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Chapter 1

Prelimaries

For all the following Ω will be always a field.

Definition 1.1. Let R be a ring and M an R-module. M is called simple if M 6= 0
and it has no proper nontrivial R-submodules.

Definition 1.2. An idempotented algebra is an ordered pair (H, E) where H is an
Ω-algebra (usually without unit) and E is a set of idempotents, which satisfies the
following properties:

1. ∀e1, e2 ∈ E , ∃e0 ∈ E s.t. e0e1 = e1e0 = e1 and e0e2 = e2e0 = e2.

2. ∀f ∈ H, ∃e ∈ E s.t. ef = fe = f .

Remark 1.3. There is a partial ordering ≥ on E defined as follows: if e, f ∈ E,

e ≥ f ⇔ ef = fe = f.

Remark 1.4. If (H1, E1) and (H2, E2) are idempotented Ω-algebras then the tensor
product ring (H1 ⊗H2, E), where

E = {e1 ⊗ e2|e1 ∈ E1, e2 ∈ E2},

is an idempotented Ω-algebra.

Definition 1.5. Let Σ be some indexing set, and for all v ∈ Σ, let there be given a
group Gv, and for almost all v ∈ Σ, let there be given a subgroup Kv of Gv. Then
the restricted direct product of the Gv with respect to Kv is

G = {(av)v∈Σ ∈
∏

v

Gv|av ∈ Kv, for almost all v ∈ Σ}.
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Definition 1.6. Let Σ be some indexing set, and for all v ∈ Σ, let there be given
a vector space Vv, and for almost all v ∈ Σ, let there be given a nonzero xov ∈ Vv.
Let O be the set of all finite subsets S of Σ having the property if v 6∈ S then xov is
defined. We order O by inclusion and then it is a directed set.

∀S, S′ ∈ O,S ⊆ S′, we define a homomorphism

λS,S′ :
⊗

v∈S
Vv →

⊗

v∈S′
Vv,

namely, λS,S′(x) is obtained by tensoring x ∈⊗v∈S Vv with ⊗v∈S′−Sxov.

We form the direct limit of this family of maps

⊗vVv := lim
→

⊗

v∈S
Vv .

This product is called the restricted tensor product of the Vv.

Proposition 1.7. Let Rv, where v ∈ Σ, be a family of rings, each with unit
ev ∈ Rv, and let R be the restricted tensor product of the Rv with respect to ev. Let
γ : R→ Ω be a ring homomorphism. Then there exists ring homomorphisms

γv : Rv → Ω

s.t. γ(⊗vrv) =
∏
v γv(rv).

Remark 1.8. R is a ring.

Remark 1.9. We note that given a family of ring homomorphisms γv, if

⊗vrv ∈
⊗

v

Rv,

then γv(rv) is 1 for almost all v, so
∏
v γv(rv) is well defined.

Proof. Let 1v denote the unit element in Rv. We have a ring homomorphism

iv : Rv → R,

defined by
iv(xv) = xv ⊗ (⊗w 6=v1w).

Let γv = γ ◦ iv. Then if r ∈ R, we can write r =
∏
v iv(r), where all but finitely

many terms on the right are 1. Then is clear that γ(r) =
∏
v γv(rv).

Definition 1.10. Let (H, E) be an idempotented Ω-algebra and let e ∈ E. We
call M smooth if M = ∪e∈EeMe and admissible if it is smooth and dimΩ(eM) <
∞, ∀e ∈ E



Chapter 2

The proof of the Tensor
Product Theorem

We’ll prove the Tensor Product Theorem, which asserts that if F is a global field,
A its adele ring, v the places of F , and G is a redactive algebraic group over F then
every irreducible admissible representation of G(A) decomposes into a restricted
tensor product of representations of the groups G(Fv).

Theorem 2.1. (Burnside) Let Ω be algebraically closed. Let R be an Ω-algebra
and M be a simple R-module, finite dimensional over Ω. Let φ : R → EndΩ(M)
an homomorphism. Then R/ ker(φ) ∼= EndΩ(M). Morevover, EndR(M) is one
dimensional over Ω, and consists of exactly the scalar endomorphisms m→ λm of
M , where λ ∈ Ω.

Proof. Omitted.

Proposition 2.2. (Bourbaki) Let A and B be Ω-algebras (with unit). Let R =
A⊗ B and P a simple R-module that is finite dimensional over Ω. There exists a
simple A-module M and a simple B-module N such that P ∼= M ⊗N . Moreover,
the isomorphism classes of M and N are uniquely determined.

Proof. Omitted.

Proposition 2.3. (Bourbaki) Let Ω be algebraically closed. Let A and B be Ω-
algebras, and let R = A⊗B. Let M and N are A- and B- modules, respectively, that
are finite dimensional over Ω. Then M ⊗N is a simple R-module and every simple
R-module that is finite dimensional over Ω has this form for uniquely determined
M and N .

Proof. We have homomorphisms

φM : A→ EndΩ(M)
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and
φN : A→ EndΩ(N)

given by
φM (a)m = a ·m for a ∈ A,m ∈M,

and
φM (b)n = b · n for b ∈ B, n ∈ N.

These homomorphisms are surjective (Theorem 2.1). To show that M ⊗ N is a

simple R-module, it is sufficient to show that it is a simple EndΩ(M)⊗EndΩ(N)-
module. It is easy to see that the natural map EndΩ(M)⊗EndΩ(N)→ EndΩ(M⊗
N) is surjective. So it suffices to show that M⊗N is a simple EndΩ(M⊗N)-module,

and this is clear. The rest follows easily from Proposition 2.2.

Definition 2.4. A group is called unimodular if the left and the right Haar measures
coincide.

Definition 2.5. Let G be a unimodular locally compact totally disconnected group.
We will denote with HG the Hecke algebra of G, namely, the convolution algebra
C∞c (G) of locally constant, compactly supported functions.

Let K be a compact Lie group. We will denote with HK the ring (under convolution)
of smooth functions φ : K → C that are K-finite under both left and right translation
by elements of K.

Proposition 2.6. Let K be a compact Lie group. Let (π, V ) be a representation
of K that is an algebraic direct sum of finite-dimensional representations. Then we
obtain a smooth representation π : HK → End(V ) by

π(φ)v =

∫

K

φ(k)π(k)vdk.

Conversely, if a smooth representation π of HK is given, there exists a representa-

tion π of K such that the last equation is valid.

Proof. Omitted.

Proposition 2.7. Let G be a reductive Lie group, K is maximal compact subgroup
and g the Lie algebra of G. Let V be a (g,K)-module. Then V is naturally a smooth
module for HG, and moreover every smooth module for HG arises in this fashion.

Proof. Omitted.

Remark 2.8. The content of the last proposition is that the (g,K)-modules are
exactly the smooth modules over HG.
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Definition 2.9. Let A be a partially ordered set and B ⊆ A.

B is a cofinal subset of A⇔ ∀a ∈ A, ∃b ∈ B s.t. a ≤ b.

Proposition 2.10. Let M be a nonzero module over the idempotented Ω-algebra
(H, E), and let Eo be a cofinal subset of E. Then

M is a simple (H, E)−module ⇐⇒ eM =

{
0
a simple eHe−module ∀e ∈ Eo

Proof. Omitted.

Proposition 2.11. Let M and N be simple admissible modules over the idempo-
tented Ω-algebra (H, E). Let Eo be a cofinal subset of E. Then,

M ∼= N ⇐⇒ eM ∼= eN as eHe−modules ∀e ∈ Eo.

Proof. Omitted.

Proposition 2.12. Let R be a ring and let e, f be idempotents of R s.t. ef =
fe = e. Then f = e + e′, where e′ is idempotent, and ee′ = e′e = 0. If M is
any R-module, then fM = eM ⊕ e′M . Suppose furthermore that Ω is algebraically
closed, R is an Ω-algebra and that eMe is finite dimensional over Ω and simple as
an eRe-module. Then dim(HomeRe(eM, fM)) = 1.

Proof. Omitted.

Theorem 2.13. Let Ω be algebraically closed. Let (H1, E1) and (H2, E2) be idem-
potented Ω-algebras and let (H, E) = (H1, E1)⊗ (H2, E2). If M1 and M2 are simple
admissible H1- and H2- modules respectively, then M1⊗M2 is a simple admissible
H-module, and every simple admissible H-module has this form. The isomorphism
types of M1 and M2 are uniquely determined by that of M .

Proof. Omitted.

Proposition 2.14. Let HG be the Hecke algebra of a totally disconnected locally
compact unimodular group G. Let V be a smooth module over HG. Then there
exists a smooth representation

π : G→ EndC(V )

such that φ · x = π(φ)x for φ ∈ HG, x ∈ V .

Proof. Omitted.

Proposition 2.15. Let G1 and G2 be locally compact totally disconnected groups.
Let (πi,Mi) be irreducible admissible representations of Gi, (i = 1, 2). Then (π1 ⊗
π2,M1 ⊗M2) is an irreducible admissible representation of G1 × G2, and every
irreducible admissible represetation of G1 ×G2 is of this type.
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Proof. Since HG1×G2
∼= HG1 ⊗ HG2 , our result follows from Theorem 2.13 and

Proposition 2.14.

Definition 2.16. Let H be an Ω-algebra. An linear map ι : H → H is called
antiinvolution if

ι(xy) =ι yιx.

Definition 2.17. Let (H, E) be an idempotented Ω-algebra. Let an idempotent
eo ∈ E. We say that eo is spherical if there exists an antiinvolution ι : H → H s.t.
ιx = x ∀x ∈ eoHeo.

Note that the existence of such ι implies that eoHeo is commutative, because if
x, y ∈ eoHeo, then xy =ι (xy) = yx.

Theorem 2.18. Let (H, E) be an idempotented Ω-algebra, and eo be a spherical
idempotent. Let M and N be simple admissible H-modules s.t. eoM and eoN are
nonzero. Then eoM ∼= eoN as eoHeo-modules, ⇒M ∼= N as H-modules.

Proof. Omitted.

Theorem 2.19. Let (Hv , Ev) (v ∈ Σ) be an indexed family of idempotented Ω-
algebras, and for almost all v, let eov ∈ Ev be a spherical idempotent. Let (H, E)
be the restricted tensor product of the Hv, with respect to the eov. (It is itself an
idempotented Ω-algebra). For each v ∈ Σ let there be specified a simple admissible
module Mv and for almost all v let mo

v be a nonzero element of eovMv. Let M⊗vMv

with respect to the mo
v. Then M is a simple admissible H-module. Moreover, every

simple admissible module is of this type, with uniquely determined modules Mv.

Proof. Let simple admissible modules Mv and non-zero elements mo
v ∈ eoMv∀v ∈ σ

be given. We will show that M is simple and admissible.

Let e = ⊗ev ∈ E be given. Then there exists a finite subset S of Σ s.t. if v ∈ Σ−S,
then ev = eov, and furthermore evHev is commutative, so dim(evM) = 1. Then

eM ∼=
⊗

v∈S
evMv.

Indeed, this is because
⊗

v 6∈S evMv is one dimensional, being spanned by the vector
⊗v 6∈Smo

v. So tensoring with this vector is an isomorphism

⊗

u∈S
evMv →

⊗

u∈Σ

evMv = eM.

Now the left side (if nonzero) is simple by Theorem 2.13 and Proposition 2.7 (applied
to Mv).

By Proposition 2.7 (applied to M), it follows that M is simple.
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Now let M be a simple H-module. We must show that M ∼=
⊗

vMv, where the
Mv are simple admissible modules for the Hv , and the tensor product is restricted
with respect to mo

v ∈Mv. We’ll prove this by combining two special cases.

Firstly, if the indexing set Σ is finite, the restricted tensor product is of course the
same as the ordinary tensor product, and this result follows by iterated applications
of Theorem 2.13.

We next consider another special case. We assume that eov is spherical idempotented
∀v, and we also assume, with e = ⊗veov , that eM 6= 0.

By irreducibility eMe has dimension 1, and if m denotes a generator, we obtain a
ring homomorphism

γ : eHe→ Ω,

by hm = γ(h)m,h ∈ eHe.
By Proposition 1.7, we may factor γ as

γ(⊗vhv) =
∏

v

γv(hv)

when hv ∈ eovHve
o
v, where γv is a homomorphism eovHve

o
v → Ω.

Now we claim that ∀v : ∃ a simple admissible module Mv of Hv and a nonzero
element mv ∈ eovMv s.t.

hvmv = γv(hv)mv .

Indeed, we may see this by decomposing H = Hv ⊗H ′v , where H ′v = ⊗w∈Σ,w 6=vHw

(tensor product restricted by the eov).

By Theorem 2.13, there exist simple admissible modules Mv and M ′v for Hv and
H ′v, respectively, s.t.

eM = eovMv ⊗ e′vM ′v,
where e′v = ⊗w 6=veov.
Now consider N = ⊗vMv, with respect to the mv. It is clear that eN = ⊗veovMv

∼=
eM , as eHe-modules, and therefore, by Theorem 2.18

M ∼= ⊗vMv.

We deduce the general case from these two special cases.

Choose e ∈ E s.t. v ∈ Σ− S, then eov is a spherical idempotent.

We represent H as a finite tensor product:

H =
⊗

v∈S
Hv ⊗H ′,

where H ′ =
⊗

v∈Σ−S Hv .
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Using the first special case proved above (Σ finite) we can write M =
⊗

v∈SMv ⊗
M ′, where Mv is a simple admissible module for Hv, and M ′ is a simple admissible
module for H ′. By using the second ”spherical” special case consider above, we

obtain the further decomposition M ′ =
⊗

v∈Σ−SMv.

In the sequel F is a number field, A its adele ring and if v is a finite place of F
then ov will be the ring of integers of Fv . We denote with S∞ the set of the infinite
places of F and we define

Kv =





O(n) if v is a real place
U(n) if v is a complex place
GL(n, ov) if v is a finite place

We define the following

g∞ =
∏

v∈S∞
gl(n, Fv),

K∞ =
∏

v∈S∞
Kv.

We can now state the Tensor Product Theorem:

Theorem 2.20. (The Tensor Product Theorem) Let (V, π) be an irred. ad-
missible representation of GL(n,A).

- ∀ infinite place v of F : ∃ an irred. admissible (g∞,K∞)-module (πv , Vv),

- and ∀ finite place v : ∃ an irred. admissible representation (πv , Vv) of
GL(n, Fv) s.t. for almost all v, Vv contains a nonzero Kv-fixed vector ξ0

v

s.t. π = ⊗vπv .

2.1 The proof

Let F be a global field, and let A be its adele ring. Let Σ be the set of all places of
F .

If v ∈ Σ we have defined a Hecke algebra HGL(n,Fv) above.

If v is finite, let eov be the characteristic function of GL(n, ov) i.e.

eov(x) =

{
1 x ∈ GL(n, ov)
0 x 6∈ GL(n, ov)

We normalize the Haar measure on HGL(n,Fu) so that the volume of GL(n, ov) is
one. We claim that eov is idempotent. Indeed,
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eov(x) · eov(x) =

∫

GL(n,Fv)

eov(y)eov(y
−1x)dy =

=

∫

GL(n,Fv)

eov(x)eov(y)dy = eov(x)

∫

GL(n,Fv)

eov(y)dy =

eov(x)

∫

GL(n,ov)

dy = eov(x).

We claim that eov is spherical.

Indeed, the transpose map on GL(n, Fv) induces an antiinvolution ι on HGL(n,Fv).
It follows from the elementary divisor theorem that a complete set of double coset
representatives for GL(n, ov) \GL(n, F )/GL(n, ov) consists of diagonal matrices.

This implies that the spherical Hecke algebra of GL(n, ov)-biinvariant functions is
commutative.

This spherical Hecke algebra is eovHGL(n,Fv)e
o
v (by definition).

We define the global Hecke algebra HGL(n,A) to be the restricted tensor product of
the local Hecke algebras HGL(n,Fv). The tensor product is restricted with respect
to the subalgebras eovHGL(n,Fv)e

o
v.

In view of Propositions 2.7 and 2.14, we may reinterpret an irreducible representa-
tion of GL(n,A) as a simple admissible module for HGL(n,A).

With this reinterpretation, Theorem 2.20 follows immediately from Theorem 2.19


