
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-09

VISION-BASED TERRAIN CLASSIFICATION AND

LEARNING TO IMPROVE AUTONOMOUS

GROUND VEHICLE NAVIGATION IN OUTDOOR ENVIRONMENTS

Lebrun, Caliph

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/63474

Downloaded from NPS Archive: Calhoun



 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

VISION-BASED TERRAIN CLASSIFICATION AND 
LEARNING TO IMPROVE AUTONOMOUS GROUND 

VEHICLE NAVIGATION IN OUTDOOR ENVIRONMENTS 

by 

Caliph Lebrun 

September 2019 

Thesis Advisor: Xiaoping Yun 
Second Reader: James Calusdian 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188 

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503. 
 1. AGENCY USE ONLY 
(Leave blank)  2. REPORT DATE 

 September 2019  3. REPORT TYPE AND DATES COVERED 
 Master's thesis 

 4. TITLE AND SUBTITLE 
VISION-BASED TERRAIN CLASSIFICATION AND LEARNING TO 
IMPROVE AUTONOMOUS GROUND VEHICLE NAVIGATION IN 
OUTDOOR ENVIRONMENTS 

 5. FUNDING NUMBERS 

 6. AUTHOR(S) Caliph Lebrun 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

 8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
N/A 

 10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
 12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.  12b. DISTRIBUTION CODE 

 A 
13. ABSTRACT (maximum 200 words)     
 Terrain is an important factor for autonomous ground vehicles (AGV), potentially ruining a mission or 
the platform itself. The purpose of this thesis is to develop a method for an AGV to identify and avoid 
hazardous terrain. This work builds on a previously developed system that uses artificial potential fields to 
avoid obstacles and navigate to a goal. Terrain was identified by developing a random forest 
machine-learning algorithm, classifying terrain as hazardous or traversable. The random forest was grown 
using data from images collected during this work.  The classification of hazardous terrain was used to 
generate a repulsive force for use with artificial potential fields. The system was designed to avoid known 
areas of hazardous terrain using path planning, developing paths using approximate cell decomposition and 
the A* search algorithm. Tests of the developed random forest revealed accurate classification capabilities 
for all terrain types, but a tendency to misclassify certain terrain types. Portions of the navigation solution 
were simulated and confirmed the path planning capability. Trials conducted in a real-world environment 
revealed the solution stopped the AGV from entering hazardous terrain, and successfully planned routes 
around hazardous terrain. Improvements to the localization solution will allow the AGV to perform more 
consistently and over longer ranges. 

 14. SUBJECT TERMS 
terrain classification, machine learning, random forest, unmanned ground robot, computer 
vision, autonomous, approximate cell decomposition, A* search, artificial intelligence 

 15. NUMBER OF 
PAGES 
 135 
 16. PRICE CODE 

 17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

 18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 
Unclassified 

 19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

 20. LIMITATION OF 
ABSTRACT 
 
 UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

VISION-BASED TERRAIN CLASSIFICATION AND LEARNING TO IMPROVE 
AUTONOMOUS GROUND VEHICLE NAVIGATION IN OUTDOOR 

ENVIRONMENTS 

Caliph Lebrun 
Captain, United States Marine Corps 

BS, Mathematics, Eastern Michigan University, 2013 
BS, Physics, Eastern Michigan University, 2013 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 2019 

Approved by: Xiaoping Yun 
 Advisor 

 James Calusdian 
 Second Reader 

 Douglas J. Fouts 
 Chair, Department of Electrical and Computer Engineering 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 Terrain is an important factor for autonomous ground vehicles (AGV), potentially 

ruining a mission or the platform itself. The purpose of this thesis is to develop a method 

for an AGV to identify and avoid hazardous terrain. This work builds on a previously 

developed system that uses artificial potential fields to avoid obstacles and navigate to a 

goal. Terrain was identified by developing a random forest machine-learning algorithm, 

classifying terrain as hazardous or traversable. The random forest was grown using data 

from images collected during this work. The classification of hazardous terrain was used 

to generate a repulsive force for use with artificial potential fields. The system was 

designed to avoid known areas of hazardous terrain using path planning, developing 

paths using approximate cell decomposition and the A* search algorithm. Tests of the 

developed random forest revealed accurate classification capabilities for all terrain types, 

but a tendency to misclassify certain terrain types. Portions of the navigation solution 

were simulated and confirmed the path planning capability. Trials conducted in a 

real-world environment revealed the solution stopped the AGV from entering hazardous 

terrain, and successfully planned routes around hazardous terrain. Improvements to the 

localization solution will allow the AGV to perform more consistently and over longer 

ranges. 
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I. INTRODUCTION  

Two decades ago, daily interactions with artificial intelligence (AI) and robots was 

nonexistent outside of science fiction. Yet, today, people across the planet communicate 

with digital assistants empowered by AI to increase their productivity, and robotic vacuum 

cleaners careen through our homes reducing time spent on mundane tasks. This rapid 

development of technology in such a short period of time has not gone unnoticed by the 

Department of Defense; in 2018, a strategy governing artificial intelligence was released. 

The Summary of the 2018 Department of Defense Artificial Intelligence Strategy states, 

“we will use AI in a human-centered manner,” implying the need for AI to aid—not 

replace—the user [1]. The 2018 Marine Corps Science and Technology Strategic Plan 

expands on this concept by focusing on “manned and unmanned teaming” as well as 

advanced robotics that support ground forces [2]. According to the Marine Corps S&T 

Strategy, the Marine Corps is seeking systems that “enable effective ‘supervised 

autonomy’ by a Marine user” and have features such as “teleoperation, machine vision, 

perception, obstacle avoidance, convoy following, and the ability to self-navigate 

preplanned routes” [2]. 

Each of the features highlighted from the Marine Corps S&T Strategy are captured 

in one of the most provocative areas of research and development of our time, self-driving 

technology. This technology seeks to harness AI for the safe and efficient transportation of 

people from point A to point B. In the 2018 Department of Defense Artificial Intelligence 

Strategy, AI is described as “the ability of machines to perform tasks that normally require 

human intelligence—for example recognizing patterns, learning from experience, drawing 

conclusions, making predictions, or taking action” [1].  In [3], Russell and Norvig address 

AI from the perspective of a rational agent. They describe a rational agent as one that takes 

the correct course of action with the information it has. Each of these perspectives applies 

to the fundamental problem of self-driving technology, and consequently the same 

technology the Marine Corps seeks to aid its warfighter.   
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A. MOTIVATION 

Private industry and civilian universities are heavily invested in exploring self-

driving vehicles. Many organizations have constrained their research to civilian 

applications that neglect the unique operating conditions pertinent to military applications. 

Military vehicles employing self-driving capabilities complete with autonomy, machine 

learning, and AI must be able to account for the austere environments and free-form nature 

of the routes they are able to execute. This research seeks to exploit the capabilities of AI 

and machine learning to equip an autonomous ground vehicle with the ability to avoid 

hazardous terrain encountered in unstructured environments.  

Through the development of a single autonomous system that is capable of safe and 

effective navigation through its environment, further research may be conducted to 

leverage this technology for the warfighter. This could include expanding research into 

manned and unmanned infantry teaming applications or cooperative convoys of manned 

and unmanned systems. As the military industry continues to explore means to leverage 

AI, including autonomous/semi-autonomous systems and machine learning applications, it 

is important to conduct research with systems that use them to explore the capabilities, 

limitations, and areas for future research with a military perspective in mind.  

B. PREVIOUS WORK 

This thesis research falls under an umbrella project of the Naval Postgraduate 

School’s Electrical and Computer Engineering Department’s Control Systems and 

Robotics laboratory, wherein the desired end state is to develop a system capable of 

navigating from any location to another on the school campus. Prior thesis research 

investigated and developed an autonomous system capable of motion planning and user-

assisted path planning. In [4], Calvin Hargadine developed and integrated the autonomous 

ground vehicle (AGV) that is modified for use in this thesis research. His work focused on 

building a robotic platform and implementing an algorithm for motion planning with a 

simple sensor suite. Matthew Audette expanded on this work in [5], wherein he developed 

a path-planning algorithm that used user-defined constraints to plan waypoints for the 
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AGV. The research conducted in this thesis addressed the inability of the existing system 

to safely or effectively travel over certain types of terrain.  

Addressing this problem required developing a system that could identify and avoid 

problematic terrain and was also able to learn about its operating environment to plan 

routes to its goal. This work required developing a method of classifying terrain and 

developing a navigation solution that accounted for the information gathered from the 

workspace. There has been significant work in terrain classification, as discussed by 

Panagiotis Papadakis [6], wherein he categorized the research into two major categories: 

proprioceptive and exteroceptive data processing. Proprioceptive pertains to measuring 

information about the state of a robot, whereas exteroceptive relates to the world around a 

robot [7]. Papadakis further classified research involving exteroceptive data processing 

according to whether it is geometry- or appearance-based [6]. This thesis research focuses 

on determining terrain traversability by the appearance of the terrain. Khan et al. conducted 

the research most relevant to this work in [8]. Their work explores various machine-

learning algorithms and image-based feature types to determine the combination that 

provided the highest accuracy in terrain classification. The work done in this thesis research 

differs from that done in [8] in that it highlights the constraints of processing time for near-

real-time control.  

The method used for developing the navigation solution borrows from the classic 

ideas presented by Jean Claude Latombe in [9], employing approximate cell 

decomposition, the A* search algorithm, and artificial potential fields. This requires 

developing a method of representing the workspace and then implementing a path planning 

algorithm for navigating to the goal site. This thesis work differs in that it operates on 

several levels to first refine the location of obstacles defined as points and then plan a route 

through the workspace. 

C. PURPOSE AND GOAL 

The purpose of this thesis was to develop a method of identifying and avoiding 

terrain that is hazardous to the operation of an autonomous ground vehicle. Two goals were 

set to achieve this purpose. The first of those goals was the development of a machine 
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learning algorithm that differentiates between terrain types with a high level of accuracy. 

The second goal was to develop a method for avoiding terrain identified as hazardous. 

The machine-learning algorithm constrains this work to the Naval Postgraduate 

School campus. This is due to the nature of developing a machine-learning algorithm and 

the conditions of capturing training data. This does not prevent the algorithm from being 

viable in other locations and conditions; however, it is likely that, with changes to the 

environment, the performance of the machine-learning algorithm presented herein would 

differ. The equipment used along with the methods used in this research are discussed 

throughout the next five chapters. The hardware, software, and key concepts of the thesis 

work are discussed in Chapter II. The machine-learning algorithm developed for use in 

terrain classification, random forest, is discussed in Chapter III. Chapter IV contains the 

description of integrating the terrain classification into a navigation solution for avoiding 

hazardous terrain. The results of the laboratory tests, simulations, and experimentation 

conducted are detailed in Chapter V. Conclusions from the tests and the thesis work are 

discussed in Chapter VI, as are recommendations for future work.  
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II. SYSTEM DESIGN AND KEY CONCEPTS 

To research and develop an artificially intelligent system capable of navigating 

around hazardous terrain requires a combination of hardware and software. The 

combination of hardware and software must allow the system to sense its environment, 

plan its actions, and act out those plans [7]. This work modifies the system developed in 

[4] and [5] to accomplish the desired goals. The hardware and software used in this thesis 

research are described in the first two sections of this chapter before several key concepts 

to this thesis work are addressed. 

Key concepts of this thesis work are discussed in Section II.C to provide context to 

several of the topics used to achieve the thesis objectives. These include approximate cell 

decomposition, the A* search algorithm, and the random forest machine learning 

algorithm. 

A. HARDWARE 

The purpose of this thesis requires automating a robotic system for use in an 

outdoor environment. This requires a platform that is sturdy enough for outdoor 

performance, has the computational capability to automate the desired behavior, and a 

robust sensor package that allows the system to observe relevant elements of the 

environment.  

1. Pioneer 3-AT 

The Pioneer 3-AT (P3-AT) is a four-wheeled robotic platform developed by Adept 

MobileRobots, shown in Figure 1. It is capable of operations in indoor and outdoor 

environments [10]. It is described in [10] as being able to traverse sand, dirt, asphalt, and 

flooring with a maximum grade of 35%. The 5.4 cm clearance under the P3-AT bumpers 

restricts the platform from traversing terrain with significant dips and other variations [11]. 

Up to three 12-V batteries power the platform [10]. The P3-AT is capable of providing 5V 

or 12V to attached devices [10].  
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Figure 1. The P3-AT platform. Adapted from [4]. 

The P3-AT comes with a microcontroller that handles all lower level functions, 

such as the motor control, reporting wheel encoder data, and controlling the sonar sensors 

[11]. A serial connector allows interfacing the microcontroller with a mounted computer 

for developing higher level functionality [11]. The P3-AT can be driven with a joystick 

controller that is connected by a cable. As shown in Figure 1, the P3-AT comes with built-

in sensors including sonar, emergency stop bumpers, and an emergency stop switch. 

2. SlimPRO SP675P 

Automating the P3-AT requires a mountable computational platform with a low 

power requirement. The SlimPRO SP675P, shown in Figure 2, meets these needs. It 

measures 5.75″ wide by 10.0″ long by 1.65″ tall and weighs approximately 2.4 kg [12]. 

The SlimPRO can be powered by the P3-AT as it only requires 60 W at 12 V [12]. It has 

four USB 3.0 ports and two USB 2.0 ports for sensor data reception [12]. The SlimPRO 

has a serial port that allows it to communicate with the microcontroller on the P3-AT [12]. 

This allows passing high level commands to the P3-AT, such as bearing and speed.  
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Figure 2. SlimPRO SP675P, front and back 

3. Sensor Suite 

a. Hokuyo UTM-30LX 

The Hokuyo UTM-30LX, shown in Figure 3, is a two-dimensional light detection 

and ranging (LIDAR) system. It is capable of detecting objects at ranges between 0.1 and 

30 meters [13]. It provides a 270° field of view with an angular resolution of 0.25° [13]. 

The Hokuyo provides scanning data to the SlimPRO over USB 2.0 [13]. Due to the 12 V 

voltage requirement of the Hokuyo, the P3-AT provides the necessary power for the system 

in this work [13]. 
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Figure 3. The Hokuyo UTM-30LX LIDAR system 

b. LORD MicroStrain 3DM 

Shown in Figure 4, the LORD MicroStrain 3DM-GX5-45 Global Navigation 

Satellite System-Aided Inertial Navigation System (GNSS/INS) provides a localization 

and orientation solution for the AGV. The GNSS/INS is described in [14] as providing 

position data accurate to within two meters in the horizontal plane and heading data that is 

accurate to within 0.8°. The system draws its power from the SlimPRO over USB 2.0 due 

to its low power requirement. It typically requires 700 mW, and it is able to operate on a 

DC power source with voltage ranging from 4 to 36 V [14]. The system also uses the USB 

2.0 to communicate data to the SlimPRO [14]. The system can be calibrated to the 

environment in which it will be operated, accounting and adjusting for specific magnetic 

properties of that environment that may affect orientation data [15]. 
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Figure 4. The LORD MicroStrain 3DM-GX5-45 GNSS/INS 

c. P3-AT Chassis 

As mentioned in Section II.A.1, the P3-AT chassis comes with several built-in 

sensors including an array of sonar sensors, emergency stop bumpers, and a manually 

operated emergency stop switch, as shown in Figure 1. This thesis work does not use the 

sonar sensors, as they provide the same capability as the LIDAR, but the LIDAR provides 

better resolution and range. There are ten emergency stop bumpers on the P3-AT chassis—

five on the front and five on the back. These bumpers serve as a safety mechanism, 

temporarily stalling the chassis if something presses a bumper [11]. The manually operated 

emergency stop switch provides the user a hardware option for stopping the P3-AT. The 

system will not move while the switch remains activated. 

d. Microsoft LifeCam HD-3000 

The Microsoft LifeCam HD-3000, shown in Figure 5, is a commercial-off-the-shelf 

webcam that provides imagery to the SlimPRO via a USB 2.0 connection [16]. According 

to [16], the camera is capable of capturing “up to 30 frames per second”. Each image from 

the webcam has a resolution of 1280 by 800 pixels, and a 68.5°diagonal field of view [16]. 

Due to the intended use as a webcam the device has its focus fixed from 0.3 to 1.5 meters 

[16]. Consequently, any portions of the imaged area that are located outside of this range 

will not be in focus. 
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Figure 5. The Microsoft LifeCam HD-3000 USB webcam 

B. SOFTWARE 

The process of automating the robotic platform requires developing the ability for 

it to “sense, plan, and act” [7]. The hardware provides the sensing and acting capability, 

and the algorithms developed provide the planning capability. This thesis work makes 

extensive use of MATLAB for developing these algorithms. It has robust programming 

support and can be integrated with the Robot Operating System (ROS). ROS provides the 

backbone of the system, funneling information from sensors to algorithms and commands 

to actuators. Data analysis requires using MATLAB, ROS, and Google Earth Pro. Together 

they allow processing trial data and analyzing them on satellite imagery. Each of the 

software elements is described in this section. 

1. MATLAB 

For this work, the automation algorithms developed for the AGV were built in 

MATLAB 2018b. MATLAB is a programming environment designed for use by engineers 

and scientists, and is useful for algorithm development and data analysis [17]. MATLAB 

has many functions, toolboxes, and packages available for developing solutions to 

engineering problems [17]. This work makes use of the Computer Vision, Image 

Processing, Mapping, and Statistics and Machine Learning toolboxes along with the 

MATLAB Support Package for USB Webcams. Each of these is discussed briefly in this 

section. 
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The Computer Vision Toolbox is capable of providing the user with many computer 

vision specific algorithms and functions, streamlining the development of systems using 

computer vision [18]. This toolbox provides the ability to extract features from images 

throughout this work. 

The Image Processing Toolbox enables “image processing, analysis, visualization, 

and algorithm development” [19]. The functions from this toolbox provide morphological 

algorithms for use in filtering and path planning, and prebuilt processes for finding the 

Hough transform. 

The Mapping Toolbox provides functions for data export in file formats such as the 

keyhole markup language (KML) [20]. This enables analyzing geographic data from AGV 

interactions with the workspace. 

In addition to the many statistical analysis functions available from the Statistics 

and Machine Learning Toolbox, the toolbox provides the ability to develop a wide variety 

of machine-learning algorithms [21]. This toolbox enabled development of a trained 

machine-learning model for terrain classification. 

The MATLAB Support Package for USB Webcams provides a method of 

interfacing with the webcam via MATLAB commands and scripts [22]. 

2. Robot Operating System 

ROS is a free software providing a framework for developing complex robotics 

software [23]. One of the features of ROS is the plumbing it provides by enabling message 

passing from sensors, algorithms, and actuators via its publish and subscribe process [24]. 

This streamlines the process of communicating sensor data to the algorithms used in 

automation. In this work, sensors publish data on the ROS network, and algorithms 

subscribe to the information they need. ROS also provides a recording feature that allows 

the user to record traffic communicated across the ROS network [24]. Data recorded in this 

way can be played back or used for further analysis [24]. 



12 

3. Google Earth Pro 

Google Earth Pro provides an Earth browser that uses the KML file format [25]. 

This allows visualizing information from AGV interactions in the world along with the 

routes it traveled. The specific release of Google Earth Pro used is 7.3.2.5776 (64-bit). 

C. KEY CONCEPTS 

Achieving the goals presented in Chapter I requires applying concepts from 

robotics and machine learning. Those concepts are discussed in this section to provide 

context prior to the application being discussed in Chapters III and IV. 

1. Approximate Cell Decomposition 

The goal of developing a method for avoiding terrain identified as hazardous led to 

the topic of path planning. Latombe discusses the problem of path planning in [9]. In his 

discussion on path planning, he details the need for a representation of the workspace. 

While he discusses several methods for doing this, this thesis borrows from the 

approximate cell decomposition method to develop a workspace representation for use in 

path planning. The application of approximate cell decomposition divides the free space 

into a collection of rectangular cells [9]. 

Dividing the workspace in this way allows obstacles to lie in several cells and 

partially occlude others. Paths will only be planned through open cells so mixed cells 

restrict the available routes to the goal. This is typically dealt with by recursively splitting 

mixed cells until the sub-cells are open or occluded [9]. It is practical to place a limit on 

the subdivision based on the kinematics of the robot being used. An example of a 

workspace segmented using the approximate cell decomposition method is shown in Figure 

6. Open cells are white, mixed cells are white and gray checkered, and occluded cells are 

black. A graph search can use the decomposition to determine a path through the 

workspace. The graph search used in this thesis is the A* search method. It is described in 

the next section. 
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Figure 6. Example of approximate cell decomposition 

2. A* Search 

The A* (pronounced A star) search method is a classic search algorithm classified 

among the best-first searches [3]. When applied to a graph search, this algorithm finds the 

optimal route between two points or returns failure, if a route does not exist. 

The A* algorithm uses a cost metric f(q) to find the optimal route to a goal [26]. 

According to the developers, Hart, Nilsson, and Raphael, the cost metric is comprised of 

two elements g(q) and h(q), such that f(q) = g(q) + h(q) [26]. The authors describe g(q) as 

the optimal cost to go from the initial node in the graph to the node q, and h(q) as the 

optimal cost between the node q and the goal. In application, a heuristic is used to estimate 

the cost. To ensure the path found is admissible, the heuristic cost estimate h*(q) must not 

overestimate the cost h(q) [26]. 

Starting with the initial node, the algorithm begins executing a recursive sequence. 

This sequence starts with assigning an estimated cost f*(q) to each node adjacent to the 

current node [26]. The algorithm then marks the current node as visited and checks for the 

unvisited node that it will visit next [9]. It visits the unvisited node with the cheapest 

estimated cost f*(q) [9]. This process continues until the algorithm finds the optimal route 

to the goal node or terminates by determining no route exists to the goal [26]. This thesis 
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modifies the application of approximate cell decomposition and A* search to account for 

the workspace representation and the obstacle avoidance constraints. These modifications 

are discussed in Sections IV.C.1.a and IV.C.1.b. 

3. Random Forest 

Random forest is a supervised machine-learning algorithm that results in an 

ensemble of bagged decision trees [27]. This means that each tree is grown from bootstrap 

aggregated portion of the training data [28]. According to Breiman in [27], developers can 

use random forests for regression or classification. This thesis work used random forests 

for classification and will address them from that perspective. Random forests are a group 

of decision trees grown under unique considerations. The description of growing a random 

forest begins with the process for growing a decision tree. After the process of growing a 

decision tree is covered, the unique methods employed for growing a random forest are 

discussed. 

Decision trees are grown by recursively splitting a feature space, formed by the 

training data, until reaching the desired stopping condition [28]. This starts with the training 

set and defining a splitting method and stopping condition. 

Training data consists of n observations where each observation is a feature vector 

x and a label y [29]. Feature vectors represent the information, called features, from the 

observation. These features either come from the raw data or are the result of some 

processing by the developer. The label y defines the category of the observation. 

The splitting method determines where to split the feature space. This involves 

comparing potential child regions in the space. This thesis work makes use of an impurity-

based splitting method that develops purer child regions from the parent regions. This 

means that each child region is proportionally more of one category than the other. This 

requires identifying the feature and value of the feature that provides the purest child 

regions after the split. When growing a decision tree the splitting criteria have access to all 

features from the training data [29].  
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The process of recursively splitting the regions based on feature values ends upon 

meeting the stopping condition [29]. Stopping conditions include, but are not limited to, 

reaching a maximum number of splits or the regions being pure [29]. 

To demonstrate the concept of a recursively split feature space, and how that 

translates to a decision tree, an example tree is grown here for illustration. The tree is 

generated from a benchmark data set used in statistics and machine learning, known as the 

Fisher iris data. This data consists of 150 observations of four features: sepal length and 

width and petal length and width [30]. It represents 50 observations of each of three species 

of iris: setosa, versicolor, and virginica [30]. 

This example uses two of the features from this data, sepal length and width, to 

grow the example decision tree. The observations of these features are plotted by species 

in Figure 7 to visualize the feature space. 

   
Figure 7. Fisher iris sepal data used to grow a decision tree. 

Adapted from [30]. 
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A clear delineation between setosa and the other iris species is shown in Figure 7. 

The setosa data tends to be clustered in the upper left of the figure, whereas the versicolor 

and virginica tend toward the lower right. There are several instances of versicolor and 

virginica sharing space within the feature space. The division of the feature space 

determined through growing the decision tree in MATLAB is shown in Figure 8, and the 

corresponding tree is shown in Figure 9. 

 
Figure 8. Feature space divided according to the decision tree grown 

for iris classification. Adapted from [30]. 
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Figure 9. Decision tree grown from Fisher iris sepal data. 

Adapted from [30]. 

Figure 8 shows the division of the feature space defined by the sepal length and 

width according to the decision tree shown in Figure 9. In Figure 9, sepal length and width 

are annotated as x1 and x2, respectively. Comparing Figure 7 to Figure 8 shows the feature 

space matching quite well to the training data. One of the oddities is the portion of the 

space where the sepal length is equal to seven and all instances are assigned to the 

versicolor category regardless of sepal width. This is due to the greedy nature of decision 

trees. This greedy nature causes decision trees to overfit to the training data, and decision 

trees may not generalize well because of it [29]. There are several methods to address this, 

one of which is growing random forests [28]. As discussed, a random forest is an ensemble 

of decision tress grown under two special conditions. 

The first condition addresses which observations are used to grow each tree. A 

random set of the observations are used for each tree [27]. Expanding on this concept, it is 

assumed that there are n observations in a master training set. Then when each tree in the 

forest is grown, the training set for that tree is n observations chosen at random, with 

replacement, from the n observations in the master training set [27]. While maintaining the 

same distribution of categories as the master training set [27]. The second condition effects 

how many and which features are available for deciding how to split a node. When 
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determining a node split in a random forest, a random subset of the feature vector is selected 

for determining the best feature for the split [27]. This process produces a model that is 

more difficult to interpret than a decision tree, but provides a more generalized 

performance [28]. 

This section covered the various hardware and software components used to 

investigate a method of avoiding hazardous terrain with an autonomous ground vehicle. 

Effort was given to expose to the reader to key topics that are used in this research. The 

method of developing a random forest for terrain classification is discussed in Chapter III.  



19 

III. RANDOM FOREST 

The random forest machine learning algorithm was chosen to classify terrain types 

in images due to its basis in the interpretable decision tree. Due to this basis it is possible 

to understand how each tree makes its classifications. Development of the random forest 

for this thesis work was conducted in several phases: data collection, feature extraction, 

growing the random forest, and evaluation. During data collection a set of raw images was 

gathered and sorted for use in growing the random forest. The feature extraction process 

required choosing a feature type and extraction scheme. Growing the forest requires using 

functions native to MATLAB, and deciding which optional arguments to include in 

developing the model. The evaluation process seeks to identify the predictive accuracy and 

relative speed of the classification process. The last three phases are iterative in that they 

are repeated until an acceptable solution is found—one that balances high predictive 

accuracy with relatively fast processing time. 

A. DATA COLLECTION 

To collect the training data, a script was written in MATLAB to automate the 

image-capturing process, saving each image under a distinct name. This script required the 

MATLAB Support Package for USB Webcams and is detailed in Appendix A. The robot 

was transported to the data-collection area on the Naval Postgraduate School campus, and 

the script was executed via secure shell access on a locally established network. As the 

robot was driven around the campus using the joystick controller, the script automatically 

captured images for use in our terrain classification algorithm. Effort was made to ensure 

each class of terrain in the area of operation was captured under the conditions the AGV 

would be operating. This meant driving the robot over the terrain at varying speeds, while 

traveling in a straight path, turning, and moving in and out of shaded areas. 

The resulting set of images was sorted to create the training data. For this work, the 

training data is divided into two categories of terrain, hazardous and traversable, with each 

category having several subcategories. The hazardous terrain includes mulch, grass, and 

long grass. Traversable terrain includes sand path, concrete, and tiled concrete. The 
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categories were developed based on the work of Hargadine and Audette in [4] and [5], 

respectively. They each observed that the P3-AT experienced difficulties in maneuvering 

over hazardous terrain. This was due to ruggedness of the terrain and slippage of the wheels 

caused by travelling on them. The ruggedness caused the AGV bumpers to hit the ground 

and stop the system. The slippage degraded overall control of the system, and even resulted 

in the system getting stuck in terrain like mulch, where it can “dig” itself into the loose 

ground.  

When sorting the training data, two types of images—nonhomogeneous terrain 

images and those that had portions of overexposure—were manually removed as they 

would have reduced the accuracy of the random forest classifier. Any overexposed 

portions had pixels with maximum intensity values, which provide no information about 

the terrain, rendering the features invalid. Mixed terrain-type images were not used for 

training the random forest but would be used later to test the efficacy of the random forest 

developed. Including images with these phenomena would have required identifying the 

portions with valid features, and ensuring they were labelled properly. This was not 

necessary as it was possible to develop a large number of observations with the 

homogeneous training data. Examples of each subcategory are shown in Figure 10. 

Examples of the types of images omitted from the training set are shown in Figure 11. 
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Figure 10. Examples of each subcategory of terrain: (a) sand path, (b) 

mulch, (c) tiled concrete, (d) long grass, (e) concrete, (f) grass 
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Figure 11. Examples of images omitted from the training set: 
(a) image with mixed categories and (b) image with overexposure 

The resulting training data had 281 photos—146 of traversable terrain and 135 of 

hazardous terrain. The features used to train the random forest were extracted from these 

photos. The intent was to use the classification of terrain to develop a control effort for the 

AGV, which required labelling the observations as category “0” for traversable terrain and 

“1” for hazardous terrain. The post classification manipulation, discussed in Section IV.B, 

relies on using these categories. 

B. FEATURE EXTRACTION 

Features are descriptors that can be measured or calculated from a data set and can 

be used to train machine learning models. Based on the work described in [8] and the desire 

to use the classification results to avoid hazardous terrain, it was decided that features 

would be extracted from fixed points within each image. Inspired by a smaller sized grid 

from [8], it was chosen to separate the extraction points by 20 pixels both vertically and 

horizontally, with the outermost points located 10 pixels from the edge of the photo. The 

image dimensions were 800 pixels by 1280 pixels, which resulted in a 40-point by 64-point 

grid. This resulted in a total of 2,560 feature extraction points, which are shown as the blue 

crosshairs in Figure 12. 
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Figure 12. Feature extraction points displayed over a training image 

Feature selection is affected by two primary performance concerns for the terrain 

classification algorithm: speed and accuracy. An accurate terrain classification ensured the 

desired control input was computed by the AGV, and relatively fast feature extraction 

influenced the overall classification speed. Classification speed is important as the 

objective was that the system behaves in a near-real-time manner, which is necessary when 

conducting motion planning and obstacle avoidance. These considerations affect which 

features are selected because a feature may provide very high predictive accuracy, but may 

take too long to extract for the system to behave in a near-real-time manner. The contrasting 

situation would be a feature that can be extracted very quickly, but provides predictions 

that cannot be used in controlling the AGV. Several feature types were explored including 

speeded up robust features (SURF) motivated by [31], pixel intensities, and pixel 

intensities with color representation. These feature types were used to grow random forests 

and determine their effect on predictive accuracy and the speed of the overall classification 

process. The results of laboratory and field tests, explained in Section III.D, led to the use 

of pixel intensities for feature extraction. 
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The pixel intensities were extracted from each image using the extractFeatures 

MATLAB function from the Computer Vision Toolbox. This function required an intensity 

image, a set of feature extraction points, and the extraction method. The intensity image 

comes from converting the image from the webcam to grayscale, and the set of extraction 

points are those shown in Figure 12. The “block” method was chosen as the extraction 

method. By using the “block” method, extractFeatures pulls the pixel intensities from the 

grayscale image at the extraction points. It was possible to set the size of the  

block extracted, but for this work the default size of 11 was used. The default value 

provided adequate results, regarding predictive accuracy and extraction speed, and was not 

explored further. This meant that for each fixed point, the function extracted the intensities 

of an 11 by 11-pixel region A, and organized those values as a row vector. This vector is 

the feature vector x, which contains the descriptors associated to the point in the image that 

x is extracted from. 

A generic example of this process and results are pictographically represented in 

Figure 13, where the region A is a three by three region extracted from a five by five image 

centered on the element located at coordinate (3,3) that translates to the feature vector x. 

 
Figure 13. Graphic representation of the feature extraction process and results 
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As shown in Figure 13, the feature vector x was formed from the extracted region 

A centered on the coordinate of the fixed point. It was built by stacking the columns of A, 

with the first column at the top and the last column at the bottom, and taking the transpose 

of the resulting column vector. The pixels were represented as unsigned 8-bit integers, and 

due to the data type required by the predict function, used later in this thesis, it was 

converted to double 64-bit format.  

Given the size of the region used, the resulting feature vector x has 121 descriptors 

each having discretized values between 0 and 1. Then, element xk of x is found according 

to 

  (1) 

where k is 
 11( 1)k i j= + − , (2) 

and i and j are 
 1 , 11i j≤ ≤ . (3) 

In Equation (1), Ai,j indicates the element of A from the ith row and jth column of the region. 

While building the training set, the feature vectors were labelled after they were 

extracted according to the category it belonged to by appending a zero or one at the end 

of the feature vector. The labelled feature vector is the building block of the training set. 

By recursively loading images, extracting the features corresponding to the fixed points, 

and labelling them according to the category of the image, the training set was grown by 

2,560 observations per image. This resulted in 719,360 observations for the collected data 

set and distribution of fixed points. 

C. GROWING THE FOREST  

The next step in developing a random forest for terrain classification was to grow 

the forest using the prepared training set. This provides a model that can be evaluated 

according to its predictive accuracy and speed. Growing the forest is accomplished by 

using the TreeBagger function from the MATLAB Statistics and Machine Learning 
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decision trees while using random portions of the features available to make splitting 

decisions [32]. Using TreeBagger with the training set generated a random forest for use 

in predicting terrain types in an image. The function required the number of trees, the 

training set, training labels, and the type of forest, classification or regression. There were 

several optional arguments available for building random forests with TreeBagger; this 

work used OOBPrediction and MinLeafSize. The minimum leaf size could be adjusted as 

a method of generalizing decision trees, and has the benefit of decreasing processing time 

of predictions [33]. The OOBPrediction argument allows analyzing the effectiveness of the 

random forest once it is grown without having to set aside a testing set [27], [33]. 

D. EVALUATION   

Finding the acceptable forest composition began with growing 100 trees for various 

minimum leaf sizes and analyzing the classification error using the oobError function. This 

provided candidate compositions that could be analyzed further. These candidates were 

tested by implementing them on the AGV during scenarios designed to determine their 

accuracy and speed for short duration runs. This trial-based method yielded a forest that 

produced adequate classification results with sufficiently short processing time. The results 

of the various tests are detailed in Section V.A. The code for generating the random forest 

is included in Appendix B. 

Once the forest was grown, it could be used to predict whether a set of features 

represented hazardous or traversable terrain. The prediction process required using the 

predict function in MATLAB. This function used the trained model and features extracted 

from the fixed points as inputs to classify each feature vector. Predictions made with 

random forests are based on the results of the classifications of the individual trees [27]. 

Each classification made by a tree is a vote for that category of terrain, and the majority 

vote is the forest classification [27]. Each tree makes a classification by comparing the 

appropriate feature values to the node splitting features and value until reaching a leaf, 

which corresponds to a classification [29]. The terrain prediction result is a vector with 

2,560 elements, one for each extraction site, with a categorical “0” or “1” depending on the 
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terrain type predicted for the extraction site. Integrating the terrain prediction into the 

navigation solution is described in Chapter IV. 
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IV. INTEGRATION OF VISION INTO THE 
NAVIGATION SOLUTION 

Developing a method of avoiding hazardous terrain with vision was accomplished 

by addressing the entire navigation solution with all of its subordinate parts and not just 

obstacle avoidance. Navigating from point A to point B requires both obstacle avoidance 

and path planning. Obstacle avoidance requires sensing obstacles in the environment and 

reacting to avoid them en route to the goal. Path planning determines the route to the goal, 

and typically requires the robot to have some knowledge of the workspace it inhabits. The 

information the robot gathers from obstacle avoidance may be used to augment its 

knowledge of the workspace to improve path planning in future operations. 

To be able to avoid hazardous terrain, the robot vision must be integrated into the 

navigation solution. This process begins with the treatment of the camera as a sensor. This 

chapter continues with how the terrain classification is filtered for use in the control 

mechanism. Once this is laid out, the process of controlling the AGV is examined under 

the context of a state-based machine. The remaining two sections address the use of 

simulation and obstacle oversight in this thesis work. Simulation was employed to 

investigate odd behavior of the AGV during testing and lead to developing and vetting 

certain methods used in the navigation solution. An additional result of investigating the 

odd behavior of the AGV was the need to provide oversight to the automatic memorization 

of certain obstacles encountered in the workspace, and this is discussed in the last section 

of this chapter. 

A. CAMERA  

To use the camera as a sensor for the control of the AGV it was necessary to mount 

it to see the areas of the reference frame of the robot that were most relevant to controlling 

its motion. Initially the camera was mounted to see to an expected distance of 2.0 meters 

from the AGV based on the success of [4] and [5] using the LIDAR to respond to convex 

obstacles at a range of 1.8 meters. This provided a field of view that captured relevant data, 

but it was then necessary to determine how to treat the camera input to build a control effort 
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from it. Inspired by the LIDAR, the camera input was treated as a point cloud, where each 

pixel was treated as coming from a distinct location in the reference frame. It was then 

necessary to properly correlate the imagery data to the space it imaged to produce useful 

controls for the AGV. Finding the portion of the reference frame projected into the images 

required approximating the field of view of the camera. 

The field of view is approximated by starting with the assumption that the camera 

field of view is represented by the idealized geometry shown in Figure 14. This assumption 

primarily neglects imperfections in the setting of the imaging sensor and the asymmetry of 

the pixels about the axes of the camera. This abstraction also ignores the effects of the robot 

travelling over surfaces that induce pitch and roll, which would affect the portion of the 

reference frame that is projected into the image. Ignoring the imperfections of the camera 

and neglecting the induced pitch and roll allows the development of a simple model for 

using the photos from the camera to provide useful control input to the AGV. 

 
Figure 14. Idealized geometry of the field of view of the camera 

To generate this model, photos were taken with the camera mounted on the AGV. 

These images were used to mark the horizontal and vertical limits of the field of view. The 
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vertical and horizontal limits were found over several iterations. Each iteration consisted 

of taking a picture and adjusting the position of the field of view limit markers until the 

limits were marked appropriately. Upon finding the limits, they were used to measure 

distances in the reference frame that were used to determine the field of view of the camera. 

This process is described throughout the remainder of this section. Finding the vertical field 

of view is based on the measured values and the planar geometry depicted in Figure 15. 

 
Figure 15. Geometry used to find the vertical field of view of the camera 

The true vertical field of view is approximated using the distance Rmax to the furthest 

viewed point, the distance Rmin to the nearest viewed point, and d the height of the mounted 

camera. These allowed finding the angles αvmax, and αvmin using 

 maxarctanvmax
R

d
α  =  

 
, (4) 

 minarctan ,vmin
R
d

α  =  
 

 (5) 

and the vertical field of view is then 

 vfov vmax vminα α α= − . (6) 

Determining the horizontal field of view αhfov began with analyzing the idealized 

field of view represented in Figure 16. 
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Figure 16. Geometry used to find the horizontal field of view 

of the camera 

By using the trigonometric relationships between the measurable quantities l, w, 

and d it was possible to find αhfov using 

 / 22arctanhfov
l

w
R

α
 

=  
 

, (7) 

where Rl is found according to 

 2 2
lR d l= + . (8) 

Having determined the horizontal and vertical fields of view it was possible to 

determine the portion of the reference frame that was captured in each image. Finding the 

portion of the reference frame that corresponds to each pixel requires determining the 

orientation of each pixel and conducting a coordinate transformation from the image frame 

to the reference frame. This requires finding the angular height and width of the pixels, the 

mounting orientation of the camera, and the translation from the camera to the reference 

frame. 
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Determining the orientation of a pixel was simplified by assuming that the pixels 

have uniform angular height and width. The angular height of a pixel αht is found by 

dividing the vertical field of view αvfov by the rows of pixels m in the image, such that 

 
.vfov

ht m
α

α =
 (9) 

Similarly, it is possible to find the angular width αwd using  

 
,hfov

wd n
α

α =
 (10) 

where n is the columns of pixels in the image. This along with the mounting angle of the 

camera can be combined to find the orientation of each pixel. 

Finding the mounting orientation of the camera started with the assumption that the 

orientation is constant with respect to time. This assumes the camera is mounted with a 

positive pitch down from the x-axis, while the roll and yaw are zero. Angles αvmax and αvmin 

can be used to find the measured mounting angle αmount from 

 
( )

2
vmax vmin

mount vmin

α α
α α

−
= + . (11) 

These angles are measured with respect to the line normal to the ground; however, 

the AGV uses an East-North-Up convention and the angles must be represented relative to 

the line parallel to the ground. Converting αmount to θmount, the mounting pitch angle, 

depicted in Figure 17, is found by 

 
2mount mount
πθ α= −  . (12) 
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Figure 17. Diagram relating measured mounting angle to pitch of camera 

Assuming images are symmetric about the camera line of sight enabled deriving 

the expression for the orientation of a pixel coming from the ith row and jth column in the 

image 
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. (13) 

The range to the position captured in a pixel in the reference frame of the robot was 

found based on the assumption that the z-component is zero for all pixels. This assumption 

was made due to the intent of capturing images of the ground. The range was found using 

the geometry shown in Figure 18 where cij is the length of the hypotenuse of the triangle 

in the xz-plane, and was computed using the trigonometric relationship 

 
( )sinij

ij

dc
θ

= , (14) 

and rij is the range to the pixel computed using the expression 

 
( )cos
ij

ij
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c
r

ψ
= . (15) 
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Figure 18. Diagram for calculating the range to a region captured in a pixel 

Combining the range and orientation associated to a pixel allowed computing its 

position in the robot frame [xij, yij, zij]T by conducting the coordinate frame transformation 

described by 
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, (16) 

where Rij is the rotation matrix corresponding to the orientation of the pixel 
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The positions of the pixels corresponding to the robot frame were precomputed for 

use in determining repulsive forces from terrain and for finding the orientation of the 

terrain. The precomputed information was stored in two formats, as an array of xy-

coordinates for each pixel and as range and bearing [ρi,j, βi,j]T for each of the 2,560 points 

for which features are extracted from for terrain classification. The range and bearing to 

each feature extraction point is found using 
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. (18) 

Figure 19 shows the calculated portion of the robot frame projected into the 

captured images. 

 
Figure 19. Projected portion of robot frame captured in camera images 

Each fixed point now maps to a distinct point in the space that can be used to 

conduct obstacle avoidance. This treatment of the camera allows integration with the 

methods of terrain classification discussed in Chapter III, where a remaining concern is the 

inaccuracies, both false positives and false negatives, of the random forest, that may cause 

aberrant behavior if unmitigated. With this in mind the classification results are filtered to 

reduce the effects of false classifications. 
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B. FILTERING PROCESS 

The prediction responses of the random forest, discussed at the end of Chapter III, 

are expected to have some degree of inaccuracy, and each falsely identified portion could 

generate control signals that turn into undesired behavior in the robot. Driven by an 

assumption that terrain is continuous in a way that means there will not be small patches 

of hazardous terrain in the middle of traversable terrain, and vice versa, the prediction 

results are filtered. False identifications are treated as noise to be filtered out. The 

prediction vector produced from the prediction process is reshaped into a 40 by 64 matrix, 

PredMat, such that each element aligns to the portion of the image the prediction comes 

from. PredMat is treated as being the true classification Ctrue plus noise ω, with values 

constrained to one or zero, such that  

 ( )  mod 2truePredMat C ω= + . (19) 

Filtering PredMat is a two-step process involving a blurring and thresholding step 

followed by removing small regions of connected hazardous terrain. The blurring process 

is done by convolving PredMat with a three by three box filter γ; the resulting matrix is the 

average of each element in PredMat with the eight elements closest to it. The thresholding 

process rounds the elements to the nearest value, constraining values to zero and one. This 

process yields the intermediate matrix PredTemp: 

 round( * )PredTemp PredMat γ= . (20) 

The first step eliminates instances in which a few locations are identified as a terrain 

type opposite of the predominant type in that portion of the matrix, regardless of the 

classification. The second step involves removing small regions that have been classified 

as hazardous terrain. This was based on the fact that traversable terrain falsely classified as 

hazardous is considered more harmful to the motion planning effort than hazardous terrain 

classified as traversable terrain. This is done by eliminating regions classified as hazardous 

terrain that have 128 or less connected elements. In this case they are changed from 

Category 1 to Category 0. This was based on the assumption that terrain is continuous, and 

that regions this small would not occur outside of the corners of the image. This removal 
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of small regions assumed to be false positives is of greater importance to the control effort 

than reacting to terrain at the extremes. This process is accomplished using the bwareaopen 

MATLAB function from the Image Processing Toolbox. The processed classification 

matrix ClassMat is used to develop repulsive forces when hazardous terrain is identified. 

Examples of the results of the filtering process are shown in Section V.A. The code 

developed to classify images, process the classification matrix, and generate the controls 

from the terrain classification is included in Appendix F. 

C. STATE-BASED FUNCTIONALITY 

Up to this point, the focus of this chapter has been on the development of a model 

for using the camera data for sensing the environment and on filtering the classification 

predictions from the random forest. Now, focus is shifted to integrating that work into the 

previously existing control structure on the AGV. Previous thesis work, conducted by 

Hargadine in [4], developed the control structure for the AGV as a state-based machine. 

Each state has defined goals and control mechanisms to achieve those goals. The state 

diagram that defines the behaviors of the AGV is shown in Figure 20. This diagram is 

an evolution of the work done in [4] and [5], and accounts for the capabilities added 

by this work. 
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Figure 20. State diagram defining AGV operations 

The Mission Command state is based on the work of Audette in [5], and feeds the 

location of the current goal to the Path Planning state. The Path Planning state uses the 

information known about the workspace to plan an optimal route to the goal, which is 

executed by the Artificial Potential Fields state. The Artificial Potential Fields state 

employs a gradient descent mechanism to maneuver toward the waypoints along the path 

and ultimately toward the goal. Based on its interactions with the environment, the system 

can transition into several additional states: Terrain Following, Wall Following, and 

Emergency Avoidance. Each of these states is addressed further in this chapter, beginning 

with the Path Planning state. The code that executes the state-based functionality is 

represented in Appendices C and D. 

1. Path Planning 

Path planning is employed by the robot to get from the initial position to the goal 

position while avoiding known obstacles in the workspace. This requires a representation 

of the workspace with the locations of obstacles and a method for planning the path. This 

thesis work makes use of the approximate cell decomposition method to represent the 

workspace. With this representation, the A* algorithm is used to find the optimal route to 

the goal. This process begins with the implementation of the approximate cell 
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decomposition on two scales, to refine known obstacle position and for path planning, and 

then the method of implementing the A* algorithm is discussed. 

a. Approximate Cell Decomposition 

The approximate cell decomposition process serves two functions in this thesis 

work. The first is that it takes the location of known obstacles and refines them, and the 

second is to provide a representation of the workspace that can be used to plan a path. The 

workspace representation generated by approximate cell decomposition is the map the 

robot uses to determine its route to the goal. This map only contains the location of 

obstacles it has interacted with in previous operations. As described in Section II.C.1, the 

standard application of the approximate cell decomposition methodology requires 

subdividing cells that are partially occluded by obstacles. This is not done in this work as 

obstacles are identified as points in the workspace rather than two-dimensional objects, 

which would require dividing cells down to infinitely small sub-cells to contain a single 

point obstacle. Also, based on the AGV size and knowledge of the workspace there is a 

practical limit to how small the cells should be. By initially using a larger cell size, it is 

possible to refine the perceived position of known obstacles. While using a smaller scale, 

the decomposition of the workspace can be used for path planning. 

Approximate cell decomposition identifies the cells that are occupied by obstacles 

and the cells that are perceived to be free to move through. To build this representation the 

robot uses its knowledge of the workspace and the obstacles it has encountered in the past. 

It was noticed that the location of previously identified obstacles, terrain or other local 

minimums, were not precisely located. This was primarily due to the inaccuracy of the 

GNSS/INS localization. The location of each known obstacle is modelled as the true 

location plus noise 

 xknown true

yknown true

x x
y y

ν
ν
    

= +     
     

, (21) 

where the noise, νx and νy , are assumed to be normally distributed with zero mean, and 

have an unknown standard deviation σ that is 

  (22) 
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To estimate the true position of known obstacles it was assumed that terrain tends 

to remain continuous, as described, and that the boundaries between terrain types are linear. 

This allows looking at the identified locations of the known obstacles as points that 

describe an unknown line, the line that describes the boundary between traversable and 

hazardous terrain. 

This boundary line is found by using an approximate cell decomposition of the 

known workspace at a larger scale, dividing it into four-meter by four-meter cells. This 

representation is used to fit a line to any set of obstacles in a cell containing three or more 

known obstacles. Figure 21 represents an example of a workspace with point obstacles that 

has been decomposed as described. These cells are inspected for obstacles, and if there are 

more than two obstacles in a cell, a least squares fit is conducted to approximate the line 

that those obstacles form. This results in two primary effects. First, the identified boundary 

is less noisy, providing for more accurate path planning and more even control when 

included in the artificial potential fields. Second, some shapes, particularly corners, are 

misconstrued. This process provides a needed refinement to the identified position of 

obstacles that feed the workspace representation used for path planning. 

 
Figure 21. Example approximate cell decomposition with 

four-meter-square cells and point obstacles 
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When planning a path from point A to point B, with knowledge of obstacles 

between the two points, it is implied that the path should avoid the obstacles, and 

approximate cell decomposition is a starting point in planning this path. The scale at which 

this is done for refining the location of obstacles is not reliable for the path planning task 

due to the size of the cells compared to the paths available in the workspace. As a result of 

this, the workspace is readdressed using the refined positions of the known obstacles. 

For the path planning application, the workspace is divided into one meter by one-

meter cells, called the small-scale representation (SSR). The cells are small enough to plan 

paths around the obstacles yet large enough the AGV can move through them without 

issues. The SSR will be used to find a path from the initial position to the goal position, 

and it was beneficial to assume there are unknown portions of the workspace. The known 

workspace Ω consists of the initial position qinit, goal position qgoal, and the refined position 

of the known obstacles. This is padded to account for the unknown portions of the 

workspace, and defined as Ωpadded . Padding allows the AGV to avoid trivial geometries 

that would prevent finding a path from qinit to qgoal . A trivial geometry is shown in Figure 

22, where if a path planner only knew of the shaded portion of the workspace it would be 

impossible to find a path to the goal. Whereas, if this were expanded a small amount, then 

an obvious path around the obstacle becomes available to the planner. 
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Figure 22. Trivial workspace geometry requiring padding to find a 

path from qinit to qgoal 

The padded SSR Ωpadded is used to plan the path to the goal by using the A* search 

algorithm. Code developed for generating the workspace representation and refining 

obstacle locations is included in Appendix E. 

b. A* Implementation 

To implement the A* search algorithm for path planning a MATLAB script was 

written that accounts for the occupied cells, the heuristic cost, the cost associated with a 

cell, those cells that have been visited, and the path to a cell. These are tracked using 

matrices O, H, F, V, and cell array Path, respectively. Each matrix is established with zeros 

for all elements, the cell array is established with empty cells, and each matrix/cell array 

has the same dimensions as the padded SSR generated for path planning. The elements of 

the matrices and cell array correspond to cells in Ωpadded ; that is information about the cell 

located in the ith row and jth column of Ωpadded is found in the ith row and jth column of the 

matrix/cell array. 



44 

The occupancy matrix O is developed from Ωpadded and assigns a value of one to 

those elements of O that correspond to cells occupied with obstacles in Ωpadded , and zero 

otherwise. This matrix is treated as a black and white image that is morphologically 

manipulated to close small gaps and ensure a path is not planned through diagonally 

connected free space. The modified occupancy matrix Omodified now indicates there are 

obstacles where there were previously small gaps and diagonal connections. This process 

is detailed in the AlphaStar.m script included in the Appendix E. This matrix is used to 

build the H matrix. 

When building H, any corresponding elements of Omodified that indicate an open cell 

are assigned a heuristic cost equal to the Euclidean distance from the midpoint of the cell 

to the goal. Any cells in the modified occupancy matrix with obstacles are assigned a cost 

of infinity in the corresponding location in H. The exception to this is if the initial or goal 

position happens to reside in a cell that contains a known obstacle, the known obstacle is 

ignored, and the cost is equal to the Euclidean distance. This presents the possibility for 

paths to be planned through known obstacles, and in this case the online controls are trusted 

to avoid them. Equation (23) describes the general cost assignment to the H matrix 

elements, where pmid(i,j) is the midpoint of the cell in the ith row and jth column of Ωpadded , 

 ( , ) ,
,
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i j
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By starting in the initial cell, containing qinit, the algorithm searches for the optimal 

path to qgoal . The search process is recursive and requires checking the neighbors of the 

cell being “visited.” Checking a cell in this case generates the corresponding element of 

Path and F. 

The element of Path, for the checked cell, is built by using the element of Path of 

the “visited” cell and adding the midpoint of the cell being checked to the end. The element 

of Path corresponding to the initial cell is qinit . Each element of Path becomes a list of 

coordinates that can be used as waypoints to get from qinit to the cell. 
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The cost associated with a cell is Fi,j = g(i,j) + Hi,j , similar to the method described 

in Section II.C.2. The function g(i,j) is the cost to get to cell i,j from the initial cell through 

the path defined in the element of Path. If the cell is being checked for the first time or if 

the cost along the current path is cheaper than the previous checks the cost and path are 

updated, and otherwise the cost and path from checking is ignored. Once all neighbor cells 

have been checked, the matrix V is updated to indicate the current cell being “visited” has 

been “visited.” The next step is to determine which cell to “visit” next. This is done by 

checking the matrix F for the cheapest cost of an unvisited cell. The process begins anew 

upon identifying the next cell to “visit.” 

Upon finding a path to qgoal the AlphaStar.m script post processes the path. This is 

based on the fact that the path is likely to have more points than are necessary to effectively 

navigate to the goal. This required downsampling the identified path so that every fourth 

coordinate pair in the path list is kept for use in navigation. This downsampled path is 

passed to the AGV for use as waypoints to the goal. 

With a path planned from the current position to the goal, the route is executed 

using the artificial potential fields algorithm, and it is at this point that the AGV transitions 

from the Path Planning state to the Artificial Potential Fields state. The Artificial Potential 

Fields state is described in the next section. The full code for implementing the path 

planning is provided in Appendix E. 

2. Artificial Potential Fields  

As was alluded to earlier, artificial potential fields is a well-known navigation 

methodology. According to Jean-Claude Latombe in [9], this method assumes the robot is 

a point mass that is effected by a potential field U that pulls the robot to the position of 

least potential energy. The overall potential field is treated as the sum of attractive Uatt and 

repulsive Urep potentials. Repulsive potentials provide obstacle avoidance capabilities by 

assigning areas near obstacles a higher potential than the surrounding area. Taking the 

negative gradient of the potential field function at point q  

 ( ) ( )F q U q= −∇  (24) 
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generates the force F at q that avoids local obstacles while maneuvering closer to the goal 

[9]. The artificial potential field algorithm has inherent limitations that must be considered. 

The most relevant to this work is that of local minima. The method of implementation is 

covered throughout this section beginning with the attractive potential and resulting force. 

a. Attractive Force 

The method of implementing the attractive potential and resulting force matches 

that documented in the previous thesis work done by Hargadine in [4], and is briefly 

covered for completeness. The method is inspired by Latombe’s description of a parabolic 

potential in [9], where the potential field Uatt at point q is  

 21( ) ( )
2att goalU q qξρ= , (25) 

where ξ is a positive gain that can be tuned to adjust the performance of the AGV, and 

ρgoal is the Euclidean distance to the goal from q.  

A characteristic of the parabolic well is that the forces at extreme distances from 

the goal extends toward infinity which is undesirable. To avoid this the resulting attractive 

force has a bounded magnitude to ensure the AGV operates at a safe speed. A safe speed 

is defined by responding well to repulsive forces, and does not endanger the platform. The 

repulsive force is expanded from the work in [4], and is described in the next section. 

b. Repulsive Force 

The repulsive force implemented in this thesis builds on the work done by 

Hargadine by adding methods of sensing obstacles. The previous work uses the description 

of a repulsive potential described in [9] as 
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which has a range of influence defined by ρ0 and a gain η for tuning behavior near obstacles, 

and ρ(q) represents the range to the sensed obstacle. Equation (26) is the basis for 

generating the repulsive forces used to avoid obstacles. 
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The repulsive force is the result of the AGV perception of obstacles by the LIDAR 

and camera as well as knowledge of nearby known obstacles. Each component is developed 

similarly, but with consideration for the ways obstacles are represented by the sensing 

mechanism. 

The LIDAR component is built upon the idea of a point cloud where each return 

contributes to the total LIDAR force using the standard repulsive force model as seen in 

[9]. The total LIDAR force FLIDAR implemented in [4], and used in this work, is 
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where ηLIDAR is a scalar gain for the LIDAR generated force, ρi is the distance associated 

with the ith return, ρL0 is the maximum detection distance that contributes to the repulsive 

force, and θi is the angle associated with the return. 

The force from known obstacles FKnown is a new addition to the AGV capabilities. 

This was initially implemented to avoid areas where terrain had been identified and uses 

the standard repulsive force potential. Due to observed behavior in operation the force was 

simulated in MATLAB; the simulations are discussed in Section IV.D. Those simulations 

revealed that constraining the input of the force to the three known obstacles closest to the 

AGV provided smoother behavior. This was carried over to the implementation on the 

AGV, and the force component from known obstacles is generated according to 
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Equation (28) is similar to Equation (27) used for the LIDAR but has its own range of 

influence ρK0 and gain ηKnown. This differs slightly from the method used for the LIDAR in 

that it generates the force based on the relative position of the obstacle [xi, yi]T from the 

AGV position [xR, yR]T. 

The force generated from the terrain classification is conceptually similar to the 

LIDAR force in that the image is treated as a point cloud. ClassMat, generated as described 

in Section IV.B, is used to determine which points in the image have hazardous terrain, 
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and those points are used to build FTerrain . In this case, each point was considered according 

to its precomputed range and bearing from the AGV position [ρi,j, βi,j]T as found in Section 

IV.A. Due to the limited range, greater number of returns, and the space those returns 

occupy in the reference frame of the robot, the force contribution is altered. The terrain 

force is found using 
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with a gain for overall tuning ηTerrain and range of influence ρT0 similar to the previous 

repulsive forces mentioned but includes individual component gains Gx and Gy for tuning 

behavior based on the field of view. It also drops the proportionality of the force to the 

inverse square of the distance to the observation. The removal of that proportionality 

provided more even distribution of the force over the depth of the field of view. The code 

for generating the repulsive forces is included in Appendix F. 

The total repulsive force is the sum of the three forces developed above, that is  

 Repel LiDAR Known TerrainF F F F= + + . (30) 

Throughout the discussion above, the term force is used, and this is primarily a 

matter of custom. In implementation, the total “force” is used as velocity commands for a 

robot. With proper tuning, this method typically allows the AGV to move from its initial 

position to the goal with little to no information about the workspace; however, there are 

limitations to the artificial potential fields method that can prevent the AGV from reaching 

its goal. Of particular interest to this work is the issue of local minima. The methods used 

to handle this phenomenon are discussed in the next section. 

c. Escaping Local Minima  

Local minima refer to any location in the artificial potential field surrounded by 

higher potentials other than the goal. These locations can trap the AGV. This topic is 

addressed in [34] and [35] using two different approaches. In [34], the local minima are 

dealt with by invoking a global path planner, while in [35], the obstacle responsible for the 
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local minimum is followed until the minimum is escaped. In this thesis these methods are 

modified and combined to escape local minima and not return to them. 

The process of handling local minima starts with detecting it. This thesis assumes 

two types of obstacles generate local minima, convex obstacles and terrain. Each is 

identified, confirmed, and handled in different ways. Upon confirming a local minimum, 

the location of that minimum is added to an array of known obstacles in the AGV 

databanks, which are used for future path planning and as part of the known obstacle force 

as described in Sections IV.C.1 and IV.C.2.b. Then the AGV executes an escape mode 

depending on the type of local minimum identified. If the minimum is due to convex 

obstacles, then the system uses a wall-following algorithm to escape. This method is 

developed and discussed further in [4], and is briefly discussed here for completeness. 

(1) Wall Following 

The Wall Following state was entered when the AGV became trapped in a local 

minimum due to convex obstacles. These local minima were identified and confirmed 

when the force due to the attractive force and LIDAR force was less than a threshold τLIDAR . 

The escape algorithm followed the boundary of the obstacle forming the local minima by 

keeping it perpendicular to the AGV. This may cause the AGV to get farther from the goal 

in the process. The system determined the direction to follow the obstacle by referencing 

the direction it was pushed by the LIDAR force prior to entering the Wall Following state. 

To escape the Wall Following state, the system tracked its distance to the goal gdist , and 

compared this to g0, which started as the distance to the goal upon entering the Wall 

Following state. Each time gdist < g0 then g0 was set equal to gdist and a count variable dcount 

was incremented. When dcount exceeded a tunable threshold, the system exited the Wall 

Following state. Local minima due to terrain were dealt with differently than convex 

obstacles.  

(2) Terrain Following 

Potential local minima due to terrain were identified whenever the terrain force 

exceeded a threshold τTerrain . Confirming a minimum required that the previous iteration 
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identified a potential minimum, and the terrain force generated on that iteration was in 

excess of τTerrain . Upon confirming the local minimum, the AGV entered the Terrain 

Following state. The narrow field of view of the camera and the reliability of classification 

made it infeasible to keep the terrain perpendicular to the AGV as was done in the Wall 

Following state. One analogous approach was to determine the orientation of the terrain 

and place a temporary goal at a set distance from the AGV along that orientation, 

essentially following the orientation of the terrain for a short distance. This required 

determining the orientation of the terrain, which was accomplished using the Hough 

transform. It also required determining which side of the AGV the temporary goal would 

be placed along this orientation.  

(3) Finding the Orientation of the Terrain 

Finding the orientation of the terrain was accomplished by using the Hough 

transform in a multi-step process that began with capturing an image immediately after 

entering the Terrain Following state. The next step was an edge detection algorithm that 

yields the edges in the image. For this thesis, the Sobel method was used. The Sobel method 

entails passing the image through a filter that approximates a horizontal gradient as well as 

a filter that approximates a vertical gradient. The resulting gradient images are then 

summed and subjected to a threshold, such that values less than the threshold are set to 

zero. This edge image is analyzed in the ρ-θ space to determine if lines exist in the image, 

and if so where the most discernable lines are. This process is accomplished in MATLAB 

by using the series of functions from the Image Processing Toolbox: edge, hough, 

houghpeaks, and houghlines. This generated the standard Hough transform for the image 

and the five most prominent lines in the image were used to determine the orientation of 

the terrain in the image ψimage . Figure 23 shows an example of an image and the results of 

the standard Hough transform. 
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Figure 23. Example image and the resulting Hough Transform 

information overlaid on the results of edge detection process 

Upon having ψimage and the precomputed locations associated with each pixel, 

found in Section IV.A, it was possible to determine the orientation of the terrain ψTerrain 

relative to the robot. 

(4) Placing the Temporary Goal 

To escape the local minimum induced by terrain, it was chosen to place a temporary 

goal 2.5 meters from the robot in the direction of the orientation of the terrain. This distance 

allowed the robot to avoid the terrain it had encountered, and it was also not so far that it 

allowed the overall mission to be neglected. This did yield two possibilities for placing the 

temporary goal along the orientation, left or right of the robot. This choice was made 

according to the direction it had been pushed by the terrain force. The robot then places the 

temporary goal according to  
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where ψTerrain accounts for any adjustment required for turning left or right of the AGV. 

The AGV then uses artificial potential fields to travel to the temporary goal. Upon 

reaching the temporary goal, the system exits the Terrain Following state. After exiting 
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either local-minimum-escape modes the system clears any preexisting path and enters the 

Path Planning state before returning to the Artificial Potential Fields state with a new route 

to the goal. 

The system is equipped with an Emergency Response state that reacts to being too 

close to obstacles, and was implemented for safety purposes. The Artificial Potential Fields 

state is not well suited for handling dynamic obstacles, such as pedestrians, and in the event 

something or someone were to abruptly approach the robot, the Emergency Response mode 

was able to avoid collisions. Regardless of the state the AGV is in, if three or more LIDAR 

returns indicate an obstacle is within half a meter it will enter emergency mode. This mode 

causes the AGV to stop for four seconds and then reverse for four seconds. It then rechecks 

the area and, if necessary, executes the same protocol. Otherwise, it returns to the state it 

was in prior to entering the Emergency Response state. 

This completes the description of how the vision was integrated into the AGV 

architecture. This leaves two areas important to this work undeveloped. The first is the 

simulation process, which led to refining the known obstacle positions, determining the 

number of obstacles to include in the known obstacle force, and developing the path 

planning process. The second is the fact that the system required operator oversight as it 

developed awareness of the workspace. As the system identified locations of obstacles, it 

was known that there was noise in the positions, and this was typically mitigated through 

refining those positions. In some cases, refinement was insufficient to mitigate the degree 

of error in the obstacles position, and in those cases the obstacles had to be removed from 

the AGV databanks. These topics are addressed in the next sections 

D. SIMULATION 

Simulating the effects of the known obstacles led to the development of many of 

the techniques used throughout the navigation solution proposed by this thesis, such as 

refining obstacle location and developing the path planning algorithm. The simulation was 

built in MATLAB as an implementation of the artificial potential field algorithm with the 

simulated robot reacting solely to known obstacles. Due to the inherent limitations of the 

artificial potential field algorithm discussed in [34], the simulation was outfitted with a 



53 

method analogous to the wall-following mode discussed in [35] to escape local minima 

and mimic the AGV capabilities.  

The simulations emulated the robot maneuvering from the opposite side of an 

impassable region toward its goal location. For these simulations the obstacle region was 

described by points on the edge of the region. This set of obstacles was used in the 

simulation to examine the behavior of the robot under several scenarios, and is visualized 

in Figure 24 along with the simulated initial position of the robot and goal location. This 

process enabled resolving initial parameters for the known obstacle force for real world 

testing, and led to discovering the benefits of obstacle refinement and path planning. 

 
Figure 24. Representation of true obstacle position for use in simulation 

The initial simulations used the known obstacles at the true locations, and they were 

followed by simulations where the obstacles had noisy positions. The behavior of the 

simulated robot with noisy obstacle locations was considered similar to that experienced 

with the AGV prior to conducting the simulations. 
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The next simulation implemented the large-scale approximate cell decomposition 

with least squares fit to refine the obstacle locations. In addition to examining the effects 

of refining the noisy obstacle location, this simulation was used to investigate the known 

obstacle force contribution, the range of influence, and the repulsive gain for known 

obstacles. The simulations were analyzed with a focus on the quality of the trajectory and 

obstacle refinement as nearly all resulted in the simulated robot reaching the goal position. 

Quantitative analysis was restricted to how close the simulated robot got to the known 

obstacles. 

The final set of simulations were run using noisy obstacles, refined as described, 

and included the path planning algorithm using A* search. The results of the simulations 

are discussed in Section V.C. This provided insight into the ability to refine the known 

obstacle positions, but hinged on the fact that obstacles were reasonably noisy. Those 

obstacles identified in locations that were beyond the reasonable threshold were dealt with 

by operator oversight; this process is discussed in the next section. 

E. OBSTACLE OVERSIGHT 

While it was possible to handle the noisy placement of obstacles in liminal spaces 

there were times the system memorized locations of obstacles that were erroneous beyond 

noise. This led to manually inspecting the obstacles the AGV had in its memory. The 

erroneous locations were typically due to the localization being vastly off base, but was 

also observed due to egregious misclassification of terrain. 

To check the locations of the known obstacles, they were converted to latitude and 

longitude values using the AlvinXY projection. This method is discussed in [36], and 

requires using a reference point to serve as the local origin to determine the approximate 

linear distance of a degree in latitude mdeglat and longitude mdeglon by using 

 deglat 0 0 0111132.09 566.05cos(2 ) 1.2cos(4 ) 0.002cos(6 )m φ φ φ≈ − + −  (32) 

and 
 deglon 0 0 0111415.13cos( ) 94.55cos(3 ) 0.12cos(5 )m φ φ φ≈ − − , (33) 
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where ϕ0 is the latitude of the reference point. This was used to convert the position of 

obstacles (xi, yi), stored as meters from the origin in the rectilinear plane to latitude and 

longitude (ϕi, λi) with the reference point as the origin using 

 0
deglat

i
i

y
m

φ φ= +  (34) 

and 

 0
deglon

i
i

x
m

λ λ= + , (35) 

where λ0 is the reference longitude [36]. 

Upon converting the known obstacle locations to latitude and longitude, it was then 

possible to store them as a KML file using the kmlwritepoint function, part of the 

MATLAB Mapping Toolbox. The file generated was then viewed in Google Earth Pro to 

verify the position of known obstacles. Removing erroneous obstacles only required 

deleting the offending coordinates from the AGV databanks. 
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V. EXPERIMENTS AND RESULTS 

The methods described in Chapters III and IV provided a means of identifying and 

avoiding hazardous terrain. The results of this design solution are presented and analyzed 

throughout this chapter. This chapter starts with the growth and analysis of several random 

forests designed for terrain classification. This is followed by the results of the filtering 

process used to reduce misclassifications. From there the results of the simulations 

described in Section IV.D and their ramifications are discussed. Finally, real-world trials 

of the fully integrated navigation solution are presented and discussed to conclude this 

chapter.  

A. TERRAIN CLASSIFICATION 

The first goal of the thesis research was developing a machine learning algorithm 

to classify terrain, and the random forest machine learning algorithm was selected to 

accomplish this. Determining a random forest that provided accurate results with fast 

prediction speed started with growing several forests and examining the error associated 

with each. This formed the basis of deciding the composition of forests to be tested for 

acceptable processing times when implemented on the AGV. For this research, 12 forests 

were grown, each with 100 trees. The trees in the test set had minimum leaf sizes (MLS) 

of 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, and 55. The error associated to each forest was 

examined by using the oobError function from the MATLAB Statistics and Machine 

Learning Toolbox. The oobError function provides an unbiased estimation of the 

classification error by using out-of-bag observations [33]. The results of several of the 

forests are shown in Figure 25, and the information is representative of the set. 
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Figure 25. Out-of-bag classification error for random forests of 

various minimum leaf sizes 

No significant improvement in accuracy is shown beyond 50 trees for all MLS.  

The classification error for all forest sizes appears to asymptotically approach a value near 

0.15 as the number of trees increases. The results indicate that after 40 trees there is only  

a nominal reduction in classification error due to MLS, and that there appears to be an 

intersection of sorts at 20 trees. At 20 trees all MLSs except 1, 5, and 55, have a 

classification error of 0.165 ± 0.001. From this analysis, it was decided to constrain the 

search for an acceptable forest composition to a size of 20 to 50 trees. 
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Figure 26. Enhanced view of the out-of-bag classification error 

Analyzing all MLSs tested except 1, 5, and 55 in this range of 20–50 trees, 

illustrates that there is a small, approximately 0.01, improvement in classification error for 

any MLS, which is shown in Figure 26. An improvement of this magnitude is considered 

insignificant as the classification results will be filtered to remove misclassifications. Tests 

conducted with respect to processing time revealed that a model with 20 trees and MLS of 

10 provided adequately fast processing time. Whereas tests conducted with 50 trees were 

not fast enough to prevent lurching motion in the AGV.  

The forest with 20 trees and MLS of 10 was not the only forest composition that 

met the processing time requirements, but was settled on early in this research to move 

forward in developing the rest of the navigation solution. The testing of random forests was 

limited due to testing forests with different features that were ultimately deemed unsuitable 

for the task. Two examples of these are the use of SURF features and pixel intensities with 

color representation. SURF features were disqualified due to the long processing time  
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associated with extracting them from the interest points. While pixel intensities with color 

representation was disqualified after egregious terrain misclassifications during a test in 

the workspace, even though it had outperformed the pixel intensity versions in laboratory 

tests with mixed terrain images. 

The selected forest, with 20 trees and MLS of 10, was tested with images containing 

mixed terrain types to analyze effectiveness, identify issues, and to analyze how the 

filtering process effected the classification results. The random forest implemented on the 

AGV is compared to the random forest with 100 trees and MLS of 5 as it had the least 

classification error of any developed during the initial assessment of forest composition. 

The classification error of the implemented forest is 0.1653 compared to the 0.1531 for the 

forest with 100 trees and MLS equal to 5. Going forward these forests will be referred to 

as the Implemented Forest and the Least-Error Forest.   

Comparing the performance of the two forests involved generating predictions for 

the same image, and overlaying the results on the image. The overlay uses red X’s to 

indicate classification of hazardous terrain, and green O’s to indicate classification of 

traversable terrain. Comparing the markers to the terrain they overlay allows analyzing the 

effectiveness of the terrain classification. For example, if a green O overlaps traversable 

terrain then the terrain has been correctly classified, and if a green O overlaps hazardous 

terrain then the terrain has been misclassified. Similarly, red X’s are intended to overlay 

hazardous terrain, and not traversable terrain. 

An example of prediction results for an image containing both grass and concrete 

is shown in Figure 27. Example prediction results for an image containing both mulch and 

sand paths is shown in Figure 28. 
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Figure 27. Visualized prediction results for an image with concrete 

and grass from (a) Least-Error Forest, and (b) Implemented Forest 

 
Figure 28. Visualized prediction results for an image with mulch and 

sand path from (a) Least-Error Forest, and (b) Implemented Forest 

The visualizations shown in Figures 27 and 28 provide two insights from this 

process. First, the Least-Error Forest does perform better on the test images, but the 

difference is not staggering. Second, false positives are an issue for all types of terrain 

analyzed; however, it was much more rampant when the actual terrain was the sand paths. 

In all images analyzed in this way, the forests were least successful in properly classifying 

sand paths. These images set the basis for a comparison of the original, noisy classification, 

to the filtered version. 
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The filtering process is intended to remove isolated false classifications and small 

regions of falsely identified hazardous terrain from PredMat. Results of filtering the 

PredMat visualizations shown in Figures 27 and 28 are visualized in Figures 29 and 30, 

respectively. 

 
Figure 29. Visualized filtered results for an image with concrete and 
grass from (a) Least-Error Forest, and (b) Implemented Forest 

 
Figure 30. Visualization of the filtered results for an image with mulch 

and sand path from (a) Least-Error Forest, and (b) Implemented Forest 
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One of the immediate observations from Figures 29 and 30 is the remaining 

misclassification of sand paths. This was observed throughout numerous images with sand 

paths, even after the filtering. This was a limiting factor for the terrain classification. To 

handle this limitation, the terrain force gain was tuned to ensure the system can maneuver 

over sand paths and still avoid truly hazardous terrain. 

Overall, the filtering process accomplishes the desired goal of removing small 

regions of misclassified terrain as represented in Figures 29 and 30. The result of the 

filtering process shows very similar final classification results regardless of the original 

random forest model. The Least-Error Forest is still slightly more accurate, but given the 

efficient processing time of employing the smaller forest, the trade in accuracy is 

considered worthwhile for this work. The tendency for the random forest to misclassify 

sand paths rolls over into the results from filtering. This method of effectively classifying 

terrain allowed developing a repulsive force for the artificial potential fields algorithm and 

for storing locations of hazardous terrain in the AGV databanks.  

B. MEMORY AUGMENTATION 

One of the fundamental elements used in developing the navigation solution was 

the storing of sites that generated local minima. This process is described in Chapter IV. 

By the end of this thesis work, the AGV had 148 sites stored as obstacles. The stored 

obstacles had been periodically reviewed to remove those added due to terrain 

misclassification and significant localization errors. Obstacles are shown as red diamonds 

overlaid on imagery of the workspace from Google Earth Pro in Figure 31.  
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Figure 31. Locations of obstacles identified by the AGV. Adapted from [37]. 

The system was originally run by using the locations of previously encountered 

obstacles to develop a repulsive force to avoid them, and this led to odd behavior from the 

AGV. This was especially true when there were multiple known obstacles in an area. To 

investigate why this was happening, the situation was simulated in MATLAB to determine 

methods to improve the performance as described in Section IV.D. The results of those 

simulations are discussed in the next section. 

C. SIMULATION RESULTS 

The initial simulation was conducted with the known obstacles defining the edge 

of the region in their true position to determine a performance baseline. An example of the 

initial simulation results are shown in Figure 32, where the black markers indicate the 

motion of the robot under artificial potential fields, and the magenta squares indicate the 

local minima escape mode. This simulation resulted in the simulated robot always being 

able to maneuver from the initial position to the goal without issue, and only a small portion 

of the trajectory was spent in the local-minima-escape mode.  
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Figure 32. Simulation of the known obstacle effects with true position 

of known obstacles 

The position of obstacles stored by the AGV were expected to be noisy due to the 

localization error caused by the GNSS/INS. To test the effects of known obstacles with 

noisy positions, random noise was added to the positions of the simulated obstacles, and 

the simulation was run several times. Examples of the results are shown in Figure 33. The 

results were used as a qualitative means of assessing the performance of the system and 

the representation of obstacles. 

 
Figure 33. Example simulation results of the robot trajectory in an environment 

with known obstacles having noisy positions 
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Results like those shown in Figure 33(a) visualize how noisy positions effect the 

route and behavior of the robot, and most notably tend to cause the system to spend more 

time escaping from local minima instead of flowing to the goal. 

The results shown in Figure 33(b) are not realistic as it shows the simulated robot 

entering the obstacle region defined by the points. In an actual trial the sensors on the AGV 

would prevent this from occurring. Preventing this, without relying on sensors, is handled 

by manipulating how close together obstacles are allowed to be stored. This distance could 

be set to zero, but this would be inefficient to store and would provide many sources for 

the repulsive force which could bog down the system. The path planning algorithm that 

was implemented later led to the decision to require known obstacles be at least one meter 

apart. This makes sense as obstacles within one meter of one another were logically part of 

the same obstacle/obstacle region. This eventually ensured paths were planned around 

closely spaced obstacles and prevented the AGV from slipping through closely spaced 

obstacles. As mentioned in Section IV.C.1.a, the noisy positions of obstacles negatively 

affected the AGV performance. To refine the perceived location of obstacles, a least 

squares fit is conducted over a finite neighborhood. 

The least squares fit uses a four by four-unit neighborhood. Results of the simulated 

robot after the least squares fit was conducted are shown in Figure 34, where the refined 

obstacle positions are shown as blue squares, and all other symbology remains the same. 

 
Figure 34. Example simulation results of the robot trajectory after 

refining noisy obstacle positions 
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The simulations show that the least squares fit works to clean boundaries defined 

by noisy positions along that boundary, but it does not necessarily match the orientation of 

the boundary. It also shows that it does not necessarily improve the performance of the 

system, which is still largely impacted by the geometry of a few of the simulated obstacles. 

The implementation of a path planning algorithm was a logical extension after 

developing a workspace representation to refine obstacle positions. Implementing the same 

approximate cell decomposition method, but with one-unit by one-unit cells the A* search 

algorithm, AlphaStar.m, was then employed to find an optimal path from the initial position 

to the goal. This was executed in simulation several times to ensure valid paths were 

planned and executed. A representative result is shown in Figure 35. 

 
Figure 35. Simulation results from planned path trajectory for 

the robot with refined noisy obstacle positions 

The results from the simulations involving planned paths have little difference from 

one another. The simulated path was planned around the right side of the rectangular 

region, and the simulated system did not enter the local minima escape mode. This 

demonstrated that the path planning algorithm worked for this configuration. 

Consequently, it was deemed ready for employment on the AGV. While further simulation 

of the path planning algorithm could have been conducted to test for limitations or issues 
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with the path planning algorithm or the workspace representation, it was decided these 

were unnecessary. This is based on the assumption that the real-world testing would reveal 

any issues that may exist with either. 

D. NAVIGATION IN A REAL-WORLD ENVIRONMENT 

The next step was to employ the AGV, equipped with the fully integrated 

navigation solution, in a real-world environment. Numerous trials were conducted at the 

Naval Postgraduate School campus. Each trial required establishing a local network and 

accessing the AGV via secure shell. From this interface, a ROS network was launched 

before the trial could be started from MATLAB. Not every trial resulted in the AGV 

successfully navigating from the initial position to the goal. Several trials are represented 

and discussed throughout this section in regard to the effectiveness of the navigation 

solution in the operating environment. 

1. Example 1: Operations on Tiled Concrete 

This example consists of the robot traveling from its starting point to a nearby initial 

goal, before having to travel around a region of hazardous terrain to the final goal. The 

results of the trial are shown in Figure 36. The white line represents the route of the robot 

according to the filtered GNSS/INS data, from the ROS /geonav transform, and the blue 

line is the route recorded from the GNSS fix. The differences are not significant, but are 

shown as the localization of the robot proved to be the most significant issue during the 

trials. The red diamonds represent the obstacles the AGV had stored in its memory. 
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Figure 36. Navigation on tiled concrete. Adapted from [37]. 

The trial shown in Figure 36 was the result of the system planning a route after 

having interacted with the workspace and storing the locations of several sites of hazardous 

terrain. This trial demonstrated a few successes, primarily that the navigation solution 

works by successfully planning and executing a path from the start point to the goals. This 

leans on the AGV successfully identifying and storing the location of hazardous terrain. 

The trial is not without issue in that the terrain classification experienced issues when the 

AGV reached the first region of interest, ROI 1. When the AGV reached ROI 1, it reacted 

to terrain it had misclassified as hazardous. This caused it to turn away from the waypoint 

it was headed toward, and then turn back toward it before continuing the planned route. 

The portion of the path in ROI 2 is also the result of terrain misclassification. In this case, 

the misclassification triggered the AGV to enter the Terrain Following state several times. 

Upon exiting the Terrain Following state, the system arrived within range of the goal to 

complete the trial. The run resulted in several improperly placed obstacles that were 

subsequently removed from the AGV memory. The issues with classifying terrain in this 

trial are attributed to rains that had occurred in the days preceding the trial. Given the terrain 

classifier was trained on data gathered during sunny days with no precipitation prior to data 
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collection, any alterations could feasibly affect the ability of the algorithm to accurately 

classify terrain. 

2. Example 2: Operations on Sand Paths 

Example 1 demonstrated the AGV was able to plan and execute a path along tiled 

concrete with few instances of terrain misclassification. The laboratory testing, discussed 

in Sections V.A, identified that the terrain classifier was prone to misclassifying sand paths. 

To test the performance of the system on sand paths in the real world, a trial was devised 

that required the AGV to travel along sand paths to effectively reach its goal. 

The test required that a path be planned and executed around a portion of mulch 

and bushes/trees that block a straight-line path from the first goal to the second. Prior to 

the trial shown in Figure 37, the robot was run three times in this area. One of those reached 

the goal, and two were stopped due to localization issues. The localization issues caused 

the AGV to move as if it were in a different portion of the workspace and to store obstacle 

positions in locations that were inaccurate. These obstacles were removed from the AGV 

databank, and the runs are omitted. 

 
Figure 37. Navigation on sand path. Adapted from [37]. 
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This path successfully navigates from the start point to the desired goals. The small 

deviation of the AGV trajectory in ROI 1 is the result of the AGV altering its course to 

avoid a picnic table in the area, close to where the picnic table is in the image, which is 

desired behavior for the AGV. 

3. Example 3: Long-Range Issues 

Upon completing shorter range trials, it was decided to conduct longer range trials 

to ensure the system was able to build and execute a navigation solution over a larger 

portion of the workspace. During this effort it was discovered there were two phenomena 

that are worth discussing. First, a trial in which the AGV gets trapped due to several factors 

including geometry, the physical properties of the environment, and ultimately battery life. 

Second, a trial in which the proximity of known obstacles and the repulsive force due to 

known obstacles prevents the system from being able to execute its planned path. 

In Figure 38, the AGV path is shown heading right and up in the image, but then as 

the path comes to the mulch it then follows along the mulch toward the bottom of the 

image. This was due to how the AGV approached the hazardous terrain. The issue with 

this run starts when the AGV begins to move toward the right after moving toward the 

bottom of the image. At this point the AGV is trying to avoid the mulch that is on one side, 

and must avoid the door of the building it is heading toward. The AGV entered and stayed 

in the Terrain Following state, identifying several areas of hazardous terrain, in an attempt 

to escape this situation, but the AGV ran out of battery power before it was able to escape 

the nook it found itself in. 
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Figure 38. AGV trapped by unique circumstances. Adapted from [37]. 

The trial shown in Figure 39 shows the path of the robot moving toward the second 

goal, which is located high and right off the image. As it approached the region of mulch 

it enters the Terrain Following state at ROI 1. Note that while the path in Figure 39 shows 

the AGV travelled through the mulch, the AGV never had more than one wheel in the 

mulch throughout the trial. As it travelled along the mulch the AGV tended to oscillate 

along the border of the traversable and hazardous terrain due to the limited field of view of 

the camera. While in this mode it added hazardous terrain locations to its memory as it 

moved along the border of the mulch. The AGV eventually escaped Terrain Following 

mode, and was turned around by a bench located at ROI 2. Once the AGV was turned 

around it re-entered the Terrain Following state, and headed back toward the point it 

initially entered the Terrain Following state, and escaped the Terrain Following state near 

that point. The system then planned a path that started the AGV down the sidewalk, but 

was it not able to navigate down the sidewalk due to the force from the known obstacles. 

The AGV became stuck around ROI 3 as it was trapped in a local minimum due to the 

known obstacle force. The trial was cut short at that point. To overcome situations such as 

this, the gain of the known obstacle force must be tuned to allow maneuvering through 

gaps along sidewalks, but prevent passing through narrower gaps, or by devising an escape 

mode for this phenomenon. Another takeaway from this trial is the random drastic 
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localization errors that occured. An example of these is the lines from the /geonav 

transform that are shown in ROI 4. These lines extend out several kilometers from the true 

position, and shortly afterwards the localization returns to the approximate position of the 

AGV. These short duration jumps tend not to affect the overall trials but do cause issues 

during the time the localization is drastically off. These can cause the entire behavior of 

the AGV to change. This is to be expected as it is acting on the data it has from its sensors 

while continuing to seek out the prescribed goal. 

 
Figure 39. Failed long-distance trial due to known obstacle force. 

Adapted from [37]. 

4. Example 4: Long-Range Improvements 

The trials shown in Figures 38 and 39 highlight several of the limitations of  

the AGV. In contrast to this is the trial shown in Figure 40, in which the system can  

plan its routes to the goals, avoid hazardous terrain, and overcome complex obstacle 

configurations. 
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Figure 40. Long-range trial with improved performance. Adapted from [37]. 

The information in Figure 40 is misleading in that it shows the AGV travelling in 

the mulch, this is due to the localization error. The general path is correct in that the AGV 

started on the tiled concrete, it then planned a path to the first goal and reached it without 

issue. From there the path planner developed a route to the second goal that led into the 

mulch. The portion marked as ROI 2 shows the path of the AGV as it entered and exited 

the Terrain Following state trying to escape this region. After the AGV identified there was 

not an available path in that area it then moved to the sand path. It travelled along this path, 

and only entered the Terrain Following state once before coming to the concrete walkway. 

It was at this point that the AGV battery was so depleted that the system stopped, and the 

trial was ended. Additionally, several instances of drastically inaccurate localization, 

shown as ROI 1 and ROI 3 were experienced in the trial. Again, these were not typically 

able to derail a trial, but do hinder the performance for a short period of time. 

The tests of the system were designed to examine the effectiveness of each element 

of the designed solution. Laboratory tests of the classification process provided a method 

of determining an efficient baseline classifier. They also allowed determining that the 

filtering process improved the classification results of the implemented random forest to a 
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point that was comparable with the best forest grown. The simulations allowed developing 

a method to mitigate the effect of noise in the position of obstacles, and the path planning 

method that allowed for efficient avoidance of known obstacles. Real-world tests 

demonstrated the effectiveness of the implemented solution under several different 

scenarios and environments. 

The tests also revealed limitations of the current system. The most notable 

limitations include the narrow field of view of the camera, the accuracy of terrain 

classification, and the effects of imprecise localization. Each of these limitations degraded 

the performance of the system and made it less effective in navigating through the 

workspace. The limitations did not prevent the system from accomplishing the desired 

goals of this thesis. The limitations and the assessment of the goals of the thesis are 

discussed in Chapter VI along with potential future work. 
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VI. CONCLUSION 

This thesis research developed a system that is capable of avoiding hazardous 

terrain. This same system also learns about its environment and uses that information to 

perform more effectively in future excursions. This was accomplished by pairing an 

efficient terrain classification algorithm with a navigation solution that accounts for prior 

interaction with the workspace. The navigation solution employs the motion planning of 

artificial potential fields and conducts path planning using the AlphaStar.m script. 

AlphaStar.m uses a modified application of approximate cell decomposition and A* search 

to find the optimal path from the initial position of the AGV to the goal. An assessment of 

the thesis goals, discussion of the limitations, and areas for potential future work are 

contained within this chapter. 

A. ASSESSMENT OF GOALS 

The purpose of this thesis work was to develop a method for an autonomous ground 

vehicle to identify and avoid hazardous terrain. Two goals were developed to achieve this 

purpose. The first goal was to develop a machine learning algorithm to classify terrain. The 

second goal was to develop a method for avoiding hazardous terrain once it had been 

identified. The assessment of these goals is discussed in this section. 

The goal of identifying terrain types using a machine learning algorithm was 

accomplished by growing a random forest that was trained using images of homogenous 

terrain from the testing area. The forest selected for this thesis research was chosen from 

the tradespace of predictive accuracy and processing speed, and it provides adequate 

predictive accuracy in a timely manner. 

The second goal—avoiding hazardous terrain once it had been identified—was 

accomplished using a navigation solution, coupling motion planning with path planning. 

The motion planning method used in this thesis augmented a previously developed 

artificial potential fields algorithm to account for hazardous terrain classified by the 

random forest as well as locations where the AGV had previously identified points of 

interest in the workspace. The path planning methods developed account for noisy 
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locations of known obstacles, and they use approximate cell decomposition along with the 

A* search algorithm to find an optimal route to the goal with the information it has about 

the workspace. 

The solution enabled the AGV to identify and avoid hazardous terrain during 

normal daytime operations. This in turn allowed the AGV to independently learn about its 

environment. By learning about its environment and equipping the AGV with a path 

planning solution, the AGV was able to plan its routes to avoid areas with known obstacles, 

without user input. The solution devised is not without exception and limitation, the next 

section explores some of the limitations identified during the thesis research. 

B. LIMITATIONS 

Limitations exist in several elements of the solution devised for this thesis research. 

The limitations identified will be briefly discussed in this section including the narrow field 

of view of the camera, the predictive capabilities of the random forest, and the localization 

method used. 

The decision to use a monocular vision solution resulted in a narrow field of view 

that limited the ability to visually observe the robot surroundings. Using a camera with a 

wider field of view or multiple cameras would allow for improved observation of the robot 

surroundings. In the context of this research there were numerous times throughout the 

real-world testing that the AGV would turn to avoid terrain, and as soon as the terrain left 

the field of view it would forget the terrain was there. This resulted in the AGV turning 

back toward the terrain almost immediately after the terrain was out of the field of view. A 

wider field of view would still have this issue, but with a wider field of view the system 

would be better able to travel along a terrain feature, without oscillating, while moving 

toward its goal. An alternate method of handling this issue would be implementing a short-

term memory on the AGV that allowed it to remember and react to obstacles within a small 

radius of it. 

The random forest developed had an error of approximately 16%, according to 

laboratory tests. It was noticed during real-world testing that it consistently struggled with 

properly classifying sand paths and even had issues classifying terrain if the environment 
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did not match the environment the training data was collected in. This limits the ability of 

the system to maneuver throughout the workspace, and at times required the user to remove 

obstacles the system erroneously identified along otherwise traversable terrain. It is 

expected that by using the proper combination of feature, machine learning algorithm, and 

parameters for the machine learning algorithm it is possible to improve prediction accuracy 

and speed which would allow the system to navigate better and more efficiently. This must 

also be paired with a set of training data that includes examples from numerous 

environmental conditions to build a more robust classifier. 

The localization of the AGV caused issues throughout testing and frustrated the use 

of known obstacles for path planning and known obstacle avoidance. The localization 

solution was taken from the GNSS/INS. The GNSS/INS unit has built in filtering and 

optimal estimation capabilities. The optimal estimation process onboard the unit has yet to 

be fully analyzed in the theses that have used the similar AGV design. The resulting 

localization of the AGV is accurate, though not precise. Due to the positional error shifting 

with each location update, the noise in the system becomes problematic. The major 

problems and limitations arise when the system cannot reach the desired location due to 

the localization error. The localization errors associated with the AGV are highly 

prohibitive as they affect the ability of the system to navigate to features that will require 

precision such as doorways, ramps, and elevators. The limitations and problems 

encountered during the thesis work inspire the concepts of future work for this project. 

C. FUTURE WORK 

The areas for potential future work were conceived due to the limitations observed 

during testing and evaluation of the current thesis research. Some of the areas include the 

terrain classification process, the sensors used, and the localization methods.  

The terrain classification process was approached using the random forest machine 

learning algorithm, but there are many other machine learning algorithms that could have 

been used. These may provide better results with the data that is available from the sensors 

onboard the system. Additionally, the actual features used in training and classification 

may be investigated to determine if the use of a different feature may provide better 
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classification. Work may also be done to classify terrain according to the subcategories 

captured in this work rather than the just the two categories used. Multiple categories could 

be used for motion planning, choosing routes through terrain that is best for the AGV, and 

providing greater detail to the information the AGV has about the workspace. 

Research opportunities exist in improving the random forest developed to 

classifying terrain. This could include exploring improving the classification accuracy 

through feature type or size and composition of the forest. It may also work to reduce 

classifying traversable terrain as hazardous by incentivizing the classification of 

traversable terrain during the random forest growth process. Additionally, work could be 

done to reduce the depth of trees in the random forest to provide faster classification. Work 

of this type would require further investigation of the tradespace balancing classification 

accuracy and processing speed. 

Another element of the overall classification process that could be explored is the 

filtering process used to eliminate false classification. This could explore other 

morphological processes, other image processing techniques, or it could account for 

information from the image in filtering the classification results from the machine learning 

algorithm. 

Augmenting the sensor suite of the system would serve a plethora of purposes. By 

including a LIDAR capable of providing information about the ground around the AGV it 

may be possible to improve the terrain classification results. A LIDAR capable of this 

would also provide information about obstacles that are below the horizontally mounted 

LIDAR which present a rare but significant issue for the AGV. Whereas a second camera 

could be installed to widen the field of view and give more information about the 

workspace if incorporated with the terrain classification process. 

The current method of localization relies on the use of the GNSS/INS which has 

demonstrated to be useful but riddled with error large enough to affect system performance. 

Exploring methods of improving the localization effort could include using the raw data 

from the INS, GNSS, the wheel encoders, and the camera to develop an optimal estimation 

to improve the localization. Alternatively, developing a map of the workspace with the 
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LIDAR, and then using the LIDAR readings to correlate to that map is another method of 

potentially improving the localization. An additional localization methodology worthy of 

exploration could be using time delay of arrival of signals emitted from known locations 

to identify the location of the AGV. 
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APPENDIX A.  DATA COLLECTION SCRIPT 

%% Matlab Script 
% Grab webcam image and save to a file while iteratively naming them 
 
% If the path is not added and saved due to permissions the below is 
% required 
% addpath 
/home/calvin/Documents/MATLAB/SupportPackages/R2016b/toolbox/matlab/web
cam/supportpackages 
 
clear cam 
cam = webcam('Microsoft');  % camera object is set to the 'Microsoft'  
% camera attached, may need revision if using multiple cameras with the  
% same maker 
 
I = snapshot(cam);  % grabs a snapshot from the webcam 
for i = 1:5         % this loop is added at the front end of the script 
    % due to observed adjustments to the cameras digital parameters 
    % that effect contrast, saturation, etc.  The camera adjusts those  
    % automatically, and by taking a series of pictures they appear to  
    % settle so the images are no longer observably inaccurate. 
    I = snapshot(cam); 
    imshow(I) 
    pause(2) 
    close all  % none of these photos are saved 
end 
%% Iterative loop to grab a photo every 5 seconds 
i = 1;  % this counts the iterations/number and name of the photo 
 
while i > 0 
         
        if i == 1   % make a directory for the photos to be saved in 
            dirName = 'Gathered_Images';  
            mkdir(dirName);        % redundant for i > 1 
        end 
         
        ImDir = 
sprintf('/home/calvin/pioneernav/MATLABScripts/%s',dirName);   
        % sets the filepath for the newly created directory 
%% Grab the webcam snapshot and save to file 
 
        I = snapshot(cam);  % grab photo 
        
        fileName = sprintf('Img%03d.png',i);  % write image file name 
        FullFileName = fullfile(ImDir,fileName); % set fullfile name 
        imwrite(I, FullFileName);  % write image, file name ensures 
format 
        pause(5)  % wait 5 seconds, can be adjusted 
        
        i = i+1;  % increment the index 
end 
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APPENDIX B.  GROWING A RANDOM FOREST 

%% Build Tree Classifier 
 
load('TerraVars.mat', 'FixPts'); 
 
good = zeros(1,146); 
bad = ones(1,135); 
GrdTruth = [good, bad]; 
 
% Mix the photos (attempt to avoid biasing) 
P = randperm(281); 
PermTruth = GrdTruth(P); 
         
charVals = zeros(719360,122); 
ImDir = sprintf('/home/calvin/pioneernav/MATLABScripts/Train_Img'); 
 
 
LL = sub2ind([1280,800], FixPts(:,1), FixPts(:,2)); 
for j = 1:281  % Number of images to analyze 
    % Load Image 
    filename = sprintf('Img%03d.png',P(j)); 
    FullFileName = fullfile(ImDir, filename); 
    I = imread(FullFileName); 
    I = rgb2gray(I); 
     
    [features,~] = extractFeatures(I,FixPts,... 
            'Method', 'Block', 'BlockSize', 11); 
         
    features = im2double(features);  
      
 
    charVals((1+(j-1)*2560):j*2560,:) = ... 
    [features, PermTruth(j)*ones(2560,1)]; 
end 
 
%% Build the model 
TerrainModel = TreeBagger(20, charVals(:,1:121), charVals(:,122),... 
    'Method', 'classification', 'minLeafSize', 10); 
 
save('TerrainModel.mat','TerrainModel'); 
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APPENDIX C.  MISSION COMMAND 

%% Mission Command 
% code adapted from Matt Audette's thesis code 
% This code allows the user to either load in a set of pregenerated 
% waypoints for execution or write them in directly.  It then calls the 
% state-based machine to drive the AGV to those points. 
flag = false; 
 
if flag                       % load a pregen coordinateList 
    load('Experiment8WS')         
else                          % write coordinateList 
    coordinateList = [36.595276, -121.875642,0; 
                      36.594986, -121.875573,0]; 
end 
              
% Loop the State-Based Machine Code: 
for i = 1:size(coordinateList, 1) 
    %Send the coordinate and waypoint #  
    %and wait for the robot to go to that point: 
    potentialFieldToWaypointTerrainFollowWorking( coordinateList(i, :), 
i)  
end 
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APPENDIX D.  STATE BASED MACHINE 

%% Potential Field to Waypoint Function 
% Caliph Lebrun 
 
% This is function an evolution of work done by Calvin Hargadine and  
% Matthew Audette.  This script subscribes and publishes to ROS nodes 
to   
% gather information about the AGV's surrundings and then pursue its 
goal.  
% It uses a state-based machine approach to automate a P3-AT.  This 
allows  
% it to plan paths, execute those paths via artificial potential 
fields,  
% escape local minima, and perform emergency avoidance of dynamic  
% obstacles.  Recent additions, from this work, allow it to store 
location 
% information about terrain and other local minima for future path  
% planning.  The current sensor package includes GNSS/INS, LIDAR, and 
% vision.  This function provides the execution needed by the  
% MissionControl.m script. 
 
function StateBasedExecution(coordinates, goalnum ) 
    %%%% ENSURE ROS MASTER NODE IS STARTED AND MATLAB NODE GENERATED 
PRIOR TO 
    %%%% RUNNING THIS SCRIPT -- USE rosinit 
 
    %% Setup and parameter initialization 
 
    % Create global variables for use in communicating with ROS system 
    global Pose 
    global Laser 
    global Goal 
    global NavStatus 
    global GPSFix 
 
    % Create ROS publishers, subscribers, and service client 
    poseSub = rossubscriber('/geonav_p3odom',@p3atPoseCallback); 
    laserSub = rossubscriber('/scan',@p3atLaserCallback); 
    cmdPub = 
rospublisher('/RosAria_Node/cmd_vel','geometry_msgs/Twist'); 
    goalPub = rospublisher('/nav/goal_odom','nav_msgs/Odometry'); 
    casePub = rospublisher('/current_case','std_msgs/String'); 
    goalSub = rossubscriber('/geonav_goalodom',@p3atGoalCallback); 
    navstatusSub = rossubscriber('/nav/status',@p3atNavStatusCallback); 
    fixSub = rossubscriber('/gps/fix',@p3atGPSFixCallback); 
    client = rossvcclient('/reset_kf'); 
 
    % Pause for publisher/subscriber registration 
    pause(2) 
 
    % Create empty messages for publication 
    caseMsg = rosmessage(casePub); 
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    cmdMsg = rosmessage(cmdPub); 
    goalMsg = rosmessage(goalPub); 
 
    % Get parameters and goal information the robot 
    [param, ~] = robotConfigReader_multigoal; 
 
    % Ask user for desired goal number 
    current_goal = coordinates; 
 
    % Publish initial goal message for ROS system transform 
    for k = 1:5 
        goalMsg.Pose.Pose.Position.X = current_goal(2); 
        goalMsg.Pose.Pose.Position.Y = current_goal(1); 
        goalMsg.Pose.Pose.Orientation.X = 0; 
        goalMsg.Pose.Pose.Orientation.Y = 0; 
        goalMsg.Pose.Pose.Orientation.Z = 0; 
        goalMsg.Pose.Pose.Orientation.W = 1; 
        send(goalPub,goalMsg); 
        pause(0.1) 
    end 
 
    % Get current NavStatus message 
    navstatus = NavStatus.Data'; 
 
    % Ensure NavStatus is good (2) and if not, reset KF 
    if navstatus(1) ~= 2 
        call(client) 
    else 
    end 
 
    % Define parameters for navigation algorithm 
    K1 = param(3);              % forward velocity gain 
    K2 = param(2);              % turning velocity gain 
    goaldist = 2;               % distance metric for reaching goal 
    goali = 1;                  % current goal index 
    xi = param(5);              % attractive force gain 
    eta = param(4);             % repulsive force gain 
    d = param(1);               % distance above which robot velocity 
is constant 
    rho0 = param(6);            % offset from obstacle to ignore 
repulsive term 
    Gx = param(7);              % Terrain gain for force in x 
    Gy = param(8);              % Terrain gain for force in y 
    thresh = param(9);          % Terrain threshold 
    c = 1;                      % initial case variable 
    navrun = 0;                 % navigation fix status variable 
 
    % Define parameters for wall-following algorithm 
    WallFollow = false;         % initialize wall following flag 
    cnt = 0;                    % goal distance counter 
    N_Buffer = 20;              % # of measurements for mean LIDAR 
force 
    RunTurn = 0;                % initialize sum of turns in WF mode 
    Flas_Buffer = zeros(1,N_Buffer);  % initialize repulsive force 
buffer 
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    % Output velocity filter parameters 
    Kfilterold = 0.6;           % percentage of old velocity used 
    Kfilternew = 0.4;           % percentage of new velocity used 
    LinearVel_old = 0.0;        % initialize linear velocity 
    AngularVel_old = 0.0;       % initialize angular velocity 
 
    % Set up webcam  
    clear cam 
    cam =  webcam('Microsoft'); 
     
    % Load Terrain Model and FixPts 
    load('TerrainModel2.mat', 'TerrainModel') 
    load('TerraVars.mat', 'FixPts', 'RanBear', 'XYPos'); 
     
    % Load known obstacles, group them, and fit 'lines' to groups 
    ObsCheck = exist('knownObs.mat', 'file'); 
    if ObsCheck == 2 
        load('knownObs.mat', 'knownObs') 
        [Nbors,~] = NborHood(knownObs, 4); 
        RefObs = ObsRevision(Nbors); 
    else 
        knownObs = []; 
    end 
     
    % Initialize values for Terrain Following 
    TerrSpot = false;                 % Flag for spotted terrain 
    TerrConf = false;                 % Flag for confirmed terrain 
    Fter_Buffer = zeros(1,N_Buffer);  % Initialize Terrain Buffer 
    TerFlag = false;                  % Initialize if w/in 0.25m 
reached 
     
    % Initialize values for waypoint use 
    WayPtNum = 1;   
    NumofWayPts = 0; 
    waypoints = []; 
     
    % Origin Lat/Lon = [36.583093, -121.881946, 0.0] 
 
    %% State Based Machine 
    while 1                     % Infinite loop until goal is reached 
        % publish goal coordinates 
        goalMsg.Pose.Pose.Position.X = current_goal(2); 
        goalMsg.Pose.Pose.Position.Y = current_goal(1); 
        goalMsg.Pose.Pose.Orientation.X = 0; 
        goalMsg.Pose.Pose.Orientation.Y = 0; 
        goalMsg.Pose.Pose.Orientation.Z = 0; 
        goalMsg.Pose.Pose.Orientation.W = 1; 
        send(goalPub,goalMsg); 
 
        % get the laser ranges 
        laser_range = Laser.Ranges; 
 
        % angular resolution vector 
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        laser_angle = 
(Laser.AngleMin:Laser.AngleIncrement:Laser.AngleMax)'; 
 
        % get goal coordinates in XY world frame 
        q_goal = [Goal.Pose.Pose.Position.X, 
Goal.Pose.Pose.Position.Y]; 
 
        % get current GPS fix 
        gpsfix = [GPSFix.Status.Service,GPSFix.Status.Status]; 
 
        % get current nav status 
        navstatus = NavStatus.Data'; 
 
        % if good nav status, set nav status variable 
        if navstatus(1) == 2 
            navrun = 1; 
        else 
        end 
 
        % if bad nav status with previous good fix and good GPS fix, 
reset KF 
        if navstatus(1) == 3 && navrun == 1 && gpsfix(2) == 30 
            call(client) 
            navrun = 0; 
        else 
        end 
         
         % get X, Y and Theta 
        pose = Pose.Pose.Pose; 
        quat = pose.Orientation; 
        angles = quat2eul([quat.W quat.X quat.Y quat.Z]); 
        yaw = angles(1); 
        x = pose.Position.X; 
        y = pose.Position.Y; 
        th = yaw; 
 
        fprintf('X: %f, Y: %f, Theta: %f \n',x,y,th); 
        fprintf('quat.W: %f    Yaw: %f\n', quat.W, yaw); 
 
        % call the attractive force function    
        wp_x = q_goal(goali,1); 
        wp_y = q_goal(goali,2); 
         
        % Find waypoints in the workspace 
%        testx = 656; % use these for indoor code check 
%        testy = 1345; 
%% Waypoints portion 
         if isempty(waypoints)  
             [waypoints, Status] = AlphaStar([x;y], [wp_x;wp_y], 
RefObs); 
             WayFlag = true;  
             NumofWayPts = size(waypoints,2); 
         end 
          
         if WayFlag 
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             fprintf('%s \n', Status) 
             WayFlag = false; 
         end 
         
         if ~isempty(waypoints) && WayPtNum <= NumofWayPts 
             gx = waypoints(1,WayPtNum); 
             gy = waypoints(2,WayPtNum); 
             fprintf('Going to waypoint %f of %f', WayPtNum, 
NumofWayPts) 
         else 
            gx = wp_x; 
            gy = wp_y; 
            fprintf('Going to goal at %f, %f', wp_x, wp_y) 
         end 
%% Waypoints portion ends 
             
        [dist, angvel, linvel] = attforcepot(x,y,th,gx,gy,d); 
         
        % evaluate what to do next based on the distance to the 
waypoint.        
        if (dist <= goaldist) 
            % You have reached the goal 
            if (WayPtNum <= NumofWayPts) 
                % if there are multiple waypoints 
                disp('Going to next waypoint!'); 
                WayPtNum = WayPtNum + 1; 
            else 
                % Reached the goal 
%                 fprintf('WP #%d at x: %f, y: %f, Distance: 
%f\n',goalnum,wp_x,wp_y,dist); 
 
                cmdMsg.Linear.X = 0.0; 
                cmdMsg.Angular.Z = 0.0; 
                fprintf('Publishing cmd_vel with lin. vel: %f, ang. 
vel.: %f\n\n', ... 
                    0.0,0.0); 
                send(cmdPub,cmdMsg); 
                disp('Done!') 
                break;      % exit while loop as final goal is reached 
            end 
        else 
            % goal not yet reached 
            % fprintf('WP #%d at x: %f, y: %f, Distance: 
%f\n',goalnum,wp_x,wp_y,dist); 
             
        end 
        Fatt = [linvel;angvel];         % from top of loop 
         
        pause(0.1)          % pause for ROS system 
         
        %% LIDAR Portion of Force 
        [Flas, LocLas] = LidarForce(laser_range, laser_angle, rho0, 
eta); 
        MinLaserRange = length(laser_range(laser_range < 0.5));  
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        % Check to add location to map 
        if norm(xi*Fatt + Flas) < 0.5 && dist > 1 && (MinLaserRange < 
3) 
            knownObs = knownObsMemory(LocLas,th, x, y, knownObs); 
            WallFollow = true;  % flag to enter wall following mode 
        end 
        Flas_Buffer = [Flas(2), Flas_Buffer(1:end-1)]; 
         
        %% Terrain Portion of Force 
        Fterr = TerrainForce(cam, TerrainModel, FixPts, RanBear, Gx, 
Gy, thresh, eta); 
        if Fterr(2) > 0 
            yter = -0.5; 
        else 
            yter = 0.5; 
        end 
        LocTer = [1;yter];  % Due to constricted field of view and  
                                  % simplicity this is assumed 
                                   
        % if terrain is spotted and confirmed we add it to knownObs  
        % and enter Terrain Following Mode                           
        if TerrSpot && norm(Fterr) > 2 && dist > d 
            TerrConf = true;   % flag to enter terrain following mode 
            knownObs = knownObsMemory(LocTer,th, x, y, knownObs); 
        elseif norm(Fterr) > 2 && dist > d 
            TerrSpot = true; 
        else 
            TerrSpot = false; 
        end 
        Fter_Buffer = [Fterr(2), Fter_Buffer(1:end-1)]; 
         
        %% Known Obstacles Portion of Force 
        if isempty(RefObs) 
            Fknobs = [0;0]; 
        else 
            Fknobs = knownObsForce(x,y,th,RefObs); 
        end 
         
        %% switch/case for algorithm decision logic 
        switch c 
            %% Potential Field Algorithm 
            case 1               
                fprintf('Potential Field\n') 
                caseMsg.Data = 'Potential Field';   % publish current 
case to ROS 
                send(casePub,caseMsg) 
                 
                % calculate total force and build velocity terms 
                if TerrConf 
                    Ftot = [0;0];  
                else 
                    Ftot = xi*Fatt + Flas + Fterr + Fknobs; 
                end 
                fprintf('\n\nFattX: %f\nFattY: %f\n FreptX: %f\nFreptY: 
%f\nFterrainX: %f\nFterrainY: %f\nFknobsX: %f\nFknobsY; %f\n',... 
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                    xi*Fatt(1), 
xi*Fatt(2),Flas(1),Flas(2),Fterr(1),Fterr(2), Fknobs(1), Fknobs(2)); 
                LinearVel = K1*Ftot(1); 
                AngularVel = K2*Ftot(2); 
 
                % determine which case to enter next 
                if MinLaserRange > 2 
                    cPrior = 1; 
                    c = 4; 
                elseif WallFollow 
                    MeanBuffer = mean(Flas_Buffer); 
                    cnt = 0; 
                    c = 2; 
                elseif TerrConf 
                    turn = mean(Fter_Buffer); 
                    goalt = TerrainFollow(cam, XYPos, turn, yaw, x, y); 
                    c = 3; 
                    timer = 0; 
                    TerrConf = false; 
                    TerrSpot = false; 
                else 
                    c = 1; 
                end 
            %% Wall Following Algorithm 
            case 2 
                fprintf('\nWall Following\n\n') 
                caseMsg.Data = 'Wall Following';    % publish current 
case to ROS 
                send(casePub,caseMsg) 
                
                [LinearVel,AngularVel] = wallFollow(Flas, MeanBuffer);  
                cnt = cnt + 1;  % counter 
                if cnt > 1 
                    RunTurn = RunTurn + AngOut*0.1;  
                end % AngOut is the turn rate from the last iteration 
                    % 0.1 is approximate time step 
 
                % determine which case to enter next 
                if MinLaserRange > 2 
                    c = 4; 
                    cPrior = 2; 
                elseif cnt >= 10  && (RunTurn >= -0.08 && RunTurn <= 
0.08) 
                    c = 1; 
                    WallFollow = false; 
                    RunTurn = 0; 
                    cnt = 0; 
                    Flas_Buffer = zeros(1,N_Buffer); 
                    waypoints = [];  % no assumption we can reach the  
                                     % waypoints, will replan. 
                    % TerrConf = false; 
                    % TerrSpot = false; 
                else 
                    c = 2; 
                end 
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           %% Terrain Following Algorithm            
           case 3              
                fprintf('\nTerrain Following\n\n') 
                caseMsg.Data = 'Terrain Following';    % publish 
current case to ROS 
                send(casePub,caseMsg)                 
                 
                timer = timer + 1; 
                % Use Potential to temp goal 
                [dist2terr, angvelt, linvelt] = 
attforcepot(x,y,th,goalt(1),goalt(2),1); 
                 
                if dist2terr < 1 
                    TerFlag = true; 
                end 
                                 
                Ftf = [linvelt;angvelt]; 
                Ftert = xi*Ftf + Flas + Fterr + Fknobs; 
                LinearVel = K1*Ftert(1); 
                AngularVel = K2*Ftert(2); 
                                 
                % determine which case to enter next 
                % emergency avoid 
                if MinLaserRange > 2 
                    c = 4; 
                    cPrior = 3; 
                % wall follow 
                elseif WallFollow 
                    MeanBuffer = mean(Flas_Buffer); 
                    cnt = 0; 
                    c = 2; 
                % update temp goal, unplanned 
                elseif ~TerFlag && norm(Fterr) > 2 
                    knownObs = knownObsMemory(LocTer,th, x, y, 
knownObs); 
                    goalt = TerrainFollow(cam, XYPos, turn, yaw, x, y); 
                    c = 3; 
                % return to potential field 
                elseif TerFlag || (timer > 150  && norm(Fterr) < 1) 
                    % reached temp goal or been in the mode for ~30 
seconds 
                    % and terrain force is not very high 
                    c = 1; 
                    goalt = []; 
                    turn = []; 
                    TerFlag = false;  
                    TerrConf = false; 
                    TerrSpot = false; 
                    waypoints = []; 
                % continue in terrain following 
                else 
                    c = 3; 
                end 
            %% Emergency Avoidance 
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            case 4               
                ii = 0; 
                while ii < 5 
                    % stop immediately for 5 seconds 
                    fprintf('Emergency Avoidance\n') 
                    caseMsg.Data = 'Emergency Avoidance (PF)'; 
                    send(casePub,caseMsg) 
                    % populate the message 
                    fprintf('WP #%d at x: %f, y: %f, Distance: 
%f\n',goalnum,wp_x,wp_y,dist); 
                    fprintf('Yaw: %5.2f\n', quat.W); 
                    cmdMsg.Linear.X = 0.0; 
                    cmdMsg.Angular.Z = 0.0; 
                    % publish message 
                    fprintf('Publishing cmd_vel with lin. vel: %f, ang. 
vel.: %f\n', ... 
                        0.0,0.0); 
                    send(cmdPub,cmdMsg); 
                    pause(0.2) 
                    ii = ii + 0.2; 
                end 
                jj = 0; 
                while jj < 4 
                    % backup for 4 seconds to make enough room to 
maneuver 
                    % around obstacle 
                    caseMsg.Data = 'Emergency Avoidance (PF)'; 
                    send(casePub,caseMsg) 
                    fprintf('WP #%d at x: %f, y: %f, Distance: 
%f\n',goalnum,wp_x,wp_y,dist); 
                    cmdMsg.Linear.X = -0.1; 
                    cmdMsg.Angular.Z = 0.0; 
                    % publish 
                    fprintf('Publishing cmd_vel with lin. vel: %f, ang. 
vel.: %f\n', ... 
                        0.0,0.0); 
                    send(cmdPub,cmdMsg); 
                    pause(0.2); 
                    jj = jj + 0.2; 
                end 
 
                % determine if obstacle is out of minimum range 
parameter 
                if MinLaserRange > 2 
                    c = 4; 
                else 
                    c = cPrior; 
                end 
            otherwise 
        end 
 
        % build filtered output velocity parameters with bounds 
        if Kfilternew*LinearVel + Kfilterold*LinearVel_old > 3 
            LinOut = 3; 
        elseif Kfilternew*LinearVel + Kfilterold*LinearVel_old < -0.5 
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            LinOut = -0.5; 
        else  
            LinOut = Kfilternew*LinearVel + Kfilterold*LinearVel_old; 
        end 
         
        if Kfilternew*AngularVel + Kfilterold*AngularVel_old > pi/3 
            AngOut = pi/3; 
        elseif Kfilternew*AngularVel + Kfilterold*AngularVel_old < -
pi/3 
            AngOut = -pi/3; 
        else  
            AngOut = Kfilternew*AngularVel + Kfilterold*AngularVel_old; 
        end 
        cmdMsg.Linear.X = LinOut; 
        cmdMsg.Angular.Z = AngOut; 
 
        % publish on cmd_vel topic 
        fprintf('Publishing cmd_vel with lin. vel: %f, ang. vel.: 
%f\n\n', ... 
            cmdMsg.Linear.X,cmdMsg.Angular.Z); 
        send(cmdPub,cmdMsg); 
 
        LinearVel_old = cmdMsg.Linear.X; 
        AngularVel_old = cmdMsg.Angular.Z; 
    end 
end 
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APPENDIX E.  PATH PLANNING ALGORITHMS 

A. A* IMPLEMENTATION 

%% Approximate Cell Decomposition and A* 
% this function takes in the starting points of the robot, the goal,  
% and the location of known obstacles; pads it, and outputs a list of  
% waypoints path through the cells. 
% This function works in the UTM frame or any generic xy defined frame.   
% It does not take in or output information in lat/lon 
 
function [waypoints, Status] = AlphaStar(Pose, Goal, knownObs) 
    %% Generate the Cells 
    cellDim = 1;   % Observationally, the robot shhould be able to   
                   % handle a cell of width 1m, without significant 
                   % issues 
    PoI = [Pose, Goal, knownObs];  % this function assumes that none of  
                                   % these reside in the same cell 
    % build the padding 
    minX = min(PoI(1,:)); 
    maxX = max(PoI(1,:)); 
    minY = min(PoI(2,:)); 
    maxY = max(PoI(2,:)); 
    bord = 4*cellDim; 
    corners = [minX-bord, minX-bord, maxX+bord, maxX+bord; 
               minY-bord, maxY+bord, minY-bord, maxY+bord]; 
    PoI = [PoI, corners]; 
    [Nbors, MidPoints] = NborHood(PoI, cellDim); 
     
    %% A* 
     
    % find the initial and goal cells 
    [R, C] = size(Nbors);   
    H = zeros(R,C);    % cost from cell to goal 
    ICell = [];        % initialize q_init 
    GCell = [];        % initialize q_goal 
    for ii = 1:R 
        for jj = 1:C 
            y = Nbors{ii,jj}; 
            if ~isempty(y)   % if empty no action 
                if max(y(1,:) == Pose(1)) 
                    if max(y(2,:) == Pose(2)) 
                        ICell = [ii,jj]; % q_init 
                    end 
                end 
                if max(y(1,:) == Goal(1))  
                    if max(y(2,:) == Goal(2)) 
                        GCell = [ii,jj]; % q_goal 
                    end 
                end 
            end 
        end 
    end % Cells identified, could be in the same cell 
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    % empty corners 
    Nbors{1,1} = []; 
    Nbors{1,C} = []; 
    Nbors{R,1} = []; 
    Nbors{R,C} = []; 
    if ~isempty(GCell) && ~isempty(ICell) 
        % Next we fill H 
        for ii = 1:R 
            for jj = 1:C 
                NN = size(Nbors{ii,jj},2);  % check if cell is occupied 
                if NN ~= 0                  % if the cell is not empty 
                    flag = true;            % track if q_init/q_goal  
                                            % were assigned 
                    if ii == GCell(1) && jj == GCell(2) 
                        H(ii, jj) = 0;      % h to q_goal is 0  
                        flag = false; 
                    end 
                    if ii == ICell(1) && jj == ICell(2) 
                        H(ii,jj) = norm(MidPoints{ii,jj} -... 
                        Goal); % h to q_init is  
                                            % 2-norm to q_goal 
                        flag = false; 
                    end 
                    if flag 
                        H(ii,jj) = inf; 
                    end 
                else                        % internal map indicates  
                                            % empty cell 
                    H(ii,jj) = norm(MidPoints{ii,jj} -... 
                        MidPoints{GCell(1), GCell(2)}); 
                end 
            end 
        end 
 
    % this check method places infinite cost in cells only containing   
    % obstacles, any that have obstacles and goal or init will be   
    % assigned a cost and online obstacle avoidance will have to handle 
    % it. 
     
    % now for some image processing techniques 
    ObsOutline = isinf(H); 
    nhood = ones(2); 
    se = strel(nhood); 
    ObsSpace = imdilate(ObsOutline,se);  % this grows every obstacle  
                                         % using the morphological 3x3  
                                         % neighborhood, it gives  
                                         % standoff and closes gaps in  
                                         % occluded cells so that we  
                                         % don't plan a path between  
                                         % them (based on assumption  
                                         % that obstacles are  
                                         % continuous) 
    ObsSpace = bwmorph(ObsSpace, 'skel', inf); 
    ObsSpace = bwmorph(ObsSpace, 'diag'); 
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    H(ObsSpace) = inf; 
    % ensure q_init and q_goal are not set to inf 
    H(GCell(1), GCell(2)) = 0; 
    H(ICell(1), ICell(2)) = norm(MidPoints{ICell(1),ICell(2)} -... 
                        MidPoints{GCell(1), GCell(2)}); 
     
    % Now we build the path to the goal 
    goalReached = false; 
    N = ICell; 
    CostMat = zeros(R,C); 
    visited = zeros(R,C); 
    Path = cell(R, C); 
    CostMat(N(1),N(2)) = H(N(1),N(2)); 
    Path{N(1), N(2)} = ICell; 
    Status = 'No Info'; 
    StatFlag = false; 
    waypoints = []; 
    while ~goalReached 
        for ii = -1:1 
            if N(1) == 1 && ii == -1              % Boundary check row 
            elseif N(1) == R && ii == 1 
            else 
                for jj = -1:1  
                    if N(2) == 1 && jj == -1      % Boundary check cols 
                    elseif N(2) == C && jj == 1     
                    elseif ~((jj == 0) && (ii == 0)) % do not check 0,0 
                        runGoCost = CostMat(N(1),N(2))-H(N(1),N(2));  
                        % the go cost to the origin cell along the  
                        % shortest path found thus far 
                        goCost = norm([ii;jj])*3; % cost to get to the  
                        % cell being inspected from the origin cell  
                        % (not q_init) 
                        HCost = H(N(1) + ii, N(2) + jj);  
                        % 2-norm from midpoint of cell to midpoint 
                        % of goal cell (inf if obstacle present) 
                        costTemp = runGoCost + goCost + HCost;  
                        % potential cost to get to the cell in question 
                         
                        % assign cost from first encounter 
                        if CostMat(N(1) + ii, N(2) + jj) == 0 
                            CostMat(N(1) + ii, N(2) + jj) = costTemp; 
                            Path{N(1) + ii, N(2) + jj} = [Path{N(1), 
N(2)}; [N(1) + ii, N(2) + jj]]; 
                        % update if cost is cheaper 
                        elseif CostMat(N(1) + ii, N(2) + jj) > costTemp 
                            CostMat(N(1) + ii, N(2) + jj) = costTemp; 
                            Path{N(1) + ii, N(2) + jj} = [Path{N(1), 
N(2)}; N(1) + ii, N(2) + jj]; 
                        end  % if otherwise make no changes                   
                    end 
                end 
            end 
        end 
        visited(N(1),N(2)) = 1;   % indicates the origin cell has been  
                                  % visited  
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        %% determine the next cell to check 
        % lowest cost, and unvisited 
        ind = find(CostMat > 0);  % provides indices of nonzero values  
                                  % in cost matrix 
        [~,I] = sort(CostMat(ind), 'ascend'); % provides index of the  
                                              % sorted costs in  
                                              % ascending order 
        ind = ind(I);             % orders the indices from the lowest  
                                  % cost to the highest                          
         
        n = 1; 
        Next = false; 
        while ~Next               % checks the visited matrix, if one  
                                  % checks again.  This increments the  
                                  % indices to check the next lowest  
                                  % cost, always starts at one 
             
            [row, col] = ind2sub([R,C], ind(n)); 
            if visited(row,col) == 0 
                Next = true; 
                N = [row, col]; 
            else 
                n = n + 1; 
            end 
            if n > length(ind)  % this doesn't seem possible, but it is 
                StatFlag = true; 
                break; 
            end 
        end 
                 
        if N(1) == GCell(1) && N(2) == GCell(2) 
            goalReached = true; 
            for ll = 1:length(Path{N(1),N(2)}) 
                waypoints = [waypoints, 
MidPoints{Path{N(1),N(2)}(ll,1),... 
                                           Path{N(1),N(2)}(ll,2)}]; 
                Status = 'Path found!'; 
                 
            end 
            way1 = downsample(waypoints(1,:),4,1); 
            way2 = downsample(waypoints(2,:),4,1); 
            waypoints = [way1;way2]; 
                                     % we are already in the initial   
                                     % cell, and the downsampled  
                                     % version smooths the overall path  
        elseif StatFlag 
            waypoints = Goal;  
            Status = 'Heading to Goal!'; 
        end         
    end     
    else  
    waypoints = Goal; 
    Status = 'Heading to Goal!'; 
    end  
end 
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B. APPROXIMATE CELL DECOMPOSITION  

%% NborHood 
% this script is designed to divide the area that has known obstacles  
% into cells that will then be fed to a separate function to refine the 
% placement of those obstacles in order to alleviate jagged edges when 
% dealing with the control algorithm, and for path planning. 
 
function [Nbors, MidPoints] = NborHood(knownObs, Inc) 
    cols = ceil((max(knownObs(1,:))-min(knownObs(1,:)))/Inc); 
    rows = ceil((max(knownObs(2,:))-min(knownObs(2,:)))/Inc); 
    startX = min(knownObs(1,:)); 
    startY = min(knownObs(2,:)); 
     
    Nb = cell(rows, cols);  % initialize Neighborhood cell array 
    MP = cell(rows, cols);  % initialize Midpoint cell array 
     
    for ii = 1:rows         % Populate neighborhoods and midpoints 
        for jj = 1:cols 
            Lrow = double(knownObs(1,:) >= startX + Inc*(jj-1)); 
            Urow = double(knownObs(1,:) < startX + Inc*(jj)); 
            BoundRow  = (Lrow==Urow); 
            subRow = knownObs(:,BoundRow); 
            Lcol = double(subRow(2,:) >= startY + Inc*(ii-1)); 
            Ucol = double(subRow(2,:) < startY + Inc*(ii)); 
            BoundCol  = (Lcol==Ucol); 
            if max(BoundCol) == 1 % something is in the neighborhood 
                Nb{ii,jj} = subRow(:,BoundCol); 
            else                  % neighborhood is empty 
                Nb{ii,jj} = []; 
            end 
            MP{ii,jj} = [startX + Inc*(jj-2) + 0.5*Inc; 
                         startY + Inc*(ii-2) + 0.5*Inc]; 
        end 
    end 
    Nbors = Nb; 
    MidPoints = MP; 
end 
 

C. OBSTACLE REVISION 

%% ObsRevision 
% revision of the placement of known obstacles using least mean  
% squares, with linear assumption.  This function is fed by the  
% NborHood function to find the points that are in the same  
% neighborhood 
 
function NewObs = ObsRevision(Nbors) 
    [R,C] = size(Nbors);   % determines range for the double 'for' loop 
    NewObs = [];           % initializes our output 
     
    for ii = 1:C 
        for jj = 1:R 
            y = Nbors{jj,ii};  
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            len = length(y);  % value is used throughout 
            newObs = [];   % initializes the output from each cell 
            if len == 0 
            elseif len > 2 % computes the LMS solution for line to the  
                           % points in the neighborhood 
                c1 = ones(len,1); % constant in linear regression 
                c2 = (0:len-1).'; % slope in linear regression 
                M = [c1,c2];      % Matrix used to find the line that  
                                  % best fits the neighborhood 
                % the following is done bc order matters in LMS 
                [minX, maxX] = bounds(y(1,:)); 
                [minY, maxY] = bounds(y(2,:)); 
                dx = maxX - minX; 
                dy = maxY - minY; 
                if dx > dy 
                    [~,I] = sort(y(1,:),'ascend'); 
                else 
                    [~,I] = sort(y(2,:),'ascend'); 
                end 
                y = y(:,I); 
                Beta = (M.'*M)^(-1)*M.'*y.'; % this is the constant and  
                                             % slope associated to x  
                                             % and y 
                cnt = 1;   % iteration variable due to bounding 
                for ll = 1:len*2 % assuming we know there is a feature  
                                 % in this cell we can improve control  
                                 % in that region by adding other  
                                 % points 
                    temp = Beta(1,:).' + Beta(2,:).'*(ll-1); 
                    if dx > dy 
                        if temp(1) >= y(1,1) && temp(1) <= y(1,end) 
                            newObs(:,cnt) = temp; 
                            cnt = cnt+1; 
                        end 
                    else 
                        if temp(2) >= y(2,1) && temp(2) <= y(2,end) 
                            newObs(:,cnt) = temp; 
                            cnt = cnt+1; 
                        end 
                    end 
                end 
            elseif sum(y == [0;0]) ~= 2 
                newObs = y; 
            end 
            NewObs = [NewObs, newObs]; 
        end 
    end 
end 
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APPENDIX F.  FORCES 

A. ATTRACTIVE FORCE 

%% Attractive Force 
% Function adapted from Calvin Hargadine’s thesis code to split up  
% code and save space. 
 
function [dist,angvel,linvel] = attforcepot(x,y,th,wp_x,wp_y,d) 
    maxvel = 3; 
 
    dist = sqrt((wp_x-x)^2+(wp_y-y)^2); 
    ang = atan2((wp_y-y),(wp_x-x)); 
    angerror = ang-th; 
 
    while angerror > pi 
        angerror = angerror-2*pi; 
    end 
    while angerror < -pi 
        angerror = angerror+2*pi; 
    end 
 
    angvel = angerror; 
     
    if dist <= d 
        linvel = dist; 
    else 
        linvel = maxvel; 
    end 
end     

B. REPULSIVE FORCES 

1. Force Due to LIDAR 

%% LIDAR Force 
% Function modifies original repulsive force due to LIDAR readings 
 
function [Flaser, LocFlaser] = LidarForce(laser_range, laser_angle, 
rho0, eta) 
     Flaser = [0;0];      % initialize repulsive force 
 
    for i = 1:1032 
        if laser_range(i) <= 20 
            % object position in the laser i coordinate in meters 
            p_laser = [laser_range(i) 0 0 1]'; 
            Xobj = cos(laser_angle(i))*p_laser(1); 
            Yobj = sin(laser_angle(i))*p_laser(1); 
            rho = sqrt(Xobj^2+Yobj^2); 
            if rho < rho0 
                Frep = eta*(1/p_laser(1)-1/rho0)*(1/(p_laser(1)^2))*[-
cos(laser_angle(i)) -sin(laser_angle(i))]'; 
            else 
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                Frep = [0;0]; 
            end 
            Flaser = Flaser+Frep; 
        else 
        end 
    end 
         
    rmean = mean(laser_range(laser_range < rho0)); 
    mangle = mean(laser_angle(laser_range < rho0)); 
    LocFlaser = [rmean*cos(mangle); rmean*sin(mangle)];  
end 

2. Force Due to Terrain 

%% Terrain Force 
% function develops force from hazardous terrain  
 
function Fterrain = TerrainForce(cam, model, fxPts, RanBear, Gx, Gy, 
thresh, eta) 
    %% Grab Photo 
    I = snapshot(cam); 
    I = rgb2gray(I); 
     
    H = 40; 
    W = 64; 
 
    %% Get Features  
    [features, ~] = extractFeatures(I, fxPts,... 
    'Method', 'Block', 'BlockSize', 11); % lifts the pixel values in an 
                                         % 11x11 cell and normalizes 
                                         % to build feature vector 
 
    features = im2double(features); 
    [label, ~] = predict(model, features);% currently not using score 
 
    PredVec = str2double(label);        % TreeBagger 'label' is a cell  
                                        % with char elements 
 
    h = (1/9)*ones(3,3);                % 3x3 Box Filter 
     
    PredMat = reshape(PredVec, H, W);   % Reshapes Vec to Mat for  
                                        % geometric sense in filtering 
  
    PredMat = conv2(PredMat, h,'same'); % smooths PredMat  
    PredMat = round(PredMat);           % thresholds PredMat 
     
    PredMat = bwareaopen(PredMat, 128); % any connected regions w/ less  
                                        % than 128 elements are removed 
 
    JJ = PredMat > thresh;              % logical of values greater 
than  
                                        % the threshold 
    Temp = cell2mat(RanBear(JJ));       % matrix reshaped by column,  
                                        % ENU frame 
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    %% Build Terrain Force Vector 
    if isempty(Temp)                    % If clear terrain, no 
repulsive force 
        Fterrain = [0;0];            
    else                                % Build force to avoid detected 
terrain 
        Fterrain = [0;0];                  
        X = size(Temp,2);  
        for ii = 1:X 
            Fterra = -eta*(1/Temp(1,ii)-1/2.5)*...  
                     [Gx*cos(Temp(2,ii)); Gy*sin(Temp(2,ii))]; 
            Fterrain = Fterrain + Fterra; 
        end 
    end 
end 

3. Force Due to Known Obstacles 

%% Known Obstacle Force 
% develops force from known obstacles within region of influence 
 
function [Fknobs] = knownObsForce(x,y,th,knownObs) 
    Rho0 = 6; 
    Eta0 = 2; 
    Fknobs = [0;0];   % initialize known obstacle force 
    dist2obs = sum(([x;y]-knownObs).^2).^(1/2); % finds the distance  
                                                % to all obstacles 
    [dist2obs, I] = sort(dist2obs,'ascend'); % orders the distance from  
                                             % closest to farthest 
    KnownTemp = knownObs(:,I);        % the positions of the obstacles  
                                      % sorted from closest to farthest 
    for ii = 1:3      % contribution from 3 closest obstacles 
        if dist2obs(ii) < Rho0 
            % obstacle postion in robot frame 
            XYr = [cos(th) -sin(th);sin(th) cos(th)].'*... 
                ([KnownTemp(1,ii);KnownTemp(2,ii)]-[x;y]);             
            Ftemp = -Eta0*(1/dist2obs(ii)-1/Rho0)*... 
                (1/dist2obs(ii)^2)*XYr; 
        else 
            Ftemp = [0;0]; 
        end 
        Fknobs = Fknobs + Ftemp; 
    end   % When this loop is complete all known obstacles will have 
          % been checked and their contribution included 
    if Fknobs(1) < -3 
        Fknobs(1) = -3;  % limits the extent of the repulsion 
    end 
end 
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APPENDIX G.  ESCAPE MODES 

A. WALL FOLLOWING 

%% Wall Following Function 
% determines the velocities while in wall following mode 
% implements Calvin Hargadine’s method as a function 
 
function [linvel, angvel] = wallFollow(Flas,MeanBuffer) 
    angK = 1;                % turning velocity gain for WF algorithm 
    linK = 1;                % forward velocity gain for WF algorithm 
     
    % determine angle to the repulsive force vector 
    objang = atan2(Flas(2),Flas(1)); 
    if objang < 0 
        objang = objang + 2*pi; 
    else 
    end 
 
    objangdeg = objang*180/pi; 
 
    % determine which way to turn and keep repulsive force vector 
    % perpendicular with robot heading 
    if MeanBuffer > 0 
        if objangdeg >= 100 
            angvel = angK*0.4; 
            linvel = linK*0.05; 
        elseif objangdeg < 80 
            angvel = -angK*0.4; 
            linvel = linK*0.05; 
        else 
            angvel = 0.0; 
            linvel = 0.3; 
        end 
    elseif MeanBuffer < 0 
        if objangdeg < 260 
            angvel = -angK*0.4; 
            linvel = linK*0.05; 
        elseif objangdeg > 280 
            angvel = angK*0.4; 
            linvel = linK*0.05; 
        else 
            angvel = 0.0; 
            linvel = 0.3; 
        end 
    end 
end 

B. TERRAIN FOLLOWING 

%% Terrain Following Function 
% this function outputs a temporary goal for the robot to follow the 
% terrain. 
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function goalt = TerrainFollow(cam, XYPos, turn, yaw, x, y) 
    I = snapshot(cam); 
    I = rgb2gray(I); 
 
    %% Need ang2goal 
     
    %% Terrain Orientation 
    BW = edge(I, 'sobel'); 
    [HH, TT, RR ] = hough(BW); 
    peaks = houghpeaks(HH, 10,'threshold', ceil(0.7*max(HH(:)))); 
    lines = houghlines(BW, TT, RR, peaks); 
     
    % turn the points in the photo to points in the reference frame 
    ThetaTerr = zeros(1,length(lines)); 
    for jj = 1:length(lines) 
        xy1 = lines(jj).point1; 
        xy2 = lines(jj).point2; 
        XY1 = XYPos{xy1(2), xy1(1)}; 
        XY2 = XYPos{xy2(2), xy2(1)}; 
        ThetaTerr(jj) = atan2(XY2(2)-XY1(2), XY2(1)-XY1(1)); 
    end 
     
    % Find the average angle of the lines found 
    ThetaMean = mean(ThetaTerr);     
    ThetaTerr = ThetaTerr(ThetaTerr > ThetaMean - pi/18); 
    ThetaTerr = ThetaTerr(ThetaTerr < ThetaMean + pi/18); 
    if ~isempty(ThetaTerr) 
        Theta = mean(ThetaTerr); 
    else  
        Theta = ThetaMean; 
    end 
     
    % constrain  -pi <= theta <= pi 
    if Theta > pi/2       
       Theta = Theta-pi; 
    elseif Theta < -pi/2 
        Theta = Theta+pi; 
    end 
     
    % ensure the temp goal is placed on the appropriate side 
    if turn > 0 && Theta < 0  
        Theta = Theta + pi; 
    elseif turn < 0 && Theta > 0 
        Theta = Theta -pi; 
    end 
     
    % translate point in robot frame to world frame 
    Pb = 2.5*[cos(Theta);sin(Theta)]; 
    R = [cos(yaw) -sin(yaw); 
         sin(yaw) cos(yaw)]; 
    Pa = R*Pb + [x;y]; 
    goalt = Pa; 
end 
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