NPS ARCHIVE 1968 YESKE, L.

THE CORRELATION OF OCEANIC PARAMETERS WITH LIGHT ATTENUATION IN MONTEREY BAY, CALIFORNIA

by

Lanny Alan Yeske and Richard Dean Waer

UNITED STATES NAVAL POSTGRADUATE SCHOOL

THESIS

THE CORRELATION OF OCEANIC PARAMETERS WITH LIGHT

ATTENUATION IN MONTEREY BAY, CALIFORNIA

by

Lanny Alan Yeske

and

Richard Dean Waer

December 1968

This document has been approved for public release and sale; its distribution is unlimited.

•

THE CORRELATION OF OCEANIC PARAMETERS WITH LIGHT

ATTENUATION IN MONTEREY BAY, CALIFORNIA

by

Lanny Alan Yeske Lieutenant, United^{//}States Navy B.S., University of Nebraska, 1960

and

Richard Dean Waer Lieutenant, United States Navy B.S., Naval Academy, 1961

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL December 1968

ABSTRACT

033

185KELL

hesis the 51

An investigation of the correlation of oceanic parameters with light attenuation in Monterey Bay, California, was conducted during July and August 1968. Measurements of beam transmittance, salinity, temperature, density, and particulate matter, related in time and depth, were obtained during four cruises. Nearly 400 water samples were taken from two stations at depths between 0 and 85 m.

Temperature showed the greatest correlation with beam transmittance. Isopycnals and beam transmittance contours showed a similar good correlation. Although salinity correlations were not clearly defined, isolated salinity pockets often appeared to be associated with transmissivity perturbations. A nearly linear relationship between values of particulate count and beam transmittance was observed. Particle sizes were found to decrease with increased depths. Approximately 96 percent of the particles affecting beam transmittance were less than 13μ in diameter. Beam transmittance isolines generally oscillate with a tidal cycle period, the minimum values usually occurring at low tide. A possible correlation between lunar period, tidal ranges, and turbidity layers was indicated.

TABLE OF CONTENTS

		Page
I.	INTR	ODUCTION
	1.1	Background
	1.2	Previous Investigations
	1.3	Purpose of the Present Research
	1.4	Oceanographic Climatology
II.	EQUI	PMENT DESCRIPTION 15
	2.1	Beam Transmissometer 15
	2.2	Coulter Counter
	2.3	Hytech Salinometer 20
III.	EXPE	RIMENTAL PROCEDURES
	3.1	Station Selection
	3.2	Sample Collection and Beam Transmittance Measure- ments
IV.	ANAL	YSIS OF DATA
	4.1	Introduction 33
	4.2	Beam Transmittance Measurements
		4.2.1 Cruise 1 (26-27 July 1968)
		4.2.2 Cruise 2 (17 August 1968)
		4.2.3 Cruise 3 (23 August 1968)
		4.2.4 Cruise 4 (30-31 August 1968) 43
	4.3	The Correlation of Tidal Cycle with Beam Transmittance
	4.4	The Correlation of Salinity with Beam Transmittance
	4.5	The Correlation of Temperature with Beam Transmittance

LIST OF FIGURES

Figure		Pa	ige
l	Beam Transmittance Meter Diagram	•	16
2	Transmissivity versus Wavelength for the Wratten 61 Filter		18
3	Coulter Counter Diagram	•	19
4	Chart of Monterey Bay, California	•	23
5-11	Time-Depth Sampling Locations	•	26-32
12-18	Time-Depth Contours of Beam Transmittance in Relation to Tidal Cycle	•	36-42
19-25	Time-Depth Contours of Beam Transmittance in Relation to Salinity	•	45-51
26-32	Time-Depth Contours of Beam Transmittance in Relation to Temperature	•	53-59
33-39	Time-Depth Contours of Beam Transmittance in Relation to Density ••••••••••••••••••••••••••••••••••••	•	61-67
40-43	Time-Depth Contours of Beam Transmittance in Relation to Coulter Count	•	69-72
44–62	Depth Profiles of Temperature, Density, Salinity, and Transmittance	•	75-93
63	Linear Least-Squares Fit for Beam Transmittance vs. Particle Count at Coulter Threshold 0		94
64	Linear Least-Squares Fit for Beam Transmittance vs. Particle Count at Coulter Thresholds 10, 20, and 30	•	95
65	Photographs of Particulate Samples and 6-14 μ Latex Spheres	•	96
66	Relative Pulse Height for 6-14 μ Latex Spheres .	•	97

ACKNOWLEDGEMENTS

Many people have assisted the authors in this research. We wish to express our appreciation to Dr. Robert E. Morrison for his assistance in initially planning the project. The technical advice of Professor Warren W. Denner in physical oceanography, Dr. Eugene C. Haderlie in biological oceanography, and Dr. Charles F. Rowell in chemical oceanography, during the preparation and sampling portions is greatly appreciated. To Professor Stevens P. Tucker, our faculty thesis advisor, the authors wish to express their profound gratitude. Without his continued support and assistance, a project of this dimension could not have been completed. For the Coulter Counter use and technical assistance we wish to express our appreciation to Dr. John H. Phillips, Director of Hopkins Marine Station, Stanford University, and to Mr. William Hinds, Laboratory Technician. We are greatly indebted to Mr. Theodore J. Petzold, Senior Engineer of the Visibility Laboratory at Scripps Institution of Oceanography, for his instruction concerning the beam transmissometer. The work and cooperation of CWO James O. White, U. S. Navy, and the crew of the Naval Postgraduate School Hydrographic Research vessel were outstanding and are deeply appreciated. We wish to express our sincere thanks to Mr. Norman Walker, Leading Model Maker of the Naval Postgraduate School Machine Facility, for his cooperation and assistance in fabricating essential cruise equipment. To our neglected wives, Gay Waer and Jacqueline Yeske, a great deal of credit is due. Their continued encouragement, moral support, typing, and editing was exemplary.

CHAPTER 1

INTRODUCTION

1.1 Background

Most of the optical properties of seawater can be investigated by measuring all aspects of the flux distribution of a highly collimated beam of monochromatic light as it passes through the water (7).* One of these aspects is flux loss per unit length of path.

The flux loss, or attenuation, is an inherent optical property of seawater and is equal to the sum of two independent losses, scattering and absorption. Unlike the atmosphere, which is primarily a scattering medium, the ocean is a medium in which both scattering and absorption play significant roles.

Scattering, or the deviation of individual photons from their original path, consists of two different components, that produced by the water itself, and that produced by suspended particles (10). Scattering is a function of the refractive index of the particles relative to the water and the ratio of particle diameter to wavelength.

Absorption is the result of light energy conversion into such forms as thermal kinetic energy and chemical potential energy. Seawater is a highly selective absorbing medium and, as a result, acts as a narrow-band filter with a transmissivity peak in the blue-green region.

(*) Numbers in parentheses refer to the listing in the Bibliography.

1.2 Previous Investigations

Optical oceanography became an increasingly important aspect of physical oceanography when Petterson in 1934 developed a forerunner of the modern beam transmissometer (10). The beam transmissometer is an instrument used to measure the ratio of the transmitted radiant flux to the incident radiant flux for a beam the diameter of which is small compared to its length. Numerous investigations have been made to determine the complex relationships existing between beam transmittance, temperature, tides, internal waves, particulate matter, and other parameters.

Bumpus and Clarke (4) attributed turbidity to suspended particulate matter and noted that turbidity generally decreases as the distance from land and the depth of water increases. Emery (8) suggested that in the waters off Southern California upwelling, and hence the increase in plankton-supporting nutrients, has a significant effect on water transparency. Burt (5) concluded that a large portion of the particulate matter causing attenuation is less than 2 μ in diameter.

Ball and LaFond (1) observed that water turbidity is mainly due to concentrations of plankton and detritus. They also noted that maximum turbidity often lies in the thermocline, and that relationships exist between turbidity and tidal cycle, temperature, and internal waves.

Barham, Wilton, and Sullivan (2) noted that "macroplankton" have little effect on light transmission while dinoflagellates of size range between 14 and 218 μ are the most significant of the light-attenuating organisms off Eission Beach, California, in the summer.

Oser, Berger, and Franc (12) observed current dependent fluctuations in transmissivity.

Jerlov (9) noted that there is a correlation between particle distribution and salinity and that this relationship changes due to turbulent fluctuations in the ocean. He also found, through relations computed from the Mie theory and scattering experiments, that particle sizes of the order of 10 μ are primarily responsible for scattering in seawater.

Joseph (11) observed a correlation between density distribution and beam transmittance in the upper 20 m of the ocean.

It has been suggested that transparency characteristics of sea water can be used as a means for optical classification of water masses (10). Jerlov concluded that the presence of "yellow substance" can be treated as a characteristic property of a water mass. Yellow substance is formed from free carbohydrates and free amino acids resulting in carbohydrate-humic acids or melanoidines which are yellow in color and fairly stable in seawater. This phenomenon occurs when organic matter decomposes and is most prevalent in regions of high productivity. It is assumed to be the primary cause for light absorption in the ocean. Jerlov has developed three different classifications of ocean water types based upon irradiance measurements at various wavelengths.

Later investigations by Jerlov (10) led him to conclude that particles composed of calcium carbonate and silica cause high scattering, while green algae, composed primarily of cellulose, produce minimum scattering.

Although these and other investigations have contributed greatly to optical applications in oceanographic research, the correlation of several oceanic parameters such as salinity, density, tidal cycle, and lunar period with beam transmittance have not been clearly defined.

This is in part due to the fact that nearly all of the previous research efforts have concentrated on only one or two of the factors possibly relating to beam transmittance. While attempts have been made to relate each parameter individually to beam transmittance at some time or another, the authors are unaware of any prior investigation which has considered the correlation of a comprehensive set of oceanic parameters related in time, space, and depth.

1.3 Purpose of the Present Research

The purpose of this research was to investigate and determine which physical, dynamic, and biological oceanographic parameters are most closely correlated with light attenuation in Monterey Bay, California.

To achieve these goals, the following specific parameters were measured or observed:

- 1. beam transmittance
- 2. salinity
- 3. temperature
- 4. depth
- 5. density
- 6. tidal cycle
- 7. lunar period
- 8. particulate matter
- 9. internal waves

This research differs from previous investigations in several aspects. As previously mentioned, it was an attempt to interrelate simultaneously many parameters to beam transmittance. Beam transmittance, salinity, temperature, depth, density, and particulate matter

measurements were taken concurrently. The duration and spacing of cruises were planned to provide information concerning the tidal cycle and the lunar period. Internal wave or seiche effects were probably present in the sampling data.

Since most research investigations have been conducted in shallow coastal water or very deep oceanic water, two stations were selected which had different bathymetry and oceanic conditions in order to provide more representative information.

Prior studies have indicated the thermocline as the area of most interest. For this reason sampling was usually concentrated at two meter intervals within the thermocline.

A Coulter Counter (described in section 2.2) was used to analyze the particulate matter. This method of analysis has several advantages over a microscopic technique, in that greater accuracy can be achieved through elimination of operator fatigue; data reduction can be simplified; and counting speed can be greatly increased. A major disadvantage of the Coulter Counter is that particle sizes are determined by relative pulse heights, and thus an absolute measure of particle diameter is not obtained.

1.4 Oceanographic Climatology

Monterey Bay is characterized by three seasonal oceanographic periods as described by Skogsberg (14). The period of upwelling generally begins in February and terminates in late August. The oceanic period then sets in. Skogsberg observed upwelling in Monterey Bay from 1929–1933 at points located between the stations utilized for this study.

Because this investigation was conducted in July and August, rising temperatures and a decreased supply of nutrients were anticipated. A reduction in upwelling with a resultant decrease in surface salinity was also expected. Welch (16) discusses the presence of two characteristic salinity minima in Monterey Bay during the oceanic period.

According to Raines (13), sub-tidal oscillations of amplitude 0.1 to 0.5 ft occur in Monterey Bay. He concluded that long period oscillations in Monterey Bay have mean periods in the range of 19 to 39 minutes. These long period waves vary in duration from a few hours to several days and are most prevalent in July between 1200 and 1600 hours.

Wilson (18) found a 50 to 70 minute period seiche to be characteristic in Table Bay, Cape Town, South Africa, which has a configuration and an oceanic exposure remarkably similar to Monterey Bay. Although Table Bay is smaller and shallower than Monterey Bay, both are significantly affected by long-period surges. Wilson (17) concludes that the surges in Monterey Bay are probably the result of long-period waves from the open ocean rather than surf-beats generated locally by swells.

CHAPTER 2

EQUIPMENT DESCRIPTION

2.1 Beam Transmissometer

A Marine Advisors Model C-2 beam transmissometer was used throughout this investigation (Fig. 1). This instrument weighs approximately 80 pounds in air and has an overall length of about 5 ft. It has a self-contained light source (L) and can therefore be used during day or night with an accuracy of about three percent. Its maximum depth limit is 300 m.

The projector of the beam transmissometer consists of a General Electric type 1759 4-amp incandescent lamp (L), an International Rectifier DP-2 selenium photovoltaic reference cell (R), and a system of lenses (C) to collimate the light beam. Collimation provides a high ratio of path length to beam diameter, which is desirable in order to reduce scattering within the beam.

The detector consists of an acromatic lens (A) and a second DP-2 photovoltaic cell (D) which measures the amount of flux received through a one-meter path length. The outputs of the two cells are compared by means of a null-balancing meter (M) to provide a reading of transmittance, T, in percent.

If exponential decay is assumed, then

$$I = I_0 e^{-(a+b)r} = I_0 e^{-cr}$$

or,

$$I/I_{c} = T = e^{-Cr}$$

where

I = flux measured at the receiver end

 I_{o} = flux measured at the projector end

c = total beam attenuation coefficient

a = absorption coefficient

b = scattering coefficient

For this instrument r equals one meter, and the beam attenuation coefficient is given by

$$c = ln (l/T)$$

Eastman Kodak Wratten 61 gelatin filters were used to reduce the optical bandwidth and to minimize coastal water absorption. This filter has a maximum transmittance at 533.8 mµ as seen in Fig. 2. Schott BG-18 filters were also installed to eliminate infrared light passed by the Wratten 61 filter when the meter is calibrated in air.

2.2 Coulter Counter

A Model A Coulter Counter was used for particulate analysis. This instrument (Fig. 3) is designed to register the number and relative size of suspended particles in an electrically conductive fluid.

As the sample containing particles is drawn through aperature tube (A) having a 100 μ orifice (O), the resistance between two platinum electrodes (E) immersed on either side of the orifice is altered. This produces a short-duration voltage pulse, having a magnitude proportional to particle size. The series of pulses produced by particles passing through the orifice is then electronically scaled and counted by a digital register. The seawater sample itself serves as the electrolyte.

Sample flow-rate is controlled by an external vacuum pump. Volume control is accomplished with a mercury manometer. As the mercury column advances, it makes contact with "start" and "stop" probes in the manometer, which activate the electronic counter.

The voltage pulses are amplified and fed to a threshold circuit having an adjustable threshold level. For a given threshold setting between 0 and 100, a pulse is counted if it reaches or exceeds that level. The relative pulse height can also be observed on an oscilloscope.

For counts in excess of 10⁴ a correction for coincident passages is required. This correction accounts for the probability of count loss due to one or more particles passing through the orifice simultaneously.

Prior to analyzing the samples it was necessary to establish the proper gain setting on the pulse amplifier. This was accomplished by analyzing a sample of filtered seawater containing Dow Chemical Company styrene divinyl-benzene copolymer latex spheres which ranged in size from 6 to 14 μ . A gain setting of four was used.

From each Nansen bottle sample a two milliliter portion was counted at each of eleven different thresholds (0, 10, 20, ..., 100) to determine the relative size distribution.

2.3 Hytech Salinometer

A Hytech Model 6220 portable laboratory salinometer manufactured by Bissett-Berman was used to measure salinity of the seawater samples. This conductivity-type instrument utilizes an inductively coupled sensor to establish a conductivity ratio between an unknown sample and Normal Water prepared by the Hydrographical Laboratories in Copenhagen, Denmark.

A null-balance meter is employed to obtain a conductivity ratio reading. This value is then used in conjunction with tables to obtain salinity in parts per thousand (ppt) which must be corrected for meter drift and temperature changes.

The salinity measurement range is 0 to 51 ppt with an accuracy of ± 0.003 ppt. Temperature is measured from 0°C to 40°C to an accuracy of $\pm 0.05^{\circ}$ C. For temperature differences not exceeding $\pm 3.0^{\circ}$ C between sample and standard, temperature compensation is fully automatic.

CHAPTER 3

EXPERIMENTAL PROCEDURES

3.1 Station Selection

Two stations, Bravo and Delta, were selected on the basis of differences between them in salinity, temperature, density, and depth, as well as their geographical location in order to permit accurate radar navigation and reduce station to station transit time.

Figure 4 shows the position of each station. Station Bravo is located in approximately 102 m of water at latitude $36^{\circ}41.8$ ' N longitude $121^{\circ}57.2$ ' W and is the site of a California Cooperative Oceanic Fisheries Investigation (CALCOFI) station. Salinity, temperature and density data have been taken at this station weekly for the past several years. Station Delta is situated in approximately 1737 m at latitude $36^{\circ}42.0$ ' N longitude $122^{\circ}02.1$ ' W and is the location used by Bassett and Furminger (3) to determine the vertical variation of light scattering in Monterey Bay.

Prior to each series of observations the research vessel was maneuvered to minimize the navigational error. It is estimated the maximum error at stations Bravo and Delta was restricted to \pm 500 and \pm 1000 m, respectively.

3.2 Sample Collection and Beam Transmittance Measurements

Five cruises, separated by periods of one week and of 25 hr duration each, were initially planned to investigate the correlation of tidal cycle and lunar period with beam transmittance. Four were completed, with a three-week interval occurring between Cruises 1 and 2.

FIGURE 4

Cruise 1 was conducted entirely at Station Bravo to maximize the frequency of observations (Fig. 5). Seas were extremely calm and no problems were encountered. Thirteen hydro-casts were completed.

During Cruises 2, 3, and 4 casts were made alternately between stations Bravo and Delta. Times and depths of observations are shown in Figs. 6 through 11. Cruise 2 was terminated after six casts owing to high seas. Cruise 3 was concluded after seven casts due to high seas and equipment malfunctions. Few difficulties occurred during Cruise 4, and twelve casts were achieved in calm seas.

Each cast was preceded by a bathythermograph (BT) drop. BT traces are shown in Appendix I. Ten Nansen bottles, each with one or two protected reversing thermometers, were then placed on the hydrographic wire at depths selected between zero and 85 m with the main bottle concentration in the thermocline as determined from the immediately preceeding BT. The beam transmittance meter was attached to the end of the hydrowire. After the Nansen bottles were tripped, beam transmittance measurements were taken enroute to the surface at the previous Nansen bottle depths and at intermediate points if a noticeable change in transmittance occurred. The time interval between the messenger drop and the last beam transmittance measurement did not usually exceed ten minutes.

The cast retrieved, salinity and particulate samples were drawn from the Nansen bottles. Particulate samples, taken only at station Bravo, were preserved in brown quart beer bottles with 25 ml of Lugol's iodine solution^{*} (19, p. 99).

^(*) The formula for Lugol's iodine solution is: l g iodine and 3 g potassium iodide per 300 cm³ distilled water.

Tidal level readings were recorded on the Standard Automatic Tide Gage (described in reference 15, pp. 7-15) located on Municipal Wharf Number Two in Monterey Harbor (Fig.4). Tide gage readings were not adjusted to the station positions because of the relatively short distances involved between the gage and stations Bravo and Delta, six and nine nautical miles respectively.

FIGURE 5

		12
00000× c) * * O *	o S
oלœ∞o o×× ×	× 0 × × × ×××	0 MPLING LOCATION
o × o cooccoo ×	0 × ×	o 0 0 00 00 00 00 00 00 00 00 00 00 00 0
o ×× 00 0 0 000 × ×	Охим и	18 0 18 0 30-31 AUGUST 19 n Placement and Ber
o ×∞o o o o o o	ж О ж ж ж	x x STATION BRAV x Addiv
×0 0 0 00 0		0+0 12 CRUISE 4

CHAPTER 4

ANALYSIS OF DATA

4.1 Introduction

Because several oceanic parameters were investigated, each parameter is discussed separately with respect to beam transmittance in order to indicate clearly specific relations and trends.

Contours of beam transmittance were plotted on time-depth charts as shown in figures 12 through 18. Ten percent intervals were used throughout, except where shorter intervals were required to increase definition. A 20 percent contour implies very turbid water, whereas an 80 percent isoline suggests relatively clear water. Beam transmittance values were linearly interpolated between actual points of measurement. The tidal level above mean lower low water is shown at the top of these figures.

Salinity, temperature, density, and particle count contours were also plotted on time-depth charts using linear interpolation. These contours were then separately transferred to their corresponding beam transmittance charts. Figures 19 through 43 present these overlays.

An IBM 360 Model 67 (Duplex) computer was utilized to facilitate data reduction. Appendix II presents the program used to correct protected reversing thermometer readings, while Appendix III contains the program used to determine in situ density and to plot profiles of salinity, temperature, and density against depth (Figs. 44 through 62). In Appendix IV is the program used to determine the best least square linear fit for the beam transmittance measurements as a function of Coulter particle counts at various counter thresholds (Figs. 63 and 64).

Table 1 in Appendix V, contains the tabulated values of depth, time, temperature, salinity, density, beam transmittance, and total Coulter Count. Table 2 presents the Coulter particle count in relation to time, depth, and relative pulse height. Table 3 shows the relationship between lunar phases and sampling periods.

4.2 Beam Transmittance Measurements

The results of the beam transmittance measurements, separated into the four periods of observation, are presented in the following subsections.

4.2.1 Cruise 1 (26-27 July 1968)

The 25 hr series of measurements made during Cruise 1 (Fig. 12) revealed a sharp transmissivity gradient at a depth of approximately 20 m, which prevailed throughout this sampling period. A turbidity layer, i.e., a layer of minimum beam transmission, was not present. Below about 20 m characteristic transmittance patches were observed. An area of very low transmittance was present between the sea surface and a depth of 10 m at the beginning of this series. This region continued to persist in time and depth throughout all four cruises at station Bravo.

Low values of transmissivity were observed at both low tides. The following high tide in each case resulted in increased transmissivivalues. Oscillation of the beam transmittance contours after 0400 hours was generally of the same period as the tidal cycle although 180 degree out of phase. The four-hour period oscillations occurring at 15 m between 1500 and 0000 hours are possibly the result of seiches or
internal waves. These oscillations are discussed in further detail in sections 4.4 and 4.9.

It should be noted that beam transmittance values for this cruise were much lower than subsequent observations. During this cruise an extremely large amount of particulate matter was visually observed near the surface, in addition to a large amount measured by the Coulter Counter, indicating a probable plankton bloom. This phenomenon was not observed on ensuing cruises.

4.2.2 Cruise 2 (17 August 1968)

The 10 hr series of observations made during Cruise 2 (Figs. 13 and 14) shows the effect of high seas in reducing the transmissivity stratification which was present during Cruise 1, although some turbidity patches still appear at station Bravo. A turbidity layer is present at station Delta at 10 m.

Figure 13 shows a transmittance minimum present at low tide. Higher transmissivity values occur with the following high tide. A possible in-phase relationship between the tidal cycle and beam transmittance is seen in Fig. 14 although the record is too short for accurate verification.

4.2.3 Cruise 3 (23 August 1968)

A generally similar profile of beam transmittance was observed at both stations during Cruise 3 (Figs. 15 and 16). A turbidity layer was not present. Beam transmittance minima of approximately 40 percent at 1800 hours for both stations coincide with the low tide. The succeeding high tide again results in increased transmissivity values. The 20 percent transmissivity minimum seen in Fig. 15 occurs during

the lowest of the two high tidal levels. This minimum corresponds approximately with those shown in Figs. 12 and 13, which occurred at the same depth and hour of the day.

Each station depicts an oscillation of beam transmittance contours having the same period as the tidal cycle and very nearly in phase.

4.2.4 Cruise 4 (30-31 August 1968)

The 23 hr series of measurements obtained during Cruise 4 was characterized by the presence of two turbidity layers.

Figure 17 shows a slight intermittant layer at 10 m and a continuous, more pronounced, layer occurring at 70 m. This latter layer was also present at station Delta (Fig. 18).

The trend of minimum transmittance associated with low tide was again observed at 0000 hours. As noted in section 4.2.3, we again see a transmissivity minimum occurring during high tide.

Beam transmittance contours at both stations show an approximate tidal cycle oscillation.

4.3 The Correlation of Tidal Cycle with Beam Transmittance

Beam transmittance contours as discussed in section 4.2, generally show oscillations of a tidal period although phase relations are not consistent. In most cases the water column is most turbid at low tide with clearing accompanying the following high tide. Station Delta, farthest from coastal influences, depicts these features much more clearly than does the nearshore station.

A possible correlation between tidal level, depth of maximum transmittance gradient, and depth where transmittance initially increases most rapidly was investigated. No meaningful relationship was found.

4.4 The Correlation of Salinity with Beam Transmittance

Salinity correlations with beam transmittance during the four periods of measurement varied from excellent to poor.

Cruise l contours (Fig. 19) show a slight similarity after 0600 hours in the halocline. The three salinity pockets at 10 m suggest a strong influence on the transmittance isolines and possibly account for the four-hour oscillations occurring between 1500 hours and 0000 hours.

Figure 20 shows a fair comparison between salinity and transmittance especially in regions of minimum transmittance. Station Delta contours (Fig. 21) are nearly the same above 10 meters.

The 23 August station Bravo series before 1900 hours (Fig. 22) presents a fair correlation between isolines to a depth of 20 m. Figure 23 shows an excellent comparison between salinity and transmittance throughout the sampling period in both time and depth. The coincidence in time and depth of three salinity pockets with three beam transmittance discontinuities is remarkable.

The Cruise 4 results (Figs. 24 and 25) show poor correlation betwee salinity and transmissivity, although a slight following of isohalines exists with the 70 m turbidity layer at station Bravo. The corresponden of two relatively high salinity pockets with two areas of minimum transm tance (Fig. 25) below 40 m at station Delta was observed.

Salinity profiles (Figs. 44 through 62) commonly reveal the presence of two salinity minima at average depths of 10 and 19 m. This condition is typical of the area climatology discussed in section 1.4. The average depth of maximum beam transmittance gradient was located at a depth of 16 m between the two minima.

An interesting possible correlation is indicated below 40 m in the salinity and beam transmittance profiles. For example Fig. 47 shows increased salinity gradients corresponding to decreased transmittance gradients. The reverse is also true. Temperature and density gradients appear to be negligible. This salinity and beam transmittance relationship prevails in over 80 percent of the profiles (42 instances), where a salinity gradient change occurs.

4.5 The Correlation of Temperature with Beam Transmittance

The time-depth plots of beam transmittance, tidal cycle and temperature (Figs. 26 through 32), show a generally excellent correlation between isotherms and isolines of beam transmittance. The undulations in the isotherms vary from being nearly in phase with the tidal cycle (Figs. 31 and 32) to almost 180 degrees out of phase (Fig. 27). These variations may be due to internal waves or other turbulent disturbances (discussed in section 4.9).

In general the maximum gradient in beam transmittance occurs in the lower half of the thermocline. The depth of the thermocline varies between 8 and 16 m, and appears to be deeper at or near low tide during the last two cruises (Figs. 29 through 32).

The range in temperature during the total period of observation was 6.45° C, from a low of 8.91° C to a high of 15.36° C. Despite heavy

weather during two of the four cruises, the presence of mixed layers was the exception rather than the rule, indicating a stable water column.

4.6 The Correlation of Density with Beam Transmittance

The similarity between isotherms and isopycnals shows that temperature has the greatest influence in controlling the density structure, which in turn significantly affects the propagation of light.

There is an excellent correlation between isolines of beam transmittance and isopycnals (Figs. 33 through 39). The maximum beam transmittance gradient and the pycnocline occur at, or very nearly at, the same depth. Below the pycnocline, transmittance increases markedly. Occasionally, a turbid layer between 50 and 70 m was observed (Figs. 38 and 39) and these layers appeared to oscillate in the same manner as the isopycnals. Some patchiness was noticed in the density structure (Figs. 34 and 38), but far less than that which was observed in the salinity structure.

The average value of density at the bottom of the pycnocline was 1.0258 g/cm^3 . This value remained constant throughout the period of observations at the deeper station, but at the shallow station it ranged from 1.0261 to 1.0256 g/cm^3 .

The isopycnals have an oscillatory appearance similar to the isotherms, but no constant relationship with the tidal cycle is apparent. Density ranged from 1.02473 to 1.02676 g/cm³ during the period of observation.

4.7 The Correlation of Particulate Matter with Beam Transmittance

An excellent correlation was found to exist between beam transmittance and particulate matter less than $100 \ \mu$ in diameter (Figs. 40 through 43). Isolines of particulate count vary from smooth undulating contours to random and patchy concentrations. Beam transmittance readings were lowest in the first 8 to 12 m while particle count was highest in this region (Appendix V, Table 2). The larger particles were found closer to the surface.

Beam transmittance values at the surface showed marked variations during the four cruises, ranging from less than 20 percent to a high of 65 percent. These variations were accompanied by equally drastic changes in total particulate count at the surface. While currents, surface waves, and internal waves all have some effect on the distribution of particulate matter, it is evident that biological productivity, specifically of phytoplankton, is a significant factor in reducing light transmission. This was particularly apparent during Cruise 1, when all the surface readings of beam transmittance were less than 20 percent due to a plankton bloom.

Turbidity layers were present during Cruise 4 (Figs. 17 and 18). The upper layer coincides with the concentration of particulates in the thermocline (Fig. 43). The lower layer at station Bravo is perhaps the result of bottom material being placed into suspension by currents, although this does not explain the origin of the corresponding 60 m layer occurring in approximately 950 fathoms of water at station Delta (Fig. 18). Carsola and Dill (6) observed that transmissivity within a turbidity layer increases with distance from shore while layer depth

decreases, indicating dilution of the turbidity layer by clear oceanic water. This observation is clearly verified in Figs. 17 and 18.

An attempt was made to identify and classify the different types of organisms found in each sample microscopically, but recognition of specific organisms was difficult except for chain diatoms, specifically <u>Chaetoceros</u> sp., as seen in Fig. 65. This particular species of phytoplankton dominated the samples taken in the upper few meters of water during the first cruise. Figure 65 is not representative of the true particle distribution, since small particles do not appear due to inadequate lighting and the very shallow depth of field for micro-photographs.

A comparison was made between the relative-size distribution histogram for the mixture of 6 to 14 μ latex spheres (Fig. 66)discussed in section 2.2 and individual relative-size distribution histograms for each sample (not shown). An average diameter of 7.22 μ and standard deviation of 2.37 μ were measured by Dow Chemical Company, Midland, Michigan. From Fig. 66, it is seen that the threshold settings corresponding to the mean diameter and one standard deviation to the right of the mean diameter are 17.16 and 31.68, respectively. These results indicate that the particulates corresponding to approximately 68 percent of the total counts are less than 10 μ in diameter, while approximately 96 percent are less than 13 μ .

As noted in section 4.6, the greatest change in transparency occurs in the pycnocline/thermocline. This is also the region where particulate concentrations change the most, since fine detritus and nearly neutrallybuoyant plankton are retarded from further sinking by the presence of

a denser layer beneath the pycnocline. This distribution, however, is easily upset by surface or subsurface turbulence which accounts for some of the radical changes in beam transmittance profiles to be observed in Figs. 44 through 62. Scatter plots of percentage beam transmittance versus particulate count in thousands were made for Coulter threshold settings of 0, 10, 20, and 30. The beam transmittance and particulate count data were then fitted linearly using the least square method (Figs. 63 and 64). The following parameters were determined:

EQUATION	STANDARD DEVIATION
Y =156X + 14.49	2.54
Y =088X + 7.34	1.28
Y =058X + 4.74	0.86
Y =042X + 3.42	0.68
	EQUATION $Y =156X + 14.49$ $Y =088X + 7.34$ $Y =058X + 4.74$ $Y =042X + 3.42$

Y = Count in Thousands, X = Transmittance (%/m)

4.8 The Correlation of Lunar Period with Beam Transmittance

The time relation between lunar phases and sampling periods is shown in Appendix V, Table 3. Although cruises were initially planned to coincide with lunar phases, scheduling difficulties prevented an exact correspondence. The mean times for Cruises 1 and 2 were approximately 47 hours and 44 hours later than their respective lunar phases, whereas Cruises 3 and 4 were nearly coincident.

Figures 13, 14, 17, and 18, corresponding to quarter phases of the moon, show the presence of turbidity layers. Tidal ranges for Cruises 2 and 4 were 4.2 ft and 5.4 ft, respectively.

In contrast, Figs. 12, 15, and 16, corresponding to new and full moons, reveal an absence of turbidity layers. Tidal ranges for Cruises 1 and 3 were 6.1 ft and 6.0 ft, respectively.

Although a possible turbidity layer, tidal range, and lunar period correlation is indicated, definite conclusions cannot be formed from the limited data available.

4.9 The Correlation of Internal Waves and Seiches with Beam Transmittance

While it is believed that seiches, internal waves, and currents all contribute to the fluctuations in isolines of beam transmittance observed in Figs. 12 through 18, positive proof for these phenomena is lacking. As discussed in section 1.4, seiches in a bay of configuration similar to that of Monterey Bay have amplitudes less than 1 ft and periods up to 70 minutes. Feasibility studies by the Corps of Engineers indicate Monterey Bay shows strong evidence for seiches in the period range of 32 to 36 minutes (17).

The shortest period of oscillation observed in the time-depth plots of beam transmittance was four hours. The shortest interval between successive casts was two hours. Consequently, the intervals between observations made in this study are too large for positive identification of internal wave activity or less-frequently occurring seiches. Similarly, depth measurement uncertainties, probably not exceeding two meters during rough seas, possibly masked the effects of internal waves or seiches.

CHAPTER 5

CONCLUSIONS

Nearly all of the parameters measured or observed during this investigation show correlations of varying degree with beam transmittance.

Beam transmittance isolines usually oscillate with the tidal cycle period, although phase relations are not consistent. Minimum values of beam transmittance frequently occur at or near low tide with the following high tide causing the transmissivity to increase.

Salinity correlations with beam transmittance are not clearly defined. In some observations little or no correlation was seen, whereas in others, beam transmittance contours and isohalines are nearly coincident. Isolated pockets of relatively high or low salinity often appear to be associated with beam transmittance perturbations.

There is a good correlation between temperature and beam transmittance isolines with temperature probably having the greatest correlation with beam transmittance.

Isopycnals and beam transmittance contours also show a clear correlation due to the strong influence of temperature on density.

A good correlation between particulate matter and beam transmittance was also observed. The greatest change in transmissivity occurs in the pycnocline and thermocline since these are the regions of greatest particulate concentration. The dominant phytoplankton found during this study was a chain diatom (<u>Chaetoceros</u> sp.). Approximately 68 percent of the particles affecting beam transmittance

appeared to be less than $10 \ \mu$ in diameter, while approximately 96 percent appeared to be less than $13 \ \mu$. There seems to be a roughly linear relationship between values of particulate count and beam transmittance. Particle sizes were found to decrease with increasing depth.

The lunar period and subsequent tidal range seem to have a correlation with beam transmittance. Results from this investigation suggest that turbidity layers are possibly associated with decreased tidal ranges (quarter phases of the moon).

The effects of internal waves or seiches could not be determined from this study.

CHAPTER 6

SUGGESTIONS FOR FURTHER RESEARCH

For future light attenuation studies, the authors recommend the use of an STD in conjunction with the beam transmissometer to provide continuous measurements of salinity, temperature, and density. This instrument would permit simultaneous measurement of each parameter in depth and time in addition to reducing the interval between successive observations.

A concurrent investigation of internal waves and seiches using isotherm followers or thermistor chains should also be conducted in order to determine their effect in producing oscillations in isolines of beam transmittance.

The use of a larger, more stable research platform would reduce ship motion, thereby eliminating some of the depth uncertainties as well as improving station positioning accuracy.

Additional analysis of the particulate samples obtained from this investigation is recommended for the purposes of determining organic carbon content, identifying dominant plankton species, and determining the percentage of detritus in each sample. It is also recommended that scattering measurements be made to determine the contribution of scattering to total light attenuation.

Additional studies are recommended to determine what relationship, if any, exists between turbidity layers and lunar phases. Finally, the possible correlation of beam transmittance gradient changes with salinity gradient changes merits investigation.

BIBLIOGRAPHY

- 1. Ball, T. F. and E. C. LaFond. Shallow Water Turbidity Studies. U. S. Naval Electronic Laboratory Report, 1129, 1962.
- Barham, E. G., Wilton, J. W., and M. P. Sullivan. Plankton and Turbidity. U. S. Naval Electronics Laboratory Report, 1386, 1966.
- 3. Bassett, C. H. and H. C. Furminger. An Investigation of the Vertical Variation of Light Scattering in Monterey Bay, California. Thesis, Naval Postgraduate School, Monterey, 1965.
- 4. Bumpus, D. F. and A. H. Clarke. Hydrography of the Western Atlantic: Transparency of the Coastal and Oceanic Waters of the Western Atlantic. Woods Hole Oceanographic Institution Technical Report, 10, 1947.
- 5. Burt, W. V. Distribution of Suspended Materials in Chesapeake Bay. Journal of Marine Research, <u>14</u>, 47-62, 1955.
- 6. Carsola, A. J. and R. F. Dill. Spatial Changes in Transparency of the Coastal Waters off San Diego, California. Unpublished, personal correspondence with Dr. E. C. LaFond, U. S. Naval Undersea Warfare Center.
- 7. Duntley, S. Q. Light in the Sea. Journal of the Optical Society of America, 53, 214-233, 1963.
- 8. Emery, K. O. Transparency of Water off Southern California. Transactions American Geophysical Union, 35, 217-220, 1954.
- 9. Jerlov, N. G. Optical Measurements in the Eastern North Atlantic. Meddelanden Fran Oceanografiska Institutet I Göteborg, B (8), 1961.
- Jerlov, N. G. Optical Oceanography. Elsevier, Amsterdam, London, New York, 1968.
- Joseph, J. Extinction Measurements to Indicate Distribution and Transport of Water Masses. Proceedings of the UNESCO Symposium on Physical Oceanography, <u>Tokyo</u>, 59-75, 1955.
- 12. Oser, R. K., Berger, J. L., and L. J. Franc. Oceanographic Data Report San Clemente Island Area October to December 1966. U.S. Naval Oceanographic Office Informal Report, 67-77, 1967.
- 13. Raines, W. A. Sub-Tidal Oscillations in Monterey Harbor. Thesis, Naval Postgraduate School, Monterey, California, 1967.

- 14. Skogsberg, T. Hydrography of Monterey, California: Thermal Conditions 1929-1933. Transactions of the American Philosphical Society, 29, 1936.
- 15. U. S. Department of Commerce, Coast and Geodetic Survey. <u>Manual</u> of Tide Observations, Publication 30-1, 7-15, 1965.
- Welch, R. H. A Study of the Stratification of Phytoplankton at Selected Locations in Monterey Bay, California. Thesis, Naval Postgraduate School, Monterey, 1967.
- Wilson, B. W., Hendrickson, J. A., and R. E. Kilmer. Feasibility Study for a Surge-Action Model of Monterey Harbor, California. U. S. Army Engineer Waterways Experiment Station, Corps of Engineers, 2-136, 1965.
- 18. Wilson, B. W. Generation of Long-Period Seiches in Table Bay, Cape Town, by Barometrical Oscillations. <u>Transactions American</u> Geophysical Union, 35 (5), 733-746, 1954.
- 19. Zinsser, H. Textbook of Bacteriology, Appleton, New York, 1927.

00000 0000000

END

```
WRITE(6,1)
FORMAT(//,T2C,'COPRECTED TEMPERATURE*)
DO 4 I=1,15^
READ(5,2) X,Y,V,T
X IS THE UNCORRECTED TEMPERATURE READING OF THE
MAIN PROTECTED THERMOMETER
Y IS THE TEMPERATURE READING OF THE AUXILIARY
THERMOMETER CORRECTED FOR INDEX ERRORS
V IS THE VOLUME OF MERCURY
T IS THE INDEX CORRECTION FOR THE MAIN PROTECTED
REVERSING THERMOMETER
PROTECTED THERMOMETER
FORMAT(4F10.3)
R=(X+V)*(X-Y)/(6CCC.^)
W=X+R+T
        W=X+R+T
WRITE(6,3) W
FORMAT(25X,F10.3)
CONTINUE
RETURN
  3
 ž
```

Appendix II

FOR TRAN PROGRAM FOR CORRECTING PROTECTED REVERSING THERMOMETER TEMPERATURES

000000

FORTRAN PROGRAM TO DETERMINE IN VALUES OF DENSITY, TEMPERATURE, IN SITU DENSITY AND RE, SALINITY, AND BE TO PLOT VALUES OF DENSITY, TEMPERA TRANSMITTANCE VERSUS DEPTH BEAM REAL*8 ITITLE(12) LI/4H /, MABEL/8H / DFPTH(15), TEMP(15), SAL(15), TRANS(15), RHO(15) (ITITLE(I), I=1, 12) REAL*4 LABEL 74H DIMENSION DEPTH(15) READ(5,66) FORMAT(6A8) 4 J=1,13 IS SAL IS TO 66 DŌ 00 SALINITY SSTS IN PARTS PER THOUSAND TEMPERATURE IN DEGREES CENTIGRADE DŠ ĪŠ T IS BEAM TRANSMIN READ(5,2) TS,SS,DS,T FORMAT(4F10.5) DENSITY IN SITU CALCULATIONS ARE MADE USING SUBROUTINE SGTSVA WHERESGT IS SIGMA T, SV I SPECIFIC VOLUME, AND SVA IS SPECIFIC VOLUME ANOMALY. SPECIFIC VOLUME IS THEN CONVERTED TO DENSITY IN SITU WHICH IS TERMED DENSTD. CALL SGTSVA (TS,SS,DS,SGT,SV,SVA) BEAM TRANSMITTANCE IN PERCENT T IS 2 IS CALL SGISVA (15,55,15,561,5V DENSTD=1.0/SV WRITE(6,8) DENSTD, SV, SVA, SGT FORMAT(5X,4F10.6) RHO(J)=DENSTD DEPTH(J)=DS 8 SAL(J)=SS TEMP(J)=TS TRANS(J)=T RHD(J)=(RHO(J)-1.02400)*30000.0 SAL(J)=(SAL(J)-33.400)*100.0 DEPTH(J)=-DEPTH(J) TEMP(J)=(TEMP(J)-8.0)*10.0 4 CONTINUE CONTINUE CALL DRAW(10,TEMP,DEPTH,1,2,LABEL,ITITLE,20,C,20,0, *5,0,2,2,5,5,0,L1) WRITE(6,13) L1 CALL DRAW(10,TEMP,DEPTH,2,0,LABEL,ITITLE,20,C,20,0, *5,0,2,2,5,5,C,L2) WRITE(6,13) L2 CALL DRAW(10,SAL,DEPTH,2,5,LABEL,ITITLE,20,0,20,0,5, *0,2,2,5,5,C,L3) WRITE(6,13) L3 CALL DRAW(10,SAL,DEPTH,2,0,LABEL,ITITLE,20,0,20,0,5, *0,2,2,5,5,0,L4) WRITE(6,13) L4 CALL DRAW(10,RH0,DEPTH,2,3,LABEL,ITITLE,20,0,20,0,5, *0,2,2,5,5,0,L5) WRITE(6,13) L5 CALL DRAW(10,RH0,DEPTH,2,0,LABEL,ITITLE,20,0,20,0,5, WKITE(6,13) L5 CALL DRAW(10,RH0,DEPTH,2,0,LABEL,JTITLE,20.0,20.0,5, *0,2,2,5,5,0,L6) WRITE(6,13) L6 DD 17 L=11,21 READ(5,18) DEPTH(L),TRANS(L) 18 FORMAT(2F10.5) DEPTH(L)=-DEPTH(L) 17 CONTINUE 17 CONTINUE CALL DRAW(21,TRANS,DEPTH,3,1,LABEL,ITITLE,20.0,20.0, *5,0,2,2,5,5,0,L7) WRITE(6,13) L 7 FORMAT(4X,'LAST=',I5,/) CONTINUE *5 13 3 RETURN END

```
SUBROUTINE SGTSVA (T,S,D,SGT,SV,SVA)

ST=-(((T-3,9R)**2)/503.57)*((T+293)/(T+67.26))

CL=(S-.030)/1.805

SD=-.069+1.4708*CL-.00157*CL**2+3.98E-5*CL**3

AT=T*(4.7867-.098185*T+.01667*T**2)*1.E-3

BT=T*(18.03C-.9164*T+.01667*T**2)*1.E-6

SGT=ST+(SD+.1324)*(1.-AT+BT*(SD-.1324))

AFST=1./(1.+SGT*1.E-3)

A=D*AFST*1.E-9

B=4886./(1.+1.83E-5*D)

C=227.+29.33*T-.551*T**2+.004*T**3

E=D*1.E-4

G=(SD-28.)/1C.

H=147.3-2.72*T+.04*T**2

V=1.5*D*2*T*1.E-8

W=32.4-.87*T+.02*T**2

X=4.5-.1*T

Y=1.8-.06*T

SV=AFST-A*(B-C+E*U-V-G*(H-E*W)+G**2*(X-E*Y))

AZ=.972643

YA=-227.*.01055*D

YB=.0126*(147.3-.0C324*D)

AP=AZ-D*AZ*(B+YA-YB)*1.E-9

SVA=SV-AP

RETURN

FND
```

C
Č.
C
Š.
C
~
C

C

C C

FORTRAN PROGRAM TO DETERMINE THE LEAST SQUARE LINEAR FIT FOR THE BEAM TRANSMITTANCE MEASUREMENTS AS A FUNCTION OF COULTER PARTICLE COUNTS AT VARIOUS COULTER THRESHOLDS REAL*8 LABEL/8H /,ITITLE(12) REAL*8 MABEL/4H / REAL*8 TRANS,COUNT,Y,B,T,C,A REAL*4 SIGMA,DELY,SB,ST,SC,W REAL*4 XX(900),YY(900),XXX(136),YYY(136) UP TO ONE HUNDRED THIRTY-SIX POINTS ARE USED. XXX CORRESPONDS TO BEAM TRANSMITTANCE AND THE ABSCISSA. YYY CORRESPONDS TO PARTICLE COUNT AND THE ORDINATE. DIMENSION TRANS(136),COUNT(136),W(136),Y(136),DELY(136), *B(6),SB(6),T(6),ST(6),C(6),SC(6),A(30,30) READ(5,4) (ITITLE(I),I=1,12) FORMAT(6A8) READ(5,1) (COUNT(I),TRANS(I),I=1,135) 4 READ(5,1) (COUNT(I), TRANS(I), I=1,135) COUNT IS PARTICLE COUNT IN THOUSANDS. TRANS IS BEAM TRANSMITTANCE IN PERCENT. FORMAT(2F10.5) 1 WRITE(6,20) FORMAT(20X, COUNT', T52, 'TRANS',///) WRITE(6,2) (COUNT(I), TRANS(I), I=1,135) FORMAT(18X,F10.5,T50,F10.5,//) DO 3 M=1,5 JKL=30 20 2 IF(M.EQ.5)JKL=15 JKL IN THE ABOVE STATEMENT MUST BE ADJUSTED WHEN THE NUMBER OF DATA POINTS IS CHANGED. DO 68 I=1.JKL J=I IF(M.EQ.2)J=I+30 IF(M.EQ.3)J=I+60 IF(M.EQ.4)J=I+90 F(M.EQ.5)J=I+12 IF(M.EQ.5)J=I+120 XXX(I)=TRANS(J) YYY(I)=COUNT(J) JJ=2 IF(M.EQ.1)JJ=1 CALL DRAW(JKL,XXX,YYY,JJ,1,LABEL,ITITLE,15.0,3.0,0,0, *2,2,6,8,0,L) 3 CONTINUE CALL CONTINUE 68 CONTINUE CALL LSOPOL(135,1,0,0,0,SIGMA, TRANS, COUNT, W, Y, DELY, *B, SB, T, ST, C, SC, A) DY=100.0/900.0 RR = 0.0DO 6 I=1,900 XX(I)=RR YY(I)=B(1)+B(2)*RR RR=RR+DY CALL DRAW(900,XX,YY,3,0,MABEL,ITITLE,15.0,3.0,0,0,2, *2,6,8,0,L) RETURN END

Appendix IV

Appendix V

DATA TABLES

TABLE LA

DEPTH, DATA, TIME, TEMPERATURE, SALINITY, DENSITY,

TRANSMITTANCE, AND TOTAL COULTER COUNT DATA

STATION BRAVO

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL Coulter Count
0	261600 Ju	1 12.34	33.666	1.02551	0.78	13800
6	261559 Ju	1 11.54	33.765	1.02576	0.78	22700
13	261558 Ju	1 10.98	33.715	1.02586	13.3	10500
15	261556 Ju	1 10.69	33.776	1.02597	16.0	
17	261555 Ju	1 10.45	33.733	1.02598	45.5	3500
19	261552 Ju	1 10.21	33.718	1.02602	54.0	
21	261550 Ju	1 10.12	33.803	1.02611	72.3	2152
40	261548 Ju	1 9.79	33.815	1.02626	67.7	1197
65	261545 Ju	9.32	33.907	1.02653	76.4	2205
90	261543 Ju	1 9.02	33.931	1.02671	58.4	4333
0	061744 To	1 10 50	22 601	1 025/0	10 7	
0	261744 Ju	L 12.53	33.091	1.02549	10.7	
8	261735 Ju	1 11.65	33.755	1.02574	10.0	
17	261732 Ju		33.//3	1.02590	39.0	
20	261731 Ju	1 10.37	33.750	1.02602	/6.0	
23	261728 Ju	1 10.22	33.800	1.02610	61.5	
26	261727 Ju	1 10.05	33.809	1.02615	81.8	
40	261724 Ju	1 9.80	33.780	1.02624	84.2	
60	261721 Ju	1 9.38	33.880	1.02647	83.4	
75	261718 Ju	1 9.18	33.858	1.02656	78.6	
90	261715 Ju	1 8.91	33.974	1.02676	53.0	

DEPTI (m)	H DATE/TIME (1968)	TEMPERATURE (^O C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	E TOTAL COULTER COUNT
0	262000 Jul	12.65	33.702	1.02548	10.4	14100
5	261957 Jul	12.20	33.723	1.02560	11.6	15100
9	261955 Jul	11.80	33.595	1.02560	12.2	14900
13	261953 Jul	11.21	33.670	1.02578	11.0	10900
17	261952 Jul	10.86	33.718	1.02590	17.8	13800
21	261948 Jul	10.30	33.729	1.02602	41.5	1428
25	261946 Jul	10.09	33.797	1.02613	77.6	2228
45	261943 Jul	9.60	33.841	1.02634	78.4	1725
65	261941 Jul	9.33	33.892	1.02651	78.1	2955
85	261936 Jul	9.01	33.922	1.02668	74.5	3254
0	262200 Jul	12.47	33.678	1.02549	11.8	
3	262159 Jul	12.45	33.725	1.02555	11.8	
6	262157 Jul	11.95	33.681	1.02562	13.2	
9	262155 Jul	11.63	33.655	1.02567	19.7	
12	262154 Jul	11.32	33.694	1.02578	23.5	
15	262153 Jul	10.98	33.693	1.02585	30.1	
18	262151 Jul	10.62	33.643	1.02589	43.7	
22	262148 Jul	10.27	33.732	1.02604	80.9	
50	262146 Jul	9.61	33.796	1.02633	81.6	
85	262140 Jul	9.20	33.903	1.02664	79.6	
0	262355 Jul	12.55	33.666	1.02547	13.9	12400
3	262354 Jul	11.98	33.696	1.02561	14.0	9831
6	262353 Jul	11.64	33.681	1.02568	15.4	14000
9	262351 Jul	11.31	33.661	1.02574	17.7	14200
12	262349 Jul	11.16	33.707	1.02582	18.1	16100
15	262348 Jul	10.61	33.691	1.02591	18.1	8547
30	262346 Jul	9.98	33.763	1.02615	79.8	2290
50	262343 Jul	9.61	33.784	1.02632	79.6	1558
70	262340 Jul	9.39	33.886	1.02652	74.5	1792
85	262337 Jul	9.27	33.880	1.02661	77.1	1966

(m)	(1968)	(^O C)	(0/00)	(g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
0	270152 Jul	12.57	33.690	1.02548	14.9	
9	270148 Jul	11.19	33.690	1.02578	13.9	
12	270147 Jul	10.81	33.693	1.02587	22.9	
15	270146 Jul	10.60	33.748	1.02596	27.0	
18	270145 Jul	10.37	33.770	1.02603	41.0	
21	270143 Jul	10.18	33.745	1.02606	76.4	
24	270142 Jul	. 10.08	33.738	1.02608	78.3	
27	270140 Jul	9.99	33.763	1.02613	78.7	
55	270137 Jul	9.55	33.862	1.02641	79.0	
85	270132 Jul	9.08	33.937	1.02668	76.4	
0	270339 Jul	12.54	33.665	1.02547	14.8	9373
5	270337 Jul	11.89	33.722	1.02566	14.1	16200
10	270336 Jul	10.94	33.721	1.02586	20.5	12400
15	270335 Jul	10.45	33.743	1.02598	53.3	4241
20	270334 Jul	10.11	33.724	1.02605	77.2	1361
25	270333 Jul	9.99	33.786	1.02614	79.4	1135
30	270332 Jul	9.90	33.782	1.02617	79.5	1169
50	270330 Jul	9.43	33.790	1.02635	79.5	1539
70	270327 Jul	L 9.18	33.862	1.02654	74.1	1990
85	270323 Jul	L 9.04	33.873	1.02664	75.5	2722
0	270547 Ju	12.56	33.715	1.02550	14.2	
5	270545 Ju	L 11.50	33.713	1.02573	12.4	
10	270544 Ju	10.57	33.726	1.02592	14.1	
15	270542 Ju	1 10.32	33.744	1.02600	58.5	
20	270541 Ju	1 9.95	33.726	1.02608	79.4	
25	270539 Ju	1 9.85	33.682	1.02608	80.0	
30	270537 Ju	9.81	33.816	1.02622	80.1	
35	270535 Ju	9.72	33.799	1.02624	80.0	
60	270532 Ju	9.34	33.866	1.02647	75.8	
85	270528 Ju	9.05	33.898	1.02666	78.3	

DEPTH (m)	DATE/TI (1968)	EME	TEMPERATURE (^O C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
0	270747	Jul	12.27	33.676	1.02553	12.8	13700
3	270746	Jul	11.57	33.760	1.02574	11.0	16700
6	270743	Jul	11.19	33.743	1.02581	13.8	13300
9	270742	Jul	10.51	33.748	1.02595	17.2	5718
12	270741	Jul	10.31	33.752	l.02600	36.0	1921
15	270740	Jul	10.23	33.817	1.02608	59.0	3392
18	270736	Jul	10.07	33.807	1.02611	79.2	5159
35	270734	Jul	9.60	33.803	1.02626	83.0	6860
65	270732	Jul	9.14	33.931	1.02658	77.7	3143
85	270727	Jul	-	-	1.02669	72.8	-
0	270958	Jul	12.40	33.730	1.02555	12.0	
5	270956	Jul	11.77	33.742	1.02570	11.0	
8	270955	Jul	11.51	33.698	1.02573	17.0	
11	270953	Jul	11.24	33.732	1.02582	31.2	
14	270951	Jul	10.94	33.657	1.02582	31.6	
17	270949	Jul	10.82	33.752	1.02593	35.0	
35	270947	Jul	10.04	33.828	1.02621	77.0	
55	270944	Jul	9.48	33.788	1.02636	78.9	
75	270941	Jul	9.09	33.896	1.02660	75.0	
85	270939	Jul	8.97	33.910	1.02668	75.7	
0	271218	Jul	12.59	33.740	1.02552	13.0	12800
4	271216	Jul	12.01	33.757	1.02566	13.5	15866
8	271215	Jul	11.89	33.696	1.02565	19.0	10900
12	271212	Jul	11.24	33.702	1.02580	30.5	7497
16	271211	Jul	11.00	33.506	1.02571	37.9	5626
20	271210	Jul	10.82	33.731	1.02593	37.4	6306
24	271209	Jul	10.10	33.756	1.02609	56.5	3558
45	271207	Jul	9.54	33.836	1.02635	78.3	1326
65	271205	Jul	9.22	33.930	1.02656	77.6	1960
85	271201	Jul	9.04	33.935	1.02669	68.9	3275

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (^O C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
0	271430 Jul	. 12.79	33.712	1.02546	16.0	
4	271428 Jul	. 11.66	33.725	1.02570	16.6	
8	271427 Jul	. 11.60	33.617	1.02565	19.3	
11	271426 Jul	. 11.45	33.690	1.02574	30.0	
15	271424 Jul	10.89	33.725	1.02589	37.1	
20	271422 Jul	10.60	33.684	1.02593	47.8	
27	271420 Jul	10.05	33.799	1.02615	78.0	
30	271419 Jul	10.00	33.817	1.02619	78.8	
55	271416 Jul	9.45	33.813	1.02639	78.4	
85	271412 Jul	9.10	33.859	1.02662	78.0	
0	271625 Jul	12.43	33.761	1.02557	15.0	
3	271624 Jul	12.06	33.727	1.02562	15.0	
6	271622 Jul	11.70	33.671	1.02566	22.0	
9	271620 Jul	11.17	33.529	1.02566	34.0	
12	271617 Jul	L 10.86	33.680	1.02585	39.5	
15	271616 Jul	L 10.36	33.649	1.02592	57.2	
18	271615 Ju	L 10.11	33.840	1.02613	78.0	
45	271612 Jul	L 9.46	33.858	1.02638	82.0	
75	271608 Ju	9.26 J	33.881	1.02656	79.0	
85	271606 Jul	L 9.06	33.749	1.02654	79.5	
0	171041 Aug	g 13.59	33.660	1.02526	65.2	2094
5	171039 Aug	g 13.51	33.696	1.02532	72.1	27970
7	171038 Aug	g –	-	-	70.0	-
8	171036 Aug	g 13.22	33.671	1.02538	27.5	2878
9	171035 Aug	g –	-	-	40.1	-
10	171034 Aug	g 12.28	33.683	1.02558	66.0	3424
11	171033 Aug	g –	-	-	67.1	-
12	171033 Aug	g 11.40	33.712	1.02577	69.0	2597
14	171032 Au	g 11.17	33.733	1.02584	73.5	2423
16	171032 Aug	g 11.11	33.754	1.02588	73.5	2793
20	171032 Au	a –	-	-	74.3	-

DEPTH (m)	DATE/TIN (1968)	Æ TE	MPERATURE (^O C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
25	171030 A	Aug		_	-	78.3	_
30	171028 A	Aug	10.73	33.769	1.02602	78.6	2292
45	171027 A	Aug	-	-	-	82.0	-
60	171025 A	Aug	10.22	33.795	1.02627	83.2	3226
85	171021 A	Aug	9.82	33.822	1.02647	82.5	1721
0	171459 A	Aug	14.02	33.671	1.02518	61.6	
3	171459 A	Aug	14.03	33.786	1.02528	63.6	
6	171458 A	Aug	13.88	33.776	1.02531	63.6	
9	171457 A	Aug	13.57	33.645	1.02529	67.0	
11	171456 A	Aug	11.91	33.723	1.02568	64.8	
13	171455 A	Aug	11.40	33.815	1.02586	66.0	
15	171454 A	Aug	11.30	33.717	1.02581	69.0	
17	171453 A	Aug	11.19	33.806	1.02591	69.0	
29	171452 A	Aug	-	-	-	69.6	
35	171451 A	Aug	-	-	-	75.1	
50	171449 A	Aug	10.48	33.879	1.02624	77.5	
65	171448 A	Aug	-	-	-	78.9	
85	171447 A	Aug	9.73	33.836	1.02650	76.5	
0	171847 A	Aug	13.57	33.700	1.02529	58.0	3178
4.7	171846 A	Aug	13.58	33.889	1.02546	57.3	4162
8.5	171845 A	Aug	13.55	33.886	1.02548	59.5	2529
11.3	171845 A	Aug	13.51	33.727	1.02537	61.0	2364
14.1	171844 A	Aug	12.58	33.810	1.02564	67.0	2385
16.9	171843 A	Aug	11.34	33.823	1.02589	69.0	1923
19.7	171842 A	Aug	11.23	33.703	1.02583	66.9	2265
28.0	171841 A	Aug	-	-	-	70.5	-
32.9	171839 A	Aug	10.62	33.884	1.02614	74.4	1953
58.4	171837 A	Aug	10.32	33.888	1.02632	77.5	1651
80.9	171833 A	Aug	10.07	33.886	1.02646	77.8	2322

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (^O C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
0	172044 Aug	y 13.49	33.662	1.02528	63.5	
4.5	172043 Aug	J 13.50	33.678	1.02531	63.5	
7.2	172042 Aug	g 13.35	33.692	1.02536	63.5	
9.9	172042 Aug	g 12.93	33.667	1.02544	61.7	
12.6	172041 Aug	g 12.14	33.700	1.02563	59.8	
15.3	172040 Aug	g 11.24	33.733	1.02584	64.0	
18.0	172039 Aug	g 11.19	33.733	1.02586	65.5	
20.9	172037 Aug	g –	-	-	69.0	
31.5	172036 Aug	g 10.40	33.768	1.02609	75.9	
54.0	172034 Aug	g 10.19	33.885	1.02632	78.2	
76.5	172030 Aug	g 9.96	33.793	1.02638	72.5	
0	230814 Aug	g 14.17	33.492	1.02501	43.5 35.1	10900 -
2 4	230814 Aug 230813 Aug	g - g 13.71	_ 33.484	1.02511	43.6	10800
7	230812 Au	g 12.64	33.519	1.02537	49.0	6016
10	230811 Au	q 12.21	33.572	1.02550	47.4	6902
13	230810 Au	g 12.08	33.545	1.02552	48.7	5144
15	230809 Au	d –	-	_	51.8	-
16	230809 Au	g 11.96	33.550	1.02556	64.4	5215
20	230808 Au	g 11.20	33.553	1.02572	71.1	4831
24	230808 Au	g 11.06	33.597	1.02580	71.2	3124
32	230807 Au	g –	_	-	74.6	-
48	230806 Au	g –	-	-	79.8	
55	230803 Au	g 10.46	33.551	1.02601	81.7	3012
63	230800 Au	.g –	-	-	82.0	-
85	230759 Au	g 10.17	33.632	1.02626	82.0	2744
0	231138 Au	lg 15.14	33.578	1.02486	28.7	
1.5	231137 Au	ıg –	-	-	21.0	
3	231136 Au	g 14.52	33.567	1.02500	21.7	

DEPTH (m)	DATE/T (1968	IME 3)	TEMPERATURE (°C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
5	231136	Aug	-	-	-	19.9	
6	231135	Aug	14.02	33.579	1.02513	40.0	
7	231134	Aug	- 1	-	-	43.5	
9	231133	Aug	12.63	33.622	1.02546	48.0	
12	231132	Aug	12.03	33.595	1.02557	59.6	
13	231132	Aug	r —	-	-	62.5	
15	231131	Aug	11.65	33.625	1.02567	69.1	
18	231131	Aug	11.13	33.537	1.02571	69.5	
21	231130	Aug	11.09	33.585	1.02577	71.7	
27	231129	Aug	-	-	-	74.1	
33	231128	Aug	-	-	-	78.0	
50	231127	Aug	10.57	33.608	1.02601	80.0	
75	231125	Aug	-	-	-	84.0	
85	231122	Aug	10.30	33.668	1.02627	82.3	
0	231715	Aug	13.64	33.564	1.02517	36.5	6404
4	231714	Aug	13.63	33.532	1.02517	35.4	7154
6	231714	Aug	-	-	-	35.5	-
8	231713	Aug	13.52	33.532	1.02521	35.0	8587
10	231713	Aug	-	-	-	36.0	-
12	231712	Aug	13.35	33.567	1.02529	37.6	7216
16	231711	Aug	12.97	33.565	1.02538	46.0	6651
20	231710	Aug	12.42	33.572	1.02551	51.1	7315
22	231710	Aug	-	-	-	52.8	-
24	231709	Aug	11.86	33.582	1.02572	59.4	4190
28	231708	Aug	11.55	33.595	1.02573	69.0	4048
32	231707	Aug	11.31	33.598	1.02579	69.6	3958
41	231705	Aug	-	-	-	74.7	-
80	231702	Aug	10.46	33.654	1.02620	82.2	4507
0	232244	Aug	13.98	33.628	1.02515	41.0	11600

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINITY (0/00)	DENSTTY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
3.9	232243 Aug	J 13.85	33.719	1.02527	42.0	11800
5.0	232242 Aug	g —	-	-	40.0	-
7.9	232241 Aug	f 13.51	33.659	1.02531	46.7	8220
11.8	232240 Aug	g 13.20	33.706	1.02542	48.0	7490
14.0	232239 Aug	g —	-	-	51.0	-
15.8	232238 Aug	12.39	33.723	1.02561	51.0	6957
18.0	232237 Aug	g —	-	-	58.0	-
19.8	232236 Aug	g 12.24	33.727	1.02566	62:0	5869
24.8	232235 Aug	g 11.89	33.747	1.02577	76.5	7253
29.7	232235 Aug	g 11.63	33.724	1.02582	79.0	4304
33.0	232233 Aug	g –	-	-	85.5	-
49.5	232231 Aug	g 10.70	33.766	1.02611	77.0	2966
74.0	232229 Aug	g –	-	-	79.5	-
79.2	232226 Aug	g 10.27	33.813	1.02636	73.0	2781
10.0	301140 Aug	g 14.06	33.512	1.02504	26.0	12500
4.9	301140 Aug	g –	-	-	27.5	-
6.9	301139 Aug	g 14.00	33.551	1.02512	26.6	12900
9.8	301138 Aug	g 13.88	33.536	1.02514	29.0	11800
12.7	301137 Aug	g 12.62	33.576	1.02544	61.5	8467
15.7	301136 Aug	g 11.67	33.602	1.02566	64.0	8673
16.7	301136 Aug	g –	-	-	68.0	-
18.6	301136 Aug	g 11.57	33.601	1.02569	77.0	5344
21.6	301135 Aug	g 11.54	33.595	1.02570	80.0	5368
39.2	301133 Aug	g 10.45	33.583	1.02597	86.4	1524
52.5	301132 Aug	g –	-	-	87.0	-
58.7	301131 Aug	g 10.28	33.592	1.02609	81.9	3337
63.6	301130 Aug	g -	-	-	68.8	-
70.5	301129 Aug	g - g	-	-	65.0	-
75.4	301128 Aug	g –	-	-	47.5	-
83.2	301127 Aug	g 9.93	33.716	1.02636	45.5	10600

DEPTH (m)	DATE/TIME (1968)	([°] C)	SALINTIY (0/00)	DENSITY (g/cm ³)	TRANSIIITTANCE (%/m)	TOTAL COULTER COUNT
0	301537 Au	g 13.73	33.451	1.02507	31.0	
3	301536 Au	ig –	-	-	31.4	
5	301535 Au	.g –	-	qualit	27.7	
6	301534 Au	.g –	-	-	29.0	
9	301533 Au	g 13.12	33.489	1.02526	23.4	
12	301532 Au	g 13.00	33.488	1.02529	18.2	
13.5	301531 Au	.g –	-	-	18.6	
15	301530 Au	g 12.20	33.487	1.02546	22.4	
18	301529 Au	g 11.40	33.482	1.02562	34.0	
19.5	301529 Au	.g –	-	-	46.0	
21	301529 Au	g 11.26	33.478	1.02566	48.4	
24	301528 Au	g 11.12	33.421	1.02565	73.4	
30	301527 Au	g 10.72	33.467	1.02579	74.5	
47	301527 Au	.g –	-	-	80.0	
55	301524 Au	g 10.31	33.588	1.02607	76.1	
59	301524 Au	.g –	-	-	76.0	
67	301523 Au	.g –	-	-	49.4	
73	301522 Au	g –	-	-	52.1	
74	301521 Au	g –	-	-	59.0	
79	301520 Au	.g –	-	-	80.0	
85	301518 Au	g 9.33	33.681	1.02644	81.2	
0	301938 Au	g 14.22	33.517	1.02502	27.5	5178
3	301937 Au	.g –	-	-	25.3	-
5	301937 Au	.g –	-	-	29.2	-
8	301936 Au	g 14.03	33.510	1.02508	25.0	9866
10	301936 Au	g 13.96	33.489	1.02509	24.5	9854
12.5	301935 Au	g –	-	-	23.5	-
13	301934 Au	g 13.30	33.496	1.02525	28.0	5807
14.5	301934 Au	ıg –	-	-	28.0	-
16	301933 Au	g 11.71	33.457	1.02554	59.4	13600

124

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINITY (0/00)	DENSTTY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
18	301933 Aug	11.20	33.482	1.02566	70.5	6283
20	301932 Aug	11.02	33.480	1.02570	66.4	3500
23	301931 Aug	10.76	33.437	1.02573	69.3	2320
28	301930 Aug	-	-	-	73.8	-
34	301929 Aug	-	-	-	78.2	-
50	301928 Aug	10.40	33.528	1.02598	76.0	1416
54	301927 Aug	- 1	-	-	78.7	-
57	301927 Aug	-	-	-	71.3	-
59	301926 Aug	- 1	-	-	59.0	-
72	301925 Aug	- I	-	-	56.0	-
82	301924 Aug	r –	-	-	59.0	-
85	301922 Aug	9.54	33.670	1.02640	67.6	2900
0	302349 Aug	15.36	33.464	1.02473	23.5	
5	302349 Aug	1 -	-	-	25.0	
9	302348 Aug	g 15.14	33.455	1.02481	26.5	
11	302348 Aug	g 14.75	33.475	1.02492	25.0	
13	302347 Aug	g 14.20	33.495	1.02506	23.0	
15	302347 Aug	g 13.25	33.497	1.02527	27.0	
17	302346 Aug	g 12.14	33.528	1.02552	33.1	
19	302346 Aug	g 11.06	33.504	1.02571	41.0	
22	302345 Aug	g 10.87	33.493	1.02574	47.0	
23	302344 Aug	g –	-	-	70.0	
28	302343 Aug	g -	-	-	74.3	
50	302342 Aug	g 10.42	33.536	1.02598	77.0	
58	302341 Aug	g –	-	-	80.0	
60	302340 Aug	g -	-	-	74.3	
62	302339 Aug	g –	-	-	60.5	
68.5	302338 Aug	g –	-	-	54.0	
79	302337 Aug	g –	-	-	56.6	

TABLE 1A (Continued)

DEPTH (m)	DATE/TIM (1968)	1E '	CC)	SALINITY (0/00)	DENSITY g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
82	302336 A	lug	_	-		64.3	-
85	302335 A	lug	9.53	33.791	1.02649	73.2	
0	310401 A	lug	13.95	33.645	1.02517	14.0	16600
2	310400 A	lug	-	-	-	13.7	-
5	310400 A	lug	13.41	33.645	1.02645	13.7	12300
7	310359 A	lug	12.02	33.608	1.02556	27.5	9551
9	310359 A	ug	11.64	33.606	1.02563	34.4	7760
11	310358 A	ug	11.31	33.609	1.02571	44.0	7213
13	310357 A	ug	11.04	33.615	1.02577	55.0	5258
15	310357 A	ug	11.01	33.646	1.02581	55.5	2822
20	310356 A	ug	10.92	33.621	1.02583	61.5	3123
22	310355 A	ug	-	-	-	61.2	-
24	310354 A	ug	-	-	-	67.0	-
29	310353 A	ug	-	-	-	73.3	-
47	310353 A	ug	-	-	-	76.5	-
50	310353 A	lug	10.18	33.763	1.02620	71.7	3754
56	310352 A	ug	-	-	-	65.6	-
59	310351 A	ug	-	-	-	60.8	-
64	310350 A	ug	-	-	-	55.0	-
69	310350 A	ug	-	-	-	59.0	-
70	310349 A	ug	-	-	-	66.0	-
72	310348 A	ug	-	-	-	73.0	-
85	310346 A	ug	9.33	33.822	1.02655	78.0	1892
0	310807 A	ug	13.47	33.633	1.02526	37.0	
3	310806 A	ug	-	-	2.00	24.5	
5	310806 A	ug	13.19	33.629	1.02534	18.0	
10	310805 A	ug	12.46	33.635	1.02551	17.0	
13	310805 A	ug	11.99	33.644	1.02562	20.5	

DEPTH (m)	DATE/TIME 1 (1968)	EMPERATURE (^O C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)	TOTAL COULTER COUNT
16	310803 Aug	11.27	33.637	1.02576	28.0	
18	310802 Aug	-	-	-	47.0	
20	310802 Aug	11.00	33.631	1.02582	53.7	
24	310801 Aug	10.98	33.687	1.02589	56.0	
27.5	310800 Aug	-	-	-	65.0	
35	310800 Aug	10.71	33.701	1.02599	72.0	
38	310759 Aug	-	-	-	71.4	
43	310758 Aug	-	-	-	74.1	
52	310757 Aug	-	-	-	64.3	
60	310757 Aug	9.85	33.797	1.02633	67.5	
72	310755 Aug	-	-	-	70.5	
85	310753 Aug	9.37	33.819	1.02654	76.8	

TABLE 1B STATION DELTA

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINITY (0/00)	DENSTTY (g/cm ³)	TRANSMITTANCE (%/m)
0	171250 Aug	14.27	33.700	1.02515	52.0
3	171249 Aug	14.09	33.656	1.02516	55.2
4	171248 Aug	-	-	-	55.7
6	171248 Aug	13.89	33.674	1.02523	36.1
7	171247 Aug	-	-		35.3
9	171247 Aug	13.42	33.719	1.02538	33.0
10	171246 Aug	-	-	-	33.0
12	171244 Aug	12.68	33.720	1.02554	41.4
14	171243 Aug	-	-	-	54.0
15	171243 Aug	12.45	33.741	1.02561	54.0
17	171242 Aug	-	-	-	61.0
19	171241 Aug	11.86	33.753	1.02575	70.4
22	171240 Aug	11.08	33.759	1.02591	74.6
25	171239 Aug	10.88	33.737	1.02595	76.0
55	171238 Aug	-	-	-	81.0
85	171231 Aug	9.78	33.807	1.02646	82.3
0	171646 Aug	14.21	33.634	1.02511	42.0
2.8	171645 Aug	14.22	33.649	1.02513	42.0
5.6	171644 Aug	14.12	33.787	1.02527	39.9
7.5	171643 Aug	13.75	33.704	1.02529	38.1
11	171643 Aug	-	-	-	44.0
11.3	171642 Aug	12.51	33.690	1.02554	41.8
13.5	171641 Aug	-	-	-	44.3
14.1	171640 Aug	12.11	33.734	1.02567	47.0
16.5	171639 Aug	-	-	-	57.0
16.9	171639 Aug	11.75	33.694	1.02572	73.0
19.7	171639 Aug	11.07	33.740	1.02589	73.1
35	171636 Aug	-	-	-	71.7
42.3	171635 Aug	10.42	33.779	1.02614	72.0
80.9	171630 Aug	9.83	33.801	1.02643	79.3

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)
0	230952 Aug	13.75	33.557	1.02514	45.0
5	230951 Aug	-	-	-	44.1
8	230950 Aug	13.67	33.566	1.02520	48.1
11	230949 Aug	13.53	33.546	1.02523	56.5
14	230948 Aug	12.51	33.522	1.02543	51.5
15	230947 Aug	-	-	-	64.5
17	230947 Aug	11.91	33.526	1.02556	70.5
20	230946 Aug	11.50	33.626	1.02572	75.9
23	230945 Aug	10.76	33.473	1.02575	80.5
26	230944 Aug	10.32	33.485	1.02585	86.5
55	230942 Aug	9.68	33.597	1.02618	87.9
85	230937 Aug	9.47	33.684	1.02642	87.9
0	231335 Aug	14.21	33.556	1.02505	39.2
4.8	231335 Aug	14.20	33.566	1.02508	39.2
9.6	231334 Aug	14.00	33.565	1.02514	41.4
13	231333 Aug	-	-	-	42.5
14.4	231333 Aug	13.42	33.604	1.02531	49.0
17.3	231332 Aug	12.99	33.593	1.02540	49.7
20.2	231332 Aug	12.68	33.580	1.02547	50.3
23	231331 Aug	12.38	33.582	1.02554	53.0
28.8	231328 Aug	11.26	33.634	1.02581	67.3
57.6	231326 Aug	10.80	33.606	1.02601	73.7
66	231325 Aug	-	-	-	77.5
70	231324 Aug	-	-	-	82.5
81.6	231322 Aug	10.05	33.527	1.02618	85.0
0	232058 Aug	13.54	33.599	1.02522	55.8
5	232058 Aug	-	-	-	56.0
9.9	232057 Aug	12.99	33.661	1.02542	59.1

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINITY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)
12.9	232056 Aug	12.80	33.603	1.02543	59.7
15.8	232055 Aug	12.48	33.664	1.02555	62.9
18.8	232055 Aug	12.14	33.458	1.02547	61.0
21.8	232054 Aug	11.72	33.660	1.02572	73.0
24.8	232054 Aug	11.43	33.596	1.02574	74.4
27.8	232053 Aug	11.36	33.718	1.02586	75.3
31.7	232052 Aug	11.06	33.677	1.02590	80.4
43	232050 Aug	-	-	-	82.0
79.2	232045 Aug	9.67	33.739	1.02640	86.3
0	301332 Auq	13.97	33.463	1.02503	25.5
4.9	301332 Aug	-	-	-	25.5
7.9	301331 Aug	13.86	33.476	1.02509	27.0
10.9	301330 Aug	13.53	33.449	1.02515	47.6
13.9	301330 Aug	12.22	33.486	1.02546	52.5
16.8	301329 Aug	11.38	33.473	1.02561	48.0
19.8	301329 Aug	11.36	33.496	1.02565	49.5
22.8	301328 Aug	11.09	33.510	1.02572	59.1
25.8	301327 Aug	10.97	33.529	1.02577	63.0
30.7	301326 Aug	-	-	-	68.6
37.6	301325 Aug	-	-	-	77.0
42.6	301324 Aug	-	-	-	82.6
49.5	301324 Aug	10.34	33.591	1.02604	77.0
56.5	301323 Aug	-	-	-	73.4
63.4	301322 Aug	-	-	-	80.5
84.2	301319 Aug	9.61	33.632	1.02635	84.7
0	301731 Aug	14.28	33.491	1.02498	18.0
2	301731 Aug	_	-	-	18.0
4	301731 Aug	14.08	33.496	1.02505	21.4

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINTTY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)
5	301730 Aug		-	-	23.0
6	301730 Aug	13.71	33.455	1.02510	24.4
8	301729 Aug	13.19	33.485	1.02524	38.0
10	301729 Aug	12.54	33.468	1.02536	54.1
11	301729 Aug	-	-	_	57.5
13	301728 Aug	11.16	33.467	1.02563	68.4
16	301728 Aug	10.91	33.474	1.02570	74.7
20	301727 Aug	10.72	33.481	1.02575	77.0
45	301725 Aug	10.38	33.543	1.02597	78.4
62	301724 Aug	-	-	-	75.0
71.5	301723 Aug	-	-	-	80.7
85	301719 Aug	9.43	33.612	1.02637	83.7
0	302145 Aug	14.41	33.504	1.02496	24.0
5	302145 Aug	-	-	-	20.0
8	302144 Aug	13.85	33.500	1.02512	23.0
9	302144 Aug	-	-	-	23.5
12	302143 Aug	13.52	33.487	1.02519	25.5
14	302143 Aug	-	-	-	37.5
16	302142 Aug	13.01	33.478	1.02530	41.5
19	302142 Aug	-	-	-	49.5
20	302141 Aug	11.64	33.502	1.02560	59.0
22	302140 Aug	11.22	33.502	1.02569	64.3
24	302140 Aug	11.04	33.498	1.02573	66.5
26	302139 Aug	10.94	33.504	1.02576	70.0
45	302138 Aug	10.62	33.610	1.02598	76.2
55	302138 Aug	-	-	-	76.2
71.5	302137 Aug	-	-	-	80.5
85	302137 Aug	9.45	33.602	1.02636	83.1

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE (°C)	SALINTTY (0/00)	DENSITY (g/cm ³)	TRANSMITTANCE (%/m)
0	310154 Aug	14.32	33.619	1.02507	26.0
5	310154 Aug	-	-	-	28.3
8	310153 Aug	14.01	33.608	1.02516	25.0
10	310152 Aug	13.83	33.618	1.02522	25.6
12	310152 Aug	13.43	33.628	1.02532	26.6
14	310151 Aug	13.24	33.614	1.02535	30.1
16	310151 Aug	12.94	33.582	1.02540	40.0
18	310150 Aug	11.82	33.622	1.02565	51.0
21	310149 Aug	-	-	-	64.0
25	310148 Aug	10.74	33.628	1.02589	69.9
37	310147 Aug	-	-	-	76.4
42	310146 Aug	-	-	-	63.5
45	310146 Aug	10.20	33.766	1.02618	55.1
49	310145 Aug	-	-	-	53.0
54	310144 Aug	-	-	-	73.4
62	310143 Aug	-	-	-	79.0
85	310140 Aug	9.32	33.679	1.02644	82.2
0	310606 Aug	14.92	33.653	1.02497	32.5
3	310605 Aug	13.80	33.640	1.02521	32.9
6	310604 Aug	13.59	33.656	1.02528	32.9
9	310603 Aug	13.31	33.560	1.02528	42.0
12	310602 Aug	12.48	33.640	1.02552	37.0
13.5	310602 Aug	-	-	-	55.5
15	310602 Aug	11.25	33.639	1.02576	64.5
18	310601 Aug	10.97	33.649	1.02583	69.9
21	310600 Aug	10.81	33.644	1.02587	72.3
29	310559 Aug	-	-	-	74.2
50	310558 Aug	10.21	33.696	1.02615	79.0
63	310557 Aug	-	-	-	72.5

DEPTH (m)	DATE/TIME (1968)	TEMPERATURE	SALINITY (0/00)	DENSITY (g/cm ³)	TRANS4ITTANCE (%/m)
69	310556 Aug	_	_	_	69.2
77	310555 Aug	-	-	-	65.0
85	310552 Aug	9.71	33.762	1.02644	66.5
0	311016 Aug	13.92	33.617	1.02516	29.5
5	311015 Aug	13.56	33.630	1.02526	32.6
10	311014 Aug	13.36	33.635	1.02533	35.5
13	311014 Aug	13.25	33.627	1.02536	38.0
16	311013 Aug	12.98	33.640	1.02544	48.0
17	311012 Aug	-	-	-	53.0
18	311012 Aug	-	-	-	65.1
20	311011 Aug	11.63	33.629	1.02570	69.0
24	311011 Aug	11.42	33.651	1.02578	74.5
35	311010 Aug	10.59	33.657	1.02598	75.7
47	311009 Aug	-	-	-	81.0
56	311009 Aug	-	-	-	72.1
60	311008 Aug	10.33	33.733	1.02620	68.3
63.5	311007 Aug	-	-	-	58.0
71	311006 Aug	-	-	-	79.5
85	311000 Aug	9.46	33.746	1.02647	83.2

COUNT	
COULTER PARTICLE	(2 ml sample)

STATION BRAVO

90-100	146	265	176						193	124	191	163	157					
80-90	751	352	277	33					157	272	153	295	221					
70-80	367	555	249	103					325	273	321	268	225					
HEIGHT 60+70	494	418	319	76					525	261	175	298	257					
E PULSE 50-60	797	440	66	26					346	405	168	372	403					
RELATIV 40-50	7001	675	500	LL					375	600	533	1455	376					
30-40	1330	1449	512	129					540	854	606	110	687					93
20-30	1545	1747	988	186	116			144	1310	1105	1415	1497	1295	53	76			148
10-20	3100	3892	2907	724	186	67	231	338	1958	2622	2206	2770	2574	171	259	141	194	348
0-10	4318	12000	3330	1816	1634	937	1799	3714	7867	7950	8141	3024	7204	1045	1718	1442	1587	2483
TOTAL COUNT AT THRESHOLD ZERO	13800	22700	10500	3500	2152	1197	2205	4333	14100	15100	14900	10900	13800	1428	2228	1725	2955	3254
SAMPLE DEPTH	0	0 0	13	17	21	40	65	90	0	ഹ	6	13	17	21	25	45	65	85
DATE TIME	v[riT. 9C	1517							26 July	1935								

0 80-90 90-100	0 125 101 9 144 144 5 195 96 0 209 90 8 160 158 9204 82	1 142 121 0 288 166 4 247 109 2 127 32	283 197 174 361 174 221 155 178 114
:GHT)=70 70-8(182 290 163 233 373 343 364 188 35 239 35 299	302 281 246 200 428 234 102 62	92 200 397 101 327 266 89 92
E' PULSE HEI 50-60 60	316 407 447 586 418 310	257 413 48 48	505 540 518 211
RELATIV 40-50	372 510 542 582 184 184	598 638 97	705 590 85 61
30-40	866 755 1027 670 862 501	699 1112 676 209	100 100 268
20-30	1152 1252 1629 1154 1360 677 71	1250 1400 1121 310 52 77	298 1604 297 297 80 121
10-20	1961 2423 3130 2787 2562 1266 1266 204 213	1700 3194 927 172 110 115 602 274 254	1791 2620 2291 940 201 , 177
0-10	6593 3188 5360 7400 8850 4425 2077 1240 1342 1342 1501	3589 7775 6050 974 854 897 773 1522 2189	7142 8603 6291 3126 1401 2945 2945
TOTAL COUNT AI THRESHOLD ZERO	12400 9831 14200 16100 8547 2290 1558 1792 1966	9373 16200 12400 1241 1361 1135 1169 1539 1990 2722	13700 16700 13300 5718 3392 3392 5759
SAMPLE DEPTH	200 850 850 850 850 850 850 850 850 850 8	7 0 10 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	/ 0 12 15 15 15
DATE TIME	26 July 2335	27 Jul ₃ 0321	27 Jul ₅ 0726

G
ğ
<u>.</u>
B
õ
9
\sim
Щ 2
BLE 2
rABLE 2

90-100	113 178 70 190 64 77		
80-90	83 187 164 409 64 149 54		
70-80	263 248 234 234 65 72 34		
HEIGHT 60-70	87 132 212 46 169 188 188		
E PULSE 50-60	304 195 298 274 134 151 107	206	
RELATIV 40-50	439 636 498 315 218 218 88	316 57	
30-40	684 1063 970 269 316 177 107 62	418 77 127 81 108	84 47 59 59
20-30	1291 1522 1522 678 678 612 173 25 25 102	53 965 147 204 147 102 93	147 133 6 77 100 184 117
10-20	1625 2481 1912 1179 1179 1158 1158 138 138 138 232	325 1940 327 440 653 409 250 233	380 458 429 392 306 306 82 214 214
0-10	7379 8615 4882 4882 3251 2375 3168 2214 982 1669 1669 2731	1432 22378 2138 2391 1508 1663 1663 1253	2319 3243 1764 1587 1739 1739 1739 1739 1738 1738 1738 1738 1738 1350 1350
TOTAL COUNT AT THRESHOLD ZERO	12800 15866 10900 7497 5626 6306 3558 1326 1960 3275	2094 27970 2878 3424 2597 2423 2793 2793 2292 3226 1721	3178 4162 2529 2364 1923 1953 1953 2322
AMPLE EPTH	8655 855 855 855 855 855 855 855 855 855	8631142 860 850	0 4.7 8.5 11.3 16.9 16.9 16.9 19.7 80.9 80.9
DATE S	27 July 1200	17 Aug 1018	17 Aug 1831

90-100	41 41 67 50 92	57 150 43	43 76 103 37
80-90	147 160 54 173 66	50 165 87 120 102	69 159 138 103 103
70-80	163 151 85 41 123 58	169 62 214 171 148 58	121 103 162 121 78 104
HEIGHT 60-70	120 158 143 60 89 89	97 91 78 73 98	138 119 148 185 195 145
JE PULSE 50-60	287 213 65 177 177 54 83	198 298 57 42	235 330 84 177 149 146 50
RELATIN 40-50	174 356 163 86 195 50	197 142 15 15 170 130 113 122	283 275 239 251 129 129 54 50
30-40	328 646 137 354 353 354 149 73 82	234 240 342 342 217 219 219 125 135 149	532 465 386 216 216 248 248 109
20-30	783 559 444 174 111 111	450 633 633 482 463 463 275 214 160 160	912 674 626 431 440 255 261
10-20	1757 1522 910 962 700 1018 369 405 263	983 1011 1372 11063 1103 758 633 489 504	1481 958 958 963 1127 1097 897 897 232 232
0-10	6502 6430 3941 4114 3156 2472 2212 2212 2213 2213 2213	3469 4021 5111 4161 3831 2418 2624 2624 3436	7512 8106 5128 4463 3193 3193 3193 2404 2152 2493 2152
TOTAL COUNT AT THRESHOLD ZERO	10900 10800 6016 6016 5215 444 3124 3124 3012 2744	6404 7154 8587 7216 6651 7315 4048 3958 4507	11600 11800 8220 7490 6957 7253 4304 2366
SAMPLE DEPTH	85540 85540 85540	8 3 5 5 7 0 0 7 8 4 0 8 3 5 5 0 0 7 1 1 5 8 3 5 7 0 0 0 7 0 0 7 0 0 7 0 0 0 0 0 0 0 0	0 3.9 11.8 15.8 19.8 29.7 29.7 29.7 29.7
DATE	23 Aug 0757	23 Aug 1701	23 Aug 2224

90 - 100	91 179 81 78 47	75 80 80	139
80-90	132 188 113 249 297 29	79 64 84 84	62 51 98 146 146
70-80	176 209 168 157 204 56	83 152 173 173 85	310 372 92 65
HEIGHT 60-70	199 250 374 47	146 129 214 162 101	211 232 96 177 177
/E PULSE 50~60	177 289 292 160 131	95 347 202 95 191 176 98	304 455 141 226 312 39
RELATIN 40=50	365 339 306 398 97 97	189 268 329 350 127 127	481 354 255 258 92 92 58
30 ~ 40	635 552 318 143 150	332 454 449 301 653 277 277 134	912 581 389 281 94 94
20-30	973 945 945 977 977 701 197 197 220 197 217	564 969 514 721 119 92	1297 912 855 799 799 130 113 113 98
10~20	2225 2234 2165 1731 749 778 139 405 505	1511 2146 2271 1375 2482 1660 699 373 277	2833 2357 2357 1781 1553 1553 1553 446 446 332 332 239
r 0-10	6852 6852 6342 6342 2863 4434 3631 3631 3631 3631 1218 1218 1218 9775	1985 4970 4793 2565 2565 8163 2637 1816 1816 1504 1139 2372 2372	9759 6229 5641 4086 4014 4032 2094 2153 3171 1445
TOTAL COUNT A	12500 12900 11800 8673 5344 5368 1524 3337 10600	5178 9866 9854 5807 5807 6283 3500 2320 2320 2320 2900	16600 12300 9551 7760 7213 5258 3123 3123 3123 1892
SAMPLE DEPTH	0 6.9 12.7 18.6 18.6 33.2 83.2 83.2	0 13 20 85 23 20 85 23 20 20 20 20 20 20 20 20 20 20 20 20 20	85 2 0 1 1 9 7 5 0 85 0 0 1 1 1 9 7 5 0 85 0 0 1 1 1 9 7 5 0
DATE TIME	30 Aug 1125	30 Aug 1921	31 Aug

138

RELATION BETWEEN LUNAR PHASES AND SAMPLING PERIODS

DATE	TIME (PST) MOON PHASE		SAMPLING PERIOD				
25 July 1968	0449	New					
			1511/26 July 1968 to 1559/27 July 1968				
l August 1968	1134	First Quarter					
8 August 1968	0432	Full					
15 August 1968	1913	Last Quarter					
			1012-2023 17 August 1968				
23 August 1968	1657	New					
			0757-2218 23 August 1968				
30 August 1968	1635	First Quarter					
			1125/30 Aug 1968 to 0959/31 Aug 1968				

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station		20
	Alexandria, Virginia 22314		
2.	Library Naval Postgraduate School Monterey, California 93940		2
3.	Department of Oceanography Naval Postgraduate School Monterey, California 93940		10
4.	Naval Weather Service Command Washington Navy Yard Washington, D. C. 20390		1
5.	Officer in Charge Fleet Numerical Weather Facility Naval Postgraduate School Monterey, California 93940		1
6.	Commanding Officer and Director U. S. Naval Undersea Warfare Center Attn: Code 2230 San Diego, California 92152		1
7.	Director, Naval Research Laboratory Attn: Tech. Services Info. Officer Washington, D. C. 20390		1
8.	Office of Naval Research Department of the Navy Washington, D. C. 20360		1
9.	Commander, Air Weather Service Military Airlift Command U. S. Air Force Scott Air Force Base, Illinois 62226		2
10.	Department of Commerce, ESSA Weather Bureau Washington, D. C. 20235		2
11.	Oceanographer of the Navy The Madison Building 732 N. Washington Street Alexandria, Virginia 22314		1
12.	Naval Oceanographic Office Attn: Library Washington, D. C. 20390		1

13.	National Oceanographic Data Center Washington, D. C. 20390	1
14.	Mission Bay Research Foundation 7730 Herschel Avenue La Jolla, California 92038	1
15.	Director, Maury Center for Ocean Sciences Naval Research Laboratory Washington, D. C. 20390	1
16.	Dr. George F. Beardsley Department of Oceanography Oregon State University Corvallis, Oregon 97331	1
17.	Dr. Bob Dresnack Department of Civil Engineering 323 High Street Newark, New Jersey 07102	1
18.	Dr. Seibert Q. Duntley Visibility Laboratory Scripps Institution of Oceanography La Jolla, California 92037	1
19.	CDR J. E. Geary, USN Department of Oceanography Naval Postgraduate School Monterey, California 93940	1
20.	Dr. Eugene C. Haderlie Department of Oceanography Naval Postgraduate School Monterey, California 93940	1
21.	Professor Alexandre Ivanoff Laboratoire d'Oceanographie Physique de la Faculte des Sciences de Paris 9, Quai Saint-Bernard Paris (V ^O), France	1
22.	Dr. G. Kullenberg Institute for Physical Oceanography Solvgade 83K Copenhagen, K, Denmark	1
23.	Mr. Kenneth V. Mackenzie U. S. Naval Undersea Warfare Center Ocean Sciences Department - Code D503 San Diego Division San Diego, California 92152	1

- 24. Dr. Robert E. Morrison Tracor, Inc. 1735 I Street, N. W. Washington, D. C. 20006
- 25. Dr. John H. Phillips Director Hopkins Marine Station Stanford University Pacific Grove, California 93950
- 26. Professor Stevens P. Tucker Department of Oceanography Naval Postgraduate School Monterey, California 93940

1

1

5

1

2

2

- 27. Mr. John E. Tyler Visibility Laboratory Scripps Institution of Oceanography La Jolla, California 92037
- 28. LT Richard D. Waer USS HALFBEAK (SS-352) Fleet Post Office New York, New York 09501
- 29. LT Lanny A. Yeske USS BAYA (AGSS-318) Fleet Post Office San Francisco, California 96601

UNCLASSIFIED								
Security Classification								
DOCUMENT CONTI	DOCUMENT CONTROL DATA - R & D							
(Security classification of title, body of abstract and indexing a	nnotation must be entered w	then the overall report is classified)						
1 ORIGINATING ACTIVITY (Corporate author)	28, REF	28. REPORT SECURITY CLASSIFICATION						
Naval Postgraduate School		Unclassified						
Monterey, California 93940	25. GR	OUP						
3. REPORT TITLE								
The Correlation of Oceanic Daramators with	Tight Attomatic	n in Montover Des						
The correlation of oceanic Paralleters with	LIGHT ALTENUATIO	n in Monterey Bay,						
California.								
4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)								
Master's thesis, December 1968								
5. AUTHOR(S) (First name, middle initial, last name)								
Lanny A. Yeske								
Richard D. Waer								
6. REPORT DATE	78. TOTAL NO. OF PAGES	5 7b. NO. OF REFS						
December 1968	143	19						
84. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPOR	RT NUMBER(S)						
IV/A								
b. PROJECT NO.	N/A							
N/A								
с.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)							
N/A	N/A							
a								
This document has been approved for publi	.c release and sa	le; its distribution is						
unlimited.								
II. SUFFLEMENTARY NOTES	12. SPONSORING MILITAR	CT ACTIVITY						
	Naval Postgraduate School							
N/A	Monterey, California 93940							
	, our							

13. ABSTRACT

An investigation of the correlation of oceanic parameters with light attenuation in Monterey Bay, California, was conducted during July and August 1968. Measurements of beam transmittance, salinity, temperature, density, and particulate matter, related in time and depth, were obtained during four cruises. Nearly 400 water samples were taken from two stations at depths between 0 and 85 m.

Temperature showed the greatest correlation with beam transmittance. Isopycnals and beam transmittance contours showed a similar good correlation. Although salinity correlations were not clearly defined, isolated salinity pockets often appeared to be associated with transmissivity perturbations. A nearly linear relationship between values of particulate count and beam transmittance was observed. Particle sizes were found to decrease with increased depths. Approximately 96 percent of the particles affecting beam transmittance were less than 13μ in diameter. Beam transmittance isolines generally oscillate with a tidal cycle period, the minimum values usually occurring at low tide. A possible correlation between lunar period, tidal ranges, and turbidity layers were indicated.

143

UNCLASSIFIED

Security Classification

14 KEY WORDS	LINK A		LINKB		LINKC	
		wт	ROLE	wт	ROLE	wτ
Light attenuation Turbidity Beam transmittance Transparency Suspended material Particulate matter Plankton Salinity Temperature Density Tidal Cualo						
Lunar Period Monterey Bay, California						
				_	- 10	
					-	
			-		_	
	_					
				_		

DD 1 NOV 68 1473 (BACK) S/N 0101-807-6821

UNCLASSIFIED

· ·

