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In our study, three gemini dicationic surfactants with different
methylene group spacer (16-6-16, 16-5-16 and 16-4-16) have
been synthesized and characterized in solution by 1H NMR
spectroscopic technique. The implications of gemini micellar
solution on ninhydrin and metal amino acid complex
([Cu(II)-Trp]+) were performed by the means of single-beam
UV–visible spectroscopy. The absorbance was noted at
regular time intervals and values of rate constant (kψ) were
determined by using a computer-based program. Synthesized
surfactants proved as an efficient catalyst on the interaction
of ninhydrin with metal amino acid complex as compared
with conventional surfactant and aqueous systems. The
required description regarding the implications of gemini
dicationic surfactants are provided in the text in detail. The
conductivity technique was applied in order to get critical
micelle concentration (cmc) of geminis in the presence and
absence of reactants. Catalytic results developed in gemini
dicationic surfactant system were explained effectively by
pseudo-phase model. Various thermodynamic quantities, viz.,
activation energy, Ea, activation enthalpy, ΔH#, and activation
entropy, ΔS#, were obtained on interaction of ninhydrin with
[Cu(II)-Trp]+ in gemini systems by applying Eyring equation.
A detailed explanation about these evaluated parameters was
also made.
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1. Introduction

Surfactant, referred to as a surface-active material, is capable of reducing interfacial tension. They have
polar and non-polar moieties called head group and hydrophobic tail, respectively. Their strength of
interaction depends significantly on the nature of hydrophilic heads and hydrophobic tail. So,
surfactants have been used in various industrial applications, such as catalyst, cosmetics, oil
exploration, daily chemical and pharmaceutical needs, textile industries, dying and painting [1–8].
Commonly, the efficacies of surfactants in uses depend upon critical concentration known as
concentration (cmc). It is defined as a minimum range of concentration at which surfactant monomer
initiates to self-associate that can be obtained as an inflection point by plotting any of the physico-
chemical properties against surfactant concentration [9–14]. Surfactants self-aggregate and turn into
several morphological aggregates above cmc, e.g. bilayers, vesicles, micelles and nanostructures.
Therefore, surfactants play several important roles in diverse physico-chemical properties [15,16].

Gemini quaternary ammonium surfactants, attached by two hydrophilic head groups and two
hydrophobic chains at or close to heads through a spacer, have received the great consideration by
several investigators for their outstanding features [17]. Both the hydrophilic head and hydrophobic
chain have special chemical structures and are responsible for their excellent uses in numerous
purposes (industrial and commercial applications) [18]. Gemini surfactants are a unique class of
surfactants and there are great significances for their excellent interfacial properties [19]. In contrast to
conventional monoalkyl cationic surfactants, they have a wide range of chemical and structural
morphologies and exhibit properties such as good viscoelasticity, better solubilizing capacity, low cmc
value, excellent wettability and so on [20–25].

Being dependent on alkyl head group, hydrophobic chain and length of spacer as well as structures of
consisting species, studies of gemini surfactants and their aggregates provide several valuable
applications in the field of surface and interfacial sciences [26–30]. Most of the current reports
available are also focused on the micellar and surface-active properties of gemini surfactants [31–34].
Authors have investigated and reported that gemini surfactants were found to be superior as drug
delivery agents in medical and pharmaceutical sciences [35–38]. Even though a large number of
scientific reports are existing on surface behaviour of gemini and their aggregates that they form, the
reports on the studies of their influences on rates have not received the considerable attraction.
However, the complexity in the synthesizing and purifying of gemini surfactants hinders the usage
and applications in most domestic and industrial areas.

Therefore, in order to fulfil the growing requirements of several industries and commercial utilization,
three dicationic gemini surfactants having various methylene spacer chain length (e.g. 16-6-16, 16-5-16
and 16-4-16) have been synthesized and characterized by using 1H NMR spectroscopy. Influences of
these synthesized gemini materials on the rates of interaction of ninhydrin with metal amino acid
complex have been studied in sufficient manner. We believe that the outcome of the present study
will increase the awareness in regard of the use of gemini surfactants and will expand their scope of
application to large scale. The findings of study in gemini are also compared with that obtained in
aqueous system.

Ninhydrin, an effective colour-generating chemical compound, is used largely to classify the amine
functional group in the several domains, e.g. biochemical studies, chemical works and forensics [39,40].
Studies of interaction relating ninhydrin with amine functional group offer a number of biological
significances related to living organism (such as, transpeptidation and deamination) [41,42]. Reaction
of ninhydrin and amino group yields the diketohydrindylidene-diketohydrindamine (DYDA)
commonly called to Ruhemann’s purple. As the DYDA destabilizes at room temperature, many
developments (e.g. effect of traditional monoalkyl surfactants, role of various salts, impact of different
solvent media, and so on) were made to stabilize the DYDA [43–47]. Whereas, effects of gemini
surfactants on amino group and ninhydrin are scanty and have not obtained essential attention.
Investigators/scientists working in similar or allied arenas are still awaiting the better outcomes and
significances.
2. Experimental section
2.1. Materials and methods
All the materials applied in the present work is listed in table 1.



Table 1. Source and purity of materials applied in present work.

name of the
materials source

purity in
mass fraction

CAS/batch/
lot number

purification
methods

analysis
method

CH3COOH Merck (India) 0.99 HH3H530442 none none

CH3COONa Merck (India) 0.99 ML0M603893 none none

copper sulfate Merck (India) 0.98 7758-98-7 vacuum drying none

1,6-dibromohexane Fluka (Germany) 0.97 629-03-8 vacuum drying none

1,5-dibromopentane Fluka (Germany) 0.98 111-24-0 vacuum drying none

1,4-dibromobutane Fluka (Germany) 0.98 110-52-1 vacuum drying none

N,N-dimethylcetylamine Fluka (Germany) 0.95 112-69-6 vacuum drying none

DL-tryptophan SRL (India) 0.99 71-00-1 vacuum drying none

ninhydrin Merck (India) 0.99 DC2DR52232 none none

ethyl acetate Merck (India) 0.99 IK0IF60606 none none

ethanol absolute Merck (Germany) 0.998 K40488983944 none none
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Gemini dicationic surfactants (16-6-16, 16-5-16 and 16-4-16) were synthesized in the laboratory and
the detailed methods were mentioned in the published articles [48,49]. Synthesized surfactants were
characterized by 1H NMR technique and were matched in close agreement to results reported
formerly [48,49]. Water used throughout the experiment was demineralized double-distilled from
alkaline KMnO4. The specific electrical conductivity of water employed was 1–2 µs cm−1 at 298 K.
Standard solutions of complex, ninhydrin and surfactants were made by accurate weighing of
required quantity using an acetate buffers. All the solutions were stirred well to be homogenized and
kept for a day to attain equilibrium at room temperature. To measure the solution of pH, a digital
Elico pH meter (Hyderabad, India) was used.
2.2. Electrical conductivity measurements
Electrical conductivities were measured on conductivity meter (Systronics model 306, Ahmedabad,
India) in order to get cmc at required experimental temperatures (i.e. 303 K and 343 K). Solutions of
gemini and the mixed additives were left at room temperature to ensure stabilization. For cmc
evaluation, [ninhydrin] and [complex] were fixed at 6 and 0.2 mmol kg−1, respectively. Each run was
repeated at least in triplicate to get reproducible results. Before starting the study, apparatus was
calibrated with a solution of potassium chloride at different concentrations. For determining cmc,
specific conductivities were plotted against different concentrations of gemini surfactants and the
inflection point in the plot corresponds to the cmc value [50–55]. An effective enhancement in
conductivity was noted in premicellar region owing to free cations and anions but not in post region
due to formation of micelle. In our study, cmc of pure gemini obtained is consistent at 303 K with
outcomes published formerly [56]. The cmc values at various reaction situations (i.e. water and
water + ninhydrin + [Cu(II)-Trp]+) are existing down.

(a) [16-6-16]: 0.043 and 0.039 mmol kg−1 at 303 K; 0.058 and 0.049 mmol kg−1 at 353 K.
(b) [16-5-16]: 0.034 and 0.030 mmol kg−1 at 303 k; 0.055 and 0.043 mmol.kg−1 at 353 K.
(c) [16-4-16]: 0.032 and 0.025 mmol kg−1 at 303 K; 0.043 and 0.033 mmol kg−1 at 353 K.

2.3. Spectra of product formed
Spectra were obtained in aqueous system as well as gemini micellar system. Single-beam Shimadzu
model spectroscope (UV mini 1240, Kyoto, Japan) was used to note the absorbance at different
wavelengths ranged from 340 to 620 nm. Absorbance of product was drawn against varying
wavelength and demonstrated graphically in figure 1. Absorbance values are developed more in
surfactant system compared with aqueous system with unaffected absorption maximum (=370 nm).
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Figure 1. Spectra obtained in aqueous system as well as gemini micellar system on [Cu(II)-Trp]+ and ninhydrin reaction at 353 K
after heating 2 h: (rectangle) aqueous, (circle) 16-6-16, (triangle) 16-5-16 and (inverted triangle) 16-4-16. Experimental conditions:
[ninhydrin] = 6 mmol kg−1, [Cu(II)-Trp]+ = 0.2 mmol kg−1, [16-s-16] = 30 × 10−2 mmol kg−1 and pH = 5.0.
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These results can be seen visually in figure 1. Consequently, figure 1 confirms that product formation is
same in the two systems.

2.4. Kinetic measurements
In this study, the experiments were made under pseudo-first-order reaction circumstances fixing
concentration of ninhdyrin in excess compared with complex concentration. Requisite volumes of gemini
surfactant, acetate buffer, metal salt and amino acid were placed in a round-bottomed three-necked reaction
pot. The pot was fixed in thermostated water bath at desired experimental temperature. The solution was
left 30 min to ensure equilibrium. Kinetic experiments were performed by pouring a known volume of
ninhydrin into the pot. So, the kinetic data were acquired under pseudo-first-order reaction circumstances
at regular time intervals on UV–visible spectroscopy with identical quartz cuvettes of path length 1 cm. The
rate constant (kψ) values were estimated as an average of at least triplicate runs. A detailed procedure in
regard of kinetic measurements is available in the literature published previously [57–63].

2.5. Job’s method
Job’s method was used to inspect composition of product prepared on interaction of metal-amino acid
complex and ninhydrin by heating complex and ninhydrin at 368 K for 2 h. Subsequently, absorbance
was noted at λmax (= 370 nm) at the end by the means of UV–visible spectrophotometer (figure 2).
It was observed that ninhydrin (1 mol) reacted with complex (1 mol) to yield the product.
3. Results
3.1. Influence of pH on kψ
Interaction of ninhydrin with metal amino acid complex at different pH was studied in the presence of
gemini dicationic surfactants, keeping other parameters constant. The resultant values of rate constant
obtained at different pH are mentioned in table 2. Also, rate constants are plotted at varying pH and
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Figure 2. Plots of A370 versus mole fraction of ninhydrin for estimation of product composition prepared on [Cu(II)-Trp]+ and
ninhydrin reaction by heating complex and ninhydrin at temperature 368 K for 2 h: (rectangle) 16-6-16, (circle) 16-5-16 and
(triangle) 16-4-16. Experimental conditions: [16-s-16] = 30 × 10−2 mmol kg−1.

Table 2. Implications of different factors on kΨ on [Cu(II)-Trp]+ and ninhydrin reaction in geminis (30 × 10−2 mmol kg−1) at
[ninhydrin] (6 mmol kg−1). Standard uncertainties are in kψ = ±0.1 × 10−5 s−1.

[Cu(II)-Trp]+ (mmol kg−1) pH temp. (K)

105 kψ (s−1)

16-6-16 16-5-16 16-4-16

0.1 5.0 353 9.4 10.4 12.2

0.15 5.0 353 9.4 10.5 12.0

0.2 5.0 353 9.5 10.5 12.0

0.25 5.0 353 9.6 10.5 12.1

0.3 5.0 353 9.5 10.4 12.2

0.2 4.0 353 5.5 6.1 6.6

0.2 4.5 353 6.2 7.2 8.5

0.2 5.0 353 9.5 10.5 12.0

0.2 5.5 353 11.0 11.8 13.0

0.2 6.0 353 11.4 12.1 13.2

0.2 5.0 343 5.1 6.8 7.7

0.2 5.0 348 7.0 8.5 9.4

0.2 5.0 353 9.5 10.5 12.0

0.2 5.0 358 11.0 12.8 14.2

0.2 5.0 363 13.2 15.6 17.8
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shown graphically in figure 3. Figure 3 reveals that rate increases up to pH 5, then becomes
approximately constant. This behaviour confirms formation of Schiff base in vicinity of pH 5. As a
consequence, studies were made at pH 5.
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Figure 3. Implication of varying pH on kψ for [Cu(II)-Trp]+ and ninhydrin reaction in 16-s-16 surfactants: (rectangle) 16-6-16,
(circle) 16-5-16 and (triangle) 16-4-16. Reaction conditions: [Cu(II)-Trp]+ = 0.2 mmol kg−1, [ninhydrin] = 6 mmol kg−1, [16-s-
16] = 30 × 10−2 mmol kg−1 and temperature = 353 K.
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3.2. Influence of metal amino acid concentration on kψ
To check role of concentration of metal amino acid complex on rate constant, experiments were run at
several initial concentrations of complex under pseudo-first-order reaction condition by fixing other
experimental ingredients constant. The varied range of complex concentration was 0.1–0.3 mmol kg−1.
The evaluated values of kψ at different initial complex concentrations are given in table 2. Evaluated
results of table 2 confirmed that the study suggested a first-order dependence of rate in [complex].
Then rate equation can be expressed as equation (3.1).

d[product]
dt

¼ rate constant (kcÞ � ½M� AA�þ, ð3:1Þ

where [M-AA]+ refers to [Cu(II)-Trp]+.

3.3. Influence of ninhydrin concentration on kψ
Influence of ninhydrin concentration was carried out by varying ninhydrin ranging from 0 to
40 mmol kg−1 in gemini micellar condition at fixed [complex], temperature and pH. Rate constant
increases on increasing ninhydrin concentration. Rate values are plotted against several ninhydrin
concentrations (figure 4). Plot of rate constant versus [ninhydrin] clearly demonstrates a nonlinear
curve crossing through origin. This confirms order to be fractional in ninhydrin concentration.

3.4. Influence of temperature on kψ
In order to see the behaviour of temperature on the study, kinetic runs were made at five different
temperatures, viz., 343, 348, 353, 358 and 363 K at fixed concentration of reactants (ninhydrin and
metal-amino acid) and pH in gemini surfactant system. The outcome of rates noted in the study are
presented in tabular form in table 2. Rates increase with increasing temperature. Thermodynamic
quantities such as ΔH#, ΔS# and Ea have been determined using Eyring equation in geminis. These
thermodynamic quantities are reported in table 3.
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Figure 4. Implication of varying ninhydrin on kψ for [Cu(II)-Trp]
+ and ninhydrin reaction in 16-s-16 surfactants: (rectangle) 16-6-16,

(circle) 16-5-16 and (triangle) 16-4-16. Experimental conditions: [Cu(II)-Trp]+ = 0.2 mmol kg−1, [16-s-16] = 30 × 10−2 mmol kg−1,
temperature = 353 K and pH = 5.0.

Table 3. Thermodynamic quantities (Ea, ΔH
# and ΔS#), km and KE and KF calculated on ninhydrin (6 mmol kg−1) and [Cu(II)-

Trp]+ (0.2 mmol kg−1) reaction in geminis (30 × 10−2 mmol kg−1).

aqueousa 16-6-16 16-5-16 16-4-16

Ea (kJ mol
−1) 60.5 33.8 32.3 30.1

ΔH# (kJ mol−1) 57.7 31.0 29.5 27.3

−ΔS# (JK−1 mol−1) 143.7 170.4 171.5 172.9

103 km (s−1)a — 3.0 3.4 3.9

KE (mol
−1 dm3)a — 60.0 57.0 52.0

KF (mol
−1 dm3)a — 54.0 52.0 49.0

aAt 353 K. Standard uncertainties are: Ea = ±0.1 kJ mol−1, ΔH# = ±0.1 kJ mol−1 and ΔS# = ±0.1 J K−1 mol−1.
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4. Discussion
4.1. Reaction mechanism
The proposed reaction mechanism of present study between ninhydrin and metal amino acid complex is
shown as scheme 1. This is familiar previously that lone pair of nitrogen of amino group is mandatory
for attack on middle carbonyl group of ninhydrin [64–67]. But, electrons of lone pair are connected
to metal ion. Under such reaction condition, ninhydrin forms a complex with metal-amino acid.
This is known as characteristic of combination-of-two-ligands-attached-to-the-same-metal-ion (CLAM)
reaction mechanism [68–71].

4.2. Influence of gemini dicationic surfactants on the study
To determine the influence of geminis on the study, rate constants were calculated at several amounts of
gemini surfactant concentration keeping other reaction factors fixed. These values of rate constant are
summarized in electronic supplementary material, table S1.
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royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200775
8

Rate constant increases steadily with increasing gemini at concentration below cmc value (Zone I) and
levelling-off zones achieve at gemini concentration up to 400 × 10−2mmol kg−1 (Zone II). Plots of Zone I
and Zone II, figure 5, are detected the same as conventional monomeric surfactants [72–74]. At later stage,
geminis result in a Zone III of increasing rate at higher surfactant concentration. Results suggested that
the similar kinetics of rate with respect to ninhdyrin and metal-amino acid complex, i.e. fractional and
first-order, respectively, were attained in gemini micellar medium as that to pure water medium.
4.3. Quantitative analysis of rate constant against gemini surfactants plot
Quantitative analysis of enhanced rate constant against [gemini] in the study can be interpreted
successfully with model led by Menger & Portnoy [75] and established by Bunton [76,77].

In current study, the model is shown as scheme 2 below.
Equation (3.1) and scheme 2 gave equation (4.1)

kc ¼ k0W þ k0mKE½Dn�
1þ KE½Dn� : ð4:1Þ

Then, equation (4.1) can be converted to equation (4.2)

kC ¼ kw½Nin� þ ðKEkm � kwÞMS
N ½Dn�

1þ KE½Dn� , ð4:2Þ

where kw and kψ denote rate constants in pure water and gemini surfactants, respectively. KE and KF

specify the respective binding constant of M-AA complex to micelle and ninhydrin to micelle.
MS

N = [(Nin)m]/[Dn] is concentration of ninhydrin in molar ratio of the micellar head group.
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In order to get KE and micellar rate constant (km), we need cmc values under existing kinetic study.
So, cmc values have been determined by the means of conductometric technique. For known cmc, KE and
km were calculated from equation (4.2) by a computer process. The values of KE and km are provided in
table 3. Putting of KE and km in equation (4.2) results in the calculated kψcal which is in consistent with the
observed kψ (electronic supplementary material table S1). Electronic supplementary material, table S1
confirms the good matching between the observed kψ and calculated kψcal within experimental errors,
authenticating the proposed mechanism of present study.

Considering the consequences of Zone I (figure 5), [geminis] are lower than their cmc, kψ-values
should be remained constant. Rate profile of kψ versus [gemini] (figure 5) has confirmed an increment
in rate constant. This may be owing to existence of premicellar aggregates between substrate and
surfactant molecules even though at surfactant concentrations lower than that of their cmc values. It is
approved well that gemini surfactants can form various morphological aggregates, such as vesicles,
micelles and bilayers with different additives. It has also been noted that the surfactant molecules
with substrate molecules formed premicellar aggregates and catalysed the reaction even at
concentration lesser than cmc value [78–81].
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According to multiple equilibrium models, the partition of surfactant between different states is
governed by a several dynamic association and dissociation equilibrium. The smaller aggregates, such
as dimer, trimer, tetramer etc. can be present at the concentration of surfactants below their cmc values

DþDOD2 þDOD3 � � �Dn�1 þDODn:

Rate constants become almost constant in Zone II. This happens when reactants are totally micellar
bound with the micellar structure reflected to persist intact [82]. It was found that gemini surfactants
were more functioning to catalyse the reaction than corresponding monomeric surfactant
(cetyltrimethylammonium bromide, CTAB). This was the benefit of gemini surfactants used in the
present kinetic study.

Gemini surfactants result in a Zone III of increasing rate at higher surfactant concentrations.
Enhancement in rate occurs at higher gemini concentrations caused by changes in micellar structure
and are a good match to 1H NMR spectral consequences stated previously [48,83]. Henceforward, an
intensification in rate constant kψ at higher surfactant concentrations follows as a result of
modifications in morphological aggregates that delivers different experimental microenvironment,
i.e. less polar.

All categories of micellar-mediated organic reactions (ionic, polar and neutral) are commonly
believed to happen into small volume of a micelle (i.e. Stern layer) of an ionic surfactant.

Rate enhancement in positively charged micelles could be attributed to the stabilization of Schiff base
intermediate on a positively charged micellar surface increasing the concentration of intermediate in the
Stern layer. From electrostatic considerations, π-electrons existing in ninhydrin assist its possibility of
partitioning between aqueous and positively charged micelles [84]. Hydrophobic interactions bring
about incorporation of [Cu(II)-Trp]+ into micelles. Therefore, both reactants ninhydrin and [Cu(II)-
Trp]+ get associated/incorporated into the aqueous surface of the micelles (i.e. the Stern layer) [76].
Therefore, the concentration of reactants increases into a small volume, that is, the Stern layer of the
micelles (scheme 3), catalysing the reaction and resulting in an increase in the observed rate (kψ).

4.4. Thermodynamic quantities
Numerous thermodynamic quantities viz., activation energy, Ea, activation enthalpy, ΔH#, and activation
entropy, ΔS#, were evaluated on interaction of ninhydrin with metal amino acid in three gemini dicationic
surfactant systems with Eyring equation. Obtained values of these thermodynamic quantities are listed in
table 3. A lower value of activation enthalpy (ΔH#) in gemini than the absence of surfactant (i.e. aqueous
medium [85]) was obtained. This can be ascribed to the fact that an electrostatic attraction occurs between
surfactants and reactant molecules when reactant molecules are existing in micellar phase. A reduced



r
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value of activation entropy (ΔS#) in gemini surfactants with those acquired in aqueous system confirms

that the activated complex formed are well order in gemini surfactants.
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In this present article, three gemini dicationic surfactants were synthesized and characterized consisting
of two heads and tails connected covalently through a spacer by 1H NMR technique. The implications of
their micellar solution on the study were performed with UV–visible spectroscopy. Studies were made at
different experimental situations, e.g. temperature, pH, reactants and surfactant concentration. The cmc
determination of gemini surfactants with and without additives was done on conductivity meter.

Under a set of varying experimental conditions, gemini micellar systems (even though at gemini
surfactant concentrations lower than their cmc) were detected more effective to catalyse and accelerate
the reaction over aqueous system. This suggested that the gemini surfactants were proved better
surface active materials for the selected study. All the three gemini surfactants showed the order of
their catalysing efficacies at each concentration as 16-4-16 > 16-5-16 > 16-6-16. Use of fairly small
amounts of synthesized gemini surfactants in the study provides less environmental effect and
reduces the catalytic competitions required as a catalyst in several industries. We trust that the specific
outcomes of this study simplify an improved understanding of the reaction between ninhydrin and
amine functional group. Study may reveal a new platform in intensifying the immense scope of uses
of these gemini surfactants for scientific community in future.
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