
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Zhang H et al. 2019 Vis/NIR

reflectance spectroscopy for hybrid rice variety

identification and chlorophyll content evaluation

for different nitrogen fertilizer levels. R. Soc. open

sci. 6: 191132.
http://dx.doi.org/10.1098/rsos.191132
Received: 7 July 2019

Accepted: 24 September 2019
Subject Category:
Biochemistry and biophysics

Subject Areas:
optics/plant science

Keywords:
Vis/NIR reflectance spectroscopy, nitrogen

fertilizer level, chlorophyll content, support vector

machine, partial least square
Author for correspondence:
Jiandong Hu

e-mail: jdhu@henau.edu.cn
© 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Vis/NIR reflectance
spectroscopy for hybrid rice
variety identification and
chlorophyll content
evaluation for different
nitrogen fertilizer levels
Hao Zhang1,3, Zheng Duan4, Yiyun Li4, Guangyu Zhao4,

Shiming Zhu4, Wei Fu4, Ting Peng2, Quanzhi Zhao2,

Sune Svanberg4,5 and Jiandong Hu1,3

1College of Mechanical and Electrical Engineering, and 2Collaborative Innovation Center of
Henan Grain Crops/Key Laboratory of Rice Biology in Henan Province, Henan Agricultural
University, Zhengzhou 450002, People’s Republic of China
3Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou
450002, People’s Republic of China
4Center for Optical and Electromagnetic Research, South China Normal University, Guangzhou
510006, People’s Republic of China
5Atomic Physics Division, Department of Physics, Lund University, PO Box 118, 221 00 Lund,
Sweden

HZ, 0000-0002-7600-3967; JH, 0000-0003-1325-7334

Nitrogen is one of the most important nutrient indicators for
the growth of crops, and is closely related to the chlorophyll
content of leaves and thus influences the photosynthetic
ability of the crops. In this study, five hybrid rice varieties
were cultivated during one entire growing period in one
experimental field supplied with six nitrogen fertilizer levels.
Visible and near infrared (vis/NIR) reflectance spectroscopy
combined with multivariate analysis was used to identify
hybrid rice varieties and nitrogen fertilizer levels, as well as
to detect chlorophyll content associated with nitrogen levels.
The support vector machine (SVM) algorithm was applied to
identify five varieties of hybrid rice and six levels of nitrogen
fertilizer. The results demonstrated that different varieties of
hybrid rice for each nitrogen level can be well distinguished
except for the highest nitrogen level, and no nitrogen level
for each rice variety can be completely identified from the
other five nitrogen levels. Further, 12 spectral indices
combined with partial least square (PLS) analysis were

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.191132&domain=pdf&date_stamp=2019-10-23
mailto:jdhu@henau.edu.cn
http://orcid.org/
http://orcid.org/0000-0002-7600-3967
http://orcid.org/0000-0003-1325-7334
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublish
2
applied for estimating chlorophyll content of rice leaves from plants subjected to different nitrogen

levels, and a root mean square error of cross-validation (RMSECV) of 0.506, a coefficient of
determination (R2) of 97.8% and a ratio of performance to deviation (RPD) of 4.6 for all rice
varieties indicated this as a preferable procedure. This study demonstrates that Vis/NIR
spectroscopy can have a great potential for identification of rice varieties and evaluation of
nitrogen fertilizer levels.
ing.org/journal/rsos
R.Soc.open

sci.6:191132
1. Introduction
Paddy rice dominates overall crop production on the global scale, and China is the world’s largest
producer of rice. To achieve high-yielding rice and solve the problems associated with food shortage
in developing countries, hybrid rice was first developed by L.P. Yuan in China and has been
investigated for more than 50 years. In recent years, various varieties of super hybrid rice were bred,
such as ChaoYou 1000, which in 2018 has set a new yield record of about 1065 kg acre–1 (approx.
73.5 kg ha−1) in a test field in Sanya City, Hainan Province, China [1]. Chlorophyll is a primary
pigment used in photosynthesis. The leaf chlorophyll content (LCC) is usually regarded as one main
indicator to estimate the photosynthetic ability, health status and nitrogen nutrition level of crops. It
is well known that nitrogen is one of the necessary elements for the growth of crops. The leaf
nitrogen content (LNC) also plays a key role in indicating the photosynthetic status of crops. Previous
studies have demonstrated that LNC is strongly related to LCC [2–4]. Therefore, monitoring the
chlorophyll content can provide important information on the photosynthesis and nitrogen nutrition
status of crops.

Spectral signals are associated with biochemical and structural properties of crops; therefore,
reflectance, transmission and fluorescence are the three commonly used spectroscopic methods for
non-destructive estimation of chlorophyll and nitrogen content. The soil plant analysis development
(SPAD) instrument has been used as a rapid, low-cost and popular tool to estimate the relative
content of chlorophyll by measuring leaf transmission signals. Numerous studies have reported the
use of the SPAD meter to evaluate chlorophyll content and nitrogen status [5–8]. Visible and near
infrared (vis/NIR) spectroscopy, hyperspectral light detection and ranging (LIDAR), and hyperspectral
imaging have been successfully applied for reflectance measurements of crops [9–11]. Based on the
combinations of spectral reflectance from two or more wavelengths, many spectral indices (SIs) have
been proposed to analyse the biochemical parameters of crops, such as LCC, LNC and leaf water
content (LWC) [12–14]. Related studies have demonstrated that the SIs derived from reflectance
spectra in the vis/NIR region are closely related to LCC and LNC [13,15]. Laser-induced fluorescence
(LIF) has also been widely applied to study the photosynthetic activity and nutrient status of crops,
where the ratio of chlorophyll fluorescence emitted at 685 and 740 nm was frequently used as a key
indicator [16–18]. Moreover, some other empirical leaf fluorescence parameters related to the
fluorescence intensity at 460, 525, 685 and 740 nm were also demonstrated to be positively and
linearly correlated with the LNC of crops [19–21].

In recent years, several studies have been pursued to accurately estimate LCC and LNC of paddy
rice. These studies include the spectroscopic methods such as LIF, the combination of LIF and
reflectance spectroscopy, hyperspectral LIDAR, and hyperspectral imaging [13,19,21–24]. It is well
known that nitrogen over-fertilization or under-fertilization not only influences crop growth and
production, but also results in serious environmental problems. Thus, it is very important to study
the influence of different nitrogen fertilizer levels on the photosynthetic ability of paddy rice.
Accurate identification of nitrogen fertilizer levels of paddy rice has been studied by using LIF
technique combined with multivariate methods such as principle component analysis (PCA), Fisher’s
discriminate analysis (FDA) and support vector machine (SVM) [25–27]. However, reflectance
spectroscopy has rarely been employed to analyse the photosynthetic activity of paddy rice treated
with different nitrogen fertilization levels. Compared to the LIF technique, reflectance spectroscopy
has the advantages including the use of compact and cheap instrumentation. Therefore, the main
objectives of the present study are as follows: (i) to identify the hybrid rice varieties and the nitrogen
fertilization levels by the combination of vis/NIR reflectance spectroscopy and SVM method; (ii) to
analyse the performance of selected SIs and partial least square (PLS) method for the estimation of
chlorophyll content (or SPAD value); and (iii) to analyse the vertical distribution of chlorophyll
content in individual rice plants.



Table 1. Hybrid rice varieties and their parent cultivars.

sample name male parent female parent

LiangYouPeiJiu (LYPJ) R9311 PA64S

YLiangYou 1 (YLY1) R9311 Y58S

YLiangYou 2 (YLY2) YuanHui2 Y58S

YLiangYou 900 (YLY900) R900 Y58S

ChaoYou 1000 (CY1000) R900 GuangXiang24S
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2. Material and methods
2.1. Materials
Five varieties of hybrid rice, namely, LiangYouPeiJiu (LYPJ), YLiangYou 1 (YLY1), YLiangYou 2 (YLY2),
YLiangYou 900 (YLY900) and ChaoYou 1000 (CY1000) were cultivated in 2016 in one experimental field
of Xinyang City, Henan Province, China (32°280 N to 32°290 N, 114°020 E to 114°030 E). The parent
cultivars of these five varieties of hybrid rice are listed in table 1. Xinyang is located in the transition
zone between the northern subtropical to warm temperate zones, with climatic conditions characterized
by sufficient summer sunlight, high temperature and abundant rain, which constitute ideal conditions
for rice planting. The soil in the experimental field is a typical paddy soil for farming in China. The
fundamental nutrients of paddy soil consist of 0.91 g kg−1 total nitrogen, 14.4 mg kg−1 available
phosphorus, 12.9 mg kg−1 available potassium and 28.5 g kg−1 organic matter. Rice varieties were seeded
on 12–15 April 2016, and then the seedlings were transplanted into the experimental field fertilized with
fundamental nutrients on 13 May 2016. To ensure that plants from different varieties have equal density,
the seedlings were manually planted in an area of 20 × 30 cm, and each hole on the experimental field
contained two seedlings. During the entire rice growing period, six levels of nitrogen fertilizer (N1:
0 kg ha−1, N2: 150 kg ha−1, N3: 210 kg ha−1, N4: 300 kg ha−1, N5: 390 kg ha−1 and N6: 450 kg ha−1) were
supplied at three different times: 30% as base fertilizer on 13 April 2016, 30% as tillering fertilizer on 19
May and 26 May 2016 and 40% as panicle fertilizer at the fourth and second leaf-age (25 June–4 July
2016). Entire phosphorus was used as base fertilizer. Potassium fertilizer was administrated at two
different times: 50% as base fertilizer on 13 April 2016 and 50% as spikelet-promoting fertilizer at second
leaf-age (2–4 July 2016). In total, the experimental field was divided into 30 zones according to different
rice varieties and nitrogen fertilizer levels, and the area of each zone was 8 × 4.5 m (length ×width).

The spectral measurements were performed on 31 August 2016, during the rice maturity stage. Five
whole plants were randomly collected from each zone. After picking from the fields, the rice plants were
immediately placed into plastic pots filled with enough water inside to keep the leaves from being
affected by water deficit condition. Then, four rice leaves at different heights of each plant were
retrieved, with sampling from its top (flag leaf) to its bottom, which was followed by spectral
reflectance measurements. Thus, the total number of leaf samples for spectral measurements was 600.
2.2. Spectral measurements
The spectral measurements were carried out in a newly constructed mobile laboratory [28] from South
China Normal University. The mobile laboratory was positioned near the rice experimental field to
facilitate the reflectance measurements. In the laboratory, a tungsten lamp with an output power of
130 mW was used as the light source, and the broadband light was guided with a 600 µm core-
diameter fibre (transmitting fibre) to vertically irradiate the sample, where the distance between the
fibre end facet and the sample was about 5 mm. The diffuse reflection light was captured using
another fibre (collecting fibre) with core diameter of 600 µm and fixed at an angle of 45°, where the
fibre end was placed at the same height as the transmitting fibre, and then detected using a portable
miniature spectrometer (USB4000, Ocean Optics, Dunedin, FL). The reflectance was calculated
according to the following formula:

Rl ¼ RsampleðlÞ �DðlÞ
RreferenceðlÞ �DðlÞ , ð2:1Þ



Table 2. Spectral indices used in this work.

index formula reference

SR(750,550) R750=R550 [31]

SR(750,700) R750=R700 [29]

SR(800,670) R800=R670 [30]

RMI R750=R720 � 1 [32]

GMI R750=R550 � 1 [32]

NDVI1 ðR800 � R670Þ=ðR800 þ R670Þ [33]

NDVI2 ðR750 � R670Þ=ðR750 þ R670Þ [34]

MCARI1 ½ðR700 � R670Þ � 0:2� ðR700 � R550Þ� � ðR700=R670Þ [35]

MCARI2 ½ðR700 � R670Þ � 0:2� ðR700 � R550Þ� � ðR750=R705Þ [36]

TVI 0:5� ½120� ðR750 � R550Þ � 200� ðR670 � R550Þ� [36]

MTVI1 1:2� ½1:2� ðR800 � R550Þ � 2:5� ðR670 � R550Þ� [37]

MTVI2 1:5� ½1:2� ðR800 � R550Þ � 2:5� ðR670 � R550Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� R800 þ 1Þ2 � ð6� R800 � 5� ffiffiffiffiffiffi

R670
p Þ � 0:5

q [37]
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where RsampleðlÞ is the recorded intensity at the wavelength λ from the sample, RreferenceðlÞ is the recorded
intensity at the wavelength λ from a standard reference made with polytetrafluoroethylene material (the
reflectivity is more than 98% in the wavelength range of 250–2200 nm) and D(λ) is the recorded intensity
at the wavelength λ in dark conditions. The dark reflectance spectrum was recorded when all lamps in
the laboratory were turned off and the fibres were obscured with dark papers. Each leaf sample was
measured three times and the recorded data were then averaged before processing.

2.3. Selection of spectral indices
SIs or vegetation indices have been widely used for evaluating LCC and LNC. Most developed SIs are
based on spectral reflectance in the wavelength region of 400–850 nm, which corresponds to the
photosynthetically active radiation region of crops [29]. Stroppiana et al. [30] demonstrated that the
spectral bands at about 550, 670, 750 and 800 nm were good indicators for LNC detection, and Yang
et al. [22] reported that the triangular vegetation index (TVI) and the modified triangular vegetation
index (MTVI1 and MTVI2) were suitable for LNC monitoring. Based on these studies, a total of 12
spectral indices were selected to analyse the LCC of hybrid rice, as listed in table 2, consisting of three
simple ratios SR(750,550), SR(750,700) and SR(800,670); red-edge model index (RMI); green-edge model
index (GMI); normalized difference vegetation index (NDVI1 and NDVI2); modified chlorophyll
absorption ratio index (MCARI1 and MCARI2); TVI; MTVI1; and MTVI2.

2.4. Data analysis
During spectral measurements, owing to the influence of non-ideal instruments and sample properties,
the obtained reflectance spectra were very noisy, which introduced some large errors to the estimation
of chlorophyll content when using the SIs. Therefore, to reduce the noise and increase the signal to
noise ratio, the reflectance spectra were processed by Savitzky–Golay (SG) smoothing method, with a
third-order polynomial approximation and a window size of 10 points.

For each nitrogen fertilizer level, discrimination analysis for five varieties of hybrid rice was
conducted by using an SVM model based on the radical basis function (RBF) approach. The penalty
parameter C and kernel function parameter γ play a very important role in controlling the modelling
complexity and classification accuracy of the SVM model. Therefore, in this study, genetic algorithm
(GA) was used for appropriate selection of parameters C and γ to obtain an optimized SVM model,
where the parameters used for the GA were set as: maximum generation of 100, population size of 20
and crossover probability of 0.9. The best C and γ were determined according to the best classification
accuracy based on K-fold cross-validation (K-CV). To evaluate the performance of the established
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SVM discrimination model, the recognition rate (RCR) and rejection rate (RJR) were proposed to reflect

the reliability of clustering among different varieties, as described in a literature study [38]. The RCR
refers to the ratio of the number of samples identified by a certain variety to the total number of
samples from the variety, while the RJR refers to the ratio of the number of samples rejected by a
certain variety to the total number of samples from other varieties.

Further, to estimate the LCC of hybrid rice, the PLS regression method was applied to establish the
calibration model. The performance of the PLS model was evaluated by using the root mean square error
of cross-validation (RMSECV), the root mean square error of prediction (RMSEP), the coefficient of
determination (R2) and the ratio of performance to deviation (RPD). The RMSECV, RMSEP, R2 and
RPD [39] are calculated by using the following expressions:

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � ŷiÞ2
n

s
, ð2:2Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 ðyj � ŷjÞ2
m

s
, ð2:3Þ

R2 ¼ 1�
PN

k¼1 ðŷk � ykÞ2PN
k¼1 ðyk � �ykÞ2

ð2:4Þ

and RPD ¼ s:d:
RMSE

, ð2:5Þ

where n and m are the sample number in the training and prediction set, respectively. N denotes the total
sample number in the given sample set. ŷi, ŷj and ŷk are the predicted values in the training set,
prediction set and given sample set, respectively. yi, yj and yk represent the reference values in the
training set, prediction set and given sample set, respectively. �yk is the average reference values in the
given sample set. s.d. is the standard deviation of the chlorophyll content or SPAD values measured
using the hand-held SPAD meter (SPAD-502Plus), and RMSE is the root mean square error obtained
from the PLS model. High values of R2 and RPD, as well as low values of RMSECV and RMSEP
indicate a good PLS model. Moreover, an RPD value greater than 2.5 corresponds to an excellent
model, an RPD value between 2.0 and 2.5 corresponds to a very good model, while an RPD value
between 1.8 and 2.0 still indicates a good model [40,41].
3. Results and discussion
3.1. Spectral reflectance of hybrid rice
Figure 1a exhibits typical reflectance spectra of hybrid rice subjected to the N1 nitrogen level, in the
wavelength range of 450–850 nm. After pre-treatment with SG smoothing, the reflectance spectra are
shown in figure 1b. Clearly, a major valley appears at about 670 nm, which is attributed to chlorophyll
absorption. In the region of 510–570 nm, a peak occurs at about 550 nm, and the abrupt reflectance
change at about 530 nm is called the ‘green-edge’. In the region of 690–750 nm, reflectance also
changes suddenly in the vicinity of 700 nm, which is called the ‘red-edge’. In fact, both the ‘green-
edge’ and ‘red-edge’ positions are highly related to the chlorophyll content. The edge gets shifted
toward longer wavelength with the increase of chlorophyll content; and this phenomenon is called the
‘red-shift’ [31,42,43]. Therefore, these two parameters have been commonly used to estimate the
chlorophyll content. Figure 1c,d demonstrates that both the ‘green-edge’ and ‘red-edge’ position
present an evident ‘red-shift’ with increasing nitrogen levels from N1 to N4, while the change is not
clear with the increase in nitrogen levels from N4 to N6, which indicates that moderate doses of
nitrogen fertilizer can promote rice growth.

3.2. Identification of rice varieties and nitrogen levels based on support vector machine
A total of 225 reflectance spectra from five varieties of hybrid rice were used for classification. With a
number ratio of 5 : 1, the spectral data were divided into a training set and a testing set, where 187
spectra among them were used as training set and the remaining 38 spectra were used as testing set.
For six different nitrogen levels, the classification results of SVM model are presented in table 3,
where RCR and RJR were used to describe the identification accuracy. Both the RCR and RJR values
infer that LYPJ and CY1000 from the N1–N5 nitrogen levels could be clearly distinguished from the
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Figure 1. Reflectance spectra of five hybrid rice varieties without nitrogen application (N1) (a) before and (b) after preprocessing.
Reflectance spectra of LYPJ hybrid rice with different nitrogen application levels before (c) and after preprocessing (d ).
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other three rice varieties, except that CY1000 from N4 nitrogen level had a lower recognition accuracy
(37.5%). Comparatively low classification accuracy of YLY1, YLY2 and YLY900 was mainly caused by
the mis-classification between each other. This phenomenon occurred mostly because of the same
female parent for these three rice varieties, resulting in the fact that these three species of hybrid rice
could not be clearly distinguished. However, for all the five rice varieties under the N6 nitrogen level,
the classification accuracy was not satisfactory, possibly because the hybrid rice varieties were
supplied with excessive nitrogen fertilizer, which resulted in the abnormal growth of hybrid rice.
Although the classification of hybrid rice with excessive nitrogen level was not successful, it was also
concluded that the reflectance spectroscopy can provide a potential method for identification of
different varieties of rice.

Then, the SVM method was also applied to identify different levels of nitrogen fertilizer. A total of
270 reflectance spectra from each variety of hybrid rice were used for classification. Similarly, with a
number ratio of 5 : 1, the spectral data were divided into a training set and a testing set, where 225
spectra among them were used as training set and the remaining 45 spectra were used as testing set.
For each rice variety, the results of the testing set are listed in table 4. Obviously, N1 (no nitrogen
fertilizer applied) can be distinguished from the other five nitrogen levels for all five rice varieties,
with an average recognition rate up to 90%. In contrast, N6 presents an average recognition rate of
71.4%, which is higher than those of N2–N5, and N4 shows the lowest recognition accuracy (34.3%).
The lower average rejection rate of N5 and N6 indicates the mis-identification of several samples from
these two N levels, which may indicate an excessive nitrogen application. Furthermore, the
identification accuracy of LYPJ was higher than those of the other four rice varieties, although the
total recognition rate of 68.5% was not satisfactory. The results demonstrated that reflectance
spectroscopy also showed a potential for monitoring the nitrogen status of hybrid rice.
3.3. Estimation of leaf chlorophyll content based on partial least square
The chlorophyll content of different varieties of hybrid rice was estimated by measuring the SPAD value
using the hand-held SPAD instrument. The flag leaves of five plants from each zone were randomly
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Table 5. Average and standard deviation of measured SPAD values.

LYPJ YLY1 YLY2 YLY900 CY1000

average s.d. average s.d. average s.d. average s.d. average s.d.

N1 39.62 1.49 40.69 0.84 32.81 4.16 41.54 2.90 41.53 1.39

N2 44.85 2.10 45.07 2.02 39.84 3.93 42.49 1.59 42.39 1.48

N3 45.12 1.77 45.23 2.49 39.09 2.55 44.09 2.89 42.51 2.24

N4 45.61 2.13 45.57 1.91 40.74 2.34 45.31 1.04 42.97 2.99

N5 45.18 2.23 46.57 1.24 41.37 0.87 45.46 2.41 45.56 5.69

N6 47.15 0.99 44.45 1.74 41.5 2.36 45.52 3.07 44.93 2.56

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191132
9



LYPJ

YLY2
YLY900

CY1000

YLY1

LYPJ

YLY2
YLY900

CY1000

YLY1

LYPJ

YLY2
YLY900

CY1000

YLY1
LYPJ

YLY2
YLY900

CY1000

YLY1

LYPJ

YLY2
YLY900

CY1000

YLY1

LYPJ

YLY2
YLY900

CY1000

bottom
lower

upper
top

bottom
lower

upper
top

bottom
lower

upper
top

bottom
lower

upper
top

bottom
lower

upper
top

bottom
lower

upper
top

0

0.2

0.4

0.6

R
M

I

0

0.2

0.4

0.6

R
M

I

0

0.2

0.4

0.6

R
M

I

0

0.2

0.4

R
M

I

0

0.2

0.4
R

M
I

0

0.2

0.4

N1 nitrogen level N2 nitrogen level

N3 nitrogen level N4 nitrogen level

N5 nitrogen level
N6 nitrogen level

R
M

I

YLY1

Figure 4. Vertical distribution of RMI for five rice varieties with six different nitrogen fertilizer levels.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191132
10
selected and measured. The average and standard deviation of the measured SPAD values are shown in
table 5. To test the feasibility of reflectance spectra for estimating chlorophyll content, two commonly
used SIs, namely RMI and GMI, were first used to establish the correlation between the reflectance
characteristics and the average SPAD value of different hybrid rice varieties, as shown in figure 2.
Both RMI and GMI present a positive linearity with the SPAD values of all hybrid rice varieties,
where the RMSE and R2 were calculated as: R2 = 0.6865, RMSE = 0.033 for RMI, and R2 = 0.7499,
RMSE = 0.276 for GMI. The results demonstrate that the relationship between the SIs and the average
SPAD value was highly consistent for all the samples of different varieties of hybrid rice.

Furthermore, all 12 SIs described above were used to estimate SPAD values (or LCC) of hybrid rice.
Figure 3a–e individually display the PLS regression results of the testing set for each rice variety, where
mean values and error bars were used to characterize the distribution of the predicted SPAD values. The
values of R2 and RMSEP were calculated to evaluate the prediction performance of the PLS model.
In figure 3, the blue solid lines represent the fitting curves and red dash lines represent the 1 : 1 lines.
Obviously, the R2 value of all rice varieties was more than 90% and the predicted SPAD values
almost coincided with the 1 : 1 line. In contrast with YLY1 and CY1000, it seems that the predicted
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SPAD values of YLY2 were far away from the 1 : 1 line, while the R2 value was higher than that of these

two varieties. This abnormal behaviour can be explained in terms of the fact that the RMSEP of YLY1 and
CY1000 were smaller than that of YLY2. Figure 3f shows the linear relationship between the measured
and mean predicted SPAD of all hybrid rice varieties, with a preferable prediction accuracy of R2 =
0.978 and RMSE = 0.484. According to equations (2.2) and (2.5), for the PLS models from figure 3a–f,
the RMSECV were calculated as 0.598, 0.550, 0.505, 0.266, 0.407 and 0.506, and the RPD values were
calculated as 3.4, 3.7, 3.7, 6.0, 6.8 and 4.6, respectively. Clearly, the RMSECV values lower than 0.6,
the R2 values higher than 0.92 and the RPD values larger than 3.4 demonstrate that the PLS models
show an excellent prediction ability for chlorophyll content. Besides, when compared to the results of
RMI and GMI shown in figure 2, the combination of multiple spectral indices can significantly
improve the prediction performance. Therefore, the SIs of vis/NIR reflectance spectra could be
regarded as quite effective indicators for LCC estimations of hybrid rice.
 os

R.Soc.open
sci.6:191132
3.4. Vertical distribution of chlorophyll content in a rice plant
To roughly characterize the vertical profile of LCC in an individual rice plant, the spectral measurements
were also performed on four leaves taken from the position of the flag leaf to the bottom of the rice plant.
The red-edge chlorophyll index RMI was calculated to quantitatively estimate the chlorophyll content.
The RMI distribution results are shown in figure 4. On the whole, RMI presented a decreasing
tendency from top to bottom in a rice plant, although abnormal behaviour occurred for some rice
varieties, which was found to be consistent with the known vertical distribution of leaf nitrogen
content [44,45]. Besides, with the increase of applied nitrogen levels, the chlorophyll content gradient
was somewhat decreasing. This phenomenon may be caused by the ease by which nitrogen can
redistribute. When nitrogen deficiency pertains, the nitrogen of old leaves transfers to new leaves,
while sufficient nitrogen leads to a reduction of this effect. The results demonstrate that the vertical
distribution of chlorophyll content can be used to reflect the nutrient status and nitrogen levels of rice
plants, which can provide a great potential for improved diagnosis of the rice growing status and
precision fertilization. Moreover, it can also be concluded that the highest chlorophyll content is found
in the flag leaves during rice maturation, due to the fact that flag leaves are the last growing leaves.
This is also the reason why SPAD measurements have often been performed on flag leaves to obtain
the chlorophyll content of paddy rice in real applications.
4. Conclusion
In this study, reflectance spectral measurements coupled with multivariate analysis were shown to be
quite powerful in identifying the rice varieties and evaluating chlorophyll content in hybrid rice
under different nitrogen fertilizer levels. The SVM algorithm based on the reflectance spectrum
ranging from 450–850 nm showed a better discrimination performance for identifying different rice
varieties; however, it was found to be inadequate for different nitrogen fertilizer levels. Further, by
selecting 12 appropriate SIs based on previous related studies, the PLS regression model was
successfully designed and used to estimate the chlorophyll content or SPAD value of each rice variety,
with an RMSECV of less than 0.6, an R2 of more than 92% and an RPD value of more than 3.4 for
each variety of hybrid rice. Then the vertical distribution in an individual rice crop was investigated,
and the results indicated that the chlorophyll content in flag leaves is the highest. These findings
further establish that it is possible to accurately evaluate the leaf chlorophyll content and nitrogen
status, and further to manage applied nitrogen fertilizer of hybrid rice by using spectral reflectance.
However, in this study, the hybrid rice samples were collected from only one location during one
season, thus the established PLS model may impose some limitations for practical applications. In
future, we are planning to select rice samples from different locations during different seasons to
quantitatively estimate the influence of nitrogen application level on rice yield, rice quality and
nitrogen utilization efficiency by combining reflectance and fluorescence spectroscopy. Moreover, more
spectral indices and fluorescence parameters, as well as pattern recognition methods will be adopted
to improve the prediction accuracy.
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