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1. Summary
In this paper, we revisit the cold fusion (CF) phenomenon using
the generalized Bolzmann kinetics theory which can represent
the non-local physics of this CF phenomenon. This approach
can identify the conditions when the CF can take place as the
soliton creation under the influence of the intensive sound waves.
The vast mathematical modelling leads to affirmation that all
parts of soliton move with the same velocity and with the small
internal change of the pressure. The zone of the high density
is shaped on the soliton’s front. It means that the regime of
the ‘acoustic CF’ could be realized from the position of the
non-local hydrodynamics.

2. Introduction
In 1989, two electro-chemists, Martin Fleischmann and Stanley
Pons [1] announced about nuclear fusion reactions between
deuterium nuclei in a table-top experiment, under ordinary
conditions of temperature and pressure, by using electrochemistry.
The experimental evidence consisted of the production of large
amounts of heat, which could not be attributed to chemical
reactions.

The reactions were termed ‘cold fusion’ (CF), by comparison
with the high temperature of thermonuclear fusion. The typical
chain of nuclear reactions can be written as follows:

d + d → 3He + n + 4.0 MeV,

d + d → t + p + 3.25 MeV,

t + d → 4He + n + 17.6 MeV

and 3He + d → 4He + p + 18.3 MeV.

Obviously, the following criteria need to be met in order to
establish conventional thermonuclear deuterium fusion
unquestionably:

(1) the experiment has been repeatable by other investigators;
(2) there has to be a significant neutron emission statistically

well above background level;
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(3) the energy spectrum of the detected neutrons must match the energy spectrum of neutrons

produced in deuterium fusion; and
(4) there should be no neutron sources in the laboratory that can confuse the fusion neutron

measurements.

Many scientists cannot reproduce the mentioned experimental results. The scientific community
concluded that there were no nuclear reactions and that the reported experiments were in error.
CF was considered an example of wrong science. This produced a partition between the traditional
scientific world and the community which continued the CF research. In the 20 years elapsed since
the announcement by Fleischmann and Pons that the excess enthalpy generated in the negatively
polarized Pd-D-D2O system was attributable to nuclear reactions occurring inside the Pd lattice,
there have been reports of other manifestations of nuclear activities in this system. In particular,
there have been reports of tritium and helium-4 production; emission of energetic particles, gamma
or X-rays and neutrons; as well as the transmutation of elements. Reproducibility was improved
and Mosier-Boss et al. [2] declared as result of accurate measurements about the real existence of
the ‘Fleischmann–Pons effect’.

An other system known as Energy Catalyzer (also called E-Cat) was devised by inventor Andrea Rossi
[3] with support from physicist Sergio Focardi. Rossi and Focardi said the device worked by infusing
heated hydrogen into nickel powder, transmuting it into copper and producing heat.

Many scientists were convinced of the unlikelihood of a chemical reaction being strong enough to
overcome the Coulomb barrier, the lack of gamma rays, the lack of explanation for the origin of the extra
energy, the lack of the expected radioactivity after fusing a proton with 58Ni and so on. The main secret
of the Rossi’s device consists in the catalysts used in E-Cat, but the scientific community has no access to
information about the catalysts in Rossi’s device.

In the following investigation, I intend to construct the non-local theory of CF for the system which
can be analysed by the methods of theoretical physics. Then we have no reason to discuss the physical
systems with unknown influence of unknown catalysts. Practically, considering above the CF direction
of investigation can be called ‘catalysts CF’. Much more interesting for the theoretical investigation is the
situation when light nuclei are forced together using the external forces like effects of cavitations, shock
waves or combination of the possible force effects. In this case, particles will fuse with a yield of energy
because the mass of the combination will be less than the sum of the masses of the individual nuclei.

Many successful cavitation-induced fusion experiments have been performed and reported in peer-
reviewed literature (e.g. [4–14]). Russian publications were practically never translated into English and
therefore Russian-Soviet work is not widely known or cited in the West.

Subsequent work was carried out by Bityurin et al. [4] at the Joint Institute for High Temperatures
of the Russian Academy of Sciences. The group studied the effect of shockwaves on deuterated liquid
(D2O) with high (20–95%) bubble content. Their experimental set-up includes admission of deuterium
bubbles into deuterated liquid and crushing them with a shockwave generated via an explosion of
a semicircular wire due to high current pulse. The resulting shockwave propagates in the bubble–
liquid phase and focuses much more strongly than in the pure liquid due to shockwave amplification
effects in the gaseous phase. As is well known, the fusion of D atoms results in the emission of a
proton, helium-3, a neutron (of 2.45 MeV energy) and tritium. Protons (in the MeV range) are charged
particles which cannot traverse more than 1 mm in the liquid before getting absorbed and, therefore,
cannot be measured with detectors outside of the apparatus. The same problem holds true for helium-
3 atoms which are non-radioactive and difficult to detect in small quantities. Neutrons are uncharged
particles which can leak out of the test chamber and can be detected with suitable instrumentation.
Also, tritium being a radioactive gas which remains in the test liquid can be counted for β-decay
activity (if a suitable state-of-the-art beta spectrometer is available). Therefore, testing was initiated
systematically for monitoring the key signatures consisting of tritium and neutron emissions. The
group used Indium (β-decay) detectors to measure neutron flux and estimate total neutron yield at
108–1010 per explosion.

Naturally, the possibility of attaining nano-scale nuclear fusion in the cores of collapsing bubbles
in liquids leads to tremendous difficulties for the theoretical description. Really, we should apply
the unified theory that realizes the ‘through’ description from macroscopic level to the nuclei scale.
This description cannot be realized not only on the ‘classical’ hydrodynamic level but on the level of
Schrödinger quantum mechanics (SQM) because SQM is not applicable to the nuclei problems. Delivery
of the main principles of the unified non-local theory in the concentrated form in my plenary lecture can
be found [15].
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From this point of view, there is no reason to estimate fusion efficiency by solving the Rayleigh–

Plesset–Keller (RPK) differential equation for bubble collapse. By the way, the RPK equation must be
solved numerically together with the equation of state for the bubble gas. No surprise that the resulting
solution is quite sensitive to the choice of the equation of state during the last stage of collapse. But the
equation of state for ideal gas cannot be used for this stage which is the most interesting stage from the
standpoint of nuclear fusion.

The adversaries of the cavitation-induced fusion affirm that theoretical physics does not lead to the
acoustic regimes providing CF and all the effect is within the experimental error.

The main objective is to investigate the dynamics of matter under the influence of the sound wave by
the methods of non-local physics.

3. Investigation of the soliton movement under action of the sound wave
Let be the plane sound wave interact with matter. In this case, we can say about the sound pressure P
which can be observed for example in the stiff tube. This pressure P was calculated by Rayleigh [16–18]
and can be written as

P = γ + 1
8

ρmv2 = (γ + 1)Ek, (3.1)

where ρm is the density of a surrounding medium without perturbations, v is amplitude of the sound
particle velocity in the wave antinodes, Ek is the time- and space-average of the kinetic energy density
of the sound wave, γ = cp/cV (the ratio of the specific heat at constant pressure to the specific heat at
constant volume).

Non-local hydrodynamic equations have the form [15,19,20]:
(continuity equation)

∂

∂t

{
ρ − τ

[
∂ρ

∂t
+ ∂

∂r
· (ρv0)

]}
+ ∂

∂r
·
{
ρv0 − τ

[
∂

∂t
(ρv0) + ∂

∂r
· ρv0v0 + ↔

I ·∂p
∂r

− F
]}

= 0, (3.2)

(motion equation)

∂

∂t

{
ρv0 − τ

[
∂

∂t
(ρv0) + ∂

∂r
· ρv0v0 + ∂p

∂r
− F

]}
− F

ρ

[
ρ − τ

(
∂ρ

∂t
+ ∂

∂r
· (ρv0)

)]
+ ∂

∂r
·
{
ρv0v0 + p

↔
I

− τ

[
∂

∂t

(
ρv0v0 + p

↔
I
)

+ ∂

∂r
· ρ(v0v0)v0 +2

↔
I
[

∂

∂r
· (pv0)

]
+ ∂

∂r
· (

↔
I pv0) − Fv0 − v0F

]}
= 0, (3.3)

(energy equation)

∂

∂t

{
ρv2

0 + 3p − τ

[
∂

∂t
(ρv2

0 + 3p) + ∂

∂r
· (ρv2

0v0 + 5pv0) − 2F · v0

]}

+ ∂

∂r
·
{

ρv2
0v0 + 5pv0 − τ

[
∂

∂t
(ρv2

0v0 + 5pv0) + ∂

∂r
·
(

ρv2
0v0v0 + 7pv0v0 + pv2

0
↔
I +5

p2

ρ

↔
I

)

−2F · v0v0 − 2
p
ρ

F · ↔
I −v2

0F − 3
p
ρ

F
]}

− 2
{

F · v0 − τ

[
F
ρ

·
(

∂

∂t
(ρv0) + ∂

∂r
· ρv0v0+ ∂

∂r
· p

↔
I −F

)]}
= 0,

(3.4)

where v0 is the hydrodynamic velocity in the coordinate system at rest, ρ the density, p the pressure,
↔
I unit tensore, F the force acting on the unit of volume and τ the non-local parameter. Several
significant remarks follow.

(1) Equations (3.2)–(3.4) should be considered as local approximation of non-local equations (NLE)
written in the hydrodynamic form. NLE include quantum hydrodynamics of Schrödinger—
Madelung as a deep particular case [15] and can be applied in the frame of the unified theory
from the atom scale to the Universe evolution.

(2) As it follows from relation (3.1), the force F (connected with the Rayleigh sound radiation
pressure) can be considered as the constant value. Of course it is not a principal restriction. Other
approximations can be used including the possibility of the self-consistent solution.

(3) At this stage of investigation, we should answer the question of the principal significance—is it
possible to obtain the soliton type of solution with the density growth or not? Then there is no
reason to now introduce the consideration of the multi component physical system.
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(4) The choice of the non-local parameter needs special consideration [19–22]. The system of

equations (3.2)–(3.4) convert in the system of quantum hydrodynamic equations by the suitable
choice of the non-local parameter τ . The relation between τ and kinetic energy [21,22] is used in
quantum hydrodynamics:

τ = H
mu2 , (3.5)

where u is the particle velocity and H is the coefficient of proportionality which reflects the
state of the physical system. In the simplest case, H is equal to the Plank constant h̄ and the
corresponding relation (3.5) correlates with the Heisenberg inequality. From first glance, the
approximation (3.5) is distinguished radically from the kinetic relation known from the theory
of the rarefied gases (3.6):

τ = Π
υρ

p
(3.6)

which is used for the calculation of the non-local parameter in the macroscopic hydrodynamic
case (υ is the kinematic viscosity). But it is not a case. In quantum approximation, the value
υqu = h̄/m has the dimension (cm2 s−1) and can be called as quantum viscosity, for the electron
species υqu = h̄/me = 1.1577 cm2 s−1. If we take into account that the value p/ρ ∼ V2, then the
interrelation of (3.5) and (3.6) becomes obvious.

Let us consider now the one-dimensional non-stationary matter movement under action of the
wavefront. In this case, equations (3.2)–(3.5) take the form:
(continuity equation)

∂

∂t

{
ρ − τ

[
∂ρ

∂t
+ ∂

∂x
(ρu)

]}
+ ∂

∂x

{
ρu − τ

[
∂

∂t
(ρu) + ∂

∂x
(ρu2) + ∂p

∂x
− F

]}
= 0, (3.7)

(motion equation)

∂

∂t

{
ρu − τ

[
∂

∂t
(ρu) + ∂

∂x
(p + ρu2) − F

]}
− F + F

ρ
τ

(
∂ρ

∂t
+ ∂

∂x
(ρu)

)

+ ∂

∂x

{
ρu2 + p − τ

[
∂

∂t
(ρu2 + p) + ∂

∂x
(ρu3 + 3pu) − 2uF

]}
= 0; (3.8)

(energy equation)

∂

∂t

{
ρu2 + 3p − τ

[
∂

∂t
(ρu2 + 3p) + ∂

∂x
(ρu3 + 5pu) − 2Fu

]}

+ ∂

∂x

{
ρu3 + 5pu − τ

[
∂

∂t
(ρu3 + 5pu) + ∂

∂x

(
ρu4 + 8pu2 + 5

p2

ρ

)

−F
(

3u2 + 5
p
ρ

)]}
− 2uF + 2τ

F
ρ

[
∂

∂t
(ρu) + ∂

∂x
(ρu2 + p) − ρF

]
= 0. (3.9)

Then introduce the coordinate system moving along the positive χ -direction of the one-dimensional
space with the velocity C = u0 which is equal to phase velocity of the investigated quantum object

ξ = x − Ct. (3.10)

Taking into account the de Broglie relation, we write that the group velocity ug should be equal 2u0.
Really, let us write down the energy of the relativistic particle

E = mc2, (3.11)

where
m = m0√

1 − (v2
g/c2)

, (3.12)

where c is the light velocity, vg is the group velocity and m0 is the mass of the rest for particle under
study. Rewrite (3.11) as follows:

E = p
c2

vg
, (3.13)

where
p = mvg (3.14)
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is the particle impulse. In the non-relativistic approximation, we have from (3.13)

E = 1
2

m0v
2
g. (3.15)

Using the principle of wave-particle parallelism in the de Broglie interpretation, we have for the energy
of a particle

E = h̄ω = h̄kvφ , (3.16)

where ω is the angular frequency, vφ = ω/κ is the phase velocity, κ = 2π/λ is the wavenumber and λ is
the wavelength. Correspondingly, the particle impulse p is

p = h̄k, (3.17)

and using (3.17), we find

E = pvφ . (3.18)

Then in the non-relativistic approach

E = 1
2

m0v
2
g = 1

2
pvg. (3.19)

Compare (3.18) (3.19), we find in the non-relativistic approximation

vφ = 1
2
vg. (3.20)

Then in the coordinate system moving with the phase velocity, indestructible soliton has the velocity
which is equal to the phase velocity.

We extend the usual definition of the soliton object, which should satisfy two important conditions.

(1) In a moving coordinate system, this object is located in the same restricted area for all time
moments including the movement under the influence of external forces.

(2) In the coordinate system moving with the phase velocity, indestructible soliton has the velocity
which is equal to the phase velocity for all parts of a moving object.

Therefore, we use the moving coordinate system ξ = x − ut. In this system, all dependent
hydrodynamic values are functions of (ξ ,t). We investigate the possibility of the soliton creation. For
this type of solution, the explicit time dependence does not exist in the considered coordinate system. As
a result, equations (3.7)–(3.9) can be written as
(continuity equation)

ρ
∂u
∂ξ

− τρ

(
∂u
∂ξ

)2
− ∂

∂ξ

{
τ

[
∂p
∂ξ

− F
]}

= 0, (3.21)

(motion equation)

u
∂

∂ξ

{
τ

[
∂p
∂ξ

− F
]}

− F
[

1 − τ
∂u
∂ξ

]
+ ρu

∂u
∂ξ

+ ∂p
∂ξ

− τρu
(

∂u
∂ξ

)2
− ∂

∂ξ

{
τ

[
3p

∂u
∂ξ

+ 2u
(

∂p
∂ξ

− F
)]}

= 0,

(3.22)

(energy equation)

ρu2 ∂u
∂ξ

+ 2u
∂p
∂ξ

+ 5p
∂u
∂ξ

− 2Fu − τρu2
(

∂u
∂ξ

)2
− u

∂

∂ξ

{
τu

∂p
∂ξ

}
− 3τu

∂p
∂ξ

∂u
∂ξ

− 6u
∂

∂ξ

{
τp

∂u
∂ξ

}

− 11τp
(

∂u
∂ξ

)2
− 5

∂

∂ξ

{
τ

∂

∂ξ

(
p2

ρ

)}
+ u

∂

∂ξ
{τFu} + 5τFu

∂u
∂ξ

+ 5
∂

∂ξ

{
τF

p
ρ

}
+ 2τ

F
ρ

(
∂p
∂ξ

− F
)

= 0.

(3.23)

Write down the system of equations (3.21)–(3.23) in the dimensionless form. All dimensionless values
are marked by a tilde. Introduce the scales ρ → ρ0, u → u0, p → ρ0u2

0, ξ → ξ0. We use the approximation
of the non-locality parameter τ in the form

τ = h̄
mu2 , (3.24)

where h̄ is the Plank constant.
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The dimensionless continuity equation is rewritten as

ρ̃
∂ũ

∂ξ̃
− h̄

mũ2
1

u0ξ0
ρ̃

(
∂ũ

∂ξ̃

)2
− h̄

mu0

1
ξ0

∂

∂ξ̃

{
1
ũ2

[
∂ p̃

∂ξ̃
− ξ0

ρ0u2
0

F

]}
= 0. (3.25)

Introduce the parameter

H = h̄
mu0ξ0

(3.26)

and (3.25) and (3.26) yield

ρ̃
∂ũ

∂ξ̃
− H

1
ũ2 ρ̃

(
∂ũ

∂ξ̃

)2
− H

∂

∂ξ̃

{
1
ũ2

[
∂ p̃

∂ξ̃
− F̃

]}
= 0. (3.27)

The force scale F0 is used in (3.27)

F0 = ξ0

ρ0u2
0

. (3.28)

The motion equation

Hũ
∂

∂ξ̃

{
1
ũ2

[
∂ p̃

∂ξ̃
− F̃

]}
− F̃

[
1 − H

1
ũ2

∂ũ

∂ξ̃

]
+ ρ̃ũ

∂ũ

∂ξ̃
+ ∂ p̃

∂ξ̃
− H

1
ũ

ρ̃

(
∂ũ

∂ξ̃

)2

− H
∂

∂ξ̃

{
1
ũ2

[
3p̃

∂ũ

∂ξ̃
+ 2ũ

(
∂ p̃

∂ξ̃
− F̃

)]}
= 0, (3.29)

and the energy equation

ρ̃ũ2 ∂ũ

∂ξ̃
+ 2ũ

∂ p̃

∂ξ̃
+ 5p̃

∂ũ

∂ξ̃
− 2F̃ũ − Hũ

∂

∂ξ

{
1
ũ

∂ p̃

∂ξ̃

}
− 6Hũ

∂

∂ξ̃

{
1
ũ2 p̃

∂ũ

∂ξ̃

}
− 3H

1
ũ

∂ p̃

∂ξ̃

∂ũ

∂ξ̃

− 11H
1
ũ2 p̃

(
∂ũ

∂ξ̃

)2
− Hρ̃

(
∂ũ

∂ξ̃

)2
− 5H

∂

∂ξ̃

{
1
ũ2

∂

∂ξ̃

(
p̃2

ρ̃

)}
+ Hũ

∂

∂ξ̃

{
1
ũ

F̃
}

+ 5H
1
ũ

F̃
∂ũ

∂ξ̃

+ 5H
∂

∂ξ̃

{
1
ũ2 F̃

p̃
ρ̃

}
+ 2H

1
ũ2

F̃
ρ̃

(
∂ p̃

∂ξ̃
− F̃

)
= 0, (3.30)

are subjected to the same transformations.
In the Rayleigh theory, the value F̃ is the constant dimensionless parameter. The solution of equations

(3.27), (3.29) and (3.30) can be simplified after transformation of the mentioned equations into the one
parametric system using the special choice of the lengthscale ξ0. Namely

ξ0 = h̄
mu0

, (3.31)

then H = 1, and the force scale is

F0 = ρ0u3
0

m
h̄

[
dyne
cm3

]
. (3.32)

The introduced scales have the transparent physical sense. Really, let us introduce the quantum Reynolds
number and transform this number using the introduced scales:

Re = ρ0u0ξ0

μ0
= ρ0u0ξ0

υ0ρ0
= u0ξ0

υ0
= u0

υ0

h̄
mu0

= mu0

h̄
h̄

mu0
= 1. (3.33)

Then we are dealing with the matter flow for Re = 1.
We need to solve the following system of equations:

ρ̃
∂ũ

∂ξ̃
− 1

ũ2 ρ̃

(
∂ũ

∂ξ̃

)2
− ∂

∂ξ̃

{
1
ũ2

[
∂ p̃

∂ξ̃
− F̃

]}
= 0, (3.34)

ũ
∂

∂ξ̃

{
1
ũ2

[
∂ p̃

∂ξ̃
− F̃

]}
− F̃

[
1 − 1

ũ2
∂ũ

∂ξ̃

]
+ ρ̃ũ

∂ũ

∂ξ̃
+ ∂ p̃

∂ξ̃
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− 1

ũ
ρ̃

(
∂ũ

∂ξ̃

)2
− ∂

∂ξ̃

{
1

ũ2

[
3p̃

∂ũ

∂ξ̃
+ 2ũ

(
∂ p̃

∂ξ̃
− F̃

)]}
= 0 (3.35)

and ρ̃ũ2 ∂ũ

∂ξ̃
+ 2ũ

∂ p̃

∂ξ̃
+ 5p̃

∂ũ

∂ξ̃
− 2F̃ũ − ũ

∂

∂ξ

{
1
ũ

∂ p̃

∂ξ̃

}
− 6ũ

∂

∂ξ̃

{
1
ũ2 p̃

∂ũ

∂ξ̃

}
− 3

1
ũ

∂ p̃

∂ξ̃

∂ũ

∂ξ̃
− 11

1
ũ2 p̃

(
∂ũ

∂ξ̃

)2

− ρ̃

(
∂ũ

∂ξ̃

)2
− 5

∂

∂ξ̃

{
1
ũ2

∂

∂ξ̃

(
p̃2

ρ̃

)}
+ ũ

∂

∂ξ̃

{
1
ũ

F̃
}

+ 5
1
ũ

F̃
∂ũ

∂ξ̃

+ 5
∂

∂ξ̃

{
1
ũ2 F̃

p̃
ρ̃

}
+ 2

1
ũ2

F̃
ρ̃

(
∂ p̃

∂ξ̃
− F̃

)
= 0. (3.36)

4. Numerical simulation
Equations (3.34)–(3.36) constitute the one parametric Cauchy problem as the system of the three ordinary
differential equations of the second order. Technical computing software MAPLE allows the realization of
the vast mathematical modelling using the variation of the six Cauchy conditions and the F̃ parameter.
Let us show the results of some calculations using the MAPLE notations: ξ̃ → t, ũ(ξ̃ ) → u(t), ρ̃(ξ̃ ) → r(t),
p̃(ξ̃ ) → p(t) and F̃ → F. For the chosen Cauchy conditions, we find

r(0)=1,u(0)=1,p(0)=1,D(r)(0)=0,D(u)(0)=0,D(p)(0)=0. (4.1)

Figures 1–10 contain the result of calculations for the following set of F̃ data, namely F̃ is equal to: 0.001;
0.01; 0.1; 0; 1; 10; 100; 1000; 104, 105.

5. Discussion
Parameter F̃ defines the force of the sound action on matter; varying over eight orders of this parameter
F̃ leads to the radical reconstruction of the flow. Namely,

(1) at the condition F̃ < 1, there are no solitons (figures 1–3);
(2) the condition F̃ = 0 leads to the trivial solution ũ = ρ̃ = p̃ = 1 (figure 4). Figure 4 is given for

the demonstration of the high accuracy of the numerical method (variant of the Runge–Kutta
method); and

(3) the condition F̃ > 1 leads to the soliton creation (figures 5–10).

The structure of the creating solitons has the following very remarkable features.

(1) As it can be expected in the soliton theory, all soliton parts move with the same velocity—the
condition ũ = 1 fulfils with high accuracy. The soliton is placed in the bounded region of space.
It is important to underline that we deal with the Cauchy problem. It means that the mentioned
effect is a product of the matter of self-organization.

(2) The linear soliton size diminishes with the F̃ increase. Let us give the concrete data:
if F̃ = 1 → ξ̃lim = 2.797; if F̃ = 10 → ξ̃lim = 0.182; if F̃ = 100 → ξ̃lim = 0.017131754;
if F̃ = 1000 → ξ̃lim = 0.0017028; if F̃ = 10 000 → ξ̃lim = 0.00017017951; if F̃ = 105 → ξ̃lim = 0.000017
016920.

(3) If F̃ > 100, then F̃ increasing 10-fold leads to diminishing 10-fold less of the soliton size. It means
that for the large F̃, the value x̃ is close to t̃.

(4) We can watch the gross density change on the soliton front without significant pressure
changing. It is the desired effect which the CF adherents try to prove. Let us deliver the concrete
numerical results because the graphic illustrations (see also figures 5–10) do not reflect the scale
of dramatic change.

For F̃ = 100 and ξ̃ = 0.00171317539, we find p̃ = 1.000884428, ũ = 0.990726 and ρ̃ = 2.7810799 ×
107. For the point placed closer to ξ̃lim = 0.017131754, we have: if ξ̃ = 0.0017131753995, then p̃ =
1.000884429, ũ = 0.990726 and ρ̃ = 4.4694082 × 107.

For F̃ = 1000 and ξ̃ = 0.001702, we find p̃ = 1.000887, ũ = 0.999907 and ρ̃ = 819.0197.
For F̃ = 10 000 and ξ̃ = 0.0001701795, we have p̃ = 1.0000889, ũ = 0.99990728 and ρ̃ =

3.63483052 × 106.
For F̃ = 105 (ξ̃lim = 0.17016920 × 10−4) and ξ̃ = 0.17016919 × 10−4, we find p̃ = 1.0000088907,

ũ = 0.9999907284 and ρ̃ = 1.2247653 × 107. If ξ̃ = 0.1701691955 × 10−4, then p̃ = 1.0000088907,
ũ = 0.9999907284 and ρ̃ = 5.05040680 × 108.
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Figure 1. The changeof thedensity (solid line), thepressure (dashed-dotted line), and thevelocity (dashed line) in themoving coordinate
system at F̃ = 0.001.
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Figure 2. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 0.01.

(5) The density increase in the milliard times on the soliton front can lead to the effect of CF. If
required, the density can be normalized to the total mass M̃ (known from an experiment) which
falls on the unit of the wavefront area:

M̃ =
∫ ξexp

0
ρ̃dξ̃ . (5.1)

Let us go now to the formal solution of so-called ‘classical’ hydrodynamic equations in the frame
of choosing of the plane travelling longitudinal wave. It seems that for this case, we should solve
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Figure 3. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 0.1.
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Figure 4. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 0.

numerically the system of equations (3.27), (3.29) and (3.30) for H = 0. But we need not to do it because
the analytical solution can be found. Really, the system of equation has the form for the mentioned case:
(continuity equation)

− u
∂ρ

∂ξ
+ ∂

∂ξ
(ρu) = 0, (5.2)

(motion equation)

− u
∂

∂ξ
(ρu) − F + ∂

∂ξ
(ρu2 + p) = 0, (5.3)
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Figure 5. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 1.
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Figure 6. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 10.

(energy equation)

− u
∂

∂ξ
(ρu2 + 3p) + ∂

∂ξ
(ρu3 + 5pu) − 2Fu = 0. (5.4)

Equation (5.2) yields

ρ
∂u
∂ξ

= 0 (5.5)

or
u = const. (5.6)
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Figure 7. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 100.
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Figure 8. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 1000.

From the motion equation (5.3) follows
∂p
∂ξ

= F. (5.7)

Energy equation (5.4) does not deliver a new independent relation and returns us to the relation (5.7).
Then for the constant F, equation (5.7) leads to the trivial (and as we see, wrong) dependence, which does
not contain the matter density:

p = Fξ + const. (5.8)
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Figure 9. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 10 000.
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Figure 10. The change of the density (solid line), the pressure (dashed-dotted line), and the velocity (dashed line) in the moving
coordinate system at F̃ = 105.

6. Conclusion
In spite of all experimental problems and difficulties, the cavitation-induced fusion or generally
speaking, acoustic cold fusion (ACF) has serious experimental confirmation. There is the obvious
contradiction between the mentioned experimental results and conclusions of the classical local
hydrodynamics. As we see, local hydrodynamics is not applicable to the description of the ACF in
principal. The realized mathematical modelling leads to the gross density change on the soliton front
without significant pressure changing. It is the desired effect which the CF adherents try to prove.
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Then the following step of the investigation consists in the numerical solution of the three-dimensional
non-stationary boundary problem on the basement of unified non-local transport theory.

References
1. Fleischmann M, Pons S, Hawkins M. 1989

Electrochemically induced nuclear fusion of
deuterium”. J. Electroanal. Chem. 261, 301.
(doi:10.1016/0022-0728(89)80006-3)

2. Mosier-Boss PA, Szpak S, Gordon FE, Forsley LPG.
2009 Triple tracks in CR-39 as the result of Pd–D
Co-deposition: evidence of energetic neutrons.
Naturwissenschaften 96, 135–142.
(doi:10.1007/s00114-008-0449-x)

3. Italian Office for Patents and Trademarks “processo
ed apparecchiatura per ottenere reazioni
esotermiche, in particolare da nickel ed idrogeno.”
[process and equipment to obtain exothermal
reactions, in particular from nickel and hydrogen],
Patent Number 0001387256, Deposited 9 April 2008,
Issued 6 April 2011, Inventor: Andrea Rossi.

4. Bityurin V, Bykov A, Velikodny V, Dyrenkov A,
Tolkunov B. 2008 Theoretical and experimental
investigation of the effect of shockwave on porous
deuterated liquid. Fiziko-Khimicheskaja Kinetika v
Gazovoy Dinamike 6, 1–11.

5. Forringer E, Robbins D, Martin J. 2006 Confirmation
of neutron production during self-nucleated
acoustic cavitation. Trans. Am. Nucl. Soc. 95,
736–737.

6. Lipson A et al. 1990 Observation of neutrons
accompanying cavitation in detuterium-containing
media. Pis’ma v Zhurnal Tekhnicheskoj Fiziki 16,
89–93.

7. Putterman S, Crum L, Suslick K. 2002 Comments on
‘evidence for nuclear emissions during acoustic

cavitation’; by R.P. Taleyarkhan et al. Science 295,
1868–1873. (doi:10.1126/science.1067589)

8. Shapira D, Saltmarsh M. 2002 Nuclear fusion in
collapsing bubbles: is it there? An attempt to repeat
the observation of nuclear emissions from
sonoluminescence. Phys. Rev. Lett. 89, 104302.
(doi:10.1103/PhysRevLett.89.104302)

9. Smorodov E, Galiakhmetov R, Il’gamov M. 2008
Physics and chemistry of cavitation. Moscow, Russia:
Nauka.

10. Taleyarkhan R, Cho J, West J, Lahey R, Nigmatulin R,
Block R. 2004 Additional evidence of nuclear
emissions during acoustic cavitation. Phys. Rev. E
69, 036109. (doi:10.1103/PhysRevE.69.036109)

11. Taleyarkhan R, Lapinskas J, Xu Y, Cho J, Block R,
Lahey R. 2008 Modeling, analysis and prediction of
neutron emission spectra from acoustic cavitation
bubble fusion experiments. Nucl. Eng. Des. 238,
2779–2791. (doi:10.1016/j.nucengdes.2008.
06.007)

12. Taleyarkhan R, West C, Cho J, Lahey R, Nigmatulin
R, Block R. 2002 Evidence for nuclear emissions
during acoustic cavitation. Science 295, 1868–1873.
(doi:10.1126/science.1067589)

13. Taleyarkhan R, West C, Lahey R, Nigmatulin R, Block
R, Xu Y. 2006 Nuclear emissions during
self-nucleated acoustic cavitation. Phys. Rev. Lett.
96, 034301. (doi:10.1103/PhysRevLett.
96.034301)

14. Xu Y, Butt A. 2005 Confirmatory experiments for
nuclear emissions during acoustic cavitation. Nucl.

Eng. Des. 235, 1317–1324. (doi:10.1016/
j.nucengdes.2005.02.021)

15. Alexeev BV. 2013 Non-local physics: applications from
the universe evolution to the atom structure in the
frame of the unified theory. In AIP Conf. Proc., 24–29
June, Bulgaria, vol. 1561. Application of
Mathematics in Technical and Natural Sciences
(AMiTaNS’13), pp. 17–46.

16. Strutt JW, Rayleigh B. 1902. On the pressure of
vibrations. Philosophical Magazine III, 338–346.

17. Strutt JW, Rayleigh B. 2011 The theory of sound, vol. I
(London: Macmillan, 1877, 1894). Cambridge, UK:
University Press.

18. Strutt J, Rayleigh B. 2011 The theory of sound, vol. II
(London: Macmillan, 1878, 1896). Cambridge, UK:
University Press.

19. Alexeev BV. 1994 The generalized Boltzmann
equation, generalized hydrodynamic equations and
their applications. Phil. Trans. R. Soc. Lond. A 349,
417–443. (doi:10.1098/rsta.1994.0140)

20. Alexeev BV. 2004 Generalized Boltzmann physical
kinetics. Amsterdam, The Netherlands: Elsevier.

21. Alexeev BV. 2008 Generalized quantum
hydrodynamics and principles of non-local physics.
J. Nanoelectron. Optoelectron. 3, 143–158.
(doi:10.1166/jno.2008.207)

22. Alexeev BV. 2008 Application of generalized
quantum hydrodynamics in the theory of quantum
soliton evolution. J. Nanoelectron. Optoelectron. 3,
316–328. (doi:10.1166/jno.2008.311)

http://dx.doi.org/doi:10.1016/0022-0728(89)80006-3
http://dx.doi.org/doi:10.1007/s00114-008-0449-x
http://dx.doi.org/doi:10.1126/science.1067589
http://dx.doi.org/doi:10.1103/PhysRevLett.89.104302
http://dx.doi.org/doi:10.1103/PhysRevE.69.036109
http://dx.doi.org/doi:10.1016/j.nucengdes.2008.06.007
http://dx.doi.org/doi:10.1016/j.nucengdes.2008.06.007
http://dx.doi.org/doi:10.1126/science.1067589
http://dx.doi.org/doi:10.1103/PhysRevLett.96.034301
http://dx.doi.org/doi:10.1103/PhysRevLett.96.034301
http://dx.doi.org/doi:10.1016/j.nucengdes.2005.02.021
http://dx.doi.org/doi:10.1016/j.nucengdes.2005.02.021
http://dx.doi.org/doi:10.1098/rsta.1994.0140
http://dx.doi.org/doi:10.1166/jno.2008.207
http://dx.doi.org/doi:10.1166/jno.2008.311

	Summary
	Introduction
	Investigation of the soliton movement under action of the sound wave
	Numerical simulation
	Discussion
	Conclusion
	References

