EpB/Ser
PHI/g (MBEL) int ed wodl
gor? en mace

รमт 90
-4Ta150 inyost

 sixsedt bsoory of hend as.
.GOT1 -81 YNMC

THjsminqm

$.19 .2 . 月$ srotmy'A. II

M May 5. 1703.
At a Meeting
OF THE

ROYAL SOCIETY,

Sir John Hoskyns, V.P. in the Chair, Mr. Low thorp Presented a Propofal for Printing - an Abridgment of the Philofophical Tranfactions. This Deign was Approved by the Society, and He mas Defir'd to Proceed therein.

- May 12. 1705.

Imprimatur,
If. Newton, R.S. Pr.

THE
 PHILOSOPHICAL TRANSACTIONS

A ND
COLLECTIONS,
To the End of the Year 1700.

ABRID G:D

A N D
Difpos'd under General Heads.

In Three Volumes.

By $F O^{\circ} H N$
LOW WTHORP, M.A. A.

> LONDON:

Printed for Thomas Bennet at the Half-Moon, Robert Knaplock at the Angel and Crown, and Ricbard Wilkin at the King's-Head, in St. Paul's Church-yard, MDCC V.

IAD1H408011H9

。

THE

Lord High AD NI RAL
O F idol s. 20051 s
ENGLAND
 SIR, TOUR Royal Highnefs's Great Cons defcenfion to Subferibe the Statutes of the Royal Society, as one of their Fellows, Cominaids Some Tribute from

The Epiftle Dedicatory.

every Member. This, S I r, I bumbly bope, will in fome meafure excule the Prefumption of laying thefe Papers at Your Royal Highnefs's Feet. They bave unavoidably, in this Abridgment, loft much of their Original Beauty: But the Order wherein the Remaining Subfance is Difposed, will give Your Royal Highnefs a Nearer Profpect of the Courre of thofe Studies you bave the Goodnefs to Protect.

It was a Noble Defign, Worthy of their Royal Founder, by Incorporating this Society to Perpetuate a Succeffion of Ufeful Inventions: But the Difcouraging Neglect of the Great, the Impetuous Contradictions of the Ignorant, and the Reproaches of the Unreafonable, bave unhappily Retarded them in their Purfuit of thofe Great Ends. Tu Reftore them therefore to their firft Vigour, is a Glory refervid for Mour

The Epifte Dedicatory.

Royal Highnefs ; And already, S i r, we feel the Chearful Influence of a Returning Spring.

The Commands Tour Royal Highnefs has given, for Publijhing, at Tour oren Expence, a most Magnificent Uranography (far exceeding that of all the Arabian Princes, the Noble Tycho Brahe, and the Induffrious Hevelius) cannot fail of furprizing Effects. All Art and Nature will exert their Powers upon this Occafion, to keep pace with Aftronomy; particularly Navigation, (being under rour Royal Highnefs's Immediate Care) will Induffrioufly apply thofe Accurate Ob, fervations to all Nautical Purpofes, and by fome Familiar Metbod, Deliver the Anxious Seamen from the Fatal Accidents that frequently attend their Miftaken Longitude.

Thus,

The Epiftle Dedicatory.

Thus, SI_{R}, the Munificence of the Prince, and the Vigilance of the Lond High Admiral, will be equally a Bleffing tä the Prefent, and to all Future Ages. May Nour Royal Highnefs ever meet with Retwras of Gratitude, Suitable ta the Univerfal Beneficence. Sono Whabspruith greatiSincerity, oldo's out casonizil asid
 May it pleafe Rour Royal HighNEss
 : Yctono hour ROXAL HeGANESSBO:

 hus ciolcyquI IsidostODidientiSenvant. ads pesilsa drodisM misimat smol yd -iood lots ad mopl nomsige woskat
 wat Fobbir jovip tbor

THE

PREFACE.

THE PbiloJophical Tranfactions having met with General Applaufe and Encouragement for many Years, it would be a Needlefs Trouble to give any Hiftory of them : 'Tis enough to fay, That Many of the Difcourfes were Compos'd, and All of them Collected and Publifh'd, by Particular Members of the Rojal Society. I fhall therefore employ the e very few Pa ges only to acquaint the Reader with My Own Conduct in this Abridgment of them.

When I firf Refolv'd upon this Undertaking, I had Two Sorts of Readers in View, whom I was defirous to ferve; thofe who make ufe of Books for their Priyate Inftruction or Entertainment, and thofe who Confult them in order to Publifh fomething of Their Own. To a Reader of the Former Clafs, I thought it fufficient to give him the Subtance of fo many Curious Papers, in fuch Order as would beft Suit with the Courfe of thofe Studies that might Denominate him a General Scholar: But for the fake of the Latter, I have, inthe Margin, given the Title and Author of each Paper, **

The PREFACE.

and Directed to the Namber and Page of the Tranfactions or Collections, where he may meet with the Original it felf. To the former I defign'd this Abridgment to be as Ufeful as the Volumes at large, and to ferve the Latter inftead of a not inconvenient Repertorium : And in the Profecution of this Defign, I have Generally confined my felf to thefe Rules.
I. I have not only Retain'd the Effential Parts of the Difcourfés, but I have kept in many Places to the very Words of their own Authors, (except where I was forc'd to Vary them a little, to preferve the Connection:) For I thought it very Unwarrantable to Obtrude any thing of mine, under the Name of another Perfon.
II. But to Shorten the Whole Work, wherever I found any Perfonal Addreffes, Long and Unneceffary Excurfions, or Pompous Citations of Books, I have taken the Liberty to Supprefs them; yet, I hope, without Injuring the Force of the Author's Reafoning.
III. I have Omitted all Accounts and Extracts of Books, which now, after fo many Years Publication, feem almoft Ufelefs: Yet to put the Readers in mind of them, efpecially fuch as are about to Furnifh or Enlarge their Libraries, I have added a Catalogue at the End of each Chapter, to which they chiefly belong; And I have alfo Directed them to fuch Additions, Emendations, or Refutations, as ought to be confuleed, when thofe Books fall under their Examination.

The PREFACE.

IV. I have alfo Omitted all Heads of Enquiries, and Experiments fimply Propos'd, without further Profecution; Believing that the Anfwers already given to many of them, and other Difcourfes upon the fame, or like Subjects, will fufficiently Direct the Notice of an Inquifitive Reader.
V. The Previous Calculations of Eclipfes, Lunar Appulfer, and Satellite Eclipfes and Occultations; alfo Tide-Tables, and many other Curious Papers of that kind ; have long ago Out-liv'd the Rea fon of their Publication,
VI. All Simple Catalogues of Natural Curiofties, (as of Shells, Minerals, Plants, Animals, \&c.) without particular Defcriptions of them, are little Inftructive: And Chiefly ferve to enlarge the Hiftory of the Mufoum where they are Depofited; which is no part of the Defign of thefe Volumes.
VII. I have commonly Omitted fuch Papers as have been Collected into Juft Volumes by their own Authors. For this Reafon I have Omitted fome of thofe Surprifing Microfoopical Difcoveries by the Famous M. Leeuwenhorck: But I further confefs, I was alfo lefs inclin'd to Infert them: here, becaufe moft of them Treat of Subjects not at all Con venient (in my Opinion) for Common Readers.
VIII. But to do all the Right 1 could to the Ingenious Authors of thofe Papers, which the Limits of this.

The PREFA GE:

Abridgment oblig'd me to 0 mit , I have at the End of each Chapter Annexed their Titles, and fometimes a fhort Ac-

Thefe are the Rules I have carefully Obferved through the whole Conduct of this Work: Wherein I have Faithfully Aim'd at the General Good of all Sorts of Readers. If I have fail'd in the Performance, 'tis for want of Judgment to do it better: But I am bold to fay, That if a Kind Reception of this fhall encourage alike Abridgment of the Eoreign Philofophical Fournals, in the Same Order, it will much Facilitate the many Difooveries fill Ready to Reward the Labours and Expences of all Induftrious Promoters of Natural Knomledge.

THE

CONTENTS. VOL. I. MATHEMATICKS.

C H A P. I.
\section*{Geometry, Arithmetick, Algebra, Logarithmotechny.}

3. 4.

AN Idea of. Mathematicks; by
Pag.
Dr. J. Pell
2. Confider'd; by Merfen-
nus
3. Answer'd; by Dr. Pell
ibid.
4. To the Satisfation of Merfennus
5. The Approbation of Des Cartes 7
II. Some of Euclid's Propofitions demonftrated independently from the Reft; by $\operatorname{Mr} r$. Afh
ibid.
III. The Squaring of the Hyperbola; by the Lord Vifcount Brounker
IV. The Quadrature of a Circle; by NM. Ieibnitz
$1 ;$
V. I. Tangents to all Geometrical Curves; by Renatus Fran. Slufius
2. The Lemmata whereby the preceding Nrethat is demonftrated; by N1. Slufius $2 I$
VI. r. The Teftudo Veliformis Quadrabilis Ainigmaticelly propos'd; by V.V.

22
2. Solved; by Dr. Wallis
ib.
3. The Propofer's Solution demonftrated; by
Dr. D. Gregory
VII. I. The Quadrature of the Parts of the Lunula; by $\mathcal{M r}$. J. Perks, a little varied by Dr. J. Wallis.

27
2. Improved; by Dr. Giegory, 28
3. By Mr. Cafwel

29
4. By Dr. Wallis
VIII. The Dimenfion of Solids, generated by the Converfion of Hippocrates's Lunula; b* On. Ab. de Moivre $i b$.
IX. The Quadrature of a Portion of the Epicycloid; by Mr. Cafwel
X. A General Propofition for meafuring all CY cloides and Epicycloides; by Mr. Edur. Halley

32
XI. 1. A Problem propofed; by Mr^{2}. J. Bernoulli

33
2. Solv'd; by ib.
XII. The Ufe of Fluxions in the Solution of Geometrick Problems; by M. Abr. de Moivre 34 XIII. 1. The Catena; by Dr. Dav. Gregory
2. The Animadverfions of andwered; by Dr. D. Gregory $\quad-50$
XIV. The Quadrature of Figures. Geometrically Irrational ; by M. I. Ciaig 52
XV. The Quadrature of the Logarithmick Curve; by Mr. J. Craig 56 XVI. A Quadratrix to the Circle, being the Curve deforibed by its Equable Evolution; by ibid. XVII. The Dimenfions of a Sphere and Cylinder compar'd; by Dr. Wallis. 58 XVIII. Improvements in Ensland, in the Refclution of Equations in Numbers? by $\mathcal{M r}$. Jo. Collins

The CONTENTS.

$\mathrm{X}_{1} \%$. R, The conflrufion of Cubic and Biquadratic Aequations, by a Parabola and a Circle; by OMy. Edm. Halley Pag. 63
2. The Number of Roots in fuch exquations, with their Limits and Signs; by Jhr. Edm. Halley
XX. The Extration of all Roots, without any previous Reduction; by Jhr. Edm. Halley

XXT. A Metbod of Raijing an Infinite Multinomial to any Given Power; by $2 x . \mathrm{Ab}$. de Moivre
XXII. The Extration of the Root of an Infinite Equation; by \mathfrak{M}. Abr. de Moivre 95
XXIII. The Doltrine of Exhauftions; by Dr. Wallis

98
XXIV. The Approximation of the Ancients in the
Extralling of Routs, improvid; by Dr.
XXIV. The Approximation of the Ancients in the
Extraling of Routs, improv'd; by Dr. Wallis
ibid. XXV. The proportion of Infinite Quantities; by Olr. Edm. Halley XXVI. Infinitely-Infinite Fractions; by Dr. R. Wood

 116 XXX. Accounts of Books, with Additions, Emendations, \&c. Omitted. ibid.

C H A P. II.

Trigonometry, Surveying.

1. $A_{\text {Chorographical Problem, propofed by }}^{\text {omr. Richard Townley; folved by }}$ Mr. J. Collins
II. Three Chorographical Problems; fovid dy a Member of the Philofophical Society at Oxford

122
III. An Error of Common Surveyors, in comparing Surveys taken at Long Intervals of Time, with the Magnetic Needle, Demonftrated, by MI. W. Molineux

125
IV. A New Level ; by Mr. Butterfield 127
V. An Account of a Book Omitted
ibid.

CHAP. IIL.

Opricks.

i. ANew Theory about Light and $\mathrm{Co}-$ lours; by MMr. If, Newton Pag. 128
11. 1. Some Experiments Propos'din-Relation to this Theory ; by

135
2. Obfervations on this Propofal; by Mar. Newton
ibid.
11. The Genuine Metbod of Examining this Theory; by Mr. Newton

136
IV. I. Animadverfions on this Theory; by R. P. Ign. Gafton Pardies

137
2. Anfwer'd by Mr. Newton

139
3. Some further Objeations; by R. P. Pardies
4. Anfwer'd by Whr. Newton
5. To the satisfarion of P. Pardies 144

141
V. Some Confiderations on this Theory; by Anfiver'd.by Mr. Newton ibid.
YI. I. Some Confiderations upon this Datrine of Colours, from Paris; by.... 15.6
2. Anjwer'd by Mr. Newton 157
3. A Reply by M. N — 158
4. Anfwer'd by Mr. Newton ib.
VII. I. Animaduerfions on this Theory of Light and Colours; by ONr. Fr. Linus 16 r
2. Anfwer'd by 162
3. A Reply by OMr. Fr. Linus ibid.
4. Anfwerd by MMr. Newion 163
5. The Experiment of sir. Iinus affirm'd; by Mr. Galcoign $\quad 164$
6. Anfwer'd by Mr. Newton. ibid.
7. Exceptions by Mr. Lucas 165
8. Anfwer'd by OMr. Nowton 168
VIII. An Optical Experiment; by Our. Stephen Gray

172
IX. I. A Problem of Alhazen, folv'd by . OM Chrift. Hugens
ibid.

The CONTENTS.

3. Qiberwife; by M. Slufius
4. Otberwife; by M. Hugens

Pag. 174
5. Further ionfider'd; by M. Siulius
E. By M. Hugens
6. By M. Hugens
7. Бy M. Sluifus
X. To find the Principal Focus of Optic-Glaffes univerjully; by Mr. Edm. Halley 183
XI. 1. The Generation of an Hyperbolical Cllindroid; by Sir Chrift. Wren 188
2. The Application thereof to the Grinding of Hyperbolical Optic Glatles; by Sir Chr. Wren

189
XII. Why Four Convex Glafes in a Telefcope Shewobjects Erett; by Onr. William Molineux
ibit.
XIII. I. The Apertures of Telefcopes; by M. Auzout 191
2. Confoder'd; by Dr. Hook 192
XIV. To meafure Difinnces at One Station; by M. Auzont.
XV. To make a plane-Convex Glafs of a fmall Sphere, collect the Rays at agreat Diftance; by Dr. Hook
XVI. I. Tele?copes other Optic-Glaffes: by Campani and Divini
ibid.
2. By \mathcal{M}. Hevelius and \mathfrak{M}. Huygens ibid.
3. By M. du Suns
ibid.
4. By M. Buratrini
5. By Mr. Francis Smethwick

194
6. By an Artift at Paris
ibid.
7. By M. Borelli
ibid.
8. Optick Lens's of Rock-Chriftal by 195 Divini
ibid.
9. Of Water ; by OMr. Stephen Gray ibid. XVII. 1. The Advantages of Reflexion to Optic Inftruments; by Mr. Newton 196
2. A New Catadioperical Telefcope ; inven ted by Mr. N N w ton.

197
3. Approv'd; by M. Huvgens de Zuliche:n

199
4. Afurther Account of this Inftrument; by Mr. Newton ibid.
5. The Apercures, and Chaiges of the fe Infruments; by Mr. Nevion 200
XVMI. 1. Some Objections of M An-

Swor'd byoMr. Newton 20 tr
2. The Confiderations of Anfuer'd by

OMr.Newton 202
3. Objictions by M..... 203

Anfiverd : by Mr. Newton ibid.
4. A Reply; by M..... 204

Anfwerd; by Mr. Newton ibid.
XIX. I. A Catadioptrical Telefcope; by $\operatorname{N⿰丿}$. Caffegrain
ioid.
2. Confider'd; by Mr. Newton ibid.
XX. A Catadioptrick Telefcope; by S. Salvetii

202
XXI. I. To make the Picture of any thing appear in a Light Room; by Dr. Hook. ib.
2. The Magic Lanthorn improu'd; by Sir Robert Southwel 207
XXII. A Way to belp Short Sightednefs; by Dr. Hook ibid.
XXIII. 1. Microfcopes; by S. Divini ibid.
2. By S. Piet. Salvetti 208
3. By M. Leeuwenhoeck ibid.
4. By Mr. Butterfield , ibid.
5. By M_{L}. Stephen Gray ibid.
XXIV. I. A Water-Microfcope; by Mr . Stephen Gray. 209
2. Anotber ibid.
XXV. Microfcopes improvid; by Mr. Newton 210
XXVI. I. A Reflecting Microfcope; by \mathcal{M} r. Newton ibid.
2. By $\mathfrak{M} r$. Stephen Gray 211
XXVII. I. A Burning Concave at Lyons; made by M. de Vilecte ibid.
2. Anotber by the fame 212
3. By S. Settela. ibid.
4. A Burning Concave in Germany; by

$$
\text { -••• } 213
$$

5. By Dr. Hook ibid.

XXVVITT. Concave Specula, nearly of a Parabolick Figure; attempted by Mr. Stephen Gray

214
XXIX. To make the Glube Looking-Glais; by Sir Robert Sulthwel jbid
XXX. Papers Omitted 215
XXXI. Accounts of Books Omitted ibid.

CH A P. IV.

Aftronomy:

1. HE Obfervatory of Tycho Brache;
By Mr. Gourdon
II. AN. 216
Wero Aftronomical Infrument by M.
Weighelius.

IIL. ACeleftial Globe ; by M. Didier ! Alk man
ibido
IV. A Way to meafure Diameters of the

Bunass?

The CONTENTS.

Planets, and the Parallax of the Moon; by
M. Auzout
V. 1. An Account of Mr. Gafcoign's Micrometer; by Mr. Richard Townley 218
2. A Defoription of it: by Dr. Hook 219
3. Thore Ways to meafure Emall Diftances intimared; by Dr. Hook

220
4. The Excellence of the Micrometer; by Mr. Etamfteed ibid.
VI. 1. Plain Sights Rejected; by OMr. Flamfteed ibid.
2. Plain Sights prefer'd to Telefcupick; by M. Hevelius

221
VII. I. IVtry Celefial Objects apper Greater, when nigh the Horizon, than waten Higher Elevated; Examiad by Mr Willian Molineux.
ihid.
2. Ihis Phænomenon confider'd; by Dr. Wallis.

225
VIII. An Experiment of the Refraction of the Air ; by Mr. Lowthorp 228
IX To find the Parallax of the Fixt Stars; by Dr. Wallis

231
X. Concerning the Diftance of the Fixt Stars; by Mr. Fr. Roberts

233
स.. The Places of the Chiefeft Fixt Scars, according to the beft Ancient Obfervers; by Dr. Edw. Bernard

234
XII. The Pleiades obferu'd by OMr. Flamfteed

245
XiII. I. A Nebulous Star; by. M. Calfini
2. By Mr. Flamfteed

247
XIV. The Firlt of Aries a Double Star ; by Dr. Hook
ibid.
XV. I. Changes amongf the Fixt Stars; by S. Montanari
ibid.
2. By O1. Caffini
ebid.
3. The New Star in Pectore Cygni ; by M. Hevelius
ibid.
4. 1. The New Star fub Capite Cygni 248 2. By OA. Hevelius

249
5. The Nebulofa in the Girdle of Androme. da; by \mathcal{M}. Bullialdus
6. I. The New Star in Collo Ceti; by M. Bullialdus
ibid.
2. By \mathcal{M}. Hevelius
ibil.
3. By M. Camini 4. By inr. Flamiteed

252
7. A New Star in Eridane bo ibid.

- ibit.

8. A New Star in Taurus ; by M. Calfini
XVI. I. To find the Aphelia of the Planets diredy, 'by mu. Caffini, Confider'd by our. Nich. Mercator

2: By: Mr Edinond Halley
2.58
XVII. I. The Obliquity of the Ecliptick, from the obfervartions of the Ancients; by Dr. Ed. Bernard

260
2. The Obliquity of the Ecliptick, and Elevation of the Pole continue unalser'd; by -•... 263
3. 1. A Juprofed Alteration of the Meridian Line; by. 265
2. Confider'd by Dr. Wallis ibid.
XVIII. The Parallax of the Sun; by $\mathrm{M} r$. Flamfteed ibid.
XIX. To find the Sun's Ingrefs into the Tropical Signs ; by Mr. Edmond Halley 266 XX. The Solar Numbers correated; by Mr. I. Flamfteed 269
XXI. 1. The Equality of Narural Days ; by Profeffor of Mi thematicks at Seville.

$$
\text { 2. Refuted by Mr. FiamAteed } \quad \text { 27o }
$$

XXII. An Equatiwa Table; by M. Caffini ind
XXIII. Spots obfervid in the Sun; by Mr. Boyle
XXIV. I. Sputsobfervid in the Sun; by 274 Picard
2. By Hr. Cafini
$\begin{array}{ll}\text { 3. By feveral at London } & 277 \\ \text { 4. By Dr. Hook } & \text { ibid. }\end{array}$
5. By M. Hen. Siferus ibid.
XXV. Spots obferv'd in the Sun; by \mathfrak{M} :
Caffini
XXVI. T. Spotsobferv'd in the Sun; by OMr. Flamfteed, and $\mathcal{M r} r$. Halley 278
2. By OM. Caffini 279
XXVII. Spots obferv'd in the Sun; by Mr. Flamfteed
ibid.
XXVIII. To find in what Froportion the Planets are Enlightned by the Sun; by $\mathcal{O N}$. Auzout 280
XXIX. The 不quinoxes; by M. Wortzelbaur ibid.
XXX. To obferve Solar Eclipfes; by \mathcal{M}. Flainfteed
XXXI. I. An Eclipfe of the Sun, Amr 1666 fune 22, at London; by M1r. Willoughby, Dr. Pope, Dr. Hook, and Mr. Phillips ib.
2. At-Paris; by M1. Payen 281
3. At Madrid; by the Earl of Sandwich ibid.
4. At Dantzick; by M_{1}. Hevelius 281
XXXII. An Eclipfe of the Sun, $\ddagger u n, 23$. (St. N.) 1675. at Dantzick; by OM. Hevelius 284 XXXIII. 1. An Eclipre of the Sun, fine I. 16.5. af Weftminfter ; by VMr. Francis Smethwick ibid.
2. AvWapping; by giv. Collon 285

The CONTENTS.

3. At Greenwich ; by oMr. Flamfteed ibid. 50 At Wirigfield near Derby ; by OMr. Imman. Halton
ibid.
4. At Paris; by OM. Cammi
ibid:
5. At Dantzick; by M. Hevelius 288
6. At Avignon ; by OM. Gallet 289
XXXIV. 1. An Eclipfe of the Surn, fully 2. 1684. at Greenwich; by Mr. Flamfteed

291
2. At Paris; by On. Bullialdus.

292
3. At the Oblervatory; by M. Caffini ibid.
4. By M. de la Hire aml Pochenot ibid.
5. At the College of Lewis the Great; by R. P. Fonteriay
6. At A1x ; by $2 \boldsymbol{M}$. Gautier
ibid.
7. At Lyons; by R.B. Paul Hofte ibid.
3. At tbe Bay de Rofes; by M. Chaffelles ib.
9. At Honfleur ; by OM. de Glos 294
10. At Paul by R. P. Richaud ibid.

1. At Avignon; by R. P. Bonfa ibid.
2. At Oxford; ly Dr. Edward Bernard ib.
3. At Lisbon; by DMr. Jacobs 295

I4. In Ireiand'; by Mr. Affl', and Shr. Mo: line ixs
ibid.
15. At Bononia; by s. Domin. Gulielmini ib. XXXV. \&. Ait Eclipfe of the Suri, May 1 . 1687. at Oxford

296
2. Im diverfe otber Flaces ibid.
XXXVI. I. An Eclipfe of the Sun, Sepr. 3. 1699. at Oxford; by Dr. D. Gregory 297
2. At Nuremberg ; by Wh. Wortzellatur ibid. 3. By Others.

298
XXXVII. Changes liely to be difcovered in the Moon; by: M. Auzout ibid.
XXXVIII. To find the Parallase of the Moon; by 300
XXXIX: 1. A Metboil for obforving Lunar Ecliples; by Mrt. Rook
2. By M J Ja。 Caflini
ibid.
XL. An Eclippe of the Moon, sull: 37 . (St. N.) 1665. obferved at Dantzick; by M. Hevelins

304
XJJ, An Eclipfe of whe Moon, Gin: 6 . Ahm. 1666. by 01 . Hevelius
ibid.
 1670. by MS Hevelins ibid.
XZH. 1. An Ecliple of the Mobia, Seftre Bo 1671. at Edon ; by wht Palmer
2. At T.ondon; by Mt! Street 306
3. By Dr.Hook
4. At Parls; by cw! Bullialdus. $\quad 30 y^{\prime}$
5. At Dantrick; by om. Hevelius ibid.
6. At Hamburgh ; by Dr. Fogelius
XLIV. I. An Eclipfe of the Moon, fan. i. $167 \frac{7}{3}$.at London ; by Dr. Hook ibid.
2. At Derby; by Mr. Flamfteed ibid. 3. Ai Paris; by on. Bullialdus 4 At Paris' ; by ort. Caffini, ov. Picart, and OM. Roemer
5. At Dantzick; by sit. Hevelitis 310°
6. At Seville; by S.... Profefor of OM20 thematicks 313
XLV. 1. An Eclipfe of the Moon, fur 27. 1675.al London, by Mr. Flamfteed and omr. Halley
314.
2. At Paris; by OM. Bullialdus 315
3. Ey M. Calini, M. Picard, and M. Rocmer.
ibuil.
XLVI. 1. An Eclipre of the Moon, Decem. 22, 1675. at Greenwich; by OAr. Flamfteed 316
2. A: London; by Mr. Ed. Halley 317
3. By Mr. Colfon ibid.
4. At Paris; by OM. Caffini ibid.
5. By ons. Bullialdus 318
6. At Strasburgh ; by Th. Richelt 319
7. At Dantzick'; by \%R. Hevelius: ibid.
XLVII. 1. An Eclipfe of the Moon, Ottob. 29. (St. N.) 678 ; at Paris; by \#1. Caffini 320
XEVIII. 1. An Eclipre of the Mcon, Aug. 19. m. 168 r at Greenwich ; by Mr. Flanifteed

$$
\text { 2. At Paris; by H: Caflini } \quad 324
$$

3. At Dantzick; by M. Hevelius ibid. XIIX. An Eclipfe of the Moon, Feb. 11. 1682. by Mr . Flamfteed, Wirr. Falley, and Mr. Haynes; $\quad 326$
2: At Paris and Copendagen 330
4. At Dantzick; by \mathscr{M}. Hevelius 331
5. At Lislon ; by Mr. Jacobs $\quad 334$
L. An Eclipre of the Moon, fuhie 17. M. 1684. at Greenwich; by SMr. Mamfteed ivid.
EI: 1. Ain Eclipfe of the Noon, Novemb. 30. (St. N.) 1685。at Dantzick; by 2\%. Heve. lius
6. At Nuremberg;by 3.G.C. Eimmatt 338
7. By M. J. Ph. Wurtzelbaur ibid,
8. At Lisbon ; by hr. lacobs an

L1. Aas Ecliple of the Mön, Novent. 19. 1686. at Dublir ; by Mi. Will: Molineux.

Lin. Aheclipe of the Moot Apt. 5 - 1888. at Mofera; by M. Tmmeman ibid. Liv. 1. An Ecliple of the Niown of Ig.at Chefter; by Edmbit Hatey 340
3. At Raterdait by ory Ja: Cathi ibid.

LY. A cranfers of mo ma dove Yenus,
 by M. Hevelids

The CONTENTS.

LVV. An Occultation of Saturn by the Moon, furse I. (St. N.) 1571. at Dantzick by M. Hevelius
ibid.
LVIL. A Tranitit of the Moon above Jupiter, Sept. 30 ($5 \mathrm{t} . \mathrm{N}_{0}$) 1671 at Dantzick: by M. Hevelius
ibid.
LVIII. An Occultation of the Pleiades, by the Moun, Febr, $23,167 \frac{1}{2}$, at Derby; by Mr. Flamfleed

343
L!X. The Moon's Place SMarch 23. 167: ; by ar. Calfini

349
LX. An Occultation of a Fix'd Star by the Moon, Feb. 29. (St. N.) 1676. at Paris; by OH. Caffini
ibid.
LXI. A Tranlit of the Monn above Jupiter, Febr. 28. m. $157 \frac{5}{6}$, at Greenwich; by Mr. Flamfteed

350
LXII. I. An Occultation of Mars by the Moon, Aug. 21. 1676, at Greenwich; by Skr. Flamfteed
ibid.
2. At Oxford; by Mr. Halley 352
3. At Dantzick: by \mathcal{M}. Hevelius ibid.
LXIII. An Occultation of Saturn by the Moon, Febr. 27. (St. N.) 1678 , at Paris ; by M. Bullialdus

353
LXIV. 1. An. Occultation of Jupiter, Fun 50 (St. N.) 1679, at Dantzick; by OM. Hevelius
ibid.
2. At Paris ; by OM. Caffini

354
LXV. An Occultation of the Bull's-Eye, at Greenwich, Sept. 4. 1680 ; by Mr. Flamifreed
LXVI. 1. An Occultation of the Bull's-Eye, at Greenwich, Octob. 28. 1680; by Mr. Flamiteed
ibid.
2. At London; by Mr. Halley, and Mr. Haines 356
3. At Ballafore in India; by Our. Benjanluin Harry
ibid.
LXVII. I. An Occultation of the Bull's-Eye at Dantzick, fan. 1. (St. N.).1681; by M. Hevelius ibid.
2. At Ballafore; by Mr. Beni. Harry 357
3. At Avignon; by 2 M. Gallet
ibid.
IXVIII. A Tranitit of the Moon, below the 3 Superior Planets and Regulus, Sept. 27. (St. N.) 1682, at Dantzick; by OM.Hevelius
ibid.
IXIX. An Occultation of Regulus by the Moon, Feb. II. (St.-N.) 1683, at Dantzick; by OM. Hevelius.
ibid.
2XX: An Occultation of two Fix'd Stars by the Moon, and a Transit above a Third, Apr. 2. (St. No.) 1683 , at Dantzick; by M. Hevelius:
IXXI. Am: Occultation of a Fix'd Star, and
a Tranlit abova arooter, May 2, (St. N.) 1683 , at Dantzick; by on. Hevelius 359 LxXII. An Occultation of Regulus by the Muon, SHay 4, (St. No.) 168 , ai Dantzick; by M. Hevelius
LXXIII. I. An Occultation of Jupiter by the Moon, Marck 31. 1686, at Londons by Dr. Hook, an. Mr. Halley.
ibid:
2. At Greenwich; by \mathcal{M}. Flamiteed 360°
3. At Nuremberg; by M. Zimmerman ibid.
4. By \mathcal{M}. Wurtzelbaur ibid.
5. At Dantzick; by M. Hevelius 361
6. At Paris ; by M. Caffini $\quad 363$
7. At Avignon ; by R. P. Bonfa $\quad 364$

IXXIV. 1. An Occultation of Jupiter by the Moon, April 28, 1686; by Mr. Haines, and Mr. Halley ibid.
2. At Avignon ; by R.P. Bonfa : ibid.
3. At Dantzick; by M. Hevelius ibid.
LxXV. I. An Occultation of Saturn by the Moon, March 19-168 $\frac{\mathrm{T}}{7}$, at Totteridge; by OMr. Ed. Haines 365
2. In Ireland; by Dr. Afh, Ep: of Cloyne
LXXVI. I. Phafes of Saturn, Ann. 1665. ai Maidenhead near Exeter: by Mr. Will. Ball
ibid.
2. Akn. 1665, at London; by Dr. Hook ibid\%
3. Ann. 1668, at Paris; by OM. Hugens, and M. Piccart
ibid.
4. Ann . 1670; at Dantzick; by OM. Hevelius ibid.
5. At Paris; by \mathcal{M}. Hugens 366
6. At London ; by Dr. Hook ibid.
7. Ann. 1 1511, at Paris; by OM. Caffini ibid.
8. By 2n. Hugens ibid:
9. At Dantzick; by OM. Hevelius ibid.
10. At:Darby ; by $\mathcal{M r} r$. Flamfteed ibid:
11. At Paris ; by M. Caffini ibid.
12. Ann. 167.5, ai London; by Jhr. Flamk fteéd
ibid.
13. At Dantzick; by M. Hevelius ibid.
14. An: 1676 , at Paris; by 20 . Caffini 36π
LXXVII. I. Places of Saturn Obferved, Ann.

1670, at Dantzick; by M. Hevelius ibid.
2. Ann. 1677, at Paris; by. OM. Bullialdus
ibid.
LXXVIII. I: The Outermof Satellite of Saturn Difcover'd ; by O. caffini.
ibid.
LXXIX. The Third Satellite of Saturn Difoox vered; by $\mathfrak{O M}$. Caffini

369
LXXX. The troo Interior Satellites of Saturn

Dijfovered; by \mathcal{H}. Caffini ibid.
LXXXI. Mr. Hugens's Theory of the Fourth

Satellite of Saturn Correited ; by Mr. Halley
370

The CONTENTS.

LXXXII. 1. The Theory of the Five Satelitites
of Saturn; by OM. Caffini
2. Ey ${ }^{\circ}$ -

376
LXXXIII, The Phafis of Jupiter; by Dr. Hook 382
LXXXIV, I, The Revolution of Jupiter upon bik Axis; by S. Campani
2. By Dr. Hook
3. By S.Divini
4. By M. Caffini
LXXXV. 1. Places of Jupiter Objerved ${ }^{383}$ by Mr. Flamfteed, at Derby

384
LXXXVI. The Conjunctions of Saturn and Jupiter, $A n \cdot 1682$, and 1683 , at Greenwich ; by Mr r. Flamfteed
$3^{89} 9$
2. At Dantzick; by OM. Hevelius

EXXXVII. The Mean Conjunctions of Saturn and Jupiter; by Mr. Flamfteed

398
LXXXVIII. I. The Shadows of Jupiter's Satellites Obferved ; by S. Campani
2. By M. Caffini and others 400
3. By Dr. Hook ibid.
LXXIX T: The Elongations of Tupitris Satellites; by Mr. Flamfteed
2. An Inftrument for finding the Diftances of Jupiter's Satellites from his Axis; by Mr. Flamfteed

404
XC. I. Eclipfes and Places of the Satellites of - Jupiter Obferved, at Paris; by.

407
2. As Dantzick'; by 2M. Hevelius

408
3. At Derby ; by Mr. Flamfteed ibid.
4. At Paris ; by MM. Caffini
XCI. The "Equation" of "Motion of Ligkt; by m:Romer ibid.
XCII. I. The Theory of Jupiter's Satellites; by \boldsymbol{M}. Caffini
ibia.
2. DM. Caffini's Tables for the Eclipfes of the Firft Satellite of Jupiter, Abridged and Reduied to the Meridian of Londion; by MMr. Edin. Halley
3. of the other three Satellites
4. OA: Romer's Equation of Light defented

XCIIT Tte Phares, and 4_{422}^{22}
XCIII. The Phares, and Revolution of Mars about his Axis; by Dr. Hook

423
XCIV. The Parallax of Mars; by Oir. Flamfteed
XCV: 1. Places of Mars Obferved at Derby; by Mr . Flamfteed
3. At Dantrick: by S_{2} :Herelius
XCVI. 1. Spots in Venus; by \mathcal{M}. Burattini ibid.
2. The Rotation of Venus; by \mathcal{M}. Caffini ibid. XCVII. A Place of Venus, Obferv'd at Dantzick; by M. Hevelius

426
XCVIII, Mercury obferved in the Sun, 1690, as. Nuremburgh; by ©M. Jo. Phil. Wurtzelbaur
XCIX, Mercury Obferved in the Sun, Nev. 3. (St. N) 1697 ; by 2 . Caffini 427°
C. The Vifible Conjunctions of the Inferiour Planets with the Sun; by our. Halley ibid.
CI. I. The Motion of the Comet, Amn. 1664 , Preditled by 2 M. Auzout
430°
$\begin{array}{lr}\text { 2. Obferved by oM. Auzout } & 430^{\circ} \\ \text { 3. Ey Fome Enslifh Afronomers } & 437\end{array}$
3. Ey fome Englifh Aftronomers, ibid.
4. The Principles of om. Auzout's Hypothefis ; and the Motion of that Comet Obferved; by OM Caflini
CII. 1. The Mution of the Comet, Ann. 1665 , Fredizted; hy Ne. Auzout 438
2. Obferved by M A Auzout. ibid:
CIII. I. A Comet, Akn. 1658, at Bononia; by oM. Caflini \quad ibid.
2. At Lisbon; by $\dot{\text { V }} 439^{\circ}$
3. In Brafil; by P. Valentine Eftançcl ibia.
4. In Africa; by P. Pietro Sufarte , ibid.
CIV. I. A Comer, An. $167 \frac{1}{2}$, at Dantzick; by $\mathscr{O M}$. Hevelius
2. At... by Mr. Newton 440
3. At Paris; by on. Caffini \quad ibid.
CV. 1. A Comet, Ann. 1677 , at Paris ; by
M M. Caffini
2. At Dantzick; by MM Hevelius $\quad 443$
3. At Greenwich; by OMr. Flàmfteed 445

CVI: A Comet, An. 1680; at Dantzick; by 24. Hevelias 4 Cos 446

CVII: A Comet, $A n$. 1682 , at Dantzick; ; y M. Hevelias ,
CVIII. A Comet, An 1683, at Dantzick; CIX. M. Hevelius A Comet, Ann ‥168,...at Pome, 448
CIX. A Comet, Ann. 1684, at Pome ; by S. Ciampini.
CX. A Comet, Ann. 1686, at Teipfick; by M. Kirck

CXI, A Comet, Ann $169 ; \frac{3,}{}$ at Paris; ${ }^{452}$ by in: Caffini ${ }_{\text {ibid }}$
CXII. Papers of lefs general Use, omitted 453 CXiII. Accounts of Books, and Emendations; omisted.
454.

The CONTENTS.

CHAP. V.

fachonick

I. 1.5HFE General Laws of Wotion; ly Dr. Wallis
P. 545
so by sir Cht, Wren
547
3. By M. Hugens

548
4. Some Hiftorical Paflages reluting to thefe

Papers; ly Mr. Oldenburgh
549
II. The Synchronifin of the Vibrations made in
a Cycloide; Demonftrated by a Perfon of Quality

550
7II. I. A Problem concerning the Line of the Quickeft Defcent between two Pointsgiver \%. Propofed by M. Jo. Bernonilli 551
2. Solv'd by
ibid.
3. The Demonftration ; by $\mathfrak{M} r$. R. Sault ibid.
IV. How much the Defcent is Quicker in the Cycloide, than in a Straight Line; by
V. i. Exxill Portable Watches; by M. $\begin{gathered}553 \\ \text { gut } \\ \text { ibid. }\end{gathered}$
ibid.
2. By Dr. Goth. Guil. Leibnitz

554
VI. A Clock Afcendant upon an Inclined Plain; by M. de Genves 555
VII. A Clock Defcendent on a Plain Inclined; ly Mr. Maurice Wheeler

556
VIII. The Effecty of Gravity in tbe Defcent of Heavy Bodies, and the Morion of Projects; by Sm. Halley 560
IX: The Wheafure of the Airs Refiftance tu Bodies, moved inyt; by Dr. Wallis. 572
X. 1. Experinents to Determine the Pointo Blank Diftance, the Charge of Powder, and the beft size of Guns ; propoped by Sir Robert Moray

580
2. Experiments for trying the Force of Great Guns; by.Mr. Greayes

Acomplicis.

XI. Shooting by the Rarefaction of the Air: by Dr. Papin

584
XII. The Velocity wherewiththe Air fuffes ing 50 an Exhanfted Receiver; by Dr. Pam pin

585
XIII. Wind produced by. the Fall of Water; by Dr. Walt. Pope

586
XIV. The beft Ferm of Horizontal Sails for 6 Mill; ly Dr. Rob. Hook Fibid.
XV. 1. Ah Account of Elying; by Dr. Rob. Hook 58%
2. The Art of Flying; by S. Befnies 588
3. A Flying Chariot; by Fr. Lana ibid. Sheron Impracticable; ly Dr. Hook 589 XVI. An Engine to. make Linnen Cloth; by M. de Gennes zbid. XVII. Advantages of High Wheels Experio mented; by a Member of the Oxford Soo ciety
XVIII. A New Sort of Calefh; deforibet 5 g \sin R. B.
XIא. The Contrivance of a Perpetual Motio on; by . . . Explained; by Dr. Papin And ghe ron Jnfufficient by him
ibid
593
XXi The Speaking Trumpet Jmeroveds by 1. Conyers
XXI. The Swifneis of Sounds, and thesir: Reflections, as Ecchoes ; by whr Walker 59q XXII, The DaCtrine of Sounds; by Narcifus, biffop of Ferns aidd Leighlin -

996
XXIIM. A Paper of lefs General Ufe, onitted
602
XXI\%: Accounss of Boaks; ayd Alditions, Omitted
ibind

CHAP VI.

Hydroftaticks: Hydraulicks.

1. 2. To Weigh Water, and other Fluids ; 2. A New Arxometer; by M.Homberg ibid.
II. 1. A New Eflay Inftument; by Milo.
Boyle
1. Further Confider'd; by

IIf. The Weight of Water in Water ; by shto IV. 1. The Preffure of Water in Great Depth: by a Perfon of Honour
2. By Dr. Oliver

The CONTENTS.

V. 1. The Weight of Divers Bodies, Iryed by the Direltion of the Philofoph. Society at Oxford

610
2. Tbe Specifick Gravities of feveral Bodies ; by the Direttion of the Philofoph. Society at Oxford

611
3. By Mr. J.C.

612
VI. Ibe Different Weight of Several Liquors, in Winter and Summer ; ty M. Homberg 614
VII. Experiments about the Superficial Figures of Fluids, efpecially Liquors Contiguous to others Liquors, and their Refle: Etive Powers; by $\mathcal{M} r$. Boyle
ibid.
VIII. I. Why Bodies Diffolved, swim in MenAtrua Specifically Lighter than themfelves; by Mr. Will. Molyneux

623
2. Confidered; by onr. Tho. Molyneux 625 IX. An Undertaking for Raifing of Water ; by Sir Samuel Moreland
ibid.
X. I. A Siphon, performing the fame things
mith the Sipho Wurtemburgicus ; by Mr. !o.
Davis
ibid.
2. By Dr. Papin 626
3. By D. Salomon Reifelius bimelf 627
XI. I. A New Way of Raifing Water, A. nigmatically Propofed; by Dr. Papin ibid.
2. Solved ; by Dr. Nath. Vincent ibid.
3. By Mr. R.A. ibid.
4. In a Letter Subfcrib'd, W. Tenon ibid:
5. By Dr. Papin 628
6. Several Objections made by M. Nuis, Arfwer'd; by Dr: Papin ibid. XII. An Engine for Raifing Water, by the help of Fire; by OMr. Tho. Savery $\quad 63^{2}$
XIII. An Hydraulique Engine; by . . ibid.
XIV. A Cheap Pump ; by \mathcal{M}. Conyers 633 XV. Papers of lefs General vee (Extraited. from a Book of Jo. Alph. Borellius de Motu Animalium) Omitted $\quad 634$ XVI. Accounts of Books Omitted ioid.

C. H A P. VII.

Gcography. Navigation.

${ }^{5}$New Place for tbe Firlt Meridian; Propos'd by a Profeffor of the Mathe maticks at Seville
p. 634
II. I. M. Hugens's Inftructions for finding the Longitude, with Pendulum Watches; Enlarged by
2. The Succefs of Pendulum Watches :-by Major Holmes

643
III. I. Longitudes from the Moon's Places; by Math. Profeffor at Seville 644
2. Confider'd by ©Mr. Flamfteed ibid.
IV. Longitudes from Lunar Occultations; by Mr. Halley
V. Longitudes by the Revolution of Jupiter uport bis Axis; by on. Caffini
ibit.
VI. I. Longitudes by the Satellite Eclipfes; by Sh. Hevelius
2. By M. Borelli
3. Ey Oir. Flamfteed
4. by OMr. Halley
ibid.
VII. The Longitude and Ititude of 647
VII. The Longitude and Latitude of Derby; by Mir. Flamfteed.
VIkI. The Latitude of Ecton
IX. The Longitude ind Ia of ivid.
X. The Longlude and Latio of Townley ibid.
X. The Latitude of Tredagh in Ireland ibid.
XI. The Longitude of Oxiord and Dantzick; by Ohr. Halley
XII. 1. The Longitude of Paris; by NM. Cai. fini ibid.
2. Again 649

| 3. By Mr. Flamfteed |
| :--- | ---: |
| 650 |

XIII. The Longitude of Strasburgh and Paris ${ }_{3}$ by M. Bullialdus ibid. XIV. The Longitude of A vignon; by Mr. Hal: ley ibid. XV. The Longitude and Latitude of several Places in France XVI. The Longitude of Lisbon; by $\mathcal{M r}$. Ja cobs ibid. XVII. The Latitude of Madrid; by the Earl of Sandwich i XVIII... I. The Longitude of Seville and Uraniburg; by . . . Mathemat. Profeffor at Seville

65
2. By MAr. Flamfteed ibid.
XIX. Ibe Longitude of Copenhagen; by $\mathcal{M}_{\text {. }}$. Picard ibid. XX. The Longitude of Rome and Uraniburg: by Mr. Flamiteed ibid.
XXI. I. The Longitude of Dantzick; by Mir. Halley
2. Tbe Latitude of Dantzick; by NA. He. velius
ibid.

The CONTENTS.

XXII. The Lorg. of Nuremburg ; by \ldots. i b.
XXIII. The Longitude of Moicua, Lipfick, and Aleppo ; by . . . $\quad{ }^{6} 52$
7he Latitude of several places in Ruffa ibid. XXIV. The Latitudes of Some Remarkable Places ; by Mr. Francis Vernon ibid.
XXV. The Latitudes of Conitantinople and Rhodes; direated to A. B. Wher, by Mr. Greaves
XXVI. The Long, of the C. of Good Hope 655

The Longitude of St. Helena $\quad 656$
XXVII. The Longitude of Madagalcar; by \min. Flanfleed
ivi...
XXVI!I. The Longitude and Latitude of Bal. lafore in India; by JMr. Halley ibid.
XXIX. The Longitude of Canton; by OM. Caffini 657
XXX. The Eongitude and Latitude of Pekin; by OM. Ja. Caffini
XXXI. The Latitude of St. Salvadore 658 XXXII. The Latitude of Bridge-Town ibid. XxxirI. A Defcription of Nova Zembla ; by
M. Nich. Witten:
$i b i{ }^{2}$.
XXXIV. A Map of France; by On. Picard, and M_{1} de la Hire 659 xxxv.. Wbat a Compleat Treatife of Nayj gation fhould contaim: by sir W. Petty ib. xxxvi. The Collection of Secants, and the true Divifion of the Meridian, in the SadChatt ; by Dr. Wallis.

660
XXXViI. Two Problems in Navigation propos'd ; by Mr. Nich. Mercator $66 . t$
XXXVIII. The Analogy of Logarithmicis Tangents to the Meridian Line, Demorfrated; by Mr. Halley

655
XXXIX. To find the Variation of the Compars at Sea; by $\quad 672$
XL. A Caution for obferving the Variation at Sea; by Mr. Edm. Halley
XLI. A Caution to Seamen, bound up the Englith Channel ; ty bo ibid. XLII. Papers of lefs General Ufe, Onitted 674 XLIII. Aicannts of Books and Einendations, Omitted
ibid.

CH A P. VIll.

Architecture. Ship:Ruilding.

In. Tones fit for Burilding; by . . . p. 676 for Covering Houfes; by Mr. Sam. Coleprees. ibid.
III. The Bef Time of Felling Timber; by Dr. Rob. Plot 677
3V ${ }^{*}$. The Difference of Timber, in: Different Countries, and Fell'd at Different Seafons; by 2 M. Ant. Van Eetuwenhoeck 680
Vi: 1. The Bridge at Si. Elprit in France; by Dr. Tankred Robinfon 681
2. By Dr. Lifter ibid.
3. Compared zoith fome otber Bridges; by Dr. Tankred Robinfon ibid.
Wi. A Bridge woithout any Pillar under it; from
the Journal of the Philofophical Society oft Oxford.

682
VII. An Aqueduct near verfailles ibid.
VIII. A very Large Stone Chimney, with on Peculiar Sort of Arch-work ; by Dr: Wallis
1x. A New kind of Stairs; by OM. We 683 lius
X . Preferving of Ships from being W 68 eaten; by . . .
XI. An Accoint of Lead-Sheathing; by Onr. I. Bulteel
XII. A Faper of lefs General $v_{j e}$, Omitted 685
XIII. Accounts of Books, Omitted ibrat

C H.A.P. 1 X .

Perjpective. Soulpture: Painting.

1. A. Perfpetive Inftrument; by Sir ChriA. Ptopher Wren P. 686 30. A Ne way of Delineating by Parallel Vifual Rays? exaitly obferving the Symme-

try ; by 2 Mr . St. Clare

ivis.
III. A Methorid of Cafting Statues of an extraordinary Thinnes; by On. Jomn Weichard Yalvafor

The CONTENTS.

IV. A Defcription of fome Simple Colours ; / in Low-Relievo, in Frarice; by . . . itid. by Mr. Richard Waller
V. To make Clina Varnifnes; .ly Dr. William Sherard

690
VI. An Examen of Pictures propos'd; by M. Colbere 691 VII. Wax work, and a New Kind of Maps
VIII. : To Colour Marble ; by ibid. IX. An Extraordinary Tinkture given to a Stone; by Dr. Salomon Reifel $\quad 892$ X. Papers Omitted 693 XI. Aciounts of Books, Omitted inid.

C. H A P: X.
 Of Mufick.

1. $\begin{aligned} & \text { F the Trembling of Confonant } \\ & \text { Strings; ty Dr. Wallis p. } 69 t\end{aligned}$
II. Tbe Defects of the Trumpet, and Trum-pet-Marine ; by Mr. Francis Roberts 595
III. Whe Divifion of the Monochord ; by $\frac{D r}{698}$.
IV. The Imperfection of:an Organ ; by Dr.
J. Wallis

700
V. A New Tuning of the Lyra.Viol; by"S. Salvetti. 70 身
VI. The Strange Effects reported of Mufick in Former Times Examined; by Dr. Wallis itid. 708

VOL. 11.

GHAP.

Phyfology: Metcorology. Pneumaticks.
I. TIAE New Regulation of the Academie des Sciences at Paris; by 31. Geoffroy
p. 1

II:- I. ibe Caufe of we prefent Languid Sate of Philofopint ; by تr. Libnitz
2. By Dr. J. Wallis
ibil.
III. A Deep Care in the Obfervatory at Paris; ty $21 . \ldots \quad i=i d$.
1V. I. Barometers, aim Obfervations mate wish them
ibid.
2. By Dr. J. Beal
3. by Dr: J. Wallis
4. By Mar. Boyle
5. At Cabo Curs in Güñea; by Mr. Heatró cot
6. In Jamaica; ty Sir Wiil. Beefton isid.
7. The Loweft Degree of the Barometer, 与y ale Bihop of Cloyse. iid.
8. The Agreement of the Barometers at Inndun and Tuwnley; IJMr Townley ist
V. A Portable Barometer ; By Onr, William Derhan
10°
VI. I. To Enlarge the Divifions of the Baros meter ; by Dr. Hook.
2. By. Mr. Derham
3. By OMr. Derham Jidas
4. Eycoir. Stephen Gray bid.
VII. 3. The Height of the Nercarry, at. Ne Top of Snowden-Hill; by Mr:Halley 13
2. Confider'd dy' Dr. Wallis

Vlli. At the lop of the Monument; by Mr^{2}. Derham
ibis.
IX. The Firights of the Mercurial Cyllinder, at any Elevatiun above the Surface of the
carth; by Fir. Halley
X. The Reafor of the Afcent of the Quibk. fiver ${ }^{\text {i }}$ D Dr. Lifter

18
2. Ey Jir. Edm. Halley 20°
XI. The Caufe of the Sufpenfion of the Me:-

The CONTENTS.

2: By Dr. Wallis

XII. A.Statical Barofope; by Mr. Boyle 28 XIII. 7lbe UJe of Barometers; by 3^{2} XIV. 1. Thermometers, and Obfervations made with them; by Dr. J. Beal ibid.
2. By Dr. Wallis
3. A Thermometer obferved at Sea ; ty Mr. Ja. Cunningham 33
XV. The Expanfion of Several Eluids, in order to afiertain the Divifions of the Thermometer; Ey Mr. Edim. Halley
ibid.
XVI. 1. Hygrofcopes; ly . ..

36
2. By Mr. Coniers 37
3. By Molyneux
4. By Mr. Will. Gould
5. Anotber: by Mr. Will. Gculd
5. Anotber; by Mr. Will. Gculd
x ViI. To offerve the Strength of Winds ; ty ibid.
XVIIL. Remarks concerning the Gradual Alteration of the Temperature of the Air in America and in Ireland, and Obfervations of the Weather, Ann 1675; by ibid.
XIX. To Meafure the Quantity of Falling Rain; by Mr. Townley 43 Oblervations of the Rain for 15 Years 44 XX. A Hiftory of the Weather at Oxford, 1684; ty Dr. Plot
XXI. The Weather at Cape Corfe, 1686, and 1637 ; ty Mra I. Hillier
XXII. The Rain at Grefham-College, London, 1695, and 1696

60
XXIII. The Weather 1697, at Upminfter in Effex; by Mr. Willian Derham 61
XXIV. The Weather, 1698, at Upminfter; by Mr. William Derham

73
XXV. The Rain, 1697 , and 1698, at Townley; by Mr. Townley

85
XXVI. The Weather 1098, and 1699, at E. muy in China ; ty Mr. Ja. Cunningham ib.
XXVII. The Weather 1699 , at Lupminfter; by Mr. Will. Derham

90
XXVIII. I. Hurricanes and Storms; by onr. J. Templer

102
2. Ey Mr. J. Templer 103
3. By Sir George Mackenzy 104
4. By Mnr. Scarburgh ibid.
5. by
XXIX. A Spout, at Topfham near Exeter; by Mr. Zach. Maine
ibid.
XXX. Ir Prognonticks of the Wind ; ty Mr. J. Gill
z. Prognofticks of Hurricanes; by Capt. Langford
XXXI. An Experiment of the Evaporation of Water; by Mr. Edm. Halley 108 XXXIL The Evaporation of Water, in a Clofe

Room at Grelham-College, 1693 ; by 5 Mro Edm. Halley
XXXIII. 1. The Changes of Weather, from the Alterations of the Gravity of the Atmofphere ; by Dr. Garden 118
2. By Dr. Wallis 122
XXXIV. The Circulation of Watry Vapours ; by Mr. Halley

126
XXXV. The Caure of Trade Winds; by Dr。 M. Lifter
XXXVI. I. The Caule of Winds, and of the Change of Weather; by Dr. Garden ibid.
2. Ey Mr. Will. Molyncux

133
3. By Mr. Halley
ibid.
XXXVII. Oblervations upon May-Dew; by ghr. Tho. Henfhaw 14 I
XXXVIII. I. A kind of Dew like Butter, in Ireland; by Mr. Rob. Vans

143
2. By the Biflop of Cloyne ibid. XXXIX. A Shower of Afhes, in the Archipelaga; by Capt. Will. Badily ibid.
XL . A Shower of Ivy-Berries, miffaken for Wheat ; by orr. Will. Cole 144 XII. A Shower of Fifhes, in Kent ; by Dr. Rob. Conny
XLIH. Hail-Stones of an extraordinary Bignefs; by Dr. Nath. Eairfax
ibid.
XLIII. Large Hail Stunes in Flanders; by

145
XLIV. 1. Extraordinary Hail in Wales, CheThire, Ec. by Mr. Edm. Halley ibid.
2. by ${ }^{146}$ XLV. A Storm of Hail in Hartfordfhire, May 4, 1697 ; by $\mathfrak{M r}$. Rob. Taylor 147 XLVI. I. A Storm of Hail in Herefordhire, June 6,1697 ; by...... . ibid.
2. By OMr. Ed. Lhwyd 148 XLVII. An Unufual Sort of Snow ; by Oir. Joh. Chr. Beckman
ibid.
XLVIII. Red Snow near Genoa; Communicated by S. Sarotti KLIX. Oblervations on Snow; by Dr. J. Beal
L. The Naure of Snow ; by Dr. Nehemiah Grew ibid.
II. I. A Freezing Rain in Somerfethire; by Dr. J. Beal

150
2. At Oxford ; by Dr. Wallis ${ }_{152}^{152}$
LII. 1. Effects of Cold in the Northern Countries; by OM. John Schefferus
ibid.
2. By M. Fehre
ibid.
LiII. 1. The Effeits of the Froft $168 \frac{3}{4}$; by Mr . Evelyn

153
2. By mnr r. Jacob Bobart
LIV. To Prejerve Ice and Snow; by OMr. Will. Ball

16
LV. Cold

The CONTENTS.

LV. Cold produced with Sal.Armoniack ; by Mr. Boyle ibid. IVI. I. Experiments about Freezing ; by S. Carolo Rinaldini

164
2. By Dr. Lifter
ibid.
3. By M. Des-Mafters
LVII. Exceflive Heats in Poland; by M. Fehre
ibid.
LVIII. The Proportional Heat of the Sun, in all Latitudes; by M1r. Edm. Halley ibid.
LIX. 1. Accidents by Thunder and Lightning, at Oxford; by Dr. Wallis
2. In Hamplhire; by Mr. Tho. Neal

172
3. At Stralfund in Pomerania; by....ibid.
4. At Dantzick ; by Mr. Chrift. Kirby 174
5. At Portmouth ; ty ibid.
6. At Owndle; by MMr. W. R.

175
7. On Board the Suffolk, in the Bay of Bifcay; by Dr. Oliver
ibid.
8. Near Aberdeen in Scotland; by ... ibid.
9. At Smyrna ; by $\mathcal{M} r$. Rob. Mawgridge 176
10. In Northamptonfhire; by Dr. Wallis 177
11. In Yorkfhire, 1698; by Mr. Ralph Thoresby

179
12. In Yorkhire, 1700; by Mr. Ralph Thoresby
ibid.
LX. I. The Direction of Ship-Compaffes changed with. Thunder and Lightning; by . O ..
2. By Sir R.S.

180
ibid.
LXI. I. A Fiery Exhalation, or Damp; by Mr. Maurice Jones 181
2. By Mr. Edw. Lhwyd

182
LXII. Fairy-Circles ; by Mr. Jeffop
ibid.
LXIII. I. The Caufe of Lightning and Thunder; confidered by Dr. Lifter
ibid.
2. The Caufe of Hail, Lightning and Thunder; Conjidered by Dr. Wallis
LXIV. 1. Halo's at Madrid; by the Earl of
Sandwich Sandwich

185
$\begin{array}{ll}\text { 2. At Paris; by M. } & \text { ibid. } \\ \text { 3. At Dantzick; by } \mathcal{M} \text {. Hevelius } & \text { ibid. } \\ \text { 4. At Oxford; by } M \text { Mr. Halley } & \text { ibid. }\end{array}$
LXV. 1. Parhelia obferv'd in France ; by $\mathcal{M 2}$.
2. In Hungary: by Dr. Edw. Brown

186
ibid.
3. At Dantzick; by Ar. Hevelius 187
4. At. Marienburg in Boruffia; by M1. Heve-
5. In Suffolk; by Mr. Petto iii.!.
ibid. 6. At Canterbury ; by Mir. Step. Sray ibid. 7. At Canterbury ; by Mr. Steph. Gray 188
LXVI. I. Rainbows obferv'd in France ; by \mathfrak{M}. Eftienne ibid.
2. At London; by Mr. Edm. Halley ibid.
3. At Chefter; by Onr. Edm. Halley ibid.
LXVII. The Cauies of Halo's and Parhelia; Confidered by \mathcal{M}. Hugens 189
LXVIII. Optical Affertions concerning the Rainbow ; by OMr. Fr. Linus 194
LXIX: The Colours and Diameter of the Rainbow, from the given Proportion of Refraction, and the contrary; by $\mathcal{M r}$. Edm. Halley 195
LXX. A Strange Appearance near Upfal ; by Dr. And. Spole 199
LXXI. An Ulnufual Meteor ; by Dr. Wallis 200
LXXII. 1. The Compreffion of Air under Water; by M....... 20 I
2. The Calculation; by MMr. 203
LXXIII. Effects of the Varying Weight of the Atmolphere, upon Bodies under Water ; by $\mathcal{M} r$. Rob. Boyle
LXXIV. To take Exhaufted Receivers away
from the Air-Pump; by M. Papin 205
LXXV. Seeds Sown in the Exhaufted Receiver; by 206
LXXVI. Experiments concerning the Relation of Light and Air (in Shining Wood and Fifh;) by MMr. Boyle
ibid.
LXXVII. Pneumatical Experiments; by Mr. Boyle 215
LXXVIII. Experiments about the Weakned Spring, and fome Unobferved Effects of the Air; by Mr. Boyle 235 LXXIX. Pneumatical Experiments; by 235 Papin: Direited by M. Hugens 230
LXXX. A Pneumatical Experiment; by ${ }^{23}{ }^{2}$ Joh. Chr. Sturmius
Joh. Chr. Sturmilus
LXXXI. Papers of lefs general. Ufe, omitted 255
LXXXII. Accounts.and Emendations of Books
LXXXII. A6counts and Emendations of Books,
omitted
ibid. ibid.

The CONTENTS.

CHAP. II.

Hadroiogy.
I. To Sorind the Depth of the Sea vithout a. Wine; by Dr. Hook p. 257
II. 70 fecth up Water from amy Depth; by Dr. Hook

260
III. Directions for Obferving Tides ; by Sir Rob. Murray abid.
IV. T. Tides dbferved at London; by Sr. Hen Phillips
"2. By Mr. Flàmfteed
3. At Dublin; by M1r. Will. Molynenx ibid.
4. Nigh Plimouth; by Onr. Sam. Coleprefs 264
5.-In Hong-Raad 4 Mile's from Briftol, by Capt. Sam. Sturmy
6. "At Chepftow ; by

265
7. A Table of the Wathes in Lincolnhire; by Wir. Chr Merret
ibid.
8. The Tides in France; by ibid.
9. 1. At Bermidas; by Wro. Rich Nor-
wood
268 ibid.
1o. At Cabo Cors Caftle, on the Coift of Guinea; by $\mathcal{M r} r$. Heathcot. ibid.
F. 1. An Hypothefis about the Flux and Reflux of the Sea; by Dr. Wallis ibid.
12. Some Objections Anfwered; by Dr. Wallis

27\%
3. The Variety of the Annual Tides, in feveral places'of England; Confidered by Dr. Wallis

278
4. Animadverfions upon Dr. Wallis's Hypothefis; thy Mr. Jof. Ohildrey 279
s. Answer ${ }^{2}$; by Dr. Wallis

283
WI. Mr. Newton's Theory of the Tides; explain'd by Mr. Halley
VII Uider-Currehts, in the Downs, at the Streights-Mouth, and in the Baltick; by Dr. Tho. Smith

288
VIII. The Irregular Flux and Reflux of the Euripus; by F. Jaog. Paul Babin 289
IX. Extraordinary Tides about the Orkney's; Communicated by Sir Rob. Moray 290
X. Extraordinary Tides in the Weft Ifes of Scotland; by Sir Rob. Moray 291
\%I. 1. Extraordinary Tides at- Tunqueen; by Mr. Fr. Davenport

292
2. A Theory of the Tides at Tonqueen; by
Mr. Edm. Halley
XII. The Differing Gravities of Sea-Water according to the Climates; by.... 297 XIII. A Way to mike Sea-Water Sweet; by Mr. Hatuton
ibid.
XIV: Sea-Water made Frefh; by Dr. Mart. Lifter \quad ibid. XV. Wells of Frefh Water near the sea, at Bermudas; by Mr. Rich. Norwood 298 XVI. 1. To Examine the Frefrnefs of Water; by EMr. Boyle ibid.
2. By Dr. Huok 304
XVII. An Ebbing Well in Weftphaliä; by 305
XVIII. Ait Ebbing Wellnear Torbayr; by Dr. Wht Oliver ibid. XIX. I. The Zircinitzer Sea in Carniola, Deforibed; by Dr. Brown
$\begin{array}{lll}\text { 2. By M. J. Weichard Valvafor } & 307 \\ \text { XX. The Lake of Geneva; by } & 317\end{array}$ 306
XXI. The Lake Avernus; by Dr. Tancred Robinfon

320
XXII. The Lake of Mexico; by ibido
XXIII. An Irland Sea near Dantzick, yielding in Summer, a Poyfonous Subfance; by M. Kirby
ibid.
XXIV. I. Some Extraordinary Lakes in Scotland; by Sir George Mackenzy : 32 I
2. By M1r.Ja. Frazer. 322
XXV. Lough Neagh in Ireland ; by Mr. Will. Molyneux ibid.
2. By Mr Edw. Smith

2. By Mr.Edw. Smith
XXVI. Petrifications ; by OM. Röb. Boyle 324
25

XXVII. By Mr. Phi. Packer
XXVIII. Petrifying Waters in scotland; by Sir Rob. Sibbold
XXIX. The River Greatan, runining under Ground; by Mr. Hugh Todd ibid.
XXX. A. Cataract in Gottenburg River; by Mr. Gourdon ibial $^{I_{0}}$
XXXI. River Water Recover'd after Stinking: by 326
XXXII 1. Inundations in Galcoigne ; by M. \quad ibid.
2. Some Effects of Vitriolate Waters; by SMr. J. Beaumont 328 XXXIII. An Inundation in Ireland; by Dr. Hook..

The CONTENTS.

KXXIV. I. Inundations in YorkThire:; by
Mr.R.P.
2. In Mauricius Inland ; by On. Roelof Diodati

329
XXXV. The Origine of Fountains and Rivers ; by oums ibid.
XXXVI. I. Mineral Springs aboui Raderborn

2. At Barel ; by . . .1. 332
3. Near Yeoville is Somerfethire ; by Dr. J. Beal , ibid.
4. On Malvern-Hill in Herefurdfhire ; $b y$ Dr. J. Beal
ibid.
5. At Farrington in Dorfethire; By Dr. Highmore

333
6. In the Bihhoprick of Durbam; by Mr Hugh Todd
ibid.
7. In Glamorgan(hire; by OM. Aubry ibid.
8. At Eglingham in Northumberland ; by Dr. Cay
9. At 'St. Amand mear Tournay ; by Mr. Geoffroy

334
XXXVII. A Spring that is never Frozen; by
xxxviii. I. The Baths in Somerfethire; by Mr. Jof. Glanville
2. By Dr. Pierce

XXXIX Bachs in Auftria and Hungary 339 Dr. Ed. Brown
XL. At Aponuminear Padua; by Jir. Dodington

344

XL I. 1, Hot Springs and otber Mineral Waters in Jamaica ; by sir will Beefton ib.
2. By Mr. Robert Tredway

345
XLII. Obfervations concerning Healing Springs ; by Dr. J. Beal ibid.
XIIII. Obfervations on Boyling Fountains, and Subterraneus Steams ; by Dr. Tancred Robinfon
XLIV. 1. Salt-Springs at Hall in Saxony, and at Lunenburg ; by 35 I
2. In Somerfethire ; by Dr. Highmore ibid.
3. In the Bilhoprick of Durham ; by MM . Hugh Tod
XLV. 1. Salt-Springs and Salt-making at Nantwich in Chelhire; by Dr. William Jackfon 352
2. At Droitwich in Worcefterhire; by Dr. Tho. Raftel 356
XLVI. The Formation of Salt and Sand from Brine ; by Dr. Rob. Plot $\quad 360$
XLVII. Obfervations on the Midland SaltSprings; by Dr. Lifter . 36 r
XLViII. The Way of making Salt in France; by

XI Dr...... 363
XLIX. In Lancarhire ; by Dr. J. Beal 364
L. In Gerunny ; ly ibid.

LT: The ' Foynts of a Girl made Stiff by Eating Salt; ty 365
LII. Papers of lefs General Ufe, omitted ibid. LII. Accoants, Refutations, and Emendations of Books, Omitted ibid.

CHAP. III.

Minerilogy.

3. I. To Break Hand Rocks; by OM. Du VIII. A Welland Earth in Incaihire, taking

2, By Mr. Beaumont
II. Onkay-Hole, and fame othor Subtermaneots Caverns in Mendip-Hills -; by Shr.J. Beaumont
III. Elden-Hole in Derbyfhire ; by ar. Plot 370°
IV. 1. Pen-PankHole Ga Glocefterthire by Catet. Sturmy
12. By Capt. Gollins
V. Airlinmines; by EMr.T. Gill. $\quad \begin{array}{r}371 \\ 372\end{array}$
W.I. Tho Whonk in Mlines mithout Air Shafts iby
sir Rub. Moray:

NII. I. Dempsinmines; by SinRoboworay 373
12. By DroEdwabrawn. it ibid.

3. By Onr. Jeffop	375
4. By Mr. Roger Muftyn	378

$\begin{array}{ll}\text { 4. By Mr. Roger Muftyn } & 378 \\ \text { S. By Mr. J. Beaumuns } & 381\end{array}$

Fire at a Candle ; by syr. Tho. Shirley 382
1X. A Subterraneal Fire in a Coab-Mine, nar Newcatte ; by Dr. fucas Hodgefon 383 An Eruption of Fire near Fierenzola; by Dr. Rub. St. Clair
XI. An Hiftorical Account of the Eruptions of Mount fetna; by MM. Oldenburg 386 An Eruption of Mount Etna in 1669 ; by forme Englinh Merchants

37 1. An Account of feqeral Burning
 m. Nich. Witfen; by. ..or $\quad 8291$
3. By 392393

394
5. by
ibid. ibid. 7. $6 y$

The CONTENTS.

7. By M. Nich. Witzen

XIV. 1. An Earthquake near Oxford, $1665 ;$ by Dr. Wallis
2. By ふir. Rob. Boyle

395
3. By Dr. J. Beal
jibid.
XV. An Earthquake at Oxford, $1683.6 y$ Ohr. Tho. Pigott.
XVI. An Earthquake in the Midland-Counties, 1583 ; by oMr. Tho. Pigutt 400
XVII. 1. An Earthquake in Sicily, $169_{3}^{2} ;$ by Mr. Martin Hartop
ibid.

2. By P. Aleffandro Búrgos

401
3. Biy the Nöble Vincentius Bonajutus 406
XVIII. An Earthquake at Lima, 1687 ; by P. Atvarez de Tolerdo $\quad 410$
xIX. An Earthquake in Jumaica, 1687\%; by Dr. Hans Sloan
ibid.
XX. I. An Earthquake in Jamaica, $1692 ; 6 y$

XXI. An Earthquake in 1699, at Batavia; Sent to On. Nich. Witzen; by ibid.

- XXII. The Caufe of Earthquakes and Vuleano's ; by Dr. Mart. LiRer

420
XXIII. Subterraneous Oaks in Somerfethire; by Dr. J. Beal

423
XXIV. Wood found Underground in LincolnMire; by
ibit.
XXV. Foffile Wood near York; by Dr. Richardfon
XXVI. Foffile Wood in Craven; by Dr:MLifter
XXVII. Wood found in Stone ; by Mr. J. Beaumont
XXVIII. Foffile Shells in Italy ; by S. Manfredus Septalius
XXIX. Foffile Shells in France; ly O. de Martel
ibid.
XXX. Foffile Shells in feveral Places of England ; by Dr. M. Lifter
ibid.
XXXI. Fofile Shells in Kent; by Dr. Griff. Hatley

426
XXXII. Foffile Shells in Berkhirè by Dr. Ja. Brewer
XXXIII. Foffile Shells and Fifhes in LincolnThire ; by $\mathcal{M h}$. Abrah. de la Pryme 428
XXXIV: Gloffopetra; by D. Lifter 43 I
XXXV. The Foffile Tongue of a Paftinaca Mariana ; by Dr. Hans Sloane ibid.
XXXVI. Horns of American Deer, found un. der Ground, in Ireland; by Dr. Tho. Molyneux
XXXVII. An Elephant found Under Ground near Erfurt in Germany ; by. Wilh. Ern. Tentzelius
43^{8} XXXVIII. Mineral Maps; by Dr.M. Lifter XXXIX Schemes of Sinds 450 Dr. Lifter XL. A Sand Flood at Downham in Suffolk; ty Mr. Tho. Wright

455
XLI. An Hungarian Bolus ; by . . . 457
XLII. The Soap-Earth from Smyrna'; by Dr. Edw. Smith
ibid.
XLIII. The ure of the Turkifh Rufima; ty Mr. Smith ark in 45^{8} XLIV. Coal-Mines in Somerfethire ; by $\underset{\sim}{M} r$. J. Beaumontio : Mun abil. XLV. I. A Subterraneous Fungus; by Mr. Jeffop
ibid.
2. By Dr. Tifter

459
XLVI. A Mineral Juice; by Dr. Lifter ibid. XLVII.: A. Blackih Stone in Shropthire, yielding Pitch, Tar, and Oyl; by owr. Martin Ele
ibia.
XLVIII. A Mineral Balfam in Alfatia; ly

460
XLIX. A Mineral Balfam, in Italy ; by s.M. Antonio Caftagna
ibid.
L. Ofteocolla about Franckfort on the Oder ; by John Chriftoph. Beckman

46
LI. Black-Lead ; by Dr. Plot

462
LII. Irifh-Slate ; by
ibid.
LIII. Cbalk, and Some uther Bodies, not properly Stones, though commonily reputed fo; by Dr. Fred. Slare
LIV. Imperfect Stone in Scotland ; by Dr. Geo. Garden

463
LV. A Stone Quarry near Maeftrich ; by

IVI. Quarries and Rocks in Auftria and Hungary, छc. by Dr. Edw. Brown $\quad 46_{4}$
LVII. White Marble in Ireland ; byDr. Afh, Bilbop of Cloyne
LV III. Stones Growing as sbe end of a Rut by Sir R. Redding
LIX. I. The Icy Mountain Gleticher ; by $\mathrm{M}_{\text {. }}$ Muraltus
2. By to M. Juftel

465
LX. The Formation of Cryftals ; by P. Francifco Lana
ibid.
LXI. An Odd. figured Iris; by Dr. Lifter 466
LXII. Tranfparent Pebbles; by Dr. Lifter ib.
LXIII. 1. Diamonds; by 467
2. By the Earl Marfhal of England ibid.
LxiV. 1. The Production of Amber; by M. Joh. Schefferus
2. By M. Hevelius

The CONTENTS.

3. An Account of Amber; by On: Phil. Jac. IXV. Añ Odd Sort of Amber; by on. Hevelius
IXVI. White Amber ; by M. Rirkby 491 IXVII. The Eleatrical Power of Stones, in relation to a Vegetable Rofin; by Dr. Lifer
ibid.
IXVIII. A Catalogue of Electrical Bodies; by Dr. Rob. Plot
ibid-
LXIX. 1. Ambergreere, a Vegetable Production ; by....... Comimunicated by Mar. Boyle

492
2. An Animal Production ; by MM. Robert Tredway ibid.
IXX. I. The Production of Coral; by s. Paulo Boccone
2. By OM. Guifony 493

IXXI. I. Trochitæ and Entrochi defcribed; by Dr. Lifter
ibid.
2. By OMr. Ray 497
3. By OMr. J. Beaumont
ibid.
EXXII. I. The Aftroites ; by Dr. Lifter 503 2. By Jur. Ray

505
EXXIII. Lapides' Judaici ; by Dr. Lifter ib.
EXXIV. 1. Vertues of the Oftracites; by Dr. Cay
2. By Dr. Lifter
ibid.
IXXV. 1. Several Regularly Figur'd Stones; by Mr. Edw: Lhwyd
ibid.
2. By Dr. Sloan

511
EXXVI. 1. The Giants-Caufway in Ireland; by Sir Rich. Buckley
ibid.
2. By Dr. Sam. Foley

512
3. By Dr. Tho. Molyneux 513 4. A Further Account of the Giants-Caufway; by Dr. Tho: Molyneux \quad - 54
IXXVII. The Growth of Spar, and the Formation of Rock-Plants; by Mr. J. Beaumont

519
IXXVIII. A Rock of Natural Salt in CheThire; by Mr. Adam Martindale

523
IXXIX. The Salt. Mines in Tranfylvania and Hungary;; by Dr. Brown ibid.
LXXX. Sal-Gemme Mines in Polanid ; by
LXXXI. 1. The Natron of Egypt, and 52 trian-Water Examin'd; by: Dr: Charles Leigh
2. The Original of the Nitre of Egypt; by Dr. Lifter
LXXXII. The Pyrites and Eapis Calcarius, confidered; by Dr. Tankred Robinfön ibida
IXXXIII. The Spontaneous Firing of the Py: rites ; by Dr. Fred. Slare
LzxXIV. A Mineral at Liege, yielding Brimftone and Vitriol ; by Sir Rob, Mioray ibid.
LxxxV. 1. Sulphur, Vitriol, Allum and Minium, from a Stone in Sweden; by Sir Gill. Talbot 531 2. The fanie in England ; by..... Siv LXXXVI. Green-Copperas Wurks'; by Mr. Dati. Colwal ibid. LXXXVII. Oyl of Vitriol Increafing in Weight; by Dr. William Gould: 534 EXXXVIII. White Vitriol; by Dr. Lifter 537 LXXXIX. Allom-Works; by OMr. Dàn. Colwall XC. Experiments about Vitriol, Sulphur and Allom; by'... 54 I XCI. The Efflorefcence of certain Mineral Glob̉es ; Ey Dr. Liffer ... 548 XCII. I. Amianthus; by ibid.

$$
\begin{aligned}
& \text { 2. By Mr. Edw. Lloyy } \\
& \text { CIII. I. Incombuftible Cloth . } 549
\end{aligned}
$$

XCIII. 1. Incombuftible Cloth; by ${ }^{\text {Mhr. }}$ Nich. Waite ibid.

2. By...... 550
3. By Dr. Robert Plot ibid.
XCIV. Lapis Calaminaris; by Mr. Giles.
Pooley Pooley
XCV. I. To Vitrifie Antimony with Cawk 554 by. Dr. Lifter
4. The Virtue of Antimony; by . . $\quad 555^{\circ}$
XCVI. A Black Shining Sand from Virginia,

Examin'd ; by Dr:-All:Moulen ibid
XCVIT. A Black Sand from Italy; by NH_{o} -
Butterfield
XCVIII. To make Metal Run' Smoothi and Clofe; by at Franckfort on the Main ibíd.
XCIX. I. Iron-Works in Glocefterfire by Mr. Hen. Powle 558
2. In Lancaffire ;'by od. Johin Sturdy 559
3. By Dr. Lifter $\quad 560$
C. The True Way of making Steel ; by Dro Mart. Lifter
ib訁úa
CI. 1. Copper-Mines in Hungary ; by Dr.

> Edw. Brown 2. In Lancahire and Cumberland ; by 562
> OMr. Dav. Davies, to Dr. Lifter

563
3. By to Dr. Lifter ibid.
CII. To make Brafs; by Mr. Tho Porey 56s? CIU. I. The Tin Mines in- Devon and Cornwall; by ibid.
2. By Dr. Chr. Merret

572
CIV. 1. Lead-Mines in Sowerfetfire; by Mr. Jof. Glanvil!

573
2: A furiber Account; by OMr. Jor. Glanvil 574
37: In Germany ; ; lyP. I. . .
CV: The Poyronous Quality of Lead Ore; by Mrijo Beaument ibid. CVI. The" Way of suaking Geruls; by sir Philiberto Vernatti ibid. CVIJ.

The CONTENTS.

CVII. R. The Quickalver-Mines In Eriuli ; by Dr. Walter Pope. - 577
2. By Dr. Edw. Brown

579
CVIII. Mercury found in Plants; by S. Manfred Septalius
CIX. The Incalefcence of Mercury with Gold; by B.R.
cX. The Silver Mines in Hungary; by Dr. Edw. Brown

583
CXI. The Gold Mines in Hungary; by Dr. Ddw. Brown
CXII. The Extreme Ductility, and Exceeding Mintitenefs of the Conftituent Parts
of Gold; by Mr. Edm. Halley
587
CXIII. 1. A Mineral like Leaf-Gold near Mexico; by an Englifh Gentleman at Seville

588
2. The ufe of Mercury-in Separating Silver from the Ore; by the fame Englifh Genile: man
CXIV. The Art of Refining ; by Dr. Chrift. Merret
CXV. Experinents of Refining Gold with Antimony; by Dr. Jonath. Goddard 595 . CXVI. Papers of lefs General v/e, Omitted 599 CXVII. Aciounts of Books, Omitted ibid.

C. H. A P. IV.

Magneticks.

$$
\text { 1. I. Oadftone found in Devonthire; } b_{j}
$$

2. By onr. J. Beaumont
II. I.2. Magnetical Obfervations; by:
3. Ey Mr. Sellers ibid.
4. By OMr. Sam. Coleprels.

602
III: Ihe Refpect of the Needle to a Piece of Iron, beld Perpendicular, in Several Climates ; by ibid.
IV. I. The Polarity of Iron; by MMr. J.C. 603
2. By Mr. Ballard
V. The Declination of the Needle Obfervid; by MMr. Ja. Cunningham 607
VI. I. Magnetical Variations, near Brifol; by Capt. Sam. Sturmy
2. At Paris ; ly M. Petit Jbid.
3. At Rome ; by M. Adrian Auzout 608
4. At Dantzick; by \mathcal{M}. Hevelius 609
5. At Nuremberg in Germany; by Joho Chr. Sturmius.
6. By M. G.C. Eimmart
ibid.
7. On the Coaft of Guinea.--5y Mr. Heth

VIf. Magnetical Variations predifad; by Mr. Hen. Bond
ibid.
VIII. A Theory of the Magnetical Variatios on, by MMr. Edm. Halley ibid
IX. 1. An Invariable Compals ; b OH. dela Hire 620
2. The Principle Examined ; by . . . 622
X. An Account of a Book, Omitted. 623

CH A P. : V.

Botany. Agricinlture.

I. : T Preferve the Specimens of Plants $\%$

35: 1. An Odd kind of Mulhroom; by Dr. Lifter
ifid.
2. By Mr. Wray $\quad 624$
3. Anoiber Sort of Mulhroom; ty Dr. Li-

JIJo: The Fluwers and.Seeds of Mulhrooms; by. Dr. Laster
TV. Trumbles : by Dr. Tancred Robinfon ibid. Vo iv Stringe Sortof Rye in Eranies by....
VI. To Mäke Malt; by Sir Rob. Moray En $_{2}$
VII. 1. The Granaries in London; by Dr. Merret $\quad 6 \div 9$
2. At Zurich ; by Dr. Pell . 630
3. At Dantzick and Mufcovy; by ibid.
VIII...1. Turnip and Potato-Bread; by Dr. Beal
ibid.
2. Tunnip-Bread; zy Shr. Sam: Dalc itid
IX. The Culture of Maize; by Mr. Winthorp ib.
X. I. Improvements to be made by Maize; by sir Rich. Buckley

634
$2 . \mathrm{Com}^{2}$

The CONTENTS.

2. Confider'd ; by Mr. J. Ray

XI. An Extraordinary Spirit of Sugar ; by Dr. Lucas Hodgefon
XII. The Culture of Saffron ; by Mr. Ch. Howard

635
XIII. Melons Order'd; by M. de la Quintiny 6;8
XIV. 1. Dog-Mercury; ly Mr. T. M. 640 2. By Dr. Sloan
ibid.
XV. Hemlock; by Dr. Nath. Wood ibid. XVI. 1. A Poyfonous Root like Hemlock; by Dr. Nath. Wood
2. By SMr: J. Ray
XVII. I. Hemlock-Water-Dropwort ; by Mr. Fr. Vaughan
ibid.
2. By OMr. Ray
XVIII. The Horned Poppy ; by Mr. James Newton
ibid.
XIX. The Helmontian Laudanum ; by O1r. Boyle
ibid.
XX. The URe of Opium among the Turks; by Dr. Edw. Smith

643
XXI. Mackenboy; By the Bifhop of Cloyne 644
XXII. The Snake-Root; by Onr. Banifter ibid.
XXIII. Dévils-bit; by Sir Theod. Mayerne 645
XXIV. Alcanna; by
ibid.
XXV. Aloe Americana; by Dr. Merret ibid. XXVI. The Tartarian Lamb; by Dr. Hans Slön
XXVII. A sort of seeds which Clarifie Water ; by Dr. Hans Sloan
ibid.
XXVIII. The True Amnnum, or Tugus of
the Philippine Ines; by P. Geo. Camelli ib.
XXIX. The Ahmella from Cevlon; by Dr. Hotton
xXx. 1. Nux Pepita, or Faba Sanctílgnatii ; by Dr. Sloan
2. By
3. P. Gèo. Camelli
4. Ey Dr. Hotton

XXX Cherries Recovered thous σ_{52}^{2} thered a Re. Ched almoft Wi-
XXXII: 1. The Sorbus Pyriformis by Mrid. Edin. Pitt
2. $3 y^{\prime} \ldots$.
XXXIII. A Double Pear; by..... ibid.
xxxiv. An unufual Way of Propagating Mulberry. Trees, in Virginia, for the Silk-Work; by
XXXV. Choice of Truit-Trees, for Speedy Propagation and Plealant-Liquor ; by $D r$. J. Béaí

XXXYt: An Eafle Way of Reifing ibid Trees; ly Mr. Lewis of Reifing Frait
NXxyll. 1. The Beft Seafon of Tranfplant ing ; ij Mr. Reich. Reed. 655

2. By Dr. J. Beal.

ibid.
XXXVIII. Bloffoms do not forthwisb difcover a Biaft; by Dr. Beal

656
XXXIX. I. Cider; ty Mr. Rich. Reed ibid.
2. An Excellent Drink from Apples and Mulberries; by Mr. Sam. Coleprefs ibid.
XL. Vines; by OMr. J. Templer ibid.
XLI. To make Mufcadine-Wine; by M. de Martel

657
XLII. The Way of Making Vinegar in France; by ibid.
XLIII. Orange-Trees ; by 658
XLIV. 1. One Individual Fruir, half Orange - and balf Lemon; by
2. By Mr. ibid.
3. Ey Pet. Natus ibid.
XLV. An Account of the Coffee-Shrub; by Dr. H. Sloan 659
XLVI. An Account of Coffee; by $\mathcal{M r}$. J. Huughton 600
XLVII. The Cacao-Tree; by 662
XLVIII. The Jamaica-Pepper-Tree; by Dr. Sloan 663^{1}
XLIX. Cinnamon and Milium ; by M. J. 654 ,
L. The Wild-Cinnamun.Tree ; by Dr. H: Sloan
LI. The True Cortex Winteranus; by $\begin{aligned} & 66 \text {, } \\ & \text { H. Sloan } \\ & 666\end{aligned}$
LII. An Account of the Propagation of Elms from Seed; by Sir Rich. Buckley 657
LIII. A Sors of Sugar from Maple; by .. $66 \mathrm{~S}^{\circ}$
LIV. Oak Prepared for Tanning; by Mnr. Ch. Howard of Norfolk ibid.
LV. A Dwarf.Oak from New-England; by Ona Fr. Willoughby
LVI. The Way of making Pitch, Tarr, Rozin and Turpentine; by $\mathcal{M r}$. Tho. Bent ibid.
IVII. A Sort of Miffeltoe in Jamaica; Ey Dr. H. Sloan
LVIII. The Silver Pine, from the Caple of Good-Hope ; by Dr. H. Sloan 672
LIX. Another Coniferous Tree, from the Cape of Good-Hope; by Dr. H.Slơan ib.
LX. 1. Obfervations and Experiments coit ${ }^{\circ}$ cerning Vegetation, and the Running of Sap; by.Dr. J.Beal, and Dr. Ez. Tonge $6 j 3$
2. By Mr. Fi. Willoughby, and Mr. Wray

082
3. By Dr. Lifter 686
LXI: the Circulation of Sap; by Dr Lifter 689
LXII. 1. 7he Defcent of Sap in Winter; by, \therefore Mr. Rich. Reed. 690°
2. Ey Dr. J. Beal
sbid.
LXMF r. Vems in Blantsi; objetuea by Dr, M. Lifter. 69 F
590°

The CONTENTS.

Tho. Wright
Juices of Plants ; by Dr. Lifter ibid. LXV. Ferbs of the fame Make and Class, for the Generality bave the like Virtue; by Mr. Ja. Petiver

704
LXVI. The Separated Bark of a Tree, Reunited to the Tree; by Dr. Chr. Merret 706 LXVII. Obfervations concerning the Barking of Trees; lys. Malpighi ibit.
LXVII. 1. Experiments of the Barking of Trees; by Mir. Tho. Brotherton 707
2. By R. H.

710
LXIX. The Communication of the Parts of the Tree, with the Parts of the Fruit; by Dr. J. Beal
ibid.
IXX. Obfervations concerning Vegetation; by Dr. J. Beal

712
IXXI. Some Thoughts and Experiments concerning Vegetation; by Dr. J. Woodward

LXXIII. Ground Improv'd by Brine ; by Dr. Jackfon:
ibid.
LXXIV. Improvements with Salt; by Dr. J. Beal
ibid.
LXXV. Improvements in Cornwal with Sea. Sand; by Dr. Dan. Cox 729
LXXVI. A Sandy Soil Banured with Clay; by Dr. Lifter
LXXVII. Improvements by Marling; by Ma^{71}.
LXXVIII. Wright $\begin{aligned} & \text { ibid. } \\ & \text { Throving and Draining the Bog's }\end{aligned}$ and Loughs in Ireland; by Mr. Will. King
EXXIX. 1. The Motion of a Bog in Ireland; by....
2. By JMr. J. Hohohane

737
IXXX. Tbe Spanifh Sembrador, and its 478 by the Earl of Sandwich ibid.
LXXXI. Agreftick Obfervations and Improvements ; by Dr. J. Beal

74 I
LXXXII. Improvements of Agriculture ; by
Dr. M. Lifter

748
LXXXIII. To make Plants Grow to an Extraordinary Bigners ; by On.

749
LXXXIV. Gardening Improv'd; by Dr. Sloan ibid.
LXXXV. The Succefs of a New Stove; by Sir Dudly Cullum

750
LXXXVI. To make Fruit and Flowers grow in Winter; by Sir Rob. Southwell ibid.
LXXXVII. To keep Fruit or Flowers the wobole rear; by Sir Rob. Southwell. ibid.
LXXXVIII. Remedies for Decayed EverGreens; by Mr. J. Evelyn

751
LXXXIX. Cautions about Expofing EverGreens; by Mr. Jac. Bobart \quad ibid.
XC. Papers of lefsgeneral Vfe, omitted 752
XCI . Accounts of Books, and Additions, omit ted

753

C H A P. VI.

Zoology.

I. Bfervations in the Ordering of Silk: Worms; by Mr. Edw.Digges p. 756
II. The Nature and Qualities of Silk; by oMr. Will. Aglionby.

757
III. Ihe Connought Worm ; by Mr. Will. Molyneux

758
IV. The True Origine of Caterpillars; by Dr. Geo. Gardon

759
V. Obfervations on a Glow-Worm ; by MMr. J. Templer 760
VI. The Flying Glow-Worm; by OMr. Rich. Waller
VII. $\begin{aligned} & \text { Waller } \\ & \text { An odd fort of Maggots ; by Dr. M. }{ }^{76 \mathbf{L}} \text {. } \\ & 762\end{aligned}$ fter
VIII. Swarms of Strange and. Mifchievous Infects in New-England; by . . . ibid.
IX. The Libella $;$ by On. Poupart. ${ }^{\text {I }}$ ibid.
X. of Spontaneous Generation; by Nir. Ray
XI. 1. The Grain of Kermes, its ufe, and the Fly form'd out of it; by on. Verney ibid.
2. The Infect-Husks of the Kermes-Kind ; by

766
XII. Obfervations on Vegetable-Excrefcencies, and Infects Generated in them; by Dr. M. Lifter

768
XIII. The Gall-Bee ; by Mr. Benj. Allen 769
XIV. I. Ichneumon Wafps, and the manner of laying their Eggs in the Bodies of Caterpillars ; by $\mathcal{O M}$. Fr. Willoughby ibid.
2. By Dr. Lifter
XV. Hair-Worms; by Dr. Lifter 770
XVI. Some Obfervations about Bees; by Dr. Geo. Garden:

The CONTENTS.

XVII. 1. The Generation of a Sort of Bees, in Old Willows; by Sir Edm. King ibid.
2. By OMr. Fr. Willoughby $\quad 773$
3. By Dr. Lifter $\quad 774$
4. By Mr. Fr. Willougby ibid. XVIII. A Strange Sort of Bees in the WeftIndies; by $\mathcal{O M}$. Villermont

775
XIX. An Early Swarm of Bees; by Mr. Rich. Reed
ibid.
XX. A Bee-houfe ufed in Scotland; by Mr. H. Oldenburgh ibid.
XXI. Swarms of Locufts in Wales ; by Mr. Edw. Floyd

777
XXII. Green Worms in Wales; by Mr. Ed. Floyd

778
XXIII. Swarms of Beetles in Ireland; by Dr. Tho. Molyneux
ibid.
XXIV. The Vafa Tefticularia of a Beetle; by Dr. Swammerdam

782
XXV. A Flying Hart; by ibid.
XXVI. A Musk-Scented Infect feeding upon Henbain; by Dr. Lifter

783
XXVII. 1. Oiher Musk-Scented Infects; by Mr. J. Ray
2. By Dr. M. Lifter
ibit.
2.By Drom.
. By.... The Cochincel- 1 , by.... 784
2. By..... . Cigures of Cochineel-Fly; by Dr 785
3. Figures of the Cochineel-Fly; by Dr. Tyfon ibid. XXIX. The Death-Watch; by Mr. Benj. Allen
XXX. I. Tbe Mulca Lupus in Virginia; by Mr. J. Banifter

786
2. A Note; by ... ibid.
XXXI. A Viviparous Fly; by Dr. M. Lifter 787
XXXII. 1. A kind of Worms Eating out Stones; by M. de la Voye ibid.
2. Another Sort Eating Mortar 788
XXXIII. A Scolopendra; by OMr. J. Ray ibid.
XXXIV. A Swarm of Flying Grafhoppers in Languedoc; by Communicated by M. Juftel
ibid.
XXXV. The Generation of Fleas; by S. Diacincto Ceftone

789
XXXVI. The Emmet, or Ant; by sir Edm. King
XXXVII. I. The Acid Juice of Pifmires; by Mr. J. Wray 791
2. Another Infect yielding an Acid Juice; by Dr. M. Lifter 79 :
XXXVIII. Musk-Scented Ants; by Dr. Lifter \quad ibid.
XXXIX. A Table of Spiders fourd in Eng. land; by Dr. M. Lifter

793
XL. I. Spiders darting their Threads into the

Air, and Swimming in it ; by Dr. Lifter 794
2. By Dr. Hulfe 795
3. By Mr. J. Wray 796
4. By ibid.
5. By Dr. Lifter ibid.
XLI. The Innoxioufnels of Spiders and Toads; by Dr. Nath. Fairfax 797
XLII. Spiders Tinge Water of a Sky-colour; by Dr. Fairfax ibid.
XLIII. Tbe Anatomy of a Rattle-Snake; by Dr. Edw. Tyfon ibid.
XIIV: A Way of Killing Rattle-Snakes ; by Capt. Silas Taylor 8 8is
XLV. The Brooding of Snakes and Vipers; by ibid.
XLVI. Experiments made with Vipers ; by Oir. Tho. Platt
XLVII. The Symptoms attexding the Bite of a Serpent ; by Mr. Aar. Goodyear 813
XLVIII. A Stone Healing the Biting of a Serpent; by Sir Philiberto Vernarti 814
XLIX. Obfervations on feveral Poyfons; by sir Theod. de Mayern ibid.
L. A Salamander; by S. Steno 816

Lf. Oblervations on a Camelion; by Dr. Jonath. Goddard ibid.
LII. Obfervations about the Lungs of Frogs; by S. Malpighi 817
LIII. The Production of Todpoles; by Mr. Rich Waller 818
LIV. The Stomach of a Leech ; by Dr. Edw. Tyfon 819
IV. The Anatomy of a Leech; by NM. Fran. Poupart \quad ibid.
LV1. A Extraordinary Leech wobicb torments the Sword-Fifh; by S. Paulo Boccone 82 I LVII. The Odd Turn of Some Shell-Snails; by Dr. M. Lifter 822
LVIII. I. Some Sorts of Virginian Snails; by OMr. J. Banifter ibid.
2. By Dr. Lifter 823
3. By Mr. Banifter ibid.

IIX. The Purple Filh ; by Mr. Will. Cole ib.
LX. Obiervations on a Tortoife ; by sir Geo. Ent
LXI. A Tortoife living three Days withous a Head; by M. 826
LXII. 1. A fort of Oyfters in Eaft-India; by OM. Witzen . ibid.
2. Ey Dr. Lifter : ibid.
LXIII. Shining Worms in Oyfters; by \mathcal{M}_{0} Auzout
LXIV. The Origine of Pearl ; by Th Chrifrophorus Sandius 827
LXV. Pearl-Fifing in Ireland; by sir Rob. Redding

LXV「.

The CONTENTS

EXVI. The Anatomy of a Scallop; by Dr. M. Lifter
LXVII. A fort of Cockles in Eaft-India ; by M. Witzen
LXVIII. Stones in the Heads of Crawifin; by Mr. Ch. King
LXIX. Cancelli, or Soldiers; by OMr. Will. Cole
LXX. 1. A Stellar-Fih ; by OMr. Winthrop
2. By ? 833
3. By OMr. Fran. Willoughby

833
LXXI. i: A Scolopendra Marina; by Dr. Tho. Molyneux
2. By Mr. Dale
3. By Dr. Molyneux
LXXII. A Way of Catching Carps; by OMr. I.

Templer 837
EXXIII. Eeles Diccovered plentifully in
Frofts, in Somerfethire ; by Dr. J. Beal $i b$.
LXXIV. Two very Large Eeles; by Onr. Dale
LXXV. I. The Generation of Eels; by Mr. Benj. Allen ibid.
2. By Mr. Dale :- 238

LXXVI: Obfervations in the Anatomy of a Porpefs ; by MMr. J. Ray

839 LXXVII. A Venomous Scratch with the Tooth of a Porpeis; by Dr. Lifter $4 . .842$ LXXVIIf. Poifonous Fifh, about the BabamaIllands ; by owr. J. L. . in . LXXIX. 1. Whales and Whale-Fifhing a^{-} bout Bermudas ; by . . .
2. By ! !. . 844
3. By Mr. Rich. Norwood ibid.
4. By Mr. Rich. Stafford

845
LXXX. I. The Ufe of Air Bladders in Fifhes;
2. By Mr. Boyle
3. By MMr. Ray ibid.
846
ivid.
LXXXI. The Eyes of Fifh; by Dr. Allen Moulen 847 LXXXII. The Structure of the Internal Parts of Fifh; by Dr. Ch. Prefton itid. LXXXIII. The Wild-Goofe; by Dr. M. Lifter

349
LXXXIV. The Barnacle ; by Sir Rob. Muribid.
LXXXV. I. The Scotch Barnacle and French Macreufe; by Dr. Tancred Robinfon 850
2. The Macreule ; by OMr. Ray .itid. LXXXVI. The Manner of Hatching Chickens at Cairo; by Mr. Jo. Graves 85:
LXXXVII. To Breed up Pheafants and Partridges ; by Sir Edm. King

852
LXXXVIII.

1. Swallows found in Lakes in Winter ; by ond Schefferus
2. Бy M. J. Hevelius

853 IXXXIX The ibid. LXXXIX. The Rail ; by Dr. Tho. Molineux XC. The Wood-cracker ; by OMr. Ray ibid. XCI. The Silk-Tail ; by Dr. Lifter ibid. XCII. The Humming-Bird ; by $\mathrm{Mr}_{\mathrm{L}}{ }^{\text {. Jo. Win- }}$ throp
2. By Mr. Oldenburg tastibid. 3. By Mr. Hamerly \quad ibid.
4. By Dr. Neh. Grew 855
XCIII. Obfervations in the Diffection of a Paroquet ; by Jnr. Rich. Waller ibid. XCIV. Obfervations $i n$ the Diffection of an: Oeftridge; by Dr. Edw. Brown 857
XCV. Tbe Cuntur of Peril; by Dr. Hans Sloan

XCVI: 1. Obfervations on the Heads of Fowls; by Dr. Allen Moulen ibid.
2: Ey Mr. J. Clayton
XCVII. The Anus of Fowls applied in Malignant Diftempers; by oMr. J. Templer 863
XCVIII. 1. A Blemifh peculiar to the Eyes of Horfes; by Dr. Rich. I.ower

$$
864
$$

2. 2. By . . . Dre ibid.
XCIX. A Horn Hanging at the Neck of fan Ox ; by S. Malpighi … 86 s
C. A Lamb Suckled by a Weather; by MMr. Tho. Kirke
ani 869
C1. Grafs found in the Wind-Pipes and Lungs of Some Animals ; by Mr. Rob. Boyle ibid.
CII. I. A Murren in Switzerland, and its Cure ; by Dr. Wincler
ibid.
1. By Dr. Fred. Slare... 870°
CIII. The Difeales of Dogs; by Sir Theodore Mayern
ibid.
CIV. Obfervations in the Diffection of a Rat; by $\mathfrak{M r}$. Rich. Waller

871
CV. 1. Sable Mice ; by sir Paul Rycaut ibid.
2. By

872
CVI. The Ruffian Way of Curing Caftoreum'; by
CVII. The Musk-qualh ; by . . 873 CVIII. The Anatnmy of a Mexican MuskHog ; by Dr. Edw. Tyfon ibid. CIX. The Anatomy of an Opoffum; by Dr. Edw. Tyfon

881
CX. A Monftrous Double Turkey; by Sir I. Floyer

898
CXI. A Monftrous Colt ; by OMr. R. Boyle 899
CXII. A Monftrous Calf; by Onr. David Thomas
ibid.
CXIII. A Monitrous Calf with two Heads; by Sir Rob. Southwell
ibid.

The CONTENTS.

CXIV. Two Monftrous Lambs; by Mr. Cole. prefs
CXV. A Monftrous Pig; by $\quad 900$ CXVI. Two Monftrous Pigs; by Sir J. Floser CXVII. The Anatomy of a Monftrous Double Cat; by Dr. Mullen CXVIII. An Animal refembting w 901 Voided per Anum, by a Male-Grey Whelp, by Mr . Edm. Halley
CXIX. A Bitch with Puppy, tho She bad 904 the Spleen; ty CXX. A Cow with Four Calves ; by $\operatorname{sir} \mathrm{J}$. Floyer CXXI. A Hen with a Perfeat Chick in the

Ovarium; by
ibid. CXXII. An Egg found woithin another Egg: by ... CXXIII. Óva found in a COw; by ibid. CXXIV. The Ora, after a Second Cunception, difporfed in the Abdomen of a Bitch, tho the Cornua Uteri were fill.d with the Bones and Flefh of a Former Conception; by ibid. CXXV. The Modern Theory of Genera. tion ; by Dr. Geo. Garden 907, 2. By Sir J. Floyer 912 CXXVI. Papers of lefs Genieral vje; Omitted ibid. CXXVII. Accounts of Books, Omitted ibid.

VOL. III. Part I.

Anatomy. Phyjick. Chymittry.

C H A P. I.

The Structure, External Parts, and Common Teguments of Humane Bodies.
J. 1. \wedge Irifh Man of an Extraordinary Size; by Dr. Plot P. I
2. By Dr. Molyneux
II. I. A Prodigious Os Frontis; by Dr. Tho. Molyneux
ibid.
2. Giants ; by Dr. Tho. Molyneux ibid.
III. A Man of a Strange Imitating Nature ; by Dr. George Garden
IV. A Negro-Boy, dappl'd woith White Spots; by Mr. Will. Byrd
ibid
V. Piyfiognomy; by Dr. Gwither ibid.
VI. The Pores in the Skin; by Dr. Neh. Grew 9
VII. The Pores of the Skin wholly Obftruited by Nocturnal Air ; by
VIII. 1. The great Effects of Touch and FriEtion; by.
ibid.
2. Cures done by $\mathfrak{O M r}$. Greatrix the Stroaker ; by OM. M. Communicated by MM. Thoresby
IX. 1. A Girl in Ireland with Horny Excre-
fcencies; by $\mathcal{M r}$. St. George Afh 12
2. A Boy in Erance with Horny Excrefcencies; by Mr. Locke
X. 1. A Body, after being lonig Buried, almofs converted into Hair ; by ... , ius ibid.
2. By M. Chr. Arnold : in is is 14
3. Obfervations of Hair found in feveral Parts of the Body ; by.Dr. Edw. Tyfon ib.
4. An Obfervation Confonant to it, upon tbe Diffecting a Morbid Body; by Dr. SampIon 16 XI. The Parenchymous Parts of the Body; by Sir Edm. King
XII. A Child, about 6 rears old, who in the Face was as large as a full grown Womain; by Dr: Hen. Sampron
XIII. Corpulency miftaken for a Dropfie . communicated by Mr. Greenhili, $\operatorname{Hig}_{1} 2^{3}$ XIV. Accounts of Books; Omitted is 22.

CHAP。

The CONTENTS.

C H A P. II.

The Head.

${ }^{5}$ DIfcoveries soncerning the Brain; by S. Malpighi
p. 23
II. 1. A Living Birth witbout a Head, at Paris; by on
ibid.
2. An odd Factus woithout a Brain; by OM. Denis
ibid.
3. I. A Child Born Alive, without a Brain; by \mathfrak{M}. Le Duc
4. An Infant, with the Brain deprefs'd into the Hollow of the Vertebrx of the Neck; by Dr. Edw. Tyfon

26
3. A Child Born witbout a Brain; by M. Buffiere
ibid.
6. One Hemilphere of the Brain Sphacelated with a Stone in it; by Dr. Edw. Tyfon 27
III. An Hydrocephalus ; by $\mathbf{M r}$ J. Friend 28

1V. The Diffection of a Lady, wobo Died of an Apoplexy ; by Dr: Will. Cole
Y. The Death and DiffeCtion of S. Malpighi, who Dy'd of an Apoplexy; by Jean Marie Lancifi
V1. The Diffection of a Boy, wobo Died fuddenly; by Dr. Cha. Prefton
VII. The Falling-Sicknefs; by Dr. Turberville
VIII. A Periodical Palfie ; by Dr. Will. Mufgrave
ibid.
IX. An Odd Convulfion in the Cheek; by Dr. Dawbeny Turberville

34
X. A Periodical Convulfion; by Dr. Will. Cole
XT. A Periodical Difeale of the Convulfive
Kind ; by Dr. Will. Cole36
XII. Dilcoveries in the Optick Nerve; by 5 .
XIII. 1. A Man who becomes Blind, afterSun-fet; by Dr. Pet. Parhamibid。
2. By Dr. Will. Briggs
3. A Solution of this Extraordinary Cale;by Dr. Will. Briggs
XIV. A Duplicity of Vifion, and a Gutta Se-rena, after Great Pains in the Head, andConvulife Fits; by Dr. Briggs ibid.XV. Several Remarkable Cafes relating tothe Eyes; by Dr. Dawbeny Turberville 40XVI. An Eafie Help to a Decayed Sight; byXVII. An Experiment concerning Deafnels;by Dr. Will. Holder42
XVIII. The Organs of Hearing ; by Dr. Ray-mund Vieuffens43
XIX. I. Tbe Strukture of the Nore; by on. du Vernay 50
2. By 57 XX. I. The Original of a Polypus; by $2 n$. Giles
ibid.
2. By. ... Or ${ }^{58}$
XXI. I. The Organs of Tafte; by S. Malpighi
ibid.
2. By S. Fracaffati
ibid.
XXII. A New Salival Dutt difcovered; by Cafp. Bartholine
XXIII. Accounts of Books, and Additions, O mitted

60

C. H A P. III.

The Neck. The Thorax.

F. A. Conjecture at Difpofitiors, from the Modulations of tbe Voice; by ... p. 61
II. An Argument for the Ufe of Laryngotomy; by Dr. Will. Mugrave ibid.
TII. Tre Structure of the Lungs ; by Mr. J, Templer
IV. An Experiment concerning the OManner of Refpiration ; by Dr. Rich. Lower 65
V. A Supply of Frefh Air, neceffary to Life: by Dr. R. Hook
VI. The Chief ure of Refpiration; by Dr. Will. Mufgrave

The CONTENTS

VH. I. A Polypus of the Lungs ; ly Mr. Rob. 1 XII. An Hydrops Pectoris; by Mr. Sam.

Clark
2. By Dr. Lyfter
3. A Polypus of the Lungs; by OM. Buffiere it.
VIII. The Motion of the Heart; by Ors. Templer
IX. I. A Strange Pericardium ; by NM. De Martel
2. A Glandulous Subftance found between the Heart and Pericardium; by ... ib.
X. A Polypus in the Heart; by Mr. W. Gould
XI. A great Quantity of Liquor found int the Thorax; ly Dr. Nath. Eairfax

76
XIII. Warm Water Injected into the Thorax of a Bitch; by Dr. Will. Mufgrave 78 XIV. The Paffage of the Chyle to the Breafts; ly M1. ibid. XV. A Sudden and Exceffive Swelling of a Womans Breafts; by Dr. W. Durfton ib. XVI. Ais Aged Woman of 60 Years giving Suck to ber Grand-child, in Germany ; by . . . - 80 XVII. A Paper Omitted ibit. XVIII. Accounts and Ene: dations of Books, Omitted
ibid.

CHAP. IV.

The Abciomen.

I. \triangle Abfcefs in the Liver, Stones in the Gall-Bladder, and Conjoyn'd Kidneys; by Dr. Edw. Tyfon
II. A Liver appearing Glandulous to the Eye; by OMr. J. Brown
III. The Texture of the Spleen; by S. Mal. pighi
IV. The Uje of the Spleen ; by \mathcal{M}. Mich. Behm. ibid.
V. Oblervations about the Spleen and Liver'; by S. Jacomo Grandi
VI. A Difeafed Spleen; by Dr. Neh. Grew 85 VII. A Polypus in a Dog, rear the Spleen; by Dr. Will. Mulgrave ibid'.
VIII. The Structure of the Glands; by sir Edin. King
IX. The V保 of the Glands; by Gafp. Bartholine
X. The Spiral Structure of the Fibres of the Inteftines ; ly Dr. Will. Cole
XI. The Mution of the Stomach and Guts; by Dr. Chr. Pitt

91
XII. The Cure of a Horfe Staked into the Stomach; by Dr. J. Wallis
ibid.
XIII. A Knife cut out of the Stomach; by OMr. Will. Clerk
XIV. A Knife Swallowed, by a Lad in Saxony; by
XV. - Two Copper-Farthings Swallowed by a Cbild in Worcefter; by Mr. Henry Underhill
XVI. 1. A Difeafe caus'd by Swallowing Stones; by Sir Ch. Hole
2. Remarks on it ; by Dr. Sloan
inid.
XVII. Prune-Stones breaking out at the Navel; ty Mr. Greenhil ioisi. XVIIf. A Rufty Needle breaking out at the Side; ly Mr. Greenhill o ibid. XIX. The Glandula Miliares ; by Dr. M. Lifter XX. A Bed of Glands in the Stomach of a Jack; ly $\mathcal{M r}$. Mulgrave - ibid.
XXI. I. Experiments concerning Digeftion; by Mr. Ch. Leigh
2. By $\mathcal{M} r$. Mufgrave $\quad 94$
XXII. Tbe Manner of Concoction ; by Dr. Clopton Havers
XXIII. - 1. The Colour of the Chyle in the La: cteous Veins; by Dr. Lifter IOI
2. The Lacteals frequently convey Liquors that are not White; ly Dr. Will. Mufgrave
XXIV. The Diftribution of the Chyle; by ${ }^{102}$ Lifter XXV. Chylification; by OMr. Will. Cowper ib. XXVI. An Ill Digeftion by too much Study; by NM. Chrift. Kirkby 2
1.10 XXVII. Four Men living on Water without Food 24 Days; by ibid. XXVIII. A Ruminating Man; by Dr. Fred. Slare ibid. XXIX. A Bulimia; by Dr- James Burrough 1II XXX. The Order of all the Bowels Inverted; by Dr. Hen. Sampfon $\quad \cdots$ ibid. XXXI. The Coecum of a Bitch cut ost ; by Dr. Will. Mufgrave

[^0]
The CONTENTS.

XXXI?. The Coecum Dilated, with an almoff Liquid Matter ; ty \mathcal{M}. Giles ibid. XXXIII. The Cocum extended with CherryStones; by Mr. Knowles
XXXIV. The Use of the Inteftinum Cocum by Dr. M. Lifter
ibid. XXXV. I. An Infallible Cure of Dyfenteries; by M. 114
2. Some Notes; by Dr. Hans Sloan
XXXVI. A Convolvulus, and an unufual Rupture of the Mefentery; by Dr. Swammerdam
ibid.
XXXVII. The Fœeces, difibarged at an ulcer in the Groin; by Dr. Will. Earnfhaw 119 XXXVIII. The Lumbricilati and Cucurbitini ; by Dr. M Lifter
XXXIX. The Lumbricus Latus; by Dr. Edw. Tyron

121
XI. The Lumbricus Teres; by Dr. Edw. Tyfun

131
XLI. Lumbrici Teretes found in an Ulcerated Ankle; by Dr. M. Lifter 132
XLII. A Remedy for Worms in Children; by Sir Theodore Mayern

133
XLIII. The Lumbricus Hydropicus; by Dr. Edw. Tyfon
XLIV. I. A Worm voided by Urine; by Mr. Matthew Milford

135
2. Ey Mr. Ent
ilid.
XLV.O 1. Animals Vomited by a Child, at Sheffield; by 2 Mr. Jeffop ibid.
2. By a Child, wear Rippon; ly Dr. Lifter ibid.
3. By a Man, at York; by Dr. Lifter ibid. XLVI. 1. An Account of Worms found in feveral Parts of the Body; by Mr. Tho. Dent
2. Furtiser Coufirm'd; by OMr. Mark Lew is ibid.
XLVII. The Long-Worm in the Fleih, in the Ealt-Indies; by 138 XLYLII. Obfervations on a Man who Dy'd of 4 Droplie; by Dr. Nath. Fairfax 139
XLIX. A. Droplie mify zen for Gravidation; by Dr. ibid.

1. Obfervations on a Maid, who Dy'd of an Arcites; by M $M r$. J. Turner ibid.
LI. Obfervations on a Woman robo Dy'd of a Droplie, after the Paracentefis; by Dr. Ch. Pretton

141
Ell. A Cure for the Droplie; by sir Theod. Mayern
EIII. A Large Difealed Kidney; by $\mathcal{M r}$. Will. Cowper
ibid
LIV. Four Ureters in an Infant; by Dr. Ed. ward Tyfon
LV. A Paffage of Urine to the Bladder, diAtinit from the Ureters; by M. . . . 147
LVI. A Schirrous Eladder, containing in it Bags of Serous Matter; by Dr. Eduard Tyfon
ibid.
LVII. Suppreifions of Urine (not caus'd by a Stone) Cur'd with Acids; by Dr. Edw. Baynard

148
LVIII. A Stone taken from a Woman; by Dr. Beale

149
LIX. I. Many Stones taken from one Bladder; by Dr. Nath. Fairfax
ibid.
2. Ey \mathcal{M}. Cafparus Wendland ibit.
2. Бy M Mr. Chr. Kirkby
ibid.
Lx. Stones in the Kidneys ; by Mr. Chr. Kirkby

150
LXI. Large Stones voided by a Woman; by Dr. Garden
LXII. Two large and odly foaped Stones in the Kidneys; by Dr. Fred. Slare ibid.
LXIII. A very Great Stone of the Bladder; by \quad ibid.
LXIV. Stones voided per Penem; by Dr. Cole ? 151
LXV. A Large Stone voided by a Woman; by
LXVI. A Large Stone voided by a Woman; ly Dr. Tho. Molyneux ibid'.
LXVII. An Extraordinary Stone in the Kid. ney; by Dr. Rob. Witty ibid.
LXVIII. Two Stones lodg'd 20 rears in the Meatus Urinarius; by $\mathfrak{M} r$. Charles Bernard

153
LXIX. A Prodigious Sto e in the Bladder ; by Dr. Ch. Prefton

154
LXX. A Stone Cut from the Bladder, wobich Albered to it; by Dr. Ch. Prefton ibid.
EXXI. 3. Several Stones voided by a Boy in Scotland; by sir Rob. Sibbald ibid.
2. The Cheat detected; by Dr. Jo. Wallace

155
LXX! I. Broken Stones voided; by Sir Rob. Sibbald
ibido
LXXIII. I. A Stone cut out from under the Tongue; by Dr. M. Lifter ibid.
2. A Stone bred at the Root of the Tongue; by. M. Bonavert

156

$$
\text { 3. By } 157
$$

LXXIV. A Stone in the Glandula Pinealis; by Sir Edm. King
ibid.
LXXV. Stones found in the Heart; by . . 15^{8}
LXXVI. Stones found in the Lungs; by M. Cli. Kirkby
ibid.
LXXVII. Stones fomm in the Gall-Bladder; by $\mathrm{Mr}_{\mathrm{J}} \mathrm{J}$. T.

159

The CONTENTS.

IXXVIII. Stones found in the Stomach, Kidney, and Gall-Bladder; by Mur. William Clerk
IXXIX. Stones voided ly Seige ; by Dr. Sam. Threapland
LXXX. A Bullet voided by urine; by Naith. Fairfax
LXXXI. A Shell found in the Kidney; by Dr. Rob. Pierce

162
LXXXII. A Stone grown to an Iron Bodkin in the Bladder; by Dr. Lifter ibid.
LXXXIII. A Botkin cut out of the Bladder of ${ }^{2}$ Woman ; by Mr. Proby ibil.
LXXXIV. A Stone from the Bladder, with a Flint in it, by Dr. Geo. Garden 164
LXXXV. A Stone from the Bladder, with Hair growing on it ; by Dr. Io. Wallace ibid.
LXXXVI A Stone in the Bladder of a Dug; by S
LXXXVII. A Stone fafen'd to the Back-bone of an Horle; ty S.... ibid.
LXXXVIII. A Stone taken out of the Belly of an Horfe; by Dr. H P. 165
LXXXIX. I. A Stone in the Bladder of an Oxe; by Dr. Johnfton

166
2. By Dr. M. Lifter

167
XC. I. A Prodigious Number of Stones voided by a Woman at Bern in Switzerland; by Dr. Sigifin. Konig
ibid.
2. An Examen of thefe Stones; by Dr. Frederick Slare

176
3: A furtber Tryal ; by Dr. Fred: Slare 177
XCI. i, The Production of Stones in Animals; by Dr. Fred. Slare

178
2. The Generation of the Stone; by $D r$. Tho. Molineux
XCII. Stones Extraited from Women, without Cutting ; by Dr. Tho. Molyneux ibid.
XCIII. A Large Stone Cut from a Woman; by Mr. Bafil Wood

185
XCIV. A New Way of Cutting for the Stone; by a Hermit in France; by 21 . Buffere ibid. XC V. The Way of Cutting for the Stone in the Kidney ; by Mr. Ch. Bêrnàrd 188 XCVI. An Extraordinary Situation of the Vafa Preparantia; by Dr. Nat.Fairfax 19 I XCVII. I. The Teftes Examin'd ; by Vadlius Dachirius Bouglarus
2. By . . . ibid.
XCVIII. I. The Texture of the Teftes; by Dr. Tim. Clark
2. By Sir Edm. King
3. By Dr. de Graeff ibid.
4. By. . . .
5. by So Malpighi

193
ibid.
XCIX. The Vafa deferentia ; by Dr. Timotl.y Clark ibid.
C. Two New Glands, near the Proffate Glands, with their Excretory Ducts, lately difover'd ; Ey Mr. Will. Cowper ibid.
CI. The Structure of the Uterus; by S. Malpighi
CII. I. A Woman with a Double Matrix; 197 M. Benoit Vaffal 205
2. By ... \quad ibid.

CIII, A Woman Hydropical ins the External Tunick of the uterus; by Mr. Turner io.
CIV. A Woman Hydropical in ber Left Te flicle ; by Dr. Hen: Samplon 206
CV. A Dropfie in one of the Ovaries of a Woman; by Dr. Hans Sloan 207
CVI. Air Embiryo of 4 Weeks; by Dr. Phil. Ja. Hartman 408
CVII. The Refpiration and Nourihment of a Fcetus in Utero Materno; by Dr. Ch. Prefton

209
CVIII. An Egg found in the Tuba Fallopiana of a Woman ; by On. Buffiere 215
CIX. A Fcetus form'd in the Ovarium; by ONo deS. Maurice $\quad 212$
CX. If. A Foetus lying without the literus', in. tbe Belify; by on. Saviard 214
2. By Dr. Fern ivid.
CXI. A Foetus in the Right Horn of the luterus; by Dr. Fern 216
CXII. A Woman with Child, notwittefanding a Coalefcence of the Vagina uteri; $b y$ \therefore... CXIII. 1. A Child 26 Years in the Mother's Belly, out of the uterus; by Dr. Bayle 217 2. By . -218
CXIV. The Bones of a Feetus voided per A. num, Jome rears after Conception; by Dr. Ch. Morley
CXV. A Foetus voided at an Ulcerated Navilz ${ }^{H}$ OMr. James Brodie
CXVI. The Bones of a Foetus voided above the Os Pubis; by
CVII. A Falle Conception; by Dr. Willians Cole
CXVIII. I. A Preternatural Conception, ${ }^{220}$ Staffordhire; by OMr. Sampfon Birch 22 x
2. By Dr. Edw. Tyfon ibil. CXIX. II Extraordinary Effects of the Strength of Imagination: by Dr. St. Geo. Afh, Ep. of Cloyne 222
2. By Dr. Cyprianus ibid. CXX. Papers of lefs general vje, omitted 2.23 CXXI. Accounts of Books, Omisted ibid.

The CONTENTS.

C H A P. V.

The Humours, and General Affections of the Body.

THE Vifible Circulation of the Blood; by Mr. Will. Molyneux P. 225
II. The Quantity of Blood in Men, and the Celerity of its Circulation; by Dr. Allen Moulin
1II. 1. A Method of Transfufing Blood ; by Dr. Lower

226
2. By 227
IV. Confiderations concerning Transfufions of Blood ; by :
V.: 1. Experiments of Transfufing Blood, by Dr. Lower
2. The Transfufion of the Blood of a Calf into a Sheep, by the Veins only; by Sir Edm. king
3. The Transfufion of the Blood of a Mangy into a Sound Dog ; by Mr. Tho. Cox 229
4. The Transfulion of the Blood of a Young, into an Old Dog; by On. Gayant iibid.
5. The Transfufion of the Blood of Calves into Dogs; by M. Denis
ibid.
6. A very Plentiful Transfufion, experimen. ted upon a Bitch ; by 230
7. The Transfufion of the Blood of four. Weathers, into a Horle; by Mr. Denys ibid.
8. The Transfufion of the Blood of one Lamb into anotber; by $5 . .$. .
9. The Transfulion of the Blood of a Lamb into a Spaniel; by S. ibid.
VI. A Method of Transfufing Blood into the Veins of Men; by Sir Edm. King

231
VII. Transfulion Pratijed upon a Man in London; by Dr. Riclard Lower, und Sir Edm. King
ibid.
VIII. 'I. The Effects of feveral Liquors mix'd with tbe Blood, Warm from the Veins; by A1r. Rob. Buy1

232
2. By OMr. Oldenburgh ibid.

1X. Liquors Injected into the Veins of Dogss; by S. Fracaflati
ibid.
X. I. Mercury Injected into the Veins of Dogs; by Dr. A. Moulin

233
2. By Dr. Chr. Pitt

234
XI 1. Medicated Liquors Injected into Hul man Veins ; by Dr. Fabritius ibid.
4. Medicines Injected into Human Veirs; by ibid.
XII. An Oblervation upon Blood grown cold, by S. Fracaffati

235
XIII. Sorae Effects of the Air upon Blood, explain'd by an Experiment of the Change of Colour in a Clear Liquor, upon the Admiffion of Air'; by Dr. Fred. Slare ibid.
XIV. I. White Blood; by! OM. 239
2. By Dr. Lower ; ibid.

B3: By Dr. J. Beal 140
XV. The Conftituent Parts of Human Blood; by Dr. Raym. Vieuffens ibid.
2. The Opinion of the College of Phyficians at Rome, concerning Dr. Vieuffens's Analogy of Human Blood ; by J. Maria Lancifi

247
XVI. A Strange kind of. Bleeding, in a little Child ; by 3 Mr . Sam du Gard 251
XVII. A Periodical Evacuation of Blood, at the End of the Fore-Finger; by Mr. Ahh 252
XVIII. An Eruption of Blood, at the Glandula Lachrymalis; by Dr. Clopton Havers
ibid.
XIX. An Admirable Effence for Stanching Blood; by M. Denys
ibid.
XX. Experiments made with this Liquor; by Dr. Walter Needham, and Mr. Richard Wifeman 253
2. By Mr. Denys $\quad 254$
3. By

XXI, Experiments made with OMr. Colebatch's Styptick; by OMr. Will. Cowper 255 XXII. Some Animals baving Lungs, yet wanting the Arterious Vein ; by Dr. Swammerdam 256 XXIII. An Aneurifma of the Arteria Aorta; by Mr. Lafage

257
XXIV. A Conmunication of the Du\&us Thoracicus with the Emulgent Vein ; by \mathcal{M}. Pecquet $2 ; 8$ XXV. 1. A Communication between the DuGus Thoracicus, and the Inferior Vena Cava ; by OM. Pecquet. 259
2. Annotations; by Dr. Needham 261 XXV I. The True Llie of the Lymphatick Ver. fels; by \mathcal{M}. Louys de Bills 262
XXVII. A Convulive Rheumatifin; by $D r$. Rob. Pitt

The CONTENTS.

XXVIIF. The Probable Caufes of the Pain in Rheumatifms; by Dr. Edw. Baynard 265 XXIX. The Pneumatick Engine apply'd to Cup-ping-Glaffes ; by $\mathcal{M r}$. Tho. Luffkin ibid. XXX. The Operation of a Blifter, roken it Cures a Fever; by Dr. Will. Cockburn 266 XXXI. Oblervations on Epidemical Diftempers ; by Dr. Tho. Molyneux

271
XXXII. Exotick Difeafes Propacated by Trade and Infection ; by Dr. Lifter

274
XXXIII. An Experiment concerning the Plague; by Dr. Jo. Bapt. Alprunus ibid. XXXIV. An Univerfal Prefervative againft Infection; by Dr. Jaco. Joh. Wenceflaus Dobrzenky de Nigro Ponte 276 XXXV. Aa Hydrophuby; by Dr. M. Lifter ibid. XXXVI. An Hydrophoby ; by Dr. Roger Howman XXXVII. A Child Bit by a Mad Dog; by Mr. J. Turner
XXXVIII. Two Boys, in Treland, Bit by a Mad Dog ; by MMr. Keneda 282
XXXIX. I. Cures for Mad Dogs, or any thing Bit by them; by Sir Rob. Gordon 283
2. Several Receipts for the Bite of a Mad Dog ; by sir Theo. Mayern ibid.
3. 1. A Cure for the Bitings of a Mad-Dog: by OMr. Geo. Dampier

284 2. A Remark; by Dr. Hans Sloane 285
XL. Perfons fuppofed to be Stung by Tarantula's ; by Dr. Tho. Cornelio ihid.
XLI. A Contumacious laundife, attended with an Odd Cale in Vifion; by OMr. Sam. Dale

286
XLII. Divers Inftances of Peculiarities both in Men and Brutes; by Dr. Nath. Fairfax, and OMr. Oldenburgh 287
XLIII. Several Obfervations on Different Maladies; by \mathcal{M}. Gaillard 288
XLIV. Papers of lefs Generai vje, Omitted
XLV. Accounts of Books, 290

231 XLV. Accounts of Books, Omitted 201

C H A P. VI.

The Bones, Foynts, and Mufcles.

THE Bones of a Skeleton United, without Joynting, or Cartilage; by Dr. Bern. Connor

293
II. 1. Bony Excrefcencies on a Human Skull; by OM. Dupre

295
2. Remarks on the fe Excrefcencies; by onr. Will. Cowper
III. New Teeth in two Aged Perfons; by 290 Sam. Coleprefs 297
IV. A Remarkable Inftance of an Abfolute Command of the Joints and Mufcles ; by
V. The Great Tendon above the Heel, after an entire. Divifion of it, Sitch'd and Cured; by Mr. Will. Cowper 298 VI. Accounts and Emendations of Books, Omitted 300

C H A P. VII.

Monfters.

I. $\begin{aligned} & \text { Monftrous Birth, like a Monkey, at } \\ & \text { Paris; by M..... }\end{aligned}$
II. Twins faftned together at the Breaft; by
s. lac. Grandi
III. Twins faftned together at the Breaft; by

Dr. Will. Durfon
ibid.
IV. A Twin-Female-Infant United below the Diaphragm ; by Dr.S. Morris

302
V. A Double Birth joyn'd as the Breaft, in Somerfethire ; by $\mathfrak{M r}$. A. P.

The CONTENTS.

vI. Iwo Monftrous Births in Scotland ; by Dr. Geo. Garden

304 VII. A Monftrous Boy; by S. Jac. Grandi ibid.
VIII. A Monftrous Child ; by Mr. Chrift.

Krahe
$i b i d$.
IX. An Hermaphrodite at London ; by Dr. Tho. Allen
X. An Hermaphrodite at Tholoufe; by 305. Veay

C H A P. VIII.

The Period of Human Life.

1. A N Anatomical Account of Tho. Parre;
II. 1. The great Age of Henry Jenkins; by Mrs. Anne Savile 307
2. By Dr. Tancred Robinfon
3. By OMr. Hill.
III. Several Aged Perfons in the Nortbof England; by Dr.M. Lifter ibid.
IV. The Great Age of Two Perfons in Ire-
land; by Dr. Tho. Melineux
V. Longævity, and the Caufes of Natural Death ; by OM.de. Martel.
ibid.
VI. The Motions of Dileales, and the Births and Deaths of Animals in . Different Times of the Natural Day; by M. Parchal 31 II VII. Death, at nu certain Hours of the Tide; by ohr. Benj. Allen ibid. VIII. An Account of a Book, Omitted 312

C H A P. IX.

Pbarmacy. Cbimiftry.

1. 2. THREE Queries relating to the Entalia, Dentalia, Blatta, Byzantina, Purpura, and Buccina of the Shops; by Mr. Sam Dale
1. Answer'd ; by Dr. Lifter
P. 312
ibid.
II. Stones in Several Animals; by Mr. Will. Clerk
III. Cold Diffillation ; by Dr. Jo. Beale 3 rs
IV. The Great USe of Digeftion, Fermentation, and Triture ; by Dr. Joel Langelot ibid.
V. The Volatilization of Salt of Tartar Elucidated; by Dr. Dav:Vonder Becke 320
VI. An Odd Salt extracted out of a Metallick Subfance ; by P. Fr. Lana
VII. Volatile Salt and Spirit extratted out of all Sorts of Plants; by Dr. Daniel Cox
VIII. I. No Alcalizate Salt, in any Subiee before the Altion of Fire upon, it.; by Dr. Dan. Cox
2. No Senfible Difference amang the Fix'd and Volatile Salts, and Vinous. Spirits; by Dr. Dan. Cox
$33 x$
IX. Vegetable Salts Extracted ; by S. Fr.Redi
X. To find the Exact Quantity of Volatile Acid Salts contain'd in Acid Spirits; by OM. Homberg

344
XI. Four Sorts of Factitious Shining Subftances ; by Jur. Oldenburgh

345
XII. I. The Bononian Phofphore 10 st ; by

XIII. A Phorphorus; by OMr. Robert Boyle
ibid.
XIV. An Account of Dr. Kunkel's Pholiphoires ; by Joh. Chr. Sturmius
XV. Experiments with the Liquid and Solid Phorphorus; by Dr. Fred. Slare ibid.
2. A Parallel betwixt Lightning and a Phorphorus ; by Dr. Slare
XVI. Some Ghymical and Medical Obfervations; by the Heer. Mich. Behm
XVII. Chymical Experiments; by Dr. Fred. Slare

The CONTENTS.

XVIII. A Catalogue of Oyls, tbat do either make an Effervercence, and a great Noife, woith Explofion, or take Fire, upon the Affufion of the Compound Spirit of Nitre; by Dr. Fred. Slare
XIX. A Clear Sulphureous Spirit, wobich be ing.mix'd with a Volatile Alcali, gives a Red Colour ; by OMr. Edw. Coles $\quad .367$
XX. Two Clear Inflammable Liquors, watibs being Mix"d, give a Carnation Colour; by M. Geoffroy ibit.
XXI. A Atrangely Self-moving Liquor; by Mr. Rob. Boyle ibid. XXII. A Paper of lefs General vfe, Omitted XXIII. Accounts of Books, Omitted $\begin{gathered}369 \\ i b i{ }^{3} .\end{gathered}$

VOL. III. Part II.

Pbilology. Miccellanies.

C H A P. I.

Grammar.

ANEffay tozo ards an Univerfal Alphabet ; by OMr. Lodwick p. 373 II. An Effay towards an univerfal Primer; by Mr. Fr. Lodwick 378 XII. Some Obfervations on Languages; by Mr. Edw. Lhwyd

379
IV. Some Obfervations and Conjectures concerning the Chinefe Characters; by R. H.
V. I. Two Perfons Deaf and Dumb, taught
to Speak, and to Underftand a Language; by Dr. Wallis $\quad 388$
2. A furtber A ccount; by 392
VI. A Method of Inftructing Perfons Deaf and Dumb, to Speak and Underftand a Language; by Dr.J. Wallis 393 VII. A Paper of lefs General ves, Omitted VIII. Accounts of Books, Omitted 397
C. H.A. P. II.

Cbronalogy. Hiflory. Antiquities.

1. I. TO find the rear of the Julian Peri-
2. Demonftrated; by $\mathcal{M r}$. J. Collins
II. Several Chronological Problems folv'd;
III. The Rubricks for the Seat of Eafter, according to the Julian Account, explain'd; by Dr. Wallis IV. 1. A Report of the Confultation uporn

OMr. Dee's Propofal for Reforming the
Calendar, An. 1582 ; by the Lord Ireafis-
rer Burleigh rer Burleigh
2. The Reformation of the Calendar con fic der'd, An. 1645 by omr. J. Greaves 405 3. An. 1699. by Dr. Wallis
ibid. V: The Julian Account not to be chang'd for the Gregorian; by Dr. J. Wallis 406

The CONTENTS.

VI. The Conclufion of the Proteftant States in Germany, An. 1699. for Reforming the Calendar ; by 408
VII. A New Luni-Solar Year, and a Perpetual Almanack; by $\operatorname{Mr} r$. R. Wood 409
VIII. The Time and Place of Cafrar's Defcent upon Britain; by Mr. Edm. Halley 412
IX. Roman Urns, and other Antiquities near York; by Dr. M.Lifter

415
X. A Roman Pottery near Leeds ; by \nexists Mr. Ralph Thoresby

418
XI, The Excellency of Roman Bricks and Pla-
ftering ; by ...,.
419
XII. An Old Earthen Veffel found near York; ty \quad ibid.
X111. A Roman Wall and Multangular Tower at York; by Dr. M. Lifter ibid.
XIV. Several Roman Antiquities about York aind Leeds; by Mr. Thoresby 421
XV. ARomani Coffin, and other Reman Antịquities and Coins; by Onr. Ralph Thoresby
ibid.
XVI. A Roman Pavement, near Roxby in Lincolnhire ; by M. Abr. de la Pryme 422
XVII. A Ruman Altar; by Dr. M. Lifter 423
XVIII. Two Roman Altars in Northumberland ; by 2Mr. Ralph Thoresby

424
XIX. Some Roman Infriptions; by Dr. M. Lifter
XX . AR Raman Altar at Chefter; by OMr. Ed- ${ }^{425}$ mund Halley
XXI. Some Roman Inccriptions found near Durham; by SMr. Chr. Hunter 426
XXII. Some Roman Coins; by Mr. Ralph Thoresby
XXIII. Moulds for Coining or Counterfeiting Roman Money ; by Jir. Thoresby ibid. XXIV. A Roman Shield; by OMr. Thoresby 427
XXV. The Roman Way, called High-ftreet, in Lincolnfhire; by OM. Abr. de la Pryme 428
XXVI. A Strange Well, and Some Antiquities found at Kirbythore ; by MMr. Tho. Machil

430
XXVII. Runick Infriptions at Beaucaftle; by onr. Will. Nicholfon

433
XXVIII. A Rusick Infcription on the Font at Bridekirk ; by Mr. Will. Nicholfon 435
XXIX. An Ancient Monument at Foultham in Norfolk ; by sir P. S.
XXX. I. Some Saxon Coins found in Suffolk; by sir P.S.
2. Remarks ; by W. W.
3. An Addition ; by Mr. Sam. Dale
ibid.
XXXI. 1. A Piece of Saxon Antiquity found
in Somerfethire ; by Dr. Will. Murgrave ibid.

2. By Dr. George Hicks
442

XXXII. The Verbal Procels upon the Difcovery of an Ancient Sepulcher in France; Communivated by JM. Juftel

443
XXXIII. I. The Figures of Several Antiquities ; by

446
2. By ibid.
XXXIV. 1. An Uncommon Infcription, on a very great Bafis of a Pillar, lately dug up at Rome; by M. Adrian Auzout ibid.
2. Explain'd ; by Dr. Voffius' 447

Xxxy. An Ancient Sepulcher near Rome; by - ... 448
Xxx VI. An Etrufcan Infription; by Mir. Octavian Pulleyn ibid.
XXXVII. The Catacombs at Rome ; by Mir. Ia. Monro
XXXVIII. Obrervations in a Voyage from Venice to Smyrna ; by MM r. Fr. Vernon 451
xxxix. 1. A Voyage from England to Con ftantinople ; by Dr. Tho. Smith

456
2. Hiftorical Oblervations relating to Conftantinople ; by Dr. Tho. Smith 465
3. An Account of Prufa in Bithinia, and the Obfervations in Turkey continued; by Dr. Tho. Smith

473
XL. I. A Voyage of fome Englifh Merchants at Aleppo, to Tadmor; by Mr. Timothy Lanoy, and MMr. Aaron Goodyear

489
2. A Second Voyage to Tadmor ; by ... Communicated by Mr. Tim. Lanoy, and Mr. Aaron Goodyear

492
3. An Account of Tadinor ; by $\mathcal{M} r$. Will. Hallifax 503
4. Remarks upon théfe Antiquities; by Mr .
XLI. An Infcription in the Language of the Palmyreni; by \mathscr{M};. Octavian Pulleyn 526 XLII. I. Draughts of feveral Infcriptions, and Characters at Perfepolis ; by onr. F. A. ibid.
2. The Ruines of Perfepolis ; ty $\mathcal{O N}$. Nich. Witren
XLIII. Oblervations in Ulpper Egypt $; b y$ F. Brothais
ibid.
XLIV. An Account of the Porphyry Pillars in 傆gypt; by Dr. Rob. Huntington 528
XLV. . Some Unknown Ancient Charađters; by SMr. Flower
2. Remarks; by Mr. Fran. Afton ibid. XLVI. A Paper, Omitted 531
XLVII. Accounts of Books, and Emendations, Omisted
ibid.
C. HAP.

The CONTENTS.

CHAP. III.

Voyages and Travels.

I. SBueral Oblervables in Lincolnflire; by omr. Chr, Merret

533
II. Obfervations at Chefter ; by OMr. Edm. Halley 537
XII. An Account of Snowdown-Hill ; by OMr. Edm. Halley
ibid.
IV. Obfervations in Scotland; by Mr. Ja. Erafer
53^{8}
V. Oblervations in Scotland ; by sir George Mackenzy

539
VI. Srrange Beans, frequently caft afhore on the Orkneys; by Dr. Hans Sloan 540
VII. A Defcription of the Illand Hirta ; by Sir Rób. Moray

541
VIII. Obfervations in the North Illes of Scotland; by Mr. Martin Martin
IX. Several Things in Ireland, in Common with the Weft-Indies; by Dr. Tho. Molineux
X. 1. Obfervations made in a Voyage from England to the Caribbee-Inands; by Dr. Stubbs 546
2. Some of the $\int e$ Oblervations further Conflder'd; by Mr. Norwood fun.

559
XI. Obfervations made at the Barbadoes; by Dr. Tho. Towns

560
XII. An Oblervation in Bermudas; by $\mathcal{M} r_{0}$ Rich. Norwood

561
XIII. Obfervations in New-Providence, Bermudas, and Virginia; by Mr. Richard Stafford ibid.
XIV. A Voyage to New-Caledonia in Darien; by Dr. Wallace
ibid.
XV. Obfervations in Mexico ; by . . . 564
XVI. 1. Obfervations in New-England; by Mr. J. Winthrop
2. By Mr. Benjam. Bullivant
ibid.
2. Sy Mr. Benjam. Bullivant 565
XVII. Tbe Advantage of Virginia for Building Ships; by

566
XVIII. An Account of Virginia; by Mr. Tho. Glover
XIX.- A Voyage to Virginia, amd an Account of that Country; by Jar. J. Clayton 575 XX. An Account of Mary-land; by Mr. Hugh Jones 600 XXI. Oblervables near. Franckfort on the Oder; by Joh. Chr. Beckman 603 XXII. some Communications frows Italy; by ibid. XXIII. Obfervations in Italy ; by Dr. Pet. Silvefter
ibid.
XXIV. 1. Oblervations in Turkey; by Dr. Edw. Brown 605
2. By... ibid. XXV. Medical Obfervations in the Northern Countries; by Dr. Phil. Lloyd 606
XXVI. An Account of Iceland; by Dr. Paulus Biornonius 609 XXVII. A Summary Relation of the Difcoveries about the North-Eaft-Paffage; by ... 610 XXVIII. Oblervations ix two Voyages to the Eaft-Indies; by Mr . Rich. Smithon 614 XXIX. Obfervations in the Eaft-Indies; by S. Philibert Vernatti 617
XXX. Obfervations in the Eaft-Indies ; by
XXXI. Oblervations in Japan; by H1. . . . 620
XXXII. Obfervations in Hollandia Nova; by M. Witfen 622
XXXIII. Obfervations ix Brazil and in Congo ; by Mich. Angelo de Guattini, and Dionyfius of Placenza 623
XXXIV. Obfervations at Cape Corfe; by Mnr. J. Hillier

623
XXXV. Obfervations in Weft-Barbary, from Cape Spartel to Cape de Geer; by Mr. Jezreel Jones 626
XXXVI. Papers of lefs General ve, Onitted 635
XXXVII. Accounts of Books, Omitted. 63^{2}

The CONTENTS.

C.H A P. IV.

Mifcellancous Papers.

1. r. A Clare New. Lamp; by SMr. Boyle p. 634 2. Anotber ; by Dro Robert St. II. Perpetual Lamps in imitation of the 355 pulchral Lamps of the Ancients; by Dr. Rob. Plot

636
III. An Account of an Engine that Confumes Smoak; by \because H. Juftel

638
IV. Some Suggeftions for Remedies againgt Cold; by

639
V. Obfervations about. Shining Filh ; by Dr. Beal
v1.. 1. Obiervations about Shining Flefh; by Mr. Boyle

641
2. By Dr. J. Beal

644
VII. Obfervations about the Refemblances and Differences between a Burning Coal,
-ry and Shining Wood ; by Mr. R. Buyle 646
VIII: An Account of the Damage that bappen'd
0: at Portland, Feb. 3. 1695. Communicated
2.. by Sir Robert Southwel

649
IX. The Death of a Dog, on Firing fome Vol-

- Leys of Small-hot; by Mr. Rob. Clarke 650
X. To Preferve Small Fœetus's; by OMr. Rob.

Boyle ibid.
XI. A Microfcopical Animal diecovered; by S: . . . ibid.
XII. Microfcopical Obfervations; by OMr. J. Harris
ibid.
XIII. Microfcopical Animals; by OMr. Steph. Gray

653
XIV. Obfervations on the Animalcula in Pep*... per-Water, Ơc. by Sir Edm. King 654 XV. Mifcellaneous Experiments; by Sir Rob. - Southwel

656
XVI. To give Iron a Copper Colour; by Sir Rob. Southwel

657
XVII. To Gild Gold upon Silver; by Sir Rob. Southwel
XVIII, To Paint Glafs in Marble Colours: by Sir Rob. Southwel $\quad 658$
XIX. An Imitation of China Difhes; by . . ib.
XX. The Chinefe Way of making Gold-Thread; by Dr. Hans Sloan
XXI. To Counterfeit Opal; by OMr. S. Coleprefs
ibid.
Xxu. Some Obfervations touching Colours and Dyes; by Dr. M. Lifter
XXIII. The Weft-Indian Way of Dreffing Buck and Doe-Skins; by Sir Rob. Southwel

66T
XXIV. The Strength of Memory ; by Dr. Wal. ibid。 XXV. Ibe Credibility of Humane Teftimo ny; by.... 662 XxyI. General Bills of Mortality in London; by.... 665 XXVII. The Number of the Houles and Hearths in Dublin ; by Capt. South ibid. XXVIII. The Number of People in Ireland, An - $169 \frac{5}{5} ;$ ty Capt. South 666
XXIX. A Lift of the Seafaring People in Ireland, An. 1697 ; by Capt. South ibid. XXX. The Number of the Romilh Clergy in Ireland, Ann. 1698 ; by Capt. South 667
xxxI. Bills of Marriages, Births, and Burials in Franclkfort on the Maine; by Dr. Fred. Slare
ibid. xxxII. Marriages, Births, and Burials, in Old, Middle, and Lower Mark 668
XXXIII. Marriages, Births, and Burials, in the Dominions of the El. of Brandenburg 669 XXXIV. The Value of Aunuities upon Lives, dravon from the Bills of Mortality at Breflaw ; by MMr. Edm. Halley ibid. XXXV. Problems toucbing Compound Intereft and Annuities; Refolved by Mr . A. dam Martindale; with Explications, by SMr. J. Collins
-xxxvI. An Arithmetical Paradox concern- 678 ing tbe Chances of Lotteries; by Jur. Fr. Roberts
xxXVII. Papers Overlook'd, till't 679 late to Infert them in their proper Places; viz.

1. A Difeafed Kidney; by S. Malpighi 682
2. The Phorphorus Metallorum ; by Sir, Rob. Southwel
3. The Texture of Ivory; by Dr. Nehem. Grew
XXXVIII. Papers of lefseneralure ibid. XXXIX. Letters, and orber Papers, ${ }^{683}$ Ant. Van Leewenhoeck, Omitted ibid. XL. Accounts of Books, Omitted 686

A N
 Alphabetical Index,

OF THE Names of the AUTHORS:

W H EREIN,

The Numeral Letters diftinguifh the Volumes, and the Figures fignifie the Pages: The Numbers following immediately after the Names, direct to the Papers Abridg' d. and Inferted; thofe after *, to the Titles of Books; and thofe after ${ }^{* *}$, to the Titles of the Papers Omitted.

A.

MR. F. A. III. 526 .

Mr. R. A. I. 627°
David Abercromby, N. D. * III. 22.225.

SM. Acarete. * I. 634 .
F. Chriftopher D'Acugna. * III. 634*

Mr. John Adams. * I. 6.
William Aglionby Efq; F. R. S. II. 757
Albatenius. * I. 454 .
uliffes Aldrovandus. * II. 253°
Alnazen. I. 172.
J3. Didier l'Alleman, Mafter Watch-maker at Paris. I. 216.
Benjamin Allen M. B. II. 769. 785.837. III.
311. * II. 366.

Thomas Allen, DM. D. F. R. S. III. 305.
M. J. B. Alliot, Confeiller du Roy, Medecin Didinaire de fa Majeftés and de la Baftille. * III. 223。

Johannes Baptifta Alprunus, M. D. and Phyfio cian of the Houfhold to the Emprefs Eleono. ra. III.. 274.
$\mathcal{N M r}$. Robert Anderfon. *I: IIg.
F. Stephanus de Angelis, a Venetian. * I. 118 . 543.

Don Anthelm Carthufian of Dijon. * I. 544.
Apollonius Perg. * I. I17.
Archimedes. * I: 117.
OM: Chr. Arnold Ecclefiaftes © P. Po. Nurub. III. 14.

Jofephus de Aromatariis, Favorini F. ${ }^{*}$ II. 754°
Dr. St. George Afh, Lord Bihop of Cloyne. I. 7.
$365 \cdot 295 \cdot$ II. 9. 143.464 .644 . III. 12.222. 252.

Francis Afton Efq; F. R. S. III. 530.
M. Adrian Auzout. I. I91, 192. 215.217 .280 . 298. 436, 437,438 . II. 608. 826. III: 446。 *I. $5440^{* * 1.215 .453 .}$

An INDEX of the Authors Names.

B.

The Feer Mich. Behm, Conful of Dantzick. III. 84.351.
uleg-Beig, a King, and Famous Aftronomer, Great-Granchild to Tamberlain, and one of bir Succeffors. * I. 454.
Laurentius Bellinus. * III. 22. 60.80.
\$2. Belon. * III. 633.
Mr. Tho. Bent. II. 669 .
Dr. Edward Bernard Aftronomy Profeffor at
Oxford. I. 234. 260. 294. * III. 397. 532.
Mr. Charles Bernard, F. R. S. III. 153. 188.
M. Bernier. *III. 633.
M. John Bernoulli, Matbem. Profeffor at Groningen. I. 33. 5 51. * I. 199.
ON. James Bernoulli. * I. 544 .
OMr. Will. Berry. * I. 454.
Sieur Bernier, Smitb of Sable, in the County of Waine. 1.588.
William Beverege, D. D. *III. 53 r. .
Godefredus Bidloo, M. D. *II. 914 . III. 22. 224.
M. Louys de Bills. III. 262.
M. De Billy, a fefuite. III. 398.

Dr. Paulus Biornonius, in Iceland. III. 609.
Mr. Sampron Birch, Alderman and Aporbecary at Stafford. III. 221.
J. Birchenfha $E \int q ;{ }^{*}$ I. 708.

Gerhardus Blafius, OM. D. * III. 60.
M. De Blegny, Chirurgeon to the French Qs.

* III. 225.

SM. François Blondel, of the Academy Rogal of Sciences. * I. 685.
Mr. Jacob Bobart. II. 155.75 I.
Signor Paulo Boccone, of Sicily, F. R.S. II. 492. 821. * II. 254.754 . * II. 252 .

Mart. Bogdanus. *III. 22.
Joh. Bohn, phil. G Med. D. © in Acad. Lipfienfi Prof. publ. * III. 371.
R. Bohun, Fellow of New-College, Oxan. * II. 257.

Edw. Bolneft Med. Reg. Ord. ${ }^{*}$ III. 370.
The Noble Vincentius Bonajutus. II. 406.
OM. Bonavert. III. 156.
Mr. Henry Bond Sen. Matbematician, and Teacher of Navigation. II. 610*1. 675.
Theophilus Bonetus. * III. 22.
R. P. Bonfa. I. 294. 364.

Vadlius Dathirius Bonglarus. IIT. 191.
Joh. Alphons Borelli, one of the Royal Aczdemy of Sciences at Paris, and Matb. Prof. at Pifa. 1. 195, $645 .{ }^{*}$ T. 602. I1. $594.915 .{ }^{* *}$ I. 634. Olaus Borrichius, Med. Regius \mathcal{E} in Acad. Hafn. Prof. Publicus. * III. 370 . 371.
On. Bourdelot. * II. 9 I3.
M. De Bourges, Preftre* *III. 633.
sir Will. Beefton, Governour of Jamaica. II. 34.

An-INDEX of the Authors Names.

Tbe Eionourable Rob. Boyle Efq; F.R.S. I. $274 \cdot$ 604.608.614. II. 8. 28.16I. 204.206. 21 5. 235. 298. 325. 395. 492. 642. 846. 899. III. 232. $346.367 \cdot 378.634 .64 \mathrm{I} .646 .650$. * I. 634. II. $254 \cdot 256$, 257 . 366. 600. III. 370.688.** II. 252. 365 - 599. 912. III. 291. 631.

Tycho Brahe. * I. 454.
Tho. Branker. M. A. ${ }^{*}$ I. II 7.
Dr. James Brewer, II. 427.
William Briggs, OM. D. Pbyficiari to St. Thomas's Hofpital, and F. R. S. III. 39; 40. *III. 60.
OMr. James Brodie. III. 219.
Benjaminus Brookhuyfen. *II. 915.
F. Brothais. III. 527.

Mr . Tho. Brotherton, of Hey, in the Cousty
of Lancafter, $E / q ; 11.70 \%$.
Lord Vifcount Brounker. I. Io.
Edward Brown, M. D. F. R. S. Ir. 186. 306. 339. 373. 464. 523. 562. 579. 583. 585. 857. III. 605^{*} * III. 632, 633.

Mr. Sam. Brown Surgeon at Fort St. George. * * II. 752.

Mr. John Brown, Surgeon of St. Thomas'sHorpital. III. 83.
Manuel Bryennius. * I. 708.
Mr. Buckley, Cbief Surgeon at Fort St. George. * II. 252.

Sir Richard Buckley, F. R. S. II. 5 II. 634. 667.

2M. Ifmael Bullialdus. I. 25 I. 292: $307,308$. $315.318 .353 \cdot 650$. 1.117 .543.
SMr. Benjamin Bullivant. III. 565°
Mr. Johin Bulteel. ** 1.684 .
Johannes' Buno. * I. 674.
P. Filippo Buonanni: ${ }^{*}$ II: 913 .
Signior Burattini, of Poland. I. 194.425.
P. Aleffandro Burgos. II. 401.

Iord Treafurer Burleigh. III. 404*
Dr. Tho. Burnet. * II. 255 .
Tho. Burnet, Scoto-Britannus, M. D. Onedd Reg. Ord. * III. 22.
Dr. James Burrough. III. 111 .
Sig. Franc. Jor. Burrhio * III. 60.
Herman Buffchof sen. of Utrecht; refiding at
Batavia in the Eaft-Indies.*III. 22.300.
OM. Buffiere, F. R.S. III. 26. 68: I 85.21 I. Mr. Butterfield, OMathernatical Inftrument-ma-
ker to the French King. I-127. 208.'II. 557.
Williañ'Byrd Efq; F. R. S. III. 8.
C.

M
R. J. C. I. 612. II. 603. Dr. C. * III. 300 .
p. Geo. Camelli. II. 646.649.

Signor Giofeppe Campani. I. 193.382.400. * I. 544.

Leonardus Capuanus, of the Academy of the Inveftigantes. * II. 599.
Renatus des Cartes. ${ }^{*}$ II. 254, 255 .
Rob. Cary, D. LI. Devon. ${ }^{*}$ II. 53 r.
N. Caffegrain. I. 204.
sign. Joh. Dom Caffini of the Royal Academy of Sciences at Paris, axd F. R.S.I. 247.252, 253.272.274.277.279.287.292.308.315. $317 \cdot 320 \cdot 325 \cdot 349 \cdot 354 \cdot 363 \cdot 366,367$. 369. 376. 383.400. 409. 425.427. 437, $438.440 .443 .452 .645 \cdot 643.657{ }^{*}$ I. 454 . 543, 544. ** I. 453.
M. Jac. Caffini. R. Acad. Par. Socius.I. 340.6 \% 7

Sig-Marc-Antenio Caftagna. II. 460°
The Earl of Caftlemain. * 1.675 .
Dr. John Cafwel. I. 29. 3 I.
Pietro Cavina. I. 543°
Dr. Cay II. 333. 505. *II. 366.
Marc-Antonio Cellio, Del Academia Fiffco Mattematica di Ronia. ${ }^{*}$ III. 37 I .
Julius Celfus. * III. $53 \mathbf{1}$.
Sign. Diacinto Ceftone, of Leghorn. II. 789.
$R_{*} P_{0}$ Claudius Franc. Milliet de Chales. Si. J. ${ }^{*}$ I. 117 .
M. de la Chambre. *III. 634.

Sieur Chapuzeau. *II. 6000.
M. Moyfe Charas, Apoticaire Artifte du. Roy

Fardin Royal des Plantes. *II.913. III. 370°
Walter Charlton, OM. D. * III. 224*
L'Abbe de la Charmoye. *III. $531 .{ }^{\circ}$.
\mathscr{N}. Chaffelles. I. 293.
Stephanus Chauvinus. * II. 253°
Nicholas Chevalier. ${ }^{*}$ 1I. 600.
Mr. Jofeph Childrey. IF. 279.
Petrus Chirac, SMed. E Profeffor Regius Monipelienfis.* III. 81. 224.
Sig. Ciampini. I. 45 I.
Timothy Clarck, OM. D. Phyfician in Ordinary to bis Majefty. III. 192.194.
Mr. Will: Clark. * II. 600.
Whr. Robert Clarke, III. 68.650.
Carolus Claromontius; $\operatorname{MN}_{0} D_{0}^{*}{ }^{*}$ III: $6320 .$.
Mr. John Clayton, Rector of Crofton at Wake-
field in Yorkthire. II. 862. III. 575.
Mr. William Clerk Surgeon. III. 91. 159.314.
Sieur du Clos, Conseiller © Medicin Ordinaire du Roy. * II. 366 .
Philippus Cluverius, M. D. R.S.S. *.I. II8. 674.
M. Colbert. I. 69 I.

William Cockburn, M. D. F. R.S. III. 266. III. 292.

An INDEX of the Authors Names.

Mr. William Cole, of Briftol. 11. 144. 823 . 832.

William Cole, OK. D. III. 29. 35. 88. 15 r . 220. ${ }^{*} 111.223 .292$.

Mr. Edward Coles. III. 367.
OMr.Sam. Coleprefs. I. 658.6;6. 1I. 264.297. 602. 656.900.

OMr. John Colling 9, F.R.S. I. 60.120 . III. 399.401. 678. ** I. 177.

Greenville Collins, Capt. of the Merlin racht. II. 371.

Mr. Colfon. I. 285 . 317.
Daniel Colwal $E f q ; 11.53$ 1. $53^{8 .}$
Johannes Commelinus, Senator Amftelodamenfis. * 11. 754.
Confufius, Sinarum Pbilo oppbus, * III. 687.
R. P. Louis le Comte. S. J. Mathemat. du Roy. * 11.633°

OMr. John Conyers. I. 593. 633.
OMr. John Coniers Apotbecary. II. 37.
Bernard Connor, M. D. F. R. S. III. 293.

* 111.633.

Dr. Rob. Conny. II. 144.
Finger Cook Efq; ${ }^{*}$ II. 756. III. 687.
M. de Cordemoy. * II. 915. III. 397.

Dr. Thomas Cornelio, a Neapolitan Philofo pher and Phyfician. 111. 285. * II. 255.
Ferdinand Curpi,Marquis of Petreoli.* ${ }^{\text {II }}$. 253 .
Dr. Edward Cotton, Archdeacon of
II. 601.

Charles Cotton E/q; ${ }^{*}$ II. 755 .
OMr. Abraham Cowley. * II. 753.
Mr.William Cowper, Surgeon, F.R.S. III. 106. 143.194. 255. 295. 298. *III. 360.

Daniel Coxe, OM. D. F.R. S. II. 729. III. 326. 328.231.

Mr. Tho. Coxe. III. 229.
Mr. William Crabtree. * I. 543.
Mr. John Graig. 1. 52. 56. * L. 119.
Ralph Cudwurth, D. D. ${ }^{*}$ III. 687.
Sir Dudly Culluin. II. 750.
Richard Cumberland, D. D. * 111.532 .
Our. James Cunningham Surgeor. II. 33. 86. $607^{* *} 11.252$.
Dr. Cyprianus. III. 222.

D.

MR. Samuel Dale. II. $630.836,837,838$. III. 286. 312. 445. * III. 369. ** II . 912.

Mr. George Dampier, of Exmouth. III. 284.
Capt. William Dampier. ${ }^{*}$ III. 634.
Michael Dary. * 1.119.
Sieur Daffié. *I. 685.
OMr. Francis Davenporto 11. 292.

Mr. David Davies. II. 563.
Mr. Joh. Davis, SMinifter of Little Leak in NorthamptonGhire. 1. 625.
Eucas Jacobfon Debes, M. A. Provoft of the Cburches of Feroe. * 111.633.
Mr. Tho. Dent. III. 137.
M. J. Denys. II1. 23. 229, 230.252. 254. ** III. 223.

Mr. William Derhan!, Rector of Upminfter.' II. 10. 12. 14. 61. 73.90.

2M. Des Maftres. II. 165 .
Is brandus de Diemerbroeck, OMed. Є Anatom. Profisfor. * III. 22. ** III. 80.
Mr. Edward Digges. II. 756.
TM. Roelof Diodati, Supream Direitor of tbe Council of Mauricius. II. 329.
Diunyfius of Placenza. III. 605°
Diophantus Alex indrinus. * I. 117.
Euftachio Divini. I. 193.195.207.382.
Dr. Jaco. Job. Wecellaus Dobrzensky de Nigro Ponte, Dro of Philofophy and Phyfick, and Profeffor Extraordinary of them at Prague. III. 276.
M. Dodart, M. D. * II. 753.

John Dodington Efq; his OMajefy's Refident at Venice. II. 344.
Joh. Dolxus, M. D. Archiater Haffo-Caffellanus. * III. 22.
Jo Battifla Donius, a Florentine Patrician. ${ }^{*}$ III. 632.
Mr. Sam. Doudy Apotbecary, F. R. S. III. 77.
Carolus Drelincourt. * III. 23. 224.
Francis Drope, B. D. *. II. 755.
M. le Duc, Sworn Surgeon at Paris.III. 24.

Mir. Sam. Dugard, Reilor of Forton in Shropfhire. III. 25 I.
M. Duncan, S. D. D. * II. 915.
M. Dupre, Surgeon and firf Ayde-Major to the Hoftel-Dieu in Paris. III. 295. * III. 300.
Dr. William Durfton, Pbyfician at Plymouth III. 78. 301.

E.

DR. William Earnfhaw, Medicus Alceftrencis. III. Irg.
M. G. C. Eimmart. II. 609.

Mr. Martin Ele. . II. 459.
Joh. Sig. Elholtius, Elect. Brandebusg. MediCus. *III. 292. 370.** III. 683.
sir George Ent Kt. OM. D. II. 825. III. 1350 * III. 80. 291 .
P. Valentine Eftancel, s. f. I. 439.
M. Eftienne. II. 188.

Mich Etmullerus, "Ih 22.

An INDEX of the Authors Names.

Euclid. ${ }^{+}$I. 117
John Evelyn, Efq; F. R. S. II. $153.751 .{ }^{*}$ I.69?. II. 755 . III. 532.632.

Antonius Eygel, OM. D. § Praft. Amftelodamenfis. * III. 22.

F.

RAphael Fabretti Urbinat.. * I. 685. Honorat. Fabri, S.f. ${ }^{*}$ I. II9.215.602. 11. 255.

Dr. Fabritius, Playfician in Ordinary to the City. of Dantzick. 111.234°
Nathaniel Fairfax, M. D. II. 144.797. * II. 255°
Joh. Jac. Fergufon. * I. II7.
D. P. de Fermat, Senator, Tholofanus. * I. in 7.

John Michael Fehre, M. D. Cbief Secretary to Prince Ratzivil. II. 165. * II. 754.
OM. Felibien. * I. 693.
Dr. Fern. III. 214. 216.
Mr. Flamfteed, Math. Reg. F. R. S. I. 220.245. $247 \cdot 252.265 .269,270.278,279,280.285$. $291 \cdot 308.314 \cdot 316 \cdot 324 \cdot 326 \cdot 334 \cdot 348.350$. $355 \cdot 360 \cdot 366 \cdot 384 \cdot 389 \cdot 398 \cdot 40$ I. $404 \cdot 408$. $424,445 \cdot 644,645 \cdot 648.650$. II. 263. * I. $543^{* *}$ I. 453. I1. 365.
Mr. Flower. Ill. 530°
Sir John Flojer. II. 898. 9c0. 904.912.
Dr. Fogelius. I. 308.
The Reverend Dr. Sam. Foley. II. 512.
Carolus de la Font, M. D. ©' in Acad. Avenion. Prof. Primar. * III. 292.
R. P. Fontenay, S. J. Profeffor of the Mathematitks. I. 293. 330. * I. 544*
Dr. Daniel Fout. * II. 366. * * II. 365.
Samuel Fortrey E/q; * III. 686.
ON. Des Fourneillis. * II. 254.
Sig. Fracaftati, Profeffor of Anatomy at Pifa in Italy. III. 58.232 . 235 * III. 60. . ** III. 223.

Joannes Francus. * II. 914.
Mr. Frank. I. 297.
Mr. Ja. Frafer, Minifter of Kirkhil wear Inverneffe. II. 322. III. 538 .
Marchese Marco Antonio della Fratta. * II. 600.

Roland Freart, sieur de Cambray. * I. 693.
Carolus du Frefne, Dominus du Caugi, Regi à
Conf. ov Francix apud Ambianos Queftor.

* III. 398.

OMr. Iohn Friend. III. 28.
M. De Froidour. ** III. 683

John Fryer, DK. D. Fo R. So IMI. 633.

G.

M. Gadroys.** III. 291.
M. Gaillard, the Son, M.D. of the Faculry at Toloufe. III. 288.
Theoph. Gale, M. A. *III. 397.
OM. Gallet. I. 289.357.
George Garden, D. D. of Aberdeen. II. 118. 129.463.759.III. 8. 1 50. 164.304.

Chriftianus Fredericus Garmannus, Phyficus Chemnicenfis, Academicus Curiofus. * IIF. 225.

Joh. Ludovicus Ganfus, M. D. ${ }^{*}$ II. 600.
Mr. Gafcoign, of Liege. I. 164. 218. Gaffendus. * II. 365.
M. le Prior Gautier. I. 293.

OM. Gayant. III. 229.
Mich. Geddes, Cbancellor of the Cathedral Cburch of Sarum. * III. 532.
M. De Gennes. I. 555^{-}
M. Geoffroy, F. R. S. II. F. $334 \cdot$ III. 367° ** II. 252 .
Sn. Defhayes Geudron, SM. D: Dotteur en OMedicine de l' Univerfité de Monpellier. * III. 223.

On. Giles, Sworn Surgeon at St. Come. III. 57° II2.
John Gill. II. Io 5. 372.
OMr. Jof. Glanvil. II. $336.573,57 t^{*}$ *II. 252 .
Chrift. Glaffer. ${ }^{*}$ III. 370 .
Francis Gliffon, M.D. F. R.S. * II. 915 . III。 224.
M. De Glofs, Profeffor of the Matbematicks. 1.294.

Mr. Tho. Glover, surgeon in Virginia. III, 566.

Jonathan Goddard, M. D.II. 595.816.
Johannes Goedartius, M. D. Erfurtenfis Ef Coll. Nat. Curiof. Socius. * II. 913.
Charles Goodall, OM. D. ${ }^{\text {III. } 22 .}$
Mr. Aaron Goodjear, Merchant. II. 8 I3. III. 489. 492.

Patrick Gordon, M. A. * I. 675
OMr. Gourdon, F. R.S. I. 216 II. 325 :
Sir Rob. Gordon. III. 283.
Ægidius Francifcus de Gottignies Bruxellenfis, S. F. in Coll. Romano Matb. Profefl. * I. 119.

Dr. William Gould, F. R.S. II . 41, 42, 5340 III. 70.

Joh. Andreas Graba. *II. 914.
Regnerus de Graeff. M. D. III. 193: * IIL. 223*. 224.

Antonius le Grand. ${ }^{2} 1.254 .915$.

An IN DEX of the Authors Names.

8. Jacomo Grandi, Pub. Anat. at Venice. III. 84. 301 1. 304.

OMr. Stephen Gray, of Canterbury. I. 172. 195. 208, 209. 2 11. 214. II. 12. 187, 188. III. 6;3.
Mr. John Greaves, Savilian Profefor of Aftronomy at Oxon. II. 851. III. 405 . ${ }^{\text {III. } 633 .}$
Mif. Greenhil. III. 2 F. 93.
David Gregory, OM. D. Afron. Profefor Savilianus, है रु. S. S. I. 25. 28. 39.50. 297. * I. 119.215.

Ja. Gregory, Scotus, R. S. S. ${ }^{*}$ I. 118. 543 . ** I. 116.
Neh. Grew, M. D. F. R. S. II. 148.855. III. 9.85.682. * II. 754,755. III. 371.** III. 684.
M. Grillet. * III. 634.

Fran. Maria Grimaldus, S. f. *T. 215 .
Hermannus Grube, M. D. ${ }^{*}$ III. 370 .
Guarinus. * II. 255°
Michael Angelo de Guatini. III. 623.
M. Guifony. II. 493
S. Domin. Gulielmini. Io 2950
M. Gafper de Gurye So de Montpoly. * * III. 291.

Dr.Gwither. III. 8.

H.

R.H III. 379. - Mir. Ho ${ }^{* *}$ IIT. 63T.

Mr.Edward Haines, R. S. S. I. 296. 3.56. 365. Mr. Richard Haines. ${ }^{*}$ III 687.
7be. Honourable Sir Mattlew Hale, Lard Chief fuftice of bis 刃1ajeffy'sCourt of King's-Bench. * 111.53 I.

Sur. Edmund Halley, F. R. S. I. 32.63 .68 .81 . 102. 108.183.258.266.278.296. 314.317. 340.352. 355.359. 409. $427.560 \cdot 645 \cdot 647$. 650.65 I. 656.665 .673 . II. 13, 14. 20.33. 108. 110. 126.133.145.165.185.188.195. 285.295. 587.610.904. IIf. 412.425 .518. 537.669. *I. $118.454 \cdot 544^{* *}$ I. 453 . III 252. 365.
gMr. William Hallifax. III. 503.
Imman. Halton $E / q ;$ I. 287.
J. B. du Hamel, P.S. I. © Regix Scientiarum Academixe éSocretis: *IV 254.915.
Mr. Hamerlly of Cuventry. 11.8544°
Mr. John Harris, M. A. Reitor of Winchelfea in Suffex, and F. R. S. III. 650.
Walter Harris, OM. D. * III. 370.
Mr. Benj. Harry, Jmafter of the Sbip BerklyCafte. I. 356, 357.
Philippus Jacobus Hartman, Pbil. S' OMed. D.

Prof. Med. Extraord. Hiftoriartm Ordinar. S. R. F. Nature Curioforum Collega. II. 473 . III. 208: ** II. 599.

Mr. Martin Hartop. II. 400.
William Harvey, IM. D. II. 306.
Griff. Hatley, M. D. of Maidftone in Kent: II. 425.

Clopton Havers, M. D. F. R. S. III. 95.252 。 * III. 300.

2M. Hauton. II. 297.
NMr. Heathcot. II. 9. 268.610 .
Wolfgangus Erneltus Heidel, Wormatienfis.

* II. 687.

Jo. Frid. Hekelius. * I. 674.
E. M. B. V. Helmont. ${ }^{*}$ III. 397.

Louis Hennepin, SMifionaire Recollet. ${ }^{*}$ III. 632.

Nath. Henfhaw, OM. D. F. R.S. ${ }^{*}$ II. 257.
Tho. Henfhaw $E \int q_{7}$ II. 141 I. ${ }^{* *}$ III. 632 .
Ioh. Ferdinandus Hertodt. M. D. ${ }^{*}$ III. 754.
M1. Hevelius. I. 193-221. 24.7.249. 251 1. 281 . 284. 288. 304.307.310.319. 325.331.3350 $347.352,353.356,357,358,359.361 .364$, $365,366,367 \cdot 395 \cdot 408.425,425.439$. $444.446 \cdot 448.645 \cdot 65$ I. II. 185. 187.473. $490.609 .8530^{*}$ I. $454 \cdot 543,544 .^{* *}$ I. 453.

George Hicks, D. D. III. $442{ }^{*}{ }^{*}$ III. 532 .
Nath. Highmưre, OM. D. II. $333 \cdot 35$ I. * II. 366. III. 224.

A braham Hill Efq; III. 308. ** III. 632 .
OMr. J. Hillier. II. 53. III. 623 .
Ph. de la Hire. Regius Profeffor, © Regie Scientiarumi Academia Socius. I. 292.330.659. II. 620.

Mr. Tho. Hobbes, of Malmsbury. * It 118. II. 255.

Nicholaus Hobokenus. *III. 224 .
J. Bapt. Hodierna. ${ }^{*}$ I. 544.

Nathaniel Hodges, OM. D. ${ }^{*}$ IIII. 252.
Dr. Lucas Hodgefon, Phyjician at Newcafte. II. 383.635.

Fred. Hoffman, Fred. F. OM: D..* II.600.
William Holder, D.D. F.R.S.III. 42. ${ }^{*}$ I. 708. III. 397.

Maj. Holmes. I. 643.
Sir Charles Holt. III. 92.
M. Homberg, Cbymift, of the Academy at Par. I. 603. 614. III. 344.

Honoldus 297.
Dr. Hook, Profefor of Geometry in GrefhamCollege, and F. R. S: 1.192, 193.206,207. 213. 219, 220. 247. 277. 280. 296. 306. 308. $359 \cdot 365 ; 366 \cdot 382 \cdot 401 \cdot 423 \cdot 586$, $587 \cdot 589$. II. 10. $257 \cdot 260 \cdot 304 \cdot 328$. III.

An IN DE X of the Authors Names.

66. * I. $454.543,544^{* *}$ I. 215.674 .
II. 252. III. 631 .

Johan. Van Horn. M. D. * III. 224. Jeremias Horrox. * I. $543 .^{* *}$ I. 453 . R. P. Paul Hofte. I. 293.

Peter Hotton, M. D. Botanick Profeffor of the
Leyden Phyfick Gardex. II. 648.652.
OMr . John Houghton, E. R.S. II 660.
The Honourable Charles Howard Efq; of Norfolk. II. $635 \cdot 668$.
Roger Howman, M. D. of Norwich. III. 280 .
Mr. William Hughs. * II. 753.
Dr. Hulfe. II. 795.
Mr. Chr. Hunter, of Newcafle upon Tine. III. 426.

Dr. Rob. Huntington. III. 528. * III. $633 .^{6}$ Gregoire Huraet. ** I. I 16 .
M. Chriftian Husgens de Zulichem. I. 172. 177.180.199.365,366. $370.548 .553 .635 \cdot$ II. 23. 189. 239.* ${ }^{*}$ I. 118.215.543.603.

* * I. 674 .

\pm.

WIlliam Jackion, M. D. II. 352. 728. Mr. Jacobs, an Englifh Merchant at
Lisbon. I. $295 \cdot 334 \cdot 33^{8}$.
Fran. Jeffop Efq; of Bromhal in Yorkfhire. II.
182. 375.458 . III. 135. * II. 255.

Dr. Johnfton, of Pomfret. III. 166.
Mr. Maurice Jones, Reflor of Dol Gelheu in
Wales. II. 18 I.
Mr.-Hugh Jones. III. 600. * *II. 252.
Mr. Jezreel Jones. III. 626.
J. Joffelin Gent. ${ }^{*}$ III. 632.

SM. Ifnard. * II. 913.
M2. Juftel, R. S. S. III. $443 \cdot 6,38$.

K.

M
R. Keneda, an Apotbecary in Edinburg. III. 282.

Mr. White Kennet, Vicar of Ambrofden.

* III. 532.

Joh. Kepler. * I. 454*
Theod. Kerkringius, SM. D_{0} * II. 600. III. 22. 224.* *III. 223.

John Kerfey, Mathemat. * I. 118.
Francifcus Kiggelarius. * II. 754.
Mr. William King, Fellow of the Dublin Society. II. $73^{2 .}$
Sir Edmund King, F. R.S. II. 789. 852. III.
17.85.157.192.228.231.654.

Mr. Charles King. II. 83 I .
Athanafius Kircher. *II. 599. III. 398.633 .
M. Kirck. I. 297. 452.
M. Chr. Kirkby. II. 174. 320.491. III. IIO. 149,150. 158.
Mr. Tho. Kirke, of Coukridge in YorkThire. II. 869.

Juftus Klobius, D. in Acad. Witteberg. * II. 600.

Mr. Knowles, surgeon. III. 113.
Dr. Sigifmundus Konig, phyfic. of; Bern in Switzerland. III. 157.
Dr. Kornmannus, Dhysician in Germany. "II. 912.

M1. Chriftopher Krahe. III. 304.
M. Joh. Kunkle, Gentleman of we Bedsibamber to the Elector of Brandenburg. "III. 37 .

L.

MR. J. L. II. 842. P. L'Abbe, S. F. *.III. 531.
D. Fredericus Lachmund. * II. 599.

Diogenes Laertius. * II. 252.
OM. Latage. III. 257.
$\mathcal{M r}$. Francis Lamb. * I. 454.
Petrus Lambecius, Hiftoriograpber and LibraryKeeper to the Emperor.*III. 397.
P. Francefco Lana. S. f. I. 588 . II. 465 . III. 325. * II. 254 . * II. 252.

Jean Marie Lancifi, Prof. Anat. Rom. III. 3 I. * II. 755°

Dr. Joel Langelot, Chief Pbyfician to the Duke of Holltein. 1II. 315 .
Capt. Langford. II. 105.
Mr. Tim. Lanoy, Merchant. III. 489.492.
sieur de Launay. . * II. 255^{-}
Francifcus du Laurens. * I. 117.
Mr. Anthony Lawrence. * II. 755.
M. Anthony Van Leewenhoeck, F. R. S. I. 208.680. ** III. 68.3.
S. Lorenzo Legati, Pbilof. Pbyjic. SS Gr. Profeff. in Bonomia. * II. 253.
Gothofred. Gulielm. Leibnitz, ₹. U. D. E Confiliarius Moguntinus. I. 15. 554. II. 2. * I. 119.502.

Charles Leigh, OM. D. II. 525. III. 94. *II. 366.

Nich. Lemery, N. D. * III. 370.
Sir Roger L'Eftrange. * III. 686.
SMr. Lew is, of Tottenham-Highcrofs. II. $654^{.}$ * III. 398.

The Reverend Mr. George Lewis. ** III. 397*
Mr. Mark Lewis. III. 137.
Michael Leyferus. * III. 22.
Mr. Francis Linus. I. $161,162,164$. II. 194°

An INDEX of the Authors Names.

Martin Lifter, M.D. F. R.S. I. 681. II. 18. $129.164 \cdot 182.297 \cdot 361 \cdot 420.424,425 \cdot 431$. 450, $451.459 \cdot 466.491$ 1. 493. 503.505.507. $529.537 \cdot 548.555 \cdot 500 \cdot 623,024 \cdot 686.689$. $691.696 .731 \cdot 748.763 \cdot 766.768 .770 .774$. $783 \cdot 787 \cdot 792.793,794 \cdot 796.822,823 \cdot 629$. 849.853. III 68.93. 101. 106. 113 . 119. $132 \cdot 135 \cdot 15,5 \cdot 162.167 \cdot 274 \cdot 276.308 .312$. 415.419.422.425.658. * II. 366.913. III. 23. * * II. 599.742 .912 . III. 685. Mir. Edw. Llwyd, Cimeliarch. Afhmol. Oxon. II. 148. 182. 507. 549. 777, 778. III. 379.

Phillip Lloyd, M. D. III. Gu6.
OMr. Lock. III. 13.
Mr. Francis Lodwick, F. R.S. III. 373.378.
Richard Lower, M. D. F. R. S. JI. 854. III. 65. 226. 228. 231. 239. * III. 8c, 81. 292.

John Lowthorp, M. A. I. 228.
Staninaus de Lubienietz. * I. 544.
Mr. Anthony Iucas. I. 165.
Dan. Ludovicus, Medicus Ducal-Saxo.Gothanus. ${ }^{*}$ II. 370.
Mr. Tho. Luffkin, of Colchefter. I. 108. III: 265.
Lycophron Chalcidenfis. * III. 398.

M.

A.F. M. ${ }^{*}$ H. 913° Onr. T. M. in Salop. II. 640. Onr. Tho. Machil, of Kirbythure in Weftmoreland. III. 430 .
Sir George Mackenzy. II. 104. 32 1. III. 539. Mr. Zachary Maine. II. 104.
Joh. Daniel Major, Pb. EF M. D. * II. 600.
S. Marcel. Malpighi, Pbilofoph. Ened. Bononiens, SE R.S.S. II. 706.817. 865. III. 23: 38. 58 . 84. 194. 19.7. 682. * II. 755. 913.915. III. 60.223.292.** III. 223.

Carlo Ant. Mancini. *1. $215,^{* *}$ 1. 215 .
S. Manfredi. ${ }^{7}$ I. 543.

Marcus Mappus, M. D. Profeff. Senior. E' Aribiater Argentinenfls. * IK. 754°
Alexand. de Marchettis, in Pifan. Aca1. Phil. Profeff. * I. Cu 2.
loannes Marius, Pbyfo at Ulm. * II. 914* M1. I' Abbe Meriotte, of the Royai. Academy of Sciences. * I. 127.60 ? . III. 60.
Narcifus Marfh, Lord Difhop of Ferns and Leignlin. I. 596.
Luigi Ferdinando Conte Marfigli. * HIT. 371. :3M. De Martel, of Montauban. II. $42 j .657$. III. 69.309.
M. Martin Martin. III. 543

Mr. Adain Martindale.' II. $523 . \operatorname{IIT} .6$? 8 .
M. De S. Maurice, OM. D. III. 212.

Mr. Rob. Mawgridge Kettle-Drummer tokis Majefty, and Surgeon to the Trimbull Gally: II. 176.

Sir Theod.' de Mayerne II. 645. 814.870. III. 123.143 .283.

Joh. Mayow, L. L. D. O Med. * III. 80. 225 . 300. 370 .
P. Megerlinus, Thath. Profeff. at Bafil. * III. 531.

Marcus Meibomius. * I. 685 .
Joh Henr. Meibomius. ${ }^{*}$ II. 756 .
Mengoli, Dottor dell' uva Ef l'altra Legge, छ゙ PP. de Scierze Mecbaniche nello Jtudio Bologna. * I. 7108.
Mr. Nicholas Mercator, Erolfatus. S. R. S. I. $253.664^{*}{ }^{*}$ r. 120. 543.
Chriftoph. Merret, M. D. F. R. S. II. 572. 591. 628. $645.652 .706 .{ }^{*}$ II. 253°

Mr. Chr. Merret, of Lin. II. 267. III. 533.
P. M. Merfennus. J. 5 .
M. Mallement de Meffange. * I. ir8.

Le S. Meynard, seig. d' Iferné. * III. 531.
MMr. Matthew Mifford III. 135.
Raymundus Mindererus, Ch. Pbyfic. of the Elect. Court of Bavaria.* III. 292.
Henr. à Moinichen. * III. 22.
N. Abr. de Moivre, F. R.S. I. 29. 34.90 95.

Dr. Andr. Molimbrochius, of Leipfic. $* \mathrm{II}$. 754.

Antonius Molinettus, Phil. © Jied. Venet. * III. 60.

William Molynéux Efq; F. R. S. F: 125.189. $221.295 \cdot 339 \cdot 623 \cdot 11.40 \cdot 133 \cdot 263 \cdot 3220$ 758. III. 255° * $1.215 .454^{\circ}$

Thomas Molynenx, M. D. F. R.S. I. 625 : II. $432.512,513,514.778 .833836 .853$. III. 2. 151.182. 271. 309.554.

Francifcus Moncrius. * 111.68%
Mr. J. Monro. ILI. 448.
S. Montanari, Profeffor of Mxthematicks ins Bononia.' I. 2470^{+}I. 543.
Sir Jonas Meore, Mafter Surveyor of His. M1, jofty's Ordname. *I. I17. 68.5.
Sir Rob. Moray K K. F. R. S. I. 580. II. 260. $290,29 \cdot 372,373^{\circ} .530 \cdot 627 \cdot 849 \cdot$ III. $5411^{* *} 11.365$. III. 631 .
Mr. Rob. Morden: *if 454.
Henry More, D. D. * III. 687.
Sir Sam. Moreland Kr. and Bar. I. 625° * I. 119.

Andreas Morellius, an Helvetian. ${ }^{*}$ III, 532. Chr. Love Morley, M. D. II. 413 .

An IN DEX of the Atthors Nanes.

Charles Morley, M. D. TIf, 218
Robert Moryfon, \mathcal{M}_{0}. D. Botanift to Efis Shaje. fyy, and Profeff. of that Science in Oxon. *II. 75ラ, 75.4 .
S. Morris, On.D. cf Peeworth in.Suffex. III? 302.

Richard Morton, M. D. * III 292.
Mr. Roger Moltyn, of the Inner-Temple. II. $3: 8$.
Allen Moulen, M. D. F. R. S. II. 556. 847. 860.901. III. 225.233 :-

Mr. J. Moxon. ${ }^{*}$ I. 603.675 .
Wilhelm. Johan. Muller, von Harburgh. * III. 634.

Andræas Mullerus, Greiffenbagius. * JII. 633.
Abraham Munting, M. D. © Profeff. Eotan. at Groningen. * II. 753.
M. Muraltus, of Zurich. II. 465.

William Mufgrave, OM. D.F. ㄹ. S.III. 33.6 . 67.78.85.93.95.102. 112.441.

Pietro Maria Mutoli. ** I. 544 .

N.

N.I. 158. - Pet. Natus, a Florentine Phyfician. II. 658.

Tho. Neal $E f q$; High Sberiff of Hamphire. II. 172.

Walter Needham, M. D. III. 253.261.
Mr. Iface Newton, Math. Profed. Luc. E
F. R. S. I. 128. $135,136.139 .142 .144^{\circ}$ 157. 163, 164. 168. 196, 197. 199, 200, 201, 202, 203, 204. 210.440. 11. 285. *I. 603.

Mr. James Newton. II, 642.
Mr. William Nichollon. III. 433.435°
The Right Honourable the Earl Marhal of Eng.
land. II. 467.
Mr. Richard Norwood, Reader of the Mathemat. Lond. II. 268. 298.844 . III. 561.

* I. 675.

Mur. Rich. Norwood fun. III. 559.
Ant. Nuck. *111. 60.
M. Nuis. I. 630.

Francifc. Wilhelm. Liber Baro de Nuland.

* 11.254°

O.

MR. Oldenburgh. I. 549. II. 386.775 , 854. III. 232. $287.3450^{* *}$ I. 674° 11.355 .752 H11.291.

Johan. Ericus Olhoffius, Secretary to the Repub of Dantzick. * I. 454.
Dr. Wihlam Oiven. 1. 6c9. II. 375.305 .
D. Anton. Hugo de Omerique, Sanlucarentis.
${ }^{*}$ I. it9.
Oppianus. * II. 914.
P. Cherubin D'Orleans, Capucin. * I. 215

Mir. Osburn. I. 295 .
Johan Ott, Scaplus: Helvet. 1.215.
P.

1 R. A. P. in Somerfethire. III. 303° H. P, NH. D.F.R.S. H1J. 165°
J. P. * I. IIg.

Mr. R. P. Vicar of Kildwick in Yorkthire. II. 328.
R. P. : $11: 366$.

Onr. Phillip Packer, F. R:S. II. 325.
Onr. Palmer. I. 306.
R. P. Ignace Gafton Pardies, s. F. Prufejfor of the Natbemat. in the Parifian College of Clermont.]. $137.141 .144{ }^{*}$. I. 118.454. 603.11 .915.

Dr. Peter Parham, Phyf. at Norwich. III. $3 S_{0}$ Samuel Parker, M. A. ${ }^{*}$ IIN. 688.
D. Papin, M. D. F. R. S. I. $534,585.592$. 626, 627, 628.630. II. 20.5.239. * J. 6340 III. 686.

OM. Pafchal. III. 311.
Simon Paulus, Med. Reg. in Dania. * II. 7530
\mathscr{M}. Payen. I. 28 I.
Joh. Nicholaus Pechlinus, M. D. P. Sereniffo. Cimbriæ Principis Rez•Arcbiater. * H. 7540 III. 80.
N. Pecquet. III. 258,259 . * III. 60. John Pell, D. D. I. 1. 50 II. 630. *1. Is 7.
Shr. John Perks, Mafter of the Hofpitai at Old Swynford in Worcetterhire, founded by Tho. Foley Ef. q; I. 27.
SM. Clande Perault. ${ }^{*}$ i. 685 . 11. 60:
Le Sieur Petit, Confeiller de Roy; E' Intendans des Fortifications. 11. 60\%. * 11. 256.
Mr. James Pettiver, F. R. S. II. 704.* 11.253° 754.** 11.252 .752 .

OMr. Petto, a Divine in Suffolk. IT. 187
Sir John Pettus; Kt. * 11. 600 .
Sir William Petty Kt.F.R.S.I. 659. "I.503,
III. 686. ** 1.602. II. 365. III.683.
]. Con. Pey̧erus. ${ }^{*}$ IIJ. 224.
Julius PHugk, Equ. Saxonicus: * III. 397.
OMr. Hen. Phillips. I. 280. II. 26 I:
M. Picard, of the Royal Academy of Sciences a;

Paris. 1. $274 \cdot 315 \cdot 330.365 \cdot 651.6590$

* I. 675°

Robert Pierce, M. D. of Bath. II. 339.11 . 162.

Mr. Tho. Pigott, Fellow of College in Oxon, anl F.R.S. II. 396.400 .

An INDEX of the Authors Names.

Archibald Pitcarn, M. D. * III. 292.
Alexander Pitfield Efq; F. R.S. ${ }^{*}$ II. 914.
Mr. Edm. Pitt, Alderman of Worcelter. II. 652.

Dr. Chr. Pitt. III. 91. 234.
Kobert Pitt, M. D. III. 253.
Mr. Tho. Plat. II. 811.
sir Hugh Platt. * II. 755.
C. Plinius. ${ }^{*} 11.253 .753$.

Robert Plott, L. L. D. and F.R.S. I. 677.
11. $45.350 .37 \mathrm{c} \cdot 462.49$ I. 55c. III. 1. 636 .

* II. 366 . 111.632.

Leonard llukenet, OM.D. F. R.S. * II: 753.
Dr. Edw. Pocock. * II. 254 .
Porphyrius. * I. 708.
Toh. Dav. Portzius, Pbil. E Med. D. * II. 756.

Dr. Walter Pope. I. 280.585. IF. 577.
M. Pothenot. I. 292.
juh. Potter. Coll. Lincoln. Oxon. * III. 398.
mr. Giles Pooley, of Wrington. II. 554.
Tho. Povey E $/ q ;$ F. R.S II. 565°
Ie Sieur Irançois Poupart. 11. 763. 819.
Hen. Poule Efq; II. 558.
Dr. Cha. Prefton. II: 847. III. 24. 32. 36. 141.154.209.

Mr. Proby, of Dublin. III. 162.
TMr. Abr. de la Pryme, Reader of Trinity-
Church in 'Hull. II. 428. III. 422. 428. Clandius Ptolemæus. * ${ }^{1 .} 708$.
Mr. Oetorrian Pulleyn. III. 448.

> Q

M- De la Quintiny. II. 638.

R.

RR. * 1.118. - M. B. R. 11. 580.

21r.W.R.II. 175.
Jo. de Raei, Pbil. in Athenso Amftelod. Prof. Prim. * II. 254.
Bernardinus Ramazzinus, in Mutinenfi Iyccio imed. Prof. * ${ }^{\text {II }} 366$.
Dr. Tho. Raftel, of Droytwich. II. 356.
Dr. Leonhart Rauwolf. * 111.633.
Nr. John Ray, F. R.S. II. 497. 505.624.635 $641,6+2.682 .755 \cdot 783.788 \cdot 791 \cdot 796.839$. $842.846 .8530^{*}$ II. $254,255 \cdot 753,754$. 914. III. $632,633$.

Sir Rob. Redding. 11. 464. 828.
sig. Francefco Redi, Academiio dell. Crufco. III. 339.* II. $253.913,914$. III. 371.

Rich. Reed $E \int$; at Lugwardine in HerefordHire. II. $655,656.690 .775$.

Dr. Salomon Reifelius, Cb. Pbyfician to the Duke of Wirtemburgh. I. 627 -692.
Jo. Reiskius. "I. 674.
Dirick Rembrantz van Nierop. "III. 633.
Mauritius van Reverhorf. Med. Cand. Ligd. nunc Profeff. Anst. Hagæ Comitis. *III. 223.

Carew Reynel E $\int q_{i}{ }^{*}$ III. 686.
Michael Angelu Ricci. * I. 119.
Joh. Baptift. Riccioli, S. F. ${ }^{*}$ I. 543 .
Dr. Richardfon. II. 423.
R.P. Richaud, Profeff. of Math. and Theol. I. 294.
M. Richelt, Profeff. Nathematum Julius. I. 319.

Hen. Ridly, TM. D. * III. 60.
S. Car. Rinaldini, Pbilofoph. and Math. in tbe Univerfity of Padoua. II, 164.
M. Riquet. ***II. 683.

Francis Roberts Efq; F. R. S. I. 233.6950 III. 679 .

Tancred Robinfon, M. D. F. R. S. I. 681. II. 320.349 .529 .624 . III. 308. * II. 754 .
M. Roemer, of the Royal Academy of Sciences. * I. 308. $315 \cdot 409.422 \cdot 330$.
M. Jaques Rohault. * II. 255 .

Mr. Rook, F. R. S. Profeff. of Aftronomy as Grefham College. I. 300. ${ }^{*+}$ III. 631 .
Hen. Van Roonhuyle phyfician in Ordinary at Amfterdam. * III. 22. 300.
Mr. J. Role, bis Majyfy's Gardener at bis Royal Garden at St. James's. *II. 756.
Donato Rofetti, S. T, D. Canor of Leghorn, and Tutor in the Mathemat. to the Duke of Savoy. * I. 544. II. 257.
Olaus Rudbeckius, Profesf. of Anat. and Hiftory at Upfal in Swetheland. * IIJ. 531.
Fredericus Ruyfchius, OM. D. Botan. Profeff. * II. $754{ }^{\circ}$
sir Paul Rycaut, F. R. S. II. 871.
Wilhelmus ten Ryne, OM. D. Tranfifalano: Daventrienfis. *III. 300.

S.

I.S. N. D. Phyician in Ordinary to his Jiajefty. * III. 633.
Sir P. S. III. 436.
sir R.S. II. 180.
2Hr. R.S * III. 687.
Mr. John St. Clair. I. 685.
Dr. Robert St. Clair. II. 38 5. III. 6350^{*} Ir. 366.
Cl. Salmafius. * II. 753.

Tho. Salmon, M. $A_{0}+$ I. $_{0} 708$.

An INDEX of the Authors Names:

Will. Salmon Profefor of Phylick. ${ }^{*}$ III. 370.

 Sieur de Salnove. * III. 686Signior Pietro Salvetti of Florence, one of the Great Duke's Muficians. 1. '206. 20 © 706. Ariftarchus Samius. *'II. 255
Aylet Sammes, of Chrift's Coll. in Cambridge. ${ }^{*}$ III. $53^{2 .}$
Henry Sampfon, ©M. D. III. 16. 20. 111. 205.
Sanctorius. * III. 23.
EM. Chrifophorus Sandits. If. 827.
His Excellence Edward Earl of Sandwich, Am. bafJador Extriordinary to the King of Spain,
F. R.S.I. 28 I. 650 11, 185. $73^{8 .}{ }^{*}$ II. 600 .

Sig. Sarotti, the Venetian Refidenit. II. i48.
Mr. Tho. Savery. I. 632.
M. Saviard; Sworn Surgeon at Paris. III. 214.

Mrs. Anne Savile. III. 307.
Mr. R. Sault. I. 55 I. $^{\text {O }}$
Mr. Scarburgh. HI. 104.
NX. Joh. Schefferus, Prof. in the Swedifh Uni. verfity at Upfal. II. 152.473.853. ${ }^{*}$ III. 633.
D. G. Schultzius. I. 297

Auguftino Scilla, Pittore Academico della Fud cina. * II. 256.
Jac. Seidelius. ${ }^{*}$ III: 22.
M1r. Ab. Seller. * III. 532
Mr. Sellers. II. 60 I.
R. P. Michael Senelchallus, S. F. * III. 531 .
W. Sengwerdius, Math. © Phyfic. in Acad. Altdorf. P.P.D. * I. 913.
sig. Settalla of Milan. I. 212. II. 425.580.
Dr. Rich. Sharrock. * 11. 755°
Dr. Will. Sherard. J. 690.
Edw. Sherburn $E f q_{j}{ }^{*}$ 454.
Rob. Sheringham. Cantab. Coll. Gonvilii Eֹ Caii Socius. * III. 532.
Dr. Tho. Shirley, Pbyfic. in Ord. to bis Majefty. II. 382. * II. 593 - 754 .

Sir Rob. Sibbald, Phyfician and Geographer to the King, and Fellow of the Coll. of Phyficians at Edinburgh. II. 325 . 1II. 154, 155° * II. 914 - III. $6320^{* *}$ II. 912.

On. Henricus Siferus. I. 277.
Dr. Peter Silvefter, F. R. S. III. 603. ${ }^{* *}$ II. 599.

George Sinclare. * II. 256.
Fred. Slare, OM. D. R. S. S. II. 462.530 .870 III. 110. $150.176,177,178.235 .347$. 350. $35^{2} 2$. 358.667. ** III. 223.

Hans Sloan, M. D. S. R. S. II. 410.419 .431. 511.646.648. 659.663.665, 666. 669. 672. 749.860. III. 93. $118.207 .285 \cdot 540$. 658. * II. 753. ** II. 252.

Renatus Fran. Slufius, Canon of Liege, and

Counellor to bis Electoral Highness of CO. logn. I. 18. 2 I. 173, 174. 178. 182. * I. 119.

Francis Smethwick $E \int q ;$ F. R.S. 194.284.
Tho. Smith, D. D. F. R. S. II. 288. III. $456.465 .4730^{*} 111.633$.
Dr. Edward Smith, F. R. S. II. 457,458 . 643.
[o. Smith, M. D.* IIT. 312.
Mr. John Smith, Wuiniffer of the Royal Affican
Company at Cabo Corco in Guinea. * II. 752.

John Smith Gent. * III. 687.
Mr. Richard Smithfon. III. 614.
Nr. Edw. Smyth, Fellom of Trin. Coll. in Dublin: II, 324.
Theon Smyrnxus. * I. I 17
Mr. William Somner. ${ }^{*}$ III. 532.
M. Du Sons, Matbematician. I. 193. II. 367.

Capt. South. III. $665,666,667$.
Sir Rob. Southwel, F. R. S. 1. 2e7. 214 . II. 37'.623.750.899. III. 649.656; 657,658. 661.682.
D. Andreas Spole, Aftronom. Profeff. in Acad. Upfalienfi. 1F. 199.
M. Spon, M. D. of Lyons. * III. 532.633.

Mr. Spotfwood, surgeon at Tangier. ${ }^{* *} 752$.
Dr. Tho. Sprat. * II. 252.
Mr. Richard Stafford, of Bermudas. II. 258. 845.

OMr. Nicholas Staphurf, Chymical operator for the Company of Apothecaries. * III. 370 .
Chriftianus a Sceenvelt, Surgeon to the HoJpi tal in Leyden. * III. 224°
s. Nic. Steno. II. 816. * II. 255. 91.4, 115. III. 300.

Mr. Nicholas Stephenfon. * I. II $7 \cdot 543$.
※gidius Strauchius. * III. 53 I.
Mr. Street. I: 306. * I. 453.
Dr. Stubbs. III. 546.
Mr. John Sturdie, of, Lancafhire. II. 559.
M. Joh. Chrift. Sturmius, Profe J. of Matb.

Ef Ebilof. at Altdorf in Germany. II. 25 I. 609. III. 347. * II. 253.

Capt. Sam. Sturmy. JI. 265 . 370. 607.
S. Pietro Sufarte, S. F. Retior of Macao in the Eaft-Indies. I. 435.
Joh. Swammerdam, M. D. Amfterodamenfis. II. 782. III. 11 18.256. * II. 912,913 . III. 80.224.

Tho. Sydenham, OM. D. ${ }^{*}$ III: 224. 292.
Joh. Bapt. Sylvaticus. * IIF. 22.
Franc. de la Boe Sylvius. ${ }^{*}$ III. 22.292.
W. Sympfon, - N2. D. *II. 336. III. 371 .

An INDEX of the Authors Names.

T.

MP. J. T. III. 159.

Matth. Tachenius, M. D. * III. 370.
sir Gilb. Talbot, F. R.S. his Majefty's Envoy Extriord. in Denmark. II. 53 I.
尽P. Andreas Taquet, s. F. *I. 117 .
Joh. Baptif. Tavernier, Baron of Aubonne. * III. 633.

Mr. Rob. Taylor, Apoth. at Hitchin in Hartfordhire. II. I47.
Capt. Silas Taylor. II. 81 I.
Padre Balthazer Tellez, Provincial of the fe-
fuits in Portugal. *III. 634.
$\mathfrak{M r}$. J. Templer of Braybrook, in Northampt.
II. 102,103.656.760.837.863. III. 64.69.

Mr. Tennifon. * III, 688.
W. Tenon. I. 627.

Wilh. Ern. Tentzelius, Hittoriograplaus DucaIis Saxonicus. II. 438.
Theodofus. I. Ir 7.
M. Thevenot. *III. 633. ** II. 599. 912.

EMr. David Thomas. 1I. 899.
Ralph Thoresby Efq; F. R.S.II. 179. III. II. 418. $421.424 .426,427$.

Dr. Sam. Threapland, of Hallifax. III. 160. Malachias Thrufton, N1. D. * III. 80.
Edw. Thwaites, è Coll. Regin. Oxon. ${ }^{*}$ I. 674: Plato Tiburtinus. ${ }^{*}$ I. 454.
Matth. Tillingius, OM. D. ${ }^{*}$ IIF. 370 .
M. Timmerman, Matbematician at Mofcua. I. 339.

Mr. Hugh Todd, F. of Univerf. Coll. Oxon. and Chaplain to the Lord Eifhop of Carlifle. 1J. 325. 333.351.
P. Alvarez de Toledo, a Francifcan Fryar. II. 410.

Ez. Tunge, D.D. II. 673:676.684. ** II. 752.
Geu. Tonftal, M. D. * II. 366 :
Rich. Townley of Townley in Lancalhire Efq; I. 120.218 .287 . 11. 9. 43, 44. 86.

Dr. Tho. Towns, in Barbados. III. 560 .
Tho. Trapham, NM. D. ${ }^{*}$ III. 632.
Fian:- Travaginus, ohed. Venet. * II. 599. III. 370.

Mr. Rob. Tredway. II. 345. 492.
Johannes Trithemius. * III. 68*.
Joh. Georgius Trumphius, saxo. Med. Licen. tiat. * II. 6 co.
Dr. Dawbeny Turberville, of Salisbury. III. 34. 40.
M. Pitton Turnefort, De l'Academie Royal des Sciences, Doltur en Medicine de la faculte de Paris, EG Profeffeur en Botannique au fardin Royxl des Plantes. * II. 754.

SMr. John Turner, Surgeon. III. 140. 205.28 r
Edw. Tyfon, M. D. F. R. S. II. 785.797 .819.
873.88I. III. 14.26, 27. 8I. 12I. $130 \cdot 133$. $146,147.221$. ${ }^{*}$ II. 914 .

V.

VV. I. 22 .

- M. John Weichard Valvafor, liber Baro. R. S. S. I. 687 II. 307.
Mr. 'Rob. Vans of Kilkenny in Ireland. II. 143.

Sig: Gio. Michaele Vanllebio. *III. 634*
Bernhardus Varenius, M. D. ${ }^{*}$ I. 673°
M. Benoit Vaffal, Surgeon. III. 205.

Dr. Francis Vaughan, Pbyfic. in Ireland."Ir 641.

2M. Veay, Pbyfic. at Tholoufe. III. 306.
Georgius Hieronymus Vellhius. ${ }^{*}$ II. 253.
Sir Philiberto Vernatti, Prefident in Java Ma-
jor. II. 576.814. III. 6 I 7.
M. Du Vernay. III. 560^{*} III. 60.
M. Verney, Apotb. at Montpelier. II. 765.

Franc. Vernis. * III. 370.
Mr. Francis Vernon. I. 652 . III. $451 .^{*}$ III. 633.

Dr. Raymund Vieuffens, of Montpellier, M.
D. ES S. R. S. III. 43. 240. * III. 60.
M. De Vilette; of Lyons. I. 211,212 .
M. De Villermont. II. 775 .

Dr. Nath. Vincent, F. R. S. I. 627.
Vitruvius. * I. 685.
Mr. Underhil, of Worcefter. III. 92.
Dr. Goth. Woightius. * III. 371.687.
Juh. George Volkamer, M. D. ${ }^{*}$ II. 754.
Dr. Ifaac Voffius. III. 447. * II. $3^{6} 5$. III. 634.
M. de la Voye. II. 787.

W.

I. V. Gent. * II. 755, 756.
J. W. W. III. 438.

Joh. Jacobus Wagnerus, M. D. * III. 632.
Mr. Nichulas Waite, Merchant of London. II. 549.

Mr. Walker, late of Brazen-Nofe Coll. Oxon. I. 594.

Dr. To. Wallace, F. R.S. III. I55. 164.561 ${ }^{*}$ III. 632.
Richard Waller E $/ q ;$ F. R. S. I. 689. II. 76 I. 809.818.855.87I. *I. 675. II. 253.**I. 693.

John Wallis, S. T. D. Geomet. Profedf. Sivilianus Oxon. and Ro S. S. I. 27.29. 58. 98. 107. 225. 23 I. $255.296 .545 \cdot 572.660$.

An INDEX of the Authors Names.

683.686.694.700.706. II. 2. 6. 14. 24. 32.122. 152.169.177.183.200.268.276. 278.283.395.696. III. 91.388.393.405, 406. 661. * 1. 117, 118. 120. 454. 544. 708. III. 397. 53 I. ${ }^{* *}$ I. II6. II. $25^{2} .365^{\circ}$ Mr. Chr. Wale . *I. 635 .
Dr. Wafmuth, Orientalium Kiloni Profeffor. *I. 543.602 .
John Webb E $/ q ;$ FIII. 398.634.
Mr. John Webfter, Praltitioner in Phyjick and Cbyrurgery. ${ }^{*}$ II. 500.
Georgius Wedelius, M. D. ${ }^{*}$ III. 37 I.
M. Weighelius, Profeff. of the Math. in the Univerf. of Jena in upper-Saxony. 1. 216. 684.
D. Chriftianus Ludovicus Welfchius. * II. 753.

2n. Cafparus Wendland, Cbirurgeon of the City of Dantzick. III. 149.
Maur. Wheeler, SM. A. Rector of Sibbertoft in Northamptonfhire. I. 556 .
Dr. Tobias Whitaker, Pbyfice at Norwich. *II. 366.
John Wilkins, D. D. F. R. S. * III. 397.
Thomas Willis, OM. D. in Univ. Oxon. Prof. Sedleianus, ©'S. R.S. *II. 915 . IIf. $60 \cdot$ 224. 370.

Joh. Valentin. Willius, Med. Reg. Caftrenfis Dan. * III. 292.
Francis Willoughby, of Middleton in Warw. E/q; F. R. S. I. 280 . II. 669.682, 683.685. 769. 774.833. *II. 914.

Dr. Wincler, Chief Phyfic. of the Prince Pala. tine. II. 869.

John Winthorp E $\int_{\mathcal{Z}}$; Governour of Connecticut in New-England. II. $630.832 .854^{\circ}$ III. 554. Mr. Richard Wifeman. III. 253.
M. Nicholas Witfen, ane of the Principal Burgomafters of Amiterdam. I. 653. II. 394. 826.83 1. III. ${ }^{2} 27.622 . *$ I. 675.685.

Rob. Wittie, OM. D. III. I 5 I. ${ }^{*}$ II. 366.
Rob. Wood. L. L. D. Mafter of the SMathematical School at Chrift's Horpital. I. 104. III. 409.

Dr. Nath. Wood Phyfic. at Kilkenny in Ireland. II. 640, 64 I .
Mr. Bafil Wood, surgeon. III. 18 .
John Woodward. M. D. of the Coll. of phyfec. Profell. of Pbyjick in Grefham-College, and F. R. S. II. 7130^{*} II. 255°
M. Jo. Phil. Wortzelbaur. I. 230. 297. 338. 350.426.

William Wotton, B.D. F. R. S. * III. 397.
Sir Chriftopher Wren, L L.D. Regior. AREdi~ ficiorum Prefeat. R. S. S. I. 188, 189.547.
Tho. Wright $E \subset q$; of Downham Arevarum is Suffolk. 11. 455.731.

Y.

A Ndrew Yarranton Gents *III. 68%

Z.

M.J. Jac. Zinmerman. I. 360 . - Joh. Zwelfer, OM. D. * III. 370.

Anonymous Authors.

I50. 56. 122. 144. 156. 162. 194. 201, 202, 203, 204. 212, 213.263. 265. 270. 300. $313.407 .439 .550,551.553 .591,592$. $609,610,611.632 .634,635 \cdot 644.651,652$. $655 \cdot 672,673.676 .682,684.691$. II. 2. 12. 32. ?6. 42. 60. 104. $145,146,147.172$. $174,175.180 .185,186.201 .203 .206 .267$. $297.305 \cdot 317 \cdot 320.326 .329 .33 \mathrm{I}, 332.35 \mathrm{I}$. $363,364,365 \cdot 387.391,392,393,394.411$, $412.419 .423 \cdot 457.460 .462,463 \cdot 465 \cdot 467$. $524 \cdot 531.541 .548 \cdot 550.556,557 \cdot 565 \cdot 576$. $588,589.601,622.622 .625 .630 .645 .648$.
653.657,658.652.668.737.749. 762. 784, 785. 788.796.811. 826. 833.842.844,845. 864. 872,873.900. 904. III. 10. 13.23.41. 57, 58.61.69.78.80.91. 110.114 138, 139. $254,255 \cdot 297 \cdot 301 \cdot 346.392 \cdot 408 \cdot 419 \cdot 446$. 448. 564. 566.603.605.610. 618.620.639. 650. 658. * I. $118,119.543,544.674,675$. 693.708. II. $252.255,256,257.599 .755$, 756. 914. III. 22, 23. 80. 370. 397, 398. $633.665 .686,687 .{ }^{* *}$ I. 685. II. 599. 752. III. 291. 631, 632.683 .

THE PHILOSOPHICAL TRANSACTIONS AND
 COLLECTIONS,
 To the End of the Year 1700. A B R I D G ${ }^{\prime}$ D

Difpos'd under General Heads.

V O L. I.

Containing all the

Mathematical Papers.

By GOHN LOWTHORP, M. A. and F.R.S.
LONDON:

Printed for Thomas Bennet at the Half-Moon, Robert Knaplock at the Angel and Crown, and Richard Wilkin at the King's-Head, in St. Paul's Church-yaid, MDCC V.

$$
.1 .10 V
$$

To the Honourable

Sir ISAAC NEWTON.Kt. PRESIDENT,

And to the

COUNCIL and FELLOWS

OF THE
 Royal Society 0 F

L

FOR THE
Advancement of Natural Knowledse,

$$
\begin{aligned}
& \text { These } \\
& \text { Mathematical Papers, } \\
& \text { B R I D G'D }
\end{aligned}
$$

Difpos'd under General Heads, Are Moft Humbly Dedicated,

By Fobn Lowethorp.

$$
\begin{aligned}
& \text { 324, 607 HTa vi thin rie }
\end{aligned}
$$

$$
\begin{aligned}
& \text {-ule ghime. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. H T } 1 \text { O }
\end{aligned}
$$

$$
\begin{aligned}
& 90 \\
& \text { 1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 37. } 34 \mathrm{~T}
\end{aligned}
$$

$$
\begin{aligned}
& 1+3
\end{aligned}
$$

quatross midel pe

THE

Alathematical קapers,

> PUBLISH'D and DISPERS'D

$$
\begin{gathered}
\text { IN THE } \\
\text { PHILOSOPHICAL }
\end{gathered}
$$

Tranfactions and Collections,

A B R I G ${ }^{\prime}$;

AND

Difpos'd under General Heads.

C H A P. I.

Geometry, Algebra, Aritbmetick, Logarithmotechny.

QU Æ antehac de Augmentis Artium Mathematicarum execu- An Idra of Mas tus fum, eorum Summa huc ferè redit; Quamdiu homines thematicks by Voluntate, Ingenio, Adminiculis, \& Otio ad hæc Studia re- Dr. J. Pell, quifitis deftituantur, mirum non effe, fi non majores in iis pro- col. n.5. p.127. greffus faciant : Mihi itaq; videri, fequentium mediorum ope, Remedium huic Malo fatis commodè afferri poffe. Nimirum fl,

(2)

\$. I. Confcribatur Confiliarius Mathematicus (ita appellare liber) gui ad tres hafce Quxitiones refpondeat I. Qui, qualefg; Fructus ex ftudiis Mathematicis fperandi ? 2. Quxnam affequendx tam fructuofx fcientix Auxilia jam extent? 3. Qui Ordo in utendis iftis Adminiculis obfervandus? Itaque continebit

1. Facilem \& perfpicuum difcurfum, de limitibus feu ambitu Artiuns Mathematicarum, deque ingentibus utilitatibus, primò ad ipfarum ftudiofos, tum ad gentem complurium in iis peritorum feracem inde redundaturis.
2. Catalogum Mathenaticorun \&r ab iis editorum Operum, qui exhibeat, 1. Synopfin omnis generis Librorum Mathematicorum vel jam Publicitorum, vel Manufcriptorum in publicis Bibliothecis delitefcentium, peculiaribus, cuivis Generi, numeris appofitis. 2. Catalogum Chronologicum omnium Mathematicorum celebrium fecundum ordinem Annorum quibus finguli vixêre, additis ubique annis, quibus Opera ipforum primò excufa fuêre. 3. Catalogum ipforummet Operum fecundum ordinem Annorum, quibus ullâ Linguâ impreffa fuêre. In quo concinnando ita procederem, ut notato Anno Domini fubjungerem, more ufitatorum Catalogorum, Nomina omnia Mathematicorum Librorum in ulla Gente aut Lingua ifto Anno editorum, 1. Indicando tamen in fingulis, rationem Voluminis, hoc eft, non tantum nagnitudinem paginarum (e.g. 4to. 8vo. Şc.) led \& earundem fummam, ut moles totius Operis fic facilè cuivis patear. 2. Ante ipfummet Titulum exprimendo Annum, ad quem retrofpicere oporteat cogniturum quando opus confcriptum, quando hâc illâve Linguâ ultimò editum fuerit. 3. Notando in Margine poft Titulum, 1. Annum quo opus aliquod proxime Typis exfcriptumı fit. 2. Numerum, qui remittat Lectorem ad Synopfin primầ ftatim Catalogi paginâ deliniatam. Quorum Numerorum beneficio quilibet è Veftigio omnes unius argumenti libros Mathematicos percurrere queat.
3. Confilium, inftruens ftudiofum, de optimis in quolibet genere libris: Quo ordine \& quomodo legendi, quid obfervandum, quid evitandum in lectione quorundam Mathematicaftrorum, quomodo procedendum, omniaque memoriâ tenenda.
4. Parenefin, Primò ad omnes, opibus, otio, \& ingenio horum Studiorum capaci inftructos, ut, I. cum ingentium commodorum ad ipfummet corum ftudiofum \& ad univerfum humanum genus inde redeuntium. 2. Tum etiam defxcatæ Illius voluptatis, quæ ex fčutinio abftrufarum Veritatum, luctâ cum difficilibus Problematibus, \& eorundem victoria emergit, refpectur, feriò ad ea excolenda incumbant, tantò quidem magis, quo, 3. Expeditiora adminicula reperta funt, quæ laborem, tempus, fumptus, majoribus noftris impendenda, nobis compendifaciant. Deinde ad omnes tum judicio ad xftimandum horum Itudiorum pretium, tum \& opibus (xtern x noftri memorix, f_{1} in prudentes fui difpenfatores inciderint, promicondis) pollentes ut majori curx fibi effe patiaritur hoc ftudioforum genus, amplifque propofitis præmiis lectifimos corum feponant perficiendis inventis, ad qux ipfo genio fuo ducuntur. Denique ad omnes Erincipes \& Refpublicas, qui majus ditionibus fuis ornamentum vix confliaverint,

(3)

filiaverint, quam operam dando, i. Ut harum Artium peritis abundent. 2 . Via ad eas minus laboriofa fumptuofaq; reddatur.' 3. Ipfaq; adeo Ingenia Mathematica magis innotefcant, feq; dignis auxiliis gaudeant.

In quem finens utiliffimum fuerit, ut,
§. 2. Conflituatur Publica Bibliotheca, qux \&: omnes fupradiêtos Li bros, \& unum Inftrumentorum unquam inventorum contineat, \& preterea reditibus fufficientibus inftructa fit. I. Ad coemenda fingulorum librorum Mathematicorum, qux quotannis alibi locorum foras dantur, exemplaria. 2. Ad fuftentanduna Bibliothecarium, cui incumbat
r. Perlegere onmes hujus Claflis libros in Regione ifthac publico committendos, 1. Suppreflis qux ab artis regulis exorbitant, ne Scriptorum errores Lectoribus fraudi fint. 2. Monereq; Scriptores, fi vetera \& jam dieta tantum reponant.
2. Sub periculo exittimationis fux approbare inventa infignia, \& fincerè commendare Inventores Mecznatibus.
3. Recipere, in Catalogum referre, \& per Repofitoria difonere unum ita perlectorum librorum exemplar, donandunn Bibliothecx bene compactum, Authoris aut Bibliopolx fumptibus.
4. Promptum Refponfum prabere, cuivis ftudiofo, circa Problema aliquod inguirenti, an folutum fuerit nec ne, ni illi neceffe fit actum agere, aut contra inventa fua fupprimere, metu, ne antiqua jam fint, \& forfan in aliquo Librom rum Bibliothecx jam elaborata.
5. Recipere, \&c. omnia Manufcripta, vel donatione, aut legato Bibliothecx obvenientia:
6. Diligens cum fui generis hominibus, extra patriam fuam agentibus, Li terarum commercium exercere, ne ipfum fugiat, quidnam ibi locorum prelo paratum fit.
7. Obfervare in Conterraneis fuis, qui docendis hife artibus apti fint.
8. In numerato femper habere Artifices omnes conficiendorum Intrumentorum Mathematicorum \& \& Reprefentationum, adeoque Operationum in Lignos, Magnete, Metallis, Vitro, \&c. peritos.
9. Poft legitimum Examen, omnis generis practicis, e.g. Gubernatoribus Na vium, Grodetis, Logittis, \&rc. Speculativx Peritix \& Practicx Dexteritatis teftimonium prabere, ne pofthac, quibus hoc hominum genere opus, imperiti magno ipforum damno imponant.

Catalogus docuerit, in tanta multitudine librorun, mundum tantum non obruentium, quinam ad hanc tantum ftudiorun partem pertincant. Bibliotheca, \& ipforummet Librorum copiam faciet, \& limul cognofcendi ubi locorum exemplaria plura venalia fint: Pretereaq; Promptuatii inftar erit exteris \& indigenis, unde extemplò difcant, quenam ad hrec fludia adminicula Regio ifta fit fuppeditatura.
Atque hxe meo judicio expeditiffima Methodus eft, utendi illis auxilits, quibus jann potimur. Si ampliora defiderentur, conveniens fuerit, ut peritorum Ar-
tificum operầ, rificum operầ,

(4)

§. 3. Conficiantur \& publicentur tres hi novi Tractatus,

I. Pandectx Mathematicx, complectentes, quam fieri poteft, perficuè, methodicè, compendiosè, \& ingenuè quaxunque ex Mathematicis libris \& inventis, qux ante nos fuêre, colligi aut veluti confectaria inde deduci potuêre, citatis fub finem cujufque periodi aut propofitionis, authoribus, in quibus ca reperitur antiquiffimis, fequentibufque adeo omnibus notâ inuftâ, ubi vel in furto deprehenfi fuerint, vel mutuati effe fuppreffo unde fumpferint, aut (quod peflimum omnium) aliorum inventa audacter fibi arrogâffe. Hoc pacto magna illa Bibliotheca in multo auguftius fatium contraheretur, majori omnibus pofffuturis laboris, temporis \& fumptuum compendio, quàm in prefentiarum quis imaginetur. Sed cum \& hoc opus portatu minus amplum futurum fit: Elaboretur præterea,
2. Comes Mathematicus, libro manuali (adeoque quam licet brevifimè) continens utilifimas Tabulas unà cum preceptis de ufu ipfarum in Problematibus folvendis, feu purè Mathematicis, feu ad diverfas materias, prout res reguifierit, applicatas.

Et denique, ne in hoc quoque Eruditionis genere libris amplius aftricti fimus : Excogitetur,
3. Mathematicus $\alpha u \tau \dot{\tau}$ ¢nns, feu Inftructio quomodo quilibet Mathematicus, laborem non exhorrens, eam peritiam adipifci poffit, ut fine ulla Librorum aut Inftrumentorum ope, cujufvis tamen Problematis Mathematici refolutio xquè facilis ipfı fit, ac alteri folâ librorum Volutatione nixo.

Atque hæc eft Idea illa Mathefeos, quam, more meo, diu abhinc mihi effinxi, firmiter femper perfuafus, tum demum feliciter magnis rebus vires intendi, ubi exactam prius earundem Ideam, ejufque affequendx media quàm maximè appofita animus conceperit : Quam fi exprimere re ipfa non detur, multum tamen effe $a b$ ea quam proximè abfuiffe. Hancce meam equidem adeo non fupra vires humanas arbitror, ut vel viri unius, rei domeftice aliorumve negotiorum curis non diftracti, diligentiam parem ei putem. Bibliothecam enim \& Catalogum nummis prefentibus facile parari poffe, quis non videt ? Et fi mihi Pandectarum contexendarum (quales fupra defrripfi) Provincia demandaretur, longè duriores Leges, quam quas ibidem enumeravi, mihi impofiturus forem. Delinearem, primò omnium, infallibilem Rationis humanx in indagando, quodcunque objicitur, proceffum, oftenfo quomodo à primis principiis feu elementis nunquam interruptâ Serie, ad fubliniffimas juxta \& abjectifinmas eorum applicationes confendendum fit. Quâ arte forfan haud diu.carerent homines, f_{1} in pofterum follicitè veftigarent, quânam ratione illis quos mirantur tales obortæ effent cogitationes, quomodo tali fini, tam appofita media reperta fuiffent. Pandectas in Enchiridion, quotidianis ufibus opportunum, conftringendi ratio forfan haud plures fugerit : At ita mentibus fuis eas infcribendi, ut ne Libris quidem amplius opus habeant (quod Mathematicus nofter ajucógkns flagitat) vires ingenii humani tranfcendere plerifque haud dubiè videbitur, cum nemo hucufque, quod fciam, tale quid vel animo concipere aufus fuerir. Nihilominus tamen remittent aliquid, credo, de incredulitate fua homines, pofquam quæ roborand x imaginationi, juvand x

(5)

memorix, dirigendx rationi artes excogitari, quam miri effectuis conjunctione \& jugi exercitio earum produci queant, paulò attentiùs fecum confideraverint.
2. Confultius ommino mihi videtur ac preftantius, f_{1} lnco tantiapparatus quem Author Idex proponit de colligendis variis Mathematicorum fcriptis, optimi fo- fennus, by Mer- ib . lummodo \& digniores feligerentur ; Adductis primum Authoribus illis Anti- p. I35. quis quorum libri adhuc fuperfunt, veluti Euclide, Apollonio, Archimede, Theodofio, Pappo, Ptolemæo, cum reliquis ipforum Fragmentis \& ManuIcriptis qux nondum viderunt lucem, ac quorum aliqua penes Golium Lugduni Batavorum, quædam verò Romæ affervantur. Ipfis deinde recentiores poffent adjungi, veluti Vieta, Clavius, \& nofter Herigonius. Similiter inter Opticos, quis feligeret Vitellionem, Keplerum, Aquilonium, \& Dom. de Villes. Inter. Arithmeticos poft Diophantum, eminent Cardanus, Tartaglea \& Vefter Nepperus. Pro Triangulis Sphæricis \& Supputatione per Logarithmos extant Briggius, Gordanus, Pitifcus, Snellius, \& notter Morinus. Pro Aftronomicis, poft Ptolemxum \& aliquot Arabes, conducerent omnes illi qui Tabulas compofuerunt, ficut Alphonfus, Johannes Regiomontanus, Keplerus, \& nofter Duretus. Et ut paucis dicam, pro Fortificatoriis \& Muficis octo vel decem Authores excerpendi effent, illi fcilicet qui meliori inclaruere Praxi. Similiter pro Rebus Mechanicis, Viribus Motuum, Machinis, \& Ductibus Aquarum, ita ut enucleatis decem vel duodecim Authoribus, defiderium fuum explere poffet harum rerum cupidus. Et fi duodecim Viri Intelligentes \& Amici cordatè in fe fufciperent hoc negotium, ut quilibet unico Volumine convenienti \& perfpicuo compingeret aliqu:am Scientiam, additis illis. qure defunt in reliquis Authoribus, \& fublatis non neceffariis, abfque dubio haw. beremus breviter \& nervosè, in duodecim Voluminibus totum id quod hac in re à quoquam poffer expeti. Et mea quidem opinione, quicquid fpectat ad. Mathefin, tam Puram quam Mixtam, poterit comprehendi duodecim illis Vo. luminibus: Sic omnem elegantiorem Philofophiam tribus, \& omnes Artes Liberales \& Mechanicas etiam Tribus Libris exponere liceret: Ideoque levipretio ad Eruditionem quis poffet pertingere. Quod autem Mathematica illa Inftrumenta attinet, parum certè prodeffet apparatus omnium illorum quæ hactenus inventa fuêre. Præftaret habere quatuor vel quinque, quæ nimirums optima funt in eo genere, \& magis commoda præ reliquis judicantur.
3. Tibi (Vir Clariffime) fi mentem tuam rectè affequor, Omnia proban- Unfwer dby Di: tur, nifi quòd majorem Apparatum, quam opus fit, à me defideratum cenfes: Selectiora tantum, non ut nos, Omnia Volumina atque Inftrumenta Mathematica, colligi fuades. Quod conflium tuum neque ego improbarem, fi \& omnium calculo definitum effet quinam in tanta Scriptorum Turba reliquis omnibus Palmam preriperent, \& id tantum à me fpectaretur ut aliquid Laboris, Sumpruumque Compendium harum Artium ftudiofis fuppeditaretur. Nunc cum totius Mathefeos Perfectifimam Inftaurationem optem, non aliud Confilium à me proficifci debet, quàm quod tali fcopo per omnia quadret Hujus Confilii fundamentum in univerfali ejufnodi Bibliothecâ haud immerito collon

(6)

care mihi videor. Non audeo quenquam feernere, fymbolum fuum quocung; modo huc conferentem, multo minus condemnare inauditum. Et fi meo judicio locus fit, vel Ineptiffimum five Scriptum five Inftrumentum Mathematicum dignum effe puto, cujus unum Exemplar, vel propter Errores, in amplæ cujufcunque regionis loco certo \& patente, fervetur. Videmus enim non pauca ingeniosè inventa in fuperiorum feculorum rudioribus Inftrumentis, etiam nunc non obfervatu tantùm digna, fed \& Imitatione, quemadmodum etiam Imperiti Scriptores non paucas optimas egregiorum inventorum $\alpha \phi \circ \rho \mu$ is fagacioribus ingeniis prebuere ; digitum enim intendere poffumus, quò pervenire non poffumus. Videmus quamplurima Lemmata rectifimè demonftrata ab hujufmodi Scriptoribus, \& tamen propter unum Pfeudographema inter fundamenta collocatum, quicquid fuperftruxerant corruiffe. Quod fi non folum falfitate, fed etiam verbofitate, ftribligine, छ̇c. offenfus multos rcjiciendos putas, cogita quan varium \& multiplex fit hominum Palatum, neque omnes ex tui ingenii perfpicacitate judica. Sunt enim nonnulli qui nihil intelligunt nifi idem (\& ferè iifdem verbis) dictum fit centies; his credamus $\tau \alpha v \tau \circ \lambda o y i a s ~ i f t a s ~ a c c o m-~$ modatas effe. Et quoniam à Notioribus omninò incipiendum eft, eadem verò non funt omnibus notiora, à diverfiffimis initiis progrediuntur, ut vix reperias Difcentis Ingenium, cujus Tyrocinio non fit jamdudum accommodatum Rudius aliquod Scriptum vel Inftrumentum quod nefcire nullo modo debet, qui fe Confliarium Mathematicum profitetur. Itaque Librorum ifta Perfectior Collectio fanè neceffaria mihi videtur.

Quo minus vero nobis placent ifti Mathematicaftri, eò magis fuerit, cur Bibliothecam hujufmodi optemus, quippe qux fola infinitam iftam hoc in genere feriptitandi pruriginem facilè coërcuerit. Balbutientes enim ifti MagiItelli qui Tyrocinia \& Juventutis captum crepantes, nufquam non pueriliter ineptiunt, videbunt fat fuperque effe hujus farinx Elementariunt jam pridem Compilatorum. Qui vero infinitis inventis Mathefin augere fed fruftrà cu-
 nium expofita videntes, malo cavebunt fi fapiunt. Plagiarii verò, publico odio dignifimi, non audebunt pofthac veteres aliquos Libellos femel forfan typis inpreffos, aut aliquas tartum earum particulas, profuis extrudere. Quin etiam illi, quibus alioqui nec Candor nec Ingenium deeffet, ad cogitata fua fatis commodè proferenda, quia tamen tam multos in fingulis materiis fe proxceffiffe videbunt, fatis monebuntur, nè alia in publicum edant, quam prioribus indicta. Qualia quæ fint, ex infpectâ amplâ ejufmodi Bibliothecâ, vel fi hunc laborem gravantur, ex ipfomet, quem ei afligno Bibliothecario, facilè cognofcent. Atque hæ fere rationes funt, quæ confilii iftius de tam univerfali Bibliotheca poenitere me adhuc non finunt.

To she Satisface tion of Mersennus, Dec. 10 . 1639. ib. p. 143. 4. Statim atque tuas Litcras perlegi (Vir Eruditifime) non folum totus fui
tuus, tuæque fubferipfi fententix, quam mihi egregiè probatam teftor; fed \&
infolitus Ardor Animi me propemodum abfulit, nempe ut thum illud opus
quantumvis ardum Orbis Magnatibus proponendum curarem, fi liber ad eos
foret Additus. Scd quis Regurn incipiet? Hoc enim. Opus Regium aufim ap-
pellare.

(7)

5. Ideann Mathematicam non nifi obiter infpexi, jamq; tantum memini nihil The '̛udgmens. me in illa reperifle à quo multum diffentirem, \& valde probaffe quod primo and upprobatir loco omnis fupellex Mathematica ibi enumeretur, \& poftea ipfe Mathematicus on of des Cartanquam aùtásans ex feipfo contentus detrribatur. In eundem enim tes. Feb. 1 E40. fenfurm duo foleo in Mathefi diftingucre, Hiforiam fcilicet \& Scientiam: Per Hiforiam intelligo illud omne quod jam inventum eft, atque in libris continetur : Per Scientiam verò, Peritiam Qureftiones omnes refolvendi, atque adeo inveniendi propriâ Induftriâ illud omne quod ab humano ingenio in ea Scientia poteft inveniri, quam qui habet, non fane multum aliena defiderat, atqueadeo valde propriè wita'pxns appellatur. Valde autem optandum foret, ut illa Hiftoria Mathematical qux in multis Voluminibus farfa, nondum integra \& perfecta eft, in unum Librum tota colligeretur : Neque ad hoc ulli fumptus in perquirendis aut coëmendis libris effent faciendi: Cum enim Authores. alii ex aliis multa exfcripferint, nihil ullibi extat, quod non in quavis mediocriter inftructâ Bibliothecâ alicubi repcriatur; nec tam diligentia opus effet. ad omnia colligenda, quam judicio ad fuperflua rejicienda, \& Scientia ad ea quæ nondum inventa funt fupplenda. Atqui fi talis Liber extaret, facile ex eo unufquifque omnem Hiftoriam Mathematicam, atque etiam aliquam partem Scientix addiferet. Si quis autem omnia qua ad ejus Praxin pertinent, habere vellet, ut Inftrumenta, Machinas, Automata, Eic. nx ille fi Rex effer, orbis Terrarum impenfis omnibus ad hoc neceffariis fufficere nunquam poffet. Neque verè etiam illis opus habet, fed fatis eft fi omnium nôrrit defícriptionem, adeo ut ea, cum ufus exiget, vel ipfe facere, vel per Artifices fieri curare poffit.
II. \int HE Propofitions which I fhall endeavour to demonftrate independently from all others, fhall be thefe; the 32 d , and 47 th of the First Book; moft of the Second and Fifth Books; the Ift and I 6th of the Sixth; with their Corollaries. In order to demonitrate the 32 d ; I fuppofe it known what is meant by an Angle, Triangle, Circle, External Angle, Parallels, and that the Mea-by Mr. Ancs, fure of an Angle is the Arch of a Circle intercepted between its Sides; That a Right Angle is meafur'd by a Quadrant, and two Right Angles by a Semicircle. I fay then, that in the Triangle A B C, the External Angle BCE, is equal to the two oppofite Internal ones A B C, B A C ; For let a Circle be drawn, C being the Center, and BC the Radius; and let CD be drawn parallel to AB , thofe two Lines being always equiditant, will both have the fame Inclination to any third Line falling upon them; that is, (by the Definition of Angle) they will make Equal Angles with it; For if any Part of $C D$ (for Inftance) did incline more to $\mathrm{B} C$, than did AB , upon that very account they would not be Parallel; it follows therefore that the Angles $\mathrm{ABC}, \mathrm{BCD}$, are Equal : Alfo $\mathrm{BAC}=\mathrm{DCE}$, becaufe AE falls upon two Parallels ; but the External Angle BCE $=\mathrm{BCD}+\mathrm{DCE}$, which were before prov'd to be Equal to ABC, BAC. \& E. D. Hence may be inferr'd as a Corollary, That the three Angles of every Triangle are Equal to two Right ones; for the Angles A.C B + BC E , are meafur'd by a

Some of Eu: clid's Propofitio ons, demonftra ted independentn. 162, f. 672. 32.1 . E

Jig. I.

(8)

Semicircle, and therefore Equal to two Right Angles; Corollaries alfo from $20,22,31.3$. E. hence are the 20 th, 22 d , and 3 Ift of the Third Book, which contain the Properties of Circles, whofe Deduction from hence is moft natirral and obvious.
47. I. E. In order to demonftrate the 47 th ; I fuppofe the Meaning of the Ternis made ufe of, to be known; and that two Angles or Superficies are Equal, when one being put on the other, it neither exceeds, nor is exceeded. This being allow'd, I fay, the Sides about the Right Angle are either Equal or Unequal;
Fig. II. if Equal, let all the Squares be defrrib'd; the whole Figure exceeds the Square of the Hypothenufe B C, by the two Triangles M, V, and exceeds alfo the Squares of the other two Sides, A B, A C, by the two Triangles, A B C, and S; which Exceffes are equal, for M is equal to $A B C$, the two Sides about the Right Angle, being two Sides of a Square upon A B, by Suppofition equal to $A . C$, and the third Side equal to BC ; therefore the whole Triangles are Equal. After the fame manner S and V, are proved to be Equal; therefore the Square of CB, is Equal to the Squares of the two other Sides. 2.E. D.

Fig. III. But if the Sides be Unequal, let the Squares be defcribed, and the Parallelogram L Q compleated, the whole Figure exceeds the Square upon BC, by three Triangles, $\mathrm{X}, \mathrm{R}, \mathrm{Z}$, and exceeds alfo the Square $\mathrm{L} A, \mathrm{~A} \cdot \mathrm{D}$, by the Triangle A B C, and the Parallelogram P Q : which Exceffes, I fay, are Equal; for Z is equal to ABC , the Side $O C=B C, C D=A C$, the Angle $D=A$, and $O C D=B C A$; which is manifert, by taking the common Angle A CO, out of the two Right Angles BCO, A CD ; therefore by Superimpofition the whole Triangles are Equal. In like manner X is proved equal to $A B C$, alfo R; and the Parallelogram $P Q$ to be double of the Triangle A B C: Thus the Exceffes being proved Equal, the Remainders alfo will be Equal; viz. the Square of $B C$, to the Square of $A B$, 355 36. 3. E. A C. 2. E. D. Manifeft Corollaries from hence are, the 35 th, and 36 th, ${ }_{12}$, I3.2.E. of the Third Book; alfo the I2th, and I3th, of the Second.
1, 2, ev.c.2.E. The firft ten Propofitions of the Sccond Book are evidently demonftrated, only by fubftituting Species or Letters, inftead of Lines, and multiplying them according to the Tenor of the Propofition; thus, to inftance in one or
Fig. IV. two ; Call the whole Line A, and its Parts B and C, therefore $A=B+C$, and confequently $A A=B B+C C+2 B C$, which is the very Senfe of the
4. 2. E. Fourth of the Sccond Book. Thus alfo; Let a Line be cut into equal Parts

Fig. V. F, F, and let another Line S, be added thereto ; 'tis manifeft, that 4FF +
20.2.E. $4 \mathrm{SF}+2 \mathrm{SS}=2 \mathrm{FF}+2 \mathrm{FF}+2 \mathrm{SS}+4 \mathrm{SF}$, which is the Tenth Propofition of the fame Book.

Almoft the whole Doctrine of Proportionals, viz: Permutation, Inverfion, Converfioi, Compofition, Divifion of Ratio's, and Proportion ex aquo; and confequently the moft ufeful Propofitions of the Fifth Book are clearly demonftrated by one Definition, and that is of Similar or Like Parts, which are faid to "be fuch as are after the fame manner, or equally contain'd in their
Eis. VI. Wholes: Thus the Antecedents A and C, are either Equal to their Confequents, or Greater, or Lefs; if Equal, the thing is manifeft; if Lefs, then

(9)

(by the Definition of Proportionals) A , and C are like Parts of B and E ; therefore what Proportions the whole B and E have to one another, the lime will A and C have, which is Permutation; likewife $\mathrm{E}: \mathrm{C}:: \mathrm{B}: \mathrm{A}$, which is Inverfion; fo alfo if from Proportionals you take Like Parts, the Remainders will be Proportional ; whence Converfion and Divifion are Demonitrated: And if to Proportionals you add Like Parts, the Wholes will ftill be Proportional, which is Compofition, Gc. If the Antecedents be greater than the Confequents, the Confequents will be like Parts of: them, and the Demonftrationexaitly the fame with the former:

The firf of the Sixth Book is prov'd, by confidering the Generations of the Parallelograms, which are produced by drawing or multiplying the Perpendicular upon the Bafis ; that is, taking it to often as there be Parts and Divifons in the Bafe: Thercfore the fame Proportion that $\mathrm{R} X$ fingle, hath to NX fingle, the fame hath K X multiplied by XZ, that is, repeated a certain number of times, to $N \mathrm{X}$ multiplied by X Z , that is, repeated the fame number of times; which is as much as to fay, $\mathrm{RX}: \mathrm{NX}::$ Paral. RZ : Paral. N Z. Now that this Propofition alio is true in Oblique-angled Parallelograms, is proved, becaufe they are equal to the Rectangled ones upon the fame Bafis, and between the fame Parallels, as does thus independently appear; The Triangles $R Q X$, and $M P Z$, are equal, for $R X=M Z, Q X$. $=P Z, R M=Q P$; therefore adding to both $M Q, R Q=M P$; if therefore from thefe equal Triangles you take what is Common, viz. $M L Q$, the Remainders will be equal, RXLM=QLZ.P; to both which add XL, Z, and the whole Parallelograms will be Equal, $R Z=Q Z$. Q.E.D. That Triangles alfo having a Common Bafis, are in the Proportion of their Altitudes, does hence follow, becaufe they are the halves of Parallelograms upon the fame Bafis. This alfo is truc, and the Demonftration exactly the fame in Prifms, Pyramids, Cylinders, and Cones, having the fame Bafis.

To prove the 1 oth of the Sixth, I fuppofe the 4 Lines, A, B, C, E, to be Proportional, that is, granting A and C to be the leffer Terms; the fame way that A is contained in B, f_{0} is C in E, and that D is the Denominator of the Ratio; 'twill follow then, that B is made up of A , multiplied by D , and E of C , multiplied by D ; fo that $\mathrm{AD}=\mathrm{B}$, and $\mathrm{CD}=\mathrm{E}$; draw therefore the Extremes upon one another, that is, A upon C D, and the Means, that is, C upon A D, the Factors being the fame; I fay, the Products $\mathrm{A} \dot{\mathrm{C}} \mathrm{D}$, and $\mathrm{C} A \mathrm{D}$, are the fame, and confequently Equal. L.E.D.

The Problem propos'd by M. Comier, (with Oftentation enough) as if it contain'd fomething New, tho' in reality it be nothing but the Old Bufinefs of Doubling the Cube a little difguis'd, is eafily folv'd Algebraically, as follows.
16. 6. E, Fig. 6.

(10)

รี웅, 80

The Sipuaring of she Hyperbola, by the L. Vifcount Brounker.
n. 34 . p. 6450

Fig. 9.
III. Let $A \cdot B$ be one Afymptote of the Hyperbola $E d C$; and let $A E$, and BC , be parallel to th2 other : Let alfo A : E , be to BC , as 2 to r ; and let the Parallelogram A B D E, be equal to i.
Suppofing the Reader knows, that $E A, \alpha \zeta, K H, \beta n, d \theta ; \gamma \mu, \delta \lambda, \varepsilon \mu$, C B, \&ec. are in an Harmonick Séries, or a Series Reciproca-Primanorum, Seut Arithmetice Proportionalium, (orherwife he is referr'd for Satisfaction to Aritbm. Infinitor. Willific, Prop. $87,88,89$, \&c.) I fay,
$\mathrm{ABCDEA}=\frac{I}{I \times 2}+\frac{I}{3 \times 4}+\frac{1}{5 \times 6}+\frac{1}{7 \times 8}+\frac{I}{9 \times I D}$, \& IC E аСDE $=\frac{1}{2 \times 3}+\frac{1}{4 \times 5}+\frac{1}{6 \times 7}+\frac{1}{8 \times 9}+\frac{1}{10 \times 11}, 8 \mathrm{c}$ EdCyE $=\frac{1}{2 \times 3 \times 4}+\frac{1}{4 \times 5 \times 6}+\frac{1}{6 \times 7 \times 8}+\frac{1}{8 \times 9 \times 10}$, \&c. in infinitum.

For (in Fig. IO. and II.) the Parallelograms.

Note. $\quad \frac{1}{2} \mathrm{CA}=d \mathrm{D}+d \mathrm{~F}$
$a r-\frac{1}{2} d \mathrm{D}=b r+b n$
$\frac{3}{2} d \mathrm{~F}=f \mathrm{G}+f k$
$\frac{2}{2} b r=a q+a p$
$\frac{1}{2} b_{n}=c s+c m$
$\frac{1}{2} f \mathrm{G}=c t+c t$
$\frac{1}{z} f k=g a+g b$ \&c.
And that therefore in the firt Series half the firf Term is gueater than the Summ of the two next, and half this Summ of the Second and Third greater than the Sumin of the four next \ddagger and half the Summ of thofe Four, greater than the Summ of the next Eight, ${ }^{\frac{x}{2}} \mathrm{E}_{\mathrm{i}}$. in infinitum. For $\frac{1}{2} \frac{1}{d} \mathrm{D}=b_{r}$ $+b n$; but $b n>f \mathrm{G}$, therefore $\frac{1}{2} d \mathrm{D}>b_{r}+f \mathrm{G}, \mathcal{G}^{c} c$. Andini the fecond Series, half the fecond Term is le's than the Summ of the two next, and thalf this Sumn lefs than the Summ of the four next, Eec. in infuitum.

That the firt Series are the even Terms, vir. the $2 \mathrm{~d}, 4 \mathrm{th}, 6 \mathrm{th}$, Sth, I oth, Ge.
and the fecond the odd, vir. the ift, $3 \mathrm{~d}, 5$ th, 7 th, 9 tin, \mho_{c} c. of the following Series, viz. $\frac{1}{1 \times 2}, \frac{1}{2 \times 3}, \frac{1}{3 \times 4}, \frac{1}{4 \times 5}, \frac{1}{5 \times 6}, \frac{1}{6 \times 7}$, sic. in infinitum $=\therefore$ Whereof a, being put for the Number of Terms takein at Pleafure, $\frac{1}{a^{2}+a}$ is the laft, $\frac{a}{a+1}$ is the Summ of all thofe Temm from the Beginning, and $\frac{1}{a+1}$ the Summ of the relt, to the End.
That $\frac{1}{\hbar}$ of the firft Term in the third Series, is lefs than the Summ of the two next, and $\frac{1}{4}$: of this Summ lefs than the Summ of, the four next, and $\frac{1}{4}$ of this laft Sunmm lefs thian the next cight, I thus Demonftrate.

Let a, be equal to the Third or Latt Number of any Term of the firf Columin, viz. of Divifors;

$$
\begin{aligned}
& \frac{1}{a x-1-1 x a-2}=\frac{1}{a^{3}-3 a^{2}+2 a}=\frac{16 a^{3}-48 a^{2}}{16 a^{6}-96 a^{5}+23^{2} a^{4}} \\
& \frac{-56 a-24}{-288 a^{3}+184 \cdot a^{2}-48 a}=A . \\
& \frac{1}{2 a \times 2 a-1 \times 2 a-2}=\frac{1}{8 a^{3}-12 a^{2}+4 a} \\
& \frac{1}{2 a-2 \times 2 a-3 \times 2 a-4}=\frac{1}{8 a^{3}-36 a^{2}+52 a-24} \\
& \frac{16 a^{3}-48 a^{2}+56 a-24}{54 a^{6}-384 a^{5}+880 a^{4}-960 a^{3}+496 a^{2}-96 a}=\text { B } \\
& \frac{64 a^{6}-384 a^{5}+928 a^{4}-1152 a^{3}+736 a^{2}-192 a}{64 a^{6}-384 a^{5}+880 a^{4}-960 a^{3}+496 a^{2}-96 a} \times \mathrm{A}=\mathrm{B}:
\end{aligned}
$$

And $48 a^{4}-192 a^{3}+240 a^{2}-96 a=$ Excefs of the Numerator: above the Denomirator.

But the Affirmat. $>$ the Negat.

Becaufe $a^{4}+5 a^{2}>4 a^{3}+2 a\{$ if $a>2$.
$a^{3}+5 a>4 a^{2}+2$
Therefore $\quad B>\frac{1}{4} \mathrm{~A}$.
Therefore one Fourth of any Number of A, or Terms, is lefs than their fo many refpective B; that is, than twice $f 0$ many of the next Terms. Q E: D.

By any one of which three Series it is not hard to Calculate, as near as you pleafe, thefe and the like Hyperbolic Spaces, whatever be the Rational Proportion of A E, to B C. As for Example; When A E, is to BC, as 5 to 4. (Whereof the Calculation follows, after that where the Proportion is, as 2 to I ; and both by the Third Serics.)

Firft then, when (in Fig. 9.) A E: B C:: $2:$ r.
Fig. 90

$$
\begin{aligned}
& 2 \times 3 \times 4) \text { I. (0.04r6666666]0.0416666666 } \\
& \begin{array}{l}
\left.\begin{array}{l}
4 \times 5 \times 6) \text { I. }(0.0083333333 \\
6 \times 7 \times 8) \text { I. }(0,0029761904
\end{array}\right\} \text { 0.OII } 3095237
\end{array}
\end{aligned}
$$

$32 \times 33 \times 34)$ I. $(0.0000278520$
$34 \times 35 \times 36)$ 1. $(0.0000233426$
$36 \times 37 \times 3^{8}$) r. $(0.0000197566$
$\left.3^{8} \times 39 \times 40\right)$ 1. $(0.0000168691$
$40 \times 4.1 \times 42)$ I. $(0.0000145180$
$42 \times 43 \times 44)$ I. $(0.0000125843$
$44 \times 45 \times 46$) 1. (o.0000109793
$46 \times 47 \times 48)$ м. $(0.0000096361$
$48 \times 4.9 \times 50)$ I. $(0.0000085034$
$50 \times 51 \times 52)$ I. $(0.0000075415$
$52 \times 53 \times 54)$ I. $(0.0000067$ I93
$54 \times 55 \times 56)$ 1. $(0.0000060125$
$56 \times 57 \times 58)$ I. $(0.0000054014$
$58 \times 59 \times 60)$ I. $(0.0000048704$
$60 \times 61 \times 62)$ I. $(0.0000044068$
$62 \times 63 \times 64)$ I $-(0.0000040 .002$

(14)

2. 0416666666
0.0113095237
3. 0029019589
-. 0007306482
3) $0.0001829939(0.000060998 \mathrm{a}$
\(\begin{array}{r}0.05679179

+

\hline\end{array}\)| 0.00006100 |
| :--- |
| 0.05685279 |$<\mathrm{EdCy}$

But 0. 0007306482?
-. 0001829939$\}$
Therefore 0.05679179
$+0.00004583$
$+0.00001528$
$0.05685290>\mathrm{EdC}$

For, it has been Demonitrated, That $\frac{1}{4}$ of any Term in the laft Column is lefs than the Term next after it; and therefore that $\frac{2}{3}$ of the laf Term, at which you ftop, is lel's that the remaining Terns; and that the Total of thefe is lefs than $\frac{4}{3}$ of a Third Proportional to the two laft.

And therefore ABCyE being $=0.75$

Fig. 90 But when $\mathrm{A} E: \mathrm{BC}:: 5$; 4 ; or as $\mathrm{E} A$, to $\mathrm{K} H$; then will the Space A B C E, or now, the Space $A \mathrm{HKE} \cdot\left(\mathrm{AH}=\frac{1}{4} \mathrm{~A} \mathrm{~B}\right)$ be found as
follows.

(15)

- 0.0013888888

0. 000350447^{2}
3) $0.0000878204(0.0000292735$
0.0018271564
0. 0000292735
$0.0018564299<E a b$
But 0.0003504472
1. 0000878204
0.00002200737

Therefore 0018271564
$+0.0000220074$
$+0.000007335^{\circ}$
0. $0018564996>$ E ?

$$
\begin{array}{rl}
\text { Therefore EMU (Fig. I2.) Being }=0.025 & 0.025 \\
E a b>0.0018564299 \&<0.0018564996
\end{array}
$$

$\mathrm{AHKE}<\underline{0}, 22.314356,1 \geq 0.223543491$

$$
\begin{aligned}
\text { Therefore } 3 \mathrm{ABCdE} & =2.079441 .54 \\
\text { and } \mathrm{AHEE} & =0.223 \mathrm{I} 435
\end{aligned}
$$

$\triangle \mathrm{BC}$ d (when AE: BC. 10 . H) $=20258$ in to the Log of 2 , As. 2.302595 to $0,693147$.
IV. The Quadrature of the Circle, or the turning it into an equal Square, The Quadrature
 to the Square of its Diameter; or of the Circumference to its Diameter) may coll, n. $7,0.204$. be undertood to be Fourfold, to wit, either by Calculation, or by Linear Confruction; And each of them again may be either perfectly exact, or ellie almoit, or pretty near. The Quadrature by Accurate Calculation, I call the Analytical; That which is done by Accurate Conftruction, 1 call the Geometrical : That which is done by Calculation pretty near, I call the Approach; That which is by Conitruction pretty near, I call the Mechanical.

Tore Approaches have been furtheft carry'd on by Luddolptivan Ceulen; Feta, Hugorius, and others, have given leveral Mechanical. The Accurate Geometrical Conftuction may be had, by which not only an entire Circle may be rieafur'd, but any Section or Arch of it aifo, which is by an exact and ordinate Motion, but fuck notwithftanding as fuits with Tranfendental Curves, which z
which erroneoully are accounted Mechanica!, tho' in truth they are as Geometrical as thofe which are commonly fo efteem'd, tho' they are not Algebraical, nor can be reduced to Equations Algebraical or of certain Degrees, they having Degrees proper to themelves, which tho they be not Algebraical, are yet neverthelefs Analytical.

The Analytical Quadrature, or that which is made by Accurate Calculation, may be again fubdivided into Three Kinds; namely, into the Analytical Tranfcendent, the Algebraical, and the Arithmetical. The Analytical Tranfcendent is to be obtain'd, amongtt others, by Equations of Degrees indefinite, hitherto confider'd by none. As if $X \mathbf{x}+X$, be equal to 30 , and X, be fought, it will be found to be 3 ; becaufe $3^{3}+3$, is $27+3$, or 30 .

The Algebraical is done by Vulgar Numbers, 'tho' irrationally, Vulgar, or by the Ruots of common Equations, which for the General Quadrature of the Circle, or its Sectors, is indeed impolfible. Now there remains the Arithnetical Quadrature, which is performed by certain Series exhibiting the Quantity of the Circle exact by a Progreflion of Terms (firft) Rational, fuch as I fhall here prapound.

I have found therefore, that if the Square of the Diameter be put 1 , the Area of the Circle will be $\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}$ $-\frac{15}{15}+-\frac{1}{17}$, E 3 . To wit, the entire Square of the Diameter being diminifhed (that it may not be too big) by a third part; and again (becaufe hereby too much is taken away) being augmented by one fifth; and again (becaufe by this laft too much is added) diminifhed by one feventh; and fo onward continually.

> And the firft Quantity will be too great, vi-2. I. but the Er- $\} \frac{1}{3}$ ror will be lefs than

$$
\text { The next too little, viz } I-\frac{1}{3} \text {, but the Error will be lefs than } \frac{1}{5}
$$

The 3 d too much, vir. $1-\frac{1}{3}+\frac{1}{5}$, but the Error will be $-\frac{1}{7}$
The 4 th too little, viz. I $-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}$, but the Error, GO $=\frac{1}{9}$

The whole Series contains all the Approaches together, or the Values both greater than they ought to be, and lefs than they ought to be. So that by continuing the Series, the Ertors may be made lefs than the Fraction given, and confequently lefs than any Affiguable Quantity. Whence it follows, that the whole Series muft give the true Value. And tho the Summ of the whole Series cannot be express'd by one Number, and that the Series be infinitely continued : yet becaufe it confifteth of one regular Method of Piogreftion, the whole may fufficiently enough be conceived by the Mind. And if Van Ceulenicould have given a Rule by which his Numbers 3 I4 59, \&c. could have been continued in infinitum, he would have given us the Arithmetical
metical Quadrature exact in whole Numbers, which we have here dome in Fractions.

There are feveral things relating to thisQuadrature, which might be takenNotice of, efpecially one, viz. That the Terms of this our Series $\frac{1}{5}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}$, ® $_{4}$. are of Harmonical Progreffion, or in a continued Harmonical Progreficon, as will be evident to any one that fhall examine them. Aud a Series made by Skipping, as $\frac{1}{1}, \frac{1}{5}, \frac{1}{9},-\frac{1}{13},-\frac{1}{17}$, ©c. is alfo of Harmonical Progreflion. And $\frac{1}{3}, \frac{1}{7}, \frac{1}{11}-,-\frac{1}{15}-, \frac{1}{19}-$, Ec. is alfo a Series of Harmonical Proportionals. Wherefore fince the Circle $\frac{1}{1}+\frac{1}{5}+\frac{1}{9}+\frac{1}{13}+\frac{1}{17}-$
 Series from the former partial Series, the Circle will be the Difference of two Series in Harmonical Progreffion. And becaufe the Summ of any Number of Terms in Harmonical Progreffion, how many foever, may by fome Compendium te obtained; hence Compendious Approaches (if after Van Coulen there be any need of them) may be be deduc'd, if one would in this our Series take out the Terms affected with the Sign \rightarrow, by adding the two next into one, $+\frac{1}{1}-\frac{1}{3}$, and $+\frac{1}{5}-\frac{1}{7}$, and $+\frac{1}{9}-\frac{1}{11}$, and + $-13-\frac{1}{15}$, and $+\frac{1}{17}--_{19}^{1}$, and fo onward, he will have a new Series for the Magnitude of the Circle, nanely $\frac{2}{3}$ (that is $\frac{1}{1}-\frac{1}{3}$) $+\frac{2}{35}$ (that is $\left.\frac{1}{5}-\frac{1}{7}\right)+\frac{2}{99}\left(\right.$ that is $\frac{1}{9}-{ }_{11}^{1}$) © C. Wherefore

The Square infcribed being $\frac{1}{4}$
The Area of the Circle fhall be $\frac{1}{3}+\frac{1}{35}+\frac{1}{99}+\frac{1}{195}+\frac{1}{323}$, \mathcal{E}^{1} c.
But the Numbers $3,35,99,195,323$, © c. by skipping are taken out of the Series of Square Numbers, $4,9,16,25$, ङc. diminihhed by an Unite, and fo made the Series $3,8,15,24,83$. out of the Members of which Se ries every fourth after the firft, is a Number of this our Series. But I have found (which is worth noting) the Summ of this Infinite Series $\frac{1}{3}+\frac{1}{8}$ $+\frac{1}{15}+\delta^{c}$. to be $\frac{3}{4}$. Nay, and by culling out by fingle Skipping, as ${ }_{3}^{1}+\frac{1}{15}+\frac{1}{35}$, Uc. the Summ of this Infinite Series makerh $\frac{2}{4}$ or $\frac{1}{2}$. But if out of this again another Progreffion be culled out by fingle Skipping, as $\frac{1}{5}+\frac{1}{35}+\frac{1}{99}, \delta^{3}$. the Summ of that Infinite Series fhall be the Semicircle, the Square of the Diameter being I. Now becaufe by the fame Means Vol. I.

D
the Arithactical Quadrature of the Hyperloin is obtain'd, I thought it not amifs to reprefent to View the whole Harmony.

the Circle A BCD, whofe Incribed Square is
the Hyperbola C BE H C, whofe Power ABCD, is $\} \frac{1}{4}$.
Fig. 13.
To the Afymptotes AF, AE, at Right. Angles to each other, let there be defrribed the Curve Line of an Hyperbola GCH, whofe Vertex is C; and $A B C D$, the Power or Square to which every Rectangle made of the Ordinate, as EH , and the intercepted part AE, is always equal. About this Square let a Circle be drawn, and let the Hyperbola be continued from C to H , fo that $A E$ be double to $A B$. Then putting $A \cdot E$ to be $I, A B$ fhall be $\frac{1}{2}$, and its Square ABCD , fhall be $\frac{\mathbf{x}}{4}$, and the Circle (whofe Power ABCD is inferibed) fhall be $\frac{1}{3}+\frac{1}{35}+\frac{1}{99}$, छ'c. but the portion of the Hyperbola C B EHC (whofe Power infcribed is the fame Square ${ }_{4}^{1}$) which reprefents the Logarithm of the Ratio of $A E$, to $A B$, (or of 2 to I) fhall be $\frac{1}{8}+\frac{1}{48}+\frac{1}{120}$, © c.

Tangentrs to all Grometrical Curves; byRenasus Fran. Slufius. n. 90. P. 5143.

Lig. 14 '
V. 1. Data fit qurelibet Curva DQ , cujus puncta omnia referantur ads Rectam quamlibet datam EAB;-per Rectam DA; five EAB fit Diameter feu alia quælibet, five etiam alix fimul linex datæ fint, qux, vel quarum poteftates, Requationem ingrediantur ; parùm id refert.

In Fiquatione Analytica, facilioris explicationis caufâ, $\mathrm{D} \cdot \mathrm{A}$ perpetuò dicatur $v, \& B A, y ;$ E B. verò \& aliæ quantitates datæ, Confonantibus exprimantur.

Tum fupponatur ducta DC, tangens Curvam in D, \& occurrens E B, productx, fi opus fit, in puncto $\mathrm{C} ;$ \& CA perpetiò quoque dicatur a. Ad. inveniendam A C, vel a, hæc erit Regula Generalis;
I. Rejectis $a b$ Equatione partibus in quibus y vel v non invenitur; ftatuantur ab uno latere omnes in quibus eft y, \& ab altero illæ in quibus habetur v, cum fuis fignis + vel -.. Hoc dextrum, illud fmiftrum latus, facilitatis caufâ, vocabimus.
2. In latere dextro, prafigatur fingulis partibus exponens poteitatis quianz in illis obtinet v; feu, quod idem eft, in illumr ducantur partes.
3. Fiat idem in latere finiftro, praponendo fcil. unicuique illius parti Exponentem poteftatis quanh in illa habet y. Sed \& hoc amplius : unum y in fingulis partibus vertatur in a.
Aio, 危quationem fic reformatam modum oftendere ducendx Tangentis ad punctum D datum. Curn enim eo dato, pariter date fint $y \& v$, $\&<$ cxterx guantitates, que Confonantibus exprimuntur, a non poterit ignorari.
Si quid fortè fit obfcuritatis in Regulâ, aliquot Exemplisis illuftrabitur: Data fit hxe 肧quatio, $b y-y y=v v$; in qua EB fit $b ; \mathrm{BA}, y ; \mathrm{DA}, v ; \delta 0$ quaratur a, five AC , talis ut juncta DC , tangat Curvam DQ in D . Ex Regula, nihil rejiciendum eft ab hac Æquatione, cùm in fingulis ejus partibus reperiatur y vel v. Ita quoque difpofita eft, ut ab uno latere fint omnes illius partes in quibus ; ab altero, omnes in quibus v. Singulis itaque tantum prafigendus elt Exponens poteftatis, quam in illis habet y vel v; \& in latere finiftro unum y vertendum in $a s$ ut fiat $b_{a}-2 y a=2 v v$. Aio nuic, hanc Æquationem oftendere modum ducendx Tangentis ad punctum D, five $a=\frac{200}{b-2 y}=\mathrm{AC}$.

Sic fil data fuiffer Æquatio, $q q+b y-j y=v v$; eadem planè fieret cum priori Æquatio pro Tangente, abjecto fcil. qq, ut Regula prexcribit.

Sic ex $2 b y y-y^{3}=v^{3}$ fit $4 b y a-3 y y a=3 v^{3}$, five $a=$
$\frac{3 v^{3}}{4 b y-3 y y}: \operatorname{Ex} b b y+z y y+y^{3}=q v^{2} v$, fit $b b a+2 z y a+$ $3 y y a=2 q v v, \& a=\frac{2 q v v}{b b+2 z y+3 y y}: \operatorname{Ex} 64+b y^{3}-y^{4}$ $=q q v v+z^{3}$, fit $3 b y y a-4 y^{3} a=2 q q v v+3 z v^{3}, \&$ $a=\frac{2 q q v v+3 z v^{3}}{3 b y y-4 y^{3}}$.

Verùm in fimilibus Æquationibus nullam arbitror accidere poffe difficultatem. Aliqua fortaffe in illis occurrit, quarum partes quadam conttant ex productis y in $v:$ Ut $y v, y y v, y^{3} v v, \mathcal{\Xi}^{c}$. Sed hxc quoque levis eft, ut Exemplis patebit. Detur enim $y^{3}=b v v-y v \%$. Nihil ab illa rejiciendum erit, cum in fingulis ejus partibus reperiatur y vel v :

Sed ut ex Regulx prafcripto difponatur, bis fumendun erit $y v v$, \& ftatuendum tàm in latere dextro, in quo funt partes qux habent v, quàm in finiftro, cujus partes habent y; quandoquidem $y v v$, tàm y quàm v contineat. Faciendum igitur erit $y^{3}+v, y=b v v-y v v$. Tum mutatâ, ut priùs, hâc. Equatione in aliam $3 y y a+i v a=260 v-2 y 0 v_{2}$ dabitur $n=\frac{2 b v^{*} v-2 y v v}{3 y y+v z}$

(20)

Ita enim intelligenda ef Regula, ut nempe in latere finiftro non confideretur poteftas ipfus v, idcoque ipfi $y v v$, Exponens $v v$, preffigi non debeat, fed tantum iplius y : Sicut contra abalio latere, in $y v v$ confiderari non debet poteftas ipfius $\%$, fed v tantum, eique fuus Exponens proponi. Sic fi foret y^{s} $+b y^{4}=29 q v^{3}-y y v^{3}$, faciendum effet $y^{5}+b y^{4}+v^{3} y y=$ ${ }^{2} q q 2^{3}-y y v^{3} ; \&$ haberetur 疋quatio pro Tangente $5 y^{4} a+4 \cdot b y^{3} a$ $+20.3 y a=6 q q v^{3}-3 y y v^{3} \& a=\frac{6 q q y^{3}-3 y y v^{3}}{5 y^{4}+4 b y^{3}+2 v^{3} y}$.

Atque his Exemplis arbitror, me omnem, qux dari poffer, Cafuum varietatem complexum efle. Coterum non erit fortaffe inutile, fr ea quæ generatim expofui, ad lineam aliquem fingularem applicem. Data fit igitur ${ }^{\circ}$ Curva
Fig. ${ }_{5}$. B D , cujus eatit proprietas, ut fumpto in illa quolibet puncto $D_{;}$, fi jungatur$B D$, \& erigatur ad illam normalis DE, occurrens rectx $B E$ in E, recta DE fit femper æqualis datæ rectæ BF. Ut habeatur Æiquatio in terminis Analyticis, fit $\mathrm{DA}=v, \mathrm{BA}=y, \mathrm{BF}$ vel $\mathrm{DE}=q$. Erit itaq; $\mathrm{EA}=\frac{v v}{y}$. Et cum quadratum DE reguale fit duobus DA, AE; erit Equatio $q q=$ $\frac{v^{4}}{y y}+v v$; five $1 q y y=v^{4}+y y v v$; qux pro Tangente ex Regule prefcripto, fic reformanda crit, $1 q y y-v v y y=v 4+y y v v, \& 2 q q y a$ $-2 v v y_{a}=4 v^{4}+=y y v, \& a=\frac{4 v^{4}+2 y y v v}{2 q q y-2 v v y}$.

Quomodo autem Fquationis hujufmodi ad faciliores terminos pro conftruct one reduci debeant, id fanè folerteni Geometram minimè latebit. Llt ecce in hoc exemplo, quoniam Rectangulum B AE fupponitur roquale Quadrato A D, $\mathrm{f}_{1} \mathrm{EA}$. dicatur c, erit $v v=y c, \& v 4=y y c c, \& q q=y c+c c$. Itaq; pro illis, poito in Squatione corum valore, fit $a=\frac{4 y y c c+2 y^{3} c}{2 \varepsilon c y+2 c y y-2 c y y}$, five $t=\frac{2 c y+y y}{c^{c}}$, hoc eft, $a c=2 c y+y y$ \& addito $c e$ utrinque $a c+c e$ $=e c+z c y+y y$. Erant itaque tres $c, c+y, c+a ;$ five E A, E. B, E C , in continua analogia, \& facilima evadet conftructio.

Cxterum quoniam hictenus fuppofuife videmur, Tangentem verfus partes B ducendum effe, cùn tamen ex datis accidere poffit, ut vel paraliela fit ipfiA B; vel etiam ducenda ad partes contrarias; definiendum nunc fuperelt, quomodo hxc cafuum diverfitas in Æquationibus diftinguatur, factâ igitur Fra©tione pro a, ut in Exemplis fuprà adductis, confiderandx funt partes tàm Numeratoris quàm Denominatoris, \& earum Signa.

1. Nam fi in utroque, partes vel habeant omnes Signum + , vel faltem: Affirmatæ prevaleant Negatis, ducenda erit Tangens verfus B.
2. Si Affirmatæ prevaleant Negatis in Numeratore, fed æquales fint in Denominatore, recta per D ducta, parallela $A B$, tanget Curvam in D : hoc enim in cafu, a eft infinitæ longitudinis,

(21)

3. Si tàm in Denominatore, quàm Numeratore, partes Affirmatre minores funt Negatis; mutatis omubus Signis, ducenda erit rurfus Tangens verfus B: hic enim Caftis cum primo in idem recidit:
4. Si in Denominatore prævaleant, in Numeratore minores fint, vel contra; mutatis Signis illius in quo funt minores, ducenda erit Tangens verfus partes contrarias, b. c. A C fumenda erit verfus E .
5. Ac tandem f_{1} in Numcratore partes Affirmate fint x quales Negatis, quomodocunque fe habeant in Denominatore, a abibit in nihilum. Itague vel ipfa AD erit Tangens, vel ipfa E A, aut ei Parallela; quod ex datis facilè dignofcitur. Horum autem Cafuum Varietas explicari poteft per Æquationes ad Cisculum.

Sit enim Semicirculus, cujus Diameter E B, \& in eo punçtum D datum; ex quo cadat Normalis $\mathrm{DA}=v$. Sit $\mathrm{BA}=y, \mathrm{BE}=b$; crit Fqquatio $b y$ $-y)=v v$, \& ductâ Tangente DC , erit $\mathrm{A} C$, five $a \frac{2 v \geqslant}{b-2 y}$ Nunc fi 6 majoi fit $2 y$, ducenda ef Tangens verfus B; fi æqualis, fit Parallela E B; fin autem minor, ducenda eft verfus $\mathrm{E} ;$ ut $n . \mathrm{I}, 2, \& 4$. diximus.

Detur rurfus alius Semicirculus inverfus, cujus puncta referri intelligantur ad rectam Diametro parallelam, \& eidem æqualem, ut in Schemate. Denominatis, ut priuss partibus, \& N B $=d$, fit Equatio $b y-y y=d d$, $+v v-2 d v$. Igitur $A C$, five $a=\frac{2 v v-2 d v}{b-2 y}$. Cùm verò in Ex emplofuppofuerimus, "femper effe minorem d; fi b fit major $2 y$, ducenda. eifir Tangens verfus E; fi xqualis, erit parallela; fin minor, mutatis omnibus Signis, ducenda erit verfus $\mathrm{B} ;$ ut $n .4,5, \& 3$. Nulla autem ducenda. effet Tangens, feu Tangens foret ipfa EB, fi fuppofuiffemus NB æqualem Semidiametro, five $2 d=b$; ut $n .5$.

Sit tandem alius Semicirculus, cujus Diameter N B normalis fit ad Rectam
Fig. 16.

Fig. 1/.

Figo 18, $B E$, ad quam ejus puncta referri intelligantur. NB dicatur b_{2} \& alix partes demminentur ut fiprá; fiet Aquatio yy $=b v-v v ; \& a=\frac{b v-2 v v}{2 y}$ Jam fi. b fit major. $2 v$, Tangens ducenda erit verfus B; fi minor, verfus E;' C1autem æqua is, ipfa D A erit Tangens; ut $n .1,4, \& 5$:

Et hæc eft, ni fallor, Cafuum omniug Varietas, qure ex Equationum confideratione deprehendí poteft.?
2. (I.) Differentia duarum dignitatum ejufdem gradûs applicata ad diffe- The Lemmita rentiam laterum, dat partes fingulares gradû́s inferioris ex binomio laterum; ut $\frac{y^{3}-x^{3}}{y-x}=y^{3}+y x+x x$ Quod facile oftenditur ceding Metbod is demonftrated, by M. Slufius. n. 95.5 .p. 6059.3
(2.) Tot funt partes fingulares ex binomio in gradu quolibet, quot unita- ${ }^{\text {n }}$-97. \&. 61260 tes habet Exponens dignitatis inmediate fuperioris; tres nimirum in Quadrato, quatuor: in Cubo, Ěc. Et hoc vulgò notum.

(22)

(3.) Si quantitas cadem applicetur ad duas ailiss, quarum ratio data fit, Quotientes crunt reciprocè in eadem- rationte data.

His Lemmatibus Methodus mea facilè ámonitratur, cirm eo ordine difpofita fint, qui ad illam quafi manu dạcit.

The Teftudo Veliformis Quadrabilis Enigmatically propos'd by V.V.

VI. I. A N I G M A Geonetricim, De miro Opificio Tofudinis Quadrabilis Hemiftherice, à D. Pio Lifci Pufillo Geomerra propogitum.

Inter Venerabilia Eruditx olim Grecix Monumenta extat adhuc, pérpetuò equidem duraturum, Templum Augutilimum Ichnographia Circulari, Alme Geometrie dicatum, quod, à Teftudine intus perfectè Hemifiharica, operitur : fed in hac, Feneftrarum quatuor æquales Arex (circum, \& fupra Bafin Hemifpherx ipfus difpofitarum) tali Configuratione, Amplitudine, tantâque Induftriâ, ac Inge:ii acumine funt extuctax, ut, his detractis', fuperftes Curva Teftudinis Superficies, pretiofo Opere Mufivo ornata, Tetragonifmi verè Geometrici eft capax.

Quxritur modo, Qux fit, Quâ Methodo, Quâve Arte, Pars illa Hemifphericæ Superficiei Curvæ Quadrabilis, Tenfi ad intar Carbafi, vel Turgidi Veli Nautici, ab Architecto illo Geometra fuerit affecuta ? \& cui demum Plawo Geometricè Quadrabili fit æqualis?

Solv'd by Dr. Wallis, ibid. p. 587.
2. Accepi, V. C. nudius tertius (noctu decubiturus) Litera's tuas quibus heri non vacabat, aliàs occupato, refpondere, eifque inclufam Chartulam, $T y$ pis impreffam, quam ais Florentiâ te accepiffe mihi mittendam.

Continet ea Chartula Ænigma Geometricum, quod (verborum involucris exemptum) hoc innuere judico Problema ; Ab Hxmifpherii curva Superficie, Segmenta quatuor inter fequalia fic amputare, ut reliquum fit Tetragonifmi capax.

Simulque videtur innuere, in veteris Grecix Monumentis etiamnum extare quidpiam quo illud fiat.
Hoc effe exiftimo Hippocratis Chii Quadraturam Lunulx.
Quippe cưm "Atchimedes demonftravit, Curvam Hemifphxrii Superficiem equalem duobus Circulis ejufdem Sphxræ maximis, (id eft quatuor Semicirculis;) docuitgue Hippocrates Chius Lunulam quadrare quandam: Si fingulis Hemifphxrici hujufce Fornicis Quadrantibus tantundem eximatur, quanto deficit à Semicirculo ea Lunula, Reliquum æquabitur Quadrato, quod Circulo Sphæræ maximo (cui hic infiftit Fornix Hemifphxricus) Infribatur:

Si tamen prater たnigmaticam Problematis Involutionem, fubfit: aliquid (de Templo) Hiftoricum ; putaverim ego S. Sophix (quod eft Conftantinopoli) Templum hic infinuatum:

SCHOLIVM.] Per Hippocratis Chii Quadraturam Lunulx (prino Phyficorum Ariftotelis \& Simplicii in eum locum Commentaris, indicatam,)
Iis. 19. Si Semicirculo A B D , in duos Quandrantes ACD, BCD divifo, aptetur "A D Subtenfa Quadrantalis Arcus, Radio CE bifecta in H: \& Centro H feribatur Semicirculus A DF : Erit (propter Quadratum Rectx AD Subduplum Quadrati Rectx A B) Semicirculus A DF Subduplus Semicircuii A B D; adcoque
adeoque Quadranti $A C D$ xqualis. Et (dempto utrinque communi Segnento A DE) refidua Linula A ED F refiduo Triangulo A D C xqualis. Talefque quatuor Linnulx, talibus quatuor Triangulis; hoc eft, Quadrato toti Circulo infripto A D B G.
Porro, per Archimedis demonftrata, zquatur Spherrx Superficies, quatuor Circulis in ea Sphera Maximis ; Adeoque Hemipherrii Superficies Curva, talibus quatior Semicircultis ; talifque Superficiei Hemifpharicx Quadrans, uni Semicirculo.

Circulus A D B G efto jam Bafis Hemifpharicx Superficiei Curve ; cujus Polus P, Axis C P , plano Balis perpendicularis, ejufq; Quadrans unus D PA; qui Plano EPC per Axem tranfeunte, bifecetur.
Ponantur item (ob commodiorem Calculum) Circuli Radius R, Diamieter $\mathrm{D}=2$ R, Peripheria P, Expofitus Arcûs a.

Pofitoque Quadrantali Arcu DEA $=c=\frac{1}{4} \mathrm{P}$, eft Semicirculus A B D $=a \mathrm{R}=\frac{1}{4} \mathrm{R} \mathrm{P}$: Triangulum $\mathrm{ADC}=\frac{1}{2} \mathrm{R}^{2}=\frac{1}{4} \mathrm{RD}$; reliquumq; Semiciculi (dempto hoc Triangulo) $\frac{1}{4} \mathrm{RP}-\frac{1}{4} \mathrm{RD}$; cui x equale atiferendum eft ex D P A (Quadrante Superficiei Hemilpharicie Curvx, xquali Semicicculo - A B D) quo Refidurun xquetur Expofito Triangulo A DC.

Quod cum varis modis fieri polfít; per ea quæ nos dudum docuinintis Anno 1659. (ad Calcen Tractatûs de Cycloide, tum editi, p. 122. inferénda ad S. 68.) iterumq; Anio 1670 (in Tractatus: de Motu, Cap. V. Prop. 24.) de Figura Plana, requali cuivis in Superficie Spherica Figurx, Circulis quibulvis (five Maximis, five Minoribus) terminate. Sic fat fluplicifimé;
Cun' Superficici Sphericx Segmenta, Parallelis Planis. Abfíffa, fint Axis Segmentis proportionalia (quod de expofita quadrantalis Cunei Superfficie DPA pariter valet:) Si fumatur, in Axe CP , ut Semicirculuis: $\frac{1}{4} \mathrm{RP}$, ad Sernicirculum dempto Triangulo $\frac{-2}{4} \mathrm{RP}-\frac{1}{4} \mathrm{RD}$; hoc eft, we P ad $\mathrm{P}-\mathrm{D}$; fic CP ad CY: (five, quod tantundem eft, ut P ad D; fic CP ad P P:) Planum per Y Z Bafi parallelum, abfcindet hujus Superficiei Curvex portionem Polo adjacentem, æqualem Triangulu A D C. Quod cun in rexiquis Superficiei Curvx Quadrantibus, pariter fiats equabitur totum Abciflum (Polo adjacens) toti Quadrato Bafi infripro: Et fic Tenfum ut oportuit: L.E.F.
Vel fic brevius, Ef Hemifiphərii Superficies Curva (utpote duobus Circulis Maximis xqualis) = RP ; Quadratum Circulo Maximo infriptum $=2 R R=R D$; Illudque ad hoc, ut Pad D. Adeoque (propter Segménta Superficie Parallelis Planis abfifina, Segmentis Axis proportionalia) fumptis C P ad P Y, ut P ad D, eitit: tumb tora Superficies $=R P$, tum Portio ad Polum, plano Z. Y abfeiffa = RD, Quadrato Bafi inferipto. Q.E.F.

Si dicatur; Proceflum hic effe ex prefumpti Circuli Quadratura, aut ratione quam habet Circuli Périmeter ad Diamerrum: Id omnino verum. eft. Sed non ef objiciendum. Quia nion poftulat Enigma propofitum ut Hemirpherice Superficiei Portiones ab(ciffx, (quas Fenielras vocat) fed. ut Portio Superfes, fit Tetragonifni capax. - Et quidem fi utruimq; poftularet, poftularet Circuli Quadraturam abfolutè Geometricam ; quod haberi non poffe fatis conftat.
Opificium quod fecetat; fuper Bafem Planam, extral Bafem Hemifhharii poofitam, fed ipf. contiguan, cujus duo Latera in Angulum coëant ad A, intra

Fig. 19, protractas
protractus DA, GA Rectas, (quo Feneftrarum quas vocat utringue adjacentium liber profpectus pateat, non impeditus) extruatur Moles fatis firma ; ita quidem ut, affurgente Structurâ, promineat ejus acies, angulo fufful- ta, Circuli Arcum efficiens qualis eft $D Z$, ad altitudinem Y affurgens. Et fimiliter ad religuos Angulos D, B, G. Atque his denum Structuris (quafi totidem Columnis) ad eam: Altitudinem provectis, imponatur. Teftudo, fic intus excavata, ut ponit Hemifphærica Superficies ; Adeoque totum opus imperatum abfolvitur.

Aliter. Idem fiet fi, pro Quadrato Bafi infcripto, exponatur Quadratum quodvis $Q Q$, (quod minus fit quam Hemifphrerica Superficies curva). Quippe II fumatur, ut R P (Hemifpherica Superficies curva) ad $Q Q$ (expofitum Quadratum, fic) C P (Axis Hemifohærii) ad PY (Axis Portionem Polo adjacentem :) Planum Z Y (Bafi-parallelum) ab'cindet portionem Superficiei Sphæricx Tetragonifmi capacem: Utpote requalem expofito Quadrato QQ.

Idem fic aliter abfolvi poteft : fed majore folicitudine.
Cum fit (ut jam oftenfum eft) Hemifphæricæ Superficiei curvæ Quadrans D P. A æqualis Semicirculo ABD ; ejufque Segmenta Planis Bafi parallelis abfciffa, Segmentis Axis proportionalia: Sumatur in DP Quadrantali arcu, arcus P Q graduum 60 ; (quod mihi Cafwellus fuggerit) Polo P defcriptus Circulus QT S bifecabit Axem (propter Sinum Verfum grad. $60=$ $\frac{1}{2}$ R :) adeoque Quadrantem Hemifphericx Superficiei curvæ D P A dirimet in duo Segnenta inter fe æqualia. Quorum alterum, DQTSA Quadrilineum, xquat Quadrantem circularem BCD ; reliquumque Trilineum PQTS æquat Quadrantem ACD. Unde, fi porro auferatur QR S T Bilineum, xquale fegmento Circuli $A D E$: reliquum Trilineum $P Q R S$, xquabir A DC Triangulum. Taliaq; quatuor, in quatuor Quadrantibus Hemifphærii, xquabunt Quadratum Bafi infcriptum. Habebitur autem illud Bilineum per ea quæ nos dudum docuimus locis modọ citatis.

Idem univerfalius fic fiet.
Sumpto Q ubivis in Arcu $\mathrm{D} Z$, (nè major fit D Q quàm $\mathrm{D} Z$;) \& quanto deficit Quadrilineum DQTSA a toto auferendo, tantundem fuppleat Bilineum QRST: Reliquum xquabit ADC Triangulum.

Et quidem, fi fumatur Q in D (quo evaneffat Quadrilineum) fumendum erit Bilineum requale toti, auferendo. Sin fumatur Q in Z (ut Bilineo not fit opus) æquabitur Quadrilineum toti auferendo.

Eademqué omnia (de Quadrilineo \& Bilineo qux fimul compleant totum auferendum) pariter accommodanda erunt (mutatis mutandis) fi, pro Quadrato Bafi infcripto, fubitituatur Q Q Quadratum quodvis; ; quod totâ Superficie curva Hemifphærica non fit majus.

Poftquam hrec fcripta fuerant, erantque fub prelo, refcivi tandem huic eidem Problemati refponfum dediffe Cl. V. D. Leibnitz, illudque in Actis Lipficis comparere pro Menfe Junio, 1692 . Quod fecit ut Prelum fufflaminandum curaverim per aliquot feptimanas donec illud confpicerem; quod xgrè tandem obtinui: Videoque Cl . Virum juxta mecum fentire, non effe Problema Determinatum, fed mille modis (nedum infinitis) folubile.

(25)

3. Enigmatis hujus Author Problenatis tandem Conftrustionenn ingeniusè The Propofore's soadmodum \&t expeditè dedit in Tractatu Italico, de Formatione © Menfura Tefu- intion Demondinum omnium, ad Serenif. Etrurice Principem, ubi \& Nomen fuum profiteri dig- Ariaced, by br.D. natus eft, nempe à V. V. Poftremo Gallilai Difipulo, cum antea difpofitis nregory. horum verborum ut in Anagrammate elementis, fub ficto nomine D. Pio $\boldsymbol{e}_{\mathrm{i} c i}$ Pufillo Gcometra tectus latuiffet.

Ænigma verùm in fequens Problema ab Authore convertitur ; Super HemiSpherii fuperficiem, afignare portionem dato quadiato equalem: Quod fic conftruit.

Sphera cujus Axis xqualis lateri dati Quadrati exponatur per Circulum ACBD in propofita Sphæra verticalem, cujus Diameter Horizontalis eft AB, centrum E.. Perforctur Sphæra duobus Cylindris rectis quorum communes Sectiones cum plano ACBD funt Circuli BLEG, AHEI, diametris EB, E A defcripti. Dico factum; hoc eft à quolibet Hemifphærio v. g. Uuperiori $A C B$ ablatas effe per Cylindros perforantes quatuor Figuras bilinearcs, duas fcil. in parte antica \& duas in poftica x quales fimiles \& fimiliter pofitas, ita ut refidua fuperficies Hemifphrrica fit æqualis Quadrato rectæ A B. Et quoniam Hemifphærica Superficies, demptis fpatiis quatuor Bilinearibus prodictis, refert Velum vento Inflatum \& Tenfum, Teftudinemve Hemifphæricam quatuor Feneftris interruptam, quæ Circulari bafi AEB impofita, ipfi ad puncta A, E, E, B, innititur, hanc pro jure fuo appellat Toftudinem Veliformem Florentinam Quadrabilem.

Auctor deinceps in memorato Tractatu plurima ad Praxin attinentia profert, ut ope Torni \& Terebræ Cylindricæ tàm hujus quàm reliquarum quinque Teftitudinum fiant exemplaria: Atque in hanc rem alia quadam Problemata fubtilia conitruit quorum omnium demonftrationes ab Auctore confulto omiffæ facillimè ex nunc proferendis confequentur.

- Quod quatuor Feneftrx in Hemifphærio ut dictum eft extructx fint Figurex æuales fimiles \& fimiliter politæ fatis liquer, reliquum eft ut oftendamus reliquam fuperficiem Hemifphericam Tetragonifmi verè Geometrici effe capacem.

Ad planum C A D B, in puncto E, erigi intelligatur Normalis recta æqualis E. A, \& fuper Peripheriam A C B D fuperficies Cylindrica recta ejufdem Altitudinis. Vulgo notum eft portionem Superficiei Sphæricæ inter quælibet duo plana Circulo A B CD Parallela comprehenfam, xqualem effe portioni Superficiei Cylindricx inter eadem plana; \& horum Annulorum fimiles portiones refectas à planis in erectal ex E; Normali fe mutuo inter fecantibus effe etiam xquales. Si jam ducendo innumera plana Bafi A C B D parallela dicto modo defignari intelligantur in fuperficie Cylindrica partes refpondentibus Sphæricis æquales, quæ è regione Superficici perforatione ablatx defignatur illi $x q u a l i s$ elt. Quare patet refiduan à perforatione Superficien requalem efle refiduæ fuperficici Cylindricæ dempta illa quæ è Regione ablate per dieta innumera plana defignatur. Ducatur Diameter qualibet PM , fecans Peripherian A HE utcunque in H. Jungatur HA, per H ducatur R T normalis ad AB , \& parallela ad $C D$ per E ductam, occurrens Peripheria Vol. I.

(26)

A CBD in K \& T , \& Peripheriæ AIE in I. Super R T Diametro frat Semicirculus cujus Peripherix occutrant:HS, I Qad RT normales in S \& Q Hujus Semicirculi Planum intelligatur normaliter erectum ad Circulum ABCD . Unde Peripheria RSQT erit in Superficie Hemifphærica, reetaque HS nunc ad Planum A C BD normalis, erit Altitudo Superficiei Cylindricæ perforantis fupra Bafeos punctum H . Idenuq; de quolibet puncto fuperficiei $C y l$ indrice perforantis verum eft, fcil. ejus altitudinemufque ad Superficiem Sphæræ fupra. quodvis in Bari punctum H, effe rectam HS, ut dictum eft, genitam, fed HS xqualis eft H finui recto Arcus MA , quoniam tàm hæc quàm illa ef Media Geometrica inter P H \& H M, altera in Circulo MA P, altera in Circulo Sphxre etiam Maximo per puncta M, S, \& P, tranfeunte.
$S i$ in erecta in E ad planum A CBD normali, ab E fumatur recta æqualis. HS aut HA, \& ab extremo ejus punctoducantur rectx Parallelx ad P M \& \checkmark, , planum per illas extenfum erit ad Planum ACBD parallelum, \& rectx hx per puncta $S \& Q$ tranfibunt, \& producte ufque ad Superficiem Cylindricam Hemiphorio circumferiptam abfcindent ex lateribus Cylindri rectas ipfis $\mathrm{H} S$ vel H A itidem requales; comprehendentque Arcus requales ax refpondentes Arcubus MN \& V P. Quod fi alterum planum huic ad minimam diftantiam parallelum fimiliter ductum intelligatur, hæc dụo per fupra oftenfa defignabunt in Supericie Cylindrica annuli portionemxauaTem portioni inter eadem phana à Superficie Hemifphærica perforatione ablatz: Quod fi fimilis Conftructio fieri fupponatur ad quodlibet in Peripheria A HE, punctum portiones ommes in Superficie Cylindrica Hemifpherice circumicripta dicto modo genitæ \& defignatæeruntæquales Superficiei Sphæricæ perforationeablatx. Quare refidua Superficies Hemifphærica æquatis erit reliquæ fuperficiei Cylindricx conflate ex rectis omnibus HA ad refpectiva puncta $\mathrm{N}, \mathrm{N}, \mathrm{V}, \&$ Perectis, feu figurx fnuum ectorum Semiperipheviarum $A C B, A D B$, hoc eft, per dudum a Geometris cognita, quadruplo Quadrato Radii A, five denigue quadrato Dianetri AB. Cumque duæ integre Figure comprehenfx à communi fectione prodicto Superficiei Cylindricx perforantis cum SuperficieSphorica, rquales fint quatuor femilibus earundem, patet refiduam fupenficien Hemífhærican A C B, ablatis quatuor fpatiis Bilinearibus (ut fuprà in. Confructione) xqualem effe quadrato Diametri A B. O. E. D.

Si Semiperipheria A HE, ita inflectatur ut congruat cum xquali quądrante Peripherix A R C; punctum H incident in punctum M ob xquales Arcus AH, AM, \& HS altitudo ad H fuperficici Cylindricx fuper A HE infsftentis congruet cum æquali H A altitudine ad M Figuræ Sinuium rectorum: Cuper A M C erecter, idemgue in reliquis punctis fiet. Unde curva quæ eft communis interfectio Superficiei Sphæricæ cum Superficie Cylindrica fuper Baft AHE, quamvis non jaceat in eodem Plano inflexa, ut dictum eft, congruet, \& proinde xyualis eft curvæ terminanti figuram Sinuum rectorum; hoc eft communi Sectioni Superficiei Cylindricæ fupra Quadrantalen Arcum A R C crectre cum plano fecante planum Bafeos in recta B A ad Angulos femircctos; five quadranti cuivè Ellipfeos cujus minor Axis eft A B, major veno potef hujus duplum. Adeoque Perineter Veli Quadrabilis Florentini ex hugufmodi quatuor conftans xqualis, eft Pevimetro dicto Ellipfeos.

(27)

Sed \& hoc amplius adnotare non pigebit, Superficies Cylindrorum duorum perforantium intra Sphæram, æquales cfle Superficiei Sphæræ poft perforatiomem relictx, five duplici Velo Florentino, hoc eft duplo quadrato Diametri. Atque hoc exinde patet quod Velum Florentinum æquale fit Figuris quatuor finuum rectorum Quadrantis \& Superficies perforans iifdem etiam fit requalis, quoniam illis congruit fi inflectio fiat ut fuprá:

Hoc tantum addam, Confiderationem Figurx Sinuum rectorum (cujus etiam partes in Quadrata facile mutantur) fufficere ad Demonfrationem eo rum omnium qux de alis folidis Torno elaboratis vel Cylindro perforatis, corumque Supeificiebus' ab Acutifimo Geometra V. V. (Vincentio Viviani in fallor)' Dignillimo Galilæi Difcipulo proferuntur; dum Fabricam \& Menfuram Teftudinum docet.' Speciatim Superficies Teftudinis Scaphoidis Romanze [Volta a Scbifo alla Romana] ex oeto Figuris Sinuun' rectorum Arcus Qual drantalis conftat, ac proinde Teftudini Veliformi Florentinx xqualis eft. Unde patet quonodo æqualibus quadratis: fuperimponi poffunt duæ Teftudines, quarum altera eft undique claufa, altera quatuor Feneftris interrupta, utraque Quadrati Bafeos dupla.
VII. 1. Drawing the ftreight Lines $E A$, and $E B$ (cutting the Arc $A B$ in G_{0}) The Quadratare and on $A G$, a Perpendicular $E F$, (which win therefore pafs to the Center C, of the Parts of the becrufe Bifecting. A G at Right Angles;) the Right-lined Triangle AFE, is equal to $A D E$, the propofed Portion of the Lumula.

The Demonftration is to this purpofe, vin. ADB Being a Quadrantal Lunula, by Mi. des a hitio vary'd br Dr. J. Wallis. 11.259. Arc; the Angle A G B will be three Halves of a Right Angle; (and its conjunct Angle E G A, half a Right Angle) and that Angle (being externat to the Triangle A GE, is equal to the two oppofite Intervals GEA + EAG. Whereof G E A (becaufe an Angle in the Semicircle A E B) is a Right Angle, and therefore E A G is half a Right Angle, (as are alfo FE G, and FEA) and the three Triangles AFE, GFE, and GEA, each of them lialf a Square. And AG to AE, as $V 2$ to I, (proportional to the Refpective Radii of the two Circles). And the like Segments A D G, A E, in their refpective Circles (as the Squares of their refpective Radii) as 2 to I . And therefore the Semifegment AFD, equal to the Segment A.E. And confequently (one taking from the Triangle, as much as the other adds to it) the portion of the Lunula ADE, equal to the Triangle AFE. Q E. D:

If the Point E chance to be in K (the middle of the Arc A EB) there will be no Interfection at G (the points G, B being then coincident, but without any difturbance to the Demonftration :) If it happen beyond it, toward B, then G will be on the other fide; and what is here faid of $E G B$, muft be accommodated to E G A.

The Ground of the whole Process is plainly this; The Angle ACE, being an Angle at the Center of the greater Circle, butat the Circumference of the leffer, the Line CDE (as it pafleth from C A to C B) doth in the fame proportion, divide the Quadrantal Arc $A D B$, and the Semicircular $A E B$. whence all the reft doth naturally follow.

Fis. 24. as of thofe in the Semicircle AE B; and for the fane Reafons: As appears, in the Scheme annex'd, wherein I have mark'd the Points in the Semicircle A C B , (correfpondent to thofe of Mr. Perks in AEB, with the Correfpondent fmall Letters of the Reman and Greek Alphabets.

If Mr.Porks had made his Conftruction Univerfal by making both $E A$, and $E B$, meet with the greater Circle, (which he might have done by Prottacting thefe Lines and the greater Circle till they meet;) he might have found that the: portions of the Spaces $A \leq C M, B H C N$, (fuppofing MCN Parailel to A B) are Quadrable as wellas thofe of Hippocrates's Lunula: And that EA γ being a Itreight Line, the Portion AED of Hippocrates's Lumula, is to $A \in \delta$ (the Cor-refpondent of $A \in C M$) in duplicate proportion of $C \in$ to $A \varepsilon$. For $E R=\varepsilon$ (at R the Center of the leffer Circle) is in this Cafe, a Right Angle.

Moreover, If you take any Point s, in the Semicircle A C B, and proceed. according to Mr. Perks's Conftruction Univerfaliz'd as above faid; you will find on the one fide, the Trilineum $A=\delta$ (contained by the Arcs $A \varepsilon$, $A \delta$, and the ftreight Line $\varepsilon \delta$) equal to the Rectilineal Triangle $A \varepsilon \varphi$. And on the other fide, the Trilineum contained by the Arc $\mathrm{B} \varepsilon$ (the Complement of. \leq A to the Semicircumference, and the Arc Bd (the Complement of A δ to the fourth Part of the Circumference, and the ftreight Line $\varepsilon d_{\text {, }}$ ((that is the Trilineum BHCd diminifhed by the Segment $\mathrm{C} \varepsilon ;$) to be equal to the $\mathrm{Re}-$ ctilineal Triangle $\mathrm{B} \varepsilon f$. And that thofe two Spaces $\mathrm{A} \varepsilon \delta$, and the difference of BHC , from the Segment $\mathrm{C} \varepsilon$ (parts of the Lunula $\mathrm{ACB} g \gamma \mathrm{~A}$) taken together, are equal to the Triangle ACB, as well as the two Spaces AED, and BED, Parts of the Lunula of Hippocrates.

So that upon the whole it appears, that the two Circles (containing the Lunula of Hippocrates) being compleated, this Lunula AEBGA, and the other $\mathrm{ACBg} \gamma \mathrm{A}$, make up one Syftem, and are Conjugate Figures.

For, (drawing a ftreight Line, CDE , or $\mathrm{C} \varepsilon \delta$, or $\varepsilon \mathrm{C} d$, at Pleafure, thro' C the Center of the greater Circle, and cutting thofe two Circles, the face contained within two Arcs of theie two, Circles, and part of the faid ftreight Line, (as AED , or $\mathrm{A} \varepsilon \delta$, or $\mathrm{BH} \varepsilon d$) is equal to the Rectilineal Triangle AEF , or $\mathrm{A} \varepsilon \varphi$, or $\mathrm{B} \varepsilon f$, refpectively.

And it fo happens, that, if this Line going out from C, be on the fame fide of the Diameter MN, with the Lunula of Hippocintes; the aforefaid fpace (which receives a perfect Quadrature) is folitary ; (fuch as are the Parts of Hippocrates's Lunuln, and of the two Spaces A \in C M, BHC N, which therefore are Parts of the Lunula more nearly relating to one another).

But if that Line going out from C, be on the other fide of $M N$; then the Space which is equal to the Rectilineal Triangle, is the difference of two Mixtilineal Figures (the one a Trilineum, the other a Segment of the leffer Circle) as is abovefaid; neither of which can be fquared leverally.

All thefe Particulars are plain from Mr. Perks's Demonftration ; which with a little Variation (fuch as is ufual in the different Cafes of the fame Theorem.) is applicable to all of them: tho' perhaps he was not aware of it.

(29)

The like was done (without any Demonftration) by M. Tfobsinhinife in the Acta Lipfice 1687 . to this purpofe; If from any Point E, in the Circumference of the leffer Cincle, we let fall on AB, a Perpendicular cutting it in L, and draw the Line CL; the Triangle CAL, is equal to the Portion of the Lunula A E.D. (And confequently the Triangle C B L, equal to the Portion B E D.) Which I fhall Demonftrate, fo as the Demonitration may alfo reach the Portions of the Conjugate Space ACBg γ A.

For the Triangles ACB, AEF, are like Triangles, each being the half of a Square: and therefore by 19 El. 6, the Triangle A CB is to the Triangle $\bar{A} E F$, in the duplicate proportion of B A to AE , that is, by 8 El .6 , as BA is to A I. But, by 1 El. 6 , thie Triangle ACB is to the Triangle ACE, as.BA is to AL. Therefore by 9 El. 5 , the Triangles AC L and $A E F$ are equal. But the Triangle AEF is (by Mr. Perks) proved equal to the portion $A E D$. And therefore the faid portion $A E D$ is alfo equal to the Triangle ACL.
3. On the Center B, Mre Crfoel draws by A, a third Circle, which forms By Mr.Cafwell another Lunula, than that of Hippocrates: and he doth (very dexteroufly) ib. p. 417 fquare the Portions of this Lumula. And doth thereby let us in, to a New Syftem, which may be purfued in like manner, as Dr. Gregory hath done that of Hippocrates.
4. M. Tcoliznhaufe, letting fall, from E, (on AB) a Perpendicular EE゙, Ey Dr. Wallis determines the Triangle A LC, equal to the Portion ADE. Which being ${ }^{\text {ibid. }}$ Fig, 250 admitted, we may thus divide the Limula in any given Proportion; if we divide A B, at L, in fuch given Proportion; C L, will, in the fame Proportion, (becaufe of the common Altitude) divide the Triangle A CB (which is equal to the whole Lunula). And LE (erected at Right Angles on A L B) will determine the point E; from whence if we draw to C, the ftreight Line $E C$, this will at DE, divide the Lunula in the fame Proportion.

Mr. Perks, on EDC, drawing the Perpendicular A F, determines the Semiquadrate A F E, equal to the propofed Portion ADE. Which Semiquadrate, is a like Figure, and alike fituate to $A E$, as is $A C B$ to $A B$.

And therefore (becaufe like Figures are in duplicate Proportion of their Refpective fides) if we fo infcribe AE, as that the Square of AE be to the Square of A B, in fuch given Proportion, the Lunula will at $D E$, be fo divided as is required.

And this will hold (if duly applyed, according as the different Cafes may. require) tho' E be taken (in the Continuation of the Semicircle) beyond B. For, ftill like Fiçures will be in duplicate Proportion of their refpective fides.; and $C E=C D \pm D E$. And the fame is yet improveable much further.
VIII. If upon BC you take any two Points D, E, and draw the Perpen- The Dimerifiou of ? diculars DH, EM, neeting BA in I and L, and cutting a Portion FGMH, Solids senerated: of the Lunula; the Solid generated by the Converfion of this Portion about of Hipeonverfionthe Axis BC, is equal to a Prifm, whofe Bafe is IL'MH, and height the Lunulas by M_{0}. Circumference of a Circle, whofe Diameter is.BC; and the Solid generated by

(30)

Fig. 27. the Semicircle BK A, is equal to a Prifm or Semicylinder, whofe Bafe is the Semicircle BK A, and height the Circumference of a Circle whofe Diameter is BC.

Having Eifected BA in R, and BC in P, the Surface generated by the Converfion of the Arc HM about the Axis $B C$, is equal to $\frac{c}{r} \times \overline{\mathrm{BP} \times \mathrm{HM}+\mathrm{BR} \times \mathrm{DE}}$ (fuppofing the Ratio of the Radius to the $\mathrm{Cir}-$ cumference to be as r to c) and the Surface generated by the Semicircumference BKA is equal to a Rectangle, whofe Bafe is the Summ of that Semicircumference and Diameter BA, and height the Circumference of a Circle, whofe Diameter is BC. As for the Surface generated by the Arc GF, tis well known, that it is equal to a Rectangle, whofe Bafe is the Circumference of a Circle whofe Radius is BC , and height DE; therefore the Surface generated by the Converfion of the Portion MHF G, is known. dicular to-it, cutting the Quadrant in O and T , and the Circumference in N and V , the Solid generated by the Converfion of the Portion ONV T about the Axis.B A, is equal to a Prifm, whofe Bafe is IOTL, and height the Circumference of a Circle whofe Diameter is B A.

Having Bifected BA in R, and drawn $C R$, meeting the Quadrant in G, the Surface generated by the Converfion of the Arc OT about B A, is equal to $\frac{c}{r} \times \overline{\mathrm{CG} \times \mathrm{IL}-\overline{\mathrm{CR} \times \mathrm{OT}} \text {. }}$

Bifect DE in Y, thro' the Center R draw S Q, Parallel to BC, meeting the Circumference BK A in S, BK Parallel to AC in V, and the Lines D H, EM, in N and O; the Solid generated by the Converfion of the Portion F GM H about the Axis AC, is $\frac{c}{r} \times \mathrm{MO}^{3}-\frac{1}{3} \mathrm{NH}^{3}+\mathrm{PC} \times \mathrm{NOMH}+$ $\overline{\mathrm{CY} \times \mathrm{DNOE}-\frac{1}{3} \mathrm{EG} 3+\frac{1}{3} \mathrm{DF}} \overline{\mathrm{D}}$, and the Solid generated by the Segment KBS is $\frac{c}{r} \times \overline{\frac{2}{3} \overline{\mathrm{~V}} \mathrm{~K}^{3}+\mathrm{PC} \times \mathrm{BVKS}}$. Therefore the Solid generated by
 $\overline{-\frac{1}{3}} \mathrm{AC}^{3}+\frac{2}{3} \mathrm{VK}^{3}+\mathrm{PC} \times \mathrm{BVKS}$, which by due Reduction will be found equal to the Solid generated by the Converfion of the fame Semicircle about the Axis BC.
Fig. 28.
The Solid generated by the Portion ONV T, about the Axis CP, is equal to $\frac{c}{r} \times \frac{1}{3} \mathrm{LV}^{3}-\frac{1}{3} \mathrm{IN}^{3}-\frac{1}{3} \mathrm{QT}^{3}+\frac{1}{3} \mathrm{PO}^{3}+\mathrm{CS} \times \mathrm{PQIL}$.

From the Points M, H, drop the two Perpendiculars $M \mathrm{Z}, \mathrm{H}$, upon C A: prolong'd if need be; the Surface generated by the Conver.

(3I)

fion of the Arc HM, about the Axis $C A$ is equal to $\frac{c}{r} \times \overline{\mathrm{PC} \times \overline{\mathrm{HM}}}$ $\overline{-\mathrm{R}} \overline{\mathrm{A} \times W \mathrm{Z}}$, when the point Z is next to C , or $\frac{c}{r} \times \overline{\mathrm{PC} \times \mathrm{HM}+\mathrm{RA} \times \bar{W} \mathrm{Z}}$, when the Point W is next to ir.

Thofe that will think it worth their while to befow fome little Pains to find the Demonftration of this, may folve the following Problem.
Any tho Conic Sections being given, forming a Lunula by their Interfection, and a Right line being given by Pojition, about which, as an Axis, this Lunula is imagined to turn, to find the Solids generated by the Converfion of any of its Parts, eut off by Lines Perpendicular to that Axis, or Parallel to it, or making any given Angle with. it, as alfo the Surfaces made by that Converfion. V the vertex, V L B half the generant Circle, E its Center; D B the Bate, of a Portion of C its Center: Bifect the Arc of the Semicircle VB in L, and on the Center C the Epicycloid, by, thro' In draw a Circle cutting the Epicycloid in P: then I fay the Curvilinear Triangle VLP wiil be $=B E g$ in $\frac{C E}{C B}$; that is, the Square of the SeFig. 29.. midiameter of the Generant Circle, will be to the Curvilinear Triangle VLP, as $C B$ the Semidiameter of the Bafe to CE: which CE in the exterior Epicycloid is the Summ of the Semidiameters of the Bafe and Generant, but in the Interior Epicycloid $D p u$, 'tis the difference of the faid Semidiameters.
$C O R O$ L. I.] In the Interior Epicycloid, if $C E$ is $\frac{1}{2} C B$, the Epicycloid then degenerating into a Right Line, the Quadrature of the Triangle' I ρu, will be in effect the fame with the Quadrature of Hippocrates Cloius.

COROL. II.] If the Semidiameter of the Bafe is fuppoled infinite, the Epicycloid then being the Common Cycloid, the Area of the faid Triangle will be equal to the Square of the Radius of the Generant; and fo it falls in with that Theorem which Lalovera found and calls Mirabile.

The general Propofition from whence I deduced the abovefaid Quadrature, is this; viz. the Segments of the Generant Circle are to the Correfpondent Segments of the Epicycloid, as CB, to $2 C E+C B$. For Example: Suppofe $F m G$, the Pofition of part of the Generant, when the point F of the exterior Epicycloid was defigned, then the Segment $\mathrm{F}_{\mathrm{m}} \mathrm{G} n$ is to the Segment $\mathrm{DF}{ }_{n} \cdot \mathrm{G}$, as CB to $2 \mathrm{CE}+\mathrm{CB}$. And confequently the. whole Epicycloid to the whole Generant in the fame Proportion; which is the unly Cafe demonftrated by M. de la Hire.

It follows alfo, that in the vulgar Cycloid, its Segments are triple of the: Correfpondent Sectors of the Generant, which was firt fhewn by Dr. Walls.

(32)

ingeneral Propo-X. Arca Cycloidis vel Epicyoioidis, five Primaria five Contratzie od Prolatics friton for meafureing sll cycloids and Epicycloids, by Mr, Edm. Halley. 11. 218. p. 125.

Fig. 30. est ad Arcam Circuli Gencrantis; atque ctiam Arec partium genitarum in iifdom Curvis, ad Areas analogorum Segmentorum Circuli, ut Jumma duplce Velocitatis centri ac Velocitatis motus Circularis, ad Velocitatem motus Circularis.

Demonferatio.] Defrribatur Epicyclois quevis Y P S QV B, revolutione rirculi V L B, fuper Bafi circulari Y M N B ; ponatur centrum circuli generantis in c, ductâque $c \mathrm{MK}$, infiftat circulus Bafí in puncto M ; fitque punctum lineans S. Jam divifis motibils transferatur primum motu circulari punctum S in R, ut augeatur arcus $S M$ particulâ indivifibili $R S$; deinde progrediatur centrum c in C; hoc motu, traducto fegmento RSM in fitum QTN, punctum Q tanget Curvan. Patet triangulum RS M effe momentum five fluxionem Arex fegmenti Circuli: Trapezium vero QS MN effe Fluctionem Arex fpatii curvilinei fimul geniti. Jam cum $S M, R M, Q M$, non nifi puncto inter de deferre intelligantur, concipe Areolam QSMN conftare ex tribus fectoribus RMS, RMQ, MQN; adeoque Areolam RMS, effe ad Areolam QSMN, ut eft angulus RMS ad fummam trium angulorum R MS $+R M Q+M Q N$. . At anguli $R M Q+M Q N$, xquantur angulis $M C N+M K N$, five angulo c $M C$; propter lineas $R M, Q N$ invicem inclinatis fub angulo ipfi MKN rquali ac propter angulum MQN ipfius MCN dimidium (per Eucl. 3. 20.) Proinde angulus RMS eft ad angulos $\mathrm{RMS}+\mathrm{cMC}$, hoc eft (per eandem 3.20.) arcus $\frac{1}{2} \mathrm{RS}$, ad duos arcus $\mathrm{C} c+\frac{1}{2} \mathrm{RS}$, five RS ad $2 \mathrm{Cc}+\mathrm{RS}$; ut areola RSM ad areolam QS M N: five ut momentum fegmentic circularis $Q \dot{T} \mathrm{~N}$, ad momentum fegmenti in Epicycloide fimul geniti QS Y M N. Cumque hæc momenta femper: fint in eadem illa ratione, ubicunque affumpferis punctum Q, conftat Areas ipfas QTN, QSYMN his momentis genitas, eandem habere conftantem rationem, nempe velocitatis motus circularis $R S$, ad duplam velocitatem centri addito motu circulari, five $2 \mathrm{C} c+\mathrm{RS}$. Sicut etiam Aream V B Z ad Aream QV B N, ac proinde femicirculum V L B ad fatium Curvilineum V Q YNB. Ergo conftat propofitio. Nulla autem alia cft differentia in modo demonftrandi, fir Circulus genitor fuper Arcu Bafis Concavæ moveatur, nifi quod angulus $c \mathrm{MC}$, hoc in cafu, fit differentia angulorum MCN, MKN. Si vero Bafis fit linea recta, evanefcente MKN, ac ob R M, Q N parallelas, etiam facilior erit probatio. In omnibus autem hujufmodi Curvis portiones analogæ portionibus illis quas in Cycloide primariâ perfectx Quadraturæ capaces invenit Cl. Wallifius, funt æque quadrabiles, quod quidem facilè confequitur ex præmiffis.

Centro K, per punctum Q duc circularem arcum $Q Z$, ac age $Z B$ atfcindens fegmentum Z L B, xquale fegmento QT N, deirı bifeca femicirculund $V B$ in L, ac per punctum L, centro ctiam K, defcribe arcum $P L$, fecantem Epicycloidem in P, circulum Genitorem in T, ac Chordas $Q N$, $\mathrm{Z} B$ in y \& X. Jam fit Arcus $V Z=\pi$, ejufque finus $=s$, Radius Genitoris $=r$, Radius vero $\mathrm{Baf}=\mathrm{R}$; fitque arcus CE , five motus centri $=m$.

Patet Sectorem CKE eam rationem habere ad fatium $X y N B$, quam habet quadratum ex KE , ad differentiam quadratorum ex $\mathrm{K} L$ \& $\mathrm{K} B$; five ut $\mathrm{R} \mathrm{R}+2 \mathrm{R} r+r r$ ad $2 \mathrm{R} r+2 r r$; hec eft ut $\mathrm{R}+r$ ad $2 r$, vel K E ad BV ; ac proinde rectangulum BE in CE five $r m$ æquari fuatio X y NB . Spatium vero VZB xquale eft rectang. $\frac{1}{2} a r+\frac{1}{2} s r$; adeoque juxta noftram propofitionem, erit ut a ad $2 m$, ita $\frac{1}{2} a r+\frac{\pi}{2} s r$ ad $\xrightarrow{m a r+m s r}$, æquale fpatio Curvilineo $\mathrm{QVZLBNQ:} \mathrm{Ex} \mathrm{hoc} \mathrm{fubduc} \mathrm{fpatium}$ $\mathrm{X} y \mathrm{NB}=r m$, \& remanebit fatium $\mathrm{QVZX} y=\frac{m r s}{a}$: Cumque fpatia ZXL, Qy T æquenter inter fe, fpatium QVLT Qetiam æquabitur ipfi $n \in r$ --: Quoties itaque a ad m, five motus circularis ad progreffivum Centri, fuerit in data ratione, dabitur etiam perfecta Quadratura fatiorúm Curvilineorum QVLTQ: Totumque fpatium VPL, ad Quadratum Radii BE, erit in cadem ratione motuum m ad \quad, hoc eft, in omni Epicycloide primariâ, in ratione radiorum $\mathrm{K} E$ ad $\mathrm{K} B$, qux eft ipfa D. Cafwelli Propofitio. Spatiaautem minora QVLTQ erunt inter fe ut Sinus arcuum VZ; ac fpatia Triangularia QT P, codem argumento erunt ut Sinus Verfi arcuum QT vel Z L: ac'proinde etiam quadrantur. Pari modo probabuntur fpatia $P \wedge \gamma$, $p L_{u}, p \wedge \Upsilon$, fempcr effe ad Radii BE quadratum (in omnibus his figuris) in predicta ratione m ad a; curumque portiones $p q t$, ut Sinus Verfi arcuum interceptorum q t. Refidua autem fegmenta, ut $q t \Upsilon \Lambda, q t \Upsilon \lambda$, \& co erunt ut finus recti complimentorum eorundem arcuum $q t$.

Componitur autem ratio velocitatum m ad a, ex ratione radiorum KE, BE, ac ratione angulorum fimul æquabiliter defcriptorum CKE, VEZ: ac proinde datâ etiam illâ angulorum ratione, etiam Quadrabuntur fpatia omnia Epicycloidalia prædicta.

A Problem propos'd by M. J. Bernoulli. n. 224. p. 387. Solv'd by :.... ibi.t. p. 389. Fig. 3 I. ea lege ut fi recta P K L à dato quodam puncto P, ceu Polo utcunque ducatur, \& eidem Curvæ in punctis duobus K \& L occurrat, poteftates duorum cjus fegmentorum PK \& P L, à dato illo puncto P ad occurfus illos ductorum fi fint xque altre (id eft vel quadrata, vel cubi vel quadrato-quadrata, \&c.)
 illius pofitione) conficiant.
S O L V T I O.] Per datum quodvis punctum A, ducatur recta quævis infinita pofitione data A D B, recte mobili PKL occurrens in D , \& nominentur $\mathrm{A} \mathrm{D}, x \& \mathrm{PR}$, vel PL, y, finque Q \& R quantitates ex quantitatibus quibufcunque datis \& quantitate x quomodocunque conftantes, \& relatio inter x \& y definiatur per hanc xquationem $\underset{F}{Y} Y+Q Y+R=0$. Et $f_{1} R$
Vol, I.

(34)

fit quantitas data, Rectangulum fub fegmentis $P K$ \& $P L$ dabitur. Si Q fit quantitas data, fumma fegmentorum illorum (fub fignis propriis conjunctorum) dabitur. Si $\mathrm{QQ}-2 \mathrm{R}$ datur, fumma quadratorum $\left(\mathrm{PK} q+\mathrm{P} \mathrm{L}_{\text {q }}\right)$ dabitur. $\mathrm{Si} \mathrm{Q}^{3}-3 \mathrm{QR}$ data fit quantitas, fumma cuborum (PK cub. $+P L$ cub.) dabitur. Si $Q^{4}-4 Q Q R+2 R R$ data fit quantitas, fumma quadrato-quadratorum ($\mathrm{PK} q q+\mathrm{PL} q \dot{q}$) dabitur. Et fic deinceps in infinitum. Efficiatur itaque ut $R, Q, Q Q-2 R, Q^{3}-3 Q R$, \&rc. datæ fint quantitates, \& Problema folvetur. \&. E. F.

Ad eundem modum Curvæ inveniri poffunt qux tria vel plura abfcindent fegmenta fimiles proprietates habentia. Sit x quatio $Y^{3}+Q^{2} y+R y+S$ $=0$; ubi $Q, R \& S$, quantitates fignificant ex quantitatibus quibufcunque datis, \& quantitate x utcunque conftantes; \& Curva abicindet fegmenta tria. Et $f_{1} S$ data fit quantitas, contentum folidum illorum trium dabitur. Si Q fit quantitas data, fumma trium illorum dabitur: $\mathrm{Si} Q Q-2 \mathrm{R}$ fit data guantitas, fumma quadratorum ex tribus illis dabitur.

The vje of Flu. XII. Habes hic Methodum de Figurarum Curvilinearum Quadraturis; de xions in the so-Solidorum à Rotatione Plani genitorum corumque fuperficierum dimenfione; lution of Geome- de Rectificatione Curvarum, deque Centri Gravitatis Calculo. Priufquam,
srickProblems; by
 Moivre, n.216. monftravit Clarilimus Nentonus, in pag. 251, 252 \& 253. Princ. Pbil. circa \$52.0 Momentanea Incrementa vel Decrementa Quantitatum que Fluxu cuntinuo. crefcunt vel decrefcunt, prefertim quod dignitatis cujufcunque $A^{\frac{n}{m}}$, Momen $\operatorname{tum} \operatorname{fit} \frac{n}{m} a \mathrm{~A}^{\frac{n}{2 m}-3}$.

Porro data Fluxione $\frac{n}{m} a \mathrm{~A}^{\frac{n}{m}-\mathrm{I}}$ viciflim reperiri poteft Quantitas Fluens A $\frac{n}{m}, x^{0}$ tollendo a de Fluxione, 2° Fluxionis Indicem Unitate augendo, 3° denique Fluxionem dividendo per Indicem fic Unitate auctum.

Curvæ abfiffa defignabitur deinceps per x, ejus Fluxio per $\dot{x}_{\text {, ordinatim }}$ applicata per y, ejufque Fluxio per \dot{y}.

His pofitis ut ad Quadraturas deveniamus, 10 affumatur valor ordinatim applicatæ ope A\&uationis naturam Curvæ exprimentis, 2° Multiplicetur hic valor per Fluxionem abfciffo; rectangulum hinc ortum erit Fluxio Arex. 3°. Data Fluxione Arex reperiatur quantitas Fluens, habebitur Area quæfita.

Proponatur requatio $x^{m}=y^{n}$ cujufvis Paraboloidos naturam exprimens, valor ordinatim applicatx y eft $x^{\frac{m}{n}}$, qui fi multiplicetur per \dot{x} Rectangulum

$$
x^{2 x}
$$

$x^{\frac{n}{n} x}$ erit Fluxio Arex, proindeque Area quafita crit $\frac{x}{m+n} x^{\frac{\pi}{x}+\frac{x}{x}}$, feu (pofito y pro $x^{\frac{m}{n}}$) $\frac{n}{m+n} x y$.

Rurfum proponatur Curva cujus Æquatio fir, $x++a n x x=y$ (illa ficilicet qux inter Exempla Cl. Craigi extat prima) affumpto $x \sqrt{x x+a a}=y$, Fluxio Areæ erit $x \dot{x} \sqrt{x x+a a}$; cum autem fub Radicalitate involvatur, fupponatur $\sqrt{x x+a a}=z$, hinc $x x+a a=z^{2}$, ideoque $x \dot{x}=z ;$ pofitifque $z \dot{z}$ \& z pro $x \dot{x} \& \sqrt{x x+a n}$, Fluxio à Surdis liberata erit $z^{2} \dot{z}$, quam f_{1} ad Originem fuam $\frac{1}{3} \tau^{3}$ revocaverimus, repofitoque $\sqrt{x x+a \operatorname{a}}$ pro \approx, habebitur $\frac{\pi}{3} x x+a a \sqrt{x x+a a}$ pro Area quæfita.

Sed quo magis conftet quam facili negotio conficiantur hujufmodi Quadraturx, unum amplius Exemplum proferre vifum eft; Equatio Curvæ talis
fit $\frac{x^{2}}{x+a}=y^{2}$, igitur $y=\frac{x}{\sqrt{x+a}}$, ideoque $\frac{x x}{\sqrt{x+a}}$ eft Fluxio Arex: fupponatur $\sqrt{x+a}=z$, hinc $x=z z-a_{2} \cdot \& \dot{x}=2 z$ z, itaque
 erit Area quæfita.

Verum frpe accidit ut quædam Curvæ, quales Circulus, \& Hyperbola, ejus nature fint, ut fruftra tentaveris earum Fluxiones Surdis immunes facere; tunc valore ordinatæ in Seriem infinitam conjecto fingulifque hujus Seriei Terminis per Fluxionem abfciffx, ut:fupra, multiplicatis, reperiatur fingulorum Terminorum Quantitas Fluens, orietur nova Series quæ Quadraturam Curvæ exhibebit.

Methodus hæc eadem facilitate ad Dimenfionem Solidorum à Plani circumvolutione genitorum accommodatur, nempe affumendo pro eorum Fluxione productum ex Fluxione abfeiffe per Circulum Bafis; Ratio Quadrati ad Circulum fibi infcriptum vocetur $\frac{n}{I}$, Æquatio Circulo competens eft $y=d^{\prime} x-x x_{5}$ igitur $4 \frac{\overline{d x-x^{2} x}}{n}$ elt Eluxio Portionis Sphæræ, $\operatorname{igitur} 4 \frac{\frac{\pi}{2} d x-\frac{1}{3} x^{3}}{n}$ of Portio ipfa, huic circumfcriptus Cylindrus eft $4 \frac{\overline{d x x-x^{3}}}{n}$, ideoq; Ratio PortionisSpharex ad circumfcriptum Cylindrume ef ut $\frac{8}{2} d-\frac{1}{3} x$ ad $d-x$. F 2

Rectificatio Curvarum obtinebitur fi Hypothenufa Trianguli Rectanguli cujus latera funt Fluxiones abfiffre \& ordinatæ tanquam Curvx Fluxio confideretur, fed curandum eft ut in expreffione iftius Hypothenufx, alterutra Fluxionum folummodo fuperfit, ac una tantum Indeterminatarum, illa Tcilicet cujus Fluxio retinetur. Res Exemplis clarior fiet.
Fig. 32. Ex dato finu recto CB , arcum AC invenire, pofitis $\mathrm{AB}=x, \mathrm{CB}=y$, $\mathrm{OA}=r$; fit CE Fluxio abfiffx, ED Fluxio ordinatim applicatæ, CD Fluxio Arcus $C A$; ex Circuli proprietate $2 r x-x x=y y$, unde $2 r x$ - $2 x \dot{x}=2 y$ y ideoque $\dot{x}=\frac{y y}{r-x}$, fed C D ${ }_{I}=\dot{y}+\cdots \dot{x}=\dot{y}$ $+\frac{y^{2} \ddot{y} \dot{y}}{r r-2 r x+x x}=\ddot{y} \dot{y}+\frac{y^{2} \ddot{y} \dot{y}}{r r-y y}=\frac{r r \dot{y} \dot{y}}{r r-y \dot{y}}$, igitur C D $=$ $\frac{r y}{\sqrt{r r-y y}}$, fed $\frac{r y}{\sqrt{r r-y y}}$ factum eft ex $\frac{1}{\sqrt{r r-y y}}$ feu $\frac{-y_{1}-\frac{1}{3}}{}$ in $r y$; proindeq; fir $\left.\overline{r-y y}\right|^{-\frac{1}{2}}$ conjiciatur in Seriem infinitam cujus fingula membra per r y multiplicentur, \& ex unoquoque producto ad Quantitatem Fluentem fiat retrogreflus, habebitur: Longitudo arcus A C.

Non ab fimili modo ex dato Sinu Verfo reperietur idem arcus; Refumatur xquatio fupra inventa $2 r \dot{x}-2 x_{i} \dot{x}=2 y \dot{y}$, fit $\dot{y}=\frac{r \dot{x}-x \dot{x}}{2 y}$, fed $\mathrm{CD}_{\mathrm{g}}=\dot{x} \dot{x}+\dot{y} \dot{y}=\dot{x} \dot{x}+\frac{r r \dot{x} \dot{x}-2 r x \dot{x} \dot{x}+x^{2} \dot{x} \dot{x}}{y}=$ $\Rightarrow \dot{x}+\frac{r \cdot \dot{x} \dot{x}-2 r \dot{x} \dot{x} \dot{x}+x^{2} \dot{x} \dot{x}}{2 \cdot r x-x \cdot x}$, feu (omnibus fub codem denominatore reductis, expunctifque iis quæ fub diverfis fignis continentur) $=\frac{r r \dot{x} \dot{x}}{2 r x-x \cdot x}$, unde $\mathrm{CD}=\frac{r \dot{x}}{\sqrt{2 r x-x x}}$, ideoque Longitudo arcus A $C_{\text {. per }}$ ea qux jam dicta funt facile obtinebitur.

Fluxio curvæ facilius interdum reperitur per comparationem inter Triangula fimilia CED, CBO , inftitui enim poteft hæc proportio $\mathrm{CB}: \mathrm{CO}:$: $C E: C D$, hoc eft, pro Circulo $\sqrt{2 r x}-x x: r:: \dot{x}: \frac{r x}{\sqrt{2 r x}-x x}$:

Curva Cycloidis eadem operâ cogrofci poterit. Sit A L K femicyclois, cujus circulus genitor $A D L$. Affumpto in diametro $A L$ quovis puncto B, ducatur $B 1$ parallela Baff $L K$, peripherix circuli in puncto D occurrens; com-
pleatur rectangulum $\mathrm{A} E I B$, ducaturgue FH rectx EI parallela, cidemque infinite vicina, B I productam fecans in G , curvamque A K in H ; ponatur $\mathrm{AL}=d, \mathrm{AB}=\mathrm{EI}=x, \mathrm{GH}=\dot{x}$; Notum eft rectann BG effe ubique aggregatum arcus $A D$ \& finus recti $B D$, hinc manifeftum eft Fluxionem IG effe aggregatum Fluxionum arcus AD \& finus recti B D. Porro Fluxij Arcus A D reperta eft $=\frac{\frac{1}{2} d \dot{x}}{\sqrt{d x-x x}}$, Fluxio autem Sinus Recti B D reperietur $=\frac{d \dot{x}-2 x \dot{x}}{2 \sqrt{d x-x x}}$, igitur IG $=\frac{d \dot{x}-x \dot{x}}{\sqrt{d x-x x}}$, ideoque $\mathrm{IH}_{q}=\mathrm{IG}_{q}+\mathrm{GH}_{q}=\frac{d d \dot{x} \dot{x}-d x \dot{x} \dot{x}}{d x-x} ;$ Quamobrem $\mathrm{IH}=$ $\frac{\dot{x} \sqrt{d d-d x}}{\sqrt{d x-x x}}=\frac{\dot{x} \sqrt{d}}{\sqrt{x}}=d^{\frac{1}{2}} x^{-\frac{1}{2}} \dot{x}$, proindeque $\mathrm{A} \mathrm{I}=2 d^{\frac{1}{2}} \cdot x^{\frac{\pi}{2}}$ $=2 \vee d x=2 \mathrm{AD}$.

Hec conclufio minimo cum labore deduci poteft ex nota proprietate Tangentis, cum enim illius portiuncula I H femper fit parallela chordx AD, fit ut Triangula I G H, A BD fint fimilia, unde AB : AD : : GH:IH, hoc eit $x: \vee d x: \dot{x} \dot{x}: \frac{x \vee d x}{\approx}$, igitur $1 \mathrm{H}=\frac{\dot{x} \vee}{x}=d^{\frac{2}{z}} x^{-\frac{1}{2}} \dot{x}$.

Sed nihil verat quo minus adhibito Fluxionis IH auxilio, ipfam Cyw cloidis aream inveftigemus. Fluxio Arex A E I ef rectangulum EIG $=\frac{d^{x} \dot{x}-x^{2} \dot{x}}{\sqrt{d x-x x}}=\dot{x} \sqrt{d x-x x}$, fed Fluxio portionis ABD non alia ef ab illa: Itaque Area A EI, correfpondenfque circuli portio A B D, fempes funt xquales.

Efto A B curva Parabolx cujus Axis A F, Parameter a; Ponatur AE $=x, \mathrm{~EB}=y, \mathrm{AB}=\imath, \mathrm{BD}=\ddot{x}, \mathrm{D} \mathrm{C}=\dot{y}, \mathrm{~B} \mathrm{C}=\dot{\boldsymbol{z}}$, aflumptâ xquatione Parabolx, naturam confituente, videlicet $a x=y \%$ fit $a \dot{x}=$

Fig. 34 2. $\dot{y} \dot{y}$, unde. $\dot{x}=\frac{2 \cdot \dot{y}}{q} \dot{y}_{\mathrm{g}} \mathrm{fed} \mathrm{B} \mathrm{C}_{q}=\mathrm{BD} \mathrm{D}_{q}+\mathrm{CD} \mathrm{C}_{q}$, hoc eft $\dot{z} \dot{z}=$ $\dot{x} \dot{x}+\dot{y} \dot{y}=\frac{4 y^{2} \dot{a} \dot{y}}{a}+j \dot{y}=\frac{4 y^{2} \dot{y} \dot{y}+a a \dot{y} \dot{y}}{a a}$, ideoque $\dot{z}=$ $; \frac{\sqrt{4 y^{2}+a a}}{a}$ vel, quod idem eft; $i=; \frac{\sqrt{y^{2}+\frac{1}{4} a a}}{\frac{1}{2} a}:$ fr erge $; \frac{\sqrt{y^{2}+\frac{1}{4} a^{2}}}{\frac{\frac{1}{2} A}{4}}$, in feriem infinitam transformetus, Curva AB haud diffio culter innotefcet,

(3^{8})

Eis. 35: Infuper Itatim apparet dato Hyperbolico fpatio curvam haine dari, \& viciffim. Nam $\frac{1}{z} a z=\dot{y} \sqrt{y^{2}+\frac{1}{4} a} a$, ac proinde $\frac{1}{2} a z=$ patio cujus Fluxio eft $y \sqrt{y^{2}+\frac{9}{4} a}$, fed hujufmodi fpatium nihil aliud eft quam Hyperbola æquilatera exterior ABEG, cujus remiaxis $A B=\frac{\pi}{2} \pi$, abfciffa $A E$ $=y$, ordinatim applicata $\mathrm{EG}=x$.

Ad dimetiéndam fuperficiem converfione curvæ circa fuum Axem defcriptam, affumi debet pro ejus Fluxione Cylindrica fuperficies cujus altitudo eft ipla curvæ Fluxio, cujufque diftantia ab Axe eft ordinatim applicata huic Fluxioni conveniens.
Fig. 32.
Sit ex. gr. A C Circuli Arcus qui circa Axem AD revolvendo fuperficient Sphericam generet, quamque dimetiri ftatuamus; DC arcus Fluxio jam reperta eft $\frac{r x}{\sqrt{2 r x-x x}}$, hanc fi multiplicemus per Circumferentiam ad Radium BC pertinentem, hoc eft $\frac{c}{r} \sqrt{2 r x-x x}$ (pofita ratione Circumfe: rentix ad radium $=\frac{c}{r}$) habebimus Fluxionem fuperficiei Shpxricx $=c \dot{x}$; adeoque fuperficies ipfa eft $c x$.

Ad centra gravitatis quod attinet, repertâ fuperficiei Solidive Fluxione, hacque ducta in fuam à Vertice diftantiam, ad quantitatem Fluentem recurrendum eft: qua divifa per Superficiem ipfam Solidumve ipfum, prodibit diftantia Centri Gravitatis à Viertice.

Inveniendun fit Centrum Gravitatis omaium Paraboloidun horum Fluxio fic generaliter exprimitur $x^{\frac{m}{m}} \dot{x}$, hanc multiplica per x, fit $x^{\frac{m}{n}+i} \dot{x}$ cujus quantitatem Fluentem $\frac{n}{m+2 n} x^{\frac{m}{n}+2}$, divide per Paraboloidos Aream, puta $\frac{n}{n+n} x^{n}+1$ prodibit $\frac{m+n}{m+2 n} x_{\text {j }}$ diftantia Centri Gravitatis à Vertice.

Centrum Gravitatis in Portione Sphæræe eodem modo colligitur, namque illius Fluxione $4 \frac{\overline{d x x}=x^{2} x}{n}$ in x ducta, fit $4 \frac{\overline{d x^{2} x-x^{3} x}}{n}$, cujus quantitas Fluens $4 \frac{\overline{\frac{3}{3} d x^{3}-\frac{1}{4} x^{4}}}{n}$ per Portionis Soliditatem divifa, puta
 .tifichavitatis à Vertice.

(39)

Ordinata in Cuia Catcharia.
Sit Catena FAD b extremitatibus \& D imum (feu Curyx vertex) A, Axis A B ad horizontem ereetuis, eigue applicata B D horizonti paadlela. Invenienda eft relato inter $\mathrm{B} b$, feut $\overline{\mathrm{D}} \delta$ \& $d \delta ;$ pofito b puncto ipfi B proximo, \& $b d$ adBD, item D o ad BA parallela.

Ex Mechanicis contat potentias tres in æequilibrio pofitas canden habere tationem cum rectis tribusad ipfarum directionis parallelis, vel in dato angulo inclinatis, à mutuo occurfu rerminatis; adecque fi D d exponat gravitatem ab folutam particulx $\mathrm{D} d$ (ut in Catena æqualiter craffa rite fit) $\tilde{d} \delta$ reprefentabit gravitatis partem eam quæ normaliter in $\mathrm{D} d$ agit, quaque fit ut $d \mathrm{D}$ (ob Catenæ flexilitatem circa d mobilis) in fitufn verticalem fe componere conatur. Adeoque fi \& d (five fluxio ordinate BD) conftans fir ; gravitatis actio in partes correfpondentes Catenx $\bar{D} d$ normaliter exerta etiam conftans erit five ubique eaden. Exponatur hac per Rectam a: Porro ex fupracitato Lemmate Mechanico, D \& five fluxio axeos A B, exponet vim fecundum directionem ipfrus $d D$ exerendam, qux priori conatư Lineæ gravis $d D$ ad componendam fe in fitum verticalem requipolleat, eumque impedire poffit. $\mathrm{H} x$ vero vis oritur à linea gravi D A fecundum direstionem $d \mathrm{D}$ trahente; eftque proinde (cæteris manentibus) lineæ D A proportionalis. Eft igitur of a fluxio ordinatæ ad $\delta \mathrm{D}$ fluxionem abriffæ, ficut comftans recta a ad $\mathrm{D} A$ curvam. \&.E. F.

C OROL.] Si recta T D tangat Catenariam, \& axi BA producto ocsurrat in T , erit $\mathrm{BD}: \mathrm{B} \mathrm{T}::\left(\AA^{\delta}: \delta^{\circ} \mathrm{D}::\right)^{\prime}$ a: DA Curvam.

Prop. II. Theorem.] Si ad perpendiculum $A B$ imquam axem, vertice A_{2}. defribatur byperbola aquilatera $A M$, cujus Seminxis A C aqualis a; Bf ad cuñdem axem of verticem, parabola $A P$ cujus parameter iequalis quadruplo axi byperbol.e, \& producatur femper hyperbola ordinata $H B$, donec $H F$ qqualts Curve. AP: Dico Curvam $F A D$, in qua puncta F है D verfintur (pofitis $B D, B E$ aqualibus) effe Catenariam.

Vocetur AB, x, erit $\mathrm{B} b=\dot{x} ; \mathrm{BH}=\sqrt{2 a x+x^{2}}$. Unde ex Me thodo Fluxionum, Fluxio ipfius $\mathrm{BH}($ five $m b)=\frac{a \dot{x}+x \dot{x}}{\sqrt{2 \pi x+x^{2}}}$, furfus quia parabolx $A P$ parameter $=8 a$, erit $B P=\sqrt{8 a x}$. Unde $n \rho$ (hoc eft Fluxio ipfus BP) xqualis $\frac{2 a \dot{x}}{\sqrt{2 a x}}$. Quare Fluxio Curvx $A P\left(=P_{p}\right.$
$=\sqrt{n p q+P n q)}=\frac{\sqrt{4 a^{2} \dot{x}^{2}}}{2 a \%}+\dot{x}^{2}=\frac{\sqrt{2 n x^{2}+x \dot{x}^{2}}}{x}$ qux ducen.
do tam numeratorem quam denominatorem in $\sqrt{2 a+x}=\frac{2 a \dot{x}+x \dot{x}}{\sqrt{2 a x+x^{2}}}$. Et cum HF fit ubique $=$ A P, erit Fluxio HF rectx, hoc eft $m b+s f$
 sf, five Fluxio ipflus B F ordinatre ad axem Catenarix, eft æqualis $\frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}$. Et igitur Fluxio Curvx AF (five ipfa $F f=\sqrt{s f q+F s q}$ $\left.=\frac{\sqrt{a^{2} \dot{x}^{2}}}{2 a-x+x^{2}}+\dot{x}^{2}\right)=\frac{a \dot{x}+x \dot{x}}{\sqrt{2 a x+x^{2}}}$ cujus fluens modo oftenfa eft $\sqrt{2 a x+x^{2}}$. Et igitur $\mathrm{AF}=\sqrt{2 a x+x^{2}}$. Patetque fluxionen ordinatx BF five $\frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}$ effe ad \dot{x} fluxionem abfiffx AB , ficut data a ad Curvam AF, qux eft fuperius inventa Catenarix proprietas. Igitur Catenarix puncta rectè determinantur, per precedentem conftructionem. \&. E. D.

COROL. I.] Ex Conftuctione patet BF ordinatam Catenarix xquari Curvæ parabolicx AP, dempta BH correfpondente ordinata hyperbolæ conter$\min x$ A H.
2. Ex demonftratione conftat Catenarianı Curvam AF xquari B H correfpondenti ordinatæ conterminx Hyperbolx xquilateræ. Cum enim harum finearum Fluxiones æquentur \& fimul nafcantur ipæિ linex, patet illas ubique effe xquales. Unde datâ Catenâ, dabitur AC five A, quippe x qualis femiaxi Hyperbolx xquilateræ cujus vertex A, \& ordinata ad abififfam A B ca. tenx AD eft xqualis.
3. Catenarix omnes funt inter fe fimiles, cum ex fimili fimilium, \& fimili--ter pofitarum figurarum coniftructione generentur. Unde duæ rectæ ad Horizontem fimiliter inclinate per Catenarum vertices ductx abfcindent figuras fimiles \& Catenarum portiones abfcindentibus rectis proportionales.
4. Si Catena $Q A D$ fufpendatur à punctis $Q \& D$ inxqualiter altis, Curvæ pars F A D eadem manet, ac f_{1} ex punctis x guialtis $F \& D$ effer fufpenfa, quoniam nibil refert utrum punctum F affixum fit vel non affixum ad planum verticale.
5. Si Catenæ vis trahens fecundum directionem, $d \mathrm{D}$ exponatur per $\mathrm{D} d$, dividetur, ut vulgò notum in vim ut $d \delta$ fecundum directionem horizontalem, \& vim ut δD, fecundum directionem verticalem: igitur vis in Catenæ extre-

(41)

mo directè accedendi ad axem, eft ad vim in codem defcendendi fecundum perpendiculum; five vis fuftinentis pars feciundum directionem BD agens, eft ad ejufdem partem fecundum directionem D δ agentem, ut femi-axis Hyperbolx conterminx AH ad D A, longitudinem Catenæ ufque ad verticem Curve: Unde datâ Catenâ ratio hece datur. Et in cadem Catena nunc magis nunc minùs laxe fufpenfa, vis ifta Horizontalis eft ut Hyperbolx conterminx axis, cum D A eadem mancit fi extrema æquialta fint.
6. Catenà in Plano verticali, fed fitu inverfo, figuram fervat nec decidit, adeoque arcum feu fornicen facit tenuilfimum : Hoc ef Spharx minimx rigi$\mathrm{d} x$ \& lubricx in inverfa Curva Catenaria difpofita, arcum conftituunt cujus nulla pars ab aliis extrorfum vel introrfum propellitur; fed manentibus infimis punctis immotis, virtute fux figurx fuftinetur. Cum enim punctorum Curvac Catenarix fitus, partiumque inclinatio ad Horizontem eadem fit, five in fitu FAD, five in fitu inverfo, dummodo Curva fit in plano ad Horizonten recto, patet illam xque fervare figuram immutatam in uno fitu ac in altero. Et è converfo folx Catenarix funt fornices five arcus legitimi : Et cujufcunque alterius figure arcus ideo fuftinetur, quod in illius cralititie quxdam Catenaria inclufa fit: Neque, fi tenuifimus effet, partefque haberet lubricas fuftineretur. Ex precedente Corol. 5. colligitur, quali vi arcus muros quibus infiffit extra propellit; nempe hrec eadem eft cum parte vis Catenam fuftinentis, quæ fecundum directionem Horizontalem trahit. Qux enim in omnia de murorum quibus fornices imponuntur firmitate requifita, ex hac theoria Geometricè determinantur, quæ in x dificiorum extructione precipua funt.
7. Si loco gravitatis alia quelibet vis fimiliter agens in lineam flexilem vires fuas exerat, eadem producetur linea v.g. Si ventus requabilis fupponatur, \& fecundum rectas datæ pofitione rectax parallelas fipirans, linea vento inflata eadem erit cum Catenaria. Nam cum omnia gure in gravitate confideravimus, in altera hac vi obtineant, patet eandem Curvam productum iri.

Prop. 3. Theor.] Si manente predita Hyperbola A H, per a ducatur reeta GAL axi AB normalis OO defcribatur Curva K R. cjus naturre, ut B K fit tertia proportionalis rectis $B H \circlearrowleft A C$, ઉ ad AC applicetur reititangulum $A V$ aquale Spatio interminato $A B K R L A$, erit F concurfus rectarum $H B, V G$ ad Catenariam.

Fig. 37.

Nam ex conftructione eft $B=\frac{a^{2}}{\sqrt{2 a x+x^{2}}}$, quare flux́io Ppatii

$$
\begin{array}{ll}
\text { ABKRLA }=(B K k b=B K \times B b \Rightarrow) \frac{a^{2} \dot{x}}{\sqrt{2 a x+x^{2}}} \quad & \text { Cumque } \\
\text { Vol. I. } & \text { BF }=
\end{array}
$$

$B F=$ fatio $\frac{A B K R L A}{A C}$, \& $A C$ detur, erit fluxio ipfius $B F=$ fluxioni fpatii $\frac{A B K R L A}{A C}=\frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}$. Sed in precedentis Prop. coniltructione, fluxio ordinatx $\mathrm{BF}=\frac{a \ddot{x}}{\sqrt{2 a x+x \cdot 2}}$: Quare hæc conftructio eodem redit cum conftructione Prop. precedentis, \& confequenter punctum F eft. ad Catenariam. \&.E.D.

COROL.] Sicut in Prop. preced Catenaria defribitur ex data longitudine Curve Parabolicx, ita in hac, illius defcriptio pendet à quadratura ppatii in quo $x^{2} y^{2}=a^{4}-2 a x y^{2}$. Nam. $y($ five $B K)=\frac{a^{2}}{\sqrt{2 a x+x^{2}}}$.

Fig. 360
Prop. 4. Theor:] Spatium A G.F Jub Catenaria A F छु Reftis F G, A G.ad A, B, B F parallelis comprebenfum, aquale eft rectangulo fub Semi-axi $A C$, E D) H intervallo applicatarum in Hyperbola © Catenaria.
$\mathrm{Nam} \dot{\mathrm{D} H}=\left(\dot{\mathrm{BH}}-\dot{\mathrm{BD}}=\right.$, ex. Prop. 2: hujus, $\frac{a \dot{x}+x \dot{x}}{\sqrt{2 a x+x^{2}}}-$ $\frac{a \dot{x}}{\sqrt{2 a x+x^{2}}} \Rightarrow \frac{x \dot{x}}{\sqrt{2 a x+x^{2}}}$. Quare: fluxio rectanguli: fub data $\mathrm{AC} \& \mathrm{DH}=\left(\frac{a x \ddot{x}}{\sqrt{2 a x+x^{2}}}=x \times \frac{a \ddot{x}}{\sqrt{2 a x+x^{2}}}=\right.$ $f s \times F G \Rightarrow$) fluxioni fatiii A GF. Cumque figurx hx fimul nafcantur, requitur rectangulum fub A C \& DH æquari fpatio A.GF. \&.E. D.

COROL.] Hinc fequitur, fpatium FAD, fub Catena FAD \& recta Horizontali F D comprehenfum, æquari rectangulo fub FD \& B A; dempto rectanguilo fub Hyperbole A H axe alterutro, \& D.H exceffu rectx. BH, vel Curve A D, fupra ordinatam B D.

Figo 36.
Prop. 5. Theor.] Si ad rectam. A L, applicetur. Rectangulum L ' E aquale Jpatio Hyperbolico A.L H, erit E centrum Equilibrii Curve Catenarice $A F D$.
Concipiatur curva gravis FA librari fuper axe G L. Ex Centro barycis conftat momentum gravis F.A exponi per fuperficiem Cylindrici recti fuper F.A erecti, \& refecti plano per GL tranfeunte, cum plano Curvæ angulum femi rectum faciente. Et hujus fuperficiei fluxio, five FA $\times F \mathrm{FG}$, xqualis eft fluxioni fpatii $A L H$ five $\overline{B H}$ ヶ $H L$; quia $\bar{F} \dot{A}, \overrightarrow{B H}$, item $F G \& H L$
æquantur.

(43)

xquanturs. Ac propterea (cum fimul nafcantur) dieta fuperficies Cylindrici recti xqualis eft patio Hyperbolico A L H. Hoc proinde applicatum ad ipfum grave AF, vel illi xqualem rectam A L, facit latitudinem $A E$ æqualem diftantix centri gravitatis ab axe librationis GL. Unde Curvx FA A , xqualiter ad utramque Axeos $A B$ partem jacentis, centrum æquilibrii oft E. C. E. D.

COROL. I.] Spatia ABHL, BAH, \&AGF funt Arithmeticè proportionalia. Nam fluxio fratii ALH $=\left(\frac{a \dot{x}+x \dot{x}}{\sqrt{2 a x+x^{2}}} \times x=\right.$ $\frac{\overline{a x+x^{2}} \times \dot{x}}{\sqrt{2 a x+x^{2}}}=\frac{\overline{2 a x+x^{2}-a x} \times \dot{x}}{\sqrt{2 a x+x^{2}}}=\dot{x} \sqrt{2 a x+x^{2}}-$ $a x \dot{x}$
$\overline{\sqrt{2 a x+x^{2}}}=$) fluxioni fpatii B A H, multate Fluxione fpatii A GF, per Prop. 4. hujus. Cumque hæ tres figure fimul nafcantur, erit BAH $-A G F=(A L H=) B L-B A H$. Quare $2 B A H=B L+$ $\mathrm{A} G \mathrm{~F}$. Unde fequitur fpatia BL, BAH\&AGF effe in proportione Arithmetica.
2. Catenx centrum gravitatis eft omnium linearum ejufdem Longitudinis, eoffenque terminos habentium, infinum. Nam tantum defcendet grave quantum potef. Cumque tantum defcendat figura, quantum ejus centrum gravitatis defcendit, fe fic difponet linea gravis flexilis, ut ejus centrum gravitatis fit inferius quam f_{1} aliam quamcunque figuram indueret. Atque ex hoc Symptomate linex gravis flexilis, reliqua omnia facile deduci poffent.
3. Si fuper quarcunque Curvas eanden longitudinem eofdemque terminos D \& F cum Catenaria F A D habentes, erecti Cylindrici recti fecentur plano per DF tranfeunte; fuperficierum Cylindricarum fic refectarum maxima eft qux fuper Catenariam infiftit. Hx enim fuperficies (fi angulus fub planis fuerit femirectus) ad ipfas Curvas (quæ funt in cafu prafenti longitudinis ejufdem) applicate, latitudines faciunt æquales diftantiis centrorum gravitatis Curvarum à DF recta. Cum diftantia hxc fit in Catenaria maxima (ob maximum defcenfum centri gravitatis) erit Cylindrica fuperficies applicanda etiam maxima. Et quoniam fuperficierum Cylindricarum refectarum plano, cum plano bafeos angulum quemvis continente, eadem ef ratio, atque cum? diectus angulus eft femirectus, patet propofitum univerfaliter.

L E M M A.] Si in cuiufous Curve AF , deforipta covolutione alterius Curve $K V$, ordinatam quamvis $F B$ ad axcm $A B$ normalem, à correfpondente in $K V$ punço V demittatur normalis $V R$ ordinate occurrens in R : erunt, manente fluxione axeos A B eadem, fuxio fuxionis ordinatie BF, fuxio Curve $A F$, ©

Fig. 36. reeta $F R$, continuè proportionales.

(44)

Producatur rectula $F f$, donec proximx ordinatx $W \varphi$ occurrat in o. Et quoniam ex hypothef. $\mathbf{F s}-f \mathrm{~F}$, erit $o f=\mathbf{F} f$, adeoque o \varnothing erit fluxio ipfius $f s$, hoc eft fluxio fluxionis ordinate. Porro triangula $o \varphi f, f \mathrm{FR}$ funt æquiangula, quia o $\varnothing f=$ alterno $f \mathrm{FR}, \& f \circ \varphi=(\mathrm{F} f r \Rightarrow \mathrm{~F} f \mathrm{R}$, quia illorum intervallum $\mathrm{R} f r$ alterutrius refpectu evanefcit, cum $\mathrm{R} r$ præ $f r$ nulla fit. Et igitur $0: \circ f:: f F: F R$, fed $\circ f, f F$ xquales funt, cum fluxione utriufvis, tantum differant. Quare $0 . \varphi: f F:: f F: F R$. \&.E. D.

Fig. 36. Prop. 6. Probl.] Invenive Curvam $K V$ cujus cvolutione Catenaria $A F Q$ defcribitur.

Vocetur ut prius $\mathrm{A} B, x$, item BF, y. Eft, ex Prop. 2. hujus, $y=$ $\frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}$, five $2 a x \dot{y}^{2}+x^{2} \dot{y}^{2}=a^{2} \dot{x}^{2}$. Quare, per fatis nunc ufurpatam Nemtoni methodum, $2 a x \dot{x} j^{2}+4 a x \dot{y} \ddot{y}+2 x \dot{x} \dot{y}^{2}+$ $2 x^{2} y \ddot{y}\left(=2 a^{2} x \ddot{x}\right.$ qux, propter $\ddot{x}=0$, cum conftans \dot{x} non fluat $)=0$. Quare $\ddot{y}=\left(\frac{-a \dot{x} \dot{y}-x \dot{x} \dot{y}}{2 a x+x^{2}}=\right) \frac{\overline{a+x}}{2 a x+x^{2}} \times \frac{a \dot{x}^{2}}{\sqrt{2 a x+x^{2}}}$, ponendo loco \dot{y} ejus valorem $\frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}$. Nam fignum - quantitati. \ddot{y} prefixum, tantum denotat locum puncti R ex E fpectati, oppofitum effe loco puncti F ex B fpectati, cum Curva $A F Q$ eft cava verfus axem $A B$) \& $F \cdot f$, per Prop. 2. hujus, $=\frac{\overline{a+x} \times \dot{x}}{\sqrt{2 a x+x^{2}}}$. Quare per præcedens Lemma, $\mathrm{FR}=\left(\frac{\mathrm{Efq}}{\ddot{y}}=\frac{\overline{a+x^{2}} \times \dot{x}^{2}}{2 a x+x^{2}} \times \frac{\overline{2 a x+x^{2}} \times \sqrt{2 a x+\overline{x^{2}}}}{a+x} \times \frac{1}{2}=\right)$ $\frac{\overline{a+x} \times \sqrt{2 a x+x^{2}}}{a}$. Rurfus ob triangula rectangula. $\mathrm{F}: f, \mathrm{FRV}$ habentia angulos $f \mathrm{~F}, \mathrm{VFR}$ æquales, quia VF s eit utriufque complementum ad rectum, eft F : sf:: $\mathrm{FR}: \mathrm{VR}$, five $\dot{x}: \frac{a x}{\sqrt{2 a x+x^{2}}}:$: $\overline{a+x} \times \sqrt{2 a x+x^{2}}: V R$, qux proinde æqualis $a+x$. Hxc igitur eft natura Curvx K V, ut fi AB vocetur x, erit $\mathrm{F} \mathrm{R}=\frac{\overline{a+x} \times \sqrt{2} \sqrt{a x+x^{2}}}{a}$ $\& \mathrm{VR}=a+\infty$. \&. E.I.

COROL.I.] AC:CB::B H:FR. Hxc enim eft proprietas rectx FR fuperius inventa.
2. Recta $C B$ xqualis eft rectx B I, five V R. Utraque enim eft xqualis $a+x$.
3. Recta evolvens V F, ef tertia proportionalis ipfis AC, CB. Nam ob xquiangula triangula $f \mathbf{F}, \mathrm{VFR}$, eft $s \mathrm{~F}: \mathbf{F} f:: \mathrm{FR}: \mathrm{V} \cdot \mathrm{F}$. Sive $\dot{x}: \frac{a \dot{x}+x \dot{x}}{\sqrt{2 n x+x^{2}}}:: \frac{\overline{a+x} \times \sqrt{2 a x+x^{2}}}{a}: V \mathrm{~F}$, quæ proinde $=$ $\overline{a+x^{2}}$, Unde $a: a+x:: a+x: \mathrm{VF}$, qux præterea eft radius circuli Catenæ in F æquicurvi.
4. Cum punctum F eft in A, five cum vertex evolutione defcribitur, id eft cum $x=0$, valor evolventis rectx V F, qux in hoc cafu eft K A , nempe $\frac{\overline{a+x^{2}}}{a}$ fiet a : hoc eft punctum K ubi Curva VK occurrit axi, tantum extat fupra Catenæ verticem A, quantum C deprimitur infra eundem. Unde diameter circuli, Catenæ ad verticem æquicurvi, æqualis ef axi conterminæ Hyperbolæ A.H. Adeoque Catenæ A D \& Hyperbolæ A H eadem eft curvatura in vertice A : Nam vulgo notum eft circulum predictum, Hyperbolx æguilateræ A H in vertice A æquicurvum effe. Sed \& hoc aliunde, ex ipfa Catenæ natura Prop. 2. hujus demonftrata, conftat. Nam nafcens.FH five ($\mathrm{P}=$ nafcenti $\mathrm{B} \Rightarrow \sqrt{8 a x}$ dupla eft nafcentis BH five $\left(\sqrt{2 \pi x+x^{2}}\right.$, hoc eft, evanefcente x^{2}, cum x minima fit) $\sqrt{2 a x}$; Et igitur idem punCtum eft tàm in nafcente Hyperbola quàm nafcente Catenaria; hoc eft nafcens Hyperbola A H cum nafcente Catenaria A D coincidit, \& proinde æquicurvæ funt hx linex ad: verticem A.
5. Curva $K V$ eft tertia proportionalis ad rectam A C \& curvam AF five rectam AL. Ex natura enim evolutionis, $K V=(V K A-K A=V F$
$-\mathrm{KA}=\frac{\overline{a+x^{2}}}{a}-a=\frac{a^{2}+2 a x+x^{2}}{a}-a \Rightarrow \frac{2 a x+x^{2}}{a} . E_{t}$ igitur $a: \sqrt{2 a x+x^{2}}:: \sqrt{2 a x+x^{2}}: \mathrm{K} \mathrm{V}_{0} \cdot \operatorname{Sed} \sqrt{2 a x+x^{2}}$, ex Corol. 2. Prop. 2. $=\mathrm{AF}$. Unde AC:AF::AF:KV.
6. Recta KI dupla eft ipfius $A B$. Cum enim $B I=(B C \Rightarrow C A+A: B$. erit $A I=C A+2 A B ; A t A K=A C$, per Corol. 4 . hujus; igitur $K I$. $=2 \mathrm{AB}$.
7. Rectangulum fub $\mathrm{A} C$ \& BR eft xquale diplo fpatio hyperbolico BAH. NamFR $\times A C=\frac{\overline{a+x} \times \sqrt{2 a x+x^{2}}}{a} \times a=\overline{a+x} \times$
$\sqrt{2 a x+x^{2}}=x \times \sqrt{2 a x+x^{2}}+a \times \sqrt{2 a x+x^{2}}=A B \times$ $B H+A C \times B H \Rightarrow A B \times B H+A C \times B D+A C \times D H$. Quare $F R \times A C-B D \times A C$, hoceft $B R \times A C=A B \times B H+A C \times D H$. Sed per Prop. 4. hujus; $\mathrm{A} \mathrm{C} \times \mathrm{DH}=\mathrm{A} G \mathrm{~F}$ patio. Et igitur BR $\times \mathrm{AC}$ $=(\mathrm{ABHL}+\mathrm{AGF}=$ per Corol. 1. Prop. 5.) 2 BAH .

Eig. 38. Prop. 7. Theor.] Si in Curva Logaritbmica LAG cujus data Jubtangens HS aqualis recte a, Corol. 2. Prop. 2. hujus definitæ, fumatur punctum A cujus diftantia ab HP afymptoto, nempe $A C$, aqualis fit Jubtangenti $H S, \Xi^{\circ}$ ex puncis H छु P utcunque in afymptoto fumptis à puncto C cqualiter diftantibus, erigantur HL, PG ordinate ad Logarithmicam, quarum Semijumme ponatur equalis $H D$ vel $P F$, crunt $D \mathcal{S}^{3} F$ ad Catenariam reEte $A C$ correfpendenten.

Vocetur AB, x, adeoque CB vel D. H fenifumma ordinatarum HL, PG erit $a+x$; femidifferentia earundem vocetur y. Unde HL $=a+x+y$, \& $\mathrm{PG}={ }_{a}+x-y$. Cumque ex natura Logarithmicx, C A fit inter has media proportionalis, erit $a^{2}+2 a x+x^{2}-y^{2}=a^{2}$. Unde $y=$ $\sqrt{2 a x+x^{2}}$. Adeoque $\mathrm{HL}=a+x+\sqrt{2 a x+x^{2}}$, \& $\mathrm{PG}=$ $a+x-\sqrt{2 a x+x^{2}}$. Quare fluxio ipflius H I , five ipfa $l m$ eft $\frac{a \dot{x}+x \dot{x}+\dot{x} \sqrt{2 a x+x^{2}}}{\sqrt{2 a x+x^{2}}}$. Et ob xquiangula triangula $\operatorname{lm} \mathrm{L}$,
LHS, eft LH:HS:: $/ m: m$ L, unde m L five $d \delta$ fluxio ipfius $B D=$ $\frac{a x}{\sqrt{2 a x+x^{2}}}$. Hoc eft Curva AD ex Logarithmica fupradicto modo genita, ejus elt naturx, ut fi axis vocetur x, ejufque fluxio \dot{x}, fluxio ordinatx B D fit $\frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}$. Sed hre ipfa eft proprietas Catenarix ad quanr a pertinet, Prop. I. hujus demonftrata. Ergo Curva FAD fuperius defripta eft hec ipfa Catenaria. \&. E. B.
COROL. I.] Sicut ope Logarithmorum Catenaria defrribitur, vice verfa ope Catenarix per ipfam rerum naturam producta, numeri dati vel potius rationis datæ Logarithmus invenitur. Ut fi pofita C A unitate, cujus Logarithmus eft nihilo xqualis, quxratur Logarithmus Numeri C Q five rationis inter CA \& CQ; Rectis CQ \& C A tertia proportionalis fit CV, ipfarumque CQ, CV femifumma CB ; ex B ordinata ad Catenariam, nempe $B D$ eft Logarithmus quefítus. Ratio ex propofitione manifefta eft.
2. Vicifiim fi dato Logarithmo CH vel CP , queratur correfpondens numerus HL vel PG , feu ratio HL ad C A, five PGad CA. Ex H vel P erigatur perpendiculum Catenx occurrens in D vel F, ipfique $H D$ vel PF hoc eft $C B$, fat æqualis $C R$ ad horizontalem $A R$ terminata; eritque

(47)

A R femidifferentia quæfitarum LH, GP, ficut ex fupra demonftrata Catenæ natura HD vel C R eft earundem femifumma: (Nam in tribus quantitatibus Geometricè proportionalibus quales funt $\mathrm{HI}, \mathrm{C} \mathrm{A}, \mathrm{PG}$, quadratum femifummæ extremarum multatum quadrato medix, x quatur quadrato femidifferentix extremarum) adeoque $C R+A R, \& C R-A R$ funt numeri HL. vel GP, dato Logarithmo C H vel C P congrui.
3. Ex demonftratione patet quod ficut HD femifumma Logarithmicæ ordinatarum H L, P G, ad C H normaliter applicata in H, eft ordinata Catenarix, fic femidifferentia earundem HL, PG, ad C A normaliter applicata in B eft ordinata Hyperbolx æquilateræ centro C vertice A defcriptæ: ac proinde, per Corol. 2. Prop. 2. hujus, æqualis Catenæ A D. Nam $y=$ $\sqrt{2 a x+x^{2}}$. Cumque Corol. preced. oftenfum fit, AR effe etiam femidifferentiam rectarum HL, PG, patet AR effe æqualem Catenariæ portioni $A D$. Unde obiter elucefcit modus, datâ Catenâ $A D$, inveniendi C centrum Hyperbolæ conterminæ, vel punctum in afymptoto Logarithmicæ GL. Nam fi fumatur $A R$ r qualis Catenæ $A D, \&$ ex junctæ rectæ $B R$ puncto medio erigatur ad ipfam $B R$ normalis, hæc occurret $B A$ axi Catenæ in quxfito puncto C, uti patet. Nam fic erit $C R=C B$.
4. Hinc etiam fequitur fi $B D T$, angulus fiat $x q u a l i s ~ A C R$, rectam D T tangere Catenariam in D . Nam fic fiet in triangulis $æ$ quiangulis DB , $\mathrm{CAR} ; \mathrm{DB}: \mathrm{BT}:: \mathrm{CA}: A R$ five huic æqualem AD curvam. Et igitur per Corol. Prop, 1. hujus, D T tangit Catenariam.
5. Sequitur etiam fatium ACHD xquari rectangulo fub CA \& AR. Nam quoniam A YD eft, per Prop. 4. xquale triangulo fub C.A \& (AD $-\mathrm{BD}=$, per Corol. 3. bujus Prop. AR-AY=)YR, patet propofitum. Et quoniam C A datur, conftar fpatium ACHD effe ficut AD curva, illiufque fluxionem $\mathrm{H} d$ ficut $\mathrm{D} d$ fluxio hujus.
6. Si per punctum K , ubi CR fecat HD , ducatur K Z parallela $\mathrm{P} \mathrm{H}_{2}$ rectæ A C occurrens in Z, fumaturque $C E$ ®qualis femifummæ ipfarum BC, C Z, erit E centrum Æquilibrii Curvæ F A D.

Intelligatur fuper FAD erecta fuperficies Cylindrici recti refecti plano per PH ad angulos temircctos cum plano Curvæ FAD; exponet hæc fuperficies momentum Curvæ F.A D fuper axe PH libraræ, ejufque fluxio eft $\mathrm{DH} \times \mathrm{D} d+\mathrm{PF} \times \mathrm{F} f=2 \mathrm{BC} \times \dot{\mathrm{AD}}=2 \times \overline{a+x} \times \frac{a \dot{x}+x \dot{x}}{\sqrt{2 a x+x^{2}}}$

$$
=\frac{2 a^{2} \dot{x}+4 a x \dot{x}+2 x^{2} x}{\sqrt{2 a x+x^{2}}}=\frac{a^{2} \dot{x}}{\sqrt{2 a x+x^{2}}}+\frac{n^{2} \dot{x}+a x \dot{x}}{\sqrt{2 a x+x^{2}}}
$$

$+\frac{3 a x x+2 x^{2} x}{\sqrt{2 a x+x^{2}}}$, cujus fluens $a x \cdot \mathrm{BD}+a \sqrt{2 a x+x^{2}}+$
$x: \sqrt{2 a x+x^{2}}=\mathrm{CA} \times \mathrm{BD}+\mathrm{CBx} \mathrm{AD}$. Quare $\mathrm{CA} \times \mathrm{BD}+$ $\mathrm{CB} \times \cdot \mathrm{AD}=$ (quoniam fimul nafcitur, dietx fuperficiei Cylindricx $=$) momento Curvæ FAD fuper axe P H libratæ. Unde diftantia centri gravi-

(48)

tatis Curvx FAD à puncto C eft $\frac{C A \times B D+C B \times A D}{2 A D}$ five $\frac{C A \times B D}{A D}$ $+\frac{1}{2} C B$. Porro ob Z K parallelam $A R$, eft $A D: B D:(A R: Z K:)$ $C A: C Z$, unde $C Z=\frac{C A \times B D}{A D}$, \& igitur $C E$ que per conftructionem eft $=\frac{1}{2} B C+\frac{s}{2} C Z$, erit $=\frac{C A \times B D}{A D}+\frac{1}{2} B C$: hoc eft Curvx FAD centrum gravitatis, \& E punctum ex conftructione definitum æqualiter diftant à C; fed $\&$ in eaden recta \& verfus eafdem partes fita fünt, ergo coincidunt illa.

Poteft \& coincidentia puncti E, ut fupra determinati, cum centro xquilibrii, Prop. 5. hujus definito, Syntheticè fic oftendi. Per Corol. I: Prop. 5. $2 B A X=A Y D+B A \times A R$. Unde $A H+2 B A X=(A C H D$ $+B A \times A R=$ per preced. Corol.) $A R \times G A+B A \times A R$: hoc eft $B D \times A C+2 B A X=A R \times C B ;$ five $B D \times A C=A R \times C B$ $-2 B A X$. Unde $B D \times A C+A D \times B C=(A D \times B C+A R \times$ $C B-2 B A X=2 A D \times B C-2 B A X \Rightarrow 2 A D \times A C+2 A D$ $\times A B-2 B A X$. Et applicando ad $2 A D$, erit $\frac{1}{2} \frac{B D \times A C}{A D}+\frac{1}{2} B C$ $=\left(A C+\frac{A B \times A D-B A X}{A D}=\right) C A+\frac{A R X}{A R} \cdot \operatorname{Sed} \frac{A R X}{A R}$ eft diAtantia centri æquilibrii Catenæ à vertice A, per Prop. 5. hujus determinata, ac proinde, fecundum dictam Prop. 5. $\mathrm{CA}+\frac{\mathrm{ARX}}{\mathrm{AR}}$ eft diftantia puncti E à C, \& $\frac{\mathrm{BD} \times \mathrm{AC}}{\mathrm{AD}}+\frac{1}{2} \mathrm{BC}$, eft ejufdem E diftantia ab eodem C , fecundum hoc Corol. 6. linde patet duas iftas determinationes puncti E eodem recidere, quoniam $C A+\frac{A R X}{A R}=\frac{1}{2} \frac{B D \times A C}{A D}+\frac{1}{2} \mathrm{BC}$.
7. Spatii P F A D H centrum gravitatis eft in I, medio puncto rectx C E. Cum centrum gravitatis fluxionis ipflus A D , five $\mathrm{D} d \& \mathrm{~F} f$, duplo magis diftet à P H quam centrum gravitatis fluxionis ipfius A C H D five D H bd \& FPpf, \& $\overline{\mathrm{D} d+\mathrm{F} f} \times \mathrm{AC}$ datam, $x q u a l e \mathrm{D} d b \mathrm{H}+\mathrm{F} f p \mathrm{P}$ patet \& fluentis F A D centrum gravitatis E duplo magis diftare à P H, quam fluentis P F A D H centrum I. Sed libet propofitum aliter \& ad modum fuperiorum oftendere.

Intelligatur fuper figura P F A D H crectus Cylindricus rectus \& refectus plano per P F tranfeunte, cum plano bafeos angulum femirectum comprehendente ; exponet iftud folidum momentum figure PFADH fuper

(49)

axe PH libratx: hujufque folidi five preedicti momenti fluxio (folida nempe erecta fuper $\mathrm{PF} f p$ \& $\mathrm{HD} d b$) producitur, fi momentum fluxionis, five fluxio momenti ipfrius A D, ducatur in $\frac{1}{2}$ A C datam. Nam per Corol. 5. hujus Prop. $\mathrm{HD} d b=\mathrm{D} d \times \mathrm{AC}:$ Quare ipfum momentum fluens producitur ducendo momentum Curvæ FAD refpectu axis PH, fuperiore Corol. determinatum, nempe $\mathrm{CA} \times \mathrm{BD}+\mathrm{CB} \times \mathrm{AD}$, in $\frac{1}{2} \mathrm{AC}$; eritque proinde $\frac{1}{2} \mathrm{AC} \times \mathrm{AC} \times \mathrm{BD}+\frac{1}{2} \mathrm{AC} \times \mathrm{CB} \times \mathrm{AD}$. Adeoque fi hoc applicerur :id figuram libratam PFADH five $2 C A \times A D$, per hujus Prop. Corol. 5. fiet diftantia centri gravitatis figure PFADH ab axe PH= $\left(\frac{\mathrm{C} \mathrm{A} \times \mathrm{BD}}{\mathrm{AD}}+\frac{1}{4} \mathrm{CB} \Rightarrow\right.$) dimidix rectx C E fuperius determinatx.
8. Si per N punctum ubi D tangens Catenariam in D, fecat $A R$, ducatur recta parallela ipfi BC, Occurrens recte per E ad A R parallele in O ; erit O centrum gravitatis Curvæ A D. Nam per Corol. 6. centrum gravitatis curvæ A D eft in recta EO, fed demonftrabitur illud effe in NO recta, \& proinde erit ipfum O punctum. Intelligatur DA librari circa H L axem; hujus momentum eft curva D A ducta in diftantiam centri gravitatis ab HL: \& ejus proinde fluxio $=\mathrm{DA} \times \mathrm{H} b$ ($\mathrm{H} h$ eft fluxio diftantix axis libratio.
nis à gravitatis centro) $=\sqrt{2 a x+x^{2}} \times \frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}=a \dot{x}$. Ac proinde ipfum momentum Curvæ gravis D A circa axem HL libratx $=a x$. Et igitur diftantia centri gravitatis ab eodem axe eft $a x$ applicata ad A D, five $\frac{A C \times D Y}{A R}$. Sed quia D T tangit Catenariam, per Corol. 4. hujus Prop. angulus $B D T$ five $D N Y=A C R$, \& anguli ad $A \& Y$ funt recti, quare in triangulis æquiangulis $R A C, D Y N ; R A: A C:: D: Y N$. Unde $\mathrm{YN}=\frac{\mathrm{AC} \times \mathrm{DY}}{\mathrm{RA}}$, hoc eft YN ef diftantia centri gravitatis Catenæ AD $a b$ axe HL, five centrum predictum eft in recta NO .
9. Si per I ducatur recta ad A R parallela, rectx O N productx occurrens in W, erit W centrum gravitatis fpatii A CHD. Nam per Corol. 7. centrum gravitatis fatii ACHD elt in recta I W, fed ut mox oftendetur, eft in NW , \& proinde eft ipfum W punctum. Eodem enim modo, quo in Corol. proced. fluxio momenti fatii ACHD circa HL librati oftenditur effe $\mathrm{ACHD} \times \mathrm{H} b=\mathrm{AC} \times \mathrm{AD} \times \mathrm{H} b=a \times \sqrt{2 a x+x^{2}}$ $x \frac{a \dot{x}}{\sqrt{2 a x+x^{2}}}=a^{2} \dot{x}$. Ac proinde ipfum momentum fpatii ACHD circa axem HL librati, xquale eft fluenti cujus $n^{2} \dot{x}$ eft Fluxio, hoc eff ipfi $a^{2} x$. Hoc igitur applicatum ad ipfum fatium A C HD five $a \times \sqrt{2 a x+x^{2}}$ Vol. I.

(50)

dat diftantian centri gravitatis fatil ACHD abHI $=\frac{a}{\sqrt{2 a x+x_{5}^{2}}}$ $=\frac{A C \times D Y}{R A}$. Sed Corol preced. oftenfa ef $Y N=\frac{A C \times D Y}{R A} \quad E t$ igitur centrum gravitatis fpatii A CHD eft in NW. Atque ex duobus hifce ultimis Corol. invenitur centrum gravitatis cujufvis portionis Catenæ etiam ad verticens A non pertingentis; vel cujufvis fatii Catenarix portione quavis, \& aliis rectis prexer prodictas comprehenfi.
to. Hinc menfurantur fuperficies \& folida genita rotatione Catenæ aut fpatii fub illa \&e rectis comphehenfi, circa axes datos. Nam figura rotatione genita xquatur, uti vulgo notum, figuræ rotatæ ductx in peripheriamà centro gravitatis: inter rotandum percurfam, etiam datam cunt detur illius radius five diftantia centri gravitatis ab axe dato. Sic f_{1} Catena $A D$ roterur circa axem $A B, \frac{\pi}{\rho} A N$ eft peripheria à centro gravitatis O percurfa, $\left(\frac{\pi}{\rho}\right.$ denotat rationem peripherix circuli ad femidiametrum) adeoque fuperficies motatione Ca renæ $A D$ genita $=\left(\frac{\pi}{\rho} \times A \mathrm{~N} \times A D=\right) \frac{\pi}{\rho} \times A N \times A R$. Hoc eft circulus cujus radius poteft duplum rectangulum RAN; æquabitun fuperficiei à Catenæ A.D rotatione circa axem A B genitx. Pari modo folidum genitum rotatione fatiiA CHD circa A C, xquale oftendetur Cylindro cujus bafis eft predictus circulus, altitudo vero æqualis; A C. Similiterg; fuperficies \& folida, ex rotatione harum figurarum circa alios quofvis datos axes facta menfurantur. Nam dato centra gravitatig hæc non latebunt:
2. Qux in Animadverfione ad noftras de Catenaria Dêmonftrationes abjitine Animadver- cit Anonynus AEE: Lipf. M. Feb.A. I 699. funt hæe;: Quod rem ab aliis jam anteJions of feptennium inventam \& publice expofitam demonftrare aggreflus fim, modo D. Gregory. quadam meo. Ita quidem eft; Quid vero hic redarguendum fit non cápio. 2.259. p. 419. Celeberrini viri Hugenius, Leibnitius, \& Bernoullius, plurimas Catenarix proprietates detexerunt, \&r ediderunt, at non demonftrarunt: "Ego quod. fufcepi, demonftrationes pertexui.

Sed an res hace (nempe Catenarix Natura \& proprietates primasix) ab aliis inventa \& publice expofita fuit? Certè ifta Catenarix proprietas; Corol. 6. Prop. 2. aliis indicta eft penitus ante editas hafce demonftrationes: Cum tamen fit ni fallor inter primarias illius proprietates, \&zomnium longè utilifima; $\&$ ad vitæ communis ufus facillimè reducenda. Ab omni $æ v o$, in $æ d i f i c i i s ~ p u b-~$ licis Fornices arcufque tàm ad firmitatem quàm pulchritudinem ádhibuerunt Architecti: Qualis tamen fit Fornicis, figura legitima adufque editas noftras demonftrationes ignoratum eft:

Primum autem quod reprehendat invenit, quod quadam ex Mechanicis conftare dixerim, qux diftinctius enuntiare atque etiam applicare operæ pretium: fuiffe ait. Ego qui Geometris demonftranda Theoremata quxdam fufceperam; onnia minutim exequenda non credebam.

(51)

Verum ut Animadverfori gratum faciam, Lemma iftud (Arof.11.) demonttraba; cum diftinctius enuntiare nequeam, quam eft hactenus factum in hæe verbà.

Poteritice tres in aquilibrio pofite candem babent rationom cum retis triburs ad ipfarum direéziones iparalletiss vel in dato Angulo inctinatis, ì inutuo ocsurfit terminatis.

Puta fi potentix tres trahentes, impellentes vel utcunque agentes, fecundum rectas $\mathrm{P} A, \mathrm{P} B, \mathrm{PC}$ fint in Etquilibrio ; \& inclinentur ad has directiones tres xectax $\mathrm{EF}, \mathrm{FD}, \mathrm{DE}$, in angulo quovis dato, hoc eft fi anguli E AP; $F B P$ P DC P, fuerint æquales, dico potentias $A, B, \& C$, effe inter te ut recte, FE, ED\&DE.

Producantur rectr AP, BP, C P in $G, H \& K$.
In Quadrilatero FABP, cum Angulus externus EAP fit, ex Hypotheh; rqualis interno \& oppofito PBF, erunt interni duo oppofiti FAP; \& FBI zquales duobus rectis; cumque omnes quatuor interni quatuor rectis xquentur, erunt reliqui duo $F \& A \cdot P B$ in eadem quadrilatero oppofiti, duobis C ctis etiam requales. Sed $A P B \& B P G$ efficiunt duos rectos, \& \& initur ado gulus F eft æqualis angulo B P G. : Similiter oftendentur D \& B P Rixquà les, item E \& APK.

Quoniam tres Potentixe funt in Aquilibrio, funt immotx, \& igitur earum qualibet pro Hypomochlio haberi poteft reliquarum duarum refpectu quæ in æquilibrio manent. Si B habeatur pro Hypomochlio, per Mectianice notiffimum Theorcma, Potentia A eft ad Potentiam C, ficut finus Anguli B P K; ad finum Anguli B P G; hoc eft finus Anguli D ad finum Anguli F , hoc eft recta FE ad rectam DE. Rurfus pofito C Hypomochlio, potentia A eft ad potentiam B, ut finus Anguli C P H ad finum Anguli C P G, five finus Anguli BPK ad finum Anguli A P K, hoc eft finus Anguli D ad finum Anguli E, hoc eft ut recta FE ad rectam F D. Tres igitur Potentix A, B, \& C, funt ut rectx FE, FD, \& DE. \&. E. D.

De Applicatione hujus Lemmattis Mechanici nunc agendum. Si concipiatur (ut fupra-dictum Prop.I.) lineolæ $d \mathrm{D}$ gravitas abfoluta per $d \mathrm{D}$ expofita, in ejus centro gravitatis M collecta, \& grave hoc fecundum directionem MF ad $d \mathrm{D}$ normalem vi gravitatis fux defcendere : Potentia fecundum MD trahens quæ in æquilibrio eft cum predicto gravi, per præmiffum Lomnia, eft âd ejus momentum five potentiam trahentem fecundum $M F$, ficut δD ad δd. Nam Angulus \& D , quo D \& inclinatur ad MD, , q qualis eft angulo de F , quo $d \delta$ inclinatur ad $M F$; viz. uterque complementum anguli d ad rectum. Atque hoc etiam obtinet, agnofcente Animadverfore, fi ut in vulgari Mcchanica; prodictum grave, plano MF incumbens, interpofita trochlea:ad M, trahatur ab alin grave ipfi MD incumbente: Erit hoc ad illud ficut D of ad df

Quod fi, reliquis manentibus, modus applicationis harum potentianum mug tetur, ita ut ad flexilis linex dD, cujus extremum d inmotum, punctum medis um M applicetur pondus fecundum $M F$ vires exerens, quippe arcum, centro d, radio a M , in défenfu deecripturum : Erit ponderis hujus vis, ad Aexileng linean rectam ad M incurvandam, infinita refpectu vis fux graviatis abolutx ; \& vis fecundum $M D$ trahens ad modo defcriptam incurvationem impediendani requifita, etiam infinitarefpectuejus qux prius requirebatar ad pondustur - 3 3: 11: 5

(52)

in plano MF fuftinendunt. Adeo ut Potentix quæ in priore applicationis modo exponebantur per $d \delta, \delta \mathrm{D}$, nunc exponendæ veniant per infinitè majores prioribus proportionales : Nam ut prius pondus M trahit fecundum directionem MF, \& Potentia illud fuftinens fecundum MD; \& hæc duo effe in xquilibrio ex partium Catenæ quiete conftat. Eadem igitur manebit harum ratio quæ prius fuerat. Sed caufa qux lineam flexilem $d \mathrm{D}$ (cujus extremum d immotun, cujufque medio puncto M applicatur grave infinitè quidem parvum, fed cujus vires per hunc applicationis modum infinitè majores redduntur, \& proinde in Animadverforis Phrafi affignabiles fiunt) in rectam extendit, eft Catenæ D A gravitas quæ eft ipfius longitudini proportionalis. Hæc ergo eft ad conftantem \& affignabilem a (conftanti fed inaflignabili $d \delta$ proportionalem) ut $D \delta$, ad $\& d$. Atque fic Animadverfori patere credo veram conclufionern abfque affumptis erroneis fuiffe probatam.

The Radrature of Figares Geo. ametrically Irra zional, by Mr. J. Qu Craig. n. 232. p. 708.

Fig. 4I.
XIV. Sit ACF Semicirculus, cujus Diameter eft A F, AD E Curva Geometricè irrationalis, cujus ordinatim applicata BD , fecat Semicirculum in C . Quantitates verò fic defignentur; Diamerer $\mathrm{AF}=2 a$, abfciffa $\mathrm{A} \cdot \mathrm{B}=y$, Ar cus $\mathrm{AC}=\vartheta$, ordinata $\mathrm{BD}=z$: fitque $z=r v y^{n} x$ quatio generalis exprimens naturas Curvarum Geometricè irrationalium ADE, in qua r deno- tat quantitatem quamlibet datam \& determinatam, \& n exponentem indefinitum quantitatis indeterminatx y. Dico Aream

$$
\begin{aligned}
& \mathrm{ABD}=\frac{r v y^{n+1}}{n+1}-q v+\sqrt{2 a y-y y} \times \frac{r a}{n+I_{1}{ }^{2}} y^{n}+ \\
& \frac{2 n r a^{2}+r a^{2}}{n \times n+\left.1\right|^{2}} y^{n-1}+\frac{a \mathrm{~A} \times 2 n-1}{n-1} y^{n-2}+\frac{a \mathrm{~B} \times 2 n-3}{n-2} y^{n-3} \\
& +\frac{n \mathrm{C} \times 2 n-5}{n-3} y^{n-4}+\frac{a \mathrm{D} \times 2 n-7}{n-4} y^{n-5}+\frac{a \mathrm{E} \times 2 n-9}{n-5} y^{n-6} \\
& + \text { \&c. }
\end{aligned}
$$

De hac Serie Infinita hæc funt notanda: (1.) Quod Literæ majufculx $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \& \mathrm{c}$. defignent coefficientes Terminorum ipfis immediatè pracedentium, Ccil. $\mathrm{A}=\frac{2 n r n^{2}+r n^{2}}{n \times n+1 \times n+I}, \mathrm{~B}=\frac{a \mathrm{~A} \times 2 n-1}{n-I}$, $C=\frac{6 \mathrm{~B} \times 2 n-3}{n-2}$, \& fic porro. (2.) Quod fi exponens $n f_{i t}$ numerus integer \& pofitivus, aut nihilo æqualis, vel etiam fi $2 n$ fit numerus impar, tum Quadratura fpatii ABD exhibeatur per Quantitatem finitam; ferie in his cafibus abrumpente. (3.) Quod q defignet Terminum ultimo abrumpentem. (4) Quod omnes illx Figure in quibus Series abrumpitur, habeant unam portionem Geometricè Quadrabilem, ex ipfa Serie facillimè affignabilem: Nimirum If capiatur abfciffa $y=\left.\bar{r}\right|^{\frac{1}{n+1}} \times\left.\overline{n q+q}\right|^{\frac{1}{n+1}}$; erit huic abfiffre
competens
competens Area Geometricè Quadrabilis. (5.) Quod folus Terminus Irrationalis $\sqrt{2 a y}-y \boldsymbol{y}$ in Terminos ipfum fequentes fit multiplicandus.

Exemplum I.] Sit $z=v$, quia in hoc cafu $r=\mathrm{I}, n=0$, ideo $\left.\frac{r a}{n+\mathrm{I}}\right|^{2} y^{n}$ eft Terminus ultimò abrumpens, quare $q=a$, unde $\mathrm{ABD}=v y-a v$ $+a \sqrt{2 a y-y^{2}}: \&$ proinde fil (per Not. 4). capiatur Abfiffa $y=a$, id eft, fi ordinata tranfeat per Circuli Centrum, erit portio huic competens Geometricè Quadrabilis, fcil. Area $=a a$, id eft, Radii Quadrato.
Exemplum 2.] $\operatorname{Sit}_{z}=\frac{y}{a}$, quia in hoc cafu $r=\frac{1}{a}, n=1$, ideo $\frac{a n r a n+r a n}{n \times x+\left.1\right|^{2}} y^{n-1}$ eft terminus ultimò abrumpens, quare $q=\frac{3 a}{4}$, unde $\left.\mathrm{ABD}=\frac{v y^{2}}{2 a}-\frac{3 a v}{4}+\frac{\overline{y+3 a}}{4} \sqrt{2 a y-y^{2}}\right) \&$ proinde $\mathrm{f}($ per Not. 4.) capiatur $y=\frac{\sqrt{3 a \cdot a}}{2}$, erit huic abrciffe comperens Area Geometriitricè Quadrabilis, fcil. Area $=\sqrt{\sqrt{6 a^{4}}-\frac{3 a^{2}}{2}} \times \frac{\sqrt{3 a^{2}}}{3^{2}}+\frac{3 a}{4}$.
Exemplum 3.] Sit $z=\frac{v y^{z}}{a n}$; in hoc cafu $r=\frac{1}{a n}, \quad n=2$, ideo $\frac{\text { A } \times 2 n-1}{n-1}, n-2$ eft Terminus ultimò abrumpens, ergo $q=\frac{5 a}{6}$; unde per Seriem Infiniam erit $\mathrm{ABD}=\frac{6 y^{3}-15 a^{3} v+\sqrt{2 a y^{2}+5 a^{2} y+15 a^{3}}}{18 a^{2}}$
$\overline{2 a y-y y}, \&$ proinde fi (per Not.4) capiatur $y=\sqrt[3]{\frac{5 a^{3}}{2}}$ erit abfiffx competens Area Geometricè Quadrabilis : Fcil. Area $=\frac{2 a y^{2}+5 a^{2} y+15 a^{2}}{18 a}$ $x \sqrt{2 a y-y y^{2}}$

Secundo.] Sit A CF Parabola, cujus Axis AE, vertex A, \& latus rectumB A. Sitque A D G Curva Geometrice irrationalis, cujus ordinatim applicata BD fecat Parabolam in C . Et vocetur abfiffa $\mathrm{AB}=\boldsymbol{y}$, Ordinata $\mathrm{BD}=$ \% Arcus Parabolicus $\mathrm{AC}=v$. Sitque æquatio generalis, exprimens Naturas Infinitarum Curvarum irrationalium, hæc, $\mathrm{Z}=r v y^{n}$, in qua r denotat Quantitatem datam \& determinatam; \& \underline{n} exponentem indefinitum Quantitatis indeterminate \%. Dico Aream

Fig, 42 :

ABD

(54)

$\mathrm{ABD}=\frac{r y^{n+1} \times 0}{n+1}-q \mu+\sqrt{2 n y+y y}-\frac{1}{n+2 \times n+1}+y^{n+1}$
$-\frac{r a}{n+2 \times n+\left.1\right|^{2}} y^{n}+\frac{r a a \times 2 n+1}{n \times n+2 \times \sqrt{n+1} y^{n}} y^{n-1}$
$\frac{a \mathrm{~A} \times 2 n-1}{n-1} x^{2}+\frac{\mathrm{B} \times 2 n-3}{n-3}-\frac{n C \times 2 n-5}{n-4}$ $+8 c$.

De hac Serie hæc. funt notanda: (1.) Quod Literæ majufculæ, A, B, C, \&c. denotent coefficientes terminorùm ipfis' præcedentium. (2.) Quëd fi exponens n fit integer pofitivus aut nihilo æqualis, aut etiamfi $2 n$ fit numerus impar, tum Quadratura exhibeatur per numerum terminorum finitum; Serie in his cafibus abrumpente. (3:) Quod $+q$ fit xqualis ultimo termino abrumpenti. (4) Quod ex terminis Quantitatem $\sqrt{2 a y+y y}$ multiplicantibus ultimò abrumpens fit duplicandus. (5.) Quod omnes illæ Figure, in quibus n eft numerus integer pofitivus ix impar, vel generalius, omnes illæ figure, in quibus ultimus terminus abrumpens habet fignum affirmativum feu + , habeant unam portionem Geometricè Quadrabilem, \& ex ipfa ferie facilè affignabilem, fumendo abçiffam utin in Not. 4 pracedentis Ceriei.

Excmplum: 1.] Sit $z=v$, quia in hoc cafu $r=1, n=0$, ideo terminus ultimò abrumpens eft $-\frac{r a}{n+2 \times\left.\overline{n+1}\right|^{2}}$ y, unde $+q=-\frac{n}{2}$ (per xi:4. Not-3.) \& quia in hoc cafu - $\frac{a}{2}$ eft terminus ultimò abrumpens, ideo eft ultimus terminus in $\sqrt{2 a y+y y}$ multiplicandus, (per Not. 4.) Adeoque $A B D=v y+\frac{a v}{2}+\sqrt{2 a y+y^{2}} \times-\frac{1}{2} y-a$.
Exemplumz.] Sit $z=\frac{a}{a}$ quia in hoc cafur $r=\frac{a}{a}, n=1$, ideo terminus ultimò abrumpens eft $\frac{r a a \times 2 n+1}{n \times n+2 \times 1+1} y^{n-1}=\frac{a}{4}$, unde

 $A B D=\frac{y y}{2 a}-\frac{a v}{4} \sqrt{2 x y+y^{2} \times-\frac{y}{64}}-\frac{x}{2 d^{1}}+\frac{a}{2} \alpha f$ fa-

(55)

piatur $y=\frac{\sqrt{a a}}{2}$, erit Area competens hine Abfciffx Geometricè Quadra.
bilis, fcil. Area $=\frac{1}{12} \sqrt{: \sqrt{2 a^{4}}+\frac{a^{2}}{2}} \times 5 a-\frac{\sqrt{a^{2}}}{2}:$
Tertio.] Sit A CF remicirculus, ADE Curva Geometricè irrationalis, cujus n. 2350 . $p .785_{0}^{\circ}$ ordinatim applicata BD fecat femicirculum in C. Quantitates verठ defignen- Fig. 4I。 tur ut prius, fcil. Diameter $\mathrm{AF}=2 a$, Abfciffa $\mathrm{A} \cdot \mathrm{B}=y$, Arcus $\mathrm{AC}=v$, Ordinata $\mathrm{BD}=z$; fitque $z=r \boldsymbol{m}^{2} y^{n}$. Æquatio exprimens Naturas Curvarum $A D E$, in qua r denotat quantitatem quamlibet datam \& determinatam, \& n exponentem indefinitum quantitatis indeterminatr y. Dico Aream
$\mathrm{ABD}=r v^{2} y^{n+1}-q v^{2}+v \sqrt{2 a y-y^{2}} \times \frac{2 r a}{n+\left.1\right|^{2}} y^{n}+$
$\frac{2 n^{2} \times 2 n+1}{n \times n+1} y^{n-1}+\frac{a \mathrm{~A} \times 2 n-\mathrm{I}}{n-\mathrm{I}} y^{n-2}+\frac{\mathrm{B} \times 2 n-3}{n-2} y^{n-3}$
$+\frac{n \mathrm{C} \times 2 n-5}{n-3} y^{n}-4+\frac{n \mathrm{D} \times 2 n-7 y^{n}-5+\frac{n \mathrm{E} \times 2 n-9}{n-4} y^{n}-6}{}$
$8 \mathrm{c} .-\frac{2 r a^{2}}{n+I^{3}} y^{n+1}-\frac{2 r a^{3} \times 2 n+1}{n^{2} \times \sqrt{n+1}} y^{n}-\frac{a^{2} \mathrm{~A} \times 2 n-1}{n-1} y^{n}-x$ $-\frac{n^{2} \mathrm{~B} \times 2 n-3}{n-2} y^{2}-2-\frac{n^{2} \mathrm{C} \times 2 n-5}{n-3} y^{n-3}$, \&c.

De hoc Theoremate hec funt notanda; (I) Quod componatur ex duabus fericbus infinitis, quarum prior (figno + connexa) multiplicatur in $v \sqrt{2 a y-y^{2}}$; termini autem pofterioris (figno - affecti) funt abfolutio (2.) Quod in priori ferie literx majufulx, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, , \&c. defignent coefficientes terminorum ipfis refpective precedentium; nec non in pofteriori coldem obtineant valores, quos in priori. (3.) Quod Quadratura exhibeatur per quantittem finitam, quarido n eft numerus integer pofitivus, aut nihilo æqualis, vel etiam fi $2 n$ fit numerus impar: nam in his cafibus utraque Series abrumpitur. (4.) Quod $2 q$ fir wqualis ultimo termino abrumpenti pros. oris Seriei.

Exemplum I] Sit $z=\frac{v^{2}}{a}$ Quia in hoc cafu $n=0, x=\frac{1}{a}$ ideocrit Area $A B D=\frac{y^{2}}{a}-y^{2}+2 v V 2 a y-y^{2}-2 a y$ Corol Integra figura AFE eft rqualis duplo Quadrato, cujus Latus eft ACF, dem-
pto diametri Quadrato pto diametri Quadrato.

Exemplum 2.] Sit $i=\frac{y \cdot v^{2}}{n^{2}}$, quia in hoc cafu $n=1, r=\frac{1}{n^{2}}$, ideo crit Area ABD $=\frac{y^{2} v^{2}}{2 a^{2}}-\frac{3}{4} v^{2}+v \sqrt{2 a y-y^{2}} \times \frac{v}{2 a}+\frac{3}{2}-$ $\frac{1}{4} y^{2}-\frac{3 a y}{2}$

Exempl. 3.] Sit $z=\frac{y^{2} v^{2}}{a^{3}}$, quoniam in hoc cafu $n=2, r=\frac{1}{a^{3}}$, ideo erit Area $\mathrm{ABD}=\frac{y^{3} v^{2}}{3 a^{3}}-\frac{5}{6} v^{2}+v \sqrt{2 a y-y^{2}} \times$ $\overline{\frac{2 y^{2}}{9 a a}+\frac{5 y}{9 a}+\frac{5}{3}}-\frac{2 y^{3}}{27 a}-\frac{5 y^{2}}{18}-\frac{5 a y}{3}$.
XV. Efto ONF Curva Logarithmica, cujus Afymptotos $A R$, in qua The 2uadrature
of the Logarith, fale fumatur punctum A , ut ejus prima ordinata $\mathrm{A} O$ fit fubtangenti feu uniof the Logarith,
mich curve, by tati æqualis: Quæritur f patium Curvilineum A ON M a duabus ordinatis A O, Mr. J. Craig. MN , Abfciffâ A M, \& Curvâ Logarithmicâ O N comprehenfum.
 rectangulum ex fegmentis ME, EN fit æquale fpatio quæfito.

Demonftratio.] Vocetur Ordinata $M N, z$; fubtangens $A O$ feu $M E$ s: \& ad axem AR conftruatur alia Curva HGE, cujus xquatio $2 s z=x^{2}$, ubi ejus ordinata $G M=x$; dico quod fit quadratrix Logarithmicx juxta Methodi mex fundamentum; fcil. ejus fubnormalis eft refpectivx hujus Ordinatæ x equalis : ut ex calculo iftius Methodi patebit: Ergo (juxta alibi à me expofita) f_{1} ad G ducatur GC perpendicularis \& xqualis linex $G M$, nec non HD parallela ad G C, \& lineis G M, CM occurrens in B. \& D; erit trapezium GBDC=AONM. Sed GBDC=GMC-BMD= $\frac{x_{2}}{2} x^{2}-\frac{1}{2} \mathrm{BM}_{q}=\mathrm{SZ}-\frac{1}{2} \mathrm{HA} q$; fed $\mathrm{HA}=\sqrt{2} \mathrm{AO}_{q}$ ex natura Cur. vx $\mathrm{HGQ}, \operatorname{crgo} G B D C=S Z-A O_{q}=A O \times \overline{\mathrm{MN}}-\overline{\mathrm{AO}}$ $=A O \times \overline{M N}-A O=M E \times M N-M E=M E \times E N$; Ergo etiam AONM $=\mathrm{ME} \times \mathrm{EN}$. \&E.D.
if 2 tuddratix to: XVI. I. By the Equable Evolution of a Circle, I mean fuch a gradual apthe circle ; being proach of its Periphery to Rectitude, as that all its parts do together, and she curve de-
forib'd by its E- equally, Evolve or unbend; or fo that the fame Line becomes fuccelfively a lefs ${ }_{q}$ quableEvoutution, and lefs Arc of a reciprocally greater Circle.
by 2. Let AHK A be the Periphery of a Circle, A E a Tangent to the point

(57)

orher parts do equally Evolve or extend themfelves thro' all the degrees of lefs Curvature (as in A B D, A MC, \&c.) till they become Atreight in coincidence with the Tangent AE.
3. Let A MC be the Evolving Curve in any middle pofition between its firft and laft. Join the fixt end A, and the moving end C, by the Chordline A C, interfeting the firft Circle at H . I fay, that $\mathrm{A} M \mathrm{C}$ is a like Segment to A $n H$, cut off in the firt Circle by the Chord A H. For, by the Suppofition, AMC is the Arc of a Circle, having AE a Tangent common both to it and $\mathrm{A}_{n} \mathrm{H}$, and both Arcs are terminated in the fame RightLine A C.
4. Hence the Curve A D C E (defcrib'd by the moving end of the Periphery in its Evolution) may be thus conftructed. Let the Circle A H K A be by Bifcetions divided into any number of equal Parts. Let H be one of the Points of fuci divifion. Then fay, as the Number of equal Parts in the Arc $\mathrm{A}_{n} \mathrm{H}$, is to the Number of Parts in the whole Periphery A HK A; fo. is the Chord A H, to a fourth Line, which let be AC in A H produc'd. So is C a point in the Curve A D CE.
5. Dcm. Upon AC defcribe A MC, an Arc like to the Arc $A n H$. Whence A H: AC ::A ${ }_{n} \mathrm{H}: \mathrm{A} M \mathrm{C}$. But by conitruction, A H:A C :: A $n \mathrm{H}:$ Periph. A HKA, therefore is the Arc A MC equal to the whole Pcriphery A.HK A, and like to the Aicc $\mathrm{A}_{n} \mathrm{H}$. Confequently AMC reprefents the Evolving Periphery, in a Pofition like to the Arc $\mathrm{A} n \mathrm{H}$, and C is the defcribing Point.
6. After the fame manner may be found other Points, thro' which the Curve may be drawn. But here (as in the old Quadratrix of Dinoftratus) the Point E cannot be precifely determined, but the Curve may be brought fo near it, that its flexure or tendency will fo lead to the Point E, that A E fhall be near enough to the Truth for common Ufes.
7. Suppofing the Point E found, a Tangent to any point of the Curve may be drawn: and fuppofing a Tangent drawn, the point E may be determined; the property of the Tangent being this, that fuppofing R T a Tangent to the Point C, and C A , C E, drawn from C to each end of the rectity'd Circle, the Angle ACT (the leffer Angle that AC makes with the Tangent) is equal to ACE the Angle made by the two Lines drawn from C.
8. Let c be a point in the Quadratrix indefinitely near to C; and draw $A^{\prime} c$ interfecting A HK A in h, and AMC in o. To $A c$ as a Chord, draw the Arc Amc, like unto the Arc Anb. To the point C of the Arc A M C draw the Tangent $C L=A E$, and joyn $L A:$ fo is $0 C$ an indefinitely little particle of the Arc coincident with its Tangent.
9. Becaufe of the like Segments $\mathrm{A} n \mathrm{~b}$ A, A M $\circ \mathrm{A}, \mathrm{A} m \mathrm{c}$ A, as Chord Ac, to Chord A_{0}; fo is Arc $A_{m c}(=A M C)$, to Arc A Mo. Or, Ac: $\mathrm{A}_{0}:: \mathrm{Amc}_{\mathrm{m}}(=\mathrm{AMC}): \mathrm{AM}_{0}$. And dividing, $\mathrm{Ac}_{\mathrm{c}}-\mathrm{A}_{0}\left(=\mathrm{c}_{0}\right)$: A $0:: \mathrm{A}_{\mathrm{m}} \mathrm{c}$ - $\mathrm{AM}_{0}\left(=\mathrm{C}_{0}\right)$: A.Mo. That is, $\mathrm{c}_{0} 0: \mathrm{A}_{0}:: \mathrm{C}_{0} 0:$ A M_{0}, and alternately, $c_{0}: C_{0}:: A_{0}: A \cdot M_{0}$. Put AC for A_{0}; and A MC for A Mo (as differing infinitely little) and then,'tis co:C $0:: \mathrm{AC}$: A MC. But by conftruttion $\mathrm{CL}=\mathrm{AE}=\mathrm{AMC}$, whence $\mathrm{c} 0: \mathrm{C} 0:$: Vol. II.

(5^{8})

$A \cdot C: C L$, and the Angle L. $C A=C o c$, (o.c being infinitely near to $A C$, is therefore parallel to it.) And therefore Coc, A C L, are like Triangles.
10. Becaufe of C.L =A-E, Angle E A.C $=\mathrm{L} C A,(C L$ and E A being Tangents to the two ends of the fame Gircular Arch AM C, makeequal Angles with its Cherd AC) and A C common to both, the Triangles E A C $A C L$, are like and equal $:$ therefore are all, three $\mathrm{C}_{0: c}, \mathrm{~A} \cdot \mathrm{C}, \mathrm{E}, \mathrm{EAC}$, like Tringles. Whence it follows, That the Angle A:CE (in the Triangle. $E A C$) is equal to the Angle oc C (in the Triangle co C) but oc $C=A C^{\prime} T$ becaufe oc and AC are parallel ; therefore the Angle ACE =ACT. S.E.D.

The Dimenfions of a Sphere and 1 Cylunter compar'd; by. D.
Wailis. n. 263. w. 547.
XVII. In Epiftola quadam mea (Oper. Mathem. Vol. III.) inter alias meas Methodos (quibus in Tetragonifnis utor) occurrunt hæ duæ; quarum alteram appello Methodum Conzolutionis \& Evolutions:; altevam, Methodum Compleationis \&e Expplicationis. (Quarum ope oftendo (tum aliarum Figurarum, tum fpeciatim) Cycloidis dimeticnd x quis fitimodus ommium fimpliciffimus.

Simili Artificio colligetur, tota Spherx cum Cylindro collatio: Quod fibi Monumentum fecit Archimedes.
Fis. 45: Quippe fi ad Bafm P (Peripherix Circhli xqualem:) fumatur altitudo R (xqualis Radio): fiet Parallelogrammum Rectangulum $=$ R:P. Quod ex minutis Parallelogrammis æeque altis, numero infinitis, (juxta receptam Methodum Indivifibilium) conflatum intelligatur. Quorum fi:omnes vertices intelligantur in unicum punctum contrahi, quo ex illis minutis Parallelogrammis. rotidem fiant Trianguia fuper eifdem Bafibus roque alea ; fingula fingulorum, adeogue omnia omnium, dinidia:; (curvata Bafı in Circuli Peripheriam) fiet Circulus (Centro C, Radio R, Parallelogrammi dimidius $=\frac{1}{2} R P$.

Qux eft ipfa Archimedis Dimenfio Circuli: requalis útigue Triangulo Re©angulo, cujus lateram (circa Angulum Rêtum) æquatur alterum Peripherix, alecrum-Radio expofiti Gireuli. Quippe in' R (femialtitudo Trianguii) in P (Bain) ducta, exhibet Magnitudinem ittius Trianguli $=\frac{2}{2} R P$, irculo-xqualem. Idemque accommodabitur Sectori Circulari, fumpto arcu A pro P Peripheria.
सें 4%
Porro ; fi ad illud Parallelogrammum $=\mathrm{RP}$ (ut Bafim) fumatur itidem (in ordine ad Hemirphxrium) Altitudo R; fiet Parallelepipedum = RRP Quod pariter, ex minutis Parallelepipedis reque alt is, numero infimitis, conflatum intelligatur (minutis:areolis iftius Planis inffentibus; guorum omnium communis altitudo fit R; \& IBafuim Aggregatum =RP. Quod fi Parallelogrammum hoc (manente magnitudine = R P) intelligatur in Curvam Superficiem Cylindricam curvari (cujus Bafis fit P , jam in $\mathrm{Pe}-$ ripheriam circuli convoluta, Altitudo-R) quo minuta illa Patallelepipeda in totidem Cuneos, feu Prifmata bafium triangularium, (Parallelepipedorum lingula fingulorum, adeoque omnia omnium, fub-dupla) redigantur; ; : Acies feu Vertices habentia totidem C puncta : (feu lineolas mirutas) in Axe Gylindri conftituta, eumque complentia, fiet Cylindrus: (Paralleleppedidimidius) $=\frac{3}{2}$ R R P.

(59)

Vel (in ordine adः Sphæram integram) fi fumatur utrinque Altitudo R, (ut fit tota Alititudo $D=2 R$;) fiet (convolutione pariter facta) Cylindrus (ut prisus) ex: Cuneis-feu Prifmatibus numero infinitis (Vertices feu Acies habentibus in Axe Cylindri) $=\mathrm{R} R \mathrm{P}=\frac{2}{2} \mathrm{RP} \times 2 \mathrm{R}$, xqualis facto ex $\frac{1}{2} \mathrm{R} \mathrm{P}$ (circulari Bafe) in altitudinem $2 R$: feu (quod tantundem eft) $=\frac{R}{2} R x=R P$, equalis facto ex $\frac{1}{2} \mathrm{R}$ (femiffe communis Altitudinis Cuneorum) in (Bafum aggregatum): $2 \cdot R$ P.

Quod quidem Bafium Aggregatum eft ipfa Cylindrica Superficies curva $二 \mathrm{P} \times 2 \mathrm{~K}^{2}$ (xgtalis Facto ex Bafis Circularis Peripheria P in Altitudinem 2 R ducta:), feu- $\frac{1}{2} \mathrm{R} P \times 4$, (xqualis quatur Circulis in Sphxra maximis:) Quibus fi accenfeantur, oppofite dux Bafes circulares:; fiet Cylindri (Sphxгæ circumf(cripti) tota fuperficies, æqualis fex Circulis maximis, $=\frac{1}{2} R \mathrm{P} \times 6$
 cto ex Bafe Circulari $\frac{1}{2} \mathrm{RP}$ in Altitudinem 2 R dueta: ut prius.

Quod fi porro, Cuneorum horum omnium Vertices (Cylindri Axem Complentes) intelligantur in unum punctum contrahi: quo Cunei illi, feu Prife, mata, jann fant totidem Pyramides, fuper iifdem Bafibus æque altæ; fringulx fingularum, adeoque omnes omnium, fubfefqui-tertix, feut ut $\frac{x}{3}$ ad $\frac{x}{2}$; \& Superficies, prius Curva, Cylindricä, jam fat Spherica propter ejus omnia puncta x qualiter à Centro reniota; manente, quod prius erat, Bafium aggregato $=2 \mathrm{R} P$, (quatuor Circulis Maximis æquali), habebitur, tum tota Sphæræ Superficies $=2 R P=\frac{1}{2} R P \times 4$. (xqualis quatuor Circulis maximis; \& quidem toti Curvæ Cylindricæ æqualis \& partes partibus refpectivè æquales, eafdem Axis partes refpicientibus;) tum Spheræ magnitudo $=\frac{2}{3} \mathrm{RR}$ P $=$ $\frac{1}{3} \mathrm{RP} \times{ }^{2} \mathrm{R}$; x xuales Facto ex $\frac{1}{3} \mathrm{R}$ (triente communis Altitudinis Pyramidum omnium) in 2 RP (Bafium Aggregatum, jan factam fuperficiem Sphxricam) ducto.

Eft itaque Cylindri Sphæræ citcumfcripti tum Superficies tum Magnitudo, ad Superficiem \& Magnitudinem infcriptx Sphæix, fefqui-altera, feu ut ad 2. (Illic quidem, ut fex Circuli Maxini $=3$ RP, ad quatuor Cifculos. maximos $=2$ RP: Hic vero ut RRP ad $\cdot \frac{2}{3}$ RRP:) quod eft illud ipfum Ar chimedis Inventum celebre.

Idem paulo brevius haberetur, fi, in Parallelepipedo illo (fuper plana Bafe 2 RP cum Altitudine R ' ex minutis Parallelepipedis conflato; Horum omnium Vertices inmediatè cenféantür in unicum C (punctum) comprimi. Quo, manente ut prius Bafuum Aggregato $=2 R \mathrm{P}$, Parallelepipeda illa in totidem Pyramides redigantur ; Vertices habentes ad Sphæræ. Centrum coeuntes ; cujüs Radius R, (communis Pyramidum omnium altitudo ;) \& Sphorica Superficies, Bafium omnitim Aggregatüm. Quippe $\frac{1}{3} R$ (triens communis Altitidinis) in $2 R P$ (Bafum Aggregatim) exhibet Sphæræ magnitudinem (ut prius) $\frac{2}{3} \mathrm{R} R \mathrm{P}$; \& Sphære Superficicm $=2$ R.P.

Poteftque hoc itidem Sectori Spherico accommodari: Ducto $\frac{1}{3}$ R (triente communis Altitudinis Pyramidum inibi omnuin) in portionem Splixricx Superficiei plano abfciffam: Qux eft ad totam Superficiem Sphaxicam, ut eft Diancetri ((ett Axis) pars abfiffa ad totum Diametrum ; ut fupra oftenfum eft.

(60)

Cujus quiden proceflus totius Ratio his Principiis nititur; nempe, quod figura ex Triangulis ef dimidia figurx ex Parallelogrammis, fuper cildem Ba:fibus; xque-altis : (Illam ego appello Figuran Convolutam; hanc Evolutam:) Et figura ex Pyramidibus, elt, triens figure ex Parallelepipedis, fuper eifdem Bafibus xquc-altis: (Illam ego appello Figuram Complicatam; hanc Explicatam.) Qux poffunt mille modis accommodari Figuris Curvilineis (tum Superficialibus tum Solidis) mirum in modum perplexis.

Improvements in England in she Revolation of Equations in Numbers, by Mr J. Collins. 11.46.9.929.
XVIII. 1. It hath been obferved by divers of this Nation, that in any Equafion, howfuever affected, if you give a Root, and find the abfolute Number or Refolvend, (which Victa calls Homogencum Comparationis;) and again give - Roots and find more Refolvends; that if thefe Roots, or rather rank of Roots be affumed. in. Arithmetical Progreffion, the Refolvends, as to their firft, fecond or third differences, \&c. imitate the Laws of the pure Powers of an Arithmetical Prugreflion of the fame degree, that the higheft Power, or firf Term of the Equation, is of. c.g. In this Equation $a n a-3 a a+4 a=\mathrm{N}$.

$$
\text { If } \left.a \mathrm{be}=\left\{\begin{array}{c}
10 \\
9 \\
8 \\
7 \\
7 \\
6
\end{array} \begin{array}{l}
\text { Then } \mathrm{N} \text { or the } \\
\text { Abfolutes or } \\
\text { folvends will be } \\
\text { found to be }
\end{array}\right\} \begin{array}{c|c|c|c}
740 & 1 \text { diff. } & 222 & 218 \\
352 & 170 & 48 & \text { diff. } \\
224 & 128 & 42 & 6 \\
132 & 92 & 36 & 6
\end{array}\right\}
$$

To wit, the 3 d differences of thofe Abfolutes are equal, as in the Cubes of ans Arithmetical Progreffion.
2. To find what habitude thofe differences have to the Coefficient, of the Equation, 'tis beft to begin from an Unite.
3. In any Arithmetical Progreffion, if you multiply Numbers by Pairs, you fhall create a rank of Numbers whofe fecond differences are equal; and if by Ternaries, then the 3 d differences of thofe Products fhall be equal. And how to find the greatelt Product of an Arithmetical Progreffion of any. Number of Terms having any common difference affign'd, contain'd in any. Number propos'd, is Shewed by Pafcal in his Tract du Triangle Arithmetiquc, where he applies it to the Extraction of the Roots of Simple Powers.
4. It appears, how this Rank may be carried eafily by Addition, till you have a Refolvend either equal or greater or lefs than that propofed.
5. When you have a Majus and Minus, you may interpole as many more terms in the Arithmetical Progreffion as you will, that is to fay, Subdivide the Common difference in the Arithmetical Progreffion, and render it lefs; and then renew, and find the Refolvends, which are eafily obtained out of the Powers and their Coefficients, which are fuppofed known, and may be readily raifed from a Table of: Squares and Cubes, \&c. with which kind the Reader may be furnifh'd in Guldini Centrobaryca, and Babington's Fircmorks. By this means you may obtain divers Figures of the Root ; and then the Ge_{0} neral Method of Vieta and Harriot runs away more eafily, and is fo far improved, that after any Figure is placed in the Root, molt certain Characters

(61)

are given to know by aid of the Sublequent Dividend and Divifor, whether the Figure before affumed be too great or too fmall: or laftly it may be well concluded, that, as in Logarithms, when you propofe fuch an one as is not abfolutely given in the Canon, you do by proportional Work, ufing the aid of their firlt differences (when their abfolute Numbers differ by Unite) find the abfolute Number true to 5 or 6 Places farther than the Canon gives it (the reafon whereof is, that the firft differences do likewife agree to about the fime number of Places;) that I fay the like may be done in Equations, after divers of the firt Figures of the Root are found; provided there be the like agreement in the firft differences of the Interpoled Refolvends.

Moreover we ought here to take notice of a more fubtile kind of Interpolation, common to all Gradual Ranks or Progreifions of Numbers, wherein Differences happen to be equal: Of which kind the Reader may find Examples in Briggii Arithmetica Logarithmica ©f Trigonometria Britannica, relating to Lo-: garithms, Sines, and the Powers of an Arithmetical Progreffion: But the Me. thod there delivered may be rendered more eafy and general, vir. by aid of a Table of Figurate Numbers, by deriving Generating differences fought, from. thofe given; a Doctrine that eafily flows from Mercator's Logarithmotechnia, and of ufe in the Cafe in hand, fhould we fuppofe thefe Powers and their Coefficients unknown, or a Table of Squares and Cubes wanting, and give no-; thing more than a few Refolvends belonging to equal Moments or Spaces.' And this may likewife be of good ufe in Gauging, when having the Contents of a Solid, for every three Inches more or lefs given, without know-; ing the Dimenfions of the Figure, and even in moft Cafes, when the differen-: ces are Progreflive of one kind, without knowing the Figure it felf f having. nothing given but its Contents at feveral equal Parallel diftances, each fuch diftance may be fubdivided, and made as many as you pleafe, and the refpective Contents found by this general Method of Interpolation.

After one Root is obtained, the Methods of Huddenius and others will deprefs the Equations fo as to obtain more, and confequently all of them.
6. It is eafy by a Table of Figurate Numbers to give the Sum of any fuch: Rank, or any Term in it relating to a known part of the Series of Equals or Roots; but e converfo, giving the Refolvend to find the Root, comes to an Equation as difficult as that propos'd; as in Dr: Wallis's Chapter of Figurate Numicrs.
7. Some affirm, they can give good Approaches for the obtaining a Root of any pure Power, affected Equation, or for the finding any of the mean. Proportionals in any Rank between two Extreams given.
8. Others pretend to have found out a Method (incited thereto by an Example in Albert Gerard's Invention Nouvelle en Algebre, à Amfecrdam. 1629) fo. much, by comparing of Equations, to increafe or diminifh the unknown Root of Equation as to render it a whole Number (or lefs differing therefrom than any Error affign'd,) and by Albert Gerard's Method of Aliquot parts to to find the fame, and thereby the Root fought, altho', it be a mixt Number Fraction, or Surd.

(62)

Probably this- nay Sympathize with what is promifed by the Leanned, Hü deniulss in Annexis Geometria Cartcfianc, where he faith he intended not the to Publifh certain-Rulest he had ready; whereof one was to find out all the Irrational Roots-both of Literal and Numeral Equations. This muft be underftood; when fuch Roots are poffible; for tis certain there are lhfinite Equations, whofe Roots are no ways explicable, either in whole or mixt Numbers, Fractions or Surds, and can be no otherwife explaincd, but by a quam proxiniè!
9. The Author of this Narrative confidering, that the Conick Sections may be projected from leffer Circles placed on the Sphere, and thence eafily (otherwife than hitherto hath been handled) defribed by Points, and that by theiis, Interfections, fome Spherick Problem is determined'; accordingly he found that this following Problem, according to the various Situation of the Eye and of the projecting Plain, would take in all Cafes:

Trie Diftances of an unknown Star. are given from two Stars of known Declination' and Righit Afcenfion; the Declination and Right Afcenjifon of the unk hoown Star, is required:

And faith, He hath obferved, that, admitting the Mechanifm of dividing the Periphery of a Circle into any Number of equal Parts, or (which is equivatente the ufe of a Line of Chords, that this Problem, wherever the Eye be pläced, niay be refolved by plain Geometion, and yet the Eye fhall be fo placed, as to deternine it by the Interfections of the Conic Sections; confequently thofe Points of Interfection (the Speciés and Poftion of the Figures being giveni) may be found without defcribing any more Points than thofe foight; and the Eengths of Ordinates falling from thence on the Axes of either Figure Calculated by mixt Tyigonometry, and herice likewife the Roots of all Cubick and Biguadratick Equations found by Trigonometry.

For giving, from the Mefolabeof Slufils, the Schieme that finds there Roots, it will then be required to fir thofe Sections into Cones, which have their Vertex eit er in the Center, or an affgned Point in the Surface of the Sphere, to which they relate as Projected, atd proceed to the Refolution of the Problem propofed: Ard how to fit in thofe Sections, fee the 7 Books of Apollonius, Mydorgius, the 3 d Volume of des Cartes's Letters; Leotaidi Geometria Practica, Anderfó nii Exercitat. Geometrice.

As to the Problem it felf, it is deternined on the Sphere by the Interfections of the two leffer Circles of Diftance, whofe Potes are the known Stars. And this Problem hath divers Geometrick ways of Reflition.
I. By plain Geometry (in the fence before mentioned;) fuppofing a Plain to touch the Sphere at the North Pole: if the Eye be at the South Pole, projecting thofe Circles into the faid Plain, they are till Circles (by reafon of the fub-contrary, Sections of the vifuat Cones) whofe Centers fall in the fides of the Rightlined Angle, made by the Projected Meridians, that pafs thro' the known Stars; and thus the Problem is eafily fotved in this manner.
2. If it be required to be performed by Conick Geometry; in one Cafe it may be done, by placing the Eye at the Center of the Sphere, and projecting

(63)

as; before; to wit, when the longer Axes of the Figures being tproduced, concur above the Vertex: Here the Problem is determined by the Interfetions of two Conick : Sections (whereof a Circle cannot be one, unlefs its' Center ibe in the Axis of the other Figure:) Andin this fecond Cafe, theferpoints:oflnterfection fall in the fame Right:line or projected Meridian, they did-before, but at a more remote diftance from the Pole Point, to wit, in the former Suppofition, the Polar diftance iwas meafured byia Right Line, that was the double Tangent of half the Arch; herest is the Tangent of the whole Arch. Hence it is evident, how une Projection may beget another, yea, inFinite others, altering the Scale; and how the lleffer Circles in the ISteftographick, Projection belp to deforibe the Conick Sections in rthe EGingmonick Projection: But (to reduce the matter to one common Radius) if we fuppore two Spheresequal, andifo placed about the fame Axis, that the Pole point of the one fhall pafs thro' the Center of the other, and the TouthPlainito pass thro' the faid Center on Pole-point gand that aldeffer Cifcle'hath the lame:Pofition in the one as in the other; then, if the Eye be at the South Pole of the one, it is at the Center of the other; and any Projeted Meridian drawn from the Projected Pole point:to pafs thro both the Projeetions of thefe Ieffer: Circles, the diftances of the lPoints of Interfection are the Tangents of the half and the whole Arch of the Meridian fointerfeted. But as to the Points of Interfection, which decemine the Problem propos'd, they may be found without the aid of the former way, froma, Gnomionick and Sterecgraphick Mcthod of meaffiring and fetting: off the fides and Angles of Spherical Thiangles in thofe Projcitions, which is ueceflary in what follows.
-3. If the Problemisitosbeiperformed aby mizu Geonctry, as by athicle, and ecther a Parabola, Hyperbola, or Ellipfis, the Cirele may be conceived to be the fubtcontwary Seetion of Cone projeded by the Eye ather Sotithrole, and any of the reft of the Sectionstby thentyeat her Center of the Siphere.
4. If by any of the Conick Sections howeven Loffed, the Projecting Phain may remain the fanae;-brutheiEye nutu be in fome other Part of the Sutface of the Sphere, and not in the Axis.

XIX: II: Conftuctio quam tradit Cartefrus, quæque facilline radices \$qua- The confluction ionum onnnium Cubicarum vel Biquadraticarum, ubi deficit fecundus termi- of Cubich and $B i-$ nus, eruit, ut nota fupponi poteft; attamen cum cardo fit à quo fubfequentia quadratic đquao pendent, ex illius Geometriaddefumptam-plactit Regulam adjungere, pätculis bola and a circle. nonnullis in melius (uti reor) tranfpofitis.

Deficiente fecundo termino omnes requationes Cubicx reducuntur ad hanc $p .335 \cdot$ formam z^{3}. *. apz.a aq. $=0$, oc. Biquadraticæ ad hanc z^{4}. *. apそz. a $a q$ \% $a^{3} r=0$, (ubia defignat latus rectam Parabole cujufvis datæ, quann in Confructione adhibere licet;) vel fumendo a pro unitate, ad hanc z^{3}. $*$.

Jam data Parabola F A G, cujus Axis fit A C D KL ac latus rectum a vel Fig. 48. I, fiat A C ejus dimidium ac collocetur femper a vertice A verfus interiora figure ; dein fumatur CD $=\frac{1}{2} p$ in linea illa $A C$ continuata verfus C fin quatione fuerit $-p$; vel verfus alteram partem fi habeatur $+p$. Porro è puncto

(64)

puncto D, aut expuncto C fi non habeatur quantitas p, erigenda oft ad axem perpendicularis DE requalis $\frac{1}{2} q$, dextrorfum quidem fif fuerit - q, ad alterum vero axis latus fifuerit $+q$; ac Circulus, Centro E, Radio A Edeferiptus, fi $x q u a t i o$ furit tantum Cubica, Parabolam tot punctis F \& G interfecabit quot veras habet Radices, quarum quidem affirmativæ, ut GK , crunt ad dextran Axis partem, Negativx, ut FL, ad finiftram.

Aft fi Æquatio Biquadratica fuerit, augeri vel minui debet Circuli Radius A E, addendo fi fuerit - r, vel fubducendo fifit $+r$, ex cjus quadrato rectangulum ar, feu contentum fub Latere Recto \&\& quantitate data r; id quod nallo fere negotio efficitur Geomerricé. Hujus vero Circuli interfectiones cum Parabola omnes veras Biquadraticæ 狌quationis Radicis, dimiffis ad axem perpendiculis, cxhibebunt ; affirmativas quidem ad dextram Axis, Negativas vero ad finiltram. Totius demonftrationem Cartefio, ejus Inventori, relinquo.

Norandum hic me operam dare ut femper habeantur Radices affirmative ad dextrum Axis latus, ut evitetur confulio, à pluribus cautionibus, quarum caufa minime evidens eft, neceffario oritura.

His premilfis, ut aditus patcat ad conftructionem ctiam earum xquationum ubi reperitur terminus fecundus, confideranda venit Regula pro tollendo termino fecundo, ac reducenda x quatione ad aliam qux methodo precedente conftrui poflit. Omnes vero hujus claflis xquationes cubicx ad hanc formam,
 vero ad hanc, $\tilde{i}^{4} \cdot b \tilde{z}^{3} \cdot a p \tilde{z}^{2} \cdot a n q ₹ \cdot a^{3} r=0$, vel ad hanc, $\tilde{i}^{4} \cdot b \tilde{z}^{3} \cdot$. a aq₹. $a^{3} r=0$, vel, $z^{4} \cdot b z^{3} \cdot a p z z \cdot * \cdot a^{3 r}=0$, vel denique ad hanc, z^{4}. $b \imath^{3} . *$ *. $a^{3} r=0$, reduci poffunt: è quibus omnibus, prout fignis $+\&$ - diverfimode connectuntur, ingens oritur varietas; unde Regula generalis omnibus inferviens ubfcura ac maxime difficilis redditur, nifi methodo quam fubjungimus illuftrata nodifque extricata tractetur.

Tollitur in Biquadraticis fecundus terminus ponendo $x=\tilde{i}+\frac{1}{4} b$, fi fuerit $+b$ in æquatione, vel $x=z-\frac{1}{4} b$, fi fuerit $-b$: hinc $x-\frac{1}{4} b$ in primo cafu, $\&+\frac{1}{4} b$ in altero xquatur $z ; \&$ in Æquatione quavis propofita, fubftituta loco zquantitate xquali, prodibit nova æquatio termino fecundo carens, cujus radices omnes x data differentia $\frac{3}{4} b$ vel excedunt vel deficiunt a radice quæfita \approx.

Excmp. I.] $z^{4}+b z^{3}-a p z_{z}-a a q z^{2}+a n a r=0$.

$$
\begin{gathered}
\text { fit } x-\frac{1}{4} b=z \quad \text { Et ćrit } \\
x x-\frac{1}{z} b x+\frac{1}{16} b b=z^{2} \\
x x x-\frac{3}{4} x x b+\frac{3}{16} \times b b-\frac{1}{64} b b b=z^{3} \\
\& x^{4}-b x^{3}+\frac{3}{8} b b x-\frac{1}{16} b 3 x+\frac{1}{256}-z^{4} .
\end{gathered}
$$

(65)

Hinc. $x^{4}-6 x^{3}+\frac{3}{8} b 6 x x-\frac{8}{16} 666 x+2564=+24$.

$$
\begin{aligned}
& +6 x^{3}-\frac{3}{4} 66 x x+\frac{3}{16} b b b x-\frac{5}{64} b 4=+b x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
-\operatorname{aqx}+\frac{\mathrm{t}}{4} \operatorname{aqq} b=-\operatorname{agq} \\
+\tan r=+\operatorname{aac} r
\end{array}
\end{aligned}
$$

Harum omnium fumma fit xquatio nova fecundo termino carens, queque proinde juxta Regulan Cartefianam conftrui polit, fumendo loco $\frac{1}{2} p$ dimidium coefficientis ternini tertii per a five Latus rectum divif, hoc eft $-\frac{3}{16} \frac{b b}{a}-\frac{1}{2} p ;$ ac Loco $\frac{1}{2} q$ dimidium coefficientis termini quarti per a a divifi, \quad five $+\frac{1}{16} \frac{b b b}{a a}+\frac{1}{4} \frac{p b}{a}-\frac{1}{2} q$. Cujus partes figno + notata finiftrorfum ab Axe, figno - notatæ dextrorfum collocandæ funt, ut habeatur centrum Circuli ad conftrictionem requifiti, ac cujus interfectiones cum Parabola, dimiizis in axem perpendiculis, radices omnes veras x defignet, affirmativas quidem ad dextram axis, negativas vero ad finiftram. Cum vero $x-\frac{1}{4} b=\tilde{z}$, ducendo lineam axi Parallelam, ad dextrum ejus latus \& ad diftantiam $\frac{1}{4} l$, perpendicula illa ad hanc Parallelam terminata defignabunt omnes, radices quxlitas $\tilde{\tau}$, affirmativas ad dextram, negativas vero ad finiftram. Radium circuli quod attinet, habetur ille addendo partes negativas ac auferendo partes affirmativas termini quinti per a a divifi, è quadrato. linex A E, à centro invento E äd verticem Parabolx A ductx: id quod maxima ex parte efficitur capiendo loco linex A E lineam E O, qux ad O interfectionem Parabolx ac parallelx predictx terminatur; ejus enim quadratum onmes termini quinti partes ex ablatione termini fecundi æquationi novæ ingeftas complectitur (uti facile probabitur): ac reftat folummodo ut ipfius EO quadratum augeatur, f_{1} in xquatione habeatur $-r$, vel minuatur, $f_{1} f i t+r$, additione vel fubductionc rectanguli $a r$, unde conflatur quadratum Radii. Circuli quæfui.

Hæe eft Methodus inveftigandi regulam centralem D. Bakeri omnibus caub tionibus libera, ac fatis facilis; ac fola differentia ex eo provenit, quod ego juxta Axem, ille vero juxta Axi parallelam circuli cjufdem centrum determinat: quodque cgo femper radices affumativas ex Axis dextro latere invenio, quas ifle nunc dextro nunc finitro conftituit.

Equationes cubicas quod attinet, eer reduci debent ad Biquadraticas, antequam cadem regula generali conftrui poflint; id quod fit ducendo xquationem propofitain in radicen fuam $\tilde{\sim}$, unde provenit xquatio Biquadratica in qua deficit terminus ultimus five r : quapropter fublato fecundo termino \&\% invento centro E , linea $\mathrm{E} O$ eft radius Circuli; cum filicet a $; \mathrm{fr}=0$, \& in nova xquatione totus terminus quintus ex ipfablatione termini fecundi oriatur.
"Vol, I.

(66)

Exrmp. 2. $\tilde{\imath}^{3}-b z z+a p z+a a q=0$: Qux dusta in z fir

$$
z^{4}-b z^{3}+a p \tilde{z}_{\imath}+a \operatorname{aqz}=0
$$

Ad tollendum fecundum terminum ponatur $x+\frac{1}{4} b=\tilde{\imath}$, \& fiet

$$
\begin{aligned}
x^{4}+b x^{3}+\frac{3}{8} b b x x+\frac{1}{16} b 3 x+\frac{1}{256} b 4 & =+\imath^{4} \\
-b x^{3}-\frac{3}{4} b b x x-\frac{3}{16} b 3 x-\frac{1}{64} b 4 & =-b z^{3} \\
+a p x x+\frac{1}{2} a b p x+\frac{1}{15} a p b b & =+a q^{2} z \\
+a a q x+\frac{1}{4} a a q b & =+a a q z
\end{aligned}
$$

In hac novà æœquationne, tertii termini femi-cocficiens per a divifa, viz. - $\frac{36 b}{16}+\frac{1}{2} p$, loco $\frac{I}{2} p$ ufurpanda eft ; ac coefficientis termini quarti dimidium, divifum per a a Latcris recti quadratum, viz. $-\frac{16 b b}{16} \frac{b a}{a}+\frac{p b}{a}$
$+\frac{1}{2}$ q, vicem ipfius $\frac{1}{2} q$ in conftructionc Cart $f i i$ fubit: unde centrum E determinatur. Deinde ducta Axi Parallela ad diitantiam $\frac{1}{4} l$ ad finiftrum ejus latus (ob $x+\frac{1}{4} b=z$) cujus interfectio cum Parabola fit O; circulus centro E, Radio E O defcriptus Parabolam fecet vel tanget in tot punctis quot equatio veras habet radices: qux quidem radices feu z funt perpendicula de punctis illis in Axi parallelam demifla; ad dextram quidem Affirmative, Negativix ad finiftram.

Si in xquatione defuerit terminus tertius vel quartus vel uterque, inveftiganda regula centrali nulla omnino obfervanda eft methodîs differentia, fed deticiente quantitate p vel q, deerunt partes illx linearum CD ac D E cx quantitate illa aliquo modo deductx, ać producendum eft cum reliquis coefficientibus termini tertii \& quarti in xquatione nova, ficut in promilis exemplis profériptum eft.

Hactenus cl.Bakeri methodum generalem pertractavimus, qua quidem nulla alia facilior ac paratior expectanda eft, affumpta ad conftructionem five Parabola, five alia quevis linea curva, cum fcilicet xquatio ad Biquadraticam âfendit. Etenim dum hæ̀c feribo mihioccurrit regulx Centralis Effectio Geometrica preter omnem fem expedita, ac harum rerum Curiofis abunde fatisfactura.

Deferipta Parabola NA M, cujus vertex A, Axis A B C, ac latus rectume, redricatur xquatio ad hanc formain $z^{4} \cdot b z^{3} \cdot a p \approx \tilde{z} \cdot a \operatorname{ag}\left\{a^{3} r=0\right.$, vel ad
 $\mathrm{BD}=\frac{1}{4} b$ ducatur linea DH Axi parallela, ad finitzam quiden fi fuerit $-b$, ad dextram $f_{1}+b$, Parabolæ occurrens in puncto D; de quo demittatur perpendiculum in axem $B D$. In linea $A B$ continuata verfus B frat $\mathrm{BK}=\frac{1}{2} n$, \& ducatur linea DK utrinque interminata. Porro fit $\mathrm{KC}=$ 2. AB in. Axe femper ultra K continuàto; ac fi habeatur quantitas p figno - affecta, verfus cafdem partes ctiam fumatur $\mathrm{CE}=\frac{1}{2} p$, vel in contrarias fi habeatür $+p$, ac è puncto E erigatur Axi perpendiculum

(67)

diculum EF (vel e puncto C fi defuerit quantitas p) linet DH, f_{1} opus eft continuatr, occurrens in puncto F; quod quidem Circuli requifiti cemrum eft, f_{1} defuerit quantitas q; aft f_{1} habeatur q, fumenda eft in FE , f_{1} opus eft continuata, linea $\mathrm{FG}=\frac{1}{2} q$, finiftrorfum quidem f_{1} fuerit $+q$, dextrorfum $\mathrm{fi}_{\mathrm{i}}-q$ collocanda: Et punctum G erit centrum Circuli ad conItructionem propoftam idonei ; ejufque Radius, fi defuerit quantitas r, hoc eft fi tantum Cubica fuerit, erit linea GD; cujus quadratum in Biquadraticis augendum eft, fi fuerit $-r$, vel minuendum, $f_{i}+r$, additione vel fubductione rectanguli fub r \& latere recto. Defcripto frc Circulo, ab interfectionibus cjus cum Parabola demifis in lineam DH perpendiculis, quex ad finiftram funt, ut N O, radices æquationis negativas femper defignant, quæ ad dextram, ut $M L$, affirmativas.

Aliter ac paulo fimplicius \&quationes Cubicæ juxta Schooteni Regulann conftruuntur, quaque etiam radices ad Axem referuntur: quoniam vero ipfe inventor nec modum inveniendi, nec demonftrationem inventi exponit, nön abs re erit ejufdem fundamentum hic adjicere, fimul atque Effectionem Geometricam concinniorem reddere, atque cautionibus quibus implicatur extricare.

Hæc Regula derivatur ex eo quod omnis æquatio Cubica reduci polht ad Biquadraticam, in qua deficiet terminus fecundus: Hoc fit ducendo requationem propofitam in $\tilde{z}-b=0$, fi fuerit $+b$ in xquatione, vel in $z+b=0$, fi fuerit - b; \& æquatio nova producta eafdem habebit radices cum Cubica , atque infuper alteram ipfi -6 xqualem, fi fuerit $-b$ in xquatione; vel contra.
Proponatur conftruenda $z^{3}-z^{2} b+a p z+a a q=0$. Hxc ducta in $z+b$ fit $z^{4}-z^{3} b+a p z^{2}+a \operatorname{a} q z$

$$
+z^{3} b-b b z+\operatorname{abp} z+a a q b .
$$

Hic deficit. fecundus terminus, ac coefficiens tertii $-b b+a p$ dat $-\frac{x}{2} \frac{b b}{a}+\frac{1}{2} p$ loco $\frac{x}{2} p \mathrm{vel} \mathrm{CD}$ in Conitructione Cartefii, \& ex dimidio coefficientis termini quartifit $+\frac{1}{2} q+\frac{2}{2} \frac{b p}{q}$ loco $\frac{1}{2} q$ vel DE ufurpanda; adeoque determinatur centrum Circuli quxfiti : atque ob datam unamex radicibus xquationis nova, vir. - vel $+b$, dabitur etiam punctum in circiumferentia, id ef Radius ejus. Denique defcripto Circulo, ab interfectionibus ejus cum Parabola demiffa in axem perpendicula equationis radices exhibebunt, affirmativas \& negativas, eadem lege ac fupra.

Inveftigatur autem centrum Circuli conftructione perquam facili, cxiterifque omnibus in Cubicis preferenda. Defcriptæ Parabolx AMD fit ver-

Fig. 50. tex A, atque Axis AF: ad diltantiam ipfi b æqualem ducatur Axi parailela DK , ad dextram fi fuerit $+b$ in x quatione, ad finittram $f_{1}-b$, quæ Parabolaz occurrat in puncto D. Centris D \& A defrribantur Radis xqualibus arcus occulti utrinque fefe interfecantes, ac per fectionum puncta ducatur finea interminatia BC, quæ medio linex fuppofite A D perpendiculariter inf1-

(68)

ftat, \& Axi occurrat in puncto E. Ab E, inferne quidem fi in æquatione habeatur - p, vel fuperne verfus A fifuerit $+p$, ponatur $E F=\frac{3}{2} p ; \&$ ex F (vel ex $E f_{1}$ defuerit p). educatur perpendiculum $F G$, linea $B C$ occurrens in puncto G; \& in $G F$ producta fiat $G H=\frac{1}{2} q$, dextrorfum quidem f_{1} in æquatione habeatur $-q$, aliter finiftrorfum, applicanda: ac punctum Herit Centrim guxfitum, HD vero Circuli Radius, qui demiffis in Axem Perpendiculis ab interfectionibus fuis cum Parabola, ut LM, Radices omnes, ut prius, commonftrabit.

The Number of Reoots in Juach AEquations, ruith - beir Limits and Signs; by Mr.E. Halley. n. 190. \$. 387.
2. Ex Cartefio \& ex fupradictis conftat, tam in Cubicis quam in Biquadraticis xquationibus, Radices exponi poffe demittendo perpendicula in Axem, datamve diametrum Parabolx datx, ab interfectionibus Curvæ illius cum Circulo. Cumque Circulus Parabolam fecans, vel in quatuor vel in duobus punctis eam interfecare neceffe eft, conitat in Biquadraticis vel duas vel quatuor Radices veras, Affirmativas vel Negativas, femper haberi ; uti etiam, fi forte Circulus illam tangat, quo in Cáfu æqualitas duarum Radicum ejufdem figni concluditur. In Cubicis autem, quoniam una ex interfectionibus ad Conftructionem requiritur, non nifi una vel tres reliquæ Radices defignant unam vel tres; uti in Cafu Conractus, unde conftat duas æquales reperiri Radices, Problemaņue unde refultat æquatio revera Planum effe.

Cubice itaque omnes quomodocunque affectre una vel triplici Radice explicabiles funt, utique femper poffibiles, nempe fi Radices Negativas pro veris admiferis : fic Biquadraticx, quarum terminus ultimus. figno - affecta eft, duabus vel quatuor. Aft li habeatur $+r$ in æquatione, eaque tanta fit, ut $\sqrt{G D g}-a r$, minor fit quam ut Circulus, eo radio ac centro G defcriptus, Parabolan contingere in aliquo puncto poffit, xquatio data omnino inpoffibilis eft, nec ulla Radice Negativa vel Affurmativa explicabilis: Sed de his plura in fequentibus.

Quoniam vero tanta intercedir differentia inter cafus Cubicarum \& Biquadraticarum, ut fimul comprehendi nequeant; primum Cubicas deinde alteras tractabimus. Cubica vero infinitis Circulis in data Parabola comfruuntur, Biquadratice autem unico tantum (faltem his methodis): id adeo quia ponendo $\eta=\varepsilon$ five indeterminata aliqua, xqualem nihilo, xquatio Cubica reducitur ad Biquadraticam ealdem Radices cum Cubica habentem, atque infuper alians ipfi e xqualem; unde fit ut tot Circulis diverfis conftrui poift Cubica, quot imaginari velis quantitates c, id eft infinitis. Inter has vero Conftructiones; illa quam fuperius ($\$$. ult.) dedi longe facillima eft. Huictamen non multum cedir alia, quæ ad enucleationem Numeri Radicum, earumque Limitum magis accommodata videtur, qureque ortum trahit ex ablatione fecundi termini, ponendo modo vulgari $x=z+$ vel - tertia parte Coefficientis termini fecundi. Hxc autem eft. Data Parabola A BY ejufque vertice A, Axe A E \& Latere recto a, reducatur \mathfrak{x} quatio ad formam confuetam, viz. $z^{3} \cdot b z^{2}$. $a p z \cdot a a g=0$. Deinde ad diftantiam $\frac{1}{3} \cdot b$ ducatur Axi parallela $\mathrm{B} . \mathrm{K}$, dex $=$ trorfum quidem fi fuerit $+b$, aliter finiftrorfum, Parabole cccurrens in B ; ac linex fuppofitæ AB erigatur perpendicularis utrinque interminata D P; Axi occurrens in puncto G.. De Bain Axem demitte-perpendiculum BC, \& ipfi AC fiat GE femper requalis, ac verfus inferiora ponatur. AbE frat

(69)

$\mathrm{EH}=\frac{1}{2} p$, furfum quidem, f_{1} in xquatione fuerit $+p$, deorfun vero, fi - p, ac è puncto H (vel ex $E f_{1}$ defuerit quatantitas p) educatur perpendicu: lum $H Q$ interminate $D P$ occurrens in puncto O. Denique in linea $H Q$ interminata, fiat $\mathrm{OR}=\frac{1}{2} q$, ab O dextrorfum fif fuerit - q, Siniftrorfum f_{i} $+q$, collocanda: ac Circulus centro R, radio RA defcriptus, tot punctis fecabit Parabolam, quot xquatio propofita veras habet radices; cexque crunt perpendicula Z,Y à punctis interlectionem Y in Axi parallelam $B K$ demiffa ; quarum qux ad dextrann linex BK Affirmativæ funt, ad Sinitram Negativx.
Hujus Conftruationis commoditas in eo confifit, quod Circulo per verticem tranfeunte paragitur, perinde ac fi defuiffer fecuindus terminus; ; ideoqueadRadicum Numerum determinandum, fufficit Loci five Linex Curvx proprietates perfeectas habere, qux fpatia difcriminat, ubi fi ponatur Centrum Circuli qui per Parabola Verticem tranfeat, circumferentia ejus vel uno vel tribus aliis punctis eam fecabit; hocelt Linex curvx, in quam incidunt centra omnium Circulorum per verticent tranfeuntium ac deinde Parabolam tangentium, naturam definire.
Locus autem ille eit Parabolois, quan cium cl.WTillifo ' Temicubicalem appellare licet, five in qua Cubi applicatarum ad Axem funt inter fe ut Quadrata portionum Axis. Cuịus Latus rectum eff, $\frac{27}{8}$ Lateris Recti date Parabolx, Vertex vero punctum V exiftente $A V$ dimidium lateris recti ejuflem Parabolx. Hoc eft, fi. ponatur Unitas pro Latere Recto date Parabolx, $\frac{8}{27}$ cubi ordinatim applicatx xequabuntur Quadrato partis diametri, five cubisex $\cdot \frac{2}{3}$ V H quadrato ex HR, fi fecilieet R fit Centrum Circuli qui per verticem Parabole tranfeat, eamque deinde contingat; Hxc eft Curva illa quam primis mortalium Neelius Noftras rectx datr xqualem demonftravit, eague occalione apud Principes Geometras dudum celebris; ejufque proprietates Cl. Wallijus fub finem Libri de Cifoide, \&\& Eugenius Prop. 8 \& 9, de Linerrum Curvarum Evolutione, aliique acri ingenio difquifivêre, quorum frripta confulat Lector. Hxc Curva utriinque ab Axe Parabolx defcripta, viz. VN L, VPX, Ppatiun complechitur, in quo fi ponatur centrum Circuli, qui per verticem A tranfeat, interfecabit ille Parabolam in tribus aliis punctis; fpatia vero ab Axe remotiora Centra probent Circulis non nifi uno prater verticem puncto Parabolan fecantibus.

His probe intellectis jam ad determinandum Radicum Numerum accingimur: Ac primum deficiat fecundus terminus; fitque Latus Retum I, vel AV $=\frac{1}{2} ;$ in conftructione V H eft $\frac{1}{2} p, \mathrm{HR}$ vero $\frac{1}{2} q$; cumque fif fuerit' $+p, \mathrm{abV}$ verfus fuperiora ponenda fit $\frac{1}{2} p$, Centrum Circuli extra fpatium LVX femper conffituitur; ;ideoque una tantum Radice explicabilisis eft, Affirmativa fit - q, Negativa fi $+q$: qux quidem Radices Cardani Regulis inveftigantur. Si vero fuerit $-p, \mathrm{VH}=\frac{1}{2} p$ inferne ponitur, ac fieri poteft ut HR cadat ins ter Axem \&e Curvam، VX vel V L, fi filicet Cubus ex $\frac{2}{3} V \mathrm{VH}$, five ex $\frac{1}{3} \frac{1}{3}$, major fit quam quadratum ex $\frac{\mathrm{r}}{2} q$, five $\frac{1}{27} p^{3}$ major quam $\frac{1}{4} q q$, quo in ca: fu tres dantur Radiccs, dux Negative, fif fuerit - $q, a c$ una Affirmativa earum fummx xqualis; vel $f_{1}+q$, dux Affirmativx unaque Negativa. Quod f_{1} $\frac{1}{27} p^{3}$ minor fit quam $\frac{1}{4} q q$ unatantum reperitur Radix, Affirmativa $\mathrm{fi}-q_{p}$

(70)

Negativa $f_{1}+q$. Atque hee paffim docentur ab is qui hanc Geometrix par tem tractarunt.

Jam adfint omnes termini, ac primum proponatur, e. g. xquatio hxe $z^{3}-\eta^{2} b+i p-q=0$; cuictiam Figuram (51) adaptavimus. In hujus confructione $\mathrm{BC}=\frac{1}{3} b, \mathrm{VG}=\frac{\mathrm{r}}{2} \mathrm{AC}=\frac{1}{18} b b, \mathrm{VE} \frac{1}{6} b b, \mathrm{VH} \frac{1}{8} b b-$ $\frac{1}{2} p, \mathrm{GH} \frac{1}{9} b b-\frac{1}{2} p$ vel $\frac{1}{2} p-\frac{1}{9} b b$, hinc $\mathrm{HO}=\frac{1}{27} b 3-\frac{1}{6} b p$, vel $\frac{1}{6} b p-\frac{1}{23} b s$, atque $H R$, five diftantia Centri Circuli R ab Axe, eft femper difFerentia inter $\frac{1}{6} b \cdot p \& \frac{1}{27} 63+\frac{1}{2} q ; q u x$ fi. requantur, Centrum cadit in Axe; $\mathrm{f}_{1} \frac{\mathrm{r}}{6} b p$ major fit quam $\frac{\mathrm{r}}{27} b 3+\frac{1}{2} q$ ad Sinitrain Axis, fin minor ad Dextram. Si itaque Cubi ex $\frac{2}{3} \mathrm{VH}$, hoceftex $\frac{1}{9} b b-\frac{1}{3} p$ quam nominemus d) Latus Quadratum five $\boldsymbol{V} d d d$, majus fit quam $H R$, five differentia inter $\frac{Y}{27} b 3+\frac{1}{2} q \& \frac{1}{6} b p ;$ reperitur Centrum R intra fpatium NPV , Parabooidibus VPX, VNL, ac recta interminata DNP, circumfcriptum : ac proinde Girculus Parabolam fecabit in tribus punctis Y, Y, Y, ad dextram lineæ BK fitis, atque adeo æquatio tres haber Radices Affirmativas. Centro vero extra hoc fatium NVP conftituto, non nifi una Radice Affirmativa explicari poteft. Hic obiter notandum Rectam D P Paraboloidem V P X tangere in puncto P, exiftente $E P=\frac{1}{27} 63$; alteram vero $V N L$ fecare in puncto N, ita ut demiffo in Axem Perpendiculo NF, VF fit pars quarta ipflus EV, five $\frac{1}{24} b l$, NF vero $\frac{1}{108} 63$. VW autem, qua è puncto V Axi perpendiculariter crecta linex D P occurrit in W, xqualis eft ${ }_{54}^{\mathrm{F}} 65$ five $\frac{1}{2} \mathrm{EP}$.

Hinc tuto concluditur, fi in aquatione vel p major fit quam $\frac{1}{3} b b$, vel q major quam $\frac{1}{27}\{3$, non nifi unam eamque Affrmativam Radicem reperiri; Fallit itaque Regula Cartefii (Edit. Amf. 1659, pry. 70 .) ubi tot veras dari Radices quot funt in æquatione mutationes lignorum $+\&$ - pronunciat, fruftra etiam inCommentariis fuis Sphalna hoc excufante Sclootenio; Fingi enim poffunt infinitè plures \mathfrak{x} quationes procedentis formulx tres fignorum mutationes habentis, qux: unam tantum quam quæ tres habeant Radices. Propofitio etiam quinta Sellionis quinta Artis Analytic.e Harriotit Noftri, uti Prob. 18. Numerofre Poteft. Refol. Viete, vix fatis firma eft, cum ex Limitationibus quas ibi pofuerunt, toti Parallelogrammo P LV W id conveniat, quod folif fatio NV P jam competere probavimus, hoc ef ut centrum præbeat Circulo tribus aliis punctis proter Verticem Parabolam fecante.

Quantitas autent q, five terminus ult, datis, $b \& p$ ea lege ut p minor fit quam $\frac{1}{3} b b$, accurate limitatur ex precedente xquatione $V d d \cdot d=$ $\frac{3}{27} b 3+\frac{1}{2} q \propto \frac{1}{6} b p ;$ cum fcilicet Circulus Parabolam contingat. Itaque $\frac{1}{2} q$ minor effe debet quam $\frac{1}{6} b p-\frac{1}{27} b^{3}+\mathcal{V} d d d$; at fi p major fuerit quam $\frac{1}{4} l b$, majorem etiam effe oportet $\frac{1}{2} q$ quam $\frac{1}{6} b_{p}-\frac{1}{27} b_{3}-\checkmark d 3$, ne cadat centrum in fatiolo NVW. Atque his conditionibus requatio femper triplici Radice explicabilis erit, aliter non nifi una. Semper vero, five tres five una, Affirmativæ funt, ob pofitionem centri R ad dextram lineæ $D P$.

Atque hic eft cafus maxime difficilis, ita ut quicunque promiffa bene cal̃leat fequentia facili negotio intelliget. Detur jam æquatio $z^{3}-b z^{2}+p z$. $+q=0$. Hic ut tres habeantur Radices, oportet Centrum Circuli alicubi intra fpatium $P N \Delta$, reciis $P N, P \Delta, \&$ curva Paraboloidis $N \Delta$, definitum, reperiri ; quapropter cum EF fit $=\frac{1}{8} b b, p$ minor effe debet quam ${ }_{4}^{1} b b:$ jam ad determinationem quantitatis q, exiftente $d=\frac{1}{9} b b-\frac{1}{3} p$, ut antea, $\checkmark d d d+\frac{1}{7} b b b-\frac{1}{6} b p$ femper major effe debet quam $\frac{1}{2} q$, ut conftituatur. Centrum Circuli in fatio predicto PN Δ : quod cum fit requatio talis duas habet radices Affirmativas ac unam Negativam. Si vero p major eft quam. $\frac{1}{3} b b$, vel $\frac{1}{2} q$ major quam $V d d d+\frac{1}{27} b b b-\frac{1}{6} b p$, non nifi una ea que Neczativa Radice explicabilis eft.

Proponatur jam xquatio $\tilde{i}^{3}-b \tilde{\imath}^{2}-p z-q=0$. Ut hxc xquatio. tres habeat Radices, oportet Centrum Circuli alicubi inveniri in fatio indefinito, inter rectam DPD \& curvam Paraboloidis PX; hic quantitas p non. eft obnoxia limitationibus, $\frac{1}{2} q$ vero femper minor effe debet quam $V i d d$ $\frac{1}{27} b b b-\frac{1}{6} b p$, pofito $d=\frac{1}{9} b b+\frac{1}{3} p$: Hoc pacto duæ dantur Radices: Negativx, ac una Affirmativa; aliter vero $\mathrm{f}_{1} \frac{\mathrm{~F}}{2} q$ major fit quam. V didd$\frac{1}{27} b l b-\frac{1}{6} b p$, unica tantum Affirmativa exponi potef. Quarto loco fit æquatio $\tilde{z}^{3}-b \tilde{i}^{2}-p \tilde{i}+q=0$, quæ duas Affirmativas haber Radices ac. mnam Negativana fi Centrum Circuli reperiatur in fpatio indefinito inter rectas P Δ, P D, ac curvam Paraboloidis ΔL; hoc eft, (pofito $d=\frac{1}{9} b b+$ $\frac{1}{3} p$) fi $\frac{1}{2} q$ minor fit quani $V d d d+\frac{1}{27} b b b+\frac{1}{6} b_{f}$; fi vero $\frac{1}{2} q$ major hac quantiate fucrit, una tantum Negativa inelt Radix.

Quatuor autem xquationes eliqux; in quibus habetur $+b$, quoad limiGationem Numeri Radicum non differunt a predictis, fi fignum termini ulcimi muteur, fervato figno termini terti; quæ vero Affimativæ erint Radices in illis hic funt Negativx, \& vice verfa. Sic in xquatione, $\boldsymbol{z}^{3}-b z^{2}+p z$ $\therefore q=0$, una vel tres erant Affirmativx Radices; in hac vero, $\tilde{z}^{3}+b z^{2}$ $+p z+q=0$, vel una vel tres Negativæ funt, fub iifdem conditionibus; nulla vero ommino Affirmativa. Sic in $z^{3}+b z^{2}+p z-q=0$, dux funt Negativa \& una Affirmativa, fi p minor fit quam $\frac{1}{3} b b$, ac $\frac{1}{2} q$ minor quam $\checkmark d^{3}+\frac{1}{27} 63-\frac{1}{6} l p$, quenadnodum in $z^{3}-b \tau^{2}+p z+q=0$, dux erant Affirmativx \& una Negativa; excedentibus antem leges proefriptas p vel q, una tantum hic eft Radix Affirmativa, quæ ibiNegativa erat. Pari modo in $z^{3}+b z^{2}-p z+q=0$, vel dux funt Affirmativx ac una Negativa, vel una Negativa tantum; denique iifdem de caufis in æquationc, $\tilde{\imath}^{3}+b \tilde{\imath}^{2}-p{ }_{\imath}$ - q dur funt Negativæ \&r una Affirmativa, vel una Affirmativa tantum, quibus in æquatione, $\tilde{z}^{3}-b z^{2}-p \tilde{\imath}+q$, dux erant Affirmative $\&$ una Negativa, vel una Negativa tantum, nempe prout $\frac{1}{2} q$ major vel minor fuerit quam $\sqrt{ } d^{3}+\frac{1}{27} b 3+\frac{1}{6} b p$.

Si: defuerit terminus tertius, five $p \tilde{\approx}$, Centrum R femper cadit in linca IPE Δ, quocirca fi fuerit $z^{3}-b z^{2} *-1$, vel $z^{3}+b z^{2} * * q$, una tantum effe potef Radix, $f_{1}-b$ Affimativa, $f_{1}+b$ Negativa. At f_{1} fuerit $z^{3}-b z^{2}$. * $+q$, vel $z^{3}+b z^{z}$. *. - q, dure poffunt effe Affirmative ac una Negativa in priore, vel una Affimativa \& dur Negative in pofteriore, cadente Centro in linea $P \Delta$ inter $P a c \Delta$, hoc eft $f \frac{1}{4} q$ ninor fit quam $\frac{i}{27} 6^{3}$; fin major fuerit, una tantum Negativa in priore, vel una Affrmativa in pofteriore, dari potef.

Hactenus Numerum Radicum in Cubicis æquationibus plenius affecuti fumus, reftat ut nonnuilla adjiciam de Quantitate Radicum. Fiic primum Notandum quod omnis equatio tres habens Radices ope Tabule Sinuum, Trifectione fcilicet Anguli, fatis expeditè refolvi poift'; Ponendo ccil. $\sqrt{\frac{4}{9} b b-\frac{4}{3}} p$, vel $\sqrt{4} d, f i f u c r i t+$ in xquationc, vel $\sqrt{\frac{4}{9} b b+\frac{4}{3} p}$, fi - f, pro Radio Circuli; Angulum vero trifecandun qui Sinum habcat in Tabula sinuum $\frac{\frac{1}{27} 63+\frac{1}{6} 6 p+\frac{1}{2} q}{\sqrt{ } d^{3}}$: Invento hoc angulo, Sinus tectia partis ejus, ut \& Sinus tertix partis compl: ad Semicirculum, cormgue fumma, ex Tabula Sinum dabuntur. Hi vero Sinus in Radium $\sqrt{\frac{4}{9} b 6+\frac{4}{3} p}$ du-
 Summa

(73)

Summa vel differentia, prout cafus poltulat, veras Radices Equationis exhibebunt. Hxc omnia ex inventis Cartcfii derivantur: Ut vero cafus omnes, quantum fieri poffit, breviter complectar, dico quod Centro R, in prima æquationum formula, cadente in patio V G P, Sectiones duæ Y, Y, cadunt inter A \& B, ac proinde utraque ex Minoribus Radicibus Minor ef quam $\frac{r}{3} b$, tertia autem \& Major femper fuperat $\frac{1}{3} b$, fuperatur verò à b. Quod fi cadat in fpatio GNV, dux majores funt quam $\frac{I}{3} b$, minores vero quam $\frac{2}{3} b$, tertia vero eft b duabus alteris, ac proinde minor quam $\frac{1}{3} b$: Sed adhibita Limitatione Quantitatis p, arctioribus terminis Radices includuntur. Maxima enim Radix minor eft quam $\sqrt{\frac{4}{9} b b-\frac{4}{3} p}+\frac{r}{3} b$, major vero quam $\sqrt{\frac{1}{4} b b-p+\frac{1}{2}} b$; at cum $\frac{1}{4} b b$ minor ef quam p, limes ille fit $\sqrt{\frac{1}{9} b b-\frac{1}{3} p}+\frac{r}{3} b$; Radix media fenper minor eft quam $\sqrt{\frac{1}{4} b b-p}+\frac{1}{2} b ;$ major vero quam $\frac{1}{3} b-\sqrt{\frac{1}{9} b b-\frac{1}{3}} p$; hunc vero limitem nunquam excedit Radix Minima, fed cum Quantitate q evanefcit.

In fecunda formula prefcriptis legibus duæ funt Affirmativx ac una Negativa, ac cadente Centro in Cpatio GPE, altera ex Affirmativis major eft, al tera minor quam $\frac{1}{3} b$, Major vero non excedit b, Negativa autem Major non effe poteft quam $\sqrt{\frac{1}{3} b b}-\frac{1}{3} b$, eft autem differentia ipfius b \& fummæ Affirmativarum. Centro autem in fpatio ENG Δ pofito, utraque Affirma. tiva major eft quam $\frac{1}{3} b$, minor vero quam $\sqrt{\frac{1}{3} b b}+\frac{1}{3} b$, Negativa vero fenper minor eft quam $\frac{1}{3} b$. Limites autem propiores ex data p evadunt Radicis quidem maximæ Affirmativæ $\sqrt{\frac{1}{4} b b-p}+\frac{1}{2} b$, qua femper minor eft, ut \& major quam $\sqrt{\frac{1}{9} b b-\frac{1}{3} p}+\frac{1}{3} b$; hoc tamen limite minor eft altera Affirmativa, quæ cum quantitate q minuitur. Negativa vero femper minor eft quam $\frac{\sqrt{4} b b-\frac{4}{3} p}{9}-\frac{1}{3} b$, ac deficiente quantitate q evanefcit.

In tertia formula duæ Negativæ funt ac una Affirmativa: in hac, ut \& in quarta, Radices non limitantur à quantitate b. Affirmativa vero femper minor eft quam $\frac{\sqrt{\frac{4}{9} b b+\frac{4}{3} p}+\frac{1}{3} b, \text { major tamen quam }}{L}$

(74)

$\sqrt{p+\frac{1}{4}} b b+\frac{3}{2} b:$ Maxima vero ex Negativis femper major eft quam $\sqrt{\frac{1}{9} b b+\frac{1}{3} p}-\frac{1}{3} b$, minor vero quam $\sqrt{p+\frac{1}{4} b b}-\frac{1}{2} b$. Minor aut tem ex Negativis femper minuitur cum minuta quantitate q.

In guarta formula, cadente Centro intra fpatium $L \triangle P D$; fi duæ fint Affirmative ac una Negativa, Maxima ex Affirmativis major effe nequis quam $\sqrt{p+\frac{1}{4} b b}+\frac{1}{2} b$, nec minor quam $\sqrt{\frac{1}{9} b b+\frac{1}{3} p}+\frac{1}{3} b$; Minor vero Radix $a b$ hoc Limite minuitur, minuta quantitate q. Negativa autem minor eft quam $\sqrt{\frac{4}{9} b b+{ }_{3}^{4} p}-\frac{1}{3} b$; major vero quam $\sqrt{p+\frac{1}{4} b b}-\frac{1}{2} b$.
Notandum vero hic Radices Negativas ubique figno Affirmativo notari, quia hæ funt Radices Affirmativæ quatuor æquationum illarum, in quibus habetur $+b$, ac q figno contrario notatur; ut fupra monui. Horum omnium Demonftratio ex eo confequitur, quod ubicunque Centrum Circuli R incidit in Lineas curvas $V P X$, vel $V \Delta L$, circumferentia ejus Parabolam tangit in puncto, cujus diftantia ab axe eft $\sqrt{ } \frac{2}{3} \mathrm{VH}$, eainque fecat ex altera Axis parte, ad diftantiam $2 \sqrt{3}_{3}^{2} \mathrm{VH}$; cum vero Centrum cadit in Lineam DPD, altera ex Radicibus fit $=0$, ac proinde Cubica reducitur ad Quadraticam, five ad $z^{2}-b z+p=0$, cujus Radices Limites defignant ubi evanefcit quantitas q : ac quo minor eft q, eo propius ad has limites accedunt Radices. Quadratica eft etiam cum Centrum cadit in Axe; hoc eft, cum ${ }_{2}^{3} q=\frac{1}{6} b p-\frac{1}{27} b 3$, in prima formula; vel $\frac{1}{2} q=\frac{1}{27} b_{3}-\frac{1}{6} b_{p}$, in fecunda; in tertia impoffibile eff; at in quarta cum $\frac{1}{2} q=\frac{1}{27} 63+\frac{1}{6} b p$; quo in cafu Minor ex Radicibus Affirmativis eft $\frac{1}{3} b$, Major $\sqrt{\frac{1}{3} b b+p}+\frac{1}{3} b$; Negativa vero $\sqrt{\frac{1}{3} b b+p}-\frac{1}{3} b$. In prima, Radices funt $\frac{1}{3} b$, \& $\frac{1}{3} b$ $\pm \sqrt{\frac{1}{3} b b}-p \cdot \ln$ fecunda vero formula, $\frac{1}{3} b$, \& $\sqrt{\frac{1}{3} b b-p}+\frac{1}{3} b$, funt Affirmative: Negativa autem $\sqrt{\frac{1}{3} b b-p}-\frac{1}{3} b$.

Atque hæc in Cubicis fufficere poffe videntur; ob eximium vero Ufum Methodi, qua ope Tabulx Sinuum Radices harum æquationum inveniuntur, placuit unum vel alterum Exemplum adjungere, ut Praxis illius compendium inde innotefcat. Proponatur Æquatio $z^{3}-39 z^{2}$

(75)

$+479 z-1881=0$; quæruntur Radices $\mathfrak{r} \cdot \sqrt{\frac{1}{9} 66-\frac{1}{3} p}=\sqrt{9 \frac{x}{3}}$ $=\sqrt{ } d$, cujus duplum $\sqrt{ } 37 \frac{1}{3}$ Radius eft Circuli; \& $\frac{\frac{1}{27} b 3+\frac{1}{2} q-\frac{1}{6} b p}{\sqrt{ } d^{3}}=$ $\frac{2197+940 \frac{1}{2}-3113 \frac{1}{2}}{9 \frac{1}{3} \sqrt{ } 9 \frac{1}{3}}$, five $\frac{24}{9 \frac{1}{3} \sqrt{9 \frac{1}{3}}}$ eft Sinus Tabularis Anguli, hoc eft, facta divifione ope Logarithmorum, Log. 9.9251560 , cui refpondet Angulus 57 gr .19 m . I I $\frac{1}{2} \mathrm{~s}$. Hujus tertia pars $19 \mathrm{gr} .6 \mathrm{~m}: 24 \mathrm{~s}$. \& complementi 40 gr .53 m .36 s. Sinus dant Log. 9.5149 .83 , \& 9.81601 m , qui ducti in Rad. $\sqrt{ } 37 \frac{1}{3}$ producunt $Y \&$, et $Y \&$, Log.0. $301030=2$, et Log. $0.601059=4$, tertia vero $Y \&$, æqualis eft corum fummæ five 6. Ideoque Radices funt $\mathrm{I}_{3}-4=9, \mathrm{I}_{3}-2=11, \& \mathrm{I}_{3}+6=19$, ex quibus fingulis conflatur prædicta æquatio. Ubi Notandum duas Minores Radices non excedere $\frac{1}{3} b$ vel 13 , quia centrum R in conftructione cadie ad Dextram Axis; id eft $\frac{1}{6} b p$ minor eft quam $\frac{1}{27} b 3+\frac{1}{2} q$.

Exemplum alterum fit $x^{3}-15 x^{2}-229 x-525=0$, \& qux rantur Radices $\sqrt{\frac{1}{9} b b+\frac{1}{3} p}=\vee$ IOI $\frac{1}{3}=\checkmark d$, \& Radius, Circuli $\sqrt{405 \frac{1}{3}} \cdot \frac{\frac{1}{27} b_{3}+\frac{1}{6} b p+\frac{1}{2} q}{\sqrt{ } d^{3}}=\frac{125+572 \frac{1}{2}+262 \frac{1}{2}}{101 \frac{1}{3} \sqrt{101} \frac{1}{3}}$
 Arcus iple 70 gr .14 m .22 s . hujus pars tertia eft $23 \mathrm{gr} .24 \mathrm{~m} .47 \frac{1}{2} \mathrm{~s}$. \& Comb plementi 36 gr .35 m . $12 \frac{2}{2} \mathrm{~s}$; quorum Sinus Log. funt 9.599183 , \& 9. 775275 , quibus addito Log. $\sqrt{ } 405 \frac{4}{3}$ fiunt Log $0.903089=8$, \& Log. I. 07918I $=12$, \& corum fumma $=20$. Hinc concluditur 20 $+\frac{1}{3} b$, vel 25 , æquari Radici Affirmativx, \& $8 \& 1 \mathbf{2}-\frac{1}{3} b$, five $3 \& 7$, Negativis. Quod fi rquatio fuiffet $x^{3}+15 x^{2}-229 x+525=0$, 3 \& 7 fuiflent Affirmativæ; 25 vero Negativa. Cæteræ autem Cubicæ unica tantum Radice explicabiles juxta Regulas Cardani refolvendx funt, poftquam demptus fucrit fecundus terminus; nec video quo pacto minori calculo hoc negotium peragi poffit. At fi defideretur Radix 12 hæc
hrec in Quantitatibus b, p, q, expreffa, dico eam effe in prima formula, $\frac{1}{3} b+$ vel - fumma vel differentia Radicum Cubicarum ex $\sqrt{\frac{1}{4} q q-\frac{1}{108} p^{2} b^{2}+\frac{1}{27} b^{3} q-\frac{1}{6} b_{p q}+\frac{1}{27} p^{3}} \pm \frac{1}{27} b^{3}+\frac{1}{2} q-$ $\frac{1}{6} b p: v_{i \hbar}+$, fi $\frac{1}{27} b_{3}+\frac{1}{2} q$ major fit quam $\frac{1}{6} b p$, aliter -; Summa vero quoties $\frac{1}{3} b b$ major eft quam p; fin minor fuerit $\frac{1}{3} b b$, differentia. Inque cxteris formulis Radix femper conflatur ex iifdem elementis, variatis tamen fignis $+\&-$, ut facile percipiet qui velit experiri.

Ope vero Tabulx Logarithmicx Sinuum Verforum Radices hx fatis prompte inveniuntur; nempe fic coefficientis Numeri fint furdi vel fracti, ac Radices Numeris ineffabiles; ut plerumque fit. Hxc auten elt Regula : in prima ac fecunda formula, fi $\frac{1}{3} b b$ minor fit quam $p ;$ fit $\frac{T}{3} p-\frac{1}{9} b b=d$, \& pofita differentia inter $\frac{1}{6} b y \& \frac{1}{27} b 3+{ }_{2}^{\mathrm{I}} q$, hoc eft HR, in prima, ac inter $\frac{1}{6} b_{p}+\frac{1}{2} q \& \frac{1}{27} b 3$, in fecunda, pro Radio; inveniatur Angulus cujus Tangens eft $d \checkmark d$. Deinde ut Co-finus hujus: Anguli, ad ejufdem Sinum Verfum : Ita differentia pro Radio habita, ad quartum; cujus Latus cubicum trifecando Logarithmum habebitur: ac divifo $\frac{1}{3} p-\frac{1}{9} b . b$ per hoc Latus Cub. è Quoto fubducatur Divifor, Réfiduum erit quantitas Y \&: Hujus Refidui ac $\frac{x}{3} b$ fumma, fi centrum cadit ad dextram Axis, aliter differentia earundem, Radix erit quxfita. Quod fi $\frac{I}{3} b b$ major fit quam p, pofito $H R_{0}$ pro Radio, fit $d \mathfrak{V}$, five dittantia Paraboloidis ab Axe, Sinus Arcus cujuff dem; Hujus Sinus verfus ducatur in Radium, five $\frac{1}{6} b_{p}-\frac{1}{27} b_{3} \pm \frac{1}{2} q_{2}$ ac trifecto producti Logarithmo, habebitu: ejus Latus Cubicum, per quod dividatur $\frac{1}{9} b b-\frac{1}{3} p$. Dico Quoti ac Diviforis fummam eadem lege additam vel ablatam ex $\frac{x}{3} b$, Radicem quefitam exhibere. Ac par ef Ratio in tertia ac quarta formulis, nifi quod ${ }_{27}^{\mathrm{I}} b_{3}+{ }_{6}^{\mathrm{T}} b_{p} \pm{ }_{2}^{\mathrm{T}} 9$ pro Ra=
 au: Sed heci procepta exemplis fortaffe melius percipientur.

（77）

Sit æquatio Cubica，そそそ－17そz＋54：₹－350，acquæratur Radix \approx ： Hic $\frac{i}{3} b b$ major eft quam p ，fed q major eft quam Cubus ex $\frac{1}{3} b$ ，ideoque una tantum Affirmativa Radice explicabilis eft．Jam ${ }_{9}^{289^{\circ}}-\frac{54}{3}$ eft d, ac $\xlongequal[9]{127} \sqrt{\frac{127}{127}}$ proSinu habenda eft，adRadium $\frac{4913}{27}+175-153$ ，hoc eft $\frac{5507}{27}$ ：Arcus ve－ ro competens fit 15 fr． 3 m． 49 s．Hujus Sinus Verfi Log． 8.5362376 ，ad： ditus Log．Radii 2．3095913，dat 0.8457889 ，cujus tertia pars 0.2819276
 7．37281；Quoti ac Diviforis fumma，aucta additione $\frac{I}{3} b$ ，fit Radix qux－ fita，nempe 14.9534 ，\＆c．

Exactis Cubicis Biquadraticas jam aggredianur．Hx femper vel nullam， vel duas，vel quatuor Radices veras habent，quarum determinatio，partim à̀ Coefficientibus，partim à figno \＆magniudine Numeri abfoluti dati，pendet， In Conftructione æquationis $z^{4}-b z^{3}+p z \hbar-q z+r=0$ ，fit $\mathrm{BD}=$ $\frac{I}{4} b, \mathrm{AB}={ }_{16}^{1} b b, \mathrm{BK}=\frac{1}{2}$ ，five dimidio Lateris recti， $\mathrm{KC}=2 \mathrm{AB}=$ $\frac{1}{8} b b, \mathrm{KE}=\frac{1}{8} b b-\frac{1}{2} p, \mathrm{AE}-\frac{1}{2}=\frac{3}{16} b b-\frac{1}{2} p, \mathrm{FE}=\frac{1}{16} 63$ $-\frac{1}{4} b_{p}$, ac $\mathrm{EG}=\frac{1}{16} b^{3}-\frac{1}{4} \cdot b_{p}+\frac{1}{2} q$ ；quo facto Circulus，Centro G_{s} Radio $\sqrt{G D^{2}-r}$ ，interfecabit Parabolam vel nitlo，duobus，aut quai tuor punctis，que perpendiculis in lineam HD Radices omnes \approx exhi－ bent．Ut autem quatuor fint，evidens eft Centrum Circuli alicubis conftitui debere intra fpatium，de cujus puncto quovis tria perpendicu la in Curvam Parabolæ demitti potlint；atque fimul Radium minc－ rem effe maximo ex illis perpendiculis majorem vero medio． Quod f_{1} Centrum conftituatur extra hoc fpatium，ut non nifi una perpendicularis in Parabolam demitti poffit，qua major fit Radius；vel fi minor fit media ex tribus perpendicularibus，major vero quam minima ex illis，duæ tantum poffunt effe Radices；nulla vero omnino datur，quo－ ties Radius $\sqrt{ } \bar{G} D^{2}-r$ ，minor eft minima ex tribus，vel una illa，quoties， una tantum eft．Jam quale fpatium hoc fit，quibufque limitibus difcernitur， ac quibus conditionibus Radius Circuli minor vel major fit pradictis per－ pendicularibus，nobis reftat inquirendum；ac primum quo pacto perpen－ dicularis in Parabolam demitti poffit oftendendum eft．

Sit A B C Parabola，AE Axis ejus，A V Semi－Latus Rectum，G punctum de quo demittenda eft perpendicularis：Ducatur Axi perpendicularis GE，ac bifecetur VE in F ，\＆erecta perpendiculari $F H$ ad idem Axis latus，fiat EH $=\frac{1}{4}$ GE；dico quod Circulus，Centro H ，Radio HA defcriptus，Para－ bolama

Fig．49．

$\left(7^{8}\right)$

bolam interfecabit in punctis tribus, vel uno, Z; ad qux ductx rectx GZ Curvx Parabolicx perpendiculariter infiftunt.

Ut autem tres fint hujufnodi interfectiones, oportet Centrum Circuli Hita xig. 51. collocari, ut fit intra fatium Paraboloidibus inclufum ; hoc eft ut FH minor fit quam $\vee \frac{8}{27} V F^{3}$, five FH^{2} minus quam cubus ex $\frac{2}{3} V F$: atque adeo $\mathrm{GE}=4 \mathrm{FH}$, minor erit quam $4 \sqrt{27} V \mathrm{~F}^{3}$, five $4 \sqrt{27} \mathrm{VE}^{3}$, hor eft Quadratum ex GE minus erit quam $\frac{16}{27}$ VE 3 . Coincidunt itaque hi Limites cum Paraboloidibus duabus ejufdem generis cum iis quibus in Cubicis uf fumus, fed quarum Latus Rectum duplo minor eft; vi₹. $\frac{27}{16}$ Lateris Recti Parabolx, hoc eft $\frac{27}{8}$ ipfius A V : ideoque ea ipfa eft linea Curva cujus Evolutione generatur Parabola, fic demonftrante Hugenio; quamque femper con-

Fig. 52.

Fig. 52. tingit linea DF, quæ Parabolx perpendiculariter infiftit in puncto D. Punctum autem P, five in quo contingit recta DF Paraboloidem, Centrum eft Circuli, qui Radio D.P. defrriptus cum Parabola in puncto D coincidit, five ejufdem Curvitatis eft; ut per fe fatis conftat.

Defcriptis itaque hujufmodi Paraboloidibus $V X \mathrm{P}, \mathrm{VN} \Delta$, utrinque ab Axe; perficuum eft quod, nifi Centrum Circuli conftituatur intra hos limites, non poffit ille pluribus quam duobus in punctis Parabolam interfecare: unde determinare licet quibus fub conditionibus Coefficientes terminorum intermediorum coercentur, in æquationibus Biquadraticis, ut habeantur quatuor Radices. Ac prima fronte clarum eft p majorem effe non poffe quam $\frac{3}{8} b b_{3}\left(\int_{c} i \%_{0}\right.$ in formulis ubi habetur $+p$) nee q quam $\frac{1}{16} 63$. Generaliter vero $\frac{1}{16} b 3$ $\mp \frac{\mathrm{x}}{4} p b \mp \frac{1}{2} q$, id eft diftantia Centriab Axe EG, minor effe debet quan $\mathrm{EH}=4 \sqrt{\frac{1}{27}} \mathrm{VE} 3$, hoc eit (obVE $=\frac{3}{16} 66 \mp \frac{1}{2} p$) quam $\frac{1}{4} 66 \mp$ $\frac{2}{3} p \sqrt{\frac{1}{16} b \sqrt{1} \frac{1}{6} p}$; fignis $+\&-$ in dubio relictis, ut fecundum x quationis cujufvis naturam variari poflint; quemadmodum in Cubicis fuperius oftenfum eft.

Termini autem ultimi r limitatio eadem facilitate inveniri nequit ; id adeo, quia Problema fit Solidum in Curvam Parabolæ demittere perpendicularem, quodque non fine folutione xquationis Cubice refolvi pollit. Itaque primo loco deficiat fecundus terminus, vel fi adfuerit tollatur, ut æquatio habeat formulam, $z^{4} . * \cdot p z^{2} \cdot q_{i} z^{2} r=0$. Ac. fi fuerit $-r$, femper duabus vel quatuor Radicibus explicari poteft; ut autem quatuor fint, oportet Centrum Circuli intra Paraboloides predictas conftitui, five ut fit- p,

(79)

ac $q 9$ minus quarm $\frac{8}{27} p^{3}$, five cubo ex $\frac{2}{3} p$. Deinde habeantur Radices requationis hujus $y^{3} \cdot * \cdot \frac{1}{2} p y \cdot \frac{1}{4} q=0$, quantitatibus p \& q iifdem fignis annexis quibus in Biquadratica. Hx autem Radices auxilio Tabulx Sinuum fatis expeditè inveniuntur. Inventis autem tribus illis y, (quæ fumt ordinatim applicate ad Axem Parabolx, de punctis ubi incidunt perpendicula in Curvam ejus foil. Z Y) pyy-3y 4 ex minofe y, quantitatem naximam r defignabit, fif fuerit - r; qua fi_{1} minor fuerit. r, æquatio quatuor habebit Radices, aliter duas. Aft fí fuerit $+r$, oportebit eam minorem effe quam $3 y^{4}-p y y$ ex media y, nam fi major fit, non nifi duas habere poteft Radices, faltem fi minor fit r, quam $3 y^{4}$ - pyy ex maxima $\%$. Hac vero fi major fit, nulla omnino Radice vera explicabilis eft xquatio. Hi vero iidem Limites aliter defignantur ex quantitate q, fcil. $\frac{1}{2} q y-y^{4}$ in primo cafu, $y^{4}-\frac{1}{2} q y$ in fecundo, acy $4+\frac{1}{2}$ g. y in tertio.

Fieri autem poteft ut dux minores quantitates y non longe diftant ab ino vicem, unde evenit quod utraque ex perpendicularibus major fir quam recta G A, foil. cum $q q$ majus fit quam $\frac{4}{27} p^{3}$, minus vero quam $\frac{8}{27} p^{3}$; cadente centro intra fpatium Paraboloidibus (utriufque Figure 51 \& 52) interjectum. Hoc in cafu, fi fuerit $+r$, non nifi dux poffunt effe Radices, exiftente $y^{4}+\frac{I}{2} q$ ex maxima y, major quam r; aliter nulla. At $f \frac{I}{2} q y$ - $y 4$ ex minina y, major fuerit quam r figno - notata, r vero major quam $\frac{I}{2} q y-y^{4}$ ex media y, tunc habentur quatuor radices; at duæ tantum, fa vel major priore vel minor pofteriore inventa fit r.

Si vero in xequatione fuerit $+p$, vel f_{1} fit $-p \& q q$ majus fuerit quam $\frac{8}{27} p^{3}$, xquatio $y^{3} \cdot * \cdot \frac{1}{2} p y \cdot-\frac{1}{4} q$, unica tantum explicatur Radice y; hoc eft, una tantum perpendicularis de Centro Circuli demitri potef: unde certo concluditur duas tantum Radices haberi poffe in xquatione data, quarum Summa, fi fuerit $-r$, cum quantitate r augetur ; at fi habeatur $+r$, obtenta quantita* te y, quantitas illa r minor effe debet quam $y 4+\frac{1}{2} q y$; nam fi ea major fit, equatio propofita abfurda \& impofibilis eft.

Longum it fuperfluum effet omnes hujus fenfus æquationes percurrere, cum ex jam dictis attendenti fatis evidens fit, qux Negativæ quæ Affirmativx fint; atque quod Radicum harum Limites ex quantitatibus inventis y petantur. In exemplum vero, quod cuivis in cxteris imitari licet, proponantur indagandi Limites five Conditiones fub quibus in Æquatione Biquadratica 4 . Radices Affirnativæ dari poffint. Hoc autem fit quoties Centrum Circuli G, ponitur

Fig. 52:

(80)

in fatio VPR, àc fimul habetur $+r$, five Circuli Radius minor quam GD: Unde patet, xquationem de qua agitur hujus effe formule, $z^{4-} b z^{3}+p z^{2}$ $-q z+r=0 ; p$ vero majorem effe non poffe quàm $\frac{3}{8} b b$, nec $\frac{1}{4} p \dot{b}$, hoc in cafu, quam $\frac{1}{16} 63+\frac{1}{2} q ;$ deinde opus eft ut $\frac{1}{4} b 6-\frac{2}{3} p$ in $\sqrt{\frac{1}{16} b b-\frac{1}{6}} p$ major fit quam $\frac{1}{16} b 3+\frac{1}{2} q-\frac{1}{4} p b ; \&$ ex his Limitibus certo confabit Centrum intra fpatium VPK inveniri. Ut vero definiatur quantitas r, folvenda primum eft Cubica, $y^{3} . *-\overline{\frac{3}{16} b^{2}-\frac{1}{2} p y}=\frac{1}{32} b_{3}$ $+\frac{1}{4} q-\frac{1}{8} p b$; \& habebuntur puncta, in quæ perpendiculares de Centro in Curvam Parabole cadunt:

Inventis autem tribus valoribus hujus $y_{,} r$ minor effe debet quam $\frac{3}{2_{56}} b 4$ $+\frac{\mathrm{I}}{4} b q-\frac{1}{16} b b p+3 y^{4}-\frac{3}{8} b^{2} y y+p y y$ ex media y, major vero quam $\frac{3}{256} b_{4}+\frac{1}{4} b q-\frac{1}{16} b b p+3 y^{4}-\frac{3}{8} b^{2} y y+p y y$ ex minima y. Hos vero Limites fi excedat r; non nifi duæ Radices haberi poffunt. Deniq; fi ${ }_{256}^{3} b 4+\frac{1}{4} b q-\frac{1}{16} b b p+3 y^{4}-\frac{3}{8} b b y y+p y y$ ex maximă y, minor fúerit quiam r, xquatio propofita impoffibilis eft.

Accidit etiam ut quatuor fint Affirmativæ, cum Centrum G conftituitur in Ipatiolo VTS, ducta fcil. RTS perpendiculari in medium fuppofitæ linex AD: hoc autem fit cum p major eft quam $\frac{5}{16} b b$, ac $\frac{1}{4} b b-\frac{2}{3} p \sqrt{\frac{1}{16} b b-\frac{1}{6} p}$ major quam $\frac{\mathrm{r}}{8} p b-{ }_{128}^{5} 66 b-\frac{1}{2} q$. Quo in cafu femper dux, aliquando tres, ex Radicibus fiunt majores quam $\frac{I}{4} b$.
Fig. 52.
Notandum vero hic limitem illum ex minima y productum, aliquando negativum fieri, five minorem nihilo; quoties fcil. maxima ex tribus perpendicularibus major elt quam GD. Hoc, flacciderit quantitas $+r$, à Limite proferipto ex media y, in nihilum minui potef. Defectus vero Limitis ex minjma y monftrat quanta polit effe $-r$ in æquatione, fi habeantur tres Radices Affirmativæ ac una Negativa; quam fi excedat, non nifi duæ, altera Affirmativa, altera Negativa, dari poffunt. Hæc autem omnia demonftrantur ex eo quod predicti Limites quantitatis r, fint differentix Quadratorum linex GD \& perpendicularium in Curvam Parabulx.

* Ob perplexas vero cautiones, quas parit in requationibus hifce fignorum diverfitas, proittat femper fecundum terminum tollere, ac deinde juxta precepta jam tradita Radicum numerum ac figna inquirere ; profertim fi quantitates illæ y non multum

(8 r)

as invicem. Ex quatuor autem hifce Radicibus Affirmativis, dux lemper funt minores quam $\frac{1}{4} b$, dux vero majores; nempe fi $D G$, minor fit quara $A G$, frive $\frac{x}{4} p^{b}$ quam $-\frac{3}{-64}-63+q$. Tres autem minores funt quam $\frac{1}{4} 6$ quoties perpendicularis media, five ex media j inventa, major eft quam $A G$, five $\frac{3}{8} \cdot b y$ gajor quam $3 y^{3}-p y$ y ex eadem media y; Quarta vero \& maxima Radix majoreft quam maxima $y+\frac{1}{4} b$; x quatur autem differentix : ipilus b \& fummæ cxterarum trium-Radicum, ideoque minor eft b. Sed jam manum de Tabula; Fortaffis illi qui naturam Parabolæ penitius perfepectam habent, majori compendio hæc omnia peragere valebunt; at fi quantitates hæ omnes b. $p . q$ \& r, abfque refolutione Cubicx æquationis ritè determinari pofint, non fine caufa ambigitur; quæcunque enim æquationibus planis hac in re fiunt, non veros Limites, fed Approximationes tantum exhibent.
XX. Regulas binas compendiofas admodum pro Approximatione Radicis Cu-The Extration bica nuper protulit D. de Lagney, alteram rationalem, alteram irrationalem; nem-
 Radicem autem poteftatis Quintx $a^{5}+b$ fic exprimit $=\frac{1}{2} a+$

$$
\frac{\frac{1}{4} a^{4}+\frac{b}{5} a}{}-\frac{1}{4} a a \text { (non } \frac{1}{2} a a \text { ut perperam legitur in libro }
$$

Gallico impreffo). Demonftrantur autem Regulx prædictæ ex Genefi Cubi \& Poteftatis quintx. Pofito enim Latere Cubi cujufque $a+e$, Cubus inde conflatus fit $a a a+3 a a c+3: a c e+c c c$, adeoque fi fupponatur a $a n$ númerus Cubus proxime minor dato quovis non Cubo, eee minor erit Unitate, ac refiduum five b xquabitur reliquis Cubi membris $3 a a e+3 a b c$ $+c a c$: rejectoque $c e c$ ob parvitatem, $b=3 a a c+3 a c a$. Cumqué $a \cdot a$ e multo majus fit quam $a c e, \frac{b}{3 a a}$ non multum excedet ipram c; pofitoque $c=\frac{b}{3_{\underset{b}{a}}}, \frac{b}{3 a \frac{a}{3}+3 \frac{a}{b}}$, cui proxime æquatur quantitas e, invenietur $=\frac{b}{3 a a+\frac{3 a b}{3 a a} \text { five } \frac{b}{3 a a+\frac{b}{b}}: \text { hoc eft } \frac{a b}{3 a a a+b}=c \text {, } a \text { a }}$ deoque latus Cubi $a n a+b$ habebitur $a+\frac{a b}{3 a a a+b}$, qux eft ipfa formula rationalis D. de Lagncy. Quod fi a a a fuerit Numerus Cubus proxime Vol. I.

$$
\mathrm{M}
$$ тајо:

(8)

major dato, Latus Cubi a an $-b$, pari ratiocinio nvenietur $a \frac{a b}{3 a n-b-b}$ atque hre Radicis Cubicx approximatio fatis expedita ac facilis parum admodunt fallit in defectu; cum fcilicet e refiduum Radicis hoc pacto inventum paulo minus jufto fit. Inrationalis vero fomula ctiam ex codem? fonte derivatur, viz $b=3 a, a+3 a 0 a$ five $\frac{b}{3 a}=a c+c a ;$ adeo qua $\frac{1}{4} a+\frac{b}{3 a}=\frac{1}{2} a+$ atgue $\sqrt{1} a+\frac{b}{3 a}+\frac{1}{2} a=a$ + e, five Radici quxfitz. Latus vero Cubi ana - b codèm modo habebio tur $\frac{1}{2} a+\sqrt{4} a a-\frac{b}{3 a}$. Atque hac quidem formula aliquanto propitis. ad foopum collimat, in exceffu peccans ficut altera in defectu, at ad praxim magis commoda videtur, cum reftitutio Calculi rihil aliud fit quam continua additio vel fubductio ipfius $\frac{c a c}{3 a}$, fecundum ac quantitas c innotefcat; ita ut: potius frribendum fit $\frac{\sqrt{4} a a+\frac{b-c e e}{3 a}}{4}+\frac{1}{2} a$ in priori, cafu; ac in pofteriori $\frac{1}{2} a+\frac{\sqrt{\frac{1}{4} a n+\frac{c c c}{}-b}}{3^{a}}$ Utraque autem formulâ. Ciphro jamt coģnitx in Radice extrahendá ad minimum rriplicantur, quod quidemz Arithmetige ftudiofis omnibus gratum fore confido, atque ipfe Inventori abunde gratulor. Ut autem harum Regularum utilitas melius fensatur, exemplum unum vel alterum adjungere plasuit.

Exemp. I. Quæratur Latus Cubi dupli, five $a n a+b=2$. Hic $a=1$, stgue $\frac{b}{3 a}=\frac{1}{3}$, adeoque $\frac{1}{2}+\sqrt{\frac{7}{12}}$ five $x, 26$ invenictut Latus prope yerum. Cubus autemi ex 1,26 eft. 2,000376, adeoque $0,63+$ $\sqrt{0,3962-\frac{0,000376}{3}} \overline{78}$ five $0,63+\sqrt{0} 0,396800529100522 \dot{1}$
1, $259921049^{8} 95$ - ; quod quidem tredecem figuris Latus Cubi dupli exhibet, nullo fere negotio, viz. unâ: Divifione \& Lateris Quadrati extraetione, ubi vulgari operandi modo quantum defudaffet Arithmeticus nôrunt experti. Hunc etiam calculum quoufque velis continuari licet, augendé quadratum additione $\frac{c \cdot c e}{3^{a}}$. Quæ quidem correctio hoc in cafu non nifi unitatis in Radicis figurâ decima-quartâ augmentum affert.

(183)

Exximpium IL Quxratur Latas Cubi xqualis menfuir Anglice Gallon diotx, uncias folidas 23 I continentis. Cubus proxime minor eft 216 cujus Latus $6=a$, ac reffuum $15=6$, adeoque pro prima appicxinatione powenit

 mus Cubum ejus $231,000853897 \mathrm{r} 2$, ac juxta regulam $3,0679+$ $\sqrt{9,41201041-\frac{0,000853894712}{18,4074}}$ egetatur accuratifime Lateri Cubi dati, id quod intra horx fatium calculo obtinui 6 . 135792439.66195897 , in octodecimâ figurâ juftum, at deficiens in decimanona: Hxe vefo formula merito preferenda eft rationali, ob ingentem diviforem, non fine magno labore tractandum; cum Lateris Quadrati extractio multo facilius procefat, ut experientia multiplex me docuit.

Regula autem pro Radice Surfolidi puri five Poteltatis quintx patulo altioris indaginis eft, atque etiam adhuc multo perfectius rem praftat : datas enim in Radice ciphras ad minimum quintuplicat, neque etiam multi nec operofi eft calculi. Author autem nullibi inveniendí niethodum ejufve demonftrationem concedit, "etiamfi maxime defiderari videatur: prefertim cum in Libro impreffo non recte fe habeat ; id quod imperitos facile illudere pollit. Poteftas au-
 $+10 a^{2} e^{3}+5 a e^{4}+e^{5}=A^{5}+b, b_{0}$ unde $b=5 a^{4} e+10 a^{3} c^{2}+a^{2} 0 a^{2} e^{5}$ $+5 a^{4}$, rejecto c^{5} ob parvitatem fuam: quo-circa $\frac{b}{5 a}=a^{3}$ e $2 a^{2} c^{2}+2 s c^{3}+c^{4}$; atque urinque addendo $\frac{1}{4} a^{4}$ habebimus $\sqrt{\frac{1}{4} a a a^{1}+\frac{b}{5}}=\sqrt{\frac{1}{4} a^{4}+a^{3} c+2 a^{3} c^{2}+2 a a^{3}+c^{4}}=\frac{1}{2} a^{2}$ - $a c+c$ c. Dein utrinque fubducendo, $\frac{1}{4} a a_{0} \frac{1}{2} \pi+e$ equabitur $\sqrt{\frac{1}{1} n_{4}+\frac{6}{5 a}-\frac{1}{4} a, \text { cuil fi addatur } \frac{1}{2} a, \text { erit } a+c=\frac{1}{2} a+c}$ $\sqrt{\frac{1}{4} a^{4}+\frac{b}{5 a}-\frac{1}{4}}=$ Radiciporeftatis $a^{2}+b$. Quod fi fuinfet $n^{5}-b$, (affumptâ a jufto majore) regula fic re haberet, $\frac{1}{2} a+$ $\sqrt{\sqrt{r^{\prime \prime}}+\frac{b}{a}-\frac{a}{4} a}$

(84)

Atque hxc regula mirum in modum approximat, ut vix reftitutione opus fit; at dum hece mecum penfitavi, incidi in formularum methodum quandam generalem proquavis proteftate fatis concinnam, quamque celare nequeo; cum etiam in fuperioribus poteftatibus datas radices figuras triplicare valeant.

Hx autem formulx ita fe habent tam rationales quam irrationales.

$$
\begin{aligned}
& \sqrt{a a+b}=\sqrt{a a+b}, \text { vel } a+\frac{a b}{2 a a+\frac{1}{2} b} \\
& \sqrt[3]{a^{3}+b}=\frac{1}{2} a+\sqrt{\frac{a}{4} a a+\frac{b}{3 a}}, \text { vel } a+\frac{a b}{3 a^{3}+b} \\
& \sqrt[4]{a^{4}+b}=\frac{a}{3} a+\sqrt{\frac{1}{9} a a+\frac{b}{6 a a}}, \operatorname{vel} a+\frac{a b}{4 a^{4}+\frac{3}{2} b} \\
& \sqrt[5]{a^{5}+b}=\frac{3}{4} a+\sqrt{\frac{2}{6} a a+\frac{b}{10 a^{3}}}, \text { vel } a+\frac{a b}{5 a^{5}+2 b} \\
& \sqrt[6]{a_{-}^{6}+b}=\frac{a}{5} a+\sqrt{\frac{3}{25} a a+\frac{b}{15 a^{4}}}, \text { vel } a+\frac{a b}{6 a^{6}+\frac{5}{2} b} \\
& \sqrt[7]{a^{7}+b}=\frac{5}{6} a+\sqrt{\frac{1}{3 b} a a+\frac{b}{2 I a^{5}}} \text { vel } a+\frac{a b}{7 a ?+3 b}
\end{aligned}
$$

Et fic de cxteris etiam adhuc fuperioribus. Quod fi affumeretur a radice quæfitâ major, (quod cum fructu fit quoties Poteltas refolvenda multo propior fit poteftati Numeri integri proxime majoris quam proxime minoris) mutatis mutandis exdem radicum exprefliones proveniunt:

$$
\begin{aligned}
& \sqrt{a a-b}=\sqrt{a a-b}, \text { vel } a-\frac{a b}{2 a a-\frac{1}{2} b} \\
& \sqrt[3]{a^{3}-b}=\frac{1}{2} a+\sqrt{\frac{1}{4} a a-\frac{b}{3 a}}, \operatorname{vel} a-\frac{a b}{3 a^{3}-b} \\
& \sqrt[4]{a^{4}-b}=\frac{2}{3} a+\sqrt{\frac{2}{9} a a-\frac{b}{6 a a}}, \operatorname{vel}^{2} a-\frac{a b}{4 a^{4}-\frac{a}{2} b} \\
& \sqrt[5]{a^{5}}=b=\frac{2}{4} a+\sqrt{16 a a-\frac{b}{10 a^{3}}}, \text { vel } a-\frac{a b}{5 a^{5}-2 b} \\
& \sqrt[6]{a^{6}-b}=\frac{4}{3} a+\sqrt{\frac{a}{2 a} a-\frac{b}{15} a^{4}}, \text { vel } a-\frac{a b}{6 a^{6}-\frac{5}{2} b} \\
& \sqrt[7]{a^{7}-b}=\frac{6}{6} a+\sqrt{\frac{1}{3} \cdot a a-\frac{b}{21 a^{5}}} \text {, vel } a-\frac{a b}{7 a^{7}-3 b^{2}}
\end{aligned}
$$

Atque inter hos duos terminos femper confiftit vera radix, aliquanto ptopior irrationali quam rationali; e vero juxta formulam irrationalem inventa, femper peceat in exceflu, ficut in defectu à rationali formulâ reful-

(85)

tans Quotus ; adeoque fi fuerit $+l$, Irrationalis majorem juflo exhibet Radicem, rationalis mincren; tè contrario veró fi fuerit - 6 . Atque hec de eliciendis radicibus è Poteftatibus puris dictà funto, quæ quidem ad ufus ordinarios fufficientes multo facilius habentur ope Logarithmorum : guoties vero ultra : Tabularum Logarithmicarum vires accuratiflıme definienda eft radix, ad hujufmodi methodos neceffario recurrendum eft. Preterea cum ex harum formularum inventione ac contemplatione, Univerfalis Regula pro Fiquationibus Affectis (quam non fine fructu Geometrix ac Algebre ftudiofis omnibus ufurpandam confido) mihi ipfi oblata fit, volui ipfius inventi primordia quâ poflim claritate aperire.

Æquationum quidem Affectarum Quadrato quadratum non excedentium Conftructionem generalem concinnam admodum ac facilem, An. circiter 1687. jam tum inventam, publici juris feci: ex quo ingens cupido animum inceffit, idem Numeris efficiendi. At brevi poft D. Rapplon magna ex parte voto fatisfeciffe vifus eft, ufque dum D. de Lagncy eviam ddhuc compendiofus rem peragi poffe hoc fuo libello mihi fuggeflit. Methodus autem noftra hec eft.

Supponatur Radix cujufvis xquationis \boldsymbol{z} compofita ex partibus $n+$ vel - e, quarum n cx hyporhef affumatur ipfi z quantum fieri poflit propinqua (quod tamen commodum eft, non neceffarium) \& ex quantitate a + vel - c formentur Poteftates omnes ipfius z in 䒜quatione inventas, iifque affigantur Numeri Coefficientes refpectivè : deinde Poteftas Refolvenda fubducatur è fumma partium datarum in prima columna, ubi e non reperitur, quam Homogeneum Comparationis vocant, fitque differentia ± 6. Dein hábeatur fumma omnium Coefficientium ipflus lateris e in fecunda Columna, qux fit s; denique in tertia addantur omnes coefficientes quadrati $e c$, quarum fursmam vocemus t, ac Radix quefita. 亿, formula rationali habebitur $=a+$ vel
$-\frac{s b}{s s+\text { vel }-t b}$; irrationali vero fiet $z=a \frac{\mp \frac{1}{2} s \pm \sqrt{\frac{1}{4} s \mp b t}}{t}$, id quod exemplis Illuftrare fortaffe operx pretium erit. Inftrumenti vero-loco adfit Tabella, Poteftatum omnium ipfius $a+$ vel $-e$ Genefin exhibens, qux fs opus fuerit continuari facile poffit. A feptima vero incipiam cum pauca Problemata eo ufque affurgere deprehendantur, Hanc Tabellam jure optimo. Speculum Analyticum Generale a ppellare licet. Poteftates autem prodictx ex continua multiplicatione per $a+e=z$ ortx, fic proveniunt, cum fuis coefficio entibus adjunctis.

（（ 80 ）

$$
\begin{aligned}
& 1 \approx 7=1 a^{7}+7 l a^{6} c+21 l a^{5} c e+35 l a^{4} c^{5}+35 l a^{3} e^{4} \\
& k z^{6}=k a^{6}+6 k a^{5} c+15 k a^{4} c c+20 k a^{3} c^{3}+15 k a^{2} c^{4} \\
& b z^{5}=b a^{5}+5 b a^{4} c+10 b a^{3} c e+10 b a^{2} c^{3}+5 b a c^{4} \\
& g z^{4}=g n^{4}+48 A^{3} c+6 g n^{2} c e+4 g n c^{3}+\quad c^{4}
\end{aligned}
$$

$$
\begin{aligned}
& d a^{2}=d a^{2}+2 d a c+\infty \\
& c \text { そ ccatce } \\
& \begin{array}{l}
x{ }^{2} a^{2}+7 t a c^{6}+1 c^{3} \\
+6 k a c^{5}+k c^{6} \\
+\quad b c^{5}
\end{array}
\end{aligned}
$$

Qued fifacrit $a-c=$ ex iifdem membris conficiur Tabella，negatis folumnodo imparibus Poteftatibus ipfius c, ut $c_{y} e^{3}, c^{5}, e^{7}: \&$ affirmatis paribuis c^{2}, c^{4}, e^{6} ．Sitque fumma Coefficientium lateris $=3$ ；Summa Ceffio－ centium Quadrati $e c=$ ；Cubie $c e=u$ ；Biquadratic $c^{4}=m ;$ Surfolidi $c^{5}=x$ ； Summa vero Coefficientium Cubo－cubi ${ }^{6}=y>$ \＆c．Cum autem fupponature exigua tanturn pars Radicis inquirende，omnes potetates jpfius emulto mi－ nores evadunt limilibus ip lus a Poteftatibus，adeoque pro prima hypothefi rejiciantur fupcriores（ut in poteftatibas puris oftenfum elt）ac formath equa－
 Cujus rei cape cxempla fequentia，quo molus intelligatur．

Excmp I．Proponatur xquatio $z^{3}-37$ 左 $+7=10000$ Pro pm－

$$
\begin{aligned}
& \begin{aligned}
2^{4} & =+a^{4} \pm 4 t^{3} t 46 a^{2} c c+4 a^{3}+c^{4} \\
-d a^{2} & =-d a^{2} \pm d a c-d^{2} e c
\end{aligned} \\
& +c \tilde{\eta}=+c \cdot n c c
\end{aligned}
$$

$$
\begin{aligned}
& 3-10000
\end{aligned}
$$

$+450 \overline{7015}+597 e c \overline{7}+c^{3}+c^{4}=0$

Signis $+a c-\left(\right.$ refpectu $\left.c^{*} c^{3}\right)$ in dubio relictis，ufque dum fciatut an e fit Negativa vel Affirmativa；quod quidem aliquam paret difficul－ tatem，cum in x quationibus plures radices admittentibus，frepe augeantur Hornigenia Comparationis，ut appellant，à minuta quantitate a ，ac è̀ contr2 eî auctâ minuantur．Deterninatur autem fignum ipfus e ex figno quantita－ tis b ；fublatâ enim Refolvendâ ex Homogenio ab a formato，fignum ipfius se， ac proinde partium in cjus compofitione provalentium，femper contrarium erit
figno differentix l. Unde patebit an fuerit $-\bar{c}$ vel $+\bar{c}$, five an a majorit vel minar radice verac affumpta fit. - Ipfa altem e femper papuatur $\frac{\frac{1}{2} s-\sqrt{\frac{1}{4} s-b t}}{t}$, quoties l ac t codem figno notantur ; quoties vero diverfo figno connectuntur, eadem c fit $\frac{\sqrt{1} s+\sqrt{2}-\frac{1}{2} s}{t}$ Pofquam ve ro compertum fit fore - c, in affirmatis xquationis membris negentur $e^{\prime} c^{3} c^{s}$, \&rc. in negatis affirmentur; feribantur fchl ligno contrario, fi vero fuerit $+e_{0}$ affirmentur in affirmatis, negentur in negatis. Habemus autem in hoc noftro exemplo 10450 loco Refolvendx 10000 , five $b=+45$, unde contat a majorem jufto affumtpam, ac proinde haberi - c : Hinc equatio fit 10450 $-4015 c+597 \cdot c-4 c^{3}+c .4=10000$ Hoceft $450-4015 \varepsilon$ $+597 c c=0$. Adeoque $450=4015 c-597 c c$ five $b=s c-t c e$ cujus Radix efit $\frac{\sqrt{2} s-\sqrt{\frac{1}{4} s-b t}}{t}$, vel fimavis $\frac{s}{2 t}-\frac{\sqrt{s s}-\frac{b}{4+t}}{t}$, id eft, in prafenti cafu, $c=\frac{2007 \frac{1}{2}-\sqrt{2} 3763406 \frac{2}{4}}{4}$, unde provenit radix quefita prope verum 9,886 . Hoc vero pro fecundâ Hypothefi fubftituto, emergit $n+e=\{$ accuratilime $9,8862603936495 \ldots 2$, in ultima figura vix binario juftum fuperans; nempe cum $\frac{\sqrt{\frac{t}{4} s s+b t}-\frac{1}{2} s}{t}=$ e. Atque hoo etiam, fopus fuerit, multo ulterius verificaripolit, fubducendo $\frac{\frac{2}{2} u e^{3}+\frac{1}{2} c_{4}^{4}}{\sqrt{\frac{1}{4} s+t b}}$ fi fuerit $+\rho_{3}$ vel addendo $\frac{\frac{2}{2} u c^{3}-\frac{x}{2} c^{4}}{\sqrt{\frac{2}{4} 3 s-t b^{-}}}$, radici prius invente, fift -6 Cujus conpendium eo pluris eftimandum quod quandoque, ex folu prima fuppofitione, femper vero ex fecunda, iifdem confervatis coefficientibus quoufque velis calculum continuare poffis. Cæterum æquatio predicta etiagi negativam habet radicem, viz. $z=10,26 \ldots$. . quam cuilibet accuratius expif cari licet.

Exemp. II. Sit $z^{3}-x 7 z+54 z=350 ;$ ac ponatur $a=10$. E . prefcripto Regulx,

$$
\begin{aligned}
& z z z=a a a+3 a a c+3 a c c+c c e \\
& -d z z=d a a-2 d a e-d e e \\
& +c z=c a+c c \\
& b \text { s } t \\
& \text { Id eft }+1000+300 c+30 c e+e e c \\
& \text { - } 1700-340 c-17 \text { ec } \\
& +540+54{ }^{\circ} \\
& -350 \\
& \text { Sive }-510+14 e+13 e e+e . e e=0 .
\end{aligned}
$$

Cum autem habeatur - 510 , conitat a minorem jufto affumi, ac proinde e affirmativam effe, ac ex $510=14 c+13 e e f i t \frac{\sqrt{b t+\frac{1}{4} s s}-\frac{1}{2} s}{t}=e$ $=\frac{\sqrt{6679-7}}{13}$, unde z fit $15,7 \ldots$ qux nimia quidem eft ob late fumptam a; ideo fupponatur fec undo $a=15$, ac pari ratiocinio habebimus e e $\frac{\frac{\pi}{2} s-\sqrt{\frac{1}{4} s s-t b}}{t}=\frac{109^{\frac{2}{2}}-\sqrt{11710 \frac{1}{4}}}{28} ;$ ac proinde $z=14,954068$. Quod fi calculum adhuc tertio reftaurare velis, ufque in vigefimam quintam figuram vero conformem invenies radicem : Paucioribus vero contentus, fribendo $t b \pm t e e e$ loco $t b$, vel fubtrahendo aut addendo radici prius inventr $\frac{x}{2}$ eee
$\sqrt{\frac{1}{4} s s \bar{\mp}+b}$ ad fcopum fatim perveniet. Aquatio vero propofita nulla alia radice explicari poteft, quia Poteftas Refolvenda 350 major eft Cubo ex $\frac{17}{3}$ vel $\frac{1}{3} d$.

Exemp. III. Sit Æquatio illa quam in Refolutione difficillimi Problematis Arithmetici adhibet Clarijfimus Walijius, Cap. LXII. Algcbre fuæ, quo radicem Vict.e Methodo accuratifime quidem affecutus eft. Eandemque exemplum Methodi fure affert laudatus D. Raphfon, pag. 25, 26. nempe z^{4} $-80 z^{3}+1998 z^{2}-14937 i+5000=0$. Нæc autem xquatio ejus formulx eft, ut plures habeat radices Affimativas, ac quod difficultatem ejus augeat, prograndes funt Coefficientes refpectu Refolvendx datx: Quo melius autem tracketur, dividatur, ac juxta notas punctationum regulas ponatur $-i^{4}+8 z^{3}-20 z^{2}+15 z=0,5$ (ubi z cft $\frac{1}{10} z$ in $x q u a t i o n e$

(89)

propofita) ac pro prima Hypothefi habeamus $a=1$. Proinde $+2-5 c$ $-2 e e+4 e^{3}-c^{4}-0,5=0$.

Hoc eft $I \frac{1}{2}=5 e+2 c c ;$ hinc $\frac{\sqrt{4 s s+b t}-\frac{x}{2} s}{t}=e$ fit $\frac{\sqrt{37-5}}{4}$ adeoque $z=1,27$, unde conftat 12,7 radicem effe x quationis propofite vero vicinum. Secundo loco fupponatur $\tilde{\imath}^{2}=12,7$, ac juxta prefcriptum Tabellx Poteftatum oritur.

- $26014,4641-8193,532 e-967,74 c e-50,8 c^{3}-c^{4}$
$+163870,640 .+38709,60 . c+3048, \ldots c e+80, \ldots e^{3}$
- $322257,42 \ldots-50749,2 \ldots e-1998, \ldots c$
$+189699,9 \ldots+14937, \ldots e$
- 5000,
$+\quad 298,6559-5296,132 c+82,26 e c+29,2 c^{3}-c 4=0$
Adeoque $-298,6559=-5^{296,132 e+82,26 c e, \text { cujus radix } e \text { juxta }}$ regulam $=\frac{\frac{1}{2} s-\frac{\sqrt{\frac{1}{4} s s}-b t}{t} \mathrm{fit} \frac{2648,066-\sqrt{6987686,106022}}{82,26}=}{}=$
$0,0564408033 \mathrm{I} \ldots .=c$ minori vero: ut autem corrigatur, $\frac{\frac{2}{2} u c^{3}-\frac{x}{2} c^{4}}{\sqrt{\frac{1}{4} s s-b t}}$ five $\frac{0,0026201 \ldots \ldots}{2643,} \frac{423 \ldots \ldots}{}$ fit 0,00000099117 ; ac proinde e correcta $=$ 0,05644179448;Quod fi adhuc plures radicis figuras defideras,formetur ex e correctâ $t u e^{3}-t e^{4}=0,43105602423 \ldots, \mathrm{ac} \frac{\frac{x}{2} s-\sqrt{\frac{2}{4} s s^{2}-b t-t u e^{3}+t e^{4}}}{}$ five $\frac{2648,066-\sqrt{ } 698768,5,67496597577 \ldots}{82,26}-\cdots$ \square
$0,05644179448074402=e$, unde $a+c=z$ radix accuratifima fit I2, $75644179448074402 \ldots$ qualem invenit Cl. Wallijius, in loco citato. ubi obfervandum redintegrationem calculi femper triplicare notas veras in affumpta a, quas prima correctio five $\frac{\frac{x}{2} u e^{3}-\frac{x}{2} e^{4}}{\sqrt{\frac{x}{4} s s-b t}}$ quintuplices reddit, quæque ctiam commode per Logarithmos efficitur. Altera autem correctio poft primam, eriam duplum Ciphrarum numerum adjungit, ut omnino affumptas feptuplicet; prima tamen plerumque ufubus Arithmetices abunde fufficit. Qux vero dicta funt de numero Ciphrarum in radice recte affumptarum, ita intelligi velim, ut cum a non nifi decimâ parte diftet à vera radice, prima figu* ra recte affumatur; fi intra centefimam partem, duæ primæ; fil intra milles fimam, tres priores rite fe habeant; quæ deinde juxta noftram regulam tractatre ftatim novem evadunt.

Reftat jam ut nonnulla adjiciam de noftra formula rationali, viz $\bar{e}=$ $\frac{s}{s+t b}$, que quidenn fatis expedita videbitur, nec nultum ceder priori, cum etiam datas ciphras triplicare valeat. Formata autem æquatione ex $a \bar{\mp}_{e}=\tilde{\imath}$, ut prius, ftatim patebit an a affumpta fit major vel minor vero, cum foit.se figno femper notari debeat contrario figno difierentix Refolvendx ac Homogenii fui ex a producti. Deinde pofito quod $\pm b \mp s e+v e l-t c e=0$. Divifor fit $s s-t b$, quoties b act t iifdem fignis notantur; idem vero fit $s s+b t$, fif figna ifta diverfa fint. Praxi autem magis accommodata videtur fi fribere-
tur Theorema, $e=\frac{\square \pm \frac{t b}{s}}{}$ nempe cum unâ Multiplicatione ac duabus divifionibus res peragatur, que tres multiplicationes ac unam divifionem aliàs requireret. Hujus etiam Methodi Exemplum capiamus à predietx exquationis radice $12,7 \ldots$: ubi $298,6,59-5296,132 e+82,26 . e e$

$$
+b-s+t
$$

$+29,2 e^{3}-c^{4}=0$, adeoque $-\overline{t b}=e$, hoc eft, fiat ut s ad t ita $+u$
b ad $\left.\frac{t b}{s}=5296,132\right) 298,6559$ in $82,26(4263875 \ldots$; quocirea divifor fit, $s-\frac{t b}{s}=529,1,49325 \ldots$.) 298; $6559(0,056441 \ldots \ldots=$,
viz. quinque figuris veris adjectis radici affunptx. Corrigi: autem nequit hec formula ficut pracedens irrationalis; adeoque fi plures defiderentur radicis figurx, proftat affumpta nova Hypoihefí calculum de integro repetere: ac novus Quotus triplicando figuras in radice cognitas fupputatori etiam maxime frrupulofo abunde fatisisfaciet.

1. Metbod of Raifing an Infio nite Mulbinomial, to sny given Pomer; by M. M de Moivre.n. 230. fo 619?

$$
\begin{aligned}
& \text { XXI. Theorem.] } \underset{z+b z^{2}+c z^{3}+d z 4+c z^{5}+f z^{6}}{6} \\
& \left.\overline{+g z^{7}+b z^{8}+i z^{9} \dot{\&} c}\right|^{m}=a^{m} z^{m}+\frac{m}{I} a^{m-1: b z^{m \rightarrow 1}} \\
& \begin{aligned}
+\frac{m}{1} \times \frac{m-1}{2} a^{m-2} b^{2} z^{m+2}+\frac{m}{1} & \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} b^{3} \cdot z^{m \rightarrow-3} \\
+\frac{m}{1} a^{m-1} q & +\frac{m}{I} \times \frac{m-1}{I} a^{m-2} b \\
& +\frac{m}{1} a^{m-x} d
\end{aligned}
\end{aligned}
$$

(91)

$$
\begin{aligned}
& +\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times 4=46 \frac{1}{2}=14 \\
& +\frac{m}{1} \times \frac{2}{2} \times \frac{m^{3}}{2} \times \frac{m \frac{4}{2}}{1} a=3 b^{2} c \\
& +\frac{m}{1} \times \frac{m-1}{1} i^{m=2} b d \\
& +\frac{m}{1} \times \frac{m-1}{2} n^{-2} \\
& +\frac{m}{I} a^{m-1} c
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{m s}{5} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} \pi m-565 \pi^{m+5} \\
& \div \frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{1} \times m-463 c \\
& +\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{1} a^{m-3} b^{2} d \\
& +\frac{m}{1} \times \frac{m-1}{1} \times \frac{m-2}{2} a^{m-3} b c^{2} \\
& +\frac{m}{1} \times \frac{m-1}{I} a^{m-2 b c} \\
& +\frac{m}{I} \times \frac{m-I}{I} \pi^{m-2} c d \\
& -\frac{m}{I} \text { m } n=?
\end{aligned}
$$

(92)

$$
\begin{aligned}
& +\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} \times \frac{m-5}{6} a^{m-6 b^{6} z^{m+6}} \\
& +\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{1} n m-564 c \\
& +\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{1} a m-4.63 d \\
& +\frac{m}{1} \times \frac{m-I}{2} \times \frac{m-2}{I} \times \frac{m-3}{2} a^{m-4} b^{2} c^{2} \\
& +\frac{m}{I} \times \frac{m-I}{2} \times \frac{m-2}{I} a^{m-3} b^{2} c \\
& +\frac{m}{\mathrm{I}} \times \frac{m-\mathbf{I}}{\mathbf{I}} \times \frac{m-2}{\mathbf{I}} a m-3 b c d \\
& +\frac{m}{I} \times \frac{m-I}{I} a^{m-2 b f} \\
& +\frac{m}{1} \times \frac{m-I}{2} \times \frac{m-2}{3} a^{m-3} c^{3} \\
& \therefore+\frac{m}{I} \times \frac{m-I}{I} a^{m-2} c c \\
& +\frac{m}{I} \times \frac{m-I}{2} a^{m-2} d^{2} \\
& +\frac{m}{I} a^{m-1} g \& \mathrm{c} .
\end{aligned}
$$

I fuppofe that the Infinite Number Multinomial is $a z+b_{z z}+c z^{3}+$ $d z^{4}+e z^{5}, \Xi^{3} c . m$ is the Index of the Power, to which this Multinomial ought to be rais'd, or if you will, 'tis the Index of the Root, which is to be extracted: I fay, That this Power or Root of the Multinomial, is.fuch a Series as I have exprefs'd.

For the underftanding of it, it is only neceffary to confider all the "「erms by which the fame Power of z is Multiplied; in Order thereto, I diftinguifh two things in each of thefe Terms; 1°. The Product of certain Powers of the Quantities, $a, b, c, d, \xi_{c} c 2^{\circ}$. The Uncix (as Oughtred calls 'em) prefixt to there Products. To find all the Products belonging to the fame Power of z, to that Product, for inftance; whofe Index is $m+r$ (where r may denote any Integer Number) I divide thefe Products into feveral Claffes; thofe which immediately after fome certain Power of a (by which all thefe Products begin) have b, I call Products of the firf Clallis; for Example, $a^{m}-4.63 c$ is a Product of the firft Claflis, becaufe b immediately follows a^{m-4}; thofe which immediately after fome Power of a have c, I call Products of the fecond Claffis, fo $a^{m-3} c c d$, is a Product of the fecond Claf-

(193)

fis ; thofe which immediately after fome Power of a have d; I call Products of the third Clafis; and fo of the ref.

This being done, 1 Multiply all the Producis-belonging to z^{m+n-1} (which preceeds immediately z^{m+r}) by b, and diyide em all 1 y $a ; 2^{\circ}$. I Mütiply by c, and Divide by a, all the Products bélonging to z^{m+r-2}, except thofe of the firlt Claffis; 3°. I Multiply by d and Divide by a all the Products belonging to $i^{m+r}-3$, except thofe of the firt and fecond Claf fis: 4°. I Multiply by e and Divide by a, all the Terms belonging to z^{m+r-4}, except thofe of the firt, fecond and third Claffis; and fo on, till I meet twice with the fame Term. Latty, I add to all thefe Terms, the Product of a^{m-1} into the letter, whofe Exponent is $r^{4}+1$.

Here I muft take notice, that by the Exponent of a Letter, I mean the Number which exprefies what Place the Letter has in the Alphabet, $\mathrm{fo}_{3} 3$ is the Exponent of the Letter c, becaufe the Leeter c is the 3 d in the Alphabet.

It is evident by this Rule, you may eafily find all the Products belonging to the feveral 'Powers of $\%$ if you have bat the Product belonging ito z^{2}, viz. a^{m}.

To find the Uncir which ought to be prefix'd to every Product, I confider the Sum of Units contain'd in the Indices of the Letters which compofe it (the Index of a excepted) I write as many Terms of the Series $m \times m-I$ $x m-2 \times m-3, \exists_{c}$, as there are Units in the Sum of thefe Indicés, this Series is to be the Numerator of a Fraction, whofe Denominator is the Product of the. feveral:Séries $1 \times 2 \times 3 \times 4 \times 5$, \&c. $\mathrm{I} \times 2 \times 3 \times 4 \times 5$, \&c. 1×2 $\times 3 \times 4 \times 5 \times 6$, \&c. the firt of which contains as many Terms as there are Units in the Index of b, the fecond as many as there are Units in the Index of c, the third as many as there are Units in the Index of d, the fourth as many as there are Units in the Index of e, \&c.
 any Power whatoever, write fo many Series equalito it, as there are Units in the Index of the Power demanded. Now it is evident, that when thefe Series are fo Multiplied, there are feveral Products in which there is the fame Power of $z ;$ thus if the Series $a z+b \tau \hbar+c z^{3}+d z 4, \& z$. is raifed to its Cube, you have the Produts $b_{3} z^{6}, a b c z^{6}, a a d z z^{6}$, in which you find the fame Power z^{6}. The efore let us confider what is the Condition that can make fome Products to contain the fame Power of z; the firt thing that will appear in relation to it is, that in any Product whatfoever, the Index of ξ is the Sum of the particular Indices of $\not \approx$ in the Multiplying Terms (this follows from the Nature of the Indices); thus $b_{3} z^{6}$ is the Product of $b z^{2}, b z^{2}$, $b z^{2}$, and the Sum of the Indices in the Multiplying Terms, is $2+2+2$ $=6 ; a b c z^{6}$ is the Product of $a z, b \neq \eta, c z^{3}$, and the Sum of the Indices of z in the Multiplying Terms is $1+2+3=6 ;$ a $a d z^{6}$ is the Product of $a \approx, a \approx d ₹^{4}$, and the Sum of the Indices of $₹$ in the Multiplying Terms is $1+1+4=6$: the next thing that appears, is, that the Index of z in the Multiplying Terms is the fane with the Exponent of the Let-

(94)

rer to which z is joyn'd ; from which two Confiderations it follows, that, to have all the Products belonging to a certain Power of z, you muft find all the Products where the Sum of the Exponents: of the Letters which compofe them, fhall always be the fame with the Index of that Power. Now this is the Method I ufe, to find eafily all the Products belonging to the fame Power of \tilde{z}, let $m+r$ be the Index of that Power, I confider that the Sum of the Exponents of the Letters which compofe thefe Products, muft exceed by 1, thole which belong to m^{m+r-1}, now becaule the excefs of the Exponent of the Letter b, above the Exponent of the Letter a, is 1 , it follows, that if each of the Products belonging to $z^{m+r}-1$ is Multiply'd by b, and Divided by a, you will have Products, the Sum of whofe Exponents will be $m+r$; Likewife the Sum of the Exponents of the Letters which compore the Products belonging to z^{m+r} exceeds by 2 the Sum of the Exponents of the Letters, which compore the Products belonging to $z^{m}+r-5$: Now becaufe the Exponent of the Letter a is lefs by 2 than the Exponent of the Letter c, it follows, that if each Product belonging to $z^{m+r}-2$ is Multiplyed by c, and Divided by a, you will have other Products, the Summ of whofe Exponents is fitl $m+r$; Now if all the Products belonging to $z^{m+r}-2$ were Multiplied by c and Divided by a, you would have fome Products that would be the fame as fome of them found before, therefore you muft except out of 'em thofe that I have call'd Products of the firf Claflis ; what I have find fhows why all the Products belonging to z^{m+r-3}, except thofe of the firt and fecond Claflis muft be Multiplied by d, and Divided by a: Laftly, you fee the Reafon why sto all thefe Products is added the Product of n^{m-1} by the Letter whofe Exponent is $r+1$; 'Tis becaufe the fum of the Exponent is fill $m+r$.

As for what relates to the Uncix; oblerve that when you Multiply $a z+$ $b z z+c z^{3}+d z^{4}$, \&c. by $a z+b z z+c z^{3}+d z^{4}$, \&cc. each Letter, $a, b, c, d, \& c c$. of the fecond Series, is Multiplied by each of the Letters a, b, c, d, \&cc. of the furt Series.: Thus the Letter a of the fecund Series is Multiplied by the Letter b of the firf Series, and the Letter b of the fecond Series is Multiplied by the Letter a of the firt: ; therefore you may have the two Planes, $a b, a b$, or $2 a b$; for the fame Reafon you have $2 a c, 2 a d ;$ \&c. Therefore you muit prefix to each Plane of thofe that compofe the Square of the Infinite Series $a z+b z z+c z^{3}$, \&c. the Number which expreffes how many ways the Letters of each. Plane may be changed; Likewife if you Multiply the Product of the two preceeding Series by $a z+b z z+c z 3$, sec. each Letter a, b, c, d, of the third Series is Multiplied by each of the Planes form'd by the Product of the firf and fecond Series; Thus the Letter a is Multiplied by the Planes $b c$ and $c b$; the Letter b is Multiplied by $a c$ and $c a$; the Letter c is Multiplied by $a b$ and $b a$; therefore you have the fix Solids, a.b.c, $a c b, k a c, b c a, c a b_{2} c b a$, or: $\mathfrak{f x} a b c$; Therefore you muft prefix to each Solid whereof the Cube of the Infinite Series is compos'd, the Number which expreffes how many ways the Letters of each Solid may be changed. And generally, you muft prefix to any Produel, whereof ariy Power of the Infinite Series $a z_{z}+k z z_{z}+c \tilde{z}^{3} \& c$. is compos' d , the Numben which expreffes how many ways the Letters of each Product may be changed. Now

(.95)

Now to find how many ways the Letters of any Product, for inftance, $a^{m}-{ }^{n} b^{b} \in P d^{r}$ may be changed; this is the Rule which is conmonly given: write as many Terms of the Series $1 \times 2 \times 3 \times 4 \times 5$, \&c. as there are in the Sum of the Indices, viz. $m-n+b+p+r$; let this Series Units be the Numerator of a Fraction, whofe Denoninator fhall be the Product of the Series, $1 \times 2 \times 3 \times 4 \times 5$, \& $1 \times 2 \times 3 \times 4 \times 5$, soc $1 \times 2 \times 3 \times 4 \times 5 \times 6$, \& c. $1 \times 2 \times 3 \times 4 \times 5$, \&cc. whereof the firft is to contain as many Terms as there are Units in the firf Index $m-n$; the fecond as many as there are Units in the fecond Index b; the third as many as there afe Units in the third Index p; the fourth as many as there are Units in the fourth Index r. But the Numerator and Denominator of this Fraction have a common Divifor, viz the Series $1 \times 2 \times 3 \times 4 \times 5$, \&c. continued to fo many Terms as there are Units in the firf Index $m-n$; therefore let beth this Numerator and Denominator be Divided by this common Divifor, then this new Numerator will begin with $m-n+1$, whereas the other began with I, and will contain fo many Terms as there are Units in $b+p+r$, that is, fo many as there are Units in the fum of all the Indices excepting the firft; as for the New Denominator, it will be the Product of three Series only; that is, of fo many as there are Indices excepting the firft. But if it happens withall, that n be equal to $b+p+r$, as it always happens in our Theorem; then the Numerator beginning by $m-n+1$, and being continued to fo many Terms as there are Units in $b+p+r$ or n, the laft Term will be m neceffarily, fo if you invert the Series, and make that the firt Term which was the laft, the Numerator will be $m \times \overline{m-I}$ $x \overline{m-2} \times \overline{m-3}, \& c \cdot$ continued to fo many Terms as there are Units in the Sum of the lidices of each Product excepting the firt Index. And whatever is here faid of Powers, whofe Index is an Integer, may be adapted to Roots or Powers whofe Index is a Fraction.
XXII. Theorem.] If $a z+b z_{i}+c z^{3}+d z^{4}+c z^{5}+f z^{6}, z^{6} c=g y_{\text {The Extration }}$

$$
\begin{aligned}
& 30 \mathrm{AAB}-d \mathrm{~A}+y^{4}+\frac{1-26 \mathrm{BC}-26 \mathrm{AD}-3 c \mathrm{ABB}-3 c \mathrm{AAC}}{a} \\
& -4 d^{3} \mathrm{~B}-e \mathrm{~A} \\
& \hline
\end{aligned}
$$

$-6 c \mathrm{ABC}-3 c \mathrm{AAD}-6 d \mathrm{AABB}-4 d \mathrm{~A}^{3} \mathrm{C}-5 c \mathrm{~A} 4 \mathrm{~B}-f \mathrm{~A}^{6} y^{6}$, \& c
For the underftanding of this Series, and in order to continue it as far as we pleafe; it is to be obferved, 1. That ev'ry Capital Letter is equal to the Coefficient of each preceding Term; thus the Letter B is equal to the Coeffi-

cient $\frac{b-b A A}{a}$. 2. That the Denominator of each Coefficient is always n

 3. That the firlt Member of each Numerator, is always a Coefficient of the Series $g y+b y y+i y^{3}, \& c$. viz. the furt Numerator begins with the firf Coefficient g, the Second Numerator, with the Second Coefficient h, and 50 on. 4. That in ev'ry Member after the firf, the Sum of the Exponents of the Capital Letters; is always equal to the Index of the Power to which this Member belongs: Thus confidering the Coefficient $k-6 \mathrm{BB}-26 \mathrm{AC}-3 c \mathrm{~A} \cdot \mathrm{AB}-d \mathrm{~A}^{4}$, which belongs to the Power y^{4}, awe thall fee that in every Member $b \mathrm{~EB}, 26 \mathrm{AC}, 3 \subset \mathrm{AAB}, d \mathrm{~A} 4$, the the Sum of the Exponents of the Capital Letters is 4, (where I muft take notice, that by the Exponent of a Letter; I mean the Number which expreffes what place it has in the Alphabet; thus 4 is the Exponent of the Letter D) hence I derive this Rule for finding the Capital Letters of all the Members that belong to any Power; Combine the Capital Letters as often as you can make the Sum of their Exponents equal to the Index of the Power to which they belong. 5. That the Exponents of the fmall Letters, which are written before the Capirals, exprefs how many Capitals there is in each Member. 6. That the Numerical Figures or Unicx that occur in thefe Members, exprefs the Number of Permutations which the Capital Letters of ev'ry Member are capable of.

For the Demonftration of this; fuppofe $z=\mathrm{A} y+\mathrm{By} y+\mathrm{C} y 3+\mathrm{D} y^{4}$, Scc. Subftitute this Series in the room of to and the Powers of this Series, in the room of the Powers of z, there will arife a new Series; then take the Co-efficients which belong to the feveral Powers of y in this new Series, and make them equal to the correfponding Co-efficients of the Series $g y+b y y$ $+i y 3$, \&c. and the Co-efficients $A, B, C, D, \& c$. will be found fuch as I have determined them.

But if any one defires to be fatisfyed, that the Law by which the Coefficients are informd, will always hold, l'll defire 'em to have recourfe to the
5. XXI. Theorem I have given for Raifing an Infinite Serics to any Poner, or extracting any Root of the fame; for if they make ufe of it, for taking fuccellively the Powers of $A y+B y y+C y 3$, \&ic. they will fee that it muft of neceffity be fo. I might have made the Theoren I give here, much more general than it is; for I might have fuppos'd, $a_{z}^{m}+b z^{m+1}+c z^{m+2} \& \tau c .=g y^{m}$ $+b y^{m+1}+i y^{m+2}$ \&cc. then all the Powers of the Series $\mathrm{A} y+\mathrm{B} y y$ + C y 3 , \&zc. defigned by the univerfal Indices, muft have been taken fucceffively; but thofe who will pleafe to try this, may cafily do it, by means of the Thicorem for raifing an Infinite Series to any Power, Zxc.
This Ticorem may be applyed to what is called the Reverfion of Series, fuch as finding the Number from its Logarithm given; the Sine from the Arch; the Ordinate of an Ellipfe from anArea given to be cut from any \{point in the Axis: But to make a particular Application of it, Illl fuppofe we have

(97)

this Problem to folve; vize The Chord of an Arc being given, to find the Cloord of an other Are, that fhall be to the fingtas in to. I. L.et y be the Chord given, z the Chord required; now the Arc belonging to the Chord y is, $y+\frac{y^{3}}{6 d d}+-\frac{3 y^{5}}{40 d^{4}}+\frac{5 y^{7}}{112 d^{6}} \& c$. And the Arc belonging to the Chord z^{i} is $z^{7}+\frac{z^{3}}{6 d d}+\frac{3 z^{5}}{40 d^{4}}+\frac{5 z^{7}}{112 d^{6}}$ \&cc. The firt of thefe Arcs is to the fecond as I to n; therefore multiplying the Extreams and Means together, we Thall have this Equation.
$\tilde{z}+\frac{\tilde{z}^{3}}{6 d d}+\frac{3 \tilde{z}^{5}}{40 d^{4}}+\frac{5 z^{7}}{112 d^{6}} \& x .=n y+\frac{x^{3} y^{3}}{6 d d}+\frac{3 n y^{5}}{40 d^{4}} \div$ $\frac{5^{n} y^{7}}{112 d^{6}}$ \&x.

Compare thefe two Series with the two Series of the Theorem, and you will find $a=1, b=0, c=\frac{1}{6 d d}, d=0, c=\frac{3}{40 d 4}, f=0$, sc. $g=n, b=0, \quad i=\frac{n}{6 d d}, k=0_{3} b=\frac{3 n}{40 d 4}, \quad m=0, \quad$ \&c. hence z will be $=x y+\frac{n-n^{3}}{6 d d} y^{3}$, \&c. or $y+\frac{1-n n}{2 \times 3 d d}$ y y A, \&rc. Suppofing Atto denote the whole preceding Term, which will be the fame Se ries as Mr. Nemton has firt found.

By the fame Method, this general Problem may be folved; The Abfcije correfponding to a certain Area in any Curve being given, to find the $A b \delta c i f c$, whofe correfporiding Area flall be to the firft in a given Ratio.

The Logarithmic Series might alfo be found without borrowing any other Idca, than that Logarithms are the Indices of Powers: Let the Number, whofe Logarithnm we enquire, be $1+z$, fuppofe its Log. to be a $z+b z z+$ $c z 3$, \&c. Let there be another Number $\mathfrak{i}+y$; therefore its Logarithm will be $a y+b y y+c y 3$, \&cc. Now if $x+z=\left.\overline{1+y}\right|^{n}$, it follows that $a z+b z z+c z^{3}, \& c .: a y+b y y+c y^{3}, \& c .:: n: 1$. that is, $a z+b z z+c z^{3}$, \& $k c$. $=n a y+m b y y+n c y^{3}$, \& c. therefore we may find a Value of z expreft by the Powers of y; again, fince $I+z$ $=\overline{1+y_{i}}$, therefore $z=\overline{I+y} i^{n}-1$, that is $z=n y+{ }_{1}^{n} x \frac{n-1}{2} y y$ $+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3},{ }^{3}, \& c$. Therefore z is doubly expreft by the Powers of y. Compare thefe two Values together, and the Coefficients $a ; b, c$, \&rc. will be determin'd, except the firlt a which may be taken at Pleafure, and gives accordingly, all the different Species of Logarithms.

XXILI. De

(98)

nofrine of Ex= XXIII. De Differentijs Infinitefimarum-infiniteflimis explicandis, non eft ut hauffions; by Dr. fis porro folicitus. Nam, ut tu mihi facilis concedis, quod nihili quodvis mul-
W all is, W. 28 lis. n. 255 tiplum fit adhuc nihil ; eadem ego facilitate tibi permitto, ut Differentias Infiniteflimas in Infiniteflimas ductas, tu merito negligas, poteftque id tuto fieri, modo caute; Quippe, in quovis genere Quantitatum, qux differunt dato misnus, reputanda funt Equalia. Quo nititur Ex/anffiomum Doctrina tota, Veteribus pariter \& Recentioribus neceffaria.

The Approxima_ tion of the $A n$. it is in vain to hope for a juft Quadratick Root thereof, explicable by rational rients in the Ex- numbers, Integers or Fracted. And therefore in fuch cafes, we munt con-
trafting of trafing of
Roots, ,mprov'd; tent our felves with Approximations (fomewhat near the truth) without preby Dr. Wallis. tending to Accuracy.
B. 215 . P. 2 .

And fo, for the Cubick Ruot, of what is not a perfect Cube. And the like for Superior Powers.

Now the Ancients (being aware of this) had their Methods of Approximation, which tho' farce apply'd by them beyond the Quradratick, or perhaps the Cubick Root, yet are equally practicable (by due adjuftments) to the Superiour Powers alfo.

I fhall begin with the Square Root : For which rhe Ancient Method is to this purpofe.

From the propofed Non-quadrate (fuppofe N) fubftract (in the ufual manner), the greateft Square in Integers therein contained (fuppofe Aq.) The remainder (fuppofe $\mathrm{B}=2 \mathrm{AE}+\mathrm{Eq}$) is to the Numerator of a Fraction, for defigning the near value of E (the remaining part of the Root fought ${ }^{\text {? }}$ $A+E=\sqrt{ } N$, whofe Denominator or Divilor is to be $2 A$ (the double Root of the fubftracted Square), or $2 \Lambda+1$ (that double Root increafed by I) the true Value falling between thefe two; fometime the one, fometime the other, being neareft to the true value. But (for avoiding of Negative. numbers) the latter is commonly directed.

This Method Mounfieur De L'agny affirms to be more than 200 Years old : And it is fo; for I find it in Lucas Pacciolus: (otherwife called Lucas deBurgo or de Burgo Sincti Sapuichrit Printed at Venice in the Year 1494, (if not even fooner than fo, for I find there have been feveral Editions of it.) And how much older than fo, I eannot tell: For he doth not deliver it as a New Invention of his own, but as a received Practice, and derived from the Moors or Anabs, from whom they had their Alyorijm, or Practice of Arithmetick by the 10 Numeral Figures now in ufe.

And it-is continued down hitherto in books of Practical Arithmetick in all lariguages, which teach the Extration of the Square Root, and (therein) this Method of Approximation, in cafe of a Non-quadrate.

The true ground of the Rule is this: A q being (by Conitruction) the greatelt Integer Square contained in N , 'tis evident that E muft be lefs than \mathbf{I}; otherwife not $A q$ but the Square of $A+r$, or fome greater than fo , would. be the greateft IntegerSquare contain'd in N.) Now if the remainder $\mathrm{B}=2 \mathrm{AE}$ $+\mathrm{E}_{q}$ be divided by 2 A , the refilt will be too great for E , (the Divifor being too little; for it fhould be $2 A+E$, to make the Quotient E.) But if
(to rectify this) we diminifh the Quotient, by increafing the Divifor, adding I to it, it then becomes too little; becaufe the Divifor is now too big. For (E being lefs than I) $2 A+1$ is more than $2 A+E$; and therefore too big.

As for inftance ; If the Non-quadrate propofed be $\mathrm{N}=5$, the greatelt Inreger Square therein contained is $\mathrm{A}_{q}=4$. (the Square of $\mathrm{A}=2:$) which being fubftracted, leaves $N \rightarrow A q=5-4=1=B=2 A E+E g$. Which divided by $2 A=4$ gives $\frac{1}{4}$: But divided by $2 A+1=4+1$ $=5$, gives $\frac{1}{5}$. That too great, and this too little, for E. And therefore the true Root $(A+E=\sqrt{ } N)$ is lefs than $2 \frac{1}{4}=2.25$, but greater that $2 \frac{1}{5}=2.2$; And this was Anciently thought an Approach near enough.

If this Approach be not now thought near enough, the fame Procefs may be again repeated; and that as oft as is thought neceffary.

Take now for $A, 2 \frac{1}{5}=2: 2$, whofe Square is $4.84=A q$, now confs dered as an Integer in the fecond place of Decimal'parts.) This fubitracted from 5.00, (or, which is the fame, 0.84 , the excefs of this Square above the former, from I , which was then the remainder) leaves a new remainder $B=0.16:$ which divided by $2 \cdot A=4.4$, gives $\frac{0.16}{4 \cdot 40}=\frac{2}{55}=0.03636+$. too much. But divided by $2 A+I=4 \cdot 5$, it gives $\frac{0.16}{4.50}=\frac{8}{225}=$ $0.03555+$, too little. The true value (between thefe two) being 2.23^{6} proxime, whofe Square is 4.9 .99696.

If this be not thought near enough, Subltiact the Squarefrom 5000000 : the remainder $B=0.000304$, divided by $2 A=4.472$, or by $2 A+1$ $=4.473$, gives (either way $0.000068-$; which added to $A=2.236$, makes 2.236068 -, comewhat to big; but 2. 2360677 would be much more too little.

Which gives us the Square Root of 5 , adjufted to the fixth place of Decimal parts, at three fteps. And by the fame Method, if it be thought needfull, we may proceed further.

For the Cubick Root the Rule is this.
From the Non Cubick propofed, (fuppofe N,) fubftract the greateft Cube in Integers therein contained, (fuppofe Ac:) the remainder (fuppofe B = $3 A_{q} E+3 A E_{q}+E c$, is to be the Numerator of a Fraction for defigning the value of E, (the remaining part of the Root fought $A+E=\sqrt{ } c \mathbb{N}$.) To this Numerator, if (for the Denominator or Divifor) we fubjoyn 3 A q, the refult will certainly be too great for E, becaufe the Divifor is too little: (For it hould be $3 \mathrm{~A}_{q}+3 \mathrm{AE}+\mathrm{Eq}$, to give the true Value of E. .) If for the Divifor we take $3 \mathrm{Aq}+3 \mathrm{~A}+1$, it will certainly be too little, becaufe the Divifor is too great. (For E by conftruction is lefs than I.) It muft therefore (between thefe limits) be more than this latter. And therefore this latter refult being added to A, will give a Root whofe Cube may be fubftracted from the Non-Cubick propos'd, in order to another ftep.

Butif, for the Divifor, we take $3 A_{q}+3 A$, (or even lefs than fo) the refult may be too great; or (in cafe B be finall) it may be too little, (and oft is fo.).

Which comes to pafs from hence; becaufe E (by Conftruction) is lefs than i ; and therefore 3 AE lefs than 3 A ; and perhaps fo much as that the Addition of $E q$ will not redrefs it. And when it fo happens $3 A_{q}+3 A$ is a better Divifor than $3 \mathrm{Aq}+3 \mathrm{~A}+\mathrm{I}$, (or even fomewhat lefs than either.) But becaufe it doth not always fo happen (though for the moft part it doth) the Rule doth rather direct the other; as which doth certainly give a Root lefs than the true value, whofe Cube may always be fubftracted from the Non-Cubick propofed. The Defign being to have fuch a Cube as (being fubftracted) may leave another B , to be ordered in like manner for a new Approach.

But, for the moft part, $3 \mathrm{~A}_{\mathrm{q}}$ may be fafely taken for the Divifor. For tho the Refult will then be fomewhat too big, yet the excefs may be fo finall, as to be neglected; or, at leaft, we may thence eafily judge what Number (fomewhat lefs than it) may be fafely taken. And if we chance to take it fomewhat too big, the inconvenience will be but this, that B for the next itep will be a Negative. Of which Cale we fhall fpeak anon:

Thus for Inftance; if the Non-Cube propofed be $9=N$. The greateft Integer Cube therein contained is. $8=A c$, (whofe Cubick Root is $A=2$.) Which Cube fubitracted, leaves $9-8=i=B=3 \mathrm{AqE}+3 \mathrm{AEq}+\mathrm{E} c_{0}$ This divided by $3 \mathrm{~A}_{q}=12$, gives $\frac{1}{12}=0.08333+$, too big for E. Bur the fame divided by $3 \mathrm{~A}_{1}+3 \mathrm{~A}+1=12+6+1=19$, gives $\frac{1}{10}=$ $0.05263+$, too little. Or if but by $3 A_{1}+3 A=12+6=18$, it gives $\frac{1}{18}=\frac{5}{60}=0.05555+$, yet too little. For the Cube of $A+0.06$, $=2.06$, is but 8.742 -, which is fhort of 9. And fo much fhort of it, that we may fafely take 2.07 as not too big: Or perhaps 2.08 , which upon tryal will be found not too big; for the Cube of 2.08 , is but 8.9989 iz .

If this firft ftep be not near enough, this Cube fubftracted from 9.000000 , leaves a new $B=0.001088$, which divided by $3 A_{q}=12.9796$, gives 0.000084 . - ; which will be fomewhat too big but not much. (For E is now fo. fmall, as that 3 A E may be fafely neglected, and $\mathrm{E} q$ much more.) So that if to 2.08 , we add 0.000084 , , the Refult 2.080084 will be too big; but 2. 080083 will be more too little. (as will appear if we take the Cube of each.) So that either of them, at the fecond ftep, gives the true Root within an Unite in the fixth place of decimal parts. But when I fay, taking the Cube of each, (which I do that the thing may be more clearly apprehended) it is not neceffary that we trouble our felves with the whole Cube. For, Ac being already fubftracted, for finding $\mathrm{B}=3 \mathrm{~A} q \mathrm{E}+3 \mathrm{AE} q+\mathrm{E} c$, we have no more to try, but whither $3 \mathrm{~A} q \mathrm{E}+3 \mathrm{AE} q+\mathrm{E} c$, be greater or lefs than B, according as we take 0.000084 , or 0.000083 , for E .

Which may conveniently be done in this manner: Take' $3 A+E$, and multiply this by E , (or E by it) fo have we $3 \mathrm{AE}+\mathrm{Eq}$. To this add $3 \mathrm{~A} q$, and multiply the whole by E_{5} (fo have we $3 \mathrm{~A} q \mathrm{E}+3 \mathrm{AE}_{q}+\mathrm{E} c_{2}$) to fee whether this be greater or lefs than B.

That is, in the prelent cafe, if we take $E=0.000084$, and add to this $3 \mathrm{~A}=6.24$, than is $6.240084=3 \mathrm{~A}+\mathrm{E}$. This multiplyed by $E=0.000084$, is $3 \mathrm{AE}+\mathrm{E} q=0.000524+$ To which if we add $3 \mathrm{~A}_{q}=12.979^{2}$, it is $3 \mathrm{~A}_{q}+3 \mathrm{AE}+\mathrm{E}_{q}=12.9797^{2} 4^{\circ}$ Which

(101)

Which Multiplied again by $\mathrm{E}=0.000084$, is $0.0010902+=3 \mathrm{~A} q \mathrm{E}$ $+3 \mathrm{AE}_{q}+\mathrm{E}_{c}$, which is more than $\mathrm{B}=0.001088$.

But if we take $\mathrm{E}=0.00008$ 3, and proceed as before, we fhall have $3 \mathrm{~A}_{q} \mathrm{E}+3 \mathrm{AE}_{q}+\mathrm{E} c=0.001077+$, which is lefs than $\mathrm{B}=0.001088$. And therefore (if we Subftract that from this) the Remainder, 0.00001 I, will be another B for the next ftep, if we pleafe to proceed further.

Hitherto I have purfued the Method moft affected by the Ancients, in feeking a Square or Cube (and the like of other Powers) always lefs than the juft value, that it might be Subfracted from the Number propofed, leaving B a pofitive remainder; thereby avoiding Negative Numbers.

But fince the Arithmetick of Negatives is now fo well underftood, it may in this (and orher Operations of like Nature) be advifeable, to take the neareft, whether it be greater or lefs than the juft value.

According to this Notion, for the Square Root of 5, I would fay it is $(2+)$ fomewhat more than 2 ; and enquire how much more? But for the Square Root of 8 , I would fay, it is (3-) fomewhat lefs than 3 ; and enquire how much lefs? Taking (in both Cafes) that which is neareit to the jult value.

Thus in the Cubick Root before us; I would take for E (in the laft Enquiry) 0.000084 - (where for the next ftep we have $B=-0.000002$, rather than $0.000083+$ (where for the next ftep we fhould have $B=+0.00001$ I.) In the latter Cafe we are to divide $B=+0.0000 \mathrm{II}$, by $3 A_{q}=12.980236$-, to find (by the Quotient) how much is to be added to 0.000083 . In the other Cafe we are to divide $\mathrm{B}=+0.00000$ 2, by $3 A_{q}=12.980248$, to find (by the Quotient) what is to be abated of 0.000084 , fo have we $\frac{0.00001 \text { I }}{\mathrm{I} 2.98023^{6}}=0.00000085+$ to be added to 6.24.0083: Or $\frac{0.000002}{12.98024 .8}=0.00000015+$ to be abated of 6.24 .0084 . (Or it may fuffice, in cither to divide by $12.93+$, or even by $13-$, without being incumbred with a long Divifor) either of which gives us, for the Root fought, 2.08008385 proxime. True (at the third fep) to the eighth place of Decimal Parts. And if this be not near enough, the Cube of this, compared with the Number propofed, will give us another B for the next ftep. And fo onwards as far as we pleafe.

Now, what is faid of the Cube, is eafily applicable to the higher Powers.
I fhall omit that of the Biquadrate ; becaufe here perhaps it may be thought moft advifable, to Extract the Square Root of the Number propofed ; and then the Square Root of that Root. But if we would do it at once, we are from N (the Number propos'd, being not a Biquadrate) to Subftract A qq (the greateft Biquadrate contained in it) to find the Remainder $\mathrm{B}=4 \mathrm{~A} c \mathrm{E}$ $+6 \mathrm{~A}_{q} \mathrm{E} q+4 \mathrm{AEc}+\mathrm{E}_{q} q$. Which Remainder, if we divide by: 4 Ac , the Quotient will certainly be too big for E , (though perhaps not much:) If by $4 A_{6}+6 A_{q}+4 A+I$, it will certainly be too

(102)

litule (for seafons before mentioned.) And we are to ufe our difcretion in taking fome intermediate number. And if we chance not to hit on the nearelt, the Inconvenience will be but this, that our Leap will not be fo great as otherwife it might be. Which will be rectify'd by another B at the next ftep.

For the Surfolid (of five Dimenfions) we are, from N (the Number propored, being not a perfect Surfolid) to Subftract A $q \mathrm{c}$ (the greateft Surfolid therein contain'd) to find the Remainder $\mathrm{B}=5 \mathrm{Aqq} \mathrm{E}+10 \mathrm{Ac}_{q} \mathrm{E}_{q}+10 \mathrm{~A}_{q} \mathrm{E}=$ $+5 \mathrm{AEq} q+\mathrm{Eqc}$. Which (as before) if we divide by 5 Aqq , the Refult will be fomewhat too big, (becaufe the Divifor is too little:) If by $5 \mathrm{~A}_{q} q+10 \mathrm{Ac}+10 \mathrm{~A}_{q}+5 \mathrm{~A}+\mathrm{I}$, the Refult will certainly be lelis than the true E . The juft value of E being fomewhat between thefe two, where we are to ufe our difcretion, what Internediate Number to take. Which according as it proves too great or too little, is to be rectify'd at the next ftep.

But for the moft part it will be fafe enough (and leart trouble) to divide by $5 \mathrm{~A} q$ q, which gives a Quotient fomewhat too big; which we may either rectify at difcretion, by taking a Number fomewhat lefs, or proceed to another B, (Affirmative or Negative, as the Cafe fhall require) and fo onvard to what exactnefs we pleafe. Which is for fubftance, in a manner co-incident with Mr. Raph:Jon's Method, even for Affected Equations.

Thus, in the prefent Cafe; If the Number propoted be $\mathrm{N}=33$, then is $\mathrm{A}_{q}=32$, and $\mathrm{B}=33-32=1=5 \mathrm{AqqE}+10 \mathrm{AcEq}+$ Io $\mathrm{A} q \mathrm{E} c+5 \mathrm{AE} q q+\mathrm{E}_{q \mathrm{c}}$. Which if we divide by $5 \mathrm{~A} q q=5$ $\times 16=80$, the Refult $\frac{1}{80}=0.0125$, is fomewhat too big for E, but not much. And if we examine it, by taking the Surfolid of 2 . 0125 , or of $2 \frac{-1}{8} \frac{1}{0}$, we fhall find a Negative B (for the next ftep), but not very confiderable. Or if we think it confiderable, we may proceed further to another Itep, or more than fo.

The like Method may be apply'd (and with more Advantage) in the higher Powers, according as the Compofition of each Power requires.

And the fame Method may be of ufe (with good Advantage) in long numbers (if duly applied) even before we come to the place of Units; for the fame will equally hold there alfo. Which the Reader may eafily apprehend, without a long Difcourfe upon ir.

The Proportion of Infinite 21،arititirs; by Mr.E. Halley. ת. 1955° £. 556.
XXV. The very Idea of Magnitudes Infinitely great,or fuch as exceed any affignableQuantity, does include a Negation of Linits: yet if we nearly examine this Notion, we fhall find that fuch Magnitudes are not equal amongtt themfelves, but that there are really befides Infinite Length, and Infinite Area, three feveral forts of Infinite Solidity: all of which are Quantitates Sui generis; and that thofe of each Species are in given Proportions.

Infinite Length, or a Line Infinitely Long, is to be confidered either as beginning at a Point, and to Infinitely extended one way, or elfe both ways from the fame Point; in which Cafe the one, which is a beginning Infinity, is the one half of the whole, which is the Summ of the beginning and ceafing Infinity; or as I may fay, of Infinity à parte ante and à parte poft, which is

Analogous

(103)

analogous to Eternity in Time or Duration, in which there is always as much to follow as is paft, from any Point or Moment of time: Nor doth the Addition or Subduction of Finite Length or Space of Time, alter the Cafe cither in Infinity or Eternity, fince both the one or the other cannot be any part of the whole.

As to Infinite Surface or Area, any Right Line, Infinitely extended both ways on an Infinite Plane, does divide that Infinite Plane into cqual parts, the one to the Right, and the other to the Left of the faid Jitie; but if from any Point in fuch a Plane, two Right Lines be Infinitely extuded, fo as to make an Angle, the Infinite Area, Intercepted between thofe Infinite Right Lines, is to the whole Infinite Plane, as the Arch of a Circle on the Point of Concourfe of thofe Lines as a Center, intercepted between the faid Lines, is to the Circumference of the Circle; or as the Degrees of the Angle to thic 360 Degree of a Circle. For Example, two right Lines meeting at a right Angle do include, on an lnfinite Plane, a quarter part of the whole Infinite Area of fuch a Plane.

But if fo be two Parallel Infinite Lines be fuppofed drawn on fuch an Infinite Plane, the Area intercepted between them will be likewife Infinite; but at the fame time will be Infinitely lefs than that Space, which is intercepted between two Infinite Lines that are inclined, tho' with never fo fmallan Angle, for that in the one Cafe, the given finite diftance of the Parallel Lines diminifhes the Infinity in one Degree of Dimenfion; whereas in a Sector, there is Infinity in both Dimenfions: and confequently the Quantities are the one Infinitely greater than the other, and there is no Proportion between them.

From the fame Confideration arife the three leveral Species of Infinite Space or Solidity ; for a Parallelopipid, or a Cylinder Infinitely long, is greater than any Finite Magnitude how great foever; and all fuch Solids fuppos'd to be formed on given Bafes, are as thofe Bafes, in proportion to one another. But if two of thefe three Dimenfions are wanting, as in the Space intercepted between two Parallel Planes Infinitely extended, and at a Finite Diftance; or with Infinite Length and Breadth, with a Finite Thicknefs, all fuch Solids fhall be as the given Finite Diftances one to another ; but thefe Quantities, tho' Infiniely greater than the other, are yet Infinitely lefs than any of thofe wherein all the three Dimenfions are Infinite. Such are the Spaces intercepted between two inclined Planes Infinitely extended; the Space interrepted by the Surface of a Cone, or the fides of a Pyramid, likerwife Infinitely continued, \&rc. of all which notwithitanding, the Proportions one to another, and to the $\tau \dot{\partial} \pi \tilde{\alpha} \nu$ or vaft Abyfs of Infinite Space (wherein is the Locus of all things that are or can be; or to the Solid of Lifinite Length, Breadth and Thicknefs taken all manner of ways) are eafily affignable. For the Space between tivo Planes is to the whole, as the Angle of thofe Planes to the 360 Degrees of the Circlc. As for Cones and Pyramids, they are as the Spherical Surface intercepted by them, is to the Surface of the Sphere, and therefore Cones are as the verfed Sines of half their Angles, to the Diameter of the Circle: Thefe three forts of Infinite Quantity are Analogous to a Line, Surface,

(104)

and Solid, and after the fame manner cannot be compared, or have no Pr portion the one to the other.

Infinitely-Infi- XXVI. Infinitely-Infinite Fractions, or all the Powers of all the Fractions mite Frations; whofe Numerator is I , are all of them together equal to (I) an Unit.
by $D . \mathrm{R}$.Wood. by D.R.Wood
Ph. Col. n.
t. 45 .

A. Is a File or Row of abfolute Numbers, or rather of all the Fractions, whofe Numerator is I ; which Row is fuppofed to be continued in infinitum (downwards).

(105)

R. Is another File or Row of all the Roots (whofe Numerator is I) of all the Powers of fuch Fractions; fuppofed likewife to be continued in infunitum (downwards.)
P. Are all the refpective Powers of fuch Fractions, (viz. Squares, Cube, sic.) rfo many Ranks of Geometrical Proportionals; fuppofed to be continued in infinitum; both to the Right-hand, and alfo downwards.

Lemma.] Each of the faid Ranks of Powers, togetber with, their refpective Roots, is equal to each of the Several Numbers under A refpectively.

Demonftration.] If from the Line ab you take (for inftance) $\frac{1}{4}$ part toward's Fid. 54 . a, fuppofe $a c$; and alfo from the other end of the fame Line $a b$, you take two fuch Parts (or $\frac{\Delta}{4}$ parts) towards b, fuppofe $b d$, (viz. a Number of Parts lefs by two than the whole Line $a b$, was firft fuppofed to be divided into) there will remain the Line $c d=a c=\frac{1}{4}$ of $a b$. Then again, if from $c d$ you take $\frac{1}{4}$ part thereof towards a, fuppofe $c e$, and from the other end $\frac{1}{4}$ parts of the fame $c d$, fuppofe $d f$, there will remain only $c f=c e=\frac{1}{4}$ of $c d$. And if you ftill go on without ceafing, to take on the fide towards a, $\frac{1}{4}$ part of what was taken laft before, and twice as much on the other fide towards b, there fhall be found between the two Lines laft taken always remaining $\frac{1}{4}$ part of the Line from which they were taken. From which $\frac{1}{4}$ part there may fill after the fame manner be fuppofed to be taken two other fuch Lines. But if this be fuppofed to be done Infinite times actually, then there will nothing more remain (between), and fo the continued Divifion on either fide will come exactly to the point g, fuppofing $a g$ to be $\frac{1}{3}$ of $a b$, and $b g=2 a g$. For, becaufe that which was taken away towards b, was always twice as much as that, which was taken away towards a, the total funm of all the Lines taken away towards b, (which all together do make up the Line $b g$) muft be twice as much as the Line $a g$, (which is the Total fumm of all the Lines taken away towards a) viz. $b \mathrm{~g}=2 a \mathrm{~g}$; and confequently $b g+a g$ (or the whole Line $a b$) is equal to $3 a g$: And therefore $a g=\frac{x}{3}$ of $a b$. Q.E. D.
The like Conftruction and Demonfration (mutatis mutandis) may be made ure of in taking away any other part of a ny quantity, and the like part again of the firt mentioned part, and fo in infinitum. The total fum of all theparts fo taken, or fuppofed to be taken fhall be equal to a certain quantity, or part, or Fraction, whofe Denominator fhall be lefs by an Unite than the Denominator of the firft mentioned part; as $\frac{1}{6}=\frac{1}{7}+\frac{1}{49}+\frac{1}{343}$ \&c. $\frac{1}{9}=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}$ \&c. And fo, that which the incomparable Archimedes (in his Squaring the Parabola) has only Demonftrated in one particular Cafe, viz. $\frac{1}{3}=\frac{1}{4}+\frac{1}{16}$ $+\frac{1}{64}+\frac{1}{256}+\frac{1}{1024} 8 \mathrm{cc}$. and that too, not without an huge Apparatus of Preliminary Propofitions, amounting to an whole Book, is here Univerfally DeVol. I.

(106)

monftrated in all Cafes (which are infinite) and by a very fimple and eafie Method (in Des Cartes's way) and on one fingle page.

Now if each of the faid Ranks of Powers, together with their RefpectiveRoots, be equal to the feveral Numbers of Fractions underiA; (as is Demonftrated by the Lemma) then is A the fum of them all, or equal to them all: that is to fay, $R+P=A=R+I:$ For R is the fame with A wanting $\frac{I}{I}$ or I, (as appears upon view) or but ($\frac{1}{\circ 0}$) one infinite part bigger. Wherefore $\mathrm{F}=\mathrm{I}$ Q. E. D. viz. Infinities Infiniti numeri Fracti aquantur Unitati, Sc. minima $\mathbb{R}^{\alpha-}$ dici Integra.

Corollaria.] Hinc patet,
I ${ }^{\circ}$. Dari progreffum in infinitum.
2.. Et non modo in unum Infinitum, fed ctiam in plurima; feu potius infinitar, Infinita, vel infinities Infinita.
3°. Et hoc fieri poffe, id.eft, bunc Calculum infitui, ab ingenio valdè finito sut exiguo.
4. Et totum bunc Progreflum, vel progrefus buiufmodi infinitos, poffe Numerari, five aggregari in unam fummam.
5° : Et in Jummam, non modo non infinitam, - Sed adeo tantillams, ut fit minor omni numero. Patet ultexius

Infinitorum alia effe equalia, alia incqualia.
Et unum Infinitum cquari duobus, tribus, pluribus, vel Finitis vol Infinitis.
For 1. The Infinite Powers of the firt Rank are $=\frac{1}{2}=\frac{\mathrm{I}}{1 \times 2}$, and alfo equal to all the Infinitely-Infinite Powers of all the other Ranks.

The Infinite Powers of the fecond Rank are $=\frac{1}{6}=\frac{1}{2 \times 3}$ viz. equal to the
Thofe of the third Rank are $=\frac{1}{12}=\frac{1}{3 \times 4}$
Thofe of the fourth Rank are $=\frac{1}{20}=\frac{1}{4 \times-5}\left\{\begin{array}{l}\text { the SquareNum- } \\ \text { bers.refpectively }\end{array}\right.$
Thofe of the fifth Rank are $\left.\left.=\frac{1}{30}=\frac{1}{5 \times 6} \left\lvert\, \begin{array}{rrr}4, & 6, & 9 \\ 9, & 12, & 16 \\ 16, & 20, & 25 \\ 25, & 30, & 36\end{array}\right.\right) . \begin{array}{rl}60\end{array}\right)$
\&c. on infinitum.

(107)

Thore of the three firt are $=\frac{3}{4}$
Thofe of the four firt are $=\frac{4}{5}$
Thofe of the five firlt are $=\frac{5}{6}$.
\&c. in infinitum.
3. All the Powers of all the Infinite Ranks, except the firt, are $=\frac{1}{2}$

$$
\begin{aligned}
& \text { all, except the two firft, are }=\frac{1}{3} \\
& \text { all, except the three firf, are }=\frac{I}{4} \\
& \text { all, except the four firft, are }=\frac{I}{5} \\
& \text { \&c. in infinitum. }
\end{aligned}
$$

Thefe later Corollaries may all appear by fimple Addition and Subduction; and fo may many more.
XXVII. I. That the Numeral Figures now in ufe, with the manner of The inntiquity of Computation by them (and the names of Algorifm, appropriated to that way the Numeral Fiof Computation) came to us from the Arabs (but fomewhat altered, as to the W Wes; by:Dr.J. Thape of the Figures in fucceeding Ages) and to thern from the Indian Wallis. no 154. nerally agreed. But it is not fo generally a rreed from the Indians, is ge- $p .399$. ufe of them, in our European parts, hath been.

Fo. Gerard Vofsus (Dc Scientiis Mathematicis) thinks they came not into ufe here, till about the Year of our Lord 1300; or at the fartheft, later than the Year 1250. And P. Mabillion (De Re Diplomatica) tells us that he hath not found them any where ufed fooner than the I4. Century. - But I think their ufe in thefe parts was as old at leaft as the times of Hermannus Contrinctus, who lived about the Year of our Lord io5@. (that is about the middle of the I ith Century :) If not fo frequently in ordinary Affairs; yet at leaft in Mathematical things, and efpecially in Aftronomical Tables.

But I do not remember, that I have any where feen any Monument of them more Antient than the Mantle-tree of the Parlour Chimney at the dwelling Houfe of Mr. WFill. Ricloards, the Rector of Helmdon in Nortbampton-hire.

The fides of the Chimmey; by which the Mantle-tree is fupported, are of Stone: but the Mantle-tree it felf is of Wood. It is all over as black as Ink, having by Age and Smoak contracted that Colour. It may yet continue many hundreds of years; for I did not difcern in it, any thing either of Worm, or Rottennefs, or any tendency to it. The length of it is 5 foot 9 Inches: Its breadth or depth at the ends, (A B) is $1 \frac{1}{2}$ inches, but at:
the middile, as C D, Comewhat le's. It is all carved from end to end: and the lower part of it is Abated, as in the mouldings of other Chimneys. On the Front of the upper part there is (beginning at the middle) on 3 Squares parted from each other by a deep furrcw or Channel, the Date (I fuppofe, when it was frft made) defcribed partly in Numeral Figures A ${ }^{\circ} \mathrm{Do}^{1} \mathrm{M}^{\circ}{ }^{133}$; on a fourth a Flower, and on a $5^{\text {th }}$ the two Letters W. R. with an Efcutcheon, reprefening il fuppofe) the name of him to whom it did then belong. Both the Letters and the Figures are of an Antique form, agreeing well enough with that Age. They are not engraved or cut in, but prominent on their leveral Squares (by way of bas-relief) the wood being abated round about them. The o over the A, is a round o, but that over the M is a Square \mathfrak{a}.

Hence it appears, that the ufe of fuch Figures here in England, even on ordinary occafions, is at leaft as ancient as the Year 1133. And I judge it to have been yet fomewhat Ancienter, becaufe the fhape of the Figures, though not come juit to the fhape which we now ufe, was even then confiderably varicd from the fhape of the Arabick Fiyures; which argues they had then been fur fome time in ufe; fuch change of fhape in Figures and Letters coming on gradually with time.

It need not moveany fruple at all, that part of the Number is expreffed by the Numesal Letter M (or the word Milleffimo, of which M° is but a Contraction) while the reft is expreffed in Numeral Figures. For the like doth oft occur inold Manufcripts; and fometimes even at this day. 1 nd it doth rather favour the fimplicity of that Age, (not very nice in fuch things, efpecially amongtt Mechanicks) than any defign of Impofture. Fig 56. Nine, are rather Fracted than Flected, prominent, large, and very fair ; but to

By Mr. Tho. Luffkin.11. 255 p. 2.87.n. 266 .p. 677.
2. Over againft the Market-place in Colchefter, ftands the Houfe of Mr. Furley, a Linnen Draper; fome of the backermoft part of which is an Ancient Roman building, but the Front is of leffer ftanding, and timbred. Upon the bottom Cell (which is almoft in the form of a Triangular Prifm) of one of the Windows of the Front, between two carved Lions, ftands an Efcutcheon, containing only thefe Figures 1090 . The Periphery of the Cyphers, and make them the more perfpicuous, they are guilded by the Proprietor. The Window looks directly North, the Date being thereby preferved from the fcorching heat of the Sun; and by its Inclination (falling from the Vertex or Peipendicular by an Angle of about 60 degrees) from Rain, Snow \&c. If it be objected, that the fecund and fourth Figures, may reprefent that among the Arabians which is with us a $5 ; \mathrm{I}$ anfwer, that the o is not ufed with all the Arabs for 5, but with fome for a Cypher, and fo it was ufed by the Moors in Spain, who furt brought thefe Figures into our parts; nor is the Square \mathfrak{a} an Arabick Letter, but an Englifh Letter of that Age. And the form of thefe Figures foon degenerated from that of the A irabs, into fuch as we now ufe, if not at the firft reception from the Arabs, [or Moors] certainly long before I595, as this Conftruction would make it.
XXVIII. The Old definition of Logarithms, that they are Numerorum proby Mr. Edm. Halley, n. 216. p. 58.
they may much more properly be faid to be Numeri Rationim Exponentes; wherein Ratio is confider'd as a Quantitas fui generis, beginning from the Ratio of equality, or I to $\mathrm{I}=0$; being affirmative when the Ratio is increafing, as of Unity to ${ }^{2}$ g greater Number, but Negative when decreafing; and thefe Rationes we fuppofe to be meafured by the Number of Ratiunculx contained in each. Now thefe Ratiunculx are fo to be underfood as in a continued Scale of Proportionals, infinite in Number between the two terms of the Ratio, which infinite Number of mean Proportionals is to that infinite Number of the like and equal Ratiuncula between any other two terms, as the Logarithm of the one Ratio is to the Logarithm of the other. Thus if there be fuppofed between I and 10 an infinite Scale of mean Proportionals, whofe Number is 100000 , \&c. in infinitum ; between 1 and 2 there fhall be 30102 , \&c. of fuch Proportionals, and between I and 3 there will be 47712 , \&rc. of them, which Numbers therefore are the Logarithms of the Rationes, of 1 to 10 , I to 2 , and I to 3 ; and not fo properly to be called the Logarithms of 10,2 , and 3 .

This being laid down, it is obvious that if between Unity and any Number propofed, there be taken any infinity of mean Proportionals, the infinitely little Augment or Decremient of the firft of thofe Means from Unity, will be a Ratiuncula, that is, the Momentum or Fluxion of the Ratio of Unity to the faid Number: And feeing that in thefe Continual Proportionals all the Ratiunculxare equal; their Sum, or the whole Ratio will be as the faid Momentum is directly; that is, the Logarithm of each Ratio will be as the Fluxion thereof. Wherefore if the Root of any Infinite Power be extracted out of any Number, the Differentiola of the faid Root from Unity, fhall be as the Logarithm of that Number. So that Logarithms thus produced, may may be of as many forms as you pleafe, to affume Infinite Indices of the Power whofe Root you feek : as if the Index be fuppofed 100000 , \&c. infinitely, the Roots fhall be the Logarithms invented by the Lord Napier; but if the faid Index were 2302585 , \&c. Mr. Brigy's Logarithms would immediately be produced. And if you pleafe to fop at any Number of Figures, and not to continie them on, it will fuffice to affume an Index of a Figure or two more than your intended Logarithm is to have, as Mr. Briggs did, who to have his Logarithms true to I 4 places, by continual extraction of the Square Root, at laft came to have the Root of the 140737488355328 th. Power; but how operofe that extraction was, will be eafily judged by whofo fhall undertake to examine his Ca!culus.

Now, though the Notion of an infinite Power mayfeem very frange, and to thofe that know the difficulty of the Extraction of the Roots of High Powers, perhaps impracticable; yet by the help of that admirable Invention of Mr. Nemton, whereby he determines the Uncix or numbers prefixt to the members compofing Pow: ers, (on which chietly depends the Doftrine of Series) the Infinity of the Index contributes to render the Expieflion much more eafy: For if the Infinite Power to be refolved be put (after Mr. Nemoton's Method) $\overline{p+p q}$;

(110)

$\underline{p+p q^{\frac{1}{m}}}$ or $\overline{1+q} q^{\frac{1}{m}}$, inftead of $1+\frac{1}{m} q+\frac{1-m}{2 m m} q q$ t
$\frac{1-3 m+2 m m}{6 m^{3}} q^{3}+\frac{1-6 m+11 m m-6 m^{3}}{24 m^{4}} q^{4}$, scc. (which is the Root when m is finite,) becomes $I+\frac{I}{m} q-\frac{I}{2 m} q q+$ $\frac{1}{3 m^{2}} q^{3}+\frac{1}{4 m} q^{4}+\frac{1}{5 m^{2}} q \cdot 5$, \&c. $m m$ being infinitè infinite, and confequently whatever is divided thereby vanifhing. Hence it follows that $\frac{1}{m}$ multiplied into $q-\frac{2}{2} q q+\frac{1}{3} q^{3}-\frac{1}{4} q^{4}+\frac{\pi}{5} q{ }^{5}$, \&c. is the Augment of the firft of our mean Proportionals between Unity and $i+q$, and is therefore the Logarithm of the Ratio of I to $\mathrm{I}+q$; and whereas the Infinite Index m may be taken at pleafure, the feveral Scales of Logarithms to fuch Indices will be as $\frac{\mathrm{I}}{\mathrm{m}}$, or reciprocally as the Indices. And if the Index be taken 10000 , \&ic. as in the cafe of Napiers's Logarithms, they will be fimply $q-\frac{1}{2} q q+\frac{1}{3} q^{3}-\frac{1}{4} q^{4}+\frac{1}{5} q^{5}-\frac{1}{6} q^{6}, \&<c$.

Again, if the Logarithm of a decreafing Ratio be fought, the Infinite Root of $I-q$, or $\overline{1-q_{i}^{\prime m}}$ is $I-\frac{I}{m} q-\frac{I}{2 m} q^{2}-\frac{I}{3 m^{3}} q^{3}-\frac{I}{4 m} q^{4}-$ $\frac{1}{5 m} q^{5}-\frac{1}{6 m} q^{6}$ \&cc. whence the Decrement of the firt of our Infinite Number of Proportionals will be $\frac{x}{m}$ into $q+\frac{1}{2} q q^{-\frac{x}{3}} q^{j}+\frac{1}{4} q^{4}+\frac{9}{5} q^{5}+$ 6. q 6\&c. which therefore will be as the Logarithm of the Ratio of Unity to \mathbf{I} - q. But if m be put 10000 , \&c. then the laid Logarithm will be $q+\frac{x}{2} q^{q}+\frac{x}{3} q^{3}+\frac{x}{4} q^{4}+\frac{1}{5} q^{5}+\frac{2}{6} q^{6}, \& c$.

Hence the terms of any Ratio being a and b, q becomes $\frac{b-a}{a}$, or the difference divided by the leffer term, when'tis an Increafing Ratio; or $\frac{b-a}{b}$ when'ris Decreafing, or as b to a. Whence the Logarithm of the fame Ratio may be doubly expreft, for putting x for the difference of the terms a and b, it will be either

(111)

$$
\begin{aligned}
& \frac{1}{m} \text { into } \frac{x}{b}+\frac{x^{2}}{2 b^{b}}+\frac{x^{3}}{3 b^{3}}+\frac{x^{4}}{4 b^{4}}+\frac{x^{5}}{5 b^{5}}+\frac{x^{6}}{6 b^{6}} \quad \text { \&c. or } \\
& \frac{1}{m} \text { into } \frac{x}{a}-\frac{x^{2}}{2 a^{2}}+\frac{x^{3}}{3 a^{3}}-\frac{x^{4}}{4 a^{4}}+\frac{x^{5}}{5 a^{5}}-\frac{x^{6}}{6 a^{6}} \text {, \&c. }
\end{aligned}
$$

But if the Ratio of a to b be fuppofed divided into tivo parts, viz. into the Ratio of a to the Aritbmetical Mean between the terms, and the Ratio of the faid Aritbmetical Mcen to the other term b, then will the Sum of the Logarithms, of thofe two Rationes be the Logarithm of the Ratio of a to b; and fubftituting $\frac{1}{2} \eta$ inftead of $\frac{1}{2} a+\frac{1}{2} b$ the faid Aritbmetical Mcan, the Logarithms of thofe Rationes will be by the foregoing Rule.

$$
\begin{aligned}
& \frac{I}{m} \text { into } \frac{x}{z}+\frac{x x}{2 z^{2}}+\frac{x^{3}}{3 z^{3}}+\frac{x^{4}}{4 z^{4}}+\frac{x^{5}}{5 z^{5}}+\frac{x^{6}}{6 z^{6}} \text { zc. and } \\
& \frac{1}{m} \text { into } \frac{x}{z}-\frac{x^{x} x}{2 z_{z}}+\frac{x^{3}}{3 z^{3}}-\frac{x^{4}}{4 z^{4}}+\frac{x^{5}}{5 z^{5}}-\frac{x^{6}}{6 z^{6}} \text {, \&c. }
\end{aligned}
$$

the fum whereof $\frac{1}{m} \operatorname{into}^{2} \frac{2 x}{z} *+\frac{2 x^{3}}{3 z^{3}} *+\frac{2 x^{5}}{5 \pi^{5}} *+\frac{2 x^{7}}{7 z^{7}}$ \&rc.will be the Logarithm of the Ratio of a to b, whofe difference is x and fum z. And this Se^{-} ries converges twice as fwift as the former, and therefore is more proper for the practice of making of Logarithms: which it performs with that expedition, that where x the difference is but the hundredth part of the fum, the firf ftep $\frac{2 x}{2}$. fuffices to feven places of the Logarither, and the fecond fepsto twelve; but if Brigg's funt Twenty Chiliads of Loganithms be fuppofed made, as he has very carefully computed them, to fourteen places, the firt fep alone is capable to give the Logarithm of any intermediate Number, truc to all the places of thofe Tables.

After the fame minner, may the difference of the faid two Logarithms be very fitly applyed to find the Logarithas of Prine Numbers, having the Logarithms of the two next numbers above and below them : For the difference of the Ratio of a to $\frac{1}{2} z$, and of $\frac{2}{2}, z, 10 b$, is the Ratio of $a b$ to $\frac{3}{4} \frac{z}{2}$ and the half of that Ratio is that of $v a b t_{2}^{2,} z$, or of the Geometrical Mean to the Arithmetical. And confequently the Logarithm thereof will be the half difference of the Logarithms of thofe Rationes; viz.

$$
\frac{1}{m} \text { into } \frac{x x}{2 z^{z}}+\frac{x^{4}}{4 z^{4}}+\frac{x^{6}}{6 z^{6}}+\frac{x^{8}}{8 z^{8}} \text { \&c. }
$$

Which is a Theorem of good difpatch to. find the Logarithm of $\frac{8}{2}$ ₹. Bue: the fame is yet much more advantageoufly performed by a Rule derived from. the foregoing, and beyond which in my Opinion nothing better can be hoped: For the Ratio of $a b$ to $\frac{1}{4} z \tilde{z}$, or $\frac{1}{4} a a+\frac{1}{2} a b+\frac{1}{4} b b$, has the difference of its terms, $\frac{1}{4} a a-\frac{x}{2} a b^{4}+\frac{1}{4} b b$, or the Square of $\frac{x}{2} a-\frac{x}{2} b=\frac{1}{4} x x$, which in the prefent cafe of finding the Logarithms of Prime Numbers is al-

(112)

ways Unity, and calling the Sum of the terms $\frac{z}{4} z z+a b=y$, , the Logarithm of the Ratio of $\sqrt{ } a b$ to $\frac{1}{2} a+\frac{1}{2} b$, or $\frac{1}{2} z$ will be found

$$
\frac{1}{m} \text { into } \frac{1}{y y}+\frac{1}{3 y^{6}}+\frac{1}{5 y^{10}}+\frac{1}{7 y^{14}}+\frac{1}{9 y^{18}} \text {, \&c. }
$$

which converges very much fafter than any Thiorem hitherto publifhed for this purpofe.

Here note that $\frac{\mathbf{t}}{m}$ is all along applyed to adapt thefe Rules to all Corts of Logarithms. If m be 10000 , zcc. it may be neglected, and you will have $N a^{-}$ pier's Logarithms, as was hinted before; but if you defire Brigg's Logarithms, which are now generally received, you mult divide your Series by $2,3025^{-}$ 85092994045684017991454684364207601101488628772976033328 , or multiply it by the reciprocal thereof, viz. $0,4342944.81903251827655$ 1289189166050822943970058036665661 I4454.

But to fave fo operofe a Multiplication (which is more than all the reft of the work) it is expedient to divide this Multiplicator by the Powers of z or y continually, according to the direction of the Theorem, efpecially where x is fimall and Integer, referving the proper Quotes to be added together, when you have produced your Logarithm to as many Figures as you defire; of which Method I will give a Specimen, in the Logarithms of the firf Prime Numbers under 20 to fixty places, computed by Mr. Abrabam Sharp, as they were communicated to me by our common Friend, Mr. Euclid Speidal.

Num. Logarithms,
2. C, 301029995663981195213738894724493026768189881462108541310427
3. 0,477121254719662437295027903255115309200128864190695864829866
7. 0,845098040014256830712216258592636193483572396323955406503835
11. I, 041392685158225040750199971243024241706702190466453094596539
13. I, 113943352306837769206541895026246254561189005053673288598083
17. 1,230448921378273028540169894328337030007567378425046397380368
19. 1, 278753600952828951536333475755929317951129337394497598906819

The next Prime Number is 23, which I will take for an Example of the foregoing Doctrine ; and by the firf Rules, the Logarithm of the Ratio of 22 to 23 will be found to be either.

$$
\begin{aligned}
& \frac{1}{22}-\frac{1}{968}+\frac{1}{31944}-\frac{1}{937024}+\frac{1}{25768160^{,}} \text {\&c. or } \\
& \frac{1}{23}+\frac{1}{1058}+\frac{1}{36501}+\frac{1}{1119364}+\frac{1}{32181715^{\circ}} \text { \&c. }
\end{aligned}
$$

(113)

As likewife that of the Ratio of 23 to 24 by a like Procefs.

$$
\frac{1}{23}-\frac{1}{1058}+\frac{1}{36501}-\frac{1}{1119364}+\frac{1}{32181715}, \text { \&c. or }
$$

$$
\frac{1}{24}+\frac{1}{115^{2}}+\frac{1}{4.1472}+\frac{1}{1327104}+\frac{1}{39813120}, \& \mathrm{cc}
$$

And this is the Refult of the Doctrine of Mercator, as improv'd by the Leaned Dr. Wallis. But by the fecond Theorem, viz. $\frac{2 x}{z}+\frac{2 x^{3}}{3 z^{3}}+\frac{2 x^{5}}{5 z^{5}}$, \&ce. the fame Logarithms are obtained by fewer fteps. To wit,

$$
\begin{aligned}
& \frac{2}{45}+\frac{2}{273375}+\frac{2}{922640625}+\frac{2}{2615686171875}, \text { \&c. And } \\
& \frac{2}{47}+\frac{2}{311469}+\frac{2}{1146725035}+\frac{2}{3546361843241}, \text { \&cc. }
\end{aligned}
$$

which was Invented and Demonftrated in the Hyperbolical Spaces Analogous to the Logariehms, by the Excellent Mr. Fames Grefory, in his Exercitationes Gcometrices, and fince further profecuted by the aforefaid Mr. Speidall, in a late Treatife in Englifs by him Publifh'd on this Subject. But the Demonftration, as I conceive, was never till now Perfected without the confideration of the Hyperbola, which in a matter purely Arithmetical as this is, cannöt fo properly be applied. But what follows, I think, I may more juitly claim as my own, viz. That the Logarithm of the Ratio of the Geometrical Meane to the Arithmetical, between 22 and 24 , or of $\sqrt{ } 528$ to 23 , will be found to be either

$$
\begin{aligned}
& \frac{1}{1058}+\frac{1}{1119364}+\frac{1}{888215334}+\frac{1}{626487882248}, \text { \&c. or } \\
& \frac{1}{1057}+\frac{1}{3542796579}+\frac{1}{659676558485285}, \text { \&c. }
\end{aligned}
$$

All thefe Series being to be Multiplied into $0,43429448 \mathrm{I} 9$, \&c. if you defign to make the Logaritbm of Briggs. But with great Advantage in refpect of the Work, the faid 0,4342944819 , \& ci. is divided by 1057 , and the Quotient thereof again divided by three times the Square of 1057, and that Quotient again by $\frac{5}{3}$ of that Square, and that Quotient by $\frac{7}{3}$ thereof, and fo forth, till you have as many Figures of your Logarithm as you defire. As for Example, The Logarithm of the Geometrical Mean between 22 and 24 is found by the Logarithms of 2,3 , and $I I$, to be

Which is the Logarithm of 23 to Thirty two Places, and obtained by 5 Divifions with very fmall Divifors, all which is much lefs Work than fimply Multiplying the Series into the faid Multiplicator $0,434.29$ \&c.

From the Logarithm given to find what Ratio it exprefles, is a Problom that has not been fo much confidered as the former, but which is folved with the like eafe, and demonftrated by a like Procefs, from the fame general Theorem of Mr. Newtoni. For as the Logarithm: of the Ratio of 1 to I $+q$ was provedito be $\overline{1}+\left.q\right|^{\frac{1}{m}}-I$, and that of the Ratio of 1 to $1-q$ to be 1 -s-h 1 given, $\mathrm{i}+\mathrm{L}$ will be equal to $\left.\overline{\mathrm{I}+\dot{q}}\right|^{\frac{1}{m}}$ in the one Cafe; and $\mathrm{r}-\mathrm{L}$. will be equal to $\left.\overline{1-q}\right|^{\frac{1}{m}}$ in the other : Confequently $\left.\overline{I+L}\right|^{m}$ will be equal to $I+q_{0}$. and $\left.\overline{I-L}\right|^{m}$ to $I-q$; that is, according to Mr. Newton's faid Rule, $1+m \mathrm{~L}+\frac{1}{2} m^{2} \mathrm{~L}^{2}+\frac{1}{6} m^{3} \cdot \mathrm{I}_{3}+\frac{1}{24} m^{4} \mathrm{~L} 4+\frac{1}{120} m^{5} \mathrm{~L} 5$, \&rc. will be $=$ to $\mathrm{I}+q$, and $\mathrm{I}-m \mathrm{~L}+\frac{1}{2} m^{2} \mathrm{~L}^{2}-\frac{1}{6} m^{3} \mathrm{~L} ;+\frac{1}{24} m^{4} \mathrm{~L}_{4}-$ $\frac{1}{320} m 5 \mathrm{~L} 5$, \&cc. will be equal to $\mathrm{i}-\eta_{\mathrm{I}} \mathrm{m}$ being any infinite Index whatfoever; which is a full and general Propofition from the Logarithm givento find the Number, be the Species of Logarithms what it will. But if Nopier?s Logarithm be given, the Multiplication by m is faved, (which Multiplication is indeed no other than the reducing the other Species to his) and the Series will be more fimple, viz. $1+L+\frac{1}{2} L^{2}+\frac{1}{6} L 3+\frac{1}{24} L_{4}$ $+\frac{1}{120} L s, \& c$. or $I-L+\frac{1}{2} L^{2}-\frac{1}{6} L_{3}+\frac{1}{24} L_{4}-\frac{1}{120} L s, 8 \% c$. This Series, efpecially in great Numbers, Converges fo flowly, that it were to be wifhed it could be contracted.

If one term of the Ratio, whercof L is the Logarithm, be given, the other term will be had eafily by the fame Rule: For if L were Napicr's Logarithm

$(1+5)$

rithm of the Ratio of a the leffer, to b the greater Term, b would be the Fron duct of a into $\mathrm{I}+\mathrm{L}+\frac{1}{2} \mathrm{~L}^{2}+\frac{1}{6} L^{2} 3, \& c \mathrm{c}=a+a \mathrm{~L}+\frac{1}{2} a L^{2}$ $+\frac{1}{6} a \mathrm{~L} ;$, \&c. But if b were given, a would be $=b-b L+\frac{1}{2} b L$ - $\frac{1}{6} b \mathrm{~L} \hat{s}$, \&c. Whence by the help of the Cbilidats, the Number appertaining to any Logarithm will be exactly had to the utmof extent of the Tables. If you feek the neareft next Logarithm, whether greater or leffer, and call its Number a if leffer, or l if greater, then the given L, and the difference thercof from the faid nearef Logarithm you call 1 ; it will follow that the Number anfwering to the Logarithm L will be either a into $a+b$ $+\frac{1}{2} l^{2}+\frac{1}{6} 13+\frac{1}{24} 14+\frac{1}{120} 15$, \&c. or elfe b into $1-1+\frac{1}{2} l^{2}$ - $\frac{1}{6} / 3+{ }_{24}^{1} 14-\frac{1}{120} 15$, \&cc. whercin as $/$ is lefs the Series will converge the fivifter. And if the firft 20000 Logarithms be given to 14 places, there is rarely occafion for the three firft fteps of this Series to find the Number to as many places. But for Thacq's great Canon of 100000 Logarithms, which is made but to ten places, there is fcarce ever need for more than the firft Itep $a+a l$, or $a+m a l$ in one Cafe, or elfe $b-b l$, or $b-m b l$ in the other, to have the Number true to as many Figures as thofe Logarithmes confift of.

There is another Scries, which is not indeed fo fimple and uniform, yet the firt ftep thereof is moft Commodious for Practice, and exact enough for Tables not exceeding I4 Places. It is thus : $a+\frac{a l}{1-\frac{1}{2} l}$, or $b-\frac{b l}{1+\frac{1}{2} l}$ will be the Number anfwering to the Logarithm given, differing from the truth but by one half of the third ftep of the former Series. But that which renders it yet more eligible is, that with equal facility it ferves for Briggs's or any other fort of Logarithms, with the only variation of Writing $\frac{1}{m}$ inftead of I, that is
$a+\frac{a l}{\frac{1}{m}-\frac{1}{2} l}$, and $b-\frac{b l}{\frac{1}{m}+\frac{1}{2} l}$, or $\frac{\frac{1}{m} a+\frac{1}{2} l a}{\frac{1}{m}-\frac{1}{2} l}$ and $\frac{\frac{1}{m} b-\frac{1}{2} l b}{\frac{1}{m}+\frac{1}{a} l}$, which
are cafily refolved into Analogies; wiz.
As 434298 sc . $-\frac{1}{2} l:$ to $43429+\frac{8}{2} 1::$ fo is $a: ?$
Or As 43429 \&cc. $+\frac{2}{2} l:$ to $43429-\frac{1}{2} l::$ fo is $\left.b:\right\}$ to the Number fought:

(116)

If more Steps of this Series be defired, it will be found as follows,
$n+\frac{a l}{1-\frac{a}{2} l}-\frac{\frac{1}{13} a l 3}{1-l}+\frac{\frac{1}{15} a l 5}{1-2 l}$, \&c. as may cafily be demonftrated by working out the Divifions in each ftep, and collecting the Quotes, whofe Sum will be found to agree wirh our former Series, which is no other than an. cafie Corollary to Mr. Newoon's general Theoremn for forming Roots and Ppmers.

XXIX. Papers of lefs General Ufe Omitted.

Tangents :0 carves. n . 8x. p. 4010.

Reftification of Curves. 11. 98. p. 6146,6149.
36. 1. 6150.

Transformation of Curves.n. 214. な.2330

1. Breviat of Dr. Wallis's two Methods of drawitg 'Tangents; Extracted by him from his Con. Sect. and other parts of his Mathematical Vorks.
2. M. Huggens in his Hor. Ofcill. having given M. Huract the Honour of Inventing a Curve equal to a Straight Line in the Year 1659 ; Dr. Wallis here afierts this Invention to Mr. Willicm Neile (Son of Sir Paul Ncile), who dilcovered and Demonftrated the Equality of a Paraboloid to a Straight Line two Years before. : The fame was foon after ot erwife Demonftrated by my Lord Brounker, and Sir Cbrifopber Wren, in Fune and Fuly 1657 ; and the Demonitrations inferted by Dr. Wallis, in his Tract de Cycloide 1659, with a. fair Relation of that whole Matter. Befides, Sir Chriftopher Wren found a Straight Line equal to that of a Cycloide in the Year 1658: Yet he freely confefles Mr. Neile's Invention of a Curve capable of Rectification the Year before.
3. The Abbot Galloys having, in the Ycar i 693 , afferted that Mr: Fames Gregory and Dr. Barrow ftole their General Propofitions concerning the Tranjformation of Curves from Mr. Robervall; Dr. David Gregory here fully refutes that Affertion. For Mr. Gregory. Publifh'd his Book at Padua 1668, and Dr. Barrow his Leetiones Geometricie 1674, which Mr. Robervall doubtlefs had a fight of before he dy'd (which was not till otcober 1675), yet he never complain'd of any fuch Injury done him.
cyelioidal spaces, 4. Befides that Segment of the Scmicycloidal Figure, firft obferved by Sir

 Hopler Wien and after him by Mr. Huygens, and a Trilinear part of it, from his Tracts de Cycloide, and de Motu, fome other Portions thereof equally capable of Quadrature.
The cycloid con- 5. Dr. W'allis finds among the Mathematical Works of Bovillus, Publifh'd fidered long ago. in 229.p. 561 . at leveral times between the Years I501 and 1510, that the Curve (which is now call'd the Cycloid) was then confider'd. But he alfo finds that Borillus was not the firt who confider'd it : For Cardinal Cufanus, as appears by an Ancient MS. of his Works (tranfcrib'd by F. Scoblant in the Year 145 I) had confider'd it fome time before. The Figure indeed (thro' the unskilfulnefs of the Tranfcriber) both in the MS. and the Bafil Edition, A. 1565, is very ill drawn; but being Corrected according to the true meaning of that Cardinal's own Words, it evidently reprefents the Modern Cycloid. From. bence 'tis Manifeft, that this Curve was not firft taken into Confideration. sither

(117)

either by Merfermuis or Gallilico, but fome Ages before, tho' never well underftood till this Prefent Age.
6. Some Papers fent by Mr. $\mathfrak{F} 0$. Collins to Dr. Wallis, giving his thoughts Defects in ifigeo about fome Defects in Algebra, which he did not live to finifh.

XXX. Accounts of Books with Additions, Emendations, छֹc. Omitted.

EUclidis Elementa Gcometrica, nowo ordine ac Metbodo demonftiata. Lond. n. 15. p. 26ri. 1666.
2. Archimedis Opera; Apollonii Perg: Conic. Libri 4; Theodofii Sphorrica;n. Ir4.p.3r4. Metjodo nova illuflratr, 8 fuccinctè demonftrata: ab Ifa. Barrow R. S. S. Lond. 1675 . in $4 t 0$

 Jo. Wallis. SS. Th. D. Oxon. 1676 .
4. Thicon Smyrneus, publifh'd at Paris by Ifmael, Bulialdus in Greek and n. 80. p. 3095. Latin.
5. Diophanti Alexandini Aritlmeticnum Libri 6 , छु. de Numeris Multan-n. 72 . p. 2185 . gulis Liber unus; cum Commentariis C. G. Bacheti, © obfcrvationibus, D. P. de Fermat Senatoris Tholofani: cui acceffit Doctrinae Analytica Inventum Novum. Tolofe 1670 . in Folio.
6. The Works of Monficur de Feimit. n. I. p. 19.
7. Francifci du Laurens Specimina Matbematica, duobus Libris comprchenfa. Horum prior Syntheticus agit de Genuinis Mathefcos Principiis in genere; in n . 30. p. 580 o . Specie autem de veris Geometrine Elementis Jucufque" nondum traditis. Pofterior Analyticus de Methodo Compofitionis atque Refolutionis fule diferit, © multa. nova complectitur, qua fubtilifimam Analyfeos Artem mirum in modum promovent. n. 34.p. 654. n. . This Book is here Cenfured, fome Miftakes in it Corrected, and the Cenfure p. 775. n. 41. vindicated, by Dr. Wallis.
8. R.P. Andree Taquet, è S. F. Opera Matlicmatica. Anwerp. I 669 in n. $43 \cdot p .86 \%$. Folio.
9. A. Mathematical Compendium, Collected out of the Notes and Papers n. ro4.p.83. of Sir fonas Moore, by Nichbolas Stevenfon. Lond. 1674. in Trelves.
r. R. P. Claudii Franc. Milliet de Chales, è S. J. Cuir fus Soú Mundus Ma-n. ro.p . $22 g$. thematicus, univerfam Matbefin tribus Tomis complectens, Lugd. 1674. in Folio.

If. The Mathematical Works of Dr. Fo. Wallis, SAvilian Profeffor of Gco-n. 216.p.73.n metry in the Univerfity of Oxford, \& F. R. S. in thirce Volumes in Folio. Oxon. 254.p.259.
12. An Introduction to Algebra, Tranflated out of High Dutch into Eng- n. 35.p. 688. lifp by Tho. Branker M. A. much altered and augmented by Dr. F. Pell. Alio a Table of fuch odd Numbers, as are lefs than one Hundred Thoufand, flowing thofe that are Incompofit, and refolving the reft into their Fato is, or Coefficients. Lond. in Quarto.
13. Lalyrinthus Algebra. Auth. Joh. Jac. Fergufon. 1667. in Luarto.

（118）

is． 90. p． $5152 . \quad 14$ ．The Elenents of that Mathematical Science call＇d Algelira；by Fo．Kelfe
n． 05. p． 6073 ．Lond． 1673 ．in Folio．
31．108．f．192．15．A Treatife of Algelyn，both Hiftorical and Pradical；by Fo．Whallis．
n． $143 . p .25$.
 12． $233.8 \cdot 730$ ．rectify＇d by the Author．

11．14．今． $253 \cdot$ n． 16.1 ． 289.

11．48．1．971．
H． 550 市． 5121.
11．72．p． 2185.
16．De Principiis E Retiacinatione Geometrarum；contra Faffum Profefforam Gcometrir．Autbore Tho．Hobbes．This Book is here Animadverted on，and An－ fwer＇d ；by Dr．Wnalis．

17．Thomx Hobbes Quadiatura Circuli，Culatio Spherre，Duplicatio Cubi， confuitata．Auth．Jo．Wallis．S．T．D．Exon．1669．in Quarto．

18．Thomx Hobbes Diendratura Circuli，Cubatio Spberere，Duplicatio Cut：， （Sccuns，edita）denuo refutatn．Auth．Jo．Wallis．S．T．D．Oxon．I 660.
19．Rofetum Geometricumb，cum Cenfuri Lrevi Doctrinx Wallifiand de Motu． Autb．Tho．Hobbes Malmicsburienfi．Lond．I obic in Quarto．This Book is n．73．p．2202．here Anfwered by Dr．Wallis．

A． 75 ．p． 224 1．
ก． 86. P． 5047.

11．87． .8 .5067 ．
n．97．p．613．1．

ก． 185.5 .245.

5． 32 2：中． 6250
15． 79. p． 3064.
ก． 33 ． 9.640 ．
Ib．p．641．
n． 37. ． 9.732.
n． 44.9 p． 88.
n． 21 б．$p .65$ ．
n． $35 \cdot$ p． 685.
ก． $37 \cdot$ ． 9.73 ．

20．Four Papers of Mr．Hobls＇s，Publifh＇d in the Months of Auguft and Sejpeinber， 1671 ．which are here Anfivered by

2 I．Lux Matbematica，Collifionilus Johannis Wallifii S．T．D．B Thomx Hobbefii Malmsburienfis，exculfa，multis folgentifimis nucla radiis．Auth． R．R．Aijuñ̈ta Cenfurà Docirince Wallifanx de Libra，una cum Rofeto Hobbefii． Lond． 167 2，in Qunrto．This Book is here Anfwered by Dr．Wallis．

22．Principia © Problemata aliquot Geometrica，antè defperata，nunc breviter explicata © demonftrata．Autb．T．H．Malmsburienfio Lond．1673．in duarto．

23．Le Grand © Fameux Probleme de In Rundrature du Cercle refolu Geome－ trigulument par le Cercic छुla Ligne droite，par．M．Mallement de Meflange à Paris． I686．in Twelves．This Book is here Refuted by M．D．Cluverius．R．S．S．

24．Nolvenux Elcmens de Gecmetrie：Or a Mathematical Treatife，entituled New Elćments of Gcometry．Paris．1667．in Quarto．

25．Elemens de Geometric ；par le P．Ignace Gafton Pardies；de la Comp．de f． ä Paris IG7r．in Twolues．

26．I．Vera Circuli © Irjperlolice Quadratirne，in propria Sua Proportionis Specic invisita E Demonftrata，at Jac．Gregorio Scoto．Patavii．in Quaito．This Subject is here further confidered，and the Area of an Hyperbola explain＇d； by Mr F．Collins．

2．M．Ituygcins having Publifh＇d Animadverfions upon this Book，in the Fournal des Scavans 1668 ．Mr．Gregory here Anfwers them．To this M．Huygens Reply＇d in a following Journal of that Year；and Mr．Gregory，further to elt－ cidate the Controverfy，here returns a fecond Anfwer．
3．In the 48 th page of this Book，Mr．Hrlley has Difcovered，and Correct－ ed a fnall Miftake in the Logarithm of 10 ．
27．Gcometricpars Univerfalis，Quantitatum Curvarumi Tranfmutationi © Meri－ furre inferviens．Auth．Jac．Gregorio Scoto．Patavii．1668，iñ Quatro．

28．De Infinitis Spivalibus inverfis，Infinitifgue Hyperbolis，nliiffue Geometricis． Auth．F．Stephano de Angelis Venoto．Patavii．in Quato．

(119)

29. Michaclis Angeli Ricci Exercitatio Gcometrica. Romx. in Quarto Re. n. 37. p. 738 . printed at London, and annext to Mercator's Logarithmotecbnia.
30. Renati Franc. Slufii Mefolabum. Cui acceffit pars aitera de Analy \mathfrak{l}_{2} Ej n. 45. p. 903. Mifcellanea. Leodii Eburonum 1668. in Quarto.

3 I. Elementa Geomestice Plance. Autjore Atgidio Francico de Gottignies n. 67. p. 2054. Bruxellenfi. S. F. Romæ. 1669. in Twelves.
32. Synopfis Geometrica; cum tribus Opufculis, de Linea Sinuum ES Cycloide; n. 67. p. 2055. de Maximis Ef Minimis, Centuria; ε^{3} Syopfis Geometric Plane. Auth. Honor.
Fabiy. S. 7. Lugduni Galliarum 1669 . in Twelves.
33. LeEtioncs 13. Geometrice; in quibus (profertim) Generalia Linearum n.675.p. 2260. Curvarum Symptomata declarantur, ab Haco Barrow. Lond. I669. in Quarto.
Fo thefe Lectures the Author here adds Reveral Corollaries and Theorems.
34. Erafmi Bartholini Selean Gcometrich. Hatmize. I674. in Qurrto. n. 106. p. 137.
35. Elemens des Mathomatiques, ou Principes Generaux de toutcs les Sciences n. 126. p. 638 Iui ont les Grandeurs pour Objeit. Par J. P. à Paris 1675. in Ruarto.
36. Nowvelie Methode en Geometrie pour les Scetions des Supeificies Cuniques 63 n. 129. p. 7450 . Cylindriques; gui ont pour Bafe des Circles, ou des Pardboles, des Elliffes, $\overline{0}$ des Hypertoligues; par Ph. de la Hire. a Paris I673. in óvarto.

37: D: Cycloide E Scctionibus Conicis. Aiuth. Ph. de lit Hire.
Ibid. 7.46.
38. The Geometrical Key, or Conftudtion of all Eguations Linear, n. ris7. ip.i5490 Quadratick, Cubick, and Biquadratick, by a Circle and one only Parabola; by Mr: Tlso. Biaker.
39. Exercitatio Geometrica de Dimenfione Figurarum. Auth. Davide Gregorio. n. 163.:1.730. Edinb. I6S4. in Quarto.
40. Methodus Figurarum Lincis Rectis 8_{3} Cuvis comprebsnfarum Qundraturas n. 183. p. 1850 determinandi: Auth. J. Craige. Lond. 1685 in Quarto: To this Tract the Ibid.p. i86. Author here makes an Addition; and takes Notice of fume Remarks made n.235•f.786. on it in the AEt. Lipf. by M. Leibnitz, and M. F. Bernoulli.

41 Tractatus Matlecmaticus de Figurarum Curvilinearum Quadraturis, É Lois n. 209. p. I13. Geometrich. Auth. J. Ctaig. Lond. 1693. in Quarto.
42. Tiactatus de Principiis CalculiExponentinlis. Aum D. Bernoullio; where- n. 245. p. 374. in a Miftake is'here Difcovered and Corrected, by Mir. Craits.
43. Annlyfis Gcometrica, five nova É vera Methodus Refolventi, tam Proble n. 257. p. 351 . mata Geometrica, quam Arithmeticas Quiftiones. Pars prima, de Planis. Auth. D. Antonio Hugone de Omerique Sanlucaren \sqrt{c}.
44. Stereometrical Propofitions, varioufly applicable, but particularly in- n. $39 \cdot$ p. 78 s. tended for Gauging; by Rob. Anderson. Lond. I 668 . in ociavo.
45. Gauging promoted; being an Appendix to StereometricalPropofitions; n. 47.p.960. by Rol. Anderfon. Lond. Ifigg, in OEtrev.
46. Gauting Epitomized; by Mich. Dary. Lond. I 669 .:upon one Folio Page. n. 52. p. 1054,
47. Tabula Numicrorum Quadratorum decies Millium, una cum ipforum Interi- n. 82. p. 4050. bus af Unitate incipientibus, Ef Ordine Naturali ufque ad IOCOO progredienti-
bus. Lond. 1672.
48. The Defrription and ufe of two Arithmetick Infrwments, \&x. by no 94. po 6048. Sir Sam. Morcland. Land. 1673.

(120)

18.13918 .990.
11. $3^{8.1 .7} 753$.

Ibit.p. 756.
Ibid.p. 759. . Logarithms is here improved by Dr. IVillis; Author himfelf. Fuliano. Lond 1678.

C H A P. II.

Triginometry, Surveying.

I. Prob. TIHE Diftances of three Objects in the fame plain being given, as A, B, C ; The Angles made at a fourtb Place in the fame Plainas

Acborographical Problem propofed by Mr. Rich. Townley, folved by Mr. John ColJins. n. 69. p: 2093.

Fig. 57. tiis inveftignadis. 2. De Rationum. Ef Fractionum Redudione. 3. De Perioda
50. Logarithmotechmia Nicolai Mercatoris. Lond. 1668. in Quarto. This. Author's Method of fquaring the Hyperbola, and of finding the Sum of the
\qquad

1at S, arcolferved: the Difances from the Place of Obferuation to the refpective Objects, are required.

> The Problem hath fix Cafos.

CASE I. If the Station be taken without the Triangle made by the Objects, but in one of the-fides thereof produced, as at S : find the Angle $A C B$, then in the Triangle $A C S$, all the Angles and the fide $A C$ are known, whence either or bort the Diftances $S A$, or $S C$, may be found.

Cafe 2. If the Station be in one of the Sides of the Triangle, as at S : then having the three Sides, $A C, C B, B A$, given, find the Angle $C A B$; then again in the Triangle S A B all the Angles, and the Side A B, are known, whence may be found either $A S$, or S B Geometrically, if you make the Angle C AD equal to the obferved Angle CSB, and draw $B S$ parallel to DA, you determine the Point of Station S.

Cafe 3. If the three Objects lie in a right line as ACB (fuppofe it done), and that a Circle paffeth througl the Station S, and the two Exteriour Objects A, B: then is the Angle A B D, equal to the Obferved Angle ASC (by 2 I. 3. E) as Infifting on the fame Arch A D: And the Angle B A D in like manner equal to the oblerved Angle CS B: By this means the point D is determined. Joyn DC, and produce the fame, then a Circle paffing through the Points A, B, D, interfects $D C$, produced at S, the place of Station.

Calculation] In the Triangle A'BD, all the Angles and the Side A B, are known, whence may be found the Side AD.

Then in the Triangle CAD, the two fides CA, and AD, are known, and there contained Angle C A D is known; whence may be found the Angles CDA, and ACD, the Complement whereof "to a Semicircle is the Angle SCA: in which Triangle the Angles are now all known, and the fide AC: whence may be found either of the Dittances $S C$, or $S A$.

Cafe 4. If the Station be without the Triangle made by the Objects, the Sum of the Angles obferved is lefs than four Right Angles. The Conftruction is the fame as in the laft $C a f e$, and the Calculation likewife; faving that you muft make one Operation more having the three fides $\mathrm{AC}, \mathrm{CB}, \mathrm{B} A$, thereby find the Angle CAB, which add to the Angle E A D, then you have the two fides, viz. AC, being one of the Diftances, and AD, (found as in the former $C a f c$) with their contained Angle CAD given, to find the Angles CD A, and A CD, the Complement whereof to a Semicircle is the Angle SC A: Now in the Triangle SC A, the Angle at C being found, and atS obferved, and given by Suppofition, the other at A is likewife known, as being the Complement of the two former to a Semicircle, and the fide AC given ; hence the Diftances $C S$, or AS, may be found.

Cafe 5. If the place of Station be at fome Point within the plain of the Triangle, made by the three Objects, the Conftruction and Calculation is the fame as in the laft, faving only that inftead of the obferved Angle ASC, the Angle ABD is equal to the Complement thereof to a Semicircle, to wit, it is equal to the Angle ASD; both of them infifting on the fame Arch AD: And in like manner the Angle BAD is equal to the Angle DSB, which is the Complement of the obferved CSB; and in this Cafe the Sum of the three Angles obferved, is equal to four Right Angles.

In thele three latter Cafes no ufe is made of the Angle obferved between the two Objects, as A and B, that are made the Bafe-line of the Conftruction; yet the fame is of ready ufe for finding the third diftance or laft fide fought; as in the Triangle SAB, there is given the diftance A B, its oppofite Angle equal to the Sum of the two obferved Angles, and the Angle S A B attained, as in the fourth $C a f_{c}$: Hence the third fide, or laft diftance $S B$, may be found.

And here it may be noted, that the three Angles C AS, ASB, SBC, are together equal to the Angle A C B ; for, the two Angles CSB and C BS, are equal to ECB, as being the Complement of SCB to two Right Angles; and the like in the Triangle on the other fide. Ergo \&c.
$\mathrm{Ca}_{\mathrm{f}}^{\mathrm{c}} \mathrm{C}$. If the three Objects be $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and the Station atS, as before, it may happen, according to the former Conftructions, that the Points C and D, may fall clofe together ; and fo a right Line, joyning them, fhall be produced with uncertainty ; in fuch Cafe the Circle may be conceived to pafs through the place of Station at S, and any two of the Objects, as through B and C, wherein making the Angle DBC equal to the obferved Angle AS C, and B C D equal to the Complement to 180 degrees of both the obferved Angles in DSB; thereby the point D is determined, through which, and the Points C, B, the Circle is to be defcribed, and joyning DA, (produced when need requireth) where it interfects the Circle, as at S, is the place of Station fought.

This Problem may be of good ufe for the due Situation of Sands or Rocks, that are within fight of three Places upon Land, whofe diftances are well known; or for Chorographical UJes, \&c. efpecially now there is a Methud of oblerving Angles nicely Accurate by Aid of the Telefcope.

(122)

Three choro. graphic Problems folved by - Member of the Philofophical Society. at Oxford. n. 177 P. 1231 .
11. The three following Problems may occur at Sea, in finding the Diftance and Pofition of Rocks, Sands, \&cc. from the Shore ; or in Surveying the SeaCoaft; when only two Objects whofe diftance from each other is knowin, can be feen at one Station: but efpecially they may be ufeful to one, that would make a Map of a Country by a Series of Triangles derived from one or more. meafured Bafes ; which is the moft exact way of finding the Bearing and Diftance of places from each orher, and thence their true L.ongitude and Latitude ; and may confequently occur to one chat would in that manner meafure a degree on the Earth.

Fig. 63.

Tig. 640, ing known, the third is alfo known; then take any Line $a \in$ at pleafure, on which: conftitute the Triangles, $\beta a \in, x \in \gamma$, refpectively equiangular to the Triangles. BAE, AEC; joyn β. Then upon BC conftitute the Triangles. BCA, BCE, equiangular to the Correfpondent Triangles $\beta \gamma \alpha_{0}, \beta \gamma \approx ;$ joyn $A E$, and the thing is manifeftly done.

The Calculation.]. Affuming as,of fany number of parts, in the Triangles a β, $\alpha \gamma \varepsilon$, the Angles being given, the Sides $\alpha \beta, \alpha \gamma ; \beta, \varepsilon \gamma$, may be found by Trigonca metry: Then in the Triangle $\beta \propto \alpha$, having the Angle $\beta a \cdot \gamma$, and the Legs $\propto \beta ; \alpha$, we may find $\beta \gamma$. Then $\beta \gamma: B C:: \beta \in: B A:: \beta \varepsilon \therefore B E:: \gamma \alpha:$ CA: $\gamma^{2}:$ C
nis. 650.
Prob. 2.] Tiree Objects B, C, D, are given, or (which is the fame) the Sides and conSequently. Angles, of the Triangle $B C D$, aregiven; alfothere are two points or Stations. A, E, Juch that at A may be feen the three points B, C, E, but not D, and at the Station. E, may be feen A, C, D, but not B; that is the Angles $B A C, B A E, A E C, A E D$, (and confequently $E A C, A E C$) are known by Obfervation: To find the Lines: A. B, $A C, A E, E C, E D$.

8ig. 86.
Conftrution.]. Take any Line α at pleafure, and at its extremities make the Angles $\varepsilon \alpha \gamma, \varepsilon \alpha \beta, \alpha \varepsilon \gamma_{2} \alpha \pm \delta$, equal to the correfpondent Obferved Angles. EAC, EAB, AEC, AED. Produce $\beta \alpha_{2}$, δ, till they meet in $甲$; joyn - γ; then upon C B defcribe (according to 33.3.E.) a Segment of a Circle, that may contain an Angle $=\gamma, \beta$; and upon CD defcribe a Segment of a Circle capable of an Angle $=\gamma \Phi \delta$: Suppofe F the common Section of thefe 2. Circles; joyn FB, FC, FD ; then from the point C, draw forth the Lines C A, CE, fo that the Angle F C A may be, $=\varphi \alpha_{2}$ and FCE $=y^{\varepsilon} ;$; 0 A, E, the common Sections of $C A$, CE, with FB, FD, will be the points requited, from: whence the reft is eafily deduced:

Calculation.] Affuming $\& \in$ of any number, in the Triangles $a y, \& \in \varphi$, all the Angles being given, with the fide a affum'd, the fides $\alpha \gamma, \varepsilon \gamma, \alpha p, \varepsilon \varphi$, will be known; then in the Triangle $\gamma \propto \ell$, the Angle $\gamma \propto \varphi$, with the Legs $\alpha \gamma, \alpha \varphi$, being known, the Angles a $\varphi \gamma, a \gamma \varphi$, with the fide $\varphi \gamma$, will be known: Then as for the reft of the work, the 'Triangle B.CD having all its fides and Angles known, and the Angles BFC, B F D, being equal to the found $\beta \varphi \gamma, \beta ; \delta$; how to find F B, FC, F D, by Calculation (and alfo Protraction) has been already fhewn above by Mr . Collins, as to all its Cafes.

But here it muft be noted, that if the Sum of the obferved Angles, B A E, $A E D$, is 180 degrees: then $A B$, and E D, cannot meet, becaufe they are Pa rallel, and confequently the given Solution cannot take place; for which reafon I here fubjoyn another.

Another Solution.] Upon BC defcribe a Segment, B A C, of a Circle, fo that the Angle of the Segment may be equal to the obferved Angle $3 \propto \gamma$, (which is fhewn 33.3. E.) and upon C D defcribe a Segment C E D, of a Circle, capable of an Angle equal to the obferved CED; from C draw the Diameters of thele Circles CG, CH; then upon C G defcribe a Segment of a Circle GFC, capable of an Angle equal to the Obferved Angle AEC ; likewife upon CH, defcribe a Circles Segment CFH, capable of an Angle equal to the Obferved Angle C A E: fuppofe F the Common Section of the two laft Circles HFC, G F C ; joyn FH, cutting the Circle HEC in E; joyn alfo FG, cutting the Circle GAC in A: I lay, that A, E, are the points required.

Demonjtration.] For the Angle BAC is $=\beta<\gamma$, by Conftruction of the Segment, alfo the Angles CEH, CA G, are Right, becaufe each exits in a Semicircle : therefore a Circle being defcribed upon CF, as a Diameter, will pafs thro' E, A, therefore the Angle C AE = CFE = CF. H= (by Conftrufion) to the obferved Angle $\gamma^{\alpha \epsilon}$. In like manner the Angle CEA = $\mathrm{CFA}=\mathrm{CFG}=$ oblerv'd Angle $\boldsymbol{\gamma} \varepsilon a$.

If the Stations A, E, fall in a Right Line with the point C; the Lines G A, HE, being Parallel, cannot meet: but in this Cafe the Problem is indeterminate, and capable of Infinite Solutions. For, as before, upon C G, delcribe a Segment of a Circle capable of the obferved Angle $\gamma: \alpha$, and upon CH, defcribe a Segment capable of the obferved. Angle y a : then through C, draw a Line any way cutting the Circles in A, E, thefe points will anfwer the Queftion.

Problem. 3.] Four points, B, C, D, F, or the four fides of a Quadrilateral, with the Angles comprebended, are given; alfo there are two Stations A and E, fuch, that at A, only B, C, E, are vifible, and at E, only A, D, F; that is, the Angles $B A C$,

Fig 68. $B A E, A E D, D E F$, are given: to find the Places of the two Points A, E; and confequently the Lengths of the Lines $A B, A C, A E, E D, E E$.

Confruation.] Upon B C (by 33. 3. E.) defcribe a Segment of a Circle, that may contain an Angle equal to the obferved Angle BAC, then from C, draw the Chord CM, or a Line cutting the Circle in M, fo that the Angle BC M, may be equal to the Supplement of the obferved Angle BAE, i. e. its Refidue

(124)

to 180 degrees. In like manner on DF defcribe a Segment of a Circle, capable of an Angle equal to the obferved DEF, and from D draw the Chord DN, fo that the Angle FD N, may be equal to the Supplement of the obferved Angle AEF; joyn MN, cutting the two Circles in A, E: I fay, A, E, are the two Points required.

Demongtration.] Joyn A B, AC, ED, EF, then is the Angle $\mathrm{MAB}=$ B CM, (by 21. 3. E.) = Supplement of the obferved Angle B A E, by Conttructisn; therefore the Conftructed Angle B A E, is equal to that which was Obierv'd. Alfo the Angle BAC, of the Segment, is, by Conftruction of the Segment; equal to the obferved Angle B A C. In like manner the Conftructed Angles AEF , and DEF, are equal to the Correfpondent obferved Angles AEF, D E F ; therefore A, E, are the Points required.

Calculation.] In the Triangle BCM, the Angle BCM, ($=$ Supplement of BAE) and Angle BMC, ($=\mathrm{BAC}$) are given, witlr the fide BC ; thence MC may be found; in like manner D N, in the Triangle D NF, may be found. But the Angle MCD (=BCD - BCM) is known, with its Legs MC, $C D$, therefore its Bafe $M D$, and Angle $M D C$, may be known. Therefore the Angle MDN $(=\mathrm{CDF}-\mathrm{CDM}-\mathrm{FDN})$ is known, with its Legs $M D, D N$; thence $M N$, with the Angles DMN, DN M, will be known. Then the Angle CMA ($=\mathrm{DMC}+\mathrm{DMN}$) is known, with the Angle MAC, $(=M A B+B A C)$ and MC, before found ; therefore MA, and A C, will be known. In like manner in the Triangle E DN, the Angles E, N, with the fide D N, being known, the fides EN, E D, will be known ; therefore $A E(=M N-M A-E N)$ is known. Alfo in the Triangle ABC, the Angle A, with its fides BC, C A, being known, the fide AB will be known, with the Angle BC A; Co_{o} in the Triangle EF D, the Angle E, with the fides E D, D.F, being known, EF will be found, with the Angle E D F. Laftly, in the Triangle A CD, the Angle ACD $(=B C D-B C A)$ with its Legs A C, CD, being known, the fide AD will be known; and in like manner EC, in the Triangle EDC.

Note, That in this Problem, as alfo in the firft and fecond; if the two Stacions fall in a Right Line with either of the given Objects : the Locus of A, or E, being a Circle, the parricular point of A , or E , cannot be determined from the things given.
As to theother Cafes of this third Problem, wherein A, and E, may fhift piaces, i. e. only $\mathrm{D}, \mathrm{F}, \mathrm{E}$, may be vifible at A , and only $\mathrm{A}, \mathrm{R}, \mathrm{C}$, at E ; or wherein: B, D, E, may be vifible at A, and only C, F, A, at E; or wherein A may be on one fide of the Quadrilateral, and E on the other; or one of the Stations. within the Quadrilateral, and the other without it; I prefume that the Surveyor will eafily direct himfelf, by what has been already faid.

The Solution of this third Problem is General, and fervesalfo for both the precedent. For fuppofe C, D, the fame point in the laft figure, and it gives the Solution of the fecond Problem : but if B,C, be fuppofed the fame points with D, F, by proceeding as in the laft, you may directly folve the firt Problem.
III. The Variation of the Magnetick Needle is fo commonly known, that 1 need not infift much on the Explication thereof; 'tis certain that the true Solar Meridian, and the Meridian fhewn by a Needle, agree but in very few places of the World; and this too, but for a little time (if a moment) together ; the difference between the true Meridian and Magnetick Meridian, perpetually varying and changing in all places, and at all times; fometimes to the Eaftward, and fometimes to the Weftward.

On which Account 'tis impoffible to compare two Surveys of the fame place, taken at diftant times, by Magnetick Inftruments (fuch as the Circumferentor, by which the Down Survey, or Sir William Petty's Survey of Ircland was taken) without due Allowance be made for this Variation. To which purpofe, we ought ta know the difference between the Magnetick Meridian and true Meridian, at that time of the Dorn Survey, and the faid Difference at the time, when we make a New Survey to compare with the Down Survey.

But here I would not be underfood, as if 1 propofed hereby to fhew, that a Map of the fame place, taken by Magnetick Inftruments at never fo diftant times, fhould not at one time give the fame Figure and Contents as at another time. This certainly it will do moft exactly, the Variation of the Needle haking nothing to do either in the Shape or Contents of the Survey. All that is af feeted thereby, is the Bearings of the Lines run by the Chain, and the Boundaries between Neighbours. And how this may caufe a conffderable Error (unlefs due Allowance be made for it) is what 1 fhall prove moft fully.

In order to which, let us fuppofe that about the Year 1657 , (at which time the DownSurvey was taken) the Magnetick. Meridian and true Meridian did agree at Dublin, or pretty nigh all over Ireland; that is to fay, that there was no Variation. And indeed by Experiment it was at that time found, as I am well affured, that at Dublin it was hardly half a degree.

Let us fuppofe that in the Year 1695 , the Variation was 7 Degrees from the North to the Weftward. : that it was really fo, I believe I am pretry well aifured, from an experinant thereof made by nay foif withall diligence. But this is not material, let us now only fuppofe it.

Let A, B, Reprefent the Survey of two Town Lands, one in the Poffeifion of A, and the other in the poffeifion of B, taken by the Down Suivey, Anno 165.7 , when there was no variation.

Let the Line N S, running through the Point P, be the true Meridian, and confeguently the Magnetick Mieridian alfo at that time, becaufe of the fuppofed no Variation, and let this Line NS, be alfo the Boundary between the two Town Lands A, and B.

In the Year 1695 , when the Variation is 7 Degrees from the North to the Weftward, B having a Map of the Down Surwey, and being fufpicious that his Neighbour A, had incroached on him by a Ditch P Q, imploys a Surveyor to: enquire into the matter: The Surveyor finds by this Map, that the Boundary between B and his Neighbour A, run from the point P, through a Meadow. directly according to the Magnerick Meridian:S PN ; butobferving the Ditch. PQ caft up much to the Eaftward of the prefent Magnetick Meridian, be eoncludes that A has incroached upon B_{2}, and that the Ditch ought to have been:

Leen caft upalong the Line P_{q}, the Angle QP q, being an Angle of 7 Degrees, that is, the prefent Variation of the Needle, and the Line P_{q}, the prefent Magnetick Meridian: for which Variation not making any Allowance, he pofitively determines, that B has all the Land in the Triangle QP q, more than he ought to have ; and that his Ditch ought to run along the Line Pq.
'T is true indeed, if the Surveyor go the whole Surround of the Lands A, and B, he will find their figure and Contents exactly agreeable to the Map here expreffed. But then the Bearings of the Lines are all 7 Degrees different from the Bearings in the Map, and they will run in and out upon the adjacent Neighbouring Lands, and caufe endlefs differences between their Poffeffors; as is manifeft from the Figure: Wherein the prickt Lines reprefent the Difagreement in the Bearings of the Lines, protracted from the point P; and we fee A incroaching on his Neighbours on the Weftward, as he incroaches upon B, and B's Eaftward Neighbours incroaching on him, and fo forward and clear round. Whereas by a due allowance for the Variation of the Needle, all this Confufion and Difagreement is avoided, and every thing hits right.

Thus, for Intance, in the Cafe before us, knowing that the Magnetick Variation has caufed the prefent Magnetick Meridian to fall in the Line $n q \mathrm{P} s$, 7 Degrees from the North to the Weftward ; to reduce this to the Magnetick Meridian at the time of the Down Survey, I mult make the Meridian of my Map, to fall 7 Degrees to the Eaftward of my Magnetick Meridian; as we fee the Line PQ , falls 7 Degrees to the Eaftward of the Line P q.

What is here faid on fuppofition that the Magnet had no Variation at the time of the firft Survey taken, and that it had 7 Degrees Variation Weftward at the time of the fecond Survey, may eafily be accommodated to the Suppofal of any other Variations at the firft and fecond Surveys, Mutatis Mutandis, for knowing the Variations we know their Difference ; and if we know their Difference, this gives us the Angle QP q, by which we reduce them to each other. The beft way therefore to make Maps invariable, conftant, and everlafting were for the Surveyors, who ufe Magnetick Inftruments, to make always Allowance for the Magnetick Variation, and to protract and lay down their Plats by the true Meridian.

Perhaps it may be objected, That Surveys may be taken without Magnetick Inftruments, and that therefore this Errorarifing from the Magnetick Variation, and Change of the Bearing of Lines, may be avoided. To which I anfwer, firt, That granting a Survey may be taken without Magnetick Inftruments, this is nothing againlt what we have laid down, relating to Surveys that are taken with Magnetick Inftruments, as the Down Survey actually was, and moft Surveys at prefent are actually taken therewith. Secondly, though a Survey may be taken truly without Magnetick Inftruments, fo as to Thew the exact Angles and Lines of the Plat, and confequently the true contents, yet this will not give the true Bearings of the Lines, or fhew my Pofition in relation to my Neighbours,or other parts of the Country. This mult be fupplyed by the Magnet, or fomething equivalent thereto, as finding a true Meridian Line on your Land by Celeftial Obfervation. And I doubt not but the Ancient Agyptians, before the Difcovery of the Magnet, were forced to fome fuch Expedient in their Surveys,

(127)

and Applotments of Lands, between Neighbour and Neighbour; after the Yne andations of the Nile, which, we are told, gave the firft Original to Geometry and Surveging; Abfolute Neceflity and Ufe having introduced thefe, as Delight and Diverfion introduced Aftronomy amongft the Cbaldeans.

And this brings me to another Objection, which may be made againft theInftance before laid down: It may be faid, That certainly the Surveyor which B imployed was very Ignorant, who would choofe to judge of the Line P Q rather by iss bearing than by determining the point Q, by meafuring from H and G. To thisI anfwer, What if both the points H , and G , were vanifhed fince the Down Survey was taken? What if the whole Face of the Country were changed, fave only the Point P, and the Line PQ? How fhall the Surveyor then judge of the Line $\mathrm{P} Q$, but by its Bearing? That this is no- extravagant Suppofition, we have an Example in £gypt above-mentioned, where the Nile lays all flat before it, and fo uniformly covers all with Mud, that there is no diftinction. In fuch a Cafe your Bearing muft certainly help you out, there is no other way:

But I anfwer, fecondly, to fay that the Surveyor might have determined the: Point Q by Admeafurement from G and H , or any otheradjoyning noted Points, as from $\mathrm{F}, \mathrm{K}, \mathrm{I}$, \& Z . 'tis very true ; but then 'tis againft our Suppofition. I am upon fhewing an Error thatarifes from judging of the Line $P Q$ by Magnetick Bearing, and to tell me that this might be avoided by another way, is to fay nothing. I my felf fhew how it may be avoided, by allowing for the Variation; but fill it isan Error till it be avoided.

But, thirdly, if B's Surveyor do not allow for the Variation of the Needle, he will never exactly determine even the Points $\mathrm{G}, \mathrm{F}, \mathrm{H}, \mathrm{K}$, \&c: or any other Points in the Plat, butinftead thereof will fall on the Points g, h, f, k.

From what has been laid down, we may fee the abfolute neceffity of allowing for the Variation of the Magnet, in comparing old Surveys with new ones; for want of which great Difputes may arife between Neighbouring Proprietors of Lands: And it were to be wifhed, that our Honourable and Learned Judges would take this Matter into their Confideration, whenever any bufinefs of this kind comes before them.
IV. I have invented a Levell with a Tube, with Glaffes and a. Thread, hang- A neew zevel; ing between four Points, witha Weight in a Box fo contrived; that as foon by Mr: Butters
 of: Exactnefs. I am naking another which playeth on one fteel Point, flanding on a Diamond.
Y. An Account of a Book Omitted; vir. The Art of Levelling by M. Mariotte, nc 74. p, 2287, .

C H A P. III.

OPTICKS.

INew Theory abo:t Light and Colours ; by Mr.
Jf. Newton. all Newton.
:32. 80. p. 3075.

IN the Year 1666 (at which time I applyed my felf to the Grinding of Optick Glaffes of other figures than Spherical, I I procured me a Triangular Glafs Prifm, to try therewith the Celebrated Phenomena of Colours. And in order thereto, having dark:cd my Chamber, and made a fmall Hole in my window-fhuts, to ler in a convenient quantity of the Sun's Light, I placed my Primat it's entrance, that it might be thereby Refracted to the oppofite Wall. It was at Firf a very plealing Divertícment, to view the Vivid and Intenfe Colours produced thereby; but affer a while applying my felf to confider them more circumpeetly, I became furprifed, to fee them in an Oblong Form ; which, according to the received Laws of Refractions, I expected fhould have been Circular. They were terminated at the fides with ftreight Lines, but at the Ends, the decay of Light was fogradual, that it was difficult to dedetermine juftly, what was their Figure ; yet they feemed Semicircular.

Comparing the Length of this Colour'd Spectrum with its Breadth, I found it about five times greater, a Difproportion fo extravagant, that it excized me to a more than ordinary Curiofity of examining, from whence it might proceed. I could farce think, that the various thicknels of the Glafs, or the Teتmination with Shadow or Darknefs, could have any influence on Light to produce fuch an Effect ; yet I thought it not amif, firlt to examine thofe Circumitances, and fo try'd, what would happen by tranfmitting Light through parts of the Glafs of divers Thickneffes, or through Holes in the Window of divers Bigneffes, or by fetting the Prifm without, fo that the Light might pafs through it, and be Refracted, before it was terminated by the Hole: But I found none of thofe circumitances material. The faflion of the Colours was in all thefe Cafes the fame.

Then I fufpected, whether by any Unevennefs in the Glafs, or other contingent Irregularity, thefe Colours might be thus dilated. And to try this, I took another Prifm like the former, and to placed it, that the Light paffing thro' them both might be Refracted contrary ways, and fo by the latter returned into that courle from which the former had diverted it. For by this means I thought, the Regular Effects of the firlt Prifm would be deftroyed by the fecond Prifm, but the Irregular ones more augmented, by the Multiplicity of Refractions. The event was, that the Light, which by the firt Prifm was diffufed into an Oblong Form, was by the fecond reduced into an Orbicular one, with as much Regularity as when it did not at all pafs through them.
n. 83. p. 4061 .

That this Experiment may be better apprehended, let EG, defign the Window; Fig. 70. F, the Hole in it, through which the Light arrives at the Prifms ; A BC, the firt Prifm, which Refracts the Light towards P T, painting there the Colour in an Ob-

(129)

and $\alpha \beta \gamma$, the fecond Primn, which Refracts' back again the Rays to Q, whete the long Image P T is contracted into a Round one. Ifuppofe the Plane $\propto \gamma$ Parallel to BC, and $\beta \gamma$ to AC, that the Rays may be equally Refracted contrary ways in both Prifms. The Prifms alfo mult be placed very near to one another; for if their Diftance be fo great, that Colours begin to appear in the Light, before its Incidence on the fecond Prifm, thofe Colours will not be deftroyed by the contrary Refractions of that Prifn. And if a Jens be placed in the hole F, or immediarely after the Prifms, fo that its Focus be at the Image Q or P T, the Perimeter of the Image Q,and the Atraight fides of the Image P T, will become much better defined than otherwife. So that, what- 13.80. f. 3076. ever was the caufe of that Length, 'twas not any Contingent Irregularity.

I then proceeded to examine more critically, what might be effected by the difference of the Incidence of Rays coming from divers parts of the Sun; and to that end, meafured the feveral Lines and Angles, belonging to the 1 mage. Its diftance from the Hole or Prifin was 22 foot, its utmoft Lengith I $3 \frac{\frac{3}{4}}{4}$ inches; it's Breadth $2 \frac{5}{8}$; the Diameter of the Hole $\frac{1}{4}$ of an inch; the Angle which the Rays, tending towards the middle of the lmage, made with thofe Lines, in which they would have proceeded without Refraction, was 44 deg. 56 min . And the Vertical Angle of the Prifin, σ_{3} deg. 12 min . Alfo the Refractions on both fides the Prifm, that is of the Incident and Emergent Rays, were, as near as I could make them, Equal, and confequently about 54 deg. 4 min . And the Rays fell perpendicularly upon the Wall. Now fubducting the Diameter of the Hole from the Length and Breadth of the Image, there remains 13 inches in the Length, and $2 \frac{3}{8}$ the Breadth, comprehended by: thofe Rays, which paffed through the Center of the faid Hole, and confeguently the Angle of the Hole, which that Breadth fubtend: ed, was about 3 I min. anfwerable to the Sun's Diameter; but the Angle which its Length fubtended, was more than 5 fuch Diameters, namely 2 deg. 49 min .

Having made theere Obfervations, I frrt computed from them the Refractive Power of that Glafs, and found it meafured by the Ratio of the Sines, 20 to 31 ; And then by that Ratio, I computed the Refractions of two Rays flowing from oppofite parts of the Sun's Difcus, fo as to differ 3 I min. in their Obliquity of Incidence, and found, that the Emergent Rays fhould have comprehended an Angle of about 3 I min. as they did before they were Incident.

But becaule this Computation was founded on the Hypothefis of the Proportionality of the Sincs of Incidence and Refraction, which though by my own Experience I could not imagine to be fo erroneous, as to make that Angle but 3 I min. which in reality was 2 deg. 49 min. yet my Curiofity caufed me again to take my Prifm. And having placed it at my Window, as before, I obferved, that by turning it a little about its Axis to and fro, fo as to vary its obliquity to the Light, more than an Angle of 4 or 5 degrees, the Colours were not thereby fenfably Tranflated from their place on the Wall, and confequently by that Variation of Incidence, the quantity of Refraction was not fenfibly varied. By this Experiment therefore, as well as by the formerVol. I.

(130)

Computation, it was evident, that the difference of the Incidence of Rays, flowing from divers parts of the Sun, could not make them after Decuffation Diverge at a fenfibly Greater Angle, than that at which they before Converged; which being, at moft, but about 3 I , or $3^{2} \mathrm{~min}$. there fill remained fome other Caufe to be found out, from whence it could be 2 deg. 49 min.

Then I began to fufpect, whether the Rayes, after their Trajection through the Prifm, did not move in Curve Lines, and according to their more or lefs Curvity tend to divers parts of the Wall. And it increafed my fufpicion, when I remembred that I had often feen a Tennis-ball, ftruck with an Oblique Racket, defcribe fuch a Curve Line. For, a Circular as well as a Progreflive Motion being communicated to it, by that Stroke its parts on that fide, where the motions confipire, muft prefs. and beat the contiguous Air more violently than on the other, and there excite a Reluctancy and Reaction of the Air proportionably greater. And for the fame Reafon, ifthe Rays of Light fhould poffibly be Globular Bodies, and by their Oblique paffage, out of one Medium into another, acquire a Circulating Motion, they ought to feel the greater reftftance from the ambient Æther, on that fide, where the motions confpire, and thence be continually bowed to the other. But notwithftanding this plaufible ground of fufpicion, when I came to examine it, I could obferve no fuch Curvity in them. And befides (which was enough for my purpofe) I obferved, that the Difference 'twixt the Length of the Image, and the Diameter of the Hole, through which the Light was tranfnitted, was proportionable to to their Diftance.

The gradual removal of thefe fufpicions at Length led me to the Experimentum Crucis, which was this: I took two boards, and placed one of them clofe bechind the Prifm at the Window, fo that the Light might pals through a fmall Hole, made in it for the purpofe, and fall on the other board, which I placed at about i2 feet diftance, having firf made a fmall hole in it alfo, for fome of that Incident Light to pafs through. .Then I placed another Prifm behind this fecond board, fo that the Light Trajected through both the boards, might pafs through that alfo, and be again Refracted before it arrived at the Wall. This done, I took the firt Prifm in my hand, and turned it to and fro flowly about its Axis, fomuch as to make the feveral parts of the lmage, caft on the fecund board, fucceflively pafs through the Hole in it, that I might obferve to what places on the Wall the fecond Prifm would Refract them. And 1 faw by the Variation of thofe places, that the Light, tending to that end of the Image, towards which the Refraction of the firt Prifm was made, did in the fecond Prifm fuffer a Refraction confiderably greater than the Light tending to the other end. And fothe true caufe of the Length of that Image was detected to be no other, than that Light is not fimilar or Homogenieal, but Confifts of Difform Rays, fome of which are more Refrangible than atbers; fo that: without any Difference in their Incidence on the fame Medium, fome fhall be more Refracted than others: and therefore that, according to their partioular: Degroes of Refrangibility, they were tranfmitted through the Prifm to diver's parts of the oppofite Wall.

(131)

I fhall now proceed to acquaint you with another more Notable Difformity in its Rays, wherein the Origin of Colours is unfolded: concerning which I fhall lay down the Doctrine firt, and then for its Examination give you ans Inftance or two of the Experiments, as a Specimen of the reft.

The DoEtrine you will find comprehended and illuftrated in the following Propofitions.
I. As the Rays of Light differ in Degrees of Refrangibility, to they alfo differ in their difpofition to exhibit this or that particular Colour. Colours are not Qualifications of Light, deriv'd from Refractions, or Reflections of N:itural Bodies (as 'tis generally believed) but Original and Connate Properties, which in divers Rays are divers. Some Rays are difpofed to exhibit a Red Colour and no other; fome 2 Yellow and no other, fome a Green and no other, and fo of the reft. Nor are there only Rays proper and paricular to the more Emiment Colours, but even to all their Intermediate gradations.
2. To the fame degree of Refrangibility ever belongs the fame Colour, and to the fame Colour ever belongs the fame degree of Refrangibility. The lealt Reffangible Rays are all difpofed to exhibit a Red Colour, and contrarily thofe Rays which are difpofed to exhibit a Red Colour are all the leaft Refrangible: So the moft Refrangible Rays are all difpofed to exhibit a deep Violet Colour, and contrarily thofe which are apt to exhibit fuch a Violet Colour are all the moft Refrangible. And fo to all the Intermediate Colours in a continued Series belong Intermediate Degrees of Refrangibility. And this Analogy 'twixt Colours and Refrangibibility is very preciic and frict ; the Rays always either exactly agreeing in both, or proportionally difagreeing in buth.
3. The Species of Colour, and Degree of Refrangibility proper to any particular fort of Rays, is not Mutable by Refraction, nor by Reflection from Na tural Bodies, nor by any other caufe that I could yet obferve, When any one fort of Rays hath beeni well parted from thofe of other kinds, it hath afterwards obftinately retained its Colour, notwithftanding my utmoft endeavours to change it. I have Refracted it with Prifms, and Reflected it with Bodies, which in day light were of other Colours ; I have intercepted it with the Co loured film of Air, interceeding two compreffed Plates of Giafs; tranfmitted it through Coloured Mediums, and thro' Mediums Irradiated with other forts, of Rays, and diverlly terminated it; and yet could never produce any new Colour out of it. It would by contrating or dilating become more brisk, or faint, and by the lofs of many Rays, in tome Cafes very obfcure and dark; but I could never fee it chang d in Specie.
4. Yet feeming tranfmutations of Colours may be made, where there is any mixture of divers forts of Rays. For in fuch Mixtures, the component Colours appear not, but, by their mutual allaying each other, conftitute a midling Colour, And therefore, if by Refraction, or any other of the aforefaid Caiufes, the Difform Rays, latent in fuch a mixture, be feparated, there fhall Emerge Colours differear from the Colour of the Conpofition. Which Co lours are not New generated, but only made apparent by being parted; For:
if they be again intirety mixt and blended together, they will again compofe that Colour, which they did before Separation. And for the fame reafon, Tranfmutations made by the Convening of divers Colours are not real ; for when the difform Rays are again fevered, they will exhibit the very fame Colours which they did before they enter'd the Compofition; as you fee Blue and Yellow Powders, when finely mix'd, appear to the naked Eye, Green, and yet the Colours of the component Corpufcles are not thereby really Tranfmuted, but only blended. For when viewed with a good. Microfecope, they fill appear Blue and Yellow interfperfedly.
5.:There are therefore two forts of Colours. The one Original and Simple, the other Compounded of thefe.. The Original or Primary Colours are, Red, Ycllow, Green, Blue, and a Violet-Purple, together with Orange, Indico, and an indefinite variety of Intermediate gradations.
6. The fame Colours in Specie with thefe Primary ones, may be alfo produced by Compofition. For a mixture of Yellow and Blue makes Green; of Red and Yellow makes Orange; of Orange and Yellowifh Green makes Yellow. And in general, if any two Colours be mixed, which in the Series of thofe generated by the Prifm are not too far diftant one from another, they by their mutual Alloy Compound that Colour, which in the faid Series appeareth in the midway between them. But thofe which are fituated at too great a diftance, do not fo. Orange and Indico produce not the intermediate Green, nor Scarlet and Green the Intermediate Yélow.
7. But the moft furprifing, and wonderful Compofition was that of Whitenefs. There is no one fort of Rays which alone can exhibit this. 'Tis ever Compounded, and to its Compofition, are requifite all the aforefaid Priniary Colours, mix'd in a due Proportion. I have oftern with Admiration beheld, that all the Culours of the Prifm being made to Converge, and thereby to be again mixed, as they were in the Light before it was Incident upon the Prifm, reproduced Light, intirely and perfectly White, and-not at all. fenfibly dif. fering from a direct Light of the Sun, unlefs when the Glaffes, I ufed, were. not fufficiently clear; for then they would a little incline it to their Colour.
8. Hence therefore it comes to pafs; that-Whitenefs is the ufual Colour of Light; for Light is a confufed aggregate of Rays indued with all fort of Colours; as they are promifcuoufly darted from the various parts of Lu-. minous Bodies. And of fuch a confufed aggregate, as I faid, is generattd Whitenefs, if there be a due Proportion of the Ingredients; but if any one predominate, the Light muft incline to that Colour; as it happens in the Blue Flame of Brimfone; the Yellow Flame of a Candle; and the various Colours of the Fixed Stars.
9. Thefe things confidered, the manner how Colours are produced by the Prifm is evident. For, of the Rays, conftituting the incident Light, fince thofe which differ in Colour proportionally differ in Refrangibility, they by their unequal Refractions muft be fevered and difperfed into an Oblong Form in an orderly fucceffion, from the leaft Refracted Scarlet, to the moft RefraEted Violet. And for the fame Reafon it is, that Objects, when looked upon thro', a Prifma, appear Colouredo For the Difform Rays, by their unequal

Refraes

(133)

Refractions, are made to Diverge towards feveral parts of the Retina, and there exprefs the Images of things Coloured, as in the former cafe they did the Sun's Image upon a Wall. And by this Inequality of Refractions, they become not only Coloured, but alfo very Confufed and Indiftinct.
so. Why the Colours of the Rainbow appear in falling drops of Rain, is alfo from hence evident. Fur thofe drcps which Refract the Rays, difpofed to appear Purple, in greateft quantity to the Spectator’s Eye, Refract tho Rays of other forts fo much lefs, as to make them pafs befide it; and fuche are the drops on the.infide of the Primary Bow, and on the outfide of the Secundary or Exterior one. So thofedrops, which Refract in greateft plenty the Rays, apt to appear Red, toward.the Spectator's Eye, Refract thofe of other fortsfo. much more, as to make them pafs befide it; and fuch are the drops on the Exterior part of the Primary, and Interiour part of the Secondary Bow...
11. The odd Phxnomena of an Infufion of Lignum Nepbriticum, Leaf-: Gold, fragments of Coloured Glafs, and fome other tranfparently Coloureds: Bodies, appearing in one Pofition of one Colour, and of another in another, ${ }^{2}$. are on the efe grounds no longer Riddles. For thofe are Subftances apt to Rc= flect one fort of Light, and uranfmit mother; as may be feen in a dark Room, by Illuminating them with fimilar or uncompounded. Light. For then theyr: appear of that Colour only, with which they are illuminated, but yet in one Pofition more Vivid and Luminous than in another, accerdingly as they are difpofed more or lefs to Reflect or Tranfmit the incident Colour:
12. From herice alfo is manifeft the reafon of an unexpected Experinients: which Mr. Hook, fomewhere in his Microoraplyy, relates to have made with two Wedg-like Tranfparent Veffels, filled the one with a Red, the other with a. Blue Liquor: namely, that though they weie feverally Tranfparent enough ${ }_{2}$, yet both together became Opake; For if one tranfmitted only Red, and the other only Blue, no Rays cotuld pals thro' both.
13. I might add more Inftances of this Nature, but I thall conclude witho this General one, That the Colours of all Natural Bodies have no other Ori* gin than this, that they are varioully qualified, to Refleet one fort of Lights. in. greater plenty than another.: And this I have Experimented in a dark Room, by illuminating thofe. Bodies with uncompsunded Light of divers Cg. lours. For by that means any Body may be made to appear of any Colour: They have there no appropriate Colour, but ever appear of the Colour of the: Light caft upon them, but yet with this difference, that they are moft brisk. and vivid in the Light of their own Day light. Colour. Minium appeareth theres of any. Colour indifferently, ... with which it is illuftrated, but yet moft Lumi=? nous in Red; and fo Bife appeareth indifferently of any Colour, with which it'san illuftrated, but yet moft Luminous in Blue.- And therefore Minium Reflectethy Rays of any Colour, but moft copioufly thofe endowed with Red; and confe-s quently when illuftrated with Day-light; that is, with all forts of Rays promif: cuoully blended, thofequalified with Red fhall abound moft in the Reflected Lightit and by their prevalence caufe it to appear. of that Culour. And for the fame Reafon.Bife, Reflecting Blue moft copioufly, thall appear Blue by, the excefs of thofef Rays in its Reflected Light; andthe like of other. Bodies, 3 . And that this is the in

(134)

the and Adequate caufe of their Colours, is manifeft, becaufe they have no Power to change or alter the Colours of any fort of Rays incident apart, but put on all Colours indifferently, with which they are enlightened.

Thefe things being fo, it can be no longer difiputed, whether there be Colours in the dark, nor whether they be the qualities of the Objects we fee, no nor perhaps, whether Light be a Body. For, fince Colours are the Qualities of Light, having its Rays for their intire and immediate Subject, how can we think thofe Rays Qualities alfo, unk"is one Qualiry may be the Subject of, and fuftain another; which in effect is to call it Subftance. We fhould not know Bodies for Subftances, were it not for their Cenfible Qualities, and the Principal of thofe being now found due to fomething clfe, we have as good Reafon to believe that to bea Subfance alfo.

Befides, Who ever thought anyt Quality to be a Heterogeneous Aggregate, fuch as Light is difcovered to be? But to determine more abfolutely, what Light is, after what manmer Refracted, and by what Modes or Actions it producerh in our Minds the Phantafms of Colours, is not fo eafie : And I fhall not mingle Conjectures with Certainties.

Reviewing what I have written, I fee the difcourfe it felf will lead to divers Experiments fufficient for its Examination: And therefore I fhall not trouble you further than to defcribe one of thofe, which I have already infinuated.

In a darkened Room make a Hole in the Shut of a Window, whofe Diameter may conveniently beabout a third part of an Inch, to admit a convenient quantity of the Sun's Light: And there place a clear and colourlefs Prifm, to Reffact the entring Light towards the further part of the Room, which, as I faid, will thereby be diffufed into an Oblong Coloured lmage. Then place a Lens of about 3 foot Radius (fuppofe a broad Object Glaifs of a three foot Telefcope,) at the diftance of about four or five foot from thence, through which all thofe Colours may at once be tranfmitted, and made by its Refraction to convene at a further diftance of about 10 or 12 feet. If at that diftance you intercept this light with a fheet of white Paper, you will fee the Colours converted into Whitenefs again by being mingled. But it is requifite, that the Prifm and Lens be placed fteddy, and that the Paper, on which the Colours are caft, be moved to and fro; for by fuch motion you will not only find, at what diftance the Whitenefs is moft perfect, but alfo fee, how the Colours gradually convene, and vanifh into Whitenefs, and afterwards having croffed one another in that place where they compound Whitenefs, are again diffipated, and fevered, and in an inverted order retain the fame Colours, which they had before they entred the compofition. You may alfo fee, that if any of the Colours at the Lens be intercepted, the Whitenels will be changed into the other Colours. And therefore, that the compofition of Whitenefs be perfect, care muit be taken, that none of the Colours fall befides the Lens.

Fig. 71. Thus, in the defign of this Experiment, A B C, expreffeth the Prifm fet endwife to :fight, clofe by the Hole F, of the Window E G. Its Vertical Angle ACB , may conveniently be about 60 degrees: MN , defigneth the Lens. Its breadth $2 \frac{1}{2}$ or three inches. SF, one of the Straight Lines, in which Difform Rays may be conceived to flow fucceflively from the Sun. $F \vec{P}$, and $F R$, two

(135)

of thofe Rays unequally Refracted, which the Lens makes to Converge towards Q2, and after Decuffation to Diverge again. And HI, the Paper, at divers diances, on which the Colours are projected : Which in Q, conftitute Whitenefs, but are Red and Yellow in R, r, and ρ, and Blue and Purple in P , p, and π.

If you proceed further to try the impofibility of Changing any Uncompounded Colour (which I have afferted in the third and thirteenth Propofitions) 'tis requifite that the Room be made very dark, leaft any fcattering light, mixing with the Colour, difturb and allay it, and render it Compound, contrary to the defign of the Experiment. 'Tis alio requifite, that there be a perfecter Separation of the Colours, than, after the manner above defcribed, can be made by the Refraction of one fingle Prifm; and how to make fuch further Separations, will fiarce be difficult to them, that confider the difcovered Laws of Refractions. But if tryal fhall be made with Colours not throughly feparated, there muft be allowed changes proportionable to the mixture. Thus if Compound Yellow Light fall upon Blue Bife, the Bife will not appear perfectly Yellow, but rather Green ; becaufe there are in the Yellow mixture many Rays indued with Green, and Green being lefs renotefrom the uftal Blue Colour of Bife than Yellow, is the more copioully reflected by it.

In like manner, if any one of the Prifmatick Colours, fuppofe Red, bee intercepted, on defign to try the afferted impolibility of reproducing that Colour out of the others which are pretermitted, 'tis neceffary, either that the Colours be very well parted before the Red be intercepted, or that together with the Red the neighbouring Colours, into which any Red is fecretly difperfed, (that is, the Yellow, and perhaps Green too) be intercepted; or elfe, that allowance be made for the emerging of fo much Red out of the YellowGreen, as may poffibly have been diffufed, and fcatteringly blended in thofe Colours. And if thefe things be obferved; the new production of Red; or any intercepted Colour, will be found impoffible.
II. I. To contract the Beams of the Sun without the Hole of the Window, and to place the Prifm between the Focus of the Lens and the Hole.

Some Experit ments propofed in relation to this Theory. n. 83. p. 4059. from the middle; or wirh moveable Rings, to fee, how that will vary or divide the Length of the Figure.
3. To move the Prifm fo, as the End may turn about, the Middle being Steddy.
4. To move the Prifm by floving it, till firft the one fide, then the mid-: dle, then the other fide pafs nver the Hole, obferving the fame Parallelifm.
2. I fuppofe the defign of the Propofer of thefe Experiments is, to have Obfervations on their events exprefled, with fuch obfervations as may occur concerning them. ${ }_{\text {this Propofal by }}^{\text {Mr }}$ N Touching the fivf, Ihave obferved, that the Solar Image falling on a Paper n. $83 . p \cdot 4060$. placed at the Focus of the Lens, was by the interpofed Prifm drawn out in length proportional to the Prifm's Refraction or diftance from that Focus. And the chief obfervablehere, which I remember, was, that the Streight Edges of the Oblong Image were difincter than they would have been withour the Lens.

Con-

(136)

Confidering that the Rays coming from the Planet Venus, are much lefs inclined one to another, than thofe, which come from the oppofite parts of the Sun's difque; I once tryed an Experiment or two with her Light. And 'to make it fufficiently ftrong, I found it neceffary to collect it firt by a broad Lens, and then interpofing a Prifm between the Lens and its Focus, at luch diftance, that all the Light might pafs through the Prifm; I found the Focus, which before appeared like a Lucid point, to be drawn out into a Long Splendid Line by the Prifms Refraction.

Concerning the Second Experiment, I have occafionally obferved, that by covering both ends of the Prifin with Paper at feveral diftances from the middle, the Breadth of the Solar Image will be increafed or diminifhed as much, as is the Aperture of the Prifn, without any Variation of the Length: Or, if the Aperture be augmented on all fides, the Image on all fides, will be os much and no more augnented.

Of the Third Experiment I have occafion to feak in my anfwer to another Petion; where you will find the Effects of two Prifns, in all crofs pofitions of one to another, defribed. But if one Primm alone be turned about, the Coloured Image will only be tranflated from place to place, defcribing a Cir-- cle, or fome other Conick Section on the Wall, on which it is projected, without fuffering any alteration in its fhape, unlefs fuch as may arife from the obliquity of the Wall, or cafual change of the Prifms obliquity to the Sun's Rays.

The effect of the Fourth Experiment Ihave already infinuated, t tlling you that Light paining through parts of the Prifm of divers thickneffes, did ftill exhibit the fame Phenomena.

The Genuine Method of examining this Theary; by Mr. Newtoll. 1.85 P. 5004.
III. I cannot think it effectual for determining truth, to examine the feveral ways by which Phænomena may be explained, unlefs where there can be a perfect Enumeration of all thofe ways. You know, the proper Method for inquiring after the Properties of things, is to deduce them from Experiments. And I told you, that the Theory which I propounded, was evinced to me, not by inferring 'tis thus becaufe not othermife, that is, not by deducing it only from a confutation of contrary fuppofitions, but by deriving it from Experiments concluding pofitively and directly. The way therefore to examine it is, by confidering, whether the Experiments which I propound do prove thofe parts of the Theory, to which they are applyed; or by profecuting other: Experiments which the Theory may fuggeft for its examination. And this I would have done in a due Method; the Laws of Refraction being throughly inquired into and determined, before the Nature of Colours be taken into confideration. It may not be amifs to proceed according to the Series of thefe Queries; which I could wifh were determined by the event of propen: Experiments; declared by thofe that may have the Curiofity to examine them.
I. Whet ter Rays, that are alike Incident on the fame Medium, have vine:qual Refractions; and how great are the Inequalities of their Refractions at any Incidence ?

(137)

2. What is the Law according to which each Ray is more or Ic es Refracted; whether it be that the fame Ray is ever Refracted according to the fame $R_{n} n^{-}$ tho of the Sines of Incidence and Refraction; and divers Rays, according to divers Ratio's; or that the Refraction of each Ray is greater or left without any certain Rule? That is, whether each Ray have a certain degree of Refrangibility, according to which its Refraction is performed; or is Refracted without that Regularity?
3. Whether Rays, which are endued with particular degrees of Refrangibi titty, when they are by any means feparated, have particular Colours cenffantiy belonging to them; viz. the leaf Refrangible, Scarlet ; the mort Refrangible, deep Violet ; the middle, Sea-Green ; and others, other Colours? And on the contrary ?
4. Whether the Colour of any fort of Rays nest may be changed by Refraction?
5. Whether Colours by coalcfcing do really Change one another to produce a New Colour, or produce it by Mixing only?
6. Whether a due Mixture of Rays, indued with all variety of Colours, produce Light perfectly like that of the Sun, and which hathall the fame properties, and exhibits the fame Phenomena?
7. Whether the Component Colours of each mixture be really Changed; or be only Separated, when from that Mixture various Colours are produced again by Refraction?
8. Whether there be any other Colours produced by Refraction than fuch, as ought to refult from the Colours belonging to the diver fy Refrangible Rays, by their being feparated or mixed by that Refraction?

To determine by Experiments thefe and fuch like Queries, which involve the propounded Theory, lems the mort proper and direct way to a Conclufion. And therefore I could with all Objections were fufpended, taken from Hyporhefes or any other heads than thee two; Of fhewing the Infufticiency of Experiments to determine there Queries, or prove any other parts of my Theory, by affigning the flaws and defects in my Conclufions drawn from them; or of producing other Experiments which directly contradict me, if any fuch may feem to occur. For if the Experiments, which I urge, be Defective, it cannot be difficult to Thew the Defects; but if Valid, then by proving the Theory they mut render all Objections Invalid.
IV. I. Iftec tam extraordinaria Hypothefis, que Dioptric fundamenta evertit, Animadycrfions praxefque hactenus inftitutas inutiles reddit, tot nititur flo Experiments Prif- upon this Thomaris Cryftallini, obi Radij per foramen feneftre infra obfcurum Cubi- ry; by R. P. colum ingrefli, ac deinde in Parietem impacti, tut in charta recepti, non in Paddies. no 84. rotundum conformati, ut Cl. Newtono, ad Regulas Refractionum receptas at- $\%$-4087. tendenti, expectandum videbatur, fed in Oblongam figuram extenfi apparurunt: Unde conclufit, Oblongam ejufmodi figuram ex co effe, quod nonnulli Radij minus, nonnulli mages Refringerentur.

Sod mini quidem videtur juxta communes \& receptas Dioptric Leges figuram flam, non Rotundam, fed Oblongam eff oportere. Cum anim Radii Vol. I.

$\left(13^{8}\right)$

ex oppofitis difci Solaris partibus procedentes, variam habeant in ipfo tranfitux Prifmatis Inclinationem, variè quoque Refringi debent; ut cùm ùnorum Inclinatio 30 faltem minutis major fit Inclinatione aliorum, major quoque evadat illorum Refractio:

Igitur Radij oppofiti, ex altera fuperficie Prifmatis Emergentes magis Divergunt \& Divaricantur, quàm fi nullatenus, aut faltem æqualiter, omnes Infracti procefliffent. Refractio autem ifta Radiorum fit folummodo versùs càs partes quxe fingi poffunt in planis ad Axem Prifmatis rectis; nulla autem Refractionis inæqualitas contingit versùs eas partes, quæ intelliguntur in planis Axi parallelis; ut facile demonftrari poteft: Superficies enim duæ Primatis cenferi poffunt inter fe Parallelæ, ratione habita ad. Inclinationem Axis, cùm. fingulx ipfi Axi Parallelæ fint. Refractio autem per duas Parallelas planas fuperficies nulla consputatur, quia quantum à prima fuperficie Radius in unam partem torquetur, tantum ab altera in oppolitam partem detorquetur.- Igitur cum Radij. Solares è foramine per Prifma tranfmidi ad latera quidem non frangantur, procedunt ulterius, perinde ac fi nulla Prifnatis fuperficies obftitiffet, (habitâ, inquam, ratione folum ad latcralem illam Divaricationem;) at verò cum ijdem Radij ad fuperiores feu inferiores partes, alij. quidem magis, alij verò minus, utpote inæqualiter Inclinati, Infringantur; neceffe eft eos magis inter fe Divaricari, adeóque \& in Longiorem Figuran extendi..

Quin fi Calculus ritè obeatur; ut Radij laterales inventi funt à Cl. Nentono in ea latitutudine quæ fubtendit Arcum 3 I min. qui Arcus refonder-Diamerro Soliş; ita nullus dubito, quin illa inventa quoque Altitudo Imaginis quæ 2 gr . \&. 49 min. fubtendit, fit illa ipfa qux eidem Diametro Solis poft inxquales Refractiones in illo ipfo cafu réfpondeat.

Etrieverâ, pofito Prifmate ABC, cujus Angulus A fit 60 gr. Radio DE, qui faciàt cum perpendiculari EH, Angulum-30 grad: invenio illum, dum Emergit per F G, facere cum perpendiculari FI Angulum 76 gr .22 min . At vero pofito alio Radio d E; qui cum perpendiculari $E H$, faciat Angulum 29 gr. $3 \circ$ minn. invenio illum, dum Emergit per $f g$, facere cum perpendiculari $f i$, Angulum $78 \mathrm{gr}: 45 \mathrm{~min}$. Unde ifti duo Radij D E, $d \mathrm{E}$, qui procedere fuppomuntur ex oppofitis partibus dici Solaris, faciuntque inter fe Angulum 30 min. ijdem dum Emergunt per Lineas $F g, f g$, ita Divergunt ut conítituant Angulum inter fe .2 gr .23 min . Quod fi duo alij Radij affumerentur magis accedentes ad perpendicularem $E H,(v . g$. qui cum eadem perpendiculari facerent, unus quidamı Angulum, 29 gr. 30 min. alter verò, 29 gr. o min.) tunc ij dem Radij emergentes niagis adhuc Divergerent, conftituerentque Angulum majorem ctiam aliquando plus quàm trium Graduuna:- Et preterea augetur ulterius ilta intercapedo Refractorum Radiorum ex eo, quòd duo Radij DE, $d \mathrm{E}$, concurrentes in E , illico incipiunt Divaricari, atque impingunt in duo puncta disjuncta alterius fuperficiei, nempe in F \& in f : Quapropter non fufficit ad obeundum ritè Calculum, ex Longitudine Imaginis impactæ in chartam fubtrahére magnitudinem Foraminis Feneftre; quandoquidem ettiam pofito Foramine Indivifibili E, adhuc fieret aliud veluti Foramen Latum in lia fuperficie, nempe $F f$

Quod etiam vocat Experimentum Crucin nihi quidem videtur quadrare cum vulgaribus \& receptis Refractionum Regulis. Nam, ut modo oftendi, Radii Solares qui accedentes \& Convergentes faciunt Angulum 30 min. Egredientes deinde ct:am poft Indivifibile Foramen, Divergunt in Angulum duórum \& trium Graduum. Quapropter non mirum, fi ifti Radii, figillatim inz pingentes in alterum Prifma, perexiguo item apertum Foramine, inxqualite: Infringantur, cum fit inæqualis illorum Inclinatio. Neque refert, quod iti Radii attollantur aut deprimantur per converfionem primi Prifnatis, nianent te immoto fecundo Prifnate, (quod tamen in omil caft feri non poteff) rel quod manente primo Immobili, fecundum moveatur, ut fucceftive Radios Coloratos totius Imaginis excipiat, \& per proprium Foramentranfinitat; utrolibet enim modo neceffe eft Radios illos extremos, hoc eft, Rubrum \& Violaceum, incidere in fecundum Prifma fub inæquali Angulo, adeoque eorurdem Refractionem efie inæqualem, ut Violaceorum fit major:

Cum igitur manifefta caufa appareat Oblongæ cjufnodi Figurz Radiorum, caufaque illa ex ipfa natura Refractionis oriatur; non videtur neceffe recurs rere ad aliam Hypothefin, aut admittere diverfam illan Radiorum Frangibilitatem.

Quod deinde excogitavit de Coloribus, illud quidem egregie confequitur ex procedente Hypothefi ; veruntamen nonnullas \& ipfum patitur difficultates: Nam quod ait, nulfum Colorem, fed potius Candorem appareie, ubi omnes omnium Colorum Radii promícuè confunduntur, id verò rö̀n videtur conforme omnibus Phænomenis. Certè quæ Variationes cernuntui in perniftione diverforum corporum, diverfis Coloribus imbutorum, exdem omninó obfervantur in permiftione diverforum Radiorum diverfis item Coloribus inbutorum : Atque optimè ipfe advertit, quòd quemadmodum ex Flavo \&iC Cæuleo corpore exfurgit Viridis Color; ita ex Flavo \& Ceruleo Radio Viridts item Color efficitur: Quare fi omnes omnium Colorum Radii-finul confunt derentur, neceffe eflet in ifta Hypothefi, ut ille Color appareret, quai revera'ap paret in permiftione omnium Pig̈mentorum. Atq̆ui fi ifta, hoc eft, Rubīum fimul ${ }^{3}$ \& Flavum unàcum Cxrulee \& Purpureo alifque omnbus, fi qua fint, cointerantur \& confundantur, non jam Candidus, fed Obfcurus \& Şatur Color exfurget: Ergo fimilis Color appareret in Lumine Ordinario, quod conftaret ex aggregatione onnium Colorum.

Præterea nihil primo afpectu magis Ingeniofum magifque aptum videtur, quàm quod ait circa Experimentum Acutiffimi Hook ii , quo duo diverf: Liquores, quorum alter Rubeus, alter Cxuleus, uterque: figillatim Pellucidus, fimul permixti, Opaci evadunt. Id autem ait Clarifilmis Nemoto nus ex eo oriri, quòd unus Liquor folos Rubeos natus fit tranfmittere, alter verò folos 'Flavos; unde permifti nullos tranfmittent: Hoc, inquam, videtur ftatim valdè appofitum; nihilominus tamen ex eo conficéretur, quèd fimilisi opacitas fieret in permiftione quorumcunque Liquorum qui effent diverfi Coloris; quod tamen verum non eft:
2. Refractiones a diverfa pare Pefimatis quantum potefe Incequales flatuit, wanfwed by M. R. P. Pardics, cum tamen ego tum in Expermentis, tum in Calculo de Ex-Newton. n. 84. perimentis iftis inito, Æquales adhibuerim. Sit autem ABC, Prifmatis Sec- ${ }^{\text {p. } 40910}$

Fig. 73.

(140)

Ctio ad Axem ejus Perpendicularis, FL, \& KG, Radii duo in \bar{x} (medio Foraminis) decuffantes, \& in Prifma illud Incidentes ad G, \& L; fintque corum Refracti GH , \& $\mathrm{L} m$, ac denuo HI, \& $m n$. Et cùm Refractiones ad Latus AC, æqualcs effe Refractionibus ad Latus BC, quam proximè fuppofuerim ; $\mathrm{f}_{1} \mathrm{AC}$, \& BC , ftatuantur xqualia, fimilis erit Radiorum GH , \& $\mathrm{L} m$, ad A B, bafin Prifmatis Inclinatio; adeoque Ang. CL $m=$ Ang. CHG, \& Ang. $\mathrm{C}_{m} \mathrm{~L}=$ Ang; CGH. Quare etiam Refractiones in. G , \& m, x rquales erunt, ut \& in L, \& H; atque adeò Ang. K G A = Ang. $n m \mathrm{~B}, 8 \approx$ Ang.E L. $\mathrm{A}=$ Ang. BHI ; \& proinde Refractorum HI; \& $m n$, eadem erit ad invicen Inclinatio ac eft. Incidentium Radiorum F L, \& K G. Sit ergo Angulus $\mathrm{F} x \mathrm{~K}, 30$ min. x qualis nempe Solari Diametro, \& erit Angulus, quem H1, \& $m n$, comprehendunt, etiam 30 min. fimodo Kadii F L, \& K G, æqualiter Refrangibiles ftatuantur. At mihi ExperientiprodiitAngulus:ille circiter 2 gr. 49 min . quem Radius. H I , extremum Violaceum Colorem, \& $m \cdot n$, Cxrulcum exhibens, conftituêre; ae proinde Radios illos diverfimodè Refrangibiles effe, five Refractiones fecundùm Dipparem finuums Incidentix \&r Refractionis Rationem peragi neceffariò concedendum eft.

Addit preterea R. P. quèd non fufficit ad obeundum riiè Calculum, ex. Longitudine Imaginis impacta in Chartam fubtrahere magnitudinem Foraminis Feneftræ; quandoquidem etiam pofito Foramine Indivifibili, adhuc fieret aliud veluti Foramen Latum in pofteriori fuperficie Prifmatis. Mihi tamen videtur, his non obftantibus, quod Refraetiones Radiorum, in anteriori æquè ac in pofteriorifuperficie Prifmatis decuffantium, ex adhibitis Principiis poffint ritè computari. Sed firres fecis effet latituda hiatûs in pofteriori fuperficie, quod: ad infar Foraminis eft, haud efficeret errorem duorum minutorum fecundorum; \& in rebus practicis non operæ pretium ducoad minutias iftas atteadere.

Illi infuper Experimento, guod Cyucis vocaveram, nihil adverfatur R. P. dum contendit, Inæquales Radiorum, diverfis Coloribus imbutorum, RefraCtiones ex Inæqualibus Incidentiis effectas fuiffe. Nam Kadiis per duo admodum perva, ab invicem diftantia, \& immota Foramina, tranfeuntibus, Incidentia illx, prout ergo Experimentum inftitui, onaninà Æquales erant, \& tamen Refractiones liquidò Inæquales. Sin ille de Experimentis noftris dubitet, oro, ut Radiorum diverfis Coloribus preditorum Refractiones ex: Incidentiis paribus menfuret, \& fentiet Inæquales effe. Si modus ille, quem: ego ad hoc negotium adhibui minùs placeat (quo tamen nullus poteft effe Luculentior,) facile of alios excogitare; ficut \& alios ipfe haud paucos cum fructu, expertus fum.

Contra Theoriam de Coloribus objicitur, quòd Pulveres diverforum Colorumn. permitt, non Candidum fed Subobfcurum \& Fufcum Colorem exhibent.: Mihi verò Albus, Niger, \&s omnes intermedii Eufci, qui ab Albo \&:Nigro permiftis componi polfunt, non fpecie Coloris fed Quantitate Lucis tantùm differre videntur. Et cùm in miftione-Pigmentorum, fingula corpufcula non niff proprium Colorem Reflectant, adeoque maxima pars Lucis incidentis fupprimatur \& retineatur; Lux Reflexa Subobfcura evadet, \&e quali cum tenebris permifta, adeo ut non intenfum Alborem, fẹd qualem Nigredinis permiftio conficits, hoc ef Eufcum, exhibere debeat:

(141)

Objicitur deinde, quòd à Liquoribus quibufcunque diverfi Coloris in eodem vafe commiftis, xquè ac in diverfis valis contentis, opacitas oriri debe ; quod tamen, ait, verum non effe. Sed non video confequentiam. Nam plurimi Liquores agunt in fe invicem \& novam fibi mutùo partium contexturam fecretò inducunt; unde Opaci, Diaphani; vel variis Coloribus, ex Coloribus permiftorum nullo modo. oriundis, preediti evadere poffunt. Et hâc de cauf̂̂̉ Experimenta hujufmodi miùs apta femper exitimavi, à quibus conclufiones deduci poffint. Subnoto tamen, quòd ad hoc Experimentum requiruntur Liquores faturis \& intenfis Coloribus: proditi, qui: per paucos nifı proprii Coloris Radios tranfmittant; quales rarò occurrunt, ut videbitur illuminando Liquores cum diverfis Coloribus Prifmaticis in Obfcurato Cubiculo. Nam pauci reperientur, qui in propriis Coloribus fatis Diaphani appareant, inque alienis Opaci. Convenit preterea, ut adhibiti Colores fint inter fe oppofiri, quales exifimo frive Rubrum \& Cærule um, vel Flavum \& Violaceum, vel etiam Viridem \& Purpureum illum qui: Coccineo affinis eft: Et ex hujofmodi Liquoribus nonnulli'(quorum partes tingentes non congredientur) fortaffe permifti evadent Opaciores. Sed de eventu nihil funr follicitus, tum quod luculentius eft Experimentum in Liquoribus; feorfim exiftentibus, tum quod Experimentum illud (ficut \&e Iridis,: Tincturæ Nephriticx, \& aliorum. Corporum naturalium Phrenomena) non ad Probandam fed ad Illufrrandam tantưm Doetrinant propofuii

Quod R. P. Theoriam noftam Flypothefin vocat, amice habeo, fiquidem ipfr nondum conftet. Sed alin tamen confilio propofueram, \&o nihil aliud continere videtur quiàm proprietates qualdam Lucis, quas jam inventas pro-bare haud difficile exiftimo, 2e quas fi non veras effe cognofeeram, pro futilis \&t inani fpeculazione mallem repudiare, quàm pro mea Hypothecil agnofcere. Some furbier
3. In ea Hypothefit, quam fule explicat nofter Grimaldus, in qua fupponitur objeftions by Lumen effe Subftantia quxdam rapidifimè mota, poffer fieri aliqua diffufio n, 85. $7 \cdot 5012$. Luminis poft tranfitum Foraminis, \& decuffationem Radiorum ; Item in ea: Hypotofofi, qua Lumen ponitur progredi per certas quafdam Materix Subtilis Undulationes, ut explicat Subrilitimus Hookius poffunt explicari Colores per: certam quandam diffufionom atque Expanfionem: Vindilationum, que fiat ad late ra Radiorum ultra Forameng ipfb Contario ipfaque niaterice sontinuatione. Certé ego talem adhibeo. Hypothefin in Differtatione de Motu τ nidulationisju qux efz: Sexta Pars meorum Mechanicorum; ut ponam, Colores iftos apparentes fieriex fola illa Communicatione Motionis, qua ab Undulationibus directè procedentibus ad latera effundatur: Ut, fi Radii intrantes per Fommen as progrediantur versus b, Undulationes quiden directè terminari deberent (habendo rationem ad motum Rectum \& Naturalem) ad lineam rectam nb; nihilominus tamen, propter: continuitaten materix; fit aliqua communicatio commotionis verfus Latera c.c, ubi tremula quædam \& crifpans fuccunio excitatur: Atque f_{1} in illa laterali crifpatione confiftere Colores fupponatur, exiftim mo omnia Phrnomena Colorum explicari puffer ut fufus in ea, quam dixis, Differtatione exponos Quibus item pofits apparetectian, our ultra quam fes rat Radiorum ipforum Divaricatio, expandi ColorumLatitudinem neceffe fit:

Circa Experimentum Crucis, nequaguam dubito, quo minus in fuo Experin mento talem fitum adhibucrit, in quo xqualis Inclinatio fucrit Radiorum inciz

(142)

dentium; quandoquidem id ita à fe preftitum exprefò aftrmat. Verùn id noniega poterim conjicere ex iis qured fupexius Legeiam ; ubi ponuntur duo exigua \& maximè diftantia Foramina, \&runum Prifma prope primum Foramen quod eft in feneftra; per quod Prifma Radii Coloratierumpentes, Incidunt in alterum: diftans Foramen. Addebatur autém, quòd adhoc, ut omnés illi Radii fucceffivè Inciderent in Secundum illud Foramen, convertebatur Primum Prifna fupra Axem: Atqui hoc modo neceffe eft mutani Inclinationem Radioruni, qui Incidunt in: fecundium Eoramen: Atque indicavi ego, quòd perinde fefe res haberet, five ma-1 nénte Primo Prifmate Immobili, Secundum Foramén attolleretur aut depinmeretur, ut polfit fuccelfivè Radios omies depictæ Imaginis Solaris excipere; five manente ifto Secundo Forimine Immobili, Primum Prifma converteretur, ut ita eadem Imago fitum mutaret, atque in Foramen impingere Secunduma onines fucceffivè partes poffet:i, Sed alias fine dubio adhibuit cautiones. Solertiffimus Neirtonus.

Qux circa Colores objeceram, optimè foluta exiltimo. Quod autem Thboriam iftam, appellarim fityotbsfin, id certe ego nullo adhibito confilio feci; atque nomen ufurpavi guod primum occurrit: quapropter velim ut ne per

Anfuered by Mr.
Newton. Ibid. \$. 5014. contemptum adhibitam vocen ejufmodi exitimet:
4. Ait R.P. quòdabfug; varia Diverforum Radiorum Refrangibilitate, poffibile fit explicare Longitudinem Colorum, pútacex Hypatkefi: . Grimaldi, per diffufionem Luminis, quod fupponitur effe fubitantia qurdam rapidilimè mota; vel ex Hypothefi Hookii noftri, per diffufionem vel expanfionem Landulationum, quas ttatuit in æthere à Lucidis corporibus' : excitatus quaquaverfum propagarii Addnquod ex Hypotheficartefiana poteft eciam effingi confimilis diffuino conatus vel prefionis Globulorum, perinde ut in explicatione Caudx Comera. fupponitur. Et eadem difoffo vel Expanfo juxta aliam quanvis: Hypothefin, in qua Lumen ftatuitur effe Vis, Actio, Qualitas, vel Subitantia qualibet, a Luminofis corporibus undique emiffi, effingi poteft:

Uo his rcpóndean, animadvertendun elt, quòd Doctrina illa, quam de Refractione \& Coloribus explicui, in quibuldam Lucis pröprietatibus folummodo conititit, neglectis Hypothefibus per guas proprietates illæ explicaridebent: QuamobremabHypothefium contemplatione, tanquam improprio Argumentandi loco, hîc abftinendum effe cenfui, \&:Vim Objectionis abftrahendam; ut plen; orem \& magis generalem refponfionem accipiat:

Itaque per Lumen intelligo quodlibet Ens: vel Entis poteftatem (five fit Subftantia, five quævis ejus Vis, Actió, vel Qualitas): quod à corpóre lucido rectà pergens aptum fit ad excitandain Vifionem; \& per Radios Luminis intelligo minimas vel quaflibet indefinite parvas ejus partes qux ab invicem non dependent, quales funt illi omnes Radii, quos Lucentia corpora vel fimul vel fucceffivè fecundùm Rectas Lineas emittunt: Nam illæ tum collatera: les tum fuccefivex partes Luminis funt independentes; fiquidem unæ abfque aliis intercipi poffint, $2<$ in quaflibet plagas feorfini Reflecti vel Refringi. Et hoc precognito, Objectionis Vis omnis in eo fita erit quod Colores per aliquam Luminis ultra Foramen diffufionem, quæ non oritur ab inæquali diverforum Radiorum (feu Luminis independentium partium) Refrangibilitate, in Longum diduci pofint.

Quod autem non aliunde Oblongentur fuperius nonftravi: \& ut omnia fummè confirmarem, adjeci Experimentum fllud quod jam nomine Crucis paffim infignitur: de cujus conditionibus cùm R. P. dubitaverit, placuit jam defignare Schemate. Sit BC Anterior Tabula, cui Prifma A, immediate prxfigitur, fitque DE Altera Tabula, quaft is pedibus abinde diftans, cui fuffigitur alterum Primma F. Tabulx autem ad $x \& y$, ita perforentur, ut aliguantulum Lucis ab anteriori Prifmate Refractx trajici pobit per utrumque Forameniad Secundum Prifma, inque eo denuó Refringi. Jam Prifma antérius circa Axem reciproen mott convertatur, \& Colores in Tabulam Pofferiorem DE procidentes, ' per vices attollentur ac deprimentur, coque pacto altus atque alius Color fucceffivè pro arbitrio trajici potelt per Foramen ejus y_{0} ad Pofterius Prifma, dum cxteri Colores in Tabulam inpingunt: Et videbis, Radios diverfis Coloribus preditos diverfam pati Refractionen in illo pofteriori Prifmate, ex eo guòd ad divera loca parietis vel cujufvis obftaculi GH , pedibus aliquot ulterius remoti, allibentur; puta Violacei Radiad H, Rubri ad G, \& Intermedii ad loca intermedia: \& tamen propter determinatam Pofrionem foraminum nceeffe eft ut Similis fit Incidentia Rad orum cujufque Coloris per utrumque trajeeti. Atquie ita ex menfura comtar Radios, diverfis Coloribus affectos, habere diverfas Leges Refractionum.

Sed.fufpicor unde adductus fit R.P. in dubitationem; nempe videtur collocaffe Primum Prima. A, poft Tabulam BC, atque ita convertendo circa Axem, verifimile eft Inclinationem Radiorum qui interjacent Foranina propter Intermedian Refractionem fuiffe mutatam. At, ex defcriptione prius expofitâ, debuit Tabula illa collocari poft Prifma, ut Radii inter Foramina in directum jacerent, quemadmodum ex verbis, I took two Boards and placed one of them clofe behind the Primin at We Windon, conftare poteft. Et ufus Expe rimenti idem innuit.

Ex abundanti placet obfervare, quod in hoc Experimento Colorata Lux ob Refractionem Secundi Prifmatis longe minùs diffunditur ac divaricat, quàm cum Alba exiftit, adeò ut Imago ad G, vel H, lit penè Circularis; prefertim fi Prifmata fatuantur parallela, \& in contrario fitu Angulorump prout in Schemate defignantur: Quinetiam, fi praterea diameter foramis y, adxquet Latitudinem Colorum, nulla erit ejufden Colorate lucis in Longum diffufio; fed Imago, quæ à quopiam Colore ad Gy vel H, effingitur, (pofitis Ciscula ribus foraminibus, \& Refractione pofterioris Prifmatis non majori quàm prio ris, Radiifquead obftaculum quàm proximè perpendicularibus) erit plane (ira cularis. Id quod arguit diffufionem, de qua fupra egimus, non ex contagione vel continuitate materix undulantis aut cetervime motx vel fimilibus caufis ortam effe, fed ex certa Refractionom cujuique Generis. Radiorum Lege: Cur autem Imago illa in uno cati fit Circularis, o in alis nonnihil Oblongata, \& quomodo diffufio lucis in Longitudinem in quolibet cafu pro arbitrio mi-: nui pollit, à Geometris determinandum, \& cum experientia conferendum, pe lingun.

Poftguam proprictates Lucis his e fimilibus Experimentis, fatis exploratx fuerint, fectando Radios tanquam ejus five collaterales five fucceflivas partes, de quibus experti fumus pes independentiam quiod fint ab invicem diftinctx;

Hypothefes

(144)

Hypothefes exinde dijudicandx funt, \& qux non poffunt conciliari rejiciendx. Sed levilimi negotij ef accommodare Hypothefes ad hanc Doctrinam. Nam fi quis Hypothefin Cartefianam defendere velit, dicendum eft, Globulos effe inæquales; vel preffiones Globulorum effe alias aliis fortiores, \& inde diverlimodè Refrangibiles, \& aptas ad excitandam fenfationem diverforum Colozum. Et fic juxta Hypothefin Cl . Hookii dicendum eft, Undulationes Ætheris effe alias majores five crafliores aliis. Atque ita in cxteris. Hxc enim videtur cffe fummè neceffaria Lex \& Conditio Hyporhefium, in quibus naturalia corpora ponuatur conftare ex quamplurimis corpufculis acervatim contextis, ut a diverfis Lucentium corpufculis, vel ejufdem corpufculi diverfis partibus (prour Motu, Figurầ, Mole, aut aliis Qualitatibus differunt) inæquales preiliones, motiones aut mota corpufcula per. Æthera quaquaverfum trajiciantur, ex quibus confusè miftis, Lux conftitui fupponctur. Et nihil durius effe poteft in iltis Hypothéfibus quàm contraria fuppofitio.

Ex Apertura five Dilatatione Lucis in pofteriori facie Prafnatis, quant R. P. dixit effe velut: Foramen, fufficit, quod error non emerget fenfibilis, fi anodo aliquis emergeret. Qiòd fi Calculus juxta obfervationes pracife ineatur, error erit nullus. Nam diametro foraminis à Longitudine lmaginis fubductâ, reftabit Longitudo quami Imago haberet, fi modo foramen ante Prif ma effet indivifibie, idque non obftante prefatal Lucis dilatatione in pofterior: facie Prifmatis; ut facile oftenditur. Deinde ex data illa Longitudine 1maginis, ac diftantiaà foramine indivifibili, ut \& pofitione \& forma Prifmatis, \& ad id inclinatione Incidentium Radiorum, ac angulo, quem Refracti Radii ad medium imaginis tendentes, cum à centro Solis incidentibus conftituunt, cxtera omnia determinantur. Et qux determinant Refractiones \& Pofitiones Radiorum, fufficiunt ad Calculum iftarum Refractionum ritè ineundum. Sed res non tanti effe videtur ut moram inferat.

Quod R. P. Doctrinam noftram Hypothefin vocaverit, non aliunde factum effe credo, quàn quòd vocabulum ufurpavit quod primum occurrit; fiquidem mos obtinuit ut quicquid exponitur in Philooophia dicatur Hypothefis. Et ego fanè non alio Confilio vocabulum iftud reprehendi, quàm ut ne invalefceret appellatio qux rectè Philofophantibus prajudicio effe poffer.

Tetbe Sariffsation of P. Ig. Gaft. Pardies. n. 85. P. 5018
5. Omnino mihi fatisfecit noviflima refponfio, à D. Neptono ad nieas. Inftantias data. Novillimus Scrupulus, qui mihi hxrebat circa Experimentum Crucis, penitus fuit exemptus. Atque nunc plane ex Figura ipfius intelligo, quod non intellexeram ante. Experimentum peractum cum fuerit ifo modo; nil habeo quod in co defiderem ampliús.

Some confidera- V. The Confiderations on my Theories confift in Afcribing an Hypothefis zions upon this TBrory; by p. 5086.

Theory; by cipal parts, is not againft me; in Granting the greateft part of my Difcourfe,
Anfwe?dby
Newton. n. 88. if explicated by that Hypothefis; and in Denying fome things, the truth of
to me, which is not mine; in Afferting an Hypothefis, which, as to the prinif explicated by that Hypothelis; and in Denying fome thing
which would have appear'd by an Experimental Examination.

Of thefe particulars I fhall difcourle in order. And fivf of the Hypothefis, whicil is alcribed to me in thefe words: But grant bis firft Suppofition, that Light is a Body, and that as many Colours or Degrees as there may be, Jo many Bodies
there may be; all which Compounded together would make White, ©s. This, it: feems, is taken for my Hypothelis. Tis true, that from my Theory I argue the Corporiety of Light ; but I do it without any abfolute pofitivenefs, as the word perloaps intimates; and make it at moft but a very plaufible confequence of the Doctrine, and not a Fundamental Suppofition, nor fo much as any part of it ; which was wholly comprehended in the precedent Propofitions. And I fomewhat wonder, how the Objector could imagine, that, when I had afferted the Theory with the greatelt Rigour, I fhould be fo forgetfulas afterwards to afler the Fundamental Suppofition it felf with no more than a perlaps. Had I intended any fuch Hypothelis, I fhould fomewhere have explained it. But I knew, that the Properties, which I declared of Light, were in fome meafure capable of being explicated, not only byithat, but by many other Mechanical Hypothees. And therefore I chofe to decline them all, and to fpak of Light in general terms, confidering it abitractly, as fomething of other propagated every way in ftreight Lines from Luminous Bodies, withour determining what that thing is whether a confufed Mixture of Diftorm Qualities, or Modes of Bodies, or of Bodies themfelves, or of any Virtues, Powers, or Beings whatfoever. And for the fame reafon I chofe to fpeak of Colours according to the Information of our Senfes, as if they were Quali-. ties of Light without us. Whereas by that Hypothefis, I muft have confidered them rather as Modes of Senfation, excited in the Mind by various Motions, Figures, or Sizes of the Corpufcles of Light, making tarious Mechar? nical imprelions on the Organ of Senfe; as I expreffed it in that place, where I fpake of the Corporiety of Light.

But fuppofing I had propounded that Hypothefrs; I underftand not, why the Objector fhould fo much endeavour to oppofe it. For certainly it has a much greater Affinity with his own Hypothefis, than he feems to be aware of ; the Vibrations of the Æther being as ufeful and neceffary in this, as in his. For, affuming the Rays of Light to be fmall Bodies, emitted every way from Thining Subftances, thofe, when they impinge on any Refracting or ReHecting Superficies, muft as neceffarily excite Vibrations in the Æther, as Stones do in Water when thrown into it. And fuppofing thefe Vibrations to be of feveral-Depths or Thickneffes, accordingly as they are excited by the faid corpufcular Rays of various Sizes and Velocities; of what ufe they will be for explicating the manner of Reflection and Refraction, the Production of Heat by the Sun-beams, the Emilion of Light from Burning, Putrifying, or other Subftances, whofe parts are vehenently agitated, the Phænomena of thin tranfarent Plates and Bubbles, and of all natural Bodies, the Manner of Vifion, and the Difference of Colours, as alfo their Harmony and Difcord; I thall leave to their Confideration, who may think it worth their endeavour, to apply this Hypothefs to the Solution of Phxnomena.

In the fecond place, I told you, That the Objector's Hypothefis, as to the Fundamental part of it, is not againt me. That Fundamental Suppolition is; That the parts of Bodies, when briskly agitated, do excite Vibrations in the Ether, which are propnoated cvery way from those Bodies in fircight Lines, and caufe a Cenfation of Lirght ly beating and dafbing agningt the bottom of the Eyc, Vol.I.

(46)

Something after the manner, that Vibrations in tbe Air caufe a Senfation of Suind by beating againft the Organs, of Heaxing Now, the moft free and natural Application of, this Hypothefis, to the Solution of Phænomena, I take to be this: That the agitated parts of Bodies, according to their feveral. Sizes, Figures, and Motions, do excite Vibrations in the Æther of various Depths, or Bigneffes, which being promifcuoufly propagated through that Medium to ou: Eyes, effect in us a Cenfation of Light of a White Colour ; but if by any means thofe of unequal Bignefses be feparated from one another, the largeft beget a Senfation of a Red Colour; the leatt or fhorteft, of a deep Violet; and the intermediate ones, of Intermediate Colours; much after the manner that Bodies, according to their feveral Sizes, Shapes, and Motions, excite Vibrations in the Air of various Bigneffes, which; according to thofe Bigneffes, make feveral. Tones in Sound: That the largeft Vibrations are beft able to overcome the refiftance of a Refracting Superficies, and fo break through it with leaft Refraction; whence, the Vibrations of feveral Bigneffes, that is, the Rays of feveral Colours, which are blended together in Light, muft be parted from one another by Refraction, and fo caufe the Phenomena, of Prifms, and other Refracting Subitances: And that it depends on the Thicknefs of a thin tranf parent Plate or Bubble, whether a Vibration fhall be Reflected at its further Superficies; or Tranfmitted; fo that, according to the Number of Vibrations interceding the two Superficies, they may be Reflected or Tranfmitted for many fucceflive. Thickneffes. And fince the Vibrations which make Blue and Yiolet, are fuppofed fhorter than thofe which make Red and Yellow; they muft be Reflected at a lefs Thicknefs of the Plate: Which is fufficient to ex: plicate all the ordinary Phenomena of thofe Plates or Bubbles, and alfo of all natural, Bodies, whofe parts are like fo many Fragments offuch Plates.

Thefe feem to be the moft plain, genuine, and neceffary, Conditions of this Hypothefis. And they, agree fo juftly, with my Theory, that if the Animad. or think fit to apply them, he need not, on that Account, apprehend a Divorce from it: But yet how he will defend it from other Dificulties, I know not For, to me the Fundmental fuppofition it felf, feems impofible, namely, that the Waves or Vibrations of any, Fluid, can, like the Rays of Light, be propat: gated in ftreight Lines, without a Continual and very; extravagant fpreading. and bending every, way into the Quicfcent Medium, where they, are termil= nated by it I miltake, if there be not both. Experiment and Demonftration. to the contrary: And as to the other two or three Hypothefes, which he mentions, I had rather believe them, fubject to the like difficulties, than fufpeet: the Animadverfor fhould felect the worft for his own.

What I have faid of this, may be eafily applyed to all other Mechanical Hypothefes, in which Light is fuppofed to be caufed by any Preffion or Motion whatfoever, excited in the \&ther by the agitated parts of Luminous Bodies, For, it feems impoffible, that any of thofe Motions or Prefions can be propagated in Streight Lines, withour the like fpreading every way into the Shadowed Medium, on which they border. But yet, if any Man can:hink it pofible, he muft at leaft allow, that thofe Motions, or Endeavours to: Motion caufed in the Ather by the feveral parts of any Lucid Body, that dif

(14.7)

fer in Size, Figure, mid Agitation, muft neceflarily be unequal : Whaich is enough to denominate Light an Aggregate of. Difform Rays, according, to any of. thofe Hypotheres. And if thofe Original Inequalities may ffuffice to difference the Rays in Colour and Refrangibility, I, fee no reifon, why they, that adhere to any of thofe. Hypotheres, fhould feek for other Caưfes of thefe Efféts, unilefs (to ufe the Objector's. Argument) they will-multiply Entitices withou ut Necefity.

The third thing to be conflidered is, the Gondition of the Animadverfor's Conceffions, which is, That I would explicate my Theories by his Hyppothefis: And if I could comply widh him in that point, there would belittle or no dif. ference between us. For he Grans, That, without any refpect to a Different Incidence of Rays, there are Different Reffaitions-; but he would have it explicated, not by the different. Refrangibibility of foveral Rays, but by the Spliting and Rarefying of PEthereal Pulfes. He grants my third, fourth, and fixtrii Propofitions, jthe fenfe of whiccr is, That Uncompounded Colours are Unchangeable, and that Compounded ones are Changeable only by refolving thew into the Colours, of which they are Compounded; and that all the Changes, which can be wrought in Colours, are effected only by varioufly mixing or parting then : But he grants them on Condition, that I will explicate-Colours by the two fides of a Split Pulfe, and fo make but two Species of them, accounting all other Colours in the World to be but various Degrees and Dit, lutings of thofe two. And he further grants, that Whitenef's is produc'd by the Convention of all Colours; but then I muit allow it to be not orily by Mixture of thofc Colours, but by a farther Uniting of the Paits of the Ray fuppofed to be formerly Split.

If. I would proceed to examine thefe his Explications, I think it would be no difficult matter to fhew, that they are not only. Infufficient, but in fome refpeets to me (at leaft) Unintelligible. For though it be eafie to conceive, how Motion may be dilated, and Spread, or how parallel Motions may become Diverging ; yet I undertood not, by what Artifice any Linear Motion can by a Refracting Superficies be infinitely dilated and rarefied, fo as to become Superficial: Or, if that be fuppofed, yet I undertand as little, whity it flouild be feplit at fo fmall an Angle only, and not rather fipead and disperfed through the whole Angle of Reffaction. And further, though I can eafily imagine, how Unlike Motions may crofs one another; yet I cannot well cons ceive, how they: Thould coaleffe into one Uniform Motion, and then part again, and recover the former. Unlikenefs; notwithftanding that I conjecture the ways, by which the Animadverfor may endeavour to explain it. So that the Direct, Uniform, and Undifturb'd Pulfes fhould be Split and Difturbed by Refraction; ; and yet, the Oblique and Difturbed Pulfes perfift without Splititing or further ditturbance by following Refractions, is (to me) as ininitelligible, and there is as,great a difificulty in the Number of Colours; as you will fee hereafter.

But whatever be the Advantages or Difidvantages of this Hypothefis, I hope I may be excufed from taking it up, fince I Ido'not think it needful to explicate my Doctrine by any Hyporhefis at all. For if Light be confidered

(14^{8})

abitractedly without refpect to any Hypothefis, I can as eafily conceive, that the Reveral Parts of a fhining Body may emit Rays of different Colours and other Qualities, of all which Light is conftituted, as that the feveral parts of a falfe or uneven String, or of unevenly agitated Water in a Brook or Cataract, or the feveral Pipes of an Organ infpired all at once, or all the variety of founding Bodies in the World together, fhould produce Sounds of feveral Tones, and Propagate them thro the Air confufedly intermixt. And if there were any Natural Bodies that could reflect Sounds of one Tone, and ftifle or tranimit thofe of another; then, as the Echo of a confufed Aggregate of all ' Tones, would be that particular Tone, which the Echoing Body is difpofed to ReHect; fo, funce (even by the Animadverfor's Conceffions) there are Bodies apt to Reflect Rays of one Colour, and ftifle or tranfmit thofe of another; I can as eafily conceive, that thofe Bodies, when illuminated by a Mixture of all Colours, mult appear of that Colour only which they Reflect.

But when the Objector would infinuate a difficulty in thefe things, by alluding to Sounds in the String of a Mufical Inftrument before Percuffion, or: in the Air of an Organ-Bellows before its arrival at the Pipes; I muft confefs, 1 undertand it as little, as if one had fpoken of Light in a piece of Wood before it be fet on Fire, or in the Oyl of a Lamp before it afcend up the match to feed the Flane.

You fee therefore how much it is beffdes the bufinefs in hand, to difpute about Hypothefes. For which reafon I hall now, in the laft place, proceed to Abftract the difficulties in the Animadverfor's Difcourfe, and without having regard to any Hypothefis, confider them in general Terms: And they may. he reduced to thefe three Queries.

1. Whether the unequal Refrnctions made without refpect to any inequality of Incidence, be caufed by the different. Refrangibility of Several Rays; or by the ßplitting, breaking, or difipating the fame Ray into diverging Parts?
2. Whiether there be more than two Sorts of Colours?
3. Whetber Whiterinefs be a Mixture of all Colours?

The firft of: thefe Queries you may find determined above by an Experi= ment, the defign of which was to ffiew, That the length of the Coloured Image proceeded not from any Unevennefs in the Glafs, or any other Conzingent Irregulanity in the Refractions. Amongt other Irregularities, I know not, what is morc obvious to fufpect, than a fortuifous dilating and fpreading of Light after fome fuch manner, as des Cartes hath defcribed in his Athereal Refrations for explicating the Tail of a Comet; or as the Animadverfor now: fuppofes'to be effected by the flitting and rarefying of his Æthereal Pulfes: And to prevent the fufpicion of any fuch Irregularitjes, I told you, that 1 Refracted the Light contrary ways, with two Prifms fucceffively; to deftroy thereby the Regular Effeets of the firft Prifin by the fecond, and to difcover the Irregular Effects by Augmenting them with iterated Refractions. Now; amongtt other Irregularities, if the firf Prifm had fread and dillipated every Ray into an indefinite Number of Diverging Parts, the fecond hould in like

(149)

manner have fpread and diffipated every one of thofe Parts into a further in: definite Number, whereby the Image would have beenftill more dilated, con* trary to the Event. And this ought to have happened, becaufe thofe Linear Diverging Parts depend not on oile another for the manner of their Refraction, but are every one of them as truly and compleatly Rays, as the whole was before its Incidence; as may appear by intercepting them feverally.

The Reafonablenefs of this proceeding, will perhaps better appear by acquainting you with this further Circumftance. I fometimes placed the fecond Prifm in a Pofition Tranfverfe to the firft, on defign to try, if it would make: the long. Image become four-fquare by Refractions crolling thofe thathad drawn the round Image into a long one. For if amongtt other Irregularities the Refraction of the firf Prifm, did by fplitting Dilate a Linear Ray finto a Superficial, the Crofs Refractions of that fecond Prifm ought by further fplitting to Dilate and Draw that Superficial Ray into a Pyramidal Solid: But, upon tryal, I found it otherwife; the Image being as regularly Oblong, as before, and inclined to both the Prifms at an Angle of 45 degrees.

I tryed alfo all other Poftions of the fecond Prifm, by turning the ends about its middle part; and. in no cafe could obferve any fuch lrregularity. The Image was even alike inclined to both Priims, its Breadth anfwering to the Sun's Diameter, and its Length being greater or leff, accordingly as the Refractions more or lefs agreed, or contradicted one another.

And by thefe Obfervations, fince the Breadth of the Image was not aug-; mented by the Crofs Refraction of the fecond Prim, that Refraction mult have been performed. without any fplitting or dilating of the Ray; and therefore at leaft the Light incident on that Prifm mutt be granted an Aggregate of Rays Vnequally Refrangible in my fenfe.. And fince the Image was equally. Inclined to both Prifms, and confequently the Refractions alike in both, it ar-3 gues, that they were perfurmed according to fome Conftant Law, withoutany Irregularity.

To determine the fecond Queric, The Animadverfor refers to an Experiment made with two Wedge-like Boxes, recited in the Micrograply of the In-: genious Mr.Hock, Olferv.. I.O. Pag. 73 . the defign of which was to produce all Colours out. of a Mixture of two. But there is, I conceive, a double de; fect in this Inftance. For it appears not, that by this Experiment all Colours can be produced out of two; and if they could, yet the Inference would not follow.

That all Colours cannot by that Experiment be produced out of two , will. appear by confidering, that the Tincture of Aloes, which afforded one of thofe. Colours, was not all over of one uniform. Colour, but appeared Yellow neas th: edge of the Box, and Red at other Places where it was thicker: affording all variety of Colours, from a Pale Yellow to a deep Red or Scariet, according: to the various thicknefs of the Liquor. And fo the Solution of Copper, which afforded the other Colour, was of various Blues end Indicoes. So that inftead. of two Colours, here is a great. Variety made ufe of for the Production of all: others. Thus, for Inftance, to produce all forts of Greens, the feveral degrees of Yellow and Pale Blue muft. be mixed; but to compound Purples, the Scarlet and deep. Bluc are to be the Ingredients.

(150)

Now, if the Antmadverfor content, that all the Retls and Yellows of the one 'Liquer, or Blues ind Indicoes of the other, are only various degrees and dilutings of the fame Colour, and not divers Colours, that is a begging of the Queftion: And I fhould as foon grant, that the two thirds or fixths in Muftek are but feveral degrees of the fame'Sound, and not divers Sounds. Certainly it is much better to believe our Senfes, informing us, that Red and Yellow are divers Colours, and to make it a Philofophical Querie, Why the fame Liquor doth, according to its various thicknefs, appear of thofe divers Colours, than to fuppofe them to be the fame Colour, becaufe exhibited by the fame Liquors? For, if that were a fufficient Reafun, then Blue and Yellow muft allo be the fame Colour, fince they are both exhibited by the fame Tincture of Nephritick Wood. But that they are divers Colours, you will more fully underftand by the reafon, which in my Judgment is this: The Tincture of Aloes is qualified to Tranfmit moft eafily the Rays Indued with Red, mon dinicultiy the Rays indued with Violet, and with intermediate degrees of facility, the Rays indued with intermediate Colours. So that where the Liquor is very thin, it may fuffice, to intercept moft of the Violet, and yet tranfmit-moft of the other Colours; all which together muft compound a middle Colour, that is, a Faint Yellow. And where it is fo much thicker, as alfo to intercept moit of the Blue and Green, the remaining Green, Yellow, and Red, muft Compound an Orange. And where the thicknefs is fo great, that fcarce any Rays can pafs thro' it befides thofe indued with Red, it muft appear of that Colour, and that fo much the deeper, and obfcurer, by how mach the Liquor is thicker. And the fame may be underftood of the various degrees of Blue, exhibited by the Solution of Copper, by reafon offits difpofition to intercept Red moit eafily, and tranfmit a deep Blue or Indico Colour môt freely.
But fuppofing that all Colours night, according to this Experiment, be produced out of two by Mixture; yet it follows not, that thofe two are the only Original Colours; and that for a double Reafon. Firft, Becaufe thofe two are not themfles Original Colours, but compounded of others; there being no Liquor, nor any other Body in Nature, whofe Colour in Day-light is wholly uncompounded. And then, becaufe though thofe two were Original, and all others might be Compounded of them, yet it follows net that they cannot be otherwife produced. For I faid, that they had a double Origin, the fame Colours to fence being in fome Cafes Compounded, and in orhers Uncompounded; and fufficiently declared in my third and fourth Propofitions, and in the Conclufion, by what Properties the one might be known and diftinguifh'd from the other. But becaufe I fufpect, by fome Circumftances, that the Diftinction might not be rightly apprehended, I fhall once more declare it, and further explain it by Examples.
That Colour is Primary or Original, which cannot by any Art be changed, and whofe Rays are alike Refrangible: And that Compounded, which is changeable into other Colours, and whofe Rays are not alike Refrangible. For inftance, To know whether the Colour of any Green Objeet be Compounded or not, view it thro' a Prifm, and if it appear confufed, and the 'Edges

Tinged with Blue, Yellow, or any variety of other Colours, then is that Green Compounded of fuch Colours, as at its edges Emerge out of it: But if it appeari diftinct, and well defined, and intirely Green to the very edges, without any other Colours Emerging, it is of an Original and Uncompounded Green. In like manner, if a Refracted' Beam of Light being caft on a White Wall exhibit a Green Colour, to know whether that be Compounded, Refract the Beam with an interpofed Priffi, and if you find any Difformity : in the Refractions; and the Green be transformed into Blue, Yellow, or any variety of oother Colours, you may conclude that it was Compounded of thofe that Encrge : But if the Refractions be Uniform, and the Green perfift without any change of Colour, their is it Original and Uncompounded. And the Reafon why I: call it fo is, becaufe a Green. indued with fuch properties cannot be produced by any mixing of other Colours.

Now, If two Green Objects may to the naked Eye appear of the fame Colour, and yet one of them thiro a Prifm feem confufed and variegated with other Colours at the edges, and the other diftinct and entircly Green; or if there may be two Beams of Light, which falling on a White Wall, do to the naked Eye exhibit the fäme Green Colour, and yet one of them, when tranfmitted thro' a Prifin', be uniformly and regularly Reffacted, and retain its Colour Unchanged, and the other be irregularly Refracted, and made to divancicate into a multitude of other Colours: Tfuppofe, the fé two Greens will in both. Cafes be granted of a different Origin and Conftitution. And if by mixing Colours, a Green cannot be Compounded with the Properties of the Unchangeable Green, I think. I may call that an Llincompounded Colour, efpecially fince its Rays are alike Refrangible, and Uniform in all refpects.

The fame Rule is to be obferved in Examining, wherther Red, Orange, Yellow, Blue, or any other Colour be Compounded or not. And, by the way, fince all: White Objects thro' the Priffin appear confúfed and terninated with Golours, Whitenefs muft; according to this diffinction, be ever Comrpounded; and that the moft of all Colours, becaufe it is the moot confufed and changed by Refractions.

There remains now the third Querie to be confidered, which is, Whether Whitenefs be an Uniform Colour, or a Dillinilar Mixture of all Colours.? The Experiment which I brought to decide it, the Animadverfor thinks may be otherwife explained, and fo concludes northing. But he might eafily have fatisfied himfelf by trying, what would be the reffilt of a Mixiture of all Colours, And that :very Experiment might have fatisisfied him; if, he had pleafed to ex: amine it by the various Gircumftances. One Circumflance I there declared; of which Ii fee no Notice taken's and it is, That if any Colour at the Lens be intercepted; the Whitenefs will be changed: into the other Collours : If all the Colours but Red be initercepted, that Red alone in the Concourfe or croffing of: the Rays, will not conffitute-Whitenefs, but, continues: as much Red ms befores; and fo of the other Colours; So that the büfinet's is not only, to fhew how Rays, which before thie- Cöncourfe exbibit Colourrs, do in the. Concourfe exhibit. White; but to fliew; how, in the fame place, where the fe: veral forts:of: Rayssapare exhibit- feverall Collours, a Confufion of altogether
make White. For inftance, If Red alone be firft tranfmitted to the Paper at the place of concourfe, and then the other Colours be let fall on that Red, the Queftion will be, whether they convert it into White by mixing with it only, as Blue falling on Yellow Light is fuppofed to compound Green, or whether there be fome further change wrought in the Colours by their mutu21 acting on one another, until, like contrary Peripatetic Qualities, they become afimilated. And he that fhall explicate this laft Cafe Mechanically, muft conquer a double impofibility. He muft firt fhew, that many unlike Motions in a Fluid can by clathing fo act on one another, and change eachother, as to become one Uniform Motion; and then, that an Uniform Motion can of it felf, without any new unequal impreilions, depart into a great variety of Motions regularly unequal. And after this he muitt further tell me, why all Objects appear not of the fame Colour ; that is, why their Colours in the Air, where the Rays that convey them every way are confusedly mixt, do not atlimilate one another, and become Uniform before they arrive at the Spectatar's Eye?

But if there be yet any doubting, 'tis better to put the Event on further Circumftances of the Experiment, than to acquiefce in the poflibility of any Hyputhetical Explications. As, for inftance, by trying, What will be the Apparition of thefe Colours in a very quick Confecution of one another. And this may be eafily performed by the Rapid Gyration of a Wheel with nany Spoaks or Coggs in irs Perimeter, whofe Intertices and Thickneffes may be equal, and of fuch a Largenefs, that, if the Wheel be interpofed between the Prifini and the white concourfe of the Colours, one half of the Colours may be intercepted by a Spoak or cogg, and the other half pafs through an Interfice. The Wheel being in this pofture, you may firft turn it flowly about, to fee all the Colours fall fucceflively on the fame place of the Paper, held at their aforefiad concourfe; and if you then accelerate its Gyration, until the confecution of thofe Colours be fo quick, that you cannot diftinguifh them feverally, the refulting Colour will be a Whitenefs perfectly like that, which an Unrefracted Beam of light exhibits, when in like manner fuccelively interrupted by the Spoaks or Cogs of that circulating Wheel. And that this Whitenefs is produced by a fucceilive intermixture of the Colours, without their being aitimilated, or reducd to any Uniformity, is certainly beyond all doubt, unlefs things that exit not at the fame time may notwithftanding act on ne another.

There are yet other Circumftances, by which the truth might have been decided; as by viewing the White Concourfe of the Colours through another Prifm placed clofe to the eye, by whofe Refraction that Whitenefs may ap. pear again transformed into Colours: And then, to examine their Origin, if an Afilfant intercept any of the Colours at the Lens before their arrival at the Whitene's, the fame Colours will vanifh from amongft thofe, into which that Whitenefs is converted by the fecond Prifm. Now, if the Rays which difappear be the fame with thofe that are intercepted, then it mult be acknowledged, that the fecond Prifm makes no new Colours in any Rays, which were not in them before their Concourfe at the Paper. Which is a plain Indication, that the Rays of feveral Colours remain diftinct from one another in the Whiteneff, and that from their previous difpofitionsare derived the Colours, of the

(153)

fecond Prifm. And, by the way, what is faid of their Colours may be applyed to their Refrangibility.

The aforefaid Wheel may be alfo here made ufe of ; and, if its Gyration be neither too quick nor too flow, the Succeflion of the Colours may be difeern'd thre? the Prifm, whilt to the naked eye of a By-ftander they exhibit Whitene!s.

There is fomething ftill remaining to be faid of this Experiment: Bur this, I conceive, is enough to enforce it, and fo to decide the Controverfie. However If hall now procced to fhew fome other ways of producing Whitenefs by Mixtures, fince I perfwade my felf, that this Affertion above the reft appears Paradoxical, and is with moft difficulty admitted. And becaute the Animadverfor defures an inftance of it in Bodies of divers Colours, I fhall begin with that. But in order theecto it muft be confider d, that fuch Coloured bodies Refleit but fome part of the Light incident on them; as is evident by the I $3^{\text {th }}$ Propofition: And therefore the Light Refleeted from an Aggregate of them will be much weakned by the lofs of many Rays. Whence a perfeet and intenfe Whitenefs is not to be expected, but rather a Colour between thofe of Light and Shadow, or fuch a Gray or Dirty Colour as, may be made by mixing White and Black together.

And that fuch a Colour will refult, may be collected from the Colour of Duft found in every comer of an houfe, which hath been obferved to confift of many Coloured particles. There may be alfo produced the like Dinty Colour, by mixing feveral Painters Colours together. And the fame may be effeeted by painting a Top (fuch as Boys play with) of Divers Colours. For when it is made to circulate by whipping it, it will appear of fuch a Dirty: Colour.

Now, the Compounding of thefe Colours is proper to my purpofe, becaufe they differ not from Whitenefs in the Species of Colour, but only ina Degree of Luminoufnefs : Which (did not the Animadverfor concede it) I might thus evince. A Beam of the Sun's Light being tranfmitted into a darkned room, if you illuminate a fheet of White Paper by that Light, Refleoted from a Body of any Colour, the Paper will always appear of the Colour of that Body, by whofe Reflected Light it is illuminated. If it be a Red Body, the Paper will be Red; if a Green Body, it will be Green; and fo of the other Colours. The Reafon is, that the Fibres or Threads, of which the Pa. per confifts, are all Tranfarent and Specular; and fuch Subftances are knoivn to Reflect Colours without changing them. To know thereforc, to what Species of Colour a Grey belongs, place any Grey Body (fuppofe a Mixture of Painters Colours) in the faid Light, and the Paper being illuminated by its Reflection frall appear White. And the fame thing will happen, if it beilluminated by Reflecion from a Black Subftance.

Thefe therefore are all of one Species; but yet they feem diftinguifh dot only by Degrees of Luminoufnefs, but alfo by Come orher Inequalities, wherely they become more harfh or pleafant. And the diftinction feems to be, that Greys, and perhaps Blacks; are made by an uneven Defect of Light, confiting as it were of many little veins or ftreams, which differ either in Luminuufnefis, or in the unequal diftribution of diverfly Coloured Rays; fuch as ought to be

Vol.I.

(154)

cured by Reflection from a Mixture of White and Black, or of diverny Coloured Corpufcles. But when fuch Imperfectly Mixt Light is by a fecond Reflection from the Paper more evenly and uniformly blended, it becomes more pleafant, and exhibits a faint or fhadowed Whitenefs. And that fuch little Irregularities as thefe may caufe thefe differences, is not improbable, if we confider, how much Variety may be caufed in Sounds of the fame Tone, by irregular and uneven Jarrings. And befides, thefe differences are fo little, thiar I have fonietines doubred, whether they be any at all, when I haveconfidered, that a Black and White Body being placed together, the one in a ftrong Light, and the other in a very faint Light, fo proportioned that they might appear equally Luminous, it has beer difficult to diftinguifh them, when viewed at diftance, urilefs when the Black feemed more Blueifh; and the White Budy in a Light ftill fainter, hath, in comparifon of the Black Body, it felf appeared Black.

This leads me to another way of Compounding Whitenefs; which is; that, if four or five Bodies of the more-eminent Colours, or a Paper painted all over, in feveral parts of it wirh thofe feveral Colours in a due Proportion, be placed in the faid Beam of Light, the Light Reflected from thofe Colours to another White Paper, held at a convenient diltance, fhall make. that Paper appear White. If it be held too near the Colours, its Parts will feem of thofe Colours that are neareft them; but by removing it further, that all its parts may be equally illuminated by all the Colours, they will be more and more diluted, until they become perfectly White. And you may further obferve, that if any of the Colours be intercepted, the Paper will no longer appear White, but of the other Colours which are not intercepted. Now that this Whiteness is a Mixture of thefeverally Coloured Rays, falling confufflly on the Paper, 1 fee no reafon to doubt of; becauf, if the Light beeame Uniforn and Similar before it fell confufedly on the Paper, it mult much more be Uniform, when at a greater dittance it falls on the Spectator's Eye, and fo the Rays, which come from feveral Colours, would in no Qualities differ from one another, but all of them exhibite the fame Colour to the Spectator, contrary to what he fees.
Not much unlike triis. Inftance it is, that, if a Polifh'd piece of Metal be fo placed, that the Colours appear in it as in a Looking-glafs, and then the Metal be made rough, that by a confufed Reflection thofe apparent Colours may be blended together, they fhall difappear, and by their Misture caufe the Metal to look White.
But further to enforce this Experinient; If inftead of the Paper, any White Froth conifiting of fmall Butbles, be illuminated by Reflexion from the aforcfaid Colours, it fhall to the naked eye feem White, and yet through a good Microfope the feveral Colours will appear ditinct on the Bubbles, as if feen by Reflexion from fo many Spherical Surfaces. Whth my raked Eye, bcing very near, I have alfo difcerned the feveral Colours on each Bubble ; and yet at a greater diftance, where I could not diftinguifh them apart, the Froth hath appeared entirely White. And at the fame ditance, when I lookt intently, I have feen the Colours ditinctly on each Bubble; and yetby ftraining

(155)

my Eyes as if I would look at fomething afar off beyond them, thereby to render the Vifion confufed, the Froth has appeared without any other Cor? lour than Whitenefs. A And what is here faid of Froths, may eafily be undets' ftood of the Paper or Metal, in the foregoing Experiments. For their parts are? Specular Bodies, like thefe Bubbles; And perrhaps with an excellent Microfcope, the Colours may be alfo feen intermixedly Reflected from them.

In proportioning the feverally Coloured Bodies to produce thefe effects, there may be fome Nicenels; and it will be more convènient, to make ufe of the Colours: of the Prifn, caft on a Wall, by whofe Reflexion the Paper, Metal, Froth,: and other White Subftances may be illuminated. Anid I ufually made my tryals: this way, becuure I could better exclude any feattering Lightfrom mixing with? the Colours to dilate them.
To this way of Compounding Whitenefs, may be referred that other, by Mixing Light after it hath been trajected through traníparently Coloured Subtances. For Inftance, if no Light be admitted into a Room but only: through Coloured Glafs; whofe feveral parts are of teveral Colours in a pretty: equal proportion ; all White things in the Room fhall appear White, if they be not hed too near the Glafs. And yet this Light, with which they are illuminated, cannot poffibly be Uniform ; becaufe, if the Rays, which at their entrance are of divers Colours, do in their progrefs thirough the Room, fuf-: fer any alteration to be reduced to an Unifornity, the Glafs sould hot in: the remoteft parts of the Room appear of the very fame Colour, which it doth when the Spectator's Eyc is very near it: Nor would the Rays, when tranfmitted into another Dark Room through a litcle hole in an oppofite Door or Partition-wall, project on a Paper the Species or Reprefentation of the Glafs in its proper Colours.
And, by the by, this feems a very fit and cogent Intance of fome other parts of my Theory, and particularly of the 1 3th Propefition. For, in this Room all natural Bodies whatever appear in their proper Colours. And all the Phenomena of Colours in Nature, made either by Refraction or without it, are here the fame as in the open Air. Now, the Light in this. Room being fuch a diffimilar Mixture, as I have defcribed in my Theory,the Caufes of all thefe Phenomena mult be the fame that I have there afiigned. And Ifee no reafon to fufpect, that the fame Phromema fhould have other caufes in the open Air.

The Succefs. of this Experiment, may be eafily conjectured by the Appearances of things in a Church or Chapel, whofe Windows are of Coloured Glaif, or in the open Air, when it is illuftrated with Clouds of various Colours.

There are yet other ways, by which Ihave produced Whitenefs; as by cafting feveral Colours from two or more Prifms upon the fame Place; by Refracting a Beam of Light with two or three Prifms fucceffively, to make the Diverging Colours Converge again; by Reflecting one Colour to another; and by Looking through Priim on an Object of many Colours; and, (which is equivalent to the above mentioned way of mixing Colours by concave Wedges filled with Coloured Liquors) I have obferved the Shadows of a Painted Glafs Window to

(156)

become White, where thofe of many Colours have at a great Diftance interfered Bur yet for further fatisfaction, the Animadverfor may try if he pleafe, the Effects of four or five of fuch Wedges filled with Liquors of as many feveral Colours.

Befides all thefe, the Colours of Water-bubbles and other thin pellucid Subitances, afiord feveral inftances of Whitenefs produc'd by their Mixture; with one of which I fhall conclude this particular. Let. fome Water, in which a convenient quantity of Soap or Wafhball is diffolved, be agitated into Froth, and, after that Froth has ftood a while without further agitation, till you fee the Bubbles, of which it confifts, begin to break, there will appear a great variety of Colours, all over the top of every Bubble, if you view them near at hand; but if you view them at fo great a diftance that you cannot diftinguifh the Colours one from another, the Froth will appear perfectly White.

Thus much concerning the Defign and Subftance of the Animadverfor's Conffderations. There are yet fome particulars to be taken nutice of, before I conclude ; as the Denyal of the Experimentum Crucis. On this I chofe to lay the whole Strefs ofmy Difcourfe; which therefore was the principal thing to have been objected againft. But I cannot be convinced of its Infufficiency by a bare Denyal without affigning a Reafon for its. I am apt to believe, it ha's been mifunderfood: for otherwile it would have prevented the Difcourfes about Rarefying and Splitting of Rays; becaufe the defign of it is, to fhew, that Rays of divers CO . lours confidered apart, do at Equal Incidences fuffer Unequal Refractions, with out being Split, Rarefy'd, or any ways Dilated.
some confidere. tions upon this Doffrine of CoZours:fromParis, by 89.96. p. 6086.
VI. I Methinks that the moft Important Objection, which is made againft Mr. Nowton by way of Querie, is that, Whether there be more than tiwo forts of Colours. For my part, I believe, that an Hypothefis, that fhould explain Mechanically, and by the Nature of Motion, the Colours I ellow and Blue, would be fufficient for all the reft, in regard that thofe others, being only more deeply charged, (as appears by the Prifms of Mr. Hook) do produce the dark or deep Red and Blue; and that of thefe four all the other Colours may be Compounded, Neither do I fec: why $\mathrm{Mr}-\mathrm{Namonn}$ doth not content himfelf; with the two Colours, Yellow and Blue; for it will be much more eafie to find an Hypothefis by Motion, that may explicate thefe two Differences, than for fo many Diverfities as there are of other Colours. And till he hath found, this Hypothefis, he hath not taught us, what it is wherein confifts the Nature and, Difference of Culours, but only this Accident (which cetainly is very confiderable,) of their different Refrangibility.

As for the Compofition of. White made by all the Colours together, it may poffibly be, that Yellow and Blue might allo be fufficient for that: Which is worth while to try; and ir may be done by the Experiment which Mr. Newton propofeth, by receiving againft a Wall of a darkned Roum the Colours of the Prifm, and to caft their Reflected Light upon white Paper. Hereyou mut hinder the Colours of the Extremities. viz. the Red and Purphe, from ftriking againft the Wall, and leave only the Intermediate Colours, Yellow, Green, and Blue, to fee whetber the Light of thefe alone would not make the

Paper appear White, as well as when they all give Light. I even doubt, whether the Lighteft place of the Yellow Colour may not all alone produce that effect, and I mean to try it at the firt Conveniency; for this thought: never came into my Mind but juft now. Mean time you may fee, that ic thefe Experiments do fucceed, it can no more be faid, that all the Colours are neceflary to compound White, and that 'tis very probable, that all the reft are nothing but degrees of Yellow and Bluc, more or tefs charged.
 ture of Colours, whilt he proceeds upon Compounding thofe that are already Newton. n.97. Compounded. Perhaps he would fooner fatisfie himfelt by sefolving Light in- ${ }^{p} .6109$. to Colours, as far as may be done by Art, and then by examining the Properties of thofe Colours apart, and afterwards by trying the effects of Re-conjoining two or more, or all of thofe; and lafly, by feparating them again, to examine what changes that Reconjunction had wrought in them. I have formerly Thew'd, That all Colours cannot practically be derived out of the : Yellow and Blue, and confequently that thofe Hypothefes are groundjefs. which imply they may. If you ask what Colours camot be be derived out of Yellow and Blue? I Anfwer, None of all thofe which I defined to be Original; and if he can fhew by Experiment, how they may, I will acknow-: ledge my felf in an Error. Nor is it eafier to Erame an Hypothefis by af: faming only two Original Colours, rather dan an indefinite Variety; unlefs it be eafier to fuppofe that there are but two Figures, Sizes, and: Degrees of Velocity or: Force of the Fithereal Corpuicles or Pulfes, rather than an indefinite Variety; which certinly would be a harfh Suppofition. No man wonders at the indefinite, Variety of Waves of the Sea, or of Sands. on the Shoar; but, were they all but two Sizes, it would be a very puzling Phænomenon. And I fhould think it as unaccountable, if the feveral Parts om Gorpufcles, of which a fhining Body confifts; which muft be fuppofed of various Figures; Sizes, and Motions, fhould imprefs but two forts of Motion on the adjacent 化hereal Medium, or any orher way beget but two forts of Rays. But to examine how Colours may be explained Hypothetically, is befide my purpofe. I never intended to fhew wherein confits the Nature and Diffe rence of Colours, but only to Shew, that de facto they are Origuial and Immutable Qualities of the Rays which exhibit them.; and to leave it to others to Explicate by Mechanical Hypothefes, the Nature and Difference of thefe Qualities; which I take to be no difficult matter. But I would not be underftood as if their difference confifted in the Different Refvangibility of thofe Rays; fo that Different Refrangibility conduces to their Production no otherwife, than. by feparating the Rays whofe, Qualities they are. Whence it is; That the fame Rays exhibit the fame Colours when leparated by any other means; as by their Different Reflexibility, a Quality not yet difcourled of.

In the next particular, where N. would fhew; that it is not neceffary to mix all Colours for the Production of White; the Mixture of Yollows. Green, and. Blue, without Red and Violet, which he propounds for that end, will not produce White, but Green; and the Brightef pars os. she Xellow will afford no other Colour but Yellow if the Experi

(158)

ment be made inct Room well Darkened, as ic ought; becaufe the: Coloured light is much weakered by the Reflection a and Yo rapt to be diluted. my theiming of any other foattering Light. But yet there is an Experit ment or two formerly mentioneds by which Lhave produced. White out of two Colours alone, and that varioully; as out of Orange and a full Blue, and out of Red and Pale Blue, and out of. Yellow and Violet, as alfo out of other pairs of intermediate Colours. The molt convenient Experiment for - 1 n performing this, was that of cafting thie Colours of one Prifm upon thofe. inf another, after a due manier. But what N. can deduceffon heace, Dëe rot. For the two Co'ours were Compounded of all others; and ro the refilting White, (to feak properly, was Conipounded of them all, and only Decompounded of thofe two. For Inftance, the Orange was compounded of Red, Orange, Yellow, and fome Green; and the Blue, of Violet, full Bhe, light Blue, and fome Green, with all their Intermediate Degrees; and confequently the Orange and Blue together made an Aggregate of all Colours to conftitute the White. Thus if sone mix Red, Orange, and Yellow Powders to make an Orange; and Green, Blue, and Violet Colours to make a Blue; and lanty, the two Mixtures to make a Grey; that Grey, though Decomponinded of no more than two Mixtures, is yet Compounded of all the fix Powders, as .truly as if the Powders had been all mix'd at once.

This is fo plain, that I conceive there can be no fursher Scruple; efpecially. to them who know how to examine, whether a Colour be Simple on Compounded, and of what Colours it is Compounded; which having explained in another place, I need not now repeat. If therefore \boldsymbol{N}. would conclude any thing, he mult fhew how White may be produced out of two Uncompounded Colous; " which when he hath done, I will further tell him, why he can conclude nothing from that. But I believe there cannot be found an Experimentiof that kind; becaufe, as I remember, 1 once tryed, by gradual Succeffion, the Mixture of all Pairs of Uncompounded Colours; and though fome of them were Paler, and nearer to White, than others, yee none coulds betruly call'd White But it being fome Years fince this tryal was made, It remember not well the Circumftances, and therefore recommend it to orhers to be tryed again.
Areply, byMon- 3. Seeing that Mr. Newton maintains his Opinion with fo nuch concern, It freur N. n. 97. lift not to difpute. But what means it, I pray, that he faith, Though I poould fhew bim, that the Wivite could be produced of only two Uncompounded Colouriss yet I could Conctude nothing from that?, And yee he hath affumed, that to conspofe the White, all Prinitive Colours are Neceffary 2njpwered, byMr. - 4. In my faying, that when Monficur N: hath frewn bow herite may be proNewton, $\mathrm{n}, 96$. pounded out of two Uncompounded Colours, I will tell bim, why be can Conclude no po 6037. thing from thet; my Meaning was, That fuch a White, (were there any fuch) would have different properties from the White which I had refpect to, when I deicribed my Theory, that is, from the White of the Sun'simmediate Light, of the ordinary Objects of our Senfes, and of all White Phænomena that have hitherto faln under my Obfervation. And thofe different Properties would evince it to be of a different conftitution: Infomuch, that fuch a Production
of White would befo far from contradicting, that it would rather illuffrate and confirm my Theory;' becaufe by thé difference of that from other Whites it would appear, that other Whites are not Compounded of only tws Colours like that. And therefore if Monfieur N. would prove any thing, it is requifite that he do not only produce out of two Primitive Colours. White, which to the naked Eye thall appear like other Whires, butalfo flall agree with them in all other Properties.
But to let you undertand, wherein fuch a White would difier from other Whites, and why from thence it would follow that orher Whites are otherwife Compounded, I thall lay down this Pofition.

That a Compoinded Colour can be refolved into no inore fimple Coleauis then thofe of which it is Compounded.

This feems to be felf evident, and I have alfo tryed it feveral ways, and particiularly by this which follows. Let a reprefent an Oblong piece of White Paper about $\frac{1}{2}$ or $\frac{7}{4}$ of an mach broad, and illuminated in a Dark Room," with a Mixture of two Colours caft upon it from two Prifms, fuppofe a deep Blue and Scarlet, which mutt feverally be as Uncompounded as they can conveniently be made. Then, at a convenient diftance, fuppofe of fix or eight Yards, viev it through a clear triangular' Glafs or Cryttal Fiifn held parallel to the Paper, and you fhall fee the two Colours parted from one another in the fafhion, of two Images of the Paper, as they are reprefented at β and γ, where fuppofe β the Scarlet, and γ the Blue, without Green or any other Colour between them.

Now from the aforefaid Poftion 1 deduce thete two Conil infons. I. That if there were found out a way to Compound White of two Simple Colours only, that White would be again refolvable into no more than two. 2. That if other. Whites, as that of the Sun's Light, \&c: be refolvable into more than two fimple Colours (as I find by Experiment that they are) then they muft be Compounded of more than two.

To make this plainef, fuppofe that A reprefents a White Body, illuminated by a direct Beam of the Sun tranfinitted through a finall Hole into a darls Room, and a fuch another Body, illuminated by a Mixture of two fimple Culours, which, if pofible may make it alfo appear of a White Colour exactly like A. Then, at a convenient diftance, view the'e two Whites thro' a Prifn, and A will be changed into a Series of all Colours, Red, Yellow, Green, Blue, Purple, with their intermediate degrees fucceeding in orders, from B to C. But α, according to the aforclaid Experiment, will only yield thofe two Colours of which it was Compounded, and thofe not cont terminate like the Colours at BC, but feparate from one another, as at B and γ, by means of the different Refrangibility of the Rays to which they belong. And thus by comparing thele two Whites, they would appear to te of a different Conflitution, and A to confift of more Colours than as: So that what Monfieur N. contends for, would rather advance my Theory by the aco cefs of a new kind of White, than conclude againgt ir. But I fee no hopes of Compounding fuch a White,

($\times 1.60$)

As for Monfcuir N. his Expreffion, That I maintain my Doetrine with fome Concern, I confers it was a littie Ungrateful to me, to meet with Objections which had been anfwered before, without having the lealt reafon given me why thofe Anfvers were infufficient. Thofe Anfwers were to thew, that there are other fumple Colours befides Blue and Yellow; I inftanced in a Simple or Honogencal Green, fuch as cannot be made by mixing Blue and Yellow or any other Colours. And I alfo fhewd why, fuppoling that all Colours might be produced out of two, yet it would not follow that thofe two are the only Original Colours. The Reafons I defire you would compare with what hath been now faid of White. And fo the neceffity of all Colours to produce White, might have appeared by that Experiment, where I fay, That if any Colotir at the Lens be intercepted, the Whitenels (which is Compounded of themall) will be changed into (the refult of) the other Colours.

Huwever, fince there feems to have happen'd fome mifunderftanding between us, I hall endeavour to explain my felf a little further in thefe things, according to the following Method.

Definitions.] I. I call that Light Homogeneal, Similar, or Uniform, whofe Rays are equilly Refrangible.
2. And that Heterogeneal, whofe Rays are unequally Refrangible.

Note. There are but three Affections of Light, in which I have obferved its Rays to differ, vir. Refrangibility, Reflexibility, and Colour; and thofe Rays which agree in Refrangibility agree alfo in the other two, and therefore may well be defined Homugeneal efpecially fince Men ufually call thofe things Homogeneal, which are to in all Qualities that come under their Knowledge, tho in other Qualities, that their Knowledge extends net to, there may poflibly be fome Heterogeneity.
3. Thofe Colours I call Simple, or Homogeneal, which are exhibited by Homogeneal Light.
4. And thole Compound or Heterogeneal, which are exhibited by Heterogcneal Light.
5. Different Colours I call not only the more eminent Species, Red, Yellow, Green, Blue, Purple, but all other the minuteft Gradations; much after the fame manner that not only the more Eminent Degrees in Mufick, but all the leaft Gradations are eitcemed different Sounds.

Propofitions.] 1. The Sun's Light confifts of Rays differing by indefinite degrees of Refrangibility.
2. Rays which differ in Refrangibility when parted from one another, do proportionally differ in the Colours which they exhibit. Thefe two Propofitions are matter of fact.
3. There are as many Simple or Homogeneal Colours as degrees of Refrangibility. For to every degree of Refrangibility belongs a different Colour, by Prop. 2. and that Colour is Simple, by Def. I, and 3.

(161)

4. Whitenefs, in all refpects like that of the Sun's Inmediate Light and of all the ufual Objects of our Senfes, cannot be Compounded of two Simple Colours alone. For fuch a Compofition mult be made by Rays that have only two degrees of Refrangibility, by Def. 1, and 3; and therefore it cantiot be like that of the Sun's Light, by Prop. I; Nor, for the fame Reafon, like that of ordinary White Objects.
5. Whitenefs, in all refpects like that of the Sun's Immediate Light, cannot be Compounded of Simple Colours, witrout an indefinite variety of then. For to fuch a Compofition there are requifie Rays endued with all the indefinite degrees of Refrangibility, by Prop. 1. And thofe infer as many fimple Colours, by Dcf. 1, and 3. and Prop. 2, and 3.

To make thefe a little plainer, I have added alfo the Propofitions that follow.
6. The Rays of Light do not act on one another in paffing thro' the fame Medium. This appears by feveral former Paffages, and is capable of further Proof.
7. The Rays of Light fuffer not any change of their Qualities from Refraction.
8. Nor afterwards from the adjacent quiet Medium. Thefe two Propolitions are nianifett de fatto in Homogeneal Light, whofe Colour and Refrangibility is not at all changeable either by Refraction or by the Contermination of a quiet Medium. And as for Heterogeneal Light, it is but an Aggregate of feweral forts of Homogeneal Light, no one fort of which fuffers any more Alteration than if it were alone, becaufe the Rays act not on one another, by Prop. 6. And therefore the Aggregate can fuffer none. Thefe two Propofitions alfo might be further proved apart by Experiments, too long to be here defcribed.
9. There can no Homogeneal Colours be educed out of Light by RefraEtion, which were not commixt in it before; becaufe by Prop. 7 , and 8 , Refraction changeth not the Qualities of the Rays, but only feparates thofe which thave diverfe qualities, by means of the different Refrangibility.

Io. The Sun's Light is an Aggregate of an Indefinite variety of Homogeneal Colours; by Prop. 1, 3, and 9. And hence it is, that I call Homogeneal Coloursalfo Frimitive or Original.
VII. I. I doubt not of what Mr. Nemton affirms; and have my felf fometimes in like Circumftances obferved the like Difference between the Length and Breadth of the Coloured Spefrumz; but never found it fo when the Sky was Clear and frce from Clouds, near the Sun: but then only appeared this Difference of Length and Breadth, when the Sun either fhined thro' a White Cloud, or enlightned fome fuch Clouds near unto it. And then indeed it was no marvel, the faid Speetram fhould be Longer than Broad; fince the Cloud or Clourds, fo Enlightned, were in order to thofe Colours like to a great Sun, making a far greater Angle of Interfection in the Hole, than the true Rays of the Sun do make; and therefore arc able to enlighten the whole Length of the Prim, and not only. fome fmall part thereof, as we fee enlightned by the true Sun-beams coming
Vo!. I.

Animaducrions on this Theory oj light ani colours;by Air. Fr. Linus. 12. 120. p.217.

(16:)

thro' the fame little Hole. And this we behold alfo in the true Sun-beams, when they enlighten the whole Prifm: for altho' in a Clear Heaven, the Rays of the Sun patling thro' the faid Hole, never make a Spectrum Longer than Broad, becaule they then occupy but a fmall part of the Prifm; yet if the Hole be fo much bigger as to enlighten the whole Prifm, you fhall prefently fee the Length of the Spectrum much exceed its Breadth; which excefs will be always fo much the greater, as the Length of the Prifm exceeds its Breadth. From whence I conclude, That the Spectrum, this Lecined Author. faw much Longer than Broad, was not affected by the true Sun-beams, but by Rays proceeding from fome bright Cloud, as is faid; and by Confeguence, that the Theory of Light grounded upon that Experinenent cannot fubfift.

What I have here faid, needs no other Confirmation than meer Experience, which any one may quickiy try; neither have I only tryed the fame upon this occafion, but near 30 Years ago hhewed the fame, together with divers other Experiments of Light, to that Worthy Promoter of Experimental Philofoplyy, Sir Kenelm Digby, who coming into thefe Parts to take the Spam Waters, re-
iA Reply by Ar. Fr. Linus. n. $121.1 .499 \%$ forted ofren-times to my Darkned Chamber *, to fee thefe various Phænomena of Light, made by divers Refractions and Reflections, and took Notes upon them; which Induitry if they alfo had ufed, who endeavour to Explicate the aforefaid Difference between the Length and Breadth of this Coloured Spectrum, by the received Laws of Refraction, would never have taken fo impoffibly a Task in hand.
2. Thefe Animadverfions feem to need no other Anfwer but this, that you would be pleafed to confider the Scheme in Mr. Nomton's fecond Anfiver to P. Pardies, and reft affured, That the Experiment, as 'tis reprefented, was try'd in Clear days, and the Prifn placed clofe to the Hole in the Window, fo that: the Light had no Room to. Diverge, and the Coloured Image made not Parallel (as in that conjecture) but Tranfverfe to the Axis of the Prifm. 3. If thefe Affertions be admitted, they do indeed directly cut of what I faid of Mr. Newten's being deceived by a brigbt Cloud. But if we compare them with Mr: Newton's firt Relation of the Experiment, it will evidently appear, they cannot be admitted, as being directly contrary to what is there delivered. For there he tells us, The Ends of the Coloured Image, be. Fam on the oppofite Lǐall, near five times as Long as Brond, fecmed to be Semicircular. Now thefe Somicircular Ends are never feen in a clear day, as Experience fhews. From whence follows againit the firft Affertion, that the Experiment was not made in a clear day. Neither are thofe Semicircular Ends ever feen when the Prifm is placed clofe to the Hole; which contradicts the fecond Affertion. Neither are they ever feen when the Image is 'Tranfverfe to the Length or Axis of the Prifm, which directly oppofes the third. Affertion. But if in any of thefe three Cales, the lmage be made fo much Longer than Broad (as eafily it may, by turning the Prifm a little about its Axis, near five times as Long as Broad) then the one End thereos will run out into a fharp Cone: or Pyramis. like the Flame of a Candle, and the other into a Cone fomewhat more blunt; both which are far from feeming Semicircular: Whereas, if the Lnage be made not in a clear day but with a bright Cloud, and the Prifm not.
placed clofe to the Hole but in a competent diftance from the fame, then thefe Semicircular Ends always appear with the Sides thereof ftreight Lines, juft as Mr. Newton defcribes them. Neither is the Length of the Inage Trantverfe, but Parallel to the Length of the Prifm. Out of all which-evidently follows, that the Experiment. was not made in a clear day; nor with the Prifm clofe to the Hole; nor yet with the Image Tranfverfe, but by a bright Cloud and a Parallel Image (as I conjectured;) and I hope you will allo now: fay, I had good Reafon to to Conjecture, fince it to well agrees with the Relation. And Experience will alfo fhew you, if you pleafe to make Tryal, as it was made in a Dark Chamber, and oblerve the difference between fuch an Image made by a bright Cloud, and another made by the Immediate Rays of the Sun: For, the former you fhall always find Parallel, with the Ends Semicircular; but the latter you fhall find Tranfverfe, with the Ends Pyramidical, as aforefaid, whenfoever it appears fo much Longer than Broad.

More might be faid out of the fame Relation, to fhew that the Image was not. Tranfverfe. For if it had been Tranfverfe, Mr. Newton, fo well skill'd in opticks, could not have been furprifed (as he fays he was) to fee the Length thereof fo, much to exceed the Breadth; it being a thing fo obvious and eafie to be Explicated by the Ordinary Rules of Refraction. That other Place alfo (where he fays, the Incident. Refractions were made in the Experiment equal to the Emergent,) proves again that the faid Oblong Image was not Tranfverfe, but Parallel. For it is impoffible, the Tranfverfe Image fhould be fo much Longer than Broad, unhefs thofe two Refractions be made very. Unequal, as both the Computation according to the common Rules of Refraction, and Experience teftify.
4. What it is that impofes upon Mr. Line I cannot-imagine; but I fuf pect he has not tryed the Experiment fince he acquainted himfelf with my Newton,n,12t. Theory, but depends upon his Old Notions, taken up before he had any hint p. 501. n. 556. given to obferve the Figure of the Coloured Image. I Thall defire him therefore, before he returns any Anfwer, to try it once more for his Satisfaction, and that according to this manner.

Let him take any Prifn, and hold it fo that its Axis may be Perpendicular to the Sun's Rays, and in this Pofture let it be placed as" clofe as may. be to the Hole through which the Sun fhines into a dark Room, which Hole may be about the Bignefs of a Peafe. Then let him turn the Prifin, Howly about its Axis, and he fhall fee the Colours move upon the oppolite Wall, firft towards that place to which the Sun's Divect Light would pafs, if the Prifn were taken away, and then back again. When they are in the middle of thefe two contrary Motions, that is, when they are neareft that, place to which the Sun's Direct Ray tends, there let him fop; for then aretle Rays equally Refracted on both Sidesthe Prifm. In this Pofture of the Primz let himobferve the Figure of the Colours, and he fhall find it not Round, as he contends, but Oblong, and fo much the more Oblong as the Angle of the: Prifn, comprehended by the Refracting Plains, is Bigger, and the Wall, on which the Colours are caft, more ditant from the Prim; the Colours Red, Yellow, Green, Blue, Purple, fucceeding in order not floin one Side of the Figure to the other, as in Mr. Line's conjecture, but from one End to the

(164)

other ; and the Length of the Figure being not Parallel but Tranfverfe to the Axis of the Prifm. After this manner I ufed to try the Experiment; and it will not fucceed well if the Day be not Clear, and the Prifm placed Clofe to the Hole; or fo near at leaft, that all the Sun's Light that comes from the Hole may pafs through the Prifm alfo, fo as to appear in a Ruund. Form, if intercepted by a Paper immediately after it has paffed the Prifm.

When Mr. Line has tryed this, I could wifh he would proceed a little further, to try that which I called the Experimentum Crucis. For when he has: tryed them (which by his denying them, I know he has not done yet as they fhould be tryed) I prefume he will reft fatisfied. It may be tryed (though not fo perfectly) even without darkning a Room, or the Expence of any more Time than fialf a quarter of an Hour.
5. Mr. Linus (now deceafed) tryed the Experiment again and again, and Tore Experiment called divers on purpofe to fee it, nor ever made difficulty to freew it to any of Mr. Line one, who either by chance came to his Chamber as he was doing it, or Mr.Gaffoignc, fhewed the leaft defire to fee the fame; fo that for point of Experience, ${ }_{\text {ming. }}^{\text {and }} 121.5 .503 . \mathrm{Mr}$. Newton cannot be more confident on his fide, than we are here on the mirg.

Anfuer'd by Mr. Newton. reid. n. 123. P: 356 other ; who are fully perfwaded, that, unlefs the diverfity of placing the Prifm; or the bignefs of the Hule, or fome other fuch circumftance, be the caufe or. the difference betwixt them, Nif. Nemton's Experiment will hardły ftand.
6. By Mr. Gafooigne's Letter one might fulpect; that Nir. Linus tryed the Experiment fome other way than I did; and therefore I Thall expect; till his, Friends have tryed it according to my late Directions. In which tryal it may poffibly be a further guidance to them, to acquaint them, that the Prifm cafts from it feveral Images. One is, that Oblong one of Colours which I mean; and this is made oy two Refractions only. Another there is made by two Refractions and an Intervening Reflection; and this is Round and Colourlefs, if the Angles of the Prifm be exactly equal; but if the Angles at the Refleeting Bate be not Equal, it will be Colourd, and that fo much the more, by: how mueh Unequaller the Angles are, but yet not much Unround, ualefs theAngles be very unequal. A Third Image there is, made by one fingleRellection, and this is aliways Round and Colourlefs. The only danger is: in miftaking the Sccond for the Firff. But they are diftinguifhable not only. by the Length and Lively Colours of the firft, but by its different motion, teo: For, whilft the Prifm is turned contmually the fame way about its Axis, the Second and Third nove fwiftly, and go always on the fame way till they difappear; but the Firft moves flow; and grows continually flower till: it be Stationary, and then turns back again, and goes back faiter and fafter, till it vanifh ia the Place where it began to appear.

If without-Darkning their Room they hold the Prifm at their Whatow in the Sun's open Light, in a fuch a pofture that its Axis be perpendicular to the Sun-Beams, and then turn it about its Axis, they cannot-mifs of feeing be firf Image; which having found, they may double up a Paper once or twice, and make a nound Hole in the middle of it, about $\frac{4}{2}$ or $\frac{3}{4}$ of an inch broad, and hold the Paper immediately before the Prifris that the Sun may Thine on the Prifm through that Hole; and the Prifm being ftayed; and

165)

held fteddy in that Pofture which makes the Image Stationary; if the Image then fall directly on an oppofite Wall, or on a Sheet of Paper placed at the Wall, fuppofe 15 or 20 Foot from the Prifm, or further off; they will fee the Image in fuch an Oblong Eigure as I have defribed, with the Red at one end, the Violet at the other, and a Blueifh Green in the middle: And: if they Obfure their Room, as much as they can, by drawing Curtains ors otherwife, it will make the Colours the more confpicuous.

This Direction I have fet down, that no Body, into whofe Hands a Pifme fhall happen, may find difficulty or trouble in trying ir. But when Mr. Linus's. Friends have tryed it thus, they may proceed to repeat it in a dark Roona: with a lefs Hole made in their Window-thut. And then I fhall defire that they will fend a full and clear defription how they tryed it:. I fhould be giad too, if they will favour me with a defeription of the Experiment as it hath been hitherto tryed by Mr. Linus, that I may have an Opportunity to con-fider what there is in that which makes againft me.

7: Mr.Gafcoigne wanting Convenience to make the Experiment, according Excopt:ous by, to the frefh Directions from Mr. Newton, requefted me to fupply his Want. Mi. Lucas...

The Vertical Angle of my Prifm was 60 Degrees; the Diftance of the ${ }^{\text {n. } 123.1-6925^{5} \text {. }}$ Wall, whereon the Coloured Spectrum appeared, from the Window, about 18 Foot; the Diameter of the Hole in the Window-fhuts about $\frac{2}{4}$ inch, which upon Occafions I contracted to half the faid Diameter; but ftill with equal. Suceefs. as to the main of the Experiment. The Refractions on both fides the Prifmwere, as near as I could make them, Equal, and confequently about 48 deg . 40 min . the Refractive Power of Glafs being computed according to the Ratio of the Sines 2to 3. The ditance: of the Prifm from the Hole in the Hiuts was about. 2 Inches; the Room darkened to that Degree as to Equal he Darkeft Night, while the Hale in the Shuts was covered.
Now as to the Iffue of my Tryals; I conftantiy found the Eength off th Coloured Image, (Tranfverfe to the Axis of the Prifm) confiderably greaterthan its. Breadth, as often as the Experiment was made on a Clear Day butif a Bright Cloud were near the Sun, I found it fometimes exactly as Mr. eine wrote you, namely Broader than Long, efpecially while the Prifn: was haced at a great diftance from the Hole. Which Experiment wills not, conceive, be queftion'd by Mr . Newotons: it boing fo agreeable to the receive Laws of Refractions. And indeed the : Obfervations of the? :wo wh Learne Perfons, as to this particular, are eafily reconcileable to each other $r_{\text {g }}$ and bot to. Truth; Mr , Newton cointending only for the Length or the Image: (Tranfvefe to the. Axis of the Prifm) in a very Clear day; wherens. Mr . Linc only maintained the excefs of Breadth : Parallel to the fame Axis, while the iun is in a Bright. Cloud. Thoughas to what is further delivered. by Mr: Nenon, and oppoled by Mr. Line, namely that the Length of the Coloured Image vas.five times the Diameter of its Breadth; I never yet have found the excefs sbore thrice the Diameter, or at moft $3 \frac{1}{2}$, while the Refractions on both Sides the Prifm were equal. Sa much as to the matter of Fact:-

Now as to Mr. Newton's Theory of Light and Colours:. I confers his neatSett of very Ingenious and Natural Inferences, was to me upon the firf Per

(166)

ufal a ftrong Conjecture in favour of his New Doctrine; 1 having formerly obferved the like Chain of. Inferences upon fearch into Natural Truths. But fince feveral Experiments: of Refractions remain ftill untouched by him, I conceived a further fearch into them would be very proper, in order to a further difcovery of the Truth of his Affertion. For, accordingly as they are found either agreeing with, or difagreeing from, his New Theory, they muft needs much ftrengthen, or wholly overthrow the fame. The Experiments I pitched upon for this purpofe are as follow.

1. Having frequently obferved, that the Form of Objects viewed in the Nicrof cope (or rather of the Microfcope it felf) confifts almoft in an indivifible Point, 1 concluded, two very fmall pieces of Silk, the one Scarlet the other Violet Colour, placed near together, fhould, according to Mr. Nenton's Theory, appear in the Microfcope in a very different degree of Clarity, in regard their Unequal Refrangibility muft caufe the Scarlet Rays, or Sjecies, to over-reach the Retina, while placed in the due Focus of the Violet ones, and confequently muft occafion a fenfible Confufion in the Vifion of the former, one and the fame Point of the Scarlet Object affecting feveral Nerves in the Retina. Yet upon frequent Tryals I have not been able to perceive any Incquality in this point.
2. The Second Experiment I made in Water. I took a Brafs:Ruler, and fafting thereunto feveral pieces of Silk, Red, Yellow, Green, Blue, and Violet, I placed it at the Bottom of a Square Veffel of Water: then I retired from the Veffel fo far as not to be able to fee the aforefaid Ruler and Coloured Silks, otherwife than by the help of the Refracted Ray. Now, did Mr. Nowton's Doctrine hold, I conceived I fhould not fee all the mentioned Colours in a Streight Line with the Ruler, in regard the Unequal Refrangi ability of Different Rays muft needs difplace fome more than others. Yet it Effect, upon many Tryals, I conftantly found them in as Streight a Line, ; the bare Ruler had appeared in.
3. To advance this Experiment, I adjoined a Second Refraction to he former of Water, by placing my Prifin fo as to receive perpendicularlthe Refracted Species of the Silk and Ruler; whereby only the Emergent Sicies fuffered a fecond Refraction. But ftill with equal Succefs, as to their apearing in a Streight Line to the Eye placed behind the Prifin.
4. To thefe two Refractions I further added a third, by receiving ne Coloured Species obliquely upon the Prifm; whereby both Incident an Emergent Species fuffered their refpective Refractions. But ftill with ne fame Sucreis as formerly, as to the Streight Line they appeared in.

For further affurance in this Experiment, left prepoffeffion, iccafion'd from previous Knowledge of the Silks fituation in a Streight Lie, might poffibly prejudice the Judgment of the Eye (as fometimes 1 have bferved to happen to the Judgrment the Eye paffeth upon the diftance of Objecis) I called into the Room fome unconcerned Perfons, wholly Ignorant of what ne Experiment aimed at ; and demanding whether they faw not the Coloured Silks and Ruler in a Crooked Line? They Anfwered in the Negative.

(167)

5. The next Experiment I made in uncompounded Colours (as Mr. Neworoz terms them, Prop. 5. §1 3.) as follows. Having caft two Coloured Inages upon the Wall, fo as the Scarlet Colour of the one did.fall in a Streight. Line (Parallel to the Horizon) with the Violet of the other: I then looked upon both through another Prifm, and found them ftill appear in a Streight Line Parallel to the Horizon, as they had formerly done to the Naked Eye. Now According to Mr. Newton's Affertion of Different Refrangibility in Different Rays, I conceive the Violet Rays fhould fuffer a greater Refraction in the Prifn at the Eye, than the Scarlet ones; and confequently both Colours fliould not appear in a Streight Line Parallel to the Horizon.
6. Another Experiment I made, in order to fome further Difcovery of that furprizing Phxnomenon of the Coloured Image, which occafioned Mr. New ton's Ingenious Theory of Light and Colours, as alfo his excellent Invention of the Reflecting Telefcope and Microfoope. Having then Comectimes fufpected. that not only the Direct Sun-Beams, butalfo other Extrancous Light, might paffibly influence the Coloured speitrum, I hoped to difcover the Truth of this fufpicion by means of the Sun-fpots, made to appear in the Coloured Image, by placing a Telefope behind the Prifm. But my Endeavours proving Incffectual herein, by Reafon of fome Intervening difficulties, I thought at Length of a more feafible Method in order to the defigned Difcovery, as in the following Experiment. .

I fattned a very White Paper-Circle (about an Inch in Diameter), uponmy Fig. $770 .$. Window-fhuts; and beholding it thro' my Prifm, I found a Coloured Image Painted thercby upon my Retina, anfverable in almof all refpects to the former of the Sun-beams upon the Wall, efpecially when the Paper Circle was indifferently well illuminated. This Image indeed appeared contrary to the former, as to the Situation of Colours, that is, the Scarlet appcaring above, the Violet below, tho' but faint. But this I was not furprifed at, having obferv'd upon diffecting the Eye, that Objects are Painted on the Retina after a contrary Pofture to what they appear to fight. Having thus rendered the Coloured Image much more tractable than formerly it was, I conceived good hopes of fome further Difcovery in the point mentioned.

In purfuance then of my former fufpicion, having fixed my Prifn in a fteady Pofture, I caufed the Paper C, to be applied clofe up the Paper-Circle. $a b d$: whereupon the former Violet d, and the Scarler Colour of C, vanihed into Whitenefs. Next I removed the mentioned Circle from the Shuts, and placed it in the open Window, fupported only by the edge d : whereupon, my aftonifhment, all the former Colours exchanged Poltures in the Retina, the Scarlet now appearing below, the Violet above; the Intermediate Colours fcarce difcernable. And here, on the by, 'tis very Remarkable, that during this Oblervation, I clearly perceived both Blue and Scarlet. Lighit to be Tranfparent, I being able to difcern feveral Objects thro' both, namely Stec-ples oppofite to my. Window. Whence it follows, that thefe Colours do. in great part arife from the Neighbouring Light. Laftly, I placed the PaperCircle anew, fo as the one half b, was faltned to the fhuts, the other Sc micircle n, being expofed to the open Air. Whereupan the Senicircle a, bs-

(168)

came bordered with Violet above, Scarlet below; but the other Semicirole t_{s} guite contrary. Hence I make the following Inferences.

Firt, That not only the Light Reflected from the Paper-Circle but alfo from the ambient Air hath great Influence upon the Coloured Image, efpecially as to the Violet and Scarlet Colours. Whence perchance it will not hereafter feem Itrange, that the Coloured Spectrum on the Wall is fo Long, but only that the Breadth is not greater. Secondly, Were there a more Luminous Body behind the Sun, we fhould in all likelihood have the Colours of the Spectrum in a contrary. Situation to what they appear in at prefent; Whence (thirdly) it feems to follow, that the prefent Situation and Order of Colours, arifeth not from any intrinfical Property of Refrangibility, (as maintained by Mr. Nenton) but from Contingent and Extrinfical Circumttances of Neighbouring Objects. For accordingly as the Body behind the Paper-Circle was more or lefis illuminated than the Circle it felf, all the feo veral Colours changed their Situation.
8. The next Experiment was made in Order to Mr. Nemoton's Doctrine of Primary Colours, as Prop. 5. Having covered the Hole in the Window-fhuts with a thin flice of Ivory, the Tranfmitted Light appeared Yellow; but upon adding three, four, or more flices, it became Red. Whence it feems to follow, that Yellownefs of Light is not a Primary Colour, but a Compound of Red, 8 ic.
9. The laft Experiment was made in reference to Mr. Newoton's I 2th Prop. where from his own Principles he renders a very Plaufible Reafon of a furprifing Phænomenon, related by Mr. Hooke; namely of two Liquors, the one Blue, and the other Red, both feverally Tranfparent, yet both, if placed together, became Opake. The Reafon whereof, faich Mr. Nemton, is, becaufe if one Liquor Tranfmitted only Red, the other only Blue, no Rays could pafs xhro' both.

In Reference then to this Point; I filled two fmall Glaffes with flat Polifhed bottoms, the one with Aqua fortis, deeply died Blue; the other with Oyl of 'Turpentine died Red; both to that degree as to reprefent all Objects thro' them refpectively Blue or Red. Then placing the one upon the other, I was able to difcern feveral Bodies thro' both: whereas according to Mr. Newtoris' Theory, no Objeet fhould appear thro' both Liquors; becaufe if one "Tranfinit only Red, the other only Blue, no Rays can pafs thro' both.
P.S. $\mathcal{J} u f t$ upon the clofe of the adioyned Letter, I received from Mr . Gafcoigne yours of May the 4 th; whercin you are pleafed to favour us with an exact Account of the Famous Experiment of the Coloured SpeCtrum, lately cxhibited before the Royal Society. I was much Rejoyced to fee the Tryals of that Illuftrious "Company arree So exactly with ours bere, tho' in fomewhat ours diffagree from Mr. Newson.
8. The things oppofed by Mr. Line being upon Tryals found true and grantavewron. ${ }^{2}$ bid. ed me; I begin with the New Queftion about the Proportion of the Length
fit 69. fac 69. of the Image to its Breadth. And it is no wonder, that Mr. Lucas found the Image

(169)

Image fhorter than I did, feeing he tryed the Experiment with a "lels Angle.

The Angle indeed which I ufed was but about σ_{3} degrees, 12 min. and his is fet down 60 degrees: the difference of which from mine, being but 3 deg. 12 min. is too little to reconcile us, but yet it will bring us confiderable nearer together. And if bis Angle was not exactly meafured, but the round number of 60 degrees fert down by guefs or by a lefs accurate meafure (as I fuf pect by the conjectural meafure of the Refraction of his Prifm, by the Ratio of the Signs 2 to 3, fet down at the fame time, inftead of an Experimental one,) then might it be two or three degrees lefs then 60 deg. if not ftill lefs: And all this, if it fhould be fo, would take away the greateft part of the difference between, us.

But however it be, I am well affured, my own obfervation was exact. enough. For I have repeated it divers times fince the receipt of Mr. Liucas's Letter, and that without any confiderable difference of my Obfervations, either from one another, or from what I wrote before. And that it might ap-pear- experimentally, how the increafe of the Angle increafes the Length of the Image, and alfo that no body, who has a Mind to try the Experiment exactly, might be troubled to procure a Prifn which has an Angle junt of the Bignefs affigned by me; I tryed the Experiment with divers Angles, and have fet down my Tryals in the following Table; where the firf Column expreffes the Angles of two Prifms which I ufed, which were meafured as exactly as I could by applying them to the Angle of a Sector; and the fecond Column exprefles in inches the Length of the Image made by each of thofe Angles ; its Breadth being two inches, its Diftance from the Prifm 18 Feet and four inches, and the Breadth of the Hole in the Window-fhut $\frac{1}{4}$ of an inch.

$$
\begin{aligned}
& \text { Angles, Lengths Angles Lengtivs }
\end{aligned}
$$

You may perceive, that the Length of the Images, in refpect of the Angles that made them, are fomething greater in the fecond Prifm than in the firlt ; but that was becaufe the Glais, of which the fecond Prim was made, had the greater Refractive Power.

The Days in which I made thefe tryals were pretiy Clear, but not fo clear as I defired; and therefore afterwards meeting with a Day as Clear as I defired, 1 repeated the Experiment with the fecond Prifm, and found the Eengths of the Image made by its feveral Angles, to be about $\frac{\pi}{4}$ of an inch greater than before, the meafures being thofe fet down in this Tible."itu .n.s. .act at es

170)

The reafon of this difference, I apprehend, was, that in the cleareft Days in the Light of the White Skies, which dilutes and renders invifible the fainteft Colours at the Ends of the Image, is a little diminifhed in a clear Day, and fo gives leave to the Colours to appear to a great Length; the Sun's Light at the fame time becoming Brisker, and fo ftrengthning the Colours, and making the faint ones at the two ends more contpicuous. For I have oblerved, that in Days fomething Cloudy, whilft the Prifm has ftood unmoved at the Window, the Image would grow a little longer or a little fhorter, accordingly as the Sun was more or lefs obfcur'd by thin Clouds which paffed over it ; the Image being fhorteft when the Cloud was brighteft and the Sun's Light faintelt. Whence 'tis eafie to apprehend, that if the Light of the Clouds could be quite taken away, fo that the Sun might appear furrounded with Darknefs, or if the Sun's Light were much ftronger than it is, the Colours would ftill appear to a greater Length.

In all thefe Obfervations the Breadth of the Image was juft two inches. But obferving that the Sides of the two Prifms I ufed were not exactly plain, but a little Convex, (the Convexity being about fo much as that of a double Convex-Glafs of a fixteen or eighteen Foot Telefcope) I took a third Prifm, whofe fides were as much Concave as thofe of the other were Convex; and this made the Breadth of the Image to be two inches and a third part of. an inch ; the Angles of this Prifm, and the Lengths of the Image made by each of thofe Angles, being thofe expreft in this Table.

Angles	Leng hs
580.	$8 \frac{1}{2}$
59	9
$62 \frac{1}{2}$	1
$10 \frac{1}{3}$	

In this cafe you fee, the Concave figure of the fides of the Prifm by man king the Rays Diverge a little, caufes the Breadth of the Image to be greater in. proportion to its Length than it swould be otherwife. And this I thought fit to give you notice of, that Mr. Lucas may examine, whether his Prifm have not this fault. If a Prifm may be had with fides exactly plain, it may do well to try the Experiment with that; but its better, if the fides be about fo much Convex as thofe of mine are, becaufe the Image will thereby become much better defined. For this Convexity of the fides does the fame effect, as if you fhould ufe a Prifm with fides exactly plain, and between it and the Hole in the Window-fhut, place an Objeet-glafs of an 18 Foot Telefcope, to. make the Round Image of the Sun appear dittinctly defin'd on the Wall when. the Prifm is taken away, and confequently the Long Image made by the Prifm to be much more diftinctly defined (efpecially at its ftreight fides) than it would. be otherwife.

One thing more I fhall add: That the utmof Length of the Image, from the faintef Red at one End, to the fainteft Blue at the other, mult be meafured. For in my firf Letter about Coloúrs, where I fet down the Length to be five times the Breadth, I called that Length the utmolt Length of

(178)

the Image; and I meafured the utmoft Length, becaufe I account all that Length to be caufed by the immediate Light of the Sun, feeing the Colours (as I'noted above) becomeVifible to the greateft Length in the Clearelt Days, that is, when the Light of the Sun tranfcends moft the Light of the Clouds. Sometimes there will happen to Thoot out from both Ends of the Image a glaring Light a good way beyond thefe Colours, but this is not to be regarded, as not appertaining to the Image. If the Meafures be taken right, the, whoie Length will exceed the Length of the ftreight fides by about the Breadth of the Image.

By thefe things fet down thus circumftantially, I prefume Mr. Lucas will be enabled to accord his Tryals of the Experiment with mine; fo nearly at leaft that there fhall not remain any very confiderable difference between us. For, if fome little difference fhould ftill remain, that need not trouble us any further, feeing there may be many various Circumftances which may conduce to it ; fuch as are not only the different Figures of Prifnis, but allo the different Refractive Power of Glaffes, the different Diameters of the Sun at divers Times of the Year, and the little Errors that may happen in Meafuring Lines and Angles, or in placing the Prifm at the Window; though for my part, I took Care to do thefe Things as exactly as I could. However Mr. Lucas may make fure to find the Image as Long or Longer than I have fet down, if he take a Prifm whofe Sides are not hollow ground, but phan, or (which is better) a very little Convex, and whofe Refracting Angle is as much greater than that I ufed, as that he hath hitherto tryed ir with is lefs; that is, whofe Angle is about 66 or 67 degrees, or (if he will) a little greater.

Concerning Mr. Lucas's other Experiments, I am much obliged to him that he would take thefe things fo far into Confideration, and be at fo much Pains for Examining them; and I thank him fo much the more, becaufe he is the firft that hath fent mean Experimental Examination of them. But yet it will conduce to his more fpeedy and full Satisfaction, if he a little change the Method which he has propounded, and initead of a Multitude of things try only the Experimentum Crucis. For it is not number of Experiments but weight to be regarded; and where one will do, what need many?

The main thing he goes about to examine is, the Different Refrangibility of Light; and this I demonftrated by the Experimentum Crucis. Now if this. Demonftration be good, there needs no further Examination of the thing; if not good, the fault of it is to be fhewn: For the only way to examine a Demonitrated Propofition is, to examine the Demonftration. Let that Experiment therefore be examired in the firft Place, and that which it. proves be acknowledged, and then if Mr . Lucas want my Affiftance, to unfold the dificulties which he fanfies to be in the Experiments he has propounded, he fhall freely have it. At prefent I fhall fay nothing in Anfwer to his Experimental Difcourle, but this in general, that it has proceeded partly from fome mifunderftanding (f what he writes againft, and partly from want of due caution in trying Experiments; and that amongit his Experiments there is one, which when duly try-

(172)

ed, is, next to the Experimentum Crucis, the moft confpicuous Experiment, I know, for proving the Different Refrangibility of Light, which he brings it to prove againft.

By the Poft-fcript of Mr. Lucas's Letter, one not acquainted with what has paffed, might think, that he quotes the Obfervation of the Royal Society againft me ; whereas the Relation of their Obfervation, which you fent to Liege j_{-}- contained nothing at all about the juft proportion of the Length of the lmage to its Breadth according to the Angle of the Prifm, nor any thing more (fo far as I can perceive by your laft) than what was pertinent to the things then ini difpute, viz. that they found them Succeed as I had affirmed. And therefore, fince Mr. Lucas has found the fame Succefs, I fuppofe, that when he ex. preffed, That be much rejoyced to fee the Tryals of the R. Society agree fo exactly with bis, he meant only fo far as his agreed with mine.

P: S. I bad like to bave forgotten to advife, that the Experimentum Crucis, and Juch others as foall be made for knowing the Nature of Colours, be made with Prifms mbich Refract So much, as to make the Length of the Image five times its Breadth, and rather more than. Lefs; for otherwife Experiments will not fucceed fo plainly' with others as they bave done with me.

An Optical Ex. VIII. I took: a ftiff piece of Brown Paper, and pricking a fmall Hole thereteriment; byMr. in, I held it at a little Diftance before me : then applying a Needle to my Eye, Steph. Gray. I was furprifed to fee the Point of it Inverted: The nearer the Needle was nt. 221 . +286 . to the Hole, it was fo much the more Magnifyect, but lefs Diftinct; and if it were fo held, as that its Image was near to the edge of the Hole, its point feemed Crooked. So that, it feems thefe fmall Holes, or fomewhat in them r_{2}. perform the Effects of a Concave Speculum, and fo I take leave to call them Acrial Spcculums.
IX. I. Mitto tibi hac occafione Conftuctionem Problematis Albazeni nuper

AProbitem of Alhazen, folved à me inventam, \&z' à Collegis meis felicen fatis judicatan. Problema eft; by M. Chr. Dato Speculo Cavo nut Convexo, itemque Oculo O Puncto Rei vifa, invenire Hugens. n. 970
$t .61190$

Efto Speculum ex Sphxra quæ Centrum habeat A Punctum, Oculus vero Fi. ${ }^{\circ}$ 78. fit in $\mathrm{B} ; .8$ Punctum. Vifibile in C , Planumque ductum per $\mathrm{A}, \mathrm{B}, \mathrm{C}$, faciat in Sphæra. Circulum D d, in quo invenienda fint Reflexionis Puncta. Per tria Puncta A, B, C, defcribảtur Circuli Circumferentia, cujus fit Centrum Z, occurrat autem ei producta A E, Perpend. BC , in R , \& fit duabus $\mathrm{R} A, \mathrm{OA}$, tertia Proportionalis NA, erieque NM, Parallela BC, altera Afymptoton. Rurfus fint Proportionales E:A, $\frac{\pi}{2}$ A O, A I, \& Summâ. I Y æquali i N, ducarur Y M Parallela A; eaque erit altera Afymptotos. Denique fumptis $I X_{2}$ IS, qux fingulx poflint dimidium Quadratum A O, una cum Quadrato AI; erunt Puncta x \&t: in Hyperbola, aut Sectionibus oppofitis. D d, ad inventas Afymptotós defcribendis, quarum Interfectiones cuni Circumferentia D O, oftendent Puncta Reflexionis quæfita. Conftuctio hxe, in ommi Caftr, quo
fed Parabola defcribenda eft; cum nimirum Circumferentia per Puncta A, B, C, defcripta, tangit Rectam AE.
2. Cum Nobilifimi Hugenii Conftructionem ad Calculos revocatem, ean- By M. Slufuss. dem omnino mecum. Analyfin fecutum effe deprehendi; fed cum ex illa dur nafcantur Effectiones, utraque per Hyperbolam circa Afymptotos; Ille unam, Ego alteram, uti faciliorem, felegeram. Evidens eft auten, nihil aliud quærí hoc Problemate (fi illud ad Terminos merè Geometricos revocemus) nifi in dato Circulo, cujus Centrum A, Radius A P): Punctum aliquod ut P, à quo ductis ad Puncta data E, B, inæqualiter à Centro A, diftantia, Rectis PE, P B, Recta A P, producta bifecet Angulum EPB. Quod quidem varios Cafus recipit. Vel enim Normalis ex A in Rectum E B, nimirum A C, cadit inter E \& B; vel ultra B. Si ultra, vel Rectangulum EOB æquale eft", Quadrato: A O, vel majus vel minus. De Cafu rqualitatis videbitus infra; menc verò tres alios Cafus eaden ferè Conftructione complectennitr. Per tria puncta A, E, B, tranfeat Circulus, ad cujus Circimferentiani producatur A O Fig. $79,80,280^{\circ}$ in D. Ac friquidem punctum O cadat inter $E \& B$, Recta $A O$ rerfus O producenda erit;-; fin autem ultra B, fitque Rcctangulum EO.B majus Quadrato $A O$, producerida erit verfus A; at fr. Rectangulum quadrato minus fuerit,
 EB, fecante Circulum datumin N , frat ut rectangulum: D AO ad quàdratum AN , ita $\frac{1}{2} \mathrm{AX}$ ad AH , quæ fumenda crit versis X, if O cadat inter E \& B, aut rectangulum $E O B$ minus fue quadrato $O A$; at ex parte contraria, f: fit majus. Ponatur nunc $O Q$ Qaqualis $A H$ (in directum EB primo it fe=. cando cafu, tertio - verò versùs $\mathrm{E}:$) tum fiant proportionales $X \mathrm{~A}, \mathrm{NA}$, $H K$, fumenda omini cafu versìs $X:$ fectâque $A . O$ in V, ut fit eadem Ratio . K A ad A.V, quæ AD ad AX; jungatum K V, ac producatur donec occurrat recta EM Parallie O A - indefinite productæ, in puneto L; erunt omni cafu K L \& QL Afymptoti Hyperbolx, quæ per pinctum O defcriptą, propofito fatisfaciet : hoc tantum difcrimine, quod primo \& fecundo cafu Hyper. bola per O, Problema folvet in fpeculo Convexo, Sectio verò ei oppofita in. Concavo; at tertio cafu contrà, Hyperpola per O ferviee Concavo, ejus oppofita Convexo. Atque id quidem, cum punctum V cadit inter A \& O; , ñan fis ultra O caderet, unica Hyperbola inter eafdem QL, KL, deforipea, tannspe culo Convexo quàm Concavo fatisfaceret. Cxterum fi.V caderet in ipfurs, punctum O, Problema tunc Planum effet, \& ipfx Rectx L Q, L K, ihlud ab Solverent. Unde patet Problematis hujus dari Cafus infinitos, qui per Locima. Planum folvi poffunt:: quo magis veniâ digni videntur ii, qui illend per eun-t dem Locum universè folvi poffe cenfuerunt, quòd iplos aliquaties Calculuis fellit citcr cecidiffet. Nulla enim dari poteft trium punctorum A, E, B, poftion, (de) cafu requalitatis Rectanguli EOB , \& Quadrati O A , mox videbimus,) qux non admittat Circulum aliquemex Centro A defcribendum, ad cujus Circumenrentiam Problema per Locum Planum folvi queat. Hujus auten Cirouit Radius, fi tanei eft, ita invenietur: in primo \& fecundo cafu fuperioris ConItructionis fiat ut Quadratum AX unà cum duplo rectangulo D.AD, ad duplum Quadratum AD; ita Quadratum AO, ad Quadratum AN, crit A IF. Radius quafitus.. At in tertio cafu, facienduns eft, ut Quadratum AX minus.

Dupio Rectangulo OAD, ad Duplum Quadratum AD; ita Quadratum AOs, ad Quadratum AN.

Conftruendus nunc fupereft alius cafus, æqualitatis nempe Rectanguli EOB , \& Quadrati A O, five in quo Circulus, per puncta A, B, E, defcriptus, tangit Rectam A O. Rectè autem monuit Clarillimus Hugenius hoc cafu defcribendam effe Parabolam; quod tamen non ita intelligendum eft quafi per Hy perbolam folvi non poffit, cum \& Hyperbolam \& Ellipfin, imò Infinitas (fi quis Methodo noltrâ uti velit) admittat; fed quod Parabolam quoque recipiat, quam alii cafus refpuunt. Eadem ratione temperandum eft quod ait; ConItructionem fuam omni cafu quo Problema folidum eft, locum habere; intelligit enim, levi mutatione femper inveniri Hyperbolam qux propofito ferviat: quod cafus à nobis fuperius Conftructos cum ejus Conftructione comparantiplanuma fiet. Ult autem ad cafum æqualitatis redeam; \& nequid temerè̀ afferuiffe videat, Ecce tibi non unam, fed duas Parabolas, ac preterea Hyperbolas Oppofitas quæPropofitum abfolvunt. Sint, ut prius, puncta data E, B, Circulus ex Centro A, ac alius per tria puncta A, E, B, cujus Tangens fit AO, Centrum D. Ductâ Diametro NADX, fiant tres Proportionales XA, NA, Z A, cujus dimidium fit AL. Fiant iterum tres Proportionalis $2 \mathrm{OA}, \mathrm{NA}, 1 \mathrm{~A}$, cujus dimidium fit K A, \& perficiatur Rectangulum LAOV; productaque $L V$ in S, donec $V S$ fit tertia Proportionales ipfarum AI, OV ; Axe S L, Latere Recto A I, Vertice S, defrribatur Parabola; hæc enim Circulum fecabit in punctis P, P, quæfitis. Tantundem faciet alia, fi perfecto Rectangulo DAKC, \& productâ K C in T, ita ut C T fit tertia Proportionalis ipfarum A Z, D C, delcribatur circa Axem TK, Vertice T, Latere Recto, Z A: occurret enim Circulo in iifdem punctis P, P. Facilior adhuc eft Conftructio per Sectiones Oppofitas; factis enim, ut priùs, tribus Proportionalibus X A, N A, ZA, demittatur Z. INormalis, tertia Proportionalis Duple A O, \& AN. Erit itaque Z. I major $\mathrm{Z} \dot{A}$, cum Dupla A. O minor fit XA: tum in puncto I, inclinentur utrinque Angulo Semirecto ad lineam IZ, rectr IQ, IM, \& ab utraque parte indefinitè producantur; demum circa illas tanquam Afymptotos defcribatur per A Hyperbola, \& alia ipfi Oppofita; hec enim fatisfaciet Problemati in Speculo Convexo, illa in Concavo. Cùm verò, ut oftendimus, 'Z I femper major fit Rectâ Z A, Recta IM nunquam tranfibit per A. Non dabitur itaque Cafus, quo ex hac Conftructione, velut in precedentibus, Pro blema per ipfas Afymptotos folvi poflit: et tamen hoc quoque aliquando Locum Planum admittit; cimm fcilicet accidit, ut Recta XO ducta ad Centrum D, Tangat Circulum NP P ; ipfum enim punctum Contactus quxeftionem folvit. Et hæc quidem de Problemate, quod hactenus multorum ingenia exercuit, \& cujus folutionem ante aliquot Annos abfolvi.
Otbermifs, by M. Accipe qure circa Albezeni Problema, curis fecundis meditatus fum. Slufius. ibid. p. 6123.

Fig. 84.
Datus fit Circulus, cujus Centrum A ; puncta data funt $\mathrm{D} \& d$. Supponatur factum quod queritur; fitque Radius Incidens DE, Reflexus Ed; \& ex Puncto Reflexionis E cadat in junctam D A, Normalis EI, \& in eandem, ex d; Normalis $d \mathrm{~N}$, occurantque eidem Tangens EC \& Radius $d \mathrm{E}$, productis in B. Sit nunc $\mathrm{DA}=r . \mathrm{AI}=\pi . \mathrm{NA}=n . \mathrm{EI}=c . d \mathrm{~N}=b . \mathrm{BA}=y_{0}$ $A E=q$. C $A=x$. Igitur, cum Anguli, $D E C, C E B$, fint rquales, \&

Angulus CE A Rectus, ex Hypothefi erunt tres, DA, C A, BA, Harmonicè Proportionales. (hoc enim facile oftenditur). Erit itaque ut D A, ad BA, ita DC , ad CB ; five in terminis Analyticis, $z: y:: z-x: x-y ; \& z z y$ $-x y=z x$, five $\frac{2 i y}{z+y}=x$. Cum autem Rectangulum CAI, five x a, fit æquale Quadrato AE , five $q q$, erit $x=\frac{q q}{a}$, \& per confequens $\frac{2 z y}{z+y}=$ $\frac{q q}{a}$, five $\frac{q q q}{2 \approx a-q q}=y$. Porro, eft ut $d N$, ad EI: ita NB, ad IB; five $b: c:: y-n: y-a$. Itaque $y c-n e=b y-b_{a ;} ; y=\frac{b_{a}-n e}{b-c}$. Igitur $\frac{i q q}{2 \hbar a-q q}=\frac{b a-n c}{b-c}$ five $2 \hbar b a a-2 \hbar n a c-q q b a+q q n c$ $=b z q q-z q q c$. Qux xquatio eft ad Hyperbolam circa Afymptotos, cujus Conftructio cum Circulo dato, Problemati fatiffacit. Cùm verò, ob Circulum, fit $q q=a a+c e$, fi loco $2 b \approx a a$, ponatur ejus Valor $2 b \approx q q-$ $2 \cdot z \approx c$, habebitur alia pariter ad Hyperbolann circa Afymptotos $6 z_{q} q$-. 2: $b_{\imath c e}-2 \hbar n a c-q q b a+q q u c=-ұ q$ g. Et hac Methodo, atque illâ, quam in Libello noftro de Analy/i expofuimus, prodibunt infinitæ Æquationes ad Hyperbolas \& Ellipfes, qux cum Circulo dato Problema abfolvent ; nifi quod Effectiones plerumque intricatiores cvadunt quàm ut operre pretium fit illas aggredi: conftrui tamen poterunt eo modo, quo ibi uli fumus in Ellipfi.

Retulimus, ut vides, Calculi noftri Summam ad linean D A; fed fatis animadvertis, non majori difficultate referri potuiffe ad. $d \mathrm{~A}$ (qux pariter data eft) ductis Scil. lineis, quas in Schemate punctis adumbravimus. Verùm novo Calculi labore non eft opus. Si enim Rectx $\boldsymbol{l} \mathrm{A}$, ejufque partibus, eofdem ac. prius terminos Analyticos adhibeas, b.e. fi ipfam dA facias xqualem \%. $\mathrm{D} n=b . n \mathrm{~A}=n . \mathrm{AI}=a . i \mathrm{E}=c$. \&c. prodibit eadem Æquatio qux prius; \& infinitas alias Hyperbolas \& Ellipfes nbtinebis, qux cunn Circulo dato Problemati fatisfacient. Фooflxòs effem fi fingulos: Cafisis profequi vellem, cumz illorum Æquationes folâ Signorum $+\&-$ variatione difcernantur., Unurn tamen excipio, nimirum cum Angulus dAD eft Rectus; ejus enim xquatio habecur, ex punctis à priori xquationc partibus, in quibibis s (qux in nihilums abit) invenitur: nempe hrec, $2 \hbar b a a-q q b a=b \succsim q q-z q q q$, vel (pro $2 z b a n$, pofito ejus valore) $z b q q-q q b a=2 z b c e-z q q e$.

Sed animadvertendum eft, quod. licet referendo Analyfin ad. Rectam D A, flatim fefe offerant in xquatione dux Hyperbolx; \&s alixe toriden à prioribus diverfe, cum refertur ad Rectam $d \mathrm{~A}$; cafdem tamen omnind Paragbolas haberi, ad utranyvis Rectarum d A, vel D A, referatur Analyfis: cujus rei ratio levi confideratione tibi occurrer.

(176)

Patcienuac, $/ /$ Cl/ ut fuperiorem Analyfin omnibus, qux circa Speculorum SphaE.3. 85. te. Sit igitur, ut pritus, Circulus, cujus Centruni A, Punctum D datum, \& ab eo Radius lncidens DE, cujus Reflexus fit E. Q. Junctâ D A, ducatur ad illam Tangens EG; \& Normalis EI; \& producatur ad eandem, Recta QE B; Denominentur partes ut priús. $\mathrm{DA}=\tilde{z} \cdot \mathrm{CA}=x \cdot \mathrm{AE}=q \cdot \mathrm{~B} \cdot \mathrm{~A}=\gamma \cdot \mathrm{A} \mathrm{I}=a \cdot \mathrm{IE}$ $=c$. Igitur, prepter tres DA, C A, B A, Harmonicè Proportionales, \& tres $C A, A E, A I$, Gcometricè, femper hatebitur x quatio $y=\frac{\tilde{q q} q}{2 \pi-q q}$, in quodcunque Circuli punctumn cadat Radius DE. Itaque fi quæratur punctum E, sin guod in Radius DE Incidat, Reflectatur wapuisisic; Diametro LAV normali ad DA; Rellexus $2 E$, productus tranfibit per I; ut patet ; \&I ac B coincident. Igitur $a=y=\frac{z q q}{2 ; i-q q} ;$ five, $a n-\frac{x}{2} \frac{q q a}{z}=\frac{x}{2} q q$, \&i Problema per Plana folvetur.

Si quærarur punctum, à quo Radius Reflectatur parallelis alteri cuilibet linex, ut AK (ductre ex Centro A;) ducatur ad illam, ex puncto I, Tangens $\mathrm{KL}=$ d. Evidens eft, Triangula AKL, EIB, fore fimilia, cùm oninia Latera unius parallela fint Lateribus alterius, \&rc. Itaque AL, ad LK ; ut EI, adib, five $q: d:: c: a-y ;$ \& $\frac{q a-d e}{q}=y=\frac{z q q}{2 z a-q q} ; \& z q^{3}=$ $2 q z a a-2 z d a c-q^{3} a+q q d c$; five, pro an pofito qq-cc; $q q^{3}=$ $2 z q^{3}-2 z q c e-2 z d a c-q^{3} a+q q d e$. Utraque auten æquatio eft ad Hyperbolam circa Afymptotos, que cum Circulo dato Problemia abfolvit.

Proponatur nunc efficere, ut Radius Reflexus tranneat per datum punctum $\mathrm{N}_{\text {, (}}$ (ut in Problemate Aibazeni) vel ut productus verfus punctum Reflexionis E, occurrat dato Puncto N. Ex N cadat in AL Normalis $\mathrm{NO}=n$, fitque $\mathrm{AO}=b_{0}$. Patet effe, ut AO , ad differentian ipfarum $\mathrm{ON}, \mathrm{A} B$; ita E T, $\operatorname{ad} I B, \%$ c. $b: n-y: c: a-y$; vel $b: y-n:: c: y-a$ Igitur $\frac{b_{a}-n_{c}}{b-c}$
$=y=\frac{\tilde{i} q q}{2 \tilde{z} q-q q}$. Unde $2 \tilde{z} b a a-2 \tilde{z} n a c-q q b a+q q n e=b_{\tilde{\tau} q q}$ - iqqo j nim. illa ipfa rquatio Problematis Albazeniani quam fupra innuimus: Vel, fecundo cafu, $\frac{b a+n c}{b+c}=y=\frac{z q q}{2 \xi a-q q}$, five $2 z b a a+$ $2 z n a c-q q b a-q q n c=i b q q+z q q c$ \therefore Atque hrec funt Problemata, qux circa punctum Reflexionis proponi folent, in quibus tamen Finitam puncti D dati diftantiam fuppofuimus.' Sed facilior erit Analy fis, fi fupponamus Infinitam. Secta enim CA bifariam in G, conthat ex proprietate trium, D A, C A , B A, Harmonicè Proportionalium, tres 3) $G, C G, B G$, fore Geometricè Proportionales, fuppofitâ quâcunque

(177)

punçti D dittantiâ. Itaque, fil fupponatur Infinita, BG abibit in nihilun, \& puinCtum B cum puncto G coincider. Igitur A B erit perpetuò xqualis $B C$; erit itaquue $\mathrm{CA}=2 y$, \& Rectangulum CAI, wquale Quadrato AE, dabit, in terminis Analyticis, $2 a y=q q$, five $y=\frac{q q}{2 a}:$ Cumque diftanuia puncti D fupponatur infinita, erit ED Parallela AC: Itaque, fí quaratur Radius Reflexus parallelus AL, quoniam co cafu a \& y coincidunt, erit $a=y=$ $\frac{q q}{2 a}$, five $\kappa a=\frac{1}{2} q q:$ Siqueratur ut Parallelus fit AK , eritrurfus $q: d:: c: a-$ - $;$ t $\& \frac{q a-d e}{q}=y=\frac{q q}{2 a}$, five $2 q a a-2 d a c=q^{3} . \quad$ Si petatul ut tranfeat per N, erit, ut fupra, $, \frac{b_{a} \pm n c}{b \pm c}=y=\frac{q q}{2 a}, \&_{2} b a a \pm 2 n a c=b_{q q}$. $\pm q q^{\circ}$: Qux xquationes funt quogue ad Hyperbolas circa Afymptotós, niff $\overline{\mathrm{N}}$ punctum effe fupponatur in AL; nam cùm tunc n abeat in nihilum, fublatis.ab æquatione partibus, in quibus n continetur, refidux dant x quationem ad. Parabolam, ut fuprà quoque monuimus.

Non exfpectas, V.Cl. ut curi Specula Concava hactenus in Exemplum adduxerinn, nunc agan de Convexis. Scis eninit, eandem effe prorfus Analyfin, \& Æquationes folâ Signorum $+\&$ - variatione diftingui. Scis Parabolam vel Ellipfin qux uni fatisfacit, fatisfacere alteri,; \& fi Hyperbola in Convexo Problema abfolvat, ejus Oppofitan parizu facere in Concavo. His itaque omifilis, addo tantutin, eâdem Analyfi. haberi in Speculis Concavis Focos \& Spatia, qux Radii occupant in Axé, da: tâ qualibet Puncti Lucentis diftantiâ: Sed mirà facilitate, cùm Radii fupponuntur paralleli ; quod tamen nonnullo circuitu à quiburfam demonftrari vidi. Nam in Speculo Concavo EE, cujus Centrumi A, fi Radius extremus Reflecti intelligatur ad Axem $A \cdot R$ in B, ductâ Tangente $E C$, erit $C B=B A$. Bifecetur Semi-axis $A R$ in Q; crit itaque Q Focus. Et $Q B$ Spatium qux-fitum. Eft autem $Q B$ dimidia $C R$ (ob xquales $A Q, Q R, A B, B C$,) bee: dimidia exceflus fecantis Arcûs ER fupra Sinum totum. Igitur fi Arcus ER fit ${ }^{-}$

Fig. 86, (c.g.) grad 9 , erit $A C, 101246, \& B Q \frac{623}{100000}$ ipfius AR:
4. Compendium, quod eodem tempore inveni circa primam Conftructionem; ab initio tibi communicatann, tale eft: Ductâ lineâ A T, parallelâ CB, caque bifecta in V, punctumi hoc eft illud, per quod tranfire debet una Hyperbolarum Oppofitarum, quarum - Afymptoti inventex fuerunt YM, MN.

Sed en Tibi bonam illam Conftructionem, qux in omnibis Cafibus obtinet. Sit Circulus datus ED, cujus Centrum eft A ; Puncta data, B \& C.

Ductis Lineis: A B, AC, fiant Proportionales BA (Radius Circuli) \& FA Eodem modo CA, (Radius Circuli) \& GA: Tum jungatur FG, caque bifecetur in H ; \& per hoc punctum ducantur Linex LHK, MHN, Vol. I

Fig. 87.
Fig. 8s.
fe invicem interfecantes ad Angulos Rectos, quarumque L HK Git Parallela ei qux bifecat Angulum BAC. Hæ funt duæ Afyuptoti Hyperbolarum defcribendarum per puncta F \& G , \& quarum una tranfibit etiam per Centrum A, quarum Interfectiones cum Circuli Peripheria nutabunt puncta Reflexionis quefita.

Farther confider= ed, by Miv. Slufius obo po 614 I. perbola Æ. qualium Laterum, quam in cafu Anguli Recti fefé ftatim offerre procedentibus meis infinuaveram. Poffer quoque ex infinitis Ellipfibus, qux adhiberi poffunt, una feligi non difficilis Conftructionis: fed piget tamdiu in codem Problemate harere. Supereft tamen aliquid, quod contemplationemr habet non injucundam ; nim. cùm Sectiones, qux cum Circulo dato ad Problematis folutionem adhibentur, fllum in quatuor punctis fecent, quorum duo tantum Reflexioni ferviunt, quari poffet, quodnam Problema folvent duo reliqua; \&\& quânam verborum formâ concipienda fit Propofitio, ut quatuor illos Cafus complectatur. Deinde annon etiam ijdem quatuor Cafus occurrant cùm Puncta data xqualiter diftant à Centro?
ifgaim ib: Clar. Hugenius non alia uilur Analy quam meâ, quæ Parabolam uno tantùm cafu admittit. Quod ut evidentius tibi conftet, Æquationem quam Conftruxit hic adfribam. Repete memoriâ, fi placet, qux fecundis curis ad te frripfi, \& invenies, me duas æquationes, Problemati per Hyperbolam circa Afymptos folvendoidoneas, arfignaffe, has nimirum;

$$
2 z b a a-2 z n a c-q q b a+q q n c=b q q q-q q q e,
$$

Et $b z q 9-2 z n a c-q q b a+q q n e=2 z b e e-z q q e . ;$ ac fubjeciffe, levi mutatione, (fubftituendo, ex gr. pro q: q r jus Vialorem a a cc) invenire poffe infinitas. Hyperbolas \& Ellipfes, qux cum Circulo dato Problema folverent. Nunc in priori ex his xquationibus prob $b q q$ ponatur ejus Valor, fiet

$$
\begin{aligned}
& z b a a-2 q n a a-q q b a+q q n c=b z e c-z q q c \\
& \text { Sive } a a-\frac{q q a}{z}=e c-\frac{q q e}{b}+\frac{2 n a c}{b}-\frac{q q n c}{z b}
\end{aligned}
$$

Atque hæc eft Æquatio, quam magno ingenii acumine, ac pari facilitate, conitruxit Vir Doctilimus.

Incidi nuper in fequentem Conftructionem, qua breviorem cùm dari poffe vix credam, committere nolui, quin eam judicio ac cenfurx tux fubmitterem: Fig. 8\% Sint igitur Puncta data E B, Circulus cujus Centrum A; junctis E A, B A, Secantibus Circulum in $F \& C$; fiant tres Propoitioniales E A, FA, V A, \& tres iterum B A, CA, XA: Tum junctâ V X, ac productâ utcunque, (Vertite X, Latere Tranfverfo $V \mathrm{X}$, ac Recto ipfi æquali). defribatur Hyperbola X P, cujus applicatre ad Diametrum V G , Parallele fint Rectre A B': Illa enim: fatisfacit propofito in cafu Speculi Convexi, ut ejus Oppofita in cafu Concavi. Si Afymptotos defideres, facilè reperiri poffunt, productâ $V \mathrm{X}$, donec cum EB, paritcr productâ, concurrat in $L ;$ deinde bifeota $V X$ in I, ac fumptâ L D aquali L, I; juncta enim DI , erit Afymptoton una, in quam alia nomalitier incidit ad punctum I.

Sed fortaffẹ ingratum tibi non erit jntelligere，quâ viâ ad hanc Contructio nem pervenerim．Scias itaque，me ex priori mea Analyfi deduxiffe hoc modo． Datis iifdem qux prius，cadat in $E B$ ，Normalis $A O$ ，fitquè punctum quæ－ fitum P ，ex quo in AO cadat Normalis PR．Si AO fit $b ; E O$ ，z ；OB， $d ; A P, I ; P R, c ; A R, a$ ；facilè colligitur bxe 压quatio， $\frac{2 z d a c+2 b b a c-2 b q q 0}{z b-b d}+a e=a a-\frac{q q a}{b}$ ，qux mutari poteft in has，$\quad \frac{z d a c+b b a c-b q q a}{z b-b d}=a a-\frac{2}{2} q q-\frac{\frac{1}{2} q q a}{b} ; E t$ $\frac{z d a e+b . h a c-b q q e}{z b-b d}+e q=\frac{1}{2} q q-\frac{\frac{1}{2} q q a}{b}$ ．Hujus ultimæ Conftru－ ctionem olim ad te mifi，alterius verò， Cl ．Hugenius．Primam autem，licèt fe ftatim in confpectum dediffet；fermè neg̣lexeram，quàd difficilioris Conftru－ ctionis effe prxfumerem．Sed me vano timore delufum agnovi，cùm in hanc， quam ad te mitto，Conftructionem definere nuper fum expertus．Sit enim， brevioris Calculi causî，z $-d=k, z d+b b=b m$ ；fiet $e c \frac{-2 g q e+2 m a c}{k}$ $=a a \frac{-q q a}{b}$ ．Et additis utrinque $\frac{q^{4}+m m a a-2 q q m a}{k t}$ ，erit $a c+\frac{m a c-2 q 9 . c}{k}+\frac{9^{4}+m m a a-29 g m a}{k k}$ ，hoc eftquadratum $\mathrm{ex} e-\frac{99+m a}{k}-x$ xquale $a a-\frac{99 a}{b}+\frac{94+m m a a-299 m a}{k k}$.
Fiet igitur，diva入ourouos kk：$k k+m m:: a \bar{a}-\frac{k k q q a}{b k k+b m m}-$ $\frac{2 q q m a+q^{4}}{k k+m m} ; \&$ quadratum $e-\frac{q q+m a}{k}:$ qui ad æquationem facilio rem reduci poteft，f ，pofito $k k+m m=p p_{i}$ fiat $\frac{k y}{p}=a ;$ fit enim tan dem，quadratumex e $\frac{-q q}{k}+\frac{m y}{p}=y y \frac{-q q k y}{b_{p}}-\frac{2 g 9 m y}{k p}+$ $\frac{q^{4}}{k k}$ ；quam 压quationem fuperiori Conftructioni refpondere animadvertess fi Calculos applicueris；ac fimul obfervabis，ad quamcunque linearum－E．A_{j}^{*} A B，B E；referatur Analyfens fumma，ealdem，femper habere poffe Sectiones， quamvis longiori circuitu \＆æquationibus valde diverfis．
 effectionem, tùm fcil. querritur Punctum, à quo Radius Reflexus Patailelus

Eig. GI。

By M. Hugens. Ibid. t. 6143.

Eig. 920 fit cuilibet linex datre ; ut, fid dato Puncto Luminofo B, Circulo ex Centro A, quxreretur Radius Reflexus parallelus reftr A E. Idem eninn eft, ac f_{1} in alio Problemate, ditantia punctorum A \& E fupponeretur infinita; quo cafu Tertia Proportionalis ipfarum E A, FA, abiret in nihilum, \& puncta A \& V Coinciderent : Ttaque $V X$ effer $æ$ qualis $A X$, \& A parallela $P E$. Applica igitur fuperiotem Conftructionem \& Problema abfolves. Defcripta foil. (Vertice X, Latere Tranfiverfo VX, vel AX, \&-Recto ipfi æquali,) Hyperbolâ XP, cujus Applicatx ad Dianctrum A X, parallele fint rectx AE.
6. Verun eft, quin imò mirandum, Conftructionem quam antehac ad to mifi inveniri quoque per Calculum quen Dn. Slufius de ea infituit poft mutationen $9 q$ in $a n+e e$; at hoc videtur fieri cafu, nec ibi apparet Conftruetionis fimplicitas nifif pofquam eam peragere fategimus.

Problemic Alhiazeni.] Dato Circulo, cujus Certium A, Radius AD, छु punctis duobus B, C; invonire punctum H in Circumferentic Circuli dati, unde ducta $H B$, HC, faciant ad Circumferentiami Angulos aquales.

Ponatur Inventum, ductaque AM recta, qux bifariam fecet Angulum BAC , ducatur ei Perpendicularis HF, itemque BM, CL. Jungatur porrò AH , cui Perpendicularis fit HE , Restifque BH, HC, occurrat AM in.punctis K, G.
$\dot{S}_{\text {it }}$ jan $\mathrm{AM}=a$ Quia ergo arguales Anguli $\mathrm{K} H E \& \mathrm{CHZ}$, five EH G ; $M B=b$ ettque EHA Angulus Rectus, erit ut KE , ad EG ; ita $\mathrm{MB}=6 \mathrm{KA}$, ad AG. Quia verò BM , ad MD ; ut HF , ad $A L=c F K$, erit,
ut BM + HF ad HE, ita MF ad FK, $\mathrm{LC}=n$
Radius $\mathrm{AD}={ }_{d}$ $\left.\begin{aligned} & \mathrm{AF}=x \\ & \mathrm{FH}=,\end{aligned} \right\rvert\, \mathrm{KA}=\frac{a y+b z}{b+y}$.
Rursùs, quia CL ad LG, ut HFad FG, crit permutando \& dividendo CL - HF ad HF, ut L-F ad FG, $n-y: y:: c-x: \frac{c y-x y}{n-y}$, quâ̂a ablatâa ab $\mathrm{AF}=x$, fit $\mathrm{GA}=\frac{n x-c y}{n-y}$. Eft autem $\mathrm{EA}=\frac{d d}{x}$, quia Proportionales FA, AH, AE: Ergo EA-GA, hoc eft, EG, $=\frac{d d}{x}-$ $\frac{n x+c y}{-y}$. Et KA - EA, hoc eft, KE $=\frac{a y+b x}{b+y}-\frac{d d}{x}$

(181)

Sed diximus, quod K E ad EG, ut KA ad A G; i. ce $\frac{x y+b \bar{x}}{b+y}-\frac{d d}{x}$: $\frac{d d}{x}-\frac{n x+c y}{n-y}:: \frac{n y+b x}{b+y}: \frac{n x-c y}{n-y}$.

Unde invenitur $2 \operatorname{an} x x^{2} y+2 b n x^{3}-d d b n x-d d n x y=n a d d y+n b d d x$ $-2 a c x y y-2 b c x x y+d d b c y+d d c y y-a d d y y-b d d x y$. Et quia $n=\frac{b c}{a}$, fit $\frac{2 b b c}{a} x^{3}-\frac{b b d d c x}{a}-\frac{2 b b c y y x}{a}$, quia $x x=$ $d d-y y$. Et autem $\frac{2 b b c}{a} x^{3}=\frac{2 b b c d d x}{a}-\frac{2 b b c y y x}{a}$, quia $x x=$ $d d-y y . \operatorname{Ergo} \frac{-2 b b c x y y}{a}-\frac{d d b \operatorname{cy} x}{a}-2 a c x y y+d d c y y=$ $\dot{\cos } d y y-b d d x y:$
Et divifis omnibus per $y \&$ ductis in a

- 2bbcxy-ddbcx-2aacxy+ddcay=-aaddy-bddax $a b d d x-\operatorname{cbd} d x+a c d d y+a n d d y=2 a n c x y+2 b b c x y$

$$
\frac{a b d d x-c b d d x+a c d d y+a a d d y}{2 a a c+2 b b c}=x y s \text { qux xquatio eft }
$$

ad Hyperbolam.

$$
\text { Vel quia } b c=n a, \frac{a b d d-a n d d x+a c d d y+a a d d y}{2 a n c+2 b b c}=x y
$$

$$
\text { Sit } \frac{a d d}{a a+b b}=p ; \operatorname{Ergo} \frac{p b x-p n x+p c y+p a y}{2 c}=x y
$$

Unde porrò non difficulter invenitur fequens Conftructio: Jungantur BA, AC, \& applicato feorfim ad utramque Quadrato Radii AD, fiant inde $A P, A Q$; \& juncto $P Q$, dividatur ipfa bifariam in R, \& per punctum R ducantur RD, RN;' fere ad Rectos Angulos fecantes, quorumque RD, fit parallela A D, qux dividet bifariam Angulum B A C. Erunt jam RD, RN Afymptoti Oppofitarum Hyperbolarum, quarum altera per Centrum A tranfire deber, quxque fecabunt Gircumferentiam in punctis H quafitis. Trandibunt auten Hyperbolæ per Puncta P, G_{6}

Ratio Conftructionis apparet, ductis $P \gamma, \& Q \zeta$, perpendicularibus in A MFit cnim $\mathrm{A} \gamma=\frac{a d d}{a n+b b}$ five $p ; \& \mathrm{~A} \zeta=\frac{a p}{c} . \operatorname{Item} \dot{\mathrm{P}} \boldsymbol{\gamma}=\frac{p n}{c}$, $\& Q \zeta=\frac{p b}{c} . \quad$ Quare $A O=\frac{p c+p a}{2 c}, \& O R=\frac{p b}{20}-\frac{p n}{20} . U_{n-}$ de Catera facilia.
7. Mirarỉ

(182)

By M. Slufius. ib. p. 6145 .
7. Mirari define, Vir Clariffime, candem in Albazieniaño Problomate Coniftuictionem ex diverfis Æquationibus deduci, quandoquidem ille omnes, quibus hactenus ufi fumus in una eademque gencrali Analyfi contineantur. Quod ut oftendam, datus fit Circulus cujus Centrum A, puncta $\mathrm{H} \& \mathrm{I}$; fitque Puns ctum quxfitum K, ad quod ex punctis I \& H ducantur Rectr $\mathrm{HK}, \mathrm{IK}, \&$ Tangens KD. Tum ex A ducatur querlibet A G, occurrens $H \mathcal{H}$ in $E_{2} I K$ in B . Tangenti KD in D (iis nim. productis, quas produci eft opus). His pofitis evidens eft, ob Angulos E K D, D K B, xquales, \& Angulum A K D Rectum, tres AE, BE, DE fore femper Harmonice propurtionales.. IFaque ductis ad $A^{\prime \prime} \mathrm{E}$ Normalibus $\mathrm{K} \mathrm{C}, \mathrm{IF}, \mathrm{HG}$, ac denominatis partibus,
AK $=q$ habebitur, methodo, quam in fecunda hujus, Problematis Analy if
$\mathrm{AC}=a$
$\mathrm{CK}=$ 。
$\mathrm{HG}=b$
A G $=d$
$\mathrm{FA}=\imath$
FI $=n$ olim adhibuii, hre generalis Æquatio,
$n d a n-b z a n-n q q a+b q q a=n d e c-z b c o+$ $2 b n a c+2 z d a c-d q q e-z q g e$
Finge nunc, A G effe perpendicularem ad HI , nihil varietatis crit in xquatione ; nifi quod $A F$ \& $A G$, hoc eft, d\& \& 2, crunt xquales. Pofito itaque d pro z_{0} fiet

Sive applicatis omnibus ad $n d-d b$,

$$
a a \frac{-q 9 a}{d}=c e \frac{+2 b n a c+2 d d a c-2 d q g e}{n d-b d} ;
$$

Eadem nempe, quam ex prima mea Analyfi_, licè̀t aliâ viâ, deduxeram, \& quam nuper, modo facili coniltructam, ad te nifi
Pone deinde, A G coincidere cum A H; abibit igitur HG, five b, in nihilum. Expunctis itaque ab æquatione partibus, in quibus b reperitur, remanebit, $n d n a-n q q a=n d e c+2 z^{2} d a-d q q e-q q z e$. Hanc autem, fi meminifti, curis fecundis inveni, \& aliam huic fimilem, in Cafu quo Recta AG tranfire intelligitur per I.
Supponamus demum, Rectam A G, fecare bifariam, Angulum HAI; erit ob fimilitudinem Triangulorum HAG, TAF, ut $\mathcal{H} G$ ad $G A \neq$, ita $I F$ ad FA, five ut b ad a ta n ad $\& \sim d=\sigma$. Ablatis igitur xqualibus, fit $b_{q, q} a-n q q a=2 b n a+2 z a c-d q q c-q q z c:$ Illa pa, quam ut ex literis tuis nuper intellexi, Cl. Hugenius conttruxit.
Inielligatur tanden eadem Récta $\mathrm{H} \mathcal{G}$, fecare bifariam Rectam HI ; erunt igitur xquales HG, I G, hoc eft, $b=n$; fietque, ablatis xqualibus, $b d$ a a $-b_{\imath} a n=b d e-b z c+2 b b a c+2 z d a c-d q q e-q q z c$; quam liçèt non admodùm difficilen, nemo, noftrûnn hactenus conftruxit, Hx aū tem, ut \& "pfa" Generalis Aquatio, in duas alias, dividi poffunt, pofito, ut nofti, pro a a vel $c e$, ejus valore, $q q-c e$, vel $q q-a \pi$.
V ides igitur, quicquid hactenus preftitum, elt, in eanden Analyfin refolvi; quxe \& infinitas alias Conitructiones per Circulum datum \& Hyperbolam complectatur. Sed cas inveftigare non eft tanti, cumm in, hoc Problemate, ut olim fortafis inopiâ, fic nunc copiâ laboremus. Ad. dam tantùm Conftructionem per Parabolam, idque via duplici; qux li-
cet aliis per Hyperbolam operofior videatur, Lineer tamen fimplicitate, quà Parabola inter reliquas Sectiones commendatur, operam compenfat.

Kifdem igitur Datis, Jungatur AI, \& producatur in S, donec AS fiat æqualis AH , junctâque HS ; \& bifecta IS in M , ducatur per M Rècta RMQ normalis ad HS, in quam cadat ex A Normalis A Q, \& cul Parallelus ducatur Radius AC. Tum factis tribus Proportionatibus I A, AC, AE, frat ut $S A$ ad $A E$; ita MQ ad AD, \& RS ad A P (ini recta $A Q$ verfus $Q ;$) \&r in eadém ab alia parté fumatur $D O$ æqualis DC. Demum bifectâ PD in X, inclinetur per X, Angulo Sémífeecto ad AX, Recta VX L, occurrens Normali in D erectre in puncto V, \&k in quam ex O cadat Normalis OB. Aios fr fiat ut VX ad XB, ita X B ad BL, punctum L effe Verticem, LV, Axem, XV Latus Rectum Parabolx, quæ Problemati fatisfacit omni cafu; Secans nimirun Circuluth datünt th punctis K , quorum fupremum \& ultinum ad Problema Alhazenianum pertinent, reliqua ad aliud.

Datur, ut fupra indicavi, alia quoque Parabola, qux cum hac parfa facit, \&: cujus defcriptio ex hac adeò facilè deducitur, ut novâ non fit opus. Sumatur enim A δ, in Directum D A, \& ipfi xqualis, \& in Directum O A, ipfor quoque x qualis A.. Tum bifectî P δ in ξ, chicatur per ξ Recta $\vee \xi \beta$, Normalis ad X B, concurrens cum of ε, Normali ad O A, in ४, \& in quam cadat Normalis थ β; ac fiat ut $\varnothing \xi$ ad $\xi \beta$, ita hx́c ad $\beta \lambda$. Erit α Vertex, $\lambda \xi$ Axis ๒ ξ Latus Rectum Parabolax, qua in ifdem cum priore punctis Circulum datum fecabit.
X. Let $B E \beta$ be a double Convex Lens, C the Center of the Segment $E B$, and K the Center of the Segment $E ; B, B$ the Thicknefs of the Lens, D a Point in the Axis of the Leris; and it is required to find the Point F , at which the Beams proceeding from the point D , are collected therein, the Ratio of Refraction being as m to n. Let the diftance of the Object D B $=\mathrm{DA}=d_{3}$ (the point A being fuppofed the fame with B , but taken at a diftance therefrom, to prevent the Coincidence of fo many Lines) the Radius of the Segment towards the Object $C B$, or $C A=r$, and the, Radius of the Segment from the Object $\mathrm{K} \beta$, or $\mathrm{K} a=\rho$, and let $B \beta$, the thicknefs of the Lens, be $=t$ and then let the Sine of the Angle of Incidence DAG; be to the Sine of the Refracted Angle HAG, or CA , as to n; and in very fmall Angles the Argles themfelves will be in the fame Proportion whence it will follow, that As d to r, fo the Angle at C to the Angle at D , and $d+r$ will be as the Angle of Incidence GAD; and again, as m to n, fo $d+r$ to $\frac{d n+r \text { н }}{m}$, which will be as the Angle $\mathrm{GAH}=\mathrm{CA}$. This being taken from AC D_{0} which is as d will leave $\frac{m-n d-n r}{m}$ Analogous to the Angle $\mathrm{A} \phi \mathrm{D}$, and the Sides being in this Cafe proportional to the Angles they fubtend, it
will follow, that as the Angle $A Q D$, is to the Angle $A D \varphi$, fo i_{s} the Side AD , or BD , to $\mathrm{A} \phi$, or $\mathrm{B} \uparrow$: That is, $\mathrm{B} p$ will be $=\frac{m d r}{m-n d-n r}$, which fhews in what Point the Beams proceeding from D would be collected by means of the firt Refraction ; but if $n r$ cannot be fubftracted from m - $n d$, it follows, that the Beams after: Refraction do ftill pals on Diverging, and the Point ϕ is on the fame fide of the Lens beyond D. But if ${ }^{2} r$ be equal to $m-n d$, then they proceed Parallel to the Axis, and the Point Q is infinitely diftant.

The Point φ being found as before, and $\mathrm{B} p-\mathrm{B} 3$ being given, which we will call δ, it follows by a Procefs like the former, that $\beta \mathrm{F}$, or the Focal Diftance fought, is equal to $\frac{\delta \rho n}{m-n \delta+m \rho}=f$. And in the room of δ fub ftituting $\mathrm{B} \rho-\mathrm{B} \beta=\frac{m d r}{m-n d-n r}-t$, putting p for- $\frac{n}{m-n}$, after ducRcduction this Equation will arife, $\frac{m p d r \rho-n d \rho t+n p r \rho t}{m d r+m d \rho-m p n \rho-m-n d t+n r t}=f$:

Which Thcorem, however it may reem Operofe, isnot fo, confidering the great number of Data that enter the Queftion, and that one half of the Terms arife from our taking in the thicknefs of the Lens, which in moft Cafes can produce no great Effect; however, it was neceffary to confider it, to make our Rule perfect. If therefore the Lens confift of Glafs, whofe Refraction is as 3 to 2 , twill be $\frac{6 d \rho-2 d \rho t+4 r \rho t}{3 d r+3 d \rho-6 r \rho-d t+2 r t}=f$. If Of Watero whofe Refraction is as 4 to 3, the Theorem will ftand thus: $\frac{12 d r \rho-3 d \rho t+9 r \rho t}{4 d r+4 d \rho-12 r \rho-d t+3 r t}=f$. If it could be made of Diamant, whofe Refraction is as 5 to 2 , it would be

$$
\frac{-\frac{1}{3} d r \rho-2 d \rho t+\frac{4}{3} r \rho t}{5 d r+5 d \rho-\frac{10}{3} r \rho-3 d t+2 r t}=f
$$

And this is the Univerfal Rulei for the Foci of Double Convex Glaffes expofed to Diverging Rays. But if the thicknefs of the Lens be rejected as not fenfible, the Rule will be much fhorter, viz. $\frac{p d r \rho}{d r+d \rho-p r \rho}=f_{j}$ or in Glafs; $\frac{2 d r \rho}{d r+d s-2 r \rho}=f$. All the Terms wherein t is found being omitted, as equal to nothing. In this Cafe , if d be fo fmall, as that $2 r_{\rho}$ exceed $d x+d \rho$, then will it be: $-f$, or the Focus will be Ne gative.

(185)

gative, which fhews that the Beams after both Refractions fill proced Diverging.

To bring this to the other Cafes, as of Converging Beams, or of Concave Glaffes, the Rule is ever compofed of the fame Terms, only changing the Signs of + and -; for the Ditance of the Point of Concourfe of Coriverging Beams, from the Point B, or the firt - Surface of the Lens, I call a Negative Diftance, or - d; and the Radius of a Concave Lens I call a Negative Radius, or $-r$ if it be the firt Surface, and - s if if be the fecond Surface. Let then Converging Beams fall on a double Convex of Glais, and the Theorem will ftand thus $\frac{-2 d r \rho}{-d r-d \rho-2 r \rho}=+f$; which fhews, that in this Cafe the Focus is always Affirmative.
If the Lens were a Menifcus of Glafs, expofed to Diverging Beanns, the Ruie is, $\frac{-2 d r \rho}{-d r+d \rho+2 r \rho}=f$. Which is Affirmative, when $2 r \rho$ is lefs then $d r-d \rho$, othervife Negative: But in the Cafe of Converging Beams falling on the fame Menifus, 'twill be $\frac{+2 d r \rho}{+d r-d \rho+2 r \rho}=f$: And it will be $+f$ whilft $d \rho-d r$ is lefs than $2 r \rho$, but if it be greater than $2 r \rho$, it will always be found Negative or - f. If the Lens be double Concave, the Focus of Converging Beams is Negative, where it was Affirmative in the Cafe of Diverging Beams on a double Convex, vir $\frac{-2 d r \rho}{+d r+d \rho-2 r \rho}=f$; which is Affirmative only when $2 r \rho$ exceeds $d r+d \rho$: But Diverging Bearas paffing a double Concave, have always a Negative Focus, viz. $\frac{-2 d r \rho}{+d r+d \rho+2 r \rho}=-f$.
The Theorems for Converging Beams are principally of ufe to determine the Focus refulting from any fort of Lens placed in a Telefcope, between the Focus of the Object Glats and the Glafs it felf; the dittance between the faid Focus of the Object Glafs and the interpofed Lens being made $=-d$.
In cale the Beams are Parallel, as coming from an infinite ditance, (which is fuppofed in the cafe of Telefcopes) then will d be fuppofed infinite, and in the Theorem $\frac{p d r \rho}{d r+d \rho-p r \rho}$ the Term prs vanifhes, as being finite, which is no part of the other infinite Terms, and dividing the remainder by, the infinite part d, the Theorem will fand thus $\frac{p \rho r}{r+\rho}=f$, or in Glafs $\frac{2 r \rho}{r+\rho}=f$.

Vol. I.

186)

In cafe the Lens were Plano-Convex expofed to diverging Beams, inftead of $\frac{p d \rho r}{d r+d \rho-p r \rho}, r$ being infinite, it will be $\frac{p d \rho}{d-p \rho}=f$, or $\frac{2 d \rho}{d-2 \rho}=f$ if. the Lens be Glafs.

If the Lens be Double-Convex, and r be equal to ρ, as being formed of Segments of equal Spheres, then will $\frac{p d \rho r}{d r+d \rho-p r \rho}$ be reduced to $\frac{p d r}{2 d-p r}=f$; and in care d be infinite, then it will yet be farther contracted to $\frac{x}{2} p r$, and p being $=\frac{n}{m-n}$, the Focal diftarice in Glafs will be $=r$, in Water $\frac{i^{\frac{T}{2}} r}{} r$, but in Dianiant $\frac{-x}{3} r$.

This is not only uffeful to difcover the Focus from the other propofed Data, but from the Focus given, we may thereby deternine the Ditance of the Object, or from the Focus and Diftance given, we smay find of what Sphere it is requifite to take another Segment, to make any given Seg $_{-}$ mient of another Sphere caft the Beams from the Diftance d to the F cus f. As likewife from the Lens, Focus, and Diftance given, to find the. Ratio of Refraction, or of m to n, requifite to anifiver thofe Data. All which, it is obvious, are fully determined from the Equation we have hitherto ufed, viz- $p d \rho \cdot d r f+d \rho f-p r \rho f$. For to find d, the Theorem is s_{3} $\frac{p r \rho f}{T f+\rho f-p \rho r}=d_{0}$, the Diftance of the Object for ρ_{3}, the Rule is
 which later determines, the Ratio of Refraction, m being to n as. $r+p$ to p.
1 fhall not expatiate on thiefe Particulass, but leave them for the exercife of thofe that are defirous to be informed in Optical Matters, which I am bold to fay are compreheided in thefe. Three Rules, as fully as the moft inquifis tive can defire them, and in all poffible Cafes; regard being had to the Signs.世, and \rightarrow, as in the former Cales of finding the Focus, I thall only fhew two conniderable Ufes of them; the one to find the Diftance whereat an Object being placed. fhall by a given Lens be reprefented in a Species as large as the Object it feif, which may be of fingular uff, in Drawing Faces and other things in, their true Magnitude, by tranfmitting the Species by a Glafs into. a dark Room, which will not only give the true Figure and Shades, but ever. the Colours themfelves, almoft as Vivid as the life: In this eafe d is equa! to f, and fubftituting d for f in the Equation, we fhall have $p d r \rho=d d r$ $+d d \rho-d \rho s r$, and dividing all by d, $p r \rho=d r+d \rho-p r \rho$, that is ξ_{2}

(x87)

$\frac{2 p r \rho}{r \rho}=d$; but if the two Convexities be of the fame Sphere, foas $r=\rho$; $r+\rho$
then will the Diftance be $=p r$, that is, if the Lens be Glafs $=2 r$, to that if an Object be placed at the Diameter of the Sphere ditant, in this: cafe the Focus will be as far, within as the Object is without, and the Species reprefented thereby will be as big as the Life; but if it were a Plano-Convex, the fame diftance will be $=2 p r$, or in Glass, to four times the Radius of the Convexity.

A fecond Ufe is to find what Convexity or Concavity is required, to make a vaftly diftant Object be reprefented at a given Focus, after the one Surface of the Lens is formed; which is but-a Corollary of our Theorem for finding ρ_{*} having p, d, r, and f, given; for d being Infinite, that Rule becomes $\frac{r f}{p r-f}=\rho$, that is in Glass $\frac{r f}{2 r-f}=\rho$, whence if f be greater than $2 r$, s becomes Negative, and $\frac{r f}{f-2 r}$ is the Radius of the Concave fought.

But to return to our firf Theorem, which accounting for the thicknefs of the Lens, we will here again refume, viz.

$$
\frac{m p d r \rho-n d \rho t-n p r \rho t}{m d \rho-m p \rho r-m-n d t+n r t}=f_{0}
$$

And let it be requir'd to find the Focus where a whole Sphere will collect the Beams proceeding from an Object at the diftance d. Here t is equal to $2 r$, and $r=\rho$; And after due Reduction, the Theorm will fand thus, $\frac{m p d r-2 n d r+2 n p r r}{2 n d+2 n r-m p r}=f$: but if d be Infinite, it is contracted to $\frac{m p r}{2 n}-r=\frac{2 n-m}{2 m-2 n} r=f ;$ wherefore 3 Sphere of Glafs collects the Sun's
Beams at half the Semidiamerer of the Sphere without it, and a Sphere of Water at a whole Semidiameter. But if the Ratio of Refraction in to n be as. 2 to 1, the Focus falls on the oppofite Surface of the Sphere but if it be of greater Inequality it falls within.

Another Example fhall be when a Hemifphere is expofed to Parallel Rays. that is, d and ρ being Infinite, and $t=r$, and after due Reduction, the Fhe orem refults $\frac{n n}{m m-m n} r=f$; that is, in Glafs it is at $\frac{4}{3} r$, in Water 25%, \because, but if the Hemiphere were Diamant, it would collect the Beams at $=^{4}$ of the Radius beyond the Center.

188)

Laftly, As to the Effect of turning the two fides of a Lens towards an : Object; it is evident, that-if the thickness of the Lens be very fall, to as that you neglect it, or account $t=0$, then in all Cafes the Focus of the fame Lens, to whatever Beams, will be the fame, without any difference upon the turning the Lens: But if you are fo curious as to confider the thicknefs, (which is feldom worth accounting for) in the cafe of Parallel Rays falling on a Plano Convex of Glass, if the Plain fide be towards the Object, ; does-occafion no difference, but the Focal diftance $f=2 r$. But when the Convex fide is towards the Object, it is contracted to $2 r-\frac{2}{3} t$, fo that the Focus is nearer by $\frac{2}{3} \%$. If the Lens be Double Convex, the difference is left, if a Menifcus, greater. If the Convexity on both fides be equal, the Focal Length is about $\frac{1}{6} t$ fhorter than when $t=0$. In: a Menifcus, the Concave gide towards the Object encreafes the Focal length; but the Convex towards the Object diminifhes it. A general Rule for the difference ariSing on turning the Lens, where the Focus is Affirmative, is this $\frac{2 r t-2 \rho}{3 r+3 \rho-t}$, for Double Convenes of differing Spheres. But for Menisci, the fame diffrance becomes $\frac{2 r t+2 \rho t}{3 r-3 \rho+t} ;$ of which I need give no other Demonftrat ton, but that by a due Reduction it will fo follow from what is Premifeds. as will the Theorems for all forts of Problems relating to the Foci of Optick Glaffes.

Intr Generation: of an Hyberbolio sat Cylindroide; by Sir Chyifto pier: Wren. nut .98. $2.96 x_{n}$

Fix: 97.
XI. 1. Sinh Hyperbole Oppofitx DB, EC C_{2} quarum Axis Tranfverfus cf t BC, Centrum A, \& una ex Afymptotis GP; item per Centrum fit OM duct ad Angulos Rectos ipfi BC. Quare fi^{2} circumducantur Hyperbola circa Axin OM , manifeftum eft, ex ea Revolutione generari Corpus Cylindroides Hyperbolicum cujus Bales, fectionefque Bali, parallel font Circulars Dice infuper, fid idem Corpus fecetur per Afymptoton GP, erit-lectio Paralelogrammum:

Secetur per-Axin Tranfverfum fectione Circularí BNC; tent per $O \& M$ in Circulos xquales \& xqualiter al Cento diftantes; item -per Axis in figuram Genetricem cujus femiflis eft B-DEC, in eujus Plano crit Afymptotos. GP, per quam ad Rectos Angulos plenum B.DE fesctur-io Plano FHP; jungantur denique HO .

Quoniam Triangulum OGH it Rectangulum, Ergo quadratum O O five $O D_{\text {; }}$: minus quadrato $O G$, eft quale quadrate $G H$: \& quoniam: DO* parallel eff pf BA, \& Afymptotor fecat in G, exit (ex proprietatibus Hyperbole, que in Conicis demonftrantur) quadratum OG una cum quadrato $\mathrm{A} B$ requale quadrato OD, bs. Quadratum $O D$ minus quadrato $O G$ x quale quadrate $A B$, . five quadrate $A . N$. Ergo quadratum $G H$, quale eft quadrato $A N$. Quire $G H \& A N$. æquantur \& fanti ad Angulos Rectos ip \bar{h} G.A; idemque demonftratur: de omnibus aliss fectionitus Bar parallelism'. Quatre Cylindroides Hyperbolic rite .eater per Afynoptotos in Parallelogrammums \%o. en ga:

(189)

Corol.] Hinc pater, in fuperficie Cylindroidis, quanvis è duplici flexurz conftet, rectas nihilominus innumeras duci pofle : Patet etiam, aliam effe hujus Corporis Generationems, nimir. ex revolutione Parallelograninni circa Axiz. manente Angulo ad Axin æquali GA O, vel denique manente Line: Gme. ratrice HR immobili, \& maffam Volubilem formante ant fecante.

Et fi acies Dolabri accutiflima \& rectiflima ita difponatur. ad Axin, ficut fe habet Linea Generatrix, rotante interim Mamphure, manifeitum eft, Torno tann accuratas poffe elaborari Hyperbolas quam Circulos, cum nihil aliud requiratur ad formandam Cylindroidem quam ad Cylindrum, nifi quode in Cylindris acies Dolabri eft Axi Parallela, hic vero inclinata.

Itaque notandum eft, pro Inclinatione. Anguli.G. A O, variari fpeciens Hy-perbolæ; adeoque facilius accommodatur ad datam Hyperbolam quarn ut de monftratione opus habeat: At fi manente. Angulo Generatrix magis ad Cen. trum accedat, exfurgit inde minor Hyperbola, fed prioni prorfus fimilis.

2: Sint tria Corpora terendo idonea, $\mathrm{P}, \mathrm{Q}, \mathrm{R}$; guorum P, \& Q , fint The ufplicatios: æqualia \& Columnari forma, R vero Corpus Lenti-forme.. P rotetur circa thereof to the
 verfis Planis, ita tamen ut $\mathrm{E} G$ producta, fit ad Rectos Augulos utrique Glufer ; by AB \& C D : accedant denique ad fe invicem Corpora, prout opus fuerit, sir Chr.W:en, \rightarrow fervata tamen eadem Inclinatione \& fitu Axsum.

Dico ex Revolutione \& mutua attritione Corporumprus pofforum cxfurgere nova Corpora Geometrica, quorum P \& Q erunt. Cylindroidea Hyperbolica æqualia, R vero Conoides Hyperbolicum; fecie \& magnitudine datum.

Demonftrationem in promptu habemus, nec non Modulum ipfius Machinx, zerendis Lentibus Hyperbolicis deftinatre; quam operofa Pictura \& prolixa:Explicatione delcribere, mihi \& Artifici magis fuerit moleltun, quam Dxdalo cuivis fagaci frmilem ad-invenire. Poftquam enim expofta jam funt Principia Gcometrica, facile erit conjicere, quale; fit. Inftrumentum; nempe, tres funt Tabulx Oblongx, Planx, Validx, Labiles, \& fibi invicem Impofitx : Infina \& Media fuftinent inxqualia Capitula (fuve Anfas Mamphur fuitinentes) alternatim pofita ; id poftulat utriufque Mamphuris Obliquitas $\&$ quafi decuffatio $=$ Summx Tabulæ xqualia funt Capitula in longum TaEulx difpofita; \& perforato Citimo Capitulo Mamphur tranfmittitur. Omitto Rotas, Rotetlas, Lora, Pondera, Cochleas, \& reliqua ad motum expedituma \& Machinæ Firmitudinem neceffaria. P pertinet ad infimam: Tabulani; Qad mediam; R ad Summan. R Leas ef vitrea; Q Modulus Lentem terens; P Formula. Modulum corrigens:; qux dum motu obliquó, \& diverfo à motu tam- Lentis quam Moduli, Fertur, delet continuo \& deterit, quicquid. Viii imprimitur siz Modulum ex Lentis \&e Materiz attritione.

Quare, cum adeo fimplex \& fpontanea fit ifta Hyperbolici Conoidis genituray: ex folis nempe Moribus Circularibirs; cumçue Motus fit duplex \&e. varius, cre dibile eft. Lentes Hyperbolicas ex hifce. Principiis. vel nullis. fore explicandas....

XU. This Phanomenon appears very eafly Explicable, from the Confide whby foit convez: ration of placing Glaffes in a Tube; which is thas: After the Object Glates, Giajes inn Tom the firlt Eye Grafs is placed fo much diftant: (towards the Eyc) from the Eocus objefess Ereq; Ey: of the Object Glafs as is the. Fccus of the Eye Glafs $;$ then the midde Eye Mr Willax.

190)

Glafs is placed fo much dittant from the Focus of the firft Eye Glafs, as is the Focus of this middle Eye Glafs ; laftly, the neareft Eye Glafs is placed fo much diftant from the Focus of this middle Eye Glafs, as is the Focus of this neareft Eye Glafs; and the Eye looking through them all is placed in the Focus of this neareft Eye Glas.

I fay therefore, . That one fingle Convex Glafs, cannot properly be faid by it felf to hhew Objects Erect or Reverfe, but in refpect of placing of the Eye that looks through it. For if the Eye, that looks through a fingle Convex Glats, be placed nigher thereto than the Glafs's Focus, the Objects are Erect if the Eye be placed juft in the Focus, the Objects are neither Erect nor Re verfed, but allin Confufion between both; and if the Eye be placed further from the Glafs than the Focus, the Objects are Reverfed. I mean here diftant Objects, the Rays flowing from any Point whereof may be counted to conse Parallel towards the Object Glafs.
2. The Object Glafs of a Telefcope reverfes the Object, both to the Eye Glafs and the Eye, that looks through it: For the Eye Glafs is placed farther from the Object Glafs than is the Focus of the Object Glafs. But the Eye Glais does nothing towards the Rectification, or Reverfion; the Eye being placed jult in its Focus.
3..If the fecond Eye Glafs (the firft being that next the Object Glafs) be placed as it ought in a Telefcope, Place the Eye nearer to this middle Eye Glats than its Focus, and it fees the Objects Inverted and Confured : Place the Eye in the Focus, and it fees the Objects all in Confufion, neither Erect nor Reverfed ; for here again there is a diftinct Reprefentation of the Objects to be received on a piece of Paper', as in the Focus of the Object Glafs, and the Eyc being placed at any time at this place (which is ufually calld the Diftinct Bafe) fees all in Confufion: But then let the Eye be placed farther from this middle Glafs than its Focus, and it perceives the Objects Erect and Confufed.

Laftly, The third;or immediate Eye Glafs,does nothing towards the Erecting o: Reverfing the Species, which it receives Erect from the middle Eye Glafs; no more than in a Telcfcope of two Convex Glaffes, the Fye Glats does to the Species it reccives frons the Object Glafs, as we have fhewn before. The reafon that this laft or immediate Eye Glafs; has nothing to do in the Erecting or Reverfing the Species, is the fame, as in a Telefcope of two Convex Glaffes, viz. The Eye is placed in its Focus, and therefore fees the Species as 'tis reprefented in the diftinct Bafe ; that is, the Species is Inverted in the diftinct Bafe of the Object Glafs, and therefore a fingle Convex Eye Glafs brings it to the Eye Inverted; but in the diltinct Bafe of the middle or fecond Eye Glafs the Species is Erect, and therefore the third or immediate Eye Glafs brings it to the Eye Erect.

Wherefore we are to confider the Telefoope confifting of an Object Glafs and three Eye Glafles, as two Telefcopes, each confifting of two Convex Glafles. The firt confifts of the Object Glafs and firtt Eye Glafs, and this Inverts the Species; that is, the Species is Inverted in the Diftinct Bafe wo the Object Glafs, and fo brought into the Eye. The fecond Telefoope connfift of the two immediate Eye Glaffes, and this Erects what the former Inwerted; that is; the Species in the Dittinct Bafe of the middle Eye Glafs is

(191)

Eiect, and is fo brought into the Eye by the Eye Glass; the Eye Glaffes thenrfelves in neither Care having any thing to do with the Erecting or Inverting, but meerly in reprefenting in the fame pofture the Species immediately beforethem. So that one Convex Glafs as polited in a Telefcope Inverts ; the fecond (that is the firt Eye Glafs) does nothing towards the Erecting or Reverfing, but reprefents the Image as it is in the Diftinct Bafe of the Object Glafs before it, that is Inverted; the third Glafs Erects, or rather Reffores what was before Inverted; the fourth reprefents the Image as it receives it from the Diftinct Bafe of the third, that is, Erect.
XIII. 1. Mr. Auzout has found that the Apertures, which Optick Glaffes the Avertures : can bear with Diftinctnefs, are in about a fubduplicate Proportion to their of Telfecopers: Lengths: and accordingly he hath made the following Table.

$\begin{aligned} & \text { Lengths } \\ & \text { of } \\ & \text { Glafes. } \end{aligned}$	Apertures for			$\begin{aligned} & \text { Lengttbs } \\ & \text { of } \\ & \text { olafes. } \end{aligned}$	Apertures for		
	Excellent.	Gaod.	Ordinary.		Excellent.	Good.	Ordinary.
Feet. In.	In. Lin.	In. Lin.	In. Lin.	Feet. In.	F\%. Lin.	In. Iin.	In. Lin.
	4			25	3	10	4
6	5		4	30	38	3	27
9	7			35	4.0	$3 \quad 4$	2 IO
10	8	7		40	43	37	3
	9	8	7	45	4.6	310	32
2	1	10	8	50	4	4.5	34
26	0	11	9	55	5	4	36
3	1	0	10	60	5	46	38
	12	x	1	65		4	310
		12	\bigcirc	70	$5 \quad 7$	4. 10	4.0
		I 3	1	75	$5 \quad 9$	50	$4 . .2$
	16			80	5 II	$5 \quad 2$	4
6				90		56	
7		-	13	100	-	5.9	10
8	10	I δ	I 4	12	$4 \cdot 5$	6	
9	111			150		$7 \quad 0$	5 J1
10			I. 6	200		8	
12.		20		250	:06	9	
14		2.2	I 9	. 300	in 6	10	
16	8	24	I II	350	i2 6	10	
18.				400	13.4	II	$0 \cdot 8$
20	$3 \quad 0$		$2 \quad 2$				

courfider'd, by Dr. Hook. ib. f. 67.
2. This Theory of Apertures, feems to me not very clear. For the fume Glafs will endure greater or leffer Apertures, according to the leffer or greater Light of the Object : If it be for the looking on the Sun or Venus, or for feeing the Diameters of the fixed Stars, then fmaller Apertures do better; if for the Moon in the Day light, or on Saturn, or Fupitcr, or Mars, then the Largeft. Thus I have often made ufe of a 12 Foot Glafs to look on Saturn with an Aperture of almoft 3 inches, and with a fingle Eye Glafs of 2 inches double Convex ; but, when with the fame Glafs I looked on the Sun or Venus, I wed both a fmaller Aperture, and fhallower Charge.

Ta Mc. $\begin{aligned} \text { fure } \\ \text { di- }\end{aligned}$ ftances at one. Statios ; by M Auzout. n. 7. 20.123.

XNV. Ihave found long fince a way to meafure, with a great Felffope, the diftance of Objects upon the Earth from one Station. The Practiceindeed does not altogether anfwer the Theory, becaufe that the Length of the Telefcopes admits of fome Latitude; yet one comes near enough, and perhaps as juft as by moft of the ways ordinarily ufed with Inftruments. That, which I am propofing, I doubt not but Mr. Hook will foon underftand, and fee the Detcrmination of all. Cafes poffible. I fhall only lay, that if we look upon the fole Theory, we may make ufe of an ordinary Telefoope, whereof the Eye Glafs is to be Convex : For by putting the Glaffes at a little greater diftance, than they are, porportionably to the diftance for which it is to Cerve, and by adding to it a new Eye Glafs, the Object will be feen diftinet, though Obfure; and if the Eye Glafs be Convex, the Object will appear Erect. They may be done two manner of ways; either by leaving the Telefcope in its ordinary Situation, the Object Glafs before the Eye Glats; or by Inverting it, and putting this before that. But if any will make ufe of two Object Glaffes, whereof the Focufes are known, the Diftance of them will be known. If it be fuppofed, that the Focus of the firft be B, and that of the fecond C, and the ditance given, $B+2 D$, and that $D-C$, be equal to F; for this diftance will be equal to $\mathrm{B}+\mathrm{C}+\mathrm{F}-\mathrm{F}^{2} \mathrm{C}^{2}$. And if you have the Focus of the firf Object. Glafs, equal to B, the diftance where you swill put the fecond Glafs equal to $B+C+D$, the Focus of the fecond Glafs will be found equal to $\frac{C D}{C+D}$. And if you will that the Object fhall be magnified as much with thefe two Glaffes, as it would be with a fingle one, whereof the Focus fhould be of the diftance given, having the Focus of the Object Glafs given equal to B, and the diftance given to $B+D$; the diftance between the firlt and fecond Glafs will be cqual to $\frac{2 B^{2}+2 B D}{2 B+D}$. whence fubducting B (the Focus of the Object Glats given) there remains $\frac{B D}{2 B+D}$: and if this Sum be fuppofed equal to C, we fhall eafily know, by the precedent Rule, the Focus of the fecond Glafs,

(193)

XV. Prepare two Glaffes, the one exactly flat on both fides, the other flat To mate a plano on the one fide, and Convex on the other, of what Sphere you pleafe. Let convex Glafs of the flat Glafs be a little broader than the other. Then let there be made a a follect the ferere Cell or Ring of Brafs, very exađly turned, into which thefe two Glaffes may at agreat $D_{i}-$ be fo faftned with Cement, that the Plain Surfaces of them may lie exactly Hook. n, D : Parallel, and that the Convex fide of the Plano-convex Glafs may lie inward ; but $f \cdot 66$. 12. fo, as not to touch the Flat of the other Glafs. Thefe being Cemented into the ${ }^{\text {t. } 202 .}$ Ring very clofely about the Edges, by a fmall Hole in the fide of the Brats Ring or Cell, fill the interpofed Space between thefe two with Water, Oyl of Turpentine, Spirit of Wine, Saline Liquors, \⁣ then top the Hole with a Skrew: And according to the differing Refraction of the Interpofed Liquors, fo fhall the Focuis of this Compound Glafs be longer or fhorter.

But this I would have only lookt upon, as one Inftance of many (for there may be others) of the Poffibility of making a Glafs, ground in a frmaller Sphere, to conftitute a Telefcope of a much greater Length : Though (not to raife too great Expectation) I mutt add, That; of Spherical Object Glaffes thofe are the beft which are made of the greatelt Sphere, and whofe Subifance hath the greateft Refraction.
XVI. I. S.Campani pretends to have found a Way to Work great optick Glafes with a Turn-tool, without any Mould: And that he ufect chree Eye Glaffes for his great Telefcopes, without finding any Rainbow Colours

The Great Dukc of Tuscany, and Prince Leopold his Brother, upon Tryal made of the Glaffes of Canipani and Divini, have found that thofe of Campani excel the other ; and with them they have been eafily able to diftinguifh People at four Leagues dittance.

But Euffachio Divini pretends, that in all the Tryals made with them, n. r2.p. 209 . his great Glaffes have performed better than thofe of Campani: and that Campani was not willing to do what was neccflary for well comparing the one with the other, viz. to put Equal Eye Glaffes in them, or to exchange the fame Glaffes.
2. 'Tis now above 10 Years fince I invented a peculiar way of Grind- by M. Hercliing Optick Glaffes, and reduced it alfo into Practice ; by which 'tis eafie, with- us. n. 6. out any conffiderable danger of failing, to make and polifh Optick-glaffes of any Conick Section, and that (which is mort notable) in any Difl of any Section of a Sphere. I have already made feveral Glafies by it, which many

Learned Men have feen and tryed.
M. Huygens alfo intends very fhortly to try fomething in that kind.

By M. Huygens, it.
3 M. du Sons doth at prefent employ himfelf in London, to bring Telefcopes to perfection, by Grinding Glaffes of a Parabolical Figure. I have feen ib. p. Qu. an, I, two Eye Glaffes of that fhape, about one inch and a half deep, and one inch 1 . 119. and a quarter broad, wrought by this eminent. Artift with a rare Steel Inftrument of his own Contrivance and Workmannhip, and by himfelf alfo polifid to Admiration. And certainly it will be wondred at by thofe, who fhall fee thefe Glaffes, how they could be truly wrought to fuch a Figure, with

Vol. I.
Cc
fichz

Telefcopes and other Optich Glafles; by Campani, and Divini. n. I. p. 2 . n. 8.p.13I.

(194)

fuch a Cavity ; and yet more, when they fhall hear the Author undertake to Excavate other fuch Eye Glaffes to above two Inches, and Object Glaffes of five Inches Diameter. He hath likewife already begun his Object Glaffes for the mentioned two Ocular ones, of the fame Figure of about two Inches Diameter, which are to be left all open, yet without caufing any Colours.
4. The Optick Glaffes of M. Burattini in Poland, are perfectly well Wrought and Polifh'd. He hath fent two to Paris, but they are only the one of 10 , the other of 8 Foot. They bear a great Aperture in refpect of their Length.
5. Mr. Fr. Smetbwick, having found a way of grinding Glaffes not Sphe-

Smethwick 3. 33 . \%. 63 I .

By M. Burat-
tini. n. 19. p. 348. n.'21.
t. 3 374.

By Mr. Francis rical, produced before the Royal Society, Feb.27. I66年. certain Specimina of that Invention, which were a Telefcope, a Reading and two Burning-Glaffes.

The Telefcope was about 4 Foot long, furnifhed with 4 Glaffes, whereof the 3 Ocular ones, Plano-convex, were of this newly Invented Not Spherical Figure, and the $4^{\text {th }}$ a Spherical Object Glafs. This being compared with a common, yet very good Telefcope, longer than it by about 4 Inches, and turned to feveral Objects, was found by thofe of the faid Society that look'd through them both, to exceed the other in Goodnefs, by taking in a greater Angle, and reprefenting the Objects more exactly in their refpective Proporvions, and enduring a greater Aperture free from Colours.

The Reading Glafs of the fame Figure being compared with a common: Spherical Glafs did far excel it, by magnifying the Letters to which it was applied up to the very edges, and by fhewing themi diftinctly from ons Brim. through the Center to the other, which the Spherical Glafs came far fhort of:

Laftly, The two Burning Concaves of this new invented Figure, were the one of 6 Inches Diameter, its Focus 3 Inclies diftant from the Center thereof; the other of the fame Diameter, but lefs Concave, and its Focus 10 Inches diftant. There, when approached to a large Candle lighted, did fomewhat warm the Faces of thofe that were 4 or 5 Foot diftant at leaft, and when held to the Fire, burned Gloves and Garments at the diftance of about 3 Foot from the Fire.

The Bifhop of Salisbury, Dr. Seth Ward, was by at another time, when: the deeper of his two Concaves turned a Piece of Wood into Flame in the face of 10 Sec. of Time, and the Shallower in 5 Sec . at moft, in the Seafon of Autumn, about 9 of the Clock in the Morning, the Weather gloomy. The Inventor adds, That the Deeper Concave, when held to a Lucid Body, would caft a Light itrong enough to Read by at a confiderable diftance; and that expofing the fame to a Northern Window, on which the Sun hhined not at all, or very little, he had perceived that it would warm one's hand fenfibly, by Collecting the warmed Air in the Day-time, which it would not do after Sun fet.
6. We have an Artift at Paris that Polifhes Optick Claffes on a Turn. I have feen a Glafs of his Workman?hip which is very good. He turns. thefe Glaffes as he does Wood, that is with the fame Facility.

(195)

7. M. Borelli hath found out a fure and very eafie Method to work all ey M. Borelli. fort of great Glaffes. He hath already made one of them very goed of ri, $123.10 .69 \%^{\circ}$ 200 Foot, wrought on both fides on the fame Rule. His Defire of advancing Aftronomical Difcoveries hath induced him to make Prefents of them to feveral Perfons capable to make ufe of them. He hath intrufted the Secret to one of the Roynal Academy of Scienses.

Campani and Divini have commonly fold their Glaffes at a Pittol the Foot, a. r40. p.ivos. Sometimes they have far exceeded that Price. One of Divinis of 12 Foor was fold for 400 Livers; and another of Campan's, of 34 Foot, for 2000 Livers. Notwithftanding which $\$$. Borelli is willing to part with the beft of his own Glaffes, of 50,60 , or 65 Foot, for 500 (French) Crowns; and the frall Glaffes, from 6 to 12 Foot, at a (French) Crown a Foot; from 12 to 18 , at half a Piftol; and from 18 to 26 , at a Piftol.
8. Though it be commonly believed, that Rंock Cryftal is not fit for Op-oprick-Lens's tick Glaffes, becaufe there are many Veins in it; yet Euftachio Divini made of Rock, cryfucl; one of it, which he faith proved an excelfent one, though full of Veins: byEuft.Divini. but perhaps they were only fuperficial Strictures and flight Scratches, not Veins.
9. Drops of fair Water being let fall on a piece of plain Glafs, form them- of water; by felves into Plano-convexes, having a Convexity proportionable to the heights Mr. Stephen from which they defcend; from a greater height a lefs, from a lefs, a greater Gray. n. $2 \approx \&$. degree of Convexity. I applied ôme of thefe as Reading Glaffes for fingle Words of friall Letters, as on the Globes and Maps, and found no other Inconveniency, than that the Fluidity of the Water obliges one to keep the Glafs Horizontal, which I after deviled a way to remedy. I took a fufficient quantity of Izing-Glafs, and diffolved it in Water over the Fire, and whillt it was warm I dipt a Stick into the Solution, and let fome Drops of it fall on the Glafs as before; and in a quarter of an Hour they acquire a Confiftency, that pormits them to be held in any Poftion, and tho' they are not altogether fo tranfparent, yet this is little or no Impedment to their Ule. The Drops of this Solution are more exactly defined than thofe of common Water, having their edges exactly Circular, and one may make them of a much longer Focus than thofe.

A thin flat Ring of Brafs, not exceeding 4 tenths of an Inch Diameter in its interior Circle, being cemented to a plain piece of Glafs, and filled with Water, or the Solution now mentioned, then by prefing the Finger into it, till what is fuperfluous be taken off, there wifl be formed a Plano-concave, which may ferve as an Eye Glafs to a Perfpective, or to any other Optical ufe Concave Glaffes are applicable.

I have tried twat would be the Succefs of combining Portions of Water by the help of Brafs Rings, and plain pieces of Glafs; to give them their true Figure and requifite Apertures, and inferted them at the erids of Tubes of feveral Lengths; and find, that tho' thefe Natural Lentes may ferve as Eye Glaffes, yet when ufed as Object ones, either to Telefcopes or double Microfopes, their Effects will not compenfate the Trouble there is in ufing them.

The Advarsages of Reflexion 10 oprickIntiru. ments; by Mr. Newton. n. 80. po 3079.
XVII. I. When I had found, That Light confifts of Rays differently Refrangible, I left off my Glafs-works, for I faw that the Perfection of Telefcopes was hitherto limited, not fo much for want of Glaffes truly figured according to the Prefcriptions of Optick Authors, (which all Men have hitherto imagined) as becaufe that Light it felf is a Heterogeneous mixture of Differently Refrangible Rays. So that, were a Glafs fo exactly figured, as to collect any one fort of Rays into one Point, it could not collect thofe alfo into the fame Point, which having the fame Incidence upon the fame Medium are apt to fuffer a different Refraction. Nay, I wondred, That feeing the Difference of Refrangibility was fo great, as I found it, Telefcopes thould arrive to that Perfection they are now at. For, meafuring the Refractions in one of my Prifms, I found, that fuppofing the common Sine of Incidence upon one of its Plains was 44 Parts, the Sine of Refraction of the utmoft Rays on the red end of the Colours, made out of the Glafs into the Air, would be 68 parts, and the Sine of Refraction of the utmoft Rays on the other end, 69 parts : fo that the Difference is about a 24 th or 25 th part of the whole Refraction. And confequently, the Object Glafs of any Telefcope cannot Collect all the Rays, which come from one Point of an Object, fo as to make them convene at its Focus in lefs room than in a Circular fpace, whofe Diameter is the 50 th part of the Diameter of its Aperture; which is an Irregularity, fome hundreds of times greater than a Circularly figured Lens, of fo fmall a Section as the Object Glaffes of long Telefcopes are, would caufe by the unfitnefs of its Figure, were Light Uniform.

This made me take Reflexions inta Confideration; and finding them Regular, fo that the Angle of Reflexion of: all forts of Rays was equal to their Angle of Incidence, I underfood, that by their Mediation Optick Inttruments might be brought to any degree of Perfection imaginable, provided a Reflecting Subftance could be found, which would. Polifi as finely as Glafs, and Reflect as much Light as Glafs Tranfmits, and the Art of communicating to it a Parabolick Figure be alfo attained. But there feemed very great Difficulties, and I have almoft thought them Infuperable, when I farther confidered, that every Irregularity in a Reflecting Superficies makes the Rays ffray 5 or 6 times more out of their due Courfe, than the like Irregularities in a Refracting one: So that a much greater Curiofity would be here requifite ${ }_{3}$. than in figuring Glaffes for Refraction.

Amidft thefe Thoughts, I was forced from Cambridge, Anno I666. by the intervening Plague, and it was more than two years before I proceeded further.. But then having thought on a tender way of Polifhing, proper for Metal, whereby as I imagined the Figure alfo would be corrected to the laft, I began to try what might be effected in this kind, and by degrees fo far perfected an Inftrument (in the Effential parts of it like that I fent to London) by which I could difcern Fupiter's 4 Concomitants, and Chewed them divers times to two others of my Acquaintance. I could alfo difcern the Moon-like Pbafe of Vonus, but not very diftinctly, nor without come nicenefs in difpofing the lnftrumenc.

(197)

From that time I was interrupted till this laft Autumn, when I made another. And as that was fenfibly better than the firt, (efpecially for Day Objects) fo I doubt not, but they will be ftill brought to a much greater Per fection by their Endeavours, who, as you inform me, are taking care about it. at London.
2. This new Inftrument is compofed of two Metalline Speculums, the \mathcal{A} nem catadio one Concave, (inftead of an Object Glafs) the other Plain: and alfo of a fmall Plano-convex Eye Glafs; as in the Figure, where : A B is a Concave Speculum, of which the Radius or Semidiamerer is $12 \frac{2}{3}$ or 13 Inches.

CD, another Metalline Speculum, whofe Surface is Flat, and the Circumference Oval.
GD_{2} an Iron Wire, holding a Ring of Brafs, in which the Speculum $C D$ is fixed.

F, a fmall Eye Glafs, Flat above, and Convex below, of the 12th part of an Inch Radius, if not lefs.

G G G, the fore part of the Tube (which is open) fafted to a Brafs Ring: HI , to keep it immoveable.

PQKL, the hind part of the Tube, faftned to another Brafs Ring PQ:

O , an Iron-Hook faftned to the Ring $\mathrm{P} Q$, and furnifhe with a Skrew $\mathrm{N}_{\text {, }}$ thereby to advance or draw back the hind part of the Tube, and fo by thatmeans to put the Specula in their due diftance.

MQGI, a crooked Iron fuftaining the Tube, and faftned by the Nait R to the Ball and Socket S, whereby the Tube may be turned every way.

The Center of the Flat Speculum C D, mult be placed in the fame Poine of the Tube's Axe, where falls the Perpendicular to this Axe, drawn to the fame from the Center of the little Eye Glafs, which Point is here marked at T .

And to give the Reader fome Satisfaction to underftand, in what Degree it reprefents things diftinct, and free from Colours, and to know the Aperture by which it admits Light, he may compare the Diftances of the Focus E from the Vertexes of the little Eye Glafs and the Concave Speculum; that is, EF, $\frac{1}{6}$ of an Inch, and ETV; $6 \frac{1}{3}$ Inches, and the Ratio will be found as I to 38 ; whereby it appears, that the Objects will be magnified about 3^{8} times, and be reprefented bigger by $2 \frac{3}{2}$ times in Diameter, when feen through this, thar through an ordinary Telefcope of about two Foot long.

Thus far as to the Structure of this Telefcope. Concerning the metalline Matter, fit for thefe Reflecting Speculums, the Inventor hath alfo confidered the fame, and gives this Caution, That whillt Men feek for a White, Hard, and Durable Metalline Compofition, they refolve not upon fuch an one, as is full of fmall Pores, only difcoverable by a Microfcope. For though fuch an one may to appearance take a good Polifh, yet the Edges of thole fmall Pores will wear away fafter in the Polifhing than the other Parts of the Me ral; and fo, however the Metal feem. Polite, yet it fhall not Reflect with fuch an accurate regularity as it ought to do: Thus. Tin-Glafs mixe witia ordinary Bell-Metal makes it more White, and apt to Reflect a greater quan-

(198)

tity of Light ; but withall its Fumes, raifed in the Fufion, like fo many Aerial Bubbles, fill the Metal full of thofe Microfcopical Pores. But White Arfenick both Blanches the Metal, and leaves it Solid, without any fuch Pores, efpecially if the Fufion hath not been too violent. What the Steliate.Regulus of Mars, (which I have fometimes ufed) or other fuch like Subftance wilt do, deferves particular Examination.

To this he adds this further Intimation, That Putty, or other fuch like Powder, with which 'tis Polifhed, by the fharp Angles of its Particles, fretteth the Metal, if it be not very fine, and fills it full of fuch fmall holes as he fpeakerh of. Wherefore care muft be taken of that before Judgment be given, whether the Metal be throughout the Body of it Porous or not.

But not having tried, as he faith, many Proportions of the Arfenick and Metal, he does not affirm, which is abfolutely beft, but thinks there may conveniently be ufed any quantity of Arfenick equalling in Weight between a fixth and eighth part of the Copper, a greater proportion making the Metal Brittle.

The way which he ufed was this. He firft melted the Copper alone, then put in the Arfenick, which being melted, he ftirred them a little together, bewaring, in the mean time, not to draw in Breath near the pernicious Fumes. After this, he put in Tin, and again, fo foon as that was melted, (which was very fuddenly) he ftirred them well together, and immediately poured them off.

He faith, he knows not, Whether by letting them ftand longer on the Fire after the Tin was melted, a higher degree of Fufion would have made the Metal Porous; but he thought that way he proceeded to be fafeft.

He adds, That in that Metal, which he fent to London, there was no Arfenick, but a finall proportion of Silver; as he remembers, one Shilling in three Ounces of Metal. But he thought withal, that the Silver did as much harm in making the Metal foft, and to lefs fit to be Polifht, as good in rendring it White and Luminous.

At another time, he mixed Arfenicis one Ounce, Copper fix Ounces, and Tin two Ounces ; And this an Acquaintance of his hath, as he intimates, Polifht better than he did the other.

As to the Objection, That with this kind of Perfectives, Objects are difficultly found, he anfwers, That that is the Intonvenience of all Tubes that Magnife much; and that aftei a little ufe the Inconvenience will grow lefs, feeing that himfelf could readily enough Find any Day Objects by knowing which way they were Pofited from other Objects that he accidentally faw in it. But in the Night to find Stars, he acknowledges it to be more troublefome; which yet may, in his Opinion, be eafily remedied by two Sights affixed to the Iron-Rod, by which the Tube is fuftained, or by an ordinary Perfpective Glafs faftned to the fame Frame with the Tube, and directed towards the fame Object, as Des Cartes in his Diuptricks hath defcribed for Remedying the fame Inconvenience of his beft Telefopes.
3. I fee by the Defcription you have fent me of Mr. Newton's admirable cipprov'd by Telefcope, that he hath well confidered the Advsntage, which a Concave Z. Hugens de Speculum hath above Convex Glaffes in collecting the Parallel Rays, which Ibid. p.4008. certainly according to the Calculation I have made thereof is very great. Hence it is, That he can give a far greater Aperture to that Speculum, than to an Object Glafs of the fame diftance of the Focus, and confequently that he can much more Magnifie Objects this way, than by an ordinary Telefcope. Befides, by it he avoids an Inconvenience, which is infeparable from Convex Object Glaffes, which is the Obliquiry of both their Surfaces, which vitiateth the Refraction of the Rays that pals towards the fides of the Glafs, and does more hurt than Men are aware of. Again, by the meer Reflexion of the Metalline Speculum there are not fo many Rays loft, as in Glaffes, which Reflect a confiderable quantity by each of their Surfaces, and befides. intercept many of them by the Obfcurity of their matter.

Mean time, the main bufinefs will be, to find a matter for this Speculum that will bear to good and even a Polifh as Glaffes, and a way of giving this Polifh without vitiating the Spherical Figure. Hitherto I have found no Specula that had near fo good a Polifh as Glafs: And if Mr. Newton hath not already found a way to make it better than ordinarily, I apprehend his Te lefcope will not fo well diftinguih Objects as thofe with Glaffes. But 'tis worth while to fearch for a Remcdy to this Inconviency, and I defpair not of finding one. I believe that Mr. Newton hath not been without confidering the Advantage, which a Parabolical Speculum would have above a Spherical one in this Conftruction; but that he defpairs, as well as I do, of working, other Surfaces than Spherical ones with due exactnefs; though elfe it be more eafie to make a Parabolical than Elliptical or Hyperbolical ones, by reafon of a certain Propriety of the Parabolick Conoid, which is, that all the Sections Parallel to the Axis make the fame Parabola.

But though Mr. Nepoton (with M. Hugens) defpairs of performing that Ibid. p. 400\%, work by Geometrical Rules, yet he doubts not but that the thing may in fome meafure be accomplifhed by Mechanical Devices.
4. In my laft Letter, I gave you occafion to fulpect, that the Inftrument \mathcal{A} further \mathcal{i} sco. which I fent you is in fome refpect or other indifpofed, or that the Metals count of this, are Tarnifhed: And by yours I am fully confirmed in that Opinion. For, Mr. Newton. whiltt I had it, it reprefented the Moon in fome Parts of it as diftinctly as ${ }^{I b i d}$. other Telefcopes ufually do which Magnifie as much as that. Yet I very well know, That that Inftrument hath its Imperfections both in the Compofition of the Metal, and in its being badly Calt, as you may perceive by a Scabrous place near the middle of the Metal of it on the Polifhed fide, and alfo in the figure of that Metal near that Scabrous place: And in all thofe refpects that Inftrument is capable of further Improvement.

You feem to intimate, That the Proportion of 38 to 1 , holds only for its Magnifying Objects at fmall diftances. But if for fuch Diftances, fuppofe 500 Feet, it Magnifie at that rate, by the Rules of Opticks it muft for the greateft diftance imaginable Magnifie more than $37^{\frac{3}{4}}$ to I , which is fo inconfiderable a diminifhing, that it may be even then as 38 to I .

(100)

Here is made another Intrument like the former, which does very well. Fefterday I compared it with a fix Foot Telefcope, and found it not only to Magnifie more, but alfo more Dittinctly. And to day I found, that I could Read in one of the Philofophical Tranfactions, placed in the Sun's Light, at an hundred Foot Diftance, and that at a hundred and twenty Foot Diftance I could difcern fome of the Words. When I made this tryal, its Aperture (defined next the Eye) was equivalent to more than an Inch and a third part of the Object Metal. This may be of fome ufe to thofe that fhall endeavour any thing in Reflexions; for hereby they will in fome meafure be enabled to judge of the goodriefs of their Inftruments.

The Apertures and chaiges of thefe In/trumacuts; by
Mi. Newton. n. 82. f. 4032
5. Iknow that the Aperture was $I \frac{1}{3}$ of an Inch, by trying that an Obftacle of that Breadth was requifine to intercept all the Light, which came from one Point of the Object.
I thould tell you alfo that the little plain piece of Metal, next the Eye Glafs, is not only truly Figured: Whereby it happens, that Objects are not fo difinct at the Middle as at the Edges. And I hope, that by correcting its Figure, (in which I find more difficulty than one would expect,) they will appear all over Diffinct, and Diftincter in the Middle than at the Edges. And I doubt not but that the performances will then be greater.

But yet I find, that there is more Light loft by Reflexion of the Metal which I have hitherto ufed, than by Tranfmifion through Glaffes: For which reafon a Shallower Charge would probably do better for Obfcure ObFects ; fuppofe fuch'a one, as would make it Magnifie 34 or 32 times. But for Bright Objects at any diftance, it feems capable of Magnifying 38 or 40 times, with fufficient Ditinctnefs. And for all Objects, the fame Charge, I believe, may with Advantage be allowed, if the Steely Matter, imployed at Lozrdon, to more ftrongly Reflective than this which I have ufed.

The performances of one of thefe Inftruments of any Length being known, it will appear by this foilowing Table, what may be expected from tnofe of other Lengths by this way, if Art can accomplifh what is promifed by the Theory. In the firt Column is expreffed the Length of the Telefcope in Feet ; which doubled gives the Semidiameter of the Sphere, on which the Concave Metal is to be ground. In the fecond Column are the proportions of the Apertures for thofe feveral Lengths. And in the third Column are the Pioportions of the Charges, or Diameter of the Spheres, on which the Convex Superficies of the Eye Glaffes are to be ground.

Lengthos.	Apertures	Charges.	Lengths.	Apertures.	Charges.
$\frac{1}{2}$	100	100	8	800	200
1	168	119	10	946	211
2	283	141	12	1084	221
3	383	157	16	1345	238
4	476	168	20	1591	251
5	562	178	24	1824	263
6	645	186			

The ufe of this Table will beft appear by Example: Suppofe therefore a half Foot Telefcope may diftinctly Magnifie 30 times with an Inch Apeiture, and it being required to know, what ought to be the Analogous Conititution and Performance of a four Foot Telefcope: By the fecond Column, as 100 to 476 ; fo are the Apertures, as alfo the number of times which they Magnifie. And confequently fince the half Foot Tube hath an Inch Aperture and Magnifieth 30 times, a four Foot Tube proportionally fhould have $4 . \frac{76}{10 \%}$ Inches Aperturc, and Magnifie 143 times. And by the third Column, as roo to 168 ; fo have their Charges: And therefore if the Diameter of the Convexity of the Eye Glafs for a half Foot Telefcope be $\frac{-2}{5}$ of an Inch, that for a four Foot fhould be $\frac{168}{5} \frac{8}{8}$, that is, about ${ }_{3}^{\frac{T}{3}}$ of an Inch; and fo of other Eengths. But what the Event will really be we muft wait to fee determined by Experience. Only this I thought fit to infinuate, that they which intend. to make tryal in other Lengths, may more readily know how to defign, their: Inftruments. Thus for a four Foot Tube, fince the Aperture fhould be five or fix Inches, there will be required a piece of Metal feven or eight Inches Broad at leaft, becaufe the Figure will fcarcely be true to the Edges. And the thicknefs of the Metal mult be proportional to the Breadth, left it bend in the Grinding. The Metals being Polifhed, there may be tryals made with feveral Eye Glaffes, to find what Charge may with beft Advantage be made ufe of.
XVIII. I. I doubt not but M. A. will allow the Advantage of Reflexion Some objections in the Theory to be very great, when he fhall have informed himfelf of the of M. Different. Refrangibility of the feveral Rays of Light. And for the Practick Mnf Nevere, by part, it is in fome meafure manifeft by the Inftruments already made, to ${ }_{i b}$. New to. 1. whiat Degree of Vivacity and Brightnefs a Mettalline Subitance may be Polifhed. Nor is it improbable but that there may be new ways of Polifhing found out for Metal, which will far excel thofe that are yet in ufe. And when a Metal is once well Polifhed, it will be a long while preferved from Tarnifhing, if diligence be ufed to keep it dry and clofe, fhut up from Air: For the principal Caufe of Tarnifhing feems to be, the Condenfing of Moifture on its Polifh'd Surface, which by an Acid Spirit, where with the Atmofphere is impregnated, Corrodes and Rufts it; or at leaft, at its Exhaling leaves it covered over with a thin Skin, confifting partly of an Earthly Sediment of that moifture, and partly of the Duft, which flying to and fro' in the Air had fetled and adhered to it.

When there is not occalion to make frequent ufe of thic Inftrument, there may be other ways to preferve the Metal for a long time; as perhaps by immerging it in Spirit of Wine or fume other convenient Liquor. And if they chance to Tarnifh; yet their Polifh may be recovered by rubbing them with a foft piece of Leather, or other tender fubftance, withour the Abfitance of any fretting Powders, unlefs they happen to be Rufty: For then they muft be new Polifhed.

(202)

I am very fenfible, that Metal Reflects leff Light than Glafs tranfinits ; and for that Inconvenience, I gave you a Remedy in my laft Letter, by afligning a fhallower Charge in proportion to the Aperture, than is ufed in other Telefcopes. But as I have found fonie Metalline Subftances to be more ftrongly Reflective, and to Polifh better, and be freer from Tarnifhing than others; fo I hope there may in time be found out fome Subftance much freer from thefe Inconveniencies than any yet known.
The confiderati- 2. The confiderer is pleafed to reprehend me, for laying afide the Ans of Thoughts of Improving Opticks by Refractions. If he had obliged me by Anfwer'd, by a private Letter on this occafion, I would have acquainted him with my n. 88, p. 5084 . fuccefs on the Trials I have made of that kind, which I fhall now fay have been lefs than I fometimes expected, and perhaps than he at prefent hopes for. But fince he is pleafed to take it for granted, that I have let this Subject pafs without due Examination, I fhall refer him to my former Letters, by which that Conjecture will appear to be ungrounded. For, what If faid there, was in refpect of Telefcopes of the ordinary Conftruction, fignifying, that their Improvement is not to be expected from the well figuring of Glaffes, as Opticians have imagined; but I defpaired not of their Improvement by other Conftructions, which made me cautious to infert nothing that might intimate the contrary. For although fucceffive Refractions that are all made the fame way, do neceffarily more and more augment the Errors of the firf Refraction ; yet it feemed not impoffible for contrary Refractions to to correct each others Inequalities, as to make their difference Regular ; and if that could be conveniently effected, there would be no further difficulty. Now to this end, I examined, what may be done not only by Glaffes alone, but more efpecially by a Complication of divers fucceflive Mediums, as by two or more Glaffes or Cryftals with Water or fome other Fluid between them; all which together may perform the Office of one Glafs, efpecially of the Object Glafs, on whofe Conftructions the Perfection of the Inftrument chiefly depends.

To the Affertion, That Rays are lefs true Reflected to a Point by a Concave, than Refracted by a Convex, I cannot affent; nor do I underftand, That the Focus of the latter is lefs a Line than that of the former: The Truth of the contrary you will rather perceive by the following. Table, computed for fuch a Reflecting Concave, and Refracting Convex, on fuppofition that they have equal Apertures, and Collect Parallel Rays at an equal Dittance from their Vertex; which Diftance being divided into 15000 parts, the Diameter of the Concave Sphere will be 60000 of thofe parts, and of the Convex 10000; fuppofing the. Sines of Incidence and Refraction to be, in round numbers, as 2 to 3. And this Table following fhews, how much the exterior Rays, at feveral Apertures, fall fhort of their prineipal Focus.

The Diameter of the Apcrture.	The Parts of the Axis intercepted between the Vertex and the Rays		The Error by	
	Reflefted.	efratted.	Reffexion.	Refraction.
2.000	$14991^{\frac{2}{3}}$	14865	1) $8 \frac{1}{3}$	135
4000 6000	14966	14449	33	551
6000 8000	14924	13699 12475	76	1301
8000 10000	1478	12475 9472	135 213	2525 5528

By this you may perccive, That the Errors of the Refracting Convex are fo far from being lefs, that they are more than 16 times greater than the like Errors of the Reflecting Concave, efpecially in great Apertures; and that without refpect to the Heterogeneous Conftitution of Light. So that, however the contrary Suppofition might make the Author of thefe Animadverfions reject Reflexions as ufelefs for the promating of Opticks; yet I muft for this, as well as other Confiderations, prefer them in the Theory before Refractions.

Whether the Parabela be more difficult to defcribe than the Hyperbola, or Ellipfis, may be a Quxre; But I fee no abfolute necellity of endeavouring after any of their Defariptions. For if Metals can be ground truly Spherical, they will bear as great Apertures, as I believe Men will be well able to communicate an exact Polifh to. And for Dioptrique Telefcopes, I told you, That the difficulty confifted not in the Figure of the Glafs, but in the Difformity of Refractions; which if it did not, I could tell you a better and more eafie remedy than the ufe of the Conic Sections.
3. We fee that a Picture made by an Object Glafs of 12 Foot in a dark Objections; by Room, is too Diftinct, and too well Defined, to be produced by Rays, that M....... fhould ftray the 5oth part of the Aperture.

To take away this difficulty, I muft acquaint you, That though I put innfwerd, by the greateft Lateral Error of the Rays from one another to be about $r^{\text {r }}$ of Mr. Newtor the Glafs's Diameter ; yet their greater Error from the Points on which they ought to fall, will be but $\frac{1}{100}$ of that Diameter: And then, that the Rays, whofe Error is fo grear, are but very few in comparifon to thofe, which are Refracted more jultly; for the Rays which fall upon the middle Parts of the Glafs, are Refracted with fufficient Exactnefs, as aho are thofe that fall near the Perimeter and have a mean degree of Refrangibility; fo that there remain only the Rays, which fall near the Permeter and are moft or leaft Refrangible, to caufe any fenfible Confufion in the Picture. And thefe are yet fo much further weakned by the greater face, through which they are featter'd, that the Light which falls on the due Point; is infinitely more Denfe than that which falls on ariy other Point round about it . And by this

(204)

excefs of Denfity, the Light, which falls in or invifibly near the juft Point, may I conceive, ftrike the Senforium fo vigoroully, that the Imprefs of the weak Light, which Errs round about it, fhall, in comparifon, not be ftrong enough to be animadverted, or to caufe any more fenfible Confufion in the Picture than is found by Experience. But if this fatisfie not, N. may try, if he pleaf, how diftinct the Picture will appear, when all the Lens is cover'd excepting a little hole next its Edge on one fide only: And if in this cafe he pleafe to meafure the breadth of the Colours thus made at the Edge of the Sun's Picture, hee will perhaps find it to approach nearer to my Proportion than he expectst

Reply, by М1..... Ibid. $\therefore 635 \mathrm{n}$.

Anfrecrid, by Mr. Nevton. 12.25. F-609:
4. I am fatisfied with the manner, whereby Mr. Nowton reconciles the effect of Convex Glaffes with his Theory; but then he is alfo to acknowledge, that this Aberration of the Rays is not fo difadvantageous to Optick-Glafles as he feems to have been willing to make us believe. His Invention is very rood; but the defect of the Metal feems to render it as impoffible to execute, as the difficulty of the Form obftracts the ufe of the Hyperbole of M. Des Cartes.

If M. N pleafes to compute the Errors of a Glafs and Speculum that collect Rays at' equial Diftances', he will find how much he is miftaken; and that I have not been extravagant, as he magines, in preferring Reflexions: And as for what he fays of the difficulty of the Praxis, I know is is very difficult, and by thofe ways which he attempted it I believe.it impractir cable. But there is a way infinuated above, by which it is not improblable but that as much may be done in large Telefcopes, as I have thereby done in fhort ones, but yee not without more than ordinary Diligence and Curiofty.

Af Cuta-Dioptrio: XIX: I..M. Caffegrain: bas communieated the Figure of a Telefcope, ait sul Telefcrope; by: $\mathrm{M}_{\mathrm{i}} \mathrm{C}$ aflegrain. n. 83. p. 4056.

Ehig: 100 : moft like that of Mr. Nenton.

ABCD, is a ftrong Tube, in the bottom of which there is a grent Concave Speculum CD, pierced in the middle E.
F is a Convex Speculum, fo difpofed, as to its Convexity, that it Reflects the Species, which it receives from the great Speculum; towards the Hole E, where is an Eye Glafs, which one looketh through.

The Advantage which I find in this Inftrument above that of Mr. Neritong. is firf, That the Mouth or Aperture AB of the Tube may be of what bignefs you pleafe ; and confequently your may have many more Rays upon the Concave Speculum, than upon that, of which you have given us tho Defcription. 2. The Reflexion of the Rays will be very natural, fince it will be made upon the Axis it felf, 'and therefore more Vidid. 3. The Vifion of it will be 10 much the more pleafing, in that you fhall not be incomnoded by the great Light, by reafon of the bottom: CD, which hideth the whole Face. Befides, you'll have lefs difficulty in difcovering the Objects than in that of Mr. Nemoton.
corsididerd by Mro Newton, 16ide f, 4057:
2., When I firf applied my; felf to try the Effecis of Reflexions; Mr. Gre gory's' Opticn Promotia. (Printed in tho Year $16 \sigma_{3}$.) being fallen into my hands, Where there is an Infrument (defcribed p: 94.) like shat of Mr. Eaferorain's,
with a hoie in the midft of the Object Metal, to tranfmit the Light to an Eye Glafs placed behind it: I had thence an occafion of confidering that fort of Conftructions, and found thefe Difadvantages in it; viz. I. There will be more Light loft in the Metal by Reflexion from the little Convex Speculum, than fromthe Oval Plane. For it is an obvious Obfervation, That Light is moft copiounly Reflected from any Subftance when Incident moft obliquely: 2. The Convex Speculum will not Reflef the Rays fo truly as the Ovak Plane, unlefs it be of an Hyperbolick Figure; which is incomparably more difficult to form than a Plare; and if truly formed, yet would only Reflect thofe Rays truly, which refpect the Axis. 3. The Errors of the faid Convex will be much augmented by the too great diftance, through which the Rays Reflected from it muft pafs, before their arrival at the Eye Glafs. Tors. which reafon, I find it convenient to make the Tube no wider than is nece?fary, that, the Ege Glafs be placed as near to the Oval Plane, as is poffible, wichout obftructing any ufeful Light in its paffage to the Obje Qu Metal. 4. The Errors of the Objeit Mctal will be more augmented by Reflexicu from the Convex than from the Plane, becaufe of the inclination or Deflex:an of the Convex on all fides, from the Points on which every Ray ought to be Incident. 50 Eor thefe Reafons there is requifite an' extraordinary ExaEuafs in the Figure of the little Convex, whereas I find by Experience, that it is much more difficult to communicate an exact Figure to fuch fmall pieces of Metal, then to thofe that are greater. 6. Becaufe the Errours at the Perit meter of the Concave Object Metal, caufed by the Sphericalnefs of its Figurc; are much augmented by the Convex, it will not with diftinctnefs bear fou large an Aperture as in the other Conftruction. 7. By reafon that the dittle Convex conduces very much to the Magnifying Virtue of the Inftruments, which the Oval Plane doth not, it will Magnifie much more in proportion to the Sphere, on which the great Concave is ground, than in the othen defign ; and fo Magnifying Objects much more than it ought to do in prow portion to its Aperture, it mult reprefent them very obfcure and daik; and not only fo, but alfo confuled, by reafon of its being over-charged.: Nor is there any convenient Remedy. for this. Eor if the little Convex be made of a larger Sphere, that will caufe a greater inconvenience, by intercepting toor many of the beft Rays; or if the Charge of the Eye Glafs be made fo mucle: Shallower as is neceffary; the Angle of Vifion will thereby become fo little? that it will be:very difficult and troublefome to find an Object, and of that Object when found there will be but a very fmall part feen at once.

By this you may perceive, that the three Advantages, which Mr. Caffo: grain propounds to himfelf, are rather Difadvantages For according to His: Defign, the Aperture of the Inftrument will be but fmall, the Object dark: and confuied, and alfo difficult to be found. Nor do I fee, why the Reflexion is more upon the fame Axis, and fo more Natural in one cafe than int the other: fince the Axis it-Iflf is Reflected towards the Eye by the Oval Plane; and the Eye may be defended from external Lighto as weil, at the Side as at the Bottom of the Tube.

Mir. Gregory ppeaking of thefe. Inftruments, in the aforefaid Book, Pag. 95 : faith; De Mechanicầ horum Speculorum E Lentium, ab alius fruffra tentatâ, cyo in Mechnnicis minus verfatus nibil dico. So that there have been Trials made of thefe Telefcopes, but yet in vain. And I am informed, that about 7 or 8 years fince, Mr. Gregory, himfelf, at London, caufed one of 6 foot to be made by Mr. Reive, which I take to have been according to the aforefaid Defign defrribed in his Book; but, though made by a skilful Artift, yet it was without Succefs.
(A) Cald-Diop rich Telefcope b) S. Salyetti. n. 87% \%. 50 亿.

To mate the Pi. cfure of ary shing appeay in it light Room: by Dr. Hook.
XX. S. Salvetti hath made a little Profpective Glafs, made according to Mr. Newton's new Invention. It was not above half a foot long, it had the fame Effect of one of two. He is now making another after the Conceit of Mr.Caffegrain, though he agrees not with him in making Convex the little Speculum, which one looks into through the Eye Glafs, but believes the French Author only devifed that to difguile as much as was poffible his pretended new Invention, which he endeavours to make Anterior to Mr. Newton's moft noble one.
XXI. i. Oppofite to the Plare or Wall, where the Apparition is to be, let a Hole be made of about a foot in Diameter, or bigger: if there be a high Window, that hath a Cafement in it, 'twill be to much the better Without this Hole or Cafement opened, at a convenient diftance, (that it may not be perceived by the Company in the Room) place the Pifture or Object, which you will Reprefent, Inverted, and by means of Looking-Glaffes placed behind, if the Pitture be tranfparent, Reflect the Rays of the Sun fo, as that they may pafs through it towards the place, where it is to be Reprefented ; and to the end that no Rays may pars befides it, let the Pieture be encompaffed on every fide with a Board or Cloath. If the Object be a Statue, or fome Living Creature, then it mult be very much Enlighted by cafting the Sun-Beams on it by Refraction, Reflexion, or both. Between this Object and the Place where 'tis to be Reprefented, there is to be placed a broad Convex Glafs, ground of fuch a Convexity, as that it may Reprefent the Object: Diftinct on the faid place; which any one, that hath any infight in the Opticke, may eafily direct. The nearer it is placed to the Object, the more is the: Object magnified on the Wall, and the further off the lefs; which diverfity is effected by Glaffes of feveral Spheres. It the Object cannot be Inverted (as 'tis precty difficult to do wish Living Animals, Candles, ઉ'c.) then there munt be two large Glaffes of convenient Sphercs, and they placed at their appropriated Diftances, (which are very eafily found by Trials) fo as to make the ReprefentationsErect, as well as the Object.

Thefe Objects, Reflecting and Refracting Glaffes, and the whole Apparatas ; as alfo the Perfons employed to Order, Change, and make ufe of them, mutt be placed without the faid high Window or Hole, fo that they may not be perceived by the Spectators in the Room ; and the whole Operation will be cafily performed.

(207)

Whatroever may be done by means of the Sun-Beams in the Day-time, the fame may be done with much more eafe in the Night, by the help of Torches, Lamps, or other bright Lights, placed about the Objects, according to the feveral forts of them.
2. There are every where made of thefe Lanthorns to reprefent and niag- The Musick nifie Figures upon a Wall, but then 'tis only in the Dark; wherefore to give Lanthborn im: variety of Colours, take Oil of Spike, and therein mix the feveral Colours, prov'd, by sit wherewith you will have yout Glafs to be fained, Paint them finely on, they well. . . 1.245 dry prefently, and penetrate any Glars.
XXII. Having found by many Trials, that fome Short-fighted Perfons it way to betp could find little or no Relief, by the ufe of Concave Glaffes, for Seeing Ob- fhorr-Jightednefs; jects at any diftance Diftinct, and that any one may be made Short-fighted, $P p_{\text {, }} D$ coll. Hook. and to be able to diftinguifh nothing but what is placed very near his Eye, $p \cdot 59$. but within certain Limits of Diftance, by putting on and looking through a very deep pair of Spectacles, fuch as Ancient Men ufe: I concluded that what Glaffes ffould make this Man, whilft looking thro' thefe Spectacles, to fee things at a greater Diftance, would alfo help any other Perfon that flould be Short-Sighted by Nature. I then confidered, That by the help of a Convex Glafs, placed between the Object and the Eye, the Image of the Object may be made to appear at any Diftance from the Eye; and confeguently all Ob jects may thereby be made to appear in any convenient Diftance froms the Eye: fo that the Short-Sighted Eye fhall contemplate the Picture of the Ob ject, in the fame manner as if the Object it felf were in that place. But then becaufe the Pictures themfelves are fo Inverted, and therefore will be uncouth to one, not ufed to fee them in that pofture, I confidered of thefe Expedients to help that Defect allo.

Firft, If it be only for Reading of a Book, or Writing, there needeth nothing but the Inverfion of the Book, and then holding the Convex at a due Diftance, for the Picture of the Letters will appear Erected in the due Place? for the Eye to fee and diftinguifh them very plainly.

Secondly, For feeing to Write, I thought this would be the beft expedient, That the Perfon Short-Sighted fhould firft learn to Read with his naked Eye, (both Printed Letters and alfo Written Hand) upfide downwards, which is quickly attained to by one that can do both the right way.

Thirdly, For diftinguifhing Objects at a Diftance, I can affert by my owir Experience, that with a little ufe of Contemplating Objects Inverted, one fhall have as good an Idea, and as true a Knowledge of all manner of Objects, as if they were feen Erected in their Natural Pofture;
XXIII. i. Euftachio Divini hath niade a Microfcope of a new Invention, where- Microfopes; i_{2} in inftead of an Eye Glafs Convex on both fides, there are two Plano-Con- S.Divini, n, 4 , vex Glaffes, which are fo placed, as to touch one another in the middle of ${ }^{\text {t. } 842,}$ their Convex Surface: It hath this peculiar, that it thews the Objects flat and not crooked ; and although it takes in much, yet neverthelefs magnififth extraordinarily.

(208)

It is almoit if $6 \frac{1}{2}$ Tnches high, and adjufted at four different Lengths. In the firt, which is the leaft, it fhews Lines 4 I times bigger than they appeat to the Naked Eye; In the fecond, 90 times; In the third, II itimes; And in the fourth, ${ }^{I}+3$, times: Whence one may eafily Calculate, how much it augments Surfaces and Solidities.
By.S. Pict. Salverti. n. 87. f. 5065.

By M. Leenspenhoeck. ก. 94 - p. 6037. Ey Mr. Butterficid. n. I4I. t. 1026.

Sy Mr. Steph. Gray. n. 22 I. P. 280 .
2. S. Salvetti lately fhew'd one of his Microfcopes, made in Imitation of thofe of Divini and Campani, to the Great Duke of Tufcany; which was juidged by all much better than any of the beft his Highnefs hath. It was found, for Magnifying, Defining, and Clearnefs, to be very Excellent.
3. M. Lecumenbocck hath lately contrived Microfcopes, excelling thofe that have been hitherto made by Euftacbio vivini, and otbers.
4. I have Microfopes of the manner lately brought out of Holland by Mr. Huygens, of feveral Fafhions ready made. I have tried feveral ways for the making of Glaffes of the bignefs of a great Pin's Head and lefs; as in the Flame of a Callow Candle, and of one of Wax. But the beft way of all I have yet found, to make them Clear and without Specks, is with the Elame of Spirit of Wine well Rectified, and burned in a Lamp. Inftead of Cotton I make ufe of very fmall Silver Wire, doubled up and down like a Skein of Thread; which being Wet with the Spirit of Wine, and made to burn in the Lamp, giveth through the Veril of the Lamp, a very Ardent Flame. Then take your beaten Glafs, being firft wafhed very clean, upon the point of a Silver Needle filed very fmall, and wet with Spittle. Hold it thus in the Flame till it be quite round, and no longer for fear of Burning it ; and if the fide of the Glafs next the Needle be not melted, you may put it off and take it up with the Needle on the Round fide, prefenting the Rough fide to the Flame, till it be cvery where Round and Smooth, then wipe and rub one or feveral of them together with foft Leather, which makes them much the better. Then put them between two pieces of thin Brafs, the Apertures very round and without Bur, and that towards the Eye fo big almuit as the Diameter of the Glafs; and fo placed in a Frane with the Object conveniently for Obfervation.
5. I took a fnall Particle of Glafs, about the bignefs I defigned my Globule, and laying it on the end of a Charcoal, I could by the help of a BlaftPipe with the Flame of a Candle, foon melt it into a Spherule: and by this means I could make them indifferently Clear, and the fmalleft very Round, and I could make them much larger, than by the unatifited Heat of the Candle : buit thefe latter were attended with an Inconvenience, they were, on that fide that refted on the Coal, flatted, and received a rough Impreffion from it. To Remedy this Inconvenience, I was wont to Grind them and Polifh them on a Brais Plane, and fo reduce them to Hemifphærules; but 1 found the clear fmall Globules, not to mention that they Magnifie more, fhew Objeits more Difinctly.

(209)

XXIV. I. A B, I call the Frame of the Microfcope. It may be about \mathcal{A} Water-Mitoo ${ }^{\frac{1}{1} \frac{1}{6}}$ of an Inch in thicknefs. At A there is a fmall Hole, near $\frac{-1}{3}$ of an Inch $\sqrt{\text { rope; } ; \text { by }}$ Diamerer, this ferves for the Aperture of the Water, being in the Center of Mray. Stephen a larger Spherical Cavity, about $\frac{1}{8}$ of an Inch Diameter, and in depth fome- $p .255 .012 .223^{\circ}$ what more than half the thicknefs of the Brafs. Oppofite to this, at the other ${ }^{\mathrm{F} \cdot 353 \cdot}$ fide, there is another Concave but half the breadth of the former ; which is fo deep, as to reduce the Circumference of the fmall Hole in the Center, to almoft a fharp edge. In thefe Cavities the Water is to be placed, being taken upon a Pin, or large Ncedlc, and conveyed into them till there be formed a Double Convex Lens of Water; which, by the Concaves being of different Diameters, will be Equivalent to a Double Conver, of unequal Convexities. By this means, I find the Object is rendred more Diftinct than by a Phanoconvex of "Water, or by a Double one, formed on the plain Surface of the Metal.

CDE, is the Supporter, whereon to place the Object; if it be Water, in the Hole G; if a Solid Object, on the Point F. This is fixed to the Frame of the Microfcope, by the Skrew E, where'tis bent upwards, that its upper part may ftand at a diftance from the Frame; 'tis muveable on the Srrew as a Center, to the end that cither the Hole C, or the Point F, may be expofed before the Microfcope ; and that the Object may be brought to, and fixed in its Focus. There is another Skrew, about half an Inch in lengeth, which goes through the round Plate into the Frame of the Microfcope A E, the Skrew and Plate taking hold of the Supporter about D, where there is a Slit fomewhat larger than the Diameter of the Skrew, which is requifite for the admilfion of the Hole C, or Point F, according to the Nature of the Object, into the Focus of the Glafs; for by turning the Skrew G, the Supporter is carried to or from the finne, which may be fooncr done, if whilt one turn the Skrew with one hand, the other hold the Microfcope by the end B, and one continue looking through the Water till the Object be feen moft ditinctly.

The Supporter muft be made of a thin piece of Brafs well hamnjered, that by its Spring it may the better follow the Motion of the Skrew. I chofe rather to fix the Supporter by the Skrew E, than by a Rivet; becaufe it may now, by help of Kniife, be unskrewed, and by the other Skrew G, be brought clofe to the Frame of the Mictofoope without weakening its Spring, and to become more conveniently Portable. If the Hole at G be filled with Water, but not to as to be Spherical; all Objects that will bear it, are feen therein more diftinctly.
2. Having obferved fome liregular Particles in Globules of Glafs, and find- , ixother, Hixid. ing them Diftinct, but prodigioufly Magnified, when held clofe to the: Eye, ${ }^{11}$. 221. f. 202. 1 concluded that if I conveyed a finall cilobule of Water to my Eye, and that there were any opacous or lefs tranfarent Particles than the IV ater therein, 1 might fee them Diftinctly. I therefore took on a Pin a fmall Portion of Water, which I knew to have in it fome minute Anmals, and hid it on the end of a mall piece of Brafs Wire (there lay then by me) of ahout: $z^{\frac{2}{0}}$

Vol. 1.
E. C near an Hemifphere of Water on each fide of the Hole, the Objects are feen more diftinctly; and the Spherical Form of the Water is this way better fecured than on the Point of a Pin Wire.

The Reafon of this appearance may be thus Explained. Let the Circle D BBD, reprefent a Sphere of Water, A an Object placed in its Focus,
Fig. 302. fending forth a Cone of Rays, two of which are $A B, A B$, which Opticians know coming inte the Water at B and B, will be Refracted from their direct Courfe, and become BD, BD; at D they will, at their paffing into the Air, be again Refracted into DE, DE, and fo run Parallel to one another, and to the Axis of the Sphear. A FCG. Now 'tis a known and fundamental Principle in Opticks, that the Angle of Reflexion is equal to the Angle of Incidence; whetefore let the Rays B D, B D, be imagined to come from fome Point of an Object placed within a Sphere of Water, by being Reflected from the Interior Surface of the Sphere at B B, C B D is the Angle of Reflexion, to which making $C B F$ equal, F will be the place, where, an Object fending forth a Cone of Rays, two of which are FB, FB, which are Reflected into the Rays BD, BD, and then coming to the other fide the Sphere at D and D, they are Refracted into DE, DE, as before ; and confequently be as fit for Diftinct Vifion, whether the Object be placed in F. within, or in A without the Sphere, if. its Interior Surface be confidered as a Concave Reflecting Speculum.

Microjcopes. Im- XXV. From the Diftinction I have elfewhere given between Compoumded. proved; by
Mis. Newton
3. 98. p. 5096. the Improvement of Microfopes by Refraction; wiz. By Illuminating the Object in a darkned Room with Light of any convenient Colour not too much Compounded: for by that means the Microfcope will with diftinctnefs bear a deeper Charge and larger Aperture, efpecially if its Conftruction be fuch as I may hereafter defcribe; for the Advantage in ordinary Microfeapes will not be fo fenfible.

A Reflectirg XXVI I have fometimes thought to make a Microfcope, which fionld Mr. Newton. n. 80 . p. 3090 . Fiz: 103.

Mitcorofoye, by have, inftead of an Object Glafs, a Reflecting piece of Metal. For there Intruments feem as capable of Improvement as Telefcopes, and perhaps more; becaule but one Reflective piece of Metal is requifite in them, as you

(211)

may perceive by the Diagram, where A B reprefentech the Object Metal, C D the Eye Glafs, F their common Focus, and O the other Focus of the Metal, in which the Object is placed.
2. A, reprefents a fmall flat Ring of Brafs, whofe Interior Circle muit not $B_{y y} \mathrm{~N} /$ Stephen much exceed iof of an Inch Diameter, and about $\frac{-1}{3}$ of an Inch thick: This Gray; .n.223. we may call the Frame or Cell of the Glafs; it muft be prepared for ufe afterep ${ }^{p}$. 4. the following manner. Take a finall Globule of Quick-Silver, and diffive it in a few drops of Aqua Fortis, to which you may add to parts of common Water ; dip the end of a Stick in this Liquor, and rub the inward Circle of the Ring with it; fo it will have acquired a Mercurial Tincture, and being wiped dry, be fit for ufe. Then let it be laid on the Table, and pour a drop of Quick-filver within it, which prefs gently with the Ball of the Finger, and it will adhere to the Ring; then clemnfe it with a Hare's Foor, and you will have a Convex Speculum. Take up the Ring and Speculum carrying it Horizontal, and lay it on the Brims of the hollow Cylinder B; fo will the Mercury become a Concave Refecting Speculum, whici from the frallnefs of the Sphere of which it feems to be a Section, may be ufed as a Microfcope. The Cylindrick Veffel B, has a Skrew Hole at the botton, by which it is skrewed to the top of the Pedeftal CD, CEFG is the Suppor-
ter of the Object Plate, which as you fee my ter of the Object Plate, which as you fee may be raifed higher, or let lower, as there is occafion, by the Skrew on the Pedetal : The Object Plate mult be of Glafs cemented to the Ring G.

This Inftrument with a little Variation may be made a Microfope of Water, if inftead of the Ring G, there be only a frnall Arm with a Hole in it. to receive a Drop of Water, and the Cylindrick Vefiel B, be either taken away or skrewed on with its bottom upwards, fo as to make an Object Plate. This will be more convenient for viewing the Textures of Opacous Objects, than that above defrribed, which is more fif for Fluid and Traniparent ones.
XXVII. I. The Figure of it is Round, being 30 Inches, and fomewhat better, in Diameter. On one fide it hath a Frame of a Circle of Steel, to the end that it may keep its juft Meafure : "Tis eafie to remove it. from place to place, though it be above an hundred weight, and 'tis eafily put in all forts of Poftures. The Burning Point is dittant from the Center of the Glafs about 3 Foot. The Focus is about half a Lousis d Or large. One may pals onc's. Hand through it, if it be done nimbly; for if it flay there the time of a Second Minute, there is danger of recciving much hurt. Green Wood takes Fire in it in an inftant, as do alfo many other Bodies.
A frall Piece of Pot-Iron was melted, and ready to drop down in -4°
A Silver Piece of Fifteen Pence was pierced in
A Grofs Nail (called le Clau de Paijan) was melted in ———30
The end of a Sword Blade of olinde, was burn'd in -
A. Brafs Counter was pierced in

A piece of Red Copper was melted ready to drop down, in-42

$$
\mathrm{E} \dot{\mathrm{e} z}
$$

A piece of a Chamber-Quarry-Stone was Vitrified, and put into $\}_{45}$
A picce of a Chamber-Quarry-Stone was Vitrified, and put into $\} 45$
a Glass drop, in $\left.\begin{array}{l}\text { Steel, whereof Watch-makers make their Springs, was found } \\ \text { melted, in }\end{array}\right\}$ $\left.\begin{array}{l}\text { Steel, whereof Watch-makers make their Springs, was found } \\ \text { melted, in }\end{array}\right\}$ A Mineml-stone, fuch as is ufed in Harquebufles a rovert, was Cal-
cin'd and Virrified, in A picee of Morter was Vitrified, in $\quad 52$

In fhort, There is hardly any Body which is not deftroyed by this Fire. If one would Melt by it any great quantity of Metal, that would require much time, the Action of Burning not being performed but within the bignef's of the Focus, fo that ordinarily none but fmall pieces are expofed to it. One M. de Alibert buys it, paying for it 1500 Livres.

You encline to believe, That the Glaffes of Maginus and Septalius do anpproach to that of Lyons: But I can aflure yon, they come very far fhort of it. You may confult Maginus his Book, where he deferibes his; and. there are fome Perfons here who have feen one of his beft, which had but about 20 Inches Diameter; fo that this of Lyons mult perform at leaft twice as much. As to Septalius, we expect the Relations of it from Intelligent and Impartial Men... It cannot well be compared to that of Lyons, but in bignefs; and int this cafe, if it have five Palms, (as youray) that would be about $3 \frac{1}{2}=$ Foat French, and fo it were a Foot bigger, which would make it half as much greater in Surface: But as to the Effects, feeing it Burns fo far aft, they cannot be very violent. And I have heard one fay, that had feen it, that-it did not. fet Wood on Fire but after the time of faying i Mifeicerc. You may judge of the difference of the Effects, fince that of Lyons gatiors its Beams together within the face of 7 or 8 Lines; and that of Septalius muft fateter them in the compafs of 3 Inches.
n.49.1.98c. It was difpofed of to the King of Denmark:
2. The fame M. de Vilette of Lyons hath made another Burning Concave. It is of 34 Inches Diameter, and Melts -all forts of Metals, and Iron it feff of the thicknefs of a Silver Crown, in lefs than a Minute of time, and Vitrifies Brick in the fame time ; and as for Wood, whether Green or Dry, it fets it on Fire in a moment. The King hath feen it, and the Performances of it, with great Satisfaction ; and his Majefty is likely to make it his, arrd then to beftow it on his Royal. Academy of Philafophers, for making of farther Experiments with it.
3y. $\cdots \cdots \cdot$
This kind of Concaves Burning the moft forcibly of any Fire we IVid. 81997 know of, would be of great ufe, if they could be fo contrived as to have a Focus of any confiderable largenefs, to take in a good quantity of combuntible matter at once.
By S. Settalla,...3. S. Settalla at Milans caufeth to be made a Burning Glafs of feven Foot $\mathrm{n}_{2} 40$, \$ 796 in Diameter. He pretends to make it Burn at the diftance of 50 Falms, which is about 33 Eopt

(213)

4. The outer Circle of the Concave Burning Speculum, which I latelyia surning cauled to be made in Luface, is near 3 I cityick Ells in Diameter, cxcceding many in Ger. that great: one at Paris by $\frac{3}{8}$ of fuch an Ell. It is made of a Coppet' Plate. . . . by farce twice fo thick as the back of an ordinary Knife, and may therefore be ${ }^{\text {n. }} 183 . \dot{p} \cdot 352^{\circ}$ eafly removed from place to place, and ordered for ufe: and the WorkmanShip of it "may, by the Contrivances 1 have Invented, be cafly and in little" tinie performed by one Man. The Poliff thereof is very good, and repreCents by Diftinat Reflexions all thole appearances which arife from the Concave Figure thereof.

The Förce of this Specuhum is Tncredible. Eor, i. A piece of Wood put into the Focus (which is two Ells off) flames in a moment, fo as a frefl Wind can hardly put it out. 2. Water 'applied in an Earthen Veffel prefently Boils', fo as to Boil an Egg; and the Veffel being held there fome time, the Water Eviaporates all away. 3. A piece of Tin or Lead threc Incites thick, as foon as it is put into the Focus, melts away in drops; and held there a litte time is in a perfect Fluor, fo as in two or 3 Minutes to be quite pierced thorough. 4. A Plate of Iron or Steel placed in the Focus immediately is feen to be redhot on the backfide, and foon after a Hole is burnt through: I have made thriee fuch Holes, in a Plate, in 6 Minutes time. - 5. Copper, Silver, and the like, applied to the Focus, Melt; which I have tricd with feveral forts of Coin; among the reft, with a R $2 x$-Dollar, and the fame happened to it as the aforelaid Iron Plate in 5 or 6 Minutes. 6. Things notapt to mielt, as Stones, Brick, and the like, foon become red-hot like Iron. 7. Slate at firft is redhot, but in a few Minutes turns into a fine fort of black Glafs; of which if any part be taken in the Tongs and drawn out, it runs into Glaf' threads. 8. Tiles, which had fuffered the moft Intenfe Hent of Tire, in a little time melt down into a yellow Glafs; as do, g. Pot-Shreads, not only well burnt at firt, but much ufed in the Fire, into a blackifh yellow Glafs. Fo. Pu-mice-Stone, faid to be that of Burning Mountains, in this Solar Fire, melts into a white tranfparent Glafs. . In. A piece of a very ftrong Crucible put into the Focus, in 8 Minutes, was melted into a Glafs.' - iz.I have feen. Bones turned into a kind of Opalke Glafs; and a Clod of Eatch into a yellow or greenifh Glafs.

Thefe Experiments were made in Augult and September, when the Surn has not the fame force as when he is about the Summer Solftice. The Beams of the Full. Moon, concentred by this'Speculum, did not prodice -any Degree of Heat, tho' the Light was not a little encreafed.
5. Some years ago, Dr. Hook made a Propofal to the Royal Socicty conl- Ey Dr..Hocirs cerning the fame thing. He conceives one may be made of many Foot Dia- $16 . \mathrm{D}_{\mathrm{d}}$, 354%. meter, for a fmall price, being hammer'd nut of a Copper Plate, :and Tinned. . over with a mixture of Tin, Lead and Tin-Glafs, which is found to bear as very good Polifh. Such a Speculum might be of great afe, in Perfecting. the Art of Paftes, or Factitious Jewels, which requirc the moft Intenfe Degrete of Fitat, to bring them to an Exact Mixture,

(214)

(0.tan shewin reaily of a Para. bolick Figiure; attconteci by iti. Stephen Riray.
n. $228 . p .542$. ก. 235. 1. 787 .
XXVIII. A Limnen Cloth, being firt wet in fair Water, and then laid on a Conicive Cylinder, as the Verge of a Seive, Keeler, or the like, its Central Paits will defcend fo as to form a very regular Concave Superficies: And a Thread, becing frift wet in commorl Water, and then fufpended with its two ends, or any two Points nearer than their utmof extent, fo as it might touch the Center of the fufpended Cloth, and its two oppofite Points on the Ring, was found to liave the fame Curvaturc. My Bufinefs was then to examine the Figure of the Thread thus fufpended, which I did in manner following; On the fide of a Wall I defreribed Parabola's of feveral Species, whofe Axes were Perpendicular, and Perimeter Horizontal, to which the Line being applied, fo as it might touch the Vertex, paift very nearly through all the intermediate Points of the Parabola, much nearer thian the Portion of a Circle, which paft through the Extremity of the Perimeter and Latus Rectum, would do.
From hence I conclude, That a ponderous and pliable subfance, being fuffended on a Ring or hollow Cylinder, fo as that its Central Parts may defcend, will form it felf into a Figure that is more commodious for BurningGlaffes than the Spherical, of which they are now made, being much nearér their mot abfolute Figure the Parabola.

Now if there may be a way found to give to Cloth or Leather a MetalIne Surface, or a Varuifh that may bear a good Polifh ; or if this be found Impracticable, perhaps Plates of Metal may be beat out fo thin, as being fufpended on a large Ring, will by their own Gravity receive their true Figure, one may make Speculums of what largenefs he plerítert.

Upon this Conifderation, I devifed the following Experiment. There was taken a fufficient quantity of Potter's Clay, of which there was formed a plain circular Plate, by help of an Iron Ring about is Inches Diameter. This was laid on a leffer Ring, which was dupported by four Feet, and it imimediately became of a very regular Concave on its upper, and Convex on its under Superficies: but notwitiftanding 'twas fee to dry in the Shade, yet before it was dry enough, its Central Parrs extended fo as to become almolt Plain, not without fome Defects; if it had continued in its Regularity, I defigned to have burned and glazed it in a Potter's Furnace:

So make the Giobe Looking. rilafs; by Sw R. Soithivell 3. 245. 7. 0 363. taken-from the Fire, and be towards Cooling before the Quick-filver be added; let your Glafs be well warmed, then pour in the Mixture, and roll it from fide to fide.

Note, 'This will do alfo when Cold, but 'tis beft when the Glafs is heated and very dry.

Note alfo, That if at the Glafs-Houfe, your Ball be of yellow Glafs, then all will thine like Gold.

XXX. Papers (of lefs Gencral Ufe) Omittcd.

DR. Hook having (in his Micrograptia) defcribed a new Engine for Grind-optick Glafes, ing Optick Glaffes of very great lengths, M. Auzout (in a fmall French by a Turn Lati)eo Tract) Objects feveral Difficulties to this Engine it felf: But however, he $\begin{gathered}\text { n. 2. p. p. } 3 \text {. } \\ \text { n. }\end{gathered}$. thinks it impracticable to make any Glaffes of above 300 or 400 Foot at moft, (and fears that neither Matter nor Art will go even fo far) which will be very far from fhowing us. Plants or Animals in the Moon; and then propofes Remedies to fome of the Inconveniences of the Turn. To all this, Dr. Hook here Replies; He Anfwers the Objections, and Rejects the propofed Ibid. p. $\sigma_{\hat{3}}$. Expedients.
2. Carlo Ant. Mancini having, in his Ocaliale all' Occhio, defcribed a upon a plaimo particular way for making Convex-Glaffes upon a Plain, his Method is here ${ }^{\text {n. } 42 . p, 838}$. Tranflated from the Italian into Englifb. But 'tis added, That though the contrivance be Ingenious, yet it is conceiv'd by Skilful Artifts, that it will be very difficule to put it into Practice.
XXXI. Accounts of Books, Omitted.

3. PHHyfico-Mathefis de Lumine, Coloribus, छु Iride, Ěc. Autb. Franc, Maria n. 79. p. 3068, Grimaldo, S.7. Bononix 1665 . in 4 to.
4. Cogitationes Pbyfico-Mechanicae de Natura Vifionis. Auth. Jo. Ott., Schapbufa n. 7ro po 2163. Helvctio. Heidelbergx 1670. in 4 to.
5. Synopfs Optica. Auth. Honorato Fabrit, Sec. Fefu. Lugduni 1667. inn. 32. p. 626, 2uarto.
6. L'Occhiale all' Occhio, overo Dioptrica Prattica, del Carlo Ant. Mancini, in n. 42 . p. 837% Bologna 1660. in puarto.
7. Leetiones 18; Cantabrigioe in Scholis publicis biabita in quibus Opticorum n. 75. p. atss, Phenomenon Genuine Rationes inveftigantur, ©i exponuntur, ab Ifaaco Barrow. Land. I 669. in Luarto.
8. La Diaptrique Oculaire, par le Pere Cherubin d Orleans, Capucin. n. 78 . p, 30450 A Paris 167 r: in Folio.
 rata: Or, The Dectription of an Acrial Telefcope. Hague, 1684 . in Qunto.
9. A Treatife of Dioptricks. By Will. Molyneux Eff; F. R. S. in Quinrto. n. 205; f. s67.
9.:Catoptrica E Dioptrica Elementa. Auctorc Davide Gregorio, D.. M. m. 210. 1.254. Oxon. 1695. in OEtrwo.

C H A P. IV. ASTRONOM.

The Obferatary of Tycho Brafic; by 1 Mi. Gourden. $27.265 \cdot$ F. 65%

1. r

THE Iland Ween, (vulgarly termed the Scazlet-Ifand) famous for the Obfervations of Tycho Brabe that Renowned Danifl Afronomer, (with all fubmifion to better Judgments) was none of the fitteft for Aitronomical Obfervations of all forts, fuch as the taking the exact Time of the true Rifing and Setting of Celeftial Bodies, together with their repective Amplitudes; becaufe the Illand lies low, and is Land-lockt on all thie Points of the Compafs, fave three. Befides, The fenfible Land Horizon of the Ween is extreamly uneven and rugged, the North and Eaftern Parts thereof being fome rifing Hills in the Province of Schonen; and the Weftern part is moftly overfpread with .Trees on the Ifland zaland: from the se. motelt of which Coatts the $W_{c e n}$ is not diftant above three Leagues.
¿1 nim Alliono onucal intirument; ay N. Weighe. hin:. 11. 74. 12. 2219.
II. M. Weighelius hath Invented an Inftrument, which he calls Affodicicum, by the means whercof very many Perfons fhall be able at one and the fame time to behold one and the fame Star. He hath alfo Invented an exceeding great Globe of the World, capable of Io Perfons to fit in it all at ouce, and to behold the Motions of the Celeftial Bodies, Ee.

Afcerfiniteibber, III. The tigniefs of this Glose is only of four Inches Diameter. The Boi) M. Didier .f. Alleman. 3. 13.6 . 1.905 dy of the Globe of Burniflat Steel, whare all the Figures of the Conftellations are defigned in Silver-colour, but the Stars themfleles of all Magnitudes, are put on in Embors'd Gold.

This Globe moves from Eaft to Weft in 24 hours ; and. you may there fee the Sun exaitly Rife and Ser as in the great World, together with the Moon, as alfo the Stars of the Conftellations ; likewife, how the Sun of this Gilobe comes to his Mcridian, with an adnirable Regulaty, conform to the Primum. Mobile. And you may alfo there perceive the mean Motions of the Sin and Moon from Wct to Ealt, and all the Lunations; and by the Diurnal Motion of the Moon, it fhews the Flux and Reflux of the Sca.

The Mcridian ferveth for a Needle to thew the Hours, which are marked upon the Zodiack, where the Sun marcheth regularly, which hath two main Rays, one whereof goeth direerly Northward, the other Southward. That of the North marks the way or Degree, which the Sun makerh from Weft to Eatt upon the Signs of the Zodiack, and upon a Circle of Silver, where the 360 Degrees of the Circle are mark'd. The other Ray of the South, marks upon another Circle of Silver the Days of the Month, where the 365 Days are noted. The Circles of the Longitude of the Stars, which feparate the

(217)

Signs, and which come from the Poles of, the Zodiack, are marked by GoldWires; as allo the Equator, the Tropicks, and the Polar Circles.

There is but one great Spring, the Primum Mobilc, which puts all the rof in Motion. It is wound up by the Antargique Pole, and you may wind it up to the Right or Left Hand, without wronging any contrary Motion And by the ArEtique Pole, you may advance and retard this Movement, if you fhould find any Inequality, without altering at all the great Spring.
IV. I applied my felf the laft Summer to the taking of the Diameters of \mathcal{A} Way to mexthe Sun, Moon, and the other Planets, by a Method which one M. Picard and ters of the Placmy felf have, efteemed by us the beft of all thofe that have been practis'd, hitherto; fince we can take the Diameters to Second Minutes, being able to divide one Foot into 24000 or 30000 Parts, fcarce failing as much as in one only part, fo as we can in a manner be affured, not to deceive our felves in 3 or 4 Seconds. I fhall not now tell you my Obfervations, but I may very well affure you, that the Diameter of the Sun has not been much lefs in his Apogee, than 31 min .37 or 40 fec , and certainly not lefs than 31 min . 35 fec. and that at prefent in his Perigee it paffes not 32 min .45 fec. and may be lefs by a fecond or two. That which is at the prefent troublefome is, that the Vertical Diameter, which is the moft eafie to take, is diminifht, even at Noon, by 8 or 9 lec. becaufe of the Refractions, which are much greater in Winter than Summer at the fame height; and that the Horizontal Diameter is difficult, becaufe of the fwitt Motion of the Heavens.

As for the Moon, I never yet found her Diameter lefs than 29 min. 44 or 45 fec. and I have not feen it pafs 33 min or if it hath, it was only by a few feconds. But I have not yet taken her in all the linds of Situations of the Apogees and Perigces which happen, with the Conjunctions and Quadratures. I do not mention all what can be deduced from thence, I fhall only tell you, that I have found a way to know the Parallax of the Moon, by the means of her Diameter: vir. If on a day, when the is to be in her Apogee or Perigec, and in the moft Boreal Sigus, you take her Diameter towards the Horizon, and then towards the South, with her Altitudes above the Horizon. For if the Obfervation of the Diameters be exact, as in thefe Situations the Moon changes not confiderably her diftance from the Earth in 6 or 7 hours, the Difference of the Diameters will Thew the Proportion there is of her. Diftance with the Semidiameter of the Earth: I do not enlarge, becaufe that as foon as one hath this Idea the reft is eafie. The fame would yet be practifed better in the places where the Moon pafles through the Zenith, than here; for the greater the difference is of the Heights, the greater is that of the Diameters. I do not Note, (for it eafily appears) that if one were under the fame Meridian, or the fame A zimut/, in two very diftant Places, and took at the fame time the Diameter of the Moon, one would do the fame thing; though this Method gocs not to precifenefs.

From what has been faid may be Collected the Reafon of the Obfervation, which M. Hevelius made in the laft Eclipfe of the Sun, (Fuly 2. St. N. 1666.) touching the Increafe of the Moon's Diameter about the end. I am exceed-
ing glad, that a Perfon, who probably knew not the Caure of it, has made the Experiment: but it is ftrange, that until now no Aftronomer has forfeen, that that fhould happen, nor given any Precepts for the Change of the Moon's Diameter in the Eclipfes of the Sun, according to the Places where they fhould happen, and according to the Hour and Height the Moon flould have. For, what happened in that Eclipfe of Augmentation, would have fallen out contrarily, if it had been in the Evening; for, the Moon, which in that Eclipfe, that began in the Morning, was higher about the end than at the beginning, was nearer us, and confequently was to appear bigger,: But if the Eelipfe fhould happen in the Evening, The would be lower at the end, and thèrefore more diftant from us, and cotifequently appear leffer. So alfo in two different. Places, whereof one flould have the Eclipfe in the Morning, and the other at Noon; the Moon fhould appear bigger to him that hath it at Noon : And fhe nult likewife appear bigger to thofe who fhall have a leffer Elevation of the Pole under the fame. Meridian, becaufe the Moon will be nearer them.

SAn Accounz of
M. Gafcoigne Micrometer; by Mr, Richard Townley. 17. $2.50: 80.4570$.
V. I 1 fhould be look'd upon as a great Wronger of our Nation, thould I not let the World know, that I have, out of fome fattered Papers and Letters that formerly came to my Hands of one Mr. Gafcoignc's, found out, that before our late Civil Wars he had not only Devifed an. Inftrument of as great a Power as M. Auzout's, but had alfo for fome years made ufe of it; not only for taking the Diameters of the Planets, and Diftances upon Land; but had farther endeavoured, out of its Precifenefs, to gather many Certainties in the Heavens; "amonglt which I fhall only mention one, viz. The finding the Moon's Diffance, from two Obfervations of her Horizontal and Meridional Diameters: which I the rather mention, becaufe the Frensh Aftronomer efteems himfelf the firt that took any fuch Notice, as thereby to fettle the Moon's Parallax For our Country-Man fully confidered it before, and imparted it to an Acquaintance of his, who thereupon propofed to hin the Difficulties that would arife. in the Calculation; with Confiderations upon the ftrange Niceties, neceffary to give him a certainty of what he-deffred. The very Inftrument he firt made I have now by me, and two others more perfected by hitn; which doubtlef he would have infinitely mepded, had he not been Slain unfortumately in His late Majefty's Service. He had a Ireatife of opticks. ready for the Prefs; but though I have ufed my utmoft endeavour to retrieve it, yet I have in that point been totally unfuccelfful : But fome loofe Papers and Letters I have, particularly about this Inftrument for taking of Angles, which was far from perfect: Neverthelefs, I find it fo much to exceed all others, that I have ufed my Endeavours to make it Exact, and eafily Tractable, which above a year fince I effected to my own Defire, by the hely of an Ingenious and Exact Watchmaker: Since which time, I have not altogether neglected it, but employed it particularly in taking the Difances (as occafion ferved) of the Circum-jovialits, towards a perfect fetting their Motion. I fhall only fay of it, That it is frall, not exceeding in weight, nor much in bignefs, an ordinary Pocket-Watchy, exactly marking
above 40000 Divifions in a Foot, by the help of two Indexes ; the one, fhewing hundreds of Divifions, the other Divifions of the hundred; everys latt Divifion, in my fmall one, containing $\frac{1}{2} \frac{1}{0}$ of an Inch; and that fo precifely; that, as I ufe it; there goes above $2 \frac{x}{2}$ Divifions to a Second: I rictu have taken Land Angles feveral times to one Divifion, though ffon the Reafon mentioned by M. Auzout) it be very hard to come to that Exactnefs in the Heavens, wir. The Swift Motion of the Planets. Yet, to Remedy that fault, I have Devifed a Reft, in which I find no fmall Advantage, and not a little pleafing thofe Perfons who have feen it, being to eafie to be made, and by the Obferver manag'd without the help of another; which fecond Convenience, my yet Namelefs Inftrument hath in great Perfection, and is by reafon of its fmallinefs and fhape, eafily applicable to any Telefcope.
2. $a n a n$, is a fmall oblong Brafs Box, feiving both to contain the Skrews a Defription and its Sockets, or Female Skrews, and alfo to make all the feveral moveable of it 3 , byy Parts of the Inftrument to move very True, Smooth, and in a fimple. Direct n. 29.p.542: Motion. To one end hereof is Skrewed on a round Plate of Brats $b 6 b: 6$, about 3 Inches over ; the extream Limb of whofe out-fide is divided into 100 Equal Parts, and numbred by 10,20 , and 30 , E'c. Through the middle of this Plate, and the middle of the Box $a n a$, is placed a.very curioully wrought Skrew of about the bignefs of a Goofe-Quill, and of the length of the Box, the Head of. which is by a fixed Ring or Shoulder on the infide, and a fmall fpringing Plate dd, on the out fide, fo adapted to the Plate that it is not in the leaft fubject to fhake. The other end of this Skrew is by another dittle Skrew (whofe fmall Points fills the Center or Hole made in the end of the longer Skrew for this purpofe) rendred fo fixt and fteady in the Box, that there appears not the leaft danger of fhaking. Upon the Head of this Skrew, without the Springing Plate, is put on a mall Index $c c$, and above that a Handle $m m$, to turn the Skrew round as often as there fhall be occafion, without at all endangering the difplacing of the Index, it being put on very fifif upon a Cylindrical part of the Head, and the Handle upon a Square. The Skrew hath that third of:it, which is next the Plate, bigger than the other two thirds of it, by at leaft as much as the depth of the fmall Skrew made on it: The Thread of the Skrew of the bigger third is as fmall again, as that of the Skrew of the other two thirds. To the groffer Skrew is adapted a Socket f, faftned to a long Bar or Bolt $g g$, upon which is faftned the noveable Sight h, fo that every turn of the Skrew promotes the Sight b, either a Thread nearer, or a Thread farther off from the fixt Sight i. The Bar $8 g$ is made exactly Equal, and fitted into two fmall Staples $k k$, which will not admit of any fhaking. There ate 60 of thefe Threads; and anfwerable thereto, are made 60° Divifions on the edge of the Bolt or Ruler $g g$, and a fmall Index l, fixt to the Box aia a, denotes, how many Threads the edges of the two Sights F and i are diftant; and the Index $e \rho$, fhews on the Circular Plate what part of a Revolution there is more; every Revolution, as was faid béfore, being divided into a too Parts. At the fame rime that the moveable Sight b is moved forwards or backwards, one or more

Fig. IOt. Threads of the Courfer Skrew, is the Plate $p p$, by the means of the Socket q,

(220)

to which it is Skrewed, moved forward or backward, one or more threads of the finer Skrew: So that this Plate, being fixt to the Telefcope by the Skrews r, fo as the middle betwixt the Sights may lie in the Axis of the Glafs, however the Skrew be turned; the midft betwixt the Sights will always be in the Axis, and the Sights will equally either Open from its or Shut towards it.

Fig. 107.

Fig: 308.

Fif: 109.
2bis. 1.556

Morestreysiso Mcafure Jmall Dijhances, ism. simated; by Dr, Hook.
ก. 25%. 0.459

Ewcellence of the Micrometer ; by Mr. Flamfteed. 3. 26. p. 6099.

Plain Sights xejefted; by Mr. Flamiteed. ก. 89. P. 51190 S. 260. \$0. 6190

It is conceived by fome Ingenious: Men, that it will be more convenient, inftead of the edges of the two Sights b and i, to employ two Sights r and $;$; fitted with the Hairs t and v, fo that they may be conveniently ufed in the place of the folid edges of the Sights b and i.

The Inftrument is thus applied to the Telefcope. The Tabe AD is divided into three lengths, of which (as in ordinary ones) BC is to Lengthen or Contract, as the Object requires: But AB is here added, that at A ye may put fuch Eye Glaffes, as fhall be thought moft convenient, and to fet them ftill at the Diftance moft proper from the Indexes or Pointers, which here are fuppofed to be at B, which length alters alfo in refpect of divers Perfons Eyes. E is a Skrew, by which the great Tube can be fixt fo, as by the help of the Figures any fmaller-part of it can immediately be found, meafuring only, or knowing the Divifions on BC, the Diftance of the Object Glats from the Pointers. E is the Angular piece of Wood, that lies on the upper Skrew of the Reft.

This Reft, (by Dr. Hook's Suggeftion) may be rendred more convenit ent, if, inftead of placing the Skrew Horizontal, it be fo contrived, that it may be laid Parallel to the Equinoctial, or to the Diurnal Motion of the Earth; for, by that means, the fame thing may be performed by the fin gle Motion of one Skrew, which in the other way cannot be done but by the turning of bath Skrews; as will eafily appear to thofe that fhall conflo der it.
3. I have by me two or three feveral ways of Meafuring the Diameters of the Planets, whether Horizontal, Perpendicular, or Inclined, to the Exactnefs of a Second, by the help of a Telefcope: as alfo, of taking the Pofition and Diftance of the fmall fixt Stars one from another, or from any of the lefs bright, Planets, if the Diftance be not above two or three Degrees.
4. Micrometro \& Tubo Pedum 14, Planetarum frequenter Diannetros \& à Fixis Diftantias, ad Secundas fere Scrupulos, quod vix inexpertus credes, Dimenfus fum.
VI. I. Pluribus Argumentis evinci poteft, Tychoncm fæpè cum in Locis, tum Latitudinibus, Fixis quibufdam alfignatis, duos trefve \& interdum quatuor aut quinque totos Scrupulos à vero aberraffe. Fixarum squidem Reftio tutionem fufcepiffe Celeberrium Foannem Hevelium audivimus, attamen quandoquidem Pinacidiis Vitrorum Caffis fertur ipfum uti, dubium an multùm ab ipfo. Emendatiores Locos habituri fimus: quàm reliquit Tycho, niff ubs valde hallusinatus eft. i

(22I)

2. Percipio Veftrates non omnes mihi adftipulari in itto Dioptrarum Negotio, de quibus in Machinæ mex Coleftis Organographia tractavi. Verum etiamfi Cl. Hookius \& Cl. Flamftedius, aliique, planè aliter fentiant; experientia Mo. Hevelius, tamen quotidiana me edocuit, atque etiannum docet, rem longè aliter fe ha- n. 102. p. 270 bere in Magnis illis Organis, Quadrantibus fcil. Sextantibus \& Octantibus, imprimis Quadrantibus Azimuthalibus, aliifque Quadrantibus Regulis conftructis, quæ nempe adeò procliviter commoveri \& inverti (dum examinantur Dioptræ Telefcopicx) imò nullo modo poffunt, ut quidem Inftrumenta illa trium quatuorve Pedum Perpendiculo conftructa. Res cumprimis in eo con fiftit, quòd nullam planè Obfervationem fufcipere poffint fuis Dioptris Telefoopicis, nifi prius denuo eas Examinent, \& Rectificent; in quo tamen Examine variâ viâ idque jugiter, ut ut ftudiofflime illud fufcipias, hallucinari datur. Ad hæc, in Quadrantibus Azimuthalibus, Octantibus \& Sextantibus, quâ ratione Examen illud omni tempore, commodè, \&: fine magno Temporis. Difpendio inftitui poffit, profecto nondum capio.

Video etiam aliquos (inter quos Cl. Flamfedius invenitur) tulife jam de noftris Obférvationibus, qualibus qualibus, judicium, priufquam illas viderunt, Examinarunt, vel quicquam de iis Cognoverunt. Nolo quidem vanus effe rerum mearum Jactator, nec unquam imaginatus mihi fui, me in omni ifto Negotio, Reftitutionis fcil. Fixarum rem acu omnino tetigiffe, aut tangere pro mea tenuitate poffe: Sed hoc mihi penitus imaginor, fi quidem totum illud Negotium fufcepiffem Dioptris Telefcopicis, mihinon folum plurimos Annos Examinibus terendos, fed \&̌ fpe, fine dubio, variâ viâ (qua de re hic non eft differendi locus) cadendum fuiffe. Exinde gratulor mihi, me ad fententiam illam necdum tranfiiffe, meâque me Methodō omnia perfeciffe quicquid preftitum Dei Beneficio füerit. Quando vero Obfervationes habebimus $20 \&$ 30 Annorum fatio continuatas utrinque, nimirum tum quæ Dioptris Telefoopicis, tum qux folummodo noftris de Coelo depromptx fuerint, res onn nind clarior futura eft." Interea fuo quilibet Ingenio fruatur, remque fuâ ratio one pro Libitu, tentet.
VII. I. It is well known that the mean Apparent Magnitude of the Moon why celeftiaf is 30 min, 30 fec . we will take it Numero Rotundo to be 30 min. at a Full objicftsappear Moon in the midft of Winter, and when flie's in the Meridian, and at her gright the forizo greatef Northern Latitude, and confequently the utmoft that fhe can be Ele- ithan opben bigher. vated in our Horizon ; 'Tis as. well known alfo, that when the is in this Po'fture, being looked upon by the Naked Eye, the appears (that we may accommodate all to fenfible Meafures) to be Magnitudinis Pedalis, about a Foot broad.. But the fame Moon being looked upon juft as fhe Rifes, the appears to be three or four Foot broad, and yet if with an lnftrument we take her Diameter, both in one Pofture and the other, we fhall find that ftill fhe fhall be but 30 min . That this matter of Fact is true, befides the Authority of many Authors, I can Affert that I have accurately tried it my felf, and I have fo found it : One of the wrays I procceded was thus, It took a very good:Te. lefcope of about 6 Foot long, in the inwardFocus of whole-Eye Glass I ap ply'd a very fine Lattice made of the fingle Hairs of a Man'sHead; Them

(222)

looking with this at the Moon, when fhe ivas juft Rifen and looked extra= ordinary big, I obferved what number of the Squares of the Lattice wcre occupied by her Body ; and then obferving her again, when more Elevated and free from all extravagant Greatnefs, I till found the fame Squares of the Lattice poffeffed by her. This way is Equivalent to that now more uffed, of taking her Diameter by Mr. Toronley's Micrometers; but 1 have alfo tried and found the fame thing by an accurate Sextant, taking the Diftance of the Moon's oppofite Limbs.

The Celebrated Des Cartes attributes this Appearance rather to a Deceived Judgment, thain to any Natural Affection of the Organ or Medium of Senfe; for the Moon (fays he) being nigh the Horizon, we have a better Opportunity and Advantage of making an Eftimate of her, by comparing her with the various Objects that incur the Sight, in its way towards her; fot that tho ${ }^{\circ}$ we imagine fhe looks bigger, yet tis a meer deceit: for we. only think fo, becaufe fhe feems nigher the Tops of Trees, or Chimneys, or Houtes, or a face of Ground, to which we can compare her, and Eftimate her thereby; but when we bring her to the Teft of an Inftrument, that cannot be deluded or impofed upon by thefe Appearances, then we find our Eftimate wrong, and our Senfes deceived. Thefe Thoughts, my-thinks, are much below the Accuftomed Accuracy of the Noble DesCartes; for certainly if it be fo, 1 may at any time Increafe the apparent Bignefs of the Moon, tho' in the Meridian; for it would be only by getting behind a Clufter of Chimneys, a Ridge of a Hill, or the Tops of Houfes, and comparing her to them in that Poofture, as well as in the Horizon ; befides, if the Moon be looked at juft as the is Rifing from an Horizon determined by a fmooth Sea; and which has no more variety of Objects to compare her to, than the pure Air, yet fhe will feem big, as if lookt at over the rugged top of an uneven Town or rocky Country. Moreover, All variety of adjoyning Objects may be taken off, by looking through an empty Tube, and yet the deluded Inagination is not at all helped thereby.

The famous Thomas Hobls gives this Solution. Let the point G, be the Center of the Earth, and F the Eye on the Surface of the Earth; on the fame Center G, let there be ftruck the two Arches, EH, determining the Atmofphere, and AD to reprefent that blue Surface in which we Imagine the Fixed Stars: And let FD be the Horizon. Divide the Arch AD into three equal Parts by the Lines BF, CF ; it is manifeit that the Angle AFB is greater than the Angle BFC, and this again greater than the Angle C FD. Wherefore, fays he, to make the Angle CFD equal to the Angle CFB, the 'Arch CD muft be greater than the Arch CB; and confequently; that the Moon may in the Horizon appear under the fame Angle as when Elevated the muft cover a greater Arch, and therefore feem greater; that is, the Moon in the Meridian appearing under the Angle BFC, that the may appear under an equal Angle in the Horizon, as fuppofe CF D ${ }_{2}$ 'tis neceffary that the Arch CD, fhould be greater than CB; and confequently, tho' fhe appear to Subtend a greater Arch when in the Horizon than when Elevated, yet The appears under the fame Angle; And all this without Refraction.

(223)

Thie Geometry of this Figure is mof certainly true and Demonftrable. At this I quarrel not; but it makes no more in our prefent difficulty than if nothing had been faid. For he has made the Circle GF, reprefenting the Earth, very large in Proportion to the Circle AD ; and then indeed taking the point F in the Earths Surface, and by Lines from thence dividing the Angle AFD into whatever Equal Parts, the intercepted Arches A B, BC, CD , thall be unequal. But if he had confidered, that the Earth' is as it were a point in refpect of the Sphere of the fix'd Stars, nay the very Annual Orbit of the Earth is almoft imperceptible, he would have found that the Lines $F B, F C, F D$, muft be all conceived as drawn from the point G_{y} and then Equal Angles will intercept Equal Arches, and Equal Arches Equal Angles : and fo it happens (at leaft beyond the poffibility of the difcovery of Senfe) to the Eye on the Surface of the Earth; fo that his drawing his Lincs to far from G as F is, and to another Concentrick Circle fo nigh as AD, deceived him in this point.

The famons Gufjendus has written four large Epiftles on this Subject, the Subfance of all which is, That the Moon being nigh the Horizon, and looked at through'a more foggy Air, cafts a weaker Light, and confequently forces not the Eye fo nuch as when brighter ; and therefore the Pupil does more Inlarge it felf, thereby tranfmitting a larger Projection on the Retina. In this Opinion I find he is not alone, for this Difquifition being lately revived by a French $A b b e$, he therein follows the Sentiment of Gafiendus, with this addition, That this Contracting and Enlarging of the Pupil cauferh a different flape in the Eye; an open Pupil making the Cryftalline flater, and the Eye longer, and the narrower Pupil fhortening the Eye, and making the Cryftalline more Convex: The firt attends our looking at Objects which are remote, or which we think fo ; the latter accompanies the viewing Objects nigh at hand. Likewife an open Pupil and flat Cryftalline attends Objects of a more Sedate Light, whilft Objects of more forcible Rays require a greater Convexity, and narrower Pupil. From thefe. Pofitions, the Abbe endeavoured to give an Account of our Pbenomenon, as follows. When the Moon is nigh the Horizon, by Comparifon with interpofed Objects, we are apt to imagine her much farther from us than when more Elevated, and therefore (fays he) we order ous Eyes as for viewing an Object farther from us; that is, we-fomething Enlarge the Pupil, and thereby make the Cryftalline more flat: moreover, the Duskifhnefs of the Moon in that pofture does not fo much ftrain the Sight; and confequently the Pupil will be more large, and the Gryftalline more flat : Kience a larger Image fhall be projected on the Find of the Eyc, and therefore the Moon fhall appear larger. And this Difpofition of the Eye that mag. nifies her, magnifics alifo the Divifions of our forementioned Lattice, and confequently fhe by her Body fhall poffefs no more of the Divifions than when? the feems lefs. Thefe two forementioned Accidents, viz. The Moons imagimary Dittance and Duskifhnefs, gradually vanilhing as the Rifes, a different Spccies is hereby introduced in the Eye, and confequiently fhe feems gradually lefs and lefs, till again the approaches nigh the Horizon. Thefe two Opinions of. Gafferndus and the A bbe being fo nigh a-kins. I fhall confider them both
rogether; and firt, I affert, That a wider or narrower Aperture of the Pupil increafes not, neither diminifhes the Projection on the Retina. I know, Honovatus Faber in his Synopfis optica endeavours to prove the clear contrary to this my Affertion, and that after this manner. AB is an $\mathrm{Object}, \mathrm{EF}$ the greater Aperture of the Pupil, admitting the Projection KI on the Retina, whereas the leffer Aperture C D, admits only the Projection GH ; but G.H is defs than KI, wherefore a leffer Aperture diminifhes the Projection. I admire that any Man that undertook (as Honor atus Faber) to write of Opticks more accurately than all that went before him, fhould be guilty of fo very grofs an Errour ; and I do more admire, that the Celebrated Gafendus, and with him the Noble Hevelius, fhould be of the fame Opinion: For tho' the aforefaid Demonftration hold moft certainly true in direct Projections, as in a dark Room with a plain Hole ; yet it will not hold in Projections made by Refraction, as it is in thofe on the Retina in the Eye, by means of the Cryftalline and other Coats and Humours of the Eye. For let AB be a remote Object, and EF the Cryfalline at its large Aperture, projecting the Image I M on the Retina. Let then CD be the leffer Aperture of the Pupil before the Cryitalline: I fay, the Inage IM fhall. be projected as large as before, for the Cone of Rays EAF confilts partly of the Cone of Rays CAD, therefore where the former EAF is projected, the latter CAD, as being a part of the former, fhall be projected alfo. So that no more is effected by this narrow Aperture, but that the fides of the Radiating Cones are intercepted, and confequently the Point I, hall be affected with lefs. Light, but it fhall fill be in the fame place: what is faid of that Cone and that Point, may be faid of all other Cones and other Points of the Object. From hence appears, Firf, The Invalidity of the Account given of the Moon's Appearance by Gaffendus fron this Reafon. Secondly, The Reafon appears why a 'Telefcope's leffer or greater Aperture, makes no difference in the Angle it receives: For inagine EF to be an Object Glafs of a Telefcope, and tis plain. Thirdly, 'Tis Evident why a greater or lefs Aperture on a Telefcope fhould make the Objects appear lighter or darker, for thereby more or lefs Rays are admitted to determine on the Projection of each Point. But all this by the by. And this is fufficient for a Confutation of Gaffendus and Faber; But our forementioned $A b b c$ fuperadds to a greater or leffer Aperture of the Pupil, as a neceffary confequent, a greater and leffer Convexity of the Cry:falline, as alfo a lengthning and fhortning the Tube of the Eye. And this I mult confefs would do fomething, if we find it true in our Cafe; and this let us try. Firft, (fays he) The duskifhnefs of the Moon nigh the Horizon admits the Pupil to enlarge it felf, the Cryftalline to flatten, and the Eye to lengthen : but what if we change our Object, and inftead of the Moon take the Diftance between fome of the Fixt Stars, (as fuppofe thofe of Orion's Girdle ;) we fhall find the fame Phrnomenon in them, and yet I hope neither he nor Gaffendus will affert, that they at one time ftrain the Eye more than at another, or that at any time their Fulgur ftrains the Eye at all; if he do, let him take Stars of the leffer Magnitudes, nay even thofe that can but juff be perccived, and then he will be convinced: Or let him conider whether this
will hold in looking at the Sun through very dark Glaffes, which render the Sight thereof as inoffenfive to the Eye, as that of a Green Field; but perhaps he will then fay, that this other Reafon holds, which is, Secondly, That the greater imaginary Diftance at which we think the Moon near the Horizon, than when more Elevated, makes us Contemplate her as if really fhe was fo, viz. with Ample Pupils, \mathcal{E}^{c}. But this I have fufficiently overthrown in my Remarks againft Des Cartes: Therefore I pars it over, only fubjoyning, that if there were any thing in this Surmife, my-thinks the Horizontal Moon fhould be fanfied nigher to us than farther from us; for if we are for trying Natural. Thoughts, let us take Children to determinc the Matter, who are apt to think, that could they go to the cdge of that fpace that bounds their Sight, they -hould be able (as they call it) to touch the Sky; and confequently the Moon feems then rather nigher to us than farther from us.

After I had writ thus far, I accidentally caft my Eye upon Ricciolis' Treatife of Refriction, at the end of his fecond Volume of the Almageff, Lib. . o. Sect. 6. Cap. I. Ruff. I 3. wherein he fpeaks of our prefent difficulty ; but to my wonder I find him affert, That he and Father Grimaldi had often take:及 the Horizontal Sun and Moon's Diameters by a Sextant, when to the naked Eye they appeared very large; (Grimaldus directing his Sight to the left edge, and Ricciolus to the right) and that even by the Inftrument they alwaysfound the Diameters greater than when more Elevated, the Sun often fubtending an Angle of almoft a Degree, and frequiently 45 Minutes, the Moon alfo 38 or 40 Minutes. This is down-right contrary to the matter of Fact which I have before alledged, and directly repugnant to the matter of Fact afferted by the foremention'd French Albe: Whither of us be in the right I leave to to accurate Experiment to determine, and fubmit the whole to the Decifion of the Illuftrious Royal Society. Only give me leave to add one word againft Riccioli, for had his Experiments been accurately profecuted, he fhould have tried them when the Horizontal Moon had look'd Io tines more large in Diameter than ordinary ; and then if it be true, that even by an Inftrument fhe will be found proportionally broader than really, fhe fhould Subtend an Angle of 300 Min. or. 5 Deg. for very often I have feen the Moon when The appear'd 10 times broader than ordinary, which the fnall Addition of 8 or 10 Min. to her ufual Diameter will never caufe.
2. I difcourled of this Appearance near 40 years ago with Mr . Fofer, then This Pbenome. Prifeifor of Afronomy in Greflam College, who did then affure me, (from his non confiderect ; own Obfervation I fuppofe) that the apparent Magnitude taken by In- blidr. Wallis. ftruments, (however the fancy may apprehend, it) is not greater at the Horizon than when higher. Mr. Cafwell affirms the fame thing; And I do not doubt but the thing is fo: For though Refraction near the Horizon alter the Altitude of the thing feen; yet it cannot alter the Azimuth at all. For fince this equally refpects all Points of the Horizon; let the Refraction be what it will, the whole Horizon can be but a Circle : fo that there- is no room for the breadth of a thing (as to the Angle at the Eye) to be made greater, whatever its tallnefs may (the Refraction not equally affecting all parts in the Circles of Altitude.) Nor is there any Reafon, why this flhould Vol. I.
rather thruft the other, than that the other thruf this, out of place. Whereas, in the Altitude, it is otherwife: For while what is near the Hurizon is inlarged, that whicli is further off is thereby contracted; which as to the Azimuth or Horizontal Pofition cannot be.

Suppofing then that the Sun's Apparent Horizontal Diameter, taken by Intrument, is the fame near the Horizon, as in a higher Pofition, I take its imaginary greatnefs, which is fanfied near the Horizon, to be only a Deception of the Eye; or rather the Imagination from the Eye.

Eor fure it is, that the Imagination doth not Eftimate the greatnefs of the Object feen, only by the Angle which it makes at the Eye ; but, by this compared with the fuppofed Diftance. True it is, that Cateris paribus, we judge that to be the greater Object, which makes at the Eye the greater Angle: but not fo if. apprehended at different Diftances.

For if through a Cafement (or leffer Aperture) we fee a Houfe at 100 yards diftance; this I loufe (though feen under a lefs Angle) doth not to us feem lefs than the Cafement through which we fee it; (or this greater than that, becaufe it makes at the Eye the greater Angle :) But the Imagination makes a Comparative Eftimate from the Angle and Diftance jointly confider'd.

So that of two things feen under the fame or equal Argles, if to one of them there be ought which gives the Apprehenfion of a greater Diftance, that to the Imagination will appear greater. Now, fure it is, that one great Advantage for Eftimating the Diftance of a thing feen, is from the variety of intermediate Objects between the Eye and the thing feen. For then the Imagination muft allow room for all thefe things.

Now when the Sun or Moon is near the Horizon, there- is a Profpect of Hills, and Vallies, and Plains, and. Woods, and Rivers, and variety of Fields and Inclofures, between it and us; which prefent to our Imagination a great Diftance capable of receiving all thefe. Or, if it fo chance, that (in fome Pofition) thefe Intermediates are not actually feen: yet having been accuftomed to fee them, the Memory fuggefts to us a view as large as is the Vifible Horizon.

But when the Sun or Moon is in a higher Pofition; we fee nothing between us and them (unlefs perhaps fome Clouds), and therefore nothing to. prefent to our Imagination fo great a Diftance as the other is:

And therefore, though both be feen under the fame Angle, they do not appear (to the Imagination) of the fame bignefs, becaufe not both fanfied at the fame Diftances: But that near the Horizon is judged bigger. (becaufe fup. pofed farther off) than the fame when at a greater Altitude
'T is true, That as to fmall and midling Diftances. (befides this Eitimate from Intermediates) the Eye hath a means within it felf to make. fome Eltimate of the Diftance:- Ass: when we already know the bignefs of a thing feen, to which we have been accuftomed; as a Man, a Tree, a Houfe, or the like : If fuch thing appear to us under a fmall Angle, and Indiftinct, and faintly soloured, the Imagination doth allow fuch Diftance as to make fuch a thing to to appear: And, if this, through a Profective Glafs, be

(227)

reprefented to us under a bigger Angle, and more Diftinct, it is accoriingly apprehended as fo much nearer. But the Cafe is otherwife, when we do not, by the known bignefs, judge the Diftance; but, by the fuppofed Diftance, judge of the Bignefs, as in the Cafe before us. And accordingly, different Perfons, according to different fanfied Ditances, judge very differently.

Again; In our two Eyes (when the Object is feen by both) there is yet another means of Eftimating how far off it is, (And it is this by which we judge of Diftances.) Namely, there are, from the fame Object, two different Vifual Cones, terminated at the two Eyes: whofe two Axes contain, at the Objeet, different. Angles, according to different Diftances : An Acuter Angle at a great Diftance, and more Obtufe when nearer.

Now, that fuch Object may be feen by both Eyes clearly; it is requifite, that the Eyes be put in fuch a Pofition, as that the Sight of each Eye receive the refpective Axis at Right Angles; which requires a different Polition of the two Eyes, according to the different Diftance of the Object ; as will manifeftly appear, if we look, with Attention, on a Finger (or other fmall Object) at two or three Inches Diftance from the Eye; and then upon another like Object at three or four yards beyond it : (and this alternately fevera! times.) For 'twill be manifeft, that while we look intently on the one, we do not fee the other, (or but confufedly) though both be juft before us. And, as we change our view, from the one to the other, we manifefly feel a Motion of the Eyes (by their Mufcles) from one Pofture to another.

And according to the different Pofture in the Eyes, requifite to a clear Vifion by both, we Eftimate the Diftance of the Object from us.

Ard hence it-is, that they who have loft the Sight of one Eye, are at a great Difadvantage, as to Eftimating Diftances, from what they could do while they had the ufe of both.

But now when the Diftance grows fo great, as that the Pofition of there Vifual Axes become Parallel, or fo near to Parallel as not to be diftinguifhable from it: This Advantage is loft, and we can rhenceforth only conclude, that it is far off; but not how far. Hence it is that our view can make no Diftinction of the Moon's Diftance, from that of the other Planets, or even of the Fixed Stars: But they feem to us as equally remote from us; though we otherwile know their Diftances from us to be valtly different. Becaufe the Parallax (as I may fo call it) from the different Pofition of the two Eyes, is quite loft, and undifernable in Diftances much lefs than the leait of thefe.

So that, though as to fmall Diftances, we may make fome Eftimate from the known Magnitude of the Object; And as to Middling Diftances, from the Parallax (as I may call it) arifing from the Interval of the two Eyes : Yet even this latter..will hardly reach beyond, if fo far as the vifible Horizon; and all beyond it is loft. And therefore there being nothing left to allift the fancy in Eftimating fo great a Diftance, but only the intermediate Objects: Where thefe Intermediates appear to the Eye, (as when the Sun of Moon are neat the Horizon) the Diftance is fanfied greater, than where they G g ${ }^{2}$

(228)

appear not, (as when farther from it:) and confequently, (though both under the fame or equal Angles) That near the Horizon is fanfied the greater. And this I judge to be the true Reafon of that Appearance.

As Experiment of the Refraction of the Air; by Mr.Lowthorp.at an Angle of about 27 deg. 30 min . and therefore the Perpendicular to 31,257• ค. 339.

Fig. 113.
VIII. We took a Cylinder of Caft-Brafs, ABCD , and cut one end of it CD, Perpendicular to the Axis ac x, the other End. AB, Enclined to it at an Angle of about 27 deg. 30 min . and therefore the Perpendicular to this Enclining Plain $p s$, and the Axis of the Cylinder ac x, comprehended an Angle $p c a$, of about 62 deg . 30 min. Thele Ends were ground very true upon a Glafs-Grinder's Brafs-Tool, and each of them was compaft about with a narrow Feril of thin Brafs. 6.66 b . Into the upper fide of the Cylinder, at E , was Soldered the Brafs-Pipe EF, and into the under fide, at G , the other Brafs-Pipe GH; the former of thefe Pipes being about three Inches long, and the later 6 Inches. Upon the Plate $d d d$, were fixt two other. Plates, L L, Perpendicular to it and Parallel to each other. Each of thefe two Plates had an Arch of a Circle, (whofe Diameter was equal to that of the Cylinder) cut out of its upper edge, fo that when the Pipe, GH , was let through a hole near the middle of the Plate, $d d d x$ the Cylinder fell into the Arches; and being faftned there with Solder,the Axissac x, laid Parallelto the Plate $d d d$, and about an Inch and half above it. The Perpendicular End of the Cylinder, DC, was clofed with an Object Glafs of a $7^{\frac{1}{2}}$ Foot Telefcope oo, and the Enclining End AB, with a well polifh'd flat Glafs, ff; which was carefully chofen to tranfmit the Object Diftinct enough, notwithitanding its Obliquity to the Vifual Riys. The Ferils: were filled with Cement round about the edges of the Glafles, which laid flat and every where toucht the fmooth ends of the Cylinder, that they might firmly fup. port the Weight and Preffure of. the Excluded Air.
Fige: :140 Inftead of a Ciftern, (as in the Torricellian Experiment) we made ufe of the inverted Siphon of Brafs MNO_{2}, Solder'd to the Plate $g g g^{\circ}:$ One of the Sides M N, ftood Perpendicular to the Plate $g g g$, and the other fide, NO , Enclined to it, and was fupported near the upper end O , with a little piece of Brafs kko
Figa 3.5. We then placed the Cylinder upon a Table, which was well faftned to a firm Floor: The Pipe GH, was let through a Hole in the top of the 'Table, and the Plate $d d d$, was nailed down to is: The Tube: of the Telefcope sss, with the Eye Glafs in, it, was applied to the Object Glafs, and uas Hair fixt at x, the common. Focus of both Glaffes, in the Axis of the Cylinder continued to it. Upon the Floor (under the Cylinder) we Nailed the Plate $g g$ g, with the Inverted Syphon upon it, and joyned M to H , by the Infertion of the Glafs Tube T. The Joints were very carefully clofed with Cement, and then covered over with pieces of a Bladder wrapt hard with ftrong. Thread There was alfo a Bladder tied belowe each Joint at n, and when it was filled with Water it was tied above it at n; fo that no. Air could come to the Cement, to infinuate it felf through its Pores or Fiffures, if any happened to be left unclofed.

(229)

It will not (I hope) be thought more than neceffary, that in this Account of the Apparatus, I have mention'd. fo many Minute Circumftances; for, we found it difficult enough to Exclude the Air, and almoft imporfible to difcover the very little. Holes through which fo Subtile a Fluid would Freely Enter, and Poffefs the Spaces deferted by the Subfiding Mercury: But with all this Precaution, the Experiment fucceeded at laft, as I wifht: after this manner.

We placed the Object a, (which was a black Thread faften'd in a little Frame over a piece of White Paper) in the Axis of the Cylinder $x \subset a$: We filled the Pipes and Cylinder with Mercury; and having ftopt the upper end of the Pipe at F, with the little.Iron-Stopple K, and clofed it, as the upper part of the Tube and other Joints, we let the Mercury run out gently at O, (into the Bladder u,) till it remained fufpended at the ufual Height, (as in the Barometer) leaving the upper part of the Tube and the Cavity of the Cylinder between the Glat fes 00 , and $f f$, void of Air. We then faw the Object, which before appeared in the Axis at x, raifed confiderably above it; and we Reduced it to appear again at x, by removing it from a to a. The Axis therefore of the Vifual Ray, (which was alfo the Axis of the Cylinder) $x \in a$, falling Perpendicularly on the void Space, paft through it without any Refraction: But Energing Obliquely into the Air, it was Refracted towards the Perpendicular $\dot{p} c$, and received a new Direction to α_{0}. And therefore the Diftance $a \alpha_{2}$ Subtended the Angle of Refraction aca; all which we meafur'd; and found as follows ; viz.

The Heighth of the Object incles. dec: parts: refracted Vifual Ray, a a

$$
0,425
$$

The Diftance of the Object from the Refraciing Plain?
a c , about 5 I Feet, or
Therefore the Angle of Refraction a c \&; was Deg. Min. Scc.
The Angle of Emerion $p \mathrm{ca}$; (by the Conftruction of $00 \cdot 02 \cdot 23^{-}$ the Cylinder) was $\} 62 \cdot 30 \cdot 00$
Therefore the Angle of Incidence $p c \alpha=p c a+n c \alpha,\} \sigma 2 \cdot 27 \cdot 37$
And therefore univerfally, (according to the known Laws of Refraction).
The Sines of the Angles of Incidence being - Io0000
The Sines of the Angles of Emerfion are 100036
And the Refractive Pawer of the Denfe. Air 36
By the. Refractive Power of a Pellucid. Body, I menre that Property in it whereby the Oblique Rays of Light are- Diverted from their Direct Courfe, and which is meafured by the Proportional Differences, (always obferved) between the Sines of the Angles of Incidence and Emerfon

(230)

This Property is not always Proportional to the Denfity (at lealt not to the Gravity) of the Refracting Medium. For the Refractive Power of Glafs to that of Water is as 55 to 34, whereas its Gravity is as 87 to 34 ; that is, the Squares of their Refractive Powers are (very near) as their refpective Gravities. And there are fome Fluids, which tho Lighter than Water yet have a greater Power of Refraction: Thus the Refractive Power of Spirit of Wine, (according to Dr. Hook's Experiment, Microgr. Obf. Iviii. Pag. 220:) is to that of Water as 36 to 33, and its Gravity Reciprocally as 33 to 36 , or $36 \frac{1}{2}$. But the Refractive Powers of Air and Water feem to obferve the Simple Proportion of their Gravities directly, as I have compard them in the following Table. The Numbers there expreffing the Refraction of Water are taken from the Mean of Nine Experiments, made at fo many feveral Angles of Incidence Fan. 25. 164ㅇ. by Mr. Gafcoigne, the Ingenious firt liventor of the Micrometer, and the Ways of Meafuring Angles by Telefcopes) and 'thefe of Air are produc'd by the preceding Experiment.

From hence it feems very probable, That their Refpective Denfities and Refractive Powers are in a juft simple Proportion. And if this fhould be confirmed by fucceeding Experiments, made at different Angles of Incidence, and with :Cylinders continuing Exhaufted through feveral Changes of the Air, it would be more' than probable that the Refractive Powers of the Atmofphere are every where, and at all Heights above the Earth, Proportional to its Denfities and Expanfions: And then it would be no difficult matter to trace the Light through it, fo as to terminate the Shadow of the Earth, and (together with proper Expedients for Meafuring the quantity of Light Illuminating an Opague Body) to Examine at what Diftances the Moon muif be from the Earth to fuffer Eclipfes of the obferved Duration.

[^1]
(231)

IX. Give me leave to fuggeft a Speculation, which hath been in my To find the pas Thoughts thefe fourty years or more; but I have not had the opportunity of reducing it to Practice: It is concerning the Parallax of the Fised Stars, as to the Earth's Annual Orb.

Galileo complains of it a great while fince; (in his Sytema Cofmicum) ${ }_{\text {l }}^{\text {lyneux. 202. p. } 8440 \%}$ as: a thing not attempted to be obferved with fuch diligence as he could wifh, and I doubt we have the fame Caufe of complaining ftill, I know that Dr. Hook and Mr. Flamfteed have attempted fomewhat that way, but have defifted before they came to any thing of certainty. What hath been done to that purpofe abroad I know not.

Galiteo hath fuggefted divers things confiderable in order to it: aśs. the Times of Oblervation; the Stars to be Obferved; and the manner of Oblerving them, which yet I doubt is not Practicable. That which occurred to my Thoughts upon thefe Confiderations, was to this purpofe.; That fome Circumpolar Stars (nearer to the Pole of the Equator than is our Fenith, and not far from the Pole of the Zodiack) fhould be made choice of for this purpofe. And in cafe the Meridional Altitude be difcernably different at different times, fo will alfo be: their utmolt Eaft and Weft Azimuth, which may be better obferved than their Rifing or Setting: And this will not be obnoxious to the Refraction, as is the Meridional Altitide ; (for though the Refraction do affect the Altitude, yet not the Azimuth at all ;) and we may here have choice of Stars for the purpofe; which, in Obfervations from the bottom of a Well, we cannot have; being there confined to thofe only which pafs very near our Zenith, though very fmall Stars:

I would then take it for granted; as a thing at leaft very probable, that the Fixed Stars are not all (as was wont to be fuppofed) asthe fame Diftance from us, but the Diftance of fome vaitly greater than of others; and confequently, though as to the more remote, the Pafallax may be undifcernable, it may peribaps be difcernable in thofe that are nearer to us:

And thofe we may reafonably guefs (though we are not fure of it) to be neareft to us, which to us do appear bigget and brighteft, as are thofe of the Firft and Scoond Magnitude; and there are at leaft of the Second Magnitude, pretty many: not far from the Pole of the Ecliptick; (as that in particular in the Sboulder of the Leffer Bcer :) And in cafe we fail in one, we may try again and again on fome other ; which may chance to be nearer to us than what we try firft And Stars of this bignefs may be difcerned by a moderate Telefcope, even in the Day time; efocially when whe know jult where to look for them...

The manner of Obfervation, I conceive, may be thus, Having firfe pitched upon the Star we mean to obferve, and having then confidered, (which is not hard to to do) where fuch Stare is to be feen in its

(232)

greateft Eaft or Wett Azimuch; it may be then convenient to fix (very firm and fteadily on Come Tower, Steeple, or other high Edifice, (in a convenient Situation) a good Telefcopick Object Glafs, in fuch Pofition as may be proper for viewing that Star. And at a due Diftance from it near the Ground, build on purpore (if already there be not any) fome little Stune-Wall, or like Place, on which to fix the Eye Glafs, fo as to anfwer that Objeet Glafs: And having fo adjufted it, as through both to fee that Star in its defired Station, (which may beit be done while the Star is to be feen by Night in fuch Situation, near the time of one of the Solfices) let it be there fixed fo firmly, as not to be difturbed, (and the place fo fecured, as that none come to diforder ir) and care be taken fo to defend both the Glaffes, as not to be endangered by Wind and Weather: In which Contrivance, I am beholden to Mr. Fohn Cafwell, M. A. of Hart-Hall in Oxford, for his Advice and Afliftance, with whom 1 have many years fince communicated the whole matter.

This Glafs being once fixed, (and a Micrometer fitted to it, fo as to have its Threads Perpendicular to the Horizon, to avoid any inconvenience which might arife from Diverfity of Refraction if any be) the Star may then be viewed from time to time (for the following year or longér) to fee if any Change of Azimuth can be obferved.

This. I thought fit to Recommend to your Confideration, who do fo well undertand Telefcopes, and the Managery of them: But when I fuggelt, (as a convenient Star for this purpofe) the Shoulder of the Leffer Bear, (as being the neareft to the Pole of the Zodiack of any Star that is of the Firft or Second Magnitude) I do not confine you to that Star ; but (without Retracting that). Suggeft another-; namely, the Middle Star, in the Tail of the Great Bear, which (though fomewhat further from the Pole of the Zodiack) is a brighter Star than the other, and may be nearer to us.

But I do it principally upon this Confideration ; namely, That there is adhering to it a very fmall Star, (which the Arals call Alcor, of which they have a Proverbial faying, when they would. Defcribe a Charp Sighted-Man, That he can difcern the Rider on the Middle. Forfe of the Wayn; And of one who pretends to fee fmall things but overlooks much greater, Vidit Alcor at non Lunam Plenam:) Which Hevelius in his Obfervations, finds to be Diftant from it about nine Minutes, and five or ten Seconds: So that befides the Advantage of difcovering the Parallax of the greater Star, if difcernable; the Difference of Parallax of that and of the leffer Star (being both within the reach of a Micrometer) may do our work as well. For if that of the greater Star be Difcernable, but that of the leffer be either not Difcernable or lefs Difcernable, their different. Diftances from each other at different times of the Year may perhaps (without farther Apparatus) be Difcerned by a good Telefcope of a competent length, furnifhed with a Micrometer, if carefully preferved
from being difordered in the Intervals of the Obfervations; and difcover at once, both that there is a Parallax, and that the Fixed Stars are at different Diftances from us; wherein, that I be not miftaken, my meaning is not that the Inftrument or Micrometer fhould be removed for the obferving of the Leffer Star, but that (when the Azimuth of the greater star is taken) by a Micronieter (confifting of divers finc Threids Parallel and Tranfverfe) may (at the faine time) be obferved the Diftance of the two Stars, each from other, in that Pofition (bothbeing at once within the reach of the Micrometer;) which Dittance (the Inftrument remaining unmoved) if it be found (at different times of the year) not to be the fame, this will prove that there is a different Parallax of thefe two Stars.

This latter part of the Obfervation, (of their different Diftances at different Times) I fuggieft, as more eafily practicable though not fo Nice as the former. For it may be done, I think, without any further ΛP pparatus there than a good Telefcope of ordinary Form, furnifhed with a Micrometer, (this being carcfully kept unvaried during the Interval of thefe Obfervations:) And if this part only of the Obfervation (without the other) be purfued; it matters not though the two Obfervations (near the two Solftices) be, one at the Eaftern, the other at the Weftern Azimuth (whereby both may be taken in the Night time) for the Diftance mult (at both Azimuths) be the fame. If after obferving the Azimuth of the greater Star it be neceffary to move the Micrometer for Meafuring its Diftance from Alcor, that may be done another Night, (and it is not neceflary to be done at one Obfervation). For that Diftance cannot be difcernably varied in a Night or two.
X. Since the Pytbagorean Syfem of the World has been revived by Co- Conererving tions pernicus, (and now by all Mathematicians accepted for the True one) there feemed ground to imagine, that the Dianeter of the Earth's Annual Courfe (which according to our beft Aftronomers, is at leaft 40000 times bigger than the Semidiameter of the Earth) might give a Senfible Parallax to the Fixt Stars, and thereby determine their Diftance. But there are berts. fome Confiderations which make us fufpect that even this Bafis is not large enough for that purpofe.
M. Hugens (who is very exact in his Aftronomical Obfervations) tells us, He could never difcover any vifible Magnitude in the Fixt Stars, though he ufed Glaffes which magnificd the Apparent Diameter above roo times.
Now, fince in all likelihood the Fixt Stars are Suns, (perhaps of a different Magnitude) we maxy as a reatonable Medium prefume they are generally about the bignef's of our Sun.

(234)

Let us then (for Example) fuppofe the Dog-Star to be fo. Thie Diftance from us to the Sun being about 100 times the Sun's Diameter, it is evident, That the Angle under which the Dog-Star is feen in Mr. Hugens's Telefcope, muft be near the fame with the Angle of its Parallax to the Sun's Diftance, or Semidiameter of the Earth's Annual Courfe; fo that the Parallax to the whole Diameter, can be but double fuch a Quantity, as even to M. Hugen's's Nice Obfervation is altogether Infenfible.

The Diftance therefore of the Fixt Stars feems hardly within the reach of any of our Merthods to determine : but from what has been laid down, we may draw fome Conclufions that will much llluftrate the prodigious Vartnefs of it.
I. That the Diameter of the Earth's Annual Orb (which contains at leaft iso Millions of Miles) is but as a Point in Comparifon of it ; at leaft it mult be above 6000 times the Diftance of the Sun: For if a Star fhould Appear through the aforefaid Teleifoope half a Minute broad, (which is a pretty fenfible Magnitude) the true Apparent Diameter would not exceed $18^{\prime \prime \prime}$, which is. lefs than the Goooth part of the Apparent Diameter of the Sun, and, confequently the Sun's Diftance not the 6oooth part of the Diftance of the Star.
2. That could we advance towards the Stars 99 Parts of the whole Diftance, and have only $\frac{1}{0 \cdot \circ}$ part remaining, the Stars would appear little bigger to us than they do here: For they would fhow no otherwife than they do through a Telefoope, which Magnifies an hundredfold.
3. That at leaft 9 parts in IO, of the Space between us and the Fixed Stars can receive no greater Light from the Sun, or any of the Stars, than what we have from the Stars in a clear Night.
4. That Light takes up more time in Travelling from the Stars to us; than we in making a Wel-India Voyage, (which is ordinarily performed in fix Weeks:) That a Sound would not arrive to us from thence in 50000 years, nor a Cannon Bullet in a much longer time. This is tafily computed, by allowing (according to Mr. Neroton) Io Minutes for the Journey of Light from the Sun hither, and that a Sound moves above I300 Foot in a Second.

[^2]ac opinionem aliquam concipiant Aftronomix Orientis, ubi Ars ea primum nata conftat. Multa fane commendant Aftronomiam Orientalium; Feliqitas quidem \& Claritas Regionum, ubi Obfervatum; Machinarum Granditas \& Accuratio, Quantas plerique noffí credere nolunt Cœlo ipfos obvertiffe; Contemplantium infuper Numerus \& Scribentium, decuplo major quam apud Grecos Latinofque celebratur; Adde decuplo Plures Munificentiores; ac Potentiores Principes, qui viris boni Ingenii fumtus \& Arma Cœleftia dederunt. Quid vero Aftronomi Arabum in Cl. Ptolomeo, magno Conftructore Artis Coleftis, injuria nulla reprehenderint; quam illi folicite Temporis Minutias, per Aquarum Guttulas, Immanibus Sciotheris, imo (mirabere) Fili Pcnduli Vibrationibus, janspridem diftinxerint \& menfurarint; quam etiam peritè \& accuratè verfaverint in magno molinine Ingenii Humani, de Ambitu Intervalloque binorum Luminarium \& noftri Orbis, una Epifola narrare non debet.

Canon Pracipuarum e Stellis Fixis fecundum Obfervata Majorum.

Canon Pracipuarum e Stellis Fixis fecundum Obfervata Majorum.

	Ali Abolcafino. A. C. 938.				$\begin{gathered} \begin{array}{c} \text { Abioralmano } \\ \text { Sophio. } \\ \text { A. C. } 964 . \end{array} \\ \hline \text { Long. } \end{gathered}$	Ebnolalamo. A. C. 980.			
	Long.			Lat.		Long.			
	S.	\bigcirc		$\bigcirc 1$	S. ○	S.	,		
1	\bigcirc	II	50	$53 \quad 30$	1253	- 16	42	53	
2.	-	20	20	5145	- 2032	- 24	9	5 I	45
3	1	12	17	$22 \cdot 45$	$12 \quad 22$	15		22	4.5
4	I	24	35	$5 \quad 15$	$\begin{array}{llll}1 & 25 & 22\end{array}$	I 28	40	5	15
5	2	2	1	3 I	2. $2 \quad 32$	5	55	3 I	20
6	2	6	4.)	$22 \quad 50$	2742	2 IO	50	22	
7	2	13	16	$16 \quad 45$	$\begin{array}{llll}2 & 54 & 42\end{array}$	217	2 I	16	
8	2	29	30	39.20	3: $0 \quad 22$	33	40	39	
9	3	10	40	160	3 II 12	315	45	56	
10	4	14		$0 \quad 15$	$\begin{array}{llll}4 & 15 & 12\end{array}$		-4,		
II.	6		23	26	6. 922	6.12	33	2	
12	6	8	50	31.12	$\begin{array}{llll}6 & 9 & 42\end{array}$	$6 \quad 12$	55	31	
13	7		35	4.24	$\begin{array}{llll}7 & 25 & 22\end{array}$	$7 \quad 28$	4.0	4	
14	8	6.	53	$36 \quad 0$	8. $7 \quad 32$	811	2		
15	9	\bigcirc	40	$61 \quad 45$	$9 \quad 0 \quad 2$	9.4	45	61	
16			53	$29 \quad 12$	9 16. 32	$9 \quad 20$	58		
17	10	20	4	$59 \quad 36$	$102 \mathrm{I} \quad 5^{2}$	IO 24	9	59	
18		14.	0	$31 \quad 10$	$\begin{array}{llll}11 & 14 & 52\end{array}$	II 18	54	3 I	
19					II $\quad 24.52$	II 24	52	12	
20	I	16	15	308	1. $17 \quad 32$				
21	5	6		II 50	$\begin{array}{lll}5 & 7 & 12\end{array}$				
22					$10 \quad 18 \quad 12$.				
23					2. 2952				

Canon:

Canon præcipuarum e Stellis Fixis fecundum Obfervata Majorum.

E.x. Canonilus HacimicicFobhanide. ©Eyyptiii.A. C. 996.			Chonge Nafivodino Tufio in.Tavulis Ilclianicis. A. C. 1233.		$\begin{aligned} & \text { Ex Sultanicio Ologbeci } \\ & \text { A. C. } 1437 . \end{aligned}$	
	Long	Latit.	Long	Latit	Long.	Latit.
			S. ${ }^{\circ}$		S.	
	O 161620	53. 28	- 24.55		0.1540	$53 \quad 45$
	$\begin{array}{llll}0 & 24 & 34 \\ \text { I } & 15 & 24\end{array}$	51. 50	$\begin{array}{llll}\text { a. } & 24 . & 35 \\ \text { I. } & 15 & 25\end{array}$	51.40	0.281	5048
	I 29	(22 39	I. 15.25	${ }^{23} 50$	$\left.\begin{array}{lll} 1 & 18 & 54 \\ 2 & 2 & 31 \end{array} \right\rvert\,$	
	$2 \quad 5 \quad 30$		2. $6 \quad 35$	31.30	$\begin{array}{lll}1 & 2 & 31 \\ 2 & 9 & 25\end{array}$	$\begin{array}{r} 5 \\ 3 \mathrm{~F} \\ \hline 18 \end{array}$
	I 32		2. 1810			
	1746	16	2.18	I6. 50	$\begin{array}{llll}2 & 14 & 43 \\ 2 & 21 & 1\end{array}$	$\begin{array}{ll} 22 & 42 \\ 16 & 43 \end{array}$
	4	3930	3.350	$39 \quad 10$	3 310	$\begin{array}{ll}16 & 43 \\ 39 & 30\end{array}$
9	$\begin{array}{llll}3 & 15 & 52\end{array}$		$3.15 \quad 45$	16	$\begin{array}{llllll}3 & 18 & 22\end{array}$	
	$\begin{array}{llll}4 & 19 & 10\end{array}$		4.19 .14			
II	$\begin{array}{llll}6 & 12 & 58 \\ 6 & 12\end{array}$	210	6: $13 \begin{array}{ll}25\end{array}$		61610	
	$\begin{array}{llll}6 & 13 & 4.9\end{array}$	3133	6.13	1 3	611631	2 31 98
$\left.\begin{aligned} & 13 \\ & 14 \end{aligned} \right\rvert\,$	$\begin{array}{lll}7 & 29 \\ 8 & 11 & 9\end{array}$	4. 25	$7 \quad 29$		8.216	
	$\begin{array}{ccc} 8 & 11 & 34 \\ 9 & 5 & 0 \end{array}$	$35 \quad 59$	1115		81513	$35 \quad 51$
	$9 \quad 5$		440		9819	620
	982034		9. 20.40		92410	
$\begin{aligned} & 17 \\ & 18 \end{aligned}$	10 23 31 11 18 1	$\begin{array}{ll}59 & 38\end{array}$	10 102430	59	10. 2846	$\begin{array}{ll}29 & 15 \\ 59 & 42\end{array}$
$\begin{aligned} & 18 \\ & 19 \end{aligned}$	III 1844		111818		Ir 2137	$30 \quad 5 \mathrm{I}$
			11 18: 55	31	01122	1234
			1 $21 \quad 35$		I 25	2921
			5 II 55			
1221			$\begin{array}{llll}10 & 23 & 45\end{array}$	$23 \quad 0$	10 2040	
			1 3	$\left\lvert\, \begin{array}{ll} \\ 23 & 0 \\ 75 & \end{array}\right.$	10.20 40	2130

[^3]
(239)

Canon Præcipuarum e' Stellis Fixis fecundum Obfervata Majorum.

Præcipuarum Fixarum Canon juxta Obfervationes Selectas.

Præcipuarum Fixarum Canon juxta Obfervătiones felectas.

Canon Prxcipuarant è Stellis Fixis fecundum Oblervata Majorum.

Frecipuarrum Fixarum Diflantix juxta Obferva tiones ferlectas.

Octo Fixarum Nobilium Declinationes ex Curis Antiquis, Confulto etiam Illuftri Brabeo.

Oculi Tauri Longitudo.

	Hermeti	25
	Hipparcho	\cdots
A. C. 140	Ptolemx ${ }^{\text {d }}$	$r 1240$
4. C. 85 I .	Abomacaro	$r_{1} 1915$
A. C. 8.3 I .	Thabeto.	$r 21$
	Arzacheli.	$r 2320$
	Albatanio.	$r 2430$
	R Groftetio- -	r. 28
A.C. 13 ± 6	W. Evefhamio	$r 29$

Spica Longitudo.

Reguli Longitudo.

A.f.C. 128	Hipparcho.	5. 29.50
A. C. 137.	Ptolemioo.	2. 230
A. C. 879.	Albatanio	$\Omega .140$

Spatio itaque annotum 742 . grad. I1. 50^{\prime}. aut potius gr. If. 30'. propter Reguli Long. Peolcmaicam St $2^{\circ} \cdot 3^{\circ}$. non $20^{\circ} \div 10^{\prime}$. ficut olim legerat Aftrenomus Raccenfis.:

Addit Fixarum Longitudinibus Ptolemaicis.

A.C. 1303.	Alphonfus.-	17
A.C. 1320	Wymundus. -	8
A.C. 1440	Walterus. Vigorn.	15

Prima Avictis diftat ab Æquinoctio verno, $25^{\circ}: 40^{\prime}$.
H.sc ommia Walterus Vigornienfis, Cod. If inter Digbianos.

Progrediuntur autem Stellx Fixæ Gradum unum Annis Solaribus.

 Timoclaridi Alexandrino, qui obfervarat Spicam Calefem Annis Nabon, 454. \& 466. Abidoralimano Sallchio, \&\% D. Petavio, 72 ; five $\frac{60 \times 12}{10}$: \& $50^{\prime \prime}$. quovis Anno.
3. Folannide Egyptio, Canonum Facimicorum Conditori---70 70 4. Fahiac f. Abomanfori, alifque Probatx, quam, vocarunt, Aftronomix Auctoribus: nee non Nafirodino Tufio, Cotbodino Sirafio, Ologbeco Mogolow. rum Domino, Xncloolgio, Abolpbotnclio, Abencfdra, Maimonide, \& plerifque juniorum. - $70 . \& 5^{1^{\prime \prime} .26^{\prime \prime \prime} .}$
5. Cloryfocacca in Perficis, \&z. Aftron. Anglicis.Ann.Chr. $300 .-68 . \& 52^{\prime \prime} .23^{\prime \prime \prime}$.
6. Aftronomis plerifque Arabum fub Mamone Principe - $66 \frac{2}{3}$. 7. Abdoralmino Sopbio, Bathodino Cliorcio, Alpbonfo Regi, Albatrinio ex Raccia (qux eft Callinicos Mefopotainic), Ablolgatilo Segnio, Lcoi \& zacuo Judxis, \& Obfervatorum Maragenfium nonnullis. - - - 66 . \& $54^{\prime \prime \prime} .33^{\prime \prime \prime}$. 8. Copernico, Maftino, aliifque fide illorum-_fere 71. \& $\boldsymbol{\Sigma}^{\prime \prime \prime} . \mathbf{1}^{\prime \prime \prime}: 5^{\prime \prime \prime \prime}$. 9. Nonnullis apud Chorcium Aiabem. \longrightarrow, $54^{\prime \prime}$. 10. Tycboni Brabeo, Keplero, Bullialdo, ex obliquitate Zod. $23^{\frac{5}{2} 0} \cdot 7^{0} \frac{7}{2} \cdot{ }^{\frac{7}{2}} 5^{1 /}$ 11. Longomontano. $72 \frac{1}{3} . \& 49^{\prime \prime} .54^{\prime \prime \prime}$. 12. Gaffcrido —— $70^{\frac{r}{3}}$ \& $51^{\prime \prime} .19^{\prime \prime \prime} \cdot 24^{\prime \prime \prime \prime}$ 。 13. Ricciolo in Aftr. Reform. ex obliq.Zod. $-23^{\circ} \cdot 30^{\prime} \cdot 20^{\prime \prime} \cdot 71 \cdot 19^{\frac{1}{2}} \mathrm{~d} \cdot 50^{\prime \prime \prime} \cdot 40^{\prime \prime \prime}$. 14. Nobis, \&z. Ægyptiorum Hicrophentis-一 71.9^{2}, minn. E $50^{\prime \prime}$. $9^{1 / 1 / \prime}$. fere.

XII: Tuifum habeo Pedum $13 \frac{2}{3}$, Lentibus Convexis, \& Nicrometore ex- The Pienas on actifino Tomnleiano Inftructum, quocum Noctibus ferenioribus Menfum forwd, in 167% Octobris \& Novembris, nuper elapforum, Minutas frequenter Pleiadum Stelln- by Mre larum Intercapedines dimenfus frm, idque adeo aufpicato, we nunquam $20^{\prime \prime \prime}$, n. 79. p. $305 \mathrm{~F}_{5}$ imò perraro $10^{\prime \prime}$, inter fe diffiderent repetitæ Obfervationes; à prægrefis e3062. tiam Defuncti D. Gafoognii, \& nuperis Generofilimi Townleii (quantorum Hominum!) eadem ratione peractis Obfervationibus, confirmatz; que quidém Distantire limatilime fic te habent:

Addit Vinc. Mutus in Epioftola ad Doctifimume Riceiolitm, (oujus meminit $\%$ Appendice ad Alm. No. Tom. 1. Pag. 747.) Odedentalem-Ewidiorem : tranfiiffe Meridianum in eadem omnino Altitudine ac Lucidam Pleiadum. Qua Fretus Adverfone \& Obfervatis Diftantiis, Loca Stelis affgnavi-infra fcupta; Mediâ prius Lucidà, codem omnino Loco \& Latitudine donatâ, qua Auttuorz Catolino arrideat ; cateris etiam abinde dipofitis; quas tamen omnes, propriant fi hac in re feittentiam fequi licuffet, "tres vel Valtem duos "Stripulos Primos" Promiotiores, "nec non \& Latiores ab Ecliptica proponerem : Ineante Xinn. 1672. conftiturx,

Pleindum.	$\frac{\text { Long. }-\frac{1}{11}}{11}$	$\left\|\begin{array}{ll} \text { Eat. Bor: } \\ \hline 0 & \\ \hline \end{array}\right\|=-$
Occidentalis Lucidior. \qquad Intra hanc \& Borealiorem Telefcopicam-g	$\begin{array}{lllll}24 & 45 & 15 \\ 24 & 46 & 47\end{array}$	4 08 51 5 4 19 21 8
Occidentalis Borealior.	24.5448	-4 28819.96
Suprema in Quadrilatero.	$\begin{array}{lllll}25 & 01 & 24\end{array}$	- 4.2039
Intima Aultralis oppofita.	$\begin{array}{llll}25 & 02 & 18 \\ 25 & 1 & 8\end{array}$	$\begin{array}{lllll}3 & 5 & 5 & 59 & 59\end{array}$
ix in Cufpi	$\begin{array}{lllll}25 & 19 & 48 \\ 25 & 41\end{array}$	4 00 00 3 3 52 1
Orientalium fuperior Telefcopica_	$\begin{array}{lll} 25 & 41 & 29 \\ 25 & 10 \end{array}$	3 52 19 5 3 56 51 7
Teléfopica alia.		3 5 1 51 7 3 42 37 9

XIIJ. 1. Inter
 Pulcherriman, fromaguis Telefcopis infeiciatur, ex Stellis Confertifipnis com: by M. Caffini. poatam, quas Colum mediat cume Cane Minorio.
2. Coolos infra Rrocyonem pertuftrans, Nebulofam offendi, Latam, \& By Mr. FlamScellulis Confertilimam. Hanc candem credo quam Cl. Canfinus obler- Abed. vavit.
XiV. Ann. : 664.1 dificoverd the firtt Star in the Head of Aries to be a The fuyt of Arics: Double Serr, made of two confiderible Stars, to near as not to be dificorered by Do. Hoolk: two, but by a Glafs of 6 of 8 Foot dong:
XV. a. Defunt in Celo dure Stelle Secundx Magnitudinis in Puppichanges among/t Naviis cjulque Truntris, Bavero B \& γ_{2} prope Canem Majorem, à me \& allis, the fixt Stars; occafione prafertim Comete. Ann. 1664. Obfervatx \& recognite, Earum natio
 Aqril. 1.668. ne Veftigium quiden illarum adefe agaplus obfervo ; cxateris ${ }^{\text {Murs }}$ circa eas, ctiam Quarte \& Quinte Magnitudiais, immotis. Plura de alsarum Stellicum Mutationibus, plufpuan Centenis, at non tanti ponderis; annotavi.
2. M. Cafini hath difcovered many Now: Stars: viz. Onc of the Fqurth pij M. Cilfnis.s.
 towards the beginning of Eridanus where we were fure they were not yet about the end of the Yeaf 1664. coonfidering that this Place of the Heayens, where paffed che shen appeaxing comet, was diligenty beheld by many, who perceived disers other finall Staxs, withow obferving thofe two. The fame hath allo obferved, towards the Arctick Pole, 4 of the Fifth or Sixth Magnitude:

He hast adfo obferved, That the Star which Bayorus puts pear that which be markech in the Figure of $\tau_{y, 5}$. Mizor, appears no more; That that: which is marked A, in the Figure of Andremedra, is alfo difappart; ;-That: in lieu of thas which is marked ν, at the Knce of the finge Figure there are awo others more Northwad; and that, that whinh is noted s, is very
 meda's chann, and cealls ittof the Fourth Maguitides is now fo fmall that one can fearce fee it, and that which is in bis Cafthog oue the zoth of the Con* frellation of Pif ces, is now no more feen.

 very fane place of the Heavens, where it was from Aino 166t, to almof
 and from Marenh. 43°. $10^{\prime} .50^{\prime \prime}$. . which Diftances atse altogectier equal to

(248)

where that former from Sclecat exactly anfwers to the Recent; and that from Marcas 'tis true, differs in a very few Seconds, but that difparity is of no moment, fince it only proceeded from thence, that this New Star is not yet fo diftinctly to be feen as at that time, when it was of the Third Magnitude. It is therefore certain, that it is the felf-fame Star, which Kepler did firf fee Ann. IGOI. and continued till Ann i 662 . He that will obferve this Star, mult take care left he miftake the Three more Southern ones of the Sixth Magnitude ; the Higheft of which is diftant from Scbeat Pcgafi, $36^{\circ} \cdot 25^{\prime} \cdot 45^{\prime \prime}$. the Middlemoft from the fame $37^{\circ} \cdot 25^{\prime} \cdot 2^{\circ} 0^{\prime \prime}$. and the Loweft $3^{8^{\circ}} \cdot 4^{\prime} \cdot 30^{\prime \prime}$.
n. 234 - p.855. Ann. 1665 . Novemb. 28:'Stella illa nova in Pectore Cygni..qux aliquamdiu ab Ann. 1662. planè dilituit, Coelo fereno quafı Revivifcere videbatur.

Ann. 1666. Septemb. 27. Nudis Oculis (etiam Lumia Splendente) apparuit. Scpt. 24. Minor erat illis tribus precedentibus in Collo \& vix 6: Magn. videbatur.

Ann. 1 670. Aug. 26. Senfim Crefere videtur quanquam necdum Major eft Stellis 6 Magn. Scpt. 3. Adhuc Crefcere videbatur; 8. Paulo adhuc Crefcere deprehendimus; \& Pitob.13. Satis clare apparuerit.

Ann. 167 I. April. 29. Vix major adhuc apparuit quam Anno Pretcrito; fi quidem Stellis 6 Magn. xquabatur.

Ann: 167 r. Fun. 26. Major fere videbatur.
Ann. 1672. Mint. 29. Adhuc Crefcere videbatur.
Ann. 1675. Jul. 22. Apparuit inftar 6 Magn.
=4. 134. po 9540
Ann. 1677. Nondum ad priorem Magnitudinem (Tertii videlicet Honoris) atque Claritatem \& Splendorem (quâ Magnitudine Ann. 1657, 1658, \& 1659. apparuit) pervenit: fiquidem non nifi inftar 6 Magn. adhuc fulget.
Ph. Col. 11. 5 . pol 162.

Ann. 1681. Augi 18. Nown in Collo Cggni, Nudis Oculis ob ejus tenuitatem parvitatemque haud quidem confpecta, fed. Telefcopio tamen depre'hen'a eft.
4. i. Don Anthelme, a Carthufinn at Dyon, on the 20 th of Func, Amm. 670.

The Nen Star, jib Capite Cygni;
12. 65.18 .2092. 22.73. 1. 2198. difcovered a Star of the Third Magnitude beneath the Hend of Cyginus, frtuated in the Section of the two freight Lines, one of which goeth from Iyra to the neareft of the Qundrangle in the Dolplin, and the other from the Eagle to the Star, which is on the top of the Upper Wing of Cygrus. He fent the News of this Difcovery to M. L' Abbé Mariotte, one of the Royal Acalem, who communicated it to the reft. They all agree, 'tis a New Star; though M. B oppofed it at firt, affirming it to be in Bayerus's. Tables : but they prove that Star in Bayerus to be another; giving for diftinguifhment thefe Meafures.

The Bright Star ad Roftrum Cygni, It's Afconfio Recta. 289.. 22.00 Declinatio Borcalis. : 27

33-00
Declinatio Borcalis. 26 20:

In the beginning of Fuly, this Star was obferved to Decreafe: Fuly Ir. It farce appear'd of the Fourth Magnitude.

Aug. Io. It was of the Fifth; and continued to Decreafe till it wholly difappear'd.

Ann. 1671. March 17. D. Antbelme fpied it again of the Fourth Magnitude.

April 4. M. Cafini found it greater than the two Stars of the Third Magnitude that are below in the Conftellation of Lyra, and a little fmaller than that in the Beak of Cygrus, but more Radiant.

April 9. He found it a little Diminifht, and almoft equal to the greateft of the two Stars that are below in Lyra.

The 12th, It was equal to the leaft of thefe two Stars.
The 15 th, He perceived that it Increafed, and found it equal the fecond time to the greateft of theie two Stars.

From the 16 th unto the 27 th, It appear'd of different Magnitudes, being fometimes equal to the biggeft of thefe two Stars, fometimes equal to the leaft, and now and then between both.

But the 27 th and 28th, It was become as big as the Star in the Swan's Beak.

The 3 oth, It appeared a little Clearer ; and the firft fix days in May it was greater.

The $15^{\text {th }}$ of May, It was feen fmaller than the fame Star.
The J Gth, It was in bignefs between the two Stars that are below in Lyra: And ever fince fhe hath fill Diminifhed.

Thus this Star hath been twice in her greateft Splendour; firft on the 4 th of April , and the fecond time in the beginning of May.
2. Hifce te invifere volui, quo vos de Obfervatione quadam notatu digna ByM.Hevel i:s. certiores facerem, mentenque limul meam ea de re vobis exponerem: De ${ }^{\text {n. } 65 . ~ p . ~} 2037$. Nova, viz. illa Fixa 3 Mag. ferè, Circa \& Infra Caput Cygni, inter Informes confpicua, cujus Longitudo $1^{\circ} .52^{\prime} \cdot 26^{\prime \prime}$. жv. \& Latitudo $47^{\circ} \cdot 25^{\prime} \cdot 22^{\prime \prime \prime}$. Bor. modò exiftit; ut Obfervationes, Die 25 Juiii, Ann. 1670 . At me habite, luculenter oftendunt. Novm autem Stellam hanc ipfam omnino effe, \&r in Coclo ad Ann. I 660 . penitus Inconfpicuam fuifie, non eft quod quif quam dubitet. Accidit cnim ut Annis 1659. 1660. \& 1661 . pleraf que Stellas illas omnes, in Afterifmo Cygi Apparentes, fummâ diligentiâ, de-
bitis Organis Dimenfus fuerim, bitis Organis Dimenfus fuerim, atque ita Ommes illas, etiam circa Collum, Vol.I.

K k

(250)

\& Capur Deprehenfibiles notaverim, earumque Diftantias à diverfis Fixis ceperim ; nullam autem Stellam 3 Mag. eo loco ubi jam dicta Nova notatur, tum deprehendi ; quam tamen optimè, fi adfuiffet, confpexiffem. Sic ut primò hinc Certus fim, Ann. 1660. \& 1661. hanc Stellam nondum extitiffe vifibilem. Deinde clarè etiam paret ex Bayeri Tranometriat, hanc modo dictam Novam Stellam neque Ann. 1603. Apparuiffe, \& per confequens neque Tychoni, multo minus Hipparcheo. Si quidem \&e Baycrus Fixam tantæ Magnitudinis deprehendiffet, cum haud procul ab illa aliam 6 Mag . depinxerit : prout in Afterifmo ejus Cygni videre eft. At, inquies, fortè ea ipfa eft, quam tu Novam dicis, quippe cùm Bryerus Congruis Organis Stellas illas haud Obfervaverit, fieri facile potuit, ut à vero ejus loco ad Gradum, vel paulo plus, aberraverit. Sed, crede, id factum non eft, quandoquidem Stella illa Parvula adhuc codem loco, ubi Baycrus ferè eam depofuit, commoratur, nec Major eft Stella 6 Mag . ut eodem. tempore ei videdatur. Diftat enim, ut ipfe met nuper deprehendi, ab Ore Pcrafi 32° : 39^{\prime}. oc ${ }^{\prime \prime}$; Dextro Genu Pegafi $39^{\circ} \cdot 3^{2 \prime} \cdot 45^{\prime \prime}$; hinc provenit cjus Long. $00^{\circ} .06^{\prime} .28^{\prime \prime \prime}$. mu. \& Lat. 46°. $11^{\prime} .14^{\prime \prime}$. Bor. ad Annum Jcilicet Currentem 1.670. Complet. Fulio. At Nova Elongatur ab Ore Pegafi $32^{\circ}: 31^{1}: 35^{\prime \prime}$. \& à Dextro Genu Pegafi 380. 18\%. $5 \mathrm{c}^{\prime \prime}$. ex quibus Diftantiis Long. 1°. 52% 26 $6^{\prime \prime}$. ๙ొ. \& Lat. $47^{\circ} .25^{\prime}: 22^{\prime \prime}$. Bor. Elicitur. Adeo ut hæc Nova planè fit diverfa ab illa 6 Mag. a a Bacro notata; (quanquam he dure nondum ad duos gradus ab invicem removentur.) Atque ex Dictis manifeftum fit, hanc Noorm nee Ann. 1603. nec Ann. 1660. inter cxteras emicuiffe Stellas.

Cum primitus à me obfervabatur, quoad Magnitudinem \& Splendorem, Stellx in Pectore Aquilie xquabatur, nifi quòd aliquanto Obtufioris fuerit Luminis ; quo ad. Situm, refpectu reliquarum Stellarum, in Linca Recta cum illa in Ancone Alx Superioris Cygni, \& illâ in Humero Aquile, nee non cum Lucidâ Lyic, \&t illâ in Rhombo Delphini, Mediarum Borealiori confiftebat; Triangulam verò Equilaterum cum illa in Capitc \& Roftro Cygni) conftituebat.
nve 66 . p. 2028. Mirum vero in modum M. Sept. decrevit, adeò ut 14 Oet. nulla ra3iv. $334 \cdot p$. 355 . tione amplius Sextante obfervari à me potuerit; licet omnem ad hibucrim diligentiam.
n. 73. p. 2197. Ann. 1671. Apr. 29. Denuo Obfervavi. Excedit illam in Roftro Cynni, nec no $334 \cdot 5: 955$ non eam qux eft in Ancone Inferioris Alx Cygni, fereque illi que eft in Pe Etore Cygni requatar, nifı quod Lumine paulò Obtufori \& Rubicundiori modò Luceat. Quầ vero Die primùm rurfus illuxerit, affirmare. adeò. certò nun. poffium. Certus interim fum, ad Menf. Dec. Fan. imo Fcb. haud Confpicuam fuiffe. Etenim poft 14 Of. quo videri defit, memini me eam fixpius quarfiviffe eo in Loco, fed nufquam Apparuiffe. Idcirco quantum coljigere datur, vix ante initium Mar. quin fine dubio adhuc tardius, iterum Prodiit. Apr.30. cam a Reliquis quibufdam Fixis fum dimenfus. Diftat à Caul dar Cygni $20^{0}, 55^{\prime} \cdot 20^{\prime \prime} . a b$ Ancone Ala Superioris Cygni, $17^{\circ} \cdot 47^{\prime} .5 \mathrm{c}^{\prime \prime}$; a Capite vero Serpentarii $34^{\circ} \cdot 19^{\prime \prime} 4^{\prime \prime \prime}$; fic ut coden planè Loco adhuc perfiftat, ubi antea fuerat.

Mnii 17. Aliquanto Mmor videbatur Roftro Cygni; \& illa in Iumero
tio $334.7 .85 \sigma^{\circ}$ Aquilc, tum etiam Lumine Obrufior; Major tamen illâ in Cufpide Sagitta, * æqualis ferè illi Seq. in Jugo Lyrico

Mmi 25.

(251)

Maii 25. Minor videbatur quàm Die 29 Apr. quà prinum vifa fuit; fic ut decrefcere videretur. Minor jam erat Roftro Cygni, nec non illâ in Ancone Alx Auftr. etiam Minor illis in Jugo Lyra, \& Humero Aquila; vix Major apparuit Minori duarum in Pede Cygni, \& illâ in Pectore Aquila.
fun.26. Minor apparuit illâ in Collo Cygni ; ficut notabiliter decreverit.

Ful. 3. Minor ferè illâ in Collo Cygni ; \& 18 , vix Stellis 5 Mag. xquiparari videbatur.

Aug. 2. Vix 6 Magn. apparuit, imò Minor quànı reliqux omnes circa Caput \& Collum Cygni exittentes ; per intervalla tantummodo micabat.

Scpt. II. Haud ampliùs Confpecta.
Ann. 1672. Mar. 6. I obierved it again, but it can hardly be feen with n. 81. f. 40:5. the naked Eye.
 (viz. ad Ann. 1677.) in Confpectum venic, utut fxpius illann diligenter ${ }^{854}$. Quxfiverim.
5. Ann. 1667. in 7n7. The Nevuiora in Andromede's Girdle (which may The Nebulora well enough be feen by the bare Eye) appeared nuch obfcurer than the yea in the Girde of before. In the Months of February and March I did not fee it.
6. 1. Ann. I667: Fnn.20. The New Star in the Neck of the Whole, did ap- nu.. 25.9 .459. proach to the bignels of a Star of the Sixth Magnitude, and grew bigger af terywards.

Febr. 12. I faw it at leaft of the Fourth Magnitude.

The Nev Star in Collo Ceti, by M. Bullialdus.
Ibid.

Febr. 24. It was equal to the Stars of the Third Magnitude, fhining very bright.

Fel. 26. and 27. It appeared yet to Encreafe.
2. Ann. 1667 . In the beginning of Fanuary this Star did not appear.

Fan. 23. I found a little Star of the Sixth or Seventh Magnitude about the ${ }_{n}{ }_{n}$ M. M.Hevelius fame Place where the fatd New Star ufes to appear. But it then feemed to n. $134 . f .855^{\circ}$ me not the Genuine New Stai;, but another; to wit, preceding the New, whufe Longitude, in Ann. 1660. was defined by me, $r \cdot 25^{\circ} \cdot 43^{\prime} \cdot 3^{\prime \prime} \cdot$ and the Latitude $14^{\circ} \cdot 4^{\prime} . \quad 3^{\prime \prime \prime}$.

Feb. 2. It appeared very bright, and that, when the Moon fhone, of the bignefs of that in the Mouth of the Whate, or Nodo Lini : from which time I always obferved it to grow bigger.

Mar. I3. I did ftill find it extreamly bright, but could not by my maked Eye, becaufe of the Vivid Crepufcle, and the low fight of the Star, accurately determine its Magnitude.

Ann. 1668. Octob. 26. Noon in Collo Ceti primum vifa ; fed inftar minu- n. 134. \%. 8350 tiflimx Stellulx.

Nov. 7. Nova in Collo Ceti Mediam ferè in ore xquabat.
Ann. 1669. 7an. 28. Minor crat illâ in Ore.
Scpt. 26. Inftar 6 Magn. apparuit.
07. 16. Illâ in Ore Major crat, \& Clarior.
aft. 24. Lucidan Mandib. æquabat.
Nov. 19. Major illâ in Ore \& Minor Mandib.

(252)

Ann. 1670. Aug. 27. Maximo gaudebat Lumine, xqualis ferè Stellis 2. Mag. \& Mandib. Ceti.
21. 66. 8. 2028. Sept. 3. Admodum Fulgida extitit ; Et 8. Æqualis Mandib. Cetti. Ad medium ufque Menfis Oזt. Mandib. Ceti xqualis fere exflitit Magnitudine, \& Claritate cam propemodum fuperavit; adeo ut hoc. Anno fecundx fuerit Magn. ac Major quam precedentibus Annis, excepto Ann. 1660. quuo Major ctiam Mandibula Ce e^{\prime} à me fuit deprelenfá. Allisis temporibus non nemini cam tertix Magnitudinis Stellias fuperaffe. Certum igitur eft, ipfam non eandem femper prex. fe ferre Magnitudinem nec Claritatem, utut in maximo fuo exiftat Incremento.
Dec. 5. Adeo decreverat ut vix Stellx 6 Magn. æquaretur.
Ann. 1671. Aug. 14. Æquabatur Stellæ ad Genam, imò ferè Major paulò videbatur.

Scipt. 12. ATquabatur illi in ore 4 Magno
Of. 30. Vix 6 Magno apparuit.
Nov. 3. Non amplius apparuit.
Ann. 1672. Aug. 9. Clarififimis fulgebat Radiis, Major erat illâ. in Ore, \& Minor Mandibulî̀.

Scpt. 17. Minor illâ ad Genam, vix 4. imò 5. Magn. \& 25. vix 6 Mag.
ibid. p. 954

10:\%. po. 8 g 8.

Pbili Col.
Ro. 5.p. p. 162 .
By M. Caffini. Si 123. 10. $565{ }^{\circ}$ n feed.
Ibid. po. 567° A:Nero Siar in Eridanus; by M. Caflini. n. 35. p. 683 .

A Menfe circiter $O \& \hbar 06$. ad Decemb. 23. Ann. 1676. ne femel quidem Prodiiffe, utut femper omni ftudio Vigiles Oculos ad cam, quoties Obfervationibus operam ferenis noctibus dedi, direxerim.

Ann. 1676. Dec. 10. Bene memini me Novam hanc in Collo Ceti haud vidiffe, licet eâ in Coli parte plurimas Stellulas obfervaverim.

Dec. 23. Novam hanc in Collo Ceti Coelo admodum fereno clariffime vidimus; \& quidem tantâ Claritate \& Magnitudine fulgentem, ut Mandibulam Ceti non folum requaret, fed Magnitudine \& Claritate vinceret:

Dec. 31. Fere Major Mandib. b.. e. 2 Magn.
Ann. I677. Fan. I. Clariffime rurfus Affulgebat, Major ferè Mandib. Ceti, Major quoque quàm Extrema Ala \& Marcab. Pegafi, Colore \& Lumine ferè æqualis Mandib. Memini tamen me olim obfervaffe, quando Secundx exiftebat Magnitud: eam paulo Albicantiorem \& Splendidiorem.

Ann. 1681. Aug. 18. Nova Stella in Collo Ceti, hac nocte, Luna etfi Plema \&\& Splendente, major erat ea in Ore Ceti, fed nondum æquabat Lucidam Mendibulc.
3. Ann. 1676. Mar. Infpecta mihi elt Stella Nova in Ore Ccti, quæ Annos aliquot latuit, Solaribus Radiis tempore Maximæ Fulfionis immerfa ; nunc vero Stellas 3 Mag. facilè fuperat.
4. Novam in Pect.ore Ceti.fæpius ante Octo Menfes vidi, nec Minoremquam innuit Cl. Cafinus.
7. March 10. 1668. Not far from that Star in Eridanus which is called the 14 th by Bayerus, there appeared a Star, equal to the Brighteft of the Fourth Magnitude, almoft in the fame Place, where was obferv'd the Comet of Ann. 1664 Dec. 31. which Star was not then feen, nor at other times elfewhere, nor is defcribed in any Catalogue, on any Globe or Map, that I. can learn, which therefore I deem to be a Nem one, that is of Nem Appearance.

(253)

8. The comet, Ain. 1672. had (on the firft of April, St. N.) pafs'd 45^{\prime}. is nem Star in beyond the moft Northern Star of the Head of Trurus, and was diftant 1°, Taurus ; by from the Star that was neareft to that towards the South. M. Cafini having n. Caffini. confider'd thefe two Stars, obferv'd, That the Second is not lefs bright than the Firft, and yet that Bayerus hath not marked it ; And that at firf Sight, it feems that Tycho hath left it out in his Catalogue. For he purs four Stars in the Place he calls in Quadrilatero Cervicis, and he fpeaks not of this which is the fifth, and maketh with the other four an Irregular Pentagone. This Omifion of Baycrus, and the Denomination which Tycho ufeth to denote thefe Stars, which futes not with the Number nor the Configuration that now appears, do Adminilter caufe to doubr, whether the Star in Queftion be not one. of thofe that appear from time to time.
XVI. I. Supponit Cl. Cafinus, ad Planetam in Ellipf1 moventem extendi To find the Aab utroque Foco duas Rectas, quarum altera fit Medii, altera autem Veri. Motûs Linea. Conftructio porru talis eft:

Left Centrum Concentrici ABCDE. BLD eft Diameter.
$\mathrm{BA}, \mathrm{BC}, \mathrm{BP}$, funt Intervalla Apparentia.
DE, DF, DQ funt Intervalla Mediorum Motuum.
$\mathrm{BE}, \mathrm{BF}, \mathrm{BQ}$; item DA, DC, D P, funt Linex Rectr.
$B E$ fecat $D A$ in $H ; B F$ fecat DC in G; $B Q$ fécat $D P$ in R.
RHG eft Linea Recta.

BI eft Perpendicularis ad RHG.
I ef Centrum Ellipreos.
LI oft Excentriciras.
$10=L I$.
O eft Focus, circa quem ordinatur. Medius motus ; L, circa quem Verus.
$\mathrm{IM}=1 \mathrm{~N}=\mathrm{LB}$.
M, eft Apogeon; N, Perigeon; B L. M, Anomalia Vera.

Demonfiratio. I. Illuftriifimus ac.Reverendiff. Sethus Warius, Epifopus Sarify burienfis, in Examine Aftronomix Philolaicx, docuit Methodum, ex data Anomalia Media Planetarum, inveftigandi Verum ; quæ eft hujufmodi.
C. eft Centrum Ellipfeos AEP: F, focus circa quem ordinatur Medius Planets of the by M. Caffini. confidered by Mr. Nic. Mercator.
ก. 57. p. 1168 ,
Figo II7。 Motus. S, focus circa quem ordinatur Verus Motus. A, Apogéon. P, Perigeon. E, Erro five.Planeta. AFE, Anomalia Media. A S E, Anomalia Vera. FET, Linea Recta; ET =SE. ST, eft Linca Recta.

In Triangulo SFT, dántur, i. SF, diftantia focorum: 2. FT=FE $+E S=A \cdot P$. 3. AFT, Angulus Externus, five Anomalia Media, æqualis Summæ Angulorum FST \& T. Ergo invenisj poteft FSE, live Ano malia Vera, xqualis Differentix Angulorum, FST \& T. Nimirum

Ut Semi-fumma Latcrum. F T $\mathcal{F} \mathrm{FS}$, ad Semi-differentiam corundem; fra Tangens Semi-fumme Angulorum. FST \& T; ad Tanyentem. Somi-differentic. corundem.

Sed Semi-fumma laterum FT \&s FS Invenitur, fubfituendo pro FT æqualem A P, cujus Semis ef AC, qui additus C S, femiti ipfuus FS, facit Semi-fumman A S, Diftantiam Planete Maximam.

Fig. 1188°

(254)

Tum f_{1} ex Semi-funma A S, auferatur Latus Minus FS, reftat Semi-differentia Laterum FA, xqualis PS, diftantix Planetx minimx; ut fit Regula c. Anomalia Media datâ inveniendi verani.

Ut AS, Diftantia Planctic Maxima, ad PS, Difantiam Minimam; Ita Tangens dimidia Anomalia Media, ad Tangenten dimidia Anomalia Vera.

Corollar. I. Si continuetur $S E$ ufque ad V, ita ut $E V$ fit $=$ ipfi $F E$, \& tota $S V=$ Axi AP, erit Trianguli, FSV, Angulus V, Semis Proftaph x refeos FES, ideoque xqualis Semi-difierentix Angulorum Anomalix Medix \& Verx, b. c. ipforum A FE, \& ASE ; \& Extcrnus AFV $=$ Semi-fummx corundem, AFE \& ASE, Angulorum, ablata fcil. Semi-differentia, VFE, ex Majori AFE; unde oriuntur dux Analogix,

1. Ut Sinus Semi-fumma Anomalia Media Ef Vera, AFV, ad Sinum Semidifferentic corundem V ; ita $\mathrm{SV},(=1$ aii tranferfo AP$)$ ad SF , Difann tiams Focorum.
2. Ut Sinus Scmi-fumme Anomalia Media \& Vere AF'V, ad Sinum Anoma lie Vera, FS V, ita SV, (vel Axis AP) ad F V, Subtenfam Anomatise Vera: Ita quogue Semiaxis, A C, ad Semi-Subtenfam V X, wel FX.

Corollar. 2. Si in eodem Triangulo, FSV, ex Subtenfx FV, Puncto medio X, erigatur Perpendicularis XE; fecabit illa SV in duas partes, quarum altera $V E=$ eft linex Medii Motus $F E$, altera vero $S E$, eft ipra linea Veri Motus.
2. Sit a Centrum Concentrici chfi. $c \pi d_{3}$. Diameter, eademque Linea Apfidum.
$c h$, Arcus Anomalix Veræ, cui refpondet. di, Arcus Anomalix Medix. Itaque
c.dh, eft Angulus dimidix Anomalix Verx, \&
dc , Angulus dimidix Aromalix Medix.
$c i, \& d b$, funt Linex Rectx, "fecantes fe mutuò in g.

Ab Interfectionis Puncto g, demittatur ad $c d$, Perpendicularis $g l$. Erit igitur, $d b: b g::$ Radius: Tang. $b d g$, vel $c a b$. Et $c b: b_{g}::$ Radius: Tang. $b c g$, vel $d c i$.
Ergo $d b \times$ Tang. $c d b=b g \times$ Rad. $=c b \times$ Tang. $d c:$.
Quare $d b: c b::$ Tang. $d c i$: Tang. $c d b$; hoc eft, $d b$ erit ad $c b$, ut Tangens dimidix Anomalix Medix ad Tangentem dimidix Anomalix Verx; adeoque (per Regulam fupra expofitam) ut diftantia Planetæ Maxima, ad diftantiam Miniman. Quamobrem $d b=$ erit diftantix Planetx Maximx ; \& $c b$, Minimx; \& $a b$, Excentricitati.

Cumque idem codem modo Demonftretur de cxteris omnihus Interfectionum Punctis, nimirum Perpendiculares ab ipfis ad $c d$ Lineam incidere in Punctum b; oportet, ut Recta, jungens iplas Interfectiones, congruat Perpendiculari, $6 . \mathrm{g}$.

(255)

3. Ducta Diametro bak, fiat Arcus $k l=i d$, \& ducantur $k c$, \& $b \%$ Secantes fe mutuo in p. $\mathrm{Ab} h$, in $b g f$, dimittatur Perpendicularis, $b r$, eademque Parallela Apfidum Linere $c d$; crit Angulus $r b s$, Semi-diferentia Arcuum Anomalix Veræ $c h, \&$ medix di. Tum ab codem is Puncto ducatur Recta $h \beta$, faciens cum $k h$, Angulum $=$ Angulo $r b s$, \&* occurrens Linex Aplidum in β, erit Trianguli a $\beta \%$, Angulus $\beta_{a} h$, Menfura Arcus ch, five Anomalix Verx, \& \& blj fomi-differentia Anomalix Verx \& Medix (ex Conftrutione); \& Externus c βb, (xqualis duobus Internis \& Oppofitis $\beta a b, \& \beta h a$, adeoque compofitus ex Anomalia Vera \& femi-differentia ejus à Media) erit femi-fumma Anomalix Verx \& Medix. Ergo per Corollarii primi Analogiam priorem; $\mathcal{V}^{\prime} t$ finus $c \beta b$, ad finum $\beta b a$; ita Radius ab, ad Excentricitatem $\cap \beta$. Sed fupra Demonftravimus quoque ab xqualem Excentricitati. Ergo Punctum β congruir Puncto b.

Tum ex b excitetur ipfi $b b$, Perpendicularis $b t$; Aio, hanc continuatam Incidere in Punctum Intericetionis p. Nam Triangula, rbs, \& bbt, funt Similia, ex Conftructione; quemadmodum \& Triangulum $b p k$, fimile efs. Triangulo ig i, cum cidem Peripherix ob, infiftentes Anguli p $k f$, \& $g i \hbar$, Gint xquales, nee non equalibus Peripherris $k \cdot$, \& $i d$, infiftentes Anguli
 Et ex xqualibus $p b k$, \& $g h i$, ablatis xqualibus $b h t, \& r b s$, reftant xquales $p b b, \& g h r$. Unde fic Arguo $; s r b=t b b, \& r b s=b b t$, Ergo $b s r=h t b$; ergò \& Complementa horum ad Semicirculum funt æqualia, nimirum.rsi=btk, \& sig=tkp, Ergo \& $i g s=k p t$, quibus ablatis ex xqualibus $i g h, \& k p h$, reftat $h g s=b p t ; \& g h r=p b b$, Eirgo \& $b r g=b b p$. Sed $b r g$, eft Rectus, Ergo \& $b b p$, Rectus eft. Gum verò, \& $b b t$ Rectus fit, ex Conftructione, erit $t b$ inde Rectum ipfi $b p$. Cumque idem eodem modo Demonftretur de quavis alia Interfectione linearum $a b b, \& k$, ad Congruentia Anomalix Vere \& Medix Functa ductarum; patet, non modo Rectam, jungentem Interfectiones, tranfituram per b punctum; fed \& $b b$, lineam Perpendicularem fore ad candem Jungen:tem. Q.E.D.

Coroliarium. Si à quovis puncto Anomalix Verx, puta h, ad refpondens punctum Anomalixe Medix i, ducatur Recta $b i$; excitata è Centro Execentrici b, ipficbd, Perpendicularis $b f$, fecabit ipfam $b i$ in s, eâ ratione. quam linea Medii Motus obtinet ad lineam Veri Motus.

Nam per Corollarii Primi Analogiam Potefteriorem, $b b$, ef femi-fitutenfa;: ergo per Coroll. 2. Perpendicularis. erefta ex b, nimirum. bt, fecat. Diametrum $b k$, in t, eâ ratione quam linea Medii Motus obtinet ad lineam: Veri Motus. Ergo \& $r s$, (five b, f, fecat $b i$, lineam eadern fatione in s; propter Demonftratam modo Figurarum t $b b k p b b, \& ; r b i z b r$, Similitudinem.

Coterum ex laudata fuperius Reverendifl. Wirdi Methodo inveniendi primam inxqualitatem, non eft difficile, alium adhue modum inveftigandi App-. géa \&é Excentricitates, non minus Direitum \& Geometricum, \& Obiervatiz ones quorvis admittentem, producere; quem \& pansis exponam. Plures modos

(256)

modos invenient Aftrophili in Reverendiff. Vini Afronomia Geometrica, ad quam eos remitto. Interim

Sint 1 \& d duo Foci Ellipfeos; \& a a duo Puncta Veri Motus Planetx; Arcus Ellipfeos $t u$, ex l fectatur lub Angulo $t u$, \& ex d, fub Angulo $t d u$; item Ditantia Focorum $1 d$, cx t fectatur fub Angulo $d t I$, \&ex u_{3} fuib Angulo $d u l$: Aio differentiam Angulorum $t l u, t d u$, æqualem effe differentiz Angulorum $d t l$, \& $d: i l$.

Cum enim Trianguli $1 u x$, tres Anguli fimul fumpti æquales fint Trianguli $d t x$, tribus Angulis fimul fumptis; fi auferantur utrinque equales $l x u, \& x d x t$, reliquorum duorum fumma, $u l x+l u x$, erit $=$ fummx reliquorum $t d x+d t x$, \& ab his xqualibus Summis fi auferantur inxquales, $v . g . u l x$, ex priori, is $t d x$, ex poteriori; reliquorum $l u x$, \& $d t x$, differentia $=$ cft differentix ablatorum $u l x$, \& $t d x$; quod erat prepofitum.

Centro i, Intervallo Axis Tranfverfi $m n$, defribatur Circulus abc, cujus Arcus $a b$, rurfus ex l fpectatur fub Angulo $a l b$, \& ex d, fub Angulo $a d b$; irem diftantia focorum $l d$, $c x$ a fpectatur fub Angulo $l a d$, \& ex b, fub Angulo $16 d$. Ergo rurfus differentia Angulorum $a l b, \& a d b,=$ eft differentix Angulorum lad, \&:lbd. Sed per Coroll. I. Angulus Ind, Semis ef Anguli $l u d$, \& Angulus $16 d$, Semis Anguli $1 t d$. Ergo horum Angulorum $l a d, \& 16 d$, differentia $=$ elt Semi-differentix Angulorum $1 u d$, \& ltd; Ergo \&t Angulorum $a l b, \& a d b$, differentia $=$ eft Semi-differentix Angulorum ult, \& $u d t$, quorum prior ef Intervallum Apparens duarum Obfervationum, pofterior autem, Intervallum Motus Medii. Datâ igitur horum intervallorum differentiâ, datur quaque hujus (differentix) Semis, nimirum differentia Angulorum $a l b$, \& $a d b$. Sed $a l b$, idena eft cum $u l t$, dato; Ergo datur quoque $a b d$, Angulus, fub quo Peripheria $a b$, fpectatur ex d.

Simili modo oftendetur, differentiam Angulorum $t l y$, \& $t d y$, æqualem effe Summæ Angulorum $l t d$, \& $l y d$; nec non differentiam Angulorum $l l c$, $\& b d c,=$ effe Sumnix Angulorum $1 b d, \& l c d$. Cumque $16 d$, femis fit ipGus $l t d$, \& $l c d$, femis ipfius $l y d$; erit fanè Summa ipforum $16 d$, \& $l \subset d_{s}=$ femi-fummx Angulorum $l+d$, \& $l y d$; hoc eft, differentia Angulurumb $b l: c$, \& $b d c$, = crit femi-differentix Angulorum $t l j$, \& $t d y$, quorum prior eft Intervallum Apparens duarum Obfervationum, pofterior autem, Intervallum Motus Medii. Quare, data horum Intervallorum difierentia, datur quoque hujus Semis, nimirum Differentia Angulorum $b l c, \& b d c$. Sed $b l c$, idem eft cum $t l y$, dato; Ergo datur quoque $b d c$, Angulus, fub quo Peripheria $b c$, fpectatur ex d.

Unde liquet, ex datis Intervallis Obfervationum Mediis \& Apparentibus dari Angulos, fub quibus ex d fpectantur Circuli abc, Peripherix quotvis, intercepta à lineis Veri Motus. Ergo per Herigoni Theor. Plan. 1. I. c. 3 . Prop. 12. Schol. I. totidem Circuli Segmenta defcribi poffunt, capacia Angulorum füb quibus ifti Arcus confpiciuntur ex d, qux fegmenta omnia fe mutuò interiécabunt in d. Pofluint igitur \&\& hac Methodo invenịi Apogéa

257)

\&x. Excentricitates Planetarum, Delineatione Geometricâ, adhibitis Obfervationibus quorvis; nec difficilius eft, Circulos ducere, quàm Lineas Rectas.

Sed ut demus id, quod verum eft, Clariflimi Cafini Delineationem Geometricam non nihil expeditiorem effe; verendum eft interim ine, fi dixgictaz Aftronomis expetitam fectemur, Diagrammata requirat Enormis Magnitudinis, adeòque operofior evadat, quàm ipfe Calculus. Ad hunc autem accedentes, utramque Methodum æquipollere deprehendemus. Ne quis vero Apogei \& Excentricitatis utraque Methodo inventæ a vero difcrepantiam ceńfeat Errori Calculi imputandans: reftat ut Hypothefin Excutiamus.

Et Ellipticx quidem Orbitx Inventio, fine controverfia Keplero debetur ; fed quibus Accelerationis \& Retardationis gradibus incedant Planetæ, definire, non: minus, pertinet ad integrandam Hypothefin, quam ipfus Orbitx determinatio. Quanquam autem ex Cl. Cafini (vel Interpretis ejus) fermone id nuf guam apparet; attamen ex Conftructione Problematis, \& ejus. Analyfi, mat nifentumeft, cum fupponere, Planetam ex Foco fuperiori videri prorfus xquas bili Motu incedere. Fuit fane, cum idem exitimaret Keplerus, quod ejus Scripta evolventibus liquere poteft. Sed cunt id Obfervationibus nequaquam Congruere animadverteret, mutavit, fententiam, \& Linean Veri Motus Planetæ æqualibus temporibus æquales Areas Ellipticas verrere profeffus eft : Punctum autem, ex quo Planeta exactè xqquabili Motu procedere videtur, nullum omnino extare in hoc Univerfo, nifi id libratile ftatuere libeat. Nulli interim Puncto propiùs requabilem videri inceflum Planetx, quam ipfi Foco fuperiori Ellipfeos. Neque inventus fuit hactenus, qui Areas Kepleri Phæno-menis fatisfacere poffe negaret ; fed, cum eas Calculo directo exhibere nec; ipfe nec poft emm quifquam potuerit, caufati funt nonnulli, Keplerium, nimis indulgentem caufis Phyficis, à Geometria diverfum abiiffe; quafi caúf Phys ficx repugnent Geometrix, aut minus Geometricum fit Problema; quod, nullâ injectâ Phyficarum Caufarum mentione, fic proponitur: Data Arca Trilinoi, inter Lineas Apfidum, EJVeri Motus, nec non Periphecriam Ellipticam intercepti, invenire Angulum ad Solem. Habent igitur à Keplero refponfum,

Quamvis autem Religio fuerit Keplero, ab Hypothefi, quam naturalem effe, plane perfuafum habeat, recedere; quidni liberum foret aliis periculum fa-cere, num via quævis alia detur, inæqualitatem Planetarum Primam direço Calculo inveftigandi? Ideoque Vir Cl . J m . Bullialdus aggreffus eft, Ratiocinio Geometrico indagare, quâ femitâ, \& quibus intenfionis ac remiffoonis gradibus conveniret Planetas ferri, ut ab requabili inceffôs Norma, Aftronomis ante Kopleium aflumptâ, ad eam quam fpectamus Inæqualitatern. perduceremur, Perennant Ihuit: Viri monumenta, unde omem hujus Inventi rationem haurire licet Aftrophilis. Amplexus eandem Reverendiff. Seth. Whodus, primum oftendit, paria facere cum linea rouabiiis Motus circa alte. rum Ellipfoos Umbilicum gyrata; deinde \& Calculi Directi Methoco onavit. ea, quan paule ante rectavimus ita ut mihil amplits defiderari poliet quanı ut Urania folicibus Coptis annueret. Cujus quiden Nomine fucipere aufus fuit $1 l l u t t r i f$. Comes Paganus, edito biennio poft cjuldem fere tenoris teripto,

Vol. I.

(258)

adeo veram effe Hypothefin, ut deprehenfam circa Octantes difcrepantiam, Aftronomorum Infcitix tributam mallet. At Cl . Buillialdus, audiendum potius ipram Aftronomiam ratus, Obfervatorum ore loquentem, fecundis Curis, adhibita prioribus Inventis Eimitatione quadam, difcrepantiam illam cxternina. vit. Unde porrò intelligitur, Hypothefin illam, cui Cl. Cafinus Inveftigationem Apogeorum \& Excentricitatum fuperftruit, tantundem ferè deficere à vero, quantum CI. Bullialdi. Limitatio pollet, atque ab illó Defectu pullulare Calculi à Coclo diffenfum.

Natro Edm. Halley.
ก. 228.10 .683.
. multâ operầ datam, Methodi fequentis bafin firmiflimam conftituo; ubi preter Obfervata nihil aliud fupponitur, quàm quod Orbes Planetarum fint Ellipfes, quodque Sol in Foco, omnium Orbibus communi, fit :conftitutus, \& denique, quòd Tempora Periodica fingulorum ita innotefcant, ut non fendenique, quod empora Periodica fingulorum ita innotefcant, ut non fen-
tiatur error aliquis, faltem in duabus vel tribus Revolutionibus: His concellis, Motus Terrx, pro cxteris Planctis neceffariò requifitus, primò aggrediendus eft:
Fig. 12 F
2. Motus Terræ Annuús per Eclipticam, Opticam Inæqualitatem inducit Motibis cxterorum Planetarum; Aftronomis Copernicanis nomine Párallaxeos Orbis notiflimam; quam quidem inæqualitatem, ex Obfervationibus non

Sit S, Sol ; ABCDE, Orbis Terre; P, Planeta Mars, (qui in hanc rem plurimus de caufis longè preferendus eft) ; \& paino obfervetur Verum Tempus \& Locus, quo Mars opponitur Soli gltunc enim: Sol \& Terra coincidunt in Lineam Rectam cum Marte ; vel, (qued fere femper accidit) fi habuerit Latitudinem, cum Punctó, ubi Perpendicularis à Marte demiffa in planum Eclipticx incidit. Sic in Schemate, S, A, \& P P, funt in Linea Recta; deinde poft 687 dies, Mars revertitur ad idem punctum P, ubi in priori Obfervatione Soli opponebatur; Terra verò, cum non revertatur ad A, nifi poft $730 \frac{1}{2}$ dies, in B, Solem refpicit in Linea S B, Martem vero in Linea BP, \& Oblervatis Longitudinibus Sulis \& Martis, omnes Anguli Trianguli, PBS, dantur, \& fuppofitâ PS 100000 , in iffem partibus invenitur Longitudo Linex SB; pari ratione poft alteram Martis Periodum, Terra exiftente in C , invenitur Linea $S \mathrm{C}$, nec abfimiliter Linex $\mathrm{SD}, \mathrm{SE}, \mathrm{SF}$; differentiæque Obfervatorum Locorum Solis, funt Anguli ad Solem A'S B, BS C, CS D, D SE: Sic tandem ventum eft ad hoc Prablema Geometricum; Datis tribus lineis, in uno Ellipfcos Foco cocuntibus, tam Longitudine 'quàm Pofidione, invenire Longitudinem Tranfverfo Diametri, cum diftantin Focorum: Cujus Refolutio extenditur etiam ad reliquos Planetas, fin poft Theoriam Motus Terre cognitan, fcrutemur (fecundum Methodum propofitam à Reverendiff Epifopo Sarisburienf in-Aftronomia ejus Geometrici, Lib. 2. Part. 2: Cap. 5.) tres Diftantias Planetæ alicujus à Sole in Pofitionibus fuis. Quoniam verò Rev. Epifcopus fupponit Planetam ita ferri in Orbe fuo, ut æquan. libus temporibus xquales Aingulos ad Focum alterum Ellipfeos abfolvat, \& ei Calculum fuum fuperftruit, non incongruum videtur, oftendere, quomodo id ipfum fieri poflet abfque ifta fuppofitione, quam Obfervatio nos rejiciendum monet:

Sit S, Sol ; ALBK, Orbis Terre ; P, Planeta, vel Punctum in Plano Eclipticæ, ubi Perpendicularis, à Planeta dimiffa, incidit ; A B, Linea Apfiduni Orbis Terrx: Obferventur primò Planetæ, ini P , Longitudo \& Latitudo, fimulque Solis Longitudo à Terra in K; \& poft Periodum ejufdem Planetx, Terra exiftente in L, Obferventur denuo Pofitiones Planetx Solifque, ut prius : jam ex Obfervatis Longitudinibus Solis a Aphelii Terre, Anguli ASK, ASL, dantur, \& confequenter Latera SK, SL. Jam in Triangulo K S L, dantur Latera K S, LS, \& Angulus K S L, quæruntur Latus K L, \& Anguli SK L, SLK : Deinde in Triangulo KLP, dantur K L, K PL differentia Obfervatarum Longitudinum Planetx, \& PKL Differentia Angulorum SKL, ultimo inventi, \& SKP, Elongationis Planetæ à Sole in prima Oblervatione, quæritur LP L . Tum in Triangulo LSP, Latera LS, LP, \& Angulus P LS, Elongatio Planetæ à Sole in fecunda Obfervatione, dantur; Latus $S P$, \& Angulus LSP, requiruntur, quibuis Inventis, ut SP ad LP, ita Tangens Latitudinis Obfervatæ ex L, ad Tangentem Inclinationis five Latitudinis ad Solem; \& ut Co-finus Inclinarionis ad Radium, ita S P, Curtata Diftantia, ad Veram Diftantiam Planetz a Sole: Sic tandem invenimus Pofitionem \& Longitudinem defideratam. Jam reftat ut oftendam, quomodo ex Datis tribus Diftantiis à Sole cum Angulis interceptis invenienda fit Media Diftantia cum Excentricitate Ellipicós.

Sit S, Sol, \& SA, SB, SC, tres Diftantix in debira Pofitione, ductif que $A B, B C$, fit $A B$, Diftantia Focorum Hyperbolæ, \& $S A-S B$ $=\mathrm{EH}$, Tranfverfa Diameter; quibus pofitis, defcribatur Linea ifta Hyperbolica, cujus Focus Interior eft punctum A, extremitas Linex Longioris $S A$. pari modo fint B, C, Foci Alterius Hyperbolæ, cujus Diameter SB-SC $=\mathrm{KL}$; ex quibus defribatur Linea Hyperbolica Focum babens Interioren in puncto B Dico has duas Hyperbolas fle defcriptas lefe interfecare in punCto F, qui eft alter Ellipfeos quæfita Focurs, ductâque Lineâ FA , FB , vel $\mathrm{FC}, \mathrm{SA}+\mathrm{FA}, \mathrm{SB}+\mathrm{FB}$, vel $\mathrm{SC}+\mathrm{FC}$, zquabitur Tranfverfe Diametro, \& SF eft Diftantia Focorum : quibus pofitis defcriptio Ellipfeos facillina eft. Cum verô hujus Confruetionis ratio non omnibus ita facile percipiatur, non abs re erit, illuftrationem ejus aliquan afferre, ideo dico, quod ex notilina Ellipfés proprietate $S B+5 B=S A+F A, \&$ franfofitis Æquationis partibis $F B-F A=S A-S B, \rightarrow$ itat etian $\mathrm{fi} F B \& F A$ nos lateant, earum tamen differentta wqualis fit $S A-S B$, hoc eft, E H, curmque fit ex natura Hyperbolæ, ut habeat quafvis duas lineas a fuis Focis ad quodvis punctum in fua Curva conftanter Differentes quantitate Tranfverfa Diamerri; conftat punctum E effe alicibi in Curva Hyperbole, cujus Diameter Tranfverfa æquatur SA-SB, \& Foci, A, B P Pari modo DGmonftrari poteft punctum E effe in Hyperbola cujus Diameter eft $S B-S C$, \& Foci B, C. Ergo necefe eft, fit fit in Interfectione duarim iftarum Hy perbolarum, qux, cum fefe inteffecent in unico folum puncto, clare oftendunt ubi fit Focus alter Ellipfeos qurefitz.

Jam it id ipfium Analyticè expédiatur, puta Factum, fitque $\mathrm{FB}=a$; $\mathrm{SA}-\mathrm{SB}=\mathrm{FB}-\mathrm{FA}=b, \mathrm{AB}=c, \mathrm{SB}-\mathrm{SC}=\mathrm{FC}-\mathrm{FB}=a$ $B C=f$, fitque Sinus Anguli $\mathrm{ABC}=\mathrm{S}$, Co-finus ejuffem $=s$.

Tumut c ad b, ita $2 a-b$ ad $\frac{2 a b-b b}{c} ; \& \frac{2 a b-b b+c c}{2 c}$ $=\mathrm{BD}$, per 36. 3. Eilcl. \& ut f, ad $d_{\text {, ita }} 2 a+d_{3}$ ad $\frac{2 a d+d d}{f}$ \& $\frac{f f-2 a d-d d}{2 f}=$ BG, per Eandem; \& ut minuatur labor Calculi, fit $\frac{c c-b b}{2 c}=\xi, \quad \& \quad \frac{b}{c}=b$, fimiliter fit $\frac{f f-\dot{d} d}{2 f}=k, \& \frac{d}{f}=t$, tunc $\mathrm{BD}=g+h_{r} \& \mathrm{BG}=k-l_{a j}$ \& quoniam in omni Triangulo $\left\{\begin{array}{l}\text { Obtuangulo } \\ \text { Acutangulo }\end{array}\right.$ Quadratum bafis xquatur $\left\{\begin{array}{l}\text { Summx } \\ \text { Differentix }\end{array}\right\}$ Quadratorum Laterum, \& Dupli Rectanguli Laterum in Co-finum Anguli comprehení ducti, erit $g g+2 g b a+b b a a+k k-2 k l a+l l a n$ $+2 \mathrm{gks}-2 \mathrm{gls} a+2 k b s a-2 b l s a a$ xqualis quadrato DG : Sed $D G$ xqualis eft Sinui Anguli $D F G$, vel $D B G$, ino, , id eft $F B$, ducto, (eft enim Quadrilaterum FBDG; Circulo, cujus Diameter ef $E B$, In: (criptum;) ideo SS $a a=g g+2 g b a+b b a a+k k-2 k l a+11 a a$
 tur, cum non excedat Quadraticam Affectam, femperque componitur ex iftis Quadratis \& Rectangulis; figna tamen $+\&-$ ob diverfam tuium linea: arum conftirutionem multa cautione funt Rectangulis adhibenda.

The obliquity of XVII. I. Obliquitatem Zadiäci reperit Eratoffiencs, ante Natum Chriffum
 the obfervations Diftantia enim Tropicorum ipfl fuit $\frac{1}{8} \frac{1}{3}$ Circuli Meridiani five $470 \cdot \frac{89}{83}$,
 ${ }_{n}^{2 u a r d .}$. \quad maico tantum $-^{\frac{3}{3}}$ unius Minuti Secundi, re fane contemnenda.

Eratofthenes apud Cleomedem, Ricciolo eruente, (fupra Grad. 23.) 46'.00'. Eratofthenes à Ricciolo quafi correctus, $3 I^{\prime}$. $5^{\prime \prime \prime}$.
Hipparclous, (ante Cbrifo IAO.) Eratofthnicam retinuit Prolu Ewur Me\% P. 18. \& p .60 ;

Tabulx tamen chovarefinice, condite poft chrit. 830 . exhibent Canons cam sif wav Alexandrinorum, juxta MS. Lat. D. Hattoni, 51^{\prime}.

Pytbeas Mafflienfis, ante Clbrift. 324 . Ricciolo, 52^{\prime}. $4 \mathrm{I}^{\prime \prime \prime}$ Ariftarchus, ante Chrif. 280. Illuftri Savilio fupputante, $51^{\prime} .20^{\prime \prime \prime}$.

(261)

Ariftarchu;, ex ratiocinio Riccioli, 30^{\prime}. $00^{\prime \prime}$.
Strabo Geographus, p. 93. poft Chrijf. 30. 6t $_{0}$ Circuli, five prxter Gra. dus 23. adhuc unius, five 60.'

Nec aliter Geminus (rempore Chrifi) Cap. IV. Element. Aftron. Et Tatius c. 26. atque Proclus de Sphæra. Indique five Aftrologi, apud Noddamum Arabem, Abrabamum Abenefdram, \&c.

Noddamus Aftronomus, qui floruit. circa Ann. Dom. 1200. notat Aiscanv neque obfervatam unquam Majorem Gr. 24. neque Minorem 23°. 33^{\prime}. continuo tamen decreviffe.
Cl. Ptolem.cus, poft Cbrift. I40. Fxpius expertus, \& Crico fuo \&t Plinthide, femper reperit proximè eandem cum Eratoftbenica, $51^{\prime} .20^{\prime \prime}$.

Diftantia enim Tropicorum verfabatur inter $47 \frac{2}{3}$. \& $47 \frac{3}{4}$. Sed elegit. pro Sclidio fuo $47^{\circ} 42^{\prime} .40^{\prime \prime}$. $\Sigma \sum_{m}$. Ms γ. p. 18, 20, 21 . \& p. 27. capit pene
 rum. Theo vero in Canonibus rascyésors facilitatis caufa proteriit Minuta, Secunda. Fallitur autem Ricciolus, dum ex Climate Rhodi colligit A兮wósac modunt pro Ptolomao 23°. 30^{\prime}.

Pappus Alc.cendrinus (poft Chrift. 390.) 1. 6. Theor. $35^{\prime \prime}$. Ricciolo 30'.
Pappus, Fr. Commandino colligente $50^{\prime} .00^{\prime \prime} .00^{\prime \prime \prime}$.
Theo, (poft Cbrift. 370.) p. S8. accuratius $51^{\prime} .20^{\prime \prime} .00^{\prime \prime \prime}$.
Alibi numero rotundo, ut $p_{\text {ill }} 57$. \& paflim in Canonibus fuis weoxacisoss nondum vulgatis $5 \mathrm{I}^{\prime} .00^{\prime \prime}$. $00^{\prime \prime \prime \prime}$

Almamon Princeps, Ann. Clorifi 825. Higira 210. 23°. 35^{\prime} G\%ar. p. 44. ex Ebn-Shatir Damafeno MS. Seld. adfittentibus ei plurimis A.ftronomis. Ita enim refert Abenefdras MS. Lat. in Archivis Digbeanis. Infuper Aftronomus lncertus in Arch. Seld. affirmat Fabiaia Eln Abimanafur cum multis aliis Philofophis, tempore Almamonis, twi $\Lambda \frac{\xi}{\xi}$ arv Experimento

Iden tradit de obervatis Almamonis. Doctifimus Al Noddam in Commentare riis fuis ad Aftronomica Hofoin. Nifaburienfis. Imo addit ille eodem Eva for,-pius oblervaffe Beni Mufa modum eundem 23°. 35^{\prime}. Engladi in Campis, MS. Arab. Coll. S. 'fonn. Oxon. Hunc etiam placuiffe plerifque fequentium Aftronomorum. Sanè in eo guiefcir Alforganus Aftron, fua; C. 5 .

Motammed Ebn Gaber Al Batanius, (Al Bategnius, Racca; Riccids, A. D. 880. Ill. Savilio, 890, Giravio, p. 44. 882. Hegira, 269. Obiit illc Hco gira, 317 . A. D. 929. Abolfaragi Hitt. p. 191. $35^{\prime \prime} .0^{\prime \prime}$.
 cu 4. aitque fe adjutum longifima Albidado, feu Regula Pawallactica ad for: mam, Ptolomnicarum cum cura \&r aliduitate reperife apud Rarcam: Tropiconunv Diftantiam, 47°. 10^{\prime}. (hoc eft 59°. 36^{\prime}. minus 12°. 26^{\prime}.) atque adeo Lasitudinem Racca- 35°, quam tamen vloobegus fatuit. $36^{\circ}, 10^{\prime}$. Schicknidus so. pud Cutium, (م. 32) \& Ricciolu\% $3^{6 \circ}$.

（262）

Thabet EibnCorit，（Riccioio，A，D．I2rc．rectus 901 ，Hegira 289．）re－ perit A 结wow， $33^{\prime} \cdot 30^{\prime \prime}$ ．

Abul Hofcin Ebn Supbi， 35^{\prime} ．O0＇。
Aloul Waff Aburiani，\＆Abn Hamed Saganicnfis，Vir Ingeniofifimus，（A．D

Ita \＆auctor UASAD P，Peria in Arch Seld． 35^{\prime}
Tabulx itidem Perficx Chryfococcer， 35^{\prime} ．
Al Batrunius Abul Riban，（A．D．995．Hegira 385．Abolfaragius trunc ponit ad Hegire 463 ．feu A．D．ro7o．）ufus Quadrante，cui Radius xv．cubitorum Giav．p．44，ex Cod．Arab．Biruniz．35＇．
－Verum Abu Jaafer Alcharant，cum Socio fuo Abufadlo Harmancoifi apud Edeffam，\＆iltius Avi alii（A．D．970．）oblervarunt $\tau^{\prime \prime} \operatorname{An}^{\prime} \xi \omega a v$ ad $23^{\circ} \cdot 35^{\prime}$ ． plane non acceffiffe，fed paulo fuiffe Minorem．

Almazon F．Almanfor is（A．D．I 140. Ricc．） $33^{\prime}: 3 \mathrm{cll}$ ．at ille Clrivio \＆Majt． lino 33^{\prime} ．

Ifmael Abulfeda Princeps Hame，（A．D． 131 I ．Fegire 7 II ）in tabulis furis MS．Arab．Coll．S．Foan．retinetforte ob Almamonis auctoritaten $35^{\prime} .00^{\prime \prime}$ ．

Prophatius Fudcus（A．D．I 300．Ricc．1303．Maftino apud Curtium，p． 40. 230．amnis poft Ar，acbelem，inquit Copernicus）\＆Ricciolo，\＆MS．Coll． Meiton．32！． $\mathrm{SO}^{\prime \prime}$ ．

Abu Malmud Al Cbogandi（A．D．992．Hegiva 382．）tempore Fecroddaula， Sextante cujus Radius erat Cubitorum XL．limbufque in minuta fecunda di－ itinctus，invenerat Λ_{0}^{6} Ewosiv Minorem quam unquan captaverat aliquis Majorum fuorum，niminum $32^{\prime} .21^{\prime \prime}$ ．

Hinc Noddamus Aftronomus adfirmat（MS．Coll．Foan．）Solis Declinatio－ nem Maximam vix unquam Minorem fuiffe repertam $23^{\circ} \cdot 33^{\prime \prime}$ ．

Aräachel Hijpanus，（Gravio，p．44．A．D． 1689 ．Hegira 482 ．Ricciolo 1070 ：
Seftino apud Curtium，p． Meftino apud Curtium，p．35．1075．Copernico，1．3．c．6．Annis r90．poft Al＇Batanium ）propofuit $\Lambda^{\prime} \xi_{\xi} \omega \pi 3^{\circ} 23^{\circ} \cdot 33^{\prime} \cdot 30^{\prime \prime}$ ．Ita MS．Coll．Mert．Oxon． ubi dicitur diflerentia $17^{\prime}, 30^{\prime \prime}$ ．intercedere inter Á多wory Ptoicmiai \＆－Arच̈a－ chelis．

Apud Maragam Nobilinimus Perfa Ciojab Nafiroddinus Tufenfis，A．D． 1269 ． Higire 668．（at Gravio，p．44．261．Hegive 66c．）accuratifimè obfervavit

Hee eft minima ex Maximis Solis Declinationibus，que ad hunc ufque diem reperta fuit，ait Doctiff．Commentatorad Aftronomica Hofoin Nifabui rienfis．

Ebn Shatir Damafcenus，MS．Seld．A．D．I 363 ．ait re enmendaffe no $\xi_{\text {wo：}}$ ， non neglecta Solis Parallaxi，qux Horizontalis capta eft，＂20． $59^{\prime \prime}$＇Huic So－ lis Max．Declin． $23^{\circ} \cdot 3^{1}$ ． $00^{\prime \prime}$ ．

Olocbeguis Princeps，A．D．1437．Hegire 841．cum Aly Cufggio aliifque Aftronomis，ufus fumma cura，\＆maximis Inftrumentis（vide Gravium，＇p． 44 ）
 liana，nam MS．Seld．exhibet $23^{\circ} \cdot 30^{\prime} .27^{\prime \prime}$ ．

(263)

Rabbi Moyses Ben Maimon Fudaorum Doctifimus ait in Fad. de Comfecratione Calendarum, c. ult. fecti 4. Maximam Zodiaci Obliquitatem fuiffe, A. D.

Scias vix dimidiam partem Aftronomorum Orientalium quorum Scripta. Academix Oxon. Bibliothecis fervantur à me confultam fuiffe. Ex hifce autem Obfervatis aliifque quæ mecum adhuc cis vulgus fervo, unann eandem-
 quod vides, melioribus Organis crrorem exceflumque veteris Aftronomix probè correxerunt.
2. Whether the Poles and Axis of the Earth be really fixt in the Globe, The obliquity of : or fubject to be transferr'd from place to place, is an old Enquiry, thought and Elcention of now lately revived by Mr. Hook in his ingenious Effays upon the great Muta-the Pole contitions and Cataftrophes which in all appearance have happened to the Earth's neve anaztered; Surface. A neceffary confequence of fuch a Tranflation of the Poles would be the Change of the Latitudes of Places, which would Encreafe in thofe Regions towards which the Poles approach, and Decreafe in thofe from which they Recede: and under the Mcridian 90 Degrees removed from that in which the Poles fhift, the Latitudes continuing the fame, the Meridian Line would only alter ; but no two Places confiderably differing in Longitude: can be fuppofed, wherein if there be any fenfible Motion of the Poles, it fhall not be perceived by the alteration of the Latitude of one or both of theni.

The accurate M: EIturtellonur, has lately furnifhed us with the means of Examining this Hypothefis by Obfervation, having fent us the Meridian Altitudes of the Sun taken at Nurenburg about the two Solftices in the Year 1686. Flm. 10. He found the Meridian Altitude of the Sun $64^{\circ} \cdot 2^{\prime} .20^{\prime \prime}$. and the next day, $64^{\circ} \cdot 2^{\prime} .25^{\prime \prime}$. and on Decemb. 14. (three days after the Solltice, wherein the Sun was got two Minutes higher) he found the Meridian Altitude $17^{\circ} \cdot 9^{\prime}$. $10^{\prime \prime}$. wherefore the Solititial Altitude was $17^{\circ} \cdot 7^{\prime}$. $10^{\prime \prime}$. Thefe Heights were taken by an Inftrument of 6 Foot Radius of Brafs; and the Skill and Diligence of the Obferver is not to be doubted.

To compare with thefe, I find among Bernard walther's Obfervations made in the fame City of Nurenburg two hundred years before, viz. in the Year 1487. that the Meridian Altitude of the Sun in the Summer Solltice was ob. ferved by the Parallactick Inftrument of Ptolemy, whereby the Chord of the Sun's Diftance fromithe Zenith was oblerved 44890 Parts of 100000 Radits; the fame being confirmed by the Concurrence of the Obfervations of feveral Years both before and after. The Arch anfwering to this Chord gives the Sun's Diftance from the Zenith $25^{\circ}, 56^{\prime} .30^{\prime \prime}$. and confequently the Meridian Altitude, its Complement to a Quadrant, $64^{\circ} \cdot 3^{\prime \prime .} 30^{\prime \prime}$. Again, The fame Year 1487. the Chord of the Meridian Diftance of the Sun from the Zenith, on the day of the Winter Solltice, was found 118700 , confirmed: likewife by many fublequent Oblervations; the Arch anfwering to this Chord is $720.52^{\prime} \cdot 40^{\prime \prime}$. and its Complement $17^{\circ} \cdot 7^{\prime} \cdot 20^{\prime \prime}$. the Meridian Heighthof the Sun in the Winter Solftice.

(264)

Hence it appears; That the Solfticial. Heights were verynearly the fame at Nurenlurg 200 Years ago as now they are, that of the Summer Solftice being but one Minute differing, the other only $10^{\prime \prime}$. both which may poffibly arife from the Defects of the Inftruments of thefe Obfervers, being made with Plain Sights; but what I fhall neceffarily conclude from hence is, That if there be fuch a Motion of the Poles, it is either very flow, or elfe nearly at Right Angles to the Meridian of Nurenlurg ; in which latter. cafe, the Latitudes of Places about Tunking, Siam, Malacca, and Fava, on the one side; and in our American Plantations of Nen-England, Virginia, Famaica, \mathcal{E} a, on the other, ought to change fafteft; but I have never yet heard of any fuch thing obferved by any of our Navigators ; whence if there be fuch a Changt of the Earth's Poles, it muit neceflarily require a long time to become feiafible.

Befides, from thefe Obfervations, it appears, That the Obliquity of the Ecliptick has continued unalterated for thele 200 Years laft paft; that is to fay, that the Angle which the Earth's Axis makes with the Plain of the Ecliptick or Orb wherein the moves Annually round the Sun, has been without fenfible Change in all that time; which will be very hard to conceive, if we allow a Tranflation of the Earth's Poles; for the direction of the Axis being perfectly at liberty, it muft be purely cafual, if it fo hit, that afeer fuch Change, it make the fame Angle with the Ecliptick as before.

A farther Argument of this Slownefs of the Change of the Poles, is the Latitude of Alexandria, the Habitation of thofe famous Aftronomers of Antiquity; Eratofthenes, Timocharis, Hipparchus, and Polomy; and for that reafon it may be concluded, that this, of all the Latitudes the Ancients have left u6, ought to be one of the moft Correct. This by Ptolomy is faid to be $30^{\circ} \cdot 58^{\prime}$. North, (which he ufes in all his Computations in his Almegift, and feems derived from the proportion of the Gnomon to its Equinoctial Shadow, as ; to 3.) but in his Geography, $3^{1^{\circ}}$. juft. In the Year 1638. the Curious and Ingenious Mr. Greaves, when he went to vifit the Egyptian Pyramids, of which he has given fo good an account, did with a fufficient Inftrument obferve the Latitude of Alexandria, and found it $3^{1^{\circ}} \cdot 4^{\prime}$. or 6 Minutes more than it is reputed by Ptolomy, and before him by Eratofthenes; fo that in about 2000 Years the Latitude of Alexandria has altered only a few Minutes, and fo few, that the Accuracy of the Obfervations of the Ancients may well be queftioned: but both being granted, this Motion will amount to no more than a Degree in 20000 Years.

This is faid not with intent to Invalidate what Mr. Fook hath from fo good Grounds advanced, wiz. That the Ball of the Earth, at leaft the Fluids thereof, being neceffarily of the Figure of a Spheroites Prolatus, or flat Oval, whofe fhorteft Diameter is the Axis, and greatef Circle the Equinoctial; if the Poles be fuppofed changed, the Equinoctial will: be, fo too; and confequently the Water mult rife and cover thofe Parts from' which the Poles recede, and fall off, and leave bare thofe Places toward's which, the Poles approach. By this means it may be accounted for, how fuch ftrange Marine things are found on the Tops of Hills, and to deep under Ground ; and frarce

(265)

any other way: But from theef, and the like Obfervations, it will follow, That if thele Inundations are produced by any regular Motion of the Poles, it would require a prodigious number of Ages to effect thofe Changes we may be certain have been. Befides, If the Accefs and Recefs of the Sea were after fuch a gradual manner, as when produced by fuch an eafie Tranflation of the Poles, as can by Obfervation be admitted, thofe Inundations could never be.fatal to the Inhabitants, for that they would always give notice of their coming, fo that the Pcople might provide for their Safety. But the Holy Scriptures, and Pagan Tradition, do unanimoufly agree, That the laft great Deluge was brought to pafs in a few days, with no previous notice, fo that the account we have thereof could nor' by this Hypothefis be made out, without the fuppofition of a great and fudden alteration in the Poles of the Earth's Diurnal Revolution; for which, whether we fhould have recourfe to the intelligent Powers that frift impreft this Whirling Motion on the Ball, or leave it to be performed Naturally, by the cafual Chock of fome Tranfient Body, fuch as a Comet, or the like, whereby the former Axis might be loft, and a New Revolution produced, differing both in Time and Pofition from the Old, I thall not undertake to difpute; fuch a Suppofition would include likewife a Change of the Length of the Year and Eccentricity of the Earth's Orb; for which yet we have no fort of Authority.
3.1. As I was wondering how an ordinary Mathematician could mifs fo eafie \boldsymbol{A} Suppofed cila thing as the drawing a true Meridian, fo far as in the inftance of the old Meridian in the Church of St. Petronio in Bononia, which is found by M. Caf. fini to vary 8 or 9 Degrees from the true Meridian of the Place; and in that 11.255. of the Meridian of Vraniburg, which is. found by M. Picart, and others, to vary 18^{\prime}; I hit upon this thought, that Meridians mult needs Vary. For you know, that (taking it for granted that the Earth moves, छुc.) befides the Diurnal and Annual Revolutions, there muft be alfo a third to account for that flow Motion of the Fixed Stars, upon the Poles of the Ecliptick, in about 25000 Years ; which is Solved by the Direction of the Earth's Axis from one Point to another of the Polar Circle. And that Direction being nothing but a certain Wabble in the Earth's Motion, muft needs make the Noon fhade of a Perpendicular not lie always in the fame Line.
2. This being a Neiv Suggeftion deferves to be confider'd : For' it is not confider'?, by, probable that fo careful a man as Tycho, and thofe concerned in the Church Dr. Wallis. of St. Petronio, fhould be fo much miftaken in the Meridian Line. But if ${ }^{\text {Ibil. } 102860}$ there be ought of this Nature, it muft arife from a Change of the Terreftrial Poles (here on Earth) of the Earth's Diurnal Motion ; (not of their Pointing to this or that of the Fixed Stars: For if, the Poles of this Diurnal Motion remain fixed to the fame Place on the Earth; the Mcridians (which pafs through thefe Poles) muit remain the famc.
XVIII. I have had the good hap to meafure the Ditances of Mars from The Farallix of two Stars the fame Night; whereby. I find, that his Parallax was very fmall, the Sun; by certainly not $30^{\prime \prime}:$ fo that I believe, the Sun's Parallax is not more than I $0^{\prime \prime}$. Mr. Flarntee 3.
n. 96. p. 61000

To fint the ${ }^{\text {an }}$ n's Ingrefs into the Tropical Signs; by Mr. Edm. Halley.
13. 2150 f. 12.
XIX. It may perhaps pafs for a Paradox, if I fhould affert, That it is an eafier matter to be affured of the Moments of the Tropicks, or of the Times of the Sun's entrance into Cancer and Capricorn, than it is to obferve the true Times of the 压quinoctials or Ingrefs into Arics and Libra. But I here defign to fhew a Method to find the Moment. of the Tropicks capable of all the exactnefs the moft Accurate can defire ; and that without any confiderat tion of the Parallax of the Surn, of the Refractions of the Air, of the greateft Obliquity of the Ecliptick, or Latitude of the place : All which are required, to afcertain the Times of the Equinoctials from Obfervation; and which being faultily aflumed, have occafioned an Error of near three Hours in the Times of the Equinoctials deduced from the Tables of the Noble Tycho Brabe and Kepler, the Vernal being fo much later, and the Autumnal. fo much earlier than by the Calculus of thefe fannous Authors.

Now before we proceed, it will be neceffary to premife the following Lemmata, ferving to demonftrate this Method; viz.

1. That the Motion of the Sun in the Ecliptick, about the Time of the Tropicks, is fo nearly Equable, that the Difference from Equality is not fenfible, from 5 gr . before the Tropick to 5 days after, by reafon of the nearneff of the Apogzon of the Sun to the Tropick of Cancer.
2. That for 5 Deg. before and aftei the Tropicks, the Differences whereby the Sun falls flort of the Tropicks, are as the Vorfed Sines of the Sun's DiItance in Longitude from the Tropicks, which Verfed Sines in Arches under 5 Degrees, are beyond the utmoft Nicety of Senfe, as the Squares of thofe Arches. Erom thefe two follow a third
3. That for 5 days before and after the Tropicks, the Declination of the Sun falls fhort of the utmoft Tropical Declination, by Spaces which are in Duplicatc Proportion, or as the Squares of the Times by, which the Sun is wanting of, or palt, the Moment of the Tropick.

Hence it is evident, That if the Shadows of the Sun; either in the Me midian, or any other Azimuth, be carefully obferved about the time of the Tropicks, the Spaces whereby the Tropical Shade falls flort of, or exceeds. thore at other times, are always proportionable to the Squares of the Intervals. of Time between thofe Obfervations and the true. Time of the Tropick, and confequently if the Line, on which the Iimits of the Shade is taken, be made the:Axis, and the correfpondent Times from the Tropick Expounded by Lines, be erected on their refpective Points in the Axis as Ordinates, the extremities of thofe Lines fhall touch the Curve of a Parabola. Thus a, b, c, e,
3s: $124 *$ being fuppofed Points obferved, the Lines $a \mathrm{~B}, b \mathrm{C}, \subset \mathrm{A}, \circ \mathrm{F}$, are.refpectively Proportional to the Times of each Obfervation before or affer the Tropical Moment in Cancer.

This premifed, we fhall be abie to bring the Problem of finding the true Time of the: Tropick by three Obfervations, to this Geometrical one: Having threc Pciants in a Parabola $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{O} \mathrm{A}, \mathrm{F}, \mathrm{C}$, given, togethocr with the Wirction of the Axis, to find the Diftance of thofe, Poizes from the Axim.

Of this there are two Cafes ; the one, when the time of the fecond Obfervation B is precifely in the middle between A and C : In this Cafe, putting t for the whole time between A and C, we fliall have Ac, the Interval of the remoteft Obfervation A, from the Tropick, by the following Analogy.

As $2 a c-b c:$ to $2 a c-\frac{2}{2} b c::$ So is $\frac{1}{2} t$, or $\mathrm{AE}:$ to $\mathrm{A} c$, the time of the remoteft Obfervation A, from the Trópick.

But the other Cafe, when the middle Obfervation is not exactly in the middle between the other two Times, as at F , is fomething more operofe, and the whole Time from A, to C, being put $=t$, and from A, ts $F,=s$, $c c=c$, and $b c=b$, the Thcorm will. fand thus $\frac{t+c-b s s}{2+c-2 b_{s}}=A c_{3}$ the Time fought.

To illuftrate this Method of Calculation, it may perhaps be requifite to give you one or two Examples:

Ann. 1500. Bernard Walter in the month of fune at Nuremberg, obferved the Chord of the Diftance of the Sun from the Zenith, by a large Paralw lactick Inftrument of Ptolemy, as follows:

$$
\left.\begin{array}{lll}
\text { Fune 2. } & 45467 . \\
\text { Fune 9. } & 44934 . \\
\text { Fune 16. } & 44990 .
\end{array}\right\} \text { and }\left\{\begin{array}{lll}
\text { Fune 8. } & 44975 . \\
\text { Fune 12. } & 44883 . \\
\text { Fune 16. } & 44990 .
\end{array}\right.
$$

In both which Cafes, the Middle Time' is exactly in the middle between the Extreams, and therefore in the former three, $a c=533, b c=477$, and t, the Time between being I4 days, by the firlt Rule, the Time of the Tropick will be found by this Proportion ; as $589:$ to $827 \frac{1}{2}::$ So $\frac{1}{2} t$, or 7 days: to 9 days, $20^{\text {h. }} 2^{\prime}$. Whence the Tropick, Ann. 1500. is concluded to have fallen fune $1 \mathrm{I} .20^{\mathrm{h}} .2^{\prime}$. In the latter three, $a c$ is = 107 , and $b c=15$, and the whole Interval of Time is 8 days $=$ to t; whence, as 199 : to $206 \frac{1}{2}::$ fo is 4 days to $4^{\text {d. }} 3^{\mathrm{h}} \cdot 37^{\prime}$; which taken from the r 6 th day at Noon, leaves IId. 20^{h}. 23^{\prime}. for the Time of the Tropick, agreeing with the former to the third part of an Hour.

Again, Ann. 1636. Gaffendus at Marfeilles, obferved the Summer Solttice by: a Gnomon of 55 Foot high, in order to determine the Proportion of the Gnomon to the Solftitial Shade, and he hath left us thefe Obfervations, whicly may ferve as an Example fur the Second Rule.
$\left.\begin{array}{r}\text { Fune } 19 \\ 20 . \\ 21 . \\ 22 .\end{array}\right\}$ St. N. fhadow $\left\{\begin{array}{l}31766 \\ 31753 \\ 31751 \\ 3.759 .\end{array}\right\}$ Parts, whereof the Gnomon was 89428.

Thefe being divided into two Setts of three Obfervations, each; viz. The 19 th, 20 th, and 22 d , and the 19 th, 21 th, and 22 d , we fhall have in the firft three, $c=13$, and $b=7, t=3$ days, $s=1$; and in the fecond, $c=$ 15 , and $b=7, t=3$, and $s=2$. Whence according to the Rule, the 19 th day at Noon the Sun wanted of the Tropick a Time Proportionate to one day, as itc-ssb: to $2 t c-2 b s$, that is, as 110 : to σ_{4} in the firt. Sett, or $107:$ to 62 in the fecond Sett; that is, 1 d. $17^{\text {h }} .15^{\prime}$. in the firft, or $1^{\text {d. }} 7^{\text {hi. }} 25^{\prime}$. in the fecond Sett: So that we may conclude the moment. of the Tropick to havebeen, func $1 c^{d}$. $17^{\mathrm{h}} \cdot 20^{\prime}$. in the Meridian of Marfeilles.

Now that theie two Tropical Times thus obtained, will be found to confirm each others Exactnefs from their near Agreement, appears by the Interval of Time between them, viz. $1^{\mathrm{d}} \cdot 2^{\mathrm{h}} \cdot 30^{\prime}$. lefs than 136 fulian Years, whereof $1^{d} \cdot 1^{\text {h }} .8^{\prime}$. arifes from the Defect of the Length of the Tropical Year from the Fulian, and the reft from the Progrefion of the Sun's Apogaon in that time; fo that no two Obfervations made by the fame Obferver in the fame place, can better anfwer each other, and that without any the leaft Artifice or Force in the management of them.

What were the Methods ufed by the Ancients to conclude the Hour of the Tropicks, Ptolemy has no where delivered; but it were to have been wiffed; that they had been aware of this, that fo we might have been more certain. of the Moments of the Tropicks we-have received from them, which would have been of fingular ufe to determine the Queftion, Whether the Sun's. Apogron be fixt in the Starry Heaven; or if it muve, What is the true Motion thereof? It is certain, That if we take the Account of Ptolimy, the Tropick faid to be obferved by Euctemon and Mieton, Funii 27. Manè, Anno: 432. Ante Cloritum, can no ways be reconciled, without fuppofing the Obfervation made the next day, or Fune 28. in the Morning. And Ptolemy's own Tropick, Obferved, in the third Year of Antoninus, Ann!lchriff. 140. was certainly on the 23 d , and not the 24 th day of \mathcal{F} unc, as will appear to thofe that fhall duly confider and compare them with the Length: of the Year deduced from the diligent and concordant Oblervations of thofe two great Aftronomical Genii, Hipparchus and Albatani; eftablifhed and confirmed by the Concurrence of all the Modern Accuracy. For thefe Oblervations give the Length of the Tropical Year, fuch as to Anticipate the Fulian. Account only one day in 300 Years; but we are now fecure, that the faid Period of the Sun's Revolution does Anticipate-very nearly 3 days in 400 Years ; fo that the Tables of Ptolemy founded on that Suppofition, do Err about a whole Day in the Sun's Place, for every 240 years. Which Principal Errour, in fo Fundamental a Point, does Vitiate the whole Superftructure of. the Almagef, and ferves to Convict its Author of want of Diligence, or Fidelity, on both.

But to return to our Method, the great Adviantage we have hereby, is, That any very high Building ferves for an Inftrument, or the top of any high Tower or Steeple, or even any high Wall whatoever, that may be fuf-

(269)

ficient to intercept the Sun, and caft a true Shade, and make the Spaces large and fair, though the Heighth and Diftance of the Building, and Pofi-tion of the Plain, upon which you receive the Shade, and of the Line on which you meafure the Spaces, be not exactly known. But it is convenient that the Plain on which you take the Shade be not far from Perpendicular to the Sun, at leaft not very Oblique, and that the Wall which cafts the Shade, be ffraight and fmooth at the top, and its Direction nearly Eart and Weft. The principal Objection is, That the Penumbira, or Partile Shade of the Sun is in its Extreams very difficult to diftinguifh from the true Shade, which will render this Obfervation hard to determine nicely. But if the Surn be tranfnitted through a Telefoope, after the manner ured to take his S pecies in a Solar Eclipfe, and the upper half of the Object Glafs be cut of by a. Paper paited thereon, and the exact upper Limb of the Sun be feen juft emerging out of, or rather continging the Species of the Wall, (the Pofition of the Telefcope being regulated by a fine Hair extended in the Focus of the Eye. Glafs) I am affured, that the limit of the Shade may be ob-tained to the utmoft Exactnefs. I fhall only further advertife, That theWinter Tropick by this Method may be more certainly obtained than theSummer's, by reafon that the fame Gnomon does afford a much larger Raw dius for this manner of Obfervation.
XX. I have found it neceffary, to make new Solar Numbers, becaure The Solir Nunno in my old, I had neglected to apply Refractions in all the Altitudes above by bers correfed; 30 Degrees; wherein yet Reafon and fome little Experience hath fiewed fleed J. J.Flamme, they are not Infenfible. I found S: Cafinis's Obfervations, which [n. 110 took from Ricciolus his Afonomia Reformata, much more Accurate thanTyclos's, and therefore fought out Numbers that might anfiver them. TheApograum 1 found it neceflary to promote 44 Minutes; fo that, Anno I_{n} cunte 1655° it might be in $\sigma^{\circ} 7^{\circ} .30^{\prime}$. $00^{\prime \prime}$. and to make the greateft Equation only 1°. $54^{\prime} \cdot 13^{\prime \prime}$. whereby I found, the Pheriomena would be. anfiwered much more accurately, than I expected, and as near, all things con-fidered, as I could defire:

But fill I was uncertain, Whecher the Refractions in the faid Caffinis Tables were juft meafures or not, and I had no Conveniencies for ma-king. Trial. At laft, I thought on this Expedient, which fully: fatisfied me ; viru.

I confidered, That if fome of thofe Obfervations of the Diffances of ? from the © by Day, and from the Stars in the Night preceding or follow ing, were skillfully Examined, they might fhew me the true Quantity- of the Equations of the Sun's Orb, or rather. the Difference: of his: Mean and Equal Motion. I turned over his Progymmafinatn, and pitched on two:= The firft made, Anm. 1585. March $5 \cdots 4^{\text {h }} \cdot 42^{\prime}$ '. and. $7^{\text {h. }}$. 12^{\prime}. Poot Meridicm :whereby 1 found, the \odot at $4^{\mathrm{h}} \cdot 42^{\prime}$. Was $94^{\circ} \cdot 47^{\prime}$. in Antecedence of the . Lucida Calcis, II. The fecond made, Amn. 1585. Septemb. 15. 5hi 15'. and 6 h. 55^{\prime}. Manci Wherefrom, (applying, and confidering the Re
(fractions in both) I found the Sun at σ_{h}. 55°. to be 740.30°. in Conficquence of the Laver Head of II. The Difference of Longitude betwixt there two Stars is 170.59^{\prime} : And therefore now the Sun in Confequence of the Lucidin Calcis' II. 929. 29'. So that the Sun's Apparent. Motion betwist the Year 1582. Mar. 5. 4h: 42^{\prime}. and the Year 1585 . Septcml. 15. 6h. 55^{\prime}. Manè, (befides the whole Revolutions) was I87o. I6'. but the Mean Motion is $191 \mathrm{I} .2^{\prime}$. greater than the Apparent by $30.4 .66^{\prime}$. which parted in Proportion to the Equation of the Earth's Motion, collected for thofe times from nyy New Tables, gives the greateft Equation of the Orb, 1o. $54^{\prime} .{ }^{\prime \prime} 5^{\prime}$. confenting to my wonder (without any wrefting of the Obfervations) with that, which I deduced from Cafini's Correct Meridional Altitudes.

The. Sun's Motion by the Tables which I now ufe, grounded on this Equation, is lefs than Tyobo's by no lefs than1 $9^{\prime \prime}$. That great Equation made hinn commit no fmall Errors, and put him upon ftrange Shifts to hide and falve them. So that all his Obfervations of the Planets in their Oppofitions to the Sun, are to be Corrected, before we may attempt to repreFent then by Numbers : For his Errours in the Sun's Place made him Err fometimes 5 or 6 hours in the time of the Oppofition; which muft be Reformed.

The Equality of Natural:Days; by. profeifor of Profelfor of Minthematicks at Seville. n. 1.18. p. $42 \sigma_{0}$
XXI. Non parvunn adhuc eft Diffidium inter Aftronomos, qua nta fit in xquando Tempore Profthaphorefis, ita ut Longomontannus fateatur, nullann in Aftronomico Pulvere majorem Difficultatem fe inveniffe; quod cum notarem, animadverti in quiburdan Coeli Obfervationibus à me factis, quid ex illis eveniret; \&\%, cum mihi effet Horologium Rotatile Pendulum, admodum exactum, Lineâ Meridianâ artificialiter Conffitutâ, examinabam Solis in Meridianum Ingreflum, fingulis Diebus; cumn quo ad amuflinn Horologium meum congruebats, \&\% fir difcrepabat aliquando, rarifinimè duobus minutis difcriminabat, quod, clum opus erat, emendabani Quare per triennium continuando, \& quotidic Solem in Meridiano obfervando, cum licebat (quod in hac Regionis Parte frepè fapius fit) inveni tandem nullam Diem Naturalem Longioren Revolutionem, in Uno vel Alio Anni Tempore, aliâ Die habuiffe, unde intrepidè dico omnes Dies Naturales. xquales effe, \& fi adruc aliqua Differentiola intercedit, non effe Senfibilem. Hec volui notum facere, ut Aftronomos hoc Scrupulo liberarem, quod tam multos torfit \&\& indiès torquet, quanquam Tyclonica Equatio propter Ecliptice Obliquitatem non fit rejicienda.

Rufuted; by Mr. Flamfteed. Ibid. 9.430.
2.: Dies quomodo .Equales effe poffint, \& tamen Equatio Tycbonica admitti, vix me capere fateor. Ob inxquales etenim xqualium Eclipticx partium Rectas Afcenfiones, Dies unus Aqquinoctialis Tropico uno Brevior erit Scrupulis Horx fecundis 40 ; \& Dies' I4 Tropici, totidem E'quinoctialibus Longiorcs funt fexta. Hore parte, feu Scrupulis primis 10 . Hanc autem Differentiam. Majorem credo, quam ut cam in Obfervationibus. fuit non perciperet Profefofor Hijpalenfus, proindeque ipfum in examinandis iis: Tychonicram Temporis_ \&quationem adhibuiff Autumem.

271)

Sed \& ponamus, Æquales effe Primi Mobilis Revolutiones (quod nulli, quì Ptolmaicam Hypotbefin admittant, unquatm iverunt inficias) neceffario confequitur, nec Equationen! Tenporis, ab iuxquali Solis in Orbita fua Inceffu enatam, rejiciendan effé : Etenim cum Apogeus quotidiè promoveatur tantum 57^{\prime}. $10^{\prime \prime}$. Perigeus vero 61^{\prime}. $15^{\prime \prime \prime}$; Apogeus equident citius $16^{\prime \prime}$, (feu Tempore abfumpto dum Primum Mobile revolvit $4^{4^{\prime}} \cdot 5^{\prime \prime} \cdot$) 1. Meridie in Meridianum Diei fequentis recurret, quam Perigeus: Attamen quandoquidem progenita ex hac caufa Æquatio tardius adnittit. Diurnum Incrementum, Scil. $8^{\prime \prime}$. quotidiè, ad fummum cum vélociflima, \&\& vix Dielpus 15 ad duorum Scrupulorum Quantitatem excrẹcit, eâ, cujus ille meminịit, duorum Scrupulorunn Emendatione, in Horologio fuo ablatam credo : de qua videat propterea. Vir Doctiflimus.

Demun vero, f_{1} in Copornicaniam Hypotbofin fit promior, quàm in Prolemaicam, in ea etiam, fuppofitis Terre Ifochronis Ruvolutionibus, exdem conFequuntnr Aqquationes. Fateor equidem, amoveri poffe, \& in contrariums trahi, ab Inæquali Inceffu Solis in Orbita fua provenientem Temporis \mathbb{E} quationem, fi inxquales Terrresvel Primi Mobilis (perinde eninn eft utrum horum ftatuerimus) Revolutioncs fupponamus: Scd fi Temporis Naturana benè perpendat, facile intelliget, impolfibile effe, omnenn ejus Inxqualitatem ammoveri.
XXII.

An Equation Table; by M. Caffini.
42.214. p. 243.

Tabula Equationis Dierum, cum Solis Loco adeunda.

G.	Sub."	"Add."	Add. 11	'Sub.	$\frac{\Omega}{\text { Sub. }}$	$\frac{m x}{\text { Sub. " }}$
-	$7 \quad 45$	I II		59	43	28
	$7 \quad 26$	24	4	15	45	53
2	7	37	3.56	29	46	37
3	$6 \quad 48$	49	51	42	47	I 21
4	$6 \quad 29$	21	45	54	48	11
5	$6 \quad 10$	$2 \quad 12$	39	26	48	48
6	$5 \quad 51$	23	32	19	48	30
7	31	33	25	32	46	12
8	5 II	43	17	44	44	-Add 7
9	4.51	53		56	$5 \quad 40$	26
10	43 I		30	38	36	45
II	4 II	13	51	20	31	I 3
12	$3 \quad 52$	22	4 I	32	25	12 I
13	333	30	3 I	43	19	40
${ }^{14}$	$3 \quad 14$	37	21	54	13	59
I5	255	43	10	4	56	19
16	2	4.8	20	414	58	
17	219	353	4.9	4.24	49	31
18	2 I	$3 \quad 57$	37	434	439	22
$\underline{19}$	43	4	25	$4 \quad 43$	4.30	3 44
20	26	45	13		420	6
21	19	4	1 I	4.59	$4 \quad 9$	29
22	- 52	4 10	49	56	57	45 I
23	35	412	37	13	45	13
24	19	4 13	24	19	32	$5 \quad 35$
25		4 II			19	57
26	-Add 12	4.9	oSub. 3	29	35	19
27	- 27	4	16	33	5 I	4 I
28	- 42	4	- 29	37	37	2
29						
30	II		591	43	2.8	$7 \quad 44$

	dd. ${ }^{\prime \prime}$	Add.	'Add. ${ }^{\prime \prime}$			Sub. "
		15 - 34	I3	5	II	14
		$15 \quad 42$	13	- 27	$12 \quad 4$	14
	25	$15 \quad 48$	$\begin{array}{ll}12 & 48 \\ 12\end{array}$	- Sub. 5	$12 \quad 19$	I4
	45	$15 \quad 53$	$12 \quad 29$		$12 \quad 35$	
4	$9-5$	$15 \quad 57$	12	4	$12 \quad 50$	14
	25	16	11	33	13	13
6	44	16	II 30	2.3	13.19	13
	103	16	1110		$13 \quad 32$	13
	10	16	10. 49		134	
9	10-41			$3 \quad 29$	$\underline{13}$	
10	II			3. 57	14	13
II	II	16		4.25	$\mathrm{I}_{4} 14$	$12 \quad 56$
12	38	16	17		14.22	
13	1157	16	51	$\begin{array}{cc}5 & 20\end{array}$	$14 \quad 29$	
	$12 \div 15$			$5 \quad 48$	$14 \quad 35$	
15	$12 \quad 33$	16	58	6	$14 \quad 40$	12
16	$12 \quad 50$	15. 56	31	$6 \quad 42$	1445	$11 \quad 52$
17.	$13 \quad 7$	$15 \quad 50$			$14 \quad 50$	
18	13.22	15 15	$6 \quad 38$		14.54	If
19	$13-36$	15	$6 \quad 12$	7 78	$14 \quad 56$	II
20	$13 \quad 49$	15.30	45	8 8-21	$14 \quad 58$	
27	14	15	19.		14.59	
22.	14.14	15.13	52	9	$15 \quad 00$	I0 10
23	14	15	4.26	$9 \quad 3 \mathrm{I}$	15	9.52
24	$14-37$	14.52	3.58	$9 \quad 53$	15	9. 34
25	14:47	14.40	3.30	$10 \quad 13$	14.58	
26	$14 \quad 57$	$14 \quad 27$	3.1	10 $\quad 32$	$14 \quad 55$	
27	15	14.13	3 r	10. 51	14.51	
28.	15 15	13 58		1 I	14. 47	
29	$15-25$	13 42		11-29	$\begin{array}{r}14 \quad 42 \\ \hline\end{array}$	
					$14 \quad 26$	

Vol. I. Nn
XXIII. Am. 1660. April 27. About 8 of the Clock in the Murning there

S:oas OBerend in tive Sun; by Mr. Boyle.
म. 740 .p. 2216. appeard a Spot in the Lower Limb of the Sun, a little towards the South of its Equator, which was entred about $\frac{1}{4}$? ${ }^{3}$ of the Diameter of the Sur, it felf being about $\frac{1}{1} \frac{3}{6}-$ in its fhorteft Diameter, of that of the. Sun ; its longeft, about $\frac{1}{4}$ of the fame. It difappeared upon Wednefday Morning, May 9 . though we faw it the day before about 10 in the Morning to be near about the fame Diftance from the. Weftward Limb, a little South of its. Æquator, that it firf appeared to be from the Eaftward Limb, a litcle South alfo of its Equator: It feem'd to move fafter in the middle of the Sun than towards the Limb. It was a very dark Spot, almoft of a Quadrangular Form, and was enclofed roind with a kind of duskifh Cloud,

We firft obferved this very fame Spot both for Figure, Colour, and Bulk, to be Re-entred the Sun May 25. when it appear'd to be in a part of the fame Line it had formerly traced; and was Entred about $\frac{4}{3} \frac{4}{3}$ of its Diameter about 7 a Clock in the Afternoon. At the fame time there appear'd another Spot, which was juft Entered, and appeared to be Entered not above $\overline{1}^{\frac{1}{3}} 2$ part of the Sun's Diameter. It appeared to be longeft towards the North and South, and thortef towards the Eaft and Weft. There feem'd to be difperfed about it divers fmall Clouds here and there.

Spops:Obfervid in the Sun; by M. Picard.
n. 74 . 1.2238. 3. 75. P. 2253. Seed.

By M. Caflini: n. 74. p . 2238. n, 25: \%. 22.50 .
XXIV. I: Ann. 167 I. M. Picard, at Sea near the Texel, obferv'd a Spot in the Sun from Auc 3. St. N. to the I9th. It appear'd -at frift, like the Tail of a Scorpion; but on the Igth day, refembling a Melon-
2. Aug. i1. (St. N.) 土 671. About 6 a Clock at Night, M. Cagini, with 2 a thrce Foot Glafs, remark'd in the Sun's Difque, two Spots very dark, diftant from its apparent Center about-the third part of his Semi-Diameter. They were in the Southern part of the Sun, and their Elongation from the Pirallel of-the Equator paffing through the Center of the Sun, was about $6 \frac{1}{0}$ part of his Diameter. The Time which lapfed between the Tranfite of the Sun's Center and that of the firft of thefe Spots, was $22^{\prime \prime}$. or $23^{\prime \prime}$. the Semidiameter of the Sun then paffing in 66". The firft of thefe Spots, being looked upon with a Telefcope of 17 Foot long, appear'd of a fomewhat Oval Figure ; the other was Oblong, and a little Curved, like -the Hebrew Letter Fod ; and both together were furrounded by a Corolla, or Coronet, made up of litte dark Points, which conformed it. felf to the Figure of the $s_{\text {pot's, confidered as they were joyn'd together. }}$

Aug. I2. He perceived that they were nearer his Center. The Time between the paffage of the Sun's Center, and that of the Interior edge of the Caronet which encompafs'd them both, was then of $16^{\prime \prime}$. At. 7 a Clock it was but of $\mathrm{I}^{\prime \prime}$ '. and the Southern Limb of the Coronet touched the Parallel pafing through the. sun's Center. The firt Spot was compofed of two others almoft round, and conjoined. The fecond reprefented the fhape of a Scorpion. The third was round. And they were all three environed with a Coronet, which was compofed, as we faid above, of abundance of little obfcure Prickss. "This Coronet appear'd to be clearer than the reft of the Sun, when

(375)

looked upon with the fhort Glafs, and darker when feen with the long. Without it there were other Points, but very black ones; vin. Five near the round Spot on the South-fide, and another near the Scorpion's Tail on the North-fide.

At 8 a Clock and 48^{\prime}. the Figure of the Scorpion was feen divided into feveral pieces, as if his Tail and Arms had been cut off. The Northerra Point appeard no more, there remaining none but thofe on the South-fide; and the length of the enclofure of all the Spots, comprehended between the Extremities, was of $I^{\prime \prime}$ ' $15^{\prime \prime}$. and the Breadth of $30^{\prime \prime}$.

The fame rath Day, at 6 in the Evening, he found no great Change ia The firft $S p o t$. The other two were fevered into 5 diftinct ones, compals'd about with a Coronct, together with 5 black Points, which ftoor in a ftreingt row, and after another manner than they did in the Morning. From 6 at Night unto 7, the time between the paffage of the Sun's Center, and that of the Coronct's Linib, was found to be one time, of $8^{\prime \prime}$. and another time of $7 \frac{1}{2}$. The Diftance of the Spots unto the Parallel, paffing through the Sun's Center, was near the fame on the North fide with what it had been obferved to be in the Morning on the South-fide.

Aug. 13. Between the Rifing of the Sun, and half an Hour paft 6 in the Morning, the edge of the Coronet was turned to a Point on the Soutl:fide, and was diftant from the Equator on the North-fide, half a Minute; and there was but a Second of Time from the paffage of the Sun's Center unto the paffage of the fame anterior edge of the Coronet.

At 8 a Clock, 30^{\prime}. the fore-edge was in the fame Horary Citcle with the Center of the Sun : fo that in ome Day and an half, thefe Spots have run through very near the third part of the Sun's Apparent Semidiameter, which giveth an Arch of 19 Degrees and an half of the Circumference of the Sun's Body'; and confeguenty their Diurnal Motion about the Sun's Axe hath been of 13 Degrees; and the time of their Periodical Revolution, as far as we could conjecture in fo little time, muft be about 27. Days and an half.

Aus. 14. At 6 in the Morning, there pafsd, $5^{\prime \prime}$, of Time between the n. 78. f. 302% paffage of the Anterior Limb of the Crom, and the paffage of the Sun's Center through the fame Horary Circle: And then the Southern Limb of the Croin was a Minute and an half diftant, toward the North, from the Parallel of the Aquator, pafing through the fante Center of the Sun. The Figure of the firft Spot was almoft the fame with that of the Day before. The fecond had taken the form of an Heart, the point of which was turned to the North-fide, and its Bafe between the South and the Ealt. Three other fruall spots, difpofed Triangle-wife, ftood over the kiad Bafe, and were accompan nied with two others upon a Line turned Southward. And they were all encompafied by a Crown running out into a point on the South-fide; and on the North-fide, Eaftward, it had an Appendix.

Aug. I5. At 6 in the Morning, there paffed $27^{\prime \prime}$. between the paffage of the Anterior Limb of the Crown, and that of the Suin's Center through the fame Horary Circle. The Southern Limb of the fame Crown was two Ali. nutes and an half diftant from the Parallel of the Equator, paffing through

(276)

the Center of the Sun, whofe Diameter pafs'd in $2^{\prime} \cdot 9^{\prime \prime}$. through the fame Horary Circle. The fift Spot had a little changed its Figure ; the fecond was Quadrangular, longer from Eaft to Weft, than from North to South: It appeared bigger than ordinary, and had withall on its fides, within the Compafs of the Crown, three other fmall spots. There were alfo feen four more without the faid Crown on the Southfide.

Aur. I6. at 6 in the Morning, there was 27°. between the paffage of the Sun's Anterion Limb, and the paftage of the Anterior Limb of the Croma through the lame Horary Circle; and $38^{\prime \prime}$. between the paflage of the Anterior Limb of the Cromn, unto the paffage of. the Sun's Center. The Southern Limb of the Crown was $3^{\frac{x^{\prime}}{2}}$ off from the Parallel of the Aquator, paffing through the Center of the sun, towards the North. And the Obfervation having been made yet more exactly at half an hour paft 7 of the fame Morning, this Diftance was found of $3^{\prime \prime}$. $33^{\prime \prime}$. The Figure of the firlt Spot in the begiming of the Obfervation, differ'd not much from that of the precedent day; but afterwards it was feen divided into two. The fecond, which likewife feemed to be the fame in the beginning, was afterwards divided into three, accompanied with black and dark Points without the Crown on the Southfide. The fame day at 6 a Clock, and 15\% at night, the. Figures of thefe Spots were much changed. There were 5 Spots enclofed in the Crom? The two foremolt were part of that which had been feen in the Morning as one; the two others following thofe two firft, were part of the fecond in the Morning; and without there were 5 Points on the Southfide, and two more a litte further to the North, which Points were ranged as in anarher Area made up of other Points fo fmall, that they could farce be perceived.

Aug. 17. in the Morning, immediately after the Rifing of the Sun, there appeared three very dark Spots, which form'd in a manner thefe Letters, Fn \mathcal{F}, pofited from. Eaft to Welt, and included in their wonted Crown, which ftretched out, as 'twcre, two Arms, or two Handles, one to the South, and the other to the North. There pafs'd 1811 . betwcen the paffage of the fore moft Limb of the Sun, and that of the foremoft Limb of the Croon, and $47 \frac{1}{2}^{\prime \prime}$. between the paffage of the Anterior Limb of the Crawn unto the paffage of the Sun's Center. The Southern Limb of the fame Crown was diftant I I": $17^{\prime \prime}$. from the Parallel that touched the Sun on the Northfide, and $4^{\prime} \cdot 38^{\prime \prime}$. from the Parallel that pafs'd through his Center.

Aug. 18. at 7 in the Morning, the Spots, which appeard through fome Clouds, had almoft the fame hape with thofe of the day before, only with this difference, that they were a little clofer together, drawing from Eaft to Weft. There lapfed 13 ${ }^{\prime \prime}$: between the paffage of the Anterior Limb of the Suns, and that of the Anterior Limb of the Spot, through the fame Horary Circle, and $5^{2}{ }_{2}^{1 / \prime \%}$. of the foremoft Limb of the $S_{p o t}$ unto the paffage of the Center. The Southern Limb of the Spot was $9^{*}: 13^{\prime \prime \prime}$. diftant from the Parallel that touched the. Northern Limb of the Sun, and $6.14^{1 / 1}$. from the Parallel that pafs'd through his Center. At 5 a Clock and $55^{\prime} \cdot$ at night of the fame day, there lapfed $11^{\prime \prime}$: between the paffage: of the Anterior Limb Qf the: Sun through the fame Horary Circle, and the paffage of the Anterior

(277)

Limb of the Cromn, and from thence unto the paffage of the Sun's Center $542^{1 / \%}$.
Fhe Limb of the Crown next to the Parallel paffing through the Center of the Sun, was diftant from the fame Parallel $7 \cdot 4 c^{\prime \prime}$.

Aur. 19. from 4 to 5 in the Evening, the Spot appear'd Oblong near the Sun's Circumference, from which it was diftant about the breadth of the fame pot.

Aur. 20. in the Morning, which was not the full feventh from the day that they were arrived to the middle of the Difque, they were difappeared.

The Apparent Velocity nigh the Center was fuch, that if it Frad continued the fame, the Spots would have arrived almoft in 4 days to the Limb of the Difque ; but in this Hypothelis, that the Spots were adherent to the Sun's Surface, or at leaft, very nigh to it, this Apparent Velocity was to leffen according as they fhould renove from the Center, as hath come to pafs in efiect. The Diminution of the length of the Mitty Crown was in a manner proportionable to the Diminution of the-Apparent Velocity; fince that, when this Crown was in the middle, and in a Situation, wherein its true Figure could be belt feen, it appeard Oblong, and of the Form of an Human Ear, its greatelt Diameter refpecting Eaft and Weft; but being nigh the Limb, this fame Diameter feemed to ihorten; and having appear'd greateft in its firft Situation, it appeard leaft in this, becaufe it was almof in a Circle that pafs'd through the Center of the Sun, whofe equal Arclies are by fo much the more Oblique, by how much they approach more to the Limb of his Difque, andiconfequently appear lefs, according to the Rules of Opticks; mean time, the Diameter, that was turned from South to North, apparently kept the fame bignefs it had near the Center, becaufe it wasinir a Eircle almoft Parallel to the Horizon of the Sun, which formed the Reprefentation of its Limb, and whofe equal Arches (by the fame Optical Reafons) do not appear contracted.
3. Several curious: Obfervers at London have feen one of thofe Syots re- By feverab curr'd to, the Sun's Eaftern Limb about Aug. 25. St. N. as. M. Cafini Fredieted they fhould return.

4: Aug. 30. 167 I. I Aaw a large Spot in the Center of the Stin's Face By Dr. Hook. about Noon.

London.
12.75. $1 \cdot 52530$:
n. 77.1 . 229 s.

Sept. 1. At 3 a Clock, I faw the fame Spot moved about a Quarter of the Diameter of the Sun Weftward: It confinted of one greater, and two leffer black Spors; with a Dusky Cloud incompaning them : The Diameter of the whole Phxnomenon was about $\frac{1}{7} \frac{1}{2}$ of the Diameter of the Sun, and it was diftant from the next adjoyning Limb $\frac{x_{2}, 8}{72}$ (that is exactly one Quarter) of the Dianzeter of the Sun.
5. Macuix Solares Obeervatie fuere nobis Hambugi à 26. Akg. St. I. Py M. Miferus. (primo fcrè die, quo iterum Apparere coeperunt) ad ufque 5. Sept. quo ad $\frac{1}{n}$ n. $780 \%, 3035 \%$ Limbun quamproximè acceffere.
XXV. Anm. $1676.74 n$.28. St. N. Habemus in fole fatiss Iagenten Macu- Spors obferv,d lam, qux Solem ipfum mediavit h. 4. polt Meridiem, cum Latitudine Auftrali inthe Sun; by
 tavi gr. $7^{8 \frac{1}{4}}$. Si fatis habuerit Confiftentia ad abfolvendum Girculum ex. peOtanda Reftitutio ejus ad Medium, Diei 25. Ful. vefẹere, cum majore Latisudine Auftrali.

XXVI: I: Green:

(278)

XXVI. 1.

Spors obf(rvid in the Suri ; by Mr. Flamfleed, and Mr. Halley: 11. 128 . P. 587 .

${ }^{4} \mathrm{Mr}$ Halley faith, That he faw the Spot again on the fifth day, at $8 \mathrm{~h} \cdot 30^{\prime}$. Marie, very near the Linab of the Sun, to that it appeared only as a fine Line; but by reafon of its finenefs and the too great Height of the Sun, he could not take any meafures to determine its Place and Latitide by; and that while the Spot continued one, as it was fuly 25 . he meafured to the middle of it; as alfo when the pieces were divided, but not far disjoined : Afterwards, when they were feparated confiderably, he obferved the middle of the bigget Spot, which was to the South, apparently, I fuppofe but really, North : for to only his Obfetvations will agree with thofe of Mr. Flamifed exactly. is Hence it feems very Evident, (faith Mr. Flamfeced) that the'Sjot's way was not Inclined to the Ecliptick fix or feven Degrees, as Scheiner and fome others nake it, but much lefs', by the joynt Confent of the Obfervations of both our Obfervers. Mr. Falley adds, That confidering the Motion of the Spot crofs the Sun's Difque, as both their Obfervations give it, it appears that the Latitude NVas not 10 great at its Entrance into the Sum as in the middle of him: And by Mroflamficeld Oblervation it was greatelt on the firlt of Auguft, and then again Inctining towards the Ecliptick. If you grant this, it will follow, (inters Mr. Flnmifted) that the Sun's Axis was Inclined to the Plain of the Ootis Magnus; but the quantity of this Inclination mut not be very

279) :

great. The Nodes of the, Sur's Equinox and Ecliptick he gueffes to be not far from the beginning of Cancer and Capricorn; and that from Cancer to Capricorn the Earth is North of the Sun's Æequator'; from Capricorn to Cancer, South of the fame: And the-Period of the Sun's Revolution in refpect of the fixed Stars 25 Days, $9^{\frac{1}{2}}$ hours fufficiently exact. Of which things thefe two Obfervers fay, they:might have been more certain, had not the spot in its paffage broken into fo many parts, and thofe often varied their Pofitions to each other.
2. Solarcm Maculam hîc obfervavinus à dié 6 Aus. ad 14. St. Ni Collatione- by M. Caffins,. que Obfervationum didicimus, eam medium Itineris fui in Solis Difco Appa- Ibid. po 689 . rente tenuiffe circa Mediam Noctem poft 8. diem Aug: in diftantia Apparenti trium minutorum à Centro Auftrum verfús. In plures diftracta partes eft, qux invicem Boream \& Aufrum verfus indies fatis manifefto intervallo disjungebantur, adeo ut, preter Motum Communem circa: Solis Axem, fingulx partes Proprium inter fe directum habuerint. Hanc porrò Maculam diverfam effe fentio ab eâ quam procedenti Menfe funio obfervayeramus. Illa quippe cùm medium Itineris fuí in Difco Solis Apparente tenuerit die 28 ejuldem Menfis, ad eundem proximè fitum reverfa effet (fi fuiffet fuperftes) die 25 Fulii Nocte fequente, ut deducitur tum ex ejus Velocitate, Tempore fux Apparitionis oblervatâ, tum ctiam ex Curfu aliarum Macularum, qux Periodum fuam circa Solem ì nobis videntur ablolvere Spatio dierum 27 cum triente, vel 27 cum femiffe. Ejus proterea femita diverfa eft à præccdenti ; prior quippe paulo remotior fuit ab 有quatore Maculan um quàm pofterior. Hxc porrò, fi fatis habuerit Confiftentix, ad Medium Solcm redidit die 5 Septembris manè.
XXVII. Ann. 1684. Apr. 25:- About an hour before Noon I difcovered a large Spot entred within the Sun's Disk a little diftant from his following Spotsobjeries in the Suin; by . The A Flamfteed。 Limb. Thele Appearances how ever frequent in the days of Scheiner and $14.157 .20 .533 \mathrm{~F}=$ Galicco, have been fo rare of bate, that this is the only one I have feen in his face fince December 1676. By the oblerved Meridional Dittances of it, and the Sun's Southern Limb from the Vertex at Noon, 1 found it to have $3^{3} 40^{\prime \prime}$. more North Declination than the Sun's Center, and at $3{ }^{\text {h. }} .35^{\prime}{ }^{\circ}$ after Noon, I meafured its Diftance from his next Limb $40^{\prime \prime}$.

Next Morning, April 26. I faw it more Remote from his Limb, and by the Obfervations then made (at 8 h mind, determined its Longitude from the Sun's Axis $66 \frac{3}{4}$ Deg. and its Declination from the Solar Equator $9^{\frac{2}{3}}$ Deg. South. Whence fuppoling the Revolution of any point of the Sun to the fame fixed Star to be performed in 25 days 6 hours, the Angle of his Equa tor and our Ecliptick. 7 Deg. and the Longitude of his Northern Pole nx 16 Deg. I defigned the Line of its Way or Trace over the Sun, and the Points in it where the Spot would appear every Marning after at the fame hour, till its Egrefs on the 8th of May, which I found altogether confirmed by fuch Ob. feevations as I made till then; fo that I had no reafon to doubt of ate Theory.

When the Spot was near the middle of the Sun, it appeared vety broad; and atmof fquare; the Nucleus of the fame Figure about $40^{\prime \prime}$. Diameter; but when it was near the Limb much narrower, and almoft Oval: It feemed to have Confiftence enough to endure a fecond Return; if it fhall, it will enter the Vifible Disk of the Sun on the $2 i$ th: of May in the Evening, and in its. paffage over him defribe a Line nearly Streight, with greater Latitude from the Ecliptick:

Thafintin what Praportion the Planits are Enlight ne. by the Sum; by M. Auzout. 23.4. f. 63.
XXVIII. One of the means ufed by M. Aurout to Enlighten an Object in what Proportion one pleafeth, is by fome great Object Glafs, by him called a Planetary one, becaufe that by it he fhews the difference of Light, which all the Planets receivefrom the Sun, by making ufe of feveral Apertures, proportionate to their Ditances from the Sun, provided that for every 9 Foot Draught, or thereabout, one Inch of Aperture be given for the Earth. Doing this, one fees, (faith he) that the Light which Mercury receives, is far enough from being able to Burn Bodies, and yet that the fame Light is great enotigh in Siturn to fee clear there, feeing that (to him) it appears greater in Shturn, than it doth upon our Earth, when it is over-caft with Clouds, which (he adds) would farce be believed if by means of this Glafs, it did not fenfibly appear fo.

The Xquuinoxes; by M. Wortzelbaur. ก. 265.

To objerve Solur Faclipes ; by ant. Hamfted. In. 55. F. 1104.

As Fclifycio of the Sun, Alin. 1666. Эune 22. at London; by Mr. Wilioughby, pr. Pope, Dr. Hook, an.? Mr. Phillips. *. F. P. 295.
XXIX. The Equinoxes of this year 1699 according to the Obfervations of M. Wortrielbaur at Nurenbery, happened Marcls $9, \cdot 20 h 135^{\prime} \cdot 27^{\prime \prime}$. and Sept. I2. I Ch. $22^{\prime \prime} .42^{\prime \prime}$. which by his Tables ouglit to have been March 9 : $20^{\text {h. }} \cdot 40^{\prime} \cdot 30^{\prime \prime}$. and Sept. 12, 10 h. $32^{\prime} \cdot 52^{\prime \prime}$.
XXX. For the well obferving Solar Eclipfes, caft the Species of the Sun through a good Telefcope of a competent Leugth, on an extended Paper, placed behind the Eye-Glafs fo far, as that the faid Species may appear at leads 6 Inches over; thea divide, both his Periploery into 360 Degrees for the bet. ter Obferying the Inclination of the $C u / p s$ of each Phafis, and his Diameter into Digits and their Parts by Concentrick Circles, for meafuring the quantities of the obfcured Parts."

- Its Dutrations hence appears to have been one hour: and. 54^{\prime}. . Its greatelt Obfcurity fomewhat more than 7 Digits. About the middle, between the Perpendicular and Weftward Horizontal Radius of the Sum, viewing it through R....

Mr. Boyle's

(28i)

Mr. Boyle's 60 Foot Telefcope, there was perceived a little of the Limb of the Moon without the Disk of the Sun: which feemed to fome of the Ob. fervers to come from fome fhining Atmofphere about the Body either of the Sun or Moon. They affirm to have obferved the Figure of this Eclipfe, and meafured the Digits, by cafting the Figure through-a 5 Foot Telefope, on an extended Paper, fixt at a certain Diftance from the Eye-Glafs, and having a round Figure ; all whofe Diameters were divided, by 6 Concentrick Circles, into 12 Digits.

 7 Dig. 50^{\prime}. but it feemed to have been greater by 3^{\prime}. which M. Payen imputes to a particular Motion of Libration of the Sun's Globe, which entertained that Luminary in the fame Phafis for the fpace of δ^{\prime}. and fome Seconds, as if it had been ftopped in the midft of its Courfe; rather than to a Tremulous Motion of the Atmofphere, as Scheiner would have it. The Apparent Diameters were almoft Equal: for in the Phafis of 6 Digits, the Circumference of the Moon's Disk paffed through the Center of that of the Sut fo as that two Lines drawn through the two Horns of the Sun, made with the common Semidiameter two Equilateral Triangles.

The Beginning and Middle of the Eclipfe happened to be in the North Eaftern Hemifphere, and the End in the South Eaftern. The firft Contact (as 'twere) of the two Disks, was obferved in the Superior Limb of the Sun's Disk in refpect to the Vertical Line, and in the Inferior in refpect to the Ecliptick. But the Middle and the End were feen in the Superior Limb, in refpect both to the Vertical and the Ecliptick : And what to M. Payers feems extraordinary, both the Beginning and the End of this Ecliple happen'd to be in the Oriental Part of the Sun's Disk.
3. The Eclipfe Began about 5 a Clock in the Morning; at $5^{\text {h. }} 15^{\text {1 }}$. The Sun's Altitude was 6°. 55^{\prime}.

The Middle of it was at 6 h. 2^{\prime}. The Sun's Altitude $15^{\circ} \cdot 5^{\prime}$. it Madrid. by the Earl of Sandwich. 1bid. p. 296.
The End was exactly at $7^{h}, 5^{\prime}$. The Sun's Altitude 25°. 24^{\prime}.
The Duration $2^{\text {h. }} 4^{\prime}$.
Thirty feven Parts of the Sun's Diameter remained Light, and 63 were Darkned.
4. In this Eclipfe it is chiefly obfervable, That the Semidiameter of the ist Dantzick; Moon, from the very beginning to about 5 or 6 Digits of the Increafing by M.Heveliuso Phafis, was almof equal to the Semidiameter of the Sun: but, after the ${ }^{\text {n. 19. Pi }} 347$. greateft Obfcuration, when I again contemplated the Moon's Semidiameter, I found it $8^{\prime \prime}$. or $9^{\prime \prime}$. bigger than that of the Sun; fo that the Semidiameter of the Moon was not always, during this Eclipfe, conftant to it Kelf. Of this Variation, the Excellent Ifmael Bullialdus hath alfo obferv'd fomething at Paris.. For hie has written to me, that in the fame Eclipfe, the Semidiameter of the Sun to the Semidiameter of the Moon was, as $16^{\prime} .9^{\prime \prime}$. to $16^{\prime} \cdot 22^{\prime \prime}$. but that in another Phafis of 6 Digits, the Semidiameters appeared equal.

Vol. 1.
Oo
Ordo

Ibid. s. 349 . 7. 21. 0. 370 .

$$
(283)
$$

Q^{n} Eclipfco of ${ }_{\text {Bbe Sun, Jun. } 23 .}$ (St. N.) 1675° at Dantzick; by M. Hevelius. n. 127. 7.660 .

AmExipfe of the Sun, June 1 . 3676. at Weftminfter: by: Mr. Francis Snethwick.

(285)

Temp. juxta Horol. Ofcil.	Pbajes.	Solis Alt.	Temp. Correst. ex Altit.	
h. 11		$\bigcirc \quad 1$	h. 1	
$\begin{array}{llll}7 & 34 & 50\end{array}$		2246	$7 \quad 36 \quad 0$	
$7 \begin{array}{lll}7 & 37 & 14\end{array}$		3310	$\begin{array}{llll}7 & 38 & 40\end{array}$	
$\begin{array}{llll}7 & 39 & 10\end{array}$			$7{ }^{7}$ 40 48	
$\begin{array}{llll}7 & 50 & 40 \\ 8 & 8 & 40\end{array}$	${ }^{\frac{1}{4}}$ Digit.		$7{ }^{7}$ 51 51	Tubo Optico x ftim.
$\begin{array}{llll}8 & 8 & 34\end{array}$	$1 \frac{1}{4}$ Digit.		8.945	Tub.Optico menfur.
$\begin{array}{llll}8 & 17 & 25\end{array}$	2 ${ }_{1} \frac{1}{0}$ Digit.		$8{ }^{8}$	
8 ¢ 2710	3 ${ }^{\frac{1}{1} \frac{1}{0}}$ Digit.		8 28 2I	
$9 \quad 39$	${ }_{1} \frac{1}{2}$ Digit.		940	Tubo æftin.
943	$1 \frac{1}{4}$ Digit.		944	
948	$0^{\frac{3}{4}}$ Digit.		949	
$\begin{array}{llll}9 & 54 & 25\end{array}$	Non Finita.		$\begin{array}{llll}9 & 55 & 36\end{array}$	
$9 \quad 55 \quad 55$	Finita.		9576	
4.265		3210	$4{ }_{4}^{4} 2656$	
$\begin{array}{llll}4 & 28 & 58 \\ 4\end{array}$		3153	$4 \begin{array}{llll}4 & 29 & 52\end{array}$	
$4 \quad 31 \quad 2$		31.31	$4 \quad 32$ 16	

3. Hifce Obfervationibus peragendis Socium acciveram Amicum meum AtGreenwich; Ed. Halleium. Tubos proparaveram duos, alterum Digitos $196 \frac{1}{2}$. longum, by Mr. Flamquocum \& Micrometo Townleiano Ego ipfe octo Phafum priorum cepi ${ }_{n}$, $127 . p_{0} .663_{0}^{\circ}$ Menfuras, alterum Digitorum duntaxat $103^{\frac{2}{2}}$, quocum \& Micrometro meo, iis adfcriptas Menfuras Halleius cepit : in duabus tamen ultimis Animadverfionibus, Ego Minori Tubn \& Micrometro men (in hunc ufum altero accommodatiore) Diftantiam cepi Azimutharum, per Solis Limbum Lucidum, \&. Cufpidem proximam Eclipfis decidentium; Halleio interea Partes Lucidas \& Cufpidum Diftantiam majori Tubo dimetiente. Paulo ante Init. tium advenerat Nobiliflimus Præfes Regiæ Societatis Dom. Vice-Comes Brouncker, qui Menfuram Diametri Solaris, Tubo Longiori captam, fuo Judicio probavit. Horâ $7 \cdot 45^{\prime}$. Sol primum per Nubes apparuit. Obfervata deinde fic fe habuerunt.

Unde liquet, \& Motus conitantiam fervaffe Horologium, \& in Eclipfi debitè fuife correctum.

(287)

Vibrationem potui difcernere. Exitûs Locus adeo Vertici vicinus erat, ut in quam

 ab ea partem inclinaret, bene non potuerim definire, etiamfi hora 9.29. . per Horologium Cufpides Horizonti apparerent Parallelæ.Solis Diameter hora 9. IO'. erat 2334; fatis, ut putavi procife:
Deinde, accedente Sole ad Meridiem per Lineam longam Meridianam, Ho: rologitinn jufto tardius inventum fuit Serupulis 1^{4}. $42^{\prime \prime}$. Magno autem Aquinoctiali Sciaterico, quo medias minorefve Serupuli horarii partes poffum diftinguere, Horologium toto hoc manèr tardius duntaxat $45^{\prime \prime}$. Correctioni tamen. per Limean Meridianam quàm Sciaterico fidendum puto.

7 h. 50^{\prime}. Nihil fubs Sole.
$750 \frac{1}{2}$ Initium accuraté.
7 52 Notabilis defectus.
9. 00 Digiti $3^{\frac{1}{2}}$.
9. 1 1 Digiti $3 \frac{1}{10}$:

2- 21 Digiti $2 \overline{1} \frac{1}{0} 1$. .
9. $47 \frac{1}{2}$ Non Finita ; Imminente Fine.
6. CumSol è nubibus Emergeret, Altitudinem graduum 4 , accedens, ad cum di- At Paris rexi Quadrantem, quem ad hanc Altitudinem Immotum tenui.. Ex quo, Solis $\begin{aligned} & \text { Ibid. }\end{aligned}$ Margo fuperior c,tetigit Filum Horizontale εd_{x} in Foco Telefcopii, ad adventum. Centri b, fluxêre fecundx horarix $104=a$ vel $b r$; Atranfitu Centri b ad . Fig. 22 6 tranfitum Marginis LunæSuperioris o,Secund 1 I $=b s$; A tranfitu Centri b_{2} ad Cornu Superioris uccidentalise e, fluxêre Secundæ $25^{\frac{1}{2}}=$ e.b; A Tranfitu Centri b, ad tranfitum Cornu Inferioris \& Orientalis i, Secund $x .9=i k$; Hinc veterminatur Linea Cornuum i e, (feclufá: variatione) ejufque Inclinatio ad Horizontem $/ k$; \& Punctum p concurfus Fangentis Lunam cum Secante $i e p$, \&Tangens ipfa $p o$, Media proportionalis intar $p i, p c: \&$ Anguli n $0 c_{2} t o i_{2} \ldots$ hinc Angulus ioc; \& Triangulum ioc, Lunari Circumferentiâ infcriptum.

Ex iis, alinque ex Afronomia datis, deduxi:
Initium effe debuiffe Parifis - 7 h! $55!$
Finem vero-- Eelipfis

8. Diebus precedentibus, locum aptifimum elegimus in quo Aëre Puro At Avignions: frueremur, videlicet Conventum RR. FP. Carmelitaruin Difcalceatorum, qui re-by M. Gallet. frectu Civitatis Aven: ad Ortum vergit \& mœenia ftringens Aëre, Fumo \& n. 14iop.rozeo Vaporibus urbanis libero gaudet; in medio Horti Cameram Obfcuram Tapetibus conftruximus, \&in eẩ Inftrumenta ad obfervationem neceffaria ritè collocavimus.

Tubofpicillum aptavimus Lente Oculari Concavâ, \& Objectivâ Convexâ inftructum, duplicem habens motum? firmo Suftentaculo, Verticalem fcil. \& Horizontalem, affixam Tabellam immobilem firmatis cochleis fecum circumducens, Ocularị Vitro fermper parallelam, chartâ candidiflimâ indutam, in qua Solarem Speciem, diftantià Tubofpicilli determinatam defcripfimus, hujus Diametrum Circulis Concentricis in duodecim Digitos divifimus, \& quemlibet Digitorum in partes Sexagefimas.

Loco Quadrantis, qui pluribus indiget cautionbus' \& ' nimium obroxius eft vacillationibus, Gnomonem ad captandas umbras Solis in partes 400 , optimè divifum difpofuimus, ita ut libere moveretur Situm Verticalem ope perpendiculi confervans. Tandern Horologium Rotatile, minuta prima \& fecunda indicans, motu Penduli cum Cycloide preparavimús.

Ipfa die Eclipfis undecinâ̂ funiz, hôrâ unấ circiter poft ortum Solis, ufque ad Initium \& Finem Eclipfis, Speciem ejus Lucidan in Charta, fine intermiffione recepimus, \& quilibet ex nobis Inftrumento fibi deftinato femper invigilavit ; Dominus de Beauclamps Mufarum Avenionenfium Macenas Ampliffimus, Ego quoque cum illo, Tubofpicillo ; Dominus de S. Florent; Vifus perfpicacifimi, Gnomoni ; Dominus Moutonicr, Horologio, una cum Donnino Marin Prefbytero, in Mathematicis \& prefertim in Horologis verfatiffimo.

Statim ac fenfibiliter copit Umbra Difcum inire, quantitatem partium Obfcuratarum, Umbram in partibus Gnominis, \&\& Horam horologii notavi è directo primx Phafis, \& ita collegi Phafes 39, contentas in fequenti Tabella

	$\begin{aligned} & 1 \\ & \text { Digiti } \\ & 00- \\ & \text { olur. } \\ & \text { cur } \end{aligned}$	Umbra Gno- mon in par- tibus quali- um Gnomen cont inct. 400	$\begin{aligned} & \text { Altitudo So- } \\ & \text { lis Appa- } \\ & \text { rons. } \end{aligned}$	$\begin{aligned} & \text { Altitudo So- } \\ & \text { lis Vera. } \end{aligned}$	Hore Horo${ }^{\log \text { ii }} \mathrm{Pc} n^{-}$ dulus.	Hora correc- ta per Alti- Yudinem So- Iis.	
	D.		-1 19,		h! $\overline{\prime \prime \prime}$	h. 1 "	
	I 1027	561	35.2923	$35 \quad 284.8$	7503^{1}	$7 \quad 5034$	
	2 I	536	36440	364328	75725		
	3 I 30	520	37347	$37 \begin{array}{llll}37 & 33\end{array}$	$\begin{array}{llll}8 & 2 & 3\end{array}$	$\begin{array}{llll}8 & 2 & 7\end{array}$	
	4. 300	478	$3955 \quad 23$	395457	$8{ }_{8}^{8} 1544$	815	
	51325	466	403830	40386	$\begin{array}{llll}8 & 19 & 0\end{array}$	8 19 44	
	61430	438	4.22414	42.23 .53.	82919	8 8 29	
		434	423958	423937	83059	83034	
	8150	424	43 19 53	4319832	${ }_{8}^{8} 8.3434$.	883488	
	91530	412	44.912	44:8 52	839 19	83856	
	16	394	45.1057	$45 \quad 10.39$	8.44 .54	84444	Cornua Verricalia.
	I 640	37.5	4635.50	4635.33	8.5319.	$85^{2} 45$	
	2650	37.	463415	46	8. 54.54	85436	
	370	3	$47{ }^{\prime \prime} 1730$	471714	85644	8. 5644	
14	4720	35	43.3037	483023	$9 \quad 3 \quad 44$	$9: 3.44$	Maxima obsct-
	578	33.9	4.29 .10	492858	$9 \quad 9,14$	9.95	ratio.
	635	32.5	503922	$50 \quad 3910$	915.54	91612	
I 8	625	324	510012	5100	918.14	$9 \mathrm{~T}_{1}^{8} 811$	
19	15.25	296	53.1029	53.10 19	9315		-1!ro.)
20	5, 0	286	5355514	$\begin{array}{llll}53 & 55 & 5\end{array}$	$\begin{array}{llllll}9 & 35 & 44\end{array}$	$9135 \quad 30$	Ingo
21	1440	283	54276	54	93839	93843	
	$2+35$				9.423.		Cornua Parallela
	340				947 19		orizonti,
	$4 . \left\lvert\, \begin{array}{lll}3 & 53\end{array}\right.$	266	56.335	$56 \quad 3027$	94845	$94^{8}, 36$	
	5335	262	$\begin{array}{lllll}56 & 28 & 29\end{array}$	56, 29.22	95129	95113	
	\% 3 30	252	$56.37 \quad 32$	56. 37,25	25211	9. 51,59	
27	7326	260	5643.34	564327	95234	9:5245	
	836	254	$\begin{array}{lllll}57 & 15 & 59\end{array}$	57 15 53	$956 \quad 5$	95610	
	130				957.40		
30	$1 \begin{array}{ll}2 & 48 \\ 2 & 35\end{array}$	249	$\begin{array}{\|ccc\|}57 & 50 \\ 58\end{array}$	57.50 42	9.5934	95953	
31	1235	246	58932	158	$10 \quad 134$	$10 \quad 153$	
	225	243	$\begin{array}{lllll}58 & 26 & 15\end{array}$	58.26.5	10	10341	
	$3{ }^{2} \quad 0$				10: 646		
34.	150	236	59.923 .3	1591228	$10 \quad 856$	$10 \quad 8 \quad 47$	
35	510	. 226	6×10859	1601655	$1 \begin{array}{llll}10 & 15 & 51\end{array}$	10 16, of	
	6	220	6056521	1605616	102057	1020031	
	1030	217	$\begin{array}{lllll}61 & 16 & 11 \\ 61 & 36\end{array}$	$1 \begin{array}{lll}61 & 16 & 6\end{array}$	102254	1022.50	
38	$8\left\|\begin{array}{cc} 0 & 20 \\ \text { Finis. } \end{array}\right\|$	2.4	$1 \begin{array}{llll}61 & 36 & 12 \\ 62 & 6 & 23\end{array}$		1025,0	$1 \begin{array}{llll}10 & 25 & 12 \\ 10 & 28 & 5\end{array}$	
	9 Finis.	209	$162.623 \mid$	$\left[\begin{array}{llll}6.2 & 6 & 19\end{array}\right]$	1202841	IIQ 28..50\|	verticale cum Centro Solis.

(291)

Proportio Diametrorum apparuit æqualis in Echipfr 6 Digitorum, tunc enim Cornua Solis Verticalia diftabant a Verticali Solis hinc inde gradibus circiter 30 . Unde patet Centrum Lunx tunc reperiri in Peripheria Solis, \& Lineam Diacentron effe xqualem Semidiametro Solis. Verùm poft Medium Eclipfis, mutationem aliquam in Diametro Umbrx deprehendimus; apparuit enim Umbra paululum magis Convexa, \& ideo Semidiameter brevior, fed ferè infenfibiliter.

Deinde ad Errorem Horologii inveltigandum,

Hor. Horol.		,	Hor inde Sup.	Error. Hor.
h.			h.	II:
4433^{8}	Limbi Solis	60 II 00	$4 \quad 34 \quad 56$	84
44548	Inferioris	603120	$4-37$	841
4.46 .56		60 41. 50	$4 \quad 3815$	843
449.3		61 I 40	$4 \quad 4022$	4.

At Paris; by M. 2. Alt. $\odot .50^{\circ}$. Initium Elapfum erat, Sole Nubibus tecto, \& Digitus cirBullialdus. citer deficiebat.

Alt. ©. 41°. I5 5^{\prime}. Paulo amplius quam Digiti. 7 . Attigit Digitos, 8 . Alt. ©. $29^{\circ} \cdot 30^{\prime}$. Finis.

Wt the Obrer- 3. The Beginning of the Eclipfe could not be feen, but was deduced fronz
vatory; by Me the following Phafes. The Apparent Diameter, of the Moon appear'd lefs
Caffini. no 162 ot than that of the Sun. It was judged that the Dilatation of the Sun's Light
f. $693 . n_{2}, 363$.
 1.7150
n. 162. p. 693.
4.

By M. de lat Hire and Po thenot. 1 ho
p. 716.

Phaj			Time. ${ }^{\text {a }}$
	h. ${ }^{\text {a }}$		
Begin.	$2-2530$	$7 \frac{2}{3}$ Digits	335.00
or	22555	7 Digits	355.50
1 Digit	23250	6 Digits	4.410
2 Digits	24000	5 Digits	$4 \begin{array}{lll}4 & 25\end{array}$
3 Digits	24740	4 Digits	41915
4 Digits	25410	3 Digits	42550
5. Digits	$3 \quad 2.00$	2 Digits	$\begin{array}{llll}4 & 32 & 1.5\end{array}$
6 Digits	3 10 5	I Digits	4 47. 40
7 Digits	-3.20 10		44323

Pbafes.	Time.	Pbafes.	Time.
Begin			h. i
ting.	22524	7 Digit	353 34.
1 Digit	2332	6 Digits	4.353
2. Digits	24030	5 Digits	4 II 3
3 Digits	2.4747	4 Digits	4174^{2}
4 Digits	2.54 .4	3 Digits	$4{ }^{2} 514$
5 Digits	$3 \quad 24$	2 Digits	43 156
6 Digits	3126	1 Digit	$43^{8.1 I}$
7 Digits	$\begin{array}{llll}3 & 20 & 54\end{array}$	End	44327
17 Dig. 5^{\prime}	3.3627		

(293.)

The Beginning was deduced from many Obfervations made lon after it. The Moon's Diameter appear'd then not to be more than about 30^{\prime} '; though by the Obfervations of her Diameter made forme days before and after, it was judged to be $3 \mathrm{I}^{\prime} \cdot 30^{\prime \prime}$. But the Extremities of the Horns, on which depended the Exactress of that Determination, appear'd a little Blunted.

6. The Beginning was at $2^{\text {h }} \cdot 54^{\prime} \cdot 30^{\prime \prime}$. The End at $5^{\text {h}} \cdot 9^{\prime} \cdot 9^{\prime}$. The Great-iat Mix; by M. nets of the Eclipfe $8 \frac{1}{2}$ Digits.

7.
At Lyons; by
R. P. Paul
Hole. Ibo

At $3^{\text {h. }} 26^{\prime}$. 14 $4^{\prime \prime}$. (by the Stars) The Diameter of the Sun and Moon 30^{\prime}. $58^{\prime \prime}$. but at $4 \mathrm{~h} \cdot 20^{\prime} \cdot 34^{\prime \prime}$. The Diameter of the $\operatorname{Sun} 30^{\prime} \cdot 58^{\prime \prime}$. of the Moon, $30^{\prime} \cdot 5^{\prime \prime}$.

The Greatness of the Eclipfe about $\frac{3}{4}$ of the Sun's Diameter, at which time Venus might be fee without Pain.

At Honfiexs; 9. The Beginning was at $2 \mathrm{~h} .15^{\prime} \cdot 2^{\prime \prime}$. The End, at $4^{\mathrm{h}} \cdot 34^{\prime} \cdot 35^{\prime \prime}$. The by M. de Glos. Greatnefs, more than 8 Digits, but lefs than 9 . ${ }_{\text {At pau }}^{16}$ by R. fo. At $1_{4}^{\text {h }}$. The Ecliple was not Begun. At $3^{\frac{1}{4} h}$. at 10 Digits. The P.Richaud. Ib. End, at $4 \frac{3}{4} \mathrm{~h}$.
II.

At Avignon; by R. P. Bonfa. ib.

Pioajes.	Time.	Phafes.	Time.
The Be-	h. $1 / 1$		h. 111
ging.	2.4327	HornsVert.	4.24 .32
I Digit	25158	${ }^{\frac{1}{2}}$ Dig.	5116
9 Digits	4200	The	5

The Sun's Diameter $31^{\prime} \cdot 38^{\prime \prime}$. The Moon's 30^{\prime}. $6^{\prime \prime \prime}$.
At Oxford; by 12.PhafesQuadraginta hujus Defeetus captavit definivitq; bonamanus Wallifit. Dr. Ed. Bernard. 11. 164. po 747. Tempus exiam juftum xquumque ejufdem Deliquii Altitudinibus aliquot Solaribus comprobarunt Clariffimi Viri D. Cafuellus \& D.Rookius, ubiHorologiis \& Ofillis noitris fuerat peccatum.

Digiti oblcuri, cum Juis decimis.	Tempora 0 of cillatoria à Calo Correcia.	${ }^{4}+x+10 y=2$
06	$\begin{array}{cccc}\text { h. } & 1 & \prime \prime \\ 2 & 03 & 00 \\ 2 & 07 & 44\end{array}$	Initium Eclipfiso
10	21044	
13	$\begin{array}{llll}2 & 13 & 19\end{array}$	
1 l	$\begin{array}{llll}2 & 15 & 44 \\ 2 & 5 & 1\end{array}$	
$\begin{array}{ll}2 & 2 \\ 2 & 6\end{array}$	22134	
26	22344	
29	22539	
35	2 29	
40	2.3304	- $0^{\text {a }}$
	23634	
46	24004	
	24314	
5	$\begin{array}{llll}2 & 48 \\ 2 & 50 & 19\end{array}$	
56	$\begin{array}{lllll}2 & 50 & 09 \\ 2 & 5 & 7 & 30\end{array}$	Medium quafi Solem fecit rò \sin a grov.
$6-5$	$\begin{array}{lllll}2 & 5 & 3 & 3 \\ 2 & 50\end{array}$	
$6 \quad 7$.	2 5 5. 3 08 14	Obfcuritas Maxima.
7	30824	Obicuritas Maxima.
$\begin{array}{ll}7 & 1 \\ 6 & 8\end{array}$	3. 1.1509	
	$\begin{array}{llll}3 & 31 & 39 .\end{array}$	
60	$\begin{array}{llll}3 & 37 & 24\end{array}$	
5%	33929	

13. Mr. Facobs at Lishon Noted.

The Beginning of this Eclipfe at $I^{\text {h }} \cdot 30^{\prime}$. exactly.
ift Lisbon - ibo po 749.

The Ending at $\quad 12$.
I4. Mr.Aph and Mr.Malynenux; toward the Middle of the Eclipfe, having a In Ireland. $1 b_{0}$: flort View of the Sun; they Judged that about 8 Digits were covered: at the Ending allo having a faint View thereof; they ailigned its End, at 3^{h} $56^{\prime \prime} \cdot \mathrm{p} \cdot \mathrm{m}$.
The fame Eclipfe was obferved by one Mr. Osburn, nigh Iredagh. Initiums $1^{14} \cdot 37!30^{\prime \prime}$. Finis $3^{\text {h. }} \cdot 56^{\prime} \cdot 20^{\prime \prime}$.
45. Defunsebant 'Solis à Vertice Diftantias D. D. Fo. Iudovicus Donellus, \& Nicolaus Ifnatius Foanettus; Phafibus determinandis tres aderamus, D. D. Fo. by Sononia; Galeativs Manzius, Herculcs Vanottus, \&e Ego. Obfervationes, fribebat D. Gre-Gulielmini. gorius Malifardus; Horas vero in Horologio notabat D. Bartolomuens Ferranius.

(296)

42744	42842	$58 \quad 39$	Dig.
43235			Dig. 7 fatis exacti.
43420			Dig. 645
44430			Dig. 630
44715			Dig. 630
45130			Dig, 6 optima.
454.38	45353	6316	Dig. 530 exacta:
458	45738	$63 \quad 56$	Dig. 5 exacta
5 I 55	5 I 2	$64 \quad 32$	Dig. 430 fatis exacta.
$5{ }_{5}^{5} 4.40$	5	$65 \quad 19$	Dig. 4 Diligens ubique
$5 \begin{array}{lll}5 & 7 & 0\end{array}$	5	$65 \quad 28$	Dig. 330 exacta.
51030	5	$65 \quad 58$	Dig. 3 exacta.
51235	513.28	$66 \quad 43$	Dig. 2 30 fatis exactia:
51615	51614	$67 \quad 13$	Dig. 2 exacta.
51950	52024	$67 \quad 57$	Dig. I 30. exacta.
52230	52321	68.28	Dig. I exacta.
5250	52514	68:48	Dig. 030 diligens.
5.27 .40	5287	69, 18	Dig. 0 accuratifima.

Notabile fuit; cum Quantitas Eclipfis fuerit Dig 7.20'. quod non modicam Aëris Offufcationem debebat inducere, (ut alias multoties in confimilibus Defectibus obfervatum eft,) nihilominus tamen vix fenfibiliter confuetum in Sole Libero Aëris ftatum mutatun fuiffe; unde plurimis Solem non refpicientibus orta fufpicio, aut Solem non defeciffe, aut minimum quidem; cujus 2mom 3 the quidem rei non alia mihi videtur affignanda caufa, quam ingens vis Nubium 'a Sole maximè illuminatarum, "qux non multum ad eo diftabant;" ab his' enim Solis Radius per Reflexionem \& Refractionen multiplicatus certè Intenfior redditus deficientem aliundè Splendorem potuit compenfare.

An Eclipfe of the XXXV. I. Dr. Whallis writes from Oxford that this Ecliple of the Sun was ob-
 ford. n. 187. 2. Hxc Eclipfis, etiamfic contemnendx Quantitatis fuerit, ac nudis oculis p. 329.

In divers otber non omnino percipi potuerit, tamen ad accuratani determinationem Parallaxis Places. n. 189. ix Latitudinis Lunæ maxime idonea videtur.

Londini, feorfim obfervantibus Hookio \& Halleio; Initii Momentum, Crelo licet purifiimo, ob Obliquam Incidentiam Lunx, debite Definire non licuit. Sed I $^{\text {h. }}$. I 6^{\prime}. jam coepta erat Eclipfis fatis notabiliter : circa $1^{\text {h. }}$. 40^{\prime}. prope Medium Eclipfis, Chorda partis Eclipfarx, five inter Cornua, inventa eft $9^{\prime} \cdot 30^{\prime \prime \prime}$. cui refpondet Arcus $3^{\circ}{ }^{\circ}$. in Diametro vero non nifi $1^{\prime} \cdot 30^{\prime \prime}$. Finis, confenfu utriufque Oblervatoris, contigit accurate $2 \mathrm{~h} \cdot 3^{\prime} \cdot 0^{\prime \prime}$.

Grenovici in ObServatorio Regio, Flamftecdius eadem de caufa, Initium non vidit: Finem vero determinavit $2^{\text {h }} \cdot 4^{\prime} \cdot 15^{\prime \prime}$. Medio Eclipfis five Maxima Obfcu; ratione, Chorda Partis Eclipfatæ erat $9^{\prime} \cdot 54^{\prime \prime}$.

Apud Totteridge prope Londinum verfús Corum, Finem vidit D. Hnines, R.S.S. ad 2h. 2\%. Quantitatem vero Maximam dimidii Digiti ab Auftro.

(297)

In Infula Barbada, ad Oppidum Bridge-Town, Finem habuit D. Frank 1'. $30^{\prime \prime}$. ante quam Solis Altitudo fuit $3 \mathrm{I}^{\circ}: 47^{\prime \prime}$ ad ortum, hoc eft $7 \mathrm{~h} \cdot 56^{\prime} \cdot 45^{\prime \prime}$. Quantitatem Maximam xftimatione defnivit duorum Digitorum ab Auftro.

Norimberge eandem Eelipfin obfervavit J. P. Wurtzelbaur. Initium quiden accuratè ad $1^{\mathrm{h}} .5^{\prime \frac{1}{2}} ;$ circa Medium, fc. ad $2^{\mathrm{h}} \cdot 3^{6 \frac{1}{2}}$, Quantitatem Maximam duorum Dig. precife; Finem verò ad $3^{\text {h }}, 18^{\prime} \cdot 33^{\prime \prime}$.

Ulim Sucvia, Obfervavit Honoldus Initium ad $1 \mathrm{~h} .48^{\prime}$; Quantitatem Maximam $2 \frac{1}{3}$ Dig. Finem veror ad $3^{\text {h. }} 16$.

Lipfli, obfervatore Kirchio, Eclipfis jam fatis notabilis ad $2^{\text {h. }} 20^{\prime} \cdot 10^{\prime \prime}$. ad 2 . $47^{\prime \frac{1}{2}}$, Digiti $1 \frac{1}{3}$ circiter. . Finis vero Incidit precile in 3^{h}. 15^{\prime}.

Vratilavice Silefie denique obfervavit D. G. Schultzius. Maximam Obfurationem paulo citius quam $3^{\text {h. }}: 12^{\prime}$. fuiffe $1 \frac{1}{2}$ Dig. Finem verò $3^{\text {h }} \cdot 37^{\prime}$.
XXXVI. I. I did not fee the Beginning of the late Eclipfe, but the End hap- in Eclipfe of the pen'd here, precifely 24: $9^{\prime \prime}$. after 1o a Clock in the Morning, Apparent Time, sun, Sept. ${ }^{3}$. 699. The Greateft Obfcuration, which was Io Digits and a Quarter, was about 7 , Min. ford; by or. after Nine.
13. Gregory.
n. 256 . p. 33°

anes.	$\left\lvert\, \begin{aligned} & \text { ouantities } \\ & \text { Eclipfed. } \end{aligned}\right.$	Times by a Pendulum:	Pbises.	Qilantities Eclipfed.	Times by Pendulum
	Dig.	h. 111		Dig	h. ${ }^{\prime \prime}$
Initium		5714		त1 9.449	10
1. 1.	52	9.3 .26	2 I 2d	(9,2I	1033 II
2	32	$9 \quad 8 \quad 23$	22.	8.82	53
3	28	9 914.14	23	118 80	10 38.46
4	319	9.19 40	+24	738	10.42 .42
5					7
6	15	93157	26		T0. 49.42
	50	$935 \quad 2$			
8	26	$938-43$	28	27	37
		40.			II, 0,00
10		94347		\& 4,33	II 424
11	56	9.5039	31.	13 57	11816
12	3 ?	9.55 9	32	13 3	II 13 3
13	23				
14	53	10. 546	34		
15	10. 24	101034	35	132	H1 2538
16	10 38	101437	36	1.2	11 28
8	1045	$1017-54$	Fi		I.1. 3356
18	1045	10 22229			
19	12	102731			

At Nuremberg. by M. Worzel-: baur. n. 265 . t. 619.

(298)

From the Sth to the 12th Phafis, the Opaque Limb of the Moon on the South fide, was a little rough, but about the Northern Horns to near a 4 th part of the Segment, it was more fmooth: But when the Horns of the Eclipfe were almoft Parallel to the Horizon, before and after the I 5 th Phafis, the Extremity of the Gibbous Limb of the Moon looking downward, was fomewhat Enlightned, and of a kind of a Saffron Colour:; but though the Sky was free from Clouds, yet no Stars were vifible. Nor was even Venus it felf vifible in the open Air, unlefs by fome more Sharp- fighted than Ordinary:

Amongt many round Plates cut out of thick Paper of divers Magnitudes, differing from one another $5^{\prime \prime \prime}$, about the firt Phalis, and after, none agreed to the Limb of the Moon but that which was cut to a Radius or Semidiameter of $1.5^{\prime \prime} 33^{\prime \prime}$. (taking the Radius or Semidiameter of that of the Sun to be $161.4^{\prime \prime}$.) and that gradually fo fwelled or augmented, that larger Plates were neceffary to be made ufe of; and about the 36 th Phafis, none lefs than one defcribed of a Radius of : $16^{\prime} .5^{\prime \prime}$. would agree with, or equal the Appearance; and confequently that the Diameter of the. Moon about the End of the Eclipfe did Equalize, if not exceed that of the Sun. Befides, in the 27th Phafis (when the obícure Part was 6. Dig. 6'.) the Body of the Moon did Obfcure more than two Thirds of the Sun's Limb; which is an Argument that its Semidiameter at that time was Equal tothat of the Sun.
3. This Eclipfe by the Obfervations of M. Godfred Tuber at Ciza, Bëganat:9 h. and Ended at I Ih. 35^{\prime}. and increas'd to 1 IDig.; by the Obfervations of Mr. Facob Honold at Hervelfing near Ulm of Suevia, it Began at $8 \mathrm{~h} .55^{\prime}$. and Ended at inh. $3^{\prime \prime}$. and its Greateft Defect was to Dig.; And by Obfervations at Lcipfick, it Began at 9 h. $1 I^{\prime}$. and Ended at 12 h. $38^{\prime} .30^{\prime \prime \prime}$. The greateft Obfcurity was. I I Dig. 20'. which lafted from 10 hi $16^{\prime} .45^{\prime \prime}$. for $6^{\prime \prime}$. Ten Digits being obicured, the Sky (being otherwife very dear) began to appear of a more livid or wan Complexion, and more Sad than it ufually looks with a clear Sky when the Sun is fet, or below the Horizon. The Cocks alfo, which had hitherto Crowed very frequently, as if filenced, going to Rooft left off Crowing, and did not renew it:till by the Recovery of the Sun's Light they had recover'd their former Gayety and Mirth: However, we cannot learn that any Star befides that of venus was difcover'd by thofe which were Spectators of it in the Open Afr. XXXVII. I fometimes think that the Earth muft appear to the fuppofed In:

Ch.4.7.es Tikely 70 be, difcover'd in habitants of the Moon to have a different Face in the feveral Seafons of the the Moon; by M. Year; and to have another Appearance in Winter, when there is almoft nothing
Anzout. no $_{0}$ 7. Anzout. $\pi_{0} 7_{0}$ Green in a very great Part of the Earth; when there are Countries all cover'd with Snow, others all cover'd with Water, others all obfcur'd with Clouds, and that for many Weeks together ; Another in Spring, when the Forefs and Fields are Green; Another in Summer, when whole Fields are Yellow, sec. Methinks, I ay, that thefe Changes are confiderable enough in the Force of the Reflexions of Light to be obferv'd, fince we fee fo many differences of Lights in the Moon. We have Rivers confiderable enough to be feen, and they eriter far enough into the Land, and have a breadth capable to be obferved. There are Fluxes in certain Places, that reach into large Countries, enough to make thera fome apparent Change, and in fome of our Seas there float fometimes

(299)

fuch bulky Maffes of Ice, that are far greater than the Objects, which we are affured we can fee in the Moon. Again, we cut down whole Forrefts, and Drain Marfhes, of an Extent large enough to caufe a notable Alteration: And Men have made fuch Works, as have produced Changes great enough to be perceived. In many piaces alfo are Vulcans that feem big enough to be diftinguifht, efpecially in the Shadow. And when Fire lights upon Forefts of great Extent, or upon Towns, it can hardly be doubted, but thefe Luminous Objects would appear cither in an Eclipfe of the Earth, or when fuch parts of the Earth are not Illuminated by the Sun. But yet, I know no Man, who hath yet cbierved fuch things in the Moon; and one may be rationally aflur'd, that no Vulcans are there, or that none of them Burn at this time. This it is, which all curious Men, that have good Telefcopes, ought well to attend ; and I doubt not, but if we had a very particular Map of the Moon, as I had defign'd to make one, with a Topograpby, as it were, of all the confiderable Places thercin, that we or our Fofterity would find fome Change in Her. And if the Maps of the Moon of Hevelius, Divini, and Riccioli, are exact, I can fay that I have feen there fome places confiderable enough, where they put Parts that are Clear, whereas I there fee Dark ones. 'T is true, that if there be Seas in the Moon, it can hardly fall out orherwife, than it doth upon our Earth, where Alluviums are made in fome Places, and the Sea gains upon the Land in others; I fay, If thofe Spots we fee in the Moon are Seas, as I mult believe them to be, whereas I have many Reafons, that make me doubt, whether they be fo. And I have fometimes thought, whether it might not be, that all the Seas of the Moon, -if there mult be Seas, were on the fide of the other Hemifphere, and that for this Caute it might be, that the Moon turns not upon its Axis, as our Earth wherein the Lands andSeas are as it were Ballanced: That thence alfo may proceed the Non-appearance of any Clouds raifd there, or of any Vapours confidefiderable enough to be feen, as there are raifed upon this Earth; and that this Abfence of Vapours is perhaps the Caufe, that no Crepufcle is there, as it feems there is none, my felf at leaft not having been bitherto able to difcern any Mark thereof: For methinks, it is not to be doubted, but that the reputed Citizens of the Moon, might fee our Crepufcle, fince we fee, that the fame is without Comparifon ftronger, than the Light afforded us by the Moun, even when the is Full ; for a little after Sun-fer, when we receive no more the frif Light of the Sun, the Sky is far clearer, than it is in the Faireft Night of the Full Moon. Mean while, fince we fee in the Moon, when The is Encreafing or Decreafing, the Light the receives from the Earth, we cannot doubr, but that the People of the Moon fhould likewife fee in the Earth that Light, wherewith the Moon illuminates it, with perhaps the difference there is betwixr their Bignefs. Much rather therefore fhould they fee the Light of the Crepufcie, being as we have faid, incomparably greater. In the mean time, we fee not any Faint Light beyond the Section of the Light, which is every where almof equally ftrong, and we there diftinguifh nothing at all, not fo much that cleareft part, which is call'd Ariftarchus, or Porphyrites, as I have often try'd; although one may there fee the Light, which the Earth fends thither, which is fometimes fo ftrong, that in the Moon's Decreafe, I have often diftinetly feen all the Parts of the Moon that were not Enlightned by the Sun, together with the Difference of the

Clear parts and the Spots, fo far as to be able to difcern them all. The Shadows allo of all the Cavities of the Moon feem to be fronger, than they would be, if there were a fecond Light. For although afar off the Shadows of our Bodies, environed with Light, feem to us almoft Dark, yet they do not 10 appear, fo much as the Shadows of the Moon do ; and thofe that aare upon the Edge of the Section, Thould not appear in the like Manner: But I will determine nothing of any of thefe things.

To find the Ptin XXXVIII. At certain times agreed on by two Obfervators, making ufe of rallax of the Telefopes. Large, Good, and well Fitted for this Purpofe, by a meafuring
$M o o n ;$ by
 'ftinetly feen, and ferve for Meafuring fmatl Diftances by Minutes and Seconds, (which is eafe enough in large Telefcopes) Let each of fuch Obfervators, thus furnifht, Obferve the vilible Way of the Moon among the Fixt Stars, (by taking her exact Diftance from any Fixt Star, that lies in or very near her Way, together with the exact time of her fo Appearing) and the then Apparent Diameter of her Disk; continuing thefe Obfervations every time for two or three - Hours, that ó if poffible, two exact Obfervations of her Apparent place among the FixtStars, being made, at two Places thus diftant in Laticude, and as near as znay be under the fame Meridian, by théfe Obfervations, concurring at the fame time, Ther true and exact Diftance may be hence collected, not only for that time, but at all other times, by any fingle Obfervator's. Viewing her wirh a Telefcope, and. meafuring exactly her Apparent Diameter, It were likewife defrable, that as of aten as there happeris any confiderable Eclipfe of the Sun, that this alfo might be ublerv'd by them, noting therein the exact Meafure of the Greateft Obfcuration compared with the then Apparent Diameter of his Disk. For by this means, after the Diftance of the Moon hath been exactly found, the Ditance of the Sun will eafly be deduced.

As for the Time fitteft for making Obferyations of the Moon, That will be when the is about a Quarter or fomewhat lefs Illuminated, becaufe then her Light is not fo bright, but that with a good Telefcope, the may be Qbferv'd to patis clofe by, and fometimes over feveral Fixt Stars, which is about four or five Days before or after her Change: Or elfe at any other time, when the Moon Paffes neax or over fome of the Bigger fort of Fixt Stars, fuch as of the Firft and Second Magnitude, which may be eafily Calculated and forefeen: Or beft of all, when there is any Total Eclipfe of the Moon; for then the fmalleft Felefcopical Stars may be feen clofe adjoyning to the very Budy of the Moon.

Wbfyrung Luswr XXXXX I. Eclipfes of the Moon are oblerved for two Principal Ends; One obffrving $\mathcal{I}^{\text {Lusur }}$, Aftronomical, that by comparing Obfervations with Calculations, the Theory of
El Eclipes; by Mr; the Moon's Motion may be Perfected, and the Tables thereof Reformed the
Fook. in 22, *. 388. other Geographical, that by comparing among themfelves the Obervations of the fame Ecliprick Fhafes, made in divers Places, the Difference of Mridians, or玉ongitudes of thofe Places may be difcerned:

The Knowledge of the Eclipfe's Quantity and Duration, the Shadow's Curviay and Inclination, छc. conduce only to the former of thefe Ends. The exact Time of the Beginning, Middle, and End of the Ecliperes as alfo in Total Ones, the Beginning and End of Total Darknefs, is ufful forboth of them. Buw

(301)

But becaufe in Obfervations made by the Bare Eye, thefe times confiderably Differ from thofe with a Telefcope; and becaufe the Beginning of Ecliples, and the End of Total Darknefs, are farce to be obferved exactly, even with Glaffes (rione being able clearly to diftinguifh between the True-Shadow and Penumbra, unlefs he hath feen for fome time before, the Line feparating them, pafs along upon the Surface of the Moon ;) and laftly, Becaufe in fmall Partial Eclipfes, the Beginning and End, and in Total Ones of fmall continuance in the Shadow, the Beginning and End of Total Darknefs are unfit for Nice Obfervations, by reafon of the flow Change of Appearances, which the Oblique Motion of the Shadow then caufeth. For thele Reafons I hall propound a Method peculiarly defigned for the Accomplifhment of the Geographical End in obferving Lunar Eclipfes, free (as Gar as is poffible) from all the mentioned Inconveniencies.

For, Firf, It thatl not be Practicable without a Telefcope. Secondly, The Obferver fhall always have Opportunity, before his Principal Obfervation, to note the Diftinction between the True Shadow and the Penumbra. And, Thirdly, It thall be applicable to thofe Seafons of the Eclipfe, when there is the fudder?ef Alteration in the Appearances. To fatisfie all which Intents,

Let there be of the Eminenteft Spots, difperfed over all Quarters of the Moon's Surface, a felect Number gencrally agreed on, to be conftantly made ufe of, to this Purpofe, in all Parts of the World. As for Example, thofe, which Ni: Hevelius calleth, M. Sinai, M. Atna, M. Porphyrites, M. Serorum, Inf. Besbichs, Inf. Creta, Palus Matotis, Palus Mar.cotis, Lacus Niger Major.

Let in each Eclipfe, notall, but (for Inftance) three of thefe Spors, which then lie neareft to the Ecliptick, be exactly obferv'd, when they are Firt touch'd by the True Shadow, and again, when they are juft compleatly Entred into it, and'(if you pleafe) alfo in the Decreafe of the Ecliple, when they are fioft fully clear from the True Shadow. For the accurate Determinations of which Moments of time (that being in this Bufnefs of main Importance) let there be taken Altitudes of Remartable Fixt Stars; on this fide of the Line, of fuch as liebetween the Equator and Tropick of Cancer; but beyond the Line, of fuch as are fituate towards the Other Tropick; and in all Places, of fuch as at the Time of Obferwation are about four Hours diftant from the Meridian:
2. Eclipfis Lunc, Diei 29. O\&7. An. 1697. Oblervata eft-Roterodami per Te- By M. Ja.CaIz lefcopium quatuor ferè pedum Parifienfium Oculari Convexo, in cujus Foco erant fini. n. $n_{2} 3_{0}$ Fila Quatuor, fefe in Axe interfecantia ad Angulos Rectos \& Semirectos, ad ${ }^{p .15}$. Phafes dimetiendas, Macularumque Lunarium fitum determinandum. Hoc Te-Vid. inffa; kefopium impofitum erat Fuloro habenti Axem in fitu parallelo Axi Mundi con- S.LIV. z_{*} fitutum, ut poftguam rd Lunam directum effer ad unius Phafis'Obfervationem, ris. 227. poffet ad alias Phafes oblervandas per Lunæ Semitam:ad Occafum revolvi: Ita autem primo dirigebatur ad Lunam, ut eo inimoto permanente Lunæ Limbus Borealis fuo Motu ad Occafum raderet unumex his Firlis, quod ideo Paralleluma dicimus, licet ob Motum Lunx in Declinationem Motui Lunx ad Occafum multo celeriori commixtum non nihil ab Fguatore dechinaret dum Lunx Difcus in reliqua tria Fila fucceflive incideret. Horum triun Fitorum natermedium Angulos Rectos cum Parallelo efficiens, Rectum Perpendiculare \& Verticale appellamus, Reliqua duo Obliqua, quorum Primum dicimus in quod prius Euna incidit, Secundum Obliqum in quod Luna incidic pofterius, Initio Eclipfls
quando Lunar Punctum Borealifimum nondum in Umbra erat Immerfum, illud Filo aptavimus Parallelo. Deinde poftquam tale Purctum Umbre Immerfum eft, eidem Filo aptavimusAuftralifimum Lunæ Punctum:Unde factum eft ut quodFilum initio fuerat Primum in aliarumPhaflum determinatione fuerit Poftremum, \& Primum evaferit quod Poftremumfuerat initio. Cumautem Lunæ Limbus Filun Parallelum percurreret, Lunx Centrum intelligebatur defribere Lunaren Semitam huic Filo Parallelam, qux ab aliis tribus Filis fecabatur. Portiones autem hujus Semitæ fupponuntur proportionales Temporibus,quibus ipfas Lunx Centrum percurrit, inxquaIitas enim Motus Proprii univerfali Motui immixti exiguo Tempore imperceptibilis eft. Cum igitur Lunx Limbus Parallelum percurreret,obfervabatur beneficio Horologii Pendulo inftructi, \& diebus præcedentibus ad Solem conformati, Tempus adventus Lunæ Macularum aliquot \& Lunarium Cornuum ad hxc tria Fila, \& deprehenfum eft dictx Eclipfis tempore Lunæ Difcum tranfire per Filun Rectum, $2^{\prime} \cdot 24^{\prime \prime}$. per Fila verò Obliqua $3^{\prime} \cdot 24^{\prime \prime}$. ideoque Semidiametrum Lunx tranfire per Rectum $1^{\prime} \cdot 12^{\prime \prime}$. per Obliqua verò $1^{\prime} \cdot 42^{\prime}$. Differentia utriufque tranfitus exiftente $30^{\prime \prime}$. Hinc obfervato uno Appulfu Lunæ ad quodvis horum Filorum, vel uno Egreffu, dantur omnes alii ad reliqua Fila. Semidiameter Lunx A B, jacens in Lunari Semita A BCDEF, pertranfit per ejus punctum quodlibet dum Centrum A percurrit fatium fibi xquale A B, ut alia Semidiameter AK; Angulum Rectum efficiens cum alia recta Linea NCK ad punctum K, in quo proinde Lunam continget in K , ab ejus Semita declinans Angulo $\mathrm{K} \cdot \mathrm{CA}$, tranfit per ipfum Filum CK, dum Centrum Lunx percurrit A C, Hypothenufam Trianguli Rectanguli. A K C: eftque Tempus Tranfitus Semidiametri AB, per Filum Perpendiculare Lunam contingens in B, ad Tranfitum Semidiametri A K, per Filum Obliquum N CK, ut A B, vel AK, Sinus Anguli ACK, ad AC, Sinum Auguli Recti, five Radium. Filo igitur N C K, faciente cum, femita Lunæ Angulum K C A Semirectum, \& Angulus KAC, in. Triangulo - Rectangulo, Semirectus erit, ideoque Latera C K, K A, æqualia, erit Tranfitus Rectus fecundum A B, ad Tranfitum Semidiametri A K, per Filum Obliquum NK, ut Sinus Anguli Semirecti, ad Sinum Anguli Recti, ut 707 ad 1000 , five unt $72^{\prime \prime}$, ad $102^{\prime \prime}$. vel $1^{\prime} \cdot 42^{\prime \prime}$. ferè, ut obfervabatur, Lunaris Centri Semita exiItente A H, Lunx Semidiametro ipfi perpendiculari A M, ducta MNO, Paralella ipfi AH, ipfa congruet Filo quod Lunx Limbus motu fuo ad Occidentem radet, quod lecabitur ab Obliquis NCK, NGI, \& à Recto NEP, in puncto N, qua tranfit Axis Telefcopii ; faciétque cum his Filis Lunaris Orbita duo Triangula Rectangula NEC, NEG, qux fupponuntur habere Angulos Semirettos ad puncta N, C, G: Sunt ergo Similia \& Equalia, habérque Latera CE, EG, EN, Æqualia Semidiametro Lunx AM. Si hinc. inds ab Interfectionibus, C , \& G , accipiantur in Filis ipfi Semidiametro æquales CK, CS, GI, GR, \& in orbita CA, CF, GD, GH, æquales CN, \& jungantur AK, FS, D R, HI, erunt ipfommes rquales inter f , efficientque ad Fi La Angulos Rectos ad K, S, R, I. Quare Centro Lunx exiftente in A, Luna 'Tanget Prinum Obliquum in K, \& poftquam Centrum Lunx venit ab A in C, ejus Semidiameter congruet Linex C E, ideoque Luna tanget Filum Rectum in E. Poftquam autem Centrum Lunæ veng it ab A in D, tanget Secundum Obliquum in R. Eft autem AD, æqualis piametro Lunæ, nam cum GD fit xqualis C A, addendo D C, habebitur AD xqualis GC , qui quidem oft Dia-

(303)

metro Lunæ xqualis. Sed cum G D fit $x q u a l i s C F$, fiab his auferantur x quales $G E, E C$, erit $F E$ aqualis $E D$, \& erit DF dupla ; tantúmque erit à Contactu primo Secundi Obliqui in R, ad Contactum ultimum Primi Obliqui in S; \& poftquam Centrum Lunæ progreffum fuerit in G ad diltantiam Semidiametri unius E G, Luna continget ultimo Filum Rectum in E. Luna Centro progref fo à G in H , ipfa tanget ultimo Secundum Obliquum in I. Suppofito igitur tranfitu Recto Lunx fieri 2^{\prime}. $24^{\prime \prime}$. ut obfervatum eft. Et,

Pofito Centro in A, \& contactu Primi Obliqui in K.
Centrum Lunx erit in C , \& continget I°. Rectum in E Centrum perveniet in D, \& continget $I^{\circ}: 2$ Obliquam in R. Lunx Centrum erit in E, Filo intermedio Perpendiculari Centrum perveniet in F, \& continget ultimò i Obliquum in S Centrim erit in G, \& continget Ultimo Rectum in E Erit tandem in H , \& continget ultimò 2 Obliquum. in.I

	Diff.ContaEt.
	1 11 .
\bigcirc	
1. 42	142
224	- 42
2. 54	
324	- 42
46	14^{2}

Hinc Calculo correfpondebant ut plurimum Obfervationes in hac Eclipfi intra Secundum unum. Sufficiebat igitur in una Phafi Obfervare duos ex his Tranfrit bus in reliquis Phafbus unum, ut reliqui omnes innotefcerent. Quod ad Lunares Maculas attinet; Comparatur Tranfitus Marginis precedentis Lunx \& Maculx per Filum Rectum ad habendam Differentiam quam dicimus Longitudinem Maculx à Margine precedenti: \& Tranfitus Rectus Maculx comparatur cum Obliquo ad habendam Differentiam qux xqualis eft ditantix vix Maculx à Semita Puncti Borealifimi vel Auftralilimi radentis Filum Parallelum. Cum enim via Maculx, A BC, Parallela fit vix Marginis DE F, cofdem cum cildem Fige 12 g Filis: Angulos facit Semirectos ad. A \& C, Rectos ad B, unde Angulus ad A, æqualis eft Angulo ad C, \& Latus B A, æquale Lateri B E, Latitudini Maculæ B à Filo FED. Datâ autem Longitudine \& Latitudine Maculx datur ejus Situs in Lina. Defcripto quippe circa ipfam Quadrato cujus Latus A B, intelligatur congruere Filo Parallelo, \&\& fit divifum in tot æquales partes quot Secundis Luna per. Filum Rectum tranfit, Latera verò AC, BD, ipfi Filo perpendicularia fine in totidem fimiliter partes xquales divifa. Sumptầ in Parallelis Longitudine. AE, CF, \& Ducta FE, \& in Perpendicularibus Latitudine AG, B H, quam xqualem dicimus vix interceptæ inter Rectum \& Obliquum, determinatur Situs Maculı M, in. communi harum rectarum Interfectione.

Quod fectat ad Lunx Cornua in Eclipli, ipfa determinari poffunt folâ Longitudine, modo fciatur quo in Semicirculo Auftrali vel Boreali fint. Ut Cornu I, per Longitudinem AE, vel CF, recta quippe F E, LunxaMarginem fecat in duobus punctis L, \& I, quorum unum elt in Semicirculo Bereali, alterum in Auftrali, Poteft etiam determinari folâ Latitudine AK, vel B M, modo fciatur quo in Semicirculo Orientali vel Occidentali fit Punctum I. Ex Lineis autem Longitudinis \& Latitudinis illa exactius Situm Cornu determinat, qux propior ef Centro; ut hic punctum. I, exactius determinatur: Longitudine quam Latitudine; è contra Punctum O exactius Latitudine giram Longitudine, idque ob minorem Obliquitatem Linex rectx ad Circumferentiam, quâa efficitur ut exigua variatio Diftantix magis lit in Circumferentia Cenfibilis. Alia ratione per Obliquos Tranfitus determinatus

(304)

xig. 35
determinatur Situs Macularum \& Cornuum Lunæ, fi Linea A D, Parallela, Semitx Lunari P Q, ipfus Marginem tangenti, fiat Diameter Quadrati Linæ Circumfcripti qux dividatur in tot xquales partes quot Secundis Luna per Filum Obliquum pertranfit, ut in hâc Eclipfí in partes 204. Hujus Quadrati duo Latera A C, B D, Primum Obliquum reprefentabunt, utpote illi Parallela, reliqua $A \cdot B, C D$, Secundum Obliquum, fumpta autem Differentia inter Tranfitum Marginis Præcedentis Lunx \& Maculæ M, per Obliquum, in Secund is horariis ab Angulo prexedente ab A in T, \& ducta per T, Rectâ E F, Parallela Lateri, A C, \& fimiliter fumptâ ab codem Augulo A, differentia inter tranfitum Marginis prxcedentis K, \& Maculæ M, per Secundum Obliquum A B, ut A V per Punctum V, ducatur Recta GV H, Parallela Lateri A B, reprefentabit Secundum Obliquum fecans Priorem in Puncto M, ibique Situm Maculæ determinabit. Eadem ratione determinabitur Situs Cornu E, per Differentiam iffius Tranfitus \& Marginis per Primum Obliquum fumptam in Diagonali ut A T, Situs Cornu H, per differentiam ipfrus Tranfitus per Secundum Obliquum A B, ut $A V$, \& ducta per V, Recta GH, Parallela Lateri $A D$, modo fciatur fitne Cornu in Semicirculo Pracedente aut Sequente.

AnEclipe of the XL. The Tables did indicate an Eclipfe of the Moon, Fuly 27. (St.n.) 665 . but Moon.1665. Ob-though the Sky here was very clear, yet the Moon was not at all Obfcured by ferved at Dant- the True Shadow, but entred only a little into the Penumbra, wherein it conzick; by M.Hevelius, n. 19. p. 348 . tinued 50^{\prime}. The Beginning of its touching the Penumbra did then almott happen, when Aquila was elevated $36^{\circ} .18^{\prime}$.

In Eciipfo of the XLI. In the Eclipfe of Fune 16.(St.n.) ' I666. the firft Phafis of I Digit 45^{\prime} ' apA. Moon, Jun. ${ }^{6} . \dot{M}$. pear'd in the Moon's Altitude of $2^{\circ} \cdot 3^{\prime}$. when the Greateft Obfcuration was A.1666:; by M. Plready paft. The End fell out $9^{\text {h. }}: 27^{\prime}$.about 128°. from the Zenith Weft ward. 348. n. 2I. p. 37 r. An Eclipfe of the
XLII. Die 29. Sept. (St. n.) I 670. mane Initium hujus Eclipfis incidit. 2 h. 22^{\prime}. Moon, Sept. 19. quanquam id ipfum vix omnino accuratè oblervari potuerit, ob Umbram Terrre A.r670;by M. Dilutiffimam: Siquidem, durante Eclipff, tota Umbra adeò Tenuis erat atque Hevelius. n_{G} GI. 2. 2023° Diluta, ut omnes precipuas Maculas per eam, meo viginti pedum Tubo, quin: \& brevioribus, optimè confpicere potuerim.

Maxima ejus Obfcuratio incidit $3^{h} \cdot 5^{\prime}$. Finis verò $5^{\text {h }} \cdot 21^{\prime}$. Tota itaque Duratio fuit $2^{\text {h. }} 59^{\prime}$; \& Quantitas vix amplius 9 Digitorum. Circa Medium hujus Eclipfis $3^{h} \cdot{40^{\prime}}^{\prime}$ Stellulam quandam Incognitam, ac folo Tubo confpicuam, à Luna circa Lacum Nigrum Majorem tectam, clariffimè confpexi; fed exire eam non deprehendi. Deinde finitâ Eclipfi, jucundifimum quaque obfervatu erat, bina Luminaria fimul fupra Horizontem videre. Nam priufquam Luna occideret, Sol oriebatur. Cætéra notatu digna ex particulari hoc Typo deprehendetis.

[^4]界

(306)

an Eclipfeof the XEIII. x. Sept. 8. 167 1 . Circa Horam fextam vefpert. Luna afcendebat Aroon, Sepr: .
 by Mr. Palinier. Finis, Arcturo Alto 160 . $30!$. five 8 h . 16^{\prime}. $20^{\prime \prime}$. Unde computatur Medium ${ }^{11} \cdot{ }^{662}$ p. ${ }^{22} 72$ Eclipfis fuiffe $6 \mathrm{~h} .28 \% .16^{\prime \prime}$.
 by:Dr. Hook. $\quad 3 \cdot 7^{\mathrm{h}} \cdot 27^{\prime \frac{3}{2}}$, firlt obferved, the Moon Eclipfed when it began to be entightned; ni.j7, p. 2295. ine Total Darknefs being already paft. The Shadow paffed. through the middle of the Spot called by Hevelius, M. Porplyrius.

$$
7^{3}+42^{1}
$$

(307)

7^{3} h. 49 . The Shadowsaffed through the middte of M. Sinni, through the middle of the Eaftermoft of obie three Lakkes called Mare fidrinticum, and yuft touched the Ridge of the Appennine Mountains.
$7^{\mathrm{h}} .54^{\text {I }}$. It paffed the middle of the I. Besbicus in the Propontis.
$8^{\text {h }}$. $0^{\frac{1}{2}}$ It palfed through the Streights of the Pontus Euximu, at the Promontories Acherufic: and Arifes.

8h. $6 \frac{1}{2}$. It touched the Palus Meotis, which Palus M.eotis was then diftant from the Limb of the Moon, next adjacent, onc third part of its fhorter Diameter or Breadth.

8h. $17^{\text {'. The Shadow went of the Body of the Moon upon the innernoft }}$ Limb-line of Hevelius's large Chart of the Moon at the 29 Divifion, juft without the I. Major of the Cafpian Sea. The Duskifh Penumbra left not the Limb of the Moon quite without Tome kirdd of Darknefs till $8^{\text {h }} .29^{\prime \prime}$; at which time I found that that fide of the Moon which the fhadow laft left, was full as light and clear as the other.

Aboutffour or five Minntes after the Shadow was gone off, 1 perceived a faint Reprefentation of Colours upon that part of the Body of the Moon, which was moft affected with the Penumbra, fomewhat refembling the Colours of a faint Hato about the Moon; this grew fainter-and fainter, and after a few Minutes nvas normore Vifible. It did not feem to be cauffed by any Clouds or Exhalations in the Air, the Sky near the Moon being very clear, and the faid Colours not appearing any where, but upon the dusky part of its Phafes. Poffibly it might be caufed by the Refvation of the Light from the Sun through the Atmofphere about the Earth.

${ }^{3}$ Exivit'Luna ex Umbrâ èr regione Petra Sogdiana, Hevelii.
5. Hora:8. 30'. Per Núbes Dehifcentes, fatis tamen craffas, Lunam fub-At Dantzick: obfcurè animadvertimus, \&-quiden tanto Lumine jam imbutum, ut dixiffes by M. Heveliss. Eclipfin jam effe proteritam. Exinde certum erat, Totalem Obfcurationem ${ }^{\text {no }}{ }^{78}$. p. 302Ω. Jam minimum effe eo tempore præteritam, imò aliquanto adhuc citiús: Siquidem Lunam Rurfus adeffe nos omnes per Nubes illas fatis dilucide deprehendimus; Sic ut Eclipfis in Coelo ultra dimidiam horam citius ingruerit, quam Kepleri Calculus id indicaverit. ${ }^{8 h}$. 34^{\prime}. Minimum ad integrum Digitum animadverti jam extra Umbram fele Lunam extricafiè ; \& denuo $9^{\text {h. }} \cdot 41^{\prime}$.ad $\pm \frac{1}{2}$. Dig. Lumen Lume jam excreviffe, quantum id dijudicare circiter dabatur.

(308)

At Hamburg; 6. Eque nos hic ac Hevelius Gedani, Calculum Rudolphinum in nupera by Dr. Fogelius. Eclipfi aberraffe deprehendimus. Emerfiffe enim jam Lunam ex Umbra Ter-
$\mathrm{lb}, \mathrm{p} .3033$. ræ ante horam nonam etiam hic vidimus.

An Ecliffe of the Moon, Jan. I. $167 \frac{4}{5}$, at London; by Dr. Hook. n, IIt. \$. 237.
XLIV. I. Initium veræ Umbræ
Inmerfio
Emerfio
Finis veræ Umbrx

The Penumbra was feen to continue near half an Hour before it wholly quitted the Body of the Moon.
Mst Derby; By
Mr r. Flamfteed. 2. Mr. Flamfeed obferved the Beginning of the Entrance of the true Sha-

At Paris ; by M. Bullialdus. Ib. p. 238.
3. Initium verre Umbræ Alta Capella

Immerf. Altâ Capella
Emerf. Alt. Cap. Pollucis
Fin. veræ Umbræ, Alt. Syrio.

$$
\left|\begin{array}{rr|rrr}
0 & 1 & h & 1 & 11 \\
52 & 26 & 5 & 32 & 29 \\
62 & 8 & 6 & 33 & 3 \\
43 & 46 & 8 & 9 & 30 \\
20 & 47 & 9 & 0 & 0
\end{array}\right|
$$

art Paris; by 4. At $5^{\text {hit }} 12$ '. In the Evening, In the Royal Obfervatory, They began to Micard, $_{\text {M. Caffini, }}^{2} M_{0}$. perceive, that the Oriential part of the Moon, by little and little loft its Light;
 Po. 238. no 112: Limb over againft the Spot called Hevelius grew fo. dark, that they all agreed, that this was the true Beginning of the Eclipfc. At $8^{\text {h. }} .7^{\prime}$. one of the Obfervers believed the Emerfion, another at 8 h .81 . and the third at 8 h . $9^{\prime} \cdot 30^{\prime \prime}$. but afterwards confidering the Emerfion of the firt Spots they all efteem'd it at ' δ^{h}. 8^{\prime}. At 7^{h}. 2I. the Southern Limb of the Moon was come clofe to a Telefcopick Star, at $8^{\mathrm{h}} .9^{\prime} \cdot 20^{\prime \prime}$. another Star yet lefs than the former, came out of the darkeft fide, almoft over againft the Spot Laingrenus. At $9^{h} \cdot 9^{\prime} \cdot 4 \mathrm{c}^{\prime}$. all the three Obfervers agreed, that the Moon then came out of the Shadow. The Diameter of the Moon being meafured before the Ecliple, was of $32^{\prime} \cdot 15^{\prime \prime}$:

The Times were noted by great $P_{\text {endulum Watches, that had been ad- }}$ jufted by the Sun the fame Day, and that were afterwards verified the next Day : Befides that, before the Ecliple at $4^{h} \cdot 45^{\prime} . I^{\prime \prime}$. by the Watches, the Star Capelln was 45 Degrees high towards the Eaft.

(309)

Time.	Phajes.
h.	
53250	Beginning over againft the Spot Hevelius.
53600	The firtt Spot of. Grimaldi. Palus Marcotis.
53630	The fecond Limb of Grimaldi.
54500	The middle of Ariftarchus. Mons Porphyrites.
54600	Merjennus.
54830	Herigone.
55300	Heraclides.
55315	
$5 \begin{array}{llll}5 & 54 & 15\end{array}$	The middle of Copernicus. ...
55440	Pitheas, or Hiera Infula.
55505	The fecond Limb of Copernicus.
55740	The firft Limb of Timocharis. Corfica.
55935	The firt Limb of the SinusMedius Effuum. Adriatick Sea.
6 OI 30	The Middle of the Sinus Medius.
60240	The firt Limb of Tjcho, or Sinai: and the firt Limb of Plato, or the Lacus Niycr Major.
60350	The fecond Limb of Plato, and the middle of Tycho.
60430	The Center of the Disk.
60900	The middle of Manilius, or Mons Besbicuso
6 6 1200	The middle of Menelaus, or Byfantium
${ }^{6}$ 13 345	
614.30	
61545	Vitruvius.
62035	Endymion, or Lac. Hyperbor. fuperior.
62100	Promont. Heraclium.
62450	Betwixt Alcuin and Taruntius.
62600	The firft Limb of the Cafpian Sca, Mare Crijum. Palus Meotis:
$6 \quad 2815$	The middle of the Cafpian Sea.
$\begin{array}{llll}6 & 29 & 40\end{array}$	The other Limb of the Cajpian Sea.
$630 \quad 5$	The firf Limb of Langrenus, or Infula Maj.
$\begin{array}{lll}6 & 3 & 5\end{array}$	The middle of Langremus.
$\begin{array}{llll}6 & 35 & 46\end{array}$	Total Immerfion, betwixt Langrenus and the Cafpian Seas
8880	Firft Emerfion, towards Grimaldus.
$\begin{array}{llll}8 & 12 & 35\end{array}$	The firlt Limb of Grimaldus.
81400	The fecond Limb of Grimaldus.
82020	Mersennus.
$\begin{array}{llll}8 & 24 & 5\end{array}$	Herigone.
$\begin{array}{llll}8 & 24 & 35\end{array}$	The middle of Arifarchus \& the middle betwixt Herigone \&\% Morin.
$\begin{array}{llll}8 & 26 & 30\end{array}$	The middle of Kepler, or Locn Paludofno
$\begin{array}{llll}8 & 28 & 30\end{array}$	The firft Limb of Tycbo.
82950	The fecond Limb of Tycho.

(300)

If Dantzick ; 5. Vigilantes oculos, per totam Eclipfeos Durationem tubo 20 Pedum, by M.Heveliustaliifque preftantioribus, ad quatuor Fixas (neglectis ceteris minoribus,
 rrexi. Ab a Stellula vix quatuor minutis Limbo fuo Inferiori in d', diftabat. trres verò reliquas, utpote $b, c, \& d$, Luna corpore fuo omninò texit. Ex omnibus autem his quatuor infignioribus Stellulis, non nifi unicaci ab Aftronomis hactenus obfervata, Globifque adfcripta eft; nominatur Informium sinter III \& 5 Suprema à tergo Pollucis; cujus curfus cum ingreffu, viâ itinerariâ, atque egreflu inprimis probè notandus. Quippe ex hujus generis oblervationibus, multo procliviùs datur Motum Lunæredintegrare, ejufque Nodos Latitudinemque reftaurare, quàm, meoqquali judicio, ex nudis Solis Eclipfibus., StelIIula b, ad montem Eoum circiter tecta eft, \& d ad ipfum Limbum Lunæ Infefriorem; illa per Sinum Sirbonis, I. Rbodum, \& S. Athenienfom; hoc vero per Dofertum Ming ui trandit.

(312)

6.Obfervatio hujus Eclipfis fuit admodum exacta; nam Sole prope Horizon- At Seville ; by ${ }^{t} e_{m}$ exiftente, per hujus Loci Altitudinem Minutorum tempora facile inno- S..... Prof. j Jtuerunt: Cxetera meo Horologio (quod ne unum quidem Minutum ea die siques. no 118 . difcrepabat) notavi, ita ut nulli dubio in obfervatione detur locus.

Initium verxllmbrx Immerfio
Emerfio
Finis

56
6
733
839 et aliquantulum productior.
S 1
$X L V^{B}$

(314)

XLV. -An Eclipfe of the Moon, Jun. 27. $1675 . a r$ London; by Afr. Flamfteed and Mr. Halley. ก1. 116.p. 37 y 2. $118 . p .432$

	Hora Horo: logii Ofcillatorii.	Phajeso.
	$\left.\mathrm{I}\right\|_{\mathrm{F}} ^{\mathrm{h}} \mathrm{I}_{\mathrm{I}}$	Lunx Dianaeter $3190=31^{\prime} .40^{\prime \prime}$. . Multotics reperime $\begin{aligned} & \text { Menfuræ tum à me }\end{aligned}$
	3 I II	
	137	Nullum Penumbre veftigium : jamque Luna nubes fubtervolantesfubiit, fub quibus latuit ufque
	I 4640	Dum per earum hiatus Penumbra denfa, vel forfan ipfum Initiumapparuit; fed certus effe non poteliam.
	715.5140	E nubibus elevatæ Limbus, notabili fatis defectu laborare vifus eft, obfcurato fextante vel minimum octante Peripheriæ.
	25	- Pentadratylus-tee
	2.2	Porphyrites tectus.
	-1 2530	Sina Limbus primus.
	12600	Etnae Limbus proximus.
	2 2-840	Partes refidure illuminatx $2071=201.38^{\prime \prime}{ }_{2}$
13	321200	Eixa exigua Telefcopica, minori tubo non vifibilis, in majori apparuit dimidium ferè capacitatis ejufdem, vel $15^{\prime \prime}$ à Limbo apparenter inferiori diftans.
	4: 217%	Partes illuminatæ refidux, $1.655=1.6{ }^{\prime} .277^{\prime \prime}$
	522235	Besbici Limbus prior.
	6226	Harminius tectus.
	722900	Emus tectus.
	18123045	Partes illuftratæ refidux $1047=$ rol. $244^{\prime \prime}$.
	19 23500	Partes-lucidx refidure $865=838$; jamque tubo longiori fixa alia exigua apparuit, Mâculæ Ca/pie Longitudinem à limbo Lunæ, Latitudinem ejus à Linea per cufpides ductâ dextram verfús, diftans:
	2023715	Unibra tegebat occidentale Litus Pontio
	$1 / 2930$	Ipfa tetigit Limbum primum Corocondomet is. Paludem Meotidem tetigit
	$\left\lvert\, \begin{array}{lll} 2 & 45 & 00 \\ 2 & 50 & 45 \end{array}\right.$	Maotis tota tecta:
	425610	Dubium an aliquid veri Luminis fupererat.
	25.5655	Immerfio: Certe enim Lux primaria Lunam penitus deféruerat, fcil, è regione paulò fupra Montes Ripheos \& circa gradum Limbi Heveliani $33^{\circ} \cdot 2^{\text {h. }} \cdot 57^{\prime}$. 30". Limbus. Coloris Cineritii per tubum apparuit.

Aer à feptima obfervatione ad Immerfionem fereniflimus extitit'; su Lucula guxdam Albicans per totum defectûs tempus Cufpides: obfcuratx Linner vifa
ef infidere, gux eam etiam poft Immerfionen à parte, qua ultimum in U_{m} bram inciderat, reddebat confpicuam. Tenuis admodum erat Eclipfis hujus Penumbra, nec major quam Sina aut Etne Latitudo. Palus Meotis Lata apparuit admodum, \& quàm maximè ferè potuir à Limbo Lunx remota. Marcotis è contra compreffa admodum, nec plufquam dimidium longituditis ipfius à Limbo Lunæ diftans.
2. Initium veræ Umbræ altâ Capellấ ad ortum 1845 Umbra attigit Paludem Micot. altâ Lyrâ ad occ. Immerfio Totalis altâ Lyrâ ad occ.

(316)

Mare Cafpium tunc diftabat à Limbo Occidentali circiter $\frac{3}{4}$ fux Eatitudinis, Poft Immerfionem Totalem dignofcebatur adhic totum Corpus Lunxe.
XLVI. I:
inn Eclipfe of the Moon Decemb. 22. 1675 . at Greenwich; by Mr. Flamfleed. no. 18 s p. 43.5

Hor. cor. Horcl.	Phafes.
h.	
22930	Inter Cufpides $2085=17.16^{\prime \prime}$.
25545	Hremum ferè tetigit.
$3 \quad 0 \quad 30$	Hamum certe tetigerat.
$3 \begin{array}{lll}3 & 11 & 30\end{array}$	Cufpis dexter à Mariotide $-1235=10^{\prime} .144^{\prime \prime}$.
335.0	Partes Lucid x circiter $2800=23.11$. vel paulo form amplius; difficile enim crat admodum, Umbræ veræ Terminos, per Aerem Vaporibus foedatum, definire:
$342: 30$	Umbra prope Macram.
35245	Inter Cufpides circiter $2288=18^{\prime} .57^{\prime \prime}$:
4.715	Finis: Limbus enim apparuit, \& nihil videbatur in rotunditate Lunæ defiderari.
4.8	Limbus admodum dilucide per Tubum confpectus ${ }^{\text {a }}$
41530	Penumbra, quæ nudis Oculis Eclipfin referebat.
41930	$D x$ capta diameter $3757=31^{\prime} \ldots 5^{\prime \prime}$, Sed vix fatis certa; quarn tamen haud multum à veritate abeffe putem.
23.0	Etiamnum, \& poftea, Limbus ab Eclipf $\sqrt{2}$ derelictus Obfecurior videbatur ac alter.

Corficera Limbo 7) Remoto diftantia $273^{2}=22^{\prime} 37^{\prime \prime}$ 。
Limbus ejus proximus à proximo Lune $1045=8.30$

(317)

Sina Límbus Remotior à Luna Proximo $599=4^{\prime} \cdot 5^{\prime \prime} \cdot$ bona
Lacus Nigri Majonis Medium à Limbo proximo $4.5^{2}=345$.
Notavi preterea, quòd Umbra femper longè diftinctior apparuit ad Cornua, quàm alicubi in Facie Lunx: In prima Obfervatione, vel prulo antè, Cornua fuêre Horizonti Paraliela.

Tunc etiam Porphyrites, \& Lacus Niger Major, æqualiter ex Ulmbra extitêre, Longitudinem fcil. circiter Mareotidis.

Nunquam tamen Porppyritom. fuperavit in hac Eclipfr; alte vero illum in Penumbram nerfum vidi.

In fumma Eclipfi ad Corficam ferè Umbra pertigerit; nunquam tamen cam extinctam vidi, fed altè adeò in Penumbia immerfam, ut x grè eam potuerim difcernere.

Né unquam umbra yera Infulam Mncram pervagabatur, fed Penumbra duntaxat denfa, per quam difficile erat iplam percipere.
$4^{\mathrm{h}}-5^{\frac{1}{2}}$ Limbum videre non potui; nec 4^{h}. $6 \frac{1}{2}$; fed $4^{\mathrm{h}} 7^{1}$. videre me putabam Limbi Lucem fed languidifimam, \& xgre admodum; $4^{\mathrm{h}} \cdot 7^{\prime \prime} \cdot 15^{\prime}$. certior factus fum ex Umbris-Emerfife, nec aliquid in ejus rotunditate defiderari: Ergo tunc Finem oblervatum fatuo.

Exibar Umbra juxta Lasum Hypervoreum Superiorcom manente Pénumbiat, qua Edipfin nudis Oculis exhibebat ufque $4^{h} 15^{7 \frac{1}{2}}$; Ced Limbus ab Eclipfi dereliftus Limbi eppofiti.Claritudinem recuperavit non nifi $4^{\mathrm{h}} .28^{\prime}$. vel ferius.

Tempora Phafum Correeta, ab Altitudinibus Arcturi \& Lucide Corone, Quadrante Telefcopico, pedum trium \& amplius Radio, captis; quibus, clarè aliquando in altera Coeli cardine emicantibus, captandis incubui, quoties Lunam fubiêre Nubes.
2. Initimm Ecliphis accidit anteguan ad Inftrmenta veni: Quod tamen Londini in Vico Wintonicnfi obfervavit Edmundus Hallcius, cum Lunæ Limbus

3-ioh. Coel onus in Vico Wappingens, ad Anachore fin, (Angl the Eremitage) Lim Bum Lunx Deficientem aliquantulum vidit $2 \mathrm{~h} \cdot 17^{\frac{3}{4} .}$. At $4^{h} \cdot 9^{\prime} \cdot 25^{\prime \prime \prime}$. ex Unbra vera ipfum exiiffe comperit, denfâ duntaxat Penumbrầ remanente.
4.: In hac. Eclipf1 Duo procipua à nobis cxactè determinata funt, Medium $\mathfrak{A t}$ paris $\frac{3}{}$ by f. Eclipfls, tempus, ejufque Magnitudo. Medium deducum eft non folum ex M. Caffini. comparatione Initii, \& Finis, fed etiam Duarum xqualium Phafium, deter- ${ }^{\text {no }}$ I23. P. 568 . minatu facillimarum, quando Scil. diftantia Cornuum xqualis erat Lunx femidiametro, ante Eclipfin captæ, $15^{\prime} \cdot 28^{\prime \prime}$. Scilicet cum initium Eclipfis cxif timatum fuerit. $2^{\text {h }} \cdot 24^{\prime} \cdot 35^{\prime \prime}$.

determinatione Initii	141525
Duratio totius Eclipfis provenit	150.50
Dimidia	05525
Et Eclipfis Médium	3200
Sexta yero circumferentix pars absifla eft	23851

A fque iterum
Intervallum
Dimidium
Hinc Medium Eclipfis. $|32015|$ Intra quartam minuti partem priori determinationi conveniens.
In Situ Umbre \& Eclipfis Magnitudine D. Flamfedio plane convenimus. Ab utrifque quippe Noftrum annotatum eft, Umbran nunquam fuperaffe Por phyritem, licet is altè in Penumbram fuerit Immerfus.

Porplyriti proximus eft Mons parvus albicans, quen tunc Arifarchi Comitem appellavimus, co quod ab ipfofeu Porplyyrite vix diftet fui Diametro. Is Monticulus Immerfus eft in Umbram $3^{\text {h. }} \cdot 5^{\prime} \cdot 15^{\prime \prime}$; Emerfit autem $3^{\text {h. }} \cdot 8^{\prime} \cdot 25^{\prime \prime}$. totoque tempore interjecto fuit Umbra Porphyyiti proxima.

Uterque pariter annotavimus, in fumma Eclipfi Uumbram ad Corficam ferè pertigiffe, nunquam tamen ab ea fuiffe tectam, fed réliatum exiguum intervallum, cujus termini diftantia à Lunari Margine proximo capta eft $8^{\prime} .17^{\prime \prime}$, cum Flamfeciuls Infulx ipfius paulo remotioris diftantian ab eodem Limbo invenerit 81. 39". Infulam quaque feu potius Peninfulam Macram utrique Umbre diutifime adjacentem confpeximus, nos id fieri coepiffe notavimus $3^{h} \quad 28^{\prime}$ 15 $5^{\prime \prime}$. \& per hore quadrantem in eadem ditantia perfeveraffe.

(319)

Corficam now attigit Umbra, neque Lacum Tbrafymenum, propterea Eclipfis non exceffit 3 Dig. 30. vel minus etiam. Initium uno frupulo primo, vel $45^{\prime \prime}$; anteceflit adrotatum, ita ut ftatui exactius poflit $2^{\mathrm{h}} .22^{\prime} \cdot 32^{\prime \prime}$. Hinc tota Duratio fatis precife $1^{\text {h. }} 51^{\prime}, 24^{\prime \prime}$. Quare Maxinia Obfitratio contigit $3^{\text {ha }}: 18^{\prime \prime}$. $4^{\prime \prime}$ ".

Zin In hac Eclipfl probè notandum eft, quod omnes Sectiones nunquam it Dantziek $\%=$ Moiztem Porphyritem omnino texerint, fed ille per totam Durationem, etiam in by M.Hevelius, pfa Mâxima Obfctratone, in ipfo Umbre Limbo confucuus perftiterit

$\begin{array}{ll} \text { Temp. } & c x \\ \text { Altit. } & \text { Cor. } \end{array}$	Altitudines Fixarum.		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 5 \end{array}\right\|$	\| Per quas Maculas trinnfiverint Umbra Sectiones.	
h. 31110					
${ }_{2} 2838$	$26 \quad 12$	Dext. Humeriorionis.			
${ }^{2} 33320$	2535	Dext. Hum. Orionis.			
${ }^{2} 36640$		Initium Pcnumbr.		Ad Montem Baron	
3810				Penumbra denfior.	
$\begin{array}{lllll}3 & 16 & 35\end{array}$				Denfa Penumbra.	
3:24.20				Derfiffima Penumbra.	
3300		Initium Eclipfeos	I.	Ad Sinum Apollinis.	
33625		,	2	Per M. Alabaft. \& Sin. Hyperb.	
$\begin{array}{llll}3 & 42 & 5\end{array}$			3	Ad Sinum Apoll.	
34630			4	Per A1. Baron. '\& L. Nigr: Majorem.	
35210			5	Per Inf. ${ }^{\text {pphiuj}}$	
$\begin{array}{llll}3 & 59 & 15 \\ 4 & 7 & 45\end{array}$				Ad M. Forphyr. \& L. Nig.Min.	
4745		Stellula diftabat in Limb. 36^{\prime}. vel. 40^{\prime}.	7	Per M. Porph. \& M. Serr.	
4 II 45°			8		
4185			9	Per Inf. Corj. M. Arg \& M	
4260		40 2.	10	Macraceran. Per M. Porpbyrit. \& Lac. Tra-	
$426, \ldots$		47:	10	Per M. Porppyrit. \& Lac. Trafimenuro.	
45620			11	Ad Sinum ApcHinus, M. Clorifir \& Inf Macr:	
55528	3233	Lucidx Lyre.		Sti, \& Inf: Macr.	
5.57 .33	3250	Lucidx Lyra. 11 \%			
5 5 59				Penumbra. -	
688 c				Pcnumbra pene evanuit quoad	
				conjicere potuimus ob nu-	

XLVII. An Eclipfe of -he Moon, Oct. 2 (St.n.) 1678 . At Paris; by M. Caffini. n. 141. p. IOI.5.

Pbafes Luna $छ$ Macularum Secundum Denominationem Riccioli.

Incipit Umbra
Grimaldi Limbus Sequens
Gallileus
Finis Galiles

(321)

Merjennus

Chorda Eclipfis Dig. 6.
Gaffendi Initium
Gnffendi Medium
Sclizardi Initium
II. Digiti Ecliprici

Arífarchi Initium
Arifarchi Medium
Ariflarchi \& Morini Finis.
Capuamus five Oculus Draconis
Digitilli.
Chorda 9 Digitorum
Initium Torra Pruine \& Copernici
Copernici hinium
Copernici Medium
Copernici Finis
Pitlees Initium
Pithere Finis
Caput Virginis
Harpalus
Tyctoonis Initium
Tychonis Medium
Tyctonis Finis
Eratoftocnes
Digiti V.
Promontorium inter Virginem \& P/atonem
Infula in ultimo Sinuum Wiediorum
Clara fequens Tychonem
Digiti VI.
Tymocharis
Platonis Initium
Pictonis Medium
Platonis Finis \& Initium Manilii
Platonis Finis
Manilius
Finis Manilii
Diony/iii Initium
Dioryfius
Mcnelans
Diony $j_{i i}$ Finis \& Menelni Initium
Plinius Incipit
Flinius
Picolaminers feu Clara fupra Anmulan
Initium Fracaforii feu Annuli
Initium Poffilenii
Finis Fracuforii
Vol. I

h. ${ }^{\text {h }}$	h. ' "1	\|h. ' "
64820		
	64900	
65050	65050	
	651.30	651137
655143		
	65200	
65250		
	6.5310	653
$\left\|\begin{array}{lll} 6 & 54 & 00 \\ 6 & 56 & 00 \end{array}\right\|$		
	65630	
	657 co	
65854		
	659 io	
7. 0000	70000	65930
70055	7.0055	
7 1 50	7 I. 40	
$7 \quad 230$		
$7 \quad 245$	$7 \quad 240$	$7 \quad 318$
$7 \begin{array}{ll}7 & 2 \\ 7 & 45\end{array}$		
$7 \quad 420$	$7 \quad 420$	
$\begin{array}{lll}7 & 5 & 00\end{array}$		$7 \quad 548$
$7 \quad 555$		
7620		
	$7 \quad 650$	
$7 \quad 700$		
7730	-12	
7831		
	7 II 20	
71148		
	$\left\lvert\, \begin{array}{llll}7.13 & 20 \\ 7 & 13 & 40\end{array}\right.$	71329
71400		
	71440	
	71450	1715.4
$\begin{array}{llll}7 & 15 & 12 \\ 7 & 5 & 1 \\ 7 & 15\end{array}$		
	$\|$7 17 2 7 18 10	
$718: 28$	7 I	$\begin{array}{llll}7.17 & 59 \\ 7.18 & 11\end{array}$
72056		
	72110	7255
$72130 \quad 1$		
72300	$723 \quad 5$	
7 7 7 2355		724.38
$72+25$		

(322)

XLVIII. 1.

An Eclipfe of 19. m. 1681. at Greenwich; by Mr. Flamfteed, Ph. coll, n. 3. f. 67

Digits Eclipfed.	Pbases.	Time.	2. At Paris; iyM. Caflini.
d. ${ }^{\prime} 11$		h. ${ }^{1} 111$	
	The Beginning at	15830	
	The arrival of the Shadow at Grimaldus:	$2 \begin{array}{llll}1 & 1 & 30\end{array}$	
	At Tycho.	$2 \quad 800$	
	At the Center of the Moon.	23730	
	At the Middle of Copernicus:	23930	
	At Ariftarchus.	24000	
81600	At the Middle of Manilius.	25430	
	At Plinius.	31100	
9.200	At the Lower part of the Cafpian Sen.	$\begin{array}{llll}3 & 7 & 30\end{array}$	
93120	At the Upper fide of the Cafpian Sea.	$\begin{array}{llll}3 & 18 & 30\end{array}$	
$10 \quad 100$	The Greateft Obfcurity.	33545	
	\{The Return of the Shadow\}	347.00	
$\therefore 4.4600$	\To Arifarclus. ${ }^{\text {a }}$	34700	at.in
	To the Conter of the Mcon.	$\begin{array}{lll}4 & 29 & 00\end{array}$	arsoz
	To Tycho:	$1+4.30$	
$\cdots 18.13$	The End of the Eclipfo.	15 13 00	
	The Whole Duration.	214.20	

At $5^{\text {h. }} .13^{\prime} \cdot 56^{\prime \prime}$. the Apparent Altitude of the upper Edge of the Sun, was". . $17^{\prime} .10^{\prime \prime}$. and that of the Moon, 1°. 11'. $30^{\prime \prime}$.

$\begin{gathered} \text { Temp. juxta } \\ \text { Hor. } \end{gathered}$	Phajeso.	Altitudines.	Temp. Correen	At Dantzicik
h. ${ }^{\prime \prime}$		0.	h. 111	n. 5. p, $x 6$
$\begin{array}{llll}1 & 1 & 03\end{array}$	Altitudo Paliliciio	24. $\quad 14$	$1{ }^{1} 4.48$	
2.430	Eadem Altitudo.	32.58	2. 632	
2 9,00	Rurfus capta.	33. 30	2.10 32	
24500	Veftigium Penumbre.		24630	
25300	Penumbra paulo Denfior.		2.5400	
25900	Adhuc Denfior.		30000	
3. I 00	Denfifirma.		$\begin{array}{llll}3 & 2 & 00\end{array}$	
$\begin{array}{llll}3 & 2 & 00\end{array}$	Initium Eclipfeos.		$3 \quad 300$	
$\begin{array}{cccc}3 & 6 & 00 \\ 3 & 12 & 00\end{array}$	Prima Phafis.		3630	
$3 \cdot 1200$	Sccunda Phalis.		31230	
3 14:00	Tertia Phafis,		$3{ }_{3} 14430$	
32000	Quarta Phaflis.		32.100	
$\begin{array}{llll}3 & 22 & 30\end{array}$	Mons Sinai Totus tectuis*		32.300	
329.00	Sexta Phafis.		33000	
34300	Altitudo Pollucis.	3000	34300	
$5 \quad 200$	Centrum Solis Oritur.			

Color hujus Eclipeos erat Cinericius five Fuligineus. Tempore Obfervationis Mons Porphyrites \& M. Etna fere in eodem Perpendiculo exifebant.

Phafis I. Per Montem Eoum tranfibat.

II. Ad Paludes Arabie incedebat.
III. Inferiorem Ripam Paludis Marcotidis \& Extremitatem Sinus Sir bonis tangebat.
IV. Per Infulam Letoan incedebat ad ipfum M. Sinai ufque, fed dictus Mons Totus adhuc erat confpicuus.
V. Sinum Syrticum tranfire videbatur, fic ut totum M. Sinai Umbra jam tegeret.
VI. Supra Sinum Syrticum, ultra Infulam Cretam, \& per Mare Morturm incedebat.

An Eclipfe of the Moon, Feb. II.
1682 . by Mr. 1682. by M no 1450 . 9 . 8 .
XLIX. I. Ann. $168 \frac{1}{2}$. Feb. II. H. 8. 1^{\prime}. Tubo pedum 16 Luna cepi Diamerrum $6702=33^{\prime}$. $25^{\prime \prime}$. deinde diftantiam Limbi ejus Proximi à Limbo Proximo Marcotidis $145=00^{\prime}$. $43^{\prime \prime}$. fed ejufdem Limbi Maculx à Limbo Lunæ remotiore $6575=32^{\prime} \cdot 48^{\prime \prime}$. Hujus etiam Tubi ope Tempora, cum Obfcuratio ad Centrum Lunx pertigerit, \& cùm Radius ejus Arcus in Periphæria Deficientes vel Reftitutos fubtenderit, obtinui; è quibus medium derivari potef, forfan non minus accuratè, guam ab obfervatis Initio \& Fine, Immerfione \& Emerione, collatis.

	Tempora Phafium per Horologia Ofcillatoria correeta.		
	Greñovici in Obfervatorio		Londini.
	Mibio	D. Halleio.	D. Mayngio.
	h. 11	-	h. '"
Fwinus ad OramInferiorem. Nudis Ocu	84838		
Umbrago	$\begin{array}{llll}9 & 4 & 8\end{array}$		
Denfa Penumbra	9 II 44		
Initium.-	91232	$9{ }^{9} 1304$	$\begin{array}{llll}9 & 12 & 18\end{array}$
Medium Paludis Marcotidis te	91402		fortè citiús.
Tota Palus tecta.		91439	91348
Sexta Pars Peripherice olfcurata	918 10		
Circinna intra Umbram-	92010		
Porphyrites Medius.		9211	
Umbra ftringit Syrbonem.		92.19	
Limbus 1 us.MontisCataraEtes velGaflendi	92132		
Oculus Draconis.-	92758		
Legebat Limbis primos Creta \& /Etne.	92822	92844	92819
M. JEtna Totus tectus. incipit Hiera.	92948	93016	9:30 12
Hiera tot.-		93044	
Initium Corfice	93346		
Medium Corfice		9. 34.4 .8	
Sina Mons incipit	93638	93710	93620
Sinie Medium.	93722		
Totus Sina tectus.	$938{ }^{9}$	938.10	$93^{8} 20$
Centrum Lune five Degiti VI.	93848		
Incipit Lacus Niger Major. Medium Lacus. Nigri Majoris.-	939.58	9:40 3.6	94048
Totus tegitur Lacus.- Initium Besbici.		94140	
Initium Beshici. Medius Besbicus.		9.4348	
Medius Besbicus. Totus Besbicus \& ftringit Pont. Euxinum.	9434^{2}		944.13
Totus Besbicus \& ftringit Pont. Euxinum. Incipit Bỹantium. \qquad	94.658	9.44 3^{6}	
Incipit Horminius.	94722		
Carpathes.	9.4750		
Mons Serrorum.	94830		
Apollonia -	95024	95121	
Macre.	95244	95333	
Mons Hercul	9.5426		
Macra tota tecta		95453	
Mons Hercules Totus.		95533	
Corocondometis Palus. -	95910		
Per Medium Lacum Hyperbor.Superiorem.		95953	
Corocondometes tota tecta.-	IO O0) 3^{8}		
Umbra per Montem Coracem.		1015	
Stringit Mxotidna-m-l	102201	$10 \quad 2 \quad 38$	

(329)

Vol. I.
2. At puris and copenbugen. 81. 146.8 .145.

$\left\lvert\, \begin{array}{ccc}\text { h. } & \text { c } & \prime \prime \\ \text { II } & 13 & 30 \\ & 11 & \\ \text { II } & 16 & 30\end{array}\right.$	I1	IO Dig.		Per Lacum Hyperborcum Inferiorem, M. Cimmerium, \& ad Sinum Inferiorem Maris Cafpii. Per M. Riphros, Pal. Maotidem, Inf. Alopeciam, ad Inf. Majorem Cafpii, per M. Nerofum.	$\begin{array}{llll}\text { h. } & 11 & \prime \prime \\ \text { If } & 14 & 27 \\ \\ 15 & 17 & 17\end{array}$
II 1910	13	11 $\frac{1}{4}$		Ad Ripam Paludis Maotidis \& Mont. Hippoci.	II 2010
11220	14	II ${ }^{\frac{1}{4}}$		Per M. Alaunum, \& Lacum Occident. Minorem.	11230
$\begin{array}{lll}\text { II } & 26 & 30\end{array}$		12 Dig.		Totalis Obfcuratio circa 297° Limbi in $94^{\circ} \mathrm{fc}$. à Puncto Super. Linere perpendicularis Nonagelimi Ortum verfus deprehenfa.	112730
$\begin{array}{llll} \text { II } & 35 & 36 \\ \text { II } & 37 & 35 \\ \text { II } & 38 & 50 \\ \hline \end{array}$			$\left.\begin{array}{lll} \text { Pollucis } & 52^{\circ} & 1 \\ 1 & 3^{\prime} \\ \text { Pollucis } & 52 & 0 \\ \text { Pollucis } & 51 & 41 \end{array} \right\rvert\,$		$\begin{array}{rlrr}\text { II } & 37 & 4 \\ \text { II } & 38 & 42 \\ \text { II } & 39 & 35\end{array}$
12.5820				Recuperatio Luminis circa 118° Limbi in $88^{\circ} \mathrm{fc}$. à Puncto Su periori Linex perpendicularis Nonagefimi Occafum verfus extitit.	I 08
1040	15	$\frac{1}{2}$ Dig.		Ad M. Alabaftrinum, M. Pentadactylum, M. Audum, \& Pal. Mareotidem.	1231
I $3 \quad 35$	16	$1 \frac{1}{4}$		Per. M. Porphyritem, ad Mare Syrticum, \& per M. Eoum.	I 532
1810	17	2 ferè		Per M. Baronium, loca paludofa, Inf. Cercinne, inter Marc Syrticum \& Agyptincum, ad S. Syrbonis.	11032
11148	18	$2 \frac{1}{3}$ fire		Per Sinum Apollinis, Inf. Taraciniam, Inf. Etbufam, Sinumque Syrbonis.	I 1354
11620 8	19	$3^{\frac{3}{2}}$		Ad Inf. Majorcam, per M. At nam, M. Neptunum, Fachyntum, Inf. Letoam, Info Didymam \& M. Lyon.	183 18
12050	20	4年 Dig.	1	Ad Inf. Corficam, per Inf. Vulcaniam, \& Carpribos, ad Mare Mortuum, per Defertum Sin.	$\begin{array}{r}1236 \\ \text { Ad } \\ \hline\end{array}$

(334)

Ingruente Eclipfi llmbra erat valde diluta, Limbufque ejus quafi Anfractuofus, \&e minime terminatus, fic ut difficulter admodum ab Initio Phafes determinari potuerint, nec accuratè diftingui per quas Maculas Umbra tranfibat, fucceffu tamen temporis crefeente Eclipfi, diftinctius omnia deprehendebantur. Color ab Initio videbatur fatis Triftis, Obfcurus, \&t Fuliginofus, acfi Eclipfis, cadem ratione, circal Maximam Obfcurationem, ut illa Anno 1642. menf. April. adeò fefe Obumbratam fiftere vellet, quo, vix confipiceretur; fed res planè aliter cecidit, fiquidem Luna cum jan omnino effet Eclipfata, Totus tamen ejus Difcus fatis clare in oculos incurrebat: Color nanıque ejus tum omninò Rubidus five Sanguineus aut Rubiginofus erat, qui eoufque perfeverabat, donec Luna ad medietatem Lumen fuum recuperafier, atque tum rutus fatis Obfcura \& Fuliginofa apparuit.

At isbon; by
Mr. Fucobs. Ib. A. ${ }^{151}$ E An Eclipfe
the Moon, fune 17. m . 1634. at Greenarich; by Mr. Flamfeed. -n. 162, p. 689 .
4. The Beginning of this Eclipfe was obferved at Lisbon by Mr. Facobs at 8h. $3 I^{\prime}$ p. m.
L. Difficillima fuerit parve hujus Eclipfis obfervatio, propter obliquam Lunæ in Umbram Terre incidentiam, Umbræque ipfius Tenuitatem, per quam Limbum Lunæ, media etiam Eclipfi, fatis diftinctè cernere potuimus. Partes diametri tunc ab Umbra vera deficientes, propter confutos ejus terminos accuratè definire non licuit. Diftantiam ergo cœepi inter Cufpides malè definitos, circa Medium Defectus, è qua dictæ partes facilè deduci poffint, \& Erroris minore periculo.

Tempora per Horolog. Of. cillator.	Tempora Vc ra ab obs. Correct.	Obferantiones.	
h.' 111		Eclipfis Mina	
$\begin{array}{ll}1 & 40 \\ 2 & 4 \\ 2\end{array}$	$\begin{array}{lllr}1 & 31 & 8 \\ 2 & 54 & 58\end{array}$	Lunce Diameter Tubo ped. 16. erat, 1605	
2640	2578	- rep. 643°	32 4.
2120	$\begin{array}{lll}2 & 2 & 28\end{array}$	Penumbra denfa, forfan Initium	
21600	2.628	Umbra Limbum fupra Sinam temeraverat.	
21900	2828	Umbra certè intra difcum	
22136	2.124	Chorda Peripberic Obfcuratæ $1670=$	820
22600	21628	- rep. 2010	10
23000	2.2628	--iter. $2290=$	1125
24200	23228	Decrevir Eclipfis fenfibiliter	
24300	2 2 328	Inter Cufpides Obfcur. iter. $18.95=$	927
25000	240,28	Finis; fed Dubius Mihi	
254.00	244.28	Finita certè, Miniltro Fabro Confentiente.	
25700	24728	Penumbra Denfa.	
3 II 00	$\begin{array}{llll}3 & 1 & 28\end{array}$	Etiam adhuc.	
32000	31028	Limbus Auftrinus haud adhuc Limbi Borei	
		Claritudinem recuperaverat. Sed lux ejus hebetior quam in Limbo Boreo, ut in prima Obfervatione apparuit.	

(335)

LT. Artis profecto Laborifque haud exigui erat Tubos, etli breviores fc. 5", An Eclipre of 6. \& 7 , pedun, adeò firmiter continue ad Lunam retinere, ut Penumbram the Moon, No-
 mirum Maculas tranfirent, vel quas omni tempore attingerent. Attamen pro aick; by M. Heviribus, quoufque fevera Tempeftas atque tranfeuntes Nebeculæ permittebant, velius. n. 178. rem peregi. Notandum imprimis habes, quòd Denfifima Penumbra genuinum Initium Eclipfoos præcefferit, ita ut vix ac ne vix verum Initium difcernere quiverim. Colorem quod attinet, hunc in hac Eclip $\sqrt{2}$ maxime notandum habes; quippe talem diverfitatem raro admodum in ipfo Colore deprehendi: modo enim erat Ferrugineus vel Muftelinus; Ingruenti vero Totali olfouratione, Limbus Lunæ circumcirca erat Sublividus, ex parte Subluftris, \& Rubicundus; verum in Lunæ Medio, quafi fatis Denfa, \&r Obfcura Nubecula confpiciebatur, ut vix Maculas rectè in Luna diftinguere potuerimus; quæ Nigricantior Umbra paulatim fucceffivè verfus Dextram, \& Paludem Mcootidem promovebatur, fic ut circa Initium Recuperationis Luminis tota genuina Ulmbra admodum Obfcura, \& Nigricans appareret, atque circa ultimam annotatam Phafin reliqua pars adhuc Obfcurata Lunæ, five ejus Limbus, neutiquarm deprehendi vel minimum potuerit:

	Tempus fec. Horolog. ex Alt. Correat.	Notanda.	$\left\lvert\, \begin{gathered} \text { A'titudines } \\ \odot,>, \& \end{gathered}\right.$ Fixarum.	Per quas Maculas tranliverint Vmbre Scetiones.
			0111	
	Hor. ' "	Altitudo - Meridiana.	12 39:0	
	3190	Altitudo ©	1 54.0	
	428	Altitudo 7	9.0	
	$\begin{array}{llll}5 & 2 & 30\end{array}$	Altitudo Ca-		
	5880	Altitudo Capella.	$\begin{array}{lll}31 & 0 & 0 \\ 31 & 2 & 0\end{array}$	Dub.
	93225	Penumbra.		
	94235	Penumbra Denfior.		
	9485	Penumbra		
		Denfifima.		
	95010	Init. quantum collig. dabatur.		
1	95320	Pal. Marcotis jam tota erat tecta.		Ad M. Andum, \& Pal. Mar.cotidem.
2	9570			Per Germanicianum, ad Mare Syrticum, \& M. Acabo.
3	10015	M. Porphyrit nond. planè		Ad M. Porphyritem, per Mare Syrticum, Montemque cema. Ajar Ber

Initium Eclipfeos paulo fupra Paludem Maraotidem extitit.
Totalis Obfouratio, ad Montem Sanctum, infra Paludem Mareotidem accidit. Recuperatio Luminis ferè Jbidem contigit ubi Initium coepit.

The

(33^{8})

 by M. G. c. Eimmart. 11. 182.p.146.!

$$
92330
$$ Eclipfe was at hand

The Eclipfe was Begun, the Quantity almoft half a Digit, and the Diftance between the Cufps was about 42 Degrees of the Moon's Limb, and Palus Marcotis was juit all Eclipfed ; hènce we may conclude the Beginning about 9 h.: 21^{\prime} 30 3 ".
102330 As near as I can collect, was the time of the Totat Immerfion into the Shadow, "to verify which, the Azinnuth of the Moon's Center was obferved to the Eaft, $41^{\circ} 18^{\prime} ; 2^{\prime} 12^{\prime \prime}$ of time after the faid Immerfion.
12130
Or $10^{\prime} 13^{\prime \prime}$ before the Culmination of the Right Shoulder of Orion, was the Emerfion or firf Appearance of the Moon out of the Total Darknefs.
1 I4. fere Was the juft End of the Eclip Pe, being $2^{\prime} 20^{\prime \prime}$ before the Culmination of Syrius.

Whence the Middle of this Eclipfe thould have happened at IIh. 18^{\prime} p. m. at Nuremburg: the Total Duration 3 h. $5^{2^{\prime}} \cdot 30^{\prime \prime \prime}$, and the Total Darknefs: ih. $49^{\prime} 30^{\prime \prime}$.

The Meridian Altitude of the Moon's upper Limb was obferved $63^{\circ} \quad 23^{\prime \prime} \quad 50^{\prime \prime}$, and the Moon's apparent Diameter while totally Eclipfed was found $30^{\prime} 07^{\prime \prime}$.

By M.f. Pb. \quad 3. M. Wurtielbaur made ufe of a Pendulum-Clock corrected by Altip. 147. tudes: Akcording to his Obfervation, ${ }^{\text {A }}$ Limb of the Moon in Hevelius's Selenography.
92450 Palus Marootis was all covered.
102520 The Total Immerfion, about the 299th Degree of the Limb of
121130 The Moon began to Emerge out of the Shadow, about the I I 2 th Degree of her Limb.
11430 The End of the Eclipfe about the 295th Degree of the Limb.
By thefe Obfervations the Middle of the Eclipfe ought to have been about IIh. 19': p. m. at Nuremburg, differing but one Minute from M. Eimmart's Obfervation.

The Duration will be 3 h. 5^{1}, and the Total Darknefs Ih. 4.6 .

At Lisbon; by Mr. Jacobs.
3. 184. 8. 206.
h. '
4. Initium - $8 \mathrm{O}_{2}$

Immerfio - 906
Emerfic——10 50
Finis—1.1 5.7

(339)

 deoque accuratas haberi nolo: Quantitatem hujus Ecliplis Sex puto Digio torum.LIII. Half a Quarter of an Hour after 7 in the Ewening; the Noon afofe An Eclipfo of cleait, but of a deep Red Colour without any Sign of Eclipfe: At $7^{\text {hin }}$, the the Moon, Ao Moon, went into a thick Cloud, but was again clear at $7^{\text {h. }} 38^{8}$, when the pril 5 . 8688. Linder-fide of this Body of the Meon was Beem to be Obfou in a dear Mofcum by Sky; the being then in the 25 th Degree of Libra, and $60 \frac{5}{2}$ above the Hori- no s\%2. po 43%. zon. (Suppofe the Center.) At $9^{\text {h }}$. the whole Ulider-fide of the Moon was Eclipfed, and about 8^{\prime} after g^{h}, it was at the height, of rather feemed qidecreafe. At 9 h $\frac{1}{2}$ there was (till a third Part of the Mcion Eolipfed. (Suppofe of her Circumference.) About 10 h . it decrenfed apace, and at sof $\frac{3}{3}$ there was but little to be feen: At $10^{h} .45^{\prime}$. it was certainily Ended, the Moons being then about $22^{\circ} \mathrm{High}$.

(34°)

LIV. 1. An Eclipfe of the Moon, offober 19. at cheffer; by .Mr. Ed. Halley. ค. 235. p. 784.

Immerfions.	Times	1. Emerfions.	Times
The Boginnin	$\begin{array}{lc} \text { h. } & 1 \\ 6 & 8 \frac{1}{2} \end{array}$	Rorplyrites and the Middle of	h.
Porphyritos Immerged-	616	M. Etna.	8.700
North-part of Matcotis--	$621 \frac{1}{2}$	Horminius \qquad	81730
Lacus Niger Maj. and SouthEnd of Mar.	626	Mons Herculis	818.30
Apollon	$649{ }^{\frac{1}{2}}$	Byzantium	82900
Byzantium	653	Lacus Niger Major	$832 \frac{1}{2}$
Horminius	6.59	South-part of Meotis	835
North-part of Micotis	$\begin{array}{lll}7 & 2 \frac{1}{2} \\ 7 & 3^{\frac{1}{3}}\end{array}$	North-part of Mceotis	843
Mons Corax	$7{ }^{7} 3^{\frac{3}{2}}$	The End	$849^{\frac{1}{2}}$
Mons Herculis \qquad South-part of Meotis.	$\left\lvert\, \begin{array}{ll}7 & 10 \\ 7 & 12 \frac{1}{2}\end{array}\right.$		

About the Middle there remained $9^{\prime} 26^{\prime \prime}$. of the Luminous part, and confequently the Digits Eclipfed 8 ?

Objervationes.

Promontorium Acutum ad Primum Obliquum.
Præcedens Lune Margo ad Perpendiculare.
Promontorium Acutum ad Perpendiculare.
Differentia Tranfitus per filum Perpendiculare, qux eft Longitudo Promontorii Acuti ar Margine Pracedente.
Differentia Tranfitus Promontorii Acuti inter Io Obliquum \& Perpendiculare, quæ ejus: ef Latitudo à Margine Borealis. Luns inter Nubes confoecta adhuc apparuit integra.

In Prima Pbafi.

	h. ${ }^{\prime \prime}{ }^{\prime}$	
A	64123	Initium Maris Criji ad r. Obl
B	64150	Promontorium Acutum ad I. Obl.,
C	64212	Plinius ad 1. Obl.
D	64225	Menelaus ad $\mathbf{1}$. Obl.
E	64233	Manilius ad r. Obl.
F	64243	Primus Margo ad Perpendiculare.
G	64300	Proclus ad Perpendiculare:
H	6:43:20	Promontorium Acutum ad Perpendiculare.
I	6.4326	Margo Sequens ad r. Obliquum...
K	64330	Menelaus ad Perpendiculare.:
L	64400	Cornu prxcedens Lune ad Perpendiculare, ipfa tangit Filum Horiz.
M.	644.21	Cornu Sequens ad x. Obl
N	64435	Menelaus ad 2. Obl.
O	64457	Cornu Sequens ad Verticale.
P	64507	Margo Sequens ad Perpendiculare.
Q	64533	Cornu Sequens ad 2. Obl.
R	64555	Grimaldus ad 2. Obl.
S	646.49	Sequens, Margo ad 2. Obliquum.
P-W	0.0224	Tranftus Lunve per Perpendiculare:
S-I	00323	Tranfitus Luna per 2. Obl.
$\mathrm{H}-\mathrm{F}$	00037	Promontoris Acuti Longitudo à Marginc Precedenite.
$\mathrm{H}-\mathrm{B}$	00130	Promontorii Acuti Latitudo à Margine Borealio .
K-F	00047	Menelai Longitudo à Margine Praccadente.
$\left\{\begin{array}{l} \mathrm{K}-\mathrm{D} \\ \mathrm{~N}-\mathrm{K} \end{array}\right\}$	00105	Menelai Latitudo à Margine Boreali.
L-F	00117	Cornu Pracedentis Longitudo ì Margine Procedente.
O-F	00000	Latitudo nulla. .
O-M	0.02 .4	Cornu Sequentis Longitudo a Margine Praced.
Q-0	00036	Latitudo ejufdem Cornu à Margine Borealio.

In Tertia Plafla
h. ' 11

A	71930	Cornu Praced. ad I. Obliquum.
B	7219	Margo Preced. ad Verticale.
C	72119	Cornu Preced, ad Verticale.
D	72151	Margo Praced. ad 2. Obliquum.
E	72224	Cormu Sequens: ad 1. Obliquuiz.
F	72247	Margo Sequens ad :r. Obl
G	7239	Covnu Priccedens ad 2. Obl.
H	$7 \cdot 2331$	Gormu Scquens ad Verticale:
I	$\begin{array}{llr}7 & 24 & 40 \\ 7 & 26 & 4\end{array}$	Cornu Sequens ad 2. Obliquum. Umbra ad Dionyfium.
C-B	$0 \cdot 10$	Comu. Precedentis Longitudo à Margine Orientali.
C-A	- 149	Cornu Praced. Latitudo à Margine Âultrali.
G-C	- I 50	Eadem Latitudo.
H-B	- $2: 22$	Cormu: Sequentis Lons: à Margine precedente.
H-E	1. 7	Cornu Sequertis Lat à Margine Auftrali.
$\mathrm{T}=\mathrm{H}^{-}$	10	

(343)

In Quarta Pbafio

	h. ${ }^{\prime}$ "	
A	74024	Cornu P Precedens ad i. Obliquum.
B	74135	Cormü Preced ad Verticale.
C	74218	Narrgo Praced: ad I. Obl.
D	74244	Corniu Preced. ad 2. Obl. -
E	74251	Cornu Sequens ad I. Obl.
F	74314	Margo Sequens ad I. Obl
G	74358	Margo Sequens ad Verticale.
	74504	Cornu Sequens ad 2. Obl.
$\mathrm{G} \cdot 2^{\prime} 24^{\prime \prime}=\mathrm{I}$	74.134	Margo Praceded ad Verticale.
$\mathrm{B}-\mathrm{I}$	00001	Cornu Praced. Long. à Margine Proced.
B - A	0 OI It	
D - B	- 1109	SCornu Praced. Lat. à Margine Auftrali.
$\mathrm{H}-\mathrm{E}$	$0 \quad 213$	Differentia Tranfitus Corni Sequentis inter Oblo
- K	$0>106$	Dimidium, Lat. Cornu Seq. à Margine Auftrali.
$E+\mathrm{K}$	$7.4357 \frac{1}{2}$	Cornu Sequens ad Verticale.
$E+K-1$	- $223 \frac{1}{2}$	Longitudo Cornu Sog. à Margine Præcedente.

In Quinta Phaf.

(344)

In Sexta Phafi.

A	75406	Cornu Praccdens ad 1. Obl.
B	7.5444	Promont. Acutum ad 1.Obl.
C.	75459	Cornu Praced. ad Perpend.
D	75538	Margo Preced. ad 2. Obl.
F	75552	Cornu Preced. ad 2. Obl.
G	75604	Cornu Seq.ad 1 Obl.
H	75636	Margo Seq. ad 1. Obl.
I.	75720	Cornu Sequens ad Verticale
D-2 $2^{\prime} 24^{\prime \prime}=L$	7.5314	Margo Pracedad 1. Obl.
$D-042=K$	75456	Margo Praced, ad Perpend.
$\mathrm{C}-\mathrm{K}$	00003	Cornu Praced, Long. à Marg
$\mathrm{C}-\mathrm{A}\}$		
$F-C\}$	000.53	Cornu Praced. Lat. a Marg.
$\mathrm{I}-\mathrm{K}$	0.0224	Longitudo Cornu Sequentis à
$I-G$	00116	Latitudo Cornu Seq. à Marg
B - L	00130	Longitudo obliqua Prom. Ack

In Septima Pbafio

(345)

In OEtavo Pbafio

(346)

In Decima Phafs.

A	9429	Cornu Pracedens ad 1.Obl.
B	954	Umbra recedit à Plinio.
C	9553	Cornu Seq.ad I. Obl.
D	9.617	Cornu Praced. ad 2. Obl.
E	972	Margo Seq. ad t. Obl.
F	9747	Margo Seq. ad Vert.
$E-2^{\prime} 42^{\prime \prime}=\mathrm{H}$	9520	Margo Prieced. ad Verticale.
D - A	$\bigcirc 1.48$	Tranfitus Cornu Praced. inter Obliquos:
	$0 \quad 0.54$	Dimidium Lat. Cornu Praced. à Marg. Auftralio
$\mathrm{D}-\mathrm{M}=\mathrm{I}$	9523	Cornu Praced. ad Verticale.
$\mathrm{I}-\mathrm{H}$	- 03	Longitudo Cormu Praced. à Marg. Praced.
$E-3^{\prime} 24^{\prime \prime}=L$	9338	₹ Margo Praced. ad 1. Obl.
$\mathrm{F}-406=\mathrm{L}$	934 ir	
C - L.	$\bigcirc 225$	Long. Obligua Cornu Seq.à I. Obliquo.
	994	Unbra recedit à Langreno.
	- 919	Finis Maris Tranquilitatis.
	-13 40	Ariftoteles.
	014.	Finis Maris Crijii.
	102134	Finis.

Tempus juxt. Hor. Amb.manè.		Diftantria E Altit.	Tempus ex Alt. Corr.	A Tranfit of the Moon above venis. OF. II. (ft. ni.) i67o. at D.nt zick; by M.
h. ' 11		- 1	h. ' 11	$\begin{aligned} & \text { Hevelius. n. } 6 \sigma_{i} \\ & \text { p. } 202 \sigma_{1} . \end{aligned}$
347 20	Altitudo Lucidie r	4 ll 450	$\begin{array}{llll}3 & 54 & 10\end{array}$	
35035	Eadem Altitudo.	41210	35728	
54744	Diftantia 9 à 4		55444	
54835	Dift.) Limb. Orient. à 4	352530	55535	
55159	Dift. 9 à 4	3550	5590	
55340	Dif. ${ }^{\text {dimb. Orient. }}$ L	352910	60401	
61230	Dift. 9 à 4	$35 \quad 5020$	$\begin{array}{lll}6 & 6 & 0\end{array}$	
6.44	Dif. D Limb. Orient. à 4	$35 \quad 37 \quad 35$	$\begin{array}{llll}6 & 8 & 0\end{array}$	
6370	Ditt. 9 à D, quantum nudo oculo dijudicari potuit.	060	6510	
7120	Dift. if a D Limbo Infer.	$\bigcirc 50$	$\begin{array}{llll}7 & 7 & 0\end{array}$	
$\begin{array}{llll}7 & 17 & 0\end{array}$	Dift. \% à $)$ Limb. Infer.	040	7120	
7350	Venus clare apparuit.		$\begin{array}{lll}7 & 30\end{array}$	
9 II 0	Venus permanfit confpicua:		$9 \begin{array}{lll}9 & 12 & 0\end{array}$	
91548	Alritudo Solis.	1980	91720	
$917 \quad 39$	Altitudo Solis.	1958	9 19 4	

LVI. Initium Occultationis accidit 3^{h}. $38^{\prime} .27^{\prime \prime}$. mane circa Montem Ger- An Occultatimanicianum. Linea Itineraria, quantum ex. folo Ingrefiu haud obfcurè colligere on of Saturn
 Herculis, \& fuperiorem partem Maris Cafpii. Ego quantum memini, bis tan-1671. at Danstum, fi hujus Anni Oblervationem excipias, intra 4 fi Annos, Saturivm à Lu- xich; by M.
 Freto Danico circa Infulann Huennam verfarer: Rurfus Anno 166 . Die 3. Augufi hic Dantifci h. $7 \cdot 5^{8^{\prime}}$. $2 c^{\prime \prime}$. Vefp:
LVII. Sudo admodum Cxlo, Lunam protinus Orientem, nec noni paulò poft Fovem, Tubo 20. pedum fummâ Aviditate excepimus, atque deprelieidimus Octante noftro perniagne Orichalcico, 9 , ferè pedum Radio, fovem à Linna Limbo Orientali adhuc $1^{\circ} 23^{\prime} 40^{\prime \prime}$. effe remotum ; Jovialefque omnes qua- at $D ., n z z: k$ tuor à Dextra, à qua Luna accedebat, adefle. Ipfunn quidem Conjunćtionis by M. Mesectua, momentum infperatus quidam Calus infelicior deprehendere prohibuir. Cum enima Fupiter ad Limbum Luna Orientalem ad 3^{\prime} jam acciderer, atque ad 6 duntaxat à Linea Conjunctionis, per utrumque Cornu ducta, diftaret, ecce
fupervenientes Nebeculas, quæ tam ${ }^{\circ}$ ovem quam ipfam Lunam, nobis è confpectu eripuerunt. Tabulæ Rudolpsina Occultationem, eamque multò citiùs promifers, nulla tamen omninò fuerit, fed, arctifímus folummodò ad duos propemodum Digitos; Tranfitus extiterit, Horâ . Cil. $726^{\prime} 0^{\prime \prime}$.

An Occultai. of the Pleiades by the Moon? Feb. $23.167 \frac{1}{2}$. at Derby; by Mr. Flamfteed. n, 86. p. $^{2034} 4^{\circ}$
LVIII. Alta Lunâ $20^{\circ} 5^{\prime}$; cepi ipfius Diametrum $32^{\prime} 48^{\prime \prime}$; \& Altâ ipfâ $19^{\circ} 23^{\prime}$ rurfus eam cepi, $32^{\prime} 4.7^{\prime \prime}$: Ergo Lunc in Horizonte Semidiameter crat vera $16^{\prime} 19^{\prime \prime}$. Plus tamen etiamnum ab Occidentali Stella Pleindum
 * a b, Occidentali Pleidum $9^{\circ} 50^{\prime}$; cjufdem Stella diftantiam cepi à Cornu Lunce Prosimo in $5^{\prime \prime \prime}$. divertens deinde fubitò ad $* x$ altitudinem (oftenfam Quadrante, 20 digitorum Radio, ad.Tubi latus affixo.) notandam, \& continuo reverfus, Stellam (quippe tunc à Luna Tectum) non comperio Interea Luna defcenderat Minuta Io, fimulque tantundem Stella, quam fubiiffe Lunam h. II. $20^{\prime \frac{1}{2}}$ ex fequente Phafi conjicio: Etenimish ${ }^{2} 30^{\prime \prime}$, Alta *a e. $8043^{\prime \text { I Stellam c. à Luna tectam confpexi. . Ejus cum cepiffem à }}$ Cornu Proximo Diftantiam 16' $35^{\prime \prime}$. fpatium 'Temporis inter hujus \& precedentis Occultationem, editis fupputationibus, conftitui $9^{\prime} 37^{1 /}$; qux Tempori hujus Phafeos fublatx, dant utique præcedentis Occultationis Tempus ut conflitui.
 am ejus dimetiente $22^{\prime} 36^{\prime \prime}$. à Cornu Lunae apparcnter Inferiori, fed Superiorỉ verè̀. Erat, Stellâ evanefcente, Luna Semidiameter apparens $16^{\prime} 21^{\prime \prime}$. quæ propterea occultata erat $87^{\circ} 25^{\prime}$. Peripherice Lunaris à CuJpide Superiori, cujus erat Reclinatio (à Linea per Centrum ejus, Eclipticic ducta perpendicuJari.) $1^{\circ}, 37^{\prime}$. Sic fubingreffus Stellæ fuit $4^{\circ} 12^{\prime}$. fupra Lineam per Cenarum Luna Ecliptica ductam Parallelam, \& Luna Centrum in Antecedentia * $^{2} 16^{\prime} 1^{\prime \prime}$. cum minori Latitudine $1^{\prime} 12^{\prime \prime}$.

Fixx Locus Authori Cavolino $\mho^{-2} 5^{\circ}-1^{\prime} \quad 24^{\prime \prime} ;$ Latitudo perpetua $4^{\circ} \cdot 20^{\prime} 39^{\prime \prime \prime}$, quamobrem Luna Locus Apparens hora Apparenti Derbive $11^{\mathrm{h}} \cdot 37^{\prime \frac{1}{2}}$. p. m. erat $\gamma 24^{\circ \prime} 45^{\prime} 6^{\prime \prime}$, \& Latitudo vifa 4° I $9^{\prime} 27^{\prime \prime}$. Bor.

Notatu præterea dignilimum quod etiamfi omnes ferè omnium Aftrono morum Hypothefes, Lun a Plene Perigea in Quadraturis Majorem tribuant Diametrum, \& proinde Minorem à Terra Diftantiam quam in Syzyyizs aut Oppofitionibus Pcrigeis: contrarium tamen Calitus fieri \& evenire, Luna etenim Plena Perigea tranfiens juxta Pleiadas, Nov. 6. 167 I. Majorem habebat Diametrum quam in hoc. Tranfitu, quando in codem ferè loco à Sole diftitit gradus 70 , Luma Semidiameter Horizontalis

Nove 6.: 167 In Bullialdo $71^{\prime} 00^{\prime \prime}$ Feeb, 23. 167 . 17.50	Streetio $16^{\prime} 3^{\prime \prime}$ 17 I3	$\text { Obfervata } 17^{\prime} 00^{\prime 9}$
150		

(349)

Amplius non nunc miramur Lunam tam diu numerorum recufaffe vincula \& de Tabulis fupputata apparentiarum tempora ufque adeò expectationes noftras fefelliffe, à fallis quandoquidem Hypothefibus ipfas plerumque conftructas fuiffe liquet.
LIX. April 2d. ($\rho_{0} . n_{n}$) 6 h. 50%. v. A Line drawn through the Horns of The Moon's the Moon paffed through the Star that is at the Point of the Northern Horn Place, Mar. 23. of Taurus, and the Diftance of this Star to the Northern Horn of the Moon $\mathrm{CuF}_{2} \frac{1}{2}$; by M. M. was by a Minute greater than the Semidiameter of the Moon.

Cuff fini. n. 82. p. 4047.
LX. Inmerfio Stellæ Sequentis Duarum in Sinifto Pede pofteriori Leonis An Occultatio fuit 10^{h}. $19^{\prime} 34^{\prime \prime}$. Immerfionis plaga fuit juxta Finem S chicardi verfus Pbo- on of a Fixt cilidem in Selenographia Riccioli.
 \& Petavio.

Per puncta Immerfionis" \& Emerfionis, diligenter notata, ducta recta Iinea M. caffini. Diametrum illi perpendicularem abfcidit in ratione $6^{\prime} 4^{\prime \prime}$, $6^{\prime} 5^{\prime \prime}$,inea $n, 123 \cdot p \cdot 56 n^{\prime \prime}$

Fuit autem Diameter Luna ad Meridianum accedentis $32^{\prime} 5 \mathrm{cl}^{\prime}$.
H. 12. 29'. Margo Lune Superior fuit in eodem Parallelo cum Stella, quæ tunc precedebat Lunam minuto horario $1^{\prime} 50^{\prime \prime}$.
H. I2. 40^{\prime} I $8^{\prime \prime}$. Stella præcedebat Marginem Occidentalem Lune minutis hoiar. 2^{\prime} '1 $1^{\prime \prime}$. Luna Diameter per tranfibat $2^{\prime} 14^{\prime \prime}$.
H. 12. $52^{\prime} 35^{\prime \prime}$. Stella precedebat eundem Marginem $25^{\prime \prime}$.

Altituda. Meridiana Limbi Inferioris Luna capta eft $39^{\circ} 25^{\prime} 25^{\prime \prime}$.

Hoy

(350)

LXI.
A. Tranfit of the Moon 2bove Tlupiser, Fich. 28. m. 167 $\frac{5}{6}$; at Grectroieth; by Mr. Flamifeed.

Hord Horologii cörretta.	Alt. ES Diftantia.	
h. 11		
$4 \quad 20 \quad 15$	\# à Limbo Lunis Lucido--	269
4470	Da Capta Diameter -	$31 \quad 30$
44930	\% à Cufide Proximo	$26 \quad 281$
$4 \quad 52 \quad 15$	4 Rectam per Cufpides ductam parte Diftantix vel 3^{\prime} circitel conjecturấ. \qquad	m proteri er, oculari
$456 \quad 0$	Ψ à Culpide-m	$\begin{array}{ll}7 & 33\end{array}$
5 I 15	-à Recta per Curpides	7 53
$5 \quad 3 \quad 30$	- à Cufpide	$28 \quad 22$
57725	-à Recta	$9 \quad 58$
51050	-ab eadent	115
5 15 50	-i Cufpide	$30 \quad 27$
5 21 20	-à Limbo Renotiori. dub. -	624
$5 \quad 26$	-i Cufpide Proximo -	33
$\begin{array}{llll}5 & 31 & 25\end{array}$	- à Reeta per Cufpides	20
$5 \quad 37 \quad 0$	-à Cufpidè -	$3^{6} 15$
$5 \quad 41 \times 10$	-)a Altæ $10^{\frac{1}{2}} \mathrm{gr}$. Diameter	3153
$5 \quad 4830$	Differentía Altit. Limbi) Inferioris \& ψ \qquad	231
$5 \quad 5240$	Ψ à Cufpide Proximo aberat-	$4 \mathrm{I} \quad 40$
$6 \quad 9 \quad 40$	- à Cufpide. dub.	$47 \quad 29$

An Occultati- LXII. I. Aug. 2 I A. 1676 . ante meridiem. pro. correctione Horologii has on of Mars by Limbi Solaris Altitudines acceperam.
the Moon,
عtiag. 21. 1676. at Greenwich; by Mr. Flamfeed. n. 129: P. 723.

$\begin{gathered} \text { Hora Ho- } \\ \text { rologii. } \end{gathered}$	Altitudines.		Hor. Supp.	Hor. Err.
h. 111			h. 1	' 11
80431	Alt. Limbi Solis Infer.	$26 \quad 04$	8 0926	$+455$
$8 \quad 542$	-	2614	8 10 35	+ 453
88758		2634	81253	$+455$
88910	-	$2644^{\frac{1}{2}}$	81403	+ 453
81015		2654	81512	+ 457
$\left\lvert\, \begin{array}{ll}81715\end{array}\right.$	--	2754	82209	+ 454

Deinde pof Meridien, cexlo ferenillimo.

Hor. Horol.	Correfa	Dijfant		
h. 1 "		Mars ì Limbo Lucido Luna -		
$\begin{array}{llll}10 & 45 \\ \text { II } & 06 \\ \text { Of }\end{array}$	1040 49			
11 20 00	11245			
11 3557	114050	Denuo		
II $573{ }^{11}$	120226	$\mathrm{J}^{\text {Z }} \mathrm{Z}$. five Diff.Alt. Limb. Inf. δ		
		Jamg; tulo ped. 16 d ${ }^{\text {a }}$ a Limbo		
	120955	Planeta nudis oculisdiutius con. fivic ino potuit.		
12944	21439	3^{*} Lux cun lunine Lunx con-		
	12 I4 58			
183^{8}	12.2333	4.88 in Reeta per Cuffides		
		dufta apparui -		
	122531	4ia ${ }^{\text {a a }}$ Limbo vel Cufip. Tu bo breviori		
	2953	41^{10} ¢ à Curpice ierum co.		
		Lune Diamoerer longiori tubo-		
	120925	Iterum edem tubo		
	I 10			
1-1815		Eadem Diftantia		
	- 2665	Luna Alta 23° Tubo longio-		
		Lune Diameterer brevior Tubo.		

$4 \mathrm{~T}^{\text {e }}$ ช fecundum Ty chonem Locus nunc eft $\gamma 17^{\circ} 58^{\prime \frac{2}{2}}$, Latitudo $\pm^{\circ} 2 \theta^{\prime}$ Auftralis ; unde cum Lume tum Martis Locus äccurate deduci poteft.

At axford; by Mi: Hulley. 16. 8.734,

3.

At Dantzick; by M. Heveliuss. Bb. p. 721 .

(353)

Mars obtectus eft circa Montem Audum, incedens quafi per Loca Lunce Paludof a, per M. Etnam, infra Infulam Brsbicam, fupra Paludem Acherufian;, fupra M. Coracem, per Paludem Maotidem, \& paulò fupra Infulam Alopeciam, \& ipfum Lanie Centrum; ficque rurfus ad Lacum Majorem Occidentalen exiens.

Si quxras, unde viam itinerariam hanc adeò accuratè mihi determinare licuerit, \& quidem ad partem Lunce Obfcuram, fcias, eò eveniffe, quod Tubis illis meis precipuas Maculas majores in parte Luna Umbrosâ fatis diftincte deprehendere potuerim; atque ita dilucidè confpexerim, Martern circa nediun? ferè Paludis Maotidis Emicuiffe.
LXIII. Obfervavit Bullialdus Initium, Alto fup. Horiz. ad occafum Capite An Occultation Andromeda $18^{\circ}{ }^{11} \mathrm{I}^{\prime}$. unde datur à Meridie $7 \mathrm{~h} .20^{\prime}$ T. A. Red Med. $7 \mathrm{~h} .29^{\prime} 55^{\prime \prime}$. of Saturn by; Fincm vero vidit, Alta ad Occaf. Cinguli Androm. Auftraliori Magn. 2. $21^{\circ}{ }^{\circ} 7^{\prime}$. Frd, 27. ft. A. unde à Meridie colligitur T. A. $8 \mathrm{~h} .30^{*} 22^{\prime \prime}$.

Monere hic neceflum eft Tabulas Philolaicas if Promotiorem in Longitu- by M. Bullialdine oftendere, quam in Coelo apparet, fcrupulis primis ut minimunir 9. icia 9.969. ut $\frac{5}{}$ tunc fuerit in Colo in II $3^{\circ} 28^{\prime}$. \& Lat. Auft. $I^{\circ} 38^{\prime}$.

In hac porrò Obfervatione adhibita Illuft. Viri Foh. Hevelii Lunaris Difci defcriptione, in illa Limbi parte, quæ in recta linea a medio Montis Berofi per Montes Riphaos ducta, paulò fupra Alanum Montem, infra Terninos Auftrales Paludum Hyperborcarum, fita eft, Saturnum Enerfiffe afpeximus.
LXIV. ' E. Etiamfi nunc per quinquaginta Annos (pro quo D. O.M. im- An occultation mortales \& debeo \& habeo gratias) Obfervationibus Rerum Coeleftium ope- of Jupiter, ram dederim, non nifi tamen femel tantummodò fovem à Luna vidi obtectum, Jun. 5. (ft. n.). Anno nempe 1646. die 24 Decembris, Sto n. vefperi, Sole fcilicet exiftente fub zick; by M_{0} Horizonte. Gratulor igitur mihi magnopere, quod hanc obfervationem, non folum Coelo perquam fereno, fed etiani ex voto \& quidem cum gratiflimo p. 2%. meo Hofpite, Clarif. \& Doctillimo Domino Edmuido Hallcio obfervare potuerim.

Lunam intraverit ad M. Audum, \& quantum conjicere dabatur ex Jovis Exitu, yiam carpfit per Loca Paludofa Infule Cercinne, fupra Montem Etnam, per Inf. Besbicam, per Byzantium, Inf. Apolloniam" \& fuperiorem partem Paludis Mcotidis; fic ut paulò füpra Centrim Land Inceferrit, kun haz benti aliqualem Latitudinem Auftrinam: Deinde, guod tarillimum, igooisiap: parentem Diametrum in hac obfervatione accuratifime (ut mihi vident) dimenfi fumus. Memini quidem me aliquoties Fodis-Diameeram per Maculas Lunares obfervaffe, eanden videlicer ad $55^{\prime \prime}$. plas minùs accedere fed hac vice dameter for is longe extitit ninor Coghitâ enim tot do to
 $32^{\prime} 40^{\prime \prime}$, protinus innotefcit, ex illa tempons Mora, cun fecilicet pranam Fupiter Limbo fuo Lune Liḿbum attingeret, \& cumi rurfus Occultaretur (id quod factum eft fatio $55^{\prime \prime}$) Diameter 70 oris, $30^{\prime \prime} .53^{\prime \prime \prime}$:

A. Paris; by of. Caflinio 2at 3 .
2. At $3^{h} \rho^{\prime}$ Ill the fint Satellite was hid by the Eaft Limb of the Moox. At $\xi^{h} 21 O_{1 / \frac{1}{2}}^{\prime}$. the Eaft-fide of the Moon souched the Weft-fide of Fupiter; then I took the Height of 7 upiter, which was $8^{\circ} 01^{\prime}$. at $3^{\text {h }} 2^{\prime} 51^{\prime \prime}$. At $3^{\text {n }} 2^{\prime} 5^{\prime \prime} \cdot 7$ 7piter was intirely hid by the Moon. It entered at equal Diftange from the two Spots Grimaldi and Arijtarchus; the laft of which was. in the Section of the Meon, which diftinguifh'd the Light from the Dark-part. As $3^{\text {an }} 5^{\prime \prime}$ the Second Satellite was hid by the Ealt-fide of the Moon. AE 3 he $5^{\prime} 4^{8^{\prime \prime}}$, the third Satellite was hid. At $3^{h} 56^{\text {., we we perceived by the: }}$ Eye that fupiter was parted from the oblcure Side of the Moon.

M De bi Hire took the Height of Jupiter two Minutes after parting and fundity $37^{\circ}-37^{\prime}=$

(355)

$3^{\text {h }} 05^{\prime} 40^{\prime \prime}$. Limbo Lumæ Lucido Fixa videbatur adhærere, \& poft duo ferupula fecunda Temporis, nihil in Limbo apparuit. Locus Immerfionis erat juxta Auftraliflimam revera trium Macularum parvulaw media jacentium inter Paludem Mareotida \& Montem Climacem.
$4^{\text {h }} 13^{\prime} 45^{\prime \prime}$ Fixa non Emerferat; tunc, vel paulo poftea, nefcio qua oeccafione amovi oculum à Telefcopio, at cum iterum adhibui $4^{h} 14^{h} 2^{\prime \prime}$. Emerfanis vidi \& plena Luce effulgentem.

LXVI. 1. An Occultaizon of the Bull's' Eye at Green wich, O\&. 23. 1680 ; by Mr . Flamfteed. ph. coll. n. 4 8. 100.

(356)

Boreus Limbus Maotiais, idem Etne, candem habuere Declinationem cum Loco fubingreffus.
Differenria Declinationum Loci Immeyfionis \& Limbi Lume Borei erat $2770=13^{\prime} 49^{\prime \prime}$:
$9^{\text {h }} \mathrm{O}_{2}^{\prime} 58^{\text {II }}$. Emergebat ab obfcuro Limbo, Longitudinem-Infule Majoris ab ejus Boreo Termino.

Itineraria per Locum Emerfonis, ad Boream à Creta jpfius Diametrum, per Limbuni Boreum Sirbonis, \& Montem Climacem, tranfibat.

$$
9^{\mathrm{h}} \cdot 10^{\prime} \cdot 26^{\prime \prime} \text { Lunk Diameter- } 6791=33^{\prime} 52^{\prime \prime}
$$

At London; by Mr. Halley, and M.Haines newly Emerged at, $9^{\text {li }} 2^{\prime} 5^{\prime \prime \prime}$.

At Ballafore in India; by Mr. Benj. Harry. ib.

EXVII. I. An Occultation of the Bull's Eye at Dantzick, Fan. I. ft. n. 168 . by M. Heve-lims. Pb. coll. n. $3 \cdot 8.65$

(357)

2. Mr. Benj. Harry in Baliafore Road Obferv'd, that the Moon paft to the Ust Ballafore; $^{\text {2 }}$, Northward of the Bull's Eyc, and that that Star and the Moon's under Limb Harry. Pb. Col. were in equal Altitude when they were both $13^{\circ} 4.5^{\prime}$. high to the Weft, n. $5 \cdot p \cdot 125$. which gives the time $14 \mathrm{lr} 49^{\prime}$. and when the South Horiz of Taurus was $23^{\circ} 3^{\prime \prime}$ high, which makes the Time $15 \mathrm{~h} 13^{\prime}$. the Weftern Limb of the Moon was in a Line with Capella and the Bull's Eye.
3. The Correct Time of the Immerfion was 6h $1 S^{\prime} 22^{\prime \prime}$. and the Emergon At Avignon. at $7^{h .} 19^{\prime \prime} 4^{\prime \prime}$.
LXVIII. Scpt. 27. At. n. 1682 . hora 3.m. Lunam tum tres reliquos Planetas A Tianfit of the nudo quidem confpexi Oculo; fed Luna eo tempore adhuc.ad 7. circiter Gra- Moon below- dus removebatur, $f . f . f$. Occafum verfus.
the 3 Superiot
Quantum autem ex Inclinatione Cornuum Lunce quoad Planetarum ductum Regulus. 682. colligere licuit, protinus profpiciebam, nullas fure Occultationes, fed tantum as Dantzick, by Meveli Tranfitus; fic ut Luna infra illos Superiores Planetas incederet. In qua Opi- us.n. г43nione magis magifque etiami fum confirmatus: Cum Dic fublequente, 28 fcil. p. 17.n. 151: Sept. m. nec Regrulus fuerit à $J_{-u n a}$ Tectus, qua Steila ratione utriufgue Latitu- ${ }^{\text {p. } 325 \text { - }}$ dinis potius Occultari debuiffet. Regulus namque in ipfa Conjunctione, foil. 4h: 6'. Dittabat à Superiori $)$ Cornu Boream verfus adhuc $3 I^{\prime} 17^{\prime \prime}$. id quod optimo Micrometro Tuboque egregio, accuratè obfervatum eft; adeo n. 155. ut nulla prorfus fuerit Occultatio Reruli i, fed tantummodo Luna. Tranfitus. Ita min. 31. Sec. 55° pariter accedit die 25 Oftob. Nams Fupiter \& Snturmus nec non ó Die 26. octob f. no minime fuerunt à Luna Obrecti; fed Liuna hatis longè infra Plancias inceffit.
LXIX. Fel. rı. ft. n. 168j. h. 9 . cum prinum Luna in Oculos incurrerer, Regulus latis longè Occafum verfus removebatür; ita ut ea ipfa Conjunctio (-quantum ruditer colligere dabatur) Oriente circiter $L_{u n n}$, foil. $5^{\text {hi }}$ vel 6^{h} contigerit: Utrum autem Regulus omnino Tectus fit, an vero tantummodo Tranfitus fuerit, haud adeo accurate deprehendere licuit.
L.XX.

An Occuisation of Ino Fixt Stais by the Moon, and a Tramfit aboye a Ibird, A pril.2. $\mathrm{ft}, \mathrm{n} .1633$. at Dantzick; by M. Heveljus. 5 36

Temp. Ser. Horol. Ambul.		Dift. E Al titud.
$\begin{array}{ccc} \text { h. } & 1 & 11 \\ 9 & 53 & 30 \end{array}$	Intitum Occultationis Stellula Majuris A. 5. Mayn.	
100830	Conjunctio Lun.e \& Stcllulx C, diftabat à Lunce Cornu Inferiori \qquad	$\begin{array}{ccc}0 & 1 & 11 \\ 0 & 04 & 00\end{array}$
102936	Initium Occultationis Stellule B, 6. Magn.	
105250	Finis Occultationis Stellulx A.	
II 4530	Altitudo Lyr	314400
II 4630	Altitudo eadem-	315500
II 4750	Denuo	320600

Sectio Luminis \& Umbre hac Die per Montes Serrorum E Carpatos, per Sinum Peronticum, inter Byzantium \& Inf. Cyancam, per M. Amamum, Taurum, Vrijque Montes iacidit.

Prior Stellula A, in Catalogo Tychonico non invenitur; fed in meo Nove Vocitur fub Cormu Tauri Auftrino Siquens 5° magn. Verfatur hoc tempore in II $19^{\circ} 11^{\prime} 35^{\prime \prime}$. \& in Lat. $4^{\circ} 43^{\prime} 44^{\prime \prime}$. Auftr. Altera vero B, quantum ex bac obfervatione colligere potui, exiftit in II $19^{\circ}{ }_{1} 7^{\prime} \mathrm{co} 0^{\prime \prime}$ \& in Latit. 4° $47^{\prime} 0^{\prime \prime}$. Auftr. At tertia C, gux forte nudis oculis non confpicitur, degit modo in II $19^{\circ} 9^{\prime} 0^{\prime \prime}$. \& in Latit. $5^{\circ} 2^{\prime} 0^{\prime \prime}$ Auft. Cæterum Stella A, Lunam fubingrefla eft ad montem Audum, tranfit per Infulam Cercinnam, per M. Neptunum, Mare Adriaticum, inter M. Horminium \& M. Amanum, pe: M. Herculis; fic ut inter Paludem Maotidem \& Inf. Maiorem. Cafpii rurfus Emerferit: unde liquidum eft hanc Stellulam A, fere Centralem cum Luna celebraffe Conjunctionem.

Altera vero Stella B, 6*. Magn. Lunam ingreffa eft ad Paludem Maraotidem, Tranfiit per Sirum Syrticum, ad M. Athos, per M. Latmum, inter Montes Sipylum \& Macyfitum, infra Centrum Luna, per Superiorem M. Mofchum, per Fretum Ponticum, atque fic infra Infulam Majorem Cafpii.

(359)

LXXI. Maii 2. ft. ni 1633 . It $o^{\prime} o^{\prime \prime}$ vefp. Liina fupraStellulan in radice inn occiataticn Caudx Cancri tranfibar, que modo verfatur in $\varsigma_{27^{\circ}} 53^{\prime} 37^{\prime \prime}$. \& in Lat. of a Fixt Star, 2° I $8^{\prime} 4 \mathbf{*}^{\prime \prime}$. Auftr. fic ut in jpfa Conjunctione non nifi ad 12^{\prime} à Luna Cornu bove another, Infer abefict.

12h $^{\text {h }} \mathrm{O}^{\prime \prime}$ ctiam alia Fixa, fed minutifima, teça eft, que in Cola 1683. at Dant alias non habetur. Quantum conjicere: dabatur, hærebat in $\sigma 28^{\circ} 30^{\prime}$ \& Hevelius. ib。 in Latit. $1^{\circ} 54^{\prime}$ Aultr.

LXXIL, Ipfum Momentum Immerfionis accuratifime notavi, id quod incid it An Cccaltutions if $17^{\prime} 20^{\prime \prime}$. vefo. Fecundum Horolog. Ambulat. Einea itineraria inceflit of Regulusby: per Mare Pamphilium, infra Infulam Carpathos, Inf. Cyprum, infra Sinum the Moon, Extremum Ponti, \& Sinum Inferiorem Maris Cafpii. if ${ }^{\text {h }} 24^{\prime} 4^{\prime \prime}$ fecundum $1683 \cdot a t$ Dant Horol. Ambul. Altitudo Lucidæ Lyre Obfervata eft $44^{\circ} 39^{\prime} 0^{\prime \prime}$; ex qua zick; by M. Initium. Occultationis corrigi poteft. Sectio Luminis \& Umbra per Lacum Nigrum Majorom, ad Inf. Corfican:, M. Nyconium, per: Eacum Stramonicum, ad Inf. Rboilus, per M. Sinai \& M. Techifaindam incidit.

LXXIII: I. At $9^{\text {h }} 26$ the under Limb of the Moon was juft Rilèn, and Anocicultation Soon after Fupiter appeared near the Ealtern Limb of the Moon, within a few of Jupiter by Minutes of being Eslipfed.
the Moon,
$9^{h}: 33^{\prime}$ As near as could be gueffed, was the Time of the Centrat Immer- at Lorchnton; by fion, which was very dificuit to be obferved by reafon of the Afperity of the Dr. Hook, an. \mathcal{l} Moon's Limb, whicn Undulated and Sparkled very much, as it appeared Mr, Halley. through the Vapours near the Horizon: The Inyrefs happened much about the length of the Spot, catled by Heryetius Palus Maraotis, to the North of the faid Spor, or about the I $24^{\text {th }}$ Degree of the Outer Limb of his Selencgrapity, nearly in the fame Latitude with the Moon's. Center.
$10^{h} 30^{\circ}$. The Weftern Edge of fupiter began to Emerge out of the dark Limb of the Moon.
 a minute and a third in corning out from hehind the Moorr.

The Emarfion wasexactly in a right Line with the Moon's Center and the Northern part of Palus Meotis, or about the $324^{\text {th }}$ Degree of the Inner Limb of the Selenograplyick Table of Hevetius.
2.

AtGreenwich; by Mr. Flamfeed. n. 184. p. 206.

At Nuremburg; by M. Zimmerman. n. 183. p. 177.

By M. Wurt2elbauer. 26.
3. At $10^{\text {l }} 19^{\prime} 56^{\prime \prime}$. M. L. Fa. Zimaserman obferved the firt Contact of

At $11^{\mathrm{h}} 22^{\prime}$, $1^{\prime \prime}$. 4 was wholly Clear from the Eclipfe.
The Immerfion was about the II $7^{\text {th }}$, the Emerfion at the $3^{2} 1^{\text {ft }}$. Degree of the Limb, in the Chart of Hevelius.

At $1^{\text {h }} 31^{\prime} 06^{\prime \prime}$. The third $S_{\text {atellite }} \neq$ Emerged. Thefe times were collected frem the Culminations of fixt Stars, and the Vibrations of a Penduhim.
4. At $10^{\text {h }} 20^{\prime} 50^{\text {i" }} .4$ applyed to the Limb of the ν, over againft the Loca Paludofa Infulic Ceicima.

At $\mathrm{IC}^{\mathrm{h}} 22^{\prime} 00^{\prime \prime}$. he appeared about half Eclipfod.
At $10^{\text {h }} 22^{\prime} 30^{\prime \prime}$. he was wholly Hid.
At $11^{\text {h }} 19^{\prime}, 40^{\prime \prime}$. 4 began to Emerge.
At $I^{\text {h }} 2 I^{\prime} 20^{\prime \prime}$. he vras quite Frec from the Interpofition of the D. The point of the Emerfion was fome what to the North of the Palus Maotis. No Spot in the $)$ was fo near the apparent Magnitude of \mathcal{F}_{s} Disk at the Infula Besbicus Hevelii.

At in $1^{\text {h }} 4.0^{\prime} c 0^{\prime \prime}$. the Altitude of Procyon was $8^{\circ} 37^{\prime}$. whence the pendulum Clock, which had been fet by Altitudes of the \odot, the afternoon precceding, may be examined.

(36t)

5. Etiamfi hucufque per 56 Annos nullam Obfervationem alicijus Mo- As Bantack
 potuerim: Utpote primam Anno 1646, die 24 . Decemb. vefperi, fed tanturnmodo ejus Finem; Secundam Anno 1679 , die 5 Junii ante meridiem de die, quo tempore res omnis felicius fucceffit ; Tertiam hoc Anno currente $\mathbf{1} 686$, dic Io April. vefperi.

Inter alia autem notandum occurrit, quod hrecce Occultatio rion Luna omnino exiftente Plenn, fed altera die circiter poft ipfum Plenilunium vefperi acciderit; \& quidem eodem Tempore (quod permirium fanè accidit, \& cit cafus, qualis haud facile unquam continget) eademque facie, ut illa Occultatio Anni 1646, die 24 Decemb. vefperi vifa eft, quo Tempore Luna jam ad biduum pariter decreverat, \& fine dubio candem Librationem etiann exhibuit, quam in hac noftra ultima obfervatione. Nam Sectio Luminis atque Unibre plane fuit cadem, \& per eafdem Maculas tranfit (quod fatis admairari nequeo) nimirum ad Lacum Hyperboreum Majorem \& Minorem, tum ad Montes Ripheos, per Paludem Maotidem, per Lacum Majorem Maris Cafpii; \& Sinum ejus Inferiorem, ad Montem Nerofum.

E contrario, Govis Occultatio Amzib 1679 à me habita, plane extitit diverfa, fiquiden illa non circa Plenilunium, fed Novilunium accidit, tertia circiter die ante Conjunrioorom ipfann.

Horol. ambulat.	Alitit. Quadrant capte.	Tempus ex Alt. Corr.
h. ' "	Gr. ${ }^{\prime}$	H 11
51010	Altitudo Solis. 1347 47	5 II 43
5 I 2230	Altitudo Solis. . $\quad 13.28-0$	513.55
51740	Altitudo Solis. . $12 \begin{array}{ll}\text { I } \\ \text { II }\end{array}$	51921
52350	Altirudo Solis. ${ }^{\text {a }}$ - 1146 c	52543
8710	Altitudo ArEturi. 29 55 0	81250
8 II 15	Altitudo Arcturi. 30 32 0	8174
81510		82051
94450	Luna oritur circit. \qquad Fupiter diftabat ab Inf. Cercinina . 43. circit. minut.	$\begin{array}{llll}9 & 24 & 0 \\ 9 & 52 & 50\end{array}$
102130	Fovis diftantia erat tanta, quanta diftantia M. s_{i} nai à Palude Marcotide.	1031.30
104035	Fovis diftantia erat ferè xqualis diftantix inter M. -Etnam \& M. Porphyritcon.	10.515

$\left(3^{62}\right)$

$\begin{array}{ccc} \text { h. } & 1 & \prime \prime \\ 10 & 51 & 30 \end{array}$	Fovis Limbus à D limbo diftabat tanto intertitio, quanto Pal. Marreotis à Limbo Lunce.	h. ${ }_{\text {II }}$ (210
10 569	* Limbo fuo Tangere incipiébat Luna Limbum, arque fic Initium Occultatiouis accidit.	1178
105654.	Dimidius $\mathfrak{F u p i t e r ~ O c c u l t a b a t u r . ~}$	II 754.
105739	Totus fupiter omnino à) Tectus.	839
II 831	Occultatio Comitis Jovis ultimi ad M. Alabaftrinum accidit. Duo tantummodo Comites à parte Orientali confpecti funt.	
II 1554	Altitudo Lyrie $\quad{ }^{\prime} 32^{\circ} 59^{\prime} \mathrm{Cl}^{\prime \prime}$	II 26
II 19	Infula Besbica \& Rhodus reperiébantur fub eodem perpendiculo; id quod ad 35 gr. circ. à Linea v.erticali removebatur.	
II 2137		I.1. 32.85
II 2457	Alitudo Lyra. 13.4240	II 3
-II- 3^{8} I5	Emerfionis Initium fovis.	
II 390	Dimidius Fupiter Emergebat.	II 50
 I	Totus J̌upiter apparebat. Diameter Lunce Micrometro obfervata erat 3 I!" $0^{\prime \prime}$.	II 5045
1154 10	Diftantia Govis à confíniö Lucis \& Ulmbre erat æqualis dittantix M. Etne à M. Porphyrite.	12540
11 5720	Diftantia Fovis à Confinio Lucis \& Limbre elongabatur intervallo inter Infulam Besbic. \&\& M. Etnam. Et Comes \mathcal{F} Reniotifimus à Fore tantum aberat, quantum iple Conres à dicto Confinio Lucis.	$12 \quad 9.20$
12	Altitudo Lyra. 40.190	$12 \begin{array}{lll}18 & 18\end{array}$
$\begin{array}{llll}12 & 9 & 18\end{array}$	Eadem Altitudo denuo. 40 $46^{\circ} 0$	$\begin{array}{ll}12 & 21\end{array}$
121320	Altitudò Lume. $\|$I	

Primo liquidum eft ex ipfa Obfervatione, quod Orbita, feu Liniea Fovis frineraria, per Montem Alrbaftrinum, per M. Cbrifti, M. Carpatbes, inifra M. Macrocemnios, \& per Lacum Hyperboreum Inferiorem incefferit. Secundo quod Infula Besbica \& Infula Rbodus dub uno eodemque perpendiculo,- tempore O_{c} sultationss, circiter 3 Ih. 30^{\prime} extiterit; fic ut 35 gradus Lunc Limbi culminayerits. Intrayit: itaque Jupiter Limbum Lune Illuminatum circa 6I grao.
dum, à Linea fcil. perpendiculari Nonagefimi atque puncto Zenith, Ortum verfus ; Exivit vero circa 3 I gradum à dicta Linea Perpendiculari Nonagefimi occafum verfus, ad. Limbum Lunc obfcuratum. Proinde linea fovis itineraria fuit fubtenfa 104. ferè graduuum, attenta videlicet parte Lun.e Boreali.

Præterea etiam maximè notatu dignum, quod ex hac obfervatione Diametrum Fovis exquifite elicere potuerim; nimirum $5^{\prime \prime} 42^{\prime \prime \prime}$; \& tantæ magnitudinis extitit etiam Diameter Fovis $50^{\prime \prime}$ circ. quoties illam per Maculas Lunce dimenfus fum. Quod autem Anno 1679. die 5 Fun. cum fimilem foris Eclipfim obfervarem, longè ea extitit minor, nimirum tantum $30^{\prime \prime} 53^{\prime \prime \prime}$. Id ex eo eveniffe puto, quod obfervatio illa, tempore Diurno, Splendente Sole fuerit obfervatâ; quo Radii Stellarum \&\& Planetarum adventitii magis à Luce Solis abfterguntur, guam Tempore Nocturno, nocte obfcura. Qucd-. fi autem quæras, quamnam Diamerrum apparentem veriorem exifimem? Scias illam, quam Anno 1679.5 Fun. de die, Sole flendente obfervavi. Non equidem ex eo quod non xquè diligenter hanc quam illam determinaverim; fed quod tempore Nocturno Radii Adventitii magis obftent, ficuti diximus, quam tempore Diurno.
6. At $9^{\mathrm{h}} 31^{\prime} 6^{\prime \prime}$. Fupiter was in a Perpendicular falling on the Limb of $\mathcal{A t}$ Paris $;$ by the Moon overthe Moon over-againft the Northern-part of the Spot Grimaldi, (Marcotis) M. 183. p. 1750 near to Riccioli (Stag. Miris) and diftant from the Limb about 4 times as much as the faid Spot.
$9^{\text {h }} 40^{\prime} 21^{\prime \prime}$. Fupiter touched the Circumference of the Moon, which undulated by reafon of the Vapours near the Horizon.
$9^{\text {h }} 4 \mathbf{1}^{\prime} 20^{\prime \prime}$. He quite difappeared in the Inequalities of the Moon's Limb, the Total Immerfion might be fome Seconds latar. So the Central Immiryion was at $9^{\text {h }} 40^{\prime} 5^{\prime \prime}$. Fupiter entered over-againft that Part of Grimaldi next Riccioli.
$I^{\text {h }} 30^{\prime} 2^{\prime \prime}$. The Outermoft Satellite which preceeded Fupiter appeared over-againft the Middle of the Cafpian Spot (Pal.Maotis) through which the Section of Light and Darknefs. paffed, and made nearly an Equilateral Triangle, with the Extremities of that Spot.

Ioh $40^{\prime} 24^{\prime \prime}$. The firit Limb of Fupiter began to come out of the Dark fide of the Moon, over-gainft the North-part of the Cafpian Spot, about Cleo medes, (ad Montes Ripbreos.)

Ich $40^{\prime} 56^{\prime \prime}$. The Center of fupiter did Emerge. It was difficult to diftinguifh the Moment when fupiter's Disk was fully clear, but at Ic ${ }^{h} 4 \mathrm{I}^{\prime} 36^{\prime \prime}$. the Eclipfe was certainly paft.

At the Emerifion of the Center, the Altitude of Fupiter. was $\left[1^{\circ} 31^{1}\right.$.
At $10^{h} 42^{\prime} 49^{\prime \prime}$. The Second Satellite being the neareft of the three that followed the Planet, Emerged.

At $1 c^{h} 45^{\prime} \mathrm{I}^{\prime \prime}$. The Innermoft Satelite, being near its greateft Elongation, Emerged.

At Ich $50^{\prime} 40^{\prime \prime}$. The Tbird, or Pencxtimus Satelles, being likewife near its greateft Elongation, began to appear over-againft the Northern-Edge of the Cafpian Spot.

(364)

At inh 45^{\prime}. The Diameter of the Moon was $32^{\prime} 27^{\prime}$. and according to. the Calculus of M. Cafsini, her Parallax was 6 I Min.
"At Avignon; 7. The Central Immerfion was at $9^{\mathrm{h}} \cdot 42^{\prime} 1^{\prime \prime} 3^{\prime \prime}$. and the Central Emerficnib. p. 176.

An Occultation of Jupiter by the Moon, at Ioh $45^{\prime} 26^{\prime \prime}$. over-againft the Southern-part of the C_{u} fian Spot. Apr. 28. 1686. Mr Ed Haines who between a Gap of the Clouds obferved the Contast n. 195. p. 87. the Moon's Limb and fupiters, at $3 \mathrm{~h} 3^{\frac{1^{\prime}}{2}}$.

The Clouds clofing again permitted him to obferve no nore: however from this we may conclude the Central Immorfion at London, to have been $3^{h} 4^{\frac{x^{\prime}}{2}} \cdot m a n c$.

The Emerfion was obferved at London, by Mr. Edm: Halley, to fall out at 3h 49'. For at $3^{\text {h }} 50^{\prime}$. Fupiter was all out, and the Limbs fo little feparated, that he judged, that a Minute before, the Center of Fupiter had been upon the Moon's Edge: The Point of the Emerfion was over-gainft the Sou-thern-part of the Spot, calld by Hevelius Infula Macra, or at the 342d: Divifion of the Inner Limb of his Map of the Moon.
St Avignon; 2: The Immerfion of the Center happenied at $3^{\mathrm{h}} 37^{\prime} \quad 23^{\prime \prime}$, on the Eait-fide by R.P. Bonfa. of the Spot Xenophanes. The Emerfion was at $4^{\text {h. }} 28^{\prime} 24^{\prime \prime}$. between Senecn 7. 183. P. 177. and Berofus, according to Riccioli, or ad Montes Alanes, Hevelii, a little to the Northward of the Falus Micotis.
uf Dantzick; by M. Hevelius. ib. p. I84.

$\left\|\begin{array}{c} \text { Secund. Ho- } \\ \text { rol.Amb. } \end{array}\right\|$		Tomp. Corr.
$\begin{array}{\|ccc\|} \hline \text { h. } & 11 & 11 \\ 3 & 23 & 20 \\ 3 & 24 & 25 \end{array}$	Altitudo Arcturi. Eadem Altudo.	h. 1 11 3 20 12 3 21 35
34430	Fupiter à Limbo Lune diftabat Majori adhuc Intervallo quam M. Sinai さ̀ M. Atna.	34130
34700	Fovis diftantia erat tanta, quanta M. Porphyritidis à Byzantio.	34400
35200	Fovis à Limbo Lunce Diftantia erat æqualis Diftantix Infulx Sardinix \& Paludis Marizotidis.	34900
35900	Fupiter à Limbo Lunu paulo plus diftabat quam Pri. Marcotis ab Atna.	35600
41640	Dittantia Fovis à Limbo Lune æquabatur ferè Diftantix M. Porphyritidis ab Inf. Cercinna. Planetarum Occafus factus eft.	$\begin{array}{lll} 4 & 13 & 40 \\ 4 & 17 & 00 \end{array}$

(365)

$\left\{\begin{array}{l} \text { Hora Horo- } \\ \text { log. ma. } \end{array}\right.$			Tomp. Corr.	$\begin{aligned} & \text { LXXV. . } \\ & \text { An Occultation } \\ & \text { of Saturn by the } \\ & \text { Moon, Mas } 19 . \end{aligned}$
h. 11		\bigcirc	h. 111	;
120610	Altitud. Pollucis.	$28 \quad 35$	$12 \begin{array}{llll}12 & 14\end{array}$	$\begin{aligned} & \text { Mr.Ed.Hanes, } \\ & n .186 . \text { p. } 268, \end{aligned}$
$1: 21647$			$\begin{array}{llll}12 & 22 & 47\end{array}$	
118.00	Lunc Limbus tangebat Anfam Occid.		12400	
I 1830	Immerfio Centri Saturni paulo infra Pal. Mar.cotin.		12430	
11900	Jam Saturnus omnino latuit.		I 2; 00	
4 OI 25	Altitudo Centri	2000	4.0717	
40906		$18 \quad 55$	4 I 443	

2. March 18. At Night I obferved here the Occultation of Saturn by the $I: x$ frefand ; by Moon, which happened at $121 \mathrm{l} \cdot 13^{\prime} 5.5^{\prime \prime}$. it paffed directly under the Midf of. the Mocot's Difcus. -

> n. Af, BP. of Cloyno
> no.243. p. 293 ,
LXXVI. r. Oct. I3. 1665 .at fix of the Clock, with a very good Telefcope phafes of: sanear 38 Foot long, and a double Eye-glafs, Saturn appeared to me fome- turi,, An.i6650 what otherwife, than I expected, thinking it would have been Decrealing, af Mainhead Exeter ; but I found it as full as ever, and a little hollow above and below. by Mr. Will,
2. Fun. 29. 1666. between II and i2 at Night, I obferved the Body of Ball. n. Saturn through a 60 . Foot Telefcope, and found it exactly of the Shape Re- Fig. 132. prefented in the Figure. The Ring appeared of a fomewhat brighter Light $\mathcal{A n}$. 1666 as: than the Body; and the black Lines $a a$, croffing the Ring, and $b b$, croffing the Body (whether Shadows or not I difpute not) were plainly vifible ; Dx. Hook. whence I could manifefly fee, that the Southermoft-part of the Ring, was on this fide of the Body, and the Northern-part, behind or covered by the Body.
3. Aus. I7. 1668. at I $1 \frac{1}{2}$ h thefe $P_{\text {arifian }}$ Obfervers, imploying a Telefcope of An. 1668: as 21 Foor, faw the Globe of Saturn in the Middle manifefly appearing above Paris; by M_{0}. and below, beyond the Ovale of his Anfes; which was hardly difcernable the Piccart. n. 450. . laft Year. They meafured divers ways the Inclination of the greater Diame- P.900. ter of the Ovale to the Equator, and found it of about 9 Degrees. By this. Obfervation and other like ones of this and the preceeding Year, M. Hugens finds, that, inftead of $23^{\circ} 30^{\circ}$, the Angle of the Planes of the Ring and of: the Ecliptique mult be of 31°, or thereabouts.
4. Aug. 26.f. n. 1670. Telefcopium illud 50 Pedes longum, quod non ita Ari. 16\%\%: as. pridem mihi tranfmifitis, Eaciem Saturni utut Luna fuerit prefens nitidifi- M. Hevelius. mê ac clarillimè detegebat. Quali aurem mihi apparuit, adjecta Delineatio n. $65:$ p. 20890 commontrabit; alia planc̀ Facie, quàm Cl..Hugenio, tum vobis An. 1666.

(366)

tum Parificnfibus 1668 , videbatur: Siquidem Anmulus, qui Saturnum circundat, multo nunc arctior, comprefficrque animadverfus quam illo tempore, quáfi obliquiori, refpectu Terre, nunc via incedit.
5. This Summer M. Hugens Obíerved Saturn with his Telefcope of 22 Feet, and faw his Figure to be very conformable to what it fhould be according to his Hypothefis; viz. the Anfe or Arms to be very narrow, in fo muek that their opening appeared not but very obfcurely.
6. Sept. IG. Dr. Hook obferved the Phafe of Saturn as here reprefented. Fig. 135.
7. Satum according to the Hypothefis of M. Hugens was to have retaken his Round Figure in the Months of Fuly and Auguft 167 I . But this Appearance hath been perccived ever fince the End of $M_{n y}$, at a Time when he was dittant enough from the $S u n$ and the IIorizon, to be well Obferved. He hath remained in this Figure unto the $15^{\text {th }}$ of Auguft, and M. Cafini did then obferve him thus; but three Days afterhe faw him with Aims, though very Narrow ones. iy M. Hugens. 8. Our Philfopleis leere, know very well, that as foon as M. Cafini had told mo that the Ams of Saturn were returned in Auguft, I faid that affuredly they would difappear before the End of this Year. I fill obferved them, Nov. 6. Ji, n, in the Evening, but they were fo faint and obfcure, that it was hard to difcern them; to that within a few Days they will appear no more at all. This confirms altogether my Hypotbefis of the Ring, which now difappears in Proportion that the Rays of the Sun do obliquely illuminate the Hlat Surface of ir, Obververted to our Sight.
A" Dantzick; by M. Heveliuis. ib. p. 3032.
9. Quali Facie nujer, Die fc. Scpt. II. A. n. apparuerit, quàm rectifimè \&敉 1.136.

At London ;

 b) Di. Hook.A11. I67I. at Paris; by M. Callini. \%. 78 p. 3024 . am Tubo 60 vel 70 Pedum; haud tamen credo, ea omnino evanuiffe, ita ut ne Veftigium aliquod fucrit reliquum: Fortaffe Parifienfes Telefcopiis brevioribus in ipro Crepufculo, Luna præfente, Saturnum contemplati funt.
At Darby; by 10. Oct. I2. with my lefs Tube I thought I faw fomething on each fide Mr. Flamitecd. of Satuin, amidft the Colours of my Glafs, and the Spurious Rays of his ib. p. 3034. Body. Directing my longer Tube (of I4 Feet) to him, I could fee his Anfie fomewhat more diftinctly, but very flender, and to one, that thought not of them, fcarce difcernable.

Nov. 30 . I obferved him with my i4. Font Telefcope, the Aperture being -1 $\frac{1}{2}$ Inch, and its Eyc-Glats drawing iw. Inches: He appeared perfectly Round, free from Rays and Colours, and no Anfe to be feen. Mr. Townicy in his laft (Nov.20.) tells me, that he looked at him one Night, and could
At Paris; by hardly diftinguifh his Line of the Anfult, but plainly faw a dark Line through
M. Cafini. n. 92. P. 5180. him near his upper part.

An. I675. at
London; by
Mr. Flamitecal.
m. .1.6. P. 372 .

At Dantzick;
by X. Hevcli-
lis. n. 127.
. 6 :

I I. Dcc. I6. we found that Saturn had retaken his Round Figure.
12. Finu. 27. m. 1675. Safurnum Patulis auctum Anfis v dimus.
13. In Auguft, The Figure of Saturn appear'd, as Fig. 137:

(367)

14. Ex Schemate Saturni à Cl. Hevelio ante Annual obfervato vidco, eum Anf.1675. at Telefcopiis, noftris longè inferioribus, uti. Tunc enim Temporis (ut ar nunc
(Aug. 1676 .) cernebatur nobis in Saturni Globo Zona fubobfcura, paulo Auftralior Centro, inftar Zonarum fovialium. Deinde Latitudo Annuli dividebatur bifariam, Lineâ obfcurâa apparenter Elliprica, revera Circulari, quali in duos
```
Paris; by Mo.
``` Caflini. n.128. Amulos Concentricos, quorum Interior Exteriori Lucidior erat. Hanc. Phafim ftatim poft Emerfionem Saturni è Solaribus Radiis per totum Annum ufque ad ejus Immerfionem confpexi; primo quidem, Teleforpio Pedurn 35; deinde minori, Pedum 20.
LXXVII. I. Vidi Saturnum Aug. 26. ft. n. I 670. ahtia Aquila \(24^{\circ} 32^{\prime}\) dt. Pluces of Sa.
 in \(4^{\circ} \mathrm{II}^{\prime}\). Pifcium, in \(1^{\circ} 53^{\prime}\). Larit. Auftr. in ipfa nempe Oppofitione So- Dantzick, by lis exittentem.
2. Dcc. 29. S. n. 1677.81 .5 S. Vidimus in eodem Azimutho inque Nonage- n. 63. p. 20990 frmo Ecliptica Gradu ab Horizonte Saturnum \& Borcum Oculum \(४\), qui infra Paris; by M. Saturnum erat, unde. Planetam \& Fixam eandem in Fodnico Longitudinem ob- Bullialdus. \(n_{0} 1390\). tinere deprehendimus, viz. juxta Tychonem II \(3^{\circ} \quad 58^{\prime} 53^{\prime \prime}\).
LXXVIII. I. About the End of oatober 1671. we difcovered, by a Telefcope of 17 Feet, in fmall Stars near Saturn, onc of which by its particular Satellite of SaMotion fhew'd it felf to be a true Plenct: which we found' by comparing it urn difcoveret; not only to Saturn and his ordinary Satellite, difcovered \(1655^{\circ}\). by M. Hu- 2.92 . P. \(5 \times 78 . \ldots\) gens, but alfo to the Fixt Stars. The Motion of it was very manifeft in refpect of the Fixt Stars, but lefs fenfible in refpect of Saturn ; Yet it appear'd that from Octob. 25. unto November 1. his Dittance from Saturn increafed. Weltward, and from that time unto Nevemb. 6. it diminifhed: fo that his greateft Digreffion from Saturn hapned in the Beginning of Norembere

Dec. 16. We found that on the Eaft of Saturn, there was a frall Star, far diftant in a ftreight Line to Saturn, and to his ordinary Satellite, which was: Ociental alfo but little dittant from Saturn. And Dec. \(24^{\text {th }}\) we faw this \(S_{\text {row }}\) tellite in the Weft, and a Star, Oriental likewife, Iffs diftant from \(S_{\text {atturn }}\) than that we had feen the \(16^{\text {th }}\).
Dcc. I3. and 17. 1672. We perceived, with an Excellent Telefope, (of 35 Foot made by Campani) an Occidental Star, remote from Saturn, which in both thofe Obfervations had a Southern Latitude in refpeet of the Lino of his Wings; but in the firt it was further diftant from Satum than in: the Second : fo that, if this was the fame Star, as I fuppos'd it to be, it mov'de towards Saturn on the Eaft, and confequently (fuppoling it to be his Satellite) it: was in the Superiour part of his Circle.

Feb. 6. I673. We began to fee him again, and we obferved him almoft all: the Days following till the 20. This New Planct did nore and nore remove from Saturn till the \(19^{\text {th }}\) of \(F_{c}\). when we meafured the Difference between his Paffage and that of the Center of Saturn to be \(30^{1 /}\) of an Hour, which gave at leaft io Dimeters of Saturng and on the 20 . the Diftance was judged by Eftimate to be yet greater,

\section*{(368)}
16. 9. 5179 , 5184.

This Digreffion being treble to that of the Ortivary Satellite enabld us at firlt to judge the Time of his Revolution to be Quintuple, applying to the Satellites that Proportion, which Kepler hath noted in the Principal Plancts, between the Periodical Times and their Diffances. We were afterwards confirmed in this Opinion ; For by the Apparent fwifteffs of his Motion it was eafie to fee that this Planet had been in Conjunction with Saturn, Feb. 3. 1673. and by his Motion on the Weft it appears, that he was in the Inferior part of his Circle: And beciufe during this time of 17 Days he remov'd more and more from Saturn, 'tis certain that he remained in the fame Quadrant of the Inferior Occidental Circle above 17 Days, and that his whole Revolution is more than 68 Days. He was thefe laft Days at a Diftonce almoft equal to that which he had about the end of Octob. 1671 ; fo that in 480 days or thereabout he made a certain Number of Intire Recolutions, which can be no more than 7; fince each of them is without Queftion of more than 68 days. If you fhould count 7 of them, each would be \(68 \frac{1}{2}\) Days; if you count 6 , each would be 80 Days; and if you count but 5 , each would be 96 Days. But this laft Suppofition can by no means be made to agree with the two Obfervations of Dec. 1672, and the firt doth not agree fo well with them as the Second.
7\%.133. P. 8310
M. Cafini has fince found that this Outermof Satellite is diftant from the Center of Satuinn \(10^{\frac{1}{2}}\) Diameters of his Ring ; that the Period of his Revolution in 80 Days is fo juft, that he doth not Anticipate 9 Revolutions, which are made in two Years, but by one whole Day; and that in the Conjunctions with Saturn, his Latitude encreafes according as the Ring of Saturn enlargeth it felf; though the Line of his Motion is not Parallel to the Circumference of the Ring.
M. Cafini hath alfo difcovered, after many Revolutions, that this Satellite hath a Period of Apparcont Augmentation and Diminution, by which Period he becomes vifible in his greateft Occidental Digreffion, and Invifible in his greateft. Oriental Digreflion; he begins to Appear two or three Days before his Conjuinction in the Inferior part, and to Difappear two or three Days after his Conjunction in the Superior part: So that he remains Invifible in every Revolution of 80 Days for a whole Month together.

This Vicilifude of \(\boldsymbol{P b a f e s}\) makes it feem probable, that one part of his. Surface is not fo capable of Reflecting to us the Light of the Sun, which maketh it vifible, as the other part is. Whence we may conjecture, that the Globe of this Sarcllite hath fome Diverfity of Parts Analogous to that of the Earth, the one part of whofe Surface is cover'd by the Sea, which is not fo fit to Reflect from all parts the Light of the Sun, as the Continent which maketh up the other part: So that this Planet by a Converfion about his Axis, or by an Expofition of the fame Hemiiphere to Saturn (much after the manner of the Hemiiphere of the Moon to the Earth,) fometimes turns to us the part Analogous to the Continent, fometimes that part which anfivers to the Sea.

\section*{(369)}
\(\therefore\) LXXIX. Dec. 23. 1672 . We found a fmall Star Weltward of Saturn, be The Third Satween him and his Ordiviny Satellite, which was on the Weft alfo, almoft tellite of Saat a double Diftance. Dcc. 30. We faw a little Star, on the Eaft of him by M. Caffinit and his Ordinary Satellite, which had paffed alfo to the Eaft of him. n. 92. p. sis1.

Fan. Io. 1673. This little Star appear'd to have returned almoft to the fame Pofition in refpect of Saturn and his Ordinary Satellite, where it had been'Dcc. 23; Fan. 15. the Ordinary. Satcllite was Oriental, and the Nem one Occidental, as it had been in the precedent, but a little nearer to Saturn: We had that Evening time enough attentively to Obferve this Planet for a whole Hour together, during which we perceived, it approached to Saturn on the Weft, and confequently was in the Superiour part of his Circle: which did fully confirm us in the Suppofition we were inclined to, that it was an Iiterior Satellitc.

Comparing the Obfervations together, we began to find the Rule of the Motion of the new Interior Satcllite. For the two laft fhew'd us, that \({ }_{i n} 5\) Days he had made more than a whole Revolution. The fret Obfervation conpared with the 3 d made us judge, that in 18 Days he had made a Number of Revolutions almof whole ones, which certainly were 4 ; each of them was of \(4: \frac{1}{2}\) Days: So that between the \(10^{\text {th }}\) and \(15^{\text {th }}\) it might be, that there had been one Revolution of \(4^{\frac{2}{2}}\) Days, or two Revolutions of \(2 \frac{1}{4}\) Days each. But the Combination of the firt with the 2 d , made us feclude the Period of \(2 \frac{1}{4}\) Days. We therefore Judged by thefe Obfervations; that this laft Pianet finifhes his Revolution about Satuin in \(4^{\frac{1}{2}}\) Days; that the Semidiameter of this Circle is \(1 \frac{8}{8}\) of the Diameter of Saturn's Ring ; and that he was towards his greateft Occidental. Digreifion the \(23^{\mathrm{d}}\) of December, and Fan. I. about 7 .a Clock in the Evenning. We have fince found, that his greateft Digreflion from the Center of Saturn is only I \(\frac{2}{3}\) of his Ring, n: \(133 \cdot \mathrm{p} .833\). and the Period of his Revolution is 4 Days 12 h and \(27^{\prime}\). His Latitude Augments atfo according as the Ring enlargeth, and at the prefent that the largenefs of the Ring is greater than the Diameter of the Globe of Saturn, he is to pafs in the Conjunctions withour touching either Saturn or his Ring. Yet notwithitanding we have not yet been able to diftinguifh him in the Conjunctions cither in the upper or lower part of his Circle; but only in his Greatef, as well Oriental, as Occidental Digreflions.
LXXX. Thefe two Sarilites were firf of all feen in Mar. An. 1684. Troi Interio Saby two excellent Object Glafies of 100 and 136 Feet, and afterwards by tellites of \(\mathrm{Sa}-\) two others of 90 and 70 Fcet, all made by S.Campani, after the Difcovery by M. Caffini. of the \(3^{\mathrm{d}}\) and \(5^{\text {th }}\) Satellites, which had been made by others of his Glaffes \(n_{0}\) M. \(18 \mathrm{si} . \mathrm{p} .790\) of 47 and 34 . Feet. We have fince feen all thefe \(S_{\text {ntellites. with that of } 34}\) Feet, and continued to obferve them with Glaffes of M. Borelli of 40 and 70 Feet, and by thofe which M. Artouquel hath lately made, of 80,155 , and 220 , Feet. It was eafie for us to fee thefe two Satellites by thefe dif. ferent Sorts of Glafies, after having found the Rules of their Motion, whereby we might with more particular attention look upon the piaces where they ought to be.

\section*{(370)}

The Firft Satellite was Obferved \(45^{\circ}\) Diftant from its Perigee, moving soward the Weft, Mar. II. 1686. f. n. at \(10 \mathrm{~h} ~ 40^{\prime}\). at Night, and returned to the fame Pofition on the \(14^{\text {th }}\) of April at the fame Hour.

The Second was \(36^{\circ}\) Diftant from the Perigee to the Weft, the \(30^{\text {th }}\) of Mar. 1686. fi:n at 8 a Clock in the Evening.

The Firft or Innermoft Satellite, is never diftant from Saturn's Ring above \(\frac{2}{3}\) of the apparent length of the fame Ring; It makes one Revolution in Id. \(21^{\text {h }}\) I \(9^{\prime}\). and the Circle of its Orb is nearly in the fame Plain with the Ring.

The Second or Penintime Satellite is \(\frac{3}{4}\) of the Length of the Ring diftant therefrom, and makes his Revolution in \(2^{d} 17 \mathrm{~h} 43^{\prime}\).

After a great Number of Choice Obfervations it was Concluded, that the Proportion of the Digrefions of the Second to that of the Firft, (counting. both from the Centre of Saturn) is as 22 to 17; and of its Revolution as \(24 \frac{3}{4}\) to 17 . This is that very fame Proportion which Kepler Obferves between the Diffances and Periods of the Primary Planets, and which we have found between the other Satellites of Saturn, and is verified in the Satellites of. Fupiter. There is nothing that better fhews the Admirable Harmony of the Particular Syfemes with the Great Syfeme of the World.

The Antient Aftronomers having tranllated the Names of their Herocs among the Stars, thofe Names have continued down to us Unchanged, notwithftanding the Endeavonr of following Ages to alter them; and Galileo. after their Example, having Honoured the Houfe of the Medici with the Dif covery of the Satellites of Fupiter, made by him under the Protection of Cofmus II. (which Stars will be always known by the Name of Sidera Mc* dicea.) Wherefore the Difooverer Concludes that the Satellites of Saturn, being much more exalted and more difficult to Difcover, are not unworthy to bear the Name of Louis Le Grand, under whofe Reign, and in whofe: Obfervatory the fame have been detected, which therefore he calls Sidera Lodoicer, not doubting but to have Perpetuated the Name of that King, by a Monument much more lafting than thofe of Brafs and Marble, which fhall be erected to his Memory.

M: Hugens's: Theory of the Fourth Satellite of Saturn cor.refted; by Mr. Ed. Halley.

LXXXI. The Fourth or Penextime Satellite of Saturn, firlt Difcovered by: M. Hugens 1655 , I have of late frequently Obferveds with a 24 Foot Jelefoope : and I perceived that M. Hugens's Numbers were confiderably run out, and about \(15^{\circ}\) in 20 Years too fifift; this made me refolve more nicely to enquire into it's Period; and accordingly I waited till I had gotten a Compe-: tent Number of Obfervations, the moft Confiderable whereof are thefe.
1682. Nov. 13. 13h \(00^{\prime}\). p.m. the Satellite appeared on the North fide of Saturn, and a Perpendicular let fall from it on the Tranfverfe Diameter of the Ring, fell upon the middle of the Dark face of the following \(A n \sqrt{\alpha}\); and the fame Night \(19 \mathrm{~h} \mathrm{OO}^{\prime}\). it had paft the Conjunction, and the Perpendicular fell exactly on the.Weftern Edge of the Globe of Saturn; The Northern Latitude, and Retrograde Motion, made it evident that the Satellite was then in Perigreo.

\section*{(37i)}

Again, Nov. \(21.16^{\text {h }} 15^{\prime}\), this Satellite of Saturn was on his South-frde, the Perpendicular on the Line of the Anfe fell on the Middle of the dark Space of the Weftern \(1 n \sqrt{d}\), and the fame Night \(19^{\mathrm{h}} 0^{\prime}\), the Perpendicular fell precifely on the Center of Scturin, and the Diftance therefrom was fomewhat lefs than one Diameter of the Ring. By this it was evident that the Satellite was in Apogreo.

I obferved it in Apogxo again on the \(24^{\text {th }}\) of Fano 3683 at \(8^{\text {h }} 00\) p.m. the Perpendicular on the Line of the Anfe fell exactly on the Weftern Limb of the Globe of Saturn, and at \(9^{\text {h }} 3^{\text {di. p. m. . the faid Perpendicular fell with- }}\) in the Globe more than half way to the Conier, and the Ditance from the Line of the Anfe towards the South, feemed much about one Diameter of the Ring:

Lafty, Fel. 9. 1683.8 h \(10^{\prime}\) fom. it was again in Apig co, and I could by no means difcern rowards which fide it indined moft, nor whether the Tranfverfe Diameter of the Ring, or the Dittance of the Satellite therefrom, were the greater; fo that at that time it was preciely Apozaon.

To compare with thefe, I chofe two out of thofe of Hurens, which feemed the moft to be confided in; the firlt made 1659. March 14. J. 2 . \(12^{\text {hi }}\) oof at the Hague; when the Satellite appeared about one Diameter of the Ring under Saturn, but it was gone fo far to the Weftward, that he concluded, that about 4 Hours bee ore, or \(7^{\mathrm{h}} 40^{\prime}\) at London, it had been in Perigro.

Again, Marcts 22. 1659. \(10^{\text {h }} 45^{\prime}\). the Satellite was a whole Diameter above the Line of the Anfe, and the Perpendicular thereon fell nearly upon the Extremity of the Eaftern \(A n j a\).

By the Firft of my Obfervations it appears that the Satelite was in Perigreo 1682. Nov. 13. \(17^{\mathrm{h}} 00^{\prime}\). circiter, at which time Saturn was \(30^{\circ} 29039^{\text { }}\) from the firt Star of Aries in the Ecliptick, but the Earth reduced to Saturn's Equinoctial, and the Satellite was \(9^{5} 23^{\circ} 46^{\prime}\). a \(1^{a} * r\). And Marb 4.1659 ; \(7^{\mathrm{h}} 4^{\mathrm{\prime}}\). Saturn's Place in the Ecliptick was \(6 \mathrm{~s} 0041^{\prime}\). but the Earth reduced, and confequently the Satellite, in \(11^{s} 28018\). à Prima Stella Avictis. The Interval of Time is 8655 Days, \(9^{h} 20^{\prime}\); in which the Satellite had made a certain Number of Revolutions to the FixtStars, and befides \(9^{5} 25^{\circ} 28^{\prime}\) or \(295^{\prime}\) Degrees \(28^{\prime}\), whofe Complement to a Circle \(64^{\circ} 32^{\prime}\) is 2 Days \(20^{\text {hh }} 36^{\prime}\) Motion of the Satellite, according to Hugens. So that 8658 Days \(5^{\text {hi }} 56^{\prime}\), or 12467876 Minutes of Time, is the time of fome Number of intire Revolutions; and dividing that Interval by 15 Days \(22^{\text {h }} 39^{\prime}\), or \(22959^{\prime}\) (the Period of Hugens) the Quotient 543 fhews the Number of Revolutions; and again dividing \(12467876^{\prime}\) by 543 , the Quotient \(22961_{1} \frac{A^{\prime}}{\circ}\) \(\min\). or 15 days, \(22^{\mathrm{h}} 4 \mathrm{I}^{\prime} 6^{\prime \prime}\). appears to be the true Time of this \(S_{\text {atel- }}\) lit's Period. Hence the Diurnal Motion will be \(22^{\circ} 34^{\prime} 38^{\prime \prime} 18^{\prime \prime \prime}\), and the Annual befides 22 Revolutions \(10^{5} 20^{\circ} 43^{\prime}\). Having made Tables to this Period, I found that in the Apogion Obfervation of Hugens, the Satellite was above 3 Degrees fafter than by my Calculus, and that in the three other Obfervations of my own, being likewife in the Superior part, it was \(2_{\frac{1}{2}}^{1}\) Deg. flower than by the fame Calculation. Now'tis cvident that thefe Differences muft arifefrom fome Eccentricity in the Orbite of this Satellite, and that in, Minto, 1550 ,

\section*{(372)}
the Apocronion (as I may call it) was fomewhere in the Oriental Semicircle, and that in Nov. 1682. it was in the Weftern Semicircle, and fuppofing the Apocronion, fixt, it muft neceffarily be between \(9^{\circ} 23^{\circ} 46^{\prime}\), and \(11^{3 \circ} 28^{\circ}\) 181, a \(12 * r\), that being the common Part between thofe two Semicircles; and becaufe the Difference was greater in Hugens's Obfervation than in Mine, 'twill follow that the Linea Apfidum, or Apocronion, fhould be nearer to \(9^{s}\) \(23^{\circ} 46^{\prime}\), than to \(11^{5} 28^{\circ} 18^{\prime}\). I will fuppofe \(10^{5} 22^{\circ} 0^{\circ} 0^{\prime}\) à Prima Stella Arietis, (which happens to be alfo the Place of Saturn's Equinox) and the greateft Equation about \(2 \frac{1}{2}\) Digrees. Upon the Score of this Inequality the mean Motion of the Satellite will be found about \(2^{\circ} 45^{\prime}\). flower in \(23^{\frac{1}{2}}\) Years, or 7 Minutes in a Year, whence I fate the Annual Motion \(10^{5} 20\) 36'. above 22 Revolutions, and the Correct Epocba for the lat Day of Decomber 1682 at Noon in the Meridian of London \(9^{\prime}\), \(10^{0}\) : \(15^{\prime}\) à \(1^{2}\) - * \(r_{\text {. }}\). from which Elements I compofe the following Table.

Täbula Motus Medii Satellitis Saturnii al Hugenio inventi, à Prima * \(r\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \({ }_{C}^{\text {Chnifiti }}\) Curr. & Epoch.e s. 0.1 & & 。1 & & & 岩 & \(\left\lvert\, \begin{array}{cc}\text { Mot. Mcd } \\ 0 & 1 \\ 1 & \prime \prime\end{array}\right.\) & & & Mot.Me.| \\
\hline 1641 & 82917 & & 10 20.36 & & - 2235 & & \(\bigcirc 56\) & & & 2910 \\
\hline 1661 & & & \(9_{8} 11 I^{12}\) & & 2 l & & \(2.1 \begin{array}{ll}1 & 53\end{array}\) & & & \(30 \quad 6\) \\
\hline 1681 & \(\begin{array}{ll}11 & 29 \\ \text { IO }\end{array}\) & & & & \(3.2 \begin{array}{llll} \\ 3 & 7 & 4\end{array}\) & & \(3{ }^{3} 24.9\) & & & 3 r 3 \\
\hline 1682 & 1019.39 & & 714.59 & & 4.3018 & & 34.6 & & & 3: 59 \\
\hline 1683 & \({ }^{9} 1015\) & & \(6 \quad 535\) & & & & \(44^{2}\) & & & \(32 \quad 55\) \\
\hline \({ }^{1684}\) & 8.0059 & & 426 rI & \[
\left\lvert\, \begin{array}{r}
5 \\
\hline
\end{array}\right.
\] & \[
\begin{array}{lll}
3 & 22 & 53 \\
4 & 15 & 28
\end{array}
\] & 6 & 39 & & & \(33 \quad 52\) \\
\hline \(4685^{\circ}\) & \(7 \mathrm{I}_{4} 2\) & & \(\begin{array}{llll}3 & 16 & 47\end{array}\) & & \(5.8=\) & & 35 & & & 34.48 \\
\hline & & & 22657 & & 886 & & 32 & & & \(35 \quad 4.5\) \\
\hline Menf. & Mot. Mel. & & 2023 & & & Ic & \begin{tabular}{lll}
9 & 8 & 28 \\
0 & 8 \\
\hline
\end{tabular} & & & \begin{tabular}{ll}
35 & 41 \\
37 & 38 \\
\hline
\end{tabular} \\
\hline Ann2.
Comin. & & 10 & [170 & & & & & & & \\
\hline & & & \begin{tabular}{llll}
11 & 1 & 45 \\
\hline 1
\end{tabular} & & \begin{tabular}{l}
8 \\
8 \\
\hline
\end{tabular} & if & I 1021 & & & \(38 \quad 34\) \\
\hline 7nn. & - & & 101456 & & 9 O 55 & 12 & 12817 & & & \(39 \quad 3 i\) \\
\hline Fcb. & If. 953 & & & & & 13 & 1312. 12. & & & \% 27 \\
\hline , & 8.122 & 13 & \(9{ }^{9}\) & & 319.2330 & & 14 & & & \(4 \mathrm{rr} \quad 24\) \\
\hline April. & 72156 & & 7268 & & 410165 & & 514 & 4.5 & & 4.220 \\
\hline & & & 61644. & & 5 Ir 8 8 39 & & & & & \\
\hline Maii & \(\begin{array}{llll}6 & 9 & 14\end{array}\) & 16 & 52954 & & 16 & & & 46 & & \(43 \quad 17\) \\
\hline Yun. & 5197 & & & & & & & & & 44.13 \\
\hline ful. & \begin{tabular}{l}
4 \\
4 \\
\hline
\end{tabular} 626 & & 4. 2030 & & 7.02348 & & \begin{tabular}{|l|ll}
18 & 56
\end{tabular} & & & 4.510 \\
\hline Aug. & \(\begin{array}{llllll}3 & 16 & 19\end{array}\) & & 3 II 6 & & & & & 49 & & \\
\hline & \(\begin{array}{llllll}3 & 16 & 19\end{array}\) & & \({ }_{2}^{3} \quad 1 \times 42\) & & - \(2 \quad 8 \quad 58\) & 20 & I8 49 & & & \\
\hline & 2 \begin{tabular}{llll}
16 \\
\hline 12
\end{tabular} & & 1 \begin{tabular}{lll}
14 & 53 \\
\hline
\end{tabular} & & & & & & & \\
\hline Of & & & & & \({ }^{2}\) & & \(1{ }^{1} 1945\) & & & \\
\hline No & (1) & & & & & \[
22
\] & 2120 & & & \\
\hline Dec. & 111043 & & & & 4. 1642 & 23 & \(3{ }^{11} 13^{8}\) & 53 & & 495 \\
\hline & & & & & \(5 \begin{array}{llll}5 & 9 & 16\end{array}\) & & 4. \(22 \quad 35\) & & & 50** 4 \\
\hline & & & & & \(6{ }^{5}\) & 25 & \(5{ }^{23} \quad 31\) & 55 & & \(51 \times 4.5\) \\
\hline & & & & & & & & & & \\
\hline \multicolumn{4}{|l|}{\multirow{10}{*}{In Anno Bijfextili poit Februarium adde unum diem, motumque ei competeatem.}} & & & & & & & \\
\hline & & & & & 8-9 35 & & 8. \(26 \quad 20\) & & & \\
\hline & & & & & \(\begin{array}{llll} \\ 9 & 2 & 2 & 9\end{array}\) & 29 & 9 2717 & & & 55 51 \\
\hline & & & & & & 30 & - 28 13 & 60 & & 56 27 \\
\hline & & & & & & & & & & \\
\hline & & & & & \begin{tabular}{|ccc|}
10 & 17 & 18 \\
10 & 9 & 53 \\
\hline & &
\end{tabular} & & & & & \\
\hline & & & & & 11-9 0838 & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & s & & \\
\hline & & & & & & & & & & Whea \\
\hline
\end{tabular}

\section*{(374)}

There fuppofe the linea Apridum fixt, as having to Argument from Ob fervation to prove the contrary, though it be very probable that as the Apos gaon of our Moon has a Motion about the Earth in about 9 Years, fo that of this Satellite ought to have about Saturn, but with a much Longer Period; which future Obfervation may difcover.

The diftance of this Satellite from the Center of Saturin feems to be much about 4 Dianneters of the Ring, or 9 of the Globe, and the Plane wherein it moves very little or nothing differing from that of the Ring, that is to fay interfecting the Orb of Saturn \(4^{5} 22^{\circ}\) and \(I 0^{5} 22^{\circ} a I^{a} * r\), with an Angle of \(23^{\frac{2}{2}}\) Degrees, fo as to be nearly Parallel to the Earth's Equator, whence the Latitude of the Apogion Semicircle from \(4^{5} 22^{\circ}\) to \(1 C^{5} 22^{\circ}\) of Saturn's Longitude from the Firft Star of \(r\), will be Northern, and of the other Semicircle Southern; and the contrary in the other half of Saturn's Longitude, to wit, From \(10^{5} 22^{\circ}\) to \(4^{5} 22^{\circ}\) of his diftance from the Firf Star of \(r\).

It follows now to fhew how by the help of this Table to compute the place of this Satcllite, to any time required.

Firf we mult have the true Longitude of Saturn from the Earth, and numbred from the Firit Star of \(r\), (or rather the Place of the Earth viewed From Saturn together with its Latitude from the Orb of Saturn, but that being never fully \(\frac{2}{3}\) of a degree we negleat it as a Nicety) and therefrom fubftract \(1 C 522^{\circ}\) there remains the diftance of Saturn from this Equinoctial Point, with which diftance as with the Longitude of the Sun, take out the Right Afcenfion and Declination thereto (\(23^{\frac{1}{2}}\) degrees being the Obliquity common to both) and to the Right Afcenfion adding \(10^{5} 22^{\circ}\) the Summ fhall be the Longitude of the Satellit's Apogron. Then lay, as Radius to Sine of the Declimation, fo 8 to the greateft Latitude in Apogao, or Pcrigao in the parts of the Semidiameter of the Ring.

Next Collect the Middle Motion of the Satellite, and from it Subftract \(\mathrm{C}^{5} 22^{\circ}\) the remainder fhall be the mean Anomaly, with which in the Table of the Moon's Primary Equation, take out the Equation anfwering thereto, and the half thereof added or fubftracted to or from the Middle Motion, ar cording to the Table, gives the True Motion of the Satcllite, from which fubftract the Apogion, and if the remainder be more than 6 Signs, the Satellite is Occidental, if lefs Oriental ; and as Radius to Sine of the remainder, fo 8 to the Semidiameters of the Ring, or 18 to the Semidiameters of the Glove, that the Satcllite is to the Eaftward or Weftward of the Center of Saturn, according to the aforegoing Precept.

Laftly, as Radius to Co-fine of the faid Remainder, fo is the greateft \(L_{a}\) titude from the Line of the Anfa, to the Latitude fought.

Here Note, that I purpofely neglect the Inequality of the diftance arifing from the Eccentricity, as being too finall to be any way obfervable.

Laft \(\downarrow\) to clear all difficulties that may arife to them that are but little verfed in this fort of Calculation, I have added an Example of the Work, that where the precept may feem obfcure it may be thereby illuAtrated.

\section*{(395)}

An. 1657. Maii 19. ft.n. M. Hugens oblerved the Satellite very near to Saiurm on the Weftern fide, and very little above the Line of the Anfa. I uppofe this about \(10^{\text {h }} p \cdot m\). Let us now Calculate to that time.

Eigo 21\% Scmid. Annuli ail occafum \(\mathcal{O}_{3}^{20}\) ad Borcam; Agreeing exacily rith the Defcription and Figure of M. Hugens.
I here call the Plane of this'Satellit's 'Orb, which hitherto I fuppofe the Ime with that of the Ring, Saturn's Equinoitial, not that any difcovery hath een able to prove that the Axis of that Globe is at right Angles thereto, but ecaufe it hath pleafed M. Hugens to call it fo, and likewife becaufe it is fo early Parallel to our Globe's Equinoctial; Neverthelefs to fpeak my Opinion, believe that the Axis is Inclined, and that not a little, to the Plane of the ing; for as the Reflection of the Sun's Light from the Ring is a great conenience to that Hemifphere of Saturn, which beholds its llluminate fide; o that the other Hemiphere is very much Incommoded by the Shaddow of he Ring, which for many Months, and in fome Parallels for feveral Years, ocafions a continual Night by the Interception of the Sun's beams, which is a onfequence that Demonftratively follows the Pofition of the Ring in the Plane of Saturn's Equator. Now this great inconvenience would be in Tome neafure relicved by the Oblique Pofition of the Axis, for then the Parallels of Latitude interfecting the Plane of the Ring, many and in moft cafes all If them, might for fome time in every Diurnal Revolution of the Globe, free hemfelves from this Eclipfe, which otherwife were fufficient to render his Globe of Setiorn unfit for any fetled Habitation; but this is but conecture.

\section*{（376）}

The other two Satcllites of Saturn difcovered by S！Cafini at Paris and 1672 and 1673 ，I muft confefs I could never yet fee ；I have been told that they Difappear for about \(3 \frac{3}{3}\) of Saturn＇s Revolution，and were only to be feen when the Arfe were very fmall，it being fuppofed that the Light which proceeds＇from the Ainfe when confiderably opened might hide thefe Satelitite：

LXXXII．I．La Diftance du Premier Satellite du Centre de Satrome＇m＇a paru variable，\＆fon Mouvement fenfiblement Inegal，plus vifte，en ce temps，dans lo Demicercle Occidental，que dans l＇Oriental．J＇ay diernierement determiné fa Moyemne Diftance de \(\frac{3}{4}_{40}\) du Diametre de l＇Amecau de Saturne，fon Mouzement Journalicr de \(6^{5} 10^{\circ} 41^{\prime} 31^{\prime \prime}\) ．Ainfi fi fon Mourement eitoit Egal，la durée de fic Comjunction avec Saturnc，c＇eft a dire，tout le temps qu＇il met a parcourir fon Anneau，feroit de \(7^{\mathrm{h}} 4.6^{\prime}\) ．Elle \(\mathrm{m}^{\prime}\) a paru plus grande par les obfervations immediates，mais il eft a remarquer que je n＇ay juiqu＇a prefent pû voir ce Satellite plus pres de Saturne，que d＇un quart d＇un Anse．

J＇ay Calculé 1 ＇Epoque de fon Mouvement，pour le demier Decembre 168.5 a Midi au Meridien de Paris en \(2 s=24^{\circ} 5 \mathrm{e}^{\prime}\) ．

La difance du Second Satellite du Centre de Satume mª paru plus Uni－ forme．Je l＇ay determinée d＇un Diametre de l＇Ameau \＆－\(\frac{-3}{4}\) Son Mouvement paroit aumf plus Egal．J＇ay Calculé le Journalier de \(44^{5}\) I Io \(31^{\prime \prime} 30^{\prime \prime}\) ． Ainfi la Durée de fa Conjonction deuroit eltre de Sh \(36^{\prime}\) ．Jè n＇ay pas non plus vò jufqu＇a prefent ce Satellite plùs proche de l＇Annenu de Saturne que d＇\(\frac{2}{4}\) d＇un Anse．Comme ce Satcllite fe voioit la plus part du temps dedans les Conins de la Diftance du Premier，au quel il eft Egal en Grandeur，\＆ Semblable dans la Coleur，la difficulté de diftinguer l＇un de l＇autre a éfté extreme，de fort que fans wh－afliduité particuliere aux Obfervations，\＆－fans une grande multitude de Combinaifons je n＇en ferois pas venumbout．

J＇ay determiné l＇Epoque de ce Satellite pour le 3 I Decembre 1685 a Midi en 呗90 10＇．
La Diftance du Troifieme du Centre de Saturne paroit d＇un Diametre de l＇ Amneau \＆\(\frac{3}{4}\) ．Son Mouvement Fournalicr \(2 s\) I \(804^{1} 1^{\prime} 5^{\prime \prime}\) ．Ainfi fa Conjoncti－ on doit durer 10 heures．L＇Epoque de fon Mourvement pour le Midi du Der－ nie：del＇Anné 1685 叹 \(9^{\circ} 39^{\prime}\) ．

Ia Diftancadu Quatrieme Satellite au Centre de Saturne parnit de 4 Dia－ metres de 1＇Annenu．Son Mourement Fournalier de \(22034^{\prime} 38^{\prime \prime}\) ．Ja ：Durce de fa Conjonction \(1^{\text {12 }} 6^{\prime}\) ．L＇Epoque de fon Mouvement aul mefme temps \＆ lieu que les autres，en＇t 180 1＇．

La Diftance du Cinquicfine Satellite au Centre de Saturne de i2 Diametres de l＇Anneau．Son Mouvencht Fournalier de \(4032^{\prime} 17^{\prime \prime \prime}\) ．Ses Conjonctions durent 24 heures．L＇Epogue de fon Mouvement au mefine temps \＆lieu，en \＃ \(16^{\circ}\) 19＇．Sur ces Principes on peut conftruine les Tables，\＆Les Epho merides．
By．\(\therefore \therefore\) ． 6 ． 35.300.

2．The Following Tables are Calculated from theice Elements，and Reduc＇d to the Meridian of London．

Tabula Motüs Medii Intimi Satellitis Saturni, à Caffino Deteciti Anioo 1686.

Tavula Motus Modii Penintimi Satellitiṣ Saturni, à Caffino Detecti Anno 1686.

\section*{(359)}

Tabuld Motus Medii Satellitis Saturnii Medii, à Caffino detecti Anno \(16 \% 3\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Anno } \\
& \text { Chrifti } \\
& \text { Curr: }
\end{aligned}
\] & Epoctire & & \begin{tabular}{|ccc}
Mot. Med. \\
\(\vdots\) \\
s & 0 & 1
\end{tabular} & \[
10
\] & \(\left\lvert\, \begin{array}{ccc}\text { Mota } & \text { Medo } \\ \text { s. } & 0 & \end{array}\right.\) & \[
\begin{aligned}
& \text { T } \\
& \text { 5 } \\
& \text { 5 }
\end{aligned}
\] & \(\left\lvert\, \begin{array}{ccc}\text { Mot. } & \text { Med } \\ \text { Sex. } & \\ 0 & 1 & 1,\end{array}\right.\) & & \[
\begin{aligned}
& \text { Motus } \\
& \text { Mod. }
\end{aligned}
\] \\
\hline 1661 & \(\simeq 22.50\) & & \(914 \cdots 2\) & & 21842 & 1 & 17 & 31 & 41 \\
\hline 1681 & 収 163 & 2 & 6.28.58 & 2 & \(\begin{array}{llllll}5 & 7 & 24\end{array}\) & 2 & - 633 & 32 & 145 \\
\hline 1685 & \# 24.1 & 3 & & 3 & \(7{ }^{7} 2665\) & 3 & - 950 & 33 & 48 \\
\hline 1686 & M1770 & 4 & 4.1638 & 4 & 101447 & 4 & -13 7 & 34 & I \(5^{2}\) \\
\hline 168 & I2 139 & & 2 I 8 & & I 329 & & -16 24 & 35 & \\
\hline 1688 & II. 16 \begin{tabular}{l}
16 \\
\hline
\end{tabular} & 6 & II I5 57 & 6 & \(33^{3} 2111\) & 6 & - 19 40 & 36 & 53 \\
\hline 1689 & II 1920 & 7 & 9006 & 7 & 6
6
8 1053 & 7 & - 2257 & 37 & 5 \\
\hline 1701 & \(\Omega \quad 915\) & 8 & \(9{ }_{9} \quad 3 \quad 17\) & 8 & \(\begin{array}{llll}8 & 29 & 35\end{array}\) & 8 & - 2614 & 38 & 25 \\
\hline & & & 6 174.4.6 & 9 & If 18816 & 9 & - 293 I & 39 & 28 \\
\hline \begin{tabular}{l}
Mcns. \\
Anni
\end{tabular} & Mot. Med. & & 4. 0215 & & 26.58 & & - 324.7 & 40 & \\
\hline Com. & s. & & 1 r 645 & I 1 & \(425-40\) & 11 & \(\bigcirc 364\) & 41 & 14 \\
\hline & & & 11955 & 12 & 71422 & 12 & - 3921 & 42 & 2.18 \\
\hline Fan. & 0 & 13 & i i \(18{ }^{1}\) & 13 & Io 34 & 13 & - 4238 & 43 & \(2 \cdot 21\) \\
\hline Febr. & \(9 \quad 937\) & 14 & 8 18 54 & 14 & 02140 & 14 & c 4555 & 44 & \(2 \quad 24\) \\
\hline Mar. & \(\begin{array}{llll}10 & 23 & 8\end{array}\) & 15 & \(6-323\) & 15 & 31027 & 15 & -49 11 & 45 & 2.28 \\
\hline Aprit. & \(8 \quad 245\) & & - & & 3. & & & & \\
\hline & & 16 & \(\begin{array}{lll}6 & 6 & 34 \\ 3 & 2\end{array}\) & 16 & \(529 \quad 9\) & 16 & - 5228 & 46 & 23 I \\
\hline Maii & \(\begin{array}{llll}2 & 23 & 40\end{array}\) & 17 & 3213 & 17. & 81751 & - 7 & - 5545 & 47 & 2.34 \\
\hline Fun. & 0 & 18 & I 532 & 18 & if 6 & 18 & - 59 I & 48 & \(2 \quad 37\) \\
\hline ful. & \(6 \quad 2412\) & 19 & 10201 & 19 & + 2515 & 19 & I 218 & . 49 & 240 \\
\hline Aug. & \(4 \quad 349\) & 20 & & 20 & 41357 & 20 & I 535 & 50 & 244 \\
\hline Sipt. & & & & & & & & & \\
\hline Oft. & \begin{tabular}{lll}
1 & 4 & 25 \\
8 & 4 & 20 \\
\hline
\end{tabular} & & & 22 & \(\begin{array}{rrr}7 & 2 & 39 \\ 9 & 21\end{array}\) & \[
\begin{aligned}
& 2 I \\
& 22
\end{aligned}
\] & \(\begin{array}{lrr}1 & 8 & 5 \\ 1 & 12 & 8\end{array}\) & \[
\begin{gathered}
51 \\
52
\end{gathered}
\] & \[
\begin{array}{r}
2 \quad 47 \\
2 \quad 50
\end{array}
\] \\
\hline Nov. & 51357 & & & 23 & 0102 & 23 & I. 1525 & 53 & \(2 \quad 54\) \\
\hline Dec. & - 452 & & & 24 & 22844 & 24 & I 1842 & 54 & \(2 \quad 57\) \\
\hline & & & & 25 & 51726 & 25 & I 2159 & 55 & 300 \\
\hline & & & & & 868 & \[
26
\] & 15 & 56 & 4 \\
\hline & & & & 27 & Io 2450 & 27 & 12832 & 57 & \(3 \quad 7\) \\
\hline & & & & & I 13332 & 28 & 13149 & 58 & 310 \\
\hline & & & & 29 & 4213 & 29 & I 356 & 59 & \(3 \quad 13\) \\
\hline & & & & 30 & 62055 & 30 & 13822 & 60 & 317 \\
\hline In Anno & Bifextili poft & F & & & & & & & \\
\hline
\end{tabular}

Tabula Moius Medii Penextinn Satellitis Saturni, ab Hugenio inventi Anno \(16733^{\circ}\).

\section*{(\(3^{8 \mathrm{~F}}\))}

Tabula Mediorūm Motuum Extimi Satclitis Satibinii, à Cafino deteçi Anno 167 I :

\section*{(382)}

I fhall oniy add that the Proportion of the Squares of the Times of the Periods to the Cubes of the Diftances, (which is propofed as probable by Kopler, but now demonltratively found true by Mr . Nemton,) gives us nicely the Proportion of the Diftances of thefe Planets from the Center of \(S_{A}\) turn; and fuppofing the Sateilite of IJugens four Diameters of Saturn's Ring diftant from him, we fhall find by the Periods, the Diftances as follows.

Theif Dillances may be ufed, as more accurate than thofe obtained by Obfervation, which yet differ but little therefrom.

The ithits of supiter; by nr. Wook. 22. 14. p. 245. Fig. 139.
LXXXIII. A\%. 1666. \(\mathfrak{y} u n .26\). between 3 and 4 of the Clock in the Morning, I wherved the Body of Fupiter through a 60 Foot Glafs, and found the apparent Diameter of it through the Tube, to be fomewhat more than two Degrees, that is about 4 times as big as the Diameter of the Moon appears to the naked Eye.

I faw the Limb pretty round, and very well defined without Radiation. The parts of the Plosis of it had various Degrees of Light. About a, and \(f\), the North and South Poles of it, fomewhat darker, and by degrees it Grew brighter towards \(b\), and \(c\), two Belts or Zones; the one of which, \(b\), was a fmall dark Belt crofing the Body Southward; Adjoining to which was a fmall Line of a fomewhat lighter Part; and below that again, Southwards was the Great black Belt co. Between that, and e, the other fmaller black Belt, was a pretty large and bright zone, but the Middle d, was fomewhat darker than the Edges.

The Revolution of Jupirer upon bis Axis; by S. Campani. \(n\) I. 1, p.o.
LXXXIV. I. S.Campani affirms that, by the Goodnefs of his Glaffes, he hath Obierved cerain Protubernnces and Inequalities of Jupiter: and he is now Obferving whether they do not change their Situation.
2. An. I664. May 9. about 9 a Clock at Night, Mr. Hook with an ExBy Dir. Hook. ib. cellent 12 Foot Telefcope Obferved a fmall Spot in the biggeft of the three obfcurer Belts of Fupiter, and Obferving it from time to time, he found that within two Hours after, the faid Spot had moved from Ealt to Weft, about half the Length of the Diameter of Fupiter.
By S. Divini; n. 12. P. 209.
3. Euflachio de Divinis pretends, that the Permanent Spot in Fupiter hath been firlt of al difcover'd with his Glaffes; that \(P_{i}\) Gotignies is the frift that

\section*{(\(3^{83}\))}
hath thence deduced the Motion of fupiter about his Axis; and that M, Cafjini at firt oppofed it: But that Spot was Obferved in England a good while before.
4. There are two Sorts of Spots at certain times to be feen in the Difque of Fupiter. One Sort are nothing but the Slandows of his Satellites: but the By M. Caffinio other have fome refemblance to thofe that are feen in the Moon; and they are \({ }^{n, 8 . p .143 .}\). perhaps of the fame Nature with thofe that are called Belts. They Move n. \(n .35 .1 .1768 \%\) from the Eaftern to the Weftern Limb; their apparent Motion is unequal, n. \(82 . p\). 40380. and fivifter near the Center than the Circumference ; and they never are fo well feen as when they approach to the Center, they being very narrow and almoft imperceptible when they approach to the Circunference; which. makes us believe, that they are flat and fuperficial to Fupiter.

Among thefe Spots there is none fo fenfible, as that which is fituate in the Northern-part of the Soutberm Belt. Its Diameter is about the tenth part of that of \(\mathcal{F u p i t e r}\); and at the time that its Center is nearef to that of Fopiter, it is Diftant from it about the third part of the Semidiameter of that Planet.
M. Cafini, after he had made many Obfervations of this spot during the Summer of the Year 1665 , fourd, that the Period of its apparent Revolution is of \(9^{\text {h }} 56\). He continued to Obferve it till the Beginning of 1666 , when Fupiter approach'd to the Bcams of the Sun: Butafter he was got free of the Sun-Benms it was difficult to be difcern'd. This gave grounds that it might be of the Nature of the Spots of the Sun (which after having appeared for a while, difappear for ever) M. Cafini ceafed at length to Obferve them.

But Fan. I9. 1672 . (\(f\) t. n.) when he Obferv'd fupiter, at \(4{ }^{\frac{3}{4} \text { w }}\) in ine Morning, he perceived in the fame Place of his Difque the Figure of the fame Spot, adhering to the fame Southom Belt. It was already gone beyond the Moiety of this Belt, and he faw it advance little by little towards the Weftern Limb, to which it feemed to be very near at \(6 \frac{1}{4} 12\).

By the Celerity of its Motion near the Center, and by the Place where he had begun to fee it, he judged that it might have been in the midft of the Belt at \(4^{\mathrm{h}} 35^{\prime}\) in the Morning. And as he prepared himfelf to make Ephemerides of its Motion for that Pear 1672 , he perceived, that in thofe, he made for the Year 1666 , this Spot had been in the midit of fupiter the fame Day, namely the \(19^{\text {th }}\) of \(\mathrm{Fanon}^{\text {at }}\) at the fame Hour. So that in fix Years, of whicli one is a Bifcextile, it is found to have made, in refpect of the Earth, at leaft 5294 Revolutions, each of \(9^{\mathrm{h}} 55^{\prime} 5^{\prime \prime}\), compenflating one Revolution by another; and at moft 5294 Revolutions of \(9 \mathrm{~h} .55^{1} 5 \mathrm{I}^{\prime \prime}\); forafmuch as he was affured of the precifenefs of one Mean Rcvolution to one eighth of a Minute,

Until then he had never feen an immediate Recurn of this Spot after 9 hours and 56 minutes, becaufe it had not happened, that Futiter after the Apparition of the spot had fayed, in one and the fame Nigh:, long enough above the Forizon, at leaft at a fufficient height, to obferve him with due Di-. ftinctneis. He had only concluded the time of this Revolution by Returns obferved after about 20, 30, and 50 hours; and he had more precifely limited it by Obfervations more diftant. But the Night after Mai. I, at \(7^{\text {h h }}\) in the Evening, he faw this Spor in the midft of the Belt; and the fame Night at

\section*{（ \(3^{84}\) ）}
\(5^{\text {h }} 26^{\prime}\) ．in the Morning，he faw it again returned percifely to the fame Place．Mar．3．He together with M．Buot and M．Mariotte，began to fee at \(8^{\mathrm{h}} 4^{\prime}\) the Spot already fomewhat removed from the Oriental Limb，but yet obfcure and finall．At \(8^{h} 47^{\prime}\) ．they faw it very diftinctly advancing towards the middle of the Belt．From \(9^{h} 5^{\prime} 40^{\prime \prime}\) ．until \(9^{h} 8^{\prime}\) ．they faw it in the midft of the Belt．At \(9^{h} 15^{-1}\) ．it was paft the middle，and was come nearer to the Occidental Limb．And a little after the Heavens being over－ caft，he could oblerve it no further．

Phites of Jupi－ ter obfieved； by Mro Flam－ Ifteed at Der－ by．n．32． p． 4036.

LXXXV．I．An． \(167 \frac{1}{2}\) ．Fcb．16． \(7^{\text {h }} 44^{\frac{5}{2}}\) ．Alto Fove \(18{ }^{\circ} 10^{\prime}\) ．ejus Diftan－ tiam à Fixa Lucis \(4^{\text {rxx }}\)（cujus Lat．\(I^{\circ} 4^{0^{\prime}}\) Bor．Locus Milji 财 \(14^{\circ} 7^{\prime} 16^{\prime \prime}\) ． at Strectio， \(14^{\circ} 3^{\prime} 54^{\prime \prime}\) ）Tubo Longiori dimenfus fum， \(16^{\prime} 33^{\prime \prime}\) ．\＆Diffe－ rentiam Altitudinum Centromm \(\psi \& *^{x} I^{\prime} I^{\prime \prime}\) ．

I7 Febr． \(7^{\text {h }} 25^{\prime} \cdot p\) ．m．Alto \(\psi^{\prime \prime} 5^{\circ} 54^{\prime}\) ．ipre à Fixan diftitit \(21^{\prime} 50^{\prime \prime}\) ； Alaitudinum differentia erat \(8140^{\prime \prime}\) ．

18 Febr． \(7^{\text {h }} 0^{\prime}\) ．Fixere diftantia à Centro \＆erat \(28^{\prime} 15^{\prime \prime}\) ；Altitudinum differentia circ．15＇29＂．In utraque Obfervatione Erro Altior srat Fixà，ì qua femper Meridianum verfus Stetit．

Inito dein Calculo ad dies fingulos \＆horas obfervationum，inveftigavi

2．Nar．15．v．Obfervare cœepi Fozis diftantias \＆Pofitiones ì Stella \(\Omega_{3} 8\) ， cujus Latitudo \(1^{\circ} 20^{\prime \frac{1}{2}}\) Bor．Locus Strectio 影 \(9^{\circ} 54^{\prime} 0^{\prime \prime}\) ；mibi vero 叫 \(9057^{\prime} 20^{f 1} \cdot 7^{\text {h }} 25^{\prime} \cdot p \cdot m\) ．Alto \(\psi^{4} 32^{\circ} 52^{\prime}\) ．Diftantia Centri Ipfius ab ipla \(33^{\prime} 50^{\prime \prime}\) ．Altitudinum Differentia circit． \(20^{\prime} 42^{\prime \prime}\) ．

Mar．I \(6.7^{h} 48^{\prime}\) ．Alta Fixa 360 ．Fovis ab ea diftantia erat \(27^{\prime} 7^{\prime \prime}\) ．Alti－ tudo minor \(16^{\prime} 3^{\prime \prime}\) ．

Mart．I9．Alto \(\psi 29^{\circ} 35^{\prime}\) ．i．e． \(6^{\text {he }} 45^{\prime}\) ．Fixa Altion erat quam \(P l a-\) neta \(2^{\prime} 24^{\prime \prime}\) ；à quo \(6^{\text {h }} 55^{\prime}\) ．diftitit．IO \(2 I^{\prime \prime}\) ．
Hor．7．I 1．Satelles \(4^{\text {tus }}\) à Fixa， \(7^{\prime} 28^{\prime \prime}\) ．Etiamnum Erro femper altior apparuit，fed verè fuit depreflior，quam Fixa：poftan humilior vifus eft，fed re－ vera fuit Altior．

Mar．20．melius proparato ad Altitudinum Differentias capiendas Micro－ metro：obfervationes habui（ fic putem）accuratiflimas，quà fequuntur．

\section*{(385)}

Ad Locum Fovis ex his Obervationibus acquirendum fupputavi, ad
\begin{tabular}{|c|c|c|}
\hline - & \[
\begin{array}{|ccc|}
\hline \text { h. } & 1 & 11 \\
6 & 51 & 30
\end{array}
\] & \[
\begin{array}{lll}
\hline h_{1} & 11 \\
8 & \text { I } 8 & 40
\end{array}
\] \\
\hline Angulos Circuli Verticalis cum & 3539 - & \\
\hline Jovis erat ì Fixa diftantia & \[
\begin{array}{rl}
3) & 39 \\
0 & 7
\end{array}
\] & \(\begin{array}{llll}46 & 1 & \\ 0 & 7\end{array}\) \\
\hline Altirudinum differentia- & - 214 & 42 \\
\hline \begin{tabular}{l}
Ergo porat in confequentia Fixce \\
Cum Latitudine mavori
\end{tabular} & - 23 & - i 44 \\
\hline Quare fovis Latitudo vera & - 64.2 & - 647 \\
\hline Locus verus 加 & \(\begin{array}{llll}1 & 27 & 12\end{array}\) & \begin{tabular}{lll}
1 & 27 \\
1 & 17 \\
\hline
\end{tabular} \\
\hline Locus verus \(n=\left\{\begin{array}{l}\text { dibi }\end{array}\right.\) & \[
\begin{array}{ll}
50 \\
59 & 23
\end{array}
\] & \[
9.5544
\] \\
\hline
\end{tabular}

D d d

\section*{(\(3^{86}\))}

Hac \& precedente nocte in Confequentia Fixia erat, antea femper in Antecedentia.

Harum obfervationum certilimas habeo, quas afterifco (*) notavi Azymuthorum differentias; diebus \(27 \& 28\) oblervatas, nimis ftrictas acceptas. eftimo, ob vacillationem Tubi, quampropter, quando non ut volui cas alccuratè dimetiri licebat, ne nimis amplas caperem curabam.

Ad Forsis locum ab his oberervationibus obtinendum fupputavi
\begin{tabular}{|c|c|c|c|}
\hline & d. h. & d. h. & d. h. \\
\hline Maii & 269 & \(27 \quad 9.7\) & \(28 \quad 919\) \\
\hline Angulos Parallecticos five Circuli & & - 11" & \(\bigcirc 11\) \\
\hline Verticulis cum Ecliprica & 8047 & 79:49 & 78.36- \\
\hline Fovis à Fixa dittantia oblervata-_ & 0104 & 06 & - 63 \\
\hline Differentia obf. A & 0630 & AFM. 50 & Azym. 3.30 \\
\hline Ergo Angulus Rofitionis & \(3 \mathrm{r} \mathrm{I}^{0}\) & 62380 & 6630 \\
\hline Et -Plancta in antecedentia Fi & 0.8.38. & 0251 & conf. 227 \\
\hline Cum minori Latitud. Boreali & - 511 & - 5:19. & - 032 \\
\hline Fixa Latitudo Tychonica Bor. & 12030 & 12030 & I. 2030 \\
\hline Fixa Locus 加— \(\left\{\begin{array}{l}\text { Str }\end{array}\right.\) & \begin{tabular}{llll}
9 & 54 \\
9 & 57 & \\
\hline
\end{tabular} & 954 9 & 954.9 \\
\hline & 95730 & 9. 5730 & 95730 \\
\hline Fovis itaque Locus- & 94531. & 951518 & 9. 5636 \\
\hline & 94.85 & 9. 54.39 & 959.57 \\
\hline Cum Latitud & 1519 & 115. & 11458 \\
\hline
\end{tabular}

\section*{\((387)\)}
3. An. 1673. Mar. 13. ve§. Fupiter Aphelius Pronus ad Phafin Acioni-11. 9t. p. 60930 cam, \& Limitem Orbite Boreum paululum tranfgreffus, Retrogradus inceflit verfus 9 am 㛣 Lucis quarta, è qua (Alto eo fex circiter gradus) Limbi ejus Remotilimi diftantiam, feptem-pedali Tubo \& Micrometro Townleiano cocpi \(456052^{\prime} 34^{\prime \prime}\).

Mar. 17 circa hore dimidiam pof exortum Fovis ejus codem Tubo, Limbi Remotillimi à Fixa cepi iterum diltantiam \(2073=23^{\prime} 54^{\prime \prime}\).

Mar. 20. Sequentes habui oblervationes. Primam Breviori Tubo, digitorum tantum \(\rho_{5}\), reliquas Longiori, viz. 164 . dig.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Fix. Alt. & Hor. Sup. & & \(\left\lvert\, \begin{gathered}\text { Limb. } \\ \text { plo. }\end{gathered}\right.\) & Cent. \\
\hline & \(\begin{array}{ll}0 & 1 \\ 6 & 0\end{array}\) & \begin{tabular}{|cc}
h. & 1 \\
\(-\quad 14\)
\end{tabular} & & \begin{tabular}{ll}
11 \\
9 & 48 \\
\hline
\end{tabular} & \\
\hline 2 & & 1 & Eidem dift. Tubo Long. capta 1650 & & \[
\begin{array}{ll}
9 & 24 \\
9 & 28
\end{array}
\] \\
\hline 3 & \(14 \quad 40\) & 816 & Limb. 4 linf. depreff. ac Fixa 784 & 441 & 417 \\
\hline 4 & \(15 \quad 40\) & \(8 \quad 23\) & Alt. eadem reperita Differen. 786 & 4.41 & 417 \\
\hline 5 & & & Fov is Diameter 135 & - 48 & \\
\hline 6 & \(16 \quad 25\) & \(8 \quad 29\) & Limb. iterum capta diftantia-1665 & 957 & 933 \\
\hline 7 & & & Denuo - 1658 & 954 & 930 \\
\hline & 1900 & 850 & Difier. Alt. Limbi Fov. \& Fixa 838 & 500 & 1436 \\
\hline
\end{tabular}

Mar. 26. vefp. Alto Fove \(15^{\circ} 50^{\circ}\). Limbi fui remotioris à Fixa diftantiam, eodem minori Tubo, dimenfus fum \(4205=48^{\prime} \quad 30^{\prime \prime}\).

Ad Planctic Locum ex his annotationibus eliciendum, ftructis fupputationibus, invenio.

Fixæ mihi Locus, accepto motu Annuo \(50^{\prime \prime}\), erit \(\approx 13^{\circ} 37^{\prime} \mathrm{II}^{\prime \prime}\). quens vult Author Carolinus \(13^{\circ} 33^{\prime} 47^{\prime \prime}\). Latitudo ejus Borea. \(1^{\circ} 45^{\prime}\). Locus ergo verus fovis erit Mibi.
\[
\left.\begin{array}{clll}
8^{\text {h }} & 16^{\prime} \bumpeq 13^{\circ} & 35^{\prime} & 33^{\prime \prime} \\
8 & 50 \bumpeq 13 & 35 & 16
\end{array}\right\} \begin{gathered}
\text { Latitudo } \\
\text { vera }
\end{gathered}\left\{\begin{array}{lll}
1^{\circ} & 35^{\prime} & 40^{\prime \prime} \frac{1}{2} . \\
1 & 35 & 4 d^{2}
\end{array}\right.
\]

\section*{(388)}

At Fixc conceffo Loco Carolino, prodibir \(\psi^{\text {is }}\) Locus \(\approx 13^{\circ} 32^{\prime} 09^{\prime \prime \prime}\).
Loco fic Plancto \& Latitudine perceptis Orbitæ Fovialis ad Terreffris Orbitx Planum Inclinationem inde eruere conabimur.

Huic equidem inveniendx, una cum Loco Solis; ejufdem, Fovis, \& Terre intermutur diftantiæ poftulantur: quas à Tabulis quibufvis probatioribus tutilfime haurire licet: Ego Tabulis utor plerumque Carolinis; quippe quas, accuratiores, \& faciliores cxteris omnibus comperi; ex quibus ad \(8 \mathrm{~h} 16 \mathrm{p} . \mathrm{m}\). deprompli;
\[
\begin{aligned}
& \text { Solis locum verum } \\
& \text { diftantiam a Terra- } \\
& \text { Fovis a a Sole diftantiam } \\
& \text { à Teira } \\
& \text { à } \\
&
\end{aligned}
\]

Fig. 840.
Jam in appofita Figura fint, S Sol, T Terra, \& Planeta, SE Radius Eclip-
 Latitudo \(I^{\circ} 35^{\prime} 40^{\prime \prime} \frac{1}{2}\).

Ex datis (in Triangulo \& S T) Angulo, \& TS, vifæ Latitudinis ad Circulum complemento; \(\mathfrak{F} \mathrm{S}\), \& \(\mathcal{F}\), Planete à Sole \& Terra Diftantiis, ut fupra repertis, eruetur Angulus \& S E, Latitudo five Inclinatio Planeta à Sole confpecta io \(18^{\prime} 7^{\prime \prime}\).

Fovis Locus Geo-centricus erat, \(\bumpeq 13^{\circ} 35^{\prime} 33^{\prime \prime}\). ab iis ergo datis \(\psi\) s. \& Terre à Sole diftantiis, invenietur Locus Helio-centricus Planete \(\bumpeq 133^{\circ} 03^{\text {l. }}\) \(33^{\prime \prime}\); è quo fubductis figilatinn iis Nôdi Locis, quos Autores, quorum Nomina in fequenti Tabella exaravimus, affumpferunt, annexa produnt Argumenta Latitudinis; è quibus videre eft, nullis plus foven à Limite promotum haberi quàm \(6^{\circ} 29^{\prime} 56^{\prime \prime}\), nec minus quàm \(3^{\circ} 5^{8^{\prime}} 59^{\prime \prime}\). quxe quantavis, videtur differentia in maximâ Orbitæ Inclinatione inveftiganda, Errorem ferupulis fecundis \(23^{\prime \prime}\) Majorem inferre nequit.
\begin{tabular}{|c|c|c|c|}
\hline Authores. & & \(\bigcirc\) Loca. & \begin{tabular}{l}
Argumenta \\
Latitudinis.
\end{tabular} \\
\hline & & & s. \\
\hline Keplerus. & 3 & 6. 3.337 & \(3{ }^{3} \quad 6.2 .956\) \\
\hline Streetius. & 3 & 6.3 .347 & \(3 \begin{array}{llll}3 & 6 & 29 & 4.6\end{array}\) \\
\hline Wingius. & 3 & 7 II 39 & \(3{ }_{3} 512154\) \\
\hline Ricciolus. & 3 & 71800 & \(\begin{array}{llllll}3 & 5 & 45 & 33\end{array}\) \\
\hline Caffinus. & 3 & 84500 & \(\begin{array}{lllll}3 & 4 & 18 & 33\end{array}\) \\
\hline Bullialdus. & & 9.434 & \(\begin{array}{lllll}3 & 3 & 58 & 59\end{array}\) \\
\hline
\end{tabular}

Tiso 148.
Itte Nodi Locus, quem Cl. Cafinus elegerit mibi etiamfi aliquantulum juito promotior videtur, Magis tamen cæteris variis de caufis, placet: fumptis propterea, Triangulo \(\psi\) A 5 , Argumento Latitudinis, ס \(A, 44^{\circ} 181^{\prime} 33^{\prime \prime}\). \& Inclinatione z , \(\mathrm{I}^{\circ} 18^{\prime \prime} 07^{\prime \prime}\). eruetur: Angulus Inclinationis Plani Orbite Govialis

\section*{(389)}

Forialis ad Eclipticam \(1^{\circ} 18^{\prime} 20^{\prime \prime}\). quem ftatuuint Keplerus \(1^{\circ} 19^{\prime} 00^{\prime \prime}\). Strectius, \(I^{\circ} 20^{\prime} 00^{\prime \prime}\). Bullialdus \& Wingius \(1^{\circ} 21^{\prime}!48^{\prime \prime}\). omnes jufto nonnihil Majorem.

Tantamque effe Inclinationem, vel faltem non Majorem, cum hefternw noctis, tum Menfium Fcbruarii Martii \& Maii Annii Elapfi, obfervationes fuadent. Interea verò non diffimulaudum, poffe \& majorem (filicet \(1^{\circ} 20^{\prime}\) \(2^{\prime \prime}\).) a tranfitu \(\Psi^{s}\) prope 8am. 収 Anno IG49 Maii 29. \&r 30 St. Juliano Bonnonic \& Majorca à Ricciolo \& Muto, Viris Doctilimis, obfervato Demon- Par. Io p. 7 Iro. Atrari: id quod nobis (fi quidem Orbitarum Inclinationes ab omnibus inviariabiles habentur,) videtur innuere, Errorem vel huic, vel illis Fixarum Latitudinibus à Tychone affignatis, ineffe aliquem: qure propterea donec accu: ratius reitituantur, à præcifa hujus Inclinationis quantitate determinanda meritò ros arcent: Hoc tantum, quoniam Fixarum: eæ Latitudines etiam Immutabiles reperiuntur, aufim affirmare; Angulum Maxima Inclinationis Plani Orbitce Fovialis ad Eclipticam Minorem effe fcrupulis:26 \(40^{\prime \prime}\). quanm Latitudo Stcllie 9 e \({ }^{\text {nes }}\) Lucis 4 te que Tychoni dicitur, Vltima quatuor in Siniflira Ala Virginis: qux propterea fi quando correcta dabitur, eadem certa dabitur Inclinatio.
LXXXVI. Examining our Ancient Ephimerides I do not find that three The Conjunain Conjunctions of Saturn and Fupiter have ever hapned in one Years fpace, fince \(\begin{gathered}\text { ons of Saturn: } \\ \text { and }\end{gathered}\) they were firf in ufe to this prefent. Thofe of Molctius Calculated from An. 1682 and the Alphonfine Tables indeed malge three in the fpace of eight Months betwixt Auguf 1563 and April 1564 . Inclufive; but the Ephemerides of Stadius Calculated from the Prutenick, make only one, on the 26 of Auguft of which Functinus gives us the following Obfervation in the Preface to his A-
Atronomical Tables, An. 1563 . Aug. 24 14h \(30^{\prime} \cdot p\). mo. Auranga, Jupiter is. parte Septentrionis cooperiebat quafi Saturnum, qui crat à parte Mcridionali, utraque autem barum. Stellarum, in fine 28 gradus: Cancri deprebendebatur, Riccioli hence concludes, that the Planet \(\overline{2}\) covered.fome part of Saturn at this time. But without Reafon for the words quafi coopericlat intimate not that the one did corporally cover the other, but rather that there was fome finall Interval betwixt them. The Caroline Tables make the vifible Latitude of Saturn now. \(11^{\prime} 45^{\prime \prime}\). of Fupiter \(20^{\prime} 10^{\prime \prime}\). buth North, the Conjunction keing fome few days paft: but becaufe their Latitudes alter flowly we may kence conclude the Difference \(8^{\prime} 25^{\prime \prime}\). to have been nearly their Diftance at that time, thefe Tables being grounded on the Tychorick Obfervations made within tefs than 40. Yearsafter, and fhewing the Latitudes of the P/ancts well at this time near 100 Years later we may Conclude to have anfwered them as well then; and if we. confider how fmall a fpace the Diftance of \(-8 \frac{1}{2}\) minutes appear to the naked Eye: in the Hèavens, efpecially betwixt two fuch bright Planets as Saturn and fupiter are, that the Caroline Diftance agrees very well with the Words of fain\&inus and that Riccioli was grofly mikaken.

Their next Conijunction according to Mdrinus's. Ephermerides founded on. the Prutenick numbers, was April 291583 in 21 Deg. of \(\nrightarrow\), the Simb teing; then in 17 Deg. of \(૪\). fo that that Planets Rifing tefore him in Signs of fhore:

\section*{(390)}

Afeenfion and with South Latitude this Congrefs could not be obferved by the Noble Iycho who was mindful of it as appears by this note in page 55 of his Hiforia Caleftis. May. 30 A. M. quo primum poft Conjunctionem Saturnum vidimus, capte funt diftantic inter Jovem © \(\delta\) Saturnum por Radium.
\[
\begin{array}{ll|ll}
\mathrm{I}^{\mathrm{hl}} & 47^{\prime} & 3^{0} & 24^{\prime} \\
\text { I. } & 50 & 2 .
\end{array}
\]

The fame Ephemerides fhew the next Conjunction of Saturn and fupitcir 1603 . December 14 at noon in \(9^{\circ} 36^{\prime}\) of 7 , but the the Ingenious Kepler and our Sir Chr. Heydon found it by obfervation 7 days fooner, or the 7 Day of the fame Month in the Morning, in near 8 Dcgrees of \(f\) the Planets being but then newly Emerged from the Rays of the Sun.

The Ephemorides of the Learned Kepler Calculated from his own Rudolphine Tables, make the next Conjunction 1623 . betwixt the \(7^{\text {th }}\) and \(8^{\text {th }}\) of Fuly in \(6^{\circ} 46^{\prime}\). of \(\delta\) the Planet Saturn being then only 4 . Minutes to the North of Fupiter but this firf Conjunction in the Fiery Trigon happening under the Sun's beams was not obfervable.

By the fanse Tables, and Epbomerides of Eichftade Calculated from them; thefe Planets met again in the \(25^{\circ}\) of \(\mathcal{H}\), betwixt the 15 and 16 of Febr. 1643 with a degree Difference, of Latitude.

By the joynt confent of Eicl:fades and our Wing's Epbemerides the fame Planets were in Comiunction again 1663. on the 10 of October at Noon in \(13^{\circ}\) \(30^{\prime}\). of 7 with one degree Difference of Latitude; this Conjunction was obfervable after Sun-Set in our Latitude, but I hear not that any one obferved it.

In every of thefe Years there hapned only one Comiunction of the two \(S_{u-}\) periors, nor is it poffible that there fhould be more except the Heliocentrical Conjunction fall near the Oppofition of the Sun; for then there may be three two Dirctt, and one Retrograde, as has been within the Space of 7 Months, betwixt October and May laft inclufive, of which the true times are determined from the following Obfervations.

The Diftances: betwixt the. Planets were meafured with the Micrometer and 16 Foot Glafs, from the Fixt Stars with the Sextant: thofe of the \(12^{\text {th }}\) by my Affiftant, the reft by my felf.

On the 22.day, the Planet Fupiter was in Confequence of Saturn Come... thing lefs Diftant from him than he had been obierved on the \(5^{\text {th }}\) day near the fame hour. Hence the Middle Tinie, betwixt thefe Obfervations is pointed. out for the time of their true Comjunction, but to determine it more accurate ly I fhall Examine the Obfervations made with the Sextant on the feventeenth: day which being neareft the time are moft proper fur this purpofe.

The Correct Longitude of the Heel of Caftor now \(50^{\circ} 50^{\prime \prime} 42^{\prime \prime}\). its Lam... titude \(51^{\prime} 40^{\prime}\). South. The Latitude of Saturn by the Caroline Tables. \(56^{\prime \prime}\) \(20^{\prime \prime}\). of Fupiter \(4 \mathrm{I}^{\prime} 30^{\prime \prime}\). both North.

By the affumed Latitude of Saturn \(560^{\prime} \cdot 20^{\prime \prime}\). and his Diftance from the : Heel of Caftor obferved and corrected \(490 \cdot 32^{\prime \prime} 30^{\prime \prime}\). I find their Difference: of Longitude \(48^{\circ}\). \(30^{\prime} 37^{\prime \prime}\). therefore \(S_{n t u r n}\) in \(\Omega 19^{\circ} 21^{\prime} 19^{\prime \prime}\)..

By the Latitude of fupitur affumed \(41^{1^{\prime}} 30^{\prime \prime}\). and his Diftance from the Star \(48^{\circ} .45^{\prime} 20^{\prime \prime}\). their Difference of Longitude \(48^{\circ} 43^{\prime} .56^{\prime \prime}\). and \(\mathcal{F}\) upiter's Place in \(\Omega, 190,34^{\prime} 39^{\prime \prime}\).

Hence Fupiter s Place in Confequence of Saturn's \(13^{\prime} 20^{\prime \prime}\). with which and the Diftance of their Centers obferved, the fame night \(20^{\prime}\). \(12^{\prime \prime}\). I I find the zrue Difference of their Latitudes \(15^{\prime} 20^{\prime}\) ! "but hallf a Minute Different froms what I affumed it on the Authoricy of the Tables.

The Apparent Motion of Fiupiter from the 14 to the 18 day of ofrober by, an Eplemer is exactly calculated and made agreeable to thefe oblervations is \(29^{\circ}\) I \(6^{\prime \prime}\). of Saturn 15 . \(01^{\prime \prime}\). both Direct, hence the Motion of fupiter from Saturn in four days is \(14.15^{\prime \prime \prime} .1\) fay therefore as 4 days Motion or \(14^{3}\)

\section*{(392)}
\(15^{\prime \prime}\) : is to 4 days, or 96 Hours ; 10 is \(13^{\prime} 20^{\prime \prime}\). (which Fupiter is paft the \(^{\prime}\) Conjunation of Saturn;) to go Hours or 3 days 18 . Hours; the time interlapled fince the Conjunction; which taken fromt the 17 day 15 . Hours the time of my Obfervation, gives the true time of the Conjunction of the two Planets on the 13 day one and twenty hours after Noon or according to the Common account, the 14 day at 9 a Clock in the Morning.
 Northern Latitude.

The AEta Eruditorum Lipfienfia p 366 make-this Conjunction to have hap. ned the fame day in the fame Longitude with the Eleventh. Star of Lco; whofe place they fate in \(\Omega 19^{\circ} 04^{\prime}\) Lat. \(0^{\prime} 16^{\prime \prime}\). N. with 14 Minutes difference of-Latitudes betwixt the two Planets. But their Obfervation feems to have been made only by the Judgment of the bare Eye, without an Inftrument, which confidered, I wonder not-that it differs at all, but rather that the Difference is fo fmall from this Determination

On-the ig of fanuary following, viewing the Planets then both Retrograde with the 16 foot-Glafs, I found then approached within a meafureable Diftance of each oher.

\section*{(393)}

From Obfervations formerly made, Ihave determined the true Places and Latitudes to this prefent time of,
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
The Heel of Caftor-50 51 Io Lat. 05140 South. Bright * in the Lions Head. E- \(\begin{array}{lllllllll}-\Omega & 16 & 15 & 27 . & 9 & 41 & \text { of North. }\end{array}\)
Lions Heart \\

\end{tabular}}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

And from the above recited Meafures, the true Diftances of the Planets from thefe Stars fanuary the \(26^{\text {th }}\) at \(9^{\text {h }} 40^{\prime} p\). \(m\). as follows.
\[
\begin{aligned}
& \text { Saturn from the Focl of Caftor- } \\
& \text { Fupiter from the fame. } \\
& \text { Saturn from the Lions Heart. } \\
& \text { Jupiter from the fame- } \\
& \text { Saturn from the bright * in the Lions Head E- } \\
& \text { Fupiter from the fame }
\end{aligned}
\]

Whence I collect the true Places at this time.

\section*{(394)}

The Retrogade Motion of Ffupiter from Saturn in 4 days, betwixt the Twenty fixt and thirtiech of this Month, by my correct Ephemeris is \(12^{\prime} 15^{\prime \prime}\). I fay therefore as \(12^{\prime} 15^{\prime \prime}\). is to 4 days or 96 Hours; fo is \(10^{\prime} 00^{\prime \prime}\). (the Difference of the Planets prefent Longitudes,) to 78 Hours or three days fix Hours, which therefore added to the time of that Obfervation \(7 \mathrm{an} .26^{\mathrm{d}} 9^{h^{\frac{2}{3}}}\) gives the true time of the Conjunction Jan. 29d. 16 h . or according to the common account \(\mathfrak{F a n .} 30\) at \(4^{\prime}\). in the Morning. At which time both the Planets are in \(3016041^{\frac{1}{2}}\). with \(1 I^{\prime \frac{1}{2}}\). Difference of Latitude or Diftance from each other. Which is further confirmed by the Meafured Diftances of the Plancts on the 30 at night before recited.

On the 26 th day at \(9^{h} 40^{\prime}\) the Sun's True Place was by my Tables in eur \(17^{\circ} 21 \frac{1}{2}\) fo that he was now about \(\frac{1}{3}\) of a Degree paft their Oppofition.

Towards the Latter, end of the following April the Planet Fupiter began to approach Seturn again both being now Direct; the 28 at night with the I 6 foot Glafs and Micrometer I meatured the Diftances

\section*{(395)}

From thefe Obfervations I State the Diftances of the Planets from the Fixed Stars May \(7^{\text {th }}\) at \(9^{\text {hh }} 5^{\prime}\). p.m. as follows,

Saturn from the Lyons Hear:
Fupiter from the fame_- 1059 Do
Saturn from E in the Lyons Head
Fupiter from the fime \(\quad 8,55 \quad 35\)
Hence the true Longitude of Sat. ת 142742, Lat. I \(12-46\). Narth. of Fupiter \(\Omega_{1} 142637\). Lat. 05643 . North. Difference of Longitude_-I I. Lat. o 16 . 3.

The Difference of Latitudes fomething exceeds the Diftance meafured with the Micromescr, by reafon that the Wind then fhaking the Sextant permitted us not to be fo exact as ufually, but the Difference, being lefs than half a Minute, I efteem inconfiderable.

The Diurnal Motion of Fupiter from Saturn was now \(3^{\prime} 15^{\prime \prime}\). it holds therefore as \(3^{\prime} 15^{\prime \prime}\). (one day's Motion,) is to one Day or 24 Hours; fo \(I^{\prime} 4^{\prime \prime}\). (the Ditance of fupiter from the of with Saturn) to 8 Hours, the Interval betwixt the Obfervation and following Conjunction, which was therefore 17 h after Noon, or according to the vulgar reckoning, May 8 . at 5 a Clock in the Morning. At which time the true Place of the Planets is \(\Omega\) \(14^{\circ} 28^{\prime \frac{3}{4}}\), the Difference of their Latitudes, \(15^{\prime} 40^{\prime \prime}\). Saturn being fo much more Northerly than Fupiter.

In all, beft efteemed, Afronomical Tables extant, the Mean Motions of the Planet Saturn are too Swift, of fupiter too Slow confiderably:- Hence it came to pafs that they made the Dires ComjunEtions fome days. Later, the Retrograde, earlier than they were found by Obfervation.
2. Ott. 26. At.n. \(1^{\text {h }} 40^{\prime}\). mane Situm \(\mathcal{F} 0\) is \& Saturni Tubo \&i Microme- - At Dantzick of tro ex voto deprehendere mihi obtigit: quo tempore fimul Fixa quadam fa-byM.Hevelius.
 Fupiter fefe cum tribus Comitibus tum offerebat, forte \& Quartus adfuit, fedp. 326. ob Nubeculas haud fuir confpectus. Saturnus diftabat à fove \(16^{\prime} 44^{\prime \prime}\); Fupio ter à Stella (ni fallor in Armo Dextro \(\Omega\)) \(27^{\prime} 55^{\prime \prime}\); Rurfus Saturnus à dicta Stella \(38^{\prime} \mathrm{J}^{\prime \prime}\). Stella dicta verfatur modo juxta noftrum Catalogum in \(1902^{\prime} 9^{\prime \prime} \cdot \Omega\) \& Latit. no \(20^{\prime} 45^{\prime \prime}\). B. Die 30 Octob. ' \(5^{\text {h }}\) mane Diftantia万 \& \(4,25^{\prime} 5^{\prime \prime}\) extitit; Unde certo colligere licuit Conjunztionèn jam ante complures dies celebratam effe quam Ephemerides Calculufque prinuum die 3 Novem. exhibent.

Id quod fubfequentes Obfervationes adhuc clarius demonftrant. Nam Loco, quod Ditantia \(\geqslant \&\) h de die in diem (\(\mathrm{fi} \sigma\) inftaret) paulatim Minor fieri debebar, continuo Aucta eft. Die a Nov. hor. 2 mane, ope Micrametri nuftri dicta Diftantia extitit \(31^{\prime} 35^{\prime \prime}\). Et Die. 2 Nov. eandem Diftartiam rurfus reperi \(35^{\prime} 21^{\prime \prime}\). Die 3. Nov. mane hor. I. jam 39! \(9^{\prime \prime}\); Die 4. Nov. calo perquam fereno adhuc paulo Maisr dicta Diftantia inter \(\frac{5}{}\) \& \(\nLeftarrow\) deprehenfa.

\section*{(396)}

Alteram Conjunctionem, quod attinet qux ex Retrogreffionibus horum Planetarum incidere debebat fecundum Ephemeridum Scriptores die 26. 7anuarii hujus Anni currentis 1683. Obfervationes nonnullas ac precipuas habitas hic apponam.
\begin{tabular}{|c|c|c|c|}
\hline An. 1683. & Temp. cx alt. corr. vefp. & Obfervationes. & Diftantic. \\
\hline & h. 1 ' 11 & & - 11 \\
\hline Feb. I & 6400 & Dift. Satur. \& Fov. inventa elt-3300 & 0255 \\
\hline Fcb. 2 & 93000 & Dift. Satur. \& \(700 .-\longrightarrow 2900\) & - 223 \\
\hline Feb. 3 & 9000 & Dift. Satur. \& Fov.- - 2500 & -19.0 \\
\hline lich. 4 & 10000 & Dift. Satur. \& F60.--2300 & -1729 \\
\hline Fel. 5 & 8300 & Dift. Satur. \& \(700 .-2100\) & 0.1559 \\
\hline Fcb. 6 & \(\begin{array}{llll}7 & 5 \\ 8 & 1 & 0\end{array}\) & Dit. Satur. \& for.-- 1850 & -14 6 \\
\hline Feb. 7 & \(\begin{array}{llll}8 & 17 & 19\end{array}\) & Dit. Satur. \& 'Fcou- 1700 & - 1255 \\
\hline Fch. 8 & 6100 & Dift Satur. \&For-u-1600 & 01210 \\
\hline
\end{tabular}

Fcb. 9. vefp. \(9^{\text {h. }} \cdot 0^{\prime} 8^{\prime \prime}\). Planetas Tubo confpexi per dehifcentes denfilimas nubes; Oculoque fugitiv odeprehendebam Conjunctionem iplän jam celebratam effe nocte pracedente inter 8 \& 9. Fcbr. Nam dicta Diftantia paulo amplior modo apparebat. Prout etiam :1. Febr. vép. \(9^{\text {hi }} 0^{\prime} 0^{\prime \prime}\) factum eft: nans, Diftantia inter Saturnum \& Fovem erat 2000, hoc eft \(0^{\circ} 15^{\prime} 12^{\prime \prime}\) Micrometro, qux die 8. Fel. tantum inventa eft \(0^{\circ} 12^{\prime}\) I \(^{\prime \prime}\) :

Ad hrec Conjuctionem jam effe celebratam, exinde certò conftabat, quod. uterque Planeta cum Ventre \(V_{r} f a\) Majoris non amplius, ut quidem die S. Feb. contingebat, in linea fubfifteret recta; tum etiam quod Saturnus. non amplis us adOrbitam Forialium fub Angulo Refo commorarcur.

Quo autem hoc ipfum eo evidentius redderetur, Obiervationes nomullas. diebus fubrequentibus continuatas hic appunam.

Ex. hifce igitur Obfervationibus continuatis fatis, fuperque liquet, cum de' die in diem Planeta ab invicem magis magifque difcefferint, quod Conjunctio ipfa inter 8 \& 9 . Febr. revera jam fuerit obfervata:

Denique adjiciendum pariter cenfeo Aftrophilorum gratia, quidnam: circa Tentiam eorum Conjundtionemz Menfe Maii obfervaverim.

\section*{(397)}
\begin{tabular}{|c|c|c|c|}
\hline An. 1683. & Temp. Sec. Hor. ambul. vesp. & Obfervationes. & Diftantivo \\
\hline \multirow[b]{2}{*}{Maii \(\quad 8\)} & h. & Dif. Saturni \& Fov. inventa eft Mi- & 111 \\
\hline & 96 & crometro - 4300 & 3241 \\
\hline 10 & 914 & -3750 & \(28 \quad 30\) \\
\hline 11 & 910 & - -3450 & 26.13 \\
\hline 12 & 845 & - 3050 & 2310 \\
\hline 13 & \(9 \quad 15\) & -2800 & 2117 \\
\hline 14 & 94.5 & -2550 & 1923 \\
\hline \[
\begin{aligned}
& 15 \\
& 16
\end{aligned}
\] & 930 & -2400 & 18 15. \\
\hline \multirow[t]{2}{*}{16} & \(9 \quad 30\) & -2250 & 176 \\
\hline & 940 & \(-2150\) & 1610 \\
\hline \multirow[t]{2}{*}{18} & 10 & & \(15 \quad 58\) \\
\hline & & Hac die extitit V.era Conjunctio. & \\
\hline 20 & 1145 & - - \({ }^{24.50}\) & \(18 \quad 37\) \\
\hline 21 & \(\begin{array}{ll}9 & 15\end{array}\) & -2650 & 209 \\
\hline 22 & 920 & -2900 & 223 \\
\hline 23 & 95 & \(-3250\) & 24.43 \\
\hline 24 & 106 & - 3600 & 27. 22 \\
\hline 25 & 930 & --4000 & \(\begin{array}{ll}30 & 25\end{array}\) \\
\hline 26 & II O & - & \(33 \quad 50\) \\
\hline 27 & 9.25 & --4900 & \(37 \quad 15\) \\
\hline 28 & - 96 & 5325 & \(40 \quad 29\) \\
\hline
\end{tabular}

Ex quibus. Obfervationibus cuilibet nunc liquidum eft, cum Difantia \(S_{\text {a }}\) turni \& Fovis de die in diem continuò decreverit ad is Maii, \&t ab bac die rurfus creverit, Comjunctionem horum Planctamum eaden ipfa die eriam. accidiffe, \& quidem, (uti ex obfervationibus diei i5, \& 20. Maii pater) hora antemeridiana 10: qure fecundum Ephemeridum Scriptores die 2.6. primum ingruere debuit. Sic ut hæc tertia ar ultima hujus Anni Conjuntio Magna pariter haud mediocriter Tabulas eluferit; ita quidem quod cirius ultra 8 in tegros dies revera contigerit:

De cætero, hanc ultimam Conjunctionom jam celebratam dic. (c. 18 Aaii vefp. hor. 10 . fuiffe, ex co liquet, quod Saturmus jam non amplius eo tempore ad Orbitam Fovialium fub Angulo verfabatur Recto; dande ctiam, (uti ex fubfequentium dierum oblervationibus videre eft,) quod à die 18 Mair ad diem 28 quoufque Micromotro Diftantian Saturni \& Foris dirimere potui, continuo aucta fuit.

Ultimo, notandun quoque occurrit, sum die 2 I Maii vefp: inter seliquas. obfervationes etiam Diftantiam urriufque. Planet à Stelia Superiori in Pede.

\section*{(398)}

Anthore Devero \(2 ;\), a Majoris fextante obtinucrim, atque cadem dicta Stella cum utroque Planeta in eadem fimul fere recta tum confiterent linea, quod promptum fit cuilibet Rerum Cxelettium cultori dijudicare, an obfervationes mex; Sextants noftro novo fimul obtentæ, cum obfervationibus Micrometre captis omnino etiam conveniant. Sextante Diftantia \(\mathcal{F}\) cuis à dicta Stella crat \(32^{\circ} 38^{\prime} 40^{\prime \prime}\), \& Saturni \(32^{\circ} 19^{\prime} 45^{\prime \prime}\); fic ut genuma utriufque Planetx Diftantia extiterit \(18^{\prime} 55^{\prime \prime}\); Micrometro vero ea ipfa Diftantia inventa eft ea ipfa die 21 Ic. Maii \(20^{\prime} 9^{\prime}\); fic ut Sextantc obtenta \(1^{\prime \prime} 14^{\prime \prime}\). Minor extiterit Non eft autem, mi Amice, quod exiftimes, hoc vel illo Inftrumento me aberraffe, minime profecto; quippe Saturnus \& Jupiter cum diota Stella non omnino in linea recta fubfifterunt; prout cuilibet ex Globo \& Calculo pater, hincque neceffario illa diftantia, Sextante derivata, etiam paulo minor oportuit effe.
LXXXVII. Riccioli in the Second Part of the firt Tome of his Almagef,

The Mean Consfundions of Sa-has given us a Table of all the mean Conjunctions of the two Superiors from Eurn and Jupi- the Creation till the Year of chrift 2358 , but very courfe and incorrect. I
ter ; y Mro
Flamteed. have therefore made a new one for 43 Revolutions which are compleed in \(\%\). 49. p. 254 . have therefore made a new one for 43 Revolutions which are completed in 853 Fulian Years, and 235 Days from their mean Motions which I h.ve corrected by very late Obfervations. This being the Pcriod of the Greategt Corjundions, after which Space of Time they return to the fame Place of the Zodiack within \(\frac{3}{5}\) of a Degree.

The Ordinaiy Conjunctions happen once in Twenty Years, or more precifely in 19 Julinin Years, and 312 Days, in which time Saturn's Mean Motion is \(8^{s} 2^{\circ} 44_{i^{\mathrm{I}}}^{1}\), Fupiter's the fame above one Revolution.

Thefe are commonly termed the Leffer of the Great Conjunctions, which continue in Signs of the fame Triplicity for 10. Revolutions to each other, or I98 Years: each Conjunction according to the Mean Motions being 8s 20 \(48^{\prime \prime}:\) removed from the preceeding, fo that if any Conjunction was made upon the firft Point of \(r\), the next following fhall be in \(2^{\circ} 48^{\prime}\) of \(f\), and all the following for 198 Years fhall fall in \(r\), \(\delta 6\) and \(f\), signs of the fame Triplicity.

But the I Conjunction after, fhall happen in the firft Degree of nx, and the following ten Comjunctions in \(\gamma\), 昭, and \(3 p\), Signs of the fame Triplicity. Of thefe the firt is called by our Aftrologers the Greater Conjunctions.

But the Grentelt is,' when after 43 Gonjunctions compleated in 853 Years, 235 Days, the Mean Conjunctions having been made in all the Signs return to that Point of the Ecliptick from whence they began: tho' I mult confefs had I been to name them I fhould bave called thofe the Greateft which happen in the Signs \(\sigma_{0}\) and \(\Omega\), becaufe then the Planets Rife highelt, and are longeft vifible in our Horizon, as alfo being near their North Nodes, they approach neareft, and if they have any extraordinary Influence (which Naboyd shinks either they have not, or if they have, we undertand not) it muit according to their Axiomes be ftrongeft.

Thofe which happen in ws and withould call the Greater or Middle, becaufe the Planets being then near their South Nodes, may approach each other
again very nearly though they rife not high in our Horizon, being in Southern Signs ; the reft might be accounted the Leffer or Ordinary.

The Mean Conjunction of Saturn and Jupiter this Year 1683. was on the 14th Day of Fanuary old Stile, at is Hours after Noon in the Meridian of London, at which time the Mean Motions of both the Planets were \(4^{\text {s }} \mathrm{II}^{\circ}\) \(45^{\prime}\). This may be the Radix of the following Table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Intervals.} & \multicolumn{3}{|c|}{Intervals.} \\
\hline Revolutions Completc. & Time. & Motion & Revolutions Completer. & Time. & Motion. \\
\hline 1 & \(\begin{array}{cc}\text { y. } & \text { d. } \\ 19 & 312\end{array}\) & \(\begin{array}{ccc}\text { s. } & 0 & 1 \\ 8 & 2 & 48\end{array}\) & 23 & \(\begin{array}{cc}\text { y. } & \text { d. } \\ 456 & 219\end{array}\) & 5. \(0 \cdot 00\) \\
\hline 2 & 39.258 & \(4 \quad 537\) & 24 & \(\begin{array}{lll}476 & 165\end{array}\) & 2719 \\
\hline 3 & \(\begin{array}{ll}59 & 204\end{array}\) & \(\begin{array}{lll}- & 8 & 25 \\ 8 & 1\end{array}\) & 25 & 496111 & 10 10 8 \\
\hline 4 & 79 150 & 8 II I3 & 26 & \(510 \quad 57\) & \(6 \quad 1256\) \\
\hline 5
6 & \(99 \quad 96\) & \(4{ }^{4} 14 \begin{aligned} & 1 \\ & 0\end{aligned}\) & & 5363 & 215.44 \\
\hline 7 & \(\begin{array}{rrr}119 & 42 \\ 138 & 353\end{array}\) & \begin{tabular}{l}
\\
\hline
\end{tabular} 165080 & 28. & \(\begin{array}{lll}555 & 315 \\ 575 & 36\end{array}\) & 101832 \\
\hline 8 & 158.299 & 42226 & 30 & \(\begin{array}{ll}59.5 & 207\end{array}\) & 21 \\
\hline 9 & 178 & 02515 & 31 & 615153 & 102657 \\
\hline 10 & 198 191 & 8283 & 32 & 635.99 & 62945 \\
\hline 11 & 218137 & 50051 & 33 & 65545 & \(3 \quad 234\) \\
\hline 12 & 2383 & I 340 & 34 & 674356 & \(1 \begin{array}{lll}11 & 5 & 22 \\ 1\end{array}\) \\
\hline 13 & 25829 & 9629 & 35 & 694302 & \(7 \quad 810\) \\
\hline 14 & 277 340 & 5916 & 36 & 714 & 31059 \\
\hline 1.5 & \begin{tabular}{l}
297 \\
\hline 386
\end{tabular} & \(\begin{array}{llll}1 & 12 & 4\end{array}\) & 37 & 7344 & 111347 \\
\hline 16 & \(\begin{array}{ll}317 & 232\end{array}\) & 9 14 53 & 38 & 754140 & 71635 \\
\hline 17 & \(\begin{array}{ll}337 & 178\end{array}\) & 5 I7 41 & 99 & 774. 86 & 31924 \\
\hline 18 & 357124 & 12029 & 40 & 794.32 & 112212 \\
\hline 19 & 3777 & 92318 & 41 & \(813 \quad 343\) & \(\begin{array}{ll}7 & 2.500\end{array}\) \\
\hline 20 & 39716 & 5266 & 42 & 833289 & \(\begin{array}{llll}3 & 27 & 49\end{array}\) \\
\hline 21 & 416327 & I 28.54 & 43 & 853235 & 00037 \\
\hline 22 & \(436 \quad 273\) & 101542 & & & \\
\hline
\end{tabular}

\section*{(400)}

Py this Thile to find the Time of any Nean Conjuntion, Faft or Futurc, nearett to any Place of the Zodiack; for Times Paft, fubftract the Loingitude of the given: Place from the Longitude of the Radix \(4^{s} 11^{\circ} 45^{\prime}\). the refidue feek in the laft Column of the Table; if you find not the precife Number take the next to it, againt this you have in the fecond Column the Years and Days, and in the firt the Number of Comjunctions paft fince any was made in that Place, fubtract the Years and Days from 1693. Fan. I4. and the Motion from 4 s IIo 15 . fo have you the true Time of the Meanz Coniunaion, and Longitudes of the Planets then.

But for Times to come, fubftract the Radix from the given Place, feek the Refidue as before in the laft Column; if you find it not, take that you find neareft it; againft which, as before, you have in the fecond Column, the Years and Days; in the firf, the Revolutions future; for Example.

If it were required to know when the lant Comiznition happen'd in the firft Deg. of min, Subftracting mor Ten Signs from 4s 1 Io \(15^{\prime}\). The Refidue is \(\sigma_{\mathrm{s}} 110\) I \(5^{\prime}\). which feeking I cannot find in the third Column of the Table, but I find \(\epsilon^{5} 12056\). which is not two Degrecs more, and againft them 516 Years, 57 Days, and in the fint Column 26. For the Number of Confunctions interlapled. Subftracting 516 Years, 57 Days from 1683 . Fan. I4. there remains 1166 Years, 322 Days, which fhews me that the Conjunction was in the Year iI66. Noo. I8, and fubftracting the Motion 6 s. \(12^{\circ} 56^{\prime}\), From 4 s \(1 I^{\circ} 45^{\prime}\). it points me to the Place in \(9^{\circ} 28^{\circ} 49^{\prime}\).

Or if the Time of the firt Coniunction in \(\approx\) to come were demanded. I fubfract the Radix \(4^{\text {s }} 11045^{\prime}\). From 6 Signs, the Refidue is \(^{\text {s }} 17^{\circ} 15^{\prime}\). I feek in the Table but find it net, I take therefore the next to it, I \(^{\mathrm{s}} 20^{\circ} 29^{\prime}\). the next to it, againft which flands 357 Years, 124 Days, thefe added to 1683. Fan. I. Give me the Year 2040, and I38 Days, May 18. for the Time of this Comjunction, and adding the \(1^{s} 2009^{\prime \prime}\). to the Radix \(4^{\mathrm{s}} 110\) \(45^{\prime}\). it makes \(6^{5} 2^{\circ} 14^{\prime}\). For the true mean Longitude of this Conjunition.

From the Mean Conjunition the Apparent may be found by the help of a Planetary Inftrument, or the ufual Aftronomical Tables.

The Shatoms of Jupiter's Satcllites observed, by S.Campank. is. 1. p. 3.

Ey M. Caffini sind others. n. B. p. 143. n. 10 . p.171. 11. 82. 104039.
LXXXVIII. i. S. Camp.ni affirms, that he hath remarked in the Belts of Fupiter, the Shadious of his Satellites, and followed them, and at length feen them Emerge out of his Disk.
2. M. Cafjimi, after he had difcover'd (by the means of thofe excellent Glafes of 35 Foot made by S. Campani) the Shadows calt by the Satelites of Jupiter upon his Disk when they happen to be between the Sun and Him; and after He had alfo diftinguifht their Bodies upon the Disk of Jupiter; made fome Predictions when they fhould appear, to the End that the Curious might be convinc'd. of this Matter by their own Obfervations.

Some of thele Predictions have been verified, not only at Rome, and in other Places of Itnly, but alfo at Paris by M.Auzout, and in Holland by M. Hugens; particularly \(S_{c p t}\), 26. 1665. at half an Hour after feven a Clock, one of thefe Sbadows was feen both in France and in Holland.

\section*{(401)}

Thefe Spots, have this Peculiar, which diftinguifheth them 'from all others, that they are found precifly in that Place of fupiter, where fome Satellite is feen by the Sun; that they go from the Oriental Limb to the Occidental of the Difque of fupiter, with a Motion always equal to that of the Satellite; that in refpectito us thiey preceed the Satellite, before the Oppofition of Fupiter to the Sun, and follow him after the Oppofition; that the further fupiter is diftant from the Oppofition, the greater is the apparent Diftance of the fame Satcllite; that at divers Times of the Year, this Dittance changeth in Proportion of the Annual Parallax of the Satellite, according as he is differently feen by the \(S_{u n}\), and by the Earth; and that at one and the fame time of the Year, when divers Satellites happen to be between Fupiter and the Sun. the Spots correfpondent to them are diftant from them in Proportion of the Semidiameters of the Circles of the fame Satcllites. :
3. An. 1666. Fan: 26. about 3 h 15 in the Morning, I perccived (with by Dr. Hook. a 60 Foot Glafs) near the Middle of the Zone \(d\), a very round Spot, like n. 14. p. 246 . that reprefented at g, which was not to be percieved about half an Hour before; and I obferved it in about \(10^{\prime}\). time to be gotten almoft to \(\dot{d}\), keeping equal Diftance from the Satellite \(b\), which moved alfo Weftwardly, and was joined to the Disk at \(i\), at \(3 \mathrm{~h} 25^{\prime}\), fo that it was fufficiently evident that this black Spot Was norhing elfe, lave the Shadow of the Satelliteh, Eclip fing a part of the Face of Fupiter. The other three Satcllites in the time of this Eclipfe were Weltwards of the Body of Fupiter.
LXXXIX. A. Anni duo \& amplius elapfi funt ex quo Eruditiflimus Ri-The Elongarions clbar dus Townlevis Armiger, mihi Maximas fovialium Siderum à Centro fo-of Jupiter's \(S_{\text {- }}\) vis Digreffones, a Ceipfo obfervatas, necnon \& Motus cujufque Medios, Mo. tellites; by tuumque illorum Radices, ab Obfervationibus ejus deductas, Tomicio füo no. Flamfteed. accommodatas, communicavit. Ab codem deinceps Ephemerides tuas, Clarif. 4037. n. 94. fime Cafine, Mediccorum Siderum An. 1668. impetravi; quibus quañó cum \({ }^{p .6033 .}\). 1096.96. Motus tum Motuum Radices, necnon \& fummas Elongationes à Te confitutas, nonnihil à D. Tomnlcii inventis difidere comperui, \& Ego, quòd ipre impenfius hortatus cit, nonnullas primâ quogue Occafione Oblervationes inItituere Operx fore pretium duxi- Micrometro itaque \& Tubo 14. Ped.An. 1672. Menfe Mar. Stil. Ful. Ґequentia qua potui Cura Experimentă prima feci, Obfervationibus, in majorem Certitudinem, identidem quaque Nocte iteratis.

An. 1672. Mar. \(19^{\text {d }} 7^{\mathrm{h}}\) 111. Limb. Fovis remotior à 4 to Satellite dift. \(1601{ }^{*}=9^{\prime \prime}-34^{\prime \prime *} \quad 9^{\prime} 37^{\prime \prime}\)
\[
\text { 27. 8. Limb. remotior ab eodem } 4 \text { to. Satcllitc } \begin{array}{cc}
9^{\prime} & 37^{\prime \prime} \\
\text { n. 28. p. } 4037 .
\end{array}
\]
\[
\text { 28.8. Eadem Diftantia } \begin{aligned}
1591 & =9-30 \\
598 & =9-33
\end{aligned}
\]

Fovis Diamerer pluribus obfervationibus reperta 128. Ergo. Semidiameter ejus 64 ; quâ divifis Diftantiis obfervatis, apparentes fient Satellitis à Limbo Fovis Remotiori Diftantix in Semidiametris ejus,

\section*{(402)}
\[
\left.\begin{array}{lll}
\text { Mar. 19. } & 25 & { }^{1} \\
27 . & 24 & 51 \\
28 . & 24 & 58
\end{array}\right\} \text { Sublatâ femidiam. à centro fient }\left\{\begin{array}{ll}
24 & 1 \\
23 & 51 \\
23 & 58
\end{array}\right\}
\]

Cujus tunc Motus à \({ }^{\text {Fowe }}\) \& diftantix à centro ipfus fuere, fecundun nuo. meros tuos, ut hic.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{di h. \(\mathrm{l}_{\text {| }}^{\text {s. }}\)} \\
\hline Mart. 19, 7 I & 82533 & 22 & 56 \\
\hline 278 & 2.1935 & 22 & 37 \\
\hline 288 & 3 If 13 & 22 & 34 \\
\hline
\end{tabular}

Aberat ergo Satclles ab extima Elongatione, in prima obfervatione, tan: tum \(4^{\prime \prime}\); in lecunda \(23^{\prime \prime}\); in tertia \(26^{\prime}\); Semidiametri frupulos fexagenarios; guos propterea fi obfervatis Elongationibus modo debito adjiciamus, fient maximæ Digrelliones, hujus 4 ti Satellitis, à centro Fovis per primam' Obfervationem \(24 \mathrm{fd} 5^{\prime}\); per fecundam \(24^{\text {fa }} 1^{\prime}\), per tertiam, \(24^{\mathrm{fd}} 24^{\prime}\); quam Iu flatuifti tantum \(23^{\text {fd }}\). R. Tomnleius \(24^{\text {id }} 72\)

Harum Elongationum pofteriores duas accuratiores exiftimo, quippe quibus inveftigandis obfervationes commodas, omni qua cura poteram, peregi; priorem deinde inter plura noctis \(19^{x}\). Adverfaria inveni, quam perinde exquifitè captam haud aufim affirmare utcunque tamen Obfervationem adjeci, quippe qux non adeò à fequentibus diffentit, quin eas poffit confirmare, ancisk necnon oftendere, perparum (fi quicquam) minus, Sinitran quăm dextram verfus, hunc Satellitem à Fove Elongari.

Sed tamen inter obfervandum fenf, Aeris \&t Venti motum, quatie do vel agitando Tubum, (ad erectam Abierem, ope funis, \& trochlex fub dio penfilem) obfervationem reddere difficilem; quin \& frequenter efficere, ut ni* mis frictas acciperem Diftantias Quamobrem à pluribus hujufmodi obfer. vationibus, qux fummam curan as pracifonen depócunt; co ufque fuper: federe conftitui, donec commodiorem is inftituendis locum aptarem, quem tandem paravi. In Fenettra quadam Ligneam Machinam, brevis adinifar
- Scale, aptari curavi; cujus ope ei impofitus Tubus quaquaverfum converti potuit, nec à ventis, nifi admodum turbidis, hinc inde, ut lubdio fuit, agitari. Huic impofito Tubo, An. 1683 . Apr. 4. Vefp. Meipfum obfervationibus omni diligentia peragendis accinxi, nec fruftra quidem : Etenim, calo tune admodùm fereno, omnes quatuor Satellites, per Tubum Lentium Cunvexarum, confpexi, \& corum infra fcriptas à Limbo fovis, cuique remotiori, Diftantias Dimenfus fum; fcils

\section*{(AOB)}
3.985 iterum- 988
2. \(628-636\)
I. \(425 \longrightarrow 427\)
4. \(272-272\) Altitudo Fovis Quadrante ferè bipedali capta \(24^{\circ}-0^{\prime}\) Ergo hora apparens Derbice \(8 \mathrm{~h} 2 \sigma^{\prime} \mathrm{p} . \mathrm{m}\). \& tunc \(4^{\text {inh }}\) Satelles infra lineam utrinque per extimos Satellites, apparuit; fed vix plenam, ni Fallor, Semidiametrum.

Fovis Diameter, identidem repetitis obfervationibus, reperta 133; Semidiameter ergo \(66_{\frac{1}{2}}\), quæ obfervatis fublata Diftantiis, fient intertitia inter Centrum fovis \& Comitis Primi, 3 Ko; Secundi, 569; Tertii, 921 ; Quarts 205 ; quibus per \(66_{2}^{\mathrm{I}}\) divifis, prodibunt vifæ Elongationes à centro Fovis, in iphus Semidiametris.

Defecir ergo Satelles Primus, I'tantum, Secundus 3 ; Tertius I2; Scrupurlis Semidiamerri fexagenariis à fumma Elongatione, quos propterea fi oblervatis addamus, fient extremæ Digreffiones.

Commoda rurfus previfa dari opportunitas Apr. I r: vefperi: quamobrem, cum non ab uno aut altero Experimento diftantias has duxerim definiendas, habitis tunc eciam Obfervationibus, ulterius mecum inquirere inftitui; quas cum primum aufpicabar, Cxlum circa fovem raris adeo nubibus tectum erat, ut fubobfcurius non nifi aliquando Satellites potuerim confpicere; quorum tamen à limbo Fovis remotiori, ut tulit aer, cxpi diftantias; nimirum,

Hor. \(\begin{array}{r}7^{\frac{7}{3}} p \text { m. } \quad 3.947 \text { iterum } 932 \\ 2.628 \\ \\ \\ \hline\end{array}\)
\(2.628-614\)
I 405. Facto tamen Cælo protinus ad votum fereno.
accuratius notavi.
\(\begin{array}{ll}3 & 947 \\ 2 & 622\end{array}\)
1.405

4 942. Iterum 957 , Alto 2 ve. \(24^{\circ}\) ool ergo hora apparens \(7^{\text {h }} 56^{\circ}\). Satelles ©uartus paulo fupra lineam, per Primum \& Secuosdum ductam,

\section*{(404)}
apparuit; Tertius infra eam, fed \& aliquando exiftimavi in ea: Fovis capta diameter 132, Semidiameter ergo 66. obfervatis qux fubducta Diftantiis interftitium dabit inter centrum Fovis \& Primi, 339; Securdi, 556; Tertii, 881; Quarti, 891; quibus figillatim per 66 divifis, prodeunt Elongationes apparentes a centro fovis in Semidiametris ejufdem, Primi quidem \(5^{\text {fd. }} 8^{\prime}\); Secundi; \(8^{\mathrm{fd}} 25^{\prime} ;\) Tertii, \(13^{\text {fd }} 21^{\prime} ;\) Quarti; \(13^{\mathrm{fd}} 30^{\prime}\).

Satellitum Motus Medii à Pleni-Mediceis, cum Diftantiis enrum à centro Fovis, fecundum numeros tuos fuere, ut in

亿.
\begin{tabular}{l|rr|}
Primi & 5 & 18 \\
Secundi & 8 & 5 \\
Tertii & 1 & 2 \\
\hline & 59
\end{tabular}\(|\)
Tertii 1359 perparum ab iis, quas obfervationibus noctis, Quazix deduximus, diffentientes.

His tamen utrifque vicibus Intimus Satelles ad Lxvam, Secundus \& Tertius ad dextram, à Fove apparuere; fed Apr. 15 .vefp. Tertium à finiftra, in maxima Elongatione appariturum previdi, cui propterea Phænomeno invigilare operæ fore pretium duxi, nimirum ut perficerem, num eadem effet ejufdem Satellitis ad manum utramque à centro Fovis, fumma Remotio. Calum nocte obfervationi antedicta fudum erat; fic pro voto obfervavi circa bor. \(7 \frac{1}{2}\). Tertii Diftantiam 955; \& Fovis Diam. 131. Fovis ergo Semidiameter \(56 \frac{1}{2} 2\) obfervatx quâ fubductấ Diftantix, fit interftitium inter centrum Fovis. \& \(S_{a-}\) tellitem, 889 ; quod per eandem Semidiametrum divifum vifibilem dat Elongationem Comitis à Centro Fovis in Semidianuetris ipfus \(13^{\text {fd }} 35^{\prime}\). Motus \(S_{a-}\) fellitis medius erat \(3^{3^{4}} 14^{\circ} 9^{\prime \prime}\) Locus Fovis verus \(\approx 10^{\circ} 27^{\prime}\). Ergo Planeta à Pleni-Mediceo \(9^{s} 3^{\circ} 4^{\prime}\) aberat, à fuma Elongatione tantum frupulos 3; quos fi obfervaræ digreffoni \(13^{\text {rd }} 35\) adjiciamus, fiet maxima ad Sinifiram hac vice \(13^{\text {fd }} 38^{8,}\), parte nimirum tertia Semidiametri minor quam ad Dextram, bis confpirantibus notis, obfervavimus: Quod mihi videtur innuere, effe aliquam Centri Orbitx hujus Planeta à Centro Fivis Excentricitatem.
2. The Little Circle in the Middle reprefents the Planet Fupiter, the four Concentrick Circles, the Proper Orbits of his four Satellites, duly proportioned to the Breadth of his Body; the Diftances betwixt the parallel Lines intera. fecting them, being each equal to one of his Semidiameters.

The 4 divided Circles next without thefe, are diftinguifhed into fo many, parts as there are days and hours in each Sattellite's Revolution; the innermoft of them ferving for the Firft or Innermoft. Satelite; that next it, for the 2 d ; that next withour this for the \(3^{\mathrm{d}}\); and the outermoft for the \(4^{\text {th }}\); above. Lexurefin which is a fmall divided Arch of 15 Degrees.

By thiss to finditheDiftances of tha Satellises from \#. Axis to a propofed Time:
se. Find

\section*{(405)}
I. Find the Parallax of Fupiter's Orb to the Tine propofed, and note whether it be to be Added or Subftracted.
2. Extend the Thread from the Center of the Inftrument over the Parallax numbred in the fmail Arch, it cuts off in the four divided Circles, fo many hours as each Satellite fpends in paffing from the \(A x\) is of the Shadow to the Axis of \(\mathbb{F}\) viewed from our Earth; thefe I call the Simple Parallaftick Interanls, which if the Parallax was to be added, are alfo Additional, if to be fubitracted, Subductive.
3. To thefe Parallatick Intervals add the T'imes of half the Duration of the Eclipfe of each Satellite, whioh for the Firft may be affumed \(\mathrm{I}^{\mathrm{h}} \mathrm{Io}^{\prime}\); for the \(2 d\), ih \(30^{\prime}\), (greater exactnefs being needlefs) ; but for the \(3 d\), and \(4^{t h}\). when Eclipfed, (their Immerfions into the Shadow and Emserfion from it being commonly given in the Catalogues) take half the Difference of thefe Times at the next Eclipe, to the Time propofed, for the half. Duration, and Add them to the Simple Parallactick Intervals, fo have you them Augmented. But as often as the \(4^{\text {th }}\) Sntellite is not Eclipfed, (which is two Years in every fix) its Interval needs no Augmentation.
4. Find in the Tables the Times of the Eclipfes of each Satellite next preceeding the Time propoled, and when the \(4^{\text {th }}\) is not Eclipfed, of its patling the Axis of the Shadow, to which if the Parallatick Intervals Augmented were Additional, Add them to, if Subductive, Subitract them from, each the Time of its proper Satellite's Eclipfe, fo have you vey near the Apparent Times when each Satellite laft paft over the Axis of if viewed from our Earth.
5. Subftract each of the Times thus got from the Time propofed, the Remainders are the Intervals of the Motion of each Satellite from H's Axis.
6. Extend the Thread, from the Center over each of thefe Intervals of Motion numbred feverally in the divided Circles belonging each to its proper \(S_{a}-\) tellite, where it cuts the proper Orbit of that Satcllite; whofe Interval was numbred in its peculiar Circle, it fhews amongtt the Parallels, how many Semidiametors of \(\nVdash\), that Satcllite is diftant from him, and on which fide of him 'tis Pofited.

Note. further, that the Thread as it lay extended over the Parallax of the Orb numbred in the fmall Arch, where it cut the feveral proper Orbits of each Satellite, fhewed amongt the Parallels, how many Semidiameters of \(H_{2}\) the Center of the Shadow was diftant from the Center of \(\mathcal{H}\), viewed froms our Earth. And that if the Parallax of the Orb were Additional, the Shadow lies on the Right-hand from 4, if Subductive on the Left.

To explain thefe Precepts, I fhall give two brief Examples. Let it be then propoled to know how far each Satellite appears diftant from \(\mathcal{H}\) on the \(26^{\text {th }}\) of Dec. this prefent Year \(1685^{\circ}\) at 6 h \(52^{\prime} . \mathrm{p} . \mathrm{m}\). when the Third \(S_{a}-\) tellite falls into the Shadow; ; alfo on Ful. \(16, \ldots\). 686 . at 10 ha \(00^{\prime}\). p. m. when there is no Eclipfe.

\section*{(406)}
fig. 143.
An. 1685. December 26d \(16^{\text {h }} 52^{\prime} \% \mathrm{~m}\). the Parallax of the Orb is \(9^{\circ}\) \(20^{\prime}\) Additional ; Therefore

Again，An．1686．7ul．16．10h p．m．the Parallax of the \(\operatorname{Orb}^{\text {is }} 10^{\circ} 46^{\circ}\) ． Subductive．Hence

\section*{Fig． 44 ．}
\begin{tabular}{|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 \\
\hline & d．h．\({ }^{\prime}\) & d．h． 1 & d．h．\({ }^{\prime}\) & d．h． \\
\hline \begin{tabular}{l}
The Simple Parallatick \\
Intervals Sub． \(\qquad\)
\end{tabular} & 0 I 12 & － 235 & 0510 & 01200 \\
\hline Half Duration of the Eclipfes add． & 0 I 10 & \[
0 \quad 130
\] & 0． 121 & \\
\hline The Parallactick Inter－ vals augmented & \(0 \quad 222\) & \(\bigcirc 45\) & \(0 \quad 63.1\) & －12 OQ \\
\hline The next laft Emerfl－ ons，and paffing the Axis of the Shadom， & & & & \\
\hline Ful．－ & \(15 \quad 555\) & 522 & \(15 \quad 919\) & \(15 \quad 178.2\) \\
\hline The Time of laft par： fing the vifible \(A x i s\) & & & & \\
\hline of \({ }^{\text {fupiter }}\) & \(15 \quad 3 \quad 33\) & \(15.517 \quad 57\) & \(15 \quad 24^{8}\) & \(15 \quad 5 \quad 52\) \\
\hline The Time propofed－ & \(16 \quad 1000\) & 16 10 00 & 161000 & 16.10 .00 \\
\hline The Intervals of Moti－ & & & & \\
\hline Therefore Difter from & \[
\text { I. } 627
\] & \(\bigcirc\) & 1712 & \({ }^{1} 8.8\) \\
\hline Fupiter＇s Axis \(\qquad\) & 5：Dext． & 85．Sin． & & \({ }_{10}{ }_{2}^{1}\) ．S S Sin ． \\
\hline
\end{tabular}

And the Satellites fand at the two propofed Times as in the two Fi－ gures．

In drawing of which，tho I have confidered their Latitudes from the Line of their utmoft Elongations paffing through Fupiter＇s Center，yet Iz give no－ Rules for determining it，the Contrivances and Directions neceffary on that Account，being too many and troublefome to be inferted here ：My Defigns is only to fhew the Ingenious Obferver，how to find at what Diftance from 4，each Satellite appears，that to be may not mitake one for another when he is to Obferve any of their Eclipfes．

XC．I．An．1668．The French Aftronomers have made thefe Obfervations Eclipfes and by a 14 ．Foat Telefcope．

OEfob．7．Ick \(32^{\prime}\) p．m．The Firt Sntellite（called Rallas）Entredupon ved，ut．Paris the Face of fupiter．

Places of the： Satellites： 0 mi44．．n，892．

\section*{(408)}

Octob. 8. 8 h 11'. The Sccond Satellite (calied funo) Went out behina Fusiter.

Octob. 9. \(\varepsilon^{h} 54\) !. The Second Satellite went out from the Face of Fupiter.
octob. I6. \(10^{h} 4\) '. The Second Satellite entred upon the Face of \(f u\) piter.
octob. 22. \(1 \mathrm{C}^{\mathrm{h}} 4 \mathrm{I}^{\prime} 33^{\prime \prime}\). The Firft Satcllite entred into the Shadow of Fupiter.
octov. 23. \(8^{\text {h }} 32^{\prime}\). The Fiyf Satellite entred upon the Face of Fu. piter.

Nov. I 2. Ich \(40^{\prime}\) : The Second Satellite entred into the Shadow of \(f u-\) piter.

Nov. 20. \(2^{\text {h }} 3^{8^{\prime}} 30^{\prime \prime}\). After Midnight, the Third Satellite (callid Themis) entred into the Shadow of Fupiter.

At Dantzick; by M. HeveliR2s. 12.78. f. 3029.
2. Cum An. 167s. die 25. Sept. At. n. manè ex condicto \(\mathrm{D}^{\mathrm{n}}\) Caffinus Parifis, \& Dn Picard Vraniburgi, fufcepiffent, ad Occultationem Primi Fovinlium attendere, volui haud minus ego huic Phænomeno diligenter invigilare. Itaq; Hor.4. \(27^{\prime}\). ubi primum fupiter emicuit, deprehendi adhuc Foviales omnes adeffe, tres fc. à Lxva \& unum ad dextram. Duo illi propinquiores ad Siniftram haud procul videbantur à Limbo fovis, non minus ille qui ad Dextram apparebat, aliorum Comitum Minimus. Ad quintam ufque \& \(7^{\prime}\) ferè, omnes quatuor (utut Cælum jam livefceret) diltincte apparebant. Præter tamen onnem fpem, hor. 5 : \(12^{\prime}\) videbatur mihi propinquior ille Comes ad Lxvam (refpectu Tubi mei, qui inverfo ordine objecta exhibet) penitus evanefcere, remanentibus illis tribus, quanquam ille dexterior magis magifque etiam ad fovem accedebat. An planè momentum ipfum temporis id fuerit Immerfioniis illius, Comitīs, vix aufim adeo certò affirmare; nihilominus tardius non incidit illa occultatio; fed anne unico minuto ferè, adhuc citius forte, ingruerit, facilè concefferim.
\begin{tabular}{|c|c|c|c|}
\hline Sec. Horol.
amb. mane. & Obfervationes. & \begin{tabular}{l}
Diftantic \\
§ु Altitudines.
\end{tabular} & Tcmp. correct. \\
\hline h. \({ }^{\prime \prime}\) & & - & h 11 \\
\hline 43625 & Fupiter primum confpectus- & - - - & 432,0 \\
\hline \(\begin{array}{lll}5 & 7 & 25 \\ 5 & 16 & 35\end{array}\) & Altitudo Procyonis - & 3443 & \(5 \quad 27\) \\
\hline 51635
5265 & Primus Fovialium Evanuit--
Altitudo Procyonis- & - & \(\begin{array}{llll}5 & 12 & 0\end{array}\) \\
\hline
\end{tabular}

At Derby; by 3. An. \(167 \frac{1}{2}\). Feb. 17. \(7^{\text {h }} 25^{\prime}\). p. m. Alt. \& erat \(15^{\circ}, 54^{\prime}\). At \(8 \mathrm{~h} .59^{\prime}\). M. Flamiteed. p. m. vel forfan I. min. maturius, Satelles Primus ad dextram 4 is, in ipfius
n. \(82 . p .4036 .0\) 2. 82. p. 4036 . Umbram incidit, adeo tamen Evanefcentis exigua erat à Limbo Diftantia, ut quanta fuerit dijudicare non potuerim.

\section*{(409)}

Mait. 19d. Gh 4.5'. Ats. Gov. \(29^{\circ} 35^{\prime}\). Satelles Primis ad Linibuni govis ib.4037: appropinquabat, cui \(7 \mathrm{~h} 5 \mathrm{I}^{\prime}\). jungebatur.

An. 1672. Ap. 15. \(7^{\mathrm{h}} 43^{\prime}\). vefp. Alt. Y. \(25^{\circ} \mathrm{co}\). Satelles Primus mox \({ }^{\text {m }}\) 96. p. 6099. Fovcm à tergo fubiturus : circiter diametri à Limbo ejus apparuit.
\(8^{\mathrm{h}} 6^{\prime}\). Alt. \(\& 27^{\circ} 20^{\prime}\). fubivit Fovem. Alt. Fove \(27^{\circ} 26^{\prime}\). certe non conSpiciebatur.
4. Ful. 6. (ft.n.) 1675. ante mediam noctem, hora Ccil. Ir. \& I 6. Sc- At Paris; by cundis precisè, Secundus Fovis Satelics Egredi incipiebat ex Planetre hujus, M. Calfini.v. qui ipfum obfcuraverat, umbra.
5. An. 1679. Fun. 5. At. n. \(3^{\text {h. }}\) m. I difovered 3 Satellites of Fupiter: Pb. col, n. ı. The Firft was diftant Weitward of the Limb of Fupiter, a litte lefs than a pid. 33 . fup. Diameter; the Second was diftant, on the Eaft-fide, a little more than a Dia- S. LXIV. 2. meter. The Third was more Euftward than the Second, by fomewhat lefs than a Diameter of \(\mathcal{F}\) upitcr.
XCI. I. Let A be the Sun, B Fupitcr, C the Firl Satellite of fupitiv, The Equation of which enters into the S/uadow of Fupiter, to come out of it at D; and let Eight by \(M\), EFGHLK be the Eartis placed at divers Diftances from Fupiter: Romer. 1.1 ; 6.

Now fuppofe the Earth, being in L towards the \(2^{\text {d }}\) Quadrature of fupiter, p. 893. hath feen the Firft Satclite at the Time of its Emerfion, or Iffuing out of the Shadow, in D; and that about \(42 \frac{1}{2}\) hours after (vid. after one Revolution of this Satellite) the Earth, being in K , dath fee it returned in D ; it is manifeft, that if the Light require time to traverfe the Interval LK, the Satellite will be feen returned later in D, than it would have been if the Earth had remained in L, fo that the Revolution of this Satellite being thus obferved by the Emerfions will be retarded by fo much time, as the Light @nall have taken in pafling from \(L\) to \(K\), and that on the contrary, in the other Quadrature FG, where the Earth by approaching goes to meet the Light, the Revolutions of the Immerfions will appear to be fhortned by fo much, as thofe of the Emerfions had appeared to be lengthened.

This new Equation of the Motion of Light, wnich hath been eftablifhed by the Royal Academy, and in the Obforvatory for the Space of 8 Years, was confirmed by the Emeryinon of the Fiytt Satellite obferv'd at Paris 1676. Nov.9. \(5^{h} 35^{\prime} 45^{\prime \prime}\), at Night, \(10^{\prime}\) later than it was expected, by deducing it from thofe that had been Obferved in the Month of Auruf, when the Eart/s was Jupiter'ssatel-
much nearer to Fupiter.
lites; by \(M\). Caflini. n. 128. p. 63 I .
XCII. 1. M. Caffini, having formed a new Hyputhefis for the Satellites of M. Caflini's. Fupiter, different from that of Galileo, thinks that the Plain of their Orbs is Tablesfffor the EInclined to the Plain of the Ecliptick; He fertes their Nodes with the Orls clipfres of the of Fupiter towards the \(13^{\circ}\) of Le) and Aquarius; and finds that the Duliqui- Firft Satellite ty of their Circles to the Orbite of Fjupiter, is almoft double to the Obliquity of britged, axd \(R_{r e}\) this Orbite to the Ecliptique.
2. M. Cafini, in the laft Treatife of a Book, Entitul'd Recuce! d' Obfer- Mondon ; by ontions faites on Pluficurs Voyages, \(\mathfrak{G}\). has employed his Skill, to make eafie Mr. Edm.

Vol. 1. G g g the Halley. n. 2uf:
G g g
p. 238.

\section*{(4i0)}
the Calculation of the Eclipfes of the Firft Satellite of Hupiter, which is otherwife Operofe even to the Skillful. The Tables have for Principles, that this: Satcllite Revolves to the \(\operatorname{Sun}\) in \(1^{\text {d }} 18 \mathrm{~h} 28^{\prime} 36^{\prime \prime}\), fo precifely, that in 100 Years the Difference is not fenfible ; That in the Time of the Revolution of Fupiter to his Apiotion, which he fuppofes in \(4332^{\mathrm{d}} 14 \mathrm{~h}^{\prime} 5^{\prime \prime} 48^{\prime \prime \prime}\), this \(S_{a-}\) tcllite makes exactly \(244^{8}\) Months or Revolutions to the Sun ; and dividing the Orbite of Fupiter into 2448 parts, he has in a Large Table of Equation fhewn what is the Inequality of the Motion of Gupiter in each Revolution reduced to time, affuming, Thisdly, the greateft Equation of Fupiter \(5^{\circ} 3 \mathbf{1}^{\prime}\) 40 1 . Whence the hourly Motion of the Satcllite from Jupiter being \(80^{\circ} 28 \frac{1}{2}\) \% it follows that the greateft Inequality (Jupitcr paffing the Signs of \(C_{\text {ancer }}\) and Capricorn,) amounts to \(39^{\prime \prime} 8^{\prime \prime}\) of Time; to be added in Cancer, fubftracted in-Capricorn. Lafty, As to the Epocha, or beginning of this Series of Revolutions, he has determined the Aphelion of Fupiter about \(1 \frac{3}{21}\) Degree forwarder than Aftronomia Carolina, and above two Degrees more than the Rudolphine Tables, viz. precifely in \(g^{\circ}\) of Litwa, in the beginning of this Century, which perhaps he finds the proper Motion of Fupitcr about the Sun at this time to require; and the Number of Revolutions fince Fupiter was laft in. Peribetio, is hereftiled Num. I.

A Second Inequality is that which depends on the Diftance of the Sum from Fupiter, which he fays Mr. Romer did mot ingenoußly explain by the Hypothefis of the Motion of Light; to which yet Cafini by his manner of: Calculus feems not to affent, though it be hard to imagine how the Earth's Pofition in refpect of Fupiter fhould any way affect the Motion of the Satellites. This Inequality he makes to amount to two Degrees in the Satclite's Motion, or \(14^{\prime} 10^{\prime \prime}\) of Time, wherein he fuppofes the Eclipfes to happen fo much. fooner when Fupiter Oppofes the Sun, thon when he is in Conjunction with. him. The Diftribution of this Inequality he makes wholly to depend on the Angle at the Sum, between the Earth, and Fupiter, without any Regard to the Excentricity of Fupiter, (who is fometimes \(\frac{\text { I: }}{2}\) a Semidiameter: of the: Earth's Orb, farther from the Sun than at other times): which would occafion a much greater Difference, than the Ineguality of Yupiter and the Farth's. Motion, both of which are accounted for in thefe Tables with great Skill. and Addrefs. But what is moft ftrange, he Affirms that the fame Inequality of two Degrees in the Motion, is likewife found in the other Satellitess. requiring a much greater Time; as above two Hours in the \(4^{\text {th }}\) Sntellite: which if it appeared by Obfervation would overthrow M. Remer's Hypothefis entirely. Yet I doubt not herein to make it Demonftratively plain, that the Hypothefis of the Progreffive Motion of Light is found in all the other Satellites of Fyupiter to be neceffary, and that it is the fame in all; there being nothing near to great an Annual Inequality as M. Cafini fuppoles in their Motions, by his Table, p. 9: and his Priccepta Calculi. The Method however ufed to compute this is very Curious; for having found that whilft the. Sun Revolves to Jupiter, there pafs \(398^{\text {d }} 21^{\text {hi }} 13^{\prime}\). wherein are made. 2.25 5: Revolutions of the Satellite to Fupiter, the Number of Revolutions

\section*{(411)}
fince Fupiter was laft in Oppofition to the Sun, is what he calls Num. 11. in which the Inequality of the Eartl's Motion is allowed for in the Months, and that of Jupiter's Orb by a Table of the Equation of Num. II. amounting in all to \(3^{3}\) Revolutions of the Satellite to fupiter. This in the Tables following I have thought fit to leave out, fhewing how to find it by the help of the former Equation of Num. I. The Numbers are in effeet the fame with M.Cafinis, only Reduced to our Stile-and. Meridian, and the Form of thens Abridged, and 'tis hoped Amended.

\begin{tabular}{|c|c|c|c|}
\hline Anno. Ful. Curr. & & \% & z
¢
\(\vdots\) \\
\hline & d. h. \(/ 1\) & & \\
\hline 60 & OII 548 & 968 & 2006 \\
\hline 1:66r. & - 117724 & 1174 & 8 I 2 \\
\hline 1662 & \(19.573^{6}\) & 1381 & 629 \\
\hline 1663 & I 009.12 & 1587 & 1435 \\
\hline 1664 & I 849.24 & 1794 & 1251 \\
\hline 1665 & - 23. 1. 00 & 2000 & \\
\hline 1666 & -. \(13 \begin{array}{lll}12 & 36\end{array}\) & 2206 & 864 \\
\hline 1667 & O 32412 & 24.12 & 670 \\
\hline 1668 & 10 \(12 \begin{array}{llll}12 & 4 & 24\end{array}\) & 17 & 6 \\
\hline 1669 & - 216 co & 377 & 29.2 \\
\hline 1670 & 1. 1056 & 584 & \\
\hline 1671 & I. I 7 7-4S & 790 & 2169 \\
\hline 1672 & I 9194800 & 997 & 1985 \\
\hline 1673 & 0235936 & 1203 & 179 \\
\hline 1674 & - I4, II 12 & 1409 & 159.7 \\
\hline 1675 & - 42248 & 1615 & 1403 \\
\hline 1676 & -113 3000 & 1822 & 1219 \\
\hline 1677 & - 3.14 .36 & 2028 & 102 \\
\hline 1678 & \(\begin{array}{llllllll}\text { I } & \text { II } & 54 & 48\end{array}\) & 2235 & 84. \\
\hline 1679 & \(1 \quad 2.624\) & 244 I & \\
\hline 1680 & I 104636 & 0 & 46 \\
\hline 1681 & \(1 \begin{array}{llll}1 & 00 & 58 & 12\end{array}\) & 406 & \\
\hline 1682 & - 15 9.48 & 612 & 76 \\
\hline 1683 & - 5:21 24 & 818 & 2136 \\
\hline 16 & \(\begin{array}{lllll}0 & 14 & 1 & 36\end{array}\) & 1025 & 1953 \\
\hline & \(04^{-1} 1312\) & 1231 & 1759 \\
\hline 16 & \(\begin{array}{lllll}1 & 12 & 53 & 24\end{array}\) & 1438 & 1575 \\
\hline 1687 & 135000 & 1644 & 1381 \\
\hline 1688 & 11145.12 & 1851 & 1197 \\
\hline 1689 & I 1 I 5648 & 2057 & 1004 \\
\hline
\end{tabular}

Epocha Revolutionum Primi Sattellitis ad Jovis Umbram Sub Meridiano Londinenfi.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { m } \\
& \underset{N}{N}
\end{aligned}
\] & & & & & & \[
\begin{aligned}
& \text { Han } \\
& \text { ă } \\
& 0 \\
& 0 \\
& \text { on } \\
& \text { on } \\
& 0
\end{aligned}
\] & \\
\hline & & & & & & & \\
\hline -
-
- & & & & & & & \(I{ }^{\text {unin }}\) \\
\hline 0 & & & & & & & II run \\
\hline
\end{tabular}

\section*{(414)}

Tnbula Revolutionum Primi Satellitis fovis in Anno:

\section*{(415)}

Tabula Revolutionum Primi Satellitis Fovis in Anmo.

\section*{(416)}

Tavula Revolutionum Primi Satellitis Fovis in Anno.
\begin{tabular}{|c|c|c|c|c|c|}
\hline September. & \% & \(\square\)
\(=\) & November. & \(\square\)
\(\square\) & 2 \\
\hline d. h. & & & d. h . & & \\
\hline I 54648 & \(13^{8}\) & 1366 & - 95912 & 172 & 1707 \\
\hline 3001524. & 139 & 1376 & \(2 \quad 42748\) & 173 & 171 \\
\hline 4134400 & 140 & 1386 & 3225624 & 174 & 1728 \\
\hline & 141 & 1396 & \(\begin{array}{llllllllllll}5 & 17 & 25 & 00\end{array}\) & 175 & 1738 \\
\hline 874112 & 142 & 1406 & \(\begin{array}{llllll}7 & 11 & 53 & 36\end{array}\) & 176 & 1748 \\
\hline \(1029{ }^{10} 88\) & 143 & 1415 & 962212 & 177 & 1759 \\
\hline \(\begin{array}{llllll}11 & 20 & 38 & 24\end{array}\) & 144. & 1425 & & 178 & 1769 \\
\hline 1315700 & 145 & 14.35 & \(\begin{array}{llllll}12 & 19 & 19 & 24\end{array}\) & 179 & 1779 \\
\hline 1593536 & 146 & 1445 & 14.1343 co & 180 & 1789 \\
\hline & & & \(16 \quad 8 \quad 16.36\) & 191 & 180 \\
\hline 1744412 & 147 & 1455 & 18124512 & 182 & 181 \\
\hline \(\begin{array}{lllll}18 & 22 & 32 & 4^{8}\end{array}\) & 148 & 1465 & 19211348 & 183 & 182 \\
\hline \(\begin{array}{llllll}20 & 17 & 1 & 24\end{array}\) & 149 & 14.75 & & 184 & 1830 \\
\hline 22 I1 20 00 & 150 & 1485 & 23101100 & 185 & 134 \\
\hline \(\begin{array}{llllll}24 & 5 & 58 & 36\end{array}\) & 151 & 1495 & \(\begin{array}{lllll}25 & 4 & 39 & 36\end{array}\) & 186 & 1851 \\
\hline 26002712 & 152 & 1505 & 2623812 & 187 & 1861 \\
\hline \(27 \quad 185548\) & 153 & 1515 & 28173648 & 188 & 1978 \\
\hline \(2912 \quad 2424\) & 154 & 1525 & \(3012 \quad 5 \quad 24\) & 189 & \(188=\) \\
\hline October. & & & December. & & \\
\hline 75300 & 1.55 & 1535 & \(12 \quad 524\) & 189 & 1882 \\
\hline \(3 \quad 22136\) & 156 & 1545 & 263400 & 190 & 1892 \\
\hline 4205012 & 157 & 1555 & 4.1236 & 191 & 1903 \\
\hline 615 IS 48 & 158 & 1565 & 5193112 & 192 & 1913 \\
\hline \(8 \quad 94724\) & 159 & 1575 & 7135948 & 193 & 1923 \\
\hline 104.1600 & 160 & 1585 & 982824 & 194 & 1934 \\
\hline & 161 & 1595 & I I 25700 & 195 & 194.4 \\
\hline 13171312 & 162 & 1605 & 12212536 & 196 & 1955 \\
\hline 15 II 4148 & 163 & 161.6 & 14.155412 & 197 & 1965 \\
\hline \(17 \quad 61024\) & 164 & 1626 & 16102248 & 198 & 1976 \\
\hline 19003900 & 165 & 1636 & \(18 \quad 451\) & 199 & 1986 \\
\hline 2019736 & 166 & 1646 & 19232000 & 200 & 1997 \\
\hline 22133612 & 167 & 1656 & 21.17 48836 & 201 & 2007 \\
\hline \(\begin{array}{llll}24 & 3 & 4 & 48\end{array}\) & 168 & 1666 & 22121712 & 202 & 2018 \\
\hline 26 23324 & 159 & 1677 & 2564548 & 203 & 2028 \\
\hline 2721200 & 170 & 1687 & 27 1 1 14 24 & 204 & 2039 \\
\hline 29153036 & 171 & 1697 & 28 I9 4300 & 205 & 2049 \\
\hline \(31 \quad 95912\) & 172 & 1707 & 30141136 & 206 & 2050 \\
\hline
\end{tabular}

Tabula

\section*{(417)}

Tabula Prime Equationis Conjunctionum Primi Satellitis cum Jove.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline N. 1. & \multicolumn{2}{|l|}{Equat.} & & 1 N .1. & A & unt. & & N. 1. & \multicolumn{2}{|l|}{Asquat.} \\
\hline & & & & & & & & - & & 11 \\
\hline 0 & 0 & \(\bigcirc\) & & 4.00 & 34 & 20 & & 810 & 33 & 21 \\
\hline 10 & I & 3 & & 410 & 34 & 51 & & 820 & 32 & 50 \\
\hline 20 & 2 & 5 & & 420 & 35 & 2 I & & 830 & 32 & 17 \\
\hline 30 & 3. & 8 & & 430 & 35 & 47 & & 810 & 31 & - 44 \\
\hline 40 & 4 & 12 & & 440 & 36 & & & 850 & 31 & 10 \\
\hline 50 & 5 & 15 & & 450 & 36 & 26 & & 860 & 20 & 22 \\
\hline 60 & 6 & 16 & & 460 & 36 & & & 870 & 29 & 56 \\
\hline 70 & 7 & 19 & & 470 & & & & 880 & 29 & 19 \\
\hline So & 8 & 20 & & 480 & 37 & 29 & & 890 & 28 & 40 \\
\hline 90 & 9 & 23 & & 490 & 37 & 44 & & 900 & 27 & 59 \\
\hline 100 & 10 & 25 & & 500 & 27 & 59 & & 910 & 27 & 19 \\
\hline 110 & I I & 25 & & 510 & 38 & 16 & & 920 & 26 & 37 \\
\hline 120 & 12 & & & 520 & 38 & 29 & & 930 & 25 & 53 \\
\hline 130 & 13 & 25 & & 530 & 38 & 39 & & 940 & 25 & 8 \\
\hline 140 & 14 & 25 & & 540 & 38 & 49 & & 950 & 24 & 23 \\
\hline 150 & 15 & 22 & & 550 & & 55 & & 96 & 23 & 37 \\
\hline & & & & & & & & 970 & 22 & 50 \\
\hline 160 & & 13 & & 560 & 38 & 59 & & 980 & 22 & 3 \\
\hline \[
170
\] & 17 & 17 & & 570 & 39 & 3 & & 990 & 21 & 15 \\
\hline 180 & 18 & 11 & & 580 & 39 & 6 & & 1000 & 20 & 26 \\
\hline 190 & 19 & 9 & & 590 & 39 & 3 & & 1010 & 19 & 37 \\
\hline 200 & 20 & 5 & & 600 & 29 & 7 & & 1020 & 18 & 47 \\
\hline 210 & 20 & 56 & & 610 & 39 & 5 & & 1030 & 17 & 56 \\
\hline 220 & 21 & 49 & & 620 & 39 & c3 & & 1040 & 17 & 5 \\
\hline 230 & 22 & 41 & & 630 & 38 & 58 & & 1050 & 16 & 13 \\
\hline 240 & 23 & 32 & & 640 & 38 & 51 & & 1060 & 15 & 19 \\
\hline 250 & 24 & 20 & & 650 & 28 & 44 & & 1070 & 14 & 25 \\
\hline 260 & & 7 & & 660 & & & & 1080 & 13 & 32 \\
\hline \[
270
\] & 25 & 57 & & 670 & 38 & 24 & & 1090 & 12 & 32
37 \\
\hline 280 & 26 & \(4 \cdot 3\) & & 680 & 38 & 10 & & 1100 & II & 42 \\
\hline 290 & 27 & 27 & & 690 & 37 & 56 & & II 10 & 10 & 47 \\
\hline 300 & 28 & 9 & & 700 & 27 & 40 & & I 120 & 9 & 52 \\
\hline 310 & 28 & 54 & & 710 & 37 & 24 & & 1130 & 8 & 57 \\
\hline 320 & & 35 & & 720 & 37 & \(j\) & & 1140 & 8 & 00 \\
\hline 330 & 30 & II & & 730 & 36 & 45 & & 1150 & 7 & 3 \\
\hline 340 & 30 & 45 & & 740 & 36 & 25 & & I.160 & 6 & 7 \\
\hline 350 & 31 & 28 & & 750 & 36 & 14 & & 1 170 & 5 & \\
\hline 360 & 32 & 10 & & 760 & & & & 1180 & & 13 \\
\hline 370 & 3? & 44 & & \(77{ }^{\circ}\) & 35 & I5 & & I 190 & 3 & 15 \\
\hline 380 & 33 & 15 & & 780 & 34. & 49 & & I 200 & 2 & 19 \\
\hline 390 & 33 & 49 & & 790 & 34 & 19 & & 1210 & 1 & 21 \\
\hline 400 & 34 & 20 & & 800 & 23 & 4.0 & & 1227 & \(\bigcirc\) & 2 \\
\hline & & 1 & & 810 & 22 & 211 & & 1224.1 & 0 & 0 \\
\hline
\end{tabular}

\section*{(418)}

Tabula Secunde Aquationis Conjunitionum Primi Satellitis cum Jove:

\section*{(419)}

Tabula Dimidice More Primi Satellitis in Umbra Jovis.

\(\mathrm{Hhh}_{2}\)

\section*{(420)}

From the fe Tables, to any given Year, Month and Day, to find the next Eclipse of the Firft Satellite of Jupiter proceed thus.
1. In the Table of the Epoclia find the Year of our Lord, and fet down the Day, Hours, Minutes arid Seconds, with Num. I. and'Num. II. thereto annext; and in the Table of Revolutions, feek the Month, and Day of the Month, with the Hours and Minutes, and Num. I. and Num. II. affixt, and add them together; and the refpective Summs fhall fhew the Mean Time of the Middle of the Eclipse fought, with. Num. I. and Num. II. required. But it muft be Obferved, that in \(\mathfrak{F}\) an. and Eeb. in the Leap- Year, one Day is to be added to the Day thus found.
2. If Num. I: be found lefs. than 1224, with Num. I. or if the greater than 2448, fubftracting \(244^{8}\) therefrom, with the Refidue; cnter the Table, and you will have the Firt Aqquation to be Added to the Mean Time before: found. But if Num. I. be lefs than 2448 , but greater than 1224, fubftract it from 2448 , and entring the fame Table with the remainder, you fhall have the Firft Equation to be Subftracted from the Mean Time. Then divide the Minutes of the faid firf 压quation by 11 , or rather \({ }^{\frac{34}{3}}\), and the \(\alpha, y+0\) Shall be the Fquation of Num. II. (anfwering to the Eccentrick Motion of Fupiter,) to be Added thereto when the firft Equation Subftracts, and \(\dot{s}\) contra Subftracted when that Adds.
3. If Num. H. thus Æquated. exceed 225.4 , Subftract 225,4 , there from; and if the Remainder or Num. II. be lefs than 113 , with the faid Remainder or Number; or if greater than 113 , with the Complement thereof to 225, 4, feek in the Table the fecond \&quation, which being Added to the Time before found, gives the True Time of the Middle of the Eciip \(f_{c}\).
4. With Num. I. feek the Half Continuance of the Total Eclipfe, which is to be Added for the Emerfion when the FEquated Num. II. is lefs than 113 , or if more than 225,4 , it be lefs than 338 : But if it exceed.II 3 , or 338 , then is the Semimora to be Subitracted for the Immerfion.
yid, sup, Si. XXII
5. Laftly, With the Sun's 'True Place take out the Equation of Natural Days, which Added or Subftraeted according to the Title, gives the Time of the Immerfion or Emerfion fought.

Now how few Figures ferve for this Computation, will beft appear by an. Example:

An. 1677 . Sept. \(178^{\text {h }} 9^{\prime} 40^{\prime \prime}\). at Greenwich, Mr. Flampeed oblerved the Fivft Satcllite to begin to Emerge; that is \(8^{\text {h }} 9^{\prime} 26^{\prime \prime}\). at London.

An Immerfion of this Sàtellite being computed after the fame manner acucording to thefe Tablcs, ought to have happen'd. An. 1633 : Nov: 30. \(16^{\mathrm{h}} 5^{\prime} 2^{\prime \prime}\). but: I. obferved it at \(16^{h} \cdot 48^{\prime} 40^{\prime \prime}\). To that the Error was

\section*{- \(3^{\prime} 27^{\prime \prime}\).}

Again, M. Cafjini oblerv'd an Emerfion at Paris. An. 1693 . Fan. \(14^{\text {d }} 10^{\text {fin: }}\) \(40^{\prime} 28^{\prime \prime}\). that is, at London \(1 c^{h}\). \(30^{\prime}\). \(48^{\prime \prime}\).. Which thefe Tables give at Iok.. \(30^{\prime} 39^{\prime} \%\) and therefore the Error was no more than \(+9^{\prime \prime}\).

After this manner I have compared thefe Tables with many good and certain Obfervations, and fearce ever find them Err above 3 or 4 Minutes of Time; which Errors are exceeding fmall in comparifon of the fhort Time that the Satellites have been dicovered.

In the Conftruction of the Table, which fhews the Hilf Continuance of there Eclipfes, the Semidiameter of the Shadow of Fupiter is made by Cafime juft 10 Deg. and that of the Satellite \(30^{\prime}\); and the Satellite's Afoending Node; being fuppofed in \(15^{\circ}\) of Aquarius, at the End of this Century, (that is \(55^{\circ}\) \(20^{\prime}\) before the Peribelion of Fupiter) it will thence follow, that Num. I. bening 116 , or 2102 , Fupiter paffes the Nodes of the Satellites Orb , and confe-* quently: thefe Eclipfes are Central, and of the Greateft Durationi Bue Num. I. being 215 , or 148 I , the Satcllite paffes the Shadow with the Grea-s teft Obliquity, viz. 2 : \(55^{\prime}\), from the Center \(\%\), whence the Scmimora becomes. of all the fhorteft.
3. The Tables of the other 3 satellites not being fo perfee or exact as of tod obher 3 a thof of the Firft, are here given in another Form. The Periods: of their sarellites,Revolutions to fupiter's Shade are as follows...
a. b. " " . I"

Whence the Table of the Fift Aiquation of tire Firft Satelliti, or M. Cafini's larger Table, may by an eafie Reduction ferve the other three; the Aqquation of the \(2 c!\). being \(2 \frac{1}{12} \frac{3}{3}\), or twice the Minutes with half fo many Seconds as there are Minutes in the Aqquation of the Firf, and the greatelt Equation thereof 1 h 18135 . Fquation of the 3 d , is \(4_{2}^{-\frac{7}{6}}\) times greater than that of the Fivft, and when greateft amounterh to \(2^{1 / 2} 29^{\prime \prime}\). And the Eiquation of the \(4^{t h}\). being \(9^{-\frac{7}{3}}\) times that of the Firft, is had by fubftracting \(\frac{1}{2}\), and \(: \frac{1}{\circ}\) from 10 times the 在quation of the Finf, whence the greatelt becomes \(6^{h 1} 10^{\prime \prime} 28^{\prime \prime}\). So that Num. I. and Num. II. as here collected for the Eirf, may indifferently ferve all the reft.
4. As to the Second Fquation of the other Satellites, N. Ceffini has, by his praccepta Calculi (as is before mentioned) fuppofed the Minutes thereof ti) be increated in the fame Proportion, as inftead of \(14^{\prime} 1 \mathrm{~d}^{\prime \prime}\), in the Firf, to be \(28^{\prime} 27^{\prime \prime}\) in the Second, \(57^{\prime} 22^{\prime \prime}\) in the Third, and no lefs than \(2^{\text {l3 }}\) \(14^{\prime} 7^{\prime \prime}\) in the Fory th; whereas if this Second Inequality did proceed from the Succelive Propagation of Light, this Equation ought to be the fame in all of them, which M. Caffini fays, was wanting to be fhewn, to perfect \(M\). Romer's Demonftration; wherefore he has rejected it as ill founded. But Were is grod Caufe to believe, that his Motive thereto, is what he has thought not proper to difcover. And the following Obfervations do fufficiently'fupply the Defect complained of in the making out of that Hypothefis.

An. 1676, Oct. 2. 1t. n. 6h \(10^{\prime} 37^{\prime \prime}\). App. buit \(5^{\text {h }} 59^{\prime} 37^{\prime \prime}\). Eq. Tinize M. Cafini at Paris obferved the Emerfion of the 3d. Satcllite from Fipiter's Shadow. And again Nov. I4. following oh \(20^{\prime} 55^{\prime \prime}\). App. Time, but \(6^{h}\) \(5^{\prime} 55^{\prime \prime}\). Eq. Time, he obferved the like Emerfion of the fame Satelite. The obferved Interval of Time between thefe Emerions, was \(43^{\text {d }} \mathrm{c}^{\text {h2 }} 6^{\prime} \mathrm{I} 8\) " , which is \(8^{\prime} 22^{\prime \prime}\) more than 6 Mean Revolutions of this Satellite, of which \(4^{\prime} 27^{\prime \prime}\) arifes from the Difference of the Firt Fquation, and the greater Continuance of the Latter Eclipfe; fo that the other '4. Miuutes is all that is left to anfwer for the Difference of the \(2 a^{\prime}\) Æquations; and Num. II. in that Time increafing from 48 to 72 , gives \(4^{\prime} 36^{\prime \prime}\). for the Difference of the \(2 \%\) Equations of the Firt Satellite. So that here the 2d Equation of the Tlivird is found rather lefs than that of the Firft, but the Difference is fo fmall, that it may rather be attributed to the Uncertainty of Obfervation. Whereasaccording to M.Cafini's Method of Calculating, inftead of four Minutes it ought to be \(18^{\prime} 3^{\prime \prime}\). and the Interval of thefe two Emerfitens \(43^{\text {d }} c^{\text {h }} 2 I^{\prime}\). exceeding the Time obferved by a whole Quarter of an Hour; which that Curious Obferver could not be deceived in.

\section*{（4．23）}

The like appears yet more evidently in the Fourth Satellitc．By the Obfer－ vations of Mr．Flamitced at Greenwiclj．An． 1682 ．Sept．24．17h 45．．T．App． but \(17^{\text {h．}} 32\) ：T．Eq：the Fourth Satellite was feen newly come out of the Sha－ dow，fo that about \(17 \mathrm{~h}^{\prime} 3^{\prime}\)＇．T．Eq．the firft beginning of Emerfion was conje－ Ctured；and after；Revolutions，viそ．Decemb．I \(7^{\text {d }} 11 \mathrm{ir} 16^{\prime}\) or \(11^{\text {hi }} 18^{\prime}\) ．T．Eq． he again obferved the firft Appearance of the Satellite beginning to Emerge， that is，after an Interval of \(\overline{3} 3^{\text {d }} 17^{\text {h }} 4^{\prime}\) ；whereas this Satellite makes five mean Revolutions in \(83^{\mathrm{d}} 18 \mathrm{~h}-25^{\prime \frac{1}{2}}\) ．Here we have \(37^{1 \mathrm{I}} \mathrm{I}\) to be accounted for by the feveral Inequalities．Of this \(2 I^{\prime}\) is due to the fint 厌quations，which is reduced to \(19{ }^{\prime}\) by the Greater Continuance of the latter Eclipfe，Fupiter then Approaching to his Defcending Node．So that there remains only I 8 胃 for the Difference of the 2cl．Equations，whilit the Earth approached．Fusiter，by more than the Radius of its own Orb：and the Difference of the 2 d ．Fiqua－ tions of the Firft Satellite，being，according to Cafini 81 30：the faid Diffe－ rence in the Fourth ought to be In \(20 / \frac{1}{2}\) ，inftead of \(18 \frac{1}{2}\) ；whence the Inter val of thefe two Emerfions would be according to his Precepts，but 83 d：I 6 h \(4^{\prime} 6^{\prime}\) ，inftead of \(83 \mathrm{~d} .7^{\text {h }} 4.8^{\prime}\) obferved．And whereas \(18 \frac{1}{2}\) ，may feem to 0 great a Difference；it muft be noted，firt，that \(M\) ．Romer had ftated the whole 2d．Equation \(22^{\prime} 00^{\prime \prime}\) ．which M：Cafini has diminifhed to \(14^{\prime} \mathrm{ICl}^{\prime \prime}\) ： fo that inftead of \(8 \frac{1}{2}, M\) ．Romer allows \(13^{\prime}\) ，and fecondly，that in the firft of thefe Obfervations，being about half an Hour before Sun rife，the Brightnefs． of the Morning might well hinder the feeing of this fmallelt and filowett \(S_{a}-\) tellite，titl fuch time as a good part thereof was Emerged．

XCIII．Having a great Defire to obferve the Body of Mars，whille Acrony－ cal and Retrograde（having fomerly with a Gafs about 12 Foot long，ob－ ferv＇d fome kind of Spors in the Phafe of it）though it was not in the Peri－ belium of its Orb，but nearer its Aplolium；yet I found that the Face of it， when near its Oppofition to the Sun（with a Charge，the 36 Foor－Glafs， made ufe of，would well bear）appeared very near as big，as that of the Moon to the naked Eye．

But fuch had been the ill Difpofition of the Air for feveral Nights，that from more than 20 Obfervations of it which thad made fince its buing Ro－ trograde，I could find nothing of Satisfaction，though kofren Imagined，I faw Spots，yet the Inflective Veiiss of the Air（（if I may focallethofe parts，which being interfors＇d up and down in it，have a greater or lefs Refractive Power， than the Air next adjoining，with which they are mixt ），did make it fo con－ fured and Glaring，that I could not conclude upon any thing．

On the 3 d ．of Mar．che \(30^{\prime}\) ．in the Mornine though the Air was fill bad enough，yer I could fee now and then the Body of Murrs，which I de－ feribed by the Scheme．B；as exactly reprefenting what I faw through the Glafs as I could：

An．1665\％．Mar．Io． \(0^{\text {h＇}} 20^{\prime}\) ．in the Morning finding the Air very bads．I made ufe of a very fhallow Eye－Glafs，as finding nothing diftinct wieh the greater Charge，and faw the Appearance of it as in C，which I Imagined might be the Reprefentation of the formers Spots by a leffer Charge．Abwout 3 of the Clock

Fig：\(=\)

Fig． 14.

Eig. 143.

Fig. 149.3
T.8. 150.3

Fig. 1£I.

FIM. 152.

Fig. 1.53.
the fame Morning, the Air being very bad (though to Appearance exceeding clear, and cauling all the Stars to twinkle, and the Minute Stars to appear very thick) the Body feemed like D; which I ftill fuppofed to be the Reprefentation of the fame Spots through a more confufed and Glaring Air.

But obferving \(M_{\text {ar }}\) 2I. I was furprifed to find the Air (though not fo clear, as to the Appearance of fmall Stars) fo exceeding tranfparent, and the Face of Mars fo very well defined, and round and diftinct, that I could manifetly fee it of the Shape in E, about haif an Hoir after 9 at Night. The T, ringular Spot on the Right-fide (as it was inverted by the Telefcope) according to the Appearances, through which all the preceding Figures are drawn) appeared very black and diftinct, and the other towards the left more dim ; but both of them fuffiently plain and defined. About a Quarter before 12 of the Clock the fame Night, I obferved it again with the fame Glals, and found the Appearance exactly, as in F; which I Imagined to fhew me a Motion of the former Triangular Spot.
iviar 22. about half an Hour after \(8^{b}\) at Night, finding the fame Spots in the fame Pofture (as in \(G\)) 1 concluded that the preceeding Obfervation was only the Appearance of the fame Spots at another Height and Thicknefs of the Air: and thought my felf confirmed in this Opinion, by finding them in much the fame Polture, Mar. 23. about half an Hour after 9 (as in H) though the Air was nothing fo good as before:

Mir. 28 . about 3 of the Clock, the Air being light (in Weight) though moif and a little hazy; I plainly faw it, to have the Form reprefented in I. which is not reconcileable with the other Appearances, unlefs we allow a Turbinated Motion of Mars upon its Center: Which, if fuch there be, from the Obfervations made Mar. 21, 22, and 23. we may guefs it to be once or twice in about 24. Hours, unlefs it may have fome kind of Librating Motion; which feems not to likely.

The Parallax of Mars; by Mr. Flamfteed.
XCIV. An. 1672. Sept. Micrometro \& Tubo 1 4pedum, Martis Diftantias à duabus Fixis eadem Nocte dimenfus fum ; unde didici Parailaxin ejus n. 89. f. 5118: Acronici \& Perigei nunquarn majorem effe Scrupulis Secundis \(25^{\prime \prime}\); unde feno. 96. p. 6100 quirur, Solis efie fummum \(\mathrm{IC}^{\prime \prime}\), \& Diftantiam 21000 Torra Semidiametros.

Places of Mars Obferved at Darby ; by Mr. C Flamiteed. 2 31.86. p. 50390 \({ }^{\circ}\)
XCV. I. An. 1672. Maii 14 mane, Bbat Maitis Sidus prope Stellam dictam, Rue ad Clunes Aquarii; cujus Latitudo \(2^{\circ}\) ol \(0^{\prime \prime}\). Lccus tum mibit, \(24^{\circ} 12^{\prime} 9^{\prime \prime}\). Añ; Strectio, \(24^{\circ} 9^{\prime}\) oo \({ }^{\prime \prime}\). è qua notaban3.

2. An. 1683 . Die 3. Maii \(9^{\text {h }} 1 z^{\prime}\). Mars Conjunctionem celebrabat cum At Bantzick; Penultima Sella Ala Auftina Virginis, quæ modo degir in \(13^{\circ} 49^{\prime} 14^{\prime \prime}\) by M. Heveli-
 Mars infra dictam Stellam incederct.
XCVI. I. M. Burattini hath fignify'd from Poland, that he hath Obferved spots in Venus; Inequalities in Venus as in the Mcon. by \(M\). Buratt1-
2. I have at laft difoverd towards the Middle of the Bedy of Venus a ni.n. io. p.173. part clearer than the reft, by which one may Judge of the Mution, or the Venus; by \(\mathrm{N}^{\text {t. }}\). Reft, of this Planct.

The firft time L faw it, was Octob. I4. 1666. \(5^{\text {h }} 45^{\prime}\). p.m. and shen this. \(615 . n .35\). Bright part was very near the Center, on the North-fide. And at the fame time I obferv'd Weftward two obfcure Spots, fome what oblong; but I could not then fee that Refplendcit part long enough to conclude any thing from thence, nor was 1 able to fee any thing well of thofe parts till April 28 . 1667. on which Day a quarter of an Hour before Sun-rifing, If faw again a Bright part, fcituated near the Sectivn, and diftant from the Southern Horn a little more than \(\frac{1}{4}\) of its Diameter. And near the Eaftern Ring I faw a Dark and fomewhat Oblong Spot, which was nearer to the Northern than the Southern Horn. At the Rifing of the Sun I perceived, that this Bright part was then no more fo near the Southern Horn, but diftant from it \(\frac{\frac{5}{3}}{3}\) of its Diameter. This gave me great Satisfaction. But I was furprifed at the fame time to find, that the fane Motion, which was made from South to North in the Inferiour part of the Disk was on the Contrary made from North to South in the Superiour part; whence the Derermination of the Motion may be better taken: For we have no Example of the like Motion, except it be in that of the Libration of the Moon.

The next Day, at the Rifing of the Sun, the faid Bright part was not far from the Section, and diftant from the Southern Horn \(\frac{1}{\ddagger}\) of the Diameter. When the Sun was 4 . Degrees high, the fame was fcituated near the Section, remote from the Southern Horn \({ }_{3}^{2}\) of the Diameter. The Sun being high \(6^{\circ} 10^{\prime}\). it feemed to have paffed the Center, and that the Section of the Disk did cut the fame. The Sunbeing \(7^{\circ}\) high, it appeared yet more advanced Northward, together with two Obfcure Spors feated between the Seation and the Circumference, and equally diltant from one another, and from each Horn on both Sides. And the Sky being very clear, I obferved the Mution of the Bright part for \(I \frac{x}{\delta}\). which then feemed to be exactly made from South to North without any fenfible Inclination Ealtward or Wefward.

Vol. I.
li i
Mean

\section*{(426)}

Mean time I perceived in the Motion of the dark Spots fo great a Variation, that it cannot be afcribed to any Reafon in Opticks:

May 10. and 13. Before Sun-Rijing, I faw fill the Bright part near the Center Northward.

Laftly, Fune 5. and 6. Before the Rifing of the Sun, I faw the fame between the Northern Horn and the Center of this Planet, and I noted the fame Irregular Variation in the Obfcure Spots. But when Venus began to be farther removed from the Eaiti, it was more difficult to obferve thefe Pber nomiena.

It is very difficult to determine any thing of the Motion of thefe Spots: Yet this 1 can lay (fuppofing that this Bright part of Venus, which I have oberv'd, efpecially this Year 1667, hath always been the fame) that in lefs than one Dity is abfolves its Motion, whether of Revolution or Libration, fo as in near 23 Hours it returns to the fame Scituation. in this Planet, which yet happens not without fome Irregularity.
A. Place of Ve- XCVII. An. 1683.Aur.4. horâ fere 2.m. Veinus à Stella Fixa 3. Magnitud. nus, obferv'd at à Ventre Icil. Pollucis non nif1 16 '. removebatur Auftrum verfus, id quod ex. M. Hevelius. Micrometro accurate comperi.
7. 154. 7.4190
XCVIII.

Mercury objero ved in the Sun, 1<90. at Nuremberg; by M. Jo. Phil. Wurtzelbaur. M. 192. p. 483 .

Ratio Diametrorum Solis \& : Nuclei Mercurii, dum Lucido Solis Difco immorabatur, quantum per auram haud fatis defæcatam conjici poterat, erat ut

\section*{(427)}

7000 ad \(8 \frac{7}{3}\). Poftea quam ad Limbum Solis pervenerat, ejufque Limbo Un: dulanti ad Minutum fere adhæfitarat, \& genuinam Rotunditatem fuam (quæ antea ex luce Difci Solaris formam quafi Ellipticam mentiebatur) recuperarat, erat ut 1000 ad \(12 \frac{7}{3}\).
XCIX. An. 1697. Nov.3.ft.n. 7h \(25^{\prime}\) cum Sol è nubibus Emerfffet directo Mercury obfr. ad ipfum Telefcopio Differentia Afcenfionis Rectæ Centri Mercurii Occiden ved in the Sun. talis \& Centri Solis obfervata per Horologium fuit Hor.

§h 3'. Differentia Afcenfionis Rectæ Centrorum Mercuiii

Differentia Declinationis Grad.————4. 42
\(8^{h} 8^{\prime} 38^{\prime \prime}\). Margo Præcedens Mercurii pervenit ad Solis Marginein Prazcedentem.
\(8^{\text {h }} 10^{\prime} 24^{\prime \prime}\). Mercurius totus Emerfit è Solis difco Telefcopio pedum i 8 obfervatus.

Ex bis obfervationibus invicem comparatis, quantum ex hoc brevi intervallo inferri potuit, adventum Neverurii ad medium iplius femitæ in Solis Difco Trigonomstricè deduxi 6 h II \(I^{\prime}\) I \(8^{\prime \prime}\). poft Meridiem.

Nodum vero Afcondentem Mercuriz in \(\succ 14^{\circ} 42^{\prime}\). adhuc promotiorem quam per oblervationes Ami 1677.

Inclinationemsautem Orbitc Mercurii ad Eclipticam ex poftremarum obfervationum comparatione inveni \(6^{\circ} 23^{\prime}\), quam nihilominus ob breve harum obfervationum intervallum præferre non aufim ei quam ex Sinconfibus obfervationibus R. P. Fontenay longè majori intervallo diftantibus deduxi. fc. \(6040^{\circ}\). propius accedentem ad Tabulas Rudolphinas.
C. Mercurii Venerijque Sidera Solis Difcum fubintrare, ac inftar Macula-Tbe Vifble conrum N!gricantium in Lucido cjus Orbe aliquando confpici, tam ex Verioris iunfions of the Aftronomic Principiis, quam ex indubitata Obfervantium Fide, dudum com- nets with the pertum eft. Quai vero Lege, quibufve Conditionibus, quantíque Annorum Sua; by Mr. Intervallis, hæc Phænomena nobis fpectanda præbentur, nefcio ain aliquis ex Aftronomis Hodiernis ritè definiverit: Certe nihil hac de re inter Typis mandata hucufque mihi vifum eft. Quapropter non Ingratum fore arbitratus, huic Inquifirioni feriò operam dedi, ac Diflertatione hac rem maximè perplexam paucifque intellectam me plenius enucleaturum confido.

Has Planetarum Hurum Phafes femper: in Retrogradientium cum Sol: Conjunctionibus fieri, cum feil. Sol Nodis eorum adeo vicinus fit ut Planetr Soli juncti Latitudo Semidiametrum Solis non excedat, per fe fatis confpicuum eft; quo vero facilius Limites ac Conditiones barum Conjunctionum perveltigem, cumque Calculi Elementa omninò diverfi fint, uterque-Planeta figillatino traEtandus eft: à Mercurio itaque exordiamur.

Hujus Planetx Nodum Afcendentem, juxta nuperas \& accuratas Obférvationes, prope \(15^{\circ}\) Tauri, feu potius ad cs \(15^{\circ} 44^{\prime}\). à \(1 a * r\). hoc noftro feculo reperiri, pro comperto habemus. Defcendentem vero Oppoftam ad

\section*{(428)}
\(6 \mathrm{~s} .15^{\circ} .44^{\prime}\). à \(1^{*} * r\). Angulum autem quo Planum Orbitæ Mercurialis ad Eclipticam Inclinatur fatis bene fe habet apud Keplerum, viz. \(6^{\circ} 54^{\prime}\). Jam. ex probatiffimis Hypothefibus conftat Mercurii in Nodo AScendente conftituti Diftantiam à Sole effe partium 31365 , quarum media Solis Diftantia à Terro fit 100000 ; dum vero Nodum Alterum occupat, Diftantia ifta, in iifdem partibus menfurata, fit 4.5308. Sol vero Nodo, Afcendenti Oppofitus diftat à Terra eidem Juncta partium iftarum 9.8955 , ad Nodum vero Alterum cadem Intera capedo fit 101007. Arque idcirco Mercurius Soli Conjunctus ad Nodum Afcend. diftat à Terra partibus 6759 I : ad Nodum vero Defcend. partibus 55699. Quæ, cum inter fe valde difcrepent, feparatim etiam confiderandæ veniunt Conjunctiones illæ qux ad diverfos Nodos. funt, Calculi Elementis Compendis gratia Synopticè expofitis.

Cönjungatur Mercurius Retrogradus cum Sole Censraliter ad Nodum Afcendentem, Menfe Octobri; ac ex prediatis Hypothefibus babelitur.

Longitudo Solis à Prima Stella Arietis
Longitudo Mercurii ex Sole vifi
Diftantia Mercurii à Sole
Diftantia Mercurii à Terra \(\quad 6759 \mathrm{I}\)
Angulus Inclinationis Orbita Mercurii
Motus 6 Horar. Mercurii ex Sole vifi
Motus Solis in iifdem 6 Horis
Hinc Motus Mercurii à Sole, fex Horis

Et Angulus Viæ Mercurii intra Solem vifæ cum Eclipticac Motus Mercurii in Orbita fua vifibili 6 Horis
Deinde Motus Mercurii in Anno Siderio ultra quatuor Revolutiones
In Annis Tredecim itaque
Defunt itaque ad Revolutiones 54 Integras
Quod fatium percurrit Mercurius in
Quibus promovetur Solis Locus; ac \(\begin{gathered}\text { ¢ } \\ \text { in Nodo Situs tan- }\end{gathered}\) tundem diftat à Conjunctione Terra
At Arcus ifte ex Terra fectatus fit--_
Unde ex dato Angulo Vire vifo \(8^{\circ}\) I \(5^{\prime}\) provenit Bafis, five Diftantia à Conjunctione Viflbili
Qui Arcus percurritur à Mercurio juxta Horariam datam
Excedunt vero \(1_{3}\) Anni Siderii totidem Fulianos cum Intercalationibus. tribus
\(\left.\begin{array}{cccc}\text { s. } & 0 & 1 & 11 \\ 6 & 15 & 44 & 00 \\ 0 & 15 & 44 & 00 \\ & & & \\ 0 & 6 & 54 & 00 \\ 0 & 1 & 30 & 5 \\ 0 & 0 & 15 & 5 \\ 0 & 1 & 15 & 53 \\ 0 & 0 & 35 & 12 \\ 0 & 8 & 15 & 00 \\ 0 & 0 & 35 & 40 \\ 1 & 24 & 45 & 8 \\ 11 & 21 & 46 & 44 \\ 0 & 8 & 13 & 16 \\ & d . & h . & 1 \\ & 2 & 00 & 11 \\ & 0 & 1 & 11 \\ & 2 & 1 & 00 \\ & 0 & 56 & 10 \\ & 0 & 55 & 34 \\ & & h . & 10 \\ & & & 9\end{array}\right]\)

\section*{429)}
\(\mathrm{I}_{\text {taque }}\) Mercurius revertitur ad Solem poft Annos \(\begin{aligned} & \text { fulianos }\end{aligned}\) is atque infuper
Vel cum quatuor Intercalationibus, fi procedens Annus fit tertius à Biffext.
Ex arcu vero \(56^{\prime} 10^{\prime \prime}\). \& Angulo dato, fit perpendicularis, five proxima Diftantin 卒文 Sole
Iraque \({ }^{\text {q }}\) poft 13 Annos intra Solem conficuus, \(8^{\prime} 3^{\prime \prime}\). Borealius Incedit.

Pari Argumento in 46. Annis Sideriis mövetur ¥ -

Hoc eft in Tèmpore-
Quo promovetur Sol-
Hic arcus è Terra vifus fit \(\qquad\)
Binfis vero ei competens \(\qquad\)
Tempus vero quo Mercurius Bafin percurrir fit
Excedunt vero 46 Anni Siderii totidem fulianos cum I Intercalationibus
Ac Mercurius revertitur ad Solem poft 4.6 Annos Fulianos atque infuper
Vel cum duodecim Intercalationibus, ut fit.cum Annus precedens fit Secundus vel Tertius ì Biffextili-_
Perpendicularis vero quo Mercurius in Boream provehitur fit

Periodus vero maxime Accurata Mercurii ad Solem abfolvitur Annis Sideriis:263 atque infupe: - -
Hi vero Siderii fuperant totidem 7 uiianos cum 66 Intercalarionibus
Unde poft \(2 \sigma_{3}\) Annos \(\mathfrak{F} u l i a n o s\), Mercurius ad Solem revolvitur tardius vero-

Qund fi precedens Annus Biffextilis fuerit addanturPoft hoc demum Intervallum Borealius Incedit-

Cæteræ vero Periodi Latiores ex jam Inventis facili. negotio cruuntur, funtoque vel 6 vel 7 Annorum.

Quæ Septem Annis abrolvitur, Mercurium deprimie verfus Auftrum 22 : \(4.7^{\prime \prime}\), ac. Septem Dies integros, minus 9 Minutis, citius provenit, \(f_{1}\) dua fuerint Intercalationes. At cum una Intercalatione, cum ciil. Annus prios. BifeSextilis: fit, 6.dies fubducendi. funt, additis, tantum. 9 Minutis, ut prius.

\section*{(430)}

Rarius vero poit fex Annos in Solis difco confpicitur iterum Vagus ille Pla. neta, gui exacta hoc Periodo \(30^{\prime} 50^{\prime \prime}\). Borealius tranfit ; idque tardius, 9d \(17^{\mathrm{h}} 25^{\prime}\), f1 Annus précedens fit Secundus vel Tertius à Bifextili, aliter od \(17^{h} 25^{\prime}\) addendi funt.

\section*{Paiter fa fiat Conjunctio ad Nodum Defcendentem Menfe Aprili.}

Unde fequendo methodum calculi precedentis, evincitur Mercurium poft 13 Annos atque infuper \(3^{\text {d }} 7^{\text {h }} 37^{\prime}\) ad Solis Conjunctionem revolvi; quod If precedens Annus fueric Tertius à Biffextili, tunc addendi funt \(2^{\text {d }} 7^{\mathrm{h}} 3 \%^{\prime} \%^{\prime}\). tantum: ac tum Merchius \(16^{\prime} 55^{\prime \prime}\). Auftralius incedere reperietur.

Poft 46 vero Annos, cum 12 Intercalationibus addantur od 7 h \(14^{\prime}\). \&\& habebitur Mercurius Soli Conjunctus in Tramite Auftraliore \(2^{\prime} 2^{\prime \prime \prime}\). If vero Annus Prior Biffertilis fuerit, vel ab eo Primus, addendus eft \(1^{\mathrm{d}} 7^{\mathrm{h}}\) I \(4^{\prime}\).' ut habeatur accurate Syniodus. Similiter poft \(2 \sqrt{3} 3\) Annos, quibus Mercurius in Auftrum deflectitur \(0^{\prime} 22^{\prime \prime}\). Addendus eft vel id inh \(49^{\prime}\). vel in \({ }^{\text {h }} 49^{\prime}\), juxta Legem in priori Cafu præecriptam.

At Annis fex vel feptem ob viciniam Terra ac Planete, atque idcirco ob ampliatos Arcus, ad hunc Nodum non revertitur ad Solem, ut intra Difcum appareat. Poft Annos autem- 33 Solem Tranfit Viâ magis Boreali \(14^{\prime} 2^{\prime \prime}\). ac habetur momentum Conjunctionis fubducendo à Prioris tempore \(3^{\text {d }} \mathrm{ch} 23^{\prime}\). fif fuerit in Anno Tertio à Bifextili; aliter fubduc 2 d ob \(23^{\prime}\). tantum.

His Invent is facile erit continuare Calculum pro omnibus hice Conjunctionibus Mercurii cum Sole, idque cum fumma certitudine, ac fine ulla hæfitatione, an omnes polfibiles habeantur negne: Sola Additione obtinentur momenta Conjunctionum ac Diftantix Planetr à Centro Solis; unde etram ope Tabellæ depromuntur Durationes harum, ut ita dicam, Eclipfium, ut nihil fit guod in hac re defiderari videatur.

Eposhas vero quod fectat, ex tutius Obfervatorum induftria comparantur, quam calculi cujuvivis Subrilitate: adeoque elegimus in prino Cafu, notabilem illum Tranfitum Mercurii quem ipfe in Infula Sancta Felena perfectilime obfervavi, oft.28. An. 1677. St. Vet. \& cujus Mediunin ex initio \&\% Fine determinavi in predicta Infula quidem oh. \(4^{\prime}\). p.m. Londini vero oh \(28^{\prime}\). p.m.

\section*{(431)}

Semita vero qua incedere vifus eft Planeta \(4^{\prime} 40^{\prime \prime}\). Borealior erat Solis centro. In altero Cafu, viz. cum Mercurius Solí conjungitur Menfe Aprili, ex Cl. Hevelii Mercurio in Sole vifo p. 72.75. Epocham defumere placuit; nempe quod Apr. 23. An. 1662. St. V'et. 6h 8'. p. m. Gedani, hoc eft \(4^{\text {h }} 5^{\prime} 2^{\prime}\). Londini, Meicurius Solis centro proximus apparuit, utpote in medio Tranfitu, fimulque diftabat ab eodem Centro \(4^{\prime} 27^{\prime \prime}\) ad Boream. Hinc juxta præcepta præmiffa, omnes ordine vifibiles Conjunctiones Mercurii cum Sole fimul exhibere, exigui Laboris opus erat: ac in Exemplum quod cuivis in pofterum imitari licet, accipe hujus Seculi, ab invento Telefcopio, quotquot ufquam apparuere: hujufmodi Phxnomena, vel quæ etiam in fequentis Seculi pofteris apparitura funt.

Serics Momentorum quibus Mercurius Soli Conjunctus intra Difcum ejus confpicitur, per prafens ऊ̛ futurum Seculum, cum Ditantiis Planetce à Solis. centro.

APRILI.
\begin{tabular}{|c|c|c|c|}
\hline An & Temp. & & à Cent (\\
\hline & d. h. & 1 & 1 \\
\hline 1615 & \(222139 * *\) & 7 & 20 B \\
\hline 1628 & \(25 \quad 515\) * & 9 & 35 A \\
\hline 1661 & 23 4 52 * & 4 & 27 B \\
\hline 1674 & 26 I2 29 & 12 & \(28 . \mathrm{A}\) \\
\hline 1707 & 24126 & 1 & \(34 \quad \mathrm{~B}\) \\
\hline 1720 & \(261943 *\) & 15 & 21 A \\
\hline 1740 & 21 II 43 & 15. & 36 B \\
\hline 1753 & 24 19 20 * & \(\pm\) & 19. A \\
\hline 1786 & \(221857 *\) & 12 & 43. B \\
\hline 1799 & 26 2, \(34 * *\) & 4 & 12 A \\
\hline
\end{tabular}

\section*{(432)}

\section*{OCTORRI.}

Tranfitus qui figno * notantur, Londini ex parte Vifibiles funt, qui vero Signo **, toti confipici poffunt.

Notandum vero eft Solis. Diamerrum ad Nodum z x rii Afcendentem menfe octobri occupare \(32^{\prime} 34^{\prime \prime}\). atque adeo Maximam Durationem centralis Tranfitus effe \(5^{\text {h }} 29^{\prime}\), Menfe vero Aprili Diameter Solis fit \(31^{\prime} 54^{\prime \prime}\); unde ob tardiorem Planetæ Motum oritur Duratio Maxima 8h \(I^{\prime}:\) Quod fí Obliguc̀ incidat Mercurius, Durationes hæ Breviores redduntur pro ratione Diftantix à centro Solis: Quoque perfectior Calculus hic reddatur, fequentes Tabellas adjunxi, quibus exhibentur dimidiatæ Durationes harum Eclipfium ad fingula minuta Diftantix Vifx à centro Solis; qux Additx ac Sublatæ à Conjunctionis momento in priori Tabula invento, Initium ac Fincm totius Phænomeni defignant. |

\section*{(433)}
OCTOBRI.
\[
A P R 11 . E .
\]

Obfervationes omnes hucufque Habitas ritè reprefentant hi Numeri, nec eft quod dubitem de Futuris, cum ex omibus Planetis Mercurius, Soli proximus, ejus Centro ad eo vicinus fit, ut aliorum Centrorum interventu minimè cieatur, nec deviationibus illis quæ à caterorum Syitemate oriuntur, quibuf que fuperiores, profertim Saturnus, obnoxii funt, quod fentiri poffit interturbetur.
Parallaxes confultò omifi, ut perexiguas, quæque Locis diverfis diverfe obvenientes Generaliori Calculo immiferi non debent; quodque etiam quantee fint non fatis adhuc confar, fed potius ex hujufmodi Obfervatis tutillime derivari pollint: Diametri etiam Mercurii rationem non habui, quia fupra fidem Parvus perpaucula folum Minuta Limbo adhærere videtur: Ex Obfervatione accuratiflimâ deprehendi vix duo Minuta elapfa dum totus è Sole egrederetur Oftol. 28. 1677. unde conclufi Diametrum ejus \(O^{\prime}\) II', ac juxVol. I.

\section*{K k k}

\section*{(434)}
ta rationem Diftantiarum à Terra ad Nodum Alterum effe \(0^{\prime} 13^{1 / \frac{1}{2}}\) fere; adeoque tunc \(3^{\frac{1}{2}}\) Temporis Minuta infumi, dum Totus Planeta Solis Limbum Directe pervadit: Oblique vero tranfiens paulo diutius hæret, fecundum ac Secantes Angulorum Incidentix augentur. Aquationes etiam Temporis haud opus eft ut æftimentus, quia perplures dies hinc inde in utroque Menfe Conftantes ac quafi Invariate perfiftunt.

\section*{De Vifibili Veneris cum Sole Comjunctione.}

Venus, quamvis Syderum omnium fpecioffilima, more Sexus fui, fine mutuato Cultu ac Splendore affcititio in Confpectum prodire veretur: Hoc etenim Spectaculum inter Afronomica longe nobilifimum, intar Ludorum Se. cularium, integri Seculi Mortalibus invident Motuum areter Leges. Unico vero hoc obfervato, fumma cum certitudine Diftantiam Solis à Terra determinari poffe, quæ ob Pafallaxin alias prorfus Infenfibilem Vagis Terminis hucufque definita eft, polthac declarabitur. Periodos vero quod attinet, illæ non adeo Accurate ac Mercuriales defcribi poffunt, cum Vonus femel tantum ab Orbe Condito, idque ab Horroxio noftro, intra Solis Difcum deprehenfa fit: Correctis autem Motibus, quantum per Rudiores Veterum obfervationes licet, accipe jam fummam Calculi.

Longitudo Nodi Afcendentis Veneris à prima Stella Aric-
tis
Sol itaque ei jungitur in puncto oppofito; hoc eft, per hæc Secula, circa finem Novembris \begin{tabular}{l|l|l|}
Diftantia Veneris à Sole partium- & 71997
\end{tabular} Diftantia Veneris à Terra Inclinatio Orbitt Vencris ad EclipticamMotus Veneris in 8 Annis Sydercis, fupra 13 Revolu-tiones-
Motus Veneris in 235 Annis Sydercis fuprd 3 I I Revolutiones
Motus Veneris in 24.3 Annis Sydercis fupra 395 Revolutiones
\begin{tabular}{cccc}
\(S_{i}\) & 0 & 1 & \(1 /\) \\
1 & 15 & 16 & 00 \\
7 & 15 & 16 & 00 \\
0 & 3 & 23 & 0 \\
0 & 1 & 30 & \(29 \frac{1}{2}\) \\
11 & 29 & 17 & 39 \\
0 & 00 & 48 & 8 \\
\hline
\end{tabular}

Ex his Principiis, inito Calculo juxta Methodum in Mercurio expofitam, proveniunt intervalla Temporum ac Diftantiarum ut fequitur.

Poft 18 Annos Venus revolvitur ad Solem fc. Cublatis à prioris Tranfitus momento 2d \(10{ }^{h} 52^{\prime \frac{1}{3}}\). Incedit vero Planeta Semitâ \(24^{\prime} 4 I^{\prime \prime}\). priori magis Auftrali.

Poft Annos 235, Additis 2 d \(10^{\text {h }} 9^{\prime}\), Venus iterum Solcm ingredi potef, fed viầ \(11^{\prime} 33^{\prime \prime}\). Borealiori : Quod fi præcedens Annus Biffextilis fuerit \(3^{\text {d }}\) roh \(9^{\prime}\). addendi funt.

Poft Annos 243 Venus ctiam Solem tranfire poteft, auferendo tantum oh \(43^{\prime}\). à prioris Tempore ; Auftralius vero incedit \(13^{\prime} \delta^{\prime \prime}\) : Quod fi precedens Annus Bifextilis fuerit, adde \(23^{\mathrm{h}}\) I \(7^{\prime}\).

\section*{(435)}

Et in omnibus his Appulfibus Vencris ad Solem, Menfe Novembri, Angulus Vise Vife Veneris cum Ecliptica fit \(9^{\circ}\) 5': ac Motus ejus Horarius intra Solem \(4^{\prime} 7^{\prime \prime}\); cumq;Semidiameter Solis fit \(\mathrm{I}^{\prime} \mathbf{I}^{\prime} 21^{\prime \prime}\), provenit Maxima Duratio Tranfitus centri Veneris, \(7^{\text {h }} 561\).

Deinde conjungantur Sol \& Wenus ad Nodum Defeendentem Menfe Maio; ac juxta Numeros eofdem fupputantur intervalla eaden. Poft 8 Annos auferendi funt 2d \(6 \mathrm{~h} 55^{7}\), ac Venus Orbitấa \(19^{\prime} 5^{81 \prime}\). Borealiori pertranfibit.

Poft Annos 235 adde 2d 8 h 1 \(8^{\prime}\), vel fi prior Annus Biffexitilis fuerit 3 d 8 h 18'. \& habebis Venerem Auftraliorem " \(9^{\prime}\) ' ill \(^{\prime \prime}\).

Denique poft 243 Annos, adde od \({ }_{1}{ }^{h} 23^{\prime}\). vel fi prior Annus Biffextitios fuerie Id Ih \(23^{\prime}\). \&reperietur Venus iterum Soli Conjuncta, fed in tramite \(10^{\prime} 37^{\prime \prime}\). magis Boreali.
In omni ad hunc Nodum Tranfitu intra Solem, Angulus Viæ vifo Veneris cum Ecliptica fit \(80^{\prime} 29^{\prime}\); ac Horarius ejus Motus \(4^{\prime}\) oo \({ }^{\prime \prime}\); ac Solis Semidiametro fubtendente \(15^{\prime} 51^{\prime \prime}\); provenit Duratio Maxima centralis Tranfitus etiam \(7^{\text {h }} 56^{\prime}\); pracife eadem ac ad Nodum Alterum.

Quoad Epcolas; Ex Ingreffu quem folum vidit Horroxius in Sole jamjam occafuro concluditur, Venermi Soli Junctam fuiffe Londini 1639. Nov. 24d. 6h \(37^{\prime}\) : fed yerfus Auftrum incelfffe 8!.301\%. Menfe Maio vero à nemine Mortalium hucufque intra Solem vifa eft, fed ex Numeris meis quos non multum à Celo ablufuros confido, conftat Venerem proximâ vice Solem fubituram A. 1761. Maii \(25^{\text {d }} 17 \mathrm{~h} 55^{\prime}\) mediâ Ccil. Eclipff, ac tunc Diftare a Centro ejus verfus Auftrum \(4^{\prime}\) 15 \(5^{\prime \prime}\). Hinc \& ex promifis Revolutionibus facily negotio omnia hujus generis Phænomena, per Millenium integrum computavi, ut in fequenti Tabella exhibentur.

> NOVEMBRI.
\begin{tabular}{|c|c|c|}
\hline Ann. & Temp. Conj. & Dijt. à Cent. © \\
\hline 958 & \(\begin{array}{cccc}\text { d. } & h & \\ 20 & 2 \\ 20 & 53\end{array}\) & \\
\hline 1161 & \(20 \quad 21010\) & \(6.55^{*} \mathrm{~A}\) \\
\hline 1396 & 23 7. 20 & \(4 \quad 38\) B \\
\hline 1631 & \(\begin{array}{llll}26 & 17 & 29\end{array}\) & 16 II B \\
\hline 1639 & \(\begin{array}{llll}24 & 6 & 37\end{array}\) & 830 A \\
\hline 1874 & 26 I6 46 & \(3 \quad 3 \mathrm{~B}\) \\
\hline 2109 & \(29 \quad 2 \quad 56\) & \(14 \quad 36\) B \\
\hline 2117 & \(26.16 \quad 3\) & \(10 \quad 5 \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{(436)}

\section*{MAIO.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ann & \multicolumn{3}{|l|}{Temp. Conj.} & Dif & C & \\
\hline & d & & & 1 & & \\
\hline 1048 & 24 & 13 & 45 & 3 & 50 & B \\
\hline 1283 & 23 & 8 & It & 5 & 31 & A \\
\hline 1291 & 25 & 15 & 9 & 14 & 27 & B \\
\hline 1518 & 25 & 16 & 32 & 14 & 52 & A \\
\hline 1526 & 23 & 9 & 37 & & 6 & I \\
\hline 1761 & 25 & 17 & 55 & 5 & 15. & \\
\hline 1769 & 23 & II & -0 & 15 & 43 & \\
\hline 1996 & 28 & 2 & 13 & 13 & 36 & \\
\hline 2004 & 25 & 19 & 18 & 6 & 22. & B \\
\hline
\end{tabular}

Durationes harum Veiciriaxum Eclipfium quod attinet, refpectu Centri eo dem modo fupputari poffunt ac Nercuriales; fed cum Diameter Veneris fatis ampla, fit, cumque Parallaxes etiam Differentiam valde Notabiem quoad Tempus ingerere poffunt, Calculus peculiaris pro Locis fingulis neceffario fubeundus eft.

Veneris autem Diameter tanta eft; ut dum Limbo Solis adhæret, ferme 20 Temporis Minuta praterfluunt, cum fcil. Solem Directe aggreditur; Oblique vero Incidens, etiam diutius Limbo inmoratur : Uccupat autem Diameter ifta, juxta Horroxii Obfervationem \(\mathbf{I}^{\prime \prime}\) I \(8^{\prime \prime \prime}\), dum ad Nodum Afcend. Soli Jungitur, ac \(1^{\prime} 12^{\prime \prime}\).ad Nodum Alterum. Præcipuus autem hasum Conjunctionum ufus eft, Solis à Terre Diftantiam five Parallaxin cius accurate determiaare, quam quidem fruitra variis Methodis tentaverunt Aftrenomi; dum InAtrumenta quantumvis Subtilia Angulorum quxfitorum Minutix facile eludunt: At in oblervando Vencris in Solem Ingreffu \&z ab eodem Egreffu, Spatium Temporis inter Monienta Contactuum Internorumr, ad ipium Temporis Minutum fecundum, hoc eft;' ad \(i^{\frac{1}{3}}\) Minuti Secundi five \(4^{7 / 1 /}\). Arcus obfervati; ope mediocris Telefcopii \& Horologii Ofcillatorii, per 6-vel 8h accuratè fibi conftañtis, obtineri poteft. Ex duabus autem talibus Obfervationibus in Locis Idoneis debité inftitutis intra Quingintefimann partem certo concludi Selis Diftantiam proximâ Occafione commonftrabo.
Fige: 154, 155. Ne quid Obfcuri Lectoribus Afronomicè minus Doctis videretur, Schemata pro utriufque Plaxetie Tranfitu-delineavi, quibus rem oculis : fubjicere conatus fum.

The Motion of the Comet. A. CI. I M. Auzout, after he had feen the Comet (which was frrft obferved \({ }^{1664 .}\) Prediffed, in Holland Decomb. 2. 1664.) 4 or 5 times, made the Ephemerides of its Mo by M. Auzout. iton upon an Hypothefis that it moveth juftly enough in the Plain of a greas
 pros..

\section*{(437)}

Gircle, which Inclineth to the EquinoEtial about \(30^{\circ}\), and to the Ectiptick \(49^{\circ}\) or \(49^{\circ \frac{1}{2}}\), cutring the Æquator at about \(45^{\circ \frac{1}{2}}\), and the Ecliptick at \(28^{\circ}\) of Aries, or a little more.

He takes Nutice, that more Comets enter into our Syfteme by the Sign of n. 2. p. 19. Libra and about Spica Virginis than by all the other parts of the Heavens: For, both the prefent Comet and many others regiftred in Hiffory have entred that way, and confequently pafs'd out of it by the Sign 'Aries; by which alfo many have entered.
2. Till the \(6^{\text {th }}\) of \(F e b\). this Comet always advanced : but after that Day, I found that it returned in Augmenting always its Latitude. I left it Mar. 8 .

Obferved; by Mo. Auzout.. ib. at the 18. of the Horn of Aries, almoft in the fame Latitude; and I am apt to beleive it will be Eclipfed this Evening.
I. fhall only add, that on Fcb . 3- we were furprized, to fee the Comet again much Brighter than ordinary, and with a confiderable Train. Some did believc, that it approach'd again to us. But having beheld it with a Telefcope, I foon faid, that it was joyned with two fmall Stars, whicreof one was pretty. Bright, and that this Conjunttion gave the Comet that Brightnefs. Hence it was, that I affur'd my Friends here, that we fhould no more fee is fo Bright.
M. Auzout alfo ftiongly conceives, that this Comet could not be Feb. 18.n. 6. p. \(10 \%\) J. \(n\). where M. Hevelius, in his Prodromus Cometicus, hath placed it, viz, in. prima Arietis; unlefs it be faid that it vifited that Star of Aries on the 18 . and returned thence the \(19^{\text {th }}\), into its ordinary Courfe: for, according, to his, and his feveral Correfpondents Oblervations, the Comet on Fob. IT. was diftant from- that Eirft Star of Arics at lea凡 \(1^{\circ} 17^{\prime}\); and on Febe 19. (He having miffed, as well as his other Friends, the Obfervation on Fob i8) was Advanced in its way \(1.2 /\) or \(I^{\prime}\) ', but yet. Diftant from the faid Star Come Minutes above a whole Degree, and confequently far from having then paffed it. After which time.M. Auzout affirms to have feen it as well as feveral others, for many Dayes, and that until Maro 17. Obferving, that about Feb. 26 or 27 , when the Comet was neareft to the often mentioned Firft of Arics, it approached not nearer than \(50^{\prime}\).
3. Some Eminerit Englff Afronomers, who bive attentively obferved the by fome EnPofition of this comet, do joyntly Conclude, that whatever that appearance glifl Aftronowas, which was feen near the Firft Star of Aries by M. Hevelius (the trith mers. ib. p.:08.
 Comet did not come near that Star in the left Ear of Aries, where the faid M. Hevelius fuppofes it to have pafled, but took ics Courfe near the Bright Star. in its Leeft. Horn, according to Bayer's Tables.
4. I have eafly found the Principle of M. Aurout's Ephemerides: and 'tis The Princeptes of this, that this Comet moves about a Centre, in a fraight Line drawn from M.AuzoutsHy.the Earth through the Great Dog, in Co great a Cincle, that that Portion Motbetion ;afd thas : which is defcribed, is exceeding fimall in refpect of the whole Circumference Comet Olfferthereof, and lardly diftinguifhable by us from a Straight Line.

Concerning the New Cemet you mention, I obierv'd it Fob. Is. . about tire \(34^{\circ}\) of Aries, with a Northern Latitude of \(2.4^{\circ} 40^{\circ}\).

\section*{(438)}

Ibe Morion of CII. TM Antut, Ifcel 3 or 4 Obfervations, hath priblifid another E the Comet. A.phantrides dofncerning the Motion of the Comet which he firt beguin to Oti-

 n: 3 . P. 36. their Courfe. He finds the faid Circle Inclined to the Ecliptick about \(26^{\circ}\). 3", and the Nodes "whiere it cuts it, towards the Bégining of Gemini and Sinzithly ; that it Décinines from the iequator about \(26^{\circ}\). anid cutts it terwards the \(1 I^{\circ}\). and confequently that its greateft Latitude hath beernitowards \(\operatorname{Pi} i / f e\) es, and ies greateq Decination towards the \(25^{\circ} \%\) of the 痤qutor. He puts it in its Pcisgrecabout \(\mathrm{r}^{\circ}\). of Pifaes a little more Welterly then Marchach, or the Wing of Pegafus.
obferved; by M. 2. He obferves in General, that this Second Comet is contrary to the preAuzout. ib. p. cedent, almoft in tll Particulars : feeing that the former moved very wift, 37. this pretty Now; that againt the Order of the Signs from Eaft to Weft, this, following then, from Weft to Eaft ; that, from South to North, this, from North to South, as Far as it hath been hitherto, that we hear of, Obferv'd; that, on the fide oppofite to the Sun, this, on the fame fide; that, having been in its Perizee at the time of its Oppofition, this having been there, out of the lime of its Conjunction. He takerh alfo norice, that this Comot. differs in Brightnefs from the other, as well in its Body, which is far more Vivid and Dittinct, as in its Train, whofe Splendor is much greater, fince it may be feen even with great Tetefcopes, which were ufelefs in the former by reafon of its Dimnefs.
is comer. An. CIII. I. An. 1668. Mar. IOd. Ih. of the following Night, (after the 1668. at Bono-Italian way of counting) I obferved a Path of Light extended from the Whale na job Mo through Eridanus' which 1 judged to be the Irin of a Coitict both by the Caffini. 12. \({ }^{35}\). Figure and Colour, as alro becaufe that the Direction of it was to the part oppofite to the Sun, like other Cométs. By its extream Point it reached to that Star in Eridanus, which is call'd the 14. by Bayerus: But it iffued out of the Horizontal Clouds, fo that I thought the Head of the Comet was either vailed by them, or hid under the Horizon. Mar. 11. there was feen a Brightnefs in the Irvale, amongft the thin Clouds, at leaft for half an Hour, which was very like the Splendor of Vonut, likewife vaild with thin Clouds.

Mar. 12. when the Great Dog was in the Aidheaven, the fame Tail appear'd again. It paffed through the Star in Eridanus, which Bayerus calls the 15. and left to the Southward the 14, where it did terminate Mar. 10. Being by the Imagination drawn out to about \(3^{\circ}\). and further, it tended to that Southern Star which preceeds the Ear of \(\mathcal{L}\) cpus. "It was therefore more Northerly than the Day before Yefterday, and more Eafterly. We were doubtful whether its head was hid by the Clouds or under the Horizon. But the Line from Jupiter to the Extremity of the faid Tail in the Clouds was Perpendicular to that Tail; fo that it was in the Whale, and the Apparent part of the Train reached out in Length about 320.

\section*{(439)}
2. Mar 5. f. n. The Comet was firt difcovered : but for as much ist Lisbon; by as it fet few hours ifter the Sun, there could hitherto be taken' no Confidera-- ..ib. p. 684. ble Obfervations of it. The Body thereof is not feen, becaule it' remains hid: in the Horizon. Its Train is of a Stupendious.Length; exténded in Appearance over almoft the \(4^{\text {th }}\) part of the Vifible Heaven, from Weft to Eaft; its apparent Breadth is of a good Palm, and its Splendour very great, but it Lafts but a few hours.
3. At St. Salvandor Mar: 5: (\(\beta\). n. n.) at 7 a Clock at Night, F. Efancol began to fee this Comet a little abovie the Horizon from Weflito E. S. E. The p. Valentine
 \(16^{\text {th }}\) of the Whale's Back, over which it then pafled, its Point being P . 9 r. as 'twere at the 8 and \(9^{\text {th }}\) which are in the Bottom of the Whale's Belly; and thus the whole Length thereof was about \(2.3^{\circ}\). The Globe or Head of it was fo fmall and thin, that very few could difcern it with the Naked Eye.
Mar. 7. The furmer Brightnef's was fomewhat lefs, and become fo Thin, that the Eye could eafily lee the Stars that were behind it, which by Conjecture were the \(\mathbf{1} 4 \mathrm{~h}\) and \(20 \mathrm{ct}^{\mathrm{h}}\).

The Tril was always directly oppofite to the \(S_{u n}\); and when it appearld the firt time almoft Horizontal, it was feen in the form of a Pillar; the Head ftanding a littie under, and on the fide, of the Star of the Whoale, which is in the Lat. of \(15^{\circ}, 46^{\prime}\). and the Long. of \(122^{\circ} .4 .2^{\prime}\). of Aries. And the Point did fhave the \(14^{\text {th }}\), North of the three that are in the Belly, in the Lat. of \(20^{\circ}\). \(30 \%\) and Long. of \(150.57^{\prime}\). of Aries.

This Comet was at firt very Splendid, and caft it felf with that Vividnefs upon the Sea, that the Rayes thereof were reverberated unto the Shoar, where the Obfervers ftocd. But this Brightneff lafted only for 3 Days, after which it did confiderably Decay. But that which feemed fomewhat fltrange was, that having loft to much of its Light, yet its Bolk was not dintinifihid, but continued rather increafing until the Comet diffippear'd. It pais'd morefwiftly than Venus, whence he infers that it was under Venus; ; yet the Anticipation was not fo great, that it could be beliey'd to be under the Moon, as he would have it.
4. P. Pietro Sufante, Rector of Macne, in the Eaf-Indies, well verfed in \({ }^{T n}\) Africa; by. Matters Affronemical, writes to have feen the fame all alongy the Coalt of Bona \({ }^{P}\). Pitee ibro SuSperaniza.
CIV. There hath been feen here a Neiv comet from the 2. of Mar. \(\mathrm{fA}_{1} \mathcal{A}\) comer A . n. 167 I . It is but little, having a Train not above a Degree or a Degree and an \({ }_{\text {zick }}^{167 t^{2}}\) at Danthalf long. It is now (Mar. 9..) about the Stars in the Right ATm of \(A n\) - Hevelius.n.8r. dromeda on her Shoulder Blade. As far as I can collect from one or two P. 40 r 7 . Obiervations, it tends towards the Lucidd of Avidromedh's Girdile, and that with a Direct Diurnal Motion of about two degiees in its Courfe.

The 6 of \(M\) arcl in the Evening \(7^{h}\). \(40^{\prime}\). it was in \(7^{\circ} . r\). and in \(35^{\circ}\) of Northern Latitude; as I guefs'd by the hafty Infpection of a Globe

Mar. 7. in the Morning \(3^{\text {h }} 30^{\prime}\) 'is Longitude was about \(80 r\). with a fomewhat leffer Latitude than before: in the Evening of the fame day ir's. Longitude was \(10^{\circ} r\). and Lat. \(34^{\circ}\). fer it.

\section*{(440)}

Mar. 8. in the Morning 4 h the Long. was \(12^{\circ} . r\). and the Lat. \(33^{\circ}\) Which yet I would not have taken precifely, becaufe I cannot yet reduce my Obiervations to a Calculusen
-At .. .byl Mr. 2. Mr. IJanc Nemtonabout the i6 of March f. V. Faw a dull Star South-Weft Newton. ib. P. of Perfeus, which be now takes to have been that Comet. It was very fmall,
4019 . and had not any Vifible Tail, which made him regard it no further.
At Paris; by 3. The Matiomaticianis of \(L a\) Flefche perceived him from the 16 of Marcho
 82. p. 4042 . Clermont being advertifed of it, Giw him the 25 of the fame Month.

Mar. 26. \(7^{\text {h }} 30^{\prime}\) in the Evening, M. Caffini faw him between: the Head of \(M\) cdufa and the \(P\) leiades. ; without a Telelcope he appeared no otherwife than a Star of the \(3^{\text {d Magnitude ; His Head, feen with a Telefcope of } 17}\) foot, appeard almoft Round; but it was well defined, and diftinguifht from the miftinets, which formed a kind of Cbevelure, wherewith it was encompaffed.; and even the middle was a little confured, and feemed to have Inequalities, as are feen in Clouds.

The Tayl was almoft imperceptible; yet by the Telefcope it was feen turned Oppofite to the Sun, and it appeared of the Length of two Diameters of the Head or thereabout: For it was not eafie to meature it precifely, becaufe being Thinner according as it was farther from the Head, its Extremity was infenfiblyoult. And fo the whole Comet, Head, Tail, and Chevelure, taken altogether, took up no more then 3 or 4 Minutes of a Degree. At 7 h . 4. \(8^{\prime}\). he was in a ftraight Line with the Lucida in the Hcad of Medufa, and with the moft Occidental one of the Plciades; and above the two Cleareft Stars of the Soutbern Foot of Perfous; fo that a fraight Line drawn through thefe two Stars, did almoft touch the Southern extremity of his Chevelure. This Place of the Comet, transferred upon the Map of the Fixt Stars, fell precifely enough upon \(23^{\circ} 25^{\prime}\). of Taurus, in \(14^{\circ}\) Northern Latitude.

With a Telefcope of 3 foot, we faw near the Comet two fmall Stars, diftant one diameter of the Sun from one another, which Stars are not in the Catalogues. The Comet was in the Straight Line, drawn from one of thofe two Stars to the other precifely at \(9^{\mathrm{h}} \quad 15^{\prime}\). but a little nigher to that which was Weftward: But \(9 \mathrm{~h} 33^{\prime}\). he was equally Diftant from them both. It was taken notice of that from \(8^{\mathrm{h}} 5^{\prime}\). till I \(0^{\text {h }} 25^{\prime} \mathrm{He}\) made, in refpect of thefe two Stars, an oblique Motion fenfible enough, going from North to South in the fame tine that he advanced from Weft to Ealt.

Mar. 28. \(7^{\text {h }} 42^{\prime}\). in the Evening the Comet was diftant from the lefs bright Star of the Soutbern Foot of Perfeus, no more than about \(24^{\prime}\) Weftward. He had almoft the fame Latitude with this Star; fo that he was precifly enough at \(2608^{\prime}\). 8 , and in the Lat. 120. \(8^{\prime}\). At 8 h. \(14^{\prime}\). we took, as well as we could, the Diftance of the Comet to the Star in the Eye of Taurus, called Aldebaran, \(19038^{\prime}\). And \(8 \mathrm{~h} 29^{\prime}\). the diftance of the comet to the Star, called Capella, wasfound to be of 22032 .

\section*{(441)}

Mar. \(30.9^{11} 35^{-1}\). at Night the Comet, feen without a Telefoope, af:peared no otherwitc than a Star of the \(4^{\text {th }}\) Magnitude : through the Teleicope he exceeded even thofe of the Firlt; but he was very Dark, and in what manner loever we look'd upon him, we could Obferve almof no Tail at all of him. He had paffed one Degree and an half beneath the Lucide of of the Southern Foot of Perfeus; fo that this Star was exactly in the midtt of the Comst and the little Star of the Leg of Perfous, marked n by Baycrus, which the a we faw not but by a Telefcope. A Straight Line drawn from one of thefe Stars to the other, did almoft touch the Southern Limb of the Comet, which being transferred upon the Map of the Fixt Stars, fell upon \(28045^{\prime}\) of Taurus in the Northern Latit. of \(9^{\circ} 56^{\prime}\). At \(9^{h 1} 45^{\prime}\). the Weftern. Limb of the Comet touched a Straight Line, drawn through this lefs bright Star of Perifeus's Soutbern Foot and through the moft Northern of the Head of Taurus ; but that he was already got fomewhat nearer to the Latter.

Mar. \(318^{\text {h }}\). in the Evening, the Comet was in a direct Line with the Iucidn in the Foot of Porfous, and with the moft Northern in the Head of Taurus ; but he was more than twice as much remoter from the firf than the other, and being transferred upon the Map of the Fixt Stars, he was frund at \(15^{\prime}\). from Gomine, in the Latit. of So \(49^{\prime}\). During the whole time that we could obferve him this Night, (which was till 1 o a Clock) he quitted hot this Straight Line, which was almoft parallel to the Horizon : notwithitanding that his own particular motion thould raife him a little above it; as the Parallas, on the contrary, fhould fink him beneath it in approaching to the Horizon. It may be, there was a compenfation made of thefe two contrary Motions : polibly alfo the effect of both was not fenfible.

April I. The Comet could not be feen without a Telefcope, becaufe the Moni, bcing very near it, hid him from our fight. But with a Telefcope only of one foot we difcerned him eafily enough, and found that he had paffed \(45^{-1}\).beyond the moft Northern Star of the Head of Taurus, and that he muft have touch't it by his Southerr Limb ; as alfo that he was Diftant \(1^{\circ} 43^{\prime}\), from the Star that was neareft to that toward the South; which is equal ly Bright, yet not marked by Bayerus. This place being transferred upon the Map of the Fixt Stars, we found that he was at \(1^{\circ} 3^{\circ}\) of Gomini, in the Northern Latit. of \(77^{\circ} 44^{\prime}\).

April 2. 8h. in the even, M. Caffini, having obferved the Comet with-a Telefcope of one foot, which difcovered \(5^{\circ}\). found that he was two, Deg. and an half Diftant from the moft Northern Star of Taurus; and one Deg. from the Star of the Ear marked o by Bayerus, and by Tyoto called Sequentio Lateris Borea.

Two Lines drawn from the moft Northern Star of Taurus, one to the Comet, the other to the Star that is wanting in Baterus, made a Right Angle; and the Diftance of the Comet to this Angle, was dotible to that which is between theef two Stars. This Place transferred upon the Map of the Fivs Stars, fell on \(2048^{\prime}\). of Gemini, in the Northern Latit, of \(60^{\circ} 40^{\prime}\).

Apr.3.9h. we faw him with the one foot Telefcope. Lhe had palfedover the Upper Star of the Ear of Taurus, and he made with this Star the Banis of an IJoficles Triangle, on the Top whereof was the Inferior Star of the

\section*{(442)}

Ear. The two Sides of this Triangle were two tinnes and an half bigger than the Bafis; fo that the Comet was \(4^{\circ}\) of Gemini, in the Northern Lat. of \(5^{\circ} 3^{8 \prime}\).

Apr. \(5.8^{\mathrm{h}}\). at cven, the Comet had paffed the Northern Ear of Taurus, and was equally Ditant from the Upper Star of the Northern Ear and from that which was on the Front of Tnuruus. He was alfo as Diftant from the Inferior Star of the Ear of Taurus, as , this Star is from the next Weeftward, by Ty cho called Inferior pracedentis Lateris Quadrilateri ; and a Streight Line, drawn through the Comot and the Upper Star of the Ear, made an almoft Right Angle with another Line, drawn from the Comet to the Inferior of the two fmall Stars, that are above the Eye of Taurus. This Place being carried over to the Map of the Fix: Stars, the Comet was found at \(60.18^{\circ}\). of Gemini, in the Northern Latit. of \(3^{\circ} 4 \mathrm{r}^{\prime}\). He was fo confufed this Night, that even with the 17 foot Telefcope we could not exactly diftinguifh the Head from the Cbevelure which environed him. The whole appearced a little bigger than the Difque of Fupiter, feen by the fame Telefope.

Apr. 6. 8h. at even, a Streight Line drawn from the Comet to the Star that is in the Front of Taurus, made a Right Angle with another Streight Line drawn from this fame Star to the Inferior of the two that are above the Eyc: And the Diftance of this Latter Star to that of the Front of Taurus was twice the Diftance of the fame Star of the Front of Taurus to the Comet. This Place being transferred upon the Map of the Fixt Stars, the Comet was found at \(7 \circ 25^{\prime}\). of Gemini, in the Northern Latit. of \(2^{\circ} 45^{\prime \prime}\). At \(9 \mathrm{~h} .6^{\prime}\). we faw on the fide of the Comet a Star fufficiently clear, which was not farther Diftant from him than a little more than the Diameter of the \(C\) cmet, and that was at the fame height of the Horizon.

Apr. \(7.9^{\mathrm{h}}\). in the Evening, the Comet was equally Diftant from the Inferior Star of the Northern Ear of Taurus, and from the Superior of the root of the Northern Horn. He was alfo as far Ditant from this latter Star, as this Star is from that of the Front. This Place, being carried over to the Map of the Fixt Stars, fell on \(8^{\circ} 30^{\prime}\). of Gemini, in the Northern Latit. of \(1^{\circ} 5^{\prime}\).

All the Places of the Comet, that we have Oberved till now, fall into a Line little differing from an Arch of a great Circle, which cuts the Eclip. tigue in \(10^{\circ} 45^{\prime}\). of Gemini, and which confequently hath its greatef Latitude in \(10^{\circ} 45^{\prime}\). of Pifces; which Latitude is between \(39^{\circ}\) and \(40^{\circ}\) Northward. The fame Circle cuts the Aquator at 101 degrees of the Vernal Seation Eaftiward, and ats greateft Declination from the Equator Northward is of \(3 \rho \frac{1}{2}\).

Having chofen two of our Firlt Obfervations (becaufe the latter are not fo proper for this purpofe) and having taken a Mean between the firf Obfervations of the Matbematicians of La Flefche, we found, by Our Method explained in the Theory of the Comet of 1665 , that this \(C_{\text {omet }}\) had been in his Perigec the 12. of March at 8 a Clock in the Morning : that in that time, which is that of his greateft apparent Celerity, be made about \(2^{\circ} 32^{\prime}\) 2 day in the Great Circle of his apparent Motion, and \(\frac{444}{10000}\) of his Perigee Diftance in the Line of his Equal Motion : that he was in his greateft

\section*{(443)}

Declination the IIth, and 12 th of March; and that at that time, he paffed through the Inferior Meridian at about two a Clock after Midnight.

If we have rightly determined his Perigee, and that the Hypotiofis of the Equality of his Motion be Jult for that time, he hath been vifible fince the Middle of February, at which time he was as far Diftant from his Perigee by Approaching to the Eartl), as he is at the prefent by Receding from it. He mult then have been at the extremity of the Sou:bern Wing of the Swan, and arrived at the Soutiorn Foot of Pegafus on the 23 of Febr. of the fame bignefs that he was havefeen to be of Mai.28. He mult have arrived at the Stars of the Nortbern Arm of Andromeda Mar.9; at thofe of her Girdle, 12. When he was in his Perigec, and in his grealeft Declination; to her Southern Legg, Mar. 15; between her Southern I.cgg and the Triangle, Mar. I.Y. very near as he was obferved at La Ficche; and under the Hend of Medufa; Mar. 25. The days enfuing he mult have arrived at the Places marked in our Firlt Obfervations: But in the laft he hath been fivifter than this Hypothefis will bear. To reprefent theie latter Obfervations, the Line of the Motion ought to have been made Curve, as we did for the end of the Apparent Motion of the Cemet \(1665^{\circ}\) with this difference, that inftead of that Lines being Convex in regard of the Earth, becaufe the Motion was Retrograle, this was to be made Concave towards the Earth, becaufe that the Motion of this Comet is Direct.
l's a thing worth Obferving, that this Comet keeps his Courfe almoft like that of the 2. Comet of 1665 , and of another of \(157 \%\), oblerved by Tycho. For they have paffed thrughalmoft the fame Conftellations; though this be more Inclined Northward, and cut the Ecliptick 5 or 6 degrees more forward than that of 1665 . So that it feems that in this Place of the Heavens there is, as 'twere, a Zodirque for Comets.

CVr. I. Comatam novum D. Remer primitm advertit 28. April. At. n. 1. 1677. A Coms. A.
 nem accepimus \(12022^{\prime} 10^{\prime \prime}\). Judicavi eum fuiffe in Verticali declinante by M. Caffinio Ortu ad Septentrionem \(33^{\circ}\). circiter. Die 29 manè, momento per nubes à D. Picardo vifus oft, \(3^{\frac{h}{3}} 9^{\prime} 3 \mathrm{I}^{\prime \prime}\). p. m. n. in Altitudine \(4^{\circ}-39^{\prime}\).

Die 2 Maii manè, Afcenfione Rectâ Medii Coeli ex Fixis exiftente \(267^{\circ}\), Altitudo Cometre erat \(4^{\circ} 5^{\prime}\). Diftantia Verticalis à Seprentrione ad Ortum \(42^{\circ} 8^{\prime}\). circiter. Die 4 manè \(j^{h} 30^{\prime}\). p. m. n. Altitudo Comete fuir \(5^{\circ} 33^{\prime}\). Diftantia Azimuthaizs à Sept. ad Ortum \(42^{\circ} 32^{\prime}\). circiter.

Die \(5 \cdot 3^{\mathrm{h}} 32^{\prime}\). Altitudo Cometw fuit \(5^{\circ} 10^{\prime}\). Diftantia Azimutbalss is Septent. ad Ortum \(44^{\circ}\) 10 \({ }^{\prime}\). circiter.

Obfervationes quæ habitx funt, Iniio Comelam repontant in Triangule, poftremò prope Caput Medufe, oftenduntque Cometam procedere fecundun Signorum Seriem per Lineam proximam, ¿̨ fere Farallelam, Ilii quam déficiipfit Cometn An. I590. Menfe Fel. Magniudu Capitis, vifi Telefopio, videbatur ferè æqualis Fovis Difco, aut paulo mintus; nec perfectë Rotundum apparebat, fed Figure Ovalis, longiore Diametro Horizonti parallelo ; quod Refractioni Horizontali videtur tribuendum.

Coma cjus, Telefcopio vifa, Latior, \& ferme Parabolica; Ntido autem Oculo Angufta, \&r parum Inflexa ad Occafum, videbatur.

\section*{(444)}

At Dantzick; 2. Prodiit hifce diebus Sidus Crinitum, quod ptimâ vice hic Gedans by M. Heveli- die 27. April. manè animadverfum fuit. Die 29. Apr. Oriebatur vel potius us. ib. p. 869 in Oculos incurrebat, \(1^{\text {h }} 52^{\prime}\), Mefaquilonem verfus (b. c. N. E. b. N.) Capite quidem haud adeò Amplo, fed tamen fatis Splendido, ex unico Nucleo claritimo compofito, ad inftar illius An: 1665 . confpecti. Caudam Lumine notabilem radiis divaricatis fuefüm verfus, duorum ferè graduum, exponebat. Linea Directicnis continuata Cauda inter Alamac, Lucidum fc. Pedem Andromedis, ejufque Cingulum incedebat, \& quafi Diftantiam harum Stellarum in duas æquales partes fecabat. Verfabatur eo tempore fupra Caput Arietis in Trinngulo, inter Apicem \& Borialiorem in cjus Bafi, nempe in \(5^{\circ}\) Tauri, \(\& \Sigma\) in Latit. Igo Bor. Diftabat hoc tempore à Sole fecundum Longitudinemtantummodò \(5^{\circ}\). Suo Circulo verò Maximo \(2 c^{\circ}\). Hincque cum aded vicinus hic Cometa extiterit Soli, haud potuit Longiorem Caudam, utut meâ opinione reverà longè prolixiorem habuerit, oftendere, imò ut puto proximis diebus aliquanto adhuc Breviorem oftendet.

Apr. 30. Deprehenfus eft in \(9^{\circ} . ૪: \&\) Lat. \(188^{\circ}\). Bor. totidemque ferè̀ Sole exiftente in \(12 . ४\); Caudam rurfus duorum grad. \& aliquanto Longiorem, ad Borealiorem in Bafi Trianzuli extenfam (qux Stella planè in Cufpide Cauda per Tubos optime confecta) exhibebat.

Die I. Maii \(2^{\mathrm{h}} 32^{\prime} . \mathrm{m}\). in \(1^{\circ}\). ४. repertus eft, fub Latitudine Bor. I \(8^{\circ}\); in ipfa propemodum Conjunctionc Sülis, totidem quoque gradibus à Sole diftans. Caudam adhuc fatis Lucidam referebat, fed pauloBreviorem, utut Latiorem, quam ad Lucidum Pedem Andromede exporrigebat.

A Die 29 Apr. quâ primim à me Obfervatus, ad hunc ufque Diem \(I_{0}\). Maii, Motu Proprio propemodum \(5^{\circ} 30^{\prime}\) abfolvit.

Quantum ex hifce Obfervationibus conjicere poffum, fertur Mota Directo ad Siniftrum Pedem Perfoi, fupra Taurum, ad Pedes Gominorum, fi eo ufque perdurabir. Nodus Defcendens verfatur circa 200. Geminorum,. (fed ruaiter id tantummodo refero) atque fic ibidem Eclipticam pertranfibit, fietque tum Meridionalis fub inclinatione Orbitæ \(27^{\circ}\) feré.

Die 2. Maii vefp. Sh \(45^{\prime}\). etiamfi ea in parte Coli nullæ adhuc Stellæ emicarent, intenfumque Crepufculum exifteret, nihilominus Ccmetam Tubo Optico protinus inveni. Paulo poft, illum in Altitudine \(3^{\circ}-30^{\prime}\). deprehencii : Caudam referrebat, ratione Crepufculi, valde Tenuem, quam inter utrumque Genu Cafioper, proprius tamen Siniftro, exporrigebat: occidebat eâ V efp: ich Circium verfus (b.c. N. N. W.)

Die 3. Maii mane, Cometa oriebatur Boream verfus (b.c. N. N. E.) ah \(23^{\prime}\), quanquam Cauda paulò citius à nobis detecta, nempe \(1^{\text {ha }} 18^{\prime}\). Verfabatur in 140. , cum Sole feré in ipfa Conjunctionc, Latitudinem habens \(17^{\circ}\) \& tantam etiam Diftantiam fere ab ipfo Solc. Caudam hâc die longé Prolixiorem \& Accuratiorem fatifque fplendidmm, \(2^{\circ}\) vel \(3^{\circ}\) fere, oftendebat. Hincque à me aliifque Spctatoribus vifu pollentibus nudo oculo ad \(3^{\text {h }} 34^{\prime}\) depre. henfus eft, \& Telefcopio ad \(3 \mathrm{~h} \cdot{40^{\prime}}^{\prime}\). in Altitudine \(11^{\circ} 30^{\prime}\). adeo ut Sol eo tempore tantummodo 6o. infra Hori zontem lateret, imo diutius illum vidiffemus, nifi nubeculæ illum nobis eripuiffent. Motus Diurnus decrefcere videbatur, quantum conjectura abfqque omni calculo affequi potui : Nam
inter. 29 \& 30 April. \(2045^{\prime}\) fere extitit ; inter 30 April. \& I Maii 20 \(15^{\prime}\); inter + \& 2 Maii \(1055^{\prime}\); inter 2 \& 3 Maii \(1^{\circ} 40^{\prime}\); fed ipfo Obfervationes calculufque id clarius oftendent. Die 4 Maii vefp. Aëre admodum fudo, \(8^{\mathrm{h} .} 53^{\prime}\), iterum Cometa detectus, fed Obfcurior paulo extitit quam diebus precedentibus, tum Cauda Brevior. Die 5 Maii mane \(1^{h} 4 \mathrm{I}^{\prime}\). Caudam Dextrum Genu Caffop, verfus exponens, verfabatur in \(17^{\circ} \delta\), in 160 Latit. Bor. pariter in tanta Diftantia à Sole. Motus Proprius à Die 3 ad 5 Maii fuit fere \(2^{\circ} 40^{\prime}\), decrefcente Latitudine, ab ipfo Initio fcil. fere ad \(3^{\circ}\). fic ut à 29 April. Motus Proprius Comete ad 5 Maii propemodum fuerit 12. Die 6 Maii mane commorabatur in \(18^{\circ}\) O, \& Lat. Bor. \(15^{\circ} 30^{\prime}\). Sole exiftente in \(17^{\circ} \gamma\); Motus Diurnus crat \(50^{\prime}\) circit. Quoad Caput, quam Caudam multò Tenuior ac Debilior videbatur, ob Solcm non nifi \(160 \frac{7}{2}\) à Cometa Remotum. Die \(6 M_{\text {aii }}\) vefp. vifus quidem Tubo optico 8 h \(35^{\circ}\) Cnuda adhuc Breviori \& Dilutiori ; fed cum in Decliviori Situ, atque in Crepufculo intenfo exifteret, nullo modo diftincte in Nudos incurrebat oculos.

Die 7 Maii deprehenfus primùn \(2^{\text {h }} 22^{\prime}\). in Alt. \(3^{\circ}\), utut valde Tenuis vio deretur. Occupabat en tempore \(19^{\circ} 8\), in Lat. \(15^{\circ}\). Bor. \& Diftantia à Sole \(16^{\circ}\) feré, Sole exittente in \(188^{\circ}\) 万; Motus ejus Proprius magis magifque decrefcebat, quantum colligere abfque calculo dabatur. Die 8 Maii mane abHor. I. Cedulo nudis quæfitus eft oculis, fed nufquam apparuit: Telefcopio tamen 12. ped. inventus, Caudam quidem adhuc prox fe ferens, fed Brevifimam, paulo à circulo Verticali finiftram verfus extenfam. Quantum conjectura affequi potui, verfabatur in \(20^{\circ}\) ช , in Diftantia à Sole \(15^{\circ}\), qui tum \(19^{\circ}\) ర polfidebat; ftabat fere hoc tempore in linea recta cum Humero Dextro Perfei \& Algol Medufe. Diameter Cometc, ad Fovis Diametrum comparata, vix ad dimidiam partem accedebat. De reliquo, Tubi beneficio fatis eratadhuc confpicuus, adeo ut eum ad \(3^{\text {h }} 45^{\prime}\) diftinctè confpicere potuerimus, in Altitudine foil. \(9^{\circ}\) ferè: unde colligere datur, Arcum Vifionis vix \(5^{\circ}\) tum fuiffe; Sol enim vix \(5^{\circ}\) fub Horizonte hærebat, quo tempore omnes jam Stellæ, excepto unico Fove, evanuerunt. Die 8 Maii vefp. Cometam nec nudis oculis, nec ullo Telefcopio, detegere amplius potuimus.
3. The firft certain notice I had of this Comet was on Apr.2I. The 22 of \(\mathcal{A t G r e e n w i c h ; ~}\) Apr. at about 2.a Clock after the Midnight following, I faw the Tail raifed by Mr. Flamalmoft perpendicular to the Horizon; foon after the Hend appeared through a thin Vapour, from which the Tail pointed, as near as I could guefs, upon the \({ }^{*}\) in the Knee of Caffiopeir, its Length being about 6 Deg. and Breadihs at the Top about 7 or 8 Min . Viewing the Head with a Telefcope of 16 Foot, I found it was not perfectly Round, but Indented, and not near one Min. Diameter: Afterwards I haftened to Meafure its Diftances from fe. veral Fixed.Stars, which were as follow.

\section*{\(\left(44^{6}\right)\)}
\begin{tabular}{|c|c|c|}
\hline h.
\[
24400
\] & It's Head and the Foot of Androm. Alamecl- & \begin{tabular}{|ccc}
\(\circ\) & \(\prime\) & \(\prime \prime\) \\
11 & 26 & 0
\end{tabular} \\
\hline 2. 4715 & That Difance repeated & 112650 \\
\hline 2553 & Its Head from Capella- & 3115 \\
\hline 25910 & - repeated & \(31 \begin{array}{lll}1 & 1 & 24\end{array}\) \\
\hline \(3 \begin{array}{lll}3 & 12 & 2\end{array}\) & Its Head from Alyol in Medufa' & 88564 \\
\hline 32122 & from Mirac & \(1935 \quad 0\) \\
\hline 32754 & from Alamech ag & \(\begin{array}{lllll}11 & 33 & 30\end{array}\) \\
\hline 33620 & --from Capella agai & \(30 \quad 5945\) \\
\hline
\end{tabular}

At \(3^{\text {h }} 2:^{\frac{1}{2}} \mathrm{p} . \mathrm{m}\). the height of the Comict was about \(5^{\circ \frac{1}{2}}\), therefore the Diftance of the Head of the Connet from Algol corrected by refraction, So 19'. from Miracls \(\quad 19 \quad 3^{-1}\)
And admirtisg with M. Heoclius the Place of Mirach now in \(r\). 21040 34'. with North Latieude \(25057^{\prime \prime}\). its Diftance from Algol will be \(23^{\circ}-42^{\prime}\) \(40^{\prime \prime}\). and the Place of the Head of the Comet in \(8.140^{\circ} 48^{\frac{15}{6}}\), with North Latitude \(17^{\circ} 8^{\prime}\).

At \(3 \mathrm{~h} 28^{\prime}\). I State the correct Dittance of the Come's Head from Capella 310 00'; from Alamock \(11040^{\prime}\); and therefore its true Place in \(\gamma .14^{\circ} 50^{\frac{2}{2}}\), with North Latitude \(1706125^{\prime \prime}\) : agreeing very well with the Place derived from the former Diftances from two other and different Stars.

The Tail was not, it feems, directly Oppofite to the Sun: for the Sun's Place was now \(\gamma .13^{\circ} 7^{\prime}\); but the Comet being in \(14^{\circ} 47^{\prime}\). of the fanie Sign, that is \(1^{\circ} 4^{\prime}\), in the Confequence of the Sun, the Tail ought, if it had been exactly oppofite to the Sun, to have lain in Confequence of the Head; but the Knee of Caflopeia is now in \(\gamma^{\prime} 13^{\circ} 24^{\prime}\). in Antecedence of the Comet, whofe Tail lay not therefore in Confequence, but in Antecedence of the Line paling through its Head and the Sun, at about an Angle of \(10^{\circ}\).

Next Night, being that following the 23 of April, about \(\frac{3}{4}\) of an Hour after two, its Tail appeared much fhorter than lalt Morning: At \(2 \mathrm{~h}: 51^{\prime}\). its Head was from Mirach \(21^{\circ} 9^{\prime}\). Hence and from a Courle of Obfervation of it fent me by an ingénious Friend, I found its Motion was Direct, and its Latitude Decreafing.
\(A\) comet. An. CVI. Nuperum Cometam Obfervavi primum m. ante Solis Ortum, à Die 2. 1680. at Dant- ad 4. Dec. An. 1680 . deinde vefp. à 24 Decemb. ad N. Fuinoctium Vernum. Mazick; by M. Ne
Hevelius. \(P b\). ne verfabatur in \(\bumpeq\), \& Mu. fub Latit. Auftrali. Vefperi vero in W, wn, \(\forall t, r\), \& Hol. \(n .3 .1 .65 . \bigcirc\). fub Latit. Bor.

A Comet. An. Y K82... at Dant-
sicks by M. zick ; by M. Hevelius.
ク. 143.p.16.
CVII. Plurimas diftantias à Fixis, tum Altitudines Nuperi Comet.e Meridia--nas, Impetravi : quas autem omnes hic recenlere rimis longum foret, nec vacat eas rigidiori Calculo fubjicere. Sufficiat hac vice dixifle Cometam hunc hic Gedmi Die 25Aus. It. n. I682. primum detectum, atque à Die 26.Auz. ad I7. Septemb.

\section*{(447)}

Septemb. debite à me obfervatum effe. Qua via autem, qua velocitate, fub quo Angulo Orbitx \& Ecliptice progreffus fuerit, ex adjecta Tabella patet; quam tamen (quod fcias velim) non ex accurato Calculo, fed ex Globo tantummodo Laxiori ratione concinnavi.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Mens. \\
dics.
\end{tabular} & & Long. Cometic & Lat. Cometa & Motus in Pro. Orbit. & \\
\hline Aug. 26 & 3 ○ Mat. & & - 1 - Bor. & & \\
\hline Aug. 27 & II \(\mathrm{I}^{\text {a }}\) & \(\Omega\) & 2330 Bor. & \(10 \%\) fere & \\
\hline Aug. 28 & \(\longrightarrow V_{c} /{ }_{p}\). & & & & \[
5.35
\] \\
\hline Aug. 29 & - Vesp. & & & & \[
\begin{array}{ll}
5 & 35 \\
5 & 41
\end{array}
\] \\
\hline Aug. 30 & 330 Man & 180 & 2520 Bor. & 1320 & \\
\hline Alug. 30 & 9 ○ Vclp. & 2200 & 2540 Bor. & 330 & \\
\hline Aug. 31 & \(330 \begin{array}{ll}3 & \\ 3 & \\ \text { an. }\end{array}\) & \(2430 \quad \Omega\) & 26 O Bor. & 220 & \(5 \quad 50\) \\
\hline \(\begin{array}{ll}\text { Sept. } & 1 \\ \text { Sept. } & 1\end{array}\) & 330 Man. & \(1{ }^{1}\) & 26 ofere & 54.5 & \\
\hline \[
\begin{array}{ll}
\text { Sept. } & 1 \\
\text { Sept. } & 2
\end{array}
\] & & 6 ofere 吅 & 2540 Bor. & 445 & 4.6 \\
\hline Sept. 3 & 830 Vefp. & 20 - fere \({ }^{\text {m2 }}\) & 2430 Bor. & & \(\begin{array}{ll}5 & 43\end{array}\) \\
\hline Sept. 4 & & & & 1130 & 540 \\
\hline Sept. 5 & \(\square V e f p\). & & & & \\
\hline Scpr. 6 & \(9 \bigcirc V_{0} / \int_{\text {P }}\). & \(50 \sim\) & 2030 Bor. & 150 & \(\begin{array}{ll}5 & 24 \\ 5 & 00\end{array}\) \\
\hline \(\begin{array}{ll}\text { Scprt. } & 7 \\ \text { Scpt. } & 8\end{array}\) & 880 & & & & \[
430
\] \\
\hline Scat. 9 & & 12 & 18 I5 Bor. & 8 ofere & 400 \\
\hline Sept. 10 & 8 c Vc/p. & 1830 & \begin{tabular}{ll}
17 & 15 \\
15 & Bor. \\
15 & \\
\hline
\end{tabular} & \(33^{0}\) - & \(3 \quad 30\) \\
\hline Sepe. II & - Vc \(f\) p. & & 1545 Bor. & 3 o fere & 300 \\
\hline Scpt. 12 & 8 o Vefp. & 230 & & & 40 \\
\hline Sept. I 3 & \(730 \mathrm{Ve} / \mathrm{p}\). & \(25 \bigcirc \approx\) & I3 30 Bor. & & \\
\hline
\end{tabular}

Sic ut Motu Proprio in fuo Orbita. confecerit à Die 26 Aug ad \(x 3\) Septo \(83^{\circ} 27^{\prime}\); \& in Ecliptica \(91^{\circ} 30^{\prime}\). Latitudo vero Borealis creverit ad \(20^{\circ}\). rurfus decreverit ad \(12^{\circ} 30^{\prime}\).

Not. Nodus Borcus in \(24^{\circ}\). 'S', \& Nodus Auf. in \(24^{\circ}\). Mx ; Limites vero in \(24^{\circ}: \Omega\). \& m. extiterunt. Anyulus Orbita \& Ecliptic.e fuit \(26^{\circ}\). fere. Utrum autem toto Durationis Tempore omnino conftans cum Nodis extiterit? An vero \& quoufque fefe variaverit? ut fxpius fierifoler, es Calculo patebit:

Toto Durutionis Tempore, Lucidius ac etiam aliguando Majus Caputs quam ifte An. 168I. è contrario multo Brevjorem Caudan, exhibuit. In ipfo Capite, beneficio longioris Telefcopir, non nifl unicum Nucleum Figura Ovalis \& Gublofic conftanter notavimus ; nifi quod Die prefertim 8 Sept. ex dicta.

\section*{(448)}
dicto Nucleo clanimmus fimul Radius, ex parte etiam incurvatus, in Caudam exiret; quod notari meretur, cum ejus generis faciem in nullo adhuc Cometn (quantum memini) oblervaverim. Preterea fciendum, quod nonnunquam, ut Die 30 Aug. mane, Caudam fatis precife in Oppofitum Solis direxerit; fed fxpius eriam notabilem Deviationem (prout in plurimis Cometis fxpius fieri folet) exhibuerit. Longitudinem quoque Coma non femper éandem confervavit. Initio Cauda ferè 120 videbatur; deinde nonnunquam brevior, interdum etiam longior ad \(15^{\circ}\) \& 160 extitit; circa finem vero q̧uotidie diminuta eft.
comes. An. 1683 at Dant
zick; by M . zick ; by \({ }^{M}\)
Hevelius. คï. \(154 \cdot\). 4.16.
CVIII. Die \(30 . \mathfrak{F u l}\). An. 1683 ; \(11 \mathrm{~h} 30^{\prime}\) in Novo Noftro Sydere, Tigride vel Lyñce, Sylus Ci initum hic Gedani deprehenderem, Caudam haud adeo Longam, intei Stellam, Polaticm, \& Caffiopeinm furfum cum aliqua Inclinatione exporrigens: conftituebat lineam Rectam cum Suprema Capitis Auriga \& Dextro Humero Perfei ; non minus cum Ventre Crfe Majoris \& Dextro Humero Aurige; iten cum Media Caude \& Latere Vrfe Majoris. Deinde Tubo io pedum arrepto, iftud Phxnomenum contemplatus fum, Caput erat quidem fatis Amplum, fed Materia non admodum Condenfata; fic ut nullus Lucidus Nucleus neque diftinCta Corpulcula, ut quidem alias in plurimis aliis deprehenfum eft, in eo apparerent. I2h. ferè, Altitudo cjus erat \(190 \quad 57^{\prime \prime}\).

Die 31 ful. vefp. fcil. 12 h \(30^{\circ}\). Altüs cum effeet \(21^{\circ} 28^{\prime}\). Rectam cum Pede Aurigre \& Capella conitituebat. Caudn erat dilutiflima, ac Rarior quam die hefterna, led paulo Longior.

Die 4 Aulg. mane; Removebatur co tempore tanto fpatio it Dextro Humero Aurïgr, quanto alias diftat dictus Humerus à Capite Hidi. Cxterum Sinifira Tibia Perfei, Capella, \& Cometa, Réctam referebant.

Die is Aug. vefp. hora ferè in. Cometa inter quatuor Stellulas verfabatur, quarum una à parte Cometic fuperiori, in ipfa Conjunctione, non nifi \(1^{\prime}\). diftabat, adeo arctè limbo adhærebat: quo tenipore fimul Diametrum Comete Micrometro meo dimenfus fum, nimirum \(615^{\prime \prime}\). exiftere.

Die is Aug, vefp. Breviflimam ac Rariflimam Comam inter Capellam \& Caput Hedi exporrigebat.

Die 20 Aug. vefî. Ütroque Hrado erat viciniflimus, ita ut cum his Triangulum ferè æquilaterum conftitueret, cujus Latera fere Diftantiam Hredorum (quæ eft \(47^{\prime}\). circ.) xquabant. Ad hxc Cometa cum Capella \& illa in Planta - Dextri Pedis Perfei, Triangulum Equilaterum, cujus Bafis erat Diftantia dictarum Fixarum, exhibebat.

Aug. 24. vefp. verfabatur inter Capellam \& Pleiadas, fic ut à Capella \& Pleiadibüs in eadem fere Remotione videretur. Deinde Capella, Cometa, \& Pleiades; item Alamac, Caput Medufie, \& Cometa; nec non Dexter Humerus Aurize, Cometa, '\& Sequens Siniftri Pedis Perfei, Lineam fere Rectam conftituebant, in hac tamen ultima conftitutione, Comsta fere infra paulo Rectam jam incedebat.

Aug. 25. vefp. cum Capella \&i Cap. Hedi Rectam fere conltituebat.

Aug. 29. sh 5'. manc, plurinuis minutifimis, \& clarillimis Fixis ftipatus-c. rat, nempe Stellis Subicfcinnis, atgue à Cuppide Occidentali Rleiadum furfum verfus, non nifi \(42^{\prime} 35^{\prime \prime}\) removebatur.

Eadem die vefp. longe jam promotior contra S.S. fatio fcil. 24 horarum, ad \(4^{\circ}\). fere repcriebatur.

Aug. 30. vefp. Cometa à Stellula quadam bene confpicua non nifi \(32^{\prime} 41^{\prime \prime}\). aberat; \& cum \(M_{u} \int_{c a}\) \& in Bafi Trianguli, deinde etiam cum procedente in Pede \& illa in Genu Perifei, conftituebat Rectam.

Sept. 2. mane, Cometa inter Plciadas \& Nodum Lini verfebatur, conftituens Lineam Rectam cum Mufor \&r Lucida Mandib. Ceti, \& cuminfima in Armo 8. \&t Mandibuln, Triangulum fere æquicrurum, cujus vertex dicta erat Mandibula. Preterea quoque Lineam referebat Rectam cum duabus in Fronte Ceti, tum tanto fere fpatio ab Occidentaliori diftabat, quani alias utraque ab invicem removentur.

Hac die iterum Diametrum Comicta Capitis Micrometro diligenter dimenfus fum, \(9^{\prime} 7^{\prime \prime}\). qux die 1f. Aus. eodem Micrometro obtenta tantummodo \(6^{\prime} 5^{\prime \prime}\). fic ut notabiliter fpatio 17 . Dierum creverit, Non nemo diceret id factum effe, quod in ultima Obfervatione vicinior multo fuerit Terræ: Atque ideo Clarius \& Lucidius Caput exhibere debebat, prafertim fi; Corpus effet zternum, (ut-quidam ftatuunt) quod rurfus certo tempore abfoluto fuo circulo, nobis in confpectum redit. Sed è contrario Caput longe Obtufius, Rariufque ultimo extitit, fic ut diftinctiplime notari potuerimus materiam Capitis fenfim fe diffolvere ; id quod auteni multo melius cum noftra convenit Hypothefi.

Scpt. 4. mane, videbatur Cometa in Linea exiftere Recta cum illa in Fronte Occid. Ceti \& Lucida \(r\); item cum illa in Ore \& Mandibula Ceti; ad hec. fere Triangulum æquilaterum cum illa in Ore \& adi Gcnam Ccti conftituebat, De cetero autem ex optato mihi extitit, quod Altitudinem Meridianam in Auftro exactiflimo Quadrante, Hora, viz. Matutina \(3^{h} 40^{\prime}\). ferè, nimirum \(3^{\circ \circ}\) \(5^{\prime}\). effe impetraverim.
(450)

Ex

Ex quibus nunc luculenter videre eft, Cometam hunc continno contra S.S. iaceffiffe; fic ut in Ecliptica \(63^{\circ} 55^{\prime}\). in fua vero Orbita \(74035^{\prime}\). peragraverit,fub) Angulo, viz. Orbita \& Ecliptica \(39^{\circ}\) fere, fub Angulo vero Orbita \& Aquatoris \(55^{\circ}\). Latitudo Initio \(29^{\circ}\) - \(15^{\prime}\). Bor:\& ultimo \(11^{\circ} 20^{\prime}\). Auft. extitit; adeo ut ad 410. feré eam variaverit.

De Capite hxe notandum habeo, quod lnitio, quoad Diametrum, longe minus quam ultimo; è contrario Initio longe Lucidius, quam circa Finem extiterit; nullos tamen diftinctos \& fulgentes Nucleos, prout in plurimis videre nobis obringit, exhibuerit, fed confufam materiam, \& circi Finem multo Tenuiorem. Jure hic Cometa (cum plerumque abfque omni Cauda vifus) inter Sidera Comata, vel Crinita, five inter Barbata \& Hircos refertur. Nam non nifi ad 18. Aug. Brevilimam \& Dilutifimam Comam furfum verfus exporrigeoat ; quæ poftmodum vero omnino Evanuit.
CIX. Novus Cometes nuper Cxlo vifus eft à Lynceo oculo Abb. Blanchini, \(\mathfrak{A}\) comet. An. Difcipuli Cl. Geminiani Montanarii. Cometes parvus quidem, fed in fua Orbita \({ }^{\text {I684. at Rome; }}\) regularis apparuit, Lumine tenui, \& tanquam Stella Subobfcura: at Tubo by \({ }_{\text {ni. n. } 169 \text {. }}\). optico exceptus, Luminofior.

Fun. 30.ft. n. An.I694. Cometa primum mihi vifus eft, in grad. 9. cum aliquibus minutis Libra, Latitudo ejufdem Borealis fuit graduum 8. \& aliquot minutorum.

Quatuor ultimæ meliori indigent Calculo, nam aliquis fortaffe Minutorum Error irrepfit. Obfervario Diei Primi Ful: accuratilima eft, Comicta enim Telefcopio apparuit una cum Stella. Virginis, quæ Bayero infcribitur \(\Omega\). \&t accidit fub Cingulo Septentrionalis partis primæ. Omnium certiffima eft Obfervatio Diei Sextx, qua Die Arcturus in Tubo Optico fimul cum Cometn conipiciebatur. Die pariter 140 Cometr \& Stella \(\chi\). in Colorrobo Bootis, feu Veñabülö; fubter Humcrum, uno Intuitu detegeba ntur.
CX.

\section*{(452)}

A comet. An. 1686. at Leipfick; by \(M\). Kirce. 1.186. p. 256.
CX. Scpt. S. A.v. A.1686. 4h. manc, about Day-break, M. Kirk found this Comet in the Conftellation of Leo, to the Right-hand of the Lucida in Lumbis \(\Omega\). (as is conceived, for the Latin Copy is defective in this place) and refembling that Star in Colour and Magnitude, with a Thin and Short Tail extended upright. Over the Comet in the fame Vertical was the Star of \(\theta \Omega\). of Bayer, or 2 I . Tychoni, diftant therefrom, by the Micrometer, exactly a Degree; and a Line drawn from the Lucida in Lumbis \(\Omega\). to the Comet paffed much about half a Degree to the Right-hand of the fame Leonis. The Diftance of the Comet from Regulus taken by a Radius was about \(17^{\circ}\). The next Morning Sept.9. at \(3^{\mathrm{h}} 5^{81}\). the Diftance thereof from \(0 \Omega\). was found by the Micrometer \(2^{\circ} 23^{\frac{1}{2}}\), and at \(4 \mathrm{~h} 4^{\prime}\), again \(2^{\circ} 25^{\prime \frac{3}{4}}\). To verify the Times, the Altitude of the Lucida in Lumbis \(\Omega\). was oblerv'd \(\mathrm{I}^{\circ} \mathrm{I}^{\circ} 1 \mathrm{c}^{\prime}\), at \(4^{\mathrm{h}} 8^{\prime}\). manè. A Right-line drawn by the Comet, and the faid \(\theta\) Leonis towards \(\beta\) Leonis, or the Iucida Colli, left that Star a little to the Right-hand.

This Comet was feen by a Countryman, who firf gave Notice thereof, from the 6 th. to the 12 th. of \(S_{e p t}\).

The Refult of thefe Oblervations is, that the Comet was Direct in Motion, that it mov'd about I \(\frac{1}{2}\) Degree per Dicm, and that it feemed rather to Decreafe in Latitude. Ors the 7 th of \(S_{c p t}\). it was about \(24^{\prime}\). diftant from \(\theta L_{e c}\) nis, but its bearing therefrom is not fet down.

This Star, \(\theta \Omega\). was then in \(9^{\circ} 2^{\prime}\). of 呗. with North Lat. \(9^{\circ} 41 \frac{1}{2}\). Whence at the time of the firf Obfervation it may be Concluded, that the Comet was in \(9^{\circ} .55^{\prime}\). of ny. with North Lat. \(9^{\circ} 15^{\prime}\). And at the 2 d Obfervation, the Longitude of the Comet will be found about \(11^{\circ} 20^{\prime}\). of 吸. with much the fame North Latitude as before.

A omet. An.
CXI. Feb. Ig-ft. n. An. 1699. in Obfervatoria Regio Parifienfi, videri cœepit \(169 \frac{\%}{3}\). at Paris; exiguus Cometa, inftar Steilæ Nebulofx tertix Magnitudinis; illi perfimilis by M. Caffini. n. 250. p. 79 . quæ Menfe Sept. 1698 . fuir Obfervatus.

Situs erat inter Stellas Informes 6 . Magnitud. prope Circulum Polarem Arcticum fupra Caput Auriga, æquali ferè Intervallo inter Cubitum Occidentalem Perfei \& Caput Majoris \(\tau_{r \sqrt{a}}\); illas adfcribir Tycloo Informibus circa \(\mathcal{V}_{r} \int a m\) Minorem. Continuatis Obfervationibus, vifus eft, Proprio Motu, Iter fuum dirigere Capellam verfus, cum exigua Deviatione ab ejus Circulo Declinationis: Ea erat ejus Velocitas ut unius Diei Spatio, Septem circiter Gradus Magni Circuli perficeret, quo Motu potuit ante Dies 4. ipfi Polo fermè adhærere, \& Stella Polari fociari.

Hora 6. p. m. n. Comparavinus Cometam cum Stella 6. Mag. quam Tycho appellat Sccundam earum quce Sunt in Linea Reca a cum Polo; Cometa in Tranfitu per Circulum Horarium precedebat hanc Stellam Min. Hor. \(15^{\prime} 53^{\prime \prime}\). quibus. dabitur Differentia Afcenfionis Ręte 4o 43'. crat autem Septentrionalior eadem Stella 8'. Unde fuppofita hujus Stellæ Longitudine \& Latitudine Tychonica ad hoc Tempus, Cometa refertur ad \(1505^{\prime}\). Gem. cum. Latitudine Sept. \(37^{\circ} \cdot 25^{\prime}\).

Movetur Cometa his ad Cæli partes Oppofitas illis ad quas tendebat Cometa An. preteriti, cum effet ferme in eadem Diftantia à Polo in qua nofter hic cum primum vifus eft, ncc valde ab eodem loco remotus.

Cometa

\section*{(453)}

Cometa autem Menfis Sept. eandens profecutus eft viam quam inter Sidera tenuerat Cometa An. 1652. à Nobis Bononia Obfervatus, cujus Occafione editis Literis ad Sereniflimum Fran. Effenfom Niutines Ducem, eam viam per eadem Sidera qux nofter tenuit An. 1698. diftinctè defcripfimus. Ille Menfe Dec. ab Auftralibus Cxli partibus per Aftra Leporis, Orionis \& Tauri, ubi Eclipticam fecuit cum Inclinatione \(760^{\circ}\). \& per Perfeum \& Cafiopeiam pervenit, ubi videri defiit Menfe fan. An. 1653. Hic videri cœpit Initio Menfis \(S_{c p t}\). in eadem Caffiopece parte ubi ille videri defierat, indeque pergens per Humein ros \& Brachia Cepbei, ubi Latitudinem Maximam ab Ecliptica habuit 760 . tranfit inter Draconem \& Cygnum, per Pellem Leonis in Hercule, per Ophiucum, ufque ad Conftellationem Scorpii, quam tenebat in ultimis Obfervationibus à Die 24. ad 28. Sept. habitis. Ex his autem Obfervationibus collegimus Cometam hunc Perigcum obtinuiffe Die 7. Scpt. Vefperè, cum maxina: Velocitate Apparentif fere \(10^{\circ}\). unius Diei Spatio.

\section*{CXII. Papers of lefs General \(v_{s e}\) Omitted.}

1: The Conftellation of Cygnus, with the New Star in Pectore in it, by He-Cygnus. n. 2 To. velius; together with the Names of the Stars in that Confellation by Tycho, \(P . .372 . n .65_{\circ}^{\circ}\) and of thofe Added by bimfelf.
2. Mr. Flamfeed having perufed Mr. Street's. Difcourfe, and confidered the Mr. Horrox's Contrivance of his Moon-Wifer, affures, that for the Motion of Longitude Lunar Syftem; I
 Mir. Horrox's.

But Mr. Flamiteed hath thought of another Contrivance that will fhew the: Moon's true Place to a Minute.

3: I. The more Notable Caleftial Appearances Calculated, by Mr. Flam- caieffial: Pbianort Seed, for the Year 1670.
2. The fame for the \(\mathrm{Y}_{\mathrm{car}}\) I 67 I .
nomen. Calculp:
3. The fame for the Year 1672.
sed. n. 550
p. 1099.
4. The fame for the \(Y_{\text {car }}\) 1673:
n. 66.-p. 2029.].
5. The fame for the Year 1674.

5, 7.
2. 79." \(p\). \(306 \pi_{0}\)
n. 86. p. 5040.
4. I. The Eclipfes of the Satellites of fupiter Vinble at Vraniburg the laft \(n .89 .{ }^{\text {p. }} 5118\). four Months of the Year 1671: Calculated by M. Cafini.
7. 99: p. 6162.
2. The Eclipfes of the Satellites of fupiter Vifible at the \(043 f\) ervatory at \(n \cdot 74 . p .2238_{0} \ldots\) Greenwich in the three laft Months of the Year \(1683_{0}\). Calculated by Mr. \({ }^{\text {M. I 51. P. }}\).2.2. Fiamfecd.
3. The Satellite Eclipfes Calculated by Mr.Flamfeed for the Tenr 1684. n. 154. p.404.
4. The fame for the \(\operatorname{Year} 1685\). m. 165. p. 760 .
5. The fame, together with the Parallaxes of Fupiter's Orb and his Gcocen. 14177. po 12150 trick Places, for the Year 1686.
6. The fame for the Tear \(1687 . \quad\) m. 184. p. 196.i.
7. The Satellites Eclipfes Calculated by Mr. Halley, for the Year 1688 . n. 191. pr 43501
5. I. An Account of the Ephemerides of the Comet, A. 1665 . Calculated by Comets n. 1.t. 30 M. Auzont ; and the Principle of his Hypotbefis difcovered by M. Caffini.
2. An Account of the Episemerides of the Comet, A. 1665 . Calculated by 2 3. +.36. . M. Auzonto

\section*{(454)}

\section*{CWili. Accounts of Books, and Emendations, Omitted:}

Y, 102. p. 40.
1. A new Size of Giotes about 15 inches Diameter Rectifyed by R. Morden and UFill. Beryy.
Fb.colon.1.p.t4. 2. A Repreéntation of the Heavens into two large Hemijpheres of 30 inches Diameter, Stereographically Projected upon the Plain of the Equino.x; by Mr. Fr. Lamb.
n. 90. p. 5150 . 3. Deux Machincs propres à fair les Quadrans, avec tres grande facilité; par le P. Ifnace Gaficn: Pardies. S. J. à Paris. 1673. in \(12^{\circ}\).
n. 184. p. 21 3. 4. Sciotcricum Telefopicum, or a new Contrivance of adapting a Telefcope to an Horizontal Dial, for Obferving the Moment of Time by Day or Night; by Wrill. Molincux. R. S. S. Dublin 1686. in 4 to.
2. 241. p. 240. 5. The Meridian Line of the Curch of St. Petronio, Drawn and Fitted for Aftronomical Obfervations, in the \(Y_{e n r} 1655\). Revifed and Reftored in the Year 1695 ; by \(\mathfrak{F o}\). Dom. Cafini. At Bononia 1695 . Fol.
3. 66.p.2028. 6. Foa. Hevelii Machine Cxleftis Pars prior. Organograpbiam Aftronomicam n. 99. p. 6171 plurimis Iconibus illuftratam \& exornatam exhibens, EGc. Gedani 1673. in Fol. 2.109. p-215. 7. Animadverfions on the Firft Part of the Macbina Caleftis of Foa. Hevelius, together with an Explication of fome Inftruments made by R. Hook. P.
n. IN:. P. 243. of Geometry in Grefb. Coll. and R. S. S. London 16740 in \(4^{\text {ro }}\). Dr. Wallis's Letter to M. Hevelius, concerning Divifions by Diagonals there inferted, but fatulily, is here Reprinted more correctly.
516 175.p.1162.
8. Foannis Hevclii Confulis Dantifcani Annus Climactericus. Gedani 1685. Fol. Wherein (among other things) M. Hevelius vindicates the Juftnefs of his Celeftial Obfervations againft the Exceptions by fome made to the Accuracy
16. p. 1164. of them. The Contrvaerfie between Him and Dr. Hook, about the Ule of Ten. n1. p. 244. lefcopick and Plain Sights, and Dr. Wallis's Calculation, for Dividing the Limb 2. 175. p. 11760 of Inftruments by Dingonais, are allo here Abridged.
n.150.p. 308. 9. Excepta ex L.iteris III. \& Clariff. Virorum ad Nob.Ampliff. \& Confultiff. D. Fo. Hevelium Conf. Gedanenfem perfcriptis, Judicia de Rebus Aftronomicis, ejufdemque Scriptis, exhibentia ; Studio ac Operâ fon. Erici Oihoffii Secretarii Gedani 1683. in \(4^{\text {to }}\).
n. 118. F.440. IC. A Defcription of Heliofcopes, and fome other Infruments, made by R. Hook. R.S.S. Lond. 1675 in \(4^{\text {to }}\) :
mino.p.233. 11. The Sphcre of M. Manilius made an Englifh Poem, with Annotations, and an Afronomical Appendix; by Ed. Sherburn, Eff; Lond. 1675 . in Fol.
n. 204.p.9x3. 12. Albatenii Obfervationes Aftronomice, Quas ex Arabico in Latinum Tranftulit Plato Tiburtinus. Noriberga 1537; \& Bononia 1 14.5. The Arabick Copy of thofe Obfervations does not Appear, whereby that Tranfation night be \(E x\) amined: But Mr. Halley, by Calculating Tables from the Principles there Delivered, hath here Difcovered and Corrected above 30 confiderable Faults in a few Pages.
n. 43: 1. 868. I3. Fifforin Celefis; ex Libris \& Commentariis MS. Obfervätionum Vicennalium Tyclionis Bralle, Dani. Anguftic Vindelic. An. 1666. in Fol.
14. All-the Manufcripts of the Famous Kepler, (both Publifbed and Unpublifhed) which are Purchafed, and carefully preferv'd by M. Hevelius.

\section*{(543)}
15. Feremia Horroccii Angli Opera Pofthuma: una cum Guil. Crabtrai Ob-w. 87. p. 5078. fervationibus Cæleftibus; nec nonfo.Flamfedii de Temporis Equatione Diatriba, Numerifq; Lunaribus ad Novum Lune Syftema Horroccii. Lond. 1672. in \(4^{\text {to }}\).
16. Aftronomia Reformata. Auctore Foan. Bapt. Riccioli S. F. Steplano de An-n. 22. p. 394. gelis, Conceiving the Arguments of this Autbor, againft the Motion of the \({ }^{n .36 . p .693 .}\) Earth, to be none of the ftrongelt, takech Occafion to let the World fee, that they are not more Efteem'd in Italy, than in other places: Manfredi, in behalf of Riccioli, endeavours to Anfwer the Objections of Angeli, and this latter replies to Manfredi's Anfwer. The Subftance of which Controverfie is here gilven by Mr.Fa.Gregory; with fome Remarks and Explications of his own upon it-
17. An Attempt to prove the Motion of the Earth from Obiervations, made n. ior. p. 12. by R. Hook. F. R. S. Lond. 1674. in 4 to. The Method of this Undertaking \(n .105 . p .900\) is Approved and Commended by M. Chr. Hugens, and M.Cafini.
18. Nicolai Mercatoris Holfati, è Soc. Regia, Infitutionium Aftronomicarum n. 125. 1.61. Libri duo. Zond. 1676 in OCFavo.
19. Annales Cxli \& Temporum perpetui, five Myiteria Affronomo-Chrono- n. ro4. 1. 74. logica à Seculo Abfondita, nunc per Dei Gratiam Derecta \& e evidenter Afferta, Libris tribus. Kiloni. This Book is Preparing, by Dr. WTefmutb.
20. A Catalogue of Fixed Stars with their Longitudes, Latitudes, and Mag- n. 8. \%. 1450nitudes, according to the Obfervations of Tleg. Beig. Oxford. I 666.
21. Catalogus Stellarum Auftralium, five Supplementum Catalogi Tychonici;n. 14r. p. 1032o. exhibens Longitudines \& Latitudines Stellarum Fixarum quæ prope Polum Ant:tarcticum fite, in Horizonte Vraniburgico, Tychoni inconfpicux fuere. Authore Edm. Hallcio, è Col. Reg. Oxon. in 4 to.
22. Congietture Pbyjico Aftronomiche della Natura del Univerfo; da Pictro m. 65.p.2012.". M. Cavina. in Faenza 1669. in 4 to.
23. Prole de Signori Academici di Bologna; in Bologna 1672. in 4 to. S. 3.89. p. 51250 Montanari's Difcourfe concerning the admirable Changes and other Novelties obferved in the theavens.
24. Ifmaelis Bullialdiad Aftronomus Monita duo. Primum de Stella Nova, n. 21. f. \(38 \mathrm{~T} \%\) quæ in Collo Ceti ante An. aliquot vifa eft. Alterum de Nebulofa in Andromedie Cinguli parte Borea, ante Biennium iterum orta. Approv'd by M. Hevelius. n. 25. p. 460.

25, Three Letters of Fo. Dominicus Cafinus, concerning his Hypothefis of \(n .84\). p. 500 I. the Sun's Motion, and his Doctrine of Refractions:-At Bononia, in 4 to.
26. Refractio Solis Inoccidui, in Septentrionalibus Oris circa Solftitum n. 23i.p.731... Æftivun, An. I 695 . aliquot Obfervationibus Afronomicis detecta. Holmire. in \(4^{t o c}\). Tranflated into Englifb. Lond. in Svo.
27. Tabularum Aftronomicarum Pars Prior ; de Motibus Solis \&̌ Lun.e, nec-n. 191. p. 443. non de Pofitione Fixarum, ex ipfis: Obfervationibus deductis: Authore Pho de.
Ia Hirc. Paris 1637. in 4 to. Some Animadverfions on it are bere inferted.

3.0. The Celeffial World Difcovered, or Conjectures concerning the Inha-m.236. po 33\% bitan ts, Plants, and Productions, of the. Whorlds in the Pinniets. Written in Latin by M. Cbr. Huyzenso in \(8^{\circ}\).

\section*{(544)}
85.1.F.2.21.45. 1.900. \% 4. 18. 69.
16. p:74. n. 35 . F. 088 . 3. 44. F. 892.
 Publine \(P\) ein Publifi:- at Paris in the Recusuil d' Obfervations faites en plufieurs Voyages pour parfectioner \(I\) Aftronomie \(\hat{O}^{3} \ln\) Geographie, being not printed with the ufual Care of the Imprimeric Ronnic, Mr. Halley here amends fome of the Errata.
33. Martis, circa Axem proprium Revolubilis, Obfervationes Bononic à
* 14.1 . 242.
M. 35 . 8. 637. Foa. Dominico Cafino habite 1666. Here M.Caffini Judges it Evident, that the Period of this Pinmets Racrolution is not performed in the Space of \(12 \mathrm{~h} 20^{\prime}\), but in about \(24 \mathrm{~h} 4 \mathrm{Cl}^{\prime}\); and that thofe, who affirm the former, muft have been deceived by nut well Ditinguifing the iwo Faces.
(9. \(134.3 .853^{\circ}\)
\%. 6. p. I04.
. \(51.17 \cdot p \cdot 301\).
34. Mercurius in Sole vilus; à Fo. Ifevelio. Ged. 1662.
35. Prodromus Cometicus; by Hevclius.
36. Foannis Hevelii Defcriptio Cometre, An. Frre Chrifliance 1665. exorti: una cum Mantiffa Prodromi Cometici, Obfervationes omnes Prioris Cometa 1654. ex iifque Genuinum Motum accuratè deductum, cum Notis \& Animadverfonibus, exhibens.
5. 40. p. 805.
17.35.p.691.

20:33.p. 1069.
37. Fo. Hevelii Cometagraphia. Dantzick. in Fol.
38. Stanilai de Lubienietr Theatrum Cometicum. Amfelod. 1668. in Fol.
39. Del Movimento della Cometn, apparfa il mefe di Decembri 1664. da Pietro Maria Mutoli. in Pija. in 4 to.
3.53.p. 1071. 40. Erafmi Bartholini de Cometis, An. 1664, © 1665 . Opufculum; ex Oblervationibus Hafnice habitis adornatum. Hafnia. in \(4^{t o}\).
23. 139.7.990. Il. 986.

Pb. col. H. 4. t. 106.
.Ib. p. II4.
4r. Foh. WFalifiii, De Cometarum Diftantiis inveftigandis. Lond. 1678. 42. Lectures and Collections made by R. Hook. Sec. of the R. S. Lond. 167.8. in \(4, t\).

43 . Obfervat. of the Comet of 1680 . and 168 I . made at the Col. of Clermont ; by P. F. de Fontnney è S. F. Profeff. of Mathematicks. Paris. I681.
44. A Treatife concerning the late Comet, Publifhed at Turin 168 I . by Donato Roffetti S. T. D. Canon of Leghorn, and Tutor in Matbematicks to the Duke of Savoy.
Ib. f. 116
4.. An Explication of the Comet which appeared at the End of 1680 . and in the Beginning of 168 I . upon the Oblervations of Dr. Antheime, Carthufian of Dijon, at Dijor 168 I . in one fingle Sheet.
Pb. roll. n. 7. p. 196.
(1.0. p. po 199. renburg I681; by a Lover of Aftronomy.
47. A new Introduction, fhewing how the Motions of the Comets may be reduced to fome certain and Geometrical Rules, fo that their Appearance may be Predicted. in Highb Dutch; by fa. Bernouly. at Bazil. An. 168 I .
z. 149. p. 272. 48. Foanmis Facobi چimmermanni Cometo-fcopia. Or, Three Aftronomical Relations concerning the Comets that have been feen in the Years 1680, 1681, I682. Stutgard 1692 . in 4 to.

CHAP.

\section*{(545)}

\section*{C H A P. V.}

\section*{Mechanicks. Acoufticks.}
1. 1. Ag Agens ut A Efficit ut \(E\); Agens ut \(2 A\) Efficiet ut \(2 E\),
\(3 A\) ut \(3 E\), \&c. cæteris paribus: \(E t\) univerfalicer, m \(A\) ut
2. Ergo fi \(V\) is ut \(V\) moverat Pondus \(P\); \(V\) is \(m V\) movebit \(m P\), cxeteris
2. Ergo fi \(V\) is ut \(V\) moveat Pondus \(P\); \(V\) is in \(V\) movebit \(m\). , cateris
paribus puta per eandem Longitudinem codem Tempore, b. c. eadem Cele-
ritate. ritate.
3. Item \(f_{1}\) Tempore \(T\) moveat illud per Longitudinem L; Tempore \(n \mathrm{~T}\) movebit per Longitudinem \(n \mathrm{~L}\).
4. Adeoque \(f_{i} V\) is \(V\), Tempore \(T\), moveat Pondus \(P\), per Longitudinem L; Vis \(m \mathrm{~V}\), Tempore \(n \mathrm{~T}\), movebit \(m \mathrm{P}\), per Longitud. \(n \mathrm{~L}\). Et Propterea, ut V T (Factum ex Viribus \& Tempore) ad PL (Factum ex Pondere \& Longitudine) fic \(m n \mathrm{~V} \mathrm{~T}\), ad \(m n \mathrm{PL}\).
5. Quoniam Celeritatis gradus funt Longitudinibus eodem Tempore tranfactis Proportionales, feu (quod eodem recidit) Reciproce Proportionales Temporibus eidemLongitudini tranfigend \(x\) impenfis: erit \(\frac{L}{T}: C:: \frac{m L}{n T}\) : \(\frac{m}{n}\) C. b.e. Gradus Celeritatum, in ratione compofita ex directa Longitudinum \& Reciproca Temporum.
6. Ergo propter \(V \mathrm{~T}: \mathrm{PL}:: m \cdot n \mathrm{~T}: m n \mathrm{P} L:\) erit \(V: \frac{\mathrm{PL}}{\mathrm{T}}:: m \cdot \mathrm{~V}\) : \(m n\) PL
\(\frac{n \mathrm{~T}}{n}:\) b. e. \(\mathrm{V}: \mathrm{PC}:: m \mathrm{~V}: m \mathrm{PC}=m \mathrm{P} \times \mathrm{C}=\mathrm{P} \times m \mathrm{C}\).
7. Hoc eft, \(f_{1} V\) is \(V\) movere potis fit Pondus \(P\), Celeritate \(C\) : Vis \(m V\) movebit vel idem Pondus P, Celeritate \(m \mathrm{C}\); vel eadem Celeritate, Pondus \(m \mathrm{P}\); vel denique quodvis Pondus ea Celeritate, ut Factum ex Pondere \& Celeritate fit \(\cdot m\) PC.
8. Atque hinc dependet omnium Machinarum (pro facilitandis Motibus) conftruendarum ratio : nempe ut qua ratione augetur Pondus, eadem minuatur Celeritas, quó fiat, ut Factum ex Celeritate \& Pondere, cadem Vi movendo, idem fit : puta \(V: P C:: V: m P \times \frac{I}{m} C=P C\).

\section*{(546)}
9. Si Pondus P, Vi V, Celeritate C, latum in Pondus Quicfcens (non impeditum) \(m \mathrm{P}\) directe impingat ; ferentur utraque Celeritate \(\frac{\mathrm{I}}{\mathrm{I}+m} \mathrm{C}\). Nam propter eandem Vim, majori Ponderi movendo adhibitam, eadem ratione minuetur aucti Celeritas: nempe \(\mathrm{V}: \mathrm{PC}:: \mathrm{V}: \frac{\mathbf{I}+m}{\mathrm{I}} \mathrm{P} \times \frac{\mathrm{I}}{\mathrm{I}+m} \mathrm{C}\) \(=\) P C. Adeoque alterius Impetus (intellige Factum ex Pondere \& Celeritate) fiet \(\frac{I}{I+m} \mathrm{PC}\); reliqui \(\frac{I}{I+m} m \mathrm{PC}\).
10. Si in Pondus P (Vi V) Celeritate C latum, directe impingat aliud, cadem via, majori Celeritate infequens ; puta Pondus \(m \mathrm{P}\), Celeritate \(n \mathrm{C}\), (adeoque Vi \(m n\) V latum; ferentur ambo Celeritate \(\frac{I+m n}{I+m}\) C. Nam \(\mathrm{V}: \mathrm{PC}:: m n \mathrm{~V}: m n \mathrm{PC}:: \mathrm{V}+m n \mathrm{~V}=\frac{\mathrm{I}+m n}{\mathrm{I}} \mathrm{V}: \frac{\mathrm{I}+m n}{\mathrm{I}} \mathrm{PC}=\) \(\frac{1+m}{\mathrm{I}} \mathrm{P} \times \frac{\mathrm{I}+m n}{\mathrm{I}+m} \mathrm{C}\). Adeoque Precedentis impetus fiet \(\frac{\mathrm{I}+m n}{\mathrm{I}+m} \mathrm{PC}\); Sublequentis, \(\frac{1 \pm m n}{1+m} m \mathrm{PC}\).
II. Si Pondera contrariis viis lata, fibi directe occurrant five impingant mutuo, puta, Pondus P, (Vi V) Celeritate C, dextrorfum ; \& Pondus \(m\) P, Celeritate \(n \mathrm{C}\) (adeoque Vi \(m n \mathrm{~V}\)) finiftrorfum : utriufque Celeritas, inspetus, \& directio, fic colliguntur, Pondus dextrorfum latum reliquo fi quiefceret, inferret Celeritatem \(\frac{I}{I+m} \mathrm{C}\), adeoque Impetum \(\frac{\mathrm{I}}{\mathrm{I}+m} m \mathrm{PC}\), dextrorfum, fioique retineret hanc eandem Celeritatem, adeoque Impetum \(\frac{I}{1+m}\) P C dextrorfum (per Sect. 9.) Pondufque finiftrorfum latum (fimili ratione) reliquo f1. quiefceret, inferret Celeritatem \(\frac{m n}{1+m}\) C,adeoque Impetum
\(\frac{m n}{1+m} m \mathrm{PC}\) finiftrorfum ; fibique retineret hanc eandem Celeritatem, adeoque \(\operatorname{Impetum} \frac{m n}{I+m}\) PC finiftrorfum. Cum itaque Motus utrinque fi3t; Impetus dextrorfum prius lati, jam aggregatus erit ex \(\frac{I}{I+m} \mathrm{PC}\) dextrorfum,

\section*{(547)}
trorfum, \& \(\frac{\bar{m} \bar{n}}{I+m} \mathrm{PC}\) finittrorfum; adeoque reapie vel dextrorfurn vel \(f_{i-}\) niftrorfum, prout hic vel ille major fuerit, eo Impetu qua of duorum differentia : b.e. (pofito + figno dextrorfum, \& - finiftrorfum fignificante) Impetus erit \(+\frac{1}{1+m} P C-\frac{m n}{1+m} P C=\frac{1-m n}{1+m} P C ;\) Celeritas \(\frac{1-m n}{1+m} \mathrm{C}\); adooque dextrorfum vel finiftrorfun, prout I vel \(m n_{3}\), major fuerit). Et fimiliter Impetus prius lati, erit \(+\frac{I}{I+m} m \mathrm{PC}\) \(-\frac{m n}{\mathrm{I}+m} m \mathrm{PC}=\frac{\mathrm{I}-m n}{\mathrm{I}+m} \mathrm{PC}\); Celeritas \(\frac{\mathrm{I}-m n}{\mathrm{I}+m} \mathrm{C}\) : adeoque dextrorfum vel finiftrorfum, prout I vel \(m n\), major fuerit.
12. Si vero Pondera nec eadem directe via procedant, nee directe contraria, fed oblique fibi mutuo impingant ; moderandus erit precedens Calculus pro Obliquitatis menfura. Impetus autem Oblique impingentis, ad ejufdem Impetum qui effet fi Directe impingeret (cxteris paribus) elt in ea ratione qua Radius ad Secantem Anguli Obliquitatis ; (quod etiann intelligendum elt, ubi perpendiculariter, fed Oblique cadit in percuffi Superficiem, non minus quam ubi vix Motuum fe mutuo Oblique decuffant :) qux quidem confideratio, cum calculo priori debite adhibita, determinabit, quenam futura fint fic Oblique Impingentium Celeritas, Impetus \& Directio, b. e. quo Imperu, qua Celeritate, \& in quas Partes ab invicem reflient, qux fic Impingunt. Eademque eft ratio Gravitationis gravium Oblique defcendentium, ad eorundem Perpendiculariter defcendentium Gravitationem.

I3. Si qux fic Impingunt Corpora, intelligantur non abfolute dura (prout hactenus fuppofuimus) fed ita Ietui cedentia, ut Elaftica tamen Vi fe va: leant reftituere, hinc fieri potuit ut à fe mutuo refiliant ea corpora, qua fecus effent fimul proceflura ; (\& quidem plus minufve, prout hre Vis Reftitutiva major minorve fuerit,) nempe fi Impetus ex Vi Reftitutiva fit Progreflivo major.
In Motibus Acceleritatis \& Retardatis, Impetus pro fingulis Monentis is reputandus elt, qui gradui Celeritatis tum acquifito convenit. ubi autem per Curvam fit Motus, ea reputanda ef in fingulis punctis Motus Directio, qux eft re \(\ell x\) ibidem Tangentis. Et fi quando Motus tum Acceleratus vel Retardatus fit, tum \& per Curvam fiat (ut in Vibrationibus Penduli) Inpetus æftimandus crit, pro fingulis punctis, fecundum tum gradum Accelerationis, tum Obliquitaten ibidem Tangentis.

\section*{2. Lex Naturie de Collifione Corporim.}

Velocitates Corporum proprixe \& maximè naturales funt ad Coupora reci Wren. procè proportionales.

Itaque Corpora \(R, S\), habentia proprias Velocitates, etiami poft Impulfumi - retinent proprias.

\section*{(548)}

Et Corpora R, S, improprias Velocitates habentia ex Impulfu reftituuntur ad Ætquilibrium ; hoc elt, Quantum \(R\) fuperat, \& \(S\) deficit à propria Velocitate ante Impulfum, tantum ex Impulfu abftrahitur ab R, \& additur ipfi S, \& è contra.
Quare Collifio Corporum proprias Velocitates habentium xquipollet Lio bra Ofcillantif fuper bina Centra xqualiter hinc inde à Centro Gravitatis difantia: Librx verò Jugum, ubi opus eft producitur.

Itaque Corporumi æqualium improprie Moventium tres funt Cafus. Corporum verò inæqualium impropric Moventium (five ad contrarias five ad cardem partes) decem funt omnino Cafus, quorum quinque oriuntur ex converfione.
\(\mathrm{R}, \mathrm{S}\), Corpora xqualia ; vel R, Corpus majus, S , Corpus minus.
a Centrum Gravitatis five Anfa Libra. Z, Summa Velocitatum utriufque Corporis.
\(\left\{R\right.\) © Veloc. \(\left.\{R\}_{\text {ante Impul- }\} \quad S}^{S} \circ\right\}\) Veloc. \(\{S\) Zante Impul- \(\}\) \(\{S\) es Corp. \(\{S\}\) fum data. \(\}\) vel \(\{R\) Ro. \(\}\) Corp. \(\{R\}\) fum data. \(\}\)

Regula. Rec, \(\mathrm{S} \cdot \mathrm{e}\), faciunt o \(\mathrm{R}, \circ \mathrm{S}: \mathrm{R} 0, \mathrm{~S}\), , faciunt e \(\mathrm{S}_{\mathrm{y}}\), e R .
[Lege Syllabas (quamvis disjunctas) \(\mathrm{Re}, \mathrm{Se}, \circ \mathrm{R}, \mathrm{o}, \mathrm{S}\), vel \(\mathrm{R} o, \mathrm{~S}_{0}\), o \(S\), © \(R\), in Linea cujuiflibet Cafus, \& harum que feribitur in Schemare miore Hebraico, ea indicat Motunn contrarium Motui quem notat cujufvis Syllabæ fcriptio Latina. Syllaba conjuncta quietem Corporis denotat.]
Calcul. \(\mathrm{R}+\mathrm{S}: \mathrm{S}:: \mathrm{Z}: \mathrm{R} a \mathrm{R} c-2 \mathrm{R}_{a}={ }^{2} \mathrm{R} \cdot \mathrm{S}_{0}-2 \mathrm{~S}_{a}=c \mathrm{~S}_{0}\) \(R+S: R:: Z: S a 2 S_{n} \pm S_{e}=o S: 2 R_{a}+R_{o} \doteq c R\). Natura obfervat regulas Additionis \& Subductionis Speciofie.
Sy M. Hugens, n. 460 . 1.927.
3. Regule de Motu Corporumex mutuo Impulfu.
1. Si Corpori Quiefcenti duro alliud xquale Corpus durum occurrat, poft contaztum hoc quidem Quiefcet, Quiefcenti vero acquiretur eadem qua fuit in Impellente Celeritas.
2. At fi alterum illud Corpus xquale eciam moveatur, feraturque in eadem Linea recta, poit contactum permutatis invicem Celeritatibus fee rentur.
3. Corpus quamliber magnum à Corpore quamulibet exiguo \& qualicunque Celeritate impacto movetur.
4. Regula Generalis determinandi Motum, quem corpora dura per occurfun fuum directum acquirunt, hæc eft:

Fig: 358.
Sint corpora A \& B, quorum A moveatur Celcritate AD, B vero ip \(\sqrt{2}\) occurrat, vel in candem partem moveatur Celeritate B D, vel denique Quiefcat, boc eft, cadit in boc cafu. punctum D in B. Jivifa Linea A.B in C, (Centro Gravitatis corporum A, B,) Sumatur C E aqualis C D. Dico E A babclit Celeritatem corporis A poft Occurfum; E B volò, corporis B, Ô utrumque in eam partem, quam demonftrat Ordo punetorum E A, E B. ouod \(f_{2} \mathrm{E}\) incidat in punclum A vel B , ad Quietem redigentur corpora A vel B ..
5. Quantitas

\section*{(549)}
5. Quäntitas Motus duorum Corporum augeri minuive poteft per corum occurfum; at femper ibi remaner eadem quantitas verfus eandem partem, ablatâ inde quantitate Motus contrarii.
6. Summa Productorum factorum à Mole cujuffibet corporis duri ducta in quadratum fure Celeritatis, eadem femper eft ante \& pof occurfum corum.
7. Corpus durum Quiefcens, accipiet plus Motus ab alio corpore duro, fe majori minorive, per alicujus Tertii, quod medix fuerit quantitatis, interpofitionem, quam fir percuflum ab eo fuiffet immediaté. Et \(f_{1}\) corpus illud interpofitum, fuerit medium proportionale inter duo reliqua, fortillme omnium aget in Quiefcens.

Confiderat Autbor in his omnibus (ut ipfe ait) Corpora ejufdem materia, five id vult, ut corum moles aftimetur ex pondere.

Creterum fubjungit, notaffe fe miram quandam Nature Legem, quam Demonftrare fe poffe affirmat in corporibus Sphaxicicis, queqque Generalis ipf: videtur in reliquis omnibus five Duris five Mollibus, five Directe five Oblique fibi occurrentibus, viz. Centrum Communc Gravitatis duorum, trium, vel quotlibet Corporum, xqualiter femper promoveri verfus eandem partem in Jinea recta, ante \& poft occurfum.
4. Cum novillimis Menfibus nonnulli è Societate Regia in publico cjufdem Some Hiforical conceffu enixius urgerent, ut gravilitimum illudde. Regulis Motuss Argumen- Poffages rolltings
 tibus rebus, nunquam, vti par erat, difcuffum expenfumve, tandem aliquan- burg. do Examini R:gido fubjectum conficeretur; vifum equidem fuit Illufrififimo \({ }^{\text {Ibid }}\) p F . 9250 ifti. Cemui decernere, ut quotquot è Sociis fuis indagandx Motus Indoli pra creteris incubuiffent, rogarentur, ut fua in rem illam Meditata \& Inventa depromere, fimul \& ea, qux ab aliis Viris Precellentibus, Galliluo puta, Cartefio, Honorato Fabri, Foachimo Fungio, Pectro Borrelli, aliifque, de Argumento ifto fuerant excogitata, congerere \& procurare vellent; co fcil. fine, ut confuttis hac paíto collatifque omnium fententiis, illa dehinc Theoria, gux cum Obfervationibus \& Experimentis, debiâa cura \& fide crebro perictis, quammaximè congrueret, Civitate Philofophica fuo jure donaretur.
Edito hoc Celeuifmate, incitati protinus è dicta Societate fuerunt, imprimis Cbrifitianus Hugenius, Fobamnes Wallifus, Cbrifoopicirus Wicmnus, ut fuas de Motu Hypotbejes \& Regulns, quibus condendis aliquamdiu infudaffent, maturare atque expedire fatagerent. Factum hinc, ut felectus ille Virurum proxflantifimorum Trias, poft paucarum feptimauarum fpatium, .Tbeorias fuas, eleganter compendifactas, tantum non certatim tranfiniterent, Regieque Societatis fuper iis fententiam exquirirent. Primus omnium D. WFallifurs, fua de Motibus \(x\) ftimandis Principica, Literis, d. 15 Novemb. 16́68. datis, cjufdemque Menfis die 26 traditis \& prelectis, communicavit. Mox eum- excepit D. Cbrifoopherus Wicen, qui Naturic Legem de Colififone Corporum, proximo Menfe Decembri, ejufque die 17. eidem Societati publice exhiberi curavit: qua in mandatis mox dedit (pre-habito tamen utriufque hujus Authoris confenfu) ut ad commodiorem horum feriptorum communicationem, difcuffionemque diffufiorem, res tota Typis mandiaretur,

\section*{(550)}

Hæc dum apud Nos geruntur, Ecce adfert Nobis Tabellarius d. 4. \(\mathfrak{F i}\) suuarii infequentis (St. Ang.) D. Hugenii literas ejufdem Menfis d. 5. (at St. N.) exaratas, ejufque fcripti, de Motu Corporum ex mutuo Impulfu, priores Regulas quatuor, una cum Demonftrationibus, continentes. Habebam ego in promptu Theorie Wrenniane Apographum, idque actutum eodem plane die, fic favente Tabellione Publico, D. Hugenio, redhoftimenti vice, remittebam, dilata interim Literarum Hugeniarum (quibus tale quid includi, ob Molem, \& antegreffum Authoris promiffum fufpicabar) refignatione, donec ferret occafio Nobiliffimum \& Sapientiffimum Regice Societatis Prafidem, D. ViceComitem Brouncker, compellandi. Quo facto, amborumque Regulis in modo dicta Societate collatis, mirus confeftim in utroque confenfus effulfit; id quod infignem in nobis lubentiam pariebat, utrumque hoc feriptum prelo noftro committendi. Nihil hic Nobis deerat à parte Hugenii, quam ejus confenfus; abfque quo fas nequaquam judicabamus, ipfius Inventum, maximè cum illud haud integrum eo tempore nobis dediffer, in lucem emittere. Curæ interim nobis erat, Pcriptum Ipfius publicis Regia Socictatis Monumentis inferendi ; fimul \& Authorid. ir. Fanuarii folennes pro Cordata illa Communicatione gratias reponendi, additâ dehinc (die Scil. 4 Febr.) follicitẩ commonefactione, ut fuam hanc Theoriam vel Parifis (quod proclive crat factu in Eruditorum, ut vocant, Diario) vel hic Londini in Advorfariis Pbilofophicis, imprimendam curaret, vel faltem permitteret. Quibus expeditis Literis paulo poft fecundas accepimus ab Hugenio, fcripti Wrenniani de hoc argumento recte traditi mentionem facientes, nihil tamen quicquam de fuimet feripti Editiọne, vel Parifiis vel Londini paranda, commemorantes.

Unde liquere omnino autumem, ipfun fibi defuiffe Hugenium in illa publicatione maturanda ; quin imo occafionem dediffe procraitinando, ut Laudatus Dn. Wren, pro ingenii fui fagacitate Geminam omnino Theoriam eruens in Glorix, huic fpeculationi debitx, partem jure veniret; cum extra omne fit dubium neutrum horum Theorice illius quicquam, priufquam feripta eorum f1mul compararent, refcivifie ab altero, fed utrumque propriâ Ingenii frocunditate, pulchellam hanc fobolem enixum fuiffe.

Solvit equidem Hurenius, ante aliquot jam Annos, Londini cum ageret, illos de Motu Cafus qui ipfí tunc proponebantur ; luculento fane Argumento, cum jam tum exploratas habuiffe Regulds; quarum id evidentia preftaret. At non affirmabit ipfe, cuiquam fe Anglorum fuæ Theoric quicquam apperuiffe ; quin fateri tenetur, fe ab corum nonnullis ad communicationem ejus folicitatum, nec tamen unquam, nifı nuperrime, ad id faciendum pertractum fuiffe.

The Synchronimn II. Sint \(a b, k c, c d, d e, c f, \& c\). omnes invicem æquales; \& \(b I, c 2\),

cloide ; Demon-. Dico in hac Linea, Grave quodliber, Cadens ex quovis ejus Purrcto, at-
frated by a Perfrated by a Per- .
fong of Quality n. \(94 . p .6032\). quovis ejufdem Puncto alio.

Fig. 159.

\section*{(551)}

Nam \(f_{1}\) ponas, \(\ddot{a}=\bar{a} b=b c=c d\), \&cc. \& \(b=b \mathbf{I}\), \& \(\bar{x}\) pro quolibet Numero alterutrorum; tunc \(f_{1} x a\) ponatur pro \(a f, x x b\) repretentet oportet \(f \delta\), proindeque Tempus Defcenfus neceffario erit \(\frac{x x b}{x x a a}\) feu \(b\) \(\frac{-}{\text {; }}\) atque idem in omnibus obtinet Cafibus. Ergo, \&ec. \(a\)
Dico infuper, Gurvam hanc effe Cycloidem; quod Demonftratu eft facile ex Conftructione, atque ex eo quod jam innuo ; nempe, Curvam hanc \(a b c d e f z\). æquare duplum Ultimæ Rectarum, b.e. \(2 \hbar \omega\), \& \(a\) a æqualem effe Semicircumferentix Circuli cujus \(z \omega\) eft Diameter ; ac univerfim Triangulum \(r\) ૪ II reprazentare Rectam \(z \omega\); \& Quadratum \(\gamma\) ૪ II бы; Curvam \(a b c d\) efz, \& Quadrantem \(\gamma\) ૪ \(\sigma\) repræfentare Reftam ac: ac partes unius, partes alterius refpectivê. Uti \(f_{i} \gamma \bumpeq \eta\) reprefentat \(f \delta\), tunc \(\gamma \bumpeq \Omega\) g reprefentat a \(\delta,{ }^{\prime} \& \gamma \bumpeq \eta\) go reprefentat af. At non vacat fufiùs hæc profequi.

Dico denique; Globulum fufpenfum è Funiculo (Jufte Longitudinis.) \&r intra duas Cycloides vibrantem, moveri in Cycloide. Quare Vibrationes ejufmodi funt Synclronc. Q. E. D.
III. I. Probl.] Determinare Lineam Curvam data duo Puncta, in diverfis ab a problem conHorizontc Diftantiis \(\mathcal{G}\) non in eadem Rectâ Verticali pofita, conncEtentem, fupercerning tbe Line qua Mobile, Propriâ Gravitate decurrens, \(\mathcal{E}\) à Superiori Puncto Moveri incipiens, of 2rent betreenen trof citiffimè Defcendat ad Punctum Inferius.

Senfus Problematis hic eft, ex Infinitis Lineis quæ duo illa data Puncta \({ }_{M}^{\text {propofed }}\). bernoulli.

Points given; conjungunt, vel ab uno ad alterum duci poffunt, eligatur illa, juxta quam fin. 224. p. 384. incurvetur Lamina Tubi Canalifve Formam habens, ut ipfi impofitus Globulus \& liberè dimiffus iter fuum ab uno Puncto ad alterum emetiatur Tempore Brevifimo.
2. Accepi hefterno die duo Problematum à Foanne Bernoullo Mathematico. Soly'd ; by rum acutiflimo propofitorum Exemplaria, Groninge edita, Cal. Fan. 1697. Ibid. Quorum prioris Solutio fit hujufmodi.

A Dato Puncto A, ducatur Recta Infinita A P CZ Horizonti parallela, \&r fuper eadem Recta defcribatur tum Cyclois quæcunque A QP, Rectæ per alterum Datum Punctum B ductæ (\(\& 2 \sqrt{1}\) opus eft productx) Occurrens in Puncto Q, tum Cyclois alia A BC. cujus Bafis \& Altitudo fit ad prioris Bafem \& Altitudinem refpective ut AB ad A Q; Et hæc Cyclois Novilfima tranfibit per Punctum B, \&z erit Curva illa, linea in qua Grave à Puncto A ad Punctum \(\mathrm{B}, \mathrm{Vi}\) Gravitatis fux, Citiffimè perveniet. Q. E. I.
3. Sit A P, Linea Horizontalis; P, Punctum à quo corpus Grave defo The Demonftran cendit, per Curvam Lineam guæfitam. A D E, C \& D Puncta duo in- tion; by syult. finitè propinqua, per quæ Corpus decifurum fit, C.D Recta, duo Puncta \(\begin{aligned} & \text { Mr. R. Sault. } \\ & \text { n. } \\ & 246 . \\ & p .425\end{aligned}\) connectens, D C \& s C, D F \& S G, FS \& G C vel s H, Momenta Curve Abfciffe, \& Ordinatim applicatæ refpective. Capiatur, \(\mathrm{D} r=\mathrm{D}\) s, Fig. зб́, \(\& t C=B C\).

\section*{(552)}

Quoniam in Lineolis Nafcentibus, Tempus eft ut Via percurfa directè \& Velocitas (i. e. in hoc cafu, ut Radix Quadrata Altitudinis corporis defeenfi) inversè, per Hypoth. \(\frac{D s}{\sqrt{ } Q D}+\frac{S C}{\sqrt{ } F}=\) Tempori Minimo. Et quia Velocitas in Punctis xquialtis S \& B per Curvam D C \& Rectam D B C eadem eft, Tempus per D C, quod evidenter Minimum eft, erit ut \(\frac{B D}{\sqrt{ } Q D}+\frac{B C}{\sqrt{ } Q F} ; x q u e n t u r\) ergo hxe Tempora, \& \(\frac{D s}{\sqrt{ } Q D}+\frac{s C}{\sqrt{ } Q F}\) \(=\frac{D B}{\sqrt{ } Q D}+\frac{B C}{\sqrt{ } E F}\), hoc eft; \(\frac{D B-D s}{\sqrt{ } Q D}=\frac{C-B C}{\sqrt{ } Q F}\), vel \(\frac{B r}{\sqrt{ } Q D}\) \(=\frac{t s}{\sqrt{Q F}}\).

Sed Triangula Evanefcentia \(\mathrm{Brs} \mathrm{~B} t\),\(s , æquiangula funt Triangulis\) \(\mathrm{DsF}, \mathrm{H} s \mathrm{C} ; \operatorname{Ergo} \frac{\mathrm{B} s}{\mathrm{D} s}=\frac{\mathrm{Br}}{s \mathrm{~F}}, \& \frac{t s}{\mathrm{H} s}=\frac{\mathrm{B} s}{s t}\). Componantur \(h x\) dux rationes æqualitati, \& \(\frac{\mathrm{B} r^{-}}{\mathrm{D} \times \times \mathrm{H}_{s}}=\frac{t s}{s \mathrm{~F} \times s t}\). Ex \(x\) quo
 quabiliter Fluere fupponatur, ponamus \(\mathrm{DS}=\mathrm{SC}, \&\) evadet fimplicifima Curve expreflio \(\frac{\checkmark Q D}{s F}=\frac{\sqrt{ }+F}{D s}\) ubique, \(i\). co in Puncto Flexurx, Curva femper erit in Ratione compofita Velocitatis directè, \& Momenti applicatim Ordinatæ inverfé. Sint \(\dot{x}, \dot{y}\) \& \(\dot{z}\) Fluxiones Abfciffx, Ordinatim applicatx,\& Curvx refpectivè, \(\frac{x^{\frac{1}{2}}}{y}\) conftans eft, ut fupra. Ergo \(\frac{x^{\frac{3}{2}}}{\dot{y}}=\mathbf{x}\) fed pofuimus \(z(=\sqrt{\bar{x} \dot{x}+\dot{y} y})\) conftans. Ergo ut hæc unitas conftans fit \& dimenfiones debitas retineat \(\frac{x^{\frac{x}{2}}}{y}=\frac{a^{\frac{1}{2}}}{\sqrt{x x+y y}}\), \& poft Reductionem \(\dot{y} \frac{x^{\frac{3}{2}} \dot{x}}{\sqrt{a-x}}\). Expreffio Notifima Cycloidis P E L. Q.E.I.

\section*{(553)}
IV. Theorema.] Si in Cycloide A V D, cujus Bafis A D eft Horizonti Hore much tbe
 Cycloidi occurrens in B, ex quo ducatur Recta B C Curvie Cycloidis B D Cyctoid thane in: B -Normalis, ad quam cx: A demittatur Perpendicularis Recta A C. Dico by a fratight Lax.: Tempus guo Grave e Quicte cadens ex A, Vi Juse Graviratis decurrit Rectam n. 225 . \%. 424. A B, effe ad Tompus quo peicurrit Curvam A V B, ficut Recta A B add Rectam AC.

Per B ducatur B L, Parallela Cycloidis Axi V E; \&e B K, Bafi A D
Fig. IG2. Parallela, occurrens Axi in \(G\), \& Circulo fuper Diametrum \(E V\) defcripto in F \& H , Cycloidi denique in K. Ducatur Recta E F, quæ ex Cycloidis natura parallela eft Rectæ B C. Unde B M eft æqualis EF, \& E M xqualis B F; qux, propter Cycioidem, xquatur Arcui V F; \&\& proinde A M eft xqualis Arcui E H V F.

Per Prop. 25. Part. II. Horologii Of illatorii Hugenii, Tempus quo grave è Quiete cadens percurvit A V, eft ad Tempus Cafus per EV, ut Semicircumferentia ad Diametrum ; \& per diftx Partis Prop. Vltimam, Tempus quo Grave percurrit V B, poft decurfam A \(V\) (nempe æquale Tempori quo Grave percurrit K V, poft decurfan A K) eft ad Tempus Lapfus per AV, ficut Arcus V F, ad Semicircumferentiam ; adcoque ad Tempus Cafus per E V, ficut Arcus F V ad Diametrum. Quare Tempus quo Grave percurrit Curvan A V B, eft ad Tempus Cafus per E V, ficut Arcus EHVF, ad Diametrum EV. Sed Tempus Cafus per E V, eft ad Tempus Cafus por L B, five EG, ficut EV ad EF: Igitur ex xquo, Tcmpus quo Grave percurrit AVB, eft ad Tempus Cafus per L B, ficut Arcus EHVF ad fubtenfum EF; hoc eft, ut Recta A M, ad Rectam MB. Rurfus, Tempus Cafus per LB, eft ad Tempus Lapfus per AB, ut LB ad AB: Ergo Ratio Temporis quo Grave percurrit \(A V B\), ad Tempus quo percurrit \(A B\), componitur ex Ratione \(A M\) ad \(M B\), \& Ratione L B ad BA; adeoque rqualis eft Rationi \(A M \times L B\) ad \(M B \times B A\). Sed \(A M \times L B\), eft æquale \(\mathrm{MB} \times \mathrm{AC}\), quia utrunque æquatur duplo Trianguli \(A B M\) : Et igitur Tempus quo Grave è Quiete cadens percurrit Curvam Cycloidis \(A V B\), eft ad Tempus guo percurrit Rectam \(A B\), ficut \(M B \times A C\) ad \(\mathrm{MB} \times \mathrm{BA}\); id eft ficut AC ad AB . ㅇ. E. D. Similiterque procedet Demonftratio, \(f_{1}\) Punctum \(B\), lit inter \(A\) \& \(V\).
V. I. The upper Plate of the Watch is A B: The Circular Ballance- Exta Portabic Wibecl CD, of which the Arbre is EF: The Spring turned Spirally, Warches; bugens. GHM, faftned to the Arbre of the Ballance-Wtieel in M, and to the piece n. yir. po.a72. that is fait to the Watch-Plate, in \(G\), all the Spires or Windings of the Spring being free without touching any thing. NOPQ , is the Cock, in which one of the Pivots of the Ballance-tweel turns; R S, is one of the Indented Whocls of the Watols having a Ballancing Motion, which the Ballance-Whoel gives to it. And this Wheel R S, catches in the Pinion 'T, which holds on the Arbre of the Ballance, of which by this means the Motion is entertained as much as is neceflary. Thefe wathes are cxate for the

Vol. I. Ebbb Pocket,

\section*{(554)}

Pocket, and when made greater, will be ufeful to find the Longitudes both by Sea and Land.

By Dr. Goth. Guil. Leibnitz.
2. The Principle I thought upon fome Years ago for making Exact Portable Watches, is altogether different from that of M. Hugens; His deก. \(113 . f .285\). pending upon a Phylical Oblervation, but mine upon a meer Mechanical
Refledion; which hath not been taken notice of for want of the Art of Combination, the ufe of which is far more general than that of Algebra. For, having confidered with my felf, that a Spring being Bent to the fame Degree, will always Unbend it felf in the fame Time, provided it find the fame freedom of Unbending it felf fuddenly; I inferred from thence, that there might be imployed two fuch, one of which fhould play, whilft the Firf Mcver of the Watch did Bend the other again.

Thefe Thoughts I have executed in the following manner : Let A B, be
Fig. 164. one of the Watch-Plates, C and M , two Indented Barrels, wherein the fmall Springs are inclofed. The Teeth of the Barrels cateh thofe of the Pinions \(d d\), which carry the Ballances \(c e\), and other Teeth of the faid Barrels are catched by thofe of the Interrupted Wheel F G. Now let us imagine, that this Wheel F G, being moved towards HF, by the force of the Firft Mover of the Watch, and turning the Barrel C, Bends the Spring inclofed in it, and ftops with the Barrel as foon as it hath Bent this Spring. This piece which ferves to ftop, is eafie, and hath not been thought neceffary to be marked here, to avoid embaraffing the Figure. But whilit one Indented part of the Interrupted Wheel F G, viz. F, turns the Barrel C, the empty. part, oppofed thereunto, which is \(G\), anfwess to the other Barrel \(M\), and. gives Liberty to the Spring, it incloferh, to Unbend it felf. Thus whilft the Movement of the. Watch Bends the fmall Spring of the Barrel C, in the fame Time the fmall spring of the other Barrel M, Unbends of it Kelf. Ifay, in the fame Time, except the Spring C, fhall have done Bending a little fooner, than the Spring M , fhall have Unbent it felf: So that the Spring C, being Bent, and the Wheel F G ftopped; both of them ftay in this Pofture, till the Spring \(M\), when it fhall be quite Unbent, do, at the. end of its Motion, touch a piece which delivers it. And then the Spring C Unbends of it felf in its turn ; the Teeth of the Interrupted Wheel, which continues its Motion the fame way as before, fince 'tis delivered, not being any more able to hinder it therefrom; becaufe the Barrel C, doth now meet with the Empty part H, of the faid Wheel. But before it hath done with Unbending it felf, the Indented part L, being oppofite to the Empty pari H , that turns the Barrel M , Bends its Spring again, and having done fo, ftops with it ; whilf the Spring C, making an end of Unbending it felf, delivers them by a Reciprocal good Office, and renders to the Spring \(M\), the fame Services which it had received from it, with an Expectation of receiving the like again.

Which being well confidered, 'tis manifeft, That the fame Alternative Motions will contirue always: That the Periods, taken from the very Moment that one Spring begins to Unbend, until the Moment it once Unbends it: elf again, will always be of Equal Durations, though the two fmall

\section*{(555)}

Springs be not equally ftrong : That the Ballance of fuch a Watch will be double, and may be Charged more or lefs, and receive Delay, by : Advancing or Recoiling along the two Arms two equal Weights, Counter-ballanicing one another, that to the Change of the Situation may not at all prejudice the Equality of the Watch. For the reft, we may in this kind of Watcles fpare the Fufee, and confequently the String or Chain. 'Tis alfo eafie to judge, that fuch Whatches as thefe may be of a Size fufficiently finall; that they will make no more Noife than ordinary. Watcles; that they will be as exact: as Penduiums, and ceafe not to go whilf they are Winding up. And though the Motion of the Watch Wheels may be altered by many Accidents, yet the Periods of the fimall Springs will not be concerned in all or any of them; provided the Motion of the Watch Wheels have always more Strength than it needs to Bend them again ; which is in our Power.

The Objections that have been made againft this Contrivance, if employed for Finding Longitudes, are thefe ; That Tolling of Ships would fhake the Springs as well as other pieces; That Ruft would fooil them, fince the Saltifh Humidity of the Sea in remote Voyages, fares not the very Needles of Compaffes though inclofed in Boxes; That the Changes of Seafons and Climates will fenfibly alter the Springs, efpecially the great Heats or Rains within the Tropicks, which at length will fomewhat Untemper the Steel; as is confurmed by the Experiments of the Illuftrionis "Academy of Florence, fhewing how eafily that Heat and Cold do change Slender Springs: belides that, the Air more or lefs condenfed will alfo more or leff refft the Motion of the Ballance. To which may be added, That Springs by work: ing are weakened; And Laftly, That there will be always fome little Frition, that will make the feveral pieces go more or lefs eafily, and that even in length of time they will wear out.

But I Anfwer, That all thefe Defects, that procced from the Imperfection of the Matter, may be furmounted by a General Remedy, withour Examining them here in Particular: And that is, That for executing it in great, we may make ufe of maffy Springs, as are thofe of Crofs-Bows, we being Mafters of them, not wanting Force or Place in a Ship, to govern a great Weight that may ferve to Bend them continually again. Now thefe Maffy Springs may be fo great, and their Reftitution fo peedy; by Atigmenting their number, that all the above-named Defects will have no confide.rable Proportion to this Strength, and the Aggregate of their Repetitions will not be fenfible till after a very long time. And 'tis eafie to Demonjtratc, That by Augmenting the Bignefs of the Engine, and the Force of the Maffy Springs, we may make the Etrour as fnall as we will, provided we pafs not the Bounds of conveniency, and content our felves with Exactrefs fufficient for their Chief End, viz. For finding thic Longitudes. vided into two Unequal Parts by the Line GI. To reftore to the Lefs Secby M. de Genture its Equilibrium, there is faltned to the Extremity of the Raditrs DF, a Weight \(F\), which is fufficiently heavy to Recover, what the lefler Secture.

\section*{(556)}
lofes by its Situation. That a Wheel or Clock may thus ftand not only in Aquilibrium, but alfo Afcend upward, there is placed in the middle of the Clock a Drum, which enclofes the Spring of the Pendulum; upon which Drum is faftned the Radius DF. For thus the Spring being Mounted, enforces the Drum to turn, and fo to Raife the Weight, which it cannot Raife without its becoming more Heavy, in regard that coming to the Point E , it is farther from the Center, than when it was in F , and thus all the Wioel turns on that fide, as the Spring gives way.

A clock, Defendent on a Pluins snotined; by Mr. Maur. Whecler. n, 161. po 647 . that Gould Move upon a Declivity, and M. de Genmes has given fome Accuunt of a Clock fifcendent on a Plain Inclined; yet neither of them, nor any like them, was ever feen by me, and for ought I could ever learn, the Renfon of their Motions remains to this Hour as great a Secret, as if they had never been. I fhall therefore give an Account of a Movement, which I have defign'd to meafure Time after a Peculiar Manner.

Fig. 166.
I. The Exteriour Structure of it is a Circular Body of \(3^{\frac{x}{2}}\) Inches Diameter, confifting of two Plates mafured by the fame: Radins, and fixt in a Parallel Pofition to each other by the Hoop. \(b\), the Breadth of which is about an Inch. This Hoop and the two Plates Form the Cafe of the Movement, of which, that which appears in the Front, is towards the Verge thereof Infcribed with a Forary Circle, the Divifions whereof anfwer the Hours of a Natural Day. The Deep Shades wirhin this Circle are intended to reprefene a Concave, of near half an Inch deep; and the Prominence 3 , in the Middle of this Concave, is a Hemifphere of Brafs or Silver, riding loonly on a Pin, swhich lies hid, and is the \(A x i s\) of the Movement. The Upper half of this Hemifphere is hollow, but the Nether filled with Lead; and the finall Gentlenan that fits thereon, does with an Erected Finger perform the Office of an Index. But this being only for Ornament, you may Subftiture in the room thereof any other Index, provided the Axis, whereon it is fupported; move freely in the Hole H , and the lower part thereof H L, fo far preponderate to HP, as always to keep it Pendulous, with is Point to the Vertica! Hour.
Fis 166.
2. For the manner of its Motion, as far forth as it appears outwardly; it is thus: SE reprefents a Board or Shelf, of a Straight and Even Surface, about 6 Foot long, and fo Thick as not to be apt to Caft with change of Weather; nor to grow Camber under a fmall Weight; on this is the Movement placed, and here to perform its Courfe; and therefore I call it the Stage of the Movement. This Stage is Raifed at the end S, about 10 Deg. above the Horizon or Line of Level HE; but this Angle of its Declivity DEH, is. Variable. The two Plates which Form the Cafe of the Movement, are to be extant all round without the Hoop \(b, \frac{2}{s}\) of an Inch, and the Edges of 'em lightly Indented, that while the Movement defcends upon the Stage, it may Turn only and not Slide. The Movement being placed as high as it may, near the point S, fhall Move downward towards E, with that llownefs, as to Finifh one entie Revolution in 24 hours; and while it does fo, the Divifions on

\section*{(557)}
the Horaiy Circle (or Dial-Plate) fucceffively Culminating over the Point of the Index (which is always to keep the fame Pofition) will hew the Hours of the Day and Night. And when by feveral repeated Revolutions, it has menfurred out the length of its Stage, it is to be replaced at \(S\), as before, which may be done in left than half the time you are Winding up a Watch; and if the Stage be 6 Font long, no oftener than once in a whole Week.
3. The way of Adjusting the Motion to the exact Meafure of an Hour, and Rectifying its Errours, is thus: viz. By the turning of a Skew inferred at S, the Stare may be Elevated or Depreft, and accordingly the Movement will go Fatter or Slower: Fatter if Raifed up, and Slower, if let Down; and by making the Horary Circle Moveable, and Inferting feveral foal Boffes or Buttons, here and there upon the Verge thereof, it may with an eafie touch of the Finger be moved to the right and left, as there hall be occafion, till the jut Time be brought to the Point of the Sufpended Index.

The Reafon of this Movement may be thus Explain'd: I. Let the Circle L OD N, reprefent any Circular Body, whole Centers both of Gravity and Magnitude are Coincident at M. Let this Circular Body be placed upon forme Level Plain GG, and then 'ti Evident that the Angle of its Contact with that Plain at \(a\), will also be the Point of its Libration, and conequently it mut Reft there: Qua Momentum \& Impedimentum font aqualia.-
2. Let DE, reprefent a Defending Plain, making an Angle of Contact with this Circular Body at \(b\); and here 'ti manifeft it cannot Reft; becaufe the Line of Direction ra, which (while it Infifted upon a Level) divided the Circular Body by the Centers of Magnitude and Gravity into Parts Fiquiponderate, is now removed to L. D; which Line ED; falling without, or betide, the Center M, evidently deftroys the E'quipoife of its Parts, and therefore mut leave it to tumble down towards E. For here Momenttum Impedimenta majus. The Reafon therefore of its Defcent now, being the Over-ballance of the Parts LND ; to the remaining Section LDO; it mut neceffarily follow:
3. That if forme Weight equal to the Excess of LND , above LOD; were affix to the Limb of the Quadrant O a, as at P ; then the Circular Body would Reft as Quietly at \(b\), as it did before at \(a\). The Suppofition cannot be denied, and the Confeguence is unavoidable, because LD O \(\rightarrow \mathrm{P}\) \(=\) LN D. i. c. Impedimentumb cquatur Memento.

Let then the Numbers, I, 2, 3, 4, reprefent' a Train of Wheel-wori,

Fig. 167.

Fig: " 69. wherein there is no material difference from what is found in a common Watch; only the numbers of the Teeth on the Wheels and Pinions are to be fo Calculated, that the Motion of the whole Train may correfpond to the aligned Revolution of the Body of the Movement, which is to be once in 24 Hours: It would be Expedient alfo, That a Spiral Spring were applied to its Ballance, as in later Movements, is ufual; but of a Fulce here's no need for the Turns of the Body of the Movement, as it defends upon the Stage, anfwer all the Intentions of a String or Chain; and the Contranitence of the Weight \(P\), to the excels of LED, above LQD, ferves instead of a Perpetual Spring; and the Movement wants only a Perpetacl Defects, to make its Atom:

\section*{(\(55^{8}\))}
tion fo. 'And whereas the great Wheel in ordinary Movements, is placed as near the edge of the Framing Plate \(f f\), as it may be; here it muft (with its, Axis or Arbre M) poffers the Center of the Movement: becaufe this Wheel is to carry the Weight or Power P, by the Vectis MP, and that Weight P, mutt always keep an Equidiftance from the Center of the Movcment; that while the Body thereof (i. c. of the Movement) performs its Revolutions ; the faid Weight P , and the great Wheel, (to which it is affixt,) may, without any confiderable Variation, continue in, or near the fame Pofition, wherein they now are. Now fuppofe this Weight \(P\), with its Vectis MP, to be taken quire out of the Movement, and the Body of the Movement to be placed on a Horizontal Plain HH , its point of Contact in that Plain is T ; vhere it fhould, but cannot, Reft; becaufe the Weight of that part of the Train, marked with the Numbers, 2, 3, 4, Removes the Center of Gravi: from \(M\), and therefore on the oppofite part of the Movement, as about \(C Q\), the Inlide of the Hoop, which forms the Cafe, is to be loaded with a thin Liming of Lead, which may be a Counterpoife to that part of the Train; that fo, the whole Body of the Movement, together with all its Furniture, within and without, (excepting only P, with its Vectis) may on that Horizontal Plain, or while it Rides upon its own Axis, Reft indifferently in any Point. This reducing of the Movement to an Equilibration of all its Parts in the Center M , mult be perform'd Tentando, i. c. by Rafping the Lead at \(C Q\), as much and in fuch Places as is needful ; which to an Artificer, of Ordinary Sagacity, will not be at all difficult.

The Center of Gravity being thus reduced to M , replace the Weight P , by the Hole H, on the Arbor of the Central-Wheel M. Then let the Body of the Movement be placed on the Declivity DE, and fuppofing \(\mathrm{P}+\) \(L Q D=L D E\), then the Body muft needs Reft there: but becaufe the Weight \(P\), is not now fixt to any part of the Quadrant \(Q D\), but hangs upon the Train of Wheel-work \(1,2,3,4\), it evidently follows, That if the Power thereof be Superiour to the Refiftance of the Train, then the whole Body of the Movement muft needs Defcend, towards E. By this you fee there are two Offices alligned to the Weight or Power P. The Firft is, to be a Counterpoife to the excefs of the Weight of LED, above LQD. The Sccond is, that it be of Force fufficient to put the Train into a Motion fo Adjufted, as may exactly comport with the Time atligned for the Revolution of the whole Body. So that if there be any difficulry remaining, it confits in fuch an exact Stating of the Weight and Power of \(P\), that it may Adequately ferve both thefe Intentions. Now how very eafie this is, will be manifelt from thefe Propofitions following.
. r. That whatever the Intrinfick Weight of \(P\) fhall be, (as fuppofe it 4 Ounces Troy ;) yet the Power of that Weight will be Augmented or Diminilhed according to the different Degrees of its Elevation in the Quadrant T Q. Thus confidering PM, as a Vectis, its Hypomocblium is M, the Point where it exerts its Power on the Train, is at V; I fay then, whatever Power it has upon the Point \(V\), in its prefent Elevation of 45 Derg. it will acquire a greater by being raifed to \(50.55 . \mathrm{C}^{2} \mathrm{c}\). and the greateft of all in 90 Dcg .

\section*{(559)}
at Q: and on the contrary, let it \(\operatorname{Sink}\) to \(40^{\circ} \cdot 35^{\circ}\). Bc. its Power upon the Point \(V\), will fill be Diminifhed, infomuch that in \(T\), it will be utterly extinguifh'd. And therefore if \(P\), be of a competent Weight (i, e not utterly too light) to Move the Train at all, it will certainly Move it in fome Degeee of Elevation or other in the Quadrant QT.
2. If the Weight \(P\), be confidered as to its Office of being a Counterpoife to the Body of the Movement; as I need not to prove, that it will perform this no lefs, while it hangs by upon the Vetis MP, than if it were faft Rivetted in the fame place to the Cafe of the Movement: fo , in what Point of the Quadrant foever it will move the Train, it may be alfo a Counterpoife to the Body of the Movernenit. For,
I. At what Point foever of the Circle LET Q, the Line of Declivity: DE, makes an Angle of Contact; on the fame Point will the Diameter S D, fall at Right Angles with DE.
2. The Line of Direction LD, will ever fall upon the Point of Contact D, making an Angle with the Diameter, as S D L.
3. The Angle S D L, will be always equal to D EH, i. c. As great as is the Elevation of the Line of Declivity DE, above the Horizontal E H, fo great will the Angle of Diftance be betwcen the Diameter \(S \mathrm{D}\), and the Line of Direction L. D.
4. The Greater the Angle of Declivity is, the Leis will be the Section LQD ; and fo on the contrary, the Lcfs that Angle is, the Greater the Section. And therefore,
5. The Excefs of the Weight of LE D, above L QD, mult be alfo Greater, by Raifing up the Stage with the Skrew at \(S\) : and that Excefs Lefs by Skrewing it down.
6. The Lighter that part of the Body is, which is reprefented by the Se tion LQD, the more Heavy ought the Counterpoife \(P\), to be; and that either in its own Intrinfick Weight, (in Ounces and Parts of Ounces) or elfe in its Potential Weight, by being Raifed Higher in the Quadrant QT.
7. The Slirewing up the SEage of the Movement at \(S\), will Raife the Counterpoife Higher in the Quadrant QT, by Prop. 3. and therefore Potentially Heavier. And from hence appears, (I take it moft clearly) both the reafon of the due Adjuftment of the Motion of the Train to the exact Meafure of an Hour, and what Weight is to be affign'd to P, that Moves it ; and that we are not confined to Scruples and Grains, but are allowed fuch a confiderable latitude, as it is not eafie to err therein.

Having therefore fet the Stage (by the help of the Arched Skrew) at the Elevation of about io Deg. place the Movement thereon, and try what Weight, hanging at the end of the Vectis MP, will ftir the Train, mean while holding the Movement with the Hand in fuch a Pofition, as the Veris may make an Angle of about 30 Deg. with the Perpendicular \(M T\) : then let the Movement loofe, to Undulate upon the Stage ; and when the Vibration ceafes, obferve to what Degree of the Quadrant the Vectis Points, and at the fame time mind the Pulfes of the Ballance. If at this Obfeivation, the Weight lies low, (as for inftance, between 2.5 and 35 Deg. of the Quadrant)

\section*{(560)}
and the Beats of the Ballance are gueffed to be not much different from their due time, the Weight \(P\), is well enough proportioned. But if it chance to be much Heavier than is abfolutely needful, that Excefs will be moderated by Skrewing down the Stage; and if it be not abfolutely too Light, its Defeet will be compenfated, by Skrewing the Stage Higher. Therefore of thefe two Extreams, choofe the former ; for the fewer Degrees that P arifes in the Quadrant, beyond what is abflutely neceffary, it will (for Reafons very obvious) be fo much the better.

The Eife its of Giravity in the D.fcent of Heavy Rodies, and the Motion of Projects ; by in. Halley. i. \(179 . \mathrm{p}^{\circ} 3^{\circ}\)
VIII. Des Cartes his Notion, I muft needs confefs to be to me Incomprehenfible, while he will have the Particles of his Ccleftial Matter, by being reflected on the Surface of the Earth, and fo afcending therefrom, to drive Down into their Places thofe Terreftrial Bodies they find above them : This is as near as I can gather, the Scope of the 20, 21, 22, and 23 Sections of the lat Book of his Principia Pbilofopliae; yet neither he nor any of his Followers can fhew, how a Body fufpended in Libero Athere, fhall be carried downwards by a continual Impulfe tending upwards, and acting upon all its Parts equally: And befides, the Obfcurity wherewith he exprefles himelf, particularly, Sect. 23. does fufficiently argue, according to his own Rules, the Confufed Idea he had of the thing he wrote.

Others, and among them, Dr. Vofius, afferts the Caufe of the Defcent of Heary Bodies, to be the Diurnal Rotation of the Earth upon its Axir, without confidering, that according to the Doctrine of Motion fortified with Demonfration, all Bodies moved in Circulo, would recede from the Center of their Motion; whereby the contrary to Gravity would follow, and all loofe Bodies would be calt into the Air in a Tangent to the Parallel of Latitude, without the Intervention of fome other Principle to keep them faft, fuch as is that of Gravity. Befides the Effect of this Principle is throughout the whole Surface of the Globe found nearly equal, and certain Experiment feems to argue it rather lefs near the Equinoctial, than towards the Poles, which could not be by any means, if the Diurnal Rotation of the Earti) upon its Axis were the Caufe of Gravity; for where the Motion was fwifteft, the Effect would be moft confiderable.

Others alfign the Preffure of the Atmofphere to be the Caufe of this Tendency towards the Cerzter of the Earth; but unhappily they have miftaken the Caufe for the Effect, it being from undoubted Principles plain, that the Atmofphere has no other Preffure, but what it derives from its Gravity; and that the Weight of the upper parts of the Air, prelling on the lower parts chereof, do to far bend the Springs of that Elaftick Body, as to give it a Force equal to the Weight that compreffed it, having of it felf no Force at all: And fuppofing it had, it will be very hard to Explain the Modus, how that Prefure fhould occafion the Defcent of a Body circumfcribed by it, and preffed equally above and below, without fome other Force to Draw or Thruft it Downwards. But to Demonftrate the contrary of this Opinion, an Experiment was long fince fhewn before the Royal Society; whereby it appeared, that the Atmofphere was fo far from being the Caufe of Grazity, that the

\section*{(56 r)}

Effects thereof were much more vigorous where the Preffure of the Atmof: phere was taken off; for a long Glafs-Receiver having a light Down-Feather: included, being Evacuated of Air, the Feather which in the Air would hardly fink, did in Vacuo defcend with nearly the fame Velocity as if it had been a Stone.

Some think to Illuftrate this Defcent of Henvy Bodies, by comparing it with the Virtue of the Loadfoone; but fetting afide the Difference there is in the manner of their Attractions, the Londfone drawing only in and about its Poles, and the Earth near equally in all Parts of its Surface, this Comparion avails no more than to explain Ignotum per aque Ignotum.

Othersaflign a certain Sympathetical Rittraction between the Earth and its Parts, whereby they have, as it were, a defire to be united, to be the Caufe we erquire -after: But this is fo far from explaining the Modus, that it is little more, than to tell us in other terms, that Heavy Bodies Defcend, becaufe they Defcend.

But though the Efficient Caufe of Gravity be fo obfcure, yet the Final Cauje thereof is clear enough ; for it is by this Single Principle that the Earth and all the Celeftial Bodies are kept from Diffolution : the leaft of their Particles not being fuffered to recede far from their Surfaces, without being immediately brought down again by Virtue of this Natural Tendency, which for their Prefervation, the Infinite Wifdom of their Creator has ordained to be towards each of their Centers; nor can the Globes of the Sun and Planets otherwife be deftroyed, but by taking from them this Power of keeping their parts united.

The Affections or Properties of Gravity, and its manner of Acting upon The Properties Bodies Falling, have been in a great meafure difovered, and moft of them of Girvity. made out by Mathematical Demonftration in this our Century, by the \({ }^{\text {Ibit. p. } 6 .}\) accurate Diligence of Galileus, Torricellius, Hugenius, and others; and now lately, by our worthy Countryman Mr. If: Newton. Which Properties I. fhall here enumerate.
1. The Firft Property is, That by this Principle of Gravitation, all Bodies do Defond towards a Point, which either is, or elfe is very near to, the Conter: of Magnitude of the Earth and Sea, about which the Sea forms it felf exactly into a Spherical Surface, and the Prominences of the Land, confidering the Bulk of the whole, differ but infenfibly therefrom.
2. That this Point, or Center of Gravitation, is Fixt within the Earth, or at leaft has been fo, ever fince we have any Authentick Hiftory: For a Confequence of its Change, tho never fo little, would be the over-flowing of the Low-lands on that fide of the Globe towards which it approached, and the leaving new Iflands bare on the oppofite fide, from which it receded; but for this Two Thoufand years it appears, that the Low Hlands of the Mcditerrancan Sea (near to which the Ancientéf Writers lived) bave continued. much at the fame height above the Water, as they now are found; and no Inundations or Receffes of the Sea arguing any fuch Change, are Recorded in Hiftory, excepting the \(V_{n i v e r f a l ~ D e l u g e, ~ w h i c h ~ c a n ~ n o ~ b e t t e r ~ w a y ~ b e ~ a c-~}^{\text {a }}\) counted for, thian by fuppofing this Center of Gravitation Removed for a time, towards the Middle of the then Inhabited Farts of the World; and a Changer

\section*{\((562)\)}
of its place, but the two thoufandth part of the Radius of this Globe, were fufficient to bury the Tops of the Higheft Hills under Water.
3. That in all Parts of the Surface of the Earth, or rather in all Points equidiftant from its Center the Force of Gravity is ncarly Equal; fo that the length of the Pendulum Vibrating Seconds of Time, is found in all Parts of the World to be very near the fame. 'Tis true, at St Helena, in the Latitude of 16 Deg . South, I found that the Pendulum of my Clock, which Vibrated Seconds, needed to be made fhorter than it had been in England, by 2 very Senfible Space (but which at that time I neglected to obferve accurately) before it would keep Time; and fince the like Obfervations have been made by the French obfervers near the Equinoctial: Xet I dare not affirm, that in mine it proceeded from any other Caufe,than the great Heigbt of my Place of Obfervation above the Surface of the Sea, whereby the Grawity being diminifhed, the Length of the Pendulum, Vibrating Seconds, is proportionably fhortned.
4. That Gravity does Equally Affect all Bodics, without regard cither to their Matter, Bulk, or Figure ; fo that the Impediment of the Medium being removed, the moft Compact and moft Looke, the Greateft and Smalleft, Bodies would Defcend the fame Spaces in Equal Times; the truth whereof will appear from the Experiment I before cited. In thefe two laft Partictlars, is hhewn, the great Difference between Gravity and Magnetifm, the one affecting only Iron, and that towards its Poles, the other all Bodies alike in every part. As a Corollary, from hence it will follow, That there is nofuch thing as Pofitive Levity, thofe things that appear Light, being only compara. tively fo ; and whereas feveral things Rife and Swim in Fluids, 'tis becaufe Bulk for Bulk, they are not fo Heavy as thoferluids; nor is there any reafon, why Cork, for intance, fhould be faid to be Light becaufe is Swims on Water, any more than Iron, becaufe it Swims on Mercuy.
5. That this Pomer Increafes as you Defeend, and Decrenfes as yous Afcend. from the: Canter, and that in the proportion of the Squares of the Diftances therefrom Reciprocally, fo as at a double Ditance to have but a quarter of the Force : This Property is the Principle on which Mr. Nemon has made out all the Phænomena of the Celeftial Motions, fo eafily and naturally, that its Truth is paft difpute. Befides that, it is highly Rational, that the Attractive or Gravitating Power fhould exert it felf more vigoroully in a Small Sphere, and weaker in a Greater, in proportion as it is Contracted or Expanded; and if fo, feeing that the Surfaces of Spheres are as the Squares of their Ridii, this Power at feveral Diftances will be as the Squares of thofe Diftances Reciprocally, and then its whole Action upon each Spherical Sur: face, be it great or fmall, will be always Equal. And this is evidently the Rule of Gravitation towards the Centers of the Sun, Fupiter, Saturn, and the Earth. and thence is reafonably inferred, to be the General Principle obferved by Nature in all the reft of the Celefial Bodies.

Thefe are the Principal Affections of Gravity, from which the Rules of the Fall. of Bodics, and the Motion of Projeets, are Mathematically deducible. Mri If. Nemton hath Thewed how to define the Spaces of the Defcent of a

\section*{(563)}

Body, let fall from any given Height, down to the Center, fuppoing de Gravitation to Increafe, as in the Fifth Property; but confidering the finalinefs of Height, to which any Project can be made Afcend, and over how little an Arch of the Globe it can be Caft, by any of our Engines, we may well enough fuppofe the Gravity. Egual throughout, and the Difcents of Projects in Parallel Lines, which, in Truth, are towards the Center, the Difference being fo fmall as by no means to be difoovered in Practice.

Prop. 1.] Tbe Velocities of Falling Bodies, are Proportionate to the Times from Propofitions conthe beginning of their Falls.

This follows, for that the Attion of Gravity being continual, in every fpace Bodies, ani ithe of Time, the Falling Body receives a new Impulfe, Equal to what it had be- Morion of Profore, in the fame Space of Time, received from the fame Power: For in- jects. ftance, in the Firft Second of Time, the Falling Body has acquired a Velccity, which in that Time would carry it to a certain Diftance, fuppole 32 Foot, and were there no new Force, would Defeend at that rate with an Equable Motion ; but in the next Second of Time, the fame Power of Grazity continually Acting thereon, fuperadds a New \(V\) clocity equal to the former; fo that at the end of two Seconds, the Velocity is double to what it was at the end of the Firft ; and after the fame manner may it be proved to be Triple, at the end of the Third Second, and to on. Wherefore the Velocitics of Falling Bodies, are Proportionate to the Times of thicir Falls. Q. E. D.

Prop. II.] The Spaces defcribed by the Fall of a Body, are as the Squares of the Times from the beginning of the Fall.

Demonftration.] Let A B reprefent the Time of the Fall of a Body, B C, Perpendicular to A B, the Velocity acquired at the End of the Fall, and draw the Line AC ; then Divide the Line A B, reprefenting the Time, into as many equal Parts as you pleafe, as \(b, b, b, b, \forall \delta\). and through thefe Points draw the Lines, \(b c, b c, b c, b c, \mathcal{E}^{c} c\). Parallel to \(B C\); 'tis manifeft that the feveral Lines, \(b\) c, reprefent the feveral Velocities of the Falling Body, in fuch parts of the Time, as \(A b\), is of \(A B\), by the Former Propogition. It is evident likewife, that the Area, ABC , is the Sum of all the Lines boc. being taken, according to the Metbod of Indivifibles infinitely many; fo that the Area \(A B C\), reprefents the Sum of all the Velocities between none and BC, fuppofed infinitely many; which Sum is the Space Defcended in the Time reprefented by AB. And by the fame reafon, the Areas \(A b c\), will reprefent the Spaces Defcended in the Times \(A b\); fo then the Spaces Defcended in the Times \(A B, A b\), are as the Areas of the Triangles, \(A B C, A b c\), which by the 2oth of the Gth of Euclid are as the Squares of their Homologous Sides AB, A \(b\), that is to fay, of the Trimes: wherefore the Defcents of Falling Bodies, are as the Squares of the Times of their Fall. Q. E. D.

\footnotetext{
Prop. III.] The Velocity mbich a Falling Body acquires in any Space of Time, is double to that, wherewith) it mould bave moved the Space Defcended by an Equabbic Moticn, in the fame Time:
}

\section*{(564)}

Demonfiration.] Draw the Line EC, Parallel to AB, and AE, Parailed to BC, and compleat the Parallelogram A B C E, it is evident that the Area thereof may reprefent the Space, a Body Moved Equably with the Volocity B C, would Defcribe in the Time \(A B\), and the Triangle \(A B C\), reprefents the Space Defcribed by the Fall of a Body, in the fame. Time A B, by the Se cond Propofition. Now the Triangle ABC, is Half of the Parellelogram A.BCE, and confequently the Space defcribed by the Fall, is Half what would have been defrribed by an Equable Motion with the Velocity BC, in the fame Time ; wherefore the Velocity BC, at the End of the Fall, is Double to that Velocity, which in the Time AB, would have defcribed the Space Fallen, reprefented by the Triangle A B C, with an Equable Motion. Q. E. D.

Prop. IV.] All Bodies on or near the Surface of the Earth, in their Fall, Deis fiend fo, as at the end of the Firf Second of Time, they bave defcribed If Feet one Inch, London Meafure, and acquired the Velocity of 32. Fect two Incles in a Second.

This is made out from the 2 zth Prop. Par. 20. Horol. Ofill. Hugen. wheres in he Demonftrates the Time of the leaft Vibrations of a Pendulum, to be to the Time of the Fall of a Body, from the Height of Half the Length of the Pendulum, as the Circumference of a Circle to its Diameter: whence, as a Corallary, it follows, That as the Square of the Diameter to the Square of the Circumference, fo half the length of the Pendulum Vibrating Seconds, to the Space defribed by the Fall of a Body in a Second of Time: and the Length of the Pendulum Vibrating Seconds, being found 39, i25, or \(\frac{1}{3}\) Inches, the Defcent in a Second will be found, by the aforefaid Analogy, 16 Foot and one Inch: and by the Third P.ropsfition, the Velocity will be dous, ble thereto; and near to this it hath been found by feveral Experiments, which by reafon of the fwifnefs of, the Fall, cannot fo exactly determine its Quantity.

From thefe Four Propofitions, all Queftions concerning the Perpendiculax Fall of Bodies are eafily folved, and either Time, Height, or Velocity being affigned, one may readily find the other two. From them likewife is the Dootrine of Projects deducible, affuming the two following Axioms; viz.
1. That a Body fet a Meving, will Move on continually in a Right Line with an. Equable Moticn, unlefs fome otber Force or Impediment inteivene, wherely if is Accelerated, or Retarded, or Defletted.
2. That a Body being agitated by Tmo Motions at a Time, does by their Com pounded Forces, pafs through the Same Points, as it would do, were the Two Motions divided and A\&ted fucceffreely. As for inftance;
Suppofe a Body moved in the Line GF, from G to R, and there ftopping by another Impulfe fuppofe it Moved in a Space of. Time equal to the former from R towards K to V ; I fay the Body fhall pafs through the point V , though thefe Two feveral Forces Acted both in the fame Time

\section*{(565)}

1
Prop. V.] The Motion of all Projects is in the Curve of a Parabola.
Demonftration.] Let the Line GRF be the Line in which the \(P_{\text {rgeef }}\) is directed; and in which by the Fir \(\boldsymbol{t}\) Axiom it would Move Equal Spaces in Equal Times, were it not Deflected downwards by the Force of Gravity. Let GB be the Horizontal Line, and GC a Perpendicular thereto. Then the Line GRF; being divided into Equal Parts, anfwering to Equal Spaces of Time, let the Defcents of the Project be laid down in Lines Parallel to G C, Proportioned as the Squares of the Lines; \(G S ; G\) R,GE,GF, or as the Squares of the Times, from \(S\) to \(T\), from \(R\) to \(V\), from \(L\) to \(X\), and from \(F\) to \(B\), and draw the Lines TH,VD, XY, BC, Parallel to GF: I fay, the Points \(T, V, X, B\), are Points in the Curve defribed by the Project, and that that Curve is a Paraiola. By the Second Axiom they are Points in the Curve; and the Parts of the Deficent G.H, GD, GY, GC, = to S T, RV, LX, FB, being as the Squares of the Times, (by the Secand Prop.) that is, as the Squares of the Ordinates HT, DV, Y.X, C B, Equal to GS, GR, GL, GF, the Spaces meafured in thofe Times; and there being no other Curve but the Paraboli, whofe Parts of the Diameter are as the Squares of the Ordinates, it follows that the Curve defcribed by a Project can be no 'other than a Parabola: And faying, as R V, the Defcent in Time, to GR, or V.D, the dirét Motion in the fame Time, fo is VD, to a Third Proportional ; that Third will be the Line called by all Writers of Conicks, the Parameter of the Parabola to the Diameter \(\mathrm{G}^{\circ} \mathrm{C}\); which is always the fame in Projcts Caft with the fame Velocity: And the Velocity being difined by the number of Feet, moved in a Second of Time, the Parameter will be found by dividing the Square of the Velocity, by 16 Feet I Inch, the Fall of a Body in the fame Time.

Lemma.] The Sine of the Double of any Arch, is equal to twice the Sine of that Archb into its Co-Sine, divided by Radius; and the Verfed Sine of the Double of any Archs is equal to the Square of the Sinc thercof divided by Radius.

Let the Arch BC be Double the Arch B F, and A the Center ; Draw the Radii AB, AF, AC, and the Chord BDC, and let Fall BE, Perpendicular to AC, and the Angle EBC, will be equal to the Angle \(B A D\), and the Triangle \(B C E\), will be like to the Triangle \(A B D\); wherefore it will be as \(A B\) to \(A D\); fo. \(B C\), or twice \(B . D\), to \(B E\) ? that is, as Radius to Co-Sine, fo twice Sine to Sine of the Double Arcl); and as \(\mathrm{A} \cdot \mathrm{B}\) to BD , fo twice BD or BC , to E C ; that is as Radius to Sine, fo-twice that Sine to the Verfed Sine of the Double Arcls; which two Analogies refolved into Equations, are-the-Propofitions contained in the Lemma to be proved.

Prop: VI.] The FiorigontatDitanocs of. Projections made with the fame Velocizty, at Several Elevations of the Line of Dirction, are as the Sims of the doublect Angles of Elevation.

\section*{(566)}

Fig. 87c: Let GB, the Horizontal Di\&ance be \(=\boldsymbol{z}\), the Sine of the Angle of Elevation, \(F G B\), be \(=s\), its Co-Sine \(=c\), Radius \(=r\), and the Paraneter \(=p\). It will be as \(c\) to \(s\), fo \(z\) to \(\frac{s t}{c}=F B=G C\), and by seafon of the parabola \(\frac{p s z}{c}=\) to the Square of \(C B\), or GF. Now as \(\bar{c}\) to \(r\), fo is \(\eta\) to \(\frac{z r}{c}=\mathrm{GF}\), and its Square \(\frac{z \tau r r}{c c}\) will be therefore \(=\) to \(\frac{p s \%}{c}\) : which Equation Reduced will be \(\frac{p s c}{r r}=\tau\). But by the forme: Lemma \(\frac{2 s c}{r}\) is equal to the Sine of the Double. Angle, whereof \(s\) is the Sine : wherefore 'twill be as Radius to Sine of Double the Angle FGB, fo is Half the Parameter, to the Horizontal Range or Diftance fought; and at the feveral Elevations, the Ranges are as the Sines of the Double Angles of Eleva\(t^{i o n}\). Q E. D.

Coroll.] Hence it follows, That Half the Parameter is the greateft Random, and that that happens at the Elevation of \(45^{\circ}\). The Sine of whofe Doulle is Radius. Likewife, That the Ranges equally Diftant above and below \(45^{\circ}\). are equal, as are the Sines of all doubled Arches, to the Sines of their doubled Complements.

Prop. VII.] The Altitudes of Projections made with the fame Velocity, at Several Elevations, are as the Verfed Sines of the doubled Angles of Elevation.

As \(c\) is to \(s\), fo is \(\frac{p s c}{r r}=G B\), to \(\frac{p s s}{r r}=B F\), and \(V K=R V\) \(=-\frac{\pi}{4} \mathrm{BF}\), the Altitude of the Projetion \(=\frac{p s s}{4 r r}\). Now by the foregoing Lemma \(\frac{2 s \text { s }}{r}=\) to the Verfed Sine of the Double Angle, and therefore it will be as Radius to Verfed Sine of Double the Angle FGB, fo \(\frac{1}{8}\) of Parameter to the Height of the Projection V K ; and fo thofer Heights at feveral Elcuations are as the faid Verfed Sines. Q. E.D.

Coroll:] From hence it is phain, That the greatef Altitude of the Perpendicular Projection is a \(4^{\text {th }}\) of Parameter, or balf the greateft Horizontal Range: The Verfed Sine of 180 Degrees being \(=2 r\).

Prop. VIII.] The Lines GF, or times of the Elight of a Project caft with the fame Degree of Velocity ans Different Elevations, are as the Sines of the Elevations.

\section*{(567)}

As c is to \(\tilde{r}\), fo is \(\frac{p^{s c}}{r r}=G B\) (by the 6. Prop.) to \(\frac{p^{j}}{r}=G F\), that is as Radius to the Sine of Ekevation, fo the Parameter to the Line GF; fo the Lines GFiare as the Sines of Elevation, and the Times are proportional to thofe Lines; wherefore the Times are as the Sines of Elevation: Ergo confat. Propofitio.

Prop. IX. Prob. 1.] A Projection being made, as you pleafe, baving the DiAtance and Altitude, or Defcent of an Object, through which the Project paffes, together with the Angle of Elevation of the Line of Direction, to find the \(P_{G}\) rameter and Velocity ; that is, (having the Angle FGB,) GM, and MX..

Solution.] As Radius to Secant of FGB, fo GM the Diftance given, to GL; and as Radius to Tangent of FGB, fo GM to LM. Then \(\mathrm{LM}-\mathrm{MX}\) in Heiglits, or +MX in Defcents; or elfe \(\mathrm{MX}-\mathrm{ML}\), if the Direction be Below the Horizontal-Line, is the Fall in the Time that the Direct Impulfe given in \(G\), would have carried the Project from \(G\) to \(L\) : \(=\mathrm{LX}=\mathrm{G} \cdot \mathrm{Y}\); then by reafon of the Farabola; as \(\mathrm{L} X\), or \(G Y\), is to GL or YX; fo is GL, to the Parameter fought. To find the Velocity of the Imputfe, by Prop. 2. and 4. find the. Time in Seconds that a Body would Fall the Space LX, and by that dividing the Line G L, the Quote widt be the Volocity, or Space. Moved in a Second Sought, which is always 2 Mean Proportional between the Parameter and 16 Feet, I Inch.

Prop. X. Prob. 2.]. Having the Parameter, Horizontal Diftance, and Heigh or. Defcent of an Object, to find the Elcoations of the Lines, of Direefion neceffary to Hit the given Objert; that is, having GM, MX, and the greatelt Ran. dom equal to half the Parameter; to find the Angles FGB.

Let the Tangent of the Angle fought \(\mathrm{be}=t\), the Horizontal Diftance: G. \(M=b\), the Altitude of the Object \(M X=b\), the Parameter \(=p\), and Radius \(=r\), and it will be, as \(r\) to \(t\), \(10 b\) to \(\frac{t b}{r}=\mathrm{ML;}\) and \(\frac{t b}{r} \mp b\) \(\left\{\begin{array}{l}\text { in Afcents } \\ \text { in Defcents }\end{array}\right\}=\mathrm{LX}\), and \(\frac{p t b}{r} \mp p b=G \mathrm{~L} q \cdot=\mathrm{XY} \mathrm{q}_{\mathrm{q}}\). ratione \(\mathrm{P}_{\mathrm{a}}\) rabole; but \(b b+\frac{t t b b}{r r}=G \mathbb{L}\). (47. 1. Euclid.) Wherefore \(\frac{p t b}{r}\) F \(p b=b b+\frac{t \cdot t \cdot b}{r r}\); which Equation tranfoofed is \(\frac{t+b b}{r r}=\frac{p \cdot t}{r}\)
Fpb-bb; divided by \(b b\), is \(\div \frac{t}{r r}=\frac{p t}{b r} \mp \frac{p b}{b b}-\). This Equatio
tion Shews the Queftion to have two Anfwers, and the Roots thercof are \(\frac{t}{r}\)
\(=\frac{\bar{p}}{2 b} \mp \sqrt{\frac{p p \mp}{4 b b}-1}\); from which I derive the following Rule. Divide half the Parameter by the Horizontal Dilance, and keep the Quote, vir. \(\frac{p}{2 b}\); then fay, as Square of the Diftance given to the half Parameter, So half Parameter \(\left\{\begin{array}{l}- \\ +\end{array}\right\}\) double \(\left\{\begin{array}{l}\text { Height } \\ \text { Defcent }\end{array}\right\}\) to the Square of a Secant: \(=\) \(\frac{p p+4 p b}{4 b 6}\), the Tangent anfwering to that Sccant will be \(\frac{\sqrt{p p \mp} \overline{4 p b}}{4 b 6}-1\), or \(r r\) : fo then the Sum and Difference of the afore-found Quote and this Tangent, will be the Roots of the Equation, and the Tangents of the Elevations fought.

Note here, That in \(D_{i} f_{\text {cents }}\), if the Tangent exceed the Quote, as it does when \(p b\) is more than \(b b\), the Direction of the Lower Elevation will be below the Horizon, and if \(p b=b b\), it muit be Directed Horizontal, and the Iangent of the upper Elevation will be \(\frac{p r}{b}\) : Note likewife, That if \(4: 66\) \(+4 p b\) in Afcents, or \(4 b b-4 p b\) in Defcents, be equal to \(p p\), there is but one Elcuation that can Hit the Object, and its. Tangent is \(\frac{p r}{2 b}\); and if \(4 b b+4 p b\) in \(4 f\) centss or \(4 b b-4 p b\) in Defcents, do exceed \(p p\), the object is without the Reach of a Project caft with that Velocity, and fo the thing impoffible.

From this Equation \(4 b b \mp 4 p b=p p\), are determined the utmoft \(L_{i-}\) mits of the Reach of any Project, and the Figure affigned, wherein are all the Heights upon each Horizontal Diftance beyond which it cannot pafs; for by Reduction of that Equation, \(b\) will be found \(=\frac{x}{4} p-\frac{b b}{p}\) in Heights, and \(\frac{b b}{p}-\frac{p}{4} p\) in Defcents; from whence it follows, that all the Points \(b\) are in the Curve of the Parabola, whofe Focus is the Point from whence the Project is caft, and whofe Latus Rectum, or Parametor ad Axem is \(=p\). Likewife from the fame Equation:may the leaft Parameter or Velocity be found capable to Reach the Object propofed; for \(b b=\frac{1}{4} p p \mp p b\) being reduced, \(\frac{1}{2} \rho\) will be \(=\sqrt{b b+b b}\left\{\begin{array}{l}+b \text { in Afcents } \\ -b \text { in Defcents }\end{array}\right\}\) which is the Horizontal Range at \(45^{\circ}\). that would juit Reach the Object, and the Elevation requi-

\section*{(569.)}
requifite will be eafily had; for dividing the fo found Semi-Parameter by the Horizontal Diftance given \(b\), the Quote into Radius will be the Tangent of the Elevation fought.

But if a Gcometrical Conftruction of this Problem be required ; I think I have one, that is as eafie as any can be expected, which I Deduce from the foregoing Analytical Solution, vir \(\frac{t}{r}=\frac{p}{2 b} \pm \frac{\sqrt{\frac{1}{4} p p} \frac{ \pm b-b b}{b b}}{r}\), and'tis this; Having made the Right Angle L D A, make D A, \(\mathrm{DF}=p\), or greateft Range, \(\mathrm{DG}=b\), the Horizontal Diftance, and \(\mathrm{DB}, \mathrm{DC}=h\), the Perpendicular-Height of the Object; anddraw G B, and make DE = thereto.

Fig. 174. Then with the Radius A C, and Center E, fweep an Arch, which if the thing be polfible, will Interfect the Line AD , in H ; and the Line DH , being laid both ways from F , will give the Points K , and L , to which draw the Lines G L, GK ; I fay, the Angles LGD, K G D, are the Elevations required for Hitting the Olje\{t, B. But Note, That if B, be below the Horizon, its \(D_{i} f\) cent \(D C=D B\), muft be laid upon \(A\), fo as to have \(A C\) \(\pm\) to \(A D+D C\). Note likewife, That if in Defcents, DH, be greater than FD, and fo K, fall below D, the Angle K GD, fhall be the Depreffion below the Horizon.

When Ingave the preceding Solution of this Problem, viz. To Hit an Ob-11. 216. p. \(6 \%\) ject above or belon the Horizontal Linc, with the greatef Certainty and lanft Force, I was not aware, that the Elcuation there fought did conftantly Biject the Angle between the Perpendicular and the Object, as is Demonitrated from the Difference and Sum of the Tangent and Secant of any Arch, being always equal to the Tangent and Co-Tangent of the half Complement thereof to a Quadrant. But having difcovered this, I think nothing can be more compendious, or bid fairer to compleat the Art of Gunnery, it being as eafie to. Shoot with a Mortar at any Object on demand, as if it were on the Level; meither is there need of any Computation, but only fimply laying the Gun to pals, in the middle Line between the Zenith and the Object, and giving it its due charge. Nor is there any great need of Inftruments for this purpofe : For, If the Muzzle of the Mortar be turn'd truly Square to the Bore of the Piece, as it tufually is, or ought to be, a piece of Looking-Glats Plate applied Parallel to the Muzzlc, will, by its Reflection, give the true Pofition of the Piece; the Bombardier having no more to do, but to look Perpendicularly down on the Looking-Glafs, alongft a finall Thread with a Plumber, and to Raife or Deprefs the Elevation of the Piece, till the Object appear Reflected on the fame Point of the Speculum on which the Plumbet falls; for the Angle of Incidence and Reffection being Equal, in this cafe a Line at Right Angles to the Speculum, as is the Axis of the Cbafe of the Piece, will Bifect the Angle between the Perpendicular and the Objeat, according as our Propofition requires.

Prop. XI. Prob. 3.] a Shot being mado on an Inclined Plain, baving the \(\mathrm{Ho}_{0}\) rizontal Ditance of the ObjeEt it frikes, with the Eleoation of the Piece, and the Angle at the Gun between the Oliect and the Perpendicular, to find the greateft Horvirontal Range of that Picce, laden with the Same Charge; that is, balf the Latus Rectum of all the Parabolx made with the fame Impetus.

Take Half the Diftance of the Object from the Nadir, and take the Dify ference of the given Elevation fiom that Half; the Verfed Sine of twice that Difference Subftract from the Verfed sine of the Diftance of the Object from the zenith: Then hall the Difference of thofe Verfed sines be to the Sine of the Diftance of the Object from the zenith, as the Horizontal Diftance of the Object ftruck to the greatef Horizontal Range at \(45^{\circ}\).

Prop. XII. Prob. 4] Having the grentef Horizontal Range of a Gun, the FTorizontal Diftance and Angle of Inclination of an Object to the Perpendicular, to find the two Elevations neceffary to frike that Object.

Halve the Diftance of the Object from the Nadir, this Half is always equal to the Half Sum of the two Elcoations we, feek. Then fay, As the Greateft Horizontal Range, is to the. Horizontal Diftance of the Object; fo is the Sine of the Angle of Inclination, or Diftance of the Object from the Perpendicular, to a 4 th Proportional ; which 4 th being Subitracted from the Vexfed. Sine of the Diftance of. the Object from the zenith, leaves the Terfed Sine of the Difference of the Elevations fought; which Elcuations are therefore had, by Adding and Subftracting that Half Difference to, and from, the aforefaid Half Sum:
n.:79. Pa, 18.]. Prop. XIII] To detcrmine the Force or Velocity of a Proicit, in cuary Point, of the Curve it deforibes.s.

To do this, we need no other Pracognita, but only the Third Propofition, viz. Thate the Velocity of Falling Bodies, is double to that which in the fame. Tinte mould bave deforibed the Space fallen by an Equable Motion:: For the Velocity of a Project is compounded of the conftant equal Velocity of the impreffed Motion, and the Velocity of the Fall, under a given Angle, viz. The ComFige 372.3 plement of the Elevation: For infance, In the Time wherein a Project would Move from G to L, it Defcends from L to X, and by the Third Propofition has Acquired a Velocity, which in that Time would have carried it by an Equable Motion from L to Z , or twice the Defcent LX ; and drawing the Line GZ, I fay the Velocity in the Point X, compounded of the Velocitics GL, and LZ, under the Angle GLZ, is to the Velocity impreft in the Point G, as \(G Z\); is to \(G L\); this follows from our (Second Axiom; ; and by the zothand 2ith Prop. Lib. I. Conic. Midorgii, X O, Parallel and Equal to "G Z, fhall touch the Paraboln in the Point X. So that the Velocities in the feveral Points, are as the Lengths of the Tangents ta the Parabota in thofe Points, intercepted between any two Diameters : And thefe again are as the Secants of the Angles, which thofe Tangents continued make with the Horirensal Line. G B. From what is here laid down, may the comparative Force

\section*{(57.)}
of a Shot in any two Points of the Curve, be either Geometrically or Arithmetically difcovered.

Corell.] From hence it follows, That the Force of a Shot is always leaft at V, or the Vertex of the Parabola, and that at Equal Diftances therefrom, as at \(T\) and X , G and \(B\), irs Force is always Equal, and that the leaft Force in \(V\), is to that in \(G\) and \(B\), as Radius to the Secant of the Angle of Elevation, FGB.

The Tentl) Propofition contains a Problem, untouch'd by Torricellius, which is of the Greateft Ufe in Gunnery, and for the fake of which this Difcourfe was principally intended. It was firlt Solved by Mr. Anderfon, in his Book of the Genuine USe and Effects of' the Gun, Printed in the Year 1674. but his Solution required fo much Calculation, that it put me upon Search, whether it might not be done more eafily; and thereupon in the Year 1.678. I found out the Rule I now Publifh, and from it the Geometrical Conftruction : Since which time, there has a large Treatife of this Subject, Intituled, L'Art de Feiterles Bombes, been Publifh'd in France by M. Blondel, whercin he gives the Solutions of this Problem, by Meflieurs Bout, Romer, and de la Hire, But none of them are the fame with mine, or in my Opinion more eafie.

It was formerly the Opinion of thofe concerned in Artillery, That there 11.216. 2.68. was a certain requifite of Powder for each Gun, and that in Mortars, where there Diftance was to be varied, it nuft be done by giving a greater or lefler Elevation to the Piecc. But now our Later Experience has taught us, That the fame thing may be more Certainly and Readily performed, by Increafing and Diminifhing the Quantity of Powder, whether regard be had to the Execution to be done, or to the Charge of doing it. For when Bombs are Difcharged with great Elevations of the Mortar, they fall too Perpendicular, and Bury themfelves too deep in the Ground, to do all that Damage they might, if they came more Oblique, and Broke upon or near the Surface of the Earth; which is a thing acknowledged by the Befieged in all Towns, who Unpave their Streets to let the Bombs Bury themfelves, and thereby ftifle the force of their Splinters. A Second Convenience is, That at the Extream Elevation, the Gunner is not obliged to be fo curious in the Direction of his piece, but it will fuffice to be within a Degree or two of the Truth; whereas in the other Method of Shooting, he ought to be very curious. But a Tivit and no lefs confiderable Advantage is, in the faving of the King's Powder, which in to great and fo numerous Difcharges, as we have lately leen, muft needs amount to a conflderable Value. And for Sea Mortar's it is fcarce Practicable otherwife to ufe them, where the Agitation of the Sca continually Changes the Direction of the Mortar, and would render: the Shot very uncertain, were it not that they are placed about \(45^{\circ}\). Elcuation, where feveral Degrees above or under makes very little difference in the Effect.

It only remains by Good and Valid Experiments to be affured of the Force of Gun-Powder; How to make and conferve it equal; And te know the Effect thereof in each Peice; that is, How far differing clarges will caft the fame Shot out of it ; which may moit conveniently be Engraven on the outfide thereof, as a ftanding Direction to all Gumners, who fhall from thence

\section*{(572)}

Forward have occafion to ufe that Piece: And were this Matter well afcer certained, it might be worth the while to make all Mortars of the like Diometer, as near as may be alike in Length of Cbinse, Wcight, Clanber, "and all other Circumftances.
7. 879. p. 19. Now the foregoing. Rules would be Rigidly true, were it not for the Oppofit tion of the Medium, whereby not: only the Direct Impreft Motion is continually Retarded, but likewife the. Increafe of the Velocity of the Fall, fo that the Spaces defcribed thereby, are not Exactly as the Squares of the Times: but what this Oppofition of the Air is, aguinf feveral Veloritics, Bulk, and Weights, is not fo eafie to determine. Tis certain, That the Wright of the Air to that of Water, is nearly as I to 800 . whence the Weight thereof, to that of any Project is given, 'tis wery likely, that to the fame Velocity and Magnitude, but of Different Matter, the oppofition fhould be reciprocally as the Weights of the Shot; \(;\) as likewife that to Shot of the fame Velocity and Matter, but of Different sizes, it fhould be as the Diameters reciprocally: whence generally the Oppofition to Sbot with the fame Velocity, but of differing Diameters, and Materials, fhould be as their Specifick Gravities into their Diameters reciprocally; but whether the Oppofitiong: to differ ing Velocities of the fame \(S\) lpot, be as the \(s_{\text {quaxes }}\) of thofe Velocities, or as the \(V\) elocities themfelves, or otherwife, is yct a harder Queftion. However it be; 'tis certain, That in Large Shat of Metal, whofe Weight many thoufand times furpaffes that of the Air, and whofe Force is very great in Proportion to the Surface wherewith they prefs thereon, this Oppofition is farce Difcemable: For by feveral Experiments, made with all Care and Circumfpection with a Morter-Picce, extraordinary well fixt to the Earth on purpofe, which carried a Solid Brafs Shot of \(4 \frac{1}{2}\) Inches Diameter, and of about. 14 Pound weight, the Ranges above and below \(45^{\circ}\). were, found wearly segual; if there were any Difference, the under Ranges went rather the, fartheft, but thofe Differences were ufually lefs than the Errors committed in Ordinary Practice, by the unequal goodnefs and drynefs of the fame fort of Powder, by the Unfitnefs of the Shot to the Bore, and by the Loofenefs of the Carriages. In a fmaller Brafs-Shot of about an Inch and half, Diameter, caft by a Crofs Bows which Ranged it, at moft about 400 Foot, the Eorce being much more equal than in the Moxtar-Piece, this Difference, was found more curioufly, and conftantly, and moft evidently, the under Ranges outwent the upper. From which Tryals I conclude, That altho' in Small and Light Shot, the Oppofition: of the Air, ought and muft be accounted for; yet in Shooting of Great and Weighty Bombs, there need be very little or no Allowance made; and fo thefe, Rules may be put in Practice to all. Intents and Purpofes, as if this, Impedim mente were abrolutely renzoved.

The Mosfure of IX. I. In order to Compute the Refiftance of the :Air to all Proiects, Thrfe the cirs Refore Premife this Lemma, (as the molt Rational that doth occur, for my firft footmoved in it; bying, That (fuppofing uther things equal) the Refiftance is proportional to the Or. Wallis. Celerity. For in a double Celerity, there is to be removed (in the fame an 8.86 .0 .2690 time) twice as much Air, (which is a double Impediment:) inua treble, tbrice as much; and fo in other Proportionso...
2. Sues

\section*{(573)}
2. Suppofe we then the Force Impreffed (and confequently the Celerity; if there were no Rcfiftance) as 1 ; the Refiftance as \(r\), (which muft be lef's than the Force, or elfe the Force would not prevail over the Impediment, to create a Motion.) And therefore the Effective Force at a firft Moment, is to be reputed as \(\mathbf{I}-r\) : That is, fo much as the Force Impreffed, is more than the Impediment or Refiftance.
3. Be it, as \(I-r\) to I , fo \(\mathbf{I}\) to \(m\), (which \(m\) is therefore greater than I)
4. And therefore the effective Force; (and confequently the Celerity) as to a firlt Moment, is to be \(\frac{\mathrm{I}}{\mathrm{m}}\) of what it would be, had there been no Refiftance.
5.This \(\frac{1}{m}\) is alfo the remaining Force after fuch firt Moment ; and this remaining Force is (for the fame reafon) to be proportionably abated as to a Second Moment : That is, wee are to take \(\frac{I}{m}\) thereof, that is, : \(\frac{1}{m \rightarrow m}\) of the Impreffed Force And for a third Monient (at equal Diftance of -Time) \(\frac{1}{m m=n}\); for a fourth \(\frac{1}{m^{4}}\); and fo onward infinitely.
6. Becaufe the Length difpatched (in Equal Times) is proportional to the Celeritics ; the Lines of Motion (anfwering to thofe Equal Times) are ta be as \(\frac{1}{m}, \frac{1}{m^{2}}, \frac{1}{m^{3}}, \frac{1}{m^{4}}, \xi^{3}\) c. of what they would have been \(\mathrm{in}^{2}\) the fimen Tinjes, had there been no Refiftance.
7. This therefure is a Geometrical Progrefion; and (becaufe of mieater. than 1) continually Decreafing.
8. This Decreafing Progreffion Infinitely continued, (determining in the fame Point of Reft, where the Motior is fuppofed to expire) is yet of a fio nite Magnitude, and equal to \(\frac{1}{m-1}\) of what it would have been in for much time, if there had been no Refiftance: As is demonftrated in my Algebra, Chap. 95. Prop. 3. For (as I have elfewhere Demonftrated) the Sum or. Aggregate of a: Geometrical Progreffion is \(\frac{V R-A}{R-I}\), (fuppofing \(\mathrm{V}^{3}\) the greateft Term, A the leat, and R the Common-Multiplier-) That isy \(\frac{V R}{R-I}-\frac{A}{R-I}\). Now in the prefent Cafe, (fuppofing the Progreflion

\section*{(574)}

Infinitely continued) the leaft Term A, becomes Infinitely Small, or \(=0\). And confequently \(\frac{A}{R-1}\) doth alfo Vanifh, and thereby the Aggregate becomes \(=\frac{V R}{R-I}\). That is, (as will appear by Dividing \(V R\) by \(R-1\);) \(V+\frac{V}{R}+\frac{V}{R R}+\frac{V}{R^{3}}+, \mho_{c}=\frac{V R}{R-1} ;\) (fuppofing the Progrefion to begin at \(V=\mathrm{I}\).) That is, (dividing all by R , that fo the Progreffion may begin at \(\frac{V}{R}=\frac{1}{m}\) :) \(\frac{V}{R-1}=\frac{V}{R}+\frac{V}{R R}+\frac{V}{R^{3}}\) + Grc. That is in our prefent Cafe, (becaufe of \(V=1\), and \(R=m\)) \(\frac{\mathrm{I}}{m}+\frac{\mathrm{I}}{m m}+\frac{\mathrm{I}}{m_{3}}\), Er. \(^{m}=\frac{\mathrm{I}}{m-\mathrm{I}}\). That is, (putting \(n=m-\mathrm{I}\)) \(\frac{1}{n}\), of what it would have been, if there had been no Refiftance.
9. This Infinite Progreffion is fitly expreffed by an Ordinate in the Exterior Hyperboln, Parallel to one of the Afymptotes; and the feveral Members of that, by the feveral Members of this, cut in Continual Proportion. As is there Demonitrated at Prop. 15. For let SH, be an Hyperbola between the A/smptotes, A B, AF: And let the Ordinate D H, (in the Exterior Hyperbola; Parallel to AF) reprefent the Impreffed Force undiminifhed; or the Line to be defrribed in fuch Time, by a Celerity anfwerable to fuch Undiv nifhed Force: And let BS (a like Ordinate) be \(\frac{\mathrm{I}}{m}\) thereof, which therefore, being lefs than DH , (as being "Equal to a part of it) will be further than it from AF. In A B, (which I put \(=\mathrm{I}\),) let B \(d\), be fuch a part thereof, as is BS of DH. Now becaufe (as is well known) all the Infcribed Parallelograms, in the Extcrior Hyyperbola, A S, A.H, ©c. are Equal; and : therefore their Sides Reciprocal : Therefore as \(\mathrm{A} d=\mathrm{I}-\frac{\mathrm{I}}{\mathrm{m}}\), (fuppofing \(B d\), to be taken from \(B\) toward \(A\), to \(A B=I\), (or as \(m-1\) to \(m \vdots\)) fo is \(\mathrm{BS}=\frac{1}{m} \mathrm{DH}\) to \(d b\), which is therefore Equal to \(\frac{1}{m-1}\) of DH ; that is, (as will appear by Dividing I , by \(m-\mathrm{I}_{\mathrm{j}}\)) to \(\frac{\mathrm{I}}{m}\) \(+\frac{1}{m m}+\frac{\mathrm{I}}{m^{3}}\) छc. of D H.

\section*{(575)}

Or if \(B d\) be taken beyond \(B\); then as \(A d=r+\frac{1}{m}\), to \(A B=r\), or as \(m+1\) to \(m\), fo is \(\frac{1}{m} \mathrm{D} H\), to \(d \mathrm{~b}\), which is therefore Equal to
\(=\) to \(\frac{\mathrm{I}}{m}-\frac{1}{m m}+\frac{\mathrm{r}}{m^{3}}-\xi^{3} c\). of DH .
10. Let fuch Ordinate \(d h\), or (Equal to it in the Afmptote) A F, be fo Divided in L, M, N, \(\Xi^{3} c\). (by Perpendiculars cutting the Hyperbola in \(l, m, n\), Bc.) as that FL, LM, MN, be as \(\frac{1}{m}, \frac{1}{m^{m}}, \frac{1}{m^{3}}, E^{3}\). That is, fo continually Dec̣reafing, as that each Antecedent be to its Confequent, as 1 to \(\frac{\mathbf{I}}{m}\), or as \(m\) to. I.
II. This is done by taking AF, AL, AN, ©c. in fuch Proportion. For, of Continual Proportionals the Differences are alfo Continually Proportional, and in the fame Proportion. For let \(A, B, C, D, \Xi_{c} c\). be fuch Proportionals; and their Difierences, \(a, b, c, \exists_{c} c\). That is, \(\mathrm{A}-\mathrm{B}=a\), \(\mathrm{B}-\mathrm{C}=b, \mathrm{C}-\mathrm{D}=c, छ_{c}\).

Then becaufe, \(A, B, C, D\), Erc. are in Continual Proportion ; \(^{2}\)
That is, \(\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C}:: \mathrm{C}: \mathrm{D}::, \mathrm{B}^{c}\).
And Dividing \(\mathrm{A}-\mathrm{B}: \mathrm{B}:: \mathrm{B}-\mathrm{C}: \mathrm{C}:: \mathrm{C}-\mathrm{D}: \mathrm{D}::, \mathrm{E}^{\circ} \mathrm{c}\).
That is, \(a: \mathrm{B}:: b: \mathrm{C}:: d: \mathrm{D}::, \mathcal{E}^{3} c\).
And Alteraly, a. b. c. छic. :: B. C. D. छ̉c. : : A. B. C. Éc.
That is, In Continual Proportion, as A to B, or as \(m\) to I .
12. This being done; the Hyperbolick Spaces FI, L \(m, M n\), Erc. are. Equal, as is Demonftrated by Gregory San-Vincent; and as fuch is commonly. admitted.
13. So that \(\mathrm{F} /\), \(\mathrm{L}, \mathrm{m}_{3}, \mathrm{M}, \ldots, \mathrm{O}^{3}\). may filly reprefent Equal Times, in which are difpatched Unequal I.engths, reprefented by F.L, LM, M N, छ̌c.
14. And becaufe they are in Number Infinite; (though Equal to a Fis nite Magnitude) the Duration is Infinite: and confequently the Impreffed. Force, and Motion thence Arifing, never to be wholly Extinguifhed (without fome further Impediment) but perpetually Approaching to \(A\); in the Nature of Afyptotes.
15. The Spaces \(F /, F m, F n, B_{c}\). are therefore as Logaritioms (ina Aritbmetical Progrefico Increafing) anfivering to the Lincs, AF, AL, A M, E己c. or to FL, LM, MN, \&jc. in Geonetrical Progreffion Dem. creafing.

\section*{(576)}
 finitely) Terminated at A; therefore (by Prop. 8.) their Aggregate FA, or \(d b\), is to DH , (fo much Length as would have been difpatched in the fame Time, by fuch Impreffed Force Undiminifhed) as 1 to \(m-1=n\).
17. If therefore we take, as Ito \(n\), fo AF to D H; this will reprefent the Length to be Difpatched, in the fame Time, by fuch Undiminifhed Force.
18. And if fuch D H, be fuppofed to be Divided into Equal Parts Innumerable (and therefore Infinitely fmall ;) thefe anfwer to thofe (as many) Pasts Unequal in FA, or \(b d\).
, 19 . But, what is the Proportion of rito I , or (which depends on it) of I-r to I, or I to \(m\); remains to be enquired by Experiment.
20. If the Pregrefion be not Infinitely Continued; but End (fuppofe)
at \(N\), and its leaft Term be \(A=M N\) : then out of \(\frac{V}{R-I}=\frac{I}{m}+\) \(\frac{1}{m m}+\frac{1}{m^{3}}+\Xi^{\circ} c\). is to be Subdusted \(\frac{\mathrm{A}}{\mathrm{R}-\mathrm{I}}\), (as at Prop. 8.) that is, (as by Divifion will appear) \(\frac{A}{R}+\frac{A}{R^{2}}+\frac{A}{R^{3}}+\Xi_{c}\). That is, (in our prefent Cafe) \(\frac{a}{m}+\frac{a}{m m}+\frac{a}{m^{3}}+\xi^{3} c\). Andifo the Aggregate will be

And thus as to the Line of Projection, in which (Secluding the Refiftance) the Motion is reputed Uniform ; difpatching Equal Lengths at Equal Times. Confider we next the Line of Defcent.
21. In the Defcent of Heavy Bodies,' it is fuppofed, that to each Moment of Time, there is fuperadded a new Impulfe of Gravity to what was before: And each of thefe, Secluding the Confideration of the Airs Refiftance, to proEs. \(\Psi_{i . S \%} . \Psi_{0}\) and fo continually, as in the Line of Projection.
22. Hence arileth (in the Tranfverfe Lines) for the firlt Moment I, for the fecond \(1+1\), for the third \(1+1+1\), and fo forth in Arithmetionl Progreffion. As are the Ordinates in a Triangle at Equal Diftance.
23. And fuch are the continual Increments of the Diameter, or of the Ordinates in the Exterior Parabola, anfwering to the interior O dinatcs, or Gegments of the Tangent, equally Increafing; As is known, and commonly admitted.

\section*{(577)}
24. If we take in the Confideration of the Air's Refitance; we are then for each of thefe Equal Progreffions, to Subftitute a Decrealing Prosteffion Geometrical; in like manner (and for the fame Reafons) as in the Line of Projection.
25. Hence arifeth for the firf Moment \(\frac{1}{m}\); for the fecond \(\frac{1}{m^{2}} \frac{1}{m}\) \(\frac{1}{m}+\frac{1}{m^{2}}\); for the third \(\frac{1}{m}+\frac{1}{m^{2}}+\frac{1}{m^{3}} ; \exists^{3}\). And fuch is \(\frac{1}{m^{3}} \frac{1}{m^{2}} \frac{1}{m}\) therefore the Defcent of a Heavy Body falling by irs own Weight. The fe- \(-\frac{1}{m^{4}} \quad \frac{1}{m^{3}} \quad \frac{1}{m^{2}} \quad \frac{1}{m}\) veral Impulfes of Gravity being fuppofed Equal.
26. That is, as F L, FM, F N, שc. in the Line of Defcent, anfwering - Fig. 276. to F L, LM, MN, छ'c. in the Line of Projection.
27. But though the Progreffions for the Line of Projection, are like to each of thofe many in the Line of Defcent: it is not to be thence inferred, that therefore \(\frac{I}{m}\) in the one, is equal to \(\frac{I}{m}\) in the other: But in the Line of Projection (fuppofe) \(\frac{\mathrm{I}}{m} f\), (fuch a part of the Force Impreffed, and a Celerity anfwerable :) in the Line of Defcent \(\frac{I}{m} g\), (fuch a part of the Impulfe of Gravity.)
28. Thofe for the Line of Defcent (of the fame Body) are all equal each to other: Becaufe \(g\), (the new Impulfe of Gravity) in each Moment is fup-
pofed to be the fame. pofed to be the fame.
29. But what is the Proportion of \(f\) to \(g\), (that is, of the Force Impreffed, to the Impulfe of Gravity, in each Body) remains to be enquired by Experiment.
30. This Proportion being found as to one Known Force; the fame is thence Known as to any other Force (whofe Proportion to this is given) in the fame Uniform Medium.

3I. And this being Known as to one Medium, the fame is thence Known as to any other Medium, the Proportion of whofe Refiftance to that of this is Known.
32. If a Heavy Body be Projected Downward in a Pendicular Line, it Defcends therefore at the rate \(\frac{1}{m}, \frac{1}{m^{2}}, \frac{1}{m^{3}}, \mho_{c}\). of \(f\) (the Impreffed Force) increafed by \(\frac{\mathbf{I}}{m}, \frac{\mathbf{I}}{m}+-\frac{\mathbf{I}}{m^{2}}, \frac{\mathbf{I}}{m}+\frac{I}{m^{2}}+\frac{\mathbf{I}}{m^{3}}, \mathcal{E}_{c}\). of \(g\), the Impulfe of Gravity : (by Prop. 5. and P. 25.) becaufe both Forces are here United.

Vol. I.
Eece

\section*{(578)}
33. If in a Perpendicular Projection Upwards; it Afcends in the Rate of the former, Abated by that of the latter. Becaule here the Impulfe of Gravity is contrary to the Force Impreffed.
34. When therefore this latter (continually lncreafing) becomes Equal to that former, (continually Decreafing) it then ceafeth to Afcend; and doth thenceforth Defcend at the Rate wherein the. latter continually Exceeds the former.
35. In an Horizontal or Obligue Projection: If to a Tangent whofe. Increments are as FL, LM, MN, \(\mathcal{U}^{c}\). that is, as \(\frac{I}{m} f\), \(\delta^{3} c\). be fitted Ordinates (at a given Angle) whofe Increments are as FL, FM, FN, \(\mathcal{B}^{\circ}\). that is, as \(\frac{I}{m} g\), \(\xi^{3} c\). The Curve anfwering to the Compound of thefe Motions, is, that wherein the Project is to move.
36. This Curve (being hitherto without a Name) may be called Linea Projectorum, the Line of Projects, or things Projected; which refembles a Parabola Deformed.
37. The Celerity and Tendency, as to each Point of this Line, is determined by a Tangent at that Point.
38. And that againft which it makes the greatef Stroke or Percuffion, is that which (at that point) is at Right Angles to that Tangent.
39. If the Projection (at P. 25.) be not Infinitely Continued, but Terminate (fuppoie) at N , fo that the laft Term in the firft Column or Series Erect, be \(a\); and confequently in the fecond, \(m a\); in the third \(m m a\), © \(c\). (each Series having one Term fewer than that before it:) then (for the fame Reafons as at P. 20.) the Aggregates of the feveral Columns (or Erect Series) will be \(\frac{I-a}{n}, \frac{I-m a}{n}, \frac{x-m m a}{n}\), and fo forth, till (the Multiple of \(a\) becoming \(=i\), the Progrefion expire.
40. Now all the Abatements here, \(a, m a, m m a\), Ecc. are the fame with the Terms of the firt Column taken backward. For a is the laft, \(m\) a the next before it; and fo of the ret.
41. And the Aggregate of all the Numerators is fo many times 1, as is the number of Terms (fuppofe \(t\)) wanting the firf Column; that is, \(t-\frac{I-a}{n}\), or \(\frac{n t-1+a}{n}\); and this again divided by the common Deno. minator \(n\), becomes: \(\frac{n t-\mathbf{1}+a}{n n}\). And therefore \(\frac{n t-1+a}{m n} g\), is the
Line of Defcent by its own Gravity.

\section*{(579)}
42. If therefore this be Added to a Projecting Force downiward in a Perpendicular, or Subducted from fuch Projecting Force upward; that is, to or
from \(\frac{1-a}{n} f\) : The Defcent in the firl Carf, will be \(\frac{1-n}{n} f+\) \(\frac{n t-1+a}{n \cdot n} g\); and the Afcent in the other cafe \(\frac{1-a}{n} f-\frac{n t-1+a}{n} g\). And in this latter Cate, when the Ablative part becomes equal to the Pofitive part, the Afcent is at the highert: and thenceforth (the Ablative part exceeding the Pofitive) it will Defcend.
43. In an Horizontal or Oblique Projection having taken \(\frac{1-a}{n} f\), in the Linc of Projection, and thence (at the Angle given) \(\frac{n t-1+n}{n n} g\), in the Line of Defcent ; the Point in the Curve anfivering to thefe, is the place of the Project antivering to that Moment.
4.4. I ama aware of fome Objections to be made, whether to fome Points of the Procefs, or to fome of the Suppofitions. But I faw not well how to to wave it, without making the Computation much more perplexed. And in a matter fo Nice, and which mult depend upon Phyfical Obfervations, 'twill be hard to attain fuch Accuracy, as not to ftand in need of fome Allowances.
45. Somewhat might have been further Added, to direct the Experiments fuggefted at \(P\). I9. and 29. But that may be done at Leifure, after: Deliberation had, which way to attempt the Experiment.
4.6. The like is to be faid of the different Refiftance which different Bodies may meet with in the Same Medium, according to their different Gravities, (extenfively or intenfively confidered) and their different Figures and Pofitions in Motion. Whereof hitherto we have taken no account; but fuppofed them; as to all thefe, to be Alike and Equal.
47. The Computation (in P. 39, 40, 4r.) may, if that be alfo defired, be Fig. 176, :7... thus reprefented by Lines and Spaces. The Ablatives \(a, m a, m m a\), , \(\delta c\). (being the fame with the firlt Column taken backward) are fitly reprefênted by the Segments of NF, (beginning at N.) and therefore by Parallelograms on there Bafes, affuming the common Height of \(F b\), or NQ : the Aggregate of which is \(\mathrm{N} / \mathrm{h}\), or FQ , and fo many times I , by fo many equal Spaces, on the fanne Bafes, between the fame Parallels terminated at the Hyperbola; The Aggregate of which is \(b \mathrm{FNQ}\). . From whence if we Subduct the Aggregate of Ablatives \(F Q\); the remaining Trilinear \(b Q_{n}\), reprefents the Defcent.
48. If to this of Gravity, be joined a Projecting Force ; which is to the Impulfe of Gravity, as \(b \mathrm{~K}\) to \(b \mathrm{~F}\), (be it greater, lefs, or equal) taken in the fame Line ; the fame Parallels determine Proportional Parallelograms, whofe Aggregatc is K Q .

\section*{(580)}
49. And therefore, if this be a Perpendicular Projection downwards; then \(h \mathrm{Kkn}\). (the Sum of this with the former) reprefents the Defcent.
50. If it be a Perpendicular Upwards; then the difference of thefe two reprefents the Mution ; which fu long as K Q is the greater, is Afcendent :but Defcendent, when \(b Q n\) becomes greater ; and it is then at the Higheft when they be equal.
51. If the Projection be not in the fame Perpendicular, (but Horizontal or Oblique) then KQ reprefents the Tangent of the Curve; and \(b \mathrm{Q} n\), the Ordinates to that Tangent, at the given Angle.
52. But the Computation before given, 1 take to be of better we than this Reprefentation in Figure. Becaufe in fuch Mathematical Enquiries, I choofe to feparate (as much as may be) what purely concerns Proportions; and confider it abitractly from Lines or other matter wherewith it is incumbred.

As to the Queftion propofed: Whether the Refiftance of the Medium do not always take off fuch a Proportional part of the Force, Moving through it, as is the Specifick Gravity of the Medium to that of the Body Moved in it : (for if fo, it will fave, us the trouble of Obfervation.) It think this can by: no means be admitted; For there be many other things of Confideratior herein, befde the Intenfive Gravity (or as fome call it, the Specifick Gravity 2 of the Medium.

A Vifcous Medium fhall more refift, than one more Fluid, though of like Intenfive Gravity.

And a fharp Arrow fhall bore his way more eafly through the Mediump than a blunt headed Bolt, though of equal Wcight and like Intenfive Gra-: vity.

And the fame Pyramid with the Point, tlian with the Bafe forward.
And many other like Varieties, intended in my P. 46.
But this I think may be admitted, namely, That Different Mediums, eo qually Liquid, (and other Gircumftances alike) do in fuch Proportion Refift, as is their Intenfive Gravity. Becaufe there is, in fuch Proportion, a Heavier: Object to be Removed, by the fame Force whichis one of the things to which: P. 3x. refers.

And again: The Heavier Project once in Motion, (being equally fwift, and all other Circumftances alike) Moves through the fame Medium in fuch Proportion more ftrongly, as is its Intenfive Gravity : For now the Force is: in fuch Proportion greater, for the Removal of the fame Refiftance. And this; pare of what my \(P \cdot 30\). Infinuates.

But where there is a Complication of thefe Confiderations one with another; and with many other Circumftances, whereof each is severally to be confidered; \({ }_{\text {Experimenys }}{ }^{88}\) Derermine the there mult be refpect had to all of them.

\section*{\((58 \mathrm{t})\)}

On a fit Platform Place and Point the Gun at a Mark as large as the Bullet, fome 50, 60, or more Yards diftant, fo as the underfide of the Mark may be in the fame Level or Line with the underfide of the Cylinder of the. Peece. Then brewcen the Gun and the Mark at convenient Ditances, place pieces of Canvas, Sheets of Paper pafted together; or the like, upon ftakes. fixt in the ground, fo as the underfide, being Level with the Horizon, may juft touch the Vifual Line, that paffeth from the Eye to the upperfide of the Mark, when the Eye is placed in the Line, that paffeth from it to the upper fide of the Cylinder of the Ginn; the Canvas being fobroad and long, that if the Bulet pafs through it 2 or 3 Foot higher than the Level of the Mark, or of either hind, the Hole it makes may make it known, how much if Flieth higher than the Level of that Place. If the Bullet falls Lower than the Mark, and touch not the Canvas, the Gun may be next time Raifed a little, and fo on till the Ballet Hit the Mark, or as High as ir. If it fall as High as the Mark and Cut the Canvas, the Mark and Canvas may be brought nearer the Gun : But if it fall as High as the Mark and do not Cut the Canvas, the Mark may be removed to greater and greater Diftances.

If this way of Experiment be made for further Ditances and Raifings of the Picce, as High as conveniently may be above the Level, and the Diftarices meafured, and then all Randoms above thefe likewife tried and meafured, the Diftance of an Object, to be Shot at, being known, and other neceffary Cautions, beneath to be mentioned, carefully obferved, good Gunners may with great Confidence undertake to Hit the Mark be the Diftance what it will, fo is exceed not the Reach of the Gun.
2. Tat know what Quantity of Powder is the juft Charge of any Pecce, So as it maketh the fartheft Shot, and Fires totally:
1. Raife: the Gun to a mean Random, as of \(20^{\circ}\), or \(25^{\circ}\), and Shoot with the Ordinary Charge of Poroder, in fome convenient Ground where the Fall of the Bullet may be eafily feen, and having made a Shot, meafure the Dittances with a Chain, between the Hole made by the Bullet; and the \(M u\) izle of the Gun.
2. Thens inifead of a Full Charge of Powder ufd in the firt Shot, take \({ }^{\frac{1}{2}} \frac{1}{6}\) part lofs, or fome fuch Proportion, for the next Trial, doing all things elfe as before.
3. For a third, fuurth, or more Trials, diminifh ftill the , guintity of Powder by \(i^{\frac{1}{5}}\) at a time, till the Shot be confiderably fhorter than at firft.
4. Then take \(\frac{1}{1}\). more than the firft charge, and do all things elfe as be: fore, and fo continue more Triak, increafing ftill the RHantity of Powder in the fame Proportion every new Triat, till you find the Increafe of the Cbarge does not make the Peece Shoot further: Only Over-charge not fo far as to ear. danger the G:m.
5. Three or mrre Shot are to be made with every different Charge, and at every feveral Trial that the Certainty may the better appear.
6. The Firt Shot being Meafured and Marked, the relt may all be Meaw fured from it, or from one another to fave Liabour.

\section*{\(\left(5^{82}\right)\)}
7. The Gum is to be Pointed, Placed and Ordered, every time in one and the fame Place and Pofition, aiming ftill at the fame Mark, or Pointing ftill in the very fame Line or Azimuth; that fo all the Shot may fall in the fame Line, as near as is Poffible.
8. The Porder (which ought to be all of the fame Goodncfs) muft be exactly Weighed, every time the Peece is Cbarged, left it having been Weighed long before, the Weight may be altered ; though Experiment may be made with Cartridges and without.
9. The Powder and Bullet is to be Rammed home equally at every Shot; though the Lonfer the Powder lie, it Fire the better.
10. When the Right Cbarge of a Peece is found, that makes the fartlueft Shot in the Ordinary and Plain way of Charging, M. de Sons's contrivance of a Wedge may be Tried, to make it Shoot farther ; which is a piece of Board, fo long, as being thruft hone to the Breech of the Peece at one End, the other may reach farther out than the outfide of the Bullet, being Rammed up to its place ; broad about an Inch, and thin fo far as the Wadd before the Bullet reaches on the outfide; there it is to have a Shoulder, from which forward to the end, it is to be cut a-llope like a Wedge, being of fuch thicknefs, as that at the place, where the Center of the Bullet is to be, it may make it tick fo faft, that the Powder finding more Refiftance, may at length Drive, it out with the greater Violence.

I I. Another of this Nature is a Wooden Tampion, like a piece of a Cylinder, big enough to fill the hollow Cylinder of, the Gun, the length fomewhat more than the Diameter of it, and Hollow'd towards the Bullet, fo as to fit it ; and either Flat, or (which is better) Hollow likewife towards the Powder, and ferving inftead of a Wadd. Thefe, and fuch others, will probably render the effect of the Powder greater, than otherwife it would be : but Care muft be had that they do not Endanger the Peece.
12. The Strength of the Powder muft be examin'd by a Powder Trier, that raifeth a Weight, fuch an one as has been contrived by Mr. Hook.
13. The fame Bullet is to be made ufe of, if it can be had, till the Figure of it be Marred; otherwife another as near of the fame Size, Shape and Weight, as is pofible.
14. Obferve the Strength and Pofition of the WVind, and at what \(A\) izimuth the Mark ftands from the Gun at every time of Shooting: and take precife notice what effect it hath upon the Bullet in carrying it further, in hindring or turning it afide.

1 5. Note the Figure, Dimenfions, and Weight of the Gun, Carriage, and Wheels; and Record every thing exactly in a Book, as alfo every Accident and Obfervation.
16. After all other Experiments are made, every Peece may be Tried with the Right Charge of Powder, laying every time more and more Weight upon the Carriage; and at laft Fixing the Gun fo, as it may not Recoil at all, obferving every time how far the Bullet goes, and how much lefs Powder than the full Cbarge will ferve to Shoot the Bullet, when the Peace is Fixt, as far as the whole Charge does, when it Recoils freely.

\section*{\((583)\)}
17. The Right Charge found, the beft Random is to be fought, by Trying all Randoms, by Degrees at a time.
3. To know what Gun Shoots fartheft.
1. A Gun to be prepared of Culverine-Bore, as being held the hoft for Shooting Far) but much Longer, (double the Ordinary Length may do well) and without any ping about the Muzizle, is to be Placed as in the former Experiments, and Charged with the Ordinary Charge of a Culverine, or rather with that Quantity, which by the former Experimients hall be found the Belt; and being Shot, the Fall of the Bullet is to be Mark'd, and Diftance Meafured.
2. Then Try Lefs, and More Pooder in her, as before.
3. Then Cut off two Inches of the \(M u \approx \pi / e\) with a Saw, and Place the Pieces fo cut off in the Carriage, or their Weight of Lead in a convenient Figure, that the Recoil may itilil be the fame, and Try as before, doing every thing in the fame manner: and fo Cut off ftill for new Trials, till the Shor: begin to fall fhorter than before.
4. The finne may be done with Guns of Diferent Bores.
2. Mar. I8. 165 t. At 200 Yards Ditance from the Platform for great Experiments for Ordinance at Woolwich, there were raifed thrce Butts, one behind another : Trying the Force the Space between the firft and fecond Butt was If, Yards, between the fee- of great Mrimens; cond and the third, eight. The Thicknefs of each Butt was Iy Inches, n. 173. p.1090. whereof iz was of Beams of Mafly Oak fatned into the Ground, and fet fo clofe that they touched each other: of each fide were Planks of Oak, 3 Inches a piece in Thicknefs, and thefe were joynad clofe, and faftned on boih Sides with. Iron Bolts, and ttrong Pins of Wood ; and on the Back, at the ends and on the middle, there were 3 Braces of Elm, a Foot in Breadth, and 5 Inches in Thicknefs.
The firft Experiment was with an Iron Demy-Cannon, having a Cylinder Bore, of 3500 lib . Weight, the Bullet 32 lib . of Iron, the. Powder 10 lib. which Pierced through the two Firft Butts, and fuck in the third, fo as the Ball was almoft quite within, but the Timber not fhivered, (fmall) nor fearce Split. The Butts being rouched by mc, felt not warm; the like Exccutions was done, when it was Charged with 9 liv. as alfo when with 8 lib. of Powder.

The fecond Experiment was with an Iron Demy-Cannon, having a Taper Bore, and being 3600 lib . in Weigbt, and 4 Inclies longer than the former, the Iron Bullet 32 lib. and the Powder 7 lib. which in three Trials feemed to... have the fame Force with the Fifft. One of the Shots piercing through the fecond Butt, and Lighting near the Edge of the middle * Butt of Elm, Tore* Brace, it, but by the yielding of it, the Bullet glanced afide off the third Butt, and entred into the Earth.

The third Experiment was with a whole Culverine in. Brafs, of 5300 lit. in Weight, II Foot one Inch in Length, with a Taper Bore; the Iron Bullet was I 8 lib. in Weight; the Powder in the firf Trial so lit, in the fecond 9 lib. in the third \(8 \%\). which laft Proportion did the beft Execution, and paffed through the two Firlt Butts, Entring gently into the Third, which the former: two did touch, but not Enter.

\section*{(584)}

The fourth Experiment was with a whole Culverine in Brafs; made at: Amferdam for the French, with this Mark, 3580, being 10 Foot Long, and not very Thick in the Breech; the firit Shat with 9.lib. of Porwder, 18 lib. of Bullet Iron, paft through the three Butts and entred one Foot into the Ground; it paffed by the Joints of the Timber, two Planks having been beat down before. The fecond Shot with 8 lib . Powder, paffed through two Butts and Grazed between them. The third, with 8 lib. paft Two Butts, and 7 Inches into the Third, but the Firf Butt was much Battered before, where it Entred. The Fourth Shot paffed, with 8 lib . of Pomder, two Butts, and in both Butts through the midft of a Maffy ftrong Beam (below) that had net been Battered.

The fifth Experiment was with an Iron Demy-Culverine, having g tiv. Bulle in Iron, and 4 lib. Pooder; this paft one Butt (which was Torn before) and Entred the fecond.

This \(\frac{x}{2}\) Culverine was Shot 8 Times, as faft as they could Clarge it with Powder and the Iron Bullet, and yet was but farce Lukewarm at the Brecch, a little more in the Midit, moft at the \(M u z z l e\), and this laft farce fo THot as my Hand, and yet the Gunners in Charging her, wet not at all the Scoop, or Spunge.

The fixth Experiment was with a Brafs Demy Culverine, the Breech of her was \(\mathrm{I}_{3}\) Inches \(\frac{5}{8}\), the Mouth \(9 \frac{8}{3}\). The Firt Sbot, with 4 lib. of Powder, 9 lib. Iron Bullet, pait two Butts: :The Second Shot with 3 lib. of Poroder, paft almoft two Butts: This proved to be the bet Shot, becaufe the Timbers were the Strongeft.

Shooring by the
Rescefact tom of the evir ; by
Dr. Papin.
31.179. \%. 21.

Fig. IV8.
XI. Whereas ordinary Lind Guns do their Effet by the Comereffion of the Air: Ottho Gbericke hath found a new fort that Shoots by Rarcficition; and he hath publifhed that Device at large in his Book about Pnoumatick Experi ments. I have Contrived another which I take to be Better:

A A, is a Pipe, very Equalfrom one end to the other.
BB, a friall Pipe Soder'd to a Hole near the end of the Pipe A A, and apply'd to the Piate of the Pncumatick Enginc.
\(\therefore \mathrm{CCCC}\), Some kind of Stool, to bear up the Hinder part of the Pife A A.

D, a Picce of Lead fitted to the Bore of the Pipe A A.
The pipe A A, is to be Shut at both Ends by Valves outwardly applied, and fo the faid Pipe A A, though never fo Big, may be Exhaufed of Air by means of the Preumatick Engine: Which done, the Valve towards D mult be fuddenly opened, to that the whole Preffure of the Atmiofphere Acting upon the Lead D, may drive it along the Pipe A A, with fuch a Swifnelfs, that it will be able to carry it to a great Diftance: And becaufe fuch a Valve Shutting a great Hole, would prove very difficult to be Opened, when the Pipe A A, is of a great Bore, the Aperture towards D, may be left much fmaller than the \(P_{\text {ipe; }}\) the Swiftnefs of the Air being fo great, that even through a pretty imall Aperture, it preffed the Lecod D, as freely almoft as if the whole Bore was quite Open.

\section*{\((585)\)}

Having prepared a Barrel carrying a Lead of two Ounces, the Experiment was thewn before the Royal Socicty, and the Effect was found very Confiderable, the Force being little lefs than that of the Wind-Gun by Comprefion; the fame Experiment being afterwards repeated with a Longer Barrel,' 'twas found that the Length in this way of Sbooting was very little, if any Advantage.
XII. My Way of Computing the Velocity of the Air, (which I think is The welocity better than the Trial made by the Royal Acalomy at \(P_{\text {aris) }}\)) is Grounded up- whbrexitits the on this Hydroftatical Principle, That Liquors bece a Stecngth to Afcend as an exbiuyted High as their Source is; and although the Refifance of the Modium does al- Recenver; ways hinder Fefts d'Esu in the Open Air from reaching quite fo High, never- in or. Papin, thelefs the Liquor at its firf Spouting out, hath the neceflary Smiftncfs to 11.184. p. 193. come to that Height.

Prop. I.] From this Principle may be eafily deduced this Propofition, That, of two Differing Liquors driven by the Same Prefure, that mbich, is in Specic Lighter muft Afcend Higher than that which is Heavier, and their Heights will be Reciprocally in the fame Reafon as their Specifick Gravities are.

Prop.11.] From the foregoing Propsfition another my eafily be Deduced, viz. That, of Differing Liquors bearing the fame Preffure, thofe that are Lightcer in Specic mu/t neguive a greater Swiftnefs, and their Differing Velocities are to one another * as the Roots of the Specifick Gravitics if the Said Liquors. \({ }^{*}\) Reciprocally.

For we have feen, Prop. I. That the Iteights to be Attained are * in the *Reciprocally. fame Reafon as the Specifick Gravitics; Now Galliluus, Hugcnius, and others, have Demonftrated, That the Velocities of Bodies are to one another, as the Square Roots of the Heights to which they may Afcend: and to in this occa-* Reciprocallo. fion they are alfo * as the Roots of the Specifick Gravitics.

If therefore we would know what is the Velocity of the Air being driven by any degree of Preffure whatfoever, we ought but to find what would be the Velocity of WITter under the fame Preffurc: and then take the Squarc Roots of the Specifick Gravitics of thefe two Liquors; becaufe as much as the Squarc Root of the Specifick Gravity of Water, doth exceed the Square Root of the Specifick Gravity of the Air; fo much in Proportion will the Velocity of Air exceed the Velocity of Water. For Example; When I would Compute what fhould be the Smiftrefs of a Bullot hot by my Pneumatick Engine, I Thould firt Compute what was the Velocity of the Air it felf that drove the Bullet : I did therefore take notice, that in this Occafion the Air bears a Preffure much about the fame as that of Water when its Spring is 32 Foot High. Now fuch Water would fpout out with a fifficient Vrolocity to afcend 32 Foot Perpendicular, and therefore according to the Rules and Obfervations of Gallilaus, Halley, and others, fuch Water hath the Velocity of 45 Foot in a Second. It remains therefore but to know the Proportion of the Gravity of the Air to that of Water: and we have found it not to be always the fame; becaufe the Height, the Heat, and the Moilture, of the Atmofphere, are Variable: neverthelefs, we may lay in general, that the Reafon between the Specifick Gravitics of Water and Air is much about 840 to I. Taking then
Ffff. I.

\section*{(586)}
their Square Roots as I have faid above, which Roots are 29 and I, we may Conclude that the Velocity of Air muft Exceed that of Water by 29 'Times: and fo Multiplying 45, the Velocity of Water, by 29, we fhall find, that the Velccily of the Air driven by the whole Preffure of the Atmofipere, is about 1305 Foot in a Second.
semi proinced by the Fall of Wrate oy
prow. Pope. M. 2. 0.25 . Fig. 179.
XIII. In the Brafs-EWorks at Tivoli, the WWater Blows the Fire, not by Moving the Bollows, but by affording the Wind. Thus: A, is the River. B, the Fall of it. C, the Tube into which it Falls. L G, a Pipc. G, the Orifice of the Pipe, or Nofe of the Bellows. GE, the Hearth. E, a Hole in the Pipe. F, a Sropper to that Hole. D, a place under-ground, by which the Water runs away. Stopping the Hole Es, there is a perpetual ftrong Wind, iffuing forth at \(G\) : and \(G\) being ftopt, the Wind comes out fo Vehemently at E, that it will, I believe, make a Ball. play, like that at Freforti.

The beft Form of. Horizontal Suils for a Mill ; by Dr.RobHook. phil. coll.
n. 3. !. \(6!\).
XIV. Whatever Men may imagine concerning Horizontal Sails, I doube there will never be found a better, and more Advantageous way, for receiv. ing the Strength of the Wind, or Motion of the Air, than Peipendicular Vanes made of a True Form, fo as every part thereof may Draw alike. But becaufe I find divers have of late attempted Horizontal Vanes for Mills, I hall explain a way of making Fforizontal Vines capable of Performing the Moft that is Poffille with Vemes of equial Exterfion.

The Invention is Founded upon the fame Principle with that of the Sailing of Ships, and other Veffels, upon the Sea; namely, Upon Difpofing and Ordering of the Vane or Sail fo, as to fand in the beft Pofture 'tis pecfible to Move the Arms of the Mill, or the Body of thes Ship, in that WTay it is to be Moved, by the Force of the Wind Blowing thus or thus araingt them.

The Firft Principle then common to both' is, That the Vane or Sail be as near as 'tis poffible, a perfect Plain and Smootio Superficies, without any Bellyfig, Bunting, or Curvity in the Superficies theresf, upon which the Motion or Force of the Wind is Impreffed.

Secoridly, That the Air may have aa : Many Paffages between the parts of the Vane or Sail as may be, that the Moved Air may come to it as frecly as may be, without being Intercepted by a Stagnant Air before it, to Impede or Divert its Force.

Thirdly, That the Plain of the Vane or Sail be put in the Middle Inclination, between the Way of the Wind and the: Way of the \(A r m_{3}\) or that of the Body of the Ship.

\section*{The Contrivance it relf is This.}
fico \(x 80\).
Let \(A B\), fignific the Stream or Current of the Air: or Wind, Moving from \(A\) to \(B\), and let \(C\) reprefent the Center of the \(A x\) is or \(S\) pindlc, ftanding Perpendicular to the Horizon, upon which, at the Top, is fixed at Right Angles, the piece DH, malking the two Arms C D, and C H, upon the Ends of which the Vames MN, are Moved on Spindles; fo as that the Plam of the Vane doth always pafs through the Point D: If ay, thefe Vanes iis ordered, hall be always placed in the mof: Advantageous Pofture for Moving

\section*{(587)}
the Arms round upon the faid Spindle, whofe Center is C , in the Order of DEFGHIKLD.

Firf, For the Vanes placed at D and H, I fay, They are fot in the moft Advantageous Pofture pollible, in thofe two Points: For Firft, The Vanc MN at D being to move Directly againft the Wind, the moft Advantarcous Pcfure is to turn its edge diecotly againlt the Wind, and thereby to give the leat. Refiftance poffible, that being the only Point in which the Vane, fuppoted on. ly a Superficies, Draws not. And Secondly; For the Vane MN placed at H, it ftandeth the moft Advantageoufly, becaufe its Motion being direotly from or before the Wind, it ftandeth full Crofs, or Oppofed to the Motion thereof.

Secondly, The Vanes at E, F, G, and I, K, L, ftand the moft Advantageoufi, becaufe they Divide the Angle between the WIay of the Wind and that of the Arms in thofe Points into two Equal Parts, and confequently the Wind Impreffeth the Greateft Force in the moft Dired Way: For it is eafie to be Demonftrated, That the Force Inpreffed on the Vane by the wind, is Perpendicular to the Surface, and confequently that the Obliquity of the Force to the way of the Arms, Increafed by the Vanes ftanding more full againft the Wind, will have a lefs Proportion of Power to promote the Motion thereof, than in the Pofture here Set. And fuppofing the Vanes fet Sharper to the Wind, the Diminution of the Force Impreffed by the Wind on its Surface; will be greater than the Augmentation of its Power, by being Moved more Directly to the Way of the Arms. This is eafie enough to be Geome tricilly Demonfirated.

The Vane may be fo ordered, as always to Stand in this Pofture by a great many ways : I fhall only inftance in One, not the beft for Practice, but the moft Eafie to be underftood and Demonfrated.

Let the Vanc be equally Expanded on each fide of its Axis, by which the Preffure on the extreams of it are always Counterpoifed, then Faften upon the Lower end thereof a Wheel, which may be in Diameter about \(\frac{s}{2}\) of the Length of the Arms from Hole to Hole; then Fix a Wheel upon the Frame in which the Spindle of the Arms do Move, that fhall be of Half the Diameter with the former, and to contain Half the number of Teeth. Then by a third fmall Wheel, Fixed under the Arms, of a convenient Bignefs, Communicate the Motion of the One to the Other; for by this means each V ane. being fo provided, they will, being once fet Right, always continue to be Moved and Difpofed in the true Pofture defired.

This Contrivance will not only be Ufeful for all manner of common WindMills, but alfo for Water-Mills in Rivers, where there can no \(D_{a m}\) be made, as may alfo the Perpendicular Vancs of other Mills, neither of which has beea. fo much as Hinted by any Perfon whatoever that I have hitherto heard of.

Fig. 185,
XV. I. The Art of Flying hath been in all Ages Atecmpted by many, particu- sn acco nt op larly in the Times of our famous Fryar Roger Bacon, who lived about 500 Ycars Flying; by fince. He was Believed a Magician or Conjurer, and to have performed what prit Hools. was related of him, by the help of Dinbolical Magick, but from the perufal no I. p. s4. of feveral of his excellent Works yet Extant, I efteem him no fuch Perton,

\section*{(588)}

I rather find him to have been a good Mathematician, a knowing Mechanick, a rare Chymift, and a moft Accomplifhed Experimental Philofopher, which was a Miracle for that Dark Age. This Man affirms the Art of Flying Polfible, and that He himelf knew how to make an Engine, in which a Man Sitting, might be able to carry himfelf through the Air like a Bird: And Affirms, that there was then another Perfon who had actually Tryed it with good Succefs. We have not wanted Later Initances in England, of feveral Ingenious Men, who have employed their Wits and Time about this Defigno. Particularly, I have been credibly Informed, That one Mr. Gafooigne did about 40 Years fince Try it with good. Effect; though he fince Dying, the thing alfo Dyed with him. And even now there are not Wanting fome in England, who Affirm themfelves able to do it, and that they have proved as much by Experiment. We have little or no account of the Ways they have taken to Effect their Defigns; But we may conclude them Defe:Cive in fomewhat or other, fince we do not find them brought into common Ufe.
The cirt of fly 2. The Sieur Befnier, a Smith of Sable in the County of Maine, hath Ining; by S. Befnier. Ibid. p. I5.

Figo. 182.
idelying cham riots. by. Fr. Lana. Kind 8 . 380 vented an Engine for Flying. It confifts of two Poles or Rods, which have at Each End of them an oblong Cloafic of Taffety, which Chafies Fold from above Downwards, as the Frame of a folding UTindow Cbafic. He fits thefe Poles upon his Shoulders, fo that two of the Cbafies may be before him, and the other two behind him. The Order of Moving them, is thus: When the Right Hand Strikes down the Right Wing before, A, the Left Leg by means of the String E, Puls downward the Left Wing behind, B ; then immediately after, the Left Hand Moves or Strikes downwards the Left Wing before, C; and at the fame time the Right Foot, by the String F, Moves or Pulls down the Right Wing behind D ; and fo Succeffively, or Alternately, the Diagonally Oppofite Wings always Moving downwards, or Striking the Air together.
3. I. P. Francefco Lana in his Prodromo, finding by an Experiment, That the Weight of the Air is \(6 \frac{1}{4} \cdot \frac{\text { part }}{}\) of the Weight of a like quantity of Water, he concludes certainly, That if we could make a Veffel of Glafs or other Matter that might \(W\) eigh lefs than the Air, that is in it, and fhould draw out all its Air, this Veffel would be Lighter in Specic than Air it felf, and therefore would' Swim in it and Afcend on High. This He fuppofes may be done, by making a Round Veffel of Thin Plate Brafs, (Weighing 3 Ounces in a Square Foot) of the Diameter of 14 Foot. For the Surface of the Veffel will be 616 square Fect, and the Brafs will Weigh no more than 1848 Ounces; whereas the Content will be \(1437^{\frac{1}{3}} \mathrm{Cub}\). Feet, and that Quantity of Air will Weigh \(2155^{\frac{3}{3}}\) : Ounces : fo that that Air being evacuated, the Veffel will be \(307 \frac{2}{3}\) Ounces Lighter than Air, and therefore will not. only Afcend into the Air, but alfo carry up with it a Weight of \(307^{\frac{7}{3}}\) Ounces. And thus by Encreafing the Bulk of the Veffel, without Encreafing the Thicknefs of the Plates of Brafs, he fuppofes a kind of Ship may be made, to Swim in the Air, and to carry two or three Men it.

\section*{(589)}
2. The Fallacy of the Author's Reafoning lies in this; He fuppofes Copper of Sboron Impraft. 3 Ounces in a Foot Square to be of fufficient Thicknefs to Refift the Pref \({ }^{\text {cable }}\) pr. Hook. fure of the Air in a Globe of I4. Foot Diameter, nay of any Dimenfions. But in Ibid. p. 27. this we can nowife Affent to him : For the Preffure from without Inwards, though it be always the fame upon Equal Surfaces, yet upon Innequal Surfaces the Cafe is quite otherways, for there the Preffure will be found, not the fame, but to Encreafe always in the fame Proportion with the Surface, and thence confequently the Thicknefs of his Copper, or any Metal or Material, which he fhall make ufe of, muft Increafe in the fame Proportion, with the Diametci of the Sphere, and confequently the Weight of his Copper muft always Increnfe in the fame Proportion at leaft to the Solidity of his Sphere; \(\int_{0}\) that by his Augmenting the Quantity of his Spleere, he has no manner of Advantage of making it proportionably Ligbter than the Air, and proportionably Strong; but the contrary: For it is manifeft, That a Bigger Sphere fo made of any Matter we yet know, has lefs Power of Refifting the fame Preffure of the Air than a Lefs, becaufe of the Finite Refiftance of Matter to Preffure, there being fome degree of Preffire that will crufb every Body.
XVI. This Engine is compofed of four Principal Parts; the Serpent A A, two Foot-Steps or Treddles B B, one Clapper C, and two Arms D D, D D.

The Serpent or Fon Bar A A, has two Elbows E E, where to the Ends of the Ropes are fixd that Raife and put Down the Footfops. B B, FF are two Fourths of a Circle, that fuccefively Reft upon two Arches or

An Engine to make Linnen Cloth ; by M. de Geinnes.
n. 140. p.1007.

Fiz. 1830 Bows of Iron GG, which are above the Clapper C, to Raife it. H H are two Teeth of Iron, added to the Serpent making. an Angle of 25 Deg. with FF, and KK, which ferve to put Down a Bafcule, or Swecp, which is in the Arm that carries the Shuttle. The Footfteps or Treddles differ in nothing from thofe which are ufually made ufe of, only the Cords that hold them Pendent from the Ground are fixt in the Elbows of the Serpent, which in turning Railes and puts them Down by the help of. two -litle Pullics, upon which the Ropes turn.

The Clapper is fupported between two Pillars with a Rope double twifted, which makes it to make a kind of Spring, and caufes it naturally to give for:wards to Beat the Cloth.
\(\mathrm{L} M\), is one of the sirms which pats freely into the Canal or Pipe \(\mathrm{N} \mathrm{N}_{s}\) fupported by four Pillars of Wood OOOO. The Motion of it proceeds. from the following Parts. PQ, is a Erfoule, which, though unequally divided by its Supporter \(R\), is yet in Equilitivo, the End PR being made to. weigh exactly as much as \(R Q\).

At the Extremity of this Bafculc is ty'd a Cord which paffes through the Pully S, and terminates at the Extremity of the Arm, where it is faftned to a lietle Bowl. M. At the other Extremity of the fame Arm, that is. to fay towards \(L\), is alfofafned underneath, a Cord which paffés through the Pulley T, and which carries the Weight V.

At the fame end of the Arm is added a little Niche Z, about the bignefs of: half the Shuttlc: then over a little Bar X Y, which paffes athwart the Arm,

\section*{(590)}
there are two other little pieces of Wood, having at the end of them two Teeth, which enter into the Niche Z, through two Holes which are there, of the one fide and t'other.

To the Ends of thefe little pieces of Wood, there is a little Bow of Whatebone or Steel, which keeps the two Ends afunder, and forces the Teeth, which are at the other end, to enter into the Niche, before the faid pieces can themfelves. At the Points I I, are two Ropes that pafs through the Pullies 22, faftned to the Pillars 03,04 , and have each of them a little Weight at the end big enough to keep it from pafing through a little Bowl which is under each Pulley.

This Arm thus difpofed, goes and comes in the Hole NN, in the following manner. One Tooth of the Serpent, already defcribed, ftrikes upon the Extremity of the Bafcule \(P Q\), and to caufes the End \(Q\) to Rife up, which drawing the Cord faftned to the Point \(\mathcal{Q}\), makes the Aim LM, to Advance forward. But when afterwards the T'ooth of the Serpent is come forth again, then the Weight \(V\), tied to the other End of the tame Arm by a Cord that paffes through the Pulley T, forces the faid Arm by its own Weight to Return again.

When the Arm LM, is in its ordinary place, the two little pieces of Wood, into which enters the Bar XY, enclofe the Shuttle by means of the Whalebone Spring. But when the faid Arm approaches the other oppofite Arm, then the Cords tied to the Points I I, being a little too fhort, and the Weight which is at the cnd of then not being able to pars through, the Spring gives way a little, and fo the Sbuttle is no longer enclofed by the Arm which carries it, but is wholly received and grafp'd by the other; which likewife in its Turn, delivers it back again in the fame manner.

The Motion of the whole Macbine is made at the rate as you Move the Handle of the Serpent, for then the Arms caufe the Threads to open, and immediately one of the Arms begins to flide in towards the oppofite Arm, to which it carries the Shuttle and Retires, immediately: At the fame time, one of the Quarters of a Circle, which held the Clapper Elevated, forfakes it, and leaves it for to flap, and then the oppofite quarter of a Circle Elevating it felf, the other Elborw changes the Threads, and the other Arm Retires, and to fucceflively.

The Advantages of this Engine are thefe. I. One Mill will fet Io or in of thefe Looms at Work. 2. You may make the Clorh of what Breadth you pleafe. 3. There will be fewer Knots in the Cloth, fince the Threads will not break fo faft as in other Looms, becaufe the Shuttle that breaks the greateft part, can never touch them. In fhort, The Work will be carried on Quicker, and at lefs Charge, in regard that inftead of feveral Work-Folks which are required in making very large Cloths, One Boy will ferve to tie the Thireads of the feveral Looms as faft as they break, and to order the Quills dout the shutif.

\section*{591)}
XVII. I Order'd a Model of a part of a Waggon to be nade confifting of cidvantuges of four Whisects, two Axcs, and a Board nailed upon the Axes. The Lafer Whects High Wherels Exwere \(4 \frac{\frac{2}{3}}{3}\) Inches high, and the Bigger Wincols \(5 \frac{2}{3}\) Inches high, viz. \(\overline{\mathrm{I}}^{\frac{2}{2}}\) of the. a Menber of Ordinary height of the Whwets of a Wraggon: The Weight of the Model was the Oxford Son almoft \(1 \frac{1}{2}\) lib. I had alfo two other Whisels made \(5 \frac{2}{3}\) Inches high on inftead of the Leffer. The Middle of the two Axes were \(6 \frac{\pi}{4}\) Inches 2 funder. All the Ethocls Turnd very eafily upon the Axes.

A piece of Lead \(50 \frac{3}{4}\) lib. Averdupoife, was laid upon the Model, fo for. ward, that the Leffer Whecis Feemed to bear above \(\frac{-2}{3}\) parts of the Weight. Then the Model was drawn with a String laid over a Pulley; the top whereof was \(\frac{x}{4}\) of an Inch higher then the top of the Hinder Axes, and the Middle of this Pulley was \(7 \frac{1}{2}\). Inches from the Middle of the Fore Axis.

The Leffer Wheels being put on, and the String being tied to the top of their \(A_{x}\) is.
I. Three Pound drew the Model on the fmooth level Table.
2. Twenty Pound drew the Leffer Wheels over a Squared Rod \(\frac{1}{4}\) of an Inch shick.
3. Thirty Pound drew them over a Round Rod a little more than \(\frac{1}{2}\) an Inch thick.
4. Thity One Pound drew tiom over a Square Rod half an Inch thick.
5. Twolve Pound drew the Hirder Wineels over the bigger Square Rod.

The String being laid under the \(A x i x_{s}\) viz. \(\frac{5}{8}\) of an Inch lower than before.
6. Twenty nine Pound drew the Leffer Intbecls over the Bigger Square Rod.

Then the two Bigger whisels being put on inftead of the Leffer, and the String lying Over the Axis.
7. Three Pound drew the Model on the Table.
8. Twenty five Pound drew the Fore wheels over the Round Rod.
9. Trinty five Pound drew them over the Bigger Square Rod.

1o. The String lying under the \(A x i w_{\text {, }}\) io Pound drew them over the leaf: Rod.
II. Twenty three Pound drew them over the Round Rod,
12. Twenty thrce Pound drew them over the Bigger Square Rod.
13. Thirteen Pound drew the Hinder Whbels over the Bigger Equare Rod.

In all thefe Experiments, the Lead was laid exactly upon the fame part: of the Board, but yet when the Lefler Whoels were taken off, the Lead did nor lean fo much forward, fo that the Hinder Wicels were fomewhat mure preffed than they were before.

By Comparing the fecond, third, and Eourth Experiments, with the:tenth. eleventh, and twelfh, it appears how much more cafly a waggon, \(\mathcal{E}^{3}\) e. migh be drawn in Rough Ways, if the Fore EITocels were as High as the Hindor Hisects, and if the Thills were fixt under the Axis. Such a Wraggon as this? would likewife be Drawn more eafily, where the whects cut in Clays on Sand, or any Soft Ground. And moreover. High hitects wout not cut fo Leep as Lom IVT.cels.

\section*{(592)}

Low Wheels indeed are better for Turning in a narrow Compafs than High ones: But it feems probable that Waggons with four Higls Wheels, might be fo contrived, that there fhould be no great Inconvenience in that Refpect; at leait, fuch Waggons as feldom have occafion to turn fhort, as Carriers Waggons, and fuch like.

The Difference which you may obferve in the eighth and eleventh Experiments, is agreeable to what is faid by S. Stcvinus, and Dr. Wallis, viz. That if a Conch, ©̌c. muft be Drawn over Rough, Uneven Places, it is belt to fix the Traces to the Coach Lower than the Height of the Horfes Shoulders.
14. A Table \(2 \frac{1}{2}\) Foot long, was fet with one End \(8 \frac{x}{2}\) Inches Higher than the other End, and the Model being loaded as before, lefs Weight by 6 Ounces drew it up the Table, when the four Bigger Wheels were on, than when two Bigger and two Lefs were on. Becaufe in the firft Cafe there was almoft the fame Direftion of the Motion of the Model and of the String that drew it; but not in the fecond Cafe, when the Fore Axis was fo much Lower than the top of the Pulley.
in Nero fort of XVIII. This Calefs goes on Two Wheels; Carries one Perfon, is Light Calefl. defcribed enough; Tho it Hangs not on Braces, yet it is eafier than the Common
by sir \(\mathrm{K} . \mathrm{B}\). :150 172. p.1029. Coach ; A Common Coach will Overturn, if one Wheel go on a Superficies a Foot and a half Higher than that of the other, but this will admit of the Difference of \(3 \frac{1}{3}\) Foot in Height of the Superficies, without danger of Over-turning: We Chofe all the irregular Banks, and fides of Ditches to run over; and I have this day feen it at five feveral times, turn over and over, and the Horfe not at all diforder'd. If the Horfe fhould be in the leaft unruly, with the help of one Pin, you Difingage him from the Caleß without any Inconvenience. I my felf have been once Overturn'd, and knew it not till I lookt up, and faw the Wheel flat over my Head ; and if a Man went with his Eyes hout, he would imagine himfelf in the moft fmooth way, tho' at the fame time there be three Foot Difference in the Height of the Ground of each Wheel.

The contrivatice XIX. Let DEF, be a pair of Bellows 40 Inches lung, that may be opened of a Perpetual by removing the part F, from E : Let them be exactly thut every where,
Motion; by \(A \mathrm{H}\), Motion; by M. but at the Aperture E; and let a Pipe E G, 20 or 22 Inches long, be Sodred Explained; by to the faid Aperture E, having its other end in a Veffel G, full of Mcicury,

Ko 177. p. 1240 Fig. A A A , is an Axis for the Bellows to Turn upon.
B, A Counterpoife faftned to the lower end of the Bellows.
C, a Weight with a Clafp to keep the Bellows upright.
Now if we fuppofe the Bellows opencd only to \(\frac{1}{3}\), or \(\frac{x}{4}\), ftanding Upright, and full of Mercery, it is plain that the faid Mercury being 40 Inches High, muft Fall, as in the Torricellian Experiment, to the Heighr of about 27 Inches, and confequently the Bellows muft open towards F , and leave a Vacuity there. This Vacuity mult be filled with the Mercury Afcending from \(G\) through the

Pipe GE, the faid Pipe being but 22 Inches long: by this means the Beltoms mutt be opened more and more till the Mercury continuing to Afcend, makes the Upper part of the Belloros fo heavy, that the Lower part muft get loofe from the Clafp C, and the Bellows fhould turn quite upfide down ; but

Fis. 185. the Veffel \(G\), being fet in a convenient place, keeps them Horizontal, and the part F, Engageth there in another Clafp C; then the Mercury by its Weight runs out from the Bellows into the Veffel \(G\), through the Pipe E G, and the Bellows muft thut clofer and clofer until the part EF comes to be fo Light, that the Counterpoife B is able to make the part F, get leofe from the Clafp C ; then the Belloms cones to be Upright again as before; the Mercuiy left in them falls again to the Height of 27 Inches, and confeguently all the other Effects will follow, as we have already feen, and the Motion will Continue for ceer.

U'pon this, it is to be obferv'd, That the Bellows can never be opencd by And flonn Inthe Internal Preffure, unlefs the faid Preffure be ftronger than the External. Suficient by binn. Now in the Cafe before us, it is plain, That altho' the Lowermoft part of n. \(182 . p .133\). the Bellows be Preffed Outward by 40 Inches of Mercury, yet the Upper part having no Nercury above it, bears none at all; the parts that lie in the Middle near the Axis of the Bellows bear but 20 Inches, and fo all the reft nuft bear more or lefs, according as they lie Higher or Lower : It is evident therefore, That there are as many parts that bear lefs than 20 Inches, as there are that bear more, and the Increafe of Preffure following an Avithmetical Progreffion, it is undeniable, that all thefe Preffures added together, will do no more than one Uniform Preffure, that would be equal to 20 Inches every where. It is alfo plain, That the Weight of the Atmofphere cannot come at the Inward part of the Bellows, but through the Pipe \(G \mathbb{E}\), which containing 22 Perpendicular Inches of Mercury, doth Counterpoife to much of the Weight of the Atmsflecre ; fo that this being fuppofed to be 27 In ches of Mercury, it cannot prefs the Inward part of the Bellows but with a Weight equivalent to 5 Perpendicular Inches of Mercury. So that we find, the Inward Preffure both of the Mercury and the Aimofplere is equivalent but to 25 Inches of Mercury in all. Whereas the Preffure of the Atmofthere upon the Outfide is every where equal to 27 Inches; from whence it appears, That the Preffure without, is ftronger than the Preffure within. From this we may conclude, That the Beltoms 1tanding Upright will rathei Shut than Open.

1 thall fay nothing to the Alterations this Author may? make in his Engine, n. 886 . P. 26 ; refolving to leave it to others to fhew him, that upon that Principle all he can do fignnifies nothing. And I doubt not, but if he pleafes to confult M. Perauit, de la Hire, or any other at Paris, he will find them of the fame Opinion with Mr. Boyle, and Mr. Hock, and others Here.
XX. This Reffecting Trumpet, confifts of tivo Parts. The Ultmof B \(b\), is The Speaching a large Concave Pyramid, about a Yard long, (or may be of any manage veri; by Mr. able Length) Open at the Bafe B, and Clofed not with a Flat, but a Conyers. Concave Head, at the Cone B. Within this is faftired a. Bended Tube A f. Vol. I.

\section*{(594)}

Fig. 186. This Trumpert did at a Meeting of the Reyal Sociecty at Arundel-Houlc, diftinctly deliver fome Words, crofs the Garden and the River Thames, and that againft the Wind which was then ftrong; and the W'ords were written down by one, that was fent over for that purpores: Whereby it appeared, That a Reflecting Trumpet, after this, or fome other like manner, of Wood, Tin, Pewter, Stone, or Earth, or which may be beft of Bell-Metal, will carry the Voice as far, i. not farther, than the Long one Invented by Sir Samucl Morciand. Befides that, it feems to take off from the Aftonifhiag Noife near at hand, which happens, in ufe of the faid Long Trumpet: By Sir Sam. MorcIard's Trumpet Angularly Arched in the Middle, the delivery of Sound to any Diftant Place was much fhortned; and by another with three large Angular Arches, reaching almoft from one End to the Orher, the Sound wals almoft wholly Obftructed.

The Smeftenefs of XX1. I provided a Pendulum; of fmall Virginal Wire, with a Diftol Bullet Sousds and. :heir Reflectious or Eccboes; by Mr. Walker. \(\therefore 247 . f .433 . \mathrm{ed}\); and I Removed my Station till I found the place whither the Echo Returned in about half a Second. But that I might Dittinguifh the Time nore nicely, I clapt every Second of TTine, 10 or a 5 times-together; fo that by this means, I could the better Difcover whether the Diftances betwixt the Claps and the Ecbocs, and the following Claps, were Equal... And though it be very difficult to be Exact, yet I could come within fome few Yards of the place I fought for, thus: I obferved the two Places, where 1 could but juft difcover that I was too near, and where I was too far off; and from the midway betwixt them I meafured to the Wall, which Meafure doubled, was the Space that the Sound Moved in half a Second.

Here follow the Numbers of Engliß Feet which a Sound Moved in one Se: cond of Time at feveral Trials.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trials & Fect. & Trials & Fect. & Trinls & Feot. \\
\hline 1 & \(\bigcirc 1256\) & 5 & 1292 & 9 & 127.8 \\
\hline 2 & 1507 & 6 & : 1378 & 10 & 1290 \\
\hline 3 & 1526 & 7 & 1292 & I I & 1200 \\
\hline 4 & 1150 & 8 & I185 & & \\
\hline
\end{tabular}

Merfennus mentions an Experiment wherein he found the Motion of the Sound ro be \({ }^{3} 474\) Fect in a Second. The Academy del Cimento caufed 6 Harquebuf fes, and 6 Chambers to be fired one after another at the Diftance of 5739 Englif. Feet, and from the Flafh to the Arrival of the Report of each was \(5^{\prime \prime}\) : And repeating the Experiment at the Midway, the Motion was exactly in half.

\section*{(595)}
the time; and Mr. Boyle obferved, That the Motion of Sound paffer above 400 Yards in a Second.

When the Firft Trial was made, there was fome Wind ftirring, tho' not much; the 2 d , 3 d and 6 th, were made in a Calm moming. In the 8 th, the Echo was returned from a Wall at 395 Yrids Diftance in two Scoonds, and in the gth and roth, at 213 and 215 Yards Diftance, in one Seconio. The 4 th was made at one end of St. Fobn's Cloifter in Oxford, which is 104 Fect 7 Inches long, where the Sound was Reflected in times in two Seconds: And the 5th, on the North fide of New College Cloifter, (which is 160 Fect 8 Inches long) where there were about \(7 \frac{1}{4}\) Ecloces in two Seconds.

By fome of thofe Experiments that I tried, I am Inclined to think, That the Sound Moved Quicker when it was Calm, than in a Wind, even when the Sound Moved half way with the Wind; and that it Moves fwifter at firlt, than afterwards.

There is feldom any Echo, where there is not fume Wall, Wood, Bank, or fuch like, directly Oppofite, that may Reflect the Sound to the Perlon that makes it ; but in St. Fobn's Grove, if you ftand near the Gate leading from the Colloge to the Grove, and Clap, the Echo will Return to you from the Brll Court, though a Line drawn from you to the Ball Court be not Perpendicular to the Wall there, but as much Oblique ss the Line AB, is to the Line BC; where A reprefents the Gate, BC the Ball Court-Wall, and BD another Wall. Or, if you ftand at E, the Corner of the Grove next to Trinity, and Clap, the Echo will Return to you from the Ball Court.

In the fame Grove, I ftood about 20 Yards from the fame Gate, and the Gate being fhut, I Clapt, and at other times Stamped, and the Echo Returned from the Gate as loud, if not louder than the Clap or Stamp.

An Echo Reflected from a Gate or Door, has ufually a bafer and duller Sound than that which is returned from a Wall, this being much brisker.

As I have been walking towards a Wall, I have Claped my Hands together feveral times, and I could diftinguifh the Echo fromathe Clap, till I came within 7 or 8 Yards of the Wall.

In the Cloifters, where, as was faid before, the Echo was - Repeated feveral times, the firft Repetition feemed to be flower than the fecond or third ; but. of all the Repetitions, befides the firft, the fubfequent feemed flower than the precedent.

I have obferved the Toffing of a Sound forward and back again, in very many Places where there are Parallel Walls; and where the Diftance of the Walls is lefs, there the Echocs follow one another quicker.

Wherefoever a Sound was thus toffed betwixt two Walls, if I ftood about the Middle, I could hear the Sound twice as quick, that is, twice as often Repeated in one Second; as if Iftood near one Wall: The Sound being Reflected to me from both ends, when I ftood in the middle.

In Trinity Ball Court, when I ftood and Clapt at B, three or four Yards from the End of the Wall \(E\), or at A, which is oppofite to B, the Sound was toffed betwixt the Oppolite Walls; but not half fo tong as when I stood betwixt the Walls. lin Places where there are Parallel Walls, not above fix or G g g g 2
cight
Fig. 189.

Eig. 29C.

\section*{(596)}

सight Yards afunder, as in Trinity Ball Court, and at the Entrance into St. Fohn's Grove, \&'c. I have heard the Echoes of a Clap following one ano. ther diftinctly enough; but there the Echoes of a Mufical Note, which was longer than a Clap, were fo confufed, that they feemed one continued Long Sound : which makes me think, that the Ecbo in fome Vaults, is nothing elfe but the Sound toffed betwixt the Side Walls, and betwixt the Top and Botwom. 'This alfo makes me conjecture, That the Reafon why frimged Mufical inflruments give a greater and longer Sound to the Strings, than if the Strings. were fixt to a fingle board, may be this; becaufe the Sound is: toffed from fide to fide in the Belly of the Inftrument.

The Doctrime of Sotnts; by Narciflus, Biflop of Ferns and Leighlin. ins 156 . P. 472 .
XXII. I cannot better Explain the Ufefulnefs of this Theory of Sounds, thars by making a Comparifon 'twixt the Faculties of Sceing and Hearing as to their Improvements. In order to which, I Obferve, That Vifion is threefold Dircet, Refracted, and Reflex'd, anfwerable whereunto we have Opticks, Dioptricks, and Catoptricks.

In like manner Flearing may be Divided into Dircit, Refrated, and Reflex'd; where to anfwer three Parts of our Doctrine of Acoufticks; which are yee mamelefs, unlefs we call them Acouficks, Dincouflicks, and Catacouficks, (or in another-Senfe, but to as good purpofe). Phonicks, Diapbonicks, and Cataplonicks: Direit Vifian has been Improved two ways.
1. Ex parte Obiciti, by the Arts of Producing, Conserving, and Imitatings, and duly Applying, Light, and Colours.
2. Ex parte Organi wel Medii, by making ufe of Tubes without Glafles, or, a Man's Clofed Hand to look through. So likewife Direct Hearing, partly has, and partly may further receive great and notable Improvements, both cos parte Objecti, and ex parte Organi vel Medii.
1. As to the Object of Hearing, which is Sound, Improvement has -beenis and may be made, both as to the Begetting; and as to the Conveying and Eropogating (which is a kind of conforving) of Sounds.
I. As to the Begetting of Sounds. The Art of Imitating any Sound, whether by Speaking (that is Pronouncing) any kind of Language, (which really is an Axt; and the Art of Speaking perhaps one of the greateft) or by Whift ling, or by Singing, (which are allowed Arts) or by Hollowing, or Luring; (which the Hunt fman and Faulkner would have to be an Art alfo) or by Imiz tating with the Mouth (or otherwife) che voice of any Animal; as of Quails, Cats, and the like, or by Reprefenting any Sound begotten by: the Collifion of: Solid Bodies, or after any other manner; thefe are all. Improvements of DireSI Hearing, and may be Improved.

Moreover, the Skill to make all forts of Mufical Inftruments, both Ancient and Modern, whither Wind Inftruments or String' \(d\), or nf any other: Sort, whereof there are very many (as Drums, Bells, the Syftrum of the Egyptians, or the like) that Beget (and not only Propagate) Sounds: the Skill of Making thefe, I fay \(y_{2}\) is an Art, that has as much Improv'd Direct Hearing, an an Harmonious Sound exceeds a Single and Rude one, that is an Immufical Tone: which art is yet capable of farther Improvemento.. And I hope, That by the

Rules, which may happily be laid down, concerning the Nature, Prinpagation, and Proportion or Adapting of Sounds, a way may be found out, both to Improve Mufical Inftruments: already in ufe, and to Invent New Ones, that fhall be more Sweet and Lufhious than any yet known. Befides, that by the fame means Infruments may be made, that fhall Imitate any Sound in Nature, that is not Articulate; be it of Bird, Beaft, or what thing elfe foever.
2. The Conveying and Propagating (which is a kind of Conferving) of Sounds, is much helped by duly Placing the Sonorous Body, and alfo by the Medium.

For if the Medium be Thin and Qiuicfent, and the Sounding Body Placed conveniently, the Sound will be eafily and regularly Prapagated, and mightily Conferved.
I. The Medium muft be Thin and Quicfent ; Hence in a fill Evening, or the Dead of the Night, (when the Wind ceafes) a Sound is better fent out, and to a greater Diftance than otherwife.
2. The Sonorous Body muft be Placed conveniently, viz. Near a Smootin解保, either Plane or Arcbed, (Cycloidically or Elliptically, rather than otherwie?; though a Circular or any Arch witl do; but not fo well.) Hence in a Cburch, the nearer the Preacher ftands to the Wall, (and certainly its much the beft way to place Pulpits near the WTall) the better is he heard, efpecially by thofe who fand near the Wall, alfo, though at a greater Diftance from the Pulpits; thofe at the Remoteft End of the Church, by laying their : Ears fomewhat clofe to the Wall, may bear him eafier than thofe in the Middle.

Hence alfo do arife W/isifpring Places. For the Voice being applied to one End of an Arch, eafily Rowls to the other. And indeed. were the Motion and Propogations of Sounds but rightly underftood, 'twould be no hard matter to contrive Whifpering Places of infinite variety and ufe. And perhaps there could be no better or more pleafant Hearing a Confort of Mufick, than at fuck a Place as this; where the Sounds Rowling long together before they come to the Ear, muft needs Confolidate and Imbody into one; which becomes a true Compofition of Sounds, and is the very Life and Soul of Confort.
2. If the. Sonorous Body be placed near Water, the Sound will eafily be be convcy'd, yet mollify'd; as Experience teacheth us from a Ring of Bells. near a River; and a great Gun fhot off at Sea; which differ much in the Strengh, and yet fofness and continuance, or Propagation of their Sounds from the fame at Land; where the Sound is more Harth and more Perifhing, of much fooner Decays.
3. In a Plane a Voice may be heard at a far greater Diltance, than in Uneven Ground. The Reafon of all which laft nam'd Plienomena is the fame becaufe the Sonorous Air meeting with: little or no Refifance upon a Pline (much lefs upon as Arcli'd) fmooth Superficies, eafily Rowls along it, without: being let or hindred in is Motion, and confequently withome having its Partr: Disfigured, and put into another kind of Revelution; than what they had at the firf Begetting of the Sound, which is the true Caufe of its Prefervation or Progreffion; and fails much when the Air paffes over an Uneven Surface according to the Degrees of its Inequality; and fomewhat alfo, when it panes. over the Plane Superficies of a Body, that is hard and refifting,

\section*{\((598)\)}

Wherefore the smaoth Top of the Water, (by reafon of its yielding to the Arched Air, and gently rifing again with a kind of Refurge, like to Elafticity though it be not fo ; by which Refurge it Quickens and Haftens the Motion of the Air Rowling over it, and by its yielding preferves it in its Arched Cycloidical or Eilliptical Figure) the \(S\) mooth top of the Water, I fay, for thefe Reafons, and by the fe means, Conveys a Sound more entire, and to a greater Diftance, than the Plane Suriface of a piece of Ground, a Wall, or any other Solid Body whatever, can do.
2. The Organ, which is the Ear, is helpt much by Placing it near a Wall, (efpecially at one end of an Arcls, the Sound being Begctten at the other) or near the Surface of Water, or of the Earth; along which the Sounds are moft cafily and naturally Conveyed; as was before declared. And 'tis Incredible, how far a Sound made upon the Earth, (by the Trampling of a Troop of Horles, for Example) may be heard. in a till Night, if a Man lays his Ear clofe to the Ground in a large Plane.

Otacaufticks here come in for helping the Ear; which may be fo contrived (by a right underftanding the Progreffion of Sounds, which is the Principal Thing to be known for the due regulating all fuch kinds of Inftuments) as that the Sound might enter the Ear without any Refraction.
2. Refracted Vifion (which is always made ex parte Medii,) arifes from the different Denfity, Figure, and Magnitude of the Medium ; which is fomewhat altered alfo by the divers Incidence of the Vifible Rays, and fo it is in Refrafted Hearing, all thefe Caufes coucur to its Production; and fome others to be hereafter confidered.

Now as any Object (a Man for Example) feen through a Thickned Air, by Refraction appears greater than really he is: So likewife a Sound, heard through the fame Thickned part of the Atmofpleere, will be confiderably vary'd from what it would feem to be, if heard through a Thinner Medium. And this I call a Refraited Sound.

Improvements of Refracted Vifion have been made, by Grinding or Blowing Glaffes into a certain Figure, and Placing them at due Diftances; whereby the Object may be (as 'twas) enabled to fend forth its Rays more Vigoroully, and the \(V_{i}^{i} i v e\) Faculty Impowered the better to receive them. Thus,
1. A fine Glafs Bubble, fill'd with Clear Water, and Placed before a Burning Candle or Lamp, does help it to dart forth its Rays to a. Prodigious Length and Brightnefs.
2. The Vijive Faculity is much Helped.
1. By Speciacles and other Glaffes which are made to Help the Purblind and Wenk Eyes, to fee at any competent Diftance.
2. By Perfpetive Glaffes and Telejfopes, which Help the Eye to Sec Objects at a very great Diftance, which otherwife would not be difcernable.
3. By Microfcopes or Magnifying Glaffes, which Help the Eye to fee Near Objects, that by reafon of their Smallnefs were Invifible before,
4. By Polyfopes or Multiplying Glaffes, wherèby one thing is reprefented to the Eyc as many, whether in the fame or different Shapes.

After the fame manuer, Inftruments may be contrived for afifting both the Sonorous Body to fend forth its Sound more ftrongly, and the Acouffick Faculty to receive and difcern it more eafily and diftinctly. And thus;
r. An Inftrument may be Invented, that applied to the Mouth, (or any Sonorous Body) Mall fend forth the Voiec Diftinctly as to a prodigious Diftence. and I-oudnefs. For if the Stentoro-phonicon (which is but a Rude and Inartificial Inftrument,) does fuch great Feats; what might be done with One comspofed according to the Rules of Art? whofe Make fhould comply with the Laws of Sonorous. Motion which that does not.
2. There are fome Inftruments, and more fucis may be invented to help the ... Ear: As;
1. Otacnufticks (and better may be made) to help \(W_{\text {calk }}\) Ears to hear at a reafomable Diftance allo. Which would be as great a help to the Infirmity of old Age, as the other Invention of Spectacles is, and perhaps greater; for as much as the FIenring what's fpoken is of more daily ufe and concern to fuch Men, than to be able to Read Books, or to view Pietures.
2. A fort of Otacoufticks may be fo contrived, as that they fiall Receive. in Sounds made at a very great Diftance, which otherwife would have been Inaudible. And thefe Otacoufticks, in fome Refpeits, would be of greater ufe than Perfpectives.
I. In Time of War for difcovering the Enmy at a good Difiance, when he Marches or Lies Incamp'd behind a Mountain or Wood, or any fuch Place of Shelter, which hinder the Sight from reaching very far.
2.. At San, when in dark Hazy \(W_{\text {eather the Air }}\) is too thick, or in Stormy Tempeftuous Weather, the Waves Rife too High, for the Perfpective to be made ufe of.
3. In Dark Nights, when Perfpectives become almoft Infignificant; and yetr at fuch times, generally Soldiers take their March, when they would furprize their Enemies.
4. Microphones, or Micracoufticks, that is, Margnifying Ear. Infiruments, which may be Contrived after that manner, that they fhall render the moft Minute Sound in Nature diftinctly Audible, by Marnifying it to an unconceiveable. Loudnefs. By the help whereof we may hear the different Cries and Tones of the fralleft Arimals.
5. A Polyphone, or Polyacouftick, fo ordered that One Sound may be beard, either of the Same, or a Different Note. In fo much that who ufes this. In ftrument, he fhall at the Sound of a Single Viol feem to hear a whole Coiifort, and all True. Harmony. By which means this. Inftrument has much the Ads vantage of the Poiyscope.

I have call'd it Refracted Hening, becaufe made through a Medium, viã Thick Air, or an Inftrument, through which the Sound palling is broken or Refracted.
3. Reflected Vifion (which is always made ex parte oljecti) hath been imp prov'd by the Invention of Looking Giaffes and Polifh'd Metals, whether Plane, Concroc, or Conver, of feveral Figures, and Placed at Dereminate Dittances.

\section*{(600)}

In like manner Reffex'd Audition (which is only made ex parte Corporis Op pofiti) may be Improved by Contriving feveral forts of Artificial Echoes. For (fpeaking in general) any Soind falling Directly or obliquely upon any Denfe Body, of a fmooth (whether Plane or Arch'd) Superficies, is beat back again and Reflected, or does Echo more or lefs.

Ifay, (I.) Falling Directly or Obliquely; becaule, if the Sound be fent out and Propagated Parallel to the Surface of the Denfe Body, there will be no Reffexion of Sound, no Echo.

I fay, (2.) Upon a Body of a Smooth Superficies; becaufe if the Surface of the Corpus Olffans be Uneven, the Air by Revericration will be put out of its Regular Motion, and the Sound thereby broken and extinguifht: So that, tho' in this cafe alfo the Air be beaten back again, yet Sound is not Reffected, nor is there any Ecclo.

I fay, (3.) It does Eccio More or Lefs, to fhetw, that when all things are, as is before defcrib'd, there is Atill an Ecchoing, though it be not always Heard, either becaule the Direft Sound is too Weak to be beaten quite back again to him that made it; or that it does Return home to him, but fo weak, that without the help of a good Otacouftick ir cannot be difcerned ; or that he ftands in a wrong Place to receive the Reflected Sound, which paffes over his Head, under his Feet, or to one fide of him ; which therefore may be Heard by a Man ftanding in that place, where the Reflected Sound will come, provided no interpos'd Body, does intercept it; but not by him, that firft made it.
'Thefe Ecchoes (like Reflected Vifion) may be §everal ways Produced', as;
I. A Plane Corpus Olffans Reflets the Sound back in its due Tone and Loudnefs; if allowance be made for the proportionable Decreafe of the Sound according to its Diftance.
2. A Convex Corpus Oiffans Repels the Sound (infenfibly) Smaller; but Gomewhat quicker (though weaker) than otherwife it would be.
3. A Concave Corpus Obffans Eccioes back the Sound (infenfibly) Bigger, Slower, (though Stronger) and alfo Inverted; but never according to the order of Words. Nor do I think it polible for the Art of Man to Contrive a fingle Eccho, that fhall Invert the Sound and Repeat backwards; becaufe then the Words laft \{puken, that is, which do laft occur to the Corpuls obftanes, mutt firft be Repell'd; which cannot be. For where in the mean time Thould the firt Words hang and be conceal'd or lie dormant? Or how, after fuch 2. Paufe be Reviv'd and Anjmated again into Motion? Yet in Complicated or Compound Ecchoes, where many Receive from one another, I know not whether femehing that way may not be done.

Erom the Deterninate Concavity or Archednefs of thefe Reflecting Bodies it comes to pars, that fome of them from a certain Diftance or Pofiture, will Eccloo back but one Determinate Note, and from no other Place will they Reverberate any; becaufe of the undue Pofnion of the Sounding Body. Such an one (as I remember) is the Vnult in Merton College in Oxford.

\section*{(601)}
4. The Ecchoing Body, being Removed farther off, Reffects more of the Sownd, than when nearer. And this is the Reafon, why fome Ecchoes Repeat but one Syilable, fome one Word, and fome many.
5. Eccloning Bodies may be fo Contriv'd and Placed, as that Refceting the Sound from one to the other, either Directly and Mutually, or Obliquely and by Succeffion, out of one Sound fhall many Ecchoos be begotten; which in the firft Cafe will be altogether and fome what Involv'd or Swallowed up of each other ; and thereby Confufed (as a Face in Looking-Glaffes obverted ;) in the other they will be Diftinct, Seperate and Succeeding one another, as molt Multiplc Ecchoos do.

Moreover, a Multiple Eccho may be made, by fo Placing the Ecchoing Bodies, at Unequal Diftances, that they Reflect all one way, and not One on the Other; by which means a Manifold Succefive Sound will be heard (not without aftonifhment) ; One Clap of the Hands like many; One Fic like a Laughter; One fingle Word like many of the fame Tone and Accont; and of one Viol like many of the fame kind, Imitating each other.

Furthermore, Ecchoing Bodics may be fo ordered, that from any one Sound givea, they fhall produce many Eccioos different both as to theit Tone and intchifior. By this means a Mufical Room may be fo Contrived, that nor only Onc Inftrument, played on in it fhall feem many of the fame Sort and Size; bit even a Confort of (fomewhat) Different ones; only by Placing certain Ecclioing Bodies fo, as that any Note (played) Thall be Returned by them in 3 ds , 5 ths, and 8ths, which is poffible to be done otherwife than was mentioned before in Refracted Audition.

I have been thus large, that I might give you a litcle Profpect into the Excellency and ufefulnefs of Acoufticks, and that thereby I might excite others io bend their Thoughts, towards the making of Experiments for the Compleating this (yet very Imperfect though Noble) Science; a Specimen whereof I will give you in thefe three \(P_{\text {roblems }}\).

Prob. 1.] To make the leaft Sound (by the belp of Inftruments) as Loud as the Greatef; a Whijper to become as loud as the Shot of a Cannon.

By the help of this Problem the moft minute Sounds in Nature may be Clearly and Dittinctly heard.

Prob. II.] To Propagate any (the leaf) Sound to the greatelt Diftance:
By the help hereof any Sound may be Conveyed to any, and therefore heard at any Diftrance, (I muft add, within a certain, though very large Sphear.)

Moreover by this means a WTeather-Cock may be fo contrived, as that with an Ordinary Blaft of Wind it fhall Cry (or Whitie) Loud enough to be heard many Leagues. Which happily may be found of fome ufe, not only for Pilots in mighty Tempeftuous Weather, when Light Houfes are rendred almolt ufelefs. Bur alfo for the Meafuring the Strength of Winds, if allowance be made for their Different Moifture. For I conceive, That the more Dry any Wind is, the Louder it will Whitle catcris paribus; I fay cateris paribus, becaufe, befides the Strength and Drynefs of Winds or Breath, there Vol. I. Hhlib
are

\section*{(602)}
are a great many other things (hereafter to be connider'd) that Concur to the Increate of Magnifying of Sounds, begotten by them in an Inftrument expofed to their Violence, or Blown into.

Prob. III.] That a Sound may be convey'd from one Extream to the other (or from one. Diftant Place to anotber) So as not to be beard in the Middle.

By the help of this Problem a Man may talk to his Friend at a very confiderable Diftance, fo that thofe in the Middle Space fhall hear nothing of what paffed betwixt them.

If fhall here Add, a Scmiplane of an Acouftick or Plonical Spleen, as an Attempt to explicate the great Principle in this Science, which is, the Progreffion of Sounds.

You are to conceive this (Rude) Semiplane as Parallel to the Horizon; for if it be Perpendicular thereunto, I fuppofe the upper Extremity will be no longer Circular, but Hyperbolical, and the lower part of it fuited to a greater Circle of the Earth. So that the whole Pbonical Splear (if I may fo call it) will be a folid Hyperbola, ftanding upon a Concave Spherical Bafe. I fpeak this concerning Sounds made (as ufually they are) nigh the Earth, and whofe Sonorous Medium has a free paffage every way. For if they are Generated High. in the Air, or Directed one way, the Cafe will be different; which is partly Defigned in the Inequality of the Draught.

\section*{XXIII. A Paper, of Lefs General. Vefe, Omitted. vi** \(^{\text {. }}\)}
sarriages. Wexperiments to be made, relating to Carriages; propofed. by. Sir Will. ก. 1610. F .666. 14 Petty.
XXIV. Accounts of Bocks and Additions, Omitted.
n. 32. 1.626.
n. 73. . 2210 .

DEvi Percuffonis, Joh. Alphonf. Borelli : Bononix. 1667. in 4.to. 2. De Motionibus à Gravitate dependentibus: Liber, Jo. Alpronfí Borelli. in Academia Pifana Mathefeos Profefforis, Regio Julio. 1670 . in 4 to.
n. 67. p. 2 e57. 3. Dialogi Ployici, quorum Primus do Lumine; Secundus E Tertits de Vi Percuffionis. © Motu; Quartus de Humoris Elewatione per Canaliculum; Quintus Ef Sextus de Variiis Scleqis. Auth. Honor. Fabry. S. Fefu. Lugduni Galliarum. 1669. in Suo.
nist. p. 1086. 4. Mechanica, five de Motu, Trallatus Gecmetricus ; Auth. Joa. Wallis, n. 61. p. 2005. S. S. Th. D. Londini. 1.670. 167 I. in 4 to. The Author bere makes fome
\(\mathrm{n}_{\mathrm{i}} 76\). p. 2286. S. \(\begin{aligned} & \text { n. } \\ & 3 \% \\ & 8 \%\end{aligned}{ }_{p} .507+\). Additions to Prop. I. Cap. XV. p. 753 . concerning the Center of Gravity of the Hyperbola.
n: 6i. f. 2009. 5. Exercitationes Meclonnicie, Alexandri Marchetti. Pifis. 1669. in 4 to.
n. 82. \(p .4050\).
6. De Reffientia Solidorum, Alexandri Marchetti in Pifana Academia Pbisio Prof. Florentix. 1665. in \(4 t o\).
nu.73.p.2213. 7. Hypotbcfis Pibyfica nova, five Theoria Motus Concreti, una cum Theorin Motus Abltracti. Auth. Gothfredo Gulielmo Leibnitio. F. V. D. Lond: 167 I. n. 74. p. 2227. iry. I2 \({ }^{\circ}\) : Of this Book Dr. Wallis here gives his Opinicn.

\section*{(603)}
8. La Statigue, ou la Science des Forces Mouvantes par le P. Ignäce Gafton n. 94. p. go420 Pardies. S. 7. à Paris. 1673. in \(12^{\circ}\). The Firft part being of Local Motion. Printed at Paris 1670. was Englifhed end Printed at London the fame Year. \({ }^{\text {n. 65. p. } 2010 .}\) in \(12^{\circ}\).
9. Chriftiani Hugenii Zulichemii Horologium Ofcillatorium. Parifis. 1673 . n. 95 . p. 6068. in Fol.
10. A Difcourfe made before the Royal Society concerning the USe of Dupli- no ros. p.2a9. cate Proportion in Sundry Important Particulars; together with a New Hypothefis of Elaftique or Springy Bodies: By Sir William Petty.
11. Traite de la Percuftion ou Choq des Corps, Ec. par M. Mariotte, de n. \(\times 3+1 \cdot p .859\).

 Lond. in 4 to.
13. Traite de Mouvement des Eaux हु des autres Corps Fluids, par feun 191. f. I190 M. Mariotte. a Paris. I686. in \(8 v 0\).
14. Mechanick Exercifes; or, The Doctrine of Handy Works. By Mr. Jof.n. 138. p. 967. Moxon. Lond. I677. in \(4^{t 0}\)
15. The Speaking-Trumpet, as it lath, been Contrived, and Publifbed, by n. 79. p. 30560 Sir Samuel Moreland; together with its Ufes both at Sea and Land. Lond. 1671.

\section*{C H A P. VI.}

\section*{Hydroftaticks. Hydraulicks.}

1.15Ake a Viol with a very Narrom Body, and when it is almoit full, To waigh Water, the Water is to be Dropt into it, drop by drop, till it can hold no or otber Eluids; more. Then Weigh it exactly, and deduct the Weight of the Empty Viol.
 is fo fmall that a Drop of Water therein takes up the Space of 5 or 6 Lines, meter; by near that Neck is a little Capillar Tube D, about 6 Lines long, and Parallel M. Homberg: to the Neck B C; The Opening B is a little dilated, in the Fafhion of \(a^{\text {no }}{ }^{\text {e62. }}\) p. 530. Tunnel, for pouring more eafily the Liquors into the Bottle, and the littie Tube D, is for giving a way to the Air contained in that Veffe! to go out, when the Liquior is poured in at \(B\); the Point \(C\), is a little Mark at the fame height, as the end of the little Tube D.

When we fill the Veffel, we pour the Liquors into it, by the Opening \(\mathrm{B}_{3}\) until it goes out by the little Tube D, and if the Height of the Liquor is cven to the Mark C, "tis well; if it is Lower, we muft fill more to that Point; if it is Higher, we muft ftrike foftly upon the Opening \(B\), till the Overplus of the Liquor be even to the Point C in the Neck of the Bottle. By that means we have always exactly the fame Volume of Liquor, and we can know how the fame Volume of the feveral Liquors Weighe more one than \(\mathrm{Hhhh}_{2}\)

\section*{(604)}
another precifly. But we muft confider the Variation of the Weather when we compare the Weight of a Liquor which we Weigh in Summer time, with the Weight of another, which we have Weighed in the Winter, for the fame Liquor being more Rarified in the Hot time, and condenfed in the Cold, the fame Volume of it will be more Weighty in Cold Weather than in Warm.

A New EfJay inftrument; by Mr. Boyle. 11. 24. p. 447.
n. 115. p. 329. Fig. 193
II. i. Many Years ago I made ufe of a little Glafs Inftrument, confifting of a Bubble, and furnifhed with a Long and Siender Stein to compare the Specifick Gravities of Different Liquors by its more or lefs Sinking in Them: And I have fince employed it to difcover the Specifick Gravities of Solid, Several appended, by its being more or lefs depreffed by them in the fame Liquor. For 'tis clearly deducible from the Grounds of Hydroftaticks, that any Solid Body Heavier than W'ater, lofes in the Water as much of the Weight it had in Air, as Water of equal Bulk to the Immerfed Solid would Weigh in the Air ; and confequently fince Gold is by far the moft Ponderous of Metals, a piece of Gold and one of Equal Weight of Copper, Brafs, or any other Nietal, being propofed, the Gold mult be lefs in bulk, than the Copper or Brafs. And by this means, if both of them be Weighed in the Water, the Gold muft lofe in that Liquor lefs of its former Weight than the Brafs or Copper; becaufe the bafer Metal as well as the Gold, grows Lighter by the weight of a Bulk of Water equal to it; and the bafer Metal being the more Voluminous, the correfpondent Water muft Weigh more than that which is correfpondent to the Gold. Whence I concluded, that the Floating Inftrument abovemention'd would be made to fink deeper by an Ounce, for initance of Gold, hanging at it under Water, than by an Ounce of Brafs, or any other Metal, which, by reafon of its greater Bulk than Gold, lofing more of its weight by the Immerfion, mult needs retain leff, and to have lefs power to Deprefs the Inftrument'twas faftned to. Which Conclufion will alfo hold (though the Difparity be not fo Great and Confpicuous) in reference to other Metals, as Lead and Tin, that differ in Specifick Gravity.

This Infrument may be of Glafs, Copper, Silver, or almoft any other Solid Body, that is, or may be made, fit to Float in the Water, with a Guiny, Ejc. Hanging at it, and of a Texture clofe enough to keep out the Water. It. conlifts of three Parts; the Bath or Globulous part ; the Stem or Pipe; and that which Holds the Coin.
xig. 194.
The Ball or Round part BCDE (if of Mictal) confifts of two thin Concave Plates, exactly Sodered together in the middle; and at the diftanteft parts from the Commiffure, there ought to be left two oppofite Holes, one in each Plate, for the two other parts of the Intrument. This middle part, though for Brevities fake we name it the Ball, fhould not be exactly Round; but, of any Shape that hall be found fit to make the Inftrument keep its Erect pofture fteadily in the Water. It muft contain as much Air, as may ferve to keep the whole Influment, when loaded from Sinking beneath the top of the Stem.

The Stem AB, is to be Soder'd on to the Ball at the uppermoft of the two mention'd Holes. It may be cither Hollow or Solid : but it ought to be

\section*{(605)}
made very flender, that the different Depreflions of the Inftrument in the Water may be the more Notable. And for the fame reafon, it ought not to be too Short, efpeciaily if it be to be applied to other Ufes than the Examining of Guinys.

At the Undermolt of the two Holes in the Ball, is Inferted and Soder'd the undermoft part of the Inftrument, which I call the Screw, or the Stirule: The Screw F , is a very fhort piece of Brafs with a broad Siit in it, capable of receiving the edge of the Guiny, which with one turn or two of a fmall and flight lateral Screw may be kept faft in it, and readily the Operation being ended, taken out again. The Stirrup \(G\) is made of a piece of Wirc, that a little beneath the bottom of the Ball, is bent round, foras to ftand Horizontally, that the Guiny may be laid on it.

It would be convenient, that the undermoft Stem and the Screx be made by it felf, that it may be at pleafure thruft upon the Stem and taken off again. For, by this means, if the Ball of the Inftrument be made large enough, you may have room to put on for Ballaft, as occafion fhall require, one, two, or three flat and round pieces of Copper, Lead, E \({ }^{3}\), with cach of them a hole in the middle fitted to the Size of the Stem, fo that they may be put on as near the Lower part of the Ball as you think fit, and then the Screw may be thruft on after them, not only to take hold of the Coin or Metalline mixture to be Examin'd, but to fupport the thin Plates.

To adjult this Inftrument for the ufe of examining Guinys, which are by far the moft ufual Gold Coins that pafs in England, you muft by the help of the Stirrup or Screw, Hang, at the bottom of it, a piece of that Coin which you know to be Genuine, (and having carefully ftopt the Orifice of the Stem (if it be a Pipe) that no Water may get in at it) Immerfe the Inftrument leifurely and perpendicularly into a Veffel full of clean Water, till it be Depreft almoft to the top of the Stem, and then letting it alone, if, being Seted, it continue in the fame Station and Pofture, your work is done. If it Emerge, you muft add a little weight to it, either by putting into the Stem, if it be Hollow, Come Duft Shot, Filings of Lead, or fome other Minute and Heavy Body, or elfe by putting on the fhort Stem abovementioned, that comes out beneath the Ball, a flat, round and perforated piece of Lead, of Weight fufficient to enable the Guiny to Deprefs the weight as Low as its defired: But if. it Sink quite under Water, you muft lighten it either with a File, or by feraping or grating off a little of the Ballaft Plate abovementioned; or, if yr,u have put any Weight into the Cavity to poife it, by taking out fome of that, till you have made it Light enough: This being done, a Mark H is to be made juft at the place where the Surface of the Water touches the Stem, and then taking out your Infrument, fubftitute in the place of your Guiny a little round Plate of Brafs, of the fame Weight, or a Grain or two: heavier, in the Air ; and putting the Inftrument into the Water, as before, fuffer it to Settle, and make another Mark I. at the Interfection of the Stom. and the Horizontal Surface of the Water.

There may (though 'tis like there very feldon will) happen a Cafe, wherein, though the Principle, our Inftrument is framed on, will hold good, yet

\section*{(606)}
the Practical Application may be Unfecure. For if a Falfifier of Money have the Skill, by Wafbing or otherwife, to take off much of the Quantity or Subftance of the Guiny without altering or impairing either the Figure or Stamp, the piece of Coin will not be able to Deprefs our Inftrument to the Ufual Mark, and may thereby make it to be judged Counterfcit, when 'tis indeed but too Light. But it prefently fhews, that the propofed Guiney, if it be not Counterfcit, is otherwife Abufed; and though it does not clearly determine, whether that likewife proceed from the want of Specifick Gravity in the Metal, or from the Coins having been Wafbed or otherwife fraudulently Leffned; yet it probably refolves the doubt, becaufe, if the want of Weight appear by the Infirument to be very great, as it ufually does, where the pieces has been Rohbed of fome of its Subftance, 'tis a ftrong Prefumption, that 'tis rather Wafbed, EGc. than Counterfeited. However, it will be fure to prompt him that ufes it, to employ the Ballance, which will prefently affift him to refolve his doubt. For if the Sufpected Coin have in the Air its due Weight, 'twill argue that the great Lightnefs of it in the Water, proceeds from it's not being of the requifite finenefs; and, if it want much of its due Weight in the Air, 'tis very probable, that 'tis Wafbed, E'c. rather than of another Metal than Gold.

Any other kind of Gold Coin, that is near about the Weight of a Guiny, may be Examined by our Inftrument after the manner above deliver'd. If the Coin be Heavier than a Guiney, as is a Twenty Shilling piece of Broad Gold, the Ballaft, whether internal or external, of the Inftrument, muft be taken off, that fo Heavy a Coin, may not quite fink it. But if it be Lighter than a Guiny, one may add as much Gold (of the fame Alloy) beaten into thin Plates, as with the Coin propofed, will make up in the Air the Weight of a Guiny. For then this Aggregate, being examined as if it were a Guiny, will difcover in the Water, whether the Coin be Right or Counterfeit.

This Inftrument may be alfo made to ferve to examine fome forts of White Money, lefs Heavy than Half Crowns. And becaufe it may be ufeful to know in Gencral, what Coins may, and what may not, be Examined by this or that particular Inffrument propos'd, I Thall here add a general way that is not difficult for finding this out; namely, firt by Weighing the piece of Gold or Silver in the Air, and afferwards in the Water, and Subtracting the latter from the former, to obtain the Difference of the two Weights : And next by Weighing alfo in the Air and in the Water a piece of Copper or Brafs, if this be the likelieft to be employed in Counterfeiting the Coin, and oblerving iikewife the Difference between thofe Weights. For the leffer of thefe Diffesences being Subtracted from the greater, the Remains twill thew, how much the true piece of Coin will out-Weigh the other in the Water, and confequently if fo many Grains, as this refidue amounts to, being Added to the Weight of the Lighter Metal, do make a fufficiently manifeft Depreflion of It below the Mark it would ftay at without that Addition, one may probably Conclude, that the Difference between a True and Counterfeit piece of Coin mropofed, will be difcoverable by the Infrument. But it may be Expedient, ior thofe that have frequent Occafions to Examine Various forts of Coin,

\section*{(607)}
to have a feveral Infrument adjufted for each of them, to fave themfelves fomo Pains and Trouble.

With this Inftrument, Pure Tin may be certainly Ditinguifht from fuch as is Adulterated. For as Gold, being the Heavieft of Metals, cannot be Allay'd by any other that will not Deprefs our Inftrument lefs than Gold can do ; fo Tin being the Lightelt of Metals, cannot be mixed with any other that will not Sink it Lower than unnixt Tin, (ftill fuppofing the Weight to be the fame in the Air.)

After the farne manner may Pemter be Compared and Examin'd. For haw ving once obferv'd how much the Inftrument is Depreft by a piece of two, three, or four Drams, or even an Ounce Weight of Pewter, which is known to be good, and to contain fuch a proportion of Lead in reference to the Fin, if you load the Infrument with an equally Heavy piece of any other Mafs of Pewter propounded, if the Inftrument Sink deeper, 'twill be a fign that the former Proportion of Lead may be very probably argued to exceed in the mixture ; I fay probably, becaufe perhaps 'tis polible to Embufe Peroter by Mixing not only Lead but other Mincral Subftances, whofe Specifick Gravity is not well known : But yet I fay very probably, becaufe the Addition of too much Lead is the moft Gainful way of Adulterating Penter.

This Inftrument may alfo affift us, to make fuch an Eftimate as will not much Deceive them of the Finenefs of Gold and its differing Allays with Sit ver, or fome other determinate Metal.

In order to this, the Inftrument may be fitted to fink to the top of the Pipe with fome determinate weight of the Fin: \(f\) Gold, as of 24 Carats, as they call that which is moft Pure and Fine. But 'twill be convenient, that this Metal, is the Air be juft an Ounce, or half an Ounce, or fome fuch Determinate Weight, that is commodioufly Divifible into many aliquot Parts. Then you may make a Mixture that contains a known proportion of the Metal wherewith you Allay the Gold; as if it hold 19 or 15 parts of Gold, arid one of Silver; and, letting the Inftrument fettle in the Water, Mark the place where the Surface of the Water cuts the Stem or Pipe.. And then putting in another. Mixture, wherein the Silver has a new and greater Proportion to the Gold; as if the former be an I8th or a 14 th part of the Latter, you may Obferve, how much lefs than before this Depreffes the Inftrument, and fo you may proceed with as many Mixtures or Degrees of Allays as you think fit, or can be Diftinguifht conveniently on the Stem; being always careful, that, whatever be the Proportion of the two Ingredients, the Weight of the Mars in the Air be juft the fame with that of the Pure Gold, which we may have lately fuppoled to be an Ounce, or half an Ounce.

By the fame Method may be Examined the differing Allays of Pure Silver; upon the Admixture of fuch and fuch determinate Proportions of Copper, or any other Metal Lighter in Specie than Silver; and by the fame way, with a flight Variation, 'twill not be diffcult to Eftimate, how much divers Coins, whether of Silver or Gold, are more or lefs Embas'd by the known Ignobler Metal that is mixt in the piece propofed. Thefe Eftimates (which may bo made without much Trouble) will come nearer the Truth not only than

\section*{(608)}
the Eftimates wont to be made by the Touch-Stone, but perhaps too, than fome of thofe that divers make with Trouble, Inconvenience, and Charge.

It may be alfo Employ'd to Examine other Mixtures befides Allay'd Coins, and that if the Inftrument be adjufted to an Ounce, for inftance, of Pure Copper, it may help Men to make an Eftimate of the Allay of Timn, or the Quantity of it that is often times added to Copper, to make Different Sorts of Bell Metal, and of thofe Metalline Specula, whether Plain or Concave, that are call'd Steel Glaffes, as alfo of Soders confifting of certain Proportions of Silver and Brafs, or Copper ; in all which, and divers others, the Difcovery of the Proportion of the Ingredients, may, on fome Occafions, be Uleful to Tradefnien, as well as defireable to Virtuof. And though I have Obferved; that by Mixture, Tin and Copper acquire a Specifick Gravity fomewhat differing from what their Ingredients promife ; yet fince the Infrument is to be fitted for fuch Eftimates, not by Calculation, but by Trials, the Eftinates may be made near enough to the Truth.
2. Long fince I took Notice, how Light and Silver-like the Pewter was

Further Confidered; by 11. is 6. P. 553. which defeended to us; but as foon as, to follow the Fafhion, we Changed it, the Weight and the very Colour was altered; and is in every Change more and more Embafed. And, if our Silver-Smiths hold on their Degrading Mixtures, 1 fhall Queftion, whether our Silver-Plate may not-\{hortly come down to approach our Fore-Fathers Pewter: I mean in the Country where 'tis never or feldom Tried.

The Wigigh of III. A Glars Bubble of about the Bignefs of a Pullets Egg was purpofely
Water in Water ;blown at the Flame of a by Mr. Boylc. no 50. P. 1001. the End, that it might the more conveniently be broken off. This Bubble being very well heated to Ravifie the Air,and thereby drive out a good part of it, was nimbly Sealed at the End, and by the help of the Figure of the Stem, was by a convenient Weight of Lead depreffed under Water, the Lead and Glafs being tied by a String to one Scaic of a good Ballance, in whofe other there was put fo much Weight, as fufficed to Counterpoife the Bubble, as it hung freely in the midf of the Water. Then with a long Iron Forceps I carcfully broke off the Scald End of the Bubble under Water, fo as no Bubble of Air appear'd to Emerge or Efape through the Water, but the Liquor by the Weight of the Atmotiphere fprung into the unreplenifht part of the Glafs Bubble, and filid the whole Cavity about half full; and prefently as I foretold, the Bubble fubfided, and made the Scale it was fatened to, Preponderate to much, that there neceded 4 Drechmas and 38 Grains to reduce the Ballance to an Equilititim. Then taking out the Bubble with the Water in't, we did by the help of the Flame of a Candle, warily applied, drive out the Water (which otherwite is not cafly cycluded at a very närrow Stem) into a Glafs Counterpoifd wefore; and we found it, as we expected, to Weigh about 4 Drachms and 30 Gaain, befides fome little that remained in the Egg, and fome fmall matier that may have been Rarify'd into Vapours, whicin added to the Picce of Glafs that was broken oft urder Water and ioft there, might vewhell amount to 7 or 8 Grains. By which it appears not only, that Water

\section*{(609)}
hath fome Weight in Water, but that it Weighs very near or altogether as much in W/ater, as the felf fame Partion of a Liquor would Weigh in the Air. We Repeated the Experiment with another Seal'd Bubble as big as a great Hen Egg, with like Succefs.
IV. Apr. 7. 1690 . Being off of Pantalara near Sicily in a Calm, I let down a Bottle 70 Fatbom, ftopp'd with an excellent good tender Cork, well Fitted, and the Cork came up in the Bottle \(\frac{3}{+}\) full of Salt Water. The Bot-Perfor of F no the was again fitted with an Excellent good Cork, but of a Woodinels or Hardness as fome Corks are, with the which, being let down in like manner, the Cork continued in its Place, but as it were Bruifed, and the Bottle as before, about \(\frac{3}{4}\), full of Salt Water: Whereupon I took a good Ox Bladder, and bound it four fold over the Mouth of the Bottle without any Cork at all, only I put a piece of Leather to keep the Glafs from curting the Bladder; and fo ordered, it was let down as before, but taken up without any Water, or the leaft Moifture in it.

May 18. 1680. Being in a Stark Calm fome Leagues diftant from the Coaft of Soutl) Spain, off the great Hills of Granada, we took a Bottle and clapt a Leather on the Mouth of it, tying over that a fingle part of a Bladder, the which we let down 75 Fathom, but it came up again Entire; We then made a Hole in the Leather about the bignefs of a large Pea, and let the fame down again 75 Fathom, but it came up perforated in the Vacant place where the Leather had the Hole in it, and almoft full of Water; we then bound over another part of Bladder fingle, and let it down but \(30 \mathrm{Fa}-\) thom, but it cane up whole and entire; whereupon immediately we let it down 50 Fathom, but it came up broke and full of Water. Then we again fitted the Bottle with the faid perforated piece of Leather and a Double Bladder ; and let it down 50 Fathom, but it again came up Entire: fo again, immediately we let it down 75 Fathom, but then it came up broken and full of Water.
Funie 24. I 680. Being in \(39^{\frac{1}{4}}\) Degrees of Latitude, and by the Ships Account \(150^{\circ}\) Leagues Weltward of Portugal, I caufed a Florence Flask to be well ftopped with a Bladder over the Mouth of it, and Lower'd it down 30 Fathom, but it was taken up broken. Whereupom imagining that the roughnefs of the Leads Halling to tender a Body fo violently through the Water, might be the breaking thereof, I caufed another Fhask in like manner to be fitted, and clofe by it I tied likewife another Flask fo as to be born with the Mouth downwards, as were the other, but -which was not Stopp'd, and thefe I caufed to be taken up when they had been but 10 Fathom under Water ; and found them both Entire, but the Open Flask almolt full of Water ; the which being emptied, were both let down again and taken up at 20 Fathom, when the Open Flask was. Entire, tho' full of Water, but the Other broken to pieces.
2. Fun. S. 1693. In the Bay of Bifcay, when we had 100 Fatiom of Water, By Di. Oliver. we took a Quart Glafs Bottle ftopt with a large Cork: and Faftening it to our \({ }^{n}\). 20 5 f. 908 Plumbing-Rope with a Lead at the End, we funk it to the Botton: of the Sea,

Vol. İ.

\section*{(610)}
which as foon as we perceived, we drew it up again, and found the Coris quite preffed through the Neck of the Bottle into its Cavity, and the Botle full of Salt Sea-Water. We Repeated our Experiment with another Bottle and Cork in the fame manner as before, but the Cork being not found, the Sea-Water foaked through it, and the Bottle was half full of Water, fo the Cork remained in the Mouth of the Botte not prefs'd down at all. We Repeated our Experiment a third time in 90 Fathom of Water, with a very iound Cork, and much larger than the Mouth of the Bottle. We beat it in with a Hammer as far as it would go, leaving about an Inch of the Cork above the Mouth of the Bottle. The Cork at this Tryal was preffed down only into the Neck, and became Level with the Mouth of the Bottle : But I really believe, had we had 10 or 20 Fathom of Water more, it would have fucceeded as at our. firft Tryal.

The weight of V. I. The following Bodies were poured gently into a Veffel of well feadivers Boties tryd by the Direction of the Phil. Socicty us Oxford. as 169. \&. 926.0 unces here mentioned are Averdupois.
\begin{tabular}{|c|c|c|}
\hline & & Lit. Oun. \\
\hline 1 & A Foot of Wheat (worth 6 s. a Bufhel.) & 478 \\
\hline 2 & Wheat of the beft-fort (worth 6s. 4. d. a Bufthe & 4.8 .4 \\
\hline 3 & The fame fort of Wheat meafured a fecond time. & 48 \\
\hline & Both forts were Red Lammas Wibeat of the laft Year. & \\
\hline 4. & Whlite Oats of the laft Year. & 29 \\
\hline & The beft fort of Oats were \(2 d\). in a Bufhel better than thefe. & \\
\hline & Blow Peafe (of the laft Year,) and much Worm eaten.- & 49 \\
\hline 6 & White Peafo of the laft Year but one. & 50 \\
\hline 7 & \{Barlcy of the laft Year: (the beft fort fells for is: 6 d . \(\}\) & \(4^{1}\) \\
\hline & \{ in a Quarter more than this: - & 4 \\
\hline 8 & Malt of the laft Years Barlcy, made two Months before. & 304 \\
\hline 9 & Field Beans of the laft Year but & 508 \\
\hline 10 & Wheaten Meal (unfifted.) & 3 I \\
\hline 11 & Rye Mcal (unfifted.) & 23 \\
\hline 12 & Pump Water & 6 \\
\hline 13 & Bay Salt. & 54. \\
\hline 14 & White Sea S & 4312 \\
\hline 15 & Sand. & 854 \\
\hline 1.6 & Nemonfle Coal & \(67 \quad 12\) \\
\hline 17 & \(\left\{\begin{array}{c}\text { Pit-Coal from Wednesbury } 63 \text {, but this is very uncertain } \\ \text { in the filling the Interftices between the greater pieses. }\end{array}\right\}\) & 63 \\
\hline 18 & & 109 \\
\hline 19 & Wood-AJ & 58 \\
\hline
\end{tabular}

\section*{(611)}
\begin{tabular}{|c|c|}
\hline Pump-Winter. & 1000 \\
\hline Fir Dry & 546 \\
\hline Elm Diy. & 600 \\
\hline Cedar Dry & 613 \\
\hline Wemut-Trce Diy. & 631 \\
\hline Crab-Trec meanly Dry. & 765 \\
\hline Aft neanly Dry, and of the Out-fide Lax part of the Tree. & 734 \\
\hline Afh more Dry, but about the Heart.- & 845 \\
\hline Mapic Dry. & 755 \\
\hline Yim of a Knot or Ront 16 Years old. & 760 \\
\hline Bech meanly Dry. & 854 \\
\hline Oak very Dry, almoft Worm-eaten. & 753 \\
\hline Onk of the Outide fappy part Fell'd a Year lince & 870 \\
\hline Oak Dry, but of a very found clofe texture. & 929 \\
\hline The Scme tried another time.- & \(93^{2}\) \\
\hline Lagmood:- & 913 \\
\hline Ciare & 993 \\
\hline Mcil Cyder, not Clear & 1017 \\
\hline Sen virater, fettled Clea & 1028 \\
\hline College Plain Ale the famo & 1028 \\
\hline Trine. & 1030 \\
\hline Milk & IO3I \\
\hline Box the fame & 103I \\
\hline Redwood the lime & IO3I \\
\hline Sack. & 1033 \\
\hline Beer Vinegar. & 1034 \\
\hline Pircis. & 1150 \\
\hline Pit-Coal of Sinffordfbi & 1240 \\
\hline Speckled ITood of Virginia & 1313 \\
\hline Lignum Vita. & 1327 \\
\hline Stone Bottle. & 1777 \\
\hline Ivory. & 1826 \\
\hline Alabngor. & 1872 \\
\hline Brick. & 1979 \\
\hline Heddington Stone, the Soft Lax kind. & 2029 \\
\hline Buiford Stone, an old Dry piec & 2049 \\
\hline Paving Stome, a hard fort from about Blaidon & 2460 \\
\hline Flint & 2.54 .2 \\
\hline Glafs of a Qurart Bottle.-u- & 2666 \\
\hline Biack Italian Niarble.m- & 2704 \\
\hline Write Italian Marble tried twice.-n-m- & 2707 \\
\hline Whive Italian Marlle of another fort, of a vigbly Clofer Texture. & 2718 \\
\hline Block Tin. & 7321 \\
\hline Copper. - - & 88.4.3 \\
\hline Lead.- - & II 345 \\
\hline Quick Silvor.-- & 14019 \\
\hline Quick Silver.- & 13593 \\
\hline
\end{tabular}

The Specifich
Gravitics of Several Bodies. by the Divection of the Phit. Socicty at \(0 \times\) ford.
1b. p. 22\%

\section*{(6i2)}

The laft Experiment was tried with another quantity of guick Silver, which had been ufed in Water in the preceeding Experiment: However, I rather truft the laft, for that I found a fmall miftake (tho' here in the Calculation allowed for') in the Weight of the Glafs containing the Quick Silver in the Trial before.

The Solids here mentioned; were Examined Hydroftatically by Weighing them in Air and. Water ; but the Fluids, by Weighing an equal Portion of each in a Glafs holding about a Quart. The Numbers fhew the Proportion of Gravity of equal Portions of thefe Bodies: but if of thefe Bodies we take Portions equally Heavy, their Magnitudes will be reciprocally proportional to their correfpondent Numbers : c.g. a Cubic Foot of Water is to a Cubic Foor of Alabafter in Gravity as 1000 to 1872 ; but a Pound Weight of Water, is to a Pound Weight of Alabmicer in Magnitude as, 187.2 to 1000 . So that, knowing by the former Table, the Weight of a Cubick Foot of Water, and by this the proportion in Gravity betwixt Water and Alabafter; we may by the Rule of Three find the Weigbe of a Cubick Foot of Alabafter, and fo of any other of thefe Bodies; or we may know their Magnitude by knowing their Gravity. So that an Irregular piece or quantity of thefe Bodies being offered, 'tis but Weighing them, and we may know their juft Magnitude without farther trouble.
zy arr. \({ }^{3}\). C.
\begin{tabular}{|c|c|}
\hline Pump-VTatcr. & 1000 \\
\hline Cork. & 237 \\
\hline Safjafras Wood. & 482 \\
\hline Funiper Wood (Dry.) & 556 \\
\hline Plum-Tree (Dry.) & 663 \\
\hline Maftic. & 849 \\
\hline Santalum Citrinum. & So9 \\
\hline Santalum. Album. & 1041 \\
\hline Santalum Rubrum. & i 328 \\
\hline Ebony. & 1177 \\
\hline Lignum Rhodium. & 1125 \\
\hline Lignum Afphaltum. & 1179 \\
\hline Alocs & 1177 \\
\hline Sucsinum Pellucidum & 1065 \\
\hline Succinum Pingue. & 1037 \\
\hline ct. & 1238 \\
\hline The Top part of a Rbinocercs Horn. & 1242 \\
\hline The Top part of an Ox Horn & 1840 \\
\hline The (Blade) Bone of an Ox. & 1656 \\
\hline An Humane Calculus.: & 1240 \\
\hline Another Calculus Humanis. & 34.33 \\
\hline Another Calculus.- & 1664 \\
\hline Brimfone, fuch as commonly Suld. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A Spotted Factitious Marbl & 1822 \\
\hline A Gally-Pot.- & 1928 \\
\hline Oyfer Sbell.- & 2092 \\
\hline Murex Sboll. & 2590 \\
\hline Lapis Manati.- & 2270 \\
\hline Selenitis. & 2322 \\
\hline Wood Petrificd in Lough Neagh. & 2341 \\
\hline Onyx Stome. & 2510 \\
\hline Turcois-Stone.- & 2508 \\
\hline Englifb Agat & 2512 \\
\hline Grammatias Lapis. & 2515 \\
\hline A Cornelian. & 2568 \\
\hline Corallachates & 2605 \\
\hline Talc & 2657 \\
\hline Cor & 2689 \\
\hline Hyacintl' (Spurious.) & 2631 \\
\hline Fasper (Spurious.) & 2666 \\
\hline A Pellucide Pibble & 2641 \\
\hline Rack Cryjtal. & 2659 \\
\hline Coyfallum Difdiaciafticum. & 2704 \\
\hline A Red Pate, & \(29_{42}\) \\
\hline Lapis Neplriticus. & 2994 \\
\hline Lajis Aminntus from Wales & 2913 \\
\hline Lapis Lazuli. & 3054 \\
\hline An Hone. & 3288 \\
\hline Sardachates. & 3598 \\
\hline A Granat. & 3978 \\
\hline A Golden Marcafite & 4589 \\
\hline A Blew Slate with fhining Par.icles. & 3500 \\
\hline A Mineral Stone, yielding I part in 160 M & 2650 \\
\hline The Mctal thence Extracted. & 8500 \\
\hline The (reputed) Silucr Ore of Wrales. & 7464 \\
\hline The Metal thence Extracted. & 11087 \\
\hline Bifmuth. & 9859 \\
\hline Spelter. & 7065 \\
\hline Spelter Soder. & 836.2 \\
\hline İon of a Key & 7643 \\
\hline Stecl. & 7852 \\
\hline Caft Brafs. & 8100 \\
\hline Wrought Brafs. & 8280 \\
\hline Hammerd Brafs & 8349 \\
\hline A Falie Guiny & 9075 \\
\hline A True Guiry & 18388 \\
\hline Sterling Silucr. & 10535 \\
\hline A Brajs hali Crow & 94.68 \\
\hline
\end{tabular}

\section*{(614)}
Elcatrum a Britifo Coin.-
A Gold Coin of Barbary.--
A Gold Medal from Morccco.--
A Ment Gold Ducat.-
A Gold Coin of Alexanders.-
A Gold Meddal of Q. Marys.-
A Gold Medal of Q. Elizabettos.
A Modal efteemed to be near Fine Gold. --
I2071
\(17548^{8}\)
18420
18261
18893
19100
19125
19636

The Different Weigbt of Several Liquors in Winter and Summer; by M. Homberg. n. 262. f. 530. Vid. Sutp.
§. J. 2.
VI. M. Homberg, has given us the following Table, of the Various Weitghts of fome more Ufual Liquors in the Coldef Time, and in the Footegt.

Fxperimatis a- VII. I. Having por'd a ftrongly Alcalizat Menfruum (I ufed that made bout the supcr- of Fixt Nitre, diflolved by the moifture of a Cellar) into it Pipe of Glafs, Fluids, efpeci-fcaled at one cnd, and not full a quarter of an Inch in Bore'; that the Carily Ligurars vity, which in a greater breadth would feem lefs deep, might be the more
cont intorso to Cont ignous to
onher Liguors, confpicuous: We gently poured on it fome highly Dephlegmid Spirit of time, ont liquors, anit their Refic-
ifive Poners by Mr. Boyle. 2. 131. P .77 .5 which we knew would not Mix with it, but fivim above it, and prelently as we had guefsd, we found the Firgure of the Surface of the Lower Liquui Changed, and the Cavity guite deltroyed; the Surface that feemed as it were, common to the two Contiguous Liquors, appearing Flat or Horizontal. And fuch a Level Superficies we had, by putting theie two Liquors together in a much Wider Glafs.
2. We found alfo, that by Employing Oyl of Turpentine inftead of the Spiit of Wine, the Liguor did almoft totally Loofe its Cavity.

\section*{(615)}
3. But if, infead of Deliquated Tartar; we put Common Water into the Pipe, we found this Liquor to retain its Concave Surface, though we pur to it fome oil of Turpentine, and left it to reft upon the Water a good while.
4. Having provided fome pure Oil of the Gum of Guajacum, and pourcd a little of it into a flender Pipe, we fumad the llpper Superficies of it to be Concave ; almoft, if not altogether, like that which Water would have had in the fame Pipe. But when 1 put a little Water upon this oil, it prefently changed the Figure of its Surfuce, which became vilibly, though not very much, Protuberant or Convex.
5. Having pur fome oil of Tartar into the flender Pipe, and put fome Drops of the Oil of Gunjacum to it, we. found, that this Liguor did not manifeftly alter the Concave Figure, of the Surface of the Liquor Alcali, as the Oil of Tupentive had done: And having for Curiofities fake, warily poured a little Water upon the oil of Gurjacum, I found as I had reafon to fufpect, that the upper Superficies of it Changed prefently from a Concave Figure to a Convex, fo that this Oil in the midtt of the other Two Liquors appeared like a litule red Cylinder; which, infead of having Circular Bafes, was Protuberant at buth ends, but more at that which touched the Oil of Tartar.-
6. I put forne Effential Oil (as Chymifts call ir) of Cloves into a new flender Pipe, and having obferved it to be fomewhat Concave at the Top where it was Contiguous to the Air, we caufed a littic Common Whiter (perhaps a quarter of a Spoonful or Jefs) to be put to it, and found as we expected, the Surface of this Oil allo to be Tumid. And in regard, this Liquer, as well az the forementioned Oil of Guajacum, though it were fo beavy as to fink into Water, would not do fo in Deliquated Salt of Tartar, we did, into another fiender Pive, put firft fome of this laft named Liquor, then fome of the Aromatic Oil, and laftly, a little Common Water; by which means we found, that the Little Cylinder of Oil, did like that of the Oil of Guajacum, appeas Convex at both ends.; but was unlike it in one Circumfance, that the ois of, Cloves appear'd more Convex at the upper end where 'twas Contiguous to the IFater, than at the Lower, that leaned upon the Surface of the Oil of Tartax.
7. Having taken a Jittle flender Glafs, that was much longer, but of the like Bore, with the former, we put into it a fmall quantity of 符ick Silver, and having taken notice how the Upper Superficies fwelled in the middle: above the Level of the Parts where it touched the Glafs, we poured fone Water upon it, and found a Manifeft and Confiderable Deprelion of the Susface, though the Protuberance were not quite Supprefed.
8. This Pienomonen, having been for greater lecurity feroval times Repeated, fometimes it feeme, that when the Aigueous Cyiader was much longer, the Depreflion of the Mercurial Surface was fonewhat grearer. But this did not fo confianty happen: But we often oberved, that, hough a very litte Water fufficed by its Contakt to make, in the Judgment of the Eye, a manifet Abatement of the Protuberance of the naick Silver, yet it had rot the fame effeet on that Ponderous Juid, what it had, when being Increafed almofe as high as the length of the Pipe would permit, a greater Weight of it was

\section*{(616)}

Incumbent on the Merciry, for then I manifefly perceived, and fhewed to. others, that the Surface of the Quick Silver being Depreffed almoft to a Level in thofe Parts of it that were near the infide of the Glafs, there was about the Middle of the Surface an Elevation of Mercurial Matter, that appeared to be rather more than a half Globe, and was to the Height of its full Semidiameter, raifed above the reft of the Mercurial Surface, and in that State it continued as long as I thought fit to let it do fo. And left this Tryal fhould Impofe upon me, I caufed it to be more than once Repeated; and, the better to confirm it, I afterwards caufed the Incumbent Water to be Little by Little fuckt up, and found, as I expected, that when the Incumbent Water began to be too much fhortn'd, the little Teat or Segment of a Sphere lately mentioned, began to be fomewhat Flattened, and Subfided more and more as the Water was further taken off.
9. Having conveyed into one of our Pneunatical Reccivers, a Couple of fuch flender Pipes as have been already defcribed, one of them Furnifhed with Common W'ater, and the other with Quick Silver, we caufed the Common Air to be diligently Pump'd out, without obferving any Senfible Change in the Concave Figure of the Water: But as for the Quick Silver, I knew not what to Conclude about it. For having- Repeated the Tryal twice or thrice, the Mercury fometimes feem'd manifefly to Swell, to be more Protuberant upon the Exhauftation of the Receiver, than when it was put in, efpecially when its Figure was attentively Viewed, and the External Air that was Pumpt out but fowly, was fuffered to Re-enter with all convenient Celerity. But that which yet kept me doubiful, was, that I obferved, That upoin the diligent withdrawing of the Airs Preffure upon the Quick Silver, there difclofed themselves fome little Bubbles, which, I fear'd, we had not been able to free it altogether from, and which might be fufpected to have fome Intereft in the Whenomezon. We alfo convey'd into our Receiver, a cleat Chymical Oil that was heavier than Wrater, and whilft it was Contiguous to it, had not a Concave but a Convex Surface, and having placed the Pipe furnifh'd with both Liquors in the Pncumatical Receiver, we Pumpt out the Air without finding that the Oil Senfibly altered its Protuberant Surface, as neither did the Water lofe the Concave Figure of it's upper Surface.
10. I took Fixt Nitre, (or which is Analogous to it, Salt of Tartar) refolved per Deliquium into a Tranfparent Liquor, and having filled a clear Vial half full with this, I poured on it a convenient quantity of Vinools Spirit exattly Rectified, that there might be no Phlegm to occation an Union betwix: the two Liquors, which ought as ours did, to retain Ditinet Surfaces, and fpecdily regain them though the Glafs were well fhaken. Then having found by a Tryal formerly mentioned, that Common Oil of Turpentine, if employed in a Competent Quantity, will not totally (and much leís will readily) Diffolve in spirit of Winc, and alfo having Obferved (what may feem fomewhat ftrange) that if this Spirit of \(W\) Tine be exquifitely Dephlegm'd, the Oil, though a Cbymical One, will not Swim on it, but Sink in it; I warily let fall fome drops of the oil into the Spivit, and had the pleafure to fee, as I expected, that they fell towards the bottom of the Glafs till their Deicent was fopt by

\section*{(617)}
the Horizontal (for it was not Concave) Surface of the Alchalizat Liquor of Fixt Niter. And becaufe my defign was chielly to obferve the Superficial Figure of a Fluid Encompaffed by other Fluids without touching any Solid Body, I fhall here take notice of the chief Phenomena that were produced of that kind, withoutStaying to Enquire into the Caufes or the Conlequences of them.
I. If the Oily Drops wcre but fmall, they feem'd to the Eye exactly enough Spberical. For the Oil differing bur very little in the Specifick Gravity from the spirit of Lizins, the Drops did but juft touch the Surface of the fubjacent Alcali; and the fame Drops being but fmall, their own Weight was not great enough vifibly to Deprefs them, and binder that Roundnefs which the Preffure of the Ambient Spirit, or their own Vifcofity endeavoured to give them,
2. If an Aggregate of Drops were confiderably bigger than thofe newly mentioned, as if it had about a third part of an Inch in Diameter, it would then manifefly lean upon the Aicalizat Liquor as upon a Floor, and appear fomewhat Elliptical, (for fome little part of the buttom was a Plain ;) the Weight of the upper parts Depreffing the Drops, and making the Horizontal Diameter fomewhat longer than the Trarifverfe.
3. If a yet greater Portion of \(\mathrm{O}_{i} i l\) were let fall upon the Heavy Liquor, it would for a pretty while appear in the form of a fomewhat Imperfect \(\mathrm{He}^{-}\) mifphere, or fome other large Section of a Sphere, the lower part being cut off; (as if a Globe were divided by a Plain) by the Horizontal Surface of the Deliquated Salt.
4. But if the Quantity of oil were not too great, 'twas pretty to obferve, that though at firt putting in, it did perhaps fpread it felf over the Subjacent Liquor, and lie as it were flat upon it; yet by little and little, (for 'twas but (lowly) it would by the Action of the Ambient, concurring with its own Tenacity, be raifed above the Surface of the Fluid Niter, and be Reduced to the Figure, either of half a Globe, or of a greater Segment of a Globe, or even of an Imperfect Ellipfls, according to the Bulk or Weight of the Oil.
5. Though thefe Globules, or Portions of Oi , did oftentimes readily mingle, when they touched one another, yet divers times alfo we obferved, that having warily approach'd them, we were able to make them touch without Mingling, infomuch that we have with pleafure made them fo far bear againft one anothers Surfaces, as manifeftly to prefs them inwards, though being, parted they would prefently Refume their former Figure. But in cafe any of thefe Oily Portions came by a more Prefling Contact to be United, they would then alter the Figures they had whillt feperate, and take another fuitable to the Bulk of the Aggregate.
6. When a large Portion of Oil refted upon the Saline Liquors, if then the Ambient Spirit was moderately and warily Agitated, 'twas not unpleafant to obferve the various Figurations, which the Convex and Protuberant part of the mutilated Globe would be put into by the Shakes, without any Vifible Solution of Continuity, or confiderable Motion of the whole Body, which would very quickly recover its former Figure. Though, if the Agitation were too

Vol. I.
KkEk
frong,

\section*{(6i8)}
strong, fome Portions would be quite broken off, and prefently turned into Little Globes.

I I. I tried to produce another Phenomenon, that would not have been unpleafant, by putting together in a fomewhat large Veffel, with other Liquors, two Oils, (whereof one, if I miltake not, was from Turpentine) which firft by reafon of the Oleaginous Nature wherein they agreed, might exactly mingle and make a Compounded Liquor; and then by reafon of there being one Heavier, and the other Lighter in Specie than Water, might by this Liquor be again feperated, and Include betwixt them the Liquor that had Divided them. But I found that the Oils being once Ulited would not be eafily parted, but according to the Prevalency of the Lighter or Heavier Ingredient, in the mixture, the Compounded Oil, would almoft totally cither Emerge to the top of the Water, or Lie beneath at the bottom of it; I fay almolt totally, becaufe fome Parts of the Oil, which was not perhaps all Uniformly Mixt, did not keep in a Body with the reft; but either was Seperated from the Mafs in the form of Globules, or elfe, fticking to the fide of the Glafs, had the other part of its Superficies, which was Contiguous to the Water, very Vari-. oufly Figured, according as the Bulk and Degree of Gravity of the adhering Oil, and other Circumflances happen'd to Determine.

Thefe are fome of the Pbenomena I obferved in Oil of Turpentine, when 'twas invironed only with Fluids; but if it were permitted to be Contiguous to the Infide of the Glafs, and fo to faften part of: its Surface to a Solid, the greater part of the Surface, which remained expofed to one or both of the Contiguous Liquors, would partly by their Action, and partly by the Gravity of the Oil it felf, be put into Figures fo Various, and fometimes fo Extravagant, that 'twas much more pleatint to behold them, than it would be eafie to Defcribe them.
12. Confining Fluids may have Difinct Surfaces, without having, at leaft in many Pofitions, Refractions differing enough, or Rcflexions ftrong enough, to make the Plain that Difteminates them, obvious to the Eye. Thus when the Oil of Tartar, or Nitrous Alcali, that I employed happen'd to be very Clear and Colourlefs, I have more then once made highly Rectificd Spirit of Wine Float upon it fo, that in molt Pofitions the Vial feem'd to have in it but one uniform Liquor ; the Plain that divided the two Fluids being unap: to be difcerned, but in a Pofition, wherein the Rays of Light paffing thence to the Eye, fell very Obliguely on it; and indeed, when there was no little Duft or other Feculency, fivimming upon the Surface of the Oil of Tartar; l.had fometimes much ado to convince Ordinary Spectators, that the Vial in two diftinct Regions of it, contained two \(V_{n \text { nfociable Liquors. }}\)
13. We took a Deliquated Alcali, made of Niter and Tartar, and dceply Tinged with Coclinacel; and, that the Liquors might not only te Heterogeneous, but as differing in Gravity and Denfity as we could make them, we poured on it a peculiar kind of Oil lighter than Spivit of Wine, and holding the Plain where the two Liquors were Contiguous in a convenient Ponfion, in refpect of the Light and the Eye, 1 obferved it to make a ftrangely vivid Reffexion of the Incident Beams of Light: fo that this Phyfical Sufface which

\section*{(619)}

Was flat, look'd almoft, for 'twas not fo Specular, like that of Quick Silver; and when I kept it till Night, and confidered it by the Light of a Candle, the bright Figure of the Flame was ftrongly Reflected almoft as from a Clofe Specular Body ; which tempted me to fufpect, that there might be fomething elfe than the bare fmoothnefs of the Surface of the Alealizat Liguor to produce to brisk a Refection; and the rather, becaufe I did not obferve, that the renains of the fame Tinged Alcali, which I kept in another Glafs, nor a Portion of the fame \(O i l\), which I had alfo by me in a feperate \(V\) ial, did cither of them afford fo Vivid a Reffection from its Surface; though I did the leff wonder at this, becaufe of the great Difpofition to Reflect Light; which I had formerly the Curiofity to obferve in the forementioned oil, when I joyned it with other Liquors. I Thall add, that looking on this Liquor, as a Body which, though it have all the ncceffary Qualities of an Oil, does in regard of its Origin, and fome Properties I have found in it, differ from commion Chy. mical Oils; I was invited the more to obferve its Phonomena in reference to Reflection, and I found among other things, (not pertinent to this 'place,) Eiff, That the Confining Plain cften mentioned between the Tinged Alcali and this Liquor, did not appear Red it felf, nor communicate that Colour to the Innge of the Flame of a Candle Reflected from it. Secondly, That when I warily fhook the Vial, which contained the two Liquors, the uppermoft would be reduced into a feeming Froth, confifting of a great number of Imperfectly Globular Bodies, which after a while would make a kind of a Rude Phyfical Plain; which, though neither very Horizontal, nor fenfibly Smooth, would, at its upper Superficies, fend back the Incident Light with more Brisknefs than one would expect; and when the feeming Froth confifted of fmaller Particles, thefe, when they were of a ccrtain Size, and conveniently Placed, in reference to the Flame of a Candle and the Eye, would (as more than one Trial informed me) Reflect the Incident Light fo many ways, and fo vifibly, that they feemed, for multitude and fplendor, like little Sparkling Corpufcles of Polifhed Silver; or almoft like thofe Gliftering ones, that appear when a clean Plate of Copper is firf Immerfed into a much allayed Solution of good Silver, made in Aqua Fortis. Tibirdly, That though pure Spirit of Wine be fo thin a Liquor, and our Oil is neverthelefs fo Light as to Swim upon it, yet I found the Confining Surface very ftrongly Reflexive.

I have alfo found, that fome other Efential Oils, (as Cbymifts call thofe that are Diftilled with Water in Limbecks) and particularly an Unfophifticated Oil of Limons, did with our Tinged Alcali afford moft of the fame Phænomena; but not fo Brisk a Reflection: I fay moft, chiefly becaufe with spirit of Wine thefe Subtile Oils, as I formerly noted, will readily be confounded: though our Anomalous \(O\) il be unfociable with it.
14. In Cold Weather we took Efential Oils of Amifeeds, whofe Property it n. I32. \(\%^{\circ}\); \(5 \%\) is to Coagulate in fuch Weather, and having in a gentle warmith brought it to be Fluid, we poured it into a Slender Viol more than half filled with Common Water, that had been alfo a little warmed, that the oil might not be tors
haftily reduced to its former State. This Oil being haltily reduced to its former State. This Oil being Lighter than fo much Water, and being poured on in a convenient Quantity, had its Upper Surface

\section*{(620)}
fomewhat Concave, as that of the Water was ; but the Lower Surface, Surs rounded by the Water, was very Convex, appearing almoft (for it was not perfectly) of the Figure of a great Portion of a Sphere. This being done, the Viol was ftopt, and fuffered to reft for fome time in a Cold place, by which means the \(W_{\text {ater }}\) continuing Fluid as before, the Oil of Amnifeeds was, as I expected, found Congulated in a Form approaching to that it had whilft in a Fluid State; I fay approaching, becaufe it was not eafie to difcern the exact Figure in the Viol I was fain to make ufe of : and. I fufpected, that the Oil grown Confiftent was become leis Convex then before. But 'twas worth Obferving, how great a Difference there was between the dull. Reflection it made when it was Congulated, and the fine Reflection it had made whillt 'twas a Liquor. The later of which Reffections brought into my mind, how Vivid the Reflective Power of fome Fluids is in Comparilon of that of the Gencrality of Solid Bodics.
15. Having obferved, That Quick-Silver, and Rectified Oleum: Petra, are, the Fermer of them the Heavieft, and the Latter the Lighteft, of all the Vi fible Fluids that are yet known to me; I put fome. (Diftill'd). Quick Silver into a fmail Viol, and held it in fuch a pofture, that the Incident Light was ftrongly remitted to my Eye, 1 then flowly put to it fome Petroleum, that being well Rectified was very clear, and obferved, that as this Liquor covered the Quick Silver, there was at the Imaginary Plain, where they both confined, a Brisker Refleftion than the Quick-Silver alone had given before. On this occafion it will not be amifs to take notice, that cither the Surface of the Air it felf, as thin and yielding a Fluid as it is, or the Surface of a Solid contiguous to included Air, or fome interpofed Subtile Matter, may Reflect, the Incidiant Beams of Light more Atrongly than moft Men would expect. To this purpofe, I remember, that a Curious Perfon having one Day brought me a courple of Rarities, which he told me were two pieces of a Solid, but tranfparent Body, that he had cafually found; in one of which there was a Pcarl, Large, Round, and Orient, and in the other a lefs. Perfect One. One of them was opened, and that which had appeared a Pearl was found to be but a Cavity, that contained no groffer Subftance than Air. And I have by me, a well Thap'd piece of Glafs of a good thicknefs, with an Aereal Bubble in the middle, which by fome Qualities, particularly its Pear-like thape and Vivid Reflection, does not ill refemble a fair, though not Orient Pearl. But in fuchlike Obfervations, the Pofition of the Eye, and that wherein the Body receives the Beams of Light, may be very conliderable. For I have by me a Small Stone (with which I have puzzled a Skillful Jeweller to determine what kind of Gem it was) that being laid flat upon ones Hand, or a piece of Pa per, and lookt on Directly downwards, looks almolt like a piece of Common Glafs, and is tranfparent : But if the Eye be fo Placed, that the Incident Beams of Light, by whofe Reflection its feen, fall with a convenient degree of Obliquity upon the Stone it, makes an exceeding pretty fhew, fometimes appearing like a fine opals and Cometimes not very unlike an Orient Pento.

\section*{(621)}

I6. We made a competent Quantity of a Refirous or Gummous Subfance, that looked like High Coloured Amber, but was eafie to melt. This we put into a deep round Glafs with a wide Mouth, and held it by the Fire-fide in a moderate Warmth, till it was brought into a Fluid State; then we Tranfferr'd it into one of our Pneumatical Reccivers, where we prefumed, that this Temporary Liquor, would, as well as Liquors that are conftantly fuch, difclofe Aereal Bubbles, when the Preffure of the Air was withdrawn from it; and accordingly having caufed the Air to be Pump'd out by degrecs, we found, that ftore of Bubbles appear'd at the Top of the Liquor, and made there a copious Froth, many of them being by reafon of the Vifcofity of the Fluid, very large, and divers of them becaufe of the Nature and Texture of it, and the Thinnefs of the Films, being adorned with the Colours of the Rainbow, whofe Vividnefs, made them pleafant to behold, and fuggefted to us fome optical Confiderations. But notwithftanding this Froth, 1 caufed the Pumping to be continued, that thofe Bubbles that had moft of Common Air in them, and which therefure are wont to Rife firf, might get to the Top, and the Subfequent Bubbles might meet with more refiftance from the Liquor ftill tending to grow Cold, and fo might be the more Expanded, and yet kept from Emerging by the Concretion of the Refinous Subftance ; and anfwerably to this ive found, that, when this Subitance had refumed its confiftent form, there were intercepted; between the Upper and the Lower Surfaces of it, fome Bubbles that were not fnall, which yet had a confiderable Reflection, notwithftanding the fmall Quantity of the groffer Particles of the Air, that may be fuppofed to be contained in Bubbles fo very much Expanded.
17. 'T is taken for granted, That the Falling Drops of Rain are Spberical, yet their Defcent is fo fwift,' that If fear 'tis rather Suppofed then Obferved that their Figure is Spherical; which will be the more queftionable, if it be true, which is vulgarly thought, that Hail is but Rain Frozen in its paffage through the Air. For 'tis evident, that the Grains of Hail are freguently of other. Figures than truly Orbicular. But the Surface of Water may have Differing Figures, according as 'tis totally Encompafs'd with Heterogeneous Fluids, or as 'tis only in fome places Contiguous to one or more of them. In the former cafe we found it not fo eafie to make an Obfervation, becaufe, we know not of any two Liquors (fetting Mercury afide) that will not Mingle, either with One Another, or with Water: : We therefore cautioufly convey'd into lume Chymical Oil of Cloves fome Portions of Common Water of differing Bigneffes, taking care, as far as we could, that they might not touch one another; by which means the \(0 i l\) being. Tranfparent, and yet fomewhat colour \({ }^{\top} d_{9}\) 'twas eafie to obferve, that the Smaller Portions of Water were fo near totally Invironed with the Oil, that they were reduced into almoit Perfect Globes; Thofe Portions, that were fomewhat bigger, (as about twice the bignefs of a Pea;) would be of a Figure fomewhat approaching to that of an Ellipfis, (for 'twas not the fame) and thofe Portions that were yet fomewat Larger, thougts they feemed to be funk almont totally beneath the Oil, yet they held to it by a fmall Portion of themflves, whofe Surface was eafily enough diftinguifhable from that of the Oil. Thefe larger Pontions of Immerfed Water being almof

\section*{(622)}
aimoof wholly Inviron'd with the other Liquor, were by ir reduced into a Round Figure, which was ordinarily fomewat Elliptical, but more Depreffed in the Middle than that Figure requires:
18. Having into a Slender Pipe, of that fort that has been defcrib'd before, put a little Oil of Cloves, and upon this fome Oil of Turpentine, that fo the wnter might both above and beneath be touched by Heterogeneous Liquors, I obferved niot the Oil of Cloves to be very manifently Tumid at the top, nor the Lower Surface of the Oil of Turpentine (for the Upper was Concave) to be very Convex : for Comewhat Convex it was Downwards. And from this 'twill be eafie to conclude, the Figure of the Cylindrical Portion of Water intercepted between thefe two Oils.
19. I took Oil of Annifeeds, thaw'd by a gentle warmoth, and Common Ifi. ter, and having put them together in a conveniently fhap'd Glais, they were fuffered to ftand in a cold place till the Oil was coagulated; which done, it Was Parted from the Water, and by the Roughnefs of its Superficies manifefted, as I expected, that, when its Parts were no longer agitated and kept eafily Difplaceable, by the Subtile permeating matter, or whatever other Agent or Caufe it were to which it owed its Fluidity, then the Contiguous Water grew unable to Inflect, or otherwife place them after the manner requifite to conItitute a Smooth Surface. And what happen'd to that part of the Oils Surface that was touched by the Water, happen'd alfo to that which was contiguous to the Air; fave that the Afperity of the laft named Surface was differing from the other, which whether it were an accidental or conftant Pbenomenon farther trial muft determine. But I have often obferved, That the Upper Surface of Oil of Amnifeeds, when this Liquor comes to be Coagulated by the Cold Air, was far enough from being Smooth, being varioufly Afperated by many Flaky Particles, fome of which lay with their broad, and other with their edged Parts upwards.
20. An Inequality and Ruggednets of Superficies I have alfo obferved in Whater, when, having covered it with Clymical Oil of Funiper, and expofed it in very cold Weather, though the Oil continued Fluid, yet the WFater being Frozen had no longer a Smooth, Superficies, as whilf in its Liquid fate "twas contiguous to the oil. And the like Inequality, and rather a greater, we obferved in the Surface of Water. Frozen, which had Chymical oid of Turpentine Swimming over it, yet a no lefs, if not a much greater, Roughnefs may; be oftentimes obferved in the Surfaces of divers Liquors that abound with WFater, when, thofe Liquors being Frozen, their Surfaces have an immediate Contact with the Air. I fhall here add, that having purpofely caufed a Strong and Blood-red Decoction of the Soot of Wood to be expofed in a large Glafs in a very Cold Night, I was more pleafed then furprized, to find in the Morning a Cake of lce, that was curioully Figurd, being full of large Flakes Shap'd almoft like the broad Blades of Daggers, but neatiy Fringed at the Edges. But that which I chiefly mention thefe Figures for, is, that they feem to be as it were Imboft, being both to the Eye and the Touch Raifed above the Horizontal Plain or Level of the other lee.

\section*{(623)}
21. I have fometimes obferved the like Phenomenor in one and the fame Liquor, and particularly not long fince in Frofty Weather, on a Viol where I had long kept Oil of Vitriol, I perceived that the Cold had reduced far the greateft part of the Menfruum into a Confiftent Mafs, whofe lipper Surface was very Rugged and odly Figur'd, though it lay covered all over with a pretty deal of high coloured Liquur, that was not Frozen or Coagulated, nor. Keem'd to be difpoled to be fo, at leaft in that Degree of Cold.
22. This may be alfo Obferrd in the beff fort of what the Chymifts call Regulus Martis Stellatus, where the Figure of a Star, or a Figure fomewhat like that of the Decoction of the Soot lately mentioned, will freguently appear. Imboft upon the Upper Superficies of the Regulus; and fuch a Raifed Figure I have feen on a Mafs of Regulss made of Antimony without Mars. But if ro thofe two Bodies, Copper be alio Skillfully added, the Superficies will be ofen times ndorned with new Figures according to the Circumfances; though the mof ufual I took notice of was that of a Net, that feemed to cover the Sutw, face of the compounded Regulus. But this is not fo conftant, but that I have by me a Mafs of a Conical Figure, confifing of two very Contiguous, but caffly fuperable Parts, whereof the Lowermont, which ahounds more in Metal, hath its Upper Surface covered with Round Protuberances, in Shape and Bignefs not unlike to fmall Peafe cut in two ; and thefe are fo really Imboft and Ehevated above the reat of the Superficies, that the other part of the Cones which is of a more Scorious Nature, has in its Lower. Surface, which exactly fits the Upper of the Regrulus, Cavities, for Number, Shape and Bignefs; anfwering to the Protuberances lately mentioned; which Argues that the Regulus cooled furt with that Inequality of Surface we have defcribed, and that the Ifighter and more Recrementitious Subftance, continuing longer Fluid, had thereby Opportunity to accommodate it felf to the Superficial Figure of the Regulus, on which it firft leaned, and was afterwards Coagulated.
VIII. I. My Brother, Mr. Tho. Molyncux (in the Nouvelles de la Republigue de Lettres) has given this Reafon for the Pberomenon, viz. That the Internal in Menfrica Speen Motion of the Parts of the Liquor does keep up the Particles of the Diffolved cifically Lighter. Solid, for they being fo very minute; are moveable by the leaft Force Imagi- by Mr omfelves; nable, and the Action of the \(P\) articles of the Menftrumgr is fuflicient to Drive the Molyacux. Atomes of the Difolved Solid Body from place to place; and cońfequently, notwithe . 2 . 18:. p. . 88: fanding their Gravity, they do not Sink in the I iquor Lighter than themfelveso.

But I conccive another Account may be given of this Appearance, and that the Prime Law of Hydrcfaticks is a little deficient. "T is true indeed, if we. confider only the Specifick Gravity of a Liquor, and the Specifick Gravity of 2 . Solid Particle Floating therein, the formentioned Rule is exact;, but in Sink-. ing there is requifte a Separition of the Parts of the Liquor by die Sinking Body; and there being a Natural Inclination in the Parrs of all Liquors to Union arifing froman Agreement or Congruity of their Parts, there is a Refitance: therein to any thing that Seperates this Conjunetion: Now unlefs a Body. have weight enough to overconve this Congruiry or Union of Parts, fuch a Body will Eloat in a Liguor Specifenlly Lighter than it felf. But that a Feary:

\section*{(624)}

Body, as Mercury or Iron, may have its Parts reduced to that Mintutenefs, that their Gravity or Tendency Downwards, is not ftrong enough to Seperate the Conefion or Union of Parts of a Liquor, will be manifeet, if we confider, that the Reliftance made by the Medium to a Falling. Body, is according to the Superficies of the Body : but as the Body Decreafes in Bulk its Superficies does not proportionably Decreafe ; thus a Sphere of an Inch Diameter, has not cight times lefs Superficies, than a Sphere of two Inches, Diameter, tho', it have cight times lefs bulk, and confequenty paffing through a Medium, as fuppofe Air or Water, the Sphere of an Inch Diameter, is, proportionably to its Bulk, more Refifed, than a Sphere of two Inches Diameter in proportion to its Bulk, and hence it will come to pafs, that at laft a Body may be reduced to that Minutenefs, that its Gravity Prefing Downwards (which is according to its Bulk) may be lefs than the Refiftance of the Medium, which operates on the Surface of the Body; feeing as I faid before, the Surfaces of Bodies do not Decreafe fo faft as their Bulks, thefe Decreafing in a Triplicate, but thofe in a Duplicate Ratio of the Bodies Diameters.

But becaufe I have faid that the forementioned Law of Hydroftaticks is a little Defective, I defire to explain my felf a little further in that point. In Weights Falling through the Air, were Gravity only confidered, the Proportions of their Defcents would be exactly as Galileo has Demonftrated ; but it is allowed by all, that the Refifance of the Air, not being confidered in thofe Demonftrations, they are not Matbematically True in Practife, but that really there is fomething of that Proportion hindred by the Airs Refifance. Now, what is this lefs than to fay, that the Refiftance of the Air takes off fome of the Operation of Gravity, or is able to withftand or oppofe part of its Action? And if fo, what fhall we fay, were an Iron Sphere let through a Medium of Water? Surely, the Proportions of jts Defcents would be much more Di-: fturbed herein, as Water is much more folid and difficult to be Seperated or paffed through than Air, and confequently we mult needs grant, that more of the Operation of Gravity is taken off or refifted by this Oppofition of the Water, than that of the Air. And if fo, furely there may be a certain Degree of Gravity, that may be quite taken off by the Rejiftance of the Water: Were a Piftol Bullet let fall through the Air, it would Defcend imperceptibly nigh the Proportions that Galileo has affigned, but were a fingle Grain of Sand fo let fall, it would be much hindred in its Courfe, and the half of this Grain would be more obftructed; what fhall we then fay of the Ten Thoufandth part, or of a part of the Ten Thoufandth Millionth of this, and again of the Infinite Subdivifions of that, till at laft we come to a Part that would be wholly Refifted, or kept up ; fuch as I conceive the Minute Particles of a Body Diffolved in a Menftruum.
\(\because\) On this Account, 'tis, I fay, that the forementioned Principle of Hydroftaticks is a little Defective; for it confiders not the Natural Congruity of the Parts of a Liquor, whereby they defire as 'twere, to Unite and Keep tugether, juft as we fee two drops of Water on a dry Board being brought together, do jump and coalefce, and therefore Liquors have an Innate Power of Refifing a certain Degree of Force that would Seperate them; fuch as I fup-

\section*{(625)}
pofe the Degree of Gravity, in the moft minute Particles of a Body Difolved in a Menftruum.

The forementioned Rule holds true to the moft nice Senfe in great Bodies, but in thofe that are by many Millions of Divifions fmaller, it feems to Fail.

I would not however be thought wholly to Reject my Brotker's Solution of this Problem; for certainly that Motion (whatfoever it is) in a Menftrum, which is able to Diffolve fuch a Solid Body as Iron, that is, which is able to difturb the Clofe and Strong Cohefion of the Parts of Iron, may very well be fuppofed fufficient to difturb or keep up thefe parts from Refting, in the bottom of the Veffel, wherein the Solution was made; and certainly no better account can pofilibly be given of fuch Solutions, than by fuppofing fuch an Internal Motion in the parts of the Menfruum Infinuating thenfelves into the Solid Body, and loofening its parts. But I leave to others to confider what Kind of Motion and Peculiar Conformation of Parts is requifite both in the Menforuum and in the Diffolved Body, that a Solution may refult from their Commixture.
2. 'Tho' Liquors Confift of Parts United, and tho' this Union be eafily De-confidered; by ftroyed, yet of Neceflity it requires fome degree of Force for Effecting it : Mr. Tho. MoYet this Property ought not to be rely'd on as the Sole Caufe of this Appear- yneux. ance; For in this Solution of the Problem, We firft Suppofe the Minute Particles of a Heavy Body Rais'd, and then give the Reafon of their not Sinking: Whereas, 'tis not to be queltioned, but that that Force which Raifed them, is the fame that Keeps them from Falling to the bottom.
IX. Sir Sam. Moreland undertakes to Demonftrate, (contrary to the Com- An vaderakins mon and Received Opinion through England and all Europe,) for Raifing of
I. That he will Force Water 60 Foot high with treble the Weight that Water ; by Sir fhall Raife it 20 Foot, and fo proportionably, in infinitum.
2. That by how much Wider the Barrel is, in which the Forcer Works, than the Pipe through which the Water is forced up, by fo much is the Engine Preffed with Unneceffary Weight.
X. I. Elapła nuper 平ftate, Ann. 1684. in manus incidit Tractatus a Siphon forquidam infcriptus Sipho Wurtemburgicus, five Sipho Inverfus Cruribus æ̛qualtis firming ther fame suit) thie Fluens \& Refluens hactenus Inauditus; de hac Machina magnifica predicat Au Sipho Wurthor, fed Lectorem orat, ut ignofcat Patrono ejus Serenifinno quod Myfterium temburgicus; Struchure ejus fibi fervet. Hxe dum Legerem in mentem venit quo thodo by Mr. J.Davic, inftrui pofit Sipho, ut quæ de Wurtemburgico illo narrantur præftaret. Habens ergo in manibus Siphonem quendam Virreuri, erexi cum fupra duo Vafcula quantum potui perpendiculariter; dumque in eo fitu fifteretur, affidi in unum ex Vafculis Aquam, donec Orificium Syphonis paululum fuperaret, \& ftatim in alterum Vas ut expectabam effluebat Aqua : tunc Evacuato illo Vafe in quod primum Aquam Infuderam in alterum Effudi, \& immediate Aqua ifta Refluebat in prius Vas. Licet non aufim Artificium hujus Siphonis mei cum illo Wertcmlurgico comparare: tamen II Utilitatem fpectemus, cum

Vol. 1.
L. 111

\section*{(626)}
co certare poffe (prefertim fi addatur ei Inftrumentum quoddam, modo quodam peculiari à me excogitato, non multum dubito.

By Dr. Papin. Ibid. po 847.
2. In Tractatu de Siphone Wurtcmburgico, quì Stutgardia Authore Do Salod mone Reifelio nuper Editus eft, magna qưædam atque inaudita, fi\& Utilitatem \& Raritatem \& Artificium fpectes, de novo illo Siphone predicantur; ipfius autem Proprietates Characterifticæ proponuntur his Verbis.
I. Vt Orificia Črurum Duorum Siphonis fui borozontaliter fita Labris inforantur ; cum in Veterum inventis Crus longius infra Labrum Sou Equilibrium defcendat Semper.
2. Vt Oiificiis vel partim:vel ad dimidium Aqua repletis, Efluat tamen Aqua fuper Montcin ducta; cumin religuis Siphonibustotum Orificium Aqua adimpleri fou immergi Aque debeat.
3. Ut in Siccitate diuturna quiefons Machina tamen effetum producat Affluente itcrum Aqua.
4. Vt Lumine Seu Orificio alterutro Aperto, altero vero poft Horas demum aut Diem, Seu per Efifomium, fou Conum.reclufo, Effluat tamen Aqua; cum in aliis utraque Simul Lumina Aperivi debeant.
5. Ut in Horizontali Linea pofitis Orificiis, © aqualibis quoad Altitudinem Cruribus exundet Liquor ; cum in Portæ Aliorumve. Machinis in aqualia debennt Cvura effe, EJ. Perpendiculum,majin.
6. Vt ab utroque Labro in utrumque Labrum infufa Afcendat E Effluat Aqua; sum in Veteribus non nif/ per unicum nempe Longius, Crus Effunt, nunquam: Reflant.

Hxc funt ipfius verba Authoris, qua vero ratione, quibufve auxiliis tanti effectus produci poffint, ne verbum quidem: Me itaque juflit Regia Societas Machinam conftruere, quæ eadem illa in Libro defcripta Phænomena exhiberet. Rem quidem tribus variis modis exequutus. fum; ne vero tædiofus nimium videar, fequentem methodum utpote facillimam inftar omnium fore arbitror.
5is. 297. A A, Sunt duo Vafa Metallica quíbus dur Siphonis extremitates inferuntur. BCDEDCB, eft Sipho, cujus Lumina B B, In eadem Horizontali Linea difponenda funt. \(F\), eft Tubulus foramini in fuperiori Siphonis parte adferruminatus, diligenterque obturandus, poftquam Sipho Aqua exacte Repletus fuerit. Jam manifeftum eft Aquam in partibus C D, contentam, Aeri Externo ingreffum prohibere ne ad fuperiorem Siphonis partem E, penetret: Siplo igitur Aqua femper plenus (modo debitam Altitudinem non excedat,) effectum fuum certiffimè producet ftatim atque Aqua in Vafibus A A, cono tenta alterutrius Orificii B , partem aliguam Replebit : quumque Ambobus Orificiis Aqua partim Repletis, in utroque Vafe A ad eandem Horizontalem Lineam Superficies Aquæ pervenerit, fi alterutri Vafi vel tantillum Aqux infuyderis, pars ejus per Siphonem ftatim in alterum Vas deferetur, eademque ratione catera in Libro defripta Phenomena exhiberi poterunt.

\section*{\((627)\)}
3. Ne diutius Serenifinme Societatis defiderium fruftrarer, aut morarer, fa-Ey bo Salomen teor Excellentifimi Dni. Dris. Papin Siphonem ipfiffimum effe Whirtemburgicum, Refifelius bimetiam cum Recurvatione Pedum factum; neque aliud effe Mylterium uf \(n\) flf Inventor ipfe fcripfit, in Summitate, quam quod per Infundibulum debear Impleri, fine quaa Impletione non poteft transfluere. Quod proximè Typis amplius confirmabitur, quia longum nimis effet \& taxiofum hic omnia fcribere.

Alt ut in prefenti oftendam me hactenus nonnihil laboraffe circa Siphonis effectus ; ecce inter Experimentandum, hoc quoque mihi occurrit ; ut didicerim, quomodo in Vertice vel ad Latera poffit Efluere ; quod hactenus multi promifere, vix quifquam efficit.
XI. I. A A, Is a great Glafs made like a Tumbler, but much bigger, a Nem may of and laid upon the Chimney Board, B B.

CC, Is the Engine like a frall Rock, that doth conflantly Spout out Water pronigmeoratically by by the two Holes. D D: This Rock is kept at a diftance from the bottom of Dr. Papin. the Glafs A A ; fo that it may plainly be feen that it cannot Receive any Water by Subterraneal Tubes.

EE, Is a factitious Corall, reaching from the Center of the Reck C C, to the Center of the Crown FF.

FF, Is a Crown bearing upon the Aperture of the Glafs A A, and holding the Rock C C, Sufpended at a confiderable Ditance from the Bottom.

G G, A Glafs Open at both ends, apply'd to the Rock C C, to keep theWater upon it from Falling down.

The IVater in this Engine runs conflantly H H, Two Sbells to receive the Water from the fetto's.
2. Within the Rock CC, there may be a Veffel placed, which fhall be Dr. Nattho 2. Within the Rock CC, there may be a Venel placed, which hall be Vincent. bers, which being filled with Water, a piece of Clockwork put under it may produce the Jetto's; the Water being reccived into the Shell HH, and runing thence into the hollow of the Coral EE; may be thereby conveyed into the Follicular Cavity in the fame quantity it is Ejected from the two Emerging Tubes; and it will Circulate according to the going of the Clock-wook.
3. I conceive that the Air is forced into the Outer Glafs at the bottom thereof py Mr/ R. A.

That it then paffes up between the two Glaffes.
Fig. 198.

That the Outer Glafs or Cafe being clofe Luted at the Head or Crown to which the Inner Glafs is hung by the Corall, the Air is forced into the Mouth of the Inner Glafs.

That the Air fo forced preffing on the Surface of the Water that covers the Rock, forces the Water to Rife through thofe two extream Parts that arc not at all Clogg'd, or covered with Water.
4. A B DE, fignifies a Cylindrical Veffel, Clofed on every fide, and Di- In alarew subvided into two Rooms by the Floor EF. feribed, W . Te-
GLMH, Is another Cylindrical Veffel within that Lipper Room, Cc- non. 1 I78. p. 12 s. 6 mented with its Mourh downwards to the Floor, and full of Water up to Fig. 199. the Surface IK; the upper part thereof GIK H, being full of Air.

\section*{(628)}

Q O, RP, Two Pipes, open above and below, and let through the Upper Room into this Veffel, and reacining almoft down to the Floor EF.

VW, a Pipe open above and below, and let into the Upper Room. Thefe Pipes muft be clofe joyned round about them to the Floors C D, and. GH.

X, Y, Two little Hemifpherical Bladders prepared with Oil or fome Oily. Subftance, (as Butter and Turpentine) againft Water, and Cemented with: their Mouths upward to the Floor EF, underneath.
\(\alpha \beta\), Two Valves Opening out of the Ulpper Room into the Bladders.
\(\gamma \delta_{2}\), Two other Valves Opening out of the Bladders into the Inner Veffel above.

NZ, A Pendulum playing upon the Center N, and having two Battle-door Arms \(a, b\), to fqueeze alternately the Bladders which reft upon them.

Let the Upper Room be filled with Water at the Pipe. V W, and if tho Pendulum be made to play by Clock-work, the Bladders will perpetually Pump. it thence into the Inner Veffel, and the Compreft Air GIKH in the Upper part of that Veffel preffing upon the Surface of the Water I K, will Force it thence into the Pipes \(O Q, P R\), out of which Spouting with a perpetual. even Stream into the Spoons ST, it will run down by the Pipe \(W\) V, into the Upper Room again, the Pendulum will play moft eafily when the Upper Room is filled to the top of the Pipe W.V. Inftead: of the Bladders may be other Contrivances, as of Suckers or little. Organ Bellows, playing aits ternately with two Leaves about.an Axis in the middle.

By. Ur. Papin. 2bid. p. 1274.

Fiz: 200.
5. A A, Is the Great Tumbler, that mult have fome little hole: in the bote tom as I.

I L L, A flender Pipe hidden by the Chimney Board BB, whereby the Tumbler. A A, hath Communication with the Pump or Bellows MM.

M M, Some kind of Pump or Bellows well hut, and having no other Aperture but through the Pipe IL L. . Thefe are put in fome Secret. Place, where a Body may Play the fame, and not be feen.

N N, A flender Pipe, that makes: a Communication between the Glafs A A; and the Crown. FF; this Pipe reacheth near to the cover of the Cromn, that the Water contain'd in it, may not Run Down by that Aperture.

E E, The Faltitious Corall, Hollow within, Shut at the bottom, and Open at the top.

DD, DD, Two Crooked Pipes, Sodred to the Sides of the Corall E E, fo. that the Water running down the Corall may Spout out at the Holes D D.

O O, A Pipe hidden in the Corall EE, paffing through the bottom of the fame where it'mut be well Soder'd, and reaching near to the bottom of the Rock. C C...

P P, A Pipe to convey the Water from the Glafs G G, into the:Rock CCr; this Pipe is well Soder'd to the Cover of the faid Rock.

Q, A Valve working by a Spring at the bottom of the Pipe P P P, to keep the. Water, that gets in that Way, from returning back.

R, Another Vatve at the top of the Pipe \(\mathrm{OO}_{\text {, that }}\) the Water getting up that way may not fall through the fame

\section*{(629)}

Now it is plain, that the Rock C C, being filled partly with Water, parto ly with Air; if we open the Bellows MM, the Air from the Cromn FF, muft run through the Pipe \(\mathrm{N} N\), into the Tumbler A A: and thence through the Pipe IL L, into MM to fill the Vacuity made therein: the Air in the Croon F F, being thus Rarified, gives liberty to the Air in the Rock C C, to Rarifie too, by Driving the Water through the Pipe OO. The Water being got up into the Crown FF , runs down the Corall \(\mathrm{E} E\), and through the Crooked Pipes DD, DD, Spouts out at their upper Apertures, and from the Sbiclls HH, falls upon the Rock C C : if we come afterwards to fhut the Bctlows MM, the Air got into their Vacuity, mult run bacik into the Tumbler A A, and prefs upon the Water at the top of the Rock C C: but the Air in the faid Rock having been Rarified, its Spring is not fufficient to Refift this. Preffure, and fo the Water is forced into the faid Rock through the Pipe P P: and by thus opening and fhutting the Bellows MM, the Water muft conftantly circulate by the ways afnrefaid.

As for the Ufes this way for Raifing Water may be applied to, this I do The we of this conceive: the Glaffes, being meerly to conceal the Secret, muft be left out; and there may be made feveral Receptacles above one another to receive the Raifed Water, fo as doth the Crown FF: and there fhould be as many Belloms to Communicate every one with one Receptacle: thefe Bellows fhould be moved by an Axis, fo that when the Firf is open, the Second fhould be Thut ; the Tbird open, the Fourth fhut; and fo forth, alternatively; which may be cafily done: By this means, the Firft or Loweft Receptacle would give the neceffary Supply of Water to the Second, the Second to the Third, and the Third to the Fourth, ©c. till the Water would be Raifed to the intended Height; fuch Receptacles might eafily be fet 1.2 of I 5 Foot above one another, and fo but few of them might Raife Water to a confiderable Height, as well as ordinary Pumps do ; but this New Way would have this advantage, that in the Ordinary Pumps the ftrength to be applied lieth niear the Water to be Raifed, but by this Contrivance the Stream of a River may be applied to draw Water out of a Mine far Diftant from it. By the fame way the Stream of the Thames might keep conftant Water-Works in Windfor-Cafle, as eafie almoft as in the Loweft Fields: The River Seine might do the fame at St. Germain, and perhaps at Verfailles too, notwithftanding the great Diftance. For it is to be obferved, That the Pipes of Communication between the Bellows and Engine, being meerly for the Conveying of the Ais, which moves very fwiftly, they may be flender enough, and fo contain buta fmall Quantity of Air to be Rarified; and befides, they will not be fubject to Burf or Leak, fince the Preffure they bear, being all external to the Pipe, will rather ftrengthen than break the fame. From whence it follows, That the faid Pipes need not be Atrong, but may be made at very. fmall Charges. It is alfo to be obferved, That thofe Bellows which are open, have the Air in them very much Rarified, fo that the outward Air lieth heavy upon (to fhut) them, by which means the Motion of the Engine muft be helpt in Liffing up the oppofite. Bellows, that are to be opened: And this Obfervation may

\section*{(630)}
aufwer the greateft difficulty that might be objected againft this Contrivance; So that I don't queltion, but this way for Rajijng Water, may on feveral Occafions be of a great Advantage.

A B, A B, Are feveral Receptacles fet above one another, which muft be well Shut and Sodered every where.

CDD, CDD, Are two flender Pipes, whereby the Firlt and Third Receptacles have a Communication with the Pump H H.

EFF, EFF, Two other flender Pipes, whereby the Second and Fourth Receptacles have a Communication with the Pump II.

H H, I I, Two Pumps whofe Plugs are fo moved by the Axis LL, that when one goeth down the other goeth up.

M M, A Wheel faftened to the Axis L L, that it may be Moved by the Stream of a River.

NO, PQ, NO, PQ, Are big Pipes for the Water to go up, from a Lower into a Higher Receptacie.
\(O, Q, O, Q\), Are Valves fitted to the top of the aforefaid Pipes that the Water may not go down thorough the fame.

Now it is Plain, that when the Plug in the Pump HH, is going up, the Air comes in through the Pipes CDD, and fo it is Rarified in the Firft and Third Receptacles marked A, A: and by that means the Water may be Driven up into the faid Receptacles through the Pipes N O, becaufe at the fame time the Plug in the Pump II, going down, caufeth the Air to return to its Ordinary Preffure in the Second and Fourth Receptacles, that it may be able to drive up the Water through the faid Pipes NO, and the Loweft Pipe draws the Water that Lies open to the Air. By the fame reafon, when the Plug in the Pump II, goth up, the Air muft come in through the Pipes EFF: and fo it is Rarified in the Second and Fourth Receptacles marked 13, B, and by that means the Water may be driven up into the faid Receptacles through the Pipes \(P Q, P Q\), becaufe at the fame time the Plug in the Pump HH, going down, caufes the Air to return to its Ordinary Preffure ine the Firft and Third Receptacles, fo that it is able to Drive up the Water through the faid Pipes PQ.
6. I. To keep the Receptacles from being fill'd too much, the Water may be let our by Inferting into each a Crooked Pipe, reaching a pretty way downwards, and having its Lower Aperture fhut up with a Valve, whereby the Water may run out when the Receptacle fhall be Filled to a cortain Height: And I may Add, to prevent new Difficulties, that leaft the Pumps fhould be fill'd to much, a Valve may be made that fhall open as foon as the Air in the Pump fhould be more Compreft than the Outward Air: So the Air getting in through any Pores would be conftantly let out.
2. I have not pofitively promifed a good Succefs, but for Windfor and St. Germain; but when I fpoke of Verfailles, I ufed the word perhaps, thereby fhewing, that before any one fhould go about fuch a great Undertaking, he fhould Reflect upon it more than I would then do, not having occafion for fuch work. But I now make the following Computation;

Let the Diftance of Verjailles, as M. Nuis fuppofeth, be 12000 Foot, and the Capacity of each Receptacle be about one half of a Cubick Foot: I might make the Wheel with the Axis to make their Revolution in one Minute of Time, and fo Order all Things that the Air under the Afcending Plugs might come to be Rarified to fuch a degree that by its Elatticity it might not Counterpoife more than 7 Foot of Water ; but at the fame time the Air in the Recoptacles A, A, B, B, would, even in its greateft Dilatation, be able to Counterpoife 17 Foot: fo it is plain, that the Air will be driven from the Receptacles into the Pumps by a. Strength equivalent to so Foot of Water : Now if we Compute the * Velocity of Air driven by fuch a Preffure : Vid. Sup. cap.V, we fhall find that the faid Velocity will be about 740 Foot in a Second : fo that in half a Minute, during which the Plug goeth up, this Air might pafs above 22000 Foot, although it were not Rarified at all; but being Rarified, as we do fuppofe it to be, it might go a great deal further.

I maft now take notice, that according to the Honourable. Mr. Boyle's Experiments, the Rarefaition of the Air is much leffer than Mr. Nuis takes it to be : for the Water contained in the Pipe NO, is fo far from caufing the Air to fill up a Sace four times bigger, that it will not Extend it felf to a Space once bigger than before; Confidering therefore the Velocity of the Air, and the fmall Dilatation it doth fuffer, if any one will take the trouble to Computc, he will find, that if the Pumps have in Diameter the Diagonal of a Square Foot, and the fame Height : and if the fmall Tubes of Communication be made of \(\frac{1}{9}\) part of an 1 nch in Diameter; fo that being 12000 Foot leng, they may contain about one Cubick Foot of Air, that would be more than Suf. ficient to make the neceffary Rarefaction in the Receptacles.

But for the good Succefs of the Engine it is not enough to make the Air pals from the Reccptacles into the Pumps, it muft alfo Return from the Pumps into the Receptacles: Now for this Intent it would be neceffary to fet the Receptacles but five Foot above one another; f , to Drive the Water up the Pipe NO, it would be enough that the Air in the Receptacle B, fhould Prefs with a Itrength Equivalent to 23 Foot of Water: For it is plain, that five Foot in the Pipe NO, together with a Preffure Equivalent to IT Foot, which I have fuppofed to be in the Upper. Receptacle A, will make but 22 Foot in all, and therefore 23 Foot Prefling in the Receptacle B, muft prevail, and caufe the Water to Afcend: Now the Preffure in the Receptacle being but 23 Foot and the-Air in the Pump Returning to its Ordinary Preffure, which is about 33 Foot, it is plain that the Air going back to the Receptacle will be Driven by Strength Equivalent to is Foot, as well as it had been in coming from the Receptacle towards the Pump: and fo the Bignefs afigned for the Communication Pipes will alfo prove more than fufficient to this Effect.

From what L have been faying, it is plain, That in great Diftances there Thould be made as many. Pumps as Receptacles, as, hath been already propounded : and for to Raife Water but 60 Foot High, there fhould be rem quired 13 or 14 Receptacles, and as many Pumps of the Bignefs aforefaid. Some People may take this for a great Difficulty, But I Anfiver, That in

\section*{(632)}
this Eingine, this is not fo much as it feems at Firft, becaufe the Preflure bee ing all from without, there is no need of any great. ftrength to refint it, and fo the Metal for the Pumip will Coft but litle : There may alfo be found Occafions where to make fo good ufe of them, that fuch an Engine as I have Defcribed would in a Years time fave Labour enough to pay for many Pumps, lince it might every hour Raife about 1800 Pounds of Water to the height of 60 Foot: Mean while I don't pretend tọ have given here the beft Proportion for the Bignefs of every part of the Engine; but it may be, by Altering the Capacity of the Pumps, of the Pipes, or of the Receptacles, a much more confiderable Effect might be Produced.
3. The Water doth not at any time Afcend higher than from a Lower Receptacle into the next Upper Receptacle; which Height is but 12 Foot: fo that is is plain enough, that the Preffure of the Air may be fufficient to Drive it up. It is Indifferent, whether it be by Rarefaction or otherwife that the Water comes into the Receptaile A; it is enough that the Water is there, and that the Air Preffes upon it with fuch a Strength as will prevail againft all that oppofeth it.
4. Though the Ure of the Pipes be meerly for Conveying of Air: They may neverthelefs be eafily fill'd with Water when need Requires, and fo the Defects in them may as well be found out as in the Pipes that are ufed for the Conveying of Water.

Ats Engine for Raifing Water, by the Help of Fire ; by Mr. Tho. Savery. n10 \(253 . \neq 228\).
XII. A, The Furnace.

B; The Boyler.
C C, Two Cocks, which convey the Steam by turns to the Veffels D D.
DD, The Veffels which receive the Water from the Bottom, in order to Difcharge it again at the Top.
EEEE, Valves.
F F, Cocks which keep up the Water, while the Valves on Occiafion are cleans'd.

G, The Force Pipe.
- H, The Sucking Fipe.
-I, The Watco.
ins Hydratiligue Engine ; by in. 128. p. 679.

FFIG 203.
XIII. This Engine is a Cheft of Copper A, pierced with many Holes above B B, and holds within it the Body of a Pump EFM, whofe Sucker D E, is Raifed and Abafed by two Levers C, O; Thefe Levers having each of them two Arms, and each Arm being fitted to be laid hold on by both Hands of a Man. Each Lever is pierced in the middle by a Mortaife an, in which an Iron Nail, which paffes through the Handle of the Sucker, turns when the Sucker is raifed or lower'd. Near the Body of the Pump there is a Copper Pot IHK, joined to it by the Tube \(G\), and having another Tube KNL , which in N may be Turned every way.

To make this Engine Play, Water is pour'd upon the Choft to enter in at the Holes that are in the cover thereof. This Water is drawn into the Body

\section*{(633)}
of the Pump at the Hole F, at the time when the Sucker is Raifed; and when the fame is let down, the Valve of the fame Hole F fhuts, and forces the Water to pafs through the Hole M into the Tube G, of which the Valric H being lifted up, the Water enters into the Pot, and filling the Bottom, it enters through the Hole K, into the Tube KNL, in fuch a manner, that when the Water is Higher than the Tube K N L, and the Hole of the Tube \(G\) is fhut by the Valve \(H\), the Air Inclofed in the Pot hath no iffue, and it comes to pafs, that, when you Continue to make the Water Enter into the Pot by the Tube G, which is much thicker than the Aperture of the end L, at which it muft iffue, it muft needs be, that the Surplus of the Water that enters into the Pot, and exceeds that which at the fame time iflues through the fmall end of the Fet, compreffes the Air to find place in the Pot : which makes that, whilft the Sucker is Raifed again, to make new Water to Enter into the Body of the Pump, the Air which has been Comprefs'd in the Pot. Drives the Surplus of the Water by the Force of its Spriny, mean trime that a new Compreffion of the Sucker makes new Water to enter, and caules alfo a new Comprefficn of Air. And thus the Courfe of the Water, which iffues by the \(\mathfrak{F e t}\), is always entertained in the fame State.
XIV. A A, The Body of a Square Taper Pump, made of Oak, Eln, or cheas Pump: Deal Planks; with a Valve at bottom a a.

B B, The Bucket, in the midft of which there is 1 Vac \(b_{\text {, }}\) n. 136. p. 888 . the Figure, being concealed by the Sides of the Leather \(b 8\).

CCC , The Iron to raife the Bucker.
Fig. 204:
D D, The Wood at the bottom of the Bucket containing the Valve.
E E, The Handle for Raifing the Bucket, to be managed by fewer Hands than Ordinary Pumps are ; which may be Altered fo as to employ a Horfe, or Mill, or other fuch like way, more Advantagious than that of this Handle managed by the Strength of Men.

FF, A Square Taper-Box with Holes in the Sides, and open at the Bottom; into the nafrower part of which is enclofed the narrower End of the Body of the Pump.

G G, An Additional Bucket of a larger Dimenfion to be placed on the Iron Work of the Pump about H , when it hall be needful to Lengthen the Taper of your \(F_{\text {ump }}\), and thereby to Raife the Water more forcibly to a greater Height.

II, The Spout of the Pump, to caft out the Waiter of the fame breadth with the fide of the Pump.

K K, The Iron or Wooden Work fet off, or bent back (if need be) and placed at the back of this Pump for the eafier and more capacious Motion of the Pump Handle, in which it moves.

This Pump was by me Contrived in 1673 . when the Nion Canal of FleetRiver in London was Enlarged : It was found to Raife at leaft twice as much Water proportionably as thofe of the fame, or rather bigger Bore, that were firft made ufe off and caft by. It was \(8 \frac{1}{2}\) Foot long, and I Foot 8 Inches

Vol.I. Mmmm broad

\section*{(634)}
broad at the top, and about 8 Inches broad at the Botton, where it is ilferted in the Box, and did caft out 8 Gallons at a Stroke, and 2. Strokens being made in one Minute, there was Delivered about \(I_{9}\) Gallons in a Minates time ; whence it is cafie to Compute, what Quantity is thrown out in an Hour. This kind of. Pump may, by the fame Contrivance, be made of a Tree Bored through with a Taper-Bore; and a Basket may be ufed at the bottom of the Pump inftead of the Box-Colender.

Ph. CoI. XV. Papers of lefs General Ufe, (Extracted from a Book of Jo. Alph. Borellius. de Motu Animalium, Onitted.
1. Way how a Man may Swim under: Water, and Breath by the belp of a Bag about bis Head.
2. Another Way of Breathing under Water by the belp of a Leather Pipe kept operi by Wreathed Wires, and extended from the Swimmer's Head to the top of the Water.
3. A may to make a Submarine Veffel accommodated mith Whays to Row it a and to make it Rife and Sink in the Water.

\section*{XVI. Accounts of Books Omitted.}

ก. 8. \(p .1450^{\circ}\)
n. 10. p. 173.

HYdroftatical Paradoxes, made out by Nem Experiments, (for the mof: part Pbysical and Enfie) by the Honourable R. Boyle E \(\mathrm{g}_{q}\);
n. 226. P.481. 2. Recueil de diverfes Pieces touchant quelques Nourelles: Machines, \&c! Par D. Papin. M. D. A Caffela 16.95. in 8vo.

\section*{C H A P. VII.}

\section*{Geography. Navigation.}

A nex Flace for I the firlt Meridian propos'd; by
- Profeffor of Math. at Scville. n. 1.18 . t. 425.

LOngitudo Terreftris eft Arcus Æiquinoctialis ab uno ad alium Meridia num interceptus, five Temporis Spatium, quod per Æquinoctialen nameratur, inter duo Loca; quare confonum fuerit, Longitudinis Principium in ipro. Equinoctiali conftituere. Infuper cum Circulus ille Æquinoctialis Globum in Borealem \& Auftralem partem dividar, fi detur hujus Primarii Meridiani Fixatio in eo, crit inter Boreales \& Auftrales Aquitas atque Conformitas. Deinceps, oportet, ad Precifonem, Locum hujus Primarii Meridiani effe parvum, ut Longitudinis Numeratio exactius exprimatur: non ut aliquis,

\section*{（ 635 ）}
a liqui，qui omnez Infulas Fortunatas pro hujus Principio affumebant，\＆Di－ Stantian duorum Gradurnt，inter earumr atiguns，non notabant．＂quod certè abfurdun timis erat．Iterum，Precatio alia eft habenda，ut Pimarius Me－ vidians non confundatur eqm Perris \＆Locorum Imaginizus in Globo vel Mappa exaratis，quod fiet fi per Medias Terras Tranfeat：Et fi procipuas Terre Partes dividat，ut Americam，Africam，\＆Europam，per Maria tranfiens， crit eo aptior \＆convenientior in Globi Terraquci seprefentationc．Quas omnes memoratas caufas confiderañs，Invieni，＂quồ Natura（nihil fruftra fuppedi－ tans）pofuit fub ipfo kyunoctiali Curculo Xnfululam quandam prope Braflian， olim Abroxos nominatan，qúz Infula ditat à Teneriffe Pico Grad．\％．Occi－ dentaliores，ze ab vraniburgo Grad． 42 ．Occidentaliores，in gut inveniuntur omnia ad Primarium Meridianum conducenda，ut à mexftimatur．

II．1．Thofe that intend to make ufe of Pendulum Watches at Sea，muft M．Hugen＇s have two of them at leafts，that，if one of them fhould by milhap or neg－Infrutions for lect come to ftop，or（being by length of time become foul）need to be gitude withPen－ made clean，there may likely always remain one in Motion．

2．The tifitches on Shiploard are to be Hung in a Clofe Place，where they may be freeft from Moifture or Duit，and out of Danger of being diforderey ．．．．．．． by Knocking or Touching．

3．Before the Watches be brought on Shipboard，＇tis convenient they be ad－ jufted to a Middle or Mean Day，the Ufe of them being then moft ealie．

4．Here take Notice，That the Sun paffeth the \(I_{2}\) Signs，of makes one \(T_{0 \text { adjuft the }}\) Entire Revolution in the Ecliptick in 365 Days， \(5^{\text {ho }} 4^{4}\) ．or thereabout：Wasches， and that thofe Days，reckoned from Noon to Noon，are of different Lengths； as is known to all that are verfed in Aftronomy．Now between the Longeft and the Shorteft of thofe Days，a Day may be taken of fuch a Length，as 365 fuch Days， \(5^{\text {h．}} 49^{\prime \prime}\) ．छc．make up，or are Equal to that Revolution： And this is called the Equal．or Mean Day，according to which the Watches are to be Set；and therefore the Hour or Minute fhewed by the Watches， though they be perfectly Juft and Equal，muft needs differ almoft continually from thofe that are fhew＇d by the Sun，or are Reckoned according to it＇s Mo－ tion．But this Difference is Regular，and is otherwife called the \(\overline{\text { Fquations：}}\) which is accounted from the firft of February in the following Table．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Fanuary． & February． & M & & & fune． \\
\hline & & & & & & \\
\hline 1 & 6 & & & \(14 \quad 23\) & 19 25 & \\
\hline 2 & 5 & － 2 & \(5 \quad 03\) & \(14 \quad 39\) & 1928 & 16.13 \\
\hline 3 & 5 & & 21 & 14.55 & 1929 & 16 Or \\
\hline 4 & 5 & & 39 & 15 10 & \(19 \quad 29\) & \(\begin{array}{ll}15 & 49\end{array}\) \\
\hline 5 & 4 41 & 12 & 57 & \(15 \quad 25\) & 19， 29 & 15， 37 \\
\hline 6 & \(4 \quad 21\) & － 16 & 15 & \(15 \quad 39\) & 19． 28 & \(15 \quad 24\) \\
\hline 7 & 4． 02 & － 21 & \(3: 3\) & \(15 \quad 53\) & 1926 & 15 II \\
\hline 8 & 344 & － 26 & 6 5ı & \(16 \quad 07\) & 1924 & 58 \\
\hline & \(\begin{array}{ll}3 & 27\end{array}\) & － 32 & 7．09 & \(\pm 6 \quad 21\) & 19.21 & 14.45 \\
\hline 10 & 311 & － 40 & \(7{ }^{7} 27\) & \(16 \quad 34\) & 19.18 & 14.32 \\
\hline 11 & 2． 55 & － 48 & 7.45 & \(16 \quad 47\) & 19.15 & 19 \\
\hline 12 & 39 & － 57 & \(8 \quad 03\) & 1659 & 19 & 6 \\
\hline 13 & 23 & 06 & 8.22 & 17 & 19． 07 & 13． 53 \\
\hline 14 & 07 & 16 & 8 41 & \(17 \quad 22\) & 19： 02 & 1340 \\
\hline 15 & 52 & 26 & 9 OI & \(17 \quad 33\) & 18，57 & 13 137 \\
\hline 16 & 38 & 37 & 9.21 & 17． 43 & \(18 \quad 51\) & 13 1－15 \\
\hline 17 & 25 & 49 & 9.41 & \(17 \quad 53\) & \(18 \quad 45\) & 1303 \\
\hline 18 & 13 & 02 & 10．01 & \(18 \quad 03\) & 18． 39 & \(\begin{array}{llll}12 & 52\end{array}\) \\
\hline 19 & 2 & 15 & 10 & 18 13 & 18 － 33 & 41 \\
\hline 20 & 51 & 28 & 10．． 40 & \(18 \quad 23\) & \(18 \quad 26\) & 12.30 \\
\hline 21 & 41 & 2． 42 & & \(18 \quad 32\) & \(18 \quad 18\) & 12．．． 19 \\
\hline 22 & － 32 & 56 & & \(18 \quad 39\) & 18：10 & 12． 08 \\
\hline 23 & 24 & 3.11 & 37 & \(18 \quad 46\) & \(\pm 8\) O1 & II． 58 \\
\hline 24 & － 18 & 3． 26 & II 56 & 1853 & 1751 & \\
\hline 25 & 13 & 41 & 12． 15 & 1859 & 17． 41 & I．1． 38 \\
\hline 26 & & \(3 \quad 56\) & \(12 \quad 34\) & 19.04 & 1730 & II． 28 \\
\hline 27 & 0 & & 1253 & 19． 09 & & \\
\hline 28 & 0 & 4.29 & 13． 12 & 19， 14 & 17 & I1 09 \\
\hline 29 & & & 13． \(3^{1}\) & 19， 18 & 16.57 & II． 00 \\
\hline 30 & 0 － 0 & & \(r 349\) & \(19 \quad 22\) & 1646 & \(10 \quad 52\) \\
\hline 31 & \(\bigcirc\) & & 14.06 & & 16 & \\
\hline
\end{tabular}

\section*{\((638)\)}

By the help of the foregoing Trible you will always know, what a Clock it is by the sun precifely, and conequently, whether the Watcocs have been fet to the right Meafure of the Mcan Day, of no; ufing the Table as follows.

When you firft Set your Watch by the Sun, you are to Subduct from the 'Time oblerved by the Sun, the Aquation adjoyned to that Day of the Month in the Table, and to Set the Watcles to the remaining Hours, Minutes and Seconds; that is, the Watches are to be Set fo much Slower than the Time of the Sun, as (in the Table) is the Equation of that Day; fo that the Equation of the Day Added to the Time of the Clock, is the True Time by the Sun. And when after fome Days, you defire to know by the Watch the Time by the Sun, you are to Add to the Time fhewed by the Watch, the equation of that Day; and the Aggregate fhall be the Time by the Sun, if the Watco, hath been perfectly well Adjufted after the Meafure of the Mean Days; for the doing of which, this will be a convenient Way;

Draw a Meridian Line upon a Floor, and then hang two Plummets, each by a fmall Thread or Wire, directly over the faid Meridian, at the diftance of fome two Foot or more one from the other, as the fmallnefs of the Thread will admit. When the Middle of the Sun (the Eye being placed fo, as to bring both the Threads into one Line) appears to be in the fame Line exactly, (for the better and more fecure difcerning whereof, you mult be furnifh'd with a Glafs of a Dark Colour, or fomewhat Blackt with the Smoak of a Candle,) you are then immediately to Set the Watch, not precifely to the Hour of i2, but by fo much lefs as is the Equation of that Day; c.g. If it were the I2th of March, the Equation of tbat Day being by the Table, \(8^{\prime} .3^{\prime \prime}\). Thefe are to be Subducted from 12 Hours, and the Remainder will be \(11^{h} .51^{\prime} \cdot 57^{\prime \prime}\). to which Hours, Minutes, and Seconds, you are to Set the Index of the Watch refpectively: Then after fome Days you are to obferve again in the fame manner, and likewife to note the Hour, Minute, and Second of the Watch; to which you are to add the Aquation of thefe Days, taken out of the Table; and if the Aggregate do juft make I2 Hours, the Watch is Adjufted to the Right Meafure; but if it differ, you are to Divide the Minutes and Seconds of that Difference by the Number of the Days between both the Obfervations to get the Daily Difference.

Let us.fuppofe this Second Obfervation to have been made the 20th of March, viz. Eight Days after the firf, and finding that the Middle of the Sun, being feen in the Meridian in the fame Line with the two Threads, as before, The Watch Points, II I \({ }^{\text {h. }} .5^{\prime}\). \(07^{\prime \prime}\). The Aquation of the 20th of March, by the Table, is - 100 Which being Added to the Time, fhow'd by the Watch, gives-12 or 47

If this had been juft 12 Hours, the Watch would have been well adjufted, but being \(1^{\prime} .47^{\prime \prime}\). more than 12 , it hath gone fo much too faft in eight Days. And thefe \(1^{\prime} .47^{\prime \prime}\). that is \(107^{\prime \prime}\). being divided by 8 , there comes \({ }_{3} 3 \frac{3}{8}\) Seconds for the Difference of every 24 Hours; which Difference being
known, if you want time, or have no mind to take the Pains, to Adjut the Watch, to ies Right Meafure, '(his being not neceffary, fince you may bring it thus on Ship-Board) note only the Daily Difference, and regulate your felf accordingly. But if you will Adjuft it better, you mult Remove the lefs Weight of the Pendulum a little downwards, which will make it go Slower; and then you muft begin a-new to obferve by the Sun, as before. If it had gone too Slow, you muft have Remov'd the mentioned Weight fomewhat upwards. And this is of that Importance in the finding out of Longitudes, that if it be not Obferved, you may fometimes in the fpace of Three Months miffeckon 7 Degrees, and more yet, (without any fault in the Watcles;) which under the Tropicks will amount to above 490 Englifs Miles.

The Watch may be alfo Adjufted on Board, when a Ship Rides at Anchors thus: In the Morning, when the Sun is juft half above the Horizon, Note what Hour, Minute, and Second, the Watch points at, if it be ging ; if not, fet it a going, and put the Indexes at what Hour, Minute, and Second you pleafe. Let them go till Sun-Sct, and when the Body of the Sun is juft half under the Horizon, fee what Hour, Minute, and Second, the Indexes of the Watch point at, and note them too; and reckon, how many Hours, Ec. are paffed by the Watch between the one and the other. Then take the half of that Number, and Add it to the Hours, E3c. of the Morning Obfervation, and you fhall have the Hours, foc. which the Watcl did fhow, when the Sun was in the South; whereunto Add the Equation in the Table belonging to that Day, and note the Sum. Then fome Days being pafs'd, (the more the better,) you are to do juft the fame: And if the Hour of this laft Day be the fame that was noted before, your Watch is well adjufted; but if it be more or lefs, the Difference divided by the Number elapled between the two Obfervations, will give the Daily Difference. And if you will, you may let it Reft there, or otherwife, Removing the Leffer Weight of the Pendulum you may Adjuft it better. You may alfo, inftead of the Sun's Rifing and Setiing, take two Equal Altitudes of the Sun, before and after Noon, and having noted the time given by the Watches at the time of both the Obfervations, proceed with it in the fame manner, as was juft now directed for Obferving the Sun in the Horizon. In either of which ways there may be fome Eriour, cauled by the Sun's Refration, which is inconfiderable, and therefore needs not to be taken notice of.
5. Give to each of the Watclies a Name, or a Mark, as A, B, C; and To find by biem before you fet Sail, fet them to the Time obferved by the Sun in the place the Longitude where you are, and whence you are departing, allowing for the Equation of \({ }^{\text {at Sra }}\) the Day whereon you make your Obfervation; which Day you are to note, if the Watcloes be not well adjuted; otherwife it is not neceffary.

Then afterwards being at \(S_{\text {ca, }}\), and defiring to know the Longitude of the Place where you are; that is, How many Degrees the Meridian of that Place is more Eafterly or Wefterly, than the Meridian of that Place where you did fet the Watcles; you muft obferve by the Sun or Stars, what Time of the Day it is, as precifely as is poffible, and Note at the fame time, to what Hour, Minutes,

\section*{(640)}

Minutes and Seconds the Watches do point, (which Time, if the Watches be not fet to the Right Meafure, is by the known Daily Difference to be Adfufted, adding thereunto the Eguation of the prefent Day, which gives you the time of the Day, fhewed by the Sun, at the Place where the Watches were fet: And if this time of the Day be the fame with that obferved where you ate, then you are under the fame Meridian with the Place where the Watches were fet by the \(s_{u n}\); but if the Time of the Day, obferved where you are, be greater than that flewed by the Whatcose, you may be affured, that you are come under a more Eafterly Meridian ; and if lefs, you are come under a more Wefterly. And Counting for cvery Hour of Difference of Time, 15 Degrees of Iongitude, and for every Minute, 15 Minutes or \(\frac{1}{4}\) of a Degree, you fhall then know, how many Degrees, Minutes, Eec. the faid Meridians do Differ from one another. E. g. Suppofe the Watches A, B, C, were Set at the Place, whence you parted, on the 20 th of Fclruary, to the time of Day, oblerved by the Suin, abaing the EEquation of the 2oth of Februay, (viz. 2'. \(28^{\prime \prime}\).) and fuppofe that the W'atch) A, be fet to its Right Meafure, but that \(B\) goes every Day \(7^{\prime \prime}\). too Slow, and C every Day \(12^{\prime \prime}\). too Faft. Some Days afecr, Chippofe the 5 th of May, defiring to know the Longitude of the Place where you are at \(S_{c a}\);
You Obferve the Time of the Day there to be \(-05^{\text {h }} 18^{\prime}\) Icll. And you find the Watcl, A to point at \(\quad 02\) o6 00 But the Watch B to point at - I \(\quad 57 \quad 22\)

\(\left.\begin{array}{l}\text { Which being added to its own Time, gives the fame with } \\ \text { that of the Watch } A \text {, viz. }\end{array}\right\}_{2}\) of 00
You find alfo the Whatch \(C\) to point at \(-22 \quad 20 \quad 48\)
Going \(12^{\prime \prime}\). too Faft every Day, which makes in 74. Days- -1448
\(\begin{array}{ll}\text { Which being Subducted from its own Time, gives again-—02 } & 0600\end{array}\)
The Time of the Day therefore by the Watcles being-02 06
Add thereunto the Eqwation of the 5 th of Max \(\longrightarrow-20\)
And fo you have for the time of Day at the Place where the
Whatcles were fe- \(\begin{array}{llll} & 25 & 29\end{array}\)
But the Time Obferved being-_ 05
\(\begin{array}{llll}\text { Exceeds this by } \\ 02 & 52 & 41\end{array}\)
Wherefore the Meridian of the Place, where you are May \(5 \cdot\)
it \(5_{02} \quad 5241\) is more Eafterly, than the Place where the Watches wereSet by.
Which being reduced to Degrees, reckoning is Degrees for
W \(5^{\circ}\) 41 Which being reduced to Degrees, reckoning 15 Degrees for \(\} 43^{\circ} \cdot 10^{\prime} 15^{\prime \prime}\)
an Hour, comes to This true, that from the fame Reckoning it may be concluded, that you are 180 Degrees more Eafterly, which happens, becaufe the Hour Index goes round in the face of 12 Hours in the Watcles; but the Difference is fo great, that one cannot be deceived in it; elfe the Watcl) might be fo To find the Time of the Day of set. made, that the Index fhall go round about once in 24 Hours.
6. Since that for finding the Longitude, the Time of the Day, at the Place where you are, mult be known, (as hath been faid above) you muft have a

\section*{(641)}
care to Obferve that Time as precifely as is poflible. For every Minute of Time, that you mifreckon, makes \(\frac{1}{4}\) Degree in Longitude, which amounts, near the Eqqustor, to above 15 Engliff. Miles, but lefs elfewherc. Wherefore to find the Time of the Day with certainty; the beft way is to Obferve the Sun's Altitude when it is in the Eaft or Weft, (the nearer the better:) for being there, its Altitude Changes in a fhort Time more fenfibly than before or after; and thus from the Height of the Pole and the Declination of the Sun the Hour may be Calculated.
7. At the Rifing and Setting of the Sun, when it is hallf above the Horizon, sn cafer Wa. mark the Time of the Day, which the Wratches then fhew; and though ye have in the niean time failed on, it is not Confiderable.: Then Reckon by the Watchics, what Time is elapfed between them, and Add the half thereof to the Time of the Riving, and you fhall have the Time by the Watcles, when the Sun was at South; to which is to be added the Equation of the prefent Day by the Table. And if this together makes I. 2 Hours, then was the Ship at Noon under the fame Meridian, where tio Watchos were Set with the Sun. But if the Summ be more than: \(1_{2}\), then was: fhe at Noon under a more Weferly. Meridian; and if lefs, then under a more Eafterly; and that by as many Times 15 Deg. as that Summ Exceeds or Comes fhort Hours of 12 ; as the Calculation thereof hath been already deliver'd.
Suppofe, c. g. thrat the mitclios \(A\) and \(B\), as before, were fet with the Sun at the Place whence you Parted, the 20 of February; and the Indexces. fet to the Hour, Min. and Sec. fliewed by the Sun, abating the equation of that day, viz. \(2^{\prime}: 20^{\prime \prime}\); the "U'atcl. A being Reduced to the Right Meafure, and B going too flow by \(7^{\prime \prime}\) a day. Afterwards on the \(22^{\text {d }}\) of May, defiring to know the Longitude of the Place to which you are come, you Obferve in the Morning the Sun half above the Horizon, when the Watch points at-2h 301 Io"l And in the Evening, the Sui being half under the Horiom, when the fame Whatch points at Tofind the Time Elapfed between them, Subducting the Time of the \(R \sqrt{2} / n g-\quad 30110\) From: There Remains- \(\quad 9 \quad 2950\) : Adding thereunto the Time of the Setting_—_3 80 You have for the time Elapfed between the Obfervations-I2 \(\quad 38: 30\) Whereof the Half Being Added to the Time of Rijing -2. 30 Io \begin{tabular}{ll}
You have the Time by the Watch, \(A\), when \(\odot\) was in the Soutl - -8.25 \\
\hline
\end{tabular} And after the fame manner you are to feek the Time by the Watch. B, whent the Sun was in the South; which Let be-_8

\section*{(643)}

Which is the fame Time of the Day with that of the Place, where the: 5Yntehes were fet when the Sun was in the fame, Micridian wirh the Ships: on where the Ship was at Noontis atagnit 4 groun of whem 13
\[
\text { The Difference is - } 2152
\]

Wherefore this laft Mexidian is by fo much more Enferly,
than the firlt, which being reduced to Degrees (as bath o ojit fill 11 bean formerly directed) make-1. 43615 'T is manifeft, that by this way you find precifely enough: the Longitnde of the Place, where you were at Noon, or the Time of the Sun's being in the South: Which alchough it differs from the Longitude of the Place, where you are when you oblerve the Setting' of, the \(S_{u n}\), yet you may: Eftimate near enough, how much you have advanc'd, or chang'd the Ifongitude in thele few Hours, by the Log Linie, or other Ordiaary Practifes. of Reckoning the Ship's Way; or (which is the furce way) by the Degrees paffed in 24 Hours by a formen day's Obfervation.
Tou may alfo, inftead of Obferving the Sun's Rifing and Scotiviz, oblerve the Set ing Firf, and then the next Morning the Rifing; marking at both Times the Time hhew'd by the Hatches; and find thence, after the fume manner as before the Longitude of the Place where the Ship wasat Miबnight.

Finally, You may alfo, intead of the Riving and Sctsing of the Sun, Obfeve before and after Noon two Equad altitudes of the Sun, Noting the Time fhown by the Watches, and Reckoning in the fame manner, as hath been fird of the Rifing and Setting: Yet it is to be confider'd, that the Alditudes of the \(S_{\text {un }}\) are beft taken, when it is about Eaft and Weft, as hath been alreah dy intimated.. But nore that in Sailing North and South you make not the Obfervations at the, Sun's Rifing and Setting, but at its being due Eiaft and Wict.
8. But you may put the Rule here preforibed in Practice, by taking two Equal altatides of fome known Star, that Rifath high above the Horizon. For you Shall thence according to the mention'd Rule, know at what time by the Wintchos the Star hath been in the South, and fo the Rigfte Afcenfion of that Star being known, as alfo the Right Afecufion of the Sun, you-nay thence eafily Calculate, what Time it then was:. Which being compared with the Time of the watches, as before, fhall give the Longitude of the Place where where you werf when you had the Star in the Meridian.
9 If the Warches that have gone exactly for a while, frould come to diffex from one another (as in length of time it may well happen, that the one qu the other fail a Minute, more or lefs;) in that cafe it will be beft to Reckon by that which goes. faftert; unlef you perceive an apparent caufe, why atgoes too faft (as it may happen when the Checks retain not their proper Figures) feeng it is not to eafie for thefe Pendulum Hhitches to move faltor than at firts, as it is to go flower For the Wree, on which the Pcndulum hangs, may perhaps by the violent Agitation of the Ship, come to Atretch a jitle, but it cannot grow fhorter; and the little weight of the Pcudulum may prhaps flip downward, bat cannot get up Higher.

\section*{(643)}

If it fhould be faid, that upon any Foulnefs the 1tatch will go fater by.n. 48. ₹: 976. reafon of the fhorter Vibrations of the Pendulum, it is to be confidered, that this is only True when the Watches have no Cliccks, but whein they have them 'tis not' fo.
10. When you get Sight of any known Country, Ifland or Caaft, be fure 13, 47. .9.95:. to Note the Emoitude thereof as exactly as you can by the help of the Rules here prefcribed. Firft, thereby to Correct the Sen-Mips, after the Longitude of a Place fhall have been found at divers times to be the fane, fo that you doubr no more of it. For all Maps are very defective as to the Scituation of Places in refject of Eaft and Weft, chiefly where Seas are interpoled. Secondly, to be able always to know in the Profecution of your journey, how far you have failed from any Place to the Eaft or Weft. And if by any Notable Mifchance or Carelefsefs all the Watches hould come to fand Itill, yet you may at any Place, whereof the Longitude is certainly known, fet them a Going again, and Adjuft them there by the Sun, and fo reckon the Jongitudes from that fame Meridian. For you are to know, that you are not at all obliged to put one certain Meridian of any known Place as a Beginning of the Longitule Reckoning; this happening only in \(M_{a j s}\), or Tables of Longitule: as when you take for that purpole the Meridign of the pico in Tencriffe, or that of the Iflands of Corvo and Flores (the mof Whefferly of the fzores) ot any others. Yet it were very fit, that all Geographers agreed ard pitched upon one and the fame Fivf Meridian, that fo all Places might be known by the fame Degrees as well of Longitude as Latitude; though in Voyaging, it is fufficient to oblerve only the Difference of Longt tudes, beginning to Reckon from the Meridian of any Place, you pleafe, as if it were the Fi,

II! If it happen that being at sea all the Watclics fop, you muft as focedily as is poffble, fet them a Moving again, that you may know, how much you Advance from that Place towards the Enft or \(\neq \mathrm{c} f /\).
12. The Watibes being diftinguifh by Marks, as \(A, B\), or the like, every The Yournal for Day about Nooi, or when mof convenienty you can, Obferve the Time of er uatcome the Day by the Sun, or by the Star at Night, and fubduet thence the Minutes and Sconds, that are adjoned to that Day in the Tablen and write the Remaindel down in a Paper, wherein 9 Columns or more are markd, placing them in the Second Colamn, having placed the Day of the Month in the Fiff ; and at the fame Time ivrite down the Hours, Minutes, and Seconds, of each Watch in a diftinct Column, all Oppofie one to another. Then m another Column write down the Difference between the Time taken by Oblervation, and that given by the thatches, or one of them. Then one Column for the Latitude: One for the Iongrtude by the Ordinary Way of Reckonilig: Another for the Lon itude taken from the Difference between the Time found by Obfervation, and that given oy the watches. And at dat a large Column to Note the Accidents, that befall the watches, sic.
2. Major Holmes having left the Coaft of Guiny, and being come to the The Suceefs of He of St. Thomas under the Line, he adjufted his Watches there, and put to Peniamen, Sea, and Sailed Weftward, 7 or Soo Leagucs, without Changing his Courfe \(;\) Hazthes Homes,

\section*{(644)}
after which finding the Wind favourable, he fteered towards the Coaft of Africk N. N. E. But having Sailed upon that Lime, natter of twa or three hundred Leagues, the Mafters of the other Ships under his Conduet, apprehending that they fhould want Water, before they could reach that Coaft, did propofe to him to fteer their Courfe to Barlondocs, to fupply thenfelves with Warer there. Wheeupon the faid Major having called the Mafter and Pilots together and caus'd them to produce their Journals and Galculations, it was found that thofe Pilots did differ in their Reckoning from that of the Majog, one of them about 80 Leagues, another about an hundred, and the third more; but the Major judging by his Pendulum Watcos that they were only fome thirty Leagues diftant from the Ine of Fucgo, which is one of the Ines of Cape Verde, and that they might reach it next Day, and having a great Confidence in the faid Watches, refolved to fteer their Courfe thither, and having given or der fo to do, they got the very next Day about Noon a Sight of the faid ifle of Fuego, finding thenfelves to Sail directly upon it, and fo anvived that Affernoon as he had faid.
M. Hugens being informed of this Succers wote to Paris to this effect; I did not imagine that the Watcles of this Firft Structure would fucceed fo well, and I had referved my main Hopes for the New Ones. But feeing that thofe have already ferved fo fuccesfully, and that the other are yet more juft and exact, I have the more Reafon to believe, that the Invention of Longitudes will come to its Perfection. In the mean time I hall tellyou, that the States did receive my Propofition, when 1 defired of them a Patent for thefe New Whtches, and the Recompenfe fet apart for the Invention in Cale of Succeis ; and that without any, Difficulty they have granted my Reqieft; commanding me to bring one of théfe Watclics into their Affembly, to explicate unto then the Invention, and the Application thereof to the Longitudes which I have done to their Contentment.
dum? mon mon! m: He?
III. I Inveni tandém Modùm Lune Locum fciendi, exili quodam Inftrirzorgitudes from mentiolo tantum adjutus, ad unum vel duo Scrupula.; \& quod mirum eft, the Moon's ned Refractioncs, nec parallaxes mcis Obfervationibus obfunt, quia Ingeniofa Places; by Po Mef Methodus his Tricis ne liberat. Poffum hoc Methodo Terra Marigue uti; Math. Peville. jde Fabulis Lune Cortectis non amplius Modus defideratas Locorum Longitur 30. 118. p. 427. dines captand, in omibus Terre Marifgue Locis, ignorabitur. 2 Quod de Inftrumentiolo fuo fribit Profofor Hijpalenjso Fidem meana confider'd by (quod bonâ ipfus Venial dictum, velim) fuperat Privari enima Luna nec Mr. Flamıteed. Refrafione, nec Parcillaxi, in Horizonte noftro poteft, nif ad zenith aliquan3b. p. 431. do poffer pertingere eoufque enim extenduntur, ejufque Locum implicant Refrationes: Definit in Nonagefimo Gradu Ecliptica Semel tantum de Die Lonkituaints Paraltaxis, Sed Latitudinis non perindef Nec fatis capio, quonodo Fabricari-Inftrumentum pollit, quod una cum Parallaxi Refractionem, catus Incrementum longè diverfam habet rationem, confidereton

\section*{(645)}
IV. The Obfervation of Lunar Occultations is of Singular Lie to determine Longitudes the Longitude of Places, efpecially thofe that are far Remote.
from I. ner occultationsby; M. Halley. nı, 181. 4. 87. Longitudes ley tic Revol, tion of Jupiter upon this Axis ; by \(M\). Cafini.
n. 82.p.4042.
V.I. I. Utrum xque bene foviclium Eclipfes ad inveftigandam Differcatiom Longitudes Meridinnorum conducant, ut quidem Occultationes Fixarum ä \(L_{u}\) nna, habeo by the Satellue \(\frac{\text { Eclipes; by } M \text {. }}{}\) fere cur dubitem; preprimis ob minus Tardum Fovinizam Motumg utut Hevelius. ctiam accuratiori Tubo peragantur.
2. The Eclipfes' of the Satellites of Fupiter, which happen almoft every by ar. Borelli, Day, afford a fair Way for eftablifhing the Longitudes over all the Eith \(n .123 .6 .691\). For, befldes that thefe Eeclipfes are very frequent, the Emeffen and Fimmerfiom of thefe Satellites, efpecially in the Shadow of Fupiter, is fo Momentany and fo Senfible, that they may be obferved with the greatelt Exactnefs, being altogether Exempt from thofe Efiential Inconveniencies that accompany the Eclipfos of the Sun and Moon, which alfo arc Rare, and whofe Begiming and End are ahways doubeful by reafon of a certain Ambiguous Litht.
The Longitudes of Places at Sen, Capes, Promontorics, and divers Inands, being once exactly known by this Means, would doubticis be of Great Help, and confiderable Ufefulnefs to Niavigation.
3. The Eclipees of Jupiter's Satellits have been cteemed, and certainly arc, by wro Fama much better Expedient for the difovery of the Longitude than any yet fteed. \(n: 151, \ldots\) knowh, by reafon that they happen frequently, and are eafily obfervable \(p \cdot 322\). with a Telefcope of 12 Foot, or for need with one of eight.

The Longitude might be alfo attained by Obfervations of the Moon, if we, 11. I 54. p. 4040 had Tables that would anfwer her Motions exactly; but after 2000 Years \(11,165, p, 700 . \mathrm{w}\) experience (for we have fome Obfervations of Eclipfes much Ancienter) We find the beft Tables extant Erring fometimes. 12 Maitutes or more in her apparent Place, which would caufe a fauit of half an Hour, or \(7^{\frac{3^{2}}{2}}\) dec. ia the Longitude deduced by comparing Her Place in the Heavens with that given by the Inbles. I undervalue not the Method, for I have made it my buffrefs, and have fucceeded in it, to get a large Stock of good Lumar of feroations in order to the Correction of Her Tiscory, and as a ground. Work for better Tables; but if we Mould happily attain what we feek, yet the Calculation will be fo Perplexed and Tedious, that it will be found much more Inconvenient and Dificult than that I propole by oblerving the Ecliples of Jupiter's'Satellits, which however at peefent I muft prefer. Dor I am perfuaded, that the Eclipfes of the Firft vill farcciy be found above 4. Minutes of Time different from my Calculations, and i hope it will icarce cyer be Gound to Err fo much. But if the fame Eicipfe may be obferved iil two Diftant Places at the fame 'Time, or compared with an Obfervation of the

\section*{(646)}
fame Satellit made within a Week clfewhere, the Difference of Meradians will be had fomething better, than by comparing two Obfervations of the fane Phafis of a Lunar Ediefe, made in Diftant Places. For whereas it is fomewhat difficule by reafon of the Penumbra to determine the True Time of the Application of cither of the Moon's Limbs to the Shadow, the Satellite ficlipfes, efpecially thofe of the Fivft, are almoft Momentany.

And whereas there can rarcly happen 4 Eclipfes of the Moon Vifible the fame Year, thofe of the Satellits happen fo frequently, that there are more of them Vifible in one year than we Count Days in it, though the Planet Fupiter lie hid under the Sun's Rays every Year a whole Month together.

I know our Navigators will Object againtt this Method, that it is difficutt 10 Practice at Sca, becaufe Long Telefcopes are required which the Motion of the Sbip will not permit them to manage aboard. But if it be not PraCticable at Sea they cannot deny but that it is at Land; and that the True Iongitutic of Remote Coafts from us are the Firft thing defired for the Correction of their Charts: Let them-attempt thefe Fift, and I doubt not but the fuccefs will encourage them fo much, that they will readily find means to put it in Practice at Ser; That the French have ufed this Method fuccefffully both in Denmark and in their Own Country; That a Telefcope of 14 Fout Long at molt, or for need one 8 Foot, with broad Eye Glafles, will be fufficient for this purpofe; That the difficulty cannot be known till it be tryed, and that ufe renders many things eafe which our firt thoughts conceived Unpracticable.

If it be Required to know whether any of thofe Eiclipfos which are Invifible with tis be Vifible in any other Given Place, Convert the Difference of Meridians betwixt it and London into Time; and if the Place Lie to the Yiaft of London, Add it to, if to the Wef, Subitract it from, the Time, of the Appearance at. I.ondon, the Sum or Difference accordingly fhall be the True Time of the Eclipfe under that Meridian, at which it Jupiter beabove the Horizon and the Sun beneath it, the Eclipfe is there Vifible, otherways. not.

Or, By the leelp of the Eplomerides of the Planet's Places and a Terreffial Glove, the fuace on it in which any of thefe Eclipfes will be Vifible may be found thus.

Firft feek the true Places of the \(S_{u n}\) and Fupiter with his Latitude in the Epperm rides, whereby you may find their Declinations and Right Afcenfions, either by the Vulgar 'Tables, or the Globe it felf, exactly enough for this Method.

Bring London on the Globe to the Meridian, and detaining it there note what Deg. of the Aqquator is cut by it. From this Subftract the Time of the Ecliple after Noon converted into dey, and min. the Remainder fhews you the Longitude of that Meridian on the Earth, where it is then Noon wher the Satellit is Eclipfed; which I therefore call the Meridional Liongiturde of the Eclipse. Bring this Merivional Longitule under the Meridian, and Elevate the nearer Pole to the Sun as much as is his Declinntion, keep the Globe in this. Polition and if Fupiter be in Confequence of the Sun, Draw a

\section*{(647)}

Linie on the Globe along the. Efferm Horizon, it paffes over all thofe Places where the Sun is Setting at that Time, but if Yupirer be in Anteccience of the Sin, Draw the faid Line on the Globe by the Wefern Edge of the Horizon, it: paffes over all thofe Places where the \(\mathcal{S}_{u n}\) is then Rifing. Fupiter, being in Confequence of the Surs Add the Difference of IIIs and the Sun's Right Afcentions to the Meridional Longitude afore mentioned, Bring the Deg. of the Eigustor anfwering their Summ under the Meridian, Raife the Pole next Fupiter equal to his Declination, and detaining the Giole in this pofition, Draw a Line again by the Faftern Horizon, the Space intercepted betwixt This and the Line of the Sun's Scting before Defcribed on the Globe, comprehends all thofe. places on the Earth where this Ecliple is feen from \(S_{u n n} S_{c t-}\) ting till fupiter is Set. But if fupiter were in Antecedence of the Sun, Subftract the difference of Hisand the Sun's Right Afcentions from the Meridional Longitude, Set the Degree of the AEquator anfivering the Remainder under the Meridian, and Elevate the Pole next Fugiter equal to His Declination. Keeping the Globe in this pofition, Draw a Line by the Weftern Edge of the Horixon, the Space Included betwixt This and the Line of the Sun's Rifing contans all thofe places on the Earth, where this Eecliff is Vifible betwixt Fupitcr's Rijinm and Sun-rife.

When any Eciipfe of thefe is obferved, the Diferenco betwixt the Noted Time and that given by the Talles fhill be the Diffeience of Meridians be: ewist the Phace of the Obfersation and Loniton.

As the sun Remores from the Conjunction of Fupiter, the Ingreffes of the Satclits into his Shadow become Oblervable.. When he is about \(30^{7}\) from it the Emerfions of the Fourth, and at \(60^{\circ}\) of the Ihnid, begini tobe feen betwixt the Shadow and Body, continuing fo till the Sun be arived within \(60^{\circ}\) of the Oppofition of Fupieci, when the Emericons of the Third fall behind his Body, but the Emer fions of the Fourth continue. Vifible till he be lefs then \(30^{\circ}\) Diftant from the of, at which Time they alfo are hid behind him, all the Appearances being made really to the Right Hind or in Antecedence of Fupitcer, though with Inrerting Telefcopes, they appear on the contrary, to the Left.

After the Oppofition of the Sun and fupiter we begin to fee the Immacrfions of all the Shatlits from the. Sbadow now on the Left Hand, or in Confequence of fupiecr, but th:ough Inverting Ghaffes on the Right, when the Suin is near 30 dery. from the Oppofition, the Ingreffes of the Fourth, when 60, deeg. from it, of the Thirl, begin to be Obfervabie betwixt the Bodyand Shadow, continuing fo till the sun arrive at the fame or rather within fomething a wider Diftance from the Conjunction of Fupiter.

 huc pertinent precepra Affronomice Doctos hatere non pofluat; unicum menere non abs re crit, nempe, Fubo octo vel etian feptem pedum; hoc eft, facile portatili, momenta havum Eclipfum futis ditinete obfervari poffe; prex fertim in exterioribus Satellitibius, fi modo Lentis Obje Stivic Apertura \(2 \frac{3}{3}\) vel 3 pollices pateat. Sic cnim Radiorum maxima copia nd oculum: Refraefa persenies, unde. Minime hx Stelluls in wicinia foris confici polints qua,

\section*{(648)}
alias Lucc cjus nimiâ obfucarentur, ac quamyis Coloribus tingantur, ac 符ris Limbus parum nitidus videatur, tamen cum de momento amiffe vel recupcrata Lucis unice agatur, fufficit eas Lumine quantum fieri poffit auctas in oculos certius incurrere.
:1. 214. 1.237 . The Eelipfes of the Fiint Satclite of Jupiter are found by the Royal Acade My at Pais, in Afcertaining the Geographical Sitc of the Principal Ports of France, almoft Infinatancous, and with good Telefcopes difcernable almoft to the very Oppofition of fupiter to the Sun. So that, could the Satellites be Obferved with Telefcopes Manageable on Shiploard, a Ship at Sca might be cnabled to find the Meridian the was in to very great Exactnefs, beyond what we can yet Hope to do by the Moon, tho' She feem to afford us the only Means Practicable for the Seanizn. However before Saylors can make Ule of the Art of Finding the Longitude, it will be requifite that the Conft of the whole Occan be firf Laid down Truly, for which Work this. Method by the Satellites is mof Appofite.
Long. and Lut. . VII. The Longitude of Derly from London W. is 5 or 6 min. the Latitude
of Derby ; by Mr. Flamfteed. \(5^{\circ} \quad 57^{\prime}\) or \(58^{\prime}\).
n. 5 5. p. 1102 ,
1106. n . 11 II . p .
237.

Lat. of Ecton.
". 76. .p. 2272 .
Long. and Lat.
of Townley. of Townley.
2. 127. p. 664.0

Lat. of Tredagh. n. I 54. p. 749 .

Iong. of Oxford and Dant zick; by Mr. Halley. n.129. p. 724. vid. S'p. Cap. Sion the Firft of theere Differenses is found \(4^{\prime} 59^{\prime \prime}\), the latter 1
IV. S. LXII. which near Agreement Thews the Exatnefs of the Obfervations.

 candem intra pauca Sécunda video confirmari.

 fion the Firft of thele Differences is found \(4^{\prime} 59^{\prime \prime}\), the latter \(1^{1 / 2} 1^{\prime} 4 \cdot 41^{\prime \prime}\);

\section*{(649)}
\begin{tabular}{|c|c|c|c|c|}
\hline D & amfed & & & \\
\hline \multicolumn{2}{|l|}{- |h' 1} & \multirow[t]{2}{*}{[dem feu Seloucus. \({ }^{\text {h }} 1111\)} & & \\
\hline Pentadactil. Tectus & 15515 & & & \\
\hline Porphyrites Tectus. & 20220 & Idem feu Arifarchus. 21240 & & \\
\hline Sinx Limbus Pimus. & 20530 & Ejufdern feu Tychonis 21630 & & \\
\hline \multirow[t]{2}{*}{Etnie Limb. Primus} & \multirow[t]{2}{*}{20600} & Ejufd. feul Copernicio vel 2 If 36 & & \\
\hline & & - rel * 1640 & & \\
\hline Besbici Limbus Prior & 22305 & \multirow[t]{2}{*}{\begin{tabular}{l|l|ll}
Ejuf.feu ManiliiMed. & 2 & 34 & 15 \\
Ad eund. feu Dipony & 236 & 15
\end{tabular}} & Min. quam & \\
\hline Forminius. Tectus. & \multirow[t]{2}{*}{22603} & & पaj. quam & 1012 \\
\hline Tetigit IimbumPri mum Corocondomet is & & Ejuf. feu Pa!udis Som. 25020 & & \\
\hline Tetig. Palud. Maotid. & 23930 & Eand. feu Meic Cafp 25520 & & \\
\hline & \multirow[t]{3}{*}{\[
\left|\begin{array}{lll}
2 & 50 & 40 \\
2 & 5 & 40 \\
2 & 5 & 5
\end{array}\right|
\]} & \multirow[t]{2}{*}{} & & \\
\hline Máotis tota Tecta. & & & & \\
\hline & & Imaneifio. \(\quad 330745\) & & 1050 \\
\hline
\end{tabular}

Nota hre * denotat D Cafini peculiarem Exiftimationem; in reliquis cum DD. Picardo \& Romero confentit.
2. Medium Eclipfeos Lunaris, Fan. I. ft. n. I675. deductum h. \({ }^{\prime}{ }^{\prime \prime}\) n. 123. p.5.52. eft ex Comparatione Initii \& Finis. - 32000

Duaram equalium Phafium-_- 32015 vid. S.p.cat.IV.
Ex D. Flamfedii Obfervationibus Medium Eclipfis pari modo 3. XLVi.
eruatur. Is quippe \(2^{\text {h }} 2 y^{\prime} 30^{\prime \prime}\) Diftantiam Cufídum obfervavit \(1 y^{\prime} 16^{\prime \prime}\) \& \(3^{\text {h }} 52^{\prime} 45^{\prime \prime}\), Eclipfl decrefcente, Diftantiam obfervavit \(18^{\prime} 57^{\prime \prime}\), uno fcil. Minuto \(4 \mathrm{I}^{\prime \prime}\) Majorem. Itaque Medium. Eclipfis propius eft pofteriori Obfervationi quam priori. Medium Tempus inter utramque Obfervationem fuit \(3^{\text {h }}\) I \(1^{\prime} 7^{\prime \prime}\). Tardius igitur aliquanto deducitur hinc Eclipfis Medium ; unde Differentia Meridianorum proveniret Minor \(9^{\prime}\); quod minime convenit Obfervationibus Certioribus Eclipfis procedentis \(\nVdash \not A t i v x\), ex quibus illam deduxi Min. \(10 \frac{3}{4}\). Pricr Obfervatio noftra cum Priuri D. Flamfeediz, aliquanto tardiore, comparata, Differentiam Meridianorum exhibet Majorem \(8^{\prime} 35^{\prime \prime}\). Pofterior noftra, tardior Obfervatione pofteriori D. Flamfeedii, Differentirm Meridianorum exhiberet Minorem \(9^{\prime} 40^{\prime \prime}\).

Finis à D. Flamflecdio Exiltimatus
Et à Nobis.
Differentiam Meridianorum inferret

Cum Obfervato à Nobis
Differentiam Meridianorum faceret
Ex hac igitur Eccipfl Differentia Meridianorum erueretur duo-
bus circiter Minutis minor quam ex Eclipfi eftatis precedentis, quam tamen huic longè prefero; non folum fpectatâ majori Facilitate Determinandi Tempora Appulfum \& Emerfonum in ea Eclipfi Totali, quam in hac \(P_{\text {ar }}\) Vol: I.

O 000

\section*{(650)}
:inli; verum ctiam ob Aeris ferenitatem, qua utique æqualitcr ufi fuimus in ea Eclipf/, cums in hac Parifiis Cxlum ferenillimum, Londini fuic fubnubilum. Priori itaque ftandum cenfeo, donec per Obfervationes Immerfionum
13. 10.564.

By Mr. Flamfteed. \(:\). - 565. \& Emerfionum Satellitum. Fovis, quos ad hanc rem exiftimo maxime Idoneos, rem ferupuiofius determinemus.
3. Difficentia Meridianol um, ab Eclipfi Lunc J̈unii 27. 1675. Londini \& Parifis Obfervata deductx, vix fidere poffum, quippe licet Tempora Phafium à vobis Obfervatarum accuratilimè determinata credam; Ego, cum amplior non fuppeteret, Quadrante ufus fui 20 tantum Digitorum Radio, ad Horologium Corrigendum, quique Nuda duntaxat habuit Pinnacidia; \& propterea de Monento Phafis alicujus certior effe vix potui quam ad unum Minutum Horarium. Novillimam Eclipfin Dcc.22, 1675. Inftructior obfervavi; cum tamen mihi Aer fubnubilus extiterit, \& propter Obliquam Luna in Umbram Terræ Incidentiam tardilimus fuerit ejus ad Maculas Appulfus, minus apta fuit hæc Eclipfis huic Negotio. Incerta igitur inter duo minuta Horaria. manet etiamnum Meridianorum noftrorum Diffcrentia, quam tamen nullus dubito Nos pro Votis aliquando determinaturos effe.

Long. of Straf- XIII. Meridianus Parifienfis ab Argentoraceng diftat 22R 48\%"ex Fine E-:
 Lialdus.n.L2s. rifienfis à Londinenfi ad. Ortum \(6^{\prime} 38^{\prime \prime}\), qui ex Obfervatione Eclipf. Ful. 70 p. 610. vid. S.t. Cap.
IV.S. XLVI.

Lons. of. Avigon; by Mr. Halley. Pb. col. 3. 5. p. 126. Long. © Lato, of. feveral Place in France.
n. 163. p. 718 ,

719,720. Avignon 8 \(\frac{1}{2}\). E.
vid. fup. Cap.
IV. SXXXIV. Lyons \(8^{\prime}\), or I \(3^{\prime}\). E. 1675. apparuit 10', ut etiam in Eclipf \(\mathfrak{F}\) fin. II. ejufdem Anni.
XIV. Avignon is \(19^{\prime \prime} 4 C^{\prime \prime}\); or \(4^{\circ} 50^{\prime \prime}\) to the Eaftward of London.
XV. M. Cafini having Compared together the Obfervations of the Solar Eclipfes of Fuly 1 2. A. n. I 684. and made fuch Reductions as the Parallaz: srequires, lays down the Longitudes from Paris to

Rofes \(4^{\prime} \cdot{\text { E. The Lat. by M.Cbaffelles } 42^{\circ} \text { 10.. }}^{\circ}\). The
Honfleur \(7^{\prime \prime}\). W.
Pau II'. W. The Lat. by P. Richaud \(43^{\circ} 30^{\prime \prime}\).
tong. of Lisbon. n. I46. p. 15 I. vit. Sup. Cap.
XVI. Mr. Facobs an Englifh Merchant refiding at Lisbon, informed Mit. Flamffeed that he Oblerved the Beginning of the Lunar Ecliplc, Feb. II. I68药. there at \(8^{\text {hi. }} 3^{\prime}\). \(p . m\) which gives the Difference of the Meridians betwixt : the Obfervatory at Greenwich and Lisbon, \(41^{\frac{1}{2}} \cdot\) Minutes of. Time, or : \(10^{\circ} 22 \%\). confiderably Different from our Mapps and Sca-Cbarts...

Lat. of \(\mathrm{Ma}_{\mathrm{a}}\) XVII: The Earl of Sandwich Efteem'd, by the Suins Altitude in the Soldrid, by E of fice, and by other Meridian Altitudes, the Latitude of Madrid to be \(40^{\circ} 10^{\prime}\).
Sandwich. Sandwich.
7. 22. P. 390. which differs confiderably from that afligned by others; The General Chart of Europe giving to it \(4 \mathrm{I}^{\circ} 30^{\prime}\), the General Map of Spain \(40^{\circ} 2^{\prime \prime}\), and a large Provincial Map of Caftile \(40^{\circ} 39^{\prime \prime}\).

\section*{(651)}
XVIII. r. Per plures Congruentes Obfervationes Lunares \& aliorum Planetarum inveni, Diffantiam Civitatis Hijpalenfis Longitudinariam effe ab \(v\) raniburgo \(90^{\prime}\), five \(1^{\frac{1}{2} h}\), vel intra \(2^{\prime}\) Differentem.
2. Videat D. Profeffor quomodo Meridinni Hi/palenfis ab Vraniburgico Interftitium Scrupulorum \(90^{\prime}\) conftituerit: Deliquii enim Lunaris Obfervationes 7an. \(x^{\frac{1}{4} .}\) 1675. Londini Medium, ponunt \(7^{\text {h }}\) I \(I^{\prime \frac{1}{2}}\) p.m. . cui Annotationes Parifnec confentiunt; dicti Profeforis Obfervationes Medium Hifpali ftatuunt \(6 \mathrm{~h} 47^{\prime}\) : Noftrorunn ergo Meridianorum Differentia \(4^{\prime} 4^{\prime} \frac{1}{2}\) : At Nos inter \& Vraniburgum non intercedunt nifi Minuta \(52^{\prime}\). Eift igitur Meridiano-IV. s. rum Differentia nonnifi \({ }^{1}\) h \({ }_{1} \sigma_{\frac{\prime}{2}}\) inter Hifpalim \& U Uraniburgum. Vereor tamen, annon Oculis nudis D. Profefforis factx fuerint Obfervationcs: Incidentia quippe \& Emerfionis Tempora faciunt \(1^{\text {h }} 5^{\prime}\); cum Noftra, Parifinc, Hevelian:cquc Obfervationes, non faciant ea Tempora plus quam \(1^{\text {h }} 1^{\prime} \frac{1}{z}\), forfan aliquanto minus.
XIX. Differentia Mcridianorum Hafnic \& Parifiorum, Obfervationibus Fo- Lonz. of Co vialium, reperta eft à D. Picard, \(0^{1_{1}} 41^{\prime} 40^{\prime \prime}\). M. Picard.
XX. An. 1680. Oat. 23. St. v. S. Fof. Ponthia, and Marco Antonio Cellio long. of Rome with a Telefcope of 25 Palms, Obferved the Total Immerfion of the Firft \(S_{A}\) - ani \(\begin{aligned} & \text { urg rani- by } M\end{aligned}\) tellite into Fupiter's Shadow at Rome, at \(10^{h} 7^{\prime} 53^{\prime \prime} . p . m\). which in our burg ; by \(M\). Obfervatory here I noted at \(9^{\text {h }} 15^{\prime} 41^{\prime \prime}\), whofe Difference is the Difference \({ }^{\text {n. } 1770 \text { p.12150 }}\) of our Meridians \(=52^{\prime} \mathrm{I} 2^{\prime \prime}\), or \(13^{\circ} \circ 3^{\prime}\). Again, fan. 28. 1685. S. Francis Blanclini Obferved the Total Immerfion of the Firf at Rome, at Inh \(19^{\prime 3}\) which I faw not here, but my Numbers give at \(I c^{h} 27^{\prime \frac{1}{4}}\). Therefore the Difference of Meridians is \(55^{2 \frac{1}{2}}\), and Rome lies fo much more Eaferly than the ObServatory of Greenwich; agreeing with the former Obfervation.

The Noble Tycho judged therefore not much amifs, when he placed \(V_{\text {rani- }}\) burg and Rome under the fame Meridian; for by feveral Obfervations of \(S_{a}\) tellite Eclipfes it is Evident, that the Difference of Meridians betwixt Uraniburg and our Obfervatory is \(5 \mathrm{I}^{\prime} 10^{\prime \prime}\) of Time, fo that Rome lies only one Minute of Time, or \(\frac{1}{4}\) of a Deg. to the Eaft of \(V_{\text {raniburg. }}\)
XXI. I. Dantrick is by many and undoubted Obfervations proved to be \(1^{h}\) I \(5^{\prime} 30^{\prime \prime}\). more Eafterly than London.
2. An. I683. Die ipfo Solfitiii Effivi 2 I Funii ft. n. Gedani, Altitudo Solis in Meridie fuit \(59^{\circ} 7^{\prime}\), Quadrante quidem parvulo Orich. fed tamen fatis accurato. Die vero Aiquinoffii Autumnalis Altitudo Solis in Meridie reperta eft \(35^{\circ} \quad 27^{\prime}\).

Long. of Dantzick; by Mr. Halley. \(P\) b. Col. n. 5. p.12t.
Lat. of Dant-
zick ; by \(M\).
n. I51. p. 330 .
n. 1540 p. 424.
XXII. The Longitude of Nuremburg has been formerly ftated \(1 I^{\circ}\) from long. of NuLondon, and fince found to be to by Obfervations of the Eclipfe of the remburg; Sun fuly \(2^{d}\). 1684 , which made it \(44^{\prime \frac{\pi}{2}}\) of Time.

\section*{(652)}

Long. of Mofcua, Lipfick and Aleppo; by..... n. 192. 9.453 . \(\nu\) ?. \(\int p, C a_{1}^{n}\). IV. §. LIII. fmall Telefcope were ufed in this Obfervation. Let us conclude then, that - Eclipes; and fo much ought to be allowed to an Obferver not fufficiently inftructed to diftinguifh the Penumbra from the true Shadow, though a IV. S.LIIT. fmall Telefcope were ufed in this Obfervation. Let us conclude then, that the End was at \(10^{h} 40^{\prime}\) at Mofcua. We do not find that this Eciipfe was obferved at London: However this defect is in good part fupplied by an Obfervation thereof made at Lipfick, by M. Gotfrid Kirck, and publifhed in his Ephemerides for the Year 1689 ; Where the End is determined at \(8 \mathrm{~h} 54^{\prime}\) p. m. Hence Mofcua will be \(1^{\text {h }} 40^{\prime}\) to the Eafinard of Lipfick; and the Difference of Meridians between London and Lipfick being already determin'd n. Ist. p.95. \(49^{\prime}\), it will follow that Mojcua is \(2^{h} 35^{\prime}\) to the Enft of London, or \(3^{\text {go }}\)
is is 52 Min. \(45^{\prime}\) of Longitude, which from other Accounts we find to be very near

Lit: of feveral Places inRuflia. ces, obferv'd, as 'tis faid, with a large Quadrant:
ib. P. 454 .

45 of Longitude, which from other Accounts we find to be very near that of the City of Alcppo in Syria. Io Minutes with our Tables, that never err fenfible in the continuance of bes, the

By the fame hand we have procured the Latitudes of the following Pla454.
\begin{tabular}{|c|c|}
\hline - & \(34^{\prime}\) \\
\hline reecflam & 44. \\
\hline Wologdn- 59 & 19 \\
\hline Woftak --6i & 15 \\
\hline Arch-Angel -64 & 30 \\
\hline
\end{tabular}

Latitudes of jome Remark: able Places;
Mr. Francis Vernon. 3. 124. p. 582.
XXIV. I have been as curious as I could in taking the Latitules of: fome. Remarkable Places: as I find them I fhall give them you.
\begin{tabular}{|c|c|c|}
\hline Attens-380 & \(\left.05^{\prime}\right)\left(\right.\) Pairas- \(-39^{\circ}\) & \(40^{\prime}\) \\
\hline Corintl -38 & 14.3 Delphos - 39 & 50 \\
\hline Sparta- 37 & 10 THebes- - 38 & , \\
\hline Corone. \({ }^{\text {a }}\) & \(02 \int\) Negropont or Chalcis-o-38 & 31 \\
\hline
\end{tabular}

Latitudes of Conftantinople anid.
Rhodes ; di-2 retfed to \(A-B\). Uhier ; by Mr. Greaves. T. 178 . 0.3295.
XXV. Upon Intimation of your Grace's defires, and upon iniportunity of fome Learned Men, having finifhed a Table, as a Key to your Grace's exquifite difquiftion, touching Afia properly so called; I thought my felf obliged to give both you and them a reafon, why in the fituation of Byzantium and the Mland Rhodus, (which two Eminient: Places I have made the muesuti \(\gamma\) mates. and Bounds of the Cbart,) I diffent from the traditions of the Ancients, and from the Tables of our Late and beft Geographers; and confequently diffenting in thefe, have been neceliitated to alter the Latitüdes, if not Lengitudes, of molt of the remarkable Cities of this Difcourfe:- And firt for Byzantium, the received Latitude of it by Appianus, Mercator, Ortelius, Maginus, and fome others, is \(43^{\circ \circ} 5^{\circ}\). And this alfo we find in the Bafil Edition of Ptolemy's Gcogyatphy, procured by Erafmus out of a Greek. MS. of Petticbius. The fame likewife is confimed by another choice MS. in Greek of the moft learned and judicious Mr. Selden, to whom for this favour

\section*{(653)}
and feveral others I ftand obliged. And as muich is exprefled in the late \(E\) dition of Ptolemy by Bertinss, compared and corrected by sy'un rgiss, with a Manufcript out of the Palatine Libray. Wherefure it camnot be donbted, having fuch a Cloud of Witneffes, but that Proiemy affigned to Byaurtiunt, as our beft Modern Geographers have done, the Latitude of \(43^{\circ} 5^{\prime}\). And this will farther appear, not only out of his Geography, where it is ofien exprefied,

 What was the Opinion concerning Byzantium of Strabo preceeding Ptolemy, or of Hipparchus preceeding Strabo, or of Eratofthenes Ancienter and it may be Accurater than all of them, (for Strabo (Lib. 2.) calls him \(\tau \in \lambda\) nutaion m \(\rho a y\) peatevinisevov misi i racisarics) though Tully (Lib. Ep. ad Att.) makes Hipparcbus often reprehend Eratofthenes, as Ptolemy after himm doth Marinus, their Writings not being now extant, (uniefs thofe of Strabo) cannos. be determined by us. But as for Strabo, in our hiquiry we can expect little Satisfaction; for his Defcription of Places, having more of the Hiftorian and Pbillofopher, (both which he hath performed with fingular Gravity and Judgo ment) than the Exactiefs of a Matbematician, who itrietly refpects the Poo fition of Places, without Inquifition afiee their Nature, Qualities, and Inhabítants, (though the beft Geagraply, would be a Mixture of them all, as Abulfeda, an Arabian Prince in his Rectification of Countrics above 300. Year fince hath done;) I fay for thefe Reaforns we can expect little Satisfaction froma Strabo, andllefs may we hope for from Dionyfius Afer, Arvianus, Steplbnius Byzantinus, and orhers. Wherefore next having recouife to the Arabians, who in Geography deferve the fecond. Place after the Gracians, I find in Naffir Eddin the Latitude of Buzantium, which he terms Buzantiya, and Confantiniya; to be \(45^{\circ}\), and in Vleg Beg's AAfronomical Tables the tane to be expreffed: Abulfeda chiefly follows four Principal. Authors as bis Guides, in the compiling of his Geographical Tables, thofe are, Affarws, Albiruny, Hon "Saijd Almagraby, lattly Prolemy, whofe Geograply he terns' ia Defription of the Qilidrant, (or the fourth Part of the Earth) Inhabited ; and all thefe, *according to his Af. fertion, place Byinntium in \(45^{\circ}\) of Lartitude. And here it may juitly be wondred, how this Difference flould ariie between the -Greek Coyics of Prolemy, and thofe tranflated into Arabick by the Command of Almamon, the Learned Calife of Babylon; for Abulfedn exprefly relates, that Ptoleny was firt interpre. ted in his Time, that is, in the Computation of Almecinus in Erpenius's Edfo tion, and of Emir Cond a Perfian Hiforiograpleer, more than 800 Years fince: Concerning which Abulfeda writes thus, This Book. (difourfing of Ptoleo my's Geography) mass. tranflated out of the Grecinn- Langruage into the Arabick for Almamon: And in this I find, (by thrce fair MSS of Abulfeda) Bjzzntium to be conttantly. Placed in \(45^{\circ}\) and as conttancly in the Greek Copies in \(43^{\circ} 5^{\circ}\). But in the rgox xfsor way yores of: Cbryfococca, ont of the Perfian Tables, made about the Year \({ }^{1} 346\), in Scaliger's Calculation) it is Placed in \(45^{\circ}\). Tereconcile the Difference. between the Grocks and Aialians may feem impoffible; for the common Refuge of flying to the Gorruption of Numbers by Traafribers, and laying the fauls on theray which fometimes is the:Avither's, will

\section*{(654)}
not help us in this particular; feeing the Greek Copics agree amongtt themfelves, and the Arabick Copics amongt themfelves. The beft way to end the Difpute will be, to give credit concerning the Latitude of Byzantium, neither to the Greeks nor Arabians. And that I have reafon for this Affertion, appears by feveral Obfervations of mine at Conftantinople, with a brafs Sextant of above 4 Foot Radius. Where taking, in the Summer Solfice, the Meridian Altitude of the Sun without ufing any agoàpai/peas for the Pa rallax and Refraction, (which at that time was not neceffary,) I found the Latitude to be \(41^{\circ} 6^{\prime}\). And in this Latitude in the Cloart I have placed Byzantium, and not in that either of the Greeks or Arabians. From which Obfervation, being of fingular ufe in the Rectification of Geograply, it will follow by way of Corollary, that all Maps for the North-Eaft of Europe, and of Afia, adjoining upon the Bofphorus Thracius, the Pontus Euxinus, and much farther, are to be Corrected; and confequently the Situation of moft Cities in Afia properly fo called, are to be brought more Southerly than thofe of Ptolomy by almoft two intire Degrees, and than thofe of the Arabians by almoft four.

Concerning Rbodes, it may be prefumed, that, having been the Mother and Nurfe of fo many Eminent Mathematicians, and having long flouririfhed in Navigation, by the Direction of thefe, and by the Vicinity of the Pbrenicians, they could not be Ignorant of the precife Latitude of their Country, and that from them Ptolemy might receive a true information. Though it cannot be denyed, but that Ptolemy in Places remoter fromi Alexandria hath much erred. I fhall only inftance in our Own Country, where he fituates \(\lambda o v \delta^{\prime}\) ivion, that is London, in \(54^{\circ}\) of Latitude; and the \(\mathrm{T}^{\prime}\) mioov or the midle of the \(1 / \mathrm{le}\) of \(W \mathrm{Wight}\), (which in the printed Copies is fallely termed
 Whereas London is certainly known to have for the Altitude of the Pole, or Latitude of the Place, only \(51^{\circ}\) and \(32^{\prime}\). and the middle of the 1 le of \(W\) igight not to exceed \(50^{\circ}\). and fome minutes.

But in my judgment Ptolemy is very excufable in thefe and the like Errors, of feveral other places far diftant from Alexandria; feeing he muft for their Pofition neceffarily have depended either upon Relations of Travailers, or Obfervations of Mariners, or upon the Longitude of the Day meafured a thofe times by Clepfydra: all which how uncertain they are, and Subject unto Errour, if fome Celeftial obfervations be not joyned with them, and thofe exactly taken with Large Inftruments, (in which kind the Ancients have not many, and Our Times, (excepting Tycho Brabe, and fome of the Arabians) but a few,) I fay no Man, that hath converfed with Modern Travailers and Navigators, can be ignorant. Wherefore to excule thefe Errors of his (or rather of others fathered by him) with a greater Abfurdity, by afferting the Poles of the World fince his time to have Changed their fite, and confequently all Countries their Latitudes, as Marinna the Mafter of Copernicus, and others after him have Imagined : or elfe to Charge Ptolemy, being fo excellent an Artilt, with Ignorance, and that even of his own Country, as Cluverius hath done, (from which my obfervations at Alexiandria, and

\section*{(655)}

Memphis may Vindicate him,) the former were too great a Stupidity, and the latter too great a Prefumption. But to return to Rbodes: an Inland (in Euftathius's Comment upon Dionysus's avepainzaos) of 920 furlongs circuit, where according to Polemy the Parallel palfing dia Pofor, hath \(36^{\circ}\) of Latitude, and fo hath Lindus, and 'Inrvaris the chief Cities of the Illand; the fame is confirmed by the MS. but where the Printed Copy and Eus ftathius read 'Induars's, which Mercator renders Talyfus, the MS. renders Iitoo's. Abulfeda in fome Copies fituates the Ifland Rbodes, (for he mentions no Cities there) in the Latitude of 37 Deg. and 40 min. and the Geograplyy of Said Ibn Aly Algiorgany, commended by Gilbcrtus Gaulmyn, in \(37^{\circ}\), if it be not by a Tranpofition in the MS. of the Numerical Letters in Arabick 37 for 36 , which by reafon of their Similitude, are often confounded in Arabick MSS. By my Obfervations under the Walls of the City Rbodes, with a fair brafs Aftrolabe of Gemma Frifius, containing I4 inches in the Diameter, I found the Latitude to be \(37^{\circ}\) and \(50^{\prime}\). A larger Inftrument I durft not adventure to carry on Shore in a Place of: fo much Jealoufie. And this Latitude in the Chart I have afligned to the City Rhodes, (from the Inland fo denominated, upon which on the North Eaft fide it ftands fituated) better agreeing with the Arabians than with Ptolemy, whom I know not how to excufe.
XXVI. In the fecond Book of the Voyage de Siam des. Peres Fijuites, are Iong. of ishe related two obfervations of the Satcllites of Fupitcr, capable, if well made, cape of Good to afcertain the Longitude of the Cape of rood Hope. The Firf was Hope. n. 18 swat to alcerane the of good Hope. The Firlt was there 253. made fune 2d.f. n. 1685, when at \(11^{h} 29^{\prime} 20^{\prime \prime}\). the Firft or Innermoft Satellite touched the Weftern Edge of Fupiter, and at \(11^{\text {h }} 30^{\prime} 50^{\prime \prime}\) it apo peared no more: this Obfervation is faid to be made with an excellent Telefope of 12 Foot. The other was on Fune the \(4^{\text {th }}\) following \(\rho\). \(n\), when the Emerfion of the fame Satcllite was obferved at 9 h. \(37^{\prime} 40^{\prime}\). from which Latter is concluded, that the Longitude of the Cape is \(180^{\circ}\) to the Eaft of Paris, for that the faid Emerfion, according to the Calculus of Cafini, in the Meridian of Paris, ought to have happen'd at 8h.26!" This fame Emerfion is computed by Mr. Flamfteed at 8 h 19\%: at London, that is 3 min. later then by S.Cafini; and confidering that neither is Verified by: obfervation in Europe, the Longitude hence deduced is doubtful at leaft 3 min. if this had been the only obfervation. But the former being confidered will yet fhew that there is a much greater Doubt ftill remaining: For from certain A. . ftronomical Principies the Parallax of the Orb, or difference between the Place of Fupiter feen from the Sun and Earth was, at the time of the firft Obfervation, \(9^{\circ} 9^{\prime}\); Which Arch that Satellite moves in \(1^{h} .6^{\prime}\). and the utmof Duration of an Eclipfe thereof in this pofition of fupiter being fearce \(2^{\text {h. }} 20^{\prime}\). (as appears by the accurate Obfervations of M. Cafini and Mr. Flamsficed) it will follow, that from the Immorfion hehind Fupitcr's Weftern Edge to the Emerfion out of the Shadow, there could not be full \(3^{\text {ha }} 26^{\text {? }}\). Where fore the Emerfion out of the Shadow, on Fume 2d, ought according to the sime of Immerfion, to be at \(14^{\text {n3. }} 55^{\prime}\). at the lateft at the Cape; which by

\section*{(656)}
Mi. Flamfeed's Calculus was at London \(13^{\text {h }} 5^{1!}\). or according to S. Cafini at I \(3^{\text {h }} 5^{8^{\prime}}\). at \(P_{\text {aris. }}\). Hence the Longitude of the Cape will be found but 14 deg . and half at moft to the Eaft of Paris; fo that thele 2 Obfervations will dif. fer in the refult about a quarter of an hour, which is a little too much. However there are fome reafons that feem to argue for this Latter Longitude rather than the Former: for it is much eafier to obferve what becomes of a Luminous Object that appears, than to wait upon the firt appearance of a Star Eclipled: and it is probable that the Satellite might, in the Latter time, be feveral minutes Emerged out of the Shadow, when they might firft perceive it; but they could not but fee the Application to the Body of fupiter in the Former, if we may fuppofe their Telefcopes fo good as they are faid to be. And that the Cape of Good Hope is not more than an hour to the Eaft of Paris, is proved by the conftant confent of our Navigators, who find by their Reckonings that the Ifland of St. Helena is about 22 or 23 . deg. of Longitude to the Wcfunard of the Cape: (and that Sailing both backwards and forwards, 'tis the fame, which takes away the Objection of Currents)

Long. of St. Helena. ib. Now by Accurate Obfervations made at St. Helena, and compared with others made in Europe at the fame time, the Iongitude of that Inte is certainly about \(8 \frac{x}{z}\) deg. to the \(W^{2} \mathrm{c} f\) of Paris; it follows therefore that the Cape cannot be much more than 14 or 15 deg. to the Eaft of Paris;; and undoubtedly it muft be lefs than \(1 s^{\circ}\), for 3 . deg. is much too great an Errour to be committed in fo fhort a Diftance Sailing.

The Longe of Madagarcar; \(b y\)
Mr.Flam fteed. n. 143 .p. 15 . vid. Sup. Cap. IV.S.XLVIII.
XXVII. Mr. Thomas Heathoot was Chirurgeon to a Ship, which, Aug. 19. 168 I . lay at the bottom of a deep Bay on the Weftern fhore of Madegafonr, and that part which the Portuguefe and our Mapps call the Terra del Gada; He had with him then on fhore, a Quadrant of two foot Radius, and a Telefcope of 9 foot, but no Clock; to fupply which Defect, he made a Pendulum of a String and a Bullet 39 inches long, that each fingle Vibration might anfwer a Second of Time. Waiting the Beginning of the Eclipfe with his glafs, as foon as he He faw the True Shadow enter on the Moon's Limb, he caufed his Friends who affifted him, to make the Pendulum Vibrate and count its Vibrations; of which they had numbred \(140=2^{\prime} 20^{\prime \prime}\) of Time, when he took the height of Procyon (then Eaft of the Meridian) \(25^{\circ} 39^{\prime}\). The next day he obferved the Sun's Meridional Height with the fame Quadrant, whence he found the Latitude of the Place \(19^{\circ}\) 29'. South, hence the time when he took the height of Procyon is found \(4^{\text {h }} 5 I^{\prime}\) mane, and fubftracting the \(2^{\prime} 20^{\prime \prime}\), patt fince the obferved Beginning of the Eclipfe, its True Beginning was at Which at the Obfervatory here, I noted at -I \(\quad 50\) Tre Zong. and therefore this part of Madagafoar is more Eafferly-_ 2 Zas. of Balla- or \(44^{\circ} 30^{\prime}\), which our Mapps make \(5^{\circ}\); that is \(7^{\frac{1}{2}}\) Dee. more Remote from fore in India; it than it really is. Halley. Ph. Col。 12. 5.p. 124. vid. fup. Cat. IV.S.LXVI. 28.168 .

\section*{(657)}
or the Immerfion at London, the true Place of the Moon correct by Paralian was II \(4^{\circ} 32^{\prime} 24^{\prime \prime}\) but at \(16^{\text {h }} 00\). at Ballafore Road (in the Lat. of \(21^{\circ}\) 20'. N. and about 20 miles E. S. E. from the Town) the True Place of the Moon was II \(5^{\circ} 54^{\prime}\). that is \(I^{\circ} 21^{\prime} 36^{\prime \prime}\). more than at \(8^{h} 6^{\prime}\). at London: Now according to the Moon's Velocity at that time, fhe paffed an Arch of \(1^{\circ} 2 I^{\prime} \cdot 30^{\prime \prime}\). in \(2 \mathrm{~h} 8^{\prime} 40^{\prime \prime \prime}\). of time, fo then at \(10^{h} 14^{\prime} 40^{\prime \prime}\). at London, the Moon was in the fame place as at \(16 \mathrm{~h} \mathrm{oo'}\). at Ballafore Road, whence the Difference of Longitude will be \(5^{\text {h }} 45^{\prime} 20^{\prime \prime}\). or \(85^{\circ} 20^{\prime}\). Balleffore being fo much to the Eaftwards of London.
2. By the Calculation of the Immerfion of the Bull's Eye Dec. 22. 1 680 . vid. fut. Cup. I find that at I4h \(49^{\prime}\). at Ballafare the Moon's true Place was II \(6^{\circ} 30^{\prime} 30^{\prime \prime}\) IV. \(9 . L x V\) Ir. and at \(7^{\text {h }} 46^{\prime} 12^{\prime \prime}\). the Correct Time of the Immerfion at Dant \(z^{2}\) ick, the true Place was III \(4^{\circ} 55^{\prime} 1^{\prime \prime}\). that is \(1^{\circ} 35^{\prime} 20^{\prime \prime}\). fhort of the Place deduced from the Obfervation at Ballafore Rond, which make in Time \(2^{\text {h }} 32^{\prime} 40^{\prime \prime}\). whence it follows, that \(10^{h} 18^{\prime} 52^{\prime \prime}\). at Dantzick makes \(14^{\text {h }}\) 49'. at Ballaforc Road, and the Difference of Longitude \(4^{\mathrm{h}} 30^{\prime} 8^{\prime \prime}\). and Dant\(\tilde{7}^{\text {ick }}\) being \(1^{\text {h }} 15^{\prime} 30^{\prime \prime}\). more Eafterly than London, Ballafore Road will be from London \(5^{h} 45^{\prime} \cdot 38^{\prime}\), or \(86^{\circ} 24^{\prime}\). and the fame Difference of Meridians will be found \(86^{\circ}\) ' \(14^{\prime}\) '. if you make ufe of the Emerfion at Dantzick.
3. For further confirmation hereof, Mr. Beni. Harry being afhore at Ballafore Tonn, he obferved with very great Care and Exaetnefs, Nos. 19. 1680. that. at \(9^{\text {h }} 13^{\prime}\). the Star which Tycho calls, in Cotyla dextra Aquarii duarims pracedens (and which was then in Aquarius \(28^{\circ} 52^{\prime}\). and Lat. \(2^{\circ} 46^{\prime}\). N.) was in a Right Line with the Cufps of the Moon, then near the firlt Quarter. The Star's Place is confirmed by the agreement of Hevelius's Obfervations with thofe of Tycho, and the Theory of the Moon cannot be confiderably faulty in that part of the Orb, it falling precifely on her greateft Equation, wherefore by the Theory and Numbers of Horrox; the true Place of the Moon at \(2^{h_{1}} 53^{\prime}\). at Landon is found \(\mathrm{m}^{\prime \prime} 29^{\circ} 22^{\prime} 10^{\prime \prime}\). but at \(9^{\text {h }} 13^{\prime}\). at Ballafore, her Place was in \({ }^{m} 29^{\circ} 41^{\prime} 17^{\prime \prime}\). that is \(19^{\prime} 7^{\prime \prime}\) more than at London, which in Time gives \(36^{\prime}\), fo that \(3^{\mathrm{h}} 29^{\prime}\) at London was \(9^{\text {h }} 13^{\prime}\). at Ballafore, and the Difference of Long. \(5^{\text {h }} 44^{\prime}\) or \(86^{\circ} 00^{\prime}\). precifely, which the Dutch Maps make full out \(99^{\circ}\). And the Frexch Maps of Sanfon, pretending to correct them, have made them \(5^{\circ}\) worle, and the Errour 180 compleatly. What then is to be thought of the Defcriptions of thofe Places which have been but feldom Vifited.
XXIX. Differentiam Longitudinum Cantonem inter \& Parifios deduxi \(j^{\text {h }} 23^{\prime}\). Long. of Canex Exitu Mercurii ex Solis Difco Cantoni \& Norimberg.e Obfervato, \& ex Eclip; fibus Lunc Oblervatis Norimberge \& Paifiis.
XXX. Ex Altitudine Meridiana Maxima Seclla Polaris a pp. S. I. Obfervata Die 31 Dec. 1694 . Correcto Inftrumento \(42^{\circ} 16^{\prime} 50^{\prime \prime}\). Suppofita Re-
 eruitur Altitudo Poli \(39^{\circ} 54^{\prime} 56^{\prime \prime}\).
ton ; by M.
Caflini. n.245 1. 371. vid. fup. Cap. IV.§.XCVIII Lat. \& Long. of Pekin ; by M. Ja. Caffini. 1.237. P. 53.

\section*{(658)}

Ex ejufdem Stella Polaris Altitudine Meridiana Minima, Obfervata Diebus: 7, 8, 13. Maii 1695 . Correcto Inftrumento \(37^{\circ} 36^{\prime} 40^{\prime \prime}\). Suppofita Re tractione \(1^{\prime} 28^{\prime \prime}\). \& Diftantia Stella Polaris a Polo \(2^{\circ} 19^{\prime}\).50'. Eruitur Alitudo Poli \(39^{\circ} 55^{\prime} 2^{\prime \prime}\).

Neglecta Refractione Altitudo maxima Stella Polaris deducta o , 11 :" ex Obfervatione 3 I Dec. præcedentisfuiffer fub Initium Maii \(\quad 42\) 16 43 Et Altitudo ejufdem Minima tunc fuit \(\quad 37: 3640\) Quare Differentia Altitudinum 044003
Et Ditantia Stella Polaris a Polo - 0220 OI \(\frac{\pi}{2}\)
Et Altitudo Poli apparens \(39564 \mathrm{I}_{2}^{\mathrm{I}}\)
Ad hanc Altitudinem apparentem Refractio ex mea Tabula eft-- oo or 10 Quare Altitudo Poli in Regia Pokinenfl_ 39.55312

Pro Longitudine Pckinenfis Urbis Obfervata eft Immerfo Primi Jovis Satelititis in 300 is Umbram Die 18.7 an. \(1695.12^{\text {b. }} 51^{\prime} 14^{\prime \prime}\).

Tabule noftre eo Die hanc Inmerfionem reprefentant \(5^{\text {in }} 18^{\prime} 49^{\prime \prime \prime} \mathrm{Ob}\). fervationes autem eodem Menfe habita in Oifervatorio Regio Parifienfo oftendunt r Tabulas retardaffe tunc Temporis \(2^{\prime} 30^{\prime \prime}\).

Quare fuit illa Immerfio Parifis \(5 \mathrm{~h} 16^{1} 19^{\prime \prime \prime}\). Itaque Differentia Neridianorum inter Pelinum \&r Urbem-Parifinfom erit \(7^{\text {h. }} 34^{!} 55^{\prime \prime}\).

Cum autem ex aliis Obfervationibus olim deducta fuerit eaden Meridianorumi Differentia \(7^{\text {h }} 3^{6}\). fumi poterit \(7^{\mathrm{h}} \cdots 35_{\cdot}^{\prime \frac{1}{2}}\).

Iut, of St. Salvadore. \(\mathrm{n}_{1} \mathrm{I} \mathrm{I}_{5}\). p. 91.

Iat. of BridgeTown. 1. 18\%. p. 370.

ADefcription of Nova Zembla ; by M. Nich. Witfen. *. 101. p. 3 .

Fise: 20\%。
XXXI. St. Salvadore in Brafl is in the Soutbern Latitude of \(12^{\circ} 47^{\prime}\).
XXXII. Bridge Town in Barladoes is in the Nortbern Latitude of \(12^{\circ} 55^{\prime}\)
XXXIII. I. I herewith fend you what I have received out of Mufcovy, which is a Nem Mapp of Novia zembla and Weigats, as it hath been difcovered by the Exprefs Order of the Czar; and drawn by a Painter, called Panelapoctski, who fent it me from \(\mathrm{Mo}_{0}\) co for a Prefent: by which it appears that Nova Zcmbla is not an \(I / a n d\), as hitherto it hath been believed to be; and that the Mare Glaciale is not a Sea, but a Sinus or Bay, the Waters whereof are Freff. Which is the fame with what the Tartars do alfo affure us, who have tafted thefe very Waters in the mide of the Sinus. The Samojeds as well as the Tar tais do unanimounly: affirm, that pafing on the back of Nowa zembla, at a confiderable Diftance from the More, Navigators may. well pafs as far as fapan. And 'tis a great Fault in the Englifh and Dutch, that feeking to get to Fapm on the South fide of Nova Zcmbla, they have almoft always pats'd the Weigats.

The Letter O in the great River Oby marks the Place of a Cataract or Fall of Waters. The Letter K denotes the Conjunction of zcmbla with the Continent. The River marked L, runs from Cbinn, called Kitnic: which is not every where Navigable, by Reafon of the Recks, and other Inconveniencies that Obftruct the pafing of Veffels, . Witignts it felf is very difficult: to pafo, becaufe of the great Quantity of Ice continually falling into it out of the River Oby, whertby that Streight Paffage is ftopped up. The \(S_{a}\)

\section*{(659)}
nigeds go every Year a Fifhing upon the faid Sweet Sea and tiat on Nivia Zembla's fide.
2. I formerly thotight Nova Zembla had been a Continent: But I have n. 193. p. 49 t. Fince been better Informed, and Retracted that Error. And whercas the late. M. Voffius would needs perfiwade himélf, as well as he did others to their Ruine, that there was a Paffage to Fapan by the North, and thät the Tartarian Countries behind Nova Zembla did immediately decline towards the South; I did always oppofe it, and think I can even Demonftrate the Injpolibility thereof. So that what he wrote to encourage Mariners to that attempt, was even directing them to the point of Death, as it afterwards cnitued.
XXXIV. What is noted with a Single Line is exactly Copied from the A Mit? of
 prefented to the Dauphin An. 1679. The Names of Cities, whofe Situation De La Hire. is alfo taken from this Map, are written in Italian Characters; the Cor- \(\mu, 226 . p .4430\) rection of the Pofition of Coafts (which is deduced froni the Obfervations Fis. 205. which werc made to that End) is marked wirh a Stroke a little Shadow'd towards the Sea, as is Commonly done; and the Names of Cities, whofe Situation is Corrected, are fer down in Roman Characters.
The Degrees of Latitude are niarked on both fides of the Border, and the Degrees of Longitude in the fame Border above: and below ; but the Divifion of them begins at the Meridian that paffes through the Objecrvatory at Paris, by going to Eaft and Woff, and not at the Meridian of the lile of Fer, as hath been Eftablifhed, becaufe we do not exactly know the Situation of this Ifland in refpect of the Obferva:ory.
XXXV. I. What Aritimetick in whole Number and Fractions, as alfo What a commin Decimals and Logarithms, is neceflary for the fanne? And what Booksplestat Treatife are beft for Teaching fo muth thereof? ' 2. What Vulgar Practical Mecha- of Noouldigation nical Geometry performable by the Scale and Compads is fufficient? 3. What by syir W. PetTrigonometry, Right Lined and Spherical, will fuffice? 4. How many Stars ty. n. 1980 are to be known? 5 . What Injfruments are beft for Ufe at \(S_{c a}\), with the Conftruction of them, and the manner of ufing them? 6 . The whole Skill of the \(M_{\text {agnet }}\) as to the Directive Vertues thereof, and all the Accidents that may befall it? 7. The Hydrography of the Globe of the Earth, the Perf pecitive of the Coafts, and the Defcription of the under-water-bottoni of the Sean. 8. The knowledge of Winds and Metcors, fo far as the fame is attainable. 9. The Hitory and Skill of all forts of Filphings: robl The Art of Medicine and Chyrurgciry, peculiarly for the Sen. I ir. The Common Lamp of the Admiratty, and Furijdiction of the Sen. 12. The feveral Vithunllings and Cloasthings. fit for Seamen. 13: The whole Science of Ebbing and Flowing, as alfo of Currents and Eddyes at Sea. I4. Dromometry, and the Meafures of a Ships Motions at Sea: 15: The Building of Shipss of all forts, with the feverall Rigging and Sails for each Species, and the ufe of tall the Parts and Motions of a Ship. 16. Naval Oeconomy according to feveral Voyages and Countries. 17. The Art of Conting, Roming, and Sailing, of all the feveral forts of Vef-

\section*{(660)}
fets. I 8. The Gumery, Fire-works and other Armatures peculiar to Sea and: to Sea-Fights. Iy. The Art of Loading and Unlonding the Chief Commodities to the beft Advantage. 20. The Art of Weighing Sunken Ships and Goods, as alfo of Diving for Sunken Goods in deep Water. 21 . The General Pbilofoply of the Motion and Figures of the Air, the Sce, and of Seafons; of Timber, Iron, Hemp, Brimfonc, Trllow, \&c. And of their Ceveral ufes in Nival Affairs. 22. An Account of 5 or 6 of the beft Navies of Europe, with that of the Arcerals, Magazines, Docks, \(\mathrm{r}_{\mathrm{n}} \mathrm{rds}\), E'ic. 23. An Account of all the Shipping able to crols the Seas belonging to each Kingdom and State of Europe. 24 . An Account of all the Chiet Ccmmercial parts of the World; with mention of what Commodities are originally cari ied from, and ultimately to, any of them. 25. An Account of the chief Sea-Fights, and all other Naval Expeditions and Exploits, relating to Whar, Trade, or Difcovery, which harh happen'd in this Laft: Century. 26. Of the moft Advantageous Ufe of Telefcopes for feveral purpofes at Sea. 27. Of the feveral Dejths of the Sea, and Ifeights of the Atmofplicre. 2 I. The Art of making Sea-brater Frefs and Potable, and fit for all ufes in, Food and Phyfick at Sea.

The colletion of XXXVI: I. Thougli it be well known, that, in the Terreftrial Globe, atl Sucants, and the the Mcridians meet at the Pole, (as EP, EP,) whereby the Parallels to true Divifinn of
the Meridian the Equator, as they be nearer to the Pole, do continually decreafe:
in the SeatChart; by Dro Wallis. n. 176. \%) 1193.

Fig. 206.
2. And bereby a Degree of Lomysitude in fuch Parallels, is lefs than a degree of Longitude in the Equator, or a degree of Latitude:
3. And that in fuch proportion, as is the Co-fine of Latitude (which is the Semidiameter of fuch Parallel) to the Radius of the Globe, or of the Equator.
4. Yet hath it been thought fit (for fome Reafons) to reprefent there Meridians, in the Sea-Cbart, by Parallel ftraight Eines; as Ep, Ep.

5: Whereby, each Parallel to the Equator (as LA) was reprefented in the Sca Cbart, (as la,) as equal to the Equator E E: and a Deg. of Longituate therein, as large as in the Equator.
6. By this means, each Degree of: Longitude in fuch Parallels, was Inereafed, beyond its juft proportion, at fuch rate as the Equator (or its Radius) is greater than fuch Parallel, (or the Radius thereof.)
7. But, in the Old Sca-Cbarts, the Degrees of Latitude were yet reprefented (as they are in themfelves.) equal to each other; and to thofe of the Equator.
8. Hereby, amongft many other Inconveniencies, (as Mr.Ed. Wright obferves, in his Correction of Errors in Navigation, firt publifhed in the. Year 1.59 .9,) the reprefentation of the places remote from the Equator; was- 10 Diftorted in thofe Charts, as that (for Inftance) an Iflaid in the Latitude of 60 degrees, (where the Radius of the Parallel is but half fo great as that of the Equator). would have its Length (from Eaft to Wigt) in comparifon of Breadth (from North to South) reprefented in a double proporton of what indeed it is.

\section*{(661)}
9. For Rectifying this in fome meafure (and of fome other Inconveniencies) Mr. Wright advifeth, that (the Meridians remaining Parallel, as before) the Degrees of the Latitude remote from the Equator, Thould at each Parallel, be protracted in like proportion with thofe of Longitude.
10. That is; As the Co-Sine of Latitude (which is the Semidiameter of the Parallel) to the Radius of the Glolse, (which is that of the Equator:) So Thould be a Degree of Latitude (which is every where equal to a Degree of Longitude in the Equator,) to fuch Degree of Latitude fo protracked (at fuch Diftance from the Equator;) and fo to be reprefented in the Chart.
II. That is; every where, in fuch Proportion as is the refective Secant (for fuch Latitude) to the Radius. For, As the Co-Sine, to the Radius; fo is the Radius, to the Secant (of the fame Arch or Angle;) or \(\Sigma: R:: R: C\).
12. So that (by this means) the Poftion of each Parallel in the Chart, Gould be at fuch Diftance from the Equator, compared with fo many Equis noctial Degrees or Minutes, (as are thofe of Latitude) as are all the Secanta (taken at equal Diftances in the Arch) to fo many Times the Radius.
13. Which is equivalent (as Mr. Whizht there notes) to a Projection of the Spherical Surface (fuppofing the Eye at. the Center) on the Concave Surface of a Cylinder crected at Right Angles to the Plain of the Equator:
14. And the Divifion of. Meridians, reprefented by the Surface of a Cylinder erected (on the Arch of Latitude) at Right Angles to the Plain of the Meridian (or a Portion thereof,) The Altitude of fuch Projection (or Portion of fuch Cylindrick Surface) being, (at each Point of fuch Circula: Bafe) equal to the Secant (of Latifure) anfwering to fuch Point.
15. This Projection (or Portion of the Cylindricik Surface) if expanded into a Plain, will be the fame witi a Plain Eigure, whofe Bafe is equal to a Quadrantal Arch extended (or a Portion thercof) on whish (as Ordinates) are erected Perpendiculars equal to the Secants, anfwering to the refpective Points of the Arch fo extended: The leaft of which (anfivering to the Equit noctial) is equal to the Radius ; and the reft continually increafing, till (at the Pole) it be liffinite.
16. So that, as ERSL. (a Figure of Sccants srected at Right Anglez on EL. the Arch of Latitude extended) to ERRL, (a Rectangle on the fame Bafe, whofe Altitude ER is equal to the Radius;) fo is EL (an Arch of the Equator equal to that of \(Z_{\text {atitude, }}\)) to the Ditance of fuch Parallel, (in tho Chart) from the Equator.
17. For finding this Ditance, anfwering to each Degree and Minute of: Latitude, Mir. Wright (as the moft obvious way) Adds all the Secants (as they are found calculated in the Trigosometrical Canon) from the beginning; to the Deg. or Min. of Latitude propofed.
18. The Summ of all which except the Greateft, (anfwering to the Fit gure Infrribed) is too hittle: The Summ of all except the Leaft, (anfwering to the Circumfcribed) is too Great; (which is that He follows:) And io would be nearer to the Truth than either, if (Omitting all-thefe) we take
 Min. \(\mathrm{I}, 3,5,7\), छ'c. Which yet (becaute on the Convex-fide of the Curve) would be fome what too wittle.
19. But ang of thefe ways aye exact enough for the Ule intended, as creating no fenfible Difference in the Chart.
20. If we would be more exact ; Mr. ohgtred directs (and ro had Mr. Wright done before him) to divide the Arch into Parts yet fraller than Minutes, and calculate Secants fuiting thereunto.

2r. Since the Arithmetick of Infinites Introduced, and (in purfuance there: of) the Doctrine of Infinite Series (for fuch Cafes as would not, without them, come to a deterninate Proportion;) Methods have been found for Squaring fome fuch Eigures.

Fig: 20\%:
49.210

Fig. 2150

Eig. 212.
22. In order to a Rundrature for this Figure of Secants (by an Infinite Series fitted thercunto Put we, for the Radius of a Circle, \(R\); the Right Sinc of an Arch or Angle, \(S\); - he Verfed Sine, \(V\); the Co-Sine (or Sine of the Complement) \(\Sigma=R-V=\sqrt{R} q-S q\); the Secant, \(f\); the Tan. gent, \(T\).
23. Then is \(\Sigma: R: R: \int\). That is, \(\left.\Sigma\right) R^{2}\left(\int=\frac{R^{2}}{s_{1}}\right.\); the Secant.
24. And \(\Sigma: S:: R: T\). That \(15 ; \Sigma) S R, T=\frac{S R}{\Sigma}\); the Tangent.
25. Now, if we fuppofe the Radius CP, divided into equal Parts, and each of them \(=\frac{3}{\omega} \mathrm{R} ;\)) and on thefe, to be erected the Co-Sines of Latitude LA.
26. Then afe the Sines of Latitude in Arithmetick Progreflion.

27 And the Secants anfwering thereunto, \(L \int=\frac{R^{2}}{\Sigma^{2}}\)
28. But thefe Secants, (anfwerwing to Right Sines in Arithmetical Proo greffion,) are not thofe that ftand at Equal Diftances on the Quadrantal Arch Extended, Fig. 209.
29. But, ftanding at Unequal Diftances (on the lame extended Arch;) Namely on thofe Points thereof, whofe Right Sines (whilt it was a Curve) are in Arithmetical Progrelfion. As Fig. 2 II .
30. To find therefore the Magnitude of REL/, Fig. 209. which is the fatme with that of Fig. 211 . (fuppofing EL of the fame Length in both; however the Number of Secants therein may be unequal) we are to confider the Secants, though at Unequal Diftances, Fig. 211 , to be the fame with thofe of Equal Diftances in Fig. 210 . anfwering to Sines in Arithmetical Progref fion.
31. Now thefe Intervals (or Portions of the Bafe) in Fig. 21 I. are the Came with the Intercepted Arches (or Portions of the Arch) in Fig. 210. For this Bafe is but that Arch Extended.
32. And thefe Arches (in Parts Infinitely mall) are to be reputed equiva lent to the Portions of their refpective Tangents Intercepred between the fame Ordinates. As ir Fig 2 10, 212.
33. That is, Equivalent to the Portions of the Tangents of Latitude.
34. And thefe Portions of Tangents are to the Equal Intervals in the Bafe, as the Tangent (of Latitude) to its Sine.

\section*{(663)}
35. To find therefore the true Magnitude of the Paralleiograms (or Segments of the Figure;) we mutt either Protract the Equal Segments of the Bafe. Fig. 210. (in fuch Proportion as is the refpective Tangents to the Sine) to make them Equal to thole of Fig. 21 I.
36. Or elfe (which is equivalent) retaining the Equal Intervals of Fig. 210 Protract the Secants in the fame Proporion. (For either way, the Intercepted Rectanglés or Parallelograms will be equally Increafed) as LM. Fig. 2 I 2
37. Nannely; as the Sine (of Latitude) to its Tangent; fo is the Secant, to a Fourth ; which is to ftand (on the Radius equally divided.) in. ftead of that Secant:
\[
S: \frac{S R}{\Sigma}(:: \Sigma: R .): \frac{R^{2}}{\Sigma}: \frac{R^{3}}{\Sigma^{2}}=\mathrm{R}^{2}-\mathrm{S}^{2}=\mathrm{LM} .
\]
38. Which therefore are as the Ordirates in (what I call Aritho. Infino Prop. 104.) Reciproca Secundanorum: Suppofing \(\Sigma^{2}\) to be Squares in the Order of Secundanes:
39. This (becaufe of \(\Sigma^{2}=R^{2}-S^{2}\); and the Sines \(S\), in Arith metical Progreflion, is Reduced (by Divifion) into this Infinite Series. \(R+\frac{S^{2}}{R}+\frac{S^{4}}{R^{3}}+\frac{S^{6}}{R^{5}}=\)
40. Thât is, (putting \(R=\) I.) \(\mathrm{I}+\mathrm{S}^{2}+\mathrm{S}^{4}+\mathrm{S}^{6}\), छ̂c:
41. Then (according to the Aritbmectick of. Infinites) we are to Interpree \(S_{5}\) fuccefively, by I \(S,-2 \mathrm{~S}, 3\), Gc, till we come to S , the greatef. Which therefore Repreefents the Number of all.
42. And becaufe the firt Member doth Reprefenta Series of Equals, the Second of Secundans; the Thitd of Quartans, \(\mathcal{B}\).. Therefore the Firt Member is to be Multiplied, by \(S\); the Second by \(\frac{\pi}{3} S\); the Third by \({ }^{\frac{7}{2}} S\); the Fourth by \({ }_{7} \mathrm{~S} ; \mathrm{B}_{\mathrm{B}} \mathrm{c}\)
 \(=\mathrm{ECLM}\).
44. This (becaufe \(S\) is always lefs than \(R=1\)) may be fo far continued; till fome Poper of S becone fo fmall as that it: (and all which follow: it.) may be fafely neglected.
45. Now (to fit this to the Sea-Cliart, according to Mr Wright's Defign) having the propofed Parallol (of Latitude), given; we are to find (by the Trigonometrical Canon) the Sine of fuch Lattitude; and take Equal to \(\mathrm{it}, \mathrm{CL}=\mathrm{S}\) : And, by this find the Magnitude of ECLM, Fig. 2 I2. that is of REL, , Fig. 211. that is, of REL'f. Fiz: 209. : And then, as RRLE (or fo many tinies the Radius) /to RELifs (the;Aggregate of all the Secants ;) mult be, a like Arch oft the Equator, (Equal to she Latityde propofed, ? to the Ditance of fuch Parullet, (reprefenting the Lift tude in the Cbart) from the Eiquatos: Which is the thing required.
46. The fime may be obtained in like manner, by taking the Verfed Sincs in Arithmetical Progreflion. For if the Right Sines (as here) beginning af the Fequator, be in Arithmetical Progreflion, as, \(3,2,3, \xi c\). Then will

\section*{(664)}
the Verfed Sines, beginning at the Poley (as being their Complements to the Radius) be fo alfo.
47. The fame may be applied in like manner, (though that be not the prefent Bufisefs) to the Aggregate of Iangents, (anfwering to the Arch Divided into Equal Parts.
48. For, thofe anfwering to the Radius fo Divided, are \(\frac{S R}{\Sigma}\); (taking \(S\) in Arithmetical Progreffion. :)
49. And then Inlarging the Bafe (as in Fig. 211.) or the Tangent (as in Fig. 21:2.) in the Proportion of the Tangent to the Sine.
\[
S: \frac{S R}{\Sigma}(:: \Sigma: R): \frac{S R}{\Sigma}: \frac{S R^{2}}{\Sigma 2}=\frac{S R^{2}}{R^{2}-S^{2}} .
\]
50. We have by Divifion this Series, \(S+\frac{S^{3}}{R^{2}}+\frac{S^{5}}{R+}+\frac{S^{7}}{R^{6}}+\frac{S^{9}}{R^{8}} \mathrm{E}^{2}\).
5.1. That is, (putting \(R=1\)) \(S+S_{3}+S_{5}+S_{7}+S_{9}, 83\).
52. Which (Multiplying the Refpective Members by \(\frac{1}{2} S, \frac{1}{4} S,{ }_{6}^{x} S\),

Which is the Aggregate of Tangents to the Arch whofe Right Sine is \(S\).
53. And this Method may be a Pattern for the like Procefo in other Cafes of like Nature.

Ino Problems in Navigation proposid; by Mr. Nich.Mer. cator. \(n .13\). p. 275.
XXXVII. The Line of Artificial Tengents, or the Logarithmical Tangent Line, beginning at \(45^{\circ}\), and taking every Half Deg. for a whole ono, is found to agree pretty near with the Meridian Line of the Sen-Clart, they both growing, as it were, after the fame Proportion. But the Table of Mcridional Degrees being Calculated only to every Sexagefimal Minute of 2 Degree, fhews fome frnall Differenee from the faid Logaritbmical Tanzent Line. Hence it may be doubted, whether that Difference do not arife from that litte Error, which is committed by Calculating the Table of Mcridional Degrees only to every Minute.

But if a certain Rule could be produced, by which the Agreement or Dif agreement of the faid two Lines might be fhewed, the Helix or Spiral Line of the Slipe's Couife would be reduced to a more precife Exactnefs, than ever was pretended by any:
The fame Rule would alfo difcover a far eafier way of making Loogrithms, than ever wats practifed or known; and therefore might ferve, whenever there fhould be Occafion, to extend the Logasithms beyond that Number of Places, that is already extant.
Moreover fuch a Rule would enable Men to drav the Mevidinu Line Geo metrically, that is without Tables or Scales which indeed might alfo be done by fetting of the Secants of every whole or half Degree, if there were not this Inconveniency in it (which is not in my Rulet:) That Line compofed of fo many fmall Parts would be fubject to many Errors, efpecially in a finall Compals.
\(\because *\)

\section*{(665)}

The fame Rule alfo will ferve to find the Coirre and Diftance between two Places alligned, as far as Practice fhall require it; and that without any Ta: ble of Meridional Parts, and yet with as much Eafe and Exactnefs.

And feeng all thefe things do depend on the Solution of this Queftion, Whether the Artificial Tangent Line be the True Meridian Line? It is therefore, that I undertake, by God's Afliftance, to refolve the faid Queftion. And to let the World know the Readinefs and Confidence I have to make good this Undertaking, I am willing to lay a Wager againft any one or more Perfons that have a Mind to engage, for fo much as another Invention of mine (which is of no lefs Subtlety, but of a far greater Benefit to the Publick') may be worth to the Inventor.

As for the great Adrantage, that all Merclants, Maviners, and confequently the Common. Wealth, may receive from this other Invention, it is, in my Judgment, highly valuable, feeing it will often times make a Ship Sail, though according to the common way of Sailing, the Wind be quite Contrary, and yet as neat to the Place intended, as if the Wind had been favourable : Or if you will, it will cuable one to gain fomething in the Intended way, whether the Wind be good or no (except only when you go directly South or North) but the Advantage will be muft where there is moft need of it, that is, when the Wind is contrary: So that one may very often gain a fifth, fourth, third Part, or more of the Intended Voyage ; according as it is longer or fhorter; vir. always more in a longer Voyage, where the Gain is more Confiderable, and more Welcome, not only by faving Time, but alfo Victuals, Water, Fuel, Men's Health, and fo much Rrom in the Ship.
XXXVIII. It was firt Difcovered by Chance, and as far as I can Learn, The cinalogy of firf Publifhed by Mr. Henry Bond, as an Addition to Norwood's Epitome of Na- Logarithmich vigation, about 50 Years fince, that the Meridian Line was Analogous to a Mengents to Scale of Logaritlomick Tangents of balf the Complements of the Latitudes.

For the Demonftration of that Propofition it is Requifite to premife thefe \(4^{\text {firated } ; \text { by } M \text {. }}\) Lemmata.

Edm. Halley.
Lemma. I. In the Stereographick Projection of the Splocere upon the Plain of the Aquinoctial, the Diftances from the Center, which in this Cafe is the Pole, are laid down ly the Tangents of balf thoof Diftances, that is, of half the Com. plemients of the Latitudes. This is evident from Eucl. 3. 20.

Lemma. 2. In the Stercograppick Projection, the Angles under which the cirs cles Interfect cacib other, are in all Cafes equal to the Spleerical Angles they reprefont; which is a very valuable Property of this Projection.

Demonft. Let EPBL be any Great Circle of the Sphere, E the Eye placed in its Circumference; C its Center, P any Point thereof; and let FCO be fuppofed a Plain erected at Rigit Angles to the Circle EPBL, on which FCO we deflign the Sphere to be Projeited. Draw EP crofling the Plain FCO in \(p\), and \(p\) fhall be the Point P projected. To the Point P draw the Tangent \(A P G\), and on any point thereof, as \(A\), Erect a Perpendicular \(A D\), at right Angles to the Plain E.PBL, and draw the Lines PD, AC, DC; and the Angle APD fhall be equal to the Spherical Angle contained between the

Vol. I.
Qq q q
Plains

\section*{(666)}

Plains APC, DPC. Draw alfo AE, DE, interféting the Plain FCO in the Points \(a\) and \(d\); and join \(a d\), \(p d:\) I fay, the Triangle \(a d p\), is fimular to the Triangle ADP, and the Angle \(a p d\) equal to the Angle APD: Draw PL, AK, parallel to FO , and by reaton of the Parallels, \(a p\) will be, to \(a d\); as \(A K\), to AD: But (by Eucl. 3. 32.) in the Triangle AKP, the Angle AKP= \(L P E\), is alfo equal to \(A P K=E P G\), wherefore the fides \(A K, A P\), are Equal, and 'twill be as \(a p\), to \(a d\); fo AP, to AD. Whence the Angles DAP, \(d a p\), being Right, the Angle APD, will be equal to the Angle a \(p d\), that is, the Spherical Angle is equal to that on the Projection, and that in all Cafes. Q.E.D.

This Lerima, I lately received from Mr. \(A b\). de Moivre, though I fince underfand from Dr. Hook, that he long ago produced the fame thing before the Society. However the Domonftration, and the relt of the Difcourfe is my own.

Lemmar 3. On the Globe, the Rbumb Lines make equal Angles with covery Meridian, and by the aforegoing Lemma, they nuft likeways make equal Angles mith the Meridians in the Stercographick Prejeflion on the Plain of the Equator: They are therefore in that Prcjection, Profortional Spirals about the Pole-point.
Fig. 214,
Lemma. 4. In the Proportional Spiral, it is a known Property that the Ane. gles BPC, or the Arches BD, are Exponents of the Rationes of BP to PC: For if the Arch BD be divided into innumerable Equal-parts, Right Lines drawn from them to the Center P , Chall divide the Curve Bcc C into an Infuity of Proportionals between PD and PC, whofe Number is equal to all the Points \(d, d\), in the Arch BD : Whence, and by what I have delivered concerning the Conftruction of Logaritbms, it follows, that as BD to \(\mathrm{B} d\), or as the Angle
rit. fup: cup. I: BPC , to the Angle \(\mathrm{BP} c\), fo is the Logaritbm of the Ratio of PB to PC , to the
ร. XXVIII. Logarithm of the Ratio of PB to \(\mathbf{P}_{c}\).

From thefe Lemmata our Propofition is very clearly Demonftrated: Fior by the Firf \(\mathrm{PB}, \mathrm{P}_{c}, \mathrm{PC}\), are the Tangents of half the Complements of the Latitudes in the Stereographick Projection: And by the Lafl of them, the Differences of Longitude, or Angles at the Pole between them, are Logarithms. of the Rationes of thofe Tangents one to the other. But the Nautical Meridian Line is no other than a Table of the Longitudes, anfwering to each Minute of Latitude on the Rbumb Line making an Angle of 45 Degrees with the Meridian. Wherefore the Meridian Line is no other than a Scale of Logaritbmick Tangenss of the half Complements of the Latitudes. Q. E.D.

Coroll. I. Becaufe that in every Point of any Rbumb Line, the Difference of Latitudes is to the Departure, as the Radius to the Tangent of the. Angle that Rbumb makes with the Meridian; and thofe equal Departures are every where to the Differences of Longitude, as the Radius to the Secant of the \(L_{a-}\) titude; it: follows that the Differences of Longitude are on any Rbumb, Logarithms of the fame Tangents, but of a Differing Species; being proportioned to one another as are the Tangents of the Angles made with the Meri*ian.

\section*{(667)}

Coroll. 2. Hence any Scale of Logaritbm Tangents (as thofe of the Vulgar Tables made after Brigg's Form; or thofe made to Napicr's, or any other Form whatfoever) is a Table of the Differences of Longitude, to the feveral Latitudes, upon fome determinate Rbumb or other: And therefore, as the Tangent of the Angle of fuch Rhumb, to the Tangent of any other Rhumb: So the Difference of the Logarithons of any two Tangents, to the Difference of Longitude, on the propofed Rnumb, intercepted between the two Latitudes, of whofe half Complements you took the Logaritbom Tangents.

Now the Momentary Augment or Fluxion of the Tangent Linc at 45 Degrees, is exactly double to the Fluxion of the Arch of the Circle, (as may eatily be proved) and the Tangent of 45 being Equal to the Radius, the Fiuxion allo of the Logaritlom Tangent will be double to that of the A,ch if the Logarithom be of Napier's Form: But for Brigg's Form, it will be as the fame Doubled Arch Multiplied into 0, 4.3429, E\%c. or Divided by 2,30258, 8c. yet this muft be underftood only of the Addition of an Indivifible Arch, for it ceafes to be true if the Arch have any Determinate Magnitude.

Hence it appears, that if one Minute be fuppofe Unity, the Length of the Arch of one Minute being 0,000290888208665721596154 , छ'c. in parts of the Radius, the Proportion will be as Unity to 2, 908882 , گ̌c. fo Radius to the Tangent of \(71^{\circ} 1^{\prime} 42^{\prime \prime}\), whofe Logaritbm is 10,46372611720718 325204 , eic. and under that Angle is the. Meridian Interfected by that Rburib Line, on which the Differences of Napier's Logarithm Tangents of the Half Complements of the Latitudes are the true Differences of Longitude, cifimated in Minutes and Parts, taking the firlt 4 Figures for Integers. But for Vlacq's Table we mult fay,

As \(2302585^{\circ}, E^{3} c\). to \(2908882, \Xi^{3}\) c. Co Radius to \(1,26331143874244^{\circ}\)
 \({ }^{1} 510428507720941162\), छכc. wherefore in the Rbumb Line which makes an Angle of \(51038^{\prime} 9^{\prime \prime}\) with the Meridian, Vlacis' Logarithm -Tangents are the true Differences of Longitude. And this compared with our Second Corolleny may fuffice for the Ufe of the Tables already computed.

But if a Table of Logaritbm Tangents be made by extraction of the Root of the Infinitcth Power, whofe Index is the Length of the Arch you put for Unity, (as for Minutes the 0,0002908832th. Ecc. Pomeri) which we will call \(a\); fuch a Scale of Tangents fhall be the true Meridian Line, or Summ of all the Secants taken infinitely many. Here the Reader is defired to have recourfe to my little Treatife of Logarithms, that I may not need to repeat it. I. S. XXViLI. By what is there delivered it will follow, that putting \(t\) for the Excefs or Defect of any Tangent above or under the Radius or Tangent of \(45^{\circ}\); the Logaritbom of the Ratio of Radius to fuch Tangent will be.
\[
\frac{1}{m} \text { into } t-\frac{1}{2} t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t 4+\frac{4}{5} t^{\frac{3}{3}}, 8 . \mathrm{c} \text {. }
\]
when the Arch is greater than 45 , or
\[
\frac{1}{m} \text { into } t+\frac{1}{2} \cdot t^{2}+\frac{x}{3} t_{3}+\frac{1}{4} t^{4}+\frac{2}{5} t s, \& c .
\]

\section*{(668)}
when it is lefs than \(45^{\circ}\). And by the fame Doctrine putting T for the Tangent of any Arch, and \(t\) for the Difference thereof from the Tangenv of nnother Arch, the Logarithm of their Ratio will be \(\frac{\mathrm{I}}{\mathrm{m}}\) into \(\frac{t}{\mathrm{~T}}+\frac{t t}{2 \mathrm{TT}}\) \(+\frac{t^{3}}{3 \mathrm{~T}^{3}}+\frac{t^{4}}{4 \mathrm{~T}^{4}}+\frac{t^{5}}{5 \mathrm{~T}^{5}}, \mathcal{B r}^{2}\). when T is the greater Tcrm; or, \(\frac{1}{m}\) into \(\frac{t}{T}-\frac{t^{2}}{2} T^{2}+\frac{t^{3}}{3 T^{3}}-\frac{t^{4}}{4 T^{4}}+\frac{t^{5}}{5 T^{5}}\), छ . when \(T\) is the leffer Term.

And if \(m\) be fuppofed; 0,0002908882 , ઉुc. \(=a\), its reciprocal \(\frac{r}{a}\) will
 ries, Thall give preciely the Difference of the Mcridional Parts, between the two Latitudes to whofe half Complements the affumed Tangents belong. Nor is it material from whether Pole you eftimate the Complements, whether the Elevated or Depreffed; the Tangents being to one another in the fame Rintio as their Complements, but Inverted.
In the fame- Difcourfe. I alfo fhewed that the Series might be madè to Cönverge twice as fwift, all the Even Powers being omitted; and that putting \(\tau\) for the Summ of the two. Tangents, the fame Logarithm would be \(\frac{2}{m}\) or \(\frac{2 . r}{a}\) into \({ }_{\tau=}^{t}+\frac{t^{3}}{3 \tau^{3}}+\frac{t^{5}}{5 \tau^{5}}+\frac{t^{7}}{7 \tau^{7}}+\frac{t^{9}}{9 \tau^{9}}\), \&cc. but the Ratio of. \(\tau\) to \(t\), or of the Summ of two Tangents to their Difference, is the fame as that of the Sine of the Summ of the Arches, to the Sine of their Difference. Wherefore if S be put for the Sine Complement of the Middle Latituld, and sor the Sine of half the Difference of Latitudes, the fame Series will be \(\frac{2 r}{a}\) into \(\frac{s}{S}\) \(+\frac{s^{3}}{3^{3} S^{3}}+\frac{s^{5}}{5^{55}}+\frac{s^{7}}{7^{77}}+\frac{s^{9}}{9^{9}}\), Brr. wherein as the Differences \(^{3}\) of Latitude are fmaller, fewer Steps will fuffice. And if the Equator be pur for the Middle Latitude, and confequently \(S=R\), and, s to the Sine of the Latitude, the -Meridional Parts reckoned from the Equator will be \(\frac{s}{a}\) to \(\frac{5.3}{3 r \cdot r a}+\frac{s^{5}}{5 r^{4} a}+\frac{57}{7 r^{6}}\), Erc. which is Co.inciodent with Dr.Wal-
2u5swxululis's Solution. And this fame Series, being half the Logarithm of the Raticio of \(\mathrm{R}+\mathrm{s}\) to \(\mathrm{R}-s\), that is of the Verfed-fines of the Diftances from both Poles, does agree with what Dr. Barroow had Ghewn in his XI Lecturer:

\section*{(66.9)}

The fame Ratio of \(\tau\) to \(t\) may be expreffed alfo by that of the Summ of the Co-fines of the two Latitudes, to the Sine of their Difference: As likewife by that of the Sine of the Summ of the two Latitudes, to the Difference of their Co-fines: Or by that of the Verfed-fine of the Summ of the Co-Latitudes, to the Difference of the Sines of the Latitudes: Or as the fame Difference of the Sines of the Latitudes, to the Verfed-fine of the Difference of the Latitudes; all which are in the fame Ratio of the Co-fine of the Mid-dle-Latitude, to the Sine of half the Difference of the Latitudes. As it were eafie to Demonftrate, if the Reader were not fuppofed capable to do it himfelf, upon a bare Infpection of a Scheme duly reprefenting thefe Lines.

This Variety of Expprefion of the fame Ratio I thought not fit to be omitted, becaufe by help of the Rationality of the Sines of \(30^{\circ}\), in all Cafes where the Summ or Difference of the Latitudes is \(3 \mathrm{c}^{\circ}, 6 \mathrm{co}^{\circ}, 9 \mathrm{CO}^{\circ}, 120^{\circ}\), or \(150^{\circ}\); fome one of them will exhibit a Simple Series, whercin great Part of the Labour will be" faved. But the former feems for all Ufes the molt convenient, whether we defign to make the whole Meridinn-Line, or any Part thereof, vĩ. \(\frac{2 r}{n}\) into \(\frac{s}{S}+\frac{s^{3}}{3 S^{3}}+\frac{s^{5}}{5 S_{5}}+\frac{s^{7}}{7 S_{7}}+\frac{s^{9}}{9 S^{9}}\), Br. whercin a is the Lengti of any Arch, which you defign thall be the Integer or Unity in. your. Meridional Parts (whether it be a Minute, League or Degree, or any other,) S the Co-fine of the Middls-Latitude, and s the Sine of half the Difference of Latitudes; but the Secants being the Reciprocals of the Co-fines \(\frac{s}{s}\) will be equal to \(\frac{\mathrm{J} \text { 's }}{r r}\) putting / forthe Secantof the - Middlc-Latitude; and: \({ }_{a}^{2 r}\) into \(\frac{s}{S}\) will be \(=\frac{2 \int s}{r a}\). This multiplied by \(\frac{\int s}{3 S S}\) that is by \(\frac{\iint s s}{3 r r r r}\), will give the Sccond Step; and that again by \(-\frac{3 \iint s s}{5 r r r}\), the third Step; and fo forward till you have compleated as many Plaees as you defire. But the Squares of the Sines being in the fame Ratio with the Verfed-ines of the Double Arches, we may inftead of \(\frac{s s}{3 S S}\) affume for our Multiplicator \(\frac{v}{3 V^{3}}\), or the Verfed-fine of the Difference of the Latitudes divided by thrice the Verfedfine of the Summ of the Co-Latitudes, \&cc. which is the utmof Compendiam:
I can think of for this purpofe, and the fame Series will become \(\frac{2 s r}{a S}\) into I
\(+\frac{v}{3 \mathrm{~V}}+\frac{v^{2}}{5 \mathrm{~V}^{2}}+\frac{v, 3}{7 \mathrm{~V}^{3}}+\frac{v, 4}{9 \mathrm{~V}^{4}}\). Hereby we are enabled to eftimate the Default of the Method of making the Meridional Line, by the continual Addition of the Secants of Equidifferent Arches, which as the Differences of thofe Arches are fmaller, does ftill nearer and nearer ap.

\section*{(670)}
proach the Truth. If we affume, as Mr. Wright did, the Arch of one Minute to be Unity, and one Minute to be the common Difference of a Rank of Arches: It will be in all Cafes, as the Arch of one Minute ; to its Chord : So the Secant of the Middle Latitude ; to the Firft Step of our Series. This by Reaton of the near Equality between \(a\) and \(2 s\), which are to one another inthe Ratio of Unity to \(1-0,00000000352566457713\), \({ }^{3}\) c. will not Differ from the Secant \(\int\), but in the \(9^{\text {th }}\) Figure ; being lefs than it in that Proportion. The next Step being \(+\frac{2 \int^{3} s^{3}}{3 a r r}\) will be Equal to the Cube of the Sccant of the Middle Latitude Multiplied into \(\frac{2 s s s}{3 a r r}=0,0\) 0000000705132908715 ; which therefore unlefs the Secant exceed ten times Radius, can never amount to I in the fifth Place. Thefe two Steps fuffice to make the Meridian Line, or Logarithm Tangent, to far more Places than any Tables of Natural Secints yet extant, are computed to; but if the Third Step be required it will be found to be \(+\delta s\) into \(\frac{2 s^{5}}{5 a r^{4}}=0,00000\) \(000 \mathrm{co000000894.98} \mathrm{;} \mathrm{by} \mathrm{all} \mathrm{which} \mathrm{it} \mathrm{appears} \mathrm{that} \mathrm{Mr.WTighthe's} \mathrm{Table} \mathrm{dees}\) no where exceed the true Meridian Parts by fully half a Minute ; which fniall Difference ariles by his having added continually the Secants of \(1^{\prime}, 2^{\prime}, 3^{\prime}, \Xi^{3} c\). inftead of \(0_{\frac{1}{2}}^{\frac{1}{2}} \mathrm{I}^{\frac{1}{2}}, 2 \frac{\frac{1}{2}}{\frac{1}{2}}, 3^{\frac{1}{2}}\), E \(\mathcal{E}^{\circ}\). But as it is, it is abundantly fufficient for Nautical Ufes. That in Sir Fonas Moor's Nem Syfeme of the Mathematicks is nuch nearer the Truth, but the Difference from Wright is caarce fenfible, till you exceed thof Latitudes where Navigation ceafes to be Practicable, the one exceeding the Truth about half a Minute, the other being a very fmall matter Deficient therefirm.
For an Example cafie to be Imitated by whofo pleafes, I have added the true Meridional Parts to the Firft and Laft Minutes of the Qundrant.

The Firf Minute. 1, 00000001410265862178.
The Second, \(2,00000005641063806707\).
The \(L_{a f t}\), or \(89^{\circ} 59^{\prime} \cdot 30374,96343114\) I 4.228643 , and not 32348 , 5279 as Mr. Wrighth has it, by the Addition of the Secants of every whole Minute: Nor 30249,8 as Mr. Oughtred's Rule makes it, by adding the Secants of every half Minute. Nor 30364, 3 as Sir Fonas \(M_{\text {oor }}\) had concluded it by I know not what Method, though in the reft of his Table he follows 0 ughtred.

The fame may be Deduced independently, from the Arch it felf. For if the Latitude from the Equator be eftimated by the length of its Arch A, Radius being Unity, and the Arch put for an Integer be \(a\), as before; the Meridional
Parts anfwering to that Latitude will be \(\frac{I}{a}\) into \(A+\frac{1}{6} A^{3}+\frac{1}{24} A^{5}+\)

\section*{(671)}
\(\frac{1}{\frac{84}{60}}\) A 7 or \(\frac{61}{5040}\) A \(7 \pm \frac{11}{\frac{2880}{1386}}\) A 9 or \(\frac{1385}{362980}\) A 9, छ3c. which Coneverges much fiwifter than any of the former Serics, and befides has the Advantage of A Increafing in Arithmetical Progrelfion, which would be of great Eafe, if any fhould undertake De Novo to make the Loraritbm Tangents, or the Merilianz Line to many more Places than now we have them. The Logarithm Tangent to the Arch of \(45^{\circ}+\frac{1}{2}\) A being no other than the aforefaid Series \(A+\) \(\frac{1}{6} \mathrm{~A} \hat{3}+\frac{1}{24} \mathrm{~A} 5, \mho_{3}\). in Napier's Form, or the fame Multiplied into \(0,43^{-}\) 429 , ©ुc. for Briggrs's:

But becaufe all thefe Series towards the latter End of the Quadrant do Conoverge exceeding flowly, fo as to render this Method almont afelefs, or at leaft very Tedious: It will be convenient to apply fome oher Arts, by affuming the Secants of fome intermediate Latitules; and you may for \(s\), or the Sine of \(\alpha\), the Arch of half the Difference of Latitules, fubititute \(\alpha-\frac{1}{6}: 3+\frac{1}{120}\) as \(-\frac{1}{5040} a 7+\frac{1}{362880}\) \& 9 , ớc. according to Mr. Nemton's Rule for giving the Sine from the Arch; and if a be no more than a Degre, a very few Steps will fimice for all the Accuracy that can be ciefred.

And if a be commenfurable to \(a\), that is, if it be a certain Number of: thofe Arches which you make your Integer, than wiil \(\frac{a}{a}\) be that Number : : which if we call \(n\), the Parts of the Meidiann Line will be found to be...
\[
\begin{aligned}
& -\frac{\alpha a}{6 r r}-\frac{\int \alpha^{4}}{6 r^{6}}-\frac{\int 4 a^{6}}{6} r^{10}, \operatorname{Sa}_{0} \\
& +\frac{1}{120} \frac{\alpha^{4}}{r^{4}}+\frac{13}{360} \frac{\int^{2} x^{6}}{r^{8}}, 83 \\
& -\frac{1}{5040} \frac{a^{6}}{r^{6}}, \theta_{0}
\end{aligned}
\]

In this the Firft two Steps are generally fufficient for Nautical Ues, efpecio ally when neither of the Latitudes exceed 60 Degrees, and the Difference of Latitudes doth not pafs 30 Degrees.

To conclude I fhall only add, that Unity being Radius, the Co-fine of the . Arch A, according to the fame Rules of Mr. Nowton, will be \(1-\frac{1}{2} A^{2}\). \(+\frac{1}{24} A^{4}-\frac{1}{720} A^{6}+\frac{1}{40320} A^{8}-\frac{1}{3628800} A^{10}\), E3c. from which and

\section*{(672)}
the furmer Series exhibiting lie Sine by the Arch, by Divifion it is cafie te conclude, that the Naturai Tangent to the Arch \(A\) is \(A+\frac{1}{3} A ;+\frac{2}{15} A\) s \(+\frac{17}{315} A^{7}+\frac{62}{2835} A 9\), Orc. and the Natural Secant to the fame Arch I \(+\infty+1^{+}\) \(\frac{2}{22}+\frac{5}{24} A^{2}+\frac{61}{720} A^{6}+\frac{277}{8064} A^{8}\), छ'c. and from the Aritbmetick of Infinites, the Number of thefe Secrnts being the Arch \(\Lambda\), it follows that the Summ Total of all the Infinite Secants on that Arch is \(A+\frac{1}{6} A^{3}+\frac{1}{24} A^{5}\) if \(\frac{60}{5040} \mathrm{~A}+\frac{277}{72576} \mathrm{~A} 9\), 3 C . the which by what foregoes, is the Looraritbm Inngent of Napier's Form, for the Arch of \(45^{\circ}+\frac{1}{-2}\) A, as before. And Collecting the Infinite Summ of all the Natural Tangents on the faid Arch \(A\), there will arife \(=A+\frac{1}{12} A+\frac{1}{45} A^{6}+\frac{17}{2520} A^{8}+\) \(-\frac{31}{14175}, A^{10}, S_{0} c\). which will be found to be the Logarithm of the Secant of the fame Arch \(A\).

To finl the Variation of the Comprats at Sca by :2.24. f. 435.
XXXIX. The Height of the Pole, and the Suns Declination being known, a large Ring-Eial, truly wrought, having a Box with a Compats or necdle fixt oo its Meridian below, may go as near as any other Inftrument, to thew the Wariation of the Noclle at Sea. For, when it is fet to the jut Hour and Minute of the Day, the Meridian of it ftands juft in its due place ; and fo hews how far the Needle Varies from it, as exactly as the largenefs of the Card will permit.

But becaufe thefe Dials are fo rarely Juft, \(\mathcal{B c}\). though they may be ufed and taken notice of, yet they are not to be relied on. The thing therefore is to be performed, as followeth:

Find out the Sun's \(A \underset{\imath}{2}\) imuthal Difance from the Meridian fome hours be-
 Meridian pointed at by the Necdle, and the Difference of thefe two Diftances, is the Variation of the Necdle.

To find the Sun's true Azimuth, or by how many Degrees, 3 c. of the Horizon, it is diftant from the Meridian: It's Declination, it's Altitude, and the Elevation of the Pole, muft all three be known; and thence the true Azimuth may be eafily Calculated. The true Azimuth of the Sun being thus found, and the Margnetical Aipimuth of it accordiug to your Necille, being oblerved, Subftract the leffer Number from the greater, and the Remainder is the Variation of the Necdle. If the Magnetical Azimuth be lefs than the other, then the Variation is towards the fame fide of the Meridian, where theSun is; if greater, on the other.

\section*{(673)}

Fo obferve the Sun's Azimuth by the Needle, and the Needle's Varixions. to Degrees, any Needle long enough to afford upon a Card under it a Circle divided into Derreces, put in a fquare Box after the ordinary manner of Clinatories, will lerve turn; by placing the Box fo, as the Sun may thine upon any two oppofite fides of it, at the fame time that the Sun's Height, Ẻc. are taken. For then the Necdle's diftance from the Diameter of the Circle on the Card, that is parallel to thofe fides, is the Magnetick Azimuth required.

The fame may be donc with an ordinary Sea-Compafs, fo it have a Circle towards the Limb of the Card divided into Degrees, by faftning a fmall Thread, Lute-ftring or Wire (not of Iron) fo upon it, as to pafs juft over the Center of that Circle; and placing a Strait piece of Wood or Brafswire perpendicular on the edge of the Box at the end of the Thread, and turning it to the Sun till the fhadow of it fall juit upon the Thread: then obferve, what Degree of the Circle on the Card the Thread cuts, by looking plum upon it; and that is the Sun's Magnetical Azimuth.

But to have the Variation to Degrees and Minutes (which is moft defirable) then the Obfervation laft mentioned muft be made with a Quadrant, Sextant, or fome fuch other Infrument, fo large as to admit of the Divifion of a Degree into Minutes; which will require the Radius to be about 3 Foor; the larger the better. If a quadrant, then, it being laid. Flat and the Square Box with the Needle placed upon it, move the Quadrant to and again, till that fide of it, on which the Box is placed, lie parallel to the Necdle when at quiet: Then the Sight of the guadrant being flid along the Limb of it, till the Sun fhine on both its fides at the fame time, the MidLine, that divides equally the Sight, when the Sun Shines upon it through the Slit, will mark the Degree and Minute of the Sun's Magnetical Azimuth. All which is eafie to be put in practice.

To find this Variation by the Stars, is fo eafie, that every Mafter can do it.
XL. It is a received Error, in the Practice of obferving the Variation at 14 caution for Sea, to take it by the Amplitude of the Rifing and Setting Sun, when his Center Variation appears in the Vifible Horizon; whereas he ought to be oblerved when his at Saz; by Mrz . Under-Limb is ftill above the Horizon about \(\frac{2}{3}\) of his Diameter, or 20 Minutes, upon the Score of the Refraftion, and the Height of the Eje of the obferver above the Surface of the Sea: Or elfe they are to work the Amplitude as they do the Azimuth, reckoning the Sun's Diftance from the Zenith \(90^{\circ} 36^{\prime}\).

This, though it be of little confequence near the Equinoftial, will make a great Error in High Latitudes, where the Sun Rifes and Sets Obliqueiy.
XL.I. The Latitudes of the Lizard and Scilly are laid down too far Acartion to Northerly by near 5 Leagues: For from undoubted Obfervation the Li- up tbe Englifh zard lies in \(49^{\circ} 55^{\prime}\). the middle of Scilly due Weft therefrom, and the South Channel ; by part thereof neareft \(49^{\circ} 50^{\prime}\). whereas in moft Charts and Books of \(\mathrm{n}, 267^{\circ}\). \({ }^{\circ} \cdot 725\).

Vol. 1.
RIrr
Na-

\section*{(674)}

Navigation they are laid down to the Northward of \(50^{\circ}\). and in fome full \(50^{\circ} 10^{\prime}\). Nor was this without a good Effeet as long as the Varition continued Enferly, as it was when the Charts were made. But fince it is become confiderably weferly, (as it has been ever fince the Year 1657.) and is at prefent about \(7_{\frac{1}{2}}^{\frac{1}{2}}\) Dez. all Ships ftanding in, out of the Ocean, Eaft by the Compafs, go two thirds of a Point to the Northward of their true Courfe, and in every 80 Miles they Sail, alter their Latitude about \(10^{\prime}\). So that if they mifs an Obfervation for two or three Days, and do not Allow for this Variation, they fail not to fall to the Northward of their Expectation, efpecially if they reckon Scilly in above \(50^{\circ}\), and to run up the Brifol Channel, not without great Danger of all, and the Lofs of many, of them. This has been by. tome attributed to the Indraught of St. Gcorges Channel: But the Variation being allowed, it hath been found that the faid Indraught is not fenfible. It is therefore Recommended to all Mafters of Ships that they feer two Watches E. b. S. for one E. which will exactly keep their Parallel; as alfo. that they come in, out of the Sca, on a Parallel not more Nurtherly thans \(49^{\circ} 40^{\prime}\). which will bring them fair by the Lizard.
XLII. Papers of Lefs General ufe, Omitted:
sendulusm Watches. n. 118. p. 440.
vid. Sup. Cap.V. §.V.

Mr. Oldenburg having Publifhed from the Fournal des Scavans, an Account of M. Hugens's Portable Watches, Dr.Hook, in the Pofffcript to his Discription of Heliofcopes, Complains of it, for not having taken notice, that this Invention mas firgt found out by an Englifo Mann, and long fince Publifbed to the World: To this Mr. Oldenburg Anfwers, by relating the Plain Trutb of the Matter: Whereupon Dr. Hook in a Poftcript to his Lampas further Complains ands Reflects on Mr. Oldenburg's Integrity and Faithfulnels in bis Managenzent of the Intelligence of the Royal Society. This gave Occafion to the Council of that Society to Declare Tbat Mi. Oldenburg bad carried bimfelf Faithfully and Honeftly, And bad given no juft Caufe of Such Reflections; To. which Mr. Oldenburg Adds part of a Letter from Mr. Hugens to him, Offering (if Mr. Oldenburg beTieves a Patent in England might be worth Somettring) all He might therepretend to So that if Mr. Oldenburg had a Defire to take out a Patent, it was for no other Contrivance but Mr. Hugens's.

\section*{XLIII. Accounts of Books and Emendations, Omitted.}
3.231. p. 670 .
3. 23 I. p. 671,
I. Volumen Primum Geograpborum Gr. Minorum. Oxon. in 8 ovo.
2. Dionysi Periegefis, Grxce \&r Latine, cum Scholiis Gr. tam Editis quam Ineditis. Cura Edv. Thponites. M.A. Oxon. in \(8 v o\).
n: 91. po.5172. 3. Bernhardi Vareni M. D. Geograplia Generalis; Auctii \& Illuftrata ab Ifanco Nesptono. R. S: S. Cantabo.. 1672 . in 8 vo.
mo.231. p. 666. 4. PbilippiCluverii Introductio in Univerfam Geograpbiam, tam Veterem quam Novam: Tabulis Geographicis 46. ac Notis olim Ornata à Fornne Bunone; jam vero Locupletata Additamentis \& Annotationibus fo. Fria. Hekelii \& Fo. Reiskii. Amft. 1697. in 4 to.

\section*{(675)}
5. Geogiappy Anatomiz' \({ }^{3}\), or a Compleat Geographicat Gramimat. Being at.255.p.3353 fhort and Exact Analy/is of the whole Body of Modern Geography, after a New and Curious Method; by Pat. Gordon. M. A. F. R. S. The Second Edidition.
6. An Account of the Meafure of a Degree of a Great Circle of the Earth; ; . .1.2. p. 26 f .
 Sec. Lond. 1687 . This Book is bere Abridg'd; and the Sum of the whole amounts in Part to this. M. Picart meafured on a Plain and Jtraight Ground a Space of 5663 Toifes, to ferve for the Firft Balis to Divers Triangles; by which be bath concluded the Length of a Meridian Line Equivalent to a Degree of Latitude, to be 57060 Toifes or Fathoms, that is, \(28_{2}^{\text { }}\) Leagues and 60 Toifes.
7. The Seamans Practice; by Mr. Richar.t Normood. Lond. I.636. in \(4 . t 0\). n. 126. . 9.636. The Meafure of a Degree is here extrated from that Book. Mr. Norwood An. 1635. baving actually meafured, for the mop part, the way from York to London, and baving obferved the Meridian Altitudes of the Sun in both Places, be found the Difference of Latitude to be \(2^{\circ} 28!\). and the Diftance of their Parallels 90575 I Englifh Feet; and therefore one Degree of a Great Circle is 367196 Fect, or Numero Rotundo 367200 Feet, which is equal to \(69 \frac{1}{2}\). Englifh Miles and II Poles; Whereas the French make it no more than 365000 Juch Fect.
8. Longitude found; by Hen. Bond. Sen. Lond. 1676: in \(4^{\text {to. A Miftake in }}\) m. 95. p: 00650 that Book is here Corrected.
n. 130 po. 774.
9. A Book publifhed by Mr. Fo. Moxon's, defcribing a new fort of Terreftrial Globes Invented by the E. of Caflemain.
10. The Englifh Atlas. Oxford, for Mofes Pitt. I680. Fol.

Ph. Col. h. I.
p: 43 .
II. A new \({ }^{\circ}\) Map of England full 6 Foot Square, wherein Compuied and Menfured Miles are entered in Figures; by \(M_{r}\). \(\mathfrak{F}\). Adams.

Phi. Col. no 22
I2. A Large and Curious Map of Great Tartary; by \(M\). Nich. Witfen.
70. \(5930 \% 04930\)

\section*{(676)}

\section*{C H A P. VIII,}

\section*{Architecture. Ship-Building.}

Stones fit for 1. ITHERE is a fort of Gray Freefone at Paris every where on the Building ; by South fide of the River Sene, which is of a reafonable Courfe Greet, and fo Soft when fift taken out of the Quarry, that 'tis dreft and hewen with broad tharp Axes almoft as eafily as dryed Clay; but grows harder and harder in the Ait; 'tis very Durable and Exceeding fit for Building. The Portand Stone is of a fine Chalky Greet, fut for all Curious hewen and Carved Work, though not fo fit for Water or Fire. On the Contrary the Fresfone in Kent, of a Whitifh Gray Colour, lafts well in Aif and Water; the Greet thereof lefs fine and Chalky than that of Portland. The Derbyfire Freffone, though it endure the Fiercelt Fire, is:yer Brittle, and fo unfit for fine and curious. Workmanfhip.

The choice and charges of Slate, for covering. Houfes; by Mr Sam. Coleprefs. ni go. po. 1009 .
II. I. Take the thin cleft Stone, Slat or Shindle, and fo knock it againft any hard matter, as to make it yield a found; if the found be good, and clear, that fort of Stone is not crazy, but firm and good, Or
2. If in hewing it does not break before the Edge of the Sects frthe Hewing Inftrument of the Slatters) you may not much doubt of the Firmnefs of the slate. But
3. If after it hath been exactly Weighed (and the accompt thereof Laid by) it be put, and for 2,4 , or 8 , hours left to remain all under Water in a Veffel; and afterwards taken up and wiped very clean with Cloaths, ifs then it Weigh more than before 'tis of that kind, which imbibes Water, and therefore not fo fit to endure any confiderable time wihout rotting the Lathes and Timber.
4. There stones may be pretty well gueffed at, whether they be of a Clofe or Loofe texture, by their colour: For the over blackifh. Blew is apteft to take in Water; but the Lighter Blew is always the Firmeft and clofeft. To which may be added the Touch; for, a good Stone feels fomewhat hard and rough ; whereas an open Stone feels very fmooth, and as 'twere. oily.

5, Place your Stone Longways perpendicular in the midft of a Veffel of Water (no matter how Shallow the Water be, fo it exceed half a Foot depth ; ;) and be fure, the upper un-immerfed part of the Stone be not accidentally wetted by the hand, or otherwife; and fo let it remain a day, or hals a day, or lefs. If it be a good firm stone, it will not draw (as they

\section*{(677)}
fpeak) Water above half an Inch above the Level of the Water, and that perhaps but at the Edges only, the parts of which might be fomewhat loorened in the Hewing. But a bad: Stone will draw Water up to the very tops be the Stone, as long as it will, all over.

As for the Cbarge of Covering Houfes with Slate, they may be thus. computed.
1.000 of: Efford Small Blew at the Ships fide in Plymouth harbor-5 6 1000 of Efford Large Blew - 9 1000 of Can Pelmel -70 1000 of Small Blew of other Quarries 1000 of Large Blew
3000 of Small Blew, accompted 2 . Tuns in Carriage by Water.
10.00 of Large Blem; I Tun.

3000 of Small will cover r Poole of Work at the 5 pin plain.
Every Poole of Work is either 6. Eoot Broad and r4 up, on both fides or I 68 Foot in Length, and one in Breadth.
3000 of Large, will cover 2 Pooles of Plain Work.
Hewing of all forts of Plain Pelmel per 1000 — Pinning per 1000,8 d. Pins per \(1 c 00,8 \mathrm{~d}\). -Three Bufhels. (Winchefer meafure) of good Lime will take 6 buthels of Frefh Water Sand, and ferves to lay on one Poole of:Work; though muck: lefs may ferve the turn.
300 of Lathes to every Poole of Work:
1000 of Lath Nails to every 3000 of Laths.

\section*{An able workman may}
\[
\left\{\begin{array}{l}
\text { Lath one Poole of Work } \\
\text { Lay on } 2000 \text { or more of Slate } \\
\text { Hew 1500 plain. } \\
\text { Pin 4000: }
\end{array}\right\} \text { by the diay. }
\]

Chequer-Work confifts in Angles, Circles and Semicircles, Ece which re quires no common Skill and time in Hewing and Laying.

It is worthy obfervation, that if a Side wall happen to take wet by the beating of the Weather, or the like, when nothing elfe will cure it, our Kerfro ing with Slate (which is much ufed in the curious: Fronts of Houfes efpe cially in Towns) : will quickly Remedy it.

Wie have. fome forts, which by the Conjectures of the moft experienced Helliers (or Coverors with Slate) have continued on Houfes feveral Hundreds of Years and are yet as firm as when firft put up.

IIF. The Cuftom of Felling Timber here in the South of England, differs from that of Stafforfire, in the time of Felling, and manner of Barking. The Beff Time. It is Felled bere in the Spring, as foon as the Sap is. found to bo fully up of Felling of , ine by the Trees putting out, and then Barked after the Trees are proftrate, the Reber plot.
 the Soring, as here) but before it is Felled, the Trees yet Living and Standirg all. the Summer, and not Felled till the following Winter, when the Sap is fully: in Repofe.

\section*{(6.9)}

In the Spring Seafon and fome time after, All Trees are Pregnant and fend themfelves (as Animals do in their Refpective Off-Springs) in the prodution of Leaves and Fruits, and fo beconiie weaker than at other times in the Year ; their Cavities and Pores being then Turgid with Juices or Sap, which (the Trees being Felled at that tinie) Atill Remain in the Pores, having no manner of Means of being otherwife Spent, and there Putrifie ; not only leaying the Tree full of thofe Cavities whick render the Timber Weak; but Sea condly Breeding a Worm, as both Piiny and-Mr. Evelyn Tefifie, that will fo exccedingly prejudice-it, that it becomes-altogether unfit for ftrong Incumbencies, or other-Robult-Ufes. Thirdy, All Timber Felled at this time of the Year, whether the Juices Putrifie, or otherwife fweat forth, or Dry away, is not only Subject to Rift anid Gape, but will Shrink fo confiderably, that a Piece of fuch Timber of a Foot Square will ufually Sbrink in the Breadth \(\frac{3}{4}\) of an Inch; than which, fays Vegetius, nothing is more Pernicious if ufcd for the Building of Ships. To which, Fourthly; the Firft and Greateft Roman Emperour Fulius Cafar adds, that though Ships may be made of fuch moift Timber Felled in the Spring, yet they will certainly be Sluggs, not near fo good Sailers as Ships-made of Timber Felled later in the Year:

In all which Circumftances I find moft of the Ancients fo very well agree, that none of them advife the Felling of Timber for any fort of ufe before Autumn at fooneft; others, not till the Trees have born their Fruit, which fays Theophraftus, muft always be proportionably later, as their Fruits are Ripe later in the Year ; A third Sort, not till Mid-winter: not till November fays Palladius, nay not till the Winter Solfice fays the wife Cato; and then too in the Decreafe or Wane of the Moon, between the \(15 t /\) and 23d. day of her Age fays Vegetius, or rather according to Collumella between the \(20 t h\) and the New-Mom. In general, fays Theoprbaftus, the Oak muft be Felled very late in the Winter, not till December, as the Emperor Conftantinus Pogonatus pofitively afferts, the -Moon too being then under the Earth, as 'tis for the moft part in the Day time in the firlt part of its Decreafe. And the Felling of Oak within thofe Limits, they call Tempefiva Ceffura, Felling. Timber in Seafon', which they all unanimoufly pronounce (if thus Felled) will neither Shrink, Wher nor Cleave, nor admit of Decay, in many Years; it being toügh as Horn, and the Whole Tree in a manner (as Thicopbraffus afferts) as hard and firm as the Henrt; with whom alfo agrees our Country-man Mr. Evelyn, if you Fell not Onk (fays he.) till the Sap is in Repofe, as'tis commonly about November and December, after the Froft has well Nipped then, the very Saplings thus cut, will continue without Decay, as long as the Heart of the Tree.

And the Reafon of this is given in flort by Vitruvius, quia aeris Hyberni vis comprimit © confolidat Arbores, becaufe the Winter Air doth clofe the Pores and fo confequently confolidates all Trees, by which means the Oak (as he and Pliny both exprefs it) will acquire a fort of Eternity in its Dutation; and much more will it fo, if it be Barkt in the Spring, and left ftanding all the Summer, expofed to the Sun and Wind, as is ufual in Sinfforibire, and the Adjacent Counties, whereby they find by long Experience the Trunks of

\section*{(679)}
their Trees fo Dried and Hardened, that the Sappy part, in a manner, becomes as firm and durable, as the Heart it felf.

Which way of Barking and Felling of Timber, tho' it were unknown to the Ancients (as perhaps it is to all the World befides thefe few Counties) yet they feem not unacquainted with the Rationality of the Practice. The Great Vitrusuius prefers the Timber on the. Soutb-fide the Apernine (where it winds about and inclofes Tusconyy, and Campania, and ftrongly Reflects the conftant Heats of the Sun upon it, as it were from a Concave,) incomparably before that which grows upon the Nortlj/ \(\operatorname{sid}\). of the fame Hill, in the fhady moitt. Grounds : of which his Opinion he renders us this Reafon, for that the Surz does not only lick up the fuperfluous Moitture of the Earth, whence the Trees are fupplied in fuch Shady Places with too great a Quantity, but in great meafure Exbiales the remaining Juices (affer the Production of Leaves and Fruits) out of the Trees themfelves, Rendering the Timber of them the more Clofe, Subitantial and Durable; which certainly it would do alio much more effectually, if the Bark were taken off in the Spriny of the Ycar, as is accuItomed in Staffordfbirc, where the People are content to ufe this Mechod in cheir Proviiion of Timber, though but for private Ules.

Much rather then fhould it be done in fo Publick a Concern as the Building of Ships, where Tough and Solid Timber is much more neceflary than in Ordinary Buildings. There is indeed an Act of Parliament. I. Fac.1. Cbap.22: which forbids Felling of Timber for Ordinary Ules (in confideration of the Tan) at any other time but between the Firft of April and the Lait of func, when the \(S_{a p}\) is up and the Bark will Run; made on Suppofition (I guiefs) that fhould they have admitted Felling Timber in any other Seafon, the Tanners would have wanted a Supply of Bark. To which I readily anfiver, That If fear the Legiflators that prefled the making that \(A C t\), were ignorant that the Bark might be taken off in the \(S_{\text {pring }}\), and that the Tree would notwithftanding Live and Florifh till the winter following, as I have feen many in Staffordfaire: So that though the Tree be not Felld dill the UTinter Solftice, or faniuary following, yet the Tanner is not at all defeated of his Tan, but has it here in as due Seafon, as in any of the Soutberne Counties. The Legijateors, I fay, were ignorant of this; otherways they would never have made an \(A \notin\) fo Pernicious to the whole Kingdom, as Felling Timber at this Seafon is, for the fake of a few Tanners.

But notwithftanding this Ignorance, yet then they were fo Wife as to exeept in that Aat the Timber to be ufed in Building of Ships, which may be Fell'd in \(W\) inter, or any other time; as I am told all the ancient Timber remaining in the Royal Sovercign was, it being ftill fo hard that 'tis no eafie matter to drive a Nail into it.
'T Tis true indeed that the Barking and Peeling the Tree Standing is fomewhat more Troublefome, and therefore fomewhat more Chargeable, thàn when they are. Proftrate; and that 'tis likely, People therefore have ufually Fell'd their Timber, as well for Shipping as other Ules, in the Spring of the Year, for the fake of the more eafie and cheap Barking it only, rather than any thing elfe. This true too, that Timlery is harder to Fell in the HTinter, it being now fo Com-

\section*{(680)}
paet and Firm, that the \(A x\) will not make fo great Impreflion as it doth in the Spring, which will alfo Increafe the Price of the Felling fome fmall matter, and in's Sawing afterwards; but how inconfiderable thefe things are in comparifon of the great good of this manner of Felling, I think is Self-Evident.

The Greateft Objection, that I can forefee will be urged bere in the South againft this Practice, is, that if the Timber be not Fell'd till Mid-winter or \(\mathcal{F a}\) suary, where it grows in Copfes and Woods, they cannot perhaps Inclofe their young Sprinigs to foon as fome may imagine needful, and therefore will be backward to Fell their Timber (fo Growing) at that Seafon. To which I Anfwer, that the Timber fo Fell'd in the Wood or Coples, may be eafily carried off before the Second Spring, and fo the Prejudice froall, and the Firt it muit be there, wherever it is Fell'd. But fecondly, that which will quire remove this inconfiderable Difficulty is, that perhaps it may be Expedient that no Timber whatfuever Growing in Woods or Copfes, be at all bought into the King's Xards, for that Timber Growing in fuch Shady Places, ond to fenced from the Sun and Wiznd, as Timber in Woods for the mof part is, cannot be fo good as that which comes from an expofed Situation, fuch as it ufually has in Forrefts, Parks, Hedre-roms and Open Fields: where too it is indifferent at leait, if not better, for the Proprietor, that it be Fell'd in Winter (when the Grafs and Corn is gone) than in the Spring it felf; and the Officers affigned for that Purpofe may Buy all their Timber under fuch Conditions as to be Fell'd in Winter, enjoining the Proprietor to take off the Bark in the Spring in due time, making him fome fmall Allowance for the Trouble he will have in Peel: ing it Standing.

The Diffrence of Timber in Different Countries, and Fell'd at lifferent Seafons ; by \(M\). Ant. Van. むeuwenhock. (8.213.p.224,
IV. It is the Common Opinion, that Timber which is Fell'd in Winter is ftronger and more Lafting, as being more Clofe and Firm, than that which is Fell'd in Summer: But M. Leuwenhock's Sentiment is, that there is no Difference, except in the Bark and outermoft Ring of the Wood, which in the Summer are Softer, and fo more eafily Pierced by the Worm ; Wood confilting of Hollow Pipes, which in the Summer and Winter both, are full of Moifture, they do not Sbrink in the Winter, and therefore the Wood cannot be Clofer at one time than another: For otherwife it would be full of Cracks and Clefts. The Sudden and Unexpected Rotting of fome Timber, he conceives to proceed from fome Inward Decay in! the Trce before it was Fell'd: having Obferved all Trees to begin to decay at firft in the Midlt or Heart of the Tree, though poffibly the Tree may Stand and Grow for near an Hundred Years afterwards; and Increafe in Bignefs all along.
2. He fays, he was once of Opinion, that Trees growing in good Ground, but Increaling flowly, were the beft and ftrongeft Timber; and that thefe Trees which in few Years grew Large, was the Softelt and Britleft ; the Contrary to which, upon Enquiry of Experienced Workmen, he found to be true, and Inftances in an Elm of 80 Years Growth, which was in Foot in Circumference, and proved Excellent Tough Timber.

\section*{(681)}
3. The Age of Trees is to be known by the Number of Rings to be feen when the Tree is cut a-thwart, in each of which. Rings is one Circle of large Open Pipes; now the fewer of thefe Large Pipes, the Stronger the Timber is : wherefore by Confequence thofe Trees that make the Largeft Growth in a Year, muft be the Clofer and Stronger, and therefore thofe Trees that Grow in Wharm Countries Grow falteft, and are the Belt and Toughef Timber; which he confirms by Rign and Dantzick Oak, which is of Slow Growth, and proves Spongy and Brittle Timber, whereas the Contrary is Obfervable in Englifh and French Oak, which grows Fafter, and is Excellent Timber.
V. 1. This Famous Roman Bridge at Pont St. Efprit is very Crooked, Toe Bridge as Bowing in many places, and making feveral unequal Angles, efpecially in France; by \(D\). thofe Places, where the Torrent runs ftrongeft, as where the Tur ret ftands. Tankred 4. In which Place the Angle is moft Unegual, and the greatelt; the Arches are very Wide, and have their Feet fecured by two Pedeflels that encompafs them. Both thefe Pedeffals have their feveral Degrees of Ranks of fettings out, Robinfon n. 160 p. 394. like fo many Rows of Stairs or Steps, the Lowermoft Order pufhing out moft, the others being Lefs, and going gradually more in ; the Second or Uppermoft Pedefial is much lefs than the Firf or Lowermoft, being Built a little within its Lines of Circumference; 1, -2. Between the Great, Arcles there are Windows, or (as it were) fmall Arches; 3. that come down to the very Plane of the Second, or Uppermoft Pedeftal dividing the Feet of the great Arches. From this my Rude Defcription it appears to me, that the Romans have here contrived all poffible ways to break gradually the mighty Force of the Rhofne, and to render its paffage eafie, and inoffenfive to the Feet of the great Arcbes; for here we fee fo many feveral Palifadoes and Sluces, as may be fufficient to defend this wonderful Fabrick againft all Storms of the Torrent; the feveral Ranks of Stairs jetting from the Pedefals (for the moft part Triangularly built, and Faced well with Free-ftone) oppofing and breaking the Strcam feverally, I mean, not altogether or at the fame time, by reafon of their various Inequalities in Standing Out: in cafe the Flood fhould fwell fo high (as it frequently does) as to cover both the Pedeftals, then the frall Arcles, Dividing the Feet of the great ones, help to convey the Water through, which otherwife might endanger the great Arches.
2. That which feems the Foot of the Archb is an Horizontal Arch gradually py Dr. Lifter contracted, every Stone-being of vaft Length and Wedge like, laid Level \({ }^{i b . p \cdot 585}\). with the Water. This I fpeak by Memory.
3. The Stately Modern Bridgc at Avignon hath yielded in many Places compared mith to the extream Rapidity, and violence of the Rbofne. Its fall in my opinion Some otber may be Afrribed to thre dridges; by may be Afcribed to three defects. Firf, it was not fo Multangular, as that pr.Tank. Roat St. Efprit: Secondly, it wanted in three or four places, the little Arclues binfon. Dividing the Feet of the Great ones, and in thofe parts it hath fuffered moft; \({ }^{n .163 . p .712 .}\) for where thofe ufful Sluces are, there I obferved the Bridge to ftand ftill the moft intire. Thirdly, the Pcdeftals (or as you very properly call them Horizontal Arcles) were not fo Geometrically and exactly Laid, as thofe of Pont St. Efprit, their fettings out were few, and they not gradually contracted ; fo that the Force of the Stream mult be the greater upon the Fabrick.

Vol. I.

\section*{(682)}

Though the Tyber be not fo fwift as the Rbofne, yet it is Subject to greater Inundations, as many Infcriptions affure us. No River ever had fo many Bridges Built with that Magnificence and Art, as this; and though they were more Pompous, and Rich in Rare Stones, in Sculpture, Ecc. than that I formerly fent you a draught of from Montpelier; yet they had the like Provifion for their Security, and Prefervation, and their Defign was much the fame; which may be feen at Rome this very day at the old Pons Milvius (now Ponte Nolle) near the Vin Flaminie; in the Marble Remains of the Pons Emilius (repaired with Rich Materials by Antoninus Pius) on the fide of the Ripa, or Traffavere, near the Root of the Aventine Hill, where firft the Pons Sublicius ftood; as alfo in the Pons Fabritius and the Ceftius, that leads over to the Infula Tiberina; in all which there are ftill very fair marks of the Old Roman Structure, and \(D_{e} / \operatorname{lign}^{n}\); and if that prodigious City had not been knockt fo oft to pieces by Barbarous Sackers, we might have had ftill as clear proofs from the othei Bridges, Viz. the Pons Triumplatis, the Senatorius, \&cc. But Gothif and Northem Torrents broke all before them.
\& Bridge mitb. outs any Pillar under it ; from the Fournal of \({ }_{\text {the Phil. Soci- }}\) ety of Oxford, ib. p. 754.

Fig. 216.
VI. A Timber Bridge may be Built 70 Foot Long, or fomewhat more, without any Pillar under it, which may be ufeful in fome Places where Pillars. cannot be conveniently Built, after this manner; AC , and BO , are Beams 28 Foot long, and A B, is 32 Foot Long. Under the Angles are fet two Large Braces E L, and S R. At each End is a Wall, on which are laid two Beams BH, and AD, each 20 Foot Long; under thefe are two Braces DE, and RH. There may alfo be Braces. at the Ends of the Aicloes, that may lie Obliquely crofs the Bridgc. It may be laid with Planks and Railcd. Behind the Walls are Caufcys FD, and HN. The Length of the Bridgc CMO, is 70 Foot; the Height K M, is I9 Foot.
[st Aqueduct: mesrVerfailles.

VII. I: The Aqueduct which is to be made near Maintenon, for the Carrying the River Eure to Verfailles, will have in Length 7000 Fathom; 462 whereaof will be 35 Fathom and 4 . Foot High, the relt will be lower according to the Difference of the Ground; but no lefs than 5. Foot and 6. Inches High. There will be to the faid Aqueduct 8.61 Arches, which, where they are Higheft, will have 12 Fathom in Breadth, and 8 Fathom in Thicknefs, diminifhing to 14 foot at the Top. The other Arches will be leffer in Breadth, as well as Thicknefs, according to the Nature of the Ground. The faid Aqueduct will have 15. Inches. Fall to every Thoufand Fathom in Length; fo that for the 7000 Fathom, there will be 8 Foot 8. Inches Fall. The River as. to pafs by Maintenon, le Parc Efpernon, Gajeran, Rambouillet, les Effars, be Perrey, Cognieres, and from thence to Verfailles. There are 14000 Soldiers. that Work there, under the command of the Margucss: d'. Vxello, with three Commiffarys of War for their Conduct.
20.876.po. 3896. 2. A Magazine fur the Waters upon the Mountain Montboron is already Cutg, which will have 2,200 Perches of Surface (each Perch being 18 Frencis: Foot) and I2 Foor in depth. In another place much lower, will be ano*thess Alagarane, to reseive the Whaters of many, Pools, the moft part of which

\section*{(683)}
as yet have no Water in them. In the valley of Buc will be an Aqueduct, the Middle whereof will be raifed 22 Farhom High, for conveying the Pools of Sarle, which its faid contain much Water, though there be nothing but Rain to fill them; this Aqueduct is 300 Fathom Long, and paffes through two Mountains which have been cut through upon that Account. The Valley alfo on both fides of the Aqueduct is Raifed In Fathom High to make Paffages.

An Aqueduct alfo is making near the Tower of Stone (where the Mills Raife the Water) which will now pais without Force to the Top of the Mountain; and there be part of it Diftributed into feveral very great Cifterns, which are making above Marli, for that Place.

The Elevation of the Aqueduct of Maintenon is nove fet fort \({ }^{\text {h }}\) at but 2560 Fathom; whereas it was Defigned to be carried on more than 8000 Fa= thom, and the Remainder will be made of Earth, which muft be brought thither: This Opinion prevails, in regard it gives a Quicker Difpatch, though it may be doubted, it will not be for the Better.

Thefe 2560 Fathoms contain 242 Aicades, whofe Aperture is. 6 Fathom and \(\stackrel{x}{z}\), and the Face of each Pillar Suftaining the Arches, 4 Fathom; there will be then on the fide of Maintenon 33 Single Arches, afterwa:ds 7 I Double ones; (as having one Aich upon another) then 46 Treble ones; which will generally be \({ }_{2} 16\) Foot 6 Inches High, (viz. up to the Floor of the Channel) afterwards 72 Double ones; then 20 Single, which will reach to the Mound of Earth, that is to be 50 Foot High.

From the Ground up to the Second Arcade are i6 Fathom, from the Sccond to the Third, or upper Aicade, are I4 Fathom, (which Arcades are Double in Number to thofe they ftand upon) and 6 Fathom 6 Inches more, to the Floor of the Channel, which will at leaft be 6 Foot High, befides the Parapet.

The Pillars by the Ground are 8 Fathom Thick, but what with the Slopes, and Shortnings, which are made in cvery Story, the Top where the Channel goes, will be but 20 Foot Broad: There will likevvife be at each Pita Buttress jetting out one Fathom, and two Fathom wide.

The Intelligent Obferver, though well Skilled in things of this Nature, as being no Stranger to the Writings of the Antients, or the Famous Ruines and Remeinders of their Fabricks in Italy, and other Places, profeffes himfelf Surpriz'd with the greatefs of this undertaking at Verfailles, and Maintenon; for the Magnificence of the Defign, the Number of Labourers, the Excef-. fivenefs of the Expence, and the admirable Beauty of the Work
VIII. Having been lately at Elfgecot in Novthamptonfoire, at the Houfe of \(\mathcal{A}\) verylarge
 Chimneys, vaflly large, of Stonc- Work: Which I took the more Notice of, be- fort of Archcaufe of a Peculiar Way of Arch-Work in the Front of them; whercby, Work by Wro without the Advantage of a Difcharger of Timber (which is ufual, in fuch \(\%\). Wallis. 16.800 . Cafes, to defend the Arch-Work from being Overburdened, an Arcls of maffy

\footnotetext{
Fig. 217,
} Stone (in each of them) fuftains it felf at a great Length, though almoft upon

\section*{(684)}
a Flat, being very little Rais'd in the middle. Over this Arch (after fome walling Interpofed) there is another \(A r c h\) (to defend the former) more Raifed from the Flat. The Dimenfions of all, I have thought fit here to Subjoyn.

A B. The Breadt, berween the Famls, from infide to infide, 18 Foot:
C D. The Depth of the Soones in the Laver Arch, 22 Inches; Locked one into another, with a Crooked joynt.

DE. The Diftance in Walling, between the Arches, 2 Foot and 7 Inches.
EF. The Depth of the Stones for the Upper Arob, I:5 Inches: with a Straight Fornt.

GH. The Place of two vaft Tunnels of Stone.
K. A Windom between them:
A. Neto kind of. Stairs ; by M. by which a Man faall Defcend, and yet really be Raifed upward; and going Weighclius. as 'twere upon a Plain, fhail froma Lower, by gently fübfiding, arrive.to 2. 74. P. 2219 an upper Siory.

Preforving of X. In the Indian Seas theie is a kind of fnall worms, that fatten themfelves ships from ben to the Timber of the Ship.s, and:fo Pierce them, that they take Water every ing Worm-atsen; where; or if they do not altogether Pierce them thorow, they fo weaken the \%.15. p. 190. the Wood, that it is almoft Impoffible to repair them: Some have Imployed Deal, Hair and Lime, \&rc. and therewith Lined thcir Slips; but befides that this does not altogether affright the Worms, it retards much the Ship's Courfe. The Porturals forch their Ships, in fo much that in the Quick Works there is made a Coaly Cruft of about an Inch thick. But as this is dangerous, it happening not feldom that the whole Veffel is burnt; fo the reaton why the Worms eat not thorow Portugat Ships, is conceived to be the exceeding hardnefs of the Timber, employed by them. There is in Holland a Man that pretends. to have found an Admirable Seciet to Remedy this Evil. And a very worthy Perfon in London, fuggelts the Pitch, drawn out of Sea Cals, for a good: Remedy to feare away thefe Noyfome Infects:
XI. Some few Years fince, Sir Pbil. Homard and Major Ľ'itfor, with great
isin escount of Lead Sheathing; Charge and Induftry found out a new Way, by a Manufacture of our own,
 and confequently better for Sailing and more Cheap and durable than the Way of Boards, Pitch, Tar, Rofin, Brimftone, or any Sheatbing or Graving, hi-: therto ufed. The King and Parliament being Satisfied, upon Examination of the great Benefit that might redound hereby to his Maizfy and Subjects in General, for the Inventors Incouragement to make the fame Publick, were pleafed almoft. 4 Years fince, to grant them an 18 of Parlinment for the Sole ufe of this their Invention, with Penalty and Paohibition to all others. In: Profecution whereof, Experiments have been made upon feveral of his:

\section*{(685)}

Majefy's Ships, viz. The Pbanix, done three Years agoe, has made two Voyages into the Streights, \&cc. and when the was lately taken into the Dock at Woolwich to be repaired, upon View of the Mafter Shipwright and others, her Sheathing was found to be in as good Condition, as at the firf doing: and the Ship fo Tight during the whole time, that they were forced to heave in Water to keep her Sweet. The Dreadnought a Third Rate, done in Fune I 67 I ; the Henriettn, Lion, and Maiy, all Three of the Third Rate, and done a Year and an half fince, being lately laid on Ground at Sheernefs and Portsmouth, are found to be all in as goud Condition, and the Sheathing to continuie as firm and as well as at the Firf doing; as the Mafer Builder and Afjiftant at Portsmoutb and others have Certified.

The Bread-Rooms alfo cf fome of thefe and many other of his Majcfty's Ships, have been Lined within, almoft in the fame manner the Sheathing is without; which has prov'd a great Prefervation of the Bread, as leveral of the Puifers and officers. of the faid Ships have Certifid; and by Reafon of its Duration mult be much cheaper and better than Tin, which is fo lyable to ruft, or any Way yet ufed.

Alfo the Lead it Colf (which is the Principal thing, ufed hercin) they" make fo Clofe preffed, Smooth, and Equal, and of what Thicknefs or Thinnel's defired, that great ufe may be made thereof about feveral other things relating to Shipping.

\section*{XII. A Paper of. Irss General Vere Omitted viz:}

Direftions for Inquiries concerning Stones and other Materials for the ufe \(7.93 . p .60\) oos of: Building.

\section*{XIII. Accounts of Books, Omitted:.}
1. Vitruvius: done into Englifo; by Mr.Cbr. LTVafe.

Les dix Livres d' Architciture de Vitruje, corrigez, \& traduits novellement \({ }^{\text {ni.72.p.2190. }}\) en Francois, avec des Notes \& des Figures; par Claude Perraulto Paris. \(1673^{\circ}{ }^{\text {m. } 112 . \text { p. } 2790^{\circ}}\) in Fol.
 Premiere Partie; par M.Francois Blondel. a Paris. 1675 , in Fol.
 fertationes tres. Rome. 1680. in 4 to.
4. Modern Fortification, Bc. by Sir Fonas Mior. 1673.in 8ivo: m.95.p. 607t.
5. Nouvelle Maniere de Fortifier les Places ; par M:Blondel. Hague. 1684. m. I58. p. 585.
6. Marci Meibomii de Fabricia Trircmium Liber. Amficrlodami. I 67 I: in 4 to. m. 79. P. \(307 \mathrm{~T}_{1}\).
7. Scheeps-Booweon Befticr, that is Naval Architecture and ConducE; by n. 77-p. 30060. N. Witfen. Amfordam. 167 i. in Fol.
 tales. ; par: le Sieur Dafié. a Parris: 1675 . in 4 to.

\section*{(686)}

\section*{C H A P. IX.}

\section*{Perfpective. Sculpture. Painting.}
ca Perjperfive Inftrument; by sir Chrift. Wren. \(n .45\).审. 898.

Fig. 218.

Ais a fmall sight with a fhort Aim B, which may be turned round about, and moved up and down the fmall \(C y\) linder \(C D\), which is fcrewed into the piece ED, at D : whis piece ED , moring round about the Center E ; by which means the Sight may be removed either towards R , or F .

EF, is a Rulce faftned on the two Rulers GG, which Rulers ferve both to keep the fquare Frame SSSS, perpendicular, and by their fliding through the fquare holes TT, they ferve to fay the sight, either farther from or nearer to the faid Frame; on which Frame is ftuck on with a little wax the Paper 0000 , whereon the Pifture is to be Drmw by the Pen I. This Pcn \(I\), is by a fmall brais-handle V, fo fixt to the Ruler HH , that the Point I , may be kept very Firm, fo as always to touch the Paper. H H, is a Ruler, that is always, by means of the fmall Strings \(a \pi a, b b b\), moved Horizontally, or Parallel to it felt; at the End of which is ftuck a fmall Pin, whofe head \(P\), is the Sigbt, which is to be moved up and down on the out-Lines of any Olject.

The Contrivance of the Strings is this. The two Strings ana, \(6 b b\), are exactly of an equal Length. Two Ends of them are faftened into a fmall Leaden Weight QQ, which is moved in a Socket on the back fide of the Frame, and ferves exactly to countepoife the Ruler HH , being of equal Weight with it. The other two Ends of them are faftned to two fmall Pins HH , after they have been. rolled about the fmall Pullcys \(\mathrm{N} ; \mathrm{M}, \mathrm{M} ; \mathrm{L}, \mathrm{L}\); \(\mathrm{K}, \mathrm{K}\); by means of which Pulleys if the Pen I, be taken hold of and moved up and down the Paper, the Strings moving very eafily, the Ruler will always remain in an Horizontal Pofition.

The manner of \(\tau / / \operatorname{ling}\) it is this: Set the Inftrument upon a Table, and fix the Sight A, at what Height above the Table, and at what Ditance from the Frame SSSS, you pleafe. Then looking through the Sight A, and holding the Pen I, in your hand, move the Head of the Pin P, up and down
is meen may of Delineating by Para'lel \(V_{i j} \mathrm{j}_{\mathrm{i}} \mathrm{lal}\) Rays, exatly objerving the \({ }^{5}\) Symmetty; by Mr. St. Clare.

Fig.279. the out Lines of the Object, and the Point 1 , will deffribe on the Paper OOOO , the fhape of the Object fo traced.
II. Parallclogrammuin Presipograplozicum ef ABCD , Stylus Centralis H F , Calamus Defignator LC, Index K A, five Regula oblonga, Plano Parallc-

\section*{(687)}
pertufum ef foramen O , in medio SV , erigitur Filum perpendiculare Reguæ RA, in cujus medio eft Globus quidam parvus, per quem, \& Foramen O, Radius ad oculum (quem inter Delineandum non oportet elt Fixum, fed Liberum \& Solutum) ab Objecto protenditur.
I. Animadvertendum, Radium per Foramen O, \& Globulum, protenfum, femper fore perpendicularem Plano Parallelogrammi, five ejus Diametro, quæ eft Recta Linea extenfa per Stylum Defiggatorium LC, \& Centrum fixum HF, \&i dictum Globulum parvum, in qua Linea femper verfatur ifte Globulus, qualifcunque fit Parallclogrammi motus:
2. Not. Planum Deliniatorium fenfibile, fuper quod volutatur apex L, Styli Pictorii LC, ad amufim Defcribentis Imaginem ad motum Indicis KA, \& in quod infixuselt Stylus. Centralis HF, effe QYXT; Planum verò aneré Rationale, five \(M_{a}\) thematicum, priori continuum, effe \& \& \(\beta \gamma\).
3. Not. Omnes Radios ab Objecto per Globulum \& Foramen O, protenfos ad Oculum, (in tot Medii Diaphani punetis, duce Indice KA, collocatum \({ }^{2}\). quot funt puncta in fuperficie Vilibili Objecti defcribendi quæ funt infinita) femper fore fibi invicem Parallelos.

Objicient forfan quidam, in Objectis longè difitis Dioptrarum nullum fore ufuni. Quid verò illud noftrâ intereft, cum ad tollendas tantùm in Profopographia dificultates, quibus hactenus Scheineri" Parallogrammum laboravit, hac" noftra Methodus comparata eft. Sxpius enim expertus fum. (licet ob hoc: non eft quod lequiùs de illius Inftrumenti præftantia ab Artifice ftatuatur) nequaquam inter partes Ectyp 3 in Plano eanm. effe Symmetriam, qua inter partes: Protorypi diliti.
III. Ihere fend your my Method of Cafing Strtues in Metal, in Obedience \(a\) Metiod of to the Commands of the Royal Society; It is as follows. Firt, I form out of of ams: Extxtaorna good Clay, that will endure the Fire, and not crack either in Drying or of aimary Thimansefs \({ }_{3}\); Burning, fuch a Figure or Statue as I defire to Caft ; when this is well Dry, by Michahni I. make, all over the Figure, little Holes of no great Depth (but both Size wafor, me \& 86. and Depth proportionate to the Bignefs of the Statuc) into which I let fmall p. 259. Pieces of Mctal, and with fome of the fame Clay fix them firmly in the Holes; Fig. 2200~ the Ufe of thefe bits of Mctal, a a a a \(a\), is to keep the Core and Mould from: touching one the other, or falling together when the Wax runsout; and that they may remain conftantly in the fame fixt Pofture. This done, I Scrape away with fome proper Inftrument, as much of the Clay in Thicknefs as I dowfign for the Thicknefs of my Statue; and then Laying it in a Furnace, \(\ddagger\) Burns the Core till it be Red Hot: (by the Core 1 mean always the Statue firt made ins. Clay.) When it is cold I rub the Core all over writh that fort of Earth or Co lour, which our German Potters Ufe, to Colour the Joints of the Tiles when: they fer Stoves of Tiles or: (Kachel-Ofons;). This Colour much refembles Black: Lead which is ufed. to Defign on Paper, and eafily wipes out with Bread; bur: it is not the fame. This Colour l. mix with Water and daub all over theGore, becaufe the Metal is found to run. freely upon it. There are other fubur ftances proper for this Ufe, but I have always made ufe of this efpecially. form Thin Statues. This done, I lay on upon the Core as much Yellow Wax mixs

\section*{(688)}
ed with Pitch or Rofin, as will make the Thickners of the intended Statue, which. I form in the Wax with all the Exactnefs poffible.

Here Note, that the Particles of Metal mentioned to be fet into the Core, to keep it at a diftance from the Mould, muft be fo fer as to fall in with the Surface of the Wax exactly: and that the reafon of mixing Pitch or Rofin with the W ax is, becaufe that when it is Burnt out, it makes a great fmoak, and that Smoak adhering to the Mould, occafions the Metal to run more freely; as I have experienced it. Next I put all over upon the Surface of this Statue of Wax, little pieces of Wax which I call the little Cbamnels cocccc, (all which mult be contrived fo as to enter into the Great Channels \(\begin{gathered}\text { d } \\ \text { d.) This done }\end{gathered}\) I cover the Core and Wax all over with the fame fort of Clay,that will endure the Fire without Cracking; and fo I have my Concave Statue or Mould maide. Upun this I lay the great Cbaniels marked \(d d d d\), both upright and tranfverfe, Formed likewife in Wax, and placed according to Judgment, fo as beft to receive the Ends of the little Cbannels coccc, for the more eafle diftribution of the Mctal. Thefe Great Channels muft all meet at the top of the Statue, fo as to come out by one Hole, as at E, where the Metal is to be poured in; It is alfo neceflary to have a Cbannel or two to let out the Air as the 2 Matal enters, as thofe marked \(f f\), and there muft be a Hole or two left at the Foot, as \(g \mathrm{~g}\), where the great Channels and Waxen Statue joyn; and whereat when the Mouid is Burnt, the W/ax as well of the Statue as of the Chanels may run out. The great Cbannels being thus placed, the Mould muft be again laid over with the fame fort of Clay ; (I ufe conitantly to bind about the Mould with Iron Wire and then lay on more Clay) and when this Mould is well drie, then I Heat it Red-hot; as I did before the Core, fo now both together.

I Burn the Core firft, that there may not need fo ftrong a Fire to Burn the Mould as will melt the fmall bits of Metal: But for fmall manageable Statues of not above a Foot or two High, they may be both Burnt together, and there is no need of the Holes gg , but the Mould may be Inverted, and the Wax run out by the Cbannels \(f f\), and E .

The Mould being thus Burnt, I ftop with the fame Clay the two Holes \(g g\), and then I bury it in a Pit, and proceed as is ufual in Caffing of Bells, and the like : but care mult be taken that the Metal be yery well in Fufion.

If it be a fmall Statue not above a Foot or two High, whofe Mould may be Managed in ones Hands; then I make me a Concave Statue of Wax, of the thicknefs I defire, and then place upon it all thofe great and leffer Cbannels, as afore: Which done I put it all together, into a Liquid Subftance made of Plaifter and Tile or Brick-duft tempered with Water.

If the Stanue be intended very Thin, then I take Copper, and when it is well in Fufion I mix with it a good quantity of zinc, without obferving any certain Proportion of Weight; the more Zinc the better the Metal Runs. I have fometimes for fmall and thin Statues put in above a third part of \(z\) inc. I have found by experience, that this Nineral makes the Metal run moft freely, and gives it a fair Golden Colour.

\section*{(689)}

The Statue being Caft, I take of the Mould and cut of all the little chanels; all which both great and fmall are filled with Metal, which may be kept for farcher ufe : In thefe there is much, more Metal than in the whole Statuc; for if the Stantus be very Thin, there mutt be more and bigger Chanicls, and fo the cheaper the Statue the more weighty the Channels and the more Metal remaining-

To know the Quantity of Metal requifite for my intended Work, I take a Lump of the fame Mixture of Wax and Pitch, with which I make the Mould of my Statuc; and having weighed it, I make a Mould upon it, and Caft in the fame a Lump of Metal of the fame Size; which I Weigh and thereby compute the Proportion of the Weight of the Metal and Wax; and then obferving how many Pounds of Wax I ufe about the Figure and Channels, I can calculate to a fmall matter how much Metal I need to Melt.

Hitherto I have Caft no Statue above 9 foot High, but I doubt not but I. could, by the fame Methods, Caft one of any Bignef's defired.

\section*{IV. I. Spanifo Winite is made of Chalk and Allum burnt together.}
2. I take the Lapis Armenius to be the Blew Bice. fold in the fhops, for it Coolours Sy Sy Mr: is Light and Friable; formerly brought out of Armenia, now from the Sil- Rich. Waller. ver Mines of Germany, called Melochites, in High Dutch Berghblaw.
3. Vltramarine is made of the Bleweft Lapis Lazuli, which is freef from simple Blewso Gold-veins, by Calcination.
4. Smalt is made of zaffer and Pot-aboes Calcined together in a Glafs-furnace.
5. Litmafe or Litmofe, I fuppofe the Juice of a Plant.
6. Indigo, faid by Pliny to be brought from India; a kind of Mud adhering to the Froath about Reeds, and that when tryed with a Coal, the true burns with a Purple Flame, and fmells of the Sea. Linfclooten fays, it is called Anil, that it grows in Cambaia, and is a Plant like Rofemary, which is gathered and dryed, then wetted with fair Water, and beaten to a Mud.
7. Indian Ink, its ufe known to Pliny, though not its Compofition; which is yet undifcovered, except it fhould be burnt Rice, as hath been thought.
1. Ccrufe is the Ruft of Lead, made by a vaporous Calcination; Pliny Simple relloxs Writes thus of it in cap.34. Lib.I 8. Cerufe Pfimithium is made in the Plummers and Reds. fhops, of fmall Plates of Lead laid upona Veffel of ftrong Vinegar, what falls, into the Vinegar is taken out, and dryed in the Sun: and in Cap. 6. Lib. 35 . He fays it was made at Rome of burnt Marble Fint quenched in Vinegar.
2. Mafticot is a kind of Improper Calx of Tin.
3. Gutta Gambe, or Cambodia, the infpiffated Juice of a Plant, not well knownal it comes from both the Indics. Some think it the Juice of Eupberbium; others Scammony, or Tithimal; others Ricinus, others refer it to the greater Cataputia; Efula, or the Flowers of the Indian Ricinus, and will have it Coloured with Turmerick: as Scroder.
4. Oker, a kind of Natural Earth. There are two forts ther of \(f_{\text {, the one }}\) Native formerly brought out of Attica, now from Dacia and Huagarim, and from many plaees of England, efpecially in the Forreft of Dean: The orher a Factitious Subftance of Lend burnt and quenched in Vinegar. In Pliny's time it was made of Rubrice, or Reddle burnt.

Vol. I.
Tttt
5. \(\mathrm{OH}^{-}\)

\section*{(690)}
5. Orpiment, a fat inflammable Mineral, juftly ranked amongft Poyfons for its extream Corrofive Quality. Pliny fays, it was dug up in Syria on the Surface of the Earth; and that the Emperor Caligula had hopes of getting Gold out of it; wherefore he caufed 14 Pounds of it to be tryed, which afforded him very good Gold, bue in fo fmalla Proportion that he Loft by the Trial.
6. Vmber is a Native Earth.
7. Red-Lead, a Colour unknown to the Ancients, made of Litbarge or burnt Lead by a Reveiberatory Calcination, or of Cerufe put in a Platter over. the Fire, which muft be continually firred till it has acquired a Red-Lead Colour. Dr.Charleton de Fof.
8. Burnt Oker is the Common Yellow Oker burnt in the open Fire.
9. Cinnabar, or Vermillian. There are two forts; Native, or the Minium of the Ancients, which is the Mineral that yields Quick-filver; whereof and of Sulphur it chiefly confifts; it is found in the Mines of \(\mathrm{I} f\) fria. This Colour was amongt the Ancient Romans ufed to Sacred Purpofes, and on Feftivals Fupiters Face was Painted therewith, as likewife the Bodies of thofe that entred in Triumpl. The Fattitious Cinnabar is that which we now ufe, and is made by a Sublimation of Mercury and Sulphur.

I'0. Carmin, made of Cochincel:
I I. Lake, thought to be an Arabick Word: It is made of Flocks Dyed, or Shavings of Scarlet-cloath, or of the Cochineel Infect, or elfe of Kermes-berries, their Tincture being exiracted with a Lye of Pot-afhes, and then Precipitated with a Solution of Roch-Alom. After the fame manner a Lake may be made of any Plant or Flower. There is alfo another fort of Lake made of Gum-lac, by extracting its Tincture with Urine.
212. Sanguis Draconis is the Gum of a Tree, which looks like dryed Blood; 'tis brought out of feveral Places in the Eaf-Indies.
13. Englifh Reddle, or Ruddle, is found in many places of England; amongt the reft near UTitnicy in Oxfordfire.
14. Lamp-black, by Pliny thus defcribed: 'T is made of the Soot of Rofin or Pitch burnt, Houfes being built on purpofe for it, that keep in the Smoak:

To make China V. This way of making Ceveral Cbina Varnifbes wats firlt fent from the Warnibues; by Dr. Will. Sherard. ต1. 362 . p. 525. Fefuits in Cbina to the Great Duke of Tufcany.
Take of Crude Varniff 60 Ounces, Ordinary Water 60 Ounces, mix them well together till the Water difappears, afterwards put this matter into.a Wooden Veffel 5 or 6 Palms long, and 2 or 3 broad, Mix them with a Wooden Spatula, for a Whole Day in the Summer's Sun, and for two in the Winter. It is afterwards kept in Earthen Veffels with a Bladder over it; and Cool, this is the Varni/b prepared in the Sun.

Toyling the Oyl of Wood.

Take 20 Ounces of the Oyl, called Oyl of Wood, of that of the Fruit 10 Drams, Give them 5 or 6 Boyls, till it comes to be a little Yellow. Jet it Cool, and put to it 5 Drams of Quick-lime powdered.
To give she firt. Take Swines Blood and Quick-lime powdred, mix them well, lay this Mix Camircian ture on the Wood, and when it is dry, Smooth it. with Pumice Stones.

\section*{(691)}

Take of the Varnifp prepared in the Sun 60 Ounces, Stone-black Ahum, To make Black (fuppofed to be a fort of Copperas) diffolved in a little Water, 3 Drams, Varnifoo 70 Drams of Lamp-Oyl, call'd by the Portuguefs Azeite da Candea. It is prepared in a Wooden Veffel as the prepared Varnifh, obferving to put in the Lamp-Oyl at twice.

Take of the Oyl of Wood Crude (called by the Portugucfe Azcite de Pao) Vitch-Colour'.i. 40 Drams, of the Lamp-Oyl, called de Candea, Crude 40 Drams, it is prepared in the Sun in a Wooden Veffel as the prepared Varni/b.

Take 10 Drams of Cinnabar, 20 Drams of Varnifb prepared, a little Oy de Red Varrijho Canden or Lamp-Oyl, mix them well.
7. Take of the Yellow Colour io Drams, 30 Drams of prepared Varnifh, with rellow Varnifbe fonie Lamp-O\%

Take of the Red Vainifb 10 Drams, of the Black Varniß 4 Drams, mix Musk-Colour'd them well.

VJ. M. Colvert, being pleafed fome while fince to vifit the Academy Royal An Examen of for the Improvem nt of Painting and Sculpture, expreffed himfelf to this effect, pictures prothat he thought it proper from time to time that the Works of the moft Colbert. Excollent Painters fhould be Examined, and fuch obfervations made thereon \({ }^{\text {n. }} 47 \cdot p \cdot 953\). as would Inform others wherein the Perfection of a Pieture confifts. Which liath been ever fince practifed among them, as the beft Means to carry the Art of Painting to its Higheft Perfection; fuch an Examen of the beft Pigtures difclofing many Secrets of that Art, for which there are no Rules, and opening a Door to debate many Important Queftions, hitherto not treated of.
VII. Here is a Man who makes more lively Counterfeits of Nature in Wax-Workand Wax, then ever-I yet faw in Painting, having an extraordinary Addrefs in anaps Kind of Modeling the Figures, and Mixing the Colours and Shadows; making the Eyes Relievo, in fo Lively, that they Kill all things of this Art I ever beineld.

I have alfo feen a New kind of Maps in Low-Rclicvo, or Sculpture; for France; by. E : n. 6. p.99. Example the Ifle of Antilie, upon a Square of about 8 Foot, made of Boards, with a Frame like a picture: There is Reprefented the Sea, with Ships and other Veffels Artificially made, with their Canons and other Tackle of Wood fixed upon the Surface after a New and moft admirable manner. The Rocks about the Ifland exactly Form'd, as they are upon the Natural Place; and the Inland it felf wi hall its Inequalities and Hills and Dales; the Town, the Forts, the little Houfes, Plat-form, and Canons mounted; and even the Gardens, and Plat-forms of Trees, with their Green Leaves ftanding upright, as if they were growing, in their Natural Colours; in fine, Men, Beafts, and whatever you may Imagine to have any Protuberancy above the Level of the Sea. This New Delightful and moft Inftructive Form of a Map, or Wooden Country, you are to look upon either Horizontally, or fide Long, and it affords equally a very pleafant Object.
VIII. Whether the Way mentioned by Kircher in his Mundus Subterraneus To Colour Mar-

\section*{(692)}
tain that a Stone-cutter, in Oxford, Mr. Bird, hath many Years fince fonnd out a way of doing the fame thing, in effect, that is there mentioned; and hath practiled it for many Years. That is, he is able fo to apply a Colour to the Outide of Polifhed Marble, as that it fhall Sink a confiderable Deptb into the Body of the Stone; and there Reprefent like Figures or Jmarges as thofe are on. the Outfide; Decper or Shallower, according as he continues the Applicatioon a longer or lefler while.
din Extraoraio sbary Tiniture given to a Stone; by Dr. Salomon Keifel: m. 773.2 .22.
IX. Aurifaber Stutgardianus, qui \& Gemmis \& Metallicis Typis Nummo* rarum Cudendorum Infculpendis Artificiofus, eft, Nomine Cbrifophborus Mul ler, An. \(1685^{\text {. Aurum Aqua-Regis folutum, Oleo Tartari pracipitatum at- }}\) que edulcoratum, quod Aurum Fulminans dicunt, dum in Scutella, quam Maturellam vocant, ex Lapide Cbalcedonico Coloris unici Pellucidi Onycbini, feu: Cornci, vitro pro Fufionc preparato Rubro mixtum \& Aqua Fontana Ims butum tereret, ad facienda Encaufta feu Smalta; de quibus Ant. Nerius, vertente Andrea Frifio, egit Lib. 6. Artis Vitrarice; invenit iterato tertium eodem Labore, quod Color Pulveris iftius Puniceus, qui per Dies aliquot ficcatus in. Vafculo manferat, quoufque inter: terendum ctiam ad Marginem effluxit, relictis tamen puris hinc inde Spatiis, Onychini Coloris, durillimam hanc Gemmam, qux Limam feernit, ita profunde penitraverit, non tantum in Scutella, fed \&t ipro Piftillo, \& diftrinxerit Maculis atque Circulis fat ordinatè ductis, ut Color hic neque fimplici Aqua, neque Lixivia, vel acriori alio Liquore potuerit delere, \& quidem fine Polituræ Elegantioris Detrimento. Talis itaque Tinctura per repetitas Trituras dicti Pulveris tentata denuo aliquoties, in fimilis Coloris alio Vafculo, neque vero apparuit poftea ut ante unquam. Sed hoc imprimis circa Tinctionem hujus Valculi Obfervandum eft; quod fecundum Texturam Gcmmex, tam nudo quam armato Oculo, in Tincta Interna, \& Sincera Externa parte Vafis, notentur Fibre feu ductus Circulares; juxta quos Bracteis Succi Lapidei Novi per Intervalla Impofitis, in ejufmodi Molem excreviffe credendum eft; uti. Bczoar aliique Lapides Laminis fuper accrefcentibus augentur, \& Ligna, in quorum ultimorum Trunco Circuli feu Annuli defignant fucci Annui Numerum \& Incrementa: adeo ut hic Purpureus ille Color Lineis pallidioribus \& obfcurioribus, prout vel denfiores vel xariores Poras molliorem vel duriorem Texturam offendit, Circulares Ambitus circa Verticem aliquam, veluti circa Medullam feu Cor ut appeliant, aut Granum aut Paleam in aliis Lapidibus \& Lignis, fignaverit; intermiftis quoque hinc inde Maculis \& Spatiis obfcurioribus. Veluti Illuft, Boyle, Specim. de Orig. Ȩ. Virt. Gemmarum. Sect. I. po 22, 23. in Adamante \& Granatis. acies \& commiffuras tenuium Bractearum aut Planorum obfervavit; quod Granum. Artifices, feu planam Contexturam non diffimilem Fiffilitati Ligni, Mocant.

Jam vero Tingi poffe quoque Marmora \& Alabaftra \& Offa per Lixiviatos \&: acres Succos, hinc inde fcriptum eft : quod fortaffis de Gemmis ferandum eft, quando Rob. Boyle Cit. Sect. 2. p. 123: ex iis Tincturam manifeftam extractam éffe fcribit, alibi: po. 43 . \& rgo. per Vapores Minerales tinctos effe Cryficllos Petrofos, atque po 45 a. ipfum Sapphirum pes Vapores fubserraneos.

\section*{(693)}

Cum denique ex obfervatione noftra manifeftum fit, revera Tinctam effe Gemmam Cbalcedoniam, quamvis fortuito acciderit, neque repetito Proceffu fimile quid evenerit, merebicur tamen Meditationem, an ex Aftrorum Fluxu aliave abfcondita potius vi venerit, \&t Tentamen, an ex Mixtura Salium \& Succorum Acrium poffit imitando produci ejufmodi Tinctura, \& quidem fine Igne, ut Splendor \& Pelluciditas Gemmx non deftruatur, Durities autem maneat, adeoque ipß Gemmæ pretiofitas non tantum fervetur, fed \& per Tincturam novam crefcat.

\section*{X. \(\stackrel{R}{R}^{\text {appers Omitted. }}\)}
1. A Defcription of Scbeiner's Stereograpljick Parallelogram, and it's Im-n. 96. p. \(608{ }_{50}\) perfections confidered; by Mr. F.St.Clare. vid. fup. Sect. II.
2. A Table of Simpie and Mixt Colours in Latin, Greek, French, and Eng- n.179. \(1.24,29\). Lifh: with a Specimen of each Colour prefixt to its proper Name; by Mr. Rich. Wäller.
r. Entretiens fur les Vies \& fur les Ouvrages des plus excellens \(P_{\text {cintres, }}\) n. 39. p. 78 eq; Anciens \& Modernes; par M. Fclibien.
2. An Idea of the Perfection of Painting: Originally written in French by

Roland Freart Sieur de Cambray; and rendred Englifh by F. Evelin, Efq; F. R. S. no 47. po.954. Lond. I668. in 8 vo.
3. A General Iden of the Art of Painting, and a Relation of Seven Conferences held at Paris in the Academy Royal for the Improvement of the Arts n. 86: \%. sone: of Painting and Sculpture.
4. Optique de Portraiture \& Peinture, contenant la Perfpecive Specula tive \& Pratique Accomplie, \&c. par Gregoire Hurct, de. 1 Academic Royabe de Reinture \& Sculpturc. a Paris. . 1670. in Fol.

\section*{(694)}

\section*{C H A P. X.}

\section*{Mufck.}

Of the Iretnbling
of Confonant of Confonant Strings; by Dr. Wallis, 2\% 134. \%. \(839^{\circ}\)

Fig. 221.

Fig 222.

Fits: \(223^{\circ}\)

Fig: 224. Quarters of this will Tremblc, when that is Itruck, but not the Points \(\beta, \gamma, \delta\). So if A G, be a Fifth to an \(n\); and confequently each Half of that Stopped in \(D\), an Unifon to each Third part of this ftopped in \(\beta, \gamma\); while that is ftruck, each part of this will Tremble feverally, but not the Points \(\beta, \gamma\); and while this is ftruck, each of that will Tremble, but not the Point D. The like will hold in leffer Concords; but the lefs remarkably, as the Number of Divifions encreafes.

This was firft of all (that I know of) difcovered by Mr. Will. Noble M. A. of Merton Colledge; and by him fhewed to fome of our Muficians about three Years fince; and after him by Mr. Tho. Pigot A. B. of Wadham Colledge, without knowing that Mr. Noble had difcover'd it before. I add this further (which 1 took Notice of upon Occafion of making Tryal of the other,) that the fame Atring, as \(\alpha \gamma\), being ftruck in the midft at \(\beta\), (each part being Unifon to the other') will give no Clear Sound at all; but very confufed. And not only fo (which others alfo have obferved, that a String doth not found clear if ftruck in the midf; ; but alfo if a \(\delta\), be ftruck at \(\beta\), or \(\gamma\), where one part is an O\&ave to the other; and in like manner, if \(\alpha \varepsilon\), be ftruck at

I\(T\) hath been long fince obferved, that if a Vioi-ftring, or Lute-ftring, be touched with the Bow or Hand, anuther String on the fame or a nother Inftrument not far from it, (if an vinifon to it, or an Octave, or the like) will at the fame time Tremble of its own, accord. But I can now Add; that not the Whole of that other String doth thus Tremble, bue the feveral Parts feverally, according as they are Vnifons to the Whole, or the Parts of that String which is fo ftruk. For Inftance, fuppofing AC, to be an upper oatave to \(\alpha \gamma\), and therefore an \(V_{m i f o n ~ t o ~ e a c h ~ H a i f ~ o f ~ i t, ~}^{\text {, }}\) Itopped at \(\beta\). if, while ar. is Open, A C. be ftruck; the two Halves of this other, that is a \(\beta\), and \(\beta \gamma\), will both Tremble; but not the Middle point at 8. Which will eafily be obferved, if a little bit of Paper be lightly wrapt about the String a \(\gamma\), and removed fuccellively from one end of the String to the other.

In like manner, if AD , be an Upper Twelfth to \(\alpha \delta\), and confequently an \(\tau_{n i f}\) on to its three parts equally divided in \(\beta, \gamma\); if a \(\delta\). being open, AD. be ftruck, its three parts \(\alpha \beta, \beta \gamma, \gamma \delta\), will feverally Tremble, but not the

\section*{(695)}

Divifions encreafeth. This and the former I judge to depend upon one and the fame Caufe; viz. the Contemporary Vibrations of the feveral \(\tau_{n i}\) on Parts, which make the one Tremble at the Motion of the other : But when Struck at the refpective Points of Divifions, the Sound is Incongruous, by Reafon that the Point is Difturbed which fhould be at Ref.

A Lutc-ftring or Viol-ftring will alfo thus anfwer to a Confonant Note in Wind Inftruments : But not fo remarkably to the Wire-frings of an Harpficord. And we feel the Wain-fcot Seats, on which we fit or lean, to Tremble conItantly at certain Notes on the Organ or other Wind Inftruments; as well as at the fame Notes on a Bafe.Viol. I have heard alfo (but cannot aver it) of a Thin fine Venice-Flafs cracked with the ftrong and lafting found of a Trumpet or Cornet (near it) founding an Unifon or a Confonant Note to that of the Tone, or Ting, of the Glafs.

Concerning there Phanomena, an Exquifite Solution is given by Dr. Nar- \({ }^{\text {nor }}\) I 35. p. \(87 \%_{0}\) cifus Marß in Dr. Plot's Natural Hifory of Oifford乃ire.
II. The Extent of the Trumpet cannot be Atrictly Determined; it reaches The Defects of as High as the Strength of the breath can force it: But by confidering its and Trumpet Notes within the ordinary compafs of the Scale of Mufck (from Double C.fa-ut Marine; by to \(C\) - \((l l-f a\) in abt \()\)) the Nature of the Higher Nutes will plainly appear. Thefe \(\begin{aligned} & \text { Mr. Fran. Rows. } \\ & \text { berts. } \\ & \text { n. } 1950\end{aligned}\) are all fet down in the Table; only take notice that the Prickt Notes are im- 0.559. perfect, not exactly in Tune, but a little Flatter or Sharper than the places Fig. 226. where they ftand, according as \(f\) or \(s\) is fet over them.

Here we may make two liquiries.
1. Whence it comes to pais that the Trumpet will perform no other Notes (in that compnfs) but only thofe in the Table, which are ufually called by Muficians Trumpet-Notes.
2. What is the Reafon that the \(7^{\text {th }} 1 I^{\text {th }} I 3^{\text {th }}\) and \(14^{\text {th }}\) Notes are out of Tune, and the others exactly in Tune.

In this matter, we nay reccive fome Light from the Trumpet-Marine, an Inftrument, though as unlike as poffible to the Trumpet in its frame, one being a Wind-Inftrument, the other a Monociord, yet has a wonderful agreement with it in it's Effect.

The Sound is fo like as not to be eafily diftinguiftit by the niceft Ear, and as it performs the very fame Notes, \(\mathrm{f}_{0}\) it has the fime Defects as a Trumpet, for if the String be Stopt in any part but fuch as produces a Trumpet-Note, it yields a harfh and uncouth (not a Mufical) Sound.

Let us therefore proceed to our firft Inquiry, and cxamine what is the Reafon that the Trumpet-Marine will perform no other but the Trumpet-Notes. It is a known Experiment of two Vinifon Strings, that Striking one of them Moves the other, which probably procecds from hence, that the Impulles of the Air which are made by one String, do more eafily fet another in Motion which lies in a difpofition to have iss Vibrations Synchionous to them, than a Third, whofe Motion would be crofs:

We may improve this a little farther; by obferving that a String will nove. not only at the Striking of an Unifon, but an \(8^{\text {th }}\) or \(12^{\text {th }}\); though after a different manner.

\section*{(6,6)}

IVg: 227:

Fig. 22.3.

IIG. 229.

Eig. 230. \(\square\) equal parts, for then the Vibrations of the remainder \(r\), nor fuiting with thofe of the orher parts, immediately make a Confufion in the whole.

Now in the -Trumpet-Marine, you do not Stop clofe as in other Inftruments, but touch the String gently with your Thumb, whereby there is a mutual concurrence of the upper and lower part of the String to produce the found. This is fufficiently evident from that, that if any thing Touches the String below the Stop, the Sound will be as effectually fpoiled as if it were laid upon that part which is immediately Struck with the Bow. From hence therefore we may collect, that the Trumpet-Marine yields no Mufical Sound, but when the Stop makes the upper part of the String an Aliquot of the Remainder, and confequently of the Whole : otherwife as we juft now remarked, the Vibrations of the parts will crofs one another, and make a found fuitable to their Motion, altogether confufed.

Now that thefe Aliguot parts are the very Stops which produce the Trum\(p_{8 t}\)-Notes fhall be plainly fhown in the treating of the fecond Inquiry, viz. What is the reafon that the \(7^{\text {th. }} 11^{\text {th. }} .13^{\text {th. }} 14^{\text {th }}\). Notes are out of. Tune; and the reft exactly in Tune.

All Writers of the Mathematical Part of Mufick agree

From this Foundation all the other Notes are derived. The Flat and Sharp Sixth are to be the Flat and Sbarp Third to the Fourth, and the 7th the like to the Fifth: the Sccond to be a Fifth to the Fourth bolow, ©ic. By this Rule let us examine what \(\mathrm{N}_{0}\) otes a Monochord fretted in its Aliquot parts will produce.
Fig * 93 . Suppofe the Monochord F, to confift of 720 parts, and its Tone Double C-faut, the firlt Note in the Table; then Half of it will be 360 , and a Third part \(240, \mathrm{~J}_{\mathrm{c}}\).

\section*{(697)}

Now I fay, Fretting, (or Stoping with the Thumb) at 360 mult produce C-fn-ut; becaufe 36 on being Half 720 , the Sound will Rife an Eight from touble C fa-ut. Again 360 being C-fa-ut, 240 inuft make G-fol-rc-ut, the Third Note in the Table; becaufe 240 being juft a Third-part lefs than 360, the Sound will Rife a Fifth from that Note. After the fance maner proceeding Step by Step it will be evident that,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 180 & & 240 & & a Fourth & & C. - Jol-fa & furtio & \\
\hline 144 & & 130 & & a Fifth & & E-la-mi & Sftiz & \\
\hline 120 & & 144 & & a Sixth & & G-fot-rcut & 6 6h & \\
\hline yo & & 180 & & Ifalf & シٌ & C-for fic & 8ih. & \\
\hline & & 120 & & a Third & & D-1a-fol & gth & \\
\hline & & & & a Fifth & 을 & E-İa & Ioth & \\
\hline & & 90 & & a Third & & G.fol-ic-ut & 12 th & \\
\hline 4.8 & \% & 60 & & a Fifth & & B-far \(b_{i}-m i\) & 15 th & \\
\hline 45 J & & 90 J & & Half & & C. Cc l-fa & x6th & \\
\hline
\end{tabular}

By the fame Reafon,

And Confequently,

Which anfivers the Second Inquiry.
Now to apply this (in a few words) to the Trumpet, where the Notes are produced only by the Different Force of the Breath; it is reafonable to imagine that the ftrongeft Blaft Reifes the Sound by breaking the Air within the Tube into the fhorteft Vibrations, but that no \(M_{u}\) fical Sound will arife urilefs they are futed to fome Aliquot part, and fo by Reduplication exactly meafure out the whole Length of the Inftrument, as in Fir. 229. for orherwife a Remainder will caufe the fame lnconvenience in this Cafe, as in Fig. 230. To which if we Add that a Pipe, being fhortned according to the Proportions we even now dificourfed of in a Siring, Raifes the Sound in the fime Degrees, it renders the Cafe of the Trumpet juft the fame with the Monocbord.

For a Corollary to this Difcourfe, we may obferve that the Diftances of the Trimpet Notes, Afcending continually decreafed in proportion of \(\frac{3}{5}, \frac{1}{2}, \frac{5}{9}, \frac{x}{3}\), intinfinitum, for,

Vol. I.

\section*{(698)}

The Divifion of the Monochord; by Dr. J. Wallis. n. 239. \(p .80\).
III. Any String or Chord of a Mufical Inftrument Open (or at it's full length) will Sound (what we call) an Octave (or Diapnfon) to that of the fame. String fopt in the Middle, or at half it': Length. Hence it. is that we commonly afingn, to an O\&tace, the Duple Proportion (or that of 2 to I) becaufe fuch is the Proportion of Lengths (taken in the fame String) which give thofe Sounds. And (upon a like Account) we aflign to a Fifth (or Diapcrite) the Sefqui-alter Proportion (or that of 3 to 2.) And to a Fourtb (or Dia-teffion) the Sefqui-tertian (or that of 4 to 3.) And to a Tone (which is the Difference of a Fourth and Eifth.) The ScSgui-octave (or that of 9 to 8:) Becaufe Lengths (taken in the fame String) in thefe Proportions, do give fuch Sounds.

And (univerfally) whatever Proportion of Lengths (taken in the fame String equally ftretched) do give fuch and fuch Sounds; fuch Proportions. (of Gravity) we affign to the Sounds fo given.

But when an Eight (or Octave) is faid (in common Speech) to confift of 12 Hemi-tones, or 6 Tones; this is not to be underftood according to the Utmoft Rigour of Mathematical' Exactnefs, (of. fuch 6 . Tones, as what they call. the Diazentick Tone, or that of la, mi, which is the Difference of a Fourth and Fifth ;) but, as exact enough for common ufe. For 6 fuch Tones (that is, the Proportion of 9 to 8,6 times repeated) is fomewhat more than that of: an octave (or the Proportion of 2 to r.) : And, confequently, fuch an \(H c-\) mi-tone, is fomewhat more than the Twelfth-part of an Eight, or Octave, or Diapafon. But the Difference is fo little, that the Ear can hardly diftinguifh it: And therefore (in common Speech) it is ufual to to fpeak.
And, accordingly, when we are directed to take the Lengths (for what are called the 12 Hemi-tones) in Geometrical Proportion it is to be underfoud (not, to be fo in the utmoft Strictnefs, but.) to be accurate enough for common Ule; for placing the Frets on the Neck of a Viol, or other Mufical Inftrument; wherein a greater Exactnefs is thought not neceffary. And this is very convenient, becaufe (thus) the Change of the Key (upon altering. the Seat of \(m i\)) gives no new Trouble, for this doth indifferently ferve any Key; and the Difference is fo fmall, as not to offend the Ear:

But thofe who choofe to treat of it with more Evactnefs, go this way to work.

Preluppofing the Proportion for an Octave (or Din-pafon) to be that of 2 to 1 ; they divide this into two Proportions; not juft Equal (for that would £all upon Surd Numbers, as \(\sqrt{ } 2\) to 1 ;) but near equal (\(f 0\) as to be expreffed in fmall Numbers.) In order to which, inftead of taking 2 to 1 , they take (the Double of thefe Numbers) 4 to 2 ; (which is the fame Proportion as before;) and interpofe the Middle Number 3. And of thefe three Numbers, 4,\(3 ; 2\), that of 4 to 3 , is the Proportion of a Fourth (or. Thiefefferon.) And that of 3 to 2, the Proportion for a Fifth (or Dia-

\section*{(699)}
perte.) And thefe two put together, make up that of an Oftave (or Dia pafon,) that of 4 to 2, (or 2 to 1,) And the Difference of thofe two, that of a Tone, or 9 to 8. As will plainly appear in the ordinary Method of Multiplying and Dividing Fraitions. That is, \(\frac{4}{3}+\frac{3}{2}=\frac{4}{2}=\frac{2}{1}\). And \(\left.\frac{4}{3}\right) \frac{3}{2}\left(\frac{9}{8}\right.\).

Thus in the common Scale (or Gamrut) taking an OEtave, in the fe Notes, \(l a, f a, f o l, l a, m i, f a, f o l, l a\); fuppofe, from \(E\) to \(e\) (placing mi, B-f \(f a-b-m i\); which is called the Natural Scale ;) the Lengths for the Extremes la, la, an Oetave, are as 2 to I , or 12 to 6 . Thofe for la, la, (in \(l a, f a, f o l, l a\),) or mi, la, (in mi, fai, fol, la,) a Fourth, as 4 to 3, or izto 9 , or 8 to 6 . Thofe for la, mi, (in la, fa, fol, la, mi,) or la, la, (in la, mi, fa, fol, la,) a Fifth, as 3 to 2 , or 12 to S , or 9 to 6 . Thofe for la, mi, the Diazcutick-Tone (or Difference of a Fourtio and Fifth, as 9 to 8. So have we for thofe four Notes la, la, mi, la, their Proportionate Length in the Numbers 12, \(9,8,6\).

Then if we proceed in like manner, to Divide a Fifth (or Dia-pente) la, \(f a, f o l, l a, m i\), or \(l a, m i, f a, f o l\), las or the Proportion of 3 to 2 , into near Equals, (taking double Numbers in the fame Proportion, 6,4 ; and interpofing the middle Number \(5 ;\)) of thefe three Numbers, \(6,5,4\); that of 6 to 5 , is the Proportion of a Leffer Third, (called a Tritbemitone, or Tone and half,) as \(l a, f a\), (in \(l a, m i, f a\).) And that of 5 to 4 , is the Proportion of the Greater Third, (commonly call'd a Ditone; or two Tones, as \(f a\), la, (in \(f_{a}\); (ol, \(l a\),) which two put together make a Fifth, as 3 to 2 ; that is \(\frac{6}{5} \times \frac{5}{4}\) \(=\frac{6}{4}=\frac{3}{2}\); And their Difference is, as 25 to 24 : That is \(\left.\frac{6}{5}\right) \frac{5}{4}\left(\frac{25}{24}\right.\). So have we for thefe 3 Notes la, \(f a\), \(l a\), their Proportionate Lengths in Numbers, as \(6,5,4\).

In like manner, if we divide a Ditone, (or Greater Third,) as fag la, (in \(f a, f o l, l a\)) whofe Proportion is as 5 to 4 , (or 10 to 8 ,) into two near E. quals (by help of a niddle Number 9 ;) then have we (in thefe three Numbers 10, 9, 8,) that of 10 to 9 , for (what they call,) the Leffer Tore: and that of 9 to 8, for (what they call) the Greater Tone.

But, whether fa, fol, fhall be made the Leffer (as 10 to 9,) and fol, la, the Greater, (as 9 to 8;) or, This the Leffer, (as 10 to 9,) and That the Greater, (as 9 to 8,) or fome time, This, fome time That, as there is Occafion, (to avoid what they call a Schifm;) is fomewhat indifferent: For, either way, the Compound will be, as 5 to 4 ; and the Difierence (waich they call a Cumma,) as 8 r to 80 . That is \(\frac{9}{8} \times \frac{10}{9}=\frac{10}{9} \times \frac{9}{8}\) \(=\frac{10}{8}=\frac{5}{4}\). And \(\left.\frac{8}{9}\right) \frac{9}{8}\left(\frac{81}{80}\right.\).

\section*{(700)}

Latty, if from that of the \(T_{r i-b e m i t o n e ~(o r ~ L e f f e r ~ T h i r d) ~ l a, ~ m i, ~ f a ; ~}^{\text {f }}\) whofe Proportion is as 6 to 5; we take that of the Tone, la, mi (which is the Difference of a Fourth and Fifth) as 9 to 8 ; there remains for the Hemi-tone, mi, fa, (or la, fa,) that of 16 to 55 . That is \(\left.\frac{9}{8}\right) \frac{6}{5}\left(\frac{48}{45}\right.\); \(=\frac{15}{15}\).

Or, the Tribemitone (or Leffer Third) whofe Proportion is as 6 to 5 ; may be civided into three near Equals, (by taking Triple Numbers, in the fame Proportion 18, 15 ; and interpoling the two latermediates 17,\(16 ;\)) which will therefore be as 18 to 17 , and as 17 to 16 , and as 16 to 15 ; That is, \(\frac{18}{17} \times \frac{17}{16} \times \frac{16}{15}=\frac{13}{15}=\frac{6}{5}\)

Where alfo the Greater Tone, whofe Proportion is as 9 to 8 , or is to 16 , is divided into its two near Equals (commonly called Hemitones,) that of 18 to 17 , and that of 17 to 16 : That is, \(\frac{18}{17} \times \frac{17}{16}=\frac{18}{16}=\frac{9}{3}\).
- And the Leffer Tone, that of 10 to 9 , or 20 to 18 , may be in like manner Divided into that of 20 to 19 , and that of 12 to 18 : That is, \(\frac{20}{19} \times \frac{19}{18}=\frac{20}{18}=\frac{10}{9}\)

Which Divifions of the Greater and Lefer Tonc, anfwer to what is wont to be defigned by Flats and Sharts.

So that (by this Computation,) of thefe Eight Notes, la, fa, fol, la, mi, \(f a, j o l, l_{a}\); their Proportions fand thus; that of \(l a, f a,(\) or \(m i, f a)\) is as 16.to 15. That of fa fol as 10 to 9 , and that of folla as 9 to 8 : (orelie that of \(f a f\left(l\right.\), as 9 to 8, and that of \(f_{c} l l a\), as 10 to 9 ,) That of \(l a, m i\), as 9 to 8. And if either of the Tones (Greater or Leffer cirance to be divided (by Ftats or Sharps) into (what they call) Hemi-tones, their Proportions are to be fuch as is already mentioned.

There may be a like Divifion of a Eeuith, (or Dia-teffron) into Two Near equals: And of fome others of thefe, into three Near-equals. Which might be of ufe for (what they were wont to call) the Chromatick and Enarmonick Mufick. But thofe forts of Mufick, having been long firce laid afide, there is now no need of thefe Divifions, as to the Mijfick now in ufe.

Tbe Imperfection. IV. I think 'tis Evident that each Fipe in the \(O_{r g a n}\) is intended to Exprefs. of an Organ; a Diftinct Sound at fruch a Pitch; that is, in fuch a Determinate Degree of

\section*{(701)}

Now, concerning this, there were amongtt the Ancient Greeks, Two (the molt confiderable) Sects of Mujicans: the Ariftoxenians, and Pytbajorians.

They Both agreed thus far; that Dia-tefferon and Dia-pente, do together make up Dia-pafon: that is (as we now flak) a Fourth and Fifth) do together make an Eighth) or Octave: And, the Difference of thole two of a Fourth and Fifth, they agreed to call a Tone, which we now call a Whole Note.

Such is that, (in our prefent Mufick, of la mi, (or as it was wont to be called re, mi.) For \(l a, f a\), fol, \(l a\), or \(m i, f a\), fol, \(l a\), is a perfect Fourth: And la, fa, fol, la, mi, or la, mi, fa, Sol, la, is a perfect Fifth: The Differenceof which is la, mi, Which is, what the Greeks call, the Dianwhich doth Disjoin two Fourths (on each fade of it;) and being added to cithen of them, doth make a Fifth; Which was, in their Mufick, that from: Mefe to Paramefe; that is in our Mufick, from A to B: fuppofing mi to fad in \(B-f a-b-m i\), which is accounted its Natural Pofition.

Now in order to this, Ariffoxenus and his Followers, did take, that of a Fourth, as a Known Interval, by the Judgment of the Ear; and that of a Fifth, likewife; And confequently that of an Octave, as the Aggregate of both; and that of a Tone, as the Difference of thole Two.

And this of a Tone (as a Known Interval) they took as a common Menfire, by which they did Eftimate other Intervals. And accordingly they accounted a Fourth to contain two Ions and an Half; a Fifth, to contain Three Tones and an Half, and confeguently an Eighth to contain Six Tones; or Five Tones and two FIef Tones.

And at this Rate our Practical Muficians talk of Notes and Half Notes at this Day; fuppofing an Oftave to confift of Twelve Hemi-tones, or Half Notes.

But Pythagoras and thole who Follow him, not taking the Ear alone to be a Competent Judge in a Cafe fo rice; chore to diftinguifh there, not by Equal Intcrosls, but by Due Proportions: And this is followed: by arline, Kepler, Cartes and others, who treat of Speculative Mujik in this and the lat. Ag as Accordingly they accounted that of an Oetave, to be, when the Degree of Gravity or Acuteness of the one Sound to that of the other, is Double, or or as 2 to 1 ; that of a Fifth, when it is Sefqui-alici, or as 3 to 2 ; that of a Fourth when Sefqui-tertian, or as 4 to 3. Accounting that the Sweeteft Proportion, which is expreft in the Smallelt Numbers, and therefore (next to the UniSon) that of an Ottave, 2 to 1, then that of a Fifth, 3 to 2, and than that of a Fourth, 4 to 3 .

And thus that of a Fourth and Fifth, do together make an Fight hl); For \(\frac{4}{3} \times \frac{3}{2}=\frac{4}{2}=\frac{2}{1}=2\), or the Properion of 4 to 3 , compounded. with that of 3 to 2 , is the fame with that of 4 to 2 , or 2 to 1 . And, coniequentily, the Difference of thole two, which is that of a Tone, or Full Note, is that of 9 to 8 . For \(\left.\frac{4}{3}\right)-\frac{3}{2}\left(\frac{9}{8}\right.\); or, if out of the Proportion of 3 to \(\geq\) we take that of 4 to 3 ; the Refult is that of 9 to 8 .

\section*{(702)}

TVow, according to this Computation, it is manifeft, That an Ottave is fomewhat lefs than Six Full Notes. For (as was firtt demonftrated by Euclide, and frince by others) the Proportion of 9 to 8, being fix Times compounded, is fomewhat more than that of 2 to 1 . For \(\frac{9}{8} \times \frac{9}{8} \times \frac{9}{8} \times \frac{9}{8}\) \(\times \frac{9}{8} \times \frac{9}{8}=\frac{53144 \mathrm{I}}{262144}\), is more than \(\frac{524288}{262144}=\frac{2}{1}\).

This being the Cale; they allowed (indifputably) to that of the Dise zeutick Tone (la mi,) the full Proportion of 9 to 8 , as a thing not to be altered; being the Difference of Dia-pente and Dia-tefferon, or the Fifth and Fourtb.

All the Diffculty, was, How the remaining Fourti) (mi, fa, fol, la,) fhould be divided into three parts, fo as to anfwer (pretty neari) the Aijfoxenians Two Tones and a half: and might, altogerher make up the Proportion of 4 to 3, which is that of a Fourth or Dia-tefferon.

Many Attempts were made to this purpofe: And according to thofe, they gave Names to the Different Gemera or Kinds of Mufick, (the Dintonick, Chromatick, and Enarmonick Kinds,) with the feveral Species, or leffer DiftinCtions under thofe Generals.

The firt was that of Euclide (which did moft Generally obtain for many Ages:) Which allows to fa, fol, and to \(\int_{0} l, l_{a}\), the full Proportion of 9 to 8 ; And therefore to \(f a, f o l, l a\), (which we call the Greater Ibird) that of 8 I to 64. (For \(\frac{9}{8} \times \frac{9}{8}=\frac{81}{64}\). And, confequently, to that of \(M i, f a\), (which is the Remainder to a Fourth) that of 256 to 243. For \(\left.\frac{81}{64}\right) \frac{4}{3}\left(\frac{256}{243}\right.\); that is, if out of the Proportion of 4 to 3 , we take that of 81 to 64 , the Refult is that of 256 to 243 . To this they gave the Name of Limima (^êцua) that is, the Remainder (to wit, over and above two Tones.) But, in common Difcourfe (when we do not pretend to feak nicely, not intend to be founderftood) it is ufual to call it an Hemi-tone, or Half-Note, (as being very near it) and the other, Two Whole Notes. And this is what Ptolemy calls Diatonum Ditonum, (of the Diatonick kind with Two Full Toncs.)

Againft this, it is Objected (as not the moft convenient Divifion) that the Numbers of 81 to 64 , are too great for that of a Ditone, or Greater Third; which is not Harfh to the Ear; but is rather Sweeter than that of a Single Tone, whofe Proportion is 9 to 8. And in that of 256 to 243 , the Numbers are yet much greater. Whereas there are many Proportions (\(a_{s}\) \(\frac{5}{4}, \frac{6}{5}, \frac{7}{6}, \frac{8}{7}\),) in fmaller Numbers than that of 9 to 8 ; of which, in this Divifion, there is no Notice taken.

To Rectifie this, there is another Divifion thought more convenient; which is Ptolemey's Diatonum Intenfum (of the Diatonick Kind, more Intenfe or Acute than that other.) Which inftead of two Full Tones for fa, Sol, la, afigns (what we now call) a Greater and a Leffer Tone; (which by the more Nice Muficians of this and the laft Age, feems to be more embraced;) Affigning to fa, fol, that of 9 to 8, (which they call the Greater Tone;). and to Sol, la, that of 10 to 9 , (which they call the Leffer Tone:) And therefore to fa , la, (the Ditone or Greater Third) that of 5 to 4. (For: \(\frac{10}{9} \times \frac{9}{8}=\frac{10}{8}={ }_{4}^{5}\).) And confequently to \(m i, f a\), (which is remaining of the Fourth) that of 16 to 15 . For \(\left.\frac{5}{4}\right) \frac{4}{3}\left(\frac{16}{15}\right.\). That is; if out of: that of 4 to 3, we take that of: 5 to 4 , there remains that of 16 to 15 .

Many other ways there are (with which I fhatl not trouble you at pre. fent) of dividing the Fourtl) or Dia-tefferon, or the Proportion of 4 to 3 , in. to three parts, anfwering to what (in a loofer way of Expreffion) we call: an Half-Note, and two whole Notcs. But this of \({ }_{\text {is }}^{16} \times \frac{9}{8} \times \frac{10}{9}=\frac{4}{3}\), is that which is now received as the moft proper.

To which therefore I fhall apply my Difcourfe; Where \(\frac{16}{15}\) is (what we call) the Homitone, or Half Note, in mi,fa; \(\frac{9}{8}\) that of the Grenter Tonc, in fa, Sol, and \(\frac{\text { To }}{9}\) the Leffer Tone, in fol, la.

Only with this Addition; That each of thofe Tones, is (upon Occafion: by Flats and Sharps (as we now fpeak) divided into two Hemi-tones; or HalfNotes: Which anfwers to what by the Grecks was called Mutatio quoad Modos.: (the Change of Mood;) and what is now done by removing \(m i\) to another Kcc. Namely \(\frac{9}{8}=\frac{18}{16}=\frac{18}{17} \times \frac{17}{16} ;\) and \(\frac{10}{9}=\frac{20}{18}=\frac{20}{19} \times \frac{12}{18} ;\)

Thus by the help of Flats and Sharps (dividing each whole Note, be it the Greater or Leffer, into two Hatf Notes, or what we call \(f 0\),) the whole octave is divided into Twelve Parts or Intervals (contained between Thirteen: Pipes) which are commonly called Hemi tones or Half Notes, not that each is: precifely Half a Note, but fome what near it, and fo called. And I fay, by Flats and Sharps; For fometime the one fometime the other, is ufed.: As for Inftance, a Flat in D, or a Sharp; in C, do either of them denote a Midling Sound (though not precifely in the Midet) between \(C\) and \(D\); Sharper than. C, and Flatter than D.

\section*{(704)}

Accordingly; fuppofing mi to Atand in B-fa-bomi (which is accounted its Natural Seat') the Sounds of each Pipe are to bear thefe Proportions to each ohler, vir.

And fo in each offave fuscefively following. And if the Pipes in each octave be fitted to Scunds in thefe Proportions of Gravity and ficutcnefs, it will be fuppofed (according to this Hypothefis to be perfectly Proportioned.

But, initead of thefe fuccellive Proportions for each Hemi-tone; it is found neceffary (if I do not mittake the Pra@ice) fo to order the 13 Pipes (containing 12 Intervals which they call Hemi-tones) as that their Sounds (as to Gravity and Acutenefs) be in Continual Proportion, (each to its next.following, in one and the fame Proportion ;) which, all together, fhall compleat that of an Oitave or Dia-pafon, as 2 to 1. Whereby it comes to pais that cach Pipe doth not exprefs its proper Sound, but very near it, yet fomewhat varying from ir; Which they call Berring; Which is fomewhat of Imperfection in this Noble Inftrument; the Top of all.

It may be asked, Why may not the \(P_{i j c s}\) be fo ordered, as to have their Sounds in juft Proportion, as well as thus Bearing?

I anfwer, It might very well be fo, if all Mujick were Compefed to the fane Kcy, or (as the Grecks call it) the fame Mode; As for Inftance, if, in all Compofitions, mi, were always placed in \(B \cdot f a \cdot i-m i\). For then the Pipes might be ordered in fuch Proportions as I have now defigned.

But Mufical Comperitions are made in great Variety of Modes, or with great Diverfity in the Pitch. Mi, is not always placed in \(B-f^{-} b-m i\); but fome limes in E-la-mi, fometimes in \(A\)-la-mi-re, Sic. And (in Summ) there is none of thefe 12 or I 3 Pipes but may be made the Sent of mi. And if they were exactly

\section*{(705)}
exactly fitted to any one of thefe Cafes, they would be quite out of order for all the reft.

As for Infance; If \(m i\), be removed from \(B-f_{A}-b-m i\) (by a Flat in B) to E-la-mi: lnftead of the Proportions but now defigned, they mult be thus ordered.

Where 'tis manifeft, that the removal of mi doth quire diforder the whole Series of Proportions. And the fame vould again happen, if \(m i\) be removed: from \(E\) to A (by another Fint in E.) And again if remov'd from A to D. And fo perperually. But the Henitones being made all equal; they do indif. ferently anfwer all the Pofitions of mi (though not exactly to any:) Yet nearer to fome than to others. Whence it is, that the fame Tunc Sounds better at one Key than at another.

It is asked, Whether this may nor be Remedy'd; by interpofing more Pipts; and thereby dividing a Note, not only (as now) into Half: Notes, but inte-Quarter-Notes or Half- Quarter- Notes, \&c.

I anfwer; lt may be thus Remedy'd in part; (that is, the Imperfection might thus be fomewhat Lefs, and the Sounds fomewhat nearer to the Juft Proportions:) but it can never be exactly true, fo long: as their Sounds (be they never fo many) be in continual Proportion; that is, each to the next Sublequent in the fame Proportion.

For it hath been long fince Demonftrated, that there is no fuch thing as a juft Homi-tone practicable in Mufick, (and the like for the Divifion of a Tone into any Number of Equal parts; three, four or more:) For, fuppofing the Proportion of a Tone or Full Note, to be \(\frac{9}{8}\) (or, as 9 to 8 ;) that of the Half-Note mult be as \(\sqrt{ }\), to \(\sqrt{ }\); that is as 3 to \(\sqrt{ }\). or 3 to \(2 \sqrt{ } / 2\)). which are Incommenfurable Quntitics. And that of a Quenter Note, as \(\sqrt{ } 9\) to \(\sqrt[4]{ } 8\), which is yet more Incommenfurate. And the like for any other Number of Equal parts, which will therefore never fall in with the Proportions of Number to Number.

So that this can never be perfectly Adjufted for all Keys (without foniewhat of Bearing) by Multiplying Pipes; unlefs we would for cvery Key or every different Seat of \(m i\)), have a different Set of Pipes, of which this or that is to be ufed, according as (in the Compofition) mi is fuppofed to ftand in this or that Seat. Which valt Number of Pipes (for every Oftave) would vafly increafe the Charge: And (when all is done make the whole Imprait cable.

A New Tuang V. S. Salvetti, about 4. Years ago Invented a New Tuning of the Ancicne of the Lyra Vi- Lyra Viol with the ufual 13 Strings; by means of which Tuning it is rendervettio. \% 87. f. 5054. ed wholly Perfect, fo that you may exprefs upon-it all Concords, Difcords, and alfo the Imperfect Concords, as Sevenths, Sixths, \&c. as well as upon any Virgisal that hath the Quarters of Notes upon it. 'Tis true, 'tis only for Melancholly and Paffionate matter, and not for Divifion, as is the proper Nature of the Lyra. I fhall only add, that with the above faid Tuning the Afcends in Alt as high as G-folic-ut; and Defcends as low as Doulle C-fa; ut; and can male every where the fanae Concords as above.

The frange Effects reported of Mufick in For. mer Times, Ex-is highly Hyperbolical and next Door to Fabulous'; And therefore great Abateamiased; by Dr. ments muft be allowed to the Elogies of their Mufick: Wallis. 2. 243 . p. 297.
2. We muft conider, That Mufick (to any tolerable Degree) was then (if not a New, at leaft) a Rare Thing, which the Rufticks, on whom it is reported to have had fuch Effects, had never heard before : and on fuch a little Mufick will do great Fents; A's we find at this Day, aFidle or a Bays-pipe, at a Country Morice Dance.
3. We are to confider, that their Mufick (even after it came to fome good Degree of Perfection) was much more Plain and Simple than ours now-a.days. They had not conforts of two, three, four or more Parts or Voices: But one Single Voice or fingle Intrunuent a part; which to a rüde Ear, is much more taking than more Compounded Mufick. For that is at a Pitch not above their Capacity ; whereas this other confounds it, with a great Noife, but nothing Diftinguifhable to their Capacity.
4. IVe are to confider, that Mufick with the Ancients was of a larger extent than what we call Mufick now a-days: For Poetry and Dancing (or comely Motion) were then accounted parts of \(M u f i c k\), when \(M u f i c k\) arrived to :Come Perfection. Now we know that Verfe of it felf, if in good Meafures and Affectionate Language, and this fet to a Mufical Tune, and Sung by a decent Voice, and accompanied but with Soft Inftrumental Mufick if any, fuch ais not to Drown or obfcure the Emplatick Expreffions (like what we call RecitativeMufick) will work ftrangely upon the Ear, and Move all Affections fuitable to the Tune and Ditty; (whether Brisk and Pleafant, or Soft and Pitiful, or Fierce and Angry, or Moderate and Sedate) efpecially if attended with a Gefure and Action fuitable. For'tis well known, that fuitable Acting; on a Stage gives great Life to the Words. Now all this together (which were all Ingredients in what they called Mufick) mult needs operate ftrongly on the Fancies and Affections of ordinary People, unacquainted with fuch kind of Treatments. For, if the deliberate Reading of a Romance (when -well penn'd) will produce Mirth, Tears, Joy, Grief, Pity, Wrath, or Indignation, fuitable to the refpective Intents of it, much more would it fo do, if accompanied with all thofe Attendants.

\section*{(707)}
5. You will ask perhaps, why may not all this be Nou dore, as well a then? I anfwer, no doubt it may, and with like Effect, if an Addrefs be made, in Proper Words with Moving Arguments, in juft Meafures (Poetical or Rbetorical) with the Emplatick Words, Words fet in fignal Places, pronounced with a good Voice, and a true Accent) and attended with a decent Gefture; and all thefe fuitably adjufted to the Paffion, Affection, or Temper of Mind, particularly defigned to be Produced, (be it Joy, Love, Grief, Pity, Courage or Indignation) will certainly now, as well as then, produce great Effects npon the Mind, efpecially upon a Surprize, and where Perfons are not otherwife pre-engaged: And if to managed, as that you be (or feem to be) in carneft; and if not Over-Acted by apparent Affectation.
6. We are to confider that the ufual Defign of what we now call Mujick, is very different from that of the Ancients. What we Now call Mufick, is but what they called Harmonick; which was but one part of their Mufick (confifting of Words, Verfe, Voice, Tune, Inftrument, and Acting) and we are not to expect the fame Effect of one Piece as of the Whole.
7. When Mufick arrived to great Perfection, it was applied to particular Defigns of Exciting this or that particular Affection, Patfion or Temper of Mind ; the Tuncs and Meafures being fuitably adapted to fuch Defigns. But fuch Defigns feem almoit quire neglected in our prefent Mufick. The chief Defign now, in our moft accomplifhed Mufick, being to pleafe the Ear; when by a fweet Mixture of different Parts and Voices, with juft Cadences and Concords intermixed, a grateful found is produced, which only the \(\mathfrak{F u d i c i o u s ~ M u f i c i a n ~ c a n ~ d i f c e r n ~ a n d ~ d i f t i n g u i f h . ~}\)
8. \({ }^{\prime}\) Tis true, that even this Compound Mufick admits of different Characters fome is more Brisk and Airy ; others more Sedate and Grave ; others more Languid; as the different Subjects do require. But that which is-moft proper to excite particular Pafions or Difpofitions, is fuch as is more Simple, and Uncompounded: fuch as a Nur/es Languid Tune, Lulling her Babe to Sleep; or a continued Reading in an Even Tone; or even the foft Murmur of a little Rivulet, running upon Gravel or Pibbles; inducing a quiet Repofe of the Spirits. And contrarywife, the Brisknefs of a Fig, on a Kit or Violine, exciting to Dance. Which are more Operative to fuch particular Ends, than an Elaboratc Compofition of Full Mufick.
9. To Conclude; If we Aim only at pleafing the Ear, by a Swect Confort, I doubt not but our Modern Compofitions may be equal, if not exceed thofe of the Ancients: Amongft whom I do not find any Footteps of what we call Several Payts or Voices, (as Bafe, Treble, Mean, \&c. Sung in Confort) ant fiwering each other to compleat the Mufick. But if we would have our Mufick to adjufted as to excite particular Paffion, Affections, or Temper of Mind (as that of the Ancients is fuppofed to have done) we muft apply more fimple Ingredients, fitted to the Temper we would Produce. And this, I doubt not, but a Fudicious Compofer may fo Effect, (that with the Help of fuch Hyperbole's, as with which the Ancient Mufick is wont to be fet off) our Mufick may be faid to do as great Fents as any of theirs.

\section*{(708)}
VII. Accounts of Books, Oniitted.
N. 143.t.20.
1. Claudii Ptolemaxi Harmonicorum Libri tres Ex Cod. MSS. undecim, nunc primum Grace, Editi. Fo. Wrallis S.S. Th. D. Recenfuit, Edidit, Verfione \& Notis Illuftravit, \& Auctuarium adjecit. Oxon. 1682. in 4 to.
n. 23I. f. 668. 2. Porphyrii Commentarius in Librum primum Harmonicorum Claudii Ptolemei: atque Manuelis Bryennii Commentarius in tres Libros Harmonicos ejufdem Ptolcmxi. (Qui foli reftant ex Grecis Mufice Scriptoribus nondum Editi) Grace ac Latine, Cura, Fo: Walijfi S. Th D. Fol.
n. 80. p.3095. 3. An Effay to the Advancement of Mujick by Tho: Salmon M. A. Lond. 1672. in \(8 v o\).
n. 90. p. 5153. 4. Syntagma Mufica; Treating of Mufick Philofopbically, Mathematically, and
n. 100. p. 7000 . Practically; by F.Birchenjba Ef \(;\); This Book was Preparing for the Prefs, 1674 .
n. 100. p. 6 194. 5. Mufica Speculativa del Mengeli. in Bologna 1670 . in 4 to.
n. 133 . p .835 .
6. A Pbilofophical Efay of Mufick. Lond: 167.7. in \(4^{\text {to }}\).
m. 208. p. 67. . 7. A Treatife of the Natural Grounds and Principles of Harmony; by With. Holder. D. D. Lond. I694. in 8wo.

\section*{FIN S.}

3```

[^0]: II2

[^1]: - I: am Indebted for sbife Experiments to the Reverent and very Accurate Aftronomer Mr. Flamfteed, who Cofied them, together with many other, Obfervations and feveral . Padyages telating to them, from Mr. Gafcoigne's, Lettirs to Mr. Crabtree: They mere hap pily preferved, in the sime of out Civill U1ar, by the late Sir Jonas'. Moor, and Mr. Chr. Townley; and they are noro in the Hands of Mr. Kich. Tuwnley of Townicy in' Lancarkire, by unom-they were Imparted forme rime ago to Mro Flamfteed.

[^2]: The Phaces of Whe chiefeft Fix: Stars according. so the beft Antient Objervers; by Dr. Edward. Bernard, to D: Robere: Huntington. anas5. pe.567. No Peculio, ut vides, partim ab alis, adauxi. Non equidem quafı Rem ane 55. pe.567. Magnam mithi viderer adeo feciffe; verum ut noftri Homines. fenfums

[^3]: * Non vidit unquam Nepos Timuri Clarum Canopum; non cxteri hujus Caronis exceptis Alexandrinis.

[^4]: Yol. I.

