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Leaf nitrogen concentration (LNC) is a major indicator in the
estimation of the crop growth status which has been diffusely
applied in remote sensing. Thus, it is important to accurately
obtain LNC by using passive or active technology. Laser-
induced fluorescence can be applied to monitor LNC in
crops through analysing the changing of fluorescence spectral
information. Thus, the performance of fluorescence spectrum
(FS) and first-derivative fluorescence spectrum (FDFS) for
paddy rice (Yangliangyou 6 and Manly Indica) LNC
estimation was discussed, and then the proposed FS+FDFS
was used to monitor LNC by multivariate analysis. The results
showed that the difference between FS (R2 = 0.781, s.d. = 0.078)
and FDFS (R2 = 0.779, s.d. = 0.097) for LNC estimation by using
the artificial neural network is not obvious. The proposed FS+
FDFS can improved the accuracy of LNC estimation to some
extent (R2 = 0.813, s.d. = 0.051). Then, principal component
analysis was used in FS and FDFS, and extracted the main
fluorescence characteristics. The results indicated that the
proposed FS+FDFS exhibited higher robustness and stability
for LNC estimation (R2 = 0.851, s.d.= 0.032) than that
only using FS (R2 = 0.815, s.d. = 0.059) or FDFS (R2 = 0.801,
s.d. = 0.065).
1. Introduction
All organic compounds were supplied by the photosynthesis of
crops, thus it is of critical significance to accurately estimate crops’
physiological conditions based on different methods. Leaf
biochemical parameters served as the vital indictors for estimating
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crops’ growth status both locally and globally, and have been widely used in many fields. Leaf nitrogen

concentration (LNC) is a key parameter of vegetation photosynthetic efficiency and yields, which can be
applied for scientific guidance in nitrogen (N) fertilization management [1–3]. Hence, fast and accurate
estimation of crops’ LNC is vital to indirectly understand crops’ growth status [4–6]. The traditional
chemical analysis methods can accurately obtain the value of LNC, but it is time-consuming and costly,
which restricted its application in the fast and large scale. Remote sensing technology serves as an
alternative method, which relies on the interaction of light and leaf medium, and can be applied in the
estimation of crop physiological condition [7–9].

Based on the passive hyperspectral remote sensing technology, studies have been conducted by some
scholars to build different models to obtain more accurate biochemical parameter estimation. They
proposed different vegetation indices based on statistical analysis models for estimating biochemical
parameters or crops yields [10–13]. However, passive hyperspectral technology is difficult to acquire
the spatial information. Thus, the combination of passive spectrum and lidar was proposed to
monitor the growth status of vegetation [14,15]. In addition, the hyperspectral lidar technology was
also proposed and applied in vegetation monitoring [16–18]. These methods or technologies can
efficiently improve the accuracy of vegetation biochemical parameter estimation by affording more
characteristic information.

Compared with the reflectance spectrum, chlorophyll fluorescence serving as an alternative means
has been diffusely used in the estimation of vegetation growth status with the properties of being
non-destructive, rapid and highly sensitive [19–21]. Chlorophyll fluorescence is generated when
chlorophyll is irradiated with incident light of a certain wavelength and then radiates part of its
absorbed energy at longer wavelengths. At present, the fluorescence technology has been used in
vegetation monitoring including laser-induced fluorescence transient (LIFT) [22], fast fluorescence
kinetics [23] and laser-induced fluorescence (LIF) [24]. LIFT can acquire the changing of fluorescence
signals at certain wavelength with time, which can be used to estimate the biochemical concentration
of crops. Fast fluorescence kinetics can detect the changing of fluorescence signals with time. Fast
fluorescence kinetics were usually applied in the monitoring of photosystem [12,25]. LIF spectra can
be measured by using a laser to excite, which included amounts of spectral information. However,
LIFT and fast fluorescence kinetics are related with time, which restricted their large-scale application
[26]. Thus, fluorescence spectral information was applied more widely in remote sensing [9,27].

McMurtrey et al. [28] compared the ability of the fluorescence and reflectance to measure different
nitrogen (N) levels of plant stress in corn crops. Then, they found that the fluorescence ratio F740/
F685 or F525/F685 can serve as early indication of metabolic stress. In addition, Gunther et al. found
that F685/F730 is only correlated to the chlorophyll content [29]. Subhash & Mohanan [30] discussed
the ability of the chlorophyll fluorescence (650–800 nm) and pointed out that red fluorescence
spectrum (FS) has great potential for nutrition stress monitoring in rice. Gameiro et al. [31] used the
LIF means to analyse water stress in Arabidopsis and found that LIF can be applied in precocious
detection. Yang et al. [32,33] analysed the ability of LIF parameters with the help of multivariate
analysis to estimate LNC. In addition, the combination with fluorescence parameters and reflectance
spectrum has also been analysed in some applications [34–38]. In order to obtain more fluorescence
characteristics, the first-derivative fluorescence spectrum (FDFS) was proposed and used to monitor
LNC [39].

Nevertheless, comparative studies on the abilities of FS and FDFS to monitor LNC are still limited.
What is more, there is no relative literature conducted on studying the performance of the
combination of FS and FDFS for LNC estimation. Thus, the main purpose of this study is to: (i)
compare the abilities of FS and FDFS to estimate LNC based on multivariate analysis, and (ii) discuss
whether FS combined with FDFS can improve the accuracy of paddy rice LNC estimation.
2. Materials and experiment
2.1. Samples
Yangliangyou 6 was cultivated in 2015, and Manly Indica was cultivated in 2016. The experimental area
is sited in the Jianghan China Plain and the latitude and longitude ranges from 29°580 N to 31°220 N and
113°410 E to 115°050 E, respectively. In order to obtain different LNCs, different fertilization levels were
used in the experimental areas. Different N fertilization levels of urea were used in 2015 (0, 120, 180
and 240 kg ha−1) and 2016 (0 and 150 kg ha−1). According to the suggestion of the local farm
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extension service, 180 and 150 kg ha−1 were the optimal N fertilization in 2015 and 2016, respectively.

Then, an absolute block design, in which ridges of the field were enclosed in plastic films to avoid
water leakage, was used for each experimental area to maintain the same cultivation surroundings. In
this study, the samples in this study were selected from the second leaves above. Foliar samples were
fully unfolded and gathered by randomly collecting nine samples with three replicates for each
experimental field on 26 July 2015 and 23 July 2016, respectively. Thus, the total number of foliar
samples is 486. The gathering period of rice is tillering stage.

2.2. Measurement of fluorescence spectra
LIF equipment was set up in our laboratory and was used to collect the fluorescence spectrum of leaves
[33]. A neodymium-doped yttrium aluminium garnet laser, which emitted 1064 nm seeds light and then
obtained 355 nm excitation light through a third harmonic generation, served as the excitation light
source in this study. To decrease the effect of background fluorescence on the chlorophyll
fluorescence signals, all foliar samples were fixed on black cardboard which was kind of non-
fluorescent material [40]. The excitation light was irradiated perpendicularly on the surface of the
foliar samples, and the emission fluorescence signals were detected at the backward direction of the
same side. The spectral range was between 360 and 800 nm which can include the chlorophyll
fluorescence spectral region 650–800 nm. The spectral resolution was 0.5 nm. After the fluorescence
spectrum measurement was completed, these foliar samples were sent to measure biochemical
concentration. In this study, the LNC was determined by using Kjeldahl method [4]. The detailed
description of Kjeldahl can be found in [41].

2.3. Theory
Based on the previous studies and concepts of first-derivative [42,43], FDFS (I

0
(λi)) at λi is the difference

between the fluorescence intensity at each band, minus and plus one wavelength, divided by the range of
wavelength, as written:

I0ðli,lexÞ ¼ Iðliþ1, lexÞ � Iðli�1, lexÞ
liþ1 � li�1

, ð2:1Þ

where λex is the wavelength of excitation light, I(λi+1, λex) and I(λi−1, λex) denote the excited fluorescence
signals at λi+1 and λi−1, respectively; i is the corresponding wavelength.

2.4. Analytical methods
Back-propagation neural network (BPNN) can be used in analysing multifarious nonlinear problems by
establishing the relationship between the inner neural units based on a succession of trials [44]. This
algorithm has been widely used in many fields due to its abilities of self-adaption and self-learning
[45]. In this study, a three-layer neural network was selected to analyse the LNC based on the built
inverse model. According to previous research [11], the ‘trainbr’ was used to serve as the training
function. In addition, the size of hidden layer was set as four in this model.

Principal component analysis (PCA) can efficiently reduce the number of original parameters by
extracting the key characteristics variables and deleting lower-level components. However, the major
spectral information will not be lost [46]. Thus, PCA served as a statistical multivariate analysis
method and was applied in data dimension reduction [47]. The extracted variables can be calculated
by the linear combinations of the original variables. Therefore, the analysis procedure will be greatly
simplified by using fewer extracted parameters than the original data [48].

The fluorescence features were stochastically divided into two datasets: 70% as the training dataset
and 30% as the validation set. In this study, coefficient of determination (R2) and standard deviation
(s.d.) were used to evaluate the capability of the BPNN by using different feature variables
(fluorescence, FDFS, combination of fluorescence and FDFS). The s.d. was calculated as follows:

s:d: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðXi � uÞ2
s

, ð2:2Þ

where Xi denotes the value of each R2 based on BPNN model; and n represents the repeated times. Low
s.d. and high R2 denote an excellent capability of training model. To analyse the stability of the



0.04 FDFS

FS 1.0

0

0.2

0.4

0.6

0.80.02

re
la

tiv
e 

in
te

ns
ity

fi
rs

t-
de

ri
va

tiv
e

–0.04
375 750675600

wavelength (nm)
525450

–0.02

0

Figure 1. Fluorescence spectrum and FDFS of paddy rice leaf with 355 nm excitation light.
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fluorescence characteristics for LNC estimation, each feature setting was repeated 1000 times by using
BPNN model. Then, the average and s.d. of R2 can be obtained. In this paper, Matlab R2015b
(Mathworks Inc., Natick, MA, USA), where a lot of regression toolboxes are available, was used to
analyse all data.
1

3. Results and discussion
3.1. First-derivation spectrum
FS excited by 355 nm excitation light and corresponding to the FDFS value of each band obtained by
using equation (2.1) are shown in figure 1.

Figure 1 demonstrated that the FDFS showed more fluorescence characteristics than the fluorescence
spectrum. The fluorescence spectrum excited by 355 nm displayed three main characteristics peaks at
440–460 nm, 680–690 nm and 735–745 nm. The first fluorescence characteristic peak was mainly
attributed to the nicotinamide adenine dinucleotide [49,50]. The fluorescence characteristics peaks at
735–745 nm, and 680–690 nm correspond to antenna chlorophyll of Photosystems I and II and
Chlorophyll a of Photosystem II, respectively [51]. The FDFS exhibited a shoulder peak at 720 nm;
three fluorescence peaks at 530 nm, 675 nm and 700 nm; and three valleys at 485 nm, 690 nm and
750 nm. The values of FDFS transferred from negative to positive is the fluorescence spectral valley,
which is generally ignored in LNC inversion. Compared with fluorescence spectrum, FDFS can afford
additional fluorescence features for LNC estimation.

3.2. LNC estimation by using spectral information
To discuss the performance of the spectral information for LNC estimation, then BPNN model was used
to inverse LNC according to the different fluorescence spectral characteristics in this study. LNC and
different fluorescence spectral features corresponded, respectively, to the output and input parameters
in the BPNN. In order to analyse the robustness of fluorescence features, each characteristic setting
was repeated 1000 times by using BPNN. The distribution of R2-values between the measured and
predicted LNC is shown in figure 2.

Figure 2 shows the distribution of R2-values based on BPNNmodel for different fluorescence spectral
features. It is clear that the performance of FS+ FDFS is superior to that of only FS or FDFS for LNC
estimation. The results demonstrated that the FDFS can provide more fluorescence features to improve
the accuracy of LNC estimation. In addition, the variation range of R2-values is listed in table 1.

From table 1, the difference of the maximum and minimum of R2 is not obvious for different
fluorescence spectral features. However, the robustness of FS +FDFS (s.d. = 0.051) is superior to that
using only FS (s.d. = 0.078) or FDFS (s.d. = 0.097) for LNC estimation. Thus, the proposed FS features
combined with FDFS can be applied to improve the accuracy of the monitoring of crops’ growth status
to a certain extent without additional measurements. In addition, we can find that this improvement is
not very obvious. The main reason is that the FS and FDFS are information redundant and highly
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Table 1. The performance of fluorescence spectra and first-derivative fluorescence spectra by using BPNN model.

R2

min max mean s.d.

FS 0.480 0.936 0.781 0.078

FDFS 0.352 0.925 0.779 0.097

FS + FDFS 0.478 0.941 0.813 0.051
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autocorrelated between the adjacent wavelengths with 0.5 nm sample interval, which may impact on the
its ability for the LNC monitoring. Thus, PCAwas applied in this study to reduce dimensionality FS and
FDFS, and then extract main fluorescence characteristics for LNC estimation.
3.3. LNC estimation by using PCA
PCA was used to analyse FS and FDFS, then the extracted main fluorescence features served as input
variables in this model to train BPNN to improve accuracy of LNC estimation. In order to understand
the extracted characteristics variables by applying PCA, the loading weight of the first three principal
components (PCs) is given in figure 3, which includes over 90% explained variables.

Figure 3 shows that the main fluorescence characteristics peaks can be included by the extracted
characteristics variables based on PCA. Then, the calculated new fluorescence variables served as
input variables to train BPNN to estimate LNC. Then, the distribution of R2-values can be obtained
by using the BPNN model with 1000 repeats for each setting data (figure 4).

Figure 4 is the histogram distribution of R2 based on BPNN model for different fluorescence spectral
features, which was processed by using PCA. We can find that the performance of the extracted variables
is better than the original spectral features (figure 2) for LNC estimation. The results demonstrated that
PCA can be efficiently applied in the analysis of spectral information to extract the main characteristics
variables and reduce the information redundancy. In addition, figure 4 shows that the calculated new
variables based on FS+FDFS exhibited better performance for LNC estimation than that only using
the calculated new variables based on FS or FDFS. To better comprehend the performance of the
calculated new variables for LNC estimation, the variation range of R2-values is listed in table 2.

Table 2 displays the difference of the maximum and minimum of R2-values for LNC estimation based
on different extracted features variables by using BPNN model. By comparing the mean of R2-values and
s.d., it can be found that FS (R2 = 0.815, s.d. = 0.059) is superior to FDFS (R2 = 0.805, s.d. = 0.065) for LNC
monitoring by using the PCA combined with BPNN algorithm. The possible reason is that FDFS is
sensitive to oscillations and will increase the risk of possible scattering of the data. Although the
smoothing of data has been processed, it will still influence the accuracy of LNC monitoring. The
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Table 2. The performance of fluorescence spectra and first-derivative fluorescence spectra by using the combination of PCA and
BPNN model.

R2

min max mean s.d.

FS 0.455 0.914 0.815 0.059

FDFS 0.256 0.901 0.801 0.065

FS + FDFS 0.542 0.921 0.851 0.032

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191941
6

detailed analysis needs to be further analysed in the following work. Compared to using only FS or
FDFS, the FS +FDFS displayed better stability for LNC monitoring with higher R2 mean values and
lower s.d. The satisfactory results based on the FS +FDFS demonstrated its application potential for
the LNC monitoring.

The performance of FD and FDFS for LNC monitoring by using PCA combined with BPNN was
discussed in this study, and then FS+FDFS was proposed to estimate LNC. The combination with FS
and FDFS displayed application potential for LNC estimation. However, the effect of the oscillation of
FDFS on the accuracy of LNC monitoring still needs to be further discussed. In addition, the effect of
multivariate analysis on accuracy also needs be considered in the following work.
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4. Conclusion

In this study, the predictive ability of FS and FDFS for LNC estimation was discussed, and then the
combination with FS and FDFS was proposed to monitor LNC by using the PCA and BPNN
algorithms. The experimental results indicated that the difference between FS (R2 = 0.781, s.d. = 0.078)
and FDFS (R2 = 0.779, s.d. = 0.097) for LNC estimation by applying the BPNN is not obvious. The
proposed FS+FDFS can improve the accuracy and stability of LNC estimation to some extent (R2 = 0.813,
s.d.= 0.051). Then, PCA was used to analyse FS and FDFS and to reduce the verbose information. The
proposed FS+FDFS exhibited higher robustness for LNC estimation (R2 = 0.851, s.d.= 0.032) than that
using only FS (R2 = 0.815, s.d. = 0.059) or FDFS (R2 = 0.801, s.d. = 0.065) based on the PCA combined
with BPNN model. Therefore, the study results demonstrated that FS combined with FDFS can
improve the accuracy and robustness of LNC monitoring based on multivariate analysis without any
additional measurements.
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