# The Tensor Product Theorem 

Marios Magioladitis

Arbeitsgemeinschaft Einführung in die Theorie der Autmorphen Formen

Arbeitsgemeinschaft Einführung in die Theorie der Autmorphen Formen. Organisation: Pedro Luis del Angel, Gebhard Böckle, Juan Cerviño, Gabor Wiese. Sommersemester 2007.

Lecture 4. The Tensor Product Theorem was given on the 10th of May 2007 at the University of Duisburg-Essen (Campus Essen).

Marios Magioladitis
Homepage: http://www.iem.uni-due.de/~ magiolad
E-mail: magiolad@iem.uni-due.gr

## References

[Bu] Chapter 3 of D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics 55.

## Chapter 1

## Prelimaries

For all the following $\Omega$ will be always a field.
Definition 1.1. Let $R$ be a ring and $M$ an $R$-module. $M$ is called simple if $M \neq 0$ and it has no proper nontrivial $R$-submodules.

Definition 1.2. An idempotented algebra is an ordered pair $(H, \mathcal{E})$ where $H$ is an $\Omega$-algebra (usually without unit) and $\mathcal{E}$ is a set of idempotents, which satisfies the following properties:

1. $\forall e_{1}, e_{2} \in \mathcal{E}, \exists e_{0} \in \mathcal{E}$ s.t. $e_{0} e_{1}=e_{1} e_{0}=e_{1}$ and $e_{0} e_{2}=e_{2} e_{0}=e_{2}$.
2. $\forall f \in \mathcal{H}, \exists e \in \mathcal{E}$ s.t. $e f=f e=f$.

Remark 1.3. There is a partial ordering $\geq$ on $\mathcal{E}$ defined as follows: if $e, f \in \mathcal{E}$,

$$
e \geq f \Leftrightarrow e f=f e=f .
$$

Remark 1.4. If $\left(H_{1}, \mathcal{E}_{1}\right)$ and $\left(H_{2}, \mathcal{E}_{2}\right)$ are idempotented $\Omega$-algebras then the tensor product ring $\left(H_{1} \otimes H_{2}, \mathcal{E}\right)$, where

$$
\mathcal{E}=\left\{e_{1} \otimes e_{2} \mid e_{1} \in \mathcal{E}_{1}, e_{2} \in \mathcal{E}_{2}\right\}
$$

is an idempotented $\Omega$-algebra.
Definition 1.5. Let $\Sigma$ be some indexing set, and for all $v \in \Sigma$, let there be given a group $G_{v}$, and for almost all $v \in \Sigma$, let there be given a subgroup $K_{v}$ of $G_{v}$. Then the restricted direct product of the $G_{v}$ with respect to $K_{v}$ is

$$
G=\left\{\left(a_{v}\right)_{v \in \Sigma} \in \prod_{v} G_{v} \mid a_{v} \in K_{v}, \text { for almost all } v \in \Sigma\right\}
$$

Definition 1.6. Let $\Sigma$ be some indexing set, and for all $v \in \Sigma$, let there be given a vector space $V_{v}$, and for almost all $v \in \Sigma$, let there be given a nonzero $x_{v}^{o} \in V_{v}$. Let $O$ be the set of all finite subsets $S$ of $\Sigma$ having the property if $v \notin S$ then $x_{v}^{o}$ is defined. We order $O$ by inclusion and then it is a directed set.
$\forall S, S^{\prime} \in O, S \subseteq S^{\prime}$, we define a homomorphism

$$
\lambda_{S, S^{\prime}}: \bigotimes_{v \in S} V_{v} \rightarrow \bigotimes_{v \in S^{\prime}} V_{v}
$$

namely, $\lambda_{S, S^{\prime}}(x)$ is obtained by tensoring $x \in \bigotimes_{v \in S} V_{v}$ with $\otimes_{v \in S^{\prime}-S} x_{v}^{o}$.
We form the direct limit of this family of maps

$$
\otimes_{v} V_{v}:=\lim _{\rightarrow} \bigotimes_{v \in S} V_{v}
$$

This product is called the restricted tensor product of the $V_{v}$.

Proposition 1.7. Let $R_{v}$, where $v \in \Sigma$, be a family of rings, each with unit $e_{v} \in R_{v}$, and let $R$ be the restricted tensor product of the $R_{v}$ with respect to $e_{v}$. Let $\gamma: R \rightarrow \Omega$ be a ring homomorphism. Then there exists ring homomorphisms

$$
\gamma_{v}: R_{v} \rightarrow \Omega
$$

s.t. $\gamma\left(\otimes_{v} r_{v}\right)=\prod_{v} \gamma_{v}\left(r_{v}\right)$.

Remark 1.8. $R$ is a ring.
Remark 1.9. We note that given a family of ring homomorphisms $\gamma_{v}$, if

$$
\otimes_{v} r_{v} \in \bigotimes_{v} R_{v}
$$

then $\gamma_{v}\left(r_{v}\right)$ is 1 for almost all $v$, so $\prod_{v} \gamma_{v}\left(r_{v}\right)$ is well defined.
Proof. Let $1_{v}$ denote the unit element in $R_{v}$. We have a ring homomorphism

$$
i_{v}: R_{v} \rightarrow R
$$

defined by

$$
i_{v}\left(x_{v}\right)=x_{v} \otimes\left(\otimes_{w \neq v} 1_{w}\right)
$$

Let $\gamma_{v}=\gamma \circ i_{v}$. Then if $r \in R$, we can write $r=\prod_{v} i_{v}(r)$, where all but finitely many terms on the right are 1 . Then is clear that $\gamma(r)=\prod_{v} \gamma_{v}\left(r_{v}\right)$.

Definition 1.10. Let $(H, \mathcal{E})$ be an idempotented $\Omega$-algebra and let $e \in \mathcal{E}$. We call $M$ smooth if $M=\cup_{e \in \mathcal{E}} e M e$ and admissible if it is smooth and $\operatorname{dim}_{\Omega}(e M)<$ $\infty, \forall e \in \mathcal{E}$

## Chapter 2

## The proof of the Tensor Product Theorem


#### Abstract

We'll prove the Tensor Product Theorem, which asserts that if $F$ is a global field, $A$ its adele ring, $v$ the places of $F$, and G is a redactive algebraic group over $F$ then every irreducible admissible representation of $G(A)$ decomposes into a restricted tensor product of representations of the groups $G\left(F_{v}\right)$.

Theorem 2.1. (Burnside) Let $\Omega$ be algebraically closed. Let $R$ be an $\Omega$-algebra and $M$ be a simple $R$-module, finite dimensional over $\Omega$. Let $\phi: R \rightarrow \operatorname{End}_{\Omega}(M)$ an homomorphism. Then $R / \operatorname{ker}(\phi) \cong \operatorname{End}_{\Omega}(M)$. Morevover, $\operatorname{End}_{R}(M)$ is one dimensional over $\Omega$, and consists of exactly the scalar endomorphisms $m \rightarrow \lambda m$ of $M$, where $\lambda \in \Omega$.


Proof. Omitted.
Proposition 2.2. (Bourbaki) Let $A$ and $B$ be $\Omega$-algebras (with unit). Let $R=$ $A \otimes B$ and $P$ a simple $R$-module that is finite dimensional over $\Omega$. There exists a simple $A$-module $M$ and a simple $B$-module $N$ such that $P \cong M \otimes N$. Moreover, the isomorphism classes of $M$ and $N$ are uniquely determined.

Proof. Omitted.
Proposition 2.3. (Bourbaki) Let $\Omega$ be algebraically closed. Let $A$ and $B$ be $\Omega$ algebras, and let $R=A \otimes B$. Let $M$ and $N$ are $A$ - and $B$ - modules, respectively, that are finite dimensional over $\Omega$. Then $M \otimes N$ is a simple $R$-module and every simple $R$-module that is finite dimensional over $\Omega$ has this form for uniquely determined $M$ and $N$.

Proof. We have homomorphisms

$$
\phi_{M}: A \rightarrow \operatorname{End}_{\Omega}(M)
$$

and

$$
\phi_{N}: A \rightarrow \operatorname{End}_{\Omega}(N)
$$

given by

$$
\phi_{M}(a) m=a \cdot m \text { for } a \in A, m \in M,
$$

and

$$
\phi_{M}(b) n=b \cdot n \text { for } b \in B, n \in N .
$$

These homomorphisms are surjective (Theorem 2.1). To show that $M \otimes N$ is a simple $R$-module, it is sufficient to show that it is a simple $\operatorname{End}_{\Omega}(M) \otimes \operatorname{End}_{\Omega}(N)$ module. It is easy to see that the natural map $E n d_{\Omega}(M) \otimes E n d_{\Omega}(N) \rightarrow E n d_{\Omega}(M \otimes$ $N)$ is surjective. So it suffices to show that $M \otimes N$ is a simple $E n d_{\Omega}(M \otimes N)$-module, and this is clear. The rest follows easily from Proposition 2.2.

Definition 2.4. A group is called unimodular if the left and the right Haar measures coincide.

Definition 2.5. Let $G$ be a unimodular locally compact totally disconnected group. We will denote with $\mathcal{H}_{G}$ the Hecke algebra of $G$, namely, the convolution algebra $C_{c}^{\infty}(G)$ of locally constant, compactly supported functions.
Let $K$ be a compact Lie group. We will denote with $\mathcal{H}_{K}$ the ring (under convolution) of smooth functions $\phi: K \rightarrow \mathbb{C}$ that are $K$-finite under both left and right translation by elements of $K$.

Proposition 2.6. Let $K$ be a compact Lie group. Let $(\pi, V)$ be a representation of $K$ that is an algebraic direct sum of finite-dimensional representations. Then we obtain a smooth representation $\pi: \mathcal{H}_{K} \rightarrow \operatorname{End}(V)$ by

$$
\pi(\phi) v=\int_{K} \phi(k) \pi(k) v d k
$$

Conversely, if a smooth representation $\pi$ of $\mathcal{H}_{K}$ is given, there exists a representation $\pi$ of $K$ such that the last equation is valid.

Proof. Omitted.
Proposition 2.7. Let $G$ be a reductive Lie group, $K$ is maximal compact subgroup and $\mathfrak{g}$ the Lie algebra of $G$. Let $V$ be a $(\mathfrak{g}, K)$-module. Then $V$ is naturally a smooth module for $\mathcal{H}_{G}$, and moreover every smooth module for $\mathcal{H}_{G}$ arises in this fashion.

Proof. Omitted.
Remark 2.8. The content of the last proposition is that the $(\mathfrak{g}, K)$-modules are exactly the smooth modules over $\mathcal{H}_{G}$.

Definition 2.9. Let $A$ be a partially ordered set and $B \subseteq A$.

$$
B \text { is a cofinal subset of } A \Leftrightarrow \forall a \in A, \exists b \in B \text { s.t. } a \leq b \text {. }
$$

Proposition 2.10. Let $M$ be a nonzero module over the idempotented $\Omega$-algebra $(H, \mathcal{E})$, and let $\mathcal{E}^{o}$ be a cofinal subset of $\mathcal{E}$. Then

$$
M \text { is a simple }(H, \mathcal{E})-\text { module } \Longleftrightarrow e M=\left\{\begin{array}{l}
0 \\
a \text { simple } e H e-\text { module } \forall e \in \mathcal{E}^{o}
\end{array}\right.
$$

Proof. Omitted.
Proposition 2.11. Let $M$ and $N$ be simple admissible modules over the idempotented $\Omega$-algebra $(H, \mathcal{E})$. Let $\mathcal{E}^{o}$ be a cofinal subset of $\mathcal{E}$. Then,

$$
M \cong N \Longleftrightarrow e M \cong e N \text { as } e H e-\text { modules } \forall e \in \mathcal{E}^{o}
$$

Proof. Omitted.
Proposition 2.12. Let $R$ be a ring and let e, $f$ be idempotents of $R$ s.t. ef $=$ $f e=e$. Then $f=e+e^{\prime}$, where $e^{\prime}$ is idempotent, and $e e^{\prime}=e^{\prime} e=0$. If $M$ is any $R$-module, then $f M=e M \oplus e^{\prime} M$. Suppose furthermore that $\Omega$ is algebraically closed, $R$ is an $\Omega$-algebra and that eMe is finite dimensional over $\Omega$ and simple as an eRe-module. Then $\operatorname{dim}\left(\operatorname{Hom}_{e R e}(e M, f M)\right)=1$.

Proof. Omitted.
Theorem 2.13. Let $\Omega$ be algebraically closed. Let $\left(H_{1}, \mathcal{E}_{1}\right)$ and $\left(H_{2}, \mathcal{E}_{2}\right)$ be idempotented $\Omega$-algebras and let $(H, \mathcal{E})=\left(H_{1}, \mathcal{E}_{1}\right) \otimes\left(H_{2}, \mathcal{E}_{2}\right)$. If $M_{1}$ and $M_{2}$ are simple admissible $H_{1}$ - and $H_{2}$ - modules respectively, then $M_{1} \otimes M_{2}$ is a simple admissible $H$-module, and every simple admissible $H$-module has this form. The isomorphism types of $M_{1}$ and $M_{2}$ are uniquely determined by that of $M$.

Proof. Omitted.
Proposition 2.14. Let $\mathcal{H}_{G}$ be the Hecke algebra of a totally disconnected locally compact unimodular group $G$. Let $V$ be a smooth module over $\mathcal{H}_{G}$. Then there exists a smooth representation

$$
\pi: G \rightarrow \operatorname{End}_{\mathbb{C}}(V)
$$

such that $\phi \cdot x=\pi(\phi) x$ for $\phi \in \mathcal{H}_{G}, x \in V$.
Proof. Omitted.
Proposition 2.15. Let $G_{1}$ and $G_{2}$ be locally compact totally disconnected groups. Let $\left(\pi_{i}, M_{i}\right)$ be irreducible admissible representations of $G_{i},(i=1,2)$. Then $\left(\pi_{1} \otimes\right.$ $\pi_{2}, M_{1} \otimes M_{2}$ ) is an irreducible admissible representation of $G_{1} \times G_{2}$, and every irreducible admissible represetation of $G_{1} \times G_{2}$ is of this type.

Proof. Since $\mathcal{H}_{G_{1} \times G_{2}} \cong \mathcal{H}_{G_{1}} \otimes \mathcal{H}_{G_{2}}$, our result follows from Theorem 2.13 and Proposition 2.14.

Definition 2.16. Let $H$ be an $\Omega$-algebra. An linear map $\iota: H \rightarrow H$ is called antiinvolution if

$$
{ }^{\iota}(x y)={ }^{\iota} y^{\iota} x
$$

Definition 2.17. Let $(H, \mathcal{E})$ be an idempotented $\Omega$-algebra. Let an idempotent $e^{o} \in \mathcal{E}$. We say that $e^{o}$ is spherical if there exists an antiinvolution $\iota: H \rightarrow H$ s.t. ${ }^{\iota} x=x \forall x \in e^{o} H e^{o}$.

Note that the existence of such $\iota$ implies that $e^{o} H e^{o}$ is commutative, because if $x, y \in e^{o} H e^{o}$, then $x y={ }^{\iota}(x y)=y x$.

Theorem 2.18. Let $(H, \mathcal{E})$ be an idempotented $\Omega$-algebra, and $e^{o}$ be a spherical idempotent. Let $M$ and $N$ be simple admissible $H$-modules s.t. $e^{o} M$ and $e^{o} N$ are nonzero. Then $e^{o} M \cong e^{o} N$ as $e^{o} H e^{o}$-modules, $\Rightarrow M \cong N$ as $H$-modules.

Proof. Omitted.
Theorem 2.19. Let $\left(H_{v}, \mathcal{E}_{v}\right)(v \in \Sigma)$ be an indexed family of idempotented $\Omega$ algebras, and for almost all $v$, let $e_{v}^{o} \in \mathcal{E}_{v}$ be a spherical idempotent. Let $(H, \mathcal{E})$ be the restricted tensor product of the $H_{v}$, with respect to the $e_{v}^{o}$. (It is itself an idempotented $\Omega$-algebra). For each $v \in \Sigma$ let there be specified a simple admissible module $M_{v}$ and for almost all $v$ let $m_{v}^{o}$ be a nonzero element of $e_{v}^{o} M_{v}$. Let $M \otimes_{v} M_{v}$ with respect to the $m_{v}^{o}$. Then $M$ is a simple admissible $H$-module. Moreover, every simple admissible module is of this type, with uniquely determined modules $M_{v}$.

Proof. Let simple admissible modules $M_{v}$ and non-zero elements $m_{v}^{o} \in e^{o} M_{v} \forall v \in \sigma$ be given. We will show that $M$ is simple and admissible.
Let $e=\otimes e_{v} \in \mathcal{E}$ be given. Then there exists a finite subset $S$ of $\Sigma$ s.t. if $v \in \Sigma-S$, then $e_{v}=e_{v}^{o}$, and furthermore $e_{v} H e_{v}$ is commutative, so $\operatorname{dim}\left(e_{v} M\right)=1$. Then

$$
e M \cong \bigotimes_{v \in S} e_{v} M_{v}
$$

Indeed, this is because $\bigotimes_{v \notin S} e_{v} M_{v}$ is one dimensional, being spanned by the vector $\otimes_{v \notin S} m_{v}^{o}$. So tensoring with this vector is an isomorphism

$$
\bigotimes_{u \in S} e_{v} M_{v} \rightarrow \bigotimes_{u \in \Sigma} e_{v} M_{v}=e M
$$

Now the left side (if nonzero) is simple by Theorem 2.13 and Proposition 2.7 (applied to $M_{v}$ ).

By Proposition 2.7 (applied to $M$ ), it follows that $M$ is simple.

Now let $M$ be a simple $H$-module. We must show that $M \cong \bigotimes_{v} M_{v}$, where the $M_{v}$ are simple admissible modules for the $H_{v}$, and the tensor product is restricted with respect to $m_{v}^{o} \in M_{v}$. We'll prove this by combining two special cases.

Firstly, if the indexing set $\Sigma$ is finite, the restricted tensor product is of course the same as the ordinary tensor product, and this result follows by iterated applications of Theorem 2.13.

We next consider another special case. We assume that $e_{v}^{o}$ is spherical idempotented $\forall v$, and we also assume, with $e=\otimes_{v} e_{v}^{o}$, that $e M \neq 0$.

By irreducibility $e M e$ has dimension 1, and if $m$ denotes a generator, we obtain a ring homomorphism

$$
\gamma: e H e \rightarrow \Omega,
$$

by $h m=\gamma(h) m, h \in e H e$.
By Proposition 1.7, we may factor $\gamma$ as

$$
\gamma\left(\otimes_{v} h_{v}\right)=\prod_{v} \gamma_{v}\left(h_{v}\right)
$$

when $h_{v} \in e_{v}^{o} H_{v} e_{v}^{o}$, where $\gamma_{v}$ is a homomorphism $e_{v}^{o} H_{v} e_{v}^{o} \rightarrow \Omega$.
Now we claim that $\forall v: \exists$ a simple admissible module $M_{v}$ of $H_{v}$ and a nonzero element $m_{v} \in e_{v}^{o} M_{v}$ s.t.

$$
h_{v} m_{v}=\gamma_{v}\left(h_{v}\right) m_{v}
$$

Indeed, we may see this by decomposing $H=H_{v} \otimes H_{v}^{\prime}$, where $H_{v}^{\prime}=\otimes_{w \in \Sigma, w \neq v} H_{w}$ (tensor product restricted by the $e_{v}^{o}$ ).

By Theorem 2.13, there exist simple admissible modules $M_{v}$ and $M_{v}^{\prime}$ for $H_{v}$ and $H_{v}^{\prime}$, respectively, s.t.

$$
e M=e_{v}^{o} M_{v} \otimes e_{v}^{\prime} M_{v}^{\prime}
$$

where $e_{v}^{\prime}=\otimes_{w \neq v} e_{v}^{o}$.
Now consider $N=\otimes_{v} M_{v}$, with respect to the $m_{v}$. It is clear that $e N=\otimes_{v} e_{v}^{o} M_{v} \cong$ $e M$, as $e \mathrm{He}$-modules, and therefore, by Theorem 2.18

$$
M \cong \otimes_{v} M_{v}
$$

We deduce the general case from these two special cases.
Choose $e \in \mathcal{E}$ s.t. $v \in \Sigma-S$, then $e_{v}^{o}$ is a spherical idempotent.
We represent $H$ as a finite tensor product:

$$
H=\bigotimes_{v \in S} H_{v} \otimes H^{\prime}
$$

where $H^{\prime}=\bigotimes_{v \in \Sigma-S} H_{v}$.

Using the first special case proved above ( $\Sigma$ finite) we can write $M=\bigotimes_{v \in S} M_{v} \otimes$ $M^{\prime}$, where $M_{v}$ is a simple admissible module for $H_{v}$, and $M^{\prime}$ is a simple admissible module for $H^{\prime}$. By using the second "spherical" special case consider above, we obtain the further decomposition $M^{\prime}=\bigotimes_{v \in \Sigma-S} M_{v}$.

In the sequel $F$ is a number field, $A$ its adele ring and if $v$ is a finite place of $F$ then $\mathfrak{o}_{v}$ will be the ring of integers of $F_{v}$. We denote with $S_{\infty}$ the set of the infinite places of $F$ and we define

$$
K_{v}=\left\{\begin{array}{lr}
O(n) & \text { if } v \text { is a real place } \\
U(n) & \text { if } v \text { is a complex place } \\
G L\left(n, \mathfrak{o}_{v}\right) & \text { if } v \text { is a finite place }
\end{array}\right.
$$

We define the following

$$
\begin{gathered}
\mathfrak{g}_{\infty}=\prod_{v \in S_{\infty}} \mathfrak{g l}\left(n, F_{v}\right), \\
K_{\infty}=\prod_{v \in S_{\infty}} K_{v}
\end{gathered}
$$

We can now state the Tensor Product Theorem:

Theorem 2.20. (The Tensor Product Theorem) Let $(V, \pi)$ be an irred. admissible representation of $G L(n, A)$.

- $\forall$ infinite place $v$ of $F: \exists$ an irred. admissible $\left(\mathfrak{g}_{\infty}, K_{\infty}\right)$-module $\left(\pi_{v}, V_{v}\right)$,
- and $\forall$ finite place $v: \exists$ an irred. admissible representation $\left(\pi_{v}, V_{v}\right)$ of $G L\left(n, F_{v}\right)$ s.t. for almost all $v, V_{v}$ contains a nonzero $K_{v}$-fixed vector $\xi_{v}^{0}$ s.t. $\pi=\otimes_{v} \pi_{v}$.


### 2.1 The proof

Let $F$ be a global field, and let $A$ be its adele ring. Let $\Sigma$ be the set of all places of $F$.

If $v \in \Sigma$ we have defined a Hecke algebra $\mathcal{H}_{G L\left(n, F_{v}\right)}$ above.
If $v$ is finite, let $e_{v}^{o}$ be the characteristic function of $G L\left(n, \mathfrak{o}_{v}\right)$ i.e.

$$
e_{v}^{o}(x)= \begin{cases}1 & x \in G L\left(n, \mathfrak{o}_{v}\right) \\ 0 & x \notin G L\left(n, \mathfrak{o}_{v}\right)\end{cases}
$$

We normalize the Haar measure on $\mathcal{H}_{G L\left(n, F_{u}\right)}$ so that the volume of $G L\left(n, \mathfrak{o}_{v}\right)$ is one. We claim that $e_{v}^{o}$ is idempotent. Indeed,

$$
\begin{gathered}
e_{v}^{o}(x) \cdot e_{v}^{o}(x)=\int_{G L\left(n, F_{v}\right)} e_{v}^{o}(y) e_{v}^{o}\left(y^{-1} x\right) d y= \\
=\int_{G L\left(n, F_{v}\right)} e_{v}^{o}(x) e_{v}^{o}(y) d y=e_{v}^{o}(x) \int_{G L\left(n, F_{v}\right)} e_{v}^{o}(y) d y= \\
e_{v}^{o}(x) \int_{G L\left(n, \mathfrak{o}_{v}\right)} d y=e_{v}^{o}(x)
\end{gathered}
$$

We claim that $e_{v}^{o}$ is spherical.
Indeed, the transpose map on $G L\left(n, F_{v}\right)$ induces an antiinvolution $\iota$ on $\mathcal{H}_{G L\left(n, F_{v}\right)}$. It follows from the elementary divisor theorem that a complete set of double coset representatives for $G L\left(n, \mathfrak{o}_{v}\right) \backslash G L(n, F) / G L\left(n, \mathfrak{o}_{v}\right)$ consists of diagonal matrices.

This implies that the spherical Hecke algebra of $G L\left(n, \mathfrak{o}_{v}\right)$-biinvariant functions is commutative.

This spherical Hecke algebra is $e_{v}^{o} \mathcal{H}_{G L\left(n, F_{v}\right)} e_{v}^{o}$ (by definition).
We define the global Hecke algebra $\mathcal{H}_{G L(n, A)}$ to be the restricted tensor product of the local Hecke algebras $\mathcal{H}_{G L\left(n, F_{v}\right)}$. The tensor product is restricted with respect to the subalgebras $e_{v}^{o} \mathcal{H}_{G L\left(n, F_{v}\right)} e_{v}^{o}$.
In view of Propositions 2.7 and 2.14, we may reinterpret an irreducible representation of $G L(n, A)$ as a simple admissible module for $\mathcal{H}_{G L(n, A)}$.
With this reinterpretation, Theorem 2.20 follows immediately from Theorem 2.19

