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ABSTRACT 

 Light Detection and Ranging (LiDAR) technology has various useful 

applications, such as in surveying tasks. This study continues research previously 

conducted at the Naval Postgraduate School by Andrew S. Davis, and documented in his 

thesis, “Forestry Identification with LiDAR Waveform and Point Clouds.” The present 

study, which aims to evaluate the classification capability of LiDAR systems over 

various tree species in a particular area of interest, collected sample data over Point 

Lobos State Park, California. The data set was separated into two categories, aerial 

platform and ground survey. The aerial platform consisted of an Optech Titan system and 

Airborne Hydrography AB Chiroptera system (AHAB). Analysis was performed by 

comparing the results from the ENVI software classifier and the actual location of tree 

species from ground surveying. The study also extracted the features of waveforms from 

each tree species and used these features to distinguish them from among other samples 

of tree species and their surrounding environment, such as roads and trails. The 

classifications were done by the classifier tools provided in ENVI (K-means, Spectral 

Angle Mapper, and Support Vector Machine). The results showed that waveform data 

can accurately distinguish class samples. The analysis also pointed out that the most 

common error occurred when classes had a narrow gap in data values and shared similar 

pulse shapes. 
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I. INTRODUCTION  

A. PURPOSE OF RESEARCH 

Light Detection and Ranging (LiDAR) provides an essential new tool for 

mapping and surveying both urban and forested environments. Among aircraft-mounted 

LiDAR systems, Airborne Laser Scanning (ALS) has become operationally viable for 

commercial surveying. In particular, the Optech ALTM 3100, released circa 2005, 

marked the advent of an ever-expanding commercial industry (Shan and Toth 2018). 

The laser profiling and scanning system, or LiDAR system, has capabilities for 

measuring the distance from the source to the target, collecting data as a composite of 

actual locations and elevation data, and creating a model of the artificial structure of the 

collected target (ArcGIS Desktop n.d.). One primary area of interest for the application of 

LiDAR capabilities is forestry, as forests are significant to both organisms living in them 

and humans (Yilmaz et al. 2017). In terms of forestry, the LiDAR system is helpful for, 

among other things, studying the increase in tree structures and the decrease of forest 

areas (Leeuwen and Disney 2017). Despite the popularity of this technology, the 

capability of LiDAR in various cases still needs to be evaluated. In particular, the so-

called ‘waveform’ data utility is a question still of interest. 

This research investigates the utility and use of LiDAR waveform data, following 

a previous thesis effort at the Naval Postgraduate School (Olsen, Davis, and Metcalf 

2019). At the end of the prior research, it was suggested a future researcher further study 

the characteristics of waveform data obtained from other LiDAR systems (Davis 2018). 

Following Davis’s suggestion, this research focuses on and evaluates LiDAR data’s 

ability to facilitate accurate identification of vegetation in an area of interest. 

B. OBJECTIVE 

The objective of this research is to evaluate the Terrain Categorization (TERCAT) 

capabilities of LiDAR systems by performing both ground observation and analysis of 

LiDAR’s data of low-growing plant species found within Point Lobos State Park, located 

in Carmel-by-the-Sea, California. The study evaluates the capability of a LiDAR system 
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to distinguish various tree species in the area of interest. Furthermore, the study compares 

the characteristics of low vegetation’s spectral profile to the characteristics of its 

surrounding environment. The comparison is to validate the unique pattern of the 

spectrum of each object in the area of interest. 

C. THESIS OVERVIEW 

There are five chapters included in this research paper. The current chapter 

(Chapter I) presents the purpose of this research, its scope, and related topics reviewed. 

Chapter II provides readers with a history of the LiDAR system, the fundamentals of 

LiDAR, and case studies of data analyzing techniques in terms of forest study. Chapter 

III presents the data collection and preparation methods. Chapter IV presents the 

methodology for analyzing and evaluating the data, as well as the results of this research. 

Finally, Chapter V concludes this research and offers recommendations and 

considerations for future work. 
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II. BACKGROUND 

This chapter provides essential background information about LiDAR, including 

its history, and explains how the system is used. Also, the fundamentals of LiDAR are 

covered to explain how it works. Finally, this chapter also provides examples of LiDAR 

data analysis techniques in terms of forest study.  

A. HISTORY OF LIDAR 

LiDAR is a technique that measures the distance to an object by firing a laser 

pulse, hitting that object, and reflecting a detector of the system (Wasser n.d.). According 

to the Encyclopedia Britannica, “LiDAR Scientific Technique” written by Erik 

Gregersen, description of the beginnings of the LiDAR system, the technology emerged 

in the 1930s when the first attempt to measure distance by using light beams was made. 

The study used searchlights rather than a laser to examine the atmosphere’s structure. A 

few years later, in 1938, light pulses were used to determine the height of clouds 

(Gregersen 2016). With the advent of the laser (Schawlow and Townes 1958), short, 

intense pulses of light became practical. The q-switch allowed for pulses extending over 

fractions of micro-seconds (McClung and Hellwarth 1962). By 1965, experiments in 

altitude ranging were being conducted from aircraft (Miller 1965). 

In the 1970s, attempts to observe the properties of the ocean water and 

atmosphere, ice sheets, and the forest canopy for topographic mapping were made by 

National Aeronautics and Space Administration (NASA). In the early years, the 

limitations of a reliable altitude measurement limited the utility of such systems. With the 

advent of the Global Positioning System (GPS) in the early 1990s, and more reliable 

inertial measurement units (IMU), the technology came into its own as the sensor was of 

concern (Wikipedia 2019).  

By the mid-1990s, the manufacturers of laser scanners were introducing LiDAR 

sensors that could transmit 10,000 to 100,000 pulses per second for topographic mapping 

purposes (BCC Research 2018). The previously noted Optech ALTM 3100, for instance, 

could be operated at pulse repetition frequencies (PRF) of 33–100 kHz, depending on 
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altitude (Olsen 2007). Since instruments and techniques were introduced that made 

LiDAR systems more reliable and increased users interested in this field, the applications 

of LiDAR have gradually been included in everyday life, such as in navigation systems. 

The growth of the study and the use of LiDAR systems will undoubtedly lead to more 

development in the future.  

B. FUNDAMENTALS OF LIDAR 

Since LiDAR is one of the active remote sensing techniques, its fundamentals are 

related to those of the laser. All laser ranging, profiling, and scanning applications 

involve the use of some type of laser-based ranging. A laser rangefinder, for example, is 

an instrument that measures the distance to an object, and that measurement can be used 

for a variety of purposes (Shan and Toth 2018). One such purpose is to analyze the 

content of the Earth’s surface. Furthermore, depending on the type of sensor and the 

user’s purposes, the data under consideration can be generated as either 2D or 3D form. 

C. COMPONENTS OF LIDAR SYSTEMS 

By definition, the phrase “ active remote sensing system” means the system can 

emit energy by itself, such as electromagnetic wave or light, to determine objects or any 

type of structure on the ground without actually physically measuring (i.e., using a sensor 

instead of measuring by hand) (Wasser n.d.). The source, a light wave in this case, 

transmits to the target and reflects a sensor detector (see Figure 1). As indicated in Figure 

2, a LiDAR system typically comprises four main components: laser, GPS, an inertial 

navigation system (INS), and computer. A laser system is used to obtain a measurement 

by firing energy or pulses to the target and recording the return pulses, which provide 

target information such as the properties of targets. The second component, the GPS, is 

used to determine the location of each point of data we obtain, and this will combine with 

the output from the laser system as raw data. INS is used to control roll, pitch, yaw, and 

heading of the platform. A computer system is used to store data (Figure 3) (ArcGIS 

Desktop n.d.). 



5 

 
Figure 1. Showing how a LiDAR system operates. Source: ArcGIS Desktop 

(n.d.).  

 

 
Figure 2. LiDAR system components. 
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Figure 3. Overview of LiDAR system components’ detailed operation. 

Source: Shan and Toth (2018). 

D. TYPES OF LIDAR 

The textbook Topographic Laser Ranging and Scanning explains that the two 

main types of LiDAR applications are based on the type of carrier. The first type is 

airborne and spaceborne applications. The second is terrestrial applications (Shan and 

Toth 2018).  

Based on the description from the website ArcGIS Desktop, airborne and 

spaceborne applications include topographic LiDAR and bathymetric LiDAR (Figure 4). 

A topographic LiDAR application is the study of the contents of areas on land. On the 

other hand, a bathymetric LiDAR involves the study of water and sea surface.  



7 

 
Figure 4. Airborne and spaceborne applications. Source: LiDAR News 

(2016). 

Terrestrial applications include mobile and static techniques. A mobile LiDAR 

consists of a moving vehicle on which a LiDAR sensor is mounted (Figure 5). This type 

of application is mostly used to observe roads, light poles, and infrastructure.  

 
Figure 5. Mobile LiDAR. Source: Baker Mobile LiDAR (2016). 
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A static LiDAR consists of data collected from a static location (Figure 6). The 

LiDAR sensor is mounted on a tripod. Mostly, this technique is used for mining, 

surveying, and archaeology (ArcGIS Desktop n.d.). 

 
Figure 6. Example of static LIDAR, Leica Scan Station P50. Source: 

HEXAGON GEOSYSTEMS (n.d.). 

E. DATA TYPES – DISCRETE RETURNS AND WAVEFORMS 

Commonly, a LiDAR system is operated in visible light (532 nm) and near-

infrared (NIR, 1,064 nm, and 1,555 nm) ranges of the electromagnetic spectrum. The 

selection of operating wavelength depends on the purpose of use (Olsen 2016). A 

wavelength of 532 nm is proper for use in bathymetric LiDAR applications because of its 

ability to penetrate through the water with less attenuation when compared to other 

options. On the other side, the NIR beam is better when measuring land or sea surface 

(Crutchley and Crow 2010).  

Since LiDAR data measures reflections of energy or returned pulse, we can group 

the types of data that are recorded in two different ways. The first is a discrete return. 

Discrete data are extracted from a point at each peak of the laser pulse. The second is 

waveform data. Waveform data provides a distribution of entirely returned pulse (Wasser 

n.d.). Following Figure 7, we see that waveform data gives us more detail of a target than 
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discrete data. Nonetheless, this does not mean that discrete data is not worth using. In 

contrast to waveform data, discrete data is less complex, lower in cost, and requires less 

processing time. 

“The Light Fantastic Using Airborne Lidar in an Archaeological Survey” by 

Simon Crutchley and Peter Crow (2010) gives descriptions of how to interpret LiDAR’s 

return pluses. The peaks of waveform indicate the order of the data number. The first 

return typically represents a top of the target, such as the top of a tree or the top of a 

building. The last return usually represents the ground or the base of an object. The first 

and the last returns are considered the most significant data because these data are 

involved in calculating the Digital Surface Model (DSM) and Digital Terrain Model 

(DTM) (Crutchley and Crow 2010). The DTM and DSM are necessary for evaluating 

height data. The other returns between the first and the last return may represent shapes, 

characteristics, and detail of an object. 

 
Figure 7. Full-waveform data vs. discrete data. Source: Deems, Painter, and 

Finnegan (2013). 
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F. WAVEFORM LIDAR 

LiDAR waveform data can be considered in a few general forms: terrestrial 

systems that have a generally large footprint (approximately 100 m, ICESat/GLAS) or 

small footprint (Airborne RIEGL systems, typically 50 cm to 1 m); and bathymetric 

LiDAR (intrinsically “small footprint” systems in general). 

1. Bathymetric LiDAR 

Bathymetric studies are a primary application of airborne laser scanners, and 

waveform data are intrinsic to such measurements. There is a large body of work on such 

systems, largely out of the scope and topics analyzed here. Guenther et al. (2000) 

illustrate the complexity of the problem. Guenther points out two main problems that 

occur while dealing with bathymetry studies: the accuracy and reliable determination of 

the location. Based on the International Hydrographic Organization (IHO) standard, the 

vertical accuracy accepted for shallow water hydrography is about 25 cm from all 

sources. The factors are water depth, and the interface between air and water. Due to the 

factors mentioned previously, the use of green laser range only is not acceptable. It 

requires at least two wide ranges of laser sources, such as red and IR, to maintain 

acceptable accuracy. The second dilemma is at the interface between vigorous strong 

water and unsteady bottom returns, which cause fluctuating results. This limitation must 

be considered and fixed by configuring the ability of a detector to avoid irregular effects 

on the results. Furthermore, the measurement result has to be formed into the acceptable 

digitizer ranges (Guenther et al. 2000).  

Collin et al. (2011) illustrate many features in a typical LiDAR return for a 

bathymetric system. The integration of environmental factors performing at the interface 

between air and water (Figure 8), as well as underwater, and instrument factors lead to a 

denoising method. The shape and the returned signal power depend on the depth of the 

water because of scattering and absorption (Figure 9). Therefore, the regression method 

can be applied to correct the statistical variable at different depth levels, and the only 

variance analysis was established for the residuals (Collin, Long, and Archambault 2011). 
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Figure 8. Schematic diagram 

of the effects of scattering 
on the green LiDAR beam. 

Source: Guenther et al. 
(2000). 

 
Figure 9. Segmentation of a 

generic bathymetric 
LiDAR backscatter. 

Source: Collin, Long, and 
Archambault (2011). 

 

2. Large Footprint Systems 

The Earth researchers have used ‘large footprint’ systems for several years, 

particularly the ICESat satellite sensor and the airborne Laser Vegetation Imaging Sensor 

(LVIS) for mapping terrestrial properties and the evaluation of digital elevation models. 

The priority to obtain a large scale of observation in these uses, however, limits the 

spatial resolution of these systems.  

LVIS has been flown routinely since 1998 by the NASA Goddard Space Flight 

Center group (Blair, Rabine, and Hofton 1999). Similar technology was flown on the 

space shuttle (Bufton, Harding, and Garvin 1999). Eventually, this design evolved into 

the Geoscience Laser Altimeter System (GLAS) launched as the primary payload for the 

Ice, Cloud, and land Elevation Satellite (ICESat) mission in 2003 (“ICESat” 2019). The 

ability to collect data about vegetation structure (height and density) and the spatial 

distribution of vegetation within the Geoscience Laser Altimeter System (GLAS) 

footprint were limited but could be addressed by comparing ground measurements and 

modeling of the LiDAR returns (L. Neuenschwander et al. 2006). Hofton et al. 

(2000),show a variety of Gaussian decomposition techniques appropriate to systems with 
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50–100 m spot sizes. The waveform can be a simple shape, as shown in Figure 10a, or 

complex and multimodal shape, as shown in Figure 10b. Typically, a simple waveform 

represents the ocean and bare-ground regions. The complex waveform represents 

vegetated areas (Hofton, Minster, and Blair 2000).  

In general, the surface type and the return pulse shape are not considered by 

current waveform processing methods. These factors lead to the problems in data 

processing because of inconsistent sample ranges to a reflecting area. Thus, the 

techniques locate the crown of the amplitude of the waveform or point out the centroid of 

the return waveform. In the case of a simple waveform performed by a single mode, the 

methods previously mentioned are reliable for locating the reflecting surface of interest. 

On the other hand, for a complex waveform, the area of interest may have attenuation and 

absorption, which can cause attenuation in the return pulse amplitude. Consequently, the 

significant information, i.e., the centroid, may not be delivered with the greatest accuracy. 

Therefore, by decomposing and turning those return pulses into several fragments can 

provide a better way to estimate the structure of the waveform, its location, and its 

geolocation (Hofton, Minster, and Blair 2000). 

 
“The waveform represents the distribution of light reflected from all intercepted surfaces 

within the footprint. The positions of the peak amplitude and centroid of the waveform are 
shown by solid and dashed lines, respectively. (a) Simple and (b) complex laser altimeter 
return waveforms, collected by the LVIS airborne altimeter system” (Hofton, Minster, and 
Blair 2000). 

Figure 10. Return pulse waveform. Source: Hofton, Minster, and Blair 
(2000). 
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Despite some of the indications just noted, and also noting the multi-year period 

required to cover the full earth, there have been several successful applications of ICESat/

GLAS data to forestry (Harding et al. 2002). The study of David J. Harding et al. (2002), 

for instance, focused on evaluating the accuracy of measuring topography, vegetation 

height, and attributes of canopy structure and function. The result showed that LiDAR 

can produce accurate results. Those authors also predicted that a variety of applications 

relating to the use of LiDAR would increase (Harding et al. 2002). In the same year, 

Hudak et al. (2002) conducted a study of the integration of LiDAR and Landsat ETM+ 

data for estimating and mapping forest canopy height. The result of their research showed 

that the combination of LiDAR and Landsat data can improve the accuracy of estimating 

and mapping forest canopy height (Hudak et al. 2002). 

Further studies focused on evaluating the ability of ICESat waveforms to estimate 

forest canopy height. Results from such work showed that the use of ICESat’s waveforms 

and the collection of data from topographic relief can successfully estimate forest height 

and aboveground biomass (Figure 11) (Lefsky et al. 2005). The preceding studies are 

only a few examples related to the study of the forest by using LiDAR. There are still 

several examples that show how LiDAR became used in forest study; some of them are 

discussed in the next section. 
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Figure 11. Observed forest maximum canopy height vs. ICESat 

estimates of same, for three study areas. Source: Lefsky et al. (2005). 

3. Airborne LiDAR – Small Footprint Systems 

LiDAR technologies give us worthwhile information about forestry systems. 

LiDAR data provide us high-resolution data and a three-dimensional (3D) structure of 

targets. Because of these useful features, we can extract tree height, tree structure, and 

tree density, and even track changing of forest areas (Leeuwen and Disney 2017). Small-

footprint airborne LiDAR has been used on a wide scale of applications, both commercial 

and research. Small-footprint airborne LiDAR, also referred to as airborne laser scanning 

or ALS, gives us the best accuracy when we perform terrain elevation and vegetation 

measurement (Popescu et al. 2011). Small-footprint LiDAR generally ranges from 10 to 

30 cm in scale in the case of the discrete return system. Thus, it increases the probability 

of a beam to penetrate through the ground in a densely vegetated area. In the case of 

waveform return, the return pulse in a densely area possibly can associate with a single 

object. Yet, this technique also has drawbacks, such as the small beam may be 

completely absorbed by the tree before it hits the ground, and due to its small scale, the 

beam may not cover the peak of the tree, or the beam may double count the tops (Lewis 

and Hancock 2007). 
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Figure 12. Small-footprint issues. Source: Lewis and Hancock (2007). 

There are several practical examples of using LiDAR in forestry work, such as in 

California. In a fire-prone state like California, the change in forest volume and 

abundance is significant to all creatures in those surroundings. Based on the study of 

Maggi Kelly and Stefania Di Tommaso (2015), it is evident that since 2000, several 

researchers have been interested in using LiDAR systems to map California’s forests. 

LiDAR systems have been used to capture tree structures, map individual trees, predict 

quantity and biomass of forests, develop plans to deal with fire in forests, and map 

topography and infrastructure of forests (Kelly and Di Tommaso 2015).  

Small-footprint LiDAR studies for tree species identification were done with the 

TopEye MK II sensor. Josef Reitberger, Peter Kyzystek, and Uwe Stiller (2006) 

conducted this research by using three main concepts. The first idea was to describe tree 

crowns by a segmentation of the canopy height model. The second was to extract 

characteristic features of the individual trees. Finally, an appropriate classifier was used 

to classify tree species, based on the extracted features of tree species (Reitberger, 

Krzystek, and Stilla 2006).  

Specifically, Reitberger et al. (2006) focused on extracting a unique geometry of 

tree structures and intensity of waveform decomposition. The parameters of this study 

were salient features that include outer tree geometry (𝑆𝑆𝑔𝑔), the internal geometrical tree 
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structure (𝑆𝑆𝑖𝑖), and the intensity-related tree structure (𝑆𝑆𝐼𝐼). The external geometry 

consisted of two variables, 𝑆𝑆𝑔𝑔1 and 𝑆𝑆𝑔𝑔2. The 𝑆𝑆𝑔𝑔1 is evaluated by the crown shape surface. 

The 𝑆𝑆𝑔𝑔2 is calculated by the mean radii, which are determined as the mean distances of all 

layer points to the tree trunk (Figure 13a). The internal geometrical 𝑆𝑆𝑖𝑖 is separated into 

two groups, 𝑆𝑆𝑖𝑖ℎ and 𝑆𝑆𝑖𝑖𝑑𝑑. The 𝑆𝑆𝑖𝑖ℎ is considered the percentiles of LiDAR point height 

distribution of the tree (Figure 13b). The 𝑆𝑆𝑖𝑖𝑑𝑑 is the normalized number of the LiDAR 

points distributed on each layer divided by the total number of LiDAR points. The 𝑆𝑆𝐼𝐼1 is 

the mean intensity value of each layer. The 𝑆𝑆𝐼𝐼2 is the mean value of the entire tree 

segment. 

 
Figure 13. Tree layer distribution. Source: Reitberger, Krzystek, and 

Stilla (2006). 

The results in Table 1 show that waveform decomposition was generating more 

points than the original data collected by the TopEye system. The results in Table 2 show 

that the outer tree geometry 𝑆𝑆𝑔𝑔 is proper for evaluating coniferous trees and the intensity-

related tree structure 𝑆𝑆𝐼𝐼. is proper for deciduous trees (Reitberger, Krzystek, and Stilla 

2006). From these results, one can see the performance and accuracy of the segmentation 

of Canopy Height Model (CHM) techniques in terms of forest study. 
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Table 1. Comparing points presented by TopEye and points 
presented by waveform decomposition. Source: Reitberger, Krzystek, and 

Stilla (2006). 

 
 

Table 2. Evaluating accuracy of classification. Source: Reitberger, 
Krzystek, and Stilla (2006). 

 
 

G. CANOPY HEIGHT MODEL 

A canopy height model, or CHM, is one of the essential products needed in forest 

studies. The CHM provides the height data of the trees and relevant forest information (L. 

Wasser 2018). The basic approach to generating the CHM is to subtract the digital 

elevation model (DEM) or digital terrain model (DTM) from the digital surface model 
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(DSM) (L. Wasser 2018; Marcu, Stătescu, and Iurist 2017). Figure 14 illustrates the 

terms DSM, DTM, and shows how the CHM is the difference between these terms 

(Marcu, Stătescu, and Iurist 2017); an outline of the process is depicted in Figure 15. The 

DSM is extracted from the first returns of the LiDAR data. The DTM, which is the 

elevation of the earth’s surface, is extracted from last return (Figure 16). So, the 

difference between the DSM and the DTM indicates the height of objects, which in this 

case is CHM (as shown in an equation below). 

𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶 
 

 
Figure 14. Showing how to derive CHM. Source: L. Wasser (2018). 
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Figure 15. Outline of the process to obtain the Canopy Height Model 

(CHM) and extract tree height from local maxima. Source: Dang (2012). 

 

 
Figure 16. Examples of DSM, DEM, and CHM extracted from LiDAR 

data. Source: L. Wasser (2018). 

In terms of analyzing CHM, there are several image processing methods that are 

used. Mainly, CHM is used as input for the segmentation technique of tree crowns and 

calculation of forest parameters, such as biomass (Rizaev, Pogorelov, and Krivova 2016). 
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H. SEGMENTATION METHODS 

Segmentation methods are used as a threshold to eliminate data that are not 

expected to be used. Segmentation allows for a boundary to group the types, categories, 

and expected region of data. Volcan Yilmaz et al. (2017) provide an excellent example of 

the multi-resolution (MR) and region growing (RG) segmentation techniques. The MR 

segmentation technique is a technique related to a homogeneity criterion. This 

homogeneity criterion considers the color and shape criteria related to three parameters: 

scale, shape, and compactness. The size of an object is determined by the scale 

parameter. The ratio of the boundary of an object and the square root of the number of 

pixels in the object is defined by the compactness parameter. Smoothness is the ratio of 

the boundary of an object to the boundary of the bounding box of the object. Yilmaz et 

al.’s (2017) study used the eCognition software to perform MR segmentation. The study 

set the scale, shape, and compactness parameters as 15, 0.4, and 0.5, respectively. The 

resulting illustration after performing MR segmentation is shown in Figure 17. 
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Figure 17. Illustration of result from performing MR segmentation. 

Source: Yilmaz et al. (2017). 

RG segmentation uses some treetops (seed points) to start expanding. Seed points 

are typically obtained from doing local maxima (LM) filtering. The LM filter will extract 

the highest point within a window operator. The key parameter of this technique is 

tolerance values to grow regions. If a neighboring pixel is within the tolerance value, that 

point is defined as the same region as the seed point. Yilmaz et al. (2017) used QGIS 

software to perform RG segmentation. The study set a window size like 26 x 26, and the 

threshold parameter as 0.005. Figure 18 shows the resulting illustration after RG 

segmentation is performed. 
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Figure 18. Illustration of result from performing RG segmentation. 

Source: Yilmaz et al. (2017). 

Even though segmentation techniques are deemed to be effective, over-

segmentation problem is a problem users must deal with. Figure 19 shows errors caused 

by over-segmentation. 

 
Figure 19. The circles enclosing the tree crowns (yellow is MR, white 

is RG, and red is reference circle). Source: Yilmaz et al. (2017). 
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The result from Figure 19 shows that there were some missing tree crowns. 

According to Yilmaz et al. (2017), the results from MR and RG techniques are about 90 

percent accurate (Yilmaz et al. 2017). From those examples of analysis techniques used 

in forest studies, it is evident LiDAR plays an integral role. 
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III. DATA SET AND ANALYTICAL METHODOLOGY  

The previous chapters provided background on LiDAR and some studies related 

to LiDAR technology. This chapter provides the instruments, software, and methods we 

use to collect and enhance the quality of data. The first section discusses the data 

platforms. The second section discusses data collection and preparation. 

A. DATA COLLECTION PLATFORMS 

This section discusses the platforms used to collect the data set we used in this 

thesis: aerial platform and ground observation platform. Furthermore, this section 

explains how each data set differs. 

1. Aerial Platforms 

This thesis used two aerial collection systems. The first data set is collected from 

the Optech Titan multispectral LiDAR. Optech Titan is the same system used by Davis 

(Davis 2018). The second data set comes from the Airborne Hydrography AB LiDAR 

(AHAB). 

a. Optech Titan Multispectral LiDAR 

The Teledyne Optech Titan sensor includes three different wavelength channels. 

This sensor is well-known as the world’s first multispectral airborne LiDAR sensor. The 

three active beams emit independent wavelengths of 532 nm (green), 1064 nm (NIR), 

1550 nm (Intermediate shortwave infrared, SWIR). These three different channels 

covered for a day or night mapping and different environments, which are included in 

one sensor (Teledyne Optech n.d.). Figure 20 shows an electromagnetic (EM) spectrum 

curve with indications for where each channel is located. Figure 21 shows examples of 

products derived from multi-wavelength LiDAR. The three lasers are tilted at different 

angles, so they do not illuminate the same points on the ground at a given moment.  

Table 3 and Figure 22 show the pointing offsets.  
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To capture waveform data, digitizers can be attached to the Titan LiDAR during 

operation. For the work completed here, digitizers were attached to the green (532 nm) 

and NIR (1064 nm) channels. They worked independently, but not always at the same 

time. 

 
Figure 20. Optech Titan’s wavelengths emitted. Source: Teledyne 

Optech (n.d.). 

 
Figure 21. Top-left: 3D land cover classification; Top-right: 

Vegetation mapping; Bottom left: Shallow-water bathymetry; and Bottom 
right: Dense topography. Source: Teledyne Optech (n.d.). 
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Figure 22. Drawing of Titan laser. Source: McIver (2017). 

 

Table 3. Titan attributes. Source: McIver (2017). 

 Wavelength Offset Beam Divergence 

Channel 1 1550 nm (SWIR) 3.5° Forward 0.35 mrad 

Channel 2 1064 nm (NIR) 0° (Nadir) 0.35 mrad 

Channel 3 532 nm (Green) 7° Forward 0.7 mrad 

 

b. Airborne Hydrography AB LiDAR 

The second aerial platform is the Airborne Hydrography AB (AHAB) Chiroptera 

II LiDAR system. The AHAB Chiroptera II scanner includes two individual channels, a 

532 nm hydrometric scanner operating at 35 kHz, and a 1064 nm topographic scanner 

operating at up to 500 kHz (Geomatics Data Solutions n.d.). The bathymetric scanner can 

nominally penetrate to about 1.5 Secchi depths, or approximately 15 m in clear water 

(Stigermark 2012). “The beam divergence of the topo laser is 0.5 milliradians (mrad) and 

is 3 mrad for the bathy laser” (Webster et al. 2016, 33).  

The AHAB LiDAR uses a Palmer Scanner design, which rotates in an elliptical 

pattern, as illustrated in Figure 23. The design is used to maintain a reasonably constant 
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incidence angle between the laser and the surface (water surface). In particular, the 

design is used to avoid a nadir view and the specular reflection that would result from the 

surface of the water (Figure 24). The ellipse shape is forward/aft ±14 degrees from nadir, 

with a transverse width of ±20 degrees. The sensor obtains two views (forward/aft) of 

most terrestrial targets in a single flight line. During processing, the forward/aft data were 

separated, as the waveform paths are quite different (Quadros 2013). 

 
Figure 23. AHAB’s scanning pattern. Source: Stigermark (2012). 

 

 
Figure 24. Seabed reflectance, Orthophoto from Google Earth (left); 

LiDAR processed relative reflectance intensity image (right). Source: 
Stigermark (2012). 
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2. Ground Surveying Platform 

The ground survey data is used to validate the aerial LiDAR data. The surveying 

covered the vegetation and terrain. This data set helps to locate and identify specific tree 

species within the area of interest. The metrics collected were tree species type, height, 

diameter at breast height (DBH), and a real-time kinematic (RTK) precision GPS 

location. This thesis mainly focuses on the ground surveyed area (Davis 2018). More 

detail is provided in the next chapter when we set up a region of interest. 

B. DATA COLLECTION AND PREPARATION 

Point Lobos State Park, which is located south of the Monterey peninsula in 

California, served as the study area. Figure 25 illustrates the study area. The park 

encompasses over 550 acres of natural and marine area which has over 300 species of 

plants. For this study, the ground survey specifically collected data on the Monterey 

Cypress, Monterey Pine, and Coast Live Oak trees. These highlighted species are densely 

distributed throughout the Monterey peninsula and are chosen as a group study for this 

research (Davis 2018).  

The Optech data were collected over an area of interest (October 10, 2016) at 

Point Lobos, starting from flightline 1 to 30. The data were delivered by the National 

Center for Airborne Laser Mapping (NCALM) at the University of Houston in both the 

native Optech waveform data format and in the PulseWaves format. The PulseWaves 

format was developed by LAStools’ Martin Isenburg to be a sensor-independent data 

format for data interchange. Figure 26 illustrates the contents of a typical data frame and 

helps illustrate the broader concept of the data analyzed for this thesis.  

The AHAB flights were conducted on May 20, 2014. The flights were conducted 

by the University of Texas at Austin. “The digitization rate in full-waveform mode is 1.8 

GHz, equivalent to ∼8.33 cm of two-way range resolution. The nominal flight altitude 

was 400 m above ground level, and the concept of operations resulted in a discrete mode 

first-return point density of ∼10 ppm2 for both channels” (Leigh and Magruder 2016, 3). 

The green and NIR channels have a pulse width of 4 ± 1 ns and 2.5 ± 1 ns, respectively. 

These pulse widths correspond to distances of 1.2 and 0.75 meters in physical distance. 
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Nominal resolution for point data is then half these respective values. The waveform data 

were delivered in the native AHAB binary format, with MATLAB code provided to 

unpack the data (Leigh and Magruder 2016).  

 
Figure 25. Point Lobos State Park, the shaded area represents the area 

of interest. Source: Davis (2018). 
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Figure 26. PulseWaves data description. Source: https://github.com/

PulseWaves/Specification/blob/master/pulsewaves.jpg; credit Martin 
Isenburg. 

Raw data from each type of platform needs to be converted to an appropriate file 

format for software analyzing tools. The general process was similar to the two data sets 

in that data were extracted from the delivered formats, then structured into flat binary 

files that could more easily be analyzed using Interactive Data Language (IDL).  

Figure 27 shows one of the intermediate data products developed to view the data, to 

verify that the data were being read correctly, and to obtain insight into the structure of 

the waveforms. IDL code was written to grid the data into a standard “hypercube,” 

following the structure generally used for the analysis of hyperspectral imagery (Tyo et 

al. 2003).  
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The top panel is a “waterfall plot” or spectrogram showing the waveforms as a function of 

time (0:3000). Various metadata elements are plotted below. The data shown here capture the 
measurements for three rotations of the scanner. 

Figure 27. Example of reviewing and converting raw data to a usable 
format by using IDL. 

Standard IDL gridding routines were used with a grid size set to match data 

density, i.e., one return per a grid cell. Figure 28 illustrates the application of the 

technique to one short AHAB flightline. It shows the impact of the scanner pattern on the 

data (the elliptical scan). 
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Figure 28. Example of gridding the AHAB data. 
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IV. DATA ANALYSIS AND RESULTS 

This chapter discusses the analysis process and evaluates the results. The first 

section provides an overview of the workflow and analysis processes. The second section 

describes the classifiers and results of each type of classification algorithm provided by 

Environment for Visualizing Images (ENVI) software tools. The last section compares 

and evaluates the results of the classification. 

A. OVERVIEW OF WORKFLOW AND ANALYTICAL PROCESSES 

 
Figure 29. Workflow diagram of the analysis process. 

The workflow diagram (Figure 29) shows an overview of the processes from the 

initial step through the evaluation step. The first two steps are explained in the previous 

chapter. The next step, “Analyze the process in ENVI” is explained here. After we got the 

readable data format for the ENVI file, we initially reviewed the overall area of data 

samples. Figures 30 and 31 show the estimated covered area of the AHAB and Optech 

data. These estimations can be done by the function “Chip View to Google Earth” in the 
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ENVI software, and then using the ruler tool on Google Earth to measure distance and 

covered area. As shown in Figure 32, there are some dark areas for which we have to 

create a mask to filter out unused areas, primarily the ocean and coastal rocks. 

 
Figure 30. Estimated covered area of AHAB data. Source: Google 

Earth (n.d.). 

 

 
The Optech Titan data flight line 029 is approximately covered 1.17 square kilometers on 

the actual location. 

Figure 31. The estimated covered area of Optech Titan data. Source: 
Google Earth (n.d.). 
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Figure 32. Dark areas shown here are the areas that were not analyzed. 

1. Mask Creation 

The dark areas in Figure 32 (i.e., water or ocean areas) were unused, so part of the 

analysis process is to create a mask to avoid problems when we run classifications. To 

create the mask, we use the masking tool in ENVI. First, we draw a region of interest 

(ROI) surrounding the usable area. Next, we run the ROI through the “Building mask 

tool” to define the unused area. Figure 33 shows the usable area. Figure 34 shows the 

mask for classification purposes. 
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Figure 33. AHAB usable area. 

 
The white area is the focus area. 

Figure 34. AHAB mask for classification purposes. 
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2. Region of Interest 

The ROI is a selected sample area of each sample category for classification. 

Since we are focusing on the tree species, we located each type of tree, pine tree (Figure 

35) and cypress tree (Figure 36), based on ground data. The ground data provided 

geolocation of each tree and the dimension of the tree structure, i.e., height and diameter 

at breast height. Figure 37 shows how to measure DBH. These features of the tree 

structure are important because they affect the shape, size, and quality of the return pulse, 

which depends on the complexity of the trees and how densely they are distributed.  

 
From the Point Lobos Foundation (n.d.): “Monterey pine grows to 80−110 feet; it is 
symmetrical when young, with an irregular rounded crown at maturity (60−80 years). Its 
shape can also be distorted if it is crowded by other pines. In favorable conditions, i.e., 
near the coast, it can live to 100 years, but has a much shorter life (less than 50 years) if 
planted inland. Needles grow in a bundle of three, 3−6 inches long.” 

Figure 35. Monterey pine tree at Point Lobos. Source: Point Lobos 
Foundation (n.d.). 
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From the Point Lobos Foundation (n.d.): “Visitors to Point Lobos are familiar with the 

Monterey cypress (formerly Hesperocyparis macrocarpa), perhaps the terrestrial symbol of the 
reserve. We see the cypress all around the Monterey peninsula and forget how unique it is. 
There are only two native stands: one at Allan Memorial Grove in Point Lobos and the other at 
Crocker Grove in Pebble Beach. California lists it as a Category 1 rare and endangered species, 
but since it is widely planted as a landscape tree, it is not on the federal list of endangered 
species – the federal list does not distinguish between natural populations and planted 
specimens.” 

Figure 36. Monterey cypress tree at Point Lobos. Source: Point Lobos 
Foundation (n.d.). 

 

 
DBH is measured at 4.5 feet above the ground. 

Figure 37. How to measure DBH. Source: City of Portland, OR (n.d.). 
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After we collected the ground data, we generated the shapefile based on the data 

we collected. Then, we used this shapefile to plot the ROI. Figure 38 shows the plot of 

the shapefile and ROI of the Optech data. Figure 39 illustrates the plot of the shapefile 

and ROI of the AHAB data. After we obtained the ROI samples, we could quickly 

compute statistics of the samples. Figure 40 shows the mean value of each sample for 

Optech data, where black circles are roads/trails, green circles are low vegetation, blue 

circles are pine tree, and red circles are cypress trees. Figure 41 shows the same plot as 

Optech data, but based on the shapefile, there is no cypress sample over the data area. 

 
Grayscale image of Optech data is plotted by ground data as red plus-sign, roads/trails as 
black dots, low vegetation as green dots, pine trees as blue dots, and cypress trees as red 
dots.  

Figure 38. ROIs and shapefile over the Optech data area. 
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Grayscale image of AHAB data is plotted by ground data as red plus-sign, roads/trails as 
black dots, low vegetation as green dots, and pine trees as blue dots. There are no cypress 
trees. 

Figure 39. ROIs and shapefile over the AHAB data area. 

 

 

 
As shown in the figure, the mean for low vegetation and the mean for cypress trees are 

very close to each other. The x-axis indicates the band number and y-axis represents return 
number for each band. 

Figure 40. ROIs plot of Optech data as a function of waveform sample 
number or index. 
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The figure shows the difference among three (3) samples. These  curves are quite close to 

each other, but we did a smooth plot to clearly distinguish the differences. 

Figure 41. ROIs plot of AHAB data as a function of waveform 
sample. 

As mentioned earlier, ROI samples are very important for classification. 

Therefore, the selection of sample data is very important. Tables 4 and 5 show selected 

ROIs that considered the features of the tree, i.e., height and DBH. The other ROI 

samples, low vegetation and roads/trails, were set up by visual inspection. 

Table 4. Summary of Optech ROIs. 

Tree type Tree height (m.) Tree DBH (m.) Assigned color 

Pine_01 10 n/a Blue 

Pine_02 16 n/a Blue 

Pine_03 12.4 n/a Blue 

Pine_04 3 n/a Blue 

Pine_05 20 n/a Blue 

Pine_06 17 n/a Blue 

Pine_07 20 n/a Blue 

Cypress_01 7.8 1.8 Red 

Cypress_02 5.6 0.81 Red 

Cypress_03 n/a 1.51 Red 

Cypress_04 11.6 1.11 Red 
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Tree type Tree height (m.) Tree DBH (m.) Assigned color 

Cypress_05 12 n/a Red 

Cypress_06 11 n/a Red 

 

Table 5. Summary of AHAB ROIs. 

Tree type Tree height (m.) Tree DBH (m.) Assigned color 

PineAB_01 19 n/a Blue 

PineAB _02 11.6 n/a Blue 

PineAB _03 9.6 n/a Blue 

PineAB _04 7.2 n/a Blue 

PineAB _05 12.4 n/a Blue 

PineAB _06 10.8 n/a Blue 

PineAB _07 6.8 n/a Blue 

PineAB _08 10 n/a Blue 

PineAB _09 17.4 n/a Blue 

PineAB _10 16 n/a Blue 

PineAB _11 17 n/a Blue 

PineAB _12 15.6 n/a Blue 

 

B. WAVEFORM CLASSIFICATION 

Since we have two data systems, we can obtain different results when we apply 

classifiers. The difference in sensor systems, date-time collection, and other variables 

make the return pulse dissimilar (Figures 42 and Figure 43). The tools to classify the 

samples we created are provided in ENVI software. There are two main types of 

classification tool, supervised and unsupervised classification. 
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Figure 42. A pine tree (left) and its spectral profile (right) in the 

Optech data.  

 
Figure 43. A pine tree (left) and its spectral profile (right) in the 

AHAB data.  

1. Unsupervised Classification Tool 

There are two unsupervised tools provided in ENVI’s toolbox. One is “IsoData 

Classification.” The other, which we used in this research, is “K-means Classification.” 

According to the explanation of K-means method provided with the ENVI software,  
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K-Means unsupervised classification calculates initial class means evenly 
distributed in the data space then iteratively clusters the pixels into the 
nearest class using a minimum distance technique. Each iteration 
recalculates class means and reclassifies pixels with respect to the new 
means. All pixels are classified to the nearest class unless a standard 
deviation or distance threshold is specified, in which case some pixels may 
be unclassified if they do not meet the selected criteria. This process 
continues until the number of pixels in each class changes by less than the 
selected pixel change threshold or the maximum number of iterations is 
reached (Harris Geospatial n.d.).  

The K-means method can distinguish the classes of data, but it cannot indicate 

and distinguish the species of the tree. Figure 44 shows the product of the K-means 

method applied to the Optech data. 

 
Figure 44. K-means product of Optech data. 
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2. Supervised Classification Tool 

The supervised classification tools are the primary tool that we used to evaluate 

our results. Specifically, the two supervised methods we used in this research were 

“Spectral Angle Mapper (SAM) Classification” and “Support Vector Machine (SVM) 

Classification.” 

a. Spectral Angle Mapper 

SAM is the first method we applied for classification. SAM is used widely in 

optical imagery analysis (Davis 2018). The key for SAM is to use the n-D angle by 

calculating the spectral angle between each band. Then, the classifier groups the best-

matched pixels to the reference spectral signature selected from the ROI regions (Harris 

Geospatial n.d.). Figure 45 shows the result of SAM applied to the  Optech data. The first 

attempt of the SAM method set a radian value to 0.5, which ran through 60 bands of 

Optech data and 517 bands for AHAB data. The result shows that at this radian value, 

SAM can separate the classes through the entirety of the data, and there are only a few 

unclassified points. Table 6 shows the percentage of points that were classified and 

assigned to each class. Figure 46 and Table 7 illustrate the result of SAM applied to the 

AHAB data, which follows the same processes as those for the Optech data. For the 

AHAB data, however, there are some errors between the low vegetation class and the 

roads/trails class. The reason for these errors is when we created the ROI for the low 

vegetation class, it covered both low vegetation and roads/trails (soil and asphalt in this 

case).  
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The result shows that roads/trails, low vegetation, and trees can be clearly separated. 

Figure 45. SAM classification at 0.5 radian for Optech data. 

 

Table 6. SAM classification summary report for Optech data.  

Class summary Percentage of counted pixels on the usable area 

Unclassified 5.95% 

Roads/Trails 16.20% 

Low vegetation 34.33% 

Pine 27.29% 

Cypress 16.24% 
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Figure 46. SAM classification at 0.5 radian for AHAB data. 

 

Table 7. SAM classification summary report for AHAB data. 

Class summary Percentage of counted pixels on the usable area 

Unclassified 2.89% 

Roads/Trails 25.57% 

Low vegetation 50.76% 

Pine 20.78% 

 

 

After that, we evaluated the accuracy of classification by using the ground data 

location as the reference point. Figure 47 shows classification results at the expected 

location. Table 8 represents the evaluation of the accuracy of Optech data. Table 9 

represents the evaluation of the accuracy of AHAB data. The results show that some 

errors occurred. That is about 40 percent accurate. 
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Figure 47. Evaluation of the accuracy of SAM method at 0.5 

maximum radian. 

 

Table 8. Evaluation of accuracy of SAM method (Optech data). 

Class Height/DBH (m) Result Comment 

Pine01 12.4/n.a. correct  

Pine02 11.0/n.a. correct  

Pine03 7.2/0.18 correct  

Pine04 24.6/0.63 error Low vegetation 

Pine05 10/n.a. error Cypress 

Cypress01 11/0.78 correct  

Cypress02 6.0/0.16 error Pine 

Cypress03 10.0/0.66 correct  

Cypress04 15.8/0.52 error  

Cypress05 11.8/0.49 correct Low vegetation 
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Table 9. Evaluation of SAM classification accuracy (AHAB data). 

Class Height/DBH (m) Result Comment 

Cypress01 9.6/n.a. correct  

Cypress02 9.8/n.a. error Unclassified 

Cypress03 10.0/n.a. error Low vegetation 

Cypress04 12.4/n.a. correct  

Cypress05 16.0/n.a. correct  

 

In the next approach, we try to adjust the maximum radian value to see which 

maximum radian value can get rid of errors. After we applied the SAM method with 

different values of maximum radian angle, we concluded that for Optech data, the 

smallest radian angle we can apply is 0.3. This value can maintain the same result as the 

radian at a threshold of 0.5. As we increased the radian angle, errors were about the same, 

but there was a change in the number of tree species counted. For AHAB, the best radian 

angle threshold we can apply is the range between 0.5−0.7. 

b. Support Vector Machine 

The second classification approach is the SVM. The SVM method is a widely 

used classification technique for various applications (Bell 2015). The key to SVM is to 

separate the classes we created by the “data point closest” to the margin called the 

“support vector,” which is based on the distance to the margin, “often called [the] optimal 

hyperplane” (Harris Geospatial n.d.). Following the results from the SAM analysis, we 

adjusted the location and covered area for better decision making of the classifier tool. 

We started SVM at 0.7 as a threshold to determine the class samples. For AHAB data, the 

results showed that SVM has the capability to distinguish the class samples (Figure 48b). 

Especially for the difference between low vegetation and roads/trails, SVM can locate 

even the small trail, which was surrounded by low vegetation. On the other hand, tree 

species still have some errors. After that, we varied the threshold to 65 percent and 85 

percent. At 65 percent of the threshold, the capability to distinguish the class appears 

better when we inspect visually (i.e., the unclassified points decreased) (Figure 48a). For 
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85 percent of the threshold, the unclassified points are increased, and it is difficult to 

locate each class by visual inspection (Figure 48c). Table 10 shows the results of 

evaluating the accuracy of AHAB data classified by SVM. For Optech data at a 70 

percent threshold, SVM can distinguish low vegetation and roads/trails from the tree 

species (Figure 49b). Even though there are some unclassified points, they do not disturb 

the outline structure of the main considered classes. At a 65 percent threshold, the 

separation of each class is more apparent than the previous attempt (Figure 49a). 

However, when we determined the accuracy based on ground data, we determined that 

the error in this attempt is higher than the previous attempt (70% threshold) (Table 11). In 

the last experiment, at 85 percent of the threshold, it increased in the level of unclassified 

points, but the class type of low vegetation and road/trail still dominate (Figure 49c).  

 
a) At threshold 60%; b) at threshold 70%; c) at threshold 85%. Blue is pine class; Black is 
road/trail; Green is low vegetation class, and other colors are ignored. 

Figure 48. The SVM results of AHAB data at various threshold 
values.  
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Table 10. Evaluation of SVM classification accuracy at various 
threshold values (AHAB data). 

 At threshold 
(65%) 

At threshold 
(70%) 

At threshold 
(85%) 

Unclassified 22.94% 29.02% 49.55% 

Pine 33.85% 32.00% 25.98% 

Roads/trails 24.91% 21.94% 11.69% 

Low vegetation 18.29% 17.03% 12.77% 

Verified pine tree with ground data (%) 100% 100% 100% 

 

 
a) At threshold 60%; b) at threshold 70%; c) at threshold 85%. Blue is pine class; Black is 
roads/trails; Green is low vegetation class; Red is cypress; and large blue/black colors outside 
the area of interest are ignored. 

Figure 49. The SVM results of Optech data at various threshold 
values.  
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Table 11. The evaluation of SVM classification accuracy at various 
threshold values (Optech data). 

 At threshold (65%) At threshold (70%) At threshold 
(85%) 

Unclassified 23.46% 26.08% 45.52% 

Pine 22.4% 28.03% 17.06% 

Roads/trails 13.23% 12.14% 9.61% 

Low vegetation 29.6% 26.94% 20.00% 

Cypress 14.17% 12.36% 7.81 

Verified Pine and 
Cypress tree with 
ground data (%) 

60% 70% 50% 

Comment 
One error on Pine, 

three errors on 
Cypress 

One error on Pine, two 
errors on Cypress 

One error on Pine, 
four errors on 

Cypress 

 

c. Evaluate Overlap Area 

Next we evaluated the overlap area of the Optech and AHAB data sets. First, we 

created a new ROI, which covered both the Optech data and the AHAB data. We 

expected to evaluate the accuracy of the classification of tree species (in this case, pine 

tree), and the capability to distinguish the low vegetation area from its surroundings. 

Consequently, we set up new ROIs to cover the known area of the pine trees. This new 

ROI was on the overlap area of those two data sets. After we created the new ROI, we ran 

the classification via the SAM tool. In SAM processing, we set the maximum radian 

angle to 0.5. Figure 50 illustrates the results of classification from the overlap area, using 

the SAM method. The accuracy of classification over the two data systems was evaluated 

by ground data samples. The Optech result proved 100 percent correct, but for the AHAB 

data, the accuracy of classification was only 40 percent.  
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On the left is Optech data; on the right is AHAB. Blue color indicates pine tree, green is 
low vegetation, and black is roads/trails. Ignore the colored bars on the bottom. 

Figure 50. Evaluation of known tree species in the overlap area. 

In another experiment, we created a new ROI over the known low vegetation 

area. After we created the ROI, we ran it through the SAM tool for classification. The 

result showed that on the Optech data it distinguished the low vegetation area from its 

surroundings well. In addition, the results of Optech data indicated that it can also locate 

the road and ground (soil) effectively. On the other side, the AHAB data result had an 

error located in the ground area known as pine tree (Figure 51). 
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On the left is Optech data; on the right is AHAB data. Blue color indicates pine tree; green 
is low vegetation; red is cypress tree, and black is roads/trails. Ignore the yellow triangular 
area at the top. 

Figure 51. Evaluation of known low vegetation areas in the overlap 
area. 

C. RESULTS 

From the beginning of the analytical processes until now, we obtained many 

results from various types of classification. The first result was from the unsupervised 

classification method. The K-means tool only distinguished the classes based on the 

number of classes we selected. It did not specify the type of each class. In the case of 

supervised classification, SAM achieved an accuracy of only 60 percent for both data 

sets; the percentage of unclassified points was lower than that for the SVM method. SVM 

increased the accuracy of classification (up to 100% on AHAB data). The percentage of 

unclassified points for the SVM method is very high, and it seems to increase the 

distribution in a specific area. As in Figure 48c, the white noise is distributed mostly at 

the top-left of the picture. In the case of considering only the low vegetation class, both 

methods can clearly distinguish this class from its surroundings. In terms of the overlap 

area, however, Optech data gave more satisfactory results for the AHAB data. One 

possible error that we could locate during the analyses is the spectral profile of each 

expected class. This spectral profile shows the characteristic of return pulses. Figure 52 

depicts the spectral profile of all expected classes. Low vegetation (Figure 52a) is almost 

the same as the cypress tree (Figure 52d). This might explain why, when we classified the 



57 

overlap area, some red dots (cypress trees) appeared on the expected area. Also, similar 

to the Optech data, for the AHAB data set the area that should be assigned as the roads/

trails class (soil) was assigned as the pine tree class (Figure 53). 

 
a) Low vegetation; b) pine tree; c) roads/trails, d) cypress tree. 

Figure 52. Spectral profile of Optech data. 

 
a) Low vegetation; b) pine tree; c) roads/trails. 

Figure 53. Spectral profile of AHAB data. 
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V. CONCLUSION 

This chapter summarizes the results of this study to answer the objectives stated 

in Chapter I, and notes the problems that occurred during the research. Furthermore, the 

second section offers some specific recommendations for future work. 

A. SUMMARY 

This thesis has focused on evaluating the Terrain Categorization (TERCAT) 

capability of LiDAR waveform data. The data we used was obtained from two different 

LiDAR systems and provided us with various case studies. We classified and evaluated 

the accuracy of LiDAR waveform data from both systems using ENVI software. The 

results from the analyses led us to conclude that waveform data can be used to study and 

classify low vegetation areas. In fact, low vegetation areas were found to be unique when 

compared to other classes. This study also found that waveform data provides the 

capability to locate various types of tree species, even in areas in which the sample types 

are densely distributed. Furthermore, when using waveform data, the SVM classification 

method was found to produce more accurate results than the SAM classification method. 

Nevertheless, the number of unclassified points produced from the SVM method was 

higher. The study also uncovered another problem when the waveform data within the 

overlap area of the two data systems provided a case study based on the wrong 

classification decision. We surmise that this problem might occur when classes have a 

narrow gap in data values and share similar pulse shape.  

Even though we were able to complete the analysis and evaluate the results of this 

study, it was not without problems. First, we had to deal with the inherent limitations of 

each data system used in our research. The differences in the data collection systems, 

date, time, altitude, and scanning angle, can introduce bias in decisions when comparing 

the two data systems (Lewis and Hancock 2007). Therefore, we cannot confidently 

evaluate in detail the data collection techniques. We can only roughly review the 

difference between the two data (Optech and AHAB) systems in the overlap area. 

Moreover, ground observation data does not cover the entire area of interest. We 
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acknowledge that this limits the sample points selected for evaluating the accuracy of 

LiDAR waveform data from both systems, using ENVI software. 

B. FUTURE WORK 

The recommendation for future researchers is to focus on classifying the tree 

species and low vegetation but from a different point of view. One area that this author 

would recommend is to consider the impact of ROIs on the decision making of the 

classifier tools provided in ENVI software. Specifically, future researchers should start 

transforming the actual ground area according to the actual size and location of the ROI. 

This should give more reliable results and fewer errors. 
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