
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Thesis

R17

THESIS
A USER'S GUIDE FOR THE DATA GENERAL NOVA® 800

MINICOMPUTER

by

Grant Douglas Ralph

December 1976

Thesis Advisor: Donald E. Kirk

Approved for public release; distribution unlimited.

ffSSS**

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A USER'S GUIDE FOR THE DATA GENERAL NOVA® 800

MINICOMPUTER

by

Grant Douglas Ralph

December 1976

Thesis Advisor: Donald E. Kirk

Approved for public release; distribution unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE (Whon Data Bntorod)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO. 1. RECIPIENT'S CATALOG NUMBER

®
4. TITLE (and Subtitlo)

A User's Guide for the Data General Nova^ 800
Minicomputer

S. TYRE OF REPORT * PERIOO COVEREO

Master's Thesis
Dpppmhpr 1Q76

4. PERFORMING ORG. REPORT NUMBER

7. AUTHORS

Grant Douglas Ralph

*. CONTRACT OR GRANT NUMBERfa;

9. PERFORMING ORGANIZATION NAME AND AOORESS

Naval Postgraduate School
Monterey, Ca 93940

10. PROGRAM ELEMENT. PROJECT. TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE

December 1976
13. NUMBER OF PAGES

215
14. MONITORING AGENCY NAME ft AOORESS/// dllloront from Controlling Otlle*) IS. SECURITY CLASS, (ol thi, rdport)

tSa. OECLASSIFI CATION/ DOWNGRADING
SCHEDULE

l«. DISTRIBUTION STATEMENT (ol tht* Roporl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol tho abaltmct onlotod In Block 20, II dllloront horn Roport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Conllnuo on roworao aldo II

9
tmry and Identity *T Hook numbori

NOVA*

Data General Corporation
Minicomputer

20. ABSTRACT (Conllnuo on rororao tloo II nocoaamry and Identity by bloak m—ftprj

.<©This thesis is a comprehensive summary of the Data General NOVA 800
minicomputer system used in the Electrical Engineering laboratory at the
United States Naval Postgraduate School. The system hardware is discussed
briefly. The major emphasis is placed on programming concepts which are
presented in a modular form to encourage employment as a user's guide and
instructional aid. Programming exercises are designed to consolidate the
concepts introduced and demonstrate the advancement in sophistication each

do ,:
(Page 1)

"kTn 1473 EDITION OF I NOV »» IS OBSOLETE
S/N 102-01*- 6601

SECURITY CLASSIFICATION OF THIS PAGE (Wnon Dmto Bntorod)

UNCLASSIFIED
JtCUWTv CLASSIFICATION OF THIS P»GEf*>i«n n»e« EnttrmJ

new technique provides. Minimal discussion of the basic required
instructions precedes each exercise to allow early and frequent personal
operating experience on the equipment.

DD Form 1473
,

1 Jan 73
S/N 0102-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS P AGECWhan Data emarad)

A USER'S GUIDE FOR

THE DATA GENERAL NOVA^ 800 MINICOMPUTER

by

Grant Douglas Ralph
Major, Canadian'? orces

Bachelor of Engineering, Carleton University, Ottawa
Ontario, 1969

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1976

C-2.

,MV
*'W»IBUKa8B0t

ABSTRACT

This thesis is a comprehensive summary of the Data

General NOVA 800 minicomputer system used in the

Electrical Engineering laboratory at the United States

Naval Postgraduate School. The system hardware is

discussed briefly. The major emphasis is placed on

programming concepts which are presented in a modular

form to encourage employment as a user's guide and

instructional aid. Programming exercises are designed

to consolidate the concepts introduced and demonstrate

the advancement in sophistication each new technique

provides. Minimal discussion of the basic required

instructions precedes each exercise to allow early and

frequent personal operating experience on the

equipment.

TABLE OF CONTENTS

LIST CF TABLES 8

LIST OF FIGURES 3

ABBREVIATIONS 10

ACKNOWLEDGEMENTS 12

I. INTRODUCTION 13

A. BACKGROUND 13

B. PURPOSE 14

II. HARDWARE 4 16

A. COMPUTER PROCESSING UNIT (CPU) , 16

B

.

REAL TIME CLOCK (RTC) 17

C. TELETYPE (TTY) 17

D. CASSETTE DRIVERS (CTO AND CT1) 17

E. DIGITAL TO ANALOG CONVERTOE (D/A) 18

F. ANALOG TO DIGITAL CONVERTOR (A/D) 18

G. TEKTRONIX DISPLAY (CRT) 18

H. OPERATOR CONSOLE i9

1 . Indicators Lights 20

a. RUN 20

b. ION 20

c. FETCH 21

d. DEFER 21

e. EXECUTE 21

2. Operating Switches 21

a. ACCUMULATOR DEPOSIT 22

b. ACCUMULATOR EXAMINE 22

c. START . 23

d. CONTINUE 23

e. RESET 23

f. STOP 24

g. DEPOSIT 24

h. DEPOSIT NEXT 25

i. EXAMINE 25

j. EXAMINE NEXT 25

k. INSTRUCTION STEP 27

1. MEMORY STEP 28

m. PROGRAM LOAD 28

3, Exercise 1 29

III. SOFTWARE 34

A. THE STAND-ALONE OPERATING SYSTEM 34

B. STEP 1 IN PROGRAM CREATION 35

1. Core Image Loader/Writer 36

2. Command Line Interpreter 38

3. Symbolic Text Editor 39

4. Exercise 2 43

C. STEP 2 IN PROGRAM CREATION 43

1. Extended Assembler 44

D. STEP 3 IN PROGRAM CREATION 47

1. Extended Relocatable Loader 47

E. STEP 4 IN PROGRAM CREATION 50

1. Exercise 3 51

IV. ASSEMBLY LANGUAGE 53

A. FORMAT 53

B. INPUT/OUTPUT 57

1. Exercise 4. 60

C. PSEUDO-OPERATIONS 61

D. PROGRAMMING SUMMARY 63

E. INTERRUPTS 66

1. Exercise 5 68

F. PROGRAMMING THE CASSETTE UNITS 68

1 . Exercise 6 72

G. REVIEW OF PROGRAM CREATION 73

V. CONCLUSION 75

A. HARDWARE PROBLEMS 75

B. RECOMMENDATIONS 75

Appendix A: NOVA^80C SYSTEM INITIALIZATION 78

Appendix E

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

Appendix K

Appendix L

Appendix M

Appendix N

Appendix C

Appendix ?

Appendix Q

Appendix R

Appendix S

Appendix T

Appendix U

Appendix V

Appendix W

Appendix X

Appendix Y

Appendix Z

CONSOLE OPERATIONS

OPERATING PROCEDURES

LOADING PROGRAMS

SOS

CLI COMMANDS

EDIT COMMANDS

ASM COMMANDS

RLDR COMMANDS

LFE COMMANDS

SYSG COMMANDS

MACHINE CODE AND ASSEMBLER LANGUAGE FIELDS.

ASSEMBLY LANGUAGE INSTRUCTIONS

INSTRUCTION EXECUTION TIMES

10 DEVICE CODES AND MNEMONICS

ASCII CODE

ERROR CODES

TELETYPE OUTPUT EXAMPLE PROGRAM CREATION...

ASSORTED PROGRAMS

MAINTENANCE

LIST OF MANUALS ,

RELOCATABLE EINARY UTILITY PROGRAMS

ASSEMBLER SOURCE SUBROUTINES

ABSOLUTE BINARY UTILITY PROGRAMS

HARDWARE TEST PROGRAMS

LIBRARY PROGRAMS

LIST OF REFERENCES ,

INITIAL DISTRIBUTION LIST,

30

82

96

105

109

111

118

121

123

126

127

133

141

143

146

152

163

169

193

195

200

202

206

209

211

213

215

LIST OF TABLES

1

.

Example Data -. 27

2. Assembler Flags 46

3. SOS Prompt Messages 51

4. SOS Commands 69

5. Analog Conversion Code 87

6. Highest Memory Address 98

7. SOS Master Tape 105

8. Assembler Mode Designators 119

9. Assembler File Designators 119

10. Loader File Designators 122

11. LFE Key Designators 124

12. LFE File Designators 124

13. Effective Address Determination 123

14. Carry Designators 130

15. Shift Designators 130

16. Skip Designators 130

17. Special CPU Mnemonics 132

18. Control Designators 132

19. I/O Skip Instructions 132

LIST OF FIGURES

1. NOVA 800 System Configuration -. 32

2. NOVA 800 Operator's Console 33

3

.

Memory Space Allocations 52

4. Instruction Formats 74

5. ASR 33 Terminal 92

6. DGC Cassette Transport 93

7. A/D and D/A Interface , , 94

R
8. Tektronix TSK 31/10 Cathode Ray Tube 95

ABBREVIATIONS

A3 - Absolute locatable Binary coding

AC - Accumulators, as in ACO, AC1, AC2, AC3

A/D - Analog to Digital Converter

ALC - Arithmetic or Logical instruction

ASCII-American Standard code for Information Interchange

ASM - Extended Assembler program

ASR - Automatic Send and Receive

BAUD- Standard bit rate unit of teletype communication

BIT - Binary Digit

BITE- Eight bits

CIL/W-Core Image Loader/Writer program

CLI - Command Line Interpreter program

CP - Character Pointer in the EDITOR

CPU - Central Processing Unit

CR - Carriage Return on teletype

®
CRT - The TEKTRONIX TEK 31/10 Cathde Ray Tube

CRY - Carry flag

CT - Cassette Transport, as in CTO and CT1

CTRL- Control Key on teletype

D/A - Digital to Analog Converter

DGC - Data General Corporation

DMA - Direct Memory Access

EDIT- Symbolic Text Editor program

ESC - Escape Key on teletype

FF - Form Feed Key on teletype

IBM - International Buisness Machines Incorporated

I/O - Input/Output communication with peripherals

ION - Interrupt On indicator light

LF - Line Feed Key on teletype

10

LFE - Library File Editor program

LSI - Large Scale Integrated circuit

K - Thousands, as in 1 K, 8K, ...

MRI - Memory Reference Instruction

MSB - Most Significant Bit

PC - Program Location Counter

PTP - High Speed Paper Tape Punch

PTR - High Speed Paper Tape Reader

RB - Relocatable Binary coding

RLDR- Extended Relocatable Loader program

ROM - Read-Only Memory

RTC - Real Time Clock

SR - Source Language Routine (Assembly)

SOS - Stand-Alone Operating System

SYSG- System Generation program

TTI - Teletype Input from the keyboard

TTO - Teletype Output

TTP - Teletype paper tape Punch

TTR - Teletype paper tape Reader

TTY - Teletype in general

VAC - Voltage in Alternating Current

11

ACKNOWLEDGEMENTS

I would like to thank Data General Corporation of

Southboro, Massachusetts for its kind permission to use the

invaluable information from the many manuals available.

I am indeptad to the Data General personnel in Palo

Alto, California for their friendly and prompt attention

whenever I needed information or reference manuals.

Special thanks to Professor Donald Kirk for finding

time in his busy schedule as Chairman of the Department of

Electrical Engineering at the Naval Postgraduate School, to

take me 'under his wing*.

12

I. INTRODUCTION

A. BACKGROUND

A Data General Corporation (DGC) NOVA 800 minicomputer

has been available to the Electrical Engineering Department

of the Naval Postgraduate School since 1974. During that

period a limited effort has been directed towards utilizing

this basic digital machine as an instructional aid in

laboratory course work.

A 1975 thesis [Ref. 1] resulted in an analog to digital

(A/D) and digital to analog (D/A) interface and a brief

summary of the system's feedback control capability.

13

PURPOSE

A review of the system after completion of the first

stage of hardware development identified the difficulty of a

first time user in trying to comprehend what the system was

or how it could be used. The large number of technical

manuals which referred to various modifications and option

characteristics amplified the confusion of the novice.

Unless this problem was solved system development and

expansion by thesis projects would be severely restricted.

This thesis serves as a complete user's guide for the

beginner. It is intended to summarize the information in

all the various technical manuals and to explain the

essential details. The assumption is made that the reader

is familiar with the gensral features of a digital computer.

It is hoped to stimulate the user to read further by

injecting simple short exercises yielding the satisfaction

of causing 'the beast 1 to respond in the desired manner.

Chapter II gives a description of the hardware

(D
configuration of the DGC NOVA 8C0 microcomputer system

available at the Naval Postgraduate School. The Operator

Console switches are described with examples of their use.

The chapter is intended to familiarize the user with the

system and the manual techniques that may be used to

initialize it.

In Chapter III the software operating system is

introduced and the usar is tutored through the four basic

steps of program creation by the use of an example program.

14

In Chapter IV the programmer is taught the details of

Assembly language source code. The techniques of direct

program controlled communication, interrupts and cassette

tape read or write are introduced.

Chapter V is the conclusion; it describes present system

problems and recommendations for further system

developement

.

15

II. HARDWARE

The capability of any computer system is dictated by the

basic model of processor (CPU) , the options installed, the

peripherals available, and the memory capacity (Fig. 1).

A. CENTRAL PROCESSING UNIT (CPU)

The present CPU is a NOVA JUMBO 800 minicomputer with

8,192 (8K) words of 16-bit ferrite core memory [Ref. 2].

The highest direct address for the 8K memory is 17,777.

Maximum core expansion (8K) words of 16-bit ferrite core

memory. [Ref. 2] Maximum core expansion is to 32,767 (32K)

words. This highest possible address of 77,777 (octal)

requires only a 15-bit program location counter (PC) . The

sixteenth bit is used for indirect addressing. The highest

indirect address for the 8K memory is 117,777. There are

four 16-bit accumulators (ACO, AC1, AC2, AC3) and a carry

flag (CRY) of one bit. Several memory locations have special

significance. Absolute locations and 1 are used during

interrupt processing, and locations 20 thru 37 are

automatically modified when indirectly addressed. [Ref . 3]

16

B. REAL TIME CLOCK (ETC)

A real time clock is available and its use is described

further in the instruction set and programming sections. It

may be used to pause within a program that is executing or

to trigger interrupts for servicing routines on a real time

basis. [Ref. 4]

C. TELETYPE (TTY)

The ASR-33 model teletype is available for keyboard

input (ITI)^ or printout (TTO) and paper tape reading (TTR)

and punching (TTP) . This paper tape capability should not be

confused with the high speed paper tape capability (PTR and

PTP) , which is not available at the Postgraduate School. The

specific model of teletype has direct implications on the

way communications can be maintained with it. [Ref. 5]

D. CASSETTE DRIVERS (CTO AND CT 1

)

A maximum of eight cassettes can be configured with the

system. The two units presently installed are designated as

CTO and CT1 by setting the appropriate thumb wheel on the

driver chassis. Cassettes may be controlled by programmed

routines or by using routines provided under the STAND-ALONE

OPERATING SYSTEM (SOS). When the power cord is connected

into the CPU rear outlet and the toggle switch is in the

REMOTE position, the CPU master key controls the turn on and

off of both units. [Ref. 5]

17

E. DIGITAL TO ANALOG CONVERTER (D/A)

The D/A provides simultaneous output of two bipolar 10

volt analog signals and one timing signal from a 12-bit code

[Ref. 8]. The A/D and D/A were incorporated in the system

in a previous thesis project completed in 1975. [Ref. 1]

F. ANALOG TO DIGITAL CONVERTER (A/D)

The A/D converter provides high speed translation of

bipolar 10 volt differential analog signals to a 12-bit

binary code. The most significant bit (MSB) is then

extended to complete the normal 16-bit word length. The A/D

will multiplex any one of eight addressable inputs. [Ref. 7]

G. TEKTRONIX DISPLAY (CRT)

An adapter kit has been purchased to allow the CRT

display to supplement the teletype unit. The necessary

hardware connections have not been made. The CRT could use

the second TTI connections and device codes (TT1 1 and

TT01) .[Ref. 6]

18

OPERATOR CONSOLE

The operation of the computer and the contents of

specified memory locations can be observed or altered by-

using the operator console (Fig. 2) . The lights in the

upper right-hand portion of the console display control

conditions, the rows of lights in the upper center portion

display the processor registers. If a light is lit, it

means the corresponding bit is 1 . If the light is nor lit,

the corresponding bit is 0.

Below the lights is a bank of toggle switches through

which the operator can supply addresses and data to the

processor. When these switches are in the up position, they

represent a 1; when down, they represent a 0. Only switches

1 thru 15 are used for entering addresses. The data

register can be used in conjunction with some of the

operating switches, located at the bottom of the panel.

Each switch lever is actually two momentary-contact logical

switches with a common off position in the center. Lifting

the lever up turns on the switch whose name is printed above

it; pressing it down turns on the switch whose name is

written below it. When released, these switches

automatically return to off.

At the upper left is a 3-position key-operated rotary

switch that controls power and locks the console. Turning it

to ON simply turns on power. This also turns on the rear

power outlet. Turning to LOCK keeps power on and disables

the operating switches so no one can interfere with the

operation of the processor. The operator can still use the

data switches to supply information to the program. If the

CPU stops, the function switches are enabled.

19

1 • Indicator Lights

A few indicator lights display useful information

while the processor is running, but most change too

frequently and are therefore discussed in terms of the

information they display when the processor is stopped. The

address lights display the contents of the program location

counter (PC) . The numbered data lights display the data

written in the last memory reference. FETCH, DEFER, and

EXECUTE, are the state indicators. They specify the type of

cycle (state) the processor will enter if operations are

continued by pressing the CONTINUE or MEMORY STEP switch.

The indicator meaning is true when the light is lit.

RUN

The processor is in normal operation. The CPU

is executing instructions or data is being transfered via

the data channel. When the computer stops the light goes

out. In RUN only switches STOP and RESET are enabled.

b. ION

The program interrupt capability is enabled (The

Interrupt-On flag is 1) .

(© Data General Corporation 1971. Reproduced from HOW TO

USE THE NOVA_ COMPUTERS by permission of Data General

Corporation, Southboro, MA)

20

C. FETCH

The next CPU cycle will be used to obtain an

instruction from memory.

d. DEFER

The next processor cycle will be used to fetch

an address word in an indirectly addressed memory

instruction.

e. EXECUTE

The next CPU cycle will be used to perform an

instruction. This next cycle will be used to reference

memory for an operand in a move data or modify memory

instruction.

2. Operatin g Switches

All of the switches in the bottom row except STOP

and RESET are interlocked so they have no effect if RUN is

lit. The four pairs of switches at the left are for

depositing data in the accumulators and examining their

contents. Lifting a switch up loads the contents of the data

switches into the specified accumulator;, pressing it down

displays the contents of the accumulator in the data lights.

* ®(©Data General Corporation 1976. Reproduced from NOVA

LINE COMPUTERS by permission of Data General Corporation,

Southboro, MA)

21

a. ACCUMULATOR DEPOSIT

The left-hand four switches reference the four

CPU accumulators and are numbered 0-3 from left to right.

Each switch affects only its corresponding accumulator (AC)

.

When one of these switches is pushed up, the currant setting

of the data switches is deposited into the appropriate

accumulator. The data lights display the new contents of

that AC.

b. ACCUMULATOR EXAMINE

When one of these switches is depressed, the

contents of the corresponding accumulator are displayed in

the data lights.

Example

If the operator wishes to load ACO with 126440

and AC1 with 063610; the procedure is:

-Turn the Power switch to ON. The FETCH light will turn on.

-Set the data switches to 126440.

-Press ACO DEPOSIT. The data lights will read 126440. The

carry and address lights can be ignored.

-Set the data switches to 063610.

-Press AC1 DEPOSIT. The data lights will read 063610. The

carry and address lights can be ignored.

-The contents of ACO are checked to ensure the data was

entered correctly by pressing ACO EXAMINE. The data lights

will read 126440.

22

\

-Similarly the contents of AC1 are checked by pressing AC1

EXAMINE. The data lights will read 063610.

c. START

When this switch is pushed up, the START

function is performed. The address indicated by data

switches 1-15 is placed in PC and sequential operation of

the CPU begins there. The FETCH and RUN indicator lights are

turned on.

d. CONTINUE

When this switch is depressed, the CONTINUE

function is performed. Sequential operation of the

processor continues from the current state of the computer.

e. RESET

When this switch is pushed up, the RESET

function is performed. The CPU is stopped after completing

the current processor cycle. The flags in all Input/Output

(I/O) devices are cleared, the 16-rbit priority mask, the

Interrupt-On flag, and all Busy and Done flags are set to

and the RTC is set to line frequency. Information deposited

in an accumulator from the console is displayed in the

lights but is not actually entered into the accumulator

until the CPU performs some other operation. Therefore

pressing RESET after an ACCUMULATOR DEPOSIT prevents the

data from actually reaching the AC.

23

\

f. STOP

When this switch is pushed down, the STOP

function is performed. The CPU is stopped after completing

the current instructioo and before executing the next

instruction. If an I/O device requests an interrupt during

the execution of the current instruction, it is serviced

before the CPU is stopped. All outstanding data channel

requests are honoured before the CPU is stopped. After the

processor stops, the address lights display the address of

the next instruction to bs executed and the data lights

display the current contents of the memory bus. If the

current instruction contains an infinitely long indirect

addressing chain or there are continuous data channel

requests, pressing STOP will not stop the computer. A RESET

will be required.

g. DEPOSIT

When this switch is pushed up, the DEPOSIT

function is performed. The current setting of the data

switches is placed into the location addressed by the

current value of the program counter. The updated value of

the altered word is displayed in the data lights.

(©Data General Corporation 1971. Reproduced from HOW TO

CD
USE THE fcjOYA. COMPUTERS by permission of Data General

Corporation, Southboro, MA)

24

\

» h. DEPOSIT NEXT

When this switch is depressed, the DEPOSIT NEXT

function is performed. The program counter is incremented by

one and the current settiag of the data switches is placed

into the word addressed by the updated value of PC. The

updated value of PC is displayed in the address lights and

the new contents of the altered location are displayed in

the data lights.

i. EXAMINE

The address contained in data switches 1-15 is

loaded into PC and displayed in the address lights. The

contents of the word addressed by PC are then read and

displayed in the data lights.

j. EXAMINE NEXT

The current value of PC is incremented by one

and the new value is displayed in the address lights. The

contents of the work addressed by the updated PC are then

read and displayed in the data lights.

(© Data General Corporation 1976. Reproduced from HOW TO

(D
USE THE NOVA COMPUTERS by permission of Data General

Corporation, Southboro, MA)

25

\

Example

If the operator wishes to load the Table 1 data

starting at absolute locations 17757; the procedure is:

-Turn the Power switch to ON. The FETCH light will turn on.

-Set the data switches to 017757.

-Press EXAMINE. The address lights will read 017757.

Ignore the carry and data lights for now.

-Set the data switches to 125440.

-press DEPOSIT. The data lights will read 126440. The

address lights will read 017757 and carry can be ignored.

-Set the data switches to 063610.

-Press DEPOSIT NEXT. Note that the address lights have been

incremented to 017760. The data lights will read 063610 and

carry can be ignored.

-Set the data switches to 000777.

-Press DEPOSIT NEXT. The address lights will read 017761.

The data lights will read 000777 and carry can be ignored.

-To verify that the data was entered properly, set the data

switches to 017757.

-Press EXAMINE. The' address lights will read 017757. The

data lights will read 126440 which confirms what was

intended got entered, and carry can be ignored.

-Press EXAMINE NEXT. The address lights will read 017760.

The data lights will read 063610 and carry can be ignored.

-Press EXAMINE NEXT. The address lights will read 017761.

The data lights will read 000777 and carry can be ignored.

26

\

LOCATION

17757

17760

17761

If a mistake is made entering the contents of a location,

the procedure is!

-Set the data switches to the address to be corrected.

-Press EXAMINE, this sets the PC.

-Set the data switches to the correct contents of the

desired address.

-Press DEPOSIT. The address lights and data lights will

indicate the location and its new contents.

TabLe 1 EXAMPLE DATA
s.

DATA

126440

063610

000777

k. INSTRUCTION STEP

When this switch is pushed down, the INSTRUCTION

STEP function is performed. The instruction contained in the

word addressed by the current value of the program counter

is executed and then the CPU is stopped. The address lights

display the updated value of PC and the data lights display

the contents of the memory bus. The meaning of the data

displayed depends on the instruction as follows:

LDA, 3TA, ISZ, and DSZ display the operand.

JMP and JSR for direct mode display the

instruction, for indirect mode display the effective

address.

27

s

Arithmetic and logical instructions display the

instruction.

Input/Output instructions display the data.

The mnemonics LDA, STA, ISZ, DSZ, JMP and JSR

are Assembly language instructions that are explained in

more detail in Chapter IV.

1. MEMORY STEP

When this switch is pushed up, the MEMORY STEP

function is performed. The CPU performs a single processor

cycle and then stops. At completion the lights indicate the

next state to be executed. The address lights display PC and

the data lights display the data for the last memory step.

Changing the contents of an AC between memory steps may

destroy information necessary for the execution of the

remainder of the instruction.

m. PROGRAM LOAD

When this switch is pushed up, the PROGRAM LOAD

function is performed. The contents of the read-only memory

(ROM) bootstrap are placed in memory locations 0-37 (octal)

,

then the RUN light is turned on and normal operation is

begun at location 0.

^ ®
[Qj Data General Corporation 1971. Reproduced from NOVA

LINE CQMPC TERS by permission of Data General Corporation,

Southboro, MA)

28

v

3. Exercise 1

At this point it would De wise to become familiar

with the computer and console operations by completing the

following exercise.

This exercise is designed to familiarize the user

with the operator's console and to introduce two techniques

for loading the BOOTSTRAP loader program which is part of

system initialization (Appendix D) . Either of these two

techniques can be used in place of the normal initialization

procedure described in Appendix A , if the cassette

transports are not available. Before proceeding the reader

should become familiar with Appendix B which describes

console procedures. Before starting to enter the Manual

BOOTSTRAP below, complete the machine code program in

Section A of Appendix D by filling in the appropriate XX and

dd values.

Manual Bootstrap

This is the most oasic technique an operator can use

for initialization. It requires only the basic computer

without the PROGRAM LOAD switch and the ASR 53 teletype to

operate:

I.Turn on main power.

2. Enter the manual BOOTSTRAP starting at location 17757.

Section A of Appendix D explains the BOOTSTRAP.

3. Turn the TTY power switch to LINE.

4. Mount BINARY LOADER paper tape 091-000004-04 in the TTR.

29

\

When loading paper tape, place the leading end in the read

station and set the remainder on the floor imraediatly below

there, clear of obstacles. The TTR switch should be at FREE

while loading. Feed the blank leader past the read station

by hand and stop with one or more blank frames before the

data. Check that the data is program and not just an

identification code. This is done before loading by

inspecting the tape for a hole pattern that can be read as

the tape identification number. Set the TTR switch to

START. Section C1 of Appendix D explains the BINARY LOADER.

Section B of Appendix C explains the TTR.

5. Execute the BOOTSTRAP program by setting the data switches

to 017770 and pressing RESET and START. The BINARY LOADER

will be read into core. The address lights will read

017776. The data lights will read 063077. At this point

the system is initialized and the operator can use the

BINARY LOADER to load any absolute binary paper tape

appropriate for what he intends to do. In subsequent

sections of this thesis the operator will learn what

programs might be appropriate.

6. In order to demonstrate several other console switch

functions, let's restart the manual BOOTSTRAP in a slightly

different way. Since it has already been entered in memory,

set the data switches to the start address 17770 and press

RESET.

7. Mount the BINARY LOADER paper tape in the TTR. Ensure

that the first data frame is not past the read station.

8. Press EXAMINE to set the PC to the start address (017770).

9. By repetitively pressing MEMORY SISP trace the progress of

the BOOTSTRAP execution until address 017766 is about to

enter the FETCH cycle. Two frames of the BINARY LOADER

paper tape will be read.

30

\

10. Now repetitively press INSTRUCTION STEP and trace the

progress of the BOOTSTRAP execution until the address 017766

returns. Another frame of the BINARY LOADER paper tape will

be read.

11. Pressing CONTINUE will read in the remainder of the

BINARY LOADER tape. The system has been re-initialized.

Automatic Bootstrap

This is a slightly more sophisticated initialization

technique that requires the basic computer with the PROGRAM

LOAD switch and the ASR 33 teletype to operate:

I.Set the data switches to 000010; this specifies TTR input.

2. Mount the BINARY LOADER paper tape 091-000036 in the TTR.

The different identification number from the manual

procedure indicates that this is a different version of the

program written specifically for the Automatic BOOTSTRAP.

The SELFLOADING BOOTSTRAP AND BINARY LOADER program is

explained in Section C2 of Appendix D.

3. Press RESET and PROGRAM LOAD. The paper tape will be read

into memory. The address lights will read 000121 and the

data lights will read 063077. At this point the system is

initialized and the operator can use the BINARY LOADER to

load any absolute binary paper tape appropriate for what he

intends to do.

4. The automatic BOOTSTRAP can be loaded with the power

switch in LOCK and the key removed.

31

\

®
Figure 1 - NOVA 800 SYSTEM CONFIGURATION

32

\

®
Figure 2 - NOVA 800 OPERATOR'S CONSOLE

33

\

III. SOFTWARE

Due to the present limited memory capacity (8K) the

convenience of higher level languages like Algol, Basic and

Fortran is not available. The present working code is

primarily Assembly language with some knowledge of machine

language being of benefit.

Several Data General Corporation (DGC) programs are

available on paper tapes. An index of their identification

numbers is included as Appendices V-Z. Further

documentation appears in the list of manuals in Appendix 'J.

A. THE STAND-ALONE OPERATING SYSTEM

The NOVA 800 is programmed within a software

environment called the STAND-ALONE OPERATING SYSTEM (SOS).

By using certain programs within a particular SOS it is

possible to:

-initialize the computer

-allow a desired program on a specified peripheral device to

be read into cr written from memory

-create a new program by inputting Assembly language code

from the teletype

-correct mistakes or change existing programs

34

\

-translate the Assembly lang-uage source code into a

relocatable binary (RB) machine language code

-translate the RB code into absolute locatable binary (AB)

code in memory that is a suitable form for understanding and

executing by the CPU as a program.

The particular programs and functions available in any

SOS are decided at the time of its creation by operator

selection cf appropriate utility programs which when

combined will fulfill the requirements of the specified

hardware configuration in which it will be used. If a

cassette driver is available, the selected SOS utilities may

be stored en a master tape which can be called the SOS

master cassette.

B. STEP 1 IN PROGRAM CREATION

The SOS utility programs are what the programmer must

use to create a program. To produce a file of source

program code he must know and be able to use the following

utility programs; the CORE IMAGE LOADER/WRITER, the COMMAND

LINE INTERPRETER, and the SYMBOLIC TEXT EDITOR. The

programmer uses the first two programs to load in the EDITOR

so that programs can be created and saved on a cassette.

Due to its limited size, the PROGRAM LOAD hardware

BOOTSTRAP is used to load another loading routine. For the

cassette system this other loading routine is called the

CORE IMAGE LOADER/ WRITER and must be on file of a cassette

mounted on unit (Section C3 of Appendix D) . However, it

fulfills the same function as a BINARY LOADER in the paper

tape environment.

35

\

The distinction of paper tape from cassette environment

is purely arbitrary to the CPU since the Large Scale

Integration (LSI) hardware BOOTSTRAP uses the data switches

to determine the device code.

On the SOS master cassette, programs are loaded into

sequential files starting at 0. Therefore, for SOS, file

contains the CORE IMAGE LOADER/WRITER. [Ref. 12]

1 • Core Ija§.c[e Loader/Writer

The CORE IMAGE LOADER/WRITER (CIL/W) program on the

SOS master cassette is identical to paper tape

091-000067-02. It performs two utility functions: it loads

core image files from cassette tape into core and produces

core image files on cassette tape [Refs. 12 and 13]. The

CORE IMAGE LOADER/WRITER program works only with cassettes.

The CORE IMAGE LOADER/WRITER can be bootstrapped

from file of the SOS master cassette on unit 0. When

first loaded, the tape must be rewound manually. The normal

loading procedure is described in Appendix A.

The Loader/Writer is read into page zero (0-377)

initially and then relocates itself to the last 400 (octal)

locations in core. After relocation a- prompt # on the

teletype indicates that the CORE IMAGE LOADER/WRITER is

ready. Once it is in core the Loader may be restarted by

setting the data switches to the last memory address,

pressing RESET, and then START (For 8K set 017777)

.

(© Data General Corporation 1973. Reproduced from THE

STAND-AL ONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

36

\

The # symbol indicates the Loader is waiting for the

operator to respond with a cassette unit number (0-7) and a

file number (0-99) separated by a colon. Specifying unit

is optional. The indicated cassette file is loaded into

memory upon command termination by a teletype CARRIAGE

RETURN. If data switch on the console is 1, the program

will halt on completion of the load. If the switch is 0,

control is passed to the loaded program linked through

location 405.

If the Loader encounters a non-recoverable error

while trying to load a file, it will type *ERR and halt with

a code in ACO. The error codes are explained in Section A

of Appendix Q. If rewinding and substituting a different

cassette tape does not clear the error condition, a hardware

fault is indicated.

The CORE IMAGE WRITER operates in a manner similar

to that of the Loader. When the Writer is started it

outputs a # prompt and waits for specification of a device

number and a file number separated by a colon. After typing

the unit and file numbers followed by a CARRIAGE RETURN, the

operator receives NMAX as a prompt. The operator responds

to the prompt message NMAX by typing the highest core

address (octal) whose contents he wants written into the

cassette file he specified initially. The program always

starts at absolute address zero and after completing a

successful write, the message OK is typed and the routine

HALTS. Non-recoverable errors are handled the same as with

the Loader. £Ref. 12]

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

37

\

Example

After loading the CIL/W the user receives the

prompt #. When creating programs he selects the next SOS

utility program that is appropriate for his stage in the

program creation. He may choose to load the SOS utility

programs by the COMMAND LINE INTERPRETER (CLI) mnemonic load

commands. To do this, the CLI must be loaded. To load the

CLI, which is on file 1 of the SCS master cassette, the

operator types 0:1 and CARRIAGE RETURN after the prompt #.

The CLI prompt R indicates that it is ready for a command.

The command line at this point will look like:

#0:1 (CARRIAGE RETURN)

R

2 . Command Li ne Interpreter

The COMMAND LINE INTERPRETER (CLI) is a utility

program which performs certain file maintenance chores for

the user and implements mnemonic loading of other utility

programs from a Master tape. The CLI accepts commands typed

by the operator on the teletype. When it is ready to

receive a command a teletype prompt of R and CARRIAGE RETURN

is sent.

In order to use the CLI, the CORE IMAGE

LOADER/WRITER must be in core, and the Master cassette must

be on CTO.

(Q Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

38

\

The CLI can be loaded using the CORE IMAGE

LOADER/WRITER. Many CLI commands cause it to be overwritten

in core and a reload is required to return to the CLI

operation. CLI commands are explained in Appendix F.

[Ref. 12]

Example

After the CLI is loaded the programmer is ready

to load the EDITOR program. The user types EDIT and

CARRIAGE RETURN, after the CLI prompt R. When tha EDITOR is

ready to accept commands the symbol * is displayed on the

teletype. The command line at this point will look like:

R EDIT (CARRIAGE RETURN)

3 . Symbolic Text Editor

The TEXT EDITOR is used to create or modify ASCII

files. The prompt * is given wnen the program is ready to

accept editing commands. The EDIT instructions are

explained in Appendix G.

Once loaded the TEXT EDITOR is self-starting and

provides over 6,000 characters or six pages of normal

symbolic source text (for 8K) .

^ ®
(© Data General Corporation 1973. Reproduced from NOV A

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

39

v

CD
The NOVA editing commands are divided into groups,

those that input and output the contents to and from the

edit buffer and those that modify the contents contained in

the buffer. Input commands read a program (or part of a

program) into the buffer for later editing. The edit

commands are used to modify the contents of the buffer.

After updating the buffer, the corrected program may be

placed onto a file by the output commands. Several commands

can be specified at one time by separating them with the

symbol $ which is caused by striking the escape (ESC) key

once. A command or string of commands is executed by

striking the ESC key twice ($$)

.

The command structure is versatile enough to allow

changes at the character level as well as the line level.

Line numbering is continually updated as lines are inserted

and deleted. String searches provide a convenient method of

locating characters. [Refs. 14 and 15]

Example

Now that the CLI has loaded the EDITOR a

program can te created. However, remember it is not always

necessary to load SOS utility programs using the CLI. If

the procedure in Appendix A has been followed, the CORE

IMAGE LOADER/WRITER will do the same thing by loading for

example, file 2 (the EDITOR) , as in the following command

line:

0:2 (CARRIAGE RETURN)

40

N

Most utility programs will reinitialize the CORE

IMAGE LOADER/WRITER by the CTRL C command. The EDITOR uses

the H command (Appendix E) . In those cases where the SOS

has been halted (by some catostrophic error) the standard

data switch setting of 017777 forces the system to

reinitialize the CIL/W when the operator presses the console

switches RESET and START. Since the system automatically

restarts by loading (executing) the CORE IMAGE

LOADER/WRITER, the above technique is often more convenient

for loading the SOS utility programs.

After the EDITOR prompt *, the programmer must

ensure that a scratch tape is mounted on unit 1. The steps

in creation are to open a write file on the first available

file (file en a scratch tape) , insert the necessary source

code into the edit buffer, terminate the insert command by

striking the ESC key twice, type the buffer contents to

verify they are correct, save the program on the output

file, close the edit buffer, open the saved file for

reading, yank the file into the input edit buffer and type

the buffer contents to confirm the correct program.

Some confus ion can develop_e over the symbol $^_ The

SS£ ^ey_ prints the $ when struck and there is also an

iiiiI®£.§i!il£Si character S^ The $ in an edit command string

§! w
.
a.I.s signifies the ESC key__. h.Rl 2£ber occurence means th e

1 iS91 9.R i^§ TTY.

41

\

E xa mple

To produce a source tape file by the creation

steps listed above, the following command lines are typed on

the teletype:

*GWCT1;0$$

*I (CARRIAGE RETURN)

program (carriage return*

$$

*T$$

PROGRAM

*BPGC$$

*GRCT1 :0$$

*Y$T$$

PROGRAM

(open CT1:0 for writing)

(begin inserting source code)

(inserted by operator)

(terminate insert command)

(type the buffer contents)

(contents of the buffer)

(record and close the buffer)

(open CT1:0 for reading)

(input and type buffer)

(program listing)

(ready to continue)

When attempting to open a file for reading (GR) or

writing (GW) an error will be indicated by I/O ERROR

followed by the two digit system error number. The command

CTRL A will reinitialize the SYMBOLIC TEXT EDITOR without

destroying the contents of the edit buffer. These errors

are often caused by the operator not rewinding the cassette

when it is first mounted to check that it is seated

properly.

42

\

4. Exercise 2

Since at this point it is assumed that the reader is

learning the system, follow the steps in the preceeding

paragraphs to create a source file containing the Teletype

Output Example Program provided in Section A of Appendix R.

This program will be used as an example throughout the

sections on assembling, loading and executing procedures

which follow. When you execute this Assembly language

program later, it will print the following message on the

teletype:

CONGRATULATIONS!

YOU HAVE COMPLETED YOUR FIRST PROGRAM CREATION.

C. STEP 2 IN PROGRAM CREATION

After the programmer has written an assemble language

source file it must be translated into a binary code that

the CPU can understand. This involves two procedures. The

first procedure is a translation into relocatable binary

(RB) code that does not have all of its addresses resolved

and therefore cannot be executed by the processor. This

translation into addresses relative to the first line of

programming is done by the EXTENDED ASSEMBLER.

43

\

1 • Extended Assembler

The EXTENDED ASSEMBLER, like the basic ASSEMBLER,

converts symbolic source statements into machine language

code. In addition to basic ASSEMBLER features the extended

version provides relocation, interprogram communication,

conditional assembly and more powerful number definition

facilities. [Ref. 12]

The EXTENDED ASSEMBLER will assemble one or more

ASCII source files to a relocatable binary file with an

optional listing file. Input files are assembled in the

order they were specified in the command line. A cassette

tape unit may not be used for both input and output, nor may

it be used for more than one output file. More than one

input file is allowed from the same unit.

The teletype prompt ASM indicates the EXTENDED

ASSEMBLES is ready to accept commands. The operator musr

not insert a space before the first entry following ASM

because it is provided by the ASSEMBLER program and command

format errors cause unpredictable results. The ASSEMBLER

does not use the ESC key so that all $ symbols are

understood to be the corresponding $ Key on the TTY. These

commands are explained in Appendix H. [Ref. 13]

(© Data General Corporation 1974. Reproduced from

STAND-ALONE OPERATING 5_YSTSM by permission of Data General

Corporation, Southboro, MA)

44

N

Example

So far in the example program, only an Assembly

language source file has been created. This next step will

create another file that must be on a different cassette.

-

Now there is a problem. We have two cassette units, CTO has

the SOS master tape, CT1 has the new source tape and a new

cassette is required. Since the SOS master cassette is only

used at the time a utility program as loaded into memory it

is the only one available for the new file. The following

procedure is to be used with caution:

-Mount the Assembly language source tape on CT1 and press

REWIND.

-Mount the SOS master tape on CTO and press REWIND.

-Initialize the system by the procedure in Appendix A.

-Load the EXTENDED ASSEMBLER. The command line will look

like:

0:3 (CARRIAGE RETURN)

ASM

-Mount the new scratch tape on cassette unit (CTO) and

press REWIND.

-If the assembly source tape is file on CT1 and the R3

file is to be saved on file of CTO and a teletype listing

is desired, the command line for a normal two pass assembler

will be:

ASM 1 CT1:0 CT0:0/B STTO/L (CARRIAGE RETURN)

(this command is explained above)

LOCATION (MACHINE CODE) (SOURCE CODE)

(THESE COLUMNS ARE aSSEMBLER OUTPUT*

LABEL DIRECTORY (this list is explained below)

ASM (ready to continue)

45

\

Remember that the ASM, automatically supplies the first entry

space; violat ing the siven comma nd format spacing may cause

errors.

During an ASSEMBLER listing several symbols are

inserted to inform the programmer what kind of addressing

has been generated. Table 2 summarizes the symbol flags and

their meanings.

Table 2 ASSEMBLER FLAGS

Aj)DRESS_FLAG. MEANING

blank Address word is absolute

Address word is page zero relocatable

• Address word is normally relocatable

CONTENTS_FLAG AIMING

blank Contents of word are absolute

Contents of word are page zero relocatable

= Contents of word are page byte relocatable

• Contents of word are normally relocatable

$ Storage word reference a byte disp. external

The LABEL DIRECTORY is an alphabetical list of the

LABELS that have been created and their relative addresses.

This can be used for debugging program errors by adding the

relative address to the entry address given at load time to

obtain the absolute location. Section 3 o± Appendix R is

the teletype listing of the example program's assembly.

46

\

D. STEP 3 IN PROGRAM CREATION

The final step in program creation is the second

procedure mentioned for translating the source code. This

process takes the RB file from the ASSEMBLER output and

replaces all the relative addresses with absolute memory

locations. The resulting new absolute 1-ocatable binary file

(AB) is in a core- image form that is executable by the

processor. The translating routine is called the EXTENDED

RELOCATABLE LOADER.

1 . Extended Relocatable Loader

The RELOCATABLE LOADER produces an absolute binary

core-image (or save) file from relocatable binary files.

The loader accepts any number of relocatable binary files as

input, resolves external displacements and normal externals,

and maintains an entry symbol table that can be printed on

demand. Extensive error detection logic is provided to

prevent various fatal and non-fatal errors. A successful

load is indicated by the prompt OK. The Loader enters ZREL

user programs beginning at absolute address 50 (octal) , and

NREL user programs starting at location 440 (Fig. 3)

.

(© Data General Corporation 1974. Reproduced from

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

47

\

The mnemonics ZR2L and NREL are Assembler language

pseudo-operations which indicate the memory area the

programmer. wants the routine loaded into. Assembler

addressing is explained in Appendix L. The first 377

(octal) locations in core are called page zero addresses

because they can be addressed directly (mode 0). This

allows any locations defined in this area to be accessed

more easily than any others because no type of indirect

indexing techniques are necessary. These other addresses

are located in the NREL area of memory and must be accessed

by indexing a location that holds a pointer address that is

within 200 (octal) locations of the location desired. The

teletype prompt RLDR indicates the RELOCATABLE LOADER is

ready to accept commands. Commands are explained in

Appendix I. [Ref . 13]

Exam ple

The same requirement for the new file has again

created a prcblem. The procedure for managing the cassettes

in completion of the assemble is as follows:

-Move the RB tape from CTO to CT 1 and press REWIND.

-Peplace the SOS master tape on CTO and press REWIND.

-Load the RELOCATABLE LOADER.

The command line will be:

0:'U (CARRIAGE RETORN)

RLDR

-Mount the new scratch tape (AB)) on CTO and press REWIND.

-If the RB source. tape is file on CT1 and the AB file is

to be saved on file of CTO and a teletype listing is

desired, the command line will be:

48

\

RLDB CT1:0 CTO:0/S STTO/L (CARRIAGE RETURN)

(this command is explained above)

LIST OF INPUT PROGRAMS

(this list is explained below)

NMAX (next NREL address available)

ZMAX (next ZREL address available)

EST (not used)

SST (not used)

LIST OF ENTRY POINT ADDEESSES

(this list is explained below)

OK (relocatable loading completed)

Remember that the RLDR automatically, supplies the first

entry §£acej_ violating th e given command format spacing may.

£§M§£ errors.

The LIST OF INPUT PROGRAMS contains the titles of

the referenced file programs in the order they were loaded.

NMAX is the first available normal relocatable address and

ZMAX is the first available page zero address. This gives

an indication of how much memory has been used. EST and SST

are parameters used in a disc operating system and are not

used in SOS. ENTRY POINTS are the first locations for

executable code for each program in the order in which they

were loaded. The RLDR teletype output for the example

program is Section C of Appendix R.

49

\

E. STEP 4 IN PROGRAM CREATION

If the loaded program was coded with an end

pseudo-operation that has the program title, the RELOCATABLE

LOADER will generate coding that forces the system execution

to continue at the entry point for that routine once the

load is complete. Therefore the execution of any program

can be achieved by simply causing it to be loaded into

memory. However if the control is not coded to be passed to

the program, the operator must know the entry address of the

program and set the PC via the data switches. If the normal

routine is followed the operator executes the CORE IMAGE

LOADER program and in response to the prompt # he inserts

the unit and file number of the program he wants executed.

For a program on file 6 of cassette unit the command line

will be:

#0:0 (CARRIAGE RETURN)

Section D cf Appendix R shows the execution of the TTO

example program.

50

\

1 . Exercise 3

The SOS provides very convenient access to the

EDITOR and other functions. This exercise is designed to

demonstrate the facility with which SOS can be used.

Remember SOS is just a convenient software arrangement on

magnetic tape, made up from paper tape programs that can

also be brought into memory individually by the procedures

demonstrated in Exercise 1.

1. Follow the system initialization procedure in Appendix A.

2. Use the CORE IMAGE LOADER to verify the contents of the

SOS are as indicated by receiving the correct Prompt

message. The procedure is indicated in the example in

section B1 of Chapter III.

Table 3 SOS PROMPT MESSAGES

-1IL2 £RCM£T PROGRAM 1CALL]_

Core Image Loader/Writer

Command Line Interpreter (CLI)

Symbolic Text Editor (EDIT)

Extended Assembler (ASM)

Extended Relocatable Loader (RLDR)

Library File Editor (LFE)

SYSGEN (SYSG)

3. Reload the utilities using the CLI.

#

1 R

2 *

3 ASM

4 RLDR

5 LFE

6 SYSG

51

\

400 u Locations

Page

Zero

440

400

377

50

20

ABSOLUTE
BINARY OR CORE IMAGE
LOADER

Highest Physical

Memory Address

. HMA, highest memory
address available co

user.

^r

USR2 . NREL DATA

SOS -

DEVICE DRIVERS. CONTROL
ROUTINES, I/O BUFFERS.
AND TABLES

USR1 .NRELDATA

imp m

USR2 . ZREL DATA

USR1 . ZREL DATA

SOS PAGE ZERO

NMAX (first location

available above

loaded programs)

Start of all .NREL data

UST

Bottom of Memory

Figure 3 - MEMORY SPACE ALLOCATIONS

52

\

IV. ASSEMBLY LANGUAGE

A. FORMAT

The ASSEMBLER program allows programmers to write

programs in a symbolic mnemonic language instead of direct

(D
numeric machine code. The NOVA ASSEMBLY language is free

format. Within broad limits, the programmer is free to

determine the format of the listing of his program.

The ASSEMBLER program automatically segments the TTY

listing into 11 inch pages with pagination and the title in

the upper left corner as follows:

000 1 TITLE

A new page can be forced at any point in the listing by the

FF key. The source program is divided into character

strings called lines by the requirement that every statement

must be terminated with a carriage return (CR) . The

ASSEMBLER program provides a predetermined set of tabulation

points at columns 1, 9, 17, 25 etc. Striking CTRL I on the

TTY keyboard advances the spacing to the next tab setting

that ensures one space separation from the last entry. All

redundant spaces, tabs, and CARRIAGE RETURNS are interpreted

only for listing format.

53

\

This allows the programmer to adopt a convenient general

instruction format which separates a line into four possible

fields:

LABEL: OPCODE OPERAND ;COMMENT

The ASSEMBLES recognises all ASCII characters except NULL,

LF, RUB OUT and FF . The FF does not generate computer

instructions, but it can be used to affect the source

listing format. The characters . (when used alone) , 2, ",

and # have special significance.

. indicates the current location or contents of PC.

2) places a 1 in the indirect bit of instruction (bit 5) and

address words (bit 0)

.

" replaces the next character by its ASCII code.

(except RUB OUT, LF , FF, or NULL)

places a 1 in the NO LOAD bit (bit 12) of an arithmetic or

logical command.

A LABEL is a name symbol of one or more alphanumeric

characters that represents the location at which it is

defined. The symbol . is also legal in a LABEL if it does

not occur by itself. The first character must be a . or a

letter and all LABELS are terminated by a colon (:). The

first five characters of any LABEL are all that are used by

the ASSEMBLER and must be distinct from all other LABELS.

LABELS are optional.

(© Data General Corporation 1972. Reproduced from

®
INTRODUCTIOJJ TO PROGRAMMING THE NOVA COMPUTERS by

permission of Data General Corporation, Southboro, MA)

54

\

The OPCODE is separated from the LABEL by the colon, so

spaces are not necessary except for readability. The

particular OPCODE is what decides whether the location is

intended as data or an instruction. However the real

distinction between data and instructions is whether the

binary code can be interpreted by the CPU. Appendix M

summarizes the Assembly language instruction mnemonics.

They can be separated into three general classes (Fig. 4).

Memory Reference Instruction Class (M3I) : This class

contains instructions which move data between the

accumulators and memory, instructions which modify memory,

and jump instructions which alter the program flow of

execution. Appendix L summarizes the machine code and

Assembly language formats.

Arithmetic and Log ical C^ass (ALC) : This class contains

instructions which manipulate the contents of accumulators

and the Carry flag and instructions which perform all the

arithmetic and logical functions between accumulators.

Appendix L summarizes the machine code and Assembly language

formats.

Input/Output Instruction Class (I/O) ; This class contains

instructions which move data between the accumulators and

the I/O peripheral device and instructions which only

control those devices. Appendix L summarizes the machine

code and Assembly language formats.

(© Data General Corporation 1972. Reproduced from

®
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

55

\

An instruction OPCODE is separated from the OPERAND by

at least one space, comma or TAB. A space is recommended

for "better field distinction. There can be up to three

OPERANDS/ each separated in a similar manner. Because

spaces are transparent (undetected by the ASSEMBLER) a zero

OPERAND must be explicitly defined when it precedes a

non-zero OPERAND. Unspecified OPERANDS are assumed zero.

It is recommended that commas be used for OPERAND

separators.

The optional COMMENT is the last thing on any line

before the CR. It must be started with a semi-colon (;)

which will separate it from the OPERAND. A complete line of

COMMENT or a continued COMMENT must still start with the

semi-colon. Although the full 72 characters on the teletype

line can be used for COMMENT, it should always be remembered

that the ASSEMBLER program lists the source code shifted

over to the right to allow for the machine code. This

limits the useful line length to 56 characters. [Ref . 2]

(© Data General Corporation 1972. Reproduced from

®
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

56

\

B. INPUT/OUTPUT

Input/Output (I/O) is the process of moving information

in a computer system between the central processing unit and

peripherals such as the teletype, A/D converter, D/A

converter and cassette transports. Peripherals can serve

two main purposes, they provide the computer with a means of

communicating with its surroundings (TTY, A/D and D/A) and

they can supplement main memory with a secondary storage

capability (CTO and CT1) .

The direction of all information transfers on the I/O

bus is defined relative to the computer. Output always

refers to moving information from the computer to a

peripheral; input always refers to moving information from a

peripheral to the computer.

The information transferred between a computer and a

peripheral can be classified as status, control and data.

Status information indicates the peripherals state; busy or

ready, or operatingimproperly . Control information is used

to tell the peripheral what to do. Data is the information

exchanged during reading, writing, storing or processing.

The amount of information transfered, one bit, eight

bits (byte) , sixteen bits (2 bytes or 1 word) , or a group of

words (block) depends on the peripheral device.

Information is transferred in one of three ways, under

direct program control (TTY, A/D and D/A) , under single word

Interrupt control (TTY, CTO and CT1) or under data channel

Direct Memory Access (CTO and CT 1) , depending on the

peripheral and the I/O instruction used.

57

\

During input the peripheral's controller places the data

in one of three possible holding registers (A, B, C)

depending on the device, signals the CPU the data is ready

and the processor brings the data into the computer. During

output the CPU sends data to an output holding register in

the device and the device signals when it is ready for the

next data output. For the teletype, only one holding

register (A) is involved, the device code is 10 (Appendix 0)

and two flip-flops (Done and Busy) , associated with that

device, achieve the controlling functions. The three

commands NIO, DOA, DIA can be used with the standard I/O

Skip instructions of Table 19, to achieve communication with

the teletype (Section A of Appendix C)

.

The NIO instruction may sometimes be used to set the

device in some desired state by appending the appropriate

control designator (Table 18) .

Normal input is achieved with a DIAS AC,TT0 command.

The input data is placed in AC. Notice the mnemonic TTO or

TTI is recognised by the Assembler program as meaning device

code 10. Usually the second Assembly language argument is

the number for the device code. A word of caution at this

point, the DIAS instruction will input whatever data is in

the input holding register of th,e TTY before it enables the

device so that the user can strike a character key. The

programmer must also realize that the TTY does not

automatically print the characters struck by the operator.

This requires that the programmer output the input character

to make it appear that the struck character was printed.

This technique is called echo printing.

58

v

Normal output is achieved with a DOAS AC, TTO command.

The data in AC is placed in the output holding register of

the TTY and the appended S enables the TTY to print it. The

data is preserved in the accumulator. This allows the echo

print routine to consist of a DIAS AC,TTI for input, then a

DOAS AC,TTO for echo print and the program can still operate

on the input character that remains in the AC.

The A/D and D/A were incorporated in the system in a

previous thesis. Since this construction was an individual

effort,, the only source of hardware wiring documentation is

Reference 1. The A/D operates on device code 21 and uses

the associated Done and Busy flip-flops in the normal manner

(Appendix L) . However the following use of I/O instructions

is peculiar to this device interface.

First, the programmer loads the number of the input channel

for the A/D into a selected accumulator.

Second , the programmer instructs the A/D to start a

conversion cycle by issuing a DOCS AC, 21 command. The

appended letter S on the DOC command sets the Busy flip-flop

and clears the Done flip-flop.

On completion of the conversion, approximately 20

microseconds later, the A/D will set the Done and clear the

Busy flip-flops. At that time the programmer may issue a

DIC AC, 2 1 command to retrieve the converted data in an

accumulator of his choice.

The D/A operates on device code 23 and does not require

the use of Done or Busy flip-flops. It settles to 0.01

percent of final value within three microseconds. The

present configuration is only connected to aliow X or I

output selection by entering a for channel X or a 1 for

channel I in the desired accumulator and executing a

59

\

DOB AC, 23 command. The computer output data is transfered

from the selected accumulator into the previously designated

D/A output channel's holding register by a DOA AC, 23

command. The D/A continuously outputs values corresponding

to the register contents and therefore needs no direct start

of conversion instruction.

1 . Exercise 4

This exercise is designed to start the user learning

the first essential step in computer communications. If

programs can be written to allow some sort of output message

at critical points in their execution then the user has some

indication that they are executing correctly.

Using the TTO Example program in Appendix R, modify

the buffer contents to output a message that contains the

following information:

NAME, RANK

STREET ADDRESS

CITY, STATE

ZIP CODE

Ensure that the edges are parallel and that the left margin

is in column 9. The pseudo-operation Assembly language

instruction .TXT is explained in Section C of this chapter.

Section F of Appendix S contains the Assembler listing of a

solution program for exercise 4.

60

\

C. PSEUDO-OPERATIONS

A special set of instructions called pseudo-operations

(PSEUDO-OPS) are essential when creating a program.

Although they generate no program instruction code they

communicate important information to the ASSEMBLER and

RELOCATABLE LOADER programs. These commands all begin with

the symbol period (.). The PSEUDO-OPS are explained in the

order they would occur in a program like the TTO EXAMPLE

PROGRAM in Appendix R.

.TITL title

This command designates the five character title as the

identifier for the program being created. The title will be

repeated in the ASSEMBLER List of Input Programs Listing

Pagination and Label Directory and in the RELOCATABLE LOADER

List of Input Programs and List of Entry Point Addresses

(Sections C and D of chapter III). If .TITL is omitted the

utilities will substitute the title MAIN.

.ENT label list

This command resolves the addressing between programs. The

programmer lists all of the labels that he wants to call

that are in programs outside his own. To reduce confusion

it is recommended that the title, first ENT label and first

instruction to be executed in the program be identical.

Separate subroutines must define their names as entry

symbols so that outside calls can link addresses.

.EXTN

This is the command that relates internal program references

to the .ENT location that they are addressing. A program

calling a separate subroutine must state that its name is an

external symbol.

61

\

.NREL or .ZREL

These commands instruct the RLDR where to start loading the

program code when converting to absolute locations. The

first zero relocatable (ZREL) program starts at location 50

and subsequent programs loaded at the same time start where

the last program stopped until the ZREL area is full.

Overflowing the ZREL area causes an error message. Normal

relocatable code loads in a similar manner starting at

location 410 (Figure 3) . This is the first location after

the ZREL area. Program types can be mixed.

.LOC address

This command allows the programmer to force the RLDR to

start placing code at a specified location. This is the

command to enter an Interrupt routine address into location

2 or a specific count into the Autolncremen t and

AutoDecrement locations. The RLDR carries on loading from

that address until told otherwise by a ZREL, a NREL or

another LOC command.

•BLK count

This command tells the ASSEMBLER program to leave blank the

number of words specified by count. This instruction is

used to define I/O buffers as follows:

BDFER: .BLK count

.TXT 'message'

This command stores the text message defined within any set

of user designated symbols (quotation marks are suggested)

in a block of words. Characters are stored in pairs with

the left ASCII character code in bits 8-15 and the riaht
v

character code in bits 0-7 as follows:

62

N

NOTE: .TXT 'ABC

will give this ASCII code buffer:

BA

nullC

The coding of an actual buffer can be seen in the Assembler

listing for the TTO EXAMPLE program which is in Section B of

Appendix R.

.END start address

This is the last command in a program creation. It

instructs the ASSEMBLER program to write a command at the

end of the program that will cause the CORE IMAGE LOADER

(actually the Binary Loader portion of it) to start

executing at the start address location specified, after the

load is completed. If the start address is omitted (.END)

the loader will HALT on load completion. The unspecified

start address is the type of .END used in subroutine

programs.

D. PROGRAMMING SUMMARY

The preceeding discussion on I/O and PSEUDO-OPS and

fceguent reference to Appendix L on Assembly language

formats and Appendix M on Assembly language codes, should

allow the reader to understand the TTO EXAMPLE program of

Appendix R.

The first section of the program, delineated by the full

line of asterisks, consists of general comments to identify

the program and aid the user/programmer to see what the

routine does.

63

\

The .TITL, . ENT and . NREL pseudo-ops designate the title

and only externally accessible label as TTOEX. The program

is normally relocatable; i.e. the loading starts at location

440. That is why the entry point TTOEX is listed as 440 in

the relocatable load. This procedure is recommended so that

the limited page zero locations can be used by programs that

may require them. Another alternative is to define all

tables and data as page zero (using a .LOC) and place the

program for NREL so that the data can be addressed in the

direct mode. However short independent programs in page

zero eliminate addressing mode difficulties.

The first IDA instruction is used to save the address of

the output buffer in a register so that it can be

manipulated by an index to step through the elements of the

table. This common technique of using a pointer to an

address is achieved by the definition just before the

program ends:

PBUF: BUFER

The next LDA instruction is part of an incrementing loop

that increases the buffer pointer count and steps through

the text defined by .TXT while outputting the message to the

TTO.

A common technique for terminating a program that

transfers data, is to keep checking for a special code that

will only occur once the program is to HALT.

The MOV# instruction is designed to do nothing (#) but

it does skip the HALT instruction if non-zero data is found

in ACO.

The SKPBZ instruction checks to see if the TTO is

occupied with output. If the Busy flip-flop is set the

64

\

program executes the JMP .-1 instruction. Otherwise it

skips and continues.

The JMP instruction has employed the special symbol

which indicates the present location. Decrementing the

present address by 1 causes the JMP to return to the

previous SKPBZ instruction to continue. This causes a tight

loop to occur while the program waits for the teletype to be

done so it can continue with the output.

The DOAS instruction causes the character in bits 8-15

to be printed on the TTY. Since the next character is in

bits 0-7 it is swapped into position for output while the

other character is actually being typed.

The SKPBZ and JMP instructions are another pause while

the program waits for the TTY to complete typing the first

output cnaracter.

The second character is output by the second DOAS

instruction. Again since there is some time delay in the

mechanical motion of the teletype several instructions can

be executed to reduce the waiting time.

The pointer is incremented to select the next buffer

word and the program returns to the loop beginning by the

last JMP instruction. Notice that because in this short

program you can be certain the address of LOOP is within 377

locations of the JMP instruction, the actual location label

can be used in the direct mode (ommitting the mode defaults

to or 1) .

The .END TTOEX pseudo-op designates the end of the

program that is to be executed from location TTOEX on

completion of loading.

65

\

E. INTERRUPTS

It should have been obvious in the TTO EXAMPLE program

that all that looping and waiting was wasteful. The

Interrupt facility provides a way of allowing the program to

continue processing while a peripheral, which is far slower

than the CPU, finishes its task.

When the peripheral finishes its task and sets the Done

flip-flop this generates an Interrupt Request (if the device

is wired for Interrupts) . If the Interrupt On facility is

enabled and if the Interrupt Disable mask bit for that

device is then the request is recognised. The CPU will

service this interrupt when it completes the next

instruction, if all DMA requests have teen answered and if

all higher priority peripherals (determined by who is

physically closest) are answered.

Two locations in memory are automatically used during an

Interrupt. The location where the program should return to

continue after the Interrupt is saved in address and the

processor tries to execute an Interrupt processing routine

whose start address is pointed to by the contents of address

one. The processor routine must protect all accumulator

contents and the carry so they can be restored prior to

returning to the main program. It is the programmer's

responsibility to clear the Done flip-flop when he wants to

continue communication with that peripheral. When a device

causes an Interrupt the Interrupt On flip-flop is disabled,

so the programmer must reset Interrupt On if he desires that

facility

.

66

\

Example

The technique for programming an Interrupt is

as follows:

-Place the address of the service routine in location 1

-Create a service routine that:

-saves the accumulators and the carry

-processes interrupts

-clears the Done flip-flop

-restarts the device if desired

-restores the accumulators and the carry

-enables Interrupt On

-returns to the address contained in location

-Create a main program that:

-initially enables the interrupt

-clears device's Interrupt Disable mask bit

-starts the device

-continues processing

67

\

1 . Exercise 5
at s

—

Create a program that uses the Real Time Clock on an

Interrupt basis to output a repeating count from thru 9 at

precisely 1 second intervals. Since no large amount of

processing will be required in the main program a simple

loop that does nothing will be sufficient. Check the timing

by counting the period of several count cycles.

an example of this sort of technique without looping

is included as Section G of Appendix S. The program INIT

starts the clock the first time. INTRUP processes the

interrupt and protects the accumulators and carry. SOPH is

a general subroutine that allows a table of job routines

that may be serviced by one real time clock. EXSC2 is a

subroutine that types the count 0-9 on a one second basis.

F. PROGRAMMING THE CASSETTE UNITS

Programming the cassette units would be a lengthy and

complicated task if carried out with the basic I/O

instruction set that has been presented so far. Fortunately

the STAND-ALONE OPERATING SYSTEM provides a set of I/O

utility programs for communication with any peripheral in

the system. For cassette programming the SOS commands are

most convenient because they provide a functional read and

write capability. All SOS commands have the following

format:

.SYSTM

command

error return

continue return

68

\

The available commands are:

Table 4 SCS COMMANDS

COMMAND MMING

.SYSI Initialize SOS devices

.OPEN Open a file before writing or reading

.CLOSE Close a file after writing or reading

.RESET Close all open files

.GTATR Get file status

.RDS Read sequential characters

.RDL Read sequential lines

.WRS Write sequential characters

.WRL Write sequential lines

.GCHAR Read a TTI character

.PCHAR Write a TTO character

.MEM Determine available memory

.MEMI Allocate a memory increment

If there is an error the system returns to the location

following the SOS command with a system error code in AC2

(Section H of Appendix Q) . Normally the SOS command

performs its function and the system returns to the second

location following the SOS command and continues. Further

detailed explanation of the SOS commands can be found in

References 12 and 13.

69

\

To program the cassette transport the procedure is as

follows:

.EXTN .SOS, .CTU1 jnecessary for SOS commands

.SYSTM

.SYSI ; initiates SOS devices

JMP error

.SYSTM

LDA 0,file ;AC0 contains the file number for Open

.SYSTM

.OPEN 31 ;Open CT1, device code 31

JMP error

LDA 0, buffer byte address ; byte address= 2xaddress

LDA 1, buffer byte count jnumber of characters

.SYSTM

.SRS 31 ;Record the output buffer

JMP error

LDA 0, buffer byte address ; SOS destroys all ACs

LDA 1,buffer byte count

SYSTM

RDS 31 ; Load recording into the input buffer

JMP error

SYSTM

CLOSE 31 ;close CT1

Type the buffer ;use TTO Example program

70

\

When the program is ready for the RLDR routine the

operator must first load the Stand-Alone Operating System

Library from paper tape Library program 099-000010-08 or

from a cassette file it has previously been recorded on.

Second, the operator must load the Stand-Alone System

Cassette Driver from paper tape Library program

099-000041-02 or from a cassette file it has previously been

recorded on. After these two programs are loaded in the

order specified, the user program can be loaded and the

external symbol references to the system labels .SOS and

.CTU1 will be resolved. References 12 and 13 describe a

separate trigger program, created by the user, to resolve

these external references but it is not necessary. The

external references will be resolved if the SOS I/O Driver

utility program is loaded before the user program in the

relocatable load. The user should not be alarmed at the

page and one half length of the List of Entry Point

Addresses, ncr the unidentified symbol errors that appear

beside half of them. The .SOS and .CTU1 routines were

written for a general system with all of the availabe

options and peripherals. The undefined symbols are not used

in our limited system.

71

\

1 . Exercise 6

Using the TTY input and output routines you have

written, create a program that takes a message typed in from

the teletype, saves the message in an input buffer, records

that buffer on a cassette file, loads the cassette file into

an output buffer and outputs that buffer on teletype. The

following message from Exercise 4 would be appropriate:

NAME, RANK

STREET ADDRESS

CITY, STATE

ZIP CODE

Ensure that the edges are parallel arid that the left margin

is in column 9.

Section H of Appendix S is the Assembler listing for

a system that will perform cassette communication. CASET

uses the subroutines BIOA and TYPE that are in Sections B

and C of Appendix S. TYPIO is a subroutine for entering

characters from the teletype and packing them into a buffer

area. It is included with the Assembler listing of CASET.

72

\

G. REVIEW OF PROGRAM CREATION

A brief summary of what has been covered in the creation

process may help to tie it all together.

I.The user loads the CIL/W using the procedure discussed in

Appendix A. Remember that if the console is still set up

from a normal SOS user and if the CIL/W is still in core

with the data switches set to 017777; initialization is

achieved by pressing RESET and START.

2. Use the CIL/W to load the EDITOR and insert the Assembly

language source code program. Remember to save the source

on a scratch tape before closing the buffer.

3. Return to the CIL/W to load the ASSEMBLER. Replace the

SOS master cassette on unit with a new scratch tape (don't

forget to REWIND) and execute the ASM command desired.

4. Move the ASSEMBLER relocatable binary tape filp output;

from unit to unit 1. Remount the SOS master cassette and

press REWIND for both units.

5. Return to the CIL/W to load the RELOCATABLE LOADER.

Replace the SOS master cassette on unit with another new

scratch tape and execute the RLDR desired.

6. Return to the CIL/W and load the new absolute binary

program that you just created on unit 0.

XkS SOS cassette s y_st em does not protect any files

coming after t he file beinjj written into^ The user must

save these files on a separate scratch ta_pe_.

73

s

MR I FORMAT

Machine Code:

c I X D

1/ 4 5 6 7 8

Assembly Code:

Label: OPCODE AC, D, X

or

Label: OPCODE D, X

15

; Comment

; Comment

ALC FORMAT

Machine Code:

1 AC'S ACD FNC SHIFT CARRY
NO

LOAD
SKIP

12 3 4 5 6 7 8 9 10 11 12 13 14 15

Assembly Code:

Label: FNC ACS, ACD, SKIP ; Comment

I/O FORMAT

Machine Code:

011 AC TRANSFER CONTROL DEVICE CODE

2 3 4 5

Assembly Code:

7 8 9 10

Label: Transfer AC, Device Code ; Comment

15

Figure 4 - INSTRUCTION FORMATS

74

\

V. CONCLUSION

A. HARDWARE PROBLEMS

During the process of installing the A/D and D/A

connections for sign bit extension^ external potentiometers

and MSB/LS3 connectors a wiring problem has developed. The

A/D does not operate correctly The original thesis project

resulted in a properly working codel [Ref- 1]. The A/D has

been factory checked and calibrated and is working properly.

Although the wiring connections have been rechecked, no

difference can be found from the pinning list of

Reference 1 . The manufacturer has offered to check the

wiring diagram.

B. RECOMMENDATIONS

If A/D noise proolems develope it is recommended that

the flat cable connector from the patch board to the A/D

inputs be changed to twisted pairs. This is a similar style

of connecting cable that is commercially available.

It is recommended that the remaining D/A functions be

connected so the full potential of the device can be used.

Programming in Assembly language is a tedious and

complicated process. Because the programmer must indicate

the addressing modes and other details, errors are frequent

in program creation. The next logical step in developing

75

\

the system is to use the Fortran, Basic or Algol programs

that are already available. However this will require an

expansion of the memory capacity to 24K words. This

®
expansion would facilitate the interfacing of the NOVA with

the IBM 360 system.

It is unknown what affect the cut DMA lines are having

on the interrupt capability, however this facility should be

connected. This would allow an interrupt routine to

seguence through the input channels on a timed basis and

permit general feedback control applications. In this

regard the present Real Time Clock is not very useful. The

slowest clock frequency is 10Hz. This frequent interrupt

rate requires some counting technique to permit, for example

a one second sampling interval. That implies that at least

ten interrupts must occur before the real job can be

executed. Each interrupt requires a time delay to be

serviced and the counting routine requires additional time

to calculate the number of interrupts to have occurred since

the last job was serviced. These delays can be estimated

from the instruction execution times in Appendix N, and the

interrupt count adjusted to allow for that processing time.

However in a larger system when there are several other jobs

to be serviced the delay time will vary due to the job load

to an unacceptable degree for the accuracy required for

proper feedback control. The effect of this random error

could be reduced by applying the standard stochastic

feedback control techniques, however more controlled

laboratory situations would result if another presettable

counter were installed in the second Real Time Clock RTC1

(Appendix 0)

.

76

v

Finally, it is recommended that the TEKTRONIX display be

connected at the second teletype device position TT0 1 and

TTI1. The present teletype is too slow and noisy to be

really convenient. It could be kept for the paper tape and

print functions-

As comprehensive as this thesis is r it can not be

expected to provide the amount of detail that is to be found

in the available documentation. The List of Manuals in

Appendix U should provide any additional information

required. Frequent references throughout the text guide the

user to the correct publications to answer most questions.

77

\

APPENDIX A

NOVA 800 SYSTEM INITIALIZATION

A. PRELIMINARY CONNECTIONS

Verify the following connections:

1. Connect CPU power cords to 115 VAC.

2. Connect ASR 33 teletype power cord to 115 VAC.

Connect TTY data cable to CPU rear I/O socket P2

.

3. Connect cassette driver power cord to CPU rear outlet.

Connect cassette data cable to CPU rear I/O socket P5.

B. SWITCHES

4. Set cassette switch to REMOTE.

Set right-hand thuab wheel switch to 0.

Set left-hand thumb wheel switch to 1.

5. Set operator's console to ON.

6. Set TTY to LINE.

78

\

C. BOOTSTRAP

7. Mount SOS cassette on CTO and press REWIND.

8. Set data switches to 100034 for cassette load.

9. Press PROGRAM LOAD. The teletype prompt # indicates

correct initialization of the CORE IMAGE LOADER/WRITER.

10. Set the data switches to 017777.

79

s

APPENDIX B

CONSOLE OPERATIONS

A. TO SET PC AND CHECK IHE CONTENTS OF A LOCATION

I.Set the data switches to the desired address.

2. Press EXAMINE. For AC use ACCUMULATOR EXAMINE.

B. TO ENTER OR MODIFY BINARY CODE

I.Set PC to the address.

2. Set the desired binary code in the data switches.

3. Press DEPOSIT. For AC use ACCUMULATOR DEPOSIT.

C. TO MANUALLY ENTER MACHINE CODE PROGRAMS

I.Set PC to the first program location.

2. Enter the binary contents for the PC address using the

procedure described in 3.

3. Set the data switches to the contents of the next program

address.

4. Press DEPOSIT NEXT.

5. Repeat 3 and 4 until the entire program is entered.

80

\

D. TO VERIFY PROGRAM ENTRY

I.Set PC to the first program location.

2. Press EXAMINE.

3. Press EXAMINE NEXT.

4. Repeat 3 for each program address.

E. TO EXECUTE A PROGRAM

I.Enter the program using the procedure described in C.

2. Verify the program has been entered using the procedure

described in D.

3. Set the data switches to the program start address.

4. Press RESET.

5. Press START.

81

\

APPENDIX C

OPERATING PROCEDURES

A. ASR 33 TELETYPE

The ASR 33 is an automatic Send and Receive terminal

comprising a keyboard (TTI) , printer (TTO) , paper tape

reader (TTR) and paper tape punch (TTP) . It operates at a

transmission rate of 10 characters per second (110 BAUD) and

prints up to 72 characters per line at six lines to the

inch. The model 33 has eight and one half inch width paper

and will print only upper case ASCII code. Lower case codes

are printed as upper case. Maintenance information is

contained in Appendix T.

The teletype has separate input and output functions and

therefore can be treated as two distinct devices. Each has

its own device code, 3usy, Done and Interrupt Disable flags,

a separate buffer, and its own interrupt priority mask

assignment (Appendix 0) . Striking a key places that

character code in the A input buffer awaiting program

retrieval. Input characters must be re-sent as output if

the operator wishes the key that is struck to be printed

(echo print) . Model 33 printers ignore the even parity bit

(MSB) in the 8-bit ASCII code listed ip Appendix P.

82

\

There are three groups of switches on the terminal

(Fig. 5) . The right-hand switch has three positions for

controlling all terminal functions as follows:

OFF-Power to the terminal is disabled.

LOCAL-Enables the terminal to operate independent of the

computer.

LINE-Enables bi-directional communication with the CPU.

This allows the teletype to be used as a separate

typewriter, paper tape punch or paper tape listing device.

The left-hand set of four switches, which control paper

tape operations, are selected by depressing the button for

the desired function. When the button is pushed in the

following operations are enabled:

ON-The punch will make paper tape for the operator if the

control switch is at LOCAL or will list computer output on

paper tape if the control switch is at LINE.

REL-New paper tape may be loaded in the punch.

B.SP-If an error occures when the operator is punching

paper tape with the control switch in LOCAL, this switch

moves the tape back one frame to allow deletion of the

mistake by striking the RUB OUT key.

The paper tape reader is controlled by the left-hand

three-position switch as follows:

STOP-The reader is disabled with the sprocket engaged.

START-Th€ reader is enabled. In LINE the TTR responds to

CPU commands. In LOCAL it will start to read a loaded paper

tape.

83

\

FREE-Ihe reader is disabled with the sprocket released so

that paper tapes can be positioned for reading.

[Ref. 5]

Example

when attempting to read a paper tape the

following procedure should be carried out:

-release the retaining clip that holds the paper tape on the

read station.

-set the TTR switch to FREE.

-place the top end of the paper tape in the reader guides

and the remainder of the tape on the floor below there,

clear of obstacles.

-manually lead the paper tape through the guides towards the

operator and stop with one blank frame before the data

reaches the read station. Occassionally paper tapes have a

hole pattern that can be read as their identification

number, placed before the actual program data. Ensure that

the tape is manually fed past that point. Ensure that the

paper tape is mounted the correct side up, so that the

sprocket holes are engaged.

-close the retaining clip, it snaps into place.

-set the TTR switch to START, the pape*: tape is now mounted

and ready for reading.

84

\

B. CASSETTE TRANSPORT

The DGC cassette transport allows a more rapid and

convenient means of program creation under the SOS. The

character transfer rate is 1600 bytes per second at an

average tape speed of 30 inches per second. Each 200 foot

cassette requires 85 seconds for total rewind. The average

storage capacity is 100,000 bytes or 800,000 bits. Each

cassette is designated a logical unit number by positioning

its thumbwheel switch. (Fig. -) Only one transport can be

reading or writing at any time, and it must be moving in a

forward direction. Each cassette can record files numbered

thru 99. The system can accomodate up to eight units

(0-7) but it is presently configured in the SOS software for

only and 1. Cassette files are generally specified by

CTunit:file, however for the CIL/W the CT is omitted

(unitrfile). The automatic BOOTSTRAP requires the SOS

master tape to be on unit for system initialization.

Power can be supplied independently to allow normal

control by the ON/OFF switch. However if power is connected

from the CPO rear outlet and the cassette switch is at

REMOTE, the cassette unit will turn on a short time delay

after the computer power is enabled.

CAUTION:

The possibility of noise spj.Jces destroying ta£e data

dictates the precaution of always mounting cassettes after

power on and remov ing them ££4 or to Rower off.

85

\

Once mounted, tapes must be positioned to the beginning

of file (BOT) by pressing REWIND. The user must be

certain the tape is properly seated with the right-hand

Cassette-in-Position and left-hand Write Enable switches

engaged. These switches work with the small red tabs that

are positioned over the holes in the upper edge of each

cassette tape. The upper right tab is usually not moved

from the position where the hole is uncovered. The actual

Cassette-in-Position switch is not located over the hole so

it has no effect. The upper left tab does control the write

capability. User's must ensure the left tab is in the

correct position whenever a protected tape is mounted on the

transport. The SOS master cassette is a write protected

tape. A thin piece of sticking tape ensures that a tape

remains write protected. During the program creation

procedure the operator is changing cassettes often, if it is

remembered to REWIND the cassette before continuing most

seating problems will be corrected before they cause a

problem with reading or writing of files [Ref. 5].

Maintenance information is contained in Appendix T.

Programmers must be aware that there is no automatic

protection of program files that occur after the file that

is beincj modifie d. Increased length of the modified £ roaram

causes the first locations in the next file (the st ar£ b lq ck

S^Si). to be over written. This destroys important control

information so that subsequent files to the one modified

cannot be accessed.

86

\

C. DATAX CONVERTERS

The A/D and D/A converters are extremely simple to use

(Fig. 7) . A connector board provides a convenient central

location for user selection of input channels 0-7 and output

signals X, Y, and Z. Each analog signal must be connected

as an input and return pair designated by the appropriate

labels. The Z output is a special timing signal for CRT

applications. All signals must be adjusted for a ±10.00

volt swing and employ a 12-bit code that has the most

significant bit extended for 16-bit input to the CPU. The

following table is the basic 12-bit code:

Table 5 ANALOG CONVERSION CODE

VOLTS ilzBIT CODE

+ 9.9951 011111111111

0.0000 . 000000000000

-10.0000 100000000000

[Ref. 7]

The A/D has not been connected for Interrupt or Direct

Memory Access (DMA) communication. The necessary circuits

are included on the interface board but they have not been

completed. In addition two DMA lines on the underside of

the printed circuit board have been broken to allow the

present installation to operate correctly. The 12-bit

digital output of the A/D has been converted to 16-bits by

connecting the MSB of the A/D code to the higher order bits

of the computer data lines to achieve sign bit extension of

the code.

Maintenance information is contained in Appendix T.

87

\

D. CALIBRATION

Three calibration routines; ADCOD, CADO, and DAC, are

provided in Appendix S. They are designed for user

convenience and involve minimal hardware connections.

Appropriate instructions for the user are printed on the

TTY. To eliminate the need for making connections on the

printed circuit interface board and the requirement to place

the interface on an extender board, the LSB, MSB and digital

ground lines for the A/D are presented at labeled sockets on

the side of the interface board. Both the A/D and the D/A

are connected with the following labeled external

potentiometers positioned so they are accessable at the side

of the interface board; A/D RANGE, A/D OFFSET, D/A X and Y

GAIN and D/A X and Y ZERO. The general user should not

require to adjust the calibration. The laboratory

supervisor can calibrate the converters by sliding the

computer chassis forward on the rack until it hits the

stops, then loading and executing one of the following

routines

.

Since the D/A converter cannot achieve the ±10.24 volt

swing that the A/D can be set for, a compromise of ±10.00

volts was chosen to ensure compa tability whan they are used

together. Program comment references to 10.24 volts should

read 10.00 volts as indicated in the following sections.

88

\

ADCOD

The program A/D CODE TEST (ADCOD) is a procedure that

converts an analog signal connected to channel of the

input board and prints the resulting 16-bit data word on the

teletype. By presenting a known voltage source at channel

the operator can determine if the correct code is being

produced. If the known source is +10.00 volts (or -10.00

volts) the RANGE potentiometer can be adjusted for the

correct full scale reading (Table 5). The calibration is an

iterative technique in two respects; the operator must

depress the console switch CONTINUE to cause the A/D to

reconvert the presented signal to see what effect the

potentiometer is having and, the RANGE adjustment is not

independent of the OFFSET adjustment. Once the RANGE is

adjusted the channel voltage is reset to and the OFFSET

potentiometer is adjusted. Remember to repeat this process

until there is no more adjustment required.

Section A of Appendix S is a copy of the ADCOD Assembler

listing. The subroutine BIOA is called to convert a binary

word (the A/D code) into an ASCII character string for TTY

output by the subroutine TYPE.

The Assembler listing for 3I0A and TYPE are included as

Sections B and C of Appendix S.

89

.

s

CADO

The program CALIBRATION of the A/D on the OSCILLOSCOPE

(CADO) is a procedure for more accurate calibration of the

A/D. A precisely measured, stable voltage source is

connected to channel on the input board. A teletype

message prompts the operator to make the proper connection

and voltage settings. By monitoring the MSB at -0.0025

volts, the oscilloscope must detect a 50 percent duty cycle

because this is its transition point from negative to

positive voltage codes. The duty cycle of MSB is adjusted

by the OFFSET potentiometer. By monitoring the LSB at

-9.9976 volts the oscilloscope must detect a 50 percent duty

cycle due to this being the transition point for full scale

negative readings. This duty cycle is adjusted with the

RANGE potentiometer. As indicated above, the process must

be repeated until the adjustments have stopped. Since the

routine continuously tells the A/D to convert the present

channel voltage, an almost continuous reading is obtained

and the CONTINUE switch on the console is not used. The

detection of the 50 percent duty cycles on the oscilloscope

has never been achieved satisfactorily. Section D of

Appendix S is the Assembler listing for this program.

90

\

DAC

The program D/A CALIBRATION (DAC) is a procedure to

convert program designated codes for 0.0000 and +10.0000

volts to the X and Y channel outputs, which can be monitored

by a voltmeter. A teletype message reminds the operator of

the correct procedure. Initially the routine places a zero

voltage code into the X and Y holding registers of the D/A.

This code is continuously converted to an output voltage

until it is overwritten. Therefore the ZERO potentiometer

can be adjusted for a minimum while continuously monitoring

the voltage output that results. Pressing the console

switch CONTINUE releases the program to start the GAIN

calibration. The GAIN potentiometers are adjusted for a

full scale reading of +10.0000 volts. Pressing CONTINUE

again restarts the program at the ZERO adjust routine to

allow an iterative technique in calibrating the D/A.

Section E of Appendix S is the Assembler listing for this

program.

91

\

Figure 5 - ASR 33 TERMINAL

92

\

Figure 6 - DGC CASSETTE TRANSPORT

93

\

Figure 7 - A/D AND D/A INTERFACE

94

\

SSBsSas&toA&ScSfc.'

Figure 8 - TEKTRONIX TEK 31/10 CATHODE RAY TUBE

95

\

APPENDIX D

LOADING PROGRAMS

Before a program can be executed, it must be brought

into memory. This requires that a loading program already

reside in memory. In the event that there is no loading

program in memory, a small, specialized leading program is

normally placed in memory and used to read in the leading

program. This small loading program is called a BOOTSTRAP

LOADER. The function of the bootstrap loader is to read in

a more general-purpose loading program which can be used to

load the user's programs. Two methods are available for

entering a .BOOTSTRAP LOADER into memory. The operator can

either enter it via the data switches and the deposit switch

or he can use the PROGRAM LOAD option. [Ref. 4]

Data General Corporation 1976. Reproduced from NOVA

LINE COMPUTERS by permission of Data General Corporation,

Southboro, MA)

96

s

A. MANUAL LOADING

Without the PROGRAM LOAD option, a BOOTSTRAP LOADER must

be entered into memory manually using the switches on the

console. The following loader is the BOOTSTRAP LOADER

designed for use with BINARY LOADER 091-000004. It reads in

a specially formatted tape from either the paper tape reader

(PTR) or the teletype reader (TTR) .

LOCATION CONTENTS TAG ASSEMBLER COMMENTS

0XX757

0XX763

0XX764

0XX765

0XX766

0XX767

0XX770

0XX771

0XX772

0XX773

0XX774

0XX775

0XX776

126440

0XX760 0636dd

0XX761 000777

0XX762 0605dd

127100

127100

107003

GET: 3UBO

SKPDN

J MP

DIAS

ADDL

ADDL

ADD

000772

001400

0601dd BSTRP

004766

044402

004764

(see comment)

(see comment)

(see comment)

JMP

JMP

NIOS dd

JSR

STA

JSR

(STA)

(JMP)

(HALT)

1,1 ;
;Clear AC1

;
carry

and

dd ; Device bus y?

.-1
, Yes

0,dd
,
; Read frame

from device

1,1 ,
, Shift AC1

, 2 bits

left

1,1 ; Shift AC1

2 bits

left

0, 1 ,S1iC ;Add in new

!

frame

GET + 1 ;Get new f rame

0,3 , Full word, return

; Prim*3 the device

GET

. + 2

GET

(1,.+1

(.-4)

Get a word

Store it

Get another word

These instructions

are loaded by the

binary loader

stop address

97

\

The BOOTSTRAP should be placed in memory starting at the

location which is 20 (octal) less than the highest available

memory address (for 8K start at 17757) . For the XX in the

Location column, substitute the most significant 2 digits of

the highest available memory address as described in the

following table:

Table 6 HIGHEST MEMORY ADDRESSES

MEMORY ADDRESS xx

2,000 003777 03

4,000 007777 07

6,000 013777 13

8,000 017777 17

10,000 023777 23

For dd in the Contents column, substitute 10 (octal) if

the TTR is being used, or 12 if the PTR is being used.

After the BOOTSTRAP is entered, start it at location XX770

(17770 for 8K) . Execution terminates when the BINARY LOADER

is completly loaded, at address XX776, with the data lights

reading 063077.

^ • ®
(<Q) Data General Corporation 1976. Reproduced from NOVA

LINE COMPUTERS by permission of Data General Corporation,

Southboro, MA)

98

\

B. AUTOMATIC PROGRAM LOAD

The automatic program load is designed for use with the

SELFLOADING BOOTSTRAP AND BINARY LOADER paper tape

091-000036 or the STAND-ALONE OPERATING SYSTEM CASSETTE

LOADER/WRITER 091-000067, which should be on File of

cassette unit [Ref. 12]. The BOOTSTRAP reads the data

switches, sets up its own I/O instructions with the

specified device code in switches 10-15, and then continues

in accordance with the value of data switch 0. [Ref. 3]

If switch is 0, the 300TSTRAP reads low-speed input

like the TTR. If the device is not low-speed the program

halts. The device must supply 8-bit data bytes, and each

pair of bytes is stored as a single word in memory wherein

the first and second bytes read become the left and right

halves of the word. The program ignores tape leader and

does not begin storing any words until it reads a nonzero

synchronization byte. The first word following that byte

must be the negative of the total number of words to be read

(including the first word), for a maximum of 192 (decimal)

words. The program stores the words beginning at location

100. After reading all the data, it jumps to the last word

stored.

(© Data General Corporation 1971. Reproduced from HOW TO

®
USE THE NOVA_ COMPUTERS by permission of Data General

Corporation, Southboro, MA)

99

\

If the switch is 1, the BOOTSTRAP starts the high-speed

device (such as the cassette drivers) for data channel

storage beginning at absolute location 0, and then loops at

location 377 until a loaded data word causes it to do

something else. Addressing a low-speed device stops the

program before input occures.

C. BINARY LOADER PROGRAMS

The BINARY LOADER program loads absolute object tapes

into memory and resides in absolute locations 0XX646-0XX777

in core. It is common practice to write programs which do

not alter these locations, thus eliminating the need to

reload the loaders. In all but very rare instances, DGC

standard software is written so as not to destroy the BINARY

LOADER or BOOTSTRAP LOADER programs. In no case will any of

this software destroy the BOOTSTRAP LOADER program.

If the End Block on the object tape specifies a starting

address of the program, the BINARY LOADER will transfer

control to that location once tape is loaded. Otherwise,

load the starting address of the program into the data

switches, press RESET then START.

There are two BINARY LOADER programs available, the

manual BINARY LOADER and the SELFLOADING BOOTSTRAP AND

BINARY LOADER. [Ref . 2]

(© Data General Corporation 1972. Reproduced from

(DINTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

100

\

1 . Manual Bootstrap Binary Loader

The paper tape 091-000004 is the BINARY LOADER

program to be used with the manual BOOTSTRAP. The input to

the Loader is an absolute binary tape. The tape is punched

in blocks separated by null (all zero) characters. Two tape

characters form a 16-bit word; the first character forms

bits 8-15 of the data word and the second tape character

forms bits 0-7. [Ref . 10]

The BINARY LOADER routine is executed by mounting

the desired absolute binary paper tape program on the TTR f

entering SXX777 in the data switches and pressing RESET and

START. The S represents data switch and should be 1 if

input is PTR and for TTR. The XX represents the most

significant 2 digits of the highest available memory

address. The result of executing the BINARY LOADER routine

is a loaded program ready for execution. A HALT may be

interpreted by its location displayed in the address lights,

as follows:

0XX74 1 means loaded program did not specify a start

address. The user must set the data switches and

press RESET then START.

0XX727 has two possible causes.

I.The user's program attempted to overwrite

the loader, of

2. The last block read has a checksum error.

Tapes produced under SOS must be reread from

the first block. Repeated checksum errors

indicate a bad tape.

O Data General Corporation 1973. Reproduced from BINARY

LOADER PROGRAM by permission of Data General Corporation,

Southboro, MA)

101

N

2 . The Self loading Bootstrap and Binary Loader

The SELFLOADING BOOTSTRAP AND BINARY LOADER paper

tape 091-000036 is used in conjunction with the PROGRAM LOAD

feature. Once the BOOTSTRAP is complete it sizes memory,

interprets the device code, and reads in the BINARY LOADER.

Determination of the highest location is accomplished by

writing and reading locations at 1K increments until the

information read back is the same as that written. The

BINARY LOADER image is placed in the highest locations of

alterable memory. When the tape has been read in, the

processor will HALT at location 00121. An object tape can

then be read on the same device simply by depressing

CONTINUE. For subsequent object program loads the

proceedure is:

I.Put the object tape in the reader.

2. Set the data switches to 0XX777.

3. Set data switch 0. PTR=1, TTR=0.

4. Press START.

This BINARY LOADER is similar to the manual version

except for the HALT addresses.

0XX740 means no start address.

0XX726 means checksum failure. If repositioning the tape

to 'the beginning of the last block read and

continuing has no effect, then the tape is in

error.

(© Data General Corporation 1973. Reproduced from

SELFLOADING BOOTSTRAP AND BINARY LOADER by permission of

Data General Corporation, Southboro, MA)

102

\

3. The Core Image Loader/Writer

The CORE IMAGE LOADER/WRITER program on the SOS

master cassette is identical to paper tape 091-000067-02.

It performs two utility functions: it loads core image files

from cassette tape into core and produces core image files

on cassette tape [Ref s. 12 and 13]. The CORE IMAGE

LOADER/WRITER program works only with cassettes.

The CORE IMAGE LOADER/WRITER can be bootstrapped

from file of the SOS master cassette on unit 0. The tape

must be rewound manually. The normal loading procedure is

described in Appendix A.

The Loader/Writer is read into page zaro (0-377)

initially and then relocates itself to the last 400 (octal)

locations in core. After relocation a prompt # on the

teletype indicates that the CORE IMAGE LOADER/WRITER is

ready. Once it is in core the Loader may be restarted by

setting the data switches to the last memory address,

pressing RESET, and then START. (For 8K set 017777)

The # symbol indicates the loader is waiting for the

operator to respond with a cassette unit number (0-7) and a

file number (0-99) separated by a colon. Specifying unit

is optional. The indicated cassette file is loaded into

memory upon command termination by a teletype RETURN. If

data switch on the console is 1, the program will halt on

completion of the load. If the switch is 0, control is

passed to the loaded program linked through location 4 05.

(©Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

103

\

If the loader encounters a non-recoverable error

while trying to load a file, it will type *ERR and halt with

a code in ACO. The error codes are explained in Section A

of Appendix Q. If rewinding and substituting a different

cassette tape does not clear the error condition, a hardware

fault is indicated.

(C) Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

104

\

APPENDIX E

SOS

When using device mnemonics within the SOS

environment, the user must add the prefix $. The teletype

codes are $TTO, $TTI, $TTR, and $TTP.

Since the EDIT comm and s delineator _{ESCJ_ prints as

£ Jx considerable care must be taken to ensure that the ESC

9.E $ K<~Z§. are used properly.

The SOS master cassette has a standard file format:

Table 7 SOS MASTER TAPE

PROGRAM (CALL)

Core Image Loader/Writer

Command Line Interpreter (CLI)

Symbolic Text Editor (EDIT)

Extended Assembler (ASM)

Extended Relocatable Loader (RLDR)

Library File Editor (LEE)

SYSGEN (SYSG)

By setting data switch to prior to loading a SOS

utility, the user can permit the automatic typing of the

appropriate prompt message to signal correct initialization.

Setting data switch to 1 forces the Loader to halt before

control is passed to the loaded routine.

ILI PROMPT

#

1 R

2 *

3 ASM

4 RLDR

5 LEE

6 SYSG

105

\

There are two possible ways of interrupting and

terminating a currently executing utility program from the

teletype.

1. Pressing CTRL and A on the keyboard causes all utilities

to stop, initialize, and re-issue the prompt message. The

EDITOR will only respond to CTRL A during a T, Y, M, E or P

edit command and the input buffer will remain intact. This

is the only release from a GR or a GW command error.

2. Pressing CTRL and C will cause all utilities except the

TEXT EDITOR to return to the CORE IMAGE LOADER. The EDITOR

ignores CTRL C and uses the edit command H to return to the

Loader. [Ref. 13]

The two SOS master cassette utility programs LIBRARY

FILE EDITOR and SYSGSN are not often used. A brief

description is included here for completeness.

(©Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERA TING SYSTEM by permission of Data General

Corporation, Southboro, MA)

106

\

A. LIBRARY FILE EDITOR

The LIBRARY FILE EDITOR (LFE) provides a means of

updating and interpreting a set of relocatable binary files

that are gathered together into one special file called a

Library.

The LFE allows the user to:

-analyse the contents of a library file

-list titles in a library file

-merge libraries

-update libraries

-extract logical records from a library file

-create his own library files.

The LFE is self-starting and prompts the operator with

LFE when it is ready to accept a command string. Commands

are explained in Appendix J. [Ref. 16]

(<£) Data General Corporation 1972. Reproduced from LIBRARY

i.LL£ EDITOR by permission of Data General Corporation,

Southboro, MA)

107

\

B. SYSGEN

SYSGEN generates special programs called triggers which

may be used to link user programs to SOS utility programs

via their entry symbols. For each entry symbol included in

the command line, an external normal reference to the

program is included in the trigger. The trigger is entirely

made up of these external normal references. When the

utility is ready to accept a command line, the prompt SYSG

is typed. Commands are explained in Appendix K.

[Ref. 13]

108

\

APPENDIX F

CLI COMMANDS

CLI functions are executed by pressing RETURN after the

command.

ASM

This command causes file 3 on CTO to be loaded. If the

master cassette is mounted, the EXTENDED ASSEMBLER

overwrites the CLI.

RLDR $TTR

This command will load an absolute binary tape with the CLI

binary block loader. The input device can be either STTR or

$PTR. Eoth the CORE IMAGE LOADER/WRITER and the CLI are

overwritten.

CTx:yy Core image file yy on cassette unit x overwrites

the CLI. Incorrect unit or file numbers cause the error

message FILE NON-EXISTENT on the TTO.

EDIT

File 2 on CTO is loaded. The CLI is overwritten by the

SYMBOLIC TEXT EDITOR.

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

109

s

INIT CTx or RELEASE CTx

The specified cassette unit is rewound. Incorrect unit x

causes the error message ILLEGAL FILE NAME.

LFE

File 5 on CTO overwrites the CLI. If CTO is the master

cassette, the LIBRARY FILE EDITOR is loaded.

MKSAVE infile outfile

The input file (AB) is converted to a core image output

file. Possible error messages are:

NOT ENOUGH ARGUMENTS

ILLEGAL FILE NAME

ILLEGAL COMMAND FOR DEVICE

DEVICE IS READ PROTECTED

FILE NON-EXISTENT

CHECKSUM ERROR

PHASE ERROR

RLDR

File 4 on CTO overwrites the CLI. If CTO is the master

cassette, the EXTENDED RELOCATABLE LOADER is loaded.

SYSG

File 6 on CTO overwrites the CLI. This is the SYSGEN

routine on the master tape.

XFER source destination

This command transfers the source file to the destination

file. Appending /A means the source is even parity ASCII.

[Ref. 12]

(© Data General Corporation 1973. Reproduced from T HE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

110

\

APPENDIX G

EDIT COMMANDS

For a discussion on how to use the TEXT EDITOR refer to

Section B3 of Chapter III.

ESC

Striking the escape (ESC) key on the TTY causes a $ to be

printed. The escape key ($) is used once to delimit edit

commands. If the command has no argument the $ is optional.

Two successive codes (3$) execute the command string.

RUBOUT

This key deletes the last typed character. Repeated rubouts

delete successive characters in that line from right to

left. The character being deleted is echoed on the TTY.

TAB

The EDITOR has predefined tab positions at columns 1,9, 17,

25,... which are used with CTRL I. The tabs may be turned

off by CTRL P and back on by repeating it.

^ ®
flQ Data General Corporation 1969. Reproduced from NOV A

TEXT EDI TOR by permission of Data General Corporation,

Southboro, MA)

111

\

GR input

Before beginning modifications to an existing routine it

must be brought into the edit buffer. This command enables

the input file specified for reading. A cassette file is

specified by; CTunit:file. The same cassette unit cannot be

simultaneously write enabled (GW) . No actual read occures.

To clear a GR buffer lock-up use CTRL A.

GW output

Immediately after read enabling, the write file should be

assigned. A cassette file is specified by; CTunitifile.

The same cassette unit cannot be simultaneously read enabled

(GR) . No actual write occures. To clear a GW buffer

lock-up use CTRL A.

GC

All output files must be closed with this command. No

actual write occures. Multiple files may be appended by

successive GR commands before a GC.

H

The EDIT is terminated and control returns to the CORE IMAGE

LOADER/WRITER.

Y

The first page of symbolic text is read into the edit

buffer. A page is a character string terminated by a form

feed. An input device must have been previously enabled.

The character pointer (CP) is positioned at the start of the

buffer.

* ®
(©Data General Corporation 1969. Reproduced from NOVA

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

112

\

A

This command appends a page of input to the present contents

of the edit buffer. CP points to the first character

appended.

nT

The number of lines n is typed. Omitting n causes the

entire buffer to print.

B

CP is moved to the beginning of the buffer.

nJ

CP is placed at the beginning of line n.

L

CP advances to the beginning of the n'th line from the

present position. Any value of n is accepted, however too

large a value acts like B or Z commands. Omitting n moves

CP to the neginning of the present line.

nM

CP moves by the character count n.

Z

CP is positioned at the end of the buffer.

^ @
(© Data General Corporation 1969. Reproduced from MOV

A

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

113

\

Coldnev

This command searches from the present position to the end

of the buffer and replaces the first character group 'old'

with 'new*. CP points to the first character after 'new*.

If unsuccessful STR NOT FOUND is typed and CP points to the

beginning of the buffer. Omitting 'new' deletes 'old'.

Iinput$

This is the command for creating a program. Existing

programs insert 'input' before the position CP and adjust

the CP count to point to the end of 'input'.

nl

The octal number n is masked to 7-bits and inserted at CP.

nD

This command deletes n characters relative to CP.

nK

This command deletes n lines from the CP position. CP

movement is like the nL command but all characters passed

over are erased.

SstringS

This command searches foreward from the CP for the character

group 'string'. CP moves to the last character of the first

group found. Unsuccessful search leaves CP at the beginning

of the buffer.

* ®
(Q Data General Corporation 1969. Reproduced from NOVA

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

114

s

NstringS

The EDITOR executes P and Y commands until the string is

found or the input file completed.

QstringS

This is a search like the Nstring$ command without the P.

XMcode$code$. . .$$

One macro-command can be defined as the specified command

string.

nX

The previously defined XM is executed a times.

XD

The macro XM is deleted.

nF

This command outputs n inches of leader. Greater than 100

inches is ignored. Omitting n causes a form feed.

nP

This command outputs n lines from CP with n .form feed. Too

small a buffer causes a halt at the buffer's end. Omitting

n outputs all the contents after CP.

nPW

This is the same as the nP command but without the form

feed.

®
(©Data General Corporation 1969. Reproduced from NOVA

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

115

\

E

This command outputs the edit buffer and th>2 remainder of

the input file.

nR

This command outputs a page and inputs a page, repeated n

times.

This command prints the number of lines in the edit buffer.

This command prints the line number of CP.

This command prints the number of character.3 in the edit

buffer.

CTRL A

This command re- initializes the EDITOR 'Jith the buffer

unchanged. This control is only acknowledged during T, Y,

N, E # or P.

CTRL C

This command cancels the present line. If a command string

is executing it will halt. CP repositions to the beginning

of the buffer.

(© Data General Corporation 1969. Reproduced from HQVA

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

116

s

CTRL I

This command inserts tabulation.

CTRL T

This command resets for a new tape. The input device stops

and the buffer is cleared.

[Refs. 14 and 15]

®
(Q Data General Corporation 1969. Reproduced from NOVA

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

117

\

APPENDIX H

ASM COMMANDS

The Assembler takes two passes to translate an ASCII

source file to a relocatable binary program. The mevhod of

translation and the files involved are designated by the

user typing a command line after the ASM prompt. The

general command format is:

ASM M/m File/u File/u

Where M is the mandatory Assembly mode, which must be

first, and /m is the optional mode modifier. An unlimited

number of participating Files are then listed with their

optional use designators /u. Omitting the space between

fields causes errors that may not be detected.

ASM functions are executed by pressing RETURN after the

command. An assembly can be carried out on an ASCII source

file in any cne of the three following modes:

O-Perform pass one on the specified input source file(s).

Halt with the highest symbol table address in ACO.

1-Perform passes one and two on the specified input files,

producing binary apd listing files as specified. At the

completion of pass two, the assembler prompts with ASM.

118

\

2-Perform pass two only on the specified input files,

producing the specified binary and listing files. The

symbol table used is that produced by the most recent pass

one assembly. The prompt ASM signifies completion.

Any Assembler mode can be modified by appending the

following optional codes:

Table 8 ASSEMBLER MODE DESIGNATORS

DESIGNATOR MEANING

/E-Suppress assembly error messages to the TTO.

/T-Suppress the symbol table listing

/O-Include local (user) symbols in the binary output file.

After the basic assembly mode has been indicated, the

files are listed with optional appended codes that indicate

specific uses as follows:

Table 9 ASSEMBLER FILE DESIGNATORS

DESIGNATOR MEANING

/B-Relocatable binary file to be output on this device.

/L-Output device for the listing.

/N-Any input file not to be listed on pass two.

/P-Pause before accepting this file.

The message PAUSE - NEXT FILE, devicename is output. The

assembly continues when any key is struck on the teletype.

/S-Skip this file during pass two.

/n-Repeat this file n times, (n from 2 thru 9)

(Q Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

119

\

A typical command to Assemble file 4 of CT1 and a paper

tape to file 6 on CTO with a teletype listing would look

like:

ASM 1 CT1:4 $TTE CT0:6/B $TTO/L

[Ref. 12]

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

120

N

APPENDIX I

RLDR COMMANDS

The RELOCATABLE LOADER translates the relocatable

addressing of the Assembler's RB output into absolute

locations in memory and resolves the displacements among any

routines that have been combined at load time. A successful

load is indicated by the message OK- The command line is

typed by the operator after the prompt RLDR. The general

format is:

RLDR File/S File/u

Where a /S is mandatory and any number of additional

participating files are listed with their optional use

designators /u.

The RLDR automatica lly spaces before the first entry

and must not have a space ins erte d there iry the ope ra tor.

Omitting t he space bet ween fields causes errors that laj not

be detected..

RLDR functions are executed by pressing RETURN after the

command string. Files are listed with optional appended

codes that indicate specific uses as follows:

(Q Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERAT ING SYSTEM by permission of Data General

Corporation, Southboro, MA)

121

\

Table 10 LOADER FILE DESIGNATORS

DESIGNATOR HEM!M£

/L-Causes a listing of the symbol table on the output file

or device whose name precedes the use code. Symbols in the

table are ordered numerically by symbol value.

/L/A-Changes the /L to an alphabetical listing.

/N-Set the starting load address (NMAX) for the file that

follows, to this absolute address.

/P-Pause before opening this file.

/S-This is the mandatory save file.

/U-Load user symbols appearing within this file.

/n-Load this file n times (n from 2 thru 9)

.

[Ref. 12]

A typical command to load files 4 and 5 of CTO and a

paper tape into file 3 on CT1 with a teletype listing would

look like:

RLDR CT0:4 C10:5 $TTR CT1 : 3/S STTO/L

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

122

s

APPENDIX J

LFE COMMANDS

The LFE is a specialized utility program for maintaining

Litrary files. Since the expected use of this program is

small, only a brief overview of the complex command

structure is given here. Further details may be found in

Reference 16.

The command string is typed by the operator after the

prompt LFE. The general format is:

LFE Key File/u File/u

Where Key is a letter indicating the function desired.

The participating Files are then listed with their optional

use designators /u. A File may be a Einary, which is an RB

file not in a Library, or a Logical Record, which is an RB

file in a Library. A Binary being placed in a Logical

Record of a Library is called an Update.

The LFE automatically sDaces before the first entry and

£!.£§£ not have a space inserted there bjr the operato r.

Om itt ing the space between fields causes errors that ma_y not

be detected.

(©Data General Corporation 1972. Reproduced from L IBRA RY

UlliM. EDITOR by permission of Data General Corporation,

Southboro, MA)

12-3

\

LFE functions are executed by pressing RETURN after the

command. The following Key letters are available:

Table 11 LFE KEY DESIGNATORS

DESIGNATOR MEANING

A-Itemize the global declarations of the file. A global

declaration is an Assembler language pseudo-operation

explained in Section C of Chapter IV.

D-Delete Logical Record.

I-Insert Binary into a Library (Update)

.

M-Combine Libraries and Binaries in a new Library.

R-Replace Logical Records with new Binaries.

T-List titles in a set of Libraries or Binaries.

X-Extract specific Logical Records from a Library.

After the basic LFE operation has been indicated, the

files are listed with optional appended codes that indicate

specific uses as follows:

Table 12 LFE FILE DESIGNATORS

DESIGNATOR MMJNG

/A-Make insertions after this Logical Record.

/B-Make insertions before this Logical Record.

-Or, this is a Binary file.

/I-This is the input file.

/O-This is the output file.

-0r r this is the new Library name.

/R-Itemize the global declarations in this file.

/#-For # substitute the number of $TTP files to read.

(©Data General Corporation 1972. Reproduced from LIBRARY

FILE EDITOR by permission of Data General Corporation,

Southboro, MA)

124

\

An entire command string, can be deleted by typing

SHIFT L. Single characters are deleted with RUBOUT, and a

back arrow echoes each erasure. Multiple erasures move from

right to left deleting characters on the same line.

If an error condition is detected, a message will be

output. Improper command strings result in no output. An

execution error attempts to identify the file responsible

and closes all Library file outputs. Section F of

Appendix Q summarizes the error messages.

The following operator prompt messages are possible;

LOAD device, STRIKE ANY KEY.

This message may be preceded by INPUT or UPDATE to help

identify which device is waiting.

REMOVE INPUT MASTER AND LOAD U.F

This message prompts the operator when an Update file is to

be read in the same device that inputs the Library file.

REMOVE U.F AND LOAD BACK INPUT MASTER

After the Update file has been read in, the Library file

must again be read.

[Ref. 16]

(© Data General Corporation 1972. Reproduced from LIBRARY

FIL E EDITOR by permission of Data General Corporation,

Southboro, MA)

125

\

APPENDIX K

SYSG COMMANDS

SYSGEN generates triggers for use in configuring SOS

utility programs. A trigger is a program that resolves

external references to entry symbols in SOS Libraries. The

prompt SYSG is followed by a list of entry symbols for each

desired utility, a file designated for output and an

optional trigger name. The general format is:

SYSG driver driver outputfile/O trigger/T

Where the driver is a desired entry symbol, /0 specifies

the output file and /T specifies the trigger name. Omitting

the trigger name results in the default title SGTRG. The

command string is executed by pressing RETURN. Section G of

Appendix Q summarizes the error messages.

[Refs. 12 and 13]

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

126

\

APPENDIX L

MACHINE CODE AND ASSEMBLER LANGUAGE FIELDS

Bit positions in all 16-bit words are numbered 0-15 from

left to right.

The MRI instruction word is divided into four fields:

-The command field C (bits 0-4) designates the type of

instruction (OPCODE) and sometimes the accumulator (A/C)

involved

.

-The addressing mode field I (bit 5) designates indirect

addressing. If I is 1 the effective address points to a new

effective address.

-The index field X (bits 6 and 7) indicates the addressing

mode of the instruction.

-The displacement field D (bits 3-15) contain an integer

that may be used to obtain the effective address.

The information to insert in all these fields must be

communicated to the ASSEMBLER program.

The Move Data MRI asembly language format is:

LABEL: OPCODE AC,D,X ;COMMENT

The Modify Memory and Jump MRI format does not have the

AC field. Move Data OPCODES are LDA and 5TA. Modify Memory

OPCODES are ISZ and DSZ. Jump OPCODES are JMP and JSR.

127

\

The I field is designated by using the symbol a) anywhere

in the assembly language instruction. It is suggested that

prefixing the displacement (a)D) would be a logical choice.

The effective address E is formed by the X and D fields.

It is the location that is to be referenced. Using Table 13

the effective address may be calculated by the following

equation:

E = (X) + D

Where (X) means the contents of X.

Table 13 EFFECTIVE ADDRESS DETERMINATION

X _(X1 EFFECTIVE ADDRESS

00 Page zero addressing 0< E < 377 (octal)

In the following modes if bit 8 is 0, D is positive; if bit

8 is 1 D is two's complement.

01 (PC) Relative addressing (. - D) < E < (. + D)

10 (AC2) Base register addressing (AC-D) < E < (AC + D)

11 (AC3) Base register addressing (AC - D) < E < (AC + D)

When programming in assembly language the X value will

determine how the ASSEMBLER program will handle D. If X is

or blank and D < 377, the mode X is set to 00 and D is

unchanged. If D > 377 the present location L is checked to

see if it is within 200 locations of D. If L-200<D<L+177

the mode X is set to 01 and D is replaced by L D. Any

other X value forces the mode indicated. However, if

-200<D<177 an address error is flagged by the symbol A.

128

\

The ALC instruction word is divided into eight fields:

-Bit is always at 1.

-The source accumulator field (ACS) designates where the

data to be operated on is taken from. (bits 1 and 2) It is

usually left unchanged.

-The destination accumulator field (ACD) designates where

the result of the operation is to be stored. (bits 3 and 4)

Occassionally the original ACD data is used to calculate the

result.

-The function field (FNC) designates the command,

(bits 5-7)

-The carry field (CA3RY) designates the value of carry in

the function generator .prior to performing the operation.

(bits 10 and 11) This base value is affected by the function

results. Toe large a result to store in 16-bits results in

the base carry value being complemented due to overflow.

-The shift field (SHIFT) designates whether the result of a

function is rotated left or right before loading into ACD.

(bits 8 and 9)

-The skip field (SKIP) designates a test condition for the

shifted result, to determine if the next sequential location

is to be skipped. (bits 13-15)

-The no-load field (NO LOAD) designates if the shifted

result that has been tested for any skip conditions, will in

fact be loaded into ACD.

The ALC assembly language format provides the

information for all of the instruction word fields as

follows:

LABEL: FNC ACS,ACD,SKIP ;COMMENT

129

\

The basic ALC function codes are COM, NEG, AND, INC,

ADD, SOB, ADC, and MOV. These codes may be modified by

appending a letter for the carry bit as follows:

Table 14 CARRY DESIGNATORS

DESIGNATOR MEANING.

blank-'Carry based on current carry state

Z - set carry base to

- set carry to 1

C - carry based on current carry state complemented

The function code can be further modified by appending

the following shift letters:

Table 15 SHIFT DESIGNATORS

DESIGNATOR MEANING

blank-no shift

L - rotate left 1 bit, CRY to bit 15, bit to CRY

R - rotate right 1 bit, CRY to bit 0, bit 15 to CRY

S - exchange bits 0-7 with bits 6-15, CRY unchanged

The last modification to the function code could be to

append a # symbol which indicates that the result is not to

be loaded into ACD.

The SKIP mnemonics are as follows:

Table 16 SKIP DESIGNATORS

DESIGNATOR MEANING

blank-never skip

SKP - always skip

SZC - skip on zero carry

SNC - skip on zero result (bits 0-15)

SNR - skip on non-zero result (bits 0-15)

SEZ - skip on zero (result + carry)

SBN - skip on non-zero (result carry)

130

\

The I/O instruction word is divided into five fields:

-Bits 0-2 are always 011.

-The accumulator field (AC) designates where in the

processor the data is to be output from or input to.

(bits 3 and 4)

-The transfer field (TRANSFER) designates which of up to

three possible device buffers (A r B, C) will be used and

whether this is input to the computer or output from the

computer. (bits 5-7)

-The control field (CONTROL) designates device control

instructions that manipulate the Busy and Done flip-flops of

the specified peripheral. A set Busy flip-flop indicates

the device has been assigned an I/O task. When a device has

completed its task and is ready to process a new request, it

clears the Busy and sets the Done flip-flops. If both

flip-flops are the device is idle, (bits 8 and 9)

-The device code field (DEVICE CODE) specifies the

peripheral involved in the I/O function. DEVICE CODE 00 is

not used and 77 denotes special CPU functions. (bits 10-15)

The I/O assembly language format provides the

information for all of the instruction word fields as

follows:

LABEL: TRANSFER" AC, DEVICE CODE

The basic I/O transfer codes are NIO, DIA, DOA, DIB, DOB,

DIC, and DOC. However, when the CPU" commands are desired,

several special mnemonics will generate their I/O equivalent

as follows:

131

\

MNEMONIC EOJJIVALENT

READS DIA -,CPU

IOEST DICC 0,CPU

HALT DOC 0,CPU

INTEN NIOS CPU

INTDS NIOC cpa

INTA DIB -,CPU

MSKO DOB -,CP0

Table 17 SPECIAL CPU MNEMONICS

MEANING

Read data switches

I/O reset

Stop processing

Interrupt enable

Interrupt disable

Interrupt acknowledge

Mask the interrupt disables

The basic TRANSFER code can be modified by appending a

letter for the CONTROL field as follows:

Table 18 CONTROL DESIGNATORS

DESIGNATOR MMING.

blank-no control

C - clear Busy and Done, idles device

S - set Busy, clear Done, starts device

P - special device pulse, flip-flops anaffected

One other set of TRANSFER codes qualifies as a special

I/O instruction since in assembly language the programmer

specifies only an OPCODE and a DEVICE CODE.

Table 19 I/O SKIP INSTRUCTIONS

DESIGNATOR MSAN IN

G

SKPBN - skip if Busy is one

SKPBZ - skip if Busy is zero

SKPDN - skip if Done is one

SKPDZ - skip if Done is zero

132

s

APPENDIX M

ASSEMBLY LANGUAGE INSTRUCTIONS

ASSEMBLY MACHINE

MNEMONIC CODE COMMENTS

ADC 102000 Add the complement of ACS to ACD; use Carry

as base for carry bit.

ADCC 102060 ADC but complement carry is base

ADCCL 102160 ADCC with rotate left

ADCCR 102260 ADCC with rotate right

ADCCS 102360 ADCC with swap halves of result

ADCL 102100 ADC with rotate left

ADCO 102040 ADC but 1 is base for carry bit

ADCOL 102 140 ADCO with rotate left

ADCOR 102240 ADCO with rotate right

ADCOS 102340 ADCO with swap halves of result

ADCR 102200 ADC with rotate right

ADCS 102300 ADC with swap halves of result

ADCZ 102020 ADC but is base for carry bit

ADCZL 102120 ADCZ with rotate left

ADCZR 102220 ADCZ with rotate right

ADCZS 102320 ADCZ with swap halves of result

ADD 103000 add ACS to ACD; carry bit based on CRY

ADDC 103060 ADD but complement carry is base

ADDCL 103160 ADDC with rotate left

(Q Data General Corporation 1972. Reproduced from

INTRODUCTION 10 PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

133

\

ASSEMBLY MACHINE

MNEMONIC CODE

ADDCR 103260

ADDCS 103360

ADD! 103100

ADDO 103040

ADDOL 103140

ADDQR 103240

ADDOS 103340

ADDR 103200

ADDS 103300

ADDZ 103020

ADDZL 103120

ADDZR 103220

ADDZS 103320

AND 103400

ANDC 103460

ANDCL 103560

ANDCR 103660

ANDCS 103760

ANDL 103500

ANDO 103440

ANDOL 103540

ANDOR 103640

ANDOS 103740

ANDR 103600

ANDS 103700

ANDZ 103420

ANDZL 103520

COMMENTS

ADDC with rotate right

ADDC with swap halves of result

ADD with rotate left

ADD but 1 is base for carry bit

ADDO with rotate left

ADDO with rotate right

ADDO with swap halves of result

ADD with rotate right

ADD with swap halves of result

ADD but is base for carry bit

ADDZ with rotate left

ADDZ with rotate right

ADDZ with swap halves of result

Logically And ACS with ACD;

CRY is carry bit

AND out complement Carry is carry bit

ANDC with rotate left

ANDC with rotate right

ANDC with swap halves of result

AND with rotate left

AND but carry bit is 1

ANDO with rotate left

ANDO with rotate right

ANDO with swap halves of result

AND with rotate right

AND with sw,ap halves of result

AND but carry bit is

ANDZ with rotate left

<© Data General Corporation 1972. Reproduced from

®
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

134

N

ASSEMBLY MACINE

MNEMONIC CODE COMMENTS

ANDZR 103620 ANDZ with rotate right

ANDZS 103720 ANDZ with swap halves of result

COM 100000 Complement ACS into ACD; CRY is carry bit

COMC 100060 COM but complement CRY is carry bit

COMCL 100 160 COMC with rotate left

COMCR 100260 COMC with rotate right

COMCS 100360 COMC with swap halves of result

COML 100100 COM with rotate left

COMO 100040 COM but carry bit is 1

COMOL 100140 CCMO with rotate left

COMOR 100240 COMO with rotate right

COMOS 100340 COMO with swap halves of result

COMR 100200 COM with rotate right

COMS 100300 COM with swap halves of result

COMZ 100020 COM but carry bit is

COMZL 100120 COMZ with rotate left

COMZR 100220 COMZ with rotate right

COMZS t00320 COMZ with swap halves of result '

DIA 060400 Input, A buffer data to AC

DIAC 060600 DIA and clear device

DIAP 060700 DIA and send pulse to device

DIAS 060500 DIA and start device

DIB 061400 Input, B buffer data to AC

DIBC 061600 DIB and clear device

DIBP 06 1700 DIB and send pulse to device

DIBS 061500 DIB and start device

DIC 062400 Input, Z buffer data to AC

DICC 062600 DIC and clear device

(Q Data General Corporation 1972. Reproduced from

®
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

135

s

ASSEMBLY MACHINE

MNEMONIC CODE

DICP 062700

DICS 062500

DIV 073101

DOA 061000

DOAC 061200

DOAP 061300

DOAS 06 1100

DOB 062000

DOEC 062200

DOBP 062300

DOBS 062100

DOC 063000

DOCC 063200

DOCP 063300

DOCS 063100

DSZ 014000

HALT 063077

INC 101400

INCC 101460

INCCL 101560

INCCE 101660

INCCS 101760

INCL 101500

INCO 101440

INCOL 101540

INCOR 101640

COMMENTS

DIC and send pulse to device

DIC and start device

AC0 and AC1 divided by AC2. Overflow sets

Carry. Quotient in AC1 , remainder in AC0

,

Output kC data to buffer A

DOA and clear device

DOA and send pulse to device

DOA and start device

Output AC data to buffer B

DOB and clear device

DOB and send pulse to device

DOB and start device

Output AC data to buffer C

DOC and clear device

DOC and send pulse to device

DOC and start device

Subtract 1 from the contents of E,

skip if result is zero.

Halt the processor

Place ACS+1 in ACD, CRY is carry bit base

INC but complement CRY is base

INCC with rotate left

INCC with rotate right

INCC with swap halves of result

INC with rotate left

INC but 1 is base for carry bit

INCO with rotate left

INCO with rotate right

(©Data General Corporation 1972. Reproduced from

INTRODUCTION TO PROGRAMMING THE N0VA_ COMPUTERS by

permission of Data General Corporation/ Southboro, MA)

136

\

ASSEMBLY MACHINE

MNEMONIC CODE COMMENTS

INCOS 101740 INCO with swap halves of result

INCE 101600 INC with rotate right

INCS 101700 INC with swap halves of result

INCZ 101420 INC but is base for carry bit

INCZL 101520 INCZ with rotate left

INCZR 101620 INCZ with rotate right

INCZS 101720 INCZ with swap halves of result

INTA 061477 Acknowledge interrupt by loading code of

nearest device requesting an interrupt

into bits 10-15 of AC

INTDS 060277 Disable interrupts, clear Interrupt On flag

INTEN 060177 Enable interrupts, set Interrupt On flag

IORST 062677 Clear I/O devices and Interrupt On flag,

set RTC to line frequency

ISZ 010000 Add 1 to contents of S, skip if zero result

JMP 000000 Jump to location E

JSfi 004000 Save PC+1 in AC3 and jump to location E

LDA 020000 Load contents of E into AC

MOV 101000 Load ACS into kCD, carry bit is CRY

MOVC 101060 MOV but carry bit is CRY complement

MOVCL 101160 MOVC with rotate left

MOVCR 101260 MOVC with rotate right

M0VCS 101360 MOVC with swap halves of result

MOVL 101100 MOV with rotate left

MOVO 101040 MOV but carry bit is 1

MOVOL 101140 MOVO with rotate left

MOVOR 101240 MOVO with rotate right

(©Data General Corporation 1972. Reproduced from

(D
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

ASSEMBLY MACHINE

137

N

MNEMONIC CODE COMMENTS

MOVOS 101 340 MOVO with swap halves of result

MOVE 101200 MCV with rotate right

MOVS 101300 MOV with swap halves of result

MOVZ 101020 MOV but carry bit is

MOVZL 101120 MOVZ with rotate left

MOVZE 101220 MOVZ with rotate right

MOVZS 101320 MOVZ with swap halves of result

MSKO 062077 Set Interrupt Disable flags to AC mask

MUL 073301 Multiply AC1 by AC2 , add AC0,

result in AC0 and AC1

NEG 100400 Place negative ACS in ACD,

CRY is carry bit base

NEG but complement CRY is base

NEGC with rotate left

NEGC with rotate right

NEGC with swap halves of result

NEG with rotate left

NEG but 1 is base for carry bit

NEGO with rotate left

NEGO with rotate right

NEGO with swap halves of result

NEG with rotate right

NEG with swap halves of result

NEG but is base for carry bit

NEGZ with rotate left

100620 NEGZ with rotate right

NEGZ with swap halves of result

No operation

Clear device

(©Data General Corporation 1972. Reproduced from

INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

138

NEGC 100460

NEGCL 100560

NEGCR 100660

NEGCS 100760

NEGL 100500

NEGO 100440

NEGOL 100540

NEGOR 100640

NEGOS 100740

NEGR 100600

NEGS 100700

NEGZ 100420

NEGZL 100520

NEGZR 100620

NEGZS 100720

NIO 060000

NIOC 060200

\

ASSEMBLY MACHINE

MNEMONIC CODE COMMENTS,

NIOP 060300 Send pulse to device

NIOS 060100 Start device

READS 060477 Read console data switches into AC

SBN 000007 Skip if carry and result are zero

appended to arithmetic and

logical instructions

SEZ 000006 Skip if carry or result are zero

appended to arithmetic and

logical instructions

SKP 000001 Skip, add 1 to PC

appended to arithmetic and

logical instructions

SKPBN 063400 Skip if Busy is 1

SKPBZ 063500 Skip if Busy is

SKPDN 063600 Skip if Done is 1

SKPDZ 063700 Skip if Done is

SNC 000003 Skip if carry bit is 1

appended to arithmetic and

logical instructions

5NR 000005 Skip if result is nonzero

appended to arithmetic and

logical instructions

STA 040000 Store AC in location E

SUB 102400 Subtract ACS from ACD, result in ACD

carry bit based on CRY

{©Data General Corporation 1972. Reproduced from

®
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

139

\

ASSEMBLY MACHINE

MNEMONIC CODE COMMENTS

503 but complement CRY is base

SUBC with rotate left

SOBC with rotate right

SUBC with swap halves of result

SUB with rotate left

SUB but 1 is base for carry bit

SUBO with rotate left

SUBO with rotate right

SUBO with swap halves of result

SU3 with rotate right

SUB with swap, halves of result

SUB but is base for carry bit

SU3Z with rotate left

SUBZ with, rotate right

SUBZ with swap halves of result

Skip if carry is

appended to arithmetic and

logical instructions

SZR 000004 Skip if result is

appended to arithmetic and

logical instructions

d 002000 Indirect addressing

000010 Inhibit carry and result loading

[Ref. 2]

(© Data General Corporation 1972. Reproduced from

INTRODUCTION TO PROGRAMMING THE N07A_ COMPUTERS Dy

permission of Data General Corporation, Southboro, MA)

SUBC 102460

SUBCL 102560

SUBCR 102660

SUBCS 102760

SUBL 102500

SUBO 102440

SUBOL 102540

SUBOR 102640

SUBOS 102740

SUBR 102600

SUBS 102700

SUBZ 102420

SUBZL 102520

SUBZR 102620

SUBZS 102720

SZC 000002

140

\

APPENDIX N

INSTRUCTION EXECUTION TIMES

When twc numbers are given, the one at the left of the

slash is the time for an isolated transfer, the one at the

right is the minimum time between consecutive transfers.

Times are in microseconds.

INSTRUCTION TIME

LDA, STA 1.6

ISZ, DSZ 1.8

JMP, JSR 0.8

Indirect addressing add 0.8

Autoindexing add 0.2

COM, NEG, IMC 0.8*

ADC, SUB, ADD, AND 0.8*

*If skip occures add 0.2

I/O input (except INTA) 2.2#

NIO, I/O output 2.2*

#S, C, or P add 0.6

I/O skips 1.4*

INTA 2.2

MUL, DIV 8.8

Unsuccessful 1.6

Interrupt with multiply/divide 10.6

without multiply/divide 4.6

141

v

INSTRUCTION TIME

Data Channel

Input, Output 2.0

Increment 2.2

Latency 3.6

High speed channel

Input 0.8

Output 0.8/1.0

Increment 1.0/1.2

Latency

With I/O 3.6

Without I/O 2.0

[Ref. 2]

(© Data General Corporation 1972. Reproduced from

INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

142

\

APPENDIX

I/O DEVICE CODES AND MNEMONICS

DEVICE PRIORITY

CODE MNEMONIC MASK DEVICE

— Power Fail

— Multiply/Divide

Memory Management and

Protection Unit

Memory Allocation

— and

Protection

12 Multiprocessor adapter

transmitter

07 MCAR 12 Multiprocessor adapter

receiver

Teletype input

Teletype output

Paper tape reader

Paper tape punch

Real time clock option

Incremental plotter

Card reader

Line printer

^ ®(©Data General Corporation 1975. Reproduced from NOVA AND

ECLIPSE LINE COMPUTERS by permission of Data General

Corporation, Southboro, MA)

00 —
01 MDV

02 MMPU

02 MAP0

03 MAPI

04 MAP2

05

06 MCAT

10 TTI 14

11 TTO 15

12 PTR 11

13 PTP 13

14 RTC 13

15 PIT 12

16 CDR 10

17 LPT 12

143

s

DEVICE PRIORITY

CODE MNEMONIC MASK DEVICE

20 DSK 09

21 ADCV 03

22 MTA 10

23 DACV —
24 DCM 00

25

26

27

30 QTY 14

31 IBM1 13

32 IBM2 13

33 DKP 07

34 CA5 10

34 MX 1 10

35 MX2 11

36 IPB 06

37 IVT 06

40 DPI 08

41 DPO 08

42 DIO 07

43 DIOT 06

44 MXM 12

45

46 MCAT1 12

47 MCAR1 12

Fixed head disk

A/D converter

Magnetic tape

D/A converter

Data communications max.

Asynchronous hardware mux,

IBM 360/370 interface

IBM 360/370 interface

Moving head disc

Cassette tape

Multiline asynchronous

controller

Interprocessor bus

IPB watchdog timer

IPB full-duplex input

IPB full-duplex output

Digital I/O

Digital I/O timer

MX1/2 modem control

Second MCAT

Second HCAS

®
(Q Data General Corporation 1975. Reproduced from NOVA AND

ECLIPSE LINE COMPUTERS by permission of Data General

Corporation, Southboro, MA)

144

N

DEVICE PRIORITY

CODE MNEMONIC MASK DEVICE

50 TTI1 14 Second TTI

51 TT01 15 Second TTO

52 PTR1 11 Second PTR

53 PTP1 13 Second PTP

54 RTC1 13 Second RTC

55 PLT1 12 Second PLT

56 CDR1 10 Second CDR

57 LPT1 12 Second LPT

60 DSK1 09 Second DSK

61 ADCV1 08 Second ADCV

62 MTA1 10 Second MTA

63 DACV1 — Second DACV

64 FPU1 05 Alternate location

65 PPU2 05 for

66 FPU4 05 floating point

67

70 QTY1 14 Second QTY

71 13 Second IBM1

72 13 Second IBM2

73 DKP1 07 Second DKP

74 11 Second MX1

75 11 Second MX 2

74 FPU1 05 or

75 FP02 05 Floating

76 FPU 05 Point

77 CPU ™*~" Central processor and

console functions

[fief

.

6]

®
(Q Data General Corporation 1975. Reproduced from NOVA_ AND

ECLIPSE LINE COMPUTERS by permission of Data General

Corporation, Southboro f MA)

145

\

APPENDIX P

ASCII CODE

EVEN 7-BIT

PAR. OCTAL

BIT CODE CHARACTER COMMENTS

NOL Null, tape feed, CTRL shift P

SOH Start heading or message, CTRL A

STX Start text or end of address, CTRL B

ETX End text or message, CTRL C

EOT End transmission, CTRL D

ENQ Enquire identification, CTRL E

ACK Acknowledge, R rJ, CTRL F

BEL Ring bell, CTRL (J

ES Backspace, CTRL H

HT Horizontal tab, CTRL I

LF Line feed, CTRL J

VT Vertical tab, CTRL K

FF Form feed, new page, CTRL L

CR Carriage return, CTRL M

50 Shift ribbon to red, CTRL N

51 Shift ribbon to black, CTRL

DLE CTRL P

DC1 CTRL Q

DC2 CTRL R

(©Data General Corporation 1972. Reproduced from

9
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

146

000

1 001

1 002

003

1 004

005

006

1 007

1 010

011

012

1 013

014

1 015

1 016

017

1 020

021

022

\

EVEN 7-BIT

PAR. OCTAL

BIT CODE CHARACTER COMMENTS

1 023 DC3 CTRL 5

024 DC4 CTRL T

1 025 NAK Error, CTRL

1 026 SYN CTRL V

027 ETE End of block, CTRL H

030 CAN Cancel, CTRL X

1 031 EM CTRL Y

1 032 SUB CTRL Z

033 ESC Escape, CTRL shift K

1 034 FS File separator, CTRL shift L

035 GS Group separator, CTRL shift M

036 RS Record separator, CTRL shift N

1 037 OS CTRL shift O

1 040 SP Space

041 !

042 "

1 043 #

044 $

1 045 %

1 046 & Ampersand

047 • Apostrophe, accent acute

050 (

1 051)

1 052 *

053 +

1 054 ,

055

(© Data General Corporation 1972. Reproduced from

(D
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

147

\

EVEN 7-BIT

PAfi. OCTAL

BIT CODE CHARACTER

056 •

1 057 /

060

1 06 1 1

1 062 2

063 3

1 064 4

065 5

066 r
o

1 067 7

1 070 8

071 9

072 •

1 073 •

074 <

1 075 =

1 076 >

077 7

1 100 a)

101 A

102 B

1 103 C

104 D

1 105 E

1 106 F

107 G

110 H

COMMENTS

(© Data General Corporation 1972. Reproduced from

(D
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

148

\

EVEN 7-BIT

PAR. OCTAL

BIT CODE CHARACTER COMMENTS

1 111 I

1 112 J

113 K

1 114 L

115 M

116 N

1 117

120 P

1 121 Q

1 122 R

123 S

1 124 T

125

126 V

1 127

1 130 X

131 Y

132 z

1 133 [Shift K

134
i

Shift L

1 135] Shift M

1 t36
I

Up arrow

137 - Eack arrow

140 1 Accent grave

1 141 a

1 142 b

143 c

(©Data General Corporation 1972. Reproduced from

(D
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

149

\

EVEN 7-BIT

PAH. OCTAL

BIT CODE CHARACTER COMMENTS

1 144 d

145 9

146 f

1 147 g

1 150 h

151 i

152 J

1 153 k

154 1

1
.
155 ra

1 156 n

157 o

1 160 P

161 g

162 r

1 163 s

164 t

1 165 u

1 166 V

167 ¥

170 X

1 171 y

1 172 z

173 {

1 174
1

175 }

176 - Special symbol

(©Data General Corporation 1972. Reproduced from

®
INTRODUCTION TO PROGRAMMING THE NOVA_ COMPUTERS by

permission of Data General Corporation, Southboro, MA)

150

\

EVEN 7-BIT

PAR. OCTAL

BIT CODE CHABACTEB COMMENTS

1 177 BEL Delete, rub out

- REPT Repeats any other key while held

LOC LF Local line feed

LCC CR Local carriage return

BREAK Continuous null string

HERE IS Null string

[Ref. 2]

(© Data General Corporation 1972. Reproduced from

®
INTRODUCTION TO PROGRiMIM THE NOVA_ COMPUTERS by

permission of Data General Corporation/ Southboro, MA)

151

s

APPENDIX Q

ERROR CODES

A. CORE IMAGE LOADER/WRITER ERRORS

The loader/writer will , type *ERR with a code in ACO.

The following list describes the error condition indicated

by a one in the status word bit position. [Refs. 12 and 13]

BIT MEANING

1 Data late

3 Illegal command

5 Lateral parity error in a word

6 Addressed tape is beyond the EOT marker

8 Addressed tape is at load point

10 Bad tape

13 Unit is write locked

14 Odd number of bytes detected

(© Data General Corporation 1973. Reproduced from THE

STAND-AL ONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

152

\

>

B. CLI ERRORS

ERROR MESSAGE MEANING

FILE NON-EXISTENT

Attempt to load or save an

illegal cassette file.

ILLEGAL PILE NAME

Attempt to rewind or make a

save file on a non-existent

unit

PHASE ERROR Errors in

CHECKSUM ERROR saving a

file.

NOT ENOUGH ARGUMENTS

ILLEGAL COMMAND FOR DEVICE

DEVICE IS READ PROTECTED

[Ref. 12]

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSIEM by permission of Data General

Corporation, Southboro, MA)

153

\

C. EDIT ERRORS

ERROR MESSAGE MEANING

BUFFER CAPACITY EXCEEDED DURING COMMAND INPUT. COMMAND IS

TERMINATED AND EEI NG EXECUTED.

Command string exceeds

capacity of edit buffer.

BUFFER IS FULL - CANNOT DO A

Attempting to append a page

when the buffer is full.

BUFFER IS FULL - Y OR A INPUT TERMINATED.

During a read, buffer capacity

has been exceeded. A partial

page has been read in.

FILE CAN'T BE USED FOR INPUT

Attempt to read a read-

protected file.

FILE CAN'T BE USED FOR OUTPUT

Attempt to write a write-

protected file.

ILLEGAL FILE NAME

File name does not conform to

a legal file name.

MACRO ERROR Undefined or reursive macro.

®
(©Data General Corporation 1969. Reproduced from NOVA

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

154

\

ERROR J1ESSAGJ MEANING

NO OUTPUT FILE Attempt to issue output

command without first opening

an output file.

NO SUCH FILE Attempt to specify an input

file which doesn't exist.

OUTPUT ALREADY ACTIVE

Attempt to get for writing an

output file which has not been

closed, and is still active.

PARITY ERROR IN LINE n

Read parity error in line n.

Bad character replaced by |

.

STR NOT FOUND Unsuccessful string search.

??ccmmand string

Illegal edit command.

[Refs. 14 and 15]

(©Data General Corporation 1969. Reproduced from NOVA

TEXT EDITOR by permission of Data General Corporation,

Southboro, MA)

155

\

D. ASM ERRORS

ERROR MESSAGE MEANING

NO. END

I/O ERROR nil

1

7

10

12

[Eef. 12]

No .END statement

nn is the error code

Illegal file name

Read-protected file

Wri te-protected file

Non-existent file

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

156

\

E. RLDE ERRORS

ERROR MESSAGE MEANING

NO INPUT FILE SPECIFIED.

NO SAVE FILE SPECIFIED.

No core image output device

has been specified with /S

.

SAVE FILE IS READ/WRITE PROTECTED.

The save file must permit

both reading and writing,

(cassette only)

I/O ERROR nn See ASM errors.

[Ref. 12]

(© Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

157

v

F. LFE ERRORS

ERROR MESSAGE MEANING

M The same first 5 characters

in two or more entry symbols.

U An undefined external entry.

P An external entry defined

before its reference.

ILLEGAL KEY: key

Indicated letter is not legal.

SWITCH ERROR: u

Indicated file use is not

permitted with this operation.

TOO MANY ARGUMENTS IN COMMAND LINE

The 200 character command line

buffer is exceeded.

NO INPUT FILE? This operation requires an

input file.

NO OUTPUT FILE?This operation requires an

output file.

ERROR CONDITION IN INPUT FILE: inputfile

Incorrect device mnemonic.

ERROR CONDITION IN OUTPUT FILE: outputfile

Incorrect device mnemonic.

ERROR CONDITION IN UPDATE FILE: updatefile

Incorrect device mnemonic.

ERROR CONDITION IN LISTING FILE: listingfile

Incorrect device mnemonic.

(© Data General Corporation 1972. Reproduced from LIBRARY

FILE EDITOR by permission of Data General Corporation,

Southboro, MA)

158

\

CHECKSUM ERROR IN LOGICAL RECORD: recordfile

Bad paper tape.

CHECKSUM ERROR IN UPDATE FILE: updatefile

Bad paper tape.

BLOCK ERROR IN UPDATE FILE: updatefile

Improper input block format.

BLOCK ERROR IN LOGICAL RECORD: inputfile

Improper Logical Record format.

LOGICAL RECORD NOT RECOVERABLE: recordfile

Different file types cannot be

input from the same device.

UPDATE FILE NOT FOUND FOR L.R: logicalfile

R command requires both an

Update and a Logical Record

file to be specified.

SYMBOL TABLE OVERFLOW

I command has insufficient

memory space available.

UNEXPECTED ERROR FROM SYSTEM

Hardware malfunction.

LOGICAL RECORD NOT FOUND: recordfile

NO LISTING FILE: DEFAULT LISTING ON ITO

[Ref. 16]

(© Data General Corporation 1972. Reproduced from- LI3RARY

FILE EDITO R by permission of Data General Corporation,

Southboro, MA)

159

\

G. SYSG ERRORS

ERROR MESSAGE MEANING

NOT ENOUGH ARGUMENTS

OUTPUT FILE WRITE PROTECTED, FILE: filename

NO OUTPUTFILE SPECIFIED

ILLEGAL SYMBOL NAME: symbol

Invalid character in command

line.

FILE DOSS NOT EXIST, FILE: filename

UNEXPECTED SYSTEM ERROR

Computer halts with system

error code in AC2.

[Refs. 12 and 13]

(©Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

160

\

H. SYSTEM ERRORS

A system error results in a computer halt with a code in

AC2 that is interpreted as follows:

CODE MEANING

O-Illegal channel number

1-Illegal file name

2-Illegal system command

3-Illegal command for device

4-Not a saved file

5-Attempted to write an existent file

6-End of file

7-Read protected file

10-Write protected file

11-Attempt to create an existent file

12-Non-existent file

13-Attempt to alter a permanent file

1 4- Attributes protected

15-File net opened

21-Attempt to use a DFr already in use

22-Line limit exceeded

23-Atterapt to restore a. non-existent image

24-Parity error on read line

25-Trying to push too many levels

26-Not enough memory available

27-Out of file space

(©Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

161

\

CODE MEANING

30-Fils read error

31-Unit not prperly selected

32-Illegal starting address

33-Attempt to read into system area

35-Files specified on different directories

36-Illegal device name

37-Illegai overlay number

40~Illegai overlay file attribute

4 1-User set time error

42-Out of TCB».s

43-Signal to busy address

44~Squash file error

45-Device already in system

46-Insufficient contiguous blocks

47-Quantity error

50-Error in user task queue table

100-Not enough arguments

101-Iilegal attribute

102-No debug address

103-No continuation address

104-No starting address

105-Checksum error

106-No source file specified

107-Not a command

110-Illegal block type

111-No files match specifier

112-Phase error

113-Too many arguments

[Refs. 12 and 13]

(©Data General Corporation 1973. Reproduced from THE

STAND-ALONE OPERATING SYSTEM by permission of Data General

Corporation, Southboro, MA)

162

s

APPENDIX R

TELETYPE OUTPUT EXAMPLE PROGRAM CREATION

A. TTO EXAMPLE PROGRAM SOURCE LISTING

#0:2

*GBCT1:0$$

*J. *************************** *******************

TTO EXAMPLE PROGRAM

PROGRAM FOR TTY OUTPUT OF A PACKED BUFFER,

TERMINATED BY A ZERO WORD.

EXAMPLE: WORD

BUFER: 1

2

TERM: 3

CHARACTER

2,1

0,0

**

.TITL TTOEX

TABLE POINTER

PASS PARAMETER TO ACO

CHECK FOR TERMINATION CODE

WAIT UNTIL AVAILABLE

.ENT TTOEX

.NREL

TTOEX: LDA 3,PBUF

LOOP: LDA 0,0,3

MOV# 0,0, SNR

HALT

JMP .-1

DOAS O.TTO0,TTO ; OUTPUT RIGHT-MOST CHARACTER

163

;35JAP CHARACTERS

;WAIT UNTIL AVAILABLE

;2ND CHARACTER

; NEXT BUFFER ADDRESS

;NEXT WORD

•<015><012>CONGRATULATIONS!

<015X012X040X040>YOU<040>

HAVE<04 0>COMPLETED<04 0>

YOUR<04 0>FIRST<04 0>PROGRAM

<040>CREATION.<00 0X0 00>»

TTOEX

MOVS 0,0

SKPBZ TTO

JMP .-1

DOAS 0,TTO

INC 3,3

JMP LOOP

.TXT •<015

PBUF: BUFER

.END

$$

*GWCT1::0$$

*BPGC$$

*H$$

164

\

B. TTO EXAMPLE PROGRAM ASSEMBLER OUTPUT

#0:3

ASM 1 CT1:0 CT0:O/B $TTO/L

PROGRAM IS RELOCATABLE

0001 110EX

TTO EXAMPLE PROGRAM

PROGRAM FOR TTY OUTPUT OF A PACKED BUFFER,

TERMINATED BY A ZERO WORD.

EXAMPLE: WORD CHARACTER

BUFER: 1 2,1

2 4,3

TERM: 3 0,0

.TITL TTOEX

00000«034465 TTOEX:

00001*021400 LOOP:

00002' 101015

00003'063077

OOOOU'063511

00005'000777

00006'061111

.ENT TTOEX

.NREL

LDA 3,PBUF

LDA 080,3

MOV# 0,G,SNR

HALT

SKPBZ TTO

JMP .-1

DOAS 0,TTO

TABLE POINTER

PASS PARAMETER TO

ACO

CHECK FOR

TERMINATION CODE

TERMINATE

WAIT UNTIL AVAILABLE

0,TTO ;OUTPUT RIGHT-MOST

165

\

00007

00010

00011

00012

00013

00014

00015

00016

000T7

00020

00021

00022

00023

00024

00025

00026

00C27

00030

00031

00032

00033

00034

00035

00036

00037

00040

00041

00042

C0043

00044

00045

00046

00047

00050

101300

063511

000777

061111

175400

000765

005015

047503

043516

040522

052524

040514

044524

047117

020523

00U411

005015

020040

047531

020125

004411

040510

042526

04 1440

046517

046120

052105

042105

004440

054411

052517

020122

044506

051522

BOFER:

CHARACTER

MOVS 0,0 ;SWAP CHARACTERS

SKPBZ TTO ;WAIT ONTIL AVAILABLE

JMP .-1

DOAS 0,TTO ;2ND CHARACTER

INC 3,3 ;NEXT BUFFER ADDRESS

JMP LOOP ;NEXT WORD

.TXT « <015X012>CONGRATULATIONS!

<015><012X0 4 0X04 0>YOU<0 40>

HAVE<04 0>COtfPLETED<0 4 0>

YO0R<04 0>FIRST<0 40>PROGRAM

1 66

\

0005 1
• 020124

00052*051120

0002 1TOEX

00053*043517

00054*040522

00055*004515

00056*020011

00057' 051103

00060*040505

00061*044524

00062*047117

00063*000056

00064* 000000

00065*000015* PBUF: BUFER

000000* .END

<04 0>CREAIION.<000><000>*

TTOEX

0003 TTOEX

BOFER 000015'

LOOP 00000 1'

PBOF 000065*

TTOEX 000000'

ASM

#

167

\

C. TTO EXAMPLE PROGRAM RLDR OUTPUT

#0:4

RLDR CT1:0 CTO:0/S 3TTO/L

TTOEX

NMAX 000526

ZMAX 000050

CSZE

EST

SST

TTOEX 000UU0

OK

D. TTO EXAMPLE PROGRAM EXECUTION

0:0

CONGRATULATIONS!

YOU HAVE COMPLETED YOUR FIRST PROGRAM CREATION,

168

N

APPENDIX S

A. ADCOD

00000
00001
00002
00003
00004
00005
00006
00007
00010
000 1 1

00012
03013
00014
00015
00016
00017
00020
0002 1

00022
00023
00024
00025
00026
00027
00030
0003 1

00032
00033
00034

•006433
•000035
•020534
•063121
•063621
•000777
•066421
•030421
•071 1 I I

•06361

1

•000777
•030416
•071 1 1 1

•06361

1

•000777
•020415
•006412
•063077
•000760
•054514
•061 1 1

1

•06361 1

•000777
•002513
•00301

5

•003312
• 177777
• 177777
•33 032 3

ASSORTED PROGRAMS

A/D CODE TEST

PROCEDURE: CONNECT ANALOG SIGNAL ON CM
SIGNAL IS CONVERTED AND TYPED
BY ACTUATING THE CPU SWITCH
•CONTINUE'

LIMITS: /- 10.24 VOLTS

11 DCTOBER 1976, GDR

.TITL
. ENT
. EXTN
.NREL

ADCOD: JSR
PROMT

ADCOl: LDA
DOCS
SKPDN
JMP
DIC
LDA
DOAS
SKPDN
JMP
LDA
DOAS
SKPDN
JMP
LDA
JSR
HALT
JMP

STUFF: STA
DOAS
SKPDN
JMP
JMP
3 1 5

3 12

Bl)A

STUFF

CR:
LF:
LB I ^ A:

LTYPE:
•LST'JF:
PROMT:

ADCOD
ADCOD
BIOA,TYPE

©LTYPE

0,ZERO ?CH IM AC 3

0,21 % START A/D SAMPLE
2 1 J WAIT F3R COMPLETION
.-1

1,2 1 J LOAD DIGITAL DATA
2,CR ? USE NEW LINE EACH SAMPLE
2, TTO
TTO
.- 1

2,LF
2, TTO
TTO
.- 1

3,LSTUF ^PARAMETER FOR 3I0A
9L3I0A

; RESTART BY CONSOLE
ADCOl J SWITCH 'CONTINUE*
.3,RSTUF ;SAVE RETURN
0,TTO % OUTPUT DATA
TTO
.- 1

aRSTUF ; RETURN

<0 1 5><3 12> A/P<'343>C)DF<3 4'V • i

16g

\

30035*005015
30036*027501
00037 '020104
00040*047503
30041 '042504
00042' 0424 40
00043*044103
00044*004517 <01 5><0 12> PROCEDURE: <01 5><0 12>

00045*00641

1

00046*050012
00047*047522
00053 '042503
030 51 *"3"S2 504
00052*042 522
30053 '006472
300 54 '0044 12 COMMECT<040>AN1AL0G<040>S0URCE<0 40>
00055'04141 1

00056'0471 17

00057*042516
00060*052103
00061 '040440
00362*340516
03363*047514
00064*320107
00065*047523
00066*051 125
00067 '042503
0007 0*0044 40 TO<0 40>CH0<0 1 5><01 2> LIMITS: <043>
00071 '05201

1

00072*3201 17

00073'044103
00074 '006460
00075*046012
00076'04651 1

00077*0521 1

1

00100*035123
00 101 '004440 +/- 13.24V<01 5><0 1 2> ME W<340> SAMPLE
30102'02541 1

00103 '026457
00104'030061
00105'031056
00106*053064
00107 *0350 15
001 13*34251

6

001 1 1 '020127
001 12*040523
031 13*0531 15
001 14*042514
001 I 5'00441 1 <340>BY<043>COMSOLE<040> SWITC4<040>
00

1

16'041040
001 17 '020131
30 120 '347 503
3 1 2 1 ' 5 1 5 1 6

170

\

03122*0461 17
00123*020105
00124*053523
00125*0521 1

1

00126*044103 COMTIMUE<015><012>

*

00 127 '004440
00130*04141

1

00131 *0471 17
00132*044524
00133*052516
00134*036505
00135*000012
00136*000000 ZERO:
00137*000000 RSTUF:

000000* . EMD ADCOD

171

\

B. BIOA
; * * * * * ********** *********************:*****«**

; SUBROUTINE 3 £0

A

9

% DATA GENERAL BINO.SR
MODIFIED FOR NPS USE

39 0-033032-0 1

BINARY TO OCTAL ASCII CONVERT
; CONVERTS A 16-BIT BIMARY WORD TO AN OCTAL
CHARACTER STRING

IMPUT: USER ROUTINE IN AC0
BINARY NUMBER IN AC 1

1 OUTPUT: ASCI I CHARACTER STRIMG, TERMINATED BY
NULL CHARACTER
CHARACTERS PASSED RIGHT ADJUSTED

.
TO THE USER ROUTINE WHOSE ADDRESS
MUST BE STORED IM AC0

t STRING OF FORM:
; 000 000 (NULL)
j WHERE "O'S" REPRESENT OCTAL DIGITS
CALLING SEQUENCE:

. EX TN BIOA

JSR dLBIOA
RETURN

LBIOA: BIOA

00000 •340425 BIOA:
0000 1 '054421
00002 •152621
00003 146401 .EF99
00004 •320423 .EF93
00005 ' 101400
0000 6 • 146533
00007 •000774

00010 '053413
0001 1 •336414
00012 '33041

1

30013 ' 1 51220

.TITL BIOA

. ENT BIOA

.NREL
STA 0,.EF40
STA 3,.EF03
SUBZR 2,2, SKP
SUB 2, 1,SKP
uDA 0,.EF20
INC 0,0 J

SUBZL* 2, 1,SNC I

JMP . EF9 9

333 1 4' 1 5 1223
300 1 5' 1 51224
3031 6' 333766

STA 2,.EF13J
JSR §.EF40 i

LDA 2,.EF10J
MOVZR 2,2 ;

3

MOVZR 2,2
MOVZR 2,2, SZR
JMP . EF93

;link user routine
; save return
i 100000 TO AC2
; DECREASE CURRENT DIGIT
J GET OCTAL 57
FORM ASCII OUTPUT DIGIT
- IMPLIES DIGIT COMPLETE

NOT DONE, SUBTRACT 1 FR) A

CURRENT DIGIT
SAVE SUBTRACT CONSTANT
PUT OUT A DIGIT
RESTORE SUBTRACT
POSITION "l" FOR
DIGIT

CONSTANT
NEXT OCTAL

j ^ot d:ne

172

\

Hil.l 1 7 '
1 a IO00

3-402 ,J
• 00 6435

90021 '002401
0002 2 ' dWAWi
O002 3 '000000

. EF33:

. EF13:

-10 vy :>,

, J S K * .

JMP g.

4

fT p ^ vi J

EF03 '

l

i

p

0002 4 '3000 57

0002 5 '330000
. EF20:
. EF40:

57

. EMD

!

J

I

PUT TUT >IULL CHARACTER
RETURM
SAVE RETURN

'

SAVE LOCATION FOR SUBTRACT
COMSTAR

T

ASCII CO^JSTAMT
;USER ROUTIME LINKAGE
I INSERTED 17 SEPT 7 6

C. TYPE
************************ ****;{c *************,***;

SUBROUTINE TfPE

GLOBAL SUBROUTINE FOFi -rTY 01JTPUT OF A PACKED
BUFFER, TERMINATED BY A ZERO WORD. BUFFER
START ADDRESS PASS ED AS ARGUMENT.

EXAMPLE: WORD CHARACTER
BUFFER: 1

2
2, 1

4,3
TERM: 3 0,0

CALL SEQUENCE
. EXTN TYPE

JSR 8LTYPE
BUFFER

LTYPE: TYPE

; **********************
.TITL TYPE
.ENT TYPE
.NREL

00000*054421 TYPE: STA 3, LINK
00001 '035400 LDA 3,0,3
00032 '021400 LOOP: LDA 3,0,3
30003' 101015 MOV0 0,0, SNR
00004*000412 JMP TYPEX
00005*06351

1

SKPBZ TTO
00006'0007 77 JMP .-1
00007'0611 1

1

DO AS 0,TTO
03010' 101300 MOVS 0,0
0301 1 '06351

1

SKPBZ TTO
00312'000777 JMP .-1

30013'06U 11 DO AS 0,TTO
30014' 175430 INC 3,3
30015'030765

J

TYPEX:

JMP LOOP

33316»034403 LDA 3, LINK
00017 ' 17 5400 INC 3,3
00020'001400 JMP 0,3
33021 '000000 LINK:

I SAVE RETURN
;TABLE POINTER
i PASS PARAMETER TO A0
JCHECK for termination
; TERMINATE
J WAIT UNTIL AVAILABLE

;0UTPUT RIGHT-MOST CHAR
;SWAP CHARACTERS
J WAIT UNTIL AVAILABLE

J 2ND CHARACTER
JNEXT BUFFER ADDRESS
;NEXT WORD

END

173

N

D . CADO
J**

ROUTINE CADO

FOR CALIBRATION! OF THE A/D CONVERTER
BY ANALOG INPUT TO CHANNEL ZERO AND
MONITORING SPECIFIC BIT OUTPUTS ON AN
OSCILLOSCOPE

LOGIC LEVELS: 1= 2.7V (>2.2V)
= 0.0V C<0.2V)

A TELETYPE MESSAGE REMINDS THE OPERATOR
OF THE CORRECT PROCEDURE.

11 OCTOBER 1976, GDR

30000-
30001 -

30002-
30003-
33004-
30005-
30006-
30007-

30010-
30011-
30012-
30013-
30014-
30015-
30016-
30017-
10020-
J0021-
,0022-
J0023-

)0024-
10025'
10026'

10027'

10030'

006007-CADO:
000010-
020261-CADO1
063121
063 621
000004-
000002-
•1777 77 LTYPE:

PROMT:

.TITL

.ENT

.EXTN

.ZREL
JSR
PROMT
LDA
DOCS
SKPDN
JMP
JMP
TYPE
.TXT

005015
027501
020104
040503
044514
051 102
52 101

04751

1

004516
00641

1

•050012
•047522
042 503
052 504
•042522
•006472
004412

CADO
CADO
TYPE

9LTYPE

0,ZERO,0 JCH IN AC
0,21 j START A/D CONVERSION
21 ;WAIT FOR COMPLETION
.-1
CADOU0 IRELOOP

• <0 1 5><0 12> A/ D<040> CALIBRATION

<01 5> <012>PROCEDURE:<015><012>

CONNECT<040»ANALOG<040> VOLTAGE

174

\

;j003 1-04 141 1

,)t
;J03tf-347 1 17

00033-042 51 6

00034-0 52 103
00035-040440
00036-043516
30037-047514
00040-0231 37
00041-047526
00042-0521 14
00043-04353 1

00044-004505
00045-02001 1 <040>Ta<040>CHAMNEL<040>0
00046-047524
00047-041440
00050-040510
00051-0471 16
00052-046105
00053-030340
00054-0044 1 1

00055-00531 5 <(31 5> <312>SET<040> V3LTAGE<040> AT
00056-042523
00057-020124
00060-047526
00061-0521 14
00062-043501
00063-020105
00064-052101

65-00441

1

66-026440 <040>-0.0025V<01 5><0 1 2>*ONITOR<043>
67-027060

00070-030060
00071-032462
00072-006526
00073-046412
00074-0471 17
0007 5-3 521 1 1

00076-051 1 17
00077-004440
00100-04 64 1 1 MSB<040>BIT<040>PIM<040>28L<040>
00101-041 123
30102-041040
30103-0521 11

00104-050040
00105-0471 1 1

03106-031040
00107-046070
00110-004443
00111-0474 1 1

ON<040>OSCILLOSCOPE<0 I 5>-<012> ADJUST
00112-0231 16
00113-051517
00114-044503
00115-0461 14

175

001 1 6-051 5 1

7

001 1 7-"J47b'4J
00 120-0 42 52
0012 1-0050 1

5

00122-042 101
00123-052512
00124-052123
0012 5-0044 1 1 <340>:>FFSET<0 40>F0R<040>50<040>
00126-047440
00127-043106
00130-042523
00131-020124
00132-047506
00133-020122
00134-030065
00 13 5-00 4440 PERCE^T<0 40> DUTY <040> CYCLE
00136-05301 1

00137-051105
00140-042 503
00141-0521 16
00142-042040
00143-052125
00144-020131
00145-054503
00146-046103
00 147-004 50 5 <0 1 5><0 12> RES ET<040> VOLT AGE<040>
00150-0064U
00151-051012
00152-051505
00153-052105
00154-053040
00155-0461 17
00156-040524
00157-042 507
00160-004440 TO<040>-10.237 5V<01 5><0 1 2>VJ0NJIT3R

00161-05201

i

00162-0201 17
00163-030455
00164-027060
00165-031462
00166-032467
00167-006526
00170-046412
00171-0471 17
00172-0521 1 1

00173-051 1 17

00174-00441

1

<040>LSB<040>BIT<040>PIN<040>34L
00175-046040
00176-041 123
00177-041040
00200-052 1 1 1

00201-050040
00202-047 1 1 1

00203-031440

176

\

FOR<040>50<040>PERCEMT<040>DUTr

00204-046064

Ztll'-Ztml
<"15»<ai2,ADJUST<043>RAN GE<040>

00207-042 101
00210-052512
0021 1-052123
30212-051040
00213-047101
00214-042507
0021 5-004440
00216-04301 1

00217-051 1 17
00220-032440
00221-020060
00222-042520
00223-04 1522
00224-047105
00225-020124
00226-052504
00227-054524

ZtlllVZ* «»«-cra.M ,5.«.,a...,2.u>aic
00232-04 1 53 1

00233-042514
00234-0050 1 5
00235-0460 12
00236-043517
00237-04151 1

ZTZi:\l WL«vn.s..a4>»i.a.,w«M*
00242-053105
00243-046105
00244-035123
00245-030440
00246-03 1075
00247-033456
00250-020126

ZtU'-ZiIll
AN D <.04a > g = .a V<ai5,< ai2>.

00253-020104
00254-036460
00255-027060
00256-053360
00257-0050 1 5
00260-000000
30261-000000 ZERO:

000000- .£ND CADQ

177

\

E. DAC
****#**:***.:************************************

ROUTINE DAC

FOR CALIBRATION! OF THE 0/ A CONVERTER
BY MONITORING THE APPROPRIATE CHANNELCX OR Y>
WITH A VOLTMETER AND ADJUSTING THE
ZERO POTENTIOMETER FOR THE MINIMUM VALUE AND
THE GAIN POTENTIOMETER FOR THE DESIRED
RANGE AT MAXIMUM VALUE. (1 . 000 VOLTS)

A TELETYPE MESSAGE REMINDS THE OPERATOR OF
THE CORRECT PROCEDURE.

21 OCTOBER 1976>GDR

**************** ********************** *********

30000

33001

30002

33003

30004

30005

30006

30007

300 1

30011

30012

30013

30014

30015

30016

30017

30020

30021

30022

33023

33024

3002 5

30026

MIN

MAX

•006424 DAC:
•000027'
•006422
000237'
'030422
'004410
•063077
•006415
•000275'
•3304 14
•004403
•063077
•000766
•02041

1

M05400
•062023
•071023
•066023
•071023
•00 1400
•177777
•003777
•000000

DAC1

30027 '0050 1 5

30030'027504
33031 '023101
30032'040503
30033'04451 4

LTYPE:
TEN:
ZERO:
INTRO:

.TITL

.ENT

.EXTN

.NREL
JSR
INTRO
JSR
ZEROV
LDA
JSR
HALT
JSR
TENV
LDA
JSR
HALT
JMP
LDA
INC
DOB
DOA
DOB
DOA
JMP
TYPE
03777

.TXT

DAC
DAC
TYPE

©LTYPE ; INTRODUCTION

9LTYPE

i DATA IN AC 22>ZERO>0
DAC1

; CONTINUE FOR FULL
SLTYPE i SCALE CALIBRATION

2,TEN#0 JDATA 10.000V IN AC 2

DAC1
i CONTINUE FOR ZERO

MIN J CALIBRATION
3>ZERO*0 JCH XC=0) IN AC
0* 1 ;CH Y(= l) IN AC 1

0,23 ; SELECT X CHANNEL
2,23 JOUTPUT X

1,23 ; SELECT Y CHANNEL
2,23 iOUTPUT Y
0,3 i RETURN

' <01 5><012>D/A<040> CALIBRATION

178

\

1134 »k) 5 1 102
;)35'052 101

036 *a^7 S 1 1

1337 '00451 6 <0 1 5> <012> PROCEDURES <01 5><012>
040'3064l 1

041 '050012
342' 347 522
143*342503

544 '3 52 50 4
045*042522
046*036472
047 '00 441

2

CO.M.MECT<040>DVM<34a>Tq<040>CHX
050*04141 1

51 '0471 17

052*34251 6

353*052103
054*342040
355*046526
056*052040
357*023 1 17
060*044103
061 '004530 <040> < PI MS8 U+9LX01 5><0 12> ADJUST
362*02001 1

363*050050
364*047 1 1 1

565*034123
366*025525
1367*046071
i70'006451
171*040412
)72*045104
)73'051525
)74'00452 4 <040>CHX<040>ZERO<040>POTEMT IOMETER
175*020011
176'044103
I77'020130
00*042532
31*047522
02'050040
03*052117
04'047105
35'044524
06'046517
07'052105
10*051 105
11 '00 441

1

<01 5><012>REPEAT<040>PROCEDURE<040>
12'005015
13'042522
M'042520
15*052101
16*050040
17 '047522
20*342503
21'052504

179

(30122 • 042 5tfa

00123 '004440
00124*0433 1

1

00125*351 1 17

0i3l26' 54 1 440
03127 f 54 51

3

33 130' 02 40 40
30131 '044520
33132*051516
30133'052466
30134'033053
00135'024514
00136'00441 1

00137 '005015
30140 '052 50 6

30141 '0461 14

00142 '051440
00143*040503
30144 '04251

4

00145*004440
30146'04141 1

00147 '046101
00150*041 1 1

1

03151 '040522
03152 '044524
00153 '0471 17

00154'051440
30155'040524
00156'052122
00157 '020123
33160 '054502
00161 '004440
00162'04201 1

00163*050105
00164*042522
00165*051523
00166'0471 1

1

00167 '020107
00170 '047503
00171 '0521 16
00172 '047 1 1 1

30173*042525
00174'047440
30175'0201 16
00176'00441 1

30177 '044124
30200*020105
00201 '047503
00202 '051516
00203'0461 17

00204'006505
00205*040412
00206*045104
00207 '051525

FO R < 40> CH Y < 40> (P I^J S 6U+ 6D

<015><012>FULL<040>SCALE<040>

CALIBRATI)^<040>STARTS<040>BY<040>

DEPRESS I NG<040>CONTIIMUE<040>O>4<040>

THE<040>CONSOLE<0 15><012>ADJUST<040>

180

\

302 10 •02012 4

3321 1 '0344 1 1

33212 '340537 GAI\»<043> POTEST I C^4ETERS<040> AS<040>
332 13 * 3471 1 1

03214 '3 503 43
03215*^52 t 17

002 16 '347 105
00217 '044524
00220*046517
3022 1 '352135
00222*051 105
33223 '020123
33224 '05150 1

30225 '004440
0322 6 '04041 1

APPROPRIATE. <01 5><3 12><000><000> «

00227 '350120
30230 '047 522
30231 '051 120
00232'04051

1

00233 '042524
00234'006456
03235'000012
00236 '000000

ZEROV: .TXT • <0 1 5><0 12> ADJUST<040>ZERO
30237 '005015
00240 '042101
00241 '052512
00242*052123
00243 '055040
00244'051 105
00245 '004517 • <040> AMD<040> COMTINUE<040> F3R
00246 '02001 1

00247 •047101
002 50 '020 104
00251 '047503
002 52'0521 16
002 53'0471 1

1

00254*042525
00255 '043040
00256*051 1 17

30257 '00441 1 <040>FULL<040>SCALE<040>ADJUST
002 60 '043040
00261 '046125
002 62*020 1 14
00263*041 523
00264*046101
00265*020105
00266 '04210

1

30267 '052512
00273*052123
00271 '30441 1 <01 5><012><300><000> '

00272 '005015
30273 '000000
00274*000000

131

\

TEM^: .TXT ' <'/) 1 5><0 12> rE>J<040> VDLT<040>
00275*30 5015
00276 '042524
00277*020 1 16

00300 '047526
O0301 *0521 14
00302*004440 ' ADJUST<040> A^D<040>CQnITINIUE
03333' 0404 1

1

00304'045104
30305*051525
00306 '020124
00307 '047101
00310'020104
0031 1 '047503
00312 '0521 16
00313*0471 1

1

00314 '042525
00315 '00 44 1

1

<340> FOR<040>ZERQ<040> ADJUST
0031 6 '043040
00317 '051 1 17
00320*355040
00321 '051 105
00322 '0201 17
00323*042101
00324'052512
00325*352123
0032 6 '30 44 1

1

<01 5><312><000> <000> '

00327 '0050 15
00330 *300300
00331 '003030

000003' .END DAC

182

\

F. EXERCISE 4 SOLUTION

GLOBAL SUBROUTINE FOR TTY OUTPUT OF A PACKED
BUFFER, TERMINATED BY
START ADDRESS PASSED

EXAMPLE:

CALL SEQUENCE
• EXTN
• • •

JSR
BUFER
• • •

LTYPE: TYPE

A ZERO WORD. BUFFER
AS ARGUMENT.

21
43
00

TYPE

©LTYPE

.TITL TYPE

.ENT TYPE

.NREL
00000*054421 TYPE: STA 3, LINK
00001 '035400 LDA 3,0*3
00002 • 02 1400 LOOP: LDA 0,0,3
00003' 101015 MOV# 0,0, SNR
00004*000412 JMP TYPEX
00005*06351

1

SKPBZ TTO
00006'000777 JMP .-1
00007*061 1 1

1

DOAS 0,TTO
00010*101300 MOVS 0,0
0001 1 *06351

1

SKPBZ TTO
00012*000777 JMP .-1
00013*061 111 DOAS 0,TTO
00014*175400 INC 3,3
00015*000765

J

TYPEX:

JMP LOOP

00016*034403 LDA 3, LINK
00017 * 17 5400 INC 3,3
00020*001400 JMP 0,3
00021 *000000 LINK:

•

J TEST
J

TESTR:

ROUTINE

00022*006463 JSR ©LTYPE
00023*000025 i BUFER
00024*063077 HALT

BUFER:..TX"P<015><012>GRA
00025*005015
00026*051 107
00027*047101
00030*020124
00031 '047504
00032'043525

J SAVE RETURN
$ TABLE POINTER
J PASS PARAMETER TO A0
; CHECK FOR TERMINATION
iTERMINATE
I WAIT UNTIL AVAILABLE

iOUTPUT RIGHT-MOST CHAR
I SWAP CHARACTERS
J WAIT UNTIL AVAILABLE

I 2ND CHARACTER
JNEXT buffer address
jnext word

<012>GRANT<040> DO UGLAS<040> RALPH

183

\

00033'040514
00034*020123
00035*040522
00036*0501 14
00037*004510
00040*00641

1

00041*031012 <015><cno
00042*020064 24<040><040*<^>RALSTO^<040>00043*020040

J^<040>

00044*040522
00045*051514
00046*047524
00047*0201 16
00050*00441

1

00051 '042040
00052*044522 <04«>nRTWp^,c „
00053*042526

M40>DRIVE<015><012>MONTEREY<040>
00054*005015
00055*047515
00056*0521 16
00057*051105
00060*054505
00061 '004440
00062*04141 1

00063*046101 CALrrnRMTA „. c
00064*043111

LIFORNIA<015><012>U.S.A.<040><040>
00065*051 1 17
00066*044516
00067*006501
00070'052412
00071 '051456
00072*040456
00073*020056
00074'004440
00075*02001

1

00100*034440
00101 '034463
00102*030064
00103 '000000
00104*000000 TERMi
00105*000000t LTYpEj 7yp E

000022' 9£NQ TESTR

184

\

G. EXERCISE 5 SOLUTION

i INTERRUPT INITIALIZATION
; ************* * * ********•*******************#*

.titl tNir
• ENT MIT
. ErfTM IMTRUP

000001 . LOC 1

33331 177777 INTRUP
. n*R£L

03000'020410 IMIT: LDA 0#*fASK iSET PRIDRITY >1ASK

30301 '36237 7 MSKO
30332 ' 323435 LDA 3, HZ ;SET CLOCK FREQUENCY
33333 '361 114 DO AS 3»RTC
33004*360177 INTEM
3333 5' 333430 JvfP

3333 6' 3307 77 JMP .-1

33337 '333 JJ1 42: 1 ; BASIC CLOCK OF 10HZ
03013M77773 MASK: 177773 ;ENA8LE RTC=3IT 13

333333' .END I M T T
'J*********-*******'***************************
i MOD FOR RTC OMLf
i ROUT IMF. TO SERVICE I/O INTERRUPTS 3Y POLLING
j********* *************** ********* *"* *********

•TITL IMTRUP
.ENT INTRUP
.EXTN SUPR
.MREL

30000'063277 INTRUP: INTDS
30001 , 340421 STA 0,SAV0 J SAVE THE STATE
00002'044421 STA 1,SAV1
33303'053421 STA 2,SAV2
30004'054421 STA 3,SAV3
00005*101100 NIOVL 0*3 iSAVE THE CARRY
33006'040420 STA 0,SAVK
30307 '063714 SKPDZ RTC
30010*006411 JSR ©LSUPR JCLOCK REQUEST
33011 '023415 LDA 0,SAVK 'REFRESH CARRY
00012' 101200 *10VR 0,0
00013'023407 LDA 0,SAV0 ^REFRESH STATE
33314*024407 LDA 1,SAV1
00015*030407 LDA 2,SAV2
33316'034437 LDA 3»SAV3
33317'060177 INTEN
00020 '002000 JMP 90
0032 1 '17 77 77 LSUPR: SUPR
33322 '333300 SAV3: 3
30023 '033030 SAV1:
33324 '333330 SAV2 : 3
33325 '030303 SAV3:
30326'300300 SAVK:

. END

185

\

i

' MOD
;

' SUP

; ****

******** ******** ********* ***********
FOR RTC

ER VISOR

00000
00001
33002
00003
00004
00005
00006
00007
00010
0001 1

00012
00013
00014
0001 5

000 1 6
000 17
00020
0002 1

00022
00023
00024
30025
0002 6

00027
00030
00031
00032
00033
00034
00035
00036
00037
00040
30041
00042
00043
33044

'354452 SUPR:
' 152440
•034446 MUJOB
' 1 57000
'02 1400
' 105404
'000424
•040444 TASK:
'044444
'050444
•054444
' 125100
•044443
'034434
' 157000
'025400
'044434
'034426
* 157000
'007400
'024433
' 125200
•320425
•324425
'330425
•334425
'045400 ^UTSK:
' 151 400
•33441

1

' 1 564 14
•333744
'330403
•371 1 14
'00241 1

•300001 KZZ:
'177777 JOB:
M77766 JOBK:

• TITL
. EMT
• EXTM
•"^REL
STA
SU80

! LDA
ADD
LDA
IMC
JMP
STA
STA
STA
STA
MOVL
STA
LDA
ADD
LDA
STA
LDA
ADD
JSR
LDA
MOVR
LDA
LDA
LDA
LDA
STA
I\JC

LDA
SUB#
JMP
LDA
DOAS
J*lP

1

EXECl
-12

T\ILY

Br RTC I

SUPR
SUPR
execi

\»TERRUPT

**********4r*****#* +J<

3,RSUPR
2,2
3>PJ08K
2,3
0,0,3
3*

1

,SZR
MUTSK
0»SAVE0
1,SAVE1
2,SAVE2
3,SAVE3
1,1

1'SAVEK
3,PMUK
2,3
1*0,3
1,SAVE1
3, P.JO

8

2,3
§0,3
l'SAVEK
1, 1

0*SAVE3
1 >SAVE1
2,SAVE2
3,SAVE3
1*0,3
2,2
3,MJ0B
2,3,SZR
VUJOB
2,HZZ
2,RTC
aRSUPR

'SAVE RETURM

'get the job CO UNIT

'Task ASSIGNED?
;no
'SAVE STATE

'SAVE THE CARRY

;GET REFRESH COUNT

REFRESH SAVED JOB COUsfTSERVICE JOB REQUEST

'REFRESH CARRY

'REFRESH STATE

'UPDATE JOB COUMT
iO-M TO MEXT JOB
'NUMBER OF JOBS
'LAST JOB CHECKED'
;^o
'SET CLOCK FREQUENCY

'TERMINATE
'BASIC CLOCK OF 10 H 7
'JDB 1

'NEGATIVE COUVJT

186

\

3334 5 •330331 vjJOB: 1

l j (^ 4 H • 177766 ^UK: -12
33347 •0000 43 •PJQB! _H3
33353 • 003344 'P.JOBK* J.TBK
00351 •000346 •PmUK: MUK
030 52 '00 0033 RSUPR: 3

33353 •000333 SAVE3:
003 54 •030330 SAVE1 : 3
333 55 •330000 SAVE2:
33356 '033333 SAVE3: 3
33357 •300003 SAVEK:

END

187

\

; ******************** **************************
>

i EXEC1 = EXEC2

J GLOBAL RDUTInIE TO TEST RTC SYSTEM BY COINT 0-9

;**
.TITL EXEC2 JEXEC1 IS THE CALL
. ENT EKEC1
. EXTN TYPE
.MR EL

00000*054420 EXEC1: STA 3,REXEC1 jSAVE RETURN
00001*006414 JSR 9LTYPE ;PRINT NUMBER COUNT
00002*000012 * CRLF
00003*020410 LDA 0*COUMT
00004*101400 INC 0*0 JIMCREASE THE COU^T AMD
00005*024411 LDA 1,NINE JCHECK FOR LARGEST DIG
00006*106472 SUBC# 0*1*SZC
00007*020410 LDA 0*ZERO
00010'040403 STA 0, COUNT
00011*002407 JMP 3REXEC1
00012*005215 CRLF: 005215 ;<012><015>

COUNT: .TXT 9<060><000>9
00013*000060
0001 4 '000000
00015*177777 LTYPE: TYPE
00016*000071 NINE: 71
00017*000060 ZERO: 60
00020*000000 REXECl:

. END

188

\

H. EXERCISE 6 SOLUTION

* ************** ft *** + ##*##********#************** *

CAS FT

RIUTI^JF n DE9)MSTRATE CASSETTE I/O VIA SJS T> A

SCRATCH TAPE "H UnIIT 1

2 7)CT 1BER |97fi.hl';.J

03202
03203
-502 4

90205
0020 6

90207
00210
002 1 1

00212
002 1 3

00214
0021 5

002 1 6

002 17

00220
90221
3 9222
9922 3

09224
0022 5

90226
9227

00239
902 3 1

9 2 32
9 9233
9 9234
99235
923 6

392 3 7

00202
'099999
•006474
•09 9320 *

•99 64 73
•0 903 52'
•00 60 17

•92 1922
•909436
•02 9770
• 9 80 1 7

•014031
'000432
•020 4 56
•0244 57
•9060 17
•9 1643 1

•00 342 5

•006017
' 314431
'090422
'023754
'00 60 17
•914031
' 9 3 9 4 16
• 92 9 4 43
•92 4443
•99 69 17
•9 1 59 3 1

• '6 9 9 4 1 1

•3(16449

HUFF:
FILE:
CASET

************.*«*********«**********•<****
.TITL CASET

CASET
. SOS*.CTUl*TYPE*TYPI0.BIOA

. EvjT

. E < T nJ

. nJREL

. 8L4

JSR
PR9 9PT
JSR
BUFFER
.srsT9
.SYSI
J0P
LDA
.srsT*!
.9PEM
JMP
LDA
LDA
. S/STM
. WR S

J9P
.St'ST9
.CLOSE 31
J.vjP ERROR
LDA
.srsTi
.OPE^J

J9P
LDA
LDA
.SrSTM
.RDS
.MP
JSR

202

^LT/PE

^LT^PI

ERROR
0,FILE

31
ERROR
0,arPT9
1 ,BtTCT

31
ERROR

0,FILE

31
ERROR
0,BfPT

1

1.8YTCT

31
ERROR
9LTYPE

;PR0v|PT THF USFR

; IMPUT ENABLED

J9EGIM S3S CALL?
; IMITIALI^E S3S

; FILE=9

JCTl=31

;REC3RD THE BUFFER

;DU9P THE REClRDlNin

i PR "MPT USER

189

\

5 3:-; 4 3

3 3241
302 42
332 43
A,)2AA
33245
302 4 6
A32 4 7

302 53
332 51

332 52
3 32 53

3 3254
3 3255
132 56
302 57
33263
332 61

.i)32 62
'302 63
302 64
332 6 5

332 6 6

33267
332 7 3

002 7 1

33272
332 7 3

332 7 4

302 7 5

33276
33277
30333
33331

3 3 302
3333 3

33334
3 3335
33336
333 7

33310
303 1 1

333 12
33313
003 14
303 1 5

333 1 6

333 1 7

•
) 133 43 '

• 1 1 6 4 J 6
• 3 133 3 1

'

•306434
'333332 '

•362677
'302433
•

1 450 43
•33342 3

•371111
•3A361 1

•0007 77

' 33-3 4 1 5

•37 1 1 1 1

'36361 I

•330777
•323403
•3364 1

1

•3 63 3 77
• 3 5 4 4 1 3

•061111
•3 6361

1

•003777
•002434
•0003 1 5

'3000 12
' 177777

•30072 4"

•00033 3"

•333232
' 177777
•

1 77777
•017777

•00 53 15
•3 475 1

6

•046522
' 3 4 6 1 3 1

•00 4443
•3 523 1

1

• 5 1 1 3 5

•04451

5

•0 4051

6

•344524
•347 1 17

•005015
•030000
•33 3003

FRR3R

STUFF

Ck:
LF:
L3I)A

RSTUF
8/PT3
aypTi
BYTCT
LTYPE
lty^i
SYS:
^3TE:

HUFF

si)TE
I HST
J3P
-1 Vs/

Li) A
I) OAS
bXPDM
J*|P

LDA
1 AS

J3P

LOA
JSR
HALT
STA
D3AS
SXPOM
J3P
J^IP

01 5

3 12

31 JA
3

2*rfUFFER
2*3UFF
202
TYPE
TVPI3
1 7777
. TXT

iijfh"

*Lrfp£

^i a r J Nl CFnI i"b)F iUlM' fi
•<

2. 1

2,CR
2, rr)
TT3
.-1

2.LF
2,TT3
TT}
. -1

3, STUFF
^L3I3A

3»RSTUF
3.TTD
11}
. -1

aPSTUF

> KKKOK ODE TO AC 1

3 10 A USER LINKAGE

;3AVE RETURN!
^OUTPUT DATA

J TOTAL BUFFER = 130 CHARACTs--<$

' <3 1 5><0 12> \)")R3AL<3 43>

TERMINAT!Os)<0 1 5><3 12><0><3>

PROMPT: .TXT <0 1 5><0 12* INPUT, TERMINATE 3/

190

\

J 1324
4^32 1

44322
94323
44324
34325
33326
4432 7

30 3 34
4433 1

443 32
44333
4433 4

44335
3 4 3 3 A

44337
34343
4434 1

443 42

4 43 43
-143 4 4

44345
/J3346
,3 43 4 7

443 54
443 51

34 554

' ,3 4 5) I 5
' A A 7 1 1 I

'14 52 52.3
' 426 I 2 4
•342 52 4

'446522
•44 7 1 1 I

•4 52 14 1

•424 145
•454502
•44441

1

• 3 4 4 1 3 3
•451145
•424145
•45151 I

• 34653 5

•004412
•344 444
•004444

•44 54 1 5

•452 542
•4431 36
• 3 5 1 14 5

•44 54 I 5
• d^yi^^d

030242
•030443
433243'

CHERE<444> I S] <4 1 5><3 12><4><4><3> '

VERIFY: ,T<T • <0 1 5><412>8UFF£R<01 5><012><0><4>

BUFFER:
ZERO:

. BLK 2 42
4 J BUFFER
.EMO CASET

JLI4IT T "> 134 CHARACTERS
PROTECT! 3M FIR CASSETTES

191

N

000 30
AiAdA 1

'30032
00003
00004
3000 5

00006
0000 7

000 10
000 1 1

00012
000 13
000 14

0001 5

0001 6

00017
00020
0002 1

00322
00023
33324
00025
0302 6

00027

•17 1 400
•053431
•030 43 1

•035400
• 3 60 1 1 3
' 12 644

3

•063610
•000777
•360510
•36351

1

•003777
•061 1 1 1

• 137365

•0004 13
• 12 5002
•300767
•0 45400
• 1 51400
•151 400
•024406
• 132415
•000403
• 17 5400
•00 37 56

03030 '302402
0003 1 '300202
00032 '000000
00033 ^AA'AA'A

.K..********************************** ********
SU6R)Ul I NE I*YP I A

GLOBAL SUBR)U r l I r\ K)K n' / i >iruf T) A PACKED
BUFFER, TERMI ^M I

-r D BY 'HERE [S ' . BUF FER
STAHT ADDRESS PASSED AS ARGUMENT.
BtfTE COUNT" RETURNED IN AC 2.
AUTOMATICALLY TERMINATES AFTER

EXAMPLE: W)RD

CALL

BUFFER

TERM:
SEQUENCE

• EXTN
• • •

JSR
BUFFER

1

2

3

1 33 (DEC I MAL)
CHARACTER
2, 1

4,3
0,0

TYPI3

8LTYPI

LTYPI: Tr'PI0

j ************
.TITL
. ENT
. MREL

rYH[^: IMC
STA
LDA
LDA
MI OS

NUNRD: SUBO
CHAR2: SKPDnI

JMP
DIAS
SKPBZ
JMP
D3AS
ADDCS

JMP
MOV
JMP
STA
INC
IMC
LDA
SUB*
JMP
INC
JMP

JMP
202

. END

I

TYPIX:
LIMIT:
RTYPI

:

?ERD:

***************** ***************
TYPI0
TYPI3

3,2
2, RTYPI
2, ZERO
3.0,3
TTI
1 , 1

TTI
. - 1

3, TTI
TTO
. -1

3. TTO
0, 1 ,SMR

TYPIX
1,1, SZC
CHAR2
1,0,3
2,2
2,2
1 , L I M I T

1 ,2,SMR
TYPIX
3,3
NUWRD

SRTYPI

;STEP PAST ARGUMENT
;SAVE RETURN
JZER) CHARACTER COUNT
;TA8LE POINTER
; ENABLE INPUT
JCLEAR HOLDING BUFFFR
;WAIT FOR INPUT

I SAVE IN A0
;WAIT FOR ECHO

JECHO PKInIT
; 1ST W0RD=C1 ,3, CRY SET
;2ND >N0RD =C2,C1,CRY CLEAR
;EXIT)N 1ST OR 2ND NULL
;CRY SET, FIRST CHARACTER

; STORE 2 CHAR/ WORD
;MAINTAIN CHARACTER C3UNT

JLIMIT OF 130 CHARACTERS
; TERMINATE ON FULL BUFFER
;NEXT BUFFER OPENING
JCONTINUE

192

\

APPENDIX T

MAINTENANCE

This Appendix summarizes a few random notes on

maintaining the equipment.

CPU and CASSETTE TRANSPORT

The nearest source of manufacturer assistance is:

Data General Corporation,

Field Service Office,

1054 Elwell Court,

Palo Alto, CA 94306

General office: phone 965-9100

Local sales: Tom Larson phone 965-1010

Software support: Jim Isaaic phone 965-1010

Hardware support: Denis Hutchinson / Steve Parell

Naval Postgraduate School:

Software support: Dave Norman X2641

Supply and Repair: Al Gillces X2422

Comptroller: Donna McNicol X2770

The CPU and cassette units need no maintenance by the normal

user. Periodically the cooling fans should be lubricated.

It is recommended that during frequent use periods the

cassette heads be cleaned once a week. A solvent such as

ETHYL alcohcl is suggested.

T93

\

ASR 33 TELETYPE

For normal maintenance routine advice see the

micro-computer laboratory technicians Walt and Don on the

fifth floor cf Spanagel Hall.

The striker arm for the TTY type-drum has a rubber cap

to protect the raised character outlines. Loss of this cap

rapidly destroys the TTY print capability. The fault may be

detected by the louder metallic sounding striking of the

type-arm. Continuous user inspection is recommended.

DATAX CONVERTERS

The nearest source of manufacturer assistance is:

Repair Services,

Data Translation Corporation,

23 Strathmore Road,

Natck, MA 01760

General assistance: Mr. Fishman phone 617-655-5300

194

\

INITIAL DISTRIBUTION LIST

1. Library, Code 0212

Naval Postgraduate School

Monterey, California 939^0

2. Department Chairman, Code 62

Department of Electrical Engineering
Naval Postgraduate School

Monterey, California 939^0

3. Data General Corporation
Route 9

Southboro, Massachusetts 01772

k. Major Grant D. Ralph, CF

DMCS 2

National Defense Headquarters
Ottawa, Ontario, K1A 0K2
CANADA

215

\

APPENDIX U

LIST OF MANUALS

014-000001-02

4025 IBM System 360/370 Interface

014-000003-01

Summary of Terminal and Data Set Interfaces

014-000005-01

Type 4015 Synchronous communications Controller

014-000008-00

<D
How to Order Cables for the NOVA Computers

014-000011

How to Wire the TTY 4009 Modification Kit

014-000013-04

How to Install and Use the NOVA Cassette System

014-000014-00

Communications Cabling

014-000015-02

Programmable Synchronous Line Adapters

195

\

015-000009-00

®
How to Ose the NOVA Computers

015-000015

(D
NOVA Cassette Preliminary Technical Manual

015-000021-02

Peripherals Programmers Reference Manual

015-000023-03

Programers Reference Manual

015-000031-02

Interface Designers Reference Manual

015-000043-00

®
NOVA 800/820 and Jumbo 800 Computers Technical Manual

017-000001-01

Synchronous Communications Package

017-000004-01

Remote Synchronous Terminal Control Program

093-000002-01

Bootstrap Leader User's Manual

093-000003-06

Binary Loader User's Manual

093-000017-02

Assembler

196

\

093-000018-05

®
NOVA Text Editor

093-000018-06

®
NOVA Text Editor

093-000020^02

Debug II User's Manual

093-000038-01

Debug I User's Manual

093-000039-00

Relocatable Loader

093-000040-00

Extended Assembler

093-000041-03

Relocatable Math Library File

093-000042-01

Single User Basic

093-000044-02

Debug III User's Manual

093-000052-02

Extended Algol User's Manual

093-000053-05

Fortran IV User's Manual

093-000053-07

Fortran IV User's Manual

197

093-000054-00

NOVA Assembler for the IBM 360

093-000055-03

Selfloading Bootstrap and Binary Loader

093-000062-03 ~

The Stand-Alone Operating System User's Manual

093-000062-04

The Stand-Alone Operating System User's Manual

093-000065-02

Extended Basic User's Manual

093-000067-01

<s>
Introduction to Programming the NOVA Computers

093-000074-01

Litrary File Editor

093-000081-02

Macro-Assembler User's Manual

093-000083-04

Introduction to Real Time Disk Operating System

093-000084-00

Octal Editor

093-000090-01

Fundamentals of Small Computer Programming

198

MISCELLANEOUS

Authorized ADP Schedule Price List for 1976

Supplemental Price List for 1976

DG/DAC Sensor I/O Subsystem 012-244

®
NOVA Cassette System Information Package

Datax User Instruction Guide number 1600-674-01

Point Plotter Dual D/A Converter Model DT212

Datax High Speed Data Acquisition System Modules

199

APPENDIX V

RELOCATABLE BINARY UTILITY PROGRAMS

089-000031-03

Relocatable Debug II

089-000046-05

Relocatable FPI

089-000073-02

Extended Debug III

089-000080-02

Relocatable Binary Punch

089-000081-04

Stand-Alone Library File Editor

089-000104-02

Stand-Alone Operating System Text Editor

089-000106-02

Stand-Alone Operating System Extended Assembler

089-000120-02

SOS cassette/Magnetic Tape Relocatable Loader

089-000121-02

Stand-Alone Operating System Command Line Interpreter

200

089-000122-02

Stand-Alone Operating System Generation Program

089-000137-02

SOS Extended Basic MP

089-000138-02

SOS Extended Basic HP

089-000139-02

SOS Extended Basic PUR

089-000156-02

Extended Basic Software Multiply/Divide

089-000159-01

SOS Extended Basic Dummy Print

089-000160-01

SOS Extended Basic Dummy Matrix

201

APPENDIX W

ASSEMBLER SOURCE SUBROUTINES

090-000010-02

System Subroutine Core Compare

090-0000 12-01

System Subroutine Single Precision Absolute Value

090-000013-01

System Subroutine Single Precision Signed Multiply

090-000014-01

System Subroutine Single Precision Signed Divide

090-000015-01

System Subroutine Double Precision Absolute Value

090-000016-01

System Subroutine Double Precision Signed Multiply/Divide

090-000017-02

System Subroutine Double Precision Addition

090-000018-01

System Subroutine Double Precision Subtraction

090-000019-01

System Subroutine Double Precision Negate

202

090-000020-01

System Subroutine Unsigned Multiply

090-000021-01

System Subroutine Unsigned Divide

090-000025-01

System Subroutine Logical Exclusive OR

090-000026-02

System Subroutine Logical Inclusive OR

090-000027-01

System Subroutine Single Precision Binary Coded Decimal To

Binary

090-000028-01

System Subroutine Single Precision Binary To Binary Coded

Decimal

090-000029-01

System Subroutine Single Precision Decimal To Binary

090-000030-01

System Subroutine Single Precision 3inary To Decimal

090-000031-01

System Subroutine Single Precision Octal To Binary

090-000032-01

System Subroutine Single Precision Binary To Octal

090-000033-01

System Subroutine Double Precision Binary Coded Decimal To

Binary

203

090-000034-01

System Subroutine Double Precision Binary To Binary Coded

Decimal

090-000035-01

System Subroutine Double Precision Decimal To Binary

090-000036-02

System Subroutine Double Precision Binary To Decimal

090-000037-01

System Subroutine Parity Generator

090-000038-01

System Subroutine Binary To Gray Code

090-000039-01

System Subroutine Gray Code To Binary

090-OG0040-01

System Subroutine Random Number Generator

090-000043-01

System Subroutine Debug I

090-000257-05

System Subroutine Fortran Runtime Parameters

090-000498-04

System Subroutine Stand-Alone Parameters

090-000520

System Subroutine Real Time Operating System Parameters

090-OC0883-02

System Subroutine Real Time Disk Operating System Parameters

204

/

090" 00

rrni SU.-UO. O^tin, S^ ,«a..*.«
System Sub

090-001482-00

* T^truct^on Definitions NOVA Basic

System Subroutine Instruction

090-001483-00

.em Subr

Interpreter

nqo-001484-00

S1SZ SuLoutine Definitions ,0, The Operate System

retraction Definitions Floating Point

System Subroutine Instruction

205

APPENDIX X

ABSOLUTE BINARY UTILITY PROGRAMS

091-000001-07

Paper Tape Editor

091-000002-08

Paper Tape Assembler

091-000003-03

Debug II *°r «. 06200-07577

091-000004-OU
Bootstrap

Binary Leader For The aanually Loaded

091-000005-02

Binary Punch (High Core)

091-000006-01

Binary Punch (Low Core)

091-000007-02

Core Compare

091-000008-04

Tape Duplicator

091-000010-03

Debug II ?or 4K, 00400-01777

206

091-000012-08

Basic Floating Point For 4K, 05600-07577

091-000013-08

Extended Floating Point For 4K, 04100-07577

091-000014-01

Floating Point To Octal Converter

091-000016-04

Relocatable Loader

091-000017-07

Extended Assembler

091-000018-07

Single User Basic

091-000036

Selfloading Eootstrap And Binary Loader

091-000038-07

Extended Relocatable Loader

091-000052-03

Fortran Compiler For 8K

091-000057-04

Stand-Alone Library File Editor

091-000067-02

Stand-Alone Operating System Cassette Loader/Writer

091-000069-03

Stand-Alone Operating System Extended Assembler Without Mass

Storage

207

091-000070-03

Stand-Alone Operating System Generation Program Without Mass

Storage

091-000071-03

Stand-Alone Operating System Generation Program With

Cassette

091-000072-03

Stand-Alone Operating System Command Line Interpreter With

Cassette

091-000073-03

Stand-Alone Operating System Relocatable Loader With

Cassette

091-000C77-02

Stand-Alone Operating System Suoroutine Extended Basic

091-000081-01

Real Time Operating System Generation Program

208

APPENDIX Y

HARDWARE TEST PROGRAMS

095-000002

Memory Address Test

095-000007

Checkerboard II

095-000011

Real Time Clock Test

095-000012

Exerciser

095-000016-05

Binary 4015 Communications Controller

095-000028-02

Binary 4026 DCM Multiplexor Diagnostic

095-000031

Checkerboard III

095-000035-03

Binary 4 029 Communications Controller

095-000044-04

800/1200 Power Shut Down Test

209

095-000045-04

(g)

NOVA 800 Logic Test

095-000048-04

NO VA 800 Teletype Test

095-000073-02

Binary 4060 Quad TTY Multiplexor

095-000099-02

Supernova, NOVA® 800/1200 Multiply/Divide Test

210

APPENDIX Z

LIBRARY PROGRAMS

099-000001-02

Relocatable Math Library File

099-000005-07

Fortran Runtime Library I

099-000006-04

Fortran Runtime Lirary II

099-000007-05

Fortran Runtime Lirary III

099-000008-02

Runtime Library Software Multiply/Divide

099-000009-02

®
Supernova, NOVA 800/1200 Runtime Library Hardware

Multiply/Divide

099-000010-08

Stand-Alone Operating System Library

099-00001T-02

®
Runtime Library NOVA Hardware Multiply/Divide

211

099-000012-05

Algol Runtime Library I

099-000013-05

Algol Runtime Library II

099-000014-04

Algol Runtime Library III

099-000018-03

Fortran Runtime Library

099-000020-02

Dummy Stand-Alone Operating System Library

099-000021-03

Fortran Data Plot Library

099-000041-02

Stand-Alone Operating System Cassette Driver

099-000060-00

Real Time Operating System Task Monitor Library

099-000061-00

Real Time Operating System Handler Library

099-000062-00

Real Time Operating System Cassette Handler Library

099-000077-02

Stand-Alone Operating System Single User Extended Basic

212

LIST OF REFERENCES

®
1. Pounds, J. W. , The Data General NOVA 800 Minico mput er

as a Di gital Controller Master of Science Thesis, Naval

Postgraduate School, Monterey, 1975.

2. Data General Corporation, Reference Manual

093-000067-01, Introduction to Programming the NOVA

Computers , 1972.

3. Data General Corporation, Reference Manual

015-00 009-00, How to Use the NOVA_ Computers, April

1971.

4. Data General Corporation, Reference Manual

®
015-000023-03, Programmer's Reference Manual NOVA _ LINE

COMPUTERS, January 1976.

5. Data General Corporation, Reference Manual

015-000021-02, Programmer's Reference Manual

PERIPHERALS. July 1975.

6. Data General .Corporation, Reference Manual

15-00 0C3 1-02 , Interface Designer 1 s Reference Manual

R
NOVA AND ECLIPSE LINE COMPUTERS, August 1975.

7. Data Translation Corporation, Engineering Specification

160 0-6 74 Rev. 1, DAI AX User Instruction Guide, 19 74.

3. Data Translation Corporation, Data Sheet DT212, Point

Plotter Dual D/A Converter, October 1974.

213

9. Data General Corporation, Reference Manual

93-000 002-01, User^s Manual BOOTSTRAP LOADER, August

1970.

10. Data General Corporation, Reference Manual

093-000003-06, Oser's Manual BINARY LOADER PROGRAM,

January 1973.

11. Data General Corporation, Reference Manual

093-000055-03, SELFLOADING BOOTSTRAP AND BINARY LOADER,

February 1973.

12. Data General Corporation, reference Manual

093-000062-03, Jser^s Manual THE STAND-ALONE OPERATING

SYSTEM, June 1973.

13. Data General Corporation, Reference Manual

093-000062-04, User^s Manual STAND-ALONE OPERATING

SYSTEM, July 1974.

14. Data General Corporation, Reference Manual

®
093-000018-05, NOVA_ TEXT EDITOR, November 1972.

15. Data General Corporation, Reference Manual

®
093-000018-06, N0VA_ TEXT EDITOR, June 1973.

16. Data General Corporation, Reference Manual

093-000074-01, LIBRARY FILE EDITOR, December 1972.

214

Kalph
2 6953

J

A User • c „ • .

000 minicomputer.

Thesis

R17 Ralph

c.2 A user's guide for ^
the Data General Nova 1^/

min i computer.

! fi ° ^ °

INTERNALLY

DISTRIBUTED REPORT

thesR17

A users guide for the Data General Nova

3 2768 001 01321 2
DUDLEY KNOX LIBRARY

