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PREFACE.

Tur object of the study of Mathematics, is two fold—the acqui-
gition of useful kuowledge, and the cultivation and discipline of
the mental powers. A parent often inguires, “Why should my
son study mathematics? I do not expect him to be a surveyor, an
engineer, or an astronomer.” Yet, the parent is very desirous
that his son should be able to reason correctly, and to exercise,
in all his relations in life, the energies of a cultivated and disci-
plined mind. This is, indeed, of more value than the mere attain-
ment of any branch of knowledge.

The science of Algebra, properly taught, stands among the first
of those studies essential to both the great objects of education.
In a course of instruetion properly arranged, it naturally follows
Arithmetie, and should be taught immediately after it.

in the following work, the object has been, to furnish an ele-
mentary treatise, commencing with the first principles, and leading
the pupil, by gradual and easy steps, to a knowledge of the ele-
ments of the science. The design has been, to present these in a
brief, clear, and scientific manner, so that the pupil should not be
taught merely to perform a certain routine of exercises mechani-
eally, but to understand the why and the wherefore of every step.
Yor this purpose, every rule is demonstrated, and every principle
analyzed, in order that the mind of the pupil may be disciplined
and strengthened go as to prepare him, either for pursuing the
stady of Mathematics intelligently, or more successfully attending
to any pursuit in life.

Some teachers may object, that this work is too simple, and toe
easily understood. A leading object has heen, to muke the pupil
foel, that he is not operating on unmeaning symbols, by means of
arbitrary rules; that Algebra is both a rational and o practical
subject, and that he can rely upon his reasoning, and the results
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of hig operations, with the same confidence as in arithmetic. ¥or
this purpose, he is farnished, ab almost every step, with the means
of testing the accuracy of the principles on which the rules ave
founded, and of the results which they produce.

Throughout the work, the aim has been, to combine the clear,
explanatory methods of the French mathematicians, with the prac-
tical exercises of the English and German, so that the pupil should
acquire both a practical and theoretical knowledge of the subject.

While every page is the result of the author’s own reflection,
and the experience of many years in the school-room, it 15 also
proper to state, that a large number of the best treatizes on the
same subject, both English and French, have been carefully con-
sulted, so thal the present work might embrace the modern and
most approved methods of treating the various subjects presented.

With these remarks, the work is submitted to the judgment of
follow laborers in the field of education.

August, 1848,

Woopwazn Couw

FGESTIONS T0 TEACHERS.

S U

It is intended that the pupil shall recite the Intellectual Exercises with
the bouk open before him, 2s in mental Arithmetie. Advanced pupils may
omit these exercises.

The following subjects may be omitted by the younger pupils, and passed
over by those more advanced, until the book is reviewed,

Obzervations on Addition and Subtraction, Articles 60-—84.

The greater pavt of Chapter IL,

Fupplement to Bquations of the First Degree, Avticles 164-—17

Properties of the Roots of an Fquation of the Second Degre
215--217.

Tn reviowing the book, the pupil shoald demonstrate the rules on the
blackboard.

The work will be found to contain o large number of examples for prac-
tice. Should any instructor deem these too mumerous, a povtion of them
may be omitted,

To teach the subject successfully, the principles must bhe firsh clearly
explained, and then the pupil exercised in the solution of appropriate
examples, until they ave rendered perfectly famitiar.

.
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RAY’S
ALGEZBRA,

PART FIRST.

INTELLECTUAL EXERCISES.

LESSON I.

Norn ro Tracuunrs.—All the exercises in the following lessons can
be solved in the sarae manner as in intellectual arithmetic; yet the instrue-
tor shounld require the pupils to perform them after the manner here indi-
eated. In every question let the answer bo verified.

1. T have 15 cents, which I wish to divide between William
and Daniel, in such a manner, that Daniel shall have 4wice as
many as William ; what number must I give to cach?

If T give William a certain number, and Daniel twice that num-
ber, both will have 3 times that cerfatn number; but both together
are to have 15 cents; hence, 3 times a certain number is 15.

Now, if 3 times a certain number is 15, one-third of 15, or 5,
must be the number.  Ilence, William received b conts, and Dan-
iel twice 5, or 10 conts.

1f, instead of a certuin number, we vepresent the number of cents
‘William is fo receive, by @, then the number Daniel is to receive
will be represented by 2w, and what both receive will be ropre-
sented by @ added to 2z, or 3.

If 3z is equal to 15,
then 1a or @ is equal o 5.

The learner will see that the two methods of solving this ques-
tion ave the same in prineciple; but that it is more convenient to
vepresent the quantity we wish to find, by a single lettor, than by
one or more words.

In the same manner, let the learner continue o use the lotter 2
to represent the smallest of the required numbers in the following

nestions,
questions o
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Norg.—w is read &, or one' «, and is the same as la. 22 is read two
or 2 times @ Sa is read three x, or 3 times 2, and s0 on.

2. What number added to itself will make 12?

Let 2 represent the number ; then wadded to 2 makes 2z, which
is equal t0 12; hence if 2z is equal to 12, one x, which is the half
of 2x, is equal to the half of 12, which is 6.

Veriricarion.—06 added to 6 makes 12,

3. What number added to itself will make 167

If o vepresents the number, what will represent the number
added to itself? What is 2z equal to? If 22 is equal to 16, what
is 2 equal to?

4. What number added to itself will make 247

5. Thomas and William each have the same number of apples,
and they both together have 20 ; how many apples has cach?

6. James is as old as John, and the sum of their ages is 22
years ; what is the age of each?

7. Tach of two men is to receive the same sum of money for
joh of work, and they both together receive 30 dollars; what is
the share of each?

8. Daniel had 18 cents; after spending a part of them, he fmmd
he had as many left as he had spent; how many conts had he spent?

9. A pole 30 feot high was broken by a blast of wind ; the part
broken off was equal to the part left standing ; what was the
length of each part?

Instead of saying x added to 2 is equal {0 80, it is more conven~
ient to say @ plus & is cqual to 30. Wo avoid writing the word
plus, we use the sign -, which means the same, and is called the
sign of addition. Also, instead of writing the word egual, we use
the sign ==, which means the same, and is called the sign of
equality.

10. John, James, and Thomas, are each to have equal shares of
12 apples; if o represents John’s shave, what will represent the
share of James? What will represent the share of Thomas?
‘What exprossion will represent x-+u--2 more briefly. If 3z=12,
what is the value of ®2 Why?

11. The sum of four equal numbers is equal to 20; if @ repre-
sents one of the numbers, what will represent each of the others?
‘What will represent a--a--z--z, more briefly? If 4220, what
is @ equal to? Why?

12. What is a-}a equal to? Ans. 22,

13. ‘What is z-+a-}a equal to?

14, What is :c-j—m-ra,—%—x equal to?
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LESSON I1.

1. Jaxms and John together have 18 cents, and John has twice
as many as James ; how many cents has each?

If @ represents the number of cents James has, what will repre-
sent the number John hias?  What will represent the number they
both have? If 8z is equal to 18, what is @ equal to? Why?

Norn.—If the pupil does not readily pereeive how to solve a question,
Jeb the instructor ask questions similar to the preceding.

2. A travels a certain distance one day, and twice as far the
next, in the two days he travels 36 miles; how far does he travel
cach day?

3. The sum of the ages of Barah and Jane is 15 years, and the
age of Jane ig twice that of Sarah; what is the ago of cach?

4. The sum of two numbers is 16, and the largor is 8 thmes the
gsmaller; whab ave the numbers ?

5. What number added to 3 times itsell will make 207

6. James boaght a lemon and an orange for 10 cents, the crange
cost four times as much as the lemon ; what wag the price of each?

7. In n storercom containing 20 casks, the number of those
that are full is four times the wumber of those that arve empty;
how many are there of each?

8. In a flock containing 28 sheep, there is cne black sheep for
each six white sheep ; how many ave there of each kind?

9. Two pleces of iron together weigh 28 pounds, and the hea-
vier plece weighs three times as much as the lighter; what is the
weight of each?

16. William and Thomas bought a foot-ball for 30 cents, and
Thomas paid twice as much as William ; what did each pay?

11. Divide 85 into bwo parts, such that one shall be four times
the other.

12. The sum of the ages of a father and son is equal t0 35
voars, and the age of the father is six times that of his son; what
is the age of each?

18. There are two numbers, the larger of which is equal to nine
times the smaller, and their sum is 40; what ave the numbers?

14. The sum of two numbers is 86, and the larger is equal to
seven times the smaller; what are the numbers?

15. What is a-+2x equal to?

16. What is a-+-3x equal to?

17, What is a-}-4x equal to?
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LESSON III.

1. Turee boys are to share 24 apples between them ; the second
is to have twice as many as the first, and the third three times as
many as the first. If © represents the share of the first, what will
represent the share of the second? "What will represent the share
of the third? What is the sum of a-}2a-}32? If 6z is cqual
to 24, what is the value of x? What is the share of the second?
Of the third?

Veriricarron.—The first received 4, {he second twice as
many, which is 8, and the third three times the first, or 12; and
4 added to 8 and 12, make 24, the whole number to be divided.

2. There are three numbers whose sum is 30, the second is
equal to twice the first, and the third is equal to three times the
first; what ave the numbers ?

3. There are three nwmbers whose sum is 21, the sccond is
equal to twice the first, and the third is equal to twice the second.
If @ represents the first, what will represent the second? If 2x
represents the second, what will represent the third? What is
the sum of z-+Z2a-42?  What are the numbers ?

4. A man travels 63 miles in 3 days; he travels twice as far
the second day as the firgt, and twice as far the third day as the
second ; how many miles does he travel each day?

5. John had 40 chestnuts, of which he gave to his brother a
certain number, and to his sister twice as many ag fo his brother;
after this he had as many left as he had given to his brother; how
many chestnuts did he give to each?

6. A farmer hought a sheep, a cow, and a horse, for 60 dollars;
the cow cost three times as much as the sheep, and the horse twice
as much as the cow; what was the cost of each?

7. James had 30 cents; he lost a certain number; after this
he gave away as many as he had lost, and then found that he had
three times ag many remaining as he had given away ; how mauy
did he lose?

8. The sum of three numbers is 36; the sccond is equal to
twice the first, and the third is equal to three times the second;
what are the numbers?

9. John, James, and William together have 50 cents; John has
twice as many as James, and James has three times as many as
‘William ; how many cents has each?

10. What 18 the sum of a, 22, and three times 227

11. 'What is the sum of twice 2z, and three times Sz ?
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LESSON IV.

1. If 1 lemon costs @ cents, what will represent the cost of 2
lemons? Of 8! Of4? 0Of5? Of 62 OF7?

2. If 1 lemon costs 2z conts, what will represent the cost of 2
lemons? Of 3?2 Of 4?2 Of 5? Of 67

3. James bought a certain number of lemons at 2 cents a piece,
and ag many more at 3 cents a piece, all for 25 cents; if @ repre-
sents the number of lemons at 2 cents, what will represent their
cost?  What will represent the cost of the lemons at 3 cents a
piece? IHow many lemons at each price did he buy?

4. Mary bouglxt lemons and oranges, of each an equal number;
the lemons cost 2, and the oranges 3 cents a piece; the cost of the
whole was 30 cents; how many were there of each?

5. Daniel bought an equal number of apples, lewmong, and
oranges for 42 cents; each apple cost 1 cent, each lemon 2 cents,
and each orange 3 cents; how many of each did he buy?

6. Thomas bought & number of oranges for 30 cents, one-half
of them at 2, and the other half at 3 cents each; how many
oranges did he buy? Let z== one-half the number.

7. Two men are 40 miles apart; if they travel toward each
other at the rate of 4 miles an hour each, in how many hours will
they meet?

8. Two men are 28 miles asunder; if they travel toward cach’
other, the first at the rate of 3, and the second at the rate of 4
miles an hour, in how many hours will they meet?

9. Two men travel toward each other, at the same rate per
hour, from two places whose distance apart is 48 miles, and
they meet in six hours; how many miles per hour does each
travel ?

10. Two men travel toward each other, the first going twice as
fast as the second, and they mect in 2 hours; the places ave 18
miles apart; how many miles per hour does each travel?

11. James bought a certain number of lemons, and twice asg
many oranges, for 40 cents; the lemons cogt 2, and the oranges
3 cents a piece; how many were there of each?

12. Two men travel in opposite directions; the first travels
three times as many miles per hour as the second; at the end of
3 hours they are 36 miles apart; how many miles per howr does

each travel?

13. A cistern, containing 100 gallons of water, has 2 pipes to
empty it; the largor dlscharges ]‘.our times as many gallons per
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hour as the smaller, and they both empty it in 2 hours; how many
gallong per hour does each discharge?

14. A grocer sold 1 pound of coffee and 2 pounds of tea for 108
cents, and the price of a pound of tea was four times that of a
pound of coffee: what was the price of each?

If = represents the price of a pound of coffee, what will repre-
sent the price of a pound of tea?  What will represent the cost
of both the tea and coffee?

15, A grocer sold 1 pound of tea, 2 pounds of coffee, and 3
pounds of sugar, for G5 cents; the price of a pound of coffec was
twice that of a pound of sugar, and the price of a pound of tea
was three times that of a pound of coffee. Requirved the cost of
cach of the articles.

Iz represents the price of a pound of sugar, what will repre-
sent the price of a pound of coffee? Of a pound of tea? What
will represent the cost of the whole?

LESBSON V.

1. James bought 2 apples and 3 peaches, for 16 cents; the price
of o peach was twice that of an apple; what was the cost of cach?

If o represents the cost of an apple, what will represent the
cosb of a peach? What will vepresent the cost of 2 apples? Of
3 peaches? Of both apples and peaches?

2. Theve are two numbers, the larger of which is equal to twice
the gmaller, and the sum of the larger and twice the smallor is
equsal to 28; what are the numbers ?

8. Thomas bought 5 apples and 3 peaches for 22 cents; each
peach cost twice as much as an apple; what was the cost of each?

4. William bought 2 oranges and 5 lemons for 27 cents; each
orange cosh twice as much as o lemon; whab was the cost of
each?

5. James bought an equal number of apples and peaches for 21
cente ; the apples cost 1 cent, and the peaches 2 conts each; how
many of each did he buy?

6. Thomas hought an equal number of peaches, lemons, and
oranges, for 45 cents; the peaches cost 2, the lemons 3, and the
oranges 4 cents a piece; how many of each did he buy?

7. Daniel bought twice ag many apples as peaches for 24 cents;
each apple cost 2 cents, and cach peach 4 cents; how many of
each did he buy?
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8. A farmer bought o horse, a cow, and a calf, for 70 dollars;
the cow cost three times as much as the calf, and the horse twice
as much ag the cow; what was the cost of each?

9. Susan bought an apple, a lemon, and an orange, for 16 cents;
the lemon cost three times as much as the apple, and the orange
as much as hoth the apple and the lemon; what was the cost of
each?

10. Fanny bought an apple, a peach, and an orange, for 18
cents; the peach cost twice as much as the apple, and the orange
twice as much as both the apple and the peach; what was the
cost of each?

LESBON VI

1. James bought a lemon and an orange; the orange cost bwice
as much as the lemon, and the difference of their prices was 2
cents ; what wvas the cost of each?

If @ represent the cost of the lemon, what will represent the
cost of the orange? Whai is 2 less « vepresented by ?

2. 'What is 3z less  veprosentod by ?  What is S less

Bz repro-
sented by ?

‘What is 4o less @ vepresented hy? What i
sented by ?

The word minus, is used instead of less; and the sign —, for
the sake of brevity, is used fo aveid writing the word minus,

Thus, if we wish fo take the difftrence hetween 3z aud x, we

A

Sx loss 2w repre-

L7

may say, -
3x loss
or S minus z; which may he written Se—a,

When the sign — is used, it 18 to be read minus.

3. Thomas bought a lemon and an ovange; the orange cosh
three times as much as the lemon, and the difference of their
prices was 4 ceuts ; what was the price of cach? If @ reprosents
the cost of the lemon, what will represent the cost of the orange?
What is Sa~—ax represented by ?

4. In o school containing classes in Gramuar, Geography, and
Arithmetic, there are three times as many studying Geography as
Grammar, and twice as many studying Arithwmetic as Geography ;
theve are 10 move in the class in Arithmetic than in that in Gram-
mar; how many more ave there in each class? If @ vepresents the
number in the clags in Grammar, what will represent the number
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in the class in Geography? In the class in Arithmetic? What
is Bau—a vepresentod by ? What is it equal to?

5. The age of Sarah is three times the age of Jane, and the
difference of their ages is 12 years; what is the age of each?

6. The difference of fwo numbers is 28, and the greater is equal
to eight times the less; what ave the numbers?

7. Daniel has four times as many cents as William, and Joseph
has fwice as many as both of them; but if twice the number of
Daniel’s cents be taken from Joseph's, the remainder is only 16;
how many cents has each?

8. Susan hought a lemon, an orvange, and a pine-apple; the
orange cosb twice as much as the lemon, and the pine-apple three
times as much as both the lemon and the orange; the pine-apple
cost 14 cents more than the orange; what was the cost of each?

§. James hought 1 lemon and 2 ovanges; an orange cost bwice
as much as o lemon, and the difference between the cost of the
oranges and the lemon was § cents; what was the cost of each?

10. Charles bought 2 lemons and 3 oranges; an ovange cosb
twice as much as a lemon, and the difference hetween the cost
of the lomons and the oranges was 8 cents; what was the cost
of cach?

11, A man bought a cow, a calf, and. a horse; the cow cosb
twice as much as the calf, and the horse twice as much as the
cow; the difference between the price of the horse and that of the
calf was 30 doliars; what was the cost of sach?

192. There arve three numbers, of which the seccond is three
times the first, and the third is twice as much as both the flast
and second, while the difference between the second and third
is 10; what are the numbers?

LESSON VII

1. James and John together have 11 cents, and John has 3
more than James; how many has each?

Tt James has z cents, then John has x-+3, and they both have
a3, or Zu-+-3 cents; hence, Q-3 are equal o 115 henece, if
2w and 3 are equal to 11, 2o must be equal to 11 less 3, which is
equal to 85 then, if 2 is equal to 8, onew, or a, must be equal to 4.

2. William and Dantel together have 9 apples, and Daniel has
one more than William ; how many has each? If a represents
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the apples William has, what will represent the apples Daniel
has? ‘What will represent the number they both have?

3. In a class containing 13 pupils, there are three more boys
than girls; how many are there of each?

4. In a store-room containing 40 barrels, the number of those
that are empty exceeds the number filled by 10; how many are
there of each?

5. In a flock of fifty sheep, the number of those that are white
exceeds the number that are black, by 30 ; how many arve there of
each kind?

6. Two men together can carn 60 dollars in a month, but one
of them can earn 10 dollars more than the other; how many
dollars can each carn?

7. The sum of two numbers is 25, and the larger exceeds the
smaller by 15; what are the numbers?

8, Sarah and Jane bought a toy for 25 cents, of which Jane
paid 5 cents more than Sarali; how much did cach pay?

9. The difference between two numbers is 4, and their sum is
16; what are the numbers? 1f @ represents the smaller number,
what will represent the larger?

10. The difference between two numbers is 5, and their sum is
385 ; what arve the numbers?

LESSON VIIL.

1. James and Jolm together have 15 cents, and Joln has twice
as many as James, and 3 more; how many has each?

If @ represents the number James has, then Za-+-3 will repre-
gent the number John has, and a--2a--3, or Sz--3, what they
both have. If 8x+3 is equal to 15, then 3z must be equal to 15
less 3, or 12 hence @ is equal to 4, the number James has; then
John has 11,

2. William bought a lemon and an orange for 7 cents; the
orange cost twice as much as the lemon and 1 cent niore; what
was the cost of each?

3. There are two numbers whose sum is 35; the second i
twice the first and 5 more; what ave the numbers?

4. In an orchard containing apple-trecs and cherry-tvees, the
number of apple-trees is three times that of the chervy-frees, and
7 more; the whole number of trees in the oxchard is 51; how
many are theve of each kind?
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5. A farmer bought a cow and a calf, for 13 dollars; the cow
cost three times as much as the calf, and 1 dollay more ; what was
the cost of each?

6. Willizmn and Thomas gave B0 cents to a poor woman; Wil-
liam gave twice as many as Thomas, and & cents move; how many
cents did each give?

7. Bliza and Jane bought a doll for 14 cents; Eliza mxd twice
as much as Jane, and 2 cents more; what did each pay?

8. Divide the number 15 into two parts, so that one part sghall
exceed the other by 3.

9. Divide the number Z6 into two purts, 50 that the greater part
shall be 5 more than twice the less part.

10, The sum of two numbers is 23, and the greater is equal to
three times the less, and 8 more; what are the numbers?

11. Tswo numbers added together make 40; the greater is 5
times the less, and 4 more; wha.b are the numbers ?

12. A man has two flocks of sheep; the larger contains six
times as many s the smaller, and 5 more, and the number in
both is 82; how many ave there in each?

1. James has as many cents as John, and 2 more, and Thomas
has as many as John, and 3 more; they all have 26 cents; how
many has each? I @ represents the number of cents John has,
what will represent the number J lmes has?  'The number Thomas
has?  The number they all have

2. James, Thomas, and J(::m went out to gather chestnuts;
Thomas gathered 5 more than James, and John 3 more than
Thomag, and they all gathered 84 ; how many did each gather?

3. A father distrib ated 25 conts among his three boys; to the
second he gave & more than to the fivst, and to the thivd, 8 more
than to the second; how many did he give to each?

4. Divide the number 18 into three parts, so that the first may
be € more than the second, and the third twice as much as the
second, and 1 more.

5. Divide 13 apples between three boys, so that the second shall
have 1 morve than the first, and the third, ¥ more than the second.

8. A peach, a lemon, and an orange, cost 15 cents; the lemon
cost 1 cont move than twice as much ag the peach, and the orange
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2 conts more than three iimes as much as the peach; how many
cents did each cost?

7. Three pieces of lead together weigh 47 pounds; the second
is twice the weight of the first, and the third weighs 7 pounds
more than the second; what is the weight of each piece?

8. The sum of the ages of Eliza, Jane, and Sarah, is 38 years;
Jane ig & years older than Eliza, and Sarah is & years older than
Jane; what are their ages?

9. A father has three sons, each of whom is 2 years older than
his next younger brother, and the sum of thoir ages is 27 years;
what is the age of each?

10. The sum of three numbers is 29; the second is twice the
first and 1 more, and the third is equal to the second, and 2 more;
what are the numbers?

11. A man bought 2 pounds of coffeec and 1 pound of tea, for
50 cents; the price of a pound of tea was 10 cents more than
twice the price of a pound of coffee; what did each cost?

12. A man bought 3 pounds of coffee and 1 pound of tea, for 77
cents; the price of a pound of tea was equal to the price of 2
pounds of coflee, and 7 cents more ; what was the price of cach?

13. Bays A to B, “Good morning, master, with your hundred
geese.”  Says B, “1 have not 100; but, if I had twice as many
as I now have, and 20 more, I should have 1007 How many
had he?

LESSON X.

1. If -1 vepresent a certain number, what will represent
twice that number? Siuce twice z is D, and twice 1 is 2, twice
a1, will be represented by 2a-1-2.

2. What is 3 times z-1? 4 times 21?2 5 times a-}-19

3. If 22 represent o cortain number, what will represent
twice that namber? 2 thmes z is 2w, and 2 times 2 is 4, hence,
twice n--2 is is a4,

4, What is 8 times x4-2? 4 times 2422 5 times o+272

5. If 2u-+1 represent a ceriain uumber, what will represent
twice that number? Twice Y is 4w, und twice 1 is £, hence,
twice 2w--1 is 4a--2.

6. What is 3 times 2we--1¢ 4 times e-F1? 5 times 22--12

7. What in 2 times 82-+2? & times 3x-+27 4 times 32-1-27

8. What is @, «-1-1, and 2+2 equal t0?

9
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9. What is 2, z-}-1, and 323 equal to?

10, What is x, 2-+3, and Za-+2 equal to?

11, A father divided 15 cents between his three boys; giving
to the second 1 morve than to the first, and fo the thivd twice as
many as to the second ; how many cents did each receive?

12. The sum of 8 numbers is 34; the second is 1 more than the
first, and the third is 3 times the second ; what are the numbers?

13. Eliza, Jane, and Sarah, together have 24 cenis; Jane has
twice as many as Eliza, and 1 more, and Sarah has twice as mauny
as Jane; how many cents has each?

14. A man bought 1 pound of coffee and 2 pounds of tea, for 62
cents ; the price of a pound of tea was equal to that of 2 pounds
of coffee, and I cent more; what was the cost of each?

15. A man worked three days for 10 dollars; the second day he
carned 1 dollar more than the first, and the third day as much ag
both the first and second; how much did he earn each day?

16. Three boys together spent 43 cents; the second spent H
cents more than the first, and the third twice as much as the
second ; how many cents did each spend?

17. Divide the number 33 into three parts, so that the second
shall bo & move than the first, and the third equal to five times the
second.

18. Three men, A, B, and C, have 40 dollars between them; B
has twice as many as A, and 1 dollar more, and € has 3 times as
many as B; how many dollars has cach?

19, Divide the number 29 into three parts, such that the second
shall be equal to the first, and 1 more, and the third equal to three
times the second.

20. A man bought 3 pounds of sugar and 2 pounds of coffee,
for 41 cents; the price of a pounnd of coffee was 3 cents more
than that of a pound of sugar; what wwas the cost of each?

21. James bought 2 lemons and 3 oranges, for 27 cents; an
orange cost twice as much as 'a lemon, and 1 cent more; what
was the cost of each?

22. An apple, a peach, and 2 pears, cost 17 cents; the peach
cost 1 cent more than the apple, and each pear twice as much as
the peach; what was the cost of each?

23. An apple, 2 peaches, and 3 pears, cost 14 cents ; a peach
cost L cent more than the apple, and a pear 1 cent move than a
peach; what was the cost of cach?

- 24, Two pears, 3 lemons, and 4 oranges, cost 29 conts; @
lemon cost 1 cont more than a pear, and an orange 1 cent more
than a lemon ; what was the cost of each?
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LESSON X1I.

1. James has 4 cents, and John has I cent less than James;
how many cents has Jobm? What is 1 less than4? Whatis 2
less than 47

2. If a represents a certain number, what will represent 1 less
than that number? Ans. x—1; read x minus 1.

3. If « represents a certain number, what will represont 2 less
than that number? Whatwill represent 8 less than that number?

4. If o certain number less 1 is equal fo 3, what is the number
equal to?

5. If 2—1 is equal to 3, what is & equal to?

6. If 2z—1 is cqual to 5, what is 22 equal to? . If 2w is equal
to 6, what is = equal to?

7. If 322 is equal to 10, what is 8z equal to? If 8z is equal
to 12, what is @ equal to?

8. If bz—3 is equal to 17, what is Du equal to?  If Bz is equal
to 20, what is @ equal to?

9. James and John together hiave 17 cents, and James has 3
cents less than John; how many has each?

If @ represents the number of conts James has, what will repre-
gent the number John has? What is 2 and 2—3 equal to? If
Qu—38 is equal to 17, what 2x equal to? If Za is equal to 20,
what is @ equal to?

10. Divide the number 17 into two parts, so that one shall be
5 less than the other.

11. Anorangeand a lemon together cost 8 cents, and the lemon
cost two cents less than the orange; what was the cost of each?

12. The sum of two numbers is 20, and the smaller is 4 less
than the greater; what are the numbers?

13. William and Daniel together have 20 cents, and Daniel has
twice as many as Willlam, wanting 1 cent; how many cents has
cach?

14. The sam of two nwmbers is 24, and the larger is twice the
gmaller, wanting 3 ; what are the numbers?

15. In a basket containing 25 apples and peaches, if & be sub-
tracted from twice the number of apples, it will give the number
of peaches; how many are there of each?

16. The sum of two numbers is 25, and the greater is equal to
3 times the smaller, wanting 7: what are the numbers?

17. A schoel contains 87 pupils, the number of boys is 8 times
the number of gitls, wanting 3; what is the number of each ?
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18. A cow, a calf, and a sheep, cost 28 dollars ; the sheep cost
2 dollars less than the ealf, and the cow cost 4 times ag much as
the calf; what was the cost of each?

LESSON XII.

1. What number is that, to which if 3 be added, the number
will be doubled? If x represents the number, what will 248 be
equal to?

Since 2 is equal to 23, it is plain that 2 is equal to 3.

2. What number is that, to which if 5 be added, the number
will be doubled?

3. What number is that, to which if 4 be added, the sum will he
3 times the number? If x represents the number, -4 will be
equal to 3z but if 3z is equal to x-}4, it is plain that 2x is equal
to 4, and that x is equal to £.

4. What numwber is that, to which if 9 be added, the sum will
be 4 times the number? If @ represents the number, what will
z-+9 be equal to? If 4 is equal 29, it is plain that 3z is
equal to 9, and that « is equal to 3.

5. What number is that, to which if 15 be added, the sam will
be four times the number?

6. There arve 10 years difference between the ages of two
brothers, and the age of the elder is 3 times that of the younger;
what is the age of each?

7. James says to John, “I have 4 times as many apples as you
have; bat if yoa had § apples more than you now have, we would
then each have an equal number.”  How many has each?

8. The difference of two numbers is 20, and the greater is b
times the smaller; what ave the numbers?

9. The age of Bliza exceeds that of Jane 16 years, while the
age of the former is five times that of the latter; what ave their
agoes?

10. James bought a bock and a toy; the book cost six times as
mauch as the toy, and the difference of their prices was 20 cents;
how much did he pay for each?

11. The difference between the age of a father and that of his
son, is 80 years, and the age of the father is seven times the age
of the son; what are their ages?

12, ‘What namber is that, to which if 32 be added, the sum will
be equal to nine thmes the number itself?
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13. What number is that which is 6 less than 8 times the
number itself?

14. James is 12 years younger than John; but John is only
four times the age of James; what are their ages?

15. What number is that, to the double of which, if 8 be added,
the sum will be equal to 4 times the number?

In this case, if « reprosents-the number, 4z is equal to 2z-+8;
hence 2z must be equal to 8, and @ equal to 4.

16. What is the value of 2, when 5 is equal to 3x-+-672

17. 'What is the value of =, when bz is equal to 2a--157

18. What is the value of 2, when 8z is equal to 8x-+1572

19. What is the value of », when 10z is equal to 42247

20, What uumber is that, to the double of which, if 21 be
added, the sum will be five thnes the numher?

21. If Daniel’s age be multiplied by 4, and 30 added to the
product, the sum will be § times his age; what is his age?

22, What number added to twice itself and 32 more, will make
o sum equal to 7 times the number?

28. What number added to itself and 40 more, will make a sum
equal to 10 times the number?

24. A father gave his son 3 times as many cenis as he then
had, his unele then gave him 40 cents, when he found he had 9
times as many as at first; how many had he at first?

LESSON XIIIL.

1. What number is that which being increased by 5, and then
doubled, the sum will be equal to three times the number?

In this example let @ represent the number, then a--5 doubled,
will be 22--10, which is equal to 8z 3 hence = is equal to 10.

2. Sarah is 2 years older than Jane, and ftwice Saral’s age is
equal to three times the age of Jane; what is the age of each?

3. William has 8 cents more than Daniel, aud three times Wil-
liam’s money is cqual to B times that of Daniel; how many cents
has each?

4. Three pounds of coffee cost ag much as 5 pounds of sugar,
and 1 pound of coffee cost 6 cents more than 1 pound of sugar;
what is the price of a pound of each?

5. A farmer bought 2 hogs and 7 sheep; a hog cost 5 dollars
more than a sheep, while the hogs and sheep both cost the same
sum ; what was the cost of each?
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6. William bought 3 oranges and 5 lemons; an orange cost 2

conts more than a lemon, Whﬂe the oranges and the lomolh each
cost the same sum ; what was the cost of each?

7. William has 10 cents more than Daniel; but 7 times Dan-
jel’s money is equal to twice that of William; how many conts
has each?

8. The greater of 2 numbers exceeds the less by 14; and 3
times the greater ig equal to 10 times the less; what ave the
numbers ?

9. Moses is 16 years younger than his brother Joseph; but 3
times the age of Joseph is equsd to 5 times that of Moses; what
are their ages?

10. The difference between the ages of & man and his wife is 7
yeoars; and 6 times the age of ‘che man is equal to 8 times the age
of his wife; what are their ages

LESSON XIV.

1. If = represents a certain number, what will represent one
half the namber?

o divide 2 namber, we draw a line beneath it, under which we
place the divisor; thus, to divide 1 by 2, it is written & which 1s
read one kalf, or one divided by two. In the same manner, one half
of z would be written thus, ;2, which may be read one half of «, ov
x divided by 2.

Ina Siﬂhlé‘ v manner, one third of x is wutie‘l % 5 two thivds of

2.
@ is written 5 ~§

9. 16 % 1 equal to 4, what is & equal to?
2 j q
8. I 5 § ig equal to 5, what is @ equal to?

. v .
4. If T‘;IS equal to 8, what is w equal to? If fwo thirds of x is

equal to 8, one third of @ is cqual to one half of 8, or 4 (since one
half of #wo thirds is one tbird) and if one thard of @ is equal to 4,
x is equal to three times 4, or 12.

Or thus: if 2z dlvxﬂed by 8 is equal to 8, 2z must be equal to
3 times 8, or 24 ; and if 2w is equal to 24, 2 18 equal to one half
of 24, or 12,
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Either of these methods may be used in finding the value of x
in similar expressions.

O, .
1r Z:- is equal to 9, what is @ equal to?

6. If éx is equal to 10, what is @ equal to?

.Q,"t

. }'f ﬂ is equal to 14, what is « equal to?

B -'9— T s equal to 9, what is « equal to?

©w

It i}; is equal to 12, what is  equal to?

B
10. 1f %"f is equal to 20, what is @ equal to?

1. 1r E is equal to 14, what is @ equal to?

12. If%— iy equal to 18, what is @ equal to?

13. What is the sum of « and ;—7? or of a%i—%?
Since x is equal to ) , we have ’t—}— equal to %c-%g, which is
3z
equal to DR
14, What will represent the sum of 2z and 2, or of 2 xTQ?

15. What will represent the sum of z-- 3

16. What will represent the sam of xd{——'z},? Of 2&4—;‘?

3
17. What is the sum of :c—{{%? Oof o:~f~;3—x ¢ Of 27—}—%?
18. What is the sum of fc*i{ff? of ‘L+—? of 9&+2?9

19. Theve is a certain number, to x-\luch if the half of 1tself he
added, the sum will be 15; what is the number?

20. William has half as many cents as Daniel, and they both
together have 21 ; how many cents has each?

21. The age of Mary is one third that of Jane, and the sum of
their ages is 24 years; what is the age of each?

22. A pasture contains 44 sheep and cows; the namber of cows
is one third the number of sheep; how many are there of each?

93, The sum of the ages of Ruth and Eliza is 24 years; while
the age of the former is three fifths of that of the latter; what is
the ago of each?
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24. James and John together have 18 cents, and John hag four
fifths as many as James; how many has each?

25, Two places, A and C, are 40 miles apart; between them is
a village which is two thirds as far from € as it is from A ; whas
is its distance from each of the places?

26. The sum of two numbers is 21, and the smaller number is
three fourths of the larger; what are the numbers?

27. Thomas and Charles have 35 cents, and Charles has half
ag many more cents 23 Thomas ; how many eents has each?

28. The double of a cortain number, increased by one third of
itgelf, is equal to 21 ; what is the number?

29, William, James, and Robert, together, have 33 cents; James
has twice as many as William, and Robert has one third as many
as James ; how many cents has each?

80. What number is that, which being increased by its half and
its fourth, equals 21°?

31. What number is that, which being increased by its half, its
fourth, and 4 more, equals 2572

32. A Doy, being asked how much money he had, replied, that
if one half and one third of his money, and 9 cents more, were
added to it, the sum would be 20 cents; howmuch money had he?

28, There are three numbers, whose sum is 44 ; the second is
equal o one third of the first, and the third is equal to the second
and twice the first ; what are the numbers?

34, There arve four towns in the order of the letters, A, B, C,
and D; the distance from B to € is one fifth of the distance from
A to B, and the distance from C to D is equal to twice the dis-
tance from A to C; the whole distance from A to D is 72 miles,
Required the distance from A to B, from B to €, and from  to D,

35. What number is that, to which if its half, its fourth, and 26
more be added, the sum will be equal to 5 times the number?

36. There is o fish whose head is 6 inches long, and the tail is
as long as the head and half the body, and the body is as long as
the head and tail; what is the length of the whole fish?

87. A gontleman being asked his age, replied, “If to my age
you add its half, ity third, and 28 yoears, the sum will be equal to
three times my age.”” Required his age.

JEE The proceding exercises will serve to give the learmer somo iden of
the nature of Algebra, and of the manner in which it may be applied fo the
solution of problems. We shall now procced to consider the subject ina
regular and scientific manner.



ELEMENTS OF ALGEBRA.

CHAPTER 1.

PRELIMINARY DEFINITIONS AND PRINCIPLES.

Nowrs ro Teacuurs.—In gencral, the Introduction, embhracing Ar-
ticles 1 to 15, need not he thoroughly studied until the pupil veviews the
hook.

Arrrerr o In Algebra, numbers and quantities are ropresented
by symbols.  These symbols are the letters of the alphabet.

Awrr. 2. Quantity is anything that is capable of inecrease or
decrease ; such as numbers, lines, space, time, motion, &e.

Arr. $o Quantity is called magnifude, when presented or cen-
siderved in an undivided forni, such as a quantity of water.

Arr. 4» Quantity is called multitude, when it is made up of indi-
vidual and distinet parts, such as three cents, which is a quantity
composed of three single cents.

Axrt. 8o One of the single parts of which a quantity of multi-
tude is composed, is called the wnit of quantity, or measuring wnil 3
thus, one cent is the measuring unit of the quantity three cents.
The value or measure of every quantity, is the number of times it
contains its measuring unit.

Awnr. @ In quantities of magnitude, where there is no natural
unit, it is necessary to fix upon an artificial unit, as a standard of
measure ; and then to find the value of the guantity, we must
ascertain how often it containg its wnil of measure. Thus, to
measure the length of a line, we take o certain assumed distance
called a foot, and applying it a certain namber of times, say five,
we ascertain that the line is five foet long; in this case, one foob
iz the unit of measure.

Arr.¥. The numerical value of any quantity, is the number thab
expresses how many times it contains its uuit of measure. Thus,
in the preceding example, the line being b5 feet long, its numerical

Review~1, How arc numbers and quantities represented in Algebra?
What ave symbels? 2. What is a quantity? 3. When iz quantity called
magnitude? 4 When Is quantity called multitude? 5., What is the unit
of quantity 2 6. Ifow is the value of a quaniity ascertained, when theve is
no natural unit? 7, What is the numerical value of any quantity ¢
a 25
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value is 5. The same quantity may have different numerical
values, according to the unit of measure that is assumed.

Art. 8. A vt is a single or whole thing of an order or kind.

Agrr. 9. Number is an expression denoting a unit, or a collec-
tion of units. Numbers are either abstract or concrete.

Art, 1@. An abstract number denotes how many times a unit is
to be taken. A concrefe, or applicate number, denotes the units
that are taken.

Thus, 4 feet is a concrete number; while 4 is an abstract num-
ber, which merely shows the number of units that are taken. A
concrete number may be defined to be the product of the unii of
measure by the corresponding abstract number. Thus, 6 dollars
ave equal to 1 dollur multiplied by 6, or 1 dollar taken 6 times.

Arr. 81, In Algebra, quantities are represented by numbers,
and the letters used, stand for numbers.

ARz, B8. There are bwo kinds of questions in Algebra, theorems
and problems.

Arr. 18, In a theorem, it is required to demonstrate some rela-
tlon or property of numbers, or abstract quantities.

Arr. B4, In a problem, it is required to find the valne of some
unknown number or quantity, by means of certain given relations
existing between it and others, which are known.

Awr. 1.8. Algehra is a general method of solving problems and
demonstrating theorems, by means of figures, lelters, and signs.
The létters and signs are sometimes called symbols.

DEFINITION OF TERMS, AND EXPLANATION OF SIGNS.

Arr. BG. Known guantities are those whose numerical values
are given, or supposed to be known: wnknown quantities are those
whose numerical values are not known.

Art, 1%, Known quantities are generally represented by the
first letters of the alphabet, as @, b, ¢, &e.; and unknown quantities
by the last letters, as z, ¥, 2.

Arr. 18, The following are the principal signs used in Algebra:

=2y +: o Ky = ( ): >’ .\/-

Bach of these signs is the representative of certain words;

Review.—8 What is a unit? 9. What is number? 10. What does
an abstract number denote? Whatdoes a conerete number denote? 11, What
do the letters used in Algebra represent? 12. How many kinds of ques-
tions are there in Algebra? What are they? 13, What is o theovem?
14, What is a problem? 15, What is Algebra? 16. What are known
quantities? What are unknown gquantities? 17. By what are known quan-
tities represented? By what are unknown quantities vepresented ? 18, Write
on o slate, or a blackboard, the principal signs used in Algebra. What do
the signy represent? For what purpose are they used?
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fhey are used for the purpose of expressing the various operations,
in the most clear and brief manner.

Awrr, 19, Thesign of equality, =, is vead equal fo. It denotes thab
the quantities between which it is placed are equal to each other.
Thus, a==3, denotes that the quantity represented by « is equal to 3.

Arr. 2@, The sign of addition, -, is read plus. It denotes that
the quantity to which it is prefixed, is to be added to some other
quantity.

Thus, a+b denotes that b is to be added to ¢. If ¢=2 and
b=3, then a-}-b=2--3, which are =5.

Arr. 21 The sign of sublraction, —, is read minus. It denotes
that the quantity to whleh it is prefixed is to be subtracted. Thus,
a—0b denotes that b is to be subtracted from . If a=5 and =3,
then 5—-3==2.

Arr. 22, The signs - and — ave called the signs; the former
is called the posiiive, and the latter the negative sign; they ave
said to be condrary or opposile.

Axr. 3. Bvery quantity is sapposed to be preceded by one or the
other of these signs. Quantities having the positive sign are called
positive ; and those having the negative sign are called negative.
When a quantity has no sign prefixed to 14, it is considered positive.

Arr, 4. Quantities having the same sign are said to have like
signs; those having different signs are said to have unlike signs.
Thus, -« and --b, or —a and —b have like signs; while -}-¢ and
~d have unlike signs.

Arr. 28, The sign of mulliplication, X, is read info, or multi-
plied by. It denotes that the quantities between which it is placed,
are to be multiplied together.

A dot or point is sometimes used instead of the sign . Thus,
aXb and a.b, both mean that b is to be multiplled by @. The dot
is not used to denote the multiplication of figures, because it is
used to separate whole numbers and decimals.

The product of two or more letters is generally denoted by
writing them in close succession. Thus, ¢b denotes the same as
aXb, or a.b; and abe means the same as aXdXe, or a.b.c.

Review.—I12 How is the sign of equality, ==, read? What does it do-
nate? 20, How is the sign -} read? What does it denoto? 21. Iow is
‘the sign —— read? What does it denote? 22, What are the signs plus and
minus ealled, by way of distinction? Whieh is positive, and which nega-
tive? 23, When quaniities are preceded by the sign plus, what are they
said to be? By the sign minus? When a quantity has no sign prefised,
whab sign is understood? 24, When do quantities have like signs? When
unlike signs? 25. How is the sign X read, and what does it denote ? Whatb
other methods are there of representing multiplication, hesides the sign X ?
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Axrr. 8. Quantitics that are to be multiplied togother, are called
Juactors.  The continued product of several factors, means that the
product of the first and second is to be multiplied by the third, this
product by the fourth, and so on. Thus, the continned product of
a, b, and ¢, is expressed by aX0Xe, or abe.

If a=2, b==3, and ¢=5, then abe=2X}3XH=6X5=30.

Arz, 8%, The sign of division, =, is vead divided by. Tt denotes
that the quantity preceding it is to be divided by that following it.
The division of two quantities is more frequently represented, by
placing the dividend as the numerator, and the divisor as the de-
@
b
be divided by b, If ¢=12 and 0==3, then a-+~0=12-+-3=4; or
a 12

b 3

Division is also represented thus, /b, where « denotes the
dividend, and & the divisor. -

Arr, 28. The sign >, is called the sign of dnequality. It de-
notes that one of the two quantitics between which it is placed, is
greater than the other, the opening of the sign being turncd
towards the greafer quantity.

Thus, ¢>>b denotes that ¢ is greater than b, It is read, a greater
than b, If a=>5, and b==3, then 5>>3.

Also, e<(d denotes that ¢ is less than d. Tt is vead, ¢ less than d.

nominator of a fraction.. Thus, ¢-b, or -, means, that a is to

Arr. 8%, The sign oo, denotes a quantity greater than any that
cun be assigned ; that is, a quantity indefinitely great, or infinity.

Axt. 3@ The numeral coéfficient of a quantity is a number pre-
fixed to it, to show how often the quantity is to be taken. Thus,
it the quantity represented by @ is to be added to itself several
times, 88 a--a-a-fa, we write it but once, and place a number
before ib, to show how often it is taken.

Thus, a-tata-t-a=4a; and av-taz+ae=3ax.

Arr. 81 The literal coéfficient of a quantity, is a quantity by
which it is multiplied. Thus, in the quantity ay, @ may be consid-
ered the coéfficient of ¥, or y may be considered the cotflicient of «.
The literal codfficient is generally regarded as a known guantity.

REVIEW.~26. What are factors? Iow many factors in «? In «b?
In abe? In Babe? 27. How is the sign -~ read, and what does it denote?
What other methods are there of representing the division of two quantities?
28, What does the sign of inequality, >, denote? Which quantity is placed
at the opening? 29. What does the sign @ denote? 30. What is the nu-
meral cosficient of a quantity? How often is aw taken in the expression
Sax? In baw? In Tax? 31, Whatis the literal cocfficient of & quantity ?
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Arr. B2, The coéflicient of a quantity may consist of a number,
and also of a literal part. Thus, in the quantity Sz, Do may beve-
garded as the cotfficient of . If ¢==2, then Ba=10, and Baa=10.

When no numeral coéfficient is prefixed to a guantity, its coéf-
ficient is understood to be unity. Thus, @ is the same as lg, and
b is the same as 1.

Arr. 33. The power of a quantity iz the product arising from
multiplying the quantity by iteelf one or more times. When the
quantity is taken twice as a factor, the product is ealled its square,
or second power ; when three times, the cube, or third power ; when
four times, the fourth power, and 5o on.

Thus, aXa==au, is the second power of a; aXaXa=aae, is the
third power of a; axXaxXaXa=araa,is the fourth power of a.

Ingtead of repeating the same quantity as a factor, a small
figure, called an exponent, is placed to the vight, and a little above
it, to point out the number of times the quantity is taken as a
factor. Thus, ae is written ¢?; eaa is written ¢®; acaa is written
aty aubbb is written a0’

‘When a letter has no exponent, it is considered to be the first, or
simple power of the quantity, and unity is considered to be its expo-
nent. Thus, ¢is the same as ¢, each expressing the first power of a.

Axr. 84. To involve or raise & quantity to any given power, is
to find that power of the quantity.

Arr. &5« The roof of any quantity is ancther quantity, some
power of shich is equal to the given guantity, The root is called
the square root, cube root, fourth root, &e., according to the number
of times it must he taken as a factor to produce the given quantity.

Thus, since X a=a" therefore a is the second root, or square
voot of ¢’ In the same manner, z is the thivd root, or cube root
of a®, since xd{a X x==x"

Arr. 6. To exfraci any root of a guantity, is to find that root.

Arzr. 3%, The sign v/, is called the radical sign. When placed
before a quantity it indicates that its root is to be extracted.

Thus %/a, or 1/a, denotes the square root of a; %/a, denotes
the cube root of ¢ ; 4/c denotes the fourth root of a.

Arr. 88, The number placed over the radical sign is called the
index of the root, Thus, 2 is the index of the square root, 3 of the

Ruview.—32. When a quantity has no coéfficient written, what coéf-
ficient is understood? 33, What is the power of a quantity? What is meant
by the second power of «? By the third power of «? What is an expo-
nent? Tor what is it used ?  How many times is @ taken as a factor in «9?
Tnet? Ina’? Where no exponend is written, what exponent is under-
stood? 85, What is the root of a quantity? 37. What is the sign 42
ealled, and what does it denote ?
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cube root, 4 of the fourth root, and so on. When the radical has
no index over it, 2 is understood.

Thus, v/9=3, /8=2, 1/16=2.

Arr. 39. Every quantity written in algebraic language, that is,
by means of algebraic symbols, is called an algebraic quantity, or
an algebraic expression.  Thus,

3a is the algebraic expression of 8 times the number ¢; da—4b,
is the algebraic expression for 3 times the number ¢, diminiched
by 4 times the number b; 2a>--3ab, is the algebraic expression for
twice the square of @, inereased by 3 times the product of the
number ¢ by the number b.

Axr. 49« Analgebraic quantitynot united to any other by the sign
of addition or subtraction, is called a monomial, or a quantity of one
term, or simply a ferm. A monomial is sometimes called a simple
guantity. Thus, a, 3a, —a®, 2any’, are monomials, or simple
quantities.

Arr, 43, An algebraic expression composed of two or more
terms, is called a polynomiul, or a compound quantify.

Thus, ¢-2d—0 is a polynomial.

Arr. 42. A polynomial coraposed of two terms, is called o
binomial. Thus, a0, a—0, and ¢*—d arve binomials.

A binomial, in which the sccond term is negative, as a—D, is
sometimes called a residucl quaniity.

Arzr. 43. A polynomial econsisting of three ferms, is called a
trinomial. Thus, ¢-+6-F¢, and a—b—¢ ave trinomials,

Axr. dd. The numerical value of an algebraic expression is the
number obtained, by giving particular values to the letters, and
then performing the operations indicated.

In the algebraic expression 2a-+430, if a=4, and b==5, then
20-=8, and 80==15, and the numerical value is 8-4+15=23.

Arr. 48, The value of a polynomial is not afiected by chang-
ing the order of the terms, provided each term retains its respec-
tive sign. Thug, ¢*+2¢--0 is the same as b-e*+2¢. This is
self-evident.

Arr. 46, Each of the liferal factors of any simple quantity or
term s called a dimension of that term; and the degree of any
term depends on the number of its literal factors.

Thus, ax consists of two literal factors, ¢ and x, and is of the
second degree. The quantity ¢ contains three literal factors, ¢, ¢,

Ruview.—38, What is the number placed over the radical sign ealled ?
39. What is an algebraic quantity? 40. What is a monomial? Whatis s
simple quantity ?  41. What is a polynomial? 42. Abinomial? A residual
quantity 2. 43. A {rinomial? 44. What is meant by the numerical value
of an algebraic expression?



DEFINITIONS AND XNOTATION. 31

and 0, and is of the fhird degree.  2a%* contains five literal factors,
a, o, o, x, and 2, and is of the fifth degree; and so on.

Awr. 49« A polynomial is said to be lomogeneous, when each
of its terms is of the same degree.

Thus, the quantity 2a—3b--¢ is of the firsh degree, and homo-
genoous ; a*~F3be--ay, is of the second degree, and homogeneous ;
25—8ay? is of the third degree, and homogeneous; @®+42* is not
homogeneous.

Are, 48. A parenthesis, (), is used to show that all the terms
of & compound quantity are to he considered together as a single
term.

Thus, 4(e—D>) means that g—1> is to be multiplied by 4; (a-+=2)
{a—=) means that ez is to be multiplied by e—a; 10—(a-¢)
means that a-}-¢ is to be subtracted from 10; (¢—b)® means that
a—> is to he raised to the second power; and so on.

Arr. 49. A vinculum, —, is sometimes used instead of a
parenthesis. Thus, «—0Xx means the same as (a—b)2.  Some-
fimes the vinculum is placed vertically, it is then called a bar.

Thus, «aly® has the same meaning as (a—a-+-4)9%
t < & o

Arr. 8. Similar, ov ke quantities ave those composed of the
same letters, affected with the same exponents. Thus, 7ab and
—3ab, also 4a®* and Te’b?, ave similar terms. The quantities
2¢*h and 2ab? ave not similar, for, though they are composed of
the same letters, yet these letters have different exponents.

Arz. 88 The reciprocal of a quantity, is anity divided by that
gquantity, Thus, the reciprocal of 2 is é, and of ¢ is é

Art. 2. The same letter accented, is often wused to denote
guantifies which oceupy similar positions in different equations or
investigations. Thus, ¢, ¢, ¢”, ¢, vepresent four different quan-
tities; of which ¢ is read, @ prime; «” is read, ¢ second; «” is
read, ¢ third, and so0 on.

BXAMPLES.

The following examples are intended to oxercize the learner in

the use and meaning of the signs.

Review.—d46. What is the dimension of & term? On what does the
degres of a term depend? What is the degree of the term ay? Of aya?
Of 2aacy? 47. When is & polynomial said to be homogeneons? 48, For
what is a parenthesis used? 49, What is a vinculum, and for what is it
used? 50. What are similar, or like quantities? 51. What is the recipro-
cal of a guantity? 52. When a letter, as o/, has one accent, what does it
represent, and how is it read? How is ¢ with two accents read ?



32 RAY’S ALGEBRA, PART FIRST.

Let the pupil copy each example on his slate, or on the black-
board, and then express it in common language.

Also, let the numerical value of each expression be found, on
the supposition that a=4, 4==3, ¢=5, =10, 2=3, and y=0.

. e+d—b. . . . Ans. 132, b-tcd-d—ax

2 da—z.. . . . Ans 14 | O o Ansd

3. —8ax. . . . Ans. —24, ay  cd e

4. G, . . . Ans. 102, | Tt - e A0 83
ate 8. 8a*+-Bea—0%. . . Ans. 41,

S e A B g ), L. L Ans 28,
10, at0a—b. . . . o v 0 . e e o e . .. L Ans 13,
11, (a40){e—D). « v v v v v o v v e e o . . Ans Tl
12, & —3(eta)(e—a) by, « « v o v o v . o . . Ans. 4

o 2{a—x) . .
13. 8aa—zr——4y/2ax. . . . .« . o . . . Ans T3
Mot §

e e e e . o Ans. —186.

In case further exercises should be required to feach the pupils
the use of the sigas, the following equivalent expressions may be
employed, in which each letter may have any value whatever,
provided that the same value be attributed to the same letter
throughout the same expression.

15. 8(a-to){e—c)=3a—3c

16. 10ab--50%

17. ¢

8.
Examples in which words are to be converted info algebraic
symbols.
1. Three times ¢, plus b, minus four times e, Or, three into o,
plasg b, minug 4 into c.
2. Five times g, divided by three times 5.
3. @ minus b, into three times c.
4. @, minus three $imes b into c.
5. @ plus b, divided by three e.
6. @, plus b divided by three c.
7. 5 into ¢ minus three into b, divided by ¢ minus d.
8. @ squared, minus three e into 0, plus b times ¢ into d squared,
2 cubed minus b cubed, divided by squaved minus b squared.
10. Tive @ squared, into @ plus b, into ¢ minus d, minug three
times 2 fourth power.
11. o fifth power minus b fifth power, divided by ¢ minus b,
vaised to the fifth power.

@
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12, o squared plus & quucu. divided by @ plus b, squaved.
13, The square root of ¢, minus the square root of a.

14. The square root of @, minus .

15. 'The square root of ¢ minus 2.

16. The square root of b squared minas four into « into c.

ANSWERS.
i. %’a-{%’}w-éa 9.
9 9%
T8 10. Ba*(a+0)(c—d)—3at

3. (a—b)3e. 11 @—0®
4. a—3be. * {a—b)
5. L1 g, LV

12. (o
6 18, va—y/ .

14, a—=.

15, v/ {a—=).
16. ¢/ (*--4ac).

8. @*—Bab-+Gedd

ADDITION.

Arr. 8. Appiriow in Algebra, is the process of collecting two
or more algebraic quantitics into one expression, called their sum,

CASE I
When the quantities are similar, and have the same sign.
1. James has 3 pockets, each containing apples; in the fixst he
has 3 apples, in the second 4 apples, and in third 5 ‘mplem
In order to find how many apples he has, suppose e proceeds to
find their swn in the following manner: 3 apples,
4 apples,
5 apples,

12 apples.
Suppose, bowever, that, instead of writing the word apples, he
should merely use the letter ¢, thus: Sa
4a

Ruview~-53. What is algebraie addition? When quantitics sre simi.
lar, and have the same sign, how are they added togethex?
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1t is evident that the sum of 3 times @, 4 times ¢, and 5 times
a, would be 12 times @, or 124, whatever a might represent.

2. In the same manner the sum of —3¢, —4¢, and —5a | —3a
would be —12¢. —dyg

Hence, the
RULE,

FOR ADDING SIMILAR QUANTITIES WITH LIKE SIGNS,

Add together the coéfficients of the several quantities, and fo their
sum annex the common letler, or letlers, prefixing the common sign.

Norr 1.—TLetthe pupil be reminded, that when a quantity has no eodf-
ficient prefixed, 1 is understood; thus, o is the same as la.

Wore 2.--Lot the pupil also be reminded, that the sum of any number
of quantities is the same, in whatever order they are taken. This is self
evident; but ib,may be illustrated by numbers in the following manner.
Suppose it iz required to find the sum of the numbers 16, 25, and 34; in
adding these numbers together, they may be written in six different ways,
in cach of which the sum is the same. Thus:

16 16 25 25 34 34
34 16 34 16 25
25 34 16 25 16
7h 75 75 75 75
BEXAMPLES,
3. 4. 5. 6.

3a —Bzy 2a* 3a*h

20 xy 3 —4a?

@ —day 5a? —5a%

Ba —3xy Tt —20%

Sam =1la —l14day i7a? —14a®

In the first example, we will suppose a==2, then 3a=8X2==0,
Ra==2 K =4, a8, Ba==5X2=10; theirsum is 6--4-4-2+10=22,
But the sum, 22, is more easily found from the algebraic sum,
11la, for 11a=11X2=22.
In the second example, let z==8 and y=2, and the value of its
terms will be Cxy=0X3X2=36
ay= 3XZ= 6
day—4X3X2=24
Bay=3XIX2=18
the sum of their values is =84
But this sum is more easily found from the algebraic sum; for
Review.—When several quantities are to be added together, is the
result affected by the order in which they are taken ?
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1day=14X3X2=8 As all these terms are negative, their sum
is —84.
In the fifth example let ¢ represent 3 feet, then
2aP=aa=2X3X3=18 oqu‘ue {eet,
Bat=3aa=3 X3 X3=27 “
But=8au=—=5X3X3=45 « “
Tai=Taa=TX3X3==63 “
and their sum is 158« “
Or the sum =17a*=17X3X3=153 square feet.

Nore.—Itis recommended to the learner, thus to exemplify the exam~
ples numerically, by assigning certain values to the letters; observing
throughout each example, to adhere to the same numerical value for the
same lotter.

‘What is the sum
Y. Of 8b, 50, '7h, and $0? Ans. 240.
8. Of 2ub, Hab, Bab, and 11ad?  Ans. 28ab.
9. Of abe, 3abe, Tabe, and 12abe?  Ans. 23abe.
10. Of ba dollars, 8a dollars, 11 dollars, and 134 dollars?
Ans. 87a dollars.
11, Of —8ax, —bax, —Tax, and —4az?  Ans. —18aw.
12. Of —by, —23by, —Bby, and —8hy?  Ans. —160y.

13. 14. 15.
Say—+-7 Be—dy Sa*—Razx
ay-+8 Ba—3y Ba*—3ax
{e—8y Ta*—-Bax
Go—2y da* 4oz

CASE KI.

Arr, B8 When quaniities are alike, bul howve unlike signs.

1. If James receives from one man § cents, from another 9
cents, and from a thivd 10 cents; and then spends, for candy 4
cents, and for apples 3 cents, how much money will he have left?

If the quantities he received be considered positive, then those
he spent may be considered negative; and the question is, to find
the sum of ++6¢, 4-8¢, +10¢, —4de¢ and —3¢, which may be written
thug: ~+8e

8¢ Here, it is evident, the true result will be found, by
+10c¢ adding the positive quantities into one sum, and the

-—4e¢ negative quantities into another, and then taking

3¢ their difference. It is thus found that he received
"18¢ 25c¢, and spent 7e, which left 18c.

2. Suppose James should receive 5 cents, and then spend 7
eents, what sum would he have left?
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1f we denote the e as positive, the 7¢ will be negative, and it is
requived to find the sum of -+5¢ and —T7e.

In its present form, however, it is evident that the question is
impossible. Bub if we suppose that James had a certain swm of
money before he received the Be, we may inquire how much Zess
money he had after the operation, than before it; o, in other words,
what effect the operation had upon his money. 'The answer, it is
obvious, would be, that his money was diminished 2 cents; this
would be indicated by the sum of -+5¢ and —7¢, being —Z2c.

1t is thus we say, that the sum of a positive and negative quan-
tity is equal to the difference between the two; the object being to
find what the wnited effect of the two will be upon some third quan-
tity. This may be further illusirated by the following example.

3. A merchant has a certain capital; during the year it is in-
ereased by e and 8a dollars, and diminished by 2 and Sa dollars;
how much will his capital be increased or diminished at the close
of the year?

If we denote the gains as positive, the fosses will be negative.
The sum of -8a, +8a, —2a, and —5¢ is 11e—7a, which is equal
to -+4a. Ileuce, we say, that the merchant’s capital will be in-
creased by 4a dollars; and whatever the capital may have been,
the vesult will be the same to increase it by 4a dollars, as first o
inerease it by 8a and 8u dollars, and then to diminish it by 2¢ and
Ba dollars, Had the loss been greater than the gain, the effect
would be to diminish the capital; and this would be indicated, by
the sum of the gains and losses being negative.

If the gain and loss were equal, it is evident the capital would
neither be increased nor diminished; or, in other words, if the
amount of the positive quantities was equal to that of the negative,
their sum would be 8. Thus, +8a—3a¢=0. If =4, +3a=+12
and —~8a=——12, and $-12—12=0.

From this the pupil will perceive, that to add a negative quan-
tity is the same as to subtract o positive quantity. In such cases,
the process of addition is called algebraic addition, and the sum i
called the algebraic sum, to distinguish them from arithmetical
addition, and avithmetical sum. Hence, the

RULE
FOR THE ADDITION OF QUANTITIES WHICH ARE ALIKE, BUT HAVE UNLIRE SIGNS.
Find the sum of the coéfficients of the similar positive quantities ;
also, the sum qof the coifficients of the similar negative quantities.
Subtract the less sum from the greater ; then, to the difference prefiz
the sign of the grealer, and annex the common literal part.
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4. What is the sum of +-3a, —5a, -+8¢, —6a, and 7w ?
Here, the sum of the coéflicients of the positive terms, ix

3+9+7=7+19
The sum of the codflicients of the negative terms, is
—5—G=—11

The difference between 19 and 11 is 8, to which, prefixing the
sign of the greater, and annexing the literal part, we have for the
required sum ~-8a.

In practice, it is most convenient to write the 3«
different terms under each other. Thus, -5y

3222

—ba

Ta
Sum=8¢

Beginuers, however, will sometimes find it easier  3o—D5a
{o arrange the positive quantities in one column, 9a—06a
and the negative in another. The preceding ex- 7a
awmple may be arranged as in the margin. 190—11a=8q

EXAMPLES.
5. What is the sum of 8¢ and —5Ha?  Ans. 3a.
6. What is the sum of He and —8a? Ans. —3a.
7. What is the sum of —7ax, 8ax, 6ux, and —ax? Ans. ax.
8. What is the sum of Babz, —7abz, 3abx, —abz, and 4adx?
Ans. daba.
9. Add together, 4ac, bae, —3ace, Tac, —Bac, —2ac, Yue, and

17ac. Ans., —-3ac,
10. Find the sum of 6a—40, 3a-}-20, —7a—8b, and ——a--90.
Ans. a—b.

11. Pind the som of Bax—20by, —Rax-+3by, Sax—4by, and
Qo8 Ans. Bby.
12. Find the sum of 3ab—10z, —3ab--Tx, 8ab—B8x, —abd--2u,
and —2ab-+T. Ans, 0.
18. Find the sum of 4a?—2b, —6u*-26, 2a*—30, —5a*—80,
and —3a*--90. Ang, 8?20,
14. Tind the swm of zy—ae, Say—9Yae, —Tay--5ac, day-l-Buac,
and —ay—2ac. Ans. —ae.

Wours.—The operation of collecting the similar terms in any algebraic
expression into one sum, as exemplified in this case, is sometimes called
the Reduction of Polynomials, The following are examples.

15. Reduce 3ab-be—7Tab--8c+-8ab—14e—Lab--¢ to its sim-
plest form. Ans. Zab.

BEvisw.—id. How are quantities added together thab are similar, bub
have unlike signs?
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16. Reduce Sa’c— 30 +4d’c-HbUP—8a%c--20* to its simplesy
form. Ans, dle-H40°.
CABE ¥IL

Arr. 88, When the quantitics are unlike, or partly like and
partly wnlike.

1. Thomas has ¢ marbles in one hand, and b marbles in the
other; what expression will represent the number in both? If @
is represented by 3, and b by 4, then the number in both would be
represented by 3--4, or 7.

In the same manner, the number in both would be represented
by a-+b; but unless the numerical values of « and b are given, it
ig evidently impossible to represent their sum more concisely, than
by a+4-b.

In the same manner, the sum of the quantities a-+-0 and ¢-+d, is
represented by a-b--c--d.

If, in any expression, there are two or more like quantities, it is
obvious, that they may be reduced to a single expression by the
preceding rules. Thus, the sum of 2a-+2 and 3a+ty, is equal to
2a-+3a-+a-+y, which reduces to ba-ta-y.

It is evident that this case embraces the two preceding cases;
hence, the

GENERAL BULE,
FOR THE ADDITION OF ALGEBRAIC QUANTITIES.

Write the quantitics to be added, placing those that are simalar
under each other ; then reduce the similar terms, and annex the other
ferms with their proper signs. -

ReMARK.—If a reason is asked for placing similar terms under each
other, the reply is, that it is not absolutely necessary; but as we can only add
similar terms together, i¢ 4s « matter of convenience, to place them under
each other.

EXAMPLES.
Add together
2. 6a—4c+30, and —2a—3¢—5b. Ansg, da—Tc—20b.

3. 2ab-Fc, dax—2c+14, 12—Law, and Gad-+3c—a.
Ans, Bab--2ax-+H2e-H206—a.
4, 14a-tz, 186—y, —11a--2y, and —2a¢—120-+2.
Ans. a+b-+ad-y-tz.
5. a—b, Qb—¢, 2e—d, 2d—e, and 2e-+f.  Ans. g-+-b-Het-d-e-h
6. —7b-4-3e¢, 4b—2c-+3z, 30—3¢, and 2e—2x.  Ans. x.
7. 8(a-+b), B{a+0), and 7(a-+0b). Ans. 15{a-0).
REvView.—>5 Whatisthe general rule for the addition of algebraic quan-
fities? Inwriting them, why are similar quantitics placed uuder each other?
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Noru.—The learner should be reminded, that the guantities in the
parentheses are to be considered as one quantity; then it is evident, that
3 times, 5 times, and 7 times eny quontity whatever, will be equal to 15
times that quantity.

Add together
8. 3a(b-+=), Ba(b-+=x), Ta(d-+a), and —1la(b-+=).
Aus. 4a(b-}-2).
9. Ze(a*—b?), —3c(a®—b), Bc(a®—0%), and —de{a*—b?).
Ans. e(@®0*).
10. Saz—4by—8, —2az-+5by, /w{) Baz-+6by--7, and —8az

T by+5. Ans. —2az—4.
11. 8%—30 2 —Bax--5e?, ax-+2¢2” and —dax #%.  Ans. 0.
12. 8a-+ a—uf‘ e, ——3a +56-+2d, *“‘{)U“igCng, and —5a

+Te—2d. Ans. 2a—b-+5e--3d.
13, Ta---0By-+B2-+3—yg, —a —3y—8—¢,—a-ty—32—1 47 g, —2a

4 3y+-Bz—1—yg, and x+-8y—5z-+84-g. Ans. do-+3y-+-2-+-5g.
14. 2¢*-+bab—ay, —Ta*+3ab—3xy, —3a*—Tab—bay, and Ya?

2. Ans. a?—zy.

15, 5&®6*—Ba?b® ++ay--wy?, 4o —T a3 —8ay—6a’y, 3a°0
+-8a2P—3a%y-+-bay?, and 2PV —aPlP—3aty—3xy’  Ans. a’B-2%y.

SUBTRACTION.

Art. 56, Suprracrion in Algebra, is the process of finding the
simplest cxpression for the difference between two algebraic
guantities.

In Algebra, as in Arithmetic, the quantity fo be subtracted is
called the subtrahend. The quantity from which the subtraction
is to be made, is called the minuend. The quantity left, after the
subtraction is performed, is called the difference, or remainder.

Rewmark.—The word subtrahend means, to be subtracted ; the word
minuend, o be diminished.

1. Thomas bas Sa cents; if he give 2¢ cents to his brother,
how many will he have left?

Since & times any quantity, diminished by 2 times the same
quantity, leaves 8 times the quantity, the answer is evidently 3a;
that is Be—2a=38a.

Henee, to find the difference between two positive similar quan-
tities, we find the difference between their codfficients, and prefix it fo
the common letter, or letters.
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Let it be noted, that the sign of the quantity to be subiracted,
is changed from plus to minus.

2. 3. 4, 5.
From ba Tab 8ay 1la*
Take 3z Sab _f'zg/m w’j}fﬁi
Remainder 2z dab Sy Ga’x

6. From Oa, takeda. . . . . . . . . . . . . . .A«ns Ba.
7. From 110, take 130, . . . . . . . . .+ . . . Ans O
8. From 1lawy, take Sazy. . . . . . . . . . . Ans. Bozy.
. From 120becx, take Hbez. . . . . . . . . . . . Ans. Tbex.
10. From 13%mp, take 8hmp. . . . . . . . . . . Ans.dhmp.
11 From3ed take 2% . . . . ¢ . . ¢ . . . . . . Ans @k
12. From T0%y, take 40%y. . . . . . . . . . . Ans. 3%y
Arr. 8%.~1. Thomas has a number of mpples, renresented by
a; if hie give away a quantity, represented by ), whet expression
will represent the number of apples he has left?

If @ represents 6, and b 4, then the number left would be repre-
sented by 6—4, which is equal to 2; and whatever numbers ¢
and b represent, it is ovident that their difference may be ex-
pressed in the same way, that is, by a—0.

Hence, {0 find the ml?’cre:we Z)e[w cen, two quantitics that are not
stmilar, we ploce the sign wminus before the quantity that is to be
subtracted.

Let the pupil here notice again, that the sign of tho quantity to
be subtracted, is changed from plus to minus.

2. Frome taked. . .« v o o ¢ 4 4 o ¢ e o5 . . Ans. e—d.

3. From Zm, take Bn. . . . . . . . . . . . L Lns Zm—38n.

4, From Bb, take Se.. . . . v . . o o . o . . Ans BO—3e.

5. From ab, tekeed. . . . . . . . . . . . . . Ans. ab—cd.

6. From a%, take aa®. . . . . . . . . . . . . Laos dle—ast

7. Fromaftakex. o o . . o 0 v oo v w0 oo L Aug at—a

8. Fromay, takeyz. « o « . v o . o o . . . Ansay—yz,

Arr, 88.~1. Let it be required to subtract 5-+3 from 9.

If e subtract 5 from 9, the remainder will be €~5; but we
wish to subtract, not only 5, but also 3 ; hence, after we have sub-
tracted B, we must also subtract 3; this gives for the remainder,
953, which is equal to L.

w

Beview-—58 Whatis Bubtraction in Algebra? Whatis the quantity
to be subiracted, called? What is the quantity called, from which the sub-
traction is to be made? What does subtrahend mean? What does minu-~
end mean? IHow do you find the difference bebtween two positive similar
quantities ? 57, How do you find the difference between two quantities
that are not similar?
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2. Again, suppose that it is required to subtract 5—3 from 9.
If we subtract 5 from 9, the remainder will be 9—5; but the
quantity to be subtracted is 3 less than 5, and we have, therefore,
subtracted 8 too much; we must, therefors, add 3 to 9—5, which
gives for the true remainder, §—5--3, which is equal to 7.

3. Let it now be required to subtract b—c from a.

If we take b from @, the remainder is ¢—1b; but, in doing this,
we have subtracted ¢ too much; hence, to obtain the true result,
we must add ¢.  This gives, for the true remainder, a—0--c.

If a==8, b==5, and ¢==3, the operation and illustration by figures

would stand thus: from a from 9 =0
take b-—c take 5—3 2

Remainder, a—b-te Rem. 9—5+8 =

The same principle may be farther illustrated by the following
examples.

4. o—{c—a) =a—cta =2a—c.

t~—(a—¢) =a—a--¢ =¢.
a-+b—{a—b) =a-+b—a--b =20.

Let it be noted, that in the result in each of the preceding ex-
amples, the signs of the quantity to be subtracted have heen
changed from plus to minus, and from minus to plus; hence, in
order to subtract a quantity, it is mevely necessary to chauge the
sigas and add it. Hence, the

RULE,
FOR YINDING THE DIFFERENCE BETWEEN TWO ALGEBRAIC QUANTITIER.

Write the quantity to be subtracled under that jfrom which it is fo
“be taken, placing stmilar terms under each other.  Conceive the signs
of all the terms of the subtrahend to be changed, and then reduce the
vesult to its stmplest form.

Norw.—It is a good plan with beginners, to direct them to write the
example a second time, and then actually change the signs, and add, as in
the following example. They should do this, however, only till they becoms
familiar with the rule.

From Sa-t-3b-¢ "The same, with the Be--8b——c¢
Take Za—2b—3¢ signs of the subtra- —2a-+20-+3

Remain. 3Sa-+50-+2¢ hend changed. 3a-
EXAMPLES,
6. 7. 8.

From Saa—2y dex?—3byt Bayz-+3az—8
Take 243y e —3by? bayz—3az+8
Remainder,  aa—By doxt~2ex Sayz-t+-Baz—16
4
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. From 1
. From 52

9. 10. 11.
From Ta--4y 3a—20 Baz-—4y*+8
Take Go—y Ba—ab Bax—6y*+2

From 14, take adb—5. . . . . . . . . . . Ans. 19—ad.
bl
From a0, takeew. . . . . o . . . . . . . . .Ans b

. fromoa, take a0, . . . . . . . . . . . . . Ans.—b.
CFrom e, take a5 L L . 0 o L o 0 . . . . . Ans. 5.

!

. From Sax, take Qax-+-7. . . . . . . . . . . Ands. a7,

From a-y, takee—y. . . . . . . . . .. . . Ans 2y
From a—y, take -y, . . . o . o L oL L L Ans. 2y
From a—y, take y—e. . . o . . . . . . . Ans. Qe—2y.

fy-bz, take a—y—z. . . . . . . . . Ans. Qy-22.
-3 j-z take da-F3y-+2 . . . . . . Ans a—2z

22, From a,iﬂw—-a e e e e e e e e e e e . Ans 2o

39.

40,
41.

42.
43
44.
45,

486

<
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. Yvom 8a, take —3a. . . . . . . . . . . . .Ans lla
. Froma, teke —4a. . . . . . . . . . . . . .Ans Ba.

From Bb, take 110. . . . . . . . . . . . . Ans. —80.

Froma, take —b .. . . . . . . . . . . . .Ans ald
> ]

From 8a, take —20. . . . . . . . . . . . Ans 3a-+20.
From —8q, take 8e. . . . . . . . . . . . Ans —12a.

. From —7a, take —7a. . . . . . . . o . . . . Ans O
. From —19a, take —20a. . . . . . . . . . . . Ans a

From —0a, take —HBa. . . . . .. .. . . . Ans.—a.
From —da, take —50. . . . . Ans. —3a--50, or 5b—38a.
L Trom —18,take 3. . . . . . . . .. . . . Ans. —16.
L From —9, take —16. .. . . . . . . . . .. . Ans. 7.

5, From 12, take —8. . . . . . . . . . . .. .Ans 20,
3. From —14, take —5. . . . e e e e e 2 Ans. 8,
. From 3a—26--6, take 26a—7 Z)——u .. . . Ans. ¢-+5049.

From 18¢—2b+9e—3d, take 8a—=80-+Ye—10d-+-12.
Ans. 5a-+464+7d—12.
From —7a--3m—E8x, take —Ba—5m—2x-+3d.
Ans. —a+8m—8e—3d.
From 32a- Hib take Ba-+170. . . . . . Ans. 27e—140.
From Ga-i-5—8b, take —2a—80—8. . . Ans. 8a-+65--13.
From 30~2(«ac, take 8l-4+7e—4l. . . . . . Ans. ¢—6L
From 3aw—~~ J take —Bax—8y% . . . . . Ans. Boa-+6y
Tr -9, take 9:“+5(L”€'——~ 3. Ans. 2—Baka-12.
From 4&:«:2 Yy ——ch—{«&m, take —ez-+2a% —4cz,
Ans. 2 a%--8m.
From a®—11ayet-3a, take —Bayz+7—Ra—5wyz.
Auns, a>-ba—7,
from B{z-ky), take 2(a-t+y). . . . . . . . Ans. 3{z-+y).
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48, From Ja(z—z), take alo—2). . . . . . . . Ans. Zafe—z).

49. From Ta*(e—s)—ab(c-

:

. take Ba(e—z)—DBab{c—d).
Ans. 2a*(c—z)-+dab{c—d).

Arr, 89. Tt is sometimes convenient to ¢ndicate the subtraction
of a polynomial without actually performing the operation. This
may be done, if it is a monomial, by placing the sign minus hefore
it; and, if it is a polynomial, by enclosing it in a parenthesis, and
then placing the sign minus before it.

Thus, to subtract a—b from 2a, we may write 1t 2a—(a—D>),
which reduces to a-+b.

By this transformation, the same polynomial may be written in
geveral differant forms; thus:

a—b+ec—d=a—b—(d—c¢)=t—d— =)

Let the pupil, in each of the following e\amples, introduce all
the qu‘mtltxm, except the first, into a parenthesis, and pxoeede it
by the sign minus, without altering the value of the expression.

Toa=bte o o o v v oo w oo o Ansca—(b—c).

Q.obFe—d o o o e e e e e e e Ans b (d—e).

3@ —2xyte. . o o e e e . Ans 2 —(Zay—2).

4. ax-t- e e e e oo Anssgo—(cd—be—D).
By m—R—t—8 « + v o o« o« o o . Ansm—(i-fz4s).
6. m—n-tuts. .. . . . . .. Ansome —{n—z—s),

Tt will be found a useful exercise for the pupil, to take cach of
the preceding polynomials, and without changing their values,
write them in all possible modes, by including either two or more
terms in a parenthesis.

OBSERVATIONS ON ADDITION AND SUBTRACTION.

Arr. 6. It has been shown, that Algebraic Addition is the
process of collecting, into one, the quantities contained in two or
MOre eXPress’ons, The pupil has alveady learned, that these ex-
pressions may be all positive, or all negutive, ox partly positive and
partly negative. If they ave either all positive, or all negative,
the sum will be greater than either of the individual guantities;
but, if some of the quantities are positive and others negative, the
aggregate mey be less than either of them, or, it may even be

Revizw.—Iin subtracting —c from «, after taking away 4, have we
subtracted too much, or too little? What must be added, to obtain the
true vesult? Vhy? What is the general rule for finding the difference
between two :lgebraic quantities? 59, How can the sublraction of an
algebraic quaniity be indicated?
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nothing. Thus, the sum of +4a and —3a, is @; while that of
+a and —a, is zero, or {.

As the pupil should have clear views of the use and meaning of
the various expressions employed, it may be asked, what idea is he
to attach to the operations of algebraic addition and subtraction.

Axrr, 6%, In common or arithmetical addition, when we say,
that the sum of 5 and 3 is 8, we mean, that their sum is 8 greater
than 0. In algebra, when we say that 5 and —3 are equal to 2,
we mean, that the aggregate effect of adding 5 and subtracting 3,
is the same as that of adding 2. 'When we say, that the sum of
- and +8, is —2, we mean, that the result of subtracting 5,
and adding 3, is the same as that of subtracting 2. Some alge-
braists say, that numbers with a positive sign represent quantities
greater than O, while those with a negative sign, such as —3,
represent quantities less than nothing. The phrase, less than noth-
ing, however, can not convey an intelligible idea, with any signifi-
cation that would be attached toit in the ordinary use of language ;
but, if we are to understand by it, that any negative quantity, when
added to a positive quantity, will produce a result less than if
nothing had been added fo it; or, that a negative quantity, when
sted from a positive quantity, will produce a result greafer
than if nothing had been taken from i, then the phrase has a cor-
rect meaning. The idea, however, would be properly expressed,
by saying, that negative quantities are relafively less than zero.
Thus, if we take any number, for instance 10, and add to it the
numbers 3, 2, 1, 0, —1, —2, and —3, we =ee, that adding a
negative number produces a less result than adding zero,

10 10 10 10 10 10
3 2 1 0 —1 —%
13 12 11 10 9 8

From thig, we also see, that adding a negative number, produces

the same result, as subtracting an equal positive number.

Again, if we take any number, for example 10, and subtract
from it the numbers 3, 2, I, 0, —1, —2, and —3, we see, that
subtracting a negative number produces a greafer vesult than
subtracting zero:

10 10 10 10 10 10 10
3 2 1 0 :1~ —2 —3
7 8 9 10 11 12 13

From this, we also see, that subtracting a negative number, pro-
duces the same vesult, as adding an equal positive number.

REVIEW.—60. When is the sum of two algebraic quantities less than
either of them? 'When is the sum equal to zero?
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Arr. 82 In consequence of the results they produce, it is cus-
tomary to say, of two negaiive algebraic quantities, that the least
is that which contains the grewlest number of units. Thus, —8
is said to be less than —2. But, of two negative quantities, that
which contains the greatest number of units is said to be numeri-
cally the greatest; thus, —3 is numerically greater than —2.

Arr. 63 A correct idea of the nature of the addition of posi-
tive and negative quantities, may be gained by the consideration
of such questions as the following:

Suppose the sums of money put into a drawer to be positive
quantities, and those taken oub to be negative; how will the
money in the drawer be affected, if, in one day, there are 20 dol-
lars taken out, afterwards 15 dollavs put in, after this 8 dollaxs
taken out, and then 10 dollars put in? Or, in other words, whatb
is the sum of —20, -|-15, —8, and 4-10? The answer, evidently,
is —3; thatis, the result of the whole operation diminishes the
amount of money in the drawer 3 dollars. Had the sum of the
quantities been positive, the result of the operation would have
been, an inerease of the amount of money in the drawer.

Again, suppose latitude north of the equator to be reckoned -,
and that south, — ; and that the degrees over which o ship sails
north, are designated by -, while those she sails over south, arve
designated by —, and that we have the following question: A
ship, in latitude 10 degrees north, sails 5 degrees south, then 7
degrees north, then 9 degrees south, and then & degrees north;
what is her present latitude?

This question is the same as to find the sum of the quantities
10, -5, +7, —9, and +3; this is evidently -}-6; thai is, the
ship is in 6 degrees north latitude. Had the sum of the negative
numbers been the greater, it follows, that the ship would have
been found in south latitude.

Other questions of a similar nature may he used by the instractor,
to illustrate the subject.

Arr, 64. Subtraction, in arithmetic, shows the method of find-
ing the excess of one quantity over another of the same kind., In
this case, the number to be subtracted must be less than that from
which it is to be taken; and, as they arve considered without refer-

Review-—61. What is meant, by saying that the sum of -5 and ~-3,
is equal to «4-27 What is meant, by saying that the sum of «5 and -3,
is equal to 27 X3 it correct to say, that any quantity is less than noth-
ing? What is the effect of adding a positive quantity 7 Of adding s nega-
tive quantity? Of subbracting a positive guantity? Of subtracting a
negative quantity ? 62, In comparing two negative algebraic quantities,
which is called the least? Which is numerieally the greatest?
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ence to si
Algebraic Subtraction sh

m of the same sign.
3 inding the difference
between two guantities which have either the same or unlike signs ;
and it frequently happens, that this difference is greater than
either of the quantities. To understand this properly, requires a
knovwledge of the natuve of positive and negative quantities.

All quantities are to he vegarded as positive, unless, for some
special reason, they are otherwise designated. Negative quanti-
ties embrace those that are, in their nature, the opposife of positive
quantities.

Thus, if a merchant’s gains are positive, his losses are negative ;
if latitude north of the equator is reckoned -, that south, would
be —; if distance to the right of a certain line is reckoned -,
then distance to the left would be —; if elevation above a certain
point, or plane, is regarded as -+, then distance below would he
——; if time after a certain hour is -, then time before that hour
ig -3 if motion in one direction is -, then motion in an opposite
direction would be — ; and so on.

With this knowledge of the meaning of the sign minus, it is
easy to see how the difference of two quantities having the same
sign, is equal to their difference; and also, how the difference of
two quantities having different =igns, is equal to their sum.

1. One place is situated 10, and another 6 degrees north of the
equator, what is their difference of latitude?

Here we arve required to find the difference bebween +4-10 and
-6, which is evidently -4 ; by which we are to anderstand
thab the first place is 4 degrees farther north than the second.

2. Two places ave situated, one in 10, and the other in 6 degrees
south latitade; what is the difference of latitude?

Here we are requived to find the difference between —6 and —10,
which is evidently —4, by which we learn, that the first place is
4 degrees farther south than the second.

3. Oue place is situated in 10 degrees north, and another in 6
degrees south latitude ; what is their difference of latitade?

Here we are required to find the difference between --10 and —6,
or to take -—6 from -+10, which, by the rule for subtraction, leaves
-+16; which is evidently the difference of theirlatitudes, and from
which we learn, that the first place is 16 degrees farther north
than the other.

It is thus, when properly understood, the results are always
capable of s satisfactory explanation.

Revin w64 In what respects does algebraie differ from arithmetical
g 2=}

Hubtraction ? In what respect do negative guantities differ from pesitive?

Ulnstrate the difference by examples,
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MULTIPLICATION.

Awr. 68. Munrrenicarioy, in Algebra, is the process of taking
one algebraic expression, as often as there are units in another.

In Algebra, as in Arithmetic, the quantity to be multiplied is
called the madiiplicand ; the quantity by which we multiply, the
mulizplier, and the result of the operation, the product. The mul-
tiplicand and multiplier ave generally ealled fuctors.

Arr. 6. Since the quantity @, taken once, is represented by a,
when taken twice, by a--a, or 2a, when taken three times, by
a-+a-ta, or Sa, it is evident, that fo multiply a literal quantity by
a number, it {s only necessary to write the multiplier as the coéfficient
of the Uiteral quantity.

1. If 1 lemon costs @ cents, how many cents will 5 lemons cost?

If one lemon costs o cents, five lemons will cost five times as
much, that is 5a cents.

2. If 1 orange costs ¢ cents, how many cents will 6 oranges cost?

8. Amerchant bought « pieces of cloth, each containing b yards,
at ¢ dollars per yard; how many dollars did the whole cost?

In @ pieces, the number of yards would be represented by ab,
or da, and the cost of ab yards at ¢ dollars per yard, would be
represented by ¢ taken b times, that is, by abX¢, which is repre-
sented by abe.

Axwr. €7, It is shown in “Ray’s Avithmetic,” Part 11, Avt. 44,
that the product of two factors is the same, whichever be made
the multiplier; we will, however, demonstrate the principle here.

Suppose we have a sash containing @ vertical, and b horizontal
rows ; there will he ¢ panes in each horizontal row, and & panes
in each vertical row; it is required to find the number of panes in
the window.

It iz evident, that the whole number of panes in the window
will be equal to the number in one row, taken as many times as
there ave rows. Then, since there arve @ vertical rows, and b
panes.in each row, the whole number of panes will be represented
by b taken a times, that is, by ab.

Again, since there are b horizontal rows, and ¢ panes in each
row, the whole number of panes will be represented by « taken b
times, that is, by ba. Bui, since either of the expressions, ba or

Ruvizw.—85. What is Multiplication in Algebra? What is the multi-
pliecend? The multiplier? The product? “What are the multiplicand and
wultiplier generally called? 66. How do you multiply a literal quantity
by & number?
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ab, represents the whole number of panes in the window, they are
equal to each other, that is, ¢b is equal to be. Tence, it follows,
that the product of two factors is the swme, whichever be made the
maultiplier.

By taking =3 and b==4, the figurc in the margin may
be used to illustrate the principle in a particular case. —

In the same manner, the product of three or more [—
gnantities is the same, in whatever order they are taken.
Thus, 2X3X4=3X2X4=4X2X3, since the product
in each case is 24.

1. What will 2 boxes, cach containing @ lemons, cost at b cents
per lemon?

One box will cost ab cents, and 2 boxes will cost twice as much
as 1 box, that is, 2¢d cents.

2. What is the product of 25, multiplied by 3a?

The produet will be represented by 20X 3a, or by 320, or by
238X abd, since the product is the same, in whatever order the
factors are placed. Bub 2X3 is equal to 6, hence the product
203e is equal to Gab.

Hence, we sce, that in multiplying one moenomial by another,
the coéfficient of the product is obtained by mulliplying together the
‘coiflicients of the multiplicand and muliiplicr. This is termed, the
rule of the coéficients.

Arr. 8. Since the product of two or more factors is the same,
in whatever order they are written, if we take the product of any
two factors, as 2X3, and multiply it by any number, asg 5, the
product may be written 5X2X3, or 5X3X2, that is, 103, or
152, either of which is equal t0 30. From which we see, that
when either of the faclors of a product is multiplied, the product
dtself is multiplied.

Awr, 69.—1. What is the product of ¢ by a?

The product of & by a is written ad, hence, the product of @ by
a would be written aa; but this, (Art. 88,) for the sake of brevity,
is written ¢’

2. What is the product of «” by a?

Since o? may be written thus, ag, the product of a® by « may be

Beview.~—687. Prove that 3 times4 is the same as 4 times 3. Prove
that o times b is the same as b times a.  Is the product of any number of
factors changed by altering theirarrangement? Tn multiplying one mono-
mial by another, howis the eoéfficient of the product obtained? 68. If you
wultiply one of the factors of o produet, how does it affect the product?
69. How may the prodnct of « by « be written? How may the product of
a by « be written?
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expressed thus, awXa, or aaq, which, for the sake of brevity, is
written @®.  Heuce, the cxponent of o letler in the product, is equal
to the sum of its exponents 4n the two fuctors. This is termed, the
yuls of the exponents.
3. What is the product of «* by ¢*? . . . . Ans. acaq, or ot
4. What is the product of ® by ab? . . Ans. aaabb, or o2
5. What is the produet of 2ad® by 3ab? Ans. Baabbd, or 6a’65.
Hence, the
RULE,
FOR MULTIPLYING ONE POSITIVE MONOMIAL BY ANOTIER.
Multiply the coéfficients of the two terms together, and to their pro-
duet anncx oll the letlers in both quantities, giving to each letier an
exponent equal to the sum of its exponents in the two fuctors.

Norn.—1t is customary to write the letters in the order of the alphabet.
Thus, abX e is generally written abe.

6. Multiply abby 2. . . . . . . . v o v o . . Ans. abax.
7. Multiply Zbcbymn. . « « v o o . o oL Ans. 2bcmn,
8. Multiply 4¢d by By, . . o o . o .. . . Ans. 20abxy.
9. Multiply Tax by ded. . . . . . . . . . . Ans. 28acdz.

10, Multiply 60y by Sa. . . . . . . . . . . Aus. 18aday.
11, Multiply 3¢ by 4ab. . . . . . . . . . . Ans 120
12. Multiply 2 by 3. . o o o o ... .. Ans, 62%7°,
13. Multiply 4ab% by Sa2’y. . . . . . . . Ans. 20a%%%.
14. What is the product of 3¢°0% by 501)%3‘? . o Ans. 15t
15. What is the product of Tay®% by 82%2? . . Ans. B6aty®2
Nowm.—The learner must be careful to distinguish between the codfi-
cient and the exponent. Thus, 2¢ is different from « To fix this in his
mind, et him answer such questions as the following :

What is 20-—a? equal to, when iz 1? . . . . . . Ans. 1.

What is ¢*—2a equal to, when ¢is 52 . . . . . . Ans. 15.

What is ¢*~3¢ equal to, when ¢ is 42 . . . . . . Ans 5%,

What is ¢*~4a equal to, when ¢i83? . . . . . . Auns, 69,

Arz. ¥@—1. Suppose you purchase D oranges at 4 cents a
piece, and pay for them, and then purchase 2 lemons ab the same
price; what will be the cost of the whole?

5 oranges, at 4 cents each, will cost 20 cents; 2 lemons, at 4
cents each, will cost 8 cents, and the cost of the whole will be
20--8=28 cents.

The work may be written thus: 542

4
20--8=28 cents.
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If you purchase ¢ oranges at ¢ cents a piece, and b lemons ab ¢
eents a piece, what will be the cost of the whole?

The cost of a oranges, ab ¢ cents each, will be ac cents; the
cost of .b lemons, at ¢ cents each, will be be conts, and the whole
cost will be ac--be cents.

The work may be written thus: a--b

¢
ac+be

Hence, when the sign of each term is positive, we have the
tollowing

RULE,
FOR MULTIPLYING & POLYNOMIAL BY A MONOMIAL.

Multiply each term of the multiplicand by the multiplicr.

BXAMPLES.
2. Multiply a--d by 0. . . . . . .0 ... Ang, ab-bd.
3. Multiply ac+becbyd.. . . . . . o ... Ans. acd-+bed.
4. Multiply 4+5y by Se. « . . . . . . Ans. 12az+15ay.
5, Multiply 8z+32by 20.. . . . . . . .. Ans. 4bz--6bz.
8. Multiply m+2nby3an. . .+ . . . . .. Ans. 3mn--6n2
7. Multiply a-+y by AR v o e e e e e e Ans. ax’-axy Y-
8. Multiply ™2 hyay. . . . « .« . . .. Ans. af“/ -y
9. Multiply a5y by abz. . . . . . . Angs. Zaba*+Sabuy j,

10, Multiply 3a®+2az by %2z . . . . . . . Ans. G2fe-1das
11. Multiply 8a--20-+5¢ by 4d. . . Ans Iﬁad—rfjbd ]—20062 .
12, Multiply be-+af-Fme by Sax. . Ans. 3abex-+3alfo-+3ama?,
13. Mualtiply ab+-ax-+ay by abxy. . Ans. a*b%ey--a*oxy--abx™y®.
Arr. The—1. Let it be required to find the product of +y by
a-+b. Iere the multiplicand is to be taken as many times as
there are units in a0, and the whole product will evidently be
equal to the sum of the two partial products. Thus,
aty
!’lj‘-b
aw-i-c J—«—ﬂl(} multiplicand taken ¢ times.
b y=the multiplicand taken b times.

'm:—i»ct Y bywthe multiplicand taken (a--0) times.

I =5, y==6, a=2, and b==3, the multiplication may be arranged
thug: 5-}-6
248
10-+412==the multiplicand taken 2 times.
__ 15-4-18==the multiplicand taken 3 times.

10-% 27+ 18=b5==the multiplicand taken 5 times.

e
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Hence, when all the terms in each are positive, we have the
following
RULRE,
FOR MULTIPLYING ONE POLYNOMIAL BY ANOTIER.
Multiply cach term of the multiplicand by each ferm of the mulii-
plier, and add the products together,

2. 3.
a+b a*b-t-cd
a-+b . ab+ed?
atrab *0*-abed
ab:TZ: ) - abed?-c*dP
@*-2ab--0° @P0*-a*bed*-abed-+-c*d®

. Multiply a0 by e-+d. . . . . . . Ans. getad--be-bd.
. Multiply 2a-+8y by 3a-+20. . . Ans. Bax--Oay-+4b2-1-60y.
. Multiply 2¢-+30 by 8e-+d. . . Ans. Gac-90c1-2ad-1-3bd.
. Muliply m~n by 2. . « « . . . Ans. mx-nx-+ma-tnz.
. Multiply 4a--30 by 2a-+0. . . . . Ans. 8¢*10ab--30"
. Multiply 4o-+5y by 2a-1-8z. Ans. Bax+-10ay--122--15ay.
10. Multiply 322y by 2x43y. . . . . Ans. B2*-13y--6y"
11, Multiply @+ by a-+b, . . . . . . Ans. @*Fa’b--alb® 105,
12, Multiply 3¢4-20% by 202-4-80% . . Ans. 841302060t
13. Multiply a*+-ab--0* by a-0. . . Ans. ¢’-2a0--2ab*-0%
14, Multiply A-d® by c+d.. . . . . . Aws, cMed®-Ad--dh
15. Multiply a®+2wy-+y? by a-F9 .« Ans, 2%-F32%y-+3ay* -4

0= m ok

SIGNS,

Axr. 8. In the preceding examples, it was assumed thab the
product of two positive quantities, is also positive. It may, how-
ever, be shown as follows:

Ist. Lt it be requived to find the product of 40 by a.

The quantity b, taken once, is -1-b; taken twice, is evidently,
+2b; taken 8 fimes, is <30, and so on. Therefore, taken a times,
it is --ab. Hence, the product of two positive quantities is posi-
tive; or, as it may be morve briefly expressed, plus multiplicd by
plus, gives plus.

2d. Let it be required to find the product of —b by a.

Ruview.—To what is the exponent of a letter in the produect cqual?
What is the rule for multiplying one positive monomial by another! ¥0.
What is the product of @ plus b, by ¢? Whon all the terms in each are posi-
tive, how do you multiply a polynomial by a monomial? ¥i. When all
the terms in each are positive, how do you find the product of two poly-
nomials ?
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The quantity —b, taken once, is —b; taken twice, is —2b;
taken 3 times, is —30; and hence, taken ¢ times, is —ab; that is,
a negative quantity multiplied by a positive quantity, gives a nega-
tive product. This is generally expressed, by saying, that minus
multiplied by plus, gives minus.

3d. Let it be required to multiply b by —a.

Since, when two quantities are to be multiplied together, either
may be made the multiplier (Axt. 67), this is the same as to multi-
ply —a by b, which gives —ab. That is, a positive quantity mul-
tiplied by a negative quantity, gives a negative product; or, more
briefly, plus multiplied by minus, gives minus.

4th. Let it be required to multiply 3 by —2.

The negative multiplicr signifies, that the multiplicand is to be
taken positively, as many times as there are units in the multi-
plier, and then subtracted. The product of —3 by -2 is —6,
then, changing the sign to subtract, the —6 becomes +6; and, in
the same manner, the product of —b by —a is --ad.

Hence, the product of two negative quantitics is positive; or,
more briefly, ménus multiplied by minus, gives plus.

Norr.~—~The following proof of the last principle, that the product of
two negative quantities is positive, is generally regarded by mathematicians
as moroe satisfactory than the preceding, though it is not guite so simple.
The instructor can use either method.

5th. To find the produet of two negative quantities.

To do this, let us find the product of e—d by a—>b.

Here it is vequired to take c—d as many times as there are units in a—b.
1t is obvious that this will be done by taking e—d as many times as thero
are units in «, and then subtracting from this product, ¢—d taken as many
times as there are units in 0.

Sines plus multiplied by plus gives plus, and minus multiplied by plus
gives minus, the product of e—d by @, is ac—ad.

Tn the same manner, the product of ¢—d by b, is be—bd; changing the
signs of the last produet to subtract it, it becomes ~—be-}-bd ; hence the pro~
duet of e~d by a—3b, is ac—ad—>be-{-bd.

But the last term, -+bd, is the product of —d by —b, fience the product
of two negative quantities is positive ; or, more briefly, minus multiplied by
wminus produces plus,

The multiplication of c—d by a—b may be written thus:
et
b

ac—uod==c—d taken a times.
P L d takon b times, and then subtracted.

ectttd—be-}-bid
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The operation may be illustrated by figures; thus, let it be vequired %o
find the product of 7~4 by 538,

Weo first take 5 timos Y—4; this gives a product too
great, by 3 times 7~—4, or 2112, which, being subfracted
from the first product, gives for the true result, 35-—41--12,
which reduces to --6. This is evidently correct, for 7-—4
==3, and 5—3=2, and the product of 3 by 2 is 6.

From the preceding illustrations, we derive the following

GENERAL RULE,
FOR THE SIGNS.
Plus multiplied by plus, or minus muliiplied by minus, gives plus.
Plus multiplied by minus, or minus mulliplied by plus, gives minus.
O, the product of like signs gives plus, and of unlike signs gives minus.

Lfrom all the preceding, we derive the

GENERAL BRULRE,
FOR THE MULTIPLICATION OF ALGEBRAIC QUANTITIER,

Multiply every term of the multiplicand, by each term of the mul-
iyplier.  Observing,

st That the coéfficient of any lerm 1s equal fo the product of the
eofjicients of its fuctors.

2d. That the exponent of any letter in the product is equal fo the
sum of tis exponents wn the two fuctors.

3d. That the product of like signs, gives plus in the product, and
unlike signs, gives minus.  Then, add the several partial products
together.

NUMERICAL EXAMPLES,
TO VERIFY THE RULE OF THIE SIGNS.

1. Multiply 8—8 by 5. . . . . . . Ans, 40—15=25=5X5.
2. Multiply 20—13 by 4. . . . . . Ans. 80—52=28=7X4.
3. Multiply 18—7 by 1 1——8 . Ans., 143—1814-56=18=6(3.
4. Multiply 1043 by 3—5.
Ans, 30—41—15=—20=13X—2.
5. Multiply 9—5 by 8—2. . . Ans.72—58-+10=24=-4<6.
6. Multiply 8—7 by 5—3. . . . Ans. 40—59-+21=2=1X2.
BEvVIEW.—T2. What isthe product of -4-b by --a? Why? What is the
produet of —b by «? Why? What is the product of b by ~—a? Why?
What is the product of —3 by —2? What does a negative multiplier sig-
nify? What does minug multiplied by minus produce? What is the gen-
eral rule for the signs? What is the general vulo for the multiplication of
algebraic quantities?
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CRENERBAL EXAMPLES.
1. Multiply Sa*y by Taxy®. . . . . . . . . Ans. 21@%27/
2. Mualtiply —5a% by 3ad® . . . . . . .. Ans, —150%
3. Multiply —82% by —Bay® . . . . . . .. Ans. 25a% J .
4, Multiply 3a—2b by 4de. . . . . . . .. Ans. 12ac—8be.
5. Multiply Sa+4-2y by —Rz. . . . . . . . Ans, >4y,
8. Multiply e+0byze—y. . . . . . . Ans, aa—ay-+be—by.
7. Multiply e—d by a—b. . . . . . .. Ans. a*—2ab-+0%
8, Multiply e®actc*byog—e. . . . . o . . Ans, ¢,
9. Multiply m-+n by m—n. . . Booococ e Ans. mP—n®
10, Multiply 0*—2ab+-0* by a-+b. . . . Ans. ¢®—~a*b—ab™}- 0%
1. Multiply 82®y—2ay -y by Luy-+-y2
Ans. Gty 3yt — Aoyt
12. Multiply a*2ab--0? by e*—2ab+-0% . Ans. ¢*—2a20%+b%
18, Multiply 9" —y+-1byy+L. o o 0 0 oL Ans. 31,
td, Multiply a*92 by 2™ 2% . . . . . L o L. Ans. zt—yh
15, Maltiply ¢*—8a+8 by a+3. . . . . . Aus. @*—a-+2
18, Multiply 22 —8xy-+y* by «*—bay.
Ang, Zt—18a--162%"—bay?.
17, Multiply 80450 by 8e—5b. . . . . . . Ans, 8a’—-250%
18, Multiply 2¢*>—4az-+22* by So-—3a.
Ans. 66°—18¢%x-1-18a2> 05
19, Multiply Ba®4-3p° by 62235 . . . . . Ans, 28a5—0p.
20. Multiply 2¢°-+-20%-+20a-1-22® by 8a—3x. . Ans. a'—8a.
21, Multiply 3e2--8az+3a? by *—20x. . . Ans. Ba*—Gaad.
22. Multiply 3a°4~dax—~21 by 2a—a.

Ans, 6a3-To?2—Bax-228.

. Multiply afat+a? by 2®™1.. . . . . . . . Ans o8—a?
. Multiply a*Fey-t-y2 ‘03 by JT ¥ .. Ansat-atyA gt
. Multiply @®4-0®+al®+0° by a—0. . . . .  Ans. ab—04

In the following examples, let the pupil perform the multipli-
cations indicated, by multiplying together the quantities contained
in the parentheses.

26. (¢—3)(x—3)(@—3).-. . . . . . Ans. 25—G2?-+-27w—27.
27. (z—4)(a—B)(x-+4)(a+B). . . . .. Ans. a*—412>-+-400.
28. (at+e)(a—c)(atc)a—c). . « . o ... Ans. a—202 ¢t
29, (0" —ab—ac—Dbe)(a+0-c). . Ans. @®--03-cB—3abe.
30. (w*Ha-+L) (a1 -1 (n—1). . . Ans #—2n*-1.
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DIVISION.

DIVISION.

Arr. ¥8. Drvrsion in Algebra, is the process of finding how
often one algebraie quantity is contained in another.

Or, it may be defined thus: Having the product of two factors, and
one of them given, Division teaches the method of finding the other.

The number by which we divide, is called the divisor; the num-
ber to be divided, is called the dividend ; the number of times the
divigor is contained in the dividend, is called the quaticnt.

Art, ¥4. Bince Division is the reverse of Multiplication, the
quotient, multiplied by the divisor, must produce the dividend.

The usual method of indicating Division, is to write the divisor
under the dividend in the form of a fraction. Thus, to indicate

that ab is to be divided by @, we write, —? Algebraic Division,

however, is sometimes indicated, like that of whole numbers, thus,
a)ub; where ¢ is the divisor, and b the dividend.

Nors 16 TrAcHERS.~—In solving the following examples, let the
pupil give the reason for the answer, as in the solution to the first question.
Although the examples ean be solved mentally, it will be found most advan-
tageous, to work them on the slate, or blackboard; as the learner, by this
means, will be preparing for the performance of more difficult operations.

.. . . dx
1. Yow often is x contained in 42? . . . . . . Ans, —{::_4‘

"This solution is to be given by the pupil, thus: 4x divided bya,
is equal to 4, because the product of 4 by = is 4w,

2. How often is ¢ contained in 6¢? . . . . . . . . Ans. 6.
3. How often is ¢ contained in ¢d? . . . . . . . . Ans b
4. How often is b contained in 3ab? . . . . . . Ans. 3a.
5. How often is ¢ contained in abz? . . . . . . Ans. bz
6. How often is @ contained in Habz? . . . . . . Ans. Hbz.
7

o

. How often is 2 contained in 4¢? . . . . . . . Ans. 2a.
8. How often is 2¢ contained in 4ab?. . . . . . Ans. 25
8. How often is ¢ contained in¢®? . . . . . . . . Ans a.

10. How often is ¢ contained in ¢®*? . . . . . . . . Ans o
11. How offen 18 ¢ contained in 3¢?? . . . . . . Ans. 3a.
12. How often is ab contained in He®? . . . . . Ans. ba.

Ruview~-73, Whatis Algebraiec Division? What is the divisor? The
dividend? The quotient? 74. To what is the preduct of the quotient and
the divisor equal? Why? What is the wsual method of indicating divi-
sion?
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18. How often is 20 contained in 104°?. . . . . Ans. 5a%
14. How often is 3a¢? contained in 12462 . . . . Ans. 4ab.
15. How often is 4al? contained in 124°0%? . . Ans. 8a%e.
16. How often is 2¢* contained in 64%0?

6

5
%23:‘%&5‘26:3 a*b.

Tn obtaining this quotient, we readily seo,

Solation,

Ist. The coéfficient of the quotient, must be such a number,
that when multiplied by 2, it shall produce 6; hence, to obtain it,
we divide 6 by 2.

2d. The exponent of @ must be such a number, that when 2, the
exponent of ¢ in the divisor, is added to it, the sum shall be 5;
hence, to obtain it, we must subtract 2 from 5; that is, 5—2 is
equal to 8, the exponent of @ in the quotient.

3d. The letter 4, which is a factor of the dividend, but not of
the divisor, must be found in the quotient, in order that the product
of the divisor and quotient may equal the dividend.

Awr. ¥H. It vemaing to ascertain the rule for the signs.
-ab

Sinee o multiplied by -Fb==-+-ab, therefore, =-}-a; henee,

plus divided by plus, gives plus.

N . —ab
Since —a multiplied by +b=—ab, therefore, »q;%)r:—— 23 hence,

minus divided by plus, gives minus.

Since -+ multiplied by —b=—uab, therefore, -t-@; hence,

minus divided by minus, gives plus.

Since —o multiplied by —b=-}-ad, therefore, ::%—_—-—a; hence,

plus divided by minus, gives minus.
From this, we see, that in Division, like signs give plus, and
unlike signs give minus.
Hence the
BRULE,
FOR DIVIDING ONE MONOMIAL RBY ANOTHUR.

Divide the coifficient of the dividend, by that of the divisor ; observ-
ing, that like signs give plus, and unlike signs give minus.

After the coéfficient, write the letters common to both divisor and
dividend, giving to each an exponent, equal to the excess of the expo-
nent of the same letter in the dividend, over that in the divisor.

In the quotiend, write the letters with their respective exponents, thai
are found in the dividend, but not in the divisor.
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Worn.—The pupil must recollect, that when a letter has no exponent
exprossed, 1 is understood; thus, ¢, is the same as o

‘BEXAMPLES.

17. Divide 15%c by Se®. . . . . . . . . . . . Ans Bac
I8, Divide 87 by —8zy. . . . . . . . . . Ans —Bay.
19, Divide —18d% by —Gaz. . . . . . . . . . . Ans 3¢
20. Divide 2babay by Bay. . . . . . .+ . . . . Ans Ble
21. Dividee®® by e, . . . . . . . . . . . . . Ans oW
22. Divide —4a®? by 8fe. o . . . . . . . . . Ans. —2a%.
28, Divide —12e%%p by —4dctey®. . . . . . . . Ans. 32
24, Divide —24daa®yy by daeye. . . . . . . Ans. —OBa’a?y.
25, Divide Baex®y® by Sax®yhe. . . . . . . . . . Ans 204
26, Divide —10¢%%% by —Reytv. . . . . . . . Aus. Bedy.
7. Divids 60a’e® by 120%4 . . . . . . . . Ans balatyth
28. Divido —18ade® by —~€3a“(‘ P ... Ans SRt
29, Divide —28ac%byn* by 1daa®y* :
30, Divide 30act },41/2 by —Zaext .. . ..

T amp, v

Although the method of operation in ecach of the following ex-
amples is the same as in the preeeding, they may be passed cver, until the
book is roviewed,

v (2 e e e e Ans (k).
32. E,)wxm (a—~— (o s e v o w2 Ans {atD).
33, Divids (a——b)" v (a —: ) e e v oo JAns (aFD)R
34, Divids 8(m-+n)’ by 2im-+n). . . . . . . Ans. Slmn)i
35, Divide a*(b-4-¢)* by a{b-+c¢). . .+ . . . . Ans a{dte).
36, Divids 6a*(x+y)® by 2ab(x-)- ?f) .o o Ans Be(a-y).
&7, Divide (z-+y)( s——b'}a by (e—0). . . . Ans. (a-by)(e—b)%
38, Divide (x—y)*(m—n)? by (2—y){m—n)% . . Ans. (z—y).

Awr, €. Tt is evident, that one monomial cannot be divided
by another, in the following cases.

1st. When the cotfficient of the dividend is not exactly divisible
by the coéfficient of the divisor.

2d. Whesn the same literal factor has o greater exponent in the
divigor than in the dividend.

3d. When the divisor contains one or more literal {actors, not
found in the dividend.

In each of these cases, the division is to be indieated by writing
the divisor ander the dividend, in the form of a fraction.  The

Revigweib When the signs of the dividend and divisor are alike,
what will be the sign of the quotient? Why? When the signs of the divi-
dend and divisor arve unlike, what will be the sign of the quotient? Why?
What is the rule for dividing one monomial by another?
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fraction thus found, may often be reduced to lower terms. For
the method of doing this, see Art. 129,

Are, ¥7. It has been shown, in Art. 68, that any produet is
multiplied, by multiplying either of its factors; hence, conversely,
any dividend will be dwided, by dividing either of its fuctors.

Thus, .Q_zl{:ﬂ X6==12, by dividing the factor 4.
Or, 4\9 =4X3==12, by dividing the factor .

DIVISION OF A POLYNOMIAL BY A MONOMIAL,

ARrT. 8. Since, in multiplying a polynomial by a2 monomial,
we multiply each term of the multiplicand by the multiplier;
therefore, we have the following

RULE
FOR DIVIDING A POLYNOMIAL BY A MONOMIAL.
Divide each torm of the dividend, by the divisor, aecording to the
vule for the division of monomials.

EXAMPLES.
1. Divide B2-+12y by 8.« . . . . . . . . . Ans Za-dy.
2. Divide 152—200by5.. . . . . . . . . . Ans 32—40.
3. Divide 2164350 by—7.. . « . . . . . Ans.—3a—5d.
4. Divide 6ax+9ay by Be. .« . . . . . . . . Ans. 2z-}3y.
5. Divide abt-aebya. . « v o o o« . o . . . Ans bte
6. Divide abe—acf by ac. . « .« . . . . . . . Ans b f

7. Divide 12ay—8ac by —4a. . . . . . . 3

8. Divide 10az—15ay by —ba. . . . . . . Ans. —ZH-SJ
9. Divide 120182 by G2. . . . . . . . . Ans 20—3x.
10. Divide ®*—2al’x by ab. . . . . . . Ans. ab—R0%.

11. Divide 12a"l>cw9acm Sa()cb'y'“ﬂa(,
Ans, —4ab-+-B32>—202,
12. Divide 154®0%~—21a%% by 8a®e. . . . Ans. 5a’0—T%.
13. Divide 86’be-+2a*bc*—4a?c by 2ae. . Ans. 3ab--be—3c
Norp.—The following examples may be omitted until the book is reviewed.
14. Divide 6{a-c) H)(aJr@) by 3. . . Ang 2(a+c)+-3(ata).
15. Divide ba(z+y)—10a*(@—y) by Ba. Ans. (z--y)—2a(z—y).
16. Divide a®{c+d)+ab*(c*—d) by ab. Ans. a{c-d)-+0(c*—d).

Review-—76. In what case is the exact division of one monomial by
another impossible? 78, What is the rule for dividing a polynomial by s
monomial ?
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17. Divide ac{m-+n)—be(m-+n) by m-+n... . . . Ans. ac—be.
18. Divide 12{e—0)*+6¢c(a—0)® by 2(a—0b).
Ans. 6(a—0)--3¢(a—Db)".
19. Divide 2a%c(a-+y)*-2ac*(x--y)* by Lac(z+y)%
Ans. ala-y)+e(a-y).
20. Divide (m+n)(a-fy)*- (m-+n)(a—y)? by m--n.
Ans. (ay)*+(w—y)n

DIVISION ¢F ONE POLYNORMIAL BY ANOTHER.

Arr, ¥9. To explain the method of dividing one polynomial by
another, we may regard the dividend as a product, of which the
divisor and the quotient are the two factors. We shall examine
the method of forming this product, and then, by a reverse opera-
tion, explain the process of division.

Bultiplication, or formation of & product. Division, or decomposition of a product.
2a*—ab 2a*—3a*0--ab¥a—b
a—b S

Lat—a?b

' ; 1st, vem.
—La*b-4-al? N

|

2d. rem.

—a2h-al?

Lt —3a0-+al?

If we multiply 2¢*—ab by a—Db, and arrange the terms according
to the powers of ¢, we shall find the product to be 2a’—3a0-+-al™

In this multiplication we remark,

Ist. Since each term in the multiplicand is multiplied by each
term in the maltiplier, if no reduction takes place in adding the
several partial products together, the number ¢f terms in the final
product will be equal to the number produced by multiplying to-
gether the number of terms in the two factors. Thus, if one fac-
tor have 8 terms, and the other 2, the number of terms in the
product will be six. Frequently, however, a reduction takes place,
by which the pumber of terms is lessened. Thus, in the above
example, two terms being added together, there ave only 3 terms
in the product.

2d. In every case of multiplication, there are two terms which
can never be united with any other. These are, first: that term
which is the product of the two terms in the factors, which contain
the highest power of the same letter; and second: the term which
is the product of the two terms in the factors, which contain the
lowest power of the same letter.

From the last principle it follows, that if the term containing
the highest power of any letter in the dividend, be divided by the
term containing the highest power of the same letter in the divisor,
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the resulb will bhe the term of the quotient containing the high-
est power of that letter. Ience, if 2¢° be divided by a, the vesult,
2¢?, will be the ferm containing the highest power of ¢, in the
quotient.

The dividend expresses the sum of the partial products of the
divisor, by the different terms of the quotient. If; then, we form
the product of the divisor by the first term, 24% of the quotient,
and subtract it from the dividend, the remainder, —a?b--ab?, will
be the sum of the other partial products of the divisor, by the
remaining terms of the quotient.

Wow, since this remainder is produced, by multiplying the divi-
sor by the remaining terms of the quotient, it follows, ag in the
method of obtaining the first texm of the quotient, that if the term
containing the highest power of a particular letter in this remain-
der, be divided by the term containing the highest power of the
same letter in the divisor, the quotient will be the term containing
the highest power of that letter in the remaining terms of the
quotient,

Ifence, if —a* be divided by @, the quotient, —ab, will be an-
other term of the quotient. Multiplying the divisor by this second
term, and subtracting, we find the second remainder is §; hence,
the exact quotient is 2a*—ad. 1lad there been a second remain-
der, the third term of the quotient would have been obtained from
it in the same manner as the second term was obtained from the
first remainder.

Since each term of the quotient is found, by dividing that term
of the dividend containing the highest power of a particular letter,
by the texm of the divisor containing the highest power of the same
letter, it is more convenient to place the terms of the dividend and
the divisor, so that the exponents of the same letter shall either
increase regularly, or diminish regularly, from the left to the right.
This is termed, arranging the dividend and divisor, with reference to
a cerlain letter. The letter with reference to which a quantity is
arranged, is called the lelter of arrangement.

The divisor is placed on the right of the dividend, because it is
more easily multiplied by the respective terms of the quotient, as
they are found.

From the preceding, we derive the

FOR THE DIVISION OF B POLYNOMIAL BY ANOTHER.

Arrvange the dividend and divisor, with reference lo a certain letter,
and place the divisor on the right of the dividend.
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Divide the first term of the dividend by the first tevm of the divisor,
the result will be the first term of the quotient.  Mulliply the diviser
by this term, and subtract the product from the dividend.

Divide the first term of the remainder by the first term of the divi-
sor, the vesult will e the second term of the quotient. Mulliply the
divisor by this flerm, and subtract the product jfrom the last re-
mainder.

Proceed in the same manner, and if you obiain O for a remainder,
the division ©s said to be exact.

RuENARKs.—I1Ist It is not absolutely necessary to arrange the dividend
and divisor with referenco fo a certain letter; it should always be done,
however, as a matter of convenience.

2d. The divisor may be placed on the left of the dividend, instead of the
»ight, as divected in the rule. When the divisor is a monomial, it is more
convenient to place it on the left; but, when it is a polynomial, to place it
on the right.

3d. If thero are more than two terms in the quotient, it is not necessary
to bring down any more terms of the remainder, at cach successive subtrac-
tion, than have corresponding terms in the quantity to be subtracted.

4th. It is o useful exercise for the learner, to perform the same example
in two different ways. First, by arranging the dividend and divisor, so
that the powers of the same letter shall dimenish from left to right; and,
seeondly, so that the powers of the same letter shall dncrease from left to
zight.

5th, 1t is evident, that the exach division of one polynomial by another
will be impossible, when the first term of the arranged dividend is not
exactly divisible by the first torm of the arranged divisor; or, when the first
term of any of the remainders is not divisible by the first term of the
divisor.

1. Divide 8¢*—13ax-+-62? by Za—3u.
6&?~13am+6m2i12f¢~3x

Ga*—Bax Sa—2x Quotient.
—4ax-+-Ga*

P Y

2. Divide a®4* by z—y. 3. Divide a®+a® by o-ta.

Doy - a*-afla-tu
aP—zy  a-by Quotient. a*of a—ox-a? Quot.
e —at--a?

Mjmgz
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4. Divide 5a’x-baxfa®-Ha® by daz-+a’}-at.
&?-Bate--bax*Hadle-Hax--o?
& -date-fax? a--x Quot_i—en{;.
a*x-+-daaab
-{icmﬂ—}-sfi

In this example, neither divisor nor dividend being arranged
with veference to either ¢ or a, we arrange them with reference to
a, and then proceed to perform the division.

5. Divide ¢*+-@’—bat+3a° by a—a

Division performed, by arranging Division performed, by arranging
both gquantities according to the as- | both gquantities according to the de-~
conding powers of a. sconding powers of .
ot —Eat-3adla—a® SdP—bat-a o —aP+-a
a’—a? a-+2a*—3a° BaP—3at —3@*-2a*-a

4-2aP—Hat Quotient. —2at-ab Quotient.

2aP L —2a*+2a°
----- 3ar+-3a® —a* ot
—3at-+3ad —a’-a?

The pupil will perceive that the two quotients are the same, but differently
arvanged.

EXAMPLES,

6, Divide 4a*—8az-+42* by 20—2x. . . . . . Ans. 20—2a.
7. Divide 2a*+Twy-+-6y* by 24+2y. . . . . . . Ans. 2043y
8. Divide 2ma-F3na-+10mn+-16n% by a+5n. . Ans. Bm-}-3n.
9, Divide 2*2xy-+2 by z+y. . .« . . . . . Ans.aty.
10. Divide 8a*—8at by 26222 . . . . . . Ans. da™H4a?
11. Divide ac-t+be—ad—bd by a-+b. . . . . . . Ans c—d.
12. Divide a®-}2-}-Bay’+-5a%y by a?-day-+y* . . Ans.a-by.
13. Divide ¢*—8a*-27a¢—27 by a—3. . . . Ans. ¢*>~8a-+9.
14. Divide 4a*—ba’x*+at by 2a>~Bax-+a? Ans. 2a’--8ax-t+-a.
15. Divide at—~y* by 2~4. . . « « . . Ans.2®Fatyfayths

Review-—79 In multiplying one polynomial by another, what terms
in the product cannot be added together? How is tho term of the quotient
found, which contains the highest power of any particular letter? After
obtaining the first remainder, how is the second term of the quotient found ?
‘What is understood by arvanging the dividend and divisor with reference
to @ certain Jetter? What is the letter of arrangement? Why is the
divigsor placed on the right of the quotient? What is the rule for the
division of one polynomial by another? When is the exact division of one
polynomial by another impossible?
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16. Divide a®—b° by eéFab+0% . . . L L. L. Ans. a—0.
17. Divide &P~y —3aty by a—y. . . Ans. @2y

i8,
19,

Divide 4x*—64 by 22—4. . . . Ans. 2u’--4a*4-8x-1-16.
Divide aP—bate+10a%"—10a%5+baxt—a® by a*—2ax-Fa’.
Ans. ¢*—3Batx-+3ant—al,

220, Divide 4aﬁ~-25a2x4-{—2(}am5‘~4x5bby BaP—5ax?--2a8.
Ans. 26°4-baa®—2x°,
21. Divide 1 by w1, . o o . oo L Ans. y*—y-1.
22. Divide Ba*+4a’z—8¢%*—3ax®-+2x* by 2a*-+2ax—u®.
. Ans, S0P —ax-—2x%
23. Divide 3a*~8a**3a%c*--50+—30%" by a* D"

¥

jou)

Ans. 3a>—5b%-3¢2,

. Divide &8—3wh24-Saty*—y® by ad—Bady-+Bayi—is.
Y Yy 0y ES Y Y

Ans. 28 3aty-+3ay--y5

MISCELLANEOUS EXBRCISES.

. Su-+Br—9c-7d--Bo—3z—3d— {(4a-+2e—8c-+4d)==what?

Ans. 4a—e¢.

. Bab—3Bcx+5d—ab--bex—8d—(3ab-+cx—3d)=what?

Ans. Zab-tcx.

. a+b—(2a~3b)—{(Ba-+Tb)—(—13a-+2b)=what?

Ans. Ta—5b.

4. (a+b){a+b)+(a—0)(e—Db)=what? . . . . Ans. 2¢*{-20%
5. (z+2)(e-te)—(w—s)(e—2)=what?. . . . . . Ans. daz,
6. (a*-at+-af)(a*~1)—(et-a)(a*—a)=what? . . . Ans. 0.
7. {at-a* i) (0P —az+e?)—(a-t2) (a—2)=what ? A. az-}-2%.
8, (148 (—14-an)--(14an)(—on)==what? A. 2--an.
9. (A+a0-—ab?—0%) - {0—b)—(a—b){a—b)=what? Ans. dab.

CHAPTER II.
ALGEBRAIC THEOREMS.

DERIVED FROM MULTIPLICATION AND DIVISION,

Art, BO®o—If we square a-+b, that is, multiply a-}-b by itself,
the product will be *+-2ab-}-b"; thus: a-+b

a-b
a*+ab
Fab b

&*+-2ab-+-b*
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But a-}-b is the sum of the quantities, ¢ and b; hence
THEOREM I.

The square of the sum of two quantitics, is equal to the square of
the first, plus twice the product of the first by the second, plus the
- square of the second.

EXAMPLES.

Norg.—Tho instructor should read each of the following examples
aloud, and require the pupil, by applying the theorem, to write at once the
vesult on a slate, or blackhoard. The examples may be cnunelated thus:
What is the square of 257

1. (24-8)%=4--124-9==25.
2. (2a-+-b)=4a*{-4dab--0%
. (Ra-+-3y) =da+122y-1- 9y~
. {ab-cd)=a?*-2abed-+-c*d?.

B, (aFay ) ==at- 2ty

6. (20+-3an)*=4a*+-12¢%c-Oa’?

Ary. 8E.—If we square o¢—>b, that is, multiply 0 by itself,
the product will be ¢>—2ab-+0% Thus: a—b

a—1b

e GO

a*—ab
b2
QQWQa@
But ¢—> is the difference of the quantities ¢ and b; hence

THEOREBM Xi.

The square of the difference of fwo quantities, is equal (o the
square of the first, minus twice the product of the first by the second,
plus the square of the second.

HXAMPLES.,

1. (6—4)==25—40-116=1.

2. (2a—b)'=4a*—4ab-+0"

3. (Bae—2y)?=0a"—12uy-1-412

A, ( mz»myﬂ)zzx‘izngya - yi‘

5, (ar—a?)=a’®—2aa’ -t

8. (ba*—b*)*=250a*—10ab*-0%

Arr, 82—If we multiply a0 py a—b, the product will be
a*—b% Thus: a+d

a—b
o*--ab
i

@f?
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Bub a+4-b represents the sum of two quantities, and ¢—>b, their

difference; hence,
THESBEM IIL.

The product of the sum and difference of two quanititics, is equal
o the difference of their squares.
EXAMPLES.

1. (5-4-3)(6—3)=25—08=16=8Xx2.
2. (Ra+b)(2a—0b)=4a*—0b"
3. (2e-+3y) (2e—38y)=4a’—0y"

(
4. (5a+-40)(5o—4b)==25a*—160"
5. (a0 (*—1)==a'—D",
6. (2am--30n){2am—3bn)=4a*m*>—9b*n".
Arr. 88.~-If we divide ¢® by ¢, since the rule for the exponents
requires that the exponent of the dlwsm should be subtracted

from that of the dividend, we have -—~—a3 b2

But, since the value of a fr aetxon is not altered by dividing hoth
terms by the same quantity, (Art. 127), if we divide both numer-
Pl
ator and denominator by @®, we have %5:?'
: a1 1% )
Hence ¢?=-, since each equals —.
a o

In the same manner by subtracting the exponents

Or, by dividing both terms by o™, ar_ 1

ar (67)—~1;; 5

Hence, o « « o o o o . @% 0= Thevefore,

i m”

THEOREM IV.
The reciprocal of a quantity is equal to the same quantity with the
_sign of ils exponent changed.

Thus, since P ig the reciprocal of o™ (Art. 51);

e R L
@ = and ¢ =
a‘ y aﬂl
PN 173 ey R ——n
Also. . .. bm_a{) ; Fay A
Satr LI
b ’ bt

From this we see, that any fuctor may be transferred jfrom one
term of a fraction io the other, if, at the saine time, the sign of its
exponent be changed.

3
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Art. 84o—Let it he required to divide ¢® by ¢®% By the rule

Z
for the exponents, (Art. /3) =a?%=q" ; hut since any quantity

L

is contained in its

1.
. s am
Similarly, »ﬁm*‘a”‘“”' == 5 }mt - _1 therefore a®=1 since each

is equal to P tlence,
&
THRBOBREM V.
Ay quantily whose exponent 1s O is equal to unily.
This notation is used, when we wish to preserve the trace of a
Tetter, which has disappeared in the operation of division. Thus,
if it is vequired to divide m'® by s, the quotient will be

2y
T . o . .
et t=mmnbe=n, since n’=1. Now, the quotient is cor-

rectly expressed cither by m'a® or m, since both have the same
value. The firet form is used, when it is necessary to show that n
originally entered as a factor into the dividend and divisor.

Arr. 88.—~1. If we divide a®>—¥? by a—D>, the quotient will be
a-+-b.

Q2. If we divide ¢®*—0® by a—0, the quotient will be a®4-abd--07

In the same manner, we would find, by trial, that the differcnce
of the same powers of two quantities, is always divisible by the
difference of the quantities, The direct proof of this theovem is
as follows.

Let us divide a"‘—~b’" by a—D.

am—bmg—T7

a1 b(an—t—{m) .
“"“’a};;_:l_g—‘—ﬁ“ ™l "('wm—*"‘ Q,uotl ent.

=@t —0"-1) Remainder.
In performmo this division, we see that the first term of the

quotient is @™, and that the first remainder is O(am1—hm-1).
The remainder consists of two factors, b and ¢”'—p"L  Now,
it is evident, that ¢/ the second of these factors is divisible hy
a—b, then will the quantity ¢™—b™ be divisible by a—~b. Thus,
if a—Db is contained ¢ times in a™~1—b™%, the whole quotient of

@, divided by a—b, would be a™*-f-be.
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From this, we see that v @ '—0"" iz divisible by ¢—b, then
will ¢™—0™ be also divisible by it.  That is, 1v the diference of the
same powers of two quontities is divisible by the difference of the
suaniities themselves, then will the difference of the next higher vowers
of the same quantities, be divisible by the difference of the quantitics.
But we have seen, already, that ¢®>—0b? is divisible by a—0; hence,
it follows, that ¢®—0? is also divisible by ¢—0b. Then, since ¢*—0°
is divisible by a0, it again follows, that a*—0* is divisible by it;
and so on, withoud limit.  Hence, we have

THEOREM Vi.

The difference of the same powers of two quantities, is always
divisible by the difference of the quantities.

The guotisats obtained by dividing the difference of the same
sowers of two mmntmes, by the 01 flovence of those quantities,
follow o simple law. Thus:

(a?—0%) =5 {—D)=a-}-b.

(v 4"~c’)5) - {a—b)=a"4-ab-}-1%

(' —04) =3~ (@—D)=a®-a*b-+-ab*--1*
(P—1%) -5~ (a—b)=a*-a"b-ab*-al-- U,

The e*:pm\cnt of the first letter decreases by unity, while that
of the second increases by unity.

Arr. 8@e—SBince a4 is always divisible by a—b, if we pub
-—¢ for b, then a—b wa bee ome a-+e¢, and, since & will become
(”‘, when m is even, as 2, 4, 6, &c., and —¢™, when m is odd, as 3,
5,7, &e., therefore, cc’"——b’“ wﬂl become a™—c™, when m is even,
wnd @”--¢™, when m 18 odd, because @ —0m==g"— (™ )z=g-f-cm;
therefore, ¢—c™ is always dwmbk by a--¢, when m is even, and
@rf-¢™ i always divisible by a--¢ when m is odd.  These traths
e expressed in i he following themc SEN

THESRERM VIL.

Phe difference of the cven powers of the same degree of fwo quans
filies, is always divisible by the sum of the quantities.

Thus: (@*—0%)-+(a-b)=a—0.

(et (a-0)=a*—a*D-alb*—17.
(68~8%) -1~ (a4-b ) =P—at 0+ —a? P -a bt TP,

Review~~30. To what is the square of the sum of two quantities
equal? 81. To what is the square of the differenee of two quantities equal?
82, Wo what is the product of tho sum and differenco of two quantities
equal? 83, Iiow may the reciprocal of any quantity bo expressed? How
may any factor be transferrod from ono term of a f{raction to the other?
In what other form may @ be written? «—m? 84, What iz the value of
any guantify whose exponent is zero?
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THEOREM VIII.
The suin of the odd powers of the same degree of two quantities,
s always divisible by the sum of the quanitities.
Thus: (a®0%)+(a-b)=a>—ab--b%
(@*4-1%) -+ {a+b)=a*—a’b+-a’bP—alP-}- bt
{@?-+0") = (D) =05—aSb+-a* b —aP b+ a bt —alP-- 18,

FTACTORING.
FACTORS, AND DIVISORS OF ALGEBRAIC QUANTITIES,

Arr. 8%—A divisor or measure of & quantity, is any quantity
¢hat divides it without a remainder, or that is esactly contained
ia it. 'Thus, 2 is a divisor of 6; and «¢* is a divisor or measure
of ax.

Arr. 88o—A prime number, is one which has no divisors except
itself and unity.

A composite number, is one which has one or more divisors
besides itself and unity.

Hence all numbers are either prime or composite; and every
composite number is the product of two or more prime numbers.

The following is a list of the prime numbers under 100:

1, 2,8, 5,7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71,73, 79, 83, 89, 97.

The composite numbers are, 4, 6, 8, 9, 10, 12, &e.

BRULE,
FOR RESOLVING ANY COMPOSITE NUMBER INTO ITS PRIME FACTORS.

Divide by any prime number thai will exactly divide it ; divide the
quotient again in the same manner; and so conlinue to divide, wniil
a quotient is obtained, which is @ prime number; then, the last quo-
tient and the several divisors, will constitule the prime factors of the
gieen number.

R A RK . ~—The reason of this rule is evident, from the nature of prime
and composito numbers. It will be found most convenient to divide first
by tho smallest prime number that is a factor.—See Ray’s Arithmetic, Part
11X, FACTORING.

Rrview.—85. By whatis the differenco of the same powers of two guan-
tities always divisible? 86, By what is the difference of the even powers
of the same degree of two quantities always divisible? By whal is the
swm of the odd powers of the same degree of two quantities always
divigible ?



FACTORING. 89

EXAMPLES.

1. The composite numbers under 100, that is, 4, 6, 8, &c,
may be given as examples, Every pupil should learn to give the
factors of these quantities readily.

2. What ave the prime factors of 105?. . . . . Ans. 3,5, 7.

3. What are the prime factors of 210? . . . Ans. 2,8, 5,7.

4. Resolve 4290 into its prime factors. . Ans. 2, 3, 5, 11, 13.

Arr. 89s—A prime quantiiy, in Algebra, is one which is exactly
divisible only by itself and by unity. Thus, @, b, and b4-¢c are
prime quantities; while ab and ab--ac are not prime.

Arr. 90.—Two quantities, like two numbers, are said to be
prime to each other, or relatively prime, when no quantity except
unity will exactly divide them both. Thus, ab and ed are prime
to each other.

Axwr. DR.—A composile number, or a composite quantity, is one
which is the product of two or more factors, neither of which is
unity. Thus, ez is a composite quantity, of which the factors are
a and .

REMARK.— A monomial may be a composite guantity, as ax; and a
polynomial may not be a composite quantity, as a2

Awrr, 93.—To separate a monomial into its prime factors.
RULE.

Resolve the coéfficient into its prime jfuctors; then these, with the
Literal fuctors of the monomials, will form the prime factors of the
given quantity. 'The reason of this rule is self-evident.

Find the prime factors of the following nominals:

1. 1ba%e. . . o« . . oo oo . Ans. EXBaade

2.21ab%d. . . . . e o e e e e e . . Ans. 3XT.abbd.

3.8Babc*x. . v o . v v o v o o v o . . Ans BXT.abeccw.

4, 39 mn. . . o o oo v . .. Ans 3XTBaamanan.

Arr, 3.~—To separate a polynomial into its factors, when one
of them is a monomial and the other a polynomial.

Review—87. What is the divisor of & quantity? 88. What is a prime
number ? What is a composite numwber? Name several of the prime nunmi-
bers, beginning with unity., Name several of the composite numbers,
beginning with 4. What is the rule for resolving any composite number
into its prime factors? 89. What is a prime guantity? Give an example.
90. When are two guantities prime to each other? Give an example. 91,
What is a composite quantity ? Give an example. 92, What is the rule
for separating & monomial into its prime faetors?
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RULE.

Divide the given quantity by the greatest monomial that will exactly
divide cach of its derms.  Then the monomial divisor will be one fac-
tor, and the quotient the other. The veason of this rule is self
evident.

Separate the following expressions into faetors:

1. @ ¥ A ¢ E R
LowmAae . o 0 0 i s e e e e e e . . s AnsalmA-c).
bet-led, . o 0 0 0w 0 e e o 0w . Ans be(ed).
4. 4?6y, . . . e e e e Ans. 2e(22-+3y).
5. Goxy--Obay*—12 caj e Ans. 3xj()a Bby—dex).
6. Bax*—3bax’y-+5a%Py. . . . . . Ans. Baxt(1—Tay-axy).
7. 148322+ 216 —3ba%ey. . Ans. Tdlxy(Bax--8zy—D5bay).
8. 6bctc—15b—3b%% . . . . . . . Ans. 3bA(2a—bc—D).
9. @lemP4-atcmP—atem®. . . . . . . . CAns. dem?{at-c—m).

»
2

.

Arr, D4o—To separate n quantity which is the product of two
or more polynomialy, into its prime factors.

No generval rule esn be given, for this case. When the given quaniily
does not consist of more than three terms, the pupil will generally be able
t0 accomplish it, if he is familiar with the theorems in the preceding section,

Ist. Any trinomial can be separated into two binomial factors,
when the extremes arve squares and positive, and the middle term
iz twice the product of the square roois of the extremes. Sec
Articles 79 and 80.

Thus: ¢*-2ab-+0*=(a+b)(a--0b).

a’ —-~2ab—;~---b ==(a—-0){a—0).

2d. Any binomial, which is the difference of two squares, can
be separated into two factors, one of which is the sum, and the
other the difference of the roots. See Art. 81.

Thus: a*—b0=(a¢-+b)(a—0b).

3d. When any expression consists of the difference of the
same powers of two quantities, it can be separated into at least
two factors, one of which is the difference of the gquantities. See
Axt. 84,

Thus : @™ —t"=(ag—b) (@ a2 . . . . . Aabmripl),
where @, b, and m, may be any quantities whatever.

In this case, one of the factors being the difference of the quan-
tities, the other will be found by dividing the given expression by
this difference. Thus, to find the other factor of ¢*—0%, divide by
a—D, the quotient will be found to be «*}ab-+0*; hence, ¢*—0°
== D) (@ Fab-+-b7).
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In a similar manner, ¢*—8=(a—0)(a*+ b+ -al®-1-b%).

4th. When any expression consists of the difference of the even
powers of two quantities, higher than the second degree, it can
be separated into at least three factors, one of which is the sum,
and another the difference of the quantities. See Axticles 85
and 86. ,

Thus, ¢*—0* is exactly divisible by -0, according to Article
86 ; and, according to Article 85, it is exactly divisible by a—0;
hence, it is exactly divisible by both a-+b and a—b; and the other
factor will be found by dividing by their product. Or, it may be
separated into factors, according to paragraph 2d, above, thus:

ab—b= (0?0 (@~ )=(a*-+- ") (a+b) {a—D).

Hth. When any expression consists of the sum of the odd pow-
ers of two quantities, it may be separated into at least two factors,
one of which is the sum of the. quantities (See Art. 86). The
other factor will be found, by dividing the given expression by
this sum. Thus, we know that a®-0% is exactly divisible by a5,
and by division, we find the other factor to be a*—ab--b*; hence,
@+U=(a+-0) (0 —ab--0).

Separate the following expressions into their simplest factors.

1. &*-2ay--y% Q. @b —c*dA
2. Sa*12ab--4% 10. ¢Px—ad,
3. 4122022 11, o*—0*

4, mP—Lmn-+ni 12. 1.

b, @*—2aba--b% 130 81,
6. 4a?—20xz--252%, 14, 84271,
7. at—yt 15. @15,
8. 9m*—16n" 18, o0,
ANSWERS.
1. (z+y) (ety)- 10. 2(a+=)(a—wx).
2. (8a+20)(3a--20). 131, (a07) (@ b%) = (a2-1%)
3. (248a)(2-+32). (4-D0) (D).
4. (m—n){m—n). 12, (y-+D)(yP—y-+1).
5. (g—bx){a—bx). 13 (a—1)(@*a-1).
6. (Za—5z)(20—52). 14, (2a—380){(4a*+-8ad--80%).
7. {x+y) (@) 15. (¢+0) (a*—a*b+a?b*—al®
8. (Bm--4n)(3m—4n). +b%).
0. {ab-+ed){ab—cd).

16, (@+00) (@ —0%)=(a*+0%) (a—D) (a*++ab-+D7).
—(a-+-b)(a—ab+0%) (a—Db) (a*-F-ab-12).
=(a-+b)(a—-D){a*—ab-- 0} (a*--ab--b").
== (02— (¢--a?h D).
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Arr. 98.—To separate a quadratic trinomial into its factors.

A quadratic trinomial is of the form, a*4-ax-4-b, in which the
signs of the second and third terms may be either plus or minus.
When this operation is practicable, the method of doing it, may
be learned by observing the relation that exists between two hino-
mial factors and their product.

1. (z+a)(z+b)=a?-(a+-b)x-+ab.
2. (x—a)(z—b)=wx’—(a-+b)x+ab.
3. (z+a)(e—d)=a"+(a—0b)x—ab.
4. (v—a)(x-+b)=a’4(b—a)r—abd.

From the preceding, we see, that when the first term of a quad-
ratic trinomial is a square, with the coéfiicient of its second term
equal to the sum of any two quantities, which, being multiplied
together, will produce the third term, it may be resolved into two
biromial factors by inspection.

Decompose each of the following trinomials into two binomial
factors.
24bz+6. . 0 0 . s e o . . . Ans (@42)(243).
LTI, 0 0 0 0 0 o o L. L Ans (03)
@?—5z+6. ... ... ... ... Ans (@—2)(z—3).
?—Qe+20. . . . . . .o .. L Aps. (@—4) (—b).
2 be—6. . .. . 00w e e . . Ans (a3 (2
2B, . .. o e e v . Ans (a—3)(&+2).
Dhar—2. . . v e e h e e e s . Ans. (242)
a2 —13z+40. . . . . .. . . . . Ans (@—8)(=—5).
Lat—T2—8. . ... ... ... . Ans (@—8)(x1).
L7180 0 L o o e e L Ans (2 F9) (a—2).
Lat—a—30. ... .. ... o o . . Ana (2—06)(a5).

Tn the same manner, we may often separate other trinomials
into factors, by first taking out the monomial factor common to
each term.

Thus, Sax*—10a2—40a==5a(a?—22—8)=ba{x—4)(x-+2).

12. 3a*+12:—15. . . . . . . . . . . Ans 3(xb5)(a—1).

13, a%9a’x+14a . . . . . . . . Ans. d(a—T)(a—2).

14. 2aba*>—14aba—60ad. . . . . . Ans. 20b(z—10)(z-}-3).

15. 2a%—4a®>—30x. . . . . . . . . . Ans 2ue(e—5)(at3).

REVIEW.—93. What is the rule for separating a polynomial into its
prime factors, when one of them is a monomial, and the other a polyno-
mial? 94, When can a trinomial be separated. into two binomial factors?
‘What are the factors of m2--2mn—-n2? Of ¢*—2cd--d2? When can a bi-
nomial be separated into two binomial factors? What are the factors of
a%—y?? Of 9a2—16627 What is one of the factors of ¢%—32? Of a3—837
Of wt.yt? What are two of the factors of at—3? Of 6867

,..
SoPNOTA LD~

ot
oot
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Arr, 96 —The principal use of factoring, is to shorten the
work, and simplify the results of algebraic operations. Thus,
when it is required to multiply and divide Dy algebraic espress-
ions, if the multiplier and divisor contain a common factor, it may
be canceled, or loft out in hoth, without affecting the value of the
result. Thus, if it is required to multiply any quantity by ¢*—2%,
and then to divide the product by a-+0, the result will be the same
as to multiply at once by «¢—0.

Whenever there is an opportunity of canceling common factors,
the operations to be performed should be merely indicated, as the
common factors will then be more easily discovered. The pupil
will see the application of this principle, by solving the following
examples.

1. Multiply a-—b by 2?+4-2xy-+7%, and divide the product by a-+y.

(D) e+ 2ayty)_ (DN @ts) g
R - by ==(a—b)(z- y)»
=qx-tay—0br—by.

2. Multiply «—3 by «*—1, and divide the product by z—1I, by

factoring. Aus. *—22—3.
3. Divide 2*+1 by #41, and multiply the quotient by 2°—1, by
factoring. Ans. gt—z54-2—1.

4. Divide 6cPc—12abc+80% by 2ac—Bbe, by factoring.
Ans. 3(a—D).
5. Multiply Gaz--Oay by 4a*—8y% and divide the product by

4a*+-12zy--99% by factoring. Ans. S8a(22--3y).
6. Multiply &*>—ba-+6 by o™ -7e-{-12, and divide the quotient

by @*—06z-+-9, by factoring. Ans. {(z—2)(x—4).
Other examples in which the principle may be applied, will be
found in the multiplication and d&iision of fractions.

GREATEST COMMON DIVISOR.

Agr. 9Fe—Axy quantity that will exactly divide two or more
quantities, is called a comamon divisor, or common measure, of those
quantities. Thus, 2 is a common divisor of 8 and 12; and ¢ is
a common divisor of «b and .

RexAarny.~Two quantities may sometimes have more than one com-
mon divisor. Thus, 8 and 12 have two common divisors, 2 and 4.
. Rmview.—9%4. Whatis one of the factors of o837 What is one of
the factors of 2’45?95, What is o quadratic trinomial?
-
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Arr. B8.—That common divisor of two quantities, which is the
greatest, both with regard to the coéfficients and exponents, is
called their greatest common divisor, or greglest common measure.
Thus, the greatest common divisor of 4da’ay and 8a’z%? is 2a%xy.

Art, 9.~ Quantities that have a common divisor, arve said to
be commensurable; and those that have no common divisor, are
said to be incommensurable. Incommensurable quantities ave alse
said to be prime to each other, or relatively prime.

Arr, 800—T0 ind the greatest common divisor of two or more
monomials.

1. Let it be required to find the greatest common divigor of the
two monomials, 6abd and 15a%.

By separating each quantity into its prime factors, we have
Bab=28ab, 15a%c=38Xbaac.

Here we see, that 3 and a are the only factors common to both
terms; hence, both the quantities can be exactly divided, either
by 8 or a, or by their produet 3a, and by no other quantity
whatever; consequently, 3¢ is their greatest common divisor.
Hence, the

BULE,
FOR - FINDING 7THE GREATEST COMMON DIVISOR OF TWO OR MORE
MONOMIALS,

Resolve the quantities into their prime fuctors ; then, the product
of those factors that are common to cach of the terms, will form the
greatest common drvisor.

Norg.—The greatest common divisor of the literal parts of the quan-
tities, may generally be more easily found by inspection, by taking each
letter with the highest power, that i ~ommon to all the quantities.

2. Tind the greatest comy. wrdivisor of 4a*e®, 6a%% and 10a'x.
428 ==X Baa® Here we sce, that 2, ¢?, and = are the only
GaPet=2X3aPx*  factors common to all the quantities; hence,
10a'e==2Xba's  2a%c is the greatest common divisor.

Tind the greatest common divisor of the following quantities.

3. da%® and 10ax® . . . . . . . . . . .. . .Ans et

4, 9abd, and 12bc. . . . . . . .. . . . . . . Ans. 30,

B, 4a®0%55, and 8abx®% . . . . . . . . . . . Ans ddPxbS
8. 3a'®, 6%, and Qaby'z. . . . . . . . . . Ans. 3a¥S
7.
8.

Bax®y*2®, 12555, and 2422, . . . . . . . . . Ans 4a%i
Ba’zy?, 126%%°, 9Py, and 24a®%. . . . . Ans. 3d%h
Art, R@LTo find the greatest common divisor of two poly-
nomials,
First. Let AD and BD be either two monomials, or polynomials,
of which D is a common divisor; and let AD be greater than BD.
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Divide AD by BD; then, if it gives an exact quotient, BD must
be the greatest common divisor, since no

quantity can have a divisor greater than BD)%%E%Q'

itself. But, if BD iz not contained an exach ——e
number of times in AD, suppose it is con- AD—BDQ=R
tained @ times with a remainder, which may be called R. Then,
since the remainder is found, by subtracting the product of the
divisor by the quotient, from the dividend, we have R=AD—-BDQ.

Dividing both sides by D, we get %:- A—BQ; But A and BQ ave

each entire quantities; hence o which is equal to their difference,

must he an entive quantity. ¥ence, it follows, that any common
divisor of two quantities, will always exacily divide their remainder
afler division. And, since the greatest common divisor is @ com-
mon divisor, it follows that the greafest common divisor of two
quantities, will always exactly divide their remainder after division.

RexAank.—In the above article, weo have used two axioms, which may
be new to some pupils. They are, fixst: Jf two egual quantities be divided
by the sume quantity, their quotients will be equal. And, second: ZLhe
difference of two entire guantitics s also an entive quaniity. The pupil can
easily see, that the sum, or difference of two whole numbers must also be
a whole number; and, that the samo is likewise true of two entire quan-
tities. This, and the next article will both be better undorsicod by the
pupil, after hie has studied simple equations.

Art., BOBSecond. Sappose, now, that it is required to find
the greatest common divisor of two polynomials, A and B, of
which A is the greater,

If wo divide A by B, and therd is no
remainder, B is, evidently, the greatest
common. divisor, since it can have no di-
visor greater than itsclf.

Dividing A by B, and calling the quo-
tlent Q, if there is a remainder R, it is

B)A(Q
BQ

A_..BWQ:R, 1st Rem.

evidently less than either of the quanti-
ties A and B; and, by the preceding the-
orem, it is also exactly divisible by the
greatestcommon divisor; hence, the great-
est common divisor must divide A, B, and
R, and can not be greater than R. Bui
if R will exactly divide B, it will also ex-
actly divide A, since A==BQ--R, and will
be the greatest common divisor sought.

RQ=R/, 2d Rem.

A=BQ-+R  Sincothe
B=RQ/-- R/ dividend is

equal to the
product of the divisor by
the quotient, plus the re-
mainder.
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Suppose, howerver, that when we divide R into B, to ascertain
if it will exactly divide it, we find that the quotient is @, with a
remainder, R, Now, it has been shown, that whatever exactly
divides two quantities, will divide their remainder after division;
then, since the greatest common divisor of A and B, has been
shown to divide B and R, it will also divide their remainder R,
and can not be greater than R/, And, if R exactly divides R, it
will also divide B, since B=RQ/-+1; and whatever exactly divides
B and R, will also exactly divide A, since A=BQ--R; therefore,
if B/ exactly divides R, it will exactly divide both A and B, and
will be their greatest common divisor.

In the same manner, by continuing to divide the last divisor by
the last remainder, it may always be shown, that the greatest com-
mon divisor of A and B will exactly divide every new remainder,
and, of course, can not be greater than either of them. It may,
also, always be shown, as above, in the case of R/, that any
remainder, which exactly divides the preceding divisor, will also
exactly divide A and B. Then, since the greatest common divisor
of A and B can not be greater than this vemainder, and, as this
remainder is a common divisor of A and B, it will be their great-
est common divisor sought.

To illustrate the same principle by numbers, let it be required
to find the greatest common divisor of 14 and 20.

If we divide 20 by 14, and there is no remain- 14)20(1

der, 14 is, evidently, the greatest common divisor, 14

sinée it can have no divisor greater than itselfl fgﬁ)lzl_(-;g
Dividing 20 by 14, we find the quotient is 1, and 192

the remainder 6, which ig, necessarily, less than “—,.3)()(3
either of the quantities, 20 and 14; and by the 8

theorem, Article 98,1t is exactly divisible by their —
greatest common divisor; hence, the greatest common divisor
must divide 20, 14, and 6, and cannot be greater than 6. Now,
if 6 will exactly divide 14, it will also exactly divide 20, since
20==14-6, and will be the greatest common divisor sought.

But when we divide 6 into 14, to ascertain if it will exactly
divide it, we find that the quotient is 2, with a remainder, 2; then,

Review—95. When can a quadratic trinomial be separated into hino-
mial factors? 96. What is tho principal use of factoring? 97. What is a
common divisor of two or more quantities? Give an example. 98, What
is the greatest common divisor of two quantities? Give an example. 99,
When are quantities commensurable? When are guantities fncommen-
surable? 100. How do you find the greatest common divisor of two or
more monomials? 101, Prove that any common divisor of two quantities
will always exactly divide their remainder, after division.
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by the preceding theorem, the greatest common divisor of 14 and
6 will also divide 2, and therefore, can not be greater than 2.
Now, if 2 will exactly divide 6, it will, also, exactly divide 14,
since 14=0X2--2; and whatever will exactly divide 6 and 14,
will alse divide 20. But 2 exactly divides 6; hence it is the
ereatest common divisor of 14 and 20.

Art. B@3.—When the remainders decrease to unity, or when
we arrive at a remainder which does not contain the letter of
arrangement, we conclude that there is no common divisor to the
quantities.

Arr, 804.—If one of the quantities containg a factor not found
in the other, it may be canceled without affecting the common
divisor (see example 3); and if both quantities contain a commeon
factor, it may be set aside as a factor of the common divisor; and
we may proceed to find the greatest common divisor of the other
factors of the: given quantities. This is self-evident. See Ex-
ample 2.

Arr. 108—We may multiply either quantity, by a factor not
found in the other, without affecting the greatest common divisor,

. L Rabz ) . .
Thus, in the fraction 30 the greatest common divisor of the
Sa0C

two terms, is evidently ad. IXere, we may cancel the factors 2
and @ in the numerator, or 3 and ¢ in the denominator, without
&
- .. .. ab
affecting the common divisor; for the common divisor of 5—-, or
£ ¢

Qabz . .
of == is still ad.
ab
If we multiply the dividend by 4, a factor not found in the divi-
Sabx . e
sor, we have S0 of which the common divisor is still ¢b.
b
In the same manner we may multiply the divisor by any factor
not found in the dividend, and the common divisor will still remain
the same.
If, however, we multiply the numerator by 3, which is a factor
. . Gabx .
of the denominator, the result is Saie’ of which the greatest com-
mon divisor 18 3ab, and not ab as before. Hence, we see, that the
greatest common divisor will be changed, by multiplying one of
the gquantities by o factor of the other.
Review~102, Bhow, that by dividing the last divisor by the last

remainder, tho greatest common divisor of two polynomials will exactly
divide both the first and second vemainders after divigion,



78 RAY’S ALGEBRA, PART TIRST.

Axrr. 19G.—In the general demonstration, Art. 101, it has been
shown, that the greatest common divisor of two guantities, also
exactly divides cach of the successive remainders; hence, the pre-
ceding principles apply to the successive remainders that avise, in
the course of the operations necessary to find the greatest common
divisor.

The preceding principles will be illustrated by some examples.

1. Find the greatest common divisor of a®—y® and '~z

Here the second quantity contains z* as a factor, but it is not a
factor of the first; we may, therefore, cancel it, and the second
quantity becomes a*—y% Divide the first by ib.

After dividing, we find that 3% is a factor of the
remainder, but not of 2%—y2 the dividend. Hence,
by canceling it, the divisor becomes w—y; then, di- =
viding by this, we find there isno remainder; there- xyt—y®
fore a—-y is the greatest common divisor, or, (a-—y)y*

xy—y*
2. Find the ereatest common divisor of a%-¢%2® and at-—aZe®
o

The factor a2 is edmmon to both these quantities;
it thercfore forms part of the greatest common divi-
sor, and may be taken out and reserved. Doing
this, the quantities become ai~}a®r and w?—a?,
The first quantity still contains a common factor, @,
which the latter does not; canceling this, it be- 2 2 la-t-a
comes @38 Then, proceeding as in the first Loy | fam
example, we find the greatest common divisor is s 5
aXw-ta). “ya')“’_“;

— QX0

302

3. Find the greatest common divisor of Hud--10ax+ba
R

&P+ 2a% - Qe -at,

and

Here 5a¢® is a factor of the fixst
quantity only, and w, of the second

N X 3Lt 1 ;
only. Suppressing these factors, and a_‘:z,f‘.”;_a“z S (a
proceeding as in the previous exam- aat~-u?
ples, we find a-f-a is the greatest or, ((04“‘3)932

common divigor.
2
a*-2an+a? ot

(a+w
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4. Tind the greatest common divisor of 2a'—
4P Balx —--—Qaw —3ad,

—Gat and

Insolving thisexample, 4580’2 2025 —3af 1Dt —aa?—Bat
here are Lwo instanecos i 5 rear T
the.re m.e I:wo nstances in A@P—20322—1Daxt (2{'&
which it is n

multiply the divid Batet—2a%5 1 %uat-—325
order that the codficientof 0%y (8a*—2a%+12an®—3a?
the firgt term may be ex-

actly divisible by the di~ 2at—atat—Get

visor. Sce Art. 105. The 4

greatest common  divisor St At — Dt | i@agmga“’x 112022808
is found to he 2a?-L-3a2 8 aA—D x+12 Qs ( p

208016022 Bant—2 4t

8a*r—640%2--1 2025984
8abr— 2a%24-12aaP— Jat

v, —ola} (2?43

1200328203
1~14(m:2 (M @
3a®

From the preceding demonstrations and examples, we derive the

RULE,
¥OR FINDING THE GREATEST COMMON DIVISGR OF TWO POLYNOMIALS.

Ist. Divide the greaier polynomial by the less, and if there is no
semainder, the less quantity will be the divisor sought.

2d. If there is @ remainder, divide the first divisor by it, and con-
tinue to divide the last divisor by the last remainder, until @ divisor
25 obigined, which leawes no remainder; this will be the greulest com-
mon divisor of the two given polynomiuls.

RewArks—~102. Explain the principles used, in finding the greatest
common divigor, by finding it for the pumbers 14 and 20. 103, When do
e conclude that there is no common divisor to two quantities? 104, How
is the common divisor of two quantitics affected, by canceling a factor in
one of them, not found in the other? When both gquantities contain a com-
mon factor, how may it be treated? 105. How is the greatest common
divisor of two quantities affected, by multiplying either of them by a factor
not found in the other? What is the rule for finding the greatest common
divisor of two polynomials? Howdo you find the greatest common divisor
of three or more quantitios?
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Nores.—I1. When the highest power.of the leading letter is the swme
in both, it is immaterial which of the quantities is made the dividend.

2. If both quantities contain a common factor, lot it be set aside, as form-
ing a factor of the common divisor, and proceed to find the greatest com-
mon divisor of the remaining factors, as in Example 2.

3. If either quantity contains a factor not found in the other, it may he
caneeled, before commencing the operation, as in Example 3. Seo Art. 104.

4. Whenever it becomes necessary, the dividend may be multiplied by
any quantity which will render the fivst term oxactly divisible by the divi-
sor. Seo Art. 105,

5. If, in any case, the remainder does not contain the leading letter, that
ig, if it is independent of that letter, there is no eommon divisor.

6. To find the greatest common divisor of three or more guantitics, first
find the greatest common divisor-of two of them; then, of that divisor and
one of the other quantities, and so on. The last divisor thus found, will be
the greatest common divisor sought.

7. Since the greatest common divisor of two or more quantities containg
all the factors common to these quantities, it may be found most easily by
separating the quantities into factors, where this can be done, by means of
the rules in tho preceding artiele.

o
Tind the greatest common divisor of the following quantities.

5. Bat4-Baxz end a2 . . . . . . . . . . . . ADds et
8, aP—azanda®—a® . . ... ... o ... . Ansaz—a.

7. and 2?2t . . . . . . . . . . Aps.zte
8. +22—38 and a%+bx-+6.. . . . . . . . . . Ans.z-H3.

9. 6e*+11lax-+32° and 6a*+Tax—32% . . . Ans 2a¢+-3w.
10. ¢*—at and @a%e—aa?—2% . . . . . . . . Anso st
11, a*—Bax-+4a? and @*—a’u-+3an’—34% . . . . . Ans.a—=.
12, a¥et—afyt and 25-2%% . . . . . o . . .. Anso 2 n
18, dd—afand e®—2®. . . . . . . . . . . . . Ans e

JBAST COMMON MULTIPLE.

Arr, 397 .—A multiple of a quantity is that which contains it
exactly. Thus, 6 is a multiple of 2, or of 3; and 24 is a multi-
ple of 2,8, 4, &e.; also, 8a® is a multiple of 2a, of 2d of 2a%,
&e.; and 4{a—x)y’ is a multiple of (a—z), of 2y, of 47 &e.

Art, $08.—A quantity that contains two or more quantitios
exactly, is a common multiple of them. Thus, 12 is a common
multiple of 2 and 3; and Gax is a common multiple of 2, 3, a,
and .
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Axrr, BOD.~—The least common multiple of two or more quanti-
m_s, is the least quantity that will contain them exactly. Thus,
8 is the least common multiple of 2 and 3; and 10xzy is the least
common multiple of 2z and 5y.

Rexmarx.~—Two ormore guantities can have bub one least common
multiple, while they may have an unlimited nuwmber of common multiples.
Thus, while 6 is the least common multiple of 2 and 3, any multiple of 6,
for instance, 12, 18, 24, &e., will be a common multiple of these numbers.

Arr. BE@.—To find the least common multiple of two or more
quantities,

It is evident, that one quantity will not contain another exactly,
anless ib contains the same ;mme factors. Thus, 36 does not ex-
actly contain 14, because 80=2X3X5, and 14=2X7; the prime
factor 7, not being one of tho prime factors of 30.

Arr. BER e4fmy quantity \sl” contain another exactly, if it
containg all the prime factors of that quantity. Thus, 30 con-
tains G om(‘tlﬁ,, because 30:=2XB8X5, and 6==2X3; the prime
factors 2 and 3 of the divisor, being also factors of the dividend.
Hence, in order that one quantity 511&[1 contain anothor exactly, i
is only necessary that it should contain all the prime factors of
that guantity. Moreover, in order that any guantity shall exactly
contain two or more guantities, it must contain all the diffevens
prime factors of those Wmnt.ltrms. And, to be the least gquantity
that shall exactly contain them, it should contain these diferent
prime factors ouly once, and no other factors Lesides. Ienc
the least comumon muliiple of two or more guanditics, containg all é/ec
different prime faclors of these quantities once, and does not coniain
any other facim.

Thus, the least common multiple of @bc¢ and wex, is «’bex, since
it contains all the factors in each of these quantities, and does not
contain any other factor.

With this prineiple, let us find the least common multiple of az,
ba, and abe.

alax bz abel Arranging the quantities as in the margin, we
xzf‘bx U()I 806, tlmt @ is a factor common to two of the
e terms ; henece it must be a factor of the loast
1o ,Z’C common multiple, and we place it on the left
11 ¢f of the quantities. We then cancel this factor

in each of the quantities in which it is found, which is done by
dividing by it. By examining the remaining factors, it is seen
that ' is a common factor in the fivst and second terms. We then
place it on the left, and cancel it in those terms in which it is
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found., We next see, that 4 is a factor common to two of the quan-
tities ; hence, as before, we place it on the left, and cancel it in
those terms in which it is found. We thus find, that ¢, 2, b, and
¢ are all the prime factors in the given quantities ; therefore, their
produet, abex, will be the least common multiple of these quanti-
ties. Hence, the
RULE,
FOR FINDING THE LEAST COMMON MULTIPLE OF TWO OR MORE
QUANTITIES.

Ist. Arrange the quantities in @ horizontal line, and divide them
by any prime fuctor that will divide two or more of them without o
remainder, and sct the quotients, together witk the undivided quanti-
ties, in a line beneath.

2d. Continue dividing as bgfore, until no prime jactor, except
unity, will divide two or more of the quantitics, wiithout a remainder.

3d. Multiply the divisors and the quantities in the last line together,
and the product will be the least common multiple requived.

Or, separate the given quantities into their prime fuctors, and then
maltiply together, such of these fuctors as are necessary to jorm @
product that will contain all the prime faclors in eack quantily ; this
wroduct will be the least common wultiple vequired.

Axy, BEB—Since the greatest common divisor of two quan-
tities, contains all the factors common to them, it follows, that if
we divide the product of two quantities, by their greatest common
divisor, the quotient will be their least common multiple.

Find the least common multiple in each of the following ex-
amples.

1. 4o, 8cfe, and Gaz®®. . . . . . . .. . .. Ans, 120875

2. 12a%2 6%, and B2 . . . . . o . . . . Ans 24atab

3. 6ene?, iz, and 12¢%%%. . . . . . . . . . Ans 366045

4, 15, 6az2, 92%t, and 18ex®. . . . . . . . . . Ans. O0c’

5. Bataly, and 8(a-+x). . . o . . . o Ans 24ty (e,

8. 4e*(a—2), and BaxM{a*—a?). . . . . . Ans. 12a%{at—?).

7. Baz—y), 8at®, and 12axy® . . . . Ans. 24’y (z—y).
8. 103 a—y), 152%(a+ty), and 12(a*—y%). AL 602> (a*—y).

REVIEW.-—107. What is 2 multiple of a quantity? Give an example.
108, What is a common muitiple of two or more quantitics? Give an ex-
ample. 109. What is the least common multiple of two or more quantities?
Give an example. How many common multiples may a quantity have?
110. When is one quantity not contained exactly in another? Give an ex-
ample. 111. When is one quantity contained in another exactly? Give
an example. What is necessary, in order that one guantity may exactly
eontain Hwo or more guantities?
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CHAPTER TIL
ALGEBRAIC ¥RAC

DEFINITIONS AND FUNDAMENTAL PROPORITIONS.

- o
bl

Arr. 31 &.—Ir a unit, or whole thing, is divided into any num-
ber of equal parts, one of the parts, or any number of them, is
callad a fraction.

Thas, if the line 4 B be supposed ¢c d e
to represent one foot, and be divided 4 | | | | B
into four equal parts, one of those parts, as Ade, is called one
fourth (1); two of them, as 4d, are called two fourths (}); and
three of them, as Ae, are called three fourths ().

In the algebraic fraction o if ¢==4 and 1 denotes 1 foot, then~

denotes one fourth of a foot. In the fraction ?, if ¢=3 and }
4 ¢

X a a
of o foot, then - represents three fourths () of a foot.
p )

Art. BR4.—Every quantity not expressed under the form of a
fraction, is called an entire algebraic quantity., Thus, ea-}-6 is an
entire quantity.

Arr. BL5.—Fvery quantity composed partly of an entire quan-
tity and partly of a fraction, is called a mixed quantiy. 'Thus,

a--—, is a mixed quantity.
@
Arr, BEG.—An dmproper algebraic fraction is one whose nu-

merator can be divided by the denominator, either with or without

ax?--b . .
—, are improper fractions.
@

. ab
a remainder. Thus, o and
¢

fraction. It may be either proper or improper.

Ruview.—Ii11, What is necessary, in order that any guantity may be
the least, that shall contain two or more quantities exactly? What fac-
tors does the Jeast common multiple of two or more quantities contain?
‘What is the rule for finding the least commeon multiple of two or more
quantities? How may the leastcommon multiple of two or move quantities
be found, by separating them into factors? 112. If the produet of two
quantities be divided by their greatest common divisor, what will the quo-
tient be? 113, What is a fraction? 114, What is an entire algebraic
quantity? Give an example. 115, What is a wixed quantity? Givean
example. 118, What is animproper algebraic fraction? Give an example.
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) . . 1.2 m .a .
Awry, BRB.—A fraction of a fraction, as 5 of &, or — of -, is
278 n b
called a compound fraction.
Arr. 39— When a {raction has a fraction, cither in its numera-

tor, or in its denominator, or in both of them, it is called a complex

o b
£ N 144 2 ¢ ] N
Jraction.  Thus, A A and ——; are complex fractions.
2
[> 34 Y e--—
5 n

Arr. B20.—Algebraic fractions are represented in the same
manner as eommon fractions in Arithmetie. The number or
quantity below the line, is called the denominafor, because it de-
nominates, or shows the number of parts into which the unit is
divided ; and the nunber or quantity above the line, is called the
mgmerator, beeause it mumbers, or shows how many parts are taken.

Thus, in the fraction, ¥, the denominator, 4, shows, that the unib
foot,) is divided into 4 equal parts, and the nume-

{for iostance, 1 fo
rator, 3, shows, that 8 of these parts are taken. Again, in the

. & . . . e .
fraction o the denominator ¢, shows, that a unit is divided into ¢

oqual pavts, and ¢ shows, that @ of these parts ave taken.

The numerator and denominator, are called the Zems of a
fraction,

Axrr. R2H.—In the preceding definitions of nuwmerator and de-
nominator, reference is hiad to o wnif only. This is the simplest
method of considering a fraction; but there is another point of
view, in which it is proper to examine it.

If it be requived to divide 3 apples equally, between 4 boys, it
can be effected, by dividing ench of the 3 apples into 4 equal
parts, and then giving to cach boy 3 of those parts, expressed by
#. Now, the parts being equal to ench other in size, it will be the
same, for an individual to receive 8 parts from 1 apple, or 1 pars
from each of the 3 apples; that is, § of one apple, is the same as
3 of 3 apples; or, 4 of 1 unit, is the same as L of 3 units. Thus,

- may be regarded as expressing #wo fifths of one thing, or one
fth of fwo things.

o oofio

Ruvriewe117. What is a simple fraction? Give an example. 118.
What is a compound fraction? Give an example. 119. Whatis a complex
fraction? Give an example. 120. Tn Algebraic Fractions, what is the
quantity below the line called? Why? Above the line? Why? @ive
an example, What do you understand by the terms of a fraction?
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mo. . .1 L . .
8o, — 1ig either the fraction o of one unit taken m times, or it
n i

is the nth of m units. Hence, the numerator may be regarded, as
showing the number of unils to be divided ; and the denowinator,
as showing the divisor, or what part is faken from cach.

Nore 7o TrAcusrs.~—Although itis important that the pupil should
Do perfectly familiar with the principles contained in the following proposi-
tions, the demonstrations may be omitted, especially by the younger clags
of pupils, until the book is reviewed.

PROPOSITION I.

Arnr. E88e—If" we multiply the numeraior of a fraction, without
changing the denominaior, the value of the fraction is increased as
smany tumes as there are wwits in the multiplier.

If we multiply the numerator of the fraction Z by 8, without
changing the denominator, we get §. Thus:

2X3 6
7

Now, ‘; and § have the same denominator, and, thel efore ex-
pross parts of the same size; but the mwnd fraction, ¥, has three
times as large a numerator as the first, Z; it therefore exprosses
three times as many of those cqual parts as the first, and is, con-
sequently, three times as large.  And the same may be shown of
any fraction whatever.

PROPOSITION XX.

Arr, 828 —Jf we divide the nuwmeralor of a fraction, without
changing the denominalor, the value of the fraction is diminished,
as many times as there are wnits in the divisor.

If we take the fraction 2, and divide the numerator by 2, with-
oub changing the dcnomm%tm wo gob 3 %, Thus:

Now, # and 7 have the same denominator, and, thevefore, ex-
press parts of the same size; but the numerator of the second
fraction, Z, is only one half as large as the numerator of the fivst,
4. it therefore expresses only one half ag wany of those equal
parts as the first, and is, consequently, only one half as large.
And the same may be shown of other fractions.

Ruviecw~121. In what two different points of view may every fraction
be regarded? Give examples, 122. How is the value of a fraction affected
by multiplying the numerator only ?  How is this proposition proved? 123,
How is the value of a fraction alfected by dividing the nunmmtm only ?
How is this proposition proved ?
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PROPOSITION F1i.

Arr. R2E—Tf we multiply the denominaior of « fraction, with-
out changing the numerator, the value of the fraction is diminished
as many times as there are units in the mulliplier.

If we take the fraction #, and multiply the denominator by 2,
without changing the numerator, we get . Thus:

3 3
4x2°8

Wow, each of the fractions, § and §, have the same numerator,
and, thevefore, express the same number of parts; but, in the
seeond, the parts ave only one half the size of those in the first;
consequently, the whole value of the second fraction, is only one
half that of the first. And the same may be shown of any frac-
tion whatever.

PROPOSITION 1V,

Arr. B28—If we divide the denominator of « fraction, without
changing the wumercior, the value of the fraction is inereased s
many times as there are unils in the divisor.

If we take the fraction %, and divide the denominator by 3,
without changing the numerator, we get 3. Thus:

2 2
9+3 3

Now, each of the fractions, 5 and ﬁ, have the same numerator,
and, therefore, express the same number of parts; but, in the
gecond, the parts are three times the size of those of the fivst;
consequently, the whole value of the sccond fraction is three fimes
that of the first. And the same may he shown of other fractions.

PROPOSITION V.

Arr. 82G.—Multiplying bolh terins of a fraction by the same
number or quantity, changes the form of the fraction, but does not
aller its valie.

If we wultiply the nwmerator of a fraction by any number, its
value (by Prop. L.) is dncreased, as many times as there are units
in the multiplier; and, if we multiply the denominator, the value
{(by Prop. IIL) is decreased, as many times as there are units in
the multiplier. Hence, if both terms of a fraction ave multiplied
by the same number, the increase from multiplying the numerator,

Ruvie w124, Iow is the value of & fraction affected by multiplying
only the denominator? How is this proposition proved? 125. How is tho
value of a fraction affected by dividing the denominator only? How is this
proposition proved ? 126. How is the value of a fraction affected by mul-
tiplying both terms by the same quantity? Why?
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is equal to the decrease from multiplying the denominator; con-
sequently, the value remains unchanged.

PROPOSITION VI
Axr, 827 —Dividing both terms of o fraction by the same nuwm-
ber or quantity, cz’zcmges the form of the fraction, but does not alfer
its value.

If we divide the numerator of a fraction by any number, its
value (by Prop. IL) is decreased, as many times as there are units
in the divisor; and if we divide the denominator, the value (by
Prop. IV.) is dneresed, as many times as there are units in the
divisor. Hence, if both terms of a fraction are divided by the
same number, the decrease from dividing the numerator is equal
to the inerease from dividing the denominator; consequently, the
value remaing unchanged.

CABE I.

A FRACTION TO ITS LOWEST TERMS.

Anr. 128.—8ince the value of a fraction is not changed by
dividing both terms by the same quantity (See Art. 127), we have
the following

RULE.

Divide both terms by their greatest common divisor.

Or, Resolve the numeraior and denominaior into their prime fac-
tors, and then cancel those factors common o boih terms,

R exarx.~The last rule will bo found wmost convenient, when ono or
both terms are monomials

1. Reduw Ei)_z to its lowest torms,
f&}_{fb" 2ab>20 2_&2) Ans.,
Gla? 32X 2 3t
Reduce the following fractions to their lowest terms.
4a’? Ay 2t
A '"g;;[. a e s o« LAN8, —g{;
Ga’x? 3(1
3. BaF e Ans. i
Batx? 3a’x
»4'. m‘/}- PR Al\b. 74-—/—4—
Daty’sd Bz
3. 1%2?03‘1/42%' .. . Ans, :@ 9. 5leu +5led . ANE. C—}—(Z‘

Review.-—127. How is the value of a fraction sffected hy dividing both
terms by the same quantity? Why? 128. How do you veduce s {raction
to its lowest terms?
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1. e e e e e e e e e e e s Ans e .
Bac—3¢

Noru.—In the proceding examples, the greatest common divisor in each
is & monowmial ; in those which follow, it is'a polynomial; but, by separating
the quantities into factors, or by the rule (Art. 106,) the groatest common
divisor is readily found.

Ba® —3ab?

13. 7..;(7)—'_;)—()2_. This is CUUZ’LI to
e T
Ba{a* 1) Ba{a-+b)(a— b'_3co(a—b)
50(a+0) 5?)(@—14)) b

w  1dar—TTab Ta
Y fousoe A" 5o

a‘-}__xy‘l DR +2c—15 Ar ?:W_fi
18. P 23, % x+8x+la Ans P 3

Arr, 128e—Exercises in Division (See Art. 76,) in which the
quotient is a fraction, and capable of being reduced to lower terms.

L Divide By by Sa™ © o v o v o o 0 o 0 o

S

G Tl o272 S5 .3 : 30
2. Divide 15a®% by 25¢c. . . . . . . . . . Ans Ea
& s - I 50
3. Divide 25abe by Bac®. . . . . o . . . . . . Ang -
. ¢

—_ N P 12
4. Divide amn® by ¢*m™n. . . . . . . . . .. . Ans R

In a similar manner, when one polynomial ecan not be exactly divided by
another, the division may be indicated, and the result reduced to its most
simple fornu.

.. b
5. Divide 25aa® by baz®~bBawy. . . . . . . . Ans prrs
6. Divide 3m*+-3n* by 15m*-15n7 &qI
. Divide 8m®-3n by 1o -150% . .« o . . . & Ans. .
&

7. Divide 2%y*Fa%® by as’y-taxy®. . . . . . . . . Ans. fgﬂ/‘
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€
8. Divide 4¢-+40 by 2a*20% . . . . . . . . Ans az B
2
9. Divide #*—2n? by n*—4dn4+-4. . . . . . . . . Ans nzz'
10. Divide 2*+2x—3 by #*-52-46. . . . . . . . Ans ’f:i
a2
CASE II.

TO REDUCE A FRACTION TO AN ENTIRE OR MIXED QUANTITY.

Arr. 830.—S8ince the numerator of the fraction may be re-
garded ag a dividend, and the denominator as a divisor, this is
merely a case of division. Hence, the

RULE.

Divide the numerator by the denominator, for the entire part, and,
if there be @ remainder, place it over the denominator for the frac-
tional part.

Norn.—The fractional part should be reduced to its lowest terms,

2

1. Reduce E}_@}FZ)_ to a mixed quantity.

Saz —§~.3 —{—- Ang,

€<

Reduce the following fractions to entire or mixed quantities.
ab+b"

2.

R
e e e e e e v e e s e e o s Ans bb-,
a

3.

e e e e e s s e e e s e s s s o Ans e—d.

Dac?
e s s e e e s s e e s .Ansa—}aq—a:—x.

a8
Wt e e e d e e e e o o o s o Ans. 2av- o

3
6. : Ans.a»—-:c+~ll——-.
doax--2z*—a®

e ...,.,o..,...AmQ;c»«—--n
L0 20—

ax

8. s e e s e e e e e e s o Ans gD
.

4\»

e e e e o o o o Ang, a‘*wa,x+m‘3—«-‘

. 3
. Ans. 3'{'“15:;‘1;

10 e e
8
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C A8 IIX.
D QUANTITY TO THE FORM OF A FRACTION,

TO REDUCE A X1
Arr. 888.—1. In 2% how many thirds?

In 1 unit there are 38 thirds; hence, in 2 units, there are twice
as many, that is, 6; then, 6 thirds plug 1 third, are equal to 7
. . . b .
thivds ; that is, 2} ave equal to 7. In the same manner, g4~ i3

¢

H]

ac , b Cs ac—-b

equal to—--—, which is equal to ——
C i ¢ ¥ ES e

Hence, the
RULE,

FOR REDUCING A MIXED QUANTITY TO THE FORM OF A FRACTION.

Multiply the entive part by the denvwinalor of the fraction; then
add the wumercior wiih its proper sign to the product, and place the
result over the denominator.

Rewark.~Cases IL and IT1., are the reverse of, and mutually prove
each othier.

Before proceeding farther, it is important for the learner to
consider

THE SIGNS 0P FRACTIORS,

Arr. 882.—It has been already stated (See Art. 121,) that in
every fraction the numerator is a dividend, the denominator a
divisor, and the value of the fraction the quotient. The signs pre-
fixed to the terms of a fraction, affect only those terms; and the
sign placed before a fraction, affects its whole value. Thus, in the

. 0% . . .
fraction — Ty the sign of «? the first term of the numerator,
is plus; of the sccond, 9% minus; while the sign of each term of
the denominator, is plus. Dut the sign of the fraction, taken as
a whole, is minus.
By the rule for the signs in Division, Axt. 75, we have

, e . —ab
=03 or, changing the signs of both terms, :—_—a—-::~+b.

. . —ah
But, if we change the sign of the numerator, we have ——

.p . . ab
And, if we change the sign of the denominator, we have -:t—»::wb.
—a

Hence, the signs of both terms of a jfraction may be changed,
without aliering its value, or changing ils sign ; but, if the sign of
cither term of o fraction be changed, and nol that of the other, the
sign of the jfraction will be changed.
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From this, it also follows, that the signs of either term of « frac-
tion may be c]’muqv( 1, without allering its value, if the sign of the
Jraction be changed at the same time.

N N
Gr—u az—ax? ’
Thus . . . . = = .
¢ —¢ ¢
2 a—a 20
And, . . . d———=—gt—i=at .
i b —b b

EXAMPLES,

1. Reduce 8a~€?;— to a fractional form.
3%3%6 nd j%_(rzc a:c—cz__3am~}~aac—a:4cm:——a-. Ans,
x x x @
2. Reduce 4a— d_—ci to a fractional form.
4, 1Rac 1‘2u a—b_12ac—(a—b) 12ac—a-+D Ans,

o= - and = = .
3¢ Se Sc 3e

Ruyarx.—In solvmg this example, the learner should observe, that
%ﬁ is to be subtracted from 4a. We reduce 4a to a quantity whose de-
nominator is 3¢; then make the subtraction, and write the result over the
coramon denominator, e,

Reduce the following quantities to improper fractions.

a—Db

3‘5(1—2—%1...............Ans.
Kdvhs

10cx—a--1
. . Ans, —-

4,

. Ans.

@ 6 o s % 8 o o 8 s & o

5.

6.

®

Buvinw.——130. How do you reduce a fraction to an entive or mixed
quantity? 131, How do you reduce a mixed quantity to the form of a
fraction ? 152, What do the signs prefixed to the terms of a fraction
affect? What does the sign placed before the whole fraction, affcet? What
effect doos it have npon the value of & fraction, or upon its sign, to change
the signs of both terms ?  To change tho sign or signs of one term, and not
of the other? To change the sign of the fraction, and one of its terms?

)
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10 4y 5 A 47/—-101-:)z
© Qpg et e Doz

3-4+5e Be—45
11, =6, v ¢ ¢« « v ¢ s v o s s .« . Ans.— .

8 8

12. 3a% at—a Ans 2(o“r2+a$
2 2 3.9

o’ 20°
18, aat—— ¢ ¢ . s s v e e s e 0 s e s o Ang. .
i +a—x a2
20%__o3 3

14, gy 20 7Y Ans. L
x ° '

At "

- 2w

=4 2 .2 e —

15. @l e e e e Ans. R
i T

16 a——-'g.l.w Ancg 2612_‘_5
. i R e
4 4 &

17. a-a’x-taxt—a®— Cﬁ———L—m- e e 2 2
a-t+x ot

TO REDUCE FRACPIONS OF DI CENT DENOMINATORS 90 EQUIVALENT
FRACTIONS, HAVING A COMMOX DENOMINATOR.

Ary, 8831, Rf,duce 3 " and & a to a common denominator.

If we multiply both terms of the first fraction, ff by d, the de-

nominator of the second, we shall have < I Z;éj Z(f, and, if we

multiply both terms of the second fraction, - by b, the denomina-

c_eXb _be
d dxb od

In this solution we observe; firss, the values of the fractions
are not changed, since, in each fraction, both terms are multiplied
by the same guantity; and, second, the denominators in each
must be the same, since they consist of the product of the same
quantities.

SCZ)
tor of the first, we shall have

- a b ¢ .
2. Reduce g’ and o to a common denominator.

Here, we are ab Hbetty o multiply both terms of each fraction,
by the same quantity, since this (See Art. 126) will not change
its value. Now, if we multiply both terms of each fraction, by
the denominators of the other two fractions, the new denomina-
tors in each will be the same, since, in each case, they will consish
of the product of the same factors, that is, of all the denominators.
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Thas, « « « « » . . a><13><7' anr
mXnylr mnr
SXmXr bm7'
DX MKT T
('XmXiz Cm
XM
It is evident, that the value of each fraction is not changed, and
that they have the same denominators. Hence, the

RULE,
FOR REDUCING FRACTIONS TO A COMMON DENOMINATOR.

Multiply both terms of each fraction by the product of all the
denomingiors, except ils own.

REMARK.—Since each denominator of the new fractions, will consist
of the produet of all the denominators of the given fractions, it is unnec-
essary to perform the same multiplication more than onece.

BEXAMPLES,

Reduce the following fractions, in each example, to others,
having a common denominator.

a e 1 2ad 2bc bd
3. E, E, and ":,;. e e = a2 o o o o & s Ans. -2‘“1;“?, E,Z-I—/a’ and - ,&Z)i
4. T, and. MHZ e e e e e e e e e . s Ans E—,, and a‘/+ﬁ

y ey cy

2 3a Ty 80 9ab 122—12y
5. 7 4E,:md. I Ans. Top T9op 4o

2 Su 102z Oay 15ayz
6. 5&’ o ande. . . . . . . . Ans, Ty L’)yz an T5§5°

~ 2, 2

7. Q’ f’ and e e e e o e o . Ang - ayE X2 , and 2,

zy wy? xyd ayz

8 1 22 s 3-8z 20°1-2u% an G’ 6e°

A M : P 6x62 Gxf6z 'Y ba-bz”
o 2 1 o, 2 2__ 3

0. 2L o e, BB g By,

a—y ah—y? gy
IO.Q%QJando,..,...,.,, Ans.%%—q?@— dﬁ—g

RevVIiE w133, How do you reduce fractions of different denominators
to equivalent fractions having the same denominator? Why is the value
of each fraction not changed by this process? Why does this process give
to each fraction the same denominator?



94 RAY’S ALGEBRA, PART FIRST.

147 M—% 47
11l 5—, — and ——.
3m’  w -
2, 2, 2 2.
arm--atn Satm
Ans.

SamP+-3amn’ Sami-+Samn’ » R Sam*~-Samn

Axry. 834.—It frequently happens, that the denominators of
the fractions to be reduced, contain one or more common factors.
In such cases, the preceding rule does not give the least common
denominator. From the preceding Axticle we see, that the com-
mon denominator is a multiple of all the denominators; and, that
each numerator is multiplied by & quantity which is equal to the
guotient obtained, by dividing this multiple by its denominator.
Thus, in the second example, ar, mr, and mn, the quantities by
which each numerator is respectively multiplied, may be regarded
as the quotients obtained, by dividing mnr successively, by m, n,
and 7. Now, if we obtain the least common multiple of the de-
nominators, by the rule, Case IIL, and then divide it by each
denominator respectively, and multiply the quotienis by the nu-
merators respectively, we shall obtain a new class of fractions,
equivalent to the former, and having for a common denominator,
the least common multiple of the given denominators. 1fis easily
seen, that both terms of cach fraction are multiplied by the same
quantity, and hence, that the resulting fractions are equivalent to
the given ones

7 . .
1. Reduce 7} b und l’ to equivalent fractions, having tho

least common denomlnator.
The least common multiple of the denominators is easily found
to be bed s dividing this by 0, the denominator of the first fraction,

the quotient is ¢d; then multiplying both terms of 9;} by ed, the

) sned

vesulbis. . . . . . . o .. . oL L. e
i nd

Then bed-+be==d, and -— z} Vd R vk
VVVVVVV »Xb br

Also, bed-s-ed==b, and - *1\<b T hed”

The process of multiplying the denominators by the quotients
may be omitted, as the product in each case will be equal to the
least common multiple. Ience, the

RULE,
FOR REDUCING ¥RACIIONS OF DIFFERENT DENOMINATORS, 1O EQUIVA~
LENT FRACTIONS, HAVING THE LEAST COMMON DENOMINATOR.
ist. Zind the least common multiple of all the denominators;
this will be the common denominator,
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2d. Divide the least common multiple, by the first of the given
denominators, and mulliply the quotient by the first of the given
numerators; the product will be the first of the required numerators.

3d. Proceed, in o similar munner, to find each of the oiher
MUIRETALOTS,

Nours.—Each fraction should be in its lowest terms, before commencing
the oporation.

Reduce the following fractions, in each example, to equivalent
fractions, having the least common denominator.

2a 3w 5y 4ad 18bx Bey
2. EZ}Z’ -&E, and g&d e s . . o . Ans, gm, “GZJCCZ’ and BT)Z?Z[
Bledm  acdn ab’r

. . Ans, nd

ared abed M ared
a4y (x—y)? e

. . Ans. (__;l ‘/,)z , (% ‘/Z ,and =L

at—y?’ t—y @ty

Other exeveises will be found in the addition of fractions.

Norn.—The two {ollowing Articles depend on the same principle as the
two preceding, and are, therefore, introduced here. They will both be
found of frequent use, particularly in completing the square, in the sclution
of equations of the second degree.

Arr. 188.—To reduce an entire quantity to the form of a frac-
tion having a given denominator.

1. Let it be required to reduce @ to a fraction having b for its
denominator.

Since any quantity may be reduced to the form of a fraction,

by writing 1 bencath it, ¢ is the same as s if we multiply both

terms by b, which will not change its value (See Art. 126), we
o ab . .
have 1% for the required fraction. Hence, the
RULE,
FOR REDUCING AN ENTIRE QUANTITY TO THE FORM OF A FRACTION
HAVING A GIVEN DENOMINATOR.

Multiply the entive quantity by the given denominator, and write

the product over .
EXAMPLES.

. . . 4z
2. Reduce x to a fraction, whose denominator is 4.  Ans. —-.

4

3. Reduce m to a fraction, whose denominator is 8a”
Ans. 9
Oa
Revinw.—i34. How do you reduee fractions of different denominators
to equivalent fractions, having the least common denominator?




96 RAY’S ALGEBRA, PART FIRST.
4 Reduce 3¢5 to o fraction whose denominator is 16¢%
48¢34-80¢2

Ans. e

5. Reduce a~b fo a fraction, whose denominator is e*—2ab--0%

Ans F—3a@*b+-3ab' b (a—0b)®

U TR0 (a—b)

Axr. 186.—To convert a fraction to an equivalent one, having

a denominator equal to some multiple of the denominator of the
given fraction.

; o . . .
1. Reduce 3 t0 a fraction, whose denominator is be.

It is evident, that the terms must be multiplied by the same
quantity, so as not to change the value of the fraction. It isthen
required to find, what the denominator, b, must be multiplied by,
that the product shall become be; but, it is evidens, this multi-
ple will be found, by dividing bc¢ by b, which gives the quotient, c.

Then, multiplying both terms of the fraction % by ¢, the result is

ae oy . .o .
i which is equal to the given fraction 7 and has, for its denom-
¢
inator be. Henece, the
RULE,
FOR CONVERTING A FRACTION TO AN EQUIVALENT ONE, HAVING A
GIVEN DENOMINATOR.

Divide the given denominator by the denominator of the given
JSraction, and multiply both terms by the quotient.

R e arx.—This rule is perfectly general, but it is never applied, except
where the required denominator is a multiple of the given one. In other
eases, it would produce a complex fraction. Thus, if it is required to con-

vert § into an equivalent fraction, whose denominator is 5, the numerator
of the new fraction would be 214,

3 . . . .
2. Convert i to an equivalent fraction, having the denomina-

€
tor 16. Ans. %‘é
3. Convert % to an equivalent fraction, having the denomina
‘)
for 9. AKIS. “i}—
4. Convert 9 to an equivalent fraction, having the denomina
tor @’ Ans. ~: blc .

Review.-—134, If each fraction is not in its lowest terms, befors com-
mencing the operation, what is to be done? 135. How do you reduce an
entive quantity to the form of o fraction having a given denominator ?
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= m-

5. Convert —
2

L Bmn-tnl, Ans, ——

" to an equivalent fraction, having the denom1~
7 2
Mt

nator .
P

. @
6. Converb e o an equivalent fraction, having the denomi-
K a*(b4-c
nator @*(b-¢)% Ans. Al—<j_~lz
CASE V. a*{b-f-c)
ADDITION AND SUBTRACTION" OF FPRACTIONS.
Anr, B8%—1. Let it be required to find the sum of £ and £.
fere, both parts being of the same kind, that is, fifths, we may
add them together, and the sum is 6 fifths, (fl).

2. Let it be required to find the sum of —ﬁ; and o
7

Here, the parts being of the same kind, that is, mths, we may,
as in the first case, add the numerators, and write the resuli over
the eoramon denominator.

a b atb
Thug, . « « = o s o o —F—=,
moom m
. . . o ¢
3. Again, let it be required to find the sum of . and o
7 o

Here, the parts not being of the same kind, that is, the denom-
inators being different, we can not add the numerators together,
and call them by the same name. We may, however, reduce them
to a common denominator, and then add them together.

o an_ c_om an | cm__an-cm

Thug, —==—m; ~==—©, And — ___“:‘._j;_

Hence, the

m mn’ nw omn mn . m mm

RULE
FOR THE ADDITION OF FRACTIONS.

Reduce the fractions, tf necessary, to a common denominator ;
add the mumerators together, and place their sum over the common
denominator.

Arr. 188.~—Itis obvious, that the same principles would apply,
if it were vequired to find the difference between two {ractions;
that is, if their denominators were the same, the numerators might
he subtracted; but, if’ their denominators were different, it would
be necessary to reduce them to the same denominator, hefore per-
forming the subtraction. Ilence, the

RULE,
FOR TIE SUBTRACTION OF FRACTIONS.

Reduce the fractions, if necessary, to & common denominaior ;
then subtract the numerator of the fraction fo be subtracted from the
numerator of the other, and place the remainder over the common
denominator.
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EXAMPLES IN ADDITION OF FRACTIONH.

4, Add %, 5 and & b’ together. . . . . . .. . . Ans. a.
5. Add g z andgtogethqr.. s e e e s ... Ans -1'%
6. Add %, %, andltovethm e s o . o Ans, Z)c—%—;zj (zb_
3 e 19
7. Add 'E, ,and~t00‘cthev. e e e o o . Ans. 6x+%§i¢§f,
23 47° 12 o
o oy
8. Add %- 4;, and "g together. . . Ans. 12’37’ 2+ -
~,_L T—
9. Add 3%‘27— and%—P—'l’ltogetherb v e e s v . . Ansowm
10. Add ?}L_b and lbtogether. eie o a o o o Ans. 2
11. Add - and —Z together. . . . . .
sty " a—y
J =4 b .
12. Add 0; c, i&_yﬁg’ and— together. . . Ans. 10@?5;” 9
13. Add — ,a nd ¢ tonether. e e o . . Ans. 0.
Tab e ac
14, Add ——, - and - fogethor. Ans. -
. T T ® dirs PR O

‘When entire quantities and fractions are to be added together,
they may be connected by the sign of addition, or the entire quan-
tities and the fractions may be reduced to a common denominator,
and the addition then performed.

37z

15, Add 2z, 3m—}~—3,—z, and x—r& together, . . Ans. Sz
a 9 45

16. Add 5z 23 yogether.

—160+9
ibe

Ans, B

17, Add 3«%—2—66, 5—--3(7'—“2%, and '75-‘7?—“:ff together.
x @ a ©

at+b a—o v 40*
o and 2 together. . . . . . . Ans, P s

Ruvie w136, How do you convert a fraction to an equivalent ono,
having o given denominator? Kxplain the operation by anexample. 137,
‘When fractions have the same denominator, how do you add them together?
When fractions have different denominators, how do you add them together ?

18. Add
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GEAMPLES IN SUBTRACTION OF FRACTIONS.

[ o
1.}?{'0!112&&{05-.}.«.,..o-on..a
2.10111%’:&1{9%g...:.,...,..,,,gAns
&Tlom-gf«t‘lk %é.......,.,e., Ans. b

Do Baw ' 1lax
4.I‘wm—§atmkez D . & ¢ 1: 2 6

3 5
5‘From@t“k0§m" e h e e e e e e e

o
3a 4oz

6. Trom—take 5. « « v ¢« ¢ o o s o . .Ans.—~~
4 3a

7. From ety take 27 L. L.
Xy 2y .

a® 5

8. From @+ax take &
Ty 'L—},—J
9. From Q“fb take g‘i_é

7 o b e o

10. From Bzt  take Qa,—i. . e
b ¢

I‘mm L hLe e e e e

—{ b
12. From a--b take —~+-—b-. o e e

11

X ———’113

A8
18. From L take
oy
gt .
14. From La’—z take Lo
-
21,72 a
15, From — A take ——r
16. From —‘1— take ———
e ul
17. From ac—}—}-w take ——_72:

.—..‘.. 1 Ti‘: ° ® s
18. From 2a- -3&—%»—- take cz»~—5q:~~

oty y"”

Review--138, If two fractions have the same (1en0mmator, how do
you find their difference? When two fractions have different denominators,
how do you find their difference?

19. From “4"“’"{““5{::%’2 take a—~a:—§—~1—. . Ans. 2z {
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CABE VI
T0 MULTIPLY ONE FRACTIONAL QUANTITY BY ANOTHER.

Axr. 139To multiply a fraction by an entire quantity, or
an entire quantity by a fraction.

It is evident, from Prop. L, Art. 122, that in multiplying the
numerator of o fraction by an entire quantity, the fraction is
increacsed as many times as there are units in the multiplier.

ma

2
’l‘hus, 3 " fakon twice, is —Z? 5 and taken m times, is -5

Again, when btwo quantities are to be multiplied together,
either may be made the multiplier (Axt. 67); fo muluplv 4 by »‘g,

is the same as to multiply § by 4. Or, to multiply m by i is the
same as to mul ;;ply = bV m. IHence, the

RULE,
FOR WHE MULTIPLICATION OF A TRACTION BY AN ENTIRE QUANTITY,
OR OF AN ENTIRE QUANTITY BY A ¥FRACTION.

Hultiply the wumerator by the entire quantity, and wrile the pro-
duct over the denominator.

Since (See Art. 125,) dividing the denominator of a fraction
increases the value of the {raction, as many times as there are
uanits in the divisor, it is evident, that any fraction will he multi-
plied by an entire quantity, if the denominator of the fraction be
divided by the entire quantity. Thus, in multiplying & by‘ 2, we
may divide the denominator by 2, and the result will be 4, which
is the same as to multiply by 2, and reduce the resulting fraction
to its lowest terms.  Ilence, in multiplying a fraction and an entire
quantily together, we should always divide the denomenatorof the frac-
tion by the entive quantily, when 1t can be done without ¢ remainder.

Buyxasnk.~—The expression, “ What is two thivds of 6?” has the same
meaning, as ¢ What is the produet of 6 multiplied by 27 The reason of
the rule for the multiplication of an entiro quantity by a fraction, may be
shown otherwige, thus: one third of ¢ is 5 ;3 two thirds is twice ag much as
one third, that is, two thirds of « is gﬁ. Also, —of eis 6—(', and the ana.rb

o B 7 n n
of ais —.
n

Raview.-—139, How do you multiply a fraction by an entire quantity,
or an entire quantity by a fraction? When the denominator of the frae-
tion is a multiple of the entire quantity, whati is the shorfest method of
finding their produet?
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EXAMPLES.

1. Multiply fb‘ij byad.. . o v v o000 Ans. g%-g
2. Multiply %}:é byay. « o o 0 000w Ans. qc_y_j_bﬂ
3. Multiply ?ji byb—e « o o v 0. Ans, b“;cj'
4. Multiply ‘%()" byBy. o v v v o v v e e e Ansg. :i—:"g
5. Maltiply ¢—20 by B3 i’{;c ....... Ans. g%%j%l

0 3a® c_SZ)zf:ﬂba

6. Multiply o®—0* by 3 RO Ans.

Za

7. Muhiply %:1?5 byete.. . . . . . Ans. Mbc_é‘ez
B. Multiply zg—;ﬁ bya—-b. . . . .0 0.

9. Multiply ?—a—;—tg—%j byab. . . . .. .

10, Multiply L()jbj“?iii 7 by a2

11, Multiply §(L—&Z‘T[‘) by &*+y% . ...

12, Multiply (aﬁi%l)——(zjﬁg) by 2(¢—b). . . . Ans. 0‘%‘%’% .
18. Multiply - ((j—%i [fci_dz) by Bla—b)(c+-d). Ans. f?:_ [i,d
14, Multiply 5 by Cov i e e e e Ans. %E;«a or %

Hence, we see, that ¢f @ fraction s multipliecd by « quantity
equal to its denomingitor, the product will be equal fo the numeralor.

15, Multiply i by o Ans. g0,
16, Multiply Z; :g- by 2a+5y. . o . 0o Ans, mP-ni
& e

Arr. 240.~To multiply a fraction by a fraction,

1. Let it be required to find the pwdueb of % 5 multiplied by ¢

Since ¢ is the same ’L‘s 2 multiplied by 3, it is 1equu ed to mul«
‘uply % bv 2, and hke 1 of the product. Novw, # multiplied b) 2,
i equa al to 8 8 and 4 of £, is equal to % (smce, to take % is to
divide by 3, and any fraction is divided, by nmlhpl\ mw its denom-
inator, by Art. 124.) Hence, the product of $ and ¥ is +%.
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. o s . s, G, m
In the same manner, if it were requived to multiply . by —;
7

since %Z-::Q)ZX}, we would multiply f&;by m, and take %of the

ma 1 me ma
roduch. 'ihus SHRm=—, and =oof ———=-—-, Hence, the
P ! ¢ e ’

RULE,
FOR THE MULTIPLICATION OF A FRACTION BY A FRACTION.

Multiply the mumerators together, for a new numerator; and the
denominators together, for ¢ new denominator.

RuemAnKs.—Ist. If either of the factors is & mixed quantity, it is
boest to reduce it to an improper fraction, before commencing tho operation.

2d. The expression, “ What is ouve third of one fourth,” has the same
meaning as “ What is the product of § multiplied by £ Also, the expres~
ston, “What is two thirds of three fourths,” has the same meaning as
“What 1s the produet of # multiplied by 3.

3d. When the numerators and denominators have common factors, it is
best to indicate the multiplication, and then cancel the factors common to
both terms, after which, the remaining terms may be multiplied together.

1da_ be Q)( T Bac _ 2uac

Thus, 7 1 R Ta B8R Adbd
. a-+b  Bala-+-b) 5
Also, b’X “Balat ) (a—b) 2(a=b)’
EXAMPLES.
Sa., b 15w
1. Multiply T by ot e e e . Ans, 55
wpoe g da 3w 12
2. Multiply Ba by Wttt eee e Ans.§;°
2
3. Multiply%qbyi@. v s e s s s s e e oo .Ans.l_a
Ba? By ) x
4.Mult1ply1-(—rb Do "t Ans.fé.
5. Multiply —51— ((H_O“) ym. e e e e w o ow o s » Ans G
e 72 3 10z 422482
6. Multiply B by T e v e e e e Ans. —

RBrview.~—140. How do you multiply one fraction by another? Hxplain
the veason of the rule, by analyzing an example. When one of the factors
is o mixed quantity, what ought to be done? What is the meaning of the
expression, ©“ What is one third of one fourth?” How may the work be
shortened, when the numerator and denominator have common factors?
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7. Multiply ?Af“yz by wiy' . § N ti:%:?/ ).
8. Mulliply - 7’;'8 by K};‘;;/o e e e e e oo Anms 1L
9. Multiply b aib e v e e s s +. . Anps. _d;i(i-b
10. prinee SRR Ans. ;L(a—%—[)
11, Multiply ~',—-~~, ﬁz:ici, and 333’ together. . . . Ans. Z’
12. Multiply = -91:{:—”/— %~ and @ together. . Ans. a{«®%).
i3. Multiply '—07—2?1?*" and a0 together. . . . Ans. 1.

a—y ety
14. Mtduph Yoy Ans. ———— 7
Bl O ;
15. Multiply & pLoetds Ans %? :
T
2
16, Multiply c——— bv s RIRUICERN . Ans, g%@
CASE VII.

TO DIVIDE ONE FRACTIONAT QUANTITY BY ANOTHER.

Anr. Rd¥.—To divide a fraction by an entire quantity.
Tt hag been shown, in Art. 128 and Art. 124, that a fraction is
divided by an entire' quantity, by dividing its numerator, or multi-

plying its denominator. Thus, £ divided by 2, or & of 4, is %.
63 5;

3a .. . 3¢ .« ma . . 1
“- divided by 8, or & of il e divided by m, or o of
i 4 9

mo . 0
-, i -
» 2
Or, by multiplying the denominator; % divided by 2, 1s equal to
%, since the number of parts in the numerator is the same, but
oaly half as large as before, 5 being the half of £.  IHence, the

RULE,
POR DIVIDING A FRACTION BY AN ENTIRE QUANTITY.

Divide the manerator by the divisor, if it can be done withowt «
remainder; tf not, multiply the denominator by the entire quantity,
and write the numerator over the resull.

Norg.—If the numerator of the fraction and the entire quantity, cov-
tain common factors, it is best to indicate the operation, and cancel the
common factors; the result found thus will he in its lowest terms.



104 RAY’S ALGEBRA, PART FIRST.

The preceding rule may be derived in another manner, thus:
To divide a number by 2, is to take 4 of it, or to multiply it by &;
to divide by 8, is to take 1 of it, or to muliiply it by 4. In the

)

same manner, to divide a quantity by m, is to take w of it, or to
multiply it by o Hence, o divide o fraction by an entire quan-

tity, we write the divisor in the form of a fraction (thus, m_T{' )

and inwert if, and then proceed as in multiplication of fractions.

EXAMPLES.

1. DmdepjlbySab.. Y .
15a%c* Sac

3. Divide = T70d bybabe.. o o . v o v 0w .. Ans =
14ac®m? 2

3. Divide —=— by 7ac7n‘ D . & 1 R
ey

35
4, Divide 8a0

2§
5. Divide fil_“?bya.. ... Ans ?J:b
Avl(/

< pyeeq. Cbed ; ¢
6. Divide —=—Dbyectd.. « . . o . . ¢ ... Ansog.
5

){ZL
by 80 L oo .. o 0 Ans i
ac?

R A &ty
7. Divide c+g-~—by EFYe o 0 o oo« o Ans. ol
L a0l f’z‘;‘ab”f‘bz

8. Divide x—rgm g\b+3 by a—b. ... .. ... Ans b+éc
22—a

8aP--702—ba .
PR by3a+5. . . . . . Ans p——

8P—8Bx-3 | P 2v~_1
T abded® by 4a*+2z—3. . . . . Ans R

11. Divide %— Dydoo o v v o s v v v e s e o Ansig—
SC

9. Divide

10. Divide

.. 3
12. Divide —— b-r.;d bybd. . .« . ... . .Ans b

34 Ba ) 3-+5a

;‘“b-g s s e s e v s o o Ans, —e
i3

Rrview—141, How do you divide a fraction by an entire guantity?
Explain the reason of the rule, by analyzing an example. IHow may the
work be abbreviated, when the numerators of the fraction and the entire

ety ccaiain coramon factors 7
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14, Divide 2
15, Divid@

16. Divide

@

J

17. })ivaae# by ety ..
i Y

18. Divide by @* oot . .

19. Divide 7}{@—0 by adbe. . oo o L

) 1ba*v--3ae
20, Divide ———"""hy 3a* C e e e e s
2 d p + b by Sa’.
mP—n?

21. Divide

— by am—an. . . o . . . . . Ans—
¢ uu+ac

NP

22, Divide
.x‘.’, 2

23. Divide "=~ by 2%y, « . .« . . . .

24. Divide

Arr, 842.—To divide an integral or fractional quantity by a
fraction.

1. How often is ¢ contained in 4, or what is the quotient of 4
divided by £?

4 is equal to =17, and 2 thirds (%), is contained in I2 thirds
(%%), as often as 2 is contained in 12, that is, 6 times.

. om . .
2. How often is — cont-amed in a?

. @ N nG
o is equal to =0 :md »;L— is contained in . as often as m is
7

"

. . . 1. . .

contained in #ne, that is ;«-— times.  Or, - 18 contained in «, na
n 7

. i m . . 1 . W e
times; hence, m){~, or — is contained - ag many fimes, that is,
% n

ne .
~—- tlmes.
m

3. How often is £ oonta.ined in$?

Here, %:TSE and 8 twelfths (5%) is contained in 8
twellths (7%), a often as 8 is contained in 9, that is, $=14 timoe,
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..M . . G,
4. How often is — contained in —?
- n ¢

mme

Reducing these fractions to a common denominator, —==—, and
7 ne
a NG me na
P 10w, e is contained in e as often as me is contained in
e ¢

T .
ng, that is, o times. This is the same result as that produced by

72&’;

multiplying — by — inverted, that is -\’ =
&

An examination of each of these examples, will show that the
process consists in reducing the quaniities fo a common denoming-
tor, and then dividing the numerator of the dividend, by the nume-
rator of the divisor. But, as the common denominator of the
fraction is not used in performing the division, the result will be
the same as if we invert the divisor, and proceed as in multiplica-
tion, Ilence, the

BULE,
FOR DIVIDING AN INTEGRAL OR FRACTIONAL QUANTITY BY A FRACTION.

Reduce both dividend and divisor o the form of « fraction; then
invert the terms of the divisor, and multiply the nwmeralors together
Jor a new numeraior, and the denominators lor/ctizer Jor a new
denominglor.

Korn.—After inverting the divisor, the work may be abbreviated, by
canceling all the factors common to both terms of the result.

EXAMPLES.
1. Divide 4 b‘ . 5 L
ys

2.Di.vide4.by—c—&.

i%.Dividea,byi. . § TN 112

£3
4. Divide al® by Zéxcb . § T2 r)gs
5. Divide o*~0? by M%"_fg'l .. ... .. Ans 3“(“):71)
N sq O C %
5})n1de:—_§byf—2—. ...,.,...‘.....Anb.gg,

Buvinw.-— 142, Wow do you divide an integral or fractional quantity
by« fraction?  Hxplain the veason of this rule, by analyzing an cxample.
P hewn, and how, can the work be abbreviated ?
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Sa
7. Dnule — b}* Beocr e te e ea e Ans. —.
8. Duude — } . Ans. 2
ta : e
. __/ @y’ 20z
9. Divide by T Gy e e e e e e e e Ans, Say
[
10. Divide 9_{‘:4 by 4@ ,,,,,,, e e o s . » Ans, ]ig
3{{ 2 Saxz za
11. Divide }y~1—4~—. ......... . . . Ans. = o
? 4o
12, Divide -0 byig% ............. Ans. 12,
.. 8 -4 32 8y
13. Divide ——= by—éy-n e e e e s . Ans. B
raz~() a-+b

14, Divide

15, Divide i—-:fé by z;@ e

16. Divide =

—2ay-+y*
il

w1 mn
.

/ ek Z ;)
17. Divide 5 b G e Ans. 8m—2n
.. 7 a+1
18. Divide ‘7‘1 by Elti ....... Ans. a’—] ‘){44—1
da--12 3a-+8 8b
¢ A Nt o A
19. Divide } by TBh: Ans., -
+ ey
-y 5
—b (tz*—l)z
P g .
21. Divide *1"") by “—i~2a()—v—b ......... Ans. 1T
— 3{a*— i b
22. Divide 2= po 2ete) g @ Raate)
m &—a 2z
< -
23. Divide - H x3 by “_L% ....... Ans. P

Arr, B43To reduce a complex fraction to a simple one.
This may be regarded as a case of division, in which the divi-
dend and the divisor are either fractions or mixed quantities.

2% . .
Thus, =%, is the same as to divide 2} by 3.
oYy

b
a-f—
¢, .. b n
Also, T 18 the same as to divide erE by 'm-qL,;

mv Lo
-
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3 7,7 T 2 2
ERCNC X B
Ri+Sy=gra=gXy=y
(a + é ) . ( 77114}"73 ) _ ac+b mr——n ae-b 7 :acr-{-«ba'.
¢ r c r ¢ Tmrn cmr-en
In the same manner, lot the following examples be solved.
@
. b . . ad
1. Reduce Stoa simple fraction. . . . . . .. . . Ans. e
d
ol
T . 21
2. Reduee — to a simple fraction. . . . . . . . Ans. 5.
@ 2a
3
r
m . . 7
3. Reduce — to a simple fraction. . . . . . . . Ans.—
7 mn

7 . . 93
4. Reduce — to o simple fraction. . . . . . . . . Ans. e
9

¢ R . ac--1
5. Beduce —— to n simple fraction. . . . . . Ans ~J~
#Hy Ciry
i . . em
6. Reduce ——- to a simple fraction. . . . . . Ans. =
1 ac-t1
a--=
¢

A complex fraction may also be veduced to a simple one, by
multiplying both terms by the least common multiple of the denom-
inators of the fractional parts of each term. Thus, we may

reduce 57 to a simple fraction, by multiplying both terms by 6,

2

28

the least common multiple of £ and 3; the result is 3 In some
cases this is a shorter method, than by division. Kither method
may be used.

Arr. B44.—Resolution of fractions into series.

An infintte series consists’ of an unlimited number of terms,
ywhich observe the same law.

The luw of a series is a relntion existing between its terms, so
that when some of them are known, the succeeding terms may be
ecasily derived.

Ruvinw.—143. How do you reduce a complex fraction to a simple one,
by division? Ilow, by multiplication?
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Thus, in the infinite series, l—ax-t-a*c*—a2® a2, &e., any
term may be found, by multiplying the preceding term by —aw.

Any proper algebraic fraction, whose denominator is a polyno-
mial, can, by division, be resolved into an infinite series; for, the
numerstor is a dividend, and the denominator a divisor, so related
to each other, that the process of division never can terminate,
and the quotient will, therefore, be an infinite sexies. Aftera few
of the terms of the quotient are found, the law of the series will,
in general, be easily seen, so that the succeeding terms may be
found without continuing the division.

EXAMPLES.

. 1. s .
1. Convert the {raction i into an infinite series.
1 (o
- T bt &e. The law of this serics evidently
o is, that each term is equal to the
preceding term, multiplied hy --z.

From this, it appoars, that the fraction ——, is equal to the infi-
h b

1
nite series, 1-4-a-Fa?ad-Hat+, &e.
In a similar mavner, let edch of the following fractions be
resolved into an infinite series, by division.

P at—, &e., to infinity.

3. a_%- c+~—+ %—663 {-, &e.

4, }Liﬂ 1422+ a2 -2a-, &e.
1—=a

S S > Y9 2 a8, &,

5. s 1 2o 2P —Rx’-, &e

L e 24»7

6. R

Ruviewe—144, Whatisan infinite series? What is the law of a series?
Give an example. Why ean any propor algebraie fraction, whose denom-
inator is o polynomial, be resolved into an infinite series, by division?
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CHAPTER IV.
EQUATIONS OF THE FIRST DEGREE.
DEFINITIONS AND BELEMENTABY PRINCHCLRES.

Axr. 845.—The most useful part of Algebra, is that which
relates to the solution of problems. This is performed by means
of equations.

An equation is an Algebraic expression, stating the equality
between two quantities.

Thus, x—3=4, is an equation, stating, that if 3 be subtracted
from =, the remainder will be equal to 4.

Arr. 14@.—Every question iy composed of two parts, separated
from each other by the sign of equality. The quantity on the left
of the sign of eguality, is called the firsé member, or side of the
equation. The quantity on the right, is called the second member,
or side. The members or gnantities are each composed of one or
more terms.

Axrr. BA%Y.—Theve ave generally two classes of quantities in an
equation, the known and the unknown. The known guantities are
represented either by numbers, or the first letters of the alphabet,
as a, b, ¢, &y and the unknown quantities by the last letters of
the alphabet, as , ¥, 2, &e.

Arr. 148.—Equations are divided into degrees, called firs,
second, third, and so on, The degree of an equation, depends on
the highest power of the unknown quantity which it contains.

Axn equation which eontains no power of the unknown quantity
higher than the first, is called an cquation of the first degree.

Thus, 2x-+5=9, and gz-b==c, are equations of the first degree.
Tquations of the first degree are usually called Simple Equations.

An equation in which the highest power of the unknown quan-
tity is of the second degree, that is, o square, is called an equation
of the second degree, ox o quadratic equation.

REVIEW~I145. What is an equation? Give an example. 146, Of how
many parts is every equation composed? How are they sepavated? What
is the quantity on theleftof the sign of equality called? On theright? Of
what is cach member composed? 147. How many classes of quantities are
there in an equation? How are the known quantities represented? Bow
are the unknown quantities represented ? 148, Iow.aro equations divided ?
On what does the degree of an equation depend? What is an equation of
the first degree? Give an example. What are equations of the first degree
usually called? What is an equation of the second degrec? Give an exam~
ple.  What are equations of tho second degree usually called,
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Thus, 4a?—7=29, and aa®{dx=c, are equations of the second
degree. ‘

In a similar manner, we have equations of the #hird degree,
Jourth degree, &o.; the degree of the equation being always the
same as the highest power of the unknown quantity which it
contains.

When any equation contains more than one unknown quantity,
its degree is equal to the greatest sum of the exponents of the
unknown quantities in any of its terms.

Thus, ay--az+by=c¢, is an equation of the second degree.

a2y -bex ==a, is an equation of the third degree.

Arr. 849.—An identical equation, is one in which the two mem-
bers are identical; or, one in which one of the members is the
result of the operations indicated in the other.

Thus, 2r—1=2x—1, ba-3x=8z, and (z-+2)(z—2)
are identical equations.

Equations are also distinguished as mumerical and literal. A
numerical equation is one in which all the known quantities are
expressed by numbers.

Thus, 2?+22=382-}7, is 2 numerical equation.

A literal equation is one in which the known guantities are rep.
resented by letters, or by letters and numbers.

Thus, ax—0b=cx-+d, and az’+br=2z—5, are literal equations,

Agrr. R8¢ —Kvery equation is to be regarded as the siatement,
in algebraic language, of a particular question.

Thus, 2—38==4, may be regarded as the statement of the follow-
ing question: To find a number, from which, if 3 be subtracted,
the remainder will be equal to 4.

If we add 8 to each member, we shall have w-—3--8=4-43, or
x=1.

An equation is said to be verified, when the value of the unknown
quantity being substituted for it, the two members are rendered
equal to each other.

Thus, in the equation a—3==4, if 7, the value of z, be substi-
tuted instead of it, we have 7T—38=4, or, 4=4.

To solve an equation, is fo_find the value of the unknown quantify ;
or, to find a number, which being substituted for the unknown
quantity, will render the two members identical,

4,

Ruvie w148, When an equation contains more than one unknown
quantity, to what is its degree equal? Give an example. 149, What is an
identical cquation? Give examples. Whatis a numerical squation? Give
an example. Whatis a literal equation? Give an example. 150. How is
every equation to be regarded? Give an example. When is an equation
said to be verified? What do you understand, by solving an equation?
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Arr. B858.~The value of the unknown quantity in any equa-
tion, is called the roof of that equation.

SIMPLE EQUATIONS, CONTAINING BUT ONE UNKNOWY
QUANTITY.

Arr, 15%.—The operations that we employ, to find the value
of the unknown quantity in any equation, are founded on this
evident principle: If we perform cxactly the same operation on fwo
equal quantities, the results will be equal. This prineciple, or axiom,
may be otherwise stated, as follows:

1. If; to two equal quantities, the same quantity be added, the sums
will be equal.

2. If, from two equal quantities, the swme quantity be subtracted,
the remainders will be equal.

8. If two equal quantities be multipliecd by the same quantity, the
products will be equal.

4. If two equal quantities be divided by the same quantity, the
quotients will be equal.

5. If two cqual quantities be raised lo the same power, the resulls
will be equal.

6. If the same root of two equal quantities be extracted, the results
will be equal.

RExARK.~An axiom is a self-evident truth. Tho preceding axioms
are the foundation of a large portion of the reasoning in mathematies.

Arr. R88.—There are two operations of froquent use in the
golution of equations. These ave, fivst, fo clear an equotion of frac-
tions ; and, second, Zo transpose the terms, in order to find the value
of the unknown quantity. These are named in the ovder in which
they are generally used, in the solution of an equation; we shall,
however, fivst consider the subject of

TR ANSPOSITION.

Suppose we have the equation Zz—3=z-}-5.

Since, by the preceding principle, the equality will not be
affected, by adding the same quantity to both membevs; or, by
subtracting the same quantity from both members; if we add 3
to each member, we have 2u—3-+3=x-+5--8.

If we subtract 2 from each member, we have

Qo—p—3-1+3

RevIEW. — 151, What is the root of an equation? 15%. Upon what
principle are the operations founded, that are used in solving an equation?
What ave the axioms which this prineiple embraces? 153, What two opera-
tions ave frequently used, in the solution of equations?

=z-—-5-3.
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Butf, —3-+3 cancel each other; so, also, do a—x; omitting
these, we have Lo—w=5-}3.

Now, the result is the same as if we had removed the terms —3
and -, to the opposite members of the equation, and, at the samo
time, changed their signs.

Again, take the equation ez-t-b=c—dx.

If we subtract b from each side, and add dx to each side, we
have a-de=c—b.

But, this result is also the same as if we had removed the terms
-+b and —dz to the opposite members of the equation, and, at the
same time, changed their signs. Ilence,

Any quantity may be transposed from one side of an equation fo
the other, if; at the same time, s sign be changed.

TO CLEAR AN EQUATION OF FRACTIONS,

Arr. B&d—1, Let it be required to clear the following equa-
tion of fractions. "

5 g™

Sinee the first term s divided by 2, if we muliiply it by 2, the
divisor will be removed; but if we multiply the first term by £,
we must multiply all the other terms by 2, in order to preserve the
equality of the members. Multiplying both sides by 2, we have

2w
mﬂ‘mg:l 0.

Again, since the second term is divided by 3, if we multiply it
by 8, the divisor will be removed; but, if we multiply the second
term by 3, we must multiply all the terms by 3, in order to pre-
serve the equality of the members. Multiplying both sides by 3,
we have 3x-+-a=30.

Tnstead of multiplying first by 2, and then by 3, it is plain that
we might have multiplied at once, by 23, that is, by the product
of the denominators.

2. Again, let it be required to clear the following eguation of
fractions. R

a—b“{"@———d-

Since the first term is divided by ab, if we multiply it by a0, the
divisor will be removed; but, if we multiply the first term by ab,
we must multiply all the other terms by ab, in order to preserve
the equality of the members.

REvIEW.-—154, How may a quantity be transposed from one member of
an equation to the other? Explain the principle of transposition by an
example.

10
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Again, since the second term is divided by bc, if we multiply it
by be, the divisor will be removed; but, if we multiply the second
term by bc, we must multiply all the other terms by be, in order to
preserve the equality of the members. Ience, if we multiply ail
the terms on both sides, by abXbe, the equation will be cleared of
fractions.

Instead, however, of multiplying every term by abXbc, it is evi-
dent, that if each term be multiplied by such a guantity as will
contain the denominators without a remainder, that all the denomi-
nators will be removed. This quantity is, evidently, the least com-
mon multiple of the denominators, which, in this case, is abe;
then, multiplying both sides of the eguation by abe, we have
ex-tax=abed. Hence, the '

RULE,
FOR CLEARING AN EQUATION OF FRACTIONS.

Find the least common mudtiple of all the denominators, and mul-
tiply each term of the equation by t.

Clear the following equations of fractions.

1. %4—%:5 Q. e e e .. . Ans 82422=30.
2. ;—%{——2 e e e e e e s e e s oo . Ans de—3a==24.
R | .« . . . Ans, 202+150-+122=60.
grats=l
4. %%m’gzﬁ ...... . . . . Ans. 6o-+-8a—de=10.
5, :§~ ;—%i%::}%. e e o e o Ans. 102--8x-3x==21.
6. % 4::%-{—6. e e v .. . Ans. 80—24=22136.
7. %”-éi;{f; ... Ans. 150-20=18414w.
8.4 2.0°% 4 Ans. 100—40—1218—34--120.
0. 2141‘?&7:3:;%% Ans. 14021 +do—14s—424-10.
10, -5 Pes TEE L Ans. 60304030208,
1L 2450 L Ans 2vles—ba=2ab.
12 24208 L Ans 48480 2a=00-2T.

REVIie w154 How do you clear an equation of fractions? Xxplain
the principle by an example.
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z-+1 8—e

]
13. gt =t

Ang, az—bz-t-a—b-+3y—ca—9-+Be=a’v—aby—3a*--3ab.

x @_‘—id T
14. _66___+I)T(/J__~—bha‘i-—bi’ C o e e . . Ans. ae—bx-az--ba=c.
5 2.2, ) e
15, T ./ =h o o+ o . o Ans. adf~FocfFbde=bdfha.

SOLUTION ¢F EQUATIONS OF THE FIRST DREGREE, CONTAINING
ONLY ONE UNBNOWN QUANTITY.

Arr. 88— The unknown quantity in an equation may be com-
bined with the known quantities, either by Addition, Subtraction,
Multiplication, or Division; or, by two or more of these different
methods.

1. Let it bo requived to find the value of , in the equation

x-+3=>5,
where the unknown guantity is connected by addition.
By subtracting 3 from each side, we have x=5—3==2.
2. Let it be requived o find the value of , in the equation
x—3=5,
where the unknown quantity is connected by subtraction.
By adding 3 to each side, we have z=5-}-3=8.
3. Let it be required to find the value of z, in the equation
Sx=15,
where the unknown quantity is connected })\7 multiplication.

By dividing each side by 3, we have x=-5 ')--"5.

3
4. Leb it be required to find the value of z, in the equation
@
572

where the unknown guantity is connected by division.

By multiplying each side by 3, we have a=2X3=6.

From the solution of these examples, we see, that when the
unknown quaniity is connected by addition, it is to be separated by
subtraction.  When it is connected by sublraction, ¢ s o be separa-
ted by addition.  When it is connected by multiplication, it is lo be
separated by division. .And, when it is connccied by division, it is
0 be separated by mulliplication.

5. Find the value of 2, in the equation

Br—8==2-}5.
By transposing the terms —3 and @, we have
Sx—=5-},
reducing, 2e==8,
dividing by 2, w=5=4.
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Let this value of  be substituted instead of w, in the original
equation, and, if it is the true value, it will render the two mem-
bers equal to eacl other.

Original equation, . . . . Sz—38=x--5.

Substituting 4 in the place of @, it becomes

3K 4-—3=4-b, or 8=9.

The operation of substituting the value of the unknown quan-
tity instead of itself, in the original equation, to see if it will ren-~
der the two members equal to each other, is called verification.

The preceding equation may be solved thus:

Bi—d=x-{-5. By adding 8 to each member, we have
Sa—38-4-8=u-+5+3. By subtracting  from each member,
we have 3z—az—8-+d=a—a-5-+38.

But —38--8 cancel each other; so, also, do = and —x; omitting
these, and then reducing, we have 2w==8.

Dividing each member by 2, a=5=4.

R euarx—The pupil will perceive that the two methods of solution are
the same in principle, In the first, wo use transposition, to remove the
known quantity from the left member to the right, and the unknown guan-
tity from the right member to the left. In tho second, the same thing is
done, by adding equals to each member, and subtracting equals from each
member-~—this being the principle on which transposition is founded. T¢is
rocommended to the teacher, to use the latter method until the principle is
well understood by the pupil, after which the first method may be used
exclugively.

) 5}
v . . z—2 a2
6. Find the value of x in the equation x—— 3 -:/iir._?)w,

Multiplying both sides by 15, the leash common multiple of the
denominators, we have 15z—(Ber—10)=60-3x2}6.
or, 158z— bx-+10 =60-+3a--6.
by transposition, 1Hz— HSz—38w =60--6 —10.
reducing, 7a==56.
dividing,  a=8.
7. Find the value of # in the equation %_d:%--l»c.
multiplying both sides by ad, ax —abd==bx --abe.
transposing, ax —bx ==abc +-abd.
separating into factors, (a—0)2 ==ab(c-+d).
_ablet-d)
PR
Ruvie w155, What ave the methods by which the unknown quantity
in an eguation may bo combined with known quantitics 7 Give examples.
When the unkunown quantity ix conneeted by addition, how can it he sepa-
rated 7 When, by subtraction? By multiplication? By division? What
is verifieation ?

dividing by (e—0),
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From the preceding examples and illustrations, we derive the

RULE,
FOR TIE SOLUTION OF AN EQUATION OF THE FIRST DEGREE.

1. If necessary, clear the equaiion of fractions s perform «ll the
operations indicated; and transpose all the terms containing the
unknown quantity fo one side, and the known quantities to the other.

2. Reduce each member lo ils simplest form, and divide both sides
by the coéfficient of the unknown quantify.

BEXAMPLES FOR PRACTICE.

Norm.—Let the pupil verify the value of the unknown quantity in each
example.

C8a—bB=Cx 7 L L L. o 0. o o . v . Aps a=12,
L Bx—8=16-Dx. . .. .. ... ... Ansoa=3.
11,

CBe—T=8x+156 . . . . .. . .. ... Ansa=

6(a2)—O(B). . .
-—64(.,"%) _8(120-4)=06. .
o d)=B(z}18)+121. . . . .

@I O G0N e

©

. Aﬁs.m:::l().
10. 2
11, atbs C e e e e .. Ans.o=8,
12. 5 e e e v s o o Ans.a=24.
13. e e e e e e s . Ans =2,
14. 4” C e .. Amse=2.

15, —; e e e e e s o o Ang a==14,

e e e e e e o oo Ans =T,

16.
| e e e e e e . Ansa==2,

RuvIinw.—~155. What is the rule for the zolution of an equation of the
first degreo, containing one unknown quantity ?
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18. foDotI8=g(dntl). L. . ... .. Ans. 2=20.
19. 5%: e v e e s e e e e e e e o o o Ang a=1.
20. 2x~-%‘2‘:x+w‘ié§. .......... Ang.o=1%.
21. 2»-:{;{;—2:3%# eh e v e e . Ans.a=11.
. T2 385 o . .. Ans =18,
o3, 86 B L .. Ans.a=11.
R
95, %Z,_«g;§:2£;§+ﬂg_@ ......... Ans. o—8.
26. gqg%llr%%~% ........ Ansg. a=2.
. b= o e Ans. =",
28, avtb=cxtd. . . . . 0t e e u e Axns. a"*:—i;;?
29. ax—br=d—cx. . . . . . . ooa oo Ams, :L:*};qfi»—:a
30, ax—bo=ctdr—e . . . .« . v . . Ans, a,—:g_c—;(;f;a
31. T4+90Bu=6u-tbaz. . . . . . . . . Aus, o=t E L
32. v(a—ba)telax—e)=be. . . . . . . Ans, a:ciz—)%g—cj

L N

33. (a4+0)(b—a)+(a—b)(ata)=c . . . Ans a= ——_

20
a4 T, b
34. a+bm6" e e e e e e s e e e s o Ans a,__a"H).
ar 00 1 _ab—1
35. ;’_«-mbc%‘;} ........ e e e s » Ans = e
e @, 0 ¢ .
36. ;}w}—%-»%};: s e s ee s e s e e e Ans. a=a-}b-}-c.

37. %’-w’rc:fw-cl. e e s e e e m e e e s Auns. a::ﬁé%(;ifz)
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abed
e s v e s e o o s Ans a=s W
ab-|-ac+be

2
a’—*
B & L T
2b

abe

ac-be-——ab’
« oo oo w s o Ans. z=t{abtact-be).

e s« s s s o o Ang =

ace
.ea...s...Anstd_»«b«e
LZ
°...,...,,.,Ans"czwb,
. 1
44, 1~»w_1+;6' e e s s e et s e e Ans.x~;2—fcz_—}:—l;.
45, a— ----- ab+b—{~— e s e s e e o o s s Ans :c::&;l.
, a—-bﬁ a-b 3(40—1)@
46.:”__6—;2:;;25. e e e e s e e e e e o Ansoa=— 55

QUESTIONS PRODUCING SIMPLE EQUATIONS, CONTAINING
ONLY ONE UNKNOWRN QUANTITY.

Arr. 186.—The solution of a problem, by Algebra, consists of
two distinct parts.

Ist. 7o express the conditions of the pwbkm in Algebraic lan-
guage; that is, to form the equation.

2d. b solve the equation; thatis, {o find the value of the unknown
quantity,

With pupils, the most difficult part of the operation of solving
a question, is to form the equation, by the solution of which the
value of the unkunown quantity is to be found. Sometimes, the
statement of the question furnishes the equation directly; and,
sometimes, it is necessary, from the conditions given, to deduce
others, from which to form the equation. When the conditions
furnish the equation. directly, they are called explicit conditions.
‘When the conditions are deduced from those given in the question,
they are called implied conditions.

1t is impossible to give a precise rule, by means of which every
question may be readily stated in the form of an equation. The
first point, is, to understand fully the nature of the question, so as
to be able to prove whether any proposed answer is correct.

Ruvizw-156, Of what two parts does the solution of a problem by
Algebra, consist? Whab are explicit conditions? What are implied
conditions ?
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After this, the equation, by the solution of which the value of
the unknown quantity is to be found, may generally be formed by
the following

RULE.

Denote the requived quantity, by one of the jfinal letters of the
alphabet ; then, by means of signs, indicate the same operations that
i would be necessary lo make on the answer, to verify it.

RExARKS~— lgt. In solving a question, it iz necessary to understand
the principles of the science which it involves, at least so far as they relato
to the question under consideration. Thus, when a problem embraces the
consideration of Ratio or Proporiion, in order to zolve it, the pupil must be
familiar with these subjects. In tho following examples, the learner is sup-
posed to be acquainted with Ratio and Proportion, as far as they are taught
in Arithmetic. (See Ratio and Proportion, Ray’s Arithmetic, Part I11.)

2d. The operations concerned in the solution of an eguation, involve the
removal of eoéfficients, the removal of denominators, and thoe transposition
of quantities. The first six of the following examples, and also those from
the 16th to tho 44th inclusive, are arranged with reference to these operations,

EXAMPLES,

1. There are two numbers, the second of which is three times
the first, and their sum is 48 ; what arve the numbers?

Let x= the first number.

Then, by the first condition, Saz== the second.

And, by the second condition, x--3z=48.

Reducing, do=48.

Dividing by 4, a==12, the smaller number.

Then, 32=23886, the larger number.

Proof, ox verification. 12--36=48.

2. A father said to his son, “The difference of our ages iz 48
years, and I am 5 times as old as you.” ‘What were their ages?

Let x== the son’s age.

Then Ba== the father’s age.

And br—a=48,

Reducing, 4a=48.

Dividing, #==12, the son’s age.

Then 5a==060, the father’s age.

Verification. 60-—12:=48, the difference of their ages.

3. What number is that, to which, if its thivd part be added,
the sum will be 167?

Lot a== the required number.

Revinw~156. By what general rule, may the equation of a problem
be found ?
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Then the third part of it will be represented by g
And, by the conditions of the question, we have the equation
- %Zl 6.

Multiplying it by 3, to clear it of fractions, Sx-a=—48.

Reducing, 4a=48.

Dividing, a=12.

Verification. 12+"37==12-4=16; which shows that the value
found is correct, since it satisfies the conditions of the question.

Norn.—The pupil should verify the answer in every example.

4. 'What number is that, which being increased by its half, and
then diminished by its two thirds, the remainder will be equal
to 105.

Let a== the number.
"‘hen the one half will be represented by 5, and the two thirds

by 5

And, by the question @ *3 2';_16.3

Multiplying by 6, 6o-+32—4x=630.

Reducing, ar:GJO

Dividing, 2=126. Ans.

When the numbers contained in a solution are large, it is some-
times better to indicate the multiplication, than to perform it.

The preceding solution may be given thus:

F‘& 3»—105

Ga-+3e—4x=105X6
H5z=105X6
a= 21X 06=126.
5, 1t is required to divide a line 25 inches long, info two parts,
80 that the greater shall be 3 inches longer than the less.

Let = the length of the smaller part.
Then a-}3== the greater part.
And by the que&i;ion, r-ta-t-8==25.

Lramposmo 3 91*25—~—3:22.

Dividing, «==11, the smaller part.

Aund 24-8=14, the greater part.

6. 1t is required to divide 68 dollars between A, B, and C, so thab

B shall have 5 dollars more than A, and C 7 dollars more than B.
11
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Let == A’s share.
Then x-+H= B’s share.
And 2+12== s share. Then, by the terms of the question,
we have o+ (x--5)-4(x-+12)=68.
Reducing, 3z--17=68.
Transposing, 32=68—17==51.
Dividing, x==17, A’s share,
a-+5 =22, B’s share.
z+12=29, (s share.
7. What number is that, which being added to its third part,
the sum will be equal to its half added to 10.
Let & represent the number.

Then, the number, with its third part, is vepresented by ot 535
and its half, added to 10, is expressed by 2+10 By the condi-
tions of the question, these are equal; that is, ng 2%—10

Multiplying by 6, Ox-+2a0=38x--60.
Reducing and transposing, 8x—3z=60,
Hax=060.

Dividing, a==12.

Verification. 12-+'F=%-10. Or 16==16, according to the
eonditions.

Hereafter, we shall, in general, omit the terms, fransposing,
dividing, &c., as the various steps of the solution will be evident
by inspection.

8. A cistern was found to be one third full of water, and after
emptying into it 17 barrels more, it was found to be half full;
what number of barrels will it contain when full?

Tet x= the number of barrels the cistern will contain.

Then &+17=5.

Ra+4-102=
102=x

Or, by first transposing 3z and 102, we have —a=—102; and

multiplying both sides by —1, we have 2==102.
* The unknown quantity, when its value is found, is generally
made to stand on the left side of the sign of equality ; itis not
material, however, which side it oceupies, since, by transposition,
it can be readily removed to the other. In effecting the transpo-
sition of 102==2, so as to bring the x on the left side, we have
made it to consist of two steps; it is, however, generally made in
one; the transposition, and multiplying by -1, being both made
in one line at the same time.
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Norn.—Multiplying by —1 is the same as changing all the signs of
both members of the equation.

9. A cistern is supplied with water, by two pipes; the less alone
can fill it in 40 minutes, and the greater in 30 minutes; in what
time will they 61l it, both running at once?

Let = the number of min. in which both together can fill it.

Then 1——— the part which both can fill in 1 minute.

Since the less can fill it in 40 mmutes, it fills 5% of iti m 1 min-
ute. Since the greater can fill it in 30 minutes, lt fills 5% of it in
1 minute. Hence, the part of the cistern which both can fill in

1 minute, i; represe;zted by 4!{—)'{‘31()’ and also, by %
1
Hence, @““%-—2
Multiply both sides by 120z, and we have 3z-+4a==120.
Te=120.
2=1%0=17% min.

10. A laborer, A, can perform a piece of work in 5 days, B can
do the same in 6 days, and C in 8 days; in what time can the
three together perform the same work ?

Let o= the number of days in which all three can do it.

Then 1: the part which all can do in 1 day.

If A can do it in 5 days, he does 1 of itin 1 day.
If B (43 111 6 £ [ 113

. If C 113 113 8 [ 113
Hence, the parﬁ of the work done by A, B, and C in 1 day, is

L i

< 133

represented by —{- 6+8’ and also, by !

1,1 1
Hence, 5+b+8 =
Or, 24x-+20x+152==120.
592=120
2="20=27%; days.

11. How many pounds of sugar at 5 cents, and at 9 cents per
pound, must be mixed, to make a box of 100 pounds, at 6 cents
per pound,

Let @== the number of pounds at 5 cents.

Then 100—z= the number of pounds at 9 cents.

Also, Ba= the value of the former.

And 9(100—z)= the value of the latter.

And 600== the value of the mixture.
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But the value of the two kinds must be equal to the value of
the mixture.

Therefore, 52+9(100—2)=600

5x-+900-—-92=600
—dx=—300
=75, the number of pounds at 5 cents.
100—2=25, « « “ “ 9 cents.

12. A laborer was engaged for 30 days. For cach day that he
worked, he received 25 cents and his boarding; and, for each day
that he was idle, he paid 20 cents for his boarding. At the expi-
ration of the time, he received 3 dollars; how many days did he
work, and how many days was he idle?

Let 2= the number of days he worked.

Then 30-—z= the number of days he was idle.

Also 2bz== wages due for work.

And 20(30—=2)== the amount to be deducted for boarding.

Therefore, 252—20(30—x)=300

25z—600--20z =300
452=800
2==20= the number of days he worked.
80—x=10==the number of days he was idle.
Progf. 25X20=500 cents, = wages.
20X10=200 cents, = boarding.
300 cents, = the remainder.

In solving this example, we reduce the 3 dollars to cents, in
order that the quantities on both sides of the equation may be of
the same denomination. For, as we can only add or subtract num-
bers of the same denomination, it i3 evident, that we can only
compare quantities of the same name. Hence, all the quantiiies,
in both members of an equation, must be of the same denominalion.

13. A barc is 50 leaps before a greyhound, and takes 4 leaps
to the greyhound’s 8; but 2 of the greyhound’s leaps are equal to
3 of the hare’s; how many leaps must the greyhound take, to
cateh the hare?

Let @ be the number of leaps taken by the hound. Then, since
the hare takes 4 leaps while the hound takes 3, the number of
Ieaps taken by the hare, after the starting of the hound, will be

»g ; and the whole number of leaps taken by the hare, will be

fg-c+50, which is equal, in extent, to the # leaps run by the bound.
Now, if the length of the leaps taken by each were equal, we

might put  equal fo %?+50 ; but, by the question, 2 leaps of the
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hoand arc equal 4o 3 of the hare’s, that is, 1 leap of the hoond is
equal to $ 1eaps of the hare; hence, # leaps of the hound are

equal 10 - 4 lcwps of the hare; and we have the equation
Sx 4w
7 g T80

Yr=8x-+}+300
2==300, leaps taken by the greyhound.

14. The hour and minute hands of awatch are exactly together
between 8 and 9 o’clock; required the time.

Let the number of minutes more than 40, be denoted by @; that
is, let 2= the minutes from VIII to the point of coincidence, P;
then, the hour hand moves from VIII to the point P, while the
minute hand moves from XII fo the same point; or, the former
moves over x minutes, while the latter moves over 404z minutes;
but the minute hand moves 12 times as fast as the hour hand.
Therefore, 12x=40-}u
] 40

=49 minutes =8 minutes, 387% scconds.

Hence, the required time is 43 minutes, 384 seconds after 8
o’clock.

15. A person spent one fourth of his money, and then received
5 dollars. He next spent one half of what he then had, and found
that he had only 7 dollars remaining ; what sum had he at first?

Let a== the number of dollars ho had ab ‘irst. Then, after
spending one fourth of that, and 1ecexun g 5 dollars, he had

& 5:‘“["{), which being reduced, is equal to +D

3z 5

5+

3
Tie now spent the half of this sum, or & ( ﬁd—f ) == 5

4

Therefore, §'——i—5 ( 82,5 ) =7,

4 §72
or, 3545 82 5 o
3 4 i 8 2"‘ >
3z E 5

S X
or, Bx—8a=16--20;
Je=36
2==12. Ans,
16. Divide 42 cents between A and B, giving to B twice as
many as to A. Ans, A 14, B 28,
17. Divide the number 48 into three parts, so that the second
may be twice, and the third three times the first.
Ans, 8, 16, and 24.
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18. Divide the number 60 into 3 parts, so that the second may
be three times the first, and the third double the second. :
Anps. 6, 18, and 36.
19. A boy bought an equal number of apples, lemons, and
oranges, for 56 cents; for the apples he gave 1 cent a piece, for
the lemons 2 cents a piece, and for the oranges 5 cents a piece;
how many of each did he purchase ? Ans, 7.
20. A boy bought 5 apples and 3 lemons, for 22 cents ; he gave
as much for 1 lemon as for 2 apples; what did he give for each?
Ans. 2 cents for an apple, and 4 cents for a lemon.
21. The age of A is double that of B, the age of B is twice that
of C, and the sum of all their ages is 98 years; what is the age
of each? Ans. A 56 years, B 28 years, and C 14 years.
22. Tour boys, A, B, C, and D, have, between them, 44 cents;
of which A has a certain number, B has three times as many as
A, C asmany as A and one third as many as B, and D as many
as B and C together ; how many has each?
: Ans. A 4,B 12, € 8, and D 20.
23. A man has 4 children, the sum of whose ages is 48 years,
and the common difference of their ages is equal to twice that of
the youngest; required their ages. Amns. 8, 9, 15, and 21 years.
24. Divide the number 55 into two parts, in proportion to each
other as 2 to 3.
Let 2= one part; then 3v= the other, since 2z is to 3z as 2
is to 3. 2u-+-3x=>55
Ha=55
z=11
Ra=22
9,33 } Ans.
‘Or thus: Let x== one part; then 55—ax= the other.
By the question, » : 55— :: 2 : 3. Then, since, in every pro-
portion, the product of the means is equal to the product of the
extremes, we have 3x=2(55—=z)=110--2x

Be=110
2==22, and 55—x=33, as before.
Or thus: Let 2= one part, then %ﬁc:—— the other.
And x—{—?g::55.
Qx-+3x==110, from which x==22, and %597:33.

The first method avoids fractions, and is of such frequent appli-
eation, that we may give this general direction:
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When two or more unknown quantities in any problem, are o each
other in @ given ratio, it is best to assume each of them a multiple of
some other unknown quantily, so that they shall have to each other
the given ratio.

25. The sum of two numbers is 60, and the less is to the greater

as 5 to 7; what are the numbers? Ans. 25 and 85.
26. Divide the number 60 into 3 parts, which shall be in pro-
portion to each other as 2, 3, and 5. Ans. 12, 18, and 30.

27. Divide the number 92 into 4 parts, in proportion to each

other as the nwmbers 3, 5, 7, and 8.  Ans. 12, 20, 28, and 32.

28. Divide the number 60 into 3 such parts, that 3 of the first,

L of the second, and § of the third, shall all be equal to each other.

Ans. 12, 18, and 30.

This question is most conveniently solved, by putting 2z, 3,

and bz for the parts, since the 4, §, and } of these are respec-
tively equal to each other.

29. What number is that whose half, third, and fonrth part ave

together equal to 657 Ans. 60,
30. What number is that, £ of which is greater than 4 by 47
Ans, 70.

31. The age of B is two and four fifth times the age of A, and
the sum of their ages is 76 years; what is the age of each?
Ans. A 20, B 56 years,
32. Divide 88 dollars between A, B, and C, giving to B §, and
to C £ as much as to A, Ans. A $42, B $28, and € $18.
33. Divide 440 dollars between three persons, A, B, and C, so
that the share of A may be £ that of B, and the share of B # that
of C. Ans. A’s share $90, B’s $150, and C's $200.
34. Tour towns are situated in the order of the letters A, B, C,
D. The distance from A to D is 120 miles; the distance from A
to B is to the distance from B to C as 3 to 5; and one thied of the
distance from A to B, added to the distance from B to C, is three
times the distance from C to D; how far are the towns apart?
Ang. A to B, 36 miles; B to C, 60 miles; C to D, 24 miles.
35. A merchant having engaged in trade with a certain capital,
lost 3 of it the Ist year; the 2d year he gained a sum equal fo ¥
of what remained at the close of the Ist year; the 3d year he lost
L of what he had at the close of the 2d year, when he was worth
$1236. What was his original capital ? Ans. $1545.
86. The rent of a house this year, is greater, by b per cent.,
than it was last year; this year the rent is 168 dollars; what was
it last year? Ans, $160.
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87. Divide the number 32 into 2 paris, so that the greater shall
exceed the less by 6. Ans. 13 and 19,
38. At an election, the number of votes given for two candi-
dates, was 256 ; the successful candidate had a majority of 50
votes ; how many votes had each ? Ans, 153 and 108.
39. Divide 1520 dollars between three persons, A, B, C, so that
B way receive 100 dollars more than A, and C 270 dollars more
than B; what is the shave of each?
Ans. A §350, B $450, and € $720.
40. A company of 90 persons consists of men, women, and
children ; the men are 4 more than the women, and the children
are 10 more than both men and women; what is the number of
each ? Ans. 18 women, 22 men, and B0 ¢hildrven.
41. After cutting off n certain quantity of cloth from a piece
containing 45 vards, it was found that there remained 9 yards
less than had been cub off; how many yards had been cub off?
Ans. 27.
42. What number is that, which, being multiplied by 7, gives
a product as much greater than 20, as the number itself is less
than 20°? Ans, b,
43. A person dying, left an estate of 6500 dollars, to be divided
between his widow, 2 sons, and 8 daughters, so that each son
shall receive twice as much as a daughter, and the widow 500
dollars less than all her children together ; required the shave of
the widow, and of each son and daughter.
Ans. Widow $3000, each son $1000, and each daughter $500.

44. Two men set out at the same time, one from London, and
the other from Edinburgh; one goes 20, and the other 30 miles »
day; in how many days will they meet, the distance being 400
miles? Ans. 8 days,

45. Two persons, A and B, depart from the same place, to go
in the same divection; B travels ab the rate of 3, and A at the
rate of B miles an hour, but B has the start of A 10 hours; in
how many hours will A overtake B? Ans. 15.

46, What number ig thai, of which one half and one third of
it diminished by 44, is equal to one fifth of it diminished by 67

Ans. 60.

47. A person being asked the time of day, replied, “If, to the
time past noon, there be added its &, 1, and 2, the sum will be
equal to & of the time to midnight; vequired the hour.

Ang, 50 min. P. M.,
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48, Divide the namber 120 into tv.o such parts, that the smaller
may be contained in the greater 14 times. Ans, 48 and 72.
49. “I have a certain number in my mind,” said A to B; «
I maltiply it by 7, add 3 to the product, divide this by 2, and sub-
tract 4 from the quotient, the remainder iz 157 What is tlm
number ? Ang, B,

H0. What number is that, which, if you muitxplv it by 5, sub-~
tract 24 {rom the ploouet divide the remainder by €, and add 13
to the quohu»t will give the number itself? Ang. B4,

51. Two persons, A and B, engaged in trade, the capital of B
’oungr Zothat of A; B gained, and A lost, 100 dollars; after which,
if 5 of what A h‘xdl oft, be sublracted from what B now has, the
mnmmder will be 134 dollars; with what capital did each com-
mence ? Ans. A §786, B

52. A maxn having &pem‘ 3 dollars more than ¥ % of his muer,
had 7 dollars move than } of it left; how many dollars had he at
first? Ans. §75.

53. Two men, A and B, h'w- the same annual income; A saves
3 of his, bu B spends 25 dollars per annum more than A, and af
the end of & years finds he has saved 200 dollars; what Is the

I

annual income of each? Ans. &

54, In the composition of a qua ntxty of gunpowder, 2 of the
whole, plus 10 pmmds;, was nitre; u% of the whole, plus 1 pound,
was sulphur; and 4 of the whole, minus 17 pounds, was chavcoud ;
how many pounds of gunpowder were there? Ans. 681,

55. A person bought a chaise, horse, and harness, for 245 dol-
lars; the hovse cost 8 Li}}lx’)b as much ag the harness, and the chal
cost 19 dollars less than 23 % times as much as both horse and har-
ness; what was the cost 0{ each?

Ans, Harnes

g§,18, norse wz}‘,!; chaise {“‘S& §
B6. What two numbers are as 3 to 4, to each of which, if 4 be
added, the sums will be to cach o‘cher as D to 62 Ans. §and 8,
57. What two numbers are as 2 to 5, from each of which, if 2
be subtracted, the remainders will be o each other as 8 to 8?2
Ang. 20 and 50,
58. The ages of two Lrothe% are now 25 and 30 years, so that
their ages are as 5 to ; in how many years will their ages be as

Bto9? Ans. 15,
How many years since their ages were as 1 027 A, 20 yrs.
58. A cistern has 3 pipes to fill it; by the first, it can be filled

in 1% hours, by the sccond, in 8% hours, and by the third, in 5

hours; in what time can it be filled, by all three running at once?

Ans. 48 min.
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60. Find the time in which A, B, and C together, can perform
a piece of work, which requires 7, 6, and 9 days respectively,
when done singly. Ans. 229 days.
61. From a certain sum I took one third part, and put in its
stead 50 dollars; next, from this sum T took the tenth part, and
put in its stead 37 dollars; I then counted the money, and found
¥ had 100 dollars; what was the original sum? Ans. §30.
62. A teacher spent 2 of his yearly salary for board and lodging,
1 of the remainder for clothes, and + of what remained, for books,
and still saved 120 dollars per annum ; what was his salary?
Ans, §375.
63. A laborer was engaged for a year, at 80 dollars and a suit
of clothes; after he had served 7 months, he left, and received for
his wages, the clothes and 35 dollars; what was the value of the
suit of clothes? Ans. $28.
64. A man and his wife can drink o cask of wine in 6 days,
and the man alone can drink it in 10 days; how many days will
it last the woman? Ans. 15.
65. A steamboat, that can run 15 miles per hour with the cur-
vent, and 10 miles per hour against it, requires 25 hours to go
from Cinecinnati to Louisville, and return; what is the distance
between those citics? Ans. 150 miles.
66. A and B engaged in a speculation; A with 240 dollars,
and B with 96 dollars; A lost twice as much as B, and, upon sel-
tling their accounts, it appeared, that A had 3 times as much
remaining as B; what did each lose? Ans. A $96, and B $48.
67. In a mixture of wine and water, § the whole, plus 25 gal-
lons, was wine, and 4 of the whole, minus 5 gallons, was water;
required the quantity of each in the mixture.
Ans. 85 galls. of wine, and 35 galls. of water.
68. It is required to divide the number 91 into 2 such parts,
that the greater, being divided by their difference, the quotien
will be 7. Ans, 49 and 42.
69. It is required to divide the number 72 into 4 such parts,
that if the first be increased by 2, the sccond diminished by 2, the
third multiplied by 2, and the fourth divided by 2, the sum, the
difference, the product, and the quotient shall all be equal.
Ans. 14, 18, 8, and 32.
Let the four parts be represented by 2—2, x-+2, 4z, and 2.
70. A merchant having cut 19 yards from each of 3 equal picces
of silk, and 17 from another of the same length, found, that the
remnants taken together, measured 142 yards; what was the
length of each picce? Ans. 54 yds.
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71. Suppose, that for every 10 sheep a farmer keeps, he should
plow an acre of land, and allow 1 acre of pasture for every 4
sheep; how many sheep can the person keep, who farms 161
acres? Ans. 460.

72. It is required to divide the number 34 into 2 such parts,
that if 18 be subtracted from the greater, and the less be sub-
tracted from 18, the first remainder shall be to the second as 2
to 3. Ans. 22 and 12.

78. A person was desirous of giving 3 cents a piece to some
beggars, but found that he had not money enough in his pocket
by 8 cents; he therefore gave each of them 2 cents, and then had
3 cents remaining ; required the number of beggars.  Ans. 11.

74. A father distributed a number of apples among his chil-
dren, as follows: to the first he gave 3 the whole number, less 8;
to the second 4 the remainder, diminished by 8; and in the same
manner, with the third and fourth ; after which, he had 20 apples
remaining for the fifth ; how many apples did he distribute ?

Ans. 80.

75, A could reap a field in 20 days, but if B assisted him for 6
days, he could reap it in 16 days; in how many days could B
reap it alone? Ans. 30 days.

76. There are two numbers in the proportion of 4 to %, which,
being inecreased respectively, by 6 and 5, are in the proportion of
% to 4 required the numbers. Ans. 30 and 40.

77, When the price of a bushel of barley wanted but 3 cents
to he to the price of a bushel of oats as 8 to 5, nine bushels of
oats were received as an equivalent for 4 bushels of barley and
90 cenis in money ; what was the price of a bushel of each?

Ans. Oats 30 cts., and barley 45 ets.

8. Four places are sitnated in the order of the 4 letters, A, B,
C, and D ; the distance from A to D is 34 miles; the distance
from A to B is to the distance from C to D, as 2 to 3; and § the
distance from A to B, added to & the distance from C to D, is 3
times the distance from B to C. Required the respective distances.

Ans. A to B 12, B to C 4, and € to D 18 miles.

79. The ingredients of a loaf of bread arerice, flour, and water,
and the weight of the whole is 15 pounds; the weight of the rice
increased by 5 pounds, is % the weight of the flour; and the
weight of the water is £ the weight of the flour and rice together;
what is the weight of each?

Ans, Rice 21, flour 1011, and water 241,
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SIBIPLE EQUATIONS CONTAINING TWO UNKNOWN QUANTYTINS,

Arr. B8%.—In order to find the valne of any unknown quantity,
it is evident, that we mus$ obtain a single equation containing 4,
and known terms, Ilence, when we have two or more equations,
containing two or more unknown quantities, we must obtain from
them a single equation containing only one unknown quantity.
The method of doing this, is termed elimination, which may be
briefly defined thus: Hiimination is the process of deducing from
two or more cquations, containing two or more nnknown gquantities,
a less number of equations containing one less unknown quantity.

There are three methods of elimination.

1st. Elimination by substitution.

2d. Elimination by comparison.

3d. Elimination by addition and subtraction,

BLIMINATION BY SsUBSTITUTION.

Arr, $58.—Llimination by substitution, consists in finding the
value of one of the unknown quantities in one of the equations, in
terms of the other unknown quantity and known terms, and sub-
stituting this, instead of the quantity, in the other equation.

To explain this, suppose we have the following equations, in
which it is required to find the value of @ and 7.

Norg.— The figures in the parentheses, are intended to number the
equations for reference.

a-+2y=17 (1.)
Ru-+-3y=28 (2.)
By transposing 2y in the equation (1), we have x=17—2y. Sub-
stituting tAds value of «, instead of @ in equation (2), we have
2(17—8y)+3y=28
or, 34—4y--3y=28
or, —y=28—34
y=0
and  a=17-—2y=17—12=5.

Hence, when we have two equations, containing two unknown

quantities, we have the following

RULE,
TFOR BLIMINATION BY SUBSTITUTION.

Find an expression for the value of one of the unknown quan-
tities in cither equation, and substitute this value tn place of the same
unknown quaniily in the other equation ; there will thus be formed o
new equation, containing only one unknown quantily.
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Norr.—In finding an expression for the value of one of the unknown
quantities, let that be taken which is the least involved.

Find the values of the unknown quantities in each of the fol-
lowing equations.

1. a-+5y=38. Ans. z=3. | 6. a—y=10. Ans. ©==25.
Bw-+dy=37 @y T
2. 2u+4-4y=22. Ans.z 5_3_0' y=15.
Ba--Ty=48. - Y
3. Bu45y=57.  Ans. LgmgTl Ane =20,
S--8y=47. Ba—3y=10. y=-30.
4, do—3y=26.  Ans.: 2z By ¢
3‘,5__4?/::__1{5' 8. ‘;7; — -é::{) Ans, 2=21.
b. 20—3y=——4. Ans.z==18. 2 3y 926 16
) A ee=20. Y=10.
o Z=12. y=12.1 8 ¢

3
BELIMINATION BY COMPARISON.

Arr, 15%.—Elimination by comparison, consists in finding the
value of the same unknown quantity in two different equations,
and then placing these values equal to each other.

To illustrate this method, we will take the same equations which
were used to explain elimination by substitution.

z-+y==17 (1.)
La+-3y=28 (2.)

By transposing 2y in equation (1), we have e=17—2y.

By transposing 3y in equation (2), and dividing by 2, we have
L 28-3y
W“_T -

Placing these values of 2 equal to each other,
28 . 3y:1 79y

or, 28—38y=34—4y
or, y===0.

The value of @ may be found in a similar manner, by first find-
ing the values of g, and placing them cqual to each other. But,
after having found the value of one of the unknown quantities,
the value of the other may be found most readily by substitution,
as in the preceding article. Thus, a=17—2y=17—12=5.

REVIEW-~157. What is necessary in order to find the value of any
unknown quantity 7 When we have two equations, containing two unkunown
quantities, what is necessary, in order to find the valuo of one of them?
‘What is elimination? How many methods of elimination are there? 158,
In what does elimination by substitution consist? What is the rule for
elimination by substitution? 159. In what does climination by compari-
son consist?
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Hence, when we have two equations, containing two unkunown

quantities, we have the following
RULE,
FOR LLIMINATION BY COMPARISON.

Find an expression jor the value of the same unknown quantity in
each of the given equations, and place these values equal o each
other ; there will thus be formed a new equation, containing only one
unknown quantity.

Find the value of each of the unknown quantities in the follow-
ing equations, by the preceding rule.

1. &43y=16. Ans, =7, z Y

o4-5y=22. y=3. 6. ZL—‘Z:I. Ans. z=12.
2. 3x-+-5y=29.  Ans., z=8. PR
3u—b5y=19. y=1. g+‘~2/=8- y=8.
3. ba—Ry=—4. Ans. x=2. A
Q—y=1. =3. | 7. 5+§.--_—14. Ang, z=45.
x_ Y _
4’&2 3 2. Ang, 2=6. ‘ic_«ly/:g, =10,
N =3 2 °
z y 8. %«xq'—il’;i’:zv. Ans, z==21.
5, ijm‘ézl' Ans, =36, o
€ Y19 0| Pl y=35.
gt y=2t.
€
SL%»{«Qy——w-{-%’zéH. e e e e s e e o s Ans =20,
4 @ .
3x_»3,;1’:40+§. e e e e y=12
10. 3xg5y:2w;w%~ ve s e e s o s s s e s s CAngoa=I12,
6 ’622.?:36?%7/' e e e e e s s e e s e e s y==6.

ELIMINATION BY ADDITION AND SUBTRACKION.

Arr. 86@.—Elimination by addition and subtraction, consists
in multiplying or dividing two equations, so as to render the coéf
ficient of one of the unknown quantities, the same in both; and
then, by adding or sabtracting, to cause the term containing it to
disappear.

To explain this method, we will take the same equations used
to illustrate elimination by substitution and comparison.

a+2y=17 (1.)
Ra-+-3y=28 (2.)
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If we multiply equation (1) by 2, so as to make the coéfficient
of  the same ag in the second equation, we have
2u4+-4y=34 (3.)
2x--3y==28, equation {2) brought down.
y=6

Since the coéfficient of x has the same sign in these equations,
if we subtract, the terms containing « will cancel each other, and
the resulting equation will contain only ¥, the value of which may
then readily be found. After this, by substituting the value of y,
as before, the value of x i easily obtained.

To illusirate the method of eliminating, when the coéfficients of
the unknown quantity to be eliminated, have contrary signs in the
two equations, suppose we have the following, in which it is
required fo eliminate y.

Ba—by=6 (1.
4a4-3y=37 (2.)
1t is obvious, that if we multiply eqaation (1) by 8 and (2) by
5, that the cotficients of y will be the same. Thus,
92—15y= 18
20z-+15y=185
adding, 29z = 20
z = 7.
Substituting this value of = in equation (2), we have
28-+3y=37
3y= 9
y=3

Trom this we see, that after making the coéfficients of the quan-
tity to be eliminated, the same in both equations, if the signs are
alike, we must subtract; but if they are unlike, we must add them.

Hence, when we have two equations, containing two unknown
quantities, we have the following

RULE,
FOR ELIMINATION BY ADDITION AND SUBTRACTION.

Multiply, or divide the equations, if necessary, so that one of the
unknown quanitties will have the same coéfficient in both.  Then take
the difference, or the sum of the equations, according as the signs of
the equal terms are alike or unlike, and the resulting equation will
contain only one unknown quantity.

R exMARK.—When the coéfficients of the unknown quantitios o be elim-
inated arc prime to each other, they may be equalized, by multiplying each

Ruvige w159, Whatis the rule for elimination by comparison? 160. In
what does elimination by addition and subtraction consist? What is the
rule for elimination by addition and subtraction?
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equation by the coéfficient of the unknown quantity in the other. When
the coéfficients are not prime, find their least common multiple, and raultiply
each equation by the guotient obtained by dividing the least common mul-
tiple by the coéfficient of the unknown quantity to be eliminated in the
other equation.

If tho oqu&tions have fractional co&ficients, they ought to be cleared
hefore applying the rule.

Tind the value of the unknown quantities in each of the follow-
ing equations, by the preceding rule.

. ?f—‘giiizll A z,:__g 5. ° éi ==8. Ans, a=20.
¢ AT Ap i p

. gﬁﬁiﬁa A £ §+§= : y=15.

g :‘ii;g?_/—:g . 6. %‘“;;23 Ans. 2==12
s i § . )

* S:Cdjgg::if} il;"i_g'::g "47:::9.

7 ;;;?ZWE;J[::' e e e e e e e e e e e e o Ans, a=—4.

=y 2ty .

5T

QUESTIONS PRODUCING BQUATIONS CONTAINING TWO
UNKENOWN QUANTITIES.

Arr. $6H~The questions contained in Art. 156, were all capa-
ble of being solved by using one unknown quantity; although,
several of the examples contained two, and in some cases more,
unknown quantities, In those questions, however, there was such
a connection existing between the several quantities, thatib wa
easy to express each one in terms of the other. But it frequently
happens, that in a problem containing two unknown quaniities,
there may be no direct relation existing between them, by means
of which either of them may be found in terms of the other. In
such a case, it becomes necessary to use a separate symbol for

each unknown quantity, and then to find the equations containing
these symbols, on the same principle as where there was bat one
unknown quantity; that is, in brief, regurd the symbols as the an-
swer to the question, and then proceed in the same mamner &s i would
be necessary o do, to prove the answer. After the eguations are
obtained, the values of the unknown guantities may be found, by
either of the three different modes of elimination.

‘We shall fivst give two examples, which can be solved by using
either one or two unknown quantities.
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In general, no more symbols should be used, than are really
necessary ; unless, by using them, the solution is rendered more
simple.

1. Given, the sum of two numbers equal to 25, and their differ-
ence equal to 9, to find the numbers.

Solution, by using one unknown quantity.

Leb a== the less number ; then 2-9== the greater.

And a-+z-}-9=25.

=16
=8, the less number; and a-+9=17, the greater.

Solution, by using two unknown quantities.

Let x== the greater, and y== the less.

Then z+y=256 (1.)

And a—y= 9 (2.)

=34, by adding the two equations together.
=17, the greater number.

2==16, by subtracting equation (2) from equation (1).
y= 8, the less number.

2. The sum of two numbers is 44, and they are to each other
as b to 6 ; required the numbers.

Solution, by using one unknown quantity.

Let Ba== the less number; then Gx== the greater.

And Ha-}6x=44.

Tle=44
a=4
Hr=20, the less number.
Gx=24, the greater number,

Solution, by using two unknown quantities.

Let z== the less number, and y== the greater.

Then a-+y=44 (1.)

Andz:y::5:6

or, Bz==58y (2.) by multiplying means and extremes.
6x-+6y=264 (3.) by multiplying equation (1) by 6.
6y=264—5y, by subtracting equation (2) from (3).
11y=264
y=24 and w=44—y=20.

Several of the following questions may also be solved by using
only one unknown guantity.

3. There is a certain number consisting of two places of figures ;
the sum of the figures is equal to 6, and, if from the double of the

REeviesw~161. In solving questions, when does it become necessary to
use o separate symbol for each unknown gnantity ? How are the equations
formed, from which the values of the unknown quantitics are to be obtained?

12
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number 6 be subtracted, the remainder is a number whose digits are
those of the former in an inverted order; required the number?

In solving questions of this kind, the pupil must be reminded,
that any number consisting of two places of figures, is equal to 10
times the figure in the ten’s place, plus the figure in the unit's
place. Thus, 23 is equal to 10X24-3. Inasimilar manner, 325
is equal to 100X3+10X2-5.

Let 2= the digit in the place of tens, and y== that in the place
of units,

Then 10z--y= the number.

And 10y-z= the number, with the digits inverted.

Then z-+y=6 (1.)

And 2(10z-+y)—6=10y+=z (2.)

192=8y-+6
Ba=—8y-+48, from equation (1), by multiplying by 8,
and transposing.
272=04, by adding,.
x=2
y=06—2=4. Ans. 24.

4. What two numbers are those, to which if 5 be added, the
sums will be to cach other as B to 6; but,if b be subtracted from
each, the remainders will be to each other as 3 to 47

By the conditions of the question, we have the following pro-
portions: z+5:y+5::5:6

a—b:y—5::3: 4.

Since, in every proportion, the product of the means is equal to

the product of the extremes, we have the two equations
6(e-+5)=5(y-+5)
4(z—5)=3(y—5)

From these equations, the values of  and y ave regdily found to
be 20 and 25.

ReMARK.— Instead of saying, that the two sums will be to each other
a8 b to 6, it will be the same to say, that the quotient of the second divided
by the first, is equal to £, since 6 divided by 5, expresses the ratio of 5 to 6,
This would give the following equations :

P

at5 b a5 3
which may be readily obtained from those given above.

Nore.~—In solving the following questions, after finding the equations,
the values of the unknown quantities may be found by either of the three
methods of elimination.
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5. A grocer sold to one person 5 pounds of coffee and 3 pounds
of sugar, for 79 cents; and to another, at the same prices, 3
pounds of coffee and 5 pounds of sugar, for 73 cents; what was
the price of a pound of each?  Ans. Coffee 11 cts., sugar 8 cts.

6. A farmer sold to one person 9 horses and 7 cows, for 360
dollars; and to another, at the same prices, 6 horses and 13 cows,
for the same sum ; what was the price of each?

Ans. Horses $24, and cows $12 each.

7. A vintner sold at one time, 20 dozen of port wine and 30 of
sherry, and for the whole received 120 dollars; and, at another,
30 dozen of port and 25 of sherry, at the same prices as before,
for 140 doliars; what was the price of a dozen of each sort of
wine? Ans. Port $3, and sherry $2 per doz.

8. It is required to find two numbers, such that § of the first
and % of the second shall be 22, and 4 of the first and % of the
second shall be 12. Ans. 24 and 30.

9. If the greater of two numbers be added to & of the less, the sum
will be 37; but if the less be diminished by + of the greater, the
difference will be 20; what are the numbers?  Ans. 28 and 27.

10. 'Wha' two numbers are those, such that § of the first dimin-
ished by + of the second, shall be 5, and  of the first diminished
by % of the second, shall be 22 Ans. 20 and 15.

11. A farmer has 2 horses, and a saddle worth 25 doliars ; now,
if the saddie be put on the first horse, his value will be double
that of the second; but, if the saddle be put on the second horse,
his value will be three times that of the first. Required the value
of each horse. Ans. First $15, second $20.

12. A and B are in trade together with different sums; if 50
dollars be added to A’s property, and 20 dollars taken from B’s,
they will have the same sum; and if A’s property was 8 times,
and B’s b times as great as cach really is, they would together
have 2350 dollars; how much has each? Ans. A $250, B $320.

13. A has two vessels containing wine, and finds, that 2 of the
first contains 96 gallons less than § of the second ; and that § of
the second contains as much as 4 of the first; how much does each
vessel hold? Ans. 720 and 512 galls.

14. Thers is a number consisting of two digits, which, divided
by their sum, gives a quotient, 7; but if the digits be written in
an inverse ovder, and the number so arising, be divided by their
sum increased by 4, the quotient willbe 3. Required the number.

Ans. 84.

15. If we add 8 to the numerator of a certain fraction, its value
becomes 2; and if we subtract 5 from the denominator, its value
becomes 3 ; required the fraction. Axs, §.
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16. If to the ages of A and B 18 be added, the result will be
double the age of A; but, if from their difference 6 be subtracted,
the result will be the age of B; required their ages.

Ans. A 30, B 12 yrs.

17. There are two numbers whose sum is 37, and if 3 times
the less be subtracted from 4 times the greater, and the difference
divided by 6, the quotient will be 6; what are the numbers ?

Ans. 16 and 21.

18. Tt is required to find a fraction, such thatif 3 be subtracted
from the numerator and denominator, the value will be ; and if 5
be added to the numerator and denominator, the value will be 4.

Ans. T7§.

19. A father gave his two sons, A and B, together 2400 dollars,
to engage in trade; at the close of the year, A has lost } of his
capital, while B, having gained a sum equal {o } of his capital,
finds that his money is just equal to that of his brother; what was
the sum given by the father to each?  Ans. A $1500, B $900.

20. If from the greater of two numbers 1 be subtracted, the
remainder will be equal to 4 times the less; but, if to the less 3
be added, the sum will be 4 of the greater; required the numbers.

Ans. 8 and 33.

21. A said to B, ¢ Give me 100 dollars, and then I shall have
as much as you” B said to A, < Give me 100 dollars, and then I
shall have twice as much as you.” How many dollars had each?

Ans. A $500, B $700.

22. If the greater of two numbers be multiplied by 5, and the
less by 7, the sum of their products is 198; but if the greater be
divided by 5, and the less by 7, the sum of their quotients is 6;
what are the numbers? Ang. 20 and 14.

23. Seven years ago the age of A was just three times that of
B ; and seven years hence, A’s age will be just double that of B
what are their ages? Ans. A’s 49, B’s 21 yrs.

24. There is a certain number consisting of two places of figures,
which being divided by the sam of its digits, the quotient is 4,
and if 27 be added to it, the digits will be inverted ; required the
number. Ans. 36.

25, A grocer has two kinds of sugar, of such quality that one
pound of each are together worth 20 cénts; but if 3 pounds of
the first, and 5 pounds of the second kind be mixed, a pound of
the mixture will be worth 11 cents; what is the value of a pound
of each sort? Ans. 8 cts., and 14 cts.

26. A boy lays out 84 cents for lemons and oranges, giving 3
cents a piece for the lemons, and 5 cents a piece for the oranges;
he afterward sold & of the lemons and 4 of the oranges, for 40
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cents, and by so doing cleared 8 cents on what he sold; what
anumber of each did he purchase?
Ans. 8 lemons and 12 oranges.
27. A person spends 30 cents for peaches and apples, buying
his peaches ab 4, and his apples at 5 for s cent; he afterward
sells & of his peaches, and § of his apples, at the same rate he
bought them, for 13 cents ; how many of each did he buy?
Ans. 72 peaches and 60 apples.
28. A owes 500 dollare, and B owes 600 dollars, but neither has
sufficient money to pay his debts. A said to B, “Lend me £ of
your money, and I shall have enough to discharge my debts.”
B said to A, “ Lend me 4 of your money, and I ean pay mine.”
How much money has each? Ans. A §400, B $500.
29. A merchant bought two pieces of cloth for 236 dollars, the
first piece at 4, and the second at 7 dollars per yard ; but the cloth
getting damaged, he sold # of the first piece, and § of the second,
for 160 dollars, by which he lost 8 dollars on what he sold; what
was the number of yards in each picce?
Ans. 24 yards in the first, and 20 yards in the second.
20. A son said to his father, “ How old are we?" The father
veplied, Six yoars ago my age was 84 times yours, but 8 years
hence, my age will be only 2% times yours” Required the age
of each. Ans. Father’s age 36, son’s 15 yrs.
31. A person has two horses, and two saddles, one of which cost
50, and the other 2 dollars. If he places the best saddle upon the
first horse, and the other on the second, then the latter is worth 8
dollars less than the former; but if he puts the worst saddle upon
the first, and the best upon the second horse, then the value of the
latter is to that of the former as 15 to 4. Required the value of
each horse. Ans. First $30, second $70.
32. A farmer having mixed  certain number of bushels of oats
and rye, found, that if he had mixed 6 bushels more of each, he
would have mixed 7 bushels of oats for every 6 of rye; but if he
had mixed 6 bushels less of each, he would have put in 6 bushels
of oats for every b of rye. How many bushels of each did he
mix ? Ans. Qats 78, rye 66 bu.
83. A person having laid out a rectangular yard, observed, that
if each side had been 4 yards longer, the length would have been
to the breadth, as B to 4; but, if each had been 4 yards shorter,
the length would have been to the breadth, as 4 to 3 ; requived the
length of the sides. Ang, Length, 36, hreadth 28 yards.
34. A farmer rents a farm for 245 dollars per annum ; the tilla~
ble land being valued at 2 dollars an acre, and the pasture at 1
dollar and 40 cents an acre; now the number of acres tillable, is
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to the excess of the tillable above the pasture, as 14 to 9; how
many were there of each? A. Tillable 98, pasture 35 acres.

35. Two shepherds, A and B, are intrusted with the charge of
two flocks of sheep; at the end of the first year, it is found, that
A’s flock has increased 10, and B’s diminished 20, when their
numbers are to each other, as 4 to 3 ; during the second year, A’s
flock loses 20, and B’s gains 10, when their numbers are to each
other as 6 to 7. Required the number in each flock at first.

Ans. A’s had 70, and B’s 80 sheep.

36. After drawing 15 gallons from each of 2 casks of wine, the
quantity remaining in the first, is Z of that in the second ; after
drawing 25 gallons more from éach, the quantity left in the first,
is only half that in the second. Required the number of gallons
in each before the first drawing. Axns. 65 and 90 galls,

37. There is a fraction, such that if 1 be added to the numera-
tor, and the numerator to the denominator, its value will be %3
but if the denominator be increased by unity, and the numerator
by the denominator, its value will be £; find it. Ans. %-

38. Find two numbers in the ratio of 5 to 7, to which two other
required numbers, in the ratio of 3 to 5, being respectively added,
the sums shall be in the ratio of 9 to 13, and the difference of their
gums equal to 16. Ans. 30 and 42,6 and 10.

Let the first two numbers be vepresented by S and 7w, and the
other two by 3y and 5y.

39. A farmer, with 28 bushels of barley, worth 28 cents per
bushel, would mix rye at 36 cents, and wheat at 48 cents per
bushel, so that the whole mixture may consist of 100 bushels, and
be worth 40 cents a bushel; how many bushels of rye, and how
many of wheat must be mixed with the barley?

Ans. Rye 20, and wheat 52 bu.

40. Two loaded wagons were weighed, and their weights were
found to be in the ratio of 4 to 5; part of their loads, which were
in the ratio of 6 to 7, being taken out, their weights were then
found to be in the ratio of 2 to 3, and the sum of their weights
was then 10 tons; what were their weights at first?

Ans. 16 and 20 tons.

41. A person had two casks and a certain quantity of wine in
each ; in order to have the same quantity in each cask, ke poured
as much out of the fivst cask into the second as it already con-
tained ; he next poured as much out of the second, into the first,
as it then contained; and lastly, he poured out as much from the
first into the second, as there was remaining in it; after this, he
had 16 gallons in each cask ; how. many gallons did each contain
ot fivat ? Ans. Tirst 22, and second 10 galls.
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SIMPLE EQUATIONS, CONTAINING THREE OR MORE UNKNOWN
QUANTITIES,

Axr. 162.—FEquations involving three or more unknown quan-
tities may be solved, by either of the three methods of elimination
explained in the preceding Article, as we shall now proceed to
show, by solving an example by each of these methods.

Suppose we have the three following equations, in which it is
required to find the values of z,.y, and 2.

z+2y+ #=20 (1.)
2z y+32=31 (2.)
Ba+-4y+-22=44 (3.)

Solution by substitution.

From equation (1), 2=20—2y~-z.

Substituting this in equation (2), we have

2(20—2y—2)+y-+32=31.

or, 40—4y—2z-+y--32=31.

3y—z=9 (4.)
Substituting the same value of z in equation (3), we have

3(R0—y—2)-+4y-+-22=44.

or, 60—6y—3z-+4y4-2z=44.
2y-4+2=16 (5.)
By—=9 (4.)

Here the values of y and z are readily found by the rule, Art.
158, to be 5and 6; then substituting these values in equation (1),
we find a=4.

Solution by comparison.

From equation (1), ¥=20—2y—z

NS L
S i
Comparing the first and second values of x, we have
QOMQy%?#%:E?

or, 40-—4y—22=31—y—3z
or, 3y—z=9 (4.)
Comparing the first and third values of z, we have
go_gymz:ﬁ:*%i%

or, 60—6y—3z=44—4y—2z
2y-+2z=16 (5.)
From equations (4) and (5), the values of ¥ and %, and then x,
may be found by, the rule, Art. 159.
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Solution by addition and subtraction.
Multiplying equation (1) by 2, to render the coéfficient of z the
same as in equation (2), we have
Qu+-4y—4-2e=40
equation (2) is Rz y-+3z==31
by subtracting,  dy— z= 9 (4.)
Next, multiplying equation (1) by 3, to render the coéfficient of
@ the same as in equation (3), we have
3u+6y-+-32=60
equation (3) is 3x-+4y-+2e=44
by subtracting, 2u+ =168 (5.)

3y— == 9 (4)
by adding, by = 25
y = 5

Then 10-+2=186, and z=06.

And  a+104-6=20, and 2=4.

R m A REK~—The methods of elimination by substitution and compari-
son, when there are more than two unknown guantities, are merely an
extension of the rules already presented, in Articles 158 and 159; there-
fore, it is unnecessary to vepeat them here. When the number of unknown
quantities is three or more, and particularly when each of the unknown
quantities is found in all the equations, the method of elimination by addi-
tion and subtraction is generally preferred; we shall, therefore, illustrate it
by another example,

Let it be required to find the value of each of the unknown
quantities in the following equations.

v+2a-4-3y-+42=30 (1.)
2043z y+ z=15 (2.)
3o+ 2-4+-2y+32=23 (3.)
4o4+-20—y-+-142=61 (4.)

Let us first eliminate v: this may be done by making the coéffi-
cient of v, in one of the equations, the same as in the other three,
and then subtracting.

2v--4--By-+-82=60; by multiplying equation (1) by 2.
2v-4-3x-+ty-+2=15 (2.)
-Dy-+Te=45 (5.), by subtracting.
3v+-62-+9y+12z=90, by multiplying equation (1) by 3.
Svta+2y+32=23 (8.)
Sa+Ty+92=67 (6.), by subtracting.
4v-+-82-4-12y-1-162=120, by multiplying equation (1) by 4.
dv-2z—y+1de= 61 (4.
Ga-+13y-+2z= 59 (7.), by subtracting.
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Collecting into one place, the new equations (5), (6), and (7),
we find, that the number of unknown quantities, as well as the
number of equations, is one less.

a--by-+Te=45 (5.)
ba+Ty-++92=67 (6.)
Gu4-13y+2:=59 (7.)

The next step is to eliminate z, by making the coéfficient of =,
in one of the equations, the same as in each of the others, and
then subtracting.

Sx-+-25y-+-352=225, by multiplying equation (5) by 5.
BatTy-+92= 67
18y--262=158 (8.)
G- 30y-+-422=270, by multiplying equstion (5) by 6.
G- 13y-+2z= 59
y-+40=211 (9.)

Bringing together equations (8) and (9), we find, that the num-
ber of equations, as well as of unknown quantities, iz now fwo
Tess. 18y+-262=158 (8.)

17y4-40:=211 (9.)
806y-1-442:=2686, by multiplying equation (8) by 17.
B308y--7202-=3798, by multiplying equation (8) by 18.

2781112
= 4
Substituting the value of z, in equation (9), we get
17y-+160=211
17y=5
y= 3.

Substituting the values of y and z, in equation (5), we geb

x-+15-+4+-28=45

x=2
And lastly, substituting the values of z, y, and z, in equation
{1), we getb v--4+9-4+16=30
or, v=1.

From the preceding example, we derive the

GENERAL RULE,
FOR ELIMINATION BY ADDITION AXND SUBTRACTION.

1st. Combine any one of the equations with euch of the others, so
as to eliminate the same unknown quantity ; there will thus arise a
new class of equations, containing one less unknown quantity.

24, Combine any one of these new equations with euch of the others,
so as fo eliminate another unknown quantity ; there will thus arise
another class of equations, containing two less unknown quantities.

13
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3d. Continue ilis series of operations until o single equ(atw/b 5
obtained, contoining but one unknown quantity, from which ils value
may be casily found; then, by going back, and substituting this value
in the derived equations, the values of the other unknown quantities
may be veadily found.

Ruywanrg-—~—When the number of unknown quantitics in each equation,
is less than the whole number of unknown quantities involved, the method
of substitution will generally be found the shortest. By solving several of
the following examples, by each of the three different mothods, the pupil
will be able to appreciate their relative excellence in different cases.

BXAMPLES,
TO BE SOLVED BY EITHER OF THE DIFFERENT METHODE OF

ELIMINATION,

1. a:~L_/:::JG L e e e e e e e e e e e Ansa==18.
V/{» --tZ e e e e e e e e e

2. Su-+by= T0. ] Y § 1

7
do--Br=108. ¢
Be--Ty =106, J ;
3.9‘{‘/r/~~-/5.1 . § (T =
J

-y

a-—y-+2==12,

4. m+%400, ,/J-fi- C
5, 2o—y-z==9. e e e e e e s e e e s
Ry+Se==td. r Lo L L e e
omwﬁil,V»Z/ﬂ'}’} e e e s e e s s e e s
8, 2o—3y-}-Ba=15.
Bu+Ly—z=8.
—x-+By-+22=21, Ve e e e e e e e e
w Ea VLR oy e
1 yghg=2a. e e e e e e e e e o« Ang a=1%.
SHRE=SL L L et

x. Y ¢
é“‘?‘g“(“r”—‘:gm VA

x A
S.gwé{%:&}l e e e e e e e e e e o » . Ans x=6.
Yy oz .

'6‘7"1‘"/“"’21'f O v’
.aj._.}. 5o

g—gte=95 | e e e e e e e s e e . E=BL
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SIMPLE EQUATIONS. i

QUESTIONS PRODUCING BQUATIORS CONTAIN
MIORE UNHENOWN QUANTYIINS,

THRER 0B

Awrr. 163.~When o question contains three or more unknown
quantities, equations involving them, can bhe found on the same
principle as in questions containing one or fwo unknown gquanti-
ties. (See Axticles 15G and 161.) The values of the unknown
quantities may then be found by cither of the throe methods of
climination.

Buuarw—~The method of elimination to he preferred, will depend on
the manner in which the unknown quantities ave combined, and must be
left to the judgmentof the pupil. When such a relation exists hetweenthe
different unknown quantitics, that one or more of them can be expressed
direetly in terms of another, it should be dene, as this gencrally renders the
solution more simple.

1. A person has 3 ingots, composed of & different metals in dif-

P 08, I
ferent proportions; a pound of the first containg 7 ounces of sil-
ver, & of copper, and § of tin; a pound of the second consists of
12 cunces of silver, 3 of copper, and 1 of tin; and a pound of
the third, of 4 cunces of silver, 7 of copper, and 5 of tin. Iow

3 » PUL,
much of each of the ingots must be taken, to form another ingob
of 1 pound weight, consisting of 8 ounces of silver, 33 of copper
E=taahe] o ) &4 2

and 4 of tin?

Let z, v, 2, be the number of ounces to be taken of the 8 Ingots

> i o

respectively.

Then, since 18 cunces of the first contaln 7 ounces of silver,
1 ounce will contain % of an ounce of silver ; and henece, & ounces

e
. e .
will contain Tg ounces of silver.
8
; . . 12y
In the same manner, ¥ ounces of the second will contain 16
3
4/7
ounces

ounces of sitver; and 2z ounces of the third will contain I

of silver. But, by the question, the number of ounces of silver
in a pound of tho new ingot, is to be 8, hence
1%, 4 g
167 16 ' 16
Or, by elearing it of fractions,
Ta--12y-+42=128  (1.)

R EvIn w162, What is the general rule for elimination by addition
and subtraction? When is the method of elimination by substitution to be
preferred to this? 163, Upon what principle are egquations formed, when
a question contains three or more unknown quantities? When should we
use s less number of symbeols then there are unknown quantities ?
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Reasoning in a similar manner with reference to the copper and
the tin, we have the two following equations:
Sa+3y-7:=60 (2.)
B+ y+52=068 (3.)
"The coéflicient of y being the simplest, will be most easily elim-
inated.
If we multiply the second equation by 4, and take the first equa-
tion from the product, the result is
Bu--242==112 (4.)
If we multiply the third equation by 3, and take the second
from the product, the resulf is
15a--82=144 (5.)
If we multiply the last equation by 3, and take the preceding
equation from it, the result is
402=320
=8
Substituting this value of @ in equation (5), we have
1204-8e=144
=3
And substituting these values of « and 2, in equation (3),
48-+4y415=068
y=5,
Hence, the new ingot will contain 8 ounces of the fivst, 5 of the
second, and 3 of the third.
2. The sums of three numbers, taken two and two, ave 27, 82,
and 35 ; required the numbers. Ans, 12, 15, and 20.
3. The sum of three numbers is 59 ; & the difference of the
first and second is 5, and 3 the difference of the first and third is
9; required the numbers. Ans. 29, 19, and 11.
4. There are three numbers, such that the first, with & the sec-
ond, is equal to 14 ; the second, with § part of the third, is equal
to 18; and the third, with % part of the first, is equal to 20;
required the numbers. Ang. 8, 12, and 18.
5. A person bought three silver watches; the price of the first,
with & the price of the other two, was 25 dollars; the price of
the second, with £ of the price of the other two, was 26 dollars;
and the price of the third, with & the price of the other two, was
29 dollars; required the price of each. A, 8, $18, and §16.
6. Find three numbers, such that the first with 4 of the other
two, the second with 4 of the other two, and the third with 4 of
the other two, shall each be equal to 25. Ans. 13,17, and 19.
7. A boy bought at one time 2 apples and 5 pears, for 12 cents;
abanother, 3 pears and 4 peaches, for 18 cents; abt another, 4 pears



SIMPLE EQUATIONS. 149

and 5 oranges, for 28 cents; and ab another, 5 peaches and 6
oranges, for 39 cents; required the cost of each kind of fruit.
Ans. Apples 1 cent, pears 2, peaches, 3, oranges 4 cts., each.
8. A and B together possess only ¥ as much money as €; B
and C together, have § times as much as A; and B has 680 dol-
lars less than A and C together ; how much has each?
Ans. A 200, B $360, and C $840.
9. A, B, and € together, have 1820 dollars; if B give A 200
dollars, then A will have 160 dollars more than B; but if B
receive 70 dollars from €, they will both have the same sum ; how
much has each ? Ans. A $400, B $640, and C $780.
10. Three persons, A, B, and €, compare their money; A says
to B, “CGive me 700 dollars, and I shall have twice as much as you
will have left.” B says to €, “Give me 1400 dollars, and I shall
have three times as much as you will have left.” And C saysto
A, “Give me 420 dollars, and then I shall have five times as much
ag you will have left.” ¥How much has each?
Ans. A $980, B $1540, and C $2380.
11. A certain number is expressed by three figures, and the sum
of the figures is 11; the figure in the place of units, is double that
in the place of hundreds; and if 297 be added to the number, its
figures will be inverted ; required the number. Ans. 826,
12. Three persons, A, B, and C, together, have 2000 dollars;
if A gives B 200 dollars, then B will have 100 dellars more than
C; but, if B gives A 100 dollars, then B will have only # as much
as € required the sum possessed by each.
Ans. A $500, B $700, and C $800.
13. There are three numbers whose sum is 83; if, from the
first and second you subtract 7, the remainders are as 5 to 3; but
if from the second and third, you subtract 3, the remainders ave
to cach other as 11 to 9 ; required the numbers.  A. 37, 25,21.
14. Divide 180 dollars between three persons, A, B, and C, so
that twice A’s share plus 80 dollars, three times B’s share, plus
40 dollars, and four times C’s share plus 20 dollars, may be all
equal to each other. Ans. A §76, B $60, and C §50.
15. There are three numbers whose sum is 78; & of the first is
to 4 of the second, as 1 to 2; also, £ of the second is to & of the
third, as 2 to 3; what are the numbers? Ans. 9, 24, and 45.
16. A, B, and C, have a sum of money; A’s share exceeds % of
the shares of B and €, by 30 dollars; B’s share exceeds § of the
shares of A and C, by 30 dollars; and (Vs share exceeds 2 of the
shares of A and B, hy 30 dollars; what is the share of each?
Ans. As $150, B’s $120, and O’s $90.
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17. If A and B can porform a certain work in 12 days, 4 and
Cin 15 days, and B and € in 20 days, in what time could each
do it alone? Ans. A 20, B 80, and € 60 days.

18, A number, expressed by three figures, when divided by the
sum of the figures plas 8, gives o quotient 19 ; alse, the middie
figure is equal to half the sum of the fizst and third; and, if 186
be added to the number, we obtain a nwunber with the same figures
in an inverbed order; what is the number? Ans. 450,

10, A farmer mixes barley at 28 cents, with rye ot 36, and
wheat ab 48 cents per bushel, so that the whole is 100 bushels,
and worth 40 cents pev bushel.  IIad he put twice as much rye,
and 10 bushels more of wheat, the whole would have been worth
exactly the same per bushel; how much of each kind was there?

Ans. Barley 28, rye 20, and wheat 52 bushels.

20. A, B, and €, in a hunting excursion, killed 96 birds, which
they wish to share equally ; in order to do thig, A, who has the
most, gives to B and € as many as they alveady had; next, B gives
to A and € as many as they had after the fivst division; and
lastly, € gives to A and B as many as they both had after the
second division; it was then found, that each had the same num-
ber; how many had each ab first? 2,328, and C 16,

b
R AP
LR, £h e

SUPPLEMENT TO EQUATIONS OF TIHE FIRST DEGREE.
GENEBALIZATION.

Ary, UBHe—Fquarions are termed {deral, when the known
quantities aro represented, either entively ov partly, by lettors.
Quantities represented by letters, ave termed general values-—be-
cause, by giving particular values to the letters, the solution of one
problem, furnishes o general solution to all others of the same kind.

The answer to a problem, when the kmown quantities are repre-
sented by letters, is termed a formule; and o formula, expressed
in ordinary language, furnishes a sule.

By the application of Algebra to the solution of general ques-
tions, o great wumber of useful and interesting truths and rules
may be established. We shall now proceed to illustrate this sub-
ject, by a fow examples.

Arr. E68.—1. Let it be vequired to find & mumber, which being
divided by 8, and by 5, the sum of the quotients will be 18.
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. . @
Lot w== the nuwmber; then z-4==18.
35

Ba4-82=16X15
Ba=16X15
&K 15=30.
2. Again, let it be required to find another number, which being
ided by 4, and by 7, the sum of the quotients will he 11.

By proceeding, as in the preceding question, we find the num-
ber to be 8.

Instead, however, of solving every esample of the same kind
separately, we may give a general solution, that will embrace all
the particular questions. Thus:

3. Let it be required to find a number, which being divided by
two given numbers, @ and b, the sum of the quotients may he
equal to another given number, ¢.

Lot == the number; then —-3==c.
@' b

ba-ax==abc

{a-+D)a==abe
abe
’C: —
a+b

The answer to this guestion is termed a formula ; it shows, that
the required number is equal to the continued product of @, b, and
¢, divided by the sum of ¢ and 6. Or, it may be expressed in
ordinary language, thus: Multiply together the three given numbers,
dnd divide the product by the swn of the divisors; the wresull will be
the required number.

The pupil may test the aceuracy of this rule, by solving the
following examples, and verifying the results.

4. Tind a number, which being divided by 8, and by 7, the sum

of the quotients may be 20. Ans. 42,
5. Tind a number, which being divided by 4 and }, the sam of -
the quotients may be L. Ans. 4.

Art. 8661, The sum of 500 dollars is to be divided hetween
two persons, A and B, so that A may have 50 dollars less than B.
Ans. A §225, B $375.

To malke this question genersl, let it be stated as follows:

REvIE w104, When are equations termed literal? When are quan-
titien termed general? When is the answer to a problem termed a formula ?
What is o formula called, when expressed in ordinary langnage? 165, Ex-
ample 3. What is the answor to this guestion, expressed in ordinary
langnage?
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2. To divide a given number, @, into two such parts, that their
difference ghall be 6. Or thus:
The sum of two numbers is ¢, and their difference b; required
the numbers.
Let 2== the greater number, and y= the less.
Then x-t+y=a

And a—y=b
By addition, Ze==a-b
a~-—b a
s R

By subtraction, 2y=—a—0b

v b
Y T
yTe TR
This formula, when expressed in ordinary language, gives the
RULE,
FOR TFINDING TWO QUANTITIES, WHEN THEIR SUM AND DIFFERENCE
ARE GIVEN.

o find the greater, add half the difference {o half the sum. To
find the less, subtract Lalf the differerce from half the sum.

Let the learner test the accuracy of the rule, by finding two
numbers, such that their sum shall be equal to the first number
in each of the following examples, and their difference equal to
the second.

3. Sum 200, difference 50. . . . . . . . . Ans. 125,75,

4. Sum 100, difference 25. . . . . . . . . Ans. 623, 37

5. Sum 15, difference 10. . . . . . . . . . Ans 124 24

6. Sum 53, difference $.. . . . . . . . . . . Ans. 8¢ 28

Arr. 16¥.—1. A can perform a certain piece of work in 3 days,
and B in 4 days; in what time can they both together do it?

Ans. 13 days.
To make this question general, let it be stated thus:

2. A can perform a certain piece of work in m days, and B can
do it in » days; in how many days can they both together do it ?

Let x= the number of days in which they can both do it

Then {'“ the part of the work which both ean do in one day.
Also, if A can do the work in m days, he can do 7—32: partof it in

one day. And, if B can do the work in n days, he can do 1‘ parh
of it in one day. Xence, the pm of the work which both czm do

in one day, is represented by ———+ , and also by —i
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Therefore, . . . - .

ne--mr—=mn
_mn
Tt

This result, expressed in ordinarylanguage, gives the following

RULE,

Divide the product of the nwumbers expressing the fime in which
each can perform the work by their sum ; the quotient will be the
time in which they can jointly perform i,

The quesiion can be made more general, by expressing it thus:
An agent, A, can produce a certain effect, ¢, in a time, 7; another
agent, B, eun produce the same effect, in o time, #; in what time
can they boih do it? Both the vesult and the rule would be the
same as that already given.

The following examples will illustrate the rule.

3. A cistorn is filled by one pipe in 6, and by another in © hours;
in what time will it be filled by both together? A. 3% hus.

4. One mwan can drink a keg of cider in 5 days, and another in
7 days; in what time can both together drink 167 A, 214 dys.

Awrr. 84— Leb it be required to find a rule for dividing the gain
or loss in a partnership, or, as it is generally termed, fellowship.

First, take a particular queqtion

1. A, B, and {, engage in trade, and put in stock in the follow-
ing propmhons. A put in 3 dollars, as often as B put in 4, and ag
often as C put in 5 dollars.  Their gaing amounted to 60 dollars;
vequired the share of each, the gains being divided in proportion
to the stock put in.

Let 3a== A’s share of the gain, then 4dw= B’s, and be= s
{See Bxamyle 24, page 128.)

"Then 3z 4@:—}*-531‘"—*8(}

, 122=60
x= 5
Bx==15, A’s share.
113

113

9. o make this question general, suppose A puts in m dollars,
as often as 33 puts in » dollars, and as often as € puts in 7 dollars;
and that they gain ¢ dollars. To find the share of each.

REvicw.--166. By what rule do you find two quantitics, when their
sum and difference are given? 167. When the times are given, in which
each of two nzents can produce a certain effect, how is the time found in
which they can jointly produce it?
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Lot the share of A be denoted by mu, then ne== B's, and =
g shave.  Thon mue-{ne-lre

e

Ty

an ey

By examining these formula, we sce that the whole gain, ¢, is
divided by m-n-r, the sum of the proportions of stock furnished
by all the partners, and that this quotient is multiplied by m, n,
and 7, each one’s respective proportion, to obtain his share of the

gain,

If ¢ had represented loss, instead of gain, the same sclution
would have a,ppln,d Hence, to find each pavtney’s share of the
gain or logs, we have the following

‘noor loss by the suw
pulitply the quotieni by cach parine’s
pective skave.

i

on the times iy which the respective sto
¢
i

o~y

P

i
lifferent, 3t becomes necown'y to reduce them to the same

are
time, to ascertain what proportion they bear to cach other.

Thus, if A have 8 dollavs in trade 4 months, and B 2 dollax
naonths, we gee, that & dollars for 4 months, ave the same as 12
dollars for 1 month; and & dollarve for 5 months, ave the same as
10 dollars for one month. - Therefore, in this case, the gain or loss
must be divided in the proportion of 12 to 10; that is, in propor-
tion fo the product of the stocks by the times in which they were
employed. Ilence, when time in fellowship is considered, swwe have
the following

HEULRK,

Mulliply cach man’s stoclk: by the lime duriﬂ.r which it was em-
ployed ; and then, according fo the preceding vule, divide the guin
or loss in proporiion to these products.

A, B, and € engaged in trade; A putin 200 dollars, B 300,
ar Ad G 760, they lost GO c‘mlmrv; what was each man’s share?
Ans. A%s loss $10, B’s $15, and ¢’s §35.

Ruvisw—-168, Ifow is the gain or loss in feilowship found, when the
times in whieh the stoek is employed ave the same? owis it found, when
the times are different?
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Since the sums engaged, evidently are to cach other, as 2, 3,
and 7, we may cither use these numbers, or those yepresenting the
stock.

4. In a trading expedition A put in 200 dollars § months, B
150 dollars for 5 months, and € 100 doilars for 8 months; they
gained 215 dollars; what was eaeh man’s share of the gain?

Angs. A’s shave §60, B’s $75, and C's

&

Anr. B88.—1. Two men, A and B, can perform a certain piece
of work in ¢ days, A and € in b days, and B and € in ¢ days; in
what time could cach one, alone, perform it? and, in what time
could they perform it, all working together?

Lot z, y, and z represent the days in which A, B, and € can
reapectively do ik

Then }, =

H
!
&y

and C ean each do in 1 day.

1 . e
, and -, represent the parts of the work which A, B,

" . s s - i e .
Since A and B cando it in @ days, they do = part of it in 1 day.
@ .

e

vevresents the part of the work which A and B can do
¥ i

and reasoning in o similar manner, we have

o
o)

= by subtvacting (3) from (4).

@
or, 2(ac--be—ab)==2abe, by cleaving of fractions.
Labe . . s o
. In a similar manner, by subtracting equation
o
Labe
9\ from (4). and reducine, we find y==——
from (4), aud veduecing, we find g .
(2) from (d), & ¥ ab--be—ac
. 2abe

Algo, in the same manner, z is found ==—————s-.
ab-+ac—be

, represents the parball cando in
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one day; if we divide 1 by ( (—,1&-»}—%5—}—%& ), the quotient, which

—-——,20!50 -—, will represent the number of days in which all can
ab-+ac+-be
perform if.

Arr, B¥0.—In the solution of guestions, it is sometimes neces-
sary to use general values for particular quantities, to ascertain
the relation which they bear to each other; as in the following
problem.

If 4 acres pasture 40 sheep 4 wecks, and 8 acres pasture 56
sheep 10 weeks, how many sheep will 20 aeres pasture 50 weeks,
the grass growing uniformly all the time?

The chief difficulty in solving this question, consists in ascer-
taining the relation that exists between the original guantity of
grass on an acve, and the growth on each acre in one week.

Let m= the quantity on an acre when the pasturage began, and
n==the growth on 1 acre in 1 week; m andn representing pounds,
or any other measure of the quantity of grass.

Then 4n=the growth on 1 acre in 4 wecks.

And 16n= the growth on 4 acres in 4 wecks,

Also, 4in-+16nr==the whole amount of grass on 4 acres in 4
weeks.

If 40 sheep eab 4m--16n in 4 weeks, then 40 sheep ead
4m-4-16n

T4

And 1 sheep eats

=m--4n in one week.

mtdn  m o, on
40 40710

Again, 8m-+80n==the whole amount of grass on 8 acres in 10

weeks,
If 56 sheep cat 8m-+80n in 10 weeks,

in one week,

Then 56 sheep eab %Gm»fm in 1 week,

"—5— in 1 weck.

Axnd 1 sheep eats - / 7ot

S0+ B8
m, n_m %
IIGHCG, @"‘m«-fﬁ“ﬁ‘r;i.
Or, Tm-4-28n=4m--40n
Sm=12n
m==4n
or nm==fm; hence, the growth on one acre in 1 week, is
equal to L of the original qmntity on an acre.
n_m,m 97

Then, 1 sheep, in I week, eats -~ 40 - 10730 2020



GENERALIZATION. 157
; . MO
And 1 sheep, in 50 wecks, eats —27))(50—— 5

20 acres have an original quantity of grass, denoted by 20m.
The growth of 1 acre in 1 week being Zm, in 50 weeks, it will
50m

be 5 And the growth of 20 acres, in 50 weeks, will be

B 20=250m.
Then 20m--250m=270m, the whole amount of grass on 20
acres in 8 weeks.
Then 270m~:~%z—::%§:108, the number of sheep required.
GCGENERAL PROBLEMS.
1. Divide the number ¢ into two parts, so that one of them shall
be n times the other. na a
Ans, ——; and —— .
n--1 n-t-1
2. Divide the number @ into two parts, so that m times one part
shall be equal to » times the other. Ans, 2, ma
m+n men
3. Divide the number @ into two parts, so that when the first is
multiplied by m, and the second by %, the sum of the products may

be equal to b. b—na me—0b
; Ans, ——— ——
D
4. Find a number, which being divided by m, and by =, the sum
-of the quotients shall be equal o a. Ang,
ARG, e,
-9

5. Divide ¢ into three such parts, that the second shall be m,
and the third » times the first.
a ma

Ans. s , and ne

I-bm-tn’ I4m-4n 1-+mtn

§. Divide @ into two such parts, that one of them being divided
by b, and the other by ¢, the sum of the quotients shall be equal

to d. Ans, b(a—cd) and c(bd— a)'
b—c bt

7. What number must be added to @ and b, so that the sums

ghall be to each other as m to n? Ans mb—na
=

8. What number must be subtracted from ¢ and 0, so that the

differences shall be to each other ag m to n? Ans )z_{(_—_—ﬁb
1

9. What number must be added to @, and subtracted from b, that

the sum may be to the difference as m to n? Ans mb--ng

metn
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. . 1 1 L
10. Abter puying away P and w of my money, { had ¢ dollars

left; how mauy dollars had I at fivst? Ar R
AN, —mneee

=T

. - . 7 c s
11, What quantity is that of which the . park, diminished by

the g part, is equal to a? Ans. i

12, A certain number of persons paid for the use of a hoat, for

a pleasure excursion, a cents each; but, if there had been O per-

sons less, cach would have had to pay ¢ cents; how many persons
were there? A be

Aas. .

et
18, A person gave some poor persons ¢ cents a piece, and had b
cents lefi; but, if he had given them ¢ cents a plece, he would

.
)
Ans.

have had d cents lelt; how many persons were thore?

14, A farmer mixes oals at @ cents per hushel, wi

how many bushels of each will n bushels of the m

=

15, A person borrowoed as much money as he had in lis purse,
and then spent o cents; agnin, he borrowed as much as he had in
his purse, afber which be spent ¢ cents; he borrowed and spent,
in the same manner, o thivd and fourth iime, after which, he had
nothing left; how much had ho at fixst? 15a
i

16. A person has 2 kinds of coin; it takes @ picces of the first,
and D'pieces of the second, fo make one dollar; how many pieces
of cach kind must be taken, so that ¢ pieces may be eguivalent to

Ans,

a dollar? al{b—c¢ ble—a
! Ang, —AW—) and { )
) b

Arr, B4 sowetimes happens m the solution of an equa-
tion of the firsh degree, that the second or soine higher power of
the waknown quantity oceurs; but, in such a manner, that i is
ensily removed, or made to disappear, so that the eguation can be
solved in the usual mauner. The following ave cxamples of cqua~
tions and problems belonging to thig class.

C 4. Given 20%-8x=112%-—-10z, to find the value of a.

By dividing each side by », we have

2 == 110, from which p=2.
2. Given (4-4+)(32)—8{10~a)==x(T =), to find a.
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Performing the operations indicated, we have
12-+7 - 604 Bu=Ta--2*

Omitting tbe quantities on each side which are equal, wehave
12—80-+-62=0, from which x

da—Ba® . . .. . . ... Ansoas

e e e . Ansias

3. a8
4. 40:°—
5

. Supd— 39&3:“::54(1“& 7O § AR

e e e e . . Ansas

v e e e . Aps. =00
.. . . Ans. oz

..o . Ans o=

11. 'The difference between two numbers is 2, and their pmdu
is 8 greater than the square of the less ; what are the numbers?
Ans, 4 and 6.
12. Tt is required to divide the number a into two such pavts,
that the difference of thelr squares may be c.
An

.
4318,

9

18, If o certain book contained 5 more pages, with 10 more
lines on a page, the number of lines would be increased 450; but
if it contained 10 pages less, with 5 lines less on a page, the whole
namber of lines would be diminished 450, Required the number
of pages, and the number of lines on a page.

Ang. 20 pages, and 49 lines on a page.

NEGATIVE SOLUTIONS,

Awt. 8721t has been stated already (Art. 23), that when »
quantity has no sign prefixed, the sign plus is unch,rstood: andd
also (Ark. 64), th%b all numbers or quantities arve regarded as posi-
tive, unless they are otherwise designated. Henco, in all prob-
lems, it is understood, that the results are required in positive
numbers. It sometimes happens, however, that the v alue of the
unknown quantity in the solution of u problem, is found to be
minus.  Such a result is termed a negative solution.  We shallnow
examine a guestion of this kind.

1. What number must be added to the number 5, that the sum
shall be equal to 3?2

Lot = the mu nber.
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Now, —2 added to 8, according to the rule for Algebraic Addi-
tion, gives a sum equal to3; thus, 54+(—2)==3. The result, 2,
is said to satisfy the question in an algebraic sense; bt the prob-
lem is evidently impossible in an arithmetical sense, sirce any posi-
tive number added to 5, must increase, instead of diminishing it;
and this impossibility is shown, by the result being negative, in-
stead of positive. Since adding —2, is the same as subtracting
—+2 (Art. 61), the result is the answer to the following question:
What number must be subiracted from 5, that the remainder may
be equal t0 37?

Let the question now be made general, thus:

What nomber muust be added to the number g, that the sum
shall be equal to 0?

Let a== the number.

Then a-+Fa=b.

And e==b—a.

Now, since a+4-{0—a)=b, this value of = will always satisfy the
question in an algebraic sense.

‘While b is greater than «, the value of z will be positive, and,
whatever values are given to b and @, the question will be consist-
ent, and can be angwered in an arithmetical sense. Thus, i =10,
and ¢=8, then x=2,

But if b becomes less than a, the value of « will be negative ;
and whatever values are given to b and ¢, the result obsained, will
satisfy the question in its algebraic, bub not in its arithinetical sense.

Thus, if =5, and a¢==8, then x=—3. Now 8-}-(—3)=5; that
ig, if we sublract 8 from 8, the remainder is 5. We thus see, that
when @ becomes greater than 0, the question, to be consistent,
should read, What number must be sublracted from the number @,
that the remainder shall be equal to ?  Trom this we see,

Ist. That o negative solution Indicaies some tnconsisiency or ab-
swrdity, in the question from which the equation was derived.

2d. When o negative solulion is obtained, the question, to which 4t
is the answer, may be so modified as to be consistent.

Let the pupil now read, cavefully, the “Opservarions ox Appi-
TION AND SUBTRACTION,” page 43, and then modify the following
questions, so that they shall be consistent, and the results true in
an arithmetical sense.

2. What number must be sublracied from 20, that the remainder
shall be 262 (a=—05.)

Review—172, What is o negative solution? When is a vesult said to
satisfy a question in an slgebraic sense? In an arithmeticalsense? What
does a negative solution indicate ?
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3. What namber must be edded to 11, that the sum being mul-
tiplied by 5, the product shall be 407
4, What nwnber 1 that, of which the ¢

5. A father, whose age is 45 years, has a son, aged 15; énhow
many yeors will the son be + as old as his father?

DISCUSSION OF PRODBLEBS.

Arr, 1Y 8—When a question has been solved in a general man-
ner, that is, by representing the known quantities by letters, we
may inquire what values the results will have, when particular
suppositions are made with regard to the known quantities. The
determination of these values, and the examination of the vavious
resulis which we obtain, constitate what is termed the discussion
of the preblem.

The various forms which the value of the unknown quantity may
assume, are shown in the discussion of the following question.

1. After subiracting b from a, what number, multiplied by the
remalnder, will give a product equal to ¢?

Fet o= the number.

Then (@—b)u==c.
¢
o

Now, this vesalt may have five different forms, depending on the
values of ¢, 0, and ¢.

Norp.—In the following forms, A denotes merely some quantity.

Tst. When §is less than . This gives positive values, of the
form ~-A.

2d. When b iz greater then ¢ This gives negutive values, of
the form —A.

3d. When b is equal to . This gives values of the form 4.

4th, Where ¢ is 0, and b either greater or less than . This
gives values of the form §.

5th. When b is equal to @, and ¢ is equal to 0. 'This gives
values of the form ¢,

We shall examine each of these in succession.

I. When b is less than a.

In this case, a—0 is positive, and the value of # is positive.
To illustrate this form, let ¢=8, b==3, and =20, then «

Review.—I172. When a negstive solution is obtained, how may the
question, to whieh it is the answer, be modified? 173, What do you uader-
stand by the discussion of a preblem? The expression ¢ divided by a5,
may have how meany formz? Name these ditferent forme,

14
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II. 'When b is greater than «.

In this case, a—b i3 a negative quantity, and the value of =
will be negative. This evidently should be so, since minus mul-
tiplied by minus produces plus; that is, if a—b is minus, » must
be minus, in order that their product shall be equal to ¢, a posi-
tive quantity. To illustrate this case by numbers, let =2, b==5,
and ¢=12; then, a—b=—3, x==—4, and —3X—4==12.

III. When b is equal to a.

. ¢ s
In this case x becomes equal to o ‘We must now inquire, what
iy the value of a fraction when the denominator is zero.

1st. Suppose the denominator 1, then ¢ =e.

1
2d. Suppose the denominator ', then f:lOc.
8d. Suppose the denominator ¢y, then —m~~1000,
4th. Suppose the denominator 3—@’5 g» then ~0—0~]—.~10000

While the numerator remains the same, we see, that as the de-
nominator decreases, the value of the fraction dncreases. Hence,
if the denominator be less than any assignable quantity, that is 0,
the value of the fraction will be greater than any assignable quan-
tity, that is, infinitely great. This is designated by the sign @,
that is ¢ o

o=

This is interpreted by saying, that no finite value of z will
satisfy the eguation; thabt is, there is no number, which being
multiplied by 0, will give a product equal to c.

IV. When ¢ is 0, and b is either greater or less than a.

If we put a—0 equal to d, then ng:(}, since dX0=0; that

is, when the product is zero, one of the factors must be zero,
V. When b=a, and ¢=

In this case, we have w=_— . {)’ or 2X0=0.

Since any quantity multlphed by 0, gives a product equal to 0,
any finite value of © whatever, will satisfy this cquwtlon hence, @
is indeterminate. On this account, we say that § is the symbol
of indetermination ; that is, the quantity which it rcpreqents, has
no particular value.

Review.—173. Whenis @ of the form ~~A? When is @ of the form
~—A7 When is @ of the form 4, or «? Ehow how the value of a fraction
increases, as its denominator decreases. What is the value of a fraction

whose denominator i3 zero? Of @ whencis 0, and b greater orless thana?
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The form  sometimes arises from a particular supposition, when
the terms of a fraction contain a common factor. T'hus, if
a/‘Z__bZ
a—b
cancel the common factor, a—>b, and then make b=a, we have
a==2a. This shows, that before deciding the value of the unknown
quantity to be indeterminate, we must see that this apparent inde-
termination has not arisen from the existence of a factor, which,
by a particular supposition, becomes equal to zero.

The discussion of the following problem, which was originally
proposed by Clairaut, will serve to illustrate further the preceding
principles, and show, that the results of every correct solution,
correspond to the circumstances of the problem.

E==

2 2
. a—a .
, and we make b==qa, it reduces to P a—:?,»; bat, if we

PROBLEM OF THE COURIERS,

Two couriers depart at the same time, from two places, A and
B, distant « miles from each other ; the former travels m milesan
hour, and the latter, # miles; where will they meet?

There are two cases of this question.

I. When the couriers travel toward each other.

Let P be the point where they meet, A | e
and @=AB, the distance between the b
two places.

Let a==AP, the distance which the first travels.

Then a-—»==8P, the distance which the second travels.

Then, the distance each travels, divided by the number of miles
traveled in &n hour, will give the number of hours he was traveling.

Therefore, %»—: the number of hours the first travels.

And %7: the number of hours the second travels.
But they both travel the same number of hours, therefore
x  a—ax

m om
NEL==AIN~TNL
am
x:—-—_v
m-t+n
an
e ———
mn
am_a @ s
1st. Suppose m==n, then T=g—=g and =5 5 that is, if
the couriers travel at the same rate, each travels precisely half
the distance.
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an

2d. Suppose =0, then a= ; that ig, if the second courier

remains ab vest, the fivst trav ds the whole distance from A to B.
Both these results are wment‘y true, and correspond fo the cir-
cumsbances of the problem.
II. When the couriers travel in the same direction.
As before, let P be the point of A}
meeting, ench traveling in that direc-
tion, and let @==AB the distance between the places.
x==AP the distance the first travels.
r—a=0F tho distancoe the second fravels.
Then, veasoning as in the first case, we have

™
&

}
T i
5

an
gm0l T

T " p—
cater than n, the value of @ will be pos-
itim that will meet on the right of B. This evi-
dently corresponds to tho cireumstances of the problem.

2d. If we suppose » greater than m, the value of , and also
that of x—a, will be 2 This negative value of @ shows
that there is somo inconsistency in the question (Art. 172). In-
deed, when m is less than »n, itis evident that the couriers can not
meet, since the forward courier s traveling faster than the hind-
most.  Leb us now inguive how the question may be modified, so
that the value obiained for @ shall be consistent.

If we L‘vppo%o the direction changed in which the couviers
teavel; that is, that the first travels P/ & ; | B
from A, &nd the second from B to-
ward Py and that a=AD

-BP, we have, reasoning as before
3y b

The distances traveled are now hoth po«lm’e, and the que@tmn
will be consistent, if we regard the couriers, instead of traveling
toward P, as traveling in the opposite direction toward P, The
change of sign, thus indicating o change of divection (Avt, 64).

3d. If we suppose m equal 10 7.

In this case o s equal to 2 - ! and p—as

4)
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As has been already shown (Ark. 173), when the unknown
quantity takes this form, it is not satisfied by any finite value; oy,
it is infinitely great. This evidently corresponds to the ecireum-
stances of the problem; for, if the couriers travel at the same
vate, the one can never overtake the other. This is sometimes
otherwise expressed, by saying, they only meet at an dnfinile dis-
tance from the point of starting.

0
4th. I we suppose ¢==0, then g==—— , and z—a==
M—An

When the unknown quantity takes this form, it has been shown
already, that its valueis 0. This corresponds to the circumstances
of the problem; for, if the courlers ave no distance apart, they
will have to travel no {0) distance to be together.

Bth., If we suppose m==n, and a¢==0.

Tn this case, a==3, and z—a=0. When the unknown quantity
takes this form, it has been shown (Art. 173), that it may have
any finile value whatever., This, also, evidently corresponds to the
circumstances of the problem; for, if the couriers are no distance
apart, and travel at the seme rate, they will be always together ;
that is, ab any distance whatever from the point of starting.

Lastly, if we suppose n==0, then x= thab is, the first
¥ Py g

i
courier travels frora A to B, overtaking the second at B.
m L

If we suppose n==-p, then a==-

53

-2a, and the first travels

twice the distance from A to B, before overtaking the second.

Both results evidently correspond to the circumstances of the

problem,

CASES OF INDEVERMINAKION IN HQUATIONS OF THE FIRST
DEGBEE, AND IMPOSSIBLE PROBLEMS.

Arr, B¥4le—An equation istermed independent, when the relation
of the quantities which it contains, can not be obtained directly
from others with which it is compared. Thus, the equation

z-+2y=11
La+Hy=206
are independent of each other, since the one can not be obtained
from the other in a direct manner,

o

Ruviewe-173. Whal iy the value of @ when b==g and e==0? What iz
the value of o fraction whose terms are both zero? Show, that this form
sometimes arises from the existence of a common factor, which, by a par-
ticular hypothesis, reduces to zevo, igscuss the problem of the * Couriers,”
and show, that in every hypothesis the solution corresponds to the civenm-
gltances of the problem.




166 RAY’S ALGEBRA, PART FIRST

The cquations, «--2y=11
2u-+-4dy=22, are not independent of each other,
the second beiug derived directly from the first, by multiplying
both sides by 2.

Arr. 1% 85— An equation is said fo be indeterminate, when it can
be verified by different values of the same unknown quantity.
Thus, in the equation z—y==5, by transposing y, we have a=5-}y.

If we make y=1, x=06. If we make =2, a="7, and so on;
from which it is evident, that an unlimiled wumber of values may
be given to = and y, that will verify the equation.

If we have two equations containing three unknown quantities,
we may eliminate one of them ; this will leave a single equation,
containing two unknown quantities, which, as in the preceding
example, will be indeterminate.

Thus, if we have x-+3y-+2=10

and z-+2y—z= 6, if we climinate @ we havs
y+2z= 4, from which y=4—2z

If we make z==1, y=2, and #=10—3y—2z=3.

If we make =14, y=1, and a=5%.

In the same manner, an unlimited number of values of the three
unknown quantities may be found, that will verify both equations.
Other examples might be given, but these are sufficient to show,
that when the number of unknown quantities exceeds the number of
independent equations, the problem ts indeterminate.

A question is sometimes indeterminate that involves only one
unknown quantity; the equation deduced from the conditions, being
of that class denominated identical. The following is an example.

‘What number is that, of which the 4, diminished by the £, is
equal to the 3'5 increased by the 5%5?

Let a== the number.

3¢ 2 = | =

Then — 4 'g:@"rﬁy

Clearing of fractions, 452-—40w=3x-+2x
or, Ha==bx, which will bo verified by

any value of x whatever.

Arr, £78.—The reverse of the preceding case requires to be
congidered; that is, when the number of equations is greater than
the number of unknown quantities. Thus, we may have

e+ y=10 (1.)
z— y= 4 (2.)
La—3y= 5 (3.)

Bach of these equations being independent of the other two,
one of them is unnecessary, since the values of @ and y, which are
7 and 3, may be determined from any two of them. When a



IMPOSSIBLE PROBLEMS. 167

problem contains more conditions than are necessary for deter-
mining the values of the unknown quantities, those that are unne-
cessary, are termed redundant conditions.

The number of equations may exceed the number of unknown
quantities, so that the values of the unknown quantities shall be
incompatible with each other. Thus, if we have

z+ y= 9 (1)
e+2y=13 (2.)
2u-43y=21 (3.)

The values of 2 and y, found from equations (1) and (2), are
w=>5, y=4 ; from equations (1) and (3), are #=0, y=3 ; and frem
equations (2) and (3), ave =3, y==5. From this it is manifest,
that only two of these equations can be true at the same time.

A question that contains only one unksnown quantity, is some-
times impossible. The following is an example.

What number is that, of which the § and 4 diminished by 4, is
equal to the § inercased by 8?

Let 2= the number, then %—}—g *4::?;%»%8.

Clearing of fractions, Sa--R2x—24=5x+48.
by subtracting equals from each side, 0=72; which shows, that
the question is absurd.

R 1 A ® K.~—Problems from which contradietory equations are deduced,
are termed irrational or impossible. - The pupil should be able to detect the
character of such questions when they occur, in order that his efforts may
not be wasted, in an attempt to perform an impossibility. A careful study
of the preceding principles, will enable him to do this, so far as equations
of the first degree are concerned.

Arr, ¥ —Take the equation ax—ecz=>b—d, in which @ repre-
sents the sum of the positive, and —c¢ the sum of the negative
coéfficients of «; b the sum of the positive, and —d the sum of
the negative known quantities. This will evidently express a
simple equation involving one unknown quantity, in its most
general form,

This gives (@—c)a==b—d.

n
Let g—c=m, and b-—d=n, we then have ma=n, or a=_
7

Now, since n divided by m can give but one quotient, we infer
that an equation of the first degree has but one root; that is, in a
simple equation involving bub one unknown quantity, there is but
one value that will verify the equation.

REvIEW.-~174. When is an equation termed independent? Give an

examplo. 175. When is an equation said to he indeterminate? Give an
example. 176, What ave redundant conditiong ?
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CHAPTER VI.

FORMATION OF POWERSG~—
EXTRACTION OF THE £QUARE ROOT— BADICALS OF THE
SHCOND DEGREE.

INVOLUTION, OB FORMATION OF POWERS.

Awr. 1¥8.—The term power i3 used to denote the product aris-
ing from multiplying o guantity by itself, a certain number of
wmmes, and the quantity which is multiplied by itself, is cailed the
root of the power.

Thus ¢* is called the second power of a, because « is taken fwice
as o factor; and @ is called the second roob of ¢

So, also, ® is called the #hird power of @, because aXa X a=d’,
the quantity @ being taken #hree times as a factor; and « is calle
the third root of .

The second power is generally called the square, and the second
root, the square root. In like manmner, the third power is called
the cube, and the third roct, the cube root.

The figare indicating the power to which the quantity is to be
raised, is called the ‘ndex, or exponent; it is to be written on the
vight, and a little higher than the quantity. (See Aviicles 83
and 85.) '

B AR K.—A power may he otherwise defined thus:  Zhe nth power of
« quantity, is the product of n factors, cach equal ¥o the quantity; where n
may be any number, as 2, 3, 4, and so on. Therefore, we may oblwin any
power of « quuntity by taking Ut as a factor as many tnes as there are uniis
in the exponent of ihe power to which it 1s to be raised. This rule alone, is
sufficient {or every question in the formation of powers; but, for the more
casy comprehension of pupils, it is generaliy presented in detail, as in the
following cases.

CASE L
TO RATISE A MONOMIAL TO AXY GIVEN POWER.

Arr, B%9—1. Let it be requived to raise 2ad* to the third
power. :

According to the definition, the third power of 2ab? will be the
product arvising from taking it ¢hree times as o factor. Thus,

(Zab?)*=2al* X 2ab* > 2al*=2 X2 X Banal?b*h?
=28 AN DA 2= X D= B8,
In this example, we sce, thab the cobfficient of the power is found
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by raising the coéfficient, 2, of the root, to the given power; and,
that the exponent of each letter is obtained, by multiplying the
exponent of the letter in the root, by 3, the index of the required
power.

Axrr. 180.—With regard to the signs of the different powers,
there are two cases.

Tirst, when the root is positive; and second, when the root is
negalive.

1st. When the root is positive. Since the product of any nurm-
ber of positive factors is always positive, it is evident, that if the
root iy positive, all the powers will be positive.

Thus, +aX-+a=-+}a*

A XA +a==+a’ and so on.

2d. When the root is negative. Let us examine the different
powers of a negative quantity, as —a.

-—g:== first power, negative.

g X —a==-a*= second power, positive.

X — X —a==—0 = third power, negative.

et X =X — X === fourth power, positive.

XXX X —a=—0P== fifth power, negative.

Trom this, we see, that the product of an even number of nega-
tive factors is positive, and that the product of an odd number of
negative factors is negative. 'Therefore, the even powers of a neg-
ative quantity ave all positive, and the odd powers are all negative.
Hence we have the following

RULE,
FOR RAISING A MONOMIAL TO ANY GIVEN POWER.

Raise the numeral coéfficient to the required power, and multiply
the exponent of each of the letlers, by the exponent of the power. If
the monomial is positive, all the powers will be positive ; but, if it ds
negative, all the even powers will be positive, ond all the odd powers
negative.

EXAMPLES.

1. Find the square of aa®’. . . . . . . . . . Ans. 9a%tP’

2. Find the squave of 5V%*. . . . . . . . . . Ang 25b%5

3. Find the cube of 2% . . . . . . . . . . . Ans Ba%°

4. Find the square of —ab%. . . . . . . . . . . Ans. ¢®b%

5. Find the cube of —abc® . . . . . . . . . Ans. —a®b’c,

Review.—177. Show, thatin an equation of the first degree, the un-
known quantity can have but one value. 178. What does the ferm power
donote? The term root?. What is the second power of «? Why? 'The
third power of «? Why? What is the second power generally called 7 The
secondroot? What is the index or exponent? Where should itbo written?

15
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6. Find the fourth power of 3ab®2% . . . . Ans, 81a%"S,
7. Find the fourth power of —3ad%* . . . . Ans 81la*¥S

8. YFind the fifth power of abfed®. . . . . . Ans. o555,

9. Find the fifth power of —alled®. . . . Ans, —a?pPBSd0.
10. Find the sixth power of ®c®d. . . . . . Ans. @?°c®d°,
11. Find the seventh power of —m®® . . . . Ans. —mbn™,
12. Find the eighth power of —ma: . . . . . . Ang. mPni®,
13. Pindthe cube of —3a% . . . . . « . . Ans. —27a%
14. Find the cubeof —3a% . . . . . . . . Ans, —272%5,
15. Find the fourth power of Ba%®. . . . . . Ans. 620a%™
16. Find the cube of —4a®x. . . . . . . . . Ans, —64a%?.

17. Find the cube of —8afy”. . . o o« Ans. —512a%5,
18. Find the seventh power of ~—2wy Jz“ . . Ans, —1287yM,
19. Find the fourth power of 7e%® . . . . . Ans. 2401c%".
20. Find the fifth power of —3a%y*?. .  Ans. —243a%%5y1%"%.

Arr. 183, CASE X
TO RAISE A POLYNOMIAL TO ANY POWER.
RULE.
Find the product of the quantity, token as a factor as meny times
as there are unils in the exponent of the power.

N o1, This rule, and that in the succeeding article, follow directly
from the definition of a pewer.

BXAMPLES.

1. ¥ind the square of ax--cy.
{ax+cy ) aa-t-cy)==a*2"--Lacay-+-e*y*.  Ans,

2. Tind the square of 1—z. . . . . . . . . Ans. }-—8x-ta?
3. Find the square of 2+1.. . . . . . . . Ans, 2®+2a-F1.
4. Find the square of ax—cy. . . . . Ans. a%*—2aczy--yt.
5. Find the square of 2x*—3y% . . . Ans. da*—122%"|-Oy"
6. Pind the cube of a+a. . . . . Ans. &®+3a*x-+3az’ o>
7. ¥ind the cube of z—y.. . . . . Ans. 28--3aty -3yt —y®.
8. Find the eube of 20—1. . . . . Ans. 8¢3—122%}62—1.
9. Find the fourth power of c—a.

Ans, ¢t—4cdr-H6c%t—4ea®-xt,
10. Find the square of a-+b--e.
Ans. a>+2ab--0*+2ac+2be--¢2
11. Find the square of g—b--c—d.
Axns, a%~2ab4-024-Bac—2ad-+-cE—2be+-2bd—2cd--dP.
12. ¥Find the cube of 22%—3x-+1.
Ans, 828--3625--68x4—632%-1- 3829z 1.
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Azrr. 182, CASE IIX.
TO RAISE A FRACTION TO ANY POWER.
RULE.

Raise both numerator and denominalor o the required power by
actual multiplication.
EXAMPLES.

a-+b

c—d

a-+b a—{—b a2+2ab—»b2
e c—«d E—Red-dF

1. Find the square of

. 2x 4"

2. Find the square of g— e e e e e s s e . Ans, i
3. Find the cube of ———. . . . « . . . .. An.‘.——%"}.
“ﬁ,g s

” ccuare of — 2% il

4. YTind the square of Byttt Ans, gy
day® - B4a¥y?

5. Find the cube of — 542 e e e e e e A“"“‘Fz&gﬁ'
a*—dz}-4

8. Find the square of & P 3 e e e e g, 60
(r——J) 8a®(a®—8a’y+Bay—y® )

7. Find the eube of ° Sl Ans. T

2{m—n) 4 (m*—2mn-Fn?)

8(min) 7 9(m‘+2mn—{r )’

8. Pind the square of o

BINOMIAL THEOREDB.

Arr, B83.—The Binomial Theorem {(discovered by Sir Isaac
Newton), explains the method of raising the sum or difference of
any two quantities to any given power, by means of certain rela-
tions, that are always found to exist between the exponent of the
power and the different parts of the required result.

To discover what these relations are, we shall first, by means of
multiplication, find the different powers of a binomial, when hoth
terms are positive; and next, when one term is positive, and the
other negative.

Ruvie w179, Inraising 2ab? to the third power, how is the codfficient
of the power found? How is the exponent of each letter found? 180, When
the root is positive, what is the sign of the different powers? When if is
negative? What is the rale forraising a monomial to any given power?
181. What is the rule for raising a polynomial to sny given power?
182. What is the rule for raising a fraction to anypower? 183. What does
the Binomial Theorex explain?
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1. We will fivst raise a-Fb to the fifth power.

a- b

a“’—}-m D=« « .+ o . . second power of a--b, or (¢+4-b)*.
at b
f43~}-2aib+ ab?
+ 2a b B®

a3+3aﬁb—r Bab* = . . . . third power of a-b, or (a--D)%
a -+b
at+-3a*b-- 30> ab®

+ &b+ 3a®*+ 3a B0t
a*4-4ab-+ G+ 4albP4-b= . . . . . . .. . {a--0)%
a-+b
oP-datd-+ 6PV 4P abt

4 a'b+ 4P+ BaP-f4abt-1°
&4+-5ab-4-10a°0*--10a*0°4-babt-+-0= . . . . . . . (a0

The first letter, as @, is called the leading quantity; and the
second letter, as b, the jfollowing quantity.
We will next raise ¢—b to the fifth power.

a— b
=5
a*— ab
- bt b
*2a b+t b= . . ... .. . e e e e e e (a—D)?
a— b
a_s——~2a“b-§~~ a b
— @b 2ab— B
@*-300F Bab— D= . . . . .. e e e e e s s (o—0)?,
a-— b

a*—3a’b-+ Ba*— al®
e (@30} B Sa H bt
ot 4a?h-+ 60— da bt b= . . . .« < . . . (a—b)~
a-—— b
aP—4a'h4 6aPb — da?P abt
e 204 40— Ba?hP--4abt—b°
0P —50484-100°0*—1 00 -Babt—b= . . . . . . . . (a—b)°.
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Arr, 884.—In examining the different parts of which these
results consist, there are evidently four things to be considered.

1st. The number of terms of the power.

2d. The signs of the terms,

3d. The ecponends of the letters.

4th. The coéfficients of the terms.

‘We shall examine these separately.

Ist. Of the number of terms.

By examining either of these examples, we see, that the second
power has three texms, the third power has four terms, the jfourth
power has jive terms, the fifth power has siz terms; hence, we
infer, that the number of terms in any power of a binomial, is one
greater than the exponent of the power.

2d. Of the signs of the terms.

From an examination of the examples, it is evident, that when
both terms of the binomial are positive, all the terms will be positive.
When the first term 1s positive, and the second negative, all the oop
ferms will be POSITIVE, and the EVEN {erms NEGATIVE.

Norr.—By the odd terms are meant the Ist, 3d, 5th, and so on; and,
by the even terms, the 2d, 4th, 6th, and so on.

3d. Of the exponents of the letters.

If we omit the coéfficients, the remaining parts of the 6fth
powers of a-}-b and a—Dd, are

(a+0)¥. . v o o o .. . AHatbHAPD A abtH- bR

(a—D)% . - .o D+ aPb - a5,

An ewmnmtxon of these :Lnd the other different powers of a--b
and a—>b, shows, that the exponents of the letters are governed by
the following laws :

ist. The exponent of the leading letter in the first term, is the same
as that of the power of the binomial; and the exponents of this letter
in the other terms, decrease by wnity from left to right, until the last
term, which does not contain the leading letter.

2d. The exponent of the second letter in the second term is one;
and the other exponents of this letter increase, by unity, from left fo
right, until the last term, in which the exponent is the same as that
of the power of the binomial.

3d. The sum of the exponents of the two letlers in any term is
always the same, and is equal Yo the power of the binomia.

Ryview-—184 In examining the different powers of a binomial, what
four things are to be considered? What is the number of terms in any
power of a binomial? Give examples.  When both terms of a binomial are
positive, what are the signs of the terms? When one term is positive, and
the other negative, what are the signs of the odd terms? Of the even
terms? What is the exponent of the leading letter in the first term?
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The pupil may now employ these principles, in writing the dif-
ferent powers of binomials without the coéfficients, as in the fol-
lowing examples.

(ety)® . . . a®atytaytHyt

(a—y)*. . . 2yttt
(@ 4yl . . . SSbatytaty ety
(z=). . . aS—afytaty—atytfayt—ayS o

()" . . . —2By-abyt—atyt-tatyt—atyS - ayPy

(). . . ayayt-h oty ety ay -y,

Of the coéflicients.

An inspection of the different powers of (a-b) and {a—b),
plainly shows,

That the coéfficient of the first term is always 1; and the coéffi-
cient of thesecond term is the same as that of the power of the binomial.

The law of the succeeding coéfficients is not so readily seen; it
18, however, as follows:

If the coifficient of any term be multiplied by the exponent of the
leading letter, and the product be divided by the number of that term
Jrom the left, the quotient will be the coéfficient of the next term.

Omitting the coifficients, the terms of a-+b raised to the sixth
power, are AS++aPb-+ath* - P abt - abb- 18

The eoéfficients, according to the above principles, are

1.6 65 15X4 20X3 15X2 6X1
TR 8 4 57 67
or, 1, 6, 15, 20, 15, 6, 1.

Hence, (a-+b)t=a*+6a°0-+15a*0° 42001 5a20* GalS-+-15.

From this, we see, that the cotfficients of the following terms
are equal: the first and the last; the second from the first, and the
second from the last; the third from the first and the third from
the last, and so on. Hence, it is only necessary to find the coéffi-
cients of half the terms, when their number is even, or one more
than half, when their number is odd; the remaining coéfficients
being equal to those already found.

EXAMPLES.

1. Raise «-+y to the third power. Ans. @327y 3zy®-- 35,

2. Raise (2—y) to the fourth power.
Axns. 2t—4ady-- 6y —day® -y

3. Raise m-+n to the fifth power.

Ans. m5-F5mint10mPn2--10m2nd - Bmn*-nd,
Revinw.--184. How do the exponents of the leading letter deereaso
from left to right? What is the exponent of the second letter in the first
term? In the second term? How do the exponents of the second letter
increase from left o right? To what is the coéfficient of tho first torm cqual ?
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4. Raise #—z to the sixth power.

Ans. ab—8u°2-+ 15242 —202%"+ 1 5% Bazd--25.

5. What is the seventh power of a-+0?

Ans, 674708021 B2 +-3504 08 4-35a° 0+ 21 a5 =T abS b,

6. What is the eighth power of m—n? Ans. mP—8m'n
~+28mfp?— 5()7?2*”7?4—70m'*‘n B8 - 28m Inf—8mn-+nb.

7. Find the ninth power of x—y. Ans. @9—025, Sy-+3 6Ty

—84abyt-- 1262541 26xtyS-84atyf—3 Gy - Doy —y/®.

8. Find the tenth power of a-D.

Ans. a®-+106°0-+45a20> 1206762210655 --2520505 21 Qutt
+120a°0"+45a° 41 0al’-+010.

Arr, 888.—~The Binomial Theorem may be used to find the
diffevrent powers of a binomial, when one or both terms consist of
two or more guantities.

1. Tind the enbe of 2z—ack

Let 2e=m, and ac’==n; then Ze—ac*=m—n.

{m—n)P=m—3m n-+-Smn-—n’

n=a ¢
Pe=dot nr=atet
=8’ =

Substituting these values of the different powers of m and #,
in the equation above, and we have
(La—ac?)* =82 —3 X 4a? ¥ ac*--3X e X d’c'—a’c
=81 2ack?-Ba’cle—a’c.
2. Find the enbe of 2a—3b.  Ans. 868—36u?b+54ab*—270%.
3. Find the fourth power of m—-2n.
Ans, m*~-8mPn-+24m*n?-32mns-- 1608,
4, Find the third power of 4ax’+3cey.
Ans. 64a%28--144da?caty-+108ac’xty> 2755
5. Tind the fourth power of 2z—bz.
Ans, 18zt~ 160x%-1-600x%2—10002>-8252"
Axrr. 886.—The Binomial Theorem may likewise be used to
raise a trinomial or quadrinomial to any power, by reducing it to
2 binomial by substitusion, and then, after this has been raised to
the required power, restoring the values of the letters.
1. Find the second power of a--b-+-c.
Let b-+e==2; then a-+b--c==a-tw.
(o) ==0*+-2ax--2"
2ax =2a(b-}-c)
== { befe) 2= - Re -
Then (a--b--e)?=a?+-2ab-+2ac+b*+2be--c%

Review—184, Of the second term? How is the coéfliciens of any
other term found ? Of what tevms are she codfficients equal?
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2. Find the third power of x-ty-z.
Axns. 23-4-3ay--3x%-+-Bayt+Oxyz+3xz® -y -3y syt 45
3. Find the second power of a-+b-+ci-d.
Ans, @?4-2ab--0*-2ac-+2bc--c24-Bad - 20d-+2ed-+d*.

EXTRACTION OF THE SQUARE ROOT.
EXTRACTION OF THE SQUARE ROOT OF NUMBERS.

Axrr. 18Y.—Tur second root, or square root of a number, is thai
number, which being multiplied by itself; will produce the given
number. Thus, 2 is the square root of 4, because 2X2=4.

The process of finding the second root of a given number, is
called the extraction of the square root.

Axrr, 188.—The first ten numbers are

1,2,3 4,5 6, 7, 8 9, 10,
and their squares are _
1, 4, 8, 16, 25, 36, 49, 64, 81, 100.

The numbers in the first line, are also the square voots of the
numbers in the second.

‘We see, from this, that the square root of a number between I
and 4, is a number between L and 2 ; the square root of a num-
ber between 4 and 9, is a number between 2 and 3; the. square
root of a number between 9 and 16, is a number between 3 and
4, and 80 on.

Since the square root of 1is 1, and of any number less than
100, is either one figure, or one figure and a fraction, therefore,
when the number of places of figures in @ number is not more than
wwo, the number of places of figures.in the square root will be onE.

Again, take the numbers

10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
their squares are

100, 400, 900, 1600, 2500, 3600, 4900, 6400, 8100, 10000.

From this we see, that the square root of 100 is ten; and of
any number greater than 100, and less than 10000, the square
root will be less than 100; that is, when the number of places of
Sigures is more than Two, and not more than rour, the number of
places of figures in the square root will be Two.

In the same manner, it may be shown, that when the number
of places of figures in a given number are more than four, and
not more than siz, the number of places in the squave root will be
three, and 8o on,  Ov thus: when the number of places of figures
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in the number is either one or fwo, there will be one figure in the
root ; when the number of places is either tiree or four, there will
be two figures in the root; when the number of places is either
Jive ox siz, there will be three figures in the root, and so on.

Arr, 189,--Fvery number may be regarded as being composed
of tens and uuits. Thus, 23 consists of 2 tens and 3 units; 256
consists of 25 tens and 6 units. Therefore, if we represent the
tens by 7, and the units by «, any number will be represented by
t-+u, and its square, by the square of #-}u, or (¢-+u)%

(#u) =2+ 1= ().

Hence, the square of any number is composed of the square of the
tens, plus @ quantity, consisting of twice the tens plus the wnils, mul-
tiplied by the wnits.

Thus, the square of 23, which is equal to 2 tens and 3 units, is

2 tens squared =(20)*=400
(2 tens -+ 3 units) multiplied by 3=(40--8)x3=129

529
1. Let it now be required to extract the square root of 529.
Since the number consists of three places 520123
of figures, its root will consist of two places, 4000

‘lCGOldlnﬂ" to the principles in Art. 188; we 20 2==40] 120
therefore separate it into two periods, ag in 8
the margin. 31129

Since the square of 2 tens is 400, and of 3 tens, 900, it is evi-
dent, that the greatest square contained in 500, is the square of
2 tens (20); the square of two tens (20) is 400 ; subtracting this
from 529, the remainder is 129.

Now, according to the preceding theorem, this number 129 con-
gists of twice the tens plus the units, multiplied by the units; that
is, by the formula, it is (2¢-+w)u. Now, the product of the tens
by the units can not give a product less than teuns; therefore, the
unit’s figure (9) forms no part of the double product of the tens
by the units. 'Then, if we divide the remaining figures (12) by
the double of the tens, the quotient will be the unit’s figure, or a
figure greater than it.

Rueview,-— 187. What is the square root of a number? Give an ex-
ample. 188, When a number consists of only one figure, what is the great-
est number of figures in its square? Give examples. When s number
consists of two places of figures, what is the greatest number of figures in
its square? (ive examples. What relation exists between the number of
places of figuves in any number, and the number of places in its square?
189. Of what may every number be regarded as being composed? Prove
thig, and then llustrate it.
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‘We then double the tens, which makes 4 (2¢), and dividing this
into 12, get 3 (u) for o quotient; this is the unit's figure of the
root. This unit’s fignre (3) is to be added to the double of the
tens (40), and the sum multiplied by the unit’s figure. The double
of the tens plus the units, is 404-3=43 (2¢-}1); multiplying this
by 8 (u), the product is 129, which is the double of the tens plus
the units, multiplied by the units. As there is nothing left after
subtracting this from the first remainder, we conclude

that 23 is the exact square root of 529. 529[23
In squaring the tens, and also in doubling them, it 4 T

is customary to omi¢ the ciphers, though they are un- 43(129

derstood. Also,the unit’s figure is added to the double [129

of the tens, by mordy writing it in the unit's place.
The actual operation is usxmllv performed as in the margin.
2. Let it be required to extract the square root of 00225
Since this number consists of five places of figures, its root will
consist of three places, according to the principles in Art. 188;
we therefore separate it into three periods. 55325235
In performing this operation, we find the square e
root of the number 552, on the same prineciple as
in the preceding example. We next consider the 13 I*)?
23 as so many tens, and proceed to find the unit’s 29
figure (5) in the same manner as in the preceding 465|2325

example Hence the 339&
RULE,

FOR THE EXTRACTION OF THE SQUARE ROOT OF WHOLE NUMBERS.

Ist. Separate the given number into periods of two places each,
beginning at the unit's place. (The left period will often contain
but one fignre.)

2d. Find the greaiest square in the left period, and place ils root
on the right, after the manner of a quotient in division. Subiract
the square of the root from the left period, and to the remainder bring
down the next period for a dividend.

3d. Double the root already found, and place it on the left for a
divisor.  Find how many times the divisor is confwined in the divi-
dend, exclusive of the right hand figure, and place the figure in the
r00t, and also on the right of ithe divisor.

4th. Multiply the divisor thus increased, by the lust figure of the
root; subtract the product from the dividend, and o the remainder
bring down the next period for a new dividend.

5th. Double the whole root already found, for a new divisor, and
continue the operation as before, wntil all the periods are brought down.

REview.-—189. Extract the square root of 529, and show the reason for
each step, by veferring to the formula.
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Nore.—If, in any case, the dividend will not contain the divisor, the
right hand figure of the former being omitted, place a zero in the root, and
also at the right of the divisor, and bring down the next period.

Arr. 88®.—In Division, when the remainder is greater than the
divisor, the last quotient figure may be increased by at least 1;
but in extracting the square root, the vemainder may sometimes
be greater than the last divisor, while the last figure of the roob
can not be increased.  Toknow when any figure may be increased,
the pupil must be acquainted with the relation that exists between
the squares of two consecutive numbers.

Let @ and a-~1 be two consecutive numbers,

Then (a-+1)*=a’{-26--1, is the square of the greater.

(a)=a® is the square of the less.

Their difference is Za—{ 1.

Hence, the difference of the squares of two consecutive numbers, is
equal to twice the less number, increased by unity. Consequently,
when the remainder is less than twice the part of the root already
found, plus unity, the last figure can not be increased.

Extract the squave root of the following numbers.

4225, . . . . Ans. 865, 7. GTBYTE. . . Ans. 824,

1.

2. 9409, . . . . Ans. 97. 8. 909620. .. . Ans. 975,
3. 15129, . . . Ans. 123. 9. 363609.. . . Ans. 603.
4
5

. 120409, . . Ans. 347. | 10, 1525225, . . Ans. 1235.
5. 28 444, . . Ans. 538, | 11. 1209996225, A. 34785.
6. 498436.. . . Ans. 706. | 12. 412252416, Ans. 20304.

EXTRBACTION OF THE SQUARE ROOT OF FRACTIONS.

Arr. B9 T.—8ince $3*=%, therefore, the square root of § is %,

that is, \/ 4 1/4 2 Tence, when both terms of a Sraction are
9y 973

perfect squares, its square root will be found, by extracting the square

root of both terms.

Before extracting the square root of a fraction, it should be
reduced to its lowest terms, unless both numerator and denomina-
tor are perfect squares, The reason for this, will be scen by the
following example.

Find the square root of 3
12 4X3
27 9X8

R uviewe~189, What is the rule for extracting the square root of num-
bers? 190, What is the difference between the squares of two consecutive
numbers?  When may any figure of the guotient be increased?

~few

Here, Now, neither 12 nor 27 are perfect squares;
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but, by canceling the common factor 3, the fraction becomes §, of
which the square roob is 2.

‘When both terms are perfect squares, and contain a common
factor, the reduction may be made either before, or after the square
root is extracted. Thus, 1/ 18=f=%; or, 18=¢ and y/i=3.

Find the sguare root of each of the following fractions.

Fe o e s s e Aus. “«’9"—“. 4, ?[567527‘ e v s .« o Ans, %‘

L. 3
UL .8 5., 1368 37
208 . - . o . Abns.zg. | 5 1oo60- - - . - Ans. 7%
: s 18225 5
3. 1)9g} e e o . . Ans. ‘g. 6. TUU@T)%—G' . . . Ans. (,‘%’g.

Arr. E92—A number whose square root can he exactly ascer-
tained, is termed a perfect squarve. 'Thus, 4, 9, 16, &c., are per-
fect squares. Comparatively, these numbers are few.

A number whose square root can not be exactly ascertained, is
termed an mperfect square. 'Thus, 2,3, 5, 6, &c., are imperfect
squares,

Since the difference of two consecutive square numbers, a? and
4241, is 2a-+1; therefore, there are always 2¢ imperfect
squares bebween them. 'Thus, between the square of 4(16), and
the square of 5(25), there are 8(2a=2X4) imperfect squares.

A root which can not be exactly expressed, is called a surd, or
srrational root.  Thus y/f?i*s_ an irrational root; it is 1.414--.

The sign -, is sometimes placed after an approximate root, to
denote that it is less, and the sign —, that it is greater than the
true root.

Tt might be supposed, that when the square root of a whole
number ean not be expressed by a whole number, that it might be
found exactly equal to some fraction. We will, therefore, show,
that the square root of an wmperfect square, can not be a _fraction.

Let ¢ be an imperfect square, such as 2, and ¢f possible, let its
aquare root be equal o o fraction %, which is supposed to be in its
lowest terms.

Then \/c-—b ; and cﬁ by squaring both sides.
Now, by supposition, ¢ md b have no common factor, therefore,
their squares, «® and 0% can have no common factor, since to qqume

a number, we merely repeat its factors. bonsequeutly, b - mush
be in its lowest terms, and can not he equal to a whole number.
Therefore, the equation c::fZi:, is not true ; and hence, the suppo-
sition is false upon which it is founded; that is, that 3/ =2 B there-
fove, the square root of an imperfect square can not be « fraction.
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APPROXIMATE SQUARE ROOTS.

Art. 898.—To illustrate the method of finding the approximate
square roob of an imperfect square, let it be required to find the
square root of 2 to within §

Reducing 2 to a fraction whose denominator is 9 (the square of
3, the denominator of the fraction 1), we have 2=15.

Now, the square roob of 18 is greater than 4, and less than 5
therefore, the square roob of %P is greater than 4, and 1e=ss than §;
therefore, 4 is the square root of 2 to within less than 4.

Hence the
RULE,

FOR EXTRACTING THE SQUARE ROOT OF A WHOLE NUMBER TO WITHIN
A GIVEN FRACTION.

Multiply the given number by the square of the denominator of the
fraction which determines the degree of approximation ; extract the
square root of this product to the nearest unit, and divide the result
by the denominalor of the fraction.

EXAMPLES.
. Find the square root of 5 to within ’, <o o . » Ans. 2%
. Tind the square root of 7 to within
. Find the square root of 15 to within
. Find the square root of 27 to within
. Find the square root of 14 to within +g.
. Tind the square yoot of 15 to within y§g.. . . Ans. 3.87.
Since the square of 10 is 100, the square of 100 10000, and so
on, the number of ciphers in the square of the denominator of a dee-
imal fraction is equal o twice the number in the denominator itself.
Therefore, when the fraction which determines the degree of approxi-
mation is 6 decimal, it s merely necessary to add two ciphers for each
decimal place required; and, after extracting the root, to point off
Jrom the right, one place of decimals for each two ciphers added.
7. Find the square root of 2 to six places of decimals.
Ans. 1.414213.
8. Find the square root of 5 to five places of decimals.
Ans. 2.23606.

Review.—191. How is the square root of a fraction found, when both

terms arve perfect squares? 192, When is a number a perfect square?
Give examples. When is & number an imperfect square? How can you
determine the number of imperfect squares between any two consecutive
sperfectsquares? Whatis a root called, which can not be exactly expressed ?
Prove that the square root of an imperfect square can not bea fraction.
193. How do you find the approximate square root of an imperfect square
to within any given fraction? What is the rule, when the fraction which
determines the degrec of approximation, is a decimal?
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9. Find the square root of 10. . . . . . Ans. 3.162277+.
10. Find the square root of 101. . . . . Ans. 10.049875-.
11. Find the square root of 60. . . . . . Ans 7.74596+-.
Arr, 194.—To find the approximate square root of a fraction.
1. Let it be required to find the square root of & to within .

;:5)( 7 1 ¥

Now, since the squarc root of 21 is greater than 4, and less
than 5, therefore, the square root of 44 is greater than £, and less
than §; hence # is the square root of 3 to within less than 4.

Hence, 1f° we multiply the mumerator of a fraction by its denomi-
nator, then extract the square root of the product fo the nearest wnit,
and divide the result by the denominator, the quotient will be the
square root of the fraction o widiu'n one of its equal parts.

2. Find the square root of 7y to within - “ « oo Anso

2

3. Find the square root of 1 5 to within v%. . . . . Ans. %.

4. Find the square root of 1§ to within {5, . . . . Ans. {3

Since any decimal may be written in the form of a fraction
having a denominator a pelfcct square, by adding ciplers to both
terms (thus, .,4_~755~1 s, &e.), therefore, the square root may
be found, as in the method of approximating to the square root of
a whole number, by anncxing ciphers to the given decimal, uniil the
number of decimal places shall be equal to double the number required
in the root.  Then, after extracting the root, pointing off from the
right, the required number of decimal places.

Find the square root

5. Of .6 to six places of decimals. . . . . . Ans. .774596.

6. Of .29 to six places of decimals.. . . . . Ans. .538516.

The squave root of a whole number and a decimal, may be found
in the same mmmex Thus, the square root of 2.5 is the same as
the square voot of 3§93, which, carried out to 6 places of decimals,
is 1.581138--.

7. Find the square root of 10,76 to six places of decimals.

Ans, 3.280243.

8. Find the square root of 1.1025.. . . . . . . Ans. 1.05

‘When the denominator of a fraction is a perfect square, its
square roob may be found by extracting the square root of the
numerator to as many places of decimals as are required, and di-
viding the result by the square root of the denominator. Or, by
reducing the fraction to a decimal, and then extracting its square

R viewe194, How do you find the approximate square root of afrae~
tion to within one of the equal parts of the denominator? How do you
extract the square root of a decimal? How do you extract the square roet
of a fraction, when hoth terms are not perfect squares?
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root. When the denominator of the fraction is not a perfeet
square, the latter method should be used.
9. Find the square voot of § to five places of decimals.
V/3=1.78205-+, y4=2, 7‘/Emarz 3205+=86602-}
01, 3==75, and ¢/ T5=_86602+.
10. *Find the square root of 3‘. .« o o . Ans. 1795054,
11. Find the square root of v%. . . . . . Ans..661437-.
12. Find the square root of 3;‘; <+« o o Ans. 1.B02775--.
13. Tind the square voot of 58. ..o . . . Ans. 2.426703--.
14. Find the square root of 4. . . . . . . Ans. 377964,
15. Find the square voot of . . . Ans. .935414-.
16. Find the square root of 2 .« o« . . . Ans, 1.5275254-.

EXTRACTION OF THE SQUARE ROOT OF MONOMIALS.

Art. 198.—From the principles in Art. 179, it is evident, that
in order to square a monomial, we must square its coéfficient, and
multiply the exponent of each letter by 2. Thus,

(3ab*)?=38ab* < Bab*=Ba¢*D*,
Therefore, / 9a?b*==3ab%. Hence, the
RULE
FOR EXTRACTING THE SQUARE ROOT OF A MONOMIAL,

Eaxtract the square root of the coéfficient, and divide the exponeni
of each letter by 2.

Since +-aX+a=-}+a? and —aX—a==-}-a%

Therefore 1/ al=-+a, or —a.

Hence, the square root of any positive quantity is either plus
or minus. 'This is generally expressed, by writing the double sign
before the square root. Thus, 1/ 4a’==-2a, which is read, plus or
minus 2a.

If a monomial is negative, the extraction of the square root is
impossible, since the square of any quantity, either positive or
negative, is necessarily positive. Thus, 1/—9, y/~—4d?, /b, are
algebraic symbols, which indicate impossible operations. Such
expressions are termed imaginary quantities. They oceur, in ate
tempting to find the value of the unknown quantity in an equation
of the second degree, where some absurdity or impossibility exists
in the equation, or in the problem from which it was derived.
See Art. 218,

Review.—195. How do we find the square of & monowial? How,
then, do we find the square root of a monomial? What is the sign of the
square root of any positive quantity ? Why is the extraction of ihe square
root of a negative monomial impossible? Give examples of algebraic sym-
bols that indieate impossible operations, What ars they termed? Under
what circumstances do they oceur?

.
.
.
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Find the square root of each of the following monomials.

1. 4a%? . . . Ans. H2ax. | 5. 16mn%P. . Ans. dmays.
2. 9%~ . . Ans. 23zy% | 6. 49¢%4%S. . Ans. =Tabel
3. 2867, . Ans. £babet | 7. 6252%% . . Aus. =255
4. 8644 . Ans. +=6a%%. | 8. 1156&23:‘4’“ Ans. =34ax%?

. a\* a o & .
Since (5) =X thcrefore,\/ T b 5 that is, Zo find

the square root of a monomial fraction, extract the square root of
both terms.

2
9. Find the square root of f)b‘ v e s e e s . . Ans j:?—gé
1622

10. Find the square root of —; FEaE - Ans. :}:iZJZ

EXTRACTION OF THE SqQUARE ROOT OF POLYNOMIALS.

Arr. £96.—In order to deduce a rule, for extracting the square
root of a polynomial, let us first examine the relation thab exists
between the several terms of any quantity and its square.

(at b)”*—a“—?ab%—bzzdz%—(‘Za-]—b)b,

(a-+b-+e)*==a?+Rab-+-0*+2ac+-2be+c==0?-- (Ra-1-0)0--(2a--2b

-+c)e.

(a+-b-e-+d)=a*+2ab-4-b+2ac-+2be-+c*--2ad--20d 4-2ed--d*
s (La+6)b4- (2w~{—‘zb+c)c+(Qa-LZb-LQC—HZ)d

Or, by calling the successive ferms of a polynomial 7, #/, 27, 7,
we shall have (r—hr/-4-47-0") =2 (r-bil Yo 4 (2 20/ 4-17")e”
(207297 "0,

In this formula, 7, 7/, 7/, 7, may represent any algebraic quan-
tities whatever, either whole or fractional, positive or negative.

Hence, we see, that the square of any polynomial is formed
according to the following law:

The square of any polynomial is equal o the square of the first
term——plus twice the first term, plus the second, multiplied by the sec-
ond—plus twice the first and second terms, plus the third, multiplied
by the third—plus twice the first, second, and third lerms, plus the
Jourth, multiplied by the fourth, and so on. Hence, by reversing
the operation, we have the

RULE,
FOR ELXTRACTING THE SQUARE ROOT OF A POLYNOMIAL.

Ist. drrange the polynomial with reference to o certain lefter; then
find the first term of the root, by extracting the square root of the
Sfirst term of the polynomial; place the vesull on the right, end sub-
tract its square from the given quantity.



EXTRACTION OF THE SQUARE ROOT. 185

2d. Divide the first term of the remainder, by double the part of
the root already found, and annex the result both to the root and the
divisor,  Multiply the divisor thus increased, by the second term of
the root, and subtract the product from the remainder.

3d. Double the terms of the root already found, for @ partial divi-
sor, and divide the first term of the remainder, by the first ferm of
the divisor, and annex the result both to the rool and the partial divi-
sor.  Multiply the divisor thus increased, by the third term of the
root, and subtract the product from the last remainder. Then pro-
ceed in o similar manner, to find the other terms.

Rexarx.—In the course of the operations on any e¢xample, when we
find a remainder, of which the first term is not exactly divisible by double
the first term of the root, we may conclude that the polynomial is not a per-
fect square.

EXAMPLES.

1. Find the square root of 72271/ 42--2r1"=-210" 1"
P Ly by 27"7”-#21’7”—}—#”]?—} 7’+9” root.

72
Dptr? {2 :T“
12/ -1’
2074 1Dy -y Ay
(22

The square roob of the first term is 7, which we write as the first
term of the root. We next subtract the square of » from the
given polynomial, and dividing the first term of the remainder
277/, by 2r, the double of the first term of the root, the quotient is
7, the second term of the root. We next place #/ in the root, and
also in the divisor, and multiply the divisor thus increased, by o/,
and subtract the product from the first remainder. We then
double the terms 77, of the root already found, for a partial divi-
sor, and find that the quotient of 2i”, the first term of the remain-
der, divided by 27, the first term of the divisor, is #”, the thivd
term of the root. Completing the divisor, multiplying by ¢/, and
subtracting, we find there is nothing left.

Norn.~The first remainder consists of all the terms after 2% and the
second, of all after +'2 It is useless to bring down more terms than have
corresponding terms in the guantity to be subtracted.

Revizw. —196. What is the square of a--b? Of a-}-b-f¢? Of a-}-b
dee-td? OF pfer’r"~p#"7 What may », o, &e., represent? Accord-
ing to what law is the square of any polynomial formed? By reversing
this law, what rule do we obtain, for extracting the square root of a poly--
nomisl? When may we conclude that o polynomialis not 8 perfect square?

16



186 RAY’S ALGEBRA, PART FIRST.

2. Find the sqaare root of the polynomial 25x%y—24xy>—12a%
“-dat--1671
Arranging the polynomial with reference to @, we have
4at—12a%y-+25a% —24wy® 16y 2> —3ay 432, voot.
4at
da*—Bay —12aty -+ 252ty
—12a%+ Oa?y?
4a—Bxy-4y* 1 6a2y—Lday’+16y*
162y —24uwy? - 16y*
It is easily seen, that the operation is analogous to that of ex-
tracting the square root of whole numbers.
Find the square root of the following polynomials.
3ot da+4 . L L 0oL 00w e . AnsiaR.
4, 412249, . . . . . . o v o . .« . Ans. 20-3.
CattBey+16. . . . L oo Lo oL L Ansiay—4.

4
5
6. 4a’a>-25y%*—20uxyz. . . . . . . . . Ans. 2az—5yz.
7
8

catdet G da -1, 0 L 0 L L L L . L Ans. 2%H2a-H1
C 4t d4at 182269, . . . . . . . . Ans. 2at—a+3.
9. 91245434y —20y+25. . . . . . Ans Sy*—2y--5.
10. alat 802"t —4a’ b —4ablx--0Y . . Ans. a®x*—2abr--0%
11, 1—4a-+ 102220042524 —24a5- 16,
Ans, 1--2a-}8x—4a?,
12, 6%+ 15a 22003 152G axd-|-«f.
Ans, @*—3a2e--3ax—at.
18, e’ faxtda . o .. o o oo oo . .o Ansiadga.
14, @—2x+1422y—2y+y% . . . . . . . Ans.aty—1.
15. zle--1)(@+2)(a+3)+1. . . . . . . . . Aws. &3z+1.
Arr, 897—The following remarks will be found useful.
1st. No binomial can be a perfect square; for, the square of a
monomial is a monomial, and the square of a binomial is a trino-
mial. Thus, a®0% is not a perfect square; but if we add to it
Qab, it becomes the square of a--b; and subtracting from it 2ab,
it becomes the square of a—b.
2d. In ovder that a trinomial may be a perfect square, the two
extreme terms must be perfect squares, and the middle term the
double product of the square roots of the extreme terms. Hence,
0 obtain the square root of a trinomial when it is a perfect square,
extract the square rools of the two extreme terms, and unite them by
the sign plus orminus, according as the second term is plus oy minus.

Review—197, Why can no binomial be a perfect square? Give an
example. What is necessary, in order that a trinomial may be n perfect
square? When o trinomialis a perfect square, how may its square voot he
found? Give an example,
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Thus, 4a*-12ac4-8¢* is a pelfu,b square, since 3/ dat=:®
1/90‘:3(,, and +2aX -3¢ X2=—12ac. But G*-12uy-+ 1644 is
not a perfect square ; since v/ 9a’=3zx, v/ 16y ==4y. and 3u X dy 2

=24zy, which is not equal to the middle torm 12ay.

RADICALS OF THE SECOND DEGR

Arr. B98.—Fron the rule Art. 195, it is evident, that when o
monomial s @ perfect squarve, its numeral coéfficient is a perject
square, and, the exponent of each letter is exactly divisible by 2.
Thus, 4¢* is a perfeet square, while 5a® is not a perfect square,
because the coéflicient, 5, is not a perfect square, and the expo-
nent, 3, is not cxactly divisible by 2.

‘When the exact division of the exponent can not be performed,
it may be indicated, by writing the dxnoor ander if, in the form

of a fraction. Thus, 1/@® may be written (J,v
Since @ is the same as a! the square root of a muy be expressed

1 . . .
thus, a#. For this reason, the fractional exponent, 4, is used to
indicate the e\:traetlon of the squ“ve roob. Thus, /¢’

and {¢*2a: ’)2 also 1/4 and éz indicate tho same operation ;
the radical sign, v/, and the fractional exponent, 3, being logmded
as equivalent.

Quantities of which the square root can not be exactly ascer-
tained, are tormed radicals of the second degree. 'They are also
called, wrrational guantitics, or surds. Such are the quantities ¢/ a

;/QTQ;/ZT and 5y/3. Or, as they may be otherwise written, a2,

2%, ab?, and 5(3)i The quantity which stands before the radi-
cal sign, is called the coéfficient of the radical. Thus, in the
expressions ay/ b, and 8y/5, the quantitics ¢ and 8 are called
coéficients.

Two radicals are said to be similar, when the quantities under
the radical sign are the same in both. Thus, 3¢/2 and 7Y/ are
similar radicals; so, also, are by/ @ and 261/ a.

Two radicals that are not similar, may frequently become so,
by simplification. This gives rise to

REvinw—198 When is o monomial a perfect square? Give an ex-
ample. How may the square root of a quantity be expressed, without the
radical sign? What ave radicals of the second degree? Whatare radicals
otherwise called? What is the cotflicient of a radical? When arve twe
radioals gimilar?
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REDUCTION OF RADICALS OF THE SECOND DEGREE.

Arr, 19%.—Reduction of radicnls of the second degree, con-
sists in changing the form of the guantities without altering their
value. It is founded on the following principle.

The square root of the product of two or more factors, is equal fo
the product of the square roots of those fuctors.

That is, 3/ ab==y/a1/b; which is thus proved:

(1 ab)=ab
and (1/a><1/b)‘ L/a/<]/b>< vV axXy/ o=y axXy/ axXy/bXy/ b=ab.

Hence, /ab and /aX3/b are equal to each other, since the
square of each is equal to ad.

From this principle, we have 1/86=1/4X8=2X3, 144
=1/ X 16=8X4.

Any radical of the second degree, can be reduced to a simpler
form when it can be separated into factors, one of which is a per-
fect square.

Thus, /12= 1/4\<3<—1/4:><y/3—«2 V3

v cc"’b—q/ WX ab=/d* a“><1/ ubwcq/ ab
V2T aPck=y/ Sufc‘x.}a—i/ B2 X/ Su=8ac"/ 3a.
From the preceding illustrations, we derive the
RULE,
FOR REDUCING A RADICAL OF THE SECOND DEGREE TO ITS SIMPLEST FORM.

Ist. Separate the quantity to be reduced, into two parts, one of
which shall conlain all the faclors that are perfect squares, and the
other the remaqining factors.

2d. Bxtract the square root of the part that is a perfect square, and
prefix it as a coéfficient, to the other part placed under the radical sign.

To determine if any quantity contains a numeral factor that is
a perfect square, ascertain if it is exactly divisible by either of the
perfect squares, 4, 9, 16, 25, 86, 49, 64, 81, 100, 121, 144, &e.
If not thus divisible, it contains no factor that is a perfect square,
and the numerical factor can not be reduced.

Reduce each of the following radicals to its simplest form.

1/ 8al Ans. 2ay/2. ] 9. /324%%*.  Ans. 4a*bety/2.
V1245, Ans. 2ay/3a. |10, /40a%%A3. A. 2abe?y/ 100c.
1/?61?5 Ans. day/ab. |11. /44a¥%. A, 2a%by/ Tlabe.
. VIBaWé.  A. Batbey/2be. |12, /A5G Ans. Babety/b.
. VI0E. A, Qabe/Babe. |18, yABEE AL datliety/3.
3/ 240", Ans. Ba%y/6. |14, /TBSPSE. A, Babey Sabe.
4/ TTa%. A 12acy/3uc. |15, 1284805 A. 8a®biey/2.

7y/28a%. A, 1da%yTa. 116, /2436%%.  A. Saby/ Sac.

DGO 010
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In a similar manner, polynomials may sometimes be simplified.

Thus, v/ (Bd—4a?b+-2ab?)=y/2a(a*—2ab-+b)=(a—b)y/ 2a.

A fractional radical of the second degree may be reduced to its
simplest form, by the same rule, by first multiplying both terms
by any quantity that will render the denominator a perfect square;
separating the fraction into two factors, one of which is a perfect
square, then extracting the square root of the square factor, and
placing it before the other factor placed under the radical sign.

17. Reduce 1/%10 its simplest form.

VIV IXE=/ =/ X6=)/IX/6=1/6. Ans.
Reduce the following ﬂactxonql radicals to their simplest forms.
18. /3. Ans. 1y/15. | 22. 913 Ans, 4¢/3.
19. vZ. Ans. 1y/14. 23. og/w Ans. 01/10
20. yv3iz. Ans. 2y/3. 24, 1();/5 Ans, y’6
21. /1L Ans. 1y/92. | 25,7y 3. Ans. 1y/21.

Since a==y/c?, and 2y/B=1/4Xy/8==/4X8==1/12, it is obvi-
ous, that any quantity may be reduced to the form of a radical
of the second degree, by squaring it, and placing it under the
radical sign. By the same principle, the coéfficient of a radical
may be passed under the radical sign.

26. Reduce 5 to the form of a radical of the second degree.

Ans. v 25.

27. Reduce Za to the form of a radical of the second degree.

Ans. /' 4dk.

28. Express the quantity 3y/5, entirely under the radical.
Ans, /45,
29. Pass the coéfficient of the quantity 8¢y 2e, under the radical.
Ans. /186
30. Pass the cosficient of the quantty 51/8 under the radiecal.
Ans. /75,

ADDITION OF RADICALS OF THE SECOND DEGRER,

ARt, 200,—1. What is the sum of 8y/2 and 5y/2?

It is evident, that 3 times and 5 times any certain gquantity
must make 8 times that quantity, therefore

3y/2+5y/2=8y/2.

Tu the same manner, y/2-- 1/8~,/,2T21/2,~31/2

9. What is the sum of 2¢/3 and 5¢/77

Since dissimilar quantities can not be collected into one sum, we
can only add these expressions by placing the sign of addition
between them ; that is, the sum of 2¢/8 and 5y/ T=Dy/ 3457,
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Flence, the
RULE,
FOR THE ADDITION OF RADICALS OF THE SECOND DEGREE,

Ist. Reduce the radicals to their simplest form.

2d. Then, if the radicals are similar, prefiz the sum of their colf-
Jicients to the common radical; but, if they are noi similar, con-
nect them by their proper signs.

Find the sum of the radicals in each of the following examples.

3.¢Band /I8, . ... ... ... L. Ans. By2
4./ 12and /7., . . . . ... ... ... Aps. ByS
5. V@undl/ga.. e e e e e e e e . . Aps. 8Y/5.
6. V24 and yI50. . ... ... ... Ans TY6.
7. V8, ,/SZandy/gﬁ B . ¥ 1 111/"2
8. /40, /90, and v/250. . . . . . . .. . Ans. 10,10,
9. V280" and y/ 112%% . . .. .. ... Ans. ()abV’?
10. /”Da( ‘md V14T, . . .. . ... Ans. 12a49/8c.
1L v/ (md e e e e o . Ans, 7%.-,/3?
12, 1/‘&*)(1;/ e e e e e e e e e e e Ans.%igl/:";.
3;3.1/;‘,211\6,1/6 Anbp/i)f
i4. 27/{3 and 3¢/12. . . .. ..o ... Ans T
15. V"f‘md 3V oo . oo Ans 9
16. 8y/2 and 11/: e e e Ans 316
17. /48a%c*x and 1/}‘)211 . . . Ans. (dac+20)+/8a.
18. Find the sum of ¢/ (2a3~4w2c+25¢01) and

(2 +-4datc 2ac®). Ans. 2ay/2a.

19. Find the sum of v/ a-Fa-ty/ ea’+at-Hy/ (a+x)%
Aus. (1-+a+22) otz

SUBTRACTION OF RADICALS OF THE SECOND DEGREE.

Arr. 20R.—1. Take 21/2 from 5y/2.
It is evident that 5 times any quantity minus 3 times the quan-
tity, will be equal to 2 times the quantity, therefore
01/"~—31/z V.
In the same manner, 3/ 8—y/2=2y/2—/2=y/2.

BEvieEw.—199. In what does reduction of radicals of the second
dogree consist? On what principle is it founded? Prove this principle.
‘What is the rule for the reduction of s radical of the second degree to its
gimplest form? How do you determine if any quantity contains a numer-
jeal factor that is & perfect square? Iow may a fractional radical of the
second degree be reduced to its simplest form? 200. What is the rule for
the addition of radiocals of the second degree?
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If the radicals are dissimilar, it is obvious that their difference
can only be indicated. Thus, if it be required to take 3y/@ from
5y/b, the difference would be expressed by 51/0—31/a.

From these illusirations, we derive the

RULE,
FOR THE SUBTRACTION OF RADICALS OF THE SLECOND DLGREEH.

1st. Reduce the radicals to their simplest form ; then sublract their
coéfficients, and prefix the difference fo the common radical.
2d. If the radicals are not similar, indicate their difference by the
proper sign.
EXAMPLES.

2VIB—V2. Ans. 2y/2.
3. 1/4oa~~«1/oa .............. Ansg Qa}/j
4. /54b— 1/6() ............... Ans. 2¢/60.
5. 1/ 112a%—y/28a* . . . . . . . ... Ans, 2(161/ 7.
6. /2TPA—/ 1260, . . .. ... Ans. bey/3bc.
T.v86aF—y 4. . o Aus. 4a¥y/a.
8. y/49abPc?—y/2Bab’ct . . . . . .. . . Aus. 2bcy/ab.
9. /1600%°%c—/ 1050 . . . . . . . Auns. 3aby/10abe.
10. 5ay/27—3ay/48. . . . . . . . . . . .. Ans 3ay3.
11. 2{7%3_@. e e e Ans. 0.
12. iy, ... .. e e e e e Ans. [1.y/30.
12 /12— /ﬁ. ............ ... Ans. 3y/3.
i4. 8 3/5"@/5 ............... Ans 3‘[/5
. V2= 2 oo Ans. 2//6,
16. From /4d% take ay/@® . . . . . . . Avs. (2a—az)y/ 2.

17. From v/ 8mx-+Omnax--3nie take 1/ 3mie—OGmua--3n’e,
Ans. 2ny/3z.

MULTIPLICATION OF RADICALS OF THE SECOND DEGRER.

Art. 202,—Since ab=y aXy/'b, therefore 1/axXy/ b=/ ab.
See Art. 199.

Also, ay/bXey/ d=uXeXy/bXy/ d=acy/bd.

From which we have the

RULE,

FOR THE MULTIPLICATION OF RADICALS OF THE SECOND DEGREE,

1st. Multiply the quantities under the radical sign together, and
place the result under the radical.

Rd. If the radicals hove coéfficients, place their product as ¢ coéf
ficient before the radical sign.
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EXAMPLES.
1. Find the product o_fj/ﬁ and / 8. o
Y 6XY/ 8=y d8=y16X3=4y/3. Ans.
2. Find the product of 2¢/14 and 3y/2.
2/ 14 X3y 2= 61/28*6]/4>< T=6%2y/7==12y/7. Ans.

3. Find the product of 1/8 and ¥2. . . . ... Ans. 4.
4. Find the product of 2¢/a and 3;/& ....... Ans. Ba.
5. Find the product of /27 and /3. . . . . . . Ans. 9.
6. Find the product of 81/2 and 24/3.. . . . . Ans. 8/6,
7. Find the product of 31/3 and 24/3.. . . . . . A%s. 18.

8. ¥ind the product of fo_i’itfxd V15. oo+, Ans 31/E
9. PFind the product of 2¢/15 and 31/35. . . Ans. 30y/21.
10. Find the product of /ot and y/abe. . . . . Ans. a®be.

11. Find the product of 1/: and 1/~g e o o .. Ansil
12. ¥ind the product of 1/3 and ;/3 .. . Ans. ~y]/}:;
13. Find the produect of 2\/ and 3\/10 .+ . Ans 35&1/,&

When two polynomials contain radicals of the second degree,
they may be multiplied together, in the same manner as in multi-
plication of polynomials, Art. 72, attending, at the same time, to
the divections contained in the preceding rule.

14. Find the product of 2--1/2 and 2——1/2. c e .. Ans 2.

15. Find the product of 1+y’2 and 1—/2.. . .  Ans—1.

16. Find the product of Va2 by Ve—2. . . Ans. yai—4.

17. Find the product of v/ade by yata. . . . . Ans. atz.

18. Find the product of y/ab-+bx by V_ab—bx ALy @b b4,

19. Find the product of /242 by y/2+3. Ans. y/2*+bz--6.
Pe1 form the operations indicated in the following examples.

0. (¢y/a+ d;/b) (q/a—(h/b) ........ Ans. c*a—d*b.
21 (74 2}/6) (‘)»—.),/g)_m ......... Ans. 3—174/6.
2. (v ataty/ o—z)(y/ ata— Y Ans. 2a.
23. (z+2y/@ta)(z—2y axta). . . . .. Ans. a’—2az--a?
24. (:c‘l——-aq/rz_—%l)(xﬂ-—l—x]/§+1). e oo v e oo Ansoatbll

DIVISION OF RADICALS OF THE SECOND DEGREE.
Axrr. 203.—8ince Division is the reverse of Multiplication, and
. Fl 7 ——— — P ab =
gince 1/ @)Xy b=y ab, thervefore 1/ ab-+y/ a:—-\/ E:]’/ b,

Ruvie w201, What is the rule for the subtraction of radieals of the
second degree? 202, What is the rnle for the multiplication of radicals of
the second degree ? On what principle does it depend ?
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Also, since ay/ 0 cy/ d=acy/Ud, therefore acy/ bd-+ay/ b==

acy/bd
'y

.—:%\/%:q/?i. Henee, the
aN b

RULE,

FOR THE DIVISION OF RADICALS OF THE SECOND DEGRER,

1st. Find the quotient of the parts under the radical, and place it
ander the common radical.

2d.

If the radicals have cogfficients, divide the coéfficient of the

dividend by that of the divisor, and prefix the resull to the common
vadical.

Norr.~When a radieal quantity has no coéfficient prefixed, its cosffi-
elentis understood to bo 1. Thus, 1/ 2 is the same as 13/2. Sce Ari. 32.

EXAMPLES.
1. Divide 8)/72 by 2¢/6.
8y/72 4 DA TS S
S8/ 2t/ 124/ 4 X 3==8y/8.  Ans.
2,6 V% v V4 v
2 Divide y/5d by v6.. . . . ... ... Ans. 3.
3. Divide 6y/54 by 3y27. . . . . ... ... Ans., 2¢/2.
4. Divide 6y/R8 by 2y 7. . . . . .. .. .. . Ans 6.
5. Divide /160 by /8. . . . . . “ e Ans. 2y/5.
6. Divide 15378 by 5/6. . . . . . . . . . Ans. 9y/7.
7. Divide V@ by ya. . . oo oo Ans. a.
8. Divide aby/a®t® by by/ab. . . . . . . . . . . Ans. o’
9. Divide a by /4 + v v v v s e e e e e _ Aps. ya
; e - @ &
10. Divide on/j) byey'd. + o « o o . ~An5°:§}/&>0r5é1/bd-
ivide « [% by « [* _\/_‘%i - L abed
11. Divide 5 by .\/ RERIRERIRIEE Ans, 77 % d1/abccl.
12. Divide /3 by V“_{ e e e e e e e . . Axns. 1y/6.
18, Divide v/3by v/ o o v v v o v v o 0 o Ans. 11.
14. Divide 2y/18by 1y/2. . . . o v . . ... . Ans 4.
15. Divide 31/ 1 by 4v/3. - - o o o o o oo o Ans. 2¢/5.
16. Divide 1y/1 by v/24+3v/1. . . . . . . . o« Ans

Ary, 204.—To reduce a fraction whose denominator is eithera
wmonomial or a binomial containing radicals of the second degree,
to an equivalent fraction having a rational denominator.

Revisw.--203, What is the rule for the division of radicals of the
second degree? On what prineciple does it depend?

17
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When the fraction is of the form ;/%’ if we multiply both terms

by /b, the denominator will become rational, Thus,
a _ axXyb _cq/ul')_

Vo oxyh b
Since the sum of two quantities, multiplied by their difference,
i8 equal to the difference of their squares; if the fraction is of the

for g—,ﬁ":, and we multiply both terms by b—/¢, the denomin-
ator Wiil{}é made rational, since it will be b%2—c, Thus,
a b—y¢ _ab—wa';/?
by by U
For the same reason, if the denominator is E};—»V?,ﬁthe multi-
plier will be b+4y/c. If the denominator is Vo+y/ ¢, the multi-
plier will be y/b-—~y/c; and, if the denominator is y/b—y/c, the
multiplier will he v/ 0-Fv/c.
These different forms may be embraced in the following

GENERAL RULE.

If ihe denominetor is @ monomial, multiply both terms by the rad-
deal quantity; bub, if % is a binomial, multiply both terms by the
given binomial with the sign of oneof ils lerms changed, and the
denominator will be rational.

Reduce the following fractions to equivalent fractions, having
rational denominators.

1 V2 3 i 55
m— Ans, Ss-==s 2. 4, —. A e YT L/ 83).
1/? ns %u 2V 6-3 ns. 7{6+4/8)
/2 V6, 5 -

2- L,.w. Ans. __‘_____:_1 6. 5, o A 5( T—y/6 .
1/31 ns 3 3V 3/7_*_1/& v 1 )
3. = Ans. 2—/3. B s A. 4 B /:.; o
X n v "z (V5+v8)

Ruarw~~The utility of these transformations, consists in diminishing
the amount of caleulation, necessary to obiain the numerical value of a
fractional radical to any required degree of accuracy.

Thus, suppose it is required to obtain the numerical value of the fraction

ik true to six places of decimals.

IF we niake the caleulation without rendering the denominator rational,
it will be found, that we must first extract the square root of 2, fo seven

Ruview.—204 When the denominator of a fraction is either a mono-
mial 6r » binomial, containing radicals of the second degres, how may ithe
yeduced to o fraction having a vational denominator ?
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places of decimals, and then divide 1 by this result. DBub if we render the
denominator rational, tho caleulation merely consists in finding the square
root of 2, and then dividing by 2. The work by the latter method, requires
only about half the labor of thatby the former. Besides, the operator feels
certain, if he has made no mistake, that the last figure of his result is cor-
rect. Whereas, by the other mode, as the divisor is too small, the quotient
figures soon become too large. Thus in this example, if wense seven deci-
mals for a divisor, the seventh figure of the quotient is too large; if we
only nse six places of decimals, the sixth figure will be erroneous.

7. Find the numerical value of the fraction —-.
v'5
Ans. 1.3416407-}-.

8. Find the numerical value of the fraction ——:§ —,
Vo2
Ans. 8.650281+.
9. Find the numerical value of the fraction V 21——:.
/By 8
Ang, 2.806883 4.

R Ex aRK-~It is proper to notice, that the signs 3/ and ¢/ > when
applied to a monomial, both have the same meaning. There is & want of
uniformity among the best writers, in the manner of making the radical
sign before a monomial,

SIMPLE RQUATIONS CONTAINING BADICALS OF THE SHCOND
DEGRER.
Nore 1o Pracusrs.~This part of the subject of Equations of the
First Degree, could not be treated till after Radicals, It may be omitted
entirely hy the younger class of pupils.

Awr. 208.—In the solution of questions involving radieals,
much will depend on the judgment of the pupil; but the easiest
processes can only be learned from practice, as almost every ques-
tion can be solved in several ways.

The following directions will be frequently found useful,

lst. When the equation contains one radieal expression, frang-
pose it to one side of the equation, and the rational terms to the
other side; then involve both sides to a power corresponding to
the radical sign.

Thus, if we have the equation 1/ (x—1)—1==2, to find =.

Transposing, 3/ {&—1)==

Squaring, 21 =0, from which 2==10.

2d. When more than one expression is under the radical sign,
the operation must be repeated.
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Thus, a-+e=y/ (c?—rxVEE—T—E, to find a.

Squaring, ¢*4-2ax+-a’=a*+xy/ c+-a’

Reducing and dividing by 2, 2¢-+z=y/ Yt

Squaring, 4u3+4ax+9,2~c2+x2

e
4a

3d. When there are two radical expressions, it is generally bet-
ter to make one of them stand alone on one side, before squaring.

Thus, / (2—5)—8=4—1/(z—12), to find z.

Transposing, v/ (2—b)=T—/ (e—12).

Squaring, @—b=49-—14y/(z—12)+2—12.

Reducing and transposing, 14y (v—12)=42.

Dividing, ¢/ (a—12)=3.

Squaring, --12==9, from which 2=21.

whence a==

EXAMPLES FOR PRACTICE.

Ly@ts)+3=7. .. ... ... ... Ans, 2=13.
ety @ ID=11.......... . s o Ans,a=b,
3./ ye—1)=3. . ... ... .. Ans. z==10.
4. Velota)=a—e. . . . ... ... ... . Ans ng.
5. 1/90»—2:1/“@:@". e e e e s s oo o s s o o Ans z==D,
B2 @ty T =T . v v e v s e s e e Ans. z==4,
B 2 o S Ans, 2==12.
B, Yo T=0— 5. v v i e s e a e e e Ans. @=9.
9. 1/x~a—~1/x—1]/a ............ Ans. x::?l_:gt.
10. V21225 2—424—11=0. . . . . . Ans. 2=1000.
11 aby/Qaatab=a. . . . . v . v 0 e Ans, z=1a.
12. Vmwaw]/x—‘a =/l . . e e s o s o Ans. m::‘?g
18, Vo I2=241v2. . . . e e .. o o . Ang x=4,

14, /8Fa= 21/11—:3—-1/T e e e e e s e .. Ansa=d.

15. 1/5:c+ ____:zz/fm—}—b. e s e o e« o o Aug =%

16. V= 4.,2.%@%””“”&“ Ans. 223,
44/

_@2+1/4w2+x+1/§5‘2m5:1+x ...... Ans, z=}%

18. ot va=vaova . . ... .. Ans. s=3a.
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19, 8/ B)=aly/5—y/B). + + « . . . Ans. a:z’(ﬁ'*‘bz’))f

20. Vatyar=a—1. . . . .« ... . Ans a=(ya—1)-

CHAPTER VII.
EQUATIONS OF THE SECOND DEGREE.

Axrr, 206.—An Equation of the Second Degree (See Art. 148),
is one in which the greatest exponent of the unknown quantity
is 2. Thus, 2%=9, and 52?+-32=26, arc equations of the sccond
degree.

An equation containing two or more unknown quantities, in
which the greatest exponent, or the greatest sum of the exponents
of the unknown quantities, is 2, is also an equation of the second
degree. Thus, ny="6, a’txy=_8, zy-+w-+y==11, are equations of
the second degree. :

Equations of the Second Degree, are frequently denominated
Quadratic Equations.

Arr. 20%.—Equations of the second degree are of two kindg—
incomplete and complete.

An incomplete equation of the second degree, iz of the form
ax’=b, and contains only the second power of the unknown quan-
tity, and known terms. Thus, 2®==9, and 82*—5x*=12, are in-
complete equations of the second degree.

An incomplete equation of the second degree, is frequently
denominated a pure quadratic equation.

A complete equation of the second degree, is of the form
ax?-br=c¢, and contains both the first and second powers of the
anknown quantity, and known terms. Thus, 3a’+4e=20, and
azt— b} de—ex=f—¢, are complete equations of the second
degree.

A complete equation of the second degree, is frequently denom-
inated an affected quadrotic equation,

Review.—206. What is an equation of the second degree? Give ex-
amples. If an equation contains two unknown quantities, when is it of the
second degree? ‘Give examples. 207. How many kinds of equations of
the second degree are there? What are they? What is the form of an
incomplete equation of the second degree? What does it contain? Give
an example. What is the form of a complete equation of the second
dogree? What does it contain? Give an example. What is a pure quad-
vatic equation? What is an affected quadratic equation?
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Anry, 208.—~Lvery equation of the second degree, may be re-
duced to one of the forms ax®=b, or ax*+ba=c. For, in an
incomplete equation, all the terms containing 2® may be collected
together, and then, if the coéflicient of ® contains more than one
term, it may be assumed equal to a single quantity, as g, and the
sum of the known quantities, to another quantity, b, and then the
equation becomes ax*=b, or ax’—b=0.

So a complete equation may be similarly reduced; for all the
terms containing a? may be reduced to one term, as ax?; and
those containing ®, to one, as bx; and the known terms to one, as
¢; then the equation is aa®ba=¢, or ax’4-br—c=0.

Hence, we infer: Thai every equation of ithe second degree, may
be reduced 1o an incomplele equation involving two ferms, orto a com-
plete equation involving three terms.

Frequent illustrations of these principles will oceur hereafter.

INCOMPLETE EQUATIONS OF THE SECOND DEGREE.

Arr. 209.~1. Let it be required to find the value of @ in the
equation 2t—16=0.
Transposing, =16
Extracting the square root of both members,

x =-+4, that is, z==-44, or —4.
Verification.  (+4)—16=16—16=0.
or, {(—4)*—16=16—16=0.
2. Find the value of @ in the equation 5x*4-4=49.

Transposing, Bat=45

Dividing, 2= 9

Extracting the square root of both sides,

& ==3.
. L2 3a?
3. Find the value of # in the equation —ébﬁ—}——zf—:f}%“

Clearing of fractions, 822-92°=68

Reducing, 172>=68

Dividing, at= 4

Extracting the square root, @ =k,

4, Given ax?--b=cx?}d, to find the value of .
ax?—ext=d—b
or, (a—c)at=d—b
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From the preceding examples, we derive the

RULE,
FOR THE SOLUTIGN OF AN INCOMPLETE EQUATION OF THE SECOND
DEGREE.
Reduce the equation to the form ax®=b. Divide both sides by the
codfficient of %, and then extract the square voot of both members,

Arr, 2EO~If we take the equation aa’==h

we have P
@

and x ::i:\/j—; 5 that is,

b /b
z ——:—{—\/ -, and a==—, [=.
@ a

b 5
If we assume ~==m? then w?==m?
@

By transposing, &l—mm?==0
By separating into factors, (w-m){z—m)==0.

Now, this equation can be satisfied in two ways, and in two
only; that is, by making either of the factors equal to 0.

By making the second factor equal to 0, we have

z—m=0, or z=-}m.

By making the first factor equal to 0, we have

a-+m=0, or x==—m.

Since the equation (x-m)(z—m)=0, can be satisfied only in
these two ways, it follows, that the values of x obtained from these
conditions, are the only values of the unknown quantity.

Hence we conclude

1st. That every incomplete equation of the second degree, has two
roots, and only Hoo.

2d. That these roots are equal, but have conlrary signs.

Find the roots of the equation, or the values of @, in each of the
following examples.

1.2%8=28.. . . . . .« .o . . Ansa=t06.
2, 322-15=8342% . . . . .« . e e . o . Ans a7,

b
3. —0=0. . .. ... Ans.a:::j:&.

4, Vo225 ==4x?—18. . . . . .. . 6 . . . Ang x==2,

Review.—208. To what two forms may every equation of the second
degres be reduced? Why? 209. Whatis the rule for the solution of an
incomplete eqnation of the second degree? 210. Show that every incom-
plete equation of the second degree, has two roots, and oaly two; and that
those roots are equal, but have contrary signs.
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5. Bpt—2=8-85x% . . . . ... .. ... A;jsoe=o)
da? | .
6, 1a?— 4'-;,7*—3&. e e e e e e o s oo . Ans. =3,

ba?

7. % e =081 . Ans =t
8. (Za—5)=a*202+73. . . . . . . . . . Ans a=ctd

et (R R b—;c.

10 m‘ra a—a__ 10a?
Y r—a | ata T
] a—«—f?@ :LL} b

R

o w—a  o—at

e e e e e o o« Ans z=-2a.

C e e e e e e e . Ansia=rty ab.

QUESTIONS PRODUCING INCOMPLETE EQUATIONS OF THE
SECOND DEGREE.

Agr. 218 .~In the solution of a problem producing an eguation
containing the second power of the unknown quantity, the equa-
tion is found on the same prineciple, as in questions producing
equations of the first degree. See Art. 156.

1. Find o number, whose £ multiplied by its 2 %, will be equal
to 60.

Let 2= the number; then 3><~x da” ~=(0

4x’~'__90()

=225

z= 15.
2. What number is that, of which the product of its third and
fourth parts is equal to 1082 Ans. 36.
3. What number is that, whose square diminished by 16, is
equal to half its square increased by 16?2 © Ans. 8.
4. What number is that, whose square diminished by 54, is
equal to the square of its half, increased by 54 7? Ans. 12.
5. What pumber is that, which being divided by 9, gives the
same quotient, as 16 divided by the number? Ans. 12.

6. What two numbers are to each other as 3 to 5, and the dif-
forence of whose squares is 64 ?
Let 3a== the less number; then Ha=— the greater.

And (O:L (3@)“~6~1
01_ “ % & 1 w3
From which x ==2; hence, 3z="0 and Bax=10, are

the numbers.  See general directions, page 127.

Review~—211 In the solution of a problem producing an equation
eontaining the second power of tho unknown quantity, upon what principle
iz the equation found ?
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7. What two numbers are those which are to cach otheras 3 to

4, and the difference of whose squares is 63? Ans. 9 and 12.
8. What two numbers are those, which ave to each otheras 3
to 4, and the sum of whose squares is 1060? Ans. 6 and 8.

9, What number is that, to which if 3 be added, and from which
if 3 be subiracted, the product of the sum and difference is 407
Ang. 7.
10. The breadth of a lot of ground is to its length, as 5 to 9,
and it contains 1620 square feet; required the breadth and length.
Ans. Breadth 30, length 54 feet.
11. A man purchased a farm, giving 15 as many dollars per
acre, as there were acres in the farm; the cost of the farm was
1000 dollavs; required the number of acres and the price per
acre, Ans. 100 acres, §10 per acre.
12. ‘What two numbers are those, whose sum is to the greater,
as 10 to 7, and whose sum, multiplied by the less, produces 2702
Ans. 21 and 9.
Let 10x= their sam; then 7a== the greater, and 3z== the less
aumber.
13. What two numbers are those, whose difference is to the
greater as 2 to 9, and the difference of whose squares is 12872
Ans. 18 and 14.
14. € bought a number of oranges for 48 cents, and the price
of an orange was to the number bought, as 1 to 3; how many did
he buy, and how much a piece did he pay?
Ans, 12 oranges, at 4 cents a piece.
15. A person bought a picce of muslin for 3 dollars and 24
cents, and the number of cents which he paid for a yard, was to
the number of yards, as 4 to 9; how many yards did he buy, and
what was the price per yard?  Ans. 27 yds., at 12 cents per yd.
16. Find two numbers, in the ratio of § to %, the sum of whose
squares is 225, Ans. 9 and 12.
By reducing 4 and £ to a common denominator, we find they
are to each other as 3 to 4. Then let 3z and 4 vepresent the
nambers.
17. Find three numbers, in the proportion of 3, 3, and §, the
sum of whose squares is 724, Ans. 12, 16, and 18,
18. A merchant sold a piece of muslin ab such a rate, that the
price of a yard was to the number of yards, as 4 to 5 ; but, if he
had received 45 cents more for the same piece, the price of a yard
would have been to the number of yards as 5 to 4; how many
yards were there in the piece, and what was the price per yard?
Ans. 10 yards, at 8 cents per yard.
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COMPLETE BEQUATIONS OF THE SECOND DEGREE.
1. Lt it be required to find the values of #, in the equation
gt—dx-t+4=—=1.
It is evident, from Avrticle 197, thab the first member of this
equation is a perfect square. By extracting the square root of
both members, we have &—2=-1

Whence 2=241=2}+1=3, or 2—1=1.
Verification. (3)*—43-4-4=1, that is, 9—12-4+-4=1
also, (1)%—4X1+44==1, that is, 1~ 4-4-4=1.

Hence, & has fwo values, +3 and -1, either of which verifies
the equation.

- 2. Let it be required to find the value of «, in the equation
2°+-62=16.

If the left member of this equation were a perfect square, we
might find the value of 2, by extracting the square root, as in the
preceding example. To ascertain what is necessary to be added,
to render the first member a perfect square, let us compare it with
the square of @+, which is #*4-2az-a®

We find i
Lax =06z
20 =0
a =0
a?=9,

Hence, by adding 9, which is the square of half the coéfjicient of
the first power of x, to each member, the equation hecomes

22+Bx+9=25
Extracting the square root, a-+3=:5
Whenee a=—34=5=+2, or —8.

Eithier of which values of z will verify the equation.

Arr. 2E2.—~We will now show the different forms to which
every complete equation of the second degree may be reduced, and
illustrate further, the principle of completing the square.

Since every complete equation of the second degree may be re-
duced to the form aw?|-br=zc, if we divide both sides by a, we have

0, 0

e

a
For the sake of simplicity, let 322}), and g:g. The equation
then becomes @ Rpu=qg  (1.)
It g is negative, and Zi positive, the equation hecomes

2—Lpa==q (2.)
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b. (e : . .
If ;; is positive, and 2 negative, the equation becomes
@ -Lpu=—q (8.)
o D . .
Lastly, if p and 5/ are both negative, the equation hecomes
@ —Lpr=—y (4.)

Hence, every complete equation of the second degree, may be ve-
duced to the form x*+-2pa=q, tn which 2p and q may be either pos-
itive or negative, inlegral or fractional quantities.

We will now proceed to explain the principle, by which the
first member of this equation may always be made a perfect
square.

Since the squave of a binomial is equal to the square of the first
term, plus twice the product of the first term by the second, plus
the square of the second; if we consider a?4-2px as the first two
terms of the square of a binomial, 2* is the square of the first term
(z), and 2pw, the double product of the first term by the second;
thevefore, if we divide Zpatby 22 (the double of the first term), or
2p by 2, the quotient, p (half the coéfficient of a), will be the sec-
ond term of the binomial, and its square, p*, added to the first
member, will render it a perfect square. But, to preserve the
equality, we must add the same quantity to both sides. This gives

W’ Rpr-tpi=qt+p®
Bixtracting the squave root, — a-}-p ===/ ¢+p’
Transposing, g==—py/ g+t

Tt is obvious, that the square may be completed in cach of the
other forms, on the same principle; that is, by taking half the
codfficient of the first power of x, squaring if, and adding it to
each member. Thus, in the second form

a*—pr=q
a'—2patpl=qt+p’
a—p=z=y/q+p*
w==--pzky/q+p”

In the third and fourth forms, the values of & are readily ob-
fained, in the same manner.

Collecting the four different forms together, and the values of &
in each, we have the following table.

(1) «*+2pw=q. w=—pty/g TP
{2.) a*—2pr=q. a==-{-prky/ g+ph
(3.) &*-2pr=—q. g==prtzy/ —q+p

(4) a%2pr==—q. w=-tp-ty/ —q-+p"
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Although the method of finding the value of & is the same in
each. of these forms, it is convenient to distinguish between them.
See Art. 215.

From the preceding we derive the

RULE,
FOR THE SOLUTION OF A COMPLETE EQUATION OF THE SECOND
DEGREE.
Ist. Reduce the equation, by clearing of fractions and transposi-
tion (if necessary), to the form ax*+-br=c.
2d. Divide each side of the equation by the coéfficient of «?, and
add to each member the square of half the coéfficient of the first
power of .
3d. Batract the square root of both sides, and transpose the known
term fo the second member.

EXAMPLES.
1. Find the roots of the equation 2?--82=33.
Completing the square by taking half the cosflicient of z(§),
squaring it, and adding the square to each member, we have

a?+-8a--16=33+16=49

Extracting the root, e d=4T7
Transposing, z=—_q17
‘Whence o a=—Ad 4 T=13
And r=—dq—T=—11.

Verification. (3)*4-8(3)=33, thatis, 9-}-24=33.
Or (—11)24-8(—11)=33, that is, 121—88=33.
In verifying these values of «, it is to be noticed, that the square
of —11, is 121, and that 8 multiplied by —11, gives —88.
2. Solve the equation a*—Bax==16.
Completing the square,
w-—6r+9=16-+9=25

Extracting the root, &—3=-kD
Transposing, e=-}35
Whence g=-}+3+bH=+8
And a=-+3—H=—2.

Both of which will be found to verify the equation.
3. Bolve the equation &?+46r=—>5.
Completing the square,
-6+ 9=9—5=4

Extracting the root, a4-3=-2
Transposing, r=—312
Whence ) g3 =1

And Tr=e G B B,
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4. Find the values of z, in the equation a*—10w=—=24.
Completing the square,
@%—1024-25=25—24=1

Extracting the voot, z—H=-1
Transposing, a=5-41
‘Whence r=5-+1=06
And r=5—1=4,

The preceding examples, illustrate the four different forms,
when the equation is already reduced. Equations of the second
degree, however, generally occur in a more complicated form, and
require to be reduced before completing the squave.

5. Find the values of %, in the equation 3x~—5:ﬁ}§§—6 .
Clearing of fractions,  3a*—bar=T2-1-36
Transposing, 32?—122=36
Dividing, ot —4a=12
Completing the square,
2*—4x-+4=16
Extracting the root, —R==4
Transposing, =244
‘Whence =06, or ——2
6. Find the values of z, i 13@
Clearing of fractions,  12a%5x=260-+ 131,
Transposing and reducing,
122°—82=260
Dividing, a3 x-—‘ls
Here the coefﬁment of & is —3, the half of which iy —1; the

square of this is §, thh being added to both sides, we hdeG
395*35“?5~ & +“*—l% &

Extracting the root, m—-%:ilg
T== é:l:%} )
‘Whence w=+5, or —L3.

EXAMPLES FOR PRACTICE.

Noru.—The first sixteen of the following Examples, are arranged to
illustrate the four forms, to one of which every complete equation of the
second degree may be reduced.

T ™ Be=20. . .. .. ¢ . Ans. x=2, or —10.
8. a®+16=80.. . . . . . . W oo . Ans, =4, or ~20.
O, 2 Ta=T8. . . . . « . .« 0. "Ans. 2=6, or ~-18.

10, a2-8a=28. . . . . ... . Ans, z=4, or —7.
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11, 2%102=24.. . . . . .
12, 282=20. . . .. ¢« . . . ... .
18, 22bx=8. . . . . . ...« .. . .Ans.a=8 or —1.
14, >-212=100. . . . . . . . . . . Augs z=25 or —4.

15, 2*b6r=—8. . . . .. . .. .. . Ans =2, or 4.
16, 2> F4e—=—3. . . . . . . . . . . .A¢dns =1 or—3.
17. 0,2%8@2—-—]") . § T T i
18, 2?2+ Toe=-12, . . . . . ¢« .+ . .Ans. o="3, or —4.

19, aBe=—=-=8. . . . . . . ... ... .Ans.a=4 or 2.
20. -8x——~—1o e e e e e e a o s o Ans, 2=b,0r 3.
21, 2%10e=—21.. . . . . . . .. .. . .Ans.2=T,0r3

22.do~l.)x~—54‘. e e e e e e e e . Ans, x==Y, 016

93, 822—2-+-128=256. . . . . . . . Ans a=7, or —5°.

24, r—Be==12. . . .. . .. ... Ans.a=4 or

25, 2W*43e=65.. . « .+ ¢« « . s . . Ans a=5, or —

2112 5&3__53

-—3“*‘—”5?--——3.....5......
2

27. 100_—.% 24, . . . . e s e s o . . Ans, =00, or 40,

28, 2t—a—40=170. . . . . . . . . Ans. 2=15, or —14.
29. mzb;& e e e e s e e s e e e s o« Ans, a=2 or —3.
. 2
30. ﬂ}"l"{"x'_/j::—‘—“ - Y
44 .
31. “4“"‘”“;:.—@——4.. s s s s & s a & s Ans. x_—24, or -8,
32, fptdatd=BFo—a?+YLE. . . . Ans. =4, or —35.
33. Y= {~1 é‘—)f%éi. e e e e e e e o . Abs a==R, or Y.
34. ;z,2+'c—*30 e e e e e e e e e e e o Bos, =5, or —0.
z 2 =
.2} 4~{ e e e e e s e e e e s Ans. z=2, or 4.

36. 2%2+92—*5ia, e e e e e e n e . Ans, a==d ord

3
20

)
1
T4

. Ans, =4, or —

o o o Ans =3, 0r 2,

-
=
°
.
°
.

38 1710ams0. .

Bevis w212, To what form may every eomplete equation of thy see-
cuid degres be reduced? What are the four forms that this gives, depend-
ing on the signs of 2p and ¢? Explain tho principle, by means of whieh the
fest member of the equation z?--2pr==¢ may he made a perfect square.
What is the rule for the solution of a complete equation of the sceond degrec?
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39. BabBa=2. . . . ... ... ... Ans. =1, or —2.
40, do—3x*=06e--8. . . . . . .. ... Ans. z==3%, or —2.
41, @du=—1.", . . Ans. a=2-y/3=8.782-1, or .268—.
de 227 102 20

77> M'g"**—'_g“" _7'77‘ 2 @ ¢ w» » s & o »
65z 102" 18 2

Ans, z=-35, or §,

43 BB T Bt Rt s CRICIERRIE Ans, 2==35%, or 1.
x -3 .
44, m“gfﬁ_—l:j. .......... Ans. iL—"-},z, or —2,
. z 7 . .
45. mﬁwgﬁgo s e s e s s s o s Ans .’XJ--14, or —10,
46. x—{—;'%i=3x—-4, B Ang, a==5, or —2.
9w 15—
47. ggﬁfz%?:g% ........... Ans, x==36, or 12.
48, ¥F8, Tx 23 eed o
48. e s ey SIICEUICEICRCE RO Ans, =4, or 1.
Q-+-3 2 1 95
449 Y < %4 Ans, == £
49, T0—a 9585 0% + + ¢ 0o Ans. 2=8, or 1345.
50. 2ox—2t=—2ab—t. . . . . . .. Ans. 2=2a-1-b, or —Db.
51, 2*—2axr=b%—a% . . . . . . .. Ans. z==0-1-b, or a—Db.
52, *4+3be—4b=0. . . . ... ... Ans. x==-}b, or —4b,
53. a*—ar—br=—ab.. . . « « . . . . Ans.a=-}q, or 40b.
: x b o ptydn /T
54, ;;‘(;v——«;;:?}o o s 4 o s @ s s e a o Ans. @»—bi/ﬁbj b
55, 2007 (a—80)r==a. . .« . 0 . . . Ang, a==1, or — :—;%
. 2w 20 _ Ra* . o
56. 52‘-“- 7)——«’67 ........... Ans. 3/—‘—5" and -~ Kﬁ
57, w—(a—1)e—a=0. . . . . . . ... Ans. x=q, or —1.
8. &’ —(a-+b—cla=(a+b)e. . . . . . Ans. x=a-}+b, or —c.

Arr, 2E3.—Tar HiNpoo METHOD OF SOLVING QUADRATICS.-—
When an equation is brought to the form aa®Fba==c, it may be
reduced to 1 simple equation, without dividing by the coéfficient
of &?; thus avoiding fractions.

If we raultiply both sides of the equation aa®4-bu==c, by a, the
codflicient of % it becomes o*x*+abr==ac.

Now, if we regard a%’4-abx, as the first and second
the square of a binomial, a%? must be the square of the
nd abz the double product of the first term by the second. flence,
the first term of the binomial is y/a%’=ax; and the second term,
the quotient derived from dividing abxz by the double of ax, the
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. abx b . b .
first term ; that is, Do Adding the square of 5 0 each side,
2 2
the equation becomes a2x7+f¢bx+%=ac+£—.

Now, the left side is a perfect square; but it will still be a per-
fect square, if we multiply both sides by 4, which will clear it of
fractions. Thus, 4a**+4abe-+b*=4ac-}-b*

Extracting the square root,
2ag--b=tzy/dac-b?
Whenece x:—m-—bfgy(4ac+[f’
2a

Now, ib is evident, that the equation 4a*c*-}-4abx--b*=dac+b?,
may be derived directly from the equation ax®--bz==c, by multi-
plying both sides by 4a, the coéflicient of 2% and then adding to
each member, the square of 0, the coéflicient of the first power of 2.
This gives the following

BULE,
FOR THE SOLUTION OF A COMPLETE RQUATION OF THE SECOND
DEGREE.

Reduce the equation io the form ax®-ba=c, and multiply both
sides, by four times the cogfficient of &*. .ddd the square of the coéf
" ficient of « fo cach side, and then extract the square root. This
will give a simple equation, from which x is easily found.

1. Given 32> —5x==28, to find the values of z.

Multiplying both sides by 12, which is 4 times the coéfficient of a?,
362*—600=336
Adding to each member 25, the square of 5, the coéflicient of z,
362*—602425=361
Extracting the root, Ox— 5=-19
a=54-19=-24, or 14
a=--4, or —37.

By the same rule, find the values of the unknown quantity in

each of the following examples.

2, 2t bBe=88. . . ... . Ans, 2=3, or — 4.
- 2%
3. Bt lx=88. .. ... ... Ans, a==4, or —%"-
4o Ba2a=T0. . . ..t e e e Ans. g=5, or -t
Boat—a==42, . . . .. v e e e e . Ans, a=7, or —6.
3 o
% 1
6. %Wz*%“gwﬁ:f?:}. ......... Ans, =86, or —7¢.

If further exercises are desired, the examples in the preceding
article may be solved by this rule.

REviE w213, Txplain the Hindoo method of completing the squure.
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PROBLEMS PRODUCING COMPLETE EQUATIONS OF THE
SECOND DEGRES.
Arr. 284.—1. What number is that, whose square, diminished
by the number itself, is equal to 207
Let x= the number.

Then =20
Completing the square, a*—a-+3=20}1=58"
Extracting the root, a3
‘Whence ’L::'f—d or —4,

Now either of these values of x satisfies the equation ; but the
negative valae —4, does not fulfill the conditions of the guestion
in an arithmetical sense. But, since the subtraction of a negative
quantity is equal o the addition of a positive quantity, the ques-
tion may be so modified, that the value —4, will be a correct
answer to it, the 4 being considered positive. The question thus
changed, is: What number is that, whose square increased by the
number itself, is equal to 20?

2. A person buys several oranges for 60 cents; had he bought
3 more for the same sum, each orange would have cost him 1 cent
less; how many did he buy?

Let a== the number he bought.

Then %(—}: the price of each one.

And b()“ == the price of one, had he bought 3 more for 60 cents.
60 60

Ui e, e ) o
l.he;efm e, - 9,—1 L_;_M_l
Clearing of fractions, and reducing,

a?4-32=180
Completing the square, 2*-3a+ Z‘—“FHSO
Extracting the root, aS=p2]
Whence m:-,—lB or —15.

Now either of these values, taken with its proper sign, satisfies
the equation from which it was derived; but the value 12 is the
only one that satisfies the condmons of the question.

Since =§ =4 and =$%75=—5; and since buying and selling
are opposite oper ations, the result, —15, is the answer to this
question. A person sells several oranges for 60 cents. Had he
sold 3 less for the same sum, he would have recetved one cent more
for each. How many oranges did he sell?

R umARF~—From the two preceding examples, we see, that the rood
which is obtained, from giving the plus sign to the radical, satisfies both

18
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the conditions of the question, and the equation derived from it; while the
other root satisfies the equation only.

Woe see, also, that the root which arises from giving the radical the nega~
tive sign, may be regarded as the answer to a question differing from the
one proposed in this; that certain quantities which were additive, have
become subtractive, and reciprocally.

Sometimes, however, as in the following example, both values of the
unknown quantity satisfy the conditions of the gquostion.

3. Find a number, whose square increased by 15, shall be 8
times the number.

Let == the number; then 2?-+15=8x
Or 22— Br=—15
Whence 2==5, or 3.

Fither of which fulfills the conditions of the question.

‘When there are two unknown quantities in a problem, that ean
be solved by the use of one symbol, the two values of the symbol
generally give both values of the unknown quantity, as in the
following question.

4. Divide the number 24 into two such parts, that their product
shall be 95.

Let a== one of the parts; then 24—az= the other,

And @(24—w)=95

Or 2?2—24x——95
‘Whenece =19 and 5
And 24—p=5, or 19-

5. There are three numbers, such that the product of the first
and third is equal to the square of the second; the sum of the
first and second is 10, and the third exceeds the second, by 24;
required the numbers.

et 2= the first; then 10—a== the second,

And 10—2-24=834—x= the third.

Also (10—a)*=a(34—=)
Or 100—20z--a*=34da—a?
From which, x=25, or 2.

‘When ¢=85, 10-~z==—15, 34—=2=9, and the numbers are 25,
15, and 9.

‘When ©==2, 10~2=8, 34—2=32, and the numbers are 2, 8,
and 32.

Both these sets of values satisfy the question in an algebraic
sense; only the last, however, satisfies it in an arithmetical senge.
Let us endeavor to ascertain how the question must be modified,
50 that the first set of numbers shall satisfy it in an arithmetical
sense.
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The meaning of the negative solution —15, will be understood
by considering that the addition of a negative quantity, is the same
as the subtraction of the same quantity taken positively {Art 61).
The first condition of the question then becomes 25-(-—15)=25
(4 15)==25-—15==10; and the second is 9—(—15)=9--(+-15)
=9-4-15=24. This indicates, that —15 may be changed to-}-15,
provided, that instead of the condition of the sum of the first and
second numbers being 10, their difference be 10; and the second
condition may for a similar reason, be changed into this, that the
sum of the second and third is 24. The question, with these modi-
fications, would be: What three numbers are those, such that the
product of the first and third, is equal to the square of the second;
the difference of the first and second is 10; and the sum of the
second and third is 247?

Rueyvarnx.In the following examples, the pupil is required to find
only that value of the unknown guantity, which satisfies the conditions of
the question in an arithmetical sense. It forms, however, a good exercise
for advanced pupils, to detexmine the negative value, and then to modily
the question, so that this va all satisfy the conditions in an arithmetical
sense.

iy

6. Find a number, sucl¥ that if its square be diminished by 6

times the number itself, the remainder shall be 7. Ans. 7.
7. Find a number, such that if its square be increased by 8
times the number itself, the sum shall be 9. Ans. 1.

8. Find a number, such that twice its square, plus 3 times the
number itself, shall be 65. Ans, 5.
9. Find o number, such that if its square be diminished by 1,
and § of the remainder be taken, the result shall be equal to &
times the number divided by 2. Ans. 4.
10. Find a number, such that if 44 be divided by the number
diminished by 2, the quotient shall be equal to + of the number,
diminished by 4. Ans. 24.
11. Find two numbers, whose difference is 8, and product 240.
Ans, 12 and 20.

12. A person bought a number of sheep, for 80 dollars; if he
had bought 4 more for the same money, he would have paid 1
dollar less for each; how many did he buy? Ans. 16,
13. There are two numbers, whose difference is 10, and if 600
be divided by each, the difference of the quotients is also 10;
what are the numbers? Axns. 20 and 30.
14. A pedestrian, having to walk 45 miles, finds that if he in-
creases his speed 4 a mile an hour, he will perform his task 14
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hours sooner, than if he walked at his usual rate; what is that

rate? Ans. 4 miles per hour.
15. Divide the number 14 into two parts, the sum of whose
squares shall be 100, Ans, 8 and 6.

16. In an orchard containing 204 trees, there ave 5 more trees
in & row than there are rows; required the number of rows, and
the number of trees in a row. - A. 121rows, and 17 treesin a row.

17. A schoolboy, being asked the ages of his sister and himself,
replied, that he was 4 years older than his sister, and that twice
the square of her age, was 7 less than the square of his own;
required their ages. Ans. 13 and 9 yrs.

18. A and B start at the same time to travel 150 miles; A
travels 3 miles an hour faster than B, and finishes his journey 83
hours before him; at what rate per hour did cach travel?

Ans. 9 and 6 miles per houvr.

19. A company at a tavern had 1 dollar and 75 cents to pay;
but before the bill was paid two of them went away, when those
who remained had each 10 cents more to pay; how many were in
the company ab first? a Ans. 7.

20. The product of two numbers ,and if 1 be taken from
the greater, and added to the less, the¥product of the resulting
numbers is 120; what are the numbers? Ans. 25 and 4.

Let 2= the larger number; ther 100 = the smaller.

X
21. If 4 be subtracted from a fathev’s age, the remainder will
be thrice the age of the son; and if 1 be taken from the son’s age,
half the remainder will be the square root of the father’s age.

Required the age of each. Ans. 49 and 15 yrs,

a?—dq
Let #%= the father’s age; then 5 the son’s age.

22. A young lady being asked her age, answered, *“ If you add
the square root of my age to £ of my age, the sum will be 10.”

Required her age. Ans, 16 yra.
23. What number is that, from which, if £ of its square voot
be taken, the remainder will be 2272 Ans. 25.

24. A merchant bought a piece of muslin for 6 dollars; after
cutting off 15 yards, he sold the remainder for 5 dollars 40 cents,
by which he gained 1 cent & yard on the amount sold ; how many
yards did he buy, and ab what price?

Ans. 75 yds., at 8 cts. per yd.

25, A man bought a horse, which he afterward sold for 24 dol-
lars, and by so doing, lost as much per cent. upon the price of hig
purchase, as the horse cost him ; what did he pay for the horse?

Ang, $60, or $40.
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PROPERTIES OF THE ROOTS OF A COMPLETE RQUATION
OF THE SECOND DEGREE.

Nore ro Tracurrs.—This subject may be omitted entirely, by
the younger class of pupilg; and passed over, by thosxe more advanced,
until the book is reviewed.

Agr. 288.—The pupil may have learned already, by inference,
from the solution of the preceding examples, that an equation of
the second degree has two roots, that is, that the unknown quan-
tity has two values. This principle may be proved directly, as
follows.

The general form to which every complete equation of the sec-
ond degree may be reduced, is 2*+2pr=y¢; in which 2p and ¢
may be either both positive or both negative, or one positive and
the other negative. Completing the square, we have

@ Lpa-pi=q-+p°

Now, the first member is equal to (z-4p)% and if, for the sake of
simplicity, we assume ¢-+-p=m?, that is, y/q-+p*=m, then
) =m?

Trangposing, (2 —mt=().

Buat, since the left han ember of this equation, is the differ-
ence of two squares, it may be rvesolved into two factors, Art. 94,
Thia gives (z-tp-tm)(a+p—m)==0.

Now, this equation can be satisfied in two ways, andin only two;
that is, by making either of the factors equal to 0.

If we make the second factor equal to zero, we have

2-fp—m=0

Or, by transposing, ee=—ptm=—p--y/ 9+

If we make the first factor equal to zero, we have

a-tp+m=0
Or, by transposing, g p— ==y P

Hence, we conclude,

Ist. That every equation of the second degree, has two rools, and
only two.

2d. That every complete equation of the second degree, reduced fo
the form x*-+-2pa==q, may be decomposed into two binomial factors,
of which the first term in each is x, and the second, the two rools wilh
their stgns changed.

Thus, the two roots of the equation a*—Ha==—=6, or &>HBa--6
=0, are ©==2 and x=3; hence, a*—ba-}G=(z—2)(x-3).

From this, it is evident, that the direct method of resolving @
guadratic trinomial into its factors, is to place it equal to zero, and
then find the voots of the equation. In this manner, let the
learner solve the questions on page 72.
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By reversing the operation, we can readily form an equation,
whose roots shall have any given values,

Thus, let it be vequired to form an equation whose roots shall
be 4 and —6.

We must have w== 4 or —A4=0
And g===8 or x--6=
Hence, (w—4) (x-+8)=a?-2a—24=0
Or ?20=24,

‘Which is an equation whose roots are -4 and —86.

1. ¥ind an equation whose roots are 7 and 10.

Ans. 22—17e=—70,

2. Tind an equation whose roots are —3 and —1.

Auns. g?-}de=—3.

8. Find an equation whose roots are +2, and —1.

Ans, =2,

Arr. 2EG—Resuming the equation a?+2pa==q.

The fivst value of xis  —p-hy/qp?

The second value of # is —p—y/qp?

Their sum is —2p, ~ which is the cosflicient of
@, taken with a contravy sign. Uence; we conclude,

That the sum of the roots of am equation of the second degree, re-
duced to the form a*-}-2pa==q, is equal to the coifficient of the first
power of « taken wilh a contrary sign.

If we take the product of the roots, we have

First root= S an Ay
Second root== —p—y/ P
PV P

+ovetp (¢+p)
7. —(gtpl=—q.
But -—q¢ is the known term of the equation, taken with a con-
trary sign. Hence, we conclude,
That the product of the two roots of an equation of the second de-
gree, reduced to the form o?--2pr=q, is equal to the known term
taken with a confrary sign.

B euarK.~In the preceding demonstrations, we have regarded 2p and
¢ 88 both pogitive; the same courge of reasoning, however, will apply when
they are both negative, or when one is positive and the other negative; so
that the conclusions are true in each of the four different forms.

Arr, 287.—In the equation «®+2pa=—=q, or first form,
the two values of z are ~p+vqt+p*
And —p—v ¢-+p°
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If we examine the part y/g--p% we see that its value must be
a quantity greater than p, since the square voot of p* alone, is p.
Hence, the first root is the difference between p and a positive
quantity greater than p; therefore, it is essentially positive.

If we take the negative value of the radical part, the second
root is equal to the sum of two negative quantities, one of which
is p, and the other a quantity greater than p; thevefore, it is
essentially negative. Since the first root is the difference, and the
second root the sum, of the same two quantities, the second, or
negative root, is necessarily greater than the first, or positive root.
See questions 7, 8, 9, 10, page 205.

In the equation 2%—2pa=q, or second form,
the two values of x are o+ g-Fp?

And randay

The quantity under the radical being the same as in the pre-
ceding form, its square root is greater than p. The first root then,
is the sum of two positive quantities, one of which is p, and the
other a quantity greater than p; therefore, it is essentially posttive.

If we take the negative value of the radical part, the second
root is equal to the difference between p, and a negative quantity
greater than p; therefore it is essentially negative.

Since the first root is the sum, and the second root the difference
of the same two quantities, the first, or positive root, is greater
than the second, or negative root. See questions 11, 12, 13, 14,
page 206.

In the equation a*-2px-—=-g, or third form,
the two values of @ are —p-+y/——q+p*

And —p—V —q-+p°.

If we examine the radical part, /—q-Fp?% we sce, that its value
must be a quantity less than p, since the square root of p* without
its being diminished, is p; hence, the first root is the difference
between —p, and a positive quantity less than p; therefore, it is
essentially negative.

If we take the negative value of the radical part, the second
root is equal fo the sum of two negative quantities; thevefore, it
is essentially negative.

ReviEWw—215. To what general form, may every equation of the see-
ond degree, containing one unknown quantity, be reduced? Show that
avery equation of the second degree has two roots, and only two. 216, To
what is the sum of the roots of an equation of the second degree equal?
To what is the product equal? - 217, Show that in the first form one of the
roots iy positive, and the other negative; and that the negative root ig
greater than the positive.
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Hence, in the third form, both roots are negative. See ques-
tions 15, 16, 17, 18, page 206.

In the equation a*--2pz==—y, or fourth form, the two values of
x are Aot —q Pt
And 4 p—y/—q-+ph

The value of the radical part, being the same as in the pre-
ceding form, it is less than p. The first root, then, is the sum of
two positive quantities, thevefore, it is essentially positive.

The sccond root is the difference between p, and a negative
quantity less than p, therefore, it is essentially positive.

Hence, in the fourth form, both roots are positive. See ques-
tions 19, 20, 21, 22, page 206.

Arr. 218.—1In the third and fourth forms, the radical part is
V/ ~eq+pt  Now, if g is greater than p? this is cssentially nega-
tive, and we are required to extract the square root of a negative
quantity, which is impossible. See Art. 195. Therefore, in the
third and fourth forms, when ¢ is greater than p? that is, when
the known term is negative, and greater than the square of half
the coéfficient of the first power of z, both values of the unknown
quantity are impossible. What is the cause of this impossibility ?

To explain this, we must inquire into what two parts, a num-
ber must be divided, so that the product of the parts shall be the
greatest possible.

Let 2p vepresent any number, and let the parts, into which it is
supposed to be divided, be p-+z and p—z. The product of these
parts is {(p-+e)(p—2)=p*—2~

Now, this product is evidently the greatest, when 2? is the least;
that is, when 2% or z is 0. But, when z is 0, the parts are p and
p, that is, when a number is divided into two equal parts, their pro-
duct is greater than that of any other two parts into which the num-
ber can be divided. Or, as the same principle may be otherwise
expressed, the product of any two unequal numbers is less than the
square of half their sum.

As an illustration of this principle, take the number 10, and
divide it into different parts.

10=9-+1, and OX1= 9
10=8-1-2, and 8X2=16
10=7+3, and 7X3=21
10=6-+4, and 6X4=24
10=5-+5, and 5 X5=25

Review—217. Show that in the second form, one root is positive and the
other negative; and that the positive root is greater than the megative.
Show that in the third form, both roots ave negative. Show that in the
fourth form, hoth roots ave positive,
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We thus see, that the product of the parts becomes greater as
they approach to equality, and that it is the greatest when they
are equal to each other.

Now, in Art. 215, it has been shown, that 2p, the coéfficient of
the first power of @, i3 equal to the sum of the two values of x,
and that ¢ is equal to their product. But, when ¢ is greater than
2% we have the product of two numbers, greater than the square
of half their sum, which, by the preceding theorem, is irapossible.
If, then, any problem furnishes an equation in which the known
term is negative, and greater than the square of half the cosfi-
cient of the first power of the unknown quantity, we infer, that
the conditions of the problem are incompatible with each other.
The following is an example.

Let it be required to divide the number 12 into two such parbs,
that their product shall be 40.

Let 2 and 12— represont the parts.

Then @(12—w)=40, or 2*--122:=—40
2?1 22+-36=—4
w—G==rt=y/—4, and 2=6-1y/—4.

These expressions for the values of x, show that the problem is
impossible. This we also know, from the preceding theorem,
since the number 12 can not be divided into any two parts, whose
product will be greater than 36; thus, the algebraic solution ren-
ders manifest the absurdity of an impossible problem.

BEMARKS.~Ist, When the coéfficient of a2 is negative, as in the equa-
tion —a?-f-mas==n, the pupil may not perceive that it is embraced in the four
general forms. This diffieulty is obviated, by multiplying both sides of the
equation by —1.

2d. Since the sign of the square root of a2, or of (a-+p)% is -, it might

seem, that when o%=m? we should have —fw==—t-m, that is, -j-t==fmn,
and ~—a==—{-m; such is really the case, bubt —w==-tm, is the same ag
gty DA ==ty 18 the same as -fwe=-t-m.  Hence, ~j-aesdom,

embraces all the values of @. In the same manner, it is necessary to take
only the plus sign of the square root of (w-p)%

RGUACIONS OF THE SHCOND DEGREE, CONTAINING TWo
URNBNOWN QUANTITIES.

Norg.—A full discussion of equations of this class does not properly
belong to an elementary treatise. Indeed, no directions can be given, thab
will be applicable to all cases. The general method of treating the sub-
ject, consists in presenting the solution of a variety of examples, and then
furnishing others for the exereise of the student. The following examples
are intended to embrace only those capable of solution by simple methods.
See Ray’s Algebra, Part Second.

19
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Anr. 289.—In solving equations of the second degree, contain-
ing two unknown quantities, the first step is to eliminate one of
them, so as to obtain a single equation involving only one unknown
quantity. The elimination may be performed by eithor of the
three methods already given. See Articles 158,159,160, When
a single equation is thus obtained, the value of the unknown quan-
tity is to be found by the rules already given.

EXAMPLES,
1. Given z—y=2 and z*+y*==100, to find = and .
By the first equation, a=y-+2

Substituting this value of «, in the second,
(y-+2)*+y*=100
From which we readily find, y=6, or —8

Hence, x=y-+2=8, or —0.
2. Given a-+y=8, and ay=15, to find 2 and 7.
From the first equation, =8y

Substituting this value of z, in the second,
y(8—y)=15

Or y—8y=—15
From which y is found $o be 5 or 8.
Hence, =3, or 5.

There is a general method of solving questions of this form,
without completing the square, with which pupils should be ac-
quainted. To explain it, suppose we have the equations

-yt

xy==0

Squaring the first,  @-2ay-ty'=a’
Multiplying the second by 4, 4ay=4b

Subtracting, o —Bay-tyt=a’—4b
Extracting the square root, py=cky/ a4

But Tty=a

Adding RQu==azty/ a*—4b

Or w=laz1y/ a*—4b
Subtracting, Qy=ay/ a*—4b

Or y=LaT1y/ a’—4b.

If we have the equations x—y=¢ and ay==b, we may find the
values of » and g, in a similar manner, by squaring each member
of the first equation, and adding to each side 4 times the second.
Then, extracting the square root, we obtain the value of z-ty

sy a*+4b; from which, and w-=y=a, we tind w=lats % V’g"—f-—éb‘,
and y=1a°F /@45,
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3. Given w-ty=e¢ and 2?}y*==>0, to find = and y.

Squaring the fivst, 2 2ay+yi=a® (3.)
But, @ yt=b (2.)
Subtracting, Lay=a"—b (4.)
Take (4) from (2),  a’—2ayty*=2b-—d*
Extracting the root a—y=rty/ Rb—a’
T4 Y= R

Adding and dividing, a=Lak1y/20—a’
Subtracting and dividing, y=LaF] v 2—at.

4. Given 2?+-y*=a and ay=>), to find x and y.
Adding twiee the second to the first,
2*-Ruy-+yt=a-+2b
Extracting the square root,  a-+y=cky a2
Subtracting twice the second from the first,
2> —Lay-+yt=u—2b
Extracting the square root, L—y==rt v a—2b

‘Whence F==rt1 1/ a+2b4-1 1/ 3
And y==1y a—%&bq:é;/ 20,

5. Given a*3%=¢ and a-ty==D, to find « and y.
Dividing the first by the second,

ac"~xy+y’~’:—‘f (3.)
Squaring the second,  2*-2uy-+y*=0"  (4.)
.
Subtracting (3) from (4), 3xJ~—»-UL

Or xy:«—,_—~ (5.)
78
Take (5) from (3),  a—2ay-ky :4‘; 52.
Extracting the xoot, w—y= JJ:\/ ( 4“—4’0 )
:Butv @ -} J—;b
-~
Whenece w=}0-t1 \/ ( fj‘%z_;b }
4a—0°
. e (52).

In a similar manner, if we have #—y’==0 and z—y==b we find

(452 ) ey (252 )
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BEXAMPLES
6. .c“~z/2~—34}......,‘....,. Ans, =5,
= L (5 L s =
} e e e e e e e e s e s o Ans =8 0 7

=7, or 9.

s e o s e s o s e s s s o« o Y

} e e e e e e a e o e o Ans =0, or —4.
a:J--w3€) O e V) s ¢ X
Doaody=8 1 .. ... ... cAnsa=T, 002
:c‘2~}~y2::53§..,..,....... -
10, gy =5 } O ¥
byt 3
11 m“#ﬁ:l.}?} e e e e e e e
zfy=8 .
12, & :'3~y3::“)08} e e s e s e e o . . Ans, w:{), or —2.
e e e e e e e e s e s Y= or 0,
Bdeg ~19-r+y)} e e e e e e ,Ank..cA—u, or —32,
: e e e e e e e e e Y=R, or —B,
Y € T

s s 6 &« s s s s e o & o

14, {C{«’w~3)(gj—j—2):12} e e e e e e
ay==12
16, y—a=2 |
Jay=10u-ry S . ... ...
Y. 8a?-2uy=247 . . . . . .. ..
B 3 y:lfq.....',.»Jﬁ()rw?

18, Sf==f e e e e e e s e e o Apsia=2, or 3.
Q/N{k y b oty _
1,1 v

- 13 TS SN
;&“{’*7**—5(, © s e s s 6 o & s s 5 o« v o YEEO, O 2,

19, 'va/m% } e e e e s e o« oo o Apgoa=3, or —1.
2=y} . .. o . o o o oo . y==l, or 3,

. . _ 1 1 .
In solving question 18, let ~==, and 7= the question then

becomes similar to the Oth. In question 19, find the value of ay
from the second equation, as if it were a single unknown quantity.

PROBLEME PRODUCING EQUATIONS OF THE SECOND DEGREE,
CONTAINING TWO UNKNOWN QUANTITINS,

1. The sum of two numbersis 10, and the sum of their squares

5%2; what are the numbers? Ans. 4 and 8,

2. The difference of two numbers is 3, and the diffevence of

their squares 39; requived the numbers. Ang. 8 and 5.
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3. Tt is vequired to divide the number 25 into two such parts,

that the sum of their square roots shall be 7. Ans. 16 and 9.

4. The product of a certain number, consisting of two places,

by the sum of its digits, is 160, and if it be divided by 4 times
the digit in unit’s place, the quotient is 4 ; required the number.
Ang, 3%.

5. The difference between two numbers, multiplied by the

greater, ==16, but by the less, =12 ; required the numbers,
Ang. 8 and 6.
6. Divide 10 into two such partg, that their product shall ex-

ceed their difference by %2. Ans. 6 and 4.
7. The sum of $wo numbers is 10, and the sum of their cubes
is 370; rvequired the numbers. Ans. 3 and 7.
8. The difference of two numbers is 2, and the difference of
their cubes is 98; required the numbers. Ans. 5 and 3.

9. The sum of 6 times the greater of two numbers, and 5 times
the less, is 50, and their product is 20 ; required the numbers.
Ang. b and 4.
10. If a certain number, consisting of two ph\{‘eq is divided
by the produch of ite digits, the quotient will be 2, and if 27 is
added to it, the digits will be inverted ; required the number.
ARAE, {} EN
11. Tind three such quantities, that the quotients arising from
dividing the products of every two of them, b v the one remaining
are a, b, and ¢. Ans, ;:;/ZJ)_, =/ ae, and -y br:.
12. The sum of two numbers is 9, and the sum of their cubes
is 21 times as great as their swm ; required the nwmbers.
Ans. 4 and b,
13. Theve are two numbers, the sum of whose squares exceeds
fwice their product, by 4, and the difference of their squares ex-
ceeds half their product, by 4; required the numbers.
Auns. 6 and 8.
14. The fore wheel of a carriage makes 6 revolutions more than
thie hind wheel, in going 120 yards; but if the circumference of
each wheel is increased 1 yard, it will make only 4 revolutions
more than the hind wheel, in the same distauncc; required the
eircumference of each wheel. Ans. 4 and D yds.
15. I'wo persons, A and B, depa#t from the same place, and
travel in the same dlre(,txon A starts 2 hours before B, and after
traveling 30 miles, B overmkes A; but had each of them traveled
half a nul(, more per hour, B Would have traveled 42 miles before
overtaking A, At what rate did they travel ?

Ans. A 2%, and B 3

3 miles per hour,
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16. A and B started at the same time, from two different points,
toward each other; when they met on the road, it appeared that
A had traveled 30 miles more than B. It also appeared, that it
would take A 4 days to travel the road that B had come, and B 9
days to travel the road that A had come. Find the distance of A
from B, when they set out. Ans. 150 miles.

CHAPTER VIII.

PROGRESSIONS AND PROPORTION.

ARITHMETICAL PROGRESSION.

ART. 220.—A series, is a collection of quantities or numbers,
connected together by the signs - or —, and in which any one
term may be derived from those which precede it, by a rule, which
is called the law of the series. Thus,

1+3+5+7+9+, &e.,

2+4-6-+18+154+4, &e.,
are series; in the former of which, any term may be derived from
that which precedes it, by adding 2; and in the latter, any term
may be found by multiplying the preceding term by 3.

Arr. 221.—An Arithmetical Progression is a series of quanti-
ties which increase or decrease, by a common difference. Thus,
the numbers 1, 3, 5, 7, 9, &ec., form an dncreasing arithmetical
progression, in which the common difference is 2.

The numbers 30, 27,24, 21, &ec., form a decreasing arithmetical
progression, in which the common difference is 3.

R & M A RK.—An arithmetical progression is termed, by some writers, an
equidifferent series, or a progression by differences.

Again, a, a---d, a+2d, a+-3d, a+4d, &e., is an increasing arith-
metical progression, whose first term is @, and common difference
d. And if d be negative, it becomes a, a—d, a—2d, a—3d, a—4d,
&c., which is a decreasing arithmetical progression, whose first
term is @, and common difference d.

Agrr. 222.—If we take an arithmetical series, of which the
first term is @, and common difference d, we have

Ist term=. . . . . . @

2d term =lst term +d=a--d

3d term =2d term -+d=a-+2d

4th term =3d term --d=a--3d, and so on.
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Hence, the coéfficient of d in any term, is less by unity, than
the number of that term in the series; therefore, the nth term
=a-+(n—1)d.

If we designate the nth term by Z, we have l=a+(n—1)d.

Hence, the
RULE,

FOR FINDING ANY TERM OF AN INCREASING ARITHMETICAL SERIES.

Multiply the common difference by the number of terms less one,
and add the product to the first term; the sum will be the required
term.

If the series is decreasing, then d is minus, and the formula is
l=a—(n—1)d. This gives the

RULE,

FOR FINDING ANY TERM OF A DECREASING ARITHMETICAL SERIES.

Multiply the common difference by the number of terms less one,
and subtract the product from the first term; the remainder will be
the required term.

EXAMPLES.

1. The first term of an increasing arithmetical series is 3, and
common difference 5; required the 8th term.

Here !, or 8th term =3-4(8—1)5=3+35=38. Ans.

2. The first term of a decreasing arithmetical series is 50, and

common difference 3 ; required the 10th term.
Here I, or 10th term =50—(10—1)3=50—27=23. Ans.

In the following examples, a denotes the first term, and d the
common difference of an arithmetical series; d being plus when
the series is increasing, and minus when it is decreasing.

. a=3, and d=5; required the 6th term. . . . . Ans. 28.
. =20, and d=4; required the 15th term. . . . Ans. 76.
. a="17, and d=%; required the 16th term. . . . Ans. 10§.
. a=2}, and d=1; required the 100th term. . Ans. 353
. a=0, and d=1%; required the 11th term.. . . . Ans. 5.
. a=30; and d=—2; required the 8th term. . . . Ans. 186.
. a=—4, and d==3 ; required the 5th term. . . . Ans. 8.

10. a=—10, and d=—2; required the 6th term. Ans. —20.

11. If a body falls during 20 seconds, descending 1675 feet the
first second, 483 feet the next, and so on, how far will it fall the
twentieth second ? Ans. 6273 feet.

REVIEW.—220. What is a series? Give examples. 221. What is an
arithmetical progression? Give an example of an increasing series. Of a
decreasing series? 222. What is the rule for finding the last term of an
increasing arithmetical series? Of a decreasing arithmetical series? Ex-
plain the reason of these rules.

OB W
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Arr, 828.—CGiven, the fivst term «, the common difference &,
and the number of terms n, to find s, the sum of the series.

If we take an arithmetical series of which the first term is 3,
common difference 2, and number of terms 5, it may be written
in the following forms:

3, 3848, 38+4, 846, 348
11, 11-2, 114, 116, 11--8.
It 1s obvious, that the sum of all the terms in either of these
lines, will represent the sum of the series; that ig
s== 3-( 342)+( 3+4)+( 3--6)+-( 3+8)
And s=114H(11—2) (11— (11 —6)++(11--8)
Adding, 2s=14-- 14 + 14 + 14 -+ 14
==14 the number of terms,
14X 5=T70
Whence, s==3 of 70=235.
Now, leb I= the last term, then writing the series both in a
dirvect and inverted order,
s==a+(a-Fd)+{a+2d)+{a-+-3d) 4. . . .-
And ==l 4l —d)4-(I —2d)+ (I —38d)+ . . . .+
By adding the corresponding terms, we have
Ls=(l+a)+-{I-+a)+({l+a)+(Ha) . o F{i+a)
==(l+4-a) taken as many times a3 thero ave terms {#) in

the series.
Hence, 2s==(l+a)n
. n [ lia
(o= o ).
This formula gives the following
BULE,

FOR FINDING TIE SUM OF AN ARITHMETICAT SERTES.
Multiply half the sum of the lwo extremes, by the number of terms.
From the preceding, it appears, that the sum of the catremes s

equal to the sum of amy other two terms equally distant from U
extremes.
REu ArK—Bince l==a-}-(n-1)d, if we substitute this in the place of §
9 E3 N
n the formula &:{Hw)g, it hucomes se= { 2a4-(n—1)d ) 5 This gives

the following Rule, for finding the ¢wm of an arithmetical series: Zo the
double of the first levin add the product of the nwmber of terms less one, by
the common difference, and multiply the sum by half the number of terms.

Bueview.-—223, Whatis the rule for finding the sum of an arithwmeti-
esl serjes?  Ixplain the reason of the rule.
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EX AMPLES.

1. Tind the sum of an arithmetical series, of which the first
term is 3, last term 17, and number of terms 8.

3-+17
§= ( —5 8=80. Ans.
9. Tind the sum of an arithmetical series, whose first term is 1,
last term 12, and number of ferms 12. Ans. 78.
3. Find the sum of an arithmetical series, whose fixgt term 1s 0,
gommon difference 1, and namber of terms 20. Ans. 180,

4. Find the sum of an arithmetical series, whose first term is 3,
common diffevence 2, and number of terms 21. Ans. 483,

5. Find the sum of an arithmetical series, whose first term is
10, common difference —3, and number of terms 10. A, 35,

In this case, the sum of the negative terms exceeds that of the
positive.

Axr, 284.—The equations =o-{n—1)d and

s=(a+1)5, farnish the means of
2

solving this general problem: Knowing any three of the five quan-
tities a, d, n, §, s, which enter into an avithmetical series, to delermine
the other two.

This question furnishes ten problems, the solution of which pre-
sents no difficulty; for we have always two equations, to determine
the two unknown quantities, and the equations to be solved, are
either those of the first or second degree.

1. Let it be required to find @ in terms of [, », and d.

Trom the first formula, by transposing, we have e==l—{(n—1)d.
That is, the first term of an increasing arithmelical series is equal o
the last term diminished by the product of the common difference vnlo
the number of fterms less one.

From the same formula, by transposing ¢, and dividing by n—1,

we find d=
That is, in any arithmetical series, the common difference is equal fo
the difference of the cxlvemes, divided by the mumber of terms less one.
Fxamples, illustrating these principles, will be found in the col-
lection at the close of this subject.

BEVIEW-—3224. What ave the fundamental equations of arithmetical
progression, and to what general problem do they give rise? To what is
the first term of an incroasing arithmotical series equal? Mo what is the
common difference of an arithmetical series equal?
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Arr. 228.—By means of the préceding principle, we are ena-
bled to solve the following problem.

Two numbers, @ and b, being given, to insert a number, m, of
arithmetical means between them; that is, so that the numbers
inserted, shall form, with the two given numbers, an arithmetical
series.

Regarding o and b as the first and last terms of an increasing
arithmetical series, if we insert m terms. between them, we shall
have a series consisting of m--2 terms. But, by the preceding
principle, the common difference of this series will be equal to the
difference of the extremes divided by the number of terms less

b—a b—
mi2—1 m +1
will be equal to the difference of the two numbers, divided by the naum-
ber of means plus one.

Let it be required to insert five arithmetical means between 3
and 15.

153

Here d== BT =2; hence the series is 3, 5, 7, 9, 11, 13, 15.

Tt is evident, that if we insert the same number of means be-
tween the consecutive terms of an arithmetical series, the result
will form a new progression. Thus, if we insert 3 terms between
the consecutive terms of the progression, 1, 9, 17, &e., the new
series will be 4, 3, 5,7, 9, 11, 13, 15, 17, and so on.

one; thatis, d= ; therefore, the common difference

EXAMPLES.

1. Tind the sum of the natural series of numbers 1, 2, 8, 4, . .
carried to 1000 terms. Ans, 500500,
2. Required the last term, and the sum of the series of odd
numbers 1,3, 5,7, . . . contmued to 101 terms,”

Ans., 201 and 10201,

3. How many times does a common clock strike, in a week ?
Ans. 1052,
4. ¥ind the nth term, and the sum of » terms of the natural

series of numbers 1,2,3,4. . . . Ans. 7, and ‘zn(n +1).
5. Find the nth ter m, and the sum of » terms, of the series of
odd numbers 1, 3, 5, 7. Ans. 2n—1, and 22

6. The fivst and last terms of an arithmetical series are 2 and
29, and the common difference is 8; required the number of terms
and the sum of the series. Ans. 10 and 155,

7. The first and last terms of a decreasing arithmetical series
are 10 and 6, and the number of terms 9; required tho commaon,
difference, and the sum of the series. Ans. § and 72,
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8. The first term of a decreasing arithmetical series is 10, the
number of terms 10, and the sum of the series 85; required the
last term and the common difference. Ans. 7 and 4.

9. Required the series obtained from inserting four arithmetical
means bebween cach of the two terms of the series 1, 16, 31, &e.

Ans. 1, 4,7, 10, 13, 16, &e.

10. The sum of an arithmetical progression is 72, the first term
is 24, and the common difference is -—4; required the number of
terms, Ans. 8 or 4.

In finding the value of # in this question, it is required to solve
the equation # 2 19n=—386, which has two voots, 9 and 4.
These give rise to the two following series, in both of which the
gum is 72

First series, 24, 20, 16, 12, 8, 4, 0, —4, —8.

Second series, 24, 20, 16, 12.

11. A man bought a farm, paying for the first acre 1 dollax, for
the second 2 dollars, for the third 3 dollars, and so on; when he
came to settle, he had to pay 12880 dollars; how many acres did
the farm contain, and what was the average price per acre?

Ans. 160 acres, at $804 per acre.

12. If a person, A, start from a certain place, traveling ¢ miles
the first day, 2a the second, 3a the third, and so on; and ab the
end of 4 days, B start after him from the same place, traveling
uniformly 9 miles a day; when will B overtake A?

Lot 2= the number of days required; then the distance traveled
by A in x days =a+-Ra4-3a, &c., to @ terms, =fax(z--1); and
the distance traveled by B in (z—4) days =8a(x—4).

‘Whence Jaz(x-t1)=08a(x—4). Trom which z==8, or 9.

Hence, B overtakes A at the end of 8 days; and since, on the
ninth day, A travels Sa miles, which is B’s uniform rate, they will
be together af the end of the ninth day. This ig an instance of
the precision with which the solution of an equation points oub
the cireumstances of a problem.

13. A sets out 3 hours and 20 minutes before B, and travels at
the vate of 6 miles an hour; in how many hours will B overtake
A, if he travel b miles the first hour, 6 the second, 7 the third, and
80 on? Ans. 8 hours.

14. Two travelers, A and B, set oub from the same place, at the
same time. A travels at the constant rate of 8 miles an hour,
but B’s rate of traveling, is 4 miles the fivst hour, 3% the second,
3 the third, and so on, in the same series; in how many hours will
A overtake B? Ans. 5 hours.

REvIe w225, How do you insert m arithmetical means between two
given numbers ?
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CROMETRICAL PROCGRESSION.,

Arr. 228.—A Geometrical Progression is a series of terms,
each of which is derived from the preceding, by multiplying it by
a constant quantity, termed the ratio.

Thus, 1, 2, 4, 8, 16, &c., is an increasing geometrical series,
whose common ratio iy 2,

Also, 54, 18, 6, 2, &e., is a decreasing geometrical series, whose
common ratio is 4.

Generally, a, ar, ar?, @?, &e., is o geometrical progression, whose
common ratio is 7, and which is an increasing ov decreasing series,
according as # is greafer, or less than 1.

It is obvious, that the common ratio in any series, will be ascer-
tained by dividing any term of the series, by that which imme-
diately precedes it.

RBrewArg~—A geomeirical progression is termed, by some writers, an
equirational serics, or a sories of continued proportionals, or a progression
by quotients.

Arr, 22%.—To find the last term of the series.

Let @ denote the first torm, » the common ratio, 7 the nth term,
and s the sum of # terms; then, the respeetive terms of the series
will be

1,2 3 4, 5.....50=3 a2 n—l, 7.

@, ar, ar*, @ at, . .. L@t oS gt el
That is, the exponent of # in the second term is I, in the hird
term 2, in the fourth term 8, and so on; hence, the ath term of
the sexies will be, Z==as"—'; that is,

Any derm of & geomelric series is equal to the product of the firs
term, by the ratio vaised (o a power, whose exponent is one less than
the nuwmber of ferms.

REAMPLES,

1. Find the 5th texm of the geometric progression, whoss first
teym is 4, and common ratio 3.

Bt==3 X BN BXB=81, and 81X4==324, the ifth term.

2. Find the Gth term of the progression 2, 8, 82, &e.

Ans. 2048,

3. Given the Ist term 1, and ratio 2, to find the 7th term.

Ans. 4.

4. Given the 1st term 4, and ratio 8, to find the 10th term.

Ans. 78732.

Revinw.—226. What is o Geometrieal Progression? Give examples of
an increasing, and of a decreasing geomeirical serics. How may the com-
mon ratio in any geometrical series be found ? 227, How is any term of a
geometrical series found? Explain the principle of this rule.
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5. Find the Oth term of the series, 2, 10, B0, &e. A, 781250,
6. Given the 1sb term 8, and ratio ‘,, to find the 15th term.

Ans. zo'gg

7. A man purchased 9 horses, agrecing to pay for the whole
what the last would cost, at 2 dollars for the first, 6 for the second,
&e.; what was the average price of each? Ans. $1458.

Axr. 228.To find the sum of all the terms of the series.

If we multiply any geometrical series by the ratio, the result
will be o new sevies, of which every term except the last, will
have a corvesponding term in the first series.

Thus, let @, ar, ar?, ar®, &e., be any geomelrical series, and s it
gum, then s=e-bor-a?tad. o oL R s 7
Multiplying this equation by 7, we have

pez=ar-larthart ot L L L L L e ar™.

The terms of the two series are identical, except the firsf term
of the firs series, and the last term of the second series. If, then,
wo subtract the fivst equation from the second, all the remaining
terms of the series will disappear, and we shall bave

T S== N

Or (r—1)s=a(s"—1)
; a{rr—1
Hence, s:—(»~f>ﬂ
r—1
Since l==ar", we have rl==ar™
N ar’—a
Therefors, == f—
1
Hence, the
RULE,
FOR FINDING THE SUM OF A GEOMETRICAL SERIES.

Multiply the last term by the ratio, from the product sublract lhe
Sirst term, and divide the remainder by the ratio less one.

EXAMPLES.
1 '}iind the bum of 10 telms of the pmomsqion 2,6, 18, 54, &e.

lr—a 11%098 2
=g So 59048, Ans.

2. Find the sum of '7 terms of the progression 1, 2, 4, Fe.
- Ans. 127.

3. Find the sum of 10 terms of the progression 4, 12, 36, &e.
Ans, 118096.

4, Find the sum of 9 terms of the series 5, 20, 80, &e.
Ans. ﬁ&bQGS
8. Emd the swm of 8 terms of the series, whose first term is 64,
and ratio 5. Ans. 80721
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6. Find the sum of 8--20+4-50+-, &e., to 7 terms. A, 32497,
7. Find the sum of 344463+, &e., to 6 terms. AL 89%

Ruwarx~If the ratio » is less than 1, the progression is decreasing,
and the last term Z» is less than «. In order that both terms of the fraction

e shall be positive, the signs of the terms must be changed, and we
7

—
a~—rl

have s= The sum of the series when the progression is deereasing,

S |

i3, therefore, found by the same rule, as when it is increasing, except that
the product of the last term by the ratio, is to be subtracted from the first
term, and the ratio subtracted from unity, instead of subtracting unity from
the ratio.

8. Find the sum of 15 terms of the series 8, 4, 2, 1, &e.
Ans. 15334
9. Find the sum of § terms of the series 6, 44, 8%, &e.

Ans. 1 J’E—f;’i g
a—arm .
Axrr, 229.—The formula s=— i , by separating the nume-
rator into two parts, may be placed under the form
a ar®

11—
Now, when » is less than 1, it must be a proper fraction, which
9 7 73
may be represented by q, then ¢m= (g) ::2;%. Since p is less
than ¢, the higher the power to which the fraction is raised, the
less will be the numerator compared with the denominator; that
is, the less will be the value of the fraction; therefore, when »

becomes very large, the value of 7 or »* will be very small; and,

73
when n becomes tnfinitely great, the value of %;v or v, will be in-
Jinately small, that is, 0. But, when the numerator of a fraction

Hence,

. . . . ; @
8 zero, its value is 0. This reduces the value of s, to i

when the number of terms of a decreasing geometrical series is infi-
nite, the last ferm 1is zero, and the sum is equal to the first lerm
divided by one minus the rotio.

R EviE w9228, What is the rulo for finding the sum of the ferms of a
goometrical sexies? Kxplain the reason of this rule. When the series is
deereasing, how must the formula, expressing the sum, be written, so that
both terms of the fraction may be positive? 229, What is the rule for find-
ing the sum of a decreasing geometrieal series, when the number of terras
is infinite? Hxplain the reason of this rule.
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1. Find the sum of the infinite series 141444, &e.
Ly @ Y
Here a==1, r==3, and = 1__1 =35, Ans.
2. Find the sum of the mﬁmte series 1-+3-+1-+5-+, &e.
Ans. 2.
3. Find the sum of the mﬁmte series 9F6+4-}, &e. AL 27.
4. Find the sum of the infinite series 1I—34 34—+, &e.

] Ans. §.
5. Find the sum of the infinite series 1—}-%—,@%»}-%5«;—, &e.
Ans. P i:i N
6. im};d the sum of the infinite geometrical progression a_—Z)
v bL
w§—§—«—§~~'~ —, &e., in which the ratio 1s—~z—) Ans. “
¢ o 'af @ b

7. If a body moves 10 feet the first seoond 5 the next second,
21 the next, and so on, continually, how many feet would if move
over? Ans. 20,
ar*—a

1 3
nish this general problem: knowing three of the five qu[mzﬁzz‘zes o,
v, m, 1, and s, of a geomelrical progression, fo defermine the other
two. This problom embraces ten different questions, as in arith-
metical progression. Some of the cases, however, involve the
extraction of high roots, the application of loglnthms, and the
solution of higher equations than have been treated of in the pre-
ceding pages. The following is one of the most simple and useful
of these cases.

Having given the first and last terms, and the number of terms
of o geometrical progression, to find the ratio.

Arr., 280.—The two equations, i==ar™, and s= fur-

!
Here l=ar™, or e-*“**l:g—z

Hence, 9‘:"*“’1\/@55 .

1. The first and last terms of a geometrical series, are 3 and
48, and the number of terms 5; required the intermediate terms.
Here =48, ¢=38, n—1=5—1=4
Hence,  r==48=16, and r%=1/16=4, and r=/ 4=2.

2. Ina geomemc‘xl series of three terms, the first and last
terms are 4 and 16; required the middle term. Ans, 8.

In a geometrical progression, containing three terms, the middle
term is ealled a mean proportional between the other two.

3. Find a mean proportional between 8 and 32. Ans. 16.

4. The first and last terms of a geometrical series are 2 and 162,
and the number of terms 5; vequired the ratio. Ans. 3.
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BATIO AND PROPORTION.

Arr. 280.—Two quantities of the same kind, may be com-
pared in two ways:

1st. By finding how mauch the one exceeds the other.

2d. By finding how many times the one contains the other,

If we compare the numbers 2 and 6, by the first wethod, we
say that 2 is 4 less than 6, or that 6 is 4 greater than 2.

If we compare 2 and 6, by the second method, we say that 6 is
equal to three times 2, or that 2 is one third of 6. This method of
comparison gives rise to proportion.

App, 28%.—Ratio is the quotient which arises from dividing
one quantity by another of the sume kind. Thus, the ratio of 2
10 6 is 3; the ratio of @ to ma is m.

Rrawanks.—Ist In comparing two nuwabers or guantitics by their
quotient, the number expressing the ratio which the fvst bears to the see-
ond, will depend on which is made the standurd of comparizon. Thug, in
comparing 2 and 6, if we make 2 the wait of measure, or standard, we find,
that 6 is three times the standard.  If we make 6 the unit of measure, or
standard, we find, that 2 is one third of the standard. In finding the ratio
of one number to another, the French mathematicians always make tho first
of the two numhers the standard of comparison; while the English make
the last named the standard. Thus, the French say the ratio of:2 to 6 is 3;
while the English say it is 4. Tho French method is now generally used
in the United States, though, in a few works, the other is still retained,

2d. In order that two yuantities may be compared, or have a ratio to cach
other, itis evidently nocessary that they should bo of the same kind, so thab
one may be some part of, or some number of times the other. Thus, 2
yards has a ratio to 6 yards, because the latter is three témes the former; but
2 yards has no ratio to 6 dollars, since the one can not be said to be cither
greater, less, or any number of times the other.

Arr. 288.—When two nambers, as 2 and 6, are compared, the
Jirst is called the anfecedent, and the second the consequent.

An antecedent and consequent, when spoken of as one, ave
called a couplet. "When spoken of as fwo, they are called the ferms
of the yatio. Thus, 2 and 6 together, form a couplet, of which 2
is the first term, and 6 the second.

Axr, 284.—Ratio is expressed in two ways.

Ist. In the form of a fraction, of which the anfecedent is the
denominator, and the conseguent the numeraior. Thus, the ratio of
2 10 6, is expressed by §; the ratio of 8 to 12, by 2, &c.

Revizw—281. In how many ways, may two quantities of the same
kind be compared? Compare the numbers 2 and 6 by the first moethod.
By the second. 232. What is ratin? Give an illustration. 233. When
two numbers are compared, what is the first called? The second? Givo
an example,
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2d. By placing two points (:) between the terms of the ratio.
Thus, the ratio of 2 to 6, is written 2 : 6; the ratio of 8 to 8,
3:8, &e.

Arr. 2885.—The ratio of two quantities, may be either s whole
number, a common fraction, or an “nierminale decimal.

Thus, the ratio of 2 to 6 is §, or 8.

The ratio of 10 to 4 is 1%, or 3.

. vH 29236+ ]
The ratio of 2 to /5 is T OF 5 , or 1118+,

We sece, from this, that the vatio of two quantities can nob
always be expressed exactly, except by symbols; but, by taking a
sufficient number of decimal places, ib may be found to any re-
quired degree of exaciness.

Arr. 236,—Hince the vatio of two numbers is expressed by a
fraction, of which the antecedent is the denominator, and the con-
sequent the numerator, it follows, that whatever is true with regard
to a fraction, is true with regard to the terms of a ratio. Hence,

Ist. To multiply the consequent, or to divide the antecedent of a
ratio by any wumber, mulliplies the ratio by that number. (Articles
122, 125.)

Thus, the ratio of 4 to 12, is 3.

The ratio of 4 to 125, is 3X5.

The ratio of 4-+2 to 12, iz 6, which is equal to 3X2.

2d. b divide the consequent, or to multiply the aniecedend of @ ratio
by any number, divides the ratio by that number. {Articles 123,
124.)

Thus, the ratio of 8 to 24, is 8,

The ratio of 3 to 24-+2, is 4, which is equal to 82,

The ratio of 3X2 to 24, is 4, which is equal to 8-+2.

3d. Lo maulitply, or divide, both the antecedent and consequent of
a ratio by any ramber, does not alter theratio.  (Axticles 126, 127.)

Thus, the ratio of 6 to 18,13 3.

The ratio of 6X2 to 18X2, is 3.

The ratio of 6-2-2 to 18-+2, is 3.

Arr. 28% .~ When the two numbers arve equal, the ratio is said
to be aratio of equality. "When the second number is greater than

REview.—234. When are the antecedent and consequent of a ratio
called o couplet? When the terms of a ratio? By what two methods is
ratio expressed ?  Give an example. 235, What forms may the ratio of two
guantities have? 236. How is a ratio affected by multiplying the conse-
quent, or dividing the antecedent? Why? How is a ratio affected by
dividing the consequent, or multiplying the antecedent? Why? How is
a ratio affected, by either multiplying or dividing both antecedent and
consequent by the snme number? Why?

20
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the first, the ratio is said to be a ratio of greafer inequality, and
when it is less, the ratio is said to be a ratio of less inequaliy.

Thus, the ratio of 4 to 4, is a ratio of equality.

The ratio of 4 to 8, is a ratio of greater inequality.

The ratio of 4 to 2, is a ratlo of less inequality.

We see, from this, that a ratio of equality may be expressed
by 1; a ratio of greater inequality, by a number greater than 1;
and a ratio of less inequality, by a number less than 1.

Arr. 228.—When the corresponding terms of two or more
ratios are multiplied together, the ratios ave said to be compounded,
and the vesult is termed a compound ratio. Thus, the ratio ¥,
compounded with the ratio §, is X §=¢g==4. In this case, 3
multiplied by 5, is said to have to 10 multiplied by 6, the ratio
compounded of the ratios of 3 to 10 and 5 to 6.

Arr, 239.—Ratios may be eompared with each other, by ve-
ducing the fractions which represent them, to a common denom-
inator. Thug, to ascertain whether the ratio of 2 to 5 is greater
than the ratio of 8 to 8, we have the two fractions, § and §, which
being reduced to a common denominator, are % and ’f; and,
since the first is less than the second, we infer, that the ratio of 2
to 5 is less than the ratio of 3 to 8.

PROPOBTION.
Arr. 240.—Proportion is an equality of ratios. Thus, if @, 0, ¢,
d are four quantities, such that p is equal to = then a, b, ¢, d form

a proportion, and we say that @ is to b,as ¢ is to d; ox, that @ has
the same ratio to b, that ¢ has to d.

Proportion is written in two ways.

1st. By placing the double colon between the ratios. Thus,

a:bi:c:d.

2d. By placing the sign of equality between them. Thus,

‘ s b=c:d.

The first method is the one generally used.

From the preceding definition, it follows, that when four quan-
tities are in proportion, the second divided by the first, gives the
same guotient as the fourth divided by the third. This is the Zest
of the proportionality of four quantities. Thus, if 3,6, 5, 10 are

Ruvizw. 237, What iz a ratio of equality? Of greater inequality?
Of less insquality? Give examples. 238. When are two or more ratios
said to be compounded? Give an example. 239. ¥ow may ratios be com-
pared to each other? 240. Whatis proportion? Give an example. How
are four quantities in proportion written? Give examples.
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the four terms of a true proportion, so that 8:6::5: 10, we
must have §==19.

If these fxactlons are equal to each other, the proportion is true;
if they are not equal to each other, it is false.

Thus, let it be required to find whether 3:8::2:5,

The first rvatio is §, the second is £, or 15, and 13 thersfore,
3, 8, 2, b are not proportional quantities.

R Eyank~—The words ratio and proportion, in common language, are
sometimes confounded with each other. Thus, two quantities are said to be
in the proportion of 3 to 4, instead of, in the ratio of 3 to 4. A ratio sub-
sists botween two guantities, a proportion only between jour. It requires
two equal ratios to form a proportion,

Awr, 243 .~In the proportion a: b: : ¢ : d, each of the quan-
tities @, b, ¢, d, is called a ferm. 'The first and last terms ave
called the extremes, the second and third, the means.

Awrr, 242,—Of four proportional quantities, the first and third
are called antecedents, and the second and fourth, consequents (Axt.
233); and the last is said to be a fourth proportional to the other
three, taken in their order.

Arr. 843.—Three quantities are in proportion, when the first
has the same ratio to the second, that the second has to the third.
In this case, the middle term is called amean proportional between
the other two. Thus, if we have the proportion

aib::bc
then b is called a mean proportional between a and ¢, and ¢is called
a, third proportional to @ and b.

Arr. 2d&.—Prorosirion L—In every proportion, the product of
the means is equal to the product of Hw extremes.

Let a:biic:d.

Then, since this is 5 true propoxtlon, the guotient of the second
divided by the first, is equal to the quotient of the fourth divided

by the third. Therefore, we must have
d

Multiplying both sides of thzs equahty by ac, to clear it of frac-
abc ade
tions, we have T Or, be=ad.
IMustration by mnnbers° 3:6::5:10, and 6X5=3X10.

REvIiEw.~240. Give examples of a true and false proportion. What
i8 & test of the proportionality of four quantities? 241. What ave the first
and last terms of a proportion called? 'The second and third terms?
242. What aro the first and thixd texms of a proportion called? The sec-
ond and fourth? 243. When are three quantities in proportion 2 Give an
example, What is the second term called? The third ?
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s . be ad ad be

From the equation be==ad, we have d=—, ¢=—-, b==—, and a==-,

’ a b ¢ d

from which we see, that if any three terms of a proportion are
given, the fourth may be readily found.

The first three terms of a proportion, are ac, bd, and acxy; whab
is the fourth? Ans. bdwy.

R EM¥ AR K.This proposition furnishes a more convenient test of the
proportionality of four quantities, than the method given in Article 240.
Thus, to ascertain whether 3 : 8 :: 215, it is merely necessary to compare
the product of the means and the extremes; and, since 3 X5 is not equal
to 83X 2, we infer that the proportion is false.

AR, 45— Provosrrioxy 11.—Conversely, If the product of two
quantities is equal to the product of two others, two of them may be
made the means, and the other two the extremes of a proportion.

Let be=ad.

Dividing each of these equals by ac, we have

ac
That is, a:b::re:d.

Tllustration. 5X8=4X10,and 4:5::8: 10,

ART. BdG.—Provosivion LIL-—If three quantities are in contin-
ued proportion, the product of the extremes is equal 1o the square of
the mean.

If a:b::b:e
Then, by Axt. 244, ac==Db=b".

16 follows, from Art. 245, that the converse of this proposition
is also true. Thus, if ac=0l?%,

Then, a:b:be

That is, 3f the product of the first and third of fwo quantities, is
equal to the squarc of @ second, the firstis to the second, as the second
is to the third.

THustration. If 4:6::6: 9, then 4X8=62
It IX8=16, then 2: /16 :: /16: 8
Or 2:4::4:8,

ARt 4% o—Provosirion IV.—If four quantities are in propor-
tion, they will be in proportion by ALTERNATION; thalis, the first will
hawe the same ratio to the third, that the second has to the fourth,

=36.

Let a:b::cqd.
This gives, 2:_%
be

Multiplying both sides by ¢, "E[:d‘
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Dividing both sides by b, 5:;
That is, a:c::b:d.

Ulustration. 2:7::6:2},and2:6::7: 2L

Arr. 248.~Prorosirion V.—If four quantities are in propor-
tion, they will be in proportion by INVERSION ; thai s, the second will
be to the first as the jfourth to the ikivd.

Let a:b::eqd,
By Art. 244, ad=Dbc.
ad

Dividing both sides by b, Jb—:c.

P . a_c
Dividing both sides by d, =
That is, b:a::d:ec.

Ilustration,. 2:5::6:15,and 5:2:: 15: 6.

Arr. 249.——Prorosrrion VI—If fwo sets of proportions have
an aniecedent and consequent in the one, equal to an antecedent and
consequent in the other, the remaining terms will be proportional.

Let a:b:ie:d (1))
And a:bre: 0 (2)
Then will crdiie: f

. b d
For, from 1st proportion, — —==;
a ¢
- b f
From 2d proportion, Pt
Hence, @:'f—/.
¢ e
This gives, c:dize: f
Tustration, 3:5::6:10
3: 5::9:15
And 6:10::9:15.

R e m Ak .~This proposition is gonerally texmed equality of ratios. It
is almost self~evident.

Axrr. 230 Prorosrrion VIL—If four quaniities are in propor-
tion, they will be in proportion by coxrosttioN; that is, the sum of
the first and second, will be to the second, as the sum of the third and
Jourth, is 1o the fourth.

Let a:biie:d
Then will at+b:betd:d
From the st proportion, be==ad, by Art. 244.
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Adding bd to each, bd==bd,

be-t-bd==ad--bd; Or b{c+-d)=d{a-+b).
s . __dla+b)
Dividing each side by ¢-d, b== par
b d
By C&+I}g gﬁ—-?m.
This gives, at+b:b:r:etd: d.
Tllastration. 3:4::6:8

344:4::6--8:8; Or, 7:4::14:8.

RuxaRE.~In a similar manner, it may be proved, that the sum of the
first and second terms, will be to the jfirst, as the sum of the third and
fourth is to the third.

Arr, 288—Prorosrrion VIIL—IF four quantities ave in pro-
portion, they will be in proportion by vivision; that is, the difference
of the first and second, will be to the second, as the difference of the
hird and fourth is to the fourth.

Let a:b::¢:4d,

Then will a—=b:biie—d:d.

From the 1st proportion,  be=ad, by Art, 244,

Subtracting bd from each, bd=bd
be—bd=ad—bd;

Or, b(c—d)=d(a—D).

Dividing each side by ¢—d, b:‘z(j‘j};

. b a

By a—b P

This gives, a—~b:b::c—d:d.
Nlustration, 8:5::16:10

8—5:5::16—10:10; Or, 3:5::6: 10,

R ey arx.~In a similar manner, it may be proved, that the difference
of the first and second will be to the first, as the difference of the third and
fourth iz to the third.

Arr. 282.—Prorosirion IX.—If four quantities are in propor-
tion, the sum of the first and second will be to their difference, as the
sum of the third and fourth is to their difference.

Lot g:bi:c:d, (1)

Then will a+b s a—b::edd: e—d.

From the Ist, by composition, Art. 250,
a+b:biictd:d

By alternation, a+b:etd: b d, Art. 247,
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ctd d
at+b b

"This gives,

From the Lst, by division,
a—b:b:ie—d: d,

By alternation, a—biec—d::b:d;

. c—d_d ct+d  e—d
This gives, P hence mza::g.
That is, a-t+b:ctd:: a—b: c—d;

Or, by alternation, a-+b:a—b::ct+d:c—d.

Tllustration. 5:3::10:6

5483 :5—3::104-6: 106
Or, 8:2::16:4.

Axrt, 28 8—Prorosrrion X.—If four quantities are in proportion,
like powers, or roots, of those quantities, will also be in proportion.

Let a:b:e:d.
Then will av: bt g
For, since Q:L—Z
a ¢
If we raise each of these equals to the nth power, we have,
bn dn
@ e
That is, at b et dn,
Where » may either be a whole number or a fraction.
lustration. 2:3::4:6
2t:3%::4%: 6%
Or 4:9::16:36
Also, a? 3 B : s mia? s mPbt
And Va8 ymiat s ymit
Or a:b::ma: mb.

Axrr, 254.—Prorosirion XL—If two sefs of quantities are in
proportion, the products of the corresponding terns will alse be in
proportion.

Tt atb::esd, (L)
And min::r:e; (2)
Then will em ; br s er: ds.

For, from the 1st,

&tcﬂ
cl&

; and from the 2d, L.
m 7

Multiplying these equals together, ,
b n_d bn_ ds

am ¢ rF T am e
This gives, am : bn::er:ds.
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Hlustration. 3:5::6:10,
4:3::8:6,
12:15::48: 60

Axrt. 8880.-—Proposivion XIL—In any condinuced proportion,
that s, any wumber of proportions kaving the same ratio, any one
antecedent is to ils consequent, as the sum of all the antecedents is
to the sum of all the consequents.

Let aibcidsrmen, &e.
Then will a: b atcetm: b4-dtng
Since @ : b::e¢: d, we have be==ad.
Since ¢ : b : 1 m 2 0, we have bm==an.

Adding ab to each, ab=ab. The sums of these equali~
ties give ab--be-t+bm=ab-}-ad-}+an ;
Or b(a+e+m)=a(b-+d-4n).
Pt A T L _alb+d-+n)
Dividing by a-Fefm, wmc— 3
LT
Dividing hoth sides by @ ézzizili .
a a-c+m

This gives, a: b atetm o b-Fd4n.

Tlustration. 3:4::6:8::9:12

3:4:: 3659 448412

Or 3:4::18:24.

R EmArK.~In the preceding demonstrations, the proof has genorally
been made to involve the definition of proportion, that is, that the four
quantities, , b, ¢, d, are in proportion, when a0 This is regarded as

2 ¢
a matter of great importance to the pupil. If the instructor chooses to dis-
penso with this, as some writers do, several of the demonstrations may be
somewhat shortened. There aro several other Propositions in Proportion,
that may be easily demonstrated, in a manner similar to the preceding, but
they are of so little use, as not to be worthy of the pupil’s attention.

NOW PUBLISHED.
RAY’S ALGEBRA, PART IL.—HIGHER ALGEBRA,

RAY'S ALGEBRA, PARY SECOND, for advanced students, containg a concise re-
view of the clementary principles presented in PART Finst, with more difficult exam-
ples for practice. Algo, & full discussion of the higher practical parts of the science,
embraecing the General Theory of equations, with Srurm’'s celebrated theorem jllus-
trated by examples; IoRNER'S method of resolving numerical eguations, &e., &e.
Designed to be s thorough treatise for Hran Scuoors and for Coritses. The author hag
endeavored to present every subjeet in a plain and simple manner, with numerous
interesting and appropriate illustrations and examples.

THE END.









