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In prior work (Biswas & Chatterjee 2014 Proc. R. Soc. A
470, 20130817 (doi:10.1098/rspa.2013.0817)), we developed a
six-state hysteresis model from a high-dimensional frictional
system. Here, we use a more intuitively appealing frictional
system that resembles one studied earlier by Iwan. The basis
functions now have simple analytical description. The number
of states required decreases further, from six to the theoretical
minimum of two. The number of fitted parameters is reduced
by an order of magnitude, to just six. An explicit and faster
numerical solution method is developed. Parameter fitting to
match different specified hysteresis loops is demonstrated. In
summary, a new two-state model of hysteresis is presented that
is ready for practical implementation. Essential Matlab code
is provided.

1. Introduction
In this paper, we follow up on our recent work on low-
dimensional modelling of frictional hysteresis [1]. Contributions
of this paper include a different underlying frictional model with
greater intuitive appeal, new analytical insights, reduction in the
number of states from six to two,1 reduction in the number of
free parameters by an order of magnitude, and demonstration of
fitting these parameters to several hypothetical hysteresis loops.
The net result is a two-state hysteresis model that captures minor
loops under small reversals within larger load paths and is
ready for practical numerical implementation (simple Matlab code
is provided).

For elementary background, we note that hysteresis is a
largely rate-independent, irreversible phenomenon that occurs in
many systems. Much research on hysteresis has been done over
several decades (e.g. three volumes of Bertotti & Mayergoyz [2]
and references therein). For classical papers, see, for example,
Ewing [3], Rowett [4], Preisach [5], Jiles & Atherton [6]. For our

1Two is the theoretical minimum number. Single-state models cannot capture
commonly observed behaviour (see fig. 3 in [1]).
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present purposes, for hysteresis in mechanical systems with elastic storage and frictional dissipation, a
model due to Iwan [7,8] seems promising, but is high-dimensional and deeply nonlinear with several
dry friction elements. By contrast, the famous Bouc–Wen model ([9,10]; see also [11]) is one-dimensional
but fails to form minor loops under small reversals within larger load paths.

With this background, we recently studied [1] a frictional hysteretic system given by

μ sgn(ẋ) + Kx = bf (t), (1.1)

where x is high-dimensional; μ is diagonal; K is symmetric and positive definite; b is a column matrix;
f (t) is scalar and differentiable; and the signum function ‘sgn’ is defined elementwise as follows:

sgn(u)
= +1, u> 0,
= −1, u< 0,
∈ [−1, 1], u = 0.

Equation (1.1) can be solved incrementally via a linear complementarity problem (LCP) [12] or, less
efficiently, using other means as described later. The solution of equation (1.1) captures important aspects
of hysteresis including formation of minor loops. From equation (1.1), we had developed a reduced
order model with six states. The order reduction included finding the slip direction as a minimizer
of a complicated function containing many signum nonlinearities, for which a convenient analytical
approximation was found. However, some shortcomings remained. The choice of basis vectors involved
some arbitrariness whose implications were unclear; reductions below sixth order gave poor results; and
there were too many fitted parameters for practical use.

In the light of the above, this paper makes the following notable progress. A more intuitively
appealing frictional system is studied here, motivated by the Iwan model [7] and yielding a
simpler governing equation. The numerically obtained basis vectors are now amenable to analytical
approximation, providing better analytical insight. Finally, a two-state, reduced order model is derived
that allows practical parameter fitting to match a range of given data.

As far as we know, the two-state model developed here has no parallel in the literature.

2. New frictional system
Differing somewhat from Biswas & Chatterjee [1], here we consider the intuitively simpler high-
dimensional frictional system sketched in figure 1. In this n-dimensional model (with n large), each
spring has stiffness 1/n, and friction coefficients at the slip sites are

μ1 = μ0

n
, μ2 = 2μ0

n
, . . . ,μn = nμ0

n
=μ0.

As indicated in the figure, u(t) is a displacement input to the system, for which a force f (t) is needed.
Friction forces at the slip sites are written as

F1 = −μ1 sgn(ξ̇1), F2 = −μ2 sgn(ξ̇2), . . . , Fn = −μn sgn(ξ̇n),

where the overdot denotes a time derivative and the signum function is understood to be multivalued at
zero (taking any necessary value between ±1). The governing equation is

μj sgn(ξ̇j) + 1
n
ξj = 1

n
u(t), j = 1, . . . , n

In matrix form

μ sgn(ξ̇ ) + Kξ = bu(t), (2.1)

which resembles equation (1.1) but is in fact simpler because the elements of μ now have a regular
variation (they are linearly increasing), K is a scalar multiple of the identity matrix, and all elements of b
are identical. The output force f (t) is

f (t) =
n∑

j=1

kj(u(t) − ξj) = u(t) − 1
n

n∑
j=1

ξj. (2.2)
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Figure 1. A high-dimensional frictional system.

Incidentally, if a spring of stiffness ks is attached to the system, in parallel, being stretched by u(t), then
the net output force is

f (t) = (1 + ks)u(t) − 1
n

n∑
j=1

ξj. (2.3)

We will use the parameter ks later for better fitting of the model to specified hysteretic response curves;
here, we note that ks in equation (2.3) has no effect on the solution of equation (2.1), which takes u(t) as
its input.

We solve equation (2.1) incrementally by casting it first into an LCP (as described in Biswas &
Chatterjee [1]) and then by using Lemke’s algorithm (as implemented by Miranda & Fackler [13]). There
is in fact a large literature on solving friction problems using the LCP; readers interested in the theory
may consult, e.g. Klarbring & Pang [14].

Alternatively, equation (2.1) may be regularized as follows:

ξ̇ = sgn(bu − Kξ ) · exp

(
|μ−1(b u − Kξ )| − 1

ε

)
, 0< ε� 1. (2.4)

In the above the exponential, the absolute value within it, and the signum function are all evaluated
elementwise; the fact that K is a scalar multiple of the identity and that μ is diagonal has been used to
simplify the first term; and ε is a regularizing parameter. The justification for this regularizing method
is that (i) the exponential term produces high rates of change only when the concerned absolute value
exceeds unity, and (ii) the signum term outside guides that rate of change in the correct direction. Further
discussion of this regularizing method is avoided to minimize the distraction from the main flow of the
paper, but a numerical example is given in appendix A. Note that equation (2.4) may be solved using an
ordinary differential equation (ODE) solver.

For our numerical solution, the arbitrarily selected numerical parameters are as follows. We use n =
500, μ0 = 0.002 and the two-frequency displacement input

u(t) = 0.6748 sin(t) + 0.2887 sin(6.5581t). (2.5)

We then solve equation (2.1) incrementally using 12 000 uniform time steps of dt = 0.001 each.
In this way, we obtain a 12 000 × 500 matrix, wherein each row is ξT at some instant. From ξ , we

find f (t) using equation (2.2). Figure 2 shows f (t) against u(t). Minor loops are seen. As emphasized
by Biswas & Chatterjee [1], such minor loops are not predicted by the Bouc–Wen model or indeed any
hysteresis model with a single state.

We now develop a reduced-order model from this high-dimensional hysteretic system (figure 1,
equation (2.1)).



4

rsos.royalsocietypublishing.org
R.Soc.opensci.2:150188

................................................
0.5

–0.5

0f(
t)

–1.0 –0.5 0 0.5 1.0
u(t)

Figure 2. Hysteresis curve obtained for the 500 dimensional frictional system with u(t) as in equation (2.5). Note the minor loops, as
mentioned in §1.

3. Reduced-order model
Our system is discrete. However, the largeness of n and the slow variation in μj suggest that we might
loosely think of an approximating continuous system. With this motivation, we assume

ξj ≈
m∑

r=1

qr(t)φr(xj), x1 = 1, x2 = 2, . . . . (3.1)

In the above, m is the reduced dimension, qr(t)’s are functions of time and the φr(x)’s are basis functions
yet to be chosen.

3.1. Choice of basis functions
The singular value decomposition2 of the 12 000 × 500 data matrix from §2 shows that the first two
singular values are distinctly larger than the rest (figure 3). Figure 4a shows the first three singular vectors
plotted against x3/2 (where x = 1, 2, . . . , 500) for two different solutions using different μ0’s and u(t)’s.
Figure 4b shows that, after rescaling, the singular vectors for the two cases are similar. These observations
suggest that the basis functions may be taken as functions of x3/2 (the 3

2 power is empirical, based on the
fact that the slope near x3/2 is finite and non-zero). In order to ensure eventual decay to zero, we choose
the following basis functions for lower order modelling:

φr(x) = exp(−αx3/2) · (x3/2)r−1, r = 1, . . . , m. (3.2)

The free parameter α > 0 controls the decay rate of the basis functions. The actual discrete versions of
these basis functions will be orthonormalized below for analytical convenience.

It may be noted that the ad hoc form of equation (3.2) leads to simplification below, but also means
that the possibility of a very good match with the full numerical solution has now been abandoned.

3.2. Slip criterion
Our slip criterion is this: slip cannot occur if the accompanying frictional dissipation exceeds the external
work input minus the internal increase in potential energy. This criterion will help us find slip directions
and rates below.

What follows in §3.2–3.4 has much in common with Biswas & Chatterjee [1], but is included for
completeness. Let

ξ ≈Φq

2Also known as the proper orthogonal decomposition (e.g. [15]).
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Figure 3. First 10 singular values of ξ .
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Figure 4. (a) First three singular vectors plotted against x3/2. The blue solid curves are solutions for μ0 = 0.002 and u(t) as
in equation (2.5); the red dotted curves are solutions for μ0 = 0.004 and the different, also arbitrary, u(t)= 0.4049 sin(t) +
0.1732 sin(4.5581t). (b) Singular vectors for the two cases (a) match fairly well after scaling horizontally and vertically.

where the columns ofΦ are basis vectors from equation (3.2), but orthonormalized so thatΦTΦ = I. Then
the slip rate vector

v ≈Φ q̇ =Φη (say)

with

vTv = ηTΦTΦη= ηTη.

The rate of frictional dissipation is

n∑
j=1

|ξ̇j|μj =
n∑

j=1

ξ̇jμj sgn(ξ̇j) = ηTΦTμ sgn(Φη). (3.3)
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The rate of increase in spring potential energy is

d
dt

⎛
⎝ n∑

j=1

1
2n

(u − ξj)
2

⎞
⎠= 1

n

n∑
j=1

(u̇ − ξ̇j)(u − ξj) (3.4)

and the rate of work done by the external force f is

u̇f = u̇
n∑

j=1

1
n

(u − ξj). (3.5)

Substituting the above into our slip criterion yields

ηTΦTμ sgn(Φη) + ηT(ΦTKΦ)q − ηT(ΦTb)u ≤ 0, (3.6)

with matrices μ, K and b as described in §2. We define

ηTΦTμ sgn(Φη) = G(η) (3.7)

and

(ΦTKΦ)q − (ΦTb)u = K̄q − b̄u = c, (3.8)

so that inequality (3.6) becomes

G(η) + ηTc ≤ 0. (3.9)

We note that K̄ = (1/n)I above, with I being the identity matrix; and choosing n = 500,

b̄ =
{

0.0326
0.0068

}
and

{
0.0285
0.0059

}

for α = 0.0008 and α = 0.0012, respectively. These values will be used later.
If the minimum possible value of the left-hand side of inequality (3.9) is negative, rapid slip will occur

because there is no inertia; if the minimum is positive, no slip can occur; and if it is zero over a time
interval, sustained slip can occur at a finite rate.

Accordingly, we will minimize G(η) + ηTc at each time step with respect to η, and see if the minimum
is negative or positive. Noting that G(η) + ηTc is homogeneous of degree one in η, our minimization will
be done subject to ηTη= 1. The only difficulty is that G(η) is a complicated function. Luckily, a convenient
analytical approximation for G(η) of equation (3.7) was found by Biswas & Chatterjee [1].

3.3. Approximation of G(η)
G(η) is homogeneous of degree one in η. In Biswas & Chatterjee [1], a similar function was encountered
and the following approximation was considered:

G(η) ≈ (ηTAη)β

(ηTη)β−0.5 , (3.10)

with A a fitted symmetric and positive definite matrix; also, β = 0.5 was found to be near-optimal and
selected due to analytical convenience. We use the same approximation here (again with β = 0.5).

Fitting of the matrix A was described in detail in the earlier paper. Here we fix n = 500, let μ0 vary,
and fit A for α = 0.0008 and α= 0.0012. We find that to an excellent approximation

A =μ2
0Ā (3.11)

with

Ā =
[

24.8170 −10.0836
−10.0836 6.2967

]

and

Ā =
[

11.1372 −4.5175
−4.5175 2.8222

]

for α= 0.0008 and α = 0.0012, respectively. With A as above and β = 0.5, G(η) has been approximated; we
now turn to the slip direction.
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3.4. Slip direction
The slip direction η minimizes y = G(η) + ηTc for given

c = 1
n

q − b̄u,

subject to ηTη= 1.
Introducing a Lagrange multiplier for the constraint, using the approximation G(η) ≈

√
ηTAη, taking

the gradient with respect to η, and letting 2λ= λ̄, we obtain

1√
ηTAη

Aη − λ̄η= −c. (3.12)

The minimizing 2 × 1 matrix η is found by solving a 4 × 4 eigenvalue problem (see appendix B). If the
corresponding

y =
√
ηTAη + ηTc< 0, (3.13)

then slip occurs in the direction of η.

3.5. Reduced-order model using incremental map
The unit vector η (computed as outlined in appendix B) gives the direction of slip, but the actual rate of
slip q̇ remains to be found. In Biswas & Chatterjee [1], we used a stiff system of ODEs with a large ad hoc
gain parameter. Here, we use a faster explicit incremental formulation as follows.

During time increment 
t, let 
q = η
s for some 
s ≥ 0. Holding η fixed during the time increment,
we find from equations (3.13) and (3.8)


y = ηT
c = ηT(K̄
q − b̄
u). (3.14)

It follows that

y +
y =
√
ηTAη + ηTc + ηT(K̄η
s − b̄
u). (3.15)

Equation (3.15) gives a linear relationship between the unknowns 
s and y +
y (with all other things
including 
u being known). The unknowns satisfy the linear complementarity conditions


s ≥ 0, y +
y ≥ 0, 
s · (y +
y) = 0. (3.16)

Solving3 equations (3.15) and (3.16) yields 
s, which in turn gives the increment in q through

q(t +
t) = q(t) + η
s. (3.17)

The output force f (t), from equations (2.2), (2.3) and (3.1), is

f (t) = (1 + ks)u(t) − qTb̄. (3.18)

Figure 5 shows results for u(t) as in equation (2.5), and with ks = 0. We used n = 500, μ0 = 0.002, and
α= 0.0008 and 0.0012. Both solutions capture minor loops. The hysteresis loops obtained depend on the
parameter α.

As mentioned earlier, a direct comparison of these results with the earlier high-dimensional
simulation is not meaningful because we have adopted analytical expressions for the basis functions
(equation (3.2)) instead of numerically computed proper orthogonal modes from actual solutions
(figure 4). The high-dimensional model has thus motivated the structure of the lower dimensional model,
and now we work directly with the latter.

3.6. Final reduced-order model using a differential equation
Although the numerical results that follow were obtained using the incremental map given above, some
users may prefer to have a differential equation for the hysteresis model. We now present one. We also
present the entire hysteresis model compactly and algorithmically below. A detailed example calculation
is given in appendix C.

3Since 
s and y are scalars, these equations can be solved easily, and LCP code is not needed.
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Figure 5. Hysteresis curves for u(t) as in equation (2.5). (a)α= 0.0008 and (b)α = 0.0012.

The quantities assumed given are:

1. System matrices. These are:

(i) An m × m symmetric and positive definite matrix A (we have been working with m = 2).
Since A can be diagonalized by an orthogonal coordinate transformation, for compactness
we henceforth assume that A is diagonal, with elements increasing order. In the m = 2 case,
we introduce a scalar factor μ̄ > 0 to write

A = μ̄

[
σ 0
0 1

]
, 0<σ < 1.

(ii) A matrix K̄, which is a scalar multiple of the identity. Here

K̄ = ᾱ

[
1 0
0 1

]
, ᾱ > 0.

(iii) An m × 1 column matrix b̄. Here

b̄ =
{

b̄1
b̄2

}
.

2. System inputs: u is the system input, and u̇ is known at each instant.
3. The state vector: q is an m × 1 state vector (here m = 2).

Given the above system matrices and inputs, we first compute c = K̄q − b̄u. Subsequently, the possible
slip direction η is computed as a function of A and c as described in appendix B, using straightforward
matrix calculations of order 2m.

Using the above, we define the intermediate quantity4

ṡ =
[
ηTb̄

ηTK̄η
u̇ − My|u̇|

]
· {y ≤ 0}, (3.19)

where M is a user-defined positive number (we have used M = 1 with good results); and where {y ≤ 0} is
a logical variable (1 if the condition holds, and 0 otherwise).

Finally, recalling equation (3.16), we write

q̇ = ηṡ · {ṡ> 0}, (3.20)

where {ṡ> 0} is a logical variable as above (1 if the condition holds, and 0 otherwise). At this point,
starting from the state matrices, the inputs u and u̇, and the state vector q, we have computed q̇.

4The way ṡ is defined ensures that if y> 0, then ṡ = 0; and otherwise, the first term inside the square brackets maintains ẏ = 0
(see equation (3.15)) while the second term drives y from any negative values it takes during simulation towards zero. Since the
−My term is a small stabilizing correction, M does not need to be very large.
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and added. That sum is minimized with respect to the fitted parameters.

The above system of ODEs does not need a large ad hoc ‘gain’ parameter as was used in Biswas &
Chatterjee [1].

4. Fitting parameters to given data
As described in §3.5, for a two-state model we have five fitted parameters (μ̄, σ , ᾱ, b̄1 and b̄2). If we used
a three-state model, we would add one diagonal entry in A, no new parameters to K̄, and one element to
b̄, obtaining a model with seven fitted parameters.

Introduction of an added spring in parallel with constant ks, as in equation (2.3), would make it
six fitted parameters for the two-state model and eight fitted parameters for the three-state model.
For clarifying that a spring in parallel is implied, we will refer to these latter two as 5 + 1 and 7 + 1,
respectively.

We now fit some hypothetical hysteresis loops using our two state, 5 + 1 parameter model, using
nonlinear least squares as depicted schematically in figure 6 (the minimization was done using Matlab’s
built-in function fminsearch).

5. Results and discussion
We now show results of fitting the hysteresis model to some arbitrary input data. Results are depicted
graphically here; numerical values of fitted parameters are given in appendix D.

Figure 7 shows fitting of three hysteresis loops, numbered 1 to 3. Each case is depicted in three parts,
namely (a), (b) and (c). Parts 1(a) to 3(a) show the prescribed or desired loop shapes (half the cycle).
Parts 1(b) to 3(b) show the corresponding hysteresis loops obtained by fitting parameters. These fitted
parameters are then used to plot hysteresis loops using smaller (85 and 70%) input amplitudes, and
parts 1(c) to 3(c) show these loops corresponding to 100% (blue solid), 85% (black dotted) and 70% (red
dashed) amplitude.

The model fits the above given data (figure 7) well. However, the model does not work well for
hysteresis curves with two distinct changes of slope. For example, figure 8 shows how a hysteresis curve
made of three straight lines is not captured very accurately by the two-state model (or even, in attempts
not documented here, by models with three or four states). However, overall, our model fits a reasonable
range of data usefully well.

In figure 9, we consider fitting of minor loops. In case 1(a), we specify two minor loops within a major
loop. The corresponding fit is shown in 1(b). In case 2(a), we try to thicken one of the minor loops of
case 1(a). The model captures the loop thickening in the third quadrant of the plot, but similar changes
occur in the first quadrant as well, because our hysteresis loops are symmetrical about the origin.

The model developed in this paper, as explained and demonstrated above, has several advantages
over our earlier work [1]. These advantages include a more intuitive underlying frictional system,
analytical insights into basis functions, a minimal number of states (two), a small number of fitted
parameters, and the ability to match a reasonable range of hysteretic behaviours.

The computational complexity of our model exceeds that of the Bouc–Wen model but compensates
by capturing minor loops. Direct computation with the Iwan model for arbitrary forcing, in high
dimensions, would be significantly more complex than for our model.
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Figure 7. Fitting of hysteresis loops. Part (a): prescribed hysteretic shape (only half of the cycle). Part (b) corresponding fitted hysteresis
loop. Part (c) fitted hysteresis loop (blue solid) alongwith twohysteresis loops corresponding to 85% (black dotted) and 70% (red dashed)
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Figure 8. (a) Given data,made of three straight lines. (b) Corresponding fitted hysteresis loop. Themodel apparently cannot capture two
sharp slope changes.

Further study may clarify the precise advantages of including more than two states in the hysteresis
model; why (apparently) two distinct changes in slope are difficult for the model to capture; and how
parameter fitting can be done more reliably and efficiently than using general purpose minimization
routines with random initial guesses.

New research questions might also now be addressed somewhat more easily; these include control
strategies for such hysteretic systems, as well as the nonlinear dynamics of systems that include elements
with such hysteretic behaviour.

6. Closing note
An anonymous reviewer of this article has brought to our attention the recent work by Scerrato et al.
[16,17]. These works are interesting and complementary to our approach, possibly opening up new lines
of research for both.



11

rsos.royalsocietypublishing.org
R.Soc.opensci.2:150188

................................................

0.5

0

–0.5

0.5

0

–0.5

f (
t)

f (
t)

u(t)
–1 0 1

u(t)
–1 0 1

(b)(a)

(1)

(2)

Figure 9. (a) Given data for hysteresis loops with minor loops. (b) Corresponding fitted hysteresis loops. Case 1(a): two minor loops are
specified within the major loop. Case 2(a): thicker minor loop than in Case 1(a). 1(b) and 2(b): nature of complete loops.

In particular, in these works, a micro-structural model for dissipation in concrete is considered, while
our starting model is abstract although physical, and not motivated by any specific material. Both models
allow complex stress histories, but their work considers multiaxial stress states while ours so far does not.
In that work, the experimental hysteresis loops fitted are asymmetric, while ours are symmetric. We have
fewer state variables than they do.

Thus, their work motivates our approach to try to incorporate triaxiality in stress and asymmetry in
hysteresis loops, while our work suggests new methods of approximation and model-order reduction
that may lead to improvements in their approach.

Authors’ contributions. A.C. suggested the initial choice of system. S.B. discovered the final analytical simplification, did
all computations and generated all the figures. Both authors contributed to the development of the approach and to
the writing of the article.
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Appendix A. Linear complementarity problem and ordinary differential
equation solutions compared
An anonymous reviewer of an earlier version of this paper asked about the possibility of other solutions
than what the LCP predicts. It is true that such high-dimensional frictional systems can have non-unique
solutions. The aim of our paper has been to derive a low-dimensional hysteresis model rather than probe
the full complexities of the original high-dimensional model. Nevertheless, here we demonstrate that the
LCP solution is close to the solution obtained from a system of ODEs (namely equation (2.4)) obtained
by regularizing the frictional forces in the model.

Figure 10 shows a comparison between LCP and ODE results from equations (2.1) and (2.4). Here, we
have used n = 50, μ0 = 0.02, and u(t) as in equation (2.5). We also chose ε = 0.003 in equation (2.4). Both
the solutions match quite well. The LCP solution is much faster and therefore adopted for larger n.

Appendix B
B.1. Finding the slip direction η
We have been able to substantially simplify the calculation of the slip direction η, compared to our
original method developed by Biswas & Chatterjee [1]. Recall §3.5, where it was explained that using
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Figure 10. Hysteresis curves obtained for a 50 dimensional system from LCP and ODE solutions.

an orthogonal transformation we can take A to be diagonal:

A = μ̄

[
σ 0
0 1

]
.

We reproduce equation (3.12) below:

A√
ηTAη

η − λ̄η + c = 0.

Let λ̄=
(

1/
√
ηTAη

)
λ̂. Then,

1√
ηTAη

(A − λ̂I)η= −c (B 1)

or
1√
ηTAη

(
μ̄

[
σ 0
0 1

]
− λ̂

[
1 0
0 1

]){
η1
η2

}
= −

{
c1
c2

}
. (B 2)

From equation (B 2)

η1 = − c1
√
ηTAη

(μ̄σ − λ̂)
(B 3)

and

η2 = − c2
√
ηTAη

(μ̄− λ̂)
. (B 4)

Since ηTAη= μ̄(η2
1σ + η2

2), by equations (B 3) and (B 4), we have

μ̄

(
c2

1σ

(μ̄σ − λ̂)2
+ c2

2

(μ̄− λ̂)2

)
= 1,

which yields

(μ̄σ − λ̂)2(μ̄− λ̂)2 − μ̄(μ̄− λ̂)2c2
1σ − μ̄(μ̄σ − λ̂)2c2

2 = 0. (B 5)

Now, somewhat fortuitously, we consider the 4 × 4 matrix

B =
[

A ccT

A A

]
. (B 6)

It turns out that λ̂ of equation (B 5) is an eigenvalue of the above B. Setting

det

([
A − λ̂I ccT

A A − λ̂I

])
= 0,
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we obtain

det((A − λ̂I)2 − AccT) = 0. (B 7)

We now use a matrix determinant lemma (e.g. [18]) which says that for a square matrix H and column
matrices g and h of appropriate sizes,

det(H + ghT) = det(H)(1 + hTH−1g).

By this lemma, equation (B 7) gives

det(A − λ̂I)2 · (1 − cT[(A − λ̂I)2]−1Ac) = 0

or

(μ̄σ − λ̂)2(μ̄− λ̂)2 ·
(

1 − μ̄σ c2
1

(μ̄σ − λ̂)2
− μ̄c2

2

(μ̄− λ̂)2

)
= 0 (B 8)

which, upon multiplying the terms out, gives equation (B 5). Thus, λ̂ is an eigenvalue of B.
Now consider the corresponding eigenvectors[

A − λ̂I ccT

A A − λ̂I

]{
ψ

ζ

}
=
{

0
0

}
, (B 9)

where ψ and ζ are 2 × 1. From equation (B 9),

(A − λ̂I)ψ + ccTζ = 0 (B 10)

and
Aψ + (A − λ̂I)ζ = 0. (B 11)

Premultiplying equation (B 10) with ζT gives

ζT(A − λ̂I)ψ + (cTζ )2 = 0, (B 12)

while premultiplying equation (B 11) with ψT and then transposing gives

ψTAψ + ζT(A − λ̂I)ψ = 0. (B 13)

From equations (B 12) and (B 13), we obtain

cTζ = ±
√
ψTAψ . (B 14)

Dividing equation (B 10) by the scalar quantity cTζ and then substituting equation (B 14), we obtain

1√
ψTAψ

(A − λ̂I)(±ψ) = −c. (B 15)

Since ψ is part of an eigenvector it can be scaled such that ψTψ = 1, and the above equation remains
unaffected. However, ψ remains indeterminate up to a ‘±’ sign. Comparing equations (B 15) and (B 1),
we find η= ±ψ .

Thus, the algorithm for computing η is as follows. First, we construct matrix B as in equation (B 6).
We find its eigenvalues λ̂. For every real λ̂, we find the corresponding portion of its eigenvector,
ψ , normalized to ψTψ = 1, and with sign chosen such that ψTc ≤ 0. Searching through all such ψ

(numbering at least 2 as shown by Biswas & Chatterjee [1], and at most 2m which is the size of B),
we select the one that minimizes

√
ψTAψ + ψTc. That ψ is the slip direction η.

B.2. Matlab code for computing η
The Matlab code below finds the slip direction η given a diagonal A and 2 × 1 vector c.

function eta=slip(A,c)

m=length(c); B=[A,c*c’;A,A];

[v,d]=eig(B); E=[]; S=[]; d=diag(d);

for k=1:m

if imag(d(k))==0

temp=v(1:m,k);
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Figure 11. A two degree of freedom spring–mass system with a hysteretic damper.
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Figure 12. (a) Displacements u1, u2 and hysteretic force f versus time. (b) Hysteresis between u1 and f for a portion of the computed
solution.

temp=-temp/norm(temp)*sign(temp’*c);

E=[E,temp]; S=[S,sqrt(temp’*A*temp)+temp’*c];

end

end

[m,n]=min(S);

eta=E(:,n);

Appendix C. A two-mass system with a hysteretic damper
Figure 11 shows a two degree of freedom oscillator. There are two unit masses attached by springs of
unit stiffness as shown in the figure. A two-state hysteretic damper is attached to the first mass. The
displacements of the masses are taken as u1 and u2, with u1 being the input to the hysteretic damper.

We arbitrarily choose the parameter values

A = 0.117 × 10−3

[
0.0638 0

0 1

]
, K̄ = 1

500

[
1 0
0 1

]
and b̄ =

{
0.0326
0.0068

}
.
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Table 1. Fitted parameters for the cases of figure 7.

case μ̄ σ ᾱ b̄1 b̄2 ks
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0.0176 0.1425 0.2222 0.2047 0.2458 −0.2481
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.1164 0.0047 0.1879 0.0175 0.3734 0.1515
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.1506 2.9925 1.4728 −1.7047 −1.4578 2.5444
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Fitted parameters for the cases of figure 9.

case μ̄ σ ᾱ b̄1 b̄2 ks
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0.2039 0.0707 2.4733 0.6868 −1.0032 −0.0319
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.0503 0.0152 0.3736 1.2695 −0.2733 3.8860
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Equations of motion of the two masses are

ü1 + 2 u1 − u2 + f = 0

and ü2 − u1 + u2 = 0,

}
(C 1)

where f is the hysteretic damper force. In addition, there are two first-order differential equations for
the two-dimensional state q, as given earlier in §3.5. The hysteretic force f is calculated at each instant
following equation (3.18):

f = u1 − qTb̄.

Figure 12a shows the system response for an arbitrary initial condition. The blue solid line is
displacement u1, the black dashed line is the displacement u2 and the red dotted line is the hysteretic
force f. For this two degree of freedom system, the response has more than one frequency. Consequently,
u1 shows short reversals within larger oscillations. Consequently, the hysteretic force shows minor
reversals (figure 12b).

Appendix D. Fitted parameters for §5
Numerical values of the fitted parameters for §5 are given in tables 1 and 2.

References
1. Biswas S, Chatterjee A. 2014 A reduced-order model

from high-dimensional frictional hysteresis. Proc. R.
Soc. A. 470, 20130817. (doi:10.1098/rspa.2013.0817)

2. Bertotti G, Mayergoyz I (eds). 2006 The science of
hysteresis, vol. I–III. New York, NY: Academic Press.

3. Ewing JA. 1885 Experimental researches in
magnetism. Phil. Trans. R. Soc. Lond. 176, 523–640.
(doi:10.1098/rstl.1885.0010)

4. Rowett FE. 1914 Elastic hysteresis in steel. Proc.
R. Soc. Lond. A 89, 528–543. (doi:10.1098/rspa.
1914.0021)

5. Preisach F. 1935 Über die magnetische
nachwirkung. Zeitschrift für Physik 94, 277–302.
(doi:10.1007/BF01349418)

6. Jiles DC, Atherton DL. 1986 Theory of ferromagnetic
hysteresis. J. Magn. Magn. Mater. 61, 48–60.
(doi:10.1016/0304-8853(86)90066-1)

7. IwanWD. 1966 A distributed-element model for
hysteresis and its steady-state dynamic response.
J. Appl. Mech. 33, 893–900. (doi:10.1115/1.3625199)

8. IwanWD. 1967 On a class of models for the yielding
behavior of continuous and composite systems.
J. Appl. Mech. 34, 612–617. (doi:10.1115/1.
3607751)

9. Bouc R. 1967 Forced vibrations of mechanical
systems with hysteresis. In Proc. Fourth Conf. on
Nonlinear Oscillation, Prague, Czechoslovakia,
p. 315.

10. Wen YK. 1976 Method for random vibration of
hysteretic systems. J. Eng. Mech. Div. ASCE 102,
249–263.

11. Ikhouane F, Rodellar J. 2007 Systems with hysteresis:
analysis, identification and control using the
Bouc–Wenmodel. New York, NY: John Wiley & Sons
Ltd.

12. Cottle RW, Pang JS, Stone RE. 1992 The linear
complementarity problem. New York, NY: Academic
Press.

13. Miranda MJ, Fackler PL. 2002 Applied computational
economics and finance. Cambridge, MA: MIT Press

(‘CompEcon Toolbox’ accompanies the text: see
http://www4.ncsu.edu/ pfackler/compecon/).

14. Klarbring A, Pang J-S. 1998 Existence of solutions to
discrete semicoercive frictional contact problems.
SIAM J. Optimiz. 8, 414–442. (doi:10.1137/S10526
2349629784X)

15. Chatterjee A. 2000 An introduction to the proper
orthogonal decomposition. Curr. Sci. 78,
808–817.

16. Scerrato D, Giorgio I, Madeo A, Limam A, Darve F.
2014 A simple non-linear model for internal friction
in modified concrete. Int. J. Eng. Sci. 80, 136–152.
(doi:10.1016/j.ijengsci.2014.02.021)

17. Scerrato D, Giorgio I, Della Corte A, Madeo A,
Limam A. In press. A micro-structural model for
dissipation phenomena in the concrete. Int. J.
Numer. Anal. Methods Geomech. (doi:10.1002/
nag.2394)

18. Harville DA. 1997Matrix algebra from a statistician’s
perspective, vol. 157. New York, NY: Springer.

http://dx.doi.org/doi:10.1098/rspa.2013.0817
http://dx.doi.org/doi:10.1098/rstl.1885.0010
http://dx.doi.org/doi:10.1098/rspa.1914.0021
http://dx.doi.org/doi:10.1098/rspa.1914.0021
http://dx.doi.org/doi:10.1007/BF01349418
http://dx.doi.org/doi:10.1016/0304-8853(86)90066-1
http://dx.doi.org/doi:10.1115/1.3625199
http://dx.doi.org/doi:10.1115/1.3607751
http://dx.doi.org/doi:10.1115/1.3607751
http://www4.ncsu.edu/~pfackler/compecon/
http://dx.doi.org/doi:10.1137/S105262349629784X
http://dx.doi.org/doi:10.1137/S105262349629784X
http://dx.doi.org/doi:10.1016/j.ijengsci.2014.02.021
http://dx.doi.org/doi:10.1002/nag.2394
http://dx.doi.org/doi:10.1002/nag.2394

	Introduction
	New frictional system
	Reduced-order model
	Choice of basis functions
	Slip criterion
	Approximation of G()
	Slip direction
	Reduced-order model using incremental map
	Final reduced-order model using a differential equation

	Fitting parameters to given data
	Results and discussion
	Closing note
	Finding the slip direction 
	Matlab code for computing 

	References

