## ENUINEERING NEWS AMERICAN RAILWAY JOURNAL.

VOL. XL. No. 23

## TABLE OP CONTENTS.



THE CHESAPEAKE \& OHIO CANAL sale is to take place on Feh. 7, 1899, when sealed bids will be opened by the Board of Public Works of Msryland for the entire interest of the state in the canal. This interest consists of a $\$ 2,000,000$ mortgage made In 1834, and the accrued interest thereon for 64 years, common stock to the amount of $\$ 788,724$, and preferred stock amounting to $\$ 4,375,000$. There are some prior liens on the property, amounting to bout $\$ 2,000,000$, which are held by interests friendiy to the Baltimore \& Oblo R. R. It is generally conceded that company desiring to use the canal towpath as railwa bed, or the Baltimore \& Ohio, which may purchase it to prevent the estahlishment of a competing line. It is stated that except during the years from 1807 to 1878 the canal has never been a financial success.

THE NEW YORK CANAL INVESTIGATION is again hrought to public attention by the report of Hon. Edwin Countryman, who was assigned by Gov. Black last August to make a special study of the testimony taken by the Canal Investigation Commisslon and to report whether civil or criminal proceedings should be instituted against nection with the canal works. Judge Countryman's report is a voluminous one. He finds in the first place that there is no evidence that any of the contractors were gulity of collusion or fraud in obtainlag or carrying out heir contracts, and concludes that with two or three possible exceptions there is no chance for a successful suit by the state against the contractors. As regards the State Engineer and the Superintendent of Public Works, however, Judge Countryman holds that, although corrupt collustion with the contractors is not shown on their part they were guilty of various infractions of law; and he advises that the evidence against both these officials be submitted to the Grand Jury. He holds the State Engineer culpsble for not making use of the quantities and nformation contalned in the prellminary surveys in preparing his estimates, and he thinks the reason was that it was desired to conceal from the public the fact that the $\$ 9,000,000$ appropriation was inadequate to complete the work. The reclasslfication of earth as rock on varlous contracts is severely commented upon, togeiher with the means which were adopted to induce subordinate engieeers to fix quantities and classify materials in accordance with the instructions of those over them and against their Wn opinions and measurements.
Concerning the Superintendent of Public Works, Judge Countryman holds that his power and authority were sufficient to have enabled him to have detected and prevented the varlous Illegal acts charged to the State Enineer's department, that he exceeded his powers in the making of special contracts for extra work, and that the application of part of the $\$ 9,000,000$ appropriation to other work on the canals than the deepening ordered by the egislature was a violation of law.
Concerning the subordinate employees of the departments, Judge Countryman says that while many of them ave been shown to be willing assistants in the various ilegal practices complained of, he has deemed it best that the pnblic prosecntor should be left at liberty to exercise his discretion in using any of them as witnesses in the prosecntion of the prinolpal offenderst

As soon as Judge Countryman's report was made pub tute criminal proceedings against the two ofliclals. Su perintendent of Pubilc Works Aldridge presented his res Ignation on Dec. $\qquad$
THE PROBABLE EFFECT OF THE CHICAGO DRAIN age Canal upon the water flowing by the communitles below its outlet, and especially upon the city of St. Louls, Is still causing much discussion in Cbicago and St. Louls. A committee of prominent public men has been appointed at St. Louls to investigate the subject, while at Chieag Artbur R. Reynolds, M. D., Commissioner of Health, ha addressed a communtcation to the Trustees of the Sanitary District of Chicago urging that a serles of bacterial and chemical examinations be instituted of samples of wate collected at varlous points between Chicago and St. Louls. These examinations would be continued for some years in order to show the changes wrought by putting the canal in operation.

RIVER POLLUTION by the SEWAGE OF MIDDLEborough. Mass., bas been pronounced by the State Board of Health of Massachusetts as possibly one of the "eauses of the large amount of slckness in the portion of the town which is nearest the river." The hoard recommends tha a sewage purfication plant.

RIVER POLLUTION AT WATERBURY, CONN., has been before the courts more or less of the time since April, 1891, before the courts more or less of the time since April, 1891 ,
 eome up for trial after a number of delays.
brought by Platt Bros. \& Co. and the Platt Mills Co. against the city of Waterhury. An Injunction is sought against the city of Waterhury. in the Naugatuck River, against the discharge of sewage into the Naugatuck River,
and damages are clatmed on the ground that the river has and damages are clalmed on the ground that the river has
been rendered unfit for all uses except power, to which it was formerly put by the plaintifs.

THE MOST SERIOUS RAILWAY ACCIDENT of the week occurred Dec. 2 on the Fitchhurg R. R., near Athol. Mass., in which two frelght tralns collided. The wreck was lurned to death before he could be released.

THE BURSTING OF THE MAIN STEAM PIPE of the Mallory Line steamshio "Alamo." on Dec. 3, eaused the death of six men and the Infury of one other, all heioneing to the engineering force. The "Alamo" had been used as a United States troop tranoport during the recent war and was just starting on her first regular trin South after being thoroughly overhauled and equipped with new bollers and steam pipes. Both had been tested by U. S. government inspectors, and at the time of the aecident the boiler pressure was ahout 80 lbs , whlle 100 lbs . was the safe allowahle preasure. The accldent is attribute to the stralning of the eopper ateam pipe at the time it was tested by the government Inspectors.

THE EXPLOSION of a part of the refrigerating machinery of the government hospital ship "Bay State," at dock in Brooklyn, N. Y., on Dec. 6, resulted in the death of the engiteer ints. According to reports one of the ber the bulkhead separating the fice room from the engine he buld

THE EXPLOSION Lamotte, Mo., on Nov. 23, killed 6 men and Injured ser ral others. According to accounts tbe explosion occurred in the packing house of the powder mill at that place and w

HARBOR MINE EXPLODED at Fort Independence, Boston, Mass, on Dec. 6, while being hauled from the water's edge to the magazine. Four

AN ELEVATOR ACCIDENT occurred in a 11 -story building at 55 Wiltiam St., New York city, on Dec. 6, In which one man was killed and three others were seriously injured. It appears that when the car roalied the bottom of the shaft the counterwelghts became displaced and fell
from the shaft upon the car.

TWO BASCULE BRIDGES over the Chicago River wil be built by the Drainage Board, as they will be cheaper than the construction of by-passes around the old briages, in order to increase the capacity of flow. One of these wll be at Taylor St., and the other will be for the Chicago \& Northern Paclic R. R., between Taylor and 12th Sts. The present structures are swing bridges, and both of the new structures will be of the Scherzer rolling-lift type, already in use at three polnts on the Chicago River. The cost

Is estimated at $\$ 314,000$, or $\$ 05,000$ less than tbat of the
by-pass, while the new bridges will give better facilties for navigation tban those at pregent existing.

TRACKWAYS OR WAGON TRACKS are proposed for use on State St. and Clark St., Cbicago, between I6th and 2d Sts., in order to relleve the street rallway traeks from traffic wear and delay to trafte, due to the very heavy wagon traffic at chese points. The Cbleago City Ry. Co. has to repair the pavements between the streets named, and
Mr. M. K. Bowen. President of the eompan, use fint ralls, 6 ins. wide, silgbtiy concave on top, form lug wagon tracks, between the atrect railway tracks and the sidewalks. $\qquad$
COMMISSION TO PREPARE A BULLDING CODE fo the city of New York has been authorized by the Municlpal Councll, and the matter is now in Mayor Van
Wyck's hands. The ordinance provides Wyck's bands. The ordinance provides for a representa-
tive of the Corporation Counsel, the three Commissioners tive of the Corporation Counsel. the three Commlssloners
of Bulldings, and five experta who shall have had at leagt of Bulldings, and five experta who shall have had at least
five years' actual experienee. It is understood that the five years' actual experienee. It is understood that the
five experts wlll be appointed hy President Guggenhelmer of the Councll, and President Woods of the Board of Alof the Councll, and President Woods of the Board of Al
dermen.

THE HOLLAND SUBMARINE TORPEDO BOAT has been favorahly reported upon by the Board of Inspection and Survey of the Navy Department. The report says that the board found all the elalms of the bulldera verifed. bu This test is io a further test under "war conditions." mile course. In the center of this course an old vessel will mile course. In the center of this course an old vessel witi
be anchored; and the "Holland" must rise to the surface discharge a torpedo effeetively at the hull and then dis discharge a torpedo effeetively at the hull and then dis will depend the acceptance of the hoat hy the government

PROPOSALS FOR MACHINERY for rolling armor plate, o be delfvered at St. Petersburg. will be recelved unti! Dec.
2 at the offlee of the Naval Attache of the Ruselan Em. hasey. D. T. Mertvago. 818 18th St. N. W., Washington. n. c. A reversing engine is wanted. capable of rolling the
ingots to plates at one heat. The rolls are to be $4.000-\mathrm{mm}$. in length, the maximum weight of ingot on tons, and the maximum thickness of the plate is 900 mm . Roller tahles lifting appliances, two sets of regenerative furnaces, with movable bottoms, and other appurtenances, are also called for.
A NEW FACTORY FOR MAKiNg large givns is Hikely to he buitt at Newport News. In the vicinity of th hipyard at that place. Negotlations are in progreas hetween Mr. C. P. Huntington and Viekers' Sons \& Maxim,
the English shiphutlding and gun-making firm, for the aking hy the firm of a large part of Mr. Huntington the aring in the Newport News eompany, and for the addltion of gun-maklng to lis bualneas. The work on the great dry-dock at the ahipyard is advancing rapldiy. Ahout 10,000 plles have been driven, and a large part of the exeavation has been made.

THE NEW U. S. COALING STATION at Pago Pago Island of Lutullia, Samoa, the contract for which was let some time ago to Healy. Tibhtts \& Co., of San Franclaco Cal., is helng rapidly rushed. The contract for the stee work, amounting to 2.800 .000 lbs ., has heen awarded to he Carncgle Steel Co., and the mills are now at work ret 000 ibs of Iron castings. 200 th are yet to be let for 350 . t., B. M., of timber. The coal shed will be $150 \times 10 \mathrm{ft}$. with a framework of steel covered with corrugatef zal vanized iron. The contractors will take about 40 skilled workmen from Amerlca, hut will depend upon native lahorers for the other help.

THE TROPENAS STEEL PROCESS is sbout to b adopted by the Unlon Iron Works of San Francisco. A large fountry is being bullt, in which will be placed two 2-ton Tropenas converters. Mr. Irving M. Scott, vice president and general manager of the company, focentio n Europe. Messrs, Powell \& Colne, 11 Broadway, New York clty, are the agents for the process in the United States.

A WOODEN SUBMARINE CABLE CONDUIT to carry electric light cahlea acrosa Fort Point channel, Boston Mass., was described in The Electrical Engineer for Nov. 24. This was constructed by the Boston Electric Light Co. of $6 \times 14-\mathrm{in}$. pine timber grooved on a planer so that when bolted together there were formed 24 circular duets. The ends are made of oak and are curved up on a $20-\mathrm{ft}$. radius. The curves were built up of $4-\mathrm{ft}$. length while $20-\mathrm{ft}$, lengths were used in the straight section. In placing, a trench was dredged across the channel bottom the condult was built in two sections and launchet; af terwards being joined and weighted until it sank into the trench, and duplicate cables were then drawn in and terminated in separate manholes.

# C. E., of and for the sub-contractors, John Monks 

\& Son.
There will be one central shaft, 10 ft . in diameter, which will be the suction shaft, and twelve smaller ones, each 3 ft . in diameter, as shown in some of the views. The latter are the standard shafte for Moran air locks.
shafts are lined with steel, the plates of urge shaft being $3 / 4-\mathrm{in}$., and of the smali about $1 / 4-\mathrm{in}$. thick. The caisson is to be o a depth of about $\mathbf{8 7} \mathrm{ft}$. below the surface ground. The working cells wlli be reflifed best sand found in making the excavad the air lock shafts will be filled with conThe central shaft will then be carrled on to rock, about 18 ft ., and contlnued in the roch to the level of the intake tunnel, the height from the bottom of the shoe to the center line o the tunnel being about 46 ft . The central shaft and the pump house walls will also be extended upwards from the top of the calsson, as shown in Fig. 4. A speclal feature of the outer masonry wall will be a $1 / 4-\mathrm{in}$. steel cylinder built into it to make it water-tight. Mr. Aifred Petry, M. Am. Soc. C. E., is resident engineer on the work now in progress at California.
The intake tunnel is designed for a self-cleans ing velocity of 3 :t. per sec. It is to be lined with two rings of brick, backed with concrete.
The subsiding reservoirs will be operated on the fill and draw plan. Each basin will be alternatelv pumped into and drawn from for from 72 to 48 pumps at a time, giving an average subsidence 72 hours for a daliy output of $57,500,000$ galions: fo hours for $69,000,000$ gallons; and 48 hours for $86,250,000$ gallons. Grounds have been provided for the construction, when needed, of a third settling basin, at the same elevation as the others. with a capacity of about $120,000,000$ gallons.
The reservoirs will be formed by damming ravines, thus giving them the irregu'ar shapes shown on the plan, Fig. 2. This irregularity makes the continuous setting plan impracticable, owing to uncertainties regarding the circulation of the water. The embankments wiil be built by what Mr. Bouscaren terms the dry process, that is, in $4-\ln$. layers rolled dry with heavy steam rollers. In wet weather work on the embankments will stop. Four years is allowed for building these reservoirs. A similar pian of construction was employed by Mr. Bouscaren on the subsiding reservoirs for Covington, Ky., which the subsiding reservoirs for Covington, Ky., which
are right across the river from the new works for are right across the river from the new works for
Cincinnati. The Covington intake is close by the location chosen for Cincinnati, so the water for the two cities, as drawn from the river, will be identicai in character. This fact has interest because some thirty days of sedimentation in the Covington reservoirs effects a large removal of bacteria and sediment, but even this long period of quiescence does not produce an ideal water. Thlrty days sedimentation for Cincinnati, with the proposed ultimate capacity of $90,000,000$ gallons. would mean duplicate settling basins of 2,700,000,000 gallons each.
The clear water basin will be 20 ft . deep, 400 ft . sq., and have a capacity of $20,000,000$ gallons. As it will contain oniy about an eight hours' supply it is not thought nesessary to cover it.
The final location and character of the condult to the city pumping station had not been declded up to Nov. 20 . Its length will be about $23,000 \mathrm{ft}$. up to Nov. 20 . Its length will be about $23,000 \mathrm{ft}$. A toll road passed through the land bought for
the new purification works. To divert the traffic, and to save paying tolls, the trustees have bought about a mile of this turnpike, and are constructing a plece of new road. They have also made a contract wlth a rallway for changing itstrack from narrow to standard gage. A spur about $5,000 \mathrm{ft}$ long will be built by the clty from the rallway to the pumping station. This will be avaliable for the the pumping station. This will be avaliable for the
use of the contractors. It will include a viaduct use of the contractors. It will include a viaduct
630 ft . long, on an $81 / 2^{\circ}$ curve, composed of plate girders of alternate 30 and $60-\mathrm{ft}$. spans.
The five trustees of the new works are: Aug. Herrmann, President; Maurice J. Freiberg, Chas. M. Holloway, Leopold Markbreit and Wm. B Melish.
The Cincinnati Experiments on Water Purlficatlon.
In November, 1897, the chief and advisory engineers submitted a recommendation that water
purification experiments be instituted, they being confronted with the fact that there is not suff cient rellable information or experience at hand regird ng the best a-d
most economical methods t) be adopted for fllering th most economical m
Ohlo River water.
The engineers did not doubt the success of slow sand filtration abroad, but they sald that the water there differed materlally from that of the Ohio for at least six months of the year. They also desired information to enable them to decide between slow sand and mechanical filtration, and more light on sedimentation. They considered that more light on sedimentation. They considered that
it would be wise to spend in experimental work It would be wise to spend in experimental work
$3 \%$ of the estimated cost of a purification plant and advised the construction of settling tanks and filters of sufficient
capactity to purify Ohilo River witer at the rate of 250,00 ,
gallons per 24 hours for a pertod of eight months. gallons per 24 hours for a pertod of eight months.
Mr. Bouscaren estimated that the desired experimental work could be carried out at a cost of $\$ 23,000$ for construction, and $\$ 9,000$ for operation for eight months. Mr. Geo. W. Fuller, who had Just finished his experimental work on water purlfication at Louisville, was engaged as chief chemist and bacteriologist to take direct charge of the Cincinnati tests. On March 28, 1898. the experimental plant at Cincinnati was put in operation, and it, as a whole, has not shut down since, running days, nights and Sundays. It is expected that the experiments will be continued until at least Jan. 1. The followlng information regarding the scope of the experiments, and the factors involved, were obtained from Mr. Fullet
The drainage area of the Ohlo River above the new intake is about 71.000 sq. miles. The turbidity of the water ranges from 5 to 2,500 parts per $1,000.000$ of total matter in suspension, by weight. The minimum amount of suspended matter is practically all clay, while of the maximum a large percentage is silt and coarse clay, suspended matters in the water being divided con ventionally into sand, silt and clay, according to thelr hydraulic subsiding value. Between the limits named there are all sorts of variations and combinations in the amount and character of the suspended matter. This will be better appreciated on noting that the drainage area of the Ohio includes many variations in surface geology, and that the rainfall and runoff causing increases in turbidity may cover the whole drainage area, or any of its several sections having different geological formations. The maximum turbidity may occur several times in a year. As compared with the Merrimac River at Lawrence, water from which has been used for the Massachusetts experiments on slow sand filtration. the turbidity of the Ohio River is enormous, for, while at rare intervais, say, perhaps, four or five times in a century, the Merrimac River in freshet may carry 1,100 parts of suspended matter (sitt), there is generally so little that chemists do not take the trouble to determine it. The bacteria in the Ohio River water range from 1,000 to 100,000 per cu. cm., with an average of about 10,000 . Th. suspended organic matter ranges proportionately with the total suspended matter, but of the fairly constant dissolved organic matter it is hard to distinguish between that of sewage origin and that washed from the surface of the earth.
The experiment station at Cincinnati is located immediately below the retalning wall of the Eden Park Reservoir, so water may be taken from the force main leading from the main pumping station and pass through the purification plant by gravity. This secures water as nearly as possible like that of the river, at the intake of the present pumping station. The unit basis of the plant being a daily capacity of 100,000 gallons, four settling taniss, each of that available capacity, were provided and are used in rotation. These are of steel, 25 ft . in diameter, and 34 ft . high. They are designed for quiescent subsidence, being flled from the bottom and emptled through valves placed at different levels, the upper valves in succession being opened first. The average totai subsidence is designed to be three days, figured from the time the tank is full until it is half empty. It takes about four hours to fill each settling tank.
The water passes by gravity from the settling tanks to an equalizing tank, in which it is held automatically at an approximately constant level.

From this box the water flows through valves kept wide open, for constant flow, to the top of the filter beds, which are all at the same level. There are 15 wooden tanks used for fiter beds, in three sets, of five each. The dlameter of each tank is 11.78 ft ., or $\mathbf{1 - 4 0 0}$ acre. In each set of flve tanks one is 10 ft . deep, three 8 ft . and one 6 ft . the shallower tanks beling blocked up to bring the tops all to the same level. Each of the 15 tanks has gravel layers at the bottom for supporting the filtering sand, similar to those at the Lawrence Experiment Station. The $10-\mathrm{ft}$. tanks contain 5 ft . of filterng sand; the 8 - ft ., 3 ft .; the 6 - ft ., 1 ft . The avaliable water space above the sand in each tank is 4 ft ., before the depth of the sand is decreased by scraping. To prevent the water from rushing down the sides of the tanks in channels there is a series of horizontal grooves about $11 / 4$ in. wide and $5 / 8-\mathrm{in}$. deep, 6 ins . c. to c. They seem to be successfui. Each set of flve filter tanks is filled with coarse, medium and fine sand, with effective sizes of $0.34,0.27$ and 0.20 mm ., respectively. The sand was taken from the bed of the river, in the vlcinity of the site for the new works. The inlets to the filter tanks enter at the sides, about 2 ins. above the original sand surface. The filtered water is drawn from the bottom of the tanks, near the sides. The outlet pipes extend to a meter room beneath the filter platform, there being a meter for each filter. On each outlet pipe there are two valves, one close to the tank, which is kept wide open, and one in the meter room which is used to regulate the rate of fitration.
All the filters operate on the continuous pian The rates of operation, for each set of five, are, three at $2,600,000$ gallons acres per day, these having, respectively, 5, 3 and 1 ft . of flitering sand; one at $4,000,000$, and one at $1,500,000$ gallons, each having 3 ft . of sand.
The laboratory is a temporary one-story building, of wood, about $30 \times 65 \mathrm{ft}$. It contains a fuil chemical and bacteriological equipment. Besides Mr. Fuller, who is Chief Chemist and Bacteriologist, there are six trained assistants, three of whom, ranking as first assistants in their respective departments, were with Mr. Fuller on the Louisvilie work, as follows: Chas. L. Parmelee, Engineer; Jos. W. Ellms, Chemist; Geo. A. Johnson, Bacterlologist.
As to the results of the experiments it is not fitting to speak, in view of their present uncompleted state, further than to say that on the whole satisfactory progress is being made, and that the bacteria are more easily removed than the turbidity. This last is not surprising, in view of the fact that at times the particles of clay in suspension are much smalier than the bacteria. When the Cincinnati report is published we shali have for the flrst time, so far as we know, detalled information regarding the possibilities of combined sedimentation and slow sand flltration for the removal of bacteria and turbidity from a water liable to be frequently high in both.

## A COOLING TOWER AND CONDENSER INSTALLATION.*

## By J. H. Vall. $\dagger$

The conditions existing prior to the installation of the plant referred to in the following paper were as follows: The electric light station was equipped with 27 hoilers, 48 ins. in dlameter, 20 ft . long, with $225-4 \mathrm{n}$. tubes. The all the bolters to the limit of their steaming capacity. all the bollers to the limit of their steaming capacity. larging the buliding and increasing the holler capacity. larging the buliding and increasing the holler capacity After an investigation of the existing conditions, the writer recommended that by the putting in of a cooling tower and a condensing system, the engine capacity of the
station could he increased, leaving the holler capacity station could he increased, leaving the holler capacity the same, thus saving the cost of adding more holiers and enlarging the huilding, and at the same time ohtaln better
duction.
To determine the steaming capacity of the boilers, two tests were made with one pair of hollers, which showed that under regular working conditions, with Shenandoah pea coal, each $48-\mathrm{in}$. by $20-\mathrm{ft}$. holler would evaporate into steam $4,281 \mathrm{lbs}$. of water per hour, glving a capaclty of 115,587 ibs. steam per hour with every boller in operation. Coincldent with the boller test, one $181 / 3 \times 30$ in. Buckeye engine was using the steam from the boliers -Condensed from a paper presented at the New York meeting of the American Soclety of Mechanlcal Nngineere
+Chlet Engineer Pennsylvanla Heat, Light \& Power Co Philadelphla, Pm .

## PROGRESS ON THE NEW WATER-WORKS FOR CINCINNATI, 0.

## (With two-page plate.)

The most comprehensive scheme of water-works mprovement now being carrled out by a single city In this country is the one at Cincinnati, $O$ Here work is well under way on a new supply. which will include a river Intake pler and tunnel. a primary pumping station, large settling reser volrs, filter plant, clear water basin, long gravity main, second pumping station and a foree main to the present distributing reservoir. for all of which $\$ 6,500,000$ of bonds have been au thorized by the legislature.
The need of a new water supply at Cinclnnat has long been recognized. The present intake is located on the rlver front in the heart of the city, below a large number of sewers. The water of the Ohlo River at its best is so laden with sediment that few Eastern men or women would tol erate it for a moment, while at its worst it is shunned even by Cincinnatians. The people of Cincinnati, and the West in general, feel very kindly towards the Ohlo and Misslssippi water. especlaily when the mud has been removed from it, and speak scornfully of the "vegetable tea" served up by water-works offlcials in the East. ervere is There is some reason for thls, for these Wester waters, minus their loads of mud, are very pal atable. Besldes the sewage and mud in the present supply, the old Front St. pumping station at Cinclnnati has a far from modern equipment, be ing sometimes referred to as a museum of pumping machinery

Mechanical filtration was mentloned as worthy of consideration.
A. few days after receiving the report just named the trustees appolnted Mr. Gustave Bouscaren, M. Am. Soc. C. E., of Clncinnati, as its chlef engineer, and later It selected Mr. Geo. H. Benzenberg M. Am. Soc. C. E., of Milwaukee, and Mr. Charie: Hermany, M. Am. Soc. C. E., of Louisville, as Consulting and Advisory Engineers.
A member of the editorlal staff of this journal visited Cincinnatl early in October, 1898, saw the work then in progress, and through the courtesy of Mr. Bouscaren, secured the information and material for illustrations from whlch the remaln der of this article has been prepared. It was found that contracts had already been let, as follows: For the intake pier, tunnel and pump pit, to F. H. Kirchner \& Co., Cincinnatl, who had sublet the pneumatic work to John Monks \& Son, of New York city; for grading levee, filter grounds, rallway spur and Miaml River protection work, to the David Folz Asphait Paving Co., of Cincinnatl; for three $30,000,000$-gallon vertical triple expansion pumping engines, bollers and an electric travellng crane at the primary pumping station, to the Lane \& Bodley Co., of Cincinnati. Work was al. ready well under way in October on the caisson to be used in sinking the pump pit and on the grading contract. Detailed plans for the pump had not yet been submitted by the contractors Experiments, described further on, were In prog. ress to determine the design of the purification works, more especlally of the filter plant. The present article will oe confined almost wholly t the caisson and the purification experiments.
water reservoir and the clty pumping sta where it will be repumped to the Eden Park tributing reservolr. The works are being slgned for an average dally consumption of 000,000 gallons, at the outset, with provislon a future Increase to $80,000,000$ or $90,000,000$ lons. Some of the principal elevations of the w will be as follows: Low water at the Callfor or primary, pumping station, 3.5 ft .; subsic basins, range, 141 to 110 ft .; clear water b range, about 96 to 76 ft .; bottom of well at I dleton, or second pumping station, about 34 Eden Park Reservoir, high water, 240.78 ft capacity of the Eden Park Reservolr is 100,00 gallons.

A cross-sectlon through the Californla pum station and pit, showing the caisson at the tom, is shown by Flg. 4, and the details caisson shoe by Fig. 5. The five views, Flgs, 10, show the caisson in Its early stages of struction, but before it was completed read begin sinking it. The calsson, except for working cells and air locks, is a solid oak st ture, 127 ft . In dlameter and 20 ft . high, restin, a steel shoe. It contains about $2,250,000 \mathrm{ft}$. of timber, $12 \times 12,12 \times 16$, and $12 \times 18$, every stick which is planed, and much of which is sawed special shapes, there being some 15 miles of bant saw work on $12-\ln$. oak. Drift bolts, mostly 30 ins long, $\mathbf{1}^{\prime}$ to 2 ft . apart, are used vertlcally and har. izontally to such an extent that their combin length would be about 40 miles.
The girders shown in the section, Fig. 4, and in the views, Figs. 6 and 7, divide the lower porti of the caisson into 21 working cells, each 2 ?


Fig. 9.-Curved Timbers of Triangular Section in Place.


Fig. 10.-Part of Outer Staves and Lining of Central Shaft in Place.

VIEWS OF CAISSON UNDER CONSTRUCTION; THE NEW WATER-WORKS FOR CINCINNATI, OHIO.

In our issue of April 2, 1896, we reviewed briefly a report on a new water supply for Cincinnatl, made by Messrs. John W. Hill, Samuei Whinery and Geo. H. Benzenberg, Mems. Am. Soc. C. E., a commission appointed by the Board of Administration of Cinclunati. In its broad general outlines the plan recommended by the commission was similar to that now being carrled out, but in its particulars there was much difference. After the appointment of a body officially styled "Board of 'Trustees, 'Commissloners of Water-Works'," to bulld new works, the original plans were referred to a new commlssion for its opinion. The members of this commission were Messis. Charles Hermany, M. L. Holman, Clemens Herschel, Henry Flad and Samuel M. Felton, Mems. Am. Scc. C. E., and a note giving the main recommendations of its report was published in our issue of May 6, 1897. One of the most significant of the recommendatlons was that before making designs for a slow sand filtration plant "further Investigations $b \geqslant$ made as to the most advisable method of rendering the water of the Ohlo River beyond criticism as to appearance or susplcion as to potability."

Description of the Calsson and General Notes on the New Works.
The map, Flg. 1, shows the location of the new intake works in relation to the city and its Kentucky suburbs, while Fig. 2 shows the goneral plan of the intake, pumping station and purificatlon works. Alternative areas for the filter piant are shown, one for slow sand, the other for me. chanlcal filtration. The river channel here is near the Kentucky shore, necessitating an intake pler in the river and a tunnel with a clear dlameter of 7 ft ., and a length of about $1,400 \mathrm{ft}$., as is shown ln the plan and profile, Fig. 3. The difference between high and low water in the Ohio River is about 70 ft ., which accounts for some of the features of the design of the pumping station, and for the rather unusual appearance of the Covington pumping station, which may be seen on the opposite shore in some of the views. The water will be pumped to two subsiding reservoirs having a combined available capacity of about 345,000 ,000 gallons, from which it will flow by gravity to the filter plant, and thence to the clear
square and 8 ft . high, above the level of the cut ting edge of the shoe. The cross walls are $31 / 2 \mathrm{ft}$ thick, including the $3 \times 12-\mathrm{in}$. planking. The inside walls are calked both before and after applying the planking, and the outside walls and the top are calked once. The jolnts of each horizintal course uf timber are grouted with Portland cement and lime, 4 to 1 by weight, after being cleaned with an alr blast.
As shown by the views, Flgs. 6, 7 and 8, the cross walls, or girders, were first constructed, the first course of roof timbers put on, and then the inclined staves set. After this, the fower, outer part of the caisson was brought to a cylindrical form by adding horizontal timbers, sawed to the proper curves. The inner timbers had their inside faces sawed to fit a conlcal surface and their outer faces sawed to the radil of the proper circles. These timbers were 12 ins . high, $11 / \mathrm{ins}$. wide the bottom, and $121 /$ ins at the top. Com wide at the bottom, and $131 / 2$ ins. at the top. Com pressed alr was used to bore the holes for the drif bolts and to drive the vertical drift bolts. The pneumatic work and the bullding of the calsson is in charge of Mr. Danlel E. Morgn, M. Am. Soc.
particular case it would not have been safer to reverse the ordinary practice and cross the weak structure at high speed. A query of this characstruct has recently been brought to our attention by a well-known engineer who gives it his own answer, and states the reasons upon which that anivir based in the following interesting comWe shall be glad to give space to the tion of simliar incidents of trains jumping narration of simliar incidents of trains jumping
whlle only the four temporary $21 / 2-1 \mathrm{n}$. dlameter construction rods were $\ln$, instead of the six new $2-\mathrm{in}$. rods, which he was just preparing to put In . One of these $21 / 2-\mathrm{ln}$. rods broke. The span broke in two at the north end of the irst south panel. The locomotive went over safely, atopped, Just off the ralls, on the north end of the south span, and was not injured. Both these accidents occurred between 1881 and $1885^{\circ}$, and Engincering News, I am sure, gave an account of them.
The Ten-Mile hrldge accident, on the Loulsvilie, Cincinnati \& Lexington R. R. (Cinclnnati Branch), occurred so
safe, who snswered, "Yes." I told him I did not think so as one bent was gone, and pointed to the space. The "hog." walting for us to get through looking at the trestle, Was standing with its tender on the embankment and the pliot over the lost bant space. 1 motioned the engineer to back up slowiy, and he moved his engine onto solld ground. Pollitics (?) retained the bridge superintendent and roadmaster, but 1 could and did fire the section foreman who lived near hy and saw the trestle twice a day. I wanted to fire the other two hut could not. Every train on this dt vision of the road passed over thls $30-\mathrm{ft}$. opening sup-
,
$8 \quad 6 \quad 6$ Side Vew of Cost strel Biock.


Reenforcing Strap.


Section J-K.
Section A-B.
Section E-F.


TMor


Section G-H
$\infty^{\infty}$


Plan.
Spring Guise
Anti-Creeping

|  |
| :---: |

FIG. 2.-NO. 10 SPRING-RAIL FROG WITH 100-LB. RAILS; D. \& I. R. R. R.
have observed the circumstances. Our correspondent writes as follows:
I believe it possible, if not prohahle, for a passenger engine running 50 or more miles per hour, actually to leap a clear opening of say not over one-thled its stiff-frame length. I wou.d not care to he on the engine, hut still which 1 base my opinion were not over clear openings, hut wher structures that had none or lutle supports other than he track rails, strength of holster boits and stiffness bisters (or corbels) stringers and undermined masonry pisters (or corbels), stringers and undermined masonry hogir engines been running light at the time, the enines would not have even left the ralls hut have passed on in safety. These are all authentic occurrences as the news. papers of the dates, the trials in the courts, and the records the several roads will verify, and I was the Chief Engleer of the roads at the time.
the Blue Biver the cime.
memory is that the salem, Ind, and $m y$
memory is that the hridge consisted of four spans of 18 ft .


FIG. 3.-ANGLE IRON GUARD RAIL FOR FROGS WITH 100-LB. RAILS; D. \& I. R. R. R.
(total length, $\mathbf{7 2} \mathrm{ft}$.), made up of two new oak stringers, $12 \times 16 \mathrm{ins}$, under each rall, long holsters of the same size crossing each pler, having $1-\ln$. bolts. All the plers, three in number, were entirely washed out and gone. The engine crossed and stopped (off the ralls) safely, and I think, uninfured, on the top of the embankment at the south end of the span.
The White River bridge at Broad Rippie, near Indlanapolls, had two spans of Howe truss, ahout 100 ft . Jong each. We were putting in new stronger end rods in the south end of the north span and moving the old rods towards the center, throwing away the old center rods. Tbe foreman (a smart Alec), against orders, permitted an accommodation train, going south, to run onto this apan
bent at the north end. The Superintendent of Bridges was sent by me to see what damage the freshet had done, If any, as the last engincer over the trestie reported something wrong. The superintendent and all his men with him, after repalring the rocks misplaced at the embankment end, reperted the trestie saf-did not miss the missing bent. The engine drivers for a week reported "track not good at Wea trestle," but sald it was oniy a "little rough." The section foreman, who crossed every day and who had repalred the surface at the north end, also reported everything safe. A week after the freshet I weat to Lafayette, took a "hog," and with the roadmaster, went to the trestie, went helow, to one side where I could see the whoie trestle, took a look; asked the roadmaster if he thought the trestle
ported hy the ralls, and elght $1-\mathrm{in}$. bolster bolts only, for a week, and the only report from the englne-men was that "track was rough on Wea trestle.
The White River bridge, consisting of three spans of Howe trusses, over 100 ft , each (1 think 110 or 120 ft .) between Mitchell and Ledford, Ind., had been Inspected(?) once a year for 20 years regularly, and probably once a month irregulariy, during these years, and always reported sound and safe. I inspected it myself and after removing the weatherboards-snow protection-on the inside of the east truss at the north end of the north span, I found under the end of the end braces and posts that the bottom chord was entreyy eatelu away by ants. This trusa of this span, for no one knows how many of the 20 years, had sustained itself and the inve loads by "force of habit" for there appeared nothing eise to do it .
All these bridges (and trestles) were located where trains ran fast. In four of the cases engines went over safely, and in the others trains did so.
The question then which comes directily to my mind is, is it not a fact that gravity can to a very considerable extent be overcome by the momentum of swiftly moding trains, and in short spans, say 30 ft . and under, is there not an excess of factor of safety generally used hy engineers in designing such spans? I fully approve of using the excess, hut 1 think that a similar excess should be used as well, in long spans, though this adds to cost, on the theory that it is money well spent when spent on the side of safety. But this does not change the question in my mind as to how much impact, weight, gravity, or whatever it may be called, does a rapldy moving rolling object put upon a scructure or track. This subject haa ail come about by my being called upon as a witness in a case of a trestie falling where everything went into the "hole" hut the engine, which went over safely. Under oath I was asked: "Which would you consider safest, to pass over a structure (like the one in question whose spang were only $121 / 2 \mathrm{ft}$., the stringers 25 ft . long, packed to break joint over bents, and composed of two plers of $9 \times 16-\mathrm{ln}$. yellow pine) where one of the hents ia badly decayed, at a fast rate of speed, or at a slow rate of speed?" I answered I would rather risk my llfe on the fast train. The reason? I have already atated it. In concluaion, I would very much like to hear of the experience of othera on this subject. We learn by experlence of others, but some are afrald to tell their experience. I am not, for $1 f 1 \mathrm{am}$ wrong on any of my theories I want to be corrected as soon as possinle before I make a mistake that will ruln the company or kill its patrons. Experlences, as well as appearances, sometimes are deceiving.
under test. The result from the engine test and average of all cards showed a steam consumption of 46.8 ths. steam per 1. HP. per hour. [Thls higb figure is no doubt largely due to extremely varishle losds.-EC.]
The writer recommended that the Buckeye engine should be converted from the $181 / 2 \times 30-\mathrm{ln}$. hugh pressure engine Into a $141 /$ and $25 \times 30$ tandem compound condensing engine. Aiso that an siditional $750-11 \mathrm{P}$. tandem compound condensing engine should be erected in the station, together with a cooling tower and the necessary condenser equipment, and that the only change in bollers should be to ralse the working pressure. No increase of hofler capactty has been made.
After Investigation, the Barnard type of cooling tower was selected as desirable to best meet the conditions exIsting at this plant, which were, min!mum floor space, sid minimum weight, and a considerable elevation above floor level of englne room.

Detalls of Cooling Tower.
The coolling tower is of the twin type, having two chambers, with $s$ palr of fans supplying a strong draft of alr to each chamber. The interior dimenslons are 12 ft . 3 ins. by 18 ft . hy 29 ft . 6 Ins. high. The shell of the tower is of steel, $3-16$ and $1 / 4-\mathrm{ln}$. plates, refnforeed with angle and channel trons.
The hot water from the condenser discharge is dellvered through a $10-\mathrm{in}$. wrought-Iron pipe, extenaing the whole length of each chamber, slotted on top, and perforated at the bottom, giving egual distribution to a series of 96 distributing plpes, extending across the tower, each plpe being slotted and perforated, thus Insuring a very unsform distribution of water.
Means are provided for cleaning these plpes, which is found necessary in cold weather, when the eyllinder ofl from the exhaust steam is liahbe to clog the pipes and interfere with unlform and free distrihution of the water. The hot water falis from the distrihuting plpes over 42 galvanized wire mats, made of No. 19 steel wire, woven to No. 5 mesh. Each mat is 12 ft . hy 15 ft . 6 lns., affording a total of 8,064 sq. ft . of coolling surface. Each mat is suspended by gsivanized tron hooks, and is easily removed for cleaning or repsirs. In actual service it is found that the water is unlformly distributed.
The circulation of sir is furnished by two pairs of 8 -ft. dlameter fans, each palr of fans belng mounted right and left on a $215-16-4 \mathrm{n}$. shaft, and the four fans heling capable of dellvering $360,000 \mathrm{cu} . \mathrm{ft}$. of alr per minute when driven at a speed of 150 revolutions per minute. The alr entering the tower chambers at the lower aection is deflected vertically from each fan, thus avolding cross currents, and affording a uniform blast through and between the mats.
The rated capacity of each sectlon of this cooling tower is to cool the clrculating water needed to condense 12,500 ths. of exhauat steam. from an Inltial temperature of $132^{\circ}$ F. to $80^{\circ} \mathrm{F}$. when the atmospheric temperature does not exceed $75^{\circ} \mathrm{F}$., nor the humidity $\mathbf{8 5 \%}$.
The clrculating water is handled hy a Blake vertical twin alr pump and jet condenser.
In sn equipment of this kind it is important to have faclitites for driving the fans at varlable speeds; this requisite flexibility has heen ohtained hy using a amall vertical engine without a governor direct connected to the shaft of each patr of fans.
The accompanying tahle, extracted from the $10 g$ records for many months, shows detalls as to temperatures, speed of fans, reduction of temperature of condenser discharge, etc.
As prevlousily noted, the $181 / 2$ hy 30 Buckeye engine was chsnged to a $141 / 2$ and 25 by 30 tandem compound condensing engine hy bolting new tandem cyllnders on the existing frame and making necesssry alterations in valve rods, etc.
Specimen eards, taken from this engine as in dally service, give the following data
Revolutlons, 137; stesm pressure, 113 ths.; mean effective pressure, 50.16 lhs.; vacuum per gage, 26 Ins. 1. HP. developed in high pressure cyllnder, 163.42; 1. HP In low pressure cylinder, 168.48 -total, 331.9 HP ., and of this 90.52 HP . is below atmospheric line. The work is divided almost equally between the high-pressure and low-pressure cylinders; all cards show stmilar results.
In addition to the tandem Buckeye engine a tandem compound condensing engine, 20 and 36 hy 42 ins., 120 revolutions per minute, Corliss type, bullt by Pennsyl vania Iron Works, was installed to drive a direct-connected Stanley $500-\mathrm{K}-\mathrm{W}$. two-phase A. C. generator. Thls engine works 15 to 17 bours per cay.
The usual work required from the coollng tower and condenser varles from 7 to 17 hours per day. A notable record was made on Aug. 2, 1898, when the run was from

$7 \mathrm{a} . \mathrm{m}$. till 12 midnight, and from the dally records, the following data are extracted:
$\begin{array}{ll} & \\ \text { Temperature, atmosphere } & \begin{array}{r}\text { Msxl- } \\ \text { mum. }\end{array} \\ \text { Minl- }\end{array}$
A continuous heavy load was carried during the entire 17 hours' run. This was not a teat record, hut simp:y dally service.
Indicator dlagrams, Nov. 5, 1898, from the 20 and $36 \times 42$ tandem compound condensing Corllss engine, gave the following:
Engine revolutions
Steam pressure
Tork done in higher. her.........

120 per min.
112 lbs.
Work done in high-pressure
112 lbs.

Work done in low-pressure cyllnder helow mospheric line $\qquad$ 311.8 HP
31.5 HP gines were indicated. The cards ahowed:
Work done by the pump .....

Total external work ......................... 27.25 HP which if deducted from the work done helow atmospherle line in low-pressure cylinder $\mathbf{1 8 5 . 1} \mathrm{HP}$. leavea a net galn of 157.85 HP . from the use of the condenser and coollng tower.
It wili be noticed from the previous data that the feed water ahows a temperature above $200^{\circ} \mathrm{F}$. There are two Seed-water heaters in connection with the condensing plant. First, an intermedlate tuhular heater in the line of exhaust between low-pressure cyllnders and condenser. Second, an auxlllary feed-water heater was also attached. recelving the exhaust from the condenser and boller feed pumps. and any other auxiliaries.
The feed water is first heated in a tank that recelves the exhaust from the general llne of high-pressure engines. The feed water then paases through the in lermedlate heater, and thence through the auxillary hester, and reaches the bolfer at a temperature of upwards $00^{\circ} \mathrm{F}$
The condensing plant has increased the station capaclty about $1,000 \mathrm{HP}$. With the ald of a condensing system, using the same water in continuous circulation, while the boller plant, previously stated to be fully loaded, suppliea steam for this additional work with bollers to spare.

SWITCHES AND FROGS FOR TRACK OF 100-LB. RAILS ; DULUTH AND IRON RANGE R. R.
The use of $100-\mathrm{lb}$. rails is not yet so extensive but that switches and frogs built up of such ralls have a sufficiently striking appearance to attract attention from and be of interest to the users and


FIG. 1.-SWITCH WITH 100-LB. RAILS; LULUTH \& IRON RANGE R. R. R. Angst, Chief Engineer.
to note that equipment of this kind is now being introduced on the Duluth \& Iron Range R. R. The present track of this road is laid with $80-\mathrm{lb}$. rails, but we learn from Mr. R. Angst, Chie. Engineer, that his road is now laying about 4,000 tons of

100-1b. ralls (of the section recommended by the rall committee of the American Society of Clvil Engineers), and has adopted standard plans fo the switches and frogs, as shown in the accur panying drawings.
The switch, Fig. 1, has switch ralls 20 ft . the throw at the toe being 5 ins., and the over gage lines at heel, $61 / 2 \mathrm{ins}$. These ral connected by five tie rods $8 / 4 \times 21 / 2$ ins., the en which are fitted into sockets in large heads to the ralls. The front rod is 9 ins. from th and the rods are spaced 38 ins. c. to c. Nea ends, the switch ralls are stiffened by reinf bars $5 / 8 \times 3 \times 81$ ins., each bar being secured outside of the web of the rail by $5 / 8-\mathrm{in}$. rivets, ties are spaced $191 / 4 \mathrm{ins}$. c. to $c$., except that at the heel and toe are 17 ins. and $181 / 2$ Ins. anart respectively. On every tie are tie plates or sld plates for the switch ralls, and rall braces side the stock ralls. The plates vary in size $6 \times 1914$ ing $5 \times 9$ ins the thick, with slide seats ralsed $\mathbf{7 - 1 6 - i n}$., while smaller plates range from $3 / 8-\mathrm{in}$. to $3-16-\mathrm{in}$ in thickness.
The frogs are of the spring rail type, as shown in Fig. 2, which represents a No. 10 frog. The frog is riveted to a $8 / 4-\mathrm{in}$. plate, 7 ft . long, and 19 ins. and 27 ins . wide at the ends, on which are the springs, guides and anti-creeping attachment. Th main rail is carried to the point, its end being be eled, and 5 ins. from the theoretical point, ing a thickness of $\mathbf{7 - 1 6 - i n}$. The heel block, ralsing block, is elther a steel casting or an in verted piece of the rail planed to shape. Wooden footguards are fitted to the throat, and at the ends of the spring and wing ralls. The frog is 1.7 ft . 11 ins . long over all, and has a spread of $7 / / \mathrm{ins}$. at the mouth and $51 / 2$ ins. at the heel, white the width of throat and flangeway is 2 ins. The connections to the lead rails are made with slx-bolt splice bars. The movable rall is held by double colled springs, placed at the throat, 12 ins. from the point. The frog rests on ten ties, 19 ins . c. to c., the toe being over the sixth tie from the heel. Perhaps the most interesting feature of all, however, and one which is certainly novel, is the use of a heavy angle iron instead of the usual plece of track rall for the frog-guard rall, as shown in Fig. 3. This guard rail is made from a plece of commercial angle iron $3 / 4 \times 6 \times 6$ ins., 20 ft . long. It gives a flangeway $1 \frac{1}{4} \mathrm{ins}$. wide for 8 ft ., and then flares out to an entrance width of $4 \frac{1}{2}$ ins. The guard rail is fastened to the ties by spikes in $3 / 4-\mathrm{in}$. square holes, and is secured to the track rail by seven $7 / 8-\mathrm{in}$. bolts with cast spacing pleces or fillers. This arrangement reduces the
holes in the main rails, makes a neat job, and en suies uniformity
The switch ralls, frog and frog guard rails for each turnout are ordered in one lut.

## IS IT SAFER TO RUN FAST OR SLOW OVER A WEA

 BRIDGE ?The precaution most commonly adopted to avol accident in the case of a weak railway bridge is t reduce the speed of crossing trains. The wisdom of this practice can hardly be questioned when w consider all the conditions in the majorlty of cases but occasionally the question arises whether in a

THE NEW COVERED FILTER BED FOR THE WATER WORKS OF SOMERSWORTH, N. H.

The second slow sand filtration plant built in this country and covered with a masonry roof is located at Somersworth, N. H. This filter was put in operation about April, 1898. Like the filter beds at Ashland, Wis., described in our issue ot Nov. 25,1897 , the Somersworth plant was $d$ slgned and constructed by Mr. Wm. Wheeler, M. Am. Soc. C. E., of 89 State St., Boston, and, like the earlier plant, this one also has an area of onehalf acre.
The population of Somersworth was 6,207 in 1890, and is about $\mathbf{7 , 0 4 0}$ at present. From 1867 to 1896 the water supply was furnished by the Great Falls Manufacturing Co. In 1896 the city
physical examinations indicated that the saimon Falls River, at a point above the city, would be the best source. A description of this source, ac companying a sample sent by Mr. Wheeler to Dr Edw. S. Wood, of the Harvard Medical School, for analysis, gives the following information:
Salmon Falls Rlver has its source in Great East Pond on river above here, Milton ( 14 mlles distant), about 1,400 Inhabltants, and East Rochester, about 1,500 Inhabltants, 7 miles distant. After leaving Milton, river fows over
rapids for several milles; also after leaving East Rochester. No bulldings or houses along the river banks except at these points.
The chemical determinations of the Salmon Falls water, in parts per 100,000 , were as follows Transparency, clear; color, 0.3; odor, sllghtly earthy; chlorine, 0.06; albuminoid ammonia 0.0174 ; free ammonla, 0.0072 ; nitrates, 0.014 ; to-

Mr. Wheeler believed that the llmited size of two communities named, their remoteness if ? somersworth and the understanding that had no sewerage system practically preclu immediate danger from sewage pollution. In such danger should arise in the future he st that appeals could be made to the legislatur the the courts for protection, or the water migh Altered. The city at once requested informa regarding filtration, and eventualiy it was dec! to put in slow sand filters. Bids for such a p were received on Sept. 22, 1896, the prices, b: on the estimated quantities, ranging from $\$ 22$ to $\$ 36,303$. The contract was awarded to the est bldder, Ames \& O'Shea, of Somersworth the price named. The contractors threw up contract when about one-third of the work


PLAN AND SECTIONS OF COVERED FILTER BED AT SOMERSWORTH, N. H.
Wm. Wheeler, M. Am. Soc. C. E., Engineer.
bought the distributing system, except the portion supplying the property of the company. This portion, together with the old pumping plant, reservoir and stand-plpe, the company retained for the supply if its mllls.
The water delivered by the company was taken from the Salmon Falls River, at a point below one of its mills and also below a part of the town. This water was sometimes objectionable to sight and taste, and quite a strong feeling against it developed. In the discussion leading up to the establishment of municipal works the general desire seemed to be to substitute spring or well water for the river supply, but attempts to find such in suitable quantitles falled. Of the avallable surface supplies, chemical analyses and
tal resldue, 8.40 , of which 1.60 was fixed and 6.80 volatile, there being conslderable blackening on Ignition. This sample was pronounced by Dr. Wood as the best of samples submitted from three sources, so far as he could judge "without knowing anything about their surroundings or history." which information he requested. On recelving this Dr. Wood wrote as follows:
The objection to the Salmon Falls River Is the exlstence of the towns above. If, however, the thickly settled paris prolably llttle danger from thelr dralnage at present. is That 18, however, a questlon for you to declde rather
than for me. Certalnly, the Salmon Falls River water as It fows in the stream is the best of the three, and if the danger of sewage pollution from the towns above is practleally absent, I should recommend its water rather than
Nos. 1 and 2.
value, had been completed. The contract for completing the piant was awarded to the Great Falls Granite Co. (Spence \& Coombs). The original contract price of $\$ 22 ; 037$ did not include certain accessories necessary to the operation of the plant. The engineers estimate for the beds and all these accessories was $\$ 29,892$. and the work actually cost $\$ 32,720$, minus an amount to be recovered upon the bond of the first contractors, Ames \& O'Shea. This amount is made up of sums paid the second contractor that were chargeable to the first.
The filter bed is located between the river and the pumping station, only a short distance from each. Its design is shown by the accompanying pian and sections. Water flows from the river to
 about grade 100 .
The filter bed has a total depth of 5 ft ., there being 1 ft . of selected gravel at the bottom, overlaid by 4 ft . of sand fairly uniform in size, and with $10 \%$ of its total, by welght, composed of grains of from 0.30 to 0.45 mm . ( 0.012 to 0.015 Ins .) in diameter. The dimenslons of the underdrains are shown on the plan. They are laid with their bottoms at such a grade as will bring the tops of the plpes of different sizes all to the same level, and thus give the same depth of filtering material above them. The net area of the filtering material is 21.780 sq. ft., or practically one-half acre. The combined area of the 49 plers is 444 sq. $\mathbf{f t}$. The middle row of piers is larger than the others, since it has to support a rallway siding. This siding is available for handling filtering material when the bed is being cleaned or renewed. Besides supporting the railway slding the heavy plers were designed to withstand the thrust from the covering of one-half the beds. The contract required at least one-half the centers for the covering arches, or all those on one slde of the center line, to be placed complete and not removed or struck until the roof on that side was finished.
The material at the bottom of the excavation for the filter bed was of gravel and ledge, at an elevation about $81 / 2 \mathrm{ft}$. below the ordinary level of the river. The filtering material rests on this surface. The outer walls of the filter bed are lald in American Rosendale cement, but Portiand cement was used for all the rest of the stone and brick masonry, and for the concrete.
When it is desired to clean the filter bed the When it is desired to clean the filter bed the water can be drawn down to about the level of its
upper surface by the regular pumps, then completely drawn out by a centrlfugal pump, bulit by the Lawrence Machine Co., located in the house which covers the regulating chamber. After the filter had been in operation about three months, the water was pumped out. It was found that the top of the sand, only, was discolored, and that but slightly. No cleaning was done then, nor had any been done up to Sept. 16, when a member of the editorial staff of this journal visited the plant. No analyses of the filtered water have been made. No analyses of the filtered water have been made.
Two $1,500,000$-gallon pumps uft the water to a stand-pipe about $40 \times 95 \mathrm{ft}$. The storage afforded by thls structure is thought to be sufficient to al low the shutting down of the filter bed for cleaning.
We are indebted to Mr. Wheeler for the drawirgs and some of the other matter used in the preparation of this article, and to the local officials in charge of the water-works for informathon given when our representative visited the plant.

## A UNIVERSAL CIRCULAR SCALE.

In our Issue of March 30,1893 , was published unlversal scale for dividing a line of unknown a universal scale for dividing a line of unknown
length into any number of equal parts, or for di length into any number of equal parts, or for di-
viding a line of known or unknown length provlding a line of known or unknown length pro-
portlonally to another line of known or unknown portlonally to another line of known or unknown
length. The scale here illustrated is based upon a similar principle, and has for 1 ts purpose the find ing of the length of the circumference of any cir cle, or the length of an are equal to an eighth, quarter, half or three-quarters of the total are when the dlameter is known.

This scale takes the form of an equllaterai triangle, of which the base, A C, is equal to the cir cumference of a circle whose diameter is the dis cumference of a circle whose diameter is the dis-
tance A B. The other radial ines shown cut the tance A B. The other radial innes shown cut the
base, A C, at points equal to $1 / 8,1 / 4,1 / 2$ or any debase, A C, at points equal to $1 / 8,1 / 4,1 / 2$ or any de-
sired division of the length of the total arc, or circumference. The lines drawn parallel to the base serve two purposes: those with figures at tached give a graphic table of circumferences for circles whose diameters are $1,11 / 4,11 / 2-\ln$., etc.


In the second place, these lines serve as a gulde to the eye in using the scale.
In using this scale mark off on the edge of a strip of paper the length of the dlameter as taken from the object or drawing. Fit this distance between the radial llnes, $A$ and $B$, always keepinz the edge of the strip parallel to one of the horizontal lines; then mark on the strip the point where the radial line, $C$, strikes $i t$, and the distance between the marks, A and C, measured by the same scale as the diameter, wlll be the length of the circumference. Points taken on the other of the circumference. Points taken on the other
radial llnes will, in a similar manner, give the radial llnes will, in a slmilar manner, give the
length of arc for the $1 / 8,1 / 4,1 / 2$ and $3 / 4$ of the total length of arc for the $1 / 8,1 / 4,1 / 2$ and $3 / 4$ of the total
clrcumference, or for any other divislon of the clrcumference, or for any other divlslon of the A $\mathbf{C}$.
The designer of this universal scale and the one previously referred to, is Mr. J. Ernest G. Yalden, Superintendent of the Baron de Hirsch Trade Schools, of New York, and he regards it as the most accurate and least complicated of the many geometrical constructions proposed for determining the length of the circumference, or divisions of thls arc. It can be made of any size, and with any fractional part desired; and wili prove useful to draftsmen, and especially to sheet metal workers. For general trade purposes it is to be preferred to calcuiation where dimensions are glven in inches, as it is difficult to use the fractional parts of an inch.

## TESTS OF FORMALDEHYDE AS A DISINFECTANT AT

 NEWTON, MASS.The report of the Massachusetts State Board of Health for 1897 contains an interesting revlew of some formaldehyde tests at Newton, Mass. The revlew was contributed by the Board of Health of Newton, and is as follows:
During July and August, through the kindness of Prof. S. Burrage, of Purdue Unlversity, Latayette, Ind., the hoard was enahied to make some interesting and valuahle experiments at the Newton Hospltal as to the value of formaldehyde as a germicide. The tests extended over a period of about six weeks, and the results have been made the subject of a paper by Professor Burrage, whlch is too long to be lncluded in this report, but a short resume of the subject will be of interest.

The original intention was to determine what form of formaldehyde generator was the most efticient and best adapted for use by the average unskilled operator. Four different styles of gencrators were used in the tests, two producing the gas from the $40 \%$ solution, and two testing it directly from wood alcohol.
The results taken as a whole showed that formaldehyde la not as fatal to disease germs as is generaily ciaimed, at least wh
six hours.
six hours.
There was no great difference in the efficlency of the different forms of generator, the results belng practicaliy the aame with each. A number of tests were made with each generator, in order to have as large an amount of information as possinie upon which to base conciusions. No record was kept of the amount of gas evolved by each generator, although the same amount of aolution (about one quart) was used in each of the first form, and ahout one liter of alcohol was conaumed by each of the second form. This would give, approximateiy, 16 ozs. of formalin and $500 \mathrm{cu} . \mathrm{cm}$. of alcohol to $1,000 \mathrm{cu} . \mathrm{ft}$.
The practical conclusion to be drawn from these tests s that, while formaldehyde remains the most practical gaseous disinfectsnt which we possess, a number of ele-
ments must be taken into account in order to ments must be taken into account in order to obtain satisfactory resuita. The length of tlme of the exposure, the mount of gas used per $1,000 \mathrm{cu}$. ft., and the care with which crevices are closed to prevent the diffusion of gas, are all of importance and must be taken into consideraHon.
After the tests with formaidehyde had been flalsked, diy suiphur fumes were used under the same conditions, with the result that it was shown that they had absoutely no effect upon the test cuitures, those whica were exposed to its action growing as rapidiy and luxuriantly as the controls.
While the city is well equipped for house and room disnfection by the use of fuc...........u., in is stili withou the proper method of sterilizing the more buiky of house hold furniture, such as carpets, matresses, etc., into the subatance of which the cormaldehyde does not penetrate For this purpose a steam disinfecting piant is needed, and it is with greal satislaction taat the hoard la ahie to eprthat such plait whi be erecled the near ruture in connection win the proposed - heating and powe pant for the municipal hunaligs. The sterilizing cham enough to take the
Reports from other local boards of health in Massachusetts show that at least 14 boards adopted tormaldehyde $\ln 1897$.

THE NEW YORK RAPID THANSIT COMMISSION, at its iast meeting considered the situation created by the inabillty of the eniarged city of Manhattan to horrow the sum required to build the road in the manner planned The two courses open, says President Orr in hls state ment on hehaif of the Commission, are these: Iteques set of the county the rapid transit road an exclusive a set of the County of New York, or the horoughs of Man hattan and the Bronx, and charge the deht exclusively to this county; or, request legisiation enabiling the Board to statement lssued explains how either of these aiternative propositions may be provided for in one legisiative act, and enters into a dlscussion of the connty charge and gives legal opinlons on the proposed action.

MUNICIPAL OWNERSHIP OF WATER-WORKS at Indlanapolls has been under discussion for some tlme past, hut now seems likely to he postponed fo: a number of years unless the Indlanapolis Water Co. will make the clty a more favorahie offer than the one recently submitted. The city is unahle to lssue bonds to pay for the works, so the company proposed to transfer its stock to the clty for $\$ 200,000$ cash, and an agreement to pay the company $\$ 120,000$ a year for 25 years, the stock, $\$ 3,350,000$, of whlch $\$ 2,850,000$ bears $6 \%$ and $\$ 500,000$ hears $5 \%$ interest. To cancel the deht, the water company would pay ofl $\$ 75,000$ a year for five years, and increase the amount annually thereafter hy the amount of reduction in the interest charges. It was calculated that at the end of the 25 years the bonds would all be pald. Mr. John W. Hill, M. Am. Soc. C. E., of Clnclnuatl, was engaged to report on the physlcal condition and the value of the water plant. The cost of dupllcation at present prices Mr. Hill placed at $\$ 1,050,000$, from which be deducted $\$ 270,000$ for depreclation, leaving $\$ 1,680,000$ as the present value of the works, on thls basis. This allows noth ing for the franchlse. He also presented figures regard ing the value of the plant as determined by lis earning power, which, with the other parts of his report and the company's proposition to sell the plant to the clty have all been printed in pamphlet form and can doubtles he ohtalned from Mr. Hill by those interested. The city authoritles, having decilined to accept the proposition hasing their decision largely on Mr. Hull's report, trom which they conclude the price to be pald is exceasive.

## ENGINEERING NEWS

 ATIERICAN RAIL.WAY JOURNAL.
## Enerat at the Come Tart Mast. ofice as Semond-Class Matter.

 Publashen every Thurnday St. Pawl Buidan, -o Brmatacay, New Jork, by the bnoinemtig news peblishing coupany C IAR EAS WHITING BAKER, SECBETARY AND MANAGING EDITOR. r. P. buer.

Takastrer and Business Manager.
itman, M. S. BaKer, $;$ Associath
Editors. WM. K zNT, E. E. R. TRATM
chas. HILL, J. J. SWANX,
$\qquad$ Chas. W. REIXH ARDT,
$\qquad$ A. HED E. KORNFELD, N
F. A. PECRHAM, Cutcago,
S. B. HEAD, Hoston,

## D'tblicathiv Office, zom Rroadway, New York Chicabo Office, IGNo Monadock Black. Boston Oyfice, 29 Devonshire St.

SUBSCRIPTION RATES: United States, Canada and Mexico, One Yrar, $\$ 5.00 ; 6$ months, $\$ 250 ; 2$ months 1.00. To all other countries in the Postal Cnion: Regular Edition, One Year, $\$ 7.60$ ( 31 shillings) ; Thin Faper Edi on, One Year, \$6.81 (26 shillings). SINGLE COP'LE f any number in current year, 15 cents.
In ordering changes of maiting addresses, state BOTH old and new addresses: wolice of change should reach us by Tuesday to be eflective for the issue of the curren week. The number on the address label of each paper indicates then subscription expires, the last figure udicating the year and the one or two preceding figure the week of that year: for instance, the number 328 means that subscription is paid to the 32d reeek. (that is the issue of Aug. 11) of the year 1898; the change of these figures is the onty receipt sent, untess by special equest.
ADVERTISIMG RATES: 20 centsper line. Want noticees, speenal rates, see page 18. Nates for stawding advertise ments sent on request. Changes in standing advertisements nust be received by Monday afternoon: new advertise wers Wednestay roon.

The invitation of the Quebec Bridge Co. for deThe invitation of the Quebec Bridge Co. for de-
signs and bids for the construction of a bridge across the St. Lawrence River, near Quebec, wa discussed by a correspondent in our last issue who suggested that before bridge companles ex pend any considerable sum upon designs and es timates in response to thls invitation, they woul do well to investlgate the financial status of the company and the prospects that it will be able to secure the funds to carry out its enterprise. The subject is again taken up in our present issue by another correspondent, who telis the story of how another Canadian brldge company, which also proposed to bridge the St . Lawrence, offered prizes for the best designs for its structure, and after the prizes were awarded falled to pay them. As most of our readers know, architects, who meet much 'more frequently than engineers the calls for the submission of designs in a competition, are generally opposed to competitions, and approve them only when they are conducted undes a stringent code of rules laid down by the Archltectural Socleties. It would be well, it seems to us, if Engineering Societies would follow this example and formulate rules to govern competitions for engineering work. Among the first of such rules, judging by past experience, should be the requirement that the amount of the prizes should be paid over to the expert commlssion whlch is to declde upon the relative merit of the plans (thls payment to be made at the tlme when the call for plans is announced), and should be by it pald over to the successful competitors, colncldent with the announcement of their names. Such a rule would not only cover the case of the financlal inability of the party ordering the competition to pay the prizes after their announcement, but would also prevent such an overruling of the experts' decision as occurred a short time ago in the competition for the Pennsylvania State Capltol.

The average architect or engineer knows little of nothing as to the financlal responsibility of any concern asking for competitive plans; and manl-
estly cannot afford to spend much to find it out. He judges of the competition, in most cases, by the character of the experts who are to pass on the plans. In the case of the Montreal Bridge Company, for instance, we presume that many engineers relled on their use of the name of Mr Walter Shanly as their consulting engineer, as evidence that a falr award would be made, and that the company had at least a moderate financlal standing. But, while Mr. Shanly appears to have had a free hand in the award of the prizes, he had nelther the authority nor the power "to draw blood from a turnip," and thus it happens that the prizes remaln unpaid to this day
It may be interesting in this connection to explain something of the financial status of such Canadian engineering enterprises as the two which we have been discussing. By a long-established precedent Canada is committed to the policy of subsldizing public works of various kinds, and this is now so well understood that in the London money market, where nearly all Canadlan enterprises are financed, it is well-nigh impossible to secure funds for any such work as these St. Lawrence bridges unless the promoters can show something in the way of a Government grant in aid of the project. On the other hand, if a fairsized subsidy is once secured, it is easy enough $t$ r get funds to cover the remaining cost. The moun tain load of public debts which Canada has plied up, however, is getting so serious a matter that the way of the subsldy-seeker has become a hard one. It is, in fact, we belleve, only a question of time when publle opinion will become so strong that the whole corruption-breeding system of subsidies to public works will be abollshed, and the country will get down to the safe and sound basis of letting private capital undertake such enterprises as promise a fair return on the money invested.

Meanwhile, engineers and manufacturing concerns engaged in engineering work will do well to inquire closely into the financial standing of Canadian enterprises before expending any considerable amount of elther time or money upon their work.

The severe snowstorm which swept over the Eastern States on Nov. 26 gave a crucial trial to he condult electric street railway lines in New York city.
The various lines were tied up from ten to flfteen hours by the storm. The maln cause of the block ade was the depth of snow on the tracks. In this respect the condult system was no more interfered with, of course, than any other surface rallway system would have been, except perhaps the cable. The secret in keeping a street railway or a steam railway open during sevcre snowstorms is first to keep the tracks clear by running snowplows frequently enough to prevent the accumulation of drifts; second, run no more cars than the motive power can haul. The difficulty which a street rallway manager finds in putting these rules in practice is that when he cuts down the number of his cars those that remain are overloaded, and the traveling public bitterly complains because the cars run at longer intervals than usual just when hey are most in demand
Besides the difficuities with the snow obstruct ing the track, however, the movement of cars on the electric conduit roads was more or less inter fered with by some other troubles of a more nove character, resulting from the accumulation of now in the condult. Of course, in any driving storm, more or less snow sifts in through the slot, and when a car runs along, a suction is created behind the plow that draws down a shower of snow from the cloud stirred up by the wheels Past experience with this type of road, both in Washington and New York, has pretty definltely establlshed the fact that water or slush, if allowed to accumulate in the condult in sufficlent amounts, will short-circuit the conductors, throw the station clrcult-breakers, and thus interrupt the current supply to the flooded section That snow would do the same thing would hardly be expected with the comparatively low voltages
used, since snow is practically distllled water when dry is made up of a mass of ice crystals air spaces interspersed.

Experlence in the recent storm, however, sh that short clrcuits did occur at several plac he line, and in several instances they wer companied by a pyrotechnic display of fla shooting from the slot in sufficient volume to ca conslderable alarm to passengers and to exc arge amount of speculation as to thelr From the best information we have been abl obtain, it appears that the chief cause of the sh irculting was the saiting of the tracks for purpose of melting the snow-a relic of practic the old horse-car days. The snow alone in condult, it is stated, had not enough conduct o set up an arc; but when the salt slush drip down upon it, its conductivity was Increa nough to start an arc. The salt solutlon hort clrcuited the plows and caused which sometlmes ran alon the conductig which son in the conduct or some dl
In some previous storms, the conduit lines ha had some trouble with the collection of ice on conducting ralls in the condult. In the prese storm, however, the atmospheric conditions such that thls did not occur.
An amusing incldent in connection with the ent storm was an interview with President V land, of the Metropolitan Traction Co., publish in one of the dally papers, in whlch that offic was made to say that the cause of the stoppay of the cars was the formation of Ice on the rai preventing the flow of current from the wheels the rall. It is, of course, not to be supposed tha Mr. Vreeland is lgnorant of the fact that in condult system, both positive and negative ductors are in the condult and no current flow from the car wheels to the rall. The error wa doubtless due to the reporter's misunderstanding A discriminating electrical journal of this city however, plcked up this Intervlew, swallowed whole, and proceeded to preach a sermon to Metropolitan Street Ry. Co. on the folly of spend ing so much money on its condult systems an falling to provide a complete metallic cireui without regard to the rails."

COMMERCIAL EDUCATION IN THE UNITED STATES
The rapid growth in American exports of manu factured goods during the past four years ha made plainly evident the need of specially-traine men to conduct our export business in forelgn countries, and especially in those regions of Asla Africa and South Amerlca, for whose trade all civilized nations are in keen competition. It is true that we are rapldly Increasing our exports of manufactured goods in many lines; but we ar doing it largely by virtue of superior facilitie for production, which enable us to undersell ou rivals. When it is a question of working up new trade, however, or meeting our competitors upon even terms as regards price and quality, it is gen erally admitted that our salesmen in foreign coun eraliy admitted that our salesmen in foreign coun
tries cannot compare with the Germans in poin tries cannot compare with the Germans in poin of efficiency. Germany has led all other nation in the establishment of schools designed espe cially to train those who are to follow commercla ife.
In the United States, it was not until 1881 that any of our institutions of learning recognized the need of any such special training. In that year the University of Pennsylvania opened a depart ment known as the Wharton School of Finance and Economy, with a four-year course and a cur riculum embracing public law and politics in this and other countrles; mercantlle law and practice including accounting; history economics and so cial science, including banking and currency an the revenue systems of governments, etc. The Uni versity of Chicago and the Unlversity of Call fornla also have separate departments of this sort recently established; while Harvard, Yale, Columbla and a number of other prominent universities offer special courses to students which cover thls field.

For a higher education in this direction these schools are doubtless doing good work; but they alm too high for the average young business man.


 dividuals as are served by somewhat simmar Eupanston of Germany is the direct outcome of her of technical education. She has sent out of technicaled to study the resources and $f$ other nations; and by thoroughiytechnical and commercial schoois, she $d$ those who carry on her manufactures merce how best to supply these wants antages possessed by a graduate of one of man commercial schools are very evident
e consider that he is required to conduct when flice correspondence" in German, French and , and must be able to converse in one anguage, either Spanish, Italian or Dutch t be familiar with the geography of foreign ies, their history and commercial condiand customs; and at the school well-filled ums make him familiar with the animal, ble and mineral products of other lands. such a man goes abroad to take a place in he foreign house of a German exporter, he is able almost at once begin the work of forming acuaintance and business connections, whereas th verage graduate of an American high school or college, having at best only a smattering of any machinery of commerce, finds that he has every thing to learn, and that learning under such cir cumstances is a very difficult task.
That a knowledge of the conditions to be met it. foreign markets is of value to those at home as well as those abroad, is shown in the November issue of "Consular Reports." In that issue we find four American consuis criticising American trade methods, due purely to ignorance or to disregard of the directions of foreign importers. The chief complaint is that of bad packing, and the non-observance of forelgn customs law. Few of our shippers seem to know that in some countries duties are levied on the gross weight and determined upon the highest-priced article within the package; and a single gold watch packed in a box of cheap cotton prints would result in the computation of the duty as if the case contained only gold watches. The bad condition of American gold watches. The bad condition of American
cotton bales, recelved at Liverpool, occasioned a cotton bales, received at Liverpool, occasioned a
loss of $\$ 500,000$ to exporters last season. The Egyptian and East Indian cotton baies are much more compressed, have a stronger and better covering than those coming from the United States, and always arrive in almost perfect condition. A failure to observe the explicit directions of im porters, as to dimensions and methods of packing, or to consider the customs and superstitions of possible consumers also stand in our way, and damage the sale of otherwise excellent goods. In China, a fanciful Chinese dragon, as a trademark, will seil goods better than if the housemark were used; in Russia, German makers took away from Eluglish firms a considerable trade in handkerchiefs for the head, simply by making them of the peculiar dimensions which the people preferred. Peculiar patterns and colors of calico prints, to suit the fancies of special races, and special forms of tools for farmers or artisans are often necessary to secure the trade of a particular section. In other words, if we propose to extend ou commerce, there is very much to be learned. Some American manufacturers have already been shrewd enough to appreciate these facts. In Nicaragua, we are told that practically all the machetes used are made by Collins, of Hartford, Conn., who has produced a blade of exactly the shape the natives desire, and as a consequence they will not buy a machete unless "Collins" is they will not buy a m
stamped on the blade.
It thus appears that if we are to compete for the world's trade in all ifnes, and not merely those in which our wealth of natural resources gives us a large advantage, there is much to be learned both by our manufacturers at home and by their agents sent abroad. To obtain this knowledge we must make a beginning, at least, in what may be called popular commercial education. The models exist in European institutions of a similar character, though these would doubtless have to be modified to suit our conditions. In this connection, it is an encouraging indication of the appreciation of the need of such training to note
that a committee of the New York Chamber of Commerce was recently appointed to prepare and submit a plan for the establishment and development of better commercial education in our sec ondary and higher schools. England has been forced to similar action, because German and ther foreign clerks, on account of their superior commercial training and ability, were rapidly supplanting young Englishmen in positions of trust. The London Chamber of Commerce now grants commercial certificates to candidates who produc evidence of proficiency, according to certain prescribed branches of study, including, at least, two languages, and elementary drawing, chemistry and physics. The Paris Chamber of Commerce manages the Paris Commercial High School: and exemption from military service, for more than one year, is an inducement held out to attend this school. The action of the New York Chamber of Commerce is timely, and it is to be hoped that good resuits will follow its recommendations.

## LETTERS TO THE EDITOR.

## Canadian Bridge Schemes and Ethics for Engincers.

## sir: In your issue of Dec. 1, 1595, in answer to the ar-

 dicle by "A. P. B.," on "An Opportunity for Briage Eingineers to Practice Engineering Ethics, Mr. Barthe afrects a great deal of rigbteous indignation becarse "the Quebec Bridge Co. is so sorely arratgned betore the tribunal of public opinion" on the general cbarge of "dellberate attempt to get something for nothing," and because of the imputation that this company, composed as it is of 200 it the best citizens of quebec, is unable to pay a lew nousand doilars for the technical information 1 quires," etc.A. P. B.'s stand is well taken, though one course that he mentions-that of offering prizes for the best plan-has its ansadvantages.
In this connection, attention is called to another Canadian case of "gail unparalleled" in which the attempt to get sometang tor nothing was successful.
in the spring of 1840 the Montreal Bridge Co. calied for competitive plans for a proposed bridge acruss the St. Lawrence, and ofrered prizes for the first and second best plans, of $\$ 1$, uU and \$ow, respectively. A carge number of phans were sublumued and che awards.
weluner of these prizes has ever been padd.
In view of this tact, engineers are justified in questioning the methoas and mtentions or the suedec brage Co. even if it is composed of "Luv of the best ciazens of que
bec." $\quad$ Yours very truly,
71 Broadway, New York city, Dec. 3,1848 .
(We have commented on this letter in our edi(We have comment
orial columns.-Ed.)

## A Battle of Quotations.

Sir: Some time ago those or the trunk line rallways which have long been allowed to charge a differentual fare to Western points under the agreement were surprised to learn that tbe "standard" lines had put luto eflect lower rates trom Buflaio to the Paclic Coast, and had requested western connections to so arrange then rates as to make them the same as the rates enjoyed by the differential lines. Tbe steps were taken somewhat secretiy, and the differeuual ines did not learn of the change unth some ume aher the circulars had been sent out. A meeting was beld in New York last week by the diferential has to discuss the of David $B$. Marta, Manar Ohio R. R., was chosen chairman, and Caarles S . Lee, of the Leligh vaney, acted as secretary ater some diseussion, the following telegram was sent to Geo. H. Danieis, of the New York Central; A. J. Smith, of the Lake shore; O. W. Ruggies, of the Michigas Central; Pan Hoos, E . Mecormick of the Big Four: Pan Handle, and E
We learn with regret that at this most inopportune
time, without confereace or advice, you have arourarily time, without confereace or advice, you have arontrarily
reduced reguiarly estaonshed tares trom common points reduced regulariy estaonshed lares irom common points
in our ternitory to facinc coast poluts, and by request
upon initial ines at the Pacific coast, succeeded in obtainupon iniulal lines at the Pacific coast, succeeded in oblain-
lug similiar reductions in authorized tares eastbound. We ling similiar reductions in authorized tares eastbound. We deprecate such arbltrary action as tending to demorallza-
tion, and calculated to provoke retailatory measures and unnecessarily reduce the revenues of ant injes. We therefore, respeetfuily enter this, our protest, agalust such
unwarranted action on your part, suggesting that in our unwarranted accuon on your part, suggesung that in our opinion, when changes in authorized fares are contemin accordance with the estabished usage, and would re-
quest 1 mmediate restoration of rates to those in effect quest immediate restoratur promp
Nov. 1 , 1898 and ask your pron
to D. Bartin, Baltimore, Md.
One of the first replies was recelved from Ceorge $H$. Danlels, of the New York Central, and read as follows: D. B. Martin, Baltimore, Md.:

I think it would be an opportune time for you to read the 41st vers
to St. Luke.

Mr. Martin, after some difficulty, found the verse, whic ads as follows:
And why beholdest thou the note that is in thy brother's Mr. Martin undertook a littie Biblical research ou his own book, and wired Mr. Danieis as follows

Auswering yours of Dec. 2", we bave been gulded through life by the teacbings of St. Luke, and fuliy concur that his sixth cbapter is very appropriate to the case in point,
and for your personal appucauon would advise reaung
last haif of verse immealately fonlowing.-1, B, Marun,
The last half of the following verse reads as follows: Thou hypocrite, cast out first the beam out of thine own
eye, and men shait thou sce cleariy to puil out the mote
that is in thy brother's eye. Yours truly,
Baltimore, Md., Dec. 5, 1s9s.
(We can add to our correspondent's story that Mr. Daniels has now taken up the study of shakespeale, and was about to refer his adversary to a certain passage in "The Mercnant of Venice," Act I., scene 3.7 The reflection that it mignt be used as a two-edged sword, however, caused him to refrain.-Ed.)

## Tac "Board of Awards" at Baitimore and Other Feature

 of the New City Cinarter.Sir: In your issue of Nov. 24 you comment on that part of the new charter of Baiumore which provides for he retting of contracts for work done and material fur cials, ex eflicto, by a board of Awaids, certan chy om cials, ex-mito, composing the board. You call atteation o be defect in the provision waich requires the award lowest bit to "lowtst respons.b.e bider," in that the scace of may be too high, etc., and waich, in the ab rejeetitg has mequrcman, wound warrant the board in rejeetilg and bias. This sequirement that the lowest re spuasid.e bider dall always de awarded the contract has tween the boara or some of its mevents crookeoness be tween the doara or some
sibie or cisaonest biader.
idie or hisnonest biader.
c.als wnose stanaing in tutegrity in board of city offic.als whose stanaing in integrity is that of a mayor comptrolter, Lity Kegister, City Sohcitor and tiae Presi uent of oae branch of the chiy councha, tae caances of colusion with a dishonest contractor, waile possible, are rataer remote.
Another aefect (though not a serious one) is the requirement that the successful bidder saall give bond in double the amount of the contract price. Tais is ex cessive and entirely unnecessary in protecting the city's intertsts. Contraciors in makiag up their eathmates tor work or material advertised tor will not fail to aad the
premium on this bond to eneir proposal and premium on this bond to thear proposal, anu for tars the city will have to pay. Take for exampie the paving of sxreet estimatcd at a cost ol \$ov,uwu. This, or course, means a \$ivu,tuw bond. Moreover, if the coutractor were sued on his bond, for faliure to comply with specincatons award the city only damages equal in woud very ukely award the city only damages equal in amount to the loss sustanned, which in haruny any case could exceed the amount of the contract, and in many cases would be but it had been Previous to the adoption of the new charter partmet ins Department to fix the bond at about one-third the amount of the contract. This proportion was increased in special cases, such as the erection of a bridge or in emergency work.
Shortly after the new charter went into effect the City Commissioners Department solicited, among other material for constructing a sewer, bids for about 200 barrels af natural cement. The specifications contained the usual provisions for tensile tests (for 1,7 and 28 days). Two differed in price by about (offered by different bidders) differed in price by about 4 cts. per bbl. Both kinds much the speciacations, but the highar priced was much the better and considerably exceeded the requirements of the specications, as shown by lests made che Department. The board had no discretion in the matter but to ara the contract to tbe party offering the lower priced material. The difference in the cost on the estimated amount was about $\$ 8$, whereas the better quailty of the higher priced cement, as sbown by the lests, would probabiy have allowed a lower proportion in It is morar and chereby made it the cheaper in the end. draw the line guarding the interest of is difficult to draw the hine guaraing the interest of the taxpayer wibout encroachig on ordiary busheas priaclpies. A most excellent provision in the new charter is that ail phall, oll, before belng passed by che Cily counci, be reserre to the Board of Pubilc Improvements and to the Board of Board of Eetimas' has not already been included in the Board of Esumates buaget lor that year. The irst-name. board passes on the valu of measurs as a publle improvement, and the Board of Estimates passes on
†"The Devil can cite Scripture for his purpose.'

The councll will bereafter be unable to appropriate money not provided for and included in the Board of Estimates' annual report for the year. By this means the "flostlng dett" will be avolded, which has heretofore been tbe "bete noir" of the party in power and has been the subject of some extravagant oratory and literature In political campaigns.
Balumore, Nov. 28, 1898.
The New Printieg Plant of ite $W$. B. Conkey Co.
Sir: In Engineering News, of Nov. 17, we notice the artlcle and the editorlai regarding our new estahllsbment. Hegarding the editorial, tbe gentleman who wrote it evidently did not grasp the plan of our building. I have asked our arclitect, Mr. Geo. C. Nimmons, to take up the matter and write you concerning it, as tbe great feature of our plant is its fireproof construction, the abso:ute impossibility of burning and the ease of exit for employees in case of fire, there helng large windows only $21 / 2 \mathrm{ft}$. from the ground. Tbe entire structure is fireproof, including the roof, which is of beavy gaivanized iron, tbe supports being iron columns, and every partition of fireproof tile 4 to 6 ins. thick. The foor is lald upon cinders sol:dily packed against the wood, wblcb is $2-\ln$. Norway pine, and $1-\mathrm{In}$. tongued and grooved maple floor on top. Tbere are also $2-\mathrm{In}$. fire hose connections to every 100 ft . of floor space, with 50 ft . of hose attached, tbrougbout the building, and our rate of insurance is only $0.5 \%$. In Cbleago we carried an insurance of $\$ 450,000$ on stock and machinery, and in Hammond we carry only $\$ 25,000$ on machinery and $\$ 100,000$ on stock.
We recently had a call from the President of the Soclety of Engineers of London, England, together with such gentimen as the business manager of the Curtis PublishIng Co., New York city: Mr. Taihelmer, genersl manager of the American Book Co.; Mr. A. G. Spaulding, and many representativis of large manufscturling concerns, wbo have been more than sstonished and pleased with the wonderful results that have been attained thy this new construc. tion scheme for manufacturing piants.
I mention the three gentlemen above, because they are immediately going to cons:ruct new plants, and will adopt our pian, which is thought quite the most perfect scheme for a manufacturing plant that has ever been concelved There is no question but that the erection of our plant has demonstrated a new cond.tion which will mark a new era in manufacturing plants. Believe me,

Very truly yours,
B. Conkey Co.
w. B. Conkey, Pres.

## Hammond, Ind., Nov. 23, 1898.

Sir: 1 am much p:eased to note from the article in your issue of Nov. 17 that you have heen interested in the new methods of construction adopted for the plant of the W. B. Conkey Co., at Hammond, ind., of whicb I was the architect. As, In your editorial discussion of the subject, you have raised the point as to its fireproof quaities, etc., at d as a number of other large manufacturers are about to adopt this style of hulding, a further description of this plant will, 1 trust, be of interest
the readers of your valued publication.
The plant consisis of a main factory building one story high. covering about four acres of ground, and is nearly high. covering about four acres of ground, and is nearly
square in plan. It has no interior light couris or areas, as the light all comes from the roof, and the floor and as the ilght all comes from the roor, and the the fore continuous over entire space of four acres. The office building, witb its various apartments, and the employees' entrances, dining rooms, bicycle ments, and the empleyees rooms, hospital, etc, for the employees, ad-
roons, join the main factory and exteud clear across the east silde, which is the front, and whicb faces on a park of side, which is the front, and whicb taces on a paction and enjoyment of the factory hands, baving a lake, walks, edjoyment of the factory
Adjoining the north side of the maln factory buitding is the bullding for the generating plant, wbich was described in your previous issue.
The root of the main factory buliding is perhaps the most striking feature of the construction. The idea for this was berrowed from Europe, principally from the National Fire Arrus Works, of Belgium, and an immense bicycle factory in Paris. . Both of these works are hullt on this scheme of obtaining north light only, tbrougb a antire root therehy admitting onty rows over libe entire roof, therehy admitting onty the north white figgot building with pure white light, over every square foot of floor surface.
The first objection that is likely to occur in reference to this kind of roof, is the possibility of snow collecting in the valleys between tbe skylights. Tbls is gusided against is a manner simillar to that employed for bot-houses, by keeping the bottom of the gutter and the glass heated so as to melt the snow as it falls. Tbis condition produces another difficulty, greater than all to care for, and tbat is the condensation ou the under side of the glass, etc. In order to care for this, a compiete system of condensasation and conducts it to the outside of the bullding.

The heating and ventilating of the building is accomplisbed by a blast system, with the heating ducts under the foor, wbich supply registers throughout tbe p:ant. arranged on the side walis of each department. Tbe placligg of the beating duct's under the floor does away witb tbe objectionable lsrge galvanized iron ducts usually placed on the celling. The heating system can be made
to produce a mild heat for the seasons of spring and fail, to produce a mild heat for the seasons of spring and fail, and can also be turned into a cooling system for summer,
hy running cold water througb the steam pipes at the fans hy running cold water througb the steam pipes at the fans
and changing the air every 15 minutes witb cool air in and changing hot weather
The fireproof qualities of the bullding were among the principal features considered, and it was construct d in accordance with the advice and suggestious of the fire nder witers, who bave placed a very low rate of insurance on tbe hullding. The bulldiug is practicaliy fireproot from the cature or hs couscruction. Fire canuoi get nder the foor nor tbrougb the wails dividing the different pon columns in wall are made beavy the; the ren colum in the wan are freprool, and the opealng thick hrick fre wall dividing it ee irely tbe bas is built of besyy wank ind figlsh oll encirely. Tbe floor which are bedded in cinders rolled with a sls on roiler bich leaves no space under the foor for fire or vernin and incldentally permits the floor to be loaded almost in. definitely. Under these conditions, fire cannot get under the buliding, nor through the partitions, nor apread any further than the deparment in wblch it starts As an additional safeguand, bose pipes with reels bave been placed so as to cover every part of the bullding with water in case of a fire. It is aiso true that panics amons be employees in the ume of fire would not be likely to occur.
Tbe advantages to he gained by this kind of a bulld.ng a general way over the ordinary ones of two or mor story isolated a plant that consists all, that it brings the different departments into ciosest contact and saves much ime and expense in bandlling the product and in superin ending the men and work, as it is all under one roo and on one floor, wibb no elevators or stalrs, and all con centrated within the smallest possibie area. A buliding. therefore, arranged witb all its depariments as neariy a square as possible, witb the raw material traveling in the maliest possible circle, is the most economical arrange ment, botb as to handing goods and as to cost of build ings. A building, square in plan, w.th say $32,000 \mathrm{sq}$. f . of floor area, costs just balf as much to enclose with brick wall as two bulldings of the same area eacb 40 ft wide by 400 ft . loug, a widtb not uncommon in factory plants.
Tbe roof of the square buliding would cost more tban the others, on account of the extra glass, but the saving in tbe outside wall wouid more than make up for thls extr expense. In a two or more storied plant the saving of th heavy floor supports by the one-story square buildiug is also great euough to make up for the greater cost of giass roof. It ls also true that a bullding of the type used or the Coukey plant, witb tbe perfect nortb ligbt, is cbeaper to buld than either the one-story building witi the old lantern-shaped roof, or the mill constructed bulid ing of two or more stories.
Factory hulldings of tbis country, as a rule, bave recelved comparatively little study by arcbitects, and ar very often defective as to tbeir arrangement and light. As competition at home and with foreign countries be comes closer among manufacturers, it is evident tbat th problem of planning factory buildings grows in inportance, as a great deal can be done hy the arcblect in planning the buildings so as to reduce the cost of pro ducling goods.

George C. Nimmons,
Y4 La Salle St., Chlcago, Nov. 28, 1898.
(We give space with pleasure to the above communications; but are obilged to confess ourselves still unconvinced as to the wisdom, from the standpoint of fire protection, of putting such a great area of buildings under what is practicaily a single roof. We freely admit that the division of the building by solid fireproof partitions is cal culated to lessen materially the risk, but we do not see that it is equivalent to the distribution of the risk into separate buildings, far enough apart to permit the firemen to work between.
It must aiways be remembered, of course, in the study of questions of fire protection, that although a building itgeif may be incombustible, its contents generally afford material enough to feed a brisk fire, especiaily in any manufacturing piant where the floors graduaily become more or less saturated with oil. Admitting, then, that fire is always liable to occur, the question is how its spread may be checked. The weak point in the Conkey establishment, it seems to us, is that al the work in fighting fire must be done on the in-
slde. The fire resisting partitions, if the oper in them are closed by good fire doors, may do work, but if one department gets ablaze, will the flames burst through the giass of the ron in case of high wind, be carried into othe partments through the breaking of other lights by the heat? As we write this, the upper floors of one of New York's finest buildings are in ruins through flames which spread through the glass windows, from an adjacent bullding. The trifing resistance glass offers to fire is now well known; and question concerning the Conkey plant is whe a fire-fighting force in one of the rooms building could keep fiame from entering frof adjacent department through the roof skyli Probabiy it could do this, under favorable cumstances, but in other cases it seems likely the smoke and heat might be carried in such ume through the broken skylights as to the defenders to retreat.-Ed.)

THE HUGHES AIR LOCX; VALPARAISO HARBOR. The late Mr. John Hughes, M. Inst. C. E England, was the engineer for the wrought pier builit in 1873-83, in the harbor of Vaipara Chili, by the Chilian Government. This pler made by sinking wrought-iron cylinders, 11 ft ns. outside diameter, through water 48 ft . deep to a soild foundation, sometimes as much as 107


Section of Cylinder for Steamship Pier, Valparais Harbor, Chili, Showing Operation of Hughes Air Lock.
ft . below the water surface. These cylinders were filled with concrete and braced, and supported the pler platform. They were sunk by the use of the pneumatic process, and the novel air-lock empioyed is illustrated and described in "The Engineer," of Sept. 9,1898 , from which the following brief account is taken:
The main cylinders were made in $8-\mathrm{ft}$. sections, with angle-iron connections, and they were sunk from a temporary staging supporting a traveiling crane. There were, in fact, two cylinders; an inner one, 8 ft .


#### Abstract

in ciameter, and made of $1 / 2-\ln$. plate, and an ther made of $\% / 8$-in. plate; the annular space betwey the two was fliled with Portland cement oncr:- fter the bottom was reached, and this cigh wat sufficiont to ballast the cyiinder ani wisnteract the buoyancy of the compressed al counte he main cylinder was in the water and After floating cylind nd on this cover two lengths of $3-\mathrm{ft}$ of thenand the outer cylinders were added unt the cuing-edge was on the bottom, with the top of the cylinder rising above the temporary stag ing. As the cylinder sank, the annular space be tween the two cylinders was filled with concrete The pneumatic apparatus was then put in place. and this was designed with the purpose of requirins no men to be under pressure except those actually engaged in excavation at the bottom. As shown in the flgure, the two D-shaped cases, A were rovided with covers opening downward and pened or closed by an outside hand lever fixe opened or closed by an outside hand lever fixed on the bar forming the hinge, and passing ou through a smali stuffing-box; the joint between the case and the Ild was made tight by an Indiarubber ring attached to the lid. A similar ring was fastened underneath the bottom of the case A, which was open, intended to form an air-tight joint with the bottom portlon of the air-lock, or ship-case. B. This latter was suspended by two chains of gaged links, one on each side, passing


bar of Iron was thrust, as the skip was ralsed out of the air-lock, and to the projecting ends of this bar the tripping, or dumping chain was attached.
This air-iock plant was equipped with a signal gong, pressure-gage, safety-vaive, and alr-connections, fitted with a check-valve and stop-cock, to be used in the event of a rupture of the 3 -in. hose-pipe leading to the air compressing plant. There was aiso a 3 -in. valve and connections in the $\mathbf{8}-\mathrm{ft}$. cylinder for ejecting water from the ylinder, otherwise than by forcing it out under the bottom edge. A smali fiexible pipe was provided for drawing off compressed air to work a ump for suppiylng water for the concrete and a ump for supply.ng water for the concrete, and a wire ropelader, hung beslde the alr lock shafts. nabled the workmen to pass to the bottom. The air-compressing plant was placed on the shore. and the compressed air was led in an iron pipe to the $3-\mathrm{In}$. flexible hose referred to.
When the cyllnder had been sunk to the required depth, sometimes 107 ft . below the water surface. 8 or 10 ft . of concrete was carefully deposited in the bottom under air-pressure. This concrete was lowered in the skip-cases, B, and these were tipped like ordinary buckets. During the hardening of this concrete the safety valve came into play, in maintaining an even requisite pressure and obriating the posslbility of the compressed air blowing out at the bottom and causing unsound work. Two men oniy were employed at a tlme under pressure in each cylinder, working in 4-hour shifts. While the usual results of working in
poximity to older buildings having foundations of shallower depth without injuring or disturbing he existing structures. The success in this direction is also exempiffed in the present work The chief interest of the work, to engineers, however, lies more especialiy in the cylindrical wooden stave caisson empioyed, the special form of cals son shaft, and the patented air lock designed by the engineer and contractor, Mr. John F O'Rourke. M. Am. Soc. C. E., of New York c'ty The accompanying cuts illustrate these and such ther features of the foundation construction as are of most interest.
General Description of Foundations.-The area occupled by the building is about $45 \times 100 \mathrm{ft}$., an is rectangular in form. Eight pneumatic cais sons filled with concrete and capped with brick nasonry above the cellar floor carry the iron work or the building, which is five stories high. Th caissons are placed in two rows of four calsson each along the two longer sides of the rectangle the distance of the two rows apart transversely being about 25 ft . c. to c . of caissons for the front caissons and $291 / 2 \mathrm{ft}$. for the others. Each caisson is 6 ft . $71 / 2 \mathrm{lns}$. outside diameter, and they are sunk from 40 ft . to 52 ft . below the curb to soild rock The material penetrated is rock filling, mud and clay, and hardpan and boulders, in the order named, and in the case of the front caissons an additional layer of ciean, sharp sand just above the hardpan and boulders. The plant used ln sink ing the caissons and the progress and success of the work will be mentioned further on


Fig. 1.-View Showing Slip-Tongue Connection of Staves.


Fig. 2.-View of Cutting Edge Showing Detached Section of Roof. FIGS. 1 AND 2.-WJOD-STAVE CYLINDRICAL PNEUMATIC CAISSONS FOR THE FOUNDATIONS OF A PRIVATE RESIDENCE AT 11-13 EAST 62D STREET, NEW YORK CITY. John F. O'Rourke, M. Am. Soc. C. E., New York City, Designer.
around the chain-sheaves, $C$, so that when both chambers, A, are closed at top and compressed air is admilted to them, one skip-case, B, can be raised and the other lowered simultaneously, by means of a winch on the outside, with the main shaft passing through the sides of the lock in stuffing-boxes. As the top of the skip-case, B scuming-boxes. As the top of the skip-case, B, comes in contact with the bottom of the chamber, A, the compressed alr may be let out of $\mathbf{A}$ and $\mathbf{B}$,
and the skip removed; the pressure of the air within the main cylinder forces $\mathbf{B}$ against $A$ and makes the joint tight in this case. The cocks for the inlet and outlet of compressed air are $11 / 2-$ in diameter, and are llnked together so as to be worked by one lever from the outside; smaller cocks, of $1 / 2-\ln$. diameter, are provided on the inside for the use of workmen passing in or out. The original article gives no dimensions for the lock chambers; but the cases, A, were apparently about $23 / 2 \mathrm{ft}$. diameter and 3 ft . high, while B wa somewhat less in diameter and about 4 ft . high.
The buckets or skips for holsting the material from the bottom, were made to closely fit the inside of the skip-case, B; and to assist in dumping them, when hoisted from the skip-case by a steam crane, a pipe was run through each bucket near the bottom, from side to side. Through this plpe
compressed alr were noted, there was only one death. This one fatal case resulted from the workman falling to glve the signal that it was a man, and not material, that was coming up; the consequence was that the pressure was released suddenly and the man was paralyzed from the waist downward. He at once went under pressure again and was released gradually; but the mlschief was done, and he died in the hospltal, about three months later, from the indirect effects of the paralysis.

A NEW AIR LOCK AND CYLINDRICAL WOODEN PNEUMATIC CAISSON FOR FOUNDATIONS.
An entirely new system of pneumatic calsson foundations is being employed in constructing the new residence of Mrs. Eiliott F. Shepard, on 62 d St., near Madison Ave., in New York clty. In passing it may be noted that so far as we are aware, this is the first use of pneumatic calssons for dwelling house foundatlons, although they have been frequentiy employed heretofore in the foundations of mercantlie and office buildings. In New York city particulariy the value of this style of foundations has been fully proved, especially where deep foundations have to be sunk in close

Cylindrical Caissons.-Figs. 1 and 2 show quite clearly the construction of the wooden calssons. Each is a cyllnder 6 ft . $71 / 2 \mathrm{ins}$. In outside diameer composed of staves cut with radial sldes, and having inside angle hoops boited to the staves. The staves are made of $4 \times 6$-in. plank dressed to $51 / 2 \times 31 / 2$ ins., and have $1-\mathrm{in}$. square slip tongue joints. At first these tongues were covered with whitelead, but it was found that this prevented the tongue from swelling and finally the palnting was abandoned.
As will be seen from Fig. 2 and the general drawing, Fig. 3, showing the caisson, calsson shaf and alr lock assembled in position ready for work. the wooden cylinder is provided with a metal cut ting edge consisting of an angle and plate. Fig. 3 aiso indicates the construction of the double angle joint connecting two lengths or sections of wooden cylinder. The roof of the working chamber is formed by a ring-shaped diaphragm of steel at tached at its outer edges to a speclal angle ring which was very strongly connected to the staves by a countersunk rivet in each stave, and to lts inside edges was attached the bottom of the caisson working shaft. Fig 2 shows a section of the steel roof ring lying inside the caisson cylinder. It will be noticed that it is detachable and
can be used over and over again, like the caisson shaft and air lock.
Calsson Shaft-The construction of the caisson shaft is shown by Figs. 3 and 4. Briefly stated the objects sought in designing this shaft were to provide a shaft having no interior projections to catch and otherwise obstruct the holsting of the


Fig. 3.-Sectional Elevation of Wooden Cylinder Cais son, Caisson Shaft and Air Lock Combined
bucket, and permitting of its use as a 'man shaft' when fitted with a suitably designed lock for that purpose, and also one which'would afford a ready means of escape by providing hoids by which the men could cilmb up the inside of the shaft. It was necessary aiso that all of this should be accom plished without danger of the air escaping and
without weakening or greatly increasing the cost of the shaft.
Referring to Fig. 4, it will be seen that the shaft is simply a steel cylinder, in one side of which is cut a series of horizontal oblong holes, one above the other, at convenient distances apart to enabie a man to step from one to the other. These siots it will be seen, form a ladder, no part of which projects into the interior of the shaft. To prevent the air escaping through the slots, they are provided with a cover of the same materiai as the shaft, which buiges outward enough to permit the insertion of the hand $r$ foot into the stot. Thi $r$ foot into the slot. This cover extends the fui length of the shaft, and is riveted to it at the edges, as clearly shown To prevent the shaft from bulging under the air pressure or the cover plate from being forced inward by any ordinary nward by any ordinary accident, it is stayed by boits, which extend through the cover into the sheil of the shaft. The shaft, of course, may be provided with any number of these Fig. 4.-Sketch Showing ladders which space will Ladder Construction in permit and which may Caisson Shaft.
be thought necessary.
Air Lock.-The several sections and eievations in Fig. 5 show the construction and operation of the air lock. The lock has an essentiaily cylindrical body, A, which has a top opening, B, and a bottom opening, $C$, of the requisite size to permi the passage of a bucket or cage through it Around the top opening is a circuiar ring, D, on the inside. This opening is ciosed by the opposite ly-arranged convex swinging gates, E , the meet ing edges of which are packed so as to make an air-tight ciosure. The opposite edges are provided with flanges, $F$, adapted to ciose against the ring D , these flanges having flap-gaskets which pro trude into the air lock so that the air pressure striking them will make an air-tight seal by press ing them against the ring, $D$. While ordinarity al the pressure on the doors, $\mathbf{E}$, is taken by th shafts, $\mathbf{G}$, and the actual ciosure is made by the flap-gaskets, yet the ring, $D$, may be made to act as an emergency bearing to take the pressure.
The gates, $\mathbf{E}$, are cut away at the center of the meeting edges, as shown at $\mathbf{H}$, to receive and fit snugly upon the stuffing-box, $J$, banded with rubber, and having a hole through the center for th passage of the hoisting rope. The gates are hung by the arms, $K$, to the common shafts, $G$, one (M) being flxed to the shaft, and the other ' $N$ ) run ning foose. This arrangement, by means of the beve gears and idier $m, n$ and $o$, allows the two doors to be moved in unison and in opposite directions This hanging of the opposite gates on a single center obviates the necessity of plercing the shell in more than two places, and, therefore, reduces leakage and simpilfes the construction. The manner of rotating the shafts, $G$, by the levers, $O$, is obvious from the drawing. It will be noticed that the ievers have counterweights which baiance the doors and thus enable one man to operate the lock.

The air lock has its lower end closed by similar oppositely-arranged swinging gates, $P$, which near their outer edges have the seats, $Q$, which fit against the ring, $R$, with gaskets to secure a tight fit. The castings forming the ring, $Q$, it will be noticed, have flanges, $\mathbf{q}, \mathrm{r}$ and s , forming rungs continuing the shaft ladder previousiy described, and being continued itself by the ladder-like structure, $S$. Unilke the upper gates, $\mathbf{E}$, the lower gates, $\mathbf{P}$, are swung by the arms, $T$, from separate centers or shafts, U and.V. The gate arms are rigidiy fixed to the shafts, and turn with them. To secure opposite motion to the shafts one is operated by a spur wheel from the other, as shown at $t$ and $v$, the actuating force being obtained through the lever, $O$. The admission and discharge
of air to and from the lock is controlled by the three-way cock, $\mathbf{X}$, operated by a lever and the gear and connected with suitable piping to the atr shaft, there being no independent connections with the compressors, as is usuaily the case.
To operate the lock, therefore, the bucket bige at the bottom, and the bottom gates, P, neces arly oren, the bucket is raised up into the air and the gates, $P$, closed behind it. The loch then discharged by the valve, $\mathbf{x}$, from the and the top gates, E, are opened. This allons bucket to be hoisted out and dumped, or loade may be desired. In the return process the is hoisted into the lock and the top gates care being taken to piace the rope stuffinsed, J, approximately in piace; air pressure beink ther admitted, the bottom gates are opened and the mitted, the bottom gates are opened and the bucket is aliowed to descend into the working chamber. This operation usually takes about ten seconds, and is accomplished by one man without difficulty. Whlle the drawings show the cates operated by hand levers, other methods may bs employed. One of these is a system of oscillating cyilnders, and such a system was described and iliustrated in the original patent specifications. No. 591,633. After trying both systems the levers were found simpler and cheaper.

It will be seen by examining Fig. 3 that when the bucket is at the bottom of the wroking cham ber everything is open clear to the very top of the air lock, and with the ladders provided in the shaf and lock the men can, in the case of a sudden inrush of water, scramble to the top above danger


Fig. 6. -View of Wooden Cylinder Caisson with Shaft and Air Lock Attached in Working Order
in all but exceptional cases. Another feature of the system is the dissociation of the air lock, shaft and working chamber from the parts remaining permanently in the foundations. In the foundation work, described above, only three sets of these metal parts were used in sinking the entire eight caissons. As soon as a cylinder had been sunk and filled with concrete up to the working chamber roof so as to seal the bottom, the roof,
shaft and lock were raised out and the remaindet of the filling was done in the open air. A watertight layer of tar and tar paper was embedded in the concrete near the bottom of the chamber to the concrete a perfect seal.
As indicating the rugged construction of the wood in stave cylinders as designed, it is stated that in sinking one of them 40 blasts were fired inside the working chamber, using a half a stick of dynamite each, and beyond some of the staves being scarred by flying stone no damage was done. The calking was not affected enough to cause any leaks, and the roof plates and connections were not broken, aithough the concussion was sufficient to jounce the load of plg iron resting on the roof an appreciable distance into the
air.
Fig. 6 shows quite clearly the appearance of one of the caissons with the shaft and air lock complete the fall block attached to the air lock being operated from the boom of a derrick not shown


Elevation.
the admission of the air. Absolutely no disturbance of the neighboring foundations was caused. The contractor was Mr. John F. O'Rourke, M. Am. Soc. C. E., the inventor and patentee of the calsson piant used. We are Indebted to Mr. O'Rourke for the information from which this article has been prepared. The architects for the bullding were Haydel \& Shepard, of 156 Fifth Ave., New York city

## between the mine and the smelter.

Let us suppose that, as in rine cases out of ten is the fact, you have declded to locate a smelter at a point where fluxes and fuel are more avaliahle than at the mine, or to ship your ore to some custom works, at a point so distan In elther event that it necessitates railway transportation. The first problem which will usually concern you will he that of frelght contrscts. There are some ralways, hik the Great Northern, for listine, hat were hulh through hullding up that country and reaping profis in futures building up that country and reaping profits in future, and
sons of works and mines is that of the Boston-Montana Co. In the state of Montana. Thelr mises are at Butte, and their works at Great Falls, a distance of 175 milles apart, with one of the main ranges of the Rocky Mountains between. At Great Falls was unlimited water power and cheap fuel: at Butte was not enough water for concentration, and expensive fuel. Before the works at Great Falls were started a fre'ght contract was entered into, the rates of which are populariy supposed to be not much over $s 1$ per ton of ore for this $1 \%$ miles of haul over an eleva tion of $6,000 \mathrm{ft}$. By way of contrast, 1 examined a mine in Nevaia, caly 100 wis of min 83.50 per ton was the lowest freight named for a $7 \%$ copper ore.
Recently, competition between rallroads and falling prices lion metals, have introduced into the question of transporta "milling in factor, ". rallroad will take a contract to warry wheat from Daknta to New York at a certain price consentirg that the wheat shall be stopped st Minneapol's, turned into flour packed hall be and he mers, In barrels, and the flour go forward under the orlginal con-
tract. There are likewise sh'pments of ores in which the frelght contract is based on the number of pounds of copper and lead which they contain, as determined by assay the con tract covering the transportation of the ore from the mine to the smelter in the Middle West, and the bullion from the amelter to the Eastern market; all considered under one contract, not completed until the hullion is dellivered You can readily see the necessity for carefully considering the question of transportation before deciding where to 10 cate works. from this brief outline.
There is still another question of transportation which has been often overiooked by producers of preclous metals by amelting, whose product is in the form of rich lead or copper bullion; and when I have suggested that it wa worthy of consideration, 1 have heen met sometimes with Incredulity untll the interested parties hegan to figure that is, the difference between frefght and expresa rates on prectous metals from the Rocky Mountalns to, say, New York.
Take, for illustration, the Anaconda Copper Mining Co. The freight on its product in the form of converter bars or anodes, probahly does not exceed $\$ 15$ per ton to the At lantic seaboard, and, of course, the gold and allver con talned in the copper pay the same frefeht hy the ton During the fiscal year ending June 30, 1906, the Anaconda company shipped about $108,000,000$ Ibs of conper, contalnIng ahout $6,000,000 \mathrm{ozs}$. of silver and 16,000 ozs. of gold The freight on these 208 tons of gold and silver at, say, $\$ 15$ a ton, amounted to not much over $\$ 3.000$; but had this material been refined entirely in the West, and the fine gold and silver all bcen sent forward by express. the expressage and insurance at 2 cts . per oz. Would have amounted to $\$ 120.000$, diference enough to erect an elecIn the East, labor is chesper sulphuric acid is cheap, ant the East, labor is cheaper, sulthuric acid is cheap, and there is a market for the incldental solphate of copner fished prolut has sreat infure with the lof finished prokuct has grat inhuence with the location of works, espechu finate reining. higher as a rule on finished nroducts.
As a result of these conditions, slowly realized, sentiment at present is atrongly in favor of the erection of copEast, and it is doubtful whether const, or at least in the producers would the West had they realized that the conditions of to-day would prevall, unless it be thinse fortunate enough do be located on the Great Northern, with the water power of the whole Missourl st Great Falls to draw upon.
the whole Missourl at Great Falls to draw upon.
are esst of Chicago, except 3 . One-half of the states, all the Anaconda is refined in Baltimore, and for the next two or three yesrs all of the United Verde Ccpper Co.'s output, of Arizona, will also he reflned near the port of New York. The entire product of the Canadlan Copper Co.'s copper-nickel mines at Sudbury. Ont., is also refined near New York, and all the copper producers west of the Mississippl treat their material, ultimately, in the East, except three. Of course, what has been sald does not apply to gold milling, nor in so great a degree to lead smelting, although much Western lead is refined in the
Wast. deed, the electrical engineer can be called a metallurgistwili find their greatest opportunity in the West, the analytical chemist, assayer and sampler, will find, in all prohability, his largest opportunity in the East, or at feasi ters of Omaha and Chicago. He must remember, ing cening his location, that not alone is he to be called upon to hag his location, that not aione is he to be called upon to hars in arope and, horeor a mommerclal lahoratory Europe, and, moreover, a seek all hranche
In 1880, when my laboratory was opened in New York, there was very little assaying of ores or metals at tht port, excepting irs and fertilizers, etc. In those days chemiste received froin $\$ 5$ to $\$ 7$ for a nitrogen determination, and $\$ 4$ for determina
tion of phosphorle acld. To-day, some are glad to recelve $\$ 1$ for nitrogén determination, and from $\$ 2$ to $\$ 2.50$ for phosphoric acid. Not only has the price fallen, but the demand for rapld work has become more exacting. One of the first things the chemist discovers on graduation is that he must invent short-cut methods if he would keep his business. I wss "hronght up" on Fresentus and taught, for Instance, that phosphoric seld could only be safely determined after fusion, separation of silica, soluthon in nitric acid. precipltstion as phospho-molybdate: this after 12 houra' standing dissolved in ammonla, precipitated as ammonia-magnesla phosphate-after standing 12 hours filtered. ignited, ete., etc.
This menns at least 48 hours: but I was startled upon opening my lahoratory to have the first man who brought In a sample of phoaphate say he must have the results before 3 o'clock the snme day. All business changes. The assayer of the last two decndes has seen the testing of chemicals, drugs, etc., almost disappear from his laboratory, if unwilling to accept nominal prices, and sometimes secause trade customs have eliminated analysis. For instance, all the bleaching powder and all the alkalis impean tost is arepted on these in spite of the fact that the pean test is acrepted ond rade chemists of Englanding the an admitediy erroous pounds The analyist, moreover, finds keen competition in his business nrising from old eatahlished firms, nevertheless allive to modern methods, or from other chemists who can, and will, perhaps, work more cheaply than he. There nre foreigners in this business here, who in some cases, live over their laboratorles, or in them. whose highest ambition is, apparently, nn income of $\$ 100$ per month, and who have brought the price of sugar testing, for instance. from $\$ 2$ ner sample down to 25 cts., within my memory. Then, there are trade newspapers, who, hy way of advertisement, have laboratory annexes, and at reduced rates issue cerlificates of test for dye-stuffs, grocerfes, drugs and chemicals; and then in some centers there is the additional competition of men employed by manufacturing or other institutions, with assured salarles, but with the privilege of doing outside work, who do not depend upon their laborateries alone for a living, and who can cut prices proportionately. There is nothing whatever in this competition that is unprofessional or unfair. but it must be reckoned with, and a specialty should be chosen, if possible.
While the analytical husineas has auffered. the assaying of ores and metals has increased In the East, and in the "Ro's there secmed to me to be an opening for an ore sampling plants nt this port. Here again the transporlation problem had to be considered. It is vitally important for such works to be on a lline or at a point where rallway pools cannot bottle you up. as It is doubtful if your presige nid reputation would be sufficlent to bring business o your werks, in the fnce of switching charges or higher relght rates than those obtained over other roads and at olher polnts.
In locating our sampling works, having nscertained the amount of busincss likely to he brought to the road upon Which we located, we interviewed the general managers of severai trunk lines terminating at this city. Their reone line did not exactly anote the language of Its "Comone line did not exactly anote the language of its "Commodore" when he expressed contempl fer the general pubother line effered a plece of ground on the meadows several willes frem water transportation, but would make no only gave the land at a nominnl rentai, but contributed a considerable preportion of the labor and materlal neces sary to erect the works, entered Into a contrget that it would protect the sampling works agalnst cut rates of ered by other roads: and in addition, agreed that ore or other products coming to this port could be stopped not only for sampling but for storage, and upon completion of the samplligg or slorage, the rond would take them ove again aud complete the haul and lighterage under th original bill of lading. This is storage in transit. It mav be sald that this road construed this contract with extra ordinary liberallty. For instance: When, in 1859. Mr Sćcrestan. of Paris, cornered the world's output of eopper huying the entire vistble supply, and the entire product of nearly all the mines, aampling was pretty lively at th works mentioned. As the syndicate approached its dis astrous end, copper matte began to halt at the sampling works until nearly 8,000 tons liad accumulated. Then the syndicate went to pleces, and its ereditors fell foul of one another in dividing up the assels. The copper matte was the subject of protracted iltigation. It remained in the sampling works-most of It-seven years, at the end of which time the original hags had rotled and carloads were nextricably mixed. Upon the aettlement of the dispute a Inw the matte was ordered out. The musty bills of lading and liter notices were produced, and the railroad sent it empty cars, transported and lightered to ocean steamers some $\overline{5}, 000$ tons, seven years after it had started from it Western point of production. These sampling works Curn hrought to the Erle Ry. for several years a busines of 50,000 teus annually. Choose your location with care simply must one be sure of the road's ability to meet its
obligations, if we are ohliged to the ourselves up to one ine, but must forecast as far as possible conditions of routing and export. Some two years ago roads running southeast from Kansas discriminated against the port of New York, and not only did they quote a lower freight to Gulf ports, hut via Gulf ports to Europe. The result was, much of our aampling had to be done on the docks at Galveston, New Orleans, etc. Thls has temporarily heen put a atop to by the Cuban war, and New York is again securing the bulk of lead and copper treights, even when the onterint is produced in Arizona.
Of late years there has grown up in this, as in other lines of husiness, the endeavor to get rid of the middle man-in this case the public sampler and aasayer-and huyers and sellers have entered into eontracts in which the sampling is to be done at buyer's or seller's works bv representatives of hoth parties. There have been such ontracts recently entered into, and questions are aireadv arising which cause one or hoth of the parties most interested ninally buyers and sellers are les, especlalis in and enpe lace themselves under suspicion, however uniust. ne works, wned by the same people who own the such serious differences arose recently between the mines ive superintendents that it ended in an acreement nut only that they should revert to independent sampling h.. that the material should he sampled on neutrsl ground it is perhaps justly sald that it is too much to expect of avernge human nature that impartial sampling shall exlet at the works or the mine of an interested narty Thn office sees so much lead, eopper. gold and silver chargon on the books and holds the works responsible for thic amount either in inventory or shipments. The smelter therefore, must "protect itself againat the office," and I mistakes are made they are apt to he on the safe side where sampling is at either seller's or huyer's estahllah ment.
Netther sampling nor assaying is an exact branch of sclence eapecially when dealing with materials containing the preclous metals. Your practice in assaying bas shown you what variation you can get in any samples, as you vary fluxes, temperature and time of fuaion or cupellation Let me strongly advise you to make every effort, whether lucts, to have the sales contract specify how the assay shall be made
hall be made.
Now as to sampling methods: In the early ' 80 's ou thief export of furnace material was in the form of cop pana, runing 50 to $60 \%$ of copper The lead ores then as now, stopped in the West only the bullion coming to the seahoard for export or refining. Then came a perio enormous expor's of copper matte; next began the era of bessemerizing, applied to copper, and converter bar became the chief support of the sampler. These mattes contained less than 30 ozs . of silver to the ton on the average, and no silver was pald for unless there was over 30 ozs.
Then the electrolytic refinery came in, and as silver and gold were more easily extracted, the mines sought ou gold and sllver-hearing ores and run up the values present. To-day, the exports and treatment of furnace products hear New York eonsist of quite two-thirds converter cop per bars, as eompared with one-third mattes.

THE EXPOSURE FIRE IN THE HOME LIFE INSURANCE BUILDING, NEW YORK CITY.

One of the most severe attacks of fire which a modern tall, steel skeleton, fireproof bullding, has ever undergone was sustained by the 16-story of fice bullding of the Home Life Insurance Co., a 256 Broadway, New York city, on the night of Dec. 4. This building was erected in 1893, and was flanked on one side by the 14 -story office building of the Postal Telegraph Co., and on the other side by the $\mathbf{5}$-story clothing store occupied by Rogers, Peet \& Co. The relative location of the three bulldings is shown by Fig. 1, from which it will be seen that the 5 -story clothing store $a b$ atted close against an air and ilght shaft which recessed the north side of the Home Life Insurance Co.'s building. It was this 5 -story building which first caught fire, and which was the torch that communicated the flame to the other structures. The conditions were, Indeed, almost typical of what may be seen repeated a score of times in every large city; viz., a tall, steel skeleton, fireproof of flce buliding standing by the slde of a low, combustible structure whose destruction is nearly certain if fire once catches it, and which is, therefore, a constant menace to its costiy neighbor.
The Home Life Insurance Co.'s Building is of the steel skeleton type, all the exterior walls except the front wall, which is self-supporting, being carried by the steel frame. The bullding has a front-
age on Broadway of about 56 ft ., and a 107 ft .6 lns . Two air and light shafts, fa white enameled brick, with terra cotta trin recess the north and south sldes. The walls are brick, except the front wall, whi white marble elaborately carved. The in ders run transversely across the bulidin being one row of interlor columns, and ar braced to the columns to resist the wind p The floor beams are supported at each end gle brackets attached to the girders, a spaced about 4 ft .6 ins. apart c. to c. umns are $\mathbf{H}$-section, made up of plates and Alt the steel work is protected by a flrep of clay the. The floor arches are of hardtile, and are 10 ins, thick and of slde const ! each arch having two skewback blocks underneath to protect the lower beam flang haunch blocks, and a key block. Each bio


Fig. 1.-Sketch Map Showing Location of Burned Buildings in the Fire of Dec. 4 at Broadway and Warren St., New York City.
two horlzontal and one vertlcal interior ribs of diaphragms. The partltions were of 4 -in. porous terra cotta tlle, the upper 4 ft . in the hall partitlons being taken up by windows. The column tile were porous terra cotta tile, ribbed inside to give two air spaces. The main girders, which projected down below the cellings, were filled in above the flanges with tile blocks, and had their fower flanges wrapped with expanded metal lath. The whole was haunched around by a thick coal of plaster. A plaster finish,

## tum and partit

The foregoing gives a fairly complete idea of the fireproof construction. Another structural failur of the building which it is important to mention, however, is the light shaft adjacent to the Rogers Peet \& Co. store. To the level of the sixth floor this shaft was inclosed by the wall of the store but above this point it was open. The two sid walls of the shaft had four windows each at each floor, occupying practically the entire area. The other side of the shaft had two smaller window. at each story. None of these window openings were protected by shutters, and it was through them that the flames penetrated the offices of the Home Life Insurance Co.'s Building.
As already stated, the store occupled by Rogers Peet \& Co., and fllied with haberdashery, clothing and the extenslve shelving and counters of a stor of this character was the torch. According to all accounts, It furnished a very fierce fire, the flames of which were driven into the llght shaft as a flue by a very severe northeast wind. These flames soon penetrated the unprotected window openings and set flre to the office furniture, fittings and wcodwork: thus extending gradually to the farthe sides of the building. An excellent description how the fire made its progress is contained in the following excerpt from the New York "Sun"
The oothing store was all in a blaze in a quarter of hour. Then it hurned as a whole until the floors $f$.
one after another. At 11 o cock there was nothing
to hurn. Meantime, the big insurance hullaing agal to hurn. Meantime, the big insurance hullding, agaln
which this white hot mass of fuel had been sending
steady sheels of flame for a full hour, bad just begun
catch
had r
In t
Ing,
had no Iron shutters on them.
In the middile of the north side of the Home Life Build.
Ing, the deep light sbaft that ran from the bottom to
top was entirely open the the side towar
 shaft in a sollid column, spreading out in clouds of sparks
when they reached the top. When the fames above the
roof of the clothing store began to die down a little lt
was seen that every window along the shaft was crack.
ling and hlazing. The wod

On every fioor the fire at once. firemen were fighting to keep thes
flames on


Substantially the same account of the progress of the fire is given by other observers; that is, that the fire caught and progressed on each floor Independently, and did not communicate to any extent from one floor to another. An examination of the burned floors the day after the fire also indicated that the elevator shaft and stairway had not acted to any extent as passages for the flames from
story to story. The floors proved to be almost perfect barriers. Only two floor arches altogether had broken through, one on the 15th floor and the ather on the 10 th floor. On the 10 th floor the failure of the arch was due to the fall of a safe. From all the evidence which is avallable, therefore, it seems fair to assume that there was almost no communication of the fire from floor to floor inside the bullding. In this respect the fireproof construction served its intended purpose almost perfectly.
The greatest damage was done from the 11th tioor up, and in that part of each floor comprised in the wings on each side of the light shaft. It was evident from the ruins that the flames entered the windows on the sides of the shaft, and worked inward and around the front and rear walls to meet in the rooms opening onto the light shaft adjacent to the Postal Telegraph Co.'s Building. The damage was greatest in the rooms near where the fire entered and it gradually decreased as the center of the opposite side was approached. It was aiso more severe, taking the building as a whole, in the rooms fronting on Broadway. The windows opening onto the elevator wells did not communicate the flames to any very great extent, owing largely to the fact that the elevator enclosure and the adjacent hallway and staircase finishing was incombustible, being either stone or metal
From the 11th to the 15 th floor, inclusive, the damage was about the same on each floor. The condition of the floor arches has already been stated. The partitions were broken down in places and the doors and windows and their casings in the partitions were burned away. Much of the partition damage was evidently done by the firemen, who knocked them down to get at the flames, but water and fire were also responsible to a great extent. The column protection was knocked off in patches, but not very generally. The lower flanges of the floor beams still retained their fireproofing almost perfect as a rule. The main floor girders, which projected below the celiing, however, had suffered more; the tlle filling blocks and the expanded metal and plaster flange wrapping in the places where the fire was hottest being quite frequently either torn off entirely or else hanging loose, leaving the metal bare. The appearance of the metal indicated, however, that the protection had stood long enough to preserve the beams from injury.
The examination, in fact, showed practically no damage done to the steel work, with the exception of two girders on the 15 th floor, which had been left unprotected. It may be possible, of course, that a more minute inspection when the debris is
removed will show somewhat more damage to the steel framework than now appears; but it hardly seems likely that it can be serious enough to require any great amount of new material. The brlck exterlor walls may possibly have to be taken down in a few of the top stories, but this will not be known certainly untll a closer examination ca: be made. The marble front, however, in the sto:ies where the fire was hottest is so badly cracked and spalled away that it wlil certalnly have to be rebuilt.

From the 11th floor down the damage gradually decreases, untll on the 7th floor it is due mos'ly to smoke and water. This was probably owing to two things: First, the blast of the flames against the llght shaft windows was greater above than below the 7 th and 8 th floors, but second, and more important, the firemen were able successfully to important, the firemen were able successfuily to
use their hose up to the 8 th story. Above this point the pressure and volume of water obtainable with the ordinary fire apparatus were not efficlent agalnst so hot a fire. This was recognized by the flre department.at the start, and the Sth floor was established as the level below which the flames must not be allowed. Above that level, after they were once establlshed, they were allowed to burn unhindered.
From what has been sald it will be generally admitted by those competent to judge, we think, that the value of its fireproof construction was proven by the Home Life Insurance Co.'s Building. Its weak feature was the unprotected window openings in the light shaft. To this single instance of neglect, we believe, the damage of the building by fire was entirely due. Indeed, we have no hesitation in saying that had the ligetshaft windows heen protected by good flreproof shutters, and been set in metal frames and sash, the flames would never have entered the bullding with the firemen behind with hose to keep the shutters cool. The building was well fireproofed in every respect except to withstand an exposure fire, and with the tinderlike clothing store by its side an exposure fire was the one whlch the builders had most reason to expect. As it was, the building kept the fire confined so that its spread was easily prevented under conditions of high wind and bad facilities for fighting flames so far above the ground. Had the whole block been made up of bulldings llke the clothing store, it is safe to say that it would have been swept clean by the conflagration.
The total damage done by the fire is now estimated at about $\$ 600,000$. No one was killed, and jurles. Fwo or three of the firemen recelved slight injurles. For information respecting the constructon of the Home Life Insurance Co.'s Bullding we are indebted to Napoleon Le Brun \& Sons, 1 Madson Ave., New York, the architects. A persona' examination of the burned bullding was also made the second day after the fire by a member of the editorial staff of this journal.

NEW BATTLE REGULATIONS FOR WARSHIPS have heen framed by the Navy Department, as a result of exlittie to the late war. The new instructions leave work to the discretion of oncers. Above all else wooddanger of fire All furnlur emergency to guard against mum in war. All furnture will be reduced to a mini chairs, and swinging ap-stools will take the place of mahogany tahles of pace times replace the suhstantial needed in action must he stowed below or cast deck not proper fire apparatua must be installed and hose ied to all parts of the ship with a fuil head of water coltall maintained; ali glass, lights and lluminators ahove the engine-room are to be taken away; and even boats are to be disposed of, because they would be riddied and use less anyhow in close action. Guns are to be loaded as soon as the ahip leaves port, and projectiles are to be kept convenlently near; chains are to be unshackied at the first shackle, so that if the anchor is cut away the whole chain will not go with it. Ships are to be painted a dull gray, with a yellowish shade, as approximating mos closely the color of rock, and of an obscuring horizon.

ANOTHER ELECTRICAL EXHIBITION will be held in New York city in 1899 . This waa decided at the an nual meeting of the atockholders, held Nov. 22, at whlch the following omcers were electe. Pres., C. O. Baker, E. Porter; Generai Manager, Marcus Nathan.

Mass., on Nov. 9, under the ausplces of the Massachu
setts Charitable Mechanles Assoclation. There were four types of contests-speed, brake efficlency, manageablity. and blli-ellmbing. The De Dion gasoline tricycle covered two miles in 5 mins . 12 sees. : the Riker electric carrlage stopped in 6 ft . 1 in . The De Dion tricycle, 3 ft . $41 / 2 \mathrm{lns}$ wide, won the manageablity contest, which consisted yassing between slx sets of posts and turning around and coming back to the llne. The Riker carrlage, with a width of 4 ft .8 ins., also made an excellent showing. In the hill-climbing contest, the lighter carriages made the best showing

TELEPHONE CIRCUIT OF 1.900 MILES was ta:ked over on Nov. 28 by Mr. Charles I. Gldden. Presidint of the
Southwestern Telegraph and Telephone Co. Mr. Glidden. Southwestern Telegraph and Telephone Co. Mr. Guldden.
from his office in Lattie Rock. Ark.. held s distlnct confrom his office in Little Rock. Ark.. held s distinct con-
versation with the office in Boston. Mass. Satisfactory tests versation with the office in Boston. Mass. Satlsfactory tests
were siso made from the Little Rock ofnce wlth Memphls, were aiso made from the Little Rock offce wind
Chicago, Minneapolls, Dallas and Galveston.

500,000 TONS OF STEEL RAlLS were ordered in three days, Nov. 25,$2 ;$ and 28 . Of this amount 275,000 tons were hooked by the Carnegle Co, and 225,000 tons by the lifirols Stecl Co., which Is now a part of the Federal cago, nnd $\$ 18$ at Pittsburg.

FREIGHT RATES from Duluth to New York by ail-rail routes are said to have heen recent:y quoted as dow as
10 cts . per 100 lhs., or $\$ 2$ per ton. Calling the distance 1,500 miles, this is equivalent to only $11 / 3$ mills per tonmile. The "New York Journal of Commerce" also says: It is reported that early last week one of the lines made It is reported that early last week one of the lines made
a contract with a large exporting frm to carry wheat
from Chlcago to New York for 8 cts . per 100 Ibs From this rate is to be deducted 3 cts. per 100 ;bs. for 11 ghterag,
In New York, making a net rate for the rallozd of only In New York, making a net rate for the rallroad of only
5 cts. A rate of 9 cts. per 100 lhs, on wheat from Chi-
cago to Baitimore was made recently hy another Illne, but cago to Baitimore was made recently hy another llne, but
no lighterage charge was to he deducted from that figure.

SMOKE PREVENTION IN PITTSBURG, PA., is to be consldered by a commission, which Director E. M. Bigelow, councll to appoint.

A CUSHION TIE-PLATE for deadoning sound is be ing used abroad on street rallway fines. This mat, ac cording to iron Age, is made of wool tho:oughly m . pregnated with ohs andium whole covered wind a mixure composed glue, sodium the The nif uen chinklor a phite, he thickness is aiso recommended for use under engine and machinery foundations.

## BOOK REVIEWS.

 8 francs.
This book presents the subject of distribution of energy by electrictity hy means of alternating currents, of two, three or more phascs. The present state of the art is hrlefly treated, the effort being to give a clear insight irto definite practice rather than to present a theoretical discusslon of non-essential matters. By this we do not mean that equations and mathematics are entirely missing. for this would be a harsh criticism, as it is impossinle to enter irto the realm of alternating currents without employing a certain amount of mathematics. The equat cns included are essential and are given in a hrief but clear manner. important reiations and princip.e stralght forward language. the geral te straight lorward language. Time has not permitted more than a casual examination of the book, hut such items as
have been examined indicate that the materlal contained have been
is rellable.
There are seven chapters in all, coveritg the histor and generai principles governing the two-phase and thrie and generai princ.ples governing the two-phase and thrce tion use for motors, instruments, and last a description of several Installments using polyphase apparatus.
THE DESIGNING OF CONE PULLEYS,-A Non-Approx Imate, Graphlai Solution for the Prohlem of Propor-
tioning Cone Pulleys, with Concise. Practical Rules.
By Walter K. Palmer. M. E., School of Engineering, University of Kansas, Lawrence, Kan. Pamph. $6 \times 91 / 2 \mathrm{lns}$.; pp. 35 . Price, 50 cts .
The mathematical analysis of the solution of the cone pulley probiem is complex, and all practlcal approximate solutions hitherto proposed are either inconvenlent to use or otherwise unsatisfactory. Mr. Palmer takes the analysis given in Reuleaux' 'Constructor,' modiles il struction, and then develops are siar graphical conthe prob, an bean thely the problem can be complety and easily solved, for all practical condions madie a made most valuable contribution to the subject

THE NEW YORK MEETINO OF THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS.
We gave last week an account of the sesslons of the meeting held on Tuesday and Wednesday, Nov. 29 and 30. The session on Thursday morning was devoted to the frst paper was by Prof. C. V. Kerr, of Chicago, entited "Theory of the Moment of Inertia." The paper is long, abstruse and mathematical, bristling with diagrams and calculus. The author has a theory that the moment of inertia is something different from what it is sald to be in the text-books. Those who took part in the discussion held that the books were right and that the paper was all wrong.
The next paper was entitled "Improvements in Steam Bollers," by W. Barnet Le Van, of Philadelphia. It deseribed a horizontal return tubular boller, with the tubes placed higher in the shell than usual, so as to ralse the both the area of disengaging surface and the steam room. it was provided with a long horizontal steam drum, connected to the boller by a single neck. The paper was roughly handled in the discussion. The boller was conzontal tubular boller, and it was shown that the author had described the same boller in the Journal of another soclety as much as 13 years ago
The next paper was by R. Van A. Norris, of Wilkesharre, Pa., entrled.
The Generation and Utillzation of Steam hy the Lykens
Valley Coal Co. and Summlt Branch Coal Co., Dauphin
Co. Pa." The paper describes the results of investigations made to discover, and. If possible, to remedy a large discrepancy In the amount of coal used for firing bollers at the two collierles was bout the same, hut at the Ifkens Valle collierles whs le mines the holler horse-power was 3,323 and the coal used per month of 26 working days 4.381 tons, while at the Summit Branch mines the boller horse-power was 5,313 and the coal used 7.306 tons. The paper includes records of tests of bollers, and engines, Indicator cands, investiga-
tlons of leaky pipes, loss by fríction, etc. All sorts of tlons of leaky pipes, loss by friction, etc. All sorts of
losses of steam and of coal were found: cylinder bollers with stacks red hot. englnes so greatly underloaded as with stacks red hot. engines so greatly underloaded as
to cut off at less than $5 \%$ of the stroke, other engines wlthout lap on the valres, carrying steam full stroke. without lap on the valves, carrying steam full stroke.
leaky plpes and values, blowlng of it of steam with drips from plpes, on account of the ahsence of traps, etc. A from plpes, on account of the ahsence of traps, etc. A
great waste was due to the use of steam jet hlowers for great waste was due to the use of steam jet hlowers for
forclng the fires under the bollers, some of them taking forcing the fircs under the bollers, some of them taking
about $8 \%$ of the whole amount of steam made hy the about
The discusslon of the paper brought out the fact that some of the pumps were over 25 years old. An exper ment on fans and steam jet hlowers was referred to. In which the steam let
fan not over 5 HP .
Mr. John A. F. Swenson, of Chicago, then read a paper entitled:

The Valve Gear of the Whlians Engine.
The willans engine has been well known for many years in England, but is much less known in this country although it has been made in Chlcago for some years which performs the function of a seat for all the valves The englne may have applled to it an automatic cut-off. he arrangement for effecting the variable out-off belas rotary sleeve surrounding that portion of the hollow plston rod which travels in the steam chest, the rotation belng effected by a shaft governor
A summary of the adrantages clalmed for this valve sear is as follows:

Minlmum number of narts and simplicity of form and onstruction, a pree Inlet and release. and a cut-oft so sharp as to rival even a corliss; a halanced valse of the
niston type. wlth verv small clearance apaces. and which
hy virtue of lta position is easily kent steam tlght. great by viriue of Ita position is easilv kept steam tight: great
facllities for varying the cut-off; perfect adaptablity to
the dimiculties of high fotative speed.
One shortcoming is that the ilmit of its general adoption Aneach is the difficulty of arranging it to rin reversing. Another is the aimeuty of arranging it to run revers. Mr. Her enser Instahation was next considered. We give an asstract of the Mres Irscussion fins showing recent arrangements of cooling kome drawings showing recent arrangements of cooling
 duplex pump. in whe he water from the jet condenser whlle the other one rumped the alr and vapor.
The next paper was by Prof. D. S. Jacobus, of Hoit descrithes the method used at the Stevens Institute of Technology, whlch the author considers superior to the Technology, which the author considers superior to the
mercury column method. No discuasion followed the paper. ted," by Prof. W. S. Aldrieh, was the next paper. The object of the paper is stated to be to open up a discussion
of the questions: In what way are the belt tension altered as the load is applied? What effect has the chang of the load on the sum of the tensions? Is there any relation between the belt tensions whlch does not involve the coefficlent of friction? The author condemns the old logarithmic formula for the ratio of the tensions on the ight and slack sides, and derives an empirical formula es follows 8 follows:

## $\overline{T_{1}-T_{z}}$

e raised to a power whose exponent is the fraction $2 \mathrm{~T}_{2} \div\left(2 \mathrm{~T}_{1}-\mathrm{T}_{2}\right)$,
In which $T_{1}$ is the greater and $T_{2}$ the lesser tension, and $e$ the hase of the Naperlan logarithms, or 2.7183 . Written discussions were presented by Mr. Lewis, who disputed some of Prof. Aldrich's conclusions, and by Mr. Carl G. Barth, who gave a new logarithmic formula based on theoretical considerations, which is more formidable in appearance than either the old estahlished one or the one proposed by Prof. Aldrich. Mr. Barth's discussion, when printed In the Transactions, will be interesting to thos who enfoy studying the mathematical theory of bel tensions
On Thursday afternoon a visit was made to the General Post Office, on invitation of Postmaster Van Cott, to inspect the Batcheller system of pneumatic transmission. The system is working to perfection, and the machinery is a marvelous example of inventive and mechanical skill in solving a most dificult problem.
No programme was prepared for Thursday evening, and he members were left free to their own devices. At th ession on Friday morning the first paper was one hy B . s. Hale and Henry J. Williams, on

The Calorific Power of Weathered Coals,
This paper gives the proximate and ultimate analyses o ight different coals, hoth before and after weathering Crushed samples of each coal were exposed out of door for eleven months. The heating values were calculated rom the ultimate analyses by Dulong s formula, and from the proximate analyses by interpolating them on a corve derived by Mr. Wihan Kin results ohtained by Mailer on European coal. Direct eterminations of the teating power of three of the coals were also made by Mr. Whiams bomn calormeter. Th onclusions of the authors are that the average heating power of he elght coals Wis hed all ing to calculations from Dulong's iormua, and that of the three coals about $0.6 \%$, according to the calorlmeter. The results $1 \%$ A min

$$
\text { rease of } 1 \% \text {. A summary or tase }
$$

rease of $1 \%$. A summary of the results is given helow:


The heating values of the coals given above are calcuThe heating values of the coals given above are caicu
lated hy the Dulong formula from the ultimate analyses. The heating values of three of the coals were determined by a bomh calorimeter, with results as follows: George' Creek, 16,048: Portland, 0 . (C), 15.461; McDonald, Pa (O) 15,240 . These figures show a remarkably close agree ment to the figures calculated from the analyses. In the case of the weathered coals, however, the calorimetric re ults were occasionally quite different from and always higher than the calculated figures, as is indicated hy the gures in the gecording to the after , 14,702 B. T. U ; whlle the calorimeter gave 15,301 gave 15,301, r over $3 \%$.
The next paper was hy Mr. William H. Bryan, of St. Louis, entitled

The Mechanical Plant of a Modern Building.
It was a very elahorate description of the method pursued by Mr. Bryan in planning the installation of bollers, engines, dynamos, elevators, heating, lighting and ventilat ing apparatus, etc., of a large retall store bullding in St Louls, with a description of the apparatus finally installed, the reasons for its adoption, its cost, etc. We shall give an abstract of this very valuable paper in an early issue. long discussion followed the presentation of the paper which was participated in hy Messrs, George Hill, R. P Bolton and othe who have done work of the same character as that described in the paper. Some of the de talls of Mr. Bryan's specifications were objected to, and doubt was expressed as to the sufficlency of the heating system in the coldest weather. The plan of asking conractors to bid on two or three alternate kinds of apparatus was criticised, and it was sald that the architect and consulting engineer should make up their minds exactly what Find and size of apparatus they want before asking for blds. The discussion showed that a wide difference of opinion exiets among engineers who make plans and speci-
fications for the mechanlcal appliances in large and the paper, with the discussion, when printed full of interest to such engineers.
The next paper was by Prof. R. C. Carpenter University, entitled "Experiments on the Flow Through Pipes." The object of the experiment determine the coefficient of friction of steam different velocitles through pipes and fit:ings. accepts the formula of Unwin, showing that cient f varies with the dlameter and that for of 100 ft . per second it may be expressed hy the $\mathrm{f}=\mathrm{K}\left\{1+\frac{3}{10} \mathrm{~d}\right\}$, in which d is the diameter pipe in feet and $K$ is a coefficlent to be found by ex Prof. Carpenter's experiments were made on
ft. long and 2 ins. dlameter, and he obtained ft . long and 2 ins. diameter, and he obtained K varying from 0.00093 to 0.00360 , which would elther that K is not a constant, or that there w errors of observation, but he takes an average 0.0027 , and constructs from it a series of tab the flow of steam in different diameters and plpes. The paper was severely criticised in discuss account of its drawing conclusions from too steam in plpes of different dlameters and lengths, by Prof. Ledoux, in France, some years ago, in the "Annales des Mines" tribute it to the discussion to be printed Transactions.
The last paper of the meeting was read by Mr. Ches Newcomb, on "Experiments on the Flow of Streams fro Fire Hydrants." This paper had not been printed i advance, and was read from manuscript. It describes a extensive serfes of experiments, and gives th plotted from the results. it will no doubt an important contribution to the subject, when printed The paper was discussed by Mr. John R. Freeman, who is well known as an authority on the subject.
"queries" that had been printed in the program. Sever "querles" that had been printed in the programme of th (1) (1) Does it pay to pickle ordinary castings? The r plles were to the effect that it depends on the kind castings. It rarely pays to pickle a heavy casthg, small pleces, to advantage. The use of hydrofluoric acld as a ver commended as far superior to pickling. commended as far superior to pickling.
(2) Has any improvement in foundry practice been ob served from the recent investigations into the physics of cast iron? No one had any reply to make to this
question. (3) What is the strength of pipe fittings made by casting process? It was explained that this query arose from trouble experienced by exporters of pipe and plpe from trouble experienced by exporters of pipe and pipe are usually of cast tron, and they are objected to by for elgn purchasers, since the forelgn practice is to make elgn purchasers, since the forelgn practice is to thake
them of wrought iron. No definite answer was given to the query but it was stated that cast-1ron fittinge are strong enough for all purposes except that of withstanding water ram in large pipes, and that no fitting will resist ( 5 ) What constitutes a seamless tube? This question arose from some makers of a tube which is not seamles giving their promake areamless." giving the ir product the which had no line of unton, and which never had two portions or edges hrought together which were at any time separated since the metal was an Ingot. A tube made hy cupping and drawing from a sheet, or drawn from an ingot which had a hole cast or bored in it was properly called seamless.
(6) On how small a tool does it pay to put an Individual electric motor? The question being taken to relate machine shop tools, it was replled that it generally does not pay to have any electric motor in the shop of less tha 5 HP. Smaller units are apt to gire trouble, as they are too dellcate an instrument for an ordinary shop. Th hest plan for small tools is to drive the line shafts by motors, and belts from these shafts to the toole.
(i) Have you any new notions on machine shop floors? Several members discussed this question, not clalming to have "new notions," but relating their experience with floors of various kinds. Spruce ffoors 3 ins, thick, overlaid with $11 / 4$ ins. of hard rock maple, were commended as heing about the most durable floor that can he made (8) Is it of real advantage to submerge the smoke bos of an upright bolier, to prevent expansion of the tubes? No answer was made to this question
These querles were the concluding business of the ses sion. The retiring president, Mr. Hunt, after a few re marks, handed the gavel to the newly elected presiden Chief Engineer Melvilie, who made a brief address, and the meeting was then adjourned. The members and guests registered as in attendance at this meeting numhered 493, over a hundrea less than were present at the last annual meeting, but the decrease in attendance was easily ac counted for by the severe snowstorms which had prevalled throughout New England and New York state, hlockading the railways and making travel unpleasanh The next meeting, in May, 1899, will be held in Wasb Ington, D. C.

