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Herein, the response surface methodology (RSM) has been used
to study simultaneously the effects of carbonization temperature,
residence time and moisture content on the activated hydrochar
preparation-based vegetable-tanned leather shavings (VTS)
using hydrothermal carbonization method (HTC). Owing to
the desirability chosen, three responses were analysed, namely:
the hydrochar yield, iodine and methylene blue numbers. The
analysis of experimental results revealed that the hydrochar
yield was decreased with increase in carbonization temperature
which led to micropores formation inside the hydrochar
network. The optimal preparation conditions retained were:
83.10%, 390.44 mg g−1 and 259.63 mg g−1 for the hydrochar
yield, iodine and methylene blue number respectively. The
hydrochar micrograph showed the presence of external pores,
whereas the FTIR analysis recorded the presence of acidic
functional groups found on hydrochar surface. The findings
revealed that the VTS is a good precursor for the hydrochar
preparation useful in the removal of organic and inorganic
pollutants in aqueous media.
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1. Introduction
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Nowadays, the research of outstanding porous materials for the removal of various pollutants from liquid
or gaseous effluents using adsorption technique is a matter of global concern. Some primary materials such
as biomass wastes [1–4], organic polymers [5–7], clays [8], silica gel [9], activated alumina [10], zeolites [11–
13], industrial andmunicipal wastes [14] have been studied and used as precursors for the porous materials
preparation. Their high adsorption capacity, high efficiency for adsorbing substances at low concentrations,
high selectivity, easy regeneration and low cost are the required criteria for the good adsorbents production.
In this light, the carbonmaterials-based biomass wastes have shown promising application for the sorption
utilities [1–3]. However, the problem remains that there is neither general satisfaction nor a suitable process
for the production of valuable carbonaceous materials from the raw lignocellulosic biomass wastes to date.

It is in this perspective that, the hydrothermal carbonization (HTC)process could be the cornerstone and a
promising method to be exploited. The HTC has several advantages; just to cite one: many organic materials
are found in aqueousmediumandwhich obviously have a highwater content,make theHTCprocess ideally
suitable for the carbonization of such material. Since no drying process is required, the HTCmethod offers a
50%energysaving comparedwith othermethodswhich require dryingbeforehand [15–20]. TheHTCequally
enables thewashing of inorganic elemental compositions into the liquid phase and reduces significantly the
ash content. In addition, it has the advantage of maintaining significant chemical surface functionality in the
hydrochar, by developing oxygen and nitrogen functional groups, owing to its lower operating temperature
[4–7]. However, hydrothermal carbonization presents as main disadvantage the high set-up requirements
(energy and installation costs) for the equipment [21]. Solid discharge from tanneries are found
everywhere in the environment, principally in an aqueous medium with a highly humid form. The
tannery industries discharge into the environment huge quantity of solid waste and wastewaters. In 2009,
it was reported that the average wastewater and solid waste discharges into the environment were 1.5 ×
1010 m3 and 6 × 109 kg, respectively [21]. It has been shown in our previous work [22] that transforming
solid waste derived from the tannery industries into adsorbent for the removal of contaminants is an
interesting alternative for environmental remediation and for the production of low-cost materials.

The composition of the liquid part from tanneries discharges is linked to the process used in tanning
skins, as it consists essentially of a mixture of chemicals such as sodium hydroxide, sodium hypochlorite,
potassium dichromate, lime, chlorides, sulfuric acid, formic acid, surfactants, sodium sulfide, sodium and
ammonium salts, chromium (III) and dyes [20]. The composition of the solid part consists mainly of hair,
fragments of flesh and skins belonging to slaughtered animals like sheep, goats or cows [22]. The city of
Marrakech in Morocco is a region where a huge amount of leather material is produced because of the
existence of many local and traditional tannery industries. Here, the problem is not the presence of these
industries of leather materials, but the main problem is the destination taken by the discharge, as well as
its management. The environmental effects of the tanning process are significant and need to be
addressed. Despite the socio-economic impact of the tanning industries through job creation and income
generation, the population around the tanning industries are exposed to pollution resulting from this activity.

In order to address the issue of pollution and allow the social integration of the workers, it is important
to collect these solid wastes (vegetable-tanned leather shavings) from tanning industries and give them an
added value by transforming them directly into carbonaceous materials by HTC method [20–23]. To
achieve this goal, optimization through the response surface methodology involving screening of
parameters has been adopted. The main factors such as the residence time, humidity rate and final
temperature of the carbonization are important parameters in optimizing the preparation method of
hydrochar. Owing to the fact that the carbonaceous materials in quantity and quality are needed and
additionally, the hydrochar material prepared will be used to remove harmful substances from drinking
water, domains of variation of predictive variables such as hydrochar yield, Yld (%); iodine number, ION
(mg g−1); and methylene blue number, MBN (mg g−1) will be studied in order to obtain the hydrochar
characteristics required.
2. Material and methods
2.1. Preparation of raw material
The vegetable-tanned leather shavings (VTS) used in this study were obtained from a traditional tannery
in Marrakech, Morocco. Prior to the experiments, the VTS wastes were cut into small pieces, washed with
distilled water and then put under stirring overnight. Thereafter, it was mixed with a solution of acetic
acid (16.0 g l−1) thrice to remove mineral substances. The pH value of the solid waste was adjusted
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Figure 1. Preparation process of hydrochar by the design of experiment method from vegetable-tanned leather shavings.
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between 4.8 and 5.0 with an acetic-sodium acetate buffer solution. The mixture obtained was dehydrated
using absolute ethyl alcohol and dried in vacuum to a moisture content less than 10.0%.

The VTS sample before the HTC was characterized by thermogravimetric analysis using a Perkin-
Elmer DTA-TGA analyser, which was carried out in inert atmosphere (100 ml min−1) at different
heating rate (5; 10; 15; 20 and 50°C min−1) and at temperature between 18°C and 800°C.
2.2. Hydrothermal carbonization process of biomass
An exact amount of 15.5 mg of VTS with different moisture contents were loaded into a reactor associated
with an autoclave that was heated from room temperature (18°C) up to the target temperature set under
an N2 atmosphere at the heating rate of 5°C min−1. At each final temperature and residence time, the
oven was turned off and allowed to cool to room temperature inside the autoclave. The resulting
hydrochar was labelled as VTS-HTC and was weighed following equation (2.1). The VTS-HTC was
then oven dried at 105°C for 24 h.

VTS�HTC mass yield(%) ¼ mhydochar

massVTS
� 100: ð2:1Þ

mhydochar in equation (2.1) is the mass of the hydrochar after being dried and massVTS is the mass of the
raw material with moisture. After the hydrocarbonization process, about 5.0 to 6.0 g of the hydrochar
was subjected to physical activation with steam (0.13 ml min−1) in a furnace by heating the reactor
from room temperature up to 850°C at the heating rate of 10°C min−1 for 2 h of residence time.

The demineralization of activated VTS-HTC (hereafter referred as activated hydrochar or simply AH)
obtained was done to decrease its inorganic content by HCl treatment and washed with hot water,
followed by washing with cold water until no chloride ions could be detected (by testing with
AgNO3 solution) and finally dried.
2.2.1. Optimization process

The hydrothermal carbonization process parameters were studied using the response surface
methodology (RSM) (figure 1). The RSM is a statistical technique that is useful for modelling and
analysing problem where a response of interest is influenced by several variables [24]. RSM aims at
reducing the number of experiments to be performed, while simultaneously studying the effects of
several factors, as well as helping to analyse interactions between the parameters studied [24–26].

The most influential experimental factors on the final characteristics of carbonaceous material
obtained from HTC are the carbonization temperature (X1), the residence time (X2) and the moisture
content (X3). The three responses analysed were hydrochar yield (Y1), iodine number, (Y2) and
methylene blue number (Y3). The Doehlert’s experimental matrix and the corresponding experimental
conditions of the responses Y1, Y2 and Y3 are given in table 1. Each response was used to develop a



Table 1. Doehlert’s experimental matrix, the corresponding experimental conditions and responses. Y1: total yield (%); Y2: iodine
adsorption capacity (mg g−1); Y3: methylene blue adsorption capacity (mg g

−1)

Exp
no rand

temperature
(X1)

residence
time (X2)

humidity
content (X3) Y1 Y2 Y3

1 1 290 75 700 5500 27 919 240 00

2 2 190 75 700 8500 30 139 260 00

3 3 265 110 700 5700 26 000 5000

4 4 215 40 700 7500 21 000 9600

5 5 265 40 700 6000 31 700 18 000

6 6 215 110 700 7200 41 200 12 000

7 7 265 87 782 5517 22 203 11 000

8 8 215 63 618 7800 30 726 20 000

9 9 265 63 618 6140 28 550 23 000

10 10 240 98 618 6800 34 899 18 000

11 11 215 87 782 7386 25 381 14 000

12 12 240 52 782 6500 25 700 19 800

13 13 240 75 700 6600 25 226 6000

14 14 240 75 700 6473 26 967 8000

15 15 240 75 700 6560 22 678 8000

16 16 240 75 700 6500 27 919 7000

17 17 240 75 700 6700 31 726 9 500
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model correlating the responses to the three coded factors using a polynomial equation as follows:

Yi ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b11X2
1 þ b22X2

2 þ b33X2
3 þ b12X1X2 þ b13X1X3 þ b23X2X3

þ residual: ð2:2Þ
In equation (2.2), Yi is the predicted response, b0 is a constant coefficient, bi is a linear coefficient; bii
is a quadratic coefficient, bij is an interaction coefficient; X1, X2 and X3, are the coded values of the
respective factors.

The number of experiments required (N ) is given by

N ¼ k2 þ k þ C: ð2:3Þ
Where, k is the number of variables and C is the number of centre points. In the present work, k is equal
to 3 with five experiments at the centre of the studied domain. These experiments at the centre of the
experimental matrix are used to determine the experimental error and check the reproducibility of the
results obtained. Therefore, the matrix has nine experiments.

2.3. Carbonaceous material characterization
The activated hydrochar prepared at the optimal condition was characterized by various physico-
chemical methods. The AH adsorptive property in liquid phase was determined by iodine and
methylene blue adsorption capacities. To determine the MBN, a solution of methylene blue (MB)
was prepared by dissolving 600 mg in 2.0 l of distilled water. The mixture was stirred for 12.0 h and
then filtered to remove the undissolved particles. An amount of 10.0 mg aliquot of the prepared
AH was weighed into a bottle and 100.0 ml of the MB solution was added to the bottle and shaken
at the rate of 200 r.p.m. at room temperature for 4.0 h. A control was treated in a similar manner
but for the fact that it did not contain AH. After agitation, the mixture was filtered; an aliquot of
1.0 ml was measured and diluted with 100 ml of distilled water. The absorbance was then
measured using a UV-visible spectrophotometer (Jenway 7310, Jenway, Staffordshire, UK). The
concentration at equilibrium is deduced using Beer’s Law, then the adsorbed quantity is determined
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by the following equation:

Qads ¼ (C0 � Cr)
m

� V: ð2:4Þ

Qads is the quantity of MB adsorbed per unit mass of AH (in mg g−1), C0 is the initial concentration of MB
(mg l−1), Cr is the residual concentration of MB (mg l−1), V is the volume of the solution (L) and m is the
mass of the adsorbent (g).

The ION of AH was obtained on the basis of the American Standard Test Method (ASTM) by titration
with pentahydrated sodium thiosulfate. The concentration of iodine solution adsorbed was thus
calculated from the total volume of sodium thiosulfate used and volume dilution factor (equation (2.4)).

The textural characteristics of the activated hydrochar were obtained using a chemisorption and
physisorption surface area analyser (Micromeritics TriStar 3000). The AH was out-gassed in vacuum
at 353 K and 5 µm Hg during 6 h prior to measurement. The specific surface area of AH was
estimated by Brunauer–Emmett–Teller (BET) model, and the micropores volume and external surface
area were obtained by t-plot method using Harkins–Jura equation (equation (2.5)) for calculation of
adsorbed layer thickness.

t(nm) ¼ 0:1399
0:034� logðP=PoÞ

� �0:5
: ð2:5Þ

The surface functional groups of the obtained samples were determined by Fourier transform
infrared (FTIR) spectrum using FT-IRSPECTRUM ONE brand, the wave number was found between
450 and 4000 cm−1. The surface morphology was investigated using scanning electron microscopy
(SEM) (VEGA3 TESCAN). Elemental energy dispersive X-ray (EDX) analysis was done using EDAX
TEAM, 125.9 eV of resolution and was applied to investigate the presence and percentage of atoms
that made up the AH.
3. Results and discussion
3.1. Differential thermogravimetric analysis and thermogravimetric analysis of the raw material
The thermogravimetric analysis (TGA) and differential thermogravimetric analysis (DTG) are used to
assess the heat stabilities associated with the mass change between 25 and 900°C (figure 2). At first
sight the curves plotted at different heating temperature for the VTS are almost identical and the
important changes take place at the same point. It can be seen that there is a first variation between
40.5°C and 210°C corresponding to the decrease in mass of 7.6%, due to a first water departure
according to an endothermic reaction (ΔH = + 693.5 J g−1). The most important stage in weight loss
starts from 175.5°C to 631°C; surely due to the removal of volatile organic substances and moisture,
this is explained by the appearance of intense peaks at 285°C and 330°C on the DTG-curve, with the
weight loss of 52.1%. Beyond the temperature of 600°C, the mass varied slightly depending on the
temperature.
3.2. Response surface analysis
The responses selected in this work are useful tools to provide important information on the adsorption
properties of the activated hydrochar. The hydrochar yield (Y1) studied here as the percentage of weight
loss also known as percentage of burn-off is to predict the porous structure of the prepared hydrochar.
The iodine adsorption test (Y2) indicates the microporosity of carbon material. It indicates the material
adsorption affinity for small molecules and finally the methylene blue (Y3) has an average size
representative model of organic pollutants, which is used to evaluate the performance of carbon
before its use in water treatment, bleaching of vegetable oils and other uses [26].

By simply solving the equation through the regression method based on the least squares
optimization criterion. The values of the coefficients (table 2) and the ANOVA (table 3) of the
regression are directly obtained using the new efficient methodology of research using optimal design
(NEMROD) software.



0
0

20

40

w
ei

gh
t (

%
)

60

80

100

200 400 600
temperature (°C)

800
0

0.1

0.2

D
er

iv
. w

ei
gh

t (
%

/°
C

)

0.3

0.4

0.5

5C min–1
330°C285°C

210°C

470°C
515°C

175°C

10C min–1

15C min–1

20C min–1

50C min–1

VTS-N2 Y-2Y-1

Figure 2. TGA/DTG curves of the vegetable-tanned leather shavings (VTS) at different heating temperatures.

Table 2. Estimated values of coefficients for hydrochar yield (Y1), iodine number (Y2) and methylene blue number (Y3).

name

hydrochar yield (Y1) iodine number (Y2) methylene blue number (Y3)

coefficient significance coefficient significance coefficient significance

b0 65.43 <0.01��� 78.20 <0.01��� 254.32 <0.01���

b1 −15.40 <0.01��� −3.75 45.6 −16.61 0.217��

b2 −1.62 0.381�� −36.81 0.016��� 38.40 <0.01���

b3 −3.06 0.014��� −36.74 0.017��� −42.63 <0.01���

b11 4.57 0.025��� 171.80 <0.01��� 35.97 0.056���

b22 −0.59 −14.87 9.9 48.58 0.012���

b33 1.62 2.86 103.47 <0.001��� 21.04 0.634��

b12 0.29 74.8 −92.38 0.01��� −149.5 <0.01���

b13 −2.36 4.51� −4.08 74.4 52.89 0.073���

b23 −0.40 69.3 −80.13 0.04��� −49.74 0.100��

∗∗∗ most significant effect, ∗∗ less significant effect, ∗ no significant effect.
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From the table 2, the polynomials equations of the model are given as follows:

Y1 ¼ 65:420� 15:399X1 � 1:622X2 � 3:056X3 þ 4:574X2
1 � 0:593X2

2 þ 1:623X2
3 þ 0:289X1X2

� 2:362X1X3 � 0:402X2X3, ð3:1Þ
Y2 ¼ 78:200� 3,750X1 � 36:807X2 � 36:742X3 þ 171:800X2

1 � 14:868X2
2 � 103:467X2

3 � 92:379X1X2

� 4:079X1X3 � 80:133X2X3 ð3:2Þ
and Y3 ¼ 254:322� 16:611X1 þ 38:401X2 � 42:633X3 þ 35:968X2

1 þ 48:584X2
2 þ 29:037X2

3

� 149:538X1X2 þ 52:892X1X3 � 49:742X2X3: ð3:3Þ

According to equation (3.1), the temperature has the largest influence on the hydrochar yield (Y1), the
effect of temperature is negative (b1 < 0), indicating that the hydrochar yield drastically decreases (about
15.4%) with increase in temperature. This means that within the chosen hydrocarbonization temperature
range, i.e. from room temperature to 290°C, both the water and the volatile compounds are released and
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cause a decrease in the hydrochar yield. The increase in temperature enables the release of volatiles and
causes a decrease in the hydrochar yield. This trend has been observed by other authors [27,28]. The
degree of fitness of the model was measured through the regression coefficient R2. From the above
equation, R2 = 0.996 indicates that 99.6% of the total variation in the hydrochar yield was explained by
the fitted model. In addition, the R2-adjusted coefficient ðR2

A ¼ 0:991Þ is also high and close to R2,
confirming that the generated models are accurate [29].

The predicted equation describing adsorption of iodine number (Y2) shows that all coefficients’
values except the square variable of temperature are negative, showing their antagonist effects on the
iodine adsorption by the prepared hydrochar. Increasing the residence time with high moisture
content adversely affects the micropores formation into the hydrochar structure. Furthermore, the
quadratic term coefficients related to temperature are positive and higher, indicating a particular
impact of the temperature on the micropore volume obtained. The correlation coefficients (R2) of the
response Y2 is 0.991 and the R2-adjusted coefficient is 0.980, which indicates a good agreement
between the experimental and predicted values.

The temperature, residence time and humidity have significant effects on the predicted equation (Y3)
describing methylene blue adsorption, indicating that the variables used for the hydrothermal
carbonization are favourable for the production of hydrocarbon better adapted for the adsorption
of large molecule. The linear term coefficients related to the residence time in the equation model of
methylene blue (Y3) is positive showing its significant effect ( p-value < 0.01���) on the MB adsorption;
increasing the residence time enlarges pores inside the hydrochar and promotes the formation of
mesopores or external pores, while the carbonization temperature and humidity have an antagonistic
effect on the methylene blue adsorption. In addition, the interaction term coefficient ðjb12j ¼ 149: 54Þ
shows that the combined effect between temperature and residence time of carbonization enhances the
MB adsorption.

3.3 Optimization of VTS-HTC preparation conditions
From the established model, the optimal values can determine the operating parameters leading to the
maximum yield of hydrochar preparation by HTC. This is performed either by plotting the iso response
curves and response surfaces or by solving the model equation.

3.3.1. The iso response curves and response surfaces

According to the established model, figures 3–5 show the contour plots and response surfaces curves
used to show the most important factors for hydrochar yield.

The figure 3 shows that both temperature and residence time have a substantial influence on the
hydrochar yield (Y1). The analysis of the plot shows that, with the increase in temperature (X1) from
190°C to 290°C and the residence time (X2) from 35 to 115 min, the hydrochar yield decreases from
85% to 57.73%. This can be explained by the fact that, as the temperature increases during the
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Table 4. Characteristics of optimum VTS-HTC. Where di max % represents the degree of maximal satisfaction; di min %, the
degree of minimal satisfaction and di% is the degree of satisfaction.

responses name values di % weights di min % di max %

Y1 yield 83.10 53.98 1 46.45 61.50

Y2 ION 390.44 28.26 1 24.84 31.69

Y3 MBN 259.63 44.24 1 35.67 52.81

desirability 40.72 34.53 46.86
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hydrothermal carbonization process, there is a release of heteroatoms and volatile compounds (CO2, CO,
NO, H2O, N2, SO2, organic volatile products) leading to an inevitable loss of mass. The HTC process
involves three main reactions—dehydration, condensation and decarboxylation—resulting in a mass
loss. From the figure 4, it is observed that the time (X2) and the humidity (X3) are the two main
influencing factors. Indeed, the amount of iodine adsorbed decreases from 345 to 249 mg g−1 with
increase in humidity. Since the iodine number gives an indication on the opened microporosity of the
material, for the humidity less than the centre point, the increase in humidity promotes micropores
formation. The variation of the methylene blue adsorption (figure 5) shows that when the temperature
increases from 190°C to 290°C, with the time from 35 to 115 min, the MBN increased from 100 to
300 mg g−1. When the time increases from 35 to 115 min with the humidity level of 60% to 80%, the
MBN also decreased from 260 to 100 mg g−1. These results allow to conclude that the increase in
temperature facilitates the opening of the pores on hydrochar, which interestingly increases the
adsorption of MB. On the other hand, the increase of humidity is favourable for the formation of
micropores as it has also been observed in the adsorption of iodine.
3.3.2. Optimization using model equation

In order to find a better compromise that can satisfy all the needs that are the hydrochar in quantity and
quality, the desirability function was applied using the NEMROD software. Table 4 gives the optimum
characteristics of the hydrochar. The graphs of the desirability functions (figure 6) of the responses show
different levels of constraints. The respective minimum and maximum values are: 75.00 to 90.00% for Y1,
180.00 to 360.00 mg g−1 for Y2 and 300.00 to 620.00 mg g−1 for Y3. The predicted values are: 83.10% for
the hydrochar yield, 390.44 mg g−1 for iodine number and 259.63 mg g−1 for the methylene blue number,
which correspond to 53.98%, 28.26% and 44.24% degree of satisfaction for Y1, Y2 and Y3 respectively. The
superposition of the surface curves of Y1, Y2 and Y3 helps to identify the optimal zone with the best
compromise of desirability. The minimum and maximum values of the predicted desirability are from
34.53 to 45.86. The total desirability of the process is 40.72%, which is satisfactory since this value is
within the predicted range. Figure 7 depicts the desired area of interest.

According to its curves (figure 7), the unhatched areas represent the area of interest found. The
uncoloured areas (iso response curves) and the raised areas (response surface curves) represent the
areas where the optimum is found. These conditions are 195°C, 87.5 min and 66.7% for the
temperature, residence time and humidity, respectively. The hydrochar prepared under these
conditions has average values of 83.10%, 390.44 mg g−1 and 259.63 mg g−1 for the hydrochar yield,
iodine and methylene blue numbers, respectively.
3.4. Characterization of activated hydrochar prepared under optimum condition
A sample of the activated hydrochar obtained under optimum conditions and activated is subjected to
characterization. The characterization is an important tool that helps to understand the properties of
adsorbent that may affect the removal of micro pollutants in aqueous solution. Figure 8 shows typical
N2 adsorption–desorption isotherm of the AH obtained from optimal condition. It exhibits the
development of both micropores and mesopores. The sample presented greater adsorption capacities
at low relative pressures P/Po < 0.1, indicating the presence of a more developed micropore structure;
at relative pressure P/Po > 0.1 the filling of external pores by capillary condensation is observed. The
isotherm of the AH sample is of type II with H3 hysteresis according to the IUPAC, which is
associated with a narrow pore size distribution of microporous material. The considerable intensity of
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hysteresis implies the presence of a network of interconnected pores that open onto the surface via
external pores. This can be attributed to the physical activation of hydrochar by steam. Table 5 shows
that the activated hydrochar obtained from the optimum has a specific surface area and micropores
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Table 5. Textural parameters of the activated hydrochar.

sample

total surface
area BET
(m2 g−1)

micropore area
(m2 g−1)

external surface
area (m2 g−1)

micropore volume
(cm³ g−1)

total pore
volume
(cm³ g−1)

AH 849.160 703.269 145.891 0.310 0.402
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surface area of 849.160 and 703.269 m2 g−1 respectively. This shows that the adsorbent prepared is mainly
microporous, the observation being attributed to the used of steam during the physical activation.

The SEM/EDX analysis (figure 9) of the hydrochar obtained in the optimum condition was carried
out using an apparatus of the JEOL JSM 6400 brand. It was found that the carbon material exhibits a
polydisperse porous structure, made up of aggregates of different sizes and irregular shapes. The
porosity is highly developed over the entire surface of the sample with a certain heterogeneity due to
the presence of three types of pores. Some white dots are observed from a close observation,
attributable to the inorganic composition of precursor. The EDX analysis highlights the elements
present on the surface of the hydrochar, consisting mainly of carbon (C) and calcium (Ca).
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The FTIR spectrum (figure 10) provides valuable information concerning the surface functional
groups of the hydrochar material and might better help during its adsorption test. The VTS-HTC
spectrum obtained at optimum conditions reveals the existence of several functional groups
corresponding to characteristic bands. The adsorption band which appears at 3320 cm−1 can be
assigned to the OH stretching mode of hydroxyl groups, whereas the absorption band between
2851 and 2922 cm−1 corresponds to the C-H function [26]. The absorption peaks around 1615 and
1018 cm−1 can be attributed to C-N and C-O functions respectively.
4. Conclusion
The response surface methodology allowed to study the simultaneous effect of the temperature of
carbonization, residence time and moisture content on the hydrochar preparation based vegetable-
tanned leather shavings by hydrothermal carbonization method. Based on the ANOVA, it was
observed that the preparation process depends on the residence time and the final hydrochar mass
decreases with increase in carbonization temperature. Its efficiency in adsorbing iodine in aqueous
medium was found to decrease with increase in humidity of precursor. On the other hand, the
methylene blue adsorption was increased under the influence of three parameters studied, whose
influence was also found to be both synergetic and antagonistic. The hydrochar micrographs obtained
under optimal conditions show mesopores and macropores on the surface which also serve as access
to the micropores. The FTIR analysis reveals the presence of functional groups on the hydrochar
surface which can serve as adsorption sites. The resulting hydrochar has been found to be a very
effective adsorbent for the removal of organic molecules.
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