
Unit testing
MediaWiki

with PHPUnit

About me

User:Ckoerner, cropped and retouched by Bryan Davis, CC
BY-SA 4.0, via Wikimedia Commons

● Engineer on Growth team
● Code health metrics project
● Prague Hackathon

Agenda
● 📚 Theory
● 🏃🏽 Running tests
● ✏ Writing tests
● ⁉ Next steps

Does your code work
the way you think it

does?

Can you and/or
another human
understand your

code?

Unit testing as means
towards correctness &

comprehension

Mark Fischer, CC BY-SA 2.0, via Wikimedia Commons

John Phelan, CC BY-SA 3.0,, via Wikimedia Commons

Types of
tests

Unit

Integration

e2e

Ways to
test
MediaWiki

● Manual (end-to-end)
● Selenium (end-to-end)
● QUnit (unit / integration)
● api-testing (end-to-end)
● PHPUnit (unit / integration)

Terminology
a.k.a.

Naming things is hard

PHPUnit
“PHPUnit is a programmer-oriented testing

framework for PHP.”

- https://phpunit.de/

https://phpunit.de/

PHPUnit
“It is an instance of the xUnit* architecture for

unit testing frameworks.”

* https://en.wikipedia.org/wiki/XUnit

https://en.wikipedia.org/wiki/XUnit

What is a test?
You have some code that says it does
something.

A test is a series of actions that exercise the code
with various inputs to assert that it works the
way you think it should.

Live demo

CC by SA 4.0, Zachary McCuneMister rf, CC BY-SA 4.0 via Wikimedia Commons

Unit
testable

● No dependencies on
application state

● Does not “reach out”
● No database connection,

network calls, file
system access

● Given set of inputs
output can be known
deterministically

Live demo

Joebeone at the English language Wikipedia,
CC BY 2.5, via Wikimedia Commons

\

Joebeone at the English language Wikipedia,
CC BY 2.5, via Wikimedia Commons

\

Live demo
2020 edition!

Not unit
testable

● Call to global function
validateResult()

● Access to global
$wgDemocraticNorms
Exist

Examples in
MediaWiki

● Usages of global
$wg{someVariable}

● Calls to global functions
from
includes/GlobalFun
ctions.php, e.g.
wfGetDB()

● Calls to
MediaWikiServices:
:getInstance(),
RequestContext::ge
tMain(), etc

You can
still test it,
of course

Refactor for unit
testing

Dependency injection
💡 The core idea of passing dependencies in instead of reaching outside is known as dependency injection.

Instead of using global $wgFoo, wfFoo(), RequestContext::getMain() or

MediaWikiServices::getInstance(), set up your classes to inject dependencies into them.

This helps with readability and refactoring too!

● Test small functions in isolation

● No dependency on global state

● Deterministic results

● Fast

● Interaction with other parts of code base

● Knows about and overrides global state

● Race conditions

● Slower

Unit Integration

Running the tests

CLI
● ✅ vendor/bin/phpunit
● ✅ composer phpunit:unit
● ⚠ php test/phpunit/phpunit.php

⚠ https://phabricator.wikimedia.org/T90875

https://phabricator.wikimedia.org/T90875

IDE

Writing
tests

● Directory structure
● Base class
● Traits
● Assertions
● @covers tags
● Mocks

When
should you
write
tests?

Jarek Tuszyński / CC-BY-SA-3.0 &
GDFL, CC BY-SA 3.0 via Wikimedia

Commons

Next steps

● tests/phpunit/unit
● #MediaWiki-Core-Testing

in Phabricator
● Manual:PHP unit testing
● Code health developer

education workshops
(https://w.wiki/jps)

● #wikimedia-codehealth

https://www.mediawiki.org/wiki/Manual:PHP_unit_testing
https://w.wiki/jps

Thank you!

