
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-09

VISION-BASED TERRAIN CLASSIFICATION AND

LEARNING TO IMPROVE AUTONOMOUS

GROUND VEHICLE NAVIGATION IN OUTDOOR ENVIRONMENTS

Lebrun, Caliph

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/63474

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

VISION-BASED TERRAIN CLASSIFICATION AND
LEARNING TO IMPROVE AUTONOMOUS GROUND

VEHICLE NAVIGATION IN OUTDOOR ENVIRONMENTS

by

Caliph Lebrun

September 2019

Thesis Advisor: Xiaoping Yun
Second Reader: James Calusdian

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2019 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
VISION-BASED TERRAIN CLASSIFICATION AND LEARNING TO
IMPROVE AUTONOMOUS GROUND VEHICLE NAVIGATION IN
OUTDOOR ENVIRONMENTS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Caliph Lebrun

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Terrain is an important factor for autonomous ground vehicles (AGV), potentially ruining a mission or
the platform itself. The purpose of this thesis is to develop a method for an AGV to identify and avoid
hazardous terrain. This work builds on a previously developed system that uses artificial potential fields to
avoid obstacles and navigate to a goal. Terrain was identified by developing a random forest
machine-learning algorithm, classifying terrain as hazardous or traversable. The random forest was grown
using data from images collected during this work. The classification of hazardous terrain was used to
generate a repulsive force for use with artificial potential fields. The system was designed to avoid known
areas of hazardous terrain using path planning, developing paths using approximate cell decomposition and
the A* search algorithm. Tests of the developed random forest revealed accurate classification capabilities
for all terrain types, but a tendency to misclassify certain terrain types. Portions of the navigation solution
were simulated and confirmed the path planning capability. Trials conducted in a real-world environment
revealed the solution stopped the AGV from entering hazardous terrain, and successfully planned routes
around hazardous terrain. Improvements to the localization solution will allow the AGV to perform more
consistently and over longer ranges.

 14. SUBJECT TERMS
terrain classification, machine learning, random forest, unmanned ground robot, computer
vision, autonomous, approximate cell decomposition, A* search, artificial intelligence

 15. NUMBER OF
PAGES
 135
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

VISION-BASED TERRAIN CLASSIFICATION AND LEARNING TO IMPROVE
AUTONOMOUS GROUND VEHICLE NAVIGATION IN OUTDOOR

ENVIRONMENTS

Caliph Lebrun
Captain, United States Marine Corps

BS, Mathematics, Eastern Michigan University, 2013
BS, Physics, Eastern Michigan University, 2013

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2019

Approved by: Xiaoping Yun
 Advisor

 James Calusdian
 Second Reader

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Terrain is an important factor for autonomous ground vehicles (AGV), potentially

ruining a mission or the platform itself. The purpose of this thesis is to develop a method

for an AGV to identify and avoid hazardous terrain. This work builds on a previously

developed system that uses artificial potential fields to avoid obstacles and navigate to a

goal. Terrain was identified by developing a random forest machine-learning algorithm,

classifying terrain as hazardous or traversable. The random forest was grown using data

from images collected during this work. The classification of hazardous terrain was used

to generate a repulsive force for use with artificial potential fields. The system was

designed to avoid known areas of hazardous terrain using path planning, developing

paths using approximate cell decomposition and the A* search algorithm. Tests of the

developed random forest revealed accurate classification capabilities for all terrain types,

but a tendency to misclassify certain terrain types. Portions of the navigation solution

were simulated and confirmed the path planning capability. Trials conducted in a

real-world environment revealed the solution stopped the AGV from entering hazardous

terrain, and successfully planned routes around hazardous terrain. Improvements to the

localization solution will allow the AGV to perform more consistently and over longer

ranges.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..2
B. PREVIOUS WORK ...2
C. PURPOSE AND GOAL ..3

II. SYSTEM DESIGN AND KEY CONCEPTS ...5
A. HARDWARE ...5

1. Pioneer 3-AT...5
2. SlimPRO SP675P ...6
3. Sensor Suite ..7

B. SOFTWARE ...10
1. MATLAB ..10
2. Robot Operating System ...11
3. Google Earth Pro ...12

C. KEY CONCEPTS ..12
1. Approximate Cell Decomposition ...12
2. A* Search ..13
3. Random Forest ...14

III. RANDOM FOREST ..19
A. DATA COLLECTION ..19
B. FEATURE EXTRACTION ..22
C. GROWING THE FOREST ..25
D. EVALUATION ..26

IV. INTEGRATION OF VISION INTO THE NAVIGATION SOLUTION29
A. CAMERA..29
B. FILTERING PROCESS ..37
C. STATE-BASED FUNCTIONALITY ...38

1. Path Planning ...39
2. Artificial Potential Fields ..45

D. SIMULATION ...52
E. OBSTACLE OVERSIGHT...54

V. EXPERIMENTS AND RESULTS ...57
A. TERRAIN CLASSIFICATION ..57
B. MEMORY AUGMENTATION ...63

viii

C. SIMULATION RESULTS ..64
D. NAVIGATION IN A REAL-WORLD ENVIRONMENT68

1. Example 1: Operations on Tiled Concrete68
2. Example 2: Operations on Sand Paths.......................................70
3. Example 3: Long-Range Issues ...71
4. Example 4: Long-Range Improvements73

VI. CONCLUSION ..77
A. ASSESSMENT OF GOALS ...77
B. LIMITATIONS ..78
C. FUTURE WORK ...79

APPENDIX A. DATA COLLECTION SCRIPT ...83

APPENDIX B. GROWING A RANDOM FOREST ...85

APPENDIX C. MISSION COMMAND ...87

APPENDIX D. STATE BASED MACHINE ..89

APPENDIX E. PATH PLANNING ALGORITHMS ..99
A. A* IMPLEMENTATION ...99
B. APPROXIMATE CELL DECOMPOSITION....................................103
C. OBSTACLE REVISION ...103

APPENDIX F. FORCES ..105
A. ATTRACTIVE FORCE ..105
B. REPULSIVE FORCES ...105

1. Force Due to LIDAR ..105
2. Force Due to Terrain ...106
3. Force Due to Known Obstacles ...107

APPENDIX G. ESCAPE MODES ..109
A. WALL FOLLOWING ...109
B. TERRAIN FOLLOWING...109

ix

LIST OF REFERENCES ..111

INITIAL DISTRIBUTION LIST ...115

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. The P3-AT platform. Adapted from [4]. ..6

Figure 2. SlimPRO SP675P, front and back ...7

Figure 3. The Hokuyo UTM-30LX LIDAR system..8

Figure 4. The LORD MicroStrain 3DM-GX5-45 GNSS/INS9

Figure 5. The Microsoft LifeCam HD-3000 USB webcam10

Figure 6. Example of approximate cell decomposition ...13

Figure 7. Fisher iris sepal data used to grow a decision tree. Adapted from
[30]. ..15

Figure 8. Feature space divided according to the decision tree grown for iris
classification. Adapted from [30]. ...16

Figure 9. Decision tree grown from Fisher iris sepal data. Adapted from [30].17

Figure 10. Examples of each subcategory of terrain: (a) sand path, (b) mulch,
(c) tiled concrete, (d) long grass, (e) concrete, (f) grass21

Figure 11. Examples of images omitted from the training set: (a) image with
mixed categories and (b) image with overexposure22

Figure 12. Feature extraction points displayed over a training image23

Figure 13. Graphic representation of the feature extraction process and results24

Figure 14. Idealized geometry of the field of view of the camera30

Figure 15. Geometry used to find the vertical field of view of the camera.................31

Figure 16. Geometry used to find the horizontal field of view of the camera32

Figure 17. Diagram relating measured mounting angle to pitch of camera34

Figure 18. Diagram for calculating the range to a region captured in a pixel35

Figure 19. Projected portion of robot frame captured in camera images36

Figure 20. State diagram defining AGV operations ..39

xii

Figure 21. Example approximate cell decomposition with four-meter-square
cells and point obstacles...41

Figure 22. Trivial workspace geometry requiring padding to find a path from
qinit to qgoal ..43

Figure 23. Example image and the resulting Hough Transform information
overlaid on the results of edge detection process51

Figure 24. Representation of true obstacle position for use in simulation53

Figure 25. Out-of-bag classification error for random forests of various
minimum leaf sizes ..58

Figure 26. Enhanced view of the out-of-bag classification error59

Figure 27. Visualized prediction results for an image with concrete and grass
from (a) Least-Error Forest, and (b) Implemented Forest61

Figure 28. Visualized prediction results for an image with mulch and sand path
from (a) Least-Error Forest, and (b) Implemented Forest61

Figure 29. Visualized filtered results for an image with concrete and grass from
(a) Least-Error Forest, and (b) Implemented Forest62

Figure 30. Visualization of the filtered results for an image with mulch and
sand path from (a) Least-Error Forest, and (b) Implemented Forest62

Figure 31. Locations of obstacles identified by the AGV. Adapted from [37].64

Figure 32. Simulation of the known obstacle effects with true position of known
obstacles ...65

Figure 33. Example simulation results of the robot trajectory in an environment
with known obstacles having noisy positions ..65

Figure 34. Example simulation results of the robot trajectory after refining
noisy obstacle positions ...66

Figure 35. Simulation results from planned path trajectory for the robot with
refined noisy obstacle positions ...67

Figure 36. Navigation on tiled concrete. Adapted from [37].69

Figure 37. Navigation on sand path. Adapted from [37]...70

Figure 38. AGV trapped by unique circumstances. Adapted from [37].72

xiii

Figure 39. Failed long-distance trial due to known obstacle force. Adapted from
[37]. ..73

Figure 40. Long-range trial with improved performance. Adapted from [37].74

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

AGV autonomous ground vehicle
AI artificial intelligence
GNSS global navigation satellite system
GNSS/INS GNSS-inertial navigation system
KML keyhole markup language
LIDAR light detection and ranging
MLS minimum leaf size
P3-AT pioneer 3-all terrain
ROI region of interest
ROS robot operating system
SSR small scale representation
SURF speeded up robust feature
USB universal serial bus

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

Jesus, my rock and redeemer, thank you above all.

I would like to thank professors Brian Bingham, Roberto Cristi, Vladimir

Dobrokhodov, Monique Fargues, and Doug Horner. Your instruction has helped me greatly

throughout this work, and I have always looked forward to your presentation of complex

and intriguing topics.

I would like to offer special thanks to my thesis advisors, Dr. Xiaoping Yun and

Dr. James Calusdian. You have each shown me great patience and guidance throughout

this process. Dr. Yun, thank you for your insight and tutelage through the research process.

Dr. Calusdian, thank you for your assistance in framing the problem and your willingness

to discuss concepts and issues encountered throughout the research.

Finally, I would like to thank my family. Kelycera, Linkon, Leia, and Malcolm,

you are a driving force in my life, and I only hope you know how much each of you inspires

me. To my wife, Lindsay, you are a better person than I am, and without you by my side I

would not have been able to come this far. Thank you for standing with me, and for

enduring many nights of my yammering on about robots and artificial intelligence, and the

gobs of math scribbled on boards and mirrors.

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Two decades ago, daily interactions with artificial intelligence (AI) and robots was

nonexistent outside of science fiction. Yet, today, people across the planet communicate

with digital assistants empowered by AI to increase their productivity, and robotic vacuum

cleaners careen through our homes reducing time spent on mundane tasks. This rapid

development of technology in such a short period of time has not gone unnoticed by the

Department of Defense; in 2018, a strategy governing artificial intelligence was released.

The Summary of the 2018 Department of Defense Artificial Intelligence Strategy states,

“we will use AI in a human-centered manner,” implying the need for AI to aid—not

replace—the user [1]. The 2018 Marine Corps Science and Technology Strategic Plan

expands on this concept by focusing on “manned and unmanned teaming” as well as

advanced robotics that support ground forces [2]. According to the Marine Corps S&T

Strategy, the Marine Corps is seeking systems that “enable effective ‘supervised

autonomy’ by a Marine user” and have features such as “teleoperation, machine vision,

perception, obstacle avoidance, convoy following, and the ability to self-navigate

preplanned routes” [2].

Each of the features highlighted from the Marine Corps S&T Strategy are captured

in one of the most provocative areas of research and development of our time, self-driving

technology. This technology seeks to harness AI for the safe and efficient transportation of

people from point A to point B. In the 2018 Department of Defense Artificial Intelligence

Strategy, AI is described as “the ability of machines to perform tasks that normally require

human intelligence—for example recognizing patterns, learning from experience, drawing

conclusions, making predictions, or taking action” [1]. In [3], Russell and Norvig address

AI from the perspective of a rational agent. They describe a rational agent as one that takes

the correct course of action with the information it has. Each of these perspectives applies

to the fundamental problem of self-driving technology, and consequently the same

technology the Marine Corps seeks to aid its warfighter.

2

A. MOTIVATION

Private industry and civilian universities are heavily invested in exploring self-

driving vehicles. Many organizations have constrained their research to civilian

applications that neglect the unique operating conditions pertinent to military applications.

Military vehicles employing self-driving capabilities complete with autonomy, machine

learning, and AI must be able to account for the austere environments and free-form nature

of the routes they are able to execute. This research seeks to exploit the capabilities of AI

and machine learning to equip an autonomous ground vehicle with the ability to avoid

hazardous terrain encountered in unstructured environments.

Through the development of a single autonomous system that is capable of safe and

effective navigation through its environment, further research may be conducted to

leverage this technology for the warfighter. This could include expanding research into

manned and unmanned infantry teaming applications or cooperative convoys of manned

and unmanned systems. As the military industry continues to explore means to leverage

AI, including autonomous/semi-autonomous systems and machine learning applications, it

is important to conduct research with systems that use them to explore the capabilities,

limitations, and areas for future research with a military perspective in mind.

B. PREVIOUS WORK

This thesis research falls under an umbrella project of the Naval Postgraduate

School’s Electrical and Computer Engineering Department’s Control Systems and

Robotics laboratory, wherein the desired end state is to develop a system capable of

navigating from any location to another on the school campus. Prior thesis research

investigated and developed an autonomous system capable of motion planning and user-

assisted path planning. In [4], Calvin Hargadine developed and integrated the autonomous

ground vehicle (AGV) that is modified for use in this thesis research. His work focused on

building a robotic platform and implementing an algorithm for motion planning with a

simple sensor suite. Matthew Audette expanded on this work in [5], wherein he developed

a path-planning algorithm that used user-defined constraints to plan waypoints for the

3

AGV. The research conducted in this thesis addressed the inability of the existing system

to safely or effectively travel over certain types of terrain.

Addressing this problem required developing a system that could identify and avoid

problematic terrain and was also able to learn about its operating environment to plan

routes to its goal. This work required developing a method of classifying terrain and

developing a navigation solution that accounted for the information gathered from the

workspace. There has been significant work in terrain classification, as discussed by

Panagiotis Papadakis [6], wherein he categorized the research into two major categories:

proprioceptive and exteroceptive data processing. Proprioceptive pertains to measuring

information about the state of a robot, whereas exteroceptive relates to the world around a

robot [7]. Papadakis further classified research involving exteroceptive data processing

according to whether it is geometry- or appearance-based [6]. This thesis research focuses

on determining terrain traversability by the appearance of the terrain. Khan et al. conducted

the research most relevant to this work in [8]. Their work explores various machine-

learning algorithms and image-based feature types to determine the combination that

provided the highest accuracy in terrain classification. The work done in this thesis research

differs from that done in [8] in that it highlights the constraints of processing time for near-

real-time control.

The method used for developing the navigation solution borrows from the classic

ideas presented by Jean Claude Latombe in [9], employing approximate cell

decomposition, the A* search algorithm, and artificial potential fields. This requires

developing a method of representing the workspace and then implementing a path planning

algorithm for navigating to the goal site. This thesis work differs in that it operates on

several levels to first refine the location of obstacles defined as points and then plan a route

through the workspace.

C. PURPOSE AND GOAL

The purpose of this thesis was to develop a method of identifying and avoiding

terrain that is hazardous to the operation of an autonomous ground vehicle. Two goals were

set to achieve this purpose. The first of those goals was the development of a machine

4

learning algorithm that differentiates between terrain types with a high level of accuracy.

The second goal was to develop a method for avoiding terrain identified as hazardous.

The machine-learning algorithm constrains this work to the Naval Postgraduate

School campus. This is due to the nature of developing a machine-learning algorithm and

the conditions of capturing training data. This does not prevent the algorithm from being

viable in other locations and conditions; however, it is likely that, with changes to the

environment, the performance of the machine-learning algorithm presented herein would

differ. The equipment used along with the methods used in this research are discussed

throughout the next five chapters. The hardware, software, and key concepts of the thesis

work are discussed in Chapter II. The machine-learning algorithm developed for use in

terrain classification, random forest, is discussed in Chapter III. Chapter IV contains the

description of integrating the terrain classification into a navigation solution for avoiding

hazardous terrain. The results of the laboratory tests, simulations, and experimentation

conducted are detailed in Chapter V. Conclusions from the tests and the thesis work are

discussed in Chapter VI, as are recommendations for future work.

5

II. SYSTEM DESIGN AND KEY CONCEPTS

To research and develop an artificially intelligent system capable of navigating

around hazardous terrain requires a combination of hardware and software. The

combination of hardware and software must allow the system to sense its environment,

plan its actions, and act out those plans [7]. This work modifies the system developed in

[4] and [5] to accomplish the desired goals. The hardware and software used in this thesis

research are described in the first two sections of this chapter before several key concepts

to this thesis work are addressed.

Key concepts of this thesis work are discussed in Section II.C to provide context to

several of the topics used to achieve the thesis objectives. These include approximate cell

decomposition, the A* search algorithm, and the random forest machine learning

algorithm.

A. HARDWARE

The purpose of this thesis requires automating a robotic system for use in an

outdoor environment. This requires a platform that is sturdy enough for outdoor

performance, has the computational capability to automate the desired behavior, and a

robust sensor package that allows the system to observe relevant elements of the

environment.

1. Pioneer 3-AT

The Pioneer 3-AT (P3-AT) is a four-wheeled robotic platform developed by Adept

MobileRobots, shown in Figure 1. It is capable of operations in indoor and outdoor

environments [10]. It is described in [10] as being able to traverse sand, dirt, asphalt, and

flooring with a maximum grade of 35%. The 5.4 cm clearance under the P3-AT bumpers

restricts the platform from traversing terrain with significant dips and other variations [11].

Up to three 12-V batteries power the platform [10]. The P3-AT is capable of providing 5V

or 12V to attached devices [10].

6

Figure 1. The P3-AT platform. Adapted from [4].

The P3-AT comes with a microcontroller that handles all lower level functions,

such as the motor control, reporting wheel encoder data, and controlling the sonar sensors

[11]. A serial connector allows interfacing the microcontroller with a mounted computer

for developing higher level functionality [11]. The P3-AT can be driven with a joystick

controller that is connected by a cable. As shown in Figure 1, the P3-AT comes with built-

in sensors including sonar, emergency stop bumpers, and an emergency stop switch.

2. SlimPRO SP675P

Automating the P3-AT requires a mountable computational platform with a low

power requirement. The SlimPRO SP675P, shown in Figure 2, meets these needs. It

measures 5.75″ wide by 10.0″ long by 1.65″ tall and weighs approximately 2.4 kg [12].

The SlimPRO can be powered by the P3-AT as it only requires 60 W at 12 V [12]. It has

four USB 3.0 ports and two USB 2.0 ports for sensor data reception [12]. The SlimPRO

has a serial port that allows it to communicate with the microcontroller on the P3-AT [12].

This allows passing high level commands to the P3-AT, such as bearing and speed.

7

Figure 2. SlimPRO SP675P, front and back

3. Sensor Suite

a. Hokuyo UTM-30LX

The Hokuyo UTM-30LX, shown in Figure 3, is a two-dimensional light detection

and ranging (LIDAR) system. It is capable of detecting objects at ranges between 0.1 and

30 meters [13]. It provides a 270° field of view with an angular resolution of 0.25° [13].

The Hokuyo provides scanning data to the SlimPRO over USB 2.0 [13]. Due to the 12 V

voltage requirement of the Hokuyo, the P3-AT provides the necessary power for the system

in this work [13].

8

Figure 3. The Hokuyo UTM-30LX LIDAR system

b. LORD MicroStrain 3DM

Shown in Figure 4, the LORD MicroStrain 3DM-GX5-45 Global Navigation

Satellite System-Aided Inertial Navigation System (GNSS/INS) provides a localization

and orientation solution for the AGV. The GNSS/INS is described in [14] as providing

position data accurate to within two meters in the horizontal plane and heading data that is

accurate to within 0.8°. The system draws its power from the SlimPRO over USB 2.0 due

to its low power requirement. It typically requires 700 mW, and it is able to operate on a

DC power source with voltage ranging from 4 to 36 V [14]. The system also uses the USB

2.0 to communicate data to the SlimPRO [14]. The system can be calibrated to the

environment in which it will be operated, accounting and adjusting for specific magnetic

properties of that environment that may affect orientation data [15].

9

Figure 4. The LORD MicroStrain 3DM-GX5-45 GNSS/INS

c. P3-AT Chassis

As mentioned in Section II.A.1, the P3-AT chassis comes with several built-in

sensors including an array of sonar sensors, emergency stop bumpers, and a manually

operated emergency stop switch, as shown in Figure 1. This thesis work does not use the

sonar sensors, as they provide the same capability as the LIDAR, but the LIDAR provides

better resolution and range. There are ten emergency stop bumpers on the P3-AT chassis—

five on the front and five on the back. These bumpers serve as a safety mechanism,

temporarily stalling the chassis if something presses a bumper [11]. The manually operated

emergency stop switch provides the user a hardware option for stopping the P3-AT. The

system will not move while the switch remains activated.

d. Microsoft LifeCam HD-3000

The Microsoft LifeCam HD-3000, shown in Figure 5, is a commercial-off-the-shelf

webcam that provides imagery to the SlimPRO via a USB 2.0 connection [16]. According

to [16], the camera is capable of capturing “up to 30 frames per second”. Each image from

the webcam has a resolution of 1280 by 800 pixels, and a 68.5°diagonal field of view [16].

Due to the intended use as a webcam the device has its focus fixed from 0.3 to 1.5 meters

[16]. Consequently, any portions of the imaged area that are located outside of this range

will not be in focus.

10

Figure 5. The Microsoft LifeCam HD-3000 USB webcam

B. SOFTWARE

The process of automating the robotic platform requires developing the ability for

it to “sense, plan, and act” [7]. The hardware provides the sensing and acting capability,

and the algorithms developed provide the planning capability. This thesis work makes

extensive use of MATLAB for developing these algorithms. It has robust programming

support and can be integrated with the Robot Operating System (ROS). ROS provides the

backbone of the system, funneling information from sensors to algorithms and commands

to actuators. Data analysis requires using MATLAB, ROS, and Google Earth Pro. Together

they allow processing trial data and analyzing them on satellite imagery. Each of the

software elements is described in this section.

1. MATLAB

For this work, the automation algorithms developed for the AGV were built in

MATLAB 2018b. MATLAB is a programming environment designed for use by engineers

and scientists, and is useful for algorithm development and data analysis [17]. MATLAB

has many functions, toolboxes, and packages available for developing solutions to

engineering problems [17]. This work makes use of the Computer Vision, Image

Processing, Mapping, and Statistics and Machine Learning toolboxes along with the

MATLAB Support Package for USB Webcams. Each of these is discussed briefly in this

section.

11

The Computer Vision Toolbox is capable of providing the user with many computer

vision specific algorithms and functions, streamlining the development of systems using

computer vision [18]. This toolbox provides the ability to extract features from images

throughout this work.

The Image Processing Toolbox enables “image processing, analysis, visualization,

and algorithm development” [19]. The functions from this toolbox provide morphological

algorithms for use in filtering and path planning, and prebuilt processes for finding the

Hough transform.

The Mapping Toolbox provides functions for data export in file formats such as the

keyhole markup language (KML) [20]. This enables analyzing geographic data from AGV

interactions with the workspace.

In addition to the many statistical analysis functions available from the Statistics

and Machine Learning Toolbox, the toolbox provides the ability to develop a wide variety

of machine-learning algorithms [21]. This toolbox enabled development of a trained

machine-learning model for terrain classification.

The MATLAB Support Package for USB Webcams provides a method of

interfacing with the webcam via MATLAB commands and scripts [22].

2. Robot Operating System

ROS is a free software providing a framework for developing complex robotics

software [23]. One of the features of ROS is the plumbing it provides by enabling message

passing from sensors, algorithms, and actuators via its publish and subscribe process [24].

This streamlines the process of communicating sensor data to the algorithms used in

automation. In this work, sensors publish data on the ROS network, and algorithms

subscribe to the information they need. ROS also provides a recording feature that allows

the user to record traffic communicated across the ROS network [24]. Data recorded in this

way can be played back or used for further analysis [24].

12

3. Google Earth Pro

Google Earth Pro provides an Earth browser that uses the KML file format [25].

This allows visualizing information from AGV interactions in the world along with the

routes it traveled. The specific release of Google Earth Pro used is 7.3.2.5776 (64-bit).

C. KEY CONCEPTS

Achieving the goals presented in Chapter I requires applying concepts from

robotics and machine learning. Those concepts are discussed in this section to provide

context prior to the application being discussed in Chapters III and IV.

1. Approximate Cell Decomposition

The goal of developing a method for avoiding terrain identified as hazardous led to

the topic of path planning. Latombe discusses the problem of path planning in [9]. In his

discussion on path planning, he details the need for a representation of the workspace.

While he discusses several methods for doing this, this thesis borrows from the

approximate cell decomposition method to develop a workspace representation for use in

path planning. The application of approximate cell decomposition divides the free space

into a collection of rectangular cells [9].

Dividing the workspace in this way allows obstacles to lie in several cells and

partially occlude others. Paths will only be planned through open cells so mixed cells

restrict the available routes to the goal. This is typically dealt with by recursively splitting

mixed cells until the sub-cells are open or occluded [9]. It is practical to place a limit on

the subdivision based on the kinematics of the robot being used. An example of a

workspace segmented using the approximate cell decomposition method is shown in Figure

6. Open cells are white, mixed cells are white and gray checkered, and occluded cells are

black. A graph search can use the decomposition to determine a path through the

workspace. The graph search used in this thesis is the A* search method. It is described in

the next section.

13

Figure 6. Example of approximate cell decomposition

2. A* Search

The A* (pronounced A star) search method is a classic search algorithm classified

among the best-first searches [3]. When applied to a graph search, this algorithm finds the

optimal route between two points or returns failure, if a route does not exist.

The A* algorithm uses a cost metric f(q) to find the optimal route to a goal [26].

According to the developers, Hart, Nilsson, and Raphael, the cost metric is comprised of

two elements g(q) and h(q), such that f(q) = g(q) + h(q) [26]. The authors describe g(q) as

the optimal cost to go from the initial node in the graph to the node q, and h(q) as the

optimal cost between the node q and the goal. In application, a heuristic is used to estimate

the cost. To ensure the path found is admissible, the heuristic cost estimate h*(q) must not

overestimate the cost h(q) [26].

Starting with the initial node, the algorithm begins executing a recursive sequence.

This sequence starts with assigning an estimated cost f*(q) to each node adjacent to the

current node [26]. The algorithm then marks the current node as visited and checks for the

unvisited node that it will visit next [9]. It visits the unvisited node with the cheapest

estimated cost f*(q) [9]. This process continues until the algorithm finds the optimal route

to the goal node or terminates by determining no route exists to the goal [26]. This thesis

14

modifies the application of approximate cell decomposition and A* search to account for

the workspace representation and the obstacle avoidance constraints. These modifications

are discussed in Sections IV.C.1.a and IV.C.1.b.

3. Random Forest

Random forest is a supervised machine-learning algorithm that results in an

ensemble of bagged decision trees [27]. This means that each tree is grown from bootstrap

aggregated portion of the training data [28]. According to Breiman in [27], developers can

use random forests for regression or classification. This thesis work used random forests

for classification and will address them from that perspective. Random forests are a group

of decision trees grown under unique considerations. The description of growing a random

forest begins with the process for growing a decision tree. After the process of growing a

decision tree is covered, the unique methods employed for growing a random forest are

discussed.

Decision trees are grown by recursively splitting a feature space, formed by the

training data, until reaching the desired stopping condition [28]. This starts with the training

set and defining a splitting method and stopping condition.

Training data consists of n observations where each observation is a feature vector

x and a label y [29]. Feature vectors represent the information, called features, from the

observation. These features either come from the raw data or are the result of some

processing by the developer. The label y defines the category of the observation.

The splitting method determines where to split the feature space. This involves

comparing potential child regions in the space. This thesis work makes use of an impurity-

based splitting method that develops purer child regions from the parent regions. This

means that each child region is proportionally more of one category than the other. This

requires identifying the feature and value of the feature that provides the purest child

regions after the split. When growing a decision tree the splitting criteria have access to all

features from the training data [29].

15

The process of recursively splitting the regions based on feature values ends upon

meeting the stopping condition [29]. Stopping conditions include, but are not limited to,

reaching a maximum number of splits or the regions being pure [29].

To demonstrate the concept of a recursively split feature space, and how that

translates to a decision tree, an example tree is grown here for illustration. The tree is

generated from a benchmark data set used in statistics and machine learning, known as the

Fisher iris data. This data consists of 150 observations of four features: sepal length and

width and petal length and width [30]. It represents 50 observations of each of three species

of iris: setosa, versicolor, and virginica [30].

This example uses two of the features from this data, sepal length and width, to

grow the example decision tree. The observations of these features are plotted by species

in Figure 7 to visualize the feature space.

Figure 7. Fisher iris sepal data used to grow a decision tree.

Adapted from [30].

16

A clear delineation between setosa and the other iris species is shown in Figure 7.

The setosa data tends to be clustered in the upper left of the figure, whereas the versicolor

and virginica tend toward the lower right. There are several instances of versicolor and

virginica sharing space within the feature space. The division of the feature space

determined through growing the decision tree in MATLAB is shown in Figure 8, and the

corresponding tree is shown in Figure 9.

Figure 8. Feature space divided according to the decision tree grown

for iris classification. Adapted from [30].

17

Figure 9. Decision tree grown from Fisher iris sepal data.

Adapted from [30].

Figure 8 shows the division of the feature space defined by the sepal length and

width according to the decision tree shown in Figure 9. In Figure 9, sepal length and width

are annotated as x1 and x2, respectively. Comparing Figure 7 to Figure 8 shows the feature

space matching quite well to the training data. One of the oddities is the portion of the

space where the sepal length is equal to seven and all instances are assigned to the

versicolor category regardless of sepal width. This is due to the greedy nature of decision

trees. This greedy nature causes decision trees to overfit to the training data, and decision

trees may not generalize well because of it [29]. There are several methods to address this,

one of which is growing random forests [28]. As discussed, a random forest is an ensemble

of decision tress grown under two special conditions.

The first condition addresses which observations are used to grow each tree. A

random set of the observations are used for each tree [27]. Expanding on this concept, it is

assumed that there are n observations in a master training set. Then when each tree in the

forest is grown, the training set for that tree is n observations chosen at random, with

replacement, from the n observations in the master training set [27]. While maintaining the

same distribution of categories as the master training set [27]. The second condition effects

how many and which features are available for deciding how to split a node. When

18

determining a node split in a random forest, a random subset of the feature vector is selected

for determining the best feature for the split [27]. This process produces a model that is

more difficult to interpret than a decision tree, but provides a more generalized

performance [28].

This section covered the various hardware and software components used to

investigate a method of avoiding hazardous terrain with an autonomous ground vehicle.

Effort was given to expose to the reader to key topics that are used in this research. The

method of developing a random forest for terrain classification is discussed in Chapter III.

19

III. RANDOM FOREST

The random forest machine learning algorithm was chosen to classify terrain types

in images due to its basis in the interpretable decision tree. Due to this basis it is possible

to understand how each tree makes its classifications. Development of the random forest

for this thesis work was conducted in several phases: data collection, feature extraction,

growing the random forest, and evaluation. During data collection a set of raw images was

gathered and sorted for use in growing the random forest. The feature extraction process

required choosing a feature type and extraction scheme. Growing the forest requires using

functions native to MATLAB, and deciding which optional arguments to include in

developing the model. The evaluation process seeks to identify the predictive accuracy and

relative speed of the classification process. The last three phases are iterative in that they

are repeated until an acceptable solution is found—one that balances high predictive

accuracy with relatively fast processing time.

A. DATA COLLECTION

To collect the training data, a script was written in MATLAB to automate the

image-capturing process, saving each image under a distinct name. This script required the

MATLAB Support Package for USB Webcams and is detailed in Appendix A. The robot

was transported to the data-collection area on the Naval Postgraduate School campus, and

the script was executed via secure shell access on a locally established network. As the

robot was driven around the campus using the joystick controller, the script automatically

captured images for use in our terrain classification algorithm. Effort was made to ensure

each class of terrain in the area of operation was captured under the conditions the AGV

would be operating. This meant driving the robot over the terrain at varying speeds, while

traveling in a straight path, turning, and moving in and out of shaded areas.

The resulting set of images was sorted to create the training data. For this work, the

training data is divided into two categories of terrain, hazardous and traversable, with each

category having several subcategories. The hazardous terrain includes mulch, grass, and

long grass. Traversable terrain includes sand path, concrete, and tiled concrete. The

20

categories were developed based on the work of Hargadine and Audette in [4] and [5],

respectively. They each observed that the P3-AT experienced difficulties in maneuvering

over hazardous terrain. This was due to ruggedness of the terrain and slippage of the wheels

caused by travelling on them. The ruggedness caused the AGV bumpers to hit the ground

and stop the system. The slippage degraded overall control of the system, and even resulted

in the system getting stuck in terrain like mulch, where it can “dig” itself into the loose

ground.

When sorting the training data, two types of images—nonhomogeneous terrain

images and those that had portions of overexposure—were manually removed as they

would have reduced the accuracy of the random forest classifier. Any overexposed

portions had pixels with maximum intensity values, which provide no information about

the terrain, rendering the features invalid. Mixed terrain-type images were not used for

training the random forest but would be used later to test the efficacy of the random forest

developed. Including images with these phenomena would have required identifying the

portions with valid features, and ensuring they were labelled properly. This was not

necessary as it was possible to develop a large number of observations with the

homogeneous training data. Examples of each subcategory are shown in Figure 10.

Examples of the types of images omitted from the training set are shown in Figure 11.

21

Figure 10. Examples of each subcategory of terrain: (a) sand path, (b)

mulch, (c) tiled concrete, (d) long grass, (e) concrete, (f) grass

22

Figure 11. Examples of images omitted from the training set:
(a) image with mixed categories and (b) image with overexposure

The resulting training data had 281 photos—146 of traversable terrain and 135 of

hazardous terrain. The features used to train the random forest were extracted from these

photos. The intent was to use the classification of terrain to develop a control effort for the

AGV, which required labelling the observations as category “0” for traversable terrain and

“1” for hazardous terrain. The post classification manipulation, discussed in Section IV.B,

relies on using these categories.

B. FEATURE EXTRACTION

Features are descriptors that can be measured or calculated from a data set and can

be used to train machine learning models. Based on the work described in [8] and the desire

to use the classification results to avoid hazardous terrain, it was decided that features

would be extracted from fixed points within each image. Inspired by a smaller sized grid

from [8], it was chosen to separate the extraction points by 20 pixels both vertically and

horizontally, with the outermost points located 10 pixels from the edge of the photo. The

image dimensions were 800 pixels by 1280 pixels, which resulted in a 40-point by 64-point

grid. This resulted in a total of 2,560 feature extraction points, which are shown as the blue

crosshairs in Figure 12.

23

Figure 12. Feature extraction points displayed over a training image

Feature selection is affected by two primary performance concerns for the terrain

classification algorithm: speed and accuracy. An accurate terrain classification ensured the

desired control input was computed by the AGV, and relatively fast feature extraction

influenced the overall classification speed. Classification speed is important as the

objective was that the system behaves in a near-real-time manner, which is necessary when

conducting motion planning and obstacle avoidance. These considerations affect which

features are selected because a feature may provide very high predictive accuracy, but may

take too long to extract for the system to behave in a near-real-time manner. The contrasting

situation would be a feature that can be extracted very quickly, but provides predictions

that cannot be used in controlling the AGV. Several feature types were explored including

speeded up robust features (SURF) motivated by [31], pixel intensities, and pixel

intensities with color representation. These feature types were used to grow random forests

and determine their effect on predictive accuracy and the speed of the overall classification

process. The results of laboratory and field tests, explained in Section III.D, led to the use

of pixel intensities for feature extraction.

24

The pixel intensities were extracted from each image using the extractFeatures

MATLAB function from the Computer Vision Toolbox. This function required an intensity

image, a set of feature extraction points, and the extraction method. The intensity image

comes from converting the image from the webcam to grayscale, and the set of extraction

points are those shown in Figure 12. The “block” method was chosen as the extraction

method. By using the “block” method, extractFeatures pulls the pixel intensities from the

grayscale image at the extraction points. It was possible to set the size of the

block extracted, but for this work the default size of 11 was used. The default value

provided adequate results, regarding predictive accuracy and extraction speed, and was not

explored further. This meant that for each fixed point, the function extracted the intensities

of an 11 by 11-pixel region A, and organized those values as a row vector. This vector is

the feature vector x, which contains the descriptors associated to the point in the image that

x is extracted from.

A generic example of this process and results are pictographically represented in

Figure 13, where the region A is a three by three region extracted from a five by five image

centered on the element located at coordinate (3,3) that translates to the feature vector x.

Figure 13. Graphic representation of the feature extraction process and results

25

As shown in Figure 13, the feature vector x was formed from the extracted region

A centered on the coordinate of the fixed point. It was built by stacking the columns of A,

with the first column at the top and the last column at the bottom, and taking the transpose

of the resulting column vector. The pixels were represented as unsigned 8-bit integers, and

due to the data type required by the predict function, used later in this thesis, it was

converted to double 64-bit format.

Given the size of the region used, the resulting feature vector x has 121 descriptors

each having discretized values between 0 and 1. Then, element xk of x is found according

to

 (1)

where k is
 11(1)k i j= + − , (2)

and i and j are
 1 , 11i j≤ ≤ . (3)

In Equation (1), Ai,j indicates the element of A from the ith row and jth column of the region.

While building the training set, the feature vectors were labelled after they were

extracted according to the category it belonged to by appending a zero or one at the end

of the feature vector. The labelled feature vector is the building block of the training set.

By recursively loading images, extracting the features corresponding to the fixed points,

and labelling them according to the category of the image, the training set was grown by

2,560 observations per image. This resulted in 719,360 observations for the collected data

set and distribution of fixed points.

C. GROWING THE FOREST

The next step in developing a random forest for terrain classification was to grow

the forest using the prepared training set. This provides a model that can be evaluated

according to its predictive accuracy and speed. Growing the forest is accomplished by

using the TreeBagger function from the MATLAB Statistics and Machine Learning

26

decision trees while using random portions of the features available to make splitting

decisions [32]. Using TreeBagger with the training set generated a random forest for use

in predicting terrain types in an image. The function required the number of trees, the

training set, training labels, and the type of forest, classification or regression. There were

several optional arguments available for building random forests with TreeBagger; this

work used OOBPrediction and MinLeafSize. The minimum leaf size could be adjusted as

a method of generalizing decision trees, and has the benefit of decreasing processing time

of predictions [33]. The OOBPrediction argument allows analyzing the effectiveness of the

random forest once it is grown without having to set aside a testing set [27], [33].

D. EVALUATION

Finding the acceptable forest composition began with growing 100 trees for various

minimum leaf sizes and analyzing the classification error using the oobError function. This

provided candidate compositions that could be analyzed further. These candidates were

tested by implementing them on the AGV during scenarios designed to determine their

accuracy and speed for short duration runs. This trial-based method yielded a forest that

produced adequate classification results with sufficiently short processing time. The results

of the various tests are detailed in Section V.A. The code for generating the random forest

is included in Appendix B.

Once the forest was grown, it could be used to predict whether a set of features

represented hazardous or traversable terrain. The prediction process required using the

predict function in MATLAB. This function used the trained model and features extracted

from the fixed points as inputs to classify each feature vector. Predictions made with

random forests are based on the results of the classifications of the individual trees [27].

Each classification made by a tree is a vote for that category of terrain, and the majority

vote is the forest classification [27]. Each tree makes a classification by comparing the

appropriate feature values to the node splitting features and value until reaching a leaf,

which corresponds to a classification [29]. The terrain prediction result is a vector with

2,560 elements, one for each extraction site, with a categorical “0” or “1” depending on the

27

terrain type predicted for the extraction site. Integrating the terrain prediction into the

navigation solution is described in Chapter IV.

28

THIS PAGE INTENTIONALLY LEFT BLANK

29

IV. INTEGRATION OF VISION INTO THE
NAVIGATION SOLUTION

Developing a method of avoiding hazardous terrain with vision was accomplished

by addressing the entire navigation solution with all of its subordinate parts and not just

obstacle avoidance. Navigating from point A to point B requires both obstacle avoidance

and path planning. Obstacle avoidance requires sensing obstacles in the environment and

reacting to avoid them en route to the goal. Path planning determines the route to the goal,

and typically requires the robot to have some knowledge of the workspace it inhabits. The

information the robot gathers from obstacle avoidance may be used to augment its

knowledge of the workspace to improve path planning in future operations.

To be able to avoid hazardous terrain, the robot vision must be integrated into the

navigation solution. This process begins with the treatment of the camera as a sensor. This

chapter continues with how the terrain classification is filtered for use in the control

mechanism. Once this is laid out, the process of controlling the AGV is examined under

the context of a state-based machine. The remaining two sections address the use of

simulation and obstacle oversight in this thesis work. Simulation was employed to

investigate odd behavior of the AGV during testing and lead to developing and vetting

certain methods used in the navigation solution. An additional result of investigating the

odd behavior of the AGV was the need to provide oversight to the automatic memorization

of certain obstacles encountered in the workspace, and this is discussed in the last section

of this chapter.

A. CAMERA

To use the camera as a sensor for the control of the AGV it was necessary to mount

it to see the areas of the reference frame of the robot that were most relevant to controlling

its motion. Initially the camera was mounted to see to an expected distance of 2.0 meters

from the AGV based on the success of [4] and [5] using the LIDAR to respond to convex

obstacles at a range of 1.8 meters. This provided a field of view that captured relevant data,

but it was then necessary to determine how to treat the camera input to build a control effort

30

from it. Inspired by the LIDAR, the camera input was treated as a point cloud, where each

pixel was treated as coming from a distinct location in the reference frame. It was then

necessary to properly correlate the imagery data to the space it imaged to produce useful

controls for the AGV. Finding the portion of the reference frame projected into the images

required approximating the field of view of the camera.

The field of view is approximated by starting with the assumption that the camera

field of view is represented by the idealized geometry shown in Figure 14. This assumption

primarily neglects imperfections in the setting of the imaging sensor and the asymmetry of

the pixels about the axes of the camera. This abstraction also ignores the effects of the robot

travelling over surfaces that induce pitch and roll, which would affect the portion of the

reference frame that is projected into the image. Ignoring the imperfections of the camera

and neglecting the induced pitch and roll allows the development of a simple model for

using the photos from the camera to provide useful control input to the AGV.

Figure 14. Idealized geometry of the field of view of the camera

To generate this model, photos were taken with the camera mounted on the AGV.

These images were used to mark the horizontal and vertical limits of the field of view. The

31

vertical and horizontal limits were found over several iterations. Each iteration consisted

of taking a picture and adjusting the position of the field of view limit markers until the

limits were marked appropriately. Upon finding the limits, they were used to measure

distances in the reference frame that were used to determine the field of view of the camera.

This process is described throughout the remainder of this section. Finding the vertical field

of view is based on the measured values and the planar geometry depicted in Figure 15.

Figure 15. Geometry used to find the vertical field of view of the camera

The true vertical field of view is approximated using the distance Rmax to the furthest

viewed point, the distance Rmin to the nearest viewed point, and d the height of the mounted

camera. These allowed finding the angles αvmax, and αvmin using

 maxarctanvmax
R

d
α  =  

 
, (4)

 minarctan ,vmin
R
d

α  =  
 

 (5)

and the vertical field of view is then

 vfov vmax vminα α α= − . (6)

Determining the horizontal field of view αhfov began with analyzing the idealized

field of view represented in Figure 16.

32

Figure 16. Geometry used to find the horizontal field of view

of the camera

By using the trigonometric relationships between the measurable quantities l, w,

and d it was possible to find αhfov using

 / 22arctanhfov
l

w
R

α
 

=  
 

, (7)

where Rl is found according to

 2 2
lR d l= + . (8)

Having determined the horizontal and vertical fields of view it was possible to

determine the portion of the reference frame that was captured in each image. Finding the

portion of the reference frame that corresponds to each pixel requires determining the

orientation of each pixel and conducting a coordinate transformation from the image frame

to the reference frame. This requires finding the angular height and width of the pixels, the

mounting orientation of the camera, and the translation from the camera to the reference

frame.

33

Determining the orientation of a pixel was simplified by assuming that the pixels

have uniform angular height and width. The angular height of a pixel αht is found by

dividing the vertical field of view αvfov by the rows of pixels m in the image, such that

.vfov

ht m
α

α =
 (9)

Similarly, it is possible to find the angular width αwd using

,hfov

wd n
α

α =
 (10)

where n is the columns of pixels in the image. This along with the mounting angle of the

camera can be combined to find the orientation of each pixel.

Finding the mounting orientation of the camera started with the assumption that the

orientation is constant with respect to time. This assumes the camera is mounted with a

positive pitch down from the x-axis, while the roll and yaw are zero. Angles αvmax and αvmin

can be used to find the measured mounting angle αmount from

()

2
vmax vmin

mount vmin

α α
α α

−
= + . (11)

These angles are measured with respect to the line normal to the ground; however,

the AGV uses an East-North-Up convention and the angles must be represented relative to

the line parallel to the ground. Converting αmount to θmount, the mounting pitch angle,

depicted in Figure 17, is found by

2mount mount
πθ α= − . (12)

34

Figure 17. Diagram relating measured mounting angle to pitch of camera

Assuming images are symmetric about the camera line of sight enabled deriving

the expression for the orientation of a pixel coming from the ith row and jth column in the

image

0

2

2

ij

ij mount ht

ij

wd

mi

n j

φ
θ θ α
ψ

α

 
 
  
    = − −           −  

  

. (13)

The range to the position captured in a pixel in the reference frame of the robot was

found based on the assumption that the z-component is zero for all pixels. This assumption

was made due to the intent of capturing images of the ground. The range was found using

the geometry shown in Figure 18 where cij is the length of the hypotenuse of the triangle

in the xz-plane, and was computed using the trigonometric relationship

()sinij

ij

dc
θ

= , (14)

and rij is the range to the pixel computed using the expression

()cos
ij

ij
ij

c
r

ψ
= . (15)

35

Figure 18. Diagram for calculating the range to a region captured in a pixel

Combining the range and orientation associated to a pixel allowed computing its

position in the robot frame [xij, yij, zij]T by conducting the coordinate frame transformation

described by

0

0 0
0

ij ij
T

ij ij

ij

x r
y R
z d

     
     = −     
         

, (16)

where Rij is the rotation matrix corresponding to the orientation of the pixel

() () () () ()
() () () () ()

() ()

cos cos sin cos sin

sin cos cos sin sin

sin 0 sin

ij ij ij ij ij

ij ij ij ij ij ij

ij ij

R

ψ θ ψ ψ θ

ψ θ ψ ψ θ

θ θ

 −
 
 =
 
 − 

. (17)

The positions of the pixels corresponding to the robot frame were precomputed for

use in determining repulsive forces from terrain and for finding the orientation of the

terrain. The precomputed information was stored in two formats, as an array of xy-

coordinates for each pixel and as range and bearing [ρi,j, βi,j]T for each of the 2,560 points

for which features are extracted from for terrain classification. The range and bearing to

each feature extraction point is found using

36

2 2

,

, arctan

ij ij
i j

ij
i j

ij

x y

y
x

ρ
β

 +
  
 =   
        

. (18)

Figure 19 shows the calculated portion of the robot frame projected into the

captured images.

Figure 19. Projected portion of robot frame captured in camera images

Each fixed point now maps to a distinct point in the space that can be used to

conduct obstacle avoidance. This treatment of the camera allows integration with the

methods of terrain classification discussed in Chapter III, where a remaining concern is the

inaccuracies, both false positives and false negatives, of the random forest, that may cause

aberrant behavior if unmitigated. With this in mind the classification results are filtered to

reduce the effects of false classifications.

37

B. FILTERING PROCESS

The prediction responses of the random forest, discussed at the end of Chapter III,

are expected to have some degree of inaccuracy, and each falsely identified portion could

generate control signals that turn into undesired behavior in the robot. Driven by an

assumption that terrain is continuous in a way that means there will not be small patches

of hazardous terrain in the middle of traversable terrain, and vice versa, the prediction

results are filtered. False identifications are treated as noise to be filtered out. The

prediction vector produced from the prediction process is reshaped into a 40 by 64 matrix,

PredMat, such that each element aligns to the portion of the image the prediction comes

from. PredMat is treated as being the true classification Ctrue plus noise ω, with values

constrained to one or zero, such that

 () mod 2truePredMat C ω= + . (19)

Filtering PredMat is a two-step process involving a blurring and thresholding step

followed by removing small regions of connected hazardous terrain. The blurring process

is done by convolving PredMat with a three by three box filter γ; the resulting matrix is the

average of each element in PredMat with the eight elements closest to it. The thresholding

process rounds the elements to the nearest value, constraining values to zero and one. This

process yields the intermediate matrix PredTemp:

 round(*)PredTemp PredMat γ= . (20)

The first step eliminates instances in which a few locations are identified as a terrain

type opposite of the predominant type in that portion of the matrix, regardless of the

classification. The second step involves removing small regions that have been classified

as hazardous terrain. This was based on the fact that traversable terrain falsely classified as

hazardous is considered more harmful to the motion planning effort than hazardous terrain

classified as traversable terrain. This is done by eliminating regions classified as hazardous

terrain that have 128 or less connected elements. In this case they are changed from

Category 1 to Category 0. This was based on the assumption that terrain is continuous, and

that regions this small would not occur outside of the corners of the image. This removal

38

of small regions assumed to be false positives is of greater importance to the control effort

than reacting to terrain at the extremes. This process is accomplished using the bwareaopen

MATLAB function from the Image Processing Toolbox. The processed classification

matrix ClassMat is used to develop repulsive forces when hazardous terrain is identified.

Examples of the results of the filtering process are shown in Section V.A. The code

developed to classify images, process the classification matrix, and generate the controls

from the terrain classification is included in Appendix F.

C. STATE-BASED FUNCTIONALITY

Up to this point, the focus of this chapter has been on the development of a model

for using the camera data for sensing the environment and on filtering the classification

predictions from the random forest. Now, focus is shifted to integrating that work into the

previously existing control structure on the AGV. Previous thesis work, conducted by

Hargadine in [4], developed the control structure for the AGV as a state-based machine.

Each state has defined goals and control mechanisms to achieve those goals. The state

diagram that defines the behaviors of the AGV is shown in Figure 20. This diagram is

an evolution of the work done in [4] and [5], and accounts for the capabilities added

by this work.

39

Figure 20. State diagram defining AGV operations

The Mission Command state is based on the work of Audette in [5], and feeds the

location of the current goal to the Path Planning state. The Path Planning state uses the

information known about the workspace to plan an optimal route to the goal, which is

executed by the Artificial Potential Fields state. The Artificial Potential Fields state

employs a gradient descent mechanism to maneuver toward the waypoints along the path

and ultimately toward the goal. Based on its interactions with the environment, the system

can transition into several additional states: Terrain Following, Wall Following, and

Emergency Avoidance. Each of these states is addressed further in this chapter, beginning

with the Path Planning state. The code that executes the state-based functionality is

represented in Appendices C and D.

1. Path Planning

Path planning is employed by the robot to get from the initial position to the goal

position while avoiding known obstacles in the workspace. This requires a representation

of the workspace with the locations of obstacles and a method for planning the path. This

thesis work makes use of the approximate cell decomposition method to represent the

workspace. With this representation, the A* algorithm is used to find the optimal route to

the goal. This process begins with the implementation of the approximate cell

40

decomposition on two scales, to refine known obstacle position and for path planning, and

then the method of implementing the A* algorithm is discussed.

a. Approximate Cell Decomposition

The approximate cell decomposition process serves two functions in this thesis

work. The first is that it takes the location of known obstacles and refines them, and the

second is to provide a representation of the workspace that can be used to plan a path. The

workspace representation generated by approximate cell decomposition is the map the

robot uses to determine its route to the goal. This map only contains the location of

obstacles it has interacted with in previous operations. As described in Section II.C.1, the

standard application of the approximate cell decomposition methodology requires

subdividing cells that are partially occluded by obstacles. This is not done in this work as

obstacles are identified as points in the workspace rather than two-dimensional objects,

which would require dividing cells down to infinitely small sub-cells to contain a single

point obstacle. Also, based on the AGV size and knowledge of the workspace there is a

practical limit to how small the cells should be. By initially using a larger cell size, it is

possible to refine the perceived position of known obstacles. While using a smaller scale,

the decomposition of the workspace can be used for path planning.

Approximate cell decomposition identifies the cells that are occupied by obstacles

and the cells that are perceived to be free to move through. To build this representation the

robot uses its knowledge of the workspace and the obstacles it has encountered in the past.

It was noticed that the location of previously identified obstacles, terrain or other local

minimums, were not precisely located. This was primarily due to the inaccuracy of the

GNSS/INS localization. The location of each known obstacle is modelled as the true

location plus noise

 xknown true

yknown true

x x
y y

ν
ν
    

= +     
     

, (21)

where the noise, νx and νy , are assumed to be normally distributed with zero mean, and

have an unknown standard deviation σ that is

 (22)

41

To estimate the true position of known obstacles it was assumed that terrain tends

to remain continuous, as described, and that the boundaries between terrain types are linear.

This allows looking at the identified locations of the known obstacles as points that

describe an unknown line, the line that describes the boundary between traversable and

hazardous terrain.

This boundary line is found by using an approximate cell decomposition of the

known workspace at a larger scale, dividing it into four-meter by four-meter cells. This

representation is used to fit a line to any set of obstacles in a cell containing three or more

known obstacles. Figure 21 represents an example of a workspace with point obstacles that

has been decomposed as described. These cells are inspected for obstacles, and if there are

more than two obstacles in a cell, a least squares fit is conducted to approximate the line

that those obstacles form. This results in two primary effects. First, the identified boundary

is less noisy, providing for more accurate path planning and more even control when

included in the artificial potential fields. Second, some shapes, particularly corners, are

misconstrued. This process provides a needed refinement to the identified position of

obstacles that feed the workspace representation used for path planning.

Figure 21. Example approximate cell decomposition with

four-meter-square cells and point obstacles

42

When planning a path from point A to point B, with knowledge of obstacles

between the two points, it is implied that the path should avoid the obstacles, and

approximate cell decomposition is a starting point in planning this path. The scale at which

this is done for refining the location of obstacles is not reliable for the path planning task

due to the size of the cells compared to the paths available in the workspace. As a result of

this, the workspace is readdressed using the refined positions of the known obstacles.

For the path planning application, the workspace is divided into one meter by one-

meter cells, called the small-scale representation (SSR). The cells are small enough to plan

paths around the obstacles yet large enough the AGV can move through them without

issues. The SSR will be used to find a path from the initial position to the goal position,

and it was beneficial to assume there are unknown portions of the workspace. The known

workspace Ω consists of the initial position qinit, goal position qgoal, and the refined position

of the known obstacles. This is padded to account for the unknown portions of the

workspace, and defined as Ωpadded . Padding allows the AGV to avoid trivial geometries

that would prevent finding a path from qinit to qgoal . A trivial geometry is shown in Figure

22, where if a path planner only knew of the shaded portion of the workspace it would be

impossible to find a path to the goal. Whereas, if this were expanded a small amount, then

an obvious path around the obstacle becomes available to the planner.

43

Figure 22. Trivial workspace geometry requiring padding to find a

path from qinit to qgoal

The padded SSR Ωpadded is used to plan the path to the goal by using the A* search

algorithm. Code developed for generating the workspace representation and refining

obstacle locations is included in Appendix E.

b. A* Implementation

To implement the A* search algorithm for path planning a MATLAB script was

written that accounts for the occupied cells, the heuristic cost, the cost associated with a

cell, those cells that have been visited, and the path to a cell. These are tracked using

matrices O, H, F, V, and cell array Path, respectively. Each matrix is established with zeros

for all elements, the cell array is established with empty cells, and each matrix/cell array

has the same dimensions as the padded SSR generated for path planning. The elements of

the matrices and cell array correspond to cells in Ωpadded ; that is information about the cell

located in the ith row and jth column of Ωpadded is found in the ith row and jth column of the

matrix/cell array.

44

The occupancy matrix O is developed from Ωpadded and assigns a value of one to

those elements of O that correspond to cells occupied with obstacles in Ωpadded , and zero

otherwise. This matrix is treated as a black and white image that is morphologically

manipulated to close small gaps and ensure a path is not planned through diagonally

connected free space. The modified occupancy matrix Omodified now indicates there are

obstacles where there were previously small gaps and diagonal connections. This process

is detailed in the AlphaStar.m script included in the Appendix E. This matrix is used to

build the H matrix.

When building H, any corresponding elements of Omodified that indicate an open cell

are assigned a heuristic cost equal to the Euclidean distance from the midpoint of the cell

to the goal. Any cells in the modified occupancy matrix with obstacles are assigned a cost

of infinity in the corresponding location in H. The exception to this is if the initial or goal

position happens to reside in a cell that contains a known obstacle, the known obstacle is

ignored, and the cost is equal to the Euclidean distance. This presents the possibility for

paths to be planned through known obstacles, and in this case the online controls are trusted

to avoid them. Equation (23) describes the general cost assignment to the H matrix

elements, where pmid(i,j) is the midpoint of the cell in the ith row and jth column of Ωpadded ,

 (,) ,
,

,

, 0

 1
mid i j goal i j

i j

i j

p q if O
H

if O

 == 
∞ =

. (23)

By starting in the initial cell, containing qinit, the algorithm searches for the optimal

path to qgoal . The search process is recursive and requires checking the neighbors of the

cell being “visited.” Checking a cell in this case generates the corresponding element of

Path and F.

The element of Path, for the checked cell, is built by using the element of Path of

the “visited” cell and adding the midpoint of the cell being checked to the end. The element

of Path corresponding to the initial cell is qinit . Each element of Path becomes a list of

coordinates that can be used as waypoints to get from qinit to the cell.

45

The cost associated with a cell is Fi,j = g(i,j) + Hi,j , similar to the method described

in Section II.C.2. The function g(i,j) is the cost to get to cell i,j from the initial cell through

the path defined in the element of Path. If the cell is being checked for the first time or if

the cost along the current path is cheaper than the previous checks the cost and path are

updated, and otherwise the cost and path from checking is ignored. Once all neighbor cells

have been checked, the matrix V is updated to indicate the current cell being “visited” has

been “visited.” The next step is to determine which cell to “visit” next. This is done by

checking the matrix F for the cheapest cost of an unvisited cell. The process begins anew

upon identifying the next cell to “visit.”

Upon finding a path to qgoal the AlphaStar.m script post processes the path. This is

based on the fact that the path is likely to have more points than are necessary to effectively

navigate to the goal. This required downsampling the identified path so that every fourth

coordinate pair in the path list is kept for use in navigation. This downsampled path is

passed to the AGV for use as waypoints to the goal.

With a path planned from the current position to the goal, the route is executed

using the artificial potential fields algorithm, and it is at this point that the AGV transitions

from the Path Planning state to the Artificial Potential Fields state. The Artificial Potential

Fields state is described in the next section. The full code for implementing the path

planning is provided in Appendix E.

2. Artificial Potential Fields

As was alluded to earlier, artificial potential fields is a well-known navigation

methodology. According to Jean-Claude Latombe in [9], this method assumes the robot is

a point mass that is effected by a potential field U that pulls the robot to the position of

least potential energy. The overall potential field is treated as the sum of attractive Uatt and

repulsive Urep potentials. Repulsive potentials provide obstacle avoidance capabilities by

assigning areas near obstacles a higher potential than the surrounding area. Taking the

negative gradient of the potential field function at point q

 () ()F q U q= −∇ (24)

46

generates the force F at q that avoids local obstacles while maneuvering closer to the goal

[9]. The artificial potential field algorithm has inherent limitations that must be considered.

The most relevant to this work is that of local minima. The method of implementation is

covered throughout this section beginning with the attractive potential and resulting force.

a. Attractive Force

The method of implementing the attractive potential and resulting force matches

that documented in the previous thesis work done by Hargadine in [4], and is briefly

covered for completeness. The method is inspired by Latombe’s description of a parabolic

potential in [9], where the potential field Uatt at point q is

 21() ()
2att goalU q qξρ= , (25)

where ξ is a positive gain that can be tuned to adjust the performance of the AGV, and

ρgoal is the Euclidean distance to the goal from q.

A characteristic of the parabolic well is that the forces at extreme distances from

the goal extends toward infinity which is undesirable. To avoid this the resulting attractive

force has a bounded magnitude to ensure the AGV operates at a safe speed. A safe speed

is defined by responding well to repulsive forces, and does not endanger the platform. The

repulsive force is expanded from the work in [4], and is described in the next section.

b. Repulsive Force

The repulsive force implemented in this thesis builds on the work done by

Hargadine by adding methods of sensing obstacles. The previous work uses the description

of a repulsive potential described in [9] as

2

0
0

0

1 1 1 if ()
() 2 ()

0 if () >
rep

q
U q q

q

η ρ ρ
ρ ρ

ρ ρ

  
− − ≤ =   



 , (26)

which has a range of influence defined by ρ0 and a gain η for tuning behavior near obstacles,

and ρ(q) represents the range to the sensed obstacle. Equation (26) is the basis for

generating the repulsive forces used to avoid obstacles.

47

The repulsive force is the result of the AGV perception of obstacles by the LIDAR

and camera as well as knowledge of nearby known obstacles. Each component is developed

similarly, but with consideration for the ways obstacles are represented by the sensing

mechanism.

The LIDAR component is built upon the idea of a point cloud where each return

contributes to the total LIDAR force using the standard repulsive force model as seen in

[9]. The total LIDAR force FLIDAR implemented in [4], and used in this work, is

1032

2
1 0

cos()1 1 1
sin()

i
LIDAR LiDAR

i ii L i

F
θ

η
θρ ρ ρ=

    
= − −    

   
∑ , (27)

where ηLIDAR is a scalar gain for the LIDAR generated force, ρi is the distance associated

with the ith return, ρL0 is the maximum detection distance that contributes to the repulsive

force, and θi is the angle associated with the return.

The force from known obstacles FKnown is a new addition to the AGV capabilities.

This was initially implemented to avoid areas where terrain had been identified and uses

the standard repulsive force potential. Due to observed behavior in operation the force was

simulated in MATLAB; the simulations are discussed in Section IV.D. Those simulations

revealed that constraining the input of the force to the three known obstacles closest to the

AGV provided smoother behavior. This was carried over to the implementation on the

AGV, and the force component from known obstacles is generated according to

3

2
1 0

1 1 1 i R
Known Known

i i Ri K i

x x
F

y y
η

ρ ρ ρ=

−    
= − −    −   
∑ . (28)

Equation (28) is similar to Equation (27) used for the LIDAR but has its own range of

influence ρK0 and gain ηKnown. This differs slightly from the method used for the LIDAR in

that it generates the force based on the relative position of the obstacle [xi, yi]T from the

AGV position [xR, yR]T.

The force generated from the terrain classification is conceptually similar to the

LIDAR force in that the image is treated as a point cloud. ClassMat, generated as described

in Section IV.B, is used to determine which points in the image have hazardous terrain,

48

and those points are used to build FTerrain . In this case, each point was considered according

to its precomputed range and bearing from the AGV position [ρi,j, βi,j]T as found in Section

IV.A. Due to the limited range, greater number of returns, and the space those returns

occupy in the reference frame of the robot, the force contribution is altered. The terrain

force is found using

40 64

,

,1 1 , 0

cos()1 1
sin()

x i j
Terrain Terrain

y i ji j i j T

G
F

G
β

η
βρ ρ= =

   
= − −       
∑∑ (29)

with a gain for overall tuning ηTerrain and range of influence ρT0 similar to the previous

repulsive forces mentioned but includes individual component gains Gx and Gy for tuning

behavior based on the field of view. It also drops the proportionality of the force to the

inverse square of the distance to the observation. The removal of that proportionality

provided more even distribution of the force over the depth of the field of view. The code

for generating the repulsive forces is included in Appendix F.

The total repulsive force is the sum of the three forces developed above, that is

 Repel LiDAR Known TerrainF F F F= + + . (30)

Throughout the discussion above, the term force is used, and this is primarily a

matter of custom. In implementation, the total “force” is used as velocity commands for a

robot. With proper tuning, this method typically allows the AGV to move from its initial

position to the goal with little to no information about the workspace; however, there are

limitations to the artificial potential fields method that can prevent the AGV from reaching

its goal. Of particular interest to this work is the issue of local minima. The methods used

to handle this phenomenon are discussed in the next section.

c. Escaping Local Minima

Local minima refer to any location in the artificial potential field surrounded by

higher potentials other than the goal. These locations can trap the AGV. This topic is

addressed in [34] and [35] using two different approaches. In [34], the local minima are

dealt with by invoking a global path planner, while in [35], the obstacle responsible for the

49

local minimum is followed until the minimum is escaped. In this thesis these methods are

modified and combined to escape local minima and not return to them.

The process of handling local minima starts with detecting it. This thesis assumes

two types of obstacles generate local minima, convex obstacles and terrain. Each is

identified, confirmed, and handled in different ways. Upon confirming a local minimum,

the location of that minimum is added to an array of known obstacles in the AGV

databanks, which are used for future path planning and as part of the known obstacle force

as described in Sections IV.C.1 and IV.C.2.b. Then the AGV executes an escape mode

depending on the type of local minimum identified. If the minimum is due to convex

obstacles, then the system uses a wall-following algorithm to escape. This method is

developed and discussed further in [4], and is briefly discussed here for completeness.

(1) Wall Following

The Wall Following state was entered when the AGV became trapped in a local

minimum due to convex obstacles. These local minima were identified and confirmed

when the force due to the attractive force and LIDAR force was less than a threshold τLIDAR .

The escape algorithm followed the boundary of the obstacle forming the local minima by

keeping it perpendicular to the AGV. This may cause the AGV to get farther from the goal

in the process. The system determined the direction to follow the obstacle by referencing

the direction it was pushed by the LIDAR force prior to entering the Wall Following state.

To escape the Wall Following state, the system tracked its distance to the goal gdist , and

compared this to g0, which started as the distance to the goal upon entering the Wall

Following state. Each time gdist < g0 then g0 was set equal to gdist and a count variable dcount

was incremented. When dcount exceeded a tunable threshold, the system exited the Wall

Following state. Local minima due to terrain were dealt with differently than convex

obstacles.

(2) Terrain Following

Potential local minima due to terrain were identified whenever the terrain force

exceeded a threshold τTerrain . Confirming a minimum required that the previous iteration

50

identified a potential minimum, and the terrain force generated on that iteration was in

excess of τTerrain . Upon confirming the local minimum, the AGV entered the Terrain

Following state. The narrow field of view of the camera and the reliability of classification

made it infeasible to keep the terrain perpendicular to the AGV as was done in the Wall

Following state. One analogous approach was to determine the orientation of the terrain

and place a temporary goal at a set distance from the AGV along that orientation,

essentially following the orientation of the terrain for a short distance. This required

determining the orientation of the terrain, which was accomplished using the Hough

transform. It also required determining which side of the AGV the temporary goal would

be placed along this orientation.

(3) Finding the Orientation of the Terrain

Finding the orientation of the terrain was accomplished by using the Hough

transform in a multi-step process that began with capturing an image immediately after

entering the Terrain Following state. The next step was an edge detection algorithm that

yields the edges in the image. For this thesis, the Sobel method was used. The Sobel method

entails passing the image through a filter that approximates a horizontal gradient as well as

a filter that approximates a vertical gradient. The resulting gradient images are then

summed and subjected to a threshold, such that values less than the threshold are set to

zero. This edge image is analyzed in the ρ-θ space to determine if lines exist in the image,

and if so where the most discernable lines are. This process is accomplished in MATLAB

by using the series of functions from the Image Processing Toolbox: edge, hough,

houghpeaks, and houghlines. This generated the standard Hough transform for the image

and the five most prominent lines in the image were used to determine the orientation of

the terrain in the image ψimage . Figure 23 shows an example of an image and the results of

the standard Hough transform.

51

Figure 23. Example image and the resulting Hough Transform

information overlaid on the results of edge detection process

Upon having ψimage and the precomputed locations associated with each pixel,

found in Section IV.A, it was possible to determine the orientation of the terrain ψTerrain

relative to the robot.

(4) Placing the Temporary Goal

To escape the local minimum induced by terrain, it was chosen to place a temporary

goal 2.5 meters from the robot in the direction of the orientation of the terrain. This distance

allowed the robot to avoid the terrain it had encountered, and it was also not so far that it

allowed the overall mission to be neglected. This did yield two possibilities for placing the

temporary goal along the orientation, left or right of the robot. This choice was made

according to the direction it had been pushed by the terrain force. The robot then places the

temporary goal according to

()
()

_

_

2.5cos
2.5sin

temp goal Terrain

temp goal Terrain

x
y

ψ
ψ

  
=   

   
, (31)

where ψTerrain accounts for any adjustment required for turning left or right of the AGV.

The AGV then uses artificial potential fields to travel to the temporary goal. Upon

reaching the temporary goal, the system exits the Terrain Following state. After exiting

52

either local-minimum-escape modes the system clears any preexisting path and enters the

Path Planning state before returning to the Artificial Potential Fields state with a new route

to the goal.

The system is equipped with an Emergency Response state that reacts to being too

close to obstacles, and was implemented for safety purposes. The Artificial Potential Fields

state is not well suited for handling dynamic obstacles, such as pedestrians, and in the event

something or someone were to abruptly approach the robot, the Emergency Response mode

was able to avoid collisions. Regardless of the state the AGV is in, if three or more LIDAR

returns indicate an obstacle is within half a meter it will enter emergency mode. This mode

causes the AGV to stop for four seconds and then reverse for four seconds. It then rechecks

the area and, if necessary, executes the same protocol. Otherwise, it returns to the state it

was in prior to entering the Emergency Response state.

This completes the description of how the vision was integrated into the AGV

architecture. This leaves two areas important to this work undeveloped. The first is the

simulation process, which led to refining the known obstacle positions, determining the

number of obstacles to include in the known obstacle force, and developing the path

planning process. The second is the fact that the system required operator oversight as it

developed awareness of the workspace. As the system identified locations of obstacles, it

was known that there was noise in the positions, and this was typically mitigated through

refining those positions. In some cases, refinement was insufficient to mitigate the degree

of error in the obstacles position, and in those cases the obstacles had to be removed from

the AGV databanks. These topics are addressed in the next sections

D. SIMULATION

Simulating the effects of the known obstacles led to the development of many of

the techniques used throughout the navigation solution proposed by this thesis, such as

refining obstacle location and developing the path planning algorithm. The simulation was

built in MATLAB as an implementation of the artificial potential field algorithm with the

simulated robot reacting solely to known obstacles. Due to the inherent limitations of the

artificial potential field algorithm discussed in [34], the simulation was outfitted with a

53

method analogous to the wall-following mode discussed in [35] to escape local minima

and mimic the AGV capabilities.

The simulations emulated the robot maneuvering from the opposite side of an

impassable region toward its goal location. For these simulations the obstacle region was

described by points on the edge of the region. This set of obstacles was used in the

simulation to examine the behavior of the robot under several scenarios, and is visualized

in Figure 24 along with the simulated initial position of the robot and goal location. This

process enabled resolving initial parameters for the known obstacle force for real world

testing, and led to discovering the benefits of obstacle refinement and path planning.

Figure 24. Representation of true obstacle position for use in simulation

The initial simulations used the known obstacles at the true locations, and they were

followed by simulations where the obstacles had noisy positions. The behavior of the

simulated robot with noisy obstacle locations was considered similar to that experienced

with the AGV prior to conducting the simulations.

54

The next simulation implemented the large-scale approximate cell decomposition

with least squares fit to refine the obstacle locations. In addition to examining the effects

of refining the noisy obstacle location, this simulation was used to investigate the known

obstacle force contribution, the range of influence, and the repulsive gain for known

obstacles. The simulations were analyzed with a focus on the quality of the trajectory and

obstacle refinement as nearly all resulted in the simulated robot reaching the goal position.

Quantitative analysis was restricted to how close the simulated robot got to the known

obstacles.

The final set of simulations were run using noisy obstacles, refined as described,

and included the path planning algorithm using A* search. The results of the simulations

are discussed in Section V.C. This provided insight into the ability to refine the known

obstacle positions, but hinged on the fact that obstacles were reasonably noisy. Those

obstacles identified in locations that were beyond the reasonable threshold were dealt with

by operator oversight; this process is discussed in the next section.

E. OBSTACLE OVERSIGHT

While it was possible to handle the noisy placement of obstacles in liminal spaces

there were times the system memorized locations of obstacles that were erroneous beyond

noise. This led to manually inspecting the obstacles the AGV had in its memory. The

erroneous locations were typically due to the localization being vastly off base, but was

also observed due to egregious misclassification of terrain.

To check the locations of the known obstacles, they were converted to latitude and

longitude values using the AlvinXY projection. This method is discussed in [36], and

requires using a reference point to serve as the local origin to determine the approximate

linear distance of a degree in latitude mdeglat and longitude mdeglon by using

 deglat 0 0 0111132.09 566.05cos(2) 1.2cos(4) 0.002cos(6)m φ φ φ≈ − + − (32)

and
 deglon 0 0 0111415.13cos() 94.55cos(3) 0.12cos(5)m φ φ φ≈ − − , (33)

55

where ϕ0 is the latitude of the reference point. This was used to convert the position of

obstacles (xi, yi), stored as meters from the origin in the rectilinear plane to latitude and

longitude (ϕi, λi) with the reference point as the origin using

 0
deglat

i
i

y
m

φ φ= + (34)

and

 0
deglon

i
i

x
m

λ λ= + , (35)

where λ0 is the reference longitude [36].

Upon converting the known obstacle locations to latitude and longitude, it was then

possible to store them as a KML file using the kmlwritepoint function, part of the

MATLAB Mapping Toolbox. The file generated was then viewed in Google Earth Pro to

verify the position of known obstacles. Removing erroneous obstacles only required

deleting the offending coordinates from the AGV databanks.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

V. EXPERIMENTS AND RESULTS

The methods described in Chapters III and IV provided a means of identifying and

avoiding hazardous terrain. The results of this design solution are presented and analyzed

throughout this chapter. This chapter starts with the growth and analysis of several random

forests designed for terrain classification. This is followed by the results of the filtering

process used to reduce misclassifications. From there the results of the simulations

described in Section IV.D and their ramifications are discussed. Finally, real-world trials

of the fully integrated navigation solution are presented and discussed to conclude this

chapter.

A. TERRAIN CLASSIFICATION

The first goal of the thesis research was developing a machine learning algorithm

to classify terrain, and the random forest machine learning algorithm was selected to

accomplish this. Determining a random forest that provided accurate results with fast

prediction speed started with growing several forests and examining the error associated

with each. This formed the basis of deciding the composition of forests to be tested for

acceptable processing times when implemented on the AGV. For this research, 12 forests

were grown, each with 100 trees. The trees in the test set had minimum leaf sizes (MLS)

of 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, and 55. The error associated to each forest was

examined by using the oobError function from the MATLAB Statistics and Machine

Learning Toolbox. The oobError function provides an unbiased estimation of the

classification error by using out-of-bag observations [33]. The results of several of the

forests are shown in Figure 25, and the information is representative of the set.

58

Figure 25. Out-of-bag classification error for random forests of

various minimum leaf sizes

No significant improvement in accuracy is shown beyond 50 trees for all MLS.

The classification error for all forest sizes appears to asymptotically approach a value near

0.15 as the number of trees increases. The results indicate that after 40 trees there is only

a nominal reduction in classification error due to MLS, and that there appears to be an

intersection of sorts at 20 trees. At 20 trees all MLSs except 1, 5, and 55, have a

classification error of 0.165 ± 0.001. From this analysis, it was decided to constrain the

search for an acceptable forest composition to a size of 20 to 50 trees.

59

Figure 26. Enhanced view of the out-of-bag classification error

Analyzing all MLSs tested except 1, 5, and 55 in this range of 20–50 trees,

illustrates that there is a small, approximately 0.01, improvement in classification error for

any MLS, which is shown in Figure 26. An improvement of this magnitude is considered

insignificant as the classification results will be filtered to remove misclassifications. Tests

conducted with respect to processing time revealed that a model with 20 trees and MLS of

10 provided adequately fast processing time. Whereas tests conducted with 50 trees were

not fast enough to prevent lurching motion in the AGV.

The forest with 20 trees and MLS of 10 was not the only forest composition that

met the processing time requirements, but was settled on early in this research to move

forward in developing the rest of the navigation solution. The testing of random forests was

limited due to testing forests with different features that were ultimately deemed unsuitable

for the task. Two examples of these are the use of SURF features and pixel intensities with

color representation. SURF features were disqualified due to the long processing time

60

associated with extracting them from the interest points. While pixel intensities with color

representation was disqualified after egregious terrain misclassifications during a test in

the workspace, even though it had outperformed the pixel intensity versions in laboratory

tests with mixed terrain images.

The selected forest, with 20 trees and MLS of 10, was tested with images containing

mixed terrain types to analyze effectiveness, identify issues, and to analyze how the

filtering process effected the classification results. The random forest implemented on the

AGV is compared to the random forest with 100 trees and MLS of 5 as it had the least

classification error of any developed during the initial assessment of forest composition.

The classification error of the implemented forest is 0.1653 compared to the 0.1531 for the

forest with 100 trees and MLS equal to 5. Going forward these forests will be referred to

as the Implemented Forest and the Least-Error Forest.

Comparing the performance of the two forests involved generating predictions for

the same image, and overlaying the results on the image. The overlay uses red X’s to

indicate classification of hazardous terrain, and green O’s to indicate classification of

traversable terrain. Comparing the markers to the terrain they overlay allows analyzing the

effectiveness of the terrain classification. For example, if a green O overlaps traversable

terrain then the terrain has been correctly classified, and if a green O overlaps hazardous

terrain then the terrain has been misclassified. Similarly, red X’s are intended to overlay

hazardous terrain, and not traversable terrain.

An example of prediction results for an image containing both grass and concrete

is shown in Figure 27. Example prediction results for an image containing both mulch and

sand paths is shown in Figure 28.

61

Figure 27. Visualized prediction results for an image with concrete

and grass from (a) Least-Error Forest, and (b) Implemented Forest

Figure 28. Visualized prediction results for an image with mulch and

sand path from (a) Least-Error Forest, and (b) Implemented Forest

The visualizations shown in Figures 27 and 28 provide two insights from this

process. First, the Least-Error Forest does perform better on the test images, but the

difference is not staggering. Second, false positives are an issue for all types of terrain

analyzed; however, it was much more rampant when the actual terrain was the sand paths.

In all images analyzed in this way, the forests were least successful in properly classifying

sand paths. These images set the basis for a comparison of the original, noisy classification,

to the filtered version.

62

The filtering process is intended to remove isolated false classifications and small

regions of falsely identified hazardous terrain from PredMat. Results of filtering the

PredMat visualizations shown in Figures 27 and 28 are visualized in Figures 29 and 30,

respectively.

Figure 29. Visualized filtered results for an image with concrete and
grass from (a) Least-Error Forest, and (b) Implemented Forest

Figure 30. Visualization of the filtered results for an image with mulch

and sand path from (a) Least-Error Forest, and (b) Implemented Forest

63

One of the immediate observations from Figures 29 and 30 is the remaining

misclassification of sand paths. This was observed throughout numerous images with sand

paths, even after the filtering. This was a limiting factor for the terrain classification. To

handle this limitation, the terrain force gain was tuned to ensure the system can maneuver

over sand paths and still avoid truly hazardous terrain.

Overall, the filtering process accomplishes the desired goal of removing small

regions of misclassified terrain as represented in Figures 29 and 30. The result of the

filtering process shows very similar final classification results regardless of the original

random forest model. The Least-Error Forest is still slightly more accurate, but given the

efficient processing time of employing the smaller forest, the trade in accuracy is

considered worthwhile for this work. The tendency for the random forest to misclassify

sand paths rolls over into the results from filtering. This method of effectively classifying

terrain allowed developing a repulsive force for the artificial potential fields algorithm and

for storing locations of hazardous terrain in the AGV databanks.

B. MEMORY AUGMENTATION

One of the fundamental elements used in developing the navigation solution was

the storing of sites that generated local minima. This process is described in Chapter IV.

By the end of this thesis work, the AGV had 148 sites stored as obstacles. The stored

obstacles had been periodically reviewed to remove those added due to terrain

misclassification and significant localization errors. Obstacles are shown as red diamonds

overlaid on imagery of the workspace from Google Earth Pro in Figure 31.

64

Figure 31. Locations of obstacles identified by the AGV. Adapted from [37].

The system was originally run by using the locations of previously encountered

obstacles to develop a repulsive force to avoid them, and this led to odd behavior from the

AGV. This was especially true when there were multiple known obstacles in an area. To

investigate why this was happening, the situation was simulated in MATLAB to determine

methods to improve the performance as described in Section IV.D. The results of those

simulations are discussed in the next section.

C. SIMULATION RESULTS

The initial simulation was conducted with the known obstacles defining the edge

of the region in their true position to determine a performance baseline. An example of the

initial simulation results are shown in Figure 32, where the black markers indicate the

motion of the robot under artificial potential fields, and the magenta squares indicate the

local minima escape mode. This simulation resulted in the simulated robot always being

able to maneuver from the initial position to the goal without issue, and only a small portion

of the trajectory was spent in the local-minima-escape mode.

65

Figure 32. Simulation of the known obstacle effects with true position

of known obstacles

The position of obstacles stored by the AGV were expected to be noisy due to the

localization error caused by the GNSS/INS. To test the effects of known obstacles with

noisy positions, random noise was added to the positions of the simulated obstacles, and

the simulation was run several times. Examples of the results are shown in Figure 33. The

results were used as a qualitative means of assessing the performance of the system and

the representation of obstacles.

Figure 33. Example simulation results of the robot trajectory in an environment

with known obstacles having noisy positions

66

Results like those shown in Figure 33(a) visualize how noisy positions effect the

route and behavior of the robot, and most notably tend to cause the system to spend more

time escaping from local minima instead of flowing to the goal.

The results shown in Figure 33(b) are not realistic as it shows the simulated robot

entering the obstacle region defined by the points. In an actual trial the sensors on the AGV

would prevent this from occurring. Preventing this, without relying on sensors, is handled

by manipulating how close together obstacles are allowed to be stored. This distance could

be set to zero, but this would be inefficient to store and would provide many sources for

the repulsive force which could bog down the system. The path planning algorithm that

was implemented later led to the decision to require known obstacles be at least one meter

apart. This makes sense as obstacles within one meter of one another were logically part of

the same obstacle/obstacle region. This eventually ensured paths were planned around

closely spaced obstacles and prevented the AGV from slipping through closely spaced

obstacles. As mentioned in Section IV.C.1.a, the noisy positions of obstacles negatively

affected the AGV performance. To refine the perceived location of obstacles, a least

squares fit is conducted over a finite neighborhood.

The least squares fit uses a four by four-unit neighborhood. Results of the simulated

robot after the least squares fit was conducted are shown in Figure 34, where the refined

obstacle positions are shown as blue squares, and all other symbology remains the same.

Figure 34. Example simulation results of the robot trajectory after

refining noisy obstacle positions

67

The simulations show that the least squares fit works to clean boundaries defined

by noisy positions along that boundary, but it does not necessarily match the orientation of

the boundary. It also shows that it does not necessarily improve the performance of the

system, which is still largely impacted by the geometry of a few of the simulated obstacles.

The implementation of a path planning algorithm was a logical extension after

developing a workspace representation to refine obstacle positions. Implementing the same

approximate cell decomposition method, but with one-unit by one-unit cells the A* search

algorithm, AlphaStar.m, was then employed to find an optimal path from the initial position

to the goal. This was executed in simulation several times to ensure valid paths were

planned and executed. A representative result is shown in Figure 35.

Figure 35. Simulation results from planned path trajectory for

the robot with refined noisy obstacle positions

The results from the simulations involving planned paths have little difference from

one another. The simulated path was planned around the right side of the rectangular

region, and the simulated system did not enter the local minima escape mode. This

demonstrated that the path planning algorithm worked for this configuration.

Consequently, it was deemed ready for employment on the AGV. While further simulation

of the path planning algorithm could have been conducted to test for limitations or issues

68

with the path planning algorithm or the workspace representation, it was decided these

were unnecessary. This is based on the assumption that the real-world testing would reveal

any issues that may exist with either.

D. NAVIGATION IN A REAL-WORLD ENVIRONMENT

The next step was to employ the AGV, equipped with the fully integrated

navigation solution, in a real-world environment. Numerous trials were conducted at the

Naval Postgraduate School campus. Each trial required establishing a local network and

accessing the AGV via secure shell. From this interface, a ROS network was launched

before the trial could be started from MATLAB. Not every trial resulted in the AGV

successfully navigating from the initial position to the goal. Several trials are represented

and discussed throughout this section in regard to the effectiveness of the navigation

solution in the operating environment.

1. Example 1: Operations on Tiled Concrete

This example consists of the robot traveling from its starting point to a nearby initial

goal, before having to travel around a region of hazardous terrain to the final goal. The

results of the trial are shown in Figure 36. The white line represents the route of the robot

according to the filtered GNSS/INS data, from the ROS /geonav transform, and the blue

line is the route recorded from the GNSS fix. The differences are not significant, but are

shown as the localization of the robot proved to be the most significant issue during the

trials. The red diamonds represent the obstacles the AGV had stored in its memory.

69

Figure 36. Navigation on tiled concrete. Adapted from [37].

The trial shown in Figure 36 was the result of the system planning a route after

having interacted with the workspace and storing the locations of several sites of hazardous

terrain. This trial demonstrated a few successes, primarily that the navigation solution

works by successfully planning and executing a path from the start point to the goals. This

leans on the AGV successfully identifying and storing the location of hazardous terrain.

The trial is not without issue in that the terrain classification experienced issues when the

AGV reached the first region of interest, ROI 1. When the AGV reached ROI 1, it reacted

to terrain it had misclassified as hazardous. This caused it to turn away from the waypoint

it was headed toward, and then turn back toward it before continuing the planned route.

The portion of the path in ROI 2 is also the result of terrain misclassification. In this case,

the misclassification triggered the AGV to enter the Terrain Following state several times.

Upon exiting the Terrain Following state, the system arrived within range of the goal to

complete the trial. The run resulted in several improperly placed obstacles that were

subsequently removed from the AGV memory. The issues with classifying terrain in this

trial are attributed to rains that had occurred in the days preceding the trial. Given the terrain

classifier was trained on data gathered during sunny days with no precipitation prior to data

70

collection, any alterations could feasibly affect the ability of the algorithm to accurately

classify terrain.

2. Example 2: Operations on Sand Paths

Example 1 demonstrated the AGV was able to plan and execute a path along tiled

concrete with few instances of terrain misclassification. The laboratory testing, discussed

in Sections V.A, identified that the terrain classifier was prone to misclassifying sand paths.

To test the performance of the system on sand paths in the real world, a trial was devised

that required the AGV to travel along sand paths to effectively reach its goal.

The test required that a path be planned and executed around a portion of mulch

and bushes/trees that block a straight-line path from the first goal to the second. Prior to

the trial shown in Figure 37, the robot was run three times in this area. One of those reached

the goal, and two were stopped due to localization issues. The localization issues caused

the AGV to move as if it were in a different portion of the workspace and to store obstacle

positions in locations that were inaccurate. These obstacles were removed from the AGV

databank, and the runs are omitted.

Figure 37. Navigation on sand path. Adapted from [37].

71

This path successfully navigates from the start point to the desired goals. The small

deviation of the AGV trajectory in ROI 1 is the result of the AGV altering its course to

avoid a picnic table in the area, close to where the picnic table is in the image, which is

desired behavior for the AGV.

3. Example 3: Long-Range Issues

Upon completing shorter range trials, it was decided to conduct longer range trials

to ensure the system was able to build and execute a navigation solution over a larger

portion of the workspace. During this effort it was discovered there were two phenomena

that are worth discussing. First, a trial in which the AGV gets trapped due to several factors

including geometry, the physical properties of the environment, and ultimately battery life.

Second, a trial in which the proximity of known obstacles and the repulsive force due to

known obstacles prevents the system from being able to execute its planned path.

In Figure 38, the AGV path is shown heading right and up in the image, but then as

the path comes to the mulch it then follows along the mulch toward the bottom of the

image. This was due to how the AGV approached the hazardous terrain. The issue with

this run starts when the AGV begins to move toward the right after moving toward the

bottom of the image. At this point the AGV is trying to avoid the mulch that is on one side,

and must avoid the door of the building it is heading toward. The AGV entered and stayed

in the Terrain Following state, identifying several areas of hazardous terrain, in an attempt

to escape this situation, but the AGV ran out of battery power before it was able to escape

the nook it found itself in.

72

Figure 38. AGV trapped by unique circumstances. Adapted from [37].

The trial shown in Figure 39 shows the path of the robot moving toward the second

goal, which is located high and right off the image. As it approached the region of mulch

it enters the Terrain Following state at ROI 1. Note that while the path in Figure 39 shows

the AGV travelled through the mulch, the AGV never had more than one wheel in the

mulch throughout the trial. As it travelled along the mulch the AGV tended to oscillate

along the border of the traversable and hazardous terrain due to the limited field of view of

the camera. While in this mode it added hazardous terrain locations to its memory as it

moved along the border of the mulch. The AGV eventually escaped Terrain Following

mode, and was turned around by a bench located at ROI 2. Once the AGV was turned

around it re-entered the Terrain Following state, and headed back toward the point it

initially entered the Terrain Following state, and escaped the Terrain Following state near

that point. The system then planned a path that started the AGV down the sidewalk, but

was it not able to navigate down the sidewalk due to the force from the known obstacles.

The AGV became stuck around ROI 3 as it was trapped in a local minimum due to the

known obstacle force. The trial was cut short at that point. To overcome situations such as

this, the gain of the known obstacle force must be tuned to allow maneuvering through

gaps along sidewalks, but prevent passing through narrower gaps, or by devising an escape

mode for this phenomenon. Another takeaway from this trial is the random drastic

73

localization errors that occured. An example of these is the lines from the /geonav

transform that are shown in ROI 4. These lines extend out several kilometers from the true

position, and shortly afterwards the localization returns to the approximate position of the

AGV. These short duration jumps tend not to affect the overall trials but do cause issues

during the time the localization is drastically off. These can cause the entire behavior of

the AGV to change. This is to be expected as it is acting on the data it has from its sensors

while continuing to seek out the prescribed goal.

Figure 39. Failed long-distance trial due to known obstacle force.

Adapted from [37].

4. Example 4: Long-Range Improvements

The trials shown in Figures 38 and 39 highlight several of the limitations of

the AGV. In contrast to this is the trial shown in Figure 40, in which the system can

plan its routes to the goals, avoid hazardous terrain, and overcome complex obstacle

configurations.

74

Figure 40. Long-range trial with improved performance. Adapted from [37].

The information in Figure 40 is misleading in that it shows the AGV travelling in

the mulch, this is due to the localization error. The general path is correct in that the AGV

started on the tiled concrete, it then planned a path to the first goal and reached it without

issue. From there the path planner developed a route to the second goal that led into the

mulch. The portion marked as ROI 2 shows the path of the AGV as it entered and exited

the Terrain Following state trying to escape this region. After the AGV identified there was

not an available path in that area it then moved to the sand path. It travelled along this path,

and only entered the Terrain Following state once before coming to the concrete walkway.

It was at this point that the AGV battery was so depleted that the system stopped, and the

trial was ended. Additionally, several instances of drastically inaccurate localization,

shown as ROI 1 and ROI 3 were experienced in the trial. Again, these were not typically

able to derail a trial, but do hinder the performance for a short period of time.

The tests of the system were designed to examine the effectiveness of each element

of the designed solution. Laboratory tests of the classification process provided a method

of determining an efficient baseline classifier. They also allowed determining that the

filtering process improved the classification results of the implemented random forest to a

75

point that was comparable with the best forest grown. The simulations allowed developing

a method to mitigate the effect of noise in the position of obstacles, and the path planning

method that allowed for efficient avoidance of known obstacles. Real-world tests

demonstrated the effectiveness of the implemented solution under several different

scenarios and environments.

The tests also revealed limitations of the current system. The most notable

limitations include the narrow field of view of the camera, the accuracy of terrain

classification, and the effects of imprecise localization. Each of these limitations degraded

the performance of the system and made it less effective in navigating through the

workspace. The limitations did not prevent the system from accomplishing the desired

goals of this thesis. The limitations and the assessment of the goals of the thesis are

discussed in Chapter VI along with potential future work.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

VI. CONCLUSION

This thesis research developed a system that is capable of avoiding hazardous

terrain. This same system also learns about its environment and uses that information to

perform more effectively in future excursions. This was accomplished by pairing an

efficient terrain classification algorithm with a navigation solution that accounts for prior

interaction with the workspace. The navigation solution employs the motion planning of

artificial potential fields and conducts path planning using the AlphaStar.m script.

AlphaStar.m uses a modified application of approximate cell decomposition and A* search

to find the optimal path from the initial position of the AGV to the goal. An assessment of

the thesis goals, discussion of the limitations, and areas for potential future work are

contained within this chapter.

A. ASSESSMENT OF GOALS

The purpose of this thesis work was to develop a method for an autonomous ground

vehicle to identify and avoid hazardous terrain. Two goals were developed to achieve this

purpose. The first goal was to develop a machine learning algorithm to classify terrain. The

second goal was to develop a method for avoiding hazardous terrain once it had been

identified. The assessment of these goals is discussed in this section.

The goal of identifying terrain types using a machine learning algorithm was

accomplished by growing a random forest that was trained using images of homogenous

terrain from the testing area. The forest selected for this thesis research was chosen from

the tradespace of predictive accuracy and processing speed, and it provides adequate

predictive accuracy in a timely manner.

The second goal—avoiding hazardous terrain once it had been identified—was

accomplished using a navigation solution, coupling motion planning with path planning.

The motion planning method used in this thesis augmented a previously developed

artificial potential fields algorithm to account for hazardous terrain classified by the

random forest as well as locations where the AGV had previously identified points of

interest in the workspace. The path planning methods developed account for noisy

78

locations of known obstacles, and they use approximate cell decomposition along with the

A* search algorithm to find an optimal route to the goal with the information it has about

the workspace.

The solution enabled the AGV to identify and avoid hazardous terrain during

normal daytime operations. This in turn allowed the AGV to independently learn about its

environment. By learning about its environment and equipping the AGV with a path

planning solution, the AGV was able to plan its routes to avoid areas with known obstacles,

without user input. The solution devised is not without exception and limitation, the next

section explores some of the limitations identified during the thesis research.

B. LIMITATIONS

Limitations exist in several elements of the solution devised for this thesis research.

The limitations identified will be briefly discussed in this section including the narrow field

of view of the camera, the predictive capabilities of the random forest, and the localization

method used.

The decision to use a monocular vision solution resulted in a narrow field of view

that limited the ability to visually observe the robot surroundings. Using a camera with a

wider field of view or multiple cameras would allow for improved observation of the robot

surroundings. In the context of this research there were numerous times throughout the

real-world testing that the AGV would turn to avoid terrain, and as soon as the terrain left

the field of view it would forget the terrain was there. This resulted in the AGV turning

back toward the terrain almost immediately after the terrain was out of the field of view. A

wider field of view would still have this issue, but with a wider field of view the system

would be better able to travel along a terrain feature, without oscillating, while moving

toward its goal. An alternate method of handling this issue would be implementing a short-

term memory on the AGV that allowed it to remember and react to obstacles within a small

radius of it.

The random forest developed had an error of approximately 16%, according to

laboratory tests. It was noticed during real-world testing that it consistently struggled with

properly classifying sand paths and even had issues classifying terrain if the environment

79

did not match the environment the training data was collected in. This limits the ability of

the system to maneuver throughout the workspace, and at times required the user to remove

obstacles the system erroneously identified along otherwise traversable terrain. It is

expected that by using the proper combination of feature, machine learning algorithm, and

parameters for the machine learning algorithm it is possible to improve prediction accuracy

and speed which would allow the system to navigate better and more efficiently. This must

also be paired with a set of training data that includes examples from numerous

environmental conditions to build a more robust classifier.

The localization of the AGV caused issues throughout testing and frustrated the use

of known obstacles for path planning and known obstacle avoidance. The localization

solution was taken from the GNSS/INS. The GNSS/INS unit has built in filtering and

optimal estimation capabilities. The optimal estimation process onboard the unit has yet to

be fully analyzed in the theses that have used the similar AGV design. The resulting

localization of the AGV is accurate, though not precise. Due to the positional error shifting

with each location update, the noise in the system becomes problematic. The major

problems and limitations arise when the system cannot reach the desired location due to

the localization error. The localization errors associated with the AGV are highly

prohibitive as they affect the ability of the system to navigate to features that will require

precision such as doorways, ramps, and elevators. The limitations and problems

encountered during the thesis work inspire the concepts of future work for this project.

C. FUTURE WORK

The areas for potential future work were conceived due to the limitations observed

during testing and evaluation of the current thesis research. Some of the areas include the

terrain classification process, the sensors used, and the localization methods.

The terrain classification process was approached using the random forest machine

learning algorithm, but there are many other machine learning algorithms that could have

been used. These may provide better results with the data that is available from the sensors

onboard the system. Additionally, the actual features used in training and classification

may be investigated to determine if the use of a different feature may provide better

80

classification. Work may also be done to classify terrain according to the subcategories

captured in this work rather than the just the two categories used. Multiple categories could

be used for motion planning, choosing routes through terrain that is best for the AGV, and

providing greater detail to the information the AGV has about the workspace.

Research opportunities exist in improving the random forest developed to

classifying terrain. This could include exploring improving the classification accuracy

through feature type or size and composition of the forest. It may also work to reduce

classifying traversable terrain as hazardous by incentivizing the classification of

traversable terrain during the random forest growth process. Additionally, work could be

done to reduce the depth of trees in the random forest to provide faster classification. Work

of this type would require further investigation of the tradespace balancing classification

accuracy and processing speed.

Another element of the overall classification process that could be explored is the

filtering process used to eliminate false classification. This could explore other

morphological processes, other image processing techniques, or it could account for

information from the image in filtering the classification results from the machine learning

algorithm.

Augmenting the sensor suite of the system would serve a plethora of purposes. By

including a LIDAR capable of providing information about the ground around the AGV it

may be possible to improve the terrain classification results. A LIDAR capable of this

would also provide information about obstacles that are below the horizontally mounted

LIDAR which present a rare but significant issue for the AGV. Whereas a second camera

could be installed to widen the field of view and give more information about the

workspace if incorporated with the terrain classification process.

The current method of localization relies on the use of the GNSS/INS which has

demonstrated to be useful but riddled with error large enough to affect system performance.

Exploring methods of improving the localization effort could include using the raw data

from the INS, GNSS, the wheel encoders, and the camera to develop an optimal estimation

to improve the localization. Alternatively, developing a map of the workspace with the

81

LIDAR, and then using the LIDAR readings to correlate to that map is another method of

potentially improving the localization. An additional localization methodology worthy of

exploration could be using time delay of arrival of signals emitted from known locations

to identify the location of the AGV.

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

APPENDIX A. DATA COLLECTION SCRIPT

%% Matlab Script
% Grab webcam image and save to a file while iteratively naming them

% If the path is not added and saved due to permissions the below is
% required
% addpath
/home/calvin/Documents/MATLAB/SupportPackages/R2016b/toolbox/matlab/web
cam/supportpackages

clear cam
cam = webcam('Microsoft'); % camera object is set to the 'Microsoft'
% camera attached, may need revision if using multiple cameras with the
% same maker

I = snapshot(cam); % grabs a snapshot from the webcam
for i = 1:5 % this loop is added at the front end of the script
 % due to observed adjustments to the cameras digital parameters
 % that effect contrast, saturation, etc. The camera adjusts those
 % automatically, and by taking a series of pictures they appear to
 % settle so the images are no longer observably inaccurate.
 I = snapshot(cam);
 imshow(I)
 pause(2)
 close all % none of these photos are saved
end
%% Iterative loop to grab a photo every 5 seconds
i = 1; % this counts the iterations/number and name of the photo

while i > 0

 if i == 1 % make a directory for the photos to be saved in
 dirName = 'Gathered_Images';
 mkdir(dirName); % redundant for i > 1
 end

 ImDir =
sprintf('/home/calvin/pioneernav/MATLABScripts/%s',dirName);
 % sets the filepath for the newly created directory
%% Grab the webcam snapshot and save to file

 I = snapshot(cam); % grab photo

 fileName = sprintf('Img%03d.png',i); % write image file name
 FullFileName = fullfile(ImDir,fileName); % set fullfile name
 imwrite(I, FullFileName); % write image, file name ensures
format
 pause(5) % wait 5 seconds, can be adjusted

 i = i+1; % increment the index
end

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

APPENDIX B. GROWING A RANDOM FOREST

%% Build Tree Classifier

load('TerraVars.mat', 'FixPts');

good = zeros(1,146);
bad = ones(1,135);
GrdTruth = [good, bad];

% Mix the photos (attempt to avoid biasing)
P = randperm(281);
PermTruth = GrdTruth(P);

charVals = zeros(719360,122);
ImDir = sprintf('/home/calvin/pioneernav/MATLABScripts/Train_Img');

LL = sub2ind([1280,800], FixPts(:,1), FixPts(:,2));
for j = 1:281 % Number of images to analyze
 % Load Image
 filename = sprintf('Img%03d.png',P(j));
 FullFileName = fullfile(ImDir, filename);
 I = imread(FullFileName);
 I = rgb2gray(I);

 [features,~] = extractFeatures(I,FixPts,...
 'Method', 'Block', 'BlockSize', 11);

 features = im2double(features);

 charVals((1+(j-1)*2560):j*2560,:) = ...
 [features, PermTruth(j)*ones(2560,1)];
end

%% Build the model
TerrainModel = TreeBagger(20, charVals(:,1:121), charVals(:,122),...
 'Method', 'classification', 'minLeafSize', 10);

save('TerrainModel.mat','TerrainModel');

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

APPENDIX C. MISSION COMMAND

%% Mission Command
% code adapted from Matt Audette's thesis code
% This code allows the user to either load in a set of pregenerated
% waypoints for execution or write them in directly. It then calls the
% state-based machine to drive the AGV to those points.
flag = false;

if flag % load a pregen coordinateList
 load('Experiment8WS')
else % write coordinateList
 coordinateList = [36.595276, -121.875642,0;
 36.594986, -121.875573,0];
end

% Loop the State-Based Machine Code:
for i = 1:size(coordinateList, 1)
 %Send the coordinate and waypoint #
 %and wait for the robot to go to that point:
 potentialFieldToWaypointTerrainFollowWorking(coordinateList(i, :),
i)
end

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

APPENDIX D. STATE BASED MACHINE

%% Potential Field to Waypoint Function
% Caliph Lebrun

% This is function an evolution of work done by Calvin Hargadine and
% Matthew Audette. This script subscribes and publishes to ROS nodes
to
% gather information about the AGV's surrundings and then pursue its
goal.
% It uses a state-based machine approach to automate a P3-AT. This
allows
% it to plan paths, execute those paths via artificial potential
fields,
% escape local minima, and perform emergency avoidance of dynamic
% obstacles. Recent additions, from this work, allow it to store
location
% information about terrain and other local minima for future path
% planning. The current sensor package includes GNSS/INS, LIDAR, and
% vision. This function provides the execution needed by the
% MissionControl.m script.

function StateBasedExecution(coordinates, goalnum)
 %%%% ENSURE ROS MASTER NODE IS STARTED AND MATLAB NODE GENERATED
PRIOR TO
 %%%% RUNNING THIS SCRIPT -- USE rosinit

 %% Setup and parameter initialization

 % Create global variables for use in communicating with ROS system
 global Pose
 global Laser
 global Goal
 global NavStatus
 global GPSFix

 % Create ROS publishers, subscribers, and service client
 poseSub = rossubscriber('/geonav_p3odom',@p3atPoseCallback);
 laserSub = rossubscriber('/scan',@p3atLaserCallback);
 cmdPub =
rospublisher('/RosAria_Node/cmd_vel','geometry_msgs/Twist');
 goalPub = rospublisher('/nav/goal_odom','nav_msgs/Odometry');
 casePub = rospublisher('/current_case','std_msgs/String');
 goalSub = rossubscriber('/geonav_goalodom',@p3atGoalCallback);
 navstatusSub = rossubscriber('/nav/status',@p3atNavStatusCallback);
 fixSub = rossubscriber('/gps/fix',@p3atGPSFixCallback);
 client = rossvcclient('/reset_kf');

 % Pause for publisher/subscriber registration
 pause(2)

 % Create empty messages for publication
 caseMsg = rosmessage(casePub);

90

 cmdMsg = rosmessage(cmdPub);
 goalMsg = rosmessage(goalPub);

 % Get parameters and goal information the robot
 [param, ~] = robotConfigReader_multigoal;

 % Ask user for desired goal number
 current_goal = coordinates;

 % Publish initial goal message for ROS system transform
 for k = 1:5
 goalMsg.Pose.Pose.Position.X = current_goal(2);
 goalMsg.Pose.Pose.Position.Y = current_goal(1);
 goalMsg.Pose.Pose.Orientation.X = 0;
 goalMsg.Pose.Pose.Orientation.Y = 0;
 goalMsg.Pose.Pose.Orientation.Z = 0;
 goalMsg.Pose.Pose.Orientation.W = 1;
 send(goalPub,goalMsg);
 pause(0.1)
 end

 % Get current NavStatus message
 navstatus = NavStatus.Data';

 % Ensure NavStatus is good (2) and if not, reset KF
 if navstatus(1) ~= 2
 call(client)
 else
 end

 % Define parameters for navigation algorithm
 K1 = param(3); % forward velocity gain
 K2 = param(2); % turning velocity gain
 goaldist = 2; % distance metric for reaching goal
 goali = 1; % current goal index
 xi = param(5); % attractive force gain
 eta = param(4); % repulsive force gain
 d = param(1); % distance above which robot velocity
is constant
 rho0 = param(6); % offset from obstacle to ignore
repulsive term
 Gx = param(7); % Terrain gain for force in x
 Gy = param(8); % Terrain gain for force in y
 thresh = param(9); % Terrain threshold
 c = 1; % initial case variable
 navrun = 0; % navigation fix status variable

 % Define parameters for wall-following algorithm
 WallFollow = false; % initialize wall following flag
 cnt = 0; % goal distance counter
 N_Buffer = 20; % # of measurements for mean LIDAR
force
 RunTurn = 0; % initialize sum of turns in WF mode
 Flas_Buffer = zeros(1,N_Buffer); % initialize repulsive force
buffer

91

 % Output velocity filter parameters
 Kfilterold = 0.6; % percentage of old velocity used
 Kfilternew = 0.4; % percentage of new velocity used
 LinearVel_old = 0.0; % initialize linear velocity
 AngularVel_old = 0.0; % initialize angular velocity

 % Set up webcam
 clear cam
 cam = webcam('Microsoft');

 % Load Terrain Model and FixPts
 load('TerrainModel2.mat', 'TerrainModel')
 load('TerraVars.mat', 'FixPts', 'RanBear', 'XYPos');

 % Load known obstacles, group them, and fit 'lines' to groups
 ObsCheck = exist('knownObs.mat', 'file');
 if ObsCheck == 2
 load('knownObs.mat', 'knownObs')
 [Nbors,~] = NborHood(knownObs, 4);
 RefObs = ObsRevision(Nbors);
 else
 knownObs = [];
 end

 % Initialize values for Terrain Following
 TerrSpot = false; % Flag for spotted terrain
 TerrConf = false; % Flag for confirmed terrain
 Fter_Buffer = zeros(1,N_Buffer); % Initialize Terrain Buffer
 TerFlag = false; % Initialize if w/in 0.25m
reached

 % Initialize values for waypoint use
 WayPtNum = 1;
 NumofWayPts = 0;
 waypoints = [];

 % Origin Lat/Lon = [36.583093, -121.881946, 0.0]

 %% State Based Machine
 while 1 % Infinite loop until goal is reached
 % publish goal coordinates
 goalMsg.Pose.Pose.Position.X = current_goal(2);
 goalMsg.Pose.Pose.Position.Y = current_goal(1);
 goalMsg.Pose.Pose.Orientation.X = 0;
 goalMsg.Pose.Pose.Orientation.Y = 0;
 goalMsg.Pose.Pose.Orientation.Z = 0;
 goalMsg.Pose.Pose.Orientation.W = 1;
 send(goalPub,goalMsg);

 % get the laser ranges
 laser_range = Laser.Ranges;

 % angular resolution vector

92

 laser_angle =
(Laser.AngleMin:Laser.AngleIncrement:Laser.AngleMax)';

 % get goal coordinates in XY world frame
 q_goal = [Goal.Pose.Pose.Position.X,
Goal.Pose.Pose.Position.Y];

 % get current GPS fix
 gpsfix = [GPSFix.Status.Service,GPSFix.Status.Status];

 % get current nav status
 navstatus = NavStatus.Data';

 % if good nav status, set nav status variable
 if navstatus(1) == 2
 navrun = 1;
 else
 end

 % if bad nav status with previous good fix and good GPS fix,
reset KF
 if navstatus(1) == 3 && navrun == 1 && gpsfix(2) == 30
 call(client)
 navrun = 0;
 else
 end

 % get X, Y and Theta
 pose = Pose.Pose.Pose;
 quat = pose.Orientation;
 angles = quat2eul([quat.W quat.X quat.Y quat.Z]);
 yaw = angles(1);
 x = pose.Position.X;
 y = pose.Position.Y;
 th = yaw;

 fprintf('X: %f, Y: %f, Theta: %f \n',x,y,th);
 fprintf('quat.W: %f Yaw: %f\n', quat.W, yaw);

 % call the attractive force function
 wp_x = q_goal(goali,1);
 wp_y = q_goal(goali,2);

 % Find waypoints in the workspace
% testx = 656; % use these for indoor code check
% testy = 1345;
%% Waypoints portion
 if isempty(waypoints)
 [waypoints, Status] = AlphaStar([x;y], [wp_x;wp_y],
RefObs);
 WayFlag = true;
 NumofWayPts = size(waypoints,2);
 end

 if WayFlag

93

 fprintf('%s \n', Status)
 WayFlag = false;
 end

 if ~isempty(waypoints) && WayPtNum <= NumofWayPts
 gx = waypoints(1,WayPtNum);
 gy = waypoints(2,WayPtNum);
 fprintf('Going to waypoint %f of %f', WayPtNum,
NumofWayPts)
 else
 gx = wp_x;
 gy = wp_y;
 fprintf('Going to goal at %f, %f', wp_x, wp_y)
 end
%% Waypoints portion ends

 [dist, angvel, linvel] = attforcepot(x,y,th,gx,gy,d);

 % evaluate what to do next based on the distance to the
waypoint.
 if (dist <= goaldist)
 % You have reached the goal
 if (WayPtNum <= NumofWayPts)
 % if there are multiple waypoints
 disp('Going to next waypoint!');
 WayPtNum = WayPtNum + 1;
 else
 % Reached the goal
% fprintf('WP #%d at x: %f, y: %f, Distance:
%f\n',goalnum,wp_x,wp_y,dist);

 cmdMsg.Linear.X = 0.0;
 cmdMsg.Angular.Z = 0.0;
 fprintf('Publishing cmd_vel with lin. vel: %f, ang.
vel.: %f\n\n', ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 disp('Done!')
 break; % exit while loop as final goal is reached
 end
 else
 % goal not yet reached
 % fprintf('WP #%d at x: %f, y: %f, Distance:
%f\n',goalnum,wp_x,wp_y,dist);

 end
 Fatt = [linvel;angvel]; % from top of loop

 pause(0.1) % pause for ROS system

 %% LIDAR Portion of Force
 [Flas, LocLas] = LidarForce(laser_range, laser_angle, rho0,
eta);
 MinLaserRange = length(laser_range(laser_range < 0.5));

94

 % Check to add location to map
 if norm(xi*Fatt + Flas) < 0.5 && dist > 1 && (MinLaserRange <
3)
 knownObs = knownObsMemory(LocLas,th, x, y, knownObs);
 WallFollow = true; % flag to enter wall following mode
 end
 Flas_Buffer = [Flas(2), Flas_Buffer(1:end-1)];

 %% Terrain Portion of Force
 Fterr = TerrainForce(cam, TerrainModel, FixPts, RanBear, Gx,
Gy, thresh, eta);
 if Fterr(2) > 0
 yter = -0.5;
 else
 yter = 0.5;
 end
 LocTer = [1;yter]; % Due to constricted field of view and
 % simplicity this is assumed

 % if terrain is spotted and confirmed we add it to knownObs
 % and enter Terrain Following Mode
 if TerrSpot && norm(Fterr) > 2 && dist > d
 TerrConf = true; % flag to enter terrain following mode
 knownObs = knownObsMemory(LocTer,th, x, y, knownObs);
 elseif norm(Fterr) > 2 && dist > d
 TerrSpot = true;
 else
 TerrSpot = false;
 end
 Fter_Buffer = [Fterr(2), Fter_Buffer(1:end-1)];

 %% Known Obstacles Portion of Force
 if isempty(RefObs)
 Fknobs = [0;0];
 else
 Fknobs = knownObsForce(x,y,th,RefObs);
 end

 %% switch/case for algorithm decision logic
 switch c
 %% Potential Field Algorithm
 case 1
 fprintf('Potential Field\n')
 caseMsg.Data = 'Potential Field'; % publish current
case to ROS
 send(casePub,caseMsg)

 % calculate total force and build velocity terms
 if TerrConf
 Ftot = [0;0];
 else
 Ftot = xi*Fatt + Flas + Fterr + Fknobs;
 end
 fprintf('\n\nFattX: %f\nFattY: %f\n FreptX: %f\nFreptY:
%f\nFterrainX: %f\nFterrainY: %f\nFknobsX: %f\nFknobsY; %f\n',...

95

 xi*Fatt(1),
xi*Fatt(2),Flas(1),Flas(2),Fterr(1),Fterr(2), Fknobs(1), Fknobs(2));
 LinearVel = K1*Ftot(1);
 AngularVel = K2*Ftot(2);

 % determine which case to enter next
 if MinLaserRange > 2
 cPrior = 1;
 c = 4;
 elseif WallFollow
 MeanBuffer = mean(Flas_Buffer);
 cnt = 0;
 c = 2;
 elseif TerrConf
 turn = mean(Fter_Buffer);
 goalt = TerrainFollow(cam, XYPos, turn, yaw, x, y);
 c = 3;
 timer = 0;
 TerrConf = false;
 TerrSpot = false;
 else
 c = 1;
 end
 %% Wall Following Algorithm
 case 2
 fprintf('\nWall Following\n\n')
 caseMsg.Data = 'Wall Following'; % publish current
case to ROS
 send(casePub,caseMsg)

 [LinearVel,AngularVel] = wallFollow(Flas, MeanBuffer);
 cnt = cnt + 1; % counter
 if cnt > 1
 RunTurn = RunTurn + AngOut*0.1;
 end % AngOut is the turn rate from the last iteration
 % 0.1 is approximate time step

 % determine which case to enter next
 if MinLaserRange > 2
 c = 4;
 cPrior = 2;
 elseif cnt >= 10 && (RunTurn >= -0.08 && RunTurn <=
0.08)
 c = 1;
 WallFollow = false;
 RunTurn = 0;
 cnt = 0;
 Flas_Buffer = zeros(1,N_Buffer);
 waypoints = []; % no assumption we can reach the
 % waypoints, will replan.
 % TerrConf = false;
 % TerrSpot = false;
 else
 c = 2;
 end

96

 %% Terrain Following Algorithm
 case 3
 fprintf('\nTerrain Following\n\n')
 caseMsg.Data = 'Terrain Following'; % publish
current case to ROS
 send(casePub,caseMsg)

 timer = timer + 1;
 % Use Potential to temp goal
 [dist2terr, angvelt, linvelt] =
attforcepot(x,y,th,goalt(1),goalt(2),1);

 if dist2terr < 1
 TerFlag = true;
 end

 Ftf = [linvelt;angvelt];
 Ftert = xi*Ftf + Flas + Fterr + Fknobs;
 LinearVel = K1*Ftert(1);
 AngularVel = K2*Ftert(2);

 % determine which case to enter next
 % emergency avoid
 if MinLaserRange > 2
 c = 4;
 cPrior = 3;
 % wall follow
 elseif WallFollow
 MeanBuffer = mean(Flas_Buffer);
 cnt = 0;
 c = 2;
 % update temp goal, unplanned
 elseif ~TerFlag && norm(Fterr) > 2
 knownObs = knownObsMemory(LocTer,th, x, y,
knownObs);
 goalt = TerrainFollow(cam, XYPos, turn, yaw, x, y);
 c = 3;
 % return to potential field
 elseif TerFlag || (timer > 150 && norm(Fterr) < 1)
 % reached temp goal or been in the mode for ~30
seconds
 % and terrain force is not very high
 c = 1;
 goalt = [];
 turn = [];
 TerFlag = false;
 TerrConf = false;
 TerrSpot = false;
 waypoints = [];
 % continue in terrain following
 else
 c = 3;
 end
 %% Emergency Avoidance

97

 case 4
 ii = 0;
 while ii < 5
 % stop immediately for 5 seconds
 fprintf('Emergency Avoidance\n')
 caseMsg.Data = 'Emergency Avoidance (PF)';
 send(casePub,caseMsg)
 % populate the message
 fprintf('WP #%d at x: %f, y: %f, Distance:
%f\n',goalnum,wp_x,wp_y,dist);
 fprintf('Yaw: %5.2f\n', quat.W);
 cmdMsg.Linear.X = 0.0;
 cmdMsg.Angular.Z = 0.0;
 % publish message
 fprintf('Publishing cmd_vel with lin. vel: %f, ang.
vel.: %f\n', ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 pause(0.2)
 ii = ii + 0.2;
 end
 jj = 0;
 while jj < 4
 % backup for 4 seconds to make enough room to
maneuver
 % around obstacle
 caseMsg.Data = 'Emergency Avoidance (PF)';
 send(casePub,caseMsg)
 fprintf('WP #%d at x: %f, y: %f, Distance:
%f\n',goalnum,wp_x,wp_y,dist);
 cmdMsg.Linear.X = -0.1;
 cmdMsg.Angular.Z = 0.0;
 % publish
 fprintf('Publishing cmd_vel with lin. vel: %f, ang.
vel.: %f\n', ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 pause(0.2);
 jj = jj + 0.2;
 end

 % determine if obstacle is out of minimum range
parameter
 if MinLaserRange > 2
 c = 4;
 else
 c = cPrior;
 end
 otherwise
 end

 % build filtered output velocity parameters with bounds
 if Kfilternew*LinearVel + Kfilterold*LinearVel_old > 3
 LinOut = 3;
 elseif Kfilternew*LinearVel + Kfilterold*LinearVel_old < -0.5

98

 LinOut = -0.5;
 else
 LinOut = Kfilternew*LinearVel + Kfilterold*LinearVel_old;
 end

 if Kfilternew*AngularVel + Kfilterold*AngularVel_old > pi/3
 AngOut = pi/3;
 elseif Kfilternew*AngularVel + Kfilterold*AngularVel_old < -
pi/3
 AngOut = -pi/3;
 else
 AngOut = Kfilternew*AngularVel + Kfilterold*AngularVel_old;
 end
 cmdMsg.Linear.X = LinOut;
 cmdMsg.Angular.Z = AngOut;

 % publish on cmd_vel topic
 fprintf('Publishing cmd_vel with lin. vel: %f, ang. vel.:
%f\n\n', ...
 cmdMsg.Linear.X,cmdMsg.Angular.Z);
 send(cmdPub,cmdMsg);

 LinearVel_old = cmdMsg.Linear.X;
 AngularVel_old = cmdMsg.Angular.Z;
 end
end

99

APPENDIX E. PATH PLANNING ALGORITHMS

A. A* IMPLEMENTATION

%% Approximate Cell Decomposition and A*
% this function takes in the starting points of the robot, the goal,
% and the location of known obstacles; pads it, and outputs a list of
% waypoints path through the cells.
% This function works in the UTM frame or any generic xy defined frame.
% It does not take in or output information in lat/lon

function [waypoints, Status] = AlphaStar(Pose, Goal, knownObs)
 %% Generate the Cells
 cellDim = 1; % Observationally, the robot shhould be able to
 % handle a cell of width 1m, without significant
 % issues
 PoI = [Pose, Goal, knownObs]; % this function assumes that none of
 % these reside in the same cell
 % build the padding
 minX = min(PoI(1,:));
 maxX = max(PoI(1,:));
 minY = min(PoI(2,:));
 maxY = max(PoI(2,:));
 bord = 4*cellDim;
 corners = [minX-bord, minX-bord, maxX+bord, maxX+bord;
 minY-bord, maxY+bord, minY-bord, maxY+bord];
 PoI = [PoI, corners];
 [Nbors, MidPoints] = NborHood(PoI, cellDim);

 %% A*

 % find the initial and goal cells
 [R, C] = size(Nbors);
 H = zeros(R,C); % cost from cell to goal
 ICell = []; % initialize q_init
 GCell = []; % initialize q_goal
 for ii = 1:R
 for jj = 1:C
 y = Nbors{ii,jj};
 if ~isempty(y) % if empty no action
 if max(y(1,:) == Pose(1))
 if max(y(2,:) == Pose(2))
 ICell = [ii,jj]; % q_init
 end
 end
 if max(y(1,:) == Goal(1))
 if max(y(2,:) == Goal(2))
 GCell = [ii,jj]; % q_goal
 end
 end
 end
 end
 end % Cells identified, could be in the same cell

100

 % empty corners
 Nbors{1,1} = [];
 Nbors{1,C} = [];
 Nbors{R,1} = [];
 Nbors{R,C} = [];
 if ~isempty(GCell) && ~isempty(ICell)
 % Next we fill H
 for ii = 1:R
 for jj = 1:C
 NN = size(Nbors{ii,jj},2); % check if cell is occupied
 if NN ~= 0 % if the cell is not empty
 flag = true; % track if q_init/q_goal
 % were assigned
 if ii == GCell(1) && jj == GCell(2)
 H(ii, jj) = 0; % h to q_goal is 0
 flag = false;
 end
 if ii == ICell(1) && jj == ICell(2)
 H(ii,jj) = norm(MidPoints{ii,jj} -...
 Goal); % h to q_init is
 % 2-norm to q_goal
 flag = false;
 end
 if flag
 H(ii,jj) = inf;
 end
 else % internal map indicates
 % empty cell
 H(ii,jj) = norm(MidPoints{ii,jj} -...
 MidPoints{GCell(1), GCell(2)});
 end
 end
 end

 % this check method places infinite cost in cells only containing
 % obstacles, any that have obstacles and goal or init will be
 % assigned a cost and online obstacle avoidance will have to handle
 % it.

 % now for some image processing techniques
 ObsOutline = isinf(H);
 nhood = ones(2);
 se = strel(nhood);
 ObsSpace = imdilate(ObsOutline,se); % this grows every obstacle
 % using the morphological 3x3
 % neighborhood, it gives
 % standoff and closes gaps in
 % occluded cells so that we
 % don't plan a path between
 % them (based on assumption
 % that obstacles are
 % continuous)
 ObsSpace = bwmorph(ObsSpace, 'skel', inf);
 ObsSpace = bwmorph(ObsSpace, 'diag');

101

 H(ObsSpace) = inf;
 % ensure q_init and q_goal are not set to inf
 H(GCell(1), GCell(2)) = 0;
 H(ICell(1), ICell(2)) = norm(MidPoints{ICell(1),ICell(2)} -...
 MidPoints{GCell(1), GCell(2)});

 % Now we build the path to the goal
 goalReached = false;
 N = ICell;
 CostMat = zeros(R,C);
 visited = zeros(R,C);
 Path = cell(R, C);
 CostMat(N(1),N(2)) = H(N(1),N(2));
 Path{N(1), N(2)} = ICell;
 Status = 'No Info';
 StatFlag = false;
 waypoints = [];
 while ~goalReached
 for ii = -1:1
 if N(1) == 1 && ii == -1 % Boundary check row
 elseif N(1) == R && ii == 1
 else
 for jj = -1:1
 if N(2) == 1 && jj == -1 % Boundary check cols
 elseif N(2) == C && jj == 1
 elseif ~((jj == 0) && (ii == 0)) % do not check 0,0
 runGoCost = CostMat(N(1),N(2))-H(N(1),N(2));
 % the go cost to the origin cell along the
 % shortest path found thus far
 goCost = norm([ii;jj])*3; % cost to get to the
 % cell being inspected from the origin cell
 % (not q_init)
 HCost = H(N(1) + ii, N(2) + jj);
 % 2-norm from midpoint of cell to midpoint
 % of goal cell (inf if obstacle present)
 costTemp = runGoCost + goCost + HCost;
 % potential cost to get to the cell in question

 % assign cost from first encounter
 if CostMat(N(1) + ii, N(2) + jj) == 0
 CostMat(N(1) + ii, N(2) + jj) = costTemp;
 Path{N(1) + ii, N(2) + jj} = [Path{N(1),
N(2)}; [N(1) + ii, N(2) + jj]];
 % update if cost is cheaper
 elseif CostMat(N(1) + ii, N(2) + jj) > costTemp
 CostMat(N(1) + ii, N(2) + jj) = costTemp;
 Path{N(1) + ii, N(2) + jj} = [Path{N(1),
N(2)}; N(1) + ii, N(2) + jj];
 end % if otherwise make no changes
 end
 end
 end
 end
 visited(N(1),N(2)) = 1; % indicates the origin cell has been
 % visited

102

 %% determine the next cell to check
 % lowest cost, and unvisited
 ind = find(CostMat > 0); % provides indices of nonzero values
 % in cost matrix
 [~,I] = sort(CostMat(ind), 'ascend'); % provides index of the
 % sorted costs in
 % ascending order
 ind = ind(I); % orders the indices from the lowest
 % cost to the highest

 n = 1;
 Next = false;
 while ~Next % checks the visited matrix, if one
 % checks again. This increments the
 % indices to check the next lowest
 % cost, always starts at one

 [row, col] = ind2sub([R,C], ind(n));
 if visited(row,col) == 0
 Next = true;
 N = [row, col];
 else
 n = n + 1;
 end
 if n > length(ind) % this doesn't seem possible, but it is
 StatFlag = true;
 break;
 end
 end

 if N(1) == GCell(1) && N(2) == GCell(2)
 goalReached = true;
 for ll = 1:length(Path{N(1),N(2)})
 waypoints = [waypoints,
MidPoints{Path{N(1),N(2)}(ll,1),...
 Path{N(1),N(2)}(ll,2)}];
 Status = 'Path found!';

 end
 way1 = downsample(waypoints(1,:),4,1);
 way2 = downsample(waypoints(2,:),4,1);
 waypoints = [way1;way2];
 % we are already in the initial
 % cell, and the downsampled
 % version smooths the overall path
 elseif StatFlag
 waypoints = Goal;
 Status = 'Heading to Goal!';
 end
 end
 else
 waypoints = Goal;
 Status = 'Heading to Goal!';
 end
end

103

B. APPROXIMATE CELL DECOMPOSITION

%% NborHood
% this script is designed to divide the area that has known obstacles
% into cells that will then be fed to a separate function to refine the
% placement of those obstacles in order to alleviate jagged edges when
% dealing with the control algorithm, and for path planning.

function [Nbors, MidPoints] = NborHood(knownObs, Inc)
 cols = ceil((max(knownObs(1,:))-min(knownObs(1,:)))/Inc);
 rows = ceil((max(knownObs(2,:))-min(knownObs(2,:)))/Inc);
 startX = min(knownObs(1,:));
 startY = min(knownObs(2,:));

 Nb = cell(rows, cols); % initialize Neighborhood cell array
 MP = cell(rows, cols); % initialize Midpoint cell array

 for ii = 1:rows % Populate neighborhoods and midpoints
 for jj = 1:cols
 Lrow = double(knownObs(1,:) >= startX + Inc*(jj-1));
 Urow = double(knownObs(1,:) < startX + Inc*(jj));
 BoundRow = (Lrow==Urow);
 subRow = knownObs(:,BoundRow);
 Lcol = double(subRow(2,:) >= startY + Inc*(ii-1));
 Ucol = double(subRow(2,:) < startY + Inc*(ii));
 BoundCol = (Lcol==Ucol);
 if max(BoundCol) == 1 % something is in the neighborhood
 Nb{ii,jj} = subRow(:,BoundCol);
 else % neighborhood is empty
 Nb{ii,jj} = [];
 end
 MP{ii,jj} = [startX + Inc*(jj-2) + 0.5*Inc;
 startY + Inc*(ii-2) + 0.5*Inc];
 end
 end
 Nbors = Nb;
 MidPoints = MP;
end

C. OBSTACLE REVISION

%% ObsRevision
% revision of the placement of known obstacles using least mean
% squares, with linear assumption. This function is fed by the
% NborHood function to find the points that are in the same
% neighborhood

function NewObs = ObsRevision(Nbors)
 [R,C] = size(Nbors); % determines range for the double 'for' loop
 NewObs = []; % initializes our output

 for ii = 1:C
 for jj = 1:R
 y = Nbors{jj,ii};

104

 len = length(y); % value is used throughout
 newObs = []; % initializes the output from each cell
 if len == 0
 elseif len > 2 % computes the LMS solution for line to the
 % points in the neighborhood
 c1 = ones(len,1); % constant in linear regression
 c2 = (0:len-1).'; % slope in linear regression
 M = [c1,c2]; % Matrix used to find the line that
 % best fits the neighborhood
 % the following is done bc order matters in LMS
 [minX, maxX] = bounds(y(1,:));
 [minY, maxY] = bounds(y(2,:));
 dx = maxX - minX;
 dy = maxY - minY;
 if dx > dy
 [~,I] = sort(y(1,:),'ascend');
 else
 [~,I] = sort(y(2,:),'ascend');
 end
 y = y(:,I);
 Beta = (M.'*M)^(-1)*M.'*y.'; % this is the constant and
 % slope associated to x
 % and y
 cnt = 1; % iteration variable due to bounding
 for ll = 1:len*2 % assuming we know there is a feature
 % in this cell we can improve control
 % in that region by adding other
 % points
 temp = Beta(1,:).' + Beta(2,:).'*(ll-1);
 if dx > dy
 if temp(1) >= y(1,1) && temp(1) <= y(1,end)
 newObs(:,cnt) = temp;
 cnt = cnt+1;
 end
 else
 if temp(2) >= y(2,1) && temp(2) <= y(2,end)
 newObs(:,cnt) = temp;
 cnt = cnt+1;
 end
 end
 end
 elseif sum(y == [0;0]) ~= 2
 newObs = y;
 end
 NewObs = [NewObs, newObs];
 end
 end
end

105

APPENDIX F. FORCES

A. ATTRACTIVE FORCE

%% Attractive Force
% Function adapted from Calvin Hargadine’s thesis code to split up
% code and save space.

function [dist,angvel,linvel] = attforcepot(x,y,th,wp_x,wp_y,d)
 maxvel = 3;

 dist = sqrt((wp_x-x)^2+(wp_y-y)^2);
 ang = atan2((wp_y-y),(wp_x-x));
 angerror = ang-th;

 while angerror > pi
 angerror = angerror-2*pi;
 end
 while angerror < -pi
 angerror = angerror+2*pi;
 end

 angvel = angerror;

 if dist <= d
 linvel = dist;
 else
 linvel = maxvel;
 end
end

B. REPULSIVE FORCES

1. Force Due to LIDAR

%% LIDAR Force
% Function modifies original repulsive force due to LIDAR readings

function [Flaser, LocFlaser] = LidarForce(laser_range, laser_angle,
rho0, eta)
 Flaser = [0;0]; % initialize repulsive force

 for i = 1:1032
 if laser_range(i) <= 20
 % object position in the laser i coordinate in meters
 p_laser = [laser_range(i) 0 0 1]';
 Xobj = cos(laser_angle(i))*p_laser(1);
 Yobj = sin(laser_angle(i))*p_laser(1);
 rho = sqrt(Xobj^2+Yobj^2);
 if rho < rho0
 Frep = eta*(1/p_laser(1)-1/rho0)*(1/(p_laser(1)^2))*[-
cos(laser_angle(i)) -sin(laser_angle(i))]';
 else

106

 Frep = [0;0];
 end
 Flaser = Flaser+Frep;
 else
 end
 end

 rmean = mean(laser_range(laser_range < rho0));
 mangle = mean(laser_angle(laser_range < rho0));
 LocFlaser = [rmean*cos(mangle); rmean*sin(mangle)];
end

2. Force Due to Terrain

%% Terrain Force
% function develops force from hazardous terrain

function Fterrain = TerrainForce(cam, model, fxPts, RanBear, Gx, Gy,
thresh, eta)
 %% Grab Photo
 I = snapshot(cam);
 I = rgb2gray(I);

 H = 40;
 W = 64;

 %% Get Features
 [features, ~] = extractFeatures(I, fxPts,...
 'Method', 'Block', 'BlockSize', 11); % lifts the pixel values in an
 % 11x11 cell and normalizes
 % to build feature vector

 features = im2double(features);
 [label, ~] = predict(model, features);% currently not using score

 PredVec = str2double(label); % TreeBagger 'label' is a cell
 % with char elements

 h = (1/9)*ones(3,3); % 3x3 Box Filter

 PredMat = reshape(PredVec, H, W); % Reshapes Vec to Mat for
 % geometric sense in filtering

 PredMat = conv2(PredMat, h,'same'); % smooths PredMat
 PredMat = round(PredMat); % thresholds PredMat

 PredMat = bwareaopen(PredMat, 128); % any connected regions w/ less
 % than 128 elements are removed

 JJ = PredMat > thresh; % logical of values greater
than
 % the threshold
 Temp = cell2mat(RanBear(JJ)); % matrix reshaped by column,
 % ENU frame

107

 %% Build Terrain Force Vector
 if isempty(Temp) % If clear terrain, no
repulsive force
 Fterrain = [0;0];
 else % Build force to avoid detected
terrain
 Fterrain = [0;0];
 X = size(Temp,2);
 for ii = 1:X
 Fterra = -eta*(1/Temp(1,ii)-1/2.5)*...
 [Gx*cos(Temp(2,ii)); Gy*sin(Temp(2,ii))];
 Fterrain = Fterrain + Fterra;
 end
 end
end

3. Force Due to Known Obstacles

%% Known Obstacle Force
% develops force from known obstacles within region of influence

function [Fknobs] = knownObsForce(x,y,th,knownObs)
 Rho0 = 6;
 Eta0 = 2;
 Fknobs = [0;0]; % initialize known obstacle force
 dist2obs = sum(([x;y]-knownObs).^2).^(1/2); % finds the distance
 % to all obstacles
 [dist2obs, I] = sort(dist2obs,'ascend'); % orders the distance from
 % closest to farthest
 KnownTemp = knownObs(:,I); % the positions of the obstacles
 % sorted from closest to farthest
 for ii = 1:3 % contribution from 3 closest obstacles
 if dist2obs(ii) < Rho0
 % obstacle postion in robot frame
 XYr = [cos(th) -sin(th);sin(th) cos(th)].'*...
 ([KnownTemp(1,ii);KnownTemp(2,ii)]-[x;y]);
 Ftemp = -Eta0*(1/dist2obs(ii)-1/Rho0)*...
 (1/dist2obs(ii)^2)*XYr;
 else
 Ftemp = [0;0];
 end
 Fknobs = Fknobs + Ftemp;
 end % When this loop is complete all known obstacles will have
 % been checked and their contribution included
 if Fknobs(1) < -3
 Fknobs(1) = -3; % limits the extent of the repulsion
 end
end

108

THIS PAGE INTENTIONALLY LEFT BLANK

109

APPENDIX G. ESCAPE MODES

A. WALL FOLLOWING

%% Wall Following Function
% determines the velocities while in wall following mode
% implements Calvin Hargadine’s method as a function

function [linvel, angvel] = wallFollow(Flas,MeanBuffer)
 angK = 1; % turning velocity gain for WF algorithm
 linK = 1; % forward velocity gain for WF algorithm

 % determine angle to the repulsive force vector
 objang = atan2(Flas(2),Flas(1));
 if objang < 0
 objang = objang + 2*pi;
 else
 end

 objangdeg = objang*180/pi;

 % determine which way to turn and keep repulsive force vector
 % perpendicular with robot heading
 if MeanBuffer > 0
 if objangdeg >= 100
 angvel = angK*0.4;
 linvel = linK*0.05;
 elseif objangdeg < 80
 angvel = -angK*0.4;
 linvel = linK*0.05;
 else
 angvel = 0.0;
 linvel = 0.3;
 end
 elseif MeanBuffer < 0
 if objangdeg < 260
 angvel = -angK*0.4;
 linvel = linK*0.05;
 elseif objangdeg > 280
 angvel = angK*0.4;
 linvel = linK*0.05;
 else
 angvel = 0.0;
 linvel = 0.3;
 end
 end
end

B. TERRAIN FOLLOWING

%% Terrain Following Function
% this function outputs a temporary goal for the robot to follow the
% terrain.

110

function goalt = TerrainFollow(cam, XYPos, turn, yaw, x, y)
 I = snapshot(cam);
 I = rgb2gray(I);

 %% Need ang2goal

 %% Terrain Orientation
 BW = edge(I, 'sobel');
 [HH, TT, RR] = hough(BW);
 peaks = houghpeaks(HH, 10,'threshold', ceil(0.7*max(HH(:))));
 lines = houghlines(BW, TT, RR, peaks);

 % turn the points in the photo to points in the reference frame
 ThetaTerr = zeros(1,length(lines));
 for jj = 1:length(lines)
 xy1 = lines(jj).point1;
 xy2 = lines(jj).point2;
 XY1 = XYPos{xy1(2), xy1(1)};
 XY2 = XYPos{xy2(2), xy2(1)};
 ThetaTerr(jj) = atan2(XY2(2)-XY1(2), XY2(1)-XY1(1));
 end

 % Find the average angle of the lines found
 ThetaMean = mean(ThetaTerr);
 ThetaTerr = ThetaTerr(ThetaTerr > ThetaMean - pi/18);
 ThetaTerr = ThetaTerr(ThetaTerr < ThetaMean + pi/18);
 if ~isempty(ThetaTerr)
 Theta = mean(ThetaTerr);
 else
 Theta = ThetaMean;
 end

 % constrain -pi <= theta <= pi
 if Theta > pi/2
 Theta = Theta-pi;
 elseif Theta < -pi/2
 Theta = Theta+pi;
 end

 % ensure the temp goal is placed on the appropriate side
 if turn > 0 && Theta < 0
 Theta = Theta + pi;
 elseif turn < 0 && Theta > 0
 Theta = Theta -pi;
 end

 % translate point in robot frame to world frame
 Pb = 2.5*[cos(Theta);sin(Theta)];
 R = [cos(yaw) -sin(yaw);
 sin(yaw) cos(yaw)];
 Pa = R*Pb + [x;y];
 goalt = Pa;
end

111

LIST OF REFERENCES

[1] Department of Defense, “Summary of the 2018 Department of Defense artificial
intelligence strategy,” Washington, DC, USA, 2019.

[2] Marine Corps Warfighting Laboratory/Futures Directorate, “2018 U.S. Marine
Corps S&T strategic plan,” Quantico, VA, USA, 2018.

[3] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. 3rd ed.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[4] C. S. Hargadine, “Mobile robot navigation and obstacle avoidance in unstructured
outdoor environments,” M. S. thesis, Dept. of Elec. and Comp. Eng., NPS,
Monterey, CA, USA, 2017. [Online]. Available:
https://calhoun.nps.edu/handle/10945/56937

[5] M. R. Audette, “Interactive map making for route planning and obstacle
avoidance in an unstructured outdoor environment,” M. S. thesis, Dept. of Elec.
and Comp. Eng., NPS, Monterey, CA, USA, 2018. [Online]. Available:
https://calhoun.nps.edu/handle/10945/60406

[6] P. Papadakis, “Terrain traversability analysis methods for unmanned ground
vehicles: A survey,” Eng. Appl. of Artificial Intell., vol. 26, no. 4, pp. 1373–1385,
Apr. 2013. [Online]. doi: 10.1016/j.engappai.2013.01.006

[7] P. I. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB.
Berlin, Germany: Springer, 2011. [Online]. doi: 10.1007/978-3-642-20144-8

[8] Y. N. Khan, P. Komma, and A. Zell, “High resolution visual terrain classification
for outdoor robots,” 2011 IEEE Int. Conf. Comput. Vision Workshops (ICCV
Workshops), Barcelona, Spain, 2011, pp. 1014–1021. [Online]. doi:
10.1109/ICCVW.2011.6130362

[9] J. Latombe, Robot Motion Planning, 2nd ed. Boston, MA, USA: Kluwer, 2003.

[10] Adept Technology, Inc., Pioneer 3-AT, 2011. [Online]. Available:
https://www.generationrobots.com/media/Pioneer3AT-P3AT-RevA-datasheet.pdf

[11] Pioneer 3 Operations Manual, MobileRobots Inc., Amherst, NH, USA:
MobileRobots Inc., 2006. [Online]. Available:
http://vigir.missouri.edu/~gdesouza/Research/MobileRobotics/Software/P3OpMa
n5.pdf

[12] CappucinoPC, “SlimPRO SP675P mini PC,” Accessed July 18, 2019. [Online].
Available: http://www.cappuccinopc.com/slimpro-sp675p.asp

112

[13] Hokuyo Automatic Co., “UTM-30LX,” July 18, 2019. [Online]. Available:
https://www.hokuyo-aut.jp/search/single.php?serial=169

[14] LORD MicroStrain, 3DM-GX5-45 datasheet, 2018. [Online]. Available:
https://www.microstrain.com/sites/default/files/3dm-gx5-45_datasheet_8400-
0091_0.pdf

[15] 3DM-GX5-45 GNSS-Aided Inertial Navigation System, LORD MicroStrain,
Williston, VT, USA: LORD MicroStrain, 2017. [Online]. Available:
https://www.microstrain.com/sites/default/files/3dm-gx5-45_user_manual_8500-
0010_0.pdf

[16] Microsoft Corporation, Microsoft (R) LifeCam HD-3000, 2016. [Online].
Available: https://dl2jx7zfbtwvr.cloudfront.net/specsheets/WEBC1010.pdf

[17] MathWorks, “What is MATLAB,” Accessed July 18, 2019. [Online]. Available:
https://www.mathworks.com/discovery/what-is-matlab.html

[18] MathWorks, “Computer vision toolbox,” Accessed July 18, 2019. [Online].
Available: https://www.mathworks.com/products/computer-vision.html

[19] MathWorks, “Image processing toolbox,” Accessed July 18, 2019. [Online].
Available: https://www.mathworks.com/products/image.html

[20] MathWorks, “Mapping toolbox,” Accessed July 18, 2019. [Online]. Available:
https://www.mathworks.com/products/mapping.html

[21] MathWorks, “Statistics and machine learning toolbox,” Accessed July 18, 2019.
[Online]. Available: https://www.mathworks.com/products/statistics.html

[22] MathWorks, “Webcam support from MATLAB,” Accessed July 18, 2019.
[Online]. Available: https://www.mathworks.com/hardware-support/matlab-
webcam.html

[23] Open Source Robotics Foundation, “About ROS,” Accessed July 18, 2019.
[Online]. Available: https://www.ros.org/about-ros/

[24] Open Source Robotics Foundation, “Core components,” Accessed July 18, 2019.
[Online]. Available: https://www.ros.org/core-components/

[25] Google, “Keyhole markup language,” Accessed July 18, 2019. [Online].
Available: https://developers.google.com/kml/

[26] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cyber., vol. 4, no.
2, pp. 100–107, 1968. [Online]. doi: 10.1109/TSSC.1968.300136

113

[27] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
[Online]. doi: 10.1023/A:1010933404324

[28] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, MA,
USA: The MIT Press, 2012.

[29] L. Rokach and O. Maimon, “Top-down induction of decision trees classifiers—a
survey,” IEEE Trans. Syst., Man Cybern. C Appl. Rev., vol. 35, no. 4, pp. 476–
487, Nov. 2005. [Online]. doi: 10.1109/TSMCC.2004.843247

[30] MathWorks, “Classification,” Accessed July 18, 2019. [Online]. Available:
https://www.mathworks.com/help/stats/examples/classification.html#d117e4415

[31] P. Filitchkin and K. Byl, “Feature-based terrain classification for LittleDog,” 2012
IEEE/RSJ Int. Conf. Intell. Robots and Syst., Vilamoura-Algarve, Portugal, 2012,
pp. 1387–1392. [Online]. doi: 10.1109/IROS.2012.6386042

[32] MathWorks, “TreeBagger,” Accessed July 18, 2019. [Online]. Available:
https://www.mathworks.com/help/stats/treebagger.html

[33] Statistics and Machine Learning ToolboxTM User’s Guide, ver. 11.5, The
MathWorks, Inc., Natick, MA: The MathWorks, Inc., 2019. Accessed February
11, 2019. [Online]. Available:
https://www.mathworks.com/help/pdf_doc/stats/stats.pdf

[34] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations
for mobile robot navigation,” in Proc. 1991 IEEE Int. Conf. on Robot. and
Autom., Sacramento, CA, USA, 1991, pp. 1398–1404. [Online]. doi:
10.1109/ROBOT.1991.131810

[35] X. Yun and K. Tan, “A wall-following method for escaping local minima in
potential field based motion planning,” in 1997 8th Int. Conf. Adv. Robot. Proc.
ICAR’97, Monterey, CA, USA, 1997, pp. 421–426. [Online]. doi:
10.1109/ICAR.1997.620216

[36] C. Murphy and H. Singh, “Rectilinear coordinate frames for deep sea navigation,”
in 2010 IEEE/OES Auton. Underwater Veh., Monterey, CA, USA, 2010, pp. 1–
10. [Online]. doi: 10.1109/AUV.2010.5779654

[37] Google Earth Pro 7.3.2.5776 (64-bit). (June 17, 2017). “Naval Postgraduate
School.” 36.595° N, 121.876° W, Eye alt 659 ft. Accessed July 18, 2019.

114

THIS PAGE INTENTIONALLY LEFT BLANK

115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	19Sep_Lebrun_Caliph_First8
	19Sep_Lebrun_Caliph
	I. Introduction
	A. Motivation
	B. Previous Work
	C. Purpose and goal

	II. System Design and Key Concepts
	A. Hardware
	1. Pioneer 3-AT
	2. SlimPRO SP675P
	3. Sensor Suite
	a. Hokuyo UTM-30LX
	b. LORD MicroStrain 3DM
	c. P3-AT Chassis
	d. Microsoft LifeCam HD-3000

	B. Software
	1. MATLAB
	2. Robot Operating System
	3. Google Earth Pro

	C. Key Concepts
	1. Approximate Cell Decomposition
	2. A* Search
	3. Random Forest

	III. Random Forest
	A. Data Collection
	B. Feature Extraction
	C. Growing the Forest
	D. Evaluation

	IV. Integration of vision into the navigation solution
	A. Camera
	B. Filtering Process
	C. State-Based Functionality
	1. Path Planning
	a. Approximate Cell Decomposition
	b. A* Implementation

	2. Artificial Potential Fields
	a. Attractive Force
	b. Repulsive Force
	c. Escaping Local Minima
	(1) Wall Following
	(2) Terrain Following
	(3) Finding the Orientation of the Terrain
	(4) Placing the Temporary Goal

	D. Simulation
	E. Obstacle Oversight

	V. Experiments and Results
	A. Terrain Classification
	B. Memory Augmentation
	C. Simulation Results
	D. Navigation in a Real-World Environment
	1. Example 1: Operations on Tiled Concrete
	2. Example 2: Operations on Sand Paths
	3. Example 3: Long-Range Issues
	4. Example 4: Long-Range Improvements

	VI. Conclusion
	A. Assessment of Goals
	B. Limitations
	C. Future Work

	appendix A. Data Collection script
	APPENDIX B. Growing a Random Forest
	APPendix C. Mission Command
	APpendix D. State Based Machine
	Appendix E. Path Planning Algorithms
	A. A* Implementation
	B. Approximate Cell Decomposition
	C. Obstacle Revision

	Appendix F. Forces
	A. Attractive Force
	B. repulsive forces
	1. Force Due to LIDAR
	2. Force Due to Terrain
	3. Force Due to Known Obstacles

	appendix G. Escape Modes
	A. Wall Following
	B. Terrain Following

	List of References
	initial distribution list

