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We study the stochasticity in a dynamical model: ribosome flow
model with different site sizes that models the unidirectional
movement of particles controlled by transition rates along a
lattice having different site sizes. Our work models the
parameters as random variables with known distributions and
investigates the steady-state flow rate under this notion by
using tools from the random matrix theory. Some closed-form
theoretical results are derived for the steady-state flow rate
under some restrictive assumptions such as random variables
being independent and identically distributed. Furthermore,
for arbitrary but bounded stochastic transition rates, stochastic
site capacities, or both, we establish bounds for the steady-state
flow rate. Our analysis can be generalized and applied to
study the flow of particles in numerous transport systems in
the stochastic environment.
1. Introduction
There aremany natural orman-made transport processes that can be
viewed as non-equilibrium systems where ‘particles’ move along a
one-dimensional lattice of ordered ‘sites’. These processes include
movement of molecular motors [1], gene translation [2],
transcription [3], intracellular transport [4], vehicular traffic [5],
phosphorelay [6] and many more. A basic physical concept in
these transport processes is the simple exclusion principle which
asserts that each site along the lattice can be occupied by at most
one particle. Several particles move simultaneously along the same
track thus forming traffic congestion behind a particle that does
not move for a long time [7].
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In reality, there are various types of stochasticity present in all these systems due to several

reasons such as intrinsic factors, experimental noise, uncertainty, etc. For example, in many cellular
transport processes, chemical reactions are stochastic due to their microscopic nature where the
chemical transitions take place with exponentially distributed waiting times [8]. Therefore, it is
necessary to speculate these transport processes in the stochastic environment to understand them in
a better way. A key factor to analyse is the flow rate and hence it is of considerable interest to
understand how this rate is affected under stochasticity in these processes. Generally, the stochastic
effects are modelled by considering the parameters drawn from the probability distributions following
certain physical arguments.

Mathematical models are becoming increasingly significant in understanding the particle flow
dynamics because they can be used to make qualitative and quantitative predictions about the effects
of changing parameters on system dynamics [9–15]. An elementary model from statistical physics
based on the simple exclusion principle is the stochastic model called the totally asymmetric simple
exclusion process (TASEP) [16–18]. Particles hop unidirectionally with some probability from one site
to the next free site in this fundamental model, illustrating that the particles have volume and cannot
pass one another. As a result, each site can be either occupied by a single particle or remain vacant,
meaning that all sites are of equal size.

TASEP and its variants have been extensively used to model a variety of processes such as cellular
cargo transport, pedestrian dynamics, transport across biomembrane channels, the packets flow in
communication networks, and many more [19]. However, due to the indirect interactions between the
particles, analysis of TASEP is cumbersome and in particular, results for TASEP hold when the
number of sites goes to infinity. In particular simplified cases, such as the model with homogeneous
rates, exact solutions can be obtained, whereas in the non-homogeneous stochastic case, one looks for
extensive and time-consuming Monte Carlo simulations.

A deterministic mathematical model called the ribosome flow model (RFM) which is derived as a
dynamical mean-field approximation of TASEP was introduced by Reuveni et al. [20]. This model is
easy to simulate and highly amenable to mathematical analysis using tools from the theory of
cooperative dynamical systems [21], contraction theory [22] and Perron–Frobenius theory [23]. The
RFM includes n consecutive sites along a one-dimensional track. The normalized occupancy level (or
density) of site i at time t is described by a state variable xiðtÞ :Rþ �! ½0, 1� where xi(t) = 0[xi(t) = 1]
means that site i is completely free [full] at time t. The flow between site i and site i + 1 is controlled
by the transition parameter λi > 0. The dynamics of the RFM is given by the n nonlinear ordinary
differential equations:

_xi ¼ λi�1xi�1ð1� xiÞ � λixið1� xiþ1Þ, i ¼ 1, . . . , n, ð1:1Þ

where x0(t) := 1 and xn+1(t) := 0. Equation (1.1) depicts that the flow of particles from site i to site i + 1 is
λixi(1− xi+1). This model includes a ‘soft’ version of the simple exclusion principle i.e. the flow increases
with the occupancy level at site i and it decreases as site i + 1 becomes full. The flow or output rate from
the last site at time t is denoted by R(t) := λn xn(t). It has been proved that the steady state is always
achieved by the dynamics [24]. Clearly, RFM is a nonlinear compartmental system where each state
variable describes the amount of material in each compartment. Several generalizations of the RFM have
been widely used to mimic the flow of ribosomes along an mRNA molecule or networks of mRNAs as
well as other key cellular transport processes, etc. [25–32].

The capacity of each site or compartment is taken to be equal in the RFM. However, each site can have
a different size, i.e. capacity of two different compartments can be unequal. For example, consider the
flow of vehicles down a road: depending on the number of parallel lanes, each section would have a
different capacity. To incorporate this feature, a generalization of the RFM called ribosome flow model
with different site sizes (RFMD) was introduced [33]. Each particle in this model hops forward to the
next site not only if it is vacant, but also if it is ready to accept the particle. The dynamics of the
RFMD is given by the set of n nonlinear ordinary differential equations:

_xi ¼ λi�1xi�1ðqi � xiÞ � λixiðqiþ1 � xiþ1Þ, i ¼ 1, . . . , n, ð1:2Þ

where x0(t) := 1 and xn+1(t) := 0. The state variable xiðtÞ :Rþ �! ½0, qi� describes the normalized occupancy
level of site i at time t where xi(t) = 0[xi(t) = qi] means that site i is completely empty [full] (figure 1). The
parameter qi∈ (0, 1] describes the maximal capacity at each site. We review the mathematical properties
of the RFMD in the next section. In the particular case, when qi = 1 for all i, RFMD becomes the RFM.
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Figure 1. The representation of unidirectional flow along a chain of n sites having different sizes. The parameter λi > 0 controls the
transition rate from site i to site i + 1. The parameter qi represents the size of the site i. The state variable xi(t)∈ [0, qi] represents
the density at site i at time t. R(t) denotes the output rate from the lattice at time t.
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The transition rates that are considered fixed in the RFM generally vary depending upon the
available resources, the presence of various noise sources, etc. For example, variance of elongation
factors like EF-Tu, tRNA molecules, etc. leads to randomness in the transition parameters in the
translation process. In a recent paper, variations in the rates of the RFM have been studied by
assuming them as random variables [34]. Using tools from random matrix theory, it is proved that
the steady-state output rate is bounded above and below by two random values and that both
bounds converge to a constant value when the random variables are independent and identically
distributed (i.i.d.) [34].

The RFMD is a more useful model for analysing the movement of particles along a one-
dimensional track as it incorporates an important dynamical feature of different site sizes that do not
exist in the RFM. Therefore, it is crucial to understand this model with variable rates due to various
levels of stochasticity. In this paper, we characterize the notion of randomness in the RFMD in the
sense that the parameters are random variables with known distributions and analyse the steady-state
flow rate in the RFMD through a theoretical approach under this assumption. In particular, this also
models the transport phenomena having stochastic variations in the transition rates and fixed site
sizes. Our main results also include some closed-form results under restrictions such as rates are i.i.d.
random variables.

The paper is organized as follows. The next section recalls the dynamical properties of the RFMD that
are relevant in our context. Section 3 describes our main theoretical results. The next section includes all
the proofs of the given results. The final section summarizes the findings and suggests several directions
for further research.
2. Dynamical properties of the RFMD
Let Rn

þþ denote the set of n-dimensional vectors with all entries positive. Consider an RFMD with
dimension n having transition rates λ [ Rnþ1

þþ and site sizes q∈ (0, 1]n. Let x(t, a) denote the solution of
the RFMD at time t for the initial condition x(0) = a. The state variable xi(t) corresponds to the
normalized occupancy level at site i at time t, so we always assume that a belongs to the state space:

C :¼ fx [ Rn : xi [ ½0, qi�, i ¼ 1, 2, . . . , ng:
It has been proved that there exists a unique e∈ int(C ) such that for any initial condition in C, the solution
belongs to int(C ) for all t > 0 and limt→∞ x(t, a) = e [33]. In other words, the rates and site sizes determine a
unique steady-state e, and any solution arising from different initial conditions in C converges to it.

At the steady state, for x = e, the left-hand side of all the equations in (1.2) is zero, so

λ0ðq1 � e1Þ ¼ λ1e1ðq2 � e2Þ
¼ λ2e2ðq3 � e3Þ

..

.

¼ λn�1en�1ðqn � enÞ
¼ λnen:

To put it another way, at the steady state, the flow into and out of each site is equal. Let R := λnen
denote the steady-state flow or output rate. It is clear that obtaining the solution of non-linear
equations in (1.2) is not straightforward in general. However, it has been recently proved in [33] that
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the steady-state flow rate can be obtained from the spectral properties of a suitable tridiagonal matrix.

Define An :Rþ �! Rðnþ2Þ�ðnþ2Þ by

AnðrÞ :¼

0 λ�1=2
0 0 . . . 0

λ�1=2
0 ð1� q1Þr λ�1=2

1 . . . 0

0 λ�1=2
1 ð1� q2Þr . . . 0

..

.

0 . . . 0 ð1� qnÞr λ�1=2
n

0 . . . 0 λ�1=2
n 0

2
66666666664

3
77777777775
:

The above matrix An(r) has real eigenvalues due to the fact that it is symmetric. Further, each element of
An(r) is non-negative and An(r) is irreducible, implying that it has a simple maximal positive eigenvalue
for each r [23]. It was shown in [33] that there exists a unique value r� ∈ (0, ∞) such that

sðAnðr�ÞÞ ¼ r�, ð2:1Þ
and the steady-state flow rate satisfies

R ¼ 1

ðs ðAnðr�ÞÞÞ2
: ð2:2Þ

The spectral representation above shows that the steady-state flow rate in the RFMD depends on the
transition rates and site capacities. This spectral representation has various useful theoretical
implications. It has been used to obtain results on the sensitivity analysis and quasi-concavity of the
steady-state flow rate. It also allows the upper and lower bounds of R to be determined when the
rates are random variables with some known distributions using tools from probability theory as
shown in the following sections.

The main results on the steady-state flow rate in the RFMD given random transition rates or random
site capacities are presented in the next section.
3. Main results
Let ðV, F , PÞ be a probability space and all random variables in the next subsections are defined on
this common probability space. We describe random variable X as almost sure bounded if
there exists 0≤ c <∞ such that P½jXj � c� ¼ 1. Let MX :¼ infc�0 fP½jXj � c� ¼ 1g and
mX :¼ supc�0 fP½c � jXj� ¼ 1g. Let R�d :¼ fx [ R : x � d . 0g. The steady-state flow rate in the n-site
RFMD is denoted by Rn.

We analyse the value of Rn given the random transition rates or the site capacities. In the first §3.1, we
provide results on the value of Rn by assuming that the transition rates are random variables and the site
capacities are deterministic. The second §3.2 deals with the case when the site capacities are random
variables and the transition rates are deterministic. The last §3.3 analyses Rn given the variability in all
the rates.
3.1. The RFMD with stochastic transition rates
In this subsection, we consider randomness only in the transition rates, i.e. we assume that the size of all
the compartments is fixed and tackle stochasticity or uncertainties in the transition rates by assuming
them as random variables with some known distributions. This situation may model, for example,
variations in the speed of the vehicles due to different human behaviours along a multi-lane road
where there is a change in the number of lanes along the road.

The random variable Z := X−1/2 is almost sure bounded for X supported on R�d. We further examine
the steady-state flow rate by investigating two cases: homogeneous and non-homogeneous site
capacities. In the first case, we assume that all the site capacities are equal. This assumption is
certainly restrictive and is required in order to derive some closed-form theoretical outcomes.

Case 1. The homogeneous compartment sizes (qi = q)
Firstly, we consider an RFMDwith all the qi’s equal and denote their common value as q. The following

result assumes that the rates are i.i.d. random variables. ▪
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Figure 2. Histograms showing 5000 distinct values each for RFMD with dimensions 50, 500 and 1000 coloured in blue, red and
green, respectively, for the steady-state flow rate in the RFMD with the parameters considered in example 3.2. Our theoretical result
predicts that as n goes to infinity, the steady-state flow rate converges to 0.125 with probability one.
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Theorem 3.1. Assume that rates λi in the RFMD with dimension n are independent copies of a random
variable X having support on R�d. Then Rn !

p
q2ð2MX�1=2Þ�2 as n→∞, i.e. Rn approaches the value

q2ð2MX�1=2Þ�2 with probability one, as n→∞.

The above result states that as the dimension of the RFMD increases, the steady-state flow rate
converges with unit probability to a fixed value depending upon the constant site size q and on the
minimal possible value (with probability one) that the random variable X attains. Clearly, for q = 1, we
retrieve the case of variability in the rates in the RFM [34].

Example 3.2. Suppose that X follows a half-normal distribution with mean having value 2 and
standard deviation having value 0.1. Note that MX�1=2 ¼ 1=

ffiffiffi
2

p
. Let qi = 0.5 for all i. In this case as n

goes to infinity, Rn !
p
0:125 by theorem 3.1. A histogram of the results for n∈ {50, 500, 1000} is shown

in figure 2.

We now investigate the cases where the restrictive assumption of rates being i.i.d. random variables is
a little bit relaxed. Our first case considers that the random variables Xi could be non-identical, but all
independent and having the same support. In this case also, the analysis of the proof of theorem 3.1
proves that the steady-state flow rate asymptotically approaches the same value as in theorem 3.1. The
next example exhibits this.

Example 3.3. Let n + 1 independent random variables X0, X1,…, X(n/2)−1 be distributed using the
half-normal distribution with mean having value 1 and standard deviation having value 0.1 and Xn/2,
X(n/2)+1,. . ., Xn distributed uniformly on [1, 2]. Note that MX�1=2

i
¼ 1 for all i. Let qi = 0.3 for all i. The

theory predicts that as n goes to infinity, Rn !
p
0:0225. A histogram of the results for n∈ {50, 500, 1000}

is depicted in figure 3.

In the second case, we allow a growing (but still tiny) number of random variables having support
different from the other random variables. We use the notation Sn to denote the set of permutations on
f1, 2, . . ., ng. Consider a permutation π∈ Sn, and let Yp W p � Y ¼ ðYpð1Þ, Ypð2Þ, . . ., YpðnÞÞ. Let Yp

i denote
the ith element in Yπ. The next result is a generalization of the theorem stated for q = 1 in [34].

Theorem 3.4. Let d = d(n) > 0 be an integer which has the property limn→∞ d(n)/n = 0. fXign�d
i¼0 is a

collection of (n− d + 1) independent random variables having support on R�d, and satisfies

MX�1=2
0

¼ MX�1=2
1

¼ 	 	 	 ¼ MX�1=2
n�d

: ð3:1Þ
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Figure 3. Histograms showing 5000 distinct values each for RFMD with dimension 50, 500 and 1000 coloured in blue, red and
green, respectively, for the steady-state flow rate in the RFMD with the parameters considered in example 3.3. The theory predicts
that as n goes to infinity, the steady-state flow rate converges to 0.0225 with probability one.
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fXignn�dþ1 is a collection of d random variables having support on the positive semi-axis and satisfies

MX�1=2
j

� d�1=2, j ¼ n� dþ 1, . . . , n: ð3:2Þ

Denote Y ¼ ðX0, X1, . . ., XnÞ. Fix a permutation π∈ Sn+1. Let each rate λi in the RFMD with dimension n be a
copy of the random variable Yp

i , for 0≤ i≤ n and λi’s are independent. Then Rn !
p
q2ð2MX�1=2

0
Þ�2 as n→∞.

The above result showsthat the steady-state flowrate asymptoticallyapproaches the samevalue as in theorem
3.1. We shall now describe results on the steady-state flow rate given the non-homogeneous site capacities.

Case 2. The non-homogeneous compartment sizes
Secondly, we consider the casewhen some (or all) qi’s are non-identical. Let q‘ and qL denote theminimum

and maximum value of q, respectively. For given e > 0, define aðeÞ :¼ PfX�1=2 � MX�1=2 � eg. The next
result analyses the bounds of Rn for the finite dimension n of the RFMD. ▪

Theorem 3.5. Assume that rates λi in the RFMD are independent copies of a random variable X having
support on R�d. Consider two sequences of positive integers (ni) with nj < ni for j < i and (si) with sj < si for
j < i and satisfying si < ni− 1 for all i. Also, consider a decreasing sequence of positive scalars ei, with ei→ 0.
Then Rni in the RFMD with dimension ni for any i satisfies

ðq‘Þ2ð2MX�1=2Þ�2 � Rni � ðqLÞ2ð2MX�1=2Þ�2�1þOðei þ s�2
i Þ�, ð3:3Þ

with probability at least

1� exp � ni � 2
si

� �
ðaðeiÞÞsi

� �
: ð3:4Þ

The following general result examines the case where we have bounded but arbitrary Xi’s. The set of
all possible s consecutive integers from the set f1, 2, . . ., n� 1g is denoted by J n�1

s .

Theorem 3.6. Assume that each rate λi in the RFMD with dimension n is a copy of a random variable Xi

having support on R�di , for 0≤ i≤ n. Then Rn satisfies

ðq‘Þ2
 

max
1�i�n

X�1=2
i�1 þ X�1=2

i

!�2

� Rn � ðqLÞ2 2 max
1�s�n�1

cos
p

sþ 2

� �
max

Js[J n�1
s

mini[JsX
�1=2
i

 !�2

, ð3:5Þ

with probability one.
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The above result shows that the steady-state flow rate may not approach a deterministic value in this

scenario, but rather it is constrained by two random values above and below. Given several possible
distributions of random transition rates, this result gives a notion of a range of output rates. The
steady-state flow rate is examined in the next subsection, given deterministic transition rates and
variability in site capacities.
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3.2. The RFMD with stochastic compartment sizes
In this subsection, we consider randomness only in the site sizes, i.e. we assume that the transition
rates are fixed and tackle fluctuations in the size of compartments by assuming them as random
variables with some known distributions. This may model processes like the packets flow in
communication networks. In the context of linear communication networks, the data packets are the
moving particles and buffers are the sites [35]. Owing to many reasons such as run-down
communication infrastructure or interference, there could be fluctuations in the capacity of the buffers
holding the data packets [36]. The approach used here can be generalized to analyse the flow of
packets in such networks.

We further analyse the steady-state flow rate by considering the cases of homogeneous and non-
homogeneous transition rates. We assume that all the transition rates are equal in the first case. Of
course, this assumption is limiting, yet it is required to derive some closed-form theoretical results.
However, it has some empirical support, for example, the rate of data packet transmission in a
communication network can be the same under similar conditions.

Case 1. The homogeneous transition rates (λi = λ)
Firstly, we consider the case when all the λi’s are equal and denote their common value by λ. The next

result assumes that the site capacities are i.i.d. random variables. ▪

Theorem 3.7. Assume that site capacities qi in the RFMD with dimension n are independent copies of a
random variable Q having support on [β, γ] where 0 < β < γ≤ 1. Then Rn !

p ðmQÞ2λ=4 as n→∞.

The above result states that the steady-state flow rate asymptotically approaches a constant value with
probability one that depends on the constant transition rate λ and the minimal possible value (with
probability one) of the random variable Q as the RFMD’s dimension grows.

Example 3.8. Assume that Q has a uniform distribution on the range [0.8, 1]. Take note of mQ = 0.8.
For all i, let λi = 1. In this case, theorem 3.7 implies that as n approaches infinity, Rn !

p
0:16. A histogram of

the results for n∈ {50, 500, 1000} is shown in figure 4.

Likewise, in the first subsection, we now examine the cases where we allow some relaxations in the
assumption that the site capacities are i.i.d. random variables. Our first case considers the random
variables Qi that might be non-identical, but all independent and they all have the same minimum
bound. The following example shows that if each site capacity qi is taken from the Qi distribution,
then again the steady-state flow rate approaches the same value as given in theorem 3.7.

Example 3.9. Let n independent random variables Q1,…, Qn/2 distributed uniformly on [0.7, 0.9] and
Q(n/2)+1,. . ., Qn distributed uniformly on [0.7, 0.8]. Note that mQi ¼ 0:7 for all i. Let λi = 1 for all i. Thus,
our theory predicts that as n approaches infinity, Rn !

p
0:125. A histogram of the results for n∈ {50, 500,

1000} is depicted in figure 5.

We consider an increasing (but small in comparison to n) number of random variables modelling site
sizes to have a different support than the rest of the other random variables in the next result.

Theorem 3.10. Consider an integer d = d(n) > 0 with the property limn→∞d(n)/n = 0. fQign�d
i¼1 is a collection

of (n− d ) independent random variables having support on [β, γ] where 0 < β < γ≤ 1 and satisfies

mQ1 ¼ mQ2 ¼ 	 	 	 ¼ mQn�d : ð3:6Þ
fQignn�dþ1 is a collection of d random variables having support on [μi, τi] where 0 < μi < τi≤ 1 for
i ¼ n� dþ 1, . . ., n and satisfies

mQj � b, j ¼ n� dþ 1, . . . , n: ð3:7Þ

Denote Y = (Q1, Q2,…, Qn). Consider a permutation π∈ Sn. Each site capacity qi in the RFMD with dimension n
is a copy of the random variable Yp

i , for 1≤ i≤ n and qi’s are independent. Then Rn !
p ðmQ1Þ2λ=4 as n→∞.
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Figure 5. Histograms showing 2500 distinct values each for RFMD with dimension 50, 500 and 1000 coloured in blue, red and
green, respectively, for the steady-state flow rate in the RFMD with the parameters considered in example 3.9. The theory forecasts
that as n goes to infinity, the steady-state flow rate converges to 0.125 with probability one.
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Figure 4. Histograms showing 5000 distinct values each for RFMD with dimensions 50, 500 and 1000 coloured in blue, red and
green, respectively, for the steady-state flow rate in the RFMD with the parameters considered in example 3.8. Our theoretical result
shows that as n goes to infinity, the steady-state flow rate converges to 0.16 with probability one.
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The above result shows that the steady-state flow rate approaches the same value as n goes to infinity
as in theorem 3.7. Next, we shall discuss the case of non-homogeneous transition rates.

Case 2. The non-homogeneous transition rates
Secondly, we consider the case when some (or all) λi’s are non-identical. Let λ‘ and λL denote

the minimum and maximum value of fλ�1=2
i : i ¼ 0, 1, . . ., ng, respectively. For η > 0, define
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bðhÞ :¼ PfQ � mQ þ hg. The following result provides the bounds of Rn for the finite dimension n

of the RFMD. ▪

Theorem 3.11. Let us assume that site capacities qi in the RFMD are independent copies of a random variable
Q having support on [β, γ] where 0 < β < γ≤ 1. Choose two positive integer sequences (ni) with nj < ni for j < i and
(si) with sj < si for j < i and satisfying si < ni for all i, and a decreasing sequence of positive scalars ηi, with ηi→ 0.
Then Rni in the RFMD with dimension ni for any i satisfies

ðmQÞ2ð2λLÞ�2 � Rni � ðmQÞ2ð2λ‘Þ�2 1þ h2
i

mQ
þ 2hi

mQ

� ��
1þOðs�2

i Þ�, ð3:8Þ

with probability at least

1� exp � ni � 1
si

� �
ðbðhiÞÞsi

� �
: ð3:9Þ

Notably, the convergence rate (3.8) to the value given for homogeneous transition rate in theorem 3.7
as n increases is slower than the rate of convergence (3.3) to the value given for homogeneous site size in
theorem 3.1. The following result deals with the situation where Qi’s are arbitrary yet bounded. They do
not have to be independent or identical.

Theorem 3.12. Suppose that every site capacity qi in the RFMD with dimension n is a copy of a random
variable Qi having support on [βi, γi] where 0 < βi < γi≤ 1, for 1≤ i≤ n. Then Rn satisfies

(min1�i�nQi)
2ð2λLÞ�2 � Rn ð3:10Þ

and

max
1�s�n

�
2λ‘ cos

p

sþ 1

� �
þ max

Js[J n
s

(1�max
i[Js

Qi)
1

ðRnÞ1=2
�

� 1

ðRnÞ1=2
: ð3:11Þ

The above theorem shows that steady-state flow rate is explicitly bounded below by a random
quantity and the other bound follows an implicit relationship. In the above subsections, we derive the
theoretical results where we allow assumptions on the transition rates as random variables and
the site capacities are deterministic and vice-versa. However, in the following subsection, we provide
the bounds for the steady-state flow rate in the most general scenario, when the capacities of the sites
and the values of the transition rates are random.
3.3. The stochastic RFMD
We state our last result where we assume that all the parameters are arbitrary random variables but
bounded and they need not be independent or identical. For Js [ J n�1

s , let Hs be the set
fJs < ð‘ðJsÞ þ 1Þg where ‘(Js) denotes the last entry of the set Js.

Theorem 3.13. Assume that each rate λi in the RFMD with dimension n is a copy of a random variable Xi

having support on R�di , for 0≤ i≤ n. Suppose that each site capacity qi in the RFMD is a copy of a random
variable Qi having support on [βi, γi] where 0 < βi < γi≤ 1, for 1≤ i≤ n. Then Rn satisfies

(min1�i�nQi)
2
	
max
1�i�n

X�1=2
i�1 þ X�1=2

i


�2
� Rn ð3:12Þ

and

max
1�s�n�1

max
Js[J n�1

s

2 cos
p

sþ 2

� �
mini[JsX

�1=2
i þ ð1�max

i[Hs

QiÞ 1

ðRnÞ1=2
 !

� 1

ðRnÞ1=2
: ð3:13Þ

The above result states that steady-state flow rate is bounded by two random quantities: the lower
bound is explicit and the other bound follows an implicit relationship. The theoretical result stated
here is the most general result that holds for variability or fluctuations both in the transition rates and
the site capacities. We state an example to demonstrate the above theorem.
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Figure 6. Histogram of 10 000 different values for RFMD with dimension 3 for the steady-state flow rate in the RFMD with the
parameters considered in example 3.14. The theory predicts that the steady-state flow rate lies between 0.0625 and 0.49.
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Example 3.14. Consider an RFMD with dimension n = 3. Let the transition rates λ distributed
uniformly on [1, 2] and the site sizes q distributed uniformly on [0.5, 0.7]. We have by calculation,
0.0625≤Rn≤ 0.49. Figure 6 depicts a histogram for n = 3.

Note: Even though both the transition rates and the site capacities themselves are i.i.d. random
variables, the steady-state flow rate does not converge to a deterministic value in this situation,
contrary to our earlier theoretical conclusions. This can be explained as follows. Suppose that each
rate λi is generated using the distribution of a random variable X that takes values in the interval
[a, b], where a > 0. Consider that every site capacity qi is selected using the distribution of a random
variable Q taking values in the interval [c, d ], where 0 < c < d≤ 1. In this respect, we have

1ffiffiffi
b

p � 1ffiffiffiffi
X

p � 1ffiffiffi
a

p ð3:14Þ

and

c � Q � d: ð3:15Þ
From equation (3.12), we have

c2 a
4

� Rn: ð3:16Þ

From equation (3.13), we have

2 cos
p

sþ 2
1ffiffiffi
b

p þ ð1� dÞ 1ffiffiffiffiffiffi
Rn

p � 1ffiffiffiffiffiffi
Rn

p ð3:17Þ

and

) Rn � d2 b

4 ðcosðp=ðsþ 2ÞÞÞ2 : ð3:18Þ

As n→∞, we can choose s large enough such that

Rn � d2 b
4

: ð3:19Þ
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Equations (3.16) and (3.19) imply

c2 a
4

� Rn � d2 b
4

: ð3:20Þ

Thus, the steady-state flow rate is bounded above and below by two different deterministic values
as n→∞.

4. Proofs
Firstly, we recall a result stated in [34] that will be used later on in proving theorem 3.1.

Proposition 4.1. Suppose that fUigni¼1 are i.i.d. random variables such that they are almost sure bounded. Let
e > 0. Consider an integer 1≤ s≤ n and let S be the event that there exists an index 1≤ k≤ n− s + 1 such that
Uk, . . ., Ukþs�1 � MU1 � e. Then the probability of S converges to one as n→∞.

Proof. Let f :¼ MU1 � e. For k∈ {1,…, n− s + 1}, let S(‘) denote the event: U‘,…, U‘+s−1≥ f. Then

PðSÞ � P
�
Sð1Þ< Sðsþ 1Þ< Sð2sþ 1Þ< 	 	 	< Sðhsþ 1Þ�,

where h is the largest integer such that (h + 1)s≤ n. We have the i.i.d. Ui’s and thus we get

PðSÞ � 1� �1� ðPðU1 � fÞÞs�hþ1
:

Since the probability PðU1 � fÞ is positive, when n→∞, we have PðSÞ ! 1. ▪
Proof of theorem 3.1. For ease of notation, let Zi :¼ λ�1=2
i and each random variable Zi is a copy of

X−1/2. Then An :Rþ �! Rðnþ2Þ�ðnþ2Þ can be written as

AnðrÞ :¼

0 Z0 0 . . . 0
Z0 ð1� qÞr Z1 . . . 0
0 Z1 ð1� qÞr . . . 0

..

.

0 . . . 0 ð1� qÞr Zn
0 . . . 0 Zn 0

2
66666664

3
77777775
:

The maximum eigenvalue of any symmetric matrix A having non-negative elements is bounded above
by the maximum of the row sums of A [23], i.e.

λmaxðAÞ � max
1�i�n

Xn
j¼1

aij: ð4:1Þ

Given An(r) is a symmetric matrix with non-negative elements and hence,

λmaxðAnðrÞÞ � max
1�i�n�1

ðZi þ Ziþ1Þ þ ð1� qÞr: ð4:2Þ

Also, we have Zi � MZi for all i, which implies

λmaxðAnðrÞÞ � 2MZ1 þ ð1� qÞr, ð4:3Þ
with probability one. By equations (2.1) and (2.2), we get

q2

ð2MZ1Þ2
� Rn: ð4:4Þ

Let Gs denote the (s + 1) × (s + 1) symmetric tridiagonal matrix

Gs :¼

0 1 0 . . . 0
1 0 1 . . . 0
0 1 0 . . . 0

..

.

0 . . . 0 0 1
0 . . . 0 1 0

2
66666664

3
77777775
:

It is known that the maximal eigenvalue of the above matrix is λmax(Gs) = 2cos (π/(s + 2)) [37].
Let f :¼ MZ1 � e. By proposition 4.1, we have an index k such that Zk, . . ., Zkþs�1 � f . We shall
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consider k = 1 and the other cases can be handled similarly. Let Bn(r) be the matrix obtained by replacing

the (s + 1) × (s + 1) principal minor corresponding to the indices 2, 3,…, s + 2 of An(r) by fGs + (1− q)r Is+1.
Hence Bn(r) is given by

0 Z0 0 0 . . . . . . . . . 0
Z0 ð1� qÞr f 0 . . . . . . . . . 0
0 f ð1� qÞr f 0 . . . . . . 0

. .
.

0 . . . 0 f ð1� qÞr Zsþ1 . . . 0
0 . . . 0 0 Zsþ1 ð1� qÞr . . . 0

. .
.

0 . . . . . . . . . 0 ð1� qÞr Zn
0 . . . . . . . . . 0 Zn 0

2
6666666666666664

3
7777777777777775

:

Then An(r)≥ Bn(r) (the inequality is componentwise) and hence λmax(An(r))≥ λmax(Bn(r)). Using Cauchy’s
interlacing theorem, we have that the largest eigenvalue of Bn(r) is larger than or equal to the largest
eigenvalue of any of its principal minors. Thus,

λmaxðBnðrÞÞ � fλmaxðGsÞ þ ð1� qÞr, ð4:5Þ
and

) λmaxðAnðrÞÞ � 2f cos
p

sþ 2

� �
þ ð1� qÞr: ð4:6Þ

By equation (2.1), we get

r� � 2f cos
p

sþ 2

� �
þ ð1� qÞr�: ð4:7Þ

By equation (2.2), we get

Rn � q2

(2f cos (p=ðsþ 2Þ))2 : ð4:8Þ

Since this holds for any e > 0 and any integer s, and by equation (4.4), the proof of the theorem is
completed. ▪
Proof of theorem 3.4. By the pigeonhole principle, there exist a subsequence of Yπ of length at least n/d,
which consists of consecutive Xi’s. In the proof of proposition 1, the range of parameter h becomes
ðhþ 1Þs � bn=dc and we have n/d→∞ which implies h→∞ as well. The lower bound also holds due
to the condition in equation (3.2). Hence, by applying the arguments used in proof of theorem 3.1, we
get the result. ▪
Proof of theorem 3.5. Let e > 0. Consider an integer 1≤ s≤ n− 1. Let aðeÞ :¼ PfZ1 � MZ1 � eg. The
arguments in the proof of theorem 3.1 implies that

r� � 2ðMZ1 � eÞ
qL

cos
p

sþ 2

� �
, ð4:9Þ

with probability PðSÞ � 1� ð1� ðaðeÞÞsÞbðn�1Þ=sc � 1� expð�bðn� 1Þ=scðaðeÞÞsÞ. By equation (4.9), we get

Rni � ðqLÞ2 2ðMZ1 � eiÞ cos p

si þ 2

� �� ��2

¼ ðqLÞ2ð2MZ1Þ�2 1þ ei
MZ1

þ oðeiÞ
� �

1þ p2

ðsi þ 2Þ2 þ oðs�2
i Þ

 !

¼ ðqLÞ2ð2MZ1Þ�2(1þOðei þ s�2
i Þ):

The lower bound can be attained as in theorem 3.1 and hence this completes the proof of the theorem. ▪
Proof of theorem 3.6. From equation (4.1), we have

λmaxðAnðrÞÞ � max
1�i�n

ðX�1=2
i�1 þ X�1=2

i Þ þ ð1� q‘Þr: ð4:10Þ
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By equation (2.2), we have

r� � max1�i�nðX�1=2
i�1 þ X�1=2

i Þ
q‘

ð4:11Þ

and

) ðq‘Þ2�
max1�i�nðX�1=2

i�1 þ X�1=2
i Þ�2 � Rn: ð4:12Þ

For 1≤ s≤ n− 1, let Js [ J n�1
s . Let Bn(r) be the matrix obtained by replacing (s + 1) × (s + 1) principal

minor corresponding to the indices Js of An(r) by Gs mini[Js X
�1=2
i . Thus,

λmaxðAnðrÞÞ � λmaxðGsmini[JsX
�1=2
i Þ þ ð1� qLÞr

� 2 cos
p

sþ 2

� �
mini[JsX

�1=2
i þ ð1� qLÞr:

Since this holds for any choice of 1≤ s≤ n− 1 and Js [ J n�1
s , therefore we get the upper bound given in

equation (3.5). ▪
ci.9:220698
Proof of theorem 3.7. Let mX :¼ supc�0 fP½c � jXj� ¼ 1g. We shall state a proposition that has proof
similar to the proof of proposition 1.

Proposition 4.2 Suppose that fVigni¼1 are i.i.d. random variables and are almost sure bounded. Let η > 0.
Consider an integer 1≤ s≤ n and let S be the event that there exists an index 1≤ k≤ n− s + 1 such that
Vk, . . ., Vkþs�1 � mV1 þ h. Then the probability of S converges to one as n→∞.

Now, using proposition 4.2 and the arguments in the proof of theorem 3.1, completes its proof. ▪

Proof of theorem 3.10. Using the arguments given in theorem 3.4 and in the proof of theorem 3.7,
completes the proof. ▪
Proof of theorem 3.11. Let η > 0. Consider an integer 1≤ s≤ n. Let bðhÞ :¼ PfQ � mQ þ hg. Using the
arguments as in proof of theorem 3.7, we have

r� � 2λ‘
ðmQ þ hÞ cos

p

sþ 2

� �
, ð4:13Þ

with probability PðSÞ � 1� ð1� ðbðhÞÞsÞbn=sc � 1� expð�bn=scðbðhÞÞsÞ . By equation (4.13), we get the
upper bound. Similarly, the lower bound can be attained as in theorem 3.1 and hence, the proof of the
theorem can be concluded. ▪
Proof of theorems 3.12 and 3.13. The proof is based on the same approach used in theorem 3.6 and thus
omitted. ▪
5. Discussion
Analysing the flow of particles along the tracks is of paramount importance to understand the dynamics
of transport processes including the flow of biological machines like motor proteins along filaments, the
evacuation dynamics, etc. Various models both deterministic and stochastic have been proposed to
model the movement of particles along the lattice. The RFM is a recent area of research to rigorously
analyse such processes. This is a deterministic, synchronous and continuous-time mathematical model
that is an approximation of TASEP.

The RFMD is a generalized version of the RFM that models an important feature of sites having
different sizes that was not incorporated in the RFM. The RFMD analyses the motion of particles in a
preferred direction along a lattice through a system of nonlinear ordinary differential equations. The
dynamics always converge to a steady-state density and thus implying a constant flow rate
eventually. Certain types of randomness or uncertainty are always present in many nonlinear systems.
An important question in this context is how the steady-state flow rate in the RFMD is affected by
these fluctuations.

In this paper, we analyse the stochasticity in RFMD through the consideration of randomness in all
the parameters by assuming them as random variables. Our analysis includes some closed-form
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theoretical results under restrictive assumptions such as rates are i.i.d. random variables. We show that,

given a constant homogeneous site size, the steady-state flow rate ultimately depends on the site size and
the minimal value of the random variables modelling the transition rates as the number of sites increases.
This scenario also holds where the assumption on the random variables as i.i.d. is relaxed a bit. This may
explain that the steady-state flow rate can be maintained in spite of some variations in the transition rates.
Furthermore, we derive bounds for the steady-state flow rate in the case of a finite dimension of the
RFMD having rates as i.i.d. variables and also in the case where transition rates are drawn from
arbitrary but bounded random variables.

Next, we analyse the steady-state flow rate in the case of deterministic transition rates and stochastic
site capacities. Similarly, we prove that given a fixed homogeneous transition rate, as the number of sites
increases, the steady-state flow rate depends on the transition rate and the minimum value that the
random variable modelling the site sizes attains. Our results also provide bounds on the steady-state
flow rate given the general case of arbitrary site capacities. In the last and most general result, we
derive bounds on the steady-state flow rate given different distributions of the transition rates or the
site sizes.

In conclusion, our work provides some asymptotic results and bounds on the output of the
RFMD and our observations are not dependent on the specific statistical distribution. For further
research, one can develop a different approach to derive results for the convergence of the steady-state
flow rate to the limiting value in the case of stochasticity in all the parameters in the RFMD. Moreover,
one can analyse the steady-state flow rate in the RFMD by assuming transition rates and site capacities
as dependent random variables. We believe that the results described here will be useful to analyse
systems modelled through the RFMD with rates subject to uncertainties or fluctuations. For example, to
analyse the performance of wireless line networks or multi-receiver diversity with random-varying
connectivity.
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