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The behaviour of many processes in science and engineering can
be accurately described by dynamical system models consisting
of a set of ordinary differential equations (ODEs). Often these
models have several unknown parameters that are difficult
to estimate from experimental data, in which case Bayesian
inference can be a useful tool. In principle, exact Bayesian
inference using Markov chain Monte Carlo (MCMC) techniques
is possible; however, in practice, such methods may suffer
from slow convergence and poor mixing. To address this
problem, several approaches based on approximate Bayesian
computation (ABC) have been introduced, including Markov
chain Monte Carlo ABC (MCMC ABC) and sequential Monte
Carlo ABC (SMC ABC). While the system of ODEs describes
the underlying process that generates the data, the observed
measurements invariably include errors. In this paper,
we argue that several popular ABC approaches fail to
adequately model these errors because the acceptance
probability depends on the choice of the discrepancy function
and the tolerance without any consideration of the error term.
We observe that the so-called posterior distributions derived
from such methods do not accurately reflect the epistemic
uncertainties in parameter values. Moreover, we demonstrate
that these methods provide minimal computational advantages
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over exact Bayesian methods when applied to two ODE epidemiological models with simulated data

and one with real data concerning malaria transmission in Afghanistan.
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1. Introduction
Models of dynamical systems consisting of sets of ordinary differential equations (ODEs) are an essential
tool to describe many processes in science and engineering. ODE models contain parameters such as
kinetic rates and initial concentrations. However, these parameters often cannot be measured directly
by experiments, or there is inherent uncertainty in the parameter values. As such, these parameter
values need to be estimated using statistical techniques such as maximum likelihood estimation or
Bayesian inference. In the last decade much research has focused on estimating the unknown
parameters of ODE systems under a Bayesian framework. One reason is that the Bayesian approach
provides appropriate quantification of the uncertainty of parameters (and hence model predictions)
through the posterior distribution.

Markov chain Monte Carlo (MCMC) techniques were first developed by Metropolis et al. [1]. This class
of technique creates a Markov chain which has the posterior distribution as its limiting distribution. The
state of the chain after a number of steps is used as a sample from the posterior distribution and
the quality of this sample improves as the number of steps gets larger. The original algorithm proposed
by Metropolis was generalized by Hastings [2] to give the Metropolis–Hastings algorithm.

Exact Bayesian inference techniques have grown steadily more sophisticated over time, increasing the
efficiency and complexity of sampling schemes. The modern Bayesian toolbox now includes schemes
such as sequential Monte Carlo (SMC) [3], the Metropolis adjusted Langevin algorithm (MALA) [4]
and hybrid (Hamiltonian) Monte-Carlo (HMC) [5,6]. These schemes improve the Metropolis–Hastings
algorithm, enabling efficient sampling from high dimensional, strongly correlated posterior distributions.

However, there are many models that possess a computationally intractable likelihood function, ruling
out exact Bayesian methods. This has led to the development of approximate Bayesian computation (ABC).
The ABC methodology first appeared as the ABC rejection algorithm [7] which avoids calculation of the
likelihood function. The theory was generalized and substantiated by Beaumont et al. [8]. To obtain
samples more efficiently, a MCMC approach to ABC was formulated by Marjoram et al. [9].

In the context of dynamical systems, both approximate and exact Bayesian techniques involve
numerical solution of the set of ODEs for each proposed set of parameters in order to evaluate how
well the numerical solution matches the observed data. A desire to avoid the computational costs
associated with numerical solution of the ODEs has led to the development of Gaussian Process (GP)
models [10–12] for ODE parameter inference.

Dass et al. [13] proposed a two-step method to approximate the posterior distribution of unknown
parameters in an ODE model. In the first step, data are generated from the ODE using a numerical
method and then the second step uses the Laplace approximation to marginalize the posterior for
each parameter. This method gives a fast approach compared to a full Bayesian computational scheme.

ABC methods based on SMC have been proposed [14] and many authors have developed approaches
to improve the performance of the SMC ABC algorithm (see for example Beaumont et al. [15]). An SMC
ABC approach was developed by Toni et al. [16], with application to dynamical systems. Their algorithm
is theoretically sound, but we question the validity of the Bayesian posteriors they produce when they
apply ABC to several examples involving ODE models. The authors apply ABC where they take the
observed data as synthetically generated, where the ODE model is solved at an assumed true
parameter value and measurement error added. However, when ‘simulating’ data in their ABC
procedure, the ODE model is solved only, without generating measurement error. In this paper, we
show that such an approach generates parameter distributions that are sensitive to the ABC tolerance,
and will eventually converge onto a point mass if the tolerance is continually reduced. Thus this
approach fails to correctly characterize the uncertainty as a Bayesian approach would aim to do.

In order to ‘correctly’ apply ABC to ODE models, one must simulate from the assumed measurement
error model after solving the ODE. However, we also show in this paper that an exact Bayesian approach
is more computationally efficient than this ‘correct’ ABC implementation, questioning the need for
considering ABC in the first place when attempting to estimate the posterior distribution for ODE models.

Given that the Toni et al. [16] paper is highly cited, we are concerned that other researchers might
follow their ABC approach for calibrating ODE models. For example, Gupta et al. [17] compared the
performance of MCMC, parallel tempering (PT) and SMC ABC (using the ABC Sys-Bio package) in
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estimating parameters in ODE models. The authors analysed simulated data with measurement error

added, taken from the ABC-SysBio package. Then when applying MCMC and PT to infer model
parameters, they assumed ‘a likelihood function with 1% Gaussian error’. However, when using SMC
ABC, no noise was added to the simulated data. Consequently, not only does this make the
comparison invalid, but also the resulting approximate posterior distribution produced by SMC ABC
does not represent the uncertainty around the parameter values. In another example, Silk et al. [18]
present applications to molecular dynamical systems in which they ‘have focused on the sequential
ABC algorithm proposed by Toni et al. [16]’. Silk et al. [18] mention that they simulate the model
‘subject to some small added zero-mean Gaussian noise with covariance 0.01I’ so they have clearly
used ‘noise added in the simulation step, σ is considered known’ (option 2 from Toni’s thesis [19,
p. 154]). However, for many real problems, this is not practical and we fear that ABC users might
revert to the option of simulating without noise. Two other examples of assuming known noise are in
da Costa et al. [20] and Costa et al. [21]. The authors assumed the uncertainties to be ‘additive,
uncorrelated, Gaussian, with zero mean and’ a known standard deviation, as they stated on pages
2801 and 1295, respectively. Moreover, Barnes et al. [22] presented an implementation of ABC SMC for
ODEs (section 4.1 of their paper) and used the SysBio package. We show in our paper that using this
package with ODE models can give an incorrect approximation to the posterior when not considering
estimation of the noise. There is no explanation in Barnes et al. [22] regarding the authors’ assumption
about the noise. The same issue appeared in Toni & Stumpf [23] and Sun et al. [24]: they applied SMC
ABC for an ODE model, but there are no details regarding the authors’ assumptions about the noise.
Understanding the overall noise (uncertainty) associated with the unknown parameter values when
conducting parameter estimation using ODE models is important, especially when we aim to use
these ODE models to inform real-world applications.

The remainder of this paper is organized as follows. In §2, we introduce a simple method of exact
Bayesian inference and two methods of approximate Bayesian computation (MCMC ABC and SMC
ABC), complemented with a discussion on the approximation to a point mass that results from
SMC ABC and MCMC ABC. Application of MCMC, MCMC ABC and SMC ABC to two ODE
epidemiological models with simulated data and one with real epidemiological data are presented in §3.
Section 4 presents further discussion, comparison of the presented methods and our conclusions.
2. Bayesian techniques for ODE parameter inference
Bayesian techniques such as Markov chain Monte Carlo (MCMC) methodologies are sampling-based
methods that involves sampling the posterior density

p(ujy)/ p(yju)p(u), (2:1)

or an approximation to equation (2.1) in the case of approximate Bayesian computation (ABC)
approaches, to calculate the desired density, where y= (y1,…, yn) is the observed data, θ are the
unknown parameters, p(θ|y) is the posterior distribution, p(y|θ) is the likelihood and p(θ) is the
prior. In this section we discuss application of these Bayesian frameworks in the context of
inferring parameters for ODE models.

MCMC techniques as developed by Metropolis et al. [1] and Hastings [2] can be used to sample from
the posterior distribution in equation (2.1). The Metropolis–Hastings algorithm constructs a Markov
chain for which the stationary and limiting distribution is the posterior distribution. After running
the chain for a sufficient amount of time,1 samples from the chain can be considered draws from
the posterior distribution. An implementation of the Metropolis–Hastings algorithm is given in
appendix A. However, MCMC methods require the computation of the likelihood function, p(y|θ), in
equation (2.1). As a result, ABC methods were developed to sample from an approximation to the
posterior in cases for which the likelihood is intractable or too computationally costly to compute.
Instead of calculating the likelihood as before, a distance between the observed data, y, and simulated
data, z, is calculated and for sufficiently small distance the parameter proposals are accepted. For
more explanation see appendix A. ABC targets an approximate posterior [26]:

pe(u, zjy)/ 0(r(z, y) � e)p(u)f(zju), (2:2)
1Sufficient time in the context of MCMC can be taken to mean that the chain is close to convergence. In practice this is often assessed by
checking that multiple chains produce a Gelman–Rubin diagnostic less than 1.05 [25].
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where 0 is an indicator function that takes the value one if its logical argument is true and zero otherwise

and f (z|θ) is the model that generates simulations z giving θ. The accuracy of ABC approaches depends
on choosing a suitable discrepancy function ρ(z, y) and an appropriate tolerance e [9]. In practice, the
discrepancy function typically compares sets of summary statistics s( · ) for the observed and
simulated datasets. ABC rejection sampling is very simple to implement, though it can suffer from
extremely low acceptance rates when the prior distribution is dissimilar to the posterior distribution
[9]. To counteract this deficiency, a more efficient ABC technique based on MCMC was developed [9].
For more details see appendix A. Furthermore, in order to improve the low acceptance rate in the
basic ABC algorithm, an SMC ABC algorithm was proposed in Sisson et al. [14], based on the SMC
sampler methodology developed by Del Moral et al. [27]. The SMC ABC algorithm converges to the
approximate posterior distribution through a number of intermediate distributions with a distance
threshold that is sequentially decreased, see appendix A. The efficiency of the SMC ABC algorithm
depends not only on the model complexity and the amount of data available, but also on the choice
of the decreasing sequence of et (the tolerances), and the choice of perturbation kernel Kt, according to
Filippi et al. [28]. There are various ways to construct the decreasing sequence of et, either manually or
adaptively as proposed in Drovandi & Pettitt [29] and Del Moral et al. [30]. In the adaptive method,
the value of et is chosen to be the αth quantile of the discrepancies between the observed data and the
simulated data that was generated in the (t− 1)th population (see appendix A), where 0≤ α≤ 1. In this
paper, we used the latter method of selecting the sequence of tolerance thresholds and we stopped the
algorithm when we reached a final et that setting the desired final agreement between simulated and
real data Liepe et al. [31].

The choice of perturbation kernel affects the acceptance rate in SMC ABC and the time consumed by
the algorithm as explained in Filippi et al. [28]. Perturbation kernels can be divided into two classes:
component-wise perturbation kernels and multivariate perturbation kernels. For component-wise
perturbation kernels, one can use a uniform distribution or a univariate Gaussian distribution to
perturb the particle θ� sampled from the previous population {u(i)t�1}

N
i¼1. The standard deviation of the

kernel can be fixed in advance for each population, but more recently practitioners are adaptively
choosing the width of the kernel (Beaumont et al. [15], Didelot et al. [32], Filippi et al. [28]).

If the model parameters are correlated, a component-wise perturbation kernel can fail to capture the
structure of the true posterior, leading to a low acceptance rate. To overcome this problem, a multivariate
normal distribution with a covariance matrix Σ (t) that depends on the covariance of the previous
populations can be used to perturb the particles [28]:

S(t) ¼
XN
i¼1

XN0

k¼1

w(i)
t�1ŵ

(k)(û
(k) � u(i)t�1)(û

(k) � u(i)t�1)
T , (2:3)

where {û(k)}1�k�N0 are the particles from the previous populations for which the corresponding simulated
data z (k) satisfy ρ(z (k), y) < et (remembering et< et−1) and ŵ(k) are the associated weights.

To further improve the performance of SMC ABC, we adopted a method proposed in Prangle [33] to
adaptively update the discrepancy function, ρ(z, y). We used a weighted Euclidean distance function:

r(z, y) ¼
Xn
j¼1

�
zj � yj
zj

�2

, (2:4)

where yj is the jth observation, zj is the jth simulated observation in the simulated data z= (z1,…, zn) and ζj is
a tunable scaling factor that allows the contribution to the discrepancy function of the jth coordinate to be
normalized. The reason for normalizing the coordinates is to prevent any of them dominating the
acceptance decision in the algorithm. In non-adaptive methods, the values of ζj are determined in
advance and fixed. Fixing ζj from the first iteration in SMC ABC will not guarantee that the jth
coordinate will be normalized in later iterations because in SMC ABC after the first round we are not
sampling from the prior so the scale to normalize needs to be adapted.

To adapt the values of ζj in each iteration, Prangle [33] proposed calculating the median absolute
deviation (MAD) of the jth coordinate of the simulated data vectors from the previous iteration
(including those rejected). The value of the next et is also determined using these distances; for more
details see algorithm 4 in [33]. Note that Prangle [33] defined the discrepancy function in terms of
summary statistics for z and y, as is usual in ABC. Here we have used the coordinates of z and y
directly, following the approach of Toni et al. [16] for inference of ODE model parameters.
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Vaart et al. [34] proposed an ABC method called error-calibrated ABC that implements a general

methodology introduced by Wilkinson [35]. In their method, they incorporated the estimation of the
noise into the ABC technique by identifying an ABC acceptance probability in which the noise is
assumed to be normally distributed and independent. This results in improved estimates of the
parameter values and their uncertainty. An implementation of the error-calibrated ABC algorithm is
given in algorithm 1.
Algorithm 1. Error-calibrated ABC algorithm, Vaart et al. [34].

1: Repeat n times:.

(a) Draw u� � p(u).

(b) Simulate z� from model given u�.

2: Find ẑ, the simulated value that minimizes r(z, y).

3: For each data type k, calculate l̂k , the standard deviation of all corresponding ẑn � y.

4: Accept (u�, z�) with probability px2
l
(s)s1�

1
2=c, where s ¼ Pl

j¼1

z�j � yj

l̂ k

� �2

and c is equal to the maximum

acceptance probability across all runs.

lishing.org/journal/rsos
R.Soc.open

sci.7:191315
2.1. Bayesian inference for parameters in ODE models
Consider a Q-dimensional dynamical system for the state variable vector, x(t), described by the system of
ODEs:

_x(t) ¼ f(x, u, t), (2:5)

where x is a Q×1 vector of the dependent variables, f is a Q×1 vector-valued Lipschitz continuous function
with respect to x, θ is an M×1 vector of model parameters, t is the independent variable (often time) and _x
represents the derivative of x with respect to the independent variable. Given the dynamical system in
equation (2.5), along with values for the parameter vector, θ, and the initial condition, x0, the solution to the
system can be approximated numerically.

We denote an experimental observation at time tk by the Q×1 vector yk. Experimental observations
are taken at K time points; the times are stored in a K×1 vector t= (t1, t2,…, tK)

T and the observations are
stored in the Q×K matrix y= (y1, y2,…, yK). These observations are usually associated with some
unknown noise process, characterized by one or more variance parameters, say σ2. The (approximate)
solution for the dependent variables at time tk, given θ and x0, is denoted by the Q×1 vector
x̂(tk; u, x0). The solution for the dependent variables at times t is stored in the Q×K matrix
x̂(t; u, x0) ¼ (x̂(t1; u, x0), x̂(t2; u, x0), . . . , x̂(tK; u, x0)). In a Bayesian setting, the posterior distribution for
θ and σ2 given y is:

p(u, s 2jy)/ p(yju, s2)p(u)p(s2), (2:6)

where p(y|θ, σ2) is the likelihood, p(θ) and p(σ2) are independent priors for θ and σ2 respectively.
2.1.1. Observation model

In this paper, we assume that each observation, yk for k=1,…,K, has an associated additive noise process,
δk, such that

yk ¼ x̂(tk; u, x0)þ dk, (2:7)

where δk is a Q× 1 vector and x̂(tk; u, x0) is the solution for the dependent variables at time tk, given θ and
x0. Under a Gaussian error model (we assumed Gaussian model for simplicity and illustration purposes
but we can assume any kind of error model), and assuming the δk are independent of each other, yk
follows a multivariate normal distribution:

yk � MVN(x̂(tk; u, x0), S(s2)), (2:8)
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where Σ(σ2) is a diagonal matrix with diagonal elements s2 ¼ (s2

1, s
2
2, . . . , s

2
Q)

T associated with the Q
dependent variables. Hence, the likelihood function is given by

L(yjx̂(t; u, x0), s2) ¼
YK
k¼1

MVN(Yk; x̂(tk; u, x0), S(s2)) (2:9)

and the posterior density is

p(u, s2, x0jy)/ p(u)p(s2)p(x0)
YK
k¼1

MVN(Yk; x̂(tk; u, x0), S(s2)): (2:10)

TheBayesian techniquesdiscussed inappendixAcanbeused tosample fromtheposteriordistributionof {θ,
x0, σ

2} in the case of MCMC and an approximation to the posterior in the case of ABC methods.

2.2. Model misspecification in ABC methods for ODE models
Exact Bayesian methods, such as MCMC, generate samples directly from p(θ, σ2|y) (at least in the
limiting sense), rather than from the approximate posterior pe(θ, z|y) shown in equation (2.2). This
applies in general, but in particular for the case of parameter inference in ODE models, as long as an
observational model has been defined, leading to a posterior distribution such as in equation (2.10).
Evaluating this expression requires solving a system of ODEs to obtain x̂(tk; u, x0) for a specific
collection of parameters. It is then straightforward, at least for this simple noise model, to evaluate the
likelihood and the posterior density up to a normalizing constant.

One of the major motivations for using likelihood-free methods, such as ABC, is that they are
applicable even when evaluating the likelihood is difficult or impossible. That motivation is not
present here, since solving the system of ODEs for each proposed parameter vector θ is the main
computational burden involved in evaluating equation (2.10), and this is still necessary for ABC, at
least using the method proposed by Toni et al. [16]. Their method does still have a computational
advantage, in that it avoids evaluating the density of the noise model, which may be prohibitive for
certain models. However, where the simple independent Gaussian noise model of equation (2.2) is
appropriate, or some other simple noise model applies, the contribution of these density evaluations
to the overall computational burden will be negligible.

Themethod of Toni et al. [16] actually avoids even simulating draws from the noise model. This is made
clear in the following text which appears in the thesis by Toni [19, p. 154], which is the basis of the work in
Toni et al. [16]: ‘We explore the differences between three different inference approaches:

1. No noise added in the simulation step, θ is the unknown parameter. This framework has been
introduced in Chapter 3 and used throughout this thesis.

2. Noise added in the simulation step, σ is considered known and θ unknown.
3. Noise added in the simulation step, both σ and θ are unknown.’

Since option 1 (the approach taken throughout the thesis and associated papers) avoids adding noise in
the simulation step, the method is applicable regardless of the noise model. However, this generality
comes at a cost and, as we explain in this section, results in an approximate distribution of the form
equation (2.2) that contains no information about parameter uncertainty.

Toni et al. [16] adapted the Sisson et al. [14] SMCABC algorithm and used it to infer parameters in ODE
models. However, the method they devised differs in two crucial aspects from standard practice in
implementing ABC. The first is that they do not simulate data vectors z� from the same model they assume
for the data, which is of the form shown in equation (2.9). Instead, they generate z� by merely solving the
underlying system of ODEs for each proposed value of the parameter vector θ��. The simulated data z� is
thus a deterministic function of θ��, without any added noise, and in effect the underlying
likelihood distribution model used in the resulting ABC algorithm is a point mass concentrated at the
solution of the systemofODEs. In this sense, the data generationmodel used byToni et al. [16] ismisspecified.

A second departure from standard ABC practice is that the discrepancy function used by Toni et al. [16]
directly computes a distance between the simulated and observed data, originally using Euclidean distance

r(z, y) ¼
Xn
j¼1

(zj � yj)
2, (2:11)

but they also experimented with alternative metrics. In this paper, we experiment with the more general
adaptively weighted distance function in equation (2.4). All of these discrepancy functions have in
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common that they can only take a zero value when the simulated data z� exactly corresponds to the

observed data y. In contrast, practical ABC methods more commonly use a discrepancy function based
on the distance between vectors of summary statistics s(z�) and s(y), which have much lower dimension
than the simulated and observed data vectors z� and y. In that case, the discrepancy function is zero
whenever s(z�) = s(y), which can occur even if z� ≠y. A practical reason for basing the discrepancy on a
vector of summary statistics is that this places weaker constraints on the acceptability of proposed pairs
(θ��, z�). If the summary statistics are sufficient for θ, nothing is lost by using s(y) instead of y, but more
usually the summary statistics capture much, but not all, of the information y can reveal about θ.

As a result of these two departures from standard ABC practice, it will not in general be possible for the
discrepancy ρ(z, y) in equation (2.11) to be arbitrarily small. The problem is that since the generative data
model does not include a noise term, there may be no parameter vector for which the solution to the
system of ODEs exactly corresponds to the observations y, and hence there is some minimum allowable
discrepancy e0 > 0. Consequently, ρ(z,y) will always be greater than 0, which is considered a
misspecification in ABC estimation, according to Frazier et al. [36]. Under ideal conditions, for the
function u 7!r(z(u), y) there is a unique θ0 such that ρ(z(θ0), y) = e0 > 0, where z(θ) is the unique solution
to the system of ODEs with parameter vector θ. Therefore, as e→ e0 from above, the approximate
posterior pe(θ, z|y) approaches a Dirac delta function at the point (θ0, z(θ0)).

It follows that the approximate ‘posterior’ pe(θ, z|y) targeted by the method of Toni et al. [16] contains
no information about the posterior variance of parameters. A practical demonstration of this is provided
in the results below, in which small to moderate changes in the noise model used to simulate the
observations resulted in no change in the posterior variance estimated by ABC methods. On the other
hand, changing the noise model used to simulate observations did affect the location of the posterior
and the final e that guaranteed a good acceptance rate.

However, our results presented below demonstrate that the shapes of the contours of distributions of the
form of equation (2.2) for e> e0 may resemble those of the true posterior, and we propose that it may be
possible to find some e> e0 for which pe approximates the true posterior. Finding a good way to do this is
left for future work.

3. Test problems
The ABC and MCMC techniques described in appendix A were compared against each other when
conducting parameter inference for one epidemiological compartmental model. The Bayesian
parameter inference software developed in this paper was validated using the method of posterior
quantiles [37] on a computationally inexpensive model described in §3.1, before being implemented
on a more demanding nonlinear system of ODEs describing malaria transmission in §3.2.

3.1. Test problem 1—susceptible–infected–recovered model
Susceptible–infected–recovered (SIR) models categorize hosts into one of three different compartments at
time t. Individuals are considered susceptible (S), if they are able to be infected by the pathogen, infected
(I) if currently infected with the pathogen or recovered (R) if they have successfully cleared the pathogen.
The flow of individuals between compartments in the SIR model is visualized in figure 1.

SIR models and their variants, in both deterministic and stochastic forms, are among the most
fundamental epidemiological models and have found use describing diseases as diverse as influenza,
herpes and malaria [38]. In this test problem we use the SIR model to represent the fraction of the
total population (P) in each category as follows:

s(t) ¼ S(t)
P

, i(t) ¼ I(t)
P

and r(t) ¼ R(t)
P

,

where S(t), I(t) andR(t) are the numbers of susceptible, infected and recovered individuals in the population
at time t (weeks). The deterministic, constant population, SIR model without demographics can be
described mathematically as:

ds
dt ¼ �bi(t)s(t),

di
dt ¼ bi(t)s(t)� gi(t)

and dr
dt ¼ gi(t),

9>>>=
>>>;

(3:1)

where β is the infection rate and γ is the recovery rate.
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When conducting parameter inference for this system, the observable data is y= (y1,…, yn), where
yk = i(tk) is the proportion of the population infected at time tk, for k= 1,…, n. The parameters of
interest are θ= {β, γ}.
3.1.1. Simulation results

A test dataset was generated by solving the system of equations (3.1) in the interval [0, 50] using a fourth
order Runge–Kutta method and storing the solution at weekly intervals (figure 2), using true model
parameters u ¼ (b ¼ 0:9, g ¼ 1

3 )
T . To generate observations y, normal noise N (0, s2 ¼ 0:0001) was

added to the solution. For ABC approaches, a discrepancy function ρ(z, y) was used to compare
infected proportions in the dataset y with a solution to the equations z= (z1,…, zn) for proposed
parameters as follows:

r(z, y) ¼ 1
n

Xn
i¼1

(zi � yi)
2, (3:2)

where n is the number of observed data points. The priors for β, γ and σ2 were taken to be vague:

b � U(0, 2), g � U(0, 2) and s2 � IG(1, 1) (3:3)

where U( � , � ) is the uniform distribution and IG( � , � ) is the inverse-gamma distribution. For MCMC
approach, normal proposal distributions were used with adaptive approach tuning parameters in the
algorithm to maintain an acceptance ratio between 0.3 and 0.5 [25].

Given the observations y, the parameter vector θ= {β, γ} was estimated using MCMC and SMC ABC
and the results from these methods were compared. The noise σ2 was additionally estimated when using
MCMC. As discussed in §2.2, the distributions derived using the ABC approaches are not an
approximation to the true posterior of the ODE model parameters since the noise is not estimated; we
therefore cannot use the standard deviation of the distributions from ABC approaches as a measure of
performance. Instead, we compared the CPU times, the number of iterations and the mean absolute



Table 1. The number of iterations, computational time (min) and mean absolute error for parameter inference in the SIR model.

iterations CPU time MAE (β) MAE (γ)

MCMC 12 401 6.58 min 0.0038 0.0034

SMC ABC 141 408 11.29 min 0.0035 0.0029
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MCMC joint posterior ABC SMC joint posterior
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Figure 3. Scatter plot of sample draws for γ and β using MCMC (a) and SMC ABC (b). The contour lines contain the stated
proportions of sample draws from the joint posterior and are produced using the R function ‘HPDregionplot’.
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errors (MAE), although, MAE may favour over-concentrated posterior approximations. The formula used
for MAE is MAE ¼ Pn

i¼1 (jui � utruej)=n, and the θi are posterior samples for θ, for each method. We
applied the MCMC approach using appendix A, algorithm 2. Table 1 shows that MCMC chain
converged after 12 401 steps to reach convergence and this took approximately 6.58min.

We next applied SMCABCas outlined in appendix A, algorithm 6 using our own implementation in R. In
SMCABC codewe used T=11 populations, each with 1000 particles, used component-wise uniform kernels
that adapted their width from the previous particle distributions [28] and used uniform priors 2 units wide
and centred at zero for both parameters. The tolerance sequence was selected adaptively such that in
population i the new threshold ei was the 25th percentile of the distances in the previous iteration, t−1 (as
explained in §2). The algorithms terminated when we reached a challenge tolerance of e=0.067056 that
had been chosen by finding the distance between the true ODE solution and the generated observations y.

Comparing SMC ABC with MCMC, we found that SMC ABC consumed run times longer than
MCMC with 11.26min. In addition, It can be seen in figure 3b that the estimated joint posterior
resulting from the 11th population of the SMC ABC method has the smaller variance compared with
MCMC method. Table 2 shows that all the methods have achieved good point estimation for both
parameters β and γ.
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Table 2. True values of the parameters β and γ and their estimated values (each estimate is the median of the sampled
values) using MCMC and SMC ABC for SIR model example.

parameter true value MCMC SMC ABC

β 0.9 0.8968 0.8964

γ 0.3333 0.3308 0.3304
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We also compared credible intervals for the solution to the system of ODEs, using MCMC and ABC. To
do this, we followed the procedure in Gelman & Rubin [25] to simulate the posterior predictive distribution
(PPD) for a future observation, yrep. This produces a PPD that has variance that depends on the posterior
uncertainty (and hence the observational noise). This was not a problem within MCMC because we take
samples from the posterior and solve the model and then simulate the noise, which has been estimated
within MCMC. However, with SMC ABC method, we take the samples from the posterior and solve the
model without simulating the noise. So, as the tolerance gets smaller and smaller the predictive intervals
will also get smaller, and do not have the correct coverage of the observed data. Figure 4 shows that the
credible intervals obtained using SMC ABC are much narrower than those obtained using MCMC,
highlighting that the variation within the sample does not contain useful information about the inferred
uncertainty of the estimates. Note that this problem is not reduced by the tunable elements of the
algorithm; for example, we tried several different perturbation kernels proposed by Filippi et al. [28],
such as component-wise perturbation kernels that adaptively choose width based on the previous
population and multivariate normal perturbation kernels that are sometimes useful when parameters are
highly correlated. The resulting credible intervals were not affected significantly by the choice of
perturbation kernel (comparison results not shown).

In addition, we used the proposed method in Prangle [33] within our R code, involving an adaptive
distance function to improve the performance of the SMC ABC method. In this algorithm, the scale
parameters ζj in the distance function (equation (2.4)) are updated in each iteration (calculated using
MAD) and are used to choose the value of the next et. In principle, it might be possible to use a variant of
this technique to choose et so that the resulting sample reflects the shape and spread of the true posterior
distribution. However, it is not clear what number of rounds of adaptation would produce such an et. In
other words, it is not clear how and when to terminate the SMC ABC algorithm. In the literature, there
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are several methods one can use to terminate, such as when the algorithm reaches a certain value of e or a
target acceptance rate, or one can use a specified number of a total simulations as a tuning parameter and
the algorithm terminates when a further simulation is required [33]. One option that is available when
using an adaptive kernel width is to stop the algorithm when the width of the kernel becomes negligible
or when 1− (et+1/et) falls below some threshold. However, we found that none of these methods
terminate the algorithm in such a way as to produce the correct shape and spread of the posterior
distribution. Figure 5 illustrates that if we run the algorithm for 30 rounds the estimated posterior will
shrink towards a point estimate of the parameters. If we run the algorithm for six rounds, the resulting
estimate is not a good representation of the true posterior: it is too wide and hence misleading. An
estimated posterior distribution similar to what we obtain using MCMC can be somewhat artificially
generated if we run the SMC ABC algorithm for 16 rounds, but at present the algorithm lacks an
independent way of identifying this. As far as we are aware, there are as yet no clear guidelines to follow
to determine how many rounds of SMC ABC are needed when dealing with an ODE model to guarantee
that a good approximation to the true posterior of the parameters has been achieved.

3.1.2. The impact of the noise on the inference

To demonstrate the impact of the noise on the parameter inference we applied MCMC and SMC ABC to
observations y generated using different values of σ2, specifically σ2∈ {0.0001, 0.0005, 0.001}. We plot the
resulting posterior marginals for both parameters in figure 6. The variance of the estimated posterior
derived from MCMC increases as the value of σ2 increases, indicating that the variance of the posterior is
affected by the amount of noise, as expected. On the other hand, although the noise has been increased,
the variances of the estimated posteriors derived from SMC ABC are almost the same for small to
moderate amounts of noise. However, when the noise parameter is increased further, the location of the
estimated posterior is changed. This illustrates what has been discussed in §2.2 that these posteriors do
not provide valid information about the uncertainty in the parameter estimates. As a result, conducting
parameter estimation for ODE models using this ABC framework is not recommended.

3.1.3. Including the error term in the ABC algorithm

Including the error term in the ABC algorithm may overcome this limitation and work inspired by
Wilkinson [35] in Vaart et al. [34], as has been explained in §2, argued that the acceptance of the
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proposed parameters should be with respect to the error term rather than with respect to some tolerance
level. In their method they assumed that the error term follows a normal distribution. This method is
promising and can capture similar posterior shapes compared to the one derived from MCMC, as
figure 7 shows. A significant drawback that we found for this approach is that the acceptance rate is very



Figure 8. The flow of individuals between susceptible, infected and recovered states in the model of White et al. [39].
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low and a large number of simulations are needed. This leads to a longer computational time, which is
prohibitive for the case of ODE model parameter inference. The total CPU time when we applied
the Vaart et al. [34] algorithm to the first test problem to have 1000 samples is 29 h which was derived
from 2×106 simulations and this time is much larger than when we used the MCMC method for this
example (5.25min).

3.2. Example 2—nonlinear ODE model of malaria transmission
Work by White et al. [39], acknowledging the lack of reliable data in some countries where malaria
control or elimination is particularly desirable, showed the utility of a compartmental mathematical
model in predicting effects of various elimination strategies compared to the more complex models of
Gu et al. [40] and Maire et al. [41]. The model describes population dynamics using four population
compartments in the transmission of malaria:

S(t): Uninfected and non-immune.

I1(t): Infected with no prior immunity.

R(t): Uninfected with immunity.

I2(t): Infected with prior immunity.

The model comprises four ODEs that govern the temporal evolution of the population compartments.
The model is illustrated in figure 8 and can be described mathematically by the following equations:

dS
dt

¼ P
L
� lþ 1

L

� �
Sþ 1

dimm
R,

dI1
dt

¼ lS� h0p1
dtreat

þ 1� h0p1
din

þ 1
L

� �
I1,

dI2
dt

¼ lR� h0p2
dtreat

þ 1� h0p2
din

þ 1
L

� �
I2

and
dR
dt

¼ h0p1
dtreat

þ 1� h0p1
din

� �
I1 þ h0p2

dtreat
þ 1� h0p2

din

� �
I2 � lþ 1

dimm
þ 1
L

� �
R:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(3:4)

Here λ is the force of infection and is given by

l ¼ R0
1
L
þ 1
dtreat

� �
(I1 þ I2)

P
,

where R0, the average number of secondary infections arising from a single infected individual in a
susceptible population, is expressed as a function of time to incorporate the seasonal forcing
associated with malaria transmission and is of the form, R0(t) =Acos2π(t− ϕ) + r0. The model is
parametrized in terms of a number of constants as described in table 3.

The observed data, y(t), is taken to be the number of observable clinical infections, C(t) as follows:

y(t) ¼ {C1(t1), C2(t2), . . . , Cn�1(tn�1), Cn(tn)} (3:5)

and

Cn(tn) ¼ p1I1(tn)þ p2I2(tn): (3:6)
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Table 3. The parameter values used in simulation of the White et al. [39] model.

parameter value source

P (people) 29 203 486 Worldometers [42]

L (years) 66.67 Maude et al. [43]

dimm (years) 0.93 Aguas et al. [44]

din (years) 0.11 assumed

dtreat0 (weeks) 2 Maude et al. [43]

p1 0.87 Aguas et al. [44]

p2 0.08 Aguas et al. [44]

A 0.67 assumed

r0 1.23 assumed

ϕ 3/12 assumed

η0 0.11 assumed
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For our purposes here, the parameter vector of interest is θ= (η0, din) and in the case of using MCMC,
the parameter vector of interest is θ= (η0, din, σ

2), where η0 is the percentage of individuals with clinical
infection that receive treatment, din is the average duration of an untreated sensitive infection and σ2 is the
noise associated with the data which we assumed to be normally distributed.

3.2.1. Application: malaria in Afghanistan

Afghanistan is a landlocked country located between South Asia and Central Asia. Despite the fact that
most of the country is desert, there is significant rainfall and snowfall [45], which provides a fertile
environment for mosquito-borne diseases such as malaria. We use monthly data from cases registered
nationwide across all regions of Afghanistan in the period from January 2005 to September 2015 from
Anwar et al. [46] as shown in figure 9.

In the ODE system in equation (3.4), I1 and I2 represent the number of infected individuals with no prior
immunity and prior immunity, respectively. However, in the case of the data from Afghanistan, each data
point represents the total numberofmalaria cases that arrived at hospitals in themonth. In order to calculate



Table 4. The estimated values (the median of the posterior) of the parameters η0 and din from MCMC, MCMC ABC and SMC
ABC for the Afghanistan data.

parameter MCMC MCMC ABC SMC ABC

η0 0.0525 0.04685 0.0459

din 0.23035 0.2483 0.2453

Table 5. The number of iterations and computational time (min) for parameter inference in the malaria model, applied to the
Afghanistan data.

iterations CPU time

MCMC 5838 45.13 min

MCMC ABC 4050 39.99 min

SMC ABC 143 031 522.34 min
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the cumulative number of cases over time we added an extra ODE which takes the form:

dW
dt

¼ lSh0p1 þ lRh0p2, (3:7)

where W(t) is the cumulative number of observed (that is, treated) cases. To compute the number of new
cases in each month we subtract the cumulative cases from consecutive months.

The values of the model parameters used are shown in table 3 and the initial conditions are given by
the equilibrium solution of the system in equation (3.4) with the addition of W(t= 0) = 0 for the new ODE.
As with the first test problem, for the ABC approaches we used the discrepancy function in equation (3.2)
to compare the clinical infections given in the dataset y with a simulated solution x. The priors for η0, din
and σ2 were taken as follows:

p(h0)¼ B(1, 1) [ [0, 1],
p(din) ¼ GA(1, 1) [ [0, 1)

and p(s2) ¼ IG(1, 1) [ [0, 1):

9=
; (3:8)

A logistic transformation was used to transform η0∈ [0, 1] while a log transform was applied to din∈
[0, ∞) and σ2∈ [0, ∞) so that each transformed parameter had support over the real line. This step was
used to improve the acceptance rate of the proposals.

In MCMC method, zero mean normal proposal distributions were used with standard deviations
equal to (0.007, 0.07, 0.1) for the parameters (η, din, σ

2) respectively. The same proposal distributions
were used with MCMC ABC, but with standard deviations equal to (0.1, 0.1) for the parameters (η, din).

All of the methods have achieved convergence to similar values for both parameters under
investigation (η0, din), as shown in table 4. SMC ABC consumed significantly longer CPU time
compared with the other methods as shown in table 5. Also, SMC ABC needed 143 031 model
simulations to get 500 accepted values, while MCMC and MCMC ABC needed just 5838 and 4050
iterations, respectively to converge (tables 4 and 5).

Since a real dataset has been used here, the true parameter values are unknown. As a consequence,
applying MCMC ABC was difficult because this lack of information makes the choice of an appropriate e

problematic. In this paper, in order to select an appropriate tolerance level we adopted the method of
Vaart et al. [34], which is to solve the ODE model with different proposals of the parameters from the
priors, find all the distances using 3.2 between these solutions and the true data, and then choose the one
that minimizes this distance. We then used the best fitting solution to estimate the value of the MCMC
ABC tolerance which was e=116230.8. Then, we applied SMC ABC for six populations with an
adaptively chosen sequence of tolerance e= (244616.4, 244616.4, 244616.4, 176677.1, 116966.8, 100042.7).

The estimated joint posteriors of η0 and din can be seen in figure 10. All have the same shape and
similar position, but the variances are very different. Figure 9 shows that the posterior predictive
distribution from MCMC covers most of the data points; however, the predictive intervals from ABC
methods (here, showing only the SMC ABC result from the last population) are very tight and poorly
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cover the data points. The reason for this is, as the SMC ABC algorithm converges towards the point
estimate, without any consideration to the noise in the data, the tolerance gets smaller and then most
of the accepted parameter values are from a tight region around a point estimate (figure 10). Thus,
the predictive intervals from ABC methods do not enable appropriate coverage of the data, consistent
with the discussion in §2.2.
4. Discussion
Our investigation into exact and approximate methods for inferring parameters in ODE dynamical systems
under a Bayesian framework highlights some limitations of current methods. The main problem we
identified is that the observations of the system are often noisy, so when we infer the parameters for such
a system it is inappropriate to not simulate the noise process. Estimation of the noise parameter is
standard using exact Bayesian inference (MCMC), but not with the current practice with ABC-based
approaches when applying to a system of ODEs that we investigated here. The general idea when
applying the ABC-based methods considered here to a dynamical system is to compare the noisy
observations to solutions generated using the ODEs (which is a deterministic model that does not take
into consideration the noise in the observations) for each set of parameters proposed. The parameters are
accepted based on some tolerance e that also does not depend on the noise term.

To illustrate this limitation, we compared the popular methods MCMC, MCMC ABC and SMC ABC
for estimating model parameters in ODEs. We can see in the second example presented in this paper that
the computational time consumed by MCMC ABC is shorter compared to the other methods (MCMC
and SMC ABC). However, when dealing with a deterministic model, the estimated posteriors derived
from current ABC methods do not provide useful estimates of the true posteriors. In particular, they
do not contain appropriate information about the uncertainty of the parameter values. Being able to
naturally quantify uncertainty in posterior distributions is one of the main advantages of Bayesian
statistical inference over other approaches, given that the output of Bayesian inference is a probability
distribution rather than a point estimate. Here, we have shown that the ABC methods are not able to
capture the distribution, but instead converge to point estimates of the best parameter values. To
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demonstrate the effect of not including the noise term in the estimation we compared the results in the

first example for different noise values. It is clear that the distribution estimated using the ABC methods
is not affected by the noise values (for low to moderate amounts of noise), which illustrates that the
posterior variances estimated using ABC do not depend on the noise in the data. As a result, the
posteriors do not represent the whole probability distribution of the parameters under investigation.

In order to improve SMCABCwe tried an adaptive SMCABC on the first test problem by using several
different perturbation kernels that are proposed in Filippi et al. [28]; component-wise perturbation kernels
and multivariate normal perturbation kernels that adapt their width from the previous population in the
algorithm steps. Adapting the width of the kernels may affect the accuracy of the estimations, but
still does not capture the true posterior shape when comparing with the posterior obtained using an
MCMC method.

We also tried another adaptive SMC ABC method in this paper; an adaptive distance function as
in §2, proposed in Prangle [33]. This method did make it possible to obtain a distribution that more
closely approximates the posterior using SMC ABC, but the problem with this algorithm is that there
is no existing criteria to identify an appropriate iteration at which to terminate.

Including the error term in the ABC algorithm may improve the ABC posterior as we have seen when
we applied Vaart et al. [34] method in §2; however, the long computational times required by this
approach are considered as a remarkable drawback in the case of ODE model parameter inference.

The comparison conducted in this paper demonstrates that using exact Bayesian inference (MCMC) for
ODE parameter estimation is a practical alternative (Gelman et al. [47]), despite the difficulty involved in
calculation of the likelihood. We found that MCMC gave accurate estimation of the parameter values and
the resulting posterior gave appropriate information about the uncertainty of the parameters.
Furthermore, the variance of the MCMC posterior distribution changed as the noise in the data
changed, as one would expect. The same was not true for the ABC methods considered. The time
consumed by the MCMC algorithms was slightly larger than MCMC ABC; however, since the resulting
posteriors were more appropriate, the extra effort to calculate the likelihood is deemed worthwhile. In
addition, choosing an appropriate e when applying MCMC ABC is difficult, especially when working
with real data. With simulated data, it is possible to find an appropriate e from the distance between
the true solution of the ODE model and the noisy data, but this is not possible in a real application
where the true solution is unknown. In this case, in order to determine an acceptable tolerance level,
we adapt the work of Vaart et al. [34] to find the best fit solution and then find an appropriate e. We
found that among all the methods, applying SMC ABC is the easiest to implement, but consumes the
most computational time. Moreover, as we have observed, this method produces inappropriately
shaped posterior distributions.

The first example presented in this paper involves a likelihood function that is easy to compute, so
using a likelihood-based approach such as MCMC or an importance sampling method like SMC is
certainly to be preferred over likelihood-free methods (such as ABC). Most of the computational cost
of MCMC and SMC ABC method is consumed in solving the ODE models several times to compute
the likelihood for MCMC or to do the simulations for SMC ABC. However, in the second example
we found that more effort is needed to construct the likelihood functions when applying MCMC.
In addition, when we chose an uninformative prior for the parameters, the SMC ABC algorithm
located the appropriate region of the parameters space easily, while it was more difficult to choose
appropriate initial parameters to achieve rapid convergence with MCMC. We would currently
recommend users of ABC methods be careful when using it with ODEs, unless a sensible choice of
error model and summary statistics can be made. Deciding what are sensible choices for the ABC
algorithm is still difficult and an important topic of current and future work.
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Appendix A
A.1. Markov chain Monte Carlo
MCMC techniques as developed by Metropolis et al. [1] and Hastings [2] can be used to sample from the
posterior distribution in equation (2.1). The Metropolis–Hastings algorithm constructs a Markov chain for
which the stationary and limiting distribution is the posterior distribution. After running the chain for a
sufficient amount of time, samples from the chain can be considered draws from the posterior
distribution. An implementation of the Metropolis–Hastings algorithm is given in algorithm 2.
Algorithm 2 gives no restrictions on the proposal distribution q(θ�|θt−1). An appropriate proposal
distribution should allow the entire parameter space to be explored while maintaining an appropriate
acceptance rate2 [48]. For example, q(θ�|θt−1) can be chosen to be N (u�jut�1, S) (the multivariate
normal distribution with mean vector θt−1 and covariance matrix Σ) or to be independent of the
previous parameter draw, θt−1.
Algorithm 2. The Metropolis–Hastings algorithm [1,2].

1: Initialize u0.

2: for t ¼ 1 to T do

3: Propose u� from a proposal distribution q(u�jut�1).

4: Calculate a(ut�1 ! u�) ¼ min 1,
p (yju�)p(u�)q(ut�1ju�)

p (yjut�1)p(ut�1)q(u�jut�1)

� �
.

5: Set ut ¼ u� with probability a, else set ut ¼ ut�1.

6: end for

Soc.open
sci.7:191315
A.2. Approximate Bayesian computation
MCMC methods require the computation of the likelihood function, p(y|θ), in equation (2.1). ABC
methods were developed to sample from an approximation to the posterior in cases for which the
likelihood is intractable or too computationally costly to compute. Instead of calculating
the likelihood, a comparison is made between the observed data, y, and simulated data, z. In general,
The simplest ABC algorithm involves the following steps:

1. Sample a parameter, θ�, from the prior, p(θ).
2. Simulate a dataset, z, from the model f (z|θ�).
3. Compare the simulated dataset, z, with the observed data, y, using a discrepancy function, ρ(z, y). If

ρ(z, y)≤ e, where e is the desired tolerance level, accept θ�.
4. Repeat steps 1–3 until a desired number of samples are accepted.

ABC targets an approximate posterior [26]:

pe(u, zjy)/ 0(r(z, y) � e)p(u)f(zju), (A 1)

where 0 is an indicator function that takes the value one if its logical argument is true and zero otherwise.
The accuracy of ABC approaches depends on choosing a suitable discrepancy function ρ(z, y) and an
appropriate tolerance e [9]. In practice, the discrepancy function typically compares sets of summary
statistics s( · ) for the observed and simulated datasets.
A.2.1. ABC rejection sampling

The simplest ABC algorithm is ABC rejection sampling [7]. It can be implemented in one of two ways;
pre-specification of e, as shown in algorithm 3, or post-determination of e, as shown in algorithm 4. Pre-
specification of e is problematic, since if e is too small then many simulations will be required to produce
2The asymptotically optimal acceptance for a random walk Metropolis–Hastings algorithm is 0.44 (in one dimension) or 0.23 if more
than one parameter is to be estimated.
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N samples and if e is too large, accuracy will be reduced. How the parameter e is set represents a trade-off

between speed and accuracy.
Algorithm 3. ABC rejection algorithm, pre-specification of e

1: while number of accepted u�,N do

2: Draw u��p(u).

3: Simulate z� from model given u�.
4: if r(z�, y)�e then

5: Accept u�.
6: end if

7: end while

oyalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:
Alternatively e could be specified after drawing T samples from the prior as demonstrated in algorithm 4.
We define a constant, α, which represents the percentage of draws that are to be accepted and set e
according to our pre-defined α. Although this scheme provides flexibility in terms of trading accuracy
for speed, it can require large storage requirements if T is large.
Algorithm 4. ABC rejection algorithm, post-determination of e.

1: for i ¼ 1 to T do

2: Draw ut � p(u) and simulate zt from model given ut .

3: Compute discrepancy function rt ¼ r(zt , y).

4: end for

5: Sort {ut , rt }
T
t¼1 into ascending order, based on r.

6: Keep N ¼ aT of ut with the lowest discrepancy, hence defining e.

191315
A.2.2. MCMC ABC

ABC rejection sampling is very simple to implement, though it can suffer from extremely low acceptance
rates when the prior distribution is dissimilar to the posterior distribution [9]. To counteract this
deficiency, a more efficient ABC technique based on MCMC was developed [9]. The implementation
Algorithm 5. MCMC ABC with early rejection [49].

1: Obtain u0 and z0 using ABC rejection sampling.

2: for t ¼ 1 to T do

3: Draw u� � q(u�jut�1).

4: Compute r ¼ p(u�)q(ut�1ju�)
p(ut�1)q(u�jut�1)

.

5: if U(0, 1) < r then

6: Simulate z� from model given u�.
7: if 0{r(z�, y) � e} then

8: Set ut ¼ u� else, set ut ¼ ut�1.

9: end if

10: else

11: ut ¼ ut�1.

12: end if

13: end for
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of an early rejection step [49] can improve the efficiency of the method, since data is only simulated

under the model when necessary, as shown in algorithm 5. MCMC ABC is motivated by a desire to
keep proposals for θ in highly probable regions of the posterior. MCMC ABC aims to combat the
heavy storage requirements of the ABC rejection sampler, while allowing efficient exploration of the
parameter space. The approach requires tuning both the e parameter and the proposal distribution q
for efficient use.

A.2.3. SMC ABC

In order to improve the low acceptance rate in the basic ABC algorithm, an SMC ABC algorithm was
proposed in Sisson et al. [14], based on the SMC sampler methodology developed by Del Moral et al.
[27] (algorithm 6).
Algorithm 6. SMC ABC algorithm [14,16,27].

1: Initialize et � 0 for t ¼ 1,::::,T where et.etþ1. 0.

2: for t ¼ 0 to T do

3: for i ¼ 1 to N do

4: if t ¼ 0 then

5: Sample u�� from p(u).

6: else

7: Sample u� from the previous population u(i)t�1 with normalized weights

w(i)
t�1 and use a perturbation kernel Kt to sample u

�� � Kt ( � ju�).
8: end if

9: if p(u��) ¼ 0 then

10: Go to line 4.

11: else

12: Simulate z� from model given u��.
13: end if

14: if r(z�, y) � et then

15: Go to line 4.

16: else

17: Set u(i)t ¼ u�� and calculate the weight for the particle u(i)t :

wðiÞ
t ¼

1 if t ¼ 0
pðuðiÞt ÞP

N
j¼1w

ð jÞ
t�1KtðuðiÞt juð jÞt�1Þ

if t . 0:

8><
>:

18: end if

19: end for

20: set etþ1 to be a-quantile of saved distances vector

21: et ¼ etþ1

22: Normalize the weights.

23: end for

24: Return particles u(i)T .

sos
R.Soc.open

sci.7:191315
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