THE BESICN OF AN ALL-WELDED!
 120° SPAN, TWO LANE,
 'BECK hIGHWAY BRIDGE

EARLE MORROW CASSIDY

CARL WARREN OTTO

Library
U. S. Naval Postgraduate School Annapolis, Md.

$3 y$
Larle Norrow Cassidy Carl warren Otto

Subuitted to the Faculty of
Ronsselaer Folytechic Institute
In partial fulfillinent of the requirenents for the Decree of Mater of civil inginecring

Troy, New York June, 1949
inesis
C28
14) 4

ACKNOMLDGMATT

The authors are gratefully indebted to Dr. J. Sterling Rinney for his aid and guidance throughout the preperation of this paper. And to Mr. h. Amirikian the authors express their sincere appreciation for his valuable criticisas and suegestions.

Thinsumer-1

 Levileenen des

rage
Introduction
Inclucing a brief history of bridge welding, sone general design consicuratione, and an eviluation of the stmeture. 4
Desicn Procedure
"ith empasis on tho particular rroblems considered in the deaizn of each structurel so iponent. 12
Desinn Convutations
Nith reference to prelinủnary designs and thoir shortconings, and a tabulation of the firal dosin calculations. 26
Yibliography 62
Index 64
Appended Drawines
Including plans, elevations, cross-sections, and details of all importantmembers and connections.
lleth
(

INTRODUCTION

In the years proceding world var II veleine was considorod a structural outcast. Tho several comittees and assuciutions mosmonstule for the standare specifications and procedures viowed melding as adounte for minor structural fabrication, where stresses ware for ali practical considerations prodoainately static. The dynamic load fropartion of welded connections were tutestad, and the construction fiuld felt a varue undestandable fesp of ats use in whiti-nllion dolles buildines and bridues.

Today, the fleld testiu of welding is over. dinitary and industrial application of weldinc to oum extsantic war ancinino noods save convincine evidence to enineers that a wolded joint, properiy understood, could do ite job cheaply ans suceessfully. Now all that femains is to overcone the inartia of the specifications and codes.

In the latost printing of the Auspican hessociation of Jtate Higho way Officials' standard specifications for Hiehway urigess (19\%), weiding is classifiod as porissiblo on incidental parto of the structure only. Want the speciffcations, Welding is not reconsunded in anin menbers of their comections where the failure of the weld mould endancer the stability of the structure." what a blow to the proponents of welding! While these H A. $:$.H.O. standards serve as a guide for most hi hway bridje construction, some states in the yoam sinco 1940 have recognized the value of welding as an econoric fabrication nodiul ania have assu ded responsibility for the construction of several nolded hichway bridzes. Califomia and Hew York, with e ereat nuaber of wilcs of hishays and


```
-2,
                                    4Euy=
    -2, (-2)
```



```
    Lax+20
```



```
\(120+1020\)
```



``` 10
```

numerous bricges to accomodate ther, have been leaders in the prowtion of the welded structure.

At this tize the most ponara ap licetion of briage moldan technique is to tho deck eirder and therigid frane types. These artalin of moderate sparis in the nefehborhood of sixty to elithty feet, seldon exceeding 100 reet. Woth of these bridge types present a neat unowstructed roadway for the motorist atilizing them. In olevtation, also, they tend to eive a pleasing architectump offect if such an effect is considered in design. For this rosason their use is extenoive at owie elininations and for suburban stread croseings. Then considered architecturaly, the furndamental cleanlineos of shape and joints of a velded structure often elininate the necessity for a complex exterion veneer of stone or cuncrete to drees up the bridge.

An additional scononice advanta it is offered by the uae of a conposite steel bean and concrete slab. In thls desisn rat od the concrote floor slab of a deck-type brides acts as a part of tho cupression flange of each of the meldod airders. N12 that is ropuired for suc. coupoite action is an adequate mans of resisting tho shear botween tils steel beam and the concrete. Shoar koys, fastened to the bean Rande and Lubodded In the concrete, aro the answer. so far, riveted shoar reys have not proved satisfactory; all their difficulties have been overcone by usc of a relded shear key.

Considering thege Pacts, it is apparent that a bright futuce oxists for tho walded bridge. It cas suceasfully compote mith rivetod oridges usine old-style dasien and matorials that woro developed for the peculiar

noeds of riveted work. ind, hanstrung by may of the olu speciflcutions, it can still prove itself a choaper, botter-lookins, loncar-laztuc bridee.

Perhaps the welded bridge coulc be much better yot, iff it were dosinned from scmaten as a welduc structwe, not just a briage for which welds aro substituted for riveto. This is the curent thou hit thet drifts through the industre toany. in good any technical articlus ano several competitions have stressed the desirability of breaking away from the old patterns of riveted construction. Tho optimuti welded bridee may have vastly different structural characteristios than that wh oh is convidered correct today. Only dasien znvestigetion of the ranotest possibilities In all their ayriad combinalions will produce tho answer.

In an effort to advance one stop toward thet goad this thesis has been undortaken.

The ciesign of a welded bridge discamink the familiam spevifications, procediure, ancs naterials, is a tedious undertaking. As a steadying inEluence, the authors olected to dosin the structire accoming to tha conpetitive restrictions of the iances F. Lincoln are relalne Foundation's Heldou Bridges of the Future awerd procran for 15i4\%. It was felt that if the finisised desin had suficicnt merit it could be subatited as a contost ontry with the performance of tho additional mork required for detailed dravings and sost estimatas.

For this design the oride was dassiflod as a two-lane deck hichway bridge supported on plers 120 feet apart. The destun of the piers or abutments was not considered. The requiremente of the stcol satisfled A.C.T. $\mathrm{H} .-17-46$ specifications. For proportioning meaters, detemining
nensen

nivena
 $2 \pi+1+\min +2$

allowable unit stresses, and sirins welds used in the tabrication the 1947 edition of the Standard Specifications for Relded Mishray and wilroad Bridges of the raericen Veldine Sockety were followed. Contest opecifications designated tho loadings to be appliser to tho designed structure. Those other featuras of the dosiga nornally ounsidered by specificstions when desionine a rivetod bringe were evalustad with poference to a welked stmature. The authors atterated to fuate logically the necessity for the use of those ola specirications. Any that shoula apily or secaed to apply ware civen consideration in the solutlon of the problen.

A deliborate attempt was ade to incorporate into the bridee structure new on seldoa used shapes. This has rusultad in a structura system which, to tho knowledge of the authors, iss as yot untriud. It is fundamentally a backbonemandrib syston, utilizing a sias le box-shaped cirder as the prinary vertobrae resisting thear, bending: and torsion. Transaitting loads to the girder are the oizht pairs of ribs or floor boans. These beans have a wide-flange type cross-section and ara cantilevered fron the simer to give suprom to the floor syste. unc ils stringers. To econonically utilize the metal in those floor beans thuir vertical longitudinal section has boen designed ats a medece section, a section su;gested only recently by A. Amirikian for use in mill builuinco, shops, warehouses, and sinilur structures forcorly requiring rizid frates and trusses to span laree floor areas.

Architecturally, the thinnost possible elevation that was presented to the eye seemed to bo desirable. The use of the werde beas tends to acceatuate this thinness frodalnost any position thet t:e ofservor might

select. In order to brean two othermise long (120 foet) shraint iwe of the botton clance of the eiraer, the flange is shaped to a parevolic curve rislad three reet at aid-s,an. This is also da ocwnomical solution for fixity of the ends of the eirdar, a condilion incororated in tho girior desing. Ao a mosull of thaso features, the britueg prosents as gracefle, willowy 3Linouette that is 1ucally suited for jrace-crossing elminations and strrean crossines in suburban areas.

Tho valve of the torslonal shear that would we aphied was much maller than firmt eresses had estinatod. No previous literuturo was Iocated to live any hint as to the marniture of this shom and esfly in the desiun there was bone doubt in the authore' minds as to the ability of a reasonble eirder section to resist the maiman torque condition.

A modern two-lane 24 -foot highay is assuned to be served by the bridge. As rocomended by metety considerations, tho bridze roadway is Whiened to 26 fect betweon curos and 29 fect clear between puam miling. The curbs are flarod at the oprobehes to prevant volicles fron striking the cuard rail end posts. Ro sidemias wore despred, althou, they may be installed whthout inuredsing the alze of any of tho prosent main structural ambers. Occasional padestrians may cross by usine the 13 Inch curv top.

By tryin: small scalo elsvations of the bridge and ksing different panel lengths for each, a seven-panel design was chosen at wost pleasiag architecturally. Tho standard panel is 27 fect. To overcoze tho shortening illusion of the solid vortical abutaent wall upon the end panels, the end bearing connection was placed usyond the last floor bear.

A If he-weish rloor syates that utllises weldin, to fasten it to


```
    L~
```



```
    L-2,
                                    -20-4m
    2, mexam
```



```
M, (1)
```


the stringers is the U. S. Steal Compay's Armored I-Bear-Lok. It is a steel erid loor filled with low-smade concrete. It is tack welded to each stringrer to give a structure strong enoun to rosist t:e lateril forces applied by wind and lateral loeds. the floor sheincers run longitudinally at an assurod spacine of 5 rect 3 inches. By using Ioneitudinal strineers any permanent deflection of the floor botwean strlagers mill not destroy the syooth riding guality built into the floor. An atteapt was aute to raster the floor and the strinter tozethse to act as conposite beams. Investiration proved tint this wes inpractical. Instead, each stringer is desined as contanuous over tho sevon pancls. The ruatimay loadias as cofried by the contest sperifications are ioentical to the $120-4410 \ldots$ ioiven by the noweliov. In their 194 spucifications.
 auventage. ric conditions perite, the cirdes will be completely shop assenbled and transported to the site in one ploce. There it will be installed and used as the base for all furthos orection. 1th the girder up the floor botar are erected in pains by use of a wide fint e erection piece that straddies the top of the girder betwoen the boans and holds then in place for welding. Before welding the strinerg rest on the top flanges of the beans without the use of spocial fastenings. As goon as the stringers are set, the steel criditay be laid and inmediataly used as andiz platfom for the realinder of the crection and finishing.

Loosing over the completod desitrn, the authors feel that they have accomplished at loast in so.e soasure the following: First, the
 ninlite
$-2+-20+0$ - -
里
 12

$2-2-20-2$ -
20
1 为 2
2
 $\frac{1}{2}+\frac{1}{2}+$1

4

$4+8$

\square
$11+2$ 14
scetions of the canlilever Dean, the izrier, and the floor syster we rarticularly acapted to welulng practices. Second, cunplete use is made of the raterfal. Lach umiser wis roportioned throu, hout its lencth, with due ragerd to coste, for extum allovenle strese. Third, the total dead load of the stmeture is seot to a viriman wid aran wes favorably inth the desined valus of ilve loas that it will surport. Fourth, the bridge is ade of gi , 10 comononts that fit together in a sippla manner.
"If a work such as a bride be well conpoed constmet. ively, whatever may be the cosstituent meterial or metinials Qunloyed, and whatever nuy be the xinta of conetruct on, it Ben int-h fall to be kn arreenble obsect for ft will cortatnly possess the ossentials to bocuty in arolitectura? combolition, si plicity, am hamony. The introxitiction of anything not necessang to the construction, the ondssion $01-4$ is requisite, 00 the zubstitution of a had ex.an". $=$ et
 fay Linarot ant suever the userven say bo to detem in the causo of tho depect, of even in that the defect ixy consist. 3ovace rocitlocture

 ,

 4 (1)

Jid

 $=\operatorname{ancos}+\infty$

By desifaing the uridec "fron the tok down, "hat ie, the iloor system first and the incor luat, it was possible qu elindacte nost of tha fuess work Involved In choosins ting deas loads that mere trans.attod to dach
 needed to be asouned for its frullining deskin. Theretiore, tha desien proceoded in this urder:

Curb and duard talls
Floor 3ystc.
FLoor Sピiatcro
Contilever Jeaiss
dain Mirdur
Bridge jeat

Ordnardiy, the uusin of the nelcied connections wis not consiaored at tha tine the indmoer was investiguted. These wald sizes and details of thefr aphifeation wors nude a part of the cetain divwincs ind design of thos wes cione at tam tino.

In the fullowint discussion reforence will wa , wade to all the rssumptions mude in tion dosi, in of each struxturai comonsnt. However,
 In the desi rimutations thet are tabulated in the noth saction of this paper.
 be helpful to rofer to the dicwing- in the dpmondix. dexuate details have been prepared for all portions of the stracture.

 2

20)

x
 1

 1

It

It was fole that aderaata attention is too ofer lacrins in har dem sigr of curbs and railings. Tell chosen propowtong dos the wiling any
 Ines. Conversoly, shastely accepted railing desinn may upset the whole bulange of the oriase.

Both curbs and milings weee debinoch in accordance vilth the merm ican Institute of ateel Constmotion Polaur, "aridue inilkn, Thoir Design and Construction." the distance botweun curos ls two fect zracter
 used, whion will deflect a cavem yet not catch femiers or ranniny sommo. To provide a substantial curv a homisontal ifoce of 500 powidu per Innesh foot was uplied at tho top of the curb.

The laside rilling foces aro sut buta di, heeri lnotes frok the curb
 rail 2 horlantul desien fonee of 500 pouncs pert Lind foot was applied. The to top reile kuz a horizontal fore of 250 monds par lintal foot applied. A vertiaal forse of 100 pound per $2 i n v i$ foot maz aphited to otch rail. The spucins of railincs was chosen to -ive a isoi lit time did not harmfilly obstruct tha iutorist's viem. Int it dis wio uate for safety und complzents th sracefulnose of the beidee's alevation.

To bilance the weper din: Lown portions of the wride as viewed in elevallon it waz necessary to giace the vertionl ruthing posta on \& foot 6 inch centers, which is aruivalent to onehtifif a penel length. These posta ars anchured to the axtorion floor strmaters at each penel nolnt and ald-panel roint.
(

A molding of $7 i$ nt dage netal oxtends fron the curb levol to juat belot thes cantilevor hents botton mange on the out ide of the ravilng and serves to finish the outsido ed eo ur the sodway.
14

FLUOR STST. 2

A steal exid, coacret-filled, flcoran; vess shosen for lits adm vantaices of 2i_htne3s, strensth, Lone into, oconony, sht ense of installativn. The saving in medrt is mot a sumi iten. fins 3 inch depth choson, with its 1 inch bituanous wearinf sumiace, mokis ungy 60 pouncls pea square root. If a normal concrete shab were ladd, the depth inciudin, wetehn surface mouid be ai least 10 inonos and wuld
 therefore, in uncese of 50 per cent, sunsiderable ites when thefiour aroa axounts to nore than 3100 syunc feot ate il doss in dia iridge. This reduced dead lout results in a dacrease in size of diz othur truc-
 gracerul bridse is fossible. Intiong in wono mo st dy is dixficult

 WChethis of hatarial surplied sor the othar structurn conenonts.

 and midths an whin opening cut as nucessary for droins. It sests diractly on the uppor flantwa the serincora and is melded to than to provide in fisia atwork of stuvi at the floor Level to reskist lateral and longitudinad losds.
[urine erection the steel erid is Laid ana welded to the stringers. uy using dnitod states stoel froored I-ieari-iok, IN ht eage notul fum strips fit betwoun the fatis beans of the flooriof on ito under siae and
$-1+1+1$

 $1-20$

 incoly

 -

att as fores for the conorote and as if protection for the undersiwu of the floor. These strirs ine shon assembled ent waldod to hio floos systen. The concrote buy he poured frod transit-aik trachs runalan untu the brime over the uteul orid.

The siresses resulting frou whew Loud cone atrubions on the floor systes wis the influence of the distribution of thosu lude on the we wents studiad has bean biged on tha theo.y prowsed yy irof. W.esterecard, of the inlversity of ililnois, ane modifled by tho murean of wblie coads.
 for the two types of nomert cuiditions; firegt, for oricue floor diaus
 main moinforcenent trunsverse to the dimoction of trutaic. Hh1s ascould conutition mas guosen for the dasiono

It this bricie tho floor hais rucic continous over several supports and is fimin relded tu the strindor flanges io proadee for proction considerations a fully restrained condition。 'so allow fur so cluxibility ell stresses reare curuted for an end peutpoint of 75 per cont.

To support the floor a system of loncitudini strincors was used. This allows the są of the floor to be parallel to tho triffic travel and does not hinder the smooth ricing characterietics of the bridge. The norakl span of the stringers between the cantilever veans is 17 feet. Any typleal cross-section contains four striacers, two on each side of the centurline. They are spaced 7.25 fout tud 12.50 foet, pespectively, from tha centerdine. The abin firdor way acts as suaport for tho floor, handling the loads over the canter soction of the traiffic aroe.

Three altomtive desi, ns were considered, First, tho reasibinity of composite action of the stringer and a portion of the concrete is the floor imediatoly above was consicered. By assuming tha desinned floor dopth in cominution with various oean sizes, stresses were cosputed by transformed section analysio. Since the concrete stresses had to be superiaposed uron tiose stresses already existing because of slab action, the actual allowable stress in the concreto was low. This neant that the floor would have to be made thicerr to incmase the concrete area and the concrete stress available to resist this comosite wean action. The gain in wefiht of the thtckened biab could not be regained in a similar savine in weidhts of the four etringer sections. Therefore, this alternative was abandoned.

The sacond design was based on si pla bean action for each atringer. This gave a reasonable section for tho strincers and was kept in reserve In case the stringer-to-beam connection becme umieley. Aftar the desis of tho boans, it becane apparent that this solution was not necessary.

 then
 2 a
 $420-1020$
 $=-2-2+0$

 4-4
 .

The inal alternative was to consider the stringers as continuous over the entipe seven panel lengths of the bridge. Any apilices are made where study showed that aoment values wore low. Noma is this is corsidered to be about one-fifth of the panel length from any support. Using such a lone continuous bear, it was uncertain whether the lane loadings or the truck loarinys as specified would produce the greater monents. Investigation showed that winants over the sumports were greater for the lane loakings. The aik-3pan noments, however, were greater for the truck loucings, and these aonants ruled the design of the strineer.

A slicht increase in weligh per foot was allowed i: order to reduce the strineor dopth to a practical minimun. This increase anounted to 6 pounds por foot in the three center panels and 4 pounds per foot in the four exterior pansls over the weights of the most sconomical sections. This is an over all weit tht increase of about 2200 pronds in the buidec. Intorior and exterion stringors were mado the same since the curb position allowed the same loads to ome onto the exterior stringer as were used for interior stringer design. Ordinary wide-flange sections wero chosen. The loads appied ande such a section ideal in resisting the generated moments. The floor fits snuely on the top llange; the bottor flange rests upon the cantilever bean thd is weldea to it. No infricult freaing was needed.

```
(1)
```


. A 2
$t=-4+11$
$-1020-\infty+2$

$202+2$
till

Chutivesi

The use of the wed; buat section for the cantilevar floor beams was chosen as the simplest of soveral shapes that offerod thonselves for this structural inerber. At ilimst, a tapered box section was consiaered to be nore attractive to the observer. However, thls type of section had no structural advantages, and th had the Limortent disadvantage of being an exmenslve fabrication and exection job.

Another consideration was the built-up section consisting of a web plate and two flanges, with the lover $17 a n$ ege bot to some curved profile, most probably parabolic. This loner curve would add graceruilness to the underside of the bridge and would possibly conform to the requirenents of the appisod monents. This desin was discarded because of the added cost of fabrication with only shill seving in the weights of steel over the triangular wedge shane.

Ws previously atutioned in the eariy paces of this raort, the wedge beam has the advantages of attrictiveness, il, htiless, and asononical use of notal to resist the shours uncinomuts. is standard rolled wide flange section vas chosen as tho parent material. It was sulit alon, its web In a straibht diagonul line for the full lencth of one cantilever vean. This diugonal ut was so proporthonod that the wobs ane rajoined along the cut aftur one he $4 f$ of the bean is reversed end for ond. with the proper desifn it was possible to wake the section aodulus curve of the nevily welded wadge parallel to the resuired section modulus of the Cantilever vean. And this fabricetion requires but one flame cutinc and on shop weld for ach wede beam.

It was feared that the wodge mincht not havo the rafired stiffness

 2
to resist excessive deflection tendencies. To investigate the dellection it was necessary to mace en comined erapnical and analytical solution of the bean by the slope deflection wethod. The deflection was not critical, Indicatine that the extra stifiness fitar the support ope than compensated for the bean's flaxibility near its free end.
$2-1-2$

 2 (1)

For resistance to torsional shear the nost cefficient cross-3ection that could be apgiliod to this bridge was the symotricel box with iounded. corners. Hosever, the iaterial In this cross-section also was called upon to resist transverse shear in the wob portions and direct stresses In the fiane portions. This led to the adotion of a bax section with rounded comers that had very heavy flanes to develop the necessary momat of inertia to resist the bendine aonents, with only light web pleces to resist snua.

Preliminary studies indicatod that the torsional ahoar wuld be
 the eirder wes deazned for those luttor forces only, and an allowance was made in proportioning the arabors to reep the atrosses slightly bem low their lisitince values. Then these stresses were later combined by principal stresses witis the torslonal ahour, the total stresses ware gtill below thetr liaits.

Rounded corners were used for two pu poses. Rirst, these corners, rude with adozuste rauif, cipilnate any concentration of the torskonal stress as it flows around the crossmection. Those concentrations whan caused by sunare corners are not properiy investigated, and Ladide authorities disagree on the increase to be assumed. Nost allow a 150 to 200 per cunt increase. Second, rounded comers ollainate the use of fillot welds at polnts of strass concentralion, a condition prowibited by woiding specirications.

The indur cross-section was desibred for monent at tho end supporte and at the contor of the apan. At these points the steel was proportioned

Abstract

 20 R2: 2 anhen $10-2+0-2+0$ 20 ans inel

so that one size of plito is used for both planges and another size for both wobs thruuthout the entire luagth of the girder. Any neceseary increase in moment of in reia was handied by the parejolic curve of the bottom flange, which increased the dept of the irder fran 5 feot at the mid-span to 8 feet at the supports. These design dinensions for the parabola rere ingluenced by the appearance in elevation as well as by the reguirezents for moment of inertia. Fortunatoly, the two conditions did not contradict one arother.

For negative monent over the supports 100 per cent fixity was assuned, for this gave the worst condition. For hasimu pusitive ronent at hidspan the rỉidity was reducod to 75 per cent to allow for any small deformam tions of the bride seat. In the firme sultition of the tiraer it was necessary to consider it as heing of undfom cross-3ection throuthout and to be simyly supportod. Under these assuaptions fows loading conditions were tested, all of wich Gave practically identicsl pesults. Then the vau of moment chosen was wouriod accoiling to the effect of end restraint on aoments existing at the supports an at ici-span. Thuse nodified aoments were designated as the trial desien moments, from shich the first proportioning of the etrder was made.

With the \mathcal{H} rier dinensions chosen the woment of inortia of sections alone the sean was sompatad. The cube root of all these mavents of inertia were plotted againct distance aions tho iirdor. The resultant curve approached a mabola so that it was considered safe to use the Handbook of Framo Constants as publishod by the Portland Cenent Association for calculation of the fixad and moments.

Tor ue conditions along the girder wore exanined for all conditions of unbalanced loadint. Froa thls inspoction it was shown that the
电
torsional shear could vary from zero to one definite iaximm, and that this sane maxinua couzd erist at ony point alons tho inder crosssection, the mavinum shar shifting as the maximu unoolanced loads shifted.

BKDOE SEAT

Four sonetinos incomatible functions had to be performed by the bridge sent in order that it resist the forces irrught to it by the main girder. First, it was to carry the vorticnd thrusts to the pier or abutment. Becond, it had to resiot tho and wornts, that is, it rust be wieid in the plane of the lon ituainal centarline of the bridge. Third, it had to resist the transverse tor ue by being risid in a transverse plane. Fourth, it was to ellow for the expansion of the eirder over the spociriod tempreture ranges expected. It is believeck that the joint as desifned satisfies all these conditions and is still not overly complex.

```
cUige mND RaILINGS
```

CU $2 B$
Assume a curb 4 inches high. Support the inside of the curb on the floor over the exterior stringer. Support the outside edge of the curb on a channel section running between railing posts. Loads.

```
Horizontal -- 500 lbs. per foot of curb
Vertical -- Dead Load -- 169 lbs. per foot of curb
Live Load -- Une front wheel of desig't truck
    or 4000 lbs. placed critically
```

Shear between cuci and flooring.

```
H=500 lbs. per fout
iteel area re uired to resist shear = \frac{500}{13040}=0.037% s4. ins.
```

Channel section.

```
Assume \frac{1}{2}}\mathrm{ of wneel lnad and 妾 of dead load ace supported by
chanel and the remainder supported on exterior stringer.
Assune channel simply supported at each railine post.
Moments.
            Dead Load. }M=\frac{n\mp@subsup{I}{}{2}}{8}=\frac{169\times3.\mp@subsup{5}{}{2}}{2\times8}=702\textrm{ft}.10s
        Live Load. }M=\frac{11}{4}=\frac{4000\times8.5}{2\times4.}=4250\textrm{ft}. lbs
        Impact. }\frac{50}{3.5+125}=0.37
            üe 0.30 1+250 x.30 = 1275 f't. 1.5.
        Total Yorant.
                                0.037 -it. lns.
sequired jection Fodulus = \frac{62.37\times12}{18000}=4.15 cu. ins.
```

Use a $0 \times 2 \times 8.2$ lb. chanel; $b=4.3$ dou. i. is.

LOW RATLY:N

Span. 8.5 ft.
Live Loads.

$$
\begin{aligned}
& \text { Horizontal -- } 500 \text { lbs. per foot } \\
& \text { Vertical -- } 100 \text { los. per foot }
\end{aligned}
$$

Shear.

$$
\begin{aligned}
& \text { Horizontal - } 500 \times \frac{8.5}{2}=2125 \mathrm{los} \\
& \text { Vertical -- } 100 \times \frac{3.5}{2}=425 \mathrm{lbs}
\end{aligned}
$$

loment.

$$
\begin{aligned}
& \text { Horizontal }-500 \times \frac{.52}{8}=4510 \mathrm{ft} \text { los } \\
& \text { Vertical }-100 \times \frac{0.5^{2}}{8}=902 \mathrm{ft} \text { lbs }
\end{aligned}
$$

Use $\mathrm{f}=18000 \mathrm{psi}$
Required Section "oculus.

$$
\begin{aligned}
& S_{h}=\frac{4510 \times 12}{18000}=3 \mathrm{cu} \mathrm{ins} \\
& S_{v}=\frac{902 \times 12}{18000}=0.602 \mathrm{cuins}
\end{aligned}
$$

Try a cross-section $6^{\prime \prime} \times 2^{11} \times 3 / 16^{\prime \prime}$

$$
\begin{aligned}
& I_{\mathrm{V}}= 24 x^{2}+2 \frac{b n^{3}}{12}=2 \times 2 \times 3.16 \times 2.906^{2} \\
&+4 \times 3 / 16 \times \frac{6^{3}}{12}=13.07 \mathrm{in}^{4} \\
& S_{h}=\frac{I_{0}}{6}=\frac{13.07}{3}=4.35 \mathrm{cu} \mathrm{ins} \\
& I_{\mathrm{h}}=2 \times 6 \times 3 / 16 \times 0.906^{2}+2 \times 3 / 16 \times \frac{2^{3}}{12}=2.07 \mathrm{in}^{1+} \\
& S_{\mathrm{v}}=\frac{2.07}{1}=2.07 \mathrm{cu} \text { ins }
\end{aligned}
$$

[1]. Ct chlliva

span. 0.5 fl.
Live Loads.

$$
\begin{aligned}
& \text { Horizontal -- } 250 \text { Lis. per fact } \\
& \text { Vertical - } 1 \text { H) line. puri íout }
\end{aligned}
$$

shear.

$$
\begin{aligned}
& \text { Horizontal -- } 150 \times \frac{3.5}{2}=638 \text { Its } \\
& \text { Vertical - } 100 \times \frac{3.5}{2}=465 \mathrm{Ibs}
\end{aligned}
$$

foment.

$$
\begin{aligned}
& \text { Horizontal -- } 150 \times \frac{8.5^{2}}{8}=1352 \mathrm{ft} \text { ios } \\
& \text { vertical }-1.06 \times \frac{2.5^{2}}{8}=902 \mathrm{ft} \text { los }
\end{aligned}
$$

Use $\mathrm{f}=18000$ 1. si
Required びection Modulus.

$$
\begin{aligned}
& S_{h}=\frac{1522 \times 12}{13000}=0.9 \mathrm{cu} \text { ins } \\
& S_{v}=\frac{902 \times 12}{13000}=0.602 \mathrm{cu} \mathrm{ins}
\end{aligned}
$$

Pry a cross-section $6^{\prime \prime} \times 2^{\prime \prime} \times 1,3^{\prime \prime}$

$$
\begin{aligned}
& I_{V}=2 \times 2 \times 1 / 8 \times 0.933^{6}+2 \times 1.3 \times \frac{b^{3}}{1}=7.8 \mathrm{An} \\
& S_{h}=\frac{2.3}{3}=2.93 \mathrm{chins} \\
& I_{h}=2 \times 6 \times 1 / 8 \times 3.12 .3^{2}+2 \times 1.8 \times \frac{2^{3}}{16}=1.47 \mathrm{in}^{4} \\
& u_{Y}=\frac{1.47}{1}=1.47 \text { cu i ins }
\end{aligned}
$$

NAILS

1 uT

Live Loats.
oe Ficure at right.
5.eas.

$$
\begin{aligned}
& \text { Horizonzal --5526 abs } \\
& \text { Yurtical -- } 3700 \text { ios }
\end{aligned}
$$

Awnent.

$$
\begin{aligned}
4250 \times 2.534 & =11000 \mathrm{ft} 10 \mathrm{~s} \\
1276 \times 2.83 & =4030 \mathrm{ft} 10 \mathrm{~s} \\
1700 \times 0.107 & =434 \mathrm{ft} 1 \mathrm{bs} \\
\text { Motal } & =16104 \mathrm{ft} 1 \mathrm{bs}
\end{aligned}
$$

leguired Section arulus.

$$
S=\frac{16164 \times 12}{18000}=10.77 \mathrm{ins}
$$

Try a cross-sestion $4^{\frac{1}{1 \prime}} \times 4^{* \prime \prime} \times \frac{2^{\prime \prime}}{7}$

$$
\begin{aligned}
& \text { hrea }=4 \times 4 \times \frac{1}{2} \times y \text { sins ins for sidar. } \\
& I=2 \times \frac{1}{6} \times 4 \times 0^{2}+2 \times \frac{4 \cdot 3}{12}=25.0 \mathrm{in}^{4} \\
& S=\frac{25.0}{2.05}=21.35 \text { cu ins }
\end{aligned}
$$

FiLN？UYT．．．．

12．T．．

Uue a 2 imen wear isf surface of cmorete on of as malt．

EIC： \mathbf{B}^{+}

Use dilitea states steel 1 vean Lok Ar iored slahs．
Lay fluuring transveree to trurfic facN．
Gomute stressee oy rudified estereadru theory．
Span．


```
4ssure stringer flanges in inctes wige.
ilear span = j.2 ft - 8 ins = 4 li 7 ins
vesign sran = 4' - 7'' + \frac{8}{2}
```

Assuia a molitnic slab．Intran spa：s in sured to have a 75
ner cent ent restraint cunaition．vesinn a purtion of the
slab 1 frot．Wide．

Loads．

Jeac Loads

$$
\begin{aligned}
& \text { earine urface }=1 \times 1 \times \frac{1}{12^{2}} \times 150=12.5 \text { lbs per foot } \\
& \text { ムミ3.1 * inch i Beath Lok mored = +7.0 LDe par iont } \\
& \text { Total }=59.5 \text { los der foot }
\end{aligned}
$$

```
Live Loaas
```

Truck loadi rales
1 front axle of（3），fos（ 400 per whel）

Impact allowaze

$$
I=\frac{50}{L+1 \pi 5} \text {, where } L \text { is the iesiga span in fuet }
$$

$$
I=\frac{1}{1+y-1.5}=155 \text { Use a } x 2 n . x^{\top} 0 \# .
$$


```
        ML
    LiveLon.s }\frac{PL}{2.32L+10,0525P
```



```
OSSitive .atmat
    NHG IDOU = W, m
    ive LNav= = rL
        Iou'00 x4.01i
```



```
    Tot.al = %H.5 it iob
```



```
|e,utive ,10.2.alt
Lead lofa - WL_
```



```
Impact =0.30 * 3000=,w ft 2b
Total=
                                    444 i't lua
utresses reountine irom negative moment
```



```
Whe stee+ stress is a litilu cver the a|fontle va-ue
```



```
l'the :10nle-.
```


「いの。

Io3us．
Iead -oz:

－w－ent

$$
\begin{aligned}
& \text { Ire 10: }=\frac{I L}{L_{n}}=\frac{1000 \pi I I}{!}=03 \ldots \ldots \text { irs }
\end{aligned}
$$

いいまし。

Loan：．

päれ」

of lunts.

I. 140 LO

ran:

$$
-m \cdot a i=\ldots,+1 s
$$

$$
157
$$

$$
\text { Sow-i } \quad 0.1+1515 z
$$

```
in: ivem.erts: +utalosolv
```

$$
\therefore \Delta \cdot i \text { urt. } n=b_{1}
$$

$$
\text { armet }-3=H L \text { ft } 2 t
$$

$$
- \text { inorret } 3=4, j 50 \text { it } 16=
$$

ancrnt i - inn eit it Iks
9.32 r.

$$
\begin{aligned}
& 10 \cdot 1 \quad=
\end{aligned}
$$

$$
\begin{aligned}
& \therefore+3+\therefore=-20+\frac{8 \cdot}{4} \\
& =367 . \therefore \quad \therefore \\
& \text { haye Losdi }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \because \text { a } 2 \text { ? }
\end{aligned}
$$


```
~ive N!.N
    |
    = 1,2.c:1+=
```



```
    Tutai = 泣in ins
```

in cxai instion if the no...nt. ulveac:ed by the Jows maer tre

$\left.\rightarrow \frac{7205: 12}{180}=1.1 . i\right) 24 \mathrm{ALS}$

-ust ex.lorifori soc:iva is

ven Uliear mecr.

$$
\text { Ares web }=i \alpha x ; i c=\therefore ? \leqslant=+ \text { in }
$$

$$
\text { inear st. Itess }=\frac{I}{-}=\frac{2 \cdot}{\ldots}=i / 4 \text { rati }
$$

$$
\text { Allcwible shear stro s }=11 u N \text { is i }
$$

눈 1.

Loads.

た
wear coads
$\because 10 . r$
 Lozu i $=3, x \times 3 \times 3.25=33001 \mathrm{US}$

Railings

$$
\begin{aligned}
& \text { U: reibick }=\text { 175 in. } \\
& \text { LDad } z=\text { sadit is atoove }=\text { \&', Lijs }
\end{aligned}
$$

20

$$
\begin{aligned}
& \text { Loa! } 1= \text { weight of concrete } \\
& \text { 2urb and surpuris }= \\
& \text { Lod') } 103 \\
& 2= 501 \text { L63 }
\end{aligned}
$$

```
            *!ん|!⿱口゙い
                i.1.* = + x 17 = 6.3 105
                .0.4. = 4, 17 = 0:y l!o
```



```
InClouio
```



```
    &こ ふ《c! \therefore.
```



```
\[
\therefore \text { triber reaztiun }-1!+\frac{x}{i 7}=2^{4} \mu+\cdots i s
\]
```

－ras．t MュLowance

$$
I=\frac{51}{12.5+125}=1.06 \text { Use a maxi.us I is u.ju }
$$

oments．

```
A!⿱一⿻口⿰丨丨⿱二小
a ileaure stress of covou si, the re iuired seztion movidid=
gt Si土:i i'口t is iico Eoumu.
```



```
the :run surmurt.
Homent at bear. suprom
    Deaa: load
        Lonul=2a.5(175+500)=34%0 ft + 15
```



```
    T:31= &%%40 ft +05
```

```
LIve luru
                Truck
```



```
                                Ty+a= = \thereforetr00) it leas
```



```
Ttrpl= -iuvuft los
```



```
LEstance
frohuriue e wetion
```


Firedze ick. teviun.

うnlit 3 \& $4 \quad \because$ we土m a* oww:

－．5 frut		－3a，intar	6 i ins
4.5	4．74	204	$\therefore 70$
ど．	$\therefore 3.35$	＜ 5	$1 y^{\prime}+$
3.5	－ 40	$\therefore 2$	124
1． 5	L4x	$1+4$	1
＋．．．，	U．1	x	－
$\underline{4}$	$\ldots .1$	4.	14

そnear。

```
jheme usted racu
```


$$
\begin{aligned}
& \text { - } 1.021-05 x+10=12+12 \\
& \because:=2=\text { ax }
\end{aligned}
$$

$$
\begin{aligned}
& 100 \%=\text { ery ir }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 101. ALE: ジッ }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 01+0 \quad \therefore \quad \therefore \quad+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \therefore, 110, \quad: \therefore \quad-\frac{2}{2}=0 \cdot+1+1
\end{aligned}
$$


```
* *
```



```
                _1+1-1= 1
```



```
    :O-1-\ ... - - - i*%.
```



```
        *:...: % - %
        #
```


\qquad
$=1 \cdot 21$.
$1+1 \cdot=2 \cdot=12$

$\because 2=2 \quad-1 \cdot-3=1+21-\quad . \quad 0$


```
N-4 - 
```


$1-2-1+2 \cdot 1 \cdot 0$
\qquad

10ve $2=$

$$
\begin{aligned}
& 345 \quad+\quad 70 \\
& \text { - }-1 \pi \text { ח }
\end{aligned}
$$

```
% 1- !.
```


- . . . - \cdot -

arent at iLt - : : M =

$$
=1, \ldots x=.5-\cdots \text {. } \quad l_{4}=0
$$


```
        OM
```



```
"Gi & rute".
```

Zne: -jecer rronoction.
Tirs.

L 3....

```
1.|.*... .. .
```


む 1Kncl धnint nuan

".iryi \because
macio...

$$
\begin{aligned}
& n=0: \quad \because+2: n_{12}:-2
\end{aligned}
$$

$$
\begin{aligned}
& \text { h- anil }+n+\because: \text { ni arit - . }
\end{aligned}
$$

-EMNTVNTNT

5 MTVTNWTV

$$
+\because!x . y \times 5.0+1 \times x+1, x 0.2
$$

$$
=\quad 1 . . .-1 \leq t \text { liQ }
$$

$$
\cdots \times n t \quad<4 \times 47,+x<y+t \quad a=
$$

ion Inou Lefical i. .

$$
\begin{aligned}
& \therefore=10+21+2 i^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \because \because \because
\end{aligned}
$$

'Rotation fer inch length $=.20000709$ radian per inch
Total roatati n at iniu-sman $=$.uruoung \times of $\times 12$

$$
x \frac{180}{3.14}=.243 \text { degrees }
$$

\therefore id-spian detilection $=15 \times 12 \times \tan 0.293=0.553$ inches
Total Stresses.

```
#ieb stress = vuctical shear + torsiunal shear
    At support = 5230 + 2225 = 7445 psi
    At mid-span = 2470 + 2225 = 4695 psi
```

Flange stress = Bending stress + torsional shear
Combine by principal stresses
At support $\left.=\frac{f}{2}+\frac{\left(f^{2}\right.}{4}+s^{2}\right)^{\frac{1}{2}}$
$\left.=\frac{15300}{2}+\frac{\left(15300^{2}\right.}{4}+2625^{2}\right)^{\frac{1}{2}}=15620 \mathrm{psi}$
rit :nid-span $\left.=\frac{16500}{2}+\frac{\left(16500^{2}\right.}{4}+2225^{2}\right)^{\frac{1}{2}}=16830 \mathrm{psi}$

Girder Deflection Under Design Lard.
Assume $\mathbf{2 0 0}$ per cent end restraint at. suproms and
compute deflection by slope deflection method.
slot M / I diagrain to find its area and center of gravity.

-ant of M / I diag mail $=30500$ Kin/ 1 n
Deflection at mid-span $=\frac{30500}{30000}=1.615 \mathrm{ins}$
Usual allowable deflection $=\frac{50 a n}{300}=\frac{120 \times 12}{800}=1.8$ ins

In order to resist the benciae moment and the applied to s sue and It the same time allow sone horizontal lonsit:aiasl movement, it mas decided to use a three plate assembly for the end comention whin a would allow some sliding. The micide nate is the sliding Date and is an embraced continuation of the bottom flane:e of the sifter. The andes top flange is Dem in an are of 3 foot radius and welled to the siding. plate. he Plane in de stress is thus sonly transferred too a vertical fore. hoe web plates are used in the end anneoti n to transfer the shear.

rsi sh thickness to resist the vertical force of the top flange where it joins the serial fo plate.

$$
\begin{aligned}
& \text { 1)nent index plane :late }=0.7 \times 3.965-\frac{1.15 \times \cdot 938^{2}}{2} \\
& =2<.46 \text { in kiss } \\
& \text { le quiferd section modulus }=\frac{20.46}{18}=1.45 \mathrm{in}^{3} \\
& \text { Le. lined tnicmess }=\frac{(v)^{2}}{b^{2}}=\frac{\left(6 \times 1.25 i^{\frac{1}{2}}\right.}{1}=2.75 \text { in Use } 3 \text { inch }
\end{aligned}
$$

Use a 3 í4 inch pistu for this plate. The area of budiup is wot critical.

\therefore BLITDS

Üse 3 inch iates to eive thea the sane rolative stiffinesses as the s-ialng flate in oruer to reep a nlane surface between then.

ANCHOR SOLTS

Required vection moduzus to reoist benaine mo atent.
Sonsiner c.noreta bearing ared in compressiun and the
bonts in tension. Use bolt tension $=13.5 \mathrm{ksi}$.
$S=\frac{77(4) \times 1000}{13500}=12=08: 50 \mathrm{ins}^{3}$
Nentral hxis of conpression concrete and tension stecl.

```
Epace 2% inoh bolts as snown. 3olt area = 3.470 in<
```


Cilve for y

$$
3\left[11(2 a-y)^{2}\right]=0 \times 3.470(275.75+7 y)+a x 3.470(139.75+2 y)
$$

$$
y=u .>5 \text { in assuartion for weutral Axis correct }
$$

..D ient of inentis of compression cuncrete and tension steel.

$$
\begin{aligned}
I= & {\left[\frac{11(21.65)^{3}}{3}\right]+23.3\left(16.35^{2}+28.35^{2}+40.35^{2}+56.35^{2}\right.} \\
& \left.64.35^{2}+76.10^{2}\right)+7.75\left(64.35^{2}+76.10^{2}\right) \\
= & 550000 \mathrm{in}^{4}
\end{aligned}
$$

Seation Liodulis.

$$
S=\frac{556000}{76.10}=7310 \mathrm{in}^{3} \quad \text { r.dequate. }
$$

required section :!odulus to resist torsion.

Consiter soncrete bea:_né area in compression anc the oolts
in tension.

$$
S=\frac{303500 \times 12}{15500}=778 \mathrm{in}^{3}
$$

Find neutral axis and iavent of inertia of cuncrete and steel by tne sume metrod as just described above.

$$
I=315000 \mathrm{in}^{I_{4}} \quad c=06.04 \mathrm{in}
$$

nection nodulus.

$$
S=\frac{215000}{66.04}=4770 \mathrm{in}^{3} \quad \text { hdecuate }
$$

Author

Anericon Institute of
steel Construction

Anericun Institute of
Steel Const uation

Aneriodr el ing jovzety

Grinter, 1. .

Kinney, ©

Lincoln ive Alibne
Foundation
Sealy, Bo

Tinoshenko,

Watson, . N.

Titie and Sulusicit
 structures, "frest intion; in tewiction wales Lomany; ken York; 1 4 .

Lucies, fourth initaon; moricur
 neshinyton, \because. 0.3 2914.
 Construction; Nopern instituto of

Steel Construction, Eiftr caituon: Watricen Institute of tsel Constmution: "te. vomk: 10ht.

Standar 3neciticatione cor eluca
 Tilion: a mom at'ln ousety; Now Yo me: 2947 .
 Govemiunt shinin fizse; ashin, ton,

Mreou of -ocern tesi tructions Voluas

Indotor ingte stractures; Benesolaer
 Desinn Por selcikit The insen \therefore Lincoln Tere itne Foundation; alevel mig 0.31940.
 und wons: worn 1932.

Boidue Arolitccture: Prlum Incoj
1.06 York; 17.37.

$$
\text { 料 } 1=10
$$

nend

$$
\cdots \infty
$$

\cdots
nsid - init

 $\because 1+12 \pi$

\square
-11
 aL-acolodil inas
is maulel x-I

 insmanillivat

ne qedaran

.- - +1 , mas
 +20l/

- minn
\therefore atimact

42ticlus and lunps

 7p 104-107 and 150-154.
 \qquad Revorc; Sctober 7, $1913 ;$; $21+15$.
 Febiua y 2917; 75 51-0.

 and $p 230$ 。

 4 A

 - $-1+1-2+1+2$

 . $11=$

Subject1.
Bridge Seat 58-ひ́?
Cantileven 3eans 33045
Curbing 27
Deflections
Cantilever Beans $43-45$
Girder 56
Dinensions
irridec seat
Cantilever Seais 38
Floor 31
Cirder 23.46
Stringers $1 \hat{3}_{3} 34$
Ploor Systera 31-3 3
Main Girder. 26-56
Railings 2 ± -30
Strosses
Cantilever seazs 12843
Fluor 3y
Cirder. 56
stefrajers 37
Stringers, Fluor I点, 4% 314-3?

Typical Transverse section at $B-B$ Scaíe $\frac{3^{3}}{3}=1=0$

STRINGER SPLICE
Scale $1 \frac{1}{2}=1 \div 0$

$6 \times 2 \times \times \frac{3}{16}$ EXTRUDED SEGTION 2"xix $\frac{3}{8}<$
soread to $94 \frac{3}{4}$
\cdots

FABEICATION of FLOOR BEAM Scolc: ${ }^{\frac{1}{2} "}=1$.

NOT
Stundard 3 U. S.S. T-TEAM-LOK AEMORED, to be installed according to manufacturet's SMAHT-WEIGHT STEEL FOORING, Page 69 .

$$
\begin{aligned}
& \text { TWO-LANE, 12O' SPAN, DECK TYPE } \\
& \text { HIGIHWHY BRIDGE } \\
& \text { SECTIONS \& DETAILS }
\end{aligned}
$$

fall girder welos shall be cone in wandering sequence similar to that shown for Live A above. Flanges and webs shall be completely fabricated before commencing any longitudinal welding. After proper jigging: aligning, ald fact welding. Live A shall be welded. Then diaphragm plates shall be installed as thu w as possible followed by in ermediaie sly freners on one side. Lw bu wail then be welled and
WELDING SEQUENCE

ERIFCTION of FLOOE BEANS

$$
\text { GIRDER SECTION ot FLOOK BEAMS I\& } 8
$$

$$
\text { Scale: } I^{\prime \prime}=1 \div 0
$$

$60^{\circ} \mathrm{min}$

FLANGE VEG BUTT JOLT

WEB BEVEL BUTT JOT

DETALLS Of BUTT SPLICE NELDS Scale: Full Size
No: 望;
Butt Splice to be made on ariund prior to erection Luges shall be prepared so that domnrianiv welding is used on Ye Joint isth only single overhead. oas necessary downhand pass, and root of Bevel Joint is on inside of girder iveld flanges first usm wunderivy sequence working from center towdrls corners, then weld weber simitialiy.

NOTE ゙
It is the opinion of the authors that where proper Transportation is at ail available, the girder should be completely shop fabricated and shipped. If, however. the lib site is located where this is not possible, splices shall be used as shown on sheet 2 and detailed above, and the the girder sections shall each be welded in a sequence similar to the one above for the whole giruter.

THO

SECTION at E-E
Scale: $\frac{11}{4}=1^{\prime \prime}$

SECTION at F-F Scale: A" " $=1$

SECTION at G-G

Par of BridgE to Abutment Connection Scale: $\bar{z}^{\prime \prime \prime}=1=0$

$$
\begin{array}{r}
\text { WELD DE TAI } \\
\text { Scale. Half Size }
\end{array}
$$

Plat of 3° Sliding Plate Scale: ${ }^{\frac{5}{4}-1}-1=0$

Plat of Bridge to Abutment Connection Scale: $z^{\prime \prime}=1=0$

Elevation of Bridge to ABuTMENt CONVECTION Sole: $\frac{1}{2}=1=0$

TWO-LANE, 120' SPAN, DECK TYPE HIGHWAY BRIDGE END CONNECTION

