	.95898	.30015	.95389	.31675	.94851	83326	.94284	82
29	.26696	.96371	.28374	.95890	.80043	.95380	.31703	.94842	.83353	.94274	31
30	.26724	.96363	.28402	.95882	.80071	.95372	.31730	.94832	.33381	.94264	30
31	.26752	96355	.28429	.95874	.30098	.95363	.31758	.94823	.33408	.94254	29
32	.26780	.96347	28457	.95865	.80120	.95354	.31780	.94814	.33436	.94245	28
33	.26808	.96340	.28485	.95857	.80154	.95345	.31813	.94805	.33463	.94235	27
34	.26836	.96332	.28513	.95849	.80182	.95337	.31841	.94795	33490	.94225	26
35	.26864	.96324	.28541	.95841	.80209	.95328	.31868	.94786	.33518	.94215	25
30	.20892	.96316	.28509	.95832	.30237	.95319	.31890	04769	99579	.94200	02
38	26048	06301	28625	05816	80200	05301	81051	94758	83600	94186	22
39	26976	96293	28652	.95807	.30320	.95293	.31979	.94749	.83627	94176	21
40	.27004	.96285	,28680	.95799	.30348	.95284	.32000	.94740	.83655	.94167	20
41	97039	06977	00000	05701	80376	05975	82034	94730	.83682	.94157	19
42	27060	96269	28736	95782	80403	.95266	.82061	.94721	.33710	.94147	13
43	.27088	96261	28764	.95774	.80431	.95257	.32089	.94712	33737	.94137	17
44	.27116	.96253	.28792	.95766	.30459	.95248	.32116	.94702	.83764	.94127	16
45	.27144	.96246	.28820	.95757	.30486	.95240	.82144	.94693	.83792	.94118	15
46	.27172	.96238	.28847	.95749	.80514	.95231	.82171	.94684	.83819	.94108	114
47	.27200	.96230	.28875	.95740	.30542	.95222	.82199	.94074	020774	.94098	13
40	97058	06014	.28903	05704	30507	05004	20054	04858	83001	04079	111
50	27284	.96206	28950	95715	30625	95195	32282	9464	83929	94068	10
	07010	00100	00000	07700	00000	02100	00000	040977	00020	04050	0
59	27940	96100	90015	05609	800003	.90100	802009	04697	83083	94010	8
53	27368	96189	20049	95690	80708	95168	82364	94618	.84011	.94039	17
54	.27396	.96174	.29070	.95681	.30736	.95159	.32392	.94609	.84006	.94029	6
55	.27424	.96166	.29098	.95673	.80763	.95150	.32419	.94599	.84065	.94019	5
56	.27452	.96158	.29126	.95664	.30791	.95142	.32447	.94590	.84093	.94009	4
57	.27480	.96150	.29154	.95656	.30819	.95133	.82474	.93580	.84120	.93999	3
50	97596	.90142	.29182	.90647	.30846	.90124	. 32502	.945/1	94177	.93989	1
60	27564	.96126	29237	.95630	.30902	.95106	32557	.94552	.84202	.93969	ô
-	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cogin	Sine	Cosin	Sina	-
1											1
	7	4 °	7	3.	7	20	7	1.	70)•	

	20	00	2	10	2	2°	2	3°	2	4°	
	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	
0	.34202	.93969	.35837	.93358	.37461	.92718	.39073	.92050	.40674	.91355	60
2	34257	.93959	35801	•93348 03337	37488	.92707	39100	.92039	.40700	.91343	59
3	.34284	.93939	.35918	.93327	.37542	.92686	.39153	.92016	.40753	.91319	57
4	.34311	.93929	.35945	.93316	.37569	.92675	.39180	.92005	.40780	.91307	56
5	.34339	.93919	.35973	.93306	37595	.92664	.39207	.91994	.40806	.91295	55
7	34393	93899	36027	93285	37649	92000	39234	01071	.40833	.91283	54
8	.34421	.93889	.36054	.93274	.37676	.92631	.39287	.91959	.40886	.91260	52
9	.34448	.93879	.36081	.93264	.37703	.92620	.39314	.91948	.40913	.91248	51
10	.34475	.93869	.36108	.93253	.37730	.92609	.39341	.91936	.40939	.91236	50
11	.34503	.93859	.36135	.93243	.37757	.92598	.39367	.91925	.40966	.91224	49
12	24557	.93849	.36162	.93232	.37784	.92587	.39394	.91914	.40992	.91212	48
14	.34584	93829	.36217	.93211	37838	92565	39421	91902	41019	91200	47
15	.34612	.93819	.36244	.93201	.37865	.92554	.39474	.91879	.41072	.91176	45
16	.34639	.93809	.36271	.93190	.37892	.92543	.39501	.91868	.41098	.91164	44
17	34666	.93799	.36298	.93180	37919	.92532	.39528	.91856	.41125	.91152	43
19 19	.34721	93779	.36352	.93159	.37973	92510	39581	91833	41151	91140	42
20	.34748	.93769	.36379	.93148	.37999	.92499	.39608	.91822	.41204	.91116	40
21	.34775	93759	.36406	.93137	.38026	.92488	.39635	91810	41231	91104	30
22	.34803	.93748	.36434	.93127	.38053	.92477	.39661	.91799	.41257	.91092	38
23	.34830	.93738	.36461	.93116	.38080	.92466	.39688	.91787	.41284	.91080	37
24	34857	.93728	.36488	.93106	.38107	.92455	.39715	.91775	.41310	.91068	36
26	.34912	.93708	.36542	.93084	.38161	.92432	.39768	.91752	41363	.91044	30
27	.34939	.93698	.36569	.93074	.38188	.92421	.39795	.91741	.41390	.91032	33
28	.34966	.93688	.36596	.93063	.38215	.92410	.39822	.91729	.41416	.91020	32
29	.34993	.93677	26650	.93052	.28241	.92399	.39848	.91718	.41443	.91008	31
00	00001			.0001	.00000	.00000	.00000	.91100	.41408	.90990	50
32	35075	.93057	36704	.93031	.38290	02366	39902	.91694	.41490	.90984	29
33	.35102	.93637	.36731	.93010	.38349	.92355	39955	.91671	41549	.90960	27
34	.35130	.93626	.36758	.92999	.38376	.92343	.39982	.91660	.41575	.90948	26
35	.35157	.93616	.36785	.92988	.38403	.92332	.40008	.91648	.41602	.90936	25
37	35211	93000	36839	92910	38456	92321	40030	.91030	.41028	00011	24
38	.35239	.93585	.36867	.92956	.38483	.92299	40088	.91613	.41681	.90899	22
39	.35266	.93575	.36894	.92945	.38510	.92287	.40115	.91601	.41707	.90887	21
40	.35293	.93565	.36921	.92935	.38537	.92276	.40141	.91590	.41734	.90875	20
41	.35320	.93555	.36948	.92924	.38564	.92265	.40168	.91578	.41760	.90863	19
42	.35347	.93544	.36975	.92913	.38591	.92254	.40195	.91566	.41787	.90851	18
44	.35402	.93524	.27029	.92892	.38644	.92231	40248	.91543	.41840	.90826	16
45	.35429	.93514	.37056	.92881	.38671	.92220	.40275	.91531	.41866	.90814	15
46	.35456	.93503	.37083	.92870	.38698	.92209	.40301	.91519	.41892	.90802	14
47	.30484	03493	37137	.92809	38759	09186	40323	91208	.41919	00778	10
49	.35538	.93472	.37164	.92838	.38778	.92175	.40381	.91484	.41972	.90766	11
50	.35565	.93462	.37191	.92827	.38805	.92164	.40408	.91472	.41998	.90753	10
51	.35592	.93452	.37218	.92816	.38832	.92152	.40434	.91461	.42024	.90741	9
52	.35619	.93441	.37245	.92805	.38859	.92141	.40461	.91449	.42051	.90729	8
53	.35647	.93431	.37272	.92794	.38886	.92130	.40488	.91437	.42077	.90717	7
04 55	.35701	.93410	.37326	.92773	.38939	.92107	.40541	.91425	.42104	.90692	5
56	.35728	.93400	.37353	.92762	.38966	.92096	.40567	.91402	.42156	.90680	4
57	.35755	.93389	.37380	.92751	.38993	.92085	.40594	.91390	.42183	.90668	3
50	.35782	.93379	37407	.92740	.39020	.92073	.40621	.91378	42209	.90655	2
60	.35837	.93358	.37461	.92718	.39073	.92050	.40674	.91355	.42262	.90631	Ô
_	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	-
1	60	0	6	20	6	70	6	30	6!	50	'
L	00		00		0		00		00		

	25°	26°	27°	28°	29°	
1	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	1
0	.42262 .90631	.43837 .89879	.45399 .89101	.46947 .88295	.48481 .87462	60
2	.42315 .90606	43889 .89854	.45451 .89074	.46999 .88267	.48532 .87434	58
3	.42341, .90594	.43916 .89841	.45477 .89061	.47024 .88254	.48557 .87420	57
45	42307 .90582	43942 .89828	45529 .89035	47076 88226	48608 .87391	55
6	.42420 .90557	.43994 .89803	.45554 .89021	.47101 .88213	.48634 .87377	54
1 7	.42446 .90545	44020 .89790	45580 .89008	.47127 .88199	48659 .87363	53
ŝ	.42499 .90520	.44072 .89764	45632 .88981	47178 .88172	.48710 .87335	51
10	.42525 .90507	.44098 .89752	.45658 .88968	.47204 .88158	.48735 .87321	50
11	.42552 .90495	.44124 .89739	.45684 .88955	.47229 .88144	.48761 .87306	49
12	42578 .90483	.44151 .80726	45710 .88942	47255 .88130		48
14	.42631 .90458	.44203 .89700	.45762 .88915	47306 .88103	.48837 .87264	46
15	42657 .90446	44229 :89687	.45787 .88902	47332 .88089		45
17	42709 .90435	.44235 .89674	45839 88875	47383 88062	48913 .87221	41
18	.42736 .90408	.44307 .89649	.45865 .88862	.47409 .88048	.48938 .87207	42
19	42762 .90396	.44333 .89636		47434 .88034		41
91	49815 00971	44395 80610	45049 88899	17486 88006	40014 87164	20
22	.42841 .90358	.44411 .89597	45968 .88808	47511 .87993	49040 .87150	38
23	.42867 .90346	.44437 .89584	.45994 .88795	47537 .87979	.49065 .87136	37
24		.44464 .89571		47588 87951		30
26	.42946 .90309	.44516 .89545	.46072 .88755	.47614 .87937	.49141 .87093	34
27		.44542 .89532	.46097 .88741	47639 .87923	49166 .87079	33
29	43025 90271	44594 .89506	46149 88715	47690 87896	49217 87050	31
30	.43051 .90259	.44620 .89493	.46175 .88701	.47716 .87882	.49242 .87036	30
31	.43077 .90246	.44646 .89480	.46201 .88688	47741 .87868	.49268 .87021	29
32	43104 .90233	44672 .89467		.47767 .87854		28
34	43156 90203	.44724 .89441	46278 88647	47818 .87826	49344 .86978	26
35	.43182 .90196	.44750 .89428	.46304 .88634	.47844 .87812	.49369 .86964	25
37		44770 .89415	46330 .88620	47809 .87798	.49394 .86949	24
38	.43261 .90158	.44828 .89389	.46381 .88593	.47920 .87770	.49445 .86921	22
39		.44854 .89376	.46407 .88580	.47946 .87756	.49470 .86906	21
41	13340 00100	44008 00000	ACAEO 00000	47007 97700	10501 00092	10
42	43366 .90120	44932 89337	46434 .88539	48022 87715	49546 86863	18
43	.43392 .90095	.44958 .89324	.46510 .88526	.48048 .87701	.49571 .86849	17
44				48073 .87687		16
46	.43471 .90057	45036 .89285	46587 .88485	.48124 .87659	.49647 .86805	14
47	.43497 .90045	.45062 .89272	.46613 .88472	.48150 .87645	.49672 .86791	13
43	43549 90032	45114 89259	46664 8845	48175 .87631	49097 .80777	112
50	.43575 .90007	.45140 .89232	.46690 .88431	.48226 .87603	.49748 .86748	10
51	.43602 .89994	.45166 .89219	.46716 .88417	.48252 .87589	.49773 .86733	9
52		.45192 .89206	.46742 .88404	.48277 .87575	.49798 .86719	8
54	43680 .89956	45243 89180	46793 .88377	48328 87546	49849 86690	6
55	.43706 .89943	.45269 .89167	.46819 .88363	.48354 .87532	.49874 .86675	5
57	43759 89930	45295 .89153	46870 88349	48405 87518	49899 .86661	4
58	.43785 .89905	.45347 .89127	.46896 .88322	.48430 .87490	.49950 .86632	2
59	43811 .89892	.45373 .89114	.46921 .88308	.48456 .87476	.49975 .86617	1
-	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	-
1						1
	64°	63°	62°	61°	60°	

	30°	31°	32°	33°	34°	
<u>_</u>	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	-
0120	.50000 .86603 .50025 .86588 .50050 .86573 50076 .86573	.51504 .85717 .51529 .85702 .51554 .85687 51570 .85679	.52992 .84805 .53017 .84789 .53041 .84774 53066 .84750	.54464 .83867 .54488 .83851 .54513 .83835 54537 83810	.55919 .82904 .55943 .82887 .55968 .82871 .55968 .82871	60 59 58
456	$.50101 \\ .86544 \\ .50126 \\ .86530 \\ .50151 \\ .86515$.51604 .85657 .51628 .85642 .51653 .85627	.53000 .84739 .53091 .84743 .53115 .84728 .53140 .84712	.54561 $.82804.54586$ $.83788.54610$ $.83772$.56040 .82839 .56064 .82806	56 55 54
789	.50176 .86501 .50201 .86486 .50227 .86471	.51678 .85612 .51703 .85597 .51728 .85582	.53164 .84697 .53189 .84681 .53214 .84666	$\begin{array}{r} .54635 & .83756 \\ .54659 & .83740 \\ .54683 & .83724 \\ .54683 & .83724 \end{array}$.56088 .82790 .56112 .82773 .56136 .82757	53 52 51
10 11 12	.50252 .86457 .50277 .86442 .50302 .86427	.51778 .85551 .51803 .85536	.53263 .84635 .53288 .84619	.54732 .83692 .54756 .83676	.56184 .82724 .56208 .82708	49 48
15 14 15 16	.50327 $.86413.50352$ $.86398.50377$ $.86384.50403$ $.86369$.51823 .85521 .51852 .85506 .51877 .85491 .51902 .85476	.53337 .84588 .53361 .84573 .53386 .84557	.54805 .83645 .54829 .83629 .54854 .83613	.56256 .82675 .56280 .82659 .56305 .82643	46 45 44
17 18 19 20	.50428 .86354 .50453 .86340 .50478 .86325 50503 .86310	.51927 .85461 .51952 .85446 .51977 .85431 .52002 .85416	.53411 .84542 .53435 .84526 .53460 .84511 .53484 .84495	.54878 .83597 .54902 .83581 .54927 .83565 .54951 .83549	.56329 $.82626.56353$ $.82610.56377$ $.82593.56401$ $.82577$	43 42 41 40
21 22 23	.50528 86295 .50553 .86281 .50578 .86266	.52026 .85401 .52051 .85385 .52076 .85370	.53509 .84480 .53534 .84464 .53558 .84448	.54975 .83533 .54999 .83517 .55024 .83501	.56425 .82561 .56449 .82544 .56473 .82528	89 38 37
24 25 26 27	.50603 .86251 .50628 .86237 .50654 .86222 .50679 .86207	.52101 .85355 .52126 .85340 .52151 .85325 .52175 .85310	.53583 .84433 .53607 .84417 .53632 .84402 .53656 .84386	.55043 .83485 .55072 .83469 .55097 .83453 .55121 .83437	.56497 $.82511.56521$ $.82495.56545$ $.82478.56569$ $.82478$	36 35 34 33
28 29 30	.50704 .86192 .50729 .86178 .50754 .86163	.52200 .85294 .52225 .85279 .52250 .85264	.53681 .84370 .53705 .84355 .53730 .84339	.55145 .83421 .55169 .83405 .55194 .83389	.56593 .82446 .56617 .82429 .56641 .82413	32 31 30
31 32 33 34 35 36 37 38 39 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.52275 .65249 .52290 .85234 .52324 .85218 .52349 .85203 .52374 .85188 .52399 .85173 .52428 .85177 .52448 .85142 .52473 .85127 .52448 .85127	.53754 .84324 .53779 .84308 .53804 .84202 .53838 .84277 .53853 .84261 .53857 .84245 .53902 .84230 .53902 .84230 .53905 .84214 .53951 .84198 .59056 .844198	.55218 .83373 .55242 .83356 .55206 .83340 .55201 .83324 .55315 .83308 .53339 .83292 .55363 .83276 .55388 .83260 .55388 .83244	,56665 .82396 ,56689 .82380 ,56713 .82363 ,56736 .82347 ,56760 .82310 ,56784 .82314 ,56808 .82297 ,56832 .82281 ,56856 .82264	29 28 27 26 25 24 23 22 21
40	.51029 .86000 .51054 .85985	.52522 .85096 .52547 .85081 59579 .85066	.54000 .84167 .54024 .84151	.55460 .83212 .55484 .83195	.56904 .82231 .56928 .82214 .56928 .82214	19 18
44 45 46 47 48 49	.51104 .85956 .51129 .85941 .51154 .85926 .51179 .85911 .51204 .85896 .51229 .85881	$\begin{array}{c} .52597 & .85051 \\ .52621 & .85035 \\ .52646 & .85020 \\ .52671 & .85005 \\ .52695 & .84989 \\ .52720 & .84974 \end{array}$.54073 .84120 .54097 .84104 .54122 .84088 .54146 .84072 .54171 .84057 .54195 .84041	.55533 .83163 .55557 .83147 .55581 .83131 .55605 .83115 .55630 .83098 .55654 .83082	.56976 .82181 .57000 .82165 .57024 .82148 .57047 .82132 .57071 .82115 .57095 .82098	16 15 14 13 12 11
50 51	.51254 .85866 .51279 .85851	.52745 .84959 .52770 .84943 .52701 .84948	.54220 .84025 .54244 .84009 54260 .82004	.55678 .83066 .55702 .83050 55726 .83050	.57119 .82082 .57143 .82065 57167 82048	10 9 8
53 54 55	.51329 .85821 .51354 .85806 .51379 .85792	.52819 .84913 .52844 .84897 .52869 .84882	.54293 .83978 .54317 .83962 .54342 .83946	.55750 .83017 .55775 .83001 .55799 .82985	.57191 .82032 .57215 .82015 .57238 .81999	765
57 58 59 60	.51404 .85777 .51429 .85762 .51454 .85747 .51479 .85732 .51504 .85717	.52993 .84866 .52918 .84851 .52943 .84836 .52967 .84820 .52967 .84820	.54391 .83930 .54391 .83915 .54415 .83899 .54440 .83883 .54464 .83883	.55825 .52909 .55847 .82953 .55871 .82936 .55895 .82920 .55919 .82904	.57286 .81982 .57286 .81965 .57310 .81949 .57334 .81932 .57358 .81915	43210
-	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	-
1	59°	58°	57°	56°	55°	1

1241

	35°	36°	37°	38°	39°	1,
	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	1
0	.57358 .81915	.58779 .80902	.60182 .79864	.61566 .78801		60
2	.57405 .81882	58826 .80867	.60228 .79829	.61612 .78765	.62977 .77678	58
3	.57429 .81865		.60251 $.79811.60274$ $.79703$		63000 .77660	57
5	.57477 .81832	.58896 .80816	.60298 .79776	.61681 .78711	.63045 .77623	55
6	.57501 .81815	.58920 .80799		61704 .78694		54
8	.57548 .81782	.58967 .80765	.60367 .79723	.61749 .78658	.63113 .77568	52
9	.57572 .81765	.58990 .80748	.60390 .79706	61772 .78640	.63135 .77550	51
10	.01090 .01/40	.0019 .00100 E0027 00719	.00414 .19000 80497 70671	.01195 .10044	69100 877519	40
112	.57643 .81714	.59061 .80696	.60460 .79653	.61841 .78586	.63203 .77494	48
13	.57667 .81698	.59084 .80679	.60483 .79635	.61864 .78568	.63225 .77476	47
14	.57091.81081 .57715.81664	.59108 .80002	.60529 .79618	.61887 .78532	63271 77439	40
16	.57738 .81647	.59154 .80627	.60553 .79583	.61932 .78514	.63293 .77421	44
17	.57762 .81631			61955 .78496		43
19	.57810 .81597	.59225 .80576	.60622 .79530	.62001 .78460	.63361 .77366	41
20	.57833 .81580	.59248 .80558	.60645 .79512	.62024 .78442	.63383 .77347	40
21	.57857 .81563	.59272 .80541	.60668 .79494	.62046 .78424	.63406 .77329	89
23	.57904 .81530	.59318 .80507	.60714 .79459	.62092 .78387	.63451 .77292	87
24	.57928 .81513	.59342 .80489	.60738 .79441	.62115 .78369	.63473 .77273	36
25	.57952 .81496	.59305 .80472	60761 .79424	.62138 .78351 .62160 .78333	63518 77236	31
27	.57999 .81462	.59412 .80438	.60807 .79388	.62183 .78315	.63540 .77218	33
28	.58023 .81445	59436 .80420				82
20	.58070 .81412	.59482 .80386	.60876 .79335	.62251 .78261	.63608 .77162	30
31	.58094 .81395	.59506 .80368	.60899 .79318	.62274 .78243	.63630 .77144	2)
33	.58118 .81578	.59529 .80351	60922 79300	62320 78225	63675 77107	27
34	.58165 .81344	.59576 .80316	.60968 .79264	.62342 .78188	.63698 .77088	26
35		.59599 .80299			63720 .77070	25
37	.58236 .81293	.59646 .80264	.61038 .79211	.62411 .78134	.63765 .77033	23
38	.58260 .81276	.59669 .80247	61061 .79193	.62433 .78116	63787 .77014	22
40	.58307 .81242	.59716 .80212	.61107 .79158	.62479 .78079	.63832 .76977	20
41	.58330 .81225	.59739 .80195	.61130 .79140	.62502 .78061	.63854 .76959	19
42		.59763 .80178		62524 .78043		18
44	.58401 .81174	.59809 .80143	.61199 .79087	.62570 .78007	.63922 .76903	16
45	.58425 .81157	.59832 .80125	.61222 .79069	.62592 .77988	.63944 .76884	15
47	.58472 .81123	.59879 .80091	.61268 .79033	.62638 .77952	63989 76847	13
48	.58496 .81106	.59902 .80073	.61291 .79016	.62660 .77934	.64011 .76828	12
50	.58543 .81089	.59920 .80056	.61314 .78998	.62706 .77897	.64056 .76791	10
51	.58567 .81055	.59972 .80021	.61360 .78962	.62728 .77879	.64078 .76772	9
52	.58590 .81038			62751 .77861		87
54	.58637 .81004	.60042 .79968	.61429 .78908	.62796 .77824	.64145 .76717	6
55	.58661 .80987	.60065 .79951	.61451 .78891	.62819 .77806	.64167 .76698	5
57	.58708 .80953	.60112 .79916	.61497 .78855	62864 77769	.64212 .76661	18
58	.58731 .80936	.60135 .79899	.61520 .78837	.62887 .77751	.64234 .76642	2
60	.58779 .80902	.60182 .79881	.61566 .78801	.62909 $.77733.62932$ $.77715$.04250 .76623	0
1,	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	-
	54•	53°	52°	51.	50°	1

	40°	41°	42°	43°	44°	1
	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	Sine Cosin	1
0	.64279 .76604	.65606 .75471	.66913 .74314	.68200 .73135	.69466 .71934	60
2	64323 76567	65650 75433	.66956 .74295	.68221 .73116 .68242 .73096	.69487 .71914	59
3	.64346 .76548	.65672 .75414	.66978 .74256	.68264 .73076	.69529 .71873	57
4	.64368 .76530	.65694 .75395	.66999 .74237		.69549 .71853	56
56	64412 76492	65738 75356	.67043 .74198	68327 73016	.69591 .71833	55
7	.64435 .76473	.65759 .75337	.67064 .74178	.68349 .72996	.69612 .71792	53
8	.64457 .76455	.65781 .75318	.67086 .74159	68370 72976	.69633 .71772	52
10	.64501 .76417	65825 75280	.67129 .74120	.68412 .72937	.69675 .71732	50
11	.64524 .76398	.65847 .75261	.67151 .74100	.68434 .72917	.69696 .71711	49
12	.64546 .76330	.65339 .75241	.67172 .74080	.68455 .72897	.69717 .71691	48
13	64508 .70301		67194 .74061			47
15	.64612 .76323	.65935 .75184	.67237 .74022	.68518 .72837	.69779 .71630	45
16	.64635 .76304	.65953 .75165	.67258 .74002	.68539 .72817	.69800 .71610	44
17	.64057 .70285			.68561 .72797		43
19	.64701 .76248	.63022 .75107	.67323 .73944	68603 .72757	.69862 .71549	41
20	.64723 .70229	.66044 .75088	.67344 .73924	.68624 .72737	.69883 .71529	40
21	.64746 .76210	.66066 .75069	.67366 .73904	.68645 .72717	.69904 .71508	39
22						33
24	.64812 .76154	.63131 .75011	.67430 .73846	.68709 .72657	.69966 .71447	36
25	.64834 .76135	.66153 .74992	.67452 .73826	.68730 .72637	.69987 .71427	35
26	.64856 .76116	66197 74973	67473 73800	.68751 .72617 68772 72597	70008 .71407	31
28	.64901 .76078	.66218 .74934	.67516 .73767	.68793 .72577	.70049 .71366	32
29	.64923 .76059	.66240 .74915	.67538 .73747	.68814 .72557	.70070 .71345	31
30	.04943 .76041	.00202 .74890	.07559 .73728	.08833 .72337	.70091 .71825	30
32	.64989 .76003	.66306 .74857	67602 73688	68878 72497	70132 71284	23
33	.65011 .75984	.66327 .74833	.67623 .73669	.68899 .72477	.70153 .71264	27
34	.65033 .75965	.66349 .74818	.67645 .73649		.70174 .71243	26
36	.65077 .75927	.66393 .74780	67638 73610	68962 .72417	70215 .71203	24
37	.65100 .75908	.66414 .74760	.67709 .73590	.68983 .72397	.70236 .71182	23
20	.65122 .75889	63458 74741	67759 73570	60025 72377	.70257 $.71162.70977$ $.71141$	22
40	.65166 .75851	.66480 .74703	.67773 .73531	.69046 .72337	.70298 .71121	20
41	.65188 .75832	.66501 .74683	.67795 .73511	.69067 .72317	.70319 .71100	19
42	.65210 .75813	.66523 .74664	.67816 .73491	.69088 .72297	.70339 .71080	18
44	65254 75775	66563 74625	67859 73452	69130 72257	70381 71039	16
45	.65276 .75756	.66588 .74606	.67880 .73432	.69151 .72236	.70401 .71019	15
46	.65298 .75738	.66610 .74586	.67901 .73413		.70422 .70998	14
48	.65342 .75700	.66653 .74548	.67944 .73373	.69214 .72176	70463 70957	12
49	.65364 .75680	.66675 .74528	.67965 .73353	.69235 .72156	.70484 .70937	11
50	.65386 .75661	.66697 .74509	.67987 .73333	.69256 .72136	.70505 .70916	10
51	.65408 .75642 .5130 .75623	66718 74489			.70525 .70896	9
53	.65452 .75604	.66762 .74451	.68051 .73274	.69319 .72075	.70567 .70855	7
54	.65474 .75585	.66783 .74431	.68072 .73254	.69340 .72055	.70587 .70834	6
56	.00490 .7006 65518 75547	66827 74392			70628 70793	3
57	.65540 .75528	.66848 .74373	.68136 .73195	.69403 .71995	.70649 .70772	3
58	.65562 .75509	.66870 .74352	.68157 .73175	.69424 .71974	.70670 .70752	2
59 60	.055606 .75471	.66913 $.74334$.68200 .73135	.69466 .71934	.70711 .70711	0
-	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	Cosin Sine	-
1	49°	48°	47°	<u>46°</u>	45°	

		, <u>0</u> °		0° 1°		2 °		<u> </u>		,
	_	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
-	0123456789	$\begin{array}{c} .00000\\ .00029\\ .00058\\ .00087\\ .00116\\ .00145\\ .00175\\ .00204\\ .00233\\ .00262\end{array}$	Infinite. 3437.75 1718.87 1145.92 859.436 687.549 572.957 491.106 429.718 381.971	.01746 .01775 .01804 .01833 .01862 .01891 .01920 .01949 .01978 .02007	$\begin{array}{c} 57.2900\\ 56.3506\\ 55.4415\\ 54.5613\\ 53.7086\\ 52.8821\\ 52.0807\\ 51.3032\\ 50.5485\\ 49.8157\end{array}$.03492 .03521 .03550 .03579 .03609 .03638 .03667 .03696 .03725 .03725	28.6363 28.3994 28.1664 27.9372 27.7117 27.4899 27.2715 27.0566 26.8450 26.6367	.05241 .05270 .05299 .05328 .05357 .05387 .05416 .05445 .05445 .05474 .05503	$\begin{array}{c} 19.0811\\ 18.9755\\ 18.8711\\ 18.7678\\ 18.6656\\ 18.5645\\ 18.3655\\ 18.3655\\ 18.2677\\ 18.1708\\ \end{array}$	60 59 58 57 56 55 54 53 52 51
	10 11 12 13 14 15 16 17 18 19 20	.00291 .00320 .00349 .00378 .00407 .00436 .00465 .00495 .00553 .00553 .00583	343.774 312.521 236.478 234.441 245.552 229.182 214.858 202.219 190.984 180.932 171.885	.02036 .02066 .02095 .02124 .02153 .02211 .022240 .02269 .02298 .022328	49.1039 48.4121 47.7395 47.0853 46.4489 45.8294 45.8294 45.2261 44.6386 44.0661 43.5081 42.9641	.03783 .03812 .03842 .03871 .03900 .03929 .03958 .03987 .04016 .04046 .04075	26.4316 26.2296 26.0307 25.8348 25.6418 25.4517 25.2644 25.0798 24.8978 24.7185 24.5418	.05533 .05562 .0\$591 .05620 .05649 .05678 .05708 .05778 .05766 .05795 .05824	$\begin{array}{c} 18.0750\\ 17.9802\\ 17.8863\\ 17.7934\\ 17.7015\\ 17.6106\\ 17.5205\\ 17.4314\\ 17.8432\\ 17.2558\\ 17.1693\end{array}$	50 49 48 47 46 45 44 43 42 41 40
	21 22 23 24 25 26 27 28 29 20	.00611 .00640 .00669 .00698 .00727 .00756 .00755 .00315 .00844 .00873	163.700 156.259 149.465 143.237 137.507 132.219 127.321 122.774 118.540 114.589	.02357 .02386 .02415 .02444 .02473 .02502 .02531 .02560 .02589 .02619	$\begin{array}{r} 42.4335\\ 41.9158\\ 41.4106\\ 40.9174\\ 40.4358\\ 39.9655\\ 39.5059\\ 39.0568\\ 38.6177\\ 38.1885\end{array}$.04104 .04133 .04162 .04191 .04220 .04250 .04250 .04279 .04308 .04337 .04366	24.3675 24.1957 24.0263 23.8503 23.6945 23.5321 23.8718 23.2137 23.0577 22.9038	.05854 .05383 .05912 .05941 .05970 .05999 .06029 .06029 .06058 .06087 .06116	$\begin{array}{c} 17.0837\\ 16.9990\\ 16.9150\\ 16.8319\\ 16.7496\\ 16.6681\\ 16.5874\\ 16.5075\\ 16.4283\\ 16.3499 \end{array}$	39 38 37 36 35 34 33 32 31 30
	31 32 33 34 35 36 37 38 39 40	.00902 .00931 .00960 .00989 .01018 .01047 .01076 .01105 .01135 .01164	$\begin{array}{c} 110.892 \\ 107.426 \\ 104.171 \\ 101.107 \\ 98.2179 \\ 95.4895 \\ 92.9085 \\ 90.4633 \\ 88.1436 \\ 85.9398 \end{array}$.02648 .02677 .02706 .02735 .02764 .02793 .02822 .02851 .02881 .02910	37.7686 37.3579 36.9560 36.5627 36.1776 35.8006 35.4313 35.0395 34.7151 34.3678	.04395 .04424 .04454 .04454 .04512 .04512 .04541 .04570 .04599 .04658	$\begin{array}{c} 22.7519\\ 22.6020\\ 22.4541\\ 22.3081\\ 22.1640\\ 22.0217\\ 21.8813\\ 21.7426\\ 21.6056\\ 21.4704 \end{array}$.06145 .06175 .06204 .06233 .06262 .06291 .06321 .06350 .06379 .06408	16.2722 16.1952 16.1190 16.0435 15.9687 15.8945 15.8211 15.7483 15.6762 15.6048	29 28 27 26 25 24 23 22 21 20
	$\begin{array}{r} 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ \end{array}$.01193 .01222 .01251 .01280 .01309 .01309 .01309 .01305 .01306 .01425 .01455	$\begin{array}{r} 83.8435\\81.8470\\79.9434\\78.1263\\76.3900\\74.7292\\73.1390\\71.6151\\70.1533\\68.7501\end{array}$.02939 .02968 .02997 .03026 .03055 .03084 .03114 .03143 .03172 .03201	34.0273 33.6935 33.3662 33.0452 32.7303 32.4213 32.1181 31.8205 31.5284 81.2416	.04687 .04716 .047145 .04774 .04803 .04833 .04862 .04891 .04920 .04949	21.3369 21.2049 21.0747 20.9460 20.8188 20.6032 20.5691 20.4465 20.3253 20.2056	.06437 .06467 .06496 .06525 .06554 .06584 .06613 .06642 .06671 .06700	$\begin{array}{c} 15.5340\\ 15.4638\\ 15.3943\\ 15.3254\\ 15.2571\\ 15.1893\\ 15.1222\\ 15.0557\\ 14.9898\\ 14.9244\end{array}$	19 18 17 16 15 14 13 12 11 10
	51 52 53 54 55 56 57 58 59 60	.01484 .01513 .01542 .01571 .01600 .01629 .01658 .01687 .01716 .01746	$\begin{array}{c} 67.4019\\ 66.1055\\ 64.8580\\ 63.6567\\ 62.4992\\ 61.3829\\ 60.3058\\ 59.2659\\ 58.2612\\ 57.2900 \end{array}$.03230 .03259 .03288 .03317 .03346 .03376 .03405 .03405 .03434 .03463 .03492	30,9599 30,6833 30,4116 30,1446 29,8823 29,6245 29,3711 29,1220 28,8771 28,6363	.04978 .05007 .05037 .05066 .05095 .05124 .05153 .05182 .05212 .05212	20.0872 19.9702 19.8546 19.7403 19.6273 19.5156 19.4051 19.2959 19.1879 19.0811	.06730 .06759 .06788 .06817 .06847 .06876 .06905 .06934 .06963 .06993	$\begin{array}{c} 14.8596\\ 14.7954\\ 14.7317\\ 14.6685\\ 14.6059\\ 14.5438\\ 14.4823\\ 14.4823\\ 14.4212\\ 14.3607\\ 14.3007 \end{array}$	9876543210
	,	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	1
		89		8	0~	8	1	8	0~	

		4.		<u> </u>		<u>6°</u>		70		
	_	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Ľ
	01234	$\begin{array}{r} .06993 \\ .07022 \\ .07051 \\ .07080 \\ .07110 \\ \end{array}$	$\begin{array}{r} 14.3007\\ 14.2411\\ 14.1821\\ 14.1235\\ 14.0655\\ \end{array}$.08749 .08778 .08807 .08837 .08866	$\begin{array}{c} 11.4301 \\ 11.3919 \\ 11.3540 \\ 11.3163 \\ 11.2789 \end{array}$.10510 .10540 .10569 .10599 .10628	9.51436 9.48781 9.46141 9.43515 9.40904	.12278 .12308 .12338 .12367 .12397	$\begin{array}{r} 8.14435\\ 8.12481\\ 8.10536\\ 8.08600\\ 8.06674\\ \end{array}$	60 59 58 57 56
	567 89 10	.07189 .07168 .07197 .07227 .07256 .07285	$\begin{array}{r} 14.0079\\ 13.9507\\ 13.8940\\ 13.8378\\ 13.7821\\ 13.7267\end{array}$.08895 .08925 .08954 .08983 .09013 .09042	$\begin{array}{c} 11.2417\\ 11.2048\\ 11.1681\\ 11.1316\\ 11.0954\\ 11.0594 \end{array}$.10657 .10687 .10716 .10746 .10775 .10805	9.38307 9.35724 9.33155 9.30599 9.28058 9.25530	$\begin{array}{c} .13426\\ .12456\\ .12485\\ .12515\\ .12544\\ .12574\end{array}$	8.04756 8.02848 8.00948 7.99058 7.97176 7.95302	55 54 53 52 51 50
	$11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20$.07314 .07344 .07373 .07402 .07431 .07461 .07490 .07519 .07548 .07578	$\begin{array}{c} 13.6719\\ 13.6174\\ 13.5634\\ 13.5098\\ 13.4566\\ 13.4566\\ 13.4039\\ 13.3515\\ 13.2996\\ 13.2480\\ 13.1969\end{array}$.09071 .09101 .09130 .09159 .09159 .09218 .09247 .09247 .09277 .09306 .09335	$\begin{array}{c} 11.0237\\ 10.9882\\ 10.9529\\ 10.9178\\ 10.8329\\ 10.8483\\ 10.8139\\ 10.7797\\ 10.7457\\ 10.7119 \end{array}$.10834 .10863 .10893 .10922 .10952 .10981 .11011 .11040 .11070 .11099	9.23016 9.20516 9.18028 9.15554 9.13093 9.10646 9.08211 9.05789 9.03379 9.00983	.12603 .12023 .12062 .12692 .12722 .12751 .12781 .12810 .12840 .12869	$\begin{array}{c} 7.93438\\ 7.91582\\ 7.89734\\ 7.87895\\ 7.86064\\ 7.84242\\ 7.82428\\ 7.80622\\ 7.78825\\ 7.77035\end{array}$	49 48 47 46 45 44 43 42 41 40
the second	$\begin{array}{c} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}$.07607 .07636 .07665 .07695 .07724 .07753 .07782 .07812 .07812 .07841 .07870	$\begin{array}{c} 13.1461\\ 13.0958\\ 13.0458\\ 12.9962\\ 12.9469\\ 12.8981\\ 12.8496\\ 12.8014\\ 12.7536\\ 12.7062 \end{array}$.09365 .00304 .09423 .09453 .09482 .09511 .09541 .09570 .00000 .09629	$\begin{array}{c} 10.6783\\ 10.6450\\ 10.6118\\ 10.5789\\ 10.5462\\ 10.5136\\ 10.4813\\ 10.4491\\ 10.4172\\ 10.3854 \end{array}$	$\begin{array}{c} .11128\\ .11158\\ .11187\\ .11217\\ .11217\\ .11246\\ .11276\\ .11305\\ .11335\\ .11364\\ .11394\end{array}$	8.98598 8.96227 8.93867 8.91520 8.89185 8.86862 8.84551 8.82252 8.79964 8.77689	.12899 .12929 .12958 .12958 .13017 .13047 .13076 .13106 .13136 .13165	$\begin{array}{c} 7.75254\\ 7.73480\\ 7.71715\\ 7.69957\\ 7.68208\\ 7.64666\\ 7.64732\\ 7.63005\\ 7.61287\\ 7.59575\end{array}$	39 38 37 36 35 34 33 32 31 30
	31 32 33 34 35 36 37 38 39 40	.07899 .07029 .07058 .07987 .08017 .08046 .08075 .08104 .08134 .08163	$\begin{array}{c} 12.6591\\ 12.6124\\ 12.5660\\ 12.5199\\ 12.4742\\ 12.4288\\ 12.3838\\ 12.3838\\ 12.38390\\ 12.2946\\ 12.2505 \end{array}$.09658 .09688 .09717 .09746 .09776 .09805 .09834 .09864 .09893 .09923	$\begin{array}{c} 10.2538\\ 10.3224\\ 10.2913\\ 10.2602\\ 10.2294\\ 10.1988\\ 10.1683\\ 10.1683\\ 10.1381\\ 10.1080\\ 10.0780\\ \end{array}$	$\begin{array}{c} .11423\\ .11452\\ .11452\\ .11482\\ .11511\\ .11511\\ .11570\\ .11600\\ .11629\\ .11659\\ .11688\end{array}$	$\begin{array}{c} 8.75425\\ 8.73172\\ 8.70931\\ 8.68701\\ 8.66482\\ 8.64275\\ 8.62078\\ 8.59893\\ 8.57718\\ 8.55555\end{array}$.13195 .13224 .13254 .13284 .13313 .13343 .13372 .13402 .13402 .13432 .13461	$\begin{array}{c} 7.57872 \\ 7.56176 \\ 7.54487 \\ 7.52806 \\ 7.51132 \\ 7.49465 \\ 7.49465 \\ 7.46154 \\ 7.46154 \\ 7.44509 \\ 7.42871 \end{array}$	29 28 27 26 25 24 23 22 21 20
	41 42 43 44 45 46 47 48 49 50	.08192 .08221 .08251 .08280 .08309 .08339 .08368 .08397 .08427 .08425	$\begin{array}{c} 12.2067\\ 12.1632\\ 12.1201\\ 12.0772\\ 12.0346\\ 11.9923\\ 11.9504\\ 11.9087\\ 11.8673\\ 11.8262 \end{array}$.09952 .09981 .10011 .10040 .10069 .10099 .10128 .10158 .10187 .10216	10.0483 10.0187 9.98931 9.96007 9.93101 9.90211 9.87338 9.84482 9.81641 9.78817	.11718 .11747 .11777 .11806 .11836 .11855 .11895 .11924 .11954 .11983	$\begin{array}{c} 8.53402\\ 8.51259\\ 8.49128\\ 8.47007\\ 8.44896\\ 8.42795\\ 8.40705\\ 8.38625\\ 8.36555\\ 8.36555\\ 8.34496\end{array}$.13491 .13521 .13550 .13580 .13609 .13639 .13698 .13728 .13728 .13758	$\begin{array}{c} 7.41240\\ 7.39616\\ 7.37999\\ 7.36289\\ 7.34786\\ 7.33190\\ 7.31600\\ 7.30018\\ 7.28442\\ 7.26873\end{array}$	19 18 17 16 15 14 13 12 11 10
the second	$\begin{array}{c} 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \end{array}$.08485 .08514 .08544 .08573 .08602 .08632 .08661 .08690 .08720 .08749	$\begin{array}{c} 11.7853\\ 11.7448\\ 11.7045\\ 11.6645\\ 11.6248\\ 11.5853\\ 11.5461\\ 11.5072\\ 11.4685\\ 11.4301 \end{array}$	$\begin{array}{r} .10246\\ .10275\\ .10305\\ .10334\\ .10363\\ .10393\\ .10422\\ .10452\\ .10481\\ .10510\end{array}$	$\begin{array}{c} 8.76009\\ 9.73217\\ 9.70441\\ 9.67680\\ 9.64935\\ 9.62205\\ 9.59490\\ 9.56791\\ 9.54106\\ 9.51436\end{array}$.12018 .12042 .12072 .12101 .12131 .12160 .12190 .12219 .12249 .12278	$\begin{array}{c} 8.32446\\ 8.30406\\ 8.28376\\ 8.26355\\ 8.24345\\ 8.22344\\ 8.20352\\ 8.18370\\ 8.16398\\ 8.14435\end{array}$.13787 .13817 .13846 .13876 .13906 .13935 .13965 .13995 .14024 .14054	7.25310 7.23754 7.22204 7.20661 7.19125 7.17594 7.16071 7.14553 7.18042 7.11537	9876543210
	,	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	1
		8	5°	8	4°	8	83°		2°	1

5	80		8° 9°		11 1	10°		11°	
ľ	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Ľ
0	.14054	7.11537	.15838	6.31375	.17633	5.67128	.19438	5.14455	60
2	.14004	7.08546	.15898	6.29007	.17693	5.65205	.19498	5.12862	58
3	.14143	7.07059	.15928	6.27829	.17723	5.64248	.19529	5.12069	57
45	.14173	7.04105	.15988	6.25486	.17783	5.62344	.19589	5.10490	55
G	.14232	7.02637	.16017	6.24321	.17813	5.61397	.19619	5.09704	54
8	.14202	6.99718	.16047	6.23100 6.22003	.17843	5.59511	.19680	5.08921	03 52
9	.14321	6.98268	.16107	6.20851	.17903	5.58573	.19710	5.07360	51
10	.14351	6.96823	.16137	0.19703	.17933	0.57038	.19740	5.06584	00
11 12	.14381	6.95385 6.93952	.16107	6.18559	.17903	5.55777	.19770	5.05037	49
13	.14440	6.92525	:16226	6.16283	.18023	5.54851	.19831	5.04267	47
14	.14470	6.91104	.16256	6 14023	.18053	5.53007	.19861	5.03499	40
16	.14529	6.88278	.16316	6.12899	.18113	5.52090	.19921	5.01971	44
17	.14559	6.80874	16346	6.11779	.18143	5.51176	.19952	5.01210	43
19	.14618	6.84082	.16405	6.09552	.18203	5.49356	.20012	4.99695	41
20	.14648	6.82694	.16435	6.08444	.18233	5.48451	.20042	4.98940	40
21	.14678	6.81312	.16465	6.07340	.18263	5.47548	.20073	4.98188	39
23	.14737	6.73564	.16525	6.05143	.18323	5.45751	.20133	4.96690	37
24	.14767	6.77199	.16555	6.04051	.18353	5.44857	.20164	4.95945	36
26	.14790	6.74483	.16555	6.01878	.18334	5.43077	.20194	4.95201	34
27	.14856	6.73133	.16645	6.00797	.18444	5.42192	.20254	4.93721	33
28	.14380	6.70450	.16074	5.99720	.18474	5.40429	.20285	4.92984	32
20	.14945	6.69116	.16734	5.97576	.18534	5.89552	.20345	4.91516	30
31	.14975	6.67787	.16764	5.96510	.18564	5.38677	.20376	4.90785	29
32	.15005	6.65144	.10794 .16824	5.95448	.18594	5.36936	.20406	4.90050	20 27
34	.15064	6.63831	.16854	5.93365	.18654	5.36070	.20466	4.88605	26
35	.15094	6.61219	.16914	5.92283	.18084	5.34345	.20497	4.87162	22
37	.15153	6.50021	.16944	5.90191	.18745	5.33487	.20557	4.86444	23
20	.15183	6.53627	.16974	5.89151	.18775	5.32631	.20588	4.85727	22
40	.15243	6.56055	.17033	5.87080	.18835	5.30928	.20648	4.84300	20
41	.15272	6.54777	.17063	5.86051	.18865	5.30080	.20679	4.83590	19
42	.15302	6.53503	.17003	5.84001	.18925	0.29235 5.28393	.20709	4.82882	17
44	.15362	6.50970	.17153	5.82982	.18955	5.27553	.20770	4.81471	16
45	$.15391 \\ 15421$	6.49710	.17163	5.81966	18986	5.25880	.20800	4.80769	15 14
47	.15451	6.47206	.17243	5.79944	.19046	5.25048	.20861	4.79370	13
48	.15481	6.45961	.17273	5.78938	.19076	5.24218	.20891	4.78673	12
50	.15540	6.43484	.17333	5.76937	.19136	5.22566	.20952	4.77286	10
51	.15570	6.42253	.17363	5.75941	.19166	5.21744	.20982	4.76595	9
52	.15600	6.41026	.17393	5.74949	.19197	5.20925	.21013	4.75906	87
54	.15660	6.38587	.17453	5.72974	.19257	5.19293	.21073	4.74534	6
55	.15689	6.37374	.17483	5.71992	.19287	5.18480	.21104	4.73851	54
57	.15749	6.34961	.17543	5.70037	.19347	5.16863	.21164	4.72490	3
58	.15779	6.33761	.17573	5.69064	.19378	5.16058	.21195	4.71813	2
60	.15838	6.31375	.17633	5.67128	.19438	5.14455	.21256	4.70463	Ô
1.	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	,
ľ	8	810 800		7	90	7	80		

Γ.	12°		<u>12°</u> <u>13°</u>		1	4°	15°		
Ľ	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Ĺ
012345678910	.21256 .21286 .21316 .21347 .21347 .21377 .21408 .21408 .21469 .21469 .21499 .21529 .21559	$\begin{array}{r} 4.70463\\ 4.69791\\ 4.69121\\ 4.68452\\ 4.67786\\ 4.67121\\ 4.66458\\ 4.65797\\ 4.65138\\ 4.64480\\ 4.63825\\ \end{array}$.23087 .23117 .23148 .23179 .23209 .23240 .23271 .23301 .23332 .23363 .23393	$\begin{array}{r} 4.33148\\ 4.32573\\ 4.32001\\ 4.31430\\ 4.30860\\ 4.30291\\ 4.20724\\ 4.29159\\ 4.28595\\ 4.28032\\ 4.28032\\ 4.27471\end{array}$.24933 .24964 .24995 .25026 .25056 .25087 .25118 .25149 .25149 .25180 .25211 .25242	$\begin{array}{r} 4.01078\\ 4.00582\\ 4.00086\\ 3.99592\\ 3.99099\\ 3.98607\\ 3.98117\\ 3.97627\\ 3.97139\\ 3.96651\\ 3.96165\end{array}$.26795 .26826 .26857 .26888 .26920 .26951 .26982 .27013 .27044 .27076 .27107	$\begin{array}{c} 3.73205\\ 3.72771\\ 3.72338\\ 3.71907\\ 3.71476\\ 3.71476\\ 3.70616\\ 3.70016\\ 3.70188\\ 3.69761\\ 3.69335\\ 3.68909 \end{array}$	60 59 58 57 56 55 55 53 52 51 50
11 12 13 14 15 16 17 18 19 20	.21590 .21621 .21651 .21682 .21712 .21743 .21773 .21804 .21834 .21864	$\begin{array}{r} 4.63171\\ 4.62518\\ 4.61868\\ 4.61219\\ 4.60572\\ 4.59927\\ 4.59283\\ 4.58641\\ 4.58001\\ 4.57363\end{array}$.23424 .23455 .23485 .23516 .23547 .23578 .23608 .23608 .23639 .23670 .23700	$\begin{array}{r} 4.26911\\ 4.26352\\ 4.25795\\ 4.25239\\ 4.24685\\ 4.24132\\ 4.23580\\ 4.23030\\ 4.22481\\ 4.21933\\ \end{array}$.25273 .25304 .25335 .25366 .25397 .25428 .25429 .25429 .25459 .25521 .25552	$\begin{array}{c} 3.95680\\ 3.95196\\ 3.94713\\ 3.94232\\ 3.93751\\ 3.93271\\ 3.92793\\ 3.92316\\ 3.91839\\ 3.91364 \end{array}$.27138 .27169 .27201 .27232 .27263 .27294 .27326 .27326 .27357 .27358 .27358 .27419	$\begin{array}{c} 3.68485\\ 3.68061\\ 3.67038\\ 3.67217\\ 3.66796\\ 3.66376\\ 3.65957\\ 3.65538\\ 3.65538\\ 3.65121\\ 3.64705 \end{array}$	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	.21895 .21025 .21056 .21086 .22017 .22047 .22047 .22078 .22108 .22139 .22169	$\begin{array}{r} 4.56726\\ 4.56091\\ 4.55458\\ 4.54826\\ 4.54196\\ 4.53568\\ 4.52941\\ 4.52316\\ 4.51693\\ 4.51071\end{array}$.23731 .23702 .23793 .23823 .23854 .23885 .23916 .23946 .23946 .23977 .24008	$\begin{array}{r} 4.21387\\ 4.20842\\ 4.20298\\ 4.19756\\ 4.19215\\ 4.18675\\ 4.18137\\ 4.17600\\ 4.17064\\ 4.16530\end{array}$.25583 .25614 .25645 .25676 .25707 .25738 .25769 .25800 .25831 .25862	3.90890 3.90417 3.89945 3.89474 3.89004 3.88556 3.88068 3.88068 3.87601 3.87136 3.86671	.27451 .27482 .27513 .27545 .27576 .27678 .27678 .27678 .27670 .27701 .27732	3.64289 3.63874 3.63461 3.62048 3.62034 3.62224 3.61814 3.61405 3.60996 3.60588	39 38 37 36 35 34 33 32 31 30
31 22 33 34 35 36 37 38 39 40	.22200 .22231 .22261 .222992 .22392 .22353 .22353 .22414 .22444 .22444	$\begin{array}{r} 4.50451\\ 4.49832\\ 4.49215\\ 4.48600\\ 4.47986\\ 4.47986\\ 4.47374\\ 4.40764\\ 4.40155\\ 4.45548\\ 4.44942 \end{array}$.24039 .24069 .24100 .24131 .24162 .24193 .24223 .24223 .24254 .24285 .24316	$\begin{array}{r} 4.15997\\ 4.15465\\ 4.14934\\ 4.14405\\ 4.13877\\ 4.13350\\ 4.12825\\ 4.12825\\ 4.12301\\ 4.11778\\ 4.11256\end{array}$	•25893 •25924 •25955 •25986 •26017 •26048 •26079 •26110 •26141 •26172	3.86208 3.85745 3.85284 3.84824 3.84364 3.83906 3.83449 3.82992 3.82537 3.82083	.27764 .27795 .27826 .27858 .27858 .27921 .27952 .27983 .28015 .28046	3.60181 3.59775 3.59370 3.58966 3.58562 3.58160 3.57758 3.57758 3.56957 3.56957	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 8 950	.22505 .22536 .22567 .22507 .22028 .22058 .22058 .22089 .22719 .22750 .22750 .22781	$\begin{array}{r} \textbf{4.44338} \\ \textbf{4.43735} \\ \textbf{4.43134} \\ \textbf{4.42534} \\ \textbf{4.41036} \\ \textbf{4.41340} \\ \textbf{4.40745} \\ \textbf{4.40745} \\ \textbf{4.40152} \\ \textbf{4.39560} \\ \textbf{4.38969} \end{array}$	$\begin{array}{r} .24347\\ .24377\\ .24408\\ .24439\\ .24439\\ .24470\\ .24501\\ .24532\\ .24532\\ .24562\\ .24593\\ .24624\end{array}$	4.10736 4.10216 4.09699 4.09182 4.08666 4.08152 4.07639 4.07127 4.06616 4.06107	.26203 .26235 .26266 .26297 .26328 .26359 .26359 .26390 .26421 .26452 .26483	3.81630 3.81177 3.80726 3.80276 3.79827 3.79378 3.78931 3.78485 3.78040 3.77595	.28077 .28109 .28140 .28172 .28203 .28234 .28266 .28297 .28329 .28360	3.56159 3.55761 3.55364 3.54968 3.54573 3.54179 3.53785 3.53785 3.53393 3.53001 3.52609	19 18 17 16 15 14 13 12 11 10
51 52 53 53 55 55 55 57 58 59 60	.22811 .22842 .22903 .22903 .22934 .22964 .22995 .23026 .23056 .23056 .23087	$\begin{array}{r} 4.38381\\ 4.37793\\ 4.37207\\ 4.36623\\ 4.36040\\ 4.35459\\ 4.34879\\ 4.34879\\ 4.34300\\ 4.33723\\ 4.33148\end{array}$	$\begin{array}{r} .24655\\ .24686\\ .24717\\ .24747\\ .24747\\ .24778\\ .24809\\ .24809\\ .24840\\ .24871\\ .24902\\ .24933 \end{array}$	$\begin{array}{r} \textbf{4.05599} \\ \textbf{4.05092} \\ \textbf{4.04586} \\ \textbf{4.04081} \\ \textbf{4.03578} \\ \textbf{4.03076} \\ \textbf{4.03076} \\ \textbf{4.02574} \\ \textbf{4.02574} \\ \textbf{4.02074} \\ \textbf{4.01576} \\ \textbf{4.01078} \end{array}$.26515 .26546 .26577 .26608 .26639 .26670 .26701 .26733 .26764 .20795	$\begin{array}{r} \textbf{3.77152}\\ \textbf{3.76709}\\ \textbf{3.76208}\\ \textbf{3.75828}\\ \textbf{3.75828}\\ \textbf{3.75388}\\ \textbf{3.74950}\\ \textbf{3.74950}\\ \textbf{3.74950}\\ \textbf{3.74512}\\ \textbf{3.74075}\\ \textbf{3.73640}\\ \textbf{3.73205} \end{array}$.28391 .28423 .28454 .28454 .28517 .28549 .28549 .28549 .28612 .28643 .28675	$\begin{array}{r} 3.52219\\ 3.51829\\ 3.51441\\ 3.51053\\ 3.50666\\ 3.50279\\ 3.49894\\ 3.49509\\ 3.49125\\ 3.48741\\ \end{array}$	9876543210
,	Cotang	Tang	Cotang	Tang	Cotang	Tang 5º	Cotang	Tang 4.	
1	110		1 76		1 1	0	4	*	1

1	1 16°		17°		18°		19°		
1	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	1
0 1 2 3 4 5 6 7 8 9	.28675 .28706 .28738 .28769 .28800 .28832 .28864 .28895 .28957 .28927 .28958	3.48741 3.48359 3.47977 3.47596 3.47216 3.46837 3.46837 3.46458 3.46080 3.45703 3.45327	.30573 .30605 .30637 .30669 .30700 .30732 .30764 .30796 .30828 .30828 .30860	$\begin{array}{r} 3.27085\\ 3.26745\\ 3.26406\\ 3.26067\\ 3.25729\\ 3.25392\\ 3.25055\\ 3.24719\\ 3.24383\\ 3.24049 \end{array}$.32492 .32524 .32556 .32588 .32621 .32653 .32685 .32717 .32749 .32782	$\begin{array}{c} 3.07768\\ 3.07464\\ 3.07160\\ 8.06857\\ 3.06554\\ 3.06252\\ 3.05950\\ 3.05649\\ 3.05349\\ 3.05049 \end{array}$.34433 .34465 .34498 .34530 .34503 .34506 .34628 .34661 .34693 .34726	2.90421 2.90147 2.89873 2.89600 2.89327 2.89055 2.88783 2.88711 2.88511 2.88240 2.87970	60 59 58 57 56 55 54 52 52 51
10 11 12 13 14 15 16 17 19 20	.28990 .29021 .29053 .29084 .29116 .29147 .29179 .29210 .29242 .29274 .29305	3.44951 3.44576 3.44202 3.43829 3.43456 3.43084 3.42713 3.42243 3.41973 3.41004 3.41236	.30891 .20923 .20955 .30987 .31019 .31051 .31083 .31115 .31147 .31178 .31210	3.23714 3.23381 3.23048 3.22715 3.22384 3.22053 3.21722 3.21392 3.21063 3.20734 3.20406	.32814 .32846 .32878 .32911 .32943 .32975 .33007 .33040 .33072 .33104 .33136	3.04749 3.04450 3.04152 3.03854 3.03556 3.03260 3.02963 3.02667 3.02372 3.02077 3.01783	.34758 .34791 .34824 .34856 .34899 .34922 .34954 .34987 .25050 .25052 .35085	2.87700 2.87430 2.87161 2.86892 2.86624 2.86356 2.86089 2.85822 2.85555 2.85289 2.85555 2.85289 2.85023	50 49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 26 27 28 29 30	.29337 .29368 .29400 .29432 .29432 .29463 .29495 .29526 .29526 .29558 .29558 .29590 .29621	3.40869 3.40502 3.40136 3.39771 3.39406 3.39042 3.38679 3.38317 8.37955 3.37594	.31242 .31274 .31206 .31338 .31370 .31402 .31434 .31466 .31498 .31530	3.20079 3.19752 3.19426 3.19100 3.18775 3.18451 3.18127 3.17804, 3.17481 3.17159	.83169 .83201 .83233 .33266 .83298 .83330 .83363 .83305 .83427 .83460	3.01489 3.01106 3.0003 3.00611 3.00319 3.00028 2.99738 2.99738 2.9947 2.99158 2.98868	.35118 .25110 .35183 .35216 .35248 .35248 .352314 .35314 .35346 .35379 .35412	2.84758 2.84494 2.84229 2.83965 2.83702 2.83439 2.83176 2.82014 2.82053 2.82391	29 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	.29653 .29685 .29716 .29748 .29780 .29811 .29843 .29875 .29906 .29938	3.37234 3.30375 3.36516 3.36158 3.35800 3.35443 3.35087 3.34732 3.34377 3.34023	.31562 .31594 .31626 .31658 .31690 .31722 .31754 .31786 .31818 .31850	3.16838 3.16517 3.16197 3.15877 3.15558 3.15240 3.14922 3.14605 3.14288 3.13972	.33492 .33524 .32557 .33550 .33621 .33654 .33686 .33718 .33751 .33783	2.98580 2.98292 2.98004 2.97717 2.97430 2.97144 2.96858 2.96573 2.96573 2.96288 2.96004	.85445 .85477 .85510 .85543 .85576 .85603 .35641 .85674 .85707 .85740	2.82130 2.81670 2.81610 2.81350 2.81091 2.80833 2.80574 2.80316 2.80059 2.79802	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 41 48 49 50	.29970 .30001 .30033 .30065 .30097 .30128 .30160 .30192 .30224 .30255	3.33670 3.33317 3.32965 3.32614 3.31914 3.31565 3.31216 3.30868 3.30868 3.30521	.31882 .31914 .31946 .31978 .32010 .32042 .32074 .32106 .32139 .32171	$\begin{array}{c} 3.13656\\ 3.13341\\ 3.13027\\ 3.12713\\ 3.12400\\ 3.12087\\ 3.11775\\ 3.11464\\ 3.11153\\ 3.10843 \end{array}$.33816 .33848 .33881 .33913 .33945 .33978 .34010 .34043 .34075 .34108	$\begin{array}{c} 2.95721\\ 2.95437\\ 2.95155\\ 2.94872\\ 2.94591\\ 2.94309\\ 2.94028\\ 2.93748\\ 2.93748\\ 2.93468\\ 2.93189 \end{array}$.85772 .35805 .35838 .35871 .35904 .35937 .35969 .36002 .86035 .36068	$\begin{array}{c} 2.79545\\ 2.79289\\ 2.79033\\ 2.78778\\ 2.78523\\ 5.78269\\ 2.78014\\ 2.77761\\ 2.77761\\ 2.77507\\ 2.77254\end{array}$	19 18 17 16 15 14 13 12 11 10
51 52 53 54 55 56 57 58 59 60	.30287 .30319 .30351 .30382 .30414 .30446 .30478 .30509 .30541 .30573	3.30174 3.20829 3.29483 3.29139 3.28795 3.28452 3.28452 3.28109 3.27767 8.27426 3.27085	.32203 .32235 .32267 .32299 .32331 .32363 .32396 .32428 .32428 .32429 .32492	3,10532 3,09914 3,09606 3,09298 3,08991 3,08685 3,08379 3,08073 3,07768	.34140 .34173 .34205 .34238 .34270 .34303 .34303 .34335 .34368 .34408 .34403	2.92910 2.92632 2.92354 2.92076 2.91799 2.91523 2.91246 2.90971 2.90696 2.90421	.36101 .36134 .36167 .36199 .36232 .36265 .36298 .36331 .36364 .36397	2.77002 2.76750 2.76498 2.76247 2.75996 2.75746 2.7546 2.75246 2.75246 2.75246 2.75246 2.74997 2.74748	9876543210
1	Cotang	Tang 3°	Cotang	Tang 2°	Cotang	Tang 1º	Cotang	Tang 0°	1

Γ.	20°		1 2	21°		22°		23°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	1	
	.36397 .86430 .36463 .36496 .36529 .36529 .36562 .366595 .36668 .36661 .36694	2.74748 2.74499 2.74251 2.7404 2.73756 2.73509 2.73263 2.73017 2.72771 2.72771 2.72528	.38386 .38420 .38453 .38457 .38520 .38553 .38587 .38620 .38654 .38687 .38687	2.60509 2.60283 2.60057 2.59831 2.598606 2.59381 2.59156 2.58932 2.58708 2.58708 2.58484 2.58484	.40403 .40436 .40470 .40504 .40538 .40572 .40606 .40643 .40674	2.47509 2.47302 2.47095 2.46888 2.46682 2.46676 2.46270 2.46065 2.45860 2.45655 2.45555	.42447 .42482 .42516 .42551 .42585 .42619 .42654 .42688 .42722 .42757 .42757	2.35585 2.35395 2.35205 2.35205 2.34825 2.34636 2.34447 2.34258 2.34069 2.33881 2.33881	60 59 58 57 56 55 55 54 53 52 51	
11 12 13 14 15 16 17 18 19 20	.36760 .36793 .36826 .36859 .36859 .36992 .30925 .30958 .30991 .37024 .37057	2.72036 2.71792 2.71548 2.71305 2.71062 2.70819 2.70577 2.70335 2.70094 2.69853	.38754 .38787 .38821 .38854 .38988 .38921 .38955 .39988 .39023 .89055	2.58038 2.57815 2.577593 2.573571 2.57150 2.56928 2.56707 2.56487 2.56256 2.56046	.40775 .40809 .40843 .40877 .40911 .40945 .40979 .41013 .41047 .41081	2,45246 2,45043 2,44636 2,44433 2,44230 2,44027 2,43825 2,43623 2,43422	.42826 .42800 .42894 .42929 .42963 .4298 .4298 .43032 .43067 .43101 .43136	2.33505 2.33317 2.33130 2.32943 2.32756 2.32570 2.32383 2.32197 2.32012 2.31826	49 48 47 46 45 44 43 42 41 40	
21 22 23 24 25 20 27 23 20 20 30	.37090 .37123 .37157 .37190 .37223 .37256 .37289 .37325 .37355 .37388	2.69612 2.60371 2.60131 2.63392 2.63653 2.63414 2.60175 2.67007 2.67700 2.67462	. \$9089 . \$9122 . \$9156 . \$9190 . \$9223 . \$9257 . \$9290 . \$9324 . \$9357 . \$9291	$\begin{array}{c} 2.55827\\ 2.55608\\ 2.55389\\ 2.55170\\ 2.54952\\ 2.54734\\ 2.54516\\ 2.54299\\ 2.54082\\ 2.53865\end{array}$.41115 .41149 .41183 .41217 .41251 .41255 .41319 .41353 .41387 .41421	2.43220 2.43019 2.42819 2.42618 2.42418 2.42218 2.42218 2.42019 2.41819 2.41620 2.41421	.43170 .43205 .43239 .43274 .43308 .43343 .43378 .43412 .43447 .43481	2.31641 2.31456 2.31271 2.31086 2.30902 2.30718 2.30534 2.30351 2.30167 2.29984	39 38 37 36 35 34 33 32 31 30	
31 32 33 34 35 36 37 33 39 40	.37422 .37455 .37488 .37521 .37554 .37588 .37021 .37654 .37687 .37720	2.67225 2.63369 2.66752 2.63516 2.66281 2.66046 2.65811 2.65576 2.65342 2.65342 2.65109	.39425 .33458 .33458 .33526 .33526 .39593 .39593 .39626 .39660 .39660 .39604 .39727	2.53648 2.53432 2.53217 2.53001 2.52706 2.52571 2.52357 2.52142 2.51929 2.51715	.41455 .41490 .41524 .41528 .41528 .41626 .41606 .41694 .41728 .41763	2.41223 2.41025 2.40827 2.40629 2.40432 2.40235 2.40038 2.39841 2.39645 2.39449	.43516 .43550 .43585 .43620 .43654 .43689 .43724 .43758 .43793 .43828	$\begin{array}{c} 2.29801\\ 2.29619\\ 2.29437\\ 2.29254\\ 2.29073\\ 2.28891\\ 2.28710\\ 2.28528\\ 2.28528\\ 2.28348\\ 2.28167\end{array}$	29 28 27 26 25 24 23 22 21 20	
41 42 43 44 45 46 47 48 40 50	.37754 .37787 .37820 .37853 .37887 .37920 .37953 .37986 .33020 .38053	2.64875 2.61642 2.64410 2.64177 2.63345 2.63714 2.63483 2.63252 2.63021 2.62791	.39761 .39795 .39829 .39862 .39896 .39900 .30900 .30963 .30997 .40031 .40065	2.51502 2.51289 2.51076 2.50864 2.50652 2.50440 2.50229 2.50018 2.49807 2.49597	.41797 .41831 .41865 .41899 .41933 .41968 .42002 .42036 .42070 .42105	2.39253 2.39058 2.38863 2.38463 2.38473 2.38279 2.38084 2.37891 2.37594	.43862 .43897 .43932 .43966 .44001 .44036 .44071 .44105 .44140 .44175	2.27987 2.27806 2.27626 2.27447 2.27267 2.27088 2.26009 2.26730 2.26552 2.26374	19 18 17 16 15 14 13 12 11 10	
51 52 53 54 55 56 57 58 59 60	.38086 .39120 .38153 .39186 .39220 .38253 .38286 .38286 .38320 .38353 .38386	$\begin{array}{c} 2.62561\\ 2.62332\\ 2.62103\\ 2.61874\\ 2.61646\\ 2.61418\\ 2.61418\\ 2.61190\\ 2.60963\\ 2.60736\\ 2.60509 \end{array}$.40098 .40132 .40166 .40200 .40234 .40267 .40301 .40335 .40369 .40403	$\begin{array}{c} 2.49386\\ 2.49177\\ 2.48967\\ 2.48758\\ 2.48549\\ 2.48340\\ 2.48132\\ 2.47924\\ 2.47716\\ 2.47509\end{array}$.42139 42173 42207 42242 42276 42210 42276 42310 42345 42379 42413 42447	2.37311 2.37118 2.36925 2.36733 2.36541 2.36349 2.36158 2.35967 2.35585	$\begin{array}{r} .44210\\ .44244\\ .44279\\ .44314\\ .44349\\ .44349\\ .44384\\ .44453\\ .44453\\ .44458\\ .44523\end{array}$	2.26196 2.26018 2.25840 2.25663 2.25486 2.25309 2.25132 2.24956 2.24780 2.24780 2.24604	9876549210	
S.	Cotang Tang,		Cotang	Tang 8°	Cotang Tang 67°		Cotang 6	Cotang Tang 66°		
1		, 24°		25°		2	6°	2	1.	
---	----------------------------	--	---	--	---	--	---	--	---	----------------------------
	<u>_</u>	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	1
	0 1 2 3	.44523 .44558 .44593 .44627	2.24604 2.24428 2.24252 2.24077	.46631 .4666 6 .46702 .46737	2.14451 2.14288 2.14125 2.13963	.48773 .48809 .48845 .48881	2.05030 2.04879 2.04728 2.04577	.50953 .50989 .51026 .51063	1.96261 1.96120 1.95979 1.95838	60 59 58 57
	4 5 6	.44662 .44697 .44732	$\begin{array}{c} 2.23902 \\ 2.23727 \\ 2.23553 \end{array}$.46772 .46808 .46843	2.13801 2.13639 2.13477	.48917 .48953 .48989	2.04426 2.04276 2.04125	.51099 .51136 .51173	1.95698 1.95557 1.95417	56 55 54
	7 8 9	.44767 .44802 .44837	2.23378 2.23204 2.23030	.46879 .46914 .46950	$\begin{array}{c} 2.13316 \\ 2.13154 \\ 2.12993 \end{array}$.49026 .49062 .49098	2.03975 2.03825 2.03675	.51209 .51246 .51283	1.95277 1.95137 1.94997	53 52 51
	10 11	.44872	2.22857	.46985	2.12832	.49134	2.03526	.51319	1.94858	50 49
	13 13 14 15	.44942 .44977 .45012 .45047	2.22310 2.22337 2.22164 2.21992	.47092 .47128 .47163	2.12311 2.12350 2.12190 2.12030	.49200 .49242 .49278 .49315	2.03078 2.02929 2.02780	.51393 .51430 .51467 .51503	1.94579 1.94440 1.94301 1.94162	48 47 46 45
	16 17 18 19	.45082 .45117 .45152 .45187	$\begin{array}{r} 2.21819 \\ 2.21647 \\ 2.21475 \\ 2.21304 \end{array}$.47199 .47234 .47270 .47270	$\begin{array}{c} 2.11871 \\ 2.11711 \\ 2.11552 \\ 2.11292 \end{array}$.49351 .49387 .49423 .49459	2.02631 2.02483 2.02335 2.02187	.51540 .51577 .51614 .51651	$\begin{array}{r} 1.94023 \\ 1.93885 \\ 1.93746 \\ 1.93608 \end{array}$	44 43 42 41
	20 21	.45222	2.21132	.47341	2.11233	.49495	2.02039	.51688	1.93470	4 0 39
	23 24 25	.45327 .45362 .45397	2.20750 2.20619 *2.20449 2.20278	.47448 .47483 .47519	2.10516 2.10758 2.10600 2.10442	.49508 .49604 .49640 .49677	$\begin{array}{r} 2.01743 \\ 2.01596 \\ 2.01449 \\ 2.01302 \end{array}$.51798 .51835 .51872	$ \begin{array}{r} 1.93195 \\ 1.93057 \\ 1.92920 \\ 1.92782 \end{array} $	37 36 35
	26 27 28 29 30	.45432 .45467 .45502 .45538 .45573	2.20108 2.19938 2.19769 2.19599 2.19430	.47555 .47590 .47626 .47662 .47698	2.10284 2.10126 2.09969 2.09811 2.09654	.49713 .49749 .49786 .49822 .49858	2.01155 2.01008 2.00862 2.00715 2.00569	.51909 .51946 .51983 .52020 .52057	$1.92645 \\1.92508 \\1.92371 \\1.92235 \\1.92098$	34 33 32 31 30
	31 32 33	.45608 .45643 .45678	2.19261 2.19092 2.18923	.47733 .47769 .47805	2.09498 2.09341 2.09184	.49894 .49931 .49967	2.00423 2.00277 2.00131	.52094 .52131 .52168	1.91962 1.91826 1.91690	29 28 27
	34 35 36	.45713 .45748 .45784	2.18755 2.18587 2.18419	.47840 .47876 .47912	2.09028 2.08872 2.08716	.50004 .50040 .50076	1.99986 1.99841 1.99695	.52205 .52242 .52279	1.91554 1.91418 1.91282	26 25 24
	38 39 40	.45854 .45889 .45924	2.18084 2.17916 2.17749	.47984 .43019 .48055	2.08405 2.03250 2.08094	.50113 .50149 .50185 .50222	1.03406 1.09261 1.99116	.52353 .52390 .52427	1.91012 1.90876 1.90741	22 21 20
	41 42 43	.45960 .45995 .46030	2.17582 2.17416 2.17249	.48091 .43127 .48163	2.07939 2.07785 2.07630	.50258 .50295 .50331	$\begin{array}{r} 1.98972 \\ 1.93828 \\ 1.98684 \end{array}$.52464 .52501 .52538	1.90607 1.90472 1.90337	19 18 17
	44 45 46	.46065 .46101 .46136	2.17083 2.16917 .2.16751	.48198 .48234 .48270	2.07476 2.07321 2.07167	.50368 .50404 .50441	$\begin{array}{r} 1.98540 \\ 1.98396 \\ 1.98253 \end{array}$.52575 .52613 .52650	$\begin{array}{r} 1.90203 \\ 1.90069 \\ 1.89935 \end{array}$	16 15 14
	47 43 49 50	.46206 .46242 .46277	2.16385 2.16420 2.16255 2.16090	.48300 .48342 .48378 .48414	2.06014 2.06860 2.06706 2.06553	.50477 .50514 .50550 .50587	$1.98110 \\ 1.97966 \\ 1.97823 \\ 1.97681$.52687 .52724 .52761 .52798	1.89801 1.89667 1.89533 1.89400	13 12 11 10
	51 52	.46312	2.15925 2.15760	.48450 .43486	2.06400 2.06247	.50623	1.97538 1.97395	.52836 .52873	1.89266	98
	53 54 55	.40383 .46418 .46454	2.15596 2.15432 2.15268 2.15268	.43557 .48593	2.06094 2.05942 2.05790	.50733 .50769	1.97253 1.97111 1.96969 1.96969	.52910 .52947 .52985	1.89000 1.88867 1.88734	65
	57 58 50	.40489 .46525 .46560	2.15104 2.14940 2.14777	.48665 .48701	2.05037 2.05485 2.05333	.50843 .50879	1.96685 1.96544	.53059 .53096	1.88469 1.88337	43221
	60	.40595 .46631	2.14014	.40/37 .48773	2.05030	.50910 .50953	1.96261	.53171 .53171	1.88073	0
	'	6	5°	Cotang Tang 64°		Gotang	3°		•	

Γ,	28°		29°		8	30°	1 3	1	
1_	Tang Cotang .53171 1.88073		Tang	Cotang	Tang	Tang Cotang		Tang Cotang	
10400	1.53171 1.88073 1.53208 1.87941 2.53246 1.87809 3.53283 1.87677 4.53290 1.87677		.55431 .55469 .55507 .55545	$\begin{array}{c} 1.80405 \\ 1.80281 \\ 1.80158 \\ 1.80034 \end{array}$.57735 .57774 .57813 .57851	$\begin{array}{r} 1.73205 \\ 1.73089 \\ 1.72973 \\ 1.72857 \end{array}$	$\begin{array}{r} .60086\\ .60126\\ .60165\\ .60205\end{array}$	$\begin{array}{r} 1.66428 \\ 1.66318 \\ 1.66209 \\ 1.66099 \end{array}$	60 59 58 57
45070	.53320 1.87346 .53358 1.87415 .53395 1.87283 .53432 1.87152 .53470 1.87021		.55621 .55659 .55697 .55736	$ \begin{array}{r} 1.79911 \\ 1.79788 \\ 1.79665 \\ 1.79542 \\ 1.59410 \\ \end{array} $.57890 .57929 .57968 .58007 .58046	$\begin{array}{c} 1.72741 \\ 1.72625 \\ 1.72509 \\ 1.72393 \\ 1.72393 \\ 1.79979 \end{array}$.60245 .60284 .60324 .60364 .60364	$\begin{array}{c} 1.65990 \\ 1.65881 \\ 1.65772 \\ 1.65663 \\ 1.65663 \end{array}$	56 55 54 53
10	.53470 1.87021 .53507 1.86891 .53545 1.86760		.55774	1.79296	.58085	1.72163 1.72047	.60403	1.65445 1.65337	51 50
$ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ \end{array} $.53620 .53620 .53657 .53694 .53732 .53769 .53807 .53844 .53882 .53920	$\begin{array}{c} 1.80630\\ 1.86499\\ 1.86369\\ 1.86239\\ 1.86109\\ 1.85979\\ 1.85850\\ 1.85720\\ 1.85591\\ 1.85591\\ 1.85462 \end{array}$	$\begin{array}{r} .55850\\ .55888\\ .55926\\ .55964\\ .56003\\ .56041\\ .56079\\ .56117\\ .56156\\ .56194 \end{array}$	$\begin{array}{r} 1.79051\\ 1.78929\\ 1.78807\\ 1.78563\\ 1.78563\\ 1.78541\\ 1.78319\\ 1.78198\\ 1.78077\\ 1.77955 \end{array}$.58162 .58201 .58240 .58279 .58318 .58357 .58396 .58435 .58474 .58513	$\begin{array}{c} 1.71932\\ 1.71817\\ 1.71702\\ 1.71588\\ 1.71473\\ 1.71358\\ 1.71244\\ 1.71129\\ 1.71015\\ 1.70901 \end{array}$.60522 .60562 .60602 .60642 .60642 .60761 .60721 .60761 .60801 .60841 .60881	$\begin{array}{c} \textbf{1.65228} \\ \textbf{1.65120} \\ \textbf{1.65011} \\ \textbf{1.64903} \\ \textbf{1.64795} \\ \textbf{1.64687} \\ \textbf{1.64579} \\ \textbf{1.64579} \\ \textbf{1.64363} \\ \textbf{1.64256} \end{array}$	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 26 27 28 29 30	.53957 .53995 .54032 .54070 .54107 .54145 .54183 .54220 .54258 .54296	1.85333 1.85204 1.85075 1.84946 1.84818 1.84689 1.84561 1.84433 1.84305 1.84305	$\begin{array}{r} .56232 \\ .56270 \\ .56309 \\ .56347 \\ .56385 \\ .56424 \\ .56424 \\ .56462 \\ .56501 \\ .56529 \\ .56577 \end{array}$	$\begin{array}{c} 1.77834\\ 1.77713\\ 1.77592\\ 1.77471\\ 1.77351\\ 1.77230\\ 1.77110\\ 1.76990\\ 1.76869\\ 1.76749\end{array}$.58552 .58591 .58631 .58670 .58709 .58709 .58787 .58787 .58826 .58826 .58825 .58905	$\begin{array}{c} 1.70787\\ 1.70673\\ 1.70560\\ 1.70560\\ 1.70446\\ 1.70332\\ 1.70219\\ 1.70219\\ 1.70106\\ 1.69992\\ 1.69879\\ 1.69766\end{array}$.60921 .60960 .61000 .61040 .61080 .61120 .61160 .61200 .61240 .61280	$\begin{array}{c} \textbf{1.64148}\\ \textbf{1.64041}\\ \textbf{1.63934}\\ \textbf{1.63826}\\ \textbf{1.63719}\\ \textbf{1.63612}\\ \textbf{1.63505}\\ \textbf{1.63505}\\ \textbf{1.63398}\\ \textbf{1.63292}\\ \textbf{1.63185} \end{array}$	39 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	.54333 .54371 .54409 .54446 .54446 .54484 .54522 .54560 .54597 .54635 .54673	1.84049 1.83922 1.83794 1.83667 1.83540 1.83413 1.83286 1.83159 1.83033 1.82906	.56616 .56654 .56693 .56731 .56769 .56808 .56846 .56846 .56885 .56923 .56963	$\begin{array}{r} 1.76629\\ 1.76510\\ 1.76390\\ 1.76271\\ 1.76151\\ 1.76032\\ 1.75913\\ 1.75794\\ 1.75675\\ 1.75556\end{array}$.58944 .58983 .59022 .59061 .59101 .59140 .59179 .59218 .59258 .59297	$\begin{array}{c} \textbf{1.69653}\\ \textbf{1.69541}\\ \textbf{1.69541}\\ \textbf{1.69428}\\ \textbf{1.69316}\\ \textbf{1.69203}\\ \textbf{1.69203}\\ \textbf{1.69091}\\ \textbf{1.689799}\\ \textbf{1.68866}\\ \textbf{1.68754}\\ \textbf{1.68643} \end{array}$.61320 .61360 .61400 .61440 .61480 .61529 .61561 .61601 .61641 .61681	$\begin{array}{c} 1.63079\\ 1.62972\\ 1.62866\\ 1.62760\\ 1.62654\\ 1.62548\\ 1.6248\\ 1.62336\\ 1.62230\\ 1.62125\\ \end{array}$	29 28 27 26 25 24 23 22 21 20
$\begin{array}{r} 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.57000 .57039 .57078 .57116 .57155 .57193 .57232 .57232 .57309 .57348	$\begin{array}{r} 1.75437\\ 1.75319\\ 1.75200\\ 1.75082\\ 1.74964\\ 1.74846\\ 1.74728\\ 1.74610\\ 1.74492\\ 1.74375\end{array}$	$\begin{array}{r} .59336\\ .59376\\ .59415\\ .59454\\ .59454\\ .59533\\ .59573\\ .59612\\ .59651\\ .59691 \end{array}$	$\begin{array}{c} \textbf{1.68531} \\ \textbf{1.68419} \\ \textbf{1.68308} \\ \textbf{1.68196} \\ \textbf{1.68085} \\ \textbf{1.67974} \\ \textbf{1.67863} \\ \textbf{1.67752} \\ \textbf{1.67641} \\ \textbf{1.67530} \end{array}$.61721 .61761 .61801 .61842 .61882 .61922 .61962 .62003 .62043 .62083	$\begin{array}{r} 1.62019\\ 1.61914\\ 1.61808\\ 1.61703\\ 1.61598\\ 1.61493\\ 1.61388\\ 1.61283\\ 1.61283\\ 1.61179\\ 1.61074 \end{array}$	19 18 17 16 15 14 13 12 11 10
51 52 53 54 55 56 57 58 59 60	.55089 .55127 .55165 .55203 .55241 .55279 .55317 .55355 .55393 .55393	1.81524 1.81399 1.81274 1.81150 1.81025 1.80901 1.80777 1.80653 1.80529 1.80405	.57386 .57425 .57464 .57503 .57541 .57580 .57619 .57657 .57656 .57735	$\begin{array}{r} \textbf{1.74257} \\ \textbf{1.74140} \\ \textbf{1.74022} \\ \textbf{1.73905} \\ \textbf{1.73788} \\ \textbf{1.73671} \\ \textbf{1.73555} \\ \textbf{1.73438} \\ \textbf{1.73321} \\ \textbf{1.73321} \\ \textbf{1.73325} \end{array}$.59730 .59770 .59809 .59849 .59888 .59928 .59928 .59967 .60007 .60046 .60086	$1.67419 \\ 1.67309 \\ 1.67198 \\ 1.67088 \\ 1.66978 \\ 1.66867 \\ 1.66867 \\ 1.66647 \\ 1.66538 \\ 1.66$.62124 .62164 .62204 .62245 .62285 .62325 .62366 .62406 .62446 .62446	$\begin{array}{r} 1.60970\\ 1.60865\\ 1.60761\\ 1.60657\\ 1.60553\\ 1.60449\\ 1.60345\\ 1.60241\\ 1.60137\\ 1.60229\end{array}$	9 8 7 6 5 4 3 2 1 0
, 10	0 .55431 1.80405 Cotang Tang 61°		Cotang	Tang 0°	Cotang 5	Tang 9•	Cotang	Tang	1

	3	2°	3	30	3	4°	3		
É	Tang Cotang .62487 1.60033		Tang	Cotang	Tang	Cotang	Tang	Cotang	Ĺ
0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.64941	1.53986	.67451	1.48256	.70021	1.42815	60
	.62568	1.59826	.65024	1.53791	.67536	1.48070	70107	1.42638	58
8	.62608	1.59723	.65065	1.53693	.67578	1.47977	.70151	1.42550	57
	.62649	1.59620	.65106	1.53595	.67620	1.47885	.70194	1.42462	56
6	.02089	1.59317	65189	1.53400	67705	1.47699	70238	1.42374	54
7	62770 1.59414		.65231	1.53302	.67748	1.47607	.70325	1.42198	53
8	.62811 1.59208		.65272	1.53205	.67790	1.47514	.70368	1.42110	52
1 10	.62852 1.5910562892 1.59002		.65314	1.53107	67832	1.47422	.70412	1.42022	51
1.1	60000	1.00000		1.00010	00010	1.11000	P0400	4.11002	100
12	.62973	1.58797	.65438	1.52915	.67960	1.47146	.70499	1.41759	49
13	.63014	1.58695	.65480	1.52719	.68002	1.47053	.70586	1.41672	47
14	.63055	1.58593	.65521	1.52622	.68045	1.46962	.70629	1.41584	46
15	.63095	1.58490	.05503	1.52525	.68088	1.46870	.70673	1.41497	45
17	.63177	1.58286	.65646	1.52332	.68173	1.46686	.70760	1.41322	43
18	.63217	1.58184	.65688	1.52235	.68215	1.46595	.70804	1.41235	42
19	.63258	1.58083	.65729	1.52139	.68258	1.46503	.70848	1.41148	41
20	.03279	1.0/951	11160.	1.52045	.08301	1.40411	.70891	1.41061	40
21	63340	1.57879	.65813	1.51946	.68343	1.46320	.70935	1.40974	39
23	.63421	1.57676	.65896	1.51754	.08320	1.46137	.71023	1.40300	37
24	.63462	1.37575	.65938	1.51058	.68471	1.46046	.71066	1.40714	36
25	.63503	1.57474	.65980	1.51562	.68514	1.45955	.71110	1.40627	35
20	63584	1.57372	.66021	1.51400	.68557	1.45804	.71154	1.40540	154
28	.63625	1.57170	.66105	1.51275	.68642	1.45682	.71242	1.40367	32
29	.63666	1.57069	.66147	1.51179	.68685	1.45592	.71285	1.40281	31
30	.63707	1.56969	.66189	1.51084	.68728	1.45501	.71329	1.40195	30
31	.63748	1.56868	.66230	1.50988	.68771	1.45410	.71373	1.40109	29
33	63830	1.56667	66314	1.50393	68857	1.45520	71417	1.40022	20
31	.63871	1.56566	.66356	1.50702	.68900	1.45139	.71505	1.39850	26
35	.63912	1.56466	.66398	1.50607	.68942	1.45049	.71549	1.39764	25
30	.63953	1.56306	.66440	1.50512	.68985	1.44958	.71593	1.39679	24
38	.64035	1.56165	.66524	1.50322	.69071	1.44778	.71681	1.39593	22
30	.64076	1.56065	.66566	1.50228	.69114	1.44688	.71725	1.39421	21
40	.64117	1.55966	.66608	1.50133	.69157	1.44598	.71769	1.39336	20
41	.64158	1.55866	.66650	1.50038	.69200	1.44508	.71813	1.39250	19
43	.64199	1.55766	.66692	1.49944	.69243	1.44418	.71857	1.39165	18
4	.64281	1.55567	.66776	1.49755	69329	1.44239	71946	1.38004	10
4	.64322	1.55467	.66818	1.49661	.69372	1, 44149	.71990	1.38909	15
4	64363	1.55368	.66860	1.49566	.69416	1.44060	.72034	1.38824	14
4	64446	1.55170	66944	1 49378	69502	1 43881	.72078	1.38/38	10
4	.64487	1.55071	.66006	1.49284	.69545	1.43792	.72167	1.38508	ii
5	.64528	1.54972	.67023	1.49190	.69588	1.43703	.72211	1.38484	10
5	.64569	1.54873	.67071	1.49097	.69631	1.43614	.72255	1.38399	0
5	.64610	1.54774	.67113	1.49003	.69675	1.43525	.72299	1.38314	18
5	4 64693	1.54576	67197	1.48816	.69761	1.43347	72388	1.38145	6
5	5 .64734	1.54478	.67239	1.48722	.69804	1.43258	.72432	1.38060	5
5	6 .64775	1.54379	.67282	1.48629	.69847	1.43169	.72477	1.37976	4
10	64817	1.54189	67768	1.48036	.69891	1 43080	.72521	1.37891	00
5	9 64899	1.54085	.67409	1.48349	.69977	1.42903	72610	1.37722	11
6	0 .64941	1.53986	.67451	1.48256	.70021	1.42815	.72654	1.37638	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	
		57°		56°		55°	1	j4°	

	3	6°]	3	7°	3	8°	3		
1	Tang Cotang		Tang	Cotang	Tang	Cotang	Tang	Cotang	_
0	.72654 72699	1.37638	.75355	1.32704	.78129	1.27994	.80978	1.23490	60 50
2	.72743	1.37470	.75447	1.32544	.78222	1.27841	.81075	1.23343	58
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.75492	1.32464	.78269	1.27764	.81123	1.23270	57
5	.72877 1.37218 .75584 1.32304		.78363	1.27611	.81220	1.23123	55		
6	.72921	1.37134	.75629	1.32224	.78410	1.27535	.81268	1.23050	54
8	.72900	1.37050	.75721	1.32064	.78504	1.27382	.81364	1.22977	52
9	.73055	1.36883	.75767	1.31984	.78551	1.27306	.81413	1.22831	51
10	.73100	1.36800	.75812	1.31904	.78598	1.27230	.81461	1.22758	50
11	.73144	1.36716	.75858	1.31825	.78645	1.27153	.81510	1.22685	49
13	.73234	1.36549	.75950	1.31666	.78739	1.27001	.81606	1.22539	47
14	.73278	1.36466	.75996	1.31586	.78786	1.26925	.81655	1.22467	46
15	.73323	1.36383	.76042	1.31507	.18834	1.26849 1.26774	.81703	1.22394	40
17	.73413	1.36217	.76134	1.31348	.78928	1.26698	.81800	1.22249	43
18	.78457	1.36134	.76180	1.31269	.78975	1.26622	.81849	1.22176	42
20	.73547	1.35968	.76272	1.31110	.79070	1.26471	.81946	1.22031	40
21	.73592	1.35885	.76318	1.31031	.79117	1.26395	.81995	1.21959	39
22	.73637	1.35802	.76364	1.30952	.79164	1.26319	.82044	1.21886	38
23	.73681	1.35719	.76410	1.30873	.79212	1.26244 1.26169	.82092	1.21814	36
25	.73771	1.35554	.76502	1.30716	.79306	1.26093	.82190	1.21670	35
26	.73816	1.35472	.76548	1.30637	.79354	1.26018	.82238	1.21598	34
28	.73906	1.35307	.76640	1.30480	.79449	1.25867	.82336	1.21454	32
29	.73951	1.35224	.76686	1.30401	.79496	1.25792	.82385	1.21382	31
30			.10133	1.30323	.79044	1.20/11	.02401	1.21310	30
32	.74041	1.34978	.76825	1.30166	.79591	1.25567	.82531	1.21238	28
33	.74131	1.34896	.76871	1.30087	.79686	1.25492	.82580	1.21094	27
34	.74170	1.34814	.70918	1.29931	79734	1.25343	.82029	1.21023	20
36	.74267	1.34650	.77010	1.29853	.79829	1.25268	.82727	1.20879	24
37	.74312	1.34568	.77057	1.29775	.79877	1.25193	.82776	1.20808	23
39	.74402	1.34405	.77149	1.29618	.79972	1.25044	.82874	1.20665	21
40	.74447	1.34323	.77196	1.29541	.80020	1.24969	.82923	1.20593	20
41	.74492	1.34242	.77242	1.29463	.80067	1.24895	.82972	1.20522	19
43	.74583	1.34079	.77335	1.29307	.80163	1.24746	.83071	1.20379	17
44	.74628	1.33998	.77382	1.29229	.80211	1.24672	.83120	1.20308	16
40	.74074	1.33910	.77475	1.29152 1.29074	.80208	1.24597	.83109	1.20237	10
47	.74764	1.33754	.77521	1.28997	.80354	1.24449	.83268	1.20095	13
48	.74810	1.33673	.77568	1.28919	.80402	1.24375	.83317	1.20024	12
50	.74900	1.33511	.77661	1.28764	.80498	1.24227	.83415	1.19882	10
51	.74946	1.33430	.77708	1.28687	.80546	1.24153	.83465	1.19811	9
52	.74991	1.33349	.77754	1.28610	.80594	1.24079	.83514	1.19740	87
54	.75082	1.33187	.77848	1.28456	.80690	1.23931	.83613	1.19599	6
55	.75128	1.33107	.77895	1.28379	.80738	1.23858	.83662	1.19528	5
57	.75219	1.32946	.77988	1.28225	.80834	1.23710	.83761	1.19387	8
58	.75264	1.32865	.78035	1.28148	.80882	1.23637	.83811	1.19316	2
60	.75355	1.32704	.78129	1.27994	80930	1.23503	.83800	1.19246	0
-	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	-
1'	1	53°	5	52°	1	i1º	8	i0°	1

1	40°		4	1°	4	2*	4	43°		
1'	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	1	
1	.83910	1.19175	.86929	1.15037	.90040	1.11061	.93252	1.07237	60	
	.83960	1.19105	.86980	1.14969	.90093 1 10996		.93306	1.07174	59	
1	.84059	1.18964	.87082	1.14854	.90199	1.10867	.93415	1.07049	57	
4	.84108	1.18894	.87133	1.14767	.90251	1.10802	.93469	1.06987	56	
l	.84208	1.18754	.87236	1.14632	.90304	1.10/3/	.93578	1.06925	54	
	.84258	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.90410	1.10607	.93633	1.06800	53		
1 3	.84307	1.18014	.87338	1.14498	90463	1.10543	.93688	1.06738	52	
10	.84407	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.90569	1.10414	.93797	1.06613	50		
11	.84457	1.18404	.87492	1.14296	.90621	1.10349	.93852	1.06551	49	
13	.84556	1.18264	.87595	1.14162	.90727	1.10285	.93961	1.06427	40	
14	.84606	1.18194	.87646	1.14095	.90781	1.10156	.94016	1.06365	46	
11	.84000	1.18125	.87098	1.14028	90834	1.10091	.94071	1.06303	45	
17	.84756	1.17986	.87801	1.13894	.90940	1.09963	.94180	1.06179	43	
18	.84906	1.17916	.87852	1.13828	.90993	1.09899	.94235	1.06117	42	
20	.84906	1.17777	.87955	1.13694	.91099	1.09770	.94290	1.05094	41 40	
21	.84956	1.17708	.88007	1.13627	.91153	1.09706	.94400	1.05932	39	
2:	.85006	1.17638	.88059	1.13561	.91206	1.09642	.94455	1.05870	38	
24	.85107	1.17500	.88162	1,13428	.91313	1.09514	.94565	1.05809	36	
2	.85157	1.17430	.88214	1.13361	.91366	1.09450	.94620	1.05685	35	
27	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.88205	1.13295	.91419	1.09386	94676	1.05624	34	
28	.85308	1.17223	.88369	1.13162	.91526	1.09258	.94786	1.05501	32	
29	85358	1.17154 1.17085	.88421 1.13096 .88473 1.13029		.91580	.91580 1.09195 .91633 1.09131		1.05439	31	
31	.85458	.85408 1.17016 .88524 1.12963		.91687	1.09067	.94952	1.05317	29		
3:	.85509	1.16947	.88576	1.12897	.91740	1.09003	.95007	1.05255	28	
34	.85609	1.16809	.88680	1.12765	.91847	1.08876	.95002	1.05133	26	
3	.85660	1.16741	.88732	1.12699	.91901	1.03813	.95173	1.05072	25	
3	.85761	1.16603	.88836	1.12035	.91955	1.08686	. 95229	1.05010	23	
38	.85811	1.16535	.88888	1.12501	.92062	1.08622	.95340	1.04888	22	
38	.85862	1.16466	.88940	1.12435	.92116	1.03559	.95395	1.04827	21 20	
41	.85963	1.16329	.89045	1.12303	.92224	1.08432	.95506	1.04705	19	
42	86064	1.16261 1 16192	.89097	1.12238	.92277	1.03369	.95562	1.04644	18	
4	.86115	1.16124	.89201	1.12106	.92385	1.08243	.95673	1.04522	16	
4	.86166	1.16056	.89253	1.12041	.92439	1.08179	.95729	1.04461	15	
4	.86267	1.15919	.89358	1.11909	.92547	1.08053	.95841	1.04401	14	
48	.86318	1.15851	.89410	1.11844	.92601	1.07990	.95897	1.04279	12	
4:	.86368	1.15783	.89463	1.11778	.92655	1.07927	.95952	1.04218	11 10	
51	.86470	1.15647	.89567	1.11648	.92763	1.07801	.96064	1.04097	9	
5	.86572	1.15511	.89620	1.11582	.92817	1.07738	.96120	1.04036	8	
5	.86623	1.15443	.89725	1.11452	.92926	1.07613	.96232	1.03915	6	
5	.66674	1.15375	.89777	1.11387	.92980	1.07550	.96288	1.03855	5	
5	.86776	1.15240	.89883	1.11256	.93088	1.07425	.96400	1.03734	3	
5	.86827	1.15172	.89935	1.11191	.93143	1.07362	.96457	1.03674	2	
6	.86929	1.15037	.90040	1.11061	.93252	1.07239	.90513	1.03553	0	
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang		
	1 4	49° 48°		4	70	4				

1.	44°			,	4	4°		Ι,	4	4 °	Ϊ,
	Tang	Cotang			Tang	Cotang			Tang	Cotang	
0	.96569	1.03553	60	20	.97700	1.02355	40	40	.98843	1.01170	20
1	.96625	1.03493	59	21	.97756	1.02295	39	41	.98901	1.01112	19
12	.96681	1.03433	58	22	.97813	1.02236	38	42	. 98958	1.01053	18
3	.96738	1.03372	57	23	.97870	1.02176	37	43	.99016	1.00994	17
4	.96794	1.03312	56	24	.97927	1.02117	36	44	. 99073	1.00935	16
5	.96850	1.03252	55	25	.97984	1.02057	35	45	.99131	1.00876	15
6	.96907	1.03192	54	26	.98041	1.01998	34	46	.99189	1.00818	14
7	.96963	1.03152	53	27	.98098	1.01939	33	47	.99247	1.00759	13
8	.97020	1.03072	52	28	.98155	1.01879	32	48	.99304	1.00701	12
9	.97076	1.03012	51	29	.98213	1.01820	31	49	.99362	1.00642	11
10	.97133	1.02952	50	30	.98270	1.01761	30	50	.99420	1.00583	10
11	.97189	1.02892	49	31	.98327	1.01702	29	51	.99478	1.00525	9
12	.97246	1.02832	48	32	.98384	1.01642	28	52	.99536	1.00467	8
13	.97302	1.02772	47	33	.98441	1.01583	27	53	.99594	1.00408	7
14	.97359	1.02713	46	34	.98499	1.01524	26	54	.99652	1.00350	6
15	.97416	1.02653	45	35	.98556	1.01465	25	55	.99710	1.00291	5
16	.97472	1.02593	44	36	.98613	1.01406	24	56	.99768	1.00233	4
17	.97529	1.02533	43	37	.98671	1.01347	23	57	. 99826	1.00175	3
18	.97586	1.02474	42	38	.98728	1.01288	22	58	.99884	1.00116	2
19	.97643	1.02414	41	39	.98786	1.01229	21	59	.99942	1.00058	1
20	.97700	1.02355	40	40	.98843	1.01170	20	60	1.00000	1.00000	0
-	Cotang	Tang		1	Cotang	Tang	,	,	Cotang	Tang	
	45°				4	5•			4	5•	

