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PREFACE.

The present work is intended to contain about as much
of the Calcuhis as an undergraduate student, either in Arts

or Science, can be expected to master during his regular

course. He may find more exercises than he has time to

work out; in this case it is suggested that he only work

enough to show that he understands the principles they are

designed to elucidate.

The most difficult question which arises in treating the

subject is how the first principles should be presented to the

mind of the beginner. The author has deemed it best to be-

gin by laying down the logical basis on which the whole

superstructure must ultimately rest. It is now well under-

stood that the method of limits forms the only rigorous basis

for the infinitesimal calculus, and that infinitesimals can be

used with logical rigor only when based on this method, that

is, when considered as quantities approaching zero as their

limit. When thus defined, no logical difficulty arises in their

use; they flow naturally from the conception of limits, and

they are therefore introduced at an early stage in the present

work.

The fundamental principles on which the use of infinitesi-

mals is based are laid down in the second chapter. But it is

not to be expected that a beginner will fully grasp these j^rin-

ciples until he has become familiar with the mechanical pro-

cess of differentiation, and with the application of the calcu-
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lus to special problems. It may therefore be found best to

begin with a single careful reading of the chapter, and after-

ward to use it for reference as the student finds occasion to

apply the principles laid down in it.

The author is indebted to several friends for advice and

assistance in the final revision of the work. Professor John

E. Clark of the Sheffield Scientific School and Dr. Fabian

Franklin of the Johns Hopkins University supplied sugges-

tions and criticisms which proved very helpful in putting the

first three chapters into shape. Miss E. P. Brown of Wash-

ington has read all the proofs, solving most of the problems as

she went along in order to test their suitability.
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USE OP THE SYMBOL =

The symbol = of identity as employed in this work indi-

cates that the single letter on one side of it is used to repre-

sent the expression or thing defined on the other side of it.

When the single letter precedes the symbol e, the latter

may commonly be read is j^ut for, or is defined as,

Wnen the single letter follows the symbol, the latter may

be read loliicli let ns call.

In each case the equality of the quantities on each side of

= does not follow from anything that precedes, but is assumed

at the moment. But having once made this assumption, any

equations which may flow from it are expressed by the sign

=, as usual.
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CHAPTER I.

OF VARIABLES AND FUNCTIONS.

1. In the higher matliematics we conceive ourselves to be

dealing with pairs of quantities so related that the value of

one depends upon that of the other. For each value which

we assign to one we conceive that there is a corresponding

value of the other.

For exami)le, the time required to perform a journey is a

function of the distance to be travelled, because, other things

being equal, the time varies when the distance varies.

We study the relation between two such quantities by as-

signing values at pleasure to one, and ascertaining and com-

paring the corresponding values of the other.

The quantity to which we assign values at pleasure is called

the independent variable.

The quantity whose values depend upon those of the inde-

pendent variable is called a function of that variable.

Example I. If a train travels at the rate of 30 miles an

hour, and if we ask how long it will take the train to travel

15 miles, 30 miles, GO miles, 900 miles, etc., we shall have for

the corresponding times, or functions of the distances, half aa

hour, one hour, two hours, thirty hours, etc.
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In thinking thus we consider the dista7ice to be travelled as

the independent variable, and the tirne as the function of the

distance.

Example II. If between the quantities x and y we have

the equation

y = 2ax'*f

we may suppose

. .

; ;

..iC =-. - 1, 0, + 1, + 2, + 3, etc.,

^hd we shall then have

; y :

';
,

.' '

: ; , y — 2c:, 0, 2a, Sa, ISa, etc.

Here x is taken as the independent variable, and y as the

function of a;. For each value we assign to x there is a corre-

sponding value of y.

When the relation between the two quantities is expressed

by means of an equation between symbolic expressions, the

one is called an analytic function of the other.

An analytic function is said to be

Explicit when the symbol which represents it stands

alone on one side of the equation;

Implicit when it does not so stand alone.

Example. In the above equation y is an explicit function

of X, But if we have the equation

y' + ^y = ^^%

then for each value of x there will be a certain value of y,

which will be found by solving the equation, considering y as

the unknown quantity. Here y is still a function of x, be-

cause to each value of x corresponds a certain value of y; but

because y does not stand alone on one side of the equation it

is called an implicit function.

Kemakk. The difference between explicit and implicit

functions is merely one of form, arising from the different

ways in which the relation may be expressed. Thus in the

two forms
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y = 2aa;%

y — ^ax" = 0,

y is the same function of x; but its form is explicit in the first

and implicit in the second.

An implicit function may be reduced to an explicit one by

solving the equation, regarding the function as the unknown

quantity. But as the solution may be either impracticable

or too complicated for convenient use, it may be impossible to

express the function otherwise than in an implicit form.

3. Classification of Functions, When y is an explicit

function of x it is, by definition, equal to a symbolic expression

containing the symbol x. Hence we may call either y or the

symbolic expression the function of x, the two being equiva-

lent. Indeed any algebraic expression containing a symbol is,

by definition, a function of the quantity represented by the

symbol, because its value must depend upon that of the sym-

bol.

Every algebraic expression indicates that certain operations

are to be performed upon the quantities represented by the

symbols. These operations are:

1. Addition and subtraction, included algebraically in one

class.

2. Multiplication, including involution.

3. Division.

4. Evolution, or the extraction of roots.

A function which involves only these four operations is

called algebraic.

Functions arc classified according to the operations whicli

must be performed in order to obtain their values from the

values of the independent variables upon which they depend.

A rational function is one in whicli tlie only operations

indicated upon or with the independent variable are those of

addition, multiplication, or division.
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An entire function is a rational one in which the only in-

dicated operations are those of addition and multiplication.

Examples. The expression

a -{- hx -\- cx^ -\- dx^

is an entire function of x, as well as of «, h, c and d.

The expression

, m , c
a-\-

X x^ -^ nx

is a rational function of x^ but not an entire function of x.

An irrational function of a variable is one in which the

extraction of some root of an expression containing that vari-

able is indicated.

Example, The expressions

^a + Ixy (a + wic^ + nx^)

are irrational functions of x.

Functions which cannot be represented by any finite com-

bination of the algebraic operations above enumerated are

called transcendental.

An exponential function is one in which the variable

enters into an exponent.

Example. The expressions

(a + xY^y Q?^

are entire functions of x when n and y are integers. But

they are exponential functions of y.

Other transcendental functions are:

Trigonometric functions, the sine, cosine, etc.

IjOgarithmic functions, which require the finding of a

logarithm.

Circular functions, which are the inverse of the trigo-

nometric functions; for example, if

y = a trigonometric function of x, sin x for instance,

then a; is a circular function of y, namely, the arc of which y
is the sine.
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3. Functional Notation. For brevity and generality we

may represent any function of a variable by a single symbol

having a mark to indicate the variable attached to it, in any

form we may elect. Such a symbol is called a functional

symbol or a symbol of operation.

The most common functional symbols are

F, f and 0;

but any signs or mode of writing whatever may be used.

Then, such expressions as

F(x), fix), cp{x),

each mean

" some symbolic expression containing a;."

The variable is enclosed in parentheses in order that the

function may not be mistaken for the product of a quantity

FyfoTcf) by X.

Identical Fimctions. Functions which indicate identical

operations upon two variables are considered as identical.

Example. If we consider the expression

a + iy

as a certain function of y, then

a-{'ix

is that same function of x, and

a + i(x + y)

is that same function of 2; + ^•

When the functional notation is applied, then:

Identical functions are represented by the samefunctional

symbols.

Examples. If we put

F(x) = a + bx,

we shall have F{y) = a + by;

F(f) = a + bf;

F{x' -y') = a + b{x' - f).
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In general. If we define afunctional symbol as representmg

a certain function of a variable, that sa^ne symbol a])plied to

a second variable will represent the expression formed by sub-

stituting the second variable for the first.

In applying this rule any expression may be regarded as a

variable to be substituted, as, in the last example, we used

x^ — 7' as a variable to be substituted for x in the original

expression.

EXERCISES.

1. If we put

(t>{x^ = ax^i

it is required to form and reduce the functions

<P{y), cp{b), 0(a), 0(-a;), 0(:.^), 0(|).

2. Putting

it is required to form and reduce

^(. + .), f[% f{^. .{tj,
^(|) + ^(i).

3. Putting

it is required to form and reduce

fix -a), f{x + a),
/(l), /(I).

4. If (p{x) = a'^x + cx^,

form and reduce the expressions

0(a;'), 0(fl^'), (piax)y cp{bx), (p{a + c), (p{a — c).

5. Suppose (p(x) = ax^ ~ a^x, and thence form

0(^ + y)y 0(^ + (^)y 0(^ - «)>

0(x + ay), (pix - ay), (f>{x').



VARIABLES AND FUNCTIONS. 9

6. Suppose /(a;) = x", and thence form the values of

/(I), /(*'), f{^% f{^% /K), f{^%

7. Let us put 0(m) ~ m{m — 1) (m — 2) (7/i — 3); thence

find the values of

0(6), 0(5), 0(4), 0(3), 0(2), 0(1), 0(0), 0(-l), 0(-2).

8. Prove that if we put ct){x) ^ a^, we shall have

cp{x + y) = cf>{x) X <p{y); ct>{xy) = [cp{x)]y = [0(.v)]^

4. Functions of Several Variables. An algebraic expres-

sion containing several quantities may be represented by any

symbol having the letters which represent the quantities at-

tached.

Examples. We may put

0(x, y) = ax- by,

the comma being inserted between x and y so that their

product shall not be understood. We shall then have

0(m, 7l) == a77i — hi,

(p{y, x) = ay — bx,

the letters being simply interchanged;

ct){x + y,x-y) = a{x + y)-' b{x - y)

= {a- b)x + (rt + ^)y;

0(a, b) = a'' - b';

0(J, a) = ab — ba = 0;

<p{a + b, ab) = a{a -\-b) — ab^;

0(a, a) = a^ — ba;

etc. etc.

If we put 0(a, by c) = 2« + 3Z> — 5c, we shall have

(p{x, z, y)=2x + dz- 5y;

<P{z> y, x) = 2z + 3y - 5x;

0(w, 771, — 7n) = 27)1 + 3771 -f 5771 = 10/w;

0(3, 8, 6) = 2-3 + 3-8 - 5*6 = 0.
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EXERCISES.

Let us put (p{x, y) =dx — 4:7/;

f{x, y) = ax + by;

f(x, y^ z) ^ ax -{- by — abz.

Thence form the expressions:

I. cp{y, x). 2. 0(a, b). 3. 0(3, 4).

4. 0(4, 3). 5- 0(10, 1). 6. f{a, b).

7. f{b, a). 8. f{y, x). 9. /(7, - 3).

to- /to -j^)- II- /(^^ ^> y)* 12. /(z^, «, 2).

13- /(«^. ^. 0* 14- f{ci\ b\ &). 15. f^—ay-b.-ab).

Sometimes there is no need of any functional symbol

except the parentheses. For example, the form (7;?, n) may

be used to Indicate any function of m and n.

EXERCISES.

T i. i. I \ ^^(^ — 1) (m — 2)
Let us put (m, n) = —) -^-^ ^r^,

^ \ ^ / ^(^^i _ 1) (^^ — 2)

then find the values of

—

I. (3, 3). 2. (4, 3). 3. (5, 3).

4. (6, 3). 5. (^. 3). 6. (8, 3).

7. (2, - 1). 8. (3, - 2). 9. (4, - 2).

5. Functions of Functions, By the definitions of the pre-

ceding chapter, the expression

f[4>{x))

will mean the expression obtained by substituting 0(:c) for x

mf{x).

We may here omit the larger parentheses and write /0(^)

instead of
/(

(p(x)\.

For example, using the notation of exercises 1 and 3 of

§ 3, we shall have
. , , . ax^ — a x^ — 1
f(p{x) =

ax' + a x' + V
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For brevity we use the notation

Continuing the same system, we have

0»E0(0'Cr)) =0^(0(0;));

0» = 0(0'(^))-0^(0(:r));

etc. etc. etc.

Examples. 1. If

0(.t) E ax^y

then 0''(^) = a{ax^y = ^V;

(P'{x) = a{a'xy = aV;
etc. etc. etc.

2. If

f{x) ~ a-x,
then f^{'^) = a — (a — x) = x;

f\x) = a- r{x) =a-x;
and, in general,

r-\x) =r{x).

Remark. The functional nomenclature may be simplified

to any extent.

1. The parentheses are quite unnecessary when there is no

danger of mistaking the form for a product.

2. When it is once known what the variables are, we may

write the functional symbol without them. Thus the symbol

may be taken to mean (px or (p{x),

6. Product of the First n Numhers, The symbol nl, called

factorial n, is used to express the product of the first n num-

bers,

1-2-3-...W.

Thus, 1!=1;
2! = l-2=:2;

3! = 1-2-3 = 6;

4! = l-2-3-4 = 24;

etc. etc.
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It will be seen that

2! = 2-1!;

3! = 3-2!;

and^ in general^ 7i\ — 7i ' {n — 1)\,

whatever number 7i may represent.

EXERCISES.

Compute the values of

—

I. 5! 2. 6!

4.
7!

3! 4!
5-

8!

3! 5!

3. 8!

6. Prove the equation 2 • 4 • 6 • 8 •
. . . 27^ = 2^n !

7. Prove that^ when n is even,

11, _ n{n — 2) (^ — 4). . .4*2— -
.

2^

7 . Binomial Coefficients. The binomial coefficient

n{n ~1) {71 — 2) to 5 terms

1-2-3-...5

is expressed in the abbreviated form

e).

the parentheses being used to distinguish the expression from

n
the fraction -.

s

EXAMPLES.

/7\ 7-6-5-4-3_

(n\ n

/^\ _ 7i{n — 1) (7^ — 2)

1-2-3
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EXERCISES.

Prove the formulae:

5

3. Ur

I)

5\ _ J.
%l "2! 3]

'' © = i^^-

^•e)-
n\

! (« - s)\

(n + 1 _
U + 1/ s +

i) + (!) = (

H
7i + 1

r)+(i)=m

Ihu
8. Graphic Representation of Fnnctions, The methods of

Analytic Geometry enable us to represent functions to the eye

by means of curves. The common way of doing this is to

represent the independent variable by the abscissa of a point,

and the corresponding value of the function by its ordinate.

Let x^, a\, x^, etc., be

different values of the in-

dependent variable, and

!/i^ y'2> y,y etc., the cor-

responding values of the

function. We lay off

upon the axis of abscis-

sas the lengths OX^, T
1

^1'

2/i

P2 .Pa

j!L\ X2 X3
-X

Fig. 1.

OX^, OJTj, etc., equal

to a:,, x^y x^, etc., and terminating at the points X„ X,, X„
etc. At each of these points we erect a perpendicular to rep-

resent the corresponding value of y. The ends, P„ F^, P,,

of these perpendiculars will generally terminate on a curve

line, the form of which shows the nature of the function.

It must be clearly seen and remembered that it is not the

curve itself which represents the values of the function, but

the ordinates of the curve.
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^:^

Fig. 2.

9. Continuity and DiscontinuUy of Functions, Let us

consider the graphic representation of a function in the most

general way. We measure off a series of values, OX^, OX^,

0X3, etc., of the independent variable, and at the points X^,

X^, X^, etc., we erect ordinates.

In order that the variable ordinate

may actually be a function of x it is

sufficient if, for every value of the

abscissa, there is a corresponding

value of the ordinate.

]^ow we might conceive of such

a function that there should be no

relation between the different val-

ues of the ordinates, but that every

separate point should have its own

separate ordinate, as shown in

Fig. 2. If this remained true how

numerous soever we made the ordi-

nates, then the ends of the latter would not terminate in any

curve at all, but would be scattered over the plane. Such

a function would be called discontinuous at every point.

Such, however, is not the kind of functions commonly

considered in mathematics. The functions with which we

are now concerned are such that, however irregular they may
appear when the values of x are widely separated, the ends

of the ordinates will terminate in a curve when we bring

those values close enough together.

If a function is such that when the point representing the

independent variable moves continuously from X^ to X^ (Fig.

1) the end of the ordinate describes an unbroken curve, then

we call the function continuous between the values x^ and

x^ of the independent variable.

If the curve remains unbroken how far soever we suppose

X to increase, positively or negatively, we call the function

continuous for all vahies of the independent variable.
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But if there is a value a of x for which there is a break of

any kind in the curve, we call the function discontmuous for

the value a of the independent variable.

Let us, for example, consider the function

y = 6{a — x)'

Let us measure off on the axis of abscissas the length OX
= a . Then as we make our varying ordinate approach X
from the left it will increase positively without limit, and the

curve will extend upwards to infinity; if we approach Xfrom
the right-hand side, the ordinate will be negative and the

curve will go downwards to infinity. Thus the curve will not

form a continuous branch from the one side to the other.

Thus the above function is disco?ifi7mous for the value a of x.

Fio. 3.

10. Many-valued Functions, In all that precedes, we

have spoken as if to each value of the independent variable

corresponded only one value of the function. But it may
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happen that there are several such values. For example, if y
is an implicit function of x represented by the equation

y^ + mxy"^ -f '^^^'^V + P^^ == ^>

then we know^, by the theory of equations, that there will be

three values of y for each value assigned to the variable x,

Def. According as a function admits of one, two or n

values, it is called one-valued, two-valued or 7i-valued.

Infinitely-vahied Functioyis, It may happen that to each

value of the variable there are an infinity of different values

of the function. A case of this is the function sin ^" ^^ x, or

the arc of which x is the sine. This arc may be either the

smallest arc which has x for its sine, or this smallest arc in-

creased by any entire number of circumferences.

Take, for example, the arc whose sine shall

be+i.
The two smallest arcs will be

30° = \7t and 150° = \n.

But if we take the function in its most gen-

eral sense it may have any of the values

(2+i)7r; (4 + i);r; (^^-^\)n, etc.,

or (2+|)7r; (4 + |)7r; (6 + |)7r, etc.

When we represent an 7^-valued function

graphically, there will be n values to each ordi-

nate. Hence each ordinate will cut the curve

in n points, real or imaginary.

The figure in the margin represents the infi-

nitely-valued function

y a sm (-1)^

When — a <x < At a, any ordinate will cut

the curve in an infinity of points.
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CHAPTER II.

OF LIMITS AND INFINITESIMALS.

11. Limits, The method of limits is an indirect method

of arriving at the values of certain quantities which do not

admit of direct determination. The method rests upon the

following axioms and definition:

Axiom I. Any quantity, however small, may be multiplied

by so great a number as to exceed any other quantity of the

same kind, however great, to which a fixed value is assigned.

Axiom II. Conversely, any quantity, however great, may

be divided into so many parts that each part shall be less than

any other quantity of the same kind, however small, to which

a fixed value is assigned.

Axiom III. Any quantity may be divided into any num-

ber of parts ; or multiplied any number of times.

Def, The limit of a variable quantity X is a quantity L,

which we conceive Xto approach in such a way that the dif-

ference L — X becomes less than any quantity we can name,

but which we do not conceive X to reach.

Example. If we have a variable quantity X and a con-

stant quantity X, and if X, in varying according to any mathe-

matical law, takes the successive values

L ± 0.1,

L ± 0.01,

L ± 0.001,

L ± 0.0001,

and so on indefinitely, without becoming equal to L, then we

say that L is the limit of x.
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13. Infinites and Infinitesimals, Definitions,

1. An infinite quantity is one considered as becoming

greater than any quantity which we can name.

2. An infinitesimal quantity is one considered in the

act of becoming less than any quantity which we can name;

that is, in the act of approaching zero as a limit.

3. A finite quantity is one which is neither infinite nor in-

finitesimal.*

Examples. If of a quantity x we either suppose or prove

X > 10,

X > 100,

X > 100000,

and so on without end, then x is called an infinite quantity.

If of a quantity li we either suppose or prove

li < 0.1,

h < 0.001,

h < 0.00001,

and so on without end, then h is an infinitesimal quantity.

The preceding conceptions of limits, infinites and infinitesi-

mals are applied in the following ways: Let us have an inde-

pendent variable x, and a function of that variable which we

call y.

Now, in order to apply the method of limits, we may make

three suppositions respecting the value of x, namely:

1. That X approaches some finite limit.

2. That X increases without limit (i.e., is infinite).

3. That X diminishes without limit (i.e., is infinitesimal)..

In each of these cases the result may be that y approaches

a finite limit, or is infinite, or is infinitesimal.

* Strictly speaking, the words infinite and infinitesimal are both adjec-

tives qualifying a quantity. But the second has lately been used also as

a noun, and we shall therefore use the word infinite as a noun meaning

infinite quantity.
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For example, let us have

X -{ a
y = ——

•

Then—
When X approaches the limit a, y becomes infinite.

When X becomes infinite, y approaches the limit + 1.

When X becomes infinitesimal, y approaches the limit — 1.

The symbol ^^ followed by that of zero or a finite quantity,

means ^^ approaches the limit/^ The symbols :^oo mean
^^ increases without limit ^^ or ''^ becomes infinite/' Hence

the three last statements may be expressed symbolically, as

follows:

X -\- a ,When X ^ a, then
X — a

When X ^ CO , then = + 1;
X — a

etc. etc.

The same statements are more commonly expressed thus:

x-\- a
.

lim. (x — a) = 00
;

lim. (X r= 00 ) = +1;

lim. ^±^ (,; ^ 0) = - 1.
X — a^ ^

13. Properties of Infinite and Infinitesimal Qicantities.

Theorem I. The product of an infinitesimal hy any finite

factor, however great, is an infinitesimal.

Proof. Let h be the infinitesimal, and n the finite factor

by which it is multiplied. I say how great soever n may be,

nh is also an infinitesimal. For, if nh does not become less

than any quantity we can name, let or be a quantity less than

which it does not become. Then if we take, as we may,

h < -, (Axiom III.)
n ^ '

we shall have nh < a.
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That is^ nil is less than a and not less than a, which is

absurd.

Hence nli becomes less than any quantity we can name^

and is therefore infinitesimal^ by definition.

Theokem II. The quotient of an infinite quantity hy any

finite divisor, hotoever great, is infi7iite.

Proof Let X be the infinite quantity, and n the finite

divisor. 11 X -^ n does not increase beyond every limit, let

K be some quantity which it cannot exceed. Then by taking

X>7iE, (Ax. III.)

X
we shall have — > K\

n

that is, — greater than the quantity which it cannot exceed,

which is absurd.

Hence X -^ 71 increases beyond every limit we can name

when X does, and is therefore infinite when X is infinite.

Theorem III. The product of a^iy fi^iite qua7itity, how-

ever S7nall, hy a7i iiifiriite 7nulti2Mer, is inji7iite.

This follows at once from Axiom I., since by increasing the

multiplier we may make the product greater than any quan-

tity we can name.

Theorem TV. The quotient of a7iy finite qua7itity, how-

ever great, hy a7i i7ifinite divisor is i7ifinitesi7nal.

This follows at once from Axiom II., since by increasing

the divisor the quotient may be made less than any finite

quantity.

Theorem V. The reciprocal of a7i infinitesimal is an in-

finite, a7id vice versa.

Let h be an infinitesimal. If j- is not infinite, there must

be some quantity which we can name which - does not ex-
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ceed. Let K be that quantity. Because h is infinitesimal,

we may have

which gives j- > K;

that is, Y greater than a quantity it can never exceed, which

is absurd.

The converse theorem may be proved in the same way.

14. Orders of Lifinitesimals, Def, If the ratio of one

infinitesimal to another approaches a finite limit, they are

called infinitcsinials of the same order.

If the ratio is itself infinitesimal, the lesser infinitesimal is

said to be of higher order than the other.

Theorem VI. If lue have a series proceeding according

to the poivers of A,

A-\-Bh+ Ch' + Dh' + etc.,

m which the coefficients A, B, C, arc all finite, then, if h he-

comes infinitesimaly each term after the first is an infinitesi-

rnal of higher order than the term preceding.

Proof The ratio of two consecutive terms, the third and

fourth for example, is

Dh' _D

By hypothesis, (7 and D are both finite; hence ^ is finite;

hence when h approaches the limit zero, -^h becomes an in-

finitesimal (§13, Th. I.). Thus, by definition, the term Dh'

is an infinitesimal of higher order than CT'.

Dcf, The orders of infinitesimals are numbered by taking

gome one infinitesimal as a base and calling it an infinitesi-

mal of the first order^ Then, an infinitesimal whose ratio to
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the ni\i power of the base approaches a finite limit is called

an wfinitesimal of the ntli order.

Example. If li be taken as the base, the term

Bli is of the first order ' r Bli\li — the finite quantity B\

C¥ '' " second ^^ ' r Ch' : h' = '' '' C;

Eh"" '' '' wth '' •
.

• Eh'' : 7i~ = '' " E,

Cor. 1. Since when n — ^ we have Bli'' — BW — B for

all values of li, it follows that an infinitesimal of the order

zero is the same as a finite quantity.

Cor, 2. It may be shown in the same way that the product

of any two infinitesimals of the first order is an infinitesimal

of the second order.

15. Orders of Infinites, If the ratio of two infinite

quantities approaches a finite limit, they are called infinites

of the same order.

If the ratio increases without limit, the greater term of the

ratio is called an infinite of higher order than the other.

Theorem VIL In a series of terms arranged according

to the powers of x,

A+ Bx+Cx" + Dx' + etc.,

if A, B, C, etc.y are all finite, then, when x hecomes infinite^

each term after the first is an infinite of higher order than the

term jireceding.

For, the ratio of two consecutive terms is of the form -^a:,
x>

which becomes infinite with x (Th. III.).

Def Orders of infinity are numbered by taking some one

infinite as a base, and calling it an infinite of the first order.

Then, an infinite whose ratio to the nth. power of the base

approaches a finite limit is called an infinite of the ni\\ order.

Thus, taking x as the standard, when it becomes infinite

we call Bx infinite of the first order, Cx'' of the second order,

etc.
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NOTE ON THE PRECEDING CHAPTERS.

In beginning the Calculus, conceptions arc presented to the student

which seem beyond his grasp, and methods which seem to lack rigor.

Really, however, the fundamental principle of these methods is as old

as Euclid, and is met with in all works on elementary geometry which

treat of the area of the circle. The simplest form in which the princi-

ple appears is seen in the following case.

Let us have to compare two quantities A and B, in order to determine

whether they are equal. If they are not equal, then they must differ by

some quantity. If, now, taking any arbitrary quantity h, we can prove

that

A-B<h

witliout making any supposition respecting t/ie valm of h, this will show

that A and B are rigorously equal. For if they differed by the quantity

a, then when 7i was less than a the above inequality would not hold

true. But as we have been supposed to prove it for all values of h, it

must be true when h is less than a. In this case 7i might be considered

an infinitesimal, although in the Elements of Euclid it is represented on

the page of the book by a figure nearly an inch square.

Infinitesimal quantities were formerly called infinitely small. When
they were introduced by Leibnitz many able mathematicians were unable

to accept them. Bishop Berkeley wrote several essays against them, in

one of which he suggested that they might be called t?ie gliosis of departed

quantities. The following propositions are presented in the hope that

they may save the student unnecessary efforts of thought in the study of

this subject.

Firstly, there is no need that a quantity should be considered as ab-

solutely infinite. A mathematical magnitude, considered as a quantity,

must in its very nature have boundaries, because mathematics is con-

cerned with the relation between magnitudes as greater or less, and

we can compare two magnitudes as greater or less only by comparing

their boundaries. An absolutely infinite magnitude, having no boim-

daries to compare, cannot be compared with anything.

Secondly, it is equally unnecessary to suppose the existence, either in

nature or in thought, of quantities which are absolutely smaller than

any finite quantity whatever.
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But however small a quantity may be, there may always be another

still smaller in any ratio. Hence, although it is perfectly true that no

quantity can be otherwise than finite, yet it is equally true that a quantity

may be less or greater than any fixed quantity we may name.

Both infinite and infinitesimal quantities are therefore essentially in-

definitey because by considering them in the act of increasing beyond, or

decreasing below, every assignable value, we do away with the very pos-

sibility of assigning values to them. They are used only as auxiliaries

to lead us to a knowledge of finite quantities, and their magnitudes are

never themselves the object of investigation.

The essentially indefinite nature of infinites and infinitesimals may be

illustrated as follows:

If we have an equation of the form

then for every pair of finite values we assign to a and h there will be a

definite value of x.

But if we suppose A and B to be infinite, and at the same time inde-

'pendent of each other, there will be no definite value to x. Considering

both terms as absolutely infinite, they will have no bounds, and there-

fore cannot be compared in value. Considered as increasing without

limit, one may be any number of times greater than the other, and thus

the fraction may have any value we choose to assign it. Seeking for

the value of such a fraction is like trying to answer the old question

concerning the effect of an irresistible force acting upon an Immovable

obstacle.
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CHAPTER III.

OF DIFFERENTIALS AND DERIVATIVES.

16. Def, An increment of a variable is the difference

between two values of that variable.

An equivalent definition is: An increment is a quantity

added to one value of a variable in order to obtain another

value.

Notation, An increment is expressed by the symbol A
written before the symbol of the variable.

Example. If we have the different variables

X, y, n,

and the increments J.r, Jtj, Ju,

other values of the variables will bo

X + ^x, y -\- Ayy ii \- An,

Here A is not a factor multiplying .r, but a symbol meaning
^^ increment of/' or, in familiar language, ^^a little piece of.'*

In considering the respective increments of an independent

variable, and of its function, the following five quantities

come into play and are each to be clearly conceived.

1. A value of the independent variable, which we may take

at pleasure.

2. The corresjyonding value of the function, which will be

fixed by that of the independent variable.

3. -An increment of the independent variable, also taken at

pleasure.

4. The correspond} ny increment of the function, deter-

mined by that of the independent variable.

5. The ratio of these increments.
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To represent these quantities^ let the relation between the

variable x and the function y be expressed by a curve. Let

OX be one value of x, and OX' another. Let XP and JT'P'

Fm. 5.

be the corresponding values of y, leading to the points P and

P' of the curve. AVe shall then have—
1. OX — Xy a value of the independent variable.

2. XP — y, the corresponding value of the function.

3. XX = Ax, an arbitrary increment of .r.

4. RP' =: Jy, the corresponding increment of ?/.

5. Then, by Plane Trigonometry, the quotient -^- Avill be

the tangent of the angle PQX\ that is, the tangent of the

angle which the secant PP' makes with the axis of abscissas.

Thus we have geometrical representations of the five fun-

damental quantities under consideration.

17. First Idea of Differentials and Derivatives, Let us

take, for illustration, the function

y = nx"". (1)

Giving to x the increment Ax, the new value of y will be

n{x + Ax)\

Hence y -\- Ay = n(x + Axy = nx" -f ^nxAx + nAx", (2)
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Subtracting (1) from (2), we have, for the increment of y,

Ay = ?i{2x + Ax)Axy (3)

Because, when Ax becomes infinitesimal,

lim. {2x + Ax) =r 2xy

wo have, for the ratio of the increments,

^ = 2nx + nAx, (4)

and, when Ax becomes infinitesimal,

lim. -Jf- == 2/ia;. (5)

Dcf, The differential of a quantity is its infinitesimal

increment; that is, its increment considered in the act of ap-

proaching zero as its limit, or of becoming smaller than any

quantity we can name.

Xotation, The differential of a quantity is indicated by

the symbol cl written before the symbol of the quantity.

For example, the expressions

dxy chi, d{x + y),

mean any infinitesimal increments of x, tc, {x -{- y), respect-

ively.

Thus the substitution of d for A in the notation of incre-

ments indicates that the increment represented by A is sup-

posed to be infinitesimal, and that we are to consider the limit

toward which some quantity arising from the increment then

approaches.

Using this notation, the equation (5) may be written

S = ^--
ax

TVe also express this value of the limiting ratio in the form

dy = 2nxdx;

meaning thereby that the ratio of the two members of this

equation has unity as its limit. This is evident from Eq. (3).
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Def, If y is a function of x, the ratio j- of the differential

of y to that of x is called the derivative of the function, or

the derived function.

18. Illustrations, As the logic of infinitesimals offers

great difficulties to the beginner, some illustrations of the

subject may be of value to him.

Consider the following proposition:

The error introduced hy 7ieglecting all the poioers of an in-

crement above the first 7nay be made as small as we please by

diyninishing the increment.

Let us suppose n = 2 in the equation (1), We then have

the equations

y = 2x^;

Jy = 4:xJx + 2Jx'';

Ay _
'Ax

4.x -f 2Ax.

{a)

The ratio of the two terms of the second member is

2Ax Ax
1^' ""'' ~2x

Let us now neglect this quantity and write the erroneous

equation

(J)
Ax

If, now,

we

suppose

Ax <
100'

"^"-^ ^ ioooo'

Ax <

200

1

part;

the equation

> (b) will still be { ^q^ part;

true within

part;
1000000'

J

t 2000000

etc., etc.

So long as we assign any definite value to Ax, it is clear

that there will be some error in neglecting Ax. But there is

no error in the equations

dy = 4:xdx and -j- — 4:Xy
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provided that we interpret them as expressing tlie limit which

-p approaches as Ax approaches the limit zero, and interpret

all our results accordingly.

19. Illustration hy Velocities. Let us consider what is

meant by the familiar idea of a train which may be contin-

ually changing its speed passing a certain point with a certain

speed. To fix the ideas, suppose the train has just started

and is every moment accelerating its speed in such manner

that the total number of feet it has advanced is equal to the

square of the number of seconds since it started. Put

d = the distance travelled expressed in feet;

t ~ the time expressed in seconds.

We shall then have (^ = f

,

and for the distances travelled:

Number of seconds, 0; 1; 2; 3; 4; 5; etc.;

Distance travelled, 0; 1; 4; 9; 16; 25; etc.;

Distance in each second, 1; 3; 5; 7; 9; 11; etc.

B
ill 8 I 5 , 7 I

9
,

11
,

Fig. 6,

Let this line represent the space travelled the first five

seconds from the starting time, and let us inquire with what

velocity the train passed the point B at the end of 4\

Since distance travelled = velocity x time, the mean ve-

locity is found by dividing the space by the time required to

pass over that space. Now, the train had travelled

16 feet in the time 4 seconds,

and (4 + At^ feet in (4 + At) seconds,

or 16 + 8 J/5 + Af feet in (4 + At) seconds.

Subtracting 16 feet and 4 seconds, we see that in the time

At after the end of the 4 seconds the train went 8J/ + ^^'

= As feet. Hence its mean velocity from 4^ to 4" + At is
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As

At (8 + ^0 ^^^^ P®^ second.

~^ow it is clear that, since the train was continually accel-

erated how small soever we take At, the mean velocity during

this interval will exceed that with which it passed B. But

it is also clear that by supposing At to approach the limit zero,

we shall approach the required velocity as our limit. Hence

the velocity with which B was passed is rigorously

(is

dt
= 8 feet per second.

Fig. 7.

30. Geometrical Illustration, If, in the figure, we sup-

pose the point P' to approach P as its limit, the increments

Ax and Ay will approach the limit zero, and the secant P'P
will approach the tangent at the point P as its limit. We
have already shown that

Ay
-—- — tangent of angle made by secant with axis of abscissas.

Passing to the limit, we have the rigorous proposition

-^ = tangent of angle which the tangent at the point P
makes with the axis of abscissas.
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CHAPTER IV.

DIFFERENTIATION OF EXPLICIT FUNCTIONS.

31. Def. The process of finding the differential and the

derivative of a function is called dijBFerentiation,

As exemplified in §§ 16, 17, it may be generalized as fol-

lows: We have given

(1) An independent variable ~ x,

(2) A function of that variable = 0(a:).

(3) We assign to x an increment = Ax', whereby (p{x) is

changed into (p{x + Ax),

(4) We thus have 0(a; + ^^) — 0(^) ^is the increment of

(p{x). We may put

A(f>{x) = (p{x + Ax) — (p{x).

(5) We then form the ratio

Ac/>{x)

Ax
(a)

and seek its limit when Ax becomes infinitesimal. Using the

notation of the last chapter, we have

; - = hm. —V~ (^^ = 0),
(Ix Ax ^

'

which is the derivative of 0(.r).

In order to find the ratio (//), it is necessary to develop

0(^ + ^^) ill powers of Ax to at least the first power of Ax.

Let this development be

0Gr + Ax) = A\ + A\Ax + X,Ax^ + . . . . (1)

In the second member of this equation X^, X,, etc., will be

functions of .r; and it is evident that X^ can be nothing but



32 THE DIFFERENTIAL CALCULUS.

0(.^•) itself, because it is the value of 0(a; + Ax) when Ax = 0.

Thus we have

A(P{x) = (p{x + Ax) - cp{x) = (X, + X,Ax) Ax + . . .
;

Passing to the limit,

d(p{x) = X/Jx;

Thus, by comparing with (1), we have the following:

Theorem I. The derivative of a function is the coefficient

of the first pmuer of the increment of the independent variable

when the function is developed in ptoioers of that increment.

If we have to differentiate a function of several variable

quantities, x, y^ z, etc., we assign an increment to each vari-

able, and develop the function in powers and products of the

increments.

Subtracting the original function, the remainder will be its

increment.

The terms of highest order in this increment, considered

as infinitesimals, are then called the differential of the

function.

The following are the special cases by combining which all

derivatives of rational functions may be found.

32. Differentials of Su?ns, Let x, y, Zy ii, etc., be any

variables or functions whatever. Their sum will be

^' + 2/ + ^ + ^^ + 6^c.

Assigning to each an increment, x will become x -f Ax, y
will become y + Ay, etc. Hence the sum will become

X -^ Ax -\- y -^ Ay -\- z -^ Az -\- u -\- All -\- etc.

Subtracting the original expression, we find the increment of

the sum to be

Ax 4- Ay -\- Az+ Au -\- etc.
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Hence, when the increments become infinitesimal,

^K^ + y +• ^ + ^^ + 6tc.) = dx -\- dy -\- dz -\- du + etc., (3)

or, in words:

Theorem II. The differential of the stint of any number

of variable.'^ is equal to the sum of their differentials.

In this theorem the quantities x, y, z, u, etc., maybe either

independent variables, or functions of one or more variables.

23. Differential of a Mnltiple. Let it be required to find

tlie differential of

ax,

a being a constant.

Giving X the increment /!x, the expression will become

a{x + /Jx).

Then, proceeding as before, we find

d{ax) = adx. (4)

24. Theorem III. The differential of any constant is

zero.

For, by definition, a constant is a quantity which we sup-

pose invariable, and to which we cannot, therefore, assign any

increment.

We therefore have, from Tlieorom I. when x is a variable

and a is a constant,

d{x + n) = dx -\~0~ dx,

<^r, in words:

Theorem IV. The differential of the sum of a constant

and a variable is equal to the diff^erential of the variable alone.

IIemark. It will be readily seen that the conclusions of

§§ 22-24 are equally true whetlier we suppose the increments

to be finite or infinitesimal. This is no longer the case when

powers or products of some finite increments enter into the

expression for other finite increments.
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EXERCISES.

It is required^ by combining the preceding processes, to

form the differentials of the following expressions, supposing

a, 1) and c to be constants, and all the other literal symbols

to be variables.

I. U — V. 2, 2u — Vo

3. V -\-x-\- c. 4- ax + hy.

5- a^x + yy + c. 6. Sx + 4:ay + K

7» 4:ax -\- 61)X — y. 8. 6bx — abc.

9- dx -- a -{- ah. 10. ahx — aU.

II. c{2x + a). 12. a{bx + etc).

13. ac{bu + ax). 14. bc{2ax - dby).

15. X — y — z. 16. — ax — by — cz.

17. — aiftx — cy). 18. - b{2ax - 3cv).

19.
X

a'
20.

X -\- y — z

b

21. (« + b-\-c){s-{-t + ^u- 4:y).

35. Differentials of Products and Poiuers, Take first

the product of two variables, Avhich we shall call n and v.

Then
Product = nv.

Assigning the increments An and Av, the product becomes

[it -J- An) {v -\- Av) = uv + vAu -\- uAv -f AuAv,

Subtracting the original function, nv, we find

A{uv) = vAu + (?^ + An) Av,

Supposing the increments to become infinitesimals, the co-

efficient of Av in the second member will approach ^c as its

limit. Hence, passing to the limit (§14),

d{uv) — vdu + lidv.
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To extend the result to any number of factors, let P be the

l)ro(iuct of all the factors but one, and let the remaining fac-

tor be X, so that we have

Product = Px,

By what precedes, we have

d{Px) = xdP + Pilx.

Supposing P to be a product of the two variables ^l and v,

this result gives

d{iivx) = xd{vu) + uvdx = vxdti + itxdv + uvdx, {a)

If we add a fourth factor, y, we shall have

d{uvxy) = yd{uvx) + tivxdy.

If we substitute for d{uvx) its value (a), we see that we

pass from the one case to the other by (1) multiplying all the

terms of the first case by the common factor y, (2) adding

the product of dy into all the other factors.

We are thus led to the conclusion:

Theorem V. The differential of the product of any nuin-

her of variables is equal to the stem of the products formed hy

replacing each variahle hy its differentiaL

Corollary. If the n factors are all equal, their product will

become the ni\\ power of the variable, and the n differentials

will all become equal. Hence, when n is an integer, we have

the general formula

d^x"") = x''~^dx + x''~^dx + etc., to n terms,

or ^Z(.r") = nx"-~^dx.

By combining the preceding processes we may form the

differential of any entire function of any number of variables.

Examples.

I. d{ax + hxy -\- cxyz)

= d{ax) + d{hxy) + d{cxyz) (Th. II. 22)

= adx + hd(xy) + cd{xyz) (Th. III. 23)

= adx + h{ydx + ^dy) -\- c(yzdx + xzdy ~\- xydz)

= {a + by + cyz)dx + {bx + cxz)dy + cxydz.
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2. d{ax' + l) =. d{cix') (Th. IV.)

^ad(x^) (§23)

== ?>ax\lx. (Th. Y., Cor.)

3. d{ax'ir) = ad{xY) (§ ^3)

:= a[2/'d{x') + .TV/(y«)] (Th. V.)

= dajfx'^dx + naxhj''-^dy, (Th. V., Cor.)

4. J(« + xY = n{a-\- x'') ^ " '^d{a + .t') == 2n{a + r^-') ^ " ^xdx.

EXERCISES.

Form the differentials of the following expressions, suppos-

ing the letters of the alphabet from a to n to represent con-

stants:

T. a-^-hx"^ -{- ex*. Ans, {2bx -{-4tcx^)dx,

2. B -\- Cy + Dy''' 3. ctxy.

4. hxyz, 5. a{x -\- yz).

6. a{x'^ + ^?^^). 7. ctxy -\- hiiv.

8. 7^(0;'^ + xy""). 9. fl^rr"'?/'.

10. hx'y''. II. dbx'y'^ -\-'ku'^v'^,

12. ;Ej(wia; + ^z-?/). 13. (r + ^)(^ + ^^).

14. ?i(a — i?;^). 15. <7.^•'^ — hyz,

,6. (^ + ,;)(^_^). x7. {a + x^){h-f),
18. (n^ — :?;) (a — .'t'*)^ 19. rt'(a + rf) (Z> — a:'').

20. (^. + ^:r + fe^) (y + z).

21. (^+/^^^+6^/^)(«^+^x)

xy
22. —-.

23. (« + ^nt') {ex'' — 7l7f), x~ uv

25. {a — x){I) — x*){e — a;').

. X — nv, . .

26. (it 4- v)

27. xlx"" + y{a — a:)}.

28. I
- + - \xy.- e'+i>29. (mf - Z^:^'') (.'?; - y),

^ • U ^/W "^ ^j* 32. ^^^(«+a:)^

33. {a + xy)\ 34. (^.0; + %)'
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*ZG Differential of a Quotient of Two Variables, Let the

vjiriables be x and y, and let q be their quotient. Then

X

and qy z=z X,

Differentiating, we have

ydq -{- qdy = dx,

Solving so as to find the value of dq,

_ dx — qdy _ ydx — xdy
iiq — —

^ •

y y
Hence:

Theorem VI. The differential of a fraction is equal to

the denominator into the diff^erential of the numerator, minus

the mcmerator into the diff^eremtial of the denominator, divided

by the square of the denominator.

Kemark. If the numerator is a constant, its differential

vanishes, and we have the general formula

^a a ^d— = MX.
X X

EXERCISES.

Form the differentials of the following expressions:

X a -\- X

(^ + y

a — X

a -y
a

5- -^
X

a -f bx

a + by

^ + y

4. -.

8.

10.

« + /

a

(6 + yy
m + wa;'

m — nx*'

mx^ + ny^

mx* — ny**
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a X + yz

a -{- bx -{- cx^

m + xy
'^' m - xy'

a h

'^'x+f
a

17.
xy + x^y^

y + 2:z'

1 1
14. — — —

X X'

16.
m n

x^-f
1 1

t8.
X y

a

x" + V ^ - y
19. , \ , 20.

, ,

'\ .

x' - y' x' + y'

37. Differentials of Irrational Expressions. Let it be re-

quired to find the differential of the function
m

IC — X^,

m and 71 being positive integers. Raising both members of

the equation to the nth power, we have

Taking the differentials of both members,

7m " ~ ^du = mx *" ~ V/a;,

du

n ?^"~* n

^m-l
jji x"^"^

dx
'

i mVn— 1 ^j mn — %

U»; X »»

- = -." ,(.)

a formula which corresponds to the corollary of Theorem V .,

w^here the exponent is entire.

Next, let the fractional exponent be negative. Then

-V!l 1

x^
and, by Th. YI.,

dyx"^) mx^ dx in - — -1,
du = ^ = ^— = X ^ dx,

X n 2: «

and, for the derivative,

du m -^-1

dx n
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From this equation and from {a) we conclude:

Theorem VII. The formula

d{x'') = nx'^-'^dx

holds true whether the exponent n is entire or fractional, posi-

tire or negative.

We thus derive the following rule for forming the differen-

tials of irrational expressions:

Express the indicated roots by fractional exponents, positive

or nefjativey and then form the differential by the precediiig

methods.

Examples.

1. d Va-\-x = d{a -f .t)* = i(a + x)- klx = ——,—r-.

2. d-r-^ri = d \b{a + x) - *] =: bdia + x)-^

'=.^j,^a+x)-ldx^-^-^^^dx.

3. dia + bx^)i = Ma + bx') - i 2bxdx = -—^^^,-^dx."^ ' {a^bx^y

EXERCISES.

l\)rm the differentials of the following expressions:

I . Va + X. 2,

5-

8.

I r.

14.

Vb-x. 3-

6.

9-

12.

'5-

Va - bz.

4. S/a — x\

a

Va - bx\

b

Vx + y.

b

10. (a-\- xyi.

1 3. X Va + X,

Va + bx'
•

{x-a)l^

X Va — X.

Va - bz''

{hx' - a)i.

y' Va - by'.

Find the values of -- in the following cases:

16. n = mx -\— \ 17. u = (mx* — ^i).
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1 8. 2^ = Vax + bx^, lo. u =^
^,

-\- ex

20. 20 = X Va ~ X. 21, 21 = X Vx^ -f- U.

a -{- X a — X
22, 2C =^ . 2^. U =1 .

a — X ^
a-\- X

38. Logarithmic Functions. It is required to differentiate

the function

11 = log X.

We have

All ^ log (x -\- Ax) — log X = log -^ = log [1 -1
].X \ X J

It is shown in Algebra that we have

log (1 H- h) = M{h - W +W - etc.),

M being the modulus of the system of logarithms employed.

Hence, puting —^ for h, we find

An
~A.

^i Ml^ 1 Ax ^ Ax' , \

v = -x[^-2V + 3-x'-''^''h

and, passing to the limit,

_ 3Idx^ du _ M
X ' dx x'

In the Naperian system if— 1. In algebraic analysis,

logarithms are always understood to be Naperian logarithms

unless some other system is indicated. Hence we write

^•lo^ a; 1 , , dx

Example.
-, ^ d(axy) axd2j + aifdx dy

,
dx

d'log axy = -^—^ = ^—'

—

-— = -- H .
° ^ axy axy y x

Eemaek. We may often change the form of logarithmic
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functions, so as to obtain their differentials in various ways.

Thus, in the last example, we have

log {(ixy) = log a + log x + log y,

from which we obtain the same differential found above. The

student should lind the following differentials in two ways

when practicable.

EXERCISES.

Differentiate:

I. log {a + x). Ans.
dx

a-\- X
2. log {x - «).

3. log {x^ + b^).

5. log mx,

7. log {ax'' + b).

9. log {x + y).

1 1 . log xy.

4. log {x^ - b).

6. log mx"^,

8. log iif'.

10. log (x - y).

12. log {x' + y').

13. log{a + b)y. 14. log-.

x + a

17. ylogx.

16. Io2r
,

.

18. log {a — a:)"*.

29. Exponential Ftmctloiis. It is required to differentiate

the function

a being a constant.

Taking the logarithms of both members,

log u = X log a.

Differentiating, we have, by the last article,

iT'log u = — = dx log a.
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Hence du = u log a dx = cv^ log a dx\

^^ = «^ log «'

which is the required derivative.

If a is the Naperian base, whose value is

^ = 2.71828 « . . , ,

we have log a = 1, Hence

d-e ^

dx

Hence the derivative of c^ possesses the remarkable prop-

erty of being identical with the function itself.

EXERCISKS.
Differentiate:

I. «^^. Ans, 2«'^ log a dx. 2. a"^.

3. c« +^ 4. (f'^''. 5.
J^mx + nv^

6. /r^-J'. 7. 7^-"^. 8. a'^aK

9. d'hK lO. «2^Z^3^. II. ah'^h-'^y.

12. 6^+«. 13. eV^ 14.
^ax + &i/^

30. The Trigonometric Ftinctions,

The Sine, Putting h for the increment of x, we have, by

Trigonometry,

sin {x -\- h) — sin :?; = 2 cos {x -\- ^h) sin ^h.

Now, let h approach zero as its limit. Then,

sin {x -\- h) — sin x becomes ^ sin rr;

h becomes dx, because it is the increment of x;

cos {x 4- ^h) approaches the limit cos x-^

sin ^h approaches the limit \h or ^dx, because when

an angle approaches zero as its limit, its ratio to its sine

approaches unity as its limit (Trigonometry),

Hence, passing to the limit,

d'mi X = cos xdx.
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The Cosine. By Trigonometry,

cos (:c ~\- h) — COS a; = —^sin {x + \h) sin -JA.

Hence, as in the case of the sine,

(I cos X = — sin X dx.

Taking the derivatives, we have

(I sin X

dx

d'cos X

= cos x:

dx
=: — sm .r.

M N
Fig. 8.

Pn = ^ sin :r.

/vV^ = J COS X.

Geometrical Illustrafion, In

the figure, let OX bo the unit- o

radius. Tlicn, measuring lengths

in terms of this radius, we sliall have

NK = sin ./;; MB = sin (:r + //)

;

ON^ =z cos x; OM — cos {x + h)\

Ab' >, supposing a straight line from K to //,

P/r = - KP = KB sin PBK;
PB = KB cos PBK

When B approaches K as its limit, the angle PBK ap-

proaches XOK, or X, as its limit, and the line KB becomes

dx. Hence, approaching the limit, we find the same equa-

tions as before for d sin x and d cos x.

It is evident that so long as the sine is positive, cos x di-

minishes as X increases, whence ^Z'cos x must have the nega-

tive sign.

The Tangent, Expressing the tangent in terms of the sine

and cosine, we have
sin X

tan X = .

cos X

Differentiating this fractional expression,

,

,

cos xd'sin x — sin xd'C08 x sin' xdx + cos' xdx
d tan x = r — =^ 4 •

cos X cos X
= sec* xdx.

which is the required differential.



44 THE DIFFEBENTIAL CALCULUS.

We find, by a similar process,

, , , cos a: » -, dx
d cot X = d'-— = — CSC xdx = ^-^-

;sm X sm x

1 fZ'cos X sin xdx
a -sec X ~ d' • = ^— = ^

—

cos X cos X cos X

= tan a: sec xdx;

c?*cosec a; = — cot x esc a;^a;.

EXERCISES.
Differentiate:

I. cos {a + .y). 2. sin (Z> — ?y). 3. tan {c + 2;).

4. sin y cos 2;. 5. tan ii cos ?;. 6. sin w tan t'.

7. sin «a;. 8. cos ay^ 9. tan ???2;.

10. sin {h + m?/). 11. cos {h -\- my), 12. sin {h — my).

13. cos"" X ' [f^'cos" X = % cos xd'GO^ i2; = — sin 2xdx].

14. sin'' X. 15. sin' ^. 16. sin^ 7iz,

sin :2; ^ sin* a; cos'* a;

17. . 18. . 19. -T-^-.
cos y cos y sm y

20, Show that fZ(sin^ y + cos'* y) = 0, and show why this

result ought to come out by § 24.

21, Differentiate the two members of the identities

cos («-[-?/) = cos a cos y — sin a sin ?y,

sin {a -\- z) = cos a sin z -\- sin « cos z,

and show that the differentials of the two members of each

equation are identical.

22, Show that d'log sin x = cot x dx;

d'log cos X = — tan x dx,

31o Circular Functions, A circular function is the in-

verse of a trigonometric function, the independent variable

being the sine, cosine, or other trigonometric function, and

the function the angle. The notation is as follows:

If y — sin z, we write z — sin ^~ ^^ y or arc-sin y;

If II = tan X, we write x = tan ^~ ^^ w or arc-tan u;

etc. etc. etc.
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Differentiation of Circular* Functions, If we have to dif-

[ferentiate

z = sin ^~ ^^
y.

we shall have

y = sin z; dy = cos z dz = Vl — sin* z dz;

. dz = ^ ^_dy__
Vl - sin' z Vl- f

The Inverse Cosine. If z be the inverse cosine of y, we

find, in the same way.

The Inverse Tangent. If we have

z = tan^~ ^^
y;

then, y = tan ;$;; r/// — sec^ z dz = {1 -\- tan' 21)^/2;;

.•..fo = ^,. (.)

7^/ie Inverse Cotangent. We find, in a similar way,

'^ cot <-?/ = - 5^. 00

3^Ae Inverse Secant. If we have

2; =r sec^~^^ i/;

then, «/ = sec ;2; dy = tan 2; sec z dz = y Vy^ — 1 dz;

..dz = --^L=. (e)

yVy'-l

The Inverse Cosecant. We find, in a similar way,

d'csc^ ^^y =
,

yVf-1



4.
X

6.
\ z 1

8. i2^n^-'^ (x').

lO.
( 1, f 1 \

12. sec^""^> x^ tan^-^> a;,
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EXERCISES.

Differentiate with respect to x or z:

I. sin^~^^ rtx. 2. cos^~*^ (a; + a).

3. sin^"^^ {mx + ^).

5.tan-(.-l).

7. tan<-«p+^).
\a xj

9. sec^~^^ f^;-!— j.

II. sin^~^^^a;cos^"^^ —

.

a

Note.—The student will sometimes find it convenient to invert tl

function before differentiation, as we have done in deducing the differei

tial of sin <- D x.

13. We have, by comparing the above differentials,

eZ(sin ~ \v + c^s - ^ y) = 0;

c?(tan~\^/ + cot~^ y) = 0;

^(sec~^ y + csc~ ^ y) = 0.

Show how these results follow immediately from the defini

tion of complementary functions in trigonometry, combine

with the theorem of § 24 that the differential of a constan

quantity is zero.

33. Logarithmic Differentiation. In the case of produci

and exponential functions, it will often be found that the dii

ferential is most easily derived by differentiating the logarithr

of the function. The process is then called logarithmic dij

ferentiation.

Example 1. Find -,- when y — a;"*^
dx ^

We have log y = mx log x;
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-— = m log X dx -\- mdx'y

-| = y{^r^ log X + m):=^ mx^'^{l + log x).

Example 2. y = —-—

.

^ cos"" X

We have log y = m log sin x — n log cos a:;

dy _ 7/1 cos X n sin a:^

y^/a;
"~

sin x cos cc
^

Jy sin*"-^ r?:.
, ,

. , .

"7- = z—T— {m cos X + n sm a:).

f?a; cos'^ + ^a;^
' ^

MISCELLANEOUS EXERCISES IN DIFFERENTIATION.

Find the derivatives of the following functions with re-

sj^ect to a*:

1. y = X log X, Ans, -^ = 1 + log x,

2, y — log tan a*. Ans, -— =

3- y = log cot X,

X
4*

^' - 4/(<«' - x^y

5.

a."

^ (1 + a:)"-

A
e' - e-"

y- ^^e-^-

7. y = \og{e' + e-'^).

8. y = log tan
(f + |).

9.
a;

lO.
„^4/(l+^)+i^(l-^)
y^^^. //-I 1 --\ //-I „\

dx sin 2a;

. dii 2
A71S, -^ —

dx sin 2a;'

dt/ a^
A71S. -J— =

dx {a' - x')r

dy nx " ~ ^

Ans, -r-
—

A71S,

dx ~
(l + a;)" + ^*

(Iy__ 4__
dx ~ {e^+ e-'^y

. dy c^ — e~
Ans. -T- =

dx 6'* + ^ ~ *

Ans, -r- = .

dx cos X

dy e'(l - a;) - 1

. dy _ 1
^'''' d^~ X ^(1 - x'S
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11. „ = j ^ I
"

, <ly _ ny

1

12. y = tan « -. ^„s. !?y =: _ ^^^ log rt-ai

13. ^ =z X*
^

^TiS.
-J-

— x^(\ + log x).

. ,1 X . dy cos (lo£f 0^")

dx X

15. ?/ = tan" ^
^

v4?z.9. -^ = — .

. dy _ x^

' dx 1 — x^'

' Vl + x' + X

sin ic).

^^ 4/1
-i_ x'

1 — tan a: a ^V r xiS, y = . Ans. ~- = — (cosa; +
sec a: dx ^

ig. y = log (log x), Ans. ~- = —, .

, 1 — x^ . dy — 2 ,

20. 7/ = sm- ^
—-—

-. Ans. -f- =—-—5.

1 + ^ dx \ '\- x"

, . /a cos X — h sin a;

21. y =z log y ;

—

-—. .

^ ' a cos X -{- b ^\nx

. dy — rtZ>

Ans, -f- — -^ 5 ^, .
a

'

aa: a cos x — b sm'' a:

22. li y =z —, prove the relation— '^
- -| - = 0.

^ 1/1 + 7/* Vl + a;*

23. y =e-^^^^. Ans. — = — 2a*xy.
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1 1
""^^ '^ ~ {a + x)^{b-\-xY'

(ly
Ans,

dx

m{h -\- x) -\- n{a -\- x)

25. y = (a* 4- x"^) tan~^ — . Ans, -j- = 2^tan~^—|- a.
(I (IX ci

Ans, -r- =
dx (1 -a:) /i _^^«

•

+ tan x'
27. y = x+ logco^l^-x\A7is. ^=j

• 1 A dy . . ^ X
28. y ^= X sill" ^ X. A71S. -—- = sin~^a; -A .

^ dx l/T^^
29. y = tan x tan "" ^ x,

A

30. y = sin ?^a:(sin a;)",

(sin ?ia;)'

4 dy 2 . _i ,

tana:
.1 ^i.s. -—- = sec .T tan ^ a: + -—— .:.

dx 1 + ^

A71S. -f- — n (sin a:)"~^sin {71 -\- \)x,
dx ^ ^

^ '

31. y
(cos ?>ia;)***

dii mn (sin ?Lr)*"~*cos (7^10: — nx)
A7i^ -^ — ^= ^^

32. y = e cos rx

A ns.

dx

'X

dy^ ^
dx

33. y rr log.

a + Z> tan -

)'*A7lS,

a — b tan -

(cos ?/ia;) ** + ^

e - "''^^
(2rt''a: cos ra: -f-

^' sin ru).

Jt/ _ ah

34. y = a;«.

35. y = sin '—^.

A71S,

a cos^ o
~- " sm^ -r-.

(ZV _ a:^(l — log x)

dx

A dy
A71S, -T- =

dx yi - 2a; - a;'

Jy _ ^
36. t/ = tan~ * (?i tan a:). ^7^5. -7^ =—=

;

—

« . . .
* ^ ^

f/a; cos X + ^r sm a;
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.a , dy
37. y = sec-^—r-^ -^. Ans. -£ =

\/{a'' - x'Y dx
"'

j^((f - x'Y

38. y^{x + a) tan- ^ (j/^ -'^{ax) .

Ans. ^ = tan-V^.

39. ^ = sin- ^ |/(sin a;). Ans.
-f~

— i Vi^ + cosec x).

40. y = tan- >

j^^^. ^..s. ^ = 5^^,.
\ -

, Z> + a cos a; . dy — x/la^ — Z>^)

41. V = sm-^ —'—, . A71S. -f- = 7~ -.
^ a -{- b cos X dx a -\- cos x

42. V = cos- ^
on , T' ^^^5« -/- = on

, V

43. 2/ = Bee- ^^--. Ans. -^- =. ~ -^rZT^y

44. 2/ - t^n-^-^^^^-^.Ans. % = ^^^^.
33. Derivatives luith Respect to the Time,— Velocities, If

we have a quantity which varies with the time, so as to have a

definite value at each moment, but to change its value con-

tinuously from one moment to another, that quantity is, by

definition, a function of the time. We now have the defini-

tion:

If we have a quantity 0, expressed as a function of the

time = ty the derivative, -77-, is the velocity of increase,

or rede of valuation of (p at any moment.

This is properly a definition of the word velocity; but it

may be assumed that the student has already so clear a con-

ception of what a velocity is, that he needs only to study the

identity of this conception with that of a derivative relatively

to ty which he can do by the illustration of § 19.

The student is recommended to draw a diagram to rep-

resent the problem whenever he can do so.
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EXERCISES.

1. It is found that if a body fall in a vacuum under the in-

fluence of a constant force of gravity, the distances through

which it falls in the first, second, third, fourth, etc., second

of time are proportional to the numbers of the arithmetical

progression

1, 3, 5, 7, etc.,

or, putting a for the fall during the first second, the total fall

will be
a + 3a -]- 6a -{- 7a + etc.,

continued to as many terms as there are seconds. It is now

required to find, by summing t terms of this progression, how

far the body will fall in^ seconds, and then to express its

velocity in terms of t, and thus show that the velocity is

proportional to the time.

Ans. (in part). The total distance fallen in t seconds will be aP.

The velocity at the end of t seconds will be 2at

2. The above motion being called nnifornily accelerated,

prove this theorem: If a body fall from a state of rest with

a uniformly accelerated velocity during any time r, and if the

acceleration then ceases, and the body continue with the uni-

form velocity tlien acquired, it will, during the next interval

r, fall through double the distance it did during the first

interval.

Find (1) how far the body falls in r seconds; (2) its velocity at the end

of that time; (3) how far, with that velocity, it would fall in another

interval of r seconds; then show that (3) = 2 X (1).

3. The radius of a circle increases uniformly at the rate of

m feet per second. At what rate per second will the area be

increasing when the radius is equal to ;• feet ?

PHnd (1) the expression for the value of the radius r at the end of t

seconds, and (2) the area of the circle at that time. Differentiate this

area, and then substitute for t its value in terms of r. Note that (t= — ).

We shall thus have ^Ttvir for the velocity of increase of area.
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4. A body moves along the straight line whose equation is

with a uniform velocity of 7i feet per second. At what rate

do its abscissa and ordinate respectively increase ?

Ans, -—=. and -—=.
Vb Vb

5. A man starts from a point h feet south of his door, and

walks east at the rate of c feet per second. At what rate is

he receding from his door at the end of t seconds?

Ans, If we put ii = his distance from his door, we shall

have
du __ c^t

6. A stone is dropped from a point b feet distant in a hori-

zontal line from the top of a flag-staff 9a feet high. At

what rate is it receding from the top of the flag-staff (1) after

it has dropped t seconds, and (2) when it reaches the ground,

assuming the same law of falling as in Ex. 1 ?

At the end of t seconds the square of the distance from the top of the

flagstaff — u^=zb'^-\- a'^t*. On reaching the ground we should have

du _ 6ia^

dt ~ V¥+'S1^'''

7. The sides of a rectangle grow uniformly, both starting

from zero, and the one being continually double the other.

Assuming one to grow at the rate of m feet and the other 2w
feet per second, how fast will the area be growing at the end

of 1, 2, 10 and t seconds? How fast, when one side is 4 and

the other 8 feet ?

8. The sides of an equilateral triangle increase at the rate

of 2 feet per second. At what rate is the area increasing

when each side is 8 feet long ?

Note that the area of the triangle whose sides = s is jf—-—

.
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9. A man walks round a lamp, 20 feet from it, keejjing

the distance with a uniform motion, making one circuit per

minute. Find an expression for the rate at which his shadow

travels on a wall distant 40 feet from the lamp.

10. The hypothenuse of a right triangle is of the constant

length of 10 feet, but slides along the sides at 2)leasure. If,

starting from a moment when the hypothenuse is lying on

the base, the end at the right angle is gradually raised up at

the uniform rate of 1 foot per second, find an expression for

the rate at which the other end is sliding along the base at

the end of t seconds, and explain the imaginary result when

t> 10.

11. Two men start from the same point, the one going

north at the rate of 3 miles an hour, the other north-east 5

miles an hour. Find the rate at which they recede from each

other.

12. A body slides down a plane inclined at an angle of 30°

to the horizon, at such a rate that it has slid 3^ feet at the

end of t seconds. At what rates is it approaching the ground

(1) at the end of t seconds, and (2) after having slid 75 feet ?

13. A line revolves around the point {a, h) in the plane of

a system of rectangular co-ordinate axes, making one revolu-

tion per second. Express the velocity with which its intersec-

tion with each axis moves along that axis, in terms of a, the

varying angle which the line makes with the axis of X.

dx __ %h7t
^ cly __ 2a7r

dt
~"

sin' a' (it'" cos' a

14. A ship sailing east 6 miles an hour sights another ship

7 miles ahead sailing south 8 miles an hour. Find the rate

at which the ships will be approaching or receding from each

other at the end of 20, 30, 60 and 90 minutes, and at tliQ

end of t hours.
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CHAPTER V.

FUNCTIONS OF SEVERAL VARIABLES AND
IMPLICIT FUNCTIONS.

34. Def, A partial diflferential of a function of sev-

eral variables is a differential formed by supposing one of the

variables to change while all the others remain constant.

The total differential of a function is its differential

when all the variables which enter into it are supposed to

change.

A partial derivative of a function luith respect to a

quantity is its derivative formed by supposing that quantity

to change while all the others remain constant.

Eemark. The adjective pai^tial may be omitted when the

several variables are entirely independent.

Example. Let us have the function

u =: x\y + z) + yz. {a)

Differentiating it with respect to x as if y and z were con-

stant, the result will be

du = '^x{y + z)dx, (b)

which is the partial differential with respect to x. Also,

is the partial derivative with respect to x.

In the same way, supposing y alone to vary, we shall have

du = (x' + z)dy, {c)

(1)=^-I . , + z,
\dyl
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which are the partial differential and derivative with respect

to y. For the partial differential and derivative with respect

to ;2; we have

Notation of Partial Derivatives, 1. A partial derivative

is sometimes enclosed in parentheses, as we have done above,

to distinguish it from a total derivative (to be hereafter de-

fined). But in most cases no such distinctive notation is

necessary.

2. In forming partial derivatives the student is recom-

mended to use the form

Djii instead of -r-,
dx

because of its simplicity. It is called the D^ of u. The equa-

tions following (h), {c) and {d) would then be written:

D^u = 2x{ij -\-zy,

Dyii = x' + z;

D,u = x' + y.

EXERCISES.

Find the derivatives of the following functions with respect

to X, y and z\

1. V — x"^ ^ xy + ^'.

Ans, D^v = 2x — y; DyV = ^ x -\- 2y; D^v = 0.

2. w = x^ -\- x'^y -\- xz. 3. ?^ = x*y^z\

4. u =x log y + y log x. s. 7c = {x + y + z)'.

6. u = i/{x + my), 7. 21 = {x -}- 2y + 3z)K

Note. In forms like the last three, begin by taking the

total differential, thus:

du = i{x + 2y + Sz)" * d • {x + 2y + 3z)

- ii^ + 3// + 32)~* {dx + 2dy + ddz).
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Then, supposing x alone to vary, D^it =

supposing y alone to vary.

8. w = {x -{- y -{ %Y, 9.

10. w = cos [mx -\- y), 11,

12. V = iduTi{x — y), 13.

14. -y = cos^ {ax 4- ^^). 15.

16. i^ — ire^ + ^^'"' 1 7*

18. ?^ = sin(:r4-^)cos(.'r— ?/). 19.

DyU

supposing z alone to vary, D^tt

2{x+2y+3zf

1

(^ + 2^+3^)**

3

2{x+2y+3z)i-

w = {x' + .v' + zy,

w — sin (x -\-2y -\- 3z),

V =: sec (rnx -\- nz).

V = c* + ^

-2^ = CC^ -]- t/"".

w. = a; sin y — y sin ic.

35. Fuiq^DAMEi^TAL THEOREM. TliG total differential of

a function of several variables, all of tohose derivatives are

continuo7is, is cqnal to the sum of its palatial differentials.

As an example of the meaning of this theorem, take the

example of the preceding article, where we have found three

separate differentials of v, namely, {h), {c) and {d). The

theorem asserts that when x, y and z all three vary, the re-

sulting differential of u will be the sum of these partial differ-

entials, namely,

du = 2x{y -\- z)dx + (^'^ + z)dy -\- {x^ + y)^z.

To show the truth of the theorem, let us first consider any

function of two variables, x and y,

u = cp(x, y). (1)

Let us now assign to x an increment ^x, while y remains

unchanged, and let us call n' the new value of n, and ^^u the

resulting increjnent of u. We shall then have

n' = (p{x + /!x, y);

J^ti = cp{x + Jx, y) - (p{x, y).

m
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In the same way, if x retains its value while y receives the

increment ^y, and if we call ^yU the corresponding incre-

ment of u, we have

^yU = cp{x, y-\- Ay) -- (P{x, y). (3)

When Ax and Ay become infinitesimal, these increments

(2) and (3) become the partial differentials with respect to x

and y.

Now, to get the total increment of ^t, we must suppose both

X and y to receive their increments. That is, instead of giv-

ing ^ in (1) its increment Ay, we must assign this increment

in (2). Then for the increment of u we shall have, instead

of (3), the result

Ayu' = cp(x + Ax, y + Ay) - 0(rc + Ax, y), (4)

Note that (3) and (4) differ only in this: that (3) gives the

value of Ayti before x has received its increment, while (4)

gives AyU after x has received its increment, and is therefore

the rigorous expression for the increment of u due to Ay,

Now, what the theorem asserts is that, when the increments

become infinitesimal, the ratio of Ayu' to AyU approaches

unity as its limit, so that we may use (3) instead of (4). To

show this, let us put

Then, supposing Ay to become infinitesimal, and putting dyii

for that part of the differential of u arising from dy, we shall

have, from (3) and (4),

dy2i = cp\x, y)dy; (3')

dyu' = 0'(x + Ax, y)dy. (4')

When Ax approaches zero as its limit, 0'(.r + Ax, y) must

approach the limit 0'{./', y), unless there is a discontinuity in
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the function (f>\ which case is excluded by hypothesis. Thus,

using (3') for (4'), we have

Total differential of ^ = du — (-- \dx + (p'{x, y)dy

The same reasoning may be extended to the successive cases

of 3, 4, . . . n variables.

The following are examples of finding some differential al-

ready considered in Chap. IV., by this more general process.

1. To differentiate ^i — xy.

du

dx
^y\

du
-- = X.
dy

Total differential. du =: ydx -\-xdy.

2.
X

u ^^ — ^=- Xlf
y •'

1

du

di-^y
-1 .

du

dy
xy - Hy\

- 1 7 - 2^ y^^ ~ ^^y
du == y ^dx — xy ^dy = ^

—

-.

3. u = ax -\- Jjxy + cxyz,

^^ = « + ^2/ + ^y^'y

du , ,

dy

du

du = (fl5 + Z>y -f oyz)dx + (bx -\- cxz)dy + cxydz,

as in § 25, Example 1.
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EXERCISES.

Write the total differentials of the functions given in the

exercises of § 34.

36. Principles Involved in Partial Differentiation. All

the processes of tlie present chapter are aimed at the following

object: Any derivative expression, such as

du ^

presupposes (1) that wo have the quantity 7i given, really or

ideally, as an explicit function of a:, and perhaps of other

quantities; (2) that we are to get the result of differentiating

this function according to the rules of Chap. IV., supposing

all the quantities except x to be constant.

Now, because it is often difficult or impossible to find u as

an explicit function of x, we want rules for finding the values

of D;eii, which we could get if we had u given as such a func-

tion of X. For example, we might be able to find the equa-

tion 21 = <p{x) if we could only solve one or more algebraic

equations. If, for any reason, we will not or cannot solve

these equations, we may still find D^n whenever the equations

would suffice to give u as a function of x if we only did

solve them. The following articles show how this is done in

all usual cases.

37. Differentiation of Im2^licit Fimctions, Let the rela-

tion between y and x be given by an equation of the form

0(.T, y) = 0. (a)

Representing this function of x and y by 0, simply, and

supposing for the moment that x and y are independent

variables, so that need not be zero, we shall have, by the

last section,

, , d(p
J , d(f) J
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But, introducing the condition that equation {a) must be

satisfied, d(p must be zero, because x and y must so vary as to

keep constantly zero. We then find, from the last equation,

dX~' d^~ Dy(t>' ^ ^

dy

which is the required form in the case of an implicit function

of one variable.

Cor. If from an equation of the form x —f{y) we want to

derive the value of D^y, we have

(P{x, y)=^x -/{y) = 0;

d(f) _ ^^0 _ dfiy) _ _ ^^

dx ~
' dy

~^
dy ~' dy*

Hence ~- = -?—.
dx dx

dy

Example. To find B^y from the equation

0(^. y) = y - ax = 0.

d(p d(p dy

the same result which we should get by differentiating the

equivalent equation y = ax.

Remark. If we should reduce the middle member of (1) by clearing

of fractions, the result would be the negative of the correct one. This

illustrates the fact that there is no relation of equality between the two

differentials of each of the quantities x, y and 0, all that we are concerned

with being the limiting ratios dy : dx; d<p : dx, and dcp : dy, which limit-

ing ratios are functions of x and y.

We may, indeed, if we choose, suppose the two dx's equal and the two

dy*s equal. But in this case the tv/o dcp's must have opposite algebraic

signs, because their sum, or the total differential of (p, is necessarily zero.

Now, if we change the sign of either of the dcp's, we shall get a correct

result by a fractional reduction.
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EXERCISES.

dti dx die
Find the values of -—, -r- or -^ from the following equa-

tions:

I, y^ — ax = 0. 2, y* — yx -]- x* = 0.

3. x' + 4:xz -\-z^ = 0. 4. u{a-x)+ u\b + a;)= 0.

5. log a; + log ^ = c. 6. log (x+y) + log (x-y) = c.

7. sin X -\- sin y = c, 8. sin ax — sin by = c,

9. u -{- e sin u = x. 10. x {1 ^ e cos z) = a.

38. LnpUcit Fu7ictio7is of Several Variables, The pre-

ceding process may be extended to the case of an implicit

function of any number of variables in a way which the

following example will make clear.

Let u be expressed as a function of x, y and z by the

equation

It' + xu' + (x' + yyc + x' + y' + z' = 0,

Since this expression is constantly zero^ its total differential

is zero. Forming tliis total differential, we have

(3w' + 2xu + x' + y')d2C + {u' + 2ux + Sx')dx

+ {22iy + 3y')dy + dz'dz = 0.

By § 34 we obtain the derivative of u with respect to x by

supposing all the other variables constant; that is, by putting

dy = 0, dz = 0, and so with y and z. Hence

du ^ tc"^ -\-27ix 4- 3x^

dx
"^

du' + 2ux + X'' -\-y'

du ^ 2?^?/ + 3?/'

dy - ^y^' -
3^^» _^ ^zux + x" + y'

du ^ 3z'= VzU =
dz

'
die'' + 2ux + x' + y''
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EXERCISES.

Find the derivatives of u^ v or r with respect to x, y and z

from the following equations:

1. xu'' + ifu^ + z'^u = x'^yz.

2. a cos {x — u) -{- h sin {x -\- u) =^ y.

4. r"" ' + r*- y.*^3. ^^^ -}- ?t^ =: tt',

5. z; log a; + ^ log v = y, 6, e^ cos x -\- e"^ cos f/ = e^

7. w"^ — 2t^a; cos ;2 -f r?;'^ = a^, 8. -y'^ + ^^-^ cos z {- x"^ = b"".

-39. Case of ImjMcit Functions expressed hy Shmdta-

neous Equations, If we have two equations between more

than two variables, such as

F^{u, V, X, y, etc.) = 0, F^(%i, v, x, y, etc.) = 0,

then, if values of all but two of these variables are given, we

may, by algebraic methods, determine the values of the two

which remain. We may therefore regard these two as func-

tions of the others, the partial derivatives of which admit of

being found.

In general, suppose that we have n independent variables,

x^, x^ , , . Xn, and )a other quantities, ti^, n^ . . . tim, connected

with the former by tn equations of the form

F^ti,, w, . . . tc„,, x^, x^ , . , x^) = Q]

F,{u,, u. X., x^ x^) =

0.

(a)

F^{U^, U^. . . V„,, X^, X,... Xr,)

By solving these m equations (were we able to do so) we

should obtain the m it's in terms of the n x's> in the form

u^ = 0,(^1^ ^^ • • • ^n);

Un,= (pJx^,x,. . . x„):

(^)
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and by differentiating these equations {b) we should find the

mn values of the derivatives y-*; -y-*; . . . y-'; etc.

Now, the problem is to find these same derivatives from {a)

without solving (a).

The method of doing this is to form the complete differen-

tial of each of the given equations {a), and then to solve the

equations thus obtained with respect to du^, du^, etc.

The results of the differentiation may, by transposition, be

written in the form

dF^ ,
,
dF^^

,
,
dF^

^
dF^ - ,^du, +--^du,+...+^Ju^=--^dx, -etc.;

dF, . , dF, .
,

,
dF^ . Fd, . .

d^du, + ^du^ + ... +p^du^ ^-^ip^dx,- etc.
du^ * du^ '

dUm, dx^ '

By solving these rn equations for the m unknown quantities

du^, dic^ . . . dum, we shall have results of the form

du^ = M^dx^ + 3I^dx^ + . . . + M^dx^;

du^ = N/lx^ + N/lx^ + . . . + J^ndXni

etc. etc. etc. etc.;

where M^, iV,, etc., represent the functions of ?i, . . . ic^,

a;, . . . Xn, which are formed in solving the equations.

We then have for the partial derivatives

dx,-^^' dx,-^^' ^^'''

Example. From the equations

rcos6 = x, ) . ,v

r sin 6^ = y, )

it is required to find the derivatives of r and 6 with respect

to x and y.
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By differentiation we obtain

cos 6dr — r sin Odd = dx;

sin ddr + r cos 6d0 = dy.

Multiplying the first equation by cos 6 and the second by

sin 6, and adding, we eliminate dO. Multiplying the first by

— sin 6 and the second by cos 0, and adding, we eliminate dr.

The resulting equations are

dr = cos 6dx -\- sin 6dy;

rdd = cos Ody — sin 6dx.

Hence, as in the last section,

(I) = ^^^ ^'
(J)

= '^ ^^

EXERCISES.

1. From the equations

r sin 6 = X — y,

r cos (9 = 2: + ^^

find the derivatives of r and ^ with respect to x and y.

2. From the equations

lie'" = r cos ^,

^te~'"= r sin ^,

find the derivatives of u and v with respect to r and 6.

Ans. (^)-i(e''sin^ + e-^cos^);

(It)
= £(«-"«- ^ + ''" cos ^).



X ' + «/' + .= - 2xyz = 0,

X fy + « = a.
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dz

dx
and

dz

dy-
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3. From the equations

w* + rii = a;' + y%
w^ — ru = a;y,

find the derivatives of r and u with respect to x and y.

4. From the equations 5. From

u^ — 2wz cos 6 -^ z'^ = a\

to^ + ^^^^ cos 6^ + 2;''= Z>%

^ , fZ?^ r/?^ tZw dw
d^' 7w' ^' r76r-

40. Fu7ictions of Fiuictions. Let us have an equation of

the form

^* =/(0. ^/^ ^y etc.); (a)

where 0, ?/', 6^, etc., are all functions of x, admitting of being

expressed in the form

0=/.Oi-); i'=.a^); ^=/s(^); etc. {b)

If any definite value be assigned to t, the values of 0, ^',

^, etc., will be determined by {b). By substituting these val-

ues in {a), u will also be determined. Hence the equations

{a) and (h) determine n as a function of x.

By substituting in {a) for 0, tj^, 6, etc., their algebraic

expressions fX^)y /aC^O? etc., we shall have ?/ as an explicit

function of x, and can hence find its derivative with respect

to X, But what we want to do is to find an expression for

this derivative without making this substitution.

By differentiating (a) we have

du = -T-7^/0 + -TT ^0 f -rrrdO + etc.
c/0 dtp ^ da

By differentiating (Z>),

dd> = -T-dxi dib = -r^c?a;; rW = -7-^/^; 6t;c.
dx ^ dx dx
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By substituting these values in the last equation and divid-

ing by clx, we have

du __ du d(p die d'l^ die <^^
_, ^ /-, \

dx
~"

d(p dx dip dx dO dx
' ^

The significance of this equation is this: a change in x

changes it in as many ways as there are functions 0, ?/?, 6, etc.

J- -j-dx is the change in it through 0;

-yy -j~dx is the change in u through ^;

etc. etc.

The total differential is the sum of all these separate

infinitesimal changes, and the derivative is the quotient of

this total differential by dx,

EXERCISES.

1. Find -T- from the equations
dx

u =. a sin (^mv -{- to) -\-h sin (mv — w)\

V = c -{- nx; w =^ c — nx.

We find —- — am cos (mv -\- w) -\- bin cos (mv — w)\ -— =z w.
dv

V I / I ' dx

da
/ . X 7 / \

^^
-~ = a cos (mv -\- w) — o cos (mv — w): —^ — — n:
dw \ I

/
^' dx

whence, by the general formula,

-— = ati{m — 1) cos {mv -{-w)-\- bn{m+ 1) cos (mv — w).

2. Find -r^ from
dx

u = e'^ + e'f';

= ^^; ^ = ne-'', Aiis. e'^-^'^-ne'^-''.

3. Find --,- from
dy

^' + ^0 + ^P""
= ^;

(P = m{a + y); ?/; = 7iy,
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(It
4. Find -:- from

dz

r cos a; — r sin 2; = a — y;

X = mz-\-h\ y = cos nz.

5. Find
-Y

from

r' + a;r' + y'r + 0' = 0;

a:^ -|- «2; = 0; y^ -\- az^ = 0\ = ti;?.

41. The foregoing theory applies equally to the case in

which the function is one of two or more variables, some of

which are functions of the others. For example, if

It = c(>{x, z), (a)

then, whatever be the relation between x and Zy we shall

always have, for the complete differential of ii,

'^" = (^)^^ + (Sh
Suppose that x is itself a function of z. We then have

dx = -z- dz.
dz

By substitution in the first equation we have

du —

(du\ dx . (du \ .,v

= \di] dz + KTz)-
^^>

The two values of -r- which enter into this equation are

different quantities. A change in z produces a change in u

in two ways: first, directly, through the change in z as it

appears in (t/); second, indirectly, by changing the values of

X in (a). The first change depends upon f-7-j in the second
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member of (Z>); the second uponf— j -y-; while the first mem-

ber of {h) expresses the total change.

It is in distinguishing the two values of a derivative thus

obtained that the terms pmiial derivative and total derivative

become necessary. If we have a function of the form

^ =/(^^ 2/^ ^^ . . • ^),

in which any or all of the quantities x, y, lu, etc.^ may be

functions of z, then the partial derivative of u with respect

to z means the derivative when we take no account of the

variations of x, y, w, etc.; and the total derivative, with

respect to z, is the derivative when all these variations are

taken into account.

In such cases the partial derivative has to be distinguished

by being enclosed in parentheses (§34). This is why the last

equation is written

du _ fdii\ fdu\ dx

dz ~ \dzj \dx J dz'

4^2i, Extension of the Princii)le. The principle involved

in the preceding discussion may be extended to the case of

any number of independent variables and any number of

functions. If we have

r = cf){u, V, w . , , X, y, z . . .),

in which x, y, z, etc., are the independent variables, while

It, V, 2V, etc., are functions of these variables, we shall have

*=(fV«+(f)* + ---+(s)'"+*-
Then, since tc, v, to, etc., are functions of x, y, z, etc., we

have

d2i — -^r-dx 4- -r-dy + etc.

;

dx dy '^

dv = —-dx -\- -^-dij -4- etc.
dx ^ dy -^

'
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By substituting these values in the preceding equation we

find*

+[(D+oi+(rr)i+--->
+

Hence, writing r for cp, its equivalent,

dr _ fdr\ f dr\du fdr\dv

dx - Vlx] + Wil'dTc + \dvUix + ^^''•'

etc. etc. etc. etc.

EXERCISES.

The independent variables r and 6 being connected with x

and y by the equations

X — r cos d,

y = r sin 6,

it is required to find the derivatives of the following functions

of X, y, r and 6 with respect to r and 6, We call each of the

functions u.

I. ?/ = 7-^ + 2.r3/ cos 26^.

Here we have

-- = 2y cos 20; - = 2x cos 29;
da? dy

dx ^ dy , .
-— = cos 0; -f- = sm 0;
dr dr

dx , . dy .—^=—rsinO = — y; -y- = r cos = x.

* Here, when we use tlie symbol instead of r, there is reiilly no

need of enclosing the partial derivatives in parentheses. We have done

it only for the convenience of the student.
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TT du _ ldu\ du dx du dy

dr ~ \drf ~^ dx dr dy dr

=z2r+ 2y cos Q cos 29 + 2x sin cos 20

= 2r(l + cos 20 sin 20) = r(2 + sin 40);

and, in the same way,

~ = 2r' cos 40,
dQ

We might have got the same result, and that more simply, by sub-

stituting for X and y in the given equation their values in terms of r and

0. But in the case of implicit functions this substitution cannot be

made; it is therefore necessary to be familiar with the above method.

a^ x^ — if^
2, '?^ = — -4 --^ COS 2^.

r' a

a' , ¥ 2ah
3- ''^ = -2 + -2

a--X y r

4. ti=:r' - {x- y)\

5-

1

~ X mi 'ZO -\- y cos W
6.

1 1

X cos 26 y sin 26'

7. u = r^ -\- x"" — y\

Let V and w be given as implicit functions of p and 6 by

the equations

70 = av;
I

v' + w' = 2p sin (9.
) ^^

It is required to find the total derivatives of the following

functions with respect to p and 6 respectively:

8. u = v"" -{- w^ — p\ 9. 71 = v^ — 2vw cos 6 + tv^.

10. u = —

.

II. 7c = (v 4- 7a) sin 6.
VW V

' /

12. 71 = {V — 7V) cos ^.

13. 21 = 70^ — t?^ -j- ^('^^ + ^OP ^^S ^«
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From the pair of equations (a) we find

dv _ V dw _ w
^

dp ~ 2"/J' dft
~ 2p**

-- = iv cot 0; ^-a^^ cot 0;

wliich values are to be substituted in the symbolic partial derivatives of u.

^ 43. Remarks on the Nomenclature of Partial Derivatives^

There is much diversity among mathematicians in the no-

menclature pertaining to this subject. Thus, the term '^ jiar-

tial derivative^^ is sometimes extended to all cases of a deriva-

tive of a function of several variables, with respect to any one

of those variables, though there is then nothing to distinguish

it from a total derivative.

Again, Jacobi and other German writers put the total deri-

vatives in parentheses and omit the latter from the partial

ones, thus reversing the above notation.

If we have to express the derivative of (p{x, ?/, z, etc.) with

respect to z, the English writers commonly use the symbol

-rr- in order to avoid writinor a cumbrous fraction. We thus
dz ^

have such forms as

D{t + ^y + t\
^Aa'^ b' ^ c'l'

each of which means the derivative of the expression in paren-

theses with respect to x, and which the student can use at

pleasure.

44. Dependence of the Derivative upon the Form of the

Function, Let x and y be two variables entirely independent

of each other, and

u = 0(.r, ij) (a)

a function of these variables. Without making any change

in u or x, let us introduce, instead of y, another independent
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variable, z, supposed to be a function of x and y. Then, after

making the substitution, we shall have a result of the form

w = F{x, z), {h)

Now, it is to be noted that although both ti and x have the

du
same meaning in {b) as in («), the value of -y-^ will be differ-

ent in the two cases. The reason is that in {(t) y is supposed

constant when we differentiate Avith respect to x, while in {b)

it is z which is supposed constant.

Analytic Illustratioii, Let us have

II = ax"^ + by^.

This gives
du

dx
2ax. (0)

Let us now substitute for y another quantity, z, determined

by the equation

z = y -\- X or y — z — X.

^Ye then have w = ax^ -{- b{z — xY;

dx
""^''^ "'^ ^^^"^ ~ ^^'

which is different from {c).

Our general conclusion is: Tlte partial derivative of one

variable with respect to another depends not only %ipon the re-

lation of those two variables, but upon their relations to the

variables which we sup-

pose constant in differen-

tiating.

Geometrical Illustra-

tion, Let r and 6 be the

polar co-ordinates of a

point P, and x and y its

rectangular co-ordinates.

Then fiq. 9.

X = r cos ^;

y — r mi 8;

r' = x' + y\ (d)
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Regarding r as a function of x and y, we have

dr X ^ / V
-7- = - = cos 6. ie)
ax r ^ '

But we may equally express r as a function of a: and 6, thus:

r = rr sec 6. (/)

dvWe then have -j- = sec ft (^)

Referring to the figure, it will be seen that we derive (e)

from (d) by supposing x to vary while ?/ remains constant;

that is, by giving the point P an infinitesimal motion along

the line PQ
\\
to OX, In this case it is plain that the incre-

ment of r (SQ) is less than that of x. But in deriving (g)

from (/) we suppose x to vary while 6 remains constant.

This carries the point P along the straight line OPR; and

now it is evident that the resulting increment of r (PR) is

greater than that of x.
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CHAPTER VK

DERIVATIVES OF HIGHER ORDERS-

45. If we have given a function of x,

we may, by differentiation, find a value of ~. This value
dx

will, in general, be another function of x, which we may call

cj)\x). Thus we shall have

dy

dx
<P'{x).

]^ow, this function 0' may itself be differentiated. If we

call its derived function 0",

we shall have

dy
d
dx __ dcfy^Q') __

dx dx
<P"{x). (a)

Let us examine the geo-

metrical meaning of this

equation, by plotting the

curve representing the origi-

nal equation y = (p(x).

Let X, x' and xf be three

equidistant values of the ab-~

scissa, so that the increments

x' — X and a;" — a;' e Ax are

equal. Let P, Q and R be

the corresponding points of the curve. Let y, y^ and y"

be the three corresponding values of y.

hX
Xo Xi X2

Fio. 10.
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Then we may put

Ay^y^ — y = MQ,
A'y^y^^^y'=NR,

as the two corresponding increments of y.

It is evident that these increments will not, in general,

bo equal; in fact, that they can be equal only when the three

points of the curve are in the same straight line. If D is the

point in which the line PQ meets the ordinate of R, then

DR will be the difference between the two values of Ay, so

that we shall have

DR = A^y — Ay = increment of Ay.

Hence, again using the sign A to mark an increment, we

shall have

DR = AAy = A'y, {b)

in which the exponent does not indicate a square, but merely

the repetition of the symbol A,

Theorem I. WJie7i Ax becomes infiiiitesimal, A^y becomes

an i7ifi7iitesimal of the second order.

For, if D be the point in which PQ produced cuts the

ordinate X^R, we shall have, in the triangle QRD,

^ sm QRD ^ ^ '

When Ax becomes an infinitesimal of the first order, so do

both QD and the angle RQD, but the angle QRD will remain

finite, because it will approach the angle QDX as its limit.

Hence the expression will contain as a factor the product of

two infinitesimals of the first order, and so will be an infini-

tesimal of the second order.

Since both the quantities QD and RQD depend upon Ax,

we conclude that the ratio

A^
Ax"

may remain finite when Ax becomes infinitesimal. In fact.
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from the way we have formed these quantities, we have

Hence

—

Theorem II. If we take two equal consecutive infinitesimal

increments, = dx, of the independe?it variable, then—
1. The difference between the corresponding infinitesirnal

increments of the function divided ly dx^ will approach a

certain limit.

2, This limit is the derivative of the derivative of the

function.

Def The derivative of the derivative is called the second

derivative.

The derivative of the second derivative is called the third

derivative, and so on indefinitely.

Notation. The successive derivatives of y with respect to

X are written

^. ^. ^. ^.^ .

dx' dx'' dx''
^^''

or D^y\ D^^y; DJy, etc.

46. Derivatives of any Order. The results we have

reached in the last article may be expressed thus: If we have

an equation

y = 0(^).

the first derivative is given by the equation

Then, by differentiating this equation, we have, by the last

theorem.

d-^^
dx d'y ,,,. .

dx dx^
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Again, taking the derivative, we have

and we may continue the process indefinitely.

EXERCISES AND EXAMPLES.

1

.

To find the successive derivatives of ax*.

(Ix

and all the higher derivatives will vanish.

Form the derivatives to the third, fourth or nth. order of

—

2. ax\ 3. bx~^, 4. {a-\-xy,

5. {a-x)\ 6. {a + x)-\ 7. {a - x)-\

8. (r^^ + a;^)\ 9. 2rtV + a;\

10. rt + ^•^' + <^'-^'' + Z'-^'' + '^'^•*.

11. 1 + .^ + :6'' + x' + :i:* -f a;' + . . . + :r".

12. 1 - x + a;' - x' + :f^ - o;^ -f . . . + (- l)*»:r\

»-- 1 3 n

13. x'2. 14. a:2. 15. (^ + :r)^ 16. {(i-\-xY,

17. If ^ = e^ find /),"// = r;'(log rt)\

iS. From // = wr', find the nt\\ derivative.

19. From //
— me^"" show that DJ'y = h'^y.

Find the first three derivatives of the expressions:

20. 2*. 21. ax^, 22. a;"*.

23. log .r. 24. log {a + x), 25. VI log 2:.

26. log {a — x), 27. log [a -\- nix). 28. log {a — 7?ix).

29. Show that if // = sin .r, then —^ = —
?/.

fVy _ (/ '* ^ *
?/ _^

7^ ~^' dx''^%'' dx^'
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30. Show that the same equations hold true if y = cos z

or a y = a cos x ^ b sin x,

31. Find the law of formation of the successive derivatives

of sin mx and cos mx.

Especially, the {71 + 4)th derivative = nth der. x what?

{71 -f 2)th derivative == 7ii\i der. X what?

32. Find the nila. derivative of e""^.

^:^, Find three derivatives of 6^"*"^ sin nz,

34. If u = y\ show that^ = (1 + log ^)^ + ~.

35. Find two derivatives of u = tan z,

2,6, Find two derivatives of ^^ = cos"* z.

37. Find two derivatives ofu = sec^ z,

38. Find two derivatives of it = cos' z — sin' z.

39. Find two derivatives of ^ ~ cos 2z,

40. Find two derivatives of w = e ~ '^^

41. Find two derivatives of 11 — sin^~^^:^\

..\

47. Special Forms of Derivatives of Circular and Ex-

'poneniial Functions, Because

cos x = sin (x -\- i7t) and — sin a; = cos {x + ^tt),

the derivatives of sin x and cos x may be written in the form

D^ sin X — sin {x -\- ^n)

and D^ cos x = cos {x -\~ ^tt).

Hence, the sine and cosine are such functions that their

derivatives are formed hy increasing their argument by ^rr.

Differentiating by this rule n times in succession, we have

r. „ • d"" sinx ' I ,
n \D/ sm X = —^ir- = sm [x + -Ttj;

^ „ <i" cos x f ,
^^ \

DJ" cos X := —j^^r- = cos [x + ^^j;

results which can be reduced to the forms found in Exercises

29 and 30 preceding.
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48. Successive Derivatives of an Implicit Function, If

the relation between y, the function, and x, the independent

variable, is given in the implicit form

f{x, y) = 0,

then, putting u for this expression, we have found the first

derivative to be

du

dy _ dx .

dx
~~

SJT' ^ '

dy

The values of both the numerator and denominator of the

second member of this equation will be functions of x and y,

which we may call X^ and Y^, We therefore write

^y = -^. (b)
dx y; ^ '

Differentiating this with respect to x, we shall have

_Y-—' + X—-'
d'y _ ' dx ' dx . ,

"^ -
T; ^'^

X, and Y^ being functions of both x and y, we have (§ 41)

dx \dxl^\ dy Idx'

dx \ dx j \ dy Idx'

dy
Substituting in these equations the values of -j- from {b),

and then substituting the results in {r), we shall have the re-

quired second derivative.

The process may then be repeated indefinitely, and thus

the derivatives of any orders be found.

Example. Find the successive derivatives of y with re-

3pect to X from the equation

X* — xy -\- y^^u = 0,
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dy _2x — y
dx X — 2y^

which is a special case of (a) and (h), and where

X^ = 2x — y and Y^ = — x -\- 2y.

Differentiating the equation (a')^ we have

^o;'' (a; - 2yy

dv
Substituting the value of ~ from («'), we have

(IX

cVy _ {x - 2y) (- 3?/) + 3.^(2.9; - y)

dx^
~~

{x — 2yy

_ ^{x"" — xij -|- "if) _ 6u
{^-^y'~ ~

(^ - ^yf

EXERCISES.

Find by the above method the first two or three derivatives

of V with respect to x, y or z, from the following equations:

/ \ 4 d^^ 2{a ^ v)
1. zv — a(v — z). Ans, -7-^- — — A.

^ ^ dz {a — z)

2. v^y + vy^ — a,

3. v'^ -)- vx -{- y^ = b,

4. v{a — xY -{- v"" (b -{- x) = c,

5. log {v + z)+ log {v - z) = c.

6. sin mv — sin 72?/ = h,

7. '^(1 — a cos 2j) = A.

8. If II — e sin ^^ = ^^ show that

d'^u _ 1 — 6

dedg ~ {1 — e cos «^)'"
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A- 49. Leibnitz's Theorem. Tofind the successive deriva-

tives of a product iji terms of the successive derivatives of its

factors.

Let uv = jy be the product of two functions of x. By suc-

cessive differentiation we find

dp _ dv du
^

dx dx dx^

d'^p _ d'^v du dv d'^u

dx^ dx^ dx dx dx^ ^

So far, the coefficients in the second member are those in

the development of tlie powers of a binomial. To prove that

this is true for the successive derivatives of every order, we

note that each coefficient in any one equation is the sum of

the corresponding coefficient plus the one to the left of it in

the equation preceding. Kow, let us have for any value of n

dy d^'v
,

du r/"-^y
, ^ , .

the successive coefficients being

1; «; @; (f);
etc. (Comp. §6.)

Then, in the derivative of next higher order the coefficients

will be

and, in general,

(")+L-^) " C^)-
d^^ hj

That is, n n + i
^^ formed from {a) by writing n + 1 for n.

Hence, if the rule is true for 7i, it is also true for ;i + 1. But

it is true for ?i = 3; .
*

. for n = 4, etc., indefinitely.
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50. Successive Derivatives tuitli resjyect to Sever'al Equi-

crescent Variables. Studying the jorocess of § 45^ it will be

seen that we supposed the successive increments of the inde-

pendent variable to be equal to each other^ and to remain

equal as they became infinitesimal^, while the increments of

the functions were taken as variable. This supposition has

been carried all through the subsequent articles.

Def. A variable whose successive increments are supposed

equal is called an equicrescent variable.

We are now to consider the case of a function of several

equicrescent variables.

If we have a function of two variables,

u = (p{x, y),

the derivative of this function with respect to x will, in

general, be a function of x and y. Let us write

-^ = u^,yy

Nov/, we may differentiate this equation with respect to y
AVlth a result of the form

,du
d-rj—

Using a notation similar to that already adopted, we rep-

resent the first member of this equation in the form

d'u

dxdy

In the i)-notation this is written

In either notation it is called "^^the second derivative of

u with respect to x and y,'^

As an example: If we differentiate the function

u = y^ sin {mx — ny) (a)
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with respect to x, and then differentiate the result with

respect to y, we have

D^u = -j~ = my cos (inx — }iy)\

D*g.^yU = -i—j- = ^'''// cos {fnx — ny) + niny^ sin {mx — ny),

51. We now have the following fundamental theorem:

d^u _ d'^xi
^

dxdy
~~

dydx^

or, in words.

The seco7id derivative of a function loith res'pect to two

equicrescent variables is the same whetlier we differentiate in

one order or the other.

Let tc = cj){x, y) be the given function. Assigning to x

the increment Ax, we have

Au _ 0(a; + Ax, y) - (p{x, y)

Ax
~

Ax ~
' ^^

In this equation assign to y the increment Ay, and call A—r-

the corresponding increment of -^, Then the equation will

give

^^ An. ^ <fy{x + Ax, y + Ay) - 0(.y, y + Ay)

Ax Ax Ax

Subtracting (1) and dividing the difference by Ay, we

have

Au
^a? _ <p{x+ Jx, y-\- Ay) - <p{x, y + J?/) - (p{x +_Ax, y) -{-^x, y)

Ay J.vJy

The second member of this equation is symmetrical with re-

spect to X and y, and so remains unchanged wlicn we inter-

change these symbols. Hence we have

.An .Alt
A— A—
Ax _^ Ay
Ay ~~ Ax
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for all values of /Ix and Ay, and therefore for infinitesimal

values of those increments. Thus

dx _ dy

dy dx ^

or ^'x,y?^ ~ D\^^u,

as was to be proved.

As an example^ let us find the second derivative of {a) in

the reverse order. We have

-_ = 2// sin {mx — ny) — ny'^ cos {inx — ny);
ay

d^ic——-- = 2niy cos {mx — ny) -\- Tiuiy'^ sin {vix — ny)]
(tycix

the same value as before.

Corollary. The result of taking any number of succes-

sive derivatives of a function of any number of variaUcs is

independent of the order in luhich loe perform the differentia-

tions.

For, by repeated interchanges of two successive diifcrentia-

tions, we can change the whole set of differentiations from

one order to any other order.

If we have I differentiations with respect to x, m with re-

spect to y, n with respect to z, etc.^, and use the i)-notation,

we express the result in the form

Here the symbol Dy"^ means DyDy, etc., m times.

In the usual notation the same operation is expressed in

the form

dxhly'^dz^ . .
.*

The corollary asserts that, using the i)-notation, we may

permute at pleasure the symbols DJ, D.f, D^, etc., without

changing the result of the differentiations.
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EXERCISES.

Verify the theorem D^Dyii = DyDji in the following cases:

T. ?^ = tr sin ?/ + y sin x, 2. u = x^.

3. u = X log y.

4. u — a sin {x -\- y) — 1) sin (2: — y).

Differentiate each of the following functions once with re-

spect to z, twice with respect to //, and three times with re-

spect to X, in two different orders, and compare the results.

^'y'
/: 4 3 8

5. -^^-.' 6. ax'y'z\

7. X sin y -\- y ^m z -\- z sin x. 8. sin {Ix + my + nz),

1
9. If ?^

^(x' + y^+Z^y

show that -^, + -^, + ^^, = 0.

53. Notation for Potcers of a Differential or Derivative,

Such an expression as du^ may be ambiguous unless defined.

It may mean either

Differential of square of w, i.e., d{rt^)\

or Square of differential of ?<; i.e., {dvy.

To avoid ambiguity, the expression as it stands is always

supposed to have the latter meaning. To express the differ-

ential of the square of u we may write either

d'u^ or d{u'')y

of which the first form is the easier to use.

The square of the derivative -y- may be written either

(duV du"
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CHAPTER VII.

SPECIAL CASES OF SUCCESSIVE DERIVATIVES.

53. Successive Derivatives of a Power of a Derivativec

Let us have to differentiate the derivative

(duV
\dxl

with respect to x.

In such operations the i>-notation will he found most con-

venient.

Applying the rule for differentiating a square, the result is

^JduV du
\dxl __ du dx __ du d'u

dx '" dx dx ~ dx dx^^

or, in the /^-notation,

D^{D^tcy = 2D^uD^*u.

In the same way, we find

d'{D^uY (duy-'d^u .^ ,n-in»
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EXERCISES.

Write the derivatives with respect to x of

pressions, y being independent of x when

equicrescent variable:

lO

13

16,

19

\dx.

y dx)
'

die dti

dx ~dy

dz

{dyV
\dxl

.dx) \dx')
•

yVfdyy
"V \dx'J

'

14

17

\dx

duy
dy)'

m-
crnV

dx')
•

duV
dx)

(hiV

dx)

[dx'J
'

du dv

dx dy

du

dy

d^u

dx
?)•

du dv

dy dx

the following ex-

it is written as an

IduV
' \d-y)

•

( d'n V
^' Vdxdij)'

'"
(di) \di,)

'

'5* \dfl \d/l'

54. Derivatives of Functions of Functions, Let us have,

as in § 40,

«=/-(^-), (1)

where ^^ is a given function of x. It is required to find the

successive derivatives of u with respect to x. We may evi-

dently reach this result by substituting in (1) for t\) its ex-

pression in terms of x, and then differentiating the result by

methods already found.

But what we now wish to do is to find expressions for the

successive derivatives without making this substitution. To

do this, assign to x the infinitesimal increment dx. The re-

sulting infinitesimal increment in ip will be

d.p = '^dx.
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This, again, will give it the increment

du = ~jj^i^9

or, by substituting for dip its value, and passing to the de-

rivative,

du __ du dip

dx
~~

dip dx' ^ '

This is a particular case of the result already obtained in

§40. The second member of (2) is a product of two factors.

The first of these factors is formed by differentiating a func-

tion of y^ with respect to ifr, and is therefore another (derived)

function of rp\ while the second is, for the same reason, a

function of x.

Differentiating (2) with respect to x by the rule for a prod-

uct, we have*

d^u _ dip dip du d'^ip

dx^ ~ dx dx dip dx^

'

^ '

du
Now, because -j— is a function of tp, its derivative with re-

dip
^

spect to X is to be obtained in the same way as that of ti.

If we put, for the moment,

we have, as in (2),

dti' _ du' dip _ d'^ii dip
^

dx dip dx dip^ dx '

Au
dtp

* The student should note that the expression —— cannot be put in the

form , , , , because the latter form presupposes that ib and x are two in-
d^dx

dependent variables, which is here not the case. In fact, u does not con-

tain X except in if).
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and hence, by substitution in (3),

dx'
"~

di/Adx) ^
dtl^ dx'' ^'

which is the required expression for the second derivative.

From this we may form the third and higher derivatives

by again applying the general rule embodied in (2), namely :

If tf) is a function of x, we find the derivative of anyfunc-

tion, Uy of ip by differentiating u tuith respect to tp, and mul-

tiplying the resulting derivative ly -j-.

From the equation (4) we have

^ d^u

d^ __ fdipy W
, 2— ^^

dx*
"~

\dx) dx dip* dx dx*

J
du

d^tp dip du d*tp

"^
Th'' ~d^' '^'dip'd^*

By the rule just given, we have

fd^n
dtp"" _ d^\i dtp

^

dx ~ ~~
dtp^dx^

jdtc

dtp __ d^u dip

dx
~"

dfp* dx

'

Hence, by substitution and aggregation of like terms,

cTtc __ d^u IdipV d^u d^ip dtp du d^tp . .

d^*
"

7fp*\d^)
"^

cff' Tlx^ d^'^ThpW ^^

Repeating the process, we shall find

d^n _ d^ufdfpy
,

(.(Pu^ ^TH^ItV
dx'

~ dipAdx) + ^dip' di' \dx)

. (Pu r.d^P dtp . Jd^yi .dud^tp
"^

dtp* i^dx*' dx^\lx') A'^ dtp dx' • ^^
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Example. Let us take the case of

u = sin tp,

ip being any function whatever of x. We may then form the

successive derivatives as follows:

du _ du dtp __ dip
^

dx
~"

dtp dx
~~

dx '

d'^u

^(f) + ^^^
1'W'^

^ - _ ftl^Jty^ 2 sin th^^
dx^

""
^^\dx) ^dx dx""

. dtpd'tp
,

d'tp— sm t^—- -^-f + cos t^;--\-
^dx dx^ ^ dx^

Jdil^V ^ . ,dil^d'tp
,

,
d'tp

EXERCISES.

Putting = a function of x, find the first three derivatives

of the following functions of with respect to x:

I, u = cos 0. 2. u = 0'

3. t^ = 0\ 4. u = 0\
5, ?^ = log 0. 6. i^ = e'^

.

y, u = sin 20. 8. «^ = cos 20,

i '55. Change of the Equicrescent Variable, Let the relation

between y and a; be expressed in the form

^ = <P{y), (1)

and let it be required to find the successive derivatives of y
with respect to x, regarding the latter as the equicrescent.

We may do this by solving (1) with respect to y, and then

differentiating with respect to x in the usual way.

But the method of the last article will enable us to express

the required successive derivatives of y with respect to x in

terms of those of x with respect to y, which we can obtain
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from (1). By differentiating (1) as often as we please, we

have results of the form

D^x^ry Eo:";
[

(2)

etc. etc.

x\ x" , a:'", etc., thus representing functions of y.

From § 37, Cor., we have

^ - _L - 1 i'\\

dx ~ DyX x''
^^

To obtain the second derivative, we have to differentiate x',

a function of y, with respect to x (§ 54). Thus

(Ty __ 1 dx' dy

dx^
~"

x''^' dy dx'

From (2),
^' =^ = ,:".

^ ^ dy dy^

From this equation and (3) we have

d^y __ cc" __ rZy' ...

J? ~ "" ?"^ - ~ 7^'* ^^

Differentiating again, we find

d^ _ /3^" J^' _ _1 dx^'\ dy

Jx'~U'^" dy x'' dyl dx

_ dx'"' - x'x''' _ \dyV dy dy
""

x''
"

fdxV

[dyj

The above process may be carried on to any extent. But

many students will appreciate the following more elegant

method of obtaining the required derivatives.

Imagine that we have solved the equation (1) so as to

obtain a result in the form

y = n^)- (5)
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If in this equation we substitute for x its value (1), we shall

have a result in the form

y = F{cpy), (6)

which, of course, will really be an identity.

But we may still differentiate (5) with respect to y, regard-

ing a; as a function of y given by (1), by the method of §§ 40

and 54. Thus we shall have

dy

dy
=_

dy dx^
~ dx dy'

(§54, Eq. 2.)

d^y_

df-
_ d:'yfdx\

~ dx'xdyl

' dy d^x^

'

"^ dx dy" (§54, Eq. 4.)

d'y

df-
_ d'yidx

•

' d%\dy

.

\' <fy d'x
1'^ d^dy'

dx

dy

dy d^x
^ dx dy''

etc. etc. etc. etc.

But from the identity (6) y = y, which is obtained from

(5), we have

^-1. fl-o- ^y-0' etc
dy ~ ' dy' - ^' dy' ~ ^' ^^^•

Therefore, substituting for the derivatives of x with respect

toy the expressions a;', a;", etc., in (4), we have the equations

"" dx - ^'

^ dx"^"" dx- ^'

dx''
'

c?a;' ' ^
' ^ dx" ^ dx

Solving these equations successively, we shall find the values

of -—-, ~^y etc., already obtained.

56. Case of Ttoo Variables Connected hy a Third, The

case is still to be considered in which the relation between x
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and y is expressed in the form

y = 0,(^0; ^ = 0a(«O- (1)

From these equations it is required to find the successive

derivative of y with respect to x.

The first derivative is given by the equation

dy_

dy _ dii _ Dyy

dx
~~

dx
~" D^x

du

From the manner in which the second member of this equa-

tion is formed, it is an explicit function of u alone. Hence

(§ 54) we obtain its derivative with respect to x by taking its

du
derivative with respect to u, and multiplying by -r-. Thus

dx d^y dy d*x

d'y

dx'

du du' du du' du

i-
xy
u)

' dx

dx

du

d'y

du'

dy^

die

d'x

du'

IdxV
\du)

This, again, being a function of u, further derivatives with

respect to x may be obtained by a repetition of the process.

EXERCISES.

Find the second derivative of x with respect to y, and also

of y with respect to x, when the relation of x and y is given

by the following equations;

1. X = a cos u; y = h sin u.

2. x = a cos 2w; y = ^ sin u.

3, aj = a cos 2u; y = b{co8 u — sin u),

4, z = u — e sin. u; y = w + ^ sin u.
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6. Show that if

,

,

d^u 2 sin u
y z=z e^ cos u, then -^-^- = -5-7 : r^.^ ay r"(cos 2^ — sm u)

7. Show that the ^^th derivative of a;"* + aa;**"^ + Ja:**"^ is

?i!, n being a positive integer > 1.

8. Show that

D^\u') = du'D^'u + ISuD^uDJ'u + 6(Z>^.?^)'.

9. Show that if v = u'^y then

+ ^z(^ - 1) (7z - 2)i^'»-3(Z)^?*)\

10. If 10 = a cos mx + Z> sin ma;, show that

BJ'u + m\i = 0.

Then, by successively differentiating this result, show that,

whatever the integer n,

!>/ +% -m'Z>/«^ = 0.

11. li u = e"^ cos X and v = e^ sin x, then

D^u = — 2v and Z>J^ = 2u,

Also, D,^?; + 4?; == 0;

i)^*^ + 4i^ = 0.

12. If to = e"^ cos mx and v = c"* sm mx,

show that the successive derivatives of u and v may always be

reduced to the form

DJu = AfU — BiV; DJv = AiV -{ Bi^i, (a)

where A and B are functions of m and n. Also, find the

values of A^, A^^ B^ and B^, and show by differentiating (a)

that
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CHAPTER VIM.

DEVELOPMENTS IN SERIES.

57. A series is a succession of terms all of whose values

are determined by any one rule.

A series is called

Finite when the number of its terms is limited;

Infinite when the number of its terms has no limit.

The sum of a finite series is the sum of all its terms.

The sum of an infinite series is the limit (if any) which tlie

sum of its terms approaches as the number of terms added to-

gether is increased without limit.

When such a limit exists, the series is called convergent.

When it does not exist, the series is called divergent.

To develop a function means to find a series the limit of

whose sum, if convergent, shall be equal to tlie function.

We may designate a series in the most general way, in the

form

^^ + ^^ + ^^3 + . . . + «<n + ^n + 1 + • • . >

the nth. terms being called w„.

58. Convergence and Diverge7ice of Series. No universal

criterion has been found for determining whether any given

series is convergent or divergent. Tliere are, however, a great

number of criteria applicable to a wide range of cases. Of

these we mention the simplest.

I. A series cannot he cojivergent ufiless, as n becomes in-

finite, tlie nth term approaches zero as its limit.

For if, in such case, the limit of the terms is a finite

quantity a, then each new term which we add will always
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change the sum of the series by at least a, and so that sum
cannot approach a limit.

As an example^ the sum of the series

1 — 1 + 1 — 1 + 1 — 1, etc., ad i7ifinitum,

will continually change from + 1 to 0, and so can approach

no limit, and so is divergent, by definition.

II. A series all of ii^liose terms are positive is divergent

unless nu,^ ~ when n= oo .

To prove this, we have first to show that the harmonic

series

i + -|^ + i + -|^+ etc, ad infinittim,

is divergent. To do this we divide the terms of the series,

after the first, into groups, the first group being the 2 terms

^ + i, the second group the following 4 terms, the third

group the 8 terms next following, and, in general, the 7ith.

group the 2" terms following the last preceding group. We
shall then have an infinite number of groups, each greater

than i.

Now, if, for all the terms of the series after the ?ith, we

have
nUn > a {a being any finite quantity),

then Un > -,

' ^ ' \w'm +lm + 2 /

Because the last factor of the second member of this equa-

tion increases to infinity, so does its product by a, which

proves the theorem.

III. If the terms ofa series are alternately positive and nega-

tive, continually diminish, and approach zero as a limits

then the series is convergent.

Let the series be

^1 "^ '^3 + ^8 "* '^4 + ^^6 "" • • • •

Then, by hypothesis,

u,> u^> u,> u^> , , . .
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Let us put Sn for the sum of the first n terms of the series,

n being any even integer, and S for the limit of the sum, if

any there be. Then this limit may be expressed in either of

the forms

and

Since all the differences in the parentheses are positive, by

hjrpothesis it follows that, how many terms soever we take,

the sum will always be greater than Sn and less than Sn+i.

The difference of these quantities is ?< » + 1^ which, by hypothe-

sis, approaches zero as a limit. Since the two quantities S^

and Sn+i approach indefinitely near each other from opposite

directions, they must each approach a limit ;S^ contained be-

tween them.

Graphically the demonstration may be shown to the eye

thus; Let the line OS^ represent the sum S^ when 71 = 6,

O Ss S8 Sio—

S

Sn S-9 Sr

Fio. 11.

or any other even number; OS^ the sum S^, etc. Then every

succeeding even sum is greater than that preceding, and

every succeeding odd sum is less than that preceding, while

the two approach each other indefinitely. Hence there must

be some limit S which both approach.

An example of such a series is

of which the nth term is — ^^ -r. We shall hereafter see
271 — 1

that the limit of the sum of this series is ^tt. If we divide

the terms into pairs whose sums are negative, the series may

be written
2 2 2

3-5 7-9 1113
— etc.
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Pairing the terms so that the sum of each pair shall be posi-

tive, the series becomes

_j_i_j_ _i_f
3 +5^7 + 901 + 1305 + ^^''•

We may show by the preceding demonstration that these

series approach the same limit.

IV. If, after a certai7i finite number of terms, the ratio of

two consecutive terms of a series is continually less titan a cer-

tain quantity a, ivMcli is itself less than unity, then the series

is convergent.

Let the nth. term be that after which the ratio is less than

a. We then have

Un-^2 < OCUn + i < Oc'Un;

Un + 3 < ^^^n + 2 < «^X;

Taking the sum of the members of these inequalities, we

have

^^« + i + «*n+2 + «^n +3+ ... <{a + a' + a' + . . . )Un.

But «: + a' + ^' + . . . is an infinite geometrical progres-

sion whose limit when a < 1 is , a finite quantity.

Hence, putting S for the limit of the sum of the given

series, we have

The second member of this inequality being a finite

quantity which S can never reach, S must have some limit

less than that quantity.

As an example, let us take the exponential series
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The ratio of the in + l)st to the nth term is -. This
n

ratio becomes less than unity when ii > x^ and it approaches

zero as a limit. Hence the series is convergent for all values

of X.

Corollary. A series

«o + ^1^ + ^a^' + ^3^' + • • •

proceeding according to the powers of a variable, x, is conver-

gent whe7i x <1, provided that the coefficients a^ do not in-

crease indefinitely.

Remarks.—(1) Note that, in applying the preceding rule, it does not

suffice to show that the ratio of two consecutive terms is itself always

less than unity. This is the case in the harmonic series, but the series is

nevertheless divergent. The limit of the ratio must be less than unity.

(2) If the limit of the ratio in question is greater than imity, the series

is of course divergent. Hence the only case in which Rule IV. leaves

a doubt is that in which the ratio, being less than unity, approaches

amity as a limit. But most of the series met with come into this class.

(3) The sum of a limited number of terms of a series gives no certain

indication of its convergence or divergence. If we should compute the

successive terms in the development of ^ — loo we should soon find our-

selves dealing with numbers having thirty digits to the left of the deci-

mal-point, and still increasing. But we know that if we should continue

the computation far enough, say to 1000 terms, the positive and negative

terms would so cancel each other that in writing the algebraic sum we

should have 42 zeros to the right of the decimal-point.

On the other hand, if the whole human race, since the beginning of his-

tory, had occupied itself solely in computing the terms of the harmonic

series, the sum it would have obtained up to the present time w^ould have

been less than 44. For 1000 million of people writing 5000 terms a day

for 2 million of days would have written only 10^^ terms. It is a theorem

of the harmonic series, which we need not stop to demonstrate, that

But Nap. ,0. 10.. = ^^^'=,3g_= 43.78.

and yet the limit of the sum of the series is infinite.



100 THE DIFFERENTIAL CALCULUS.

1. 59. Maclauri7i's Theorem, This theorem gives a method

of developing any function of a variable in a series proceed-

ing according to the ascending powers of that variable.

If X represents the variable, and the function, the series

to be investigated may be written in the form

ct>{x) = A, + A,x + A^x^ + A,x' + . . .
; (1)

the series continuing to infinity unless is an entire func-

1

tion, in which case the two members are identical. >,

Whether the development (1) is or is not possible depends '*

upon the form of the function 0. Most functions admit of
|

being so developed; but special cases may arise in which the

development is not possible. Moreover, the development will

be illusory unless the series (1) is convergent. Commonly this

series will be convergent for values of x below a certain mag-

nitude, often unityy and divergent for values above that mag-
j

nitude. What we shall now do is to assume the development

possible, and show how the values of the coefficients A may be

found.

Let us form the successive derivatives of the equation (1).

We then have

0(a;) — A^-^ A^x^ A^x' + etc.;

dx

d'cp

^^
= cf>\x) = ^, + 2A,x + ^A^x' + .

= 0"(a;) = 1-2^, + 2-3^30: + 3-4:jy +
dx'

^0 = 0-(^) ^ 1.2. 3^3 + 2-3-4^,0: +

—-= 0^^>(a:) =:l-2-3-4. . . ?iJn + etc.

By hypothesis these equations are true for all values of x

small enough to render the series convergent. Let us then

put a; = in all of them. We then have



DEVELOPMENTS IN ISEMES. 101

0(0) = ^.; .-.^. = 0(0).

<P'{Q)=A,; .•.^, = 0'(O).

0"(O) = l-2^.; .•.^, = jl0"(O).

0"'(O) = l-2-3^.; ... J, = j-1-^0'"(O).

I
<t^-\Q) = n\A^; . • . A = 10<->(O).

By substituting these values in (1) we shall have the re-

;quired development. Noticing that the symbolic forms 0'(O),

'0"(O), etc., mean the values which the successive derivatives

;take when we put x = after differentiation, we see that the

coefficients are obtained by the following rule :

Form the successive derivatives of the given function.

After the derivatives are formed, suppose the variable to be

zero in the original function and in each derivative.

Divide the quantities thus formed, in order, by 1; 1; 1*2;

'1*2*3, etc., the divisor of the nth derivative being n\

The quotients toill be the coefficients of the powers of the

variable in the development, commencing with the zero power,

or absolute term,

EXAMPLES AND EXERCISES.

I. To develop {a -\- xY^u in powers of x. We have

u = [a-\- xY', . • . ^, = a\

-- = n{a + a;)**-*; .' . A^ = 7ia''~K

'^i=n{n^l)(a + xY-'; r . A,= ^^.^
^a^-\

^^ = n{^^-^)-'^n-s + l)(a + x)--
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Thus the development is

{a + xY = a^ + na^'-^x + (|)^''~V + (3^**"'^' + • • -

which is the binomial theorem. I

2. Develop {a — xY in the same way.

3. Develop log (1 + ^)' '

Here we shall have

^! = 1-2(1 + .)-;

etc. etc.

Noticing that log 1 = 0, we shall find

log {l-\-x)=x-ix'+ix' -lx'+

4. Develop log (1 — x),

5. Develop cos x and sin x.

The successive derivatives of sin x are cos x, — sin x, — cos a?, sin a?,

etc. By putting oj = 0, these become 1, 0, — 1, 0, 1, 0, etc. Thus we
find

X^ , x^ ^ ,

6. Develop e"", where e is the Naperian base.

x^ x^
Ans, 6^ = 1 + a; + ^j

+
-J
+ . . . .

7. Develop e"*.

8. Show that

9. Deduce e^'^" = 1 + =*= +^-^ +
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10. Develop sin {a + x) and cos (a -\-x) and thence, by com-

paring with the results of Ex. 5, prove the formulae for the

(sine and cosine of the sum of two arcs. Find first

x"^ x^
sin (a + x) — sin ^ (1 — *-. + ..) -f cos a (x — ^-f- . .).

11. Develop (1 + <^'^)" ^^^ show that the result may be re-

duced to the form

"vA
ri n^ -\-n x^ n^ \- 3?^^ a;'

1 2. Develop e^ sin x and (f cos x and deduce the results

e" cos ic = 1 + ^ — ^ kr ""^;iT'~'^^+- ••
/v

!

4! o

!

13. Develop cos' x.

Begin by expressing cos^ x in the form i cos 3a; + f cos x.

14. Develop tan ^"^^o;.

This case affords us an example of how the process of de-

velopment may often be greatly abbreviated. It has been

shown that

-J
= ::—

i
= 1-X* + X' -'X' + etc. (o)

ax 1 + X ^ ^

Now assume

tan^^^^x- = A + A^x + A^x* + etc.

This gives

^^^^- = A, + 2A,z + 3A,z' + etc. (b)

Comparing (a) and (b), we have

J, = l; A^=-i; A^ = i; A, = - ^; etc.

and A^ = A^ = A^ . . . = 0.

The value of A^ is^evidently zero. Hence

tan<-*>a; = x - ix' + ^x' - ^x' + etc. (c)
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15. Develop sin^~%.

^^''^^ —
di = (^ "" ^ )" *>

we may develop the derivative and proceed as in the last ex-

ample. We shall thus find

sm ^-1+^.3 +2.4*5 +2-4-67 + ^^''•

60. Ratio of the Circumference of a Circle to its Diameter.

The preceding development of tan^~^^a; affords a method of

computing the number n with great ease. The series {c)

could be used for this purpose, but the convergence would be

very slow. Series converging more rapidly may be obtained

by the following device:

Let a, a\ a", etc., be several arcs whose sum is 45° = \n.

We then have

tan (t»r + «' + a" + etc.) = 1.

Let t, t'y V'y etc., be the tangents of the arcs a^ or', a", etc.

If there are but two arcs, a and or', we then have, by the

addition theorem for tangents.

-^ = 1; or t-\-V = \-tV.

lere are th

V -\-t

l-tf

If there are three arcs, a, a', and a", we replace V by

in the last expression, and thus get
1 - Vt"

t + f + f' - tff' =zl^tf- ft" - tt''.

We now have to find fractional values of ty V and V of the

form — , m being an integer, which will satisfy one of these

equations. Unity is chosen as the numerator because the

powers of the fraction are then more easily computed. The

simplest fractions which satisfy the last equation are

^~ %' ^ "5' ^ ~8-
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We then have, from the development of tan ^~*^
t, etc.,

oc =^ rr

1 1.1
2 3-2' ' 6-2'

,__l 1
,

1

./I 1,1
3-8' ' b'^' '

- ;r = ^ + n'' + a".

These series were used by Dase in computing n to 200

decimals.

A combination yet more rapid in ordinary use is found by

determining a and a' by the conditions

tan a = —]

4a: — a =^ — Tt,

4

2^ 5
We then have tan 2a =

1 - f ~ 12'

tan^a = ^^;

and because a' = 4:a — ^tt = 4:a — 45°, we have

, _ tan 4<T — 1 ___ 1
^^"^ "" ~ tan Aa + 1

"~ 239*

Hence we may compute tt thus :

__1^__^ _1 1_
"^-5 3-5^"^5-5'^ Y.5T + ---5

1 1.1
~239 3-239' * 5*239^ '

-^Tt = 4:a — a\

Ten or eleven terms of the first series, with four of the

second, will give tt to 15 places of decimals.
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61. In developing functions by Maclaurin^s theorem we

may often be able to express the derivatives of a certain order

as functions of those of a lower order. The process of find-

ing the higher derivatives may then be abbreviated by retain-

ing the derivatives of lower orders in a symbolic form, so far

as possible.

EXAMPLES.

I. Let us develop

u = log (1 + sin x) = (p{x).

We now have

^-, . cos X 1 — sin a:

G)'(x) — -—;—

;

= = sec a; — tan x\
^ ' 1 + sm :i; cos x ^

(p^'{x) = sec X tan x — sec^ a; = — sec x(p\x).

Now, in continuing the differentiation, we use the last of

these forms instead of the middle one. Thus

0"'(.t) r= — sec :?; tan x (p'{x) — sec x(p^'{x)

= — sec X ism x 0'(x) + sec"* xcp^x)

= - (P\x)(p''{x).

We may now find the successive derivatives symbolically.

Omitting the symbol x after 0, we have

0iv _ _ 0'0"' _ 0"2.

0^ = — 0'0^^ — 30''0"';

0vi = — (p'ip-^ — ^c/y'^cf)'^ — ^cf)'''\

etc. etc.

Supposing a; = 0,

0(0) = 0; 0-(O) = - 2;

0'(O) = + 1; 0^(0) = + 5;

0"(O) = - 1; 0vl(O) = _ 16;

0"'(O) = + 1; etc. etc.

Hence

log (1 + sin a;) = a; —
2

x' ^'
1

2;° x'
"•" 6" ~ 13 + 34 ~ 45 + •
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2. To develop u = tan x.

Let us write the equation in the implicit form

w cos a; — sin a; = 0.

Then, by differentiation and division by cos x, we find

Dj.7c = 1 + w*;

DJ'u = 2uD^u = 2u + 2u';

nj'u = 2tiDJtc + 2{Djiy;

DJ'ic = 2uD^'u + SD^uDJu + (j{DJr(y.

Putting w = 0, we find the even derivatives to vanish and

the odd ones to become 1, 2, 16, etc. Hence

tan X = X + ^x' -{- ^x^ + . . . .

3. To develop u = sec x.

Differentiating the form 71 cos a; — 1 = 0, we find

D^2i cos X — u sin x = 0. (a)

The successive derivatives of this equation may each be

written in the form

M cos a; — iV^ sin a; = 0. (h)

For, if we differentiate this equation with respect to x, it

becomes

{D^M - N) cos X- {M+ D^N) sin a; = 0.

Hence the derivative of {h) may be formed by putting

M' = D^M- N', N' = M+D,N, (c)

and writing M' and N' instead of M and N in the equation.

In {a) we have

M ~ D:eU; N'= u.

Then, by successive substitution in (c),

M' = D^^^L- 7i; N' = 2D^ti;

M" = DJit- dD^n; N" = SDJ'tc - u;

i/'" = DJu- 6DJu + n; iV^'" = 4:DJu - 4D,u;

M^"" = D^'u-lODJu + 6D^u; N^'^ = 5D^*u - lODJ'u + u.

if^ = D^*u - IbD^'u + IbD^^u - u;
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When a; = 0, we have sin a: = 0, cos x = 1, u = 1, and

hence M— M' =^ , , , =0 in all the equations. Thus we

find, for X =.0,

J)^11 — ii — \'^

D^'u = 6-1 = 5;

DJ^t = 75 ~ 15 + 1 = 61;

etc. etc.

;

while the odd derivatives all vanish. Hence

sec a: = 1 + - a;' + ^^
x' + -- a;" +

62. Taylor's Theorem. Taylor^s theorem differs from

Maclaurin^s only in the form of stating the problem and ex-

pressing the solution. The problem is stated as follows:

Having assigned to a variable x an increment liy it is re-

quired to develop any function of x -\-lh in powers of h,

Solution, Let be the function to be developed, and let

us put
u = cp{x)', )

u' = cly(x+li). )

^^

Assume

u' = A\ + XJi + XJi' + X,¥ + etc (2)

where X„, X^y etc., are functions of x to be determined.

Then, by successive differentiation, we have

du

Th
d'u'

dh'

d\i

;- = X, + 2XJi + 3XJi' + 4.XJ1' + etc.

2X, + 2 • SXJi + 3 • 4.xJi' + etc.

;

dh'

etc.

= 1-2-3X3 + 2-3-4X,;^ + etc.

etc. etc.

(3)

We now modify these equations by the following lemma:

If we have a function of the sum only of several quantities,

the derivatives of that function with respect to those quantities

will he equal to each other.
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For if in f{x + //) we assign an increment Ah to x and to

h separately, the results will hQf(x -\- h -[- Ah) and/(x -f Ah
-\- h), which are equal.

It follows that we have

du' _ du'

dh dx'

Now these equal derivatives, like ?^' itself, are functions of

X -\- h alone, so the lemma may be applied to as many suc-

cessive derivatives as we please, giving

d\i' _ (Tu^^

dh' ~ dx'
'

d'u' _ d'u\

dh' ~ dx'
'

etc. etc.

Now let the derivatives with respect to x be substituted for

those with respect to h in equations (3), and let us suppose h

to become zero in equations (2) and (3). Then ?^' and its de-

rivatives will reduce to u and its derivatives, and we shall get

^ _ du

r - — —

.

^~ \'%dx'''

^ 1 d^u

l-2-3c/a;'

__2 ^
Then, by substitution in (2), we shall have, for the required

development,

, ,
du h , d*u ¥ , d*tc A' , ^

This formula is called Taylor's Theorem, after Brook

Taylor, who first discovered it.
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EXAMPLES AND EXERCISES.

Develop {x -f hy.

We proceed as follows :

u = x
du „ ,

dx

— =::n{n-l)x''~^;

etc. etc.

By substitution in the general formula we find

{x + A)** = a:~ + - x""-^ h + \ ,^ ' x""^

h

1 x' Z

n{n-l){oi-2)
+

F^"^^
"^ /^ + . . .

.

2. Develop the exponential function a * + '^ in powers of A.

^^^5. a'\l + log «^^ + (log ay^^ + . .
.
j.

3. sin {x + A). 4. cos {x -\- li),

5. sin {x — 7^). 6. cos {x — li).

7. log {x + 7^). 8. log {x — h).

X + 7i

9. log r. 10. log COS X.
X /l ,

II. cos"* {x -\- h), 12. sin^ {x — 7i).

13. tan<~^^ (x + 7/). 14. sin^~^^ {x — Ti),

15. Deduce the general formula

16. Prove, by differentiation and applying the algebraic

theorem that in two equal series the coefficients of like

powers of the variables must be equal, that if we have

log {a^ + a^x + a^x' -\- , . ,) ^ h^ + h^x +d^x' + • • • ,
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then the coefficients a and h are connected by the relations

*o = log «o;

afi, = a,\

3a,^3 + 2«,Z^, + a,h, = da,;

etc. etc. etc.

17. Hence show that is the logarithm of the sum of

an infinite series whose first terms are

L
, ,

3z' 13a:'
,

73a:'
,

\

63. Identity of Taylor's and Maclaurin's Theorems,

These two theorems, though different in form, are identical

in principle.

To see how Taylor^s theorem flows from Maclaurin% notice

that li in the former corresponds to x in the latter. The de-

rivatives with respect to x in Taylor^s theorem are the same

as the derivatives with respect to Z?, and if we suppose ^ =
after differentiation Taylor^s form of development can be de-

rived at once from Maclaurin^s.

Conversely, Maclaurin^s theorem may be regarded as a

special case of Taylor's theorem, in which we take zero as the

original value of the variable, and thus make the increment

equal to the variable. That is, if we put /(a;) in the form

/(O + .t),

and then, using x for //, develop in powers of x by Taylor's

theorem, we shall have Maclaurin's theorem.

64, Cases of Failure of Taylor's and Maclaurin's

Theorems, In order that a development in powers of a vari-

ble may have a determinate value it is necessary that none of

the coefficients in the development shall become infinite and

that the developed series shall be convergent.

For example, cosec x cannot be developed in powers of x,

because when x = the cosecant and all its derivatives be-

come infinite.
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65. Extension of Taylor's Theorem to Functions of Several

Variables, Let us have the function

y^=A^,y)' (1)

It is required to develop this function when x and y both re-

ceive increments.

Let us first assign to x the increment liy and suppose y to

remain constant. We then have, by Taylor^s theorem,

du li d\h ¥ d\i h'

in which ti, -r-, etc., are all functions of y.

Next, assign to y the increment Ic, The first member of

(2) will become /(a; -\- h, y -\- k). Developing the coefficients

in the second member in powers of h, the result will be:

u will be changed into

j^du k d'^u k'' d^u ¥
"" +^ r + ^= 2 !

+ ^^ 3 !
+ • • ' ^

-T- = D^u will be changed into
ax

j^
d'D^u k d'^D^u k'^

^^'"' + ~di' 1 +~W 3 !
+ • • • '

d^u
-j-^ E DJ'u will be changed into

^, d'D^uk .^D^i¥ .

^^'' + - 6/^"l+~^"2!+--- ^

etc. etc. etc.

Substituting these changed values of the coefficients in (2)

it will become
^. , ,

,
-,. ,

dn k ^ d'^u k^
,
d^u V

,

du h d^u li k d^u h k^

'^Ixl'^ Ixdy IT"'" 'dxdf 1 2
!"*"** '

d'uh' d'u ¥k d'u 11^^
dx' 2!

"^
dx''dy2\ 1

"*"
dx'dy' 2! 2!

a-^ - 4-
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Thus the function is developed in potocrs and products of

the increments h and k.

The law of the series will be seen most clearly by using the

C /^notation. For each pair of positive and integral values of

I
/// and 71 we shall have the term

' ml n\

If we collect in one line the terms of the development

which are of the same order in h and k, we shall have:

Order of
Terms. , -,

Ist. D^Uz^- + DyUz^.

2d.

3d. i>.^.|j + D^^Dyic
|j \ + D^D^n

^ |J
+ Dy\v

|J;

rth. D^^J^^ + D^^-^DyU:^^^ \ +

EXERCISES.

I. Show that in the preceding development the terms of

the ?*th order may be written in the form

[ - j, (

-J,
etc., denoting the binomial coefficients as in § 5.

J. Extend the development to the case of three independent

variables, and show that the terms to the second order in-

clusive will be as follows

:
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^=/(^^ y> ^)y

then /• {x -\- h, y -\- k, z -\- 1) = lo

+ D^uB^u ' hi + DytiD^2i • ^;.

A^f^"^^^ 66. Hyperbolic Fimctmis. The sine and cosine of an

imaginary arc may be found as follows: In the developments

for sin x and cos x, namely.

sm X = X

cos X :

3! + 5! •••'

2! + 4! •
• • '

let us put yi for a:, (z = t^— 1). We thus have

^'^y' = \y +
'^i
+

fi

3! ' 4
cos

.v^•
= 1 + I + I,

+ ,

(1)

We conclude:

The cosine of a purely imaginary arc is real and greater

than unityy tvhile its sine is purely imaginary.

We find from (1),

cos yi + i sin yi :=: 1 — y -\-

2!

y'

etc.

cos yi — i sin ^* = 1 + «/ + ^l + ^^c. — e^\

and, by addition and subtraction,

cos yi r= |(e"^ + e^);

^ sin 1^/^ = \(e~'^ — e^);

sin ^i = ii{e^ — e~^).

The cosine of yi is called the hyperbolic cosine of y,

and is written cosh y, the letter h meaning *^' hyperbolic/'
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The real factor in the sine of yi is called the hyperbolic

sine of y, and is written sinh y.

Thus the hyperbolic sine and cosine of a real quantity are

real functions defined by the equations

sinh?/ = i{ev — e-^);

)

cosh?/ = -J(c^ + c-^). )

By analogy, we introduce the additional function

tanh y = —-——

.

The differentiation of these expressions gives

d sinh y , d cosh ?/ . , ,_.-^-•-=coshy; —^-^=smhy; (2)

d tanh y = —^ -.
^ cosh y

They also give the relations

cosh'' y — sinh^ y = ^- (3)

Inverse Hyperbolic Fimctions, When we form the inverse

function, we may put

u = cosh y.

Then, solving the equation

ey -\-e-y = 2 cosh y = 2u,

we find ey = u± ^u^ — 1.

Hence

y — log (xi ± ^iC" — 1) = cosh <~^^ w. (4)

In the same way, if we put

u = sinh y,

we find

y = log (u ± Vu^ + 1) = sinh^-*> u. (5)

From the equations (2) and (3) we find, for the derivatives

of the inverse functions:
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When y = cosh^~ ^^ ^i, or u = cosh y,

then ^ = --L=-. (6)

When y = sinh^~ ^^ t^, or to — sinh ^Z,

then '^ = -J=. (7)du i^ic' + l

Eemark. The above functions are called hyperbolic be-

cause sinh y and cosh y may be represented by the co-ordinates

of points on an equilateral hyperbola whose semi-axis is unity.

The equation of such an hyperbola is

x^-f = 1,

which is of the same form as (3).

EXERCISES.

1. By continuing the differentiation begun in (2) prove

the following equations:

VJ^ sinh X = sinh x;

I)J cosh X — cosh x;

Dx"^^^ sinh X = sinh x.

etc. etc.

2. Develop sinh x, as defined in (1), in powers of x byMac-

laurin^s theorem.

A71S. smh x = y + --^-^^ + --^+,.,.

3. Develop sinh (x + h) and cosh {x + h) by Taylor^s

theorem and deduce

sinh (x+h) = sinh xil + ^^ + • •
•
)+ cosh xix + -^ + . . .

j

= sinh X cosh h -\- cosh x sinh Ir,

cosh {x-\-h) — cosh a; cosh li + sinh 2; sinh h.

i
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CHAPTER IX.

MAXIMA AND MINIMA OF FUNCTIONS OF A
SINGLE VARIABLE.

67. Def, A xnaxiinuiu value of a function is one which

is greater than the yahies immediately preceding and follow-

ing it.

A xninimum value is one which is less than the values

immediately preceding and following it.

Remark. Since a maximum or minimum value does not

mean the greatest or least possible value, a function may

have several maxima or minima.

68. Problem. Having given a function

y = 0(^).

it is required to find those values of x for which y is a rnaxi-

771717)1 or a minimum.

Let us assign to x the increments + h and — //, and develop

in powers of h. We shall then have

. , , 7 \
dy h

^
d'^y h^

,

.y"=0(z+/O=y + ^j- + ^,p3 + ctc.

In order that the value of y = 0(.r) may be a minimum, it

must, however small we suppose //, be less than either ?/' or

I/". That is, the expressions

, dy h
,

d'^y ¥ ,
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must both be positiye as h approaches zero. But if -j- is

finite, li may always be made so small that the terms in h^

shall be less in absolute magnitude than those in h (§ 14), and

the condition of a minimum cannot be satisfied. We must

therefore have, as the first condition,

| = 0'(-) = O. . (1)

By solving this equation with respect to x will be found a

value of X called a critical value.

The same reasoning applies to the case of a maximum, so

that the condition (1) is necessary to either a maximum or a

minimum. Supposing it fulfilled, we have

Since li^ is positive, the algebraic sign of these quantities,

as h approaches zero, will be the same as that of -7-^.

When this second derivative is positive for the critical value

of X, y, being less than y' or ?/", will be a rtiinimtim.

When 7iegative, y will be greater than either y' or y", and

so will be a maximum.

We therefore conclude:

Conditions of minimum: -^ — 0; -7-^ positive,
•^ dx ' dx^-^

Conditions of maximum: -J^
= 0; -—^ negative.

We have, therefore, the rule:

Equate the first derivative of the fu7iction to zero. This

equation will give one or more values of the independent vari-

dbUy called critical values, and thence corresponding values of

the function.
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SuhstiMe the critical values in the expression for the second

derivative. When the result is positive, the function is a

ininimiim; wheii negative, a maximum.

Exceptional Cases. It may happen that the second deriva-

tive is zero for a critical value of x. We shall then have

y -y= -

.V" - //

dx' 3!+^Z.T^4! ^^''•'

^i\ f^^\ etc.
dx'31^ dx' 41 -here,

and there can be neither a maximum nor a minimum unless

d^y
—^ = 0, If this condition is fulfilled, y will be a maximum

when the fourth derivative is negative; a minimum when it

is positive.

Continuing the reasoning, we are led to the following ex-

tension of the rule:

Fi7id the first derivative in order which does not va7iish

for a critical value of the independent variable. If this de-

rivative is of an odd order, there is neither a 7naximum nor a

minimtim; if of an even order, there is a minimum when the

derivative is positive, a maxiimim when it is negative.

The above reasoning may be illustrated by the graphic rep-

resentation of the function. When the ordinate of the curve

is a maximum or a minimum the tangent will be parallel to the

axis of abscissas, and tlie angle which it makes with this axis

will cliangc from positive

to negative at a point hav-

ing a maximum ordinate,

and from negative to j^osi-

tive at a point having a

minimum ordinate.

For example, in the fig-

ure a minimum ordinate occurs at the point Q^ and maxi-

mum ordinates at P and R.

Fig. 12.
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EXAMPLES AND EXERCISES.

I. Find the maximum and minimum values of the expres-

sion

y = 2x' + dx' - 36x + 15.

By differentiation^

^ :=: ex' + 6x- 36;
ax

Equating the first derivative to zero^, we have the quadratic

equation

x' + X — 6 = 0,

of which the roots are x = 2 and x = — 3,

d'x
The values of -j-^ are + ^^ ^^^ — 30.

Hence a; = 2 gives a minimum value of ^ = — 29;

a; = •— 3 gives a maximum value of ^ = + ^^^

Find the maximum and minimum values of the following

functions:

2. a:' + ^x" — 24:x + 9. 3. x' — 3x + 5.

X x'^ — X -{-1
'

S.y = af. g, y =2 sin 2x — x,

lo. y z=z {x + l){x — 2)\ II. y = {x — a'){x — Z>)'.

_ {x + Sy _ (x-a){x-h)
'^- ^-- {x+ 2y' '^' ^ ~ {x -p)(x - g)'

14. y =z cos 2.T. 15. y = cos 7^a;.

16. y = sin 3^. 17. ^ 1= sin ^io;.

_ a; ^7^.9. A maximum when a: =+cos a;.

^ ~ 1 -\- X tan a;* A minimum when x == — cosrK.
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19. y =

31. y =

sin X cos X.

sin X

y = sm X cos a;,

cos a;

y =
1 + tan a;'

—' n
-j^

_l_ ^^^^^
^«

—

H

23. The sum of two adjacent sides of a rectangle is equal

to a fixed line a. Into what parts must a be divided that the

rectangle may be a maximum? Aris. Each part = ^a.

Note that the expression for the area is x{a — x).

24. Into what parts must a number be divided in order

that the product of one part by the square of the other may
be a maximum? A 71s, Into parts whose ratio is 1 : 2.

Kote that if a be the number, the parts may be called x and a — x,

25. Into what two parts must a number be divided in order

that the product of the 7/^th power of one part into the 7ith

power of the other may be a maximum?
Ans. Into parts whose ratio is f/i : n,

26. Show that the quadratic function ax* -{-bx-^c can have

but one critical value, and that it

will depend upon the sign of the

coefficient a whether that value

is a maximum or a minimum.

27. A line is required to pass

through a fixed point P, whose

co-ordinates are a and b in the

plane of a pair of rectangular

axes OX and OV, What angle

must the line make with the axis

of X, that the area of the triangle XYO maybe a minimum?

Show also that P must bisect the segment XY.

Express the mtercepts which the line cuts off from the axes in terms of

a, b and the variable angle a. The half product of these intercepts will

be the area.

We shall thus find

b'

\\
a V

i\
is \

c< \
\

Fio. 13.

2 Area = {a + b cot ct){b+ a tan a) = 2ad-\-a^ tan a -f
tan a
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\

Then, taking tan a = if as the independent variable, we readily find, for

the critical values of t and cr,

^=±-, or «sma=±5 cos a,
a

It is then to be shown that both values of i give minima values of the

area ; that the one minimum area is 2a5, and the other zero ; that in the i

first case the line YX is bisected at P, and in the other case passes I

through 0.

28. Show by the preceding figure that whatever be the an-

gle XOYy the area of the triangle will be a minimum when

the line turning on F is bisected at P.

/ The student should do this by drawing through P a line making a \
\

] small angle with XPY. The increment of the area XOY will then be (,

\ the difference of the two small triangles thus formed. Then let the small I

angle become infinitesimal, and show that the increment of the area \

XOFcan become an infinitesimal of the second order only when PX== /
PY,

29. A carpenter has boards enough for a fence 40 feet in

length, which is to form three sides of an enclosure bounded

on the fourth by a wall already built. What are the sides

and area of the largest enclosure he can build out of his ma-

terial? Ans, 10 X 20 feet = 200 square feet.

30. A square piece of tin is to have a square cut out from

each corner, and the four projecting flaps are to be bent up so

as to form a vessel. What must be the side of the part cut

out that the contents of the vessel may be a maximum?
Ans. One sixth the side of the square.

31. If, in this case, the tin is a rectangle whose sides are

2a and %l, show that the side of the flap is

\(a-\-l - Va' - ah + ¥).

32. What is the form of the rectan-

gle of greatest area which can be drawn

in a semicircle?

Note that if r be the radius of the circle,

and X the altitude of the rectangle, \/r'^ — ^
will be half the base of the rectangle.

Fig. 14.



MAXIMA AND MINIMA. 123

69. Case tuhoi the function which is to be a maximum or

minimum is exjyressed as aftuiction of two or more variables

connected by equations of condition.

The function which is to be a maximum or minimum may
be expressed as a function of two variables, x and y, thus:

u = 0(a;, y). (1)

If X and y are independent of each other, the problem is

different from that now treated.

K between them there exists some relation

A^, y) = 0, (2)

we may, by solving this equation, express one in terms of the

other, say y in terms of x. Then substituting this value of

y in (1), u will be a function of x alone, which we may treat

as before.

It may be, however, that the solution of the equation (2)

will be long or troublesome. We may then avoid it by the

method of § 41. From (1) we have

du __ ldu\ fdu\dy

dx
~~

\dx J \dy Jdx
'

and from (2) we have, by the method of § 37,

dy_^ D,f
dx Dyf

Substituting this value in the preceding equation, we shall

dii
have the value of -z-y which is to be equated to zero. The

equation thus formed, combined with (2), will give the critical

values of both x and y, and hence the maximum or minimum

value of w.
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EXAMPLES AND EXERCISES.

I. To find the form of that cylinder which has the maxi-

mum volume with a given extent of surface.

The total extent of surface includes the two ends and the convex

cylindrical surface. If r be the radius of the base, and h the altitude,

we shall have :

Area of base, nr'^.

Area of convex surface, ^itrh.

Hence total surface = 27t{r^ -f- rh) = const. E a, {a)

Also, volume = 7tr%. {b)

Putting u for the volume, we have, from (J),

—- = 27trh 4- Ttr^—-,
dr dr

From (a) we find
dh _ _ h + 2r

dr
~

r '

Whence -r- — Ttrh — 27rr^.
dr

Equating this to zero, we find that the altitude of the cylinder must be

equal to the diameter of its base.

2. Find the shape of the largest cylindrical tin mug which

can be made with a given weight of tin.

This problem differs from the preceding one in that the top is sup-

posed to be open, so that the total surface is that of the base and con-

vex portion.

Ans, Altitude = radius of bottom.

3. Find the maximum rectangle which can be inscribed in

a given ellipse.

If the equation of the ellipse is h'^x'^ + <^V = <^^*^ the sides of the

rectangle are 2x and 2y. Hence the function to be a maximum is ^xg,

subject to the condition expressed by the equation of the ellipse. This

condition gives

dy _ hH
dx

~~
a^y
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We shall find the rectangle to be a maximum when its sides are

proportional to the corresponding axes of the ellipse; each side is then

equal to the corresponding axis divided by V§.

4. Find the maximum
rectangle which can be

inscribed in the segment

of a parabola whose semi-

parameter is p, cut off by

a double ordinate whose

distance, OX, from the

vertex is a. Show also

that the ratio of its area

to that of the circum-

scribed rectangle is con-

stant and equal to

2 : |/27.

By taking x and y as in the Fio. 15.

figure, a — X will be the base

of the rectangle, and we shall have 2y for its altitude. Hence its area

will be 2y{a — x), while x and y will be connected by the equation of the

parabola, y^ = 2px,

5. Find the cone of maximum volume which shall have a

given extent of conical surface.

A71S, Alt. = radius of base X V^.

6. Find the volume of the maximum cylinder which can be

inscribed in a given right cone, and show that the ratio of its

volume to that of the cone is 4 : 9.

7. Find the cylinder of maximum cylindrical surface which

can be inscribed in a right cone.

A71S, Alt. of cylinder = i alt. of cone.

8. Find the maximum cone which can be inscribed in a

given sphere.

If we make a central section of the sphere through the vertex of the

cone, the base and slant height of the cone will be the base and equal
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sides of an isosceles triangle inscribed in the circular section. Thus the

equation between the base and altitude of the cone can be obtained.

Ans, Alt. = f radius of sphere.

9. Find the maximum cylinder which can be inscribed in

an ellipsoid of revolution.

2
Ans, Alt. = —- of axis of revolution.

Vd

10. Find the cone of maximum conical surface which can

be inscribed in a given sphere.

11. Of all cones having the same slant height, which has

the maximum volume ?

12. A boatman 3 miles from the shore wishes, by rowing

to the shore and then walking, to reach in the shortest time

a point on the beach 5 miles from the nearest point of the

shore. If he can pull 4 miles an hour and walk 5 miles an

hour, to what point of the beach should he direct his course?

Ans. 4 miles from the nearest point of the shore.

Express the whole time required in terms of the distance x of his point

of landing from the nearest point of the shore.

13. Find the maximum cone which can be inscribed in a

paraboloid of revolution, the vertex of the cone being at the

centre of the base of the paraboloid.

Ans, Alt.' = ^ alt. of paraboloid.

14. Find the maximum cylinder which can be described in

a paraboloid of revolution.

15. Find the rectangle of maximum perimeter which can

be inscribed in an ellipse.

16. On the axis of the parabola y^ = "Hpx a point is taken

at distance a from the vertex. Find the aljscissa of the near-

est point of the curve.

Begin by expressing the square of the distance from the fixed point to

the variable point {x, y) on the parabola.

17. Determine the cone of minimum volume which can be

circumscribed around a given sphere.



MAXIMA AND MINIMA. 127

1 8. Determine the cone of minimum conical surface which

can be circumscribed around a given sphere.

19. Find that point on the line joining the centres of two

circles from which the greatest length of the combined cir-

cumferences will be visible.

20. Find that point on the line joining the centres of two

spheres of radii a and h respectively from which the greatest

extent of spherical surface will be visible.

Ans, The point dividing the central line in the ratio « : h .

21. Show that of all circular sectors described with a given

perimeter, that of maximum area has the arc equal to double

the radius.

22. A ship steaming north 12 knots an hour sights an-

other ship 10 miles ahead, steaming east 9 knots. What will

be the least distance between the ships if each keeps on her

course, and at what time will it occur?

Ans. Time, 32 min.; distance, 6 miles.

23. What sector must be taken from a given circle that it

may form the curved surface of a cone of maximum volume?

Ans. V~i of the circle.

24. A Norman window, consisting of a rectangle sur-

mounted by a semicircle, is to admit the maximum amount

of light with a given perimeter. Show that the base of the

rectangle must be double its altitude.
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CHAPTER X.

INDETERMINATE FORMS.

70. Let us consider the fraction

For any value we may assign to x there will be a definite

value of (p{x) found by dividing the numerator of the frac-

tion by the denominator.

To this statement there is one exception, the case of a; = 3.

Assigning this value to x, we have

0(3) = f
ISTow, the quotient of two zeros is essentially indeterminate.

For the quotient of any two quantities is that quantity

which, multiplied by the divisor, will produce the dividend.

But any quantity whetever when multiplied by will pro-

duce 0. Hence, when divisor and dividend are both zero,

any quantity whatever may be their quotient.

But when we consider the terms of the fraction, not as ab-

solute zeros, but as quantities approaching zero as a limit,

then their quotient may approach a definite limit. We then

regard this limit as the value of the fraction corresponding

to zero values of its terms.

As another example, consider the quantity

We may compute the value of this expression for any value

of X except 2, When x = 2 the terms will both become in-

finite. Since if any quantity whatever be added to an infinite
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the sum will be infinite, it follows that any quantity what-

ever may be the difference of two infinites.

There are several other indeterminate forms. The follow-

ing are the principal ones which take an algebraic form:

^; ^; Ox co; 00 - oo ; 0"; oo°; 1«.

71. Evahiation of the Form ^. In many cases the inde-

terminate character of an expression may be removed by

algebraic transformation. For example, dividing both terms

of the fraction (1) by x — 3, it becomes .t -f- 3, a determinate

quantity even for :t' = 3. Again, the expression (2) can be

reduced to the form——^r, which becomes 1 when a: = 2.
a;+ 2

The general method of dealing with the first form is as

follows: Let the given fraction be

and let it be supposed that both terms of this fraction vanish

when X — a, ^o that we have

(l>{a) = and ^^a) = 0. (3)

Fut h =x — a, and develop the terms in powers of h by

Taylor^s theorem. We shall then have

cp{x) = <p{a + h) = <p{a) + hc/>\a) + ^<P'\a) + . . .
;

i^{x) = iia +h)= rfia) + hf{a) + ^^^"(a) + • • •
;

whence, for the value of the fraction (comp. Eq. (3)),

^^^^ na) + ^ria) + ..:

Now, when h approaches zero as a limit, the value of this

fraction approaches

^>)
V.'(«)

(4)
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as a limits which is therefore the required lirait of the frac-

tion when both its members approach the limit zero.

It may happen that ct)'{a) and tp\a) both vanish. In this

case the required limit of the fraction in (4) is seen to be

0"(«)

,p"(a)'

In general: The required limit is the ratio of the first pair

of derivatives of like order which do 7iot doth vajiish.

If the first derivative which vanishes is not of the same

order in the two terms,—for example, if, of the two quantities

(p^{a) and fp^{a), one vanishes and the other does not,—then

the limit of the fraction will be zero or infinity according as the

vanishing derivative is that of the numerator or denominator.

Eemaek. It often happens that the terms of the fraction

can be developed in the form (4) without forming the succes-

sive derivatives. It will then be simpler to use this develop-

ment instead of forming the derivatives.

EXAMPLES AND EXERCISES.

x'-a'
for X = a,*

X — a

(p(x) — x^ — a^\ 0'(^) =22:; .• . 0'(a) = 2a;

ip{x) = X — a; tp\x) = 1; .•. ip^{a) = 1.

x^ — a^
. • . lim. (x = a) = 2a*

X — a^ ^

a result readily obtained by reducing the fraction to its lowesi

terms.

2. —^-r- for x = 1. Ans. 1.
X —1
ff e~^

3, for a; = 0. Ans. 2.
X

* Using strictly the notation of limits, we should define the quantity

sought as the limit of the fraction when x approaches the limit a. Bui

no confusion need arise from regarding the limit of the fraction as its

value for a; = a, as is customary.
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2; — sin it - / ^v . ,

4. i
for (a; = 0). ^7i5. |.

I Here the successive derivatives of the terms are:

I

<p'{x) = 1 — cos 2-; 0"(a;) = sin rr; 0"'(a:) = cos a;.

The third derivatives are the first ones which do not vanish

for X = 0,

5. for a: = 0. Ans, \oga—\ogh=\og-.

tan a: — sin a;

^3

14

IS

16,

17

a; — Bin a;

for x = 0, Ans, 3.

for a; = 0. Ans. -,.
1 — cos nx n

:i- for X = 1. Ans, a loff a.
a; — 1 ^

a"^ — Z*"^—-—- for a: = 1. Ans, a log a —h log J.

sin a: — sin ^
for X = a. Ans. cos a.

X — a

sec a
^5.

tan y — tan a . .—;-^^ r— for y = a, A,^^. ^r—.—

.

cos y — cos a •^
2 sm

«

log (1 + a:) + log (1 - a:) ^^^ ^ f ^—^-A L for a: = 0. Ans. + 1.
cos a; — sec a;

log (g + a;) - log (g - ^) ^^^ ^ ^ ^^ ^^^^_ 2_

X a

sin 2a: -[- 2 sin' a: — 2 sin a;

cos X — cos X
for a; = 0. ^n.9. 4.

g^- e-^ - 2a;

a; — sin a;

for a; = 0. ^W5. ^^- V
c«' + sin 7/ — 1 . ^ . o
-^r'—7T-T—r- for V = 0. Ans, 2.
log(l+y)

1 — sina; — cosa: + log(i +a;) . / a\ >i a—'—^^-^^—'

—

' for ix = 0). Ans. 0.
e* — 1 — a;

^ ^
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00
72. Forms — and X oo . These forms may be reduced

00

to the preceding one by a simple transformation. Any frac-

tion —- may be written in the form -—'-—
^-^. If N" and D both

become infinite, \ -^ D and \ -^ N will both become infini-

tesimal, and thus the indeterminate form of the fraction will

be %.

Again, if of two factors A and B, A becomes infinitesimal

while B becomes infinite, we write the product in the form

A
-^ and then it is a fraction of the first form.

\ -T- B
But this transformation cannot always be successfully ap-

plied unless the term which becomes infinite does so through

.

having a denominator which vanishes. For example, let it

be required to find the limit of

cc'^(log xy

for X ^^, Here rr"* approaches zero, while log x, and there-

fore (log xY^ becomes infinite for a; = 0. Hence the denomi-

nator of the transformed fraction will be ^ (putting for

brevity Z = log .t). The successive derivatives of this quantity

with respect to x are

-^
. ^M

1
^ + ^V etc

The successive derivatives of the numerator are

mx'^~'^\ m(in — \)x'^~'^\ etc.

The limiting values of the given quantity x'^V*- thus become

• ^ L • ptp

which remain indeterminate in form how far soever we may

carry them.
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[j
In such cases the required limit of the fraction can be

found only by some device for which no general rule can be

laid down. In the example just given the device consists in

replacing a; by a new variable y, determined by the equation

log a; = - y.

We then have a; = c ~ ^.

Since for z ^0 y ^co ^ -wq now have to find the limit of

for y = oo.

By taking the successive derivatives of the two terms of

the fraction -— we have the successive forms^my

ny''-\ n{n - l).y"~^ n{n - 1) {71 -2)y''-\

Whatever the value of n, we must ultimately reach an ex-

ponent in the numerator which shall be zero or negative, and

then the numerator will become n\ if n is a positive integer,

and will vanish for ?/ = 00 , if n is not a positive integer. But

the denominator will remain infinite. We therefore con-

clude:

lim. [:C{\og .t)"] {x ^ 0) = 0,

whatever be m and n, so long as m is positive.

From this the student should show, by putting z^x~'^ and

m = 1, that the fraction

(log^r

becomes infinite with z, how great soever the exponent Uy and

therefore that any infinite immber is an infinity of hiyher

order than any power of its logarithm,

73. Form 00 — oo . In this case we have an expression of

the form

F{x) = ic — V,



134 THE DIFFERENTIAL CALCULUS.

in which both u and v become infinite for some value of x.

Placing it in the form

we see that F{x) will become infinite with u unless the fraction

V— approaches unity as its limit. When this is the case the

expression takes the form oo x of the preceding article.

74. Form 1*. To investigate this form let us find the

limit of the expression

when n becomes infinite. Taking the logarithm, we have

log u = hn log [l + -j

Making n infinite, we have

lim. log u = h;

or, because the limit of log ii is the logarithm of lim. u,

log lim. ti = h.

Hence lim. \1 -\— I (;i = oo ) = ,h

In order that this result may be finite, h itself must not be

infinite. We therefore reach the general conclusion:

Theorem. In order that an expression of theform

(1 + ay

may have a finite limit luhen a becomes infinitesimal and x

infinite, the j^Todnct ax must not lecome infinite.

Cor. If the product ax approaches zero as a limit, the

given expression will approach the limit unity.
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75. Forms 0"^ and oo\ Let an expression taking either

of these forms as a limit be represented by w^^F, The

problem is to find the limiting value of the expression when

approaches zero and u either approaches zero or becomes

infinite.

From the identity u = c^^«"

we derive F = iff* = c* ^"^^ \

We infer that the limit of F will depend upon that of log u.

If lim. log uis + CO , then lim. F= oo.

If lim. log 7^ is — 00 , then lim. F= 0.

If lim. log u is 0, then lim. F = 1.

If lim. log u is finite, then lim. F is finite.

Hence the rule: To find the limit of w* when (p ^ and

ti — or oo
, put I = lim. log tc. Then

lim. w^ = e'.

EXAMPLES AND EXERCISES.

1. Find lim. of for a; =^ 0.

Here of = ^^^^^

Since x log x has zero as its limit when x = 0, the required

limit is e° or 1.

2. lim. a;***^ for x :^ 0, Ans. F = 1,

1

3. lim. a;* for a: £: 00

.

A71S, F = 1.

4. a;J"^^ for a; = 1. Ans. —.

n

5. a:i^-^ for a; = 1. ^W5. e~".

6. (1 — a;)* for a; = 0. ^7^5. e~\

ff ^— ^

7. , jT——T for a; = 0. Ans. 2,
log (1 + x)

^ loer sin 2x . ^ . , . ^^ i

8. -r^—

;

for X = 0. Ans. fflEt. ="
I

log sm X ^

.- + log(l-:^)-l
f^^ ^ ^ ^_ ^^^^ ^

a; — tan x
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1

/log ^
y for a; = 00

.

^^^5. 1.

11. a; tan ^ — ^ sec x for a; = ^. ^^^5. — 1.

12, V sin — for y = co

.

Ans. a,
if y ^

13. x\cv^ ~^) ^^^ a; = 00. ^^5. log a.

14. f
j

for a; = 0. -47^5. 1.

15. (

J

for a; = 0, Ans. e^,

16. (cos :r)x3 for x — 0. ^?«5. e

17. (1 - y) tan -y for ^ = 1. Ans, -.

1

18. ^^-?^^V for a; = 0. ^/^5. 1.

19. X — x'' log (1 + —) for a; = Qo. J^/^5. -J.

20.
log (1 +

for X ^^,

21.
(a,^ + a:T for X =-^. Ans. a,a..

23. Show that, how great soever the exponent n,

X
-p, r- — 00 when a; — Qo

.

(log xy -



PLANE CURVES, 137

CHAPTER XI.

OF PLANE CURVES.

76. Forms of the Equations of Curves, As we have here-

tofore considered curve lines, they have been defined by an

equation between the co-ordinates of each point of the curve,

and therefore of one of the forms

y=/(x); x=f{yy, (1)

and F{x, y) — 0.

The distinguishing feature of the equation is that when we

assign a vahie at pleasure to one of the co-ordinates x or y,

one or more correspondmg values of the other co-ordinate are

determined by the equation.

But the relation between x and y may be equally well

defined by expressing each of them as a function of an

auxiliary variable, which is then the independent variable.

Calling this auxiliary variable u, the equations of a curve will

be of the form

y = 0,(n). f
^^^

Assigning values at pleasure to n, we shall have correspond-

ing values of x and y determining each point of the curve.

An advantage of this method of representation is that for

each value of u we have one definite point of the curve, or

several definite j^oints when the equations give several values

: of the co-ordinates for each value of u; and we thus have a

relation between a point and the algebraic quantity u.

It is also to be remarked that by eliminating u from the

equations (2) we shall get a single equation between x and y
which will be the equation of the curve in one of the forms
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^ X 5^

py
\

a

i
o X !x

Fia. 16.

Example 1. Let us put

ay'b'^ the co-ordinates of any fixed point i? of a straight line;

a E the angle which

the line makes with

the axis of x\

p = the distance of

any point P of the

line from the point

{a, h).

Then we readily see

from the figure that

the co-ordinates x and

y of F are given by the equations

x = a + pcosa;)

y = h -\- p sin a;
)

^ *

which are equations of the straight line in the independent

form.

Here p is the auxiliary variable, called ii in Eq. 2. By
eliminating this quantity we shall have

X sin oc — y cos a ^:^ a sin a — h cos a,

which is the equation of the line in one of its usual forms.

Example 2. The equation of a circle may be expressed in

the form
X =^ a -\- c cos II]

\

y = h -\- c smw, (4)

u being the independent

variable.

By writing (4) in the

form

X — a = c cos u,

y — h = c sin Uy

and eliminating ti by

taking the sum of the

squares of the two equa-

tions, we have Fio. 17.
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{.c - ay + (//
- by = c\

the equation of a circle of radius c,

Notice ihe beautiful relation between (3) and (4). They

are the same in form: if in (4) we write p for c and a for

u, they will be the same equations. Then, by supposing p
constant and a variable, we are carried round the point {a, h)

at a constant distance p, that is, around a circle. By suppos-

ing p variable and a constant we are carried through {a, h)

in a constant direction, that is, along a straight line.

77. Infiriitesimal Elevients of Curves. Let P and P' be

two points on a curve, P being supposed

fixed, and P' variable. We may then sup-

pose P' to approach P as its limit, and in-

quire into the limits of any magnitudes

associated with the curve.

We may also measure the length of an

arc of the curve from an initial point C to

a terminal point P. Then, supposing C fixed and P variable,

PP' may be taken as an increment of the arc.

If we put

s E arc GP,

we shall have

As = arc PP\

Axiom. The ratio of an infinitesimal element of a curve

to the straight line joining its extremities approaches unity as

its limit.

We call this proposition an axiom because a really rigorous

demonstration does not seem possible. Its truth will appear

by considering that if the curve has no sharp turns, which

we presuppose, then it can change its direction only by an in-

finitesimal quantity in any infinitesimal portion of its length,

Now, a line which has the same direction throughout its length

is a straight line.
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78. Theojiem I. If a straiglit line touch a curve at the

point Fy a point P' on the

curve at an infinitesimal

distance will, in general,

he distant from the tangent

hy an infinitesimal of the

second order.

Let y = f (x) be the _o

equation of the curve. fiq. 19.

Let us transform the equation to a new system of co-ordi-

nates^ x' and y% so taken that the axis of X' shall be parallel

i

to the tangent at F. This will make
dx'

: 0. Let x' and y'

be the co-ordinates of F, and (a;' + h, ^z") the co-ordinates

of a point P' near P.

Developing by Taylor^s theorem, we have

^ ^ ~dx^^'~^ dx^' 1-2 +

Since -r-. — 0. when h becomes infinitesimal
dx'

Now, f/" — y^ is the distance F^Q of the point P' from the

tangent at P.

d^y' h"^

the term of highest order in this distance is ~^ —-, a quan-
ax X /v

tity of the second order.

Eemakk. In the special case when —-,2 = 0, the distance

in question may be a quantity of the third or of some higher

order, according to the order of the first differential coeffi-

cient which does not vanish.

Corollary. 7'he cosifie of an infinitesimal arc differs

from tinity hy an infinitesimal of the second order.

For if we draw a unit circle with its tangent at the initial

point, the cosine of an arc will differ from unity by the dis-

tance from the end of the arc to the tangent line. When the

arc is infinitesimal, the corollary follows from the theorom,
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Theorem II. The area included between an mfinitesimal

arc and its chord is not greater than an infinitesimal of the

third order.

From Th. I. we may readily see that the maximum distance

between the chord and its arc is a quantity of the second

order. The area is less than the product of this distance by

the length of the chord, which product is an infinitesimal of

at least the third order.

79. Expressio7is for Elements of Curves. Def An
element of a geometric magnitude is an infinitesimal por-

tion of that magnitude.

The word implies that we conceive the magnitude to be

made up of infinitesimal parts.

Element of an Arc. Let us put

s = the length of any arc of a curve;

ds = an element of this arc.

If P and P' be two points of a curve, we shall have

(chord FPy = Ax' + Ay\

When PP' becomes infinitesimal, ^s
the ratio of ds to PP' becomes unity

(§ 77), and we have. y^ ^x

Ay

ds' = dx' + dl/; Fig. 20.

ds = Vdx' + dif = yi + (vfj^^-^-

Case of Polar Co-ordinates. To express the element of a

curve referred to polar co-ordinates, differentiate the equa-

tions

X = r cos 6; y = r sin ^.

Thus dx = cos Odr — r sin 6df^;

dy = sin 6dr + r cos 6d0\

which gives d!<' = dr' -f r'dfP

and ds = Yr' + (^^^'d6.
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80. Equations of certain Noteworthy Curves, The Cycloid.

The cycloid is a curve described by a point on the circumfer-

ence of a circle rolling on a straight line. A point on the

circumference of a carriage-wheel, as the carriage moves,

describes a series of cycloids, one for each revolution of the

wheel.

To find the equation of the cycloid, let P be the generating

point. Let us take the line on which the circle rolls as the

axis of X, and let us place the origin at the point where P
is in contact with the line OX.

Fio. ^.

Also put

a = the radius of the circle

;

^i = the angle through which the circle has rolled, expressed

in terms of unit-radius.

Then, when the circle has rolled through any distance OP,

this distance will be equal to the length of the arc PP of the

circle between P and the point of contact P, that is, to au.

We thus have, for the co-ordinates of the centre, (7, of the

circle,

X = au;

y = a;

and for the co-ordinates of the point P on the cycloid,

X = au — a Bin u = a{u — sin u);

y = a —a cos u = a{l — cos u);

which are the equations of the cycloid with u as an independ-

ent variable.

^'1
(1)
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To eliminate Uy find its value from the second equation,

?^ = cos<-^>fl ~^).

This gives sin 71 = Vl — cos' w = —.
ci

Then, by substituting in the first equation

x = a cos<-» '^—^ - V2ay-y\ (2)
CI •

which is the equation of the cycloid in the usual form.

''^ 81, The Lemniscate is the locus of a point, the product of

whose distances from two fixed points (called foci) is equal

to the square of half the distance between the foci.

Let us take the line joining the foci as the axis of X, and

the middle point of the segment between the foci as the

origin. Let us also put c = half the distance between the

foci.

Fio. 22.

Then the distances of any point {x, y) of the curve from

the foci are

V{x - cY + y^ and V{x + cY + y\

Equating the product of these distances to c% squaring and

reducing, we find

{x^ + yy = 2c\x^-y-), (3)

which is the equation of the lemniscate.
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Transforming to polar co-ordinates by the substitutions

x = r cos 6,

y = r Bin 6,

we find, for the polar equation of the lemniscate,

r^ = 2c' cos 20. (4)

Putting ^ = 0, we find, for the point in which the curve

cuts the line joining the foci.

The line a is the semi-axis of the lemniscate. Substitut-

ing it instead of c, the rectangular and polar equations of the

curve will become

r' = a' cos 26. )

^^

83. The Archimedean Spiral, This curve is generated

by the uniform motion of a point along a line revolving uni-

formly about a fixed point.

To find its polar equation, let us take the fixed point as the

pole, and the position of the revolving line when the generat-

ing point leaves the pole

as the axis of reference.

Let us also put

a = the distance by

which the generating

point moves along the

radius vector while the

latter is turning through

the unit radius.

Then, when the ra-

dius vector has turned

through the angle ^, the

point will have moved

from the pole through the distance ad.

Fig. 23.

Hence we shall have

as the polar equation of the Archimedean spiral.
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If we increase by an entire revolution (27r), the corre-

sponding increment of r will be 27ra, a constant. Hence:

The Archimedean spiral cuts any fixed position of the ra-

dius vector in an indefinite series of equidistant points.

83. The Logarithmic Spiral, This is a spiral in which

the logarithm of the radius vector is proportional to the angle

through which the radius vector has moved from an initial

position. Hence, if we put 0^

for the initial angle, we have

log r:=l{e- 0^

I being a constant. Hence

19 - 100
r = e = e w.

Putting, for brevity,

a — e %

the equation of the logarith-

mic spiral becomes fio. 24.

r = ae^^y

a and I being constants.

EXERCISES.

1. Show (1) that the maximum ordinate of the lemniscate

is |c, and (2) that the circle whose diameter is the line join-

ing the foci cuts the lemniscate at the points whose ordinates

are a maximum.

2. Find the following expression for the square of the dis-

tance of a point of a cycloid from the starting point (0, Fig.

ai):

r^ = 2ay -\- 2uax — a^u*,

3. A wheel makes one revolution a second around a fixed

axis, and an insect on one of the spokes crawls from the cen-

tre toward the circumference at the rate of one inch a second.

Find the equation of the spiral along which he is carried.
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4. If, in that logarithmic spiral for which a = 1 and I = 1,

r = e^

the radius vector turns through an arc equal to log 2, its

length will be doubled.

5. 11, in any logarithmic spiral, one radius vector bisects

the angle between two others, show that it is a mean propor-

tional between them.

6. Show that the pair of equations

X = au^y

represent a parabola whose parameter is —

.

7. If, in the equation of the Archimedean spiral, 6 and

therefore r take all negative values, show that we shall

have another Archimedean spiral intersecting the spiral given

by positive values of 6^ in a series of points lying on a line at

right angles to the initial position of the revolving line.

This should be done in two ways. Firstly, by drawing the continua-

tion of the spiral when, by a negative rotation of the revolving line, the

generating point passes through the pole. It will then be seen that the

combination of the two spirals is symmetrical with respect to the vertical

axis. Secondly, by expressing the rectangular co-ordinates of a point of

the spiral in terms of we have

x = aO cos 0,

y = aB sin 9.

Changing the sign of G in this equation will change the sign of x and

leave y unchanged.

8. Show that if we draw two lines through the centre of a

lemniscate making angles of 45° with the axes, no point of

the curve will be contained between these lines and the axis

of Y.
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CHAPTER XII.

TANGENTS AND NORMALS.

84. A tangent to a curve is a straight line through two

coincident points of the curve.

Fia. 25.

A normal is a straight line through a point of the curve

perpendicular to the tangent at that point.

The subtangent is the projection, TQ, upon the axis of

Xy of that segment TP of the tangent contained between

the point of contact and the axis of X,

The subnormal is the corresponding projection, QNy of

the segment PN of the normal.

Notice that a tangent and a normal are lines of indefinite

length, while the subtangent and subnormal are segments of

the axis of abscissas. Hence the former are determined by

their equations, which will be of the first degree in x and y,

while the latter are determined by algebraic expressions for

their length.

But the segments TP and PN are sometimes taken as

lengths of the tangent and normal respectively, when we con-

sider these lines as segments.
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85. General Equation for a Tangent. The general prob-

lem of tangents to a curve may be stated thus:

To find the condition which the parameters of a straight

line must satisfy in order that the line may he tangent to a

given curve.

But it is commonly considered in the more restricted form:

To find the equation of a tangent to a curve at a given point on

the curve.

Let {x^y y^ be the given point on the curve. By Analytic

Geometry the equation of any straight line through this point

may be expressed in the form

y^y^^rnix- X,); (5)

m being the tangent of the angle which the line makes with

the axis of X, But we have shown (§ 20) that

"^ ~
dx,'

this differential coefficient being formed by differentiating the

equation of the curve. Hence

y-y. = |;(^-^.) (6)

is the equation of the tangent to any curve at a point {x^, yj
on the curve.

Equatio7i of the Normal, The normal at the point {x^, y^
passes through this point, and is perpendicular to the tangent.

If m' be its slope, the condition that it shall be perpendicular

to the tangent is (An. Geom.)

m' = - - = -—
m dyl

dx^

Hence the equation of the normal at the point (x,, y^) is

^^{y-y,) = x,-x. (7)
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In these equations of the tangent and normal it is necessary

to distinguish between the cases in which the symbols x and

y represent the co-ordinates of points on the tangent or nor-

mal line, and those where they represent the given point of

the curve. Where both enter into the same equation, one set,

that pertaining to the curve, must be marked by suffixes or

accents.

86, Suhtangent and Subnormal. To find the length of

the subtangent and subnormal, we have to find the abscissa

x^ of the point T in which the tangent cuts the axis of abscis-

sas. We then have, by definition.

FiQ. 26.

Subtangent = x^ — x^

The value of x^ is found by putting y = and a: = a;„ in

the equation of the tangent. Thus, (6) gives

Hence, for the length of the subtangent TQ,

Subtangent =..-.. = |..

dx^

We find in the same way from (7), for QN,

Subnormal = — y
dyj

dx^

(8)

(9)
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8*7. Modified Forms of the Equation, In the preceding

discussion it is assumed that the equation of the curve is given

in the form

y =/(^)-

,, firstly, it may be given in the form

F{^, y) = 0.

shall then have (§37)
dF
dx^

' dF'

Substituting this value in the equations (6) and (7), we find

(10)

„ . dF, , dF,
Tangent: ^(y-y,)=^(r«,- a;);

dF,
dx.

Normal: —{y-yj = —-{x- a;.).
dF,

dy.

(11)

Secondly, if the curve is defined by two equations of the

form

y = 0,(^), )

dy^

, dy^ du
wo have —^ = -7-,

dx^ dx

die

in which there is no need of suffixes to x and y in the second

member, because this member is a function of u, which does

not contain x or y.

By substitution in (6) and (7), we find

Eq. of tangent: {y ~ y^)-£- = (a; - xj£-.

Eq. of normal: (y - y^)^ = {x, - x)^.
(12)
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(tX fill

By substituting in these equations for a:,y,, -j- and -~

their values in terms of w, the parameters of the lines will be

functions of u. Then, for each value we assign to u, (11)

will give the co-ordinates of a point on the curve, and (12)

will determine the tangent and normal at that point.

r 88. Tangents and Normals to the Conic Sections, Writing

the equation of the ellipse in the form

aY + Vx' = a^h\ (a)

we readily find, by differentiation,

dy __ Vx
dx

""
a*y*

Applying the suffix to x and y, to show that they represent

co-ordinates of points on the ellipse, substituting in (6) and

(7), and noting that x^ and y^ satisfy (a), we readily find:

For the tangent: ^ + 1^ = 1.

For the normal: -x y z= a* — b*.

Taking the equation of the hyperbola,

- aY + b'x* = aV,

we find, in the same way.

For the tangent: 5l? _M = 1.
a

a* I*
For the normal: -x A— y = a* + b*.

Taking the equation of the parabola,

y' = 2px,

we find, by a similar process.

For the tangent: y^y = p{x + x^).

For the normal: y — yi = — (^i
~~ ^)»
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89. Problem. To find the le^igth of the perpendicular

droppedfrom the origi7i upo7i a tangent or normal.

It is shown in Analytic Geometry that if the equation of a

straight line be reduced to the form

the perpendicular upon the line from the origin is

Gp=z
VA' + JB'

It must be noted that in the above form the symbol O rep-

resents the sum of all the terms of the equation of the line

which do not contain either x or y.

If we have the equation of the line in the form

we write it mx — y — mx^ -j- y^ = 0,

and then we have
A = m'y

0=^y^- mx^.

Thus, the expression for the perpendicular is

y^ — mx,

Vm' + l

Substituting for m the values already found for the tan-

gent and normal respectively, we find.

For the perpendicular o?i the tangent

:

/>

+

m
For the perpendicular on the normal:

dy^

^ ^1 + y^dx^ ^ x,dx^ + y,dy
.

(2)
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90. Tangejit and Normal m Polar Co-ordinates.

Pkoblem. To find the

angle which the tangent at

any point makes tuith the

radiiis vector of thatpoint.

Let PP' be a small arc

of a curve referred to polar

co-ordinates;

KP, a small part of the

radius vector of the point

P (the pole being too far

to the left to be shown in fiq. 27.

the figure);

K'P'y the same for the point P\
KSR, a parallel to the axis of reference. Drop PQ\_K'P\
Let SPThe the tangent at P. We also put

y E angle KPS which the tangent makes with the radius

vector.

Then let P' approach P as its limit. Then

QP' ^ dr; PQ = rdd;

PQ .
rdO

tan y ^ QP' - dr
• (1)

We also have

cos y —
dr

4/(1 + tan' y)
/l-'+lS)!'""

sin y = cos y tan y =

/l'-+(S)T

(2)

Cor. The angle FSP which the tangent makes with the

^xis of reference is y -{ 6^
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91. Perpendicular frovi the Pole iipon the Tangent and

Normal, When y is the angle between the tangent and the

radius vector, we readily find, by geometrical construction,

that the perpendicular from the pole upon the tangent and

normal are, respectively,

p := r sin y and p ^= r cos y.

Substituting for sin y and cos y the values already found,

we have.

For theperpendicular on tayigent

:

r'

p

For the perpendicular on normal :

r
V

/{'H^n
dr

d~6'

(3)

93. Pkoblem. To find the equation of the tangent and

•normal at a given point of a curve whose equatiori is expressed

in polar co-ordinates.

It is shown in Analytic Geometry that if we put

p = the perpendicular dropped from the origin upon a line;

a ~ the angle which this perpendicular makes with the

axis of Xy

the equation of the line may be written

X cos oc -\- y sin a — j) =^ 0, (1)

Now, as just shown, the tangent makes the angle y -\-

with the axis of X, and the perpendicular dropped upon it

makes an angle 90° less than this. Hence we have

a = y^6- 90°;

cos a — sin i^y -^ 0) — sin / cos /9 -j- cos y sin 6\

sin or = -- cos {y -\- B) ~ — cos ;^ cos ^
-f- sin y sin 0,
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By substitution in (1), the equation of the tangent becomes

a:(sin y cos 6 -f- cos y sin 6)

— ?/(cos y cos — sin y sin 0) — p = 0.

Substituting for cos y, sin y and p the values already found,

this equation of the tangent reduces to

ir cos ^ + 7^ sin 8) x -\- Ir sin ^ — -jn cos 6^1 y — r* = 0, (2)

?• and 6^ being the co-ordinates of the point of tangency.

In the case of the normal the perpendicular upon it is

parallel to the tangent. Therefore, to find the equation of

the normal, we must put in (1)

a = y -{- 6.

Substituting this value of a, and proceeding as in the case

of the tangent, we find, for the normal,

( -^ cos 6 — 7' sin Ojx+ir cos ^ + jn siii ^) ?/ — ^'7^ = ^« (3)

Generally these equations will be more convenient in use if

we divide them throughout by r. Thus we have:

Equation of the tangent :

^cos 6 + --^^8m0jx+ ^sin ^ - - /^
cos 6jy-^r = 0. (4)

Equation of the normal

:

(i|co8^-sin^)..+ (^|sin. + cos^),-|j = 0.(5)

In using these equations it must be noticed that the co-

efficients of X and y are functions of r and 6, the polar co-

dv
ordinates of the point of tangency. When 7% 8 and -y^ are

given, this point and the tangent through it are completely

determined.
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I
EXERCISES.

I. Show that in the case of the Archimedean spiral the

general expressions for the perpendiculars from the pole upon

the tangent and normal, respectiyely, are

ad^ , ad

v{i + o')
-^ ^ va +n

Thence define at what point of the spiral the radius vector

makes angles of 45° with the tangent and normal. Find also

what limit the perpendicular upon the normal approaches

as the folds of the spiral are continued out to infinity.

Show also from § 92 that the tangent is perpendicular to

the line of reference at every point for which

r sin — a cos = 0,

and hence that, as the folds of the spiral are traced out to

infinity, the ordinates of the points of contact of such a tan-

gent approach ± a as their limit.

2. Show by Eq. 12 that in the case of the logarithmic

spiral the angle which the radius vector makes with the tan-

gent is a constant, given by the equation

tan y =
J-.

3. Show from Eq. 12 that if a curve passes through the

pole, the tangent at that point coincides with the radius

vector, unless -^ = at this point. Thence show that in the

lemniscate the tangents at the origin each cut the axes at

angles of 45°.

4. Show that the double area of the triangle formed by a

tangent to an ellipse and its axes is . Then show that the

area is a maximum when — = ± t^.
a

Show also that the area of the triangle formed by a nor-

mal and the axes is a maximum for the same point.
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CHAPTER XIII.

OF ASYMPTOTES, SINGULAR POINTS AND
CURVE-TRACING.

93. Asymptotes. An asymptote of a curve is the limit

which the tangent approaches when the point of contact re-

cedes to infinity.

In order that a curve may have a real asymptote, it must

extend to infinity, and the perpendicular from the origin upon

the tangent must then approach a finite limit.

For the first condition it suffices to show that to an infi-

nite value of one co-ordinate corresponds a real value, finite

or infinite, of the other.

For the second condition it suffices to show that the expres-

sion for the perpendicular upon the tangent (§§ 89, 91) ap-

proaches a finite limit when one co-ordinate of the point of

contact becomes infinite. If, as will generally be most con-

venient, the equation of the curve is written in the form

F{x, y) = 0, (1)

the value (1) of the perpendicular, omitting suffixes, may be

reduced to

dF
,
dF

\ishm\'dy

If this expression approaches a real finite limit for an

infinite value of x or y, the curve has an asymptote.

If the curve is referred to polar co-ordinates, we use the

expression (3), § 91, for ;;, If this approaches a real finite

limit for an infinite value of r, the curve has an asymptote.
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The existence of the asymptote being thus established^ its

equation may generally be found from the form (10), § 87,

which we may write thus:

dF dF _ dF dF
dx.

(3)

by supposing x^ or y^ to become infinite.

flF dF
Commonly the coefficients -j^ and -j- will themselves be-

come infinite with the co-ordinates. We must then divide

the whole equation by such powers of x^ and y^ that none of

the terms shall become infinite.

94. Examples of Asymptotes.

1. F{x) = x'-^ y'- daxy = 0.{a)

The curve represented by this

equation is called the Folmm of

Descartes, The equation (3) gives

in this case, applying suffixes,

= ^' + y' - ^«^i!/x = cix^y,'

To make the coefficients of x and

y finite for x^ = co , divide by x^y^,

comes

n>

^y

FiQ. 28.

Then the equation be-

(?-)

Let us now find from (a) the limit of y^ for ic^ = oo . We
have

1 + h = 3a?^

The second member of this equation will approach zero as

a limit, unless y^ is an infinite of as high an order as x^*,

which is impossible, because then the first member of the

equation containing y^^ would be an infinite of higher order
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than the second member, which is absurd. Hence, passing

to the limit,

lim. (|j(x, = <») = - 1.

Then, by substitution in {h), we find, for the asymptote,

x + y -\-a = 0.

2. Take next the equation

F{x, y) = x"" — 2x^y — ax^ — a^y = 0. (a)

With this equation (3) becomes

(3a;/ - 4:X^y^ - 2ax^)x - (2a:/ + a')y

= Sx^' - 6x;y, - 2ax: - a'y^. {b)

FiQ. 29.

We notice that the terms of highest order in the second

member are tliree times those of highest order in (a). From
(a) we have

^:' - ^-^I'y = ^^/ + «Vi-

Subotituting in tlie second member of (b), and dividing by

x/, (/>) becomes

(•^-*i;-l>-K?V=«+?'- <*')

Solving (a) for y, we find

an expression which approaches the limit i when 2:^:^00.

Thus, passing to the limit, {b') gives, for the equation of the

asymptote,
X — 2y= a.
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3. The Witch of Agnesi. This curve is named after the

Italian lady who first investigated its

properties. Its equation is

ic'y + a'^y — «^' = 0. (a)

The equation of the tangent is

2x^y^x + {x^' + a')y = ^x^y, + a'y, = da' - 2«Y- (^)

By solving {a) for x and y respectively we see that x^ may

become infinite, but that y^ is always positive and less than a.

Hence, to make the coefficient of y in {h) finite for 0^^ = 00,

we must divide by x^, which reduces the equation of the

asymptote to

y = 0.

Hence the axis of x is itself an asymptote.

95. Points of Inflection, A point of inflection is a point

where the tangent inter-

sects the curve at the

point of tangency.

It is evident from the

figure that in passing

along the curve, and con-

sidering the slope of the ^^^- ^^•

tangent at each point, the point of inflection is one at which

this slope is a maximum or a minimum. Because we have

slope = g,

the conditions that the slope shall be a maximum or minimum
are

dx'

and —^ different from zero. If the first condition is fulfilled,

cVy ,

but if -tS is also zero, we must proceed, as in problems of maxi-
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ma and minima, to find the fir^fc derivative in order which

does not vanish. If the order of this derivative is even, there

is no point of inflection for -j-^ = 0; if odd, there is one.

As an example, let it be required to find the points of in-

flection of the curve

xy^ = a^{a — x).

Keducing the equation to the form

f = a

X
-a\

dy

dx

a"
we find

The condition that this expression shall vanish is

4:xy* = rt',

which, compared with the equation of the curve, gives, for the

co-ordinates of the point of inflection,

3
.

a
X = -a\ y = ± ~~.

EXERCISES.

Find the points of inflection of the following curves :

X \ X = ae^.
ins. [I. xy = a' log —

.

A),.,
«

(y = lae~^
ix = a{l — cos w);

(y = a{7iu + sin ti),

' _ (MJ>.X —
,

Ans, <

^=4»'-"(-^)+^^)
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<^.y

Fig. 32.

96. Singular Points of Curves, If we conceive an infini-

tesimal circle to be drawn round any

point of a curve as a centre, then, in

general, the curve will cut the circle in

two opposite points only, which will

be 180° apart.

But special points may sometimes be

found on a curve where the infinitesimal circle will be cut in

some other way than this: perhaps in more or less than two

points; perhaps in points not 180° apart. These are called

singular points.

The principal singular points are the following:

Double-Joints ; at which a

.

curve intersects itself. Here the

curve cuts the infinitesimal circle

in four points (Fig. 33).

Cusps; where two branches of

a curve terminate by touching

each other (Fig. 34). Here the

infinitesimal circle is cut in two coincident points.

Stopping Points; where a curve suddenly

ends. Here the infinitesimal circle is cut in

only a single point.

Isolated Points; from which no curve proceeds, so I _y
that the infinitesimal circle is not cut at all. fig. 36.

Salient Points; from which proceed two branches making

v/ith each other an angle which is neither zero nor 180"".

Here the infinitesimal circle is cut in two points which are

neither apposite nor coincident.

There may also be multiple-pointsy through which the curve

passes any number of times. A double-point is a special kind

of multiple-point.

A multiple-point through which the curve passes three

times is called a triple-point.

Fig. 33. Fig. 34.

Fig. 35.
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:i:

X /
"^\^

I y^^\
Xo 1 <h^ 1;

• /

' ' / 1

1

1

o / 1
i

:x:

97. Condition of Singular Points, Let [x^, y^ be any

point on a curve, and let it be required to investigate the

i}uestion whether this point is a singular one. We first trans-

Eorm the equation of the

surve to one in polar co-

ordinates having the point

x^ y^) as the pole. To do

this we put, in the equation

of the curve,

!/ = !/o + P sin 6/. )

The resulting equation

between p and 6 will be the fig. 37.

equation of the curve referred to (.t„, y^) as the pole. More-

over, if we assign to p a fixed value, the corresponding value

of 6 derived from the equation will be the angle 6 showing

the direction QP from Q to the point P, where the circle of

radius p cuts the curve. The limit which 6 approaches as p
becomes infinitesimal will determine the points of intersection

of the infinitesimal circle with the curve.

If, now, the given equation of the curve is

F{x, y) = 0,

then, by the substitution (1), the polar equation will be

F{x, + p cos e,y^+p sin 8) = 0. (2)

Now, let us develop this expression in powers of p by Mac-

laurin's theorem. Since p enters into (2) only through x and

y in (1), we have

dF_dFdx^ cIFdy^

dp ~ dx dp dy dp
cos d-—\- sm d-r- r

dx dy
F'.

fbecause — = cos 6 and -y- = sin
^J

Then
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crF dF' JcrF dx
,
d'F dy

dp dp \dx dp dxdy dp,

.
. Jd'F dx

,

d'Fdy\ I

\dxdy dp dy dpi

= cos' ^-7-,- + 2 sm 6^ cos 6 , -. + sm' 6>^--- = i^"i
a:?; a.T^^/ dy

Noting that when p = then x = x^, we see that the de-

velopment by Maclaurin's theorem will be

F{x, y) = F{x,, ^J + p(cos ^g + sin 6^^

+ etc. = 0.

Here -r- means the value of -7- when x^ is put for x, etc.
dx^ dx ° ^

Because {x^y y^) is by hypothesis a point on the curve, w(

have F{x^, y^ = 0, and the only terms of the second membei

are those in p, p', etc. Thus the polar equation (2) of the

curve may be written

F/P + F/'p^ + FrP' + etc. = 0,

)

or FJ + FJ'p + i^/'V + etc. = 0. f
^^

To find the points in which the curve cuts a circle of radiuf

Py we have to determine ^ as a function of p from this equa-

tion. When p is an infinitesimal, all the terms after the firsi

will be infinitesimals. Hence, at the limit, where p becomes

infinitesimal must satisfy the equation

dF
dx

which gives tan 6 •= — —^.
dF

^0
This is the known equation for the slope of the tangent a1

(^0* y^y ^^d gives only the evident result that in general the
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irve cuts the infinitesimal circle along the line tangent to

e curve at Q.

But, if possible, let the point {x^y^ be so taken that

ilF (IF

Then we shall have FJ — 0, and the equation (3) of the

irvo will reduce to

FJ'p + F^p' + etc. = 0,

^o" + ^o"'P + etc. = 0.

Again, letting p become infinitesimal, we shall have at the

mit

," = cos^ .||; + , sin .cos.^- + sin^ ^11 . 0. (5)

Dividing throughout by cos' 6, we shall have a quadratic

}uation in tan 6, which will have two roots. Since each

lue of tan 6 gives a pair of opposite points in which the

iirve may cut the infinitesimal circle, and since (5) depends

Q (4), we conclude:

The necessary condition of a douUe-jwint is that the three

quations

F(x,y)-^, —-^—^0, ____0,

hall be satisfied by a single pair of valnes of x and y.

If the two values of tan derived from FJ' — are equal,

VG shall have either a cusp, or a poii^.t in which two branches

f the curve touch each other. If the roots are imaginary,

he singular point will be an isolated point.

98. Examjjles of Double-points, A curve whose equation

;ontains no terms of less tlian the second degree in x and y
las a singular point at tiic origin. For example, if the equa-

ion be of the form

F{x, y) = Px' + Qxy + Rf = 0,

:hen this expression and its derivatives with respect to x and

y will vanish for a; = and y = 0.
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= — 6(rt'a; -\- ax') = — 6ax{a -f x);

My' - «') = iyiy + «) (y - «)•

(1)

(3)

Let us now investigate the double-points of the curve

{y" - ciy - 3aV - 2az' = 0.

We have

dF
dx

dF
dy

The first of these derivatives vanishes for x = ot — a\

The second of these derivatives vanishes for y —0, — a or -\- a.

Of these values the original equation is satisfied by the fol-

lowing pairs:

^. —
y.

which are therefore the co-ordinates of singular points,

r„= 0; 0; -a-,)
(3)

Differentiating again^ we have

d-'F .... d'F
-zr-- = — 6a — V^ax\ -^—=- :

dx dxdy

Forming the equation i^" = 0, it gives

^' 1?=!^^'-*'^''
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(12y' ~ 4a') tan' 6* = Ga' + nax.

Substituting the pairs of co-ordinates (3), we find:

At the point (0, — a), tan 6 = ± ^ V^-,

At the point (0, + a), tan = ± ^ Vd\

At the point (— a, 0), tan 6^ = ± Vl.

The vahies of tan 6 being all real and unequal, all of these

points are double-points. The curve is shown in the figure.

Remark. In the preceding theory of singular points it is

assumed that the expression (2), § 97, can be developed in

powers of p. If the function F is such that this development

is impossible for certain values of x^ and y^, this impossibility

may indicate a singular point at (:c„, y^).

99, Curve-tracing, We have given rough figures of va-

rious curves in the preceding theory, and it is desirable that

the student should know how to trace curves when their

equations are given. The most elementary method is that of

solving the equation for one co-ordinate, and then substitut-

ing various assumed values of the other co-ordinate in the

solution, thus fixing various points of the curve. But un-

less the solution can be found by an equation of the first or

second degree, this method will be tedious or impracticable.

It may, however, commonly be simplified.

1. If the equation has no constant term, we may sometimes

find the intersections of the curve with a number of lines

through the origin. To do this we put

y = mx

in the equation, and then solve for x. The resulting valuea

of :r as a function of m. are the abscissas of the points in which

the curve cuts the line

y — mx = 0.

Then, by putting

m = ± 1, ±2, etc.; vi = ± -J, ± J, etc.,

we find as many points of intersection as we please.
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To make this method practicable, the equations which we

have to solve should not be of a degree higher than the second.

If the curve has a double-point, it may be convenient to

take this point as the origin.

2. If the equation is symmetrical in x and y or x and — t/,

the curve will be symmetrical with respect to one of the lines

X — y = and x -{- y = 0.

The equation may then be simplified by referring it to

new axes making an angle of 45° with the original ones.

The equations for transforming to such axes are

x={x' + y') sin 45°;

y=z{x' - y') sin 45°.

Application to the Folium of Descartes. If, in the equa-

tion of this curve,

x' + y' = 3axy,

we put y = mx, we shall find

3am Bam''

1

^ — 11 ...3; y —
l + m'' ^ 1+m''

We also find, from the equation of the curve and the pre-

ceding expressions for x and y in terms of m,

dy __x^ — ay __ 2m — m*

dx ax •-y'~ 1 - 2to'*

1,
3

x==^-a; y =
3 dy _

dx
~ - 1.

2
x = ~a; y^ 4

3«;
dy

dx
~ 4

5*

3

2'

36
x==-^a;

?/
= 54

35"'
dy

dx

33

92

2,
6

x=:-a; y = - 13 dy

dx
~ 20

i7'

etc. etc;. etc.

Then, for

m =

m =

m =

etc.

Thus we have, not only the points of the curve, but the

tangents of the angle of direction of the curve at each point,

which will assist us in tracing it.
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CHAPTER XIV.

THEORY OF ENVELOPES.

lOO, The equation of a curve generally contains one or

more constants, sometimes called parameters. For example,

the equation of a circle,

{x - a)' +(y- by = r\

contains three parameters, a, b and r.

As another example, we know that the equation of a

straight line contains two independent parameters.

Conceive now that the equation of any line, straight or

curve, (which we shall call ^^the line^' simply,) to be written

in the implicit form

0(^, y. ^) = 0, (1)

a being a parameter. By assigning to a the several values

a, a', a", etc., we shall have an equal number of lines whose

equations will be

<f>{^, y> oi) = 0; (f>{Xy y, a') = 0; 0(rr, y, or") = 0; etc.

The collection of lines that can thus be formed by assign-

ing all values to a parameter is called a family of lines.

Any two lines of the family, e.g., those wliich have a and

a' as parameters, will in general have one or more points of

intersection, determined by solving the corresponding equa-

tions for X and y. The co-ordinates, x and y, of the point of

intersection will then come out as functions of a and a\

Suppose the two parameters to approach inlinitesimally near

each other. The point of intersection will then approach a

certain limit, which we investigate as follows:
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Let us put

a' =z a -{- Aa.

The equations of the lines will then be

cf)(xy y, a) ::^0 and (p{xy y, a -{- Aa) ==0.

If we develop the left-hand member of the second equation

in powers of ^ a: by Tajlor^s theorem, it will become

cpix, y, a) + £Aa + -^ ^-^ + etc. = 0.

Subtracting the first equation, dividing the remainder by

Aay and passing to the limit, we find

d(p(Xy y, a)

da
= 0.

Hence the limit toward which the point {x, y) of intersec-

tion of two lines of a family approaches as the difference of

the parameters becomes infinitesimal is found by determining

X and y from the equations

0(.,,,«) = O and M^|^)=0.
(2)

The values of x and y thus determined will, in general, be

functions of a; that is, we shall have

a; =/>(«); y =/,(«); (3)

which will give the values of the co-ordinates x and y of the

limiting point of intersection for each value of a,

Now, suppose a to vary. Then x and y in (3) will also

vary, and will determine a curve as the locus of x and y.

Such a curve is called the envelope of the family of

lines, ct){x, y, a) = 0.

In (3) the equations of the curve are in the form of (2),

§ 76, a being the auxiliary variable. By eliminating a either

from (2) or (3), we have an equation between x and y which

will be the equation of the curve in the usual form.



THEORY OF ENVELOPES. 171

101 • Theorem. The envelope and all the lines of the

family which generate it are tangent to each other.

Geometrically the truth of this will be seen by drawing a

series of lines varying their position according to any con-

tinuous law, as in the first example of the following sec-

tion. Taking three consecutive lines and numbering them

(1), (2) and (3), it will be seen that as (1) and (3) approach

(2) their points of intersection with (2) approach infinitely

near each other. Since these infinitely near points of inter-

section also belong to the envelope, the line (2) passes through

two infinitely near points of the envelope and is therefore a

tangent to the envelope.

Analytic Proof, The equation of the envelope is found by

eliminating a from the equations (2), and we may conceive

this elimination to be effected by finding the value of a from

the second of these equations (2), and substituting it in the

first equation. That is, the equation

ct>(x, y,a) = (4)

represents any line of the original family when we regard a

as a constant; and it represents the envelope when we regard

a as a function of x and y, satisfying the equation

M^l^) ^ 0. (5)

Let the value of a derived from this last equation be

a = F{x, y). (6)

Now, to find tlie slope of the tangent to the original line of

the family at the point {x, y), we differentiate (4), regarding

a as a constant. Thus we have

d0 d^dy_^^
or -^ = -^ (7)

dx dy dx dx JJyCp'

If the original line is a straight one, this equation will give

its slope.

To find the slope of the tangent to the envelope at the same
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point, we differentiate this same equation, regarding a as hav-

ing the value (6). Thus we have

dx dy dx da\dx dy dx I ' ^ ^

But, because -~ = 0, this equation will also give the value

(7) for the slope; whence the curves have the same tangent at

the point {xy y), and so are tangent to each other at this point.

103. We shall now illustrate this theory by some examples.

1. To find the enveloije of a straight line which moves so that

the area of the triangle lohich it forms with the axes of co-

ordinates is a constant.

Fig. 39.

Since the area of the triangle is half the product of the

intercepts of the axes cut off by the line, this product is also

constant.

Calling a and h the intercepts, the equation of the line may

be written in the form

0(aj, y, a) ^+1-1 = 0.
a

(1)
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Here we have two varying parameters, a and h, while, to

have an envelope, the change of the parameters must depend

on a single varying quantity. But the condition that the

product of the intercepts shall be constant enables us to elimi-

nate one of the parameters, say Z>. We have, by this condition,

h = -, (2)

, db c
whence -?- =

a«da a

Now differentiating the equation (1) with respect to a, re-

garding Z> as a function of a, we have

d^^ _^_ _y (]^_ cy - ^'^ _ ^ _ ?_ _ n\
da ~

a' b' da ~
a'b' ~ c a'

^^

We have now to eliminate a from the equations (1) and (3),

using (2) to eliminate b from (1). The easiest way to effect

this elimination is as follows:

From (3) we have

a'y = cx; a = a/ ^-. (4)

Multiplying (1) by a, and substituting for b its value from

(2), we have

x-\ ^ = a.
c

Substituting from (4), this equation becomes

and thus the equation of the envelope becomes

xy = \c,

which is that of an hyperbola referred to its asymptotes.

This result coincides with one already found in Analytic

Geometry, that tangents to an hyperbola cut off from the

asymptotes intercepts whose product is a constant.
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2. To find the envelope of the line for which the sum of the

intercepts cut offfrom the co-ordinate axes is a constant.

Fig. 40.

Let c be the constant sum of the intercepts. Then, if a be

the one intercept, the other will he c — a. Thus the equa-

tion of the line is

X

a
-^-1,

c — a

in which a is the varying parameter.

Clearing of fractions, we may write the equation

ct){x, y, a) = cx + a{y — X- c) -{- a"" ~ 0,

whence ~=:y — x — c-\-2a=^0.
da ^ '

From the last equation we have

« = *(^ - !/ + ^);

this value of a being substituted in the other gives

cx-\{x- y ~\- cY = 0,

or {x - yY - 2c{x + i/) + c' = 0.
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This equation, being of the second degree in the co-ordi-

nates, is a co7iic section.

The terms of the second degree forming a perfect square,

it is a parabola.

The equation of the axis of the parabola is

To find the two points in which the parabola cuts the axis

of X we put y = 0, and find the corresponding values of x.

The resulting equation is

x' — 2cx + c^ = 0.

This is an equation with two equal roots, x = c, showing

that the parabola touches the axis of X at the point {c, 0).

It is shown in the same way that the axis of Y is tangent to

the parabola.

It may also be shown that the directrix and axis of the

parabola each pass through the origin, and that the parame-

ter is V~2c,

3. If the difference of the intercepts cut off by a line from

the axes is constant, it may be shown by a similar process

that the envelope is still a parabola. This is left as an exer-

cise for the student, who should be able to demonstrate the

following results

:

(a) When the sum of the intercepts is a positive constant,

the parabola is in the first quadrant ; when a negative con-

stant, the parabola is in the third quadrant.

(/?) When the difference, a — by of. the intercepts is a posi-

tive constant, the parabola is in the fourth quadrant; when a

negative constant, in the second.

{y) The co-ordinate axes touch the parabola at the ends of

the parameter.

In each case the parabola touches each co-ordinate axis at

a point determined by the value of the corresponding inter-

cept when the other intercept vanishes, and each directrix

intersects the origin at an angle of 45° with the axis.
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4. Next take the case in which the sum of one intercept

and a certain fraction or multiple of the other is a constant.

Let m be the fraction or multiplier. We then have

h -\- ma = c = u, constant.

The equation of the line then becomes

a c — ma

Proceeding as before, we find the equation of the envelope

to be
{mx — yY — 2c(ma; + y) + c' = 0,

which is still the equation of a parabola.

5. To find the envelope of a line which cuts off intercepts

subject to the conditio7i

^+-^,=h {a)

m and n being constants.

We may simplify the work by substituting for the varying

intercepts a and b the single variable parameter a determined

by either of the equations

m n
sm or E - ; cos « = 7-.

a

The equation of the varying line will then oecome

OJ 4/

d)(x. y) = — Bin a -4- ~ cos a = 1. (1)

By differentiating with respect to a, we have

T- = — cos «? — — sm or = 0. (2)da m n ^ ^

We may now eliminate a by simply taking the sum of the

squares of these equations, which gives

7)1 n

the equation of an ellipse whose semi-axes are m and 7u
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6. To find the envelope of a circle of constant radius whose

^centre moves on a fixed circle*

For convenience let us take the centre of the fixed circle as

the origin, and put:

a, by = the co-ordinates of the centre of the moving circle;

c E its radius;

d E the radius of the fixed circle.

The equation of the moving circle now becomes

(x - ay + {y- by - c» = 0. (1)

By differentiation with respect to a,

The condition that {a, b) lies on the fixed circle gives

a' + b' = d\ (2)

, db a
whence -—=: — --.

da b

Then, by substituting this value,

ay — bx = 0. (3)

We have now to eliminate a and b from (1), (2) and (3).

Firstly, from (1) and (2), we find

a:* + 3/* - 2aa; - 2% = c* - d\ (1')

From (2) and (3) we find the following expressions for a

and b:

xd , yd
a = . : b =

Vx^ + f' Vx^ + y^'

By substitution in (1'), and putting for brevity

r' = x' + y\

we find r' ± 2rd + d* = c\

Hence r* = x* + y^ = (c ± d )%

the equations of two circles around the origin as a centre,

with radii c -\- d and c — d.
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7. Find the envelope of a family of ellipses referred to their

centre and axes, the product of whose semi-axes is equal to

a certain constant, 6'\

Ans, The equilateral hyperbola xy = ic^,

8. To find the e^ivelope of a family of straight li7ieSy such

that the product of their distances from two fixed points is a

constant.

Let {a, 0) and {—a, 0) be taken as the two fixed points,

and let c' be the constant. Also, let

X cos a -\- y ^m a — p = (1)

be the equation of any one of the lines in the normal form,

p and a being the varying parameters.

The distances of the line from the points {a, 0) and {—a,

0) are respectively

— p -{- a GO^ a and — p — a qob a.

Hence we have the condition

j»' - a^ cos' a = c\ (2)

Differentiating (1), regarding jt? as a function of a, we have

— XBm a -\- y cos a f- = 0.^ da

From (2) we obtain

dp __ a^ sin a cos a
da ^ p '

We thus have the three equations

X cos a '\- y mi a =z p^ («)

a^ sin a cos a
(*)

;?' = c' + a' cos' a
— c^ -\- a^ — d^ sin' o'. (<')

from which to eliminate p and ^.
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I

To effect the elimination of a and p we find the values of

Z and y from (a) and (b) by taking

(a) X cos a + {h) X sin a and (a) x sin a — {h) x cos a.

We thus find, by the aid of (c),

px = ^' cos a -\- a* sin' a cos a;

cos O'
a: = (c' + a')-

,8in a
y = c' •

i^

^ a; cos a
Hence -=—-—i = ;

c + a p
y _ sin a
c*

'~ p '

If we multiply the first of these equations by x and the

second by y and add, then we have

X* y* __x COB a -\- y sin a _^

?~+'a' "^ ?
""

p
~

Hence the equation of the envelope is

c' + a' ' c'

This represents an ellipse whose foci are the two fixed

points.

This interpretation, however, presupposes that the product

c* of the distances of the line from the two points is positive;

that is, that the points are on the same side of the enveloping

line. If the product is negative, the equation of the envelope

will be

a — c c

which is the equation of an hyperbola.

These results give the theorem of Analytic Geometry that

the product of the distances of a tangent from the foci of a

conic is constant.
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1.^
. J

, , CHAPTER XV. I

OF CURVATURE; EVOLUTES AND INVOLUTES.
t

103, Position; Directio7i; Curvature. The positmi of

any point P on a curve is fixed by the values of the co-ordi-

nates, X and y^ of F» This is shown in Analytic Geometry.

If we have given^ not only x and y, but the value of — for

the point P, then such value of the derivative indicates the

direction of the curve at the point P, this direction being the

same as that of the tangent at P.

The curve may also have a greater or less degree of curva-

ture Sit P. The curvature is indicated by a change in the di-

rection of the tangent, that is, in the value of -3^, when we
ax

pass to an adjacent point P'. But such change in the value

di/
of -^ when we vary x is expressed by the value of the second

d^V
derivative -7^. If this quantity is positive, the angle which

ax

the tangent makes with the axis of X is increasing with x at

the point P, and the curve, viewed from below, is convex.

If y4 is negative, the tangent is diminishing, and the

curve, seen from below, is concave.

To sum up: If we take a value of the abscissa a:, then the

corresponding value of

y gives the position of a point P of the curve;

-p- gives the direction of the curve at P;

d^V
-t4 depends upon the curvature of the curve at P.
ax
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104. Contacts of Different Orderi>. Let two different

sjirves be given by their respective equations:

y =/(^) an^ y = 0(^)-

If for a certain value of x, which value call x^, the two

values of y are equal, the two curves have the corresponding

point in common; that is, they meet at the point {x^, y).

If the values of -^ are also equal at this point, it shows

tliat the curves have the same direction at the point of meet-

^
ing. They are then said to touch each other.

It the values of -y4 are also equal at this point, the two
ax

j curves have also the same curvature at this point.

i

To show the result of these several equalities, let us give

j
th(3 abscissa x^ (which we still take the same for both curves),

I
uii increment A, and develop the two values of y in powers of

cli/

h by Taylor^s theorem. To distinguish the values of y, -f-y

etc., which belong to the two curves, we assign to one the

suffix 0, and to the other the suffix 1. Then, for the one

curve,

'='.+(i).^+p/.+--+(g)l+-.
and, for the other,

'•-.+@),"+(S'),iV---+(g)|+-
The difference between the values of y' and y is the inter-

cept, between the two curves, of the ordinate at the point

whose abscissa is x^ -f- h. Its expression is

2/i
- ^0 + [(i),-(t]"4(£o,-(m]o+-
Now, consider the case in which the curves meet at the

point r, whose abscissa is x^. Then
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and the intercept of the ordinate will be

which, when h becomes infinitesimal, is an infinitesimal of

the first order.

If we also have

ldy\ __ (dy\

\dxir \dxi:

the ordinates will differ only by a quantity containing h^ as a

factor, and so of the second order. Hence:

Wlien two curves are tangent to each other, they are sepa-

rated only ly quantities of at least the second order at an in-

finitesimal distance from the point of tangency.

In the same way it is shown that if the second differential

coefficient also vanishes, the separation will be of the third

order, and so on.

Def When two curves are tangent to each other, if the

first n differential coefficients for the two curves are equal at

the point of tangency, the curves are said to have contact

of the nth order.

Hence a case of simple tangency is a contact of the first

order. If the second derivatives are also equal, the contact

is of the second order, and so forth.

105. Theorem. In contacts of an even order the two

curves intersect at the point of C07itact ; in those of an odd

order they do not.

For, in contact of the nth. order, the first term of y' — y

(§ 104) which does not vanish contains h"^"^^ as a factor.

If 71 is odd, 7i + 1 is even, and y' — y has the same alge-

braic sign whether we take h positively or negatively. Hence

the curves do not intersect.

If n is even, n -\- Ih odd, and the values of y' — y have

opposite signs on the two sides of the point of contact, thus

showing that the curves intersect.
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^ 106. Radius of Curvature, The curvature at any point

is measured thus: We pass from the point F to a point P' in-

jfinitesimally near it. The

teurvature is then measured

by the ratio of the cliange

in the direction of the tan-

gent (or normal) to the

distance PP\ Let us put

aEthe angle which

the tangent at F makes fiq. 41.

with the axis of X.

a + da = the same angle for the tangent at F\
ds E the infinitesimal distance FF\

Then, by definition.

Curvature = -^.
ds

Now, because tan a

we have, by differentiation.

dy

d^'

sec' a da = -~{dx.

Also, sec' « = 1 -4- tan' a = 1 -f

and ds = \/{l-\.'^^dx.

From these equations we readily derive

cry

dz'

dl
dx^

Curvature = -7- =
ds Kgrtf.2/'\i

Now, draw normals to the curve at the points P and P',

and let C be their j)oint of intersection. Because they are

perpendicular to the tangents, the angle FGF' between them

will be da, and if we put
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we shall have

Hence p = -j— =

PF' = ds = pda.

fi + ^T
1 r ^ dx^i

da curvature d'^y

d^^

The length p is called the radius of curvature at the

point F, and C is called the centre of curvature.

Corollary. The centre of curvature for any point of a

curve is the intersection of

consecutive normals cut-

ting the curve infinitely

near that point. p^

10*7. The Osculating

Circle, li, on the normal

PC to any curve at the

point P, we take any point
^^^ ^2

as the centre of a circle

through P, that circle will be tangent to the curve at P;

that is, it will, in general, have contact of the first order

at P. But there is one such circle which has contact of a

higher order, namely, that whose centre is at the centre of

curvature. Since this circle will have the same curvature

at P as the curve itself has, it will have contact of at least

the second order at P.

This proposition is rigorously demonstrated by finding that

circle which shall have contact of the second order with the

curve at the point P.

Let us put

Xy ?/, the co-ordinates of P;

dij

P = -;f-
for the curve at the point P;

q^-~ior the curve at the point P,
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These last two quantities are found by differentiating the

equation of the curve.

dij d'^u
Now, -j^ and -7-^ must have these same VpJues at the point

{xy y) in the case of the circle having contact of the second

order (§ 104).

Let the equation of this circle be

{X - ay + (2/
- by = r\ (a)

By differentiation, we have

{z - a)dx + {y - h)dy = 0,

whence -/- = ^
~ ^ = p. (b)

dx b — y ^ ^ '

Differentiating again,

J> ^ 1
, (^ - a ) dy_ _ (y - by + (r - a)'

dx' b-y'^ {b-yY dx
~

(y - d)'

r
3 = q- {c)"^

(y - ^)

From {b) combined with (a) we find

{X - ay _1+^' = 1 +
(?/ - *)' ~{y- W

(1 + ff
r

Dividing this by (c) gives

the equivalent of the expression already found for the radius

of curvature.

Hence if we determine a circle by the condition that it

shall have contact of the second order with the curve at the

point P, its radius will be equal to the radius of curvature.

This circle is called the osculating circle for the point P.

Each point of a curve has its osculating circle, determined

by the position, direction and curvature at that point.
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Cor. The osculating circle will^ in general, intersect the

curve at the point of contact, for it has contact of the second

order.

This may also be seen by reflecting that the curvature of a

curve is, in general, a continuously varying quantity as we

pass along the curve, and that, at the point of contact, it is

equal to the curvature of the circle. Hence, on one side of

the point of contact, the curvature of the curve is less than

that of the circle, and so the curve passes without the circle;

and on the other side the curvature of the curve is greater,

and thus the curve passes within the circle.

If, however, the curvature should be a maximum or a

minimum at the point of contact, it will either increase on

both sides of this point or diminish on both sides, whence

the circle will not intersect the curve.

Xl08. Radius of Curvature tuhen the Abscissa is not taken

as the Independent Variable. Suppose that, instead of x,

some other variable, to, is regarded as the independent vari-

able. We then have

Now, it has been shown that, in this case, we have (§56)

d'^y dx d'^x dy

d^y __ du^ du du'' du

d^'
~ ^Y

' (2)

Also, we have

1 I
(^y V— 1 I

^^^^^ ^ _ \duJ_^ \du I . .

\du / \du I

These expressions being substituted in the expression for

the radius of curvature, it becomes
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\\du} + \d^l \

(Py dx d^x dy

dtc^ dii du^ du

(4)

109. Radms of Curvature of a Curve referred to Polar

Co-ordinates, Let the equation of the curve be given in the

form
r = 0(6').

The preceding expression (4) may be employed in this case

by taking the angle as the independent variable. By differ-

entiating the expressions

X = r cos 6,

y = r sin 0,

regarding r as a function of 0, we find, when we put, for

brevity,

r' = - ' r" - —- dO' ~
dO''

-^ = — r sin 8 -f r' cos 6;
du

'^ = (7-" - r) cos - 2r' sin 6;

-il= r cos + r' sin 0;
du

'^ = (r" - r) sin 6 + 2r' cos 0,

By substituting these derivatives with respect to for those

with respect to u in (4) and performing easy reductions, we

find

i'-+(l)T
r' - rr" + 2r" err ^^ (dry

which is the required expression for the radius of curvature.
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EXAMPLES AND EXERCISES.

1. The Parabola, To find the radius of curvature of a

curve at any point, we have to form the value of p from the

equation of the curve. The equation of the parabola is

whence we find

dx y ^

(ly _ _f
dx' ~ y''

Then, by substituting in the expression for p, we find

^_{y' + f?

the negative sign being omitted, because we have no occasion

to apply any sign to p.

At the vertex ?/ = 0, whence

Hence, at the vertex, the radius of curvature is equal to

the semi-parameter, and the centre of curvature is therefore

twice as far from the vertex as the focus is.

2. Show that the radius of curvature at any point {x, y) of

an ellipse is

^
~

a'V

and show that at the extremities of the axes it is a third pro-

portional to the semi-axes.

3. Show that the algebraic expression for p is the same in

the case of the hyperbola as in that of the ellipse.

4. What must be the eccentricity of an ellipse that the cen-

tre of curvature for a point at one end of the minor axis may

lie on the other end of that axis? Ans. e = 4/^,
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5. Show that in the case supposed in the last problem the

radius of curvature at an end of the major axis will be one

fourth that axis.

6, The Cycloid. By differentiating the equations (1), § 80,

of the cycloid, we find

dx

du

d^x __ dy
' du

d^y

-r=— =z a — a cos u = y:
du ^

1-, = -7^ = asm u;
du du

, » = a cos 21,

du

(3)

Then, by substituting in (4) and rec^ucing, we find, for the

radius of curvature,

p — 2^a Vl — cos 21 = 4rt sin ^u

.

We see that at the cusp, 0, of the cycloid, where u = 0,

the radius of curvature also becomes zero.

7. The Archimedean Spiral. Show from (5) that the ra-

dius of curvature of this spiral (r = a^) is

8. The Logarithnic Spiral, The equation of the loga-

rithmic spiral being
19

r = ae ,

show that the radius of curvature is

p = rVr+f.

Hence show that the line drawn from the centre of curva-

ture of any point P of the spiral to the pole is perpendicular

to the radius vector of the point P.

9. Show that the radius of curvature of the lemniscate in

terms of polar co-ordinates is

_ ^ _ ^'
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no, Evolutes and Involutes, For every point of a curve

there is a centre of curvature, found by the preceding for-

mulae. The locus of all such

centres is called the evolute

of the curve.

To find the evolute of a

curve, let {x^y^ be the co-ordi-

nates of any point P of the

curve ; PC, the radius of cur-

vature for this point; and a,

the angle which the tangent

at P makes with the axis of X,

Then, for the co-ordinates of

(7, we have

FiQ. 43.

p em a\

y = y^ + P^OB a.

Substituting for p its value (§ 106), and for sin a and cos a
their values from the equation

_dy,
dx/

tan a

we find

1 +
X:=i X,

y~y,-\-

^1
dx^

dx^

dx,

(1)

If in the second members of these equations we substitute

the values of the derivatives obtained from the equation of

the curve, we shall have two equations between the four vari-

ables X, y, x^ and y^. By eliminating x^ and y from these

equations and that of the given curve, we shall have a single

equation between x and y, which will be that of the evolute.
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111. Cane of an Auxiliary Variable, If the equation of

the curve is expressed by an auxiliary variable, we have to make

in (1) the same substitution of the values of —, ^-, etc.,

as in § 108. Thus we find, instead of (1),

du ' du'^

X,—

y = y^ +^

dy^ \du J ' \dic J

du d'^y^ dx^ d'x^ dy^
'

du^ du du^ du

IdjcX Idyy
dx, \du I

'^ \du I

(2)

du d^y^ dx^ d'x^ dy

^

'

du'' du du^ du

which are the equations of the evolute in the same form.

EXAMPLES OF EVOLUTES. r
113. Tlie Evolute of the Parabola. If we substitute in

(1) for the derivatives of y^ with respect to x^ the values

already found for the parabola, these equations (1) become

if p^

We now have to eliminate y^ from these two equations, x^

having already been eliminated by the equation of the curve.

They give

?//' = ip{^ - p); y/ = -pY
Equating the cube of the first equation to the square of the

second, we find, for the equation of the evolute of the parabola,

_ 8 (X - pY
^ ~27 p '



192 TH^ DIFFmmTIAL CALCULUS.

113. Evolute of the Ellipse. From the equation of the

ellipse, we find

dy^ _ Z>X. ^/ ^
dx^ ~ d'y/ dx/

~~
«V/*

By substituting in (1) and reducing, we find

Remarking that the equation of the ellipse gives
„47,2 -.4-, 2 -,SZa^2
a — a y^ = a o x ,

and putting e'^ = a'^ — Vy

the preceding equation becomes

c^x'
X = {a)

In the same way we get

In this case the easiest way to effect the elimination of x^

and y^ is to obtain the values of these quantities from (a)

and (^), and then substitute them in the equation of the

ellipse. From (a) and {b)y we find

which values are to be

substituted in the equa-
Jr

tion ^-i*r-^>.,^^^

-J.

( ¥-^^
y V

"^^B F )

We thus find, for the \ N /
'

/
equation of the evolute of \. \ / J
the ellipse. ^\^\/^^..^

Fia.

f

D
44.

form of the curve. The following properties should be de-

duced by the student.
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(a) The evolute lies wholly within the ellipse, or cuts it (as

in the figure), according as e' < ^ or c* > i.

{b) The ratio CD : AB (which lines we may call axes of

the evolute) is the inverse of the ratio of the corresponding

axes of the ellipse.

114. Evolute of the Cycloid. Here we have to apply the

formula) (2) for the case of a separate independent variable.

Substituting in (2) the values of the derivatives already given

for the cycloid, we shall find

d^y dx

dic"^ du
— a'^{l — cos ii)'y

d^x dy

du* du

X z=z x^ -\- 2a sin u = a(u -{- sin u);

y = y^ — 2a{l — cos ti) = — a{l — cos 2^).

These last two equations are those of the evolute.

Let us investigate its form. For ^^ = we have x =
and y = 0, whence the

origin is a point of the

curve.

For u = 7t we have

X = uTt;

y = - 2flj;

giving a point C, below

the middle of the base of

the cycloid, at the dis-

tance 2a. Let us take this point as a new origin, and call

the co-ordinates referred to it a;' and y\ We then have

x' = X — art = a{0 — tt + sin d)\

y' = y + 2a = a(l + cos /9).

If we now put

V V

\/ V^X

V
Fig. 45.

e'^e-n,

these equations become
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x' = a{0' - sin 6');

/ :=: ^(1 _ COS 6>');

which are the equations of another cycloid, equal to the

original one, and similarly situated. The cycloid therefore
j

posesses the remarkable property of being identical in form

with its own evolute.

115. Fundame7ital Pi'operties of the Evolute, ^ -

Theorem I. The involute of a c%irve is the envelope of its
\

normals, \

As we move along a curve, the normal will be a straight

line moving according to a certain law depending upon the

form of the curve. This line will, in general, have an en-

velope, which envelope will be, by definition, the locus of the

point of intersection of consecutive normals. But this point

has been shown to be the centre of curvature, whose locus is,

by definition, the evolute.

Hence follows the theorem.

Corollary. Ilie nor-

mals to a curve are tan-

gents to its evolute. For

this has been shown to be

true of a moving line and

its envelope.

Theorem II. If the os-

culating circle move around

the curve, the motion of its

centre is along the line join-

ing that centre to the point

of contact.

This theorem will be

made evident by a study

of the figure. If the line

PgG, be one of the nor-

mals from the point of contact P^ to the centre, then, since

Fio. 46.
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ills normal is tangent to the locus of the centre, it will be tlie

_ ine along which the centre is moving at the instant.

TuEOREM III. The arc of the evolute contained between

any (too points is equal to the difference of the radii of the

oscillating circles whose centres are at these points.

For, if we suppose the points C„ C^, etc., to approach in-

finitesimally near each other, then, since the infinitesimal

arcs C^C^, ^a^3> ^tc, are coincident with those successive

radii of the osculating circle which are normal to the curve,

these radii are continually diminished by these same infini-

tesimal amounts.

The analytic proof of Theorems II. and III. is as follows:

Let the equation of the osculating circle be

{X - ay + (y - by = p\

where a and b are the co-ordinates of the centre of curvature,

and therefore of a point of the evolute.

The complete differential of this equation gives

{x — a) {dx ~ da) + (/y
— b) {dy — db) = pdp. (a)

If, in this equation, we suppose x and y to be the co-ordi-

nates of the 2ioint of contact of the circle with the curve, then

dx and dy will have the same value at this point whether we

conceive them to belong to the circle, supposed for the mo-

ment to be fixed, or to the curve. But in the fixed circle we

have
{x - a)dx + (?/ - b)dy = 0. (h)

Subtracting this equation from {a) and dividing by p, we find

da + db = — dp, (c)

P ' p
"^

' ^

which is a relation between the differential of the co-ordi-

nates of the centre and the differential of the radius. Now,

if we put ft for the angle which the normal radius makes

with the axis of X, we have

X — a ^ y —W . a / 7\= cos p; = sm p, (d
)
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But this same normal radius is a tangent to the evolute.

If we call a the arc of the evolute, we find by a simple con-'

struction da = cos ftda] db = sin /3da,

Multiplying these equations by cos /3 and sin-;^ respectively,

and adding, we find

do- =z cos ftda + sin /3db,

Comparing (c) and (d), we find

do- = — dp,

or d{(7 -}- p) = 0,

Now, a quantity whose differential is zero is a constant.

Hence we always have

cr -\- p =z constant,

or o" = constant — p.

If we represent by <j^ and cr^ the arcs from any arbitrary

point of the involute to the two chosen points, and by p^ and

p^ the values of p for these points, we have

(T^ = const. — p/y

c7, = const, — p^.

••• ^. - ^1 = Pi - P.>

or the intercepted arc equal to the difference of the radii, as

was to be proved.

It must be remarked, however, that whenever we pass a

cusp on the evolute, we must regard the arc as negative on

one side and positive on the other. In the case of the ellipse,

for example, those radii will be equal which terminate at

equal distances on the two sides of any cusp, sls A, B, C or

D, and the intercepted arc must then be taken as zero.

116. Involutes, The involute of a curve C is that

CLtye which has G as its evolute.

The fundamental property of the involute is this: The

involute may be formed from the evolute by rolling a tangent
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ine upon the latter. A point F on the rolling tangent will

then describe the involute.

This will be seen by reference to Fig. 46. The rolling line,

ling tangent to the evolute, coincides with the radius P, C\y

,nd as it rolls along the evolute into successive positions,

C,, P^C^, etc., the motion of the point F is continually

lormal to its direction.

It will also be seen that the radius of curvature of the in-

olute at each point is equal to the distance FC from F to

;he point of contact with the evolute.

The conception may be made clearer by conceiving the

rolling line to be represented by a string which is wrapped

around the evolute. The involute is then formed by the mo-

tion of a point on the string.

The general method of determining the involutes of given

curves involves the integral calculus.

f/h<^'
^ .

\-€ toU" .V
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PART II.

THE INTEGRAL CALCULUS.

CHAPTER I.

THE ELEMENTARY FORMS OF INTEGRATION.

117. Definition of Integration. Whenever we have given

\ function of a variable x^ say

u = F(x),

^e may, by differentiation, obtain another function of x,

^ = ^ (^)'

rhich we call the derived fn7iction.

In the integral calculus we consider the reverse process.

Ve have given a derived function

F'{x),

nd the problem is: What function or functions, tolieji differ-

ntiatedy will have F\x) as their derivative?

Every such function is called an integral of F'{x).

The process of finding the integral is called integration.

The operation of integration is indicated by the sign / ,

ailed ^^ integral of,'^ written before the product of the given

unction by the differential of the variable. Thus the ex-

ression

fF\x)dx

leans: that function whose differential with respect to x is

^'{x)dx.
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Calling u the required function, then if we have

we must also have

As examples:

Because d{x'') — 2xdxy

we have / 2xdx = x^.

Because d{ax^ -^ hx -\- c) = {2ax + ^)dxy

we have / {2ax ~\- h)dx = ax' -\- hx + c.

And, in general, if, by differentiation, we have

dF{x) = F'(x)dx,

we shall have I F'{x)dx — F{x).

118. ArMtrary Constant of Integration. The foliowin]

principle is a fundamental one of the integral calculus:

If F{x) is the integral of any derived function of the va

riaUe x, then ^ery function of the form

Fix) + A,

h heing any quantity whatever independent of x, will also h

an integral.

This follows immediately from the fact that h will dia

appear in differentiation, so that the two functions

F{x) and F{x) + h

have the same derivative (cf. §24).

The same principle may be seen from another point o

view : Since the problem of differentiation is to find a func

tion which, being differentiated, will give a certain result

and since any quantity independent of the variable whicl

may be added to the original function will have disappeare(

by differentiation, it follows that we must, to have the moa

i
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general expression for the integral, add this possible but un-

known quantity to the integral.

The quantity thus added is called an arbitrary constant.

But it must be well understood that the word constant merely

means independent of the variable with reference to which

e integration is performed.

It follows from all this that the integral can never be com-

pletely found from the differential equation alone, but that

Bome other datum is needed to determine the arbitrary con-

stant and thus to complete the solution.

Such a datum is the value of the integral for some one

value of the variable. Let F{x) + h be the integral, and let

it be given that

when X = a, then the integral = K.

We must have, by this datum,

F{a) + h = Ky

which gives h = K — F{a),

and thus determines h.

Remark. Any symbol may be taken to represent the ar-

bitrary constant. The letters c and h are those most gener-

ally used. We may affix to it either the porftive or the nega-

tive sign, and may represent it by any function of arbitrary

but constant quantities which we find it convenient to intro-

duce. It is often advantageous to write it as a quantity of the

same kind as the variable which is integrated.

119, Integration of Entire Functions.

Theorem I. The integral of any power of a variable is

the power higher by unityy divided by the increased exponent.

In symbolic language, we have

x^'dx = —-— -f ?i

71+1
X n + 1

For, by differentiating the expression ——:: -f h, we have
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Theorem II. Aiiy constant factor of the given differen-

tial may be written before the sign of integration.

In symbolic language,

faF'{x)dx = ajF\x)dx.

This is the converse of the Theorem of § 23. By that

theorem we have

d(aF(x)) = adF(x)y

from which the above converse theorem at once follows.

In the special case « — — 1 we have

J- F\x)dx = J*F'{x)d{- x)=^'- jF\x)dx.

Hence the corollary: If the integral is preceded by the nega-

tive sign toe may place that sign before either the derived

function or the differential.

Theorem III. If the derivedfunction is a sum of several

terms, the integral is the sum of the separate integrals of the

terms.

In symbolic language,

f{X+ Y+ Z-\- . . ,)dx =fxdx+fYdx+fzdx+ . .

This, again, is the converse of Theorem II of § 22.

The foregoing theorems will enable us to find the integral

of any entire function of a variable. To take the function in

its most general form, let it be required to find the integral

u— j (ax"^ + bx"" -\- cx^ -\- . . .)dx.

By Theorem III.,

u^= I ax'^dx+ / bx'^dx + / cx^dx + « o • •
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8y Theorem II.,

/ ax'^dx = a I x'^dx;

etc. etc.

;

ad by Theorem I.,

x'^dx^ r-^ + h,;

etc. etc.

By successive substitution we then have

m -{-1 n -\-l p -\-l

sphere h^, h^, h^, etc., are the arbitrary constants added to the

separate integrals.

Since the sum of the products of any number of constants

ly constant factors is itself a constant, we may represent the

Bum ah^ -f hh^ -f ^^-^s
by the single symbol li. Thus we have

fiax"^ + hx"" + ca;P + . . .)dx

___ ax^^_ hx""-^^ cx^+^ ,

~" nTfi + ^Tfl "^ ^Tfl + • • •+ '^^
•

EXERCISES.

Form the integrals of the following expressions, multiplied

by dx:

I. x\ 2. x\ 3. x-\ 4- a;-».

5. ax*. 6. hx\ 7. ax-\ 8. ^o;-'.

9. aa; + ^• 10. ax^ — c. II. ax^ + ^^' 12. rta:' — cx^

13. a:*. 14. a:i. 15. x-K 16. ax-h

17. ax^—bx-K 18.
x^

19.
a h

x' x''
20. »+i.

r 130. The Logarithmic Function. An exceptional case

of Theorem I. occurs when n ^= — 1^ because then n -\-l

= 0, and the function becomes infinite in form. But since

6?- log X = — = x~^dx.
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it follows that we have for this special case

/ x~^dx = / — = log x-\-h. {a)

Let c be the number of which h is the logarithm. We then

have

log X -^h — log X -\- log c = log cx^

We may equally suppose

h= — log c = log -•

X
Then log ic + ^ = log -.

c

Hence we may write either

rdx ,

J-=\ogcx,

/dx , X— =log~;
X ^ c ^

c being an arbitrary constant.

We thus have the principle: The arbitrary constant added

to a logarithm may be introduced by multiplying or dividing

by an arbitrary constant the number whose logarithm is ex-

pressed.

13 !• We may derive the integral (a) directly from Theo-

rem I., thus: In the general form

x-dx = ^-— + h
71 + 1

let us determine the constant h by the condition that the in-

tegral shall vanish when x has some determinate value a.

This gives

+ A = 0; .-. h= -

(^)

n+1 '
-, . .

'^ ^^y
Thus the integral will become

/ x'^dx = ,

«/ 71 -{-1
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in which a takes the place of the arbitrary constant. This

expression becomes indeterminate for n = — 1, But in this

[Case its limit is found by § 71, Ex. 5, to bo log x — log «.

Thus we have

/x'^dx = log X — log a = log —

,

as before, log a being now the arbitrary constant.

133. Exponential Functions, Since we have

d{a^) = log a . a^dxy

it follows that we have

/ log a . a'^dx = a* + h,

or, applying Th. II., § 119, to the first member and then di-

viding by log a,

a'^ + h/a'^dx =
log a'

which we may write in the form

/ log rt '

because = is itself a constant which we may represent by h.

133. The Elementary Forms of Integration. There is

no general method for finding the integral of a given differen-

tial. What we have to do, when possible, is to reduce the

differential to some form in wliich we can recognize it as the

differential of a known function. For this purpose the fol-

lowing elementary forms, derived by differentiation, should

be well memorized by the student. We first write the prin-

cipal known differentials, and to the left give the integral,

found by reversing the process. For perspicuity we repeat

the forms already found, and we omit the constants of in-

tegration.
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y
d'logy

d'sin y == cos ydy,

d'cos y = — sin ydy,

d'tsm. y — sec'' ydy,

^ sm y

tan y .,

rt'sec y = -d?/y^ cos y
*^

^Z'sin^""^^ y = dy

Vl-./
dy

VI-
f'

d'tan^"^^ y

d'ci^

.
• d'sm]i^~^hj

dy

: a^ log ady,

dy

Jynay =£11, (1)+

/f ='o,>. m
. / cos ydy = sin ?/. (3)

. / sin ydy = — cos y, (4)

. / —~ =-- tan ?/. (5)
t/ cos y

./ \ /

.fJl- =-coty.(6)
t/ sm y

J \ /

/tan Vf7y-—^ = sec ^. (7)
cos y

J \ /

./-^^=sin<-»y.(8)
"^^ VI—

y

•/iTT/-'
=tan<-V.(10)

.Jaydy =
log a

(11)

Vf+:

•.• d-cos h'-%= —---—
V;?/"- 1

'.•d'ta.nh'^'^^y-

Vf-1
_ dy

: COS h<-"y = log (y + Vf- 1). (13)

y'

-'J^y^ =tanh->, = |logi±1 + y
(14)
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>^ CHAPTER II.

INTEGRALS IMMEDIATELY REDUCIBLE TO THE
ELEMENTARY FORMS.

124. Integrals ReduciUe to the Form I ifdy. The fol-

lowing are examples of how, by suitable transformations, we

may reduce integrals to the form (1). Let it be required to find

I
{a-[- xYdx.

We might develop {n -\- xY by the binomial thorem, and

then integrate each term separately by applying Theorem III.,

§ 119. But the following is a simpler way. Since we have

dx = d{a + x)y we may write the integral thus:

Ha + xYd{a + x).

It is now in the form (1), y being replaced hy a -{- x.

Hence

/(« + :r)».Zx=.(^i±^--+A. (1)

In the same way,

f{a - xYdx = - f{a - xYd{a - x) = h - ^^
~f^ —̂'

To take another step, let us have to find

Ha + hxydx.

We have

dx = jd{hx) = jd{a -\- bx).

Hence, by applying Th. 11.

,

f{a+bxrdx=lf{a+hxrd{a+bx)= i^+Mlll + k, (2)
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We might also introduce a new symbol, y = a '\- hx, and

then we should have to integrate y'^dy with the result in § 123.

Substituting for y its value in terms of Xy we should then have

the result (2).*

These transformations apply equally whether n, a and h

are entire or fractional, positive or negative.

EXERCISES.

Find: i. i (a -{- xydx, 2. f d{a — xydx,

3. I {(I — 2xydx, 4. / (a + x)'^^dx, 5. / (« — x)~^dx,

I {a-\-mx)~^dx, 1- I {ci — mxydx. 8. / {a — mx)^^dx.

r dx r dx r dx

J {a + xY ^""'J {a - xy ''V {a - ^.xf

(a-\- xydx, 13. / («^ + nxydx. 14. I {a -\- x^yxdx,

Ai + 1-'

+

-xh' ^^•/(^^«•

J [-(jr^xy + {a - xy + (^^^j ^'''

J \{a — mxy (a — mxy {a ~ mxy)

I {a-{-lx-\- cx''){h + %cx)dx,

J(a -\'lxAr cxY{b + 2cx)dx.

r {h-\- 2cx)dx

J (a + Z>a; + cx'Y

* The question whether to introduce a new symbol for a function

whose differential is to be used must be decided by the student in each

case. He is advised, as a rule, to first use the function, because he then

gets a clearer view of the nature of the transformation. He can then

replace the function by a new symbol whenever the labor of repeatedly

writing the function will thereby be saved.

6

9

12

15

17

18

19

20,
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135. A2)plication to the Case of a Falling Body, We
have shown (§33) that if, at a time t, a body is at a distance

z from a point, the velocity of motion of the body is equal to

dz
the derivative —-, Now, when a body falls from a height

at

under the influence of a uniform force g of gravity, unmodi-

fied by any resistance, the law in question asserts that equal

velocities are added in equal times. That is, if z be the

height of the body above the surface of the earth, and if we

count the time t from the moment at which the body began

to fall, the law asserts that

dz . , .

the negative sign indicating that the force g acts so as to

diminish the height z.

By integrating this expression, we have

z=h- igt\ {h )

Here the constant Ji represents the height z of the body at

the moment when ^ = 0, or when the body began to fall.

From the definition of h and z, it follows that h — z is the

distance through which the body has fallen. The equation

(b) gives

h-z = igt\ (c)

Hence: The distance through which the body has fallen is

proportional to the square of the time.

At the end of the time t the velocity of the body, meas-

ured downwards, is, by (a), equal to gt. If at this moment

the velocity became constant, the body would, in another

equal interval t, move through the space gt X t = gt^.

Hence, by comparing with (c) we reach by another method a

result of §33, namely:

In any period of time a body falls from a state of rest^

through half the distance through lohich it would move in the

same period with its acquired velocity at the end of the period.
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136. Reduction to the Logarithmic Form. Let us have

to find

/mdx
ax -\- 1)

u

Since dx = —d{ax) = —d{ax + ^),

we may write this expression in the form

/m d{ax + h)

a ax -\-b
^

and the integral becomes

m pdiax -\-l) m , ax-^-h
%c— - -^ ~7-^ = - log -',

aJax-\-b a° c

c being an arbitrary constant.

EXERCISES.

Integrate the following expressions multiplied by dx:

I. X -\
. 2. —

.

X X

1 1__
"^^ x + r ^* 2x - r

7. h^* 8"

y^a:
* 2aa; + b'

X* -{- kx a-\-b

3.

6.
m

ex — Z>'

9-
a'

2bx + a''

2.
m ~ 71

mx — 71^ 4 + ^
'

' ax -[- b'

\ T^, ^ p xdx p xdx

Note that a; t?a; = id{x'') = id{l + x').

/xdx ^ /* X* dx pDs^s; x dx

dx
Note that log a; -— = log xd . log x.

\og{l-\-y) p xdx n xdx
i8. / ^ ,

-dy. 19. / -—=:. 20. / -

+ a;' */ (1 - a;')'
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127. Trigonometric Forms. The following are examples

of the reduction of certain trigonometric forms:

/cos mz dx = — I cos mx dhnx) = — sin 7nx + h.mj ^ ^ m

/sin 7nx dx = — I sin 7nx d(vix) = h cos mx.mJ ^ ' 7)1

I
cos (a + mx)dx = — / cos {a + 7nx)d{a + 'tnx)

__ sin (a + mx)

m
mixdx rd'co^x

+ h.

tan xdx = / = — /
t/ cos a; ^ cos a;

= h — log cos a; = log c sec x,

i

where 7^ = log c.

In the same way,

/ cot xdx = log c sin a;.

/Jrc /> 1 Ja: /^fZ'tan a; ,

-; = / 7 r = / -T = log c tan a:.

sm x cos a; t/ tan x cos a; j tan x

/dx 1 r dx 1x1= o / -•—i

r- = log c tan -a;.
sm a: 2 1/ sm ix cos -Ja; ° 2

/dx __ n dx __

,

fn x\

cos x'~ J sin (|;r — a;)
""" ^ \4 2/

EXERCISES.
Integrate

:

I. (1 + cos y)dy. 2. {1 — e sin u)dn.

3. cos 2y f?y. Atis. i I cos 2yd{2i/) = ^ sin 2y.

4. sin 2y dy. 5. cos 7iy dy.

6. sin y cos y dy. Atis. J / sin 2yd(2y) = -- i cos 2//.

7. tan 2a: c?a:. 8. cot 2a; dx.

9. 2 cos* X dx.

A71S, / (1 + cos 2a;)^/a; = a; -f- ^ + i sin 2a:.
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lo. 2 sin' xdx, 1 1. tan 2y dy,

cos y dy ^ , A/(l + sin i/) , /-,
,

• x

1 + sm t/ «/ 1 + sm 1/
to V

«
^^z

sin V dy sin v ^V
1-2. —, 14. —,

1 + COS y 1 — cos y
cos y dy ^ sin %y dy

15. :^ -V-^. 16. ^—^-.

1 — sm y cos «/

cos' .-r — sin' X ^ ^ sin 2a; ,

17. ;—

^

ax. 18. — r-^— dx,
sm 2a; cos x — sm a;

^o; dx dx
iQ. . 20.

cos ma; sm wo; sm 7nx cos wo;

22. sin {mx + a) Jo;. 23. cos {a — 7ix)dx.

24. tan nx dx, 25. tan (2a; — a)dx.

dx dx ^ dx
26. -.—

^
r. 27. jj r-. 28.

sin {a — x)' ' cos (b -— nx)' * sin {a — ^ix)'

cos w^6?v sin 7^v<^V sec' xdx
29. ; r^-^^. 30. -•?-^Z_. 3 J, ^ ^

a-j- sm 7^2/ « — cos 7iy a — m tan a;

138, hitegration of -5-——^ «^c? •

a' + a;' «' — a;'

We see at once that the first differential may be reduced to

that of an inverse tangent ; thus,

dx 1 dx . "©
ic' + a' ^' ^ I T

^^£'11'

Hence

"We find in the same way

J a -\- X ^^11 ^ ^
9 '

-*-

(1)

/'_,^ = ltanh<->^ + A = llogcl±^, (2)
,/ a' — a;' a a 2a ^^ (? — a;

^

6' being an arbitrary constant factor.
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139. Integrals of the form I —--—5.

fj (I -y~ Ox ~\~ 6»C

The reduction of integrals of this form depends upon the

character of the roots of the quadratic equation

ex" -\'hz-\-a = 0. (1)

I. If these roots are imaginary, the integral is the inverse

of a trigonometric tangent.

II. If the roots are real and unequal, tlie integral is the

inverse of an hyperbolic tangent.

III. If the roots are real and equal, that is, if the above ex- -^*

pression is a perfect square, the integral is an algebraic frac-

tion.

Dividing the denominator of the fraction by tlie coefficient

of x", the given integral may be written

dx

cj ,̂ . bx a
^ H h -

c c

(«)

Writing 2;j for - and q for -, the expression to be inte-

grated may be reduced to one of the forms of § 128, thus:

dx __ dx __ d(x -f- p)
(^0

X' + 2px + q {x + j^)' + q-p' {^+py + q -y
The three cases now depend on the sign oi q — p"",

I. If q — jy' is positive, the roots of (1) are imaginary and

the form is the first of the last article with x-\- p m the place

of X, and q — p"^ in the place of a\ Hence we have

dx __ /» d{x -\- p)
X- + 2px +^ "" J i\-2px + q J {x + pY + q-p'

= —=L= tan <-
^> -^-P- + h. (1)

Vq - p' ^^q-p

Comparing this result with (a), we see that this integral

may be reduced to its primitive form by changing p into
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— — and q into — . Substituting and reducing, we have
A/ C C

dx 1 p dx/dx —^r
a -\- bx -\- cz"^

~ cj
2 .

^
I
^

^ tan<->-J?=±i-- + /.. (2)

II, If q — p^ is negative, that is, if 4ac — Z>' is negative in

(2), the expression (2) will contain two imaginary quantities.

But these two quantities cancel each other, so that the ex-

pression is always real. When q — p^ is negative, we write

{b) in the form

_ d{x+p)

The integral is now in the form (2) of § 128, and we have

dx _ p d{x -\- p)/dx _ p
x"" + 2px + q~ J fx" +2px -\-

q

J f — q — (x-^- pY
= A -A tanh<-i> ^J^P

^V^ — q Vp'^ — q

= J, _—±= log/7^ + ^+P
^ (3)

^ Vp"" — q yp^— Q—{^-\-p)

Making the same substitutions in these equations that we

made in Case I., we find

——T

—

\ a
= A ; tanh^-^> ——

a + l)x + ex"" |/^' _ 4,ac Vb'' - Aac

1 , Vb'-4:nc + 2cx + b ,,^— h ; r:^ lOg C— -^-(4)
Vb'-4.ac Vb'-4:ac-{2cx+b)

III. If p' — q = 0, the expression to be integrated becomes

dx
We have already integrated this form and found

i^+py

{^+P? ~ " ~ x+p
/dx ^ 1
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EXERCISES.

Integrate the following expressions:

dx clx dz
z' -2x- r ^' (a;-a)(a;~70' ^' a + 2bx - x''

dx dx dx

/
"*'

z' + ix + 2' ^' x{x - a)' '(jr^x){x~^y

130. Inverse Sines and Cosines as Integrals. From what

las already been shown (§ 123, (8) and (9)), it will be seen that

^e have the two following integral forms:

f - -j^^ = cos <-»:. + h' = u'; {b)

rhere we have added h and h' as arbitrary constants of in-

egration.

Comparing the first members of these equations, we see

hat each is the negative of the other. The question may

herefore be asked why we should not write the second

iquation in the form

u' = - f—^= = h"- sin<-^>a:, (c)

B well as in the form {h). The answer is that no error

ould arise in doing so, because the forms (b) and {c) are

quivalent. From {h) we derive

X = cos {u' — A') = cos (^' — w'); (d)

nd from (c),

X = sin (A" — u'), (e)

Now, we always have sin (a + 90°) = cos a. Hence (d)

nd (e) become identical by putting

A" = /^' + 90°,

hich we may always do, because the value of A" is quite

rbitrary.



218 THE INTEGRAL CALCULUS,

131. The preceding reasoning illustrates the fact that

integrals expressed by circular functions may be expressed

either in the direct or inverse form. That is, if the relation

between the differentials of u and x is expressed in the form

^ dx
du = —

Vl - x''

we may express the relation between u and x themselves

either in the form

u = sin ^~ ^^ a; + ^*

or in the form x = sin {21 — h).

So, also, in the form (1) of § 128 we may express the rela-

tion between x and u either as it is there written or in the

reverse form,

x:=^ a tan a{u — li),

dx
132, Integration of

-

Va" ^ x"

We have

/>A dx rh a , X . , ...

/ \/-. i
= J -7~^ = sm< ''- + h. (1)

«/ Va — x^ ^ ./ x' ^

a

In the same way

— dx
f-

^^
z=o,os(-^)--f ^. or 7^-sin^-^>-. (2)

Va' - X

We also have

d'-
dx

= log-(.T+4/^^+^).(3):
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d'-
dx

= log^(a; + Va;'_a'). (4)

EXERCISES.

Integrate the differentials:

dx dv
I.

,
2. ^—

Vc - x'

71dy

mdz
5.

-=z. 6.

dx
7. — —

. o,

i^4c' + a;'

dll __

^x

13.
^

14.

^^ __ — cos xdx
15. If rm —

^ r=^, then sin re == r? cos (?^ + ^)»

10.

Sfia

dx

Vif -{X-
dz

ay

Via' - m\'

vidx

V^+ ni'x'

dx

V^+ wi'(a;

dx

-ay

V{^- ay - 4c'

tix" -'dx

Va' sin z

e'dx dx
16. —— 17.

Vl -e^ ^Vl- (log a:)'

— sin a*r/:r cos xdx
lo. -T --—

. 10. —z :—;—

.

a -\- cos X a -\- sin' x

(x — a)dx (x 4- a)dx
20.

^
21.

,

^
:r:^=:.

Vl- (x-ay Vl + (x+ aY
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133. Integration of —— - . Every differential of
Va-\-l)x ± cx^

this form can be reduced to one of the three forms of the

preceding article by a process similar to that of § 129. The

mode of reduction will depend upon the sign of the term cx^.

Case I. The term ex" is negative. Putting, as before,

11 __a^

we have
^-2P

Va + hx- ex'' = V7 Vq + 2px-x'= V^ Vp' + q- {x-p)\

Then, comparing with (1) of § 132, we find

dx _ 1 /* d{^ — P)r dx - _1 /*

t/ 4//y _L h<r — r^^ \/~r^Va + ix — ex' Vc^ Vp"" + q — {x — pY
1 . ._n x—p 1 . 2cx — b .^.= —= sm ^

^^ ^ = --=z sm ^ ^^—-==. (1)
V^ Vp' + q Ve Vb' + 4:ac

In order that this expression may be real, p"" -}- q or F -{- 4:ao

must be positive. If this quantity is negative the integral

will be wholly imaginary, but may be reduced to an inverse

hyperbolic sine multiplied by the imaginary unit.

Case II. The term ex'^ is positive. We now have

Va + bx + ex' = Vc V{x + 2^y + ^ - P''/dx _ ^ f* ^K^ + P)

Va + bx+ ex'
~ VeJ V{x+py + q - p'

= —log C{x +p + Vx' + 2px + q)
Vc

= -- log ^,{2cx + b + 26'* VaTbx+~cx').

Because (7 is an arbitrary quantity, the quotient of C by

2c^ is equally an arbitrary quantity, and may be represented

by the single symbol C. Thus we have

/
dx

=. = -,-log C{b+2cx+2 Vc Va+bx+cx').(2)
Va -\-bx-\- ex' c*
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EXERCISES.
Integrate:

V^a' + ^by - f V{a + y) {b - y) A

ydy
^

dy )

VS-4:y' + y' I .VaY -by + h\

cos dcie ^ /"

"

cos Odd--"
. ( 76.

Vl - sin 6^ - sin'' 6 >/l - sin <9 + cos' /9^

sin cos ^tZ^ ^ a sin ^^(9

V4 - cos 26* - cos' 26> Va" '^ b\l - cos 6)'

134. Exponential Forms, Using the form (11) of § 123,

we may reduce and integrate the simplest exponential dif-

ferentials as follows:

a^dx = ± / a^d(mx) =~ ^ h. (1)

ra^+'^dx = fa'+'^dix + b) = ^- + h. (2)

7;iJ "^ ' ^ 7Wl0grt "^ ^/-I 7. >y — ma;

a-^dx = ~ - /a-^^d(- 7nx) = -^-—

.

(4)
7?2t/ ^ ^ m log a "^ ^

EXERCISES.
Integrate:

I. (fdx. 2. Z>''^r/. 3. a^'^dy.

4. (a + Z>)e^Jar. 5. a^-^'dy. 6. a-^'dx.

7. (a* + a-*)t?a;. 8. (a* - rt-*)d7a:. 9. (a + e^)rZa;.

10. («'^--a-*=^)f7a:. II. ^-j^. 12. j-qT^^.

15. (a*^ + a-"»^)'Ja:. 16. Ce^^xdx.

17. Ce^^'^x-dx, 18. A-«(^'-^)a:^a:.
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CHAPTER Mi.

INTEGRATION BY RATIONAL TRANSFORMATIONS;

135. We have now to consider certain forms which cannot

be reduced so simply and directly as those treated in the last

chapter. Before passing to general methods we shall consider

some simple cases.

((I _i_ x\^
I. Integration of ^ :j^dx. Any form of this kind, when

m is entire, may be integrated by developing the numerator

by the binomial theorem. We then have

and each term can be integrated separately. If n < m + 2,

and entire, one of the terms of the integral will contain log x.

x^dx
II. Integration of -.—

[
-. We may reduce this form to

the preceding, by introducing a new variable, z, defined by

the equation
z = a -{- bx.

This gives x = —7— ; dx = -j-.

Substituting these values of x and dx in the expression to

be integrated, it becomes

{z - aYdz

which may be integrated by the method of the last article.

III. Integration of -—j-v— 3
. We reduce the denomi-

a ~j~ ox jt ex
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iiator to the form ± {v'' — q) ± {x -\- pY as in § 129. Then,

putting, for brevity,

z = x+p,

which gives dx = dz,

the integration will have to be performed on an expression of

the form
{z — p)dx _^ zdz pdz

V ± z^ - 1F±1''
"

¥~±~z''

Each of these terms may be integrated by methods already

given (§§ 126, 128).

The process is exactly the same if we have to find

(a -\- hx)dx

J V ± {x-pr

EXERCISES.

Integrate: (i -l]'dx
(x — a) dx \a x

)

I. ^^

T- • 2. .

x^ X

x*dx x^dx

dx {x + a)dx

x^dx

TTZIX'

xdx zdz

\a xl
X

x^dx
8.

9-
a' + {b - xf

'''•

{a + zy + (a - zY
(y — b)di/ {z — c)dz

''•
{y-'^r + (!/+W

'"•
a^-az + z^'

(x - a)dx (y + a)dy
^' x{x^b)' '^-

a^-{y-+br
z'^dz ^ z\lz

(1 + zY (1 - zY
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136. Reduction of Rational Fractions in general, A ra-

tional fraction is a fraction whose numerator and denominator

are entire functions of the variable. The general form is

^0 + Qi^ + Q^^' + . .
. + qnx'' ~ i>

*

If the degree m of the numerator exceeds the degree n of

the denominator, we may divide the numerator by the de-

nominator until we have a remainder of less degree than 7i.

Then, if we put Q for the entire part of the quotient, and R
for the remainder, the fraction will be reduced to

If we have to integrate this expression, then, since Q is an

entire function of x, the differential Qdx can be integrated

by § 119, leaving only the proper fraction y-. Now, such a

fraction always admits of being divided into the sum of a

series of partial fractions with constant numerators, provided

that we can find the roots of the equation D = 0, The theory

of this process belongs to Algebra, but we shall show by ex-

amples how to execute it in the three principal cases which

may arise.

Case I. The roots of the equation D = all real and un-

equal. Let these roots be a, /?,;/... ^. Then, as shown

in Algebra, we shall have

I) = {x- a){x - /3){x -y) . . . (x-O).

We then assume

I)'~'x--a^x-/3^x^r^'"'

A, B, Cy etc., being undetermined coefficients. To deter-

mine them we reduce the fractions in the second member to

the common denominator i), equate the sum of the numera-

tors of the new fractions to R, and then equate the co-

efficients of like powers of x.
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As an example, let us take the fraction

X — X

We readily find, by solving the equation a:' — cc = 0,

X* -x = x{x- l){x + 1).

Assume

^_+3 _A B C
a:' — a:~" x ir — la; + l

__ {A + B+C)x'-\-{B- C)x-A
~~

x^ — X

Equating the coefficients of powers of x, we have

^ + ^ + 6^ = 0;

B- C=l;
^ = -3;

whence B = 2 and C = 1, Hence

x + 3 __ _ 3
,

2 1 .

ic'-ic"" x'^ x-1^ x + V
and then, by § 120,

O X — X Ox ^ X —1 ^ X -\-l

= - 3 log a;+ 2 log (.-r - 1) + log (x + l)+log G

EXERCISES.
Integrate:

(x — l)dx xdx
'•

a;' -a;-
6* ^' ¥'^V

xdx {x + a:')f7a:

^' 1 -a:*'
"^^

(a;-l)(a;+l)(a;-2)(a;4-2)*

(a;* + 2a:^)^a; (a;^ + a:')rZa:

^'
a:' + 2a;''- 8a;* a;(a; - l){x -f- l)(a; - 2)*

a;*6?a; 67a;

^*
a;' - (a -fb)x + ^^//'

^^'
a;" - (re + Z>)a:' + a^a;*
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Case II. Some of the roots equal to each other. Let the

factor X — a appear in D to the nih. power. Then, if we

followed the process of Case I., we should find ourselves with

more equations than unknown quantities, because the n

fractions

would coalesce into one. To avoid this we write the assumed

series of fractions in the form

A B F H

and then we proceed to reduce to a common denominator as

before. The coefficients A, B, etc., are now equal in num-

ber to the terms of the equation Z> = 0, so that we shall have

exactly conditions enough to determine them.

As an example, let it be required to integrate

X — X — X -\- 1

We have x' - x"" - x -\~1 =^ {x - ly {x -^ 1).

We then assume

x'-h A . -^ , C'

{x-iy{:c~\-l)~{x-iy^ x-1 ' x + 1

- (^ + Oy + {A - 2C)x + A-B+C
{x-iy{x + i)

We find, by equating and solving,

A = -2;
B = +2;
0= -1.

Hence

{x - iy{x + 1)" {x-iy~^x-i x + r



IJSTEORAriON BY MATIONAL TUANSFORMATIONS, 227

The required integral is

=^ + 2 log (.T - 1) - log (x + 1) + log C

= ^3^ + log ~^:p^.

EXERCISES.
Integrate:

f/.r dx

x(x-\-iy' x^x- If
x^dx dx

^* {x - \)\x + 2)^• ^*
(a: - afi^x - ^)''

(rt + x)dx (« — rr)^/a;

^'
:r''(a; - af x\x + «p(;^"^-

i( Case III. Imaginary roots. Were the preceding methods

applied without change to the case when the equation D =
has imaginary roots, we should have a result in an imaginary

form, though actually the integral is real. We therefore

modify the process as follows:

It is shown in Algebra that imaginary roots enter an equa-

tion in pairs, so that if x :=^ a -\- fii (where i = V — 1) is a

root, then x = a — /3i will be another root. To these roots

correspond the product

{x - a - /3i)(x - a + /3i) = (x - a)' + /S".

By thus combining the imaginary factors the function I)

will be divided into factors all of which are real, but some

of which, in the case of imaginary roots, will be of the second

degree.

The assumed fraction corresponding to a pair of imaginary

roots we place iu the form

A + Bx
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and then proceed to determine A and B as before by equa-

tions of condition. We then divide the numerator A -\- Bx
into the two parts

A + Ba and B{x — a),

the sum of which is ^ + ^^« Thus we have to integrate

The first term of (a) is, by methods already developed,

A -\- Ba
, , ,.x — a___ tan<-«-^-,

and the second is

iBlog{{x-ay + /3^).

We therefore have, for the complete integral,

r_A±Bx_ __ A + Ba .,.,,x-a

+ iBlog{{x-ay + /3^}+h.

EXERCISES.

rx + 3x\ r dx
I. / —7-!

—

—dx. 2. / —^ -.
^ X — 1 ^ X —1

The real factors of the denominator in Ex. 1 are (aj^ + l){x+ !)(« — 1).

We resolve the given fraction in the form

A+^x
,

C D

and find it equal to -yzh^ + ^a.i + ^ _ i
• Then the integral is found

a;' + l ^ x-{-l^ x-V

a^+ l^aj+ l^aj-l
to be i log {x^+ 1)+ log (aj5 - 1).

The factors of the denominator in Ex. 2 are « — 1 and x'^-\-x-\-\ —
(x+ \f+h

r dx r {x" + i)dx
3- e/ ^' + 1- 4. y ^3 _ 2^ _)_ 4-

Note that a;+ 2 is a factor of the denominator in (4).
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/l37. Integration hy Parts, Let u and i; be any two

functions of x. We have

d(uv) __ dv du

dx ^ dx dx

By transposing and integrating we have

fu'^^dx^uv-fvf^dx + h, (1)

which is a general formula of the widest application, and

should be thoroughly memorized by the student. It shows

us that whenever the differential function to be integrated

can be divided into two factors, one of which [-^-^A can be

integrated by itself, the problem can be reduced to the inte-

gration of some new expression [v—dxY

The formula may be written and memorized in the simpler

form

/ udv = uv — vdu, (2)

it being understood that the expressions dv and du mean dif-

ferentials with respect to the independent variable, whatever

that may be.

It does not follow that tlie new expression will be any easier

to integrate than the original one; and when it is not, the

method of integrating by parts will not lead us to the integral.

The cases in which it is applicable can only be found by trial.

The general rule embodied in the formulae (1) and (2) is

this

:

Express the given differential as the product of one function

into the differential of a second function,

Tlien its integral will be the product of these tivo functions,

minus the iiitegral of the second fimction into the differential

of the first.
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EXAMPLES AND EXERCISES IN INTEGRATION BY PARTS.

1. To integrate x cos xdx.

We have cos xdx = d'sin x.

Therefore in (2) we have

u = x; v = sin x;

and the formula becomes

/ X cos xdx = / xd'sin x = x sin ^ — / sin xdx

= X sin X -\- cos X -j- h,

which is the required expression, as we may readily prove by

differentiation.

Show in the same way that

—

2. / X sin xdx = — x cos x + sin ^ + /^.

3. f
X sec' xdx = X tan x — (what ?).

4. / X sin a; cos a;c?a: = — \x cos 2a: + :|^ sin '^x -{- lu

5. / log xdx = X log ^ — / ^t?-log a; = 2: log a; — .t + ^^•

6. The process in question may be applied any number of

times in succession. For example,

/ x^ cos xdx = I x^d'^m x = x^ sin x ~ 2 I x sin xdx.

Then, by integrating the last term by parts, which we have

already done,

/ x"^ cos xdx = X* sin x -{- 2x cos ic — 2 sin a; + >^^«

7. In the same way,

/ x^ cos xdx = / x^d'sin x = x* sin x— 3 / x^ sin xdx;

I x^ sin xdx = — / a:'^* cos x = — x"* cos x -\-2 / x cos 0:^0;.
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Then, by substitution,

/ X* cos xdx = {x" — Qx) sin x + (3a;' — 6) cos x + h,

8. In general,

/ x^ cos xdx = / 2:"f/'sin x=^ x'^ sin x — n j x"^^^ sin a:fZx;

— / z**"^ sin icc^a: = / a;"~^(Z*cos a:

= a:**~^ cos X — {n — \) x"^^^ cos aJcZo:;

— / a:**"* cos a:c?a; =— a;**~*sin x +(;i — 2) / a:**~^ sin a:Ja;;

/ a;
** ~

' sin a;rfa; = — a;
" ~

^ cos x -\-{n — d) x"^'*" cos a:r7a;.

etc. etc. etc.

Then, by successive substitution, we find, for the required

integral,

|a;"-n(?i-l)a;«-2+?z(?i-l)(?i-2)(?i-3).T"-*- . . .| sin a:

+ {wa:'*~^ — n{n — 1) {n — 2)x''-^ + . . . ( cos .r.

9. In the same way, show that

/ x^ sin xdx =

|-x"+w(?i-l).r»»-2-7?(M-l)(7j-2)(?i-3)a:'*-*+. ..1 cosrr

+ {?ia;"~^ — 7/(/i — 1) (n — 2)a;**~^ +. . . ! sin x,

.T" log xdx =
j^^^J

log a:fl?- {x ~ + *) = ^^-— log a;

1 px""^^ , a;" + ^
, x""^^

/ dx = —- lOP^ X — 7 r-^TT^.
7l-\-lJ X 71 + 1 ° {?l + 1)'

II. Cxe-'^dx-^ r\xd'(e-^')= - ?^% 1 Ce-'^dx.
J J a ^ a aj

Now, we have / e~"^''dx = .

J a

Hence I xc'^dx =? —
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12. To integrate x'^e'^dx when w is a positive integer, we

proceed in the same way, and repeat the process until we re-

duce the exponent of x to unity. Thus,

x^e-'^dx = h - / x'^-h-'^dx.
a aj

Treating this last integral in the same way, and repeating

the process, the integral becomes

^m^-ox ^^m-ig-ox 7n{m — l)x"'-^e- — etc.
a a a'

a

13. From the result of Ex. 5 show that

y(log xydx = x{r -21 + 2) +h,

where we put, for brevity, I = log x.

14. Show that, in general, if we put

u^ =J{\og xy dx,

then Un = xV^ — nu^_i'y

and therefore, by successive substitution,

u^ = x^V - ?^/'»-^ + n{n — l)/"-^ - . . . ± ^!) + A.

15. Deduce (m + 1) CPx'^dx = Pa;*" + ^ - A^ + WP.

16. Show that \lJPdx = Q,

then / Px'^dx = Qx"" — n I Qx'^'-Hx.

Also, if we have

/ Qdx - E; I Rdx = S, etc.,

then

PPx^'dx = Qx"" — nRx^-^ + n{7i — l)^'*-^ - etc.
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CHAPTER IV.

INTEGRATION OF IRRATIONAL ALGEBRAIC
DIFFERENTIALS.

138. When Fractional Powers of the Independent Vari-

able enter mto the Exjjvessmi. In this case we may render

tlie expression rational by reducing the exponents to their

least common denominator, and equating the variable to a new

variable raised to the power represented by this denominator.

Example. If we have to integrate

idXy

then, the L. C. D. of the denominators of the exponents being

6, we substitute for x the new variable z determined by the

equation

X = z%

which gives dx = 6z\lz,

The differential expression now reduces to

z* -\-l

By division this reduces to

/>/« 4.S.1 ^\7i ^zdz
,

6dz
6(2« -z' + z' + z'-z- l)dz + ^-^^ + ^-^y

Integrating and replacing z by its equivalent, x', wc find

/ ^ dx = -x^ — -x^ + -rx^ + -x^ — -a;* — 6x*^ ^ 4 o /«

-f 3 log {x^+ 1) + C tm'-'^ x^ + h.

l+a^r 7" ~5" ^4'^ ^3*^ 2
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If the fractional exponent belongs to a function of x of the

first degree, that is, of the form ax + i, we apply the same

method by substituting the new variable for the proper root

of this function.

Example. To integrate

{a + hxfdx

1 + (« + Ix)'

We put {a + Ix)^ = z; a -\- bx = z^;

, 2zdz
ax = —7—.

The expression to be integrated now becomes

dz \

z'+ir
2z'dz _hfi

hil + z')
~^

b\ z'-\-:

of which the integral is

~{z- tan(-^>;3 + ^) = ?.
j
(« + Z>a:)*-tan<-i>(«+ &a;)*+7i \ ,

Integrate:

EXERCISES.

x^dx x^dx 1 — a;' ,

2. r. 3. r dx.

X

'1 + ^' * 1+a;*' 1 + a;*

{a — x)^dx {a — x)^dx 1 + a-
^^^^^

4- 1 _|_ a^ x' ^*
1 _ (^ _ a:f

• {a - x)^

(x + c)* o (^ — ^Y 7 (^^ — «)*^^
7. -^ —^-dx. 8. ^. {-rdx. 9.

-^^ —-:.

{x + cf (^ -oy 1 + (2:^; - a^

[o. —^—-^ ^-rdz. II. 5^—!

—

^-dx,

i + {z - cy 1 + (^ + ay

V X ^ x' -,

12. —dx, 13. -aa;.

(a; — a)* — {x --<
(x - a)* + {z --«)*

14. z fi

—

^^^'
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lo9. Cases when the Given Differential contains an

Irrational Quantity of the Form

Va -\- bx -{- cx^.

It is a fundamental theorem of the Integral Calculus that

if we put E = any quadratic function of x, then every ex-

pression of the form

F{x, VR)dx,

{F{x, VR) being a rational function of x and \/R), admits of

integration in terms of algebraic, logarithmic, trigonometric

or circular functions. But if R contains terms of the third

or any higher order in x, then the integral can, in general, be

expressed only in terms of certain higher transcendent func-

tions know as elliptic and Abelian functions.

We have three cases of a quadratic function of x.

First Case : c positive. If c is positive, we may render the

expression rational by substituting for x the variable z, de-

termined by the equation

Va + bx + cx^ = Vc(x + z))

. •
. a '\' Ix -\' cx^ = cx^ -f- 2cxz + cz'.

This gives X = ^^£; (a)

, ^ a — hz + cz^

,

,-.

— 2cz ^ '

By substituting the values given by (a), (b) and (6') for the

radical, x, and dx, the expression to be integrated will become

rational.

Second Case : a positive and o negative. If the term in a;*

is negative while a is positive, we put

Va'\- bx — cx^ = Va + xz,

Wq thus derivQ x = —^-— ; (a)
z ~j~ c
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2(Vaz' -Vac- Iz) ^

(z + c)
^

__ Vaz"^ — Vac — Iz ,Va + hx — cx^ = — . (c
z + c

^

The substitution of these expressions will render the equa

tion to be integrated rational.

Third Case : a and c loth negative. If the extreme term

of the trinomial are both negative, we find the roots of th^

quadratic equation

— a -\- hx — cx^ = (),

which roots we call a and ^. We then have

— a -{- Ix — cx"^ =: c{a -— x) {x — /3),

and we introduce the new variable z by the condition

V— a -{-bx — cx^ == Vc{a — x) {x — fi) ~ Vc{x — a)z,

I.' I.
' az' + /3 .

which gives X = ^
'

..-; (a

'^^-
(2' + l)' '

^^

z -\-l

substitutions which will render the equation rational.

{0

140. We have already integrated one expression of th^

dx
form just considered, namely, - without ration

Va -\-bx -{• cx^

alization. There is yet another expression which admits o

being integrated by a very simple transformation, namely,

d0. '^'

r Var^ -\-hr — 1

This is the polar equation of the orbit of a planet arounc

the sun. To integrate it directly, we put
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1 , dx
X = —: dr = -..

r x^

ffe thus reduce the expression to

— dx
/-

Va -\-hx — x*

Proceeding as in §133, Case I., we find the value of the

ntegral to be

dr , ,. 2x — h
, ,, 2 — br= COS^"^^ — = COS^"*^^

r Var' + br - 1 V4:a + b' r Via + b'

Thus, 6-7r = cos(-^> -4^-^
,

r V4:a + b'

re being an arbitrary constant. Hence

2-br
rVia + b^

cos {6 — tt).

Solving with respect to r, we have, for the polar equation

of the required curve,

2^~
b + |/(4a + b') cos {0 - Tt)'

^^^

This can be readily shown to represent an ellipse. The

polar equation of the ellipse is, when the major axis is taken

as the base-line and the focus as the pole,

_ a{l - e') 2
^ ~ 1 + 6 cos 6* "" 2

,
2e

-Pi n + -Pi n cos e
a(\ — e) a{l — e^)

Comparing with (a), we have

2
a{l — e"^) =

J-
= parameter of ellipse =p;

or e = -^-^—j——^ = eccentricity of ellipse.
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Irrational Binomial Forms.

141. General Theory, An irrational binomial differen-

tial is one in the form

{a + Ix'^Yx'^dx, (1)

in which m and n are integers positive or negative, while p is

fractional.

To find how and when such a form may be reduced to a

rational one, let the fraction p^ reduced to its lowest terms, b€

T
— ; and let us put

1

y^{a + hx^)\ (2)

This will give, when raised to the rth power and multi-

plied by x'^dx,

{a + Ix'^Yx'^dx — x'^y^'dz. (3]

We readily find, from (2),

hx"^ = y" ^ a; {a]

dx — -I
—--^;

x'^y^dx = --a;'^~'* + ^y''+*~*J2/;

or, substituting for x its value from (a).

This last differential will be rational if -^- is an in-
n

teger, which will be the case if —^i— is an integer. We shall

call this Case I.

To find another case when the integral may be rationalized,

let us transform the given differential (1) by dividing the bi-

nomial by x"" and multiplying the factor outside of it by 2;"^,

which will leave its value unchanged. It will then be
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{h-\-ax-''Yx'^ + ''^dx, (1')

which is another differential of the same form in which n is

changed into — n and m into 7n + np. Hence, by Case I.,

this form can be made rational whenever — ^ "^
is an

n

integer; that is, when h /^ is such.

We have, therefore, two cases of integrability, namely:

Case I. : when —'^^^— = an inteerer.
n °

Case II. : when —— 1- jt? = an integer.

Remark. It will be seen that all differentials of the form
r

{a + ix^Yx^dx must belong to one of these classes, because

—
-^— IS an integer when m is odd, and—-^ h ^ is sucn

when 771 is even. In this statement we assume r to be odd,

because if it is even the original expression is rational.

143. If, in Case I., the integer is + 1, that is, if m + 1

= n, then the expression can be integrated immediately.

For (4) then becomes

the integral of which, after replacing y by its value in (2), be-

comes

/(. + ..«)^.--^.= (|+i^l;i' + . (5)

Again, if the integer in Case II. is — 1, we have

TTi -{- 1 -{- np =z -^ riy

or m + wjt? = — n — 1.

The expression (1) reduced to the form (!') will then be

{h + ax-''Yx-''~Hx =-(/> + ax-'^Y —d{b + ax-""),
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which is immediately integrable, and gives by simple reduc-

tions

/(«+ *.T--—'^- = ^ - ;^'ii^W (6)

143. Forms of Reduction of Irrational Binomials, Al-

though the integrable forms can be integrated by the substi-

tution (2), it will, in most cases, be more convenient to ap-

ply a system of transformations by which the integrals can be

reduced to one of the forms just considered. The objects of

these transformations are:

I. To replace m by m + ?^ or m — n\

II. To replace ;:> by ;? + 1 or ^ — 1.

144. Firstly, to replace m by m + n. Let us write, for

brevity,

Xe a + Ix"",

which will give dX = Ijnx '^~'^dXy

and the given differential will be

X^x'^dXy

which, again, is equal to

rf>m — n + l ^m — n + l

X^dX=f-r——rd{X^-^'').
bn bn{p+ 1)

Integrating by parts, we have

J ^'^^ '^^ = MP + 1)
~ Mi+T)J ^'''--^-- («)

Since

X^ + ^ = X^{a + W) = aX^ + hX^x^,

the last integral in the above equation is the same as

a rX^x '^-''dx-\-h CX^x'^dx,

of which the second integral is the same as the original one.

Making this substitution in (a), and then solving the equa-
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tion so as to obtain the value of / X^x^^dx, we find

I X^x'^dx = 77 —T - j}
——

-YTx / X^x'^-^dx. {A)

Thus the given integral is made to depend upon another in

which the exponent of x is changed from m to m. — u.

By reversing the equation we make the given integral

depend on one in which the exponent is increased by 7i, To

do this we change 7)i into m -{- 7i all through the equation

(.4), thus getting

/ X'^x'^^'^dx^-. ,
— ^-^-T7

—

\ V , nx / X^x'^dx,

Solving with respect to the last integral, we find

/ X^x'^dx = — —-r ^^-^-7^—T TV-- / X^x'^^^'dx. (B)J a{m + 1) a\in + 1) ^z ^ '

The repeated application of i^A) and (/>) enables us to

make the value of the given integral depend upon other in-

tegrals of the same form, in which

m is replaced by m + n\ m + 2;^; etc.;

or by m — n\ m — 2n; etc.

145. Next, to obtain forms in which /; is increased or

diminished by unity, we express the given differential in the

form
/ />.m + 1 \

XPx'^dx = X^
\m + 1/

Integrating by parts and substituting for dX its value

bnx''-^dx, we have

p X^x '^ + ^

/ X^x^dx = , ,J 7;i + 1

l^m + \lx. (i)

Now, we have

x^(X-a) Xx"^

b ~ b

ax"^

b
'
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and therefore, by multiplying by X^^'^dx,

Substituting this value in (J), and solving as before with

respect to / X^x'^dx, we shall find

Cx^x-^dx =
^''^"^'

, + ^^-T Cx^-^x-^dx, (C)

in which j9 is diminished by unity.

If we write jt? + 1 ioT p in this equation, the last integral

will become the given one. Doing this, and then solving

with respect to the last integral, we find

X^x'^dx = -. —rr + ^^i -,-^ I X^+^x'^dxJD)

By the repeated application of the formula ((7) or (D) we

change

p into j9 — 1, j9 — 2, j9 — 3, etc.,

or 'p into jt? + 1, ^ + 2, ;? + 3, etc. ^

--U
^^•'—

1

ri46^ To see the effect of these transformations, let us /

put, in the criteria of Cases I. and II., § 141:

I. '

—

= t, an mteger.

II. —— hi> = ^'> an integer.

Then when we apply formula i^A) or {E), since we replace

m by 7w — ?i or m + /I, we have, for the new integers:

n

II. —-— \-p = i' If 1.

It is also clear that by ((7) and (p) we change II. by unity.

Thus, every time we apply formulae (^), (^), ((7) or {U)

we change one or both of these integers by unity, so that we

may bring them to the values unity treated in § 142.
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147. Case of Failure in this Reductioji. If, in an integral

of Case II., i' is positive, we cannot change it from zero to — 1

by the formula {A) or ((7), because, when —— \- p =z 0,
ft

we have
m -{- 1 + np = 0,

and the denominators in {A) and {C) then vanish. In this

case we have to apply the substitution of § 141, without try-

ing to reduce the integral farther.

EXAMPLES AND EXERCISES.

1. To integrate

{a' ± x')^dx.

We see that if we diminish the exponent i by unity, we

shall reduce the integral to a known elementary form of § 132.

So we apply {0), putting

m = 0; 71 = 2; p = i; a = a^; Z> = ± 1.

Then (C) becomes

We therefore have, from § 132,

f{a' + x'Ydx =
I I

x{a^ + a;')» + «' log ^{x+{a'+ x')^)
} ;

/"(a* - x')\lx =
^ j

x{a' - a;')* + «' sin*-" ^ + A
}

•

Deduce the following equations:

2. J {c' - x') xdx =7i - i{c' - x').

,.fic'+xr.ax =, +(^)p

r dx ^ j^ __ (
c'^x^)*

^" •' xV + x')* <-"a;
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Here apply formula ((7); in the following {A).

8. Hi - x'fx'dx ^h-{^ + ^^{1 - x'f.

9. To reduce and integrate (1 + x'^)^x^dx.

Here t/i — 3; 71 = 2; i? = i; m + 1 = 4 = 2w<. We can therefore

reduce the form to Case I. hy a transformation of m into m — n, for

which we may use either {a) or {A) of § 144. Using (a), we have

f{l + x'f x^dx = (1+|!)!£' _ |y*(i+ aj^)i xdx.

The last integral can be immediately found, and gives for the required

integral

i(l + «2)V - t\(1 + x')^. {a)

Using (J.), we should find

y(1 + oj^)* x^dx = (1 + ^f
(J'
-

^5), ©

a form to which (a) can be immediately reduced.

The student will remark that the form {a) is reduced to (A) because

in the former the exponent of X is increased by 1, which often makes

the integration inconvenient. But when this increase of p does not in-

terfere with the integration, we may use {a) more easily than (A),

10. To reduce and integrate (1 + x^)^x^dx.

Applying (A), we find

Al + x'f a^dx = ^^ + ^'^^ _ ^y*(i + a.2)i ^^^

A second application repeats the form (b) above, thus giving

11. Reduce and integrate (1 + x'')^x'^dx, where m is any

positive odd integer, and show that



INTEGRATION OF IRRATIONAL FUNCTIONS. 245

/'(I + x')^x'^ dx

=(i+^')'(;
^__ (m-l)a: ^-^ (7?^-l)(m-3)a;^'

,m+2 (m + 2)7?t
"^ (m+2)7w(m-2)

Remark. Where the student is writing a series of transformations he

will find it convenient to put single symbols for the integral expressions

which repeat themselves. Thus:

rx^x'"dx={l); Cx^x'^-''dx^{^)\ etc.

Thus the equations of reduction in the present example may be written

^^)- m + 2 ^TTS^^^'

m m
etc. etc.

12. Deduce the result

-§ I
«(a* + «')* + a' log t7 (a; + l/^M^) [

.



246 THE INTEGRAL CALCULUS.

r
CHAPTER V.

INTEGRATION OF TRANSCENDENT FUNCTIONS.

When the given differential contains trigonometric or other

transcendent functions of the variable more complex than the

simple forms treated in Chapter II., no general method of

reduction can be applied. Each case must therefore be

studied for itself.

148. To find the integrals

/ 6""* cos nxdx and / e"^ sin nxdx. (1)

Since we have

m ^ ' \ml

the integration by parts of these two expressions gives

^mx ^Qg ^xdx = h — / ^"""^ sin nxdx\m mj

/«.^ • 7 ^"*^ sin nx n n ^^ ,^mx
gjjj fixdx = / e^'^ cos nxdx,m mJ

Solving these equations with respect to the two integrals

which they contain, we find

/
-.^ , e"*^(m cos nx -\- n sm nx\
e^"" cos nxdx = —^^

„ .

'

^;m + 71

/^^ . , e"^(m sin nx — n cos nx)
e*^^ sm nxdx =—^^ 5——

r

-:

m" + n^

(2)

which are the required values.

Kemark. These integrals can also be obtained by substi-

tuting for the sine and cosine their expressions in terms of

imaginary exponentials, namely,
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— ^turt 1^ ^ — nxi2 cos iix =: e"^ -{- e

2 sin 7ix = -ie"^ — e"**^),

and then integrating according to the method of § 134. The

student should thus deduce the form (2) as an exercise.

149. Integration of sin*^ x cos** xdx.

This form is readily reducible to that of a binomial, and

that in two ways. Since we have

cos xdx = d'sin x,

cos X = {1 — sin' x)\

we see that the integral may be written in the fonn

/<

/(

(1 — sin' x) 2 sin"* xd'sin x;

or, putting y e sin x,

{l-f)^y-^dy. (3)

By putting z = cos x we should have, in the same way,

-y*(l - z') ^z'^dz, (4)

which is still of the same form, and is always integrable by

the methods already developed in Chapter IV.

If either 7)1 or 7i is a positive odd integer, then by develop-

ing the binomial in (3) or (4) by the binomial theorem we

shall reduce the expression to a series containing only posi-

tive or negative powers of x, which is easily integrable.

We can also, in any case, transform the integral so as to in-

crease or diminish either of the exponents m and ?i by steps

of two units at a time, as follows:

sin"* x CDS'* xdx

= cos"~'a:a
sm m-f 1^

7/i-f 1

Then, integrating by parts, we have
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+ ^\ r Ain^^ + ^-g cos**"^ a;^a;. (5)m -\rlj ^ '

/ sin"" X cos*" xdx

_ cos*"-^ X sin"' + ^2;

Because sin "* + ^ a; = sin"* x{l ~ cos^ rz;), the last term is

equivalent to

— - / sin^ X cos**~^ X / sin"^ x cos** xdx,
m-\-lJ m -\- IJ

The last of these factors is the original integral. Trans-

posing the term containing it, we find

{m + n) / sin"" x cos^ xdx = sin "^ + ^ a; cos '^~^x

-\- {n — 1) I sin*^ X cos''^^xdXy (6)

in which the exponent of cos x is diminished by 2.

We may in a similar way place the given differential in the

form
• «. 1

7C0S** + ^a;— sm'^""^ xd -—
-,n -\-l

and then, proceeding as before, we shall find

(m + ^^) / sin"* X cos** xdx = — sin *" ~ ^ a: cos ** + ^ a;

+ (m — 1) y sin ^-^ X cos" xdx, (7)

thus diminishing the exponent of sin x by 2.

By reversing these two equations we get forms in which

the exponents are increased by 2. Writing n -{- 2 for n in

the first, and m + 2 for m in the second, we find

{n + 1) / sin"* X cos** xdx = — sin *" + ^ cc cos ** + ^ a;

+ {ni + n + 2) / sin"* x 008** + ^ xdx; (8)

(m + 1) / sin"* X cos" xdx = sin "* + ^
:?; cos " "" ^ a;

+ {7n + n + 2) y sin "* + ^ a; cos" xdx, (9)
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150. Special cases of I sin"* x cos" xdx.

If m is zero and u is positive, we derive, from (6),

/* n 7
sin a; cos"-* a;

,
?i — 1 /» „ . ,

/ cos" a;rfa; = \- / cos"-^ xdx\
J n n J

y„ ., ,
sin a; cos"-^ a;

. 7i — 3 /»
, ,

cos"~^ xdx = ^ / cos"-* xdx:
71 — 2 n — 2j

etc. etc. etc.

The integral to be found will thus become that of cos xdx

when 71 is odd, and that of dx, or x itself, when 7i is even.

The given integral is then found by successive substitution.

We find in the same way, from (7),

>m

/. ^ , cosirsm'"-*^:
,

7)i — 1 p . ^ ^ ,

sm"* xdx = / sm*"-^a:a:c:
771 771 J

7n — 3 (11)/• «. o 7 cosa:sin'"-^a: , 7n — 6 p . ^, ,

sm'^-^xdx — X I sin*"-*a;c?a;:
771 — 2 m — 2J

etc. etc. etc.

From (8) and (9) we derive similar forms applicable to the

case of negative exponents.

EXERCISES.

1. / sin^ X cos' xdx. A71S. \ cos' x — \ cos^ x.

2. / sin' X cos' xdx. Ans, \ sin' x — \ sin^a;.

/cos' xdx . 3 sin' x — 1

sm* x 3 sm' x

4. y sin' X tan' xdx. 5. / 7

—

^—dx.

6. A'*' sin dydy. 7. / e'^^'' cos (x + b) dx.

8. / e'*' sin y cos ydy. 9. / e'^ cos' (y + a) ^y.

10. Derive the formulae of reduction/tan *** ^ ^ ar /*

tan"* xdx = -—— — / tan "* "^ ^ xdx:
771 + 1 J
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and hence

/ tan** xdx = / tan"""^ xdx.

These equatious may be obtained independently by putting tan" x

= tan " - 2 ^(sec2 a; — 1); or they may be derived from (5).

Hence derive the integrals:

11./ tan' xdx = i tan'' x — log c sec x. (CI § 127)

12. / tan* xdx = ^ tan* x — tan x -{- x -{-Ji.

13. For all odd positive integral values of n,

A «' 7 tan**-^:?; tan'*-^^;
,

.
,

/ tan** xdx — —\- , . , ±\ogcsQQ, x.
J n — 1 n — 3

14. When 71 is positive, integral and an even number,

/», „ , tan~~^a; tsin''~^x
.

/ tan** xdx = h • • • ± tan x ± x,
J n — 1 71 — 3

15. When the exponent is integral, odd and negative,

/• „ , cot'*-^^:
, cot**-^a;

,
,

/ tan ~ ** xdx = . . . ± loer c sm x.
J 71 — 1 71 — 3

°

16. When the exponent is integral, even and negative,

/„ , cot"~^:r , cot**~^a;
tan~"'xdx — —

. . . ± cot xl^ x,
71 — 1 71 — 3

/> . 5 , cos .t/ . , ,4.3 ,

4-2\
1 7. / sm xdx = —-

1 sm x ~\- ~ sm x + 57^ )•

18.
I
mn^ xdx

1 sm ''^ + T sm x -\-— sm x\

19. / sin** x cos" xdx = — - / sin**

cos 22; sin** ~^ 22:
.
71-1 /> . ^ „ ^ ,= T^m \- .^n • / sm**" ^ %xdx.

cosxf . ,
.

5 . , ,
5*3 . \ ,

5-82;
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151. 7h inteqrate ., . .. ;—

^

j—^du.
"^ m sin X + n cos x

Dividing both terms of the fraction by cos' x, noticing that

= J- tan X and writing t E tan x, we find
cos X

(It

-J^iftT^n^' . (1^)

The integral is known to be (§ 128)

7)1)1 n

so that we have

dx 1 , , ,^m= f , , 1 , . =— taii<-'> - tan X + h, (13)J 711 sm X -j- n cos x mil n < > \ ,

')t

or tan x = — tan vi)i(tc — 70.

153. I)itcrjratio)i of ^
a -\- b cos ?/*

We reduce this form to the preceding one by the following

trigonometric substitution:

a = a {cos'' iy + sin' ^i/);

b cos y — Z>(cos' \y — sin' ^y);

by which the expression reduces to the form

O r ^^(^.^/) MAX
J (a - b) sin' iy + (rt + ^) cos' iy' ^ ^

which is that just integrated, when we put

m = l^a — ^;

We therefore have

r _,f^ = -^=1= tan<-'/^ tan ^y + A. (15)
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153. Ifj, in the form of §151, m^ and u"^ have opposite

signs, or if in § 152 we have d > a, imaginary quantities will

enter into the integrals, although the latter are real. If, in

the first form, the denominator is m'^ sin"" x — ii" cos^ x, we

shall have, instead of (12), the integral

r dt _ _1 /* (U 1 /» dt
^

J in'f — n^ 2inJ mt — n %nj mt -\- n^^ '

= —
^ log -——

^

\- h.

Hence, corresponding to (13), we have the result/dx 1 , m tan x + n
, ^ ,.^.

7^?'^ sin'^ X — if cos'' X 27nn m tan x — n

If, now, in § 152, 1) > «, we write (14) in the form

d'^y

V({b — a) sin' t}?/ — (a -{- h) cos' ^y'

and instead of (15) we have the result

/
'^y

-,7^_|_
^ _ log

Vb-ai^n^y-\-Vb-\- a^
^.^^^

a+b cos y Vb'-a' l^^-a tan iy- Vb + a

154. Integration of sin mx cos 7ixdx,

Every form of this kind is readily integrated by substitut-

ing for the products of sines and cosines their expressions in

sines and cosines of the sums and differences of the angles.

We have, by Trigonometry,

sin mx cos nx = ^ sin {m -\- n)x -{- i sin {m — n)x.

Hence

, cos (m-\- n)x cos im — n)x
,

,

sm mx cos nxdx = -r^^—;

—

^ -r ^-—h ti

2(vi -\- 71) 2{m — 71)

We find in the same way

sin (fn + n)x ,
sin (m — 7i)x

,
,

cos mx cos 7ixdx = —^—-^

—

^— ^77^^ ^

—

[- h
2{m + 71) 2(7n — 71)

, sin (ni 4- n)x
,
sin hn — 7i)x

, ,sm mx sm Tixdx = ttt—.—r - H kt r—r ^«
2(771 + ??) 2{7n — 71)

f

I
I
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155. Integration hif Development in Series. When the

given derived function can be developed in a convergent

series, we may find its integral by integrating each term of

the series. Of course the integral will then be in the form

of a series. The development of many known functions may
thus be obtained.

EXAMPLKS AND EXERCISES.

I. We may find / sin xdx as follows: We know that

x^ x^ x''

sin a: = a;- -, + -,--, + ...;

/sin xdx = h + ^ ~
|]

^~
ll
~ ^^^''

which we recognize as the development of — cos x with an

arbitrary constant 7i + 1 added to it.

Of course we may find / cos xdx in the same way.

dx
2. To integrate

1+x {1 + x)-' = 1 -^ X + x' -- x' +

A dx x' x' x'

l+-x = ^' + '^-2+3--I + -"' (^)

/dx—-— =z log (1 + x). Hence (a) is

the development of log (l-f- x), when we put h = log 1 = 0.

The series (a) is divergent when a: > 1. In this case we
may form the development by the binomial theorem in de-

scending powers of x, thus:

{x + l)-' = x-'-x-^ + x-^-x-^+ . . . .

Hence we derive, when xy 1,
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The arbitrary constant is zero because, when x is infinite,

log {x-{-l) — log X is infinitesimal.

^. To find / — '_^- -^ — sin ^~ ^^ x in a series.
J Vl-x'

Hence

r dx . , ,, ,
1 a;^ ,

1-3 :?:'
, I'S'S x'

,

y7r^^ = ^^^^^'^^^+2-3 +2^4-5 +2^-7 +••••

The arbitrary constant is zero by the condition sin^~^^ = 0.

This series could be used for computing zr by putting x =

\, because \ = sin 30° = sin — . But its convergence would

be much slower than that of some other series which give the

value of 7t.

dx

Vl + x''

rive the expansion

4. From the equation / — = log {x-\- Vl~{- x"") de-

1 x' ,
1-3 x' 1-3-5 x'log{x+Vl+x^)=x^-,^-+-.~^^:^^.- + ....

dx
5. By expanding

,
= ^-tan^"^^ x, derive

J. ~|~ X

tan<-» x = x-ix' + ix'-^x'+ . ...

Derive:

r r ^^ -7.
,

1 «'
,

1-3 a;' 1-3-5 x"
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CHAPTER VI.

OF DEFINITE INTEGRALS.

156, In the Differential Calculus the increment of a

variable has been defined as the difference between two values

of that variable. Let us then suppose w to represent any

variable quantity whatever, and let us suppose n to pass

through the series of values

Then we shall have

^21, = u^ -^o;
^u, = u^ -^^;
^u, = ^K ^-^K;

Taking the sum of all these equations, we have

Jw, + ^21, + An^ + . . . + z/?^n-i = «^n - n,'y

That is, the diffei^ence hettveen the two extreme values of a

variable is equal to the sum of all the successive increjuents

hy which it passes from oue of these values to the other.

The same proposition may be shown graphically by sup-

posing the variable to represent the distance* from the left-

hand end of a line to any point upon the line. The differ-

ence between the lengths Au^ and A^t^ is evidently Aii^

+ jdu^ + . . , + Au^.

I

I
Auq

I
AU|

I AKa I Ana I ^^4 | _ , ^

X Uq ti, lia «3 t*4 lift

Since the proposition is true how small soever the incre-

ments, it remains true when they are infinitesimal.
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Fig. 47.

157. Differential of an Area» Let P^PP' beany curve

whatever, and let us investigate the differential of the area

swept over by the ordinate

XP. Let us supjK)se the

foot of the ordinate to

start from the position X^,

and move to the position

X. During this motion

XP sweeps over the area

X^P^PX, the mamitude

of which will depend upon

the distance OX, and will

therefore be a function of x, which represents this distance.

Let us put
u = the area swept over;

y = the ordinate XP.

Then, if we assign to x the increment XX\ the corre-

sponding increment of the area will be XPP'X, Let us call

?/' the new ordinate X'P\ It it evident that we may always

take the increment XX' ~ Ax so small that the area XPP'X'

shall be greater than yAx and less^^an y'Ax or vice versa.

That is, if y' > y, as in the figure, we shall have

yAx < Alt < y'Ax, -

Now, when Ax approaches the limit zero, y' will approach

y as its limit, so that the two extremes of this inequality yAx

and y'Ax will approach equality. Hence, at the limit,

du = ydx, (1)

That is, theoHa w is such a function of x that its differen-

tial is ydx, a7id its derivative loitli respect to x is y.

From this it folloiirs by integration that

:: / ydx -\- h (2)

is a general expression for the value of the area from any

initial ordinate, as X^P^ to the terminal ordinate XP,
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158. The Conception of a Definit^ Integral, Suppose

the area X^ P^FX=u
to be divided up into

elementary areas, as in

the figure. This area

will then be made up of

the sum of the areas of

all the elementary rect-

angles, plus that of the o^

triangles at the top of

the several rectangles. That is, using the notation of § 156,

we have

T being the sum of the areas of the triangles; or, using the

notation of sums,

u = 2 y,Ax, + T,

Xo
Fia. 48.

Now, let each of the inoretiients /dxi become infinitesimal.

Then each of the small triangles which make up T will be-

come an infinitesimal dPthe second order, and their sum T
will become an infinitesimal of the first order. We may

therefore write, for the area u,

Xr=OX « = OX

ti = lim. 2 yAx — 2 ydx.
x=OXo x=OXo

That is, 2c is the limit of the sum of all the infinitesimal

products ydx, as the foot of the ordinate XF moves from X^

to Xby infinitesimal steps each equal to dx.

Such a sum of an infinite number of infinitesimal products

is called a definite integral.

The extreme values of the independent variable x, namely,

OX^^x^ and OX^ x^, are called the limits of integration.

The infinitesimal increments ydx, whose sum makes up the

definite integral, are called its elements.
17
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159. Fundamental Theokem. The definite integral

of a conti7iuous function is equal to the difference letween the

values of the indefinite integral corresponding to the limits of

integration.

To show this let us write (/){x) for y, and let us pufc^ for the

indefinite integral,

^(p{x)dx = F{x) + c./'
Now, as already shown, this is a general expression for the

area swept over by the ordinate y = (p{x), when counted from

any arbitrary point determined by the constant c. If we

count the area from X^Pq, the area will be zero when x = x^;

that is, we must have

F{x,) + c = 0,

which gives c = — F(x^).

If we call x^ the value of x at X, we shall have

u = Area X,P,PX = F{x,) + c = F{x^) ~ F{xX (3)

which was to be proved.

We therefore have a double conception of a definite in-

tegral, namely:

(1) As a sum of infinitesimal products;

(2) As the difference between two values of an indefinite

integral;

and it will be noticed that the identity of these two concep-

tions rests on the theorem just enunciated.

Notation. The definite integral is expressed in the same

form as the indefinite integral, except that the limits of inte-

gration are inserted after the sign / above and below the line;

thus,

(p{x)dx

means the integral of (p{x)dx taken between the limits x^ and

iCj, the first being the initial and the second the terminal limit.
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Example of the Identity of the Two Coiiceptions of a Defi-

ite IntegraL The double conception of a definite integral

jiist reached is of fundamental importance, and may be

i'lirther illustrated analytically. To take the simplest possible

ise, consider the definite integral

„

adx,

a being a constant. By definition this means the sum of all

the products

adx + adx -\- adx + . . . ,

as X increases from x^ to x^. The sum of all the dx^a must

1)0 equal to x^ — x^ (§ 15G). Hence

(i{dx -\- dx -^ dx -\- dx -\- , , ,) =1 a{x^ — x^).

But we have for the indefinite integral

/«adx = ax;

and the definite integral is therefore, by the theorem,

ax^ — ax^ or a{x^ — x^),

as before.

160. Differentiatio7i of a Definite Integral with respect to

its Limits.—Because the definite integral / ydx = ti means

the sum of all the products ydx as x increases by infinitesimal

increments from the lower limit x^ to the upper limit x^, or

u = y/lx + y'dx + y'^dx + • • • + ^"V/a;,

therefore, assigning an increment dx^ to the terminal limit

x^ will add the infinitesimal increment y^dx^ to u (see Fig. 48).

That is, we shall have

du = y.dx^y or ~=y^ = (P{x^). (4)

In the same way, increasing the initial limit x^ by dx^ will

take away from the sum the infinitesimal product y^dx^, so
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that we shall have

^^ = -2/. = -0K)- (5)

The equations (4) and (5) give us the derivatives of the

definite integral

u =
I

(p{x) . dx

with respect to its limits x^ and x^.

161, Exa7nples a7id Exercises in fijiding Definite Inte-

grals.

The fundamental theorem gives the following rule for form-

ing definite integrals:

1. Form the indefinite integral.

2. Substitute for the variable with respect to which we inte-

grate, firstly, the upper U7nit of integration; secondly, the

lower limit.

3. S^ibtract the second result from the first. The difference

tuill be the 7^equired definite integral.

1. f \^dx =z ix,' - ix;.

2.
I

xdx — ^{V — a'). 3. / xdx = -J.

4. r sin xdx = — cos TT + cos = 2.

5. / COS xdx — sin \7i, 6. / azdz — \a(a^ — Z>').

7. / sin 2xdx. 8. / cos 2xdx.

9. / sin* a;6?ir. 10. / cos* xdx.

II. / x^xTixdx. 12. / 2; cos 2;^^;.

13. / ^'^ sin 2;J;2;. 14. I z^ cos ^j^Z^
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r z" cos "Zzdz. 1 6. / z"

«/o

z
'--. l8. / 7i;2V;2.

/ cos a;^a;. 22. /^ sin xdx.

p+ ^ dz /.+ 1

\- b

^l - X

25. / (:c — a)dx. 26. / ?/^v.
t/ a - b Ja - X

^'^'

fi+ x
^'^~ ^^'^^' ^^' S"^ '^^ -a)(x- c)dx.

31. y ^ siu a^'ef:z:. 32. A cos (« + a:)c?a;.

2,2i'
Deduce / cos (.?; + 7j)dx = sin 2y.

J- y

34. Show thatj^/{x)dx

=

- ry{j^dx.

35. Deduce / c~^df/ = l.

36. Deduce / c~''^dy:=^—.
Jo a

37. Deduce / e^dy = 1.
e/— 00

38. Deduce / ^ - Vydy = h

39. Deduce f -——, = tt.

t/_OD 1+2;

T^ , p^ dz n
40. Deduce / — = —

.

41. Deduce / - = n.
J- a Va' - z'
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163. Failure of the Method when the Function becomes

Infinite. It is to be noted that the equiyalence of the two

conceptions of a definite integral does not necessarily hold

true unless the function y or ct)(x) is continuous and finite

between the limits of integration. As an example of the

failure of this condition,

consider the function

1
y {x - af

the curve representing

which is shown in the

margin.

The indefinite integral is

= / ydx o
Fig. 49.

To find the value of this integral between two such limits

as and k, k being any quantity OM less than a, we put

X = and x = k, and take the difference as usual. Thus

1 1^_ k_

a{a —u = (5)k a a{a — k)'

Now, if we suppose k to approach a as its limit, so that

a — k shall become infinitesimal, then the area ?/ will increase

without limit, as we readily see from the figure as well as by

the formula.

But suppose k > a; for example, k = 2a, Then the

theorem would give

__1_1___2
/o " a a a'

a negative finite quantity; whereas, in reality, the area is an

infinite quantity.

The theorem fails because, when x = a, y becomes infinite,

so that ydx is not then necessarily an infinitesimal, as is pre-

supposed in the demonstration.

i
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163, Change of Variable i7i Definite Integrals. When,

in order to integrate an expression, we introduce a new vari-

able, we must assign to the limits of integration the values of

the new variable which correspond to the limiting values of

the old one. Some examples will make this clear.

Ex. 1. Let the definite integral be

rdx
a -\' X

Proceeding in the usual way, we find the indefinite integral

to be log {a + 2;), whence we conclude

Ji = log 2a — log a = log 2.
a ~\~ X

But suppose that we transformed the integral by putting

y^a-{-x; dy = dx.

Since, at the lower limit, x = 0, we must then have y = a for

this limit, and when, at the upper limit, x = a, we have

y = 2a. Hence the transformed integral is

rdy
which we find to have the same value, log 2.

Ex. 2. u = / ^ sin x{l — cos x)dx.

We may write the indefinite integral in the form

/ sin xdx + / cos xd{cos x).

In the first term x is still the independent variable. But,

as the second is written, cos x is the independent variable.

Now, for

a; = 0, cos x = 1;

and for a; = — , cos x = 0,

Hence, writing y for cos x, the value of u is

u = / ^ sin xdx -f- / ydy = 1 — ^ = i.
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Eemark. The variable with respect to which the integra-

tion is performed always disappears from the definite integral,

which is a function of the limits of integration, and of any

quantities which may enter into the differential expression.

Hence we may change the symbol of the variable at pleasure

without changing the integral. Thus whatever be the form

of the function 0, or the original meaning of the symbols x

and yy we shall always have

r (p{x)dx = f (l>{y)dy = f (p{y + a)dy, etc.
t/a t/a t/0

164. Subdivision of a Definite IntegraL The following

definitions come into use here:

1. An even function of :r is a function whose value remains

unchanged when x changes its sign.

2. An odd function of x is one which retains the same

absolute value with the opposite sign when x changes its sign.

As examples: cos x is an even, sin x an odd, function.

Any function of x^ is even; the product of any even func-

tion into x is odd.

It is evident, from the nature and formation of a definite

integral, that if we have a sum of such integrals,

Jr (t){x)dx + r (f}{x)dx + / (f)(x)dx +... + / <p{x)dx,
a t/b Jc t/g

in which the upper limit of each integral is the lower limit

of that next following, this sum is equal to

(p{x)dx.Jfj a
This theorem may often be applied to simplify the expres-

sion of the integral in cases where the values of 0(ir) repeat

themselves.

Theorem I. If (p{x) is an even function of x, then, what-

ever be a,

(p{x)dx = ^ / (p{x)dx.
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Because (f){— x) = (p{x), it follows that for every negative

value of X between — a and the element of 0(a:)^/:2; will be the

same as for the corresponding positive value of x. Hence the

infinitesimal sums which make up the value of / (/){x)dx will
t/— a

be equal to those which make up / (f){x)dx. Therefore

f''(p{x)(lx= r (t>{x)dx-{- r'' (p{x)dx = 2 f''cf){x)dx.
J- a J- a c/o t/o

Theorem II. If(p{^) is an odd function of x, tlicn^ 'what-

ever he a,

(p(x)dx = 0.L
For in this case each element 0(— x)dx will be the negative

of the element (p{x)dx, and thus the positive and negative

elements will cancel each other.

EXERCISES.

Show that r e-'^x'^dx = C flog -j dz.

Substitute x = \og -.

2. Show that whatever be the function 0, we have

/ 0(sin z)dz =
I

0(cos xdx).

As an example of this theorem.

i'^a + b cos** x^ pi^'a + b sin** x

b sin** x

p^^a + COS" x^ _ n^^a -\-

t/o a — b cos** X Jo a — dx.

The truth of this theorem may be seen by showing that to each ele-

ment of the one integral corresponds an equal element of the other.

Draw two quadrants; draw a sine in one and an equal cosine in the other.

Any function </> of the sine is equal to the corresponding function of the

cosine. We may fill one quadrant up with sines and the other with

cosines equal to those sines, and then the two integrals will be made up

of equal elements.
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To express this proof analytically, we replace ic by a new variable y
= ^TT — w, which gives sin x = cos y; dx = ~ dy; and then we invert

the limits of the transformed integral, and change y into x in accordance

with the remark of the last article.

IT
^

3. Show that
I

/(sin x)dx = 2 y ^/(sin x)dx.

4. Show that / 0(siii x) cos xdx = 0.

5. Show that if be an odd function, then

/ 0(cos x)dx — 0.

6. Show that the product of two like functions, odd or

even, is an even function, and that the product of an even

and an odd function is an odd function.

7. Show that when is an odd function, 0(0) = 0.

165. Definite Integrals tlirougli Integration dy Parts.—
In the formula for integration by parts, namely,

/ udv = uv — I vdu,

let us apply the rule for finding the definite integral. To ex-

press the result, let us put

{nv)^ and {uv)^, the values of uv for the upper and lower

limits of integration, respectively^

udv and / vdu, the values of the two indefinite in-

tegrals for the upper limit, x^i

I udv and / vdu, the values of the integrals for the lower

limit, x^.

We then have, by the rule of § 161,

/ udv = I udv — / udv

= {uv)^ — / vdu — (uv)^ + / i

= {uv)^ — {uv)^ — / vdu.
flxQ

vdu
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In order to assimilate the form of this expression to that of

a definite integral, it is common to write

EXAMPLES AND EXERCISES.

I. We have found the indefinite integral

/ log xdx = X log X — I dx.

If we take this integral between the limits x = and x = 1,

the term x log x will vanish at both limits, so that

{x log x)^ - {x log x)^ = 0.

Hence f log xdx = — yja;=— 1+0= — 1.

2. To find the definite integral,

r sin'^ xdx.

In the equation (11), § 150, the first term of the second

member vanishes at both the limits x = and x= tt. Hence

/»" 7U — 1 /*"

I sm'^xdx=z / sm'^-^xdx.
Jo m e/o

Writing m — 2 for m, and repeating the process, we have

/ sin"*"^a:t7a: = ^/ ^\n'^~^xdxi
Jo ni — 2Jo

J/*"^

111 — 5 p^
f sin"*""*.Trfx = 7 / sin'^'^xdx:m — 4:Jo

etc. etc.

If VI is even, we shall at length reach the form

r dx = 7t — = Tt,

Then, by succossive substitution^ we shall havo
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r sin- xdx = 0»-l)(»^-3)(m-5). 1 ^
Jq mym — 2){m — 4) ... 2

If m is odd, the last integral will be
f

sin xdx = + 2, and

we shall have

Jo m(m — 2)(m — 4(m-2)(m-4:) . . .
3'

3. From the equation (6) of § 149 we have, by forming the

definite integral and dividing by m + "^h

r'" . ,„ „ -, /sin"* + ^a;cos**~^2;V
/ sm''* X cos"* xdx = I

Jo \ m + n Jo

+ -^^^— f sin*" X cos'*-^ xdx.m + nJo

Since sin tt = sin = 0, the first term of the second

member vanishes between the limits, and we have

/»"" 71 — 1 />"

/ sm*" X cos"" xdx = ;— / sin"" x cos"*"^ xdx.
Jo m + nJo

Writing 71 — 2, and then n — 4, etc., in place of 71, this

formula becomes

/ sin"* a; cos"*"^ xdx = ; .r / sin"" x cos""'* xdx:
t/o m + 71 — 2Jo

/ sin"^ a; COS**"* xdx = —

;

I sin*^ a: cos''"^ xdxi
Jo m + 7i — 4:Jo

etc. etc.

If 71 is odd, the successive applications of this substitution

will at length lead us to the form

/ sin*^ X cos xdx = (sin*^ + ^ tt — sin'^ + ^ 0) = 0:
t/o m + 1

"^
^ '

and thus, by successive substitution, we shall find all the in-

tegrals to b^ zero.
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If 11 is even, we shall be led to the form

I
sin"* xdXf

which we have just integrated. Then, by successive substi-

tution, we find

I
sin"* X cos"* X

_ (n- l){n - 3) .

dx

1 r*-"

m + 2)Jo
sin"* xdx.

Jo R4. To find
, T^:^^„.

We transform the differential thus:

/dx _ 1 Mx^ -\- a^ — x"^) dx

{^+^-~a''J (x' + d'Y

_ 1 /> dx ^ r ^^^^
I \

~TrJ (2;'^+^r)""^
~~

d'J (x^ + cef ^^^

Integrating the last term by parts, we have

r x^dx _\_ r _j^xdx__ -\. r ^i(^!±^!)J (x' + a'Y
""

2 e/ ^'{a" + x'Y
~ %J ^

(.t^ + a^f

-\s-xd.

1 r dx

Substituting this value of the last term in (r/), we have

r dx __ 1 X

t/ (x^ + a^Y
" %a\n - 1) {x^ -\-

a^y-^

^ a\ 2(n - l)/e/ (o;^ + a^y-^'

Passing now to the limits, we see that the first term of the

second member vanishes both for a; = and for a: = oo . We
also have

1 2;i - 3
1

2(w - 1) 2(;i - 1)*



270 THE INTEGRAL CALCULUS.

Hence we have the formula of reduction

/^* dx _ 2n — 3 />^ dx .

Jo {x' + ay "^
2{n - l)7i'Jo {a' + x')^-''' ^^^

We can thus diminish the exponent by successive steps

until it reaches 2. The formula (b) will then give

dx 1 /»=° dx 7t
Jn"^

ax __ 1 A"

{x' + ay ~
2^e/o a^ + a;''

-' 4^=*'

Then, by successive substitution in the form {h), we shall

have
dx _ {271 - d) {271 - 6) . . .1 n

j:k {x^ + ay {2n - 2)(2^ - 4) . . . 2*2a2"-^' ^^^

If in {c) we suppose « = 1, and write the second member
in reverse order, we have

jdx l-3'5 . . . (2/^-3) n

/o (1 + iy 2-4-6. . . (2^- 2)*2"/
t/o '

To find r -^^— ^y^
Vl-x'

Let us apply to the indefinite integral the formula (A),

1
144. We have in this case

a = 1; Z> = — 1; n = 2; p =z — i.

The formula then becomes

r x^dx _ __ x"^-^ Vl — x" m — 1 n x'^-Hx

In the same way

vr--x'

>^m--'dx

vr-x"
p x'^-Hx _ __ x^^Vl-_x2^ m- 3 r
J 4/1 _ x^

~
^^~ ^ 771 — 2J

Continuing the process, we shall reduce the exponent of x

to 1 if 7n is odd, or to if m is even. Then we shall have

Taking the several integrals between the limits and 1, we
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note that in {a) tlie first term of the second member vanishes

at both limits, while (b) gives

J/>^

xdx _ /»^ dx __ 1

~vf^^~ ' J vr^^'"^^'

We thus have, by successive substitution.

y2n + l=jQ
^x^-^^dx __ 27i{2n - 2) {27i - 4) 2

^

VfZ:^^
~ {27i+l)(2n-l){2n-3) ... 3'

_ p x^dx _ {2n-l){2n-'d){2n-b) . . . 1 ^
^^" -Jo |/iZr^'

""
2?i(2;i - 2) (27i - 4) 2*2 *

{c)

Let us now consider the limit toward which the ratio of

two values of y^ approaches as m increases to infinity. We
find, from {a),

a ratio of which unity is the limit.

Next we find, by taking the quotient of the equations (c*),

^___ {2-4- 6 . . . {2n — 2)'2)iY y^^

2 - ts^tt. . (2/i-i)r (2/1 + 1) >*,.+,•

Since, when 7i becomes infinite, the ratio ^/gn • .Ven + i ap-

proaches unity as its limit, we conclude that ^Tt may be ex-

pressed in the form of an infinite product, thus:

Tt 4 4' 6' 8' 10'

2 3'3-5*5-7'7-9*911 ad infinitum.

This is a celebrated expression for tt, known as Wallis's

formula. It cannot practically be used for computing tt,

owing to the great number of factors which would have to

be included.
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CHAPTER VII.

SUCCESSIVE INTEGRATION.

166. Differentiatio7i under the Sigii of Integration. Let

us have an indefinite integral of the form

u =^ j 4>(oc^ x)dx = F{a, x), (1)

a being any quantity whatever independent of x. It is evi-

dent that n will in general be a function of a. We have

now to find the differential of ii with respect to a.

The differentiation of (1) gives

d^ii _ d(t>{a, x)

dadx da

-p. d'^u -^du -r^du ^ 1 . T
Because -^—7- = Dorr- = J^xi—y we have, when we consider

dadx dx da

-z— as a function of x (cf. § 51),

\da I dxda da

Then, by integrating with respect to x^

du ^ Ma, X)

da J da

in which the second member is the same as (1), except that

^{a, x) is replaced by its derivative with respect to a. Hence

we have the theorem:

The derivative of aii integral with respect to any quantity

which enters into it is expressed ly dijferentiating with re-

spect to that quantity under the sign of integration.
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167. This theorem being proved for an indefinite inte-

gral, we have to inquire whether it can be applied to a definite

integral. If we take the integral (1) between the limits x^

and x^, and put u^ and u^ for the corresponding values of u,

we have, for the definite integral,

f '(p{a, x)dx = F{a, x^) - P{a, x^) = u, - u, = u,\

Then, by differentiation,

du,' ^ dF{a, x^) _ dFja, x^)

da da da ^ '

Comparing (1) and (2), we have

rdcf>{a,x)
^^^^

dF{a,x)
^

tJ da da '

whence, if x^ and x^ are 7iol functions of a,

/>^i d<p{a, x)
^^ ^ dF{a, x) __ dFja, x,)

^

.

t/xo d^ da da ' ^ ^

Hence from (3) we have the general theorem

-^a / 0(^^ ^)^^ = / Da(l>{ci, x)dx.

That is, tliG symbols of differeiitiation and integration with

respect to two independent quantities may he iriterchanged in

a definite integral, provided that the limits of integration are

not functions of the quantity with respect to which we differ-

entiate.

If the limits x^ and x^ are functions of a, we have, for the

total derivative of ti^' with respect to a (§ 41),-

dii^ __ fdu^\ dul^ dx^ dul dx^

la \ da I dx^ da dx^ dada

By § 160 we have

dx
18
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Thus from (3) and (4) we have

This formula is subject to the same restriction as the

theorem for the value of a definite integral; that is^ 0(^, x)

and its dei'ivative with resjject to a must le finite and con-

timious for all values of x lettueen the limits of integration.

If this condition is not fulfilled, (5) may fail.

EXERCISES.

Differentiate:

/dx ,,^ , , . n dx—;— with respect to a. Ans, — / 7—;

Tq.
X + a ^ J {0^+ ex)

2. / {x -^ ocfdx with respect to a, Ans. n I (x-\-aY~^dx.

3. /^(a:'-f-^^)''^^ with respect toy. Ans. 2 l{x^-\-7!^y)dx.

4. / x^dx with respect to a. Ans. a^.
t/o

5. / o^dx with respect to a. Ans. 8<^^.

3;*"^.?; with respect to or. Ans. =«^(2a'^ + ^--l).

And show that we have the same results in the first three

cases whether we integrate the differential with respect to a

or ijy or differentiate the integral.

168. The preceding method enables us to find many

integrals, indefinite and definite, by differentiating known

integrals with respect to constants which enter into them.

Thus, by differentiating with respect to a the integral

a
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we find, after adding the constants of integration,

etc. etc.

which leads to the same results as integration by parts, and

is shorter.

169. The following is an instructive application of this

and other principles. We shall hereafter show that

f e"""^ dx= Vrt,
fj— CO

From this it is required to find the value of / e~^^^^ dy.
U — 00

If we put

x^ay,

(1%
whence dv — —

,

the corresponding indefinite integral will be

Now, when y = ± oo , we have also a: = ± oo . Hence

/ e ^ dy —-
I e dx = .

By differentiating with respect to a, and simple reductions,

we find

and from this,

etc. etc.
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EXERCISES.

1. By differentiating the integrals

/cos axdx = — sin ax,
a

/sin axdx = cos ax,
a

twice with respect to a, prove the formulaB

I X cos axdx =.[ -A ^in ax A—-^ cos ax\
J \a a J a

/> , .
^ (2 x'X 2x ,

I X sm axdx =[-. cos a^ H—^ sm ax.
J \a a J a

Thence show that we have

Jy""
cos ydy = (y' - 2) sin y + 2y cos y;

J 2/ sin ydy = {2 - y') cos y + 2y sin y.

2. Prove the formulae:

/o 1 /^^ 1
e^^dx =-; {h) xe'^^'dx = -

-,;
00 ^ t/— CO a

/o 2 />0 7iT

^'V^^^ = -3; {d) / c^^V^^Zo; = (~ 1)"-^.
CO ^ t/— 00 a

3. Show that the preceding formulaB are true only when a

is positive, and find the following corresponding forms when

a has the negative sign:

J/»^

1 />°° 1
i e^'^'^dx = —

; / xe'^^^dx = —,5
c^ Jo a

i x^e-'^'^dx = -3: / x^e-'^dx = -^ ; etc.
a'' Jq a'

'

4. By differentiating the form of § 132, namely,

/dx _ • (_ 1)
^

J^Zl^y - ^^^
a'

with respect to a, show that

/dx _ x

{a" - x^)l ~ a\d' - ^i'
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170. Double Integrals. The preceding results may be

summed up and proved thus: Let us have an integral of the

form

w = y 0(^, y)(lx, (1)

and let us consider the integral

fndy or flf^i^^ y)(^^Ul/y

which, for brevity, is written without brackets, thus:

JJ^i^y y)dxdy.

This expression is called a doiihle integral.

Theorem. Tlie value of an indefinite double i^itegral re-

mains unchanged token we change the order of the integra-

tions, provided that we assign suitable values to the arbitrary

constants of integration.

Let us put

u retaining the value (1). The theorem asserts that

/ %uly = / vdx.

Call these two quantities U and F, respectively. We then

have, by differentiation,

dU d'U du ^, ,

dV d'V dv ^, ,

Therefore, because of the interchangeability of differentiations,

d—d~
' dx _ ' dx

dy ~ dy

Then, by integration with respect to y,

dU_(lV
Ox "dx

'^'''
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and, by integration with respect to x,

U^ V+cx + c\

Putting c = and c' = 0, we have 11= V, as was to be

proved.

1 7 1 . By the process of successive integration thus indi-

cated we obtain the vahie of a function of two variables when

its second derivative is given. The problem is, having an

equation of the form

dxdy

where (p{x, y) is supposed to be given, to find u, as a func-

tion of X and y. This we do by integrating first with respect

to one of the variables, say x, which will give us the value

of -r-9 because the first member of (2) is D^^-r-, Then we in-
dy ^ ^ dy '

tegrate with respect to y, and thus get w.

As an example, let us take the equation

d'^u „ -. du „

,

xy , or d.-j— = xy dx.
dxdy '^

' ' dy

Integrating with respect to x, we have

%-rY+K (3)

li being a quantity independent of x, which we have common-

ly called an arbitrary constant. But, in accordance with a

principle already laid down (§118), this so-called constant

may be any quantity independent of x, and therefore any

function we please to take of y,

Next, integrating (3) v/ith respect to ij, and putting

Y^Jhdy,
we find u = \xY + F+ X,

in which X is any quantity independent of y, and so may be

an arbitrary function of x. Moreover, since h is an entirely

arbitrary function of y, so is Y itself.
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The student should now prove this equation by differenti-

ating with respect to x and y in succession.

173. Triple and Multiple Integrals. The principles just

developed may be extended to the case of integrals involving

three or more independent variables. The expression

///cp{x, y, z)dxdyclz

means the result obtained by integrating 0(.^, y, z) with re-

spect to X, then that result with respect to y, and finally that

result with respect to z. The final result is called a triple

integral.

If we call F{x, y, z) the final integral to be obtained, we

have

.

d^F{x, y, z) .. .

dxdydz
-^(^-y-^)>

and the problem is to find F{x, y, z) from this equation when

0(:r, y, z) is given.

Now, I say that to any integral obtained from this equation

we may add, as arbitrary constants, three quantities: the one

an arbitrary function of y and z] the second an arbitrary

function of z and x] the third an arbitrary function of x and ?/.

For, let us represent any three such functions by the symbols

[y, 2;], [z, x], {x, ?/],

and let us find the third derivative of

F{x, y, z) + [y, z] + [z, x] + [x, y]=u
with respect to x, y and z. Differentiating with respect to

X, y and z in succession, we obtain

die ___ dF(x, y, z) d[z, x] d[x, ?/] ^

dx
"""

dx dx dx '

tfw _ d'^F{Xy y, z) d'lx, y~\^

dxdy ~~
dxdy dxdy '

d\i _ d*F{x, y,z)
^

dxdydz dxdydz *

an equation from which the three arbitrary functions have
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It is to be remarked that one or both of the variables may

disappear from any of these arbitrary functions without chang-

ing their character. The arbitrary function of y and z, being

any quantity whatever that does not contain x, may or may
not contain y or z, and so with the others.

As an example, let it be required to find

^l — I / {x — a){y — b){z — c)dxdydz.

Integrating with respect to z, and omitting the arbitrary

function, we have

JfW -«)(«/- ^)(^ - ofdxdy.

Then integrating with respect to y,

which gives, by integrating with respect to x, and adding the

arbitrary functions,

u = i{x - ay{y - by{z - cy + [y, z'] + [z, x^ + [x, y].

The same principle may be extended to integrals with re-

spect to any number of variables, or to multiple integrals.

The method may also be applied to the determination of a

function of a single variable when the derivative of the func-

tion of any order is given.

EXERCISES.

I. /
I
-^dxdy. 2. /

I
{x — a){y—hydxdy,

3. / /
jxy^z^dxdydz, 4. / / i-^dxdydz,

5. I I I {x — ay{y — b){z — cydxdydz.

6. ff{x - aydx\ 7. fff{^ + ^^)'dz\

Ans. (6). y\(.T - ay -\- Cx -\- 0\ (7 and C being arbitrary

constants.
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173. Definite Double Integrals. Let U be any function

of X and y. By integration with respect to or, supposing y
constant, we may form a definite integral

udx E ur

From what has been shown in § 163, Kem., U' will be a

function of y, x^ and x^. AVe may therefore form a second

definite integral by integrating U'dy between two limits y^

and y^. Thus we find an expression

f^" V'dy = f^' r"' Udxdy,

which is a definite double integral.

The limits x^ and x^ of the first integration may be con-

stants, or they may be functions of ?/.

If they are constants, the two integrations will be inter-

changeable, as shown for indefinite double integrals.

If they are functions of y they are not interchangeable, un-

less we make suitable changes in the limits.

1*74. Definite Triple and Multiple Integrals. A definite

integral of any order may be formed on the plan just described.

For example, in the definite triple integral

/»^i />y> r*^\III ^(^^ y^ z)dxdydz
*Izo t/?/o t/xo

the limits x^ and x^ of the first integration may be functions

of y and z; while y^ and y^ maybe functions of z. But z^ and

z^ will be constants.

So, in any multiple integral, the limits of the first integra-

tion may be constants, or they may be functions of any or all

the other variables. And each succeeding pair of limits may

be functions of the variable which still remain, but cannot

be functions of those with respect to which we have already

integrated.
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EXAMPLES AND EXERCISES.

I. Find the values of

/ / xifdxdy and / / xy^dxdy.

It will be seen that in the first form the limits of x are

condtants^ and in the second, functions of y.

First integrating with respect to Xy we have for the indefi-

nite integral

Jxfdx = ia;>%

and for the two definite integrals

/ xy^dx = \o^y^9

I xy'^dx = ^y\
t/y

Then, integrating these two functions with respect to y,

we have

££\y\lxdy = l£y'dy = ^b\

Let us now see the effect of reversing the order of the in-

tegrations. First integrating with respect to y, we have

/ xy^dy — ixb^ = U.

Then integrating with respect to x, we have

f Udx = r TxyWydx = \a^l)\

the same result as when we integrated in the reverse order

between the same constant limits.

2. Deduce / ^ / cos {x -\- y)dxdy = — 2.
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3. Deduce / / cos (x — y)dxdy = -|- 4.

/*b /*a

4. Deduce / / (u; — a){y — h)dxdy = lit'b''.

5. DeducejT^j^'^u; - a){y - h)dxdy = i{2ab-a')(2ab-b').

6. Deduce / / {.v—a){y—b)dxdy = a^b — iab""— ^a\

175. Product of Ttvo Definite Integrals.

Theorem. The product of the two definite integrals

I Xdx and I Ydy is equal to the double integral

/ ' / 'XVdxdy, provided that neither integral contains

the variable of the other.

For, by hypothesis, the integi^al / Xdx^ f/ does not con-

tain y, Tlierefore

U / Ydy =
I UYdy = / / XYdxdy,

as was to be proved.

/ + » _ a

e dx. This integral,
00

which we have already mentioned, is a fundamental one in

the method of least squares, and may be obtained by the ap-

plication of the preceding theorem. Let us put

;=:/ e-Ulx = 2 e-^dx^'^f e"^Jy.(§164)/.•=:

Then, by the theorem,

t'o t/0 * Jq t/o

Let us now substitute for y a new variable t, determined

by the condition

y = tx.
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Since^ in integrating with respect to y, we suppose x con-

stant^ we must now put

dy — xdt.

Also, since t is infinite when y is infinite, and zero when y is

zero, the limits of integration for t are also zero and infinity.

Thus we have

Jo Jo

Since the limits are constants, the order of integration is

indifferent. Let us then first integrate with respect to x.

I

Since

I 1
I xdx = id'x' = ^.^ ,.

<:?• (1 + f)x%

j
the integral with respect to x is

Then, integrating with respect to ^,

Hence f e~^^dx = Vtt^
J— CO
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CHAPTER VIM.

RECTIFICATION AND QUADRATURE.

177. The Rectification of Curves, In the older geometry

to rectify a curve meant to find a straight line equal to it in

length. In modern geometry it means to

find an algebraic expression for any part of

its length.

Let us put s for the length of the curve

from an arbitrary fixed point (7 to a vari-

able point P. If P' be another position

of the variable point, we shall then have fig. 5o.

As = FF\

If PP' becomes infinitesimal, it has already been shown

(§ 79) that we have, in rectangular co-ordinates.

ds = Vdx^ + df = 4/1 + i^£ldx = Ml + (^)^7y, (1)

and, in polar co-ordinates,

d. = l/r' + (^JrZft (2)

If both co-ordinates, x and ijy are expressed in terms of a

third variable Uy we have

The length of any part of the curve is then expressed by
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the integral of any of these expressions taken between the

proper limits. Thus we have

or -/i(rj+(i)T"«-

(3)

In order to effect the integration it is necessary that the

second members of (3) shall be so reduced as to contain no

other variable than that whose differential is written; that is,

we must have

ds=f{x)dx; f{y)dy; f{e)d6; or f{u)dit.

Then we take for the limits of integration the values of

X, y, 6 or u, which correspond to the ends of the curve.

178. Rectification of the Parabola, From the equation

of the parabola
y'^ = 2px

we derive ydy = pdx.

We shall have the simplest integration by taking y as the

independent variable. We then have

The formula (C) of § 145 gives

The method of § 132 gives

(«)

.n»'{f + yl

dy

{f + f)
= A-log((;/ + 2/T-?/)
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Thus, j)utting A' E i;? (// — log j)), the indefinite integral

of {a) is

s = // + i^{f + f)' + ^p log ({/ + f)' + y).

The arbitrary constant 7/ must be so taken thcit .9 shall

vanish at the initial point of the parabolic arc. If we take

the vertex as this point, we must have 5 = for y — 0. Then

7/ = -^p log p.

We therefore have, for the length of a parabolic arc from

the vertex to the point whose ordinate is y,

s=)j^u^^+ff-viP^o^^-^-y^. (4)

\ 179. Rectification of the Ellipse. The formulae for rec-

tifying the ellipse take the simplest form when we express the

co-ordinates in terms of the eccentric angle u\ then (Analyt.

Geom.

)

cr = a cos ?/; y = h sin u.

We then have

dx =. — a sin itdti] dy = h cos udu.

Then if e is the eccentricity, so that a^e* = a* — ^%

ds = {a^ sin'' u -{-V cos' u)^du = n{l — e' cos' u)^dUy

s = a / {1 — e^ cos' u)^du.

This expression can be reduced to an elliptic integral: a

kind of function which belongs to a more advanced stage of

the calculus than that on which we are now engaged.

It may, however, be approximately integrated by develop-

ment in series. We have, by the binomial theorem,

1 . ,
11

^008 U--.(1 — e* cos' uy =zl -^ -e* cos' u — r-;^ ^* cos* u

11-3
« ,

,-—7—7 e cos u ~ etc.
2*4G
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The terms in the second member may be separately in-

tegrated by the formulEe ((>), § 149, by putting m == and

^ rz 2, 4, 6, etc. We thus find

2 / cos^ tidu = sin ^c cos n -\- u;

4 / cos* ndu = sin -2^ (cos' u + I cos u) + fw>

etc. etc. etc.

Since at one end of the major axis we have u = and at

the other end u =:i tt, we find the length of one half of the

ellipse by integrating between the limits and tt. Since

sin u vanishes at both limits, we have

cos' 7idtc = —tt;

r ^.3
COS* udii — 77—.tt;

2*4

1-3-5
''' ^ = 2^^-

We thus find by substitution that the semi-circumference

of the ellipse may be developed in powers of the eccentricity

with the result

= fiTti
, 1 .

3 ,
3^-5

2' 2' -4' 2' -4^ -6'

180. The Cycloid, The co-ordinates x and y of the cy-

cloid are expressed in terms of the angle u through which

the generating circle has moved by the equations (§ 80)

X = a{u — sin w);

y == a(l -— cos ti).

Hence

els' = dx'' + dy"" = rtM(i _ cos w)' + sin' u}du^

= 20" (1 — cos u)du'' = id' sin' ^tcdu^.

By extracting the root and integrating,

s = h — 4:a cos ^u.
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If we measure tlie arc generated from tlie point where it

meets the axis of abscissas, that is, where n = 0, we must

have s = for n = 0. This gives

h = 4«

and s = 4a(l — cos ^u) = 8^ sin' ^71.

This gives, for the entire length of the arc generated by

one revolution of the generating circle,

that is, four times the diameter of the generating circle.

181. The Archimedean Spiral, From the polar equation

of this spiral (§ 82) we find

dr = add.

Hence ds = a{l + O^fdO,

Then the indefinite integral is (§ 147, Ex. 1)

5 =
1

1 0(1 + e^)' + log c{e +(1 + e^))'
[

.

If we measure from the origin we must determine the value

of C by the condition that when 6 = 0, then 5 = 0. This

gives log C' = ; .-,0=1.

If instead of 6 we express the length in terms of r, the

radius vector of tlie terminal point of the arc, we shall have

/ ' = 2 7S'' + ' ) + 2
^^^^

a
•

183. The Logarithmic Spiral, The equation of this

spiral (§ 83) gives

dr 1 le ,

^-^ = ale =lr.

Hence ds = (1 + r)Wft

To integrate this differential with respect to 6 we should

first substitute for r its value in terms of 6. But it will be
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better to adopt the inverse course, and express dd in terms of

dr. We thus have

(1 + ly
ds =

J
dr;

whence s = ——r + 5^,

s^ being the value of s for the pole.

If we put y for the constant angle between the radius

vector and the tangent, then (§§ 90-92) ^=:cot y, and we have

s = r sec y -{- s^.

Between any two points of the curve whose radii-vectors

are r^ and r^ we have

5 = (r^ — rJ sec y.

Hence the length of an arc of the logarithmic spiral is pro-

portional to the difference between the radii-vectors of the ex-

tremities of the arc,

EXERCISE.

1. Show that the differential of the arc of the lemniscate is

, add
ds =

Vl-2 sin'' 6

(This expression can be integrated only by elliptic func-

tions.)

183. The Quadrature of Plane Figures, In geometrical

construction, to square a figure means to find a square equal

to it in area. The operation of squaring is called quadrature.

In analysis, quadrature means the formation of an algebraic

expression for the area of a surface.

In order to determine an area algebraically, the equation

of the curve which bounds it must be given. Moreover, in

order that the area may be completely determined by the

bounding line, the latter must be a closed curve.

Then whatever the form of this curve, every straight line
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X
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1
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/

V
Q

/|

Xo x»

Fig. 51.

must intersect it an even number of times. The simplest

case is that in which a line paral-

lel to the axis of V cuts the bound-

ary in two points. Then for

every value of x the equation of

the curve will give two values of y
corresponding to ordinates termi-

nating at F and Q. Let these

values be y^ and ?/,.

Then, the infinitesimal area in-

cluded between two ordinates infinitely near each other will

be

{y^ - y.)dx = d(T.

The area given by integrating this expression will be

^ = f \y.-yy^>

in which the limits of integration are the extreme values of x

corresponding to the points X^ and X^, outside of which the

ordinate ceases to cut the curve.

The same principle may be applied by taking {x^ — x^dy

as the element of the area. We then have

0- rr n\x^ - x^)dy.

If the curve is referred to polar

co-ordinates, let S and T be two

neighboring points of the curve,

and let us put

Z6 = angle SOT.

If we draw a chord from S to 7",

the area included between this chord

and the curve will be of the third

order (§ 78). The area of the triangle formed by this chord

Fio. 52.
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and the radii vectors will be irr' sin A 6, ]S"ow let AS be-

come infinitesimal. 08 will then approach r as its limit;

the ratio of sin ^6^ to AS itself will approach nnity^ and the

area of the triangle will approach that of the sector. Thus

we shall have, for the differential of area,

dor rr ^r\ie.

If the pole is within the area enclosed b}'^ the curve, the

total area will be found by integrating this expression be-

tween the limits 0° and 360°. Thus we have, for the total

area.

/"•«•

1 84. The Parabola, As the parabola is not itself a closed

curve, it bounds no area. But we may find the area of any

segment cut off by a double ordinate

MN, The equation of the curve gives,

for- the two values of y,

y, = + V2px; yo= - ^^*
Hence o

da ~ VSp.x^dx.

The indefinite integral is pj^ ^3

For the area from the vertex to MJVwe put x^ = OX, and
take the integral between the lim.its and x^. Calling this

area cr^, we have

Because 2y^ = MX, it follows that the ^ltq^xABMN ='2x^y^.

Hence:

Theore^i. The area of a paraholic segrneJit is two thirds

that of its circumscribed reciavgJe.
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185. The Circle and the Ellipse, Referring the circle

of radius a to the centre as the origin, the values of y will bo

Hence

J\y.- y.)dx ^^.fia' - xydx

X= xicv - x^ + a' sin c-^)- + h.
^ ' a

This expression, taken between appropriate limits, will

give the area of any portion of the circle contained between

two ordinates.

Taking the integral between the limits — a and + ^ gives,

for the area of the circle,

G = a' sin<-^> (+ 1) - a' sin(-^> (- 1) = 7ra\

The Ellipse. From the equation of the ellipse referred to

its centre and axes, namely.

we find V = ± — ^n' — x'.^ a

The entire area will be

The last integration is performed exactly as in the case of

the circle.

186. The Hyperbola, Since the hyperbola is not a closed

curve, it does not by itself enclose any area. But we may

consider any area enclosed by an hyperbola and straight lines.

Let us first consider the area APM contained between the

curve, the ordinate MP, and the segment AM oi the major
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axis. The equation of the hyperbola referred to its centre

and axes gives, for the value of

y in terms of Xy

y ^-Vx" a\

If we put x^ for the value of

the abscissa OM, then^ since

OA = a, the area AMP will be

equal to the integral

a
Fig. 54.

- r\x' - a'')^dx',

/(.' - a^)^d. = l^i.'
- a')* - 1 logg + g - 1 )*];

and for the definite integral between the limits a and x,

1 ab ^ + S-)']-

Now, ixy is the area of the triangle OFM; we therefore

conclude that the second term of the expression is the area

included between OA, OF and the hyperbolic arc AP,
Much simpler is the area included between the curve, one

asymptote, and two parallels

to the other asymptote. The

equation of the hyperbola re-

ferred to its asymptotes as

axes of co-ordinates (which

axes are oblique unless the

hyperbola is equilateral) may

be reduced to the form fio. 55.

xy
db

2 sin a'
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a being the angle between the axes. We readily see that the

differential of the area is ydx X sin a instead of ydx simply.

Hence for the area we have

/ y sin adz — I -clx = -- log ex.

If we take the area between the limits OM=x^ and OM
~ x^, the result will be

ab , ad ^ X,
-dx = -^-log-\

X, 2a; 2 ^a;,

We note that this area becomes infinite when x^ becomes

zero or when x^ becomes infinite, showing that the entire area

is infinite.

187. The Lomniscate. The equation of this curve in

polar co-ordinates is (§ 81)

r' = a" cos 26.

It will be noted that r becomes imaginary when 8 is con-

tained between 45° and 135°, or between 225° and 315°.

The integral expression for the area is

\Jr''de = ia'fcos 2ede = ia' sin 20.

To find the area of the right-hand loop of the curve we

must take this integral between the limits 8 = — 45° and 6 =
-f 45°, for which sin 2/9 = — 1 and + 1. Hence

Half area = ia^;

Total area = a'.

Hence the area of each loop of the lemniscate is half the square

on the semi-axis.

188. The Cycloid. By differentiating the expression for

the abscissa of a point of the cycloid we have

^x = a{l — cos u)du.

Hence
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j ydx —a" / (1— cos uYdu— a' / (|— 2 cos u-{-i cos 2ii)du.

The indefinite integral is

lu — 2 sin u -\- i sin 2v,

To find the whole area we take the definite integral between

the limits and 27r, Thus we find

Area of cycloid = dTta",

or three times the area of the generating circle.

EXERCISES.

I. Show that the theorem of § 184 is true only of the pa-

rabola.

To do this we must find what the equation of a curve must be in order

that the theorem may be true. The theorem is

/ ydx = ^xy.

Differentiating both members, we have

ydx = ixdy + ^ydx ;

. ^0 _^
' ' y x'

Then, integrating both members,

log y'^ — log cx\ . •
. 2/2 _ ^^^

c being an arbitrary constant. This is the equation of a parabola whose

parameter is \c.

2. Show that the equation of a curve the ratio of whose

area to that of the circumscribed rectangle is m : n must be

of the form



CUBATUBE OF VOLUMES, 397

CHAPTER IX.

THE CUBATURE OF VOLUMES.

189. General FormulcB for Cuhaticre, In the ancient

Geometry to mide a solid meant to find the edge of a cube

whose volume should be equal to that of the solid. In Ana-

lytic Geometry it means to find an expression for the volume

of a solid.

Let us have a solid the bounding surface of which is de-

fined by an equation between rectangular co-ordinates. Let

the solid be cut by a

plane PL parallel to the

pline of YZ, and let w

be the area of the plane

section thus formed. If

we now cut the solid by

a second plane, parallel

to PL and infinitely near

it, that portion of the

solid contained between

the planes will be a slice of area ?^ and thickness dx, dx being

the infinitesimal distance between the planes.

If, then, we put v for the volume of that part of the solid

contained between any two planes parallel to YZ, we have

Fig. 50.

and

dv = udx,

V =
I

vdx, (1)

x^ and :r, being the distances of the cutting planes from the

prigin 0,



298 THE INTEGRAL CALCULUS.

If we take for x^ and x^ the extreme values of x for any

part of the solid, the above expression will give the total vol-

ume of the solid.

In order to integrate (1), we must express w as a function

of X, That is, we must find a general expression in terms of

X for the area of any section of the solid by a plane parallel

to that of XY. This is to be done by the equation of the

bounding surface of the solid.

Of course we may form the infinitesimal slices by planes

perpendicular to the axis of Y oic oi Z as well as of X.

190. The Sphere. The equation of a sphere referred to

its centre as the origin is

x^' + y^ + z' - a\

If we cut the sphere by a plane

PMQ parallel to the plane of

YZy and having the abscissa OM
= Xy the equation of the circle of

intersection will be

2/' -}- ;2^ = a' — X^*, Fig. 57.

that is, the radius MP of the circle will be Va" — x% and its

area will be 7t{a^ — x^). Hence the differential of the vol-

ume of the sphere will be

dv = 7r(a* — x^)dxy

and the indefinite integral will be

V = 7t{a^x ~ \x^) -\-C.

The extreme limits of x for the sphere are

x^^ — a and x^ = + a.

Taking the integral between these limits, we have

Volume of sphere = |;ra'.
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191. Volume of Pyramid. Let the pyramid be placed

^th its vertex at the ori-

gin, and its base parallel to

the plane of XY. Let us

also put h = OZ its alti-

tude; a, the area of its base.

Let it be cut by a plane

EFGH parallel to its base.

It is shown in Geometry

that the section EFGH is

similar to the base, and that

the ratio of any two homologous sides, as EFaniAS, is the

same as the ratio OL : OZ, Because the areas of polygons

are proportional to the squares of their homologous sides,

.-.Area EFGH : Area ABCD = OL' : 0Z\

Putting Area ABCD = a, OL^z and OZ = h,

FiQ. 58.

Area. EFG11= az

The volume of the pyramid is therefore

•'^ nz^'dz 1 ,

That is, one third the altitude into the base.

The same formulae apply to the cone.

193. The Ellipsoid. The equation of the ellipsoid re-

ferred to its centre and axes is

1,

a, h and c being the principal semi-axes.

If we cut the ellipsoid by the plane whose equation is

X = x', the equation of the section will be

= 1 _
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This is the equation of an ellipse whose semi-axes are

a

Hence its area is

x'^ and

7tlc{a' —
a

')

Fig. 59.

Then, by integration between the limits —a and -\-af we find

Volume of ellipsoid = ^-Ttabc,

From the known expression for the area of an ellipse {rtah)

it is readily found that the volume of an elliptic cylinder cir-

cumscribing any ellipsoid is ^nabc. Hence we conclude:

The volume of an ellipsoid is two thirds that of a7iy right

elliptic cylinder circumscribed about it.

193. Volume of any Solid of Revolution. In order that

a solid of revolution may have a well-defined volume it must

be generated by the revo-

lution of a curve or un-

broken series of straight

or curve lines terminating

at two points, Q and R,

of the axis of revolution.

As an element of the volume we take two planes infinitely

near each other and perpendicular to the axis of revolution.

Every such plane cuts the solid in a circle. If we place the

origin at 0, take the axis of revolution as that of X, and let

OM = a; be the abscissa of any point P of the curve, and

MP = y its ordinate,

then the section of the solid throughM will be a circle of ra-

dius y, whose area will therefore be ny^.

Hence the volume contained between two planes at distance

dx will be
ny'^dx,

and the volume between two sections whose abscissas are x^

and x^ will be

V= r'jnfdx. (1)
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If the two co-ordinates are expressed in terms of a third

variable ^i by the equations

we have dx = (p'{ii)du.

Putting u^ and u^ for the values of u corresponding to x^

and x^y the expression (1) for the volume will become

V=7r r\ip{u)Ycp\n)d^t.
Juq

(2)

The equations (1) and (2) give the volume AA'B'B gen-

erated by the revolution

of any arc AB oi the

given curve, and of the

ordinates MA and NB
of the extremities of the

arc. The limits of in-

tegration for x are OM A'., ^--b

= x^ and ON ~ x^. To fig. go.

find the entire volume generated we must extend these limits

to the points (if any) at which the curve intersects the axis of

revolution.

194. The Paraboloid of Revolution, The equation of the

parabola being y* = 2px, we readily

find from (1) a result leading to the

following theorem, which the student

should prove for himself:

Theorem. The volurtie of a para-

boloid of revohUio7i is one half that

of the circumscribed cylinder.

195. The Volume Generated by

the Revolution of a Cycloid aroujid

its Base. From the equations of the cycloid in terms of

Fio. 61.
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the angle through which the generating circle has moved,

we find the element of the volume to be

dV= 7ta\l — cos uydu.

Hence

V = Tta^ / (1 — 3 cos 1^ + 3 cos^ u — cos' ii)du.

By the method of §§ 149^ 150^ with simple reductions, we

find

/ cos'^ udii — \\i -\-\Avl%u\

I cos' udxi = / (1 — sin'^ u)ditiTL ^ == sin w — ^ sin' u

= I sin t^ 4- iV sin 3w.

We thus find, for the indefinite integral,

y — 7ta^(^u — ^- sin u -\- i sin 2w — y^ sin ^u). .

The total volume formed by the revolution of one arc of

the cycloid is found by taking the integral between the limits

u = and u = %7t. The volume thus becomes

F=5;rV,

from which follows the theorem:

The volume generated hy the revolittion of a cycloid around

its base is five eighths that of the circumscribed cylinder,

196. The Hyperboloid of Revolution of Two Najjpes,

This figure is formed by the revolution of an hyperbola about

its transverse axis. The general expression for the volume is

found to be

h being the arbitrary constant of integration. If we consider

that part of the infinite solid cut off by a plane perpendicular

to the transverse axis, we must determine h by the condition
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that V shall vanish when x = a, because then the plane will

be a tangent at the vertex of the hyperboloid, and the volume

will become zero. This condition gives

h =: da' - a' = 2a\

Thus we have

By the same revolution whereby the hyperbola describes an

hyperboloid of revolution the asymptotes witt" describe a cone.

Let us compare the volume just found for the hyperboloid

with that of the asymptotic cone, cut off by the same plane

which cuts off the hyperboloid. The equation of the generat-

ing asymptote being

ay = iXy

we find for the volume of the cone

The difference between (1) and (2) will be the volume of

the cup-shaped solid formed by cutting the hyperboloid out

of the cone. Calling this volume F", we find

F" = 7rb\x - ^a). (3)

This is equal to the volume of a circular cylinder of which

the diameter is the conjugate axis of the hyperbola, and the

altitude x — fa.

This result is intimately associated with the following

theorem, the proof of which is quite easy:

If a plane peiyendicular to the axis of revolution cut an

hyperbola of two 7iappes and its asymptotic cone, the area of

the plane contained between the circular sections is constant

and equal to the area of the circle whose diameter is the con-

jugate axis.
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197. Ring-sliapecl Solids of Revolution, If any com*

pletely bounded plane figure JP^^ revolve around an axis

OX lying in its own plane^ but

wholly outside of it, it will describe

a ring-shaped solid.

To investigate such a solid, let the

ordinate MP cut the figure in the

points Q and P, and let us put

The points P and Q will describe two circles which will

contain between them the sectional area

Ay." - y"y

Taking two ordinates at the infinitesimal distance dx, the

corresponding infinitesimal element of volume will be

dV=7t{y:-y:)dx. (1)

The integral

V=7t r\y; - y^yix = n r\y^ + y^) {y^ - y;)dx

will express the volume of that part of the solid contained be-

tween the two planes whose respective aDscissas are x^ and x^.

By taking for x^ and x^ the abscissas of the extreme points

A and B, V will express the total volume of the solid.

198. Application to the Circular Ring, Let the figure

^^ be a circle of radius c, whose centre is at the distance h

from the axis of revolution. Let us also put

a = the abscissa of the centre.

We then have

y^ = h + Vc'- {x - aY;

y. + y^ = ^^y

y. - 2/i = ^ Vc'- {x-aY;
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V =4.711 r'[c' -(x- aVfclz.

The limits of integration for the whole volume are

x^z= a — c and x^ = a -{- c.

If we put

z^x — a,

the total volume will become

V = 4.7thf^{c' -z'fdz.

By substituting the known value of the definite integral,

we have

The area of the generating circle is ;rc% and the circumfer-

ence of the circle described by its centre is ^nh. The product

of these two quantities is ^it^lc^. Hence:

The volume of a circular ring is equal to the product of

the area of its cross-section into the circuinfereiice of its ceyitral

circle.

EXAMPLES AND EXERCISES.

1. Compare the cycloid with the semi-ellipse having the

same axes as the cycloid, and show the following relations be-

tween them:

a. The maximum radius of curvature of the ellipse (at the

point B) is greater than that of the cycloid in the ratio

;r' : 8, or 5 : 4, nearly.

/?. The area of the semi-ellipse is greater than that of the

cycloid in the ratio tc : 3.

y. The volume of the ellipsoid of revolution around the

axis OX is greater than that generated by the revolution of

the cycloid in the ratio IG : 15.

20
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199. Quadrature of Surfaces of

Revohition. Let us put

Js = a small arc PQ of a, curve re-

volving round an axis OX;

y = the distance of F from the

"

axis OX;
y' = the distance of Q from the

axis OX.

Considering As as a straight line,

the surface generated by it will be the curved surface of the

frustum of a cone. If we put

Aa = the area of this curved surface, we have, by Geometry,

Aa = 7t{y + y')As»

Now let As become infinitesimal. Then y' will approach y
as its limit, and we shall have, for the diiferential of the sur-

face,

d(T = 27tyds = 27ry\ 1 -f [jfj dx.

This expression, when integrated between the limits x^ and

iCj, will give the area of that portion of the surface for which

the co-ordinates x are contained between x^ and x^.

The modifications and transformations of this formula so

as to apply it to cases when another axis than that of Y is

the axis of revolution, or when the equation of the curve is

not in the form y = (p{x), can be made by the student himself.

300. JExamples of Surfaces of Revolution, The process

of applying the general formula for da to special cases is so

like that already followed in quadrature and cubature that

the briefest indications will suffice to guide the student.

Surface of the S2)liere, Supposing the equation of the gen-

erating circle to be written in the form
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we shall find the diflEerential of the surface to be

da = %7tadx.

From this we may easily prove the following

:

Theorem I. If a sphere he cut by any numher ofjyarallel

and equidistant 2)laneSy the curved surfaces of the spherical

zones contained between the planes will all be equal to each

other,

Tpieorem II, The total surface of a sphere is equal to the

product of its diameter aiid circumference.

Surface generated by the Revolution of a Cycloid. We shall

find the differential of the surface to be

da = Sna^ sin^ ^udu.

By a formula found in Trigonometry, we have

8 sin' ^ = 6 sin ^; — 2 sin 3v.

Hence, putting v = ^u,

da = 4;t«' (3 sin v — sin 3v)dv,

The whole surface is obtained by integrating between the

limits tc = and u = 27t; that is, v = and v = 7t, We
thus find, for the total surface,

a = -^7Ta\

Hence the theorem:

The total surface generated by the revolution of a cycloid

about its base is four thirds the surface of the greatest in-

scribed sphere.

The Paraboloid of Revohdion, Taking the integral be-

tween the limits zero and x, we have for the curved surface

me END.
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