NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A USER'S GUIDE FOR THE DATA GENERAL NOVA 800 MINICOMPUTER

Ъy

Grant Douglas Ralph

December 1976

Thesis Advisor:

Donald E. Kirk

INESIS Advi

Approved for public release; distribution unlimited.

Thesis R17 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A USER'S GUIDE FOR THE DATA GENERAL NOVA® 800 MINICOMPUTER

Ъy

Grant Douglas Ralph

December 1976

Thesis Advisor:

Donald E. Kirk

Approved for public release; distribution unlimited.

UNCLASSIFIED		
SECURITY CLASSIFICATION OF THIS PAGE (When Deta En	tered)	
REPORT DOCUMENTATION P	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2.	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
A User's Guide for the Data General	Nova [®] 800	Master's Thesis
Minicomputer		December 1976
-		4. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(.)	·····	8. CONTRACT OR GRANT NUMBER(e)
Grant Douglas Ralph		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, Ca 93940		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		December 1976
		13. NUMBER OF PAGES 215
14. MONITORING AGENCY NAME & ADDRESS(II dillorent f	rom Controlling Oilice)	18. SECURITY CLASS. (of this report)
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		1
Approved for public release; dis	tribution unli	nited.
17. DISTRIBUTION STATEMENT (of the obetract entered in 18. SUPPLEMENTARY NOTES	Block 20, if different fre	en Report)
-		
19. KEY WORDS (Continue on reverse elde if necessary and i	dentify by block number)	
NOVA®		
Data General Corporation Minicomputer		
minicomputer		
20. ABSTRACT (Continue on reverse side if necessary and is	fantify by block number)	
This thesis is a comprehensive		R

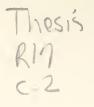
DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE (Page 1) S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered

new technique provides. Minimal discussion of the basic required instructions precedes each exercise to allow early and frequent personal operating experience on the equipment.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

A USER'S GUIDE FOR THE DATA GENERAL NOVA 800 MINICOMPUTER


by

Grant Douglas Ralph Major, Canadian Forces Bachelor of Engineering, Carleton University, Ottawa Ontario, 1969

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN APPLIED SCIENCE

from the NAVAL POSTGRADUATE SCHOOL December 1976

ABSTRACT

This thesis is a comprehensive summary of the Data General NOVA 800 minicomputer system used in the Electrical Engineering laboratory at the United States Naval Postgraduate School. The system hardware is discussed briefly. The major emphasis is placed on programming concepts which are presented in a modular form to encourage employment as a user's guide and instructional aid. Programming exercises are designed to consolidate the concepts introduced and demonstrate the advancement in sophistication each new technique Minimal discussion of the basic required provides. instructions precedes each exercise to allow early and frequent personal operating experience on the equipment.

IT AND LEGALS

TABLE OF CONTENTS

	LIS	T CF	TAB	LES	8
	LIS	T OF	FIG	URES	9
	ABE	REVI	AT IO	NS	10
	ACK	NOWL	EDGE	MENTS	12
I.	INT	RODU	CT IO	N	13
	Α.	BAC	KGRO	UND	13
	в.	PUR	POSE		14
II.	HAR	DWAR	E	•••••••••••••••	16
	A.	COM	PUTE	R PROCESSING UNIT (CPU)	16
	в.	REA	L TI	ME CLOCK (RTC)	17
	с.	TEL	ETYP	PE (TTY)	17
	D.	CAS	SETT	E DRIVERS (CTO AND CT1)	17
	E.	DIG	ITAL	TO ANALOG CONVERTOR (D/A)	18
	F.	ANA	LOG	TO DIGITAL CONVERTOR (A/D)	18
	G.	TEK	TEON	(R) DISPLAY (CRT)	18
	н.			R CONSOLE	19
		1.		licators Lights	20
			a.	RUN	20
			b.	ION	20
			c.	FETCH	21
			d.	DEFER	21
			e.	EXECUTE	21
		2.	0pe	erating Switches	21
			a.	ACCUMULATOR DEPOSIT	22
			b.	ACCUMULATOR EXAMINE	22
			c.	START	23
			đ.	CONTINUE	23
			e.	RESET	23
			f.	STOP	24

		g. DEPOSIT	24
		h. DEPOSIT NEXT	25
		i. EXAMINE	25
		j. EXAMINE NEXT	25
		k. INSTRUCTION STEP	27
		1. MEMORY STEP	28
		m. PROGRAM LOAD	28
		3. Exercise 1	29
III.	SOFT	T W A R E	34
	Α.	THE STAND-ALONE OPERATING SYSTEM	34
	в.	STEP 1 IN PROGRAM CREATION	35
		1. Core Image Loader/Writer	36
		2. Command Line Interpreter	38
		3. Symbolic Text Editor	39
		4. Exercise 2	43
	С.	STEP 2 IN PROGRAM CREATION	43
		1. Extended Assembler	44
	D.	STEP 3 IN PROGRAM CREATION	47
		1. Extended Relocatable Loader	47
	Ε.	STEP 4 IN PROGRAM CREATION	50
		1. Exercise 3	51
IV.	ASSI	EMBLY LANGUAGE	53
	Α.	FORMAT	53
	Β.	INPUT/OUTPUT	57
		1. Exercise 4	60
	с.	PSEUDO-OPERATIONS	61
	D.	PROGRAMMING SUMMARY	63
	Ε.	INTERRUPTS	66
		1. Exercise 5	68
	F.	PROGRAMMING THE CASSETTE UNITS	68
		1. Exercise 6	72
	G.	REVIEW OF PROGRAM CREATION	73
۷.	CONC	CLUSION	75
	Α.	HARDWARE PROBLEMS	75
	Β.		75
Append	ix A	: NOVA [®] 800 SYSTEM INITIALIZATION	78

Appendix	E:	CONSOLE OPERATIONS	80
Appendix	с:	OPERATING PROCEDURES	82
Appendix	D:	LOADING PROGRAMS	96
Appendix	E:	SOS	105
Appendix	F:	CLI COMMANDS	109
Appendix	G:	EDIT COMMANDS	111
Appendix	H:	ASM COMMANDS	118
Appendix	I:	RLDR COMMANDS	121
Appendix	J:	LFE COMMANDS	123
Appendix	К:	SYSG COMMANDS	126
Appendix	L:	MACHINE CODE AND ASSEMBLER LANGUAGE FIELDS.	127
Appendix	М:	ASSEMBLY LANGUAGE INSTRUCTIONS	133
Appendix	N :	INSTRUCTION EXECUTION TIMES	141
Appendix	0:	IO DEVICE CODES AND MNEMONICS	143
Appendix	P:	ASCII CODE	146
Appendix	Q:	ERROR CODES	152
Appendix	R:	TELETYPE OUTPUT EXAMPLE PROGRAM CREATION	163
Appendix	S:	ASSORTED PROGRAMS	169
Appendix	Т:	MAINTENANCE	193
Appendix	Ü:	LIST OF MANUALS	195
Appendix	۷:	RELOCATABLE BINARY UTILITY PROGRAMS	200
Appendix	₩:	ASSEMBLER SOURCE SUBROUTINES	202
Appendix	Χ:	ABSOLUTE BINARY UTILITY PROGRAMS	206
Appendix	¥:	HARDWARE TEST PROGRAMS	209
Appendix	Ζ:	LIBRARY PROGRAMS	211
LIST OF 1	REFER	RENCES	213
INITIAL I	DISTR	RIBUTION LIST	215

.

LIST OF TABLES

1.	Example Data	27
2.	Assembler Flags	46
3.	SOS Prompt Messages	51
4.	SOS Commands	69
5.	Analog Conversion Code	87
6.	Highest Memory Address	98
7.	SOS Master Tape	105
8.	Assembler Mode Designators	119
9.	Assembler File Designators	119
10.	Loader File Designators	122
11.	LFE Key Designators	124
12.	LFE File Designators	124
13.	Effective Address Determination	128
14.	Carry Designators	130
15.	Shift Designators	130
16.	Skip Designators	130
17.	Special CPU Mnemonics	132
18.	Control Designators	132
19.	I/O Skip Instructions	132

LIST OF FIGURES

`

1.	NOVA 800 System Configuration	32
2.	NOVA 800 Operator's Console	33
3.	Memory Space Allocations	52
4.	Instruction Formats	74
5.	ASR 33 Terminal	92
6.	DGC Cassette Transport	93
7.	A/D and D/A Interface	94
8.	R Tektronix TEK 31/10 Cathode Ray Tube	95

ABBREVIATIONS

AB - Absolute locatable Binary coding AC - Accumulators, as in ACO, AC1, AC2, AC3 A/D - Analog to Digital Converter ALC - Arithmetic or Logical instruction ASCII-American Standard code for Information Interchange ASM - Extended Assembler program ASR - Automatic Send and Receive BAUD- Standard bit rate unit of teletype communication BIT - Binary Digit BYTE- Eight bits CIL/W-Core Image Loader/Writer program CLI - Command Line Interpreter program CP - Character Pointer in the EDITOR CPU - Central Processing Unit CR - Carriage Return on teletype CRI - The TEKTRONIX TEK 31/10 Cathde Ray Tube CRY - Carry flag CT - Cassette Transport, as in CTO and CT1 CTRL- Control Key on teletype D/A - Digital to Analog Converter DGC - Data General Corporation DMA - Direct Memory Access EDIT- Symbolic Text Editor program ESC - Escape Key on teletype FF - Form Feed Key on teletype IBM - International Buisness Machines Incorporated I/O - Input/Output communication with peripherals ION - Interrupt On indicator light LF - Line Feed Key on teletype

LFE - Library File Editor program LSI - Large Scale Integrated circuit - Thousands, as in 1K, 8K, ... Κ MRI - Memory Reference Instruction MSB - Most Significant Bit PC - Program Location Counter PTP - High Speed Paper Tape Punch PTR - High Speed Paper Tape Reader RB - Relocatable Binary coding RLDR- Extended Relocatable Loader program ROM - Read-Only Memory RTC - Real Time Clock SR - Source Language Routine (Assembly) SOS - Stand-Alone Operating System SYSG- System Generation program TTI - Teletype Input from the keyboard TTO - Teletype Output TTP - Teletype paper tape Punch TTR - Teletype paper tape Reader TTY - Teletype in general VAC 🛩 Voltage in Alternating Current

ACKNOWLEDGEMENTS

I would like to thank Data General Corporation of Southboro, Massachusetts for its kind permission to use the invaluable information from the many manuals available.

I am indepted to the Data General personnel in Palo Alto, California for their friendly and prompt attention whenever I needed information or reference manuals.

Special thanks to Professor Donald Kirk for finding time in his busy schedule as Chairman of the Department of Electrical Engineering at the Naval Postgraduate School, to take me 'under his wing'.

I. <u>INTRODUCTION</u>

A. BACKGROUND

A Data General Corporation (DGC) NOVA 800 minicomputer has been available to the Electrical Engineering Department of the Naval Postgraduate School since 1974. During that period a limited effort has been directed towards utilizing this basic digital machine as an instructional aid in laboratory course work.

A 1975 thesis [Ref. 1] resulted in an analog to digital (A/D) and digital to analog (D/A) interface and a brief summary of the system's feedback control capability.

B. PURPOSE

A review of the system after completion of the first stage of hardware development identified the difficulty of a first time user in trying to comprehend what the system was or how it could be used. The large number of technical manuals which referred to various modifications and option characteristics amplified the confusion of the novice. Unless this problem was solved system development and expansion by thesis projects would be severely restricted. serves as a complete user's quide for the This thesis beginner. It is intended to summarize the information in all the various technical manuals and to explain the essential details. The assumption is made that the reader is familiar with the general features of a digital computer. It is hoped to stimulate the user to read further bv injecting simple short exercises yielding the satisfaction of causing 'the beast' to respond in the desired manner.

Chapter II gives a description of the hardware NOVA microcomputer configuration of the DGC 800 system available at the Naval Postgraduate School. The Operator Console switches are described with examples of their use. The chapter is intended to familiarize the user with the system and the manual techniques that may be used to initialize it.

In Chapter III the software operating system is introduced and the user is tutored through the four basic steps of program creation by the use of an example program.

14

In Chapter IV the programmer is taught the details of Assembly language source code. The techniques of direct program controlled communication, interrupts and cassette tape read or write are introduced.

Chapter V is the conclusion; it describes present system problems and recommendations for further system developement.

II. <u>HARDWARE</u>

The capability of any computer system is dictated by the basic model of processor (CPU), the options installed, the peripherals available, and the memory capacity (Fig. 1).

A. CENTRAL PROCESSING UNIT (CPU)

The present CPU is a NOVA JUMBO 800 minicomputer with 8,192 (8K) words of 16-bit ferrite core memory [Ref. 2]. The highest direct address for the 8K memory is 17,777. Maximum core expansion (8K) words of 16-bit ferrite core memory. [Ref. 2] Maximum core expansion is to 32,767 (32K) words. This highest possible address of 77,777 (octal) requires only a 15-bit program location counter (PC). The sixteenth bit is used for indirect addressing. The highest indirect address for the 8K memory is 117,777. There are four 16-bit accumulators (ACO, AC1, AC2, AC3) and a carry flag (CRY) of one bit. Several memory locations have special significance. Absolute locations 0 and 1 are used during interrupt processing, and locations 20 thru 37 are automatically modified when indirectly addressed.[Ref. 3]

B. REAL TIME CLOCK (RTC)

A real time clock is available and its use is described further in the instruction set and programming sections. It may be used to pause within a program that is executing or to trigger interrupts for servicing routines on a real time basis. [Ref. 4]

C. TELETYPE (TTY)

The ASR-33 model teletype is available for keyboard input (TTI) or printout (TTO) and paper tape reading (TTR) and punching (TTP). This paper tape capability should not be confused with the high speed paper tape capability (PTR and PTP), which is not available at the Postgraduate School. The specific model of teletype has direct implications on the way communications can be maintained with it. [Ref. 5]

D. CASSETTE DRIVERS (CTO AND CT1)

A maximum of eight cassettes can be configured with the system. The two units presently installed are designated as CTO and CT1 by setting the appropriate thumb wheel on the driver chassis. Cassettes may be controlled by programmed routines or by using routines provided under the STAND-ALONE OPERATING SYSTEM (SOS). When the power cord is connected into the CPU rear outlet and the toggle switch is in the REMOTE position, the CPU master key controls the turn on and off of both units.[Ref. 5]

E. DIGITAL TO ANALOG CONVERTER (D/A)

The D/A provides simultaneous output of two bipolar 10 volt analog signals and one timing signal from a 12-bit code [Ref. 8]. The A/D and D/A were incorporated in the system in a previous thesis project completed in 1975. [Ref. 1]

F. ANALOG TO DIGITAL CONVERTER (A/D)

The A/D converter provides high speed translation of bipolar 10 volt differential analog signals to a 12-bit binary code. The most significant bit (MSB) is then extended to complete the normal 16-bit word length. The A/D will multiplex any one of eight addressable inputs. [Ref. 7]

G. TEKTRONIX DISPLAY (CRT)

An adapter kit has been purchased to allow the CRT display to supplement the teletype unit. The necessary hardware connections have not been made. The CRT could use the second TTY connections and device codes (TTI1 and TTO1).[Ref. 6]

H. OPERATOR CONSOLE

The operation of the computer and the contents of specified memory locations can be observed or altered byusing the operator console (Fig. 2). The lights in the upper right-hand portion of the console display control conditions, the rows of lights in the upper center portion display the processor registers. If a light is lit, it means the corresponding bit is 1. If the light is not lit, the corresponding bit is 0.

Below the lights is a bank of toggle switches through which the operator can supply addresses and data to the processor. When these switches are in the up position, they represent a 1; when down, they represent a 0. Only switches 1 thru 15 are used for entering addresses. The data register can be used in conjunction with some of the operating switches, located at the bottom of the panel. Each switch lever is actually two momentary-contact logical switches with a common off position in the center. Lifting the lever up turns on the switch whose name is printed above it; pressing it down turns on the switch whose name is written below it. When released, these switches automatically return to off.

At the upper left is a 3-position key-operated rotary switch that controls power and locks the console. Turning it to ON simply turns on power. This also turns on the rear power outlet. Turning to LOCK keeps power on and disables the operating switches so no one can interfere with the operation of the processor. The operator can still use the data switches to supply information to the program. If the CPU stops, the function switches are enabled.

1. Indicator Lights

A few indicator lights display useful information while the processor is running, but most change too frequently and are therefore discussed in terms of the information they display when the processor is stopped. The address lights display the contents of the program location counter (PC). The numbered data lights display the data written in the last memory reference. FETCH, DEFER, and EXECUTE, are the state indicators. They specify the type of cycle (state) the processor will enter if operations are continued by pressing the CONTINUE or MEMORY STEF switch. The indicator meaning is true when the light is lit.

a. RUN

The processor is in normal operation. The CPU is executing instructions or data is being transferred via the data channel. When the computer stops the light goes out. In RUN only switches STOP and RESET are enabled.

b. ION

The program interrupt capability is enabled (The Interrupt-On flag is 1).

© Data General Corporation 1971. Reproduced from <u>HOW TO</u> <u>USE THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

c. FETCH

The next CPU cycle will be used to obtain an instruction from memory.

d. DEFER

The next processor cycle will be used to fetch an address word in an indirectly addressed memory instruction.

e. EXECUTE

The next CPU cycle will be used to perform an instruction. This next cycle will be used to reference memory for an operand in a move data or modify memory instruction.

2. Operating Switches

All of the switches in the bottom row except STOP and RESET are interlocked so they have no effect if RUN is lit. The four pairs of switches at the left are for depositing data in the accumulators and examining their contents. Lifting a switch up loads the contents of the data switches into the specified accumulator; pressing it down displays the contents of the accumulator in the data lights.

© Data General Corporation 1976. Reproduced from <u>NOVA</u> <u>LINE COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

a. ACCUMULATOR DEPOSIT

The left-hand four switches reference the four CPU accumulators and are numbered 0-3 from left to right. Each switch affects only its corresponding accumulator (AC). When one of these switches is pushed up, the current setting of the data switches is deposited into the appropriate accumulator. The data lights display the new contents of that AC.

b. ACCUMULATOR EXAMINE

When one of these switches is depressed, the contents of the corresponding accumulator are displayed in the data lights.

Example

If the operator wishes to load ACO with 126440 and AC1 with 063610; the procedure is:

-Turn the Power switch to ON. The FETCH light will turn on. -Set the data switches to 126440.

-Press ACO DEPOSIT. The data lights will read 126440. The carry and address lights can be ignored.

-Set the data switches to 063610.

-Press AC1 DEPOSIT. The data lights will read 063610. The carry and address lights can be ignored.

-The contents of ACO are checked to ensure the data was entered correctly by pressing ACO EXAMINE. The data lights will read 126440.

-Similarly the contents of AC1 are checked by pressing AC1 EXAMINE. The data lights will read 063610.

C. START

When this switch is pushed up, the START function is performed. The address indicated by data switches 1-15 is placed in PC and sequential operation of the CPU begins there. The FETCH and RUN indicator lights are turned on.

d. CONTINUE

When this switch is depressed, the CONTINUE function is performed. Sequential operation of the processor continues from the current state of the computer.

e. RESET

When this switch is pushed up, the RESET function is performed. The CPU is stopped after completing the current processor cycle. The flags in all Input/Output (I/O) devices are cleared, the 16-bit priority mask, the Interrupt-On flag, and all Busy and Done flags are set to O and the RTC is set to line frequency. Information deposited in an accumulator from the console is displayed in the lights but is not actually entered into the accumulator until the CPU performs some other operation. Therefore pressing RESET after an ACCUMULATOR DEPOSIT prevents the data from actually reaching the AC.

 \sim

f. STOP

When this switch is pushed down, the STOP is performed. The CPU is stopped after completing function instruction and before executing the the current next an I/O device requests an interrupt during instruction. If the execution of the current instruction, it is serviced before the is stopped. All outstanding data channel CPU requests are honoured before the CPU is stopped. After the processor stops, the address lights display the address of the next instruction to be executed and the data lights display the current contents of the memory bus. If the current instruction contains an infinitely long indirect or there are continuous data channel addressing chain requests, pressing STOP will not stop the computer. A RESET will be required.

g. DEPOSIT

When this switch is pushed up, the DEPOSIT function is performed. The current setting of the data switches is placed into the location addressed by the current value of the program counter. The updated value of the altered word is displayed in the data lights.

(© Data General Corporation 1971. Reproduced from <u>HCW</u> <u>TO</u> <u>USE THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

 \mathbf{X}

h. DEPOSIT NEXT

When this switch is depressed, the DEPOSIT NEXT function is performed. The program counter is incremented by one and the current setting of the data switches is placed into the word addressed by the updated value of PC. The updated value of PC is displayed in the address lights and the new contents of the altered location are displayed in the data lights.

i. EXAMINE

The address contained in data switches 1-15 is loaded into PC and displayed in the address lights. The contents of the word addressed by PC are then read and displayed in the data lights.

j. FXAMINE NEXT

The current value of PC is incremented by one and the new value is displayed in the address lights. The contents of the work addressed by the updated PC are then read and displayed in the data lights.

© Data General Corporation 1976. Reproduced from <u>HOW TO</u> USE THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)

<u>Example</u>

If the operator wishes to load the Table 1 data starting at absolute locations 17757; the procedure is: -Turn the Power switch to ON. The FETCH light will turn on. -Set the data switches to 017757.

-Press EXAMINE. The address lights will read 017757. Ignore the carry and data lights for now.

-Set the data switches to 125440.

-press DEPOSIT. The data lights will read 126440. The address lights will read 017757 and carry can be ignored.

-Set the data switches to 063610.

-Press DEPOSIT NEXT. Note that the address lights have been incremented to 017760. The data lights will read 063610 and carry can be ignored.

-Set the data switches to 000777.

-Press DEPOSIT NEXT. The address lights will read 017761. The data lights will read 000777 and carry can be ignored.

-To verify that the data was entered properly, set the data switches to 017757.

-Press EXAMINE. The address lights will read 017757. The data lights will read 126440 which confirms what was intended got entered, and carry can be ignored.

-Press EXAMINE NEXT. The address lights will read 017760. The data lights will read 063610 and carry can be ignored.

-Press EXAMINE NEXT. The address lights will read 017761. The data lights will read 000777 and carry can be ignored.

If a mistake is made entering the contents of a location, the procedure is:

-Set the data switches to the address to be corrected.

-Press EXAMINE, this sets the PC.

-Set the data switches to the correct contents of the desired address.

-Press DEPOSIT. The address lights and data lights will indicate the location and its new contents.

 Table 1
 EXAMPLE DATA

 LOCATION
 DATA

 17757
 126440

 17760
 063610

 17761
 000777

k. INSTRUCTION STEP

When this switch is pushed down, the INSTRUCTION STEP function is performed. The instruction contained in the word addressed by the current value of the program counter is executed and then the CPU is stopped. The address lights display the updated value of PC and the data lights display the contents of the memory bus. The meaning of the data displayed depends on the instruction as follows:

LDA, STA, ISZ, and DSZ display the operand.

JMP and JSR for direct mode display the instruction, for indirect mode display the effective address.

 \mathbf{N}

Arithmetic and logical instructions display the instruction.

Input/Output instructions display the data.

The mnemonics LDA, STA, ISZ, DSZ, JMP and JSR are Assembly language instructions that are explained in more detail in Chapter IV.

1. MEMORY STEP

When this switch is pushed up, the MEMORY STEP function is performed. The CPU performs a single processor cycle and then stops. At completion the lights indicate the next state to be executed. The address lights display PC and the data lights display the data for the last memory step. Changing the contents of an AC between memory steps may destroy information necessary for the execution of the remainder of the instruction.

m. PROGRAM LOAD

When this switch is pushed up, the PROGRAM LOAD function is performed. The contents of the read-only memory (ROM) bootstrap are placed in memory locations 0-37 (octal), then the RUN light is turned on and normal operation is begun at location 0.

(C) Data General Corporation 1971. Reproduced from <u>NOVA</u> <u>LINE COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

3. Exercise 1

At this point it would be wise to become familiar with the computer and console operations by completing the following exercise.

This exercise is designed to familiarize the user with the operator's console and to introduce two techniques for loading the BOOTSTRAP loader program which is part of system initialization (Appendix D). Either of these two techniques can be used in place of the normal initialization described in Appendix A , if the cassette procedure transports are not available. Before proceeding the reader should become familiar with Appendix B which describes console procedures. Before starting to enter the Manual BOOTSTRAP below, complete the machine code program in Section A of Appendix D by filling in the appropriate XX and dd values.

Manual Bootstrap

This is the most basic technique an operator can use for initialization. It requires only the basic computer without the PROGRAM LOAD switch and the ASR 33 teletype to operate:

1. Turn on main power.

2.Enter the manual BOOTSTRAP starting at location 017757. Section A of Appendix D explains the BOOTSTRAP.

3. Turn the TTY power switch to LINE.

4. Mount BINARY LOADER paper tape 091-000004-04 in the TTR.

.

λ.

When loading paper tape, place the leading end in the read station and set the remainder on the floor immediatly below there, clear of obstacles. The TTR switch should be at FREE while loading. Feed the blank leader past the read station by hand and stop with one or more blank frames before the data. Check that the data is program and not just an identification code. This is done before loading bv inspecting the tape for a hole pattern that can be read as the tape identification number. Set the TTR switch to START. Section C1 of Appendix D explains the BINARY LCADER. Section B of Appendix C explains the TTR.

5.Execute the BOOTSTRAP program by setting the data switches to 017770 and pressing RESET and START. The BINARY LOADER will be read into core. The address lights will read 017776. The data lights will read 063077. At this point the system is initialized and the operator can use the BINARY LOADER to load any absolute binary paper tape appropriate for what he intends to do. In subsequent sections of this thesis the operator will learn what programs might be appropriate.

6.In order to demonstrate several other console switch functions, let's restart the manual BOOTSTRAP in a slightly different way. Since it has already been entered in memory, set the data switches to the start address 17770 and press RESET.

7. Mount the BINARY LOADER paper tape in the TTR. Ensure that the first data frame is not past the read station.

8. Press EXAMINE to set the PC to the start address (017770).

9.By repetitively pressing MEMORY SIEP trace the progress of the BOOTSTRAP execution until address 017766 is about to enter the FETCH cycle. Iwo frames of the BINARY LOADER paper tape will be read.

10.Now repetitively press INSTRUCTION STEP and trace the progress of the BOOTSTRAP execution until the address 017766 returns. Another frame of the BINARY LOADER paper tape will be read.

11.Pressing CONTINUE will read in the remainder of the BINARY LOADER tape. The system has been re-initialized.

Automatic Bootstrap

This is a slightly more sophisticated initialization technique that requires the basic computer with the PROGRAM LOAD switch and the ASR 33 teletype to operate:

1.Set the data switches to 000010; this specifies TTR input.

2.Mount the BINARY LOADER paper tape 091-000036 in the TTR. The different identification number from the manual procedure indicates that this is a different version of the program written specifically for the Automatic BOOTSTRAP. The SELFLOADING BOOTSTRAP AND BINARY LOADER program is explained in Section C2 of Appendix D.

3.Press RESET and PROGRAM LOAD. The paper tape will be read into memory. The address lights will read 000121 and the data lights will read 063077. At this point the system is initialized and the operator can use the BINARY LOADER to load any absolute binary paper tape appropriate for what he intends to do.

4. The automatic BOOTSTRAP can be loaded with the power switch in LOCK and the key removed.

Δ

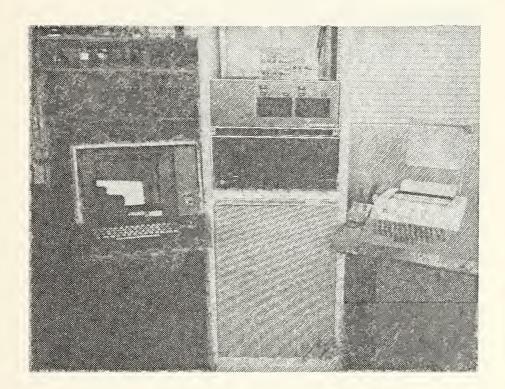


Figure 1 - NOVA 800 SYSTEM CONFIGURATION

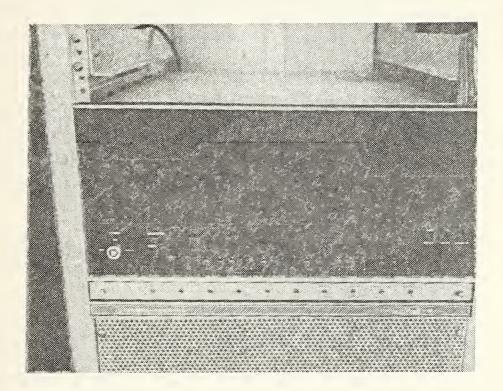


Figure 2 - NOVA 800 OPERATOR'S CONSOLE

 \backslash

III. <u>SOFTWARE</u>

Due to the present limited memory capacity (8K) the convenience of higher level languages like Algol, Basic and Fortran is not available. The present working code is primarily Assembly language with some knowledge of machine language being of benefit.

Several Data General Corporation (DGC) programs are available on paper tapes. An index of their identification numbers is included as Appendices V-Z. Further documentation appears in the list of manuals in Appendix U.

A. THE STAND-ALONE OPERATING SYSTEM

The NOVA[®] 800 is programmed within a software environment called the STAND-ALONE OPERATING SYSTEM (SOS). By using certain programs within a particular SOS it is possible to:

-initialize the computer

/

-allow a desired program on a specified peripheral device to be read into cr written from memory

-create a new program by inputting Assembly language code from the teletype

-correct mistakes or change existing programs

-translate the Assembly language source code into a relocatable binary (RB) machine language code

-translate the RB code into absolute locatable binary (AB) code in memory that is a suitable form for understanding and executing by the CPU as a program.

The particular programs and functions available in any SOS are decided at the time of its creation by operator selection of appropriate utility programs which when combined will fulfill the requirements of the specified hardware configuration in which it will be used. If a cassette driver is available, the selected SOS utilities may be stored on a master tape which can be called the SOS master cassette.

B. STEP 1 IN PROGRAM CREATION

The SOS utility programs are what the programmer must use to create a program. To produce a file of source program code he must know and be able to use the following utility programs; the CORE IMAGE LOADER/WRITER, the COMMAND LINE INTERPRETER, and the SYMBOLIC TEXT EDITOR. The programmer uses the first two programs to load in the EDITOR so that programs can be created and saved on a cassette.

Due to its limited size, the PROGRAM LOAD hardware BOOTSTRAP is used to load another loading routine. For the cassette system this other loading routine is called the CORE IMAGE LOADER/WRITER and must be on file 0 of a cassette mounted on unit 0 (Section C3 of Appendix D). However, it fulfills the same function as a BINARY LOADER in the paper tape environment.

The distinction of paper tape from cassette environment is purely arbitrary to the CPU since the Large Scale Integration (LSI) hardware BOOTSTRAP uses the data switches to determine the device code.

On the SOS master cassette, programs are loaded into sequential files starting at 0. Therefore, for SOS, file 0 contains the CORE IMAGE LOADER/WRITER. [Ref. 12]

1. Core Image Loader/Writer

The CORE IMAGE LOADER/WRITER (CIL/W) program on the SOS master cassette is identical to paper tape 091-000067-02. It performs two utility functions: it loads core image files from cassette tape into core and produces core image files on cassette tape [Refs. 12 and 13]. The CORE IMAGE LOADER/WRITER program works only with cassettes.

The CORE IMAGE LOADER/WRITER can be bootstrapped from file 0 of the SOS master cassette on unit 0. When first loaded, the tape must be rewound manually. The normal loading procedure is described in Appendix A.

The Loader/Writer is read into page zero (0-377) initially and then relocates itself to the last 400 (octal) locations in core. After relocation a prompt # on the teletype indicates that the CORE IMAGE LOADER/WRITER is ready. Once it is in core the Loader may be restarted by setting the data switches to the last memory address, pressing RESET, and then START (For 8K set 017777).

(C Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

The # symbol indicates the Loader is waiting for the operator to respond with a cassette unit number (0-7) and a file number (0-99) separated by a colon. Specifying unit 0 is optional. The indicated cassette file is loaded into memory upon command termination by a teletype CARRIAGE RETURN. If data switch 0 on the console is 1, the program will halt on completion of the load. If the switch is 0, control is passed to the loaded program linked through location 405.

If the Loader encounters a non-recoverable error while trying to load a file, it will type *ERR and halt with a code in ACO. The error codes are explained in Section A of Appendix Q. If rewinding and substituting a different cassette tape does not clear the error condition, a hardware fault is indicated.

The CORE IMAGE WRITER operates in a manner similar to that of the Loader. When the Writer is started it outputs a # prompt and waits for specification of a device number and a file number separated by a colon. After typing the unit and file numbers followed by a CARRIAGE RETURN, the operator receives NMAX as a prompt. The operator responds to the prompt message NMAX by typing the highest core address (octal) whose contents he wants written into the cassette file he specified initially. The program always starts at absolute address zero and after completing a successful write, the message OK is typed and the routine HALTS. Non-recoverable errors are handled the same as with the Loader. [Ref. 12]

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

Example

After loading the CIL/W the user receives the prompt #. When creating programs he selects the next SOS utility program that is appropriate for his stage in the program creation. He may choose to load the SOS utility programs by the COMMAND LINE INTERPRETER (CLI) mnemonic load commands. To do this, the CLI must be loaded. To load the CLI, which is on file 1 of the SOS master cassette, the operator types 0:1 and CARRIAGE RETURN after the prompt #. The CLI prompt R indicates that it is ready for a command. The command line at this point will look like:

0:1 (CARRIAGE RETURN) R

2. Command Line Interpreter

The COMMAND LINE INTERPRETER (CLI) is a utility program which performs certain file maintenance chores for the user and implements mnemonic loading of other utility programs from a Master tape. The CLI accepts commands typed by the operator on the teletype. When it is ready to receive a command a teletype prompt of R and CARRIAGE RETURN is sent.

In order to use the CLI, the CORE IMAGE LOADER/WRITER must be in core, and the Master cassette must be on CTO.

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

The CLI can be loaded using the CORE IMAGE LOADER/WRITER. Many CLI commands cause it to be overwritten in core and a reload is required to return to the CLI operation. CLI commands are explained in Appendix F. [Ref. 12]

<u>Example</u>

After the CLI is loaded the programmer is ready to load the EDITOR program. The user types EDIT and CARRIAGE RETURN after the CLI prompt R. When the EDITOR is ready to accept commands the symbol * is displayed on the teletype. The command line at this point will look like:

R EDIT (CARRIAGE RETURN)

*

3. Symbolic Text Editor

The TEXT EDITOR is used to create or modify ASCII files. The prompt * is given when the program is ready to accept editing commands. The EDIT instructions are explained in Appendix G.

Once loaded the TEXT EDITOR is self-starting and provides over 6,000 characters or six pages of normal symbolic source text (for 8K).

(© Data General Corporation 1973. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA)

The NOVA editing commands are divided into groups,

those that input and output the contents to and from the edit buffer and those that modify the contents contained in the buffer. Input commands read a program (or part of a program) into the buffer for later editing. The edit commands are used to modify the contents of the buffer. After updating the buffer, the corrected program may be placed onto a file by the output commands. Several commands can be specified at one time by separating them with the symbol \$ which is caused by striking the escape (ESC) key once. A command or string of commands is executed by striking the ESC key twice (\$\$).

The command structure is versatile enough to allow changes at the character level as well as the line level. Line numbering is continually updated as lines are inserted and deleted. String searches provide a convenient method of locating characters. [Refs. 14 and 15]

Example

Now that the CLI has loaded the EDITOR a program can be created. However, remember it is not always necessary to load SOS utility programs using the CLI. If the procedure in Appendix A has been followed, the CORE IMAGE LOADER/WRITER will do the same thing by loading for example, file 2 (the EDITOR), as in the following command line:

0:2 (CARRIAGE RETURN)

*

Most utility programs will reinitialize the CORE IMAGE LOADER/WRITER by the CTRL C command. The EDITOR uses the H command (Appendix E). In those cases where the SOS has been halted (by some catostrophic error) the standard data switch setting of 017777 forces the system to reinitialize the CIL/W when the operator presses the console switches RESET and START. Since the system automatically restarts by loading (executing) the CORE IMAGE LOADER/WRITER, the above technique is often more convenient for loading the SOS utility programs.

After the EDITOR prompt *, the programmer must ensure that a scratch tape is mounted on unit 1. The steps in creation are to open a write file on the first available file (file 0 on a scratch tape), insert the necessary source code into the edit buffer, terminate the insert command by striking the ESC key twice, type the buffer contents to verify they are correct, save the program on the output file, close the edit buffer, open the saved file for reading, yank the file into the input edit buffer and type the buffer contents to confirm the correct program.

Some confusion can develope over the symbol 3. The ESC key prints the \$ when struck and there is also an independent character \$. The \$ in an edit command string always signifies the ESC key. Any other occurence means the \$ key on the TTY.

Example

To produce a source tape file by the creation steps listed above, the following command lines are typed on the teletype:

*GWCT1:0\$\$	(open CT1:0 for writing)
*I (CARRIAGE RETURN)	(begin inserting source code)
program (carriage return)	(inserted by operator)
\$\$	(terminate insert command)
*T\$\$	(type the buffer contents)
PROGRAM	(contents of the buffer)
*B\$P\$GC\$\$	(record and close the buffer)
*GRCT1:0\$\$	(open CT1:0 for reading)
*Y\$T\$\$	(input and type buffer)
PROGRAM	(program listing)
*	(ready to continue)

When attempting to open a file for reading (GR) or writing (GW) an error will be indicated by I/O ERROR followed by the two digit system error number. The command CTRL A will reinitialize the SYMBOLIC TEXT EDIFOR without destroying the contents of the edit buffer. These errors are often caused by the operator not rewinding the cassette when it is first mounted to check that it is seated properly.

4. <u>Exercise 2</u>

Since at this point it is assumed that the reader is learning the system, follow the steps in the preceeding paragraphs to create a source file containing the Teletype Output Example Program provided in Section A of Appendix R. This program will be used as an example throughout the sections on assembling, loading and executing procedures which follow. When you execute this Assembly language program later, it will print the following message on the teletype:

CONGRATULATIONS!

YOU HAVE COMPLETED YOUR FIRST PROGRAM CREATION.

C. STEP 2 IN PROGRAM CREATION

After the programmer has written an assemble language source file it must be translated into a binary code that the CPU can understand. This involves two procedures. The first procedure is a translation into relocatable binary (RB) code that does not have all of its addresses resolved and therefore cannot be executed by the processor. This translation into addresses relative to the first line of programming is done by the EXTENDED ASSEMBLER.

1. Extended Assembler

The EXTENDED ASSEMBLER, like the basic ASSEMBLER, converts symbolic source statements into machine language code. In addition to basic ASSEMBLER features the extended version provides relocation, interprogram communication, conditional assembly and more powerful number definition facilities. [Ref. 12]

The EXTENDED ASSEMBLER will assemble one or more ASCII source files to a relocatable binary file with an optional listing file. Input files are assembled in the order they were specified in the command line. A cassette tape unit may not be used for both input and output, nor may it be used for more than one output file. More than one input file is allowed from the same unit.

The teletype prompt ASM indicates the EXTENDED ASSEMBLER is ready to accept commands. The operator must not insert a space before the first entry following ASM because it is provided by the ASSEMBLER program and command format errors cause unpredictable results. The ASSEMBLER does not use the ESC key so that all \$ symbols are understood to be the corresponding \$ key on the TTY. These commands are explained in Appendix H. [Ref. 13]

(© Data General Corporation 1974. Reproduced from <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

<u>Example</u>

So far in the example program, only an Assembly language source file has been created. This next step will create another file that must be on a different cassette. Now there is a problem. We have two cassette units, CTO has the SOS master tape, CT1 has the new source tape and a new cassette is required. Since the SOS master cassette is only used at the time a utility program as loaded into memory it is the only one available for the new file. The following procedure is to be used with caution:

-Mount the Assembly language source tape on CT1 and press REWIND.

-Mount the SOS master tape on CTO and press REWIND.

-Initialize the system by the procedure in Appendix A.

-Load the EXTENDED ASSEMBLER. The command line will look like:

0:3 (CARRIAGE RETURN) ASM

-Mount the new scratch tape on cassette unit 0 (CTO) and press REWIND.

-If the assembly source tape is file 0 on CT1 and the RB file is to be saved on file 0 of CT0 and a teletype listing is desired, the command line for a normal two pass assembler will be:

ASM 1 CT1:0 CT0:0/B \$TT0/L (CARRIAGE RETURN) (this command is explained above) LOCATION (MACHINE CODE) (SOURCE CODE) (THESE COLUMNS ARE ASSEMBLER OUTPUT) LABEL DIRECTORY (this list is explained below) ASM (ready to continue)

. .

Remember that the ASM automatically supplies the first entry space; violating the given command format spacing may cause errors.

During an ASSEMBLER listing several symbols are inserted to inform the programmer what kind of addressing has been generated. Table 2 summarizes the symbol flags and their meanings.

Table 2 ASSEMBLER FLAGS

ADDRESS FLAG

MEANING

blank	Address	word	is	absolute
-	Address	word	is	page zero relocatable
ŧ	Address	word	is	normally relocatable

CONTENTS FLAG

<u>MEANING</u>

blank	Contents of word are absolute
-	Contents of word are page zero relocatable
=	Contents of word are page 0 byte relocatable
	Contents of word are normally relocatable
\$	Storage word reference a byte disp. external

The LABEL DIRECTORY is an alphabetical list of the LABELS that have been created and their relative addresses. This can be used for debugging program errors by adding the relative address to the entry address given at load time to obtain the absolute location. Section B of Appendix R is the teletype listing of the example program's assembly.

D. STEP 3 IN PROGRAM CREATION

The final step in program creation is the second procedure mentioned for translating the source code. This process takes the RB file from the ASSEMBLER output and replaces all the relative addresses with absolute memory locations. The resulting new absolute locatable binary file (AB) is in a core-image form that is executable by the processor. The translating routine is called the EXTENDED RELOCATABLE LOADER.

1. Extended Relocatable Loader

The RELOCATABLE LOADER produces an absolute binary core-image (or save) file from relocatable binary files. The loader accepts any number of relocatable binary files as input, resolves external displacements and normal externals, and maintains an entry symbol table that can be printed on demand. Extensive error detection logic is provided to prevent various fatal and non-fatal errors. A successful load is indicated by the prompt OK. The Loader enters ZREL user programs beginning at absolute address 50 (octal), and NREL user programs starting at location 440 (Fig. 3).

(C) Data General Corporation 1974. Reproduced from <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

mnemonics ZREL and NREL are Assembler language The pseudo-operations which indicate the memory area the programmer wants the routine loaded into. Assembler addressing is explained in Appendix L. The first 377 (octal) locations in core are called page zero addresses because they can be addressed directly (mode 0). This allows any locations defined in this area to be accessed more easily than any others because no type of indirect indexing techniques are necessary. These other addresses are located in the NREL area of memory and must be accessed by indexing a location that holds a pointer address that is within 200 (octal) locations of the location desired. The teletype prompt RLDR indicates the RELOCATABLE LOADER is ready to accept commands. Commands are explained in Appendix I. [Ref. 13]

Example

The same requirement for the new file has again created a problem. The procedure for managing the cassettes in completion of the assemble is as follows:

-Move the RB tape from CTO to CT1 and press REWIND.

-Replace the SOS master tape on CTO and press REWIND.

-Load the RELOCATABLE LOADER.

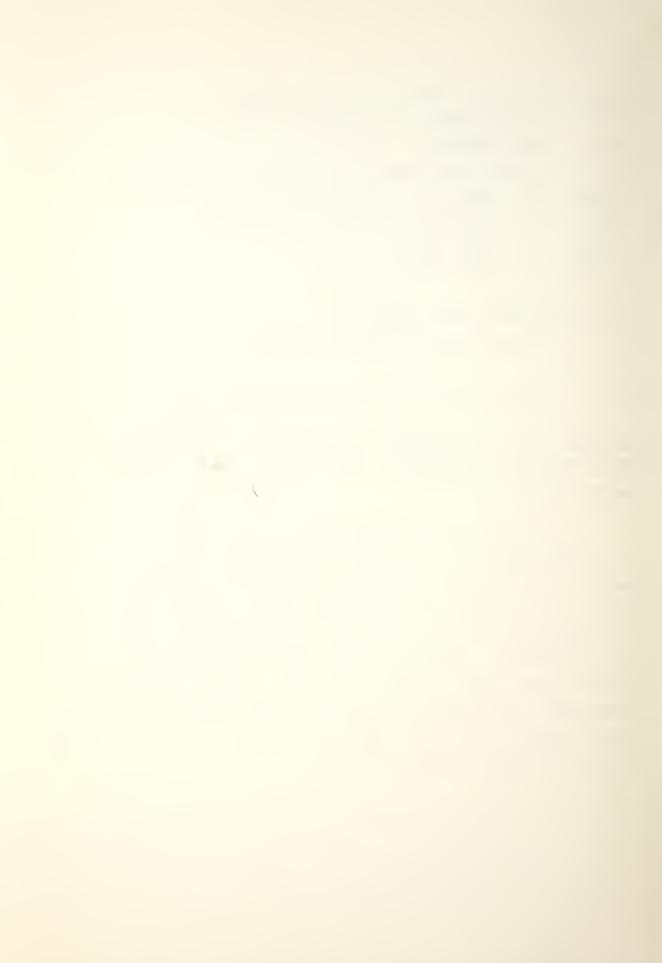
The command line will be:

0:4 (CARRIAGE RETURN)

-Mount the new scratch tape (AB)) on CTO and press REWIND.

-If the RB source tape is file 0 on CT1 and the AB file is to be saved on file 0 of CT0 and a teletype listing is desired, the command line will be:

RLDR


```
RLDR CT1:0 CT0:0/S $TT0/L (CARRIAGE RETURN)
(this command is explained above)
LIST OF INPUT PROGRAMS
(this list is explained below)
NMAX ----- (next NREL address available)
ZMAX ----- (next ZREL address available)
EST (not used)
SST (not used)
```

LIST OF ENTRY POINT ADDRESSES (this list is explained below)

OK (relocatable loading completed)

Remember that the RLDR automatically supplies the first entry space; violating the given command format spacing may cause errors.

The LIST OF INPUT PROGRAMS contains the titles of the referenced file programs in the order they were loaded. NMAX is the first available normal relocatable address and ZMAX is the first available page zero address. This gives an indication of how much memory has been used. EST and SST are parameters used in a disc operating system and are not used in SOS. ENTRY POINTS are the first locations for executable code for each program in the order in which they were loaded. The RLDR teletype output for the example program is Section C of Appendix R.

E. STEP 4 IN PROGRAM CREATION

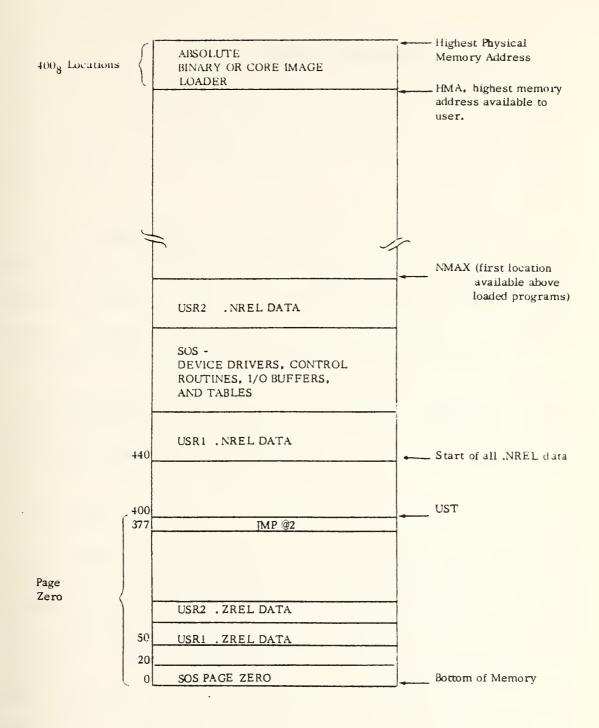
If the loaded program was coded with an end pseudo-operation that has the program title, the RELOCATABLE LOADER will generate coding that forces the system execution to continue at the entry point for that routine once the load is complete. Therefore the execution of any program be achieved by simply causing it to be loaded into can memory. However if the control is not coded to be passed to the program, the operator must know the entry address of the program and set the PC via the data switches. If the normal routine is followed the operator executes the CORE IMAGE LOADER program and in response to the prompt # he inserts the unit and file number of the program he wants executed. For a program on file 6 of cassette unit 0 the command line will be:

#0:0 (CARRIAGE RETURN)

Section D cf Appendix R shows the execution of the TTO example program.

1. Exercise 3

The SOS provides very convenient access to the EDITOR and other functions. This exercise is designed to demonstrate the facility with which SOS can be used. Remember SOS is just a convenient software arrangement on magnetic tape, made up from paper tape programs that can also be brought into memory individually by the procedures demonstrated in Exercise 1.


1.Follow the system initialization procedure in Appendix A.

2.Use the CORE IMAGE LOADER to verify the contents of the SOS are as indicated by receiving the correct Prompt message. The procedure is indicated in the example in section B1 of Chapter III.

Table 3 SOS PROMPT MESSAGES

FILE	PROMPT	PROGRAM (CALL)
0	#	Core Image Loader/Writer
1	R	Command Line Interpreter (CLI)
2	*	Symbolic Text Editor (EDIT)
3	ASM	Extended Assembler (ASM)
4	RLDR	Extended Relocatable Loader (RLDR)
5	LFE	Library File Editor (LFE)
6	SYSG	SYSGEN (SYSG)

3.Reload the utilities using the CLI.

Figure 3 - MEMORY SPACE ALLOCATIONS

IV. ASSEMBLY LANGUAGE

A. FORMAT

The ASSEMBLER program allows programmers to write programs in a symbolic mnemonic language instead of direct numeric machine code. The NOVA ASSEMBLY language is free format. Within broad limits, the programmer is free to determine the format of the listing of his program.

The ASSEMBLER program automatically segments the TTY listing into 11 inch pages with pagination and the title in the upper left corner as follows:

0001 TITLE

A new page can be forced at any point in the listing by the FF key. The source program is divided into character strings called lines by the requirement that every statement must be terminated with a carriage return (CR). The ASSEMBLER program provides a predetermined set of tabulation points at columns 1, 9, 17, 25 etc. Striking CTRL I on the TTY keyboard advances the spacing to the next tab setting that ensures one space separation from the last entry. All redundant spaces, tabs, and CARRIAGE RETURNS are interpreted only for listing format.

This allows the programmer to adopt a convenient general instruction format which separates a line into four possible fields:

LABEL: OPCODE OPERAND ; COMMENT

The ASSEMBLER recognises all ASCII characters except NULL, LF, RUB OUT and FF. The FF does not generate computer instructions, but it can be used to affect the source listing format. The characters . (when used alone), 2, ", and # have special significance.

. indicates the current location or contents of PC. @ places a 1 in the indirect bit of instruction (bit 5) and address words (bit 0). " replaces the next character by its ASCII code. (except RUB OUT, LF, FF, or NULL) # places a 1 in the NO LOAD bit (bit 12) of an arithmetic or logical command.

A LABEL is a name symbol of one or more alphanumeric characters that represents the location at which it is defined. The symbol . is also legal in a LABEL if it does not occur by itself. The first character must be a . or a letter and all LABELS are terminated by a colon (:). The first five characters of any LABEL are all that are used by the ASSEMBLER and must be distinct from all other LABELS. LABELS are optional.

© Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

λ

•

The OFCODE is separated from the LABEL by the colon, so spaces are not necessary except for readability. The particular OFCODE is what decides whether the location is intended as data or an instruction. However the real distinction between data and instructions is whether the binary code can be interpreted by the CPU. Appendix M summarizes the Assembly language instruction mnemonics. They can be separated into three general classes (Fig. 4).

<u>Memory Reference Instruction Class (MRI)</u>: This class contains instructions which move data between the accumulators and memory, instructions which modify memory, and jump instructions which alter the program flow of execution. Appendix L summarizes the machine code and Assembly language formats.

Arithmetic and Logical Class (ALC): This class contains instructions which manipulate the contents of accumulators and the Carry flag and instructions which perform all the arithmetic and logical functions between accumulators. Appendix L summarizes the machine code and Assembly language formats.

<u>Input/Output Instruction Class (I/O)</u>: This class contains instructions which move data between the accumulators and the I/O peripheral device and instructions which only control those devices. Appendix L summarizes the machine code and Assembly language formats.

(C) Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

An instruction OPCODE is separated from the OPERAND by at least one space, comma or TAB. A space is recommended for better field distinction. There can be up to three OPERANDS, each separated in a similar manner. Because spaces are transparent (undetected by the ASSEMBLER) a zero OPERAND must be explicitly defined when it precedes a non-zero OPERAND. Unspecified OPERANDS are assumed zero. It is recommended that commas be used for OPERAND separators.

The optional COMMENT is the last thing on any line before the CR. It must be started with a semi-colon (;) which will separate it from the OPERAND. A complete line of COMMENT or a continued COMMENT must still start with the semi-colon. Although the full 72 characters on the teletype line can be used for COMMENT, it should always be remembered that the ASSEMBLER program lists the source code shifted over to the right to allow for the machine code. This limits the useful line length to 56 characters. [Ref. 2]

(C) Data General Corporation 1972. Reproduced from <u>INTROPUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

B. INPUI/OUTPUT

Input/Output (I/O) is the process of moving information in a computer system between the central processing unit and peripherals such as the teletype, A/D converter, D/A converter and cassette transports. Peripherals can serve two main purposes, they provide the computer with a means of communicating with its surroundings (TTY, A/D and D/A) and they can supplement main memory with a secondary storage capability (CTO and CT1).

The direction of all information transfers on the I/O bus is defined relative to the computer. Output always refers to moving information from the computer to a peripheral; input always refers to moving information from a peripheral to the computer.

The information transferred between a computer and a peripheral can be classified as status, control and data. Status information indicates the peripherals state; busy or ready, or operatingimproperly. Control information is used to tell the peripheral what to do. Data is the information exchanged during reading, writing, storing or processing.

The amount of information transfered, one bit, eight bits (byte), sixteen bits (2 bytes or 1 word), or a group of words (block) depends on the peripheral device.

Information is transferred in one of three ways, under direct program control (TTY, A/D and D/A), under single word Interrupt control (TTY, CTO and CT1) or under data channel Direct Memory Access (CTO and CT1), depending on the peripheral and the I/O instruction used.

 \mathbf{N}

During input the peripheral's controller places the data in one of three possible holding registers (A, B, C) depending on the device, signals the CPU the data is ready and the processor brings the data into the computer. During output the CPU sends data to an output holding register in the device and the device signals when it is ready for the next data output. For the teletype, only one holding register (A) is involved, the device code is 10 (Appendix 0) and two flip-flops (Done and Busy), associated with that device, achieve the controlling functions. The three commands NIO, DOA, DIA can be used with the standard I/O Skip instructions of Table 19, to achieve communication with the teletype (Section A of Appendix C).

The NIO instruction may sometimes be used to set the device in some desired state by appending the appropriate control designator (Table 18).

Normal input is achieved with a DIAS AC,TTO command. The input data is placed in AC. Notice the mnemonic TTO or TTI is recognised by the Assembler program as meaning device code 10. Usually the second Assembly language argument is the number for the device code. A word of caution at this point, the DIAS instruction will input whatever data is in the input holding register of the TTY before it enables the device so that the user can strike a character key. The programmer must also realize that the TTY does not automatically print the characters struck by the operator. This requires that the programmer output the input character to make it appear that the struck character was printed. This technique is called echo printing.

Normal output is achieved with a DOAS AC,TTO command. The data in AC is placed in the output holding register of the TTY and the appended S enables the TTY to print it. The data is preserved in the accumulator. This allows the echo print routine to consist of a DIAS AC,TTI for input, then a DOAS AC,TTO for echo print and the program can still operate on the input character that remains in the AC.

The A/D and D/A were incorporated in the system in a previous thesis. Since this construction was an individual effort, the only source of hardware wiring documentation is Reference 1. The A/D operates on device code 21 and uses the associated Done and Busy flip-flops in the normal manner (Appendix L). However the following use of I/O instructions is peculiar to this device interface.

First, the programmer loads the number of the input channel for the A/D into a selected accumulator.

Second , the programmer instructs the A/D to start a conversion cycle by issuing a DOCS AC,21 command. The appended letter S on the DOC command sets the Busy flip-flop and clears the Done flip-flop.

On completion of the conversion, approximately 20 microseconds later, the A/D will set the Done and clear the Busy flip-flops. At that time the programmer may issue a DIC AC,21 command to retrieve the converted data in an accumulator of his choice.

The D/A operates on device code 23 and does not require the use of Done or Busy flip-flops. It settles to 0.01 percent of final value within three microseconds. The present configuration is only connected to allow X or Y output selection by entering a 0 for channel X or a 1 for channel Y in the desired accumulator and executing a

DOB AC,23 command. The computer output data is transfered from the selected accumulator into the previously designated D/A output channel's holding register by a DOA AC,23 command. The D/A continuously outputs values corresponding to the register contents and therefore needs no direct start of conversion instruction.

1. Exercise 4

This exercise is designed to start the user learning the first essential step in computer communications. If programs can be written to allow some sort of output message at critical points in their execution then the user has some indication that they are executing correctly.

Using the TTO Example program in Appendix R, modify the buffer contents to output a message that contains the following information:

NAME,	RANK
STREET	ADDRESS
CITY,	STATE
ZIP	CODE

Ensure that the edges are parallel and that the left margin is in column 9. The pseudo-operation Assembly language instruction .TXT is explained in Section C of this chapter. Section F of Appendix S contains the Assembler listing of a solution program for exercise 4.

C. PSEUDO-OPERATIONS

A special set of instructions called pseudo-operations (PSEUDO-OPS) are essential when creating a program. Although they generate no program instruction code they communicate important information to the ASSEMBLER and RELOCATABLE LOADER programs. These commands all begin with the symbol period (.). The PSEUDO-OPS are explained in the order they would occur in a program like the TTO EXAMPLE PROGRAM in Appendix R.

.TITL title

This command designates the five character title as the identifier for the program being created. The title will be repeated in the ASSEMBLER List of Input Programs Listing Pagination and Label Directory and in the RELOCATABLE LOADER List of Input Programs and List of Entry Point Addresses (Sections C and D of chapter III). If .TITL is omitted the utilities will substitute the title MAIN.

.ENT label list

This command resolves the addressing between programs. The programmer lists all of the labels that he wants to call that are in programs outside his own. To reduce confusion it is recommended that the title, first ENT label and first instruction to be executed in the program be identical. Separate subroutines must define their names as entry symbols so that outside calls can link addresses.

.EXTN

This is the command that relates internal program references to the .ENT location that they are addressing. A program calling a separate subroutine must state that its name is an external symbol.

.NREL or .ZREL

These commands instruct the RLDR where to start loading the program code when converting to absolute locations. The first zero relocatable (ZREL) program starts at location 50 and subsequent programs loaded at the same time start where the last program stopped until the ZREL area is full. Overflowing the ZREL area causes an error message. Normal relocatable code loads in a similar manner starting at location 440 (Figure 3). This is the first location after the ZREL area. Program types can be mixed.

.LOC address

This command allows the programmer to force the RLDR to start placing code at a specified location. This is the command to enter an Interrupt routine address into location 2 or a specific count into the AutoIncrement and AutoDecrement locations. The RLDR carries on loading from that address until told otherwise by a ZREL, a NREL or another LOC command.

.BLK count

This command tells the ASSEMBLER program to leave blank the number of words specified by count. This instruction is used to define I/O buffers as follows:

BUFER: .BLK count

.TXT 'message'

This command stores the text message defined within any set of user designated symbols (quotation marks are suggested) in a block of words. Characters are stored in pairs with the left ASCII character code in bits 8-15 and the right character code in bits 0-7 as follows:

NOTE: .TXT 'ABC'

will give this ASCII code buffer:

BA

nullC

The coding of an actual buffer can be seen in the Assembler listing for the TTO EXAMPLE program which is in Section B of Appendix R.

.END start address

This is the last command in a program creation. It instructs the ASSEMBLER program to write a command at the end of the program that will cause the CORE IMAGE LOADER (actually the Binary Loader portion of it) to start executing at the start address location specified, after the load is completed. If the start address is omitted (.END) the loader will HALT on load completion. The unspecified start address is the type of .END used in subroutine programs.

D. PROGRAMMING SUMMARY

The preceeding discussion on I/O and PSEUDO-OPS and frequent reference to Appendix L on Assembly language formats and Appendix M on Assembly language codes, should allow the reader to understand the TTO EXAMPLE program of Appendix R.

The first section of the program, delineated by the full line of asterisks, consists of general comments to identify the program and aid the user/programmer to see what the routine does.

The .TITL, .ENT and .NREL pseudo-ops designate the title and only externally accessible label as TTOEX. The program is normally relocatable; i.e. the loading starts at location That is why the entry point TTOEX is listed as 440 in 440. the relocatable load. This procedure is recommended so that the limited page zero locations can be used by programs that may require them. Another alternative is to define all data as page zero (using a .LOC) and place the tables and program for NREL so that the data can be addressed in the direct However short independent programs in page mode. zero eliminate addressing mode difficulties.

The first LDA instruction is used to save the address of the output buffer in a register so that it can be manipulated by an index to step through the elements of the table. This common technique of using a pointer to an address is achieved by the definition just before the program ends:

PBUF: BUFER

The next LDA instruction is part of an incrementing loop that increases the buffer pointer count and steps through the text defined by .TXT while outputting the message to the TTO.

A common technique for terminating a program that transfers data, is to keep checking for a special code that will only occur once the program is to HALT.

The MOV# instruction is designed to do nothing (#) but it does skip the HALT instruction if non-zero data is found in ACO.

The SKPBZ instruction checks to see if the TTO is occupied with output. If the Busy flip-flop is set the

program executes the JMP .-1 instruction. Otherwise it skips and continues.

The JMP instruction has employed the special symbol . which indicates the present location. Decrementing the present address by 1 causes the JMP to return to the previous SKPBZ instruction to continue. This causes a tight loop to occur while the program waits for the teletype to be done so it can continue with the output.

The DOAS instruction causes the character in bits 8-15 to be printed on the ITY. Since the next character is in bits 0-7 it is swapped into position for output while the other character is actually being typed.

The SKPBZ and JMP instructions are another pause while the program waits for the TTY to complete typing the first output character.

The second character is output by the second DOAS instruction. Again since there is some time delay in the mechanical motion of the teletype several instructions can be executed to reduce the waiting time.

The pointer is incremented to select the next buffer word and the program returns to the loop beginning by the last JMP instruction. Notice that because in this short program you can be certain the address of LOOP is within 377 locations of the JMP instruction, the actual location label can be used in the direct mode (ommitting the mode defaults to or 1).

The .END TTOEX pseudo-op designates the end of the program that is to be executed from location TTOEX on completion of loading.

E. INTERRUPTS

It should have been obvious in the TTO EXAMPLE program that all that looping and waiting was wasteful. The Interrupt facility provides a way of allowing the program to continue processing while a peripheral, which is far slower than the CPU, finishes its task.

When the peripheral finishes its task and sets the Done flip-flop this generates an Interrupt Request (if the device is wired for Interrupts). If the Interrupt On facility is enabled and if the Interrupt Disable mask bit for that device is 0 then the request is recognised. The CPU will service this interrupt when it completes the next instruction, if all DMA requests have been answered and if all higher priority peripherals (determined by is who physically closest) are answered.

Two locations in memory are automatically used during an Interrupt. The location where the program should return to continue after the Interrupt is saved in address 0 and the processor tries to execute an Interrupt processing routine whose start address is pointed to by the contents of address one. The processor routine must protect all accumulator contents and the carry so they can be restored prior to returning to the main program. It is the programmer's responsibility to clear the Done flip-flop when he wants to continue communication with that peripheral. When a device causes an Interrupt the Interrupt On flip-flop is disabled, so the programmer must reset Interrupt On if he desires that facility.

Example

The technique for programming an Interrupt is as follows:

-Place the address of the service routine in location 1 -Create a service routine that:

-saves the accumulators and the carry

-processes interrupts

-clears the Done flip-flop

-restarts the device if desired

-restores the accumulators and the carry

-enables Interrupt On

-returns to the address contained in location 0

-Create a main program that:

-initially enables the interrupt

-clears device's Interrupt Disable mask bit

-starts the device

-continues processing

1. Exercise 5

Create a program that uses the Real Time Clock on an Interrupt basis to output a repeating count from 0 thru 9 at precisely 1 second intervals. Since no large amount of processing will be required in the main program a simple loop that does nothing will be sufficient. Check the timing by counting the period of several count cycles.

An example of this sort of technique without looping is included as Section G of Appendix S. The program INIT starts the clock the first time. INTRUP processes the interrupt and protects the accumulators and carry. SUPR is a general subroutine that allows a table of job routines that may be serviced by one real time clock. EXEC2 is a subroutine that types the count 0-9 on a one second basis.

F. PROGRAMMING THE CASSETTE UNITS

Programming the cassette units would be a lengthy and complicated task if carried out with the basic I/O instruction set that has been presented so far. Fortunately the STAND-ALCNE OPERATING SYSTEM provides a set of I/O utility programs for communication with any peripheral in the system. For cassette programming the SOS commands are most convenient because they provide a functional read and write capability. All SOS commands have the following format:

> .SYSTM command error return continue return

The available commands are:

Table 4 SCS COMMANDS

COMMAND MEANING

.SYSI	Initialize SOS devices
.OPEN	Open a file before writing or reading
.CLOSE	Close a file after writing or reading
.RESET	Close all open files
.GTATR	Get file status
.RDS	Read sequential characters
.RDL	Read sequential lines
.WRS	Write sequential characters
.WRL	Write sequential lines
.GCHAR	Read a TTI character
. PCHAR	Write a TTO character
.MEM	Determine available memory
.MEMI	Allocate a memory increment

If there is an error the system returns to the location following the SOS command with a system error code in AC2 (Section H of Appendix Q). Normally the SOS command performs its function and the system returns to the second location following the SOS command and continues. Further detailed explanation of the SOS commands can be found in References 12 and 13.

To program the cassette transport the procedure is as follows:

.EXTN .SOS, .CTU1 ;necessary for SOS commands . .SYSTM .SYSI : initiates SOS devices JMP error .SYSTM LDA 0, file ;ACO contains the file number for Open .SYSTM .OPEN 31 ;Open CT1, device code 31 JMP error LDA 0, buffer byte address ; byte address=2xaddress LDA 1, buffer byte count ; number of characters .SYSTA .WRS 31 ;Record the output buffer JMP error LDA 0, buffer byte address ; SOS destroys all ACs LDA 1, buffer byte count .SYSTM .RDS 31 ;Load recording into the input buffer JMP error .SYSTM .CLOSE 31 ;close CT1 Type the buffer ;use TTO Example program . •

When the program is ready for the RLDR routine the operator must first load the Stand-Alone Operating System Library from paper tape Library program 099-000010-08 or from a cassette file it has previously been recorded on. Second, the operator must load the Stand-Alone System Driver from paper tape Library program Cassette 099-000041-02 or from a cassette file it has previously been recorded on. After these two programs are loaded in the order specified, the user program can be loaded and the external symbol references to the system labels .SOS and .CTU1 will be resolved. References 12 and 13 describe a separate trigger program, created by the user, to resolve these external references but it is not necessary. The external references will be resolved if the SOS I/O Driver utility program is loaded before the user program in the relocatable load. The user should not be alarmed at the page and one half length of the List of Entry Point Addresses, nor the unidentified symbol errors that appear beside half of them. The .SOS and .CTU1 routines were written for a general system with all of the availabe options and peripherals. The undefined symbols are not used in our limited system.

1. Exercise 6

Using the TTY input and output routines you have written, create a program that takes a message typed in from the teletype. saves the message in an input buffer, records that buffer on a cassette file, loads the cassette file into an output buffer and outputs that buffer on teletype. The following message from Exercise 4 would be appropriate:

> NAME, RANK STREET ADDRESS CITY, STATE ZIP CODE

Ensure that the edges are parallel and that the left margin is in column 9.

Section H of Appendix S is the Assembler listing for a system that will perform cassette communication. CASET uses the subroutines BIOA and TYPE that are in Sections B and C of Appendix S. TYPIO is a subroutine for entering characters from the teletype and packing them into a buffer area. It is included with the Assembler listing of CASET.

G. REVIEW OF PROGRAM CREATION

A brief summary of what has been covered in the creation process may help to tie it all together.

1. The user loads the CIL/W using the procedure discussed in Appendix A. Remember that if the console is still set up from a normal SOS user and if the CIL/W is still in core with the data switches set to 017777; initialization is achieved by pressing RESET and START.

2.Use the CIL/W to load the EDITOR and insert the Assembly language source code program. Remember to save the source on a scratch tape before closing the buffer.

3. Return to the CIL/W to load the ASSEMBLER. Replace the SOS master cassette on unit 0 with a new scratch tape (don't forget to REWIND) and execute the ASM command desired.

4. Move the ASSEMBLER relocatable binary tape file output from unit 0 to unit 1. Remount the SOS master cassette and press REWIND for both units.

5.Return to the CIL/W to load the RELOCATABLE LOADER. Replace the SOS master cassette on unit 0 with another new scratch tape and execute the RLDR desired.

6.Return to the CIL/W and load the new absolute binary program that you just created on unit 0.

The SOS cassette system does not protect any files coming after the file being written into. The user must save these files on a separate scratch tape.

MRI FORMAT

Machine Code: C 1 X D y 4 5 6 7 8 15 Assembly Code: Label: OPCODE AC, D, X ; Comment or Label: OPCODE D, X ; Comment

ALC FORMAT

 Machine Code:
 I
 ACS
 ACD
 FNC
 SHIFT
 CARRY
 NO
 SKIP

 Ø
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 Assembly Code:
 Label:
 FNC
 ACS, ACD, SKIP
 ; Comment

I/O FORMAT

Machine Code:

Ø11	AC	TRAN	SFER	CON	TROL	DEVICE CODE	
Ø 2 3 4 5 7 8 9 1Ø 15 Assembly Code:							
Label: Transfer AC, Device Code						; Comment	

Figure 4 - INSTRUCTION FORMATS

V. CONCLUSION

A. HARDWARE PROBLEMS

During the process of installing the A/D and D/A connections for sign bit extension, external potentiometers and MSB/LSB connectors a wiring problem has developed. The A/D does not operate correctly. The original thesis project resulted in a properly working model [Ref. 1]. The A/D has been factory checked and calibrated and is working properly. Although the wiring connections have been rechecked, no difference can be found from the pinning list of Reference 1. The manufacturer has offered to check the wiring diagram.

B. RECOMMENDATIONS

If A/D noise problems develope it is recommended that the flat cable connector from the patch board to the A/D inputs be changed to twisted pairs. This is a similar style of connecting cable that is commercially available.

It is recommended that the remaining D/A functions be connected so the full potential of the device can be used. Programming in Assembly language is a tedious and complicated process. Because the programmer must indicate the addressing modes and other details, errors are frequent in program creation. The next logical step in developing

the system is to use the Fortran, Basic or Algol programs that are already available. However this will require an expansion of the memory capacity to 24K words. This expansion would facilitate the interfacing of the NOVA with the IBM 360 system.

It is unknown what affect the cut DMA lines are having on the interrupt capability, however this facility should be connected. This would allow an interrupt routine to sequence through the input channels on a timed basis and permit general feedback control applications. In this regard the present Real Time Clock is not very useful. The slowest clock frequency is 10Hz. This frequent interrupt rate requires some counting technique to permit, for example a one second sampling interval. That implies that at least ten interrupts must occur before the real job can be executed. Each interrupt requires a time delay to be serviced and the counting routine requires additional time to calculate the number of interrupts to have occurred since the last job was serviced. These delays can be estimated from the instruction execution times in Appendix N, and the interrupt count adjusted to allow for that processing time. However in a larger system when there are several other jobs to be serviced the delay time will vary due to the job load to an unacceptable degree for the accuracy required for proper feedback control. The effect of this random error could be reduced by applying the standard stochastic more controlled feedback control techniques, however laboratory situations would result if another presettable counter were installed in the second Real Time Clock RTC1 (Appendix O).

Finally, it is recommended that the TEKTRONIX display be connected at the second teletype device position TTO1 and TTI1. The present teletype is too slow and noisy to be really convenient. It could be kept for the paper tape and print functions.

As comprehensive as this thesis is, it can not be expected to provide the amount of detail that is to be found in the available documentation. The List of Manuals in Appendix U should provide any additional information required. Frequent references throughout the text guide the user to the correct publications to answer most questions.

APPENDIX A

NOVA 800 SYSTEM INITIALIZATION

A. PRELIMINARY CONNECTIONS

Verify the following connections:

1.Connect CPU power cords to 115 VAC.

- 2.Connect ASR 33 teletype power cord to 115 VAC. Connect TTY data cable to CPU rear I/O socket P2.
- 3.Connect cassette driver power cord to CPU rear outlet. Connect cassette data cable to CPU rear I/O socket P5.

B. SWITCHES

4.Set cassette switch to REMOTE. Set right-hand thumb wheel switch to 0. Set left-hand thumb wheel switch to 1.

5.Set operator's console to ON.

6.Set TTY to LINE.

C. BOOTSTRAP

7. Mount SOS cassette on CTO and press REWIND.

8.Set data switches to 100034 for cassette load.

9.Press PROGRAM LOAD. The teletype prompt # indicates correct initialization of the CORE IMAGE LOADER/WRITER.

10.Set the data switches to 017777.

 \sim

APPENDIX B

CONSOLE OPERATIONS

A. TO SET PC AND CHECK THE CONTENTS OF A LOCATION
1.Set the data switches to the desired address.
2.Press EXAMINE. For AC use ACCUMULATOR EXAMINE.

B. TO ENTER OR MODIFY BINARY CODE

1.Set PC to the address.

2.Set the desired binary code in the data switches.

3. Press DEPOSIT. For AC use ACCUMULATOR DEPOSIT.

C. TO MANUALLY ENTER MACHINE CODE PROGRAMS

1.Set PC to the first program location.

2.Enter the binary contents for the PC address using the procedure described in B.

3.Set the data switches to the contents of the next program address.

4. Press DEPOSIT NEXT.

5.Repeat 3 and 4 until the entire program is entered.

D. TO VERIFY PROGRAM ENTRY

1.Set PC to the first program location.

2. Press EXAMINE.

3. Press EXAMINE NEXT.

4.Repeat 3 for each program address.

E. TO EXECUTE A PROGRAM

1.Enter the program using the procedure described in C.

2.Verify the program has been entered using the procedure described in D.

3.Set the data switches to the program start address.

4.Press RESET.

5.Press START.

APPENDIX C

OPERATING PROCEDURES

A. ASR 33 TELETYPE

The ASR 33 is an automatic Send and Receive terminal comprising a keyboard (TTI), printer (TTO), paper tape reader (TTR) and paper tape punch (TTP). It operates at a transmission rate of 10 characters per second (110 BAUD) and prints up to 72 characters per line at six lines to the inch. The model 33 has eight and one half inch width paper and will print only upper case ASCII code. Lower case codes are printed as upper case. Maintenance information is contained in Appendix T.

The teletype has separate input and output functions and therefore can be treated as two distinct devices. Each has its own device code, Busy, Done and Interrupt Disable flags, a separate buffer, and its own interrupt priority mask assignment (Appendix O). Striking a key places that character code in the A input buffer awaiting program retrieval. Input characters must be re-sent as output if the operator wishes the key that is struck to be printed (echo print). Model 33 printers ignore the even parity bit (MSB) in the 8-bit ASCII code listed in Appendix P.

 \mathbf{N}

There are three groups of switches on the terminal (Fig. 5). The right-hand switch has three positions for controlling all terminal functions as follows:

OFF-Power to the terminal is disabled.

LOCAL-Enables the terminal to operate independent of the computer.

LINE-Enables bi-directional communication with the CPU. This allows the teletype to be used as a separate typewriter, paper tape punch or paper tape listing device.

The left-hand set of four switches, which control paper tape operations, are selected by depressing the button for the desired function. When the button is pushed in the following operations are enabled:

ON-The punch will make paper tape for the operator if the control switch is at LOCAL or will list computer output on paper tape if the control switch is at LINE.

REL-New paper tape may be loaded in the punch.

B.SP-If an error occures when the operator is punching paper tape with the control switch in LOCAL, this switch moves the tape back one frame to allow deletion of the mistake by striking the RUB OUT key.

The paper tape reader is controlled by the left-hand three-position switch as follows:

STOP-The reader is disabled with the sprocket engaged.

START-The reader is enabled. In LINE the TTR responds to CPU commands. In LOCAL it will start to read a loaded paper tape.

FREE-The reader is disabled with the sprocket released so that paper tapes can be positioned for reading. [Ref. 5]

Example

when attempting to read a paper tape the following procedure should be carried out:

-release the retaining clip that holds the paper tape on the read station.

-set the TTR switch to FREE.

-place the top end of the paper tape in the reader guides and the remainder of the tape on the floor below there, clear of obstacles.

-manually lead the paper tape through the guides towards the operator and stop with one blank frame before the data reaches the read station. Occassionally paper tapes have a hole pattern that can be read as their identification number, placed before the actual program data. Ensure that the tape is manually fed past that point. Ensure that the paper tape is mounted the correct side up, so that the sprocket holes are engaged.

-close the retaining clip, it snaps into place.

-set the TTR switch to START, the paper tape is now mounted and ready for reading.

B. CASSETTE TRANSPORT

The DGC cassette transport allows a more rapid and convenient means of program creation under the SOS. The character transfer rate is 1600 bytes per second at an average tape speed of 30 inches per second. Each 200 foot cassette requires 85 seconds for total rewind. The average storage capacity is 100,000 bytes or 800,000 bits. Each cassette is designated a logical unit number by positioning its thumbwheel switch. (Fig. -) Only one transport can be reading or writing at any time, and it must be moving in a forward direction. Each cassette can record files numbered The system can accomodate up to eight units 0 thru 99. (0-7) but it is presently configured in the SOS software for only 0 and 1. Cassette files are generally specified by CTunit:file, however for the CIL/W the CT is omitted (unit:file). The automatic BOOTSTRAP requires the SOS master tape to be on unit 0 for system initialization.

Power can be supplied independently to allow normal control by the ON/OFF switch. However if power is connected from the CPU rear outlet and the cassette switch is at REMOTE, the cassette unit will turn on a short time delay after the computer power is enabled.

CAUTION:

The possibility of noise spikes destroying tape data dictates the precaution of always mounting cassettes after power on and removing them prior to power off.

Once mounted, tapes must be positioned to the beginning of file O (BOT) by pressing REWIND. The user must be certain the tape is properly seated with the right-hand Cassette-in-Position and left-hand Write Enable switches These switches work with the small red tabs that engaged. are positioned over the holes in the upper edge of each cassette tape. The upper right tab is usually not moved from the position where the hole is uncovered. The actual Cassette-in-Position switch is not located over the hole so it has no effect. The upper left tab does control the write capability. User's must ensure the left tab is in the correct position whenever a protected tape is mounted on the transport. The SOS master cassette is a write protected tape. A thin piece of sticking tape ensures that a tape remains write protected. During the program creation procedure the operator is changing cassettes often, if it is remembered to REWIND the cassette before continuing most seating problems will be corrected before they cause a problem with reading or writing of files [Ref. 5]. Maintenance information is contained in Appendix T.

Programmers must be aware that there is no automatic protection of program files that occur after the file that is being modified. Increased length of the modified program causes the first locations in the next file (the start block etc.) to be overwritten. This destroys important control information so that subsequent files to the one modified cannot be accessed.

C. DATAX CONVERTERS

The A/D and D/A converters are extremely simple to use (Fig. 7). A connector board provides a convenient central location for user selection of input channels 0-7 and output signals X, Y, and Z. Each analog signal must be connected as an input and return pair designated by the appropriate labels. The Z output is a special timing signal for CRT applications. All signals must be adjusted for a ±10.00 volt swing and employ a 12-bit code that has the most significant bit extended for 16-bit input to the CPU. The following table is the basic 12-bit code:

Table 5 ANALOG CONVERSION CODE

VOLTS	<u>12-BIT CODE</u>
+ 9.9951	011111111111
0.0000	. 000000000000
-10.0000	100000000000

[Ref. 7]

The A/D has not been connected for Interrupt or Direct Memory Access (DMA) communication. The necessary circuits included on the interface board but they have not been are completed. In addition two DMA lines on the underside of printed circuit board have been broken to allow the the present installation to operate correctly. The 12-bit digital output of the A/D has been converted to 16-bits by connecting the MSB of the A/D code to the higher order bits of the computer data lines to achieve sign bit extension of the code.

Maintenance information is contained in Appendix T.

D. CALIERATION

Three calibration routines; ADCOD, CADO, and DAC, are provided in Appendix S. They are designed for user convenience and involve minimal hardware connections. Appropriate instructions for the user are printed on the TTY. To eliminate the need for making connections on the printed circuit interface board and the requirement to place the interface on an extender board, the LSB, MSB and digital ground lines for the A/D are presented at labeled sockets on the side of the interface board. Both the A/D and the D/A connected with the following labeled external are potentiometers positioned so they are accessable at the side of the interface board; A/D RANGE, A/D OFFSET, D/A X and Y GAIN and D/A X and Y ZERO. The general user should not require to adjust the calibration. The laboratory supervisor can calibrate the converters by sliding the computer chassis forward on the rack until it hits the stops, then loading and executing one of the following routines.

Since the D/A converter cannot achieve the ± 10.24 volt swing that the A/D can be set for, a compromise of ± 10.00 volts was chosen to ensure compatability when they are used together. Program comment references to 10.24 volts should read 10.00 volts as indicated in the following sections.

ADCOD

The program A/D CODE TEST (ADCOD) is a procedure that converts an analog signal connected to channel 0 of the input board and prints the resulting 16-bit data word on the teletype. By presenting a known voltage source at channel 0 the operator can determine if the correct code is being If the known source is +10.00 volts (or -10.00 produced. volts) the RANGE potentiometer can be adjusted for the correct full scale reading (Table 5). The calibration is an iterative technique in two respects; the operator must depress the console switch CONTINUE to cause the A/D to reconvert the presented signal to see what effect the potentiometer is having and, the RANGE adjustment is not independent of the OFFSET adjustment. Once the RANGE is adjusted the channel 0 voltage is reset to 0 and the CFFSET potentiometer is adjusted. Remember to repeat this process until there is no more adjustment required.

Section A of Appendix S is a copy of the ADCOD Assembler listing. The subroutine BIOA is called to convert a binary word (the A/D code) into an ASCII character string for TTY output by the subroutine TYPE. The Assembler listing for BIOA and TYPE are included as Sections B and C of Appendix S.

λ.

CADO

The program CALIBRATION of the A/D on the OSCILLOSCOPE (CADO) is a procedure for more accurate calibration of the A precisely measured, stable voltage source A/D. is connected to channel 0 on the input board. A teletype message prompts the operator to make the proper connection and voltage settings. By monitoring the MSB at -0.0025 volts, the oscilloscope must detect a 50 percent duty cycle because this is its transition point from negative to positive voltage codes. The duty cycle of MSB is adjusted by the OFFSET potentiometer. By monitoring the LSB at -9.9976 volts the oscilloscope must detect a 50 percent duty cycle due to this being the transition point for full scale negative readings. This duty cycle is adjusted with the RANGE potentiometer. As indicated above, the process must be repeated until the adjustments have stopped. Since the routine continuously tells the A/D to convert the present channel 0 voltage, an almost continuous reading is obtained and the CONTINUE switch on the console is not used. The detection of the 50 percent duty cycles on the oscillcscope never been achieved satisfactorily. has Section D of Appendix S is the Assembler listing for this program.

The program D/A CALIBRATION (DAC) is a procedure to convert program designated codes for 0.0000 and +10.0000 volts to the X and Y channel outputs, which can be monitored by a voltmeter. A teletype message reminds the operator of the correct procedure. Initially the routine places a zero voltage code into the X and Y holding registers of the D/A. This code is continuously converted to an output voltage until it is overwritten. Therefore the ZERO potentiometer be adjusted for a minimum while continuously monitoring can the voltage output that results. Pressing the console switch CONTINUE releases the program to start the GAIN calibration. The GAIN potentiometers are adjusted for a full scale reading of +10.0000 volts. Pressing CONTINUE again restarts the program at the ZERO adjust routine to iterative technique in calibrating the D/A. allow an Section E of Appendix S is the Assembler listing for this program.

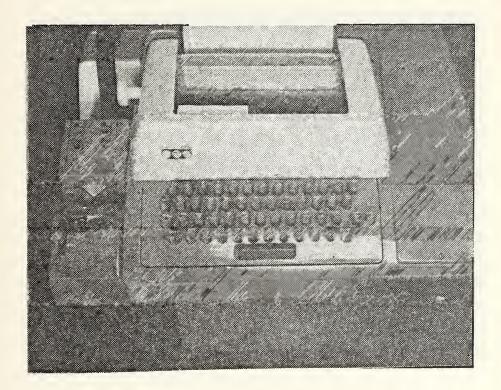
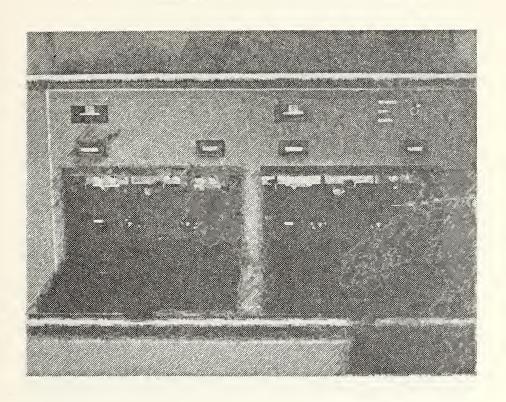
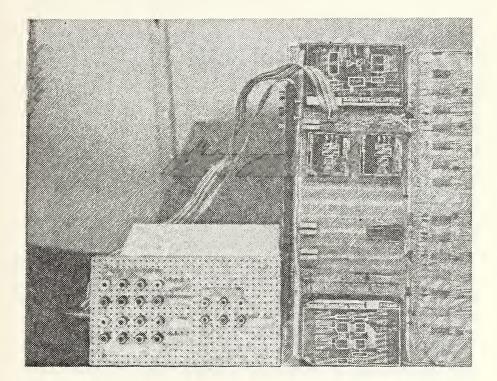




Figure 5 - ASR 33 TERMINAL

Figure 6 - DGC CASSETTE TRANSPORT

Figure 7 - A/D AND D/A INTERFACE

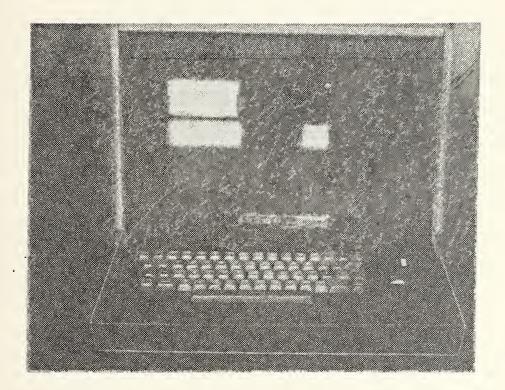


Figure 8 - TEKTRONIX TEK 31/10 CATHODE RAY TUBE

APPENDIX D

LOADING PROGRAMS

Before a program can be executed, it must be brought into memory. This requires that a loading program already reside in memory. In the event that there is no loading program in memory, a small, specialized loading program is normally placed in memory and used to read in the loading program. This small loading program is called a BOOTSTRAP LOADER. The function of the bootstrap loader is to read in a more general-purpose loading program which can be used to load the user's programs. Two methods are available for entering a BOOTSTRAP LOADER into memory. The operator can either enter it via the data switches and the deposit switch or he can use the PROGRAM LOAD option. [Ref. 4]

(© Data General Corporation 1976. Reproduced from <u>NOVA</u> <u>LINE COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

 \backslash

A. MANUAL LOADING

Without the PROGRAM LOAD option, a BOOTSTRAP LOADER must be entered into memory manually using the switches on the console. The following loader is the BOOTSTRAP LOADER designed for use with BINARY LOADER 091-000004. It reads in a specially formatted tape from either the paper tape reader (PTR) or the teletype reader (TTR).

LOCATION	<u>CONTENTS</u>	<u>TAG</u>	ASSEMBLER		COMMENTS
0XX757	126440	GET:	SUBO	1,1	;Clear AC1 and
					; carry
0XX 7 60	0636dd		SKPDN	dd	;Device busy?
0 X X 76 1	000777		JMP	1	;Yes
0xx 7 62	0605dd		DIAS	0,dd	;Read frame
					; from device
0XX 7 63	127100		ADDL	1,1	;Shift AC1 left
					; 2 bits
0XX764	127100		ADDL	1,1	;Shift AC1 left
					; 2 bits
0xx765	107003		ADD	0,1,5	SNC ;Add in new
					; frame
0 X X 76 6	000 77 2		JMP	GET+1	;Get new frame
0XX767	001400		JMP	0,3	;Full word, return
0XX770	0601dd B	STRP:	NIOS dd	;Prim	ne the device
0XX771	004766		JSR	GET	;Get a word
0XX772	044402		STA	•+2	;Store it
0XX 77 3	004764		JSR	GET	;Get another word
0XX 77 4	(see commen	t)	(STA)	(1,.+1	;These instructions
0xx775	(see commen	t)	(JMP)	(4)	;are loaded by the
0xx776	(see commen	t)	(HALT)		; binary loader
					;stop address

The BOOTSTRAP should be placed in memory starting at the location which is 20 (octal) less than the highest available memory address (for 8K start at 17757). For the XX in the Location column, substitute the most significant 2 digits of the highest available memory address as described in the following table:

Table 6	HIGHEST	MEMORY	ADDRESSES
---------	---------	--------	-----------

MEMORY	ADDRESS	<u>XX</u>
2,000	003777	03
4,000	007777	07
6,000	013777	13
8,000	017777	17
10,000	023777	23
•	•	•
•	•	•
•	•	•

For dd in the Contents column, substitute 10 (octal) if the TTR is being used, or 12 if the PTR is being used. After the BOOTSTRAP is entered, start it at location XX770 (17770 for 8K). Execution terminates when the BINARY LOADER is completly loaded, at address XX776, with the data lights reading 063077.

© Data General Corporation 1976. Reproduced from <u>NOVA</u> LINE COMPUTERS by permission of Data General Corporation, Southboro, MA) \mathbf{X}

B. AUTOMATIC PROGRAM LOAD

The automatic program load is designed for use with the SELFLOADING BOOTSTRAP AND BINARY LOADER paper tape 091-000036 or the STAND-ALONE OPERATING SYSTEM CASSETTE LOADER/WRITER 091-000067, which should be on File 0 of cassette unit 0 [Ref. 12]. The BOOTSTRAP reads the data switches, sets up its own I/O instructions with the specified device code in switches 10-15, and then continues in accordance with the value of data switch 0. [Ref. 3]

If switch 0 is 0, the BOOTSTRAP reads low-speed input like the TTR. If the device is not low-speed the program halts. The device must supply 8-bit data bytes, and each pair of bytes is stored as a single word in memory wherein the first and second bytes read become the left and right halves of the word. The program ignores tape leader and does not begin storing any words until it reads a nonzero synchronization byte. The first word following that byte must be the negative of the total number of words to be read (including the first word), for a maximum of 192 (decimal) words. The program stores the words beginning at location 100. After reading all the data, it jumps to the last word stored.

(C) Data General Corporation 1971. Reproduced from <u>HOW TO</u> <u>USE THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

 \sim

If the switch is 1, the BOOTSTRAP starts the high-speed device (such as the cassette drivers) for data channel storage beginning at absolute location 0, and then loops at location 377 until a loaded data word causes it to do something else. Addressing a low-speed device stops the program before input occures.

C. BINARY LOADER PROGRAMS

The BINARY LOADER program loads absolute object tapes into memory and resides in absolute locations OXX646-OXX777 in core. It is common practice to write programs which do not alter these locations, thus eliminating the need to reload the loaders. In all but very rare instances, DGC standard software is written so as not to destroy the BINARY LOADER or BOOTSTRAP LOADER programs. In no case will any of this software destroy the BOOTSTRAP LOADER program.

If the End Block on the object tape specifies a starting address of the program, the BINARY LOADER will transfer control to that location once tape is loaded. Otherwise, load the starting address of the program into the data switches, press RESET then START.

There are two BINARY LOADER programs available, the manual BINARY LOADER and the SELFLOADING BOOTSTRAP AND BINARY LOADER. [Ref. 2]

© Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> COMPUTERS by permission of Data General Corporation, Southboro, MA)

1. <u>Manual Bootstrap Binary Loader</u>

The paper tape 091-000004 is the BINARY LOADER program to be used with the manual BOOTSTRAP. The input to the Loader is an absolute binary tape. The tape is punched in blocks separated by null (all zero) characters. Two tape characters form a 16-bit word; the first character forms bits 8-15 of the data word and the second tape character forms bits 0-7. [Ref. 10]

The BINARY LOADER routine is executed by mounting the desired absolute binary paper tape program on the TTR, entering SXX777 in the data switches and pressing RESET and START. The S represents data switch 0 and should be 1 if input is PTR and 0 for TTR. The XX represents the most significant 2 digits of the highest available memory address. The result of executing the BINARY LOADER routine is a loaded program ready for execution. A HALT may be interpreted by its location displayed in the address lights, as follows:

OXX741 means loaded program did not specify a start address. The user must set the data switches and press RESET then START.

0XX727 has two possible causes. 1.The user's program attempted to overwrite the loader, or 2.The last block read has a checksum error. Tapes produced under SOS must be reread from the first block. Repeated checksum errors indicate a bad tape.

© Data General Corporation 1973. Reproduced from <u>BINARY</u> LOADER PROGRAM by permission of Data General Corporation, Southboro, MA)

2. <u>The Selfloading Bootstrap and Binary Loader</u>

The SELFLOADING BOOTSTRAP AND BINARY LOADER paper tape 091-000036 is used in conjunction with the PROGRAM LOAD feature. Once the BOOTSTRAP is complete it sizes memory, interprets the device code, and reads in the BINARY LCADER. Determination of the highest location is accomplished by writing and reading locations at 1K increments until the information read back is the same as that written. The BINARY LOADER image is placed in the highest locations of alterable memory. When the tape has been read in, the processor will HALT at location 00121. An object tape can then be read on the same device simply by depressing CONTINUE. For subsequent object program loads the proceedure is:

Put the object tape in the reader.
 Set the data switches to 0XX777.
 Set data switch 0. PTR=1, TTR=0.
 Press START.

This BINARY LOADER is similar to the manual version except for the HALT addresses.

0XX740 means no start address.

0XX726 means checksum failure. If repositioning the tape to the beginning of the last block read and continuing has no effect, then the tape is in error.

© Data General Corporation 1973. Reproduced from <u>SELFLOADING BOOTSTRAP AND BINARY LOADER</u> by permission of Data General Corporation, Southboro, MA)

3. The Core Image Loader/Writer

The CORE IMAGE LOADER/WRITER program on the SOS master cassette is identical to paper tape 091-000067-02. It performs two utility functions: it loads core image files from cassette tape into core and produces core image files on cassette tape [Refs. 12 and 13]. The CORE IMAGE LOADER/WRITER program works only with cassettes.

The CORE IMAGE LOADER/WRITER can be bootstrapped from file 0 of the SOS master cassette on unit 0. The tape must be rewound manually. The normal loading procedure is described in Appendix A.

The Loader/Writer is read into page zero (0-377) initially and then relocates itself to the last 400 (octal) locations in core. After relocation a prompt # on the teletype indicates that the CORE IMAGE LOADER/WRITER is ready. Once it is in core the Loader may be restarted by setting the data switches to the last memory address, pressing RESET, and then START. (For 8K set 01777)

The # symbol indicates the loader is waiting for the operator to respond with a cassette unit number (0-7) and a file number (0-99) separated by a colon. Specifying unit 0 is optional. The indicated cassette file is loaded into memory upon command termination by a teletype RETURN. If data switch 0 on the console is 1, the program will halt on completion of the load. If the switch is 0, control is passed to the loaded program linked through location 405.

(C) Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

If the loader encounters a non-recoverable error while trying to load a file, it will type *ERR and halt with a code in ACO. The error codes are explained in Section A of Appendix Q. If rewinding and substituting a different cassette tape does not clear the error condition, a hardware fault is indicated.

© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

APPENDIX E

SOS

When using device mnemonics within the SOS environment, the user must add the prefix \$. The teletype codes are \$TTO, \$TTI, \$TIR, and \$TTP.

Since the EDIT commands delineator (ESC) prints as a \$, considerable care must be taken to ensure that the ESC or \$ keys are used properly.

The SOS master cassette has a standard file format:

Table 7 SOS MASTER TAPE

FILE	PROMPT	<u>PROGRAM (CALL)</u>
0	#	Core Image Loader/Writer
1	R	Command Line Interpreter (CLI)
2	*	Symbolic Text Editor (EDIT)
3	ASM	Extended Assembler (ASM)
4	RLDR	Extended Relocatable Loader (RLDR)
5	LFE	Library File Editor (LFE)
6	SYSG	SYSGEN (SYSG)

By setting data switch 0 to 0 prior to loading a SOS utility, the user can permit the automatic typing of the appropriate prompt message to signal correct initialization. Setting data switch 0 to 1 forces the Loader to halt before control is passed to the loaded routine.

There are two possible ways of interrupting and terminating a currently executing utility program from the teletype.

1.Pressing CTRL and A on the keyboard causes all utilities to stop, initialize, and re-issue the prompt message. The EDITOR will only respond to CTRL A during a T, Y, N, E or P edit command and the input buffer will remain intact. This is the only release from a GR or a GW command error.

2.Pressing CTRL and C will cause all utilities except the TEXT EDITOR to return to the CORE IMAGE LOADER. The EDITOR ignores CTRL C and uses the edit command H to return to the Loader. [Ref. 13]

The two SOS master cassette utility programs LIBRARY FILE EDITOR and SYSGEN are not often used. A brief description is included here for completeness.

(C) Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA) \mathbf{X}

A. LIBRARY FILE EDITOR

The LIBRARY FILE EDITOR (LFE) provides a means of updating and interpreting a set of relocatable binary files that are gathered together into one special file called a Library.

The LFE allows the user to:

-analyse the contents of a library file

-list titles in a library file

-merge libraries

-update libraries

-extract logical records from a library file

-create his own library files.

The LFE is self-starting and prompts the operator with LFE when it is ready to accept a command string. Commands are explained in Appendix J. [Ref. 16]

(C) Data General Corporation 1972. Reproduced from <u>LIBRARY</u> <u>FILE EDITOR</u> by permission of Data General Corporation, Southboro, MA)

Ν

B. SYSGEN

SYSGEN generates special programs called triggers which may be used to link user programs to SOS utility programs via their entry symbols. For each entry symbol included in the command line, an external normal reference to the program is included in the trigger. The trigger is entirely made up of these external normal references. When the utility is ready to accept a command line, the prompt SYSG is typed. Commands are explained in Appendix K. [Ref. 13]

APPENDIX F

CLI COMMANDS

CLI functions are executed by pressing RETURN after the command.

ASM

This command causes file 3 on CTO to be loaded. If the master cassette is mounted, the EXTENDED ASSEMBLER overwrites the CLI.

RLDR \$TTR

This command will load an absolute binary tape with the CLI binary block loader. The input device can be either \$TTR or \$PTR. Both the CORE IMAGE LOADER/WRITER and the CLI are overwritten.

CTx:yy Core image file yy on cassette unit x overwrites the CLI. Incorrect unit or file numbers cause the error message FILE NON-EXISTENT on the TTO.

EDIT

File 2 on CTO is loaded. The CLI is overwritten by the SYMBOLIC TEXT EDITOR.

(C) Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

 \mathbf{X}

INIT CTX OF RELEASE CTX

The specified cassette unit is rewound. Incorrect unit x causes the error message ILLEGAL FILE NAME.

LFE

File 5 on CTO overwrites the CLI. If CTO is the master cassette, the LIBRARY FILE EDITOR is loaded.

MKSAVE infile outfile The input file (AB) is converted to a core image output file. Possible error messages are: NOT ENOUGH ARGUMENTS ILLEGAL FILE NAME ILLEGAL COMMAND FOR DEVICE DEVICE IS READ PROTECTED FILE NON-EXISTENT CHECKSUM ERROR PHASE ERROR

RLDR

File 4 on CTO overwrites the CLI. If CTO is the master cassette, the EXTENDED RELOCATABLE LOADER is loaded.

SYSG

File 6 on CTO overwrites the CLI. This is the SYSGEN routine on the master tape.

XFER source destination This command transfers the source file to the destination file. Appending /A means the source is even parity ASCII. [Ref. 12]

(C) Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

APPENDIX G

EDIT COMMANDS

For a discussion on how to use the TEXT EDITOR refer to Section B3 of Chapter III.

ESC

Striking the escape (ESC) key on the TTY causes a \$ to be printed. The escape key (\$) is used once to delimit edit commands. If the command has no argument the \$ is optional. Two successive codes (\$\$) execute the command string.

RUBOUT

This key deletes the last typed character. Repeated rubouts delete successive characters in that line from right to left. The character being deleted is echoed on the TTY.

TAB

The EDITOR has predefined tab positions at columns 1, 9, 17, 25,... which are used with CTRL I. The tabs may be turned off by CTRL P and back on by repeating it.

© Data General Corporation 1969. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA) \sim

GR input

Before beginning modifications to an existing routine it must be brought into the edit buffer. This command enables the input file specified for reading. A cassette file is specified by; CTunit:file. The same cassette unit cannot be simultaneously write enabled (GW). No actual read occures. To clear a GR buffer lock-up use CTRL A.

GW output

Immediately after read enabling, the write file should be assigned. A cassette file is specified by; CTunit:file. The same cassette unit cannot be simultaneously read enabled (GR). No actual write occures. To clear a GW buffer lock-up use CTRL A.

GC

All output files must be closed with this command. No actual write occures. Multiple files may be appended by successive GR commands before a GC.

Η

The EDIT is terminated and control returns to the CORE IMAGE LOADER/WRITER.

Y

The first page of symbolic text is read into the edit buffer. A page is a character string terminated by a form feed. An input device must have been previously enabled. The character pointer (CP) is positioned at the start of the buffer.

(© Data General Corporation 1969. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA)

A

This command appends a page of input to the present contents of the edit buffer. CP points to the first character appended.

nT

The number of lines n is typed. Omitting n causes the entire buffer to print.

B CP is moved to the beginning of the buffer.

nJ

CP is placed at the beginning of line n.

L

CP advances to the beginning of the nth line from the present position. Any value of n is accepted, however too large a value acts like B or Z commands. Omitting n moves CP to the beginning of the present line.

nM

CP moves by the character count n.

Z

CP is positioned at the end of the buffer.

© Data General Corporation 1969. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA)

Cold \$new\$

This command searches from the present position to the end of the buffer and replaces the first character group 'old' with 'new'. CP points to the first character after 'new'. If unsuccessful STR NOT FOUND is typed and CP points to the beginning of the buffer. Omitting 'new' deletes 'old'.

Iinput\$

This is the command for creating a program. Existing programs insert 'input' before the position CP and adjust the CP count to point to the end of 'input'.

nI

The octal number n is masked to 7-bits and inserted at CP.

n D

This command deletes n characters relative to CP.

nΚ

This command deletes n lines from the CP position. CP movement is like the nL command but all characters passed over are erased.

Sstring\$

This command searches foreward from the CP for the character group 'string'. CP moves to the last character of the first group found. Unsuccessful search leaves CP at the beginning of the buffer.

(C) Data General Corporation 1969. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA)

Nstring\$

The EDITOR executes P and Y commands until the string is found or the input file completed.

Qstring\$

This is a search like the Nstring\$ command without the P.

XMcode\$code\$...\$\$

One macro-command can be defined as the specified command string.

nΧ

The previously defined XM is executed a times.

XD The macro XM is deleted.

nF

This command outputs n inches of leader. Greater than 100 inches is ignored. Omitting n causes a form feed.

nP

This command outputs n lines from CP with a form feed. Too small a buffer causes a halt at the buffer's end. Omitting n outputs all the contents after CP.

n₽₩

This is the same as the nP command but without the form feed.

(© Data General Corporation 1969. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA)

This command outputs the edit buffer and the remainder of the input file.

nR

:

=

Ε

This command outputs a page and inputs a page, repeated n times.

This command prints the number of lines in the edit buffer.

This command prints the line number of CP.

This command prints the number of character.; in the edit buffer.

CTRL A

This command re-initializes the EDITOR with the buffer unchanged. This control is only acknowledged during T, Y, N, E, or P.

CTRL C

This command cancels the present line. If a command string is executing it will halt. CP repositions to the beginning of the buffer.

(C) Data General Corporation 1969. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA)

N

CTRL I

This command inserts tabulation.

CTRL T

This command resets for a new tape. The input device stops and the buffer is cleared. [Refs. 14 and 15]

(C) Data General Corporation 1969. Reproduced from $\underline{NOVA}^{\mathbb{R}}$ <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA) \sim

APPENDIX H

ASM COMMANDS

The Assembler takes two passes to translate an ASCII source file to a relocatable binary program. The method of translation and the files involved are designated by the user typing a command line after the ASM prompt. The general command format is:

ASM M/m File/u File/u

Where M is the mandatory Assembly mode, which must be first, and /m is the optional mode modifier. An unlimited number of participating Files are then listed with their optional use designators /u. Omitting the space between fields causes errors that may not be detected.

ASM functions are executed by pressing RETURN after the command. An assembly can be carried out on an ASCII source file in any cne of the three following modes:

0-Perform pass one on the specified input source file(s). Halt with the highest symbol table address in ACO.

1-Perform passes one and two on the specified input files, producing binary and listing files as specified. At the completion of pass two, the assembler prompts with ASM.

2-Perform pass two only on the specified input files, producing the specified binary and listing files. The symbol table used is that produced by the most recent pass one assembly. The prompt ASM signifies completion.

Any Assembler mode can be modified by appending the following optional codes:

Table 8 ASSEMBLER MODE DESIGNATORS

DESIGNATOR MEANING

/E-Suppress assembly error messages to the TTO.
/T-Suppress the symbol table listing
/U-Include local (user) symbols in the binary output file.

After the basic assembly mode has been indicated, the files are listed with optional appended codes that indicate specific uses as follows:

Table 9 ASSENBLER FILE DESIGNATORS

DESIGNATOR MEANING

/B-Relocatable binary file to be output on this device. /L-Output device for the listing. /N-Any input file not to be listed on pass two. /P-Pause before accepting this file. The message PAUSE - NEXT FILE, devicename is output. The assembly continues when any key is struck on the teletype. /S-Skip this file during pass two. /n-Repeat this file n times. (n from 2 thru 9)

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

A typical command to Assemble file 4 of CT1 and a paper tape to file 6 on CT0 with a teletype listing would look like:

ASM 1 CT1:4 \$TTR CT0:6/B \$TT0/L [Ref. 12]

© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

APPENDIX I

RLDR COMMANDS

The RELOCATABLE LOADER translates the relocatable addressing of the Assembler's RB output into absolute locations in memory and resolves the displacements among any routines that have been combined at load time. A successful load is indicated by the message OK. The command line is typed by the operator after the prompt RLDR. The general format is:

RLDR File/S File/u

Where a /S is mandatory and any number of additional participating files are listed with their optional use designators /u.

The RLDR automatically spaces before the first entry and must not have a space inserted there by the operator. Omitting the space between fields causes errors that may not be detected.

RLDR functions are executed by pressing RETURN after the command string. Files are listed with optional appended codes that indicate specific uses as follows:

© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

X

Table 10 LOADER FILE DESIGNATORS

DESIGNATOR MEANING

/L-Causes a listing of the symbol table on the output file or device whose name precedes the use code. Symbols in the table are ordered numerically by symbol value. /L/A-Changes the /L to an alphabetical listing. /N-Set the starting load address (NMAX) for the file that follows, to this absolute address. /P-Pause before opening this file. /S-This is the mandatory save file. /U-Load user symbols appearing within this file. /n-Load this file n times (n from 2 thru 9). [Ref. 12]

A typical command to load files 4 and 5 of CTO and a paper tape into file 3 on CT1 with a teletype listing would look like:

RLDR CT0:4 CI0:5 \$TTR CT1:3/S \$TTO/L

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

APPENDIX J

LFE COMMANDS

The LFE is a specialized utility program for maintaining Library files. Since the expected use of this program is small, only a brief overview of the complex command structure is given here. Further details may be found in Reference 16.

The command string is typed by the operator after the prompt LFE. The general format is:

LFE Key File/u File/u

Where Key is a letter indicating the function desired. The participating Files are then listed with their optional use designators /u. A File may be a Binary, which is an RB file not in a Library, or a Logical Record, which is an RB file in a Library. A Binary being placed in a Logical Record of a Library is called an Update.

The LFE automatically spaces before the first entry and must not have a space inserted there by the operator. Omitting the space between fields causes errors that may not be detected.

(© Data General Corporation 1972. Reproduced from <u>LIBRARY</u> <u>FILE EDITOR</u> by permission of Data General Corporation, Southboro, MA)

Ν

LFE functions are executed by pressing RETURN after the command. The following Key letters are available:

Table 11 LFE KEY DESIGNATORS

DESIGNATOR

MEANING

A-Itemize the global declarations of the file. A global declaration is an Assembler language pseudo-operation explained in Section C of Chapter IV.
D-Delete Logical Record.
I-Insert Binary into a Library (Update).
M-Combine Libraries and Binaries in a new Library.
R-Replace Logical Records with new Binaries.
T-List titles in a set of Libraries or Binaries.
X-Extract specific Logical Records from a Library.

After the basic LFE operation has been indicated, the files are listed with optional appended codes that indicate specific uses as follows:

Table 12 LFE FILE DESIGNATORS

DESIGNATOR MEANING

/A-Make insertions after this Logical Record.
/B-Make insertions before this Logical Record.
-Or, this is a Binary file.

/I-This is the input file. /O-This is the output file.

-Or, this is the new Library name. /R-Itemize the global declarations in this file. /#-For # substitute the number of \$TTR files to read.

(C) Data General Corporation 1972. Reproduced from <u>LIBRARY</u> <u>FILE EDITOR</u> by permission of Data General Corporation, Southboro, MA)

~

An entire command string can be deleted by typing SHIFT L. Single characters are deleted with RUBOUT, and a back arrow echoes each erasure. Multiple erasures move from right to left deleting characters on the same line.

If an error condition is detected, a message will be output. Improper command strings result in no output. An execution error attempts to identify the file responsible and closes all Library file outputs. Section F of Appendix Q summarizes the error messages.

The following operator prompt messages are possible: LOAD device, STRIKE ANY KEY. This message may be preceded by INPUT or UPDATE to help identify which device is waiting.

REMOVE INPUT MASTER AND LOAD U.F This message prompts the operator when an Update file is to be read in the same device that inputs the Library file.

REMOVE U.F AND LOAD BACK INPUT MASTER After the Update file has been read in, the Library file must again be read. [Ref. 16]

(C) Data General Corporation 1972. Reproduced from <u>LIBRARY</u> <u>FILE EDITOR</u> by permission of Data General Corporation, Southboro, MA)

APPENDIX K

SYSG COMMANDS

SYSGEN generates triggers for use in configuring SOS utility programs. A trigger is a program that resolves external references to entry symbols in SOS Libraries. The prompt SYSG is followed by a list of entry symbols for each desired utility, a file designated for output and an optional trigger name. The general format is:

SYSG driver driver outputfile/O trigger/T

Where the driver is a desired entry symbol, /O specifies the output file and /T specifies the trigger name. Omitting the trigger name results in the default title SGTRG. The command string is executed by pressing RETURN. Section G of Appendix Q summarizes the error messages. [Refs. 12 and 13]

(C) Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)

 \mathbf{N}^{-1}

APPENDIX L

MACHINE CODE AND ASSEMBLER LANGUAGE FIELDS

Bit positions in all 16-bit words are numbered 0-15 from left to right.

The MRI instruction word is divided into four fields: -The command field C (bits 0-4) designates the type of instruction (OPCODE) and sometimes the accumulator (A/C) involved.

-The addressing mode field I (bit 5) designates indirect addressing. If I is 1 the effective address points to a new effective address.

-The index field X (bits 6 and 7) indicates the addressing mcde of the instruction.

-The displacement field D (bits 8-15) contain an integer that may be used to obtain the effective address.

The information to insert in all these fields must be communicated to the ASSEMBLER program.

The Move Data MRI asembly language format is: LABEL: OPCODE AC,D,X ;COMMENT

The Modify Memory and Jump MRI format does not have the AC field. Move Data OPCODES are LDA and STA. Modify Memory OPCODES are ISZ and DSZ. Jump OPCODES are JMP and JSR.

The I field is designated by using the symbol @ anywhere in the assembly language instruction. It is suggested that prefixing the displacement (@D) would be a logical choice.

The effective address E is formed by the X and D fields. It is the location that is to be referenced. Using Table 13 the effective address may be calculated by the following equation:

E = (X) + D

Where (X) means the contents of X.

Table 13 EFFECTIVE ADDRESS DETERMINATION

X (X) EFFECTIVE ADDRESS

00 0 Page zero addressing $0 \le E \le 377$ (octal)

In the following modes if bit 8 is 0, D is positive; if bit 8 is 1 D is two's complement.

01 (PC) Relative addressing $(. - D) \le E \le (. + D)$

10 (AC2) Base register addressing (AC-D) $\leq E \leq$ (AC + D)

11 (AC3) Base register addressing (AC - D) $\leq E \leq$ (AC + D)

When programming in assembly language the X value will determine how the ASSEMBLER program will handle D. If X is 0 or blank and $D \leq 377$, the mode X is set to 00 and D is unchanged. If D > 377 the present location L is checked to see if it is within 200 locations of D. If L-200 \leq D \leq L+177 the mode X is set to 01 and D is replaced by L - D. Any other X value forces the mode indicated. However, if -200 \leq D \leq 177 an address error is flagged by the symbol A.

The ALC instruction word is divided into eight fields: -Bit 0 is always at 1.

-The source accumulator field (ACS) designates where the data to be operated on is taken from. (bits 1 and 2) It is usually left unchanged.

-The destination accumulator field (ACD) designates where the result of the operation is to be stored. (bits 3 and 4) Occassionally the original ACD data is used to calculate the result.

-The function field (FNC) designates the command. (bits 5-7)

-The carry field (CARRY) designates the value of carry in the function generator <u>prior</u> to performing the operation. (bits 10 and 11) This base value is affected by the function results. Toc large a result to store in 16-bits results in the base carry value being complemented due to overflow.

-The shift field (SHIFT) designates whether the result of a function is rotated left or right before loading into ACD. (bits 8 and 9)

-The skip field (SKIP) designates a test condition for the shifted result, to determine if the next sequential location is to be skipped. (bits 13-15)

-The no-load field (NO LOAD) designates if the shifted result that has been tested for any skip conditions, will in fact be loaded into ACD.

The ALC assembly language format provides the information for all of the instruction word fields as follows:

LABEL: FNC ACS, ACD, SKIP ; COMMENT

The basic ALC function codes are COM, NEG, AND, INC, ADD, SUB, ADC, and MOV. These codes may be modified by appending a letter for the carry bit as follows:

Table 14 CARRY DESIGNATORS

DESIGNATOR MEANING

blank-carry based on current carry state

- Z set carry base to 0
- 0 set carry to 1

C - carry based on current carry state complemented

The function code can be further modified by appending the following shift letters:

Table 15 SHIFT DESIGNATORS

DESIGNATOR MEANING

blank-no shift

L - rotate left 1 bit, CRY to bit 15, bit 0 to CRY

- R rotate right 1 bit, CRY to bit 0, bit 15 to CRY
- S exchange bits 0-7 with bits 8-15, CRY unchanged

The last modification to the function code could be to append a # symbol which indicates that the result is not to be loaded into ACD.

The SKIP mnemonics are as follows:

Table 16 SKIP DESIGNATORS

DESIGNATOR MEANING

blar	ık-	-ne vei	: sł	<ip< th=""></ip<>
SKP	-	alway	is s	skip
SZC	-	skip	on	zero carry
SNC	-	skip	on	zero result (bits 0-15)
SNR	-	skip	on	non-zero result (bits 0-15
SEZ	-	skip	on	zero (result + carry)
SBN	-	skip	on	non-zero (result + carry)

The I/O instruction word is divided into five fields: -Bits 0-2 are always 011.

-The accumulator field (AC) designates where in the processor the data is to be output from or input to. (bits 3 and 4)

-The transfer field (TRANSFER) designates which of up to three possible device buffers (A, B, C) will be used and whether this is input to the computer or output from the computer. (bits 5-7)

-The control field (CONTROL) designates device control instructions that manipulate the Busy and Done flip-flops of the specified peripheral. A set Busy flip-flop indicates the device has been assigned an I/O task. When a device has completed its task and is ready to process a new request, it clears the Busy and sets the Done flip-flops. If both flip-flops are 0 the device is idle. (bits 8 and 9)

-The device code field (DEVICE CODE) specifies the peripheral involved in the I/O function. DEVICE CODE 00 is not used and 77 denotes special CPU functions. (bits 10-15)

The I/O assembly language format provides the information for all of the instruction word fields as follows:

LABEL: TRANSFER AC, DEVICE CODE

The basic I/O transfer codes are NIO, DIA, DOA, DIB, DOB, DIC, and DOC. However, when the CPU commands are desired, several special mnemonics will generate their I/O equivalent as follows:

Table 17 SPECIAL CPU MNEMONICS

MNEMONIC	EQUIVALENT	MEANING
READS	DIA -,CPU	Read data switches
IORST	DICC 0,CPU	I/O reset
HALT	DOC 0,CPU	Stop processing
INTEN	NIOS CPU	Interrupt enable
INIDS	NIOC CPU	Interrupt disable
INTA	DIB -,CPU	Interrupt acknowledge
MSKO	DOB -, CPU	Mask the interrupt disables

The basic TRANSFER code can be modified by appending a letter for the CONTROL field as follows:

Table 18 CONTROL DESIGNATORS

DESIGNATOR MEANING

blank-no control

- C clear Busy and Done, idles device
- S set Busy, clear Done, starts device
- P special device pulse, flip-flops anaffected

One other set of TRANSFER codes qualifies as a special I/O instruction since in assembly language the programmer specifies only an OPCODE and a DEVICE CODE.

Table 19 I/O SKIP INSTRUCTIONS

DESIG	OR	MEANING				
•						
SKPBN	-	skip	if	Busy	is	one
SKPBZ		skip	if	Busy	is	zero
SKPDN	-	skip	if	Done	is	one
SKPDZ	-	skip	if	Done	is	zero

APPENDIX M

ASSEMBLY LANGUAGE INSTRUCTIONS

ASSEMBLY MA	ACHINE	
MNEMONIC CO	<u>ode</u>	COMMENTS
ADC 10	02000 Ad	i the complement of ACS to ACD; use Carry
	a	s base for carry bit.
ADCC 10	02060 AD	C but complement carry is base
ADCCL 10	02160 AD	CC with rotate left
ADCCR 10	02260 AD	CC with rotate right
ADCCS 10	02360 AD	CC with swap halves of result
ADCL 10	02100 AD	C with rotate left
ADCO 10	02040 AD	C but 1 is base for carry bit
ADCOL 10	02140 AD	CO with rotate left
ADCOR 10	02240 AD	CO with rotate right
ADCOS 10	02340 AD	CO with swap halves of result
ADCR 10	02200 AD	C with rotate right
ADCS 10	02300 AD	C with swap halves of result
ADCZ 10	02020 AD	C but 0 is base for carry bit
ADCZL 10	02120 AD	CZ with rotate left
ADCZR 10	02220 AD	CZ with rotate right
ADCZS 10	02320 AD	CZ with swap halves of result
ADD 10	03000 Ad	d ACS to ACD; carry bit based on CRY
ADDC 10	03060 AD	D but complement carry is base
ADDCL 1	03160 AD	DC with rotate left

© Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

MNEMONIC CODE

COMMENTS

ADDCR	103260	ADDC with rotate right
ADDCS	103360	ADDC with swap halves of result
ADDL	103100	ADD with rotate left
ADDO	103040	ADD but 1 is base for carry bit
ADDOL	103140	ADDO with rotate left
ADDOR	103240	ADDO with rotate right
ADDOS	103340	ADDO with swap halves of result
ADDR	103200	ADD with rotate right
ADDS	103300	ADD with swap halves of result
ADDZ	103020	ADD but 0 is base for carry bit
ADDZL	103120	ADDZ with rotate left
ADDZR	103220	ADDZ with rotate right
ADDZS	103320	ADDZ with swap halves of result
AND	103400	Logically And ACS with ACD;
		CRY is carry bit
ANDC	103460	AND but complement Carry is carry bit
ANDCL	103560	ANDC with rotate left
ANDCR	103660	ANDC with rotate right
ANDCS	103760	ANDC with swap halves of result
ANDL	103500	AND with rotate left
ANDO	103440	AND but carry bit is 1
ANDOL	103540	ANDO with rotate left
ANDOR	103640	ANDO with rotate right
ANDOS	103740	ANDO with swap halves of result
ANDR	103600	AND with rotate right
ANDS	103700	AND with swap halves of result
ANDZ	103420	AND but carry bit is O
ANDZL	103520	ANDZ with rotate left

© Data General Corporation 1972. Reproduced from <u>INTRODUCTION IO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

ASSEMBLY MACINE MNEMONIC CODE

COMMENTS

103620	ANDZ with rotate right
	ANDZ with swap halves of result
	Complement ACS into ACD; CRY is carry bit
	COM but complement CRY is carry bit
100 160	COMC with rotate left
100260	COMC with rotate right
100360	COMC with swap halves of result
100100	COM with rotate left
100040	COM but carry bit is 1
100140	CCMO with rotate left
100240	COMO with rotate right
100340	COMO with swap halves of result
100200	COM with rotate right
100300	COM with swap halves of result
100020	COM but carry bit is 0
100120	COMZ with rotate left
100220	COMZ with rotate right
100320	COMZ with swap halves of result '
060400	Input, A buffer data to AC
060600	DIA and clear device
060700	DIA and send pulse to device
060500	DIA and start device
061400	Input, B buffer data to AC
061600	DIB and clear device
06 1700	DIB and send pulse to device
061500	DIB and start device
062400	Input, C buffer data to AC
062600	DIC and clear device
	100260 100360 100100 100040 100240 100240 100200 100200 100020 100020 100220 100220 100320 060400 060600 060700 060500 061400 061600 061500 062400

© Data General Corporation 1972. Reproduced from INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)

MNEMONIC CODE

COMMENTS

DICP	062 7 00	DIC and send pulse to device
DICS	062500	DIC and start device
DIV	073101	ACO and AC1 divided by AC2. Overflow sets
		Carry. Quotient in AC1, remainder in ACO.
DOA	061000	Output AC data to buffer A
DOAC	061200	DOA and clear device
DOAP	061300	DOA and send pulse to device
DOAS	061100	DOA and start device
DOB	062000	Output AC data to buffer B
DOBC	062200	DOB and clear device
DOBP	062300	DOB and send pulse to device
DOBS	062100	DOB and start device
DOC	063000	Output AC data to buffer C
DOCC	063200	DOC and clear device
DOCP	063300	DOC and send pulse to device
DOCS	063100	DOC and start device
DSZ	014000	Subtract 1 from the contents of E,
		skip if result is zero.
HALT	063077	Halt the processor
INC	101400	Place ACS+1 in ACD, CRY is carry bit base
INCC	101460	INC but complement CRY is base
INCCL	101560	INCC with rotate left
INCCR	101660	INCC with rotate right
INCCS	101760	INCC with swap halves of result
INCL	101500	INC with rotate left
INCO	101440	INC but 1 is base for carry bit
INCOL	101540	INCO with rotate left
INCOR	101640	INCO with rotate right

(C) Data General Corporation 1972. Reproduced from INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)

MNEMONIC CODE

COMMENTS

INCOS	101740	INCO with swap halves of result
INCR	101600	INC with rotate right
INCS	101700	INC with swap halves of result
INCZ	101420	INC but 0 is base for carry bit
INCZL	101520	INCZ with rotate left
INCZR	101620	INCZ with rotate right
INCZS	10 17 20	INCZ with swap halves of result
INTA	061477	Acknowledge interrupt by loading code of
		nearest device requesting an interrupt
		into bits 10-15 of AC
INTDS	060277	Disable interrupts, clear Interrupt On flag
INTEN	060177	Enable interrupts, set Interrupt On flag
IORST	062677	Clear I/O devices and Interrupt On flag,
		set RTC to line frequency
ISZ	010000	Add 1 to contents of E, skip if zero result
JMP	000000	Jump to location E
JSR	004000	Save PC+1 in AC3 and jump to location E
LDA	020000	Load contents of E into AC
MOA	101000	Load ACS into ACD, carry bit is CRY
MOVC	101060	MOV but carry bit is CRY complement
MOVCL	101160	MOVC with rotate left
MOVCR	101260	MOVC with rotate right
MOVCS	101360	MOVC with swap halves of result
MOVL	101100	MOV with rotate left
MOVO	101040	MOV but carry bit is 1
MOVOL	101140	MOVO with rotate left
MOVOR	101240	MOVO with rotate right
(C) Data	General	Corporation 1972. Reproduced from
		\mathbb{R}

INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by

permission of Data General Corporation, Southboro, MA) ASSEMBLY MACHINE

MNEMONIC	<u>cod</u> ț	COMMENTS
MOVOS	101340	MOVO with swap halves of result
MOVR	101200	MCV with rotate right
MOVS	101300	MOV with swap halves of result
MOVZ	101020	MOV but carry bit is 0
MOVZL	101120	MOVZ with rotate left
MOVZR	101220	MCVZ with rotate right
MOVZS	101320	MOVZ with swap halves of result
MSKO	062077	Set Interrupt Disable flags to AC mask
MUL	073301	Multiply AC1 by AC2, add AC0,
		result in ACO and AC1
NEG	100400	Place negative ACS in ACD,
		CRY is carry bit base
NEGC	100460	NEG but complement CRY is base
NEGCL	100560	NEGC with rotate left
NEGCR	100660	NEGC with rotate right
NEGCS	100760	NEGC with swap halves of result
NEGL	100500	NEG with rotate left
NEGO	100440	NEG but 1 is base for carry bit
NEGOL	100540	NEGO with rotate left
NEGOR	100640	NEGO with rotate right
NEGOS	100740	NEGO with swap halves of result
NEGR	100600	NEG with rotate right
NEGS	100700	NEG with swap halves of result
NEGZ	100420	NEG but 0 is base for carry bit
NEGZL	100520	NEGZ with rotate left
NEGZR	100620	NEGZ with rotate right
NEGZS	100720	NEGZ with swap halves of result
NIO	060000	No operation
NIOC	060200	Clear device

(© Data General Corporation 1972. Reproduced from INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)

ASSEMBLY	MACHINE	
MNEMONIC	CODE	COMMENTS
NIOP	060300	Send pulse to device
NIOS	060100	Start device
READS	060477	Read console data switches into AC
SBN	000007	Skip if carry and result are zero
		appended to arithmetic and
		logical instructions
SEZ	000006	Skip if carry or result are zero
		appended to arithmetic and
		logical instructions
SKP	000001	Skip, add 1 to PC
		appended to arithmetic and
		logical instructions
SKPBN	063400	Skip if Busy is 1
SKPBZ	063500	Skip if Busy is O
SKPDN	063600	Skip if Done is 1
SKPDZ	063700	Skip if Done is O
SNC	000003	Skip if carry bit is 1
		appended to arithmetic and
		logical instructions
SNR	000005	Skip if result is nonzero
		appended to arithmetic and
		logical instructions
STA	040000	Store AC in location E
SUB	102400	Subtract ACS from ACD, result in ACD
		carry bit based on CRY
(C) Data	General	Corporation 1972. Reproduced from

(C) Data General Corporation 1972. Reproduced from INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)

MNEMONIC CODE

COMMENTS

SUBC	102460	SUB but complement CRY is base
SUBCL	102560	SUBC with rotate left
SUBCR	102560	SUBC with rotate right
SUBCS	102760	SUBC with swap halves of result
SUBL	102500	SUB with rotate left
SUBO	102440	SUB but 1 is base for carry bit
SUBOL	102540	SUBO with rotate left
SUBOR	102640	SUBO with rotate right
SUBOS	102740	SUBO with swap halves of result
SUBR	102600	SUB with rotate right
SUBS	102700	SUB with swap, halves of result
SUBZ	102420	SUB but 0 is base for carry bit
SUBZL	102520	SUBZ with rotate left
SUBZR	102620	SUBZ with rotate right
SUBZS	102720	SUBZ with swap halves of result
SZC	000002	Skip if carry is 0
		appended to arithmetic and
		logical instructions
SZR	000004	Skip if result is 0
		appended to arithmetic and
		logical instructions
ð	002000	Indirect addressing
#	000010	Inhibit carry and result loading
[Ref. 2]		

(© Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

APPENDIX N

INSTRUCTION EXECUTION TIMES

When two numbers are given, the one at the left of the slash is the time for an isolated transfer, the one at the right is the minimum time between consecutive transfers. Times are in microseconds.

INSTRUCTION	TIME
LDA, STA	1.6
ISZ, DSZ	1.8
JMP, JSR	0.8
Indirect addressing add	0.8
Autoindexing add	0.2
COM, NEG, INC	0.8*
ADC, SUB, ADD, AND	0.8*
*If skip occures add	0.2
I/O input (except INTA)	2.2#
NIC, I/O output	2.2*
#S, C, or P add	0.6
I/O skips	1.4*
INTA	2.2
MUL, DIV	8.8
Unsuccessful	1.6
Interrupt with multiply/divide	10.6
without multiply/divide	4.6

INSTRUCTION	TIME
Data Channel	
Input, Output	2.0
Increment	2.2
Latency	3.6
High speed channel	
Input	0.8
Output	0.8/1.0
Increment	1.0/1.2
Latency	
With I/O	3.6
Without I/O	2.0
[Ref. 2]	
(C) Data General Corporation	1972. Reproduced from
INTRODUCTION TO PROGRAMMING	THE NOVA COMPUTERS by
permission of Data General Corporation, Southboro, MA)	

 \mathbf{X}

APPENDIX O

I/O DEVICE CODES AND MNEMONICS

DEVICE	2	PRIORI	TY
CODE	MNEMONIC	MASK	DEVICE
00			Power Fail
01	MD V		Multiply/Divide
02	MMPU		Memory Management and
			Protection Unit
02	MAPO		Memory Allocation
03	MAP1		and
04	MAP2		Protection
05			
06	MCAT	12	Multiprocessor adapter
			transmitter
07	MCAR	12	Multiprocessor adapter
			receiver
10	TTI	14	Teletype input
11	TTO	15	Teletype output
12	PTR	11	Paper tape reader
13	PTP	13	Paper tape punch
14	RTC	13	Real time clock option
15	PLT	12	Incremental plotter
16	CDR	10	Card reader
17	LPT	12	Line printer

(© Data General Corporation 1975. Reproduced from <u>NOVA</u> <u>AND</u> <u>ECLIPSE LINE COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

DEVICE		PRIORITY			
CODE	MNEMONI	<u>C Mask</u>	DEVICE		
20	DSK	09	Fixed head disk		
21	ADCV	08	A/D converter		
22	MTA	10	Magnetic tape		
23	DACV		D/A converter		
24	DCM	00	Data communications mux.		
25					
26					
27					
30	QTY	14	Asynchronous hardware mux.		
31	IBM1	13	IBM 360/370 interface		
32	IBM2	13	IBM 360/370 interface		
33	DKP	07	Moving head disc		
34	CAS	10	Cassette tape		
34	MX 1	10	Multiline asynchronous		
35	MX2	11	controller		
36	IPB	06	Interprocessor bus		
37	IVT	06	IPB watchdog timer		
40	DPI	08	IPB full-duplex input		
41	DPO	08	IPB full-duplex output		
42	DIO	07	Digital I/O		
43	DIOT	06	Digital I/O timer		
44	MXM	12	MX1/2 modem control		
45					
46	MCAT 1	12	Second MCAT		
47	MC AR 1	12	Second MCAR		

(C) Data General Corporation 1975. Reproduced from $\underline{NOVA}^{\mathbb{R}}$ AND ECLIPSE LINE COMPUTERS by permission of Data General Corporation, Southboro, MA) \mathbf{X}^{-1}

DEVICE		PRIOR	ITY
CODE	MNEMONI	<u>C MASK</u>	DEVICE
50	TTI1	14	Second TTI
51	TTO1	15	Second TTO
52	PTR1	11	Second PTR
53	PTP1	13	Second PTP
54	RTC1	13	Second RTC
55	PLT1	12	Second PLT
56	CDR1	10	Second CDR
57	LPT1	12	Second LPT
60	DSK1	09	Second DSK
61	ADCV1	08	Second ADCV
62	MTA1	10	Second MTA
63	DACV1		Second DACV
64	FPU1	05	Alternate location
65	FPU2	05	for
66	FPU4	05	floating point
67			
70	QTY1	14	Second QTY
71		13	Second IBM1
72		13	Second IBM2
73	DKP1	07	Second DKP
74		11	Second MX1
75		11	Second MX2
74	FPU1	05	or
75	FPU2	05	Floating
76	FPU	05	Point
77	CPU		Central processor and
			console functions
FRAF	61		

[Ref. 6]

(© Data General Corporation 1975. Reproduced from <u>NOVA</u> <u>AND</u> <u>ECLIPSE LINE COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)

APPENDIX P

ASCII CODE

EVEN	7-BIT	
PAR.	OCTAL	
BIT	CODE	CHARACTER COMMENTS
0	000	NUL Null, tape feed, CTRL shift P
		-
1	001	SOH Start heading or message, CTRL A
1	002	STX Start text or end of address, CTRL B
0	003	ETX End text or message, CTRL C
1	004	EOT End transmission, CTRL D
0	005	ENQ Enquire identification, CTRL E
0	006	ACK Acknowledge, RU, CTRL F
1	007	BEL Ring bell, CTRL G
1	010	BS Backspace, CTRL H
0	011	HT Horizontal tab, CTRL I
0	012	LF Line feed, CTRL J
1	013	VT Vertical tab, CTRL K
0	014	FF Form feed, new page, CTRL L
1	015	CR Carriage return, CTRL M
1	016	SO Shift ribbon to red, CTRL N
0	017	SI Shift ribbon to black, CTRL O
1	020	DLE CTRL P
0	021	DC1 CTRL Q
0	022	DC2 CTRL R
		```

(© Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA)  $\mathbf{N}^{-}$ 

EVEN	7-BIT		
PAR.	OCTAL		
BIT	CODE	CHAI	RACTER COMMENTS
1	023	500	CTRL S
0			CTRL T
1			Error, CTRL U
1			CTRL V
0			End of block, CTRL W
0			Cancel, CTRL X
1	031		CTRL Y
1			CTRL Z
0			Escape, CIRL shift K
1	034		File separator, CTRL shift L
0	035		Group separator, CTRL shift M
0	036		Record separator, CTRL shift N
1			CTRL shift O
1			Space
0	041	!	0 F 4 6 6
0	042		
1	043		
0	044	\$	
1	045		
1	046		Ampersand
0	047	1	Apostrophe, accent acute
0	050	(	
1	051	)	
1	052	*	
0	053	+	
1	054	,	
0	055	-	

(

(© Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA) 

	7-BIT OCTAL						
BIT	<u>COD E</u>	<u>CHARA</u>	<u>CT ER</u>	<u>C0</u>	MMENT	<u>s</u>	
0	056	•					
1	057	/					
0	060	0					
1	061	1					
1	062	2					
0	063	3					
1	064	4					
0	065	5					
0	066	б					
1	067	7					
1	070	8					
0	071	9					
0	072	:					
1	073	;					
0	074	<					
1	075	=					
1	076	>					
0	077	?					
1	100	۵					
0	101	A					
0	102	В					
1	103	С					
0	104	D					
1	105	Е					
1	106	F					
0	107	G					
0	110	Ħ					
© Da	ata Ger	neral	Corpo	ration	1972		produce
INTRO	DUCTI	CN TO	PROGE	RAMMING	THE	NO VA	COMPU

(C) Data General Corporation 1972. Reproduced from INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)  $\mathbf{N}$ 

EVEN	7-BIT		
PAR.	OCTAL		
BIT	CODE	<u>CHA</u>	RACTER COMMENTS
1	111	I	
1	112	J	÷ .
0	113	K	
1	114	L	
0	115	М	
0	116	N	
1	117	0	
0	120	P	
1	121	Q	
1	122	R	
0	123	S	
1	124	т	
0	125	U	
0	126	V	
1	127	W	
1	130	X	
0	131	Y	
0	132	Z	
1	133	[	Shift K
0	134	i	Shift L
1	135	]	Shift M
1	136	1	Up arrow
0	137	-	Back arrow
0	140	T	Accent grave
1	141	a	
1	142	b	
0	143	С	

(© Data General Corporation 1972. Reproduced from INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)

EVEN	7-BIT				
PAR.	OCTAL				
BIT	CODE	<u>CHARACTER</u>	COMMENTS		
1	144	đ			
0	145	e			
0	146	f			
1	147	g			
1	150	h			
0	151	i			
0	152	j			
1	153	k			
0	154	1			
1.	155	m			
1	156	n			
0	157	0			
1	160	р			
0	161	đ			
0	162	r			
1	163	S			
0	164	t			
1	165	u			
1	166	V			
0	167	W			
0	170	x			
1	171	У			
1	172	Z			
0	173	{			
1	174	I			
0	175	}			
0	176	- Special s	ymbol		
(© Da	ita Ger	neral Corporat:	ion 1972.	Reproduced	from

(C) Data General Corporation 1972. Reproduced from INTRODUCTION TO PROGRAMMING THE NOVA COMPUTERS by permission of Data General Corporation, Southboro, MA)  $\setminus$ 

EVEN	7-BIT	
PAR.	OCTAL	
<u>BIT</u>	CODE	CHARACTER COMMENTS
1	177	DEL Delete, rub out
-		REPT Repeats any other key while held
-		LOC LF Local line feed
-		LCC CR Local carriage return
-		BRFAK Continuous null string
-		HERE IS Null string
[Ref.	2]	

(C) Data General Corporation 1972. Reproduced from <u>INTRODUCTION TO PROGRAMMING THE NOVA</u> <u>COMPUTERS</u> by permission of Data General Corporation, Southboro, MA) Ν

## APPENDIX Q

ERROR CODES

#### A. CORE IMAGE LOADER/WRITER ERRORS

The loader/writer will type *ERR with a code in ACO. The following list describes the error condition indicated by a one in the status word bit position. [Refs. 12 and 13]

BIT MEANING

1 Data late

3 Illegal command

5 Lateral parity error in a word

6 Addressed tape is beyond the EOT marker

8 Addressed tape is at load point

10 Bad tape

13 Unit is write locked

14 Odd number of bytes detected

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)  $\sim$ 

B. CLI ERRORS ERROR MESSAGE MEANING FILE NON-EXISTENT Attempt to load or save an illegal cassette file. ILLEGAL FILE NAME Attempt to rewind or make a save file on a non-existent unit PHASE ERROR Errors in CHECKSUM ERROR saving a file. NOT ENOUGH ARGUMENTS ILLEGAL COMMAND FOR DEVICE DEVICE IS READ PROTECTED [Ref. 12]

£

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSPEM</u> by permission of Data General Corporation, Southboro, MA)  $\mathbf{N}$ 

### C. EDIT ERRORS

# ERROR MESSAGE MEANING

BUFFER CAPACITY EXCEEDED DURING COMMAND INPUT. COMMAND IS TERMINATED AND BEING EXECUTED. Command string exceeds capacity of edit buffer. BUFFER IS FULL - CANNOT DO A Attempting to append a page when the buffer is full. BUFFER IS FULL - Y OR A INPUT TERMINATED. During a read, buffer capacity has been exceeded. A partial page has been read in. FILE CAN'T BE USED FOR INPUT Attempt to read a readprotected file. FILE CAN'T BE USED FOR OUTPUT Attempt to write a writeprotected file. ILLEGAL FILE NAME File name does not conform to a legal file name. MACRO ERROR Undefined or reursive macro. (C) Data General Corporation 1969. Reproduced from NOV

<u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA)  $\setminus$ 

## ERROR MESSAGE MEANING

NO OUTPUT FILE Attempt to issue output command without first opening an output file. NO SUCH FILE Attempt to specify an input file which doesn't exist. OUTPUT ALREADY ACTIVE Attempt to get for writing an output file which has not been closed, and is still active. PARITY ERROR IN LINE n Read parity error in line n. Bad character replaced by |. STR NOT FOUND Unsuccessful string search. ??command string Illegal edit command. [Refs. 14 and 15]

(C) Data General Corporation 1969. Reproduced from <u>NOVA</u> <u>TEXT EDITOR</u> by permission of Data General Corporation, Southboro, MA) X

## D. ASM ERRORS

ERROR MESSAGE MEANING

NO.END			No .END statement
I/0	ERROR	nn	nn is the error code
		1	Illegal file name
		7	Read-protected file
		10	Write-protected file
		12	Non-existent file

[Ref. 12]

© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSFEM</u> by permission of Data General Corporation, Southboro, MA)

Υ.

E. RLDR ERRORS

```
ERROR MESSAGE MEANING
NO INPUT FILE SPECIFIED.
NO SAVE FILE SPECIFIED.
No core image output device
has been specified with /S.
SAVE FILE IS READ/WRITE PROTECTED.
The save file must permit
both reading and writing.
(cassette only)
I/C ERROR nn See ASM errors.
[Ref. 12]
```

© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)  $\setminus$ 

### F. LFE ERRORS

ERROR MESSAGE MEANING The same first 5 characters Μ in two or more entry symbols. An undefined external entry. U Ρ An external entry defined before its reference. ILLEGAL KEY: key Indicated letter is not legal. SWITCH ERROR: u Indicated file use is not permitted with this operation. TOO MANY ARGUMENTS IN COMMAND LINE The 200 character command line buffer is exceeded. NO INPUT FILE? This operation requires an input file. NO OUTPUT FILE?This operation requires an output file. ERROR CONDITION IN INPUT FILE: inputfile Incorrect device mnemonic. ERROR CONDITION IN OUTPUT FILE: outputfile Incorrect device mnemonic. ERROR CONDITION IN UPDATE FILE: updatefile Incorrect device mnemonic. ERROR CONDITION IN LISTING FILE: listingfile Incorrect device mnemonic.

© Data General Corporation 1972. Reproduced from <u>LIBRARY</u> <u>FILE EDITOR</u> by permission of Data General Corporation, Southboro, MA) CHECKSUM ERROR IN LOGICAL RECORD: recordfile Bad paper tape. CHECKSUM ERROR IN UPDATE FILE: updatefile Bad paper tape. BLOCK ERROR IN UPDATE FILE: updatefile Improper input block format. BLOCK ERRCR IN LOGICAL RECORD: inputfile Improper Logical Record format. LOGICAL RECORD NOT RECOVERABLE: recordfile Different file types cannot be input from the same device. UPDATE FILE NOT FOUND FOR L.R: logicalfile R command requires both an Update and a Logical Record file to be specified. SYMEOL TABLE OVERFLOW I command has insufficient memory space available. UNEXPECTED ERROR FROM SYSTEM Hardware malfunction. LOGICAL RECORD NOT FOUND: recordfile NO LISTING FILE: DEFAULT LISTING ON TTO [Ref. 16]

(C) Data General Corporation 1972. Reproduced from <u>LIBRARY</u> <u>FILE EDITOR</u> by permission of Data General Corporation, Southboro, MA)  $\mathbf{X}^{-1}$ 

G. SYSG ERRORS

ERROR MESSAGE MEANING NOT ENOUGH ARGUMENTS OUTPUT FILE WRITE PROTECTED, FILE: filename NO OUTPUTFILE SPECIFIED ILLEGAL SYMBOL NAME: symbol Invalid character in command line. FILE DOES NOT EXIST, FILE: filename UNEXPECTED SYSTEM ERROR Computer halts with system error code in AC2. [Refs. 12 and 13]

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA)  $\mathbf{X}^{-}$ 

H. SYSTEM ERRORS

A system error results in a computer halt with a code in AC2 that is interpreted as follows:

CODE MEANING 0-Illegal channel number 1-Illegal file name 2-Illegal system command 3-Illegal command for device 4-Not a saved file 5-Attempted to write an existent file 6-End of file 7-Read protected file 10-Write protected file 11-Attempt to create an existent file 12-Non-existent file 13-Attempt to alter a permanent file 14-Attributes protected 15-File nct opened 21-Attempt to use a UFF already in use 22-Line limit exceeded 23-Attempt to restore a non-existent image 24-Parity error on read line 25-Trying to push too many levels 26-Not enough memory available 27-Out of file space .

(C) Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA) \

CODE MEANING 30-File read error 31-Unit not prperly selected 32-Illegal starting address 33-Attempt to read into system area 35-Files specified on different directories 36-Illegal device name 37-Illegal overlay number 40-Illegal overlay file attribute 41-User set time error 42-Out of TCB's 43-Signal to busy address 44-Squash file error 45-Device already in system 46-Insufficient contiguous blocks 47-Quantity error 50-Error in user task queue table 100-Not enough arguments 101-Illegal attribute 102-No debug address 103-No continuation address 104-No starting address 105-Checksum error 106-No source file specified 107-Not a command 110-Illegal block type 111-No files match specifier 112-Phase error 113-Too many arguments [Refs. 12 and 13]

(© Data General Corporation 1973. Reproduced from <u>THE</u> <u>STAND-ALONE OPERATING SYSTEM</u> by permission of Data General Corporation, Southboro, MA) Ń

# APPENDIX R

## TELETYPE OUTPUT EXAMPLE PROGRAM CREATION

A. TTO EXAMPLE PROGRAM SOURCE LISTING

```
#0:2
*GRCT1:0$$
: TTO EXAMPLE PROGRAM
PROGRAM FOR TTY OUTPUT OF A PACKED BUFFER,
:TERMINATED BY A ZERO WORD.
 WORD CHARACTER
 EXAMPLE:
;
 1
 2,1
 BUFER:
;
 2
 4,3
÷
 TERM:
 3
 0,0
.TITL
 TTOEX
 .ENT
 TTOEX
 .NREL
TTOEX:
 LDA
 3, PBUF ; TABLE POINTER
LOOP:
 LDA
 0,0,3 ;PASS PARAMETER TO ACO
 0,0, SNR ; CHECK FOR TERMINATION CODE
 MOV #
 HALT
 ;WAIT UNTIL AVAILABLE
 JMP
 .-1
 DOAS
 0,TTO ;OUTPUT RIGHT-MOST CHARACTER
```

 $\sim$ 

	MOVS	0,0	;SWAP	CHARAC	TERS
	SKPBZ	TTO	;WAIT	UNTIL	AVAILABLE
	JMP	1			
	DOAS	0,TTO	;2ND 0	CHARACT	ER
	INC	3,3	;NEXT	BUFFER	ADDRESS
	JMP	LOOP	;NEXT	WORD	
BUFER:	.TXT	<b>'</b> <015><0	012>COI	NGRATUL	ATIONS!
		<015><01	12><040	)><040>	YOU<040>
		HAVE<04(	D>COMPI	LETED<0	40>
		YOUR<040	)>FIRST	c<040>P	ROGRAM
		<040>CRI	EATION	<000><	000>*
PBUF:	BUFER				
	. EN D	TTOEX			
\$\$					
*GWCT1:0	\$\$				
*B\$P\$GC\$	\$				

*H\$\$

#

N

B. TTO EXAMPLE PROGRAM ASSEMBLER OUTPUT

#0:3

ASM 1 CT 1:0 CT 0:0/B \$TTO/L

PROGRAM IS RELOCATABLE

---

0001 ITOEX

	*****	** ** * * * *	* * * * * * * * *	******	* * * * * * * * * * *	
	•					
		XAMPLE PI	ROCRAM			
	·	Nami DD II	aco nan			
	•					
	; PROGRAI	M FOR TT	Y OUTPUT	OF A PA	CKED BUFFER,	
	;TERMIN	ATED BY .	A ZERO WQ	ORD.		
	* ?	EXAMPLE	•	WORD	CHARACT ER	
	*	BUFER:		1	2,1	
	•			2	4,3	
	;	TERM:		3	0,0	
	*					
	• ** ** **: •	** ** * * *	** ** ** **	******	****	
		.TITL	TTOEX			
		.ENT	TTOEX			
		.NREL				
00000:034465	TTOEX:	LDA	3,PBUF	;TABLE	POINTER	
00001:021400	LOOP:	LDA	080,3	;PASS B	PARAMETER TO	
				;ACO		
00002101015		MOV #	0,0,5NR	;CHECK	FOR	
				;TERMIN	NATION CODE	
000031063077		HALT		;TERMIN	IATE	
000041063511						1
00004 000011		SKPBZ	TTO	; WALT (	INTIL AVAILABL	Ľ
00005:000777		SKPBZ JMP	тто 1	;WALT (	INTIL AVAILABL	Ľ

00007*101300       NOVS       0,0       ; SWAP CHARACTERS         00011*000777       JMP      1         00012*061111       DOAS       0,TTO       ; 2ND CHARACTER         00013*175400       INC       3,3       ; NEXT BUFFER ADDRESS         00015*005015       JMP       LOOP       ; NEXT WORD         00015*005015       JMP       LOOP       ; NEXT WORD         00020*040522       .TXT       *<015><012>CONGRATULATIONS:         00022*040514       .TXT       *<015><012>CONGRATULATIONS:         00022*040515       .TXT       *<015><012>CONGRATULATIONS:         00022*040514       .TXT       *<015><012>CONGRATULATIONS:         00022*040512       .TXT       *<015><012>CONGRATULATIONS:         00022*040512       .TXT       *<015><012>CONGRATULATIONS:         00025*02.0523					CHARACTER	
00011*000777       JMP       -1         00012*061111       DOAS       0,TTO       :2ND CHARACTER         00013*175400       JMP       LOOP       ;NEXT BUFFER ADDRESS         00014*000765       JMP       LOOP       ;NEXT WORD         BUFER:       .TXT       *<015><012>CONGRATULATIONS!         00017*043516	00007101300		MOVS	0,0	;SWAP CHARACTE	RS
00012.061111       DOAS       0.TTO       : 2ND CHARACTER         00013.175400       JMP       LOOP       :NEXT BUFFER ADDRESS         00014.000765       JMP       LOOP       :NEXT WORD         BUFER:       .TXT       '<015><012>CONGRATULATIONS!         00020.040522	00010'063511		SKPBZ	T TO	;WAIT UNTIL AV	AILABLE
00013'175400       INC       3,3       ; NEXT BUFFER ADDRESS         00014'000765       JMP       LOOP       ; NEXT WORD         BUFER:       .TXT       '<015><012>CONGRATULATIONS!         00015'005015	00011'000777		JMP	1		
JMP         LOOP         :NEXT WORD           BUFER:         .TXT         '<015><012>CONGRATULATIONS!           00015:005015	00012'061111		DOAS	0,TTO	;2ND CHARACTER	
BUFER:         .TXT         <015><012>CONGRATULATIONS!           00015:         00016:         047503           00017:         043516         00020:           00020:         040522         00021:           00022:         040524         00022:           00022:         044524         00022:           00022:         044524         00022:           00022:         044524         00022:           00022:         044524         00022:           00022:         04052         0002           00022:         04052         0002           00022:         040510         0015><012><040><040><040>           00033:         04411         0405           00033:         04411         0405           00033:         04411         0405           00033:         04411         0405           00033:         04411         0405           00041:         052105         0405           00041:         052105         0405           00041:         052105         0405           00041:         052105         0405           00042:         042105         0405           00044:	00013 175400		INC	3,3	;NEXT BUFFER A	DDRESS
00015'005015 00016'047503 00017'043516 00020'040522 00021'052524 00022'040514 00023'044524 00024'047117 00025'020523 00026'004411 <015><012><040><040>YOU<040> 00027'005015 00030'02040 00031'047531 00032'020125 00033'004411 HAVE<040>CONFLETED<040> 00031'04510 00035'042526 00036'34 1440 00037'046517 00046'1052105 00041'052105 00044'054411 00045'052517 00046'020122 00044'044506	00014'000765		JMP	LOOP	;NEXT WORD	
00016'047503 00017'043516 0020'040522 00021'052524 00022'040514 00023'044524 00024'047117 00025'020523 00026'004411 <015><012><040><040>YOU<040> 00027'005015 00030'02040 00031'047531 00032'020125 00033'004411 HAVE<040>COMPLETED<040> 00031'04510 00035'042526 00033'044517 C0040'046120 00041'052105 00042'042105 00044'054411 00045'052517 00044'054411 00045'052517 00046'020122 00047'044506		BUFER:	. TXT	<b>!</b> <015><0	12>CONGRATULAT	IONS!
00017*043516 00020*040522 00021*052524 00022*040514 00023*044524 00024*047117 00025*020523 00026*004411 <015><012><040><040>YOU<040> YOU<040> 00027*005015 00030*020040 00031*047531 00032*020125 00033*004411 HAVE<040>COMPLETED<040> 00033*044510 00035*042526 00036*34 1440 00037*046517 00040*046120 00041*052105 00042*042040>FIRST<040>PROGRAM 00044*054411 00044*054411 00045*052517 00046*020122 00044*04506	00015'005015					
00020*040522 00021*052524 00022*040514 00023*044524 00024*047117 00025*020523 00026*004411 <015><012><040><040>YOU<040> 00027*005015 00030*020040 00031*047531 00032*020125 00033*004411 HAVE<040>COMPLETED<040> 00033*044510 00035*042526 00036*041440 00037*046517 00040*046120 00041*052105 00042*042040>FIRST<040>PROGRAM 00044*054411 00045*052517 00046*020122 00044*04504	00016'047503					
00021:052524 00022:040514 00023:044524 00024:047117 00025:020523 00026:004411 <015><012><040>Y0U<040>Y0U<040> 00027:005015 00030:02040 00031:047531 00032:020125 00033:004411 HAVE<040>COMPLETED<040> 00034:040510 00035:042526 00036:041440 00037:046517 00040:046120 00041:052105 00042:042105 00044:054411 00044:054411 00045:052517 00046:020122 00047:044506	00017:043516					
00022*040514 00023*044524 00024*047117 00025*020523 00026*004411 <015><012><040>Y0U<040>Y0U<040> 00027*005015 00030*020040 00031*047531 00032*020125 00033*004411 HAVE<040>CONPLETED<040> 00034*040510 00035*042526 00036*041440 00037*046517 00040*046120 00041*052105 00042*042105 00043*004440 YOUR<040>FIRST<040> PROGRAM 00044*054411 00045*052517 00046*020122 00047*044506	00020 040522					
00023 * 044524 00024 * 047117 00025 * 020523 00026 * 004411 <015><012><040><040>YOU<040> 00027 * 005015 00030 * 02040 00031 * 047531 00032 * 020125 00033 * 004411 HAVE<040>COMPLETED<040> 00034 * 040510 00035 * 042526 00036 * 041440 00037 * 046517 00044 * 054105 00044 * 054411 00045 * 052517 00044 * 054411 00045 * 052517 00046 * 020122 00047 * 044506	00021:052524					
00024.047117 00025.020523 00026.004411 00027.005015 00030.020040 00031.047531 	000221040514					
00025 020523 00026 004411 00027 005015 00030 020040 00031 047531 00032 020125 00033 004411 HAVE<040>COMPLETED<040> 00035 042526 00036 034 1440 00037 046517 00044 054120 00041 052105 00042 042105 00043 004440 YOUR<040>FIRST<040>PROGRAM 00045 052517 00046 020122 00047 044506	000231044524					
00026•004411 00027•005015 00030•020040 00031•047531 00032•020125 00033•004411 HAVE<040>COMPLETED<040> 00034•040510 00035•042526 00036•341440 00037•046517 00040•046120 00041•052105 00042•042105 00044•054411 00044•054411 00045•052517 00046•020122 00047•044506	000241047117					
00 C 27 * 00 50 1 5 00 0 30 * 0 2004 0 00 0 31 * 04 7 5 3 1 00 0 32 * 0 20 1 2 5 00 0 33 * 00 44 1 1 HAV E<040> COMPLETED<040> 00 0 34 * 04 0 5 1 0 00 0 35 * 04 2 5 2 6 00 0 36 * 0 4 1 44 0 00 0 37 * 0 4 6 5 1 7 6 0 0 4 0 * 0 4 6 1 2 0 0 0 0 4 1 * 0 5 2 1 0 5 0 0 0 4 2 * 0 4 2 1 0 5 0 0 0 4 2 * 0 4 2 1 0 5 0 0 0 4 2 * 0 4 2 1 0 5 0 0 0 4 4 * 0 5 4 4 1 1 0 0 0 4 5 * 0 5 2 5 1 7 0 0 0 4 6 * 0 2 0 1 2 2 0 0 0 4 7 * 0 4 4 5 0	00025 020523					
00030°020040 00031°047531 00032°020125 00033°004411 HAVE<040>COMPLETED<040> 00034°040510 00035°042526 00035°042526 00037°046517 00040°046120 00041°052105 00042°042105 00042°042105 00044°054411 00045°052517 00046°020122 00047°044506	00026 004411			<015><0	2><040><040>YO	U<040>
00031:047531 00032:020125 00033:004411 HAVE<040>COMPLETED<040> 00034:040510 00035:042526 00036:041440 00037:046517 00040:046120 00041:052105 00042:042105 00043:004440 YOUR<040>FIRST<040>PROGRAM 00044:054411 00045:052517 00046:020122 00047:044506	00027:005015					
000 32 0 20 125 000 33 00 44 11 HAVE<040>COMPLETED<040> 000 34 0 40 510 000 35 0 42 526 000 36 0 34 1440 000 37 0 46 517 000 40 0 46 120 000 41 0 52 105 000 42 0 42 105 000 43 00 4440 YOUR<040>FIRST<040>PROGRAM 000 44 0 544 11 000 45 0 52 517 000 46 0 20 122 000 47 0 44 506	00030.020040					
00033*004411       HAVE<040>COMPLETED<040>         00034*040510       00035*042526         00036*041440	000311047531					
00034*040510 00035*042526 00036*041440 00037*046517 00040*046120 00041*052105 00042*042105 00043*004440 YOUR<040>FIRST<040>PROGRAM 00044*054411 00045*052517 00046*020122 00047*044506	00032.020125					
00035*042526 00036*041440 00037*046517 00040*046120 00041*052105 00042*042105 00043*004440 YOUR<040>FIRST<040>PROGRAM 00044*054411 00045*052517 00046*020122 00047*044506	00033'004411			HAVE<04	>COMPLETED<040	>
00036*041440 00037*046517 00040*046120 00041*052105 00042*042105 00043*004440 YOUR<040>FIRST<040>PROGRAM 00044*054411 00045*052517 00046*020122 00047*044506	00034 040510					
00037*046517 00040*046120 00041*052105 00042*042105 00043*004440 YOUR<040>FIRST<040>PROGRAM 00044*054411 00045*052517 00046*020122 00047*044506	00035 042526					
00040°046120 00041°052105 00042°042105 00043°004440 00044°054411 00045°052517 00046°020122 00047°044506	00036 • 04 1440					
00041'052105 00042'042105 00043'004440 YOUR<040>FIRST<040>PROGRAM 00044'054411 00045'052517 00046'020122 00047'044506	00 <b>037</b> • 046517					
00042'042105 00043'004440 YOUR<040>FIRST<040>PROGRAM 00044'054411 00045'052517 00046'020122 00047'044506	00040 046 120					
00043:004440       YOUR<040>FIRST<040>PROGRAM         00044:054411       00045:052517         00046:020122       00047:044506	00041'052105					
00044*054411 00045*052517 00046*020122 00047*044506	00042'042105					
00045 · 052517 00046 · 020122 00047 · 044506	000431004440			YOUR<04	>FIRST<040>PRO	GRAM
00046 · 020122 00047 · 044506	00044 054411					
00047 • 044506	00045 05 25 17					
	00046 020122					
00050 05 1522	00047 • 044506	-				
	00050 05 1522					

# Ν.

00051'020124 00052'051120

---

0002 ITOEX			
00053 • 04 35 17			
00054 040522			
00055 004515			<040>CREATION.<000><000>
00056 020011			
00057 05 1 103			
00060 • 04 05 05			
00061 044524			
00062 047117			
00063.000056			
00064 • 000000			
00065'000015'	PBUF:	BUFER	
000000		. END	TTOEX
•			

---

0003 TTOEX BUFER 000015' LOOP 000001' PBUF 000065' TTOEX 000000'

ASM

#

Ν

C. TTO EXAMPLE PROGRAM RLDR OUTPUT

#0:4

RLDR CT1:0 CT0:0/S \$TT0/L

TTOEX

NMAX 000526 ZMAX 000050 CSZE EST

SST

TTOEX 000440

OK

#

D. TTO EXAMPLE PROGRAM EXECUTION

# 0:0

CONGRATULATIONS!

YOU HAVE COMPLETED YOUR FIRST PROGRAM CREATION.

### APPENDIX S

ASSORTED PROGRAMS

ADCOD Α. ; 3 A/D CODE TEST 3 PROCEDURE: CONNECT ANALOG SIGNAL ON CH 0 ; SIGNAL IS CONVERTED AND TYPED 3 BY ACTUATING THE CPU SWITCH 3 'CONTINUE' 3 3 LIMITS: +/- 10.24 VOLTS \$ 11 OCTOBER 1976, GDR 3 : .TITL ADCOD ADCOD . ENT BIOA, TYPE • EXTN .NREL **ØLTYPE** 00000'006433 ADCOD: JSR 00001 .000032. PROMT 00002 020534 ADCO1: LDA Ø,ZERO;CH Ø IN AC Ø ; START A/D SAMPLE 00003 063121 DOCS 0.21 00004 063621 SKPDN 21 ; WAIT FOR COMPLETION 00005 000777 JMP. . - 1 DIC 1,21 JLJAD DIGITAL DATA 00006.066421 2, CR ; USE NEW LINE EACH SAMPLE 00007 030421 LDA DOAS 2,TT0 00010 071111 SKPDN 00011 063611 TTO 00012 000777 JMP. . - 1 LDA 2, LF 00013 030416 2,TTO 00014 071111 DOAS 00015 063611 SKPDN TTO 00016 000777 JMP. • - I 00017 020415 Ø, LSTUF ; PARAMETER FOR BIDA LDA 00020 006412 JSR **ØLBIDA** ; RESTART BY CONSOLE 00021 063077 HALT ADC01 ; SWITCH 'CONTINUE' JMP 00022 000760 .3,RSTUF ; SAVE RETURN 00023'054514 STUFF: STA 00024 061111 DOAS Ø,TTO JUTPUT DATA 00025 063611 SKPDN TTO 00026 000777 JMP • - 1 00027 002510 JMP RSTUF ; RETURN 00030'000015 CR: 015 40031 000012 LF: 912 00032 177777 LRIDA: BEDA 00033'177777 LTYPE: TYPE 00034 900023 11STUF: STUFF .TXT 1<015><012>A/D<040>C)DE<040>FC() PROMI:

Ν

# <015><012>PROCEDURE:<015><012>

CONNECT<040> ANALO G<040> SOURCE<040>

TO<040>CH0<015><012>LIMITS:<040>

+/-10.24V<015><012>NEW<040>SAMPLE

<040>BY<040>CONSOLE<040>SWITCH<040>

X

03122 046117 09123 020105 00124 053523 09125 052111 00126 044133 00127 004440 00130 041411	CONTIN	UE<015><012> '
00131'047117		
00132'044524		
00133 052516		
00134'006505		
00135'000012		
00136.000000	ZERO: Ø	
00137 000000	RSTUF: Ø	
000000 •	• END	ADCOD

.5

B. BIOA

3 ; SUBROUTINE BIDA 1 ; DATA GENERAL BIND.SR 090-000032-01 ; MODIFIED FOR NPS USE 1 ; BINARY TO OCTAL ASCII CONVERT ; CONVERTS A 16-BIT BINARY WORD TO AN OCTAL CHARACTER STRING ; INPUT: USER ROUTINE IN ACO ; BINARY NUMBER IN AC1 ; OUTPUT: ASCII CHARACTER STRING, TERMINATED BY \$ NULL CHARACTER ; CHARACTERS PASSED RIGHT ADJUSTED ; TO THE USER ROUTINE WHOSE ADDRESS ; MUST BE STORED IN ACO ; STRING OF FORM: 3 300000(NULL) ; WHERE "O'S" REPRESENT OCTAL DIGITS 3 CALLING SEQUENCE: ; . EXTN BIOA ; ____ ; **JSR elbida** ; RETURN ; ----; ;LBIDA: BIDA 1 ********** . TITL BIOA . ENT BIOA .NREL STA 00000'040425 BIOA: 0, EF40 ;LINK USER ROUTINE STA 00001 054421 3. EFØ3 ; SAVE RETURN 00002 1 52 621 SUBZR 2,2,SKP ; 100000 TO AC2 00003'146401 . EF99: SUB 2,1, SKP ; DECREASE CURRENT DIGIT 00004'020420 .EF98: LDA 0, .EF20 3 GET OCTAL 57 00005-101400 INC 0,0 J FORM ASCII OUTPUT DIGIT SUBZL# 2,1, SNC; - IMPLIES DIGIT COMPLETE 00006146533 JMP .EF99 ; NOT DONE, SUBTRACT 1 FRIM 20007 000774 ; CURRENT DIGIT 03010 050413 STA 2, EF10; SAVE SUBTRACT CONSTANT JSR 0.EF40 ; PUT DUT A DIGIT 00011 306414 LDA 2, . EF10; RESTORE SUBTRACT CONSTANT 00012 030411 MOVZR 2,2 ; POSITION "1" FOR NEXT OCTAL 00013 151220 ; DIGIT MOVZR 2,2 00014-151220 00015151224 MOVZR 2,2,SZR JMP . EF93 : VIT DIVE 30016 030766

X

00317 • 1410 30 04024 • 006445 00021 • 092441 00022 • 009000 00023 • 009000 00024 • 009057 00025 • 000000	•EFM3: •EF10: •EF20:	40V 2,0 JSR 0.EF J4P 0.EF の 57 の .END	FØ3; RET ; SAV ; SAV ; CDN ; ASC ; USER	E RETURNÍ E LOCATION FOR SUE	
C. TYPE	; ; SUBRO ; ;GLOBAL ;BUFFER	UTINE T SUBROUT TERMINA ADDRESS I EXAMPLE BUFFER: TERM: EQUENCE EXTN JSR BUFFER	YPE INE FOR TED BY A PASSED AM	TTY OUTPUT OF A PA ZERO WORD.BUFFER S ARGUMENT. WORD CHARACTER 1 2.1 2 4.3 3 0.0	ACKED
	; ; *****		******* TYPE	*****	*****
			TYPE		
00000 · 054421 00001 · 035400 0002 · 021400 0003 · 101015 0003 · 063511 00006 · 000777 00007 · 061111 00010 · 101300 00011 · 063511 00012 · 000777 00013 · 061111 00014 · 175400 00015 · 000765			3,0,3 0,0,3	SAVE RETURN TABLE POINTER PASS PARAMETER T CHECK FOR TERMIN TERMINATE WAIT UNTIL AVAIL SOUTPUT RIGHT-MOS SWAP CHARACTERS WAIT UNTIL AVAIL S2ND CHARACTER SNEXT BUFFER ADDR SNEXT WORD	ATION ABLE ST CHAR ABLE
00016'034403 00017'175400 J0020'001400 00021'000000	TYPEX:	LDA INC JMP Ø • END	3,LINK 3,3 0,3		



CADO D. ; 3 ROUTINE CADO 3 ; FOR CALIBRATION OF THE A/D CONVERTER J BY ANALOG INPUT TO CHANNEL ZERO AND MONITORING SPECIFIC BIT OUTPUTS ON AN 3 OSCILLOSCOPE 1 ; LOGIC LEVELS: 1= 2.7V (>2.2V) 3 0= 0.0V (<0.2V) 3 3 ; A TELETYPE MESSAGE REMINDS THE OPERATOR OF THE CORRECT PROCEDURE. \$ 3 11 OCTOBER 1976, GDR 3 1 CADO .TITL • ENT CADO • EXTN TYPE .ZREL *BLTYPE* 00000-006007-CADO: JSR PROMT 00001-000010-JCH Ø IN AC Ø 0,ZER0,0 00002-020261-CAD01: LDA START AND CONVERSION DOCS 0,21 00003-063121 ; WAIT FOR COMPLETION 00004-063621 SKPDN 21 30005-000004-JMP. . -1 CADO1.0 ; RELOOP 30006-000002-JMP TYPE 30007-177777 LTYPE: PROMT: • TXT '<015><012>A/D<040>CALIBRATION 30010-005015 30011-027501 30012-020104 10013-040503 10014-044514 30015-051102 10016-052101 30017-047511 <015><012>PROCEDURE:<015><012> 10020-004516 10021-006411 10022-050012 10023-047522 10024-042503 10025-052504 10026-042522 10027-006472 CONNECT < 040> ANALO G < 040> VOLTAGE 10030-004412

	,
30031-041411	
10032-047117	
00033-042516	
00034-052103	
00035-040440	
00036-040516	
00037-047514	
00040-020107	
00041-047526	
00042-052114	
00043-043501	
00044-004505	
00045-020011	<040>TO<040>CHANNEL<040>0
00046-047524	
00047-041440	
00050-040510	
00051-047116	
00052-046105	
00053-030040	
00054-004411	<015> <012> SET <040> VOL TAGE<040> AT
00055-005015	(01) 3 (012) 3 E1 (040) VUL 1AGE (040) A1
00056-042523	
00057-020124	
00060-047526	
00061-052114	
00062-043501	
00063-020105	
00064-052101	
00065-004411	
00066-026440	<040>-0.0025V<015><012>MONITOR<040>
00067-027060	
00070-030060	
00071-032462	
00072-006526	
00073-046412	
00074-047117	
00075-052111	
00076-051117	
00077-004440	
4	MSB<040>BIT<040>PIN<040>28L<040>
00100-046411	
00101-041123	
30102-041040	
00103-052111	
00104-050040	
00105-047111	
00106-031040	
00107-046070	
00110-004440	
00111-047411	ON<040>OSCILLOSCOPE<015><012>ADJUST
00112-020116	
00113-051517	
00114-044503	
00115-046114	
010114	



00116-051517 00117-047503 00120-042520 00121-005015 00122-042131 00123-052512 00124-052123 00125-004411 00126-047440 00127-043106 00130-042523 00131-020124 00132-047506 00133-020122 00134-030065 00135-004440 00136-050011 00137-051105 00140-042503 00141-052116 00142-042040 00143-052125 00144-020131 00145-054503 00146-046103 00147-004505 00150-006411 00151-051012 00152-051505 00153-052105 00154-053040 00155-046117 00156-040524 00157-042507 00160-004440 00161-052011 00162-020117 00163-030455 00164-027060 00165-031462 00166-032467 00167-006526 00170-046412 00171-047117 00172-052111 00173-051117 00174-004411 00175-046040 00176-041123 00177-041040 00200-052111 00201-050040 00202-047111 00203-031440

### <340>)FFSET<040>F)R<040>50<040>

PERCENT<040>DUTY<040>CYCLE

### <015> <012> RESET <040> VOLTAGE <040>

### TO <040>-10.2375V<015><012>MONITOR

÷

### <040>LSB<040>BIT<040>PIN<040>34L

 $\mathbf{i}$ 

10204-046064 10205-004411 00206-005015 00207-042101 00210-052512 00211-052123		<015> <012> ADJUST <040> RANGE <040>
10212-051040         00213-047101         00214-042507         00215-004440         00216-043011         00217-051117		FOR<040>50<040>PERCENT<040>DUTY
00220-032440 00221-020060 00222-042520 00223-041522 00224-047105 00225-020124 00226-052504		
00228-032504 00227-054524 00230-004411 00231-041440 00232-041531 00233-042514 00234-005015		<040>CYCLE<015><012><012>LOGIC
00235-046012 00236-043517 00237-041511 00240-004411 00241-046040 00242-053105		<040>LEVELS:<040>1=2.7V<040>
00243-046105 00244-035123 00245-030440 00246-031075 00247-033456 00250-020126		
00251-004411 00252-047101 00253-020104 00254-036460 00255-027060 00256-053060		AND<040>0=0.0V<015><012> *
00257-005015 00260-000000 00261-000000 ZERO: 000000-	0 • EN D	CADO

F	DAC					
Ε.	DAC	;*****	*****	*****	* * * * * * * * * * * * * * * * * * * *	****
		;				
		; ROUTI	NE DAC			
			ALIBRATI	ON OF THE	E DZA CONVERTER	
		BY MO	NITORING	THE APPR	RUPRIATE CHANNEL (X OR	Y)
				-	ADJUSTING THE	
					R THE MINIMUM VALUE AN R FOR THE DESIRED	VD
					E. (10.000 VOLTS)	
		;				
					INDS THE OPERATOR OF	
		_	DRRECT PI	ROCEDURE	•	
		; 21 00	TOBER 19	76.GDR		
		;				
		;*****		******	******	****
			•TITL	DAC		
			• ENT • EXTN	DAC TYPE		
			NREL			
0000	0'006424		JSR	eltype	;INTRODUCTION	
	1'000027		INTRO			
	2'006422		JSR	ØLTYPE		
	3'000237 4'030422		ZERO V LDA	2,ZERO,	DATA Ø IN A	<b>c</b> o
	5'004410		JSR	DAC 1		0 2
	6'063077		HALT		;CONTINUE FOR FULL	
	7 006415		JSR	<b>eltype</b>	SCALE CALIBRATION	
	0'000275		TENV	O TEN G	ADATA 10 0001 IN AD	•
	1'030414 2'004403		JSR	DACI	JDATA 10.000V IN AC	2
	3'063077		HALT	DAUI	CONTINUE FOR ZERO	
<u> 3001</u>	4'000766		JMP	MIN	; CALIBRATION	
	5'020411	DAC1:	LDA	Ø,ZERO,		AC
	6'105400		INC	0,1	CH Y(=1) IN AC 1	
	7'062023 0'071023		DOB DOA	Ø,23 2,23	SELECT X CHANNEL	
	1'066023		DOB	1,23	SELECT Y CHANNEL	
3002	2 '07 1 0 2 3		DOA	2,23	JOUTPUT Y	
	3 00 1 400		JMP	0.3	RETURN	
	4'177777		TYPE	•		
	5'003777 6'000000	TEN: ZERO:	03777 0			
		INTRO:	• TXT	'<015><	012>D/A<040>CALIBRATI	0.4
	7 00 50 1 5					
	0 027504					
	1'020101					
	2'040503 3'044514					

## <015><012>PROCEDURE:<015><012>

CONNECT<040>DVM<040>TO<040>CHX

## <040>(PINS8U+9L)<015><012>ADJUST

## <040>CHX<040>ZERO<040>POTENTIOMETER

#### <015><012>REPEAT<040>PROCEDURE<040>

FOR < 040> CHY < 040> (PINS 60+6L)

• •

<015><012>FULL<040>SCALE<040>

CALIBRATION < 040> STARTS < 040> BY < 040>

DEPRESSING<040>CONTINUE<040>ON<040>

THE<040>CONSOLE<015><012>ADJUST<040>

 $\setminus$ 

J3219 020124 9211 034411 3212 340537 33213 947111 0214 050049 00215 052117 00216 047105 00217 044524 00220 046517 00221 052105 00222 051105 00222 051105 00223 020123 30224 051501 30225 004440 0226 040411 00227 050120 00230 047522 20231 051120 00232 040511 00233 042524 00234 006456 00235 000012 00236 000000	ZERO
00237.005015 00240.042101 00241.052512 00242.052123 00243.055040 00244.051105 00245.004517 00246.020011 00250.020104 00251.047503 00252.052116 00253.047111 00254.042525 00255.043040 00256.051117 00256.051117 00256.043040 00256.020105 00262.020114 00263.041523 00264.046101 00265.020105 00264.046101 00265.020105 00267.052512 00270.052123 00271.004411 00272.005015 00273.000000 00274.000000	

	APPR	OPRIATE.<015><012><000><000>'
۷:	•TXT	'<015><012>ADJUST<040>ZERO
	• • •	<040>AND<040>CONTINUE<040>FOR
•	-	<040> FULL <040> SCALE <040> ADJUST
		<015><012><000> '

GAIN<040>POTENTIOMETERS<040>AS<040>



	TEV V:	• TXT	'<015><012>TEN<040>VOLT<040>
00275 005015			
00276 042524			
00277 020116			
00300 047526			
00301 052114			
00302 004440			ADJUST<040>AND<040>CONTINUE
00303 040411			
00304'045104			
00305 051525			
00306 020124			
00307 047101			
00310'020104			
00311'047503			
00312'052116			
00313 047111			
00314 042525			
00315 004411			<040>FOR<040>ZER0<040>ADJUST
00316 043040			
00317 051117			
00320 055040			
00321'051105			
00322'020117			
00323 042101			
00324 052512			
00325*052123			
00326 004411			<015><012><000><000>'
00327 005015			
00330 000000			
00331 000000			
000000	•	• END	DAC

λ.

F. EXERCISE 4 SOLUTION

<pre>JSTART ADDRESS PASSED AS ARGUMENT.</pre>		BUFFER.	TERMINA	TED BY A	TTY OUTPUT OF A PACKED ZERO WORD.BUFFER
<pre></pre>					
<pre></pre>				•	
<pre></pre>					00
<pre></pre>					
<pre>     JSR</pre>				TYPE	
<pre>     BUFER     J     TITL TYPE     TYPE:     TITL TYPE     TYPE:     TITL TYPE     .NREL      O0000'054421 TYPE: STA 3,LINK ;SAVE RETURN      00002'054421 TYPE: STA 3,LINK ;SAVE RETURN      00002'021400 LOOP: LDA 0,0,3 ; TABLE POINTER      00002'021400 LOOP: LDA 0,0,3 ;TABLE POINTER      00002'0311015 MOV# 0,0,SNR ;CHECK FOR TERMINATION      00002'04'080412 JMP TYPEX ;TERMINATE      00006'000777 JMP1      00007'061111 DOAS 0,TTO ;OUTPUT RIGH-MOST CHAR      00001'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE      00002'000777 JMP1      00012'000777 JMP1      00012'000777 JMP1      00013'061111 DOAS 0,TTO ;2ND CHARACTERS      00012'000777 JMP1      00013'061111 DOAS 0,TTO ;2ND CHARACTER      00014'175400 INC 3,3 ;NEXT BUFFER ADDRESS      00015'000765 JMP LOOP ;NEXT WORD      J      00022'0004463 TESTR: JSR 0LTYPE      00022'0046463 TESTR: JSR 0LTYPE      000024'063014      0033'047534</pre>		-		AL TYPE	
<pre></pre>				eLine	
<pre></pre>					
<pre>. TITL TYPE .ENT TYPE .NREL 000000'054421 TYPE: STA 3.LINK ;SAVE RETURN 00001'035400 LDA 3.0.3 ;TABLE POINTER 00002'021400 LOOP: LDA 0.0.3 ;PASS PARAMETER TO A0 00003'101015 MOV# 0.0.SNR ;CHECK FOR TERMINATION 00004'000412 JMP TYPEX ;TERMINATE 00006'000777 JMP1 00006'000777 JMP1 00007'061111 DOAS 0.TTO ;OUTPUT RIGHT-MOST CHAR 00010'101300 MOVS 0.0 ;SWAP CHARACTERS 00011'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 00012'000777 JMP1 00012'000777 JMP1 00013'061111 DOAS 0.TTO ;2ND CHARACTER 00014'175400 INC 3.3 ;NEXT BUFFER ADDRESS 00015'000765 JMP LOOP ;NEXT WORD 00016'034403 TYPEX: LDA 3.LINK 00017'175400 INC 3.3 00022'001400 JMP 0.3 00022'001400 JMP 0.3 00022'0004645 TESTR: JSR 0LTYPE 00023'000025' BUFER 00024'063077 HALT BUFER:TXT'&lt;015&gt;&lt;012&gt;GRANT&lt;040&gt;DOUGLAS&lt;040&gt;RALPH 00025'005015</pre>		JLTYPE:	TYPE		
<pre></pre>	•	3			
.NREL 00000'054421 TYPE: STA 3,LINK ;SAVE RETURN 00001'035400 LDA 3,0,3 ;TABLE POINTER 00002'021400 LOOP: LDA 0,0,3 ;PASS PARAMETER TO A0 00003'101015 MOV# 0,0,SNR ;CHECK FOR TERMINATION 000004'000412 JMP TYPEX ;TERMINATE 00005'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 00007'061111 DOAS 0,TTO ;OUTPUT RIGHT-MOST CHAR 00010'101300 MOVS 0,0 ;SWAP CHARACTERS 00011'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 000012'000777 JMP1 00012'000777 JMP1 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00015'000765 JMP LOOP ;NEXT WORD ; 00015'000765 JMP LOOP ;NEXT WORD ; 00022'006463 TESTR: JSR 9LTYPE 00022'006463 TESTR 9LTYPE 00022'006463 TESTR 9LTYPE 00025'005015					
00000'054421 TYPE: STA 3,LINK ;SAVE RETURN 00001'035400 LDA 3,0,3 ;TABLE POINTER 00002'021400 LOOP: LDA 0,0,3 ;PASS PARAMETER TO A0 00003'101015 MOV# 0,0,SNR ;CHECK FOR TERMINATION 00004'000412 JMP TYPEX ;TERMINATE 00006'000777 JMP1 00007'061111 DOAS 0,TTO ;OUTPUT RIGHT-MOST CHAR 00010'101300 MOVS 0,0 ;SWAP CHARACTERS 00011'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 00012'000777 JMP1 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00014'175400 INC 3,3 ;NEXT BUFFER ADDRESS 00015'000765 JMP LOOP ;NEXT WORD ; 00022'006463 TYPEX: LDA 3,LINK 00021'00000 LINK: 0 ; TEST ROUTINE ; 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00022'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 00025'005015 0005015				TTPE	
00001'035400 00002'021400 LOOP: LDA 0,0,3 ;PASS PARAMETER TO A0 00003'101015 MOV# 0,0,SNR;CHECK FOR TERMINATION 00004'000412 JMP TYPEX ;TERMINATE 00006'000777 JMP1 00007'061111 DOAS 0,TTO ;UNPUT RIGHT-MOST CHAR 00010'101300 MOVS 0,0 ;SWAP CHARACTERS 00011'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 00012'000777 JMP1 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00014'175400 INC 3,3 ;NEXT BUFFER ADDRESS 00015'000765 JMP LOOP ;NEXT WORD 00021'000000 LINK: 0 ; 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE JS 00022'006463 TESTR: JS 00020'005 JS 00020 JS 00020'005 JS	00000 054421	TYPE:		3.LINK	SAVE RETURN
00003'101015 00004'000412 JMP TYPEX JTERMINATE 00005'063511 SKPBZ TTO JWAIT UNTIL AVAILABLE 00006'000777 JMP1 00007'061111 DOAS 0,TTO JOUTPUT RIGHT-MOST CHAR 00012'000777 JMP1 00012'000777 JMP1 00012'000777 JMP1 00012'000777 JMP1 00013'061111 DOAS 0,TTO J2ND CHARACTERS 00014'175400 INC 3,3 JNEXT BUFFER ADDRESS 00015'000765 JMP LOOP JNEXT WORD 00021'000000 LINK: 0 JMP 0,3 00022'0064633 00022'006463 00022'0064637 HALT BUFER: TXT'<015><012>GRANT<040> DOUGLAS<040>RALPH 00025'005815					
00004*000412 JMP TYPEX :TERMINATE 00005*063511 SKPBZ TTO :WAIT UNTIL AVAILABLE 00006*000777 JMP1 00007*061111 DOAS 0,TTO :OUTPUT RIGHT-MOST CHAR 00010*101300 MOVS 0,0 :SWAP CHARACTERS 00011*063511 SKPBZ TTO :WAIT UNTIL AVAILABLE 00012*000777 JMP1 00013*061111 DOAS 0,TTO :2ND CHARACTER 00014*175400 INC 3,3 :NEXT BUFFER ADDRESS 00015*000765 JMP LOOP :NEXT WORD ; 00016*034403 00021*00000 LINK: 0 ; 00022*006463 TESTR: JSR 0LTYPE 00023*000025 BUFER 00024*063077 HALT BUFER:.TXT*<015><012> GRANT<040> DOUGLAS<040> RALPH 00027*047101 00030*020124 00031*047504	00002 * 021400	LOOP:	LDA	0,0,3	PASS PARAMETER TO A0
00005'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 00006'000777 JMP1 00007'061111 DOAS 0,TTO ;OUTPUT RIGHT-MOST CHAR 00010'101300 MOVS 0,0 ;SWAP CHARACTERS 00011'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 00012'000777 JMP1 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00014'175400 INC 3,3 ;NEXT BUFFER ADDRESS 00015'000765 JMP LOOP ;NEXT WORD ; 00016'034403 TYPEX: LDA 3,LINK 00017'175400 INC 3,3 00021'00000 LINK: 0 ; ; TEST ROUTINE ; 00022'0064463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE 00023'000025' BUFER 00024'063077 HALT BUFER:•TXT'<015><012>GRANT<040> DOUGLAS<040> RALPH					
00006'000777       JMP       -1         00007'061111       DOAS       0,TTO       ;OUTPUT RIGHT-MOST CHAR         00010'101300       MOVS       0,0       ;SWAP CHARACTERS         00011'063511       SKPBZ       TTO       ;WAIT UNTIL AVAILABLE         00012'000777       JMP       -1         00013'061111       DOAS       0,TTO       ;2ND CHARACTER         00014'175400       INC       3,3       ;NEXT BUFFER ADDRESS         00015'000765       JMP       LOOP       ;NEXT WORD         00016'034403       TYPEX: LDA       3,LINK         00017'175400       INC       3,3         00020'001400       JMP       0,3         00021'000000       LINK:       0         ;       jTEST ROUTINE       ;         j00022'006463       TESTR:       JSR         00022'006463       TESTR:       JSR         00022'006463       TESTR: JSR       PLTYPE         00022'006463       TESTR: JSR       PLTYPE         00025'005015       00026'05015       0012>GRANT<040>DOUGLAS<040> RALPH         00026'051107       00027'047101       00030'020124         00031'047504       V20124       V2012>GRANT<040>DOUGLAS<040> RALPH					
00007'061111 00010'101300 MOVS 0,0 ;SWAP CHARACTERS 00011'063511 SKPBZ TTO ;WAIT UNTIL AVAILABLE 00012'000777 JMP -1 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00014'175400 INC 3,3 ;NEXT BUFFER ADDRESS 00015'000765 JMP LOOP ;NEXT WORD ; 00016'034403 TYPEX: LDA 3,LINK 00017'175400 INC 3,3 00022'006463 TEST ROUTINE ; 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE 00024'063077 HALT BUFER: TXT <015> <012> GRANT<040> DOUGLAS<040> RALPH 00025'005015 00026'051107 00027'047101 00030'020124 00031'047504					WAIT UNTIL AVAILABLE
00010'101300 00011'063511 00012'000777 JMP -1 00013'061111 DOAS 0,TTO JNP -1 00014'175400 INC 3,3 JNEXT BUFFER ADDRESS 00015'000765 JMP LOOP JNEXT WORD JMP 0,3 00021'000000 LINK: 0 JMP 0,3 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE BUFER BUFER BUFER BUFER BUFER BUFER BUFER BUFER 00025'005015 00026'031107 00027'047101 00030'020124 00031'047504					INTELL RIGHT-MOST CHAR
00011'063511 00012'000777 JMP1 00013'061111 DOAS 0,TTO ;2ND CHARACTER 00014'175400 INC 3,3 ;NEXT BUFFER ADDRESS 00015'000765 JMP LOOP ;NEXT WORD 00017'175400 00020'001400 JMP 0,3 00021'000000 LINK: 0 ; TEST ROUTINE ; 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE BUFER 00022'006463 TESTR: JSR 0LTYPE BUFER:TXT'<015><012>GRANT<040> DOUGLAS<040> RALPH 00025'005015 00022'047101 00030'020124 00031'047504					
00013'061111 00014'175400 00015'000765 JMP LOOP INC JMP LOOP INEXT BUFFER ADDRESS JMP LOOP INEXT WORD 00017'175400 00020'001400 JMP 0,3 00021'000000 LINK: 0 JMP 0,3 00022'006463 TESTR: JSR 0LTYPE 00023'000025' BUFER HALT BUFER: TXT'<015><012>GRANT<040>DOUGLAS<040>RALPH 00020'02124 00030'020124 00031'047504					WAIT UNTIL AVAILABLE
00014*175400 INC 3,3 JNEXT BUFFER ADDRESS 00015*000765 JMP LOOP JNEXT WORD J 00016*034403 TYPEX: LDA 3,LINK 00017*175400 INC 3,3 00020*001400 JMP 0,3 00021*000000 LINK: 0 J JEST ROUTINE J 00022*006463 TESTR: JSR 0LTYPE 00023*000025* BUFER 00024*063077 HALT BUFER:.TXT*<015><012>GRANT<040>DOUGLAS<040>RALPH 00025*005015 00026*051107 00027*047101 00030*020124					
00015'000765 JMP LOOP ;NEXT WORD 00016'034403 TYPEX: LDA 3,LINK 00017'175400 INC 3,3 00020'001400 JMP 0,3 00021'000000 LINK: 0 ; TEST ROUTINE ; 00022'006463 TESTR: JSR 0LTYPE 00023'000025' BUFER 00024'063077 HALT BUFER: TXT'<015><012>GRANT<040> DOUGLAS<040>RALPH 00025'005015 00027'047101 00030'020124 00031'047504					
<pre></pre>					
00016'034403 TYPEX: LDA 3,LINK 00017'175400 INC 3,3 00020'001400 JMP 0,3 00021'000000 LINK: 0 ; ; TEST ROUTINE ; 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE BUFER 00022'006463 TESTR: JSR 0LTYPE BUFER 00022'006463 TESTR: JSR 0LTYPE BUFER 00022'006463 TESTR: JSR 0LTYPE 00022'006463 TESTR: JSR 0LTYPE JST TESTR JSR 0LTYPE JSR 0LTYPE JS	00012.000165	*	JMP	LUGF	INEXT WORD
00017'175400 INC 3,3 00020'001400 JMP 0,3 00021'000000 LINK: 0 ; ; TEST ROUTINE ; 00022'006463 TESTR: JSR 0LTYPE 00023'000025' BUFER 00024'063077 HALT BUFER:.TXT'<015><012>GRANT<040>DOUGLAS<040>RALPH 00025'005015 00026'051107 00027'047101 00030'020124 00031'047504	00016'034403		LDA	3.LINK	
00021'000000 LINK: 0 ; TEST ROUTINE ; 00022'006463 TESTR: JSR OLTYPE 00023'000025' BUFER 00024'063077 HALT BUFER: TXT'<015><012>GRANT<040>DOUGLAS<040>RALPH 00025'005015 00026'051107 00027'047101 00030'020124 00031'047504				3,3	
<pre> ; ; TEST ROUTINE ; ; 00022'006463 TESTR: JSR @LTYPE 00023'000025' BUFER 00024'063077 HALT BUFER:.TXT'&lt;015&gt;&lt;012&gt;GRANT&lt;040&gt;DOUGLAS&lt;040&gt;RALPH 00025'005015 00026'051107 00027'047101 00030'020124 00031'047504 </pre>			JMP	0.3	
; 00022*006463 TESTR: JSR 0LTYPE 00023*000025' BUFER 00024*063077 HALT BUFER: TXT*<015><012>GRANT<040>DOUGLAS<040>RALPH 00025*005015 00026*051107 00027*047101 00030*020124 00031*047504	00021.000000		0		
00023'000025' BUFER 00024'063077 HALT BUFER: TXT'<015><012>GRANT<040>DOUGLAS<040>RALPH 00025'005015 00026'051107 00027'047101 00030'020124 00031'047504			OUTINE		
00024'063077 HALT BUFER: TXT'<015><012>GRANT<040>DOUGLAS<040>RALPH 00025'005015 00026'051107 00027'047101 00030'020124 00031'047504	00022 006463	TESTR:		OLTYPE	
BUFER: TXT <015> <012> GRANT <040> DO UGLAS <040> RALPH 00025'005015 00026'051107 00027'047101 00030'020124 00031'047504					
00025'005015 00026'051107 00027'047101 00030'020124 00031'047504	00024 063077				
00026'051107 00027'047101 00030'020124 00031'047504	000251005015	BUFER: T	x I <015>	<012>GRA	NT < 040> DO UGLAS < 040> RALPH
00027 • 047101 00030 • 020124 00031 • 047504					
00030 ° 020124 00031 ° 047504					
00032'043525					
	00032 043525				

Χ.

00033 · 040514 00034 · 020123 00035 · 040522 00036 · 050114 00037 · 004510 00040 · 006411 00041 · 031012 00042 · 020064 00043 · 020040 00044 · 040522 00045 · 051514 00046 · 047524 00047 · 020116 00050 · 004411 00051 · 042040	<015> <012> 24<040> <040> <040> RALSTON <040>
00052 • 044522	<040>DRIVE<015><012>MONTEREY<040>
00053 • 042526 00054 • 005015	040>
00055 047515	
00056.052116	
00057 051105	
00060°054505 00061°004440	
00062 • 041411	
00063 * 046101	CALLED DUT ( )
00064 0 43111	CALIFORNIA<015><012>U.S.A.<040><040>
00065 051117	
00066 044516	
00067 • 006501	
00070 052412	
00071 051456	
00072 °040456 00073 °020056	
00074 004440	
00075 020011	
00076.020040	59492 - 9492 - 1949
00077 • 020040	<040> <040> <040> <040> <040> <040> <040> <040> <040> 93940 •
00100 034440	
00101 034463	
00102 • 030064	
00103 .000000	
00104'000000 TERM: 00105'000000'LTYPE:	0
000022 ·	TYPE
	• END TESTR

* ***** ; INTERRUPT INITIALIZATION ******** INIT . TITL LVIT . ENT INTRUP . EXTN .L0C 000001 1 INTRUP 00001 177777 . VREL SET PRIDRITY MASK LDA Ø, MASK 00000'020410 INIT: 30301 362377 MSKD 0 0,HZ ; SET CLOCK FREQUENCY 00002 020405 LDA DDAS Ø,RTC 00003 061114 INTEN 00004 060177 00005.000400 JMP JMP 00006 000777 - - 1 ; BASIC CLOCK OF 10HZ 00007 0000001 HZ: 1 ; ENABLE RTC=BIT 13 00010 177773 MASK: 177773 0000000 . END INIT MOD FOR RTC UNLY ' ROUTINE TO SERVICE I/O INTERRUPTS BY POLLING . TITL INTRUP . ENT INTRUP SUPR . EXTN .NREL 00000'060277 INTRUP: INTDS ; SAVE THE STATE 00001 040421 STA Ø,SAVØ 00002 044421 STA 1, SAV1 00003 050421 STA 2, SAV2 3. SAV3 00004 054421 STA 00005'101100 MOVL 0.0 SAVE THE CARRY 00006.040420 0, SAVK STA 00007 063714 SKPDZ RTC 33313'306411 JSR. **elsupr** JCLOCK REQUEST 00011 020415 LDA 0, SAVK REFRESH CARRY 00012 101200 MOVR 0.0 00013 020407 Ø,SAVØ ;REFRESH STATE LDA 00014 024407 1,SAV1 LDA 2, SAV2 00015.030407 LDA 00016 034407 LDA 3, SAV3 00017 060177 INTEN 00020 002000 JMP 00 SUPR 00021'17777 LSUPR: 00022'000000 SAVO: Ø 00023'000000 SAV1: Ø 00024'000000 SAV2: ð 00025 0000000 SAV3: Ø 30026'000000 SAVK: Ø . END

EXERCISE 5 SOLUTION

G.

Ν

********* 3 3 MOD FOR RTC ONLY ; SUPERVISOR BY RTC INTERRUPT .TITL SUPR · ENT SUPR . EXTN EXECT .NREL 00000 054452 SUPR: 3, RSUPR ISAVE RETURN STA 00001 152440 SUBA 2,2 00002 034446 NUJOB: CLEAR AC2 FOR JOB COUNT 3, PJOBK ; GET THE JOB COUNT LDA 00003 1 57000 ADD 2,3 00004 021400 LDA 0,0,3 00005105404 0,1,SZR ;TASK ASSIGNED? INC 00006.000454 JMP. NUTSK 00007 . 040444 TASK: 3 NO 0, SAVEO ; SAVE STATE STA 00010 044444 STA 1, SAVE1 00011 050444 STA 2, SAVE2 00012 054444 STA 3. SAVE3 00013'125100 MOVL 1.1 SAVE THE CARRY 00014 044443 STA 1. SAVEK 00015 034434 LDA 3. PNUK GET REFRESH COUNT 00016'157000 ADD 2,3 00017 025400 LDA 1,0,3 00020 044434 1, SAVE1 ; REFRESH SAVED JOB COUNT STA 00021 034426 LDA 3, P.JOB SERVICE JOB REQUEST 00022'157000 ADD 2,3 00023 007400 JSR. 00,3 00024 024433 I, SAVEK ; REFRESH CARRY LDA 00025 125200 MOVR 1,1 00026 020425 0, SAVE0 ; REFRESH STATE LDA 00027 024425 LDA 1, SAVE1 00030 030425 LDA 2, SAVE2 00031 034425 LDA 3, SAVE3 00032 045400 NUTSK: STA 1,0,3 JUPDATE JOB COUNT 00033 151 400 INC 2,2 JON TO VEXT JOB 00034 034411 LDA 3, VJOB 00035 156414 JNUMBER OF JOBS SUB# 2,3,SZR ;LAST JOB CHECKED? 20036 000744 JMP. NUJOB 00037 030403 : 10 LDA 2,HZZ SET CLOCK FREQUENCY 00040 071114 DOAS 2,RTC 00041 002411 JMP ARSUPR 00042 .000001 HZZ: **JTERMIVATE** 1 BASIC CLOCK OF 10 HZ 00043 177777 JOB: EXEC1 00044 177766 JOBK: ; J)B 1 -12 INEGATIVE COUNT

00045 000001 VJ08:	1
00046 177766 NUK:	-12
00047 * 000743 * PJ08:	JJ3
0005010000441PJOBK	JJBK
30051 '000046 'PNUK:	NUK
00052 000000 RSUPR	: 0
00053 1000000 SAVED	: 🤊
33354'383300 SAVE1	: 0
00055'000000 SAVE2:	: 3
00056 000000 SAVES	. 0
00057 000000 SAVEK	: Ø

• END

.

 $\mathbf{X}$ 

7 ;  $E \times E C 1 = E \times E C 2$ 1 IGLOBAL ROUTINE TO TEST RTC SYSTEM BY COUNT 0-9 : .TITL EXEC2 ; EXEC1 IS THE CALL . ENT EXEC1 . EXTN TYPE . VREL SAVE RETURN 3,REXEC1 00000'054420 EXEC1: STA 00001 006414 JSR QLTYPE ; PRINT NUMBER COUNT 00002 .000015 . CRLF 00003 020410 LDA 0,COUVT JINCREASE THE COUNT AND 00004 101400 INC 0.0 00005 024411 1,NINE ; CHECK FOR LARGEST DIG LDA 00006 106472 SUBC# 0,1,SZC 00007 020410 LDA 0,ZERO STA 0,COUNT 00010 040403 00011 002407 JMP @REXEC1 00012 005215 CRLF: 005215 ;<012><015> COUNT: • TXT @<060><000>@ 00013 000060 00014 000000 00015 177777 LTYPE: TYPE 00016'000071 NINE: 71 00017 000060 ZERO: 60 00020 000000 REXEC1: Ø . END

λ.

• 两人不再去再去,不再再再再再再再再再再再不再不再再再再再再再再再再再再再再再再再有不可不可。 ; ; CASET 1 ROUTINE TO DEMONSTRATE CASSETTE I/D VIA SOS TO A SCRAICH TAPE DV UNIT 1 \$ : : 27 JUT ) BER 1976, GDR 3 开发太子我对我有我有我的女孩子的女孩子的女孩子的女孩的女孩的女孩的女孩的女孩的女孩 化水水 有力的 . TITL CASET CASET .EVT ·SOS, CTU1, TYPE, TYPI0, BIDA . EXTV . VREL 131232 BUFF: 2:32 ·314 11202 030330 FILE: 3 00203 006474 CASET: JSR **QLTYPE** ; PR.) APT THE USER 30204 033320 1 PROMPT ; INPUT ENABLED **JLTYPI** 19205 036473 JSR 30206 '000352' BUFFER 30207 306017 .SYSTM ; BEGIN SDS CALLS .SYSI ; INITIALIZE SOS 33210 921322 11211 000436 JYP ERRJR 00212 020770 LDA 0, FILE ;FILE=0 .SYST4 30213 306017 33214 314031 . OPEN 31 ;CT1=31 JMP 90215 000432 ERROR 00216 020456 LDA 0, BYPTO 30217 024457 LDA 1, BYTCT 03223 336317 . SYSTM 30221 016431 ;RECORD THE BUFFER . WRS 31 33222 303425 JYP ERROR 00223 0006017 .SYST4 00224 014431 .CLOSE 31 00225 000422 J.MP ERROR 30226 020754 Ø, FILE LDA . SYSTM 00227 006017 10230 014031 . OPEN 31 3231 333416 JYP ERROR 11232 329443 0, BYPT1 LDA 0 1233 324443 1, BYTCT LDA 39234 906017 .SYSTM 10235 115031 DUMP THE RECORDING . RDS 31 07236 1000411 JYP. ERROR PRIAPT USER 10237 106441 **JSR QLTYPE** 

EXERCISE 6 SOLUTION

Η.

		VEREFE	
1.1.243 * 1.1.1.343 *			ALIANCING CONTENTS OF SUPPER
0.0241 116436			ACTIVATION CONTRACTOR SOFFER
11242 . 441491.		HUFF	
11243 1116434		134	可してもに
01244 000302 1		4)IE	
00245 062677		LORST	
11246 02433		JAP	a SY S
11247 145114 E	RRAK:	400	2,1 JERROR CODE TO AC 1
11250-1333423		LDA	2,07
90251 071111		D-045	2,17)
00252 063611		SKPUN	TT)
30253 000777		ANT	• - 1
		111	
41254 030415		LDA	2, LF
3755,941111		D145	2, TT)
00256 063611		SKPDV	CTT
20257 200777		JMP	• -1
13263 920403		LDA	Ø,STUFF ;BIOA USER LINKAGE
33261 936411		JSR	PLBIOA
38262 363 377		HALT	
00263'054410 S	THEE.	STA	3, RSTUF ; SAVE RETURN
00264 061111	IUFF.	DOAS	Ø,TT) ;)UTPUT DATA
03265'363611		SKPUN	TT)
00266 000777		AND	• -1
99267 932434		JAB	<b>@RSTUF</b>
00270'000015 C	;R:	015	
00271'000012 L	.F:	012	
10272 177777 L	BL)A:	BIJA	
00273 000000 R	STUF:	3	
00274 '000724"B	YPTØ:	2*BUFFE	2
30275 '000000"B		2 * BUFF	
00276'000202 B		202	; TOTAL BUFFER = 130 CHARACTERS
00277'177777 L		TYPE	
00300 177777 L		TYPIO	
20301 017777 S		17777	
	IDTE:	• TXT	'<015><012>NJRMAL<343>
11302 005015			
13303 047516			
00304 046522			
003051046101			
00306 004440			TERMINATION <015> <012> <0> <0> '
00307 052011			
00310.051105			
00311 044515			
00312 040516			
00313 044524			
88314'847117			
20315 025015		× .	
99315 993915 99316 9999999			
43317 900000		TIT	
H	RJ4PT:	• 1 X 1	'<015><012>INPUT, TERMINATE BY

11323 1015 115	
17321 • 147111	
143221452523	
11323 126124	
11324 142524	
10325 1046522	
3326 047111	
0.0327 .052101	
30330 * 020105	
00331 054502	
003321004411	[HERE <u4u>[S]<u15><u12><u><u><u><u></u></u></u></u></u12></u15></u4u>
00333 044133	
00334 051105	
00335 * 329105	
20336 251511	
01337 006535	
11341 000012	
11341 * 222200	
30342 * 000000	
VERIFY:	.TXT '<015><012>BUFFER<015><012><0><0> '
00343 * 00 50 1 5	
11344 1352502	
20345 043136	
11346 1751115	
10347 005015	
00350°000000	
10351 1000000	
000202 BUFFER:	
00554 000000 ZERO:	0 BUFFER PROTECTION FOR CASSETTES
000203 *	.END CASET

N

2 产品点不能表现的表面的关系的 医牙关系 医牙关系 医牙关下的 网络大学家大学家大学家大学家大学家 : SUBROUTIVE TYPEA TH, HAL SUBR DELTE FOR ITY ENPOTED A PACKED BUFFER, TERMINALED BY MERE IS . BUFFER START ADDRESS PASSED AS ARGUMENT. BYTE COUNT RETURNED IN AC 2. ; AUTOMATICALLY TERMINATES AFTER 130(DECIMAL) EXAMPLE: WORD CHARACTER : BUFFER: 1 2,1 ; 2 4.3 ; TERM: 3 1,0 : ; CALL SEQUENCE • EXTV TYPIØ ; ; . . . JSR. **@LTYPI** ; BUFFER ; . . . ;LTYPI: TYPIØ 3 我我我我去来看我我看着我我我我我我我我我我我我我我我不不不不不不不不好的我我我我去去不 .TITL TYPIO TYPID • EVT . VREL 3,2 ; STEP PAST ARGUMENT 100000 171400 [YHI0: INC 2, RTYPI ; SAVE RETURN 20201 050431 STA ;ZER) CHARACTER C)UNT 00002 030431 LDA 2,ZER) 3,11,3 ;TABLE P)INTER 00003 035400 LDA 00034 060113 VIDS TTI ; ENABLE INPUT 00005'126440 NUWRD: SUBO 1 - 1 ICLEAR HOLDING BUFFER ; WAIT FOR INPUT SKPDN TTI 200006'363610 CHAR2: 00007 000777 J 1P . - 1 J.TTI DIAS ISAVE IN AD 00010 060510 00011 063511 SKPBZ TT) ; WAIT FOR ECH) 00012 033777 JMP. . - 1 00013 061111 DDAS Ø,TTO JECH) PRINT ADDCS 0,1, SNR ; IST WIRD=C1,0, CRY SET 0001.4 107365 ;2ND WORD=C2,C1,CRY CLEAR 00015 000413 JMP TYPIX ; EXIT ) 4 IST )R 240 MULL 1,1,SZC ;CRY SET, FIRST CHARACTER 00016-125002 VCM 00017 000767 JYP. CHAR2 ; STORE 2 CHARINDRD 00020 045400 STA 1,9,3 00021 151400 INC 2,2 MAINTAIN CHARACTER COUNT 00022 151400 INC 2,2 00023 024406 **IJLIMIT** LDA 00024 132415 SUB# 1,2, SNR ; LIMIT OF 130 CHARACTERS 00125 010403 J-MP XIGYT ; TERMINATE ON FULL BUFFER 00026 175400 INC 3,3 ;NEXT BUFFER OPENING 00027 1003756 NUWRD JMP. ; CONTINUE 00030 002402 TYPIX: JMP ORTYPI 00031'000202 LIMIT: 202 00032'000000 RTYPI: 0 30033 '003000 ZERD: 0 . END

## APPENDIX T

#### MAINTENANCE

This Appendix summarizes a few random notes on maintaining the equipment.

### CPU and CASSETTE TRANSPORT

The nearest source of manufacturer assistance is:

Data General Corporation, Field Service Office, 1054 Elwell Court, Palo Alto, CA 94306

General office: phone 965-9100 Local sales: Tom Larson phone 965-1010 Software support: Jim Isaak phone 965-1010 Hardware support: Denis Hutchinson / Steve Parell

Naval Postgraduate School: Software support: Dave Norman X2641 Supply and Repair: Al Gilkes X2422 Comptroller: Donna McNicol X2770

The CPU and cassette units need no maintenance by the normal user. Periodically the cooling fans should be lubricated. It is recommended that during frequent use periods the cassette heads be cleaned once a week. A solvent such as ETHYL alcohol is suggested.



# ASR 33 TELETYPE

For normal maintenance routine advice see the micro-computer laboratory technicians Walt and Don on the fifth floor of Spanagel Hall.

The striker arm for the TTY type-drum has a rubber cap to protect the raised character outlines. Loss of this cap rapidly destroys the TTY print capability. The fault may be detected by the louder metallic sounding striking of the type-arm. Continuous user inspection is recommended.

## DATAX CONVERIERS

The nearest source of manufacturer assistance is:

Repair Services, Data Translation Corporation, 23 Strathmore Road, Natck, MA 01760

General assistance: Mr. Fishman phone 617-655-5300



# INITIAL DISTRIBUTION LIST

2

6

1

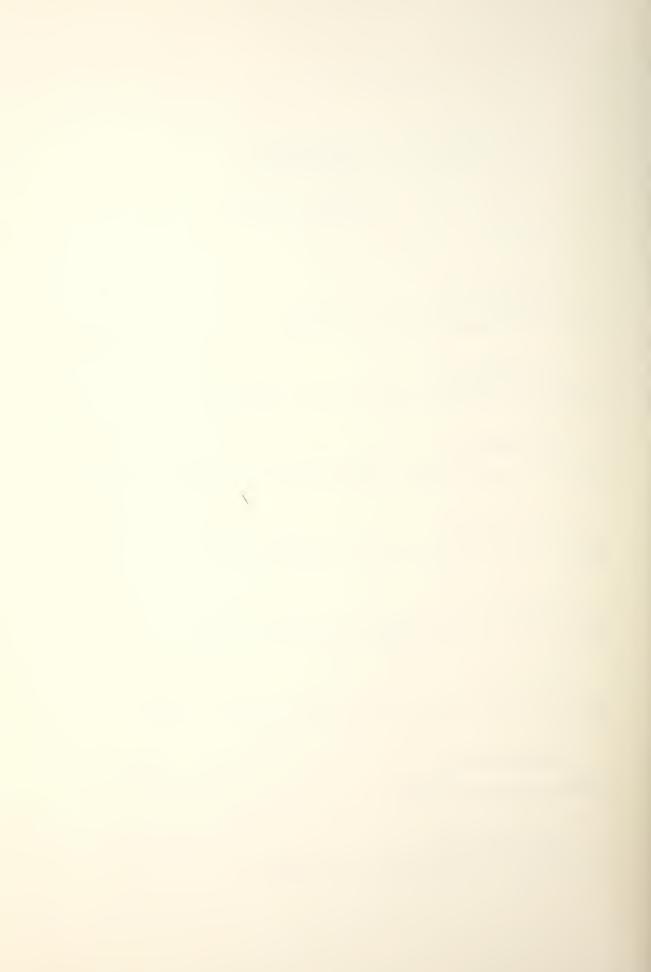
2

.

1. Library, Code 0212 Naval Postgraduate School Monterey, California 93940 Department Chairman, Code 62 2. Department of Electrical Engineering Naval Postgraduate School Monterey, California 93940 Data General Corporation 3. Route 9 Southboro, Massachusetts 01772 4. Major Grant D. Ralph, CF DMCS 2 National Defense Headquarters

Ottawa, Ontario, K1A OK2

CANADA


215



## APPENDIX U

LIST OF MANUALS

014-000001-02 4025 IBM System 360/370 Interface 014 - 000003 - 01Summary of Terminal and Data Set Interfaces 014-000005-01 Type 4015 Synchronous communications Controller 014-000008-00 How to Order Cables for the NOVA Computers 014-000011 How to Wire the TTY 4009 Modification Kit 014-000013-04 How to Install and Use the NOVA Cassette System 014-000014-00 Communications Cabling 014-000015-02 Programmable Synchronous Line Adapters



015-000009-00

How to Use the NOVA Computers

015-000015

NOVA Cassette Preliminary Technical Manual

015-000021-02

Peripherals Programmers Reference Manual

015-000023-03 Programers Reference Manual

015-000031-02 Interface Designers Reference Manual

015-000043-00 NOVA 800/820 and Jumbo 800 Computers Technical Manual

017-000001-01 Synchronous Communications Package

017-000004-01 Remote Synchronous Terminal Control Program

093-000002-01 Bootstrap Loader User's Manual

093-000003-06 Binary Loader User's Manual

093-000017-02

Assembler

 $\mathbf{N}$ 

093-000018-05 NOVA Text Editor 093-000018-06 NOVA Text Editor 093 - 000020 - 02Debug II User's Manual 093-000038-01 Debug I User's Manual 093-000039-00 Relocatable Loader 093-000040-00 Extended Assembler 093-000041-03 Relocatable Math Library File 093-000042-01 Single User Basic

093-000044-02 Debug III User's Manual

093-000052-02 Extended Algol User's Manual

093-000053-05 Fortran IV User's Manual

093-000053-07 Fortran IV User's Manual -

093-000054-00 NOVA Assembler for the IBM 360 093-000055-03 Selfloading Bootstrap and Binary Loader 093-000062-03 The Stand-Alone Operating System User's Manual 093-000062-04 The Stand-Alone Operating System User's Manual 093-000065-02 Extended Basic User's Manual 093-000067-01 Introduction to Programming the NOVA Computers 093-000074-01 Library File Editor 093-000081-02 Macro-Assembler User's Manual 093-000083-04 Introduction to Real Time Disk Operating System 093-000084-00 Octal Editor 093-000090-01

Fundamentals of Small Computer Programming



### MISCELLANEOUS

Authorized ADP Schedule Price List for 1976 Supplemental Price List for 1976 DG/DAC Sensor I/O Subsystem 012-244 NOVA Cassette System Information Package Datax User Instruction Guide number 1600-674-01 Point Plotter Dual D/A Converter Model DT212

Datax High Speed Data Acquisition System Modules

### APPENDIX V

## RELOCATABLE BINARY UTILITY PROGRAMS

089-000031-03 Relocatable Debug II

089-000046-05 Relocatable FPI

089-000073-02 Extended Debug III

089-000080-02 Relocatable Binary Punch

089-000081-04 Stand-Alone Library File Editor

089-000104-02 Stand-Alone Operating System Text Editor

089-000106-02 Stand-Alone Operating System Extended Assembler

089-000120-02 SOS Cassette/Magnetic Tape Relocatable Loader

089-000121-02 Stand-Alone Operating System Command Line Interpreter



089-000122-02 Stand-Alone Operating System Generation Program

089-000137-02 SOS Extended Basic MP

089-000138-02

SOS Extended Basic RP

089-000139-02 SOS Extended Basic PUR

089-000156-02 Extended Basic Software Multiply/Divide

089-000159-01 SOS Extended Basic Dummy Print

089-000160-01

SOS Extended Basic Dummy Matrix

### APPENDIX W

ASSEMBLER SOURCE SUBROUTINES

090 - 000010 - 02System Subroutine Core Compare 090-000012-01 System Subroutine Single Precision Absolute Value 090-000013-01 System Subroutine Single Precision Signed Multiply 090-000014-01 System Subroutine Single Precision Signed Divide 090 - 000015 - 01System Subroutine Double Precision Absolute Value 090-000016-01 System Subroutine Double Precision Signed Multiply/Divide 090 - 000017 - 02System Subroutine Double Precision Addition 090-000018-01 System Subroutine Double Precision Subtraction

090-000019-01 System Subroutine Double Precision Negate

090-000020-01 System Subroutine Unsigned Multiply

090-000021-01 System Subroutine Unsigned Divide

090-000025-01 System Subroutine Logical Exclusive OR

090-000026-02 System Subroutine Logical Inclusive OR

090-000027-01 System Subroutine Single Precision Binary Coded Decimal To Binary

090-000028-01 System Subroutine Single Precision Binary To Binary Coded Decimal

090-000029-01 System Subroutine Single Precision Decimal To Binary

090-000030-01 System Subroutine Single Precision Binary To Decimal

090-000031-01 System Subroutine Single Precision Octal To Binary

090-000032-01 System Subroutine Single Precision Binary To Octal

090-000033-01 System Subroutine Double Precision Binary Coded Decimal To Binary



090-000034-01 System Subroutine Double Precision Binary To Binary Coded Decimal 090-000035-01 System Subroutine Double Precision Decimal To Binary 090-000036-02 System Subroutine Double Precision Binary To Decimal 090 - 000037 - 01System Subroutine Parity Generator 090-000038-01 System Subroutine Binary To Gray Code 090-000039-01 System Subroutine Gray Code To Binary 090 - 000040 - 01System Subroutine Random Number Generator 090-000043-01 System Subroutine Debug I 090-000257-05 System Subroutine Fortran Runtime Parameters 090-000498-04 System Subroutine Stand-Alone Parameters 090 - 000520System Subroutine Real Time Operating System Parameters 090-000883-02 System Subroutine Real Time Disk Operating System Parameters

204



090-000889-01 System Subroutine Stand-Alone Operating System Parameters 090-001482-00 System Subroutine Instruction Definitions NOVA Basic 090-001483-00 System Subroutine Instruction Definitions Floating Point Interpreter

090-001484-00 System Subroutine Definitions For The Operating System



### APPENDIX X

# ABSOLUTE BINARY UTILITY PROGRAMS

```
091-000001-07
Paper Tape Editor
 091-000002-08
Paper Tape Assembler
 091-000003-03
Debug II For 4K, 06200-07577
 091-000004-04
 Binary Lcader For The Manually Loaded Bootstrap
 091-000005-02
 Binary Punch (High Core)
 091-000006-01
 Binary Punch (Low Core)
 091-000007-02
 Core Compare
 091-000008-04
 Tape Duplicator
 091-000010-03
 Debug II For 4K, 00400-01777
```

091-000012-08 Basic Floating Point For 4K, 05600-07577

091-000013-08 Extended Floating Point For 4K, 04100-07577

091-000014-01 Floating Point To Octal Converter

091-000016-04 Relocatable Loader

091-000017-07 Extended Assembler

091-000018-07 Single User Basic

091-000036 Selfloading Bootstrap And Binary Loader

091-000038-07 Extended Relocatable Loader

091-000052-03 Fortran Compiler For 8K

091-000057-04 Stand-Alone Library File Editor

091-000067-02 Stand-Alone Operating System Cassette Loader/Writer

091-000069-03 Stand-Alone Operating System Extended Assembler Without Mass Storage

091-000070-03 Stand-Alone Operating System Generation Program Without Mass Storage

091-000071-03 Stand-Alone Operating System Generation Program With Cassette

091-000072-03 Stand-Alone Operating System Command Line Interpreter With Cassette

091-000073-03 Stand-Alone Operating System Relocatable Loader With Cassette

091-000C77-02 Stand-Alone Operating System Subroutine Extended Basic

091-000081-01 Real Time Operating System Generation Program

### APPENDIX Y

```
HARDWARE TEST PROGRAMS
```

095-000002 Memory Address Test

095-000007 Checkerboard II

095-000011 Real Time Clock Test

095-000012

Exerciser

095-000016-05 Binary 4015 Communications Controller

095-000028-02 Binary 4026 DCM Multiplexor Diagnostic

095-000031 Checkerboard III

095-000035-03 Binary 4029 Communications Controller

095-000044-04 800/1200 Power Shut Down Test

095-000045-04

NOVA 800 Logic Test

095-000048-04

NOVA 800 Teletype Test

095-000073-02

Binary 4060 Quad TTY Multiplexor

095-000099-02

Supernova, NOVA 800/1200 Multiply/Divide Test

### APPENDIX Z

```
LIBRARY PROGRAMS
```

099-000001-02 Relocatable Math Library File 099-000005-07 Fortran Runtime Library I 099-000006-04 Fortran Runtime Lirary II 099-000007-05 Fortran Runtime Lirary III 099-000008-02 Runtime Library Software Multiply/Divide 099-000009-02 NOVA 800/1200 Runtime Library Hardware Supernova, Multiply/Divide 099-000010-08 Stand-Alone Operating System Library 099-000011-02 Runtime Library NOVA Hardware Multiply/Divide

099-000012-05 Algol Runtime Library I

099-000013-05 Algol Runtime Library II

099-000014-04 Algol Runtime Library III

099-000018-03 Fortran Runtime Library 0

099-000020-02 Dummy Stand-Alone Operating System Library

099-000021-03 Fortran Data Plot Library

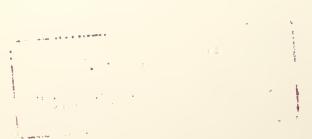
099-000041-02 Stand-Alone Operating System Cassette Driver

099-000060-00 Real Time Operating System Task Monitor Library

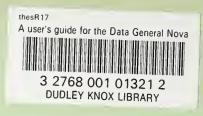
099-000061-00 Real Time Operating System Handler Library

099-000062-00 Real Time Operating System Cassette Handler Library

099-000077-02 Stand-Alone Operating System Single User Extended Basic


#### LIST OF REFERENCES

- 1. Pounds, J. W., <u>The Data General NOVA</u> 800 Minicomputer <u>as a Digital Controller</u> Master of Science Thesis, Naval Postgraduate School, Monterey, 1975.
- 2. Data General Corporation, Reference Manual 093-000067-01, <u>Introduction to Programming the NOVA</u> <u>Computers</u>, 1972.
- 3. Data General Corporation, Reference Manual 015-000009-00, How to Use the NOVA Computers, April 1971.
- 4. Data General Corporation, Reference Manual 015-000023-03, <u>Programmer's Reference Manual NOVA</u> LINE <u>COMPUTERS</u>, January 1976.
- 5. Data General Corporation, Reference Manual 015-000021-02, <u>Programmer's Reference Manual</u> <u>PERIPHERALS</u>, July 1975.
- 6. Data General Corporation, Reference Manual 015-000031-02, <u>Interface Designer's Reference Manual</u> R <u>NOVA AND ECLIPSE LINE COMPUTERS</u>, August 1975.
- Data Translation Corporation, Engineering Specification 1600-674 Rev. 1, <u>DATAX User Instruction Guide</u>, 1974.
- Data Translation Corporation, Data Sheet DT212, <u>Point</u> <u>Plotter Dual D/A Converter</u>,October 1974.


•

- 9. Data General Corporation, Reference Manual 093-000002-01, <u>User'ş Manual BOOTSTRAP LOADER</u>, August 1970.
- 10. Data General Corporation, Reference Manual 093-000003-06, <u>User's Manual BINARY LOADER PROGRAM</u>, January 1973.
- 11. Data General Corporation, Reference Manual 093-000055-03, <u>SELFLOADING BOOTSTRAP AND BINARY LOADER</u>, February 1973.
- 12. Data General Corporation, reference Manual 093-000062-03, <u>User's Manual THE STAND-ALONE OPERATING</u> <u>SYSTEM</u>, June 1973.
- 13. Data General Corporation, Reference Manual 093-000062-04, <u>User's Manual STAND-ALONE OPERATING</u> <u>SYSTEM</u>, July 1974.
- 14. Data General Corporation, Reference Manual 093-000018-05, <u>NOVA</u> <u>TEXT EDITOR</u>, November 1972.
- 15. Data General Corporation, Reference Manual 093-000018-06, <u>NOVA</u> <u>TEXT EDITOR</u>, June 1973.
- 16. Data General Corporation, Reference Manual 093-000074-01, <u>LIBRARY FILE EDITOR</u>, December 1972.

214







...

