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EQUATIONS FOR CALCULATING THE THERMODYNAMIC PROPERTIES OF 

FLUIDS, INCLUDING THOSE IN THE TWO-PHASE REGION, 

FROM AN EMPIRICAL EQUATION OF STATE 

5 

by 

Robert E. Barieau—^ 

ABSTRACT 

General expressions for evaluating practically all the thermo¬ 

dynamic properties of a fluid from a single equation of state are 

derived. The formulas are expressed in terms of the compressibility 

factor, with this factor being an explicit .function of the tempera¬ 

ture and the molal density. Similar expressions are given using 

reduced variables. 

INTRODUCTION 

The Helium Research Center has, as one of its long-range 

objectives, the development of an equation of state for helium 

that will allow all of the thermodynamic properties to be cal¬ 

culated within the accuracy with which they are known. This 

includes the calculation of the vapor pressure temperature 

relationship and other thermodynamic properties in the two-phase 

region. 

1/ Supervisory research chemist, project leader, Thermodynamics, 

Helium Research Center, Bureau of Mines, Amarillo, Texas. 

Work on manuscript completed January 1966. 
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In this report, we derive the formulas for calculating all 

the thermodynamic properties of interest from a single equation of 

state, where the equation of state is given by the compressibility 

factor being an explicit function of temperature and the molal 

density. Similar formulas are given in terms of reduced variables. 

EQUATION OF STATE 

We take as our equation of state 

P = pRTZ (1) 

where P is the pressure; p is the molal density; R is the universal 

gas constant; T is the absolute temperature; and Z is the compres¬ 

sibility factor and is actually defined by equation (1). However, 

we will assume that an empirical analytical expression for Z, 

explicit in p and T is available. Thus, we assume 

Z = Z(p,T) (2) 

At the critical point, we have from equation (1) 

P = p RT Z 
c c c c 

(3) 

where P is the critical pressure; p is the critical molal density 
c c 

T is the critical absolute temperature; and Z is the critical 
c c 

compressibility factor. 

Dividing equation (1) by equation (3), we have 

X = _e_ X z_ 
P p T Z 

c rc c c 

(4) 
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We now define the reduced variables 

3 = P/P , the reduced 
c 

pressure (5) 

O' = p/p , the reduced molal density (6) 

and 

Y = T/T , the reduced absolute temperature (7) 

Substituting equations (5), (6), and (7) into equation (4), 

we have as our reduced equation of state 

O ^Z 
° z (8) 

c 

where now 

Z = Z(qsy) (9) 

USUAL CRITICAL CONDITIONS 

We accept as an empirical fact that at the critical point, 

the following relationships hold. 

©T(p=pc; T=V 
= 0 (10) 

= 0 (11) 
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EQUIVALENT CRITICAL CONDITIONS 

Differentiating equation (1) with regard to the molal density, 

keeping the temperature constant, we have 

RTZ + pRT 

T 

Differentiating equation (12), we have 

d2p 

dp2' T 

(12) 

(13) 

Setting equation (12) equal to zero at the critical point, we have 

(14) 

Substituting P=<*PC in equation (14) , we have in reduced variables 

(a= 1; Y=l) (15) 

Setting equation (13) equal to zero at the critical point, we have 

(16) 

and substituting equation (14) into equation (16), we have 

( ̂ )<» 
dp T 

T=T ) 
c 

In reduced variables, we have 

/3Z\ _ (ZZ\ (hSL) 

\3oy \3p/T\3ci!/T 

(17) 

(18) 
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but 

(19) 

so that 

Then 

and thus 

(20) 

(21) 

(22) 

Substituting equation (17) into equation (22) , we have at the 

critical point 

(S-f) (<*=1; 7=« = 2Zc (23) 

Y 

Equations (15) and (23) are equivalent critical conditions, but 

expressed in terms of reduced variables and the critical compres¬ 

sibility factor. 

THE PRESSURE-TEMPERATURE COEFFICIENT AT CONSTANT DENSITY 

Differentiating equation (1) with regard to the temperature 

at constant density, we have 

(24) 
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(25) 

Differentiating equation (8) with regard to the reduced temperature 

at constant reduced density, we obtain 

JL 
Z \3y. 

'bZ\ ‘ 

.Sy/ „ 
<y 

(26) 

THE PRESSURE-DENSITY COEFFICIENT AT CONSTANT TEMPERATURE 

Differentiating equation (1) with regard to the molal density 

at constant temperature, we find 

(27) 

(28) 

Differentiating equation (8) with regard to the reduced 

molal density at constant reduced temperature, we find 

0L./&) ~ 

Z \baJy. 
(29) 

THE DENSITY-TEMPERATURE COEFFICIENT AT CONSTANT PRESSURE 

We have, for any change, 

dP = dT + 

P 

(30) 
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Then at constant pressure, 

(31) 

Substituting equations (25) and (28) into equation (31) , we have 

[■ - -KM) ] 
[‘ * -Kf)J 

(32) 

In reduced variables, we find 

( 
dcA 
dy / 

3 

JX. 
[* * -m ] 
 a 

Y [ 1 + 
a 

y 

(33) 

THE LOG VOLUME-PRESSURE COEFFICIENT AT CONSTANT TEMPERATURE 

/B In VN / 8 In p\ 
V BP >T V BP JT (34) 

7\sp/r 
(35) 

(36) 
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Substituting equation (28) into equation (36) , we have 

(37) 

In reduced variables, we have 

3 In V\ 
SP )T 

Z 
c 

1 + a_/bZ\ 
zK’do!/ 

(38) 

THE LOG VOLUME-TEMPERATURE COEFFICIENT AT CONSTANT PRESSURE 

(39) 

(40) 

Substituting equation (32) into equation (40) , we have 

(41) 

In reduced variables, we have 

(42) 





THE SECOND DERIVATIVE OF THE PRESSURE WITH 

REGARD TO THE TEMPERATURE AT CONSTANT DENSITY 

Differentiating equation (24) with regard to the temperature 

at constant density, we have 

(M) = 2pR(lf) + pRT(M) (43) 

Differentiating equation (26) with regard to the reduced temperature 

at constant reduced density, we have 

(4) ■ f© * ?<4) 
oy oi c a c dy <y 

(44) 

THE FUGACITY FUNCTION 

We have from the definition of fugacity 

In f/P 

0 

(45) 

where f is the fugacity, and the integral in equation (45) is to 

be carried out at constant temperature. From equation (1), it 

follows 

In P = In p + In R + In T + In Z (46) 

Then at constant temperature, 



. 
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Substituting equation (47) into equation (45) , we have 

In f/P 

Z 

’(Z-l) 
i 

1 

rP 
(Z-l) 

K 

0 

la 
p 

and it follows 

In f/P (Z-l) - In Z + 
pP 
(Z-l) 

0 

la 
p 

In reduced variables, we have 

(48) 

(49) 

In f/P (Z-l) In Z + 

O' 

'(Z-l) 

0 

dcy 

Oi 
(50) 

THE RELATIVE INTERNAL ENERGY 

We have from the first and second laws of thermodynamics 

dE- = TdS - PdV (51) 

where E is the internal energy, and S is the entropy. 

(52) 

(53) 

(54) 
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or 

d£ _l/bE\ 

VdV/T ' UpJT dV “ ^2\3p/T (55) 

(56) 

Substituting equation (56) into equation (54), we have 

(57) 

Now substituting equation (1) and equation (24) into equation (57), 

we have 

So that 

fdE\ _ RTy$Z) 

WT " p W 

(58) 

(59) 

We now integrate equation (59) from p=0 to p=p and obtain 

E-E 
o 

We call 

In 

o 
E-E the reduced internal energy, 

reduced variables, we have 

E-E° = 2 f(bZ) dg 

RT “Y J \%yj 0! 
c 0 ’ a 

(60) 

(61) 
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THE RELATIVE HEAT CAPACITY AT CONSTANT VOLUME 

As 

(62) 

We have on differentiating equation (60) , with regard to the 

temperature, at constant density 

(63) 

where C° is the heat capacity at constant volume at zero density, 

and 0^ is the heat capacity at constant volume at density, p. The 

integrals in equation (63) are to be evaluated at constant tempera¬ 

ture. We call the quantity C^ - C °, the relative heat capacity at 

constant volume. 

In reduced variables, we have 

R 
(64) 

THE RELATIVE HEAT CONTENT OR RELATIVE ENTHALPY 

From the definition of heat content, or enthalpy, we have 

H = E + PV (65) 

where H is the heat content or enthalpy. At zero density 

H° = E° + (PV)° (66) 
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where H° is the heat content or enthalpy at zero density. At 

zero density, 

(PV)° = RT (67) 

So that 

H° = E° + RT 

Then 

L = H - H° = E - E° + PV - RT (68) 

or 

L = E - E° + RT(Z-l) (69) 

We call the quantity L = H - H° the relative heat content or the 

relative enthalpy. 

Substituting equation (60) into equation (69), we have 

L RT(Z-l) (70) 

In reduced variables, we have 

(71) 

THE RELATIVE HEAT CAPACITY AT CONSTANT PRESSURE 

As 

C 
P 

(72) 
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where is the heat capacity at constant pressure. Then 

(73) 

where C° is the heat capacity at constant pressure at zero density 

or pressure. Now 

(74) 

So that 

Differentiating equation (70) with regard to the temperature at 

constant density, we have 

(76) 

Differentiating equation (70) with regard to the density at con¬ 

stant temperature, we have 

(77) 

is given by equation (32). Substituting 

^ ;P 

(76), and (77) into equation (75) enables C 

In reduced variables, we have 

L 

C -C° 
_£_2 = 

R 

RT RT 

Bo' 
Y 
© 3 

equations (32), 

C° to be calculated. 
P 

(78) 



* 
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where from equation (71), we have 

and 

(80) 

and where in equation (78) is given by equation (33). 

THE RELATIVE ENTROPY 

The Gibbs free energy is defined by 

G = H - TS (81) 

where G is the Gibbs free energy; then 

G - G° = H - H° - T(S - S°) (82) 

where G° is the Gibbs free energy in the hypothetical standard 

state of unit fugacity and with the same heat content or enthalpy 

as the real gas at zero density. 

From the definition of fugacity 

G - G° = RT In f (83) 

So that 

T 
R in f (84) 



- ; -w 
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S - S° = ~Y~ - R In f (85) 

where S° is the entropy of the gas in the hypothetical standard 

state of unit fugacity. 

Substituting equations (49) and (70) into equation (85), 

we have 

S - S 
o 

-RT ^ - R In P + R in Z ■ R 
P 

0 

(Z-l) ^ (86) 

,o 
S - S = R in Hr- - RT 

r 

f( 
3Z 

BT 
0 P 

d£ 

P 
- R (Z-l) 

d£ 

V 

0 

(87) 

Then it follows 

S - S 
o = . ,n n r ra^z-ip m 

R 1 pRT R J L 3T J p 
0 M 

(88) 

and finally 

.o 
S - S = -R In pR'T - R J 

0 

dT(Z-l) 
L 3T P 

(89) 

In reduced variables, we have 

S - S° + R In P 
_c 

R 

a 

= In 
Z_ J* fBy(Z-l). 

L dv 
_ _ da 

8 ' j L .J “ 
0 “ 

(90) 





(91) 

,o 
S - S + R In P 

R 

Oi 

= -In 
cxv 

* 

"dv(Z-l)l 
1 - dy 

do1 

0 
0( 

THE REDUCED SECOND VIRIAL COEFFICIENT 

We define the second viriai coefficient, B, as 

Then in reduced units, we have 

(92) 

(93) 

We now define 

B = Bp 
r c 

(94) 

and call this quantity the reduced second viriai coefficient. 

Thus , 

THE REDUCED THIRD VIRIAL COEFFICIENT 

We define the third viriai coefficient, C, as 

(95) 

(96) 

Then in reduced units, we have 



■ 
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We now define 

and call this quantity the reduced third virial coefficient. 

Thus 

(98) 

THE SECOND DERIVATIVE OF THE CHEMICAL POTENTIAL OR GIBBS 

FREE ENERGY WITH REGARD TO THE TEMPERATURE AT CONSTANT DENSITY 

From the definition of the Gibbs free energy, G, and the first 

and second laws of thermodynamics, we have 

dG = -SdT + VdP (99) 

Then 

(i) = -s + v-(!D (ioo) 
p p 

Differentiating equation (100) with regard to the temperature 

keeping the density constant, we have 

Now 

and thus 

(101) 

(102) 

(103) 





23 

Substituting equations (43) and (63) into equation (103) , 

we have 

& ST p 

-C 
o 

V 
y 

m + 2R r ^ + RT 
t j vai/ p 

0 p 

d£ P(^Df + 2R(i) +*i—2 
o 4tp p Vai4 4t2/ p 

(104) 

which may be written 

-<S) 
ST P 

- <$ ■ Ad f - “2 {& f - «<i) --vA 

0 P 0 dT P 

2RT(t^J - RT(105) 

J. 

In reduced variables, we have 

"ftt) - C 

ST p 

o 

V 
ot O' 

R ■ j ® ® - v2 j m * - ■ AH) <“> 
0 T a Q Sy a a dy CK 

THE DIFFERENCE BETWEEN THE HEAT 

CAPACITIES AT CONSTANT PRESSURE AND AT CONSTANT VOLUME 

We have 

and 

So that 

(72) 

(62) 

(107) 
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C 
P m * ©,®, 

p TP 

From equation (65), we have 

Then 

Now 

H-E = PV = RTZ 

p(H-E)~] _ RZ + Rt(“) 
L ST . 

p 
VdT/ 

[d(H-E)' 
r|~z + t(|§) 

L ST . 
p 

L Vst/ 

/3H) 
WT 

II 

q
7
\q

j 
-o

|£
 

H
 

P 

(108) 

(109) 

(110) 

(111) 

(112) 

(113) 

and we thus have from equation (77) 

Multiplying equation (114) by equation (32) , we have 

(114) 

(3H) /&>) 
\3p/T\3T/p 

(115) 



/' 
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+ 

Z + T 
— 

(116) 

Adding equations (112) and (116) , we have 

In reduced variables, we have 

(119) 

THE RATIO OF THE HEAT CAPACITIES AT 
CONSTANT PRESSURE AND AT CONSTANT VOLUME 

We have 

C 
_E 

cv 

<CD - V + cv 

cv 
(120) 

CTT should be calculated from equation (63) and C - CT7 from 
V p V 

equation (118). The substitution of these quantities into 



' 
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equation (120) enables 

ables, we have 

C /CTT to be calculated, 
p V 

In reduced vari- 

C 
E (121) 

Then —~ is to be calculated from equation (64) and —-- from 
K K 

equation (119) and when these two quantities are substituted in 

equation (121), C /C.,T can be calculated. 
p V 

THE VELOCITY OF SOUND 

If the propagation of a sound wave in a gas is reversible 

and adiabatic, then the equation for the velocity of sound is 

given by (1)—^ 

27 Underlined numbers in parentheses refer to items in the list 

of references at the end of this report. 

Ha 
2 „ -EL ($1) 

CV 'VT 
(122) 

where M is the molecular weight, and a is the velocity of sound. 

Equation (122) may be written 

(123) 



- 
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From equations (28) and (118) , we have 

v'Vdp/, (124) 

(125) 

Substituting equations (28) and (125) into equation (123), we have 

r2t[z + t(||) ]2 

KaZ = ---2— + RT 
cv 

Cy is to be calculated from equation (63). In reduced variables, 

we have 

Z + pD. (126) 

RY 
Ma 
RIc 

Z + 

+ Y 
V 

z + Otf- 
■OQ!> r 

(127) 

C /R is now to be calculated from equation (64). 

THE TEMPERATURE-PRESSURE COEFFICIENT AT 
CONSTANT ENTHALPY OR THE JOULE-THOMSON COEFFICIENT 

'bT\ 
^ = W 

H 
(128) 

where p is the Joule-Thomson coefficient. 

dH = i)f * ©-/ (129) 

dH = C dT + 
P 

dP 
T 

(130) 
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Then with dH = 0, 

~ 4 (131) 

(132) 

Now 

so that. 

(133) 

(73) 

(134) 

Substituting equation (75) into equation (134) , we have 



• ' • - . . 1 ■ . ; gni - Vi 

r 
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Then with dp = 0 , 

(138) 

Substituting equation (138) into equation (136) , we have 

s©t ■ * 
r 

c“ * (g) pi 
L- P p- 3p't 

(139) 

From equation (69) , we have 

o 
L = E - E + RT(Z-l) (69) 

Then 

\3T/ ;) - £01] + R(z-» + R<D 
(140) 

= Cv - C° - R + r[z + T(|f) _j 

P 

(141) 

Substituting equation (25) into equation (141) , we have 

(i) ■ cv - cv° -R + -t 
p 

(142) 

,o 
Adding to each side of equation (142), we have 

c°+ (i) ■ cv + cp - cv -R + 
_1_ fdP 
p \dX 

(143) 

From equation (118), we see that at zero density 

C° - C° = R 
P v 

(144) 



: 
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So that 

* ® = C_. + 
V p 

l_ /dp 
p \c)T, 

(145) 

Substituting equation (145) into equation (139), we have 

C 

T 

(146) 

Now substituting equation (146) into equation (133) , we have 

M- 

- [■ 
T p 

l. m ym 
)V Cv + p VSX/ JVdp/, 

(147) 

For substitution in equation is to be calculated 

from equations (113) and (114); © is to be calculated from 

/ 6P\ ^ 
equation (25) ; is to be calculated from equation (28) ; and 

C.^ is to be calculated from equation (63). In reduced variables, 

equation (147) can be written 

(148) 



' 
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THE JOULE-THOMSON INVERSION CURVE 

The Joule^Thornson inversion curve is defined as the curve 

for which 

(JL, = 0 (149) 

We see from equation (147) that jj, will equal zero, if 

is not equal 

T 

(113) and (114) lead to 

and if Tc 
1. V 

+ ©.]© to zero. 

(150) 

Then equations 

or 

(151) 

In reduced variables, we have 

(152) 

(153) 

THE PRESSURE-TEMPERATURE COEFFICIENT AT CONSTANT ENTROPY 

We have from the elementary laws of differentiation 

ds ■ (DdT + (fDdp <i54> 



r ■: 

• ' 
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Now from the first and second laws of thermodynamics 

and 

(135) 

Substituting equations (155) and (156) into equation (154), 

we have 

dS - ^dT + -t(f£)dP 

p p 

Then with dS = 0, it follows 

(157) 

(158) 

(159) 

We have 

dP 

Then with dP = 0 

(160) 

P 

P 

(161) 
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So that 

( 
bp) 
ST/ 

»\©. 
(162) 

Sub stituting for C from equation (146) in equation (f62), we 

have 

$,©„ * 
C + 

L V p p VdT/ J 
dP\ 

dp/. 

t(M) 
(163) 

and it follows 

(D. 
2/BL^ 

P Ua LCV+ p 
1_ ~{St\ 

Vdp/, 
+ 

T(ti 
(164) 

For substitution in equation (164): is to be calcu¬ 

lated from equations (113) and (114); is to be calculated 

from equation (25); is to be calculated from equation (28); 

and is to be calculated from equation (63). In reduced variables 

equation (164) may be written 

(D --/s /T ~ yVsy 

Rp oi 
c 

+ 

rCT7 Z 
-V + _£ # v 

_R Qt \dv/ J\do>> 
<y 

M 

y 

if. 
(165) 

a 



. 
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But 

P 
c 

T Z 
c c 

(166) 

So that 

EQUATIONS FOR TWO-PHASE EQUILIBRIUM 

The equations derived so far apply to any state of a gas or 

fluid. We will now derive equations that are applicable only when 

two phases are present in thermodynamic equilibrium. In these 

derivations, we will neglect the effect of a gravitational field 

on the thermodynamic properties. The resulting equations are thus 

only strictly applicable to the interface region between the two 

phases, which may be considered at the same level in a gravitational 

field. We thus take as our conditions for thermodynamic equilibrium; 

1. The two phases must be under the same temperature; 

2. The two phases must be under the same pressure; and 

3. The two phases must have the same chemical potential or 

(167) 

Gibbs free energy. 
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EQUALITY OF PRESSURE AND TEMPERATURE 

We have from equation (1) 

P = pRTZ (I) 

For phase 1, which we think of as the gas phase, we can then write 

pi “ piRTizi (168) 

For the second phase, which we think of as the liquid phase, we 

can write 

^3 ~ P3^3^3 (169) 

Equality of pressure gives 

P = P = P 
13 

(170) 

and equality of temperature gives 

X = T = T 
1 3 

(171) 

It then follows that equality of pressure and temperature leads to 

^l2! = |D3Z3 (172) 

Since we have assumed Z is an explicit function of p and T, 

equation (172) establishes T as a function of p^ and p , the 

saturated vapor and liquid densities. Once p^ and p^ are known, 

equation (172) may be solved for T. This value of T may then be 

substituted in the equation 

P = p1RTZ1 (173) 

and the equilibrium pressure calculated. 
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In terms of reduced variables, we have 

“izi °3Z3 

and 

3 
Q^yZ 

~Z 
1 

c 

(174) 

(175) 

EQUALITY OF CHEMICAL POTENTIAL OR GIBBS FREE ENERGY 

Equality of the chemical potential or Gibbs free energy 

requires 

Gl = G3 (176) 

where G^ is the Gibbs free energy of the saturated vapor, and G^ 

is the Gibbs free energy of the saturated liquid, or 

From the definition of G and the first and second law of thermo¬ 

dynamics , it can be shown 

(178) 

Then the equality of the Gibbs free energy requires 

P3 J VdP = 0 

P 
1 

but 

(178) 

VdP d(PV) - PdV (179) 
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Substituting equation (179) into equation (178) , we have 

P3V3 

U 

P V 
1 1 

-Ji 
V, 

d(PV) - PdV = 0 

or 

P V - P V 
3 3 11 

Dividing by RT, we have 

V- 

■ J; PdV 

V 

P V P V 3V3 jv 1 

RT “ RT 

V3 
' PV dV 

J RT V 
V. 

From the definition of the compressibility factor, we 

now 

So that 

or finally 

dV 
V 

dV = _ d£ 

V " p 

d£ 

P 

P 

(180) 

(181) 

(182) 

then have 

(183) 

(184) 

(185) 

(186) 
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Equations (172) and (186) determine the equilibrium densities, 

and as a function of temperature. These two equations must 

be solved for p^ and p^ as a function of T before any of the other 

two-phase thermodynamic properties can be calculated. 

In terms of reduced variables, we have as a condition for the 

equality of the Gibbs free energy 

Z1 - Z3 “ JZ f <187> 
a. 

THE TEMPERATURE COEFFICIENT OF THE VAPOR PRESSURE CURVE 

The expression for the temperature coefficient of the vapor 

pressure curve may be derived very simply from equation (181). 

We have, since P^ = P^ = P, 

P(y3 - vp 

v3 
* 

PdV 

V, 
i 

(188) 

Differentiating totally with regard to the temperature, we have 

V. 

dP 

dT 

1 (190) 



. 
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Since the right-hand side of equation 

( BP) 
value of l over the interval to 

critical point is approached, where 

(190) is the average 

we see that as the 

, that 

(191) 

and we see that the slope of the vapor pressure curve at the 

critical point is continuous with the slope of the critical iso¬ 

metric at the critical point. 

Substituting for from equation (188) into equation (190), 

we have 

or 

(192) 

(193) 

In terms of the compressibility, this equation becomes 



t 

. 
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dP 
dT 

P 
d(TZ)~ 

. dT _ 
d£ 

P 

which may be written 

(194) 

d In P 
d In T 

J d (TZ) 

. dT J p 

P 

i 3z ^ 

(195) 

d In P 
d In T 

(196) 

d In P 
d In T 

(197) 
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We then have from equation (186) 

d In P 

d In T 
(198) 

In terms of reduced variables, we have 

Then 

d In B = l + V (* (bZ) da 

d In y Z - Z„ J VdV Ot 
i O Q/ Of 

1 

(199) 

(200) 

THE TEMPERATURE COEFFICIENTS OF 

THE SATURATED LIQUID AND VAPOR DENSITIES 

We have 



■ 

0 



From equation (194), we may write 
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dP 

dT J 0 [~d (TZ) 

ST J p 
P 

(203) 

Substituting from equation (25) , we have 

dP 

dT 

P3 
M . (204) 

We have from equation (28) 

(205) 

Substituting equations (204) and (205) into equation (202), we have 

(206) 



f 
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In terms of reduced variables, we have 

and 

(208) 

(209) 

THE HEAT OF VAPORIZATION 

The heat of vaporization, AH^, is given by 

AH = H - H„ = L - L„ 
v 13 13 

From equation (70) , we have 

and 

(210) 

(211) 

RT(Z - 1) 
(5Z) d£ 

Wp p 
(212) 

So that 



* 

- 

- 

- . 7 : • : - • 
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L1 * L3 ■ RI(zi - V+ rt2 I (i) f (213) 

Substituting for (Z - Z^) from equation (186), we have 

L1 - L3 1 
RT | Z ^ + RT' 

P 

'1 

I © 
d£ 

, P 
(214) 

which may be written 

AH 
L1 " L3 

= RT i 
d (TZ) 

L 3T Jp p 
(215) 

In terms of reduced variables, we have 

AH 
Of. 

V 

RT = y rt 
a. 

d (yZ) do? 

3y 
(216) 

THE ENTROPY OF VAPORIZATION 

The entropy of vaporization, AS^, is given by 

AH 

AS 
v 

v 
(217) 

So that 

R I 

P3 
c)(TZ) 

L dT 
d£ 

, P 
(218) 



■ 
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In reduced variables, we have 

(219) 

A FUNCTION RELATED TO THE HEAT OF VAPORIZATION, 

NAMELY THE HEAT OF VAPORIZATION PER MOLE OF 

GAS COLLECTED OUTSIDE OF THE CALORIMETER 

When the heat of vaporization is determined by adding electrical 

energy to a calorimeter, all of the gas formed does not leave the 

calorimeter because the volume of the liquid evaporated is occu¬ 

pied by gas. The quantity measured directly is the heat of vapori¬ 

zation per mole of gas collected outside the calorimeter. This 

quantity must then be corrected to calculate the heat of vaporization. 

Suppose an amount of heat, q, has been added to the calorimeter 

so that one mole of gas has been evaporated. Then 

q = AHv (220) 

The number of moles of the evaporated liquid that does not 

leave the calorimeter is then just 

V 
g 

(221) 

where V, is the molai volume of the liquid and V is the molal 
1 g 

volume of the gas. 



. 

■ !i» 

. 

' 

' 
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The number of moles collected outside the calorimeter is then 

1 
V 

g 

(222) 

The heat of vaporization per mole of gas collected is then given 

by 

AH 
v 

V 
g 

(223) 

where AHg is the experimental heat of vaporization per mole of gas 

collected. Then 

AH • V 
v g 
AV 

v 

From the Clapeyron equation, we have 

AV 
v 

Substituting equation (225) into (224), we have 

(224) 

(225) 

TV 
dP 

g dT 
JL dP 
PL dT 

Then 

or 

AVi 
dP 

d In T 

d In T = 1 

dP PxAHe 

(226) 

(227) 

(228) 



. 
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Equation (228) can be used to determine the absolute thermodynamic 

temperature scale. If AH^ has been experimentally determined as a 

function of the vapor pressure, and if p^, the density of the 

saturated vapor, has also been determined, then 

J P 1 AH 

h 1 E 
(229) 

and equation (229) establishes the thermodynamic temperature scale. 

From equation (226), we can write 

_P_ d in P 

p^ d In T 
(230) 

Substituting for 

RTZ 
d In P 

1 d In T 

d In P 

d In T 
from equation (197) , we have 

(231) 

(232) 

In reduced variables, we find 



; 

■ 
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(233) 

THE SECOND DERIVATIVE OF THE VAPOR PRESSURE 

CURVE WITH REGARD TO THE TEMPERATURE 

Equation (190) may be written 

(234) 

Differentiating, totally with regard to the temperature, we have 

We have 

dP 

dT 
(237) 

(235) 

(236) 



' 

. 
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Similarly 

(238) 

(239) 

Substituting equations (238) and (239) into equation (236), we have 

,2 
d P 

2 
dT 

J (M) dV + 
-( 

M') 

aT/v J 
l 

-( 
3T;v3J 

V3 ■ V1 v ''ST^V (v3 - V iXfr 
4 ( - V iXfr 

(240) 

In terms of the molal densities, equation (240) may be written 

2 -,2 
1 dP fdi?\ 

P3LdT 

d2P _P i P 

2 P'3 " P 

3,^2, 

fdp /ap> T rdp /ap\ 
\dT/ J PlLdT " \bT/ _ 

J (a. *?♦ 
dT F3 Kl p, p p pl(p3 " pl)(aoX p3(p3 " pl)(dp0) 

(241) 

1 T 3 T 

In terms of reduced variables, we have 



' 

1 
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Equation (241) shows that the second derivative of the vapor 

pressure curve at the critical point is not necessarily continuous 

with the second derivative of the critical isometric. 

THE HEAT CAPACITY OF THE SATURATED GAS 

By the heat capacity of the saturated gas, we mean 

C(sat. gas) (243) 

dSi 
where -rr— is the 

d i 

gas with regard 

total derivative 

to the temperature 

of the entropy of the saturated 

We have 

Now 

(244) 

(245) 

(246) 

(247) 

Substituting equations (244) , (245), (246) , and (247) into 

equation (243) , we have 

_T_ /3P\ 

2 Vsi/ pi 
Pi pi 

C(sat. gas) (248) 



> 

■ 

■ 

« 
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Substituting for C from equation (63), we have 

1 

C(sat. gas) - C 
V - »2 A$) ? 

0 p 0 °T p 

(i) 

In reduced variables, we have 

C(sat. gas) - C 
o 

V 

O'. Qi 
1/^2, Z V 

-v J ®„ f • v2 J f • -V •; 
0 011 al 

THE HEAT CAPACITY OF THE SATURATED LIQUID 

By the heat capacity of the saturated liquid, we mean 

C(sat. liq.) = T 

dS. 

dT~ 
(251) 

The derivation is similar to the last section and we obtain 

C(sat. liq.) - C 
o 

V f(D f - »2 f\&) 33 

0 0 
ST p 

_t_ ZIP') ' 
2 \3T/ P3 

P3 P3 

In reduced variables, we have 

C(sat. liq.) - C 
o 

V 
Oir 

R 
■2y J (&) ^ 

0 

\dy/ <y 
T O' 

- Y 
J <$>. 0 

dot _ a 
Ot 2 \~dyJ : 

O'.. ' O'- 

(249) 

(250) 

(252) 

(253) 



T" 
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THE SECOND DERIVATIVE OF THE CHEMICAL POTENTIAL OR 

GIBBS FREE ENERGY WITH REGARD TO THE TEMPERATURE 

We have for the saturated gas 

dG. 

dT 
-s + v — 

1 1 dT 
(254) 

Differentiating equation (254) , we have 

d2G. 

dT 

dS. 

dT 
i_ dp / 

2 dT P1 

P1 

P- + 

2 
X 1_P 

PI dT2 

(255) 

-T 

d2G. 

dT 

= T + X dP / 
dT 2 dT P1 

_T_ d^P 

P1 dT2 

(256) 

Substituting from equation (243) , we have 

-T 

d2G, 

dT 

r, . v , T dP / 
C(sat. gas) + ~ dT Pi 

Pi 

x dip 
P1 dT2 

(257) 

Substituting for C(sat. gas) from equation (248), we have 

-T 

d2G, 

dT 
CV + 2 

1 pl 

dP _ 

LdT diy J pi 

2 
X d_P 

P1 dT2 

(258) 

Substituting for C from equation (63) , we have 

V1 

(259) 
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As , we have dropped the subscript and set G^ = G, 

In reduced variables, we have 

Z Y 

— 3" (260) 
OS 

THE HEAT CAPACITY AT CONSTANT VOLUME WITH 

TWO PHASES PRESENT IN THE CALORIMETER 

With two phases present in the calorimeter, we define the 

heat capacity at constant volume as 

C^2 phases^) = -( n \ 

dS 
Total 

dT 
(261) 

V 
Total 

where is the total entropy of the contents of the calori¬ 

meter, Vm . is the total volume of the calorimeter, and n is the 
Total 

total number of moles in the calorimeter. 

We may write 

dGTotal 

dT STotal 
+ V 

dP 

Total dT 
(262) 

But G 
Total 

Gi “ G3 - G, 

nG, where G is the molal Gibbs free energy and since 

Then 

n 
dG 

dT 
S + V — 
Total Total dT 

(263) 



* 
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■<-*) 
xdT V 

Total Total 

= /ffrotai) +v /<&) 
V dT ^ TotaAdT2J (264) 

Total 

d2G 
and since, as long as two phases are present, —- and 

dT 

d2P 

dT2 

are 

independent of the volume, we may write 

n 
d2G 

dT2 

/dSlotaU 

A dT J + V 

Tota 1 

d2P 

Totai dT2 
(265) 

Substituting equation (265) into equation (261), we have 

Cy(2 phases) = 
_T d^G + VTotal T d4 

dT 
n 

dT 

(266) 

A heat capacity determination, with two phases present in the 

calorimeter, has usually been thought of as the way to experimen¬ 

tally determine the heat capacity of the saturated liquid. However, 

equation (266) shows that if two heat capacity determinations are 

made, one with very little liquid in the calorimeter and the other 

with the calorimeter almost filled with liquid, then it is possible 

d2G d2P 
to calculate from the thermal measurements alone -T and T — 

dTZ dTZ 
This was first pointed out by Yang and Yang (2J) . 

Substituting equation (258) into equation (266) , we have 

0^(2 phases) 

piJ 

d2P 

dT2 

(267) 

Equation (267) shows that when the calorimeter is filled to the 

critical density, the heat capacity at constant volume is not 
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necessarily continuous through the critical point. 

Substituting for C from equation (63) into equation (267) , 

Vi 

we have 

o 
Cy(2 phases) - Cy 

-2rt J XW f - RT 

0 

dP {§?' 
LdT 

0 p 

1 / , J~VTotal 1 

W _JP1 + TL n " PXJ 
d2P 

dT2 

(268) 

In reduced variables, we find 

o 
C^(2 phases) - 

R 

al <*i ? 
0 f 1 2 f Vd Z\ dev 

‘2y w l -Y J K-TVT 
0 “ 0 3Y “ 

ZcV r 
+ 3 

a. 

-V 
Total 

L n V 
3 

(269) 
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