ENGINEERING NEWS aMERICAN RAILWAY JOURNAL.

VOL. XL. No. 22

TABLE OF CONTENTS.

ExGineering news of the week ..337, 351
Earth Slips on the Jordan Level Marl Beds of the 33 Earth Slips on
Erle Canal (111ustrated). pest Electrlc Ry. (with full-page plate).......... Handy lnsulator for Joints in Wire Mustrated.... trated) .. Surve (with full-page plate)....... ${ }^{\text {a }}$.
An Trianlng and Work of the Enginee
Weather Tahle for Octoher............................. Notes on the Definitlons of Some Mechanlcal Units.
Portable Forge wlth Detachable Parts (illustrated) A Portable Forge winl Cast-iron Flywheels............
The Bursting of Small
A Note on the Strength of Wheel Rlms (illustrated). A Note on the Strength of Wheel Rims (inustrated)
Form for Reporting the Results of Boller Tests....
Medical Outfit and Instructions for an Engineer
 gineers
EDITORIAL NOTES
Dificulties in Canal Excavation through Swamps-A
Curlous Proposal hy the U.S. Commissioner of Ra roads-Prop
DITORIAL:
EDITORIAL: TTERS TO THE EDITOR
LETTERS TO THE EDITOR . 1 A........................... Type and Riveted Trusses for Short Spans (illustrated)-An Opportunity for
ing Ethics.

THE EQUIPMBNT OF THE ARMY, in the late war, is reported upon hy Quartermaster-General M. I. Ludington. in $3 \frac{1}{2}$ months an army of 275,000 men was armed and equipped with supplies, and an army or 16,00 men was sent to 071 . purchased cost $\$ 3,871,690$; wagons and harness cost $\$ 358$, 449, and 83,078 tons of coal wre pur 17883 phers ment of troops hy rall aggregated 17,863 omcers and 435,569 men. The department chartered on the Atainc coast, to June 30, 43 vessels, wity 1,297 ofllers, 2255 and these had a carrying capacity of 1,28 omcers, 2,305 men, 6,746 animais, and the arms, ammunith and camp subsistence and medical supplies; four water-boats, of a total capacity of 820,000 gallons, tngs and harges were added to this fleet. On the Pacific coast 14 shlps were chartered, aggregating 41,152 tons, capable of carrying 629 officers and 13,059 men, and their storee. These vessels cost $\$ 186,632$ for fitting up; and there was pald for the service of these ships $\$ 1,007,952$ on the Atlantle side, and $\$ 319,764$ on the Pacific side. After June 30, other vessels were chartered or purchased, increasing the total tonnage to 111,099 tons, and the carrying capacity to 25,000 men on the Atlantic; and to 61,28 tons and 20,000 men on the Pach. . Four 61,298 tons, were purchased for $\$ 8,431,00$, vessels and lighters bought, the aggregate expenditure on this account was $\$ 6,476,300$.
MEDICAL STATISTICS OF THE AMERICAN-SPANISH War, as reported hy the Surgeon-General of the U. S. Army, atand ae follows: From May to September, Inclusive, and representing an army of 167,168 men, there were reported in full 1,715 deaths. Of this number 640 were due to typhold fever; 97 to malarial fevers, and 363 to dlarrhcea and dysentery. The death-rates of May and June-. 46 and .70 , were not in excess of those of the army In peace times; In July the rate reached 2.15 for the month, or 25.80 per 1,000 , which does not much exceed that of well cared for cittes. But in August the rate became excessive, or 4.08 per month, or 48.96 per 1,000 per year. In Septemher the conditions improved and the death-rate fell to 2.45 , or 29.40 per year. The records of the Civil War show that a high đeath-rate in Augus was generally continued for months after, and Dr. Stern erg ascrfles the Improvement noted in September to th stricter sanitary measures adopted.
THE FIRST VOLUNTEER REGIMENT of Engineers, largely made up of men from New York,arrived from Porto Rico, on the s. S. "Minnewaska," on Nov. 24. In Porto leading to it, at Guanlia; It rebuilt many masonry hridges on the military road between Ponce and Albonito, destroyed y the Spanlards; huilt an lee-making plant at Ponce, and lso a water-works system, and aid other wort of simpla character.

FIFTEEN NEW WARSHIPS are asked forby Secretary of the Navy Long, In his innual report. These are classified as follows: Three sea-golng hattleships of about 13,500 tons rial displacement, estimated at $\$ 3,600,000$ each, exclusiv guns and armor: three armored cruisers of 12,000 ton rial displacement, esetimated at $\$ 4,000,000$ each, exclusiv of guns and armor; three protected cruisers of 6,000 ton
trial displacement, estimated at $\$ 2,120,000$ eneh, withou
guns or armor, and six cruisers of 2,500 tons trial displacement, estimated at $\$ 1,141,800$ each, exclusive of armor and armament. This fleet would cost over $\$ 36,000,000$. The Secretary deems these vessels necessary, and he aska that con-
struction be commenced at once. He also recommends to Congress the revival of the grades of Admiral and Vice-Admiral; a new sysiem of rewarding merit and consplcuous service by naval officers; the amalgamation of the line and service hy naval officers; the amalgamation of the line and the engineering slall of the aavy; tran the Navy Department; the encouragem^nt of a national naval reserve malnmained by federal approprlations; and the addition of 99 officers in the new lifu of the navy. Of the $\$ 29,973,274$ approprlated to the Navy, out of the national defense fund, $\$ 018,447$ remalns unexpended. The maximum ifgting force of the navy at the close of the war was 196 vessels of all during the war 24,132 men. The total naval casualses latter, 54 went back to duty, and one died of his wounds.

CRUISERS OF MODERATE TONNAGE, with great speed many guns, but no armor, promise to be a favorlte warsh!p of the future. As a direct result of the lessons galned from the Santlago fight, Russia is sald to have ordered several 3,000 -ton ships with 25 -knot speed and heavy guns and England is reported to be building five 3,000 -ton cruisers with 25 -knot speeds. The Russian Vice-Admiral Ma koroff, head of the navy department, is reported as saying that the Spanish cruisers were provided with well-placed lost the battle hut it could not avert their destruction, they guns. Admiral Makoroft argues that with given great speed and heavy armament four s.000.ton unarmored cruisers are more advantageous in war than one 15,000 -ton ship.

THE FOUR NEW MONITORS, according to plans finally adopted by the Naval Construction Board, on Nov. 23, are o have single turrets, with two $12-\mathrm{ln}$. guns, as originally planned; but will be lengthened 27 ft ., glving an added dis placement sufficient to permit bunker capacity for 200 tons more of coal. The contractors have agreed to lengthe the vessels for the sum of 103,145 In addition to the origina contract price.

THE SHELLS USED BY THE UNITED STATES NAVY he guns for firing them and the powder charges in each case, are given in the following table
 Grains. 18 .n. armor-plercing profectlles the total cost
Note. F For $18-\mathrm{n}$.
firing is $\$ 588.00$.

THE MOST SERIOUS RAILWAY ACCIDENT of the week ccurred, Nov. 27, on the Boston \& Maine R.R., near South Berwick, Me., in which the engineer and fireman of a snowplow engine lost their lives. The plow was being pushed through the heavy snow when it sudaenly left the track. The engine followed, going down an embankment and hurying the engine crew in the wreck.

BOILER OF A RIVER STEAMER EXPLODED near Stockton, Cal., on Nov. 27, killing 6 men and Infuring 10 othere
SOME AMMUNITION EXPLODED in a house in Havana, Cuha, on Nov. 28, killing or serlonsly lnfuring 38 persons. The house contalned a considerable quantlity of powder, and five rooms filled with obsolete types of cartridges. Those injured were engaged in emptying the cartridges, the intention helng to sell the powder.

A LARGE ICE-bFEAKER, for use on the Baltic Sea, has been launched in England for the Russlan government. The vessel has a bow-propeller, to assist in breaking the ice, and the stern is provided with a recess in which the bow of a ship to be towed can he lashed. Thls boat 1 s huflt for the purpose of attempting to keep trafic moving in the Baitic in winter; and besides convoying merchant ships, the breaker can liself carry a large cargo.

ANOTHER OLD CANAL IS TO BE ABANDONED. The Pennsylvanla Canal Co., controlled by the Pennsylvania R. R. Co.,announces that the consent of the legislature will be asked to the abandonment of the Jontata Divistion, extend Ing up the Juniata Valley from its jnnction with the sus pennena trin 528 Penivan in 526 tons in 800 , the charges for interest and taxe penses were sus,405, and the charges ior herert and tax were $\$ 151,022$. The section which is to be abandoned is a
was originally a link in the through line of transportation from Phlladelphla to Pitshurg in connection with the old state to the Pennsylvania R. R. Co. in 185\%.

THE PORT ARTHUR CANAL CHANNEL \& DOCK CO says a Beaumont, Tex., Item, has recelved a favorable de clsion in the Supreme Court of Texas in the injunction ault brought by the property holders near Port Arthur. The decision is clatmed to remove all objections to the comple miles of the ship-canal now under construction, with $41 / 2$ under the canal njunction was granted by a Jefferson county court and a

THE PASS-A-LOUTRE CREVASSE
at the mouth of the Stewart \& Co, of St, Louls, Nater. 13 by the contractors, Stewart \& Co., of St. Lhe work done was to sheet-plle a length of hard ft . across the Pass. The work was accepted by the U . Engincers, and on the next day, a heavy storm caused two hreaks-of 102 ft . and 68 ft ., respectively- In the eastern wing of the shect-plling. The loss, amounting to about $\$ 8,000$, will fall upon the government but it to about ilttle effect upon the general purpose of the would have breaks were never closed, as the main hody work if these diverted into the Southwest Pass. The sum of $\$ 250$ now was approprlated for the repalrs at Pass-a-I of $\$ 250,000$ sum $\$ 195,000$ was pald to Stewart \& Co $\$ 10,000$ was the In surveys of the Southwest Pass, and the hatance used practically consumed in incidental and the halance was proprlation from Congress will thus bee Another aplast breaks Congress will thus be needed to close the THE NEW YORK ANTI-TICKET SCALPING law has been declared unconstitutional by the Court of Appeals of that state, which has fust handed down a decislon in the test case brought by a New York cley scalper shortly after the law went into force in 1897. The court's decision in based on an optnion written by Chlef Justice Parker, and the court stood four to three in feclaring the law unconstl cutional. In his opinton Juage Parker says:
The provisions of the statute in question have reference portation company. Can the legislature declare such sale to he fraudulent or prohibit them on the ground that it ness of theket hrokarage is in ftself of a fraudulent character. The business can he hnestly conđucted. and the most that is ssserted is that there are some men enaged in the
business who have imposed on the public. The ssme sssertion can be made with equal truth of every hustnesg trade and profeaslon. The real motve for the enactment of
this law. It ia suggested. is to enable transportation comthis law. it ia sugigested. 18 to enahle transportation com
nanles to keep others with which thev maventer into pool
ing srranzements ng arangements from secret violation, which is frequently the outcome under the present tink thritheraqe system
The granting of monopolles or the exclusive privilege to cor The granting of monopolles or the exclusive privilege to cor
norattons or persons has heen reararded as an invasion of
the rights of others to

 on naseage tickets ts anght to ho interfered with hy the
state nnder constideration: for hrierspe in such ticket

 af the nolice power anti-ticket scalping low was passed In 1807. extslature at every seslpera contesting its passage hy the hrought almost immedistely sfter the law went into foree ticket scalping meanwhie has gone on about as actively in New York clty, at least as hefore.

TWO NEW FAST EXPRESS TRAINS between New York and Washington, composed of observation, parlor especiliging and dining cars, the entire equipment heln decially made for the service by the Puliman Company have recently been put in operation by the Baltimore Ohio R. R. The two traing will leave New York an Washington simultaneously at $3: 30 \mathrm{p} . \mathrm{m}$. each day, and they will he exact counterparts in every respect. The parlor cars are 70 ft . long and have 34 seats. They have wide vestinules with anti-telescoping device; empire dech team heat, Pintsch gas, air preasure water system, an modern improvements. The ohservation, cafe an as the partor of the same general exterioration end recessed with cars, except that the full seating capacit wita a deep platiorm. ing comparement. All, cars are richly equipped and decorated, and the train will be called the "Royal Limited."

THE PLATINUM PRODUCTION OF RUSSIA, according to Mr. W. R. Holloway, U. S. Consul-General at St. Peter:hurg, for the jear 1897, was over 95% of the entire amouns mined in the world, or about 6 tons. Most of thla came from the following mines:
Mines of Count P. P. Shuvalo
\qquad
Do...ato
1 ton 396 lb
144
1.412
184
188
782
1020

EARTH SLIPS ON THE JORDAN LEVEL MARL BEDS OF THE ERIE CANAL. By Geo. A. Morris.*
Beginning at Otisco or Nine Mile Creek, the Erle Canal for about four miles west runs through low. swampy land, comparatively level and about at the elevation of the present tow-path, making the canal a through cut, 11 ft . deep. At the surface the formation is a covering of muck, and below is

Fig. 1.-Original Method of X-Bracing Struts Across Canal Prism Through Jordan Level Marl Beds.
found marl over a soft clay, then a cemented gravel. The marl is generally near the surface, but the cemented gravel varies from 2 ft . below surface to 65 ft . below. The valley is narrower at the eastern end (about one-half mile) and widens out on the north side of the canal to about $11 / 2$ miles. The old canal followed the foot hills on the
used powerful steam pumps to drain their work. When the pressure from the sides was removed, the pressure from above would ralse the material in the bottom (similar to squeezing paint from a paint tube) and it was soon discovered that more material was being removed than was shown on the cross-sections and that the slope walls were sliding into the canal and that the berme and tow-path banks were settling. Immediately it became necessary to devise means for stopping the sides and to confine the material. Various plans were suggested, but they all carried a considerable expense with them. Different methods that were economical in design were tried, each taking time to try the experiment. Plies were driven 8 ft . c. to c. with waling plece and sheet plling, then 4 ft . c. to c., then a close row of piles, but the piles would not enter into the cemented gravel, and as the material had become thoroughly saturated, they would lean over into the canal and occasionally would pop up out ot the ground (Fig. 4). It was finally decided to abandon the attempt for that season and to drive a close row of plles during the season of navigation, then when the water was drawn in the fall. to put on a waling plece to start the slope on, and to build only a short stretch at a time. This course was adopted. The piles were driven during the summer, but as the piles did not penetrate into the cemented gravel, and the material around the piles was in solution, it was soon discovered that
cult to describe them in general, for the reas that until the struts were used all we had don proved unsuccessful in the aggregate, althour quite a number of the plans used proved succes. ful under certain conditions. A severe cold whit ter, instead of a very mild one, would probab have ellminated any of the difficulties, and have eliminated any of the difficulties, and th
work would have been done wihout any addition work would have been done wihout any addition cost or without any one being aware that the was a suspleion of what actually did occur. In one of the photographs sent with this articl (the photograph is too dim for engraving.-Ed is shown a pile with the head very near to it bottom of a 30 ft . pile-driver. The piles used a long distance either side of this point were 42 long. In describing the driving of this pile, I state that what is true of this one is also true all the others. When this pile was raised t head was 12 ft . or more above the top of the lead As soon as the fastenings were removed, the pil settled with its own weight into the marl until its head was below the top of the leads. A smal rope was fastened to the pile and two men puile it down to where the hammer could be place upon it, and with simply the weight of the ham mer it settled to where it is shown in the photo graph. A light blow drove it to the cemented gravel layer. There was a crust a few inches thick over this layer which the pile could be driven through, but which then became so hard that great care had to be taken not to hit the pile too

FIG. 2.-ADOPTED METHOD OF BRACING STRUTS ACROSS CANAL PRISM THROUGH JORDAN LEVEL MARL BEDS.

Section.

FIG. 3.-METHOD OF UNDERPINNING SLOPE WALL THROUGH JORDAN LEVEL MARL BEDS.
south, but on the enlargement the alinement was changed to make long tangents. During the construction of the enlargement three firms of contractors were compelled to abandon their contracts, because of earth slips caused by the subsidence of the marl beds, and the work was finally completed by the State under force account, and after many difficulties had been overcome.

The stratum of marl is of varying thickness, the limit being about 15 ft . The following table gives the elevation of the top of the marl as actually shown from cross-section notes, datum being 1 ft . below the new canal bottom.
$\begin{array}{lll}\text { Station } 208=+10 & \text { Station } 240=+6 & \text { Station } 410=+10 \\ \text { Statlon } 220=+12 & \text { Station } 368=+10 & \text { Station } 420=+8\end{array}$ Statlon $220=+12$ Station $368=+10$
Statlon $238=+14$ Station $380=+13$
The marl and clay can be readlly handled when dry but when wet the mixture weighs from 80 to 83 lbs . per cu. ft . An excellent quality of Portto 83 lbs . per cu. ft. An excelient quality of Portand clay by the seml-humld process. The "Engineering Record" of July 16, 1898, has the followIng analysis of this material as it is used by the Empire Portland Cement Co.:

As the elevation of surface of the water during navigation is 2 ft . lower than the tow-path and the latter is about on the level of the swamp, the canal necessarlly had to take all the drainage. When the contractors commenced to excavate in the prism they bullt coffer-dams across the channel at short intervals and diked the sides, then N. Resident Engineer, Erle Canal Improvement, Syracuse,
we would have to resort to an original and expensive plan and place struts across the canal, as shown in the accompanying plans. We found that the method of X-bracing (Fig. 1) was expensive and that the brace at right angles to the strut (Fig. 2) would answer. The latter was adopted. The plan as finally adopted proved very successful and was used for $3,700 \mathrm{ft}$. of canal in one place and 500 ft . In another.
The greatest difficulty was encountered between Stations 370 and 410, and occupied our attention during both closed seasons, but during the first season the adjoining swamps were full of water. During the season of 1898 a drainage ditch was made on both sides of the canal, emptying into Nine Mile Creek at the east end and White Bot Nine Mile Creek at the east end White Bot tom Creek at the west end. This ditch took all surface drainage, so that the only water in the canal was from percolation, which was considerable. Because of this drainage ditch about two miles of slope wall was built on both sides of the canal without using struts, but with only a close row of piles with a waling piece to start the wall upon (Fig. 3). This portion had formerly caused the most trouble and cost the most to build, and we had anticipated that it would be the most difficult to handie. But inside of two months the flcult to handie. But inside of two months the prism was excavated to grade and two miles of
full depth wall built on both sides. This work full depth wall built on both sides. This work
was prosecuted by digging the excavation trench was prosecuted by digging the excavation trench for the waling plece, putting the waling plece in place, and building the wall ahead or the prism excavation. Another advantage this work had in its favor was that it was done in the
of March, April, and the first of May
The difficulties encountered on this section of the canal were so many and varied, that it is diffi.
heavy a blow, as it was liable to break it, or heavy a blow, as it was liable to break it, or
throw it out of line, and a pile out of line could not be forced back. The only remedy was to pull it and redrive it. Some of the plles that were driven to resistance have lifted to the extent of 8 or 10 ft ., as shown by Fig. 4, which also shows how they would move bodily into the canal. Just

Fig. 4.-View Showing Manner in which Piles Rose and Tipped After Driving, Jordan Level Marl Beds.
before the opening of navigation in 1897, the towpath in stretches from 500 ft . to $1,500 \mathrm{ft}$. in length settled anywhere from 2 ft . to 8 ft ., and in all cases where it broke away from the main land cases where it broke aw
At Newport Bridge we encountered a difficult
problem in rebuilding the abutments, vertical wall on tow-path side and slope wall on berme wall Before the bottom courses of the old abutment on the berme had been removed in winter fissures were discovered running either ide of the excavation. We removed all of the excavated material from the bank and drove piles at the foot of the slope wall, but the fissures extended and the banks began to settle, the wall siding toward the canal and pushing the plles we friven with it. Great cracks exhibited themhad dithe to Dwyer's Hotel. We selves in the Poundation to Dwyer's Hotel. We drove plles 50 ft . long as near to the hotel as the plle-driver could approach it, but they moved bodlly toward the canal.
Under the foundation to the berme abutment plles 57 ft , long were driven with two courses of
were used in paying for everything that could be measured. As there was no known way of ascertaining the amount of excavation, it had to be done under a force account. The cost of redriving plies, rebullding foundations and walls, rehandling of all kinds of material, bullding runways and coffer-dams, keeping ditches open, and the many other items too numerous to mention or remember, all went toward the aggregate cost. The contract prices were reasonable, being as follows: Excavation, cts., per cu. yd. Lmbankment, cts.,
Lining, per cu. delivered yd. Piles, delivered and
Hemiock timber Hemlock timber, per M. ft,
Spruce timber, per M. it . B. pruce timber, per M. ft. B., M. . Vertical wall in Portland cement, per cu. yd. Sope wall, per sq. yd.

compound engine, which has two tandem cylinders, the low pressure piston having two piston rods, the high pressure cylinder lying between them. The valves on the high pressure cylinder are of the poppet valve type, controlled by a fly. ball governor, and muitiported slide valves are used on the low pressure cyllnder. Each cylinder has four valves, and all the valves are driven from eccentrics carried by a secondary shaft which is driven by a miter-gear from the maln shaft.
While the engine is no doubt well designed, and embodies many good ideas, it is llkely to impress an American engine builder as being very com plex and costly for a moderate sized stationary engine, oniy 18 and 32 ins. $\times 23$ ins. stroke, and he will probably doubt the need of balancing such an

FIG. 5.-VIEW SHOWING SINKING OF VERTICAL WALL AND MANNER OF BRACING BRIDGE ABUTMENTS TO PREVENT SLIDING.

FIG. 6.-VIEW OF CANAL PRISM, SHOWING BOTTOM BRACES IN PLACE AND SLOPE WALLS UNDER CONSTRUCTION.
$12 \times 12-\mathrm{ln}$. hemiock foundation timbers securely eastened on them On this the masonry was built. Cinders were used as back flling. When the back filling was about half completed the abutment moved bodily into the canal about 3 ft . and settled about 6 ins . It is supposed that the bottom of the piles remained stationary, and that the tops leaned all together, as the abutment did not move on the timber foundation and did not get out of line. As the bridge was in place vihen the abutment moved, the parapet walls on both abutments were destroyed. We immediately put four struts across the canal between the foundation of the bermé abutment and the vertical wall on the tow-path side and below canal bottom. These struts remained until thls spring.
The slope wall, however, kept sliding Into the canal and finally laid flat. Two close rows of piles were driven 6 ft . apart, capped and floored with two courses of $3-\mathrm{in}$. plank, to make a foundation to start the wall. The embankment to bulld the wall upon was made of loose stone and coarse gravel from 4 ft . to 16 ft . back. Even with this precaution the wall would settle in one place and push out in another, and was rebuilt the second time in March and April, 1897, and in December about 300 ft . of the upper 4 or 5 ft . had to be relaid.
The vertical wall on the tow-path side kept settling all summer, and notices had to be put up cautloning the boats to keep on the berme, as the wall as it settled on top would ralse on the botom. In order to maintain the tow-path the contractors kept adding stringers and flling in with cinders during the whole season of navigation. In Fig. 5 It will be seen how much the wall settled below the tow-path. It was, of course, necessary to rebulid this plece of wall. Great vertical fis. sures developed running parallel to the tow-path, which kept growing wider, and the ground for 150 ft . each side of the bridge settled, in some places 2 ft . for 30 ft . back. We began the foundation and wall at the point furthest away from the bridge and worked toward it, meeting under the strut. Struts were used across and under the canal between the foundations of the vertical and slope walls, and between abutment and vertical wall.
The cost of this work is, of course, known, but whether it would benefit the public or not is a question not easily answered. The contract prices

There was a deduction for all material found in the work that could be used. Mr. M. B. Palmer, of Clinton, N. Y., was the Assistant Engineer in charge of the work for about a year, and then Mr Wm. B. Landreth, M. Am. Soc. C. E., of Cortland N. Y., was in charge for nine months, or until the contract was completed.

COMPOUND ENGINE IN THE POWER•HOUSE OF THE

 BUDAPEST ELECTRIC RAILWAY (With full-page plate.)The stationary engine illustrated in our insert sheet is one of three which are in use in Budapest, Hungary, in the power-house which furnishes current to the electric street railways and the underground rallway. It was designed and bullt by L. Lang, of Budapest. The "Zeitschrift der Vereines Deutscher Ingenieure," from which we reproduce our cut gives a very brief description of the engine, from which we take the following.
The engine has its cylinders arranged on the Colimann system, which affects the balancing of the reciprocating parts, the two cranks being set at 180°. A vertical engine of similar construction was in operation at the Electro-Technical Exhibition at Frankfort in 1891. The diameters of the cylinders are 18 and 32 ins., the stroke is $\mathbf{3 3}$ ins. The normal speed is 135 revolutions rer minute; this number can be varled 6% elther way. The high pressure cylinder is fitted with the Colimann valve gear.
An inspection of the cut shows that this engine possesses many features that are quite novel to most Amerlcan readers. Among them we notice especially the following: The fly-wheel is "dished" like a cart wheel, apparently with the object of getting its center of gravity closer to the bearing than is the case with the common wheel. The cylinders are placed neither tandem nor alongside, but in echelon, the hlgh pressure cylinder belng both forward of the low pressure cylinder and alongside of the plston-rod of the latter. With the cranks at 180° this arrangement is more compact than the cross-compound plan, at the same time making it possible to balance the reciprocating forces and to divide the work between two cranks, which cannot be done with the ordinary tandem engine, although it is very successfully done with the Wells balanced
engine, as to its reciprocating parts, when it is run at a piston speed of only 518 ft . per minute.

A HANDY INSULATOR FOR JOINTS IN WIRE.

We illustrate herewith a novelty in the way of an insulator for use in connection with rallway motors, or in fact wherever the common brass sleeve screw coupling is used to splice wires. At present whenever a motor is removed from the truck, for repalr or any other purpose, the insu. lating tape which has previously been carefuliy wound about these screw couplings has to be cut and thrown away. This entalls the use of new tape, and as there are from four to six such connections for each motor, the time consumed is also quite an item. The device here illustrated consists of a tube oval in section, composed of seml hard rubber, which is sllpped over the screw coupling, and two flexible end caps which hug the

Longitudinal Section of the Osgood Insulating Cover for Screw-Coupled Wire Joints. Methuen Electrical Co., Methuen, Mass., Makers.
wire and close down Into grooves in the oval shell as will be seen in the figure, thus making a sight. y, safe and watertight joint which can be very quickly put on or removed, and can be used over and over again. The cost of this device is less than taping, and its advantages as a time saver will be only too apparent to those who have taped screw-coupled joints. This insulator is manufactured by the Methuen Electrical Co., Methuen, Mass.

THE NORTHEAST WATER TUNNEL AT CHICAGO was completed Nov. 21 by the contractors, Mesars. Fitz Simons \& Connell. The land sections of the tunnel, known as the northwest land tunnel, are not yet completed, and there is iftigation pending over thla part of the work. The lake section will, however, probably be used during the winter, as the intake crib has been specially designed with a view to preventing trouble from. lee.

RECENT IMPROVEMENTS IN CENTRIFUOAL PUMPS.
By J. Richards.*
The writer $\ln 1896$ was called upon to prepare designs of pumps for the great drainage plant, or plants, at New Orleans, and after a careful examInation of the various means, other than centrifugal pumps, for raising and impelling large and variable volumes of water, came to the conclusion that the conditions, including the relative efficlency of different methods, made the use of centrifugal pumps preferable. This opinion was shared by who Charles Brown, C. E., of Basle, Switzerland, who acted as my colleague, and who is, perhaps,
diaphragm (a) is introduced so that the two sides of the pump will operate Independently and balance the thrust on the shaft.

The impeller is of the same diameter as the bore of the pipes, and the vanes have, in this case, no entering curves because the field of the water's revolution extends back into the suction pipes to some distance not yet determined by experiment. The discharge way was a rectangular parallelogram 66 by 24 ins., as shown in the drawing. The pump illustrated is of average size, many of them being larger.

After preparing the designs for the New Orleans draining plant, I proceeded to investigate

FIG. 1.-32-IN. CONOIDAL CENTRIFUGAL PUMP FOR 3-FT. HEAD. Designed by J. Richards, San Francisco, Cal.

the most eminent authority in such matters that can be referred to.
The power to impel the pumps at the various stations, scattered over the city and on the line of outfall, was in most cases to be transmitted by wires from a central power station and applled by electric motors, and therein arose a serious impediment in the adaptation of the speed of the pumps to that of the electric motors to drive them. A large number of motors were required, aggregating, as now remembered, over $7,000 \mathrm{HP}$., and the economic limitations of the speed or rate of revolution for the motors was such that the pumps had to be adapted accordingly.

As the proper clrcumferential speed of centrifugal pumps differs only in a slight degree from the velocity due to the head, being about 8.5 VH , in feet per second, and as the head in some cases was only a few feet, pumps constructed on the ordinary lines were out of the question. The impellers to produce the required speed became less in diameter than the suction pipes to convey the water at a velocity of 8 ft . per second.
This difficulty led to the adoption of the "Conoldal" system which it is the purpose of this artlele to explain. The name "conoldal" was applled by Hon. Henry H. Bates, of Washington, D. C., and relates especially to the impeliers, as will be explained hereafter.
Reverting further to the designs of the pumps for the drainage works at New Orleans, these were prepared under the Impression that the machinery could not be submerged. Fig. 1 represents a pump to raise 84 cu . ft . per second, or 37,800 gallons per minute under a head of 3 ft ., the pump and motor making 125 revolutions pei minute.
The drawing with the dimensions given make the construction so clear that no explanation is reguired except in respect to the impeller. This, it will be seen, is a double conoidal spindle, provided with the usual vanes. It is buoyant in the water to the extent of its displacement, which about equals its weight, thus relleving the pump shaft from the pressure due to the weight. It will also be seen that the conoldal form distributes the work equally over the width of the impeller from the inlet to the center, completely changing the course of all the water before It reaches the center. To provide against any possible lateral disturbance around the Impeller, a
-22 Californla St., San Francieco, Cal.
this system of constructing centrifugal pumps, not only in respect to their being driven by electric motors, but for all purposes to whlch such pumps are applied. This investigation led to the development of tables for proportions so as to bring the design of the pumps as nearly as possible within an organized system of manufacture.
Fig. 2 is a drawing to scale of a conoidal pump of 10 lns . bore, or discharge, adapted to average conditions for heads from 10 to 50 ft ., but as modification for the varlous heads is required in to had not only to include constant dimensions and quantities, but also variations therefrom. The
recognition in the present system. Endurance can be inferred from construction, but the calculation of cost is more intricate. It may be explained
from some rules of common application. For ex. from some rules of common application. The relative dimensions, welght an of a rotatlve machine of almost any class or type are inversely as the speed of revolution. The cost of centrifugal pumps is roughly as the square of their extreme dimensions; that is, a pump sland-
ing 6 ft . above its base will cost four tinas much as one that measures 3 ft . above its base and so on. By these rules it may be seen that the conoldal system will greatly diminish the cos of pumps for a given volume of water, becaus their dimensions are in most respects reduced in versely as the rate of rotation.

The technical features affecting efficiency could be discussed here, but as a good deal may be disclosed by experiment, this part of the subject will be laid over for a future article.

THE GEOGRAPHIC WORK OF THE COAST AND GEODETIC SURVEY.
By John F. Hayford, Assoc. M. Am. Soc. C. E. (With full-page plate.)
The United States Coast Survey first became permanent in 1832, although the original act providing for a survey of the coast and making an appropriation for that purpose was passed in In it the plans for the survey which had been formulated and acted upon in former years by F. R Hassler, the first Superintendent, were continued in force. The sclentific organization of the Survey may, therefore, be properly said to date from 1832 . The survey was to be made primarily for the benefit of commerce, was to extend twenty leagues from shore, and special observations were authorized even beyond that limit, as far as the Gult Stream, when in the opinion of the President such observations might be especially valuable to the commercial interests of the United States.

In the course of time the Coast Survey proved to be an organization of such vigor, its result: proved to be so uniformly trustworthy, and there were found among its offleers men of such acknowledged ability, that the scope of its dutles was gradually but steadily widened to include a great variety of operations allied in various ways to its original duty. Now, after a ilttle more than a half century of activity, the Survey finds Itself

FIG. 2.-CONOIDAL PUMP FOR HEADS FROM 10 TO 50 FT.
system is about to be subjected at San Francisco to regular trials for efficiency, the results of which will in due course be published. The letters on the drawing refer to tabulated dimenslons.
Fig. 3 is an elevation of a conoldal centrifugal pump erected for pumping from a ditch or river, quite uniform for pumps from 5 to 60 ins. bore.
The most important conditions in centrifugal pumping are the efficiency, endurance, and first cost, and as may be seen by examination of the
drawings, the two last-named features have due
rendering more valuable benefits to commerce, by way of making the navigation of the coasts safe, than ever before; and also finds itself actively engaged in many other forms of geographic work. The requirements of the original acts of organization of the Survey might, perhaps, be considered to be fulfilled when accurate charts of all parts
of the coast had been made. This, the fundamental work of the Survey has been carried on v / g orously and steadily. Commencing with a few of Expert Computer and Geodesist, U. S. C. \& G. S., Wash-
ington, D. C.
more important regions on the Atlantic coast he work of chart making was gradually extended until the charts now cover (although the origina) surveys do not) every part of the Atlantic, Gult ind pacific coasts of the Unlted States, and a and Pactic coasts Alaskan coast. From time to time, as the interests of commerce demanded, the aryeys in certain special localities and importan uhers been repeated in greater detail, an thers in new charts an the new information embodere. Meanwhile the commerciai interests involved have increased to such an extent that the demand for surveys for harting purposes is as great as ever, resurveys

In addition to the charts the Survey now issues the "Coast Pllot" in nine quarto volumes, and other volumes are now being prepared. The "Coast Pllots" are issued for the same purpose as the charts, to conduce to safety in navigation. They give, in elaborate detail, descriptions from the mariner's point of view of the coast, of the shores of harbors, of the character of available anchorages, and of the known dangers to navigation, together with sailing directions for entering harbors. The volumes are illustrated by views of portions of the coast which may serve as landmarks, and by portions of charts.
When considering the contributions of the Coast

in greater detail in some regions and original surveys in regions where the charts now depend upon compiled data.
The Survey at present issues over 500 different harts and maps varying in scale and character according to the objects for which they are designed. Nearly all of them belong to one of four general classes, viz.; 1st, sailing charts, on a scale 11200,000 which exhlbit the approaches to of 1-1,200,000, which exhibit the approaches to a and enable the navigator to identify his position as he approaches from the open sea; 2 d , general charts of the coast, on scales of $1-400,000$ and 1 200,000 , intended especially for coastwise navigation, and showing the configuration of the shore, the positions of islands, rocks, and shoais, the light-houses, life-saving stations, and other natural and artificial landmarks; 3d, coast charts, on a scale of $1-80,000$, by means of which the navigator is enabled to avail himself of the channels for entering the larger bays and harbors, and to recognize the beacons, buoys and light-houses by their distinctive features and positions; 4th, harbor charts, on large scales, intended to meet the needs of local navigation. The work of the Coast Survey is closely co-ordinated to that of the LightHcuse Board, and all changes in lights, beacons, or buoys, are promptly indicated upon the charts by correcting them up to date by hand entries a the last moment before they leave the office. The charts, except certain editions classed as prelim inary, are printed at the Survey office from copper plates made by the Survey's corps of expert en gravers. They will stand the closest scrutiny as to the accuracy and neatness of work upon them as well as to the rellability of the information which they furnish. That the mariner appreciates these charts is indicated by his demand in ordinary times for $\mathbf{2 5 , 0 0 0}$ of them per year, at a cost to him of about $\$ 11,000$. Another 25,000 or more are distributed annually to various departments of the government and to librarles.
The Coast Survey charts are a reliable basis upon which to design proposed harbor improvements, and they have been extensively so used by the Corps of Engineers of the Army. In those cases in which one or more resurveys of a harbor have been made the charts are of unusual value in this connection, for the changes observed to have taken place in the intervals between survey serve to indicate what changes must be guarded against in the future, and what favorable changes may be relied upon, and to indlcate the probable effect of proposed structures upon depths in their vicinity.
The officers of the Survey have made accurate topographic surveys of $\mathbf{3 8 , 0 0 0}$ square miles, mainly in connection with the work of making charts.

Survey to geographic science, it should be kept in mind that its charts and "Coast Pilots" are in the main the results of original surveys and observations, made by lts own officers, the data com piled from other sources forming but a small proportion of the whole. These original surveys have, as a matter of course, brought to light hun dreds of shoals, banks, sunken rocks and other dangers to navigation which were before unknown. In several cases they have also incident ally made known unsuspected safe channels for entering harbors. The maln ship channel now used in entering New York harbor was discovered by a Coast Survey party during its regular op erations at a time when a much poorer channe was in use and was supposed to be the best. A Coast Survey party operating at the mouth of the Yukon during the past summer discovered a new channel carrying a depth of 8 ft . across the bar at low water. This channel will save much time and distance, and a trans-shipment, for vessels of sufficlently light draft to use it.
A study of the tides forms an essential part of the work of charting a coast. Along this llne the Coast Survey has been particularly actlve, both In taking observations and in making tidal predictions. Over one hundred stations have been occupied with self-recording continuous-record gages, and the total length of such record is equivalent to a continuous record for more than three hundred years at a single station. In addition to this, short series of readings have been taken from staff or box gages at 2,500 different stations. Based upon these observations upon our own coasts and upon the compiled results of observatlons upon foreign coasts, the Survey publishes annual volumes of tldal predictions for the whole world. The volume for 1899 shows the predicted time and height of every high and low water throughout the year for 24 stations in the United States and for 46 foreign stations. These primary predictlons are based upon a harmonic analysis of records from self-recording gages. In those cases in former years in which the predictions have been carefuliy compared with the actual tides as subsequently observed, the discrepancies developed have been so small that it is probable that they were due almost entirely to meteorological causes. These primary predictions re extended to about 3,000 secondary stations, with various degrees of accuracy, by means of idal differences and ratios derived from short series of observations at those stations.
The shores of the ocean, and the bottom near the shore, are continually being modified by the action of waves, currents and winds. The Survey has rendered important service both to geographic science and to commerce by carefully noting such
changes in certain localities, and by noting the mode of operation of the causes which produced them. The safety and efficiency of public works cor the improvement of harbors often depend upon an accurate conception of these causes.
One of the most interesting problems of physical hydrography is that presented by the Guif Stream. What explanation can be given for the existence of this great current of unusually warm and saity water; apparentiy acting as one of th controlling factors in the climate over an ocean and upon the coasts of two continents; seemingly resistiess in its motion, and yet so sensluve to disturbing forces that in its current the varying effect of the moon's attraction has been detected Through the observations made by the Survey the status of this problem has been greatiy changed. Formerly it was easy to find a theory which woula seem to explain the few observed facts, and accordingly many theories were extant and unrefuted. Now, such an abundance of facts are on record that none of the oid theories seem to be adequate, and no satisfactory new theory has presented itself. The scientific world seems in this matter to be in a healthy state which is prophetic of true progress, viz., it is realized that while the facts so far established are sufficient to prevent unqualified acceptance of any extant theory, many more observations are necessary to satisfactorily refute old theories or estabiish a new one. The principal facts which have been established by the Survey depend upon soundings along the track of the stream and in the Gulf and Caribbean Sea; numerous and accurate observa tions of the density and temperature of the water at a great many points at all depths in the stream and the Gulf, serving to show the vertical as well as the horizontal distribution of these elements; and finally, observations of the current itself. The current observations are remarkable for the fact hat they have been extended to great depths never before explored by a current meter.
The mariner relles to such an extent upon the magnetic needle that a study of terrestrial mag. netism is a necessity in connection with the duty of chartering the coasts. In harbors a knowiedge of the dip and intensity is needed, as well as of the declination, in connection with the process of adjusting ship's compasses. Neariy all of the early, and many of the modern, surveys in this country having for their purpose the fixing of property lines were made with the compass, and therefore an accurate knowledge of the geographical dis tribution and secular changes of the magnetic de clination in the interior of the country is of grea practlcal value as a means of preventing and settiing property disputes. The determination of the magnetic declination for the purposes of the mariner at various polnts along the coast formed the small beginning from which has developed a great magnetic survey which covers the whole country and which has proved to be of great scientlfic as well as practical value.
The operations of this magnetic survey may convenientiy be classified as, 1st, magnetic observations by the officers of the Coast and Geodetic Survey; 2 d , the compliation of results obtained by outside parties; 3d, the systematic correlation, discussion, and publication of the accumulated data.

Officers of the Coast and Geodetle Survey have made magnetic observations at some 1,200 stations distributed over the whole country (a few also in foreign countries), and many of these stations have been reoccupled several times with a view to determining the secular changes and to keeping the magnetlc information up to date. Continuous series of observation have also been made at flve stations (usually with self-recording instruments) covering a period of several years at each. These observations, together with those complled from other sources, have served to determine the geographical distribution of the magnetic declination, dip, horizontal and total intensity for the whole United States, and a more or less extensive knowledge of their secuiar variations at many stations. The decilination, which it is most desirabie to knsw for practical purposes, has been determined at 3,500 stations, and ther'e are 118 stations at whlch its secular variation has
been determined by observations at 13 widely separated epochs on an average. The series of appendices to the annual reports, In which the carefully digested results have been published from time to time, form an unrivaled repository of magnetic information pertaining to the United States. Assistant C. A. Schott, the author of this series, had recently been awarded a prize of 5,000 francs $(\$ 1,000)$ by the French Academy as a recgnition of the scientific value of his researches in terrestrial magnetism
From the beginning, the surveys of the coast were based upon trianguiation of a secondary and tertlary order in the immediate vicinity of the hydrographic and topographic operations. The desirability of an adequate control over this coast work when it extended over great distances led to the execution of primary triangulation extending some distance inland. Later, as the desirability of connecting the Atlantlc and Pacific surveys became evident, and as it also became evident that inland triangulation was of value to the states traversed by it and to varlous inland interests, the transcontinental triangulation was projected, the Coast Survey was directed to furnish accurate geographic positions to the several states, and the name of the organization was offcially changed from Coast Survey to Coast and Geodetic Survey (In 1878).
At the present time the triangulation covers an area of 350,000 square milles and determines accurately the geographic positions (latitudes and iongltudes) of nearly 29,000 polnts. See full-page illustration showing areas covered by completed triangulation, together with reconnolssance and proposed triangulation. The elevations of 2,800 of the triangulation stations have been determined by measured vertical angles. In connection with the triangulation, over 5,000 miles of precise leveling has been done, and this serves to fix the elevations of more than 1,000 permanent bench marks, and to control the elevations derived in part from trigonometric ieveling.
A geodetic survey is geographic work on its grandest scale, for it furnishes a measurement of the earth as a whole, even though the area covered by the survey may be but a small portion of the earth's surface. Aside from two other short arcs (8° in aggregate length) the Coast and Geodetic Survey has now nearly complete an oblique arc from Caiais, Me., to Fort Morgan, Ala., 22° of a great circle or 1,500 statute miles in length, and an arc of the 39 th parallel 4812° or 2,600 statute miles in length. These four arcs have an aggregate length measured on a great circle of 57°, whereas the combined length of the avallable arcs (measured by various nations) used by Clarke (in 1880) in deriving the figure of the earth was 82°. Evidently the United States is an active member of the International Geodetic Assoclation. It is also noteworthy that the different Coast and Geodetic Survey arcs are all connected so as to form a single system, and therefore have greater welght, or efficlency, in the determination of the earth's figure and slze than they would have if disconnected.

The figure and size of the earth are derived from the resuits of a trlanguiation by comparing the geodetic latitudes, iongitudes and azimuths with the astronomical values of those quantities as directly observed. On the oblique arc, 14 telegraphic longitudes, 48 azimuths, and 61 latitudes have been observed; whlle on the transcontinental (39 th parallel) are the numbers are 35 telegraphic longitudes, 73 azimuths, and 109 latitudes. A few of these determinations are common to the two arcs.

The study of the station errors developed wher these astronomic measures are compared with the geodetic measures also furnishes an interesting contact point between geodesy and dynamic geology, for the limiting magnitude of the station errors is a measure of the strength of the earth's crust-If it is permissible to use the word "crust" In the present state of our knowledge. Geologist have shown that in the past there have been Immense quantities of material transported in vari ous ways to considerable distances along the earth's surfaces, by glacial action and the action of running water, for example. Such transfers of
naterial must produce stresses in the rigid (?) earth and must also produce station errors, the distribution of matter being changed from what t must have been when the whole globe was made up of fluids and the station errors were each zero. In those cases in which the transportation s continuousiy in one direction, as for example hat caused by running water, the stresses and the station errors must go on increasing indefinitely unless there is a yieiding on the part of the rigid (?) earth. Any yielding and counter transerence of material beneath the surface must re duce both the stresses and the station errors. The station errors furnish, therefore, a measure of the accumulated amount of transportation in those regions in which such amount is smail; and fur nish a measure of the strength of the material composing the earth in those regions in which the accumulated amount of surface transportation is very large and the station errors and stresse have both been reduced by ylelding untli the stresses could be borne by the materiai.
The formation of the great telegraphic longitude net, covering the United States and spanning the Atlantic, is a geographic feat worthy of especia note. This great net comprises no less than four transatiantic telegraphic determinations (1866 $1870,1872,1892$), serving to connect the longitude system of this country with Greenwich and Paris. The whole system, including the European con nection, is composed of 45 stations connected by 72 determinations of difference of iongitude. The average value, without regard to sign, of the cor rections to the separate determinations arising from the least square adjustment of this grea net is only one-fiftieth of a second of time, and the maximum value is 0 . ${ }^{\circ} 069$ (to a determination in 1866). The probable error of an adjusted longi tude difference is $\pm 0 .{ }^{*} 024$
In that grandest of geographic undertakings, the measurement of the earth as a whole, an other method of attack is by the use of the pendu ium for the measurement of gravity at various points upon the earth's surface. The activity of the Coast and Geodetic Survey along this line may be inferred from the fact that its observers have occupied over 60 home stations and 28 forelgn stations.
The importance of a geodetic survey can not be properiy judged by the number of points directly established by it. It bears the same relation to other surveys covering the same territory that the Supreme Court does to lower courts. Its resuits are of such a high degree of accuracy that it stands in the position of a court of last resort among surveys; it serves to prevent too greât an accumulation of error in other surveys; to decide as to the right when two or more determinations by different surveys disagree; and to furnisn indisputable points of departure for new surveys. It is in this relation to other surveys that the great geographic value of a geodetic survey lles. To the geodetic survey must properiy be ascribed a part of the value of every survey based upon or controlled by it
The reiations of the Geodetic Survey of the United States to other surveys may be illustrated by a few instances taken almost at random. The Massachusetts State Survey, serving among other purposes to fix the township boundaries, is based upon the work of the national geodetic survey: two of the latest municipal surveys, that of Baitimore and that of the Borough of the Bronx* (a part of Greater New York), are based upon and controiled by the geodetic work of the Coast and Geodetic Survey; the topographic work of the United States Geological Survey is based upon trianguiation by the Coast and Geodetic Survey In the regions covered by their triangulation; disputed portions of many of the state boundarles have been finally fixed by the Coast and Geodetic Survey. Among the latter cases, and within the last ten years, may be mentioned the oblique portion of the California-Nevada boundary now being located and marked after years of disputes and resurveys by varlous parties; a portion of the Maryland-Virginla line; the north boundary o Delaware; and the Indiana-Ohlo boundary. The
*Eng. News, May 19, 1898.
surveys on the part of the United States in c nection with the disputed Alaskan boundary h been made by the Coast and Geodetic Survey

an air cell pipe covering.

The pipe covering shown in the accompany illustration, known as the "Gast Air Cell Cowe ing." is designed to insuiate effectually amm or brine pipes. It consists of corrugated and sheets of light straw board made up togethe the form of split tubes. In placing the cover after the pipe is clean and perfectiy dry, the section is sprung about the pipe, drawn tight, a the flap cemented down with paste or glue second and third sections are piaced in the sa way, except that each is silpped back, as show in the cut, so that joints are broken. The total thickness of the covering for pipes up to $11 / 2$ ins. is $11 / 2$-in.; above this 2 ins. is used. The coverings are made in $3-\mathrm{ft}$. sections, the outer one having

Corrugated Paper Insulating Covering for Pipes.
a canvas cover. In making elbows, tees and short bends a special filler with molded covers is used. The peculiar construction forms a serles of small air ceils, one overlapping the other, the whole precluding the outside air from gaining access to the pipe. In this way no moisture can reach the plpe, and the formation of frost or ice on its exterior is, therefore, impossible. At the same time the circulating liquid is practically unaffected by temperature changes of the atmosphere or surrounding objects. The covering is aiso recommended for protecting water pipes from freezing in cold weather. It is made in sizes to fit $1 / 2-\mathrm{in}$. to $8-\mathrm{in}$. pipe, the former costing about 40 cts . per ft . and the latter $\$ 1.25$ per ft ., when in place; the other sizes ranging between these limits. The New York Fireproof Covering Co., 26 Cortiandt St., New York city, are the manufacturers. A steam pip covering empioying the same principie, using. however, asbestos paper instead of the corrugate. straw board, is manufactured by the same company.

THE TRAINING AND WORK OF THE ENGINEER.

By Chas. Waliace Hunt, Pres. Am. Soc. M. E.
A change has been taking place of late years in the wor required of professional engineers. This has largely come from the development of our manufacturing estabilshment from the position of belng a minor factor in our economl life, to being one of great importance, and the necessar employment of skilled engineers to conduct their tecbnica affalrs.
The engineer of the user and the engineer of the maker have widely different duties. Consider how different may b the information required in practice by two classmates, whom we will designate as " \mathbf{A} " and " B," who graduat from college as engineers. "A" secures a position in tbe engineering department of a city, and commences his work which may be the designing of a new water pumping sta tion. His college course has fitted him for the work. His text-books were suited to problems of thls character. He finds abundant information on all branches of the subfect in data published in the proceedings of scientific socleties, in technical ilterature, and in annual reports of clty departments. The forms of contracts to be entered into are at hand, all found elaborately drawn, with every pont safeguarded, and need only a little se:ection and adaptatio to sult his case. They place in his hands the power to clde absolutely and without appeal all questions which may arise in carrying out the work.
Extract from the Presidential Address before the Am
Ican Soclety of Mechanlcal/Sngineers, Nov. 29,1898 .
"B" obtains employment in the engineering department mates and submit tenders for the pumping plant for which of contract proposed by "A" has many minute and form of contract propuses to hind and limit the supplier The tidder to be submitted for the work must in its scop The tiarding protect the interests which "B" represents not oniy in a general sense, hut in every one of the clause of the proposed contract. Every obscure phrase and every adjechie used by "A" must have definite consideration and be clearly defined in hoth an enginceering and lega sense. " B " here finds that the information derived from his college course is largely nappilicabie, and there is no technical literature which be can use, either as a genera guide for making a form of tender or the proper expres sions to use to define or limit the obscure ciauses or words found in the specification.
Looking at the subject from a purely technical point o view, we see quite as great a variation in their work. "A" wouid require oniy a general knowledge, wbile " B " woul require Le most thorough and exhaustive information o tbe qualities of constiuctive materiais, and shop practic avaliable in that particular locatiou. The farther we carry the comparison of their work, the more cleariy it is seen that the educational requirements are becoming mor complex to correspond with the growing specialization of engideeriug work.

Engintering Practice Ahroad.
There is another pbase in engineering practice repre sented by the duties of " A " and " B " which now becomes interesting if the work of American engineers is to take the place in the world at large to which the indication now so plainily point. In other countries it is a common practice for " A " to make ail the general designs and al of the details, and the suppicer has no responsiblity elthe for the design or for the efficient working of the plant whe co cr specifications, the cost of the changes required ar paid by the purchaser, in the usual bill ior extra work. In pas case the duties of "B" are small or disappear a togetber.

American Englneering Practice.

Tbe American practice is tending to the method of making the requirements issutd hy " A " of a general character which will cover the resuits sought, and leave to the sup piler, 'B,' the work of designing the particuar means wh accomphe the rit a magnikude, and miscoveries, grasp, sud ready hasie, hew terials and new practices, whuls, each phase must be elicint by ect bandied ay an expre to respond to the requ liferent sent for consideratice "A" must select from these and die submitted, the one which hest of fifll the requirements. It is a division of prumises " " " "B " "ach of whom, by tastes and bring is especiaily futtd for bis part of the work We arg berce theis tuties by saying that may paraphrase ther judge, is a counselior.

Post-Graduate Needs.

At tbe present time we cannot expect our technical schools, painstakirg and perfect as they are, to prepar both " A " and "B" fully for such new and varied duties, or even to bave their instruction in the practice of en gineering fuliy abreast with the latest practice, or at leas not untli progress in the arts and sciences has suhstantially ceased. it takes t.me for a new practice or a new result to he recorded, puhilshed, consldered, and adopted hy the teacblng staff. Thls difference between the teaching and the engineering practice of the day is not onily an indication cf progress in engineering. but in eome measure an index of its rate. The student then must expect, as a normal p.ocecding, to supplement his graduating acquirements hy furtber study, together with assoc.ation with his pro fessional brethren, in order to place himself ahreast of the times, and to he fitted for the most effective and useful service.
Engineering theory and prsctice are rapldiy extending witb the general sdvancement of our economic interests, and tbe engineer, whether be he a young graduate or otherwise, who does not make use of the modern alds to information, among which are to be counted sclentife soCleties and iteralure, and a personal assoclation with his bretbren, with the innumerable hints and suggestions which come from these, will soon he found strugging w.th what seems to him adverse fate, hut what, in reality, ic inferior knowiedge, behindhand knowledge; or, plainly speaking, fassed by greater or less. The engineering worid has passed by him, and he must then vlew the working out cf the law of the survival of the fittest, with what grace he may.
Tbe sdvance made in the accumulation of useful data and more accurate knowledge in practical engineering gained ose season, is presented to a scientific society the next, ind still later it will he embodled in text books for the Instruction of students who are soon to take ous places narry on our work. Unth attention is called to the parts the great hulk of the engineering data avallabie to us

WEATHER TABLE FOK OCTOBER, 1898. (Furnished to Engineeriug News by the Depar(ment of Agricuiture.)

Stations.		Temperature. (Degrees Fahrenheit.)				Wind.			Preciptation-hain or melted snow. (Inches.)			
		Veloctty in miles per hour.		Direction at time of max. velocity.								
		A verage.	Max.		Mta.	Ranze.		Heavie-t	So. ol			
		Average					Max.	Total.	$24 \text { hour* }$	ramy Gay:		
鹄1	/ Norittield, Ve.......		46.6	80	20	60	8.2	34	8	2.87	$c_{11.02}$	14
	Prothand, Me..........	50.0	81	31	50	8.2	37	$\stackrel{0}{8}$	5.904	1.63	13	
	New York City.......	57.6	80	34	42	14.3	52	NE	9141	1.354	12	
	Pittsburg, Pa........	56.0	86	32 30	54	i6.	20	- \mathbf{E},	3.84	1.16	11	
	$\left\{\begin{array}{l}\text { Chrago, } 111\end{array}\right.$	50.6 50.0	75 82	30 27	45	18.3 9.5	63 30	SE	3.26 2.54	0.86	16	
	St. Paut, Mliun.	45.8	81	26	55	86	30	NE	5.81	1.74	16.	
	Duluth, Mlan........	43.8	79	28	51	11.4	34	ew	3.394	1.60	12	
	Bismarek, N. Dak....	39.4	67	19	48	11.5	46	W	2.66	:1.180		
	(Average............	48.9	79	28	51	10.7	38	-	4.05	1.26	12	
	\| Washington, D. C....	87.8	83	30	53	6.6	28	E	3.84	1.04	12	
	Loussville, ky........	58.2	90	31	59	8.3	32	S	2.85	1.02	12	
	$\left\lvert\, \begin{aligned} & \text { St Louls, Mo......... } \\ & \text { Savanhan, Ga....... }\end{aligned}\right.$	56.0	86	32	54	10.7	39	SW	4.34	1.45	1.1	
	Kausas City, Mo......	61.6 53.4	89	39 30	59	10.5	60 33	NW	4.46 4.40	2.85	$1 \underline{ }$	
	Jacksunvilie, Fla....	70.0	90	40	50	8.3	60	w	6.74	2.61 359	17	
) Cualtanooga, Teun..	59.0	87	32	55	7.4	84	W	4.08	1.42	11	
	New Orleans, La.....	67.6	89	43	46	8.4	35	Nw	1.78	1.07	${ }_{6}$	
	\| Meu phrs, Tean......	60.8	50	35	55	10.4	40	sW	3.14	1.27	9	
	Palentine, Tex.	66.1	97	34	63	6.4	36	NW	2.42	1.00		
	(Averag	61.6	89	35	54	8.7	40	-	3.77	1.74	11	
		40.8	65	21	44	7.2	37	sw	1.10	0.37		
		+7.2	60	32	28	3.5	20	sw	4.80	1.62	19	
		61.2	81	50	31	7.6	30	W	0.86	0.45	4	
		48.4	76 73	30 22	46 51	5.2 6.1	34 30	SW	1.57	0.74	4	
		49.0	84	20	64	8.3	40	sw	1.05	0.04	1 6	
		49.3	73	29	44	6.3	32	-	1.65	0.71	7	

- Port Angeles closed, station moved to Port Crescent. 10 milies distant.
now have been first presented to a sclentific society, and there permanently preserved until the tlme came for thelr utilization or sppilication. It is from tbis great fund of in formation, principaliy accumulated during the last century, that we draw upon for the materials for our text books, our general treatises, and our engineering handhooks.

Sclentific associations alm to add to the great fund of information avaliabie to every engineer the worid over, and not for the henefit of a limited clientage. The greater the avallablity and the publicity given to the pubilshed proceedings of a scientific society, the more neariy has the soclety accomplished the chiel object of its existence. Industrial Progress
It has long been evident that we are making rapld pro gress in perfecting our manufacturing machinery, as wel as organizlng and developing our industries, thus constantly increasing the efficiency of our labor, until we have lately reacbed a point where an hour's labor with its fa cilties produced more of our principal products, and trans ported them further, than an ny other part of the world
Commencing under adverse conditions and developling in fieid of restricted capital, with scarce and high-price labor, engineering in America has applied tbe forces and materiais or nature to the uses of can in a characteristi way. Freedom from mediæval traditions aud the ham pering conditions found in the older countries, left them uhstantially free in the choice of meaus to accomplish eir end. lninuenced a our engineering has been by the experience and the work of other parts of the world, ye o cannot escape the fact that its development was eaentially indepeiden, and in proveme has lond ers, prolis and savings have been added to the capita nvested in our industries undr the conthent, two hundred ears agoling go a struggi.ng natlon-strugging witn industrial diff cuites and senious political prohlems-has triumphed over these eariy licilation, and nent polut a the nent position among the great nations of the world.

> Effect on the Mind and Character

The life of the engineer has a full measure of the lahors, the trials, the discomiorts, and the disappoint ents which are lound in this, as in every other waik of ire. But it aiso has the successes which come from well irected labors. It is hol , however, entaer the uselul work r the successes of life which bring happiness. It is nan's ideals whlch make him happy
Whichever way engineering may deveiop as time rolis on, its elevating influences are constantly at work on the mind and on the character. The work is carried on under nchangeahle laws, which must he rigorously applied and adhered to, or fallure is sure to resulc Man bulids to master, to resist, or to gulde the forces of nature. I he has rightly judged the conditions, his work stand as a permanent monument of the fact; but if otherwise the irresistille laws of nature will develop the defect and iscover his ignorance, incompetence, or error to every bserver.
Hence he laboriously seeks out the unseen laws and corces, then expresses the revelation in a workable form or his dally use. He tests his materiais with painstaking efinement. He measures eiectric resistances with an ac
curacy now reaching the point of one in four millions, tlme to the one three-milliouth part of a unit, divides circle with a mean error not exceeding the one-milliontb of the circumference, makes surfaces 6 ins. square with a variation from absolute flatness of less tban onetwo hundred thousandth of an inch. ruies ines wbich vary from absolutely perfect spaciug by only one-three miliionth part of an inch, sees cleariy the spectrum of samarium when one part is diluted with three million parts of lime, and surveys innes 11 miles long in the open air with an average variation in three measurements of ouly four-tenths of an inch.

The Basis of Ethies
The effect of living and working in such a sphere of action, where it is incoucelvable that an engineer could kuowingly he otherwise than exact in his work, should tend to influeuce the whole trend of his life aud character, and makes them to a greater or less degree a rellex of his dally work. He of all men has the most unchaugeable and exalted hasis for his etbics-the clearest of all knowledge of the disastrous resuits which will surely follow the violatiou of law. Tbe very qualities of bis mind which makes his work a pleasure and a success will all tend to hring his every act into compliance with the inexorable laws of the universe. If it is otherwise, and his couduct is uot guided by the laws of right doing and right thinking, aud his ethics not in accordauce with uot one who is skilled extent, he is not an engiueer pature to the uses of man mature to the uses of man.

THE METHOD OF ERECTING EGYPTIAN OBELISKS has .ong puzied the student or Egyptan anuquices, and the numerous documenis and wail-pictures icuud do not ex piain It. In a late lssue of "Construction Moderne,"' Mr J. C. Kruseman suggests a possibie method of bandilag blocks of stoue weighing as much as 1,000 cons, and some times $131 \mathrm{ft} . \mathrm{kigh}$ and 10 ft .square at the hase. These hlock were aiso p.aced on pedestais considerabiy raised ahoye the actual level of the soll. Mr. Kruseman finds that these obelisks were generally piaced in front of pylons or temples. He believes that the Egyptians first built a alighuly inclined causeway of sand or other material, equal in hegh at one end to the ohelisk to he erected; ending at the end is a strong wooden crib, and leaving a space between the crib and the tempie for the ohelisk. Tbe hase was tben huil and the space hetween the temple and the crib was abou half filled with sand; and on the face of the crib e stron inclined chute was constructed leading to the base. The ohelisk was then rolled up the incline on hard wooden rollers; and, with tackle leading to the temple, it was then allowed to tilt over the front of the crib, falling $\ln t_{0}$ the sand and guided by the chute. By alowiy and carefully digging away the sand and hauling on the top of the ohe lisk it would thus he gradually sunk, until it would finaily rest on lits base.

A VENEZUELAN EXPOSITION, of natural, agricuitura and manufactured products and works of ark, will be held at Caracas, from Jan. 1 to April 27, 1900. The exponttion is also to include methods of education, social economy, hygiene, puhlie charity, colonization, otc.

ENGINEERING NEWS

AIIERICAN RAILWAY JOURNAL.
Entered al the Now York Post-Office as Secomd-Class Matter.
Published every Thursday
the engineering news publishing company geo. h. frost, - Presidest D. McN. Sta mining baker, Secretary axd Mare Presidex F. .p. burt, - . Treasurer and Business Maxagel. WM. KENT, E. E. R. TRATMAN, M. N. BAKER, $\}$ Associte
CRAS. S. Hill, J. J. SWANN,
A. B. GILBERT,

Chas. W. REINHARDT,
Chikf Draftsman.
ALFRED E. KORNFELD,
F. A. PECKHAM, Chicag
S. B. READ, Boston,

Advertising
Retresentatives.
Purlication Offick, 230 Broadway, New Yori hicauo ofrice, 1 gen Mosadsock block

SUBSORIPTION RATES: United States, Canada and Mexico, One Year, $\$ 5.00 ; 6$ months, $\$ 2.50 ; 2$ months, \$1.00. To all other countries in the Postal Union: Regular Edition, One Year, $\$ 7.60$ (31 shillings) ; Thin Paper Edition, One Year, $\$ 6.31$ (26 shillings). SINGLE COPIES of any number in current year, 15 cents.
In ordering changes of mailing addresses, state BOTH old and new addresses; notice of change should reach us by Tuesday to be efleetive for the issue of the current week. The number on the address label of each paper indicates when subscription expires, the last figure indicating the year and the one or two preceding figures the week of that year; for instance, the number 328 means that subscription is paid to the $32 d$ week (that is the issue of Aug. 11) of the year 1898; the change of these figures is the only receipt sent, unless by special request.
ADVERTISING RATES: 20 cents per line. Want noticees, speoval rates, see page 18. Rates for standing advertisements sent on request. Changes in standing advertisements must be received by Monday aflernoon; new advertisements, Tuesday afternoon; transient advertisements by Wednesday noon.

The greatest discrepancy between the engineer's estimates and the actual expenditure in the work upon the Erie Canal Improvement under the $\$ 9,-$ 000,000 appropriation occurred on Contract No. 4 of the Middie Division, located on the Jordan levei of the canal. According to the Canal Investigating Commission, the bid on which this contract was awarded amounted to $\$ 154,471$ at the quantities named in the preliminary estimate. Up to May 1, 1898, the State had expended $\$ 581,879$ on this contract.
The difficulties encountered in carrying on the work on this contract, and the methods tried for overcoming them are described on another page of this issue by Mr. Geo. A. Morrls, Resident Engineer of the Middle Division of the Erie Canal. The difficulties of building and maintaining embankments upon deep beds of soft material such as bogs and marshes are pretty well known to most engineers; but so little has been done in canal construction during the present generation that many engineers have forgotten probably that it is even more difficult to dig and maintain a water-carrying ditch through a bog than to build an embankment across it.
It is of interest to note that the sliding banks on the Jordan Level of the Erie Canal were closely paralleled by the heavy slides on the new Soulanges Canal in Canada, which occurred a year ago (Oct. 26, 1897). The latter were much greater in extent and occurred suddenly, whlle the earth movements on the Jordan Level were comparatively slow. Both, however, are examples of the difficulties involved in canal excavation through certain solls, especially when saturated with water. It is proper also to point out at this time when engineers are engaged on estimates for such important works as the canals at Nicaragua and Panama, and from the Great Lakes to the ocean, that the difficulty in making and maintaining canal excavations through the troublesome materials above referred to increases rapldly with the depths which the excavation must reach. Abundant ex. perience was had, in fact, at Panama, in the excavation of the sea-level section through the marshes on the Atlantic side, with the difficuitles in economical ditch digging under such conditions.

One huge Slaven dredge is sald to have worked at one time for several weeks without moving from her position, the welght of the mud which she discharged upon the banks contlnually crowding in the banks and raising the bottom as fast as the material was excavated.

It sounds like the boom times of a dozen years ago to read that the United States Commlssioner of Raliruads proposes that the Government shali construct "a first-ciass, double-track air-line rallway," from Kansas Clty, Mo., to San Diego, Cal. Probably most readers will be puzzled to know who and what the U. S. Commissioner of Railroads may be. The publlc and all railway men are fairly famillar with the Interstate Commerce Commission; but not one in ten thousand probably, knows anything about the Commisioner of Rallroads. We may explain, then, that he is an appendage of the Interior Department, and his duties appear to consist in watching to see that the government-aided Pacific railroads meet their obligations to the Government-and drawing his pay. Since the Union Pacific was reorganized and the Government's lien was wiped out, the Commissioner's time seems to have hung heavily on his hands, and we presume he has hatched this scheme for a Government rallway to amuse his leisure hours. To do him perfect justice we will give the substance of his argument or the enterprise in his own words:
 ago, SL. Paul and other middle-western grain centers and It may be timely just now to auggest that the government construct and operate a irst-ciass double-track
railway from Kansas City, Mo., to San Diego, Cai., by
air-line route. This will open the shortest line, measured by the map, from Boston, New York and Phlladelphia to
the Pacific coast, along and near the coal fiels of the
east and of the west this side of the Rockies, and making east and of the west this side of the Rockies, and making
the most direct line from our great commercial center the most direct line from our great commer
This, wlth other lines now working overland, may prove ample for the wants of commerce to the Pacific coast and pending the experiment of a canal through our borders climate of the lsthmus.
As trade increases it may develop the lmportance of a direct and a similiar line to Seattle, in Washington state St Louis, Mo., is a littie south of the direct line between of the country indicate that possibly a better route may sippi River at St. Louis, may prove an lmportant considera--
tion. A survey, therefore, by direct lines should be made from each on these points.
It is news to us that "vast volumes of wheat and other cereals" were being shipped from the Mississippi Valley to Asia. The Nicaragua Canal people have averred all along that one great ob ject for their canal was to carry California's surplus wheat crop to a market in the East, becaus there was not enough market for it on the other side of the Pacific. However, if any such heavy traffic as the Commissioner anticipates is to be thrown upon the transcontinental ratiroads, it will not be necessary for the Government to undertake rallway construction on Its own accoun to add to their number. Private enterprise can safely be relled upon to furnish all the rallways that the traffic can support; and publle opinion will very promptly condemn any attempt to involve the Government in new Pacific railroad subsidies or construction.

The Washington Patent Law Association has recently reported upon the various bills pending in Congress for the amendment of the patent laws; and has secured the opinions of a large number of patent attorneys and officials familiar with the work and needs of the patent office and of the courts which try patent causes. The Association has found that general agreement exists upon three points in connection with proposed patent reforms. These are (1), the necessity of care fully studying out some plan to put into the best
shape the mass of material piled up in the Uni State patent office, so that a thorough sea might be made by the examining corps, by att neys making validity searches and by the pul generally in search of information; (2), that th are now too many appeais in contested cause the patent office; (3), that the present arran ment of circuit courts of appeals as courts of resort is a fallure in the patent system, and one final court is wanted whose rulings will c territory co-extensive with the grant.
From the first of these conclusions there surely be no dissent, and we can go further say that the only possible method of effecting desired end is through just such a classifica of patents by their subject matter as the Pat Office has put into use. At the last sesslon Congress an appropriation was made for the pur pose of improving and perfecting the present classification, and we may expect that no smal amount of good will be effected by this. classification, however, applles of course only existing Unlted States patents. It is at least wort considering whether the U. S. classification mig not be extended and applied to existing Bricis patents. The cost of doing this would be well paid by the saving in the labor of the examinin force and by the greater certainty which wou attach to the final allowance of a patent. course the classification might be stlll furthe extended to cover existing patents issued by othe countries; but the difficulty and expense in mak ing use of these patents on account of the cessity of translation would probably preve them from belng generally used by the corps examiners. The work would be of great value all seeking to learn the state of the art in a par ticular field of invention; but if Congress should go so far as to make existing patents in the En glish language avaliable for consultation, it woul do considerably more than anyone expects.

A MODEL CITY CHARTER; THE REPORT OF A COM MITTEE OF THE NATIONAL MUNICIPAL LEAGUE.
In no one point has popular government, as it is carried on In the United States, been more criticised, than in its conduct of the affairs of cities. I is also true, we belleve, that more hard work has been done in the endeavor to improve municipal administration than in any other field of governmental reform. State governments and our national government have gone on with little change in their methods of administration, in many cases, since their original establishment; but our clties have many of them had the most kaleidoscopl changes in the organic laws under which they are ruled, and the search for a city charter which shall make good government most easy and misrule most difficult still goes on.
Up to the present time, however, the progress in city charter amendment has been too often a case of the blind leading the blind. Self-styled reformers have urged this or that change in a city charter, and have falled to foresee that certain evils as well as the expected benefits would attend the change. There has been need for a painstaking investigation by competent experts determine just what form of administration will most conduce to good government. Such an investigation has now been made, and its results are made public at this week's meeting of the National Municipal League, at Indianapolis.
At previous conferences the good and bad points of American municipal government and charters have been discussed at length by many of our ablest students of municipal reform. At the meeting in Louisville, in May, 1897, the following resotion was adopted:

Resolved, That the Executive Committee appoint pal program which will embody the essential principles that must underlle successful munlclpal government and which shall aiso set forth a working plan or system, consistent with sumerican princlples lnto practlcal operation; and
such committee, if it finds such municipal program to be
suct feasible, is instructed to report the same, with lts re

In accordance with this resolution a committee was appointed, but with only seven members, a follows:
Messrs. Horace E. Deming, Albert Shaw and

$$
\begin{aligned}
& 5 \\
& 0
\end{aligned}
$$

Prof. Frank J. Goodnow, of New York; Geo. W. Whrle, of Pittsburg; Chas. Richardson, Prof Leo. S. Rowe and Clinton Rogers Woodruff, of Leo. Shiladelphia. Through the courtesy of the last named gentieman, who is Secretary of the League we have recelved an advance copy of the report suppiemented by papers by Messrs. Deming, Good now. Shaw and Richardson, and also a paper by Wr Wedref, revlewing "The Advance of the Mr. Wont Municipal Reform." The report an Movement anticipated discussion, will occupy the papers, wal part of the attention of the conference principal indianapolis this week.
Although the report has been the subject of much individual effort, and of many conferences twen the different members of the committee uring the past 18 months, the committee believes there is haste \ln leisure," and recommends tha the program, papers and discussion be referred by the conference
10 a commilttee to be appointed by the executive committee the league, with Instructions to complete the work thu ext meeting of the league.
We have thought it best to place the main feat res of this program before our readers, a larg roportion of whom are in close touch with muni cipal affairs,, as citizens, officials, or in a busines way, while few, if any, of them are not indirectiy ffected, for weal or woe, by good or bad city gov The committee recognizes, and dis inctiy states, that it is in the technical, adminisrative side of municipal affairs that much of the best work, has been done, a statement that all houghtful persons, and many of our readers, especially, will confirm.
The committee found that while many of the features of its program are already included in some municipal charter, constltutional amendments would be necessary in most states before all the features could be adopted. The committee, therefore, submits what may be termed a "blanket" constitutional amendment, from which each state may select what is necessary. This shows both the thoroughness of the work done and the magnitude of that which must of necessity be left to others. Every one who has given the mater attention knows how difficult it is to secure constitutional amendments, especially when the prejudices and perquisites of rural legisiators are invoived. But it ls often well to know in advance the difficulties in the way. Municipal reform is becoming a mighty force, which only needs direction, if it keeps on the increase, to insure a fair measure of success regardless of the obstacles it encounters. As aiready intimated, much of this program can be put into effect without constitutlonal amendments, while the most sanguine person does not, or certainly should not, expect a program like this o come into unlversal use in such a republic of repubilics as ours, where not only several score of states are concerned, but several thousand municipailties as well. The greatest value of any such program must lie in its exposition of the princlples involved. Few cities are likely to immediately abandon their present form of government and begin wholly anew under a new char ter. We think, however, that no higher praise could be given the committee than the statement that it has come marvelousiy near presenting an outline of government capable of universal adoption. The reason for this is that has confined itself to an outione, instead of fail ing into the common error of going largely into detalis. A few broad and deep underlylng principles, based on wlde experience and observation. are presented in sufficient fulness to warrant their ready comprehension and their observance, when once adopted
The first one of these foundation principles we shall name is that a city charter should confine itself to matters of State, as dlstinct from local policy, leaving the latter for the municipalities to work out, each in accordance with its local needs and in the llght of experience. Such a plan makes unnecessary and inexcusable that continual legisative interference which is the bane of city government. It also renders it perfectly feasible for cities with a wlde range of population to work under one general municipal incorporation act. The
extent to which this pian would simplify and clarify state legislation is amazing, as will be appreciated when one refiects, as the committee suggests, on the vast mass of special municipal acts passed by many of our iegislatures each year. With a few exceptions these acts may be divided into three classes: (1) Those prepared by and in the supposed interests of the municipality concerned, vouched for by some member of the legislature and railroaded through with little or no change. As such acts are generally prepared by some one not legally responsible, and are enacted without any feeling of moral responsibility, they are likely to be highly objectionable. (2) Bills prepared by individuals or "rings" to compass some private end, which are passed under the party whip or by "log-rolling." (3) Bilis prepared to meet local demands but contorted to aid the ends of party managers or to satisfy rural or local prejudices.
To put a final end th all such legislation would be a great benefit to the communities concerned. and it would enable legislators at our slate capitals to give more adequate and statesmanlike consideration to the other measures that come before them.
Realizing that the mere removal of the necessity. eal or apparent, for special iegislation would not be sufficient, the program prohibits all acts not applicable to all the cities or inhabitants of the state, except such as may be passed by a twohirds vote of all the members of the legislature and then either approved by a two-thirds vote o the counctl of the city affected, or passed by th egislature over the veto of the city council by a two-thirds vote of all its members, "which two hirds shall include three-fourths of the members of the legislature from districts outside the city or cities to be affected." This provision will go far towards satisfying those who feel that in case o emergencles the legislature should be able to pas special municipal legislation, either to meet pe culiar local needs or to furnish a check upon loca officiais when all other means fail. It will be noted that the municipal corporation act itself can be amended at any time, either directly, or by inde pendent legislation, provided such changes or ad ditions are not contrary to the constitutional amendments and apply to all the cities or Inhab itants of the state.
To give still more elasticity to the program, where most needed, it is proposed that cities hav ing a population of 25,000 or more may frame their own charters, subject, of course, to the principle laid down in the constitutional amendments.
It may occur to some that with such broad general powers and such freedom regarding detalis, the government of different cities would take on till more of that regrettable lack of uniformity which already prevaiis. But it is more probable that the opposite result would follow, for in the first place we should have a large increase of uni formity by the adoption of the same act of incor poration, and next the program recognizes the existence and provides for the contlnuation of the exercise of supervisory powers on the part of central or state admisistrative boards, llke State Boards of Heaith. Besides this, clty controilers, or heads of the finance departments, officlais with great powers, are required under-the program t report fully to some state official on the financial operations and conditions of each city, in accord ance with forms prepared by the state official.
Before leaving the general subject of state control, by legisiative or other means, attention should be called to one point forcibly brought out by the report: Extremes of state legislation \ln local affairs are often nullified by what may be termed iocal legislation by municipal officers. That is to say, the legisiature goes into the letails of local legisiation, and even of local administration, but its mandates are left to local officials for execution. They use their discretion in the matter, and to that extent usurp legisiative power. If the state wishes to exercise administrative powers, for the sake of uniformity or any other reason conducing to the general welfare, it should do so through central administrative bodies.
This brings us naturally to another important principle laid down in this munlcipal program,
iz.: That the legislative and administrative powers of a municipality should be placed in separate hands to the greatest posslble extent. We have not space to go into this matter, nor does it seem necessary. The program aims to effect this separation by vesting all legislative powers in the ouncil and all administralive powers in th mayor, and in administrative departments cr ated by the council, but with their members appointed by the mayor. Ail but the heads of such depart ments must be chosen by the mayor from lists of candidates certified to by civil service com missioners, these officials also being appointed by the mayor. Each civil service appointment is t e made by the mayor from the three highes ames on the list of available candidates, prefer ence to be given to citizens, if of equal rank or grading, honorably discharged from the army or navy of the United States.
Examinations of unskilled laborers are to relat only to "their capacity for labor and their habits as to industry and sobriety."
Probably some persons will feel that the head of departments should be recognized at least to the extent of providing that they may express t the mayor thelr preference for some one of th three available candidates in any case, but in con sidering this matter it should be remembered (1) that the intention of the program is that th mayor and the heads of all departments shall be in harmony, hence the mayor would naturally con sult the heads; and (2) that we must divest our minds of the pleture, now so common, of a clean sweep of employees with each change of adminis tration, and think of the whole administrative force as very largely continuous. Promotions in the service are to be made in order of merit an seniority, in accordance with rules established by the Civil Service Commission, and the program has the following to say regarding tenure of office the city shall be removed, reduced in grade or salary, or transferred because of the relligious or polltical bellefs or opinions of such officer or employee; nor shall any official
in the administrative service of the city be removed, re-
duced ar duced, or transferred wervice of the city be removed, re-
ten statement setting forth in detall the reasons red a wiltten statement setting forth in detall the reasons therefor: a
dupllcate copy of such statement shall be filed in the office
of the Civil Service dupicate copy of such statement shall be filed in the office
of Civil Service Commissloners, and at the optlon of the
officlal who shall have been removed, reduced or trans. off:cial who shall have been removed, reduced or trans. ferred, such statement of reasons, together with the reply
thereto made hy the officer removed, shall he made a matter
of puhlic record in the archlves of the city. Subject to

The last sentence, coupled with other provisions of the program, seems to mean that heads of admistrative departments, as well as subordinates are to hold office until removed for cause, which cause shall be neither political nor religious. The only difference between the appointment of heads of departments and their subordinates would also seem to be that the mayor can select the heads in entire independence of the civil service commis. sion or examinations of any sort. This plar should give great stability to the whole administrative machlnery of a city, resulting in trained public servants of high technical ability, where such are necessary, and a high grade of efficlency on the part of all the employees, since all know they will be retained if faithful and able and are very liabie to have to go if not. It would iift a load of anxlety from many an engineer, superinendent of water-works, streets or sewers, for in stance, if he knew he were not liable to lose his position at the next election.
The only appointment made by the city council, except those pertaining to its own officers and ser ants, is the city comptroller, or head of the finance department. But while the council is shorn of all appointments save these, its functions in other respects are very greatly increased, as compared with the general American practice at pres ent. All legislative functions are lodged in it, in tead of being deposited, as is now so common, in boards of public works and other bodles having both legislative and administrative powers. Tw ther additions to the dignity and importance of the individual councillor are (1) that the legisla tive body is composed of but one branch, and (2) that the term of office is for six years. The act of the council are subject to the mayor's veto, but this may be overridden by a certain majority (lef biank in the program). The mayor, and not the councll, prepares the annual budget, and the coun
cil cannot increase, but it may decrease, any Item. On the other hand, the council makes specific appropriations of avallable funds, which the mayor may veto in whole or part, but the veto may be overridden. The total indebtedness and the percentage of the tax rate to the total valuation of the city are to be iimited in the charter, but the fixing of the limit is left to the discretion of the state legislature. Debts for revenue-producing works are to be excluded in determining whether the city has reached the bonded debt limit, while reports on this and other financial matters are to be made by the city comptroller to a state officer or commission, and are designed to place each city's officers under some survellance.
The pollicy of each city as to municipal ownership of water-works, lighting plants, street railways, and all such undertakings, either through purchase or construction, is left to the council, and the exclusion of debts for these purposes from the aggregate used to determine the debt limit gives councils more scope in this matter than they ordinarily have.
When franchises are granted they must be in the nature of leases for 21 years, with a payment to the city of a percentage of the gross revenue, and provisions for uitimate acquisition of the works in question, the price to include nothing for the value of the franchise, and the method of determining the purchase price to be stipulated in the franchise. To the end that the city shall be possessed of full information regarding all franchiseholding companles, such companies must report fully to the city their financial transactions, and these reports shall be public records. To render the omission of such reports less llkely, and to ensure the inclusion of the desired figures, the program provides as follows:
The accounts kept by a city shall, among other things, be
desigied to show in each case of a graniee of a franchise designed to show in each case of a graniee of a franchise part by payments hy users of such service:
(1) The true and entire cost of construction, of cquipment, (2) The amount of the cost colifeted annually from users of the service, and the character and extent of the service rendered to users in conslderation for the payments by them;
(3) The amount of the cost collected annually from tax.
payers as such, and the character and extent of the service payers as such and the character and extent of the service
rendered the city in conslderation for the amount pald anrendered the city in conslderation fo
nually for such service by taxpayers.
We have urged for years that franchises should be ilmited as to length, and be drawn with more care for the interests of the cities concerned. We have also pointed out, if we remember correctly, the advantages to both companies and citles of having greater publleity in the accounts of franchise companies. These advantages are seen an appreciated by some holders of such franchises and corporation lawyers.
A novel feature of the program, so far as American practice is concerned, is the provision that heads of departments, ex-mayors and mayors, may participate in the deliberations of the council; of course they cannot vote. The councilmen are to serve without pay, and to be elected on a general ticket, instead of by wards or districts.
One feature of the program which is open to objection is the limitation of all contracts for se:vices or material to five years. There are some services which can be rendered much more economically to the city under a contract for a longer ter.n of years, such as garbagedisposal, where an expensive cremation or reduction plant must be provided. Under a five-year contract the risk of failure to secure its renewal must be offset by higher prices. The same thing is true to a large extent of electric lighting contracts.
Somewhat in the same category is the provision hat ail bonds must be redeemed within 20 years. Indebtedness for some purposes might very prop erly be extended over a longer period, depending somewhat, upon the life or avallability of the thing acquired. Thus, real estate or water rights, which will appreciate, rather than depreciate, in alue, and serve future generations, might be paid for in longer term bonds than those issued for a pumping piant. But the time limit on both contracts and bonds is right in principle, and it must be remembered that this is a propaganda of prin ciples rather than of detalled requirements.
Finally, it is to be noted that the program provides for municipal elections separate from state or national elections; for minority, proportional or
ther form of representation in the city council to be determined by the vote of the people, elther when the question is presented to them by the council, or by a petition signed by a certain perentage of the qualified electors; and that all nomnations to elective offices are to be made by petition signed by legally qualified voters. The las provision is designed to vest the nominating power in the people instead of in the managers of the political machines.

LETTERS TO THE EDITOR

Comparative Economy of "A" Type and Riveted Trusses ior Short Spans.

Sir: The article published in your issue of Aug. 25, 1898, "Bridge Work on the Kansas City, Pittsburg \& Guif R. R.," contains a description of the patented "A" truss designed for short spans, and gives stress sheets, detalis, etc. for $100-\mathrm{ft}$. slingle track through spans as actualiy bulit in 1893 The advantages clalmed for this type are, to quote the ar tlicie referred to, great rigidity in all directions, ease an cheapness of erection, and economy in metal when struc cures of thls type are compared with structures of othe ypes having equal strength and rigidity. The inve considered the ordinary through Pratt truss too light and vibratory, and the riveted truss as then built, clumsy, un scentific and uneconomical." The faults of the short sp Pratt truss were so weil known in 1893 that it is safe to say that thls type had ahout ceased to be used for $100-\mathrm{ft}$. spans at that date, but an examination of some of the rivete hridges designed in 1893 or constructed previous th tha not well founded
The span shown in Fig. 1 is one of several built for a leading rallway in the fatter part of the year 1891. These
mitted a proof of the above letter to Mr. W adell and we append his reply below.-Ed.)
Sir: In answer to H. C. B.'s letter of Oct. 1 state that his princlpal point was well taken, in type of bridge he i:.:ustrates is good. I have been for the past year. or two, and have found it very factory. However, it was not in common use in 18 can hardly be said to be so to-day. My disparag marks concerning the riveted trusses of those d ferred to the lattice girder or multipie intersection H. C. B.'a comparison of welghts appears to be showing as it does that the A truss requires 16, more material than does the riveted truss. As a my office records, I have just completed a hook grams of weights of fixed spans of all ordinary k all classes of the "Compromise Standard System Loads for Rallway Bridges," designed in strict acc with the specifications of "De Pontihus." Refer this 1 find the following weights of metal for $100-\mathrm{ft}$. spa City pittshurg a Gute standard adopted by the Kansa City, Pittshurg \& Guif Ry. Co., the owner of the struc

A truss span...
Difference in favor of the latter $=$. . $.1,240 \mathrm{lbs}$ per 1,190

50 lhs . per lin. ft. or 5,000 ibs. for the span.
This extra weigel metal is more than offset more expensive field riveting of the lighter bridge computations in respect to the reeight of metal in the two types was a surprise to me, as I had not hitherto ognized such great economy of metal for the riveted type As for the deflections, theoretical figures don't amount much, especlally on such short spans. H. C. B. finds max mum deflections of $0.54-\mathrm{in}$, and $\mathbf{0 . 4 5}-\mathrm{in}$. for the A -truss and the riveted truss, respectively. The englneer who put up on of my 100 -ft A-truss spans found only $0.31-$ 'n. with the heaviest load he could get on the bridge, so it is sate to

FIG. 1.-WROUGHT-IRON RIVETED TRUSS RAILWAY BRIDGE OF 100-FT. SPAN DESIGNED IN 1891.
spans were designed for a live load approximating thst used in the design of the " A " type spans described in the article referred to, but were buift of iron and were consequentiy heavier than if they had been buirt under "steel" specificatlons. An examination of the drawing does not reveal a want of sclence or sn appearance of clumsiness either in tetall or in general design. Fig. 2 shows a span designed in 1893, hut not built. The span was designed for practicaliy the same live load as the " A " type span and the sections proport:oned for "steel unlt stresses." Comparing the trusses and upper bracing of the span w.th the " A " truss, since the flow and lower lateral system could be made the same for hoth spans, we find a difference in hoth weight and stiffness in favor of the riveted type as follows:

Type."Rvtd."Differ$\begin{array}{llll}\text { Weight, trusses and upper bracing, ibs. } 66,900 & 50,700 & 16,200 \\ \text { Calculated max. Ive load, deflect'n, } 1 t .0 .0453 & 0.037 & 0.0076\end{array}$
With such a difference in both weight and deflection favorahie to the "riveted" type it would seem that this type is by far the best for such crossings and has the additional advantages of presenting a p:easing appearance to the eye, which cannot be sald of the " A " type. In the matter of erection the only difference would be in driving ahout 800 more rivets in the riveted type than the " A " type, a small disadvantage when the additional stifness obtained by using rigid joints is considered. Shouid the riveted span be made to welgh the same as the "A" span the additional metal thrown into bracing or into the trusses would increase its rigidity greatiy, a point in which it already has the advantage with its lighter weight. Respectfully yours, H. C. B.
Philadelphia, Pa., Oct. 1, 1898
(In accordance with our usual practice, we sub-
onc.ude that the maximum load would not have brought the deflection up to $0.4-\mathrm{in}$.
One great advantage of the A-truss hridge is the esse, rapidity and economy in its erection, while nothing thst ! have ever seen can heat it for rigidity. Moreover, its sppearance "'s by no means unpleasing to the eye, as H. C. B. claims it is; at least, this is what everyone tells me who has examined this type of structure, and the accompanying vlew of one of the A-truss bridges erected on the line of the K. C., P. \& G. Ry., as above noted, will also enable each reader to judge for himself to some extent in this respect.

Very respectfuliy yours,
Gibraitar Bu'sđing, Kansas City, Mo., Nov. 12, 1898

An Opporiunity for Bridge Engineers to Prectice Eog neering Ethics.

SIr: We have heard a good deal about the "ethies" of the engineering profession from time to time, but beyond mere academic discussion nothing has been accompilished toward a code of action, and probah:y nothing ever will be from the nature of men and things, and from the fact hat engineering is as much a business as a profession. Whi:e ahstract preaching on such matters cannot he crystalized into concrete organized action among engineers it has, however, its value in quickening the consclence so that the individual may aspire to a greater revercice for the goiden rule, and a respect at least for the eignt unctandment, "Thou shalt not steal, which lash great poiltical campaign was recently fought in an ad joining state.
The above remarks are apropos of the clrcular of the Quebec Bridge Co., issued to the bridge builders of this
cotitity. This circular affords the profession as represented by our great contracting firms an opportunity to exilibit the extent of their interest in the ethics of the profession. The Quehec Briage Co. bas in view one of the most difficuit technical problems of bridge huliding ever prisented to the profession. Witb a gall unparalleled, it has issued an invitation to contracting engineers to come prains and experience, and hinds itseif to nothing in re-

It would seem as if the Quehec Bridge Co. were financlaily unable to pay for the information they are seeking, specifically avolding, as they do, all obligation of any kind, and until they are in a position to bind themselves to a conclusion which would afford some protection to competing parties, it is sincerely boped that our great not only in the interest of good professionai morals, but also of their own pockets. To be made use of is bad enougb,
the offence, if any. Particular cases are very seldom dealt with by the simple use of abstract princlplea or aphorlsms, and with a little reflection, very rash appifcations of the elghtb commandment would sometimes be avolded.
The undersigned hastens to repudiate, in behals of the Quebec Bridge Co., any such Intent or motive as is so freely cedure decided on, to ask at once for competitive designs

FIG. 2.-STEEL RIVETED TRUSS RAILWAY BRIDGE OF 100-FT. SPAN DESIGNED IN 1893.
turn therefor. It is known that this company has yet to be financed, and the magnitude of the enterprise makes it very douhtful whether it is commercialiy warranted, even with a liberal government subsidy or guarantee, which is hoped for, hut not secured. The invitation is accompanied hy an elaborate set of specincations covering the requirements whici must he met, such as loads, strains, spans, grades, elc. Several varkill re al raclousty coceive anything in the susperision bride or graclew icei the only antilever tha, the only two possible directions in whicb he problem can be met.
gis is a deliherate attempt to get something for nothlog, and to ohtain practical lnformation at a great cost ridge corm will endearor to formulate a plan of Anancing on which to appeal to capitai. If our contracting firms are fools enough to put at the disposal of such concern as the Quehec Bridge Co.,without compensation concern as the Quebec Briage Co., without compensation drawing room, for three or four months, with their accumulated experience of years, they will only have spent their money for the pains, and recelve a polite thank you (possibiy) from the bridge company. It may be urged that the above metbod is pursued as a matter of common practice and is therefore not dishonest or immoral. In answer it may he sald that most corporations furn:sh their own pians complete on wbich tenders are invited, and in other cases, when the contractor furnishes his own plans, it is for corporations prepared to proceed with their work, and on the understanding that the competition invited has a conciusion in a definite award. A contracting company will sometimes back an enterprise in promotion, spending large sums in plans and engineering, for a possible reward to accrue to itself alone, but this is its own affalr and is dishonest to no one. But a cold-hiooded attempt in cunningly appealing to the business instinct of greed and competition, for the purpose of ohtaining, free of cost and obligation, the accumulated experience of the country, simply to find out what can be done so as to get something tangible to go before capital on which absolute cost can te predicted, sbould be met by our American contracting engineers with indignant refusal. If the engineers of the bridge company are unequal to design a structure to meet the prohlem, the honorable course to bave pursued would have heen to have offered a prize or prizes for the hest plan, or hetter, to have selected some balf dozen concerns or engineers of established reputation, paying them at least the cost of their outlay ior preparing their plans, and submit the competition to board of engineers for selecting the best and most suitable; the selected plan to be adopted and pald for, elther by award of the contract to the successful party or on a per centage basis usual for such works.
hut to be made use of at a cost of some thousands of dollars, without the sllghtest contingent promise even, is a good deal worse.
P. B.
. Nov. 14, 1898.
(According to our usual practice, we submitted a proof of the above letter to the Quebec Bridge Co., Ltd., with the privilege of replying in the same issue to the criticisms contained in it. We append the reply received from the Secretary of the company.-Ed.)
Slr: The action for which the Quebec Bridge Co. is so everely arraigned before the tribunal of public opinion, is the fact of having at once invited tenders and competitive
and tenders, was no "deliherate attempt to get something for nothing," but the natural outcome of circumstances about which A. P. B. manifestly knows nothing. It was adopted purely and slmpiy becanse it then seemed to be the speedlest arrangement for the purpose in vlew. The prize competition system was not entertained, because it does not generally bring up the same rellable class of respondents as if coupled with a iormal invitation to tender for the work. In the first case, a scale of money reward is offered lor the two or three first best designs, becaure designs alone are in view, in the second, tbe prize, heing the letting of the contract to the most deserving, is generally considered well worth the risk. At building firms to tender on their own designs was taken in

100-FT. SPAN A-TRUSS BRIDGE ON KANSAS CITY,PITTSBURG \& GULF RY. NEAR JOPLIN, MO.
designs for a cantllever or a suspension bridge, without furnishing more than a general pian and general specifications. Your correspondent, A. P. B., condemns such a method as being a transgression of the law of ethics which he suggests should govern the engineering profession, hut his own admission that there is not, and probably never will he, a written code to the effect be aims at, should have extenuated in his own fudgment the gravity
sood faith, with no auch dishonest aforethought as is mputed by A. P. B., and that it was arrived at only after it had been ascertained that the arrangement woul be accepted as perfectly honorable by a sufficient a number tenders in that manner. As to tbose, if any, who would he incilned to share A. B. P.'s opinions on professional dignlty, their course is very easily traced: it is to refrain
from tendering, but it is no reason for attacking our bridge company in the way A. P. B. does, any more than for descrihing as fools those who are willing to compete at once for the deaigning and the construction of our hridge. As to the financlal aspect of the question, on which your correspondent bases his whole argument, we squarely deny his right and qualifications to discuss it. His imputation that this company, composed as it is of 200 of the best citizens of Quehec, is unahie to pay a few thousand dollars for the technical informstion it requires, and that it attempts to collect that information hy crooked ways without any practical intention to use it, plainly shows he does not know what he is talking about. He surely does not contend that a private company ought to take the puhlic in the confidence of its internal arrangements. How then can he speak of thla company's inahility to finance, and of the special conditions of its understanding with capitalists, as well as with the government and the elty of Quehec? I have Just now explained that, at the time the tenders were advertised for, it was with the express purpose to save cime and to award a contract on the hest competitive design thus secured, after due analysis hy a board of competent engineers, in order to he ready to start work as early aa possible next spring. I fall to see what dishonesty there is in such proceedings. Your correspondent admits himself that when the contractor furnishes his own plan, it is or corporations prepared to proceed with their work. Such being our case, his whole argument falls to the ground, and he might have apared your readers his eloquent, though unjustified, sermon
professional ethics.
Ulric Barthe, professional ethics. Secretary Quebec Bridge Co., Led. Quehec, Canada, Nov. 25, 1898.

NOTES ON THE DEFINITIONS OF SOME MECHANICAL UNITS.*

By William Kent, M. Am. Soc. M. E.

The following paper has been suggested by recent discussions in the Soclety for the Promotion of Engineering Education, in which considerable difference of opinion was shown to exist between the physicists and the engineers in regard to definitions of the commonily used terms: force, mass, weight, efc.
If a body at rest, but free to move, whose mass ia \mathbf{M}, be acted on by a constant force, F, during a ume, T, it will acquire at the end of the time a velocity, V.
The equation of the four quantities, M, F, T and V , is
$\mathbf{F} \mathbf{T}=\mathbf{M}$
provided that the magnitude of the units in which these four quantities are measured, in any system of measurement, is such that the unit force is that force which will give the unit mass unit velocity in unit time, so that we may write

$$
1 \mathrm{~F}=1 \mathrm{M} \times 1 \mathrm{~V}
$$

From the equation $F T=M$ V, we may obtain the four equations:

$$
\begin{aligned}
\mathrm{F}=\frac{\mathrm{M} \mathrm{~V}}{\mathrm{~T}} . \quad \text { (1); } \mathrm{T} & =\frac{\mathrm{M} \mathrm{~V}}{\mathrm{~F}} . \\
\mathrm{V} & =\frac{\mathrm{F} T}{\mathrm{M}} .
\end{aligned}
$$

and from these four equations we may obtain definition of the four unit quantitles, each in terms of the other three, as follows:

(1) Unit force is that force which will give unit mass unit

 (2) Unitocity in in thit time. in time in which unit mass will acquireunit velocity when acted on hy unit force. (3) Unit mass is that mass which will acquire unit velocity (3) Unit mass is that mass which will acquire unit veloc
when acted on hy unit force for unit time,
(4) Unit velocity is that velocity which unit mass will (4) Unit velocity is that velocity which unit mass will
quire when acted on hy unit force for unlt time.

These four statements, however, are not really definitions. They are simply expressions of arithmetical equalities. They have their analogues in the definitions based on the electrical formula $\mathbf{C}=\mathbf{E} \div \mathrm{R}$, in which C is current in amperes; E , electro-motive force in volts, and R , resistance in ohms. Thus, unit current is that current which unit electro-motive force will cause to fow through unit resistance. Unit electro-motive force is that force which causes a current of one ampere to fow through one ohm. Unit resistance is that reslatance through which one volt will cause to flow a current of one ampere.
These three definitions, as well as the four first given, are examples of reasoning in a circle. The definition of each quantity is expressed in terms of the other quantities. We may have other definitions, however, in which esch term is defined independently, without reference to the other terms. Thus, in electrictty unit current may be defned as that current which will deposit in a given time a certain amount of silver from a saandard solution; unlt electro-motive force as the electro-motive force existing between the poles of a certain standard cell; unlt resistance as the electrical resistance of a certaln plece of metal under certaln standard conditions.
So in mechanics, unit mass may he defined as the mass of a certain piece of metal, such as the British pound, or the A paper read before the session of Mechanical Sclence
and Engineering of the American Assoclation for the Adand Engineering of the American Assoclation for the A
vancement of Sclence, Boston meetiag, August, 1898.
gramme. Unlt force may he defined as that force with which the standard pound is attracted to the earth at Lon don, or as some fraction-say, $1+32.2$ of that force; or, it might he defined as that force which will stretch a certain spring a certain distance, or, as that force which will elongate a certain steel har a millionth part of its length Unit velocity may be defined as the quotlent of a certaln distance divided by a certain time, the distance heing the length of a certain plece of metal. Unit time may he de fined as $1-86,400$ th part of a mean solar day, or, as the t:me in which a certain pendulum makes one vihration at London
Referring agaln to the equation $\mathbf{F} \mathbf{T}=\mathrm{M} \mathrm{V}$, and choos ing our units so that the unit force is that force which in unit tume gives unit velocity to unit mass, we may obtain the following statements of the relation of the four unit quantities, $\mathrm{F}, \mathrm{T}, \mathrm{M}, \mathrm{V}$:

 second on 1 massal gives a velocity of 1
 1 second on 1 lh . gives a velocity of
 timal on 1 ih .
 1 gives a velocity of 1 ft . per sec.

The term "poundal" has heen used hy some English writers on mechanics. The terms "massal," "gravital," and "timal" have been invented for the purposes of thia paper only. It is to be hoped that they will never be used in the text-hooks, and that the term "poundal" will soon he expunged from those text-books which have adopted it
One pound force is the force with which gravity acts he standard pound at London; 1 poundal is $1 / 32.19$ of thls force: 1 th mass is the mass of the standard pound 1 massal is 32.19 tha.; 1 gravital is 32.19 ft .; 1 timal is $1 / 32.19$ of a second.

the C. G. S. system, we have

1 dyne acting for $1 \begin{aligned} & \text { second on } 1 \text { gramme } \\ & \text { gives a velocity of } 1 \mathrm{~cm} . \text { per } \mathrm{sec} \text {. }\end{aligned}$
1 gramme

The "dyne" is a term used in the text-books. It is the force with which a mass of $1 / 981$ gramme is attracted hy gravity at Paris. New names might be invented for the quantities 981 grammes and $1 / 981 \mathrm{sec}$. 881 centimeters is 1 gravital, or 32.19 ft .
Out of the eight statements given ahove, we may select those that are most convenient for any given purpose, such as engineering practice, and throw away and forget the others, since the unnecessary muitiplication of formu.as, terms and dennitions only gives ins English weights and and error. In engineering, with English weights and mat is ind that is needed, and, trans.ating the useless term gravital into its equivalent, we may write it: A force of 1 lh . acting on 1 lh . m.
It per second.
It may be convenient in electrical or stellar physics to use the dyne, or its multiple, the megadyne, but there seems o he no use in English measurements for the poundal, nor do we need
he timal.
Prof. John Perry, in his work on "The Calcuius for Engl-
neers," London, 1897, says: neers," London, 1807, says
I venture to say that there is not one practical engineer
in this country who thinks in poundala, although all the in this country who thinks in poundala, although all the
The word pound is used in two senses, as the unit hoth of force and of mass (or welght). This need Introduce no confusion, for whenever it may he necessary to make a distinction, we may say a pound force, a pound masa, or a pound weight.
We may rigidly define the pound force as the force which gravity exerts on the standard pound (a plece of metal) at London. The pound mass, or weight, is the standard pound itself.
It will be noticed that we cannot express the relation F T $=\mathrm{M} \mathrm{V}$ in terms of the pound (or gramme) unit of mass and force, the second of time and the cult or velocity 1 foot (or 1 centimeter) per secona, but in the Eaglasi system we have either to introduce the nom 1 1981. or else, to 1/32.19, and na the invent a new unit such as the poundal, dyie, gravial, etc., in order to ohtain an equation. HI our unl or alstance were 3.19 fl . of 0.81 meters, instead of 1. then wo coll expre the efficient or new term, hut the hene the wold in comparison win the conius the introducton ar an much reason, however, 32.19 ft ., as there is in using a new as a gravital, meaning of force, such as the poundal.
nit of rorce, such aa the pordal.
The word mass, in what is sald ahove, has heen used in the sense in which it is used in the text booka on physics, but it is used in another sense hy mising from dividing the weight of a body at London hy 32.19 , or hy dividing its weight (defined as the resultant of the attraction of gravita-
tion upon It), at any other place by the acceleration due gravity at that place, say 32.16 at latitude 45° at the level.
Some confusion often arises in the minds of engineer students from the use of the word mass in these two sen and a like confusion sometimes resuits in the two sen in which the word weight is used. The definition of wefc above given-the resultant of the attraction of gravitatio: is not the definition used in commerce or in engincerit The common definition of weight is quantity of matter determined not by hulk (which is one meaning of the w quantity), hut hy welghing it; that is, comparing means of an even halance or platform scale with a standa welght, such as the pound. In common language, we that we weigh a hody; determine how much it weighs tain its weight in pounds, and these pounds are stand units of weight, so declared by act of Parliament, and defined in the dictionaries. Modern writers on physics however, aay that this language is all wrong; that w. should use the term mass instead of welght, when we refer to quantity of matter, and not to the attraction of gravita tation upon It. We should therefore say, perhaps, that we mass a hody; determine how much it masses; obtain mass in pounds, and that the act of Parliament was in ϵ iror when it called the standard pound a weight and not a mass The deinition of mass, commonly used hy engineering Writers, and sanctioned by such authors as Weisbach and W -1 , is (either, (either the atraction or gravitation on it at London, or ifs pound or howeyer weighing the (which is not done spring balance standardized at London United States), one in commerce or in engineering in the United states), hen the masa would he the weight so deter mined, divided by the value of g at the place where the weighing is done
The engineer uses the word weight in the sense in which word was known in the English have used it ever since the in whlch the physicist uses the word mase and in the sense in which the physicist uses the word mass. The engineer uses the word mass to mean weight divided by 32.19 , usu Formulas commo

F $\mathrm{S}=1 / 4 \mathrm{M} \mathrm{V}^{2}$, formula for energy; $\mathrm{F}=\mathrm{M} \mathrm{V}$, $\mathrm{F}=\mathrm{M}$ V

 falling hodiles, or for hetght due to veloctty.

In the first three of these formulas the engineer always uses the pound as the unit of the force F, and for M he suhstitutes W , the weight in pounds, divided by 32.2 . In the fourth formula, for accurate work, he must use the value of g for the latitude to which the particular problem in hand applies.
The difference between the physicist and the engineer is merely one of definition. There may be no ohjection to the physicist using for his own purposes the terms and defint tions which he finds most useful or convenient, but it is an open question whether the physicist has the rlght to denounce the engineer's terms and definitions as improper, or whether it is advisahie for the text-books used in teaching mechanica to engineering atudents, to use the definitions of the physicist Instead of those of the engineer. The use of the term "poundal" is especially ohjectionable, for it is not used anywhere outside of the text-books, In any art, industry or profession. Much confusion in the minds of students of mechanics would he avolded if the term were denounced and dropped from the language.

A HOTEL IN SAN FRANCISCO BURNED to the ground on Nov. 24, causing the loss of five lives, the injury o four persons, and the destruction of over $\$ 2,000,000$ worth of property. It is understood that the fire started in the cafe kitchen, and at the time there were several hundred guests and employees in the hotel. The huilding, owned hy E. J. Baldwin, was completed in 1877, at a total cost of about $\$ 3,000,000$, including ground. It was irregular in shape, heing $200 \times 400 \times 300 \mathrm{ft}$. and 6 storles high, and it contained a theatre and several large stores on the ground floor.

THE LOSS OF THE STEAMER "PORTLAND," of the Boston \& Portland Steamship Co.,off Highland Light,Mass. occurred in a severe storm on Nov. 27. The entire crew and all passengers, numbering ahout 117, were lost. The accident is attrihuted to a hreakdown in her machinery which allowed the vessel to drift onto the shore during the severe storm of Saturday and Sunday. The "Portland" was hullt in 1890 at Bath, Me., and was a side-wheel steamer 250 ft . long,
nage of 1,317

A SUIT FOR INFRINGEMENT of the Hyatt patent on the use of a coagulant in connection with mechanical fitters has been brought against the Jackson Filter Co., of St. Louls, by the New York Filter Mig. Co. A hearing will he held on Dec. 13, in the U. S. Circuit Court, Eastern Distrlet of Missourl.
a portable forge with detachable parts
The accompanying cut illustrates a new porta forge, manufactured by the Buffalo Forge Co. Buff. N. Y., which has some interesting feat Bul. Fonventent packing and transportation ures. Feadily be taken apart by loosening the it may reand legs and the set-screws at the base. The crank is rigidly fixed to the shaft, which drives the gears enclosed in the dust-proof case but the gear-case and the blower are both de tachable from the tuyere plpe. No belts or chains

Portable Forge, with Detachable Parts.
Manufactured by the Buffalo Forge Co., Buffalo, N. Y.
are used in the driving gear, which consists of our spur gears, the two larger wheeis having respectively 108 and 90 teeth, and the two pinions each 16 teeth, thus increasing the speed 37.96 to 1. The blast wheel is 9 ins . diameter, with flve curved blades riveted to a sheet steel flange on each side. With 30 revolutions of the crank shaft per minute the peripheral velocity of the blast wheef is $2,684 \mathrm{ft}$. per minute.
The body of the fire pan is made of No. 14 sheet stee. The total weight of the forge set up for use is 125 tbs. When taken apart and packed for easy carrying, it may readlly be carried about scaffolding by one man. The gears are machine cut, the fan wheel is balanced, and the bearings are well finished, all contributing to ease of operation.

THE BURSTING OF SMALL CAST-IRON FLY-WHEELS.*

By Chas. H. Benjamin, M. Am. Soc. C. E. \dagger

of late years the fallure of large fly-wheels have become alarmingly common. Erery month hrings its record of one or more disasters of this sort, some of them entalling loss of life and serious destruction of property. It is of the purpose of this paper to dlacuss the causes of igh belt apee, forker than to notice the ract that the plants belt speeds and close regulation required in electric plaw have been indirectiy responsible. Many of the lisarrangave talled on account of excessive speed due tharrangement of the governor and consequent racing determine ine. In some instances it has been difficult to excltement the and tances, tancea, however, the wheels have burst al speeds bu inghty above the normal and when the factor of safety was apparently ample.
Mr. James Stanwood, of this Soclety, was the first to point out the condition of stress existing in a fly-wheel rim and to show that the bending due to centrifugal force might reduce very materially the bursting speed (Trans.
-Condensed from a paper presented at the New York
meeting of the American Soclety of Mechanical Engineers. +Professor of Mechanical Engineering, Case School of
Applied Science, Cieveland, O.
A. S. M. E., Voi. XIV., p. 251). This suhject was further developed hy Professor Lanza, and the probable amount of stress due to bending was indicated as well as its effect upon rim jolnts (Trans. A. S. M. E., Vol. XVI., p. 208). small cast-lo the writer that a series of experiments on causes of fallure and lead to more rational formulas for causes
The quality of the metal in a small wheel is better than In a large, and the stresses due to uneven coollng are much less. The linear speed of rim at which a large wheel will burst will ther fore be less than that obtalned by experiments on smali wheels.
The experiments about to be described were conducted under the immediate direction of the writer at the iaboratories of Case School of Applied Sclence. The wheels were all of cast Iron and were clean, perfect castings. Two diameters were used, 15 and 24 ins., and each wheel was a scale model of some actual fy-wheel designed by a reputable firm. The wheels numbered 1 to 10 had solld rims, with the exception of No. 5. Wheel No. 11 was a spectal wheel, as will be explained later. The wheels numbered 12 to 17 had each two joints in the rim and were 24 ins. In diameter. All the wheels numbered from 1 to 10 were reduced models of a solld-rim fly-wheel 10 ft . In diameter now in use on a 12×30 Allis-Corliss engine in the laboratory. The wheels numhered 12 to 15 were models of the same wheel on a larger scale, with rim Joints designed by the writer. The two wheels numbered 16 and 17 were models of the fly-wheel of a Corliss blowing engine. Tables I. and III. give the dimensions of the wheels in detail.
To give to the wheels the speed necesssry for destruction, use was made of a Dow steam turbine capable of heing run at any speed up to 10,000 revolutions per min ute. The turbine shaft was connected to the shaft carry Ing the fly-wheels by a brass sleeve coupling, loosely plnned to the shafts at each end in such a way as to form without infuring the turbine in case of sudden stoppage of the fly-wheel shaft
One experiment with a shield made of $2-\mathrm{In}$. plank convinced us that safety did not lie in that direction, and in succeeding experiments with the $15-\mathrm{in}$. wheels a bombproof constructed of $6 \times 12-\mathrm{in}$. White oak was used. The first experiment with a $24-\mathrm{ln}$. Wheel showed even this to he a fimsy contrivance. In all subsequent experiments a shleld made of $12 \times 12-\mathrm{ln}$. oak was used. Even this shleld was split repeatedly and had to he re-enforced by bolts. The wheels were usually demolished hy the ex plosion. No crashing or rending noise was heard, only one quick, sharp report, like a musket shot.
The determination of the speed offered some difflultles t first, it helng too great for the successful use of a counter or tachometcr. A commutator of one break was arranged on the fly-wheel shaft and this connected through the battery clrcult with an earphone in an adjoining room This arrangement worked satisfactorly, giving a clear musical tone, and the numher of vibrations corresponded closely to the speed as measured hy a reducing counter shaft and speed counter. It was soon discovered that the audilhe tone produced by the machine itself when running at a high speed corresponded exactly to the tone \ln the ear-phone, and consequently the ear-phone wss discarded. Two ohservers, having tralned musical ears and provided with tuning forks, had no difficulty in determining the pitch within half a tone, the quarter tones being estlmated. The error due to this method did not exceed 5%. The bursting speed of the wheels having rim joints was too fow to produce a musical tone with any distinctness, and it became necessary to resort to the tachometer, a counter shaft reduclng the speed from two to three times belng employed.

Fifteen-Inch Wheels.

Test pleces cast from the same ladle as these wheels were broken in the testing machine, and the following average values obtalned for the hreaking strength: Tenslon, $19,000 \mathrm{ibs}$. per sq. in. Cross-hreaking. $39,000 \mathrm{lbs}$. per sq. In. These wheels were all turned on the face and edges of the rim, and were carefully balanced hy winding copper wire around the arms near the rim
The shape of fracture at the outer ends of the arms in all the wheels usually indicated that the rim hroke first midway hetween the arms, and that then the two parts of the rim flew outward and hroke off at the arm.
Wheel No. 5 had two jolnts in the rim at opposite extremitles of a diameter. The strength of the joints was designed to be one-third the tensile strength of the solld rim, hut the wheel burst at only 2,925 revolutions per minute with a centrifugal tension of less than one-fourth that of the solid wheels.
Nos. 6, 7 and 8 had only three arms, every other arm having heen removed from the pattern before casting. The object of this was to show more clearly the bending of rim due to centrifugal force.
Wheels Nos. 9 and 10 were of the original six-armed type, but with rims turned down to exceeding thinness. The results are summarized in Table I. An examination of the column containing the value of v in feet per second will show that as the segments of the rim between the arms become weaker as heams, either through increase of

${ }^{*}$ Doubtful.
Note- The diameter of the wheels ranged from $141 / 2$ to $15 \% / \mathrm{ns}$. Tbe hreadth of rim was 2 ns . except Nos. 9 and
$10,17 / \mathrm{ins}$. The arca of the arms was $0.46-\mathrm{sq}$. in. Nos, 6 , and 8 had three arms, the others six arms.
length or decrease of thickness, there is a falling off in the bursting speed.

To determine to what extent the strength is affected by

bending, values of $\frac{10}{10}$ have been calculated. As has been
shown by Mr. Stanwood in the paper before referred to, this expression represents approximately the tensile stress on the square inch. of section of rim due to the centrifugal force, for east fron. By comparing these values
with the tensile strength of the fron, viz., 19,000 lbs. per sq. in., the amount of stress due to bending may he estimated. This difference varies from 500 lbs . per sq. in. in Nos. 1 and 2 to nearly $6,000 \mathrm{lbs}$. per sq. in. in Nos. 9 and 10 -belng greatest in the wheels with thin rims or few arms. None of these wheels, however, except No. 5 would have been unsate at the usual llmit for fly-wheel rims of 100 ft . per second. Wheel No. 10 would have had a factor of safety of over 12 at that speed.

Twenty-four-Inch Wheels

No. 11 was a special wheel which had heen in actual use. This wheel burst at 3,670 revolutions per minute, or a peripheral speed of 385 ft . per second, which corresponds well with the average speed of the $15-\mathrm{ln}$. wheels. The explosion was very violent, and completely wrecked that it appeared clean and close-grained.

Flanged Joints.

The wheels numbered 12 to 15 were of the same model as the $15-\mathrm{in}$. Wheels on a larger scale, but each wheel had two internal flange joints in the rim, midway between the arms. The joints were all carcfully planed and the holes dillled to match. The wheels were not turned on the face, but were balanced the same as the others.
The bolts used were of s:ect, and samples of each broken in the testing machine gave the resuits shown in the table. Wheel No. 12 burst at a speed of less than 1,800 revolutions per minute, but the exact speed was not recorded. The flanges broke, but the bolts were unlnjured, except for a slight stretching.
No. 13 was a duplicate of No. 12 In every way. The holts were uninjured but the flanges broken through the bolt holes. The flanges of the pattern were ther strength ened by adding $1 / 4-\mathrm{ln}$. to the thickness, the bolts remaln ing the same.
In wheel No. 14 the bolts falled.
In No. 15 , bolts $\% / 8-\mathrm{in}$. in diameter were used. The flanges of one Joint were badly broken, the bolts remainng whole. The second joint was uninjured.

The results are summarized in Table I1. It will be noticed that the rim speed is about one-half that of a solid wheel, and therefore the centrifugal tension about onefourth. The foints in all the wheeis were carefully made, and were relatively stronger than many folnts in flywheels which are running to-day in our mills and shops. The centrifugal tension $8 t$ the joint would be greater than that glven in Table II., on account of the welght of flnages and bolts. At a rim speed of 100 ft . per second these wheels would have a factor of safety of about $36-10$, which is altogether too small.
table il.-Partleulars of $24-\mathrm{in}$. Wheels Tested. Shape and size

	Shape and size			Welght of wheel,	Flanges.-	
	Bre'dth,	Depth,	Area,		breadth,	area,
No.	ins.	15.	sq. Ins.	1 bs.		Ins.
11.	21/3	1.5	3.18	75.25		
12.	41/16	. 75	3.85	93.0	2.8	1.92
13.	4	. 75	3.85	91.75	2.75	1.89
4.	4	. 75	3.85	95.0	2.75	2.58
15.	41/10	. 75	3.85	P4. 75	2.5	2.34
16.		2.1	2.45	65.1		
17.	1.2	2.1	2.45	65.0	...	

Notes.- No. 11 was a solid rim wheel. Nos, 12 to 15 had
internal flanges bolted. Nos, 16 and 17 had ilnked jointsinternal flanges bolted. Nos. 16 and 17 had ilnked joints-
No. 16 with three links, and No. 17 with two. Tbe Ianges No. 16 with three links, and No. 17 with two. Tbe lianges
of Nos. 12 and 13 were $11-16-1 \mathrm{n}$. thlck; Nos. 14 and 15 .
$15-16-1 \mathrm{n}$. Each jolnt was bolted with four bolts, $15-16-\mathrm{ln}$. $15-10-\mathrm{In}$. Each joint was bolted with four bolts,
diameter, except No. 15 , which had $\%$ in. bolts.
By testing machine:
Tenslle strength of cast iron $=19,600 \mathrm{lbs}$. per sq. In.
Transverse strength of east iron $=46,600 \mathrm{lbs}$. per sg. In. Transverse strength of east iron $=46,000 \mathrm{lbs}$. per sq.
Tensile strength of $5-16$ bolts $=4,000 \mathrm{lbs}$.each.
Tenalle strength of $\%$ boits $\quad 5,000 \mathrm{lbs}$. each.

TABLE 1il.-Failure of Flanged Joints.							
				Bursting -speed.		Per	
	Area	Effect.	Total			8 fm .	
			strength	Revs.	Feet		
	$\mathrm{rim}^{\text {ins }}$	fanges,	holts,	per	pr sec.		Totas,
11.	q^{2} ins.	89. ins.	ihe.	min .	\% 7 .	10	1bs.
12.	8.85	1.92	i¢,ooio				
13.	3.85	1.89	18,000	1.760	184	3.400	13,100t
14.	8.85	2.58	18.000	1,875	196	3,850	14,8008
15.	3.85	2.34	20,000	1,810	190	3,610	13,900 \dagger

- Solld rim. †Flange broke. ${ }^{\text {Blalta }}$ broke.

Linked Joints.

Wheels numbered 16 and $\mathbf{1 7}$ were of the famitiar rolling nili type, with the joints connected by steel tsnks ove ast-iron fugs, the innks being heated and shrunk on The dimensions of the lugs and links are given in Table III
Wheel No. 16 had three links to each joint, one on each isce and one inside. Esch joint broke on one side hrough the rim, without shearing the lugs or hreaking he links.
In No. 17 the link was omitted from the Inner lug, leav ing hut two links to each joint. On one alde the rim brok is in No. 16; on the other side the fugs falled by breaking off. It is impossible to say which joint falted first. No 16, with three links, broke at a speed 66% in excess, and No. 17, with two links, at a speed over 50% in excess of that of the wheels with flanged joints.
The strength of the rim at the weakest section is ap parcutiy in excess of the atrength of the links, wherea t was the rim that falled in each case. It must, how ever, be remembered that the links were under direc tension, while the rim was subjected to bending in addition.
At 100 ft . per second the factors of safety for Nos. 16 and 17 would be $101 / 4$ and 84 -10 respectively.

Conclusions.

1. Fiy-wheels with solld rims, of the proportions usual among engine buliders and having the usual number of rms, have a sufficlent factor of safety at a rim speed of 100 ft . per second if the fron ts of good quality and ther are no serious cooling strains.
In such wheeis the hending due to centrifugal force is Hisht, and msy safely he disregarded
2. Rim joints midway hetween the arms are a serious defect and reduce the factor of safety very materially Such joints aro as serlous mistakes in design as would a joint in the middie of a girder under a heavy load. 3. Joints made in the ordinary manner, with internal flanges and bolts, are probably the worst that could be devised for this purpose. Under the most favorable cir umstances they have only about one-fourth the strengt of the solld rim and are partlcularly weak agalnst bending
In several joints of this character, on large fly-wheels, calculation has shown a strength less than one-fifth tha the rim.
3. The type of joint excmplifed in Nos. 16 and 17 is probahly the best that could be devised for narrow immed wheels not intended to carry betts, and possesse when properly designed a strength ahout two-thirds that of the solld rim.
it is gratifying to notice the fact that since the subject of joints in fly-wheel rims has been so thoroughly venti-

TABLE IV.-Fallure of Linked Joints

Lugs. $\left\{\begin{array}{l}\text { Breadth, in } \\ \text { Length, ins } \\ \text { Area, sq. }\end{array}\right.$		No. 16	. 174
		${ }^{0.45}$	0.44
		1.0	. 98
		. 45	. 43
		. 57	. 54
Links Thickness, ins,		. 327	. 380
Effec	ctive area, sq. ins..	186	205
Maximum rim area, sq. Ins. ...		2.45	2.45
Net rim area, sq. ins.		1.98	1.98
		30.540	20,360
		38,800	38,800
		3,060	2,750
Bursting speed, ft. per sec $=\mathrm{v}$ v		320	290
Centrifugal tension.	Per sq. in. $=$	10,240	8,410
emarks		Rim hroke.	Lugs and

ated during the d:scusslons before this Soclety, several of our prominent engine builders have chsnged the designs of thelr wheets hy hringing the rim joints opposite the ends of the arms.
The experiments which have just heen described, athough at times a triffe too exciting, were Interesting from irst to last. The writer hopes to supplement them would be glad to recelve any suggestions.
The more this subject is agitated, the less shall we have ocasion to mourn the destruction of iffe and property on account of faults in the design of thls most necessary efement of the steam engine.

A Note on the strenath of wheel rims.*

 By Albert K. Mansfield, M. Am. Soc. C. E. \dagger On p. 5 of Mr. Supplee's transiation of Releaux's "Contructeur occur these words: It is upon this point that the peculisr strengthening effect of ribs depends, and Which makes their use so advantageous in cast-iron contruction.Then lifustrations follow to support the fact that ribbed construction increases strength, that is, is economical of material; hut it is not shown there, nor eisewhere to the present writer's knowledge, that this is not universaliy the case, but that the exact contrary may be the fact. This may best be pointed out hy a practical lllustration: The moment of resistance* of the rectangular section of Fig. 1 is hh^{2} or $\frac{26 \times 21 / 2^{2}}{6}$

Now let $1 / 4-\ln$. of the thickness of thls section be formed into a rib $31 / 4 \mathrm{ins}$. thick, as shown by Fig. 2. Preserving the same total area as before, this rib becomes 2 ins. deep, making the total depth of the section 41/2 ins. The neutral axts will be found to he located as shown in the

Fly-Wheel Rims of Various Section.
agure, and from a well-known formula the moment of resistance is found to be 18.64; that is, the least momen resistance, or the moment of inertia divided hy the reatest distance of fiber from the neutral axis.
The section has therefore been weakened by the rihs in fact, unless it represents the spectal case of a cast-Iron heam toaded so that the extreme fiber is subjected to com pression, it is on:y about two-thirds as strong as befor is seen, therefore, that under some conditions ribhin oes not have a strengthening effect. It would cleariy e useful to generalize this matter in such a way as to make it easy for the designer to determine when and to hat extent ribhing may or may not be resorted to with advantage, but that is beyond the purpose of the presen writing.
If we separate the rib of Flg. 2 into two ribs and place hem at the ends of the section as in Fig. 3, we have without change of strength, a section similar to that iften used in the construction of wheel rims. The hend ing moment of such rims, due to centrifugal force, act with maximum effect near the wheel arms, in such way as to cause tension at the extreme flher. It will be clear herefore, that such ribs in such place may make the wheel weaker than it would be if they were not employed. is not meant that wheels cannot be ribhed in this man ner to their advantage, hut rather that it is necessary to take care that they are not thus rlhhed to their dis dvantage. There are many wheels in service whic have been strengthened in this negative way.
The destructive accidents which have occurred to large wheels have led to hringing cast iron into disrepute as naterial from which to construct such wheels. This fact coupled with that polated out above relative to rim langes, has led the present writer to the use of the method of ribhing wheels illustrated in Fig. 4, which eems to fill all requirements, enabing cast-iron rims be made as strong as may be practically desired.
Maintaining the same face of wheel and total area of ection as hefore, let us empioy $84-\mathrm{in}$. of the thicknes of rim in forming a rib $1 \% / 4$ ins. thick at center of rim; the ection then becomes as shown by Fig. 5. The neutral axis of this section is at line AA, and the moment of re sistance becomes 77.5 , which is neariy three times a strong as the section of Fig. 1, and more than four times as strong as the flanged section of Fig. 3 . Of course, further increase of strength may he obtained by adding to lepth of fisnge.
Now the section of Fig. 5 is taken to represent that next the arms, in which (the case being that of a hulit-in beam uniformly loaded) the extreme fiber is under tension. The mid-section between arms, however, while acted upo by an equal moment (when the cross-section is uniform) is hent in an opposite direction; therefore the extrom ther is compressed, which, for equal strength, enables the lange at this point to be reduced, because cast fron is wice as ahle to resist compression as extension. The modulus of resistance at this point may therefore be one-

* paper presented at the New York meeting of the
American Soclety of Mechanical Engineers. "IThis is more correctiy the "section modulus." The
moment of resistance is the section modulus muitiplied by the resistance per square inch at the extreme fiber. MMechanical Manager, Buckeye Engine Co., Salem, 0.
hali as great as at the arms, which will be found respond with a flange depth of about five-elghths at arms, or in this case about ins.
The proportions are shown in Fig. 4. Almost any de sired strength may be attalned hy this method. It is several ocher advantages over uniorm flanges at flres which will readily occur to designers or wheels.

FORM FOR REPORTING THE RESULTS OF BOLLER

 TESTS.The Commlttee of the American Society or Me chanical Engineers, appointed in 1895 to revis the standard code of 1885 for trials of steam boilers, has presented in pamphtet form its repon at the meeting held in this city this week. ago it presented what was called a "Preliminary Draft of Report," prepared by a sub-commliee of four out of the nine members of the committee requesting full discussion and criticism. In ou issue of Dec. 9, 1897, we printed from this "pre liminary draft" those sections which differed ma terially from the code of 1885 . In the final re port now presented, which, however, is still "sub ject to revision" before being printed in the ume of Transactions, the amendments to the 188 code which were in the "preliminary draft" ar retained, with a few corrections of more or less importance. The princlpal new feature of the report in its present shape is the insertion "Short Form of Report" of the results of a bol test, containing only 31 items, as an alternativ to the longer form presented last year, which con tains 74 items. The short form is recommende for commercial tests and as a convenient form abridging the longer form for publication when saving of space is desirable. We reprint this "Short Form" below

Data and Results of Evaporative Test.
Arranged in accordance with the Short Form advised by
the Bolier Test Committee of the American Society Mechanical Engineers.
Made hy....
Grate surface
Water-heating surface
Kind of fuel
.on. .
.holler, at.

Total Quantitles
Date of trlal
4. Percentage of molsture in coai.

Total weight of dry coal consumed.
. Percentage of ash and refuse in dry coal
8. Total weight of water fed to the biller. molsture or superheat in steam.. Hourly Qusntitles.
10. Dry coal consumed per hour - 1 .
12. Wrate surface
13. Equive fed per hour.
from
 of steam
14. Equivalent water evaporated per square
foot of water-heating surface per hour

Average Pressures, Temperatures, Etc,
15. Average boller pressure ths. per sq.in.

18. Averge force of draft hetween damper
19. Percentage of mo. matur in steam, or

Horse-power.
20. Horse-power developed (Item $13 \div 341 / 2$)
21. Builders' rated horse-power 1. . Econom!c Results.
23. Water apparently evaporated per pound
of coal under actual conditions. (Item

24. Eoulvalent water actually evsporated
from pnd at 211° per pound of coal
as fred
25. Equivalent evaporation from and at 212
per pound of dry coai. (Item $9 \div$ Item
26. Equivalent evaporation from and at ${ }_{9} 12_{0}^{\circ}$
per pound of comhustinie. [Item 9
 or quality of steam, the fact should
be stated.)

Efficlency.
27. Heating value of the coal per pound..

on of 2,240 ths. delfv
31. Cost of coal required for evaporation of

MEDICAL OUTFIT AND INSTRUCTIONS FOR AN ENGINEER IN THE TROPICS.
In the "Medical Fortnightly" of Nov. 15, we find In interesting letter by Albert L. Ashmead, M.D., New York city, describing a medical outfit which he prepared for his brother, Mr. Percy H ashmead, C. E., who has recently salled to EcuaAshmead, dor to fulfil an engagement as topographical engineer on the line of the Guayaquil \& Quito R R As many of our readers are likely to see servic? in troplcal countries during the next few years, we reprint in full Dr. Ashmead's description of this outfit, which, it is of especial interest to note. this all be carried in a box only $9 \times 12 \times 6$ ins. in size:

Two porte caustles; to stop a b a sore that heals too slowly, etc.

todoform gsuze 10 per cent: as a dressing for wounds, cut off as much ss. may
Sun cholers mixture tablets; for dla
hours unti! the dlarrhea is checked.
Triplex pills (hlue msss, aloes and podophyllin): for tor-
pidiy of the Ilver in the tronics; when there is constipation
take one of the plils at hedt!me. prdity one of the plils at hedt!me.
Permanganate of potash pills (2-grain); In case of snake
bite, take one. snd follow at once with a tumbler of water. bite, take one, snd follow at once with a tumbler of water
Repeat every hour. In gonorrhea. dissolve one in a umh'e Repest every hour. in gonorrhea, dissolve one in a wmbe
of water, and use ss an injection. As a surgleal wash in
the same dilutlon, spply on cotton to the part affected. Chronle acld solutlon (1 to 100 parts of water). This ts
the Orfla prize remedy for viper hites. Use as a wazh w'th the Orfia prize remedy for viper hites. Use as a wain w'th
absorbent cotton, to the snake hite wound, at once after absorben:
Solution of chlorlde of go'd (1 in 60 parts of water). This
is Calmette's remedy for snake hites. On belng biten is Calmette's remedy for siake hites. On belng inten,
after washing the wound with the ahove acld solution, Inafter washing the wound with the ahove acld solution, In-
ject 10 minims (or drops) with the hypodermle syringe. In
the sound skln , near the wound; repeat the injection after one hour
Solution of chloride of :ime (Merck's pure 1 in 60 parts of water). This is another of Calmette's remedles. In snake
bites, after washing the wound with the chromic acid solubitfs, after washing ine weung whorhocd of the wound. the
tlon, and Injecting in the nelming
chloride of gold solution (10 minims , Inject with the hypo chloride of gold solution (10 minims), Inject with the hypo-
dermic syringe, 10 min 隹 dermic syringe, 10 minims of this solution, heneath the
sound skin, near the wound. Repeat after an hour's intervsl.
These three locs1 remedies, the chromic scld wash, the hypodermic chloride of goid, the hypodermle chioride o
ilme must be fortified in case of snake bite, hy the internal
 Callodion with $21 / 2 \%$ sallcyilic acid. In Insect stings nalnt
over the skin, and also in certaln skin eruptions, with a plece of cotton wrapt sround the end of a stlick.
Caliodion with 10% tdloform; use as a dressing for
wounds, painted on the wound. with cotten on the end of a stick, or with camel's hsir pencll.
Calomel and soda tshlets (each one grain): to stimulate
ver, correct disordered stomsch, relleve Her, correct disordered stomsch, relleve coilc, correct tor-
pldity of 11 ver when stools gre clay or qray colored to cause
s flow of hlle, and when diarrhea refuses to yleid to sun ho:era milture treatment. take three of these tahlets at a dose. If dlarrhea is present, continue taking sun cholera
nixture tablets, one at a dose, as before ordered in miarrure
Mercury with chalk (12 sample powders, ${ }^{1}$ g grains cach,
and one-half ounce in bulk in bottle). In troplcal dysenery, with bloody mucus, with straining at stool, with abgrains powder, with a five-grain Dover's tablet, every two hours. Continue untli the chsracter of the stools change: that is, becomes nistural, elther brown or green. Wate
the gums, If taken more than a day. so as not to sallvate. the gums if taken more than a day. so as not to salvate.
Should blood and mucus appear again in the stools, after
having been once checked, or should the straining and the having been once checked, or should the straining and the it may be noted here that no case of troplcal dysentery csn t may be noted here that no case of tropl
e cured without this course of mercury.
Murlate of pilocarpine, $\mathbf{1 - 2 0 t h}$ grain tablets. One tablet
to be taken by the mouth, and then again aiter hours, unless the prostration and the sweating should he excessive. In case of pleurisy. in perniclous congestive malarial fevers, a tablet of pliocarpine.
Dover's tablets, 5 gralns each. In dysentery, a tahlet every two or three hours. In coughs cr colds of every klnd ive a tabiet every two or three hours (without mercury and chalk), or on going to bed, two tablets at a dose. For Pever, malarial or any oth
Quinla Sulph. tabiets. 5 grains esch. While in the tropics chils and every night, even when you are well. In case of chills and fever, take two at night, and one every three Which does not yleld at once to this trestment,
kive two pllis every four hours (supplemented by the hot pack, the patlent to be wrapped ln a sheet wrung out of While administering quinine, add morning and night five tablets of calomel and soda. If the fever does not yleld in
(wo or three days of this treatment. give one calomel and he mercury, snd two hours until the mouth is sore from If the purging sppesrs too severe. check it wilth a sun
cholera mixture tablet after each purging cholera mixture tablet after each purging.

parbo

Surgical needles (half round, 6, assorted) snd thread. Styptic cotton (one bottle) for nose bleed of the Andes, ete klin or hurns.
One hypodermic syringe, with instruction how to use it oue can of mustard leaves, for counter-ifritation.
Three two-inch roller gauze bandages.
One three-inch rol:er gauze bandages.
One palr dressing scissors.
(one-half pound) \ln a wooden box with absorbent cotton
lnches. A copy of Dr . Paul

Glbler's pamphlet (Bulletin Pasteur Institute, January, Feb
uary, March, 1897), serum-therspy in snake polsonlng, etc. was added to the packsge.

HE NEW YORK MEETING OF THE AMERICAN SO CIETY OF MECHANICAL ENGINEERS

The annual meeting of the Soclety, which is heling held this week at Its house in New York city promises to be as largely attended as was the meeting a year ago, which was the isrgest in the history of the Soclety. The meeting was informally opened on Tuesday afternoon Nov. 29 , by he gathering of many members in the spaclous parlor. which was for the time belng a smoking room, and wa formally opened at $9 \mathrm{p} . \mathrm{m}$. in the auditorlum, when the re Iring president, Mr. Charles Wallace Hunt, dellvered his nnual address, s portion of which w'tl he found elsewhere in thls Issue.
On Wednesday mornlng a bualness session was held. at Which were presented the annual reports of the councll on more elocto te nede, 4 seoclates, and 13 julor members. ste grade, 4 sssoclates, and 13 junlor memhers
The new officers cected were announced as follows: Presi ington, D C. Vive-Presidents, Gcorge P Stetson. Wew Pedford, Mass or D II Warren Plttshurg, Pa.: Treasurer Wm. Wh Wiey Wew Yor Managers, E. C. Felton, Steeiton, Pa.. R. H. Soule, Phlla delphia. Pa., and A. M. Goodale. Boston. Mass.
The Annusl Report of the Councll contalns many matters of Interest. Among them are the sppointment of a new committee to conslder the suhject of Standard Plpe Unlons, Mechanics and Car Bullders' Assoclations. Rallway Maste ment of a com cation of the Methods of Testing S:eam Englnes. A letter has heen recelved from the British Institution of Civil Engineers, expressing its destre to welcome the memhers of the Soclety in Engiand in 1900 on the occasion of thelr visit to the Parls Exposition. The membership of the Soclety now conslsts of: honorary memhers, 14: memhers, 1,295: assoclates, 123; junfor memhers, 349; total, 1.881 . The financlal report shows recelpts during the year. $\$ 32$. . 406; dishursements, $\$ 31,755$; cash halance, $\$ 698$; uncolected accounts, \$4,486: unpald bills. \$185. Assets over Hahilitles, $\$ 51,285$, of which $\$ 23.600$ is invested in $\$ \%$ honds on the bultaing of the Mechantcal Engineers' LIbrary Associstlon, and $\$ 24,107$ is in the volumes of printed proccedings of the Soclety. The outstanding indehtedness of last year, $\$ 3,200$, has been wiped out. The Library Assoclation reports net assets of $\$ 1,194$ in cash and $\$ 10,700$ in books and manuscrlpts.

The report of the committee on a standard code for steam holler trials was presented in pamphlet form. We give an xtract from the new code in another column.
After the business session, profeaslonsl papers were pre ented for discussion as fonlows: "Note on Strength o Wheel Rims," by A. K. Mansfield. "The Bursting of Small ast-Iron Fly-Wheeis," by Prof. C. H. Benjam'n. A brlsk discussion followed this paper, which was particlpated in by many membera, including John Fritz.
A luncheon was served in the bullding at the ciose of the seasion, and the sfternoon was left free to members to visl places of interest, to meet socially in the parlors or to at end to other business. In the evening the annual recep ton and conversazione of membera and ladies was held a Sherry's, 44th St. and 5th Ave.

THIRD BRIDGE OVER THE EAST RIVER, possibly t Blackwell's Island, is advocated by Mayor Van Wyck, and he requests the Board of Publlic Improvements take auch action, as to location, plans and construction, as may be necessary before the project is aubmitted to the Aunlclpal Assembly. He recommends crossing ove Blackwen's Island. Some complicatlons may arise, as the New York \& Long Island Bridge Co. already has tera for a bridge at Black well's lsiand; but the com plers on Long Island and Black of the setting up of the Corbin eatate which controls the enterpriae. The ne assessed valuation of real estate \ln Greater New York, ralsing the aggregate by about $\$ 400,000,000$, seems to hav removed the debt limit obatruction, which for a time in terfered with ralsing funds for the Eaat River bridge now under construc:tion

N APC AT THE EQUATOR is to be measured as a sult of the stuttgart conference of the Internat otal Geodetle Assoclat:on, in October. Mr. E. D. Preston, of the U. S. Coaat and Geodetic Survey, represented thls government at the conference and he will soon make his official report. This arc at the equator, when measured, will be compared with one near the pole, now belng measured by the Swedes and Russians; and the comparison will make it possible to determine the difference in length between the polar and equatorial diameters of the earth. Continuous latitude observations, at slx stations encircling the earth near the 39th parallel, north lat'tude, are to be made by six separate nations. The purpose of this observation is to inves-
tigate the small perlodic changes in the latitude of all tigate the small perlodic changes in the latilude of all
places first reported about ten yesrs ago, and to determine, the secular motion of the poie. The Internationa! Bureau Weights and Measures at Paris, reported that a har made of 36% nlckel and 64% steel, was expsnded by hest only 1 -50th of whst would be expect flom the separate metals. This is of great Importance in the manufac ture of astronomical clocks, as it practically ellminates the temperature questlon. \qquad
practic
THE TOTAL IMPORTS OF GOLD INTO THE UNITED States, In the ten months ending Oct. "1, $1^{\text {sen }}$, says the U. S. Bureau of Stat'stles wss $\$ 143,658,05$; th's is more than 50% in excess of any prevfous imprtation in the same perlod. The exports of gold in this ten months were perlod. Thls unprecedented fiow of gold to the Unlted States is explained by the enormous balpnce of trade in our favor; the total mports of merchandice, in these ten months, be'ng valued at $\$: 27.757 .554$: while the total export was worth \$987.964.956. Out of \$1.866 757.783 In clr. culation in the United S ates on Nov. 1. 1898, the sum of $\$ 849,846,727$ wis gold; on Nov. 1,1805 , the gold in circulation amounted to $\$ 475,181,593$, out of $\$ 1,598,859,316$ as a total.

EXPORTS OF MANUFACTURED GOODS from the nited States, and thelr phenomenal growth in the past n years, as compared with the two presuresu of Sta istlcs of the Treasury Department, which we reproduce ss ollows:

Total value of exporta for flacal year
ending June 30 .

Manutactures. Iron and steel... Refined mineral

Copper
 \qquad

 Chemicals
Vood manuactures. Cyclesimpimts Agricultu
Paraffin Paper and mirs. of.
manufact'rs Fertilizers instrum'ts. Rooks. maps, etc.
Flax. etc..
mfrs... Sugar and molasses. Carrfages
Splrits. \& horse Spirits. India ruhher mirs Zinc manufactures Zinc manutactures
Marhle ${ }^{2}$ stone mers
stan Gunpowder, Stationer
Musical

Musical Instruments

 Brass, etc. manufactures. StarchSoan
\qquad

It should be especlally noted that the growth in volume of exports is really much larger that the growth in volume for prices have gone steadlly downward during the past thirty years. This is especlally true of the decade from 1888 to 1898, in which tha greatest growth in the value of exports is shown. Bes.des this, it must be remembered that currency of thst date, the value of mhich was on'y paper currency of that date, he value of which was oniy $71 . .5 \%$ ports from 1868 to 1878 was at least 30% more than the shove tahle shows.

THE REPORT OF SECRETARY OF THE INTERIOR Bliss deals with pubilc lands, Indians, pensions, territorial and educational affalrs, etc. Mr. Bliss says that of 301,00,000 scres of desert land requiring irrigation, the avallable water supply is only sufficient for $71,500,000$ scres; the remainder is only valusble for grazing purpozes. The 30 forest reservations contaln an estlmated area of 40 , $\mathbf{7 1 9 , 4 7 4}$ acrea. During the yesr the U. S. Geologlcal Survey made a topographical survey of $30,057 \mathrm{sq}$. mlles; the aggregate now surveyed being equal to ahout onefourth of the entire territory of the country, exclusive of Alaska.

THE PROGRESS IN ELECTRICAL SCIENCE was the suhject of the late address of Willam Henry Preece, C. B. F. R. S., on assuming the Presidency of the Institution of Civll Engineers. Mr. Preece was a pupll of Faradsy, snd for Lesrly 50 years has been actlvely engaged in electrical work, and especially in telegraphy. He sa!d that the original tine of Cook and Wheatstone, constructed in 1837, and connect'ng Camden Town and Euston Grove Station, and $11 / \mathrm{s}$ miles long, had grown to $1,111,306$ miles of wire under British control alone. This aggregate covered 435,000 mlies for the General Post office; 105,000 miles for rallway companles; 387,966 for india and the Colonics, and 183,400 miltes of suhmar:ne cables. In the United Kingdom alone there are now in use 152,019 telephones, 133,488 of these belong to the Natlonal Telephone Co. Mr. Preece reconp. mends the control of the telephone business by the atata .a

In the case of the postal and telegraph service in England.
He combats the popular idea teiegraph business in 1809 was a bad bargain for the state Ile says the sum pald for it was $\$ 24,045,240$; the number of messages then sent was about $5,000,000$ per year, and the gross annual income was about $\$ 2,500,000$. This income is now $\$ 15,358,615$, and over $83,000,000$ messsges are sent per year; the capital account, closed in 1891, and including Post Office extensions, was $\$ 50,656,645$; and he says a syn dicate now wanting to buy the plant would have to ralse a capital of over $\$ 150,000,000$. In referring to electric lighting. Mr. Preece said that the electrical energy used in a first-class hattleshlp was expended as follow:
Internal lighting
Searchlights
Searchilights
Capstans, hoists, etc.
Reserve.
Total
20
This quantity supplied 1,000 glow-lamps, 6 searchlights, 16 ventilating fans, and required from 2 to 8 motors. Searchlights were first introduced on warships in 1875, hy Mr. Henry Wilde; the first shlp fitted with internal electric lighting was the "Inflexible," in 1882. In 1884 the British Admiralty ordered it to he applled to all warshlps. Electric power was first used on the "Barfleur" for working guns and ammunition holsts. Its use has heen partially boat hoists, etc, but hydraulic power, capstans, ventilating fana still preferred in the British Nower, for these purposes, still preferred in the Britlish Navy.

A PUBLIC MEMORIAL MEETING, in commemoration of the lste Col. George E. Waring was held at the Coope Union, New York city, on Nov. 23. Thè City Cluh, Authors Cluh, Century Association and Chamher of Commerce united in arranging for the meeting. Letters were read from prominent citizens and speeches were made by President Low, of Columhia University; Bishop Potter, Reuhen Simons, Carl Schurz and Jacob A. Rils. Resolutlons wer adopted setting forth the services of Colonel Waring as a soldier, citizen and sanitary engineer. The Chamber of Commerce has appointed a committee to raise a fund of $\$ 100,000$, the income from whleh is to be paid semi-annualiy to the wldow and daughter of Colonel Waring; and after their death the principal is to go to Columbia University and is to be known as "The Waring Municipal Fund. Thus far about $\$ 37,000$ has been subserihed.

AN ELEVATOR TRUST, to be called the Otis Elevator Co., says the "New York Commerclal," hss been formed hy consolidating into one company about 90% of the etevato husiness of the country. The capital of the company wil be $\$ 10,000,000 ; \$ 4,000,000$ in non-cumulative preferred stock, and $\$ 6,000,000$ in common stock. Mr. Wm. H1. Baldwin, of the Otis Elevator Co., is the chief mover in the en terprise, and will probahly be the president of the new company

BOOK REVIEWS

building. construction and superintend
 Cloth: $6 \% \times 9 \%$ ins.: pp. 544; 524 illustrations. $\$ 4$. The first volume of this work appesred in 1896 (Eng News, Nov. 28, 1896), and was devoted to the treatment of those details of bullding construction generally coming within the province of the mason. Part 11., which is now hefore us, is of the same size and general make-up, but t has 100 more pages and nearly twice as many illustrations. As indicated in the title, it treats of the arpentry work of bullaing construction, and it is ea entially a book for the carpenter and bullder rather than or the engineer.
Taking up the contents in somewhat more detali Chapter I. describes the appearance, quality, ease o working, etc., of the different bullding and finishing woods of the United States. Among the partcuar eatures of this chapter which one notes winh most in lerest are the illustrations and remarks showing the manner in which wood shrinks, and bling the method preventing ahrinkage. Chapter 1 . is followed by chap ers on wood. framing; windows and ouside tramen outside wood inish. such as cornices, gutters, gables, porches, etc., shingle rooks and the work; interior woodwork, including furring, interior finish, cabinet work, stairs, flooring, etc. Chapter VI. contalins nearly 100 pagea on the subfect of hilers biraware, covering the constructicn of locks, hinges, butts, etc., etc. In Chapter VII. the subject of heavy framing in wood is ciscussed, and we note that the author gives the results of the most recent investigations upon the framing of compound heams which have been made by Prof. Kidwell (Eng. News, March 11, 1897. Feb. 3, March 17, 1898), and others. Chapter VIII. gives forms of specilications for carpenters work, bardware, trim mings, slate and gravel roofng, tin work, etc.
The book is very profusely illustrated, many of the illustrations being detall drawings of parts of which drawings are not easily obtained. Taken as a whole we
do not know of any book on the subject which contains
the same amount of up-to-date Information, and any young architect or ambitious carpenter would do well to place a copy in his ubrary. The book has a very good index which enahles references to be made easily to the differest subjects treated.
RAILWAY CONSTRUCTION.-By William Hemingway Mills, M. Inst. C. E., Engineer In Chief of the Great
Northern Ry. of Ireland, London, 1888: Longmans,
Green \& Co. Cloth, 6×10 Ins.; pp. 369 ; Illustrated; $\$ 5$. The American book which this volume most resemhles in Its character and scope ia Mr. Geo. L. Vose's well-known "Manual for Raliroad Engineers." It is a far less comprehensive treatise of the subject, however, than the American publication. The detalled information relating to the strength of materials and structures and the typleal specifcations and standard mathematical formulas given by Mr. Vose are almost entirely omitted hy Mr. Mills. The book also describes Engish practice almost exclusively; the author's references to American practice belng tew in num ber and not always very accurate. For these reasons the chief value of the volume to the American engineer will be in the knowledge which it gives him in a hroad general way of English practice in rallway construction, leaving him to go elsewhere for such information as will qualify him actually to do the work. Keeping these limitations in mina, however, and considering the book as a series of notes upon English practice in rallway construction rather than as a treatse upon rallway construction in general, as its title indicates, it has considerable usefulness for the American elgineer. Doubtiess it would fill a much more useful field for the English engineer.
The chapters In detall are: (1) Location of a Line of Rall way-Government Regulations-Questions for Consider ation in Connection with Gage, Gradients and Curves: (2) Works of Construction; Earthworks, Culverts, Bridges Foundations, Screw Plles, Cyilinders, Caissons, Retaining Walls, and Tunnels; (3) Permanent Way, Rails, Sleepers, Fastenings, and Permanent Way Laying; (4) Station Build Ings, Koofs, Lines and Slaings; (5) Sorting Sidings, Turn tables, Traversers, Water Tanks and Water Columns; (6) Comparative Weights of Some Types of Modern Locomo tives; (7) Signals, Interlocking. Block Telegraph and Elec tric Train Staff Instruments; (8) Railways of Differen Ranks, Progressive Improvementa, Growing Tendency for Increased Speeds, with Corresponding Increase In Weigh of Permanent Way and Rolling Stock-Electricity as Motive Power
UP-TO-DATE AIR-BRAKE CATECHISM.-A complete study of the air-hrake equipment, Including the latest
devices and inventions used. All troubles and pecu devices and inventions used. All troubles and pecu-
liarties of the alr brake and a practical way to find and liarities of the alr brake and a practical way to find and
remedy them are explsined. By Fobert H. Blickall,
Air-Brake Instructor snd Inspector, Delaware \& Hudson Air-Brake Instructor snd Inspector, Delaware \& Hudson
Canal Co.'s R. R. New York. Norman W. Henly \& his little book is designed especial'y ions. $\$ 1.50$. This little book is designed especialy for raliway tra n . Whose dutles require knowiedge of the air brak and methods operation. The alm has heen to make so elementary and simple that the "green hand" can learn and ald than this book gives. It is also a valuahle textboo for use in the air-brake instruction schools which are carried on by most rai.way companies. Besides the air brake, the book also gives instructiona on the use and car of the air signal. This is the irst hook for engineers in struction we have seen which specifically cautlons agains plled in making an emergency stop.

COMPRESSED AIR PRODUCTION, or the Theory and
Practice of Air Compression.
Puhlished by
by
"Compressed Air,
26 Cort'andt St., New Published by "'Compressed Air," 26 Cort a
York. 8vo, cloth; 1 . $58 ; 27$ 'Uus'rat'ons,
Thia book consists chiefiy of matter which was publishe serially in the little monthly journal called "Compreased Air." Mr. Saunders is well known as one of the leading av thorities on the subject. His present book ta of an ele mentary nature, entirely free from mathematics; but presents the fundamental principles governing the produc tion and uae of compressed air in a way which can be read ily understood, and will prove a useful handbook to those who undertake the installation or management of com pressed alr plants.

HANDBOOK OF ENGINEERING LABORATORY soclate Professor of Experimental Eng neering. Purdue
University. New York: John Wiley \& Sons. London:
Chapman \& Hall, Limited. Cloth, 12mo; pp. 290 . $\$ 2.50$. The scope of this book is shown in the following ex racts from the preface
This volume is intended primarily as a maual for the
use of students in the routine of experimental work in use of students in the routine of experimental work in Steam-engineering, Strength of Materials. and Hydraulics gineers in active service whose familiarity with the of dinary methods of testing is Ilmitted. The chief object in view has heen to provide in convenient form such direc
tions for the conduct of the various tests and experiment comprising the course as the student will need to enable
him to take charge of and conduct the particular work assigned to him in an ant intligent manner snd with it itle
ielay. The methods of testing described under the various delay. The methods of testing described under the varlous
general heads are not intended to cover the subject in an
exhaustive way. Only such tests have been described as exhaustive way. Only such tests have been described as
may be carricd on in connectlon with the complement of
apparatus to be found in the better equipped labora ories apparatus to be found in the better equipped labora ories
of exnerimental enrineering. and the methods explained are
those which the author has found to be most easily em-
ployed in every day practice. Both the manner of arrang.

vesigatlons.

The author has condensed a great deal of usefur tion into small space. His style is clear and simple, a matreatment is entirely of a practical nature, avolding theory almost entirely. The book should prove a useful one to students of mechan'cal engineerling.
THE STORY OF THE RAILROADS.-By Cy, Warman author of the "Tales of An Engineer," "The Ex Eress
Messenger." "Snow on the Headlight." etc. New York:
D. Appleton \& Co. Cloth, $73 / 4 \times 5$ ins.; pp. 280;
trated. $\$ 1.50$. trated. $\$ 1.50$.
This is not an engineering treatise, but a story of en. gineers, and a very interesting general history of the be ginning and completion of the various trans-contio ntal rallways. The history of the Union Pacific road commences with the efforts of Asa Whitney, in 1835; hut prozres really hegins with the surveys of the present Gen. Grsnville M. Dodge, made when in the employ of the Mississinpl Missouri Rallway Co., in 18vs. The story of the UDlon Pacific is carried to the completion of that road; and the Atchison, Topeka \& Santa Fe, the Denver \& Rlo Grande, the Northern Pacinc, and the Canadian Pacinc sre the taken up in sequence. Interspersed with the story ar many ncidents connected with the life and trials of th engineers and workmen engaged in building these roads and character sketches of the rough aocial element thst drifted West with the iron ralls. The book is interestlng reading for engineers and valuable for the hiatorical

PRACTICE AND THEORY OF THE INJECTOR B Strickland Kneass, C. E., M. Am. Soc. M. E., By
Second edition, revised and enlarged. New Yot John Willey \& Sons; London: Chapman \& Hall, Lid
Cloth, 8vo; pp. 161. $\$ 1.50$. Cloth, 8vo; pp. 161. \$1.50.
Mr. Kneass's book on the injector has been well known, since the issue of the first edition a few years ago, as th standard work on the subject. The new eaition contaln some new matter, and many changes have been made in the text of the original edition.
THEORY OF ELECTRICAL MEASUREMENTS.-Lecture Notes Prepared for the Third Year Classes of the Cooper
 $\$ 1$.
This ittle hook was prepared by the author for the 0 . of the third year classes of the Cooper Union, New York Physi School of Science, in which he is Pres Physics. It makes no pretension, of course, to he sn elab mental principles of electrical measurementa to the studen in a hrlef but clear manner.
Not the least valuable feature of the hook is the series of prohlems given at the end of each chap'er, the correc solution of which is proof that the student correctly ut derstands the preceding text.
A TEXT-BOOK OF GEODETIC ASTRONOMY.-By John F. Hayford, C. E., Assoc. M. Am. Soc. C. E., Expert
Computer and Geodesist U. S. Coast and Geodetce Sur-
vey. New York: John Wiley \& Sons. Cloth; $9 \times 5 \% /$ ins.; uu. 351 ; illustrated.
This work is Ilmited to the treatment of astronomy as applied to surveying, or to geodetic astronomy only suftiently sumciently short and easy to be matered by the stadent to this nranch of to this aranch of study. The shmpler and speclal means of deriving working formulas have been chosen, an considerahle space la devoted to the discusslon or the varlous sourtial her in of to the practical he are pral used. in tact, the ave princlpal chapters in the mith arately treat of the sextan, a 1 and telescopes and aeterm. strument and methods of observg longlude, her the author has been to loun in practice to lo sel the moll computatons, and to the he fint the standan work of the rer Boundary and other surveys and the practice of those making these reports, It is to be regretted being dis. illustrative figures used are hunched instead
tributed through the text, where they belong. EXPLOSIVE MATERIALS. - The Phenomena and Theorles
of Explosion. and Classifcation, Constitution and Pre-
paration of Explosives. By Lieut. John P. Wlsser. 1 st paration of Explosives, By Lieut. John P. Wisser. 1 st
Artillery, U. S. A. Instructor Department of Miltarv
Sclence, U. S. Artillery School. Editor "Journal U. S. Artillery. ${ }^{*}$ Van Nostrand Sclence Serles, No. ${ }^{7}$.
New York: D. Van Nostrand Co. Boards; $6 \times 30 / 4 \mathrm{ins}$ pp. 145.50 cents.
Aboat ateen years ago a first edition of this treatise appeared; but the derelopment in this art has been so great in the interval, that the presentirely up-to-date study the materiats of explosives, the phenomena of explosion the materialty of reactons hemith propagation and the products and f rce of explosion. The various types of explosives are then taken separately and minutely descr!hed. The composition ard manufacture of smokeless powders is gons in'o at considerable length, and forms an unusually interesting portion of the work.

