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We study the motion of vortex filaments in chiral media and find a semiclassical analog of the anomaly-
induced chiral magnetic effect. The helical solitonic excitations on vortices in a parity-breaking medium are
found to carry additional energy flow along the vortex in the direction dictated by the sign of chirality
imbalance; we call this new transport phenomenon the chiral propulsion effect. The dynamics of vortex
filaments in the parity-breaking background is described by a modified version of the localized induction
equation. We analyze the linear stability of simple vortex solutions and study the effects of chiral media on
the excitation spectrum and the growth rate of the unstable modes. We also show that, if the equation of
motion of the filament is symmetric under the simultaneous reversal of parity and time, planar-shape
solutions cannot transport energy.
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Introduction.—The physics of chiral media has attracted
significant attention recently. Remarkably, it is found that
the quantum chiral anomaly [1,2] affects the macroscopic
behavior of chiral media and induces new transport
phenomena, such as the chiral magnetic [3–7] and chiral
vortical effects [8–12] (CME and CVE, respectively). CME
and CVE refer to the generation of electric currents along
an external magnetic field or vorticity in the presence of a
chirality imbalance. The resulting currents are nondissipa-
tive due to the protection by the global topology of the
gauge field. These chiral effects are expected to occur in a
variety of systems: the quark-gluon plasma, Dirac andWeyl
semimetals, primordial electroweak plasma, and cold
atoms. In quark-gluon plasma, the chirality imbalance
can be produced by topological fluctuations of quantum
chromodynamics, or by the combination of electric and
magnetic fields that accompany heavy-ion collisions. The
parallel electric and magnetic fields can also be used to
create the chirality imbalance in condensed matter systems,
see, e.g., Ref. [13]. In addition, CME and CVE lead to a
new class of instabilities in these systems [14–20].
The CME has been observed experimentally in Dirac

[13,21,22] and Weyl semimetals [23–25]. There is an

ongoing search for CME and the local parity violation
[3,4] induced by the topological fluctuations in the quark-
gluon plasma in heavy-ion collisions at Relativistic Heavy-
Ion Collider and Large Hadron Collider; see Ref. [6] for a
review. In particular, the forthcoming isobar run in the
Spring of 2018 at Relativistic Heavy-Ion Collider is
expected to provide a conclusive result on the occurrence
of CME in heavy-ion collisions [26].
Recently, the STAR collaboration reported the exper-

imental observation of Λ hyperon polarization along the
normal to the reaction plane of the heavy-ion collision,
pointing toward the existence of large vorticity in the
produced quark-gluon fluid [27]. The role of vortical
flows in heavy-ion collisions has been discussed, e.g., in
Refs. [28–39]. It is natural to ask how the dynamics of
vortices is influenced by the chiral anomaly.
In this Letter, we analyze the dynamics of vortices in a

fluid with broken parity; the electromagnetic fields are
treated as fully dynamical. We find a new chiral transport
effect—an additional energy flow along the vortex filament
in the direction determined by the sign of chirality
imbalance, the chiral propulsion effect (CPE).
Motions of vortices in chirally imbalanced media.—Let

us consider the motion of a vortex filament in a fluid. The
vorticity concentrated on the vortex sources the velocity
field according to its definition ω ¼ ∇ × v, where v and ω
are fluid velocity and vorticity, respectively. The velocity
field can be found analogously to the magnetic field of a
thin current (Biot-Savart law). Assuming that the vortex
moves on the flow and the contribution to the velocity from
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distant parts of the vortex is unimportant (localized induc-
tion approximation), the dynamics of a thin vortex filament
in an incompressible and inviscid fluid is governed by the
localized induction equation (LIE) [40],

_X ¼ CX0 × X00; ð1Þ

where X ¼ Xðt; sÞ denotes the position of a vortex, t is the
time, s is the arc-length parameter, the dot and prime indicate
t and s derivatives, respectively, and C is a constant
proportional to the circulation. Although originally the
LIE was introduced for thin vortices in classical fluids
[41,42], it can also describe the dynamics of quantized
vortices in superfluids and superconductors [43–45].
Solving the LIE (1) is much simpler than solving the
Euler equation directly, and it provides a physically intuitive
picture of the dynamics of the fluid in terms of filament
motions. Remarkably, the LIE (1) can be mapped to the
nonlinear Schrödinger equation (NLSE) by the so-called
Hasimoto transformation [46],

ψðt; sÞ ¼ κðt; sÞ exp
�
i
Z

s
τðt; s0Þds0

�
; ð2Þ

where κðt; sÞ is the curvature and τðt; sÞ is the torsion of a
vortex. NLSE is known to be a completely integrable system
which has solitonic solutions and an infinite sequence of
commuting conserved charges. The Hasimoto transforma-
tion has been shown to be a Poisson map that preserves the
Poisson structures [47]. The LIE, thus, describes a com-
pletely integrable system. The solitons of NLSE correspond
to the helical excitations in LIE that propagate along the
vortex. They are known as Hasimoto solitons; their exist-
ence is established experimentally [48,49].
Let us now consider a system in which parity is broken

by the presence of chirality imbalance; the corresponding
term in the action is

Sχ ¼
Z

dtμH; ð3Þ

where μ is the “chiral” chemical potential (usually it is
denoted by μ5, but as this is the only chemical potential that
appears in this Letter, we simplify this notation to μ. Please
note that the chiral chemical potential does not correspond to
a conserved quantity, as the chiral charge is not conserved
due to the chiral anomaly. The state with μ ≠ 0, therefore,
does not correspond to a true ground state of the system; for
discussion, see, e.g., Ref. [50].), and H is the magnetic
helicity given by H ¼ ðe2=4π2Þ R d3xA · B, where A is the
vector potential and B is the magnetic field. For simplicity,
we assume that the chiral chemical potential is homogenous
and time independent. It is worth mentioning that taking the
derivative of this action with respect to the vector potential,
one readily finds the CME current: JCME ¼ δSχ=δA ∝ B.

Supplementing the nonrelativistic Abelian Higgs model
with Eq. (3), one can find the equation of motion for a
quantized magnetic vortex at finite μ, as derived by
Kozhevnikov [51,52]

_X ¼ CX0 × X00 þ μ

�
X000 þ 3

2
ðX00Þ2X0

�
: ð4Þ

The term μX000 comes from the Lorentz force exerted on
the CME current along the vortex F ¼ JCME × B ¼
μ
R∞
−∞ dz½X0ðt; sÞ × X0ðt; s þ zÞ�e−jzj=a ¼ μX0 × X000 þ � � �

where a is the inverse photon mass [Eq. (4) is obtained by
X0 × F]. The tangential term 3

2
μðX00Þ2X0 is added to keep the

arc-length-preserving property (the term X000 can also be
derived in a fluid-dynamical system using the kinetic
helicity as the Hamiltonian [53]). Note that the tangential
motion does not change the shape of the vortex. Hereafter,
we set the constant C in Eq. (4) to unity by a corresponding
time rescaling. Let us note that Eq. (4) has previously
emerged in a different context: it describes the motion of a
vortex tube containing an axial flow and is known as the
Fukumoto-Miyazaki equation (FME) [54,55]. Notably,
through the Hasimoto transformation, the FME can be
mapped to the integrable Hirota equation [56]

i _ψ þ ψ 00 þ 1

2
jψ j2ψ − iμ

�
ψ 000 þ 3

2
jψ j2ψ 0

�
¼ 0; ð5Þ

this map can be utilized to obtain the solitons of the FME.
Let us give some simple solutions of the FME (4). We

can find a solution which has the form of a helix

Xhelixðt; sÞ ¼
1

A2

0
B@

κ0 cos½Aðs − vptÞ�
κ0 sin½Aðs − vptÞ�

τ0Aðs − vgtÞ

1
CA; ð6Þ

where the constants κ0 and τ0 give the curvature and the
torsion of the helix, A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ20 þ τ20

p
, and the phase and

group velocities are given by vp ¼ τ0 þ μ½τ20 − ðκ20=2Þ�,
vg ¼ −κ20=τ0 − ð3κ20=2Þμ. Note that the sign of τ0 deter-
mines the handedness of the helix. The radius R and the
pitch l of the helix are given by R ¼ κ0=ðκ20 þ τ20Þ,
l ¼ 2πτ0=ðκ20 þ τ20Þ. The solution is reduced to a circular
loop in the limit τ0 ¼ 0 in Eq. (6).
Using the map between the FME and the Hirota

equation, we find a propagating solitonic solution of the
FME

Xsolðt; sÞ ¼

0
BB@

− 2ϵ
ϵ2þτ2

0

sech½ϵξ� cos½η�
− 2ϵ

ϵ2þτ2
0

sech½ϵξ� sin½η�
s − 2ϵ

ϵ2þτ2
0

tanh½ϵξ�

1
CCA; ð7Þ
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where η≡τ0sþðϵ2−τ20Þtþμτ0ð3ϵ2−τ20Þ, ξ≡ s − ½2τ0 þ
μð3τ20 − ϵ2Þ�t, and ϵ and τ0 are constants. This soliton
has a constant torsion given by τ0 and propagates in the
z direction. Its speed is modified by μ and reduces to the
original Hasimoto soliton at μ ¼ 0.
Let us discuss the kinetic properties of these solutions.

The kinetic energy of a soliton can be found as
E ¼ 1

2

R
dsκ2 ¼ 4ϵ. In addition, the helical nature of the

configuration [57] can be characterized by the quantity
H ¼ R

dsκ2τ ¼ 8ϵτ0. This is the second conserved quan-
tity in the nonlinear Schrödinger hierarchy [47,57]. In the
case of a planar configuration, namely if the torsion is
vanishing,H ¼ 0. Note that these quantities do not depend
on μ.
Let us now turn to the momentum carried by these

solutions. In the thin vortex limit, the electromagnetic
fields can be expressed in terms of the vortex coordinates
Xðt; sÞ as

Bðt; xÞ ¼ φ

Z
dsX0δðx − XÞ; ð8Þ

Eðt; xÞ ¼ −φ
Z

ds _X × X0δðx − XÞ; ð9Þ

where φ is the magnetic flux and the electric field locally
has the structure “v × B.” The momentum of the magnetic
flux is given by the Poynting vector

P ¼
Z

d3xE × B ¼ φ2M2

Z
ds _X; ð10Þ

where M is the inverse of the core size of the vortex. The
helix solution moves in the z direction. The z component of
momentum per unit length of the coil is evaluated as

ðP̄helixÞz ¼
κ20
τ0

�
1þ 3

2
μτ0

�
φ2M2: ð11Þ

The z component of the momentum of the soliton solution
can be calculated using Eq. (7)

ðPsolÞz ¼
4ϵ½2τ0 þ μð3τ20 − ϵ2Þ�

ϵ2 þ τ20
φ2M2: ð12Þ

In both cases, there are contributions proportional to μ.
Therefore, the chiral medium provides a thrust to the
solitons, propelling them along the vortex—we will call
this the chiral propulsion effect.
In the case of the solitons (12), at μ ¼ 0 the velocity is

proportional to the torsion τ0—this means that for the
excitation to have a finite momentum in a chirally sym-
metric medium, the vortex has to deform in a parity-
breaking way. On the other hand, even if the solution is
planar, it can still experience the thrust if parity is broken in

the medium. Indeed, Eq. (12) shows that for μ ≠ 0 the
thrust remains even in the τ0 → 0 limit corresponding to a
planar solution with H ¼ 0. As we will discuss later, a
planar solution is forbidden to have a finite energy flow in a
PT symmetric theory. The LIE has the PT symmetry,
whereas in the FME case it is broken.
Properties of fluctuations.—Let us now examine the

effect of the chiral medium on the fluctuations around the
circle and helix solutions. We use the local coordinate
system called the Frenet–Serret (FS) frame, which is
commonly used to parametrize the shape of a curve.
There is an ambiguity in the parametrization in s, and
we fix this by requiring jX0j ¼ 1. Then, the unit tangent
vector is written as t ¼ X0. Given a curvature κðt; sÞ and a
torsion τðt; sÞ, the shape of a curve is determined, up to a
trivial translation and rotation, by the FS formulas

∂s

0
B@

t

n

b

1
CA ¼

0
B@

0 κ 0

−κ 0 τ

0 −τ 0

1
CA
0
B@

t

n

b

1
CA; ð13Þ

where n ∝ t0 is the unit normal vector and b≡ t × n is the
unit binormal vector. The time evolution of a curve is
described by

∂t

0
B@

t

n

b

1
CA ¼

0
B@

0 α β

−α 0 γ

−β −γ 0

1
CA
0
B@

t

n

b

1
CA; ð14Þ

where α, β, γ are functions of κ and τ, and their functional
forms are determined from Eq. (4). The FS basis has
to satisfy the compatibility conditions, ∂s∂tt ¼ ∂t∂st,∂s∂tn ¼ ∂t∂sn, ∂s∂tb ¼ ∂t∂sb. Using these conditions,
we find the time-evolution equations for τ and κ [58]

_κ ¼ −2τκ0 − κτ0 þ μ

2
ð2κ000 − 6τ2κ0 þ 3κ2κ0 − 6κττ0Þ; ð15Þ

_τ ¼ κ000κ − 2κ2ττ0 þ κ3κ0 − κ0κ00

κ2

þ μ

2κ2
½3κ4τ0 þ 6κ000κτ þ 2κ2τ000 þ 12κκ00τ0 − 6κ2τ2τ0

þ 6κκ0τ00 − 6ðκ0Þ2τ0 þ 6κ3τκ0 − 6τκ0κ00�: ð16Þ

If we take μ ¼ 0 in Eqs. (15) and (16), the Da Rios
equations are reproduced [59].
We consider linear fluctuations, δκ and δτ, around

constant κ and τ. By taking δκ; δτ ∝ e−iωtþips, the
dispersion relation is obtained from Eqs. (15) and (16)
as follows:
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ω ¼ 2pτ þ μp

�
p2 −

3

2
κ2 þ 3τ2

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðp2 − κ2Þð1þ 3μτÞ2

q
: ð17Þ

Equation (17) compactly encodes the information of the
fluctuations around three different configurations: a circle,
a helix, and a straight line. Let us first discuss a circle,
in which case the torsion is zero. The periodicity of a circle
requires p ¼ nκ with an integer n, then the frequency ω
simplifies to

ω ¼ �κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðn2 − 1Þ

q
þ μκ3n

�
n2 −

3

2

�
: ð18Þ

If we take μ ¼ 0, Eq. (18) coincides with the result of
previous studies [60–63]. The mode with n ¼ 0 corre-
sponds to the change of radius, n ¼ �1 represents a slight
change of the propagation direction, and does not involve
the change of its shape. At μ ¼ 0, these modes are the zero
modes of the soliton. At μ ≠ 0, because of the chirality
imbalance, n ¼ �1 modes acquire finite frequencies. The
degeneracy between n ↔ −n is also lifted. The frequency
is always real, which means that a circle is stable.
Let us now consider the helix-shape solution. The lowest

value of p is determined by the length L of a helix as 2π=L.
At μ ¼ 0, the imaginary part appears if p2 < κ2, which
means that these long-wavelength modes are unstable.
Because the factor ð1þ 3μτÞ2 is always nonnegative, this
condition is unchanged, except for a very special choice of
the chiral chemical potential μτ ¼ −1=3. However, a finite
μ changes the growth rate of unstable modes. In the small p
limit, the growth rate is given by

Imω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2ð1þ 3μτÞ2

q
pþOðp2Þ; ð19Þ

which is different for the right-handed (τ > 0) and left-
handed (τ < 0) helices. The real part of ω to the first order
in p is given by

Reω ¼
�
2τ þ 3

2
μð2τ2 − κ2Þ

�
pþOðp2Þ: ð20Þ

Hence, the chirality imbalance also modifies the velocity of
the wave propagating along the helix.
In the limit κ → 0, τ → 0, the helix approaches a straight

line [64], and the dispersion for the fluctuations around a
straight vortex, ω ¼ �p2 þ μp3, is obtained. The leading
p2 behavior corresponds to the famous Kelvin waves [65],
and the second term represents the modification due to the
chirality imbalance.
Absence of propagation of planar solutions in the PT-

symmetric case.—In the case of the LIE, the velocity of a
Hasimoto soliton is given by v ¼ 2τ0 [take μ ¼ 0 in

Eq. (7)]. At τ ≠ 0, the solutions are chiral, in the sense
that their handedness is correlated with the direction of the
propagation. A mirror image of a solution propagates in the
opposite direction from the original one. If we look at a
planar (τ ¼ 0) solution at μ ¼ 0 [see the right side of
Fig. 1], it just rotates around its axis and cannot convey
energy along the vortex. In fact, this is a generic feature of a
planar solution in the LIE. Here, we consider a class of
solutions that are asymptotically straight lines, like the
Hasimoto solitons. We now show that planar solutions
cannot propagate if the equation of motion (EOM) has the
PT symmetry. The LIE has this symmetry, whereas the
FME does not.
It suffices to show that, when the solution is planar, the

velocity _X is restricted to the direction of b, because a
binormal motion cannot make the soliton propagate along
the vortex. Consider a current written in the form

J ¼
Z

dsfðκ; τÞ _X; ð21Þ

where fðκ; τÞ is a function of κ and τ. The energy current is
written in this form. Let us denote the unit vector in the
direction of the asymptotic line by l. Because l is within
the plane spanned by ft; ng for a planar solution, it is
always orthogonal to b, l · b ¼ 0. Thus, if _X ∝ b, then l ·
J ¼ 0 holds and there is no energy flow in the direction
of l.
Let us examine the transformation property of the

EOMs. The parity reflection, X → −X, acts on the FS
system as

ft;n; b; κ; τg → f−t;−n; b; κ;−τg: ð22Þ

The binormal vector is parity even, because b ¼ t × n,
while the torsion τ ¼ ðn0 · bÞ is parity odd. The right hand

FIG. 1. Nonplanar [left, ðϵ; τ0; tÞ ¼ ð1; 0.4; 0Þ� and planar
[right, ðϵ; τ0; tÞ ¼ ð1; 0; 0Þ] solitons.

PHYSICAL REVIEW LETTERS 121, 142301 (2018)

142301-4



side (RHS) of the LIE, X0 × X00, is P even, while the
modification to the LIE in the FME, X000 þ 3

2
ðX00Þ2X0, is

P odd.
A general EOM can be written in the form

_X ¼ aðκ; τÞtþ bðκ; τÞnþ cðκ; τÞb: ð23Þ

From the assumption, the theory has the PT symmetry. The
LHS is even under PT. The RHS is T even, so it has to be
P even. For a planar solution, τ ¼ 0, the coefficients in
Eq. (23) are all P even, because κ is a P-even quantity.
Thus, the coefficients of t and n have to vanish,
aðκ; τ ¼ 0Þ ¼ bðκ; τ ¼ 0Þ ¼ 0, and _X ∝ b.
The results above can be further generalized. The LIE

can be mapped to NLSE, which has an infinite sequence of
commuting invariants. Those invariants are the generators
of Hamiltonian flows. Correspondingly, the LIE also has
infinitely many commuting Hamiltonian flows [47], which
are called the LIE hierarchy. The first and second terms of
the RHS of the FME (4) are the first two Hamiltonian flows

V0 ¼ κb; V1 ¼
κ2

2
tþ κ0nþ κτb;…: ð24Þ

In Ref. [47], a recursion operator that successively gen-
erates the next flow is constructed

RV ≡ −P½t × ∂sV�; ð25Þ

where P denotes the reparametrization procedure to keep
the arc-length-preserving nature, which is done by adding a
tangential term (see also Ref. [53]). Once we know Vn, we
can obtain the next flow by Vnþ1 ¼ RVn. One can show
[58] that Vn is P even (odd) if n is an even (odd) number.
Thus, every EOMwith an even n has the PT symmetry, and
the solution of the EOM cannot propagate if its planar.
To summarize, we have found a new phenomenon

affecting the dynamics of vortex solitons in chirally
imbalanced media—the chiral propulsion effect. The
CPE refers to an additional energy flow along the vortex
filament in the direction determined by chirality imbalance.
The energy is carried along the vortex by helical excitations
analogous to the Hasimoto solitons. We have also found
that a chirality imbalance modifies the excitation spectrum
around solutions, one example of which is the modification
of the growth rate of instability around a helical soliton
solution. It is shown that, if the EOM respects the PT
symmetry, a planar solution cannot transfer energy—this
indicates that the existence of the CPE is attributed to the
breaking of parity in the medium. Because the total
momentum of the system is conserved, the momentum
transfer to the helical solitons will be balanced by the rest of
the medium. The phenomena addressed in this Letter may
be realized in chiral fluids in the presence of nonzero
magnetic helicity—for example, Weyl and Dirac

semimetals in external parallel electric and magnetic fields,
or a quark-gluon plasma in heavy-ion collisions.
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