THE NEWS LETTER OF THE
 BUREAU OF PUBLIC ROADS

VOL. 3, NO. 11

U. S. To Play Host To European Road Builders In $1930 \ldots \ldots \ldots$

Annual Meeting Of A. A. S. H. O. To Be Held In Chicago $\ldots \ldots \ldots-2$

Current Condition Of Federal-Aid Road Work, As Of August 31, $1928 \ldots \ldots$

Cost Studies 0n The Construction Of A California Forest Highway Project - - - 4

Revised Motor Vehicle Registration For Calender Year $1927 \ldots \ldots \ldots$

Proportioning Concrete Materials By Weight _ - 17

The Regulation Of Outdoor Auvertising By Law - 21
A. R. B. A. Convention To Be Held Again In Cleveland 23

Location Of R.F.D. Boxes Under Jurisdiction Of P. O. Department $\cdots \cdots-24$

Observations On Ol-Pr.ocessed Surfaces In The Western States - - - 26

$$
4
$$

U. S. TO PLAY HOST TO EUROPEAN ROAD BUILDERS IN 1930

LEADING HIGHWAY OFFICIALS FROM ALL PARTS OF THE WORLD are coming to the United States in 1930 to study american METHOLS OF ROAD IMPROVEMENT AND ROAD USE, ACCORDING TO WORD erought eack ey Mr. MacDonald from the recent sessions of the International Road Commission held in Paris. Mr. MacDonald went to france as head of the official delegation representing the American Government at the road meeting. He later made an INVESTIGATION INTO THE PHASES OF HIGHWAY DEVELOPMENT IN MANY of the countries of Western Europe and in the British Isles.

Interest In Program

"Not only was the invitation extended ey our Congress through president Coolidge accepted unanimously," said Mr. MACDONALD, "EUT FROM COMMENTS OF DELEGATES FROM OTHER COUNTRIES, IT IS EVIDENT THERE IS A DEEP-ROOTED, WORLD-WIDE INTEREST IN WHAT IS EEING DONE TO IMPROVE HIGHWAYS HERE.
"The great distinction which exists eetween our prograim AND THAT OF OTHER NATIONS, IS THAT WHILE HERE THE WHOLE COUNTRY HAS ADOPTED MOTOR TRANSPORTATION, ELSEWHERE CAR USE IS STILL LARGELY IN THE HANDS OF A FEW.
"The rapid expansion in the United States faced our engiNEERS WITH AN URGENT DEMAND FOR THE IMMEDIATE IMPROVEMENT OF HUNDREDS OF THOUSANDS OF MILES OF HIGHWAY. AT THE SAME TIME, INCREASED VALUATIONS GROWING OUT OF BETTERED TRANSPORTATION FACILITIES AND A MODERATE TAX UPON THE VEHICLE ITSELF MADE IT ACTUALLY CHEAPER FOR THE PUELIC TO HAVE ROADS THAN TO GO WITHOUT THEM, SO THAT WE WERE AELE TO EMEARK UPON A CONSTRUCTION PROGRAM WITHOUT PARALLEL IN THE HISTORY OF PUBLIC WORKS WITHOUT DISLOCATING OUR FINANCIAL SYSTEM.
"Concurrently, we were faced with the question of whether IT WAS CHEAPER TO EUILD THESE ROADS SLOWLY AND LAEORIOUSLY EY HUMAN LAEOR AS MOST OTHER COUNTRIES NOW DO, OR WHETHER WE SHOULD WORK OUT MASS PRODUCTION METHODS AND SO MEET THE NATIONAL DEMAND QUICKLY. EXPERIENCE HAS DEMONSTRATED THAT THE LATTER PLAN IS Ey far the more efficient and less costly.

Abstract

"Foreign highway engineers, who are as well or eetter VERSED IN THE TECHNIQUE OF ROAD EUILDING AS OUR OWN MEN, IN THE MAIN ARE ONLY NOW ARRIVING AT THE STAGE WHERE THEY MUST MEET SIMILAR PROELEMS IN THEIR OWN COUNTRIES, HENCE THEIR INTERest in the sessions here in 1930. "Further, eecause of the wide diversity of geographical, climatic and soil conditions in the United states, coupled WITH VARYING degrees of wealth and population, it is possiele TO APPROXIMATE HERE THE EASIC PROELEMS WHICH CONFRONT ENGINEERS from aeroad, whether they are interested in congested areas, SUCH AS ENGLAND HAS, IN PRIMAFY ROADS, SUCH AS ARE NEEDED IN THE NEWER COUNTRIES, OR IN QUESTIDNS OF MOUNTAIN ROADS SUCH AS those faced ey Austria, SWItzerland and other nations.

\section*{United States Giant Laeoratory} "So, the United States in 1930 will ee a giant laboratofy IN HIGHWAY DEVELOPMENT AND MOTOR TRANSPORTATION WHERE HIGHWAY OFFICIALS FROM OTHER COUNTRIES WILL FIND AN OPPORTUNITY TO SEE NOT ONLY WHAT HAS EEEN ACCOMPLISHED FROM AN ENGINEERING POINT OF VIEW, EUT ALSO TO OESERVE EOTH THE SOCIAL AND ECONOMIC INFLUENCES WHICH HAVE EEEN EFFECTED. "At the same time, our engineers will have an opportunity TO LEARN WHAT IS EEING DONE IN OTHER COUNTRIES AND TO COMPARE Notes Mith their foreign colleagues."

ANNUAL MEETING OF THE A.A.S.H.O. TO BE HELD IN CHICA:OO

The annual meeting of the American Association of State Highway Officials will ee held in Chicago from novemeer 12 to 15, 1928. The Stevens hotel on Michigan Boulevard has eeen CHOEEN FOR HEADQUARTERS. THIS LARGE HOTEL, CONTAINING OVER 3,OOO ROOMS, ENAELES THE ASSOCI¿TION TO OETAIN ACCOMMOD\&TIONS FOR AN Assemely Room and Committee rooms all on the third floor. There Afe Several matters of vital IMゅORtance to the development and SERVICE of the State highway departments that will ee discussed AT THIS MEETING.

Pos

COST STUDIES ON THE CONSTRUCTION OF A CALIFORNIA FOREST HIGHWAY PROJEOT

C.MMPILED FROM A REPORT SUEMITTED EY R. H. Tatlow \|ll, of the Division of Management (Not for release)

Cost studies on the grading operations of a $10-\mathrm{mile}$ section of the bear Valley national forest highway north of San Bernardino, Calif., as shown in Figures 1 and 2 , give some INTERESTING STATISTICS WITH REGARD TO THE RELATIVE COST OF STEAM AS COMPARED WITH GAS-AIR POWER SHOVELS, AND OF STANDARD MOTOR TRUCKE AS CONTRASTED WITH LINN TRACTORS. ALTHOUGH THE RESULTS are inconclusive eecause of the different ages and sizes of the Shovels anc trucke, they are valuable as an indication of what IS POSSIELE UNDER CERTAIN GOVERNING CONDITIONS.

THE STUDY SHOWED THAT THE STEAM SHOVELS WERE MUCH FASTER ON THE SWING THAN THE GAS-AIR SHOVELS ALTHJUGH THEY SEEMED TO LACK THE HOISTING POWER OF THE AIR SHOVELS. THIS SEEMED TO GE ACCOUNTED FOR BY THE FACT THAT THE GREATER HORSEPOWER OF THE GASOLINE ENGINE WAS MADE STILL MORE EFFECTIVE EY A DIRECT HOISTING MECHANISM. THE STEAM ShOVEL HAD THE ADVANTAGE, ALSO, IN AVERAGE DUMPING TIME, 2.46 SECONDS AS COMPARED WITH 3.42 SECONDS, because of the poor reversing device on the gasmalr shovels. THE SWING of the latter was never reliable and could not ee JUdGED ACCURATELY. OCCASIONALLY THE BOOM WOULD STOP SUUDENLY AND AT OTHER TIMES THE EUCKET WOULD EE SWUNG CLEAR OVER THE TRUCK. THE DELAYS, CGUSED EY MECHANICAL DEFECTS AND REPAIR ON the steam shovels, averaged only $2 \boldsymbol{I}$ per cent of those on the GASOLINE SHOVELS. THESE CHARACTERISTICS PERHAPS ACCOUNT FOR THE FACT THAT THE PRODUCTION OF THE GAS-AIR SHOVELS WAS ONLY FROM 10 TO 20 PER CENT HIGHER THAN THAT OF THE STEAM SHOVELS, ALTHOUGH THE STEAM SHOVELS HAD A CAPACITY OF ONLY $7 / 8$ OF A CUEIC YAFD WHile those on the gasmair shovels held $1-1 / 8$ cueic YARDS. IN THE FACILITY WITH WHICH FUEL COULD EE DELIVERED, however, the gas-air shovels had the decided advantage.

UNFORTUNATELY THE MOTOR TRUCKS ON THE PROJECT WERE OLD MODELS AND ANY COMPARISON WOULD NATURALLY FAVOR THE NEW LINN TRACTORS WHICH HAD AN ADDED ADVANTAGE IN THEIR AEILITY TO MAINTAIN THEIR OWN ROADS - THE CATERPILLARS KEEPING THE TRAVELLED

Figure 1. - (Top) General view of the topography of the project (Center) Gas-air shovel loading the steel-bodied Linn tractors from a hard strata of granite

Figure 2. - (Top) Steam shovel in decomposed granite loading an old Federal truck
(Center) Gas-air shovel loading a Linn tractor with a capacity of 8 cubic yards. The excavation is decomposed granite with a maximum depth of 78 feet.
(Bottom) This Linn tractor pulled these two trucks up a 25 per cent grade which the trucks were unable to climb alone.

WAY SMOOTH AND FREE FROM RUTS AND HOLES AT ALL TIMES. IT SHOULD ALSO EE STATED THAT WHILE THE STUDIES WERE IN PROGRESS HAULS WERE SHORT AND GRADES HEAVY - SOMETIMES OVER 30 PER CENT - EOTH CONDITIONS FAVORAELE FOR THE TRACTORS AND DIFFICULT FOR THE TRUCKE. THE DATA INDICATED THAT THE COET OF HAULING WAS FROM 80 TO 85 PER CENT GREATER FOR THE TRUCKS THAN FOR THE LINN TRACTORS.

General Description Of Project

THE COST STUDIES WERE EEGUN ON MAY 7 and CONTINUED UNTIL JUNE 16, 1928, A PERIOD OF SIX WEEKS, ON A FOREST HIGHWAY JOE ESTIMFTED TO REQUIRE 300 DAYS FOR COMPLETION. THE WORK (CALIF. F.A.P. 601) INCLUDED 450,699 CUEIC YARDS OF UNCLASSIFIED EXCAVATION TOGETHER WITH CONSIDERAELE CLEARING. THE EXCAVATIJN CONSIETED PRINCIPALLY OF DECOMPOSED GRANITE WHICH IN PLACES WAS EAEY STEAM-SHOVEL WORK AND AT OTHER LOCATIONS REQUIRED ELASTING AS A DRELIMINARY OPERATION. BECAUSE THE GRADE WAS INACCESSIELE AT ONE END, IT WAS NECESSARY FOR THE CONTRACTOR TO CONETRUCT APPROACHES. TWO OF THESE ROADS, FOR HAULING SUPPLIES FOR THE SHOVELS, WERE EUILT TO CONNECT THE ROAD WITH THE CAMP WHICH WAS CENTRALLY LOCATED ON THE PROJECT.

The clearing was a serious proelem eecause of the danger OF FOREST FIRES. FOR THIS REASON EURNING WAS PERMITTED ONLY ON FOGGY DAYS OR FOLLOWING A RAIN WHEN THE LEAF MOLD WAS WET. AT these times all the men availasle, without stopping the shovels, WERE UITHDRAWN FROM OTHER ACTIVITIES ON THE PROJECT AND ASSIGNED TO THE IGNITION AND CONTROL OF THE FIRES, THIS WAS AN EXPENSIVE OPERATION AND WAS LARGELY RESPONSIELE FOR THE FAILURE TO MAINTAIN A SUFFICIENT STRETCH OF ROAD ELASTED AHEAD OF THE SHOVELS SO AS TO AVOID ANY DELAYS.

THE GENERAL FOREMAN IN CHARGE OF THE SHOVELS WAS RE SPONSIELE FOR MUCH OF THE PROGRESS MADE. UNDER HIS DI RECTION A MECHANIC WAS EMPLOYED WHO INSDECTED DAILY EVERY SHOVEL AND COMPRESEOR, TOGETHER WITH OTHER MECHANICAL EQUIPMENT. WHERE ANY TROUELE MANIFESTED ITSELF, REPAIRS WERE MADE EITHER IMMEDIATELY, OR DURING THE SHUTDOWN AT NOON OR IN THE EVENING. THIS KEPT DOWN TO THE MINIMUM ANY LONG COSTLY REPAIRS.

Abstract

THE FURNISHING OF FUEL AND WATER FOR ALL OF THE SHOVELS PRESENTED A TROUBLESOME PROBLEM AND CAUSED THE TOTAL OPERATING COSTS OF THE STEAM SHOVELS TO BE RATHER HIGH. THE WATER WAS PIPED FROM A SPRING ON TOP OF THE RIDGE - A THOUSAND FEET ABOVE THE GRADE - AND A LINE WAS LAID OVER ONE HALF OF THE PROJECT WITH THE INTENTION OF USING GASOLINE SHOVELS ON THE OTHER HALF. THE FUEL FOR THE STEAM SHOVELS WAS ESPECIALLY DIFFICULT TO TRANSPORT. IT WAS PIPED TO THE SHOVELS WHEREVER POSSIBLE BY GRAVITY EUT IN SOME CASES IT WAS NECESSARY TO FORCE THE OIL THROUGH A LONG PIPE LINE BY COMPRESSED AIR. FUEL SUPPLY FOR THE GAS-AIR SHOVELS AND THE MOTOR TRUCKS WAS GREATLY FACILITATED BY THE Standard oil Company which delivered the gasoline directly to the several units on the joe.

THE TRUCKING WAS ACCOMPLISHED MAINLY EY THE CONTRACTOR WITH HIS OWN EQUIPMENT, ALTHOUGH THREE TRUCKS WERE RENTED BY THE DAY. THE TRUCKS ON THE JOB WERE IN FAIR CONDITION BUT WERE SUPERANNUATED TYPES AND SLOW ACTING. THE TRUCK HOISTS WERE SLOW AND CAUSED CONSIDERABLE DELAY. THE FIRST TWO LINN TRACTORS WERE operated with consideraele success. These were equipped with 7-CUBIC-YARD STEEL BODIES WITH UNDEREODY HOISTS EUT THE REAR CATERPILLARS WERE TOO NARROW, AND ON THIS ACCOUNT ONE OF THE TRACTORS OVERTURNED. THE TRANSMISSIONS IN THESE FIRST TWO TRACtors had only one reverse speed. The next two linns that were PURCHASED HAD 6-CUEIC-YARD WOODEN EODIES LINED WITH STEEL AND THE CATERPILLARS WERE SPACED ABOUT 18 INCHES FARTHER APART. THEY ALSO HAD A VERTICAL HOIST, AND THE TRANSMISSION WAS REVERSIELE SO AS TO GIVE EQUAL SPEEDS IN EITHER DIRECTION - A DISTINCT adVantage. The capacity of the 6-cubic-yard linns was increased to 8.2 cueic yards ey building up the sides 10 INCHES With steel plates. A similar increase in the capacity of the steel linns WAS NOT EELIEVED TO EE ADVISAELE because the undereody holst was not considered of sufficient strength to elevate the added load.

The shovels were the key equipment and their rate of PRODUCTION VARIED FROM 20 TO 175 CUBIC YARDS PER HOUR DEPENDING UPON THE LOADING CONDITIONS AND THE CHARACTER OF THE EXCAVATION. There were several delays caused by slides and hard materials THAT COULD HAVE BEEN FORESTALLED BY MORE CAREFUL SUPERVISION, EUT ON THE WHOLE THE PROJECT WAS WELL MANAGED. ALL ALONG THE PROJECT THE SIDE SLOPES WERE TOO STEEP FOR THE MATERIAL ENCOUNTERED EUT, BECAUSE OF THE DRY WEATHER, THIS FACTOR DID NOT CAUSE EXCESSIVE DELAY. THE GENERAL CONCLUSION WAS THAT WHAT TIME LOSSES OCCURRED COULD HAVE BEEN REDUCED EY DRILLING DEEPER AND

LOADING THE ELASTING HOLES MORE HEAVILY. THIS WOULD HAVE INCREASED THE PRODUCTION OF THE SHOVELS BY FACILITATING THE DIGGING.

Comparison of Costs

The average time loss over the 46-day period of inSPECTION WAS NEARLY 58 HOURS FOR EACH STEAM SHOVEL AS COMPARED WITH 99 HOURS FOR EACH GAS-AIR AS MAY BE SEEN IN DETAIL IN Table 1, The summary in Taele 2 gives an estimated average DAILY COST OF TIME LOSSES AMOUNTING TO \$10.19 FOR EACH STEAM SHOVEL AS COMPARED WITH \$17.55 FOR EACH GAS-AIR. THE ESTIMATED DAILY COST OF OPERATION FOR BOTH TYPES OF SHOVELS INCLUDING INTEREST ON THE INVESTMENT, DEPRECIATION, FUEL, REPAIRS, WATER, LABOR, ETC., WAS THE SAME - \$65.00.

As INDICATED IN TABLE 3 THE ESTIMATED PRODUCTION EASED ON THE STOP-WATCH STUDIES WAS LESS FOR THE STEAM THAN FOR THE GAS-AIR SHOVELS. THE NET DIFFERENCE, HOWEVER, VARIED GREATLY WITH THE ANGLE OF SWING. THE PRODUCTION FOR THE GAS-AIR SHOVELS WAS 23 PER CENT GREATER THAN THAT OF THE STEAM SHOVELS ON THE 45-degree swing but only 10 per cent greater on the 180 -degree SWING. THIS WAS CAUSED BY THE GREATER SWINGING SPEED OF THE STEAM SHOVELS AND INDICATES THE DEGREE TO WHICH THIS FEATURE MAY INCREASE THE PRODUCTION OF A SHOVEL EVEN THOUGH THE DIPPER CAPACITY IS RELATIVELY SMALL. THE ESTIMATED COSTS PER CUEIC YARD SHOULD NOT BE CONSIDERED AS REPRESENTING ACTUAL COSTS EUT MERELY AS RELATIVE COSTS. ACTUAL COSTS CAN ONLY bE DETERMINED ey a complete study made throughout the entire duration of the PROJECT.

In Table 4 is a comparison between the relative effiCIENCY OF THE LINN TRACOTRS AND THE MOTOR TRUCKS. REGARDLESS OF THE LENGTH OF HAUL UP TO 350 FEET THE HAULING COSTS OF THE TRUCKS EXCEEDED THOSE OF THE LINN TRACTORS BY ABOUT 80 PER CENT. THESE COSTS ARE ESTIMATED ON THE EASIS OF A TOTAL DAILY COST OF $\$ 25.00$ FOR LINN TRACTORS AND TRUCKS. THIS INCLUDES CAPITAL COSTS, REPAIRS, FUEL, AND DRIVER. THE LINNS HAULED 6 CUBIC YARDS TO THE LOAD AND THE TRUCKS 3.5 CUBIC YARDS. THE ROUNDTRIP TIME FOR THE TRUCKS AVERAGED SLIGHTLY GREATER THAN THAT OF the Linn tractors. An advantage of the Linns was thelr ability TO CLIMB STEEP GRADES WITH EASE. HOWEVER, ON GRADES OVER 30 PER CENT THE LOADED LINNS TIPPED UP ON THE REAR CATERPILLARS LIFTING THE FRONT WHEELS GLEAR OF THE GROUND. THIS CAUSED NO DELAY EXCEPT WHEN THEY TURNED SIDEWISE ON THE ROAD AND SO PREVENTED THE NORMAL STEERING OPERATION.

Table 1.- Total delays in hours, for 46 days operation, distributed in average hours to each of the 5 shovels.

Table 3.- Estimated production of shovels as determined by stop-watch studies

1) Does not include cost of drilling, blasting, hauling or placing in dump.
TABLE 4.- ESTIMATED COMPARISON OF LINN TRACTORS AND MOTOR TRUCKS IN RESPECT TO YARDAGE MOVED AND HAULING COSTS

In table 5 is given a summary of the actual output of. the trucks during the 46-day period of the study. Based upon these figures the average hauling costs per cubic yard are ABOUT DOUBLE THOSE DETERMINED FROM THE STOP-WATCH STUDIES. THis result indicates the difficulty of selecting data that WILL accurately represent the average conditions prevailing on the project. As in the shovel data the stop-watch figures should be coneidered relative and not absolute. Both tables 4 and 5 indicate, however, that the linn tractors moved the วIRT FOR ONE half the cost shown by the motor trucks.
table 5.- Summary of truck output over 46-day period

[^0]\[

$$
\begin{aligned}
& = \\
& \begin{array}{c}
\cdots \\
\cdots \\
=-
\end{array} \\
& 8= \\
& \text {. } \\
& \begin{array}{ll}
: \\
\vdots & \\
i & \\
i & \\
i
\end{array}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \begin{array}{cc}
1 . & \cdot \\
\vdots &
\end{array} \\
& \therefore=\square \\
& (-1)
\end{aligned}
$$

$$
\begin{aligned}
& 4+2
\end{aligned}
$$

PROPORTIONING CONCRETE MATERIALS BY WEIGHT.

Contrieuted by A. F. Haelig of District 7
 (Not for release)

THE METHOD OF PROPORTIONING DISCUSSED IN THIS ARTICLE IS EASED ON A COMEINATION OF THE MORTAR-VOID AND THE WATER-CEMENTRATIO THEORIES.

When the cement content per cuミic yard of concrete and the CEMENT-WATER-RATIO ARE SPECIFIED, THE QUANTITY OF SAND AND COARSE aggregate which will give the desired vield and cement factor are' the only variables to be determined. If either one of these can be fixed, the other may ae determined from the expression - "The sum of the absolute volumes of cement, water, sand, and coarse aggregate is equal to the volume of the resulting concrete."

The discussion on pages 86 to 92 of University of Illinois Bulletin 137 gives us a method for determining the absolute volume of coarse aggregate in a unit volume of concrete. A value of bo FOR THE SPECIFIED CEMENT CONTENT MAY EE SELECTED FROM FIGURES 45 or 46 of the above mentioned eulletin, or developed ey experiment. As this ratio fixes the agsolute volume of coarse aggregate, we have but one variable remaining which may ee determined ey subtracting the sum of the absolute volumes of cement, water, and COARSE AGGREGATE FROM THE SPECIFIED YIELD.

PROCEEDING ON THIS EASIS the fOLOWING fORMULA MAY be developed:

Let the cement factor be 1.50 barrels of cement per cueic yard OF CONCRETE,
the water content be $5 \frac{1}{2}$ gallons per bag of cement, and the ratio $\frac{B}{B}=0.775$, where e assolute volume of coarse aggregate EO in A UNIT VOLUME OF CONCRETE AND B $B_{0}=$ density OF coarse aggregate. (This ratio has been used in Michigan and gives workagle high-strengit concrete.)

With the cement content of 1.50 barrels or six sacks per CUBIC YARD, EACH bAG OF CEMENT MUST PRODUCE $\frac{27}{6}$ - OR 4.5 CUBIC FEET OF CONCRETE.

THEN FOR A ONE-EAG BATCH:
Yield $=4.5$ CuEic feet of CONCRETE.
THE ABSOLUTE VOLUME OF CEMENT $=0.49$ CUSIC FEET
DO DO DO DO WATER $=\frac{0.733}{1.223}$ DO DUEIC FEET.
$4.500-1.223=3.277 \mathrm{cu} \mathrm{ft}$. aesolute volume of sand and stone.
Aesolute volume of coafse aggregate for one cu. ft. of concrete =
$0.775\left(\frac{\text { WT. PER CU. FT. OF DRY LOOSE COARSE AGGREGATE }}{}\right)$
Since we want 4.5 cueic feet of concrete -
the aesolute volume of coarse aggregate per eag of cement =
$3.49\left(\frac{\text { WT. PER CU. FT. OF DRY LOOSE COARSE AGGREGATE }}{}\right.$)
\therefore The aesolute volume of sand $=$
$3.277-3.49\left(\frac{\text { WT. PER CU. FT. OF DRY COARSE AGGREGATE }}{\text { S.G. OF C.A. } \times 62.5}\right)$
and the weight of dry coarse aggregate to ae used per eag of cement =
(1) 3.49 (WT. PER CU. FT. OF dRY LOOSE COARSE AGGREGATE)
and the weight of dry sand to be used per gag of cement =
(2) S.G. OF SAND $\left[204.8-\frac{3.49(W T . \text { PER CU. FT. DRY LOOSE C.A.) }}{\text { C.G. OF C.A. }}\right]$
the attached chart will give the results of equations of I and 2 direct. In Using this chart it is intended that the spem CIfic gravities of the sand and coarse aggregate ge furnished ey the lazoratory. The field man then determines the average weight per cueic fjot of the dry loose coarse aggregate.

Let us assume that the sand has a specific gitavity of 2.67, that the coarse aggregate is a gravel having a specific gravity of 2.60, and that the average weight per cueic fodt, as determined in the field, is 100 pounds.

Enter the chaint on line a at 100 pounds. The weight of dry coarse aggregate is taken directly from the right side of this line and is 349 pounds; then a stralght edge is placed across the chart from the loo-pound point on line a to the specific gravity of coarse aggregate (2.60) on line B. This gives a point on the auxiliary line X; then the straight edge is placed from this point to the specific gravity of the fine agginegate (2.67). The weight of dry sand to ee used per bag of cement is taken from Line Y and is 189 pounds.

In the first operation, an auxiliary point is oetained on line X by connecting the weight per cueic foot of coarse aggregate with the specific gravity of the coarse aggregate. Then this point (on line X) is used in conjunction with the specific gravity of the sand and the weight of sand to be used is read from line Y.

The theories on which this ohart is eased may be expressed in a general formula:

$$
\text { WHERE CEMENT FACTOR }=0 \quad \mathrm{w} / \mathrm{C}=\mathrm{R}
$$

$\frac{B}{B_{0}}=0.775$,
$S_{F}=$ Specific gravity of fine aggregate,
$S_{c}=$ Specific gravity of coarse aggregate,
W = Weight per cu. ft. of dry loose coarse aggregate,
then the weight of dry coarse aggregate to ee used per eag of CEMENT =
(3) $\frac{5.23 \mathrm{~W}}{\mathrm{C}}$
and the weight of dry sand to ee used per eag =
(4) $52.5 S_{F}\left[\frac{6.75}{C}-\frac{0.084 W}{C S_{C}}-0.49-R\right]$

E

THE REGULATION OF OUTDOOR ADVERTISING BY LAW (Not for release)
"the Regulation of Outdoor Advertising ey Law" is the sueject of Bulletin No. 25 issued by the Municipal Art Society with headquarters at 119 East 19th Street, New York City. the author of the bulletin is Mr. Frink B. Williams. Copies may ee obtained ey applying to the society.

After a preliminary discussion of the proelem, Mr. Williams OUTLINES VARIOUS METHODS EY WHICH INTERESTEO CITIZENS IN THE Varlous States may ald the progress of the reform movement, as FOLLOWS:-
"First, ey securing the passage of laws for the stability of eilleoards, their construction so as not to make fire fighting more difficult, so as not to conceal filth, etc. in so doing they should, incidentally, have regard to the appearance OF THE EILLBOARD.
"SECOND, EY FOREIDDING ADVERTISING ON PUBLIC PROPERTY, MAKING IT A CRIME, GIVING ANY PERSON THE RIGHT TO REMOVE It, and Mâking it a presumption that the person advertised authorIzed the placing of the advertisement on the property.
"Third, by making it a crime to place advertisements on PRIVATE PROPERTY WITHOUT THE WRITTEN CONSENT OF THE OWNER, AND MAKING IT A PRESUMPTION THAT THE PERSON ADVERTISED AUTHORIZED the placing of the advertisement on the property in question.
"Fourth, by passing State laws authorizing zoning by all the local governments within the State, and seeing to it that pROPER ZONING REGULATIONS UNDER WHICH GENERAL ADVERTISING IS CONFINED TO BUSINESS AND INDUSTRIAL LOCALITIES ARE ENACTED EY all these governments.
"FIFTH, EY SEEKING TO FIND OCCASIONS (AS WNIS DONE IN NEW YJRK) IN WHICH DEJECTIONAELE ADVE:TTISING CAN OE REGULITED OR FOREIDDEN DN PRIVATE PBOPERTY, PiSEINC STATUTES FRS THIT PURPOSE, AND SEEING TC IT THAT THESE STitUTES iRE VIGOROUSLY SUPPORTED IN THE COURTS; JR EY PASSING A C.JNETITUTIONAL NMENDMENT MORE OR LESS LIKE THAT IN VASSACHUSETTS FOR THE REGULITION OF OURDJOR ADVERTISING GENERALLY."
9

TABLE OF STATUTES REGULATING OUTDOOR ADVERTISING

Abstract

"Statutes making the placing of advertisements on puelic PROPERTY WITHOUT CONSENT A CRIME ARE MAFIKED WITH A STAR (*); THOSE GIVING ANY PERSON THE RIGHT TO REMOVE IT WITHOUT LEGAL PROCESS ARE MARKED WITH A DOUBLE STAR (**); THOSE MAKING ADVERTISING ON PRIVATE PROPERTY WITHOUT THE CONSENT OF THE OWNER A CRIME ARE MARKED WITH A DAGGER (\dagger); STATUTES MAKING IT A PRESUMPTION THAT THE PERSON WHOSE COODS ARE ADVERTISED AUTHORIZED THE UNLAWFUL PLACING OF THE ADVERTISEMENT ARE MARKED WITH A $Z(z)$; STATUTES TAXING OUTDOOR $\angle D V E R T I S I N G ~ O R ~$ REQUIRING A LICENSE FOR IT, ARE MARKED WITH A DOUELE DAGGER ($\bar{\mp}$); STATUTES FOREIDDING ADVERTIEING OESCURING A RAILROAD EROSSING, ETC., ARE MARKED WITH A SECTION ($(\$)$; OTHER STATUTES ARE ESPE- : CIALLY ANNOTATED. STATUTES AUTHORIZING LOCAL GOVERNMENTS TO tax or regulate, and local regulations are not given.

In this tasle, where the year only is stated, the sesSION LAWS FOR THAT YEAR ARE MEANT. ADDITIONS TO OR CORRECTIONS OF THIS LIST WILL EE GRATEFULLY RECEIVED.

California, Gen. Law, 1923, Act 89*†; Act 3267, Sec. 6*; Penal Code 1923, Sec. 602, ff, * \dagger.
Colorado, Comp. Laws, 1921, Sec. 7017,*fz; 1923, ch. 128 §. Connecticut, Gen. Stats. 1918, Secs. 3024, fF, $\neq 1921, \mathrm{CH} .79, * \nmid$; 1925, ch. 249.
SEC. II (DROPPING HAND EILLS \&C. FROM AIRPLANE A CRIME).
Florida, Rev. Gen. Stats. 1920, sec. 8107.
Hawail, Rev. Laws, 1925, Secs. 2066, fF,*十才.
Illinois, Cahilite Rev. Stats. 1924, Ch. 38, Sec. 453, subd. 9,*†.
Indiana, Ann. Stats. (Burns) 1914, SEC. 2320, \dagger.
Iowa Code, 1924, Secs. 4844-5, §; 4846-7,*.
Kansas Rev. Stats. $1923, \mathrm{ch} .19$, Sec $2612,8$.
LoUisiana, 1924, No. 120, * \dagger.
MAINE, 1925, CH. 188,*§.
Maryland, Ann. Code. 1924, Art. 39A, Sec. 24* \dagger.
Massachusetts, Constitution, Art. L; Gen. Laws, 1921, CH. 85, SEC. 8, CH. S3, SECS. 29-33, AS AMENDED EY 1924, CHS. 85, 327 , 334, 490. SEe flso Gen. Laws 192!, CH. 81, SEC. 9, CH. 85, SEC. 8, AND REGULATIONS ISSUED UNDER THE PROVISIONS OF CH. 93, above.
MICHIgan, 1925, No. 359, 7^{+}; No. 108, SEC. 5*; SEC. 6 §. Minnesota, Gen. Stats. 1923, Sec. 2615, Subd. 3 *.

Mississippi, 1924, ch. 117, Sec. 3 (amending Code, Sec. 3779) \neq MISSOURI, 1923, p. 260 (UNLAWFUL FOR EMPLOYEE \&C. OF CItY to place advertisements on parks, \&C.)
Nebraska 1923, ch. 159 §.
New Jersey, Comp. Stats. 1910, Vol. I pp. 656, 659, \neq, Cumulative SUPpl. 1911-24, *21, **, \ddagger.
New York penal law, Secs. 121, 1423, Sued. 11, **才z; 1924, ch. 512 advertising without consent within limit of hdirondack park -
gtill partly private property - forbidden).
North Carolina, 1924 (extra esss.) ch. 109,* \neq
North Dakota, 1925, chs. 145 *§; 182, §.
pennsylvania, Digest Stats. 1920, Secs. 7967-9,*†; 1925, No. 388*.
Philippines, Admins. Code, 1917, Secs. 1438 7, 1485-7, *.
Offensive signs whether on public or private property may ee removed ey order of the Collector of public Revenue. This provision has been sustained ey the Courts. See Williams, Law of City planning and Zoning, p. 392.
porto Rico, Rev. Stats. and Codes, I911, Secs. I-|| *F; 1921, No. 42, Sec. 22才.
Rhode Island, Gen. Laws, 1923, Sec. 6098 ** \dagger.
South Dakota, 1925, ch. 186 § (Along highways outside cities and towns, not more than 20 per cent of surface exposed must ee red).
Utah, 1923, ch. 27, * \dagger.
Vermont, 1925, No. $32 \neq \S$.
Washington, 1923, ch. 129 (CODe Suppl. Secs. 10510-3, ff, §. Wisconsin, Stats. SEC. 4446, b. §."

A.R.b.A. CONVENTION TO BE HELD AGAIN IN CLEVELAND

The annual convention and road show of the American Road BUIldersi Association will be held for the second time in the public auditorium at Cleveland, Ohio, from january 14 to $18,1929$. The bureau will display a large exhieit, on the stage of the main aUditorium, showing the improvements in the methods of builoing the principal types of road surfaces during the 26 years since the founding of the Association.

LOCATION OF R.F.D. BOXES UNDER JURISDICTION OF P. O. DEPARTMENT

Contrieuted ey the legal section (Not for release)

Recently the question arose in one of the western States as to what federal authority had the jurisdiction over the location of rural free delivery mail eoxes especially along federalald projects. the State highway department was considerably concerned aeout the matter eecause on some fedsral-aid projects the eoxes were located so close to the travelled way that they interfered with the maintenance operations of the road crews.

There is no agreement between the Bureau and the Post Office Department upon this subject. The erection and location of rural mail boxes along the highways are governed by sections 816 and 819 of the postal Laws and Regulations (1924), which READ AS FOLLOWS:
"Sec. 816. Each box shall, if practicable, be erected on the right side of the road regularly traveled by a rural carrier and in such position as to ee easily and safely accessiele for the delivery and collection of mail ey the carrier without leaving his conveyance.
2. Patrons shall, as fat as practicable, keep clear the approaches to their eoxes ey promptly removing obstructions which may render difficult or impossible the delivery of mail ey the carrier."
"Sec. 819. Rural carriers shall make report to postmasters of any boxes erected which do not CONFORM WITH THE REGULATIONS IN THE MATTER OF TYPE, CONDITION, LOCATION, OR INSCRIPTIONS, AND TO THE OWNERS OF THESE bOXES THE POSTMASTER SHALL SEND Form 4056 (Notice to patron of irregularity in RURAL-MAIL BOX), REQUESTING THAT THE IRREGULARITIES or defects be remedied. If, after a reasonable time, any patron falls to comply with the requirements the postmaster shall make report thereof to the Fourth Assistant postmaster General, Division of Rural mails, giving the name of the patron and a statement as to What is required in connection with the eox. The same ACTION SHALL BE TAKEN BY POSTMASTERS IN RESPECT TO

Abstract

BOXES WHICH THEY NOTE IN MAKING THE SEMI-ANNUAL INSPECTIONS REQUIRED BY SEOTION 721 ARE NOT IN CONFORMITY WITH THE REGULATIONS. THE FORM (4056) SHOULD BE OETAINED BY REQUISITION ON THE DIVISION OF EQUIPment and Supplies."

From the above it will be observed that no definite PLACE UPON THE ROADWAY IS PRESCRIBED, THE REQUIREMENT EEING THAT BOXES SHALL BE IN SUCH POSITION AS TO BE EASILY AND SAFELY ACCESSIELE TO CARRIERS WITHOUT LEAVING THEIR CONVEYANCES. THIS matter has been taken up with the rural Mail section of the Post Office Department. They have advised that the proper thing TO DO IN ANY CASE INVOLVING THE POSITION OF A RURAL MAIL BOX ALONG THE HIGHWAY IS FOR THE PROPER OFFICIALS OF THE STATE, HAVING JURISDICTION OVER THE HIGHWAY IN QUESTION, TO TAKE THE MATtER UP WITH the postmaster at the Post Office from which the RURAL ROUTE EMANATES. THEY ADVISED FURTHER THAT IF THE MATTER WERE TAKEN UP WITH THE POSTMASTER HE WOULD ERING IT TO THE ATTENTION OF THE PATRON WHOSE BOX MIGHT HAPPEN TO INTERFERE WITH TRAFFIC UPON THE HIGHWAY AND ARRANGE TO HAVE THE EOX MOVED SO as to avoid such interference. The post Off ce Department ADVISES THAT ADJUSTMENTS OF MATTERS OF THAT KIND ARE ALWAYS handled with the local postmasters and that the department here DOES NOT UNDERTAKE TO MAKE SUCH ADJUSTMENTS.

Cs

OBSERVATIONS ON OIL-PROCESSED SURFACES IN THE WESTERN STATES

COMPILED FROM A REPORT MADE EY W. N. Frickstad of the regional Office
(Not for release)

THE FOLLOWING OBSERVATIONS WERE MADE ON A FIELD INSPECTION TRIP, EARLY IN THE SUMMER OF THIS YEAR, IN THE STATES OF CALIFORNIA, Idaho, New Mexico, Utah, and Wyoming.

1. NO DEFECTIVE WORK WAS FOUND THAT WAS UNMISTAKABLY DUE TO THE LACK OF OIL, BUT CONSIDERABLE CORRUGATING, SHOVING AND rutting was observed because of too much. More movement may be EXPECTED BY THE END OF THE SUMMER, AND EVEN ONE OR MORE YEARS HENCE. THERE SEEMS TO EE SOME MISINTERPRETATION OF THE OIL STAIN PLATES PUBLISHED IN THE PAMPHLET ON "LIGHT ASPHALTIC OIL Road Surfaces". The ink used in the reproduction is oarker THAN THE NATURAL OIL AND ANY ATTEMPT TO PRODUCE A MIXTURE THAT WILL GIVE THE GENERAL COLOR EFFECT OF THE PRINTED PLATES WILL result in excessive "fatness". Three samples wfre taken from A VERY SUCCESSFUL PROJECT CARRYING PROEABLY 2,500 IEH OUES PER DAY, OF WHICH AT LEAST TWENTY PER CENT WERE TRUCKE. THE GTAINS WERE BAFELY DISCERNIBLE, TWO OF THEM BEING MEF:Ei.Y SLIGHT DISgOLORATIONS OF THE WHITE PAPER. IT IS PROEASI.Y TRUE, HOWEVER, THAT A SLIGHTLY HEAVIER STAIN SHOULD EE EXPECTED IN HIGH ALTITUDES WHERE THE SUMMER SEASON IS ONLY TWO OR THREE MONTHS IN LENGTH AND WHEXE THE TRAFFIC IS RELATIVELY LIGHT. THE GENERAL TENDENCY, HOWEVER, IS TO USE TOO MUCH OIL.
2. SUBGRADE WEAKNESS AND INADEQUATE DEPTH OF METAL ARE MORE IN EVIDENCE UPON OILED ROADS THAN UPON UNTREATED ROADS. DUST FILLS THE FINE CRACKS IN AN UNTREATED ROAD MND OESCURES INCIPIENT FAILURES. RUTS AND MORE SERIOUS EIREAKS ARE EASILY REPAIRED BY THE ADDITION OF NEW MATERIAL. A WEi BUEGRADE ON AN UNTREATED ROAD DRIES OUT BY EVAPORATION. BUT 'JPON A TREATED ROAD EVERY DEFECT IS OEVIOUS TO A CASUAL OESER: ERF AND MOISTURE dOES NOT READILY LEAVE THE SUBGRADE. SATISFAOTGRY REPAIRS OF FAILURES CONTRIbUTED TO EY A WET SUBGRADE ARE AIMOST IMPOSSIBLE WITHOUT REMOVING THE ENTIRE SURFACE, AN OPERATION WHICH IS INCONVENIENT FOR TRAFFIC AND WHICH ATTRACTS MUCH ATTENTION FROM HIGHWAY OFFICIALS AND THE TRAVELLING PUBLIC.

$$
f
$$

NO ROAD SHOULO EE TREATED EXCEPT AS fiN OBVIOUSLY TEMPORARY MEASURE UNLESS THE FOUNDATION IS SATISFACTORY AND THE THICKNESS of surfacing is adequate to support the loads.
3. Some raveling was observed in all the States where WORK Was done last year. With the exception of two projects, the amount was insignificant. The principal cause seems to be imperfect (incomplete) mixing. Probably defective girading, particularly lack of fines, may ee a contrieuting cause in some instances.
4. Most of the imperfections in the mixing are caused by the fallure to turn the material a sufficient numeer of times. Some lean spots, however, are introduced ey tilting the elade or running the blade too close to the ease during the last few turnings. The edge of the elade shoulo ee helo parallel to the transVERSE CONTOUR OF THE bASE THROUGHOUT ITS OPERATIION. TO AVOID bringing up uncoated material in the last turnings, most successful operators use a method which they descriee as "laying down a paint coat". When the mixing is about two-thirds completed, ABOUT ONE-HALF INCH OF MIXED MATERIAL IS ALLOWED TO REMAIN UPON the base during the suasequent turnings. Thereafter a slight deviation in the movement of the elade merely dips into this "paint coat" and fails to bring any ungoated material into the mixture.
5. Two wasteful methods were noticed in the elading operations. (a) in two States the movement of the windrow with the heel of the elade was being attempted - quite ineffectually. All movement of course should be done with the toe of the elade so that the material passes backwaro. (e) in one State much effort was eeing wasted ey "working from a fat to a lean mixture". After harrowing, the upper strata of material would ee thoroughly MIXED WITH THE ELADE, BECOMING THEREEY TOO RICH. A SMALL AMOUNT OF ADOITIONAL MATERIAL WOULD THEN EE bROUGHT FROM BELOW EY THE BLADE AND THOROUGHLY MINGLED WITH THE RICH MIXTURE, REQUIRING A FULL NUMEER OF TURNS TO PRODUCE UNIFORMITY. THE RESULTING WINDROW WOULD THEN BE TOO RICH AND ADOITIONAL MATERIAL WOULD EE BROUGHT FROM BELOW, WITH ANOTHER FULL SERIES OF TURNS. THIS PROCESS WAS CONTINUED UNTIL THE MIXTURE WAS deemed of the right consistency, but in the meantime the material had eeen turned dovele or treele the times that shoulo have eeen necessary.
6. In two other States, the harrows and elades were operated at full speed, approximately 4.0 to 4.5 miles per hour. This is much faster than seems to have geen customary heretofore.

THE EFFECTIVENESS OF EOTH KINDS OF EQUIPMENT IS INCREASED REmarkaely at the higher speed. In fact in one State the disc has gecome so effective at high speed that it is planned to use two DISCS AND REDUCE THE NUMEER OF TURNS WITH THE GRADER. THIS State obtained its most satisfactory results with the onemman maintainer type of machine, using the heaviest clade availagle, POWERED EY A 2-TON CATERPILLAR.
7. VEFY SATISFACTORY RUNNING SURFACES HAVE EEEN SECURED WITH ROCK OF A MAXIMUM SIZE OF I INCH, EUT IT IS EECOMING CLEAR THAT THE MOST ECONOMICAL RESULTS ARE OETAINED WHEN THE MAXIMUM SIZE IS LIMITED TO $3 / 4$ OF AN INCH. ON ONE PROJECT, AS AN ILLUSTRATION, A DEFINITE LAYER OF LARGE STONE IS EEING BROUGHT TO THE TOP EY THE FINISAING OPERATIONS, AND IS WASTED. SIMILAR EFFECTS WERE NOTED ON OTHER PROJECTS.
8. Two States are using a thickened ollmmixed edge. This INSURES ADEQUATE THICKNESS AT THE EDGE, WHERE ORDINARILY THE OILED LAYER IS LIKELY TO EE THIN, AND TENDS TO REMOVE ANY LOOSE MATERIAL IN THE EASE NEAR THE EDGE.
9. After laying down the mixture, thf. Stitf.s are giving CAREFUL ATTENTION TO MAINTENANCE FOR AT LEAST T'WO ,IEEKS, USING A LONG-WHEEL-EASE ELADE OR A LONG DRAG. A BKCOIN A: TA JHED TO THE DRAG IS REPORTED USEFUL DURING THE FIRST FEW DAYS.
10. A hard and smooth base underneath the oiled mixture IS HIGHLY IMPORTANT. COMPACTNESS IS SOMETIMES UNCERTAIN WHEN THE BASE HAS EEEN RECENTLY CONSTRUCTED OR W"LEN MATERIAL FOR MIXING IS SECURED GY SCARIFYING AN OLD RDRD. T:-E BROCESS OF "LAYING DOWN A PAINT COAT" IS A MATERIAL. HEI. TO HA?ES GECURING A COMPACTED EASE UNDERNEATH THE OIL MIXIURE BECALEE THIS SOCALLED PAINT COAT BECOMES THOROUGHLY POUNDED INTO ALL IRREGULARITIES BY THE ACTION OF THE ELADE AND WHEELS OF THE MACHINERY.
$($

[^0]:

 12 AlLOCAFEOO to ANY STATE.

